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ABSTRACT

I Think I See the Light Curve: The Good (and Bad) of Exoplanetary Inverse Problems

Joel Colin Schwartz

Planets and planetary systems change in brightness as a function of time. These “light

curves” can have several features, including transits where a planet blocks some starlight,

eclipses where a star obscures a planet’s flux, and rotational variations where a planet

reflects light differently as it spins. One can measure these brightness changes—which

encode radii, temperatures, and more of planets—using current and planned telescopes.

But interpreting light curves is an inverse problem: one has to extract astrophysical signals

from the effects of imperfect instruments.

In this thesis, I first present a meta study of planetary eclipses taken with the Spitzer

Space Telescope. We find that eclipse depth uncertainties may be overly precise, especially

those in early Spitzer papers. I then offer the first rigorous test of BiLinearly-Interpolated

Subpixel Sensitivity (BLISS) mapping, which is widely used to model detector systematics

of Spitzer. We show that this ad hoc method is not statistically sound, but it performs

adequately in many real-life scenarios.
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Next, I present the most comprehensive empirical analysis to date on the energy bud-

gets and bulk atmospherics of hot Jupiters. We find that dayside and nightside measure-

ments suggest many hot Jupiters have reflective clouds in the infrared, and that day-night

heat transport decreases as these planets are irradiated more. I lastly describe a semi-

analytical model for how a planet’s surfaces, clouds, and orbital geometry imprint on a

light curve. We show that one can strongly constrain a planet’s spin axis—and even spin

direction—from modest high-precision data. Importantly, these methods will be useful

for temperate, terrestrial planets with the launch of the James Webb Space Telescope and

beyond.
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CHAPTER 1

Introduction and Background

To people living in large cities, the night sky probably never looks very impressive—

not with the same beauty that astronomy texts can paint, at least. But with clear skies

far from light pollution, the view changes completely: thousands of twinkling stars are

scattered across constellations and the Milky Way, with hints of many features in the

dark. That is a sight to behold, clearly showing the Earth as just one minuscule and

precious island in the universe.

It has been easy to consider Earth and our Solar System as special places, and there

is still truth in that. This is the only planet we know that harbors life, despite efforts like

SETI to seek it elsewhere (Anderson et al., 2002). Yet astonishingly, we now understand

that many M-dwarfs and Sun-like stars have planets (Dressing & Charbonneau, 2013;

Petigura et al., 2013), often in multi -planet systems (e.g. Schneider et al., 2011; Lissauer

et al., 2012; Han et al., 2014). This is the age of exoplanetary science (Figure 1.1), and

our Solar System is far less alone than ever imagined. That these new worlds have been

hiding in (relatively) plain sight, essentially forever, shows just how difficult it can be to

find them!

1.1. Our (Exo)Planetary Neighborhood

Latham et al. (1989) discovered and Cochran et al. (1991) verified the first candidate

planetary system, HD 114762, but the latter authors could not rigorously determine the
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Exoplanets

Earth Analogs
Hot Jupiters

Light Curves

Thermal Emission
Reflected Light

Telescopes

Current/Future Missions
Detector Systematics

Figure 1.1. A visual overview: exoplanets and methods of detecting them
(Section 1.1), light curves and their features (Section 1.2), and the telescopes
used for observing (Section 1.3). Satellite icons modified from Freepik on
Flaticon.com.

companion object’s mass. The first confirmed discoveries of exoplanets came in 1994

(PSR B1257+12 system; Wolszczan et al., 1994) and 1995 (51 Pegasi b; Mayor & Queloz,

1995), and the catalog of nearby planets has grown considerably since. In fact, the nearest

confirmed planet is only about 4.2 ly away (Proxima Centauri b; Anglada-Escudé et al.,

2016). While many other worlds are on the order of 103 ly from Earth, they are still

relatively close given the expanse of our galaxy (∼ 105 ly across).

There are now thousands of confirmed planets in our galactic neighborhood (Schneider

et al., 2011) and even more candidates (e.g. Batalha et al., 2013; Mullally et al., 2015). As

Figure 1.2 shows, these planets span the gamut of our Solar System and more: gas giants

with large semi-major axes (e.g. HR 8799 System; Marois et al., 2008; Marley et al.,

2012), potential ice giants around the size of Neptune (e.g. Kepler-421b; Borucki et al.,
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Figure 1.2. The mass and semi-major axis of most confirmed exoplanets
(∼ 2900), plotted on a log–log scale. The colors show how each object was
detected (see below in Section 1.1): yellow for direct imaging, orange for
gravitational microlensing, purple for radial velocity, and indigo for tran-
siting planets. The dashed red and dotted cyan lines show the values for
Jupiter and Earth, respectively. Parameters taken from the Exoplanets
Data Explorer on Exoplanets.org (Han et al., 2014).

2011; Kipping et al., 2014), and terrestrial worlds similar in size to our inner planets (e.g.

Kepler-37b and -37c; Batalha et al., 2013; Barclay et al., 2013).

Some exoplanets have no known analogs in the Solar System. Consider “super-Earths”

(e.g. GJ 1214b; Charbonneau et al., 2009): these are worlds with masses between that

of Earth and Uranus (i.e. M⊕ ≤ M ≤ 14.5 M⊕; they are also called “mini-Neptunes”

near the more massive end). Models of planet formation did not exclude super-Earths
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from existing (e.g. Papaloizou & Terquem, 2005), but discovering such planets was still

surprising. And with evidence that orbits of distant Kuiper Belt objects may be influenced

by a body of at least 10 M⊕ (Batygin & Brown, 2016), the so-called “Planet 9” of our

Solar System could wind up being a mini-Neptune!

Early studies into super-Earths looked at their internal structure (Valencia et al.,

2006), the mass-radius relationships of both GJ 876d (Valencia et al., 2007a) and solid

exoplanets (Seager et al., 2007), and inferring their bulk properties (Valencia et al., 2007b).

These works showed that, for a given mass, there is a maximum radius a rocky super-Earth

can have—bigger planets have a large amount of water or a significant H/He envelope.

More recently, Rogers (2015) modeled that when radii are about 1.62 R⊕ or greater, at

least half of planets this size are not dense enough to be made purely of iron and silicates.

As also shown by Weiss & Marcy (2014), a planet’s mass can vary considerably for a given

radius, so super-Earths can have many different compositions.

Super-Earths (and mini-Neptunes) are more common than larger gas giants (e.g. Dong

& Zhu, 2013; Han et al., 2014), orbit in multi-planet systems roughly 40% of the time

(Rowe et al., 2014), and are often ordered by radius when a planet the size of Neptune

or larger is present in the system (Ciardi et al., 2013). Rocky planets with higher masses

will also have stronger surface gravities and so retain atmospheres better. Ginzburg et al.

(2015) found an ideal region in mass and temperature where planets accrete atmospheres

but do not become gas giants—many observed super-Earths are in this category. As with

exoplanets in general, most super-Earths are discovered around Sun-like (e.g. Kepler-20;

Fressin et al., 2011; Borucki et al., 2011; Gautier III et al., 2012) and near-Sun-like stars

(e.g. Kepler-62; Borucki et al., 2011, 2013). In fact, both Kepler-62e and -62f are within
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Figure 1.3. The planets orbiting Kepler-62 compared with the inner planets
of our Solar System. All orbital distances and planetary radii are to scale;
the Kepler-62 planets are artists’ concepts. Note that Kepler-62e and -62f
are inside the habitable zone (green band), where planets with enough at-
mospheric pressure could have liquid water on their surfaces. Image credit
to NASA.

the habitable zone of their host star (Figure 1.3), or orbital distances where liquid water

could exist on a planet’s surface.

Since most main-sequence stars are cooler than the Sun (e.g. LeDrew, 2001) and burn

at least an order of magnitude longer (Tinsley, 1980), M-dwarfs could be ideal stars to

search for habitable planets around. Gillon et al. (2016) recently found three Earth-sized

planets orbiting the ultra-cool dwarf TRAPPIST-1, two of which are near the inner edge

of the habitable zone. Better yet, Anglada-Escudé et al. (2016) discovered a super-Earth
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in the habitable zone around the red dwarf Proxima Centauri—the nearest star to the

Sun—though its habitability is debated (e.g. Barnes et al., 2016; Martin et al., 2016;

Meadows et al., 2016; Ribas et al., 2016). Whether or not M-dwarfs can support a planet

with life is a complex question (cf. Barnes et al., 2013; Yang et al., 2013), but the sheer

numbers alone are exciting for someday characterizing an Earth-like planet.

However, observing small, rocky planets in detail is difficult. The contrast ratio for an

Earth-like planet around a Sun-like star is ∼ 10−10 at visible wavelengths (Bailey, 2014).

This is beyond the reach of current telescopes, but research is progressing towards that

threshold (e.g. Trauger & Traub, 2007; Cheng-Chao et al., 2015). For now, we are better

suited to characterize bright targets we can detect—often the exotic “hot Jupiters.”

The Solar System has 4 known giant planets at large semi-major axes, where they can

accrete gas envelopes from the protoplanetary disk. As shown in Figure 1.4, though, hot

Jupiters are found extremely close to their host stars (e.g. WASP-8b; Queloz et al., 2010),

sometimes over 25× closer than Mercury’s orbit (e.g. WASP-43b; Hellier et al., 2011)!

During planet formation the inner nebula should be too hot for volatiles to condense

(e.g. Chambers, 2004), and disk instability should cause giant planets to form at large

semi-major axes anyway (e.g. Boss, 2000). Thus, hot Jupiters likely have short-period

orbits through either disk migration (e.g. Lin et al., 1996; Papaloizou et al., 2007) or

high-eccentricity migration (Rasio & Ford, 1996; Fabrycky & Tremaine, 2007). But in

any case, hot Jupiters are usually bright compared with their host stars in the optical and

infrared (e.g. HD 189733b; Bouchy et al., 2005; Deming et al., 2006; Evans et al., 2013),

are extreme examples of a physical laboratory (Heng & Showman, 2014), and orbit ∼ 1%

of nearby Sun-like stars (Wright et al., 2012).
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When a massive planet has a short-period orbit, the tidal forces—which raise and

lower oceans on the Earth—become very strong. These forces are so extreme that hot

Jupiters should be tidally locked to their host stars on timescales of ∼ 106 years (i.e. very

quickly; Goldreich & Soter, 1966). Just as we see only one side of the Moon from Earth,

hot Jupiters have permanent day and nightsides, where energy from the star only reaches

the nightside by transport through the atmosphere (e.g. Perez-Becker & Showman, 2013).

Unsurprisingly, these daysides can be upwards of ∼ 3000 K (e.g. Cowan & Agol, 2011b)

before even considering sources of internal heat! In fact, some hot Jupiters start losing

atmospheric mass due to tidal dissipation (e.g. Figure 1.5, of WASP-12b; Li et al., 2010)

or because they are irradiated so much (cf. Baraffe et al., 2004; Hubbard et al., 2007).

And, these planets’ magnetic fields may not protect their envelopes from early, intense

stellar winds (Grießmeier et al., 2004).

Exoplanets span multiple orders of magnitude in radius, mass, and semi-major axis.

How would one find them all? Figure 1.6 summarizes the primary methods used to find

the planets in Figure 1.2 (i.e. the colors). For planets bright enough and widely separated

from their host stars, direct imaging (far left panels) is a natural choice (e.g. Beta Pictoris

b; Lagrange et al., 2009; Chauvin et al., 2012). Here one distinguishes a planet’s light

from the star using a starshade or coronagraph. This lets one observe the planet at a

(potentially) large fraction of orbital phases, no matter how its orbital plane is seen from

Earth. However, direct imaging works best for big planets with large semi-major axes—it

is not practical yet for hot Jupiters or colder terrestrial worlds (Bowler, 2016).

Gravitational microlensing (center left panels of Figure 1.6) is an alternative that does

not rely on light from the planet. Instead, the brightness of a background star increases
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Figure 1.5. An artist’s concept of the hot Jupiter WASP-12b. With a semi-
major axis only ∼ 3.1× its host star’s radius (Chan et al., 2011), WASP-12b
has a prolate (i.e. egg-like) shape. Tidal dissipation is stripping mass from
its atmosphere, meaning there is likely some disk of planetary gas surround-
ing the star (Li et al., 2010). Image credits to NASA, ESA, and G. Bacon.

when a planetary system passes in front of it (e.g. Beaulieu et al., 2006). But, this method

has only uncovered a small number of planets (so far; orange points in Figure 1.2).

For massive planets, one can measure the radial velocity (center right panels of Figure

1.6) of the host star (Wright & Gaudi, 2013). Stars and planets orbit their common center

of mass, so light from the star will get more red- and blue-shifted the more edge-on we

view the planet’s orbital plane from Earth. This method can find planets ill-suited for
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direct imaging, but that are massive enough to tug significantly on their host stars (e.g.

∼ 75 m/s for 55 Cancri b; Butler et al., 1997). Until the mid-2000s, this was the most

common way to discover exoplanets (Schneider et al., 2011).

If a planet’s orbit is very edge-on, it will repeatedly pass in front of its star (i.e. transit,

like Mercury or Venus seen from Earth) and block some of the light (e.g. OGLE-TR-56b;

Konacki et al., 2003). This transit method (far right panels of Figure 1.6) is now the

typical way planets are found (indigo points in Figure 1.2; Han et al., 2014). As with any

detection method, transits have biases: it is easiest to discover large planets with small

semi-major axes—like hot Jupiters—and short-period planets are generally the fastest

to confirm because the time between transits is short. For comparison, extraterrestrials

could only confirm seeing Earth with transits after staring at the Sun for at least one of

our years.

There is another possibility for multi-planet systems: just as planets can make their

stars wobble, they can also tug on each other and change their orbital speeds. This

causes transit timing variations (TTVs; e.g. Miralda-Escudé, 2002; Holman & Murray,

2005; Agol et al., 2005), where a given planet crosses its star slightly earlier or later than

expected (far lower right panel of Figure 1.6). Patterns in TTVs can help one learn about

other planets in a system, even those that do not transit(e.g. KOI-872; Nesvornỳ et al.,

2012).

In short, exoplanets are ubiquitous in the Milky Way and (almost surely) other galax-

ies, many are nothing like the planets (or moons) of our Solar System, and there are

several ways to discover them. The connecting thread is the light we see from these stars
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and their planets, and indeed “light curves” are a basis of this dissertation. How we inter-

pret these observations can both improve and hinder our understanding of exoplanets—so

next we look at light curves in more detail.

1.2. The Wisdom in Light Curves

Simply put, a light curve is the brightness of an object over time, be that a distant

galaxy or supernova or pulsar. Stars and their orbiting planets are particularly challenging

to observe: the contrast between these bodies is large, and planets can have inhomoge-

neous surface and atmospheric features. There are two main ways planets contribute to

stellar light curves.

Everything—animals included—radiates electromagnetic (EM) energy at wavelengths

that depend mostly on the object’s temperature (i.e. as a blackbody). The light from

very irradiated planets is dominated by this thermal emission. Energy from the host

star is absorbed by the atmosphere and/or surface then re-radiated at longer wavelengths

(Seager & Deming, 2010), though the greenhouse effect can block some of this outgoing

radiation (e.g. Venus; Pollack et al., 1980). On cooler planets, a source of internal energy

could add to the thermal emission (e.g. for Juptier; Hanel et al., 1981). Planets have

equilibrium temperatures between ∼ 3000 K down to ∼ 50 K, so one should see them

radiate thermally in the infrared, or wavelengths longer than ∼ 1 µm (e.g. Seager &

Deming, 2010; Cowan & Agol, 2011b; Bailey, 2014). This thermal light can vary from

isotropic (i.e. same in all directions) to just dayside emission (i.e. due to tidal locking;

some hot Jupiters), and hotter planets are easier to detect this way.
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On the other hand, a planet’s atmosphere or surface can be reflective. This reflected

light from the host star will dominate the planet’s flux at wavelengths where thermal

emission is negligible. For G-, K-, and M-type stars of roughly 6000–3000 K, their peak

EM radiation is between about 0.5–1.0 µm, or in the red-optical (Tinsley, 1980). Radiation

is scattered off atmospheric molecules or surface features of the planet, meaning reflected

light is best seen at optical (and possibly shorter) wavelengths (e.g. Seager & Deming,

2010; Heng & Demory, 2013).

The line between thermal and reflected light gets blurred for very hot planets. This

can happen because the planet’s thermal emission leaks into the optical (e.g. Heng &

Showman, 2014; Bailey, 2014), or the planet is fairly reflective in the near-infrared (e.g.

hot Jupiters; Schwartz & Cowan, 2015). In contrast, the outer planets and moons of our

Solar System are very cold and thus only reflect light in the visible.

Thus, distinguishing the flux from some planets often means tackling an inverse prob-

lem. A forward problem usually has one unique solution, such as summing a planet’s

thermal emission and reflected light (i.e. A + B = C where {A,B} are known). Inverse

problems are typically less constrained, like when inferring a planet’s thermal and re-

flected light from only its total flux (i.e. C = A + B where C is known). Recognizing

these inverse problems is part of the story. This thesis focuses on finding and interpreting

some answers to inverse problems spurred by the light curves of planetary systems.

Simplistically, then, planets emit thermally at long wavelengths (i.e. infrared) and

reflect stellar light at short wavelengths (i.e. optical). Both mechanisms affect the light

curve of the planetary system in several ways, as we show in Figure 1.7. The upper panel

shows a transiting planet on the solid orbit and a world that does not transit on the
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Figure 1.7. Diagrams of the light curves from planetary systems at an ar-
bitrary wavelength. Upper Panel: An observer and example planets on
circular orbits around a star. The transiting planet follows the solid curve
while the one that does not transit is on the dashed curve. Other Panels:
Example light curves that these bodies create at different levels of detail
(yellow to orange to purple curves)—note how the panels zoom in (gray
boxes and dashed lines). The curve styles match the orbits in the upper
panel, and the flux from the star alone is shown as the dotted line. Key
features in each panel are indicated. Both curves and axes in the lower
right panel have been shifted to help comparison. One can learn about a
planet and its atmosphere by analyzing the changes in brightness of that
planetary system.

dashed orbit. These line styles are used in the other panels—we refer to these diagrams

throughout the rest of this section.
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For transiting planets (middle left panel), the biggest way the planet affects the light

curve is the transit itself. One infers the planet’s orbital inclination (i.e. tilt of its

orbital plane seen from Earth) from the transit duration, the planet’s radius from the

transit depth (i.e. difference in stellar brightness before and during transit), and the

orbital period and so semi-major axis from the time between transits. The shape of

the transit (i.e. roundness of bottom) also constrains the star’s limb darkening, or how

stars look dimmer near the edge of their disk. Above all, if the transit depth varies at

different wavelengths, the planet likely has an atmosphere blocking more starlight in some

bands (Charbonneau et al., 2006; Haswell, 2010). By studying light passing through the

atmosphere during a transit, one can learn which molecules are in the planet’s envelope

(e.g. Bean et al., 2013; Stevenson et al., 2014b).

A transiting planet also passes behind its host star half an orbit later (assuming zero

eccentricity)—this is an eclipse. As shown in the middle right panel, these dips in bright-

ness are shallower than transits because only the planet’s light is blocked (e.g. Seager &

Deming, 2010). Eclipses help rule out false positives of planets, and by comparing the

eclipse and transit depths, one learns the planet’s intensity relative to the star at a given

wavelength. This can be converted to a brightness temperature at eclipse, useful for de-

scribing the dayside in the infrared (e.g. Cowan & Agol, 2011b). At visible wavelengths,

an eclipse depth measures a planet’s geometric albedo, or how reflective it is at full phase

(e.g. Seager & Deming, 2010; Heng & Demory, 2013). This is good for constraining scat-

tering (e.g. Sudarsky et al., 2000) or energy absorption (e.g. Angerhausen et al., 2015).

One can even map hotspots by observing the planet as it moves into and out of eclipse

(e.g. Majeau et al., 2012).
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The phase amplitude is a finer feature (middle right panel). The dayside gradually

comes into view as the planet orbits from transit to eclipse—vice versa for the nightside

(Cowan et al., 2015). This means the brightness of the star will appear to rise and fall

throughout the planet’s orbit (“phase variations”). One can combine the phase amplitude

with the eclipse and transit depths to estimate a planet’s nightside temperature at given

infrared wavelengths (e.g. Cowan & Agol, 2011b; Stevenson et al., 2014c).

On planets with an atmosphere, winds move the absorbed energy around, and can

change where the hottest region is. For tidally locked planets, one sometimes finds that

the peak brightness of the light curve occurs at a time other than eclipse (middle right

panel). This is called a phase offset (Heng & Showman, 2014), and seeing it means the

planet’s nightside is brighter at that wavelength than one might otherwise expect.

The thermal features described above let us predict bulk properties of transiting planet

atmospheres: how much total radiation they absorb and how efficiently that energy is

transported (this is an inverse problem; Cowan & Agol, 2011b; Schwartz & Cowan, 2015).

These properties can then help one infer the molecules an atmosphere is composed of (e.g.

Sudarsky et al., 2000; Heng & Demory, 2013) or the wind patterns (e.g. Showman et al.,

2010; Heng et al., 2011).

What about planets—particularly terrestrials—that are not in edge-on orbits? Di-

rectly imaging a terrestrial planet around a Sun-like star is difficult (Bailey, 2014), but

consider the reflected light from such a rocky body as it orbits (lower left panel). The

light curve will show orbital variations (Oakley & Cash, 2009), similar to the phase vari-

ations above for transiting planets. In this case light scatters from different latitudes

over the planetary year, helping one map a planet from North to South and figure out



30

its orbital geometry (Kawahara & Fujii, 2010, 2011; Fujii & Kawahara, 2012). Seasonal

cycles can also make the planet’s reflection change over time (Robinson et al., 2010), just

as some regions of Earth look different in Summer versus Winter. For specular (i.e. glint-

like) reflection, orbital light curves could help one detect a planet’s oceans or icecaps (cf.

Robinson et al., 2014; Cowan et al., 2012a).

Now think about directly imaging a spinning planet for just a few days (lower right

panel). Here the light curve is influenced finely by the planet’s rotational variations (Ford

et al., 2001). How this planet looks—where continents, oceans, ices, and maybe clouds

are—affects its brightness at any moment because given structures reflect light differently

at each wavelength. That means rotational light curves can help one infer how long the

planet’s day is (Pallé et al., 2008), its colors (e.g. Fujii et al., 2010; Cowan & Strait, 2013),

and its longitudinal map (Cowan et al., 2009). If the brightness changes day to day, it

could also mean the planet has variable clouds or weather (Pallé et al., 2008; Schwartz

et al., 2016). Naturally, constraining a planet’s map and orbital geometry from its yearly

and daily light curves is also an inverse problem.

This all ties back to finding planets “hospitable” for life, beyond merely considering

the habitable zone. Indeed, a planet could be hospitable by having a thicker atmosphere

(Seager, 2013), different types and amounts of elements in its atmosphere (Goldblatt,

2016), or even having a large axial tilt (Williams & Kasting, 1997). This dissertation is a

small step towards describing habitability in comprehensive terms. Although hot Jupiters

are a big focus because they are (relatively) easy to observe, our methods will also apply

to terrestrial worlds (e.g. Koll & Abbot, 2015). And this benefits finding future targets
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with the best properties for supporting life—we now look at bridging the colossal space

between Earth and her distant cousins.

1.3. Tools for Crossing the Void

Techniques in planetary science are influenced by which planets are interesting. Study-

ing the Earth is relatively easy: we live on and take samples from this planet, and routinely

fly satellites around it to monitor the atmosphere, continents, and oceans (e.g. Earth Ob-

serving System; Winker et al., 2003; Xiong et al., 2009; Roy et al., 2014). Reaching other

parts of the Solar System is trickier, yet we have sent spacecraft like Cassini-Huygens to

Saturn (Matson et al., 2003) and Titan (Lebreton et al., 2005), MESSENGER to Mercury

(Leary et al., 2007), and the Voyager probes to our ice giants (Stone & Miner, 1986, 1989)

and beyond (e.g. Borovikov & Pogorelov, 2014). We have even visited and brought back

samples from our Moon (e.g. Team, 1969), a momentous achievement. But considering

the distance to exoplanets—and that no one knew what Pluto looked like until last year

(New Horizons ; e.g. Stern et al., 2015)—remote sensing becomes extremely vital. Here a

single pixel is worth thousands of words!

Again, exoplanets and their host stars are usually observed in the visible (i.e. reflected

light) and infrared (i.e. thermal emission). Contending with Earth’s greenhouse gases and

atmospheric distortion (e.g. Jacob, 1999) means that most data comes from space-based

telescopes, especially in the infrared. The bulk of these measurements are photometric,

where all photons from an object in a band of wavelengths are counted simultaneously

(e.g. Deming et al., 2007; Todorov et al., 2009; Baskin et al., 2013). The alternative

is spectroscopy, where light is split into many wavelength channels (e.g. Tinetti et al.,
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2010; Schwarz et al., 2015). This reveals planetary atmospheres in more detail, showing

features like high-altitude hazes (e.g. HD 189733b; Sing et al., 2011) or water abundances

(e.g. WASP-43b; Kreidberg et al., 2014). Spectroscopy can be turned into photometry by

summing the flux from all the wavelength channels, but photometric data on exoplanets

tends to be more common (e.g. Bailey, 2014).

For space missions, placing a telescope near a Sun-Earth Lagrangian point (e.g. Koon

et al., 2008) or in an Earth-trailing orbit (e.g. Van Dyk et al., 2013) lets one observe some

planets continuously. Other instruments are limited by their low Earth orbits if in space

or Earth’s rotation if on the ground. Viewing a planet’s phase variations is easier with

continuous data (e.g. Cowan et al., 2012b), whereas multiple eclipses or transits are often

observed separately but modeled in parallel (e.g. Agol et al., 2010; Deming et al., 2015).

Data on single eclipses may not be as robust, particularly in the early days of observing

with a given instrument (cf. Hansen et al., 2014; Ingalls et al., 2016).

Space-based missions have been valuable to this dissertation and exoplanet science in

general. Prime among these is the Spitzer Space Telescope (upper left of Figure 1.8),

launched by NASA in 2003 (Werner et al., 2004). As part of the Great Observatories

program, Spitzer was not designed to characterize planets, but still covers important

bands for thermal emission. Its InfraRed Array Camera (IRAC; Fazio et al., 2004) has

four channels—3.6, 4.5, 5.8, and 8.0 µm—though only the shortest two work since the

“warm” phase began in 2009 when its helium coolant ran out (Dunbar, 2009). Spitzer

has taken a large majority of the eclipse and phase data we use (e.g. Beerer et al., 2010;

Todorov et al., 2012; Wong et al., 2015).
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Figure 1.8. Significant space telescopes in the study of exoplanets: Spitzer
at upper left, Kepler at upper right, and Hubble at the bottom. Image
credits to NASA.
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At visible wavelengths the Kepler Space Telescope (upper right of Figure 1.8) is key,

operating since 2009. Kepler is basically a large light bucket, designed to stare at a

patch of the galactic plane (i.e. near Cygnus and Lyra) and collect photons between

roughly 0.42–0.9 µm. The benefit is that the brightness of more than 105 stars could

be observed simultaneously over a span of several years (Koch et al., 2010). The Kepler

team has confirmed over 2300 exoplanets, including 1284 in the latest release (Morton

et al., 2016). While 2 of the spacecraft’s 4 reaction wheels have been damaged, Kepler

now uses radiation pressure from the Sun to stabilize its field of view along the ecliptic for

∼ 2.5 months at a time (K2 mission; Howell et al., 2014). Our best statistics on planets

orbiting Sun-like stars (e.g. Batalha et al., 2013; Silburt et al., 2015) come from Kepler

transit light curves. For this thesis, eclipses observed with Kepler have helped constrain

the albedos of hot Jupiters.

The Hubble Space Telescope (bottom of Figure 1.8) is going strong for transit spec-

troscopy of planets, and Deming et al. (2016) advocates using Hubble for more eclipse

and phase curve observations, too. Its Wide Field Camera 3 (WFC3; Kimble et al.,

2008) typically takes planetary measurements from ∼ 1.1–1.7 µm but can observe down

to ∼ 0.2 µm. As with Spitzer, Hubble was not originally intended to observe exoplanets,

yet could keep operating through the mid-2030s until being de-orbited or boosted (Wall,

2015). And, numerous other missions have either contributed to studying exoplanets (e.g.

CoRoT; Baglin et al., 2007) or soon will (e.g. Gaia; Lindegren et al., 2007).

There are several future missions that will push planetary science forward, as well. The

flagship is the James Webb Space Telescope (JWST; Gardner et al., 2006), on schedule

to launch in October 2018 (left of Figure 1.9). The spacecraft will orbit the Sun-Earth
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L2 point, where a five-layer sunshield will passively cool it to below 50 K (Gardner et al.,

2006). Like Hubble or Spitzer, JWST is a multi-purpose observatory that partly will

characterize exoplanets—headed by NASA with help from the European and Canadian

Space Agencies. As Spitzer and Hubble probe the thermal structure of hot Jupiters, JWST

should advance this technique (even to a few temperate super-Earths) with its multiple

high-resolution, infrared instruments (e.g. NIRSpec, MIRI; Beichman et al., 2014).

Meanwhile, the Transiting Exoplanet Survey Satellite (TESS; Ricker et al., 2015) is

slated to launch ahead of JWST in late 2017 (center of Figure 1.9). TESS will pave the

way by taking light curves inside 0.6–1.0 µm of more than 2× 105 dwarf stars (types F5–

M5), much brighter than those seen by Kepler. This all-sky survey is scheduled to last two

years, and should find hundreds of planets smaller than Neptune that JWST can follow-up

on (Ricker et al., 2015). Also set for 2017 by the ESA is the CHaracterizing ExOPlanets

Satellite (CHEOPS; Broeg et al., 2013), seen at the right of Figure 1.9. CHEOPS will

do photometry between 0.4–1.1 µm of ∼ 500 bright targets where high-precision radial

velocity is possible—it can even detect Earth-sized transits.

Further out (2020–30s), a larger flagship mission would image planets in even finer

detail. The proposals include a Large UltraViolet-Optical-InfraRed Surveyor (LUVOIR;

Kouveliotou et al., 2014), an Advanced Technology Large-Aperture Space Telescope (AT-

LAST; Postman et al., 2010), or a High-Definition Space Telescope (HDST; Dalcanton

et al., 2015). Such missions would use 8–16 m diameter mirrors and have angular resolu-

tions of ∼ 0.01 arcseconds, or 5–10× better than Hubble! But while Hubble could resolve

Earth from the Sun at a distance of ∼ 10–20 parsecs, it cannot image at the contrast level

between these bodies (e.g. Bailey, 2014). Instead, the concept telescopes could probe the
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atmosphere of an Earth-twin at high contrast using either an internal coronagraph or

independent starshade.

These mature, fledgling, and unhatched missions keep planetary science relevant well

into the future. But despite anyone’s efforts, telescopes run into troubles during their lives.

Some are unforeseen, such as the primary mirror on Hubble focusing wrongly and needing

corrective optics (Burrows et al., 1991) or broken reaction wheels on Kepler that cost

the spacecraft its original targets (Howell et al., 2014). Others are known in advance: a

battery heating cycle on Spitzer makes the optics expand and contract, moving the target

on the detector in a “sawtooth” pattern (Grillmair et al., 2012). In fact, unfolding JWST

on its way to the Sun-Earth L2 point is complicated (Gardner et al., 2006), and it will

be crucial to avoid (major) mistakes because no maintenance can be done after launch.

None of this is unique to exoplanets of course—even the cosmic microwave background

was shrouded at first by pigeons nesting inside a radio horn antenna in New Jersey (e.g.

Singh, 2010)!

When telescopes do work as designed, their detectors or cameras can have issues in-

stead. Photometry generally uses many charge-coupled devices (CCDs; e.g. Kepler) to

record the light from objects. That flux can be hard to quantify accurately for plane-

tary systems because their images are often very pixelated (e.g. Stevenson et al., 2012a).

Each CCD can get saturated with charge if exposed too long (e.g. Barbe, 1975) and so

underestimate flux from a target, though software typically prevents this for space tele-

scopes. Pixels may also exhibit a ramp, meaning they become more sensitive over time

(e.g. Deming et al., 2006).
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Worse, the sensitivity within one pixel can vary and plague targets that move on the

detector (leading to another inverse problem; e.g. Ballard et al., 2010; Crossfield et al.,

2012b), or specific CCDs can die and must be excluded from analyses. Even with healthy

pixels, absolute photometry at the level of planetary eclipses is tricky (e.g. ∼ 0.1%, versus

∼ 1% stability for Spitzer ; cf. Bailey, 2014; Reach et al., 2005). This means the relative

flux within one light curve may be fine, but cannot be directly compared to another.

What follows, then, is a variety of research into light curves, the planets (and stars)

that make them, and intricacies in teasing signals from noise. Physics is often divided into

theory and experiment, but this dissertation breaks that barrier and lies both between

and throughout. These are not definitive answers to all planetary inverse problems—that

is hilarious at best—but they do add proverbial stones to the ever-expanding castle of

planetary knowledge.

One can picture this thesis as stepping through a possible chronology of exoplanets.

Chapter 2 shows that claims of interesting physics and chemistry in planetary atmospheres

may be premature—I created the first figures for this study on past eclipse depths. Chap-

ter 3 shifts to the present, where we numerically test synthetic light curves with a popular

method (called BLISS mapping) to model intra-pixel sensitivities in Spitzer data. In

Chapter 4, we compile eclipse and phase data on hot Jupiters to better characterize

the current empirical trends in these planets’ bulk atmospherics. We conclude in Chap-

ter 5 with a semi-analytical look at why light curves encode planetary maps and spin

properties—and how we may utilize these facts with future observations.
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CHAPTER 2

Features in the Broadband Eclipse Spectra of Exoplanets:

Signal or Noise?

Note: I contributed the first versions of the figures to this study, as well as helped with

the literature review to gather thermal eclipse data.

This chapter is adapted from Hansen, C. J., Schwartz, J. C., and Cowan, N. B. 2014,

MNRAS, 444, 3632.

2.1. Introduction

An exoplanet on an edge-on orbit periodically passes behind its host star. The decre-

ment in thermal flux that occurs during such an eclipse is a measure of the dayside

brightness temperature of the planet. The brightness temperature of a planet varies with

wavelength, primarily because of the atmosphere’s wavelength-dependent opacity and

vertical temperature profile (e.g., Deming et al., 2005; Seager et al., 2005; Barman et al.,

2005; Burrows et al., 2007, 2008; Fortney et al., 2008; Knutson et al., 2008; Désert et al.,

2009). If different wavelengths probe the same atmospheric layer (e.g., a cloud deck) then

the planet will appear to have a blackbody spectrum. In the absence of clouds, a planet

may still have a blackbody spectrum if the atmospheric layers probed are isothermal.

Indeed, the emission spectra of some planets are reported to be featureless: e.g., TrES-2

(O’Donovan et al., 2010), TrES-3 (Fressin et al., 2010), WASP-18b (Nymeyer et al., 2011),

and WASP-12b (Crossfield et al., 2012a).
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In principle, the detection of molecular bands in the infrared emission spectrum of a

planet enables the retrieval of greenhouse gas abundances and the vertical temperature

profile of the planet (e.g., Madhusudhan & Seager, 2009; Madhusudhan et al., 2011; Lee

et al., 2012; Line et al., 2012). Spectral resolution is critical to such retrieval exercises

because a high-resolution emission spectrum is more likely to deviate significantly from a

blackbody, and renders the retrieval problem well-constrained. This bodes well for current

and future efforts to perform bona fide emission spectroscopy. So far, however, the vast

majority of exoplanet emission measurements have been broadband eclipse photometry.

A typical retrieval model uses a dozen parameters to describe the atmospheric compo-

sition and vertical temperature profile, while a typical hot Jupiter has only been observed

in 2–4 thermal broadbands. Even for the few planets with 6 or 7 thermal measurements,

the photometric retrieval problem is under-constrained.

A widely noted consequence of the parameter–data mismatch is that exact atmospheric

properties cannot be uniquely determined, making color-color and color-magnitude dia-

grams more realistic approaches to atmospheric classification (Baskin et al., 2013; Beatty

et al., 2014; Triaud, 2014).

The less-discussed aspects of under-constrained retrieval are that (1) there is no way

to reject erroneous measurements, and (2) the estimated uncertainties on eclipse depths

directly affect the uncertainties on atmospheric parameters. This is in stark contrast to

over-constrained problems such as fitting an occultation model to time-series data, for

which it is customary to perform outlier rejection (e.g., σ-clipping), and for which the

photometric uncertainties are estimated in the process of fitting a model to the data,

rather than trusting the output of aperture photometry routines.
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Nonetheless, many exoplanet discoveries have been based on broadband emission

spectra: a temperature inversion in the atmosphere of HD 209458b was inferred from

4 broadband eclipse depths (Knutson et al., 2008), disequilibrium chemistry was invoked

to explain the 6-band emission spectrum of GJ 436b (Stevenson et al., 2010), and high

atmospheric C/O was discovered based on 7 broadband eclipses of WASP-12b (Madhusud-

han et al., 2011). These successes have led to classifying planets based on temperature

inversions (using 2 broadbands per planet; Knutson et al., 2010) and C/O ratio (using

≥ 4 bands per planet; Madhusudhan, 2012).

Temperature inversions and non-solar chemistry have since been disputed for each

of the exemplar planets due to the re-reduction of existing data (Beaulieu et al., 2011)

acquisition of new data at the same wavelength (Cowan et al., 2012b; Zellem et al., 2014)

or acquisition of new data at different wavelengths (Crossfield et al., 2012a). Such chal-

lenges are not unique to eclipse photometry : the featureless day-side emission spectrum

of HD 189733b (Grillmair et al., 2007) exhibited an absorption feature at a later epoch

(Grillmair et al., 2008),1 and line emission from the dayside of HD 189733b (Swain et al.,

2010) has been disputed by Mandell et al. (2011).

Nor are issues of repeatability limited to superior conjunction: the first thermal phase

measurements of an exoplanet (Harrington et al., 2006) were later found to be off by

80◦ in phase and more than a factor of 2 in amplitude (Crossfield et al., 2010); the first

half of the thermal phase measurements of Knutson et al. (2007b) were later found to be

corrupted by detector systematics (Agol et al., 2010).

1Although this was interpreted as evidence of planetary variability, that hypothesis is inconsistent with
the more extensive monitoring campaign of Agol et al. (2010).
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The situation is similar for transit spectroscopy, where initial claims of molecular

absorption bands (Tinetti et al., 2007; Swain et al., 2008; Tinetti et al., 2010) were disputed

on the basis of data reduction, error estimation, and astrophysical variability (Ehrenreich

et al., 2007; Désert et al., 2009; Gibson et al., 2011; Désert et al., 2011c; Crouzet et al.,

2012).

Indeed, Burrows (2014) offers a sobering review of the exoplanet atmospheric char-

acterization field, speculating that many of the extraordinary claims of the past decade

may be overturned by better data.

In this article we attempt to reconcile Burrows’ pessimistic view with the growing body

of papers making statements about planetary atmospheres based on a handful of eclipse

measurements. Instead of focusing on a single planet, we perform a holistic analysis of

all transiting planets with multiple eclipse measurements. We consider only broadband

measurements (for which it is easy to quantify the number of independent observational

constraints) of eclipse depths (which are unaffected by star spots). Our approach is to

compare the goodness-of-fit and evidence for three classes of models: blackbodies, self-

consistent radiative transfer, and spectral retrieval. Since the disputes over atmospheric

properties have often revolved around the reliability of eclipse depths, we empirically esti-

mate the accuracy of broadband eclipse measurements. Notably, the dominant “signal” in

space-based eclipse photometry is usually the detector sensitivity, which must be modeled

using the very same observations of the science target.

Future observations of transiting planets with the James Webb Space Telescope are

likely to resolve many of the current scientific disputes about the nature of hot Jupiter

atmospheres. Attempts to push the observatory to smaller and cooler planets, however,
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will still rely on self-calibration; error estimation and repeatability will therefore remain

critical issues.

2.2. Broadband Eclipse Spectra

A search on exoplanet.org (Wright et al., 2011) combined with a careful literature

review yields 44 exoplanets with published photometric eclipse measurements in at least

two thermal wavelengths (λ > 1 µm), summarized in Table 2.1. In most cases, only

a single occultation has been measured at each wavelength. Bolded numbers signify

measurements based on more data: multiple eclipses and/or an eclipse embedded in phase

variations.

Table 2.1. Planets with at least 2 thermal eclipse measurements.

Planet Wavelengths (µm)

CoRoT-1b 1.65, 2.15, 3.6, 4.5
CoRoT-2b 2.15, 3.6, 4.5, 8.0
GJ 436b 3.6, 4.5, 5.8, 8.0, 16.0, 24.0
HAT-P-1b 3.6, 4.5, 5.8, 8.0
HAT-P-2b 3.6, 4.5, 5.8, 8.0
HAT-P-3b 3.6, 4.5
HAT-P-4b 3.6, 4.5
HAT-P-6b 3.6, 4.5
HAT-P-7b 3.6, 4.5, 5.8, 8.0
HAT-P-8b 3.6, 4.5
HAT-P-12b 3.6, 4.5
HAT-P-23b 2.15, 3.6, 4.5
HD 149026b 3.6, 4.5, 5.8, 8.0
HD 189733b 2.15, 3.6, 4.5, 5.8, 8.0, 16.0, 24.0
HD 209458b 2.15, 3.6, 4.5, 5.8, 8.0, 24.0
KELT-1b 3.6, 4.5
Kepler 5b 3.6, 4.5
Kepler-6b 3.6, 4.5
Kepler-12b 3.6, 4.5
Kepler-13Ab 2.15, 3.6, 4.5
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Planet Wavelengths (µm)

Kepler-17b 3.6, 4.5
TrES-1b 3.6, 4.5, 8.0
TrES-2b 2.15, 3.6, 4.5, 5.8, 8.0
TrES-3b 1.25, 2.15, 3.6, 4.5, 5.8, 8.0
TrES-4b 3.6, 4.5, 5.8, 8.0
WASP-1b 3.6, 4.5, 5.8, 8.0
WASP-2b 3.6, 4.5, 5.8, 8.0
WASP-3b 3.6, 4.5, 8.0
WASP-4b 2.15, 3.6, 4.5
WASP-5b 1.25, 1.65, 2.15, 3.6, 4.5
WASP-8b 3.6, 4.5, 8.0
WASP-12b 1.25, 1.65, 2.15, 3.6, 4.5, 5.8, 8.0
WASP-14b 3.6, 4.5
WASP-17b 4.5, 8.0
WASP-18b 3.6, 4.5, 5.8, 8.0
WASP-19b 1.65, 3.6, 4.5, 5.8, 8.0
WASP-24b 3.6, 4.5
WASP-33b 2.15, 3.6, 4.5
WASP-43b 3.6, 4.5
WASP-48b 1.65, 2.15, 3.6, 4.5
XO-1b 3.6, 4.5, 5.8, 8.0
XO-2b 3.6, 4.5, 5.8, 8.0
XO-3b 3.6, 4.5, 5.8, 8.0
XO-4b 3.6, 4.5

The data in Table 2.1 are taken from the following references: (Agol et al., 2010;

Alonso et al., 2010; Anderson et al., 2010, 2011; Barnes et al., 2007; Baskin et al., 2013;

Beatty et al., 2014; Beaulieu et al., 2011; Beerer et al., 2010; Blecic et al., 2013; Campo

et al., 2011; Charbonneau et al., 2005, 2008; Chen et al., 2014; Christiansen et al., 2010;

Cowan et al., 2012b; Croll et al., 2010a,b,c; Crossfield et al., 2012a; Cubillos et al., 2013;

Deming et al., 2005, 2006, 2007, 2011; Demory et al., 2007; Désert et al., 2011b,a; Fortney

et al., 2011; Fressin et al., 2010; Gillon, M. et al., 2009; Gillon et al., 2010; Knutson et al.,
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2007a,b, 2008, 2009c,a,b, 2012; Lewis et al., 2013; López-Morales et al., 2010; Machalek

et al., 2008, 2009, 2010; de Mooij et al., 2013; Nymeyer et al., 2011; O’Donovan et al., 2010;

O’Rourke et al., 2014; Richardson et al., 2003; Rogers et al., 2009; Rostron et al., 2014;

Shporer et al., 2014; Smith et al., 2012; Stevenson et al., 2010, 2012a, 2014a; Todorov

et al., 2009, 2012, 2013; Wheatley et al., 2010; Wong et al., 2014; Zellem et al., 2014;

Zhou et al., 2013).

Since we are merely concerned with the emergent spectra of the bodies at superior

conjunction, it is immaterial if a planet has an eccentric orbit (GJ 436b, HAT-P-2b,

WASP-8b, WASP-14b, XO-3b) or is a highly-irradiated brown dwarf (KELT-1b). The

majority of these observations—in particular, all those longward of 3 µm— were made

with the Spitzer Space Telescope (Werner et al., 2004). In cases where multiple values

have been published, we adopt the most recent.

We fit a blackbody spectrum to the eclipse depths for each planet using the published

transit depth and stellar effective temperature. We assume symmetric, Gaussian, error

bars for the eclipse depths; in the few cases were asymmetric error bars were published, we

take the mean of the upper and lower error bars. The transit depth and stellar effective

temperature have associated uncertainties that tend to have a gray impact on the planet’s

spectrum and hence we neglect them in the current analysis.

In the interest of simplicity, we ignore the detector spectral response functions and

instead compute the Plank function at the central wavelength of each photometric obser-

vation. Moreover, by using the stellar effective temperature rather than a detailed stellar

model, we are treating the star as a blackbody. These assumptions are reasonable for

broadband measurements in the infrared.
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2.3. The Significance of Spectral Features

A spectral retrieval model can provide a better fit to observations than a blackbody,

because it has roughly a dozen free parameters, rather than one. A self-consistent radiative

transfer model lies somewhere in between, with a few variables. In order to compare the

evidence for these models, we use the Bayesian Information Criterion (BIC; Schwarz et al.,

1978). BIC is a simple way to compare the evidence for models with different numbers of

parameters: BIC = χ2 + k lnN , where χ2 is the usual badness-of-fit, k is the number of

free parameters and N is the number of data. It is similar in spirit to the reduced χ2 in

that it penalizes models with many parameters, but it remains well-defined when there

are fewer data than there are parameters, as is the case for current photometric eclipse

retrieval. The Akaike Information Criterion (AIC; Akaike, 1974) penalizes complex models

even more than the BIC for N < 7.4, i.e., for all of the planets considered here. Moreover,

Chen & Chen (2008) note that both BIC and AIC tend to be biased in favor of complex

models in the small-N , large-k regime. In short, our use of the BIC gives models with

many free parameters the benefit of the doubt.

As a baseline, we fit a blackbody and compute the BIC for each planet in our sample

using the published eclipse depths and uncertainties. The only unknown is the blackbody

temperature, so k = 1 and BICBB = χ2
BB + lnN . Figure 2.1 shows the blackbody BIC

plotted against the number of wavebands available for each planet. Gray denotes the

quality of a blackbody fit: the dashed gray line is a perfect fit to a blackbody (χ2
BB = 0),

while the gray region denotes a good fit (χ2
BB/N ≈ 1 with 68.3% confidence interval).
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Figure 2.1. The Bayesian Information Criterion (BIC) of a blackbody fit
is plotted against the number of thermal wavebands for which photometric
eclipse measurements have been obtained; each dot represents one of the
44 transiting planets in our sample. The dashed gray line is a perfect
fit to a blackbody (χ2

BB = 0), while the gray region denotes a good fit
(χ2

BB/N ≈ 1 with 68.3% confidence interval). Planets that lie well above
the gray region are poorly fit by a blackbody; the vertical distance above the
gray indicates the strength of broadband features in that planet’s emission
spectrum. Green denotes the quality of a hypothetical spectral retrieval fit:
the dashed line is a perfect fit (χ2

SR = 0), while the green region is a good fit
(χ2

SR/N ≈ 1 with 68.3% confidence interval). Planets that lie in or above
the green region may favor spectral retrieval, if published uncertainties are
taken at face value.

Since there are few data, the χ2 distribution is broad and asymmetrical, with a tail

towards large values (the colored swaths denote the 68.3% intervals of the χ2 distribu-

tion). Planets that lie well above the gray region are poorly fit by a blackbody, given
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the published uncertainties. The vertical distance above the gray indicates the strength

of broadband features in that planet’s emission spectrum. CoRoT-2b exhibits by far the

most featured broadband emission spectrum of any transiting planet, a fact not lost on

observers (e.g., Cowan et al., 2011).

We also consider an idealized spectral retrieval model with 10 free parameters: 6 pa-

rameters for the vertical temperature–pressure profile and 4 for molecular abundances

(Madhusudhan & Seager, 2009). Some recent retrieval studies have 2 additional abun-

dance variables, for a total of 12 model parameters (e.g., Stevenson et al., 2014a), so our

adoption of 10 is conservative. Since it is under-constrained, one might expect spectral

retrieval to provide perfect fits to broadband emission spectra (i.e., χ2
SR = 0). We denote

this scenario with the dashed green line in Figure 2.1 (BICSR = 10 lnN). In practice,

spectral retrieval involves a priori constrains (e.g., priors on plausible chemistry) so their

fits have been in the range χ2
SR/N = 0.5–2 (Madhusudhan & Seager, 2010; Madhusud-

han et al., 2011; Madhusudhan, 2012). We therefore also plot a green region denoting

BICSR = χ2
SR + 10 lnN (i.e., a spectral retrieval fit with k = 10 and χ2

SR/N ≈ 1).

We expect that spectral retrieval would produce BIC values in the green swath. While

the derivation of BIC relies on assumptions that may not be entirely valid for spectral

retrieval, planets that lie above the green region exhibit a preference for spectral retrieval

as compared to a blackbody fit (BICSR < BICBB). For example, CoRoT-2b has been

well fit using spectral retrieval (χ2
SR/N = 0.725; Madhusudhan, 2012); if the published

eclipses are taken at face value, then there is very strong evidence that spectral retrieval

is a better model than a blackbody for this planet.
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If published eclipse values and uncertainties are taken at face value, then many hot

Jupiters lie above the gray region, indicating that they are poorly fit by blackbodies, but

below the green region, implying that the poorly-fitting blackbody is favored over spectral

retrieval, according to the BIC. While one could perform spectral retrieval on these data

and conceivably obtain interesting atmospheric constraints, they should be taken with

a grain of salt because spectral retrieval is probably the wrong model given the current

data.

Figure 2.1 shows seven planets with broadband emission spectra that invite a full

spectral retrieval: CoRoT-2b, GJ 436b, HAT-P-8b, HD 189733b, WASP-1b, WASP-8b,

and XO-3b. This list includes a few of the best/brightest transiting targets in GJ 436b,

HD 189733b, and XO-3b. Since the Poisson (photon-counting) noise is smaller for bright

targets, the smaller error bars might reveal intrinsic molecular bands present in planetary

emission spectra. Alternatively, the eclipse uncertainties for bright targets may be dom-

inated by systematic error rather than Poisson noise. Since it is notoriously difficult to

estimate systematic errors (Topping & Worrell, 1957), it is critical to empirically evaluate

the eclipse accuracy via repeated measurements (Lyons, 1992).

2.4. Empirical Estimate of Eclipse Uncertainties

The instruments currently used to measure exoplanet eclipses are pushed orders of

magnitude beyond their design specifications for the simple reason that transiting short-

period planets were not known to exist when the instruments were designed (e.g., the

2% stability of Spitzer IRAC; Fazio et al., 2004). The raw photometry therefore suffers
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from detector systematics that are comparable to, and sometimes dwarf, the astrophysical

signal of interest (e.g., Charbonneau et al., 2005; Deming et al., 2005).

In what follows, we focus on Spitzer because a) 133 of 154 published broadband ther-

mal eclipse measurements were obtained with this telescope, b) these observations have

the smallest quoted uncertainties and hence place the strongest constraints on atmo-

spheric structure and composition, and c) these are essentially the only thermal eclipse

measurements to have been repeated.

New observing modes with Spitzer have improved the data quality over the past

decade: staring rather than dithering, only observing in a single waveband at a time,

increasing the frequency of the heater cycling, and the peak-up method for keeping the

target centroid on the same region of a pixel throughout long observations. Furthermore,

there have been improvements in our understanding of Spitzer systematics, especially for

large data-sets, including pixel-by-pixel ramp correction (Knutson et al., 2007a), poly-

nomial decorrelation (Knutson et al., 2008), double-exponential ramp correction (Agol

et al., 2010), Gaussian decorrelation (Ballard et al., 2010), BLISS mapping (Stevenson

et al., 2012a), and use of the noise pixel (Knutson et al., 2012; Lewis et al., 2013). It is

now routine for combined detector×astrophysics models to fit the data within 10–20% of

Poisson noise.

Despite excellent fits, residuals usually exhibit red (time-correlated) noise. The wavelet-

based method of Carter & Winn (2009) has been used to estimate the impact of red noise

on eclipse depth uncertainties (e.g., the full-orbit phase curves of HD 189733b; Knutson

et al., 2012), and Independent Component Analysis (Waldmann, 2012) has been used



51

to perform blind signal de-mixing for transit spectroscopy (Waldmann et al., 2013). Al-

though these methods are better motivated than quick-and-dirty methods such as residual

binning and residual permutation (Cowan et al., 2012b), none seem to produce accurate

error bars in numerical tests: uncertainty estimates are still too small in the presence of

red noise and näıve methods often perform best (Cubillos et al., 2014).

In order to avoid these subtleties of error estimation we would like to fit the data so well

that there is no red noise in the residuals. This drives observers to use increasingly complex

models. It is notable that the current leading detector models for Spitzer channels 1 &

2 are non-parametric (Ballard et al., 2010; Knutson et al., 2012; Stevenson et al., 2012a;

Lewis et al., 2013). This is commonly taken to mean that they have no free parameters,

but it might be more accurate to say that they have a large, but vague, number of

parameters.2 One therefore has to be wary of over-fitting, and should strive to compare

models of varying complexity in a Gaussian framework.

Instead of debating the merits of detector models and uncertainty estimation schemes,

we now consider the empirical accuracy of eclipse measurements.

2.4.1. Parallel Analysis of Multiple Eclipses

The ideal way to determine the uncertainty on a measurement is to repeat it: ob-

tain many (> 2) eclipse measurements and their standard deviation should be a robust

measure of the eclipse uncertainty. This exercise has been performed five times with

Spitzer : 6 eclipses of HD 189733b at 8 µm (Agol et al., 2010), 11 eclipses of GJ 436b

2The Gaussian decorrelation scheme of Knutson et al. (2012) and Lewis et al. (2013) has an effective
number of detector parameters roughly equal to the area of the centroid range, ∆x∆y divided by the
Gaussian smoothing area, σxσy. This quantity is typically in the hundreds.
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at 8 µm (Knutson et al., 2011), 4 eclipses of 55 Cancri e at 4.5 µm (Demory et al., 2012),

3 eclipses of HD 209458b at 24 µm (Crossfield et al., 2012b), and 12 eclipses of XO-3b at

4.5 µm (Wong et al., 2014). These studies report 1σ variance of 9×10−5, 8×10−5, 6×10−5,

4 × 10−4, and 8 × 10−5, respectively, which represent a combination of the astrophysical

dayside variability of the planet, Poisson noise, and the level at which researchers could

model the detector sensitivity.

2.4.2. Reanalysis of Single Eclipses

In a few cases, the same data have been reanalyzed and republished by different authors,

and these measurements have usually differed by < 1σ: HD 189733b at 16 µm (Deming

et al., 2006; Charbonneau et al., 2008), HD 149026b at 8.0 µm (Knutson et al., 2009b;

Stevenson et al., 2012a), GJ 436b at 8 µm (Deming et al., 2007; Demory et al., 2007;

Stevenson et al., 2010), and CoRoT-2b at 4.5 and 8.0 µm (Gillon et al., 2010; Deming

et al., 2011).

Consider, however, the reanalysis of the original Harrington et al. (2007) 8 µm eclipse

of HD 149026b by Knutson et al. (2009b). The latter authors found they could reproduce

the original deep eclipse measurement, as well as the new, shallow depth obtained as part

of thermal phase variations: “The diversity of eclipse depths (0.05%–0.09%) obtained in

these fits suggests that the final result is sensitive to our specific choice of functions, fitting

routines, and bad pixel trimming methods.”

Finally, there are the secondary eclipses of GJ 436b (Stevenson et al., 2010) that were

re-analyzed by Beaulieu et al. (2011). The latter authors found compatible values at

5.8 µm and identical values at 8.0 µm. At 3.6 µm they found that their eclipse depth
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depends on the reduction scheme and details of fitting, while at 4.5 µm they also favored

a non-detection, but with an uncertainty 3× greater than the original authors.

2.4.3. Serial Analysis of Multiple Eclipses

For a handful of the best and brightest targets, multiple Spitzer eclipse observations have

been obtained with the same instrument and published in separate papers. This is an

important test of repeatability because it is semi-blind: the authors of the first paper

did not benefit from knowing the result of subsequent observations (the latter authors, of

course, had access both to the original and their new observations). This is in contrast

to the studies listed in §2.4.1, for which researchers considered the ensemble of eclipse

measurements as they fine-tuned their reduction and analysis pipeline.

The results of ten semi-blind repeatability tests are listed in Table 2.2. For each

planet+waveband combination, we list the first published eclipse measurement based on

a simple eclipse measurement, then a subsequent measurement obtained as part of thermal

phase measurements or a multi-eclipse campaign. Note that for the HD 189733b 8 µm

eclipse, the simple eclipse measurement (Charbonneau et al., 2008) was published after

the phase+eclipse measurement of Knutson et al. (2007b), but clearly the order in which

we list the measurements in no way impacts the analysis below.

For each eclipse measurement, we list the published value and uncertainty, σ. For each

pair of measurements, we list the discrepancy, ∆, between the new measurement and the

original. We also estimate the total published uncertainty as the quadrature sum of the

first and second eclipse uncertainties: σtot =
√
σ2

1 + σ2
2.
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Comparing the ∆ and σtot columns of Table 2.2 suggests that published eclipse un-

certainties are too small: the original researchers, subsequent researchers, or both groups

under-estimated the uncertainty in their measurement. Since the latter eclipse measure-

ments are based on more data, we assume that they represent an accurate measurement

and uncertainty, while the original measurements, based on a simple occultation, had

under-estimated error bars.

Alternatively, the planets may be exhibiting weather that changes the eclipse depths

from one epoch to the next, as predicted by Rauscher et al. (2007). Eclipse depth vari-

ability at the level of 5 × 10−4 would invalidate spectral retrieval because multi-band

broadband emission spectra are constructed over a span of many planetary orbits. The

weather hypothesis is ruled out in a few cases by the repeat observations discussed in

§2.4.1, however.

2.4.4. Realistic Eclipse Uncertainties

We quantify the degree to which eclipse uncertainties have been under-estimated by com-

bining ∆ and σtot to obtain an empirical estimate of systematic uncertainty, following

§2.1 of Lyons (1992).

In the first case, we assume there is an additional source of noise that affects single-

eclipse measurements. Physically, this might correspond to how well one can model

the detector given only a few hour observation of the science target. We estimate the

magnitude of this systematic uncertainty by considering the distribution of
√

∆2 − σtot.

In the one case where the epoch-to-epoch discrepancy, ∆, was smaller than the total

published uncertainty, we set this quantity to zero.
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The symmetric3 distribution [
√

∆2 − σtot] ∪ [−
√

∆2 − σtot] has a standard deviation

of σsyst ≈ 5.2 × 10−4. We adopt σsyst = 5 × 10−4 for the remainder of this paper (this is

somewhat greater than, but broadly consistent with, the repeatability estimate of 2×10−4

based on a pair of 3.6 µm transits of HD 189733b; Morello et al., 2014).

The second approach is to consider the distribution of |∆|/σtot, which amounts to

hypothesizing that single-eclipse uncertainties have been under-estimated by a constant

factor. For example, researchers may under-estimate the degree to which the unknown

detector model impacts eclipse depth uncertainty (numerical experiments have shown

that most extant methods underestimate occultation error bars in the presence of corre-

lated noise; Cubillos et al., 2014). The standard deviation of the symmetric distribution

[|∆|/σtot] ∪ [−|∆|/σtot] is fsyst ≈ 3.3. We adopt fsyst = 3 in the remainder of this paper.

2.5. Broadband Spectra with Empirical Uncertainties

To summarize the previous section, Spitzer has proven capable of photometry bet-

ter than 10−4 and many existing eclipse measurements are likely accurate at that level:

specifically, those based on multiple eclipses or taken as part of longer phase measure-

ments (the bolded numbers in Table 2.1). Single-epoch eclipse measurements of the best

and brightest targets have not been repeatable at this level, however. This is unfortunate

because such single-eclipse measurements represent the vast majority of the broadband

emission data (the unbolded numbers in Table 2.1).

Figure 2.2 shows the distribution of blackbody BIC vs. Nλ in light of empirical eclipse

depth uncertainties. Values based on multiple eclipse measurements, or obtained as part

3The ∆-distribution is decidedly asymmetrical: researchers analyzing single-eclipse measurements have
over-estimated the eclipse depth more often than not. Identifying the cause of this bias is beyond the scope
of the current manuscript, so we limit ourself to properly estimating the empirical eclipse uncertainty.
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Figure 2.2. As in Figure 2.1, but we add an empirical systematic error of
σsyst = 5× 10−4 in quadrature to each simple-eclipse measurement. In this
hypothesis, there is a floor to how precise an eclipse measurement can be
without acquiring more data, so modern eclipse measurements are no more
accurate than earlier attempts. Eclipse uncertainties based on multiple
eclipse measurements, or an eclipse embedded in a phase measurement, are
kept unchanged.

of phase measurements, are taken at face value. We add a systematic uncertainty of σsyst =

5 × 10−4 in quadrature to the quoted uncertainties for all single-eclipse measurements.4

We then re-fit a blackbody and recompute the BIC for each planet using these more

realistic error bars.

4If we had instead assumed that both the original and subsequent measurements were equally error-prone,
then σsyst and fsyst would be somewhat smaller, but they would have to be applied across the board,
leaving our conclusions essentially unchanged.
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Figure 2.3. As in Figure 2.1, but we inflate the published single-eclipse
uncertainties by the empirical factor fsyst = 3. This scenario accounts for
the possibility that modern eclipse measurements, which have much smaller
quoted uncertainties than the first generation of eclipses, might really be
more accurate than their predecessors. Eclipse uncertainties based on mul-
tiple eclipse measurements, or an eclipse embedded in a phase measurement,
are kept unchanged.

In Figure 2.3 we inflate the published uncertainties of single-eclipse measurements by

our empirically determined factor of fsyst = 3. We then re-fit a blackbody and recompute

the BIC for each planet using these more realistic error bars.

Under the assumption of realistic eclipse uncertainties, HD 189733b has the most

featured emission spectrum and lies in the green region in both Figures 2.2 and 2.3. If

spectral retrieval could achieve a perfect fit, χ2
SR/N = 0, then it would be modestly
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favored as compared to the blackbody, according to the BIC. Obtaining such a good fit is

not trivial for this planet because even our realistic noise hypothesis takes the published

uncertainties at 3.6, 4.5, and 8.0 µm at face value.

All other planets lie at/below the dashed green line, suggesting that blackbodies are

favored, even if spectral retrieval provides a perfect fit to the data. In any case, a researcher

who has gone to the trouble of running a Markov Chain Monte Carlo to perform spectral

retrieval should also estimate the evidence for their model using the posterior distribution;

BIC is merely a way of approximating this. Ideally, the evidence for spectral retrieval

models with different numbers of parameters could be compared using, for example, a

Reversible Jump Markov Chain Monte Carlo (Green, 1995) or Nested Sampling (Skilling,

2004).

2.6. Discussion

2.6.1. The Exceptions Prove the Rule

Given the small number statistics, we expect a broad range of χ2 values with a significant

tail; the gray zone indicates the 1σ (68.3%) interval. Nonetheless, a few short period

planets lie well above the gray region in Figures 2.2 and 2.3, suggesting they are poorly

fit by a blackbody and hence exhibit spectral features. These features are either the

hints of molecular bands, or remaining astrophysical/detector noise. The only planets

that make the cut under both the σsyst and fsyst hypotheses are CoRoT-2b, HD 189733b,

and WASP-5b. In order to put the poorly-fitting blackbodies in perspective, we compare

them to self-consistent radiative transfer models.
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Self-consistent atmospheric radiative transfer models typically have between one and

three tunable parameters: recirculation efficiency, optical opacity, and relative abundance

of CO (e.g., Kipping & Spiegel, 2011; Deming et al., 2011) and are usually tuned by eye in

order to obtain a decent fit. In what follows we will quote χ2
RT values from the literature

(i.e., using published eclipse uncertainties). As such, the values should be compared to

the blackbody BIC values shown in Figure 2.1.

As noted by Deming et al. (2011), CoRoT-2b is so poorly fit by spectral models at

4.5 µm that a blackbody fit has a smaller χ2. In fact, Deming et al. (2011) explain

the anomalous eclipse depth by invoking emission from a circumstellar accretion disk

contaminating the system flux in the mid-infrared at the level of 5× 10−3.

Chen et al. (2014) performed spectral retrieval on WASP-5b, but the authors were

unable to obtain a good fit that conserved energy, even when they allowed the atmospheric

C/O ratio to vary. It is hard to imagine that a self-consistent radiative transfer model

with only two variables would do any better.

The 3.6 µm photometry of HD 189733b is 5 × 10−4 discrepant from the best match

1D radiative transfer model obtained by varying two model parameters (Knutson et al.,

2012). The mismatch between the predicted and measured flux at 3.6 µm contributes

(5× 10−4/4× 10−5)2 = 156 to the χ2
RT budget, making this model a far worse fit than a

simple blackbody (χ2
BB = 33, as shown in Figure 2.1).

It is likely that bona fide fits using self-consistent radiative transfer models could

provide somewhat better χ2
RT, but this is computationally intensive and has only been

performed once, to our knowledge (Kipping & Spiegel, 2011). A recent wholesale look at

all extant eclipse spectra concluded that the only potentially robust area of agreement
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between self-consistent models and the data was the “systematic increase in the ratios to

shorter wavelengths” (Burrows, 2014).

In other words, the planets poorly fit by blackbodies are also poorly fit by self-

consistent radiative transfer models. The radiative transfer models could simply be wrong.

There have been efforts to compare and validate exoplanet radiative transfer codes (Guil-

lot, 2010; Shabram et al., 2011) and many have been tested against high quality observa-

tions of brown dwarfs, but it is possible that they are missing important physics relevant

to irradiated planets. “Missing physics” includes atmospheric dynamics and clouds, but

these are also omitted from most spectral retrieval models. We therefore hypothesize that

the spectral features in extant broadband spectra are due to a combination of astrophysical

+ detector noise5; spectral retrieval provides better fits because it is under-constrained.

2.6.2. Are New Measurements More Accurate?

Most recent measurements have not yet been repeated, but one could argue that the

various advances in reduction and analysis have made modern eclipse measurements more

accurate than their predecessors. In hindsight, it is easy to point out poor judgements

made by earlier researchers. In all cases, however, the authors were making defensible

choices about how to treat the data and how to fit it. In no case has the original paper been

retracted or has an erratum been published. With one exception (Beaulieu et al., 2011),

researchers have only questioned the original measurements once better observations were

available.

5The possibility that features in broadband hot Jupiter emission spectra are merely a com-
bination of detector and astrophysical error has previously been noted by G.P. Laughlin:
http://oklo.org/2013/08/21/central-limit-theorem
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Researchers still make choices about their reduction scheme, and the intra-pixel sensi-

tivity variations of Warm Spitzer are still modeled using the same few hours of data that

are used to measure the eclipse depth. We should aspire to parametrize these choices and

marginalize over them to produce accurate, if less precise, measurements. A promising

avenue is to use Gaussian Processes to model the intrapixel sensitivity variations, which

implicitly marginalizes over the functional form of the detector model. This strategy has

been used for transit spectroscopy (Gibson et al., 2012, 2013) and to model the effect of

star spots on thermal phase variations (Knutson et al., 2012).

Moreover, none of the studies reporting secondary eclipse measurements account for

how the meta-parameters of reduction and analysis pipelines contribute to uncertainty in

eclipse depth. At best, researchers experiment with a variety of schemes and adopt the one

that minimizes the scatter in the photometry (Stevenson et al., 2012a). This amounts to

optimizing the meta-parameters rather than marginalizing over them. If different choices

of meta-parameters, detector parametrization, or astrophysical parametrization lead to

significantly different eclipse depths (see §4.2), then one should be wary of small quoted

uncertainties.

The possibility of multimodal posterior distributions should also give us pause, since

neither gradient descent (e.g., Levenberg-Marquardt) nor Markov Chain Monte Carlo

routines are well suited to finding global solutions under these circumstances.

In short, the current generation of single-eclipse measurements are still systematics-

dominated and susceptible to many of the same problems as the previous generation. In

the σsyst hypothesis, there is a noise floor that affects all single-eclipse measurements,

so current single-eclipse measurements are little better than the first generation. In the
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fsyst hypothesis, on the other hand, the uncertainties are under-estimated by a constant

factor, so single-eclipse measurements published today (which tend to have small quoted

uncertainties) are taken to be more accurate than their predecessors. In other words, the

fsyst hypothesis assumes that eclipse depth estimates are becoming more accurate with

time.6 Our results are independent of which hypothesis we choose, as discussed above.

2.6.3. Astrophysical Sources of Error

Measurement-to-measurement variance in eclipse depths is only sensitive to systematics

that change from epoch to epoch: detector behavior, star spots, and exoplanet weather.

There are other systematics, however, that might remain constant from epoch to epoch

but that still introduce an error in our estimate of the planetary flux.

WASP-12b is the poster-child for such astrophysical sources of uncertainty, starting

with the possibility of contamination from a circumstellar disk (Li et al., 2010). A change

in astrophysical assumptions—namely the strength of ellipsoidal variations—affects the

4.5 µm eclipse depth of WASP-12b by 1.1× 10−3 (Cowan et al., 2012b).

Moreover, published eclipse measurements of WASP-12b have had to be revised after

the discovery of a binary companion that diluted the eclipse measurements, leading to

eclipse depth increases of 8 × 10−5 to 6.5 × 10−4 in the near to mid-infrared (Crossfield

et al., 2012a). In short, even if the photometry for an exoplanet system were precisely

known, there is significant room for error in the dayside emission of the planet, which is

the quantity we need to know for spectral fitting.

6It may eventually be possible to repeat this study but with so many measurements in Table 2.2 that
fsyst can be a function of time, rather than constant; one could hope that fsyst tends to unity, indicating
that observers are getting better at estimating the accuracy of their measurements.
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2.7. Conclusions

The retrieval of atmospheric structure and composition from disk-integrated broad-

band photometry hinges on planets not emitting like blackbodies. We have considered the

44 short-period planets with emission measurements in multiple broadbands. If published

uncertainties are taken at face value, then seven of these planets have broadband spectra

that favor spectral retrieval over blackbody fits, according to the Bayesian Information

Criterion—CoRoT-2b benefits the most from the additional model parameters.

In order to perform under-constrained spectral retrieval, however, it is critical to

know the actual uncertainty on eclipse measurements. Spitzer is capable of exquisite

photometry (< 10−4), but single eclipses acquired, reduced and analyzed in isolation have

only been repeatable at the 1σ level of 5× 10−4 (or single-eclipse uncertainties have been

under-estimated by a factor of 3). If one adopts such empirical uncertainties for single-

eclipse measurements, then blackbody fits are preferable over spectral retrieval for all

planets, with the possible exception of HD 189733b.

We conclude that statements about atmospheric composition based solely on broad-

band emission measurements are premature. If one adopts empirical estimate of single-

eclipse accuracy, then HD 209458b and GJ 436b are well fit by blackbodies, and WASP-

12b is not so poorly fit as to favor spectral retrieval. This resonates with the cautionary

review of Burrows (2014). Temperature inversions and odd compositions were inferred

for short period planets based on broadband emission spectra (Knutson et al., 2008, 2010;

Stevenson et al., 2010; Madhusudhan et al., 2011; Madhusudhan, 2012). Our results call

these claims into question. Undoubtedly, many planets have stratospheric inversions and
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non-solar chemistry, but there is no robust evidence for this in the current photometry of

short-period planets.

2.8. Interlude I

There is a typical pattern that emerges in many parts of science, and for that matter,

throughout many parts of life. It can happen over different timescales, but the basic

flow is surprisingly stable: a new idea or method comes along that is enticing and pushes

progressive thinking. A reaction or realization comes later, where the details of this

method are scrutinized and doubt arises about its legitimacy. In the end, the tide returns

to some comfortable medium, with a mature understanding of the idea that balances both

its good and bad qualities. Exoplanet science is extremely new and is living through this

cycle many times over right now. Amazingly we detect faraway planetary transits...are

most just false positives? We find subtle hints of water in atmospheres...have we analyzed

the razor-thin envelopes properly? We see unexpected eclipse depths...are our telescopes

clouding the truth? This last question is particularly relevant, as we turn to tackling

convoluted signals and noise in present light curves. Indeed, we have found remarkable

planets with alien features and are prudent to know we know nearly nothing in the grand

scheme—yet. But uncertainty alone is never good reason to stop exploring, so we now

step into sensitivity variations that corrupt Spitzer data and vetting a popular shortcut

remedy.
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CHAPTER 3

Knot a Bad Idea: Testing BLISS Mapping for Spitzer Space

Telescope Eclipse Observations

This chapter is adapted from Schwartz, J. C., and Cowan, N. B. 2016, Accepted in

PASP.

3.1. Introduction

It is hard to characterize the atmospheres of transiting exoplanets because the atmo-

spheric signal is 10−3–10−5 of the stellar flux (Seager & Deming, 2010). Unfortunately,

most current telescopes and instruments were not designed for these precisions.

Consider the Spitzer Space Telescope (Werner et al., 2004): many planets have been

observed with its InfraRed Array Camera (IRAC; Fazio et al., 2004), and these light

curves are a large part of the available data (e.g. Agol et al., 2010; Nymeyer et al., 2011;

Mahtani et al., 2013; Wong et al., 2015). The pixels in IRAC are not uniformly sensitive

and the target centroid (i.e. stellar position) moves on timescales of minutes to days

(Ingalls et al., 2016). That means IRAC can distort the light we see (e.g. Crossfield et al.,

2012b).

Many detector models have been used to deal with sensitivity variations on a pixel.

Early analyses of Spitzer light curves used polynomials (Charbonneau et al., 2005; Knut-

son et al., 2008). Ballard et al. (2010, 2011) used Kernel Regression to analyze IRAC

and Kepler Space Telescope data; improved versions of this method have been used
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by Knutson et al. (2012), Lewis et al. (2013), and Wong et al. (2015, 2016). Morello

et al. (2014) used Independent Component Analysis (ICA; Waldmann, 2012) to reanalyze

IRAC transit light curves. More recently, Deming et al. (2015) used Pixel-Level Decor-

relation (PLD) to remove red noise from IRAC data. The authors state this method is

better than modeling the sensitivity with centroids for a few reasons, including that PLD

is analytically sound and runs fast.

In recent years, many researchers have used BiLinearly-Interpolated Subpixel Sensi-

tivity mapping (BLISS hereafter; Stevenson et al., 2012a). This routine works quickly in

a Markov Chain Monte Carlo (MCMC) because no explicit parameters are used for the

detector sensitivity. Instead, BLISS divides the light curve by the current astrophysical

signal at each MCMC step, averages the leftover residuals at many locations on the pixel

(“knots”), then interpolates to find the sensitivity at each centroid. This means BLISS

optimizes the sensitivity at each knot—it runs efficiently because the weight of each knot

at the centroids’ locations can be calculated ahead of time.

Many studies have used BLISS to model the intra-pixel sensitivity in Spitzer data,

as shown in Table 3.1. Lanotte et al. (2014) and Demory et al. (2016b,a) also included

the full-width half-maximum of the pixel response function in their analyses. A recent

study by Ingalls et al. (2016) found that BLISS, PLD, and ICA are the most accurate

and reliable ways to model IRAC sensitivity for real and synthetic observations of XO-3b.

These methods can usually fit eclipse depths to within 3× the photon limit of the true

values.

However, BLISS does not fit for the detector sensitivity—it merely optimizes it. The

BLISS maps vary during an MCMC, but they always do so jointly with the astrophysical
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Table 3.1. Works that use BLISS to model the intra-pixel sensitivity in
Spitzer IRAC data.

Reference Planet/System

Stevenson et al. (2012a) HD 149026b
Stevenson et al. (2012b) GJ 436
Lanotte et al. (2014) ...
Blecic et al. (2013) WASP-14b
Cubillos et al. (2013) WASP-8b
Blecic et al. (2014) WASP-43b
Cubillos et al. (2014) TrES-1
Diamond-Lowe et al. (2014) HD 209458b
Gillon et al. (2014) GJ 1214
Stevenson et al. (2014a) WASP-12b
Stevenson et al. (2014b) ...
Motalebi et al. (2015) HD 219134b
Triaud et al. (2015) WASP-80b
Yu et al. (2015) PTFO 8-8695 b
Demory et al. (2016b) 55 Cnc e
Demory et al. (2016a) ...
Stevenson et al. (2016a) HAT-P-26b

model. Thus, one cannot explore the full parameter space because the BLISS map and

astrophysical model are not chosen independently (Section 3.2.1). With large numbers of

BLISS knots, one can also end up fitting noise in the light curve. Both of these issues

mean BLISS may give astrophysical uncertainties that are too small (Hansen et al., 2014).

BLISS was introduced to side-step the computational challenge of a fully Bayesian ap-

proach (Stevenson et al., 2012a). However, nobody has tested the impact of this shortcut,

nor has anybody published a rigorous study of BLISS using synthetic Spitzer observa-

tions, for which one knows the ground truth. Ingalls et al. (2016) tested seven techniques

for removing correlated noise from IRAC data using real and synthetic observations—but

only for a single hot Jupiter, XO-3b. We will therefore investigate BLISS by using a

simple model of Spitzer IRAC light curves.
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Stevenson et al. (2012a) created BLISS to handle the intra-pixel sensitivity in IRAC

data because fitting ∼ 105 measurements with ∼ 103 model parameters in an MCMC

was not feasible. This is still true, so we test light curves that have a modest number of

data by using ∼ 25–150 BLISS knots (but see Sections 3.4.3.1 and 3.4.3.4). These sets of

parameters are small enough that we can directly fit each knot.

We organize our work as follows: in Section 3.2.1, we describe how properly marginal-

izing a parameter differs from optimizing it, and use examples to show that this can affect

the fits on other parameters. Then, in Sections 3.2.2 and 3.2.3, we use a toy model to show

that optimizing may cause problems even with simple posteriors and Gaussian uncertain-

ties. We describe our model of the Spitzer IRAC detector in Section 3.3.1, including

how we make mock centroids, then introduce our astrophysical model and synthetic light

curves in Section 3.3.2. In Section 3.4.1, we briefly review BLISS, and in Section 3.4.2,

we compare BLISS knots and maps to the true pixel sensitivity. We then fit our light

curves with MCMC and three different models for the pixel sensitivity, including two ver-

sions of BLISS, in Section 3.4.3. We discuss our results in Section 3.5 and summarize our

work in Section 3.6. For those interested, the details about how we choose parameters for

the pixel’s sensitivity and the astrophysical signal are given in Appendices A.1 and A.2,

respectively.

3.2. Optimizing Nuisance Parameters

Nuisance parameters are parts of a study that are not interesting, but have to be used

to get a good answer. In the context of characterizing transiting planets, the detector

sensitivity is usually modeled in terms of nuisance parameters.
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3.2.1. Marginalizing vs. Optimizing

When fitting a model to data, one explores a posterior probability function: this describes

how likely one’s model is given each choice of parameter values. Posteriors often have

many dimensions, so we show a bivariate Gaussian as a simplified example in the upper

left panel of Figure 3.1. This posterior describes the arbitrary parameters X and Y, where

the lighter colors show pairs of parameters that are more probable. Even though this 2D

Gaussian is not oriented along X or Y, it is still highly symmetric.

Suppose now that parameter Y is a nuisance variable, and one would like the posterior

(i.e. the fit) for the “interesting” parameter X alone. There are three general ways to find

this, though we will focus on two for the moment. Ideally one should marginalize over

Y, or integrate the 2D posterior over all possible Y-values, as shown by the (normalized)

black curve in the lower left panel of Figure 3.1. Instead one could try optimizing Y,

or finding the highest probability along Y for each value of X, shown in the same panel

as a dashed magenta curve. For the bivariate Gaussian both methods give identical 1D

posteriors on X: the median of each curve is shown with a color-coded circle, while the

bars are the 1σ intervals. In other words, how one deals with this nuisance parameter Y

does not affect their fit for X.

Some posteriors are less well-behaved; we show two examples in the remaining panels

of Figure 3.1. The 2D posterior in the upper center is a “Gaussian butterfly,” which has

a narrow range of defined Y-values around X = 0 that broadens as |X| increases. The

probability density varies only along X and is inversely related to the width in Y—that

means the marginalized posterior for X is flat (black curve in the lower center) and the
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optimized version peaks at X = 0 (dashed magenta curve). If one optimizes this parameter

Y, their median value for X is correct (circles) but their uncertainty is too small (bars).

Alternatively, consider a 2D posterior shaped like a Rosenbrock banana function in the

upper right panel of Figure 3.1. This has two thin branches that join near (X,Y) = (7,−5),

and the probability density does not vary the same way in both branches. The posterior

for parameter X after marginalizing Y, in the lower right panel, is denser on the right and

peaks around X = 7. By optimizing Y, though, one misses most of the banana’s lower

branch and so gets a flatter 1D posterior on X. In this case, the uncertainty on X is larger

when optimizing Y, and the median is biased towards smaller X-values.

The third method we alluded to for fitting parameter X is slicing the given 2D posterior

along the Y-value at its peak. This is nearly the same as optimizing Y for our first

two examples, but with the Rosenbrock banana the 1D posterior for X has just two

narrow, distinct peaks (not shown). For higher dimensional cases, optimizing typically

falls somewhere between marginalizing and slicing the full posterior. We will return to

this idea when testing BLISS in an MCMC in Section 3.4.3.3.

In general, then, optimizing parameters works well when it approximates marginalizing

over those parameters: having just the silhouette of the posterior seen by the interesting

variable(s) is enough to describe the nuisance parameter(s) throughout the space. This

is true for the bivariate Gaussian, and in principle for multivariate Gaussians, too. Once

the posterior is non-convex, has an exotic density profile, or is otherwise oddly shaped,

optimizing along one or more dimensions is dicey. This may bias the best-fit values of

interesting parameters and make it hard to report reasonable uncertainties.
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3.2.2. Toy Model

Even if a posterior seems well-behaved, optimizing nuisance parameters can still cause

problems. We demonstrate this with a toy example:

f(t) = (qt2 +mt+ b) +N(t;σ),(3.1)

where f(t) is data at time t, the q, m, and b are coefficients, and N(t;σ) is Gaussian noise

with uncertainty σ. A sample data set from this toy model is shown in the upper left

panel of Figure 3.2. We use 1001 evenly-spaced times, t ∈ [−10, 10], for a chosen set of

parameters, {q,m, b, σ}.

The simplest way to fit these data is to use Equation 3.1, where all four parameters

are fit directly. Suppose, though, that one wanted to optimize b, m, or q instead; we

show examples of this strategy in the other panels of Figure 3.2. This is essentially how

BLISS treats pixel sensitivity (Stevenson et al., 2012a), where detector parameters are

optimized and astrophysical parameters are fitted. The idea here is to make a model

with the interesting variables, then subtract this incomplete model from the data to get

residuals. Then one splits the residuals into groups by time, takes the mean of each group,

and finds the trend through those means. As shown, this optimizes either the offset (b),

slope (m), or quadratic term (q), described ideally in Section 3.2.1. We use obvious names

for each method: b-Optimize (upper right, magenta), m-Optimize (lower left, yellow), and

q-Optimize (lower right, cyan).
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Figure 3.2. Upper Left: Example data generated from Equation 3.1, where
the black curve is the true function without noise. Other Panels: Residuals
left after subtracting three incomplete models, with no offset, linear, or
quadratic term, from the data at upper left: b-Optimize at upper right
(magenta), m-Optimize at lower left (yellow), and q-Optimize at lower right
(cyan), respectively. One can estimate each missing term by splitting the
residuals into time groups (dashed vertical lines), finding the mean (large
gray circles) of each group, and getting the leading part of the trend (black
curves) through these means. Thus, one can try to optimize each term using
data residuals.
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3.2.3. MCMC Fits to Toy Models

We now use the MCMC code emcee (Foreman-Mackey et al., 2013) to fit the data from

Figure 3.2. For each of our four models, we use 240 walkers and start them in a small

ball near the true parameters. We also pick uniform priors on each term in Equation

3.1. We burn-in each chain for 250 steps and run them for another 1000 steps, then thin

the chains by the longest autocorrelation time, τmax, that emcee estimates (τmax ≈ 25–60

steps). Example fits are shown in the upper row of Figure 3.3. The circles are medians

of each chain and bars are 1σ intervals, as in Figure 3.1.

Most of the fits to the mock data are reasonable. This is no surprise for the full

model—after all, we used the same four parameters to generate the data. It is also clear

that one could optimize b or m during the MCMC without hurting anything, although

these schemes run no faster than the full model.

The q-Optimize method is different, though. The linear and noise terms are about

the same as the other three methods, but the uncertainty on b is noticeably smaller. The

center of the interval is also lower than the other methods. These walkers overlapped the

same part of parameter space but tried a smaller range of offset terms.

We next try fitting 100 different data sets, where we randomly pick q ∈ [−1, 1],

m ∈ [−10, 10], b ∈ [−100, 100], and σ from a Normal distribution with mean 50 and

width 10. We use all four methods with the same MCMC setup as before, and calculate

the z-scores for each term:

(3.2) zµ =
µθ − θ
σθ

,
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where zµ is the z-score, and {µθ, σθ} are the fitted value and uncertainty of parameter θ.

If a parameter estimate is unbiased and accurate, then the average z-score should be close

to zero and the standard deviation should be close to unity. We show the z-scores in the

bottom panels of Figure 3.3, where diamonds are the mean values.

The trend in these z-scores is obvious. As we expect, the full model, b-Optimize,

and m-Optimize fits look fine: on average we get close to the real parameters and have

reasonable uncertainties. This is even true for parts of q-Optimize, but not the offset

that this method finds. In general this uncertainty on b is too small, which is why the

z-scores are more spread out than any other fit, by about a factor of 2. In other words, if

one were to model this kind of data using q-Optimize, they would be too precise on their

guess for b. Although this case mimics the fits in the lower center panel of Figure 3.1, the

posterior for our toy model looks like a 4D ellipsoid (i.e. Go stone). Either q-Optimize

does not “optimize” in the sense of Section 3.2.1—possible but unlikely—or the density

of this posterior varies in an unexpected way.

It may seem silly to optimize the quadratic term in a quadratic equation—if one

expects this term, then they should probably fit for it directly. BLISS, however, uses

the same strategy to optimize the entire detector signal, not just one part of it. As

acknowledged by Stevenson et al. (2012a), this is an expedient shortcut since fitting

for ∼ 103 knot values is not computationally feasible. Our example posteriors and toy

model demonstrate that this shortcut may come at the price of accurate astrophysical

parameters.
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3.3. Synthetic Light Curves

3.3.1. Detector Model

We begin by simulating the Spitzer detector. Each wavelength channel of IRAC has an

array of pixels, and due to the peak-up, the centroids usually stay within a single pixel

for an entire eclipse observation (Ingalls et al., 2016). In real IRAC data, the image falls

on different parts of the pixel because Spitzer both shakes and drifts slightly and has

changes in optics due to thermal expansion and contraction.

We mimic this by modeling the centroid time-series, {x0(t), y0(t)}, with the pointing

equations in Appendix A1 of Ingalls et al. (2016), but make two changes. We drop their

short-term drift because we assume the eclipses we will model do not happen just after

a re-pointing. For full-orbit phase curves where the centroids often cover larger regions

of the pixel (e.g. Cowan et al., 2012b; Wong et al., 2016), including this drift could make

polynomial models (Section 3.4.3) less accurate at describing the sensitivity variations.

We also use regular, as opposed to fractional, Brownian motion to make the noise for

their “jitter” term. This change should not influence the centroids on timescales longer

than 60 seconds, i.e. the jitter period. Examples of these centroids are shown in the left

panels of Figure 3.4—this observation lasts 6 hours and has 2160 data, N , or about 10

seconds per point.

The first (x0, y0) are both randomly chosen from [14.7, 15.3] because (x, y) on the

central pixel both span [14.5, 15.5]. We model this pixel’s sensitivity using a polynomial:

(3.3) V (x, y) = 1 +

(
n∑
`=0

n−∑̀
m=0

c`m(x− 15)`(y − 15)m

)
`m 6=00

,
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where V (x, y) is the sensitivity map and n is the polynomial order (we use n = 7). The

c`m are coefficients, and the details about how we pick these are given in Appendix A.1.

This equation keeps the average sensitivity close to unity; we show an example map in the

right panel of Figure 3.4. The center of the pixel, (x, y) ≈ (15, 15), is the most sensitive

region on the real IRAC detector (e.g. Reach et al., 2005; Cowan et al., 2012b)—this is

not always true for Equation 3.3.

With the centroids and sensitivity map, we then make a detector signal, D(t), using:

(3.4) D(t) = V (x0(t), y0(t)),

that has a given amplitude, ∆D. After getting D(t) and before doing anything else,

we also randomly move each centroid to simulate imperfect centering. Here we use a

bivariate Gaussian with standard deviations of 1% the centroid cluster’s size in x and y,

and a random correlation between [−0.5, 0.5]. These shifts are a little smaller than in

Ingalls et al. (2014) and do not strongly affect our results.

Real Spitzer data show a variety of intra-pixel sensitivity variations in the different

IRAC channels (e.g. Stevenson et al., 2012a; Triaud et al., 2015). For the example in

Figure 3.4, the detector sensitivity varies about an order of magnitude more than the

eclipse depth we model (below). We will test a range of other scenarios in Sections 3.4.2

and 3.4.3.4.

3.3.2. Astrophysical Model

The astrophysical signals we are interested in are planetary eclipses, and we use hot

Jupiters as the model because these are the planets that BLISS is often used for. We
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assume our planets are on circular orbits and only consider thermal emission. Hot Jupiters

exhibit thermal phase variations (e.g. Knutson et al., 2007a; Crossfield et al., 2012b; Wong

et al., 2015), which we model as a sinusoid, Φ(t):

(3.5) Φ(t) = 1− α cos

(
2π

Porb

t+ φo

)
,

where α is the half-amplitude, Porb is the orbital period, t is the time from the start of

the observation, and φo is the phase offset. The constant keeps Φ(t) close to unity, and

we fix tmax = 6 hrs because real observations are about that long.

Then we inject the eclipse to get the full astrophysical model, A(t):

(3.6) A(t) =


{Φ(t)− δe}eclipse, |t− te| ≤ tw.

Φ(t), otherwise,

where δe is the eclipse depth, te is the time at the center of eclipse, and tw is the time

from te to ingress or egress. We choose tw = 1 hr because real eclipses of hot Jupiters

usually last a couple hours. The bar in Equation 3.6 means we take the average of all

data during the eclipse, so ingress and egress are instantaneous and the bottom of the

eclipse is flat. The details about how we choose the other parameters for A(t) are given

in Appendix A.2.

Finally, we combine Equations 3.4 and 3.6 to create our model of Spitzer light curves:

(3.7) F (t) = A(t)D(t) +N(t;σ),
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where F (t) is the flux, D(t) is the detector signal from Section 3.3.1, and N(t;σ) is

photon (Gaussian) noise with uncertainty σ. We characterize our light curves using the

normalized detector amplitude, ∆D/δe ≡ ∆De, and the significance of the eclipse, Se,

defined as:

(3.8) Se ≡
δe
√
Ne

σ
,

where Ne is the number of data during the eclipse.

An example light curve is shown in Figure 3.5, made with the centroids and sensitivity

map in Figure 3.4. The upper panel shows the astrophysical and detector signals as a

dark dashed curve and an orange curve, respectively. These parts are combined in the

lower panel: the brown curve is the flux one would see without photon noise, and the

gray circles are data points, binned in groups of 20 for clarity. For this case, the eclipse

is detected at 10σ and D(t) has an amplitude 10× larger than the eclipse depth. This

type of detector signal is similar to IRAC data at 3.6 µm (e.g. Stevenson et al., 2012a;

Cubillos et al., 2013)—we test a variety of values for ∆De in Sections 3.4.2 and 3.4.3.4.

3.4. Tests of BLISS

3.4.1. BLISS Method

We give a brief summary of BLISS here—for details, see Stevenson et al. (2012a). A light

curve has two main parts: a detector signal (e.g. due to varying sensitivity on the pixel)

and an astrophysical signal (e.g. a planetary eclipse). If one knew the astrophysical part

and divided it out of the light curve, all that should be left in the residuals is the detector

signal and photon noise.
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Each residual is paired with a centroid, so one can group the residuals with a mesh of

BLISS “knots,” K (left panel of Figure 3.6), take the average of each group, and set the

values of the knots to these averages. This estimates what the sensitivity looks like on

the pixel around the centroids, and each purple star in Figure 3.6 is a good BLISS knot,

or one that has at least one centroid nearby. Other studies (e.g. Stevenson et al., 2012b;

Blecic et al., 2014) often require good knots to have at least four linked centroids—those

with just one nearby centroid will fit noise by definition. But, this should only affect a

tiny part of the detector model and so is negligible. We explicitly try making K = 102 an

ideal mesh size for our example, but this is difficult to do (Sections 3.4.3.1 and 3.4.3.4).

To figure out what D(t) is, BLISS interpolates the sensitivity at each centroid by

using the four surrounding knots (hence bilinear interpolation). For centroids where any

of those four knots are unconstrained by the residuals (light red x-marks in Figure 3.6),

BLISS does nearest neighbor interpolation (NNI) instead. Usually a few of our centroids

are just outside the mesh of BLISS knots, so we extrapolate the sensitivity at those spots

when we can. During the course of an MCMC, a new astrophysical signal is made at each

step, the new residuals are averaged, and the detector signal is recalculated. Thus, BLISS

tries to attribute unfitted variations to the detector.

3.4.2. Comparing Knots and Maps

BLISS has been used many times to handle sensitivity variations in IRAC data (e.g.

Diamond-Lowe et al., 2014; Triaud et al., 2015; Stevenson et al., 2016a), and has been

shown to be reliable and accurate at estimating the eclipse depths of XO-3b (Ingalls et al.,

2016). But, no research has looked at the accuracy of BLISS knots or maps. We first
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calculate the true sensitivity at each knot’s location by evaluating Equation 3.3 there—

these are the values that BLISS tries to estimate.

To guess what the best-fit BLISS knots would be, we next take F (t)/A(t) in Equation

3.7 and use those residuals in the BLISS routine (this estimate is good; Section 3.4.3).

Then we compare the BLISS and true knot values to each other:

(3.9) δki =
(kB − kT )i

σ/
√
Ni

,

where δki is the discrepancy of knot i, kB is the value of a BLISS knot, kT is the true

sensitivity at the same knot, and Ni is the number of centroids linked to that knot. The

denominator in Equation 3.9 is the photon noise per bin (assuming Poisson statistics),

which implicitly weights the discrepancies by the data per knot (i.e. star color in Figure

3.6). Again, δk measures how well BLISS estimates the sensitivity at the knots—we test

the full map, or the interpolated detector signal, further below. We show values of δk for

our example knots in the right panel of Figure 3.6. Although the astrophysical model is

known perfectly here, the larger discrepancies can occur in the interior of the mesh where

there are more data per knot.

The standard deviation of Equation 3.9 for all the knots tells us how reliable these

estimated sensitivities are—average discrepancy matters less because Spitzer is poor for

absolute photometry of planetary eclipses (e.g. Reach et al., 2005). Similar to z-scores

in Section 3.2.3, we expect an RMS value close to unity if the knots are accurate. For

example, the standard deviation on δk in Figure 3.6 is about 1.02 (average is around

−0.34), so these BLISS knots are indeed a good match to this pixel’s true sensitivity. We

test this for other light curves by varying four parameters: the number of data points
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(N), the total amount of BLISS knots (K), the eclipse significance, and the normalized

detector amplitude.

We start by making an 11×11×50×50 logarithmically-spaced grid of N ∈ [102,∼ 105],

K ∈ [52, 1602], Se ∈ [1, 100], and ∆De ∈ [0.1, 100], respectively. We also try a second

grid where the dimensions are reversed. Then we make 3 light curves (Equation 3.7) at

each grid point, get the BLISS knots as described above, and use Equation 3.9 to find

the average standard deviation of δk. In general, we find a trend in RMS values with

Se∆De = ∆D/(σ/
√
Ne), which is the detector amplitude relative to the astrophysical

precision on eclipse timescales (Section 3.3.2). We also find a similar trend with the

average data per BLISS knot, N/K. However, the number of good knots for given data

depends on the shape of the centroid cluster, so we focus more on Se∆De.

For given amounts of data and knots, when Se∆De is low the photon noise is much

bigger than the detector amplitude, and the standard deviation of δk is around unity. In

these cases a BLISS knot is generally as accurate as the noise in the residuals. As Se∆De

goes up, the photon noise decreases, and the knots get closer to the true sensitivities

while still being noise-limited. We eventually find an ideal regime, covering about an

order of magnitude in Se∆De, where BLISS knots have values similar to the pixel’s true

sensitivity and the RMS of δk stays around unity. Above this range, however, the photon

noise decreases so much that the standard deviation of δk grows, even though the knots

stay close to their true values. These are bad levels of Se∆De because BLISS is not

estimating the sensitivity at the knots correctly for the expected precision. Since N/K

has a similar trend, this means that when Se∆De is high for given N , BLISS will estimate

the sensitivity better by using more knots (i.e. smaller bins).
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The full maps (i.e. sensitivity at each centroid) are comparable. When we use the

BLISS and true knots to interpolate D(t) for a set of centroids, both typically fit the

residuals equally well (i.e. similar Chi-square values) when Se∆De is in or below the ideal

range. This happens in Figure 3.6, where both D(t) would have χ2/N ≈ 1.05. Once

Se∆De is ∼ 2× the ideal limit for accurate knots or higher, BLISS maps usually do a

little better, but both fits start to become poor. The photon noise is low in these cases,

and neither map models the detector signal to within the precision of the data. On the

other hand, having N/K ∼ 10 or less means that χ2/N < 1 and the BLISS maps fit

progressively more noise. Still, in most cases modeling D(t) with BLISS is statistically as

good as interpolating from the true sensitivity at the knots.

For example, with N ≈ 2.5 × 104 and K ≈ 302, we get ideal BLISS knots when

Se∆De ∈ [10, 250] and good detector signals when Se∆De < 500, both roughly. We can

use these values to guess how accurate the BLISS knots and maps are for the studies in

Table 3.1, which often use similar N and K for eclipse observations. We estimate the

detector amplitudes from uncorrected light curves or the sensitivity maps if shown, and

the eclipse significances from binned light curves that have uncertainty bars. In general,

we find that most studies (e.g. Cubillos et al., 2013; Stevenson et al., 2014a) have Se∆De

values within our ideal range—these BLISS knots and maps should be accurate. Two

3.6 µm cases to note are Blecic et al. (2013), where we estimate Se∆De ∈ [250, 450]

for WASP-14b, and Stevenson et al. (2012a), with Se∆De ∈ [360, 600] for HD 149026b.

In these studies, the sensitivity at the BLISS knots is likely starting to go bad (1.0 ≤

RMS[δk] ≤ 1.5), but the detector signals should still be modeled well. Naturally, higher

values of Se∆De would be worse.
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Stevenson et al. (2012a) states that, when possible, one should choose a bin size for

BLISS (i.e. number of knots for given data) which does not depend on the eclipse depth

and gives less scatter in the best-fit residuals than NNI. For a given light curve, it seems

that one could also use Se∆De (or N/K) to select an ideal number of knots for their

BLISS routine. However, any of these guidelines are likely problematic (Sections 3.4.3.1

and 3.4.3.4).

We will test different sizes for the knot mesh when fitting some of our synthetic data

with BLISS (Section 3.4.3.4). Though we will make practical choices for N and K to run

MCMC on our light curves, these data mimic published studies and our results should

apply to real Spitzer observations.

3.4.3. MCMC Fits to Synthetic Eclipses

We want to fit our light curves using MCMC and BLISS, but cannot use lots of BLISS

knots because emcee would run very slowly with that many parameters. Indeed, this is

why Stevenson et al. (2012a) introduced this residual optimization scheme in the first

place. Instead, we start with N = 2160 and test for the number of BLISS knots to use,

suggested by Stevenson et al. (2012a) above.

3.4.3.1. Selecting the BLISS Mesh. As stated in Section 3.3.2, the data in our main

example (a 10σ eclipse with ∆D = 10δe; Figure 3.5) is modeled on IRAC at 3.6 µm. We

therefore use Table 2 of Stevenson et al. (2012a), also for 3.6 µm data, as a guide (T2

for short). When we fit light curves like in Figure 3.5 with BLISS, the eclipse depths are

usually very consistent at 1σ for K ∈ [72, 202]. Our centroid clusters are ∼ 0.2 pixels wide
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in x and y, so these knots are spaced about [0.03, 0.01] pixels apart. This matches T2

well and shows our eclipse depth does not depend on bin size.

Having the best-fit residuals be less scattered for BLISS than NNI is harder to do.

One can only ensure this by explicitly fitting a light curve with both methods, not feasible

for our study. Instead we approximate these fits by using F (t)/A(t) from Equation 3.7

in both routines, as in Section 3.4.2. Then from T2, we compare the ratio of standard

deviations in the best-fit residuals for BLISS and NNI, RB
N . We estimate that eclipse

depths fit by BLISS in T2 become inconsistent when RB
N drops below ≈ 0.987, at a bin

size of ∼ 0.06 pixels. So that our knots are spaced closer than this, we keep K = 102 as

the starting mesh (i.e. BLISS bin size of ∼ 0.02 pixels) and only use light curves (Section

3.4.3.4) where we estimate RB
N ∈ [0.99, 1.0). This is our conservative attempt to have

BLISS work better than NNI—true for our main light curve in Figure 3.5.

However, our choice is probably arbitrary. The value of RB
N seems to depend on many

aspects of a light curve, especially the detailed shape of the detector signal. Worse, when

we draw new Gaussian noise in Equation 3.7 while keeping A(t) and D(t) fixed, RB
N can

be above or below unity, sometimes with equal chance. That means different photon noise

with the same uncertainty can make BLISS look good or unnecessary for given data and

K. Thus, picking the BLISS bin size, according to Stevenson et al. (2012a), can need

fine-tuning.

Also, once NNI outperforms BLISS, Stevenson et al. (2012a) states that this bin size

indicates the centering precision for a particular data set. But, our centroids are typically

precise at about 5–15% of the bin size when RB
N goes above unity. Even using the perfect

locations of all centroids, NNI can still easily do better than BLISS—centering precision



91

is not related to how BLISS performs. Instead, the bin size where NNI starts giving

less scattered residuals than BLISS could be related to the length scale of the sensitivity

variations. We hypothesize that both of the above issues can happen when fitting real

observations.

Nonetheless, there are other benefits to using K = 102. Our average data per good

BLISS knot is typically within [25, 40]. These ratios are smaller than Figure 6 of Steven-

son et al. (2012a) suggests, but may be similar to other BLISS studies (e.g. Figure 5 of

Blecic et al., 2013). Also, N/K = 21.6 and so our BLISS maps will not fit much noise

(Section 3.4.2). More importantly, the estimated sensitivity at our knots should be ac-

curate for light curves where the product of the eclipse significance and the normalized

detector amplitude is less than ∼ 300. The same is true for the detector signals when

this product is less than ∼ 600. As described in Section 3.4.2, these values of Se∆De are

good approximations for those in published papers. In other words, we want our fits to

represent a variety of real data while remaining computationally feasible.

3.4.3.2. Models and Main Light Curve. We use three methods to handle the pixel’s

sensitivity. Since the true sensitivity is generated with a polynomial model, we try poly-

nomial mapping, or P -type. Here though, we choose n = 2 instead of the real n = 7 to

mimic our inexact understanding of the intrinsic detector sensitivity (we test the impact

of this choice below). We also use BLISS as described by Stevenson et al. (2012a), or

B-type. We further want to fit the knots directly, so we modify BLISS and make each

knot a jump parameter inside the MCMC, or J-type. Everything else about BLISS is the

same in the B- and J-type methods.
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We use emcee as in Section 3.2.3, and for each method (P -, B-, and J-type) we

choose the number of walkers to be 3× the number of J-type parameters. The priors on all

parameters are uniform, and we again start the walkers in a small ball near the true inputs.

We run each chain until all parameters stabilize for at least 25× the largest autocorrelation

estimate, τmax, then drop the burn-in and thin the chains by τmax. Typically, this takes

5–20× 103 steps and emcee calculates τmax ∈ [80, 100] steps. For our example light curve

from Figure 3.5, we show all three posteriors on the eclipse depth in Figure 3.7. Here the

real depth, δe = 5.0× 10−3, is shown with dashed vertical lines. At the top of each panel,

we plot the median depth as a circle and the 1σ intervals with bars (as in Figures 3.1 and

3.3). Remember that here Se = 10 and ∆De = 10.

All three posteriors are roughly Gaussian in shape. The J-type fit is centered near

the true eclipse depth and B-type is even closer, but the latter has heavier tails and so is

less precise. The P -type fit, however, peaks at ∼ 2× deeper than the true value. Even

though this model is the most precise, it has the worst accuracy. We find that J-type

has the lowest Chi-square, 2102.9, compared to 2173.1 for P -type and 2182.1 for B-type.

Note that all three models have χ2/N ≈ 1. As P -type shows here, having noisy data can

shift best-fit parameters away from their true values, despite Chi-square being good.

In Figure 3.8 we also compare our models to the true sensitivity projected along both

axes of the pixel (as in Figure 2 of Stevenson et al., 2012a). Because we use K = 102 for

BLISS to fit our main light curve, each of these projections is done with 10 bins on an axis.

The true sensitivity is shown as a solid black curve, and our models have the same colors

as in Figure 3.7. As expected from the Chi-square values, J-type (dotted red) matches the

true variations best, though P - (dashed green) and B-type (dash-dotted blue) still follow
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the overall patterns. The astrophysical model can balance out sensitivities here that do

not match the true pixel, but this is more helpful for projections that are uniformly high

or low along x or y. When we try fitting different types of light curves (Section 3.4.3.4),

we find that BLISS is usually better than polynomials at matching more featured kinds

of projected sensitivities.

As Stevenson et al. (2012a) describes in their Appendix A, comparing BLISS to poly-

nomial models using the Bayesian Information Criterion (BIC; Schwarz et al., 1978) is

not sound: many parameters do not overlap and each BLISS knot only interacts with a

subset of the data. One could try modifying BIC to account for the latter point, but that

is beyond the scope of this paper. Instead we will compare models in Section 3.4.3.4 by

using accuracy and precision of the fitted eclipse depths.

3.4.3.3. Properties of BLISS. For the B-type model, we find that the best-fit BLISS

knots (not shown) are mostly similar to those we estimated in Figure 3.6. The χ2/N for

D(t) is higher than our original guess (≈ 1.24 versus ≈ 1.05), but both signals also look

similar. We get the same results when we test other light curves, and that means we can

usually estimate the best-fit BLISS knots and map well without running an MCMC. Our

findings in Section 3.4.2 are therefore robust, and this supports our attempt to choose an

ideal BLISS mesh in Section 3.4.3.1.

To test how the BLISS knots vary in the MCMC, we save the knots at every step in

the B-type model and compare the standard deviation of each B- and J-type knot in

Figure 3.9. Even though the J-type knots are free parameters, the B-types can vary more

(color scale), especially those in the interior of the mesh. This is probably because there

are more data per knot here, meaning the central knots have the biggest impact on the
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Figure 3.9. Ratio of standard deviations for knots sampled in the B- and J-
type models. Lighter colors mean those knots varied relatively more in the
B-type MCMC; the highest ratios are in the interior of the mesh. The value
of B- and J-type knots tend to vary as much during an MCMC, regardless
of whether they are jump parameters.

detector signal and so vary the most. We see this happen in every light curve we test (i.e.

ratio of standard deviations between [0.3, 2.0] typically), so in general BLISS knots act

like real variables rather than fixed parameters.
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We also try slicing through the J-type MCMC chain (i.e. posterior; Section 3.2.1) in

the knot parameters. This shows how the fit to the eclipse depth changes when fixing

the knot values, which should be a worst-case scenario for BLISS. With 65 good knots,

though, this is tricky. For example, the density of a ν-dimensional Gaussian depends on

the σ-scaled distance d from the mean (Mahalanobis distance; e.g. De Maesschalck et al.,

2000), where d2 has a χ2
ν distribution (e.g. Tong, 2012). The chance that a point lies

within d = 1 in our case, or 1σ in all knots, can be estimated as CDF(12;χ2
65) ∼ 10−48.

Our thinned chains only have ∼ 104 samples, so it is near-impossible to have any sample

close to the best-fit value of every knot. Discrete samples are often very spread out in a

high-dimensional space.

In practice we take slices much larger than 1σ through the J-type knots to capture

close to 10% of the samples. The above example predicts this happens when d ≈ 7.13.

When we slice around the maximum likelihood value of the knots, we only need d ≈ 2.42.

The median eclipse depth is about 4% higher than in the full chain, and the interval

in nearly unchanged. If we slice around the median knot values instead, we only need

d ≈ 2.04. The median eclipse depth goes down by∼ 5%, but the interval is now about 18%

smaller. The low d-values we find imply that the J-type posterior is not a multivariate

Gaussian.

When we test other light curves, the J-type slices often look similar. Median eclipse

depths are usually within 10% of those in the full chains (i.e. good for 10σ eclipses or

better), and the intervals between 20% narrower to 10% wider. The exceptions are when

the eclipse significance is low: these fit intervals on the depth are around half the width of
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those in the full chains. But generally, slicing through the J-type posterior—which limits

the value of each knot—does not affect the fitted eclipse depth much.

3.4.3.4. Varying the Data and BLISS. So far we have (mostly) considered the fits

for a single light curve. We now try fitting different data sets and changing how many

BLISS knots we use. For consistency, we fix all eclipse depths to δe = 5.0 × 10−3 and

test 5 light curves, or 10 where stated, per case we consider. We randomly generate these

synthetic data, but visually inspect them to make sure the detector signal is not mostly

flat, which happens about 10–20% of the time. Note that we only explicitly try to have

BLISS work better than NNI (Section 3.4.3.1) in our main type of light curves (circles

below; includes Figure 3.7) and when we later modify the sensitivity variations for this

type. Other cases are experiments on changing some aspect of the data or BLISS.

Because we find above that the B- and J-type models are similar, we drop J-type

from here on to speed up our fits. We repeat the P - and B-type MCMCs as described in

Section 3.4.3.2, and since there are several changes to consider, we split these sets of light

curves into groups. We find all χ2/N ∼ 1 and either model can have the lowest value

unless stated otherwise. Bear in mind that the following figures only show about a third

of our MCMC fits—we have tried other (sometimes uninteresting) parts of the parameter

space.

We first try varying both the eclipse significance and normalized detector amplitude,

and show the mean and standard deviation of the z-scores (Equation 3.2) for the eclipse

depth in the left panel of Figure 3.10. The P -type models are colored green and the B-

types are blue. There are also two kinds of z-scores: the darker markers are the fits, while

the lighter markers use more conservative intervals we get by testing for time correlations
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in the best-fit residuals (β plots; e.g. Pont et al., 2006; Cowan et al., 2012b). These pairs

are clarified with connecting lines and the lighter markers are only shown when they do

not overlap the darker version.

In Section 3.2.3 we described that parameter fits are reliable if, after many samples, the

z-scores on the fits have an average of about zero and a standard deviation around unity.

Each marker here only uses 5 samples, so the background shows the scatter we get when

drawing, via Monte Carlo, 107 sets of 5 samples from a standard normal distribution.

Lighter areas are more probable and the dashed magenta ellipse contains 99% of the

Monte Carlo sets. If a marker is outside this region, it likely means the eclipse depths in

that case are being fit unreliably. BLISS has some trouble when the eclipse is noisier and

the detector signal is larger (blue diamond). The polynomial model has suspect fits when

Se∆De ≥ 100, with the darker green star outside the plot at about (7.0, 4.7). Including β

factors makes the z-scores reasonable for the higher two cases (lighter green square and

star).

Z-scores combine the accuracy (i.e. discrepancy from a true value; numerator) and

precision (i.e. width of an interval; denominator) of each individual fit. By separating

these pieces, we can also compare the overall accuracy and precision for types of fits. The

right panel of Figure 3.10 plots the reciprocal of both the median discrepancy and median

interval width—accuracy goes up logarithmically towards the top and precision towards

the right. The uncertainty bars show the interquartile ranges when these are larger than

the size of the markers. Because we test 5 samples in each case, this means the uncertainty

bars ignore the single highest and lowest accuracy and precision we find. Ideally markers

will be on or near the solid black line, where accuracy equals precision and the fits have
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maximum predictive power. If both models are on this line, the one closer to the upper

right corner is preferred.

Towards the upper left the fitted eclipse depths are too conservative. The dotted cyan

lines show where the accuracy is 2× and 4× larger than the precision (e.g. green square

and blue circle). Worse, in the other direction the fits are too confident, the dashed

red lines showing where accuracy is 2× and 4× smaller than precision. The green star

is outside the latter line, but similar to the left panel, accounting for time-correlated

residuals (i.e. inflating the uncertainties on the eclipse depth) moves this marker close to

the ideal ratio. The blue square and star have reasonable z-scores but are moved off the

maximum predictive line by β factors—we will return to this point when testing other

sensitivity variations later on. These β factors can only decrease the precision of the fits;

they cannot affect the accuracy.

Relative to our main example (circles), increasing the eclipse significance (squares)

helps BLISS more than the polynomial model. In fact, B-type is preferred in both these

cases due to, respectively, more reliable z-scores or better accuracy and precision. We

find P -type is the preferred model for the lowest value of Se∆De (diamonds). For the

highest value (stars), the polynomial fits have more predictive power, but are less accurate

and precise than BLISS. Unexpectedly, P -type is at least as precise as B-type in three

of these five cases (diamonds, triangles, and circles). This is unusual because BLISS

has been shown to perform better than a second-order polynomial on real Spitzer data

(e.g. Stevenson et al., 2012a; Blecic et al., 2013). BLISS is the more precise model when

Se∆De ≥ 500, though, especially after including β factors. Since these values are at or

above the limit of Se∆De for accurate BLISS maps (Section 3.4.3.1), it is not surprising
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that β factors decrease the precision of these fits. But again, the z-scores for the B-type

square and star are reasonable to start.

We show similar z-score, accuracy, and precision data as Figure 3.10 for all of the

remaining figures. In Figure 3.11 we test how the fits change with the number of data

or BLISS knots, while keeping Se = 10 and ∆De = 10. The blue triangle, circle, star,

and pentagon use the same 10 light curves, and since changing the BLISS mesh does not

affect P -type, these fits should be compared to the green circle. The z-scores for both

models are acceptable (i.e. markers inside the dashed magenta ellipse) in all new cases

after using β factors for the green diamond. Note that the blue diamond is behind the

green circle in the right panel. In every case the polynomial model and BLISS overlap in

precision, given the uncertainty bars.

We see weak trends for both models when varying the amount of data: P -type increases

in precision yet gets a little less accurate, and B-type increases slightly in accuracy.

Actually, the polynomial model is preferred when we use more data (squares). Changing

the number of BLISS knots affects B-type in the right panel, but all four cases mutually

overlap in precision and even accuracy. We choose these light curves so that K = 102 (blue

circle) should be optimal for BLISS (Section 3.4.3.1). However, according to Stevenson

et al. (2012a), the eclipse depths we fit should not depend on the number of knots, unless

we make K much smaller. Figure 3.11 confirms this.

When we also fit some light curves from these cases using NNI (not shown), the best-

fit residuals for any K are always less scattered than for BLISS. This does not happen

when the eclipse significance is extremely high, or in samples we test from Figure 3.10

with Se = 50 and K = 102. Yet here, the accuracy and consistency of our B-type fits are
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the same or better when compared to NNI. Therefore, our method in Section 3.4.3.1 to

properly select K for BLISS may have issues (e.g. RB
N must be lower), or the criteria in

Stevenson et al. (2012a) may not work in general. Both ideas could be true.

Next we test how having more red noise can affect the fits. In Figure 3.12 we multiply

an extra noise (Brownian) into the light curve to mimic different kinds of time-correlated

features (i.e. other than intra-pixel sensitivity variations). We use the same 5 light curves

and red noises in each case, meaning we only change the amplitude (relative to the mean)

of the noises, not their structure. As often before, P - and B-type have similar precisions

every time.

The case with highest noise, at 5× the detector amplitude (stars), is clearly bad.

The z-scores for P - and B-type are far outside the plot even with β factors included

(∼ 10–35 on both axes), and the fits are very over-precise. At 1× the detector amplitude

(squares), β factors move BLISS close to intersecting the maximum predictive line in the

right panel, but not inside the 99% ellipse in the left panel. We find other cases where

this outcome is more pronounced, which is a good lesson: the accuracy and precision of

a model are separate scalars. Z-scores are a discrepancy paired with a fit interval—those

specific pairings matter. That means different sets of z-scores can give the same accuracy

and precision. Just because a model does well on average does not mean the individual

fits are reliable, and vice versa.

The case with extra noise at 1
5
× ∆D is curious (triangles). The z-scores for B-type

are reasonable, and those for P -type are acceptable when using β factors. Moreover,

both models have near-ideal accuracy and precision. Thus, adding a low amount of time-

correlated noise to the synthetic data actually improves the predictive power of both
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fits—especially for BLISS which has insignificant β factors. This bodes well for fitting

eclipse depths in real light curves because it suggests that one may not need to perfectly

model every source of red noise.

We further test what happens to the fits when we modify the sensitivity variations on

the part of the pixel under the centroids. Note that we already place the centroids at many

locations on the pixel (Section 3.3.1) to have different terms in Equation 3.3 dominate

the detector signals (Appendix A.1). In Figure 3.13 we compare two forms of the pixel’s

actual sensitivity variations, using two combinations of Se and ∆De. The circles and

squares (taken from Figure 3.10) have light curves made with “P -like” variations, or the

polynomial V (x, y) in Equation 3.3. The stars and diamonds use “B-like” variations on

the pixel instead. For these we define the sensitivity as random Gaussian values at the

locations of the BLISS knots. Then we interpolate the sensitivity between these spots

using bivariate splines, similar to how the BLISS routine maps D(t) at the centroids.

At first glance BLISS looks like the perfect model for the B-like scenario, but it is

not. Remember, BLISS estimates the sensitivity at a knot by averaging the residuals (i.e.

flux divided by an astrophysical model) at centroids in a bin around that knot. If that

bin contains a local peak or valley in the variations, this can throw off the estimate the

closer that feature is to the knot. Even when the knot values are accurate, interpolating

D(t) well is tricky when the pixel’s sensitivity has small-scale structure, especially because

the number of knots cannot be increased arbitrarily (Sections 3.4.2 and 3.4.3.1). BLISS

interpolates linearly between knots adjacent in x or y, so we postulate that the routine

could only exactly match sensitivities that vary like a plane across the pixel. Unfortunately
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polynomials would also fit exactly in these cases. Nonetheless, BLISS should handle our

B-like variations better than polynomial models.

When Se = 10 and ∆De = 10, both models decrease in accuracy when switching to

the B-like scenario (circles to stars). We also find that β factors are important for the

polynomial: it becomes the better predictive model despite BLISS having higher precision.

Even stranger is that P -type always has a lower χ2 than B-type. When Se = 50 and

∆De = 10, having B-like variations means the median fit for BLISS moves more than for

the polynomial model (squares to diamonds). However, with or without β factors, BLISS

is more precise than P -type and is the preferred model.

The blue diamond here is similar to cases from Figure 3.10. Despite good z-scores,

the β factors for this model change the fits from ideal to very conservative (i.e. precisions

∼ 3–10× less than accuracies). This is different from Figure 3.12, where the poor fits

show up in the z-scores. In other words, both panels of Figures 3.10–3.13 are important

to see how well a model fits a certain type of light curve. Since we find that β factors can

penalize poor and reasonable fits just as much, using them to tune one’s precision is not

always wise.

To summarize Figures 3.10–3.13, the eclipse significance and detector amplitude affect

the precision and accuracy of a fitted eclipse depth. Changing the amount of data by

factors of two weakly affects the accuracy of BLISS and both the accuracy and precision

of polynomial models. Using different numbers of BLISS knots gives consistent eclipse

depths (as expected), but we find that heuristics for choosing the bin size—here and in

Stevenson et al. (2012a)—are questionable. Large amounts of red noise in a light curve

are bad, but having low levels can in fact improve both models’ fits, particularly BLISS.
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We find that BLISS fits data with significant eclipses, and (some) light curves made from

BLISS-like sensitivity variations, better than the second-order polynomial. Strangely

though, the polynomial model is at least as precise as BLISS in many cases we test, and

is even preferred in several of them. As for using β factors to inflate uncertainties, we get

mixed results: these can change dubious fits into near-ideal ones (e.g. green star in Figure

3.10), but can also make unreliable fits look reasonable (blue square in Figure 3.12) and

reliable fits far too conservative (e.g. blue diamond in Figure 3.13).

3.5. Discussion

3.5.1. Kernel Regression

We have focused on BLISS because it is easy to adapt the method to a full Jump-type

MCMC. Many researchers use BLISS to model intra-pixel sensitivity variations in IRAC

data, but there are other non-parametric methods as well. The original approach is Kernel

Regression (KR), first used on the GJ 436 system by Ballard et al. (2010). To measure

the transit depth at a known point in a long time-series, the out-of-transit data (i.e. a

control) were used to model the detector once at the start of the analysis. This detector

model was then used to correct the in-transit data.

Since then, KR has been applied to phase observations, where the signal spans the

entire observed baseline and there are no control data (Knutson et al., 2012; Lewis et al.,

2013). Researchers have therefore adopted an optimization strategy similar to BLISS:

at every MCMC step, the observed flux is divided by the current astrophysical model

and KR is applied to the residuals. The KR implemented by Knutson et al. (2012) and

Lewis et al. (2013) also includes the width of the point-spread function, but this does not
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change the similarity between KR and BLISS. In fact, recent studies have used this width

of the point-spread function in tandem with BLISS (Lanotte et al., 2014; Demory et al.,

2016b,a).

KR differs superficially from BLISS because it has no obvious detector parameters,

making it less clear how to adapt KR to full Jump-type fits. Nonetheless, one can estimate

the effective number of parameters as suggested by Footnote 2 of Hansen et al. (2014),

typically of order 102. Given the conceptual similarities between BLISS and KR, it is

possible that our results about the former apply to the latter.

3.5.2. Precision of Polynomial Models

From the sets of fitted eclipse depths in Figures 3.10–3.13, it is surprising that a second-

degree polynomial is as (or more) precise than BLISS many times. That does not tend to

happen with real Spitzer data: in both Stevenson et al. (2012a) and Blecic et al. (2013),

the BLISS models are more precise than any polynomials the authors test through order

n = 6. In fact, the choice between the models seems so clear that many works in Table

3.1 do not mention polynomials at all. Remember, BLISS is more precise and often

more accurate when we test light curves with significant eclipses (squares in Figure 3.10)

or those made with BLISS-like sensitivity variations (Figure 3.13). But in some cases,

one is better off modeling the sensitivity with a low-order polynomial—there are several

thoughts about why this can happen.

It would be great to fit real IRAC light curves that have ∼ 105 data with all of these

sensitivity models, but as mentioned in Sections 3.4.2–3.4.3, this is not computationally

feasible (more modest IRAC measurements could work, though). Instead we mimic these
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light curves and fits by using realistic parameters for A(t) and D(t), choosing a reasonable

BLISS mesh for the synthetic data, and running our MCMC chains until we get many

independent samples. But maybe having more data and BLISS knots simply is different,

even though the sensitivity at the knot locations and the interpolated maps are mostly

accurate in our tests (Section 3.4.3.1). If so, both parameters likely have to increase as

we do not see BLISS improve when changing only the data (Figure 3.11). This is not

because our bin sizes are too large, either. Our BLISS knots are spaced ∼ 0.02 pixels

apart in both x and y—in other studies this number ranges from smaller (e.g. 3.6 µm

data in Diamond-Lowe et al., 2014) to larger (e.g. 5.8 µm data in Blecic et al., 2013).

Also, when we set the amplitude of the detector signal in Equation 3.4, we do not pick

when the sensitivity will rise and fall—that would mean explicitly choosing the centroids.

Instead, the pointing model (Ingalls et al., 2016) and sensitivity map (Appendix A.1)

that we use determine how the detector signal looks. If this D(t) is flat with a single

large spike or dip at one moment, most data is uncorrupted by the pixel’s sensitivity

(we avoid these signals for MCMC fits; Section 3.4.3.4). Moreover, it is mostly chance

that the V (x, y) from Equation 3.3 is very featured near the centroids. It only happens

with particular sets of coefficients, true for any high-order polynomial. This means the

sensitivity variations under the centroids can look quadratic even if the detector signal

looks complex. Either way, our second-order polynomial model could give a good fit.

Generating polynomial V (x, y) by selecting their roots, not coefficients, would thus be

interesting test cases. When the pixel’s sensitivity is BLISS-like none of this should

matter, though these variations have other issues (Section 3.4.3.4).
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One possibility comes straight from Stevenson et al. (2012a): the MCMC would not

converge because the model for the exponential ramp had strong, non-linear correlations.

To solve this, the authors orthogonalized the ramp parameters, then transformed back

to the first model after the MCMC to get the uncertainties. We have no ramping in our

synthetic light curves, but similar correlations could happen in our model for A(t). We

see evidence of this when we try fitting a DC offset in Equation 3.5, which is why we fix

the mean of the phase function to unity. There are a couple of problems with this idea,

though. Our MCMC chains have little trouble stabilizing, even if emcee takes a long time

to get there. Also, we fit the astrophysical signal identically for all three of our sensitivity

models. Even if our parameters are not ideal, each fit should be affected the same way

by A(t), meaning this is probably not why the polynomial models are more precise.

Above all else, one might say we simply have not tested the “right” or enough types

of light curves. At worst this means we explored some parts of parameter space that

differ from real observations. But again, we have chosen a variety of cases based on real

IRAC data, fit five or ten examples of each case to have statistics, and even try sensitivity

variations more suited to BLISS (Figure 3.13). Our results in Section 3.4.3.4 are also only

about a third of all our trials; we tested other combinations of parameters. Indeed, BLISS

can be more precise than a second-order polynomial, such as by having a significant eclipse,

a very large detector amplitude, or BLISS-like variations in sensitivity on the pixel. Yet

polynomials are sometimes preferred and the BLISS method is fundamentally the same

each time—we find this odd. As mentioned above, testing types of light curves that

extend our cases would be a good way to see if any trends here continue in general.
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3.5.3. Modeling IRAC Noise

One might ask what Section 3.4.3 means for dealing with detector signals in Spitzer data.

A potential view is to only use non-parametric methods that properly marginalize over

the detector behavior, like ICA (Waldmann, 2012) and Gaussian Processes (Gibson et al.,

2012), or rather use viable parametric methods such as PLD (Deming et al., 2015; Ingalls

et al., 2016). We find a polynomial model is often as precise as BLISS at fitting our

synthetic eclipses. For real light curves, one could use high-order polynomials for the

sensitivity (e.g. n ≥ 7) and fit every term directly. The number of parameters would be

similar to some of our Jump-BLISS models—we find emcee can handle this many jump

dimensions.

However, we also have multiple cases (e.g. Figures 3.10 and 3.13) that match other

studies where BLISS is the more precise choice. Non-parametric models can misfit uncer-

tainties or bias a result (Figure 3.1), which is disconcerting because one cannot know how

accurately BLISS fits real data. We find, though, that BLISS tends to be more accurate

than precise (i.e. conservative) at fitting eclipse depths. This result could hold when the

routine uses significantly more data and knots (Figure 3.11). And while sources of red

noise can ruin a fit, a small leftover amount in a light curve could be beneficial for the

predictive power of BLISS (Figure 3.12).

Yet there are other problems. While β factors (e.g. Pont et al., 2006; Cowan et al.,

2012b) are an expedient way to account for time-correlated residuals, these can turn

a reasonable uncertainty on an eclipse depth into overly conservative. BLISS does not

predict the centering precision of an observation, though we hypothesize the routine may

be able to indicate the length scale of the sensitivity variations. Methods to properly size
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the BLISS mesh, in this paper and Stevenson et al. (2012a), also may not work as intended

(Sections 3.4.3.1 and 3.4.3.4). Furthermore, BLISS is often used with the Photometry for

Orbits, Eclipses, and Transits pipeline (POET; Stevenson et al., 2012a; Cubillos et al.,

2013), as in Ingalls et al. (2016). This proprietary code in part reduces pixelation of

the detector by using flux-conserving, interpolated photometry (e.g. Figures 2 and 5

of Stevenson et al., 2012a). But it is unclear if this influences the apparent sensitivity

variations on the pixel, and so makes BLISS more necessary to correct for them. Luckily,

the large variations at 3.6 µm with IRAC should mean the influence of pixelation, or

POET, is more negligible in this channel (e.g. Figure 7 of Blecic et al., 2013).

In any case, if a light curve has distinct astrophysical and detector signals, then one

could likely use many approaches to model D(t) reasonably. In contrast, a gradual rise

and fall in detector sensitivity while observing a planet could be confused with phase

variations. As Ingalls et al. (2016) shows, multiple sensitivity models can all fit the same

eclipse depth (of XO-3b) well. We expect and see that this sometimes happens with our

synthetic light curves.

There probably is no ideal method for handling the sensitivity variations in Spitzer

IRAC data, and BLISS has both positive and negative qualities. We deem that the good

significantly outweighs the bad, though, and suggest that using BLISS as a shortcut can

be a practical approach.

3.6. Conclusions

We have performed MCMC fits on synthetic eclipse data to test how accurate and pre-

cise BLISS mapping is for modeling intra-pixel sensitivity variations in Spitzer IRAC light
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curves. BLISS mapping is a non-parametric method, meaning it uses no jump parameters

during the MCMC to model the detector signal. This is an expedient approximation that

is not statistically sound in principle. Nonetheless, BLISS mapping has been widely used

without rigorous testing on synthetic data.

Optimizing nuisance parameters, instead of marginalizing over them, can give both

imprecise and inaccurate estimates for other parameters of interest. Even in our toy

example with simple posteriors, we find that fitted uncertainties can still be too small,

by a factor of 2. In BLISS mapping, the estimated sensitivities at the knots—and so the

interpolated maps—become inaccurate for the data when the photon noise is low. The

maps also start fitting noise when the average data per knot is ∼ 10 or less. However,

in many reasonable cases, the knot values match the intrinsic sensitivity to within the

photon noise and the maps give good fits to the detector signal.

Furthermore, standard BLISS mapping is a viable shortcut to the rigorously Bayesian

Jump-BLISS mapping. Both methods return similar estimates for the astrophysical

model, and the knots in standard BLISS mapping behave like actual jump parameters.

Curiously, our low-order polynomial model is often as precise as BLISS mapping at fitting

eclipse depths, yet the latter is preferred for high-significance eclipses and more featured

sensitivity variations. We also find that using the β method to inflate uncertainties does

not always increase the predictive power of fits.

In our tests, BLISS mapping does not predict the centering precision of a data set.

Selecting a proper number of knots can require fine-tuning—proposed methods may not

work in general. But, we find that BLISS mapping usually fits eclipse depths more

accurately than precisely (i.e. conservatively), a potential benefit against low levels of
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extra red noise in the light curve. Overall, therefore, BLISS mapping can be an acceptable

way to model Spitzer IRAC sensitivity variations.

3.7. Interlude II

Non-parametric methods have been a part of statistics for many decades; it is no

surprise they have worked their way into astronomical data analysis. Whatever one’s

stance on their use, a few things are reasonably clear from our foray into pixel sensitivities.

Optimizing nuisance parts of a model works very well—except when it fails. After all, it

can be quite easy to misfit pieces of light curves that we care about. That is with the

benefit here of knowing those particular models are poor, a luxury that simply does not

happen very often in the real world. But does this mean all non-parametric ways to clean

up light curves are evil? Of course not: in practice BLISS seems alright. It just means

these methods have to be used carefully, much like using bleach as a sanitizer. When

handled properly, any sensitivity analysis gives us more confidence about the science

that stems from those published results. The outlook is bright, allowing us to take a

culminating step into empirical trends from transiting planet observations. Describing

terrestrial worlds is the goal, but hot Jupiters have a relatively large amount of eclipse

and phase data available for now, which we wield to quantitatively characterize their

atmospheres.
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CHAPTER 4

Balancing the Energy Budget of Short-Period Giant Planets:

Evidence for Reflective Clouds and Optical Absorbers

This chapter is adapted from Schwartz, J. C., and Cowan, N. B. 2015, MNRAS, 449,

4192.

The section on updates is partially adapted from Schwartz, J. C., Kashner, Z., and

Cowan, N. B., In Prep.

4.1. Introduction

Mature planets on short-period orbits have energy budgets dominated by incoming

radiation rather than internal heat. Their atmospheric temperatures are therefore a func-

tion of both the absorption of incident stellar energy and its transport before re-emission

into space.

Absorbed energy is solely a matter of incident stellar flux and the planet’s Bond albedo,

AB. Ironically, it is difficult to constrain Bond albedo (the fraction of stellar energy that is

reflected) through observations of reflected light. In order to convert an optical geometric

albedo (visible light reflected towards the illuminating star) into a Bond albedo, one must

make assumptions about a planet’s reflectance spectrum, scattering phase function, and

spatial inhomogeneity (Hanel, 2003). Bond albedo is more readily obtained from thermal

measurements via energy balance.
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Heat transport is more complicated, but tends to move energy from hot to cold: ver-

tically upwards, from equator to pole (for planets with small obliquity), from summer

hemisphere to winter hemisphere (for planets with non-zero obliquity), and from day to

night (for planets with slow rotation). Due to strong tides, short-period planets are ex-

pected to have zero obliquity and slow rotation, and most are on circular orbits. Hot

Jupiters on circular orbits are further expected to be tidally-locked, with one side perma-

nently facing the host star and the other forever dark. As such, the atmosphere tends to

transport heat from the dayside to the nightside, and from equatorial regions to the poles

(for a recent review of hot Jupiter atmospheric dynamics, see Heng & Showman, 2014).

The atmospheric temperature of a planet is generally a function of four variables:

longitude, latitude, pressure (or height), and time. The time-dependence can usually

be neglected for hot Jupiters because they exhibit minimal weather (Agol et al., 2010;

Knutson et al., 2011; Wong et al., 2014). Moreover, hot Jupiters on circular orbits are

expected to have a 3D fixed temperature structure with respect to the sub-stellar location,

regardless of whether they are tidally locked (Rauscher & Kempton, 2014; Showman et al.,

2014). This motivates using a star-based coordinate system with the prime meridian facing

the star, and allows us to use orbital phase as a proxy for longitude (Cowan & Agol,

2008). The latitudinal temperature-dependence of a hot Jupiter is inaccessible unless one

can measure higher-order phase modulation (Cowan et al., 2013) or utilize occultation

mapping (Majeau et al., 2012; de Wit et al., 2012). Finally, the vertical temperature

structure is in principle accessible via emission spectroscopy: wavelengths at which the

atmosphere is relatively transparent will probe deeper layers, and vice versa.
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Multi-wavelength thermal phase variations of a hot Jupiter on a circular orbit there-

fore amount to brightness temperature measurements as a function of orbital phase and

wavelength (e.g., Stevenson et al., 2014c). If one is solely interested in the global proper-

ties of the planet—namely Bond albedo and day-to-night heat transport—then one can

further simplify the problem by combining brightness temperatures at each orbital phase

to obtain a bolometric flux, and hence an effective temperature at that phase. Note that

Solar System planets tend to have effective temperatures that are either uniform from

any vantage point, or which vary based on the latitude of the observer due to imperfect

poleward heat transport. For short-period exoplanets, on the other hand, the principal

temperature gradient is between day and night, and dayside effective temperatures are

often hundreds to thousands of degrees greater than their nightside counterparts. The

final simplification we make is therefore to treat the planet as two horizontally isothermal

hemispheres: a dayside and a nightside. The effective temperatures of each hemisphere

are simply the weighted mean of the atmospheric temperatures on that side of the planet.

4.1.1. Previous Work

Cowan & Agol (2011b) used broadband infrared eclipse measurements of 24 hot Jupiters to

demonstrate that they have generally low Bond albedos (AB < 0.5), and that the hottest

planets have extremely low albedos and/or poor day–night heat transport efficiency, ε.

It is possible to break the albedo-transport degeneracy by combining dayside thermal

constraints with measurements of either nightside thermal emission or dayside reflected

light. Cowan et al. (2007) used an 8.0 µm eclipse depth and phase amplitude from the

Spitzer Space Telescope, combined with an optical eclipse measurement from the MOST
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satellite, to constrain the energy budget of HD 209458b; they inferred a small Bond albedo

(absorption of almost all light that shines on it) and a high day-night heat transport

efficiency (nightside not much cooler than the dayside).

Cowan et al. (2012c) used 8 infrared dayside and 2 mid-infrared nightside measure-

ments to constrain the albedo and recirculation of WASP-12b; they found the planet has

a modest Bond albedo (∼ 0.25) and low heat transport efficiency (. 0.1).

Stevenson et al. (2014c) used phase-resolved emission spectroscopy taken with WFC3

from the Hubble Space Telescope to map the atmospheric thermal structure of WASP-

43b, finding low Bond albedo (0.06–0.25) and no heat redistribution (for recent reviews

of exoplanet atmospheric observations, please see Burrows, 2014; Bailey, 2014).

Our work is organized as follows: in Section 4.2 we use published eclipse depths at

multiple infrared wavelengths to infer effective dayside temperatures for fifty planets,

with more than twice the data as Cowan & Agol (2011b). In Section 4.3 we consider the

subset of planets for which we can break the albedo-recirculation degeneracy. We first

tackle the six planets with thermal measurements of both eclipses and phase variations

(Section 4.3.1), then the nine planets for which reflected light measurements are available

in addition to dayside thermal constraints (Section 4.3.2). We discuss our results in

Section 4.4.

4.2. Dayside Energy Budget

Inferring the effective dayside temperature of a planet requires combining eclipse

depths at thermal wavelengths, which we define as those longward of 0.8 µm. We have up-

dated the sample from Hansen et al. (2014), now including fifty planets with a minimum
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Table 4.1. Short-period giant planets with a minimum of two published
eclipse observations at infrared wavelengths (non-detections are not in-
cluded).

Infrared Multi-Eclipse Planets

CoRoT-1b TrES-2b
CoRoT-2b TrES-3b
GJ 436b TrES-4b

HAT-P-1b WASP-1b
HAT-P-2b WASP-2b
HAT-P-3b WASP-3b
HAT-P-4b WASP-4b
HAT-P-6b WASP-5b
HAT-P-7b WASP-6b
HAT-P-8b WASP-8b
HAT-P-12b WASP-12b
HAT-P-19b WASP-14b
HAT-P-20b WASP-17b
HAT-P-23b WASP-18b
HAT-P-32b WASP-19b
HD 149026b WASP-24b
HD 189733b WASP-26b
HD 209458b WASP-33b

KELT-1b WASP-39b
Kepler-5b WASP-43b
Kepler-6b WASP-48b
Kepler-12b XO-1b

Kepler-13Ab XO-2b
Kepler-17b XO-3b

TrES-1b XO-4b

of two published infrared eclipse measurements (additions include HAT-P-19b, HAT-P-

20b, HAT-P-32b, WASP-6b, WASP-26b, WASP-39b; Mahtani et al., 2013; Deming et al.,

2015; Zhao et al., 2014, Kammer et al. in prep.). Our data predominantly consist of

broadband photometry, but we also include spectroscopic emission measurements when

they are at complementary wavelengths (e.g. Ranjan et al., 2014; Wilkins et al., 2014;

Crouzet et al., 2014; Stevenson et al., 2014c). The planets from our sample are listed in

Table 4.1.
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4.2.1. Brightness Temperatures

Thermal emission at different wavelengths originates from different layers in the planet’s

atmosphere, which have different temperatures. One can define a brightness temperature

at each observed wavelength, Tb(λ): this is the temperature that a blackbody must have

in order to emit at the same intensity as the planet.

Inverting the Planck function, we obtain the following expression for brightness tem-

perature (Cowan & Agol, 2011b):

(4.1) Tb(λ) =
hc

λk

[
log

(
1 +

ehc/λkT∗ − 1

ψ(λ)

)]−1

,

where ψ(λ) is the relative intensity of the planet to that of its host star and T∗ is the

stellar effective temperature, meaning we treat the star as a blackbody. For dayside mea-

surements, ψ(λ) is the ratio of eclipse depth to transit depth, δecl/δtr, while for nightside

measurements it is the ratio of nigthside flux to transit depth, (δecl − δvar)/δtr, where δvar

is the phase variation amplitude. Published data therefore allow us to compute dayside

(and, when appropriate, nightside) brightness temperatures for each waveband in which

a planet has been observed.

4.2.2. Aggregate Emission Spectrum

The broadband emission spectra of most individual planets are consistent with isothermal

atmospheres (Hansen et al., 2014). It is possible, however, to construct an aggregate emis-

sion spectrum of all fifty planets in the hopes of revealing molecular absorption features

too faint to detect in any individual planet’s spectrum.
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If some planets have temperature inversions while others do not, this type of averaging

could actually wash out molecular signatures, which would appear in absorption for some

planets and emission for others. However, the first and most statistically significant case of

a hot Jupiter temperature inversion (Knutson et al., 2008) has not been borne out by new

measurements nor reanalysis of the originals (Zellem et al., 2014; Diamond-Lowe et al.,

2014; Schwarz et al., 2015). Moreover, a systematic study of Spitzer eclipse measurements

found that they have not been as accurate as advertised (Hansen et al., 2014), suggesting

the temperature inversions reported in most hot Jupiter atmospheres may simply be due

to confirmation bias.

The aggregate emission spectrum for the fifty hot Jupiters is shown in Figure 4.1.

We normalize the brightness temperature spectrum of each planet in our sample, then

determine the median and uncertainty on the mean at each wavelength. This “stacking”

is only useful, however, at wavelengths for which there are observations of many planets

(currently 1.15, 1.65, 2.25, 3.6, 4.5, 5.8, and 8.0 microns).

There are no significant features in the average spectrum, not even the trend towards

higher brightness temperatures at shorter wavelengths reported by Burrows (2014). It

is worth noting that Figure 4 of Burrows (2014) used data from fewer planets, and was

normalized differently: the equilibrium temperature of each planet was divided out, rather

than its actual dayside effective temperature. Recall that a planet’s equilibrium temper-

ature is what one would expect for a planet with zero Bond albedo and uniform tem-

perature; it is merely a convenient theoretical quantity proportional to the irradiation

temperature, T0, that we utilize in this work. The dayside effective temperature, on the
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Figure 4.1. Average broadband emission spectrum for fifty short-period gi-
ant planets (blue), plotted with the emission spectra of individual planets
(gray). The spectrum of each planet is normalized to its mean brightness
temperature. The aggregate spectrum is the median normalized brightness
temperature at each wavelength, where the uncertainty bars denote the un-
certainty on the mean (as opposed to the standard variation of the spectra
at that wavelength.)

other hand, is the weighted mean brightness temperature of the planet’s dayside, as de-

scribed in Section 4.2.3. Most hot Jupiters have dayside effective temperatures greater

than their equilibrium temperature (dotted line in Figure 4.2) due to imperfect day–night

heat transport. As a result, the dayside of a hot Jupiter emits somewhat more in the

mid-IR—and considerably more in the near-IR—than one would predict based on its

equilibrium temperature. In any case, we agree with Burrows (2014) that there are no

signs of molecular absorption features in the aggregate spectrum. Since molecules are
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Figure 4.2. Dayside effective temperature versus irradiation temperature
for all giant planets with multiple dayside infrared eclipses, estimated by
Monte Carlo using hybrid EWM-PWM calculation and inflating observa-
tional uncertainties by fsys = 3 where applicable (Hansen et al., 2014).
Uncertainty bars for both temperatures are shown, while dot size is pro-
portional to the fraction of expected planetary emission that falls within
observed wavebands. Red symbols denote eccentric planets (e > 0.1). The
solid, dashed, and dotted lines correspond respectively to maximum dayside
temperature, Td = (2/3)1/4T0, uniform dayside with zero nightside temper-
ature, Td = (1/2)1/4T0, and equilibrium temperature, Td = (1/4)1/4T0. The
trend line is shown in green; it suggests that hotter planets have dispropor-
tionately hot daysides.

undoubtedly present in the atmospheres of exoplanets, we conclude that their absorption

features are being muted by vertically isothermal atmospheres, optically thick cloud, or

both.
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4.2.3. Effective Temperatures

While brightness temperatures of brown dwarfs are strongly wavelength-dependent in the

near-infrared (Faherty et al., 2014; Biller et al., 2013), the external, asymmetric heating

experienced by hot Jupiters produces dayside atmospheres that are relatively isothermal

in the vertical direction (Fortney et al., 2006). This results in relatively featureless dayside

emission spectra, which are amenable to model-independent estimates of bolometric flux

and hence effective dayside temperature. If the nightsides of hot Jupiters have greater

vertical temperature structure, then nightside effective temperature estimates are less

reliable.

There is no universal way to derive the effective temperature of a planet from a col-

lection of brightness temperatures. We therefore consider two methods with different

physical motivations. In the first method, each brightness temperature is weighted by the

inverse square of its respective uncertainty (ωi = 1/σ2
i ), so eclipse depths with small rela-

tive uncertainties contribute more to the inferred effective temperature. We call this the

error-weighted mean (EWM) effective temperature. This method has the advantage of

being robust to occasional outlier eclipse depths, but implicitly assumes that short-period

planets have Planck-like broadband spectra.

The second method, which we only apply to dayside measurements, weighs the bright-

ness temperatures by the expected integrated power in that waveband: ωi = Pi =∫ λ2
λ1
B(Test, λ)dλ, where B(Test, λ) is the Planck function for the planet’s estimated dayside

effective temperature. To bypass an iterative solution, we adopt Test = (1
2
)1/4T0, where

T0 is the irradiation temperature: T0 ≡ T∗
√
R∗/a where R∗ is the stellar radius and a

is the semi-major axis. This is an excellent match (the dashed line in Figure 4.2) to
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the actual dayside effective temperature of most planets in our sample. We call this the

power-weighted mean (PWM); it is identical in spirit to the linear interpolation method of

Cowan & Agol (2011b), but is easier to implement and runs faster. The PWM gives more

weight to measurements near the peak of the planet’s Planck function and should, in the

limit of high spectral coverage, produce accurate effective temperatures even if planets

have broadband spectral features.

Note that both EWM and PWM are biased in favor of broadband measurements: these

observations tend to have smaller uncertainties, and they capture more of the planet’s

expected blackbody emission. The two methods produce generally consistent effective

temperature estimates, which is a testament to the fact that most current dayside emission

spectra are approximately Planck-like.

We use a 104-step Monte Carlo analysis to estimate uncertainties in dayside effective

temperatures. At each step in the Monte Carlo, we randomly vary the stellar effective

temperature, transit depth, eclipse depth, and scaled semi-major axis, a∗ ≡ a/R∗, accord-

ing to their uncertainties. We use the published uncertainties for all of the above, except

for single-epoch broadband eclipse depths where we inflate the published uncertainty by

the factor fsys = 3 (such measurements have historically been less accurate than adver-

tised; Hansen et al., 2014). We also compute each planet’s irradiation and brightness

temperatures (following Equation 4.1). We then estimate each planet’s dayside effective

temperature; to hedge our bets, we use the EWM for half of the MC steps, and the PWM

for the other half. The resulting relationship between T0 and Td is shown in Figure 4.2.

The median property is plotted, and uncertainty bars denote standard deviation from the

MC.
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4.3. Global Energy Budget

Based on dayside effective temperatures alone, one cannot simultaneously specify Bond

albedo and heat recirculation efficiency. This degeneracy can be broken by supplementing

thermal eclipses with one of two measurement types: phase variations at infrared wave-

lengths, or eclipse depths at visible wavelengths. Table 4.2 lists the published data for the

fifteen planets which fall into one or both of these categories: observed wavelength and

bandwidth, eclipse depths, and phase amplitudes. Cyan-colored entries are measurements

exempt from the fsys = 3 uncertainty inflation of Hansen et al. (2014).

Table 4.2. Eclipse depths and phase amplitudes for our restricted plan-
etary samples where degeneracy between albedo and heat recirculation
can be resolved. Observations are denoted by central wavelength and
bandwidth; measurements in cyan are exempt from the uncertainty
inflation fsys = 3 of Hansen et al. (2014).

Planet Wavelength (µm) Eclipse Depth Phase Amplitude

CoRoT-1b 0.60(42) 1.6(6) × 10−4

1.65(25) 1.45(49) × 10−3

2.10(2) 2.8(5) × 10−3

2.15(32) 3.190(405) × 10−3

3.60(75) 4.15(42) × 10−3

4.5(10) 4.82(42) × 10−3

CoRoT-2b 0.60(42) 6(2) × 10−5

1.4(6) 3.95(57) × 10−4

1.65(25) 8.50(283) × 10−4

2.15(32) 1.6(9) × 10−3

3.60(75) 3.55(20) × 10−3

4.5(10) 4.75(19) × 10−3

8.0(29) 4.09(80) × 10−3

HAT-P-7b 0.65(40) 7.12(15) × 10−5 7.33(27) × 10−5

3.60(75) 9.8(17) × 10−4

4.5(10) 1.59(22) × 10−3

5.8(14) 2.45(31) × 10−3

8.0(29) 2.25(52) × 10−3
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Planet Wavelength (µm) Eclipse Depth Phase Amplitude

HD 149026b 3.60(75) 4.0(3) × 10−4

4.5(10) 3.4(6) × 10−4 2.23(58) × 10−4

5.8(14) 4.4(10) × 10−4

8.0(29) 3.7(8) × 10−4 2.3(7) × 10−4

16(5) 8.5(32) × 10−4

HD 189733b 0.37(16) 1.26(37) × 10−4

0.51(12) 1(34) × 10−6

1.4(6) 9.6(39) × 10−5

2.15(32) 2(2) × 10−4

3.60(75) 1.47(4) × 10−3 1.240(61) × 10−3

4.5(10) 1.790(38) × 10−3 9.82(89) × 10−4

5.8(14) 3.10(34) × 10−3

6.45(210) 2.200(62) × 10−3

8.0(29) 3.44(36) × 10−3

10.5(60) 3.560(67) × 10−3

16(5) 5.51(30) × 10−3

24(9) 5.36(27) × 10−3 1.3(3) × 10−3

HD 209458b 0.5(3) 7(9) × 10−6

2.15(32) 1.5(15) × 10−4

3.60(75) 9.4(9) × 10−4

4.5(10) 1.3900(705)× 10−3 1.090(115) × 10−3

5.8(14) 3.01(43) × 10−3

8.0(29) 2.40(26) × 10−3 7.50(375) × 10−4

24(9) 3.38(26) × 10−3

Kepler-5b 0.65(40) 1.86(36) × 10−5 1.93(58) × 10−5

3.60(75) 1.03(17) × 10−3

4.5(10) 1.07(15) × 10−3

Kepler-6b 0.65(40) 1.11(40) × 10−5 1.72(43) × 10−5

3.60(75) 6.9(27) × 10−4

4.5(10) 1.51(19) × 10−3

Kepler-7b 0.65(40) 3.870(835) × 10−5 4.8(13) × 10−5

3.60(75) 3.08(103) × 10−4

4.5(10) 5.05(168) × 10−4

Kepler-13Ab 0.65(40) 1.720(18) × 10−4 1.5200(105)× 10−4

2.15(32) 1.22(51) × 10−3

3.60(75) 1.56(31) × 10−3

4.5(10) 2.22(23) × 10−3

TrES-2b 0.65(40) 7.7(18) × 10−6 4.10(105) × 10−6

2.15(32) 6.2(12) × 10−4
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Planet Wavelength (µm) Eclipse Depth Phase Amplitude

3.60(75) 1.27(21) × 10−3

4.5(10) 2.30(24) × 10−3

5.8(14) 1.99(54) × 10−3

8.0(29) 3.59(60) × 10−3

WASP-12b 0.90(15) 1.360(136) × 10−3

1.04(12) 1.09(14) × 10−3

1.25(16) 1.39(30) × 10−3

1.38(55) 1.580(39) × 10−3

1.4(6) 1.740(17) × 10−3

1.65(25) 1.91(20) × 10−3

2.15(32) 2.96(14) × 10−3

2.220(34) 3.01(46) × 10−3

2.320(27) 4.5(6) × 10−3

3.60(75) 4.19(44) × 10−3 3.20(33) × 10−3

4.5(10) 4.29(33) × 10−3 3.92(16) × 10−3

5.8(14) 6.96(60) × 10−3

8.0(29) 6.96(96) × 10−3

WASP-18b 3.60(75) 3.04(26) × 10−3 2.96(11) × 10−3

4.5(10) 3.79(21) × 10−3 3.66(9) × 10−3

5.8(14) 3.7(3) × 10−3

8.0(29) 4.1(2) × 10−3

WASP-19b 0.685(530) 3.9(19) × 10−4

0.91(20) 8.0(29) × 10−4

1.29(8) 8.3(39) × 10−4

1.6(4) 1.86(14) × 10−3

1.65(25) 2.76(44) × 10−3

2.15(32) 2.87(20) × 10−3

3.60(75) 4.83(25) × 10−3

4.5(10) 5.72(30) × 10−3

5.8(14) 6.5(11) × 10−3

8.0(29) 7.3(12) × 10−3

WASP-43b 1.4(6) 4.61(5) × 10−4 4.68(4) × 10−4

1.65(25) 1.03(17) × 10−3

2.15(32) 1.81(27) × 10−3

3.60(75) 3.47(13) × 10−3

4.5(10) 3.82(15) × 10−3
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4.3.1. Full-Orbit Thermal Measurement

The first way to resolve the degeneracy between Bond albedo and heat recirculation is by

combining thermal eclipse and phase measurements to infer the planet’s nightside effec-

tive temperature. This requires phase variations at thermal wavelengths, again defined

as longward of 0.8 µm. Such phase observations are more time-intensive than eclipses,

and therefore less widely available. There are six planets with at least one published

phase measurement: HD 149026b, HD 189733b, HD 209458b, WASP-12b, WASP-18b,

and WASP-43b. As in Section 4.2, we include band-integrated spectroscopy when it com-

plements photometric observations (only one case at the moment: Stevenson et al., 2014c).

For non-detections, an nσ upper limit of α is assumed to have a value and uncertainty of

α/2 and α/(2n) respectively. Table 4.2 shows the data for this sample.

Observational references are as follows: HD 149026b: Stevenson et al. (2012a); Knut-

son et al. (2009b); HD 189733b: Evans et al. (2013); Crouzet et al. (2014); Barnes et al.

(2007); Knutson et al. (2012); Charbonneau et al. (2008); Todorov et al. (2014); Agol

et al. (2010); Deming et al. (2006); Knutson et al. (2009c); HD 209458b: Rowe et al.

(2008); Richardson et al. (2003); Knutson et al. (2008); Zellem et al. (2014); Cowan et al.

(2007); WASP-12b: Föhring et al. (2013); Croll et al. (2014); Crossfield et al. (2012a);

Stevenson et al. (2014a); Swain et al. (2013); Cowan et al. (2012c); WASP-18b: Maxted

et al. (2013); Nymeyer et al. (2011); WASP-43b: Stevenson et al. (2014c); Wang et al.

(2013); Zhou et al. (2014); Blecic et al. (2014).

4.3.1.1. Reflected Infrared Light. The light emanating from a planet’s dayside is a

combination of thermal emission and reflected starlight. We plot an example for CoRoT-

2b at 1.4 µm in the bottom panel of Figure 4.3, assuming the geometric and Bond albedos
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Figure 4.3. Dayside temperature (top left), reflection (top right), and day-
side flux for CoRoT-2b at 1.4 µm (bottom), shown as a function of albedo
and recirculation (assuming the geometric and Bond albedos are equal to
one another; see Section 4.4.5 for caveats.) At high albedo, the NIR dayside
flux roughly parallels reflected starlight, while at low albedo, the dayside
flux is mostly thermal emission and hence depends on day-night heat trans-
port.
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are equal (though as described in Section 4.4.5 the proper conversion is more involved.) If

the planet has low albedo in this scenario, then the 1.4 µm flux is almost entirely thermal

emission and depends primarily on day–night heat transport. In the high albedo limit,

on the other hand, the NIR flux is primarily reflected light and so varies linearly with

the geometric albedo. In other words, even eclipse measurements at wavelengths greater

than 0.8 µm are potentially contaminated by reflected starlight.

Furthermore, Figure 4.4 shows the reflected light contribution to dayside flux as a func-

tion of wavelength for a hypothetical gray planet (with temperature limits derived from

Equation 4.2; see Section 4.3.1.2.) Reflected light dominates at ultraviolet wavelengths

as expected, but its prevalence continues well through the near-infrared. For reasonable

system parameters, reflected light contributes & 10 per cent of the NIR flux (this reflected

contribution goes up if T∗ is increased, or if Td or a∗ are decreased.) Even if molecular ab-

sorption depresses the reflectance in certain bands, it is likely that eclipse measurements

in NIR water opacity windows (J , H, and K) are contaminated by reflected light at the

& 10 per cent level.

4.3.1.2. Confidence Regions. In estimating effective dayside and nightside temper-

atures for each planet, we use Monte Carlo simulations with 5000 steps to propagate

uncertainties. We assume uncertainties on observed quantities to be Gaussian and sym-

metrical; when asymmetrical uncertainty bars are reported, we adopt their mean. The

planetary irradiation temperature is first computed as described in Section 4.2.3. Bright-

ness temperatures are calculated for each appropriate measurement from Table 4.2 using

Equation 4.1, propagating uncertainty on stellar effective temperature, eclipse depth,

phase amplitude, and transit depth. For observations not listed in cyan (isolated eclipses,
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Figure 4.4. Contribution of planetary reflected light as a function of wave-
length for different geometric albedos (lighter = higher), assuming black-
body emission and q = 5

4
(see Section 4.4.5). This example planetary system

assumes T∗ = 6100 K and a∗ = 4.8, both weighted means of the fifteen plan-
ets in Table 4.2. Albedo regions are bounded by dayside temperature limits
using Equation 4.2: solid lines denote no recirculation (ε = 0), dashed lines
denote perfect recirculation (ε = 1). The vertical dashed line indicates our
cutoff of 0.8 µm between reflected light and thermal emission.

or partial phase curves), we conservatively inflate the published uncertainty by the factor

fsys = 3 (Hansen et al., 2014). Reflected light contributions are subtracted from all day-

side eclipse depths—using planetary radius, Rp, and semi-major axis—assuming infrared

geometric albedos to be normally distributed with mean 0.07 and width 0.01 (this is the

distribution of uncorrected optical geometric albedo values described in Section 4.4.5). In

cases where a brightness temperature is calculated as 0 K for all MC steps, we assume

100 K uncertainty in subsequent propagations. We then compute the effective dayside

and nightside temperatures using the EWM of the corresponding brightness temperatures
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(as this requires no a priori temperature assumption and produces similar values to the

PWM.)

Our parameterization of recirculation neglects any treatment of poleward heat trans-

port. The most extreme meridional temperature profiles are either uniform in the North-

South direction (perfect poleward transport) or T ∝ cos
1
4 θ, where θ is latitude (no pole-

ward transport). The difference in effective temperature seen by an equatorial observer is

(1/4)1/4 T0 versus (8/3π2)
1/4
T0, a 1 per cent discrepancy. We incorporate this worst-case

systematic uncertainty in quadrature for all effective temperature estimates.

Understandably, the number of brightness temperature measurements at distinct wave-

lengths for a planet affects the accuracy of the effective temperature estimate. In a Monte

Carlo analysis using J.J. Fortney atmospheric models, Cowan & Agol (2011b) estimated

systematic errors of 7.6 per cent in effective temperature when only a single observation

was used (note that we only consider planets with at least two measurements), down to

approximately 2.5 per cent for four or more measurements. We conservatively adopt a

similar sliding scale of 8 per cent down to 3 per cent systematic uncertainty in effective

temperature over the same observation number range, again added in quadrature.

Once we have dayside and nightside effective temperatures—and realistic uncertainties—

for the six exoplanets, it is possible to infer each planet’s Bond albedo and day–night heat

transport efficiency using the parameterization of Cowan & Agol (2011b):

(4.2) Td = T0(1− AB)1/4

(
2

3
− 5

12
ε

)1/4

,
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and

(4.3) Tn = T0(1− AB)1/4
(ε

4

)1/4

,

where both AB and ε can take values between zero and unity.

We create χ2 surfaces for each planet based on our estimated dayside and nightside

effective temperatures and using Equations 4.2 and 4.3. We calculate χ2 on a 101×101 grid

in AB and ε, then interpolate the intermediate values. The 1σ, 2σ, and 3σ confidence

intervals are defined as ∆χ2 = {1, 4, 9} respectively above the minimum, χ2
min, where

χ2
min ≈ 0 for most planets because we have two constraints and two model parameters.

Generating the χ2 surfaces involves numerical integrations of Planck functions, which can

be computationally intensive. We therefore create a database of relevant integrals; with

104 grid points tested per effective temperature, this database decreases computational

time by more than 95 per cent.

We plot the 1σ confidence intervals for the six exoplanets with full-orbit thermal

measurements in Figure 4.5. Each planet is colored according to irradiation temperature,

essentially the incident stellar flux. Since these planets have benefited from intensive

observational campaigns, omitting the fsys = 3 uncertainty inflation produces nearly

identical confidence intervals.

4.3.2. Geometric Albedo Measurement

The alternative approach to resolving the albedo versus heat-transport degeneracy of

thermal eclipses is to also consider eclipse measurements at optical wavelengths. For our

purposes, optical eclipses are those shortward of 0.8 µm; these observations allow us to
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Figure 4.5. Composite 1σ confidence regions for thermal observation plan-
ets, as calculated from the error-weighted mean dayside and nightside
brightness temperatures. Here the horizontal axis measures Bond albedo.
Bounding curve colors indicate irradiation temperature: red = warmer, pur-
ple = cooler. The inflationary factor fsys = 3 is applied to infrared eclipse
and phase uncertainties as noted in Table 4.2, but adopting the published
eclipse uncertainties barely modifies the confidence intervals.

infer the planet’s optical geometric albedo. Our literature review finds nine planets with

published eclipse depths at thermal and optical wavelengths, but lacking infrared phase

variations (Table 4.2). Note that HD 189733b and HD 209458b benefit from both infrared

phases and visible eclipses.
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Planets in this sample include CoRoT-1b (Alonso, R. et al., 2009a; Zhao et al., 2012;

Gillon, M. et al., 2009; Rogers et al., 2013; Deming et al., 2011), CoRoT-2b (Alonso, R.

et al., 2009b; Wilkins et al., 2014; Alonso et al., 2010; Deming et al., 2011), HAT-P-7b

(Esteves et al., 2014; Christiansen et al., 2010), Kepler-5b (Esteves et al., 2014; Désert

et al., 2011b), Kepler-6b (Esteves et al., 2014; Désert et al., 2011b), Kepler-7b (Esteves

et al., 2014; Demory et al., 2013), Kepler-13Ab (Esteves et al., 2014; Shporer et al., 2014),

TrES-2b (Esteves et al., 2014; Croll et al., 2010a; O’Donovan et al., 2010), and WASP-19b

(Abe, L. et al., 2013; Zhou et al., 2013; Bean et al., 2013; Zhou et al., 2014).

4.3.2.1. Thermal Contamination. In order to extract a geometric albedo from an

optical eclipse, we must correct the eclipse depth for thermal emission from the planet

“leaking” into the visible band (Cowan & Agol, 2011b; Heng & Demory, 2013). In prac-

tice, one estimates the planet’s dayside effective temperature and extrapolates this into

the optical to account for thermal emission at visible wavelengths. However, this pro-

cedure is complicated by the fact that real hot Jupiters are vertically and horizontally

inhomogeneous, so they emit at higher brightness temperatures in the optical than in the

thermal infrared.

Even if every location on a planet emits as a blackbody (BB), the resulting spectrum

will not be a Planck curve. For a planet in the zero-albedo and zero-recirculation limit,

the equilibrium temperature at any dayside location is described by T = T0 cos
1
4 γ, where

γ is the angle from the sub-stellar point (γ = π
2

at the terminator.) Each annulus of the

dayside thus radiates at a different blackbody temperature, and together they produce

a “Sum of Blackbodies” (SoB) spectrum (this is analogous to the multicolor blackbody

spectra used to model accretion disks; Mitsuda et al., 1984). For fixed bolometric flux, BB
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Figure 4.6. Flux ratio between blackbody and “Sum of Blackbodies” spec-
tra for various effective dayside temperatures in 500 K increments. Curves
are colored according to temperature: red = warmer, purple = cooler. The
vertical dashed line indicates our chosen threshold wavelength, 0.8 µm, be-
tween reflected light and thermal emission.

and SoB spectra produce nearly identical flux at thermal wavelengths: the SoB is 1–2 per

cent fainter than the BB. At optical wavelengths, however, a BB spectrum underestimates

the flux by a factor of a few, as seen in Figure 4.6.

Moreover, the optical photosphere should be deeper and hotter than the infrared

photosphere, in a cloud-free atmosphere (Allard et al., 2001; Fortney et al., 2008; Cowan &

Agol, 2011a). The combination of these two effects is that a näıve blackbody extrapolation

from the infrared to the optical may underestimate thermal emission by a factor of 3–10.

In other words, while the hottest planets have the greatest thermal emission at optical

wavelengths, somewhat cooler planets have optical emission that is harder to estimate.
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Once an optical eclipse has been corrected for thermal contamination, the geometric

albedo can be calculated using

(4.4) Ag = δref
ecl

(
a

Rp

)2

,

where δref
ecl is the reflected light eclipse depth. Note that geometric albedo is a function

of wavelength, while hot Jupiter eclipse depths have typically only been measured in a

single optical broadband.

4.3.2.2. Confidence Regions. Our dayside temperature analysis for planets in the

eclipse-only sample is analogous to Section 4.3.1.2, and we again perform Monte Carlo

simulation with 5000 steps for all uncertainty propagation. For optical eclipses, we opti-

mize computation by first calculating the uncertainty of each thermally-corrected geomet-

ric albedo, using Equation 4.4 and propagating uncertainties in EWM dayside effective

temperature, stellar effective temperature, transit depth, eclipse depth, planetary radius,

and semi-major axis. Our thermal correction uses equal contributions of BB and SoB

spectra, assuming 10 per cent increase in dayside temperature to account for the verti-

cal temperature profile effect noted in Section 4.3.2.1. To acknowledge variability with

this effect, we add a 5 per cent systematic uncertainty in quadrature to the calculated

geometric albedo uncertainty. We then construct χ2 surfaces for each planet as described

in Section 4.3.1.2. For optical measurements, we recompute our thermal contamination

correction at each χ2 grid point to determine specific values of geometric albedo (since

the underlying dayside temperature varies in the albedo–recirculation plane.) Note that

HD 189733b has two distinct optical eclipses; we use the weighted mean of both corrected

geometric albedos in our χ2 calculations for this planet.
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Figure 4.7. Composite 1σ confidence regions for eclipse-only planets as cal-
culated from brightness temperatures (using EWM) and geometric albedos,
shown with thermal observation planets for comparison. Here the horizontal
axis measures different quantities: geometric albedo at visible wavelengths
for eclipse-only planets (dashed lines), Bond albedo for thermal observation
planets (solid lines). Bounding curve color follows Figure 4.5. The infla-
tionary factor fsys = 3 is applied to infrared eclipse and phase uncertainties
as noted in Table 4.2. Adopting published uncertainties across the board
results in similar confidence intervals.

In Figure 4.7 we compare the 1σ confidence intervals of the nine eclipse-only planets

to those of the six planets with full-orbit thermal observations. Note that for optical

eclipses we implicitly assume AB = Ag, but the actual conversion between geometric and
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Table 4.3. Resulting parameters for all planets as calculated from brightness
temperatures (via EWM) and geometric albedos, assuming applicable fsys =
3 uncertainty inflation. Thermal observation planets are listed first (with
Bond albedos), followed by eclipse-only planets (with geometric albedos at
visible wavelengths.) Low and high values are obtained from the confidence
regions of Figures 4.5 and 4.7; fit values are taken to be the grid location
of χ2

min.

Planet
Albedo Recirculation

χ2
minLow Fit High Low Fit High

HD 149026b 0.27 0.41 0.519 0.045 0.15 0.353 0.0005
HD 189733b 0.325 0.37 0.407 0.536 0.59 0.648 0.0051
HD 209458b 0.323 0.43 0.521 0.283 0.44 0.606 0.0013
WASP-12b 0.273 0.37 0.456 0.024 0.07 0.172 0.0028
WASP-18b 0 0 0.054 0.007 0.01 0.032 2.2571
WASP-43b 0.104 0.29 0.45 0 0 0.024 0.7581

CoRoT-1b 0 0.01 0.117 0 0 0.232 0.0002
CoRoT-2b 0.008 0.07 0.13 0.246 0.4 0.545 0.0005
HAT-P-7b 0 0.04 0.14 0.472 0.61 0.745 0.0012
Kepler-5b 0 0.04 0.107 0.476 0.67 0.844 0.001
Kepler-6b 0 0.02 0.082 0.267 0.51 0.733 0.005
Kepler-7b 0.258 0.34 0.426 0.902 1 1 0.9611

Kepler-13Ab 0 0.18 0.341 0.4 0.58 0.761 0.0004
TrES-2b 0 0.01 0.056 0.532 0.67 0.795 0.0097

WASP-19b 0 0.08 0.191 0.404 0.56 0.688 0.0009

Bond albedo is more complicated (Section 4.4.5). Regions are again colored by irradiation

temperature, while sample group is denoted by the line style of bounding curve. Though

the fsys uncertainty inflation is included for isolated thermal eclipses, taking the published

uncertainties at face value produces nearly identical confidence intervals.

Based solely on dayside effective temperatures (Figure 4.2), one might conclude that

all planets have roughly the same Bond albedo and heat transport efficiency. Figure 4.7

dispels this notion at high significance. The 1σ intervals for all the planets in Figure 4.7

are listed in Table 4.3: thermal observation planets first, eclipse-only planets second. All

best-fit parameters are defined as the location of χ2
min on the computed grids.
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4.4. Discussion

4.4.1. Sources of Error and Uncertainty

It is worth summarizing the various sources of uncertainty and error that we account for

in order to produce Figure 4.7. For thermal measurements, we first compute brightness

temperatures, accounting for the uncertainties on eclipse depth (inflated by a factor of 3

if based on a single occultation; Hansen et al., 2014), transit depth, and stellar effective

temperature, and also compute each planet’s irradiation temperature, accounting for un-

certainty in stellar effective temperature and scaled semi-major axis. At this stage, we

also account for reflected light contamination (non-zero near-infrared geometric albedo).

Nightside brightness temperatures are derived the same way, but additionally depend on

the thermal phase amplitude and its uncertainty. In converting brightness temperatures

to effective temperatures, we account for unknown meridional heat transport and incom-

plete spectral coverage. The conversion from dayside brightness temperatures to dayside

effective temperature is reasonable for hot Jupiters because of their relatively isothermal

vertical structure; the conversion may be more fraught for the nightsides of hot Jupiters.

For optical eclipses, we first correct eclipse depths for thermal contamination, account-

ing for uncertainty on dayside temperature, transit depth, and stellar effective temper-

ature. In this process we also account for vertical and horizontal temperature profiles

that conspire to increase optical thermal emission. We next convert the reflected light

eclipse depth to an optical geometric albedo, accounting for uncertainties in eclipse depth,

planetary radius, and scaled semi-major axis. We assume AB = Ag for the purposes of
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constraining heat transport in Figure 4.7 (see Section 4.4.5 for caveats), but this assump-

tion in no way affects our inferred geometric albedo for these planets.

Crucially, for every “correction” that we apply, we add appropriate uncertainty in our

inference, either by randomly varying parameters in the Monte Carlo, or by adding sys-

tematic uncertainty in quadrature to the formal errors. Our inferences of heat transport,

Bond albedo, and geometric albedo are therefore conservative.

4.4.2. Dayside Temperatures

The upward trend in dayside effective temperature with irradiation temperature in Fig-

ure 4.2 is unsurprising: one expects highly-irradiated planets to be hotter. The black lines

in the plot can be thought of as limiting cases of either heat recirculation or Bond albedo.

In the zero-albedo limit, the black lines correspond to ε = 0 (solid), ε = 0.4 (dashed), and

ε = 1 (dotted). Alternatively, in the zero-recirculation limit, the black lines correspond to

AB = 0 (solid), AB = 0.25 (dashed), and AB = 0.625 (dotted). Therefore, planets that lie

above the solid black line must have an internal energy source, while planets lying below

the dotted black line must have non-zero Bond albedo.

We can also consider the qualitative claim from Cowan & Agol (2011b) that Td in-

creases disproportionately with T0. We ignore planets with significantly eccentric orbits,

as this complicates their energy budget (these planets are denoted in red in Figure 4.2.)

With double the planets and more data per planet, we find that Td = −90(80)+0.87(5)T0.

The χ2 per datum of the fitted trend is 1.4 ± 0.4, which is a reasonable fit. This is con-

sistent with—but does not strengthen—the claim that planets receiving more stellar flux

generally have lower Bond albedo and/or less efficient heat transport.
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4.4.3. Thermal Phase Measurements

Figure 4.5 shows a tendency towards lower recirculation efficiency as irradiation increases,

in agreement with previous findings (Cowan & Agol, 2011b; Cowan et al., 2012c; Perez-

Becker & Showman, 2013). The irradiation temperatures of these planets span approxi-

mately 2000 K, corresponding to ε = 0.59 for HD 189733b at the cool end (T0 = 1695 K)

and ε = 0.01 for WASP-18b (T0 = 3387 K). The irradiation of WASP-12b is actually

∼ 260 K higher than WASP-18b, but their recirculation probability distribution functions

overlap (Table 4.3).

The notable exception to the T0–ε trend is WASP-43b, with T0 = 1943 K but ex-

hibiting virtually no heat transport (ε = 0 with χ2
min = 0.758). Our recirculation value is

in agreement with the redistribution factor of Stevenson et al. (2014c), and our best-fit

Bond albedo (AB = 0.29) is also consistent at the 1σ level. These parameters translate

into a cold nightside temperature (nominally Tn . 465 K), which we routinely find to

be consistent with zero. Coupled hydrodynamic and radiative transfer simulations of this

planet were able to reproduce its dayside—but not nightside—emission (Kataria et al.,

2015), so the poor heat transport of this planet remains a mystery.

The thermal measurements for WASP-18b suggest AB . 0.05 at 1σ. The planet’s

best-fit parameters would lie outside the plot to the left, which is indicative of either

an internal heat source (identical to a negative Bond albedo in our parametrization) or

underestimated observational uncertainties. Kepler-7b and WASP-43b also have χ2
min well

above zero, suggesting that either our model assumptions or the published uncertainties

are incorrect. Each of these planets would benefit from more thermal eclipse and phase
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measurements in order to reduce the systematic uncertainty in dayside and nightside

effective temperatures.

HD 189733b and HD 209458b benefit from full-orbit thermal observations as well

as optical eclipse measurements, allowing us to compare infrared-based Bond albedos to

their optical geometric albedos. For HD 189733b we derive corrected geometric albedos of

0.37(12) at 0.37 µm and 0.04(8) at 0.51 µm, in agreement with Evans et al. (2013). This

red-optical geometric albedo is much lower than our Bond albedo estimate of [0.33, 0.41].

For HD 209458b we obtain a corrected geometric albedo of 0.04(6) at 0.5 µm, which

agrees with Rowe et al. (2008). However, our 1σ interval for Bond albedo is [0.32, 0.52].

Therefore, the tentative conclusion based on these two planets is that their Bond albedos

are considerably higher than their optical geometric albedos.

4.4.4. Eclipse-Only Measurements

Most of the eclipse-only planets have low geometric albedos: Ag . 0.2 (Figure 4.7). As

anticipated, Kepler-7b lies completely above this range (Demory et al., 2011), while the

confidence region for Kepler-13Ab extends to a geometric albedo of 0.34. The nine planets

exhibit a wide variety of recirculation efficiencies, from CoRoT-1b (ε ≈ 0.1) to Kepler-

7b (ε ≈ 0.95). Eclipse-only planets with similar irradiation temperatures are found at

different locations on the ε-axis, and we do not see evidence for a trend between irradiation

temperature and recirculation efficiency as with the thermal observation planets. This

is not surprising, since dayside measurements offer minimal leverage for inferring the

nightside temperature. Strictly speaking we only include these planets in Figure 4.7 by

assuming that AB = Ag; the actual comparison is more complex (Section 4.4.5).



147

Geometric albedo analyses encompassing several planets from our sample have been

previously conducted. We compare our results in Table 4.4 to overlapping planets from

Heng & Demory (2013): HAT-P-7b, Kepler-5b, Kepler-6b, Kepler-7b, and TrES-2b. Our

“uncorrected” geometric albedos for all five planets show agreement within the stated

confidence intervals. Esteves et al. (2014) and Angerhausen et al. (2015) also consider

these planets, in addition to Kepler-13Ab, under both zero and perfect heat redistribu-

tion. Our “full correction” geometric albedos for five of the six planets are in agreement

with values from both studies obtained in the maximum equilibrium temperature hy-

pothesis (i.e. hotter dayside temperatures implying greater thermal contamination of the

optical eclipse). However, we find Kepler-13Ab to have dissimilar geometric albedo when

using stellar parameters from Shporer et al. (2014) with our greater thermal correction:

0.175(113) versus 0.404(55) and ' 0, respectively. Note this includes stellar effective tem-

perature readjustment of Kepler-13A to 7650± 250 K, down from 8500± 400 K (Szabó

et al., 2011).

4.4.5. Comparing Geometric to Bond Albedo

In principle, an optical eclipse depth is related to a planet’s Bond albedo (Rowe et al.,

2006). Indeed, for a range of Solar System planets and moons, the Bond albedo is roughly

equal to the optical geometric albedo, albeit with a scatter of ±30 per cent. Given the

possibility of inhomogeneous albedo, uncertainty in the scattering phase function, and

unknown reflectance spectrum, it would be imprudent to extrapolate this trend to hot

Jupiters. Moreover, Marley et al. (1999) demonstrated that simply varying the incident

stellar radiation can alter Bond albedo by a factor of four for identical planets.
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Our analysis of hot Jupiters suggests that their optical geometric albedos are sys-

tematically lower than their Bond albedos. There are three possible explanations for

this discrepancy: (1) we have over-corrected the thermal contamination at optical wave-

lengths, (2) we have systematically underestimated the effective temperatures for planets

with full-orbit phase variations, or (3) the geometric albedos of hot Jupiters are, in fact,

systematically lower than their Bond albedos because of unexpected scattering phase

functions and/or reflectance spectra.

We address the first hypothesis by listing three different geometric albedo calculations

in Table 4.4: these differ in their treatment of optical thermal emission. For six of the

eleven planets, there is little difference between the geometric albedo estimate after a

simple blackbody subtraction as opposed to the scenario with higher optical brightness

temperature. For the remaining five planets, the “full correction” geometric albedos are

lower than their “simple correction” counterparts. The planets for which the details of

thermal emission correction are more important tend to either have higher irradiation

temperatures and so greater likelihood for unattributed thermal contamination in the op-

tical (e.g. HAT-P-7b), or have precise optical eclipse measurements where minor changes

to the dayside emission have a larger impact on constraining reflected light (e.g. TrES-2b).

Our contamination analysis is also largely consistent with the geometric albedos inferred

from higher equilibrium temperatures in both Esteves et al. (2014) and Angerhausen et al.

(2015). Even in the unlikely event that hot Jupiters have optical dayside brightness tem-

peratures equal to that in the mid-infrared, the optical geometric albedos for most planets

are significantly lower than the Bond albedos inferred from thermal phase measurements.
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The second solution to the geometric versus Bond albedo discrepancy is that hot

Jupiters are much brighter in the NIR, and hence thermal phase measurements—mostly

obtained with Spitzer in the mid-IR—will underestimate their global temperatures and

over-estimate their Bond albedos. However, neither the dayside emission spectra of indi-

vidual planets, nor their aggregate spectrum, show strong broadband molecular features.

This means that dayside brightness temperatures from the near- through mid-IR should

be reasonable proxies for their effective temperatures. One may worry that flux is es-

caping the nightsides of hot Jupiters in the NIR, leading us to underestimate nightside

bolometric flux, but that is ruled out for WASP-43b by HST/WFC3 phase measurements,

which show no nightside flux in the NIR (Stevenson et al., 2014c). It would be useful to

have full-orbit NIR phase curves of more planets in order to further test this hypothesis.

This leaves us with the third hypothesis, namely that the Bond albedos of most hot

Jupiters are high, despite their low geometric albedos. The geometric albedo of a planet

(light reflected back towards the illuminating star) is related to its spherical albedo (light

reflected in all directions) by a phase integral, As = qAg. Lambertian (diffuse) reflection

results in q = 3
2
, while pure Rayleigh scattering produces q = 4

3
. In general, planets

with atmospheres—including simulated hot Jupiters—have 1.0 < q < 1.5 (Pollack et al.,

1986; Burrows & Orton, 2010). It would be useful to empirically constrain the scattering

phase functions of hot Jupiters using data from space-based photometric missions. In

the few cases where reflected phase variations have been measured, the spherical albedo

appears so inhomogeneous that it is impossible to infer the phase-dependence of scattering

(Demory et al., 2013; Esteves et al., 2014). If we assume that hot Jupiters are diffusely
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reflecting, then they have typical optical spherical albedos of 15 per cent, still well below

the inferred Bond albedos.

The spherical albedo is related to the Bond albedo via a flux-weighted integral (Bur-

rows & Orton, 2010):

(4.5) AB =

∫∞
0
As(λ)Iinc dλ∫∞
0
Iinc dλ

,

where Iinc is the SED of the incident stellar flux. The degree to which the optical spherical

albedo impacts the Bond albedo depends on f opt
∗ , the percentage of starlight emitted in

the observed optical waveband, assuming blackbody radiation at T∗ (values of f opt
∗ are

listed in Table 4.4). We consider limiting cases of Equation 4.5, assuming out-of-band

wavelengths have average spherical albedos equal to 0, the optical As, or 0.5 respectively:

(4.6) Amin
B = Asf

opt
∗ ,

(4.7) Agray
B = As,

(4.8) Ahigh
B = Asf

opt
∗ + 0.5(1− f opt

∗ ).

Our limiting Bond albedos are summarized in Table 4.4. In principle the out-of-band

spherical albedo could be unity, but as this would result in Bond albedos so great that

the planets would be cooler than is observed in the mid-IR, we adopt a more modest

upper threshold in Equation 4.8.
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The Ahigh
B scenario is a reasonable match to the Bond albedos inferred from full-orbit

thermal measurements. This suggests that most hot Jupiters have geometric albedos of

≈ 50 per cent in the NIR and . 10 per cent in the optical. If hot Jupiters are Lambertian

reflectors, the NIR/optical contrast is somewhat less severe. This scenario similar in spirit

to the high Bond albedo combined with low red–NIR geometric albedo one can obtain

with Rayleigh scattering (Marley et al., 1999), but with the opposite color. Note that the

high infrared albedos we are hypothesizing contradict the low infrared geometric albedo

we assumed when estimating reflected IR light in Section 4.3.1.2. Using AIR
g = 0.5 in our

MC implies greater NIR contamination from reflected starlight, and hence lower dayside

thermal flux with greater Bond albedo. The most extreme change is a 20 per cent increase

in the Bond albedo of WASP-12b, but nonetheless our conclusions remain unaffected.

It is worth mentioning that geometric albedos of 60 per cent—from the optical through

the NIR—were predicted for the hottest giant exoplanets due to reflective silicate clouds

(Sudarsky et al., 2000). In order to explain the low optical geometric albedo, one could

invoke an optical absorber at low pressures, above the purported cloud deck. Such optical

absorbers, originally theorized to explain hot Jupiter temperature inversions, could include

gaseous TiO/VO (Fortney et al., 2007) or S2/HS (Zahnle et al., 2009). In this scenario,

Kepler-7b would be unique not because of its clouds, but due to its dearth of optical

absorbers.

Alternatively, since cloud reflection is a multiple-scattering process, single-scattering

albedos even marginally below unity can result in a heavily muted geometric albedo

(Dlugach & Yanovitskij, 1974; Hu, 2014). One might therefore explain the unusually red
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reflectance spectrum of hot Jupiters with a single cloud deck where individual cloud grains

have nearly gray albedo.

Such scenarios might be tested by measuring the optical–infrared transit spectra of

hot Jupiters. If the purported absorbers are located at sufficiently low pressures, and if

the upper atmospheres of these planets are not too hazy (Pont et al., 2013; Gibson et al.,

2013), then we would expect larger effective radii in the optical than the infrared. If

instead the red reflectance spectrum is due to multiple scattering within a single cloud

deck, then the transit spectrum should be flat.

Moreover, the best way to investigate these hypotheses would be to obtain thermal

phase measurements for the planets that have precise optical geometric albedo constraints,

and vice versa.

4.5. Updates

4.5.1. Phase Offsets

For transiting planets with no atmospheric dynamics and on circular orbits, the observed

flux (at some wavelength) looks like the black curve in Figure 4.8. This flux varies during

the orbit because one sees different phases of the planet, from the nightside at transit to

the dayside at eclipse.

However, phase offsets—the orbital span between center of eclipse and peak planetary

brightness—were approximated as zero in previous studies. The dashed orange curve in

Figure 4.8 shows an example observation with a phase offset. Here the time of transit and

eclipse, and both depths, are identical to the approximation (i.e. black curve), but the

peak and trough of the phase curve happen earlier in the orbit. As shown, the difference
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in flux between the planet’s day and nightside is now smaller than the phase amplitude.

Thus, the nightside temperature is higher than before, and so the bulk properties of the

planet’s atmosphere will be different. We will explore how inferences of Bond albedo

and heat recirculation efficiency are affected by phase offsets, using the model of energy

balance in Schwartz & Cowan (2015).

4.5.2. Data and Model

We start from the 6 planets in Table 2 of Schwartz & Cowan (2015) that have thermal

eclipse and phase data: HD 149026b, HD 189733b, HD 209458b, WASP-12b, WASP-

18b, and WASP-43b. Then we update this list with new infrared observations, adding

WASP-14b (Wong et al., 2015), HAT-P-7b and WASP-19b (Wong et al., 2016) to our

sample.

New eclipses are from Zhou et al. (2015), Evans et al. (2015), and Line et al. (2016,

Submitted; WFC3), while phase amplitudes are from Wong et al. (2015), Wong et al.

(2016), and Stevenson et al. (2016b). We use the phase offsets in these latter three

papers—published offsets for the original sample come from Knutson et al. (2009b,c),

Cowan et al. (2012b), Knutson et al. (2012), Maxted et al. (2013), Stevenson et al. (2014c),

and Zellem et al. (2014). The 9 planets tested here each have 1–3 measured phase offsets.

In Cowan & Agol (2011b) and Schwartz & Cowan (2015), the intensity of the planet’s

nightside to its star at some wavelength, ψ(λ), is defined as:

(4.9) ψ(λ) =
δecl − δvar

δtr

,
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where δecl is the eclipse depth, δvar is the phase amplitude, and δtr is the transit depth.

Because we assume entire light curves are shifted uniformly by phase offsets (i.e. dashed

orange curve in Figure 4.8), we modify Equation 4.9 to:

(4.10) ψ′(λ) =
δecl − (δvar cosφoff)

δtr

,

where φoff is the phase offset. For a given eclipse depth, this accounts for a brighter

nightside (i.e. Equation 6 of Cowan & Agol, 2011b) when there is an offset, and reduces

to Equation 4.9 otherwise.

For each planet we calculate two fits on AB–ε, using Equation 4.9 or 4.10 in our model.

We compile and label these 1σ regions in Figure 4.9. Mimicking Figure 4.8, the light solid

curves neglect phase offsets and the dashed curves include them. Each region is colored

by irradiation temperature, T0: this is the hottest the sub-stellar point could be, when the

planet absorbs all energy that strikes it and recirculates nothing (Cowan & Agol, 2011b).

Note that WASP-43b’s solid curve is only on the horizontal axis, just below its dashed

region.

In the albedo–recirculation plane, dayside temperature increases to the lower left and

nightside temperature towards the upper left. We find, as expected, that the fits with

phase offsets (i.e. dashed regions) move in the latter direction. Most nightside effective

temperatures increase by ∼ 5–20%, and the best-fit Bond albedos drop by up to 0.07.

Most recirculation efficiencies rise by up to 0.06—even 0.15 for HD 149026b. The largest

relative jump in Tn is for WASP-43b, which climbs ∼ 320% to 367 K. WASP-12b has the

most significant changes: Tn rises by ∼ 50% to 1764 K, AB drops by 0.12, and ε goes
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Figure 4.9. The fitted Bond albedo (AB) and heat recirculation efficiency
(ε) for the 9 planets with infrared eclipse and phase data (using χ2, as in
Schwartz & Cowan, 2015; Wong et al., 2015, 2016). Similar to Figure 4.8,
the light solid curves show the 1σ regions without accounting for phase off-
sets, while the dashed curves include them when available. The solid curve
for WASP-43b is a line on the horizontal axis (i.e. nightside has zero flux),
below the planet’s dashed region. Color shows irradiation temperature—
the maximum possible at the sub-stellar point—where red is warmer and
purple is cooler. We show up to 0.75 for both parameters, but each can go
as high as unity. Adding phase offsets moves a region towards hotter night-
side temperature, with lower AB and higher ε. Note that the different fits
for WASP-12b and WASP-43b do not overlap at 1σ. Using phase offsets is
preferred because neglecting them, as in previous studies, adds systematic
error to the inferences. For a fixed eclipse depth, seeing larger phase offsets
in a planet’s light curve(s) means that planet absorbs more starlight and
moves more heat through its atmosphere from day to night.
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up by 0.25. While most of our fits are consistent at 1σ, both WASP-12b and WASP-43b

differ significantly depending on how we treat phase offsets.

4.5.3. Previous Results

It is useful to review papers based on the energy balance model in Cowan & Agol (2011b).

This study found that (the 24) hot Jupiters globally had AB < 0.35 at 1σ, and those with

T0 > 2400 K all had low recirculation efficiency. Perez-Becker & Showman (2013) made

a shallow water model to demonstrate the latter: spin synchronized planets have zonal

(i.e. East-West) winds and little day-night contrast when irradiation is low, but day-to-

night flow with larger differences between Td and Tn when irradiation is high. Schwartz &

Cowan (2015) supported this trend except for WASP-43b (Stevenson et al., 2014c; Kataria

et al., 2015), which showed a cold nightside and lower T0. The thermal and optical data

these authors used also showed that (the 50) hot Jupiters had either low or moderate

Bond albedos (∼ 0.1 vs ∼ 0.35)—interpreted as evidence for clouds that reflect infrared

light and absorb in the visible.

Wong et al. (2015) next added thermal measurements for WASP-14b (solid green

curve in Figure 4.9). WASP-18b had a similarly low Bond albedo, and both were more

massive than the other planets modeled (∼ 7.7 and ∼ 10.1 MJ , vs ∼ 1 MJ). Thus,

it was suggested these two hot Jupiters could be radiating heat from formation or have

stronger Ohmic dissipation. But, Wong et al. (2016) contradicted this with phase data of

HAT-P-7b and WASP-19b, since the former has a mass of ∼ 1.7 MJ yet very low Bond

albedo. Instead the authors stated this could happen if the three planets with low AB

have different thermal evolution histories. We point out that WASP-18b, WASP-14b,
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and HAT-P-7b have radii within about 1.2–1.5 RJ , roughly 4–14× closer together (given

uncertainties) than the six planets with higher Bond albedos in Figure 4.9.

4.5.4. Impacts

Phase offsets do not significantly change how planets are distributed in the AB–ε plane.

We get almost the same probability functions when we marginalize the solid or dashed

regions in Figure 4.9 over either axis (not shown), so the studies from Section 4.5.3 are

reliable. Yet the fits for individual planets are affected, even though the solid and dashed

regions usually overlap at 1σ. When we use phase offsets from light curves, our model

prefers planets to be less reflective and transport heat better precisely because they have

hotter nightside temperatures (Figure 4.8). One should always include phase offsets when

studying planetary atmospheres; neglecting them is a first-order approximation.

In fact, the higher nightside temperature we find for WASP-12b (Tn = 1764± 205 K)

means this planet breaks the model in Perez-Becker & Showman (2013). It receives high

stellar irradiation yet has moderate recirculation efficiency; this is opposite to the case of

WASP-43b (Stevenson et al., 2014c; Schwartz & Cowan, 2015). Instead, WASP-12b has ε

comparable to planets with ∼ 1000 K lower T0 (WASP-14b and HD 149026b). A possible

reason is that WASP-12b has a larger radius, ∼ 1.8 RJ , and lower density, ∼ 0.24 ρJ

(Hebb et al., 2009), than all other hot Jupiters in our sample, and is likely accreting

material onto its host star (e.g. Li et al., 2010). An accretion disk or stream could help

transport irradiated gas to cooler parts of the planet’s atmosphere—detectable as phase

offsets in the light curves. Cowan et al. (2012b) found a larger offset at 3.6 than 4.5 µm,

implying hotter material is redistributed more on WASP-12b.
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Though it will be extremely difficult to take spectra of Earth analogs with the James

Webb Space Telescope, this could be done for particularly close or interesting targets (Be-

ichman et al., 2014). Constraining phase offsets will be crucial to assess habitability over

an entire planet. Therefore, light curves of warm terrestrial planets should be carefully

analyzed for phase offsets—characterizing climates will depend on it.

4.6. Interlude III

The message from these energy budgets is leading-edge science: this represents some

of the best knowledge about the bulk atmospherics of hot Jupiters. To take a step back

and think about that for a moment is actually pretty enlightening. It is very common

to picture “state of the art” ideas as being unusual or complex, and given the flourish of

technology in the last few centuries, that default is definitely well-earned. But even with

the monumental effort of building space observatories, finding small changes in stellar

brightnesses, and modeling how that light varies over time, the distilled product for our

purposes is so inherently modest. There is something uplifting about that—we can help

push the entire understanding of planetary atmospheres that float hundreds of light years

away with essentially a handful of numbers. As our ability to image terrestrial planets

improves, with the James Webb Space Telescope and beyond, this level of detail will get

finer. The prospect of Exocartography is out over the horizon, where high-precision light

curves allow one to deduce surface maps, spin properties, and cloud behavior on distant

worlds. Thus, let us take an optimistic step into the future, to illuminate the shroud that

will make these features visible someday.
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CHAPTER 5

Inferring Planetary Obliquity Using Rotational And Orbital

Photometry

This chapter is adapted from Schwartz, J. C., Sekowski, C., Haggard, H. M., Pallé,

E., and Cowan, N. B. 2016, MNRAS, 457, 926.

5.1. Introduction

The obliquity of a terrestrial planet encodes information about different processes. A

planet’s axial alignment and spin rate inform its formation scenario. Numerical simula-

tions have shown that the spin rates of Earth and Mars are likely caused by a few plan-

etesimal impacts (Dones & Tremaine, 1993), while perfect accretion produces an obliquity

distribution that is isotropic (e.g. Kokubo & Ida, 2007; Miguel & Brunini, 2010). Con-

versely, Schlichting & Sari (2007) describe how prograde rotation is preferred to retrograde

for a formation model with semi-collisional accretion.

Obliquity is also important in controlling planetary climate. This has been studied

in-depth for Earth under many conditions (e.g. Laskar et al., 2004; Pierrehumbert, 2010),

and high axial tilts can make planets at large semi-major axes more habitable (Williams

& Kasting, 1997). Furthermore, while the Earth’s spin axis is stabilized by the Moon

(Laskar et al., 1993), obliquities of several Solar System bodies evolve chaotically (Laskar,

1994). This influences searches for hospitable planets, as Spiegel et al. (2009) note that
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the habitability of terrestrial worlds may depend sensitively on how stable the climate is

in the short-term.

A planet’s average insolation is set by stellar luminosity and semi-major axis; insola-

tion at different latitudes is determined by obliquity and (for eccentric orbits) the axial

orientation. Non-oblique planets have a warmer equator and colder poles that do not vary

much throughout the year. Modest obliquities produce seasons at mid-latitudes because

the sub-stellar point moves North and South during the orbit (Pierrehumbert, 2010).

Planets tilted at angles ≥ 54◦ receive more overall radiation near their poles and have

large orbital variations in temperature (Williams & Pollard, 2003). Thus, even limited

knowledge of a planet’s obliquity can help constrain the spatial dependence of insolation

and temperature.

Numerous methods have been proposed for measuring planetary obliquities. Seager

& Hui (2002) and Barnes & Fortney (2003) demonstrated constraints on oblateness and

obliquity using ingress/egress differences in transit light curves; Carter & Winn (2010)

extended and applied these techniques to observations of HD 189733b. Kawahara (2012)

derived constraints on obliquity from modulation of a planet’s radial velocity during orbit,

while Nikolov & Sainsbury-Martinez (2015) examined the Rossiter-McLauglin effect at

secondary eclipse for transiting exoplanets. One could also measure obliquity at infrared

wavelengths, using polarized rotational light curves (De Kok et al., 2011) and orbital

variations (e.g. Gaidos & Williams, 2004; Cowan et al., 2013).

A planet’s obliquity can also be constrained by changes in reflected light, which will

be studied with forthcoming optical and near-infrared space missions, such as ATLAST

(Postman et al., 2010), LUVOIR (Kouveliotou et al., 2014), and HDST (Dalcanton et al.,
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2015). Time-resolved measurements of a rotating planet in one photometric band can

reveal its rotation rate (Ford et al., 2001; Pallé et al., 2008; Oakley & Cash, 2009); this

helps determine Coriolis forces and predict large-scale circulation. Multi-band photometry

can reveal colors of clouds and surface features (Ford et al., 2001; Fujii et al., 2010,

2011; Cowan & Strait, 2013), and enables a longitudinal albedo map to be inferred from

disk-integrated light (Cowan et al., 2009). High-cadence, reflected light measurements

spanning a full planetary orbit constrain a planet’s obliquity and two-dimensional albedo

map (Kawahara & Fujii, 2010, 2011; Fujii & Kawahara, 2012).

However, these results have not yet been established for lower cadence measurements

of non-terrestrial planets. We also hope to establish a conceptual understanding of how

photometric measurements constrain obliquity. While this is less immediately practical,

a deeper understanding of this inversion has the potential to lead to further advances in

inferring planetary geometry from limited data sets. In this paper, we study light curve

methods for arbitrary albedo maps and viewing geometries, and demonstrate they are

useful even for observations at only one or two orbital phases.

Light curves of planets encode the viewing geometry and hence a planet’s obliquity

because different latitudes are impinged by starlight at different orbital phases (this “ker-

nel” is described in Section 5.2.2). To see this, consider a planet with no obliquity in

an edge-on, circular orbit. The star always illuminates the Northern and Southern hemi-

spheres equally, and we never view some latitudes more than others. If instead this planet

were tilted, the Northern hemisphere would be lit first, then the Southern hemisphere half

an orbit later. If the planet is not North-South uniform, its apparent albedo (Qui et al.,
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2003; Cowan et al., 2009) would change during its orbit, shown in the left panel of Figure

5.1.

One may also learn about a planet’s obliquity as it rotates. Imagine a zero-obliquity

planet in a face-on, circular orbit: the observer always sees the Northern pole with half

the longitudes illuminated. For an oblique planet, however, more longitudes would be

lit when the visible pole leans towards the star, and vice versa. Zero-obliquity planets

in edge-on orbits are similar, since more longitudes are lit near superior conjunction, or

fullest phase. If the planet has East-West albedo variations, then this longitudinal width

will modulate the apparent albedo of the planet as it spins, shown in the right panel of

Figure 5.1.

Our work is organized as follows: in Section 5.2, we summarize the observer viewing

geometry and explain the reflective kernel, both in two- and one-dimensional forms. Sec-

tion 5.3.1 introduces a case study planet and describes the kernel at single orbital phases;

we consider time evolution in Section 5.3.2. We discuss real observations in Section 5.4.1,

then develop our case study in Sections 5.4.2–5.4.4, demonstrating that even single- and

dual-epoch observations could allow one to constrain obliquity. In Section 5.4.5, we dis-

cuss how to distinguish a planet’s rotational direction by monitoring its apparent albedo.

Section 5.5 summarizes our conclusions. For interested readers, a full mathematical de-

scription of the illumination and viewing geometry is presented in Appendix B.1. Details

about the kernel and its relation to a planet’s apparent albedo are described in Appendix

B.2.
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5.2. Reflected Light

5.2.1. Geometry & Flux

The locations on a planet that contribute to the disk-integrated reflected light depend

only on the sub-observer and sub-stellar positions, which both vary in time. A complete

development of this viewing geometry is provided in Appendix B.1, which we summarize

here. We neglect axial precession and consider planets on circular orbits. Assuming a

static albedo map, the reflected light seen by an observer is determined by the colatitude

and longitude of the sub-stellar and sub-observer points, explicitly θs, φs, θo, and φo. The

intrinsic parameters of the system are the orbital and rotational angular frequencies, ωorb

and ωrot (where positive ωrot is prograde), and the planetary obliquity, Θ ∈ [0, π/2]. Ex-

trinsic parameters differ from one observer to the next; we denote the orbital inclination,

i (where i = 90◦ is edge-on), and solstice phase, ξs (the orbital phase of Summer solstice

for the Northern hemisphere). We also define initial conditions for orbital phase, ξ0, and

the sub-observer longitude, φo(0). Reflected light is then completely specified by these

seven parameters and the planet’s albedo map.

We consider only diffuse (Lambertian) reflection in our analysis. Specular reflection,

or glint, can be useful for detecting oceans (Williams & Gaidos, 2008; Robinson et al.,

2010, 2014), but is a localized feature and a minor fraction of the reflected light at gibbous

phases. The reflected flux measured by a distant observer is therefore a convolution of

the two-dimensional kernel (or weight function; Fujii & Kawahara, 2012), K(θ, φ,S), and

the planet’s albedo map, A(θ, φ):

(5.1) F (t) =

∮
K(θ, φ,S)A(θ, φ)dΩ,
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where F is the observed flux, θ and φ are colatitude and longitude, and S ≡ {θs, φs, θo, φo}

implicitly contains the time-dependencies in the sub-stellar and sub-observer locations.

Reconstructing a map of an exoplanet based on time-resolved photometry can be thought

of as a deconvolution (Cowan et al., 2013), while estimating a planet’s obliquity amounts

to backing out the kernel of the convolution.

The sub-stellar and sub-observer points are completely determined through a function

S = f(G, ωrott), where G ≡ {ξ(t), i,Θ, ξs} is the system geometry and ξ(t) is orbital

phase. This is made explicit in Appendix B.1. For a planet with albedo markings, one

would therefore fit the observed flux to infer both the planet’s albedo map (Cowan et al.,

2009) and spin axis (Kawahara & Fujii, 2010, 2011; Fujii & Kawahara, 2012). To study

how these methods work for arbitrary maps and geometries, we will focus on the kernel

from Equation 5.1, which we can analyze independent of a planet’s albedo map.

5.2.2. Kernel

The kernel combines illumination and visibility, defined for diffuse reflection in Cowan

et al. (2013) as

(5.2) K(θ, φ,S) =
1

π
V (θ, φ, θo, φo)I(θ, φ, θs, φs),

where V (θ, φ, θo, φo) is the visibility and I(θ, φ, θs, φs) is the illumination. Visibility and

illumination are each non-zero over one hemisphere at any time, and are further given by

(5.3)
V (θ, φ, θo, φo) = max

[
sin θ sin θo cos(φ− φo)

+ cos θ cos θo, 0
]
,
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(5.4)
I(θ, φ, θs, φs) = max

[
sin θ sin θs cos(φ− φs)

+ cos θ cos θs, 0
]
.

As noted above, we can express the kernel equivalently as

(5.5) K(θ, φ,S) = K(θ, φ,G, ωrott),

though we will drop the rotational dependence for now because it does not affect our

analysis. We return to rotational frequency in Section 5.4.5.

The non-zero portion of the kernel is a lune: the illuminated region of the planet

that is visible to a given observer. The size of this lune depends on orbital phase, or the

angle between the sub-observer and sub-stellar points. A sample kernel is shown at the

top of Figure 5.2, where the purple and yellow contours are visibility and illumination,

respectively. The peak of the kernel is marked with an orange diamond.

We begin by calculating time-dependent sines and cosines of the sub-observer and sub-

stellar angles for a viewing geometry of interest (Appendix B.1). These are substituted

into Equations 5.3 and 5.4 to determine visibility and illumination at any orbital phase.

The two-dimensional kernel is then calculated on a 101 × 201 grid in colatitude and

longitude.

5.2.3. Longitudinal Width

The two-dimensional kernel, K(θ, φ,G), is a function of latitude and longitude that varies

with time and viewing geometry. For observations with minimal orbital coverage or

planets that are uniform from North to South, different latitudes are hard to distinguish
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Figure 5.2. Upper: A kernel, in gray, with contours showing visibility and
illumination, in purple and yellow, as in Cowan et al. (2013). The sub-
observer and sub-stellar points are indicated by the purple circle and yellow
star, respectively. The orange diamond marks the peak of the kernel. Lower:
The mean of the longitudinal kernel and the width from this mean are shown
as solid and dashed red lines; the dominant colatitude is shown as a blue
line.

apart (Cowan et al., 2013) and we use the longitudinal form of the kernel, K(φ,G), given

by

(5.6) K(φ,G) =

∫ π

0

K(θ, φ,G) sin θdθ.
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We can approximately describe K(φ,G) by a longitudinal mean, φ̄, and width, σφ. These

are defined in Appendix B.2.1; examples are shown as vertical red lines in the bottom

panel of Figure 5.2.

For any geometry, we can calculate the two-dimensional kernel and the corresponding

longitudinal width. The mean longitude is unimportant by itself because, for now, we are

only concerned with the size of the kernel. We compute a four-dimensional grid of kernel

widths with 5◦ resolution in orbital phase (time), inclination, obliquity, and solstice phase.

The result is σφ(ξ(t), i,Θ, ξs) ≡ σφ(G), and our numerical grid has size 73× 19× 19× 73

in the respective parameters. Example contours from this array at first quarter phase, or

ξ(t) = 90◦, are shown in the left panels of Figure 5.3. In these plots obliquity is radial:

the center is Θ = 0◦ and the edge is Θ = 90◦. The azimuthal angle gives the orientation

(solstice phase) of the planet’s obliquity.

5.2.4. Dominant Colatitude

For a given planet and observer, the sub-observer colatitude is fixed but the sub-stellar

point moves North and South throughout the orbit if the planet has non-zero obliquity.

This means different orbital phases will probe different latitudes, as dictated by the kernel.

To analyze these variations we use the latitudinal form of the kernel, K(θ,G), explicitly:

(5.7) K(θ,G) =

∫ 2π

0

K(θ, φ,G)dφ.

We may describe K(θ,G) by its dominant colatitude (Cowan et al., 2012a), θ̄, also defined

in Appendix B.2.1 and shown as a horizontal blue line at the bottom of Figure 5.2. We

produce a four-dimensional dominant colatitude array, θ̄(ξ(t), i,Θ, ξs) ≡ θ̄(G), similarly
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to σφ(G) from Section 5.2.3. Sample contours from this array at first quarter phase are

shown in the right panels of Figure 5.3.

5.3. Kernel Behavior

We now consider how the longitudinal width and dominant colatitude of the kernel

depend on a planet’s obliquity. As a case study, we will define the inclination and spin

axis of a hypothetical planet, Q:

(5.8) planet Q ≡



i = 60◦

Θ = 55◦

ξs = 260◦


.

5.3.1. Phases

Considering a single orbital phase defines a three-dimensional slice through σφ(G) and

θ̄(G) that describes the kernel at that specific time. We show the longitudinal form of

the kernel for planet Q at different phases in the left panel of Figure 5.4. Lighter colors

are fuller phases, indicating the kernel narrows as this planet orbits towards inferior

conjunction, or ξ(t) = 180◦. The kernel width influences the rotational light curve at a

given phase: narrower kernels can have larger amplitude variability in apparent albedo

on a shorter timescale (e.g. right of Figure 5.1).

The latitudinal kernel for planet Q is shown similarly in the right panel of Figure 5.4.

We see that the kernel preferentially probes low and mid-latitudes during the first half-

orbit. The dominant colatitude of planet Q, indicated by circles, also fluctuates during

this portion of the orbit—and eventually shifts well into the Northern hemisphere after
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inferior conjunction (not shown). Note that the dominant colatitude is not always at

the peak of the latitudinal kernel (see also Figure B.2). Since one needs measurements at

multiple phases to be sensitive to latitudinal variations in albedo, we will consider changes

in dominant colatitude from one phase to the next, |∆θ̄|, for planets with North-South

albedo markings. Larger changes in dominant colatitude can make the apparent albedo

vary more between orbital phases (e.g. left of Figure 5.1).

5.3.2. Time Evolution

Kernel width and dominant colatitude both vary throughout a planet’s orbit. We inves-

tigate this by slicing σφ(G) and θ̄(G) along obliquity and/or solstice phase. To start,

we vary planet Q’s obliquity and track kernel width as shown in the left panel of Figure

5.5. The actual planet Q is denoted by a dashed green line: this planet has a narrow

kernel width during the first half-orbit that widens sharply after inferior conjunction. The

largest variations between the traces occur near ξ(t) ≈ {120◦, 210◦}.

We also show tracks of dominant colatitude in the right panel of Figure 5.5. What

matters is the change in this characteristic between two epochs; diverse changes in the

traces occur between ξ(t) ≈ {135◦, 240◦}. Planet Q is again the dashed green line, and

near the middle of all the tracks more often than for kernel width. If one has some prior

knowledge of the viewing geometry, then Figure 5.5 implies at which phases one could

observe to best distinguish obliquities for planet Q—for example, ξ(t) ≈ {120◦, 240◦}.

We can instead vary the solstice phase of planet Q while keeping its obliquity fixed (not

shown). In most cases, solstice phase impacts the kernel width and dominant colatitude
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as much as the axial tilt. This is expected, since obliquity is a vector quantity with both

magnitude and orientation.

5.4. Discussion

5.4.1. Observations

By analyzing the kernel, we can learn how observed flux may depend on a planet’s obliq-

uity independent from its albedo map. For real observations, one would fit the light curve

to directly infer the planet’s albedo map (Cowan et al., 2009) and spin axis (Kawahara &

Fujii, 2010, 2011; Fujii & Kawahara, 2012). We will use the kernel to predict how single-

and dual-epoch observations constrain planetary obliquity. We address our assumptions

below.

The planetary inclination and orbital phase of observation must be known to model

the light curve accurately. Both angles might be obtained with a mixture of astrometry

on the host star (e.g. SIM PlanetQuest ; Unwin et al., 2008), direct-imaging astrometry

(Bryden, 2015), and/or radial velocity. We will assume that inclination and orbital phase

have each been measured with 10◦ uncertainty.

Extracting the albedo map and spin axis from a light curve could also be difficult in

practice. Planets with completely uniform albedo are not amenable to these methods.

Moreover, one cannot distinguish latitudes for planets that are North-South uniform, nor

longitudes for those that are East-West uniform. Even if a planet has albedo contrast,

photometric uncertainty adds noise to the reflected light measurements. Contrast ratios ≤

10−11 are needed to resolve rotational light curves of an Earth-like exoplanet (Pallé et al.,

2008), which should be achievable by a TPF -type mission with high-contrast coronagraph
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or starshade (Ford et al., 2001; Trauger & Traub, 2007; Turnbull et al., 2012; Cheng-Chao

et al., 2015).

We will implicitly assume that planet Q has both East-West and North-South albedo

markings, and thus that the kernel geometry impacts the reflected light. In particular, we

will assume two scenarios: perfect knowledge of the kernel, or kernel widths and changes

in dominant colatitude that are constrained to ±10◦ and ±20◦, respectively, explained in

Appendix B.2.2. Note that these uncertainties will depend on the planet’s albedo contrast,

and the photometric precision, in a non-linear way. We envision a triage approach for

direct-imaging missions: planets that vary in brightness the most, and thus have the

easiest albedo maps and spin axes to infer, will be the first for follow-up observations.

Of course, planetary radii are necessary to convert fluxes into apparent albedos (Qui

et al., 2003; Cowan et al., 2009). Radii will likely be unknown, but could be approximated

using mass-radius relations and mass estimates from astrometry or radial velocity, or in-

ferred from bolometric flux using thermal infrared direct-imaging (e.g. TPF-I ; Beichman

et al., 1999; Lawson et al., 2008). Real planets may also have variable albedo maps, e.g.

short-term variations from changing clouds and smaller variations from long-term sea-

sonal changes (Robinson et al., 2010), that could influence the apparent albedo on orbital

timescales. These are difficulties that will be mitigated with each iteration of photometric

detectors and theoretical models.

5.4.2. Longitudinal Constraints

A fit to the rotational light curve can be used to constrain the spin axis (and longitudinal

map) of a planet with East-West albedo contrast. We can demonstrate these constraints
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using kernel widths in two ways, described in Section 5.4.1 and shown in the upper

panels of Figure 5.6. The dark dashed lines and square are idealized constraints when

assuming perfect knowledge of the orbital geometry and two kernel widths: σφ1 = 25.2◦

at ξ(t1) = 120◦, and σφ2 = 51.7◦ at ξ(t2) = 240◦. Alternatively, the red regions have

10◦ uncertainty on each width (Appendix B.2.2), where we use a normalized Gaussian

probability density and include Gaussian weights for uncertainties on inclination and

orbital phase.

The green circles represent the true planet Q spin axis, which always lies on the

idealized constraints. Only two spin axes are consistent with the ideal kernel widths

from both orbital phases. We run more numerical experiments for a variety of system

geometries (not shown) and find that perfect knowledge of the kernel width at three orbital

phases uniquely determines the planetary spin axis. However, we find a degeneracy for

planets with edge-on orbits, where two different spin configurations will produce the same

kernel widths at all phases.

As anticipated, we also find planet Q’s spin axis (green circle) consistent with the

uncertain kernel widths (dark red regions). Imperfect kernel widths at two phases allow

all obliquities above 15◦ at 1σ, but exclude nearly one-fifth of spin axes at 3σ. We find

similar predictions for other orbital phases and planet parameters.

These examples also suggest that obliquity could be constrained for planets with vari-

able albedo maps. As long as albedo only changes on timescales longer than the rotational

period, light curves will constrain both the instantaneous map and the planet’s spin axis.

A given spin orientation and orbital inclination dictates a specific kernel width as a func-

tion of orbital phase (left panel of Figure 5.5), so we predict that light curves at three
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phases will be sufficient to pin down the planetary obliquity, even if the planet’s map

varies between phases.

5.4.3. Latitudinal Constraints

A fit to light curves from different orbital phases can be used to constrain the spin axis

(and latitudinal map) of a planet with North-South albedo contrast. As described in Sec-

tion 5.4.1, we can demonstrate this constraint using both perfect and uncertain knowledge

of the change in dominant colatitude. Our predictions are shown in the lower left panel

of Figure 5.6. The idealized constraint here is |∆θ̄12| = 76.0◦ between ξ(t) = {120◦, 240◦}.

Since the change in dominant colatitude is constrained between pairs of epochs, four or-

bital phases are needed to produce three independent constraints and uniquely determine

planet Q’s spin axis. We find the same two-fold degeneracy as before for planets in edge-on

orbits, even if one knows the change in dominant colatitude between all pairs of phases.

For the blue regions, we reapply our probability density from above and assume 20◦

uncertainty on the change in dominant colatitude (Appendix B.2.2). The distribution is

bimodal because only the magnitude of the change can be constrained, not its direction.

This means an observer would not know whether more Northern or Southern latitudes

are probed at the later phase, affecting which spin axes are inferred.

5.4.4. Joint Constraints

For a planet with both East-West and North-South albedo contrast, one may combine

longitudinal and latitudinal information to better constrain the planet’s spin axis (and

two-dimensional map). We show this for planet Q in the lower right panel of Figure 5.6.
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The idealized constraint shows that only the true spin configuration is allowed. We find

this result for other system geometries—except using orbital phases 180◦ apart, which

creates a two-way degeneracy in the spin axis.

The confidence regions in purple assume our notional uncertainties on both kernel

width and change in dominant colatitude (Appendix B.2.2). This prediction is not uni-

modal, but the 1σ region excludes obliquities below 30◦. A distant observer would know

that this planet’s obliquity has probably not been eroded by tides (Heller et al., 2011),

and that the planet likely experiences obliquity seasons.

5.4.5. Pro/Retrograde Rotation

The sign of rotational angular frequency (positive = prograde) can affect the mean longi-

tude of the kernel, but not its size and shape. There is a formal degeneracy for edge-on,

zero-obliquity cases: prograde planets with East-oriented maps have identical light curves

to retrograde planets with West-oriented maps. The motion of the kernel peak is the same

over either version of the planet, implying the retrograde rotation in an inertial frame is

slower (Appendix B.2.3). We show this scenario in the left panel of Figure 5.7, where

the dashed brown line is the difference in prograde and retrograde apparent albedo. The

orange and black planets are always equally bright because the same map features, in the

upper panels, are seen at the same times.

However, the spin direction of oblique planets and/or those on inclined orbits may be

deduced. Inclinations that are not edge-on most strongly alter a planet’s light curve near

inferior conjunction, seen in the center panel of Figure 5.7: this planet’s properties are

intermediate between the edge-on, zero-obliquity planet and planet Q. While a typical
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observatory’s inner working angle would hide some of the signal, differences on the order of

0.1 in the apparent albedo would be detectable at extreme crescent phases. Alternatively,

higher obliquity causes deviations that—depending on solstice phase—can arise around

one or both quarter phases. This happens for planet Q in the right panel of Figure 5.7,

where both effects combine to distinguish the spin direction at most phases.

Inclination and obliquity influence apparent albedo because the longitudinal motion

of the kernel peak is not the same at all latitudes. One can break this spin degeneracy in

principle, but we have not fully explored the pro/retrograde parameter space. In general,

the less inclined and/or oblique a planet is, the more favorable crescent phases are for

determining its spin direction.

5.5. Conclusions

We have performed numerical experiments to study the problem of inferring a planet’s

obliquity from time-resolved photometry, for arbitrary albedo maps and viewing geome-

tries. We have demonstrated that a planet’s obliquity will influence its light curve in two

distinct ways: one involving East-West albedo markings and another involving North-

South markings. Provided this planet is not completely uniform, one could constrain

both its albedo map and spin axis using reflected light.

The kernel—the product of visibility and illumination—has a peak, a longitudinal

width, and a mean latitude that vary in time and are functions of viewing geometry. An-

alyzing the kernel enables us to predict constraints on a planet’s spin axis from reflected

light, including for maps that are East-West uniform (e.g. Jupiter-like) or North-South
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uniform (e.g. beach ball-like). Curiously, we find that kernel width offers better con-

straints on obliquity than dominant colatitude, suggesting that East-West albedo contrast

is generally more useful than North-South contrast. This is partly because kernel width

can be constrained even for variable albedo maps.

Furthermore, monitoring a planet at only a few epochs could determine its spin di-

rection and significantly constrain its obliquity. In our case study of planet Q, we find

crescent phases are favorable for telling prograde from retrograde rotation. Similarly,

perfect knowledge of the kernel width at two orbital phases narrows the possible spin

axes for planet Q to two distinct configurations, while kernel width uncertainties of 10◦

still exclude about three-quarters of spin axes at 1σ. Adding the constraint on change

in dominant colatitude between the same two phases completely specifies the true spin

configuration of planet Q. A change in dominant colatitude with 20◦ uncertainty excludes

five-sixths of spin orientations at 1σ.

Most importantly, we also find that perfect knowledge of the kernel width at just three

phases, or its change in dominant colatitude between four phases, is generally sufficient

to uniquely determine a planet’s obliquity. This suggests that—in principle—rotational

light curves at 2–4 distinct orbital phases uniquely constrain the spin axis of any planet

with non-uniform albedo. This is good news for inferring the obliquity of planets with

future direct-imaging missions.
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APPENDIX A

BLISS: Choosing Parameters

A.1. Coefficients for the Pixel Sensitivity

To pick the c`m in Equation 3.3, we start by choosing how much all the terms added

together can change the sensitivity, or av. We divide this value by how many coefficients

we have, nc, where we use nc = 35 because we set n = 7. We cannot give each polynomial

term the same magnitude everywhere on the pixel, so we scale the terms to be the same

at some reference distance, dref , from the pixel center. This gives us the equation:

(A.1) C`m =
av
nc

(
1

dref

)`+m
,

where C`m is a limit for each coefficient. By doing this, the lower-order terms will dominate

inside dref and vice versa, so the sensitivity tends to vary more near the pixel edges. Note

that the pixel centers have the highest sensitivities in the real IRAC detector (e.g. Reach

et al., 2005; Cowan et al., 2012b), which is not always true in this model. We decide to

set av = 0.5 and dref = 0.1, but other choices work, too.

We next randomly pick each c`m ∈ [−C`m,C`m], then rescale all these coefficients to

get a chosen amplitude for the detector signal, ∆D, no matter what centroids we have.

For each new sensitivity map, we draw and rescale the c`m again.
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A.2. Eclipse and Phase Curve

To choose the parameters for Equations 3.5 and 3.6, we start with the eclipse and

work backwards. We fix tmax = 6 hrs and tw = 1 hr, and because we randomly choose

te ∈ [2, 4] hrs, there is always some baseline before and after the eclipse. Then we pick a

value of ∆De—we set δe first (to 5.0× 10−3) if we are fitting the light curve via MCMC

(Section 3.4.3) and ∆D first if making a BLISS map (Section 3.4.2). In the second case,

the eclipse depth is about 10−5–10−2.

Then we look at the phase model. We randomly pick Porb ∈ [15, 60] hrs, which gives

us part of a phase curve, and φo ∈
[
π
(

1− 12
Porb

)
, π
]
, which makes sure the peak of

the phase curve happens during the observation. The bottom of the eclipse should be

lower in flux than the phase curve could be, so we calculate the maximum half-amplitude,

αmax, the phase curve could have given the other parameters. Then we randomly choose

α ∈ [0.7αmax, αmax], where the lower limit on α could be different and is just by choice.

Lastly, we pick the amount of photon noise, σ, depending on how significant we want

the eclipse to be (Equation 3.8). Our choices give us light curves that mimic real data;

other choices could work as well.
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APPENDIX B

Obliquity: Describing Planets and Kernels

B.1. Viewing Geometry

B.1.1. General Observer

The time-dependence of the kernel is contained in the sub-observer and sub-stellar angles:

θo, φo θs, φs. Since they do not depend on planetary latitude or longitude, these four angles

may be factored out of the kernel integrals. However, the light curves are still functions

of time, so we derive the relevant dependencies here.

In particular, we compute the sub-stellar and sub-observer locations for planets on

circular orbits using seven parameters. Three are intrinsic to the system: rotational an-

gular frequency, ωrot ∈ (−∞,∞), orbital angular frequency, ωorb ∈ (0,∞), and obliquity,

Θ ∈ [0, π/2]. Rotational frequency is measured in an inertial frame, where positive values

are prograde and negative denotes retrograde rotation (for comparison, the rotational

frequency of Earth is ω⊕rot ≈ 2π/23.93 h−1). Two more parameters are extrinsic and

differ for each observer: orbital inclination, i ∈ [0, π/2] where i = 90◦ is edge-on, and

solstice phase, ξs ∈ [0, 2π), which is the orbital angle between superior conjunction and

the maximum Northern excursion of the sub-stellar point. The remaining parameters

are extrinsic initial conditions: the starting orbital position, ξ0 ∈ [0, 2π), and the initial

sub-observer longitude, φo(0) ∈ [0, 2π). These parameters are illustrated in Figure B.1;

other combinations are possible.
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Figure B.1. The upper panel shows a side view of the general
planetary system. The rotational and orbital angular frequencies
{ωrot, ωorb}, inclination i, obliquity Θ, sub-observer colatitude θo, and

observer viewing direction ˆ̀ are indicated. The lower panel is an isomet-
ric view, showing the solstice phase ξs. Superior conjunction occurs along
the positive x-axis. Note the inertial coordinates, how they relate to the
observer’s viewpoint and planet’s spin axis, and the angles between these
vectors.

We define the orbital phase of the planet as ξ(t) = ωorbt + ξ0. Without loss of gen-

erality we may set the first initial condition as ξ0 = 0, which puts the planet at superior
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conjunction when t = 0. With no precession the sub-observer colatitude is constant,

(B.1) θo(t) = θo.

This angle can be expressed in terms of the inclination, obliquity, and solstice phase using

the spherical law of cosines (bottom of Figure B.1):

(B.2) cos θo = cos i cos Θ + sin i sin Θ cos ξs,

(B.3) sin θo =
√

1− cos2 θo.

The sub-observer longitude decreases linearly with time for prograde rotation, as we define

longitude increasing to the East:

(B.4) φo(t) = −ωrott+ φo(0).

The prime meridian (φp ⇒ φ = 0) is a free parameter, which we define to run from

the planet’s North pole to the sub-observer point at t = 0. This sets the second initial

condition, namely φo(0) = 0, and means

(B.5) cosφo = cos (−ωrott) ,

(B.6) sinφo =
√

1− cos2 φo.
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Hence, the time evolution of the sub-observer point is specified by its colatitude and the

rotational angular frequency.

The sub-stellar position is more complex for planets with non-zero obliquity. Consider

an inertial Cartesian frame centered on the host star with fixed axes as follows: the z-axis

is along the orbital angular frequency, ẑ = ω̂orb, while the x-axis points towards superior

conjunction. The y-axis is then orthogonal to this plane using ŷ = ẑ × x̂ (bottom of

Figure B.1). In these inertial coordinates, the unit vector from the planet center towards

the host star is r̂ps = − cos ξx̂ − sin ξŷ. The corresponding unit vector from the star

towards the observer is ˆ̀= − sin ix̂+ cos iẑ. Our approach is to express everything in the

inertial coordinate system, then find the sub-stellar point with appropriate dot products.

For the planetary surface, we use a second coordinate system fixed to the planet. We

align the zp-axis with the rotational angular frequency, ẑp = ω̂rot, while the xp-axis is set

by our choice for the prime meridian (and initial sub-observer longitude.) The final axis,

yp, is again determined by taking ŷp = ẑp × x̂p. We proceed in two steps, first finding

the planetary axes when t = 0, then using the planet’s rotation to describe these axes

at any time.

Since we disregard precession, the planet’s rotation axis is time-independent:

(B.7) ẑp = ω̂rot = − cos ξs sin Θx̂− sin ξs sin Θŷ + cos Θẑ.

The sub-observer point is on the prime meridian when t = 0, so that

(B.8) ŷp(0) =
ẑp × ˆ̀

sin θo
.
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Computing this we find

(B.9)

ŷp(0) =
1

sin θo

[
− cos i sin ξs sin Θx̂

+ (cos i cos ξs sin Θ− sin i cos Θ)ŷ

− sin i sin ξs sin Θẑ
]
.

The starting xp-axis is then found by taking ŷp(0)× ẑp. The result is simplified by using

Equation B.2:

(B.10)

x̂p(0) =
1

sin θo

[
(cos ξs sin Θ cos θo − sin i)x̂

+ sin ξs sin Θ cos θoŷ

+ sin Θ(cos i sin Θ− sin i cos ξs cos Θ)ẑ
]
.

We can now find the planetary axes, in terms of the inertial axes, at any time by

rotating Equations B.9 and B.10 about the zp-axis:

(B.11) x̂p = cos(ωrott)x̂p(0) + sin(ωrott)ŷp(0),

(B.12) ŷp = − sin(ωrott)x̂p(0) + cos(ωrott)ŷp(0).

The sub-stellar angles in the planetary coordinates may then be extracted from the rela-

tions

(B.13) sin θs cosφs = r̂ps · x̂p,
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(B.14) sin θs sinφs = r̂ps · ŷp,

(B.15) cos θs = r̂ps · ẑp,

resulting in

(B.16) cos θs = sin Θ cos [ξ − ξs] ,

(B.17) sin θs =
√

1− sin2 Θ cos2 [ξ − ξs],

(B.18) cosφs =
cos(ωrott)a(t) + sin(ωrott)b(t)√

1− cos2 θo
√

1− sin2 Θ cos2 [ξ − ξs]
,

(B.19) sinφs =
− sin(ωrott)a(t) + cos(ωrott)b(t)√

1− cos2 θo
√

1− sin2 Θ cos2 [ξ − ξs]
,

where the factors a(t) and b(t) are given by

(B.20) a(t) =
{

sin i cos ξ − cos θo sin Θ cos [ξ − ξs]
}
,

(B.21) b(t) =
{

sin i sin ξ cos Θ− cos i sin Θ sin [ξ − ξs]
}
.

Note that when θs = {0, π}, the sub-stellar longitude can be set arbitrarily to avoid

dividing by zero in Equations B.18 and B.19.
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B.1.2. Polar Observer

Equations B.18 and B.19 for the sub-stellar longitude apply to most observers. However,

the definition of ŷp(0) in Equation B.8 fails when the sub-observer point coincides with

one of the planet’s poles. Two alternate definitions can be used in these situations.

Case 1: If the sub-stellar point will not pass over the poles during orbit, we may define

(B.22) ŷp(0) = −ŷ,

so that

(B.23) x̂p(0) = ŷp(0)× ẑp = − cos Θx̂− cos ξs sin Θẑ.

This results in

(B.24) cosφs =
cosωrot cos ξ cos Θ + sinωrot sin ξ√

1− sin2 Θ cos2 [ξ − ξs]
,

(B.25) sinφs =
− sinωrot cos ξ cos Θ + cosωrot sin ξ√

1− sin2 Θ cos2 [ξ − ξs]
.

Case 2: However, if the sub-stellar point will pass over the poles during orbit, we

define instead

(B.26) x̂p(0) = ẑ,

such that

(B.27) ŷp(0) = ẑp × x̂p(0) = cos ξsŷ.
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This produces

(B.28) cosφs =
− sinωrot sin ξ cos ξs√
1− sin2 Θ cos2 [ξ − ξs]

,

(B.29) sinφs =
− cosωrot sin ξ cos ξs√
1− sin2 Θ cos2 [ξ − ξs]

.

These special cases only impact the sub-stellar longitude: expressions for the other

angles are unchanged. As with a general observer, the Case 2 sub-stellar longitude may

be set arbitrarily whenever θs = {0, π}.

B.1.3. Zero Obliquity

For non-oblique planets, Θ = 0◦, the sub-observer colatitude satisfies

(B.30) cos θo = cos i,

(B.31) sin θo = sin i,

while the sub-stellar angles become

(B.32) cos θs = 0,

(B.33) sin θs = 1,
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(B.34) cosφs =
cos(ωrott)c(t) + sin(ωrott)d(t)√

1− cos2 i
,

(B.35) sinφs =
− sin(ωrott)c(t) + cos(ωrott)d(t)√

1− cos2 i
,

where c(t) and d(t) are given by

(B.36) c(t) = sin i cos ξ,

(B.37) d(t) = sin i sin ξ.

The sub-stellar longitude is therefore

(B.38)

cosφs =
cos(ωrott) sin i cos ξ + sin(ωrott) sin i sin ξ√

1− cos2 i

= cos(ωrott) cos ξ + sin(ωrott) sin ξ

= cos(ξ − ωrott),

(B.39)

sinφs =
− sin(ωrott) sin i cos ξ + cos(ωrott) sin i sin ξ√

1− cos2 i

= − sin(ωrott) cos ξ + cos(ωrott) sin ξ

= sin(ξ − ωrott).

In other words, θo = i, φo = φo(0)− ωrott, θs = 0, and φs = ξ − ωrott.
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B.2. Kernel Details

B.2.1. Characteristics

An important measure of the longitudinal kernel is its width, σφ, as shown in the left

panel of Figure B.2. We treat this width mathematically as a standard deviation. Since

K(φ,G) is on a periodic domain, we minimize the variance for each geometry with respect

to the grid location of the prime meridian, φp:

(B.40) σ2
φ = min

[∫ 2π

0

(
φ
′ − φ̄

)2

K̂(φ)dφ

]
φp

,

where K̂(φ) = K(φ)/
∫
K(φ)dφ is the spherically normalized longitudinal kernel, φ

′ ≡ φ+

φp, and φ̄ is the mean longitude:

(B.41) φ̄ =

∫ 2π

0

φ
′
K̂(φ)dφ.

All longitude arguments and separations in Equations B.40 and B.41 wrap around the

standard domain [0, 2π). Also note the unprimed arguments inside the kernel: these

make computing the variance simpler. The minimum variance determines the standard

deviation of the kernel, and thus width, for a given geometry.

The dominant colatitude is similarly important for the latitudinal kernel, as shown in

the right panel of Figure B.2. Cowan et al. (2012a) defined the dominant colatitude, θ̄,

for a given geometry:

(B.42) θ̄ =

∮
θK̂(θ, φ)dΩ,
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where K̂(θ, φ) = K(θ, φ)/
∮
K(θ, φ)dΩ is the normalized kernel. Equation B.42 is equiv-

alent to

(B.43) θ̄ =

∫ π

0

θK̂(θ) sin θdθ,

where K̂(θ) = K(θ)/
∫
K(θ) sin θdθ is the spherically normalized latitudinal kernel. The

dominant colatitude is the North-South region that gets sampled most by the kernel (e.g.

the circles in Figure B.2.)

B.2.2. Albedo Variations

Figure 5.1 demonstrates that obliquity can influence a planet’s apparent albedo on both

rotational and orbital timescales. Quantifying these relations helps predict the obliquity

constraints we may expect from real observations. We use a Monte Carlo approach,

simulating planets with different maps and viewing geometries. We generate albedo maps

from spherical harmonics, Y m
` (θ, φ), on the same 101×201 grid in colatitude and longitude

from Section 5.2.2:

(B.44) A(θ, φ) =
`max∑
`=0

∑̀
m=−`

Cm
` Y

m
` (θ, φ),

where `max is chosen to be 3, each coefficient Cm
` is randomly drawn from the standard

normal distribution, and the composite map is scaled to the Earth-like range [0.1, 0.8].

Rotational and orbital changes in brightness are caused by East-West and North-South

albedo markings, respectively, so we make three types of maps: East-West featured with

Cm
` (m 6= `) = 0, North-South featured with Cm

` (m 6= 0) = 0, or no Cm
` restrictions. For
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all maps with East-West features, we randomly offset the prime meridian. We generate

5,000 maps of each type.

For each map we randomly select an obliquity, solstice phase, inclination, and two

orbital phases. Since inclination and orbital phase can be measured independent of pho-

tometry, we choose inclinations similar to planet Q, i ∈ [50◦,70◦], and orbital phases

{ξ1, ξ2} with ∆ξ ∈ [110◦, 130◦]. Both phases are also at least 30◦ from superior and in-

ferior conjunction, which conservatively mimics an inner working angle at the selected

inclinations. We assume the planet’s rotational and orbital frequencies are known (Pallé

et al., 2008; Oakley & Cash, 2009), and use the Earth-like ratio ωrot/ωorb = 360. We di-

vide roughly one planet rotation centered on each orbital phase into 51 time steps, then

define the normalized amplitude of rotational and orbital albedo variations, Λrot and Λorb,

as

(B.45) Λrot =
Ahigh
ξ1
− Alow

ξ1

Āξ1
,

(B.46) Λorb = |Āξ1 − Āξ2|
(
Āξ1 + Āξ2

2

)−1

,

where Ahigh
ξ1

and Alow
ξ1

are the extreme apparent albedos around the first phase, and Ā is

the mean apparent albedo of all time steps around a given phase. For each computed

Λrot and Λorb, we calculate the corresponding kernel width and absolute value change in

dominant colatitude, from Appendix B.2.1. Figure B.3 shows the resulting distributions,

where rotational and orbital information is colored red and blue, respectively. We find

similar results when relaxing constraints on the inclination and orbital phases.
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We can estimate uncertainties on values of σφ and |∆θ̄| using these distributions. The

mean rotational and orbital variations are Λ̄rot ≈ 0.54 and Λ̄orb ≈ 0.21; the average kernel

width and change in dominant colatitude are both roughly 38◦. The full distributions

have standard deviations of about 17◦ in σφ and 24◦ in |∆θ̄|, but roughly 5◦ and 7◦,

respectively, when considering only large variations. To predict constraints on obliquity

obtained from real data, we will assume there are single- and dual-epoch observations of

planet Q that have our mean variations Λ̄rot and Λ̄orb. By considering samples only around

these variations, we find about 10◦ and 20◦ standard deviations apiece in the kernel width

and change in dominant colatitude. We use these standard deviations as uncertainties

when creating the colored regions in Figure 5.6.

B.2.3. Peak Motion

Equations C1 and C2 from Cowan et al. (2009) describe the motion of the kernel peak,

where specular reflection occurs, for any planetary system. These equations can be written

for edge-on, zero-obliquity planets using Section B.1.3:

(B.47) cos θspec =
1 + cos i√
2(1 + cos i)

,

(B.48)

tanφspec =
sin(ξ − ωrott) + sin(φo(0)− ωrott)

cos(ξ − ωrott) + cos(φo(0)− ωrott)

=
sin(ωorbt− ωrott) + sin(φo(0)− ωrott)

cos(ωorbt− ωrott) + cos(φo(0)− ωrott)
.

When finding φspec from Equation B.48, the two-argument arctangent must be used to

ensure φspec ∈ [−π, π). This also means it is difficult to simplify the equation with

trigonometric identities.
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Instead, we can explicitly write the argument of Equation B.48 in terms of the first

meridian crossing, ξm, the earliest orbital phase after superior conjunction that the kernel

peak recrosses the prime meridian:

(B.49) φspec(ξ; ξm) = ∓π
2

(
4
ξ

ξm
+

[
1− sgn

(
cos

ξ

2

)])
,

where the leading upper sign applies to prograde rotation and vice versa. The first

meridian crossing is related to the planet’s frequency (or period) ratio by

(B.50)

∣∣∣∣ωrot

ωorb

∣∣∣∣ =

∣∣∣∣Porb

Prot

∣∣∣∣ =
1

2

(
4π

ξm
± 1

)
,

while the number of solar days per orbit is

(B.51) Nsolar =

∣∣∣∣ωrot

ωorb

∣∣∣∣∓ 1,

following the same sign convention. Note that the frequency/period ratios and the number

of solar days do not have to be integers. We reiterate that Equations B.47–B.51 apply to

edge-on, zero-obliquity planets.

Equation B.50 gives two frequency ratios for each first meridian crossing, one prograde

and another retrograde that is smaller in magnitude by unity. Equation B.51 then states

the corresponding difference in solar days is unity but reversed, making the longitudes of

both kernel peaks in Equation B.49 analogous at each orbital phase. These two versions

of the planet have East-West mirrored albedo maps and identical light curves: they are

formally degenerate. An inclined, oblique planet has pro/retrograde versions that could

be distinguished, as discussed in Section 5.4.5.
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