NORTHWESTERN UNIVERSITY

The Effect of Reducible Metal Oxides on the Structure and Activity of Supported Vanadium

Oxide Catalysts Prepared by Atomic Layer Deposition for Cyclohexane Oxidative

Dehydrogenation

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Chemical and Biological Engineering

By

Izabela Anna Samek

EVANSTON, ILLINOIS

September 2019

© Copyright by Izabela Anna Samek 2019 All Rights Reserved

Abstract

Supported vanadium oxide materials have been extensively studied for alkane oxidative dehydrogenation (ODH) reactions due to their high activity and selectivity. The catalytic activity of supported VO_x materials is influenced by the surface coverage of VO_x sites and hence the distribution of V=O, V-O-V, and V-O-S (S, support) bonds. The impact of the type of V-O-S bonds is often investigated by varying the bulk oxide support and it is known that the activity of these catalysts is highly dependent on the nature of the support material. This dissertation seeks to develop a fundamental understanding of the contribution of reducible supports to the activity of VO_x species in cyclohexane ODH as a model reaction of ODH of alkanes.

The first part of this thesis focuses on investigating the interactions of VO_x species with amorphous TiO₂ domains deposited by atomic layer deposition (ALD) on an inert Al₂O₃ support. A combination of ALD and calcination procedures is shown to influence the surface site distribution. Preferential binding of VO_x and TiO₂ domains to each other on an Al₂O₃ support is demonstrated by UV Raman spectroscopy and confirmed by DFT. Varying distributions of V-O-V, V-O-Ti and V-O-Al bonds have an effect on the ease of reducibility of VO_x sites. The interactions of VO_x and TiO₂ species are elucidated further under a reducing H₂ environment at elevated temperatures. Reversible migration and aggregation of V and Ti atoms is detected upon heating in H₂. Changes in the oxidation state of V, but not Ti, are observed by XPS. The elucidation of VO_x and TiO₂ speciation on the Al₂O₃ support in their oxidized state and upon reduction facilitates the understanding of the function of individual sites in catalytic reactions relying on a redox mechanism.

The second part of this thesis investigates the catalytic activities of alumina-supported VO_x-TiO₂ materials in comparison with VO_x/Al₂O₃ and VO_x/TiO₂ to determine the role the TiO₂ support plays in the improvement of ODH activity of surface VO_x sites in comparison to VO_x/Al₂O₃. The ease of reducibility of VO_x species cannot exhaustively explain the observed variability in ODH activity. The increased activity of VO_x supported on TiO₂ films above a monolayer TiO₂ coverage is attributed to the formation of oxygen vacancies within the TiO₂ structure. The use of ALD in the synthesis of mixed metal oxide materials enables the distinction between the contribution of V-O-Ti bonds and that of the bulk TiO₂ structure to the catalytic activity of supported VO_x domains. However, while the catalytic activity is dependent on the composition of the support, the selectivity-conversion trends remain unchanged.

Finally, the study of alumina-supported mixed metal oxides is extended to catalytically active CeO₂. The individual contributions of VO_x and CeO₂ sites to the cyclohexane ODH reaction mechanism are evaluated by studying CeO₂, VO_x/CeO₂ and Al₂O₃ modified with CeO₂ and VO_x domains by ALD. The bare ceria support shows the highest activity and favored total oxidation to CO₂. The catalytic behavior is dependent on the distribution of V-O-S bonds, and small clusters of CeO₂ at low surface densities favor total oxidation similarly to exposed CeO₂ surface sites in VO_x/CeO_2 .

The extensive study of the influence of reducible metal oxide domains on the structure and catalytic activity of supported VO_x sites and the resulting assignment of specific catalytic functions to individual surface structures can lead to the rational design of alkane ODH catalysts with improved alkene yields.

Acknowledgments

First, I would like to thank my advisors, Professor Randall Snurr and Professor Peter Stair for the opportunity to work in their groups as a graduate student. I have learned a tremendous amount about how to approach problems from different perspectives and more effectively communicate scientific ideas throughout our numerous discussions over the years. I have been fortunate enough to closely collaborate with my committee members, Professor Justin Notestein and Professor Neil Schweitzer, and I am extremely grateful for their advice and feedback.

None of this work would have been possible without the mentors and collaborators I've picked up along the way. Thank you to Dr. Stephanie Kwon, who served as my mentor through the early stages of my reactor troubleshooting education and Professor Neil Schweitzer for his patience as I continued to find new issues with vapor-phase hydrogen peroxide chemistry on a daily basis. To Dr. J. Miles Tan for being eager to answer my never-ending questions on the general topic of chemistry and encouraging me never to give up on projects which did not immediately yield interesting results. To Dr. Xin Tang for the many scientific discussions which were crucial in this work coming together as a cohesive story. To Dr. Cassandra George for teaching me everything atomic layer deposition related to Dr. Tasha Drake for being my mentor in Raman spectroscopy. The skills that the two of you have taught me were essential to the successful completion of this dissertation. To Dr. Patrick Littlewood for always being eager to help with any engineering problems. But also, thank you for the times you were too busy and I figured things out on my own. To Dr. Aidan Mouat for trusting me with the execution of his scientific ideas early on and building up my confidence as a researcher. To Dr. Mike Liu for teaching me valuable synthesis techniques. To Dr. Kunlun Ding for introducing me to the metathesis reaction and to Dr. J. Miles Tan for

pointing out the difference between "metathesis" and "metastasis". To Dr. Scotty Bobbitt for the collaborative efforts in trying to better understand the structures of vanadium oxide. To Dr. Cassandra Whitford - I could not have asked for a better partner in navigating co-advisement. To Dr. Scott Nauert and Dr. Louisa Savereide for introducing me to XAS and Scott, thank you for all of your advice on ODH. To Christian Contreras for keeping calm on HF Fridays. To Dr. Alexis Johnson - thank you for welcoming me to the Stair group my very first year and less so for tricking me into taking on this "group mom" business. To Dr. Huan Yan for his endless enthusiasm. To Macy Nanda, an incredible high school student, for being patient while I attempted to figure out how to be a mentor and for becoming an independent researcher during her second week at Northwestern. Additional thanks to Jerry Carsello, Dr. Xinqi Chen, Dr. Jinsong Wu, Dr. Qing Ma, Kevin Gilmore, Dr. Stephen Miller, Dr. Selim Alayoglu, Dr. Keith Macrenaris, Rebecca Sponenburg and Greg Lekki for sharing their expertise.

Thank you to all my friends in the ChBE Department and especially to Taylor Dolberg and Dr. Sophia Liu with whom I shared all of the highs and lows of graduate school. Thank you to the people who have made San Diego my refuge – Karen Rodriguez, Avital Slavin, Teiko Yakobson and Erica Fung. And thank you to those back home, who always tune in to my next grand idea, especially Karolina Irzeńska-Korzeń, Igor Adamski, Bartosz Miszczak and Radosław Kotaba.

Finally, I wanted to acknowledge my mom, who defended her PhD thesis in chemistry while eight months pregnant and who is to blame for me intending to pursue this degree ever since I can remember. Also, my dad has now supported two generations of women through advanced degrees in science, which deserves proper recognition. In all seriousness, thank you for showing me the world and giving me the courage to continue exploring it.

Table of Contents

Abs	stract	
Ack	xnowledgments	5
Tab	ole of Contents	7
List	t of Tables	
List	t of Figures	
List	t of Schemes	
1	Introduction	
	1.1 Supported Vanadium Oxide Catalysts	
	1.2 Atomic Layer Deposition of Supported Metal Oxide Catalysts	
	1.3 Alkane Oxidative Dehydrogenation	
	1.4 Research Objectives	
2	Interactions of VO _x Species with Amorphous TiO ₂ Domains on ALD-Derived Supported Materials	Alumina-
	2.1 Introduction	
	2.2 Methods	
	2.2.1 Sample Preparation	
	2.2.2 Catalyst Characterization	
	2.2.3 Catalyst Reducibility	
	2.2.4 Theoretical Methods	
	2.3 Results and Discussion	
	2.3.1 VO _x and TiO ₂ Surface Speciation	
	2.3.2 VO _x and TiO ₂ Surface Species Formed upon Reduction	57
	2.4 Conclusions	67
3	Alumina-Supported VO _x -TiO ₂ Materials in Cyclohexane Oxidative Dehydr	ogenation
	3.1 Introduction	69
	3.2 Methods	
	3.2.1 Material Synthesis	
	3.2.2 Material Characterization	
	3.2.3 Catalyst Reducibility	
	3.2.4 Reaction Studies	

	3.3 Results and Discussion	75
	3.3.1 Catalyst Characterization	75
	3.3.2 Cyclohexane ODH Reactivity	81
	3.3.3 Selectivity-Conversion Trajectories	88
	3.4 Conclusions	
4	Structure and Activity of Mixed VO _x -CeO ₂ Domains Supported on A Cyclohexane Oxidative Dehydrogenation	Alumina in 93
	4.1 Introduction	
	4.2 Methods	
	4.2.1 Material Synthesis	
	4.2.2 Material Characterization	
	4.2.3 Reaction Studies	
	4.3 Results and Discussion	
	4.3.1 Surface Characterization of Supported VO _x Materials	
	4.3.2 Cyclohexane ODH Reactivity	108
	4.4 Conclusions	
5	Conclusions and Future Directions	122
	5.1 Objectives Met and Outstanding Challenges	
	5.2 Future Directions	
	5.2.1 Active Site Quantification	128
	5.2.2 Redox Inactive Metal Oxide Modifiers	129
	5.2.3 Desorption and Re-adsorption of the Alkene	131
6	References	
Ар	pendix A: SiO2-Supported MoO3 in Olefin Metathesis	149
	A.1 Introduction	149
	A.2 Methods	151
	A.2.1. Material Preparation	151
	A.2.2. Material Characterization	151
	A.2.3. Propene Metathesis Reaction Studies	152
	A.2.4. Active Site Quantification	153
	A.3 Results and Discussion	153
	A.3.1 Characterization of MoO ₃ /SiO ₂	153
	A.3.2 Propene Metathesis Activity of MoO ₃ /SiO ₂	157

A.3.3. Catalyst Deactivation	160
A.4 Conclusions and Future Directions	
Appendix B: Supplemental Information for Chapter 2	
B.1 Computational Details	
B.1.1 Relaxation of the Alumina Surface	
B.1.2 Finding Favorable Surfaces	
B.1.3 Vibration Calculations	
B.1.4 Surface Structure Vibrations	165
B.1.5 VO4 on Extended TiO4 Domains	
B.2 Additional Results	
Appendix C: Supplemental Information for Chapters 3 and 4	

List of Tables

Table 2.1. Bond lengths and frequencies associated with VO ₄ surface sites calculated from DFT.
Structures A and B correspond to those in Figure 2.3
Table 2.2. Distribution of vanadium in different oxidation states. 67
Table 3.1. O1s and V2p _{3/2} binding energies (BE) in supported VO _x materials
Table 3.2. Properties of TiO2 Films Grown by ALD
Table 3.3. Apparent activation energies of supported VOx materials
Table 4.1. Surface densities of V and Ce for the investigated materials
Table 4.2. O1s and V2p _{3/2} binding energies (BE) in supported VO _x materials
Table 4.3. Apparent activation energies for CeO ₂ and VO _x /CeO ₂ based on reactant consumption
and product formation in cyclohexane and cyclohexene ODH reactions
Table 4.4. Apparent activation energies of supported VOx materials

List of Figures

Figure 1.1. Possible binding modes of VO_x species to the surface of the support including Figure 2.1. Ti surface density (bars) in samples prepared by ALD and corresponding absorbance Figure 2.2. UV (A,B) and visible (C) excitation wavelength Raman spectra of supported VO_x materials. An expanded view of the V=O band marked by the dotted rectangle in A is shown in B. Figure 2.3. Visualization of model catalyst structures on $[001] \gamma$ -Al₂O₃ surface. O atoms are marked in red, Al atoms are tan, V atoms are blue, and Ti atoms are green. The structures include a top view of a VO₄ site (A), a top view of VO₄ site bound to a TiO₄H site (B), and a side view of Figure 2.4. Top-down view of [001] surface of γ-alumina (2x1 supercell, Surface 2) with V (blue) and Ti (green) atoms on the surface in various configurations: V occupies the most favorable site with Ti adjacent to it (A), Ti and V are swapped from A so that Ti occupies the most favorable site with V adjacent to it (B), Ti and V occupy equivalent sites in separate unit cells (C). An additional H atom (purple) is added to an -OH group far from the V and Ti atoms to preserve the stoichiometry. A structure equivalent to A with the -OH group on Ti rotated away from the vanadyl oxygen to break the hydrogen bond is shown in D. The differences in total electronic energy from the most favorable position A are noted below the configurations. For example, D is

Figure 2.5. V K-edge XANES spectra of supported VO _x materials and VO ₂ and V ₂ O ₅ standards
(A). The inset marks the pre-edge features. Ti K-edge XANES spectra of materials modified with
a single ALD cycle of TiO_2 (B). The inset shows a deconvolution of the pre-edge feature for
1cTiO ₂ /Al ₂ O ₃ . The pre-edge region was deconvoluted into four Gaussian peaks labeled in order of
increasing energy A ₁ , A ₂ , A ₃ and B. The ratio of $(A_{A2}+A_{A3})/A_{Atotal}$ of 0.89 corresponds to an
average coordination number of 4.4.94 The spectra are offset for clarity
Figure 2.6. Proposed surface structures of VO_x/Al_2O_3 (A), $VO_x/1cTiO_2/Al_2O_3$ (B),
$1cTiO_2/VO_x/Al_2O_3$ (C) and $VO_x/16cTiO_2/Al_2O_3$ (D). V atoms are shown in blue and Ti atoms are
shown in green
Figure 2.7. H ₂ TPR profiles of supported VO _x materials
Figure 2.8. H ₂ TPR profiles of VO_x/Al_2O_3 (A), $VO_x/1cTiO_2/Al_2O_3$ (B), $1cTiO_2/VO_x/Al_2O_3$ (C),
$VO_x/16cTiO_2/Al_2O_3$ (D) and VO_x/TiO_2 (E) resulting from a sequence of TPR/TPO experiments in
the 100 – 600 °C range
Figure 2.9. UV Raman spectra of 1cTiO ₂ /Al ₂ O ₃ (A), VO _x /Al ₂ O ₃ (B), VO _x /1cTiO ₂ /Al ₂ O ₃ (C),
$1cTiO_2/VO_x/Al_2O_3$ (D) and $VO_x/16cTiO_2/Al_2O_3$ (E) following reduction by hydrogen between 450
and 600 °C. The black spectra correspond to the initial dehydrated state prior to reduction. The
spectra were recorded at RT in flowing N_2 . The insets represent an expanded view of the V=O
stretching bands
Figure 2.10. UV Raman spectra of alumina-supported VO _x -TiO ₂ materials following re-oxidation
at 450 °C (A). Expanded view of the V=O band (B)

Figure 2.11. UV Raman spectra of calcined $VO_x/1cTiO_2/Al_2O_3$ (A) and $1cTiO_2/VO_x/Al_2O_3$ (B) in
direct comparison to the spectra following re-oxidation. The insets represent an expanded view of
the V=O stretching bands
Figure 2.12. $V2p_{3/2}$ spectra of VO_x/Al_2O_3 (A), VO_x/TiO_2 (B), $VO_x/1cTiO_2/Al_2O_3$ (C) and
$1cTiO_2/VO_x/Al_2O_3$ (D). Ti2p spectra of $VO_x/1cTiO_2/Al_2O_3$ (E), $1cTiO_2/VO_x/Al_2O_3$ (F) and
VO _x /TiO ₂ (G). Spectra were collected following calcination at 450 °C (□), reduction at 450 °C (+)
and reduction at 550 °C (Δ)
Figure 3.1. UV Raman spectra of VOx/64cTiO2/Al2O3 in direct comparison to Al2O3 (A),
$VO_x/64cTiO_2/Al_2O_3$ in comparison to TiO_2 (B) and VO_x/TiO_2 together with bare TiO_2 (C). The
measured intensity of the Al ₂ O ₃ bands was divided by 10 to allow for a direct comparison with
VO _x /64cTiO ₂ /Al ₂ O ₃ . The bands observed for bare Al ₂ O ₃ are a combination of Al ₂ O ₃ features and
ones associated with the stainless steel porous disk of the fluidized bed setup as shown in Figure
C.1
Figure 3.2. V 2p spectra of VO _x /Al ₂ O ₃ (A), VO _x /16cTiO ₂ /Al ₂ O ₃ (B), VO _x /64cTiO ₂ /Al ₂ O ₃ (C) and
VO_x/TiO_2 (D). The V $2p_{3/2}$ binding energy region is shown in E-H in the same order
Figure 3.3. Temperature dependence of the cyclohexane consumption rate for supported VO_x
materials. Experiments were conducted at $P = 1$ atm and a fixed C_6H_{12} :O ₂ :He ratio of 2.2:7.9:89.9
at a constant flow rate of 100 ml min ⁻¹
Figure 3.4. H ₂ TPR profiles of supported VO _x materials
Figure 3.5. Catalytic activity of VO_x/TiO_2 compared to the bare support in the 400 to 550 °C
temperature range. 5.2 mg of each material was used. Experiments were conducted at $P = 1$ atm
and a fixed C_6H_{12} : O ₂ : He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min ⁻¹

Figure 3.6. Selectivity-conversion profiles for supported VO_x catalysts in cyclohexane ODH at T
= 450 °C and P = 1 atm. All experiments were performed at a fixed C_6H_{12} :O ₂ :He ratio of
2.2:7.9:89.9 and with flow rates varying between 50 and 100 ml min ⁻¹
Figure 3.7. Fitted selectivity-conversion trajectories for $VO_x/1cTiO_2/Al_2O_3$ (A) and
1cTiO ₂ /VO _x /Al ₂ O ₃ (B)
Figure 3.8. Second-rank delplots of cyclohexene and benzene for supported VO _x catalysts 91
Figure 4.1. UV Raman spectra of supported VO _x materials (A). A direct comparison of
$CeO_2/VO_x/Al_2O_3$ and the Al_2O_3 support is shown in (B) and a direct comparison of VO_x/CeO_2 and
CeO_2 can be found in (C). The bands observed for bare Al_2O_3 are a combination of Al_2O_3 features
and ones associated with the stainless steel porous disk of the fluidized bed setup as shown in
Figure C.1
Figure 4.2. Visible Raman spectra of supported VO _x materials
Figure 4.3. UV Raman spectra of $CeO_2/VO_x/Al_2O_3$ following in-situ reduction under H_2 in the 450
-600 °C temperature range (A) and a direct comparison of the initial oxidized material and that
following treatment under O_2 at 450 °C after reduction (B). Expansions of the V=O bands are
shown for the reduction process in (C) and following re-oxidation in (D) 105
Figure 4.4. $V2p_{3/2}$ spectra of VO_x/Al_2O_3 (A), $VO_x/CeO_2/Al_2O_3$ (B), $CeO_2/VO_x/Al_2O_3$ (C) and
VO_x/CeO_2 (D). Ce3d spectra of $VO_x/CeO_2/Al_2O_3$ (E), $CeO_2/VO_x/Al_2O_3$ (F) and VO_x/CeO_2 (G).
Figure 4.5. Comparison of the activity of a bare ceria support and VO_x/CeO_2 in the 400 – 550 °C
temperature range. 5.2 mg of each material was used. Experiments were conducted at $P = 1$ atm
100

Figure 4.6. Selectivity towards cyclohexene, benzene, CO_2 and CO as a function of conversion at 450 °C for CeO₂ and VO_x/CeO₂. All experiments were performed at a fixed C₆H₁₂:O₂:He ratio of Figure 4.7. Temperature dependence of cyclohexane (squares) and cyclohexene (diamonds) consumption for CeO₂ (open symbols) and VO_x/CeO₂ (closed symbols) normalized to the amount of catalyst. All experiments were conducted at P = 1 atm and a fixed C₆H_x:O₂:He ratio of Figure 4.8. Temperature dependence of the rates of product formation for cyclohexene (x), benzene (\blacktriangle) and CO₂ (\bullet) from cyclohexane for CeO₂ (A) and VO_x/CeO₂ (B) and from cyclohexene for CeO₂ (C) and VO_x/CeO₂ (D) normalized to the amount of catalyst. All experiments were conducted at P = 1 atm and a fixed C₆H_x:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹. The rates were calculated on a per C_6 basis, meaning that the rate of CO₂ formation was divided by 6..... 114 Figure 4.9. Selectivity-conversion trends for supported VO_x catalysts at 450 °C. All experiments were performed at a fixed C_6H_{12} : O_2 : He ratio of 2.2:7.9:89.9 and with flow rates varying between Figure 4.10. Temperature dependence of the rate of cyclohexane consumption for supported VO_x materials normalized to the amount of V (A) and to the amount of catalyst (B). Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 Figure 4.11. Temperature dependence of the rates of formation of cyclohexene (\mathbf{x}), benzene ($\mathbf{\Delta}$) and CO₂ (\bullet) for VO_x/Al₂O₃ (A) VO_x/CeO₂/Al₂O₃ (B), CeO₂/VO_x/Al₂O₃ (C) and VO_x/CeO₂ (D)

normalized o the amount of catalyst. Experiments were conducted at $P = 1$ atm and a fixed
C_6H_{12} : O_2 : He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min ⁻¹ . The rates were calculated
on a per C ₆ basis, meaning that the rate of CO ₂ formation was divided by 6 119
Figure A.1. HAADF images of 2.8MoO ₃ /SiO ₂ . Possible Mo monomeric sites are indicated with
red arrows and purple circles highlight MoO ₃ clusters
Figure A.2. UV (A,B) and visible (C) excitation wavelength Raman spectra of 2.8MoO ₃ /SiO ₂ . An
expanded view of the UV-excited Mo=O vibrations is shown in B 156
Figure A.3. C 1s (A), Mo 3d (B) and Cl 2p (C) spectra of 2.8MoO ₃ /SiO ₂ material following
grafting (red), calcination at 600 °C (blue) and propene metathesis reaction (yellow) 156
Figure A.4. Comparison of catalyst deactivation for 2.8MoO ₃ /SiO ₂ synthesized via grafting and
6.7MoO ₃ /SiO ₂ prepared by incipient wetness impregnation
Figure A.5. Temperature programmed desorption during catalyst reactivation under N_2 for
2.8MoO ₃ /SiO ₂
Figure A.6. ${}^{13}CH_2 = CH_2 (m/z=29) (A,B,C) and {}^{13}CH_2 = CHCH_3 (m/z=43) (D,E,F) spectra following$
isotope exchange experiments after high temperature pretreatment in propene (A,D), 6 hours of
propene metathesis reaction following the first active site counting experiment (B,E) and after
regeneration at high temperature under inert (C,F) for 2.8MoO ₃ /SiO ₂ 160
Figure A.7. Evaluation of catalyst deactivation with time at reaction conditions (A) and in the
absence of propene following a 5 sccm N_2 purge (B) and a 50 sccm N_2 purge (C) for 5.8MoO_3/SiO_2 $$
prepared by IWI

Figure A.8. 2.8MoO ₃ /SiO ₂ catalyst deactivation as a function of time in the presence of ethylene
in the reaction mixture. The remaining fraction of the feed corresponds to the concentration of
C ₃ H ₆
Figure B.1. Top down view of the [001] surface of ideal γ -alumina (Surface 1) (A). The relaxed
version of the ideal structure shown in A is shown in (B). Side view of the unrelaxed surface shown
in A (C). Side view of the relaxed surface shown in B (D). In all structures, O atoms are marked
in red, octahedral Al atoms are pink, and tetrahedral Al atoms are yellow. The highlighted blue
sphere represents a tetrahedral Al atom in A and C that moves to an octahedral position in B and
D167
Figure B.2. Histograms for the minimized energy of 40 configurations of vacancies (each) in
[001]A, [001]B, [111]A, and [111]B surfaces
Figure B.3. Projected VDOS for surface structures on alumina. V-O-Al bonds on Surface 1 and
Surface 2 (A), Ti-O-Ti bond frequencies for Ti ₂ and Ti ₃ structures on Surface 2 (B), Ti-O-V
frequencies on Surface 2 (C)
Figure B.4. Depictions of the structures used for VDOS calculations shown in Figure B.3. V atoms
are shown in blue and Ti atoms are shown in green
Figure B.5. VO ₄ bound to three neighboring TiO ₄ sites on Al ₂ O ₃ . V atom is shown in blue and Ti
atoms are shown in green
Figure B.6. Structure of VO ₄ on anatase used to calculate the V=O stretching frequency on a bulk
TiO ₂ support. V atom is shown in blue
Figure B.7. Top-down view of [001] surface of γ -alumina (2x1 supercell, Surface 2) with V (blue)
and Ti (green) atoms on the surface in various configurations: V occupies the most favorable site

with Ti adjacent to it (A), Ti and V occupy equivalent sites in separate unit cells (B). An additional H atom (purple) is added to an -OH group far from the V and Ti atoms (lower right) to preserve the stoichiometry. These structures are equivalent to Figure 2.4A and 2.4C, respectively. A structure similar to B with the extra hydrogen atom (purple) in a different location (middle right) Figure B.8. Deconvoluted spectra of V2p_{3/2} for ALD-synthesized samples. The dashed lines represent V^{5+} in red, V^{4+} in blue and V^{3+} in green. The black solid line is the cumulative fit. .. 174 Figure B.9. Deconvoluted V2p_{3/2} spectra of VO_x/1cTiO₂/Al₂O₃ (A) and 1cTiO₂/VO_x/Al₂O₃ (B) following re-oxidation at 450 °C. The dashed lines represent V^{5+} in red, V^{4+} in blue and V^{3+} in Figure C.1. UV Raman spectra of the Al₂O₃ support and the porous disk of the fluidized bed setup. The spectral collection time was 10 min. A broad band above 800 cm⁻¹ has been previously reported for γ -Al₂O₃ and the enhanced signal between 800 and 1000 cm⁻¹ shown in the blue spectrum can be associated with the Al₂O₃ support.¹² The remaining sharp bands are due to the

List of Schemes

Scheme 1.1. An ALD process involving the deposition of a metal oxide species in	a binary AB
reaction sequence	
Scheme 1.2. Cyclohexane ODH reaction network.	
Scheme A.1. Illustration of the isotope exchange during active site counting experim	ents 159

1 Introduction

1.1 Supported Vanadium Oxide Catalysts

Vanadium oxide, among other transition metal oxides, was early identified as an oxidation catalyst due to its ability to readily modify its electronic configuration.¹ In the 1920s, V₂O₅ gained interest for its activity towards the transformation of aromatic hydrocarbons, specifically the conversion of naphthalene to phthalic anhydride and benzene to maleic acid.²⁻³ Kinetic studies performed by Mars and van Krevelen in the 1950s revealed that surface oxygen participates in oxidation reactions catalyzed by V₂O₅. A relationship between the reaction rate and reactant partial pressures was derived based on oxidation of aromatics, and it was extended to the oxidation of SO₂.⁴ In the 1970s, researchers began to study V₂O₅ dispersed on high surface area supports in order to improve catalytic activity. Shibata et al. reported that there exists an optimum amount of the surface vanadium oxide active sites in their study of SO₂ oxidation.⁵ The concept of monolayer coverage was introduced by Wachs et al. in 1985 for a V2O5/TiO2 catalyst in o-xylene oxidation to phthalic anhydride. In this work, surface vanadium oxide species were distinguished from crystalline V₂O₅ with the use of Raman spectroscopy. The latter was reported to form above a monolayer coverage and exhibit lower catalytic activity.⁶ Vanadium oxide has been since dispersed on a variety of different oxide supports and the catalytic activity of the resulting material has been found to depend on the nature of the supporting oxide.⁷⁻⁹ On an industrial scale, vanadium oxide catalysts are currently used in the manufacture of chemicals (oxidation of SO₂ to SO₃ in the production of sulfuric acid and naphthalene oxidation to phthalic anhydride) and in the reduction of pollution (selective reduction of NO_x with NH₃).⁷

Supported VO_x species are chemically and electronically distinct from bulk V₂O₅. Due to the lower surface free energy of supported vanadium oxide species in comparison to physical mixtures of V₂O₅ with the support, the former spontaneously form on the surface of oxide supports.⁸ The preparation method and post-synthesis treatment can affect the dispersion of surface VO_x sites. Different amounts of residual V₂O₅ have been reported on the surface of a titania support following grafting with VOCl₃ and wet impregnation with vanadium oxalate.¹⁰ Impregnation generally offers limited control over the speciation and dispersion of surface VO_x. Aqueous phase synthesis methods with regulated pH provide control over the speciation of molecular V in solution. However, the pH changes during the drying procedure, which may lead to polymerization of VO_x sites.⁹ Furthermore, the structure of the catalyst is highly dependent on the calcination temperature. Mixed oxide phases can form between vanadium oxide and the oxide support at sufficiently high temperatures.¹¹ An illustration of the possible binding modes of VO_x to the surface is shown in Figure 1.1.

Figure 1.1. Possible binding modes of VO_x species to the surface of the support including molecular (A), monodentate (B), bidentate (C), tridentate (D) and polymeric (E) sites.

Supported VO_x sites have been studied with a number of different characterization techniques to improve the understanding of their surface speciation. UV-vis and Raman spectroscopy reveal the presence of isolated and oligomeric surface sites and indicate that the fraction of the latter increases with increasing vanadium loading. V₂O₅ nanoparticles exhibit different catalytic properties than dispersed VO_x species and can be easily distinguished by the presence of a sharp Raman band at 995 cm⁻¹.^{8, 12} The number of V-O-V bonds, and hence the average size of VO_x clusters, has been previously correlated with the edge energy calculated from UV-vis absorption data.¹³ Monomeric and oligomeric VO_x species can be further distinguished from highly polymerized surface structures by applying a multiwavelength excitation approach in Raman spectroscopy. UV Raman enhances the signal from isolated and less polymerized VO_x species, while visible Raman is more sensitive to highly polymerized VO_x.¹² It is difficult to distinguish between V-O-V and various V-

O-S (S, Support) bonds. However, IR and Raman spectroscopy studies as well as ¹⁸O labeling experiments have previously indicated that a single terminal V=O bond is present in VO_x sites.¹⁴⁻ ¹⁵ Additionally, XANES and solid-state ⁵¹V NMR studies demonstrate that, following dehydration, VO_x species are present in the V⁵⁺ state and a VO₄ coordination.^{8, 16-18} Density functional theory (DFT) calculations have been applied to study the structures and relative stability of monomeric and polymeric VO_x species on oxide supports.¹⁹⁻²⁰ In-situ reduction experiments under H₂ have been carried out to distinguish the ease of reducibility of different VO_x species, which is a probe of their reactivity in reactions following a redox mechanism.²¹⁻²³ Polyvanadates and V₂O₅ have been found to be more easily reducible than monovanadate species, and within the latter the following reducibility trend has been reported: bidentate > molecular > tridentate.²⁴⁻²⁵ Spectroscopic characterization methods have also been used to study supported vanadium oxide catalysts under reaction conditions, which allows to assign changes at the molecular scale directly to catalytic activity and selectivity.²⁶⁻³¹ Chapter 2 of this thesis describes in detail how information from different spectroscopic techniques and DFT calculations can complement each other to form a comprehensive description of VO_x surface speciation.

1.2 Atomic Layer Deposition of Supported Metal Oxide Catalysts

Atomic layer deposition (ALD) offers angstrom-level control during catalyst synthesis, making it possible to achieve well-defined complex structures of oxide catalysts on high surface area supports.³²⁻³⁶ The ALD process relies on a sequence of self-limiting reactions, the simplest of which can be described as an AB-type, where reaction A involves the discrete pulsing of a high vapor pressure metal precursor whose ligands partially react with surface hydroxyl groups of a support, and reaction B introduces an oxidizing or reducing agent to remove remaining ligands

and regenerate surface active sites.^{32, 37-38} An example process of depositing metal oxide species on the surface of an oxide support is depicted in Scheme 1.1. This reaction sequence can be further modified to include multiple precursors and create materials with different functionalities.³⁹⁻⁴⁰

Scheme 1.1. An ALD process involving the deposition of a metal oxide species in a binary AB reaction sequence.

The precise control of oxide film thickness attainable by ALD enables the simultaneous monitoring of structural changes and their corresponding catalytic functions. The distribution of the initial isolated metal oxide species can be controlled by the bulkiness of the precursor ligands, the density of active sites on the support surface and the introduction of blocking agents prior to deposition. The lack of solvent use in the ALD process prevents aggregation of metal oxide sites during deposition. Variations in the number of reaction cycles can further modify the distribution of surface species below a monolayer coverage as well as provide information about the thickness of metal oxide films, which begin to exhibit bulk properties.^{32, 41-44}

The use of ALD in the synthesis of supported VO_x materials has previously enabled the formation of a more homogeneous distribution of catalytically active surface sites. Stronger interactions with the support and more acidic character of VO_x species grown by ALD in comparison to impregnated materials have been reported both in VO_x supported on bulk oxides as well as on TiO₂-modified SiO₂.⁴⁵⁻⁴⁷ Additionally, VO_x species grown by ALD have shown superior catalytic activity in alkane dehydrogenation reactions in comparison with conventionally impregnated catalysts.^{45, 48} The enhanced activity of VO_x supported on anodic aluminum oxide in cyclohexane oxidative dehydrogenation (ODH) has been assigned to the improved dispersion of catalytically active sites achieved by ALD, where V-O-V bonds are not expected to form following a single ALD cycle.⁴⁸⁻⁴⁹ Additionally, ALD synthesis of well-defined VO_x/ θ -Al₂O₃ has enabled the elucidation of the reaction mechanism of methanol oxidation to formate.²⁹ This thesis aims to show how ALD can be used to create mixed metal oxide catalysts with varying distributions of surface sites in an atomically precise manner and, as a result, enable the differentiation between the catalytic contribution of the bonds VO_x domains form with an oxide support and the support itself.

1.3 Alkane Oxidative Dehydrogenation

Oxidative dehydrogenation is a thermodynamically favorable route from alkanes to alkenes. It requires lower temperatures than steam cracking or dehydrogenation, which limits the formation of coke. The reaction is exothermic and hence does not require an external heat supply. The presence of oxygen in the feed stream can prevent catalyst deactivation. However, the reaction mixture is flammable and the thermodynamically favored products are CO₂ and CO.⁵⁰ Studies of propane ODH have been motivated by a growing gap between the demand for propene and its supply from steam cracking.⁵¹ Propene is an important intermediate in a number of chemical processes including the manufacture of polymers such as polypropylene and polyurethane and other materials including acrylonitrile, propene oxide and isopropanol.⁵² One of the industrial processes for the on-purpose production of propene is propane (non-oxidative) dehydrogenation.

The technologies with the most installations worldwide are Catofin (Lummus) and Oleflex (UOP). The Catofin process utilizes an alumina-supported CrO_x catalyst, which is regenerated by combustion of coke, and the regeneration process provides part of the heat required for the dehydrogenation reactors operating in parallel. The Oleflex process uses a Pt-Sn-based catalyst on alumina in a fluidized bed reactor, where the gases are preheated prior to being in contact with the catalyst. The catalyst is regenerated by combustion of coke and redispersion of Pt by a chlorine-air mixture. The lifetime of the catalytic materials in both processes is up to three years.⁵³ While the introduction of oxygen to the feed stream could prevent catalyst deactivation and lower the required energy use, the alkene yields from ODH reactions are not yet sufficient to be economically profitable.⁹ This provides an opportunity for the rational design of catalysts that limit the undesirable consecutive and parallel total oxidation reactions.

The alkane ODH reaction mechanism has been reviewed for reactants including ethane, propane, butane, isobutane and cyclohexane.^{9, 54-55} It is generally accepted that the reaction follows a mechanism described by Mars and van Krevelen, where the reactive oxygen is supplied by the catalyst surface lattice and the catalyst is reoxidized by gas-phase O₂.⁴ The rate limiting step has been identified as C-H bond breaking. This is supported by the fact that the reaction is first order with respect to the alkane partial pressure and zero order with respect to oxygen partial pressure, as well as kinetic isotope exchange experiments.^{9, 54-56} The lower energy of secondary C-H bonds in comparison to primary ones leads to the higher reactivity of butane and cyclohexane in comparison with lighter alkanes due to the increased probability of a secondary carbon adsorbing to the catalyst surface.⁵⁴ The energy of an allylic C-H bond is significantly lower than either the primary or secondary C-H, which means the resulting alkene is more reactive than the initial

alkane, leading to undesired over-oxidation reactions.⁵⁴ CO_x products can form directly from the alkane or through consecutive reaction pathways. In light alkane ODH reactions, the formation of CO_x species is a result of breaking multiple C-H bonds. In contrast, the reaction network of cyclohexane ODH is more diverse, as shown in Scheme 1.2. Benzene is formed by breaking multiple C-H bonds, but the formation of CO_x requires breaking multiple C-H bonds on a single methylene group, C-C scission, O insertion or a radical pathway.⁴⁸ The C-H bond strength of benzene is significantly higher than those in cyclohexane or cyclohexene, which results in the termination of consecutive over-oxidation at the aromatic.⁵⁷

Scheme 1.2. Cyclohexane ODH reaction network.

Supported vanadium oxide catalysts have been extensively studied for alkane ODH reactions due to their high activity and selectivity. The contribution of individual VO_x surface structures to the reaction mechanism has been under debate. A number of studies suggest that the relative amount of monomeric and polymeric vanadium oxide surface species does not affect ODH activity.^{9, 58-61} However, reports of both decreasing and increasing alkane ODH activity as a function of V loading have also been published.^{48, 62-63} It has been postulated that, at similar V loadings, the alkane

consumption rate is dependent on the method of catalyst preparation. Enhanced catalytic activity has been reported for VO_x/SiO₂ prepared with the use of surface organometallic chemistry in comparison to incipient wetness impregnation due to differences in the chemical environment of VO_x sites.¹⁸ However, at similar edge energies calculated from UV-vis absorption spectra, equivalent conversions were reported for VO_x prepared by ALD and wetness impregnation. In this study, the reaction rate changed significantly from a material prepared by a single ALD cycle of VO_x to one prepared with 4 ALD cycles, but remained constant between 4 and 12 cycles.⁴⁸ The rate dependence on preparation method and the precursor used during catalyst synthesis has been previously assigned to the possibility of forming V₂O₅ nanoparticles. It was postulated that changes in ODH activity are only observed for materials synthesized with precursors that can lead to the formation of V₂O₅, whereas in the absence of V₂O₅ the rates are independent of VO_x domain size.⁶¹ In addition, the ease of reducibility of VO_x has been reported to depend on the structure of a VO_x monomer, which indicates that different monomeric species could potentially exhibit varying ODH activity.²⁵ Based on this lack of agreement within the literature, it is difficult to assign the specific catalytic function of V=O and V-O-V bonds, especially because the existence of the latter cannot be definitively excluded even in low V loading materials.

The role of specific bonding motifs for supported vanadia catalysts in reaction mechanisms where the rate determining step is the activation of a C-H bond has been studied by DFT. In a model system of a VO_x monomer on a silica support, the first H abstraction was reported to occur on the V=O group both in propane ODH and methanol oxidation.⁶⁴⁻⁶⁵ The second hydrogen abstraction in propane ODH, however, can also occur at the bridging V-O-Si sites. Additionally, it was found that higher activity can be achieved if the second H abstraction occurs at a different VO_x monomer,

which did not previously participate in the reaction.⁶⁴ The ODH reaction rate was found to increase with increasing VO_x domain size on a silica support. However, the differences in activation barriers were within uncertainty limits. Additionally, it was shown that the size distribution of VO_x species at sub-monolayer coverage on silica is statistical with a limited number of oligomers, which was considered to be consistent with experimental results on the lack of variation in reaction rate with VO_x domain size.²⁰ In contrast, studies of methanol oxidation on VO_x/CeO₂ indicate that, on monomeric VO_x sites, C-H bond activation occurs at the V-O-Ce site and that the reactivity decreases with increasing VO_x domain size, based on higher oxygen defect formation energies.⁶⁶⁻ ⁶⁷ Furthermore, it has been postulated that the increased ODH activity of VO_x/CeO₂ is due to a synergy between the oxide support and the supported oxide, where two electrons are accommodated in the Ce f states, resulting in the reduction of the support during the reaction mechanism and the monomeric VO_x species remain fully oxidized.⁶⁸⁻⁶⁹ Similarly, in anatasesupported vanadium oxide, dissociative adsorption of methanol was reported to occur on the V-O-Ti bonds and the rate limiting step involved the transfer of an H atom to the O atom in a Ti-O-Ti bond adjacent to the VO_x monomer. The two electrons are transferred into subsurface Ti d states, implying the participation of the reducible support surface in the reaction mechanism.⁷⁰⁻⁷¹

Experimentally, an improved understanding of the contribution of different V-O-S bonds to a reaction mechanism can be achieved by studying ternary metal oxide systems. Catalytic materials where VO_x species are deposited on titania-modified silica supports have been previously investigated for ODH reactions.⁷²⁻⁷⁵ The dispersion of VO_x species is known to improve in the presence of sub-monolayer domains of an oxide less reducible than vanadia, but more reducible than the support.^{72, 76} Dai *et al.* hypothesized that the deposition of MoO_x domains on alumina

prior to that of VO_x species introduces V-O-Mo bonds in place of V-O-Al ones, improving the reducibility and, as a result, the propane ODH activity of surface VO_x species.⁷⁶ Further, Hamilton *et al.* have shown that the ODH activity of VO_x supported on silica modified with sub-monolayer TiO₂ domains does not differ significantly from that of VO_x/SiO₂, but increases with increasing amounts of TiO₂. In this study, V-O-V and V-O-Ti bonds have been postulated to contribute equally to the reaction mechanism.⁷² Similarly, methanol oxidation activity has been reported to increase for VO_x/TiO₂/SiO₂ materials with an increasing TiO₂ content.⁷⁴ Interestingly, Vining *et al.* have found that while introducing sub-monolayer TiO₂, ZrO₂ or CeO₂ domains to a silica-supported VO_x system can significantly improve the resulting methanol oxidation activity, there is no difference in the apparent rate constant between the three different metal oxide modifiers.⁷⁷ The study of supported mixed metal oxide catalysts synthesized by ALD discussed in this thesis will further elucidate the influence of reducible metal oxide supports on the activity of VO_x species in alkane ODH reactions.

1.4 Research Objectives

The overarching goal of this dissertation is to improve the understanding of the contribution of the support material to the activity of VO_x species in alkane ODH reactions. While it is known that the reactivity of surface VO_x sites changes depending on the identity of the support, it is difficult to distinguish between the role of V-O-S bonds and that of the exposed support surface. Differentiating between these two effects becomes particularly relevant when the support material is reducible and itself catalytically active. In this work, we systematically modify an inert alumina support with domains of a reducible metal oxide of varying thickness. This approach allows us to compare amorphous oxide domains, which are chemically and electronically distinct from the

bulk, with a bulk oxide support. By introducing sub-monolayer domains of a reducible oxide, we can include V-O-S bonds without creating extended networks of the oxide of interest, eliminating its catalytic contributions. By systematically growing films of increased thickness by ALD, we can further learn at which point and in what capacity the oxide structure impacts the ODH activity of VO_x sites.

The first objective of this thesis is to elucidate the interactions of VO_x species with amorphous TiO_2 domains deposited by ALD on an alumina support. Here, we vary the amount of TiO_2 species as well as the order of deposition of the two metal oxides. We investigate how we can influence the surface metal oxide speciation by applying a sequence of ALD and calcination procedures. We combine spectroscopic characterization techniques with DFT calculations to determine the surface distribution of VO_x species in their oxidized state as well as during a redox cycle. This leads to an improved understanding of the distribution of V=O, V-O-V and V-O-S bonds in these mixed metal oxide catalysts, which can aid in the assignment of specific catalytic functions to individual bonding motifs.

The second objective of this thesis is to determine the role the TiO₂ support plays in the improvement of ODH activity of surface VO_x sites in comparison to VO_x/Al₂O₃. This is accomplished by evaluating the activity of alumina-supported mixed VO_x-TiO₂ materials in cyclohexane ODH and comparing it to the reactivity of VO_x/Al₂O₃ and VO_x/TiO₂. The catalytic activity is related to the ease of reducibility of VO_x species determined by H₂ consumption in temperature programmed reduction experiments. The contribution of V-O-V and V-O-Ti bonds to the catalytic activity is isolated in low metal loading materials, and the impact of TiO₂ is evaluated

in $VO_x/TiO_2/Al_2O_3$ catalysts with varying TiO_2 film thickness. Selectivity-conversion trends are also discussed.

The third objective of this thesis is to investigate interactions of VO_x domains with a support that is not only reducible, but also a known oxidation catalyst. Here, we compare the cyclohexane ODH activity of bare CeO₂ with VO_x species deposited on CeO₂ by ALD and evaluate materials synthesized with single ALD cycles of VO_x and CeO₂ on alumina to improve the understanding of how various surface sites contribute to the overall catalytic behavior. We use spectroscopic characterization to determine how the two ALD precursors react with existing surface sites, as well as how the order of deposition of the two metal oxides impacts the resulting surface site distribution.

Overall, the work presented here investigates the influence of reducible metal oxides on the ODH activity of supported VO_x catalysts, which has not been previously probed in catalysts synthesized with a method enabling angstrom scale precision. The combination of atomically precise synthesis, extensive spectroscopic characterization and gas-phase reaction studies enables the assignment of specific catalytic functions to individual surface structures and can lead to the rational design of alkane ODH catalysts with improved alkene yields.

2 Interactions of VO_x Species with Amorphous TiO₂ Domains on ALD-Derived Alumina-Supported Materials

A collaboration between

Izabela A. Samek, N. Scott Bobbitt, Randall Q. Snurr and Peter C. Stair

This chapter presents a modified version of the work published in *The Journal of Physical Chemistry C*.⁷⁸ Density functional theory calculations were performed by N. Scott Bobbitt. All other experiments and analysis were done by Izabela Samek.

2.1 Introduction

Supported vanadium oxide materials have been widely applied in heterogeneous catalytic oxidation reactions.^{8, 79-80} They have been extensively studied for alkane oxidative dehydrogenation (ODH) reactions due to their high activity and selectivity.^{21-22, 48, 80-82} The favorable reducibility of surface VO_x species and the ease of transition between different oxidation states are often considered as the main contributors to their catalytic activity.^{9, 83} The initial oxidized state of vanadium is generally V^{5+.9} However, the extent of reduction of vanadium depends on a number of factors such as the reducing environment, VO_x surface coverage and the nature of the support material.⁸⁰ The variety of surface VO_x species, the distribution of vanadium-oxygen bonds as well as the surface acidity of the support can also affect the reactivity of supported VO_x catalysts in alkane ODH reactions.²¹

Surface vanadium oxide species can take the form of isolated monovanadates, polyvanadate domains or V_2O_5 crystallites depending on the surface coverage and method of preparation. Vanadium oxide is known to form two-dimensional surface layers on oxide supports prior to the

formation of crystalline V_2O_5 .⁸ This is due to the mobility of VO_x species on the surface as well as the lower surface free energy of V_2O_5 in comparison to that of oxide supports such as Al_2O_3 or TiO₂.⁸ An enhanced mobility of surface VO_x species has been observed under reaction conditions at elevated temperatures.⁸⁴⁻⁸⁶

Varying the surface coverage of VO_x sites can impact the distribution of V=O, V-O-V and V-O-S (S, support) bonds.¹² All three of these bonding motifs have been postulated to have an impact on the catalytic activity of supported VO_x materials. Density functional theory (DFT) calculations have been previously applied to study the propane ODH reaction mechanism. For monomeric VO_x/SiO_2 species, it was found that both V=O and V-O-Si play a role in the reaction mechanism, but only V=O bonds are involved in the rate-determining step.⁶⁴ There exist conflicting reports in the literature regarding the impact of the ratio of monomeric to polymeric VO_x surface species on the rates of alkane ODH reactions. The catalytic turnover frequency (TOF) for propane ODH has been previously described as independent of the extent of polymerization of surface VO_x species.⁶⁰⁻⁶¹ However, several studies have established a positive correlation between the ODH reaction rate and VO_x surface density, implying that polyvanadates are more active than monovanadate species.^{48, 58, 63, 81} The activation barriers of the rate-determining H-abstraction step have been calculated by DFT and found to decrease from monomeric to dimeric to oligomeric vanadia species on the surface of silica. However, the absolute differences were reported to be within experimental error.²⁰ The opposite was found for ceria-supported VO_x, where monomeric species are the most active.⁶⁷

Ternary oxide systems have been investigated as a strategy to influence the activity and selectivity of supported vanadium oxide in ODH reactions. Dai *et al.* have shown that VO_x dispersed on Al_2O_3

coated with MoO_x exhibits an increased activity in propane ODH, and they attributed this effect to the substitution of V-O-Al bonds with V-O-Mo, which enhances the reducibility of the surface VO_x species.⁷⁶ The deposition of VO_x on small domains of an oxide less reducible than vanadia but more reducible than the support is expected to improve the dispersion of surface VO_x species.⁷⁶ Similarly, sub-monolayer titania improved the dispersion of vanadium oxide on SiO₂ compared to bulk titania.^{72, 75, 87} Hamilton *et al.* synthesized a series of mixed (VO_x)_n-(TiO_x)_m/SBA-15 materials in order to combine the beneficial characteristics of the two metal oxides. While titania-supported vanadium oxide has the highest TOF for propane ODH, VO_x on a silica support is reported to be more selective towards propene. A maximum productivity was assigned to a material where the total metal loading approached one monolayer.⁷²⁻⁷³ Lapina *et al.* investigated VO_x and TiO₂ surface structures in silica-supported VO_x-TiO₂ as a function of the order of deposition of the two metal oxides on the support.⁸⁸ They postulated that complexes with different geometries can be deposited on the surface depending on the synthesis sequence. However, the implications of these variations on catalytic activity were not examined.⁸⁸

The distribution of VO_x active sites on the surface is highly dependent on the method used to prepare the material.⁹ Catalysts synthesized in a well-defined manner can aid in determining the role of individual VO_x structures. Atomic layer deposition (ALD) enables the synthesis of heterogeneous catalysts with Ångstrom-level control over the resulting surface species. In a typical ALD process, a film of a desired thickness is grown via a sequence of two self-limiting reactions. The first reaction introduces a metal precursor, which reacts with all available surface hydroxyl groups. In the second reaction, an oxidant or a reducing agent removes the remaining ligands on the metal precursor and regenerates of the hydroxyl groups.^{32, 37} Supported VO_x materials

In this chapter, we deposit VO_x and TiO₂ domains on an alumina support by ALD with control over the amount as well as the order of the deposition of the two metal oxides. We study the interactions of VO_x species with amorphous polymeric domains of TiO₂, which are chemically and electronically distinct from bulk TiO₂, and compare these materials with vanadia on bulk alumina and titania. Al₂O₃ and TiO₂ were specifically chosen based on their contrasting contribution to the catalytic activity of supported VO_x species in alkane ODH reactions.⁹ Additionally, the Al_2O_3 support does not exhibit intense Raman bands, which facilitates the assignment of observed features to VO_x and TiO₂ surface structures.¹² We carefully characterize the catalysts with a range of spectroscopic techniques. The surface structures of the catalyst materials are probed by diffuse reflectance UV-vis (DRUV-vis) spectroscopy, UV (244 nm) and visible (488 nm) laser-excited Raman spectroscopy, and X-ray absorption near-edge spectroscopy (XANES). The Raman spectra are supplemented by DFT calculations aimed at understanding the atomic and electronic structure of V=O as a function the distribution of V-O-Al and V-O-Ti bonds. The reducibility of these materials is evaluated by H_2 Temperature Programmed Reduction (H_2 TPR), and the reduction behavior of VO_x and TiO_2 sites is further probed by in-situ H₂ reduction Raman spectroscopy experiments and X-ray photoelectron spectroscopy (XPS) measurements of reduced samples. The combination of an atomically-precise synthesis method and surfacesensitive characterization techniques enables us to identify surface structures in alumina-supported VO_x -TiO₂ materials as well as probe the structural changes of the two oxides upon reduction. A
better understanding of the surface VO_x speciation within these inhomogeneous materials will enable the development of structure-function relationships for these catalysts.

2.2 Methods

2.2.1 Sample Preparation

VO_x films were grown via ALD on Al₂O₃ (32-40 m²/g; 70% δ phase, 30% γ phase; 99.5% purity, Alfa Aesar NanoArc) and TiO₂ (45 m²/g; anatase phase; 99.9% purity, Alfa Aesar NanoArc) at 100 °C with vanadyl triisopropoxide (VOTP, Sigma-Aldrich) and water in a viscous flow reactor described previously.⁸⁹ The VOTP bubbler was heated to 45 °C and the water bubbler was at room temperature (RT). 300 s dose times were followed by 450 s nitrogen purge times for the metal precursor and water alike. The total N₂ flow during deposition was 160 sccm. The amount of VO_x was kept constant at a single ALD cycle in all samples. VOx domains were also deposited on TiO2modifed alumina supports prepared by the deposition of titanium tetraisopropoxide (TTIP, Sigma-Alrich) and water in an Arradiance Gemstar-6 ALD system at 150 °C. The TTIP bubbler was heated to 80 °C and the water bubbler was at RT. A 5 s dose of TTIP was followed by a 180 s hold and 60 s nitrogen purge. Water was dosed for 5 s, held for 5 s and purged with nitrogen for 60 s. The alumina support was modified with varying amounts of TiO_2 (denoted as xcTiO₂, where x represents the number of ALD cycles). In some cases, TiO₂ was deposited on previously calcined VO_x/Al₂O₃. Samples were calcined in air at 450 °C for 4 hours at a heating rate of 5 °C/min. The order of deposition is denoted as follows: VO_x/1cTiO₂/Al₂O₃ represents a sample where the alumina support was first modified with one cycle of TiO₂ ALD, followed by one cycle of VO_x ALD.

2.2.2 Catalyst Characterization

The metal content in selected samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) on a Thermo iCAP 7600 instrument calibrated with V and Ti standards of known concentration. The remaining samples were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) spectrometry measured with an Oxford ED2000. A calibration curve established between known ICP-OES and EDXRF concentrations was used to confirm reproducible ALD deposition of V and Ti.

DRUV-vis spectra were collected with a Shimadzu UV-3600 spectrophotometer equipped with a Harrick Praying Mantis diffuse reflectance accessory. The baseline white standard used was polytetrafluoroethylene (Sigma-Aldrich). The reflectance data were transformed to pseudo-absorbance using the Kubelka-Munk function $F(R_{\infty})$, with the alumina support as a reference. Absorption edge energies were estimated from the x-intercept of a linear fit to the increasing absorption edge in a plot of $(F(R_{\infty})hv)^{1/n}$ vs. edge energy. n=1/2 was chosen in order to enable a comparison between the data collected as part of this work and the correlation between the number of covalent V-O-V bonds in the coordination sphere of central V⁵⁺ cations and edge energies established by Gao and Wachs.¹³

UV (244 nm) and visible (488 nm) laser excited Raman spectra of the alumina-supported VO_x -TiO₂ materials were collected using a custom-built Raman instrument. The 244 nm excitation comes from a Lexel 95 SHG (second harmonic generation) laser equipped with an intracavity nonlinear crystal, BBO (BaB₂O₄), which frequency doubles visible radiation into the midultraviolet region.^{12, 90-91} The Raman spectra were collected under a controlled atmosphere with the use of a fluidized bed reactor developed by Chua and Stair to minimize the adverse effects of UV radiation.⁹² The catalysts were heated in flowing O_2 at 450 °C for 30 min to remove any absorbed moisture prior to taking measurements. The spectra were collected at RT in flowing O_2 . The visible laser power at the sample position was approximately 50 mW and that of the UV laser was 5 mW into a spot size of ca. 200 μ m.⁹³ The spectral collection time was 40 min. The Raman shift was calibrated by measuring cyclohexane as a standard prior to every experiment.

V and Ti K-edge XANES was performed at Sector 5 of the Advanced Photon Source, Argonne National Laboratory, on the Dupont-Northwestern-Dow Collaborative Access Team (DND-CAT) bending magnet D beamline. The beam energy was controlled by a Si(111) monochromator with a resolution of 10^{-4} eV. Incident and transmitted intensities were measured with Canberra ionization chambers. Fluorescence measurements were measured using a four-channel SII Vortex-ME4 detector. Energies were calibrated in transmission mode against V and Ti foils, setting the first inflection points at the known V and Ti energies of 5465 eV and 4966 eV, respectively. Spectra of samples in pellet form positioned at $45\pm5^{\circ}$ with respect to the beam and the fluorescence detector were collected in fluorescence mode. The samples were dried at 120 °C in air prior to the collection of spectra. VO₂ and V₂O₅ standards were brushed onto Kapton tape and spectra collected in transmission mode in ambient conditions. The spectra were analyzed using the Athena package. The Ti K pre-edge region was fitted to four Gaussian peaks after normalization, labeled A₁, A₂, A₃, and B in increasing energy according to a previously described procedure.⁹⁴

XPS measurements were carried out on a Thermo Scientific ESCALAB 250Xi instrument (Thermo Scientific) equipped with an Al K α X-ray source (hv = 1486.6 eV). The binding energies were referenced to the O1s peak at 531.1 eV for Al₂O₃ and 530 eV for TiO₂.

2.2.3 Catalyst Reducibility

 H_2 TPR experiments were performed on an Altamira AMI-200 chemisorption instrument in the CleanCat Core user facility at Northwestern University. The materials were pretreated in flowing 10% O₂/He at 450 °C for 1 hr. The experiments were carried out in 10% H_2/N_2 from 100 to 600 °C at a 30 °C/min ramp rate. Temperature Programmed Oxidation (TPO) was carried out in 10% O₂/He in the same temperature range. A thermal conductivity detector (TCD) was used to determine the H_2 and O_2 content of the outlet gas. A sequence of TPR and TPO experiments were conducted to determine the reversibility of the applied treatments.

In-situ reduction measurements were carried out with UV-excited Raman spectroscopy. The samples were reduced at a desired temperature between 450 and 600 °C in flowing 10% H₂/N₂ for 1 hour and cooled down to RT in nitrogen. Additionally, the catalysts were re-oxidized in flowing O₂ at 450 °C. The spectra were collected at RT in flowing N₂.

In order to study the oxidation state of V and Ti under reducing conditions with XPS, the samples were treated with flowing 10%H₂/N₂ in a quartz plug flow reactor for 1 hour at 450 or 550 °C and subsequently moved to a glovebox without exposure to air. A transfer vessel compatible with the ESCALAB 250Xi instrument was used to transfer reduced samples from the glovebox to the instrument.

2.2.4 Theoretical Methods

Density functional theory calculations were performed using the Vienna Ab initio Simulation Package (VASP 5.4.1)⁹⁵⁻⁹⁸ with the PBE exchange-correlation functional⁹⁹ with DFT-D3(BJ) van der Waals corrections¹⁰⁰⁻¹⁰¹ and the standard PAW-PBE potentials provided in VASP.¹⁰²⁻¹⁰³ Spin-

polarization was used for calculations containing Ti or V. The energy cutoff used was 520 eV, with an SCF convergence criterion of 10^{-6} (10^{-8} for frequency calculations) and a k-point mesh of [1,2,1] for a unit cell. This is sufficient to converge the total energy of the system within 0.005 eV. Geometry optimizations for all structures were performed until the largest force on any atom was below 0.02 eV/Å. The Hessian matrix was obtained for frequency calculations using central differencing with a step size of 0.01 Å. Additional computational details are provided in Appendix B.

2.3 Results and Discussion

2.3.1 VO_x and TiO₂ Surface Speciation

The V and Ti loading in each material was quantified by ICP-OES. The surface density of vanadium was in the range of 1-2 V/nm² for all of the investigated materials. This is below monolayer coverage, which is achieved at 7.3 V/nm² on alumina and at 7.9 V/nm² for titania supports.¹⁰⁴ The titania films were deposited at a rate of 0.1 Å/cycle. This value was calculated based on the deposition of 100 ALD cycles of TiO₂ on the alumina support and is consistent with previous reports in the literature under similar experimental conditions.¹⁰⁵⁻¹⁰⁶ The surface density of Ti atoms is shown in Figure 2.1. Monolayer coverage is expected at 6-8 Ti/nm².⁷² All samples produced by a single ALD cycle of TiO₂ exhibit the same Ti surface density, which is significantly below monolayer coverage. The Ti surface density in materials synthesized with 16 ALD cycles of TiO₂ is sufficient to completely cover the alumina support in these materials. The average surface speciation of vanadia is correlated to the edge energy (E_g) determined from absorption data obtained with DRUV-vis. The TiO₂ support strongly absorbs in the UV-vis region, which typically prevents exact characterization of VO_x surface sites in VO_x/TiO₂.¹³ However, sub-monolayer TiO₂

on alumina absorbs at lower wavelengths and exhibits higher absorption edge energies than VO_x/Al_2O_3 , which enables the assignment of E_g values to VO_x species in alumina-supported VO_x catalysts with low TiO₂ loadings. The measured edge energies for a range of materials synthesized by ALD and the corresponding DRUV-vis spectra are shown in Figure 2.1. The absorbance edge energy values determined for supported VO_x sites are consistent with isolated tetrahedrally coordinated VO_4 species according to the correlation established by Gao and Wachs.¹³ This result emphasizes the control over the dispersion of metal oxide species that can be achieved with ALD. However, the correlation does not distinguish between individual VO_x sites on the support surface.

Figure 2.1. Ti surface density (bars) in samples prepared by ALD and corresponding absorbance edge energies (■) (A) and the corresponding DRUV-vis spectra (B).

We further studied these materials using Raman spectroscopy by taking the multiwavelength excitation approach, which allows identification of isolated VO_x sites, polyvanadates and V₂O₅ crystallites. This differentiation is possible due to the selective resonance enhancement, which results in higher sensitivity of UV Raman to isolated and less polymerized VO_x species and visible Raman towards highly polymerized VO_x species and crystalline V₂O₅.¹² The Raman spectra of supported VO_x materials are shown in Figure 2.2.

Figure 2.2. UV (A,B) and visible (C) excitation wavelength Raman spectra of supported VO_x materials. An expanded view of the V=O band marked by the dotted rectangle in A is shown in B.

The band above 1000 cm⁻¹, magnified in Figure 2.2B, can be assigned to the V=O stretching mode of VO_x species. As shown in Figures 2.2B and 2.2C, a shift of this vibration is observed as a function of excitation wavelength, but also upon the addition of TiO₂ domains in aluminasupported VO_x materials. The former shift can be explained by the presence of a variety of surface VO_x species, which are excited at different excitation wavelengths, as was previously shown for VO_x/Al₂O₃.¹² VO_x sites supported on bulk titania cannot typically be investigated by UV Raman, due to the strong absorption of UV light by the support. However, thin TiO₂ films grown by ALD do not obscure the V=O stretching band and enable the detection of isolated VO_x surface sites. VO_x/Al₂O₃ shows a broad feature centered at 1010 cm⁻¹ associated with the V=O stretching vibration in the UV Raman spectrum (Figure 2.2B). A shift and narrowing of this feature to higher wavenumbers is observed upon the addition of TiO₂ domains. Similar shifts have been previously reported in association with increasing vanadia surface coverage as well as with the identity of the oxide support.^{12, 104, 107} Since the V surface density of the materials synthesized in this work does not vary significantly, we assign the shift in the V=O band to the formation of V-O-Ti bonds. This assignment implies VO_x binds preferentially to TiO₂ domains, as confirmed by DFT calculations below. We attribute the larger, broad V=O feature in VO_x/Al₂O₃ to the presence of a variety of surface VO_x structures. The reduction of the V=O band width in alumina-supported materials modified with TiO₂ domains implies the presence of a narrower distribution of VO_x sites. The broad feature at ~900 cm⁻¹ in VO_x/Al₂O₃ has been previously ascribed to interfacial V-O-Al

bonds.¹² We observe a broadening of this band in materials modified with sub-monolayer TiO₂ domains, which may correspond to the co-existence of V-O-Al and V-O-Ti bonds. We expect that V-O-Al bonds are no longer present in $VO_x/16cTiO_2/Al_2O_3$ and the broad band centered at 820 cm⁻¹ is a combination of V-O-Ti and Ti-O-Ti vibrations. The UV Raman spectrum of 1cTiO₂/Al₂O₃ shown in Figure 2.2A reveals bands at 710 and 840 cm⁻¹, which have been previously assigned to Ti-O-Ti bonds in a polymeric TiO₂ structure on alumina.¹⁰⁷ The presence of these bands is indicative of Ti-O-Ti bond formation in TiO₂-modified alumina. VO_x-TiO₂/Al₂O₃ with sub-monolayer amounts of TiO₂ do not exhibit these features suggesting that the presence of VO_x sites increases the dispersion of TiO₂ in these materials. The formation of Ti-O-Ti bonds is anticipated in VO_x/16cTiO₂/Al₂O₃ due to the increased surface coverage of TiO₂, but the structure remains amorphous, as indicated by the lack of crystalline TiO₂ features within the Raman spectra. Raman bands have been previously reported for the anatase phase at 147, 198, 398, 515 and 640 cm⁻¹ and for the rutile phase at 144, 448, 612 and 827 cm⁻¹.¹⁰⁸ The visible Raman spectra shown in Figure 2.2C reveal a V=O stretching band above 1020 cm⁻¹ in all of the examined materials with the exception of $VO_x/2cTiO_2/Al_2O_3$. This material is representative of VO_x supported on Al_2O_3 . modified with sub-monolayer amounts of TiO₂. Based on the absence of a V=O band associated with polymerized VO_x, we infer that the presence of low coverage TiO₂ on alumina improves the dispersion of VO_x sites, which is in agreement with previously published work on the effect of combining TiO₂ and VO_x domains on SiO₂.^{72, 75, 87}

DFT calculations were performed to further investigate the binding modes of VO₄ and TiO₄H on the alumina support. We chose to represent the support with a γ -Al₂O₃ model. The surface of the mixed phase support is expected to exhibit the properties of γ -alumina.¹⁰⁹ The structure of γ - alumina is a defective spinel.¹¹⁰ The ideal cubic spinel unit cell contains 32 O sites on an *fcc* lattice and 24 cation sites divided between ¹/₃ tetrahedral and ²/₃ octahedral positions. However, to preserve the Al₂O₃ stoichiometry, γ -alumina has 2 ²/₃ vacancies on Al sites, making the unit cell formula Θ_2 2/₃Al_{21 1/3}O₃₂ (where Θ = Al vacancy). In order to run DFT simulations with an integer number of Al atoms, we used an expanded unit cell with 64 Al atoms, 96 O atoms, and 8 vacancies. The vacancies were randomly dispersed throughout the cell and occupied a mixture of tetrahedral and octahedral Al sites. The precise distribution of the vacancies is the subject of ongoing debate in the literature.¹¹⁰⁻¹¹⁸ However, the general agreement is that octahedral sites are preferred while 25-33% of the vacancies occur on tetrahedral sites.¹¹⁹⁻¹²⁰

The surface of γ -alumina is difficult to characterize due to the presence of the random vacancies. In a unit cell with 72 Al sites, there exist over 10¹⁴ unique arrangements of 8 vacant sites, so identifying one crystal structure as the most stable is untenable. In order to find a reasonable structure for this study, we cleaved four surfaces: two [001] and two [111] surfaces, which are the two most stable faces of γ -alumina.^{111, 114} The [001] and [111] surfaces were each cleaved at two different planes of Al atoms (i.e. the octahedral layer and the tetrahedral layer). We then generated 40 unique distributions of vacancies for each surface, resulting in 160 surfaces, and performed DFT optimizations using the level of theory described above. In generating the vacant sites, we constrained the number of tetrahedral sites to 3 or less out of 8, which is approximately the expected proportion. The two lowest energy surfaces were both [001] facets, which agrees with other theoretical calculations about the most stable face of γ -alumina.^{111, 114} The most stable face of 1 tetrahedral vacancies and 1 tetrahedral vacancies. The

coordinates for these two structures are provided in Appendix B. The Al atoms on the surface were passivated with -OH groups.

The surface of γ -alumina is highly variable due to the mixture of tetrahedral, octahedral, and vacant Al sites. In order to find the most favorable binding sites for V and Ti, we tested six different binding positions on each surface. The same sites were used for both Ti and V. During the geometry optimization, tetrahedral Al atoms at the surface move into octahedral configurations which results in a flat rectangular binding site between the transformed atom and two neighboring octahedral Al atoms, as shown in Figure B.1. We found that these new sites were the most favorable binding sites for both Ti and V atoms, and we used them for the vibrational calculations presented in this work.

Figure 2.3 shows some structures that were investigated to elucidate the impact of the formation of V-O-Ti bonds on the V=O bond length and the V=O stretching frequency in Raman measurements.

Figure 2.3. Visualization of model catalyst structures on [001] γ -Al₂O₃ surface. O atoms are marked in red, Al atoms are tan, V atoms are blue, and Ti atoms are green. The structures include a top view of a VO₄ site (A), a top view of VO₄ site bound to a TiO₄H site (B), and a side view of VO₄ site bound to a TiO₄H site (C).

Structure	V-O[-Al] [Å]	V=0 [Å]	V=O* [cm ⁻¹]	Δ^* [cm ⁻¹]	V=O ^{**} [cm ⁻¹]	Δ^{**} [cm ⁻¹]						
А	1.756	1.636	959	12	1010	7						
В	1.837	1.633	971	12	1017	,						

Table 2.1. Bond lengths and frequencies associated with VO₄ surface sites calculated from DFT. Structures A and B correspond to those in Figure 2.3.

*DFT result **Experimental result

Characteristic bonds lengths and V=O stretching frequencies for structures A and B from Figure 2.3 are listed in Table 2.1. The assignments of Raman features associated with V-O-Al, V-O-Ti and Ti-O-Ti vibrations can be found in Figure B.4. In agreement with experimental results, a shift to a higher wavenumber of the V=O stretching mode is reported upon the addition of a V-O-Ti bond. The calculated magnitude of the shift (12 cm⁻¹) was similar to the experimentally observed shift (7 cm⁻¹), confirming the earlier hypothesis of preferential binding of VO_x and TiO_2 sites to each other. We used Bader charge analysis¹²¹ to understand changes to the electronic structure of the V=O bond induced by the presence of Ti in the structure shown in Figure 2.3. When Ti atoms are not present, there are about 2.4 valence electrons resting on V and 6.9 valence electrons on the vanadyl oxygen. Upon addition of Ti, the O gains about 1.1 electrons, for a total of 8.0, while there is no change to the density on the V. Bader charge analysis indicates there are 1.4 valence electrons on the Ti atom. This change in the charge distribution suggests that the Ti atom donates some electron density to the bridging O atom (Ti-O-V), which in turn donates more electron density to the V=O bond. This extra electron density strengthens the V=O bond and causes it to contract slightly, resulting in the observed blue shift in the stretching frequency. The V=O bond also contracts slightly from 1.636 to 1.633 Å, while the V-O(-Al) bonds lengthen about 0.08 Å.

The shift in the V=O stretching band associated with the presence of Ti atoms on the surface suggests VO_x and TiO_2 sites preferentially bind to the alumina support in proximity to each other. To further support this hypothesis, we compared the energies for surfaces with V and Ti adjacent or far removed from one another. We used a 2x1x1 supercell of Surface 2 so that the most favorable site on Surface 2 is replicated in the supercell. Since the 160-atom cell is repeated, these two sites are equivalent. We then placed a VO₄ moiety on one site and a TiO₄H on the equivalent site as shown in Figure 2.4. In a separate calculation, the TiO₄H was placed next to the VO₄. An extra H atom was added to an -OH group far removed from the catalytic site to preserve the stoichiometry. We found that configurations with V and Ti in adjacent sites are the most favorable, in part due to the hydrogen bond formed between the -OH group on Ti and the V=O structure. By freezing all other atoms and rotating the -OH group, we estimate this hydrogen bond contributes a stabilization in the range of 18-30 kJ/mol.

Figure 2.4. Top-down view of [001] surface of γ -alumina (2x1 supercell, Surface 2) with V (blue) and Ti (green) atoms on the surface in various configurations: V occupies the most favorable site with Ti adjacent to it (A), Ti and V are swapped from A so that Ti occupies the most favorable site with V adjacent to it (B), Ti and V occupy equivalent sites in separate unit cells (C). An additional H atom (purple) is added to an -OH group far from the V and Ti atoms to preserve the stoichiometry. A structure equivalent to A with the –OH group on Ti rotated away from the vanadyl oxygen to break the hydrogen bond is shown in D. The differences in total electronic

energy from the most favorable position A are noted below the configurations. For example, D is 29.5 kJ/mol less favorable than A.

XANES studies were performed on VO_x/Al₂O₃, 1cTiO₂/Al₂O₃, VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃ to probe any changes in geometry and oxidation state of V and Ti upon varying deposition conditions. The relevant spectra can be found in Figure 2.5. Based on the similar positons of the pre-edge features and the absorption edges in the materials synthesized by ALD and the V₂O₅ standard, we conclude that the V in the samples investigated in this work is in the 5+ oxidation state and tetrahedral geometry.¹²²⁻¹²³ Ti with an average coordination of 4.4 was present on the support surface of catalysts synthesized with 1 ALD cycle of TiO₂.⁹⁴ No differences in oxidation state or geometry were observed between materials where only one of the metal oxides was present in comparison to mixed VO_x-TiO₂ catalysts, implying that the ALD synthesis sequence does not impact the preferred surface coordination of VO_x and TiO₂.

Figure 2.5. V K-edge XANES spectra of supported VO_x materials and VO₂ and V₂O₅ standards (A). The inset marks the pre-edge features. Ti K-edge XANES spectra of materials modified with a single ALD cycle of TiO₂ (B). The inset shows a deconvolution of the pre-edge feature for $1cTiO_2/Al_2O_3$. The pre-edge region was deconvoluted into four Gaussian peaks labeled in order of increasing energy A₁, A₂, A₃ and B. The ratio of (A_{A2}+A_{A3})/A_{Atotal} of 0.89 corresponds to an average coordination number of 4.4.⁹⁴ The spectra are offset for clarity.

Based on spectroscopic evidence complemented with DFT calculation results, we postulate the presence of VO_x and TiO₂ structures on the support surface as shown in the schematic representations in Figure 2.6. A mixture of isolated and polymerized VO_x sites is expected on a bare alumina support due to the fact that the V=O stretching mode was observed in both UV- and visible-excited Raman spectra (Figure 2.6A). The modification of alumina with sub-monolayer TiO₂ domains prior to the deposition of VO_x species increases the dispersion of both metal oxides and induces preferential binding of VO_x to TiO₂ domains (Figure 2.6B). 1cTiO₂/VO_x/Al₂O₃ materials are characterized by well-dispersed TiO₂ species accompanied by a mixture of VO_x surface structures (Figure 2.6C), which tend to agglomerate upon calcination performed prior to the deposition of TiO₂, i.e. the surface is similar to A) prior to titania deposition. Finally, VO_x/16cTiO₂/Al₂O₃, having more than a monolayer coverage of amorphous TiO₂ also includes a range of VO_x surface structures (Figure 2.6D), as observed in the Raman spectra.

Figure 2.6. Proposed surface structures of VO_x/Al_2O_3 (A), $VO_x/1cTiO_2/Al_2O_3$ (B), $1cTiO_2/VO_x/Al_2O_3$ (C) and $VO_x/16cTiO_2/Al_2O_3$ (D). V atoms are shown in blue and Ti atoms are shown in green.

2.3.2 VO_x and TiO₂ Surface Species Formed upon Reduction

The reducibility of VO_x surface species was probed with H₂ TPR. Figure 2.7 shows the H₂ TPR profiles for supported VO_x materials. The temperatures of the peak maxima for VO_x/Al₂O₃ and VO_x/TiO₂ are consistent with previous reports in the literature.^{21, 124} Trends of varying VO_x reducibility as a function of the oxide support have been formerly established based on shifts in these temperatures on the order of 10 °C.¹²⁴ The enhanced reducibility of VO_x/TiO₂ has been attributed to the improved reactivity of surface oxygen in TiO₂.¹²⁴ VO_x supported on alumina modified with sub-monolayer amounts of TiO₂ (green) is equivalent in reducibility to VO_x/Al₂O₃, whereas TiO₂ coverages above a monolayer grown on an alumina support (orange) lead to increased VO_x reducibility, resembling that of VO_x/TiO₂. Notably, a reversal of the order of deposition of the two metal oxides, where TiO₂ species are grown on VO_x/Al₂O₃ (purple), also results in the shift of the peak maximum to a lower temperature. The dispersion and surface

structure distribution of supported VO_x species have been previously postulated to change upon exposure to several redox cycles.¹²⁵ A sequence of TPR/TPO experiments was performed, and the resulting TPR profiles are shown in Figure 2.8. The similarity of consecutive TPR scans demonstrates that structural changes within the surface species induced upon reduction in H₂ are reversible. This observation is consistent with the lack of permanent structural changes reported for supported VO_x materials in redox cycles performed below 600 °C.¹²⁴ A decrease in the intensity of the H₂ consumption peak with consecutive TPR scans for VO_x/TiO₂ can be associated with the incorporation of V⁴⁺ cations into the TiO₂ crystal lattice.¹²⁶

Figure 2.7. H₂ TPR profiles of supported VO_x materials.

Figure 2.8. H₂ TPR profiles of VO_x/Al₂O₃ (A), VO_x/1cTiO₂/Al₂O₃ (B), 1cTiO₂/VO_x/Al₂O₃ (C), VO_x/16cTiO₂/Al₂O₃ (D) and VO_x/TiO₂ (E) resulting from a sequence of TPR/TPO experiments in the 100 - 600 °C range.

The transformation of VO_x surface structures during hydrogen reduction was further probed with in-situ UV Raman measurements to gain an improved understanding of the interplay of VO_x and TiO₂ domains during a redox cycle. Figure 2.9 shows the UV Raman spectra from in-situ reduction experiments performed between 450 and 600 °C. The bands associated with Ti-O-Ti bond vibrations in $1cTiO_2/Al_2O_3$ shown in Figure 2.9A do not change significantly in hydrogen at elevated temperatures, suggesting that titania species do not reduce or migrate on the surface of the alumina support in the absence of VO_x species. This is consistent with the absence of clustering or migration previously observed for TiO₂/SiO₂ during high temperature reduction and

reoxidation.¹²⁷ Figure 2.9B presents the reduction profile of VO_x/Al₂O₃. The most substantial difference within this series of Raman spectra occurs between 550 and 600 °C, where we observe a decrease in the intensity of the two bands associated with V=O (1010 cm⁻¹) and V-O-Al (900 cm^{-1}) vibrations. A fraction of the VO_x surface sites remains unreduced at 600 °C, which has been previously reported at this temperature for VO_x/Al₂O₃ with less easily reducible well-dispersed monovanadates.²⁴ These observations are consistent with the H₂ TPR profile of VO_x/Al₂O₃ shown in Figure 2.7, where the H₂ consumption peak occurs around 550 °C. As seen in Figure 2.9C, the V=O band at 1017 cm⁻¹ in VO_x/1cTiO₂/Al₂O₃ decreases in intensity and shifts slightly to a higher frequency at 550 °C and further decreases at 600 °C. These changes accompany a gradual increase of the two bands at 710 and 840 cm⁻¹ with increasing temperatures. The formation of Ti-O-Ti bonds is an indication of Ti species migration during high temperature reduction. Even though VO_x/Al₂O₃ and VO_x/1cTiO₂/Al₂O₃ have comparable H₂ TPR profiles, their structural changes in the 450-600 °C temperature range are not the same. If we consider the reverse order of deposition, the V=O band in $1cTiO_2/VO_x/Al_2O_3$ shown in Figure 2.9D begins to reduce at a lower temperature in comparison to the two other VO_x-containing materials, in agreement with its H₂ TPR profile showing more easily reducible VO_x sites. In contrast to VO_x/1cTiO₂/Al₂O₃, formation of Ti-O-Ti bonds is delayed until 600 °C, implying that migration of Ti sites is not favorable. Reduction at 600 °C leads to identical spectra for VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃, which are characterized by the presence of TiO₂ clusters and a small percentage of unreduced monovanadates.

Figure 2.9. UV Raman spectra of $1cTiO_2/Al_2O_3$ (A), VO_x/Al_2O_3 (B), $VO_x/1cTiO_2/Al_2O_3$ (C), $1cTiO_2/VO_x/Al_2O_3$ (D) and $VO_x/16cTiO_2/Al_2O_3$ (E) following reduction by hydrogen between 450 and 600 °C. The black spectra correspond to the initial dehydrated state prior to reduction. The spectra were recorded at RT in flowing N₂. The insets represent an expanded view of the V=O stretching bands.

The varying behavior of the two mixed metal oxide materials during reduction can be rationalized with the help of the schematics shown in Figure 2.6. Isolated TiO_2 sites present in $VO_x/1cTiO_2/Al_2O_3$ begin to aggregate and form Ti-O-Ti bonds at lower temperatures. In contrast, Ti-O-Ti bonds only form near reduced VO_x sites in $1cTiO_2/VO_x/Al_2O_3$. These Ti atoms are in proximity of each other and are initially bound to vanadia structures by V-O-Ti bonds. The bonds are broken during the reduction of VO_x sites and Ti-O-Ti bonds form in order to preserve the 4-

coordinated Ti sites. The reversibility of the H_2 TPR profiles following redox cycles shown in Figure 2.8 implies that significant migration of Ti atoms in $1cTiO_2/VO_x/Al_2O_3$ is unlikely.

The V=O band in VO_x/16cTiO₂/Al₂O₃ shown in Figure 2.9E disappears completely upon reduction at 450 °C. This result is contrasted with a much less pronounced decrease in intensity of the V=O feature in 1cTiO₂/VO_x/Al₂O₃ at 450 °C. Both of these materials exhibit H₂ consumption peak maxima at approximately 450 °C. However, the VO_x/16cTiO₂/Al₂O₃ peak is significantly sharper and thus all of the V=O bonds are reduced at this temperature. This is not the case for 1cTiO₂/VO_x/Al₂O₃, which has a broader reduction peak. The broader peak indicates that a considerable fraction of the VO_x species in 1cTiO₂/VO_x/Al₂O₃ requires higher temperature in order to undergo reduction.

The re-oxidation of alumina-supported VO_x-TiO₂ materials at 450 °C was also probed with UV Raman. The relevant spectra are shown in Figure 2.10. The O₂ treatment resulted in identical spectra for VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃. The Ti-O-Ti bands disappear upon oxidation at 450 °C consistent with *reversible* formation of these bonds.

Figure 2.10. UV Raman spectra of alumina-supported VO_x -TiO₂ materials following reoxidation at 450 °C (A). Expanded view of the V=O band (B).

Figure 2.11 shows a direct comparison between the initial spectra of calcined materials and those following re-oxidation for $VO_x/1cTiO_2/Al_2O_3$ and $1cTiO_2/VO_x/Al_2O_3$. This comparison was enabled by the use of alumina bands as an internal standard, which compensates for changes in the scattering volume. The higher intensity of the V=O in $VO_x/1cTiO_2/Al_2O_3$ following re-oxidation

suggests that a fraction of the VO_x species in the initially calcined material remained reduced. The position of the band indicates that the oxidized species formed as a result of the redox cycle are bound to TiO₂ sites. The intensity of the V=O feature for $1cTiO_2/VO_x/Al_2O_3$ is lower compared to the calcined material. This implies that 450 °C is insufficient to completely oxidize all of the reduced VO_x species, which is consistent with a previous report, where VO_x/Al₂O₃ samples were fully re-oxidized at temperatures above 500 °C following a 600 °C reduction.²⁴ The differences between the calcined and re-oxidized UV Raman spectra for the two materials suggests that the metal oxide species rearrange on the alumina surface during a redox cycle. Additionally, it is possible that aggregation of VO_x species in VO_x/1cTiO₂/Al₂O₃ occurs following this treatment.

Figure 2.11. UV Raman spectra of calcined $VO_x/1cTiO_2/Al_2O_3$ (A) and $1cTiO_2/VO_x/Al_2O_3$ (B) in direct comparison to the spectra following re-oxidation. The insets represent an expanded view of the V=O stretching bands.

We complement the UV Raman results with XPS measurements of the oxidized and reduced VO_x materials. Figure 2.12 shows $V2p_{3/2}$ and Ti2p spectra of the various materials following

calcination, reduction at 450 °C and reduction at 550 °C. Table 2.2 shows the distribution of V⁵⁺ (517.6 eV), V^{4+} (516.6 eV) and V^{3+} (515.7 eV) species after the various treatments.²⁹ The corresponding deconvoluted V2p_{3/2} spectra can be found in Figure B.8. The calcined, aluminasupported materials contain vanadium primarily in the 5+ oxidation state.⁸⁷ VO_x/TiO_2 exhibits a balanced distribution of V^{5+} and V^{4+} on the surface of the support. This is in agreement with the incorporation of V^{4+} into the bulk of TiO₂ during the TPR/TPO sequence discussed earlier. The $1cTiO_2/VO_x/Al_2O_3$ material consists of V⁵⁺ and V⁴⁺ species upon calcination and reduction at 450 °C. The acceptance of a single electron by each V atom during reduction with H₂ in this material is indicative of VO_x sites in close proximity to each other and hence the existence of polymeric VO_x species. In contrast, the complete reduction of V^{5+} to V^{3+} in VO_x/1cTiO₂/Al₂O₃ implies the existence of isolated VO_x sites. Additionally, the formation of V^{4+} upon reduction implies the VO_x species have aggregated at elevated temperatures. Furthermore, we observe a shift of the $V2p_{3/2}$ binding energy to lower values with increasing reduction temperature, which corresponds to the further reduction of vanadium species and is consistent with the decrease in V=O band intensity in the UV Raman spectra shown in Figure 2.9. Increasing the reduction temperature leads to the more favorable formation of completely reduced V³⁺ species. No changes in the Ti oxidation state from the initial Ti⁴⁺ were observed during reduction of the different materials.⁸⁷ This supports the hypothesis that the additional Raman bands observed during reduction of VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃ are caused solely by the *migration* of surface titanium species and the substitution of V-O-Ti bonds with Ti-O-Ti (and not changes in the titanium oxidation state). The reduction of VO_x/TiO₂ at 550 °C was accompanied by a change in color from white to blue, which is indicative of the formation of Ti³⁺ species.¹²⁷ Ti³⁺ species have been previously identified by

electron paramagnetic resonance (EPR) as the most abundant sites in VO_x/TiO_2 following reduction.¹²⁸ The fact that no change in the XPS binding energy of Ti2p was observed for this material suggests that the Ti³⁺ sites are predominantly present in the bulk of the support, which is not probed by XPS.

Figure 2.12. V2p_{3/2} spectra of VO_x/Al₂O₃ (A), VO_x/TiO₂ (B), VO_x/1cTiO₂/Al₂O₃ (C) and 1cTiO₂/VO_x/Al₂O₃ (D). Ti2p spectra of VO_x/1cTiO₂/Al₂O₃ (E), 1cTiO₂/VO_x/Al₂O₃ (F) and VO_x/TiO₂ (G). Spectra were collected following calcination at 450 °C (\Box), reduction at 450 °C (+) and reduction at 550 °C (Δ).

Catalyst	Calcined at 450 °C			Reduced at 450 °C			Reduced at 550 °C		
	V ⁵⁺	V^{4+}	V ³⁺	V ⁵⁺	V^{4+}	V ³⁺	V ⁵⁺	V^{4+}	V ³⁺
VO _x /Al ₂ O ₃	0.75	0.25	0	-	-	-	0.51	0.23	0.26
VO _x /1cTiO ₂ /Al ₂ O ₃	0.85	0.06	0.09	0.18	0.54	0.28	0.01	0.47	0.52
1cTiO ₂ /VO _x /Al ₂ O ₃	0.85	0.15	0	0.21	0.79	0	0.11	0.08	0.81
VO _x /TiO ₂	0.42	0.58	0	-	-	-	0.09	0.29	0.62

Table 2.2. Distribution of vanadium in different oxidation states.

The V oxidation state distribution was also examined for VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃ following a re-oxidation at 450 °C of materials reduced in H₂ at 450 °C. For VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃ the distributions of V⁵⁺:V⁴⁺:V³⁺ were 0.69:0.23:0.08 and 0.72:0.28:0, respectively. These distributions indicate aggregation of VO_x species in VO_x/1cTiO₂/Al₂O₃ upon redox treatment at elevated temperatures. In addition, they are consistent with the UV Raman spectra shown in Figure 2.10, which show that VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃ become equivalent following reduction at 600 °C and re-oxidation at 450 °C. This suggests that the surface species undergo rearrangement at high temperature, which may affect their catalytic behavior in the examined temperature range.

2.4 Conclusions

We investigated the interactions of VO_x surface species with amorphous TiO₂ domains deposited on alumina and compared these materials to VO_x supported on bulk alumina and titania. We were able to influence the dispersion of VO_x and TiO₂ sites and hence the distribution of mixed metal oxide surface structures by a combination of ALD and calcination procedures. Preferential binding of VO_x to TiO₂ domains was observed by Raman spectroscopy and confirmed with DFT calculations. Varying distributions of V-O-V, V-O-Ti and V-O-Al bonds were shown to affect the reduction behavior of surface VO_x sites. Mobility and aggregation of surface VO_x and TiO_2 species occurred at elevated temperatures under hydrogen. Overall, we showed that ALD can be used to influence the distribution of surface species facilitating the identification of individual metal oxide surface structures via a combination of spectroscopic characterization techniques and DFT calculations. The elucidation of VO_x and TiO_2 species distributions on the alumina support in the initial oxidized states as well as upon reduction will aid in the understanding of their function in catalytic redox reactions.

3 Alumina-Supported VO_x-TiO₂ Materials in Cyclohexane Oxidative Dehydrogenation

3.1 Introduction

The activity of supported VO_x catalysts in oxidation reactions has been established to be dependent on the nature of the support material.^{8-9, 80} In alkane oxidative dehydrogenation (ODH), catalytic activity increases as follows: VO_x/SiO₂ < VO_x/Al₂O₃ < VO_x/ZrO₂ < VO_x/TiO₂. The inverse of this trend is observed for the apparent activation energy.^{9, 21-22} A linear relationship has been previously established between the enthalpy of oxygen defect formation and the apparent activation energy for supported VO_x materials.²² This trend is consistent with observations of the dependence of ODH activity on the ease of reducibility of surface VO_x species, which in turn has been postulated to be dependent on the strength of the V-O-S (S, Support) bond.^{9, 21, 23} In contrast to the significant effect of the oxide support on alkane ODH activity, Carrero *et al.* have shown that the selectivityconversion trends remain unchanged with varying support materials.⁹

The identity of the oxide support can influence the distribution of vanadium oxide surface structures. For example, epitaxial growth of VO_x films on crystalline titania has been reported,^{86, 129-130} whereas crystalline V₂O₅ particles preferentially form on the surface of SiO₂.⁸⁰ Despite these structural differences, Goodrow and Bell concluded that, in methanol oxidation, higher activity of VO_x/TiO₂ compared to VO_x/SiO₂ cannot be associated with intrinsic electronic properties of VO_x species. Instead, they postulated that oxygen vacancies present in proximity to the active site lower the activation energy of the rate limiting step.⁷⁰ Similarly, Yun *et al.* have found that surface oxygen vacancies on TiO₂ are involved in the reoxidation of VO_x sites in the Mars-van Krevelen

mechanism in ethanol oxidation.¹³¹ In addition, the energy of O vacancy formation in the bare oxide support has been correlated to ODH activity of supported VO_x materials, suggesting that the support surface can be involved in the reaction mechanism.⁷⁰

Ternary oxide systems, where a SiO₂ support is first modified with TiO₂ domains prior to the deposition of VO_x, have been investigated for oxidation reactions in order to create high surface area materials with improved VO_x reducibility.⁷²⁻⁷⁴ Vining et al. reported that, in methanol oxidation, the activity of VO_x/TiO₂/SiO₂ materials increases with increasing TiO₂ coverage at a constant surface density of VOx. They calculated apparent activation energies via density functional theory (DFT) and found that the calculated values decrease as a function of the number of V-O-Ti bonds. In addition, they showed that V centers with three equivalent V-O-S bonds are more energetically favorable.⁷⁴ A general trend demonstrating that transition metal oxides preferentially bind to metal oxide modifiers on the surface of silica has been established.¹³² This leads to the improvement of the dispersion of VO_x species in the presence of sub-monolayer domains of TiO₂ on a SiO₂ support.⁷² However, at low TiO₂ loadings propane ODH activity remains unchanged from that of VO_x/SiO₂ suggesting an equivalent role of V-O-Ti and V-O-V bonds in the reaction mechanism. The ODH activity increases when TiO₂ coverages at and above a monolayer are achieved.⁷² A particularly high propene yield was observed for a material with a joint monolayer of VO_x and TiO_2 sites on the silica surface. However, selectivity remained a function of conversion due to the favorable readsorption of propene.⁷²⁻⁷³

The catalyst synthesis method has a significant impact on the distribution of the VO_x surface sites. The most common preparation methods for supported VO_x materials include incipient wetness impregnation and grafting. The former offers limited control over the resulting surface species and leads to the formation of V_2O_5 even at low loadings, while the latter may result in the formation of polyvanadates in solution or during the drying step when the pH is no longer monitored to favor isolated VO_x sites.⁹ Achieving improved control over the speciation of surface VO_x can aid in the understanding of their role in a reaction mechanism. This has been previously accomplished by synthesizing supported VO_x catalysts with Ångstrom-level precision via atomic layer deposition (ALD).^{29, 48}

In this chapter, we evaluate the activity of supported VO_x materials synthesized by ALD in cyclohexane ODH. We compare the catalytic behavior of VO_x on bulk alumina and bulk titania to VO_x supported on alumina modified with TiO₂ domains grown by ALD. We study the effect of the amount of TiO₂ on the surface as well as the order of deposition of the two metal oxides. In Chapter 2, we investigated the interactions of VO_x with amorphous TiO₂ domains on the surface of alumina both in their initial oxidized state and under reducing conditions at elevated temperatures. We found that a combination of ALD and calcination procedures has an impact on the distribution of surface VO_x sites and, as a result, their reducibility.⁷⁸ Here, we use the insight gained from that extensive characterization study to explain differences in catalytic behavior. The systematic modification of the unreducible alumina support with domains of reducible TiO₂ allows us to gain an improved understanding of the contribution of the TiO₂ support to the superior activity of VO_x/TiO_2 . We focus on cyclohexane ODH due to its diverse reaction network shown in Scheme 1.2, where C-H bond breaking on individual methylene groups leads to the formation of cyclohexene or benzene and the production of CO and CO₂ requires undesirable C-C bond scission.48

3.2 Methods

3.2.1 Material Synthesis

VO_x films were grown via ALD on Al₂O₃ (32-40 m²/g; 70% δ phase, 30% γ phase; 99.5% purity, Alfa Aesar NanoArc) and TiO₂ (45 m²/g; anatase phase; 99.9% purity, Alfa Aesar NanoArc) at 100 °C with vanadyl triisopropoxide (VOTP, Sigma-Aldrich) and water in a viscous flow reactor described previously.⁸⁹ The VOTP bubbler was heated to 45 °C and the water bubbler was at room temperature (RT). 300 s dose times were followed by 450 s nitrogen purge times for the metal precursor and water alike. The total N₂ flow during deposition was 160 sccm. The amount of VO_x was kept constant at a single ALD cycle in all samples. VOx domains were also deposited on TiO2modifed alumina supports prepared by the deposition of titanium tetraisopropoxide (TTIP, Sigma-Alrich) and water in an Arradiance Gemstar-6 ALD system at 150 °C. The TTIP bubbler was heated to 80 °C and the water bubbler was at RT. A 5 s dose of TTIP was followed by a 180 s hold and 60 s nitrogen purge. Water was dosed for 5 s, held for 5 s and purged with nitrogen for 60 s. The alumina support was modified with varying amounts of TiO₂ (denoted as xcTiO₂, where x represents the number of ALD cycles). In some cases, TiO₂ was deposited on previously calcined VO_x/Al₂O₃. Samples were calcined in air at 450 °C for 4 hours at a heating rate of 5 °C/min. The order of deposition is denoted as follows: VO_x/1cTiO₂/Al₂O₃ represents a sample where the alumina support was first modified with one cycle of TiO₂ ALD, followed by one cycle of VO_x ALD.

3.2.2 Material Characterization

UV (244 nm) laser excited Raman spectra of the alumina-supported VO_x -TiO₂ materials were collected using a custom-built Raman instrument. The 244 nm excitation comes from a Lexel 95
SHG (second harmonic generation) laser equipped with an intracavity nonlinear crystal, BBO (BaB₂O₄), which frequency doubles visible radiation into the mid-ultraviolet region.^{12, 90-91} The Raman spectra were collected under a controlled atmosphere with the use of a fluidized bed reactor developed by Chua and Stair to minimize the adverse effects of UV radiation.⁹² The catalysts were heated in flowing O₂ at 450 °C for 30 min to remove any absorbed moisture prior to taking measurements. The spectra were collected at RT in flowing O₂. The UV laser power at the sample position was approximately 5 mW into a spot size of ca. 200 μ m.⁹³ The spectral collection time was 40 min. The Raman shift was calibrated by measuring cyclohexane as a standard prior to every experiment.

XPS measurements were carried out on a Thermo Scientific ESCALAB 250Xi instrument (Thermo Scientific) equipped with a monochromatic Al K α X-ray source (hv = 1486.6 eV). The X-ray spot size was 500 µm in diameter. Scans were collected using a pass energy of 50 eV, a 50 ms dwell time and a 0.1 eV step size. An electron flood gun was applied to the sample surface to neutralize surface charging effects. The binding energies were referenced to the adventitious C1s C-C peak at 284.8 eV.

Nitrogen adsorption-desorption isotherms were collected using a Micrometrics 3-Flex instrument in the Reactor Engineering and Catalyst Testing (REACT) Core user facility at Northwestern University. The surface area of the samples was calculated from the adsorption isotherm using the BET method.

3.2.3 Catalyst Reducibility

 H_2 temperature programmed reduction (TPR) experiments were performed on an Altamira AMI-200 chemisorption instrument in the REACT Core user facility at Northwestern University. The materials were pretreated in flowing 10% O₂/He at 450 °C for 1 hr. The experiments were carried out in 10% H_2/N_2 from 100 to 600 °C at a 30 °C/min ramp rate. A thermal conductivity detector (TCD) was used to determine the H_2 content of the outlet gas.

3.2.4 Reaction Studies

Gas-phase cyclohexane ODH reaction studies were performed in the REACT Core user facility at Northwestern University. A quartz tube plug flow reactor was used. Cyclohexane vapor was introduced via bubbling of He through a cyclohexane bubbler which remained at a fixed pressure of 1.75 bar and a temperature of 21 °C. The catalytic tests were performed in the temperature range of 400-550 °C. 0.5 - 10 mg of catalyst was diluted with 300 mg of SiO₂ in each reaction to maintain a constant catalyst bed volume and enhance the heat distribution. Reactions were typically performed with $P_{C6H12} = 2.2$ kPa, $P_{O2} = 7.9$ kPa and a total flow rate of 100 ml min⁻¹ with He balance. The materials were pretreated in flowing 20% O₂/He at 450 °C for 1 hr. The outlet gas was analyzed online using an Agilent 7890A gas chromatograph (GC). A DB-Wax column (Agilent, 30 m x 0.32 mm x 0.25 µm) was used to separate hydrocarbons, which were analyzed by a flame ionization detector (FID), while light hydrocarbons, O₂, CO and CO₂ were separated through a combination of a HP-Q plot column (Restek, 30 m x 0.53 mm x 20 µm) and a molecular sieve 5Å capillary column (Restek, 15 m x 0.53 mm x 50 µm) and analyzed by a TCD. Carbon balances were closed within at error of $\pm 3\%$. Unless otherwise noted, conversion and selectivity are defined as follows:

$$Conversion = \frac{F_{out}(\sum_{i} y_{i,out} + \sum_{j} \frac{y_{j,out}}{6})}{F_{out}(y_{C_{6}H_{12},out} + \sum_{i} y_{i,out} + \sum_{j} \frac{y_{j,out}}{6})} * 100\%$$
(3.1)

$$Selectivity_{i} = \frac{y_{i,out}F_{out}}{F_{out}(\sum_{i}y_{i,out} + \sum_{j}\frac{y_{j,out}}{6})} * 100\%$$
(3.2)

$$Selectivity_{j} = \frac{\frac{y_{j,out}}{6}F_{out}}{F_{out}(\sum_{i}y_{i,out} + \sum_{j}\frac{y_{j,out}}{6})} * 100\%$$
(3.3)

where F_{out} is the total flow rate out of the reactor, $y_{i,out}$ is the mol fraction of C₆ product *i* and $y_{j,out}$ is the mol fraction of C₁ product *j* at the exit of the reactor. All calculations were performed on a per C₆ basis meaning that concentrations of CO and CO₂ were divided by 6.

3.3 Results and Discussion

3.3.1 Catalyst Characterization

The characterization of most of the materials evaluated for cyclohexane ODH is described in Chapter 2. The following results serve to describe the surface composition of $VO_x/64cTiO_2/Al_2O_3$ in reference to the previously evaluated alumina-supported VO_x -TiO₂ materials. Figure 3.1 shows UV Raman spectra of $VO_x/64cTiO_2/Al_2O_3$ and VO_x/TiO_2 in direct comparison to those of bare Al_2O_3 and TiO₂ supports.

Figure 3.1. UV Raman spectra of $VO_x/64cTiO_2/Al_2O_3$ in direct comparison to Al_2O_3 (A), $VO_x/64cTiO_2/Al_2O_3$ in comparison to TiO_2 (B) and VO_x/TiO_2 together with bare TiO_2 (C). The measured intensity of the Al_2O_3 bands was divided by 10 to allow for a direct comparison with $VO_x/64cTiO_2/Al_2O_3$. The bands observed for bare Al_2O_3 are a combination of Al_2O_3 features and ones associated with the stainless steel porous disk of the fluidized bed setup as shown in Figure C.1.

Features associated with the V=O stretching vibration are observed at 1025 and 1028 cm⁻¹ for $VO_x/64cTiO_2/Al_2O_3$ and VO_x/TiO_2 , respectively. They indicate the presence of VO_x monomers on the surface of both materials.¹² These bands are shifted to a higher frequency in comparison to VO_x/Al₂O₃, which at the constant V surface density, are influenced by the identity of the oxide support, in this case, the formation of V-O-Ti bonds.^{12, 104} A number of bands is also present below 900 cm^{-1} for VO_x/64cTiO₂/Al₂O₃. Figure 3.1A and 3.1B present direct comparisons of this material with bare Al₂O₃ and TiO₂ supports, respectively. The broad feature observed between 700 and 1000 cm⁻¹ is expected to be a combination of contribution from Al₂O₃, Ti-O-Ti linkages and V-O-S bonds.^{12, 107} Anatase features have been observed at 147, 198, 398, 515 and 640 cm⁻¹.¹⁰⁸ The 515 and 640 cm⁻¹ bands are clearly shown in the TiO₂ spectrum in Figures 3.1B and 3.1C. The lower wavenumber bands in VO_x/64cTiO₂/Al₂O₃ include a mixture of features associated with both the porous disk of the fluidized setup and the TiO₂ support. The sharp increase in intensity between 400 and 515 cm⁻¹ observed for $VO_x/64cTiO_2/Al_2O_3$ similar to the anatase spectrum demonstrates the formation of crystalline TiO_2 in this material. The surface free energy of TiO_2 is lower than that of Al₂O₃, which implies that the formation of a surface oxide layer is preferred to that of crystalline nanoparticles.⁸ It is therefore expected that VO_x domains on the surface of a crystalline TiO_2 film on alumina are present in $VO_x/64cTiO_2/Al_2O_3$. Figure 3.1C indicates that all of the bands at frequencies lower than that of V=O are associated with the TiO_2 support.

The initial oxidation state of the surface vanadium species was evaluated by XPS, and the relevant spectra are shown in Figure 3.2. Table 3.1 lists the binding energies associated with O1s and V2p_{3/2} peaks. A shift to lower binding energies for both the O1s and the V2p_{3/2} peaks is observed with increasing amounts of TiO₂. This shift may be assigned to XPS final-state effects associated with the increased polarizability of TiO₂ in comparison to Al₂O₃.¹³³⁻¹³⁴ O1s binding energies of bare Al₂O₃ and TiO₂ supports are reported in Table 3.1 to further confirm that the observed binding energy shifts are due to the identity of the support material. The magnitude of the difference between the O1s and V2p_{3/2} binding energies has been previously applied to unambiguously determine the oxidation state of vanadium species.¹³⁵ For single crystal and polycrystalline V₂O₅ the value of this separation varied between 12.8 and 13.6 eV. This indicates that, in their oxidized state, the supported VO_x species contain primarily V⁵⁺ based on the data shown in Table 3.1.¹³⁶ In addition, a comparison of the ratios of peak areas of V 2p_{3/2} and O 1s shown in Table 3.1 further confirms that a similar amount of VO_x species is present on the surface of all of the materials.

Figure 3.2. V 2p spectra of VO_x/Al₂O₃ (A), VO_x/16cTiO₂/Al₂O₃ (B), VO_x/64cTiO₂/Al₂O₃ (C) and VO_x/TiO₂ (D). The V 2p_{3/2} binding energy region is shown in E-H in the same order.

	O1s		V2p _{3/2}			
Material	BE	FWHM*	BE	FWHM*	Δ** [eV]	A _{V2p3/2} /A _{O1s}
	[eV]	[eV]	[eV]	[eV]		
Al ₂ O ₃	531.66	2.27	-	-	-	-
VO _x /Al ₂ O ₃	531.75	2.30	517.95	2.34	13.8	0.06
VO _x /16cTiO ₂ /Al ₂ O ₃	531.30	2.54	517.78	2.08	13.52	0.05
VO _x /64cTiO ₂ /Al ₂ O ₃	530.30	1.82	517.41	1.81	12.89	0.05
VO _x /TiO ₂	530.31	1.51	517.32	1.94	12.99	0.08
TiO ₂	529.79	1.40	-	-	-	-

Table 3.1. O1s and V2p_{3/2} binding energies (BE) in supported VO_x materials.

*FWHM stands for full width at half maximum

**BE separation between O1s and V2p_{3/2}

The thickness of the TiO_2 films was estimated based on the attenuation of the intensity of the Al 2p signal from the support. The signal attenuation and the film thickness of the overlayer are correlated via the following equation:

$$\frac{I}{I_0} = exp\left[-\frac{d}{\lambda cos\theta}\right] \tag{3.4}$$

where I is the intensity of the support under an overlayer of thickness d, I_0 is the intensity of a bare support (d=0), λ is the mean escape depth of photoelectrons at a given energy, and θ is the angle with respect to the surface normal, at which the spectra were collected.¹³⁷ In order to account for changes in the spectra due to differential charging and instrumental variations, the ratios of the areas of the Al 2p and O 1s peaks were used in place of the intensities I and I_0 under the assumption that the oxygen contribution is the same in all of the investigated materials. I_0 was equal to 0.14 and the relevant I values are shown in Table 3.2. The mean escape depth of Al Ka X-ray excited Al 2p electrons at a kinetic energy of 1412 eV,13 Å, was used for the calculations.¹³⁸ The take-off angle was 45°. The TiO₂ film thickness values calculated using equation 3.4 matched the values obtained from surface density calculations based on the weight loading of Ti and the surface area of the material, as shown in Table 3.2. The resulting growth rate was estimated to be 0.4 Å/cycle. This is within the range of previously reported values, where the adsorption of TTIP is a selfsaturated process between 100 and 250 °C and the growth rate depends on the efficient removal of remaining precursor ligands determined by the deposition temperature and the nature of the oxidizing agent.105, 139

Catalyst	Ι	Ti weight %	Surface Area [m ² /g]	TiO2 Thick1	2 Film ness [Å]	TiO ₂ Rate [Growth Å/cycle]
			-	XPS	ICP	XPS	ICP
VO _x /16cTiO ₂ /Al ₂ O ₃	0.11	6	37	4.4	6.8	0.3	0.4
VO _x /64cTiO ₂ /Al ₂ O ₃	0.04	18	36	23	24	0.4	0.4

Table 3.2. Properties of TiO₂ Films Grown by ALD.

3.3.2 Cyclohexane ODH Reactivity

Cyclohexane ODH activity of supported VOx materials was evaluated in the 400 - 550 °C temperature range. Apparent activation energies with respect to the consumption of cyclohexane were calculated from the slope of ln(rate) vs. 1/T and are reported in Table 3.3. As shown in Figure 3.3, VO_x/Al_2O_3 (blue) is significantly less active than VO_x/TiO_2 (red) in agreement with previous literature reports.^{9, 21} Modification of the alumina support with sub-monolayer TiO₂ domains prior to the deposition of VO_x (green) does not significantly improve ODH activity, although marginally increased rates of cyclohexane consumption are observed at lower temperatures resulting in a decrease in the apparent activation energy. In contrast, $1cTiO_2/VO_x/Al_2O_3$ (purple) shows increased catalytic activity with an apparent activation energy comparable to $VO_x/1cTiO_2/Al_2O_3$. This suggests that 1cTiO₂/VO_x/Al₂O₃ contains an increased amount of a similar active site to that which is present in VO_x/1cTiO₂/Al₂O₃. Cyclohexane ODH activity can be further improved by the deposition of thicker TiO₂ films on the alumina support. VO_x/16cTiO₂/Al₂O₃ (orange) shows higher activity than that of catalysts modified with a single ALD cycle of TiO_2 , and VO_x/64cTiO₂/Al₂O₃ (pink) resembles the catalytic behavior of VO_x/TiO₂. The alumina support is expected to be completely covered by a TiO₂ film in both VO_x/16cTiO₂/Al₂O₃ and $VO_x/64cTiO_2/Al_2O_3$.⁷⁸ This dissimilar catalytic behavior of the two materials implies that different distributions of active sites are present on the two surfaces and their improved activity cannot be simply explained by the replacement of V-O-Al bonds with V-O-Ti. The apparent activation energies of VO_x supported on TiO₂-modified Al₂O₃ fall within the range established between VO_x/TiO_2 (64 kJ/mol) and VO_x/Al_2O_3 (107 kJ/mol) and decrease with increasing TiO₂ loading. An equivalent trend has been reported for $VO_x/TiO_2/SiO_2$ in methanol oxidation.⁷⁴

Table 3.3. Apparent activation energies of supported VO_x materials.

Catalyst	E _{A,app} [kJ/mol]
VO _x /Al ₂ O ₃	107 ± 3
VO _x /1cTiO ₂ /Al ₂ O ₃	97 ± 2
1cTiO ₂ /VO _x /Al ₂ O ₃	98 ± 2
VO _x /16cTiO ₂ /Al ₂ O ₃	84 ± 2
VO _x /64cTiO ₂ /Al ₂ O ₃	78 ± 2
VO _x /TiO ₂	64 ± 2

Figure 3.3. Temperature dependence of the cyclohexane consumption rate for supported VO_x materials. Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹.

An inverse relationship between the activity of VO_x supported on bulk metal oxides in alkane ODH reactions and the ease of reducibility of the VO_x surface sites determined by the temperature of the H₂ consumption peak maximum in H₂ TPR experiments has been previously reported in the literature.²¹⁻²³ The H₂ TPR profiles from Figure 2.7, modified to include $VO_x/64cTiO_2/Al_2O_3$, are shown as Figure 3.4.

Figure 3.4. H₂ TPR profiles of supported VO_x materials.

The catalytic behavior of VO_x/Al₂O₃ and VO_x/1cTiO₂/Al₂O₃ depicted in Figure 3.3 is accurately captured by similar H₂ TPR profiles of the two materials. The comparable temperatures of the H₂ consumption peak maximum can explain the lack of significant differences in the rate of C₆H₁₂ disappearance and the fact that hydrogen consumption is first observed at lower temperatures for VO_x/1cTiO₂/Al₂O₃ than for VO_x/Al₂O₃ can explain the slightly higher activity between 400 and 450 °C for the former catalyst. The extensive characterization study described in Chapter 2 indicated that VO_x/Al₂O₃ consists of both monomeric and polymeric surface VO_x structures whereas VO_x/1cTiO₂/Al₂O₃ is characterized by well-dispersed VO_x sites bound to isolated TiO₂ domains.⁷⁸ Therefore, VO_x/Al₂O₃ includes a distribution of V-O-Al and V-O-V bonds and VO_x/1cTiO₂/Al₂O₃ contains exclusively V-O-Al and V-O-Ti bonds. The nearly identical catalytic behavior and H₂ reducibility profiles of the two materials imply that the contribution of V-O-V and V-O-Ti bonds to the cyclohexane ODH reaction mechanism is equivalent. This is in agreement with a previously published claim that two dimensional vanadium oxide oligomers and VO_x

monomers bound to highly dispersed sub-monolayer TiO₂ domains supported on SBA-15 are equivalent in propane ODH.⁷² $1cTiO_2/VO_x/Al_2O_3$ includes both monomeric and polymeric VO_x surface structures bound to TiO₂, which result in the presence of V-O-Al, V-O-V and V-O-Ti bonds.⁷⁸ The H₂ consumption peak of VO_x/Al₂O₃ has been previously shown to shift to lower temperatures with increasing V loading up to a monolayer coverage at which point the trend was reversed. This implies that at sub-monolayer coverages polymerized VO_x species are more easily reducible by H₂.¹⁴⁰ The improved reducibility of $1cTiO_2/VO_x/Al_2O_3$ can therefore be explained by a combined effect of the presence of polymerized VOx domains and their binding to well-dispersed TiO₂ sites. These more easily reducible VO_x species lead to an increase in ODH activity as shown in Figure 3.3. Additionally, we have shown by in-situ UV Raman spectroscopy experiments that Ti-O-Ti bonds form on the surface of VO_x/1cTiO₂/Al₂O₃ at lower temperatures than for 1cTiO₂/VO_x/Al₂O₃. This implies the presence of isolated TiO₂ monomers which are not bound to VO_x species in VO_x/1cTiO₂/Al₂O₃. In contrast, well dispersed TiO₂ sites which form V-O-Ti bonds with VO_x domains are found in $1cTiO_2/VO_x/Al_2O_3$.⁷⁸ This further confirms that the higher ODH activity of $1cTiO_2/VO_x/Al_2O_3$ can be assigned to a higher density of more active VO_x sites with V-O-Ti bonds given that the Ti content is the same in the two materials.

The differences in ODH activity of the remaining catalysts cannot be adequately described by the ease of reducibility of VO_x sites. $1cTiO_2/VO_x/Al_2O_3$, $VO_x/16cTiO_2/Al_2O_3$ and $VO_x/64cTiO_2/Al_2O_3$ exhibit H₂ consumption peaks positioned in a fixed temperature range despite their varying catalytic behavior. This indicates that the role of the TiO₂ support is more substantial than the formation of V-O-Ti bonds leading to improved reducibility of VO_x surface sites. The enhanced catalytic behavior of VO_x/TiO_2 in oxidation reactions has been previously attributed to

the presence of defects in the form of O vacancies on the surface of the support.^{70, 131, 141} Electron paramagnetic resonance (EPR) has been used to detect oxygen vacancies in VO_x/TiO₂ prior to and following propane ODH. Electrons trapped at Ti(IV) sites and on surface bound molecular oxygen have been hypothesized to influence the redox cycle of this catalyst.¹⁴¹ The defects have been shown to preferentially form in proximity to VO_x sites and lower the activation energy of the rate determining H-abstraction from an adsorbed methoxy group in methanol oxidation.⁷⁰ It has also been postulated that O vacancies are involved in the reoxidation of the catalytically active VO_x species in ethanol oxidation, where O₂ from the gas phase adsorbs on a defect site on TiO₂ and migrates to the reduced vanadium center.¹³¹

Changes in the geometry and electronic structure of crystalline TiO₂ upon defect formation have been extensively studied in the literature.¹⁴² In addition, O vacancies were previously reported to exist in sub-monolayer amorphous TiO₂ domains on SiO₂.¹²⁷ From DFT calculations, it is known that at least one of the two excess electrons from a single defect localizes on the next-nearest neighbor Ti ion. The other can be localized on either the nearest Ti to the defect or another nextnearest neighbor, depending on the model.¹⁴² This implies that in the case of TiO₂ films deposited on Al₂O₃, extended networks of TiO₂ are necessary for the formation of O vacancies given that Al sites are unlikely to undergo reduction. Therefore, even though the formation of Ti-O-Ti bonds has been observed for VO_x/1cTiO₂/Al₂O₃ under reducing conditions at elevated temperatures by UV Raman spectroscopy, we do not expect the presence of O vacancies in materials modified with a single ALD cycle of TiO₂.⁷⁸ The extent of reduction of 2D TiO₂ clusters on SiO₂ has been correlated to the Ti loading, implying that an increased number of oxygen vacancies can be formed at higher TiO₂ surface coverages.¹²⁷ Additionally, the apparent activation energy for methanol oxidation of VO_x supported on these TiO₂/SiO₂ materials decreases when an O vacancy is present adjacent to the active site.⁷⁴ In the current work, the improved ODH activity of VO_x/64cTiO₂/Al₂O₃ compared to VO_x/16cTiO₂/Al₂O₃ can be explained by the higher density of O vacancies in the thicker crystalline TiO₂ film. These defects are more energetically favorable on the surface, where they can participate in the reaction mechanism.¹⁴³⁻¹⁴⁴ However, they constitute at most 1-2% of surface O atoms, which implies that at a coverage of 64 cycles of TiO₂ ALD on Al₂O₃ the surface of the support is saturated with defects and hence becomes equivalent to a bulk TiO₂ support.⁷⁰ In order to confirm that VO_x sites are the active species in these materials, we evaluated the activity of the bulk TiO₂ support and compared it to that of VO_x/TiO₂. Figure 3.5 shows the conversion of the two materials in the 400 – 550 °C temperature range. The significantly decreased catalytic performance of the bare support indicates that its only role in VO_x/TiO₂ catalysts is the enhancement of the activity of VO_x species. This is consistent with our previous XPS results, described in Chapter 2, which indicate that only the oxidation state of VO_x species, and not that of TiO₂, changes significantly following reduction with H₂ at elevated temperatures.⁷⁸

Figure 3.5. Catalytic activity of VO_x/TiO₂ compared to the bare support in the 400 to 550 °C temperature range. 5.2 mg of each material was used. Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹.

3.3.3 Selectivity-Conversion Trajectories

Figure 3.6 shows the selectivity of the supported VO_x catalysts towards cyclohexene, benzene, CO₂ and CO evaluated at 450 °C. When compared in a fixed conversion range, all of the examined materials follow the same selectivity-conversion curves where the selectivity towards the desired product, cyclohexene, decays exponentially with increasing conversion. This is in agreement with a previously established trend that the selectivity of supported VO_x materials in propane ODH is independent of the support material and that it is only a function of conversion.⁹ Figure 3.7 shows fits of selectivity-conversion trajectories for VO_x/1cTiO₂/Al₂O₃ and 1cTiO₂/VO_x/Al₂O₃. The cyclohexene and benzene products selectivity-conversion data is fit to exponential decay and growth curves, respectively, and the CO_x data is shown with linear curves. The extrapolation of

these fits to 0% conversion yields selectivity values for C_6H_{10} , CO_2 and CO, which add up to 100%.

Figure 3.6. Selectivity-conversion profiles for supported VO_x catalysts in cyclohexane ODH at T = 450 °C and P = 1 atm. All experiments were performed at a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 and with flow rates varying between 50 and 100 ml min⁻¹.

Figure 3.7. Fitted selectivity-conversion trajectories for $VO_x/1cTiO_2/Al_2O_3$ (A) and $1cTiO_2/VO_x/Al_2O_3$ (B).

According to the delplot method, a finite y-intercept in a plot of molar yield divided by conversion (selectivity) vs. conversion indicates that a given product is primary.¹⁴⁵ As shown in Figures 3.6 and 3.7, cyclohexene, CO₂ and CO are primary products for all of the examined catalysts. The direct formation of CO_x products from cyclohexane can be a result of C-C bond breaking or the breaking of both C-H bonds on a single methylene group. The energy of a C-C bond is lower than those of primary and secondary C-H bonds, which implies that C-C bond breaking is the more probable event.⁵⁴ The extrapolation of the selectivity-conversion trajectory indicates a near zero intercept for benzene, suggesting that it is a higher order product. Moreover, Figure 3.8 shows yield/conversion² vs. conversion data, where the trajectory associated with cyclohexene clearly diverges, confirming this is a primary product.¹⁴⁵ The formation of benzene involves a sequential C-H bond abstraction, which is favorable given the lower allylic C-H bond dissociation in

cyclohexene than that of the secondary C-H in cyclohexane.⁵⁴ Furthermore, the C-H bond dissociation energy in benzene is significantly higher, which results in the termination of overoxidation by sequential C-H bond breaking at benzene.⁵⁷

Figure 3.8. Second-rank delplots of cyclohexene and benzene for supported VO_x catalysts.

3.4 Conclusions

We have evaluated the catalytic activity of alumina-supported VO_x-TiO₂ materials in cyclohexane ODH and compared these catalysts to VO_x/Al₂O₃ and VO_x/TiO₂. We have shown that at a constant V surface density the catalytic activity increases with increasing thickness of TiO₂ films on Al₂O₃. An approximately 2.5 nm thick film of TiO₂ deposited on Al₂O₃ is an equivalent support to bulk anatase. We attribute the differences in the activity and apparent activation energy of VO_x supported on TiO₂ films of varying thickness to the density of oxygen vacancies on the surface of the support. We have shown that the ease of reducibility of VO_x surface species under H₂ is primarily dependent on the distribution of V-O-Al, V-O-V and V-O-Ti bonds and that the latter two affect this property in a similar manner. For this reason, the H₂ TPR method cannot accurately capture all of the differences in catalytic activity between materials with increased fractions of V-O-V and V-O-Ti bonds. While the composition of the support has a significant impact on cyclohexane ODH activity, the selectivity profile of supported VO_x materials is only a function of conversion.

4 Structure and Activity of Mixed VO_x-CeO₂ Domains Supported on Alumina in Cyclohexane Oxidative Dehydrogenation

4.1 Introduction

Cerium oxide has found a number of catalytic applications due to its remarkable redox properties. It is used industrially in three-way catalytic converters for the treatment of exhaust gases from automobiles and in fluid catalytic cracking for the removal of SO_x from flue gases.¹⁴⁶⁻¹⁴⁸ The mobility of lattice ions, the ease of changing oxidation state between C⁴⁺ and Ce³⁺ and the oxidizing capability of Ce⁴⁺ contribute to the catalytic activity of bulk CeO₂. However, the oxide favors total oxidation reactions. The selectivity towards partial oxidation products can be improved by introducing dopants or incorporating different elements into the lattice.¹⁴⁸ The deposition of VO_x species on a CeO₂ support has been reported to result in high activity and selectivity in oxidation reactions.^{21-22, 149-154} However, it is difficult to directly observe how the two metal oxides interact with each other and individually contribute to reaction mechanisms.

The role of the CeO₂ support in methanol oxidation catalyzed by VO_x/CeO₂ has been previously investigated by DFT calculations. Ganduglia-Pirovano *et al.* have found that a special synergistic effect exists between VO_x species and the CeO₂ support, where ceria undergoes reduction while monomeric VO_x species remain fully oxidized during the reaction.⁶⁸ This direct participation of the support has been reported to lead to stronger binding of methanol to the surface and the lowering of the energy required for H transfer.⁶⁹ The overall catalytic activity of VO_x/CeO₂ materials has been found to decrease with increasing VO_x domain size based on oxygen defect formation energies.⁶⁶⁻⁶⁷ Negligible changes in the oxidation state of V in VO_x/CeO_2 under ODH reaction conditions have also been observed by EPR, XANES and ¹⁸O isotope exchange experiments.^{151, 155}

The determination of structure-reactivity relationships for VO_x/CeO_2 catalysts is further complicated by the formation of a mixed metal oxide phase, CeVO₄, between the surface vanadium oxide and the bulk ceria support. This solid-state reaction is promoted by a reducing environment at elevated temperatures and increasing vanadium loadings.¹⁵² The catalytic activity of VO_x/CeO_2 generally decreases with increasing amounts of VO_x , which is related to both the decreased fraction of exposed CeO₂ surface sites and the formation of CeVO₄.¹⁵¹ The activation energy in ethane ODH has been shown to not be affected by the presence of the CeVO₄ phase. This suggests that V-O-Ce bonds present in dispersed VO_x on a ceria surface and in CeVO₄ are involved in the rate determining step.¹⁵⁵

CeO₂ domains have been previously dispersed on high surface area supports such as alumina and silica, and vanadium oxide species have been deposited on the mixed oxides to create ternary oxide catalysts.^{77, 156-157} CeO₂ has a tendency to sinter at elevated temperatures, and its deposition on an oxide support often leads to the formation of small crystallites. The cerium precursor and synthesis conditions are known to influence the resulting CeO₂ surface speciation.¹⁵⁷ As a result, a number of studies of supported mixed VO_x-CeO₂ materials are based on interactions of VO_x species with ceria nanoparticles as opposed to well-dispersed surface sites. For example, Jehng reported that in the presence of CeO₂ particles, VO_x species tend to bind to the SiO₂ support, which does not allow a rigorous probing of the VO_x-CeO₂ interface.¹⁵⁸ Vining *et al.* found that, at low Ce surface densities, the catalytic activity of VO_x/CeO₂/SiO₂ in methanol oxidation increases in comparison

to VO_x/SiO_2 but does not vary significantly with differing amounts of CeO₂.⁷⁷ However, increased ethane ODH activity of supported VO_x materials was reported with increasing amounts of CeO₂ on silica beyond a monolayer coverage.³⁰

Conformal and thermally stable CeO₂ films have been previously grown on Al₂O₃ supports by ALD by Onn *et al.*¹⁵⁹ The characterization of these materials with high angle annular dark field (HAADF) STEM imaging revealed complete coverage of alumina with a film of uniform thickness, but also the presence of small particles following calcination at 800 °C. The authors prepared another material for comparison by infiltration with an aqueous solution of Ce(NO₃)₃·6H₂O which resulted in the formation of CeO₂ clusters, leaving behind a significant amount of exposed Al₂O₃ surface. 0.4 nm thick films of CeO₂ deposited by ALD on alumina were reported to have the same effect on the activity of supported Pd as a bulk ceria support in the watergas shift reaction.¹⁵⁹ This suggests that ALD is a viable method for a systematic study in which the role of V-O-Ce bonds between VO_x species and well-dispersed CeO₂ sites on an inert oxide support can be distinguished from the contribution of extended CeO₂ structures as well as crystalline CeO₂.

In this chapter, the impact of CeO₂ domains on the surface distribution and resulting catalytic activity of VO_x species is examined by synthesizing mixed metal oxide materials on an alumina support by ALD. Raman spectroscopy and XPS are used to determine the surface metal oxide speciation of catalysts synthesized with single ALD cycles of VO_x and CeO₂ with varying order of deposition and to compare the resulting structures to VO_x/Al₂O₃ and VO_x/CeO₂. These materials are also evaluated for cyclohexane ODH, where differences in activity and product distributions are interpreted based on the structural information gained from spectroscopic characterization.

4.2 Methods

4.2.1 Material Synthesis

VO_x films were grown via ALD on Al₂O₃ (32-40 m²/g; 70% δ phase, 30% γ phase; 99.5% purity, Alfa Aesar NanoArc) and CeO₂ (30-50 m²/g; 99.5% purity, Alfa Aesar) at 100 °C with vanadyl triisopropoxide (VOTP, Sigma-Aldrich) and water in a viscous flow reactor described previously.⁸⁹ The VOTP bubbler was heated to 45 °C and the water bubbler was at room temperature (RT). VO_x domains were also deposited on CeO₂-modifed alumina supports prepared by the deposition of tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium(IV) (Ce(TMHD)₄, Strem) and ozone at 230 °C. The Ce(TMHD)₄ bubbler was heated to 180 °C. In both ALD processes, a 300 s dose of the reactant was followed by a 450 s nitrogen purge time. The total N₂ flow during deposition was 160 sccm. The amounts of VO_x and CeO₂ were kept constant at single ALD cycles. The Al₂O₃ and CeO₂ supports were dried in the reactor under N₂ flow at 230 °C for 1 hr prior to the ALD process. The order of deposition of the two metal oxides on alumina was varied. This is denoted as follows: VO_x/CeO₂/Al₂O₃ represents a sample where the alumina was first modified with a single cycle of CeO₂, followed by one cycle of VO_x ALD. Samples were calcined in air at 450 °C for 4 hours at a heating rate of 5 °C/min.

4.2.2 Material Characterization

The samples were analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) on a Thermo iCAP 7600 instrument calibrated with V and Ce standards of known concentration in order to determine the metal content.

UV (244 nm) and visible (488 nm) laser excited Raman spectra were collected using a custombuilt Raman instrument. The 244 nm excitation comes from a Lexel 95 SHG (second harmonic generation) laser equipped with an intracavity nonlinear crystal, BBO (BaB₂O₄), which frequency doubles visible radiation into the mid-ultraviolet region.^{12, 90-91} The Raman spectra were collected under a controlled atmosphere with the use of a fluidized bed reactor developed by Chua and Stair to minimize the adverse effects of UV radiation.⁹² The catalysts were heated in flowing O₂ at 450 °C for 30 min to remove any absorbed moisture prior to taking measurements. The spectra were collected at RT in flowing O₂. The visible laser power at the sample position was approximately 50 mW and that of the UV laser was 5 mW into a spot size of ca. 200 μ m.⁹³ The spectral collection time was 40 min. The Raman shift was calibrated by measuring cyclohexane as a standard prior to every experiment. In addition, in-situ reduction measurements of CeO₂/VO_x/Al₂O₃ were carried out with UV-excited Raman spectroscopy. The samples were reduced at a desired temperature between 450 and 600 °C in flowing 10%H₂/N₂ for 1 hour and cooled down to RT in nitrogen. The catalysts were also re-oxidized in flowing O₂ at 450 °C. The spectra were collected at RT in flowing N₂.

XPS measurements were carried out on a Thermo Scientific ESCALAB 250Xi instrument (Thermo Scientific) equipped with a monochromatic Al K α X-ray source (hv = 1486.6 eV). The X-ray spot size was 500 µm in diameter. Scans were collected using a pass energy of 50 eV, a 50 ms dwell time and a 0.1 eV step size. An electron flood gun was applied to the sample surface to neutralize surface charging effects. The binding energies were referenced to the adventitious C1s C-C peak at 284.8 eV.

4.2.3 Reaction Studies

Gas-phase cyclohexane ODH reaction studies were performed in the REACT Core user facility at Northwestern University. A quartz tube plug flow reactor was used. Cyclohexane vapor was introduced via bubbling of He through a cyclohexane bubbler which remained at a fixed pressure of 1.75 bar and a temperature of 21 °C. The catalytic tests were performed in the temperature range of 400-550 °C. Generally 1 - 35 mg of catalyst was diluted with 300 mg of SiO₂ in each reaction to maintain a constant catalyst bed volume and enhance the heat distribution. Lower amounts of bare CeO₂, on the order of 0.1 mg, were tested to achieve conversions below 10 %. Reactions were typically performed with $P_{C6H12} = 2.2$ kPa, $P_{O2} = 7.9$ kPa and a total flow rate of 100 ml min⁻¹ with He balance. The materials were pretreated in flowing 20% O₂/He at 450 °C for 1 hr. The outlet gas was analyzed online using an Agilent 7890A gas chromatograph (GC). A DB-Wax column (Agilent, 30 m x 0.32 mm x 0.25 µm) was used to separate hydrocarbons, which were analyzed by a flame ionization detector (FID), while light hydrocarbons, O₂, CO and CO₂ were separated through a combination of an HP-Q plot column (Restek, 30 m x 0.53 mm x 20 µm) and a molecular sieve 5Å capillary column (Restek, 15 m x 0.53 mm x 50 µm) and analyzed by a TCD. Carbon balances were closed within an error of ±3%. Unless otherwise noted, conversion and selectivity are defined as follows:

$$Conversion = \frac{F_{out}(\sum_{i} y_{i,out} + \sum_{j} \frac{y_{j,out}}{6})}{F_{out}(y_{c_{6}H_{12},out} + \sum_{i} y_{i,out} + \sum_{j} \frac{y_{j,out}}{6})} * 100\%$$
(4.1)

$$Selectivity_{i} = \frac{y_{i,out}F_{out}}{F_{out}(\sum_{i}y_{i,out} + \sum_{j}\frac{y_{j,out}}{6})} * 100\%$$
(4.2)

$$Selectivity_{j} = \frac{\frac{y_{j,out}}{6}F_{out}}{F_{out}(\sum_{i}y_{i,out} + \sum_{j}\frac{y_{j,out}}{6})} * 100\%$$
(4.3)

where F_{out} is the total flow rate out of the reactor, $y_{i,out}$ is the mol fraction of C₆ product *i* and $y_{j,out}$ is the mol fraction of C₁ product *j* at the exit of the reactor. All calculations were performed on a per C₆ basis, meaning that concentrations of CO and CO₂ were divided by 6.

4.3 Results and Discussion

4.3.1 Surface Characterization of Supported VO_x Materials

The metal content in all of the materials was quantified by ICP-OES. The V and Ce surface densities calculated based on the range of support surface areas provided by the manufacturer are shown in Table 4.1. The V surface density remained relatively constant between 1 and 2 V/nm² with an increased value in the 2-3 V/nm² range on the ceria support. The Ce content depended on the order of deposition of the two metal oxides by ALD. The materials remained under a controlled N₂ atmosphere in the ALD reactor chamber in between depositions and hence they were dehydrated to a similar extent. The reason for the dissimilarity in the surface densities of CeO₂ species may be that the presence of VO_x surface sites on the alumina support creates an increased number of active sites for Ce(TMHD)₄ precursor reaction. The significantly lower density of CeO₂ species in comparison to VO_x resulting from a single ALD cycle may be associated with steric constraints due to the bulkiness of the Ce(TMHD)₄ precursor. Another reason previously postulated in the literature is that the precursor shows low reactivity with an oxidized surface resulting in limited adsorption during the precursor dose.¹⁶⁰ The growth rates for Ce(TMHD)₄.¹⁵⁹.

Material	V/nm ²	Ce/nm ²
VO _x /Al ₂ O ₃	1.9 – 2.3	
VO _x /CeO ₂ /Al ₂ O ₃	1.2 – 1.4	0.03 - 0.04
CeO ₂ /VO _x /Al ₂ O ₃	0.8 – 1	0.13 – 0.16
VO _x /CeO ₂	2.2 - 3.6	

Table 4.1. Surface densities of V and Ce for the investigated materials.

The materials were further characterized by Raman spectroscopy in order to gain insight about the surface speciation of vanadium oxide in the presence of CeO₂. A multiwavelength excitation approach made it possible to distinguish between monomeric and polymeric VO_x species as well as crystalline V₂O₅. Selective resonance enhancement of UV Raman towards isolated and less polymerized VO_x sites and that of visible Raman towards highly polymerized VO_x species and crystalline V₂O₅ enables this differentiation.¹² UV Raman spectra of the examined materials are shown in Figure 4.1. A V=O stretching vibration centered between 1014 and 1025 cm⁻¹, which indicates the presence of isolated VO_x surface sites, was observed for all of the materials. The similarity of the VOx/Al2O3 (blue) and VOx/CeO2/Al2O3 (green) spectra suggests that the deposition of a single ALD cycle of CeO₂ prior to VO_x growth does not significantly impact the resulting monomer surface speciation. In contrast, the CeO₂/VO_x/Al₂O₃ spectrum (purple) shows a shift of the V=O band to a lower wavenumber and increased relative intensities of peaks below 1000 cm⁻¹. A comparison of CeO₂/VO_x/Al₂O₃ and bare Al₂O₃ is shown in Figure 4.1B. Bands associated with an alumina support have been previously reported to appear stronger in the presence of reduced low loading VO_x species supported on θ -Al₂O₃.²⁴ The lower intensity of the vanadyl band in comparison to VO_x/Al₂O₃ and VO_x/CeO₂/Al₂O₃ and the enhanced signal from the

underlying support can therefore be indicative of the interaction of the Ce(TMHD)₄ precursor with VO_x surface sites, which undergo reduction during the ALD process. The decrease in V=O signal intensity could also be associated with the consumption of these functionalities to form a CeVO₄ phase. However, this typically occurs at temperatures above 500 °C under reducing conditions in materials with increased V loading. Additionally, bands associated with CeVO₄ at 260, 368, 770 and 842 cm⁻¹ cannot be easily distinguished from the Al₂O₃ features in the spectra in Figure 4.1B.^{152, 155, 162} CeO₂ exhibits strong electronic absorption in the UV region due to the higher energy of UV light than that of the band gap of the metal oxide.¹⁶²⁻¹⁶⁴ This results in significantly lower intensities of features assigned to VO_x species on the surface of a ceria support.¹⁶² Figure 4.1C shows VO_x/CeO₂ in direct comparison with a bare CeO₂ support, where a V=O stretching vibration is observed at 1025 cm⁻¹ for the former material. Bands observed at 708-714 and 857-880 cm⁻¹ have been previously assigned to V-O-Ce bridging modes.^{140, 162} However, features at these frequencies cannot be easily distinguished from the contribution of the alumina and ceria supports at the 244 nm excitation wavelength, as shown in Figure 4.1. Given the comparable surface density of V on both alumina and ceria supports, the difference between the V=O frequencies is expected to be due to the identity of the support material.¹⁶⁵

Figure 4.1. UV Raman spectra of supported VO_x materials (A). A direct comparison of CeO₂/VO_x/Al₂O₃ and the Al₂O₃ support is shown in (B) and a direct comparison of VO_x/CeO₂ and CeO₂ can be found in (C). The bands observed for bare Al₂O₃ are a combination of Al₂O₃ features and ones associated with the stainless steel porous disk of the fluidized bed setup as shown in Figure C.1.

Visible Raman spectra were collected to characterize polymeric VO_x surface sites. They are shown in Figure 4.2. A band associated with the V=O stretching frequency is observed in all of the materials except for CeO₂/VO_x/Al₂O₃ (purple), indicating that the deposition of CeO₂ domains following the growth of vanadium oxide can improve the dispersion of the latter. The shape of the vanadyl band observed for VO_x/CeO₂/Al₂O₃ (green) is similar to that on VO_x/Al₂O₃ (blue). However, its width is broader and matches that of VO_x/CeO₂ (red). The V=O band in VO_x/CeO₂ at 488 nm excitation is apparent due to the lack of self-absorption from the CeO₂ support. Increasing intensity of the V=O has been previously reported with increasing excitation wavelengths. A band at 1008 cm⁻¹ was assigned to monomeric VO_x, 1015 cm⁻¹ to dimeric, 1022-1030 cm⁻¹ to trimeric and 1044 cm⁻¹ to polymeric VO_x species.¹⁶² This suggests that a mixture of various VO_x domains exists on the surface of VO_x/CeO₂. Similarly, a distribution of VO_x species with both V-O-Al and V-O-Ce bonds is expected on the surface of VO_x/CeO₂/Al₂O₃. Crystalline V₂O₅ was not detected in any of the supported VO_x materials as indicated by the absence of a sharp V=O band at approximately 995 cm⁻¹.^{12, 162}

Figure 4.2. Visible Raman spectra of supported VO_x materials.

The CeO₂/VO_x/Al₂O₃ material was further examined by performing an in-situ reduction UV Raman study. The resulting spectra, following reduction between 450 and 600 °C in 50 °C increments are shown in Figure 4.3. A sharper vanadyl band centered at a higher frequency is observed following H₂ treatment at elevated temperatures (Figure 4.3C). This change is accompanied by the disappearance of a feature centered at approximately 990 cm⁻¹. This feature was observed for a bare alumina support in Figure 4.1B, and hence a plausible explanation for the observed differences is that under reducing conditions new bonds form with the Al₂O₃ support. A shift to a higher frequency could also be explained by the clustering of VO_x species, given that the vanadyl band shifts to higher wavenumbers with increasing vanadium loading.^{12, 162} The relatively high intensity of bands not associated with VO_x species suggests that these sites exist primarily in their reduced state under the investigated conditions. As shown in Figure 4.3B the structural changes observed upon reduction cannot be reversed by O₂ treatment at 450 °C. This suggests that the surface speciation of vanadium oxide may differ under reaction conditions from that obtained following calcination in air as a consequence of redox cycling.

Figure 4.3. UV Raman spectra of $CeO_2/VO_x/Al_2O_3$ following in-situ reduction under H₂ in the 450 – 600 °C temperature range (A) and a direct comparison of the initial oxidized material and that following treatment under O₂ at 450 °C after reduction (B). Expansions of the V=O bands are shown for the reduction process in (C) and following re-oxidation in (D).

The oxidation state of surface metal oxide species was further probed by XPS. Figure 4.4 shows the V2p_{3/2} and Ce3d spectra of supported VO_x materials. Binding energies of the O1s and V2p_{3/2} peaks are reported in Table 4.2. A shift and narrowing of the O1s and $V2p_{3/2}$ peaks is observed on the CeO₂ support in comparison to Al₂O₃, which can be associated with differences in polarizability of the two metal oxide supports.¹³³ Based on the magnitude of the difference between the O1s and the V2p_{3/2} binding energies, the VO_x species supported on Al₂O₃, CeO₂/Al₂O₃ and CeO₂ contain primarily V^{5+} as shown in Table 4.2. The increase in FWHM in VO_x/Al₂O₃ in comparison to Table 3.1 may be associated with differences in VO_x speciation dependent on the support pretreatment prior to ALD. When CeO_2 is deposited following the growth of VO_x domains on Al₂O₃, the difference between the two peaks increases and becomes comparable to that reported for VO₂ at 14.35 eV.¹³⁶ This suggests the presence of an increased fraction of reduced V^{4+} species in this material, which is in agreement with the low intensity V=O band in comparison to Al₂O₃ features in UV Raman spectra shown in Figure 4.1. Ratios of peak areas corresponding to $V2p_{3/2}$ and O1s are also reported in Table 4.2. An increased amount of VO_x species is present on the CeO₂ support, which can be explained by the higher average surface area of CeO_2 in comparison to Al₂O₃. This is in agreement with metal loadings determined by ICP-OES. Figure 4.4 also includes Ce3d spectra. Figure 4.4G shows the Ce3d spectrum for VO_x/CeO₂ where the multiplet splitting is consistent with Ce⁴⁺. The remaining spectra in Figures 4.4E and 4.4F are much lower in intensity due to the low Ce loading on the Al₂O₃ surface. A peak at 917 eV can be discerned in Figure 4.4F for the $CeO_2/VO_x/Al_2O_3$ material which is not present in Ce^{3+} spectra and hence is indicative of the presence of Ce⁴⁺. This peak cannot be distinguished in Figure 4.4E (VO_x/CeO₂/Al₂O₃).

However, this is most likely due to the low signal-to-noise ratio. The binding energies of the detectable features suggest the presence of Ce^{4+} in this material as well.

Figure 4.4. $V2p_{3/2}$ spectra of VO_x/Al_2O_3 (A), $VO_x/CeO_2/Al_2O_3$ (B), $CeO_2/VO_x/Al_2O_3$ (C) and VO_x/CeO_2 (D). Ce3d spectra of $VO_x/CeO_2/Al_2O_3$ (E), $CeO_2/VO_x/Al_2O_3$ (F) and VO_x/CeO_2 (G).

Table 4.2. Ors and $\sqrt{2}p_{3/2}$ officing energies (DL) in supported $\sqrt{0}$ materia.	able 4.2. OTS and $v_{2}p_{3/2}$ binding energies (BE) in support	Shed $v O_x$ materia
---	---	----------------------

	O1s		V2p _{3/2}			
Catalyst	BE [eV]	FWHM*	BE [eV]	FWHM*	Δ^{**} [eV]	Av2p3/2/A01s
		[eV]		[eV]		
VO _x /Al ₂ O ₃	531.77	2.30	517.90	2.49	13.87	0.04
VO _x /CeO ₂ /Al ₂ O ₃	531.55	2.33	517.65	2.50	13.86	0.04
CeO ₂ /VO _x /Al ₂ O ₃	531.62	2.33	517.50	2.38	14.12	0.02
VO _x /CeO ₂	529.89	1.58	517.52	2.05	12.37	0.07

*FWHM stands for full width at half maximum

**BE separation between O1s and V2p_{3/2}

4.3.2 Cyclohexane ODH Reactivity

Cyclohexane ODH activity was evaluated in the 400-550 °C temperature range. A comparison of the activity of the bare CeO₂ support and VO_x/CeO₂ is shown in Figure 4.5. CeO₂ is an oxidation catalyst and its activity is significantly higher under the investigated reaction conditions than that of VO_x/CeO₂. This indicates that the deposition of VO_x species on the surface of ceria covers a substantial fraction of the CeO₂ active sites. At 2 V/nm² 70% of the surface CeO₂ sites are expected to remain exposed. Oxygen adsorption studies coupled with Raman spectroscopy indicate that the active surface oxygen becomes passivated by the formation of bridging bonds to VO_x sites.¹⁶² This is associated with the preferential binding of VO_x species to the most easily reducible CeO₂ surface sites, which would otherwise form vacancies leading to high activity of the bare support in oxidation reactions.^{151-152, 162, 166} The high activity of ceria is due to the presence of labile surface oxygen, which has been reported to favor CO₂ formation in alkane ODH reactions.^{149-150, 152}

Figure 4.5. Comparison of the activity of a bare ceria support and VO_x/CeO₂ in the 400 – 550 °C temperature range. 5.2 mg of each material was used. Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹.

The contribution of VO_x and CeO₂ surface sites was further examined by comparing the selectivity-conversion profiles of VO_x/CeO₂ and the bare support at 450 °C. The results are shown in Figure 4.6. At similar conversions, the most significant difference between the two materials is the much higher propensity of the CeO₂ support for C-C bond scission, as indicated by the relatively higher selectivity towards CO₂ at the expense of benzene. The differences in selectivity may arise from different individual contributions of the VO_x and CeO₂ surface species, but also from the formation of V-O-Ce linkages. The fact that the CeO₂ support is essentially unselective towards benzene suggests that this product is either primarily formed on VO_x sites or that VO_x domains preferentially bind to CeO₂ sites which have the highest activity, but favor total oxidation of the alkane. In contrast, a significant amount of CO₂ is produced even after the deposition of VO_x domains. At sub-monolayer VO_x coverages, exposed CeO₂ sites remain on the surface and

may be responsible for the increased total oxidation in comparison to catalysts discussed in Chapter 3, where the support surface is not itself highly active. In propane ODH studies, the CeO_2 support has been previously reported to almost exclusively form CO_2 .¹⁵⁰ However, in this reaction it is impossible to distinguish whether the total oxidation product forms as a result of a direct reaction from propane or a sequential one through propene.

Figure 4.6. Selectivity towards cyclohexene, benzene, CO_2 and CO as a function of conversion at 450 °C for CeO₂ and VO_x/CeO₂. All experiments were performed at a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 and with flow rates varying between 50 and 100 ml min⁻¹.

The cyclohexane ODH reaction mechanism on CeO_2 and VO_x/CeO_2 was further examined by studying the rates of reactant consumption and product formation with two distinct reactant feed mixtures. Figure 4.7 shows the rate of consumption of cyclohexane and that of cyclohexene in the presence of CeO_2 and VO_x/CeO_2 catalysts. The rates of formation of cyclohexene, benzene and

 CO_2 from cyclohexane and the rates of formation of benzene and CO_2 from cyclohexene are shown in Figure 4.8. The corresponding activation energies are reported in Table 4.3. As shown in Figure 4.7, the rate of consumption of cyclohexene is higher for both materials, which is consistent with the lower energy of the allylic C-H bonds present in cyclohexene. This is also evident in the lower apparent activation energy of cyclohexene consumption in comparison to cyclohexane for VO_x/CeO_2 . In contrast, the apparent activation energy of cyclohexene consumption increases for CeO_2 . This might be indicative of the participation of different surface sites in the transformations of the alkane and the alkene on the bare support.

Figure 4.7. Temperature dependence of cyclohexane (squares) and cyclohexene (diamonds) consumption for CeO₂ (open symbols) and VO_x/CeO₂ (closed symbols) normalized to the amount of catalyst. All experiments were conducted at P = 1 atm and a fixed C₆H_x:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹.

In cyclohexane ODH, total oxidation is significantly more favorable on the bare CeO_2 support as indicated by the lesser slope of the ln(rate_{CO2}) vs. 1/T plot and the resulting lower activation energy.

Additionally, there is a significant difference between the rates of formation of benzene on VO_x/CeO_2 and the CeO₂ support with the latter showing a much higher apparent activation energy. The high $E_{A,app}$ associated with the formation of benzene on CeO₂ is consistent with the low selectivity towards this product shown in Figure 4.6. The rates of formation of benzene and CO₂ from cyclohexene are presented in Figures 4.8C for CeO₂ and 4.8D for VO_x/CeO₂. The apparent activation energies of benzene formation from cyclohexene are within experimental error of one another for CeO₂ and VO_x/CeO₂. However, the increased rate observed for CeO₂ is indicative of a higher number of surface active sites which can transform cyclohexene to benzene. The apparent activation energy of CO₂ formation is higher than that of benzene for both materials. Interestingly, the total oxidation of cyclohexene is less favorable than that of cyclohexane on CeO₂, as evidenced by the higher $E_{A,app}$ for CO₂ formation shown in Table 4.3.

The data shown in Figures 4.7 and 4.8 and Table 4.3 suggests that at least two types of active sites are present on the ceria support surface. One type is responsible for the transformation of cyclohexane to cyclohexene and the other leads to total oxidation of cyclohexane. The fact that, in the absence of cyclohexane, cyclohexene is primarily converted to benzene suggests that the alkene does not adsorb to the surface in a similar fashion to cyclohexane. One possibility is that cyclohexane adsorbs to multiple surface sites prior to its total oxidation, which is not be achieved for cyclohexene. The addition of VO_x seems to cover the reactive CeO₂ surface sites, which lowers the amount of CO₂ formed in cyclohexane ODH for VO_x/CeO₂. VO_x domains are also responsible for the formation of benzene, but it cannot be excluded that benzene is also formed on the exposed CeO₂ surface.

Figure 4.8. Temperature dependence of the rates of product formation for cyclohexene (**x**), benzene (**A**) and CO₂ (**•**) from cyclohexane for CeO₂ (A) and VO_x/CeO₂ (B) and from cyclohexene for CeO₂ (C) and VO_x/CeO₂ (D) normalized to the amount of catalyst. All experiments were conducted at P = 1 atm and a fixed C₆H_x:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹. The rates were calculated on a per C₆ basis, meaning that the rate of CO₂ formation was divided by 6.

Catalyst	E _{A,C6H12} *	E _{A,C6H10} *	E _{A,C6H6} *	E _{A,CO2} *	E _{A,C6H10} **	Е _{А,С6Н6} **	E _{A,CO2} **
CeO ₂	27 ± 11	23 ± 9	163 ± 28	15 ± 8	48 ± 3	43 ± 3	81 ± 1
VO _x /CeO ₂	81 ± 3	56 ± 2	118 ± 4	119 ± 3	53 ± 6	36 ± 4	54 ± 2

Table 4.3. Apparent activation energies for CeO_2 and VO_x/CeO_2 based on reactant consumption and product formation in cyclohexane and cyclohexene ODH reactions.

All apparent activation energies are reported in kJ/mol. *C₆H₁₂ feed **C₆H₁₀ feed

The selectivity profile of VO_x/CeO_2 was further compared to VO_x supported on inert Al_2O_3 and mixed VO_x-CeO₂ on alumina. The relevant selectivity-conversion trends at 450 °C are shown in Figure 4.9. First, the increased formation of CO₂ at the expense of benzene on VO_x/CeO₂ is evident from a direct comparison of VO_x/CeO₂ and VO_x/Al₂O₃. The selectivity-conversion trajectories for all of the products are similar for $VO_x/CeO_2/Al_2O_3$ (green) and VO_x/Al_2O_3 (blue), which further implies that the replacement of V-O-Al bonds with V-O-Ce does not affect the product distribution at a given conversion. In addition, at this low surface density, CeO₂ sites do not seem to directly participate in the reaction mechanism, as evidenced by the low contribution of total oxidation products. In contrast, at a three times higher surface density, CeO_2 , in $CeO_2/VO_x/Al_2O_3$ materials, leads to appreciable formation of CO_2 at a level equivalent to that in VO_x/CeO_2 . In-situ UV Raman experiments shown in Figure 4.3 indicated a shift of the V=O frequency to higher wavenumbers, indicative of structural changes in the VO_x sites under reducing conditions at elevated temperatures. One of the reasons for this shift could be migration of VO_x sites and the formation of a higher fraction of V-O-Al bonds leaving behind exposed CeO₂, which might agglomerate and become more active than isolated CeO₂ sites in VO_x/CeO₂/Al₂O₃. CeO₂/Al₂O₃ has been previously

reported to promote CO_2 formation in the oxidative dehydrogenation of ethylbenzene.¹⁵⁶ Similarly, CeO_2/SiO_2 favors total oxidation in ethane ODH.³⁰

Figure 4.9. Selectivity-conversion trends for supported VO_x catalysts at 450 °C. All experiments were performed at a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 and with flow rates varying between 50 and 100 ml min⁻¹.

The rates of consumption of cyclohexane as a function of temperature for supported VO_x materials are shown in Figure 4.10. The mixed metal oxide materials are similar in their ODH activity to

VO_x/Al₂O₃ when normalized to the V loading. At low temperatures, the activity of $VO_x/CeO_2/Al_2O_3$ is increased, which may be related to either the influence of CeO₂ domains on VO_x activity via the formation of V-O-Ce bonds or the presence of more polymeric VO_x species as indicated by the width of the V=O band in visible Raman shown in Figure 4.2. In a study of ethane ODH, Iglesias-Juez et al. have shown that the catalytic activity of VO_x/CeO₂/SiO₂ increases both with increasing V loading at a constant amount of Ce and at a constant V loading with increasing Ce content.³⁰ At low Ce surface densities, Vining *et al.* have found that methanol oxidation activity of VO_x/CeO₂/SiO₂ increases in comparison to VO_x/SiO₂, but remains constant between 0.2 and 0.9 Ce/nm^{2,77} The initial increase in oxidation activity is likely due to the formation of V-O-Ce bonds, while extended networks of CeO₂ are required for surface CeO₂ species to participate in the reaction mechanism and further improve catalytic activity. VO_x/CeO₂ exhibits increased activity in comparison to alumina-supported materials. Reporting the rate of cyclohexane consumption per amount of vanadium for this material leads to overestimation of the intrinsic activity of the VO_x sites due to the presence of active surface CeO_2 species. However, as shown in Figure 4.10B, when the rates are normalized to the overall amount of catalyst, VO_x/CeO₂ remains the most active. The lower activity of CeO₂/VO_x/Al₂O₃ per gram of catalyst may be explained by the lower amount of equally active V species, as evidenced by XPS and ICP-OES.

Figure 4.10. Temperature dependence of the rate of cyclohexane consumption for supported VO_x materials normalized to the amount of V (A) and to the amount of catalyst (B). Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹.

Rates of formation of cyclohexene, benzene and CO₂ as a function of temperature for supported VO_x materials normalized to the amount of catalyst are shown in Figure 4.11. Figures 4.11A and 4.11B show VO_x/Al₂O₃ and VO_x/CeO₂/Al₂O₃, respectively. These two materials show similar catalytic behavior, where the rates of formation of cyclohexene and benzene exceed that of CO₂. The rate of CO₂ formation for CeO₂/VO_x/Al₂O₃, shown in Figure 4.11C, is equivalent to those of C₆ products. However, it does not differ considerably from the CO₂ formation rate for VO_x/Al₂O₃ and VO_x/CeO₂/Al₂O₃. The main difference between the three materials is apparent in the rates of formation of C₆ products, which are formed to a lesser extent on CeO₂/VO_x/Al₂O₃. The rates of formation of each one of the products increase for VO_x/CeO₂ (Figure 4.11D) and the rate of CO₂

formation is not significantly different from the rates of formation of C_6 products, similarly to $CeO_2/VO_x/Al_2O_3$.

Figure 4.11. Temperature dependence of the rates of formation of cyclohexene (**x**), benzene (\blacktriangle) and CO₂ (•) for VO_x/Al₂O₃ (A) VO_x/CeO₂/Al₂O₃ (B), CeO₂/VO_x/Al₂O₃ (C) and VO_x/CeO₂ (D) normalized o the amount of catalyst. Experiments were conducted at P = 1 atm and a fixed C₆H₁₂:O₂:He ratio of 2.2:7.9:89.9 at a constant flow rate of 100 ml min⁻¹. The rates were calculated on a per C₆ basis, meaning that the rate of CO₂ formation was divided by 6.

Apparent activation energies were calculated from the slope of ln(rate) vs. 1/T for the consumption of C_6H_{12} and the formation of C_6H_{10} , C_6H_6 and CO_2 and are shown in Table 4.4. The most pronounced differences are observed for the energy of cyclohexene and CO_2 formation. Depositing CeO_2 after VO_x domains on Al₂O₃ results in the formation of distinct surface sites, which have a significantly lower barrier to the total oxidation product and an increased one for the formation of C_6H_{10} . A lower barrier towards CO_2 formation was earlier reported for the bare CeO_2 support. The surface of the bulk support is likely composed of a variety of CeO_2 sites and the much lower $E_{A,app}$ in Table 4.3 is an average value with contributions from all of the active species. In addition, the deposition of VO_x on CeO_2 leads to an increase in CO_2 formation $E_{A,app}$ due to the covering of the most active CeO_2 sites with VO_x domains. This lower activation energy observed for $CeO_2/VO_x/Al_2O_3$ can therefore be associated with the aggregation of CeO_2 species on the alumina surface, which lead to total oxidation. The increased C_6H_{10} formation activation energy, on the other hand, may be associated with the presence of reduced VO_x sites in $CeO_2/VO_x/Al_2O_3$, which are not equally reactive to VO_x comprised of V^{5+} .

Catalyst	E _{A,appC6H12}	E _{A,appC6H10}	E _{A,appC6H6}	E _{A,appCO2}
VO _x /Al ₂ O ₃	106 ± 2	64 ± 7	130 ± 9	111 ± 2
VO _x /CeO ₂ /Al ₂ O ₃	90 ± 7	80 ± 9	139 ± 10	101 ± 2
CeO ₂ /VO _x /Al ₂ O ₃	107 ± 12	110 ± 4	136 ± 3	81 ± 1

Table 4.4. Apparent activation energies of supported VO_x materials.

4.4 Conclusions

ALD-synthesized mixed VO_x-CeO₂ materials supported on alumina were investigated in cyclohexane oxidative dehydrogenation and compared to VO_x/Al₂O₃ and VO_x/CeO₂ to elucidate the effect of CeO_2 domains on the surface structure distribution of VO_x species and the resulting catalytic activity. Spectroscopic characterization revealed that the deposition of VO_x domains following CeO₂ on alumina yields a mixture of monomeric and polymeric VO_x species with V-O-Ce linkages, whereas reversing the order of deposition of the two metal oxides leads to the formation of reduced VO_x monomers. Cyclohexane ODH studies showed that a variety of surface active sites with different reactivity towards cyclohexane and cyclohexene is present on the CeO₂ surface. The ceria sites, which favored total oxidation of cyclohexane were selectively covered by VO_x domains in VO_x/CeO₂. The apparent activation energies were shown to depend on the nature of V-O-Support bonds and decrease with the addition of V-O-Ce. The activity of catalysts with low CeO₂ loadings was significantly lower than that of VO_x/CeO₂, which is indicative of the contribution of the bulk support to the reaction mechanism. However, selectivity-conversion trends could be altered by the deposition of small CeO₂ domains, indicating that small CeO₂ clusters on an alumina support favor total oxidation similarly to exposed CeO₂ surface sites in VO_x/CeO₂.

5 Conclusions and Future Directions

5.1 Objectives Met and Outstanding Challenges

The overall aim of this dissertation was to improve the understanding of the contribution of reducible support materials to the activity of VO_x species in alkane oxidative dehydrogenation reactions through a combination of atomically precise synthesis, extensive spectroscopic characterization and gas-phase reaction studies. Three main objectives were proposed to accomplish this goal:

- (1) Demonstrate the effect of the presence of TiO₂ domains of varying size on the distribution of VO_x surface sites in their oxidized state and the interactions of the two metal oxides under a reducing environment.
- (2) Determine the role of the reducible TiO₂ support in the improvement of cyclohexane ODH activity of VO_x/TiO₂ in comparison to VO_x supported on inert Al₂O₃.
- (3) Gain insight into the individual contributions of VO_x and CeO_2 surface active sites to the overall catalytic behavior of VO_x/CeO_2 in cyclohexane ODH.

The first objective was addressed in Chapter 2, where the interactions of VO_x species at a constant surface density between 1 and 2 V/nm² with varying amounts of amorphous TiO₂ domains on alumina were investigated and compared to VO_x supported on bulk Al₂O₃ and TiO₂. We have determined that a combination of ALD and calcination procedures can be used to influence the distribution of metal oxide surface species. VO_x and TiO₂ domains were shown to preferentially bind to each other on an Al₂O₃ support surface by Raman spectroscopy coupled with DFT calculations. Varying distributions of V-O-V, V-O-Ti and V-O-Al bonds had a significant effect on the ease of reducibility of VO_x species as determined by H₂ TPR. The structural changes that were the cause for this varying reducibility were identified by in-situ UV Raman experiments, where it was determined that metal oxide surface sites are mobile during reduction at elevated temperatures. An XPS analysis revealed that reduction under H₂ has a significant impact on the oxidation state of vanadium, but not titanium, implying that VO_x domains are the active sites in mixed VO_x-TiO₂ materials on Al₂O₃ for reactions that follow a redox mechanism.

An extensive array of spectroscopic characterization techniques was used to determine the structures of VO_x and TiO₂ species discussed in Chapter 2. However, there exist limitations on the level of detail that can be determined experimentally when describing the metal oxide surface speciation. DFT calculations were applied in this work to confirm the hypotheses established based on experimental results. These calculations focused on individual monomeric VO_x sites. As discussed in the Introduction, even monomeric VO_x species depicted in Figure 1.1 may exhibit varying reduction behavior and hence contribute to reaction mechanisms to a different extent.²⁵ For this reason, it would be beneficial to extend the set of structures examined by DFT to a range of monomeric VO_x sites as well as different polymeric chains of VO_x. Additionally, VO_x surface structures on alumina covered with a monolayer of TiO_2 could be compared to VO_x/TiO_2 to identify any differences in the interactions of VO_x sites with amorphous TiO₂ in comparison to the crystalline bulk structure. The V=O stretching vibration bands observed with Raman spectroscopy are typically broad due to the contribution of a distribution of different surface VO_x sites. The development of a library of V=O frequencies associated with individual surface sites in varying environments would be beneficial in the determination of whether a given structure is likely to be

present on the surface of a catalyst of interest based on the range of frequencies comprising the experimentally observed V=O feature.

The second objective was discussed in Chapter 3, where supported VO_x materials were evaluated for cyclohexane oxidative dehydrogenation and their catalytic activity was compared to the ease of reducibility of VO_x species. The relative distribution of V-O-V, V-O-Ti and V-O-Al bonds had an effect on the temperature of the H₂ consumption peak maximum in H₂ TPR experiments. However, the differences in VO_x reducibility alone could not exhaustively explain the observed variability in ODH activity. The increased activity of VO_x supported on TiO₂ films above a monolayer coverage was attributed to the formation of oxygen vacancies within the TiO₂ structure. The density of these vacancies is expected to increase with increasing TiO₂ film thickness and it is favorable for them to migrate from the bulk to the surface.¹⁴³⁻¹⁴⁴ In addition, O vacancies constitute at most 1-2% of surface O atoms, which implies that a sufficiently thick film of ALDdeposited TiO₂ on the surface of Al₂O₃ will result in an equivalent surface density of O vacancies as bulk TiO₂.⁷⁰ This was confirmed by the comparable rates of cyclohexane consumption observed for VO_x/TiO₂ and VO_x supported on a 2.4 nm TiO₂ film deposited on Al₂O₃. While the catalytic activity was distinctly dependent on the composition of the support, the selectivity-conversion trends remained unchanged for the examined supported VO_x materials.

Oxygen defect formation energies and the charge distribution following the formation of an O vacancy have been previously evaluated for rutile and anatase TiO₂ by performing DFT calculations. These studies indicate that the remaining charge is distributed on Ti atoms, which are not in direct proximity to the vacancy site.¹⁴² This suggests that oxygen vacancies are unlikely to form within small TiO₂ clusters on an irreducible Al₂O₃ support. An investigation of the oxygen

defect formation energy as a function of TiO_2 domain size on an alumina support as well as the associated charge distribution is the subject on an ongoing collaboration. This study will aid in determining of the significance of the contribution of these vacancies to the catalytic activity of alumina supported VO_x-TiO₂ materials at different surface TiO₂ densities as well as the smallest TiO₂ cluster size allowing for the formation of a vacancy.

The final objective to gain an improved understanding of the contribution of the redox active CeO₂ support surface and VO_x sites to the catalytic activity of VO_x/CeO₂ through the deposition of VO_x and CeO₂ domains on an inert Al₂O₃ support via ALD was explored in Chapter 4. This study was motivated by the higher ODH activity of the bare CeO₂ in comparison to VO_x/CeO₂. In addition, the two materials were shown to follow distinct selectivity-conversion profiles, where the CeO₂ support favored total oxidation to CO₂. Materials prepared with single ALD cycles of VO_x and CeO₂ in varying order of deposition were characterized by Raman spectroscopy and XPS and evaluated for their activity and selectivity in cyclohexane ODH. The low reactivity of the Ce(TMHD)₄ precursor with the Al₂O₃ surface resulted in a VO_x/CeO₂/Al₂O₃ material structurally and catalytically similar to VO_x/Al₂O₃. In contrast, the deposition of CeO₂ following VO_x on alumina led to the development of a material with distinct surface structures. The ODH activity was dependent on the nature of the V-O-S bonds, and small clusters of CeO₂ at low surface densities were shown to favor total oxidation similarly to exposed CeO₂ surface sites in VO_x/CeO₂.

The interactions of VO_x species with CeO₂ domains on the surface of Al₂O₃ and the role of CeO₂ domains in the reaction mechanism should be further explored by varying the amount of CeO₂ species on the support surface. However, in order for this to be accomplished, the CeO₂ ALD process requires further optimization. The deposition previously described in the literature relies

on a home-built ALD system, where fresh Ce(TMHD)₄ precursor is introduced prior to every ALD cycle and the ligands are removed by *ex-situ* treatment at 400 °C in static air.^{159, 167} CeO₂ films have also been previously deposited with Ce(TMHD)₄ and ozone.¹⁶⁸ O₃ was picked as the oxidizing agent in this work in order to refrain from performing the oxidation half-reaction ex-situ. However, it would be beneficial to investigate whether the ligands are completely removed by the ozone treatment. This could be accomplished by performing IR spectroscopy and examining the carbonyl stretch absorption region. Any carbonyl features would be expected to disappear upon complete ligand removal. In addition, CeO₂ growth beyond a single ALD cycle was not accomplished in this work. The deposition of multiple CeO₂ ALD cycles was attempted without introducing fresh Ce(TMHD)₄ - however, it did not result in increased amounts of Ce as detected by XPS. There are two possible reasons for this behavior. One is that the ligands were not effectively removed and the Ce(TMHD)₄ precursor dosed in subsequent cycles could not react with remaining surface OH groups. However, this is unlikely due to the fact that VO_x domains were successfully deposited following the growth of CeO₂ species without removing the substrate from the ALD reactor. Any remaining TMHD ligands would be expected to create the same steric constraints for the VOTP precursor as they would for Ce(TMHD)₄ doses following the first CeO₂ ALD cycle. The other possibility is that the Ce(TMHD)₄ precursor is not stable when it remains heated at 180 °C. It has been previously reported that the synthesis of alkaline earth precursors based on β-diketonates may result in the presence of solvent residues and additional ligands, which lead to a more rapid degradation of the precursor. It was shown that improved growth rates during ALD can be achieved by in-situ gas-phase synthesis of the metal precursor.¹⁶⁹ An alternative solution would be to use a different CeO_2 precursor for the growth of thicker ALD films.

Tris(isopropyl-cyclopentadienyl)cerium (Ce(iPrCp)₃) has previously been used in plasmaenhanced ALD and may be an attractive candidate for CeO₂ thin film deposition by thermal ALD without the need for modification of the ALD rector.¹⁷⁰

VO_x/CeO₂ catalysts are comprised of an increased number of distinct active sites in comparison to other supported VO_x materials. On the CeO₂ support alone, the selectivity-conversion trends reveal that different reaction pathways are favorable than those observed for supported VO_x materials. A large fraction of CeO₂ surface sites remains exposed in VO_x/CeO₂ materials with sub-monolayer VO_x coverage discussed in this work, which impacts the resulting product distribution in cyclohexane ODH. The role of these catalytically active sites could be better understood by performing a detailed kinetic study, where the C₆ products of cyclohexane ODH are individually introduced as reactants at the same reaction conditions. This was previously analyzed by Feng *et al.* to determine the contribution of direct and sequential reaction pathways in cyclohexane ODH over VO_x supported on anodic aluminum oxide.⁴⁸ Such an investigation would facilitate an improved understanding of the reason for the low selectivity towards benzene observed for bare CeO₂ and its impact on CeO₂-supported VO_x catalysts.

Overall, this dissertation demonstrates how ALD can be used to synthesize catalysts with angstrom level control, which, in combination with spectroscopic characterization and gas-phase alkane ODH reaction studies, allows for an improved understanding of the individual roles of surface metal oxide species in supported mixed metal oxide catalysts. This further enables the distinction between changes in catalytic behavior due to the formation of V-O-S bonds and those associated with the structure of the support itself. Gaining a fundamental understanding of how VO_x active sites are impacted by oxides present in their vicinity may lead to the rational design of catalysts with improved alkene yields in alkane ODH reactions.

5.2 Future Directions

5.2.1 Active Site Quantification

Turnover frequencies for redox reactions over supported VO_x catalysts are commonly reported on a per V atom basis. This implies that every V atom on the surface of a catalyst is equally contributing to the reaction mechanism. However, the rate per V atom is dependent on V surface density, the local environment and reaction conditions. In order to address this issue, Nair and Baertsch proposed that surface VO_x active sites can be quantified with the use of anaerobic reactions. In their study, the number of redox active sites in alumina-supported MoO_x, WO_x and VO_x was determined by performing ethanol oxidative dehydrogenation during which oxygen was removed from the reactant stream and the transient decay in activity was monitored by a mass spectrometer and a gas chromatograph. In this reaction, the only product which forms on redox active sites is acetaldehyde and hence each molecule of acetaldehyde formed following oxygen removal directly corresponded to a surface redox active site. This allowed for the determination that the number of redox active sites is dependent on the identity of the metal oxide and its surface density, but the intrinsic redox reaction rate per active site is independent of these factors.¹⁷¹

A similar quantification study of catalytically active surface VO_x species in cyclohexane ODH could be envisioned. Our initial attempt of such an investigation did not provide meaningful results due to the fact that the detected concentrations of C₆ products were not significant during the steady-state reaction and did not allow for the monitoring of their decay following oxygen removal from the reactant stream. In contrast, a substantial amount of CO_2 was detected during the

cyclohexane ODH reaction. The discrepancy in product distributions in this study and that discussed in Chapter 3 is most likely associated with the relative concentrations of reactants in the feed. The anaerobic titrations were attempted in excess alkane concentration while the C_6H_{12} :O₂ ratio in previous studies was maintained at 1:2. Therefore, further optimization of the reaction conditions is necessary to successfully carry out this investigation. In addition, contrary to ethanol oxidative dehydrogenation, a number of different products can be formed on redox active sites in cyclohexane ODH via sequential reactions. This may result in competitive adsorption of the alkane and alkene on surface VO_x sites and hence complicate the quantification of active species. However, the consistent monitoring of all reaction products could provide information on the relative number of active sites in a series of supported VO_x materials. Additionally, anaerobic experiments with a cyclohexene feed would allow to separately calculate the number of sites that can perform the transformation to benzene, which is expected to be the final product of sequential partial oxidation. Active site quantification performed for alumina-supported VOx-TiO2 materials would provide additional insight into whether the varying surface site distributions of ALDsynthesized materials have an impact on the amount of active sites and their intrinsic reaction rates in cyclohexane ODH.

5.2.2 Redox Inactive Metal Oxide Modifiers

The work discussed in this dissertation focused on the impact of reducible oxide supports on the alkane ODH activity of VO_x surface sites. The main influence of these metal oxides is the increased activity of the supported VO_x catalysts. The selectivity to the desired alkene has been previously postulated to be dependent on acid-base properties of the oxide support.²³ For this reason, an

VO_x supported on MgO has been previously reported to be active for alkane ODH reactions.¹⁷² The strong acid-base reaction between VO_x and MgO distinguishes these catalysts from other supported VO_x materials. It results in the formation of a mixed metal oxide phase with a mixture of surface VO_x species and VO_x incorporated into the bulk structure.⁸⁰ VO_x/MgO exhibits an increased temperature of the maximum of the H₂ consumption peak in H₂ TPR and decreased activity towards propane ODH.²³ Gao *et al.* have previously shown that varying the ratio of Mg and V leads to the formation of a range of Mg vanadates with unique activities in propane ODH.¹⁷³ A systematic study of MgO and VO_x domains deposited by ALD would further improve the understanding of the structural differences obtained by varying the relative amounts of MgO and VO_x and their impact on catalytic activity. In addition, a direct comparison between VO_x/MgO/Al₂O₃ and VO_x/CeO₂/Al₂O₃ materials would enable a better understanding of how basic oxides can influence the catalytic properties of VO_x. MgO ALD has been previously achieved with a bis(ethylcyclopentadienyl)magnesium (Mg(CpEt)₂) precursor and H₂O in a viscous flow reactor.¹⁷⁴

Alumina-supported VO_x catalysts modified with WO_x domains have been previously evaluated for propane ODH. WO_x species were reported to be inert and to promote the adsorption of propane resulting in an increased selectivity towards propene. They did not have a significant effect on the structure and reducibility of VO_x sites as determined by H₂ TPR.¹⁷⁵ The reducibility of WO_x sites has been shown to be dependent on the relative amounts of VO_x and WO_x species.¹⁷⁶ Moreover, an increase in the W:V ratio up to 1 has been reported to improve catalytic performance in chlorobenzene oxidation, while further addition of WO_x has no significant effect on activity and eventually leads to catalyst deactivation. This indicates that there exists a difference in the influence of amorphous and crystalline WO_x on the catalytic activity of supported VO_x sites.¹⁷⁷ An investigation of the alkane ODH activity of ALD synthesized alumina-supported VO_x-WO_x materials would reveal whether this difference is also apparent in oxidative dehydrogenation reactions. In a manner similar to the materials discussed in Chapter 3, the effect of the thickness of the WO_x film could be separated from the distinction between amorphous and crystalline WO_x species. A precursor for WO_x ALD (WO₂(N-N'-Di-tert-butylamidinate)₂) has been previously synthesized by Mouat *et al.*, and WO₃ thin films were successfully grown with H₂O as an oxidant on Si(100) wafers covered with a SiO₂ thin film.¹⁷⁸

The exhaustive evaluation of TiO₂, CeO₂, MgO and WO_x modifiers would elucidate the distinction between the influence of redox activity and acid-base properties of different oxides on the catalytic performance of VO_x surface sites in alkane ODH reactions. The information gained from this investigation could serve as a guide in the synthesis of novel mixed-metal-oxide materials with improved control over the resulting catalytic behavior in alkane ODH reactions.

5.2.3 Desorption and Re-adsorption of the Alkene

The higher reactivity of the alkene in comparison to the alkane reactant in oxidative dehydrogenation poses a difficulty in designing a catalyst surface that can selectively form the desired product. Carrero *et al.* postulated that in order to prevent total oxidation, the energy profile of propane ODH needs to be changed. Specifically, catalysts with the capability to suppress the re-adsorption of the alkene could lead to improved product yields.⁹ Favorable re-adsorption of alkenes has been correlated to the presence of Lewis acid sites, and a number of strategies have

been proposed to limit their presence. Gärtner *et al.* speculated that using supports with low surface areas would limit the number of accessible Lewis acid sites, that surfaces which can dynamically rearrange could prevent the formation of surface defect sites and that site isolation of redox active species would limit the number of reactive oxygen atoms per site and, as a result, inhibit total oxidation.¹⁷⁹ However, the use of supports without strong Lewis acid sites such as silica typically leads to low catalytic activity.⁹

It is difficult to prevent aggregation of VO_x surface sites at elevated reaction temperatures without the use of metal oxide modifiers. However, these structures can provide additional labile oxygen leading to the favorable formation of CO_x products. A systematic DFT study of the adsorption and desorption energies for an alkane and the corresponding alkene could provide additional insight into the design of novel catalytic structures. These energies could be evaluated as a function of the varying identity of metal oxide modifiers to identify promising candidates, which allow for sufficient adsorption of the alkane, but favor desorption of the alkene in order to maintain sufficient catalytic activity and simultaneously improve product yield. The impact of these oxides could be assessed in parallel to the changes in adsorption and desorption energies with increasing VO_x cluster size to determine whether the deposition of the ternary phase has the potential to reduce the extent of sequential reactions associated with polymeric VO_x species.

6 References

1. Taylor, H. S., Catalysis and Catalytic Agents in Chemical Processes. *Journal of the Franklin Institute* **1922**, *194*, 1-27.

2. Gibbs, H., Phthalic Anhydride. I—Introduction. *Industrial & Engineering Chemistry* **1919**, *11*, 1031-1032.

3. Weiss, J.; Downs, C.; Burns, R., Oxide Equilibria in Catalysis. *Industrial & Engineering Chemistry* **1923**, *15*, 965-967.

4. Mars, P.; Van Krevelen, D. W., Oxidations Carried out by Means of Vanadium Oxide Catalysts. *Chem. Eng. Sci.* **1954**, *3*, 41-59.

5. Shibata, K.; Kitagawa, J.; Kiyoura, T., The Effective Surface Area of the Promoted Vanadium Pentoxide Catalyst Supported on Silica Gel. *J. Catal.* **1970**, *18*, 351-353.

6. Wachs, I. E.; Saleh, R. Y.; Chan, S. S.; Chersich, C. C., The Interaction of Vanadium Pentoxide with Titania (Anatase): Part I. Effect on o-Xylene Oxidation to Phthalic Anhydride. *Applied Catalysis* **1985**, *15*, 339-352.

7. Weckhuysen, B. M.; Keller, D. E., Chemistry, Spectroscopy and the Role of Supported Vanadium Oxides in Heterogeneous Catalysis. *Catal. Today* **2003**, *78*, 25-46.

8. Wachs, I. E., Catalysis Science of Supported Vanadium Oxide Catalysts. *Dalton Trans.* **2013**, *42*, 11762-11769.

9. Carrero, C. A.; Schlögl, R.; Wachs, I. E.; Schomaecker, R., Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. *ACS Catal.* **2014**, *4*, 3357-3380.

10. Machej, T.; Haber, J.; Turek, A. M.; Wachs, I. E., Monolayer V₂O₅/TiO₂ and MoO₃/TiO₂ Catalysts Prepared by Different Methods. *Applied Catalysis* **1991**, *70*, 115-128.

11. Saleh, R. Y.; Wachs, I. E.; Chan, S. S.; Chersich, C. C., The Interaction of V_2O_5 with TiO₂ (Anatase): Catalyst Evolution with Calcination Temperature and o-Xylene Oxidation. *J. Catal.* **1986**, *98*, 102-114.

12. Wu, Z.; Kim, H.-S.; Stair, P. C.; Rugmini, S.; Jackson, S. D., On the Structure of Vanadium Oxide Supported on Aluminas: UV and Visible Raman Spectroscopy, UV-Visible Diffuse Reflectance Spectroscopy, and Temperature-Programmed Reduction Studies. *J. Phys. Chem. B* **2005**, *109*, 2793-2800.

13. Gao, X.; Wachs, I. E., Investigation of Surface Structures of Supported Vanadium Oxide Catalysts by UV-vis-NIR Diffuse Reflectance Spectroscopy. *J. Phys. Chem. B* **2000**, *104*, 1261-1268.

14. Cristiani, C.; Forzatti, P.; Busca, G., On the Surface Structure of Vanadia-Titania Catalysts: Combined Laser-Raman and Fourier Transformed-Infrared Investigation. *J. Catal.* **1989**, *116*, 586-589.

15. Lee, E. L.; Wachs, I. E., In situ Raman Spectroscopy of SiO₂-Supported Transition Metal Oxide Catalysts: An Isotopic ¹⁸O-¹⁶O Exchange Study. *J. Phys. Chem. C* **2008**, *112*, 6487-6498.

16. Tanaka, T.; Yamashita, H.; Tsuchitani, R.; Funabiki, T.; Yoshida, S., X-ray Absorption (EXAFS/XANES) Study of Supported Vanadium Oxide Catalysts. Structure of Surface Vanadium Oxide Species on Silica and γ -Alumina at a Low Level of Vanadium Loading. *J. Chem. Soc. Faraday Trans.* **1988**, *84*, 2987-2999.

17. Eckert, H.; Wachs, I. E., Solid-State ⁵¹V NMR Structural Studies on Supported Vanadium(V) Oxide Catalysts: Vanadium Oxide Surface Layers on Alumina and Titania Supports. *J. Phys. Chem.* **1989**, *93*, 6796-6805.

18. Barman, S.; Maity, N.; Bhatte, K.; Ould-Chikh, S.; Dachwald, O.; Haeßner, C.; Saih, Y.; Abou-Hamad, E.; Llorens, I.; Hazemann, J.-L., Single-Site VO_x Moieties Generated on Silica by Surface Organometallic Chemistry: a Way to Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane. *ACS Catal.* **2016**, *6*, 5908-5921.

19. Baron, M.; Abbott, H.; Bondarchuk, O.; Stacchiola, D.; Uhl, A.; Shaikhutdinov, S.; Freund, H. J.; Popa, C.; Ganduglia-Pirovano, M. V.; Sauer, J., Resolving the Atomic Structure of Vanadia Monolayer Catalysts: Monomers, Trimers, and Oligomers on Ceria. *Angew. Chem.* **2009**, *121*, 8150-8153.

20. Rozanska, X.; Fortrie, R.; Sauer, J., Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. *J. Am. Chem. Soc.* **2014**, *136*, 7751-7761.

21. Dinse, A.; Frank, B.; Hess, C.; Habel, D.; Schomäcker, R., Oxidative Dehydrogenation of Propane over Low-Loaded Vanadia Catalysts: Impact of the Support Material on Kinetics and Selectivity. *J. Mol. Catal. A: Chem.* **2008**, *289*, 28-37.

22. Beck, B.; Harth, M.; Hamilton, N. G.; Carrero, C.; Uhlrich, J. J.; Trunschke, A.; Shaikhutdinov, S.; Schubert, H.; Freund, H.-J.; Schlögl, R., Partial Oxidation of Ethanol on Vanadia Catalysts on Supporting Oxides with Different Redox Properties Compared to Propane. *J. Catal.* **2012**, *296*, 120-131.

23. Lemonidou, A.; Nalbandian, L.; Vasalos, I., Oxidative Dehydrogenation of Propane over Vanadium Oxide Based Catalysts: Effect of Support and Alkali Promoter. *Catal. Today* **2000**, *61*, 333-341.

24. Wu, Z.; Stair, P. C.; Rugmini, S.; Jackson, S. D., Raman Spectroscopic Study of V/θ -Al₂O₃ Catalysts: Quantification of Surface Vanadia Species and Their Structure Reduced by Hydrogen. *J. Phys. Chem. C* **2007**, *111*, 16460-16469.

25. Kim, H.; Ferguson, G. A.; Cheng, L.; Zygmunt, S. A.; Stair, P. C.; Curtiss, L. A., Structure-Specific Reactivity of Alumina-Supported Monomeric Vanadium Oxide Species. *J. Phys. Chem. C* **2012**, *116*, 2927-2932.

26. Weckhuysen, B. M., Snapshots of a Working Catalyst: Possibilities and Limitations of in Situ Spectroscopy in the Field of Heterogeneous Catalysis. *Chem. Commun.* **2002**, 97-110.

27. Burcham, L. J.; Badlani, M.; Wachs, I. E., The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in situ Infrared and Kinetic Studies during Methanol Oxidation. *J. Catal.* **2001**, *203*, 104-121.

28. Wu, Z.; Stair, P. C., UV Raman Spectroscopic Studies of V/θ -Al₂O₃ Catalysts in Butane Dehydrogenation. *J. Catal.* **2006**, *237*, 220-229.

29. Wu, W.; Ding, K.; Liu, J.; Drake, T.; Stair, P.; Weitz, E., Methanol Oxidation to Formate on ALD-Prepared VO_x/ θ -Al₂O₃ Catalysts: A Mechanistic Study. *J. Phys. Chem. C* **2017**, *121*, 26794-26805.

30. Iglesias-Juez, A.; Martínez-Huerta, M.; Rojas-García, E.; Jehng, J.-M.; Bañares, M., On the Nature of the Unusual Redox Cycle at the Vanadia Ceria Interface. *J. Phys. Chem. C* **2018**, *122*, 1197-1205.

31. Moncada, J.; Adams, W. R.; Thakur, R.; Julin, M.; Carrero, C. A., Developing a Raman Spectrokinetic Approach To Gain Insights into the Structure–Reactivity Relationship of Supported Metal Oxide Catalysts. *ACS Catal.* **2018**, *8*, 8976-8986.

32. O'Neill, B. J.; Jackson, D. H.; Lee, J.; Canlas, C.; Stair, P. C.; Marshall, C. L.; Elam, J. W.; Kuech, T. F.; Dumesic, J. A.; Huber, G. W., Catalyst Design with Atomic Layer Deposition. *ACS Catal.* **2015**, *5*, 1804-1825.

33. Pagan-Torres, Y. J.; Gallo, J. M. R.; Wang, D.; Pham, H. N.; Libera, J. A.; Marshall, C. L.; Elam, J. W.; Datye, A. K.; Dumesic, J. A., Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition. *ACS Catal.* **2011**, *1*, 1234-1245.

34. Muylaert, I.; Musschoot, J.; Leus, K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P., Atomic Layer Deposition of Titanium and Vanadium Oxide on Mesoporous Silica and Phenol/Formaldehyde Resins-the Effect of the Support on the Liquid Phase Epoxidation of Cyclohexene. *Eur. J. Inorg. Chem.* **2012**, *2012*, 251-260.

35. Sree, S. P.; Dendooven, J.; Masschaele, K.; Hamed, H. M.; Deng, S. R.; Bals, S.; Detavernier, C.; Martens, J. A., Synthesis of Uniformly Dispersed Anatase Nanoparticles Inside

Mesoporous Silica Thin Films via Controlled Breakup and Crystallization of Amorphous TiO₂ Deposited Using Atomic Layer Deposition. *Nanoscale* **2013**, *5*, 5001-5008.

36. Choi, H.; Bae, J. H.; Kim, D. H.; Park, Y. K.; Jeon, J. K., Butanol Dehydration over V₂O₅-TiO₂/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition. *Materials* **2013**, *6*, 1718-1729.

37. George, S. M., Atomic Layer Deposition: an Overview. *Chem. Rev.* 2009, 110, 111-131.

38. Lu, J.; Elam, J. W.; Stair, P. C., Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition. *Acc. Chem. Res.* **2013**, *46*, 1806-1815.

39. Lu, J. L.; Stair, P. C., Low-Temperature ABC-Type Atomic Layer Deposition: Synthesis of Highly Uniform Ultrafine Supported Metal Nanoparticles. *Angewandte Chemie-International Edition* **2010**, *49*, 2547-2551.

40. Putkonen, M.; Nieminen, M.; Niinisto, L., Magnesium Aluminate Thin Films by Atomic Layer Deposition from Organometallic Precursors and Water. *Thin Solid Films* **2004**, *466*, 103-107.

41. Yanguas-Gil, A.; Libera, J. A.; Elam, J. W., Modulation of the Growth per Cycle in Atomic Layer Deposition using Reversible Surface Functionalization. *Chem. Mater.* **2013**, *25*, 4849-4860.

42. Kytökivi, A.; Lindblad, M.; Root, A., IR and ¹H NMR Studies on the Adsorption of Gaseous Hydrogen Chloride on γ -Alumina. J. Chem. Soc., Faraday Trans. **1995**, 91, 941-948.

43. Lindblad, M.; Lindfors, L. P.; Suntola, T., Preparation of Ni/Al₂O₃ Catalysts from Vapor Phase by Atomic Layer Epitaxy. *Catal. Lett.* **1994**, *27*, 323-336.

44. Lindblad, M.; Haukka, S.; Kytökivi, A.; Lakomaa, E.-L.; Rautiainen, A.; Suntola, T., Processing of Catalysts by Atomic Layer Epitaxy: Modification of Supports. *Appl. Surf. Sci.* **1997**, *121*, 286-291.

45. Keranen, J.; Auroux, A.; Ek, S.; Niinisto, L., Preparation, Characterization and Activity Testing of Vanadia Catalysts Deposited onto Silica and Alumina Supports by Atomic Layer Deposition. *Appl. Catal.*, A **2002**, *228*, 213-225.

46. Gervasini, A.; Carniti, P.; Keranen, J.; Niinisto, L.; Auroux, A., Surface Characteristics and Activity in Selective Oxidation of o-Xylene of Supported V₂O₅ Catalysts Prepared by Standard Impregnation and Atomic Layer Deposition. *Catal. Today* **2004**, *96*, 187-194.

47. Keranen, J.; Guimon, C.; Liskola, E.; Auroux, A.; Niinisto, L., Atomic Layer Deposition and Surface Characterization of Highly Dispersed Titania/Silica-Supported Vanadia Catalysts. *Catal. Today* **2003**, *78*, 149-157.

48. Feng, H.; Elam, J.; Libera, J.; Pellin, M.; Stair, P., Oxidative Dehydrogenation of Cyclohexane over Alumina-Supported Vanadium Oxide Nanoliths. *J. Catal.* **2010**, *269*, 421-431.

49. Stair, P. C., Synthesis of Supported Catalysts by Atomic Layer Deposition. *Top. Catal.* **2012**, *55*, 93-98.

50. Handbook of heterogeneous catalysis. In *Handbook of heterogeneous catalysis online*, 2nd ed., ed.; Ertl, G.; Wiley, I.; Wiley, B., Eds. Wiley-VCH: Weinheim], 2008.

51. Grant, J. T.; Love, A. M.; Carrero, C. A.; Huang, F.; Panger, J.; Verel, R.; Hermans, I., Improved Supported Metal Oxides for the Oxidative Dehydrogenation of Propane. *Top. Catal.* **2016**, 1-9.

52. Moulijn, J. A.; Makkee, M.; Van Diepen, A. E., *Chemical Process Technology*; John Wiley & Sons, 2013.

53. Sattler, J. J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M., Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. *Chem. Rev.* **2014**, *114*, 10613-10653.

54. Kung, H. H., Oxidative Dehydrogenation of Light (C_2 to C_4) Alkanes. In *Advances in Catalysis*, Elsevier: 1994; Vol. 40, pp 1-38.

55. Grabowski, R., Kinetics of Oxidative Dehydrogenation of C2-C3 Alkanes on Oxide Catalysts. *Catalysis Reviews* **2006**, *48*, 199-268.

56. Chen, K.; Khodakov, A.; Yang, J.; Bell, A. T.; Iglesia, E., Isotopic Tracer and Kinetic Studies of Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. *J. Catal.* **1999**, *186*, 325-333.

57. Blanksby, S. J.; Ellison, G. B., Bond Dissociation Energies of Organic Molecules. *Acc. Chem. Res.* **2003**, *36*, 255-263.

58. Gruene, P.; Wolfram, T.; Pelzer, K.; Schlögl, R.; Trunschke, A., Role of Dispersion of Vanadia on SBA-15 in the Oxidative Dehydrogenation of Propane. *Catal. Today* **2010**, *157*, 137-142.

59. Grant, J. T.; Carrero, C. A.; Love, A. M.; Verel, R.; Hermans, I., Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. *ACS Catal.* **2015**, *5*, 5787-5793.

60. Tian, H.; Ross, E. I.; Wachs, I. E., Quantitative Determination of the Speciation of Surface Vanadium Oxides and Their Catalytic Activity. *J. Phys. Chem. B* **2006**, *110*, 9593-9600.

61. Carrero, C. A.; Keturakis, C. J.; Orrego, A.; Schomäcker, R.; Wachs, I. E., Anomalous Reactivity of Supported V₂O₅ Nanoparticles for Propane Oxidative Dehydrogenation: Influence of the Vanadium Oxide Precursor. *Dalton Trans.* **2013**, *42*, 12644-12653.

62. Christodoulakis, A.; Machli, M.; Lemonidou, A. A.; Boghosian, S., Molecular Structure and Reactivity of Vanadia-Based Catalysts for Propane Oxidative Dehydrogenation Studied by in situ Raman Spectroscopy and Catalytic Activity Measurements. *J. Catal.* **2004**, *222*, 293-306.

63. Argyle, M. D.; Chen, K.; Bell, A. T.; Iglesia, E., Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. *J. Catal.* **2002**, *208*, 139-149.

64. Rozanska, X.; Fortrie, R.; Sauer, J., Oxidative Dehydrogenation of Propane by Monomeric Vanadium Oxide Sites on Silica Support. *J. Phys. Chem. C* **2007**, *111*, 6041-6050.

65. Döbler, J.; Pritzsche, M.; Sauer, J., Oxidation of Methanol to Formaldehyde on Supported Vanadium Oxide Catalysts Compared to Gas Phase Molecules. *J. Am. Chem. Soc.* **2005**, *127*, 10861-10868.

66. Kropp, T.; Paier, J.; Sauer, J., Oxidative Dehydrogenation of Methanol at Ceria-Supported Vanadia Oligomers. *J. Catal.* **2017**, *352*, 382-387.

67. Penschke, C.; Paier, J.; Sauer, J., Oligomeric Vanadium Oxide Species Supported on the CeO₂(111) Surface: Structure and Reactivity Studied by Density Functional Theory. *J. Phys. Chem. C* **2013**, *117*, 5274-5285.

68. Ganduglia-Pirovano, M. V.; Popa, C.; Sauer, J.; Abbott, H.; Uhl, A.; Baron, M.; Stacchiola, D.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.-J., Role of Ceria in Oxidative Dehydrogenation on Supported Vanadia Catalysts. *J. Am. Chem. Soc.* **2010**, *132*, 2345-2349.

69. Kropp, T.; Paier, J.; Sauer, J., Support Effect in Oxide Catalysis: Methanol Oxidation on Vanadia/Ceria. *J. Am. Chem. Soc.* **2014**, *136*, 14616-14625.

70. Goodrow, A.; Bell, A. T., A Theoretical Investigation of the Selective Oxidation of Methanol to Formaldehyde on Isolated Vanadate Species Supported on Titania. *J. Phys. Chem. C* **2008**, *112*, 13204-13214.

71. Shapovalov, V.; Fievez, T.; Bell, A. T., A Theoretical Study of Methanol Oxidation Catalyzed by Isolated Vanadia Clusters Supported on the (101) Surface of Anatase. *J. Phys. Chem. C* **2012**, *116*, 18728-18735.

72. Hamilton, N.; Wolfram, T.; Müller, G. T.; Hävecker, M.; Kröhnert, J.; Carrero, C.; Schomäcker, R.; Trunschke, A.; Schlögl, R., Topology of Silica Supported Vanadium–Titanium Oxide Catalysts for Oxidative Dehydrogenation of Propane. *Catal. Sci. Technol.* **2012**, *2*, 1346-1359.

73. Carrero, C.; Kauer, M.; Dinse, A.; Wolfram, T.; Hamilton, N.; Trunschke, A.; Schlögl, R.; Schomäcker, R., High Performance $(VO_x)_n$ – $(TiO_x)_m$ /SBA-15 Catalysts for the Oxidative Dehydrogenation of Propane. *Catal. Sci. Technol.* **2014**, *4*, 786-794.

74. Vining, W. C.; Goodrow, A.; Strunk, J.; Bell, A. T., An Experimental and Theoretical Investigation of the Structure and Reactivity of Bilayered $VO_x/TiO_x/SiO_2$ Catalysts for Methanol Oxidation. *J. Catal.* **2010**, *270*, 163-171.

75. Gao, X.; Bare, S. R.; Fierro, J.; Wachs, I. E., Structural Characteristics and Reactivity/Reducibility Properties of Dispersed and Bilayered V₂O₅/TiO₂/SiO₂ Catalysts. *J. Phys. Chem. B* **1999**, *103*, 618-629.

76. Dai, H.; Bell, A. T.; Iglesia, E., Effects of Molybdena on the Catalytic Properties of Vanadia Domains Supported on Alumina for Oxidative Dehydrogenation of Propane. *J. Catal.* **2004**, *221*, 491-499.

77. Vining, W. C.; Strunk, J.; Bell, A. T., Investigation of the Structure and Activity of VO_x/CeO₂/SiO₂ Catalysts for Methanol Oxidation to Formaldehyde. *J. Catal.* **2012**, *285*, 160-167.

78. Samek, I. A.; Bobbitt, N. S.; Snurr, R. Q.; Stair, P. C., Interactions of VO_x Species with Amorphous TiO₂ Domains on ALD-Derived Alumina-Supported Materials. *J. Phys. Chem. C* **2019**, *123*, 7988-7999.

79. Deo, G.; Wachs, I. E.; Haber, J., Supported Vanadium Oxide Catalysts: Molecular Structural Characterization and Reactivity Properties. *Crit. Rev. Surf. Chem.* **1994**, *4*, 141-187.

80. Wachs, I. E.; Weckhuysen, B. M., Structure and Reactivity of Surface Vanadium Oxide Species on Oxide Supports. *Appl. Catal., A* **1997**, *157*, 67-90.

81. Khodakov, A.; Olthof, B.; Bell, A. T.; Iglesia, E., Structure and Catalytic Properties of Supported Vanadium Oxides: Support Effects on Oxidative Dehydrogenation Reactions. *J. Catal.* **1999**, *181*, 205-216.

82. Chen, K.; Bell, A. T.; Iglesia, E., Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides. *J. Phys. Chem. B* **2000**, *104*, 1292-1299.

83. Frank, B.; Fortrie, R.; Hess, C.; Schlögl, R.; Schomäcker, R., Reoxidation Dynamics of Highly Dispersed VO_x Species Supported on γ-Alumina. *Appl. Catal.*, A **2009**, *353*, 288-295.

84. Haber, J.; Machej, T.; Czeppe, T., The Phenomenon of Wetting at Solid/Solid Interface. *Surf. Sci.* **1985**, *151*, 301-310.

85. Wang, C.-B.; Cai, Y.; Wachs, I. E., Reaction-Induced Spreading of Metal Oxides onto Surfaces of Oxide Supports during Alcohol Oxidation: Phenomenon, Nature, and Mechanisms. *Langmuir* **1999**, *15*, 1223-1235.

86. Feng, Z.; Lu, J.; Feng, H.; Stair, P. C.; Elam, J. W.; Bedzyk, M. J., Catalysts Transform while Molecules React: An Atomic-Scale View. *J. Phys. Chem. Lett.* **2013**, *4*, 285-291.

87. Reddy, B. M.; Ganesh, I.; Reddy, E. P., Study of Dispersion and Thermal Stability of V_2O_5/TiO_2 -SiO₂ Catalysts by XPS and Other Techniques. *J. Phys. Chem. B* **1997**, *101*, 1769-1774.

88. Lapina, O.; Nosov, A.; Mastikhin, V.; Dubkov, K.; Mokrinski, V., Surface Complexes Formed in V₂O₅-TiO₂-SiO₂ Catalysts According to ⁵¹V and ¹H High-Resolution Solid-State NMR Data. *J. Mol. Catal.* **1994**, *87*, 57-66.

89. Elam, J.; Groner, M.; George, S., Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition. *Rev. Sci. Instrum.* **2002**, *73*, 2981-2987.

90. Stair, P. C.; Li, C., Ultraviolet Raman Spectroscopy of Catalysts and Other Solids. *J. Vac. Sci. Technol. A* **1997**, *15*, 1679-1684.

91. Chua, Y. T.; Stair, P. C.; Wachs, I. E., A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts. *J. Phys. Chem. B* **2001**, *105*, 8600-8606.

92. Chua, Y. T.; Stair, P. C., A Novel Fluidized Bed Technique for Measuring UV Raman Spectra of Catalysts and Adsorbates. *J. Catal.* **2000**, *196*, 66-72.

93. Zhang, C.; Allotta, P. M.; Xiong, G.; Stair, P. C., UV-Raman and Fluorescence Spectroscopy of Benzene Adsorbed Inside Zeolite Pores. *Journal of Physical Chemistry C* **2008**, *112*, 14501-14507.

94. Eaton, T. R.; Campos, M. P.; Gray, K. A.; Notestein, J. M., Quantifying Accessible Sites and Reactivity on Titania–Silica (Photo)Catalysts: Refining TOF Calculations. *J. Catal.* **2014**, *309*, 156-165.

95. Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1993**, *47*, 558.

96. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal– Amorphous-Semiconductor Transition in Germanium. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *49*, 14251.

97. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

98. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1996**, *54*, 11169.

99. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

100. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

101. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456-1465.

102. Blöchl, P. E., Projector Augmented-Wave Method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *50*, 17953.

103. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 1758.

104. Deo, G.; Wachs, I. E., Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol. *J. Catal.* **1994**, *146*, 323-334.

105. Ritala, M.; Leskela, M.; Niinisto, L.; Haussalo, P., Titanium Isopropoxide as a Precursor in Atomic Layer Epitaxy of Titanium Dioxide Thin Films. *Chem. Mater.* **1993**, *5*, 1174-1181.

106. Xie, Q.; Jiang, Y.-L.; Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R. L.; Ru, G.-P.; Li, B.-Z.; Qu, X.-P., Atomic Layer Deposition of TiO₂ from Tetrakis-Dimethyl-Amido Titanium or Ti Isopropoxide Precursors and H₂O. *J. Appl. Phys.* **2007**, *102*, 083521.

107. Vuurman, M. A.; Wachs, I. E., In situ Raman Spectroscopy of Alumina-Supported Metal Oxide Catalysts. *J. Phys. Chem.* **1992**, *96*, 5008-5016.

108. Balachandran, U.; Eror, N., Raman Spectra of Titanium Dioxide. J. Solid State Chem. 1982, 42, 276-282.

109. Ardagh, M. A.; Bo, Z.; Nauert, S. L.; Notestein, J. M., Depositing SiO₂ on Al₂O₃: a Route to Tunable Brønsted Acid Catalysts. *ACS Catal.* **2016**, *6*, 6156-6164.

110. Busca, G., The Surface of Transitional Aluminas: A Critical Review. *Catal. Today* **2014**, 226, 2-13.

111. Blonski, S.; Garofalini, S., Molecular Dynamics Simulations of α -Alumina and γ -Alumina Surfaces. *Surf. Sci.* **1993**, 295, 263-274.

112. Lee, M.-H.; Cheng, C.-F.; Heine, V.; Klinowski, J., Distribution of Tetrahedral and Octahedral A1 Sites in Gamma Alumina. *Chem. Phys. Lett.* **1997**, *265*, 673-676.

113. Fu, L.; Yang, H.; Hu, Y.; Wu, D.; Navrotsky, A., Tailoring Mesoporous γ -Al₂O₃ Properties by Transition Metal Doping: a Combined Experimental and Computational Study. *Chem. Mater.* **2017**, *29*, 1338-1349.

114. Levin, I.; Brandon, D., Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. *J. Am. Ceram. Soc.* **1998**, *81*, 1995-2012.

115. Mo, S. D.; Xu, Y. N.; Ching, W. Y., Electronic and Structural Properties of Bulk γ -Al₂O₃. *J. Am. Ceram. Soc.* **1997**, *80*, 1193-1197.

116. Wolverton, C.; Hass, K., Phase Stability and Structure of Spinel-Based Transition Aluminas. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *63*, 024102.

117. Gutiérrez, G.; Taga, A.; Johansson, B., Theoretical Structure Determination of γ -Al₂O₃. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *65*, 012101.

118. Pinto, H. P.; Nieminen, R. M.; Elliott, S. D., Ab Initio Study of γ -Al₂O₃ Surfaces. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2004**, *70*, 125402.

119. Zhou, R. S.; Snyder, R. L., Structures and Transformation Mechanisms of the η , γ and θ Transition Aluminas. *Acta Crystallogr. B* **1991**, *47*, 617-630.

120. Krokidis, X.; Raybaud, P.; Gobichon, A.-E.; Rebours, B.; Euzen, P.; Toulhoat, H., Theoretical Study of the Dehydration Process of Boehmite to γ -Alumina. *J. Phys. Chem. B* **2001**, *105*, 5121-5130.

121. Tang, W.; Arnaldsson, A.; Chill, S.; Henkelman, G., Bader Charge Analysis. 1970.

122. Wong, J.; Lytle, F.; Messmer, R.; Maylotte, D., K-edge Absorption Spectra of Selected Vanadium Compounds. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1984**, *30*, 5596.

123. Yamamoto, T., Assignment of Pre-Edge Peaks in K-edge X-ray Absorption Spectra of 3d Transition Metal Compounds: Electric Dipole or Quadrupole? *X-Ray Spectrom.* **2008**, *37*, 572-584.

124. Arena, F.; Frusteri, F.; Parmaliana, A., Structure and Dispersion of Supported-Vanadia Catalysts. Influence of the Oxide Carrier. *Appl. Catal.*, A **1999**, *176*, 189-199.

125. Klose, F.; Wolff, T.; Lorenz, H.; Seidel-Morgenstern, A.; Suchorski, Y.; Piórkowska, M.; Weiss, H., Active Species on γ-Alumina-Supported Vanadia Catalysts: Nature and Reducibility. *J. Catal.* **2007**, *247*, 176-193.

126. Banares, M. A.; Alemany, L. J.; Jiménez, M. C.; Larrubia, M. A.; Delgado, F.; Granados, M. L.; Martinez-Arias, A.; Blasco, J. M.; Fierro, J. L. G., The Role of Vanadium Oxide on the Titania Transformation under Thermal Treatments and Surface Vanadium States. *J. Solid State Chem.* **1996**, *124*, 69-76.

127. Strunk, J.; Vining, W. C.; Bell, A. T., A Study of Oxygen Vacancy Formation and Annihilation in Submonolayer Coverages of TiO₂ Dispersed on MCM-48. *J. Phys. Chem. C* **2010**, *114*, 16937-16945.

128. Dinse, A.; Carrero, C.; Ozarowski, A.; Schomäcker, R.; Schlögl, R.; Dinse, K. P., Characterization and Quantification of Reduced Sites on Supported Vanadium Oxide Catalysts by Using High-Frequency Electron Paramagnetic Resonance. *ChemCatChem* **2012**, *4*, 641-652.

129. Kim, C.-Y.; Elam, J. W.; Stair, P. C.; Bedzyk, M. J., Redox Driven Crystalline Coherent-Incoherent Transformation for a 2 ML VO_x Film Grown on α -TiO₂ (110). *J. Phys. Chem. C* **2010**, *114*, 19723-19726.

130. Gao, W.; Wang, C. M.; Wang, H.; Henrich, V. E.; Altman, E. I., Growth and Surface Structure of Vanadium Oxide on Anatase (0 0 1). *Surf. Sci.* **2004**, *559*, 201-213.

131. Yun, D.; Wang, Y.; Herrera, J. E., Ethanol Partial Oxidation over VO_x/TiO₂ Catalysts: The Role of Titania Surface Oxygen on Vanadia Reoxidation in the Mars–van Krevelen Mechanism. *ACS Catal.* **2018**, *8*, 4681-4693.

132. Lee, E. L.; Wachs, I. E., Molecular Design and In Situ Spectroscopic Investigation of Multilayered Supported $M_1O_x/M_2O_x/SiO_2$ Catalysts. J. Phys. Chem. C 2008, 112, 20418-20428.

133. Shannon, R. D., Dielectric Polarizabilities of Ions in Oxides and Fluorides. J. Appl. Phys. **1993**, 73, 348-366.

134. Barr, T. L., Recent Advances in X-ray Photoelectron Spectroscopy Studies of Oxides. *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films* **1991**, *9*, 1793-1805.

135. Coulston, G.; Thompson, E.; Herron, N., Characterization of VPO Catalysts by X-ray Photoelectron Spectroscopy. *J. Catal.* **1996**, *163*, 122-129.

136. Mendialdua, J.; Casanova, R.; Barbaux, Y., XPS Studies of V₂O₅, V₆O₁₃, VO₂ and V₂O₃. *J. Electron. Spectrosc. Relat. Phenom.* **1995**, *71*, 249-261.

137. Lewis, G.; Fox, P., The Thickness of Thin Surface Films Determined by Photo-Electron Spectroscopy. *Corros. Sci.* **1978**, *18*, 645-650.

138. Klasson, M.; Hedman, J.; Berndtsson, A.; Nilsson, R.; Nordling, C.; Melnik, P., Escape Depths of X-ray Excited Electrons. *Phys. Scr.* **1972**, *5*, 93.

139. Aarik, J.; Aidla, A.; Uustare, T.; Ritala, M.; Leskelä, M., Titanium Isopropoxide as a Precursor for Atomic Layer Deposition: Characterization of Titanium Dioxide Growth Process. *Appl. Surf. Sci.* **2000**, *161*, 385-395.

140. Martínez-Huerta, M.; Gao, X.; Tian, H.; Wachs, I.; Fierro, J.; Banares, M., Oxidative Dehydrogenation of Ethane to Ethylene over Alumina-Supported Vanadium Oxide Catalysts: Relationship Between Molecular Structures and Chemical Reactivity. *Catal. Today* **2006**, *118*, 279-287.

141. Dinse, A.; Ozarowski, A.; Hess, C.; Schomäcker, R.; Dinse, K.-P., Potential of High-Frequency EPR for Investigation of Supported Vanadium Oxide Catalysts. *J. Phys. Chem. C* 2008, *112*, 17664-17671.

142. Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J., Oxygen Vacancies in Transition Metal and Rare Earth Oxides: Current State of Understanding and Remaining Challenges. *Surf. Sci. Rep.* **2007**, *62*, 219-270.

143. Sengupta, G.; Chatterjee, R.; Maity, G.; Ansari, B.; Satyanarayna, C., Role of Oxygen Vacancies in Water Vapor Chemisorption and CO Oxidation on Titania. *J. Colloid Interface Sci.* **1995**, *170*, 215-219.

144. Jug, K.; Nair, N. N.; Bredow, T., Molecular Dynamics Investigation of Oxygen Vacancy Diffusion in Rutile. *PCCP* **2005**, *7*, 2616-2621.

145. Bhore, N. A.; Klein, M. T.; Bischoff, K. B., The Delplot Technique: a New Method for Reaction Pathway Analysis. *Ind. Eng. Chem. Res.* **1990**, *29*, 313-316.

146. Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti, G., The Utilization of Ceria in Industrial Catalysis. *Catal. Today* **1999**, *50*, 353-367.

147. Trovarelli, A.; Fornasiero, P., *Catalysis by Ceria and Related Materials*; World Scientific, 2013; Vol. 12.

148. Trovarelli, A., Catalytic Properties of Ceria and CeO₂-Containing Materials. *Catalysis Reviews* **1996**, *38*, 439-520.

149. Taylor, M. N.; Carley, A. F.; Davies, T. E.; Taylor, S. H., The Oxidative Dehydrogenation of Propane using Vanadium Oxide Supported on Nanocrystalline Ceria. *Top. Catal.* **2009**, *52*, 1660-1668.

150. Daniell, W.; Ponchel, A.; Kuba, S.; Anderle, F.; Weingand, T.; Gregory, D.; Knözinger, H., Characterization and Catalytic Behavior of VO_x -CeO₂ Catalysts for the Oxidative Dehydrogenation of Propane. *Top. Catal.* **2002**, *20*, 65-74.

151. Martinez-Huerta, M.; Coronado, J.; Fernández-Garcia, M.; Iglesias-Juez, A.; Deo, G.; Fierro, J.; Banares, M., Nature of the Vanadia–Ceria Interface in V^{5+}/CeO_2 Catalysts and Its Relevance for the Solid-State Reaction toward CeVO₄ and Catalytic Properties. *J. Catal.* **2004**, 225, 240-248.

152. Martínez-Huerta, M. V.; Deo, G.; Fierro, J. L. G.; Bañares, M. A., Changes in Ceria-Supported Vanadium Oxide Catalysts during the Oxidative Dehydrogenation of Ethane and Temperature-Programmed Treatments. *J. Phys. Chem. C* **2007**, *111*, 18708-18714.
153. Abbott, H. L.; Uhl, A.; Baron, M.; Lei, Y.; Meyer, R. J.; Stacchiola, D. J.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.-J., Relating Methanol Oxidation to the Structure of Ceria-Supported Vanadia Monolayer Catalysts. *J. Catal.* **2010**, *272*, 82-91.

154. Wong, G. S.; Concepcion, M. R.; Vohs, J. M., Oxidation of Methanol to Formaldehyde on Vanadia Films Supported on CeO₂(111). *J. Phys. Chem. B* **2002**, *106*, 6451-6455.

155. Martínez-Huerta, M.; Deo, G.; Fierro, J.; Bañares, M., Operando Raman-GC Study on the Structure-Activity Relationships in V^{5+}/CeO_2 Catalyst for Ethane Oxidative Dehydrogenation: The Formation of CeVO₄. *J. Phys. Chem. C* **2008**, *112*, 11441-11447.

156. Reddy, B. M.; Rao, K. N.; Reddy, G. K.; Khan, A.; Park, S.-E., Structural Characterization and Oxidehydrogenation Activity of CeO₂/Al₂O₃ and V₂O₅/CeO₂/Al₂O₃ Catalysts. *J. Phys. Chem. C* **2007**, *111*, 18751-18758.

157. Strunk, J.; Vining, W. C.; Bell, A. T., Synthesis of Different CeO₂ Structures on Mesoporous Silica and Characterization of Their Reduction Properties. *J. Phys. Chem. C* **2011**, *115*, 4114-4126.

158. Jehng, J.-M., Dynamic States of V₂O₅ Supported on SnO₂/SiO₂ and CeO₂/SiO₂ Mixed-Oxide Catalysts during Methanol Oxidation. *J. Phys. Chem. B* **1998**, *102*, 5816-5822.

159. Onn, T. M.; Zhang, S.; Arroyo-Ramirez, L.; Xia, Y.; Wang, C.; Pan, X.; Graham, G. W.; Gorte, R. J., High-Surface-Area Ceria Prepared by ALD on Al₂O₃ Support. *Applied Catalysis B: Environmental* **2017**, *201*, 430-437.

160. Oh, I.-K.; Kim, K.; Lee, Z.; Ko, K. Y.; Lee, C.-W.; Lee, S. J.; Myung, J. M.; Lansalot-Matras, C.; Noh, W.; Dussarrat, C., Hydrophobicity of Rare Earth Oxides Grown by Atomic Layer Deposition. *Chem. Mater.* **2014**, *27*, 148-156.

161. Singh, T.; Wang, S.; Aslam, N.; Zhang, H.; Hoffmann-Eifert, S.; Mathur, S., Atomic Layer Deposition of Transparent VO_x Thin Films for Resistive Switching Applications. *Chem. Vap. Deposition* **2014**, *20*, 291-297.

162. Wu, Z.; Rondinone, A. J.; Ivanov, I. N.; Overbury, S. H., Structure of Vanadium Oxide Supported on Ceria by Multiwavelength Raman Spectroscopy. *J. Phys. Chem. C* **2011**, *115*, 25368-25378.

163. Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A.; Wagata, H.; Matsushita, N.; Yoshimura, M., Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. *J. Phys. Chem. C* **2009**, *113*, 19789-19793.

164. Guo, M.; Lu, J.; Wu, Y.; Wang, Y.; Luo, M., UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. *Langmuir* **2011**, *27*, 3872-3877.

165. Jehng, J.-M.; Deo, G.; Weckhuysen, B. M.; Wachs, I. E., Effect of Water Vapor on the Molecular Structures of Supported Vanadium Oxide Catalysts at Elevated Temperatures. *J. Mol. Catal. A: Chem.* **1996**, *110*, 41-54.

166. Wong, G.; Vohs, J., An XPS Study of the Growth and Electronic Structure of Vanadia Films Supported on CeO₂(1 1 1). *Surf. Sci.* **2002**, *498*, 266-274.

167. Anthony, S. Y.; Küngas, R.; Vohs, J. M.; Gorte, R. J., Modification of SOFC Cathodes by Atomic Layer Deposition. *J. Electrochem. Soc.* **2013**, *160*, F1225-F1231.

168. Fan, Z.; Prinz, F. B., Atomic Layer Deposition of Ceria-Based Thin Films as Interlayer for Solid Oxide Fuel Cells. *ECS Transactions* **2009**, *25*, 959-967.

169. Soininen, P.; Nykänen, E.; Niinistö, L.; Leskelä, M., Atomic Layer Epitaxy of Strontium Sulfide Thin Films Using In Situ Synthesized Strontium Precursors. *Chem. Vap. Deposition* **1996**, *2*, 69-74.

170. Kim, W.-H.; Kim, M.-K.; Maeng, W.; Gatineau, J.; Pallem, V.; Dussarrat, C.; Noori, A.; Thompson, D.; Chu, S.; Kim, H., Growth Characteristics and Film Properties of Cerium Dioxide Prepared by Plasma-Enhanced Atomic Layer Deposition. *J. Electrochem. Soc.* **2011**, *158*, G169-G172.

171. Nair, H.; Baertsch, C. D., Method for Quantifying Redox Site Densities in Metal Oxide Catalysts: Application to the Comparison of Turnover Frequencies for Ethanol Oxidative Dehydrogenation over Alumina-Supported VO_x, MoO_x, and WO_x Catalysts. *J. Catal.* **2008**, *258*, 1-4.

172. Kung, H. H.; Kung, M., Oxidative Dehydrogenation of Alkanes over Vanadium-Magnesium-Oxides. *Appl. Catal., A* **1997**, *157*, 105-116.

173. Gao, X.; Ruiz, P.; Xin, Q.; Guo, X.; Delmon, B., Effect of Coexistence of Magnesium Vanadate Phases in the Selective Oxidation of Propane to Propene. *J. Catal.* **1994**, *148*, 56-67.

174. Burton, B.; Goldstein, D.; George, S., Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl)magnesium and H₂O. *J. Phys. Chem. C* **2009**, *113*, 1939-1946.

175. Mitra, B.; Wachs, I. E.; Deo, G., Promotion of the Propane ODH Reaction over Supported V_2O_5/Al_2O_3 Catalyst with Secondary Surface Metal Oxide Additives. *J. Catal.* **2006**, *240*, 151-159.

176. Feng, Z.; McBriarty, M.; Mane, A.; Lu, J.; Stair, P. C.; Elam, J.; Bedzyk, M., Redox-Driven Atomic-Scale Changes in Mixed Catalysts: $VO_x/WO_x/\alpha$ -TiO₂(110). *RSC Advances* **2014**, *4*, 64608-64616.

177. Bertinchamps, F.; Grégoire, C.; Gaigneaux, E. M., Systematic Investigation of Supported Transition Metal Oxide Based Formulations for the Catalytic Oxidative Elimination of (Chloro)-

Aromatics: Part II: Influence of the Nature and Addition Protocol of Secondary Phases to VO_x/TiO₂. *Applied Catalysis B: Environmental* **2006**, *66*, 10-22.

178. Mouat, A. R.; Mane, A. U.; Elam, J. W.; Delferro, M.; Marks, T. J.; Stair, P. C., Volatile Hexavalent Oxo-amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition. *Chem. Mater.* **2016**, *28*, 1907-1919.

179. Gärtner, C. A.; van Veen, A. C.; Lercher, J. A., Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. *ChemCatChem* **2013**, *5*, 3196-3217.

180. Mol, J., Industrial Applications of Olefin Metathesis. J. Mol. Catal. A: Chem. 2004, 213, 39-45.

181. Lwin, S.; Wachs, I. E., Olefin Metathesis by Supported Metal Oxide Catalysts. *ACS Catal.* **2014**, *4*, 2505-2520.

182. Jean-Louis Hérisson, P.; Chauvin, Y., Catalyse de Transformation des Oléfines par les Complexes du Tungstène. II. Télomérisation des Oléfines Cycliques en Présence d'Oléfines Acycliques. *Die Makromolekulare Chemie* **1971**, *141*, 161-176.

183. Buchmeiser, M. R., Recent Advances in the Synthesis of Supported Metathesis Catalysts. *New J. Chem.* **2004**, *28*, 549-557.

184. Ding, K.; Gulec, A.; Johnson, A. M.; Drake, T. L.; Wu, W.; Lin, Y.; Weitz, E.; Marks, L. D.; Stair, P. C., Highly Efficient Activation, Regeneration, and Active Site Identification of Oxide-Based Olefin Metathesis Catalysts. *ACS Catal.* **2016**, *6*, 5740-5746.

185. Iwasawa, Y.; Ichinose, H.; Ogasawara, S.; Soma, M., Olefin Metathesis over Well-Defined Active Fixed Molybdenum Catalysts. Structure and Oxidation State of the Active Site and Reaction Mechanism. *J. Chem. Soc. Faraday Trans.* **1981**, *77*, 1763-1777.

186. Debecker, D. P.; Schimmoeller, B.; Stoyanova, M.; Poleunis, C.; Bertrand, P.; Rodemerck, U.; Gaigneaux, E. M., Flame-made MoO₃/SiO₂-Al₂O₃ Metathesis Catalysts with Highly Dispersed and Highly Active Molybdate Species. *J. Catal.* **2011**, *277*, 154-163.

187. Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez, C., One-Pot Aerosol Route to MoO₃-SiO₂-Al₂O₃ Catalysts with Ordered Super Microporosity and High Olefin Metathesis Activity. *Angew. Chem. Int. Ed.* **2012**, *51*, 2129-2131.

188. Copéret, C., Design and Understanding of Heterogeneous Alkene Metathesis Catalysts. *Dalton Trans.* **2007**, 5498-5504.

189. Amakawa, K.; Wrabetz, S.; Kröhnert, J.; Tzolova-Müller, G.; Schlögl, R.; Trunschke, A., In Situ Generation of Active Sites in Olefin Metathesis. *J. Am. Chem. Soc.* **2012**, *134*, 11462-11473.

190. Mouat, A. R.; Lohr, T. L.; Wegener, E. C.; Miller, J. T.; Delferro, M.; Stair, P. C.; Marks, T. J., Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. *ACS Catal.* **2016**, *6*, 6762-6769.

191. Handzlik, J., Theoretical Investigations of Isolated Mo(VI) and Mo(IV) Centers of a Molybdena-Silica Catalyst for Olefin Metathesis. *J. Phys. Chem. C* **2007**, *111*, 9337-9348.

192. Lee, E. L.; Wachs, I. E., In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO₂ Supported Surface Metal Oxides. *J. Phys. Chem. C* **2007**, *111*, 14410-14425.

193. Mestl, G.; Srinivasan, T., Raman Spectroscopy of Monolayer-Type Catalysts: Supported Molybdenum Oxides. *Catalysis Reviews* **1998**, *40*, 451-570.

194. Tsilomelekis, G.; Boghosian, S., On the Configuration, Molecular Structure and Vibrational Properties of MoO_x Sites on Alumina, Zirconia, Titania and Silica. *Catal. Sci. Technol.* **2013**, *3*, 1869-1888.

195. Salameh, A.; Baudouin, A.; Soulivong, D.; Boehm, V.; Roeper, M.; Basset, J.-M.; Copéret, C., CH₃-ReO₃ on γ -Al₂O₃: Activity, Selectivity, Active Site and Deactivation in Olefin Metathesis. *J. Catal.* **2008**, *253*, 180-190.

196. Poater, A.; Solans-Monfort, X.; Clot, E.; Coperet, C.; Eisenstein, O., Understanding d⁰-Olefin Metathesis Catalysts: Which Metal, Which Ligands? *J. Am. Chem. Soc.* **2007**, *129*, 8207-8216.

197. Handzlik, J.; Sautet, P., Active Sites of Olefin Metathesis on Molybdena-Alumina System: a Periodic DFT Study. *J. Catal.* **2008**, *256*, 1-14.

198. Handzlik, J., Metathesis Activity and Properties of Mo-Alkylidene Sites Differently Located on Silica. A Density Functional Theory Study. *J. Phys. Chem. B* **2005**, *109*, 20794-20804.

199. Coperet, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.; Nagae, H.; Nunez-Zarur, F.; Zhizhko, P. A., Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. *Chem. Rev.* **2016**, *116*, 323-421.

200. Mouat, A. R.; George, C.; Kobayashi, T.; Pruski, M.; Van Duyne, R. P.; Marks, T. J.; Stair, P. C., Highly Dispersed SiO_x/Al₂O₃ Catalysts Illuminate the Reactivity of Isolated Silanol Sites. *Angew. Chem.* **2015**, *127*, 13544-13549.

Appendix A: SiO₂-Supported MoO₃ in Olefin Metathesis

A collaboration between

HAADF images were collected by Lawrence Crosby. The grafting of MoO₃ domains was performed by Titel Jurca. The SiO₂ support was synthesized by Kunlun Ding. The remaining characterization and reaction studies were performed by Izabela Samek.

Izabela A. Samek, Lawrence Crosby, Titel Jurca, Kunlun Ding, Randall Q. Snurr, Peter C. Stair

A.1 Introduction

Olefin metathesis, discovered in 1955, has been gaining renewed interest in light of the global propene shortage.¹⁸⁰⁻¹⁸¹ The process involves the interconversion of carbon-carbon double bonds to form hydrocarbons of a desired length. In summary, the reaction proceeds as follows:

$$2RCH=CHR' \implies RCH=CHR + R'CH=CHR'$$

where R and R' are functionalized alkyls or hydrogen groups.⁵⁰ This versatile reaction has found industrial applications in the formation of petrochemicals, oleochemicals, polymers and specialty chemicals.¹⁸⁰ Fundamental insights into the olefin metathesis reaction were obtained based on studies of well-defined homogeneous organometallic catalysts. These investigations allowed to determine that metal carbide complexes are involved in the metathesis reaction mechanism.¹⁸² Heterogeneous metathesis catalysts and their corresponding active sites and surface intermediates are not understood equally well.¹⁸¹

Supported MoO_x , WO_x and ReO_x are currently used in industrial metathesis processes. However, their activities remain lower than those of homogeneous catalysts.^{181, 183} Various promoters and

pretreatment conditions have been investigated to improve the catalytic activity of these materials.¹⁸⁴ To be industrially applicable, pretreatment protocols cannot be excessively complicated. High temperature calcination and inert gas purging have been previously studied, but these methods did not yield a significant improvement in metathesis activity.^{50, 181} A pretreatment of SiO₂-supported MoO_x and WO_x in an olefin-containing atmosphere at elevated temperature has been reported by Ding *et al.* This procedure resulted in a 100-1000 fold increase in propylene metathesis activity, which led to a catalytic performance comparable to that of supported organometallic catalysts.¹⁸⁴

High metathesis activity has been reported for well-dispersed supported MoO_x surface sites, which suggests that the nature of the active species is monomeric.¹⁸⁴⁻¹⁸⁷ More specifically, Ding *et al.* proposed that isolated $Mo(=O)_2$ dioxo species are the metathesis active sites in MoO_3/SiO_2 catalysts based on a combination of isotope tracing experiments, UV Raman spectroscopy and electron microscopy.¹⁸⁴ However, the surface MoO_x sites are typically a mixture of a variety of species with only 1-2% of the total atoms exhibiting metathesis activity.^{181, 184, 188-189} For this reason, there exists a need for the synthesis of well-defined surface MoO_x structures in order to better understand and improve olefin metathesis catalyst performance.

Grafting of MoO₂Cl₂(dme) (dme = 1,2-dimethoxyethane) on activated carbon has been previously reported to favor the formation of isolated Mo(=O)₂ dioxo sites, which was the motivation for this work.¹⁹⁰ Here, supported MoO_x catalysts, prepared by grafting of MoO₂Cl₂(dme) on high surface area silica, were studied in propene metathesis reactions in an attempt to create materials with an increased number of metathesis active sites. The structure of these catalysts in their oxidized state was evaluated with Raman spectroscopy, high-angle annular dark field (HAADF) imaging and XPS. The catalytic activity of these materials was investigated at RT following a pretreatment in an olefin-containing atmosphere at 550 °C. The regeneration of these materials under an inert gas flow at 550 °C was investigated by temperature programmed desorption studies. Active site counting with isotope tracing experiments was performed to compare the grafted materials with ones prepared by incipient wetness impregnation (IWI). Catalyst deactivation was studied as a function of the reactant mixture.

A.2 Methods

A.2.1. Material Preparation

The SiO₂ support was synthesized via a sol-gel process described elsewhere.¹⁸⁴ MoO_x species were grafted onto the support surface based on the procedure outlined for the grafting of MoO₂Cl₂(dme) on activated carbon.¹⁹⁰ Supported MoO_x materials were calcined at 600 °C in air for 10 hours at a heating rate of 1.5 °C/min. The Mo weight loading was quantified by ICP-OES performed by Galbraith Laboratories, Inc. This work discusses a material with 2.8 weight % of MoO₃ denoted as 2.8MoO₃/SiO₂. 6.7 weight % of MoO₃ was also deposited by IWI of H₄SiMo₁₂O₄₀ for a direct comparison with previously investigated materials.¹⁸⁴ Unless otherwise noted, the catalysts discussed in this work refer to those prepared by grafting.

A.2.2. Material Characterization

High spatial resolution HAADF imaging with an inner diameter of 68 mrad and an outer diameter of 230 mrad was performed on a JEOL JEM-ARM200CF electron microscope operating at 200 kV. The probe side Cs-corrector resulted in a probe size of approximately 0.078 nm. Dry powder specimens on a Cu grid with a carbon film support were used for these measurements.

UV (244 nm) and visible (488 nm) laser excited Raman spectra of the silica-supported MoO_x materials were collected using a custom-built Raman instrument. The 244 nm excitation comes from a Lexel 95 SHG (second harmonic generation) laser equipped with an intracavity nonlinear crystal, BBO (BaB₂O₄), which frequency doubles visible radiation into the mid-ultraviolet region.^{12, 90-91} The Raman spectra were collected under a controlled atmosphere with the use of a fluidized bed reactor developed by Chua and Stair to minimize the adverse effects of UV radiation.⁹² The catalysts were heated in flowing 20%O₂/He at 550 °C for 30 min to remove any absorbed moisture prior to taking measurements and purged with He for 30 min prior to cooling. The spectra were collected at RT in flowing He. The visible laser power at the sample position was approximately 50 mW and that of the UV laser was approximately 5 mW into a spot size of ca. 200 μ m.⁹³ The spectral collection time was 40 min. The Raman shift was calibrated by measuring cyclohexane as a standard prior to every experiment.

XPS measurements were carried out on a Thermo Scientific ESCALAB 250Xi instrument (Thermo Scientific) equipped with a monochromatic Al K α X-ray source (hv = 1486.6 eV). The X-ray spot size was 500 µm in diameter. Scans were collected using a pass energy of 50 eV, a 50 ms dwell time and a 0.1 eV step size. An electron flood gun was applied to the sample surface to neutralize surface charging effects. The binding energies were referenced to the adventitious C1s C-C peak at 284.8 eV.

A.2.3. Propene Metathesis Reaction Studies

Propene metathesis reaction studies were performed in a previously described atmospheric pressure fixed bed flow reactor system.¹⁸⁴ Electronic grade propene and research purity N_2 were provided by Airgas. Oxygen/moisture traps (VICI) were used to further purify the C₃H₆ and N₂

feeds. An on-line Agilent 3000A microGC equipped with MS-5A (O_2 , N_2 , CH_4 , CO), Plot U (CO_2 , C_2H_4 , C_2H_6) and Alumina (C_2 - C_5 alkanes and alkenes) columns. N_2 was used as an internal standard for GC quantification.

A.2.4. Active Site Quantification

Studies of activation, regeneration and active site quantification were performed with the use of a quadrupole mass spectrometer (SRS RGA200). A detailed procedure of the isotope tracing experiments has been previously described in the literature.¹⁸⁴

A.3 Results and Discussion

A.3.1 Characterization of MoO₃/SiO₂

HAADF images of $2.8MoO_3/SiO_2$ are shown in Figure A.1. These images indicate that a mixture of monomeric, oligomeric and clustered MoO₃ sites are present on the surface of the support. This is similar to the distribution of MoO_x sites observed over a range of MoO₃ loadings in MoO₃/SiO₂ prepared by IWI. In agreement with the previous report, clusters of MoO₃ are the dominant surface structures in MoO₃/SiO₂.¹⁸⁴ Monomeric sites constitute a relatively small fraction of the surface MoO_x species in this material.

Figure A.1. HAADF images of 2.8MoO₃/SiO₂. Possible Mo monomeric sites are indicated with red arrows and purple circles highlight MoO₃ clusters.

Figure A.2 shows Raman spectra of $2.8MoO_3/SiO_2$. Bands observed in the 950-1100 cm⁻¹ region can be associated with Mo=O stretching vibrations. Bands above 990 cm⁻¹ have been previously assigned to Mo=O monooxo species, while bands below 990 cm⁻¹ are associated with symmetric and asymmetric Mo(=O)₂ dioxo vibrations in isolated and polymerized MoO_x sites.¹⁹¹⁻¹⁹⁴ Features centered at approximately 983 and 969 cm⁻¹ observed with UV and visible Raman were assigned to symmetric stretching modes of Mo(=O)₂ dioxo species in monomeric and polymeric sites, respectively. The presence of overtones in the spectrum collected under UV excitation shown in Figure A.2A indicates that the bands below 990 cm⁻¹ are resonance enhanced.¹⁸⁴ Figure A.2B shows distinct peaks below and above 990 cm⁻¹, which suggests the presence of both monooxo and dioxo MoO_x species on the surface of silica following grafting. Distinct M=O vibrations are not observed in Figure A.2C due to the lack of resonance enhancement at 488 nm excitation.

Figure A.2. UV (A,B) and visible (C) excitation wavelength Raman spectra of 2.8MoO₃/SiO₂. An expanded view of the UV-excited Mo=O vibrations is shown in B.

C 1s, Mo 3d and Cl 2p spectra of 2.8MoO₃/SiO₂ are shown in Figure A.3. A feature indicative of the presence of O-C=O bonds is observed following grafting of the MoO₂Cl₂(dme) precursor on SiO₂ (Figure A.3A). This feature disappears after calcination, which indicates that it is associated with the precursor ligands, which decompose at elevated temperatures. The oxidation state of Mo can be evaluated based on Figure A.3B, where the presence of a band centered at approximately 233.3 eV implies that the catalyst surface is predominantly composed of Mo⁶⁺ species following grafting, calcination and reaction studies. The sample was exposed to air between the metathesis reaction and the XPS measurement and therefore this result is not representative of the MoO_x structure under reaction conditions. Figure A.3C shows that chlorine is efficiently removed and not present on the surface of 2.8MoO₃/SiO₂ following grafting and hence it is not expected to impact the metathesis reaction results.

Figure A.3. C 1s (A), Mo 3d (B) and Cl 2p (C) spectra of 2.8MoO₃/SiO₂ material following grafting (red), calcination at 600 °C (blue) and propene metathesis reaction (yellow).

A.3.2 Propene Metathesis Activity of MoO₃/SiO₂

The previously reported high-temperature activation of MoO₃/SiO₂ catalyst under an olefin environment results in initial turnover frequencies comparable to those of high-performance supported organometallic catalysts.¹⁸⁴ However, these materials suffer from rapid deactivation. Figure A.4 shows the deactivation profile of a grafted 2.8MoO₃/SiO₂ in direct comparison to 6.7MoO₃/SiO₂ synthesized by IWI. The initial deactivation of 2.8MoO₃/SiO₂ appears to be more rapid than that of 6.7MoO₃/SiO₂ suggesting that active sites with varying deactivation rates may be present on the support surface.

Figure A.4. Comparison of catalyst deactivation for 2.8MoO₃/SiO₂ synthesized via grafting and 6.7MoO₃/SiO₂ prepared by incipient wetness impregnation.

A temperature programmed desorption experiment was performed to monitor the process of regeneration of $2.8MoO_3/SiO_2$ by inert gas purging. This measurement could potentially identify differences in the nature of the active sites in the two materials. The observed ethene, propene, butene and pentene signals are shown in Figure A.5. The identity of the detected species and their

complete desorption at 300 °C is consistent with an equivalent study previously published for MoO_3/SiO_2 synthesized by IWI indicating that the two types of materials undergo a similar deactivation process. The desorption of these species can be assigned to the decomposition of various inactive surface metallacyclobutanes, which leads to the regeneration of metathesis active sites.¹⁸⁴

Figure A.5. Temperature programmed desorption during catalyst reactivation under N_2 for 2.8MoO₃/SiO₂.

Active site counting by isotope exchange illustrated in Scheme A.1 was performed to determine whether the grafted catalyst has an increased number of metathesis active sites. The formation of ¹³CH₂=CH₂ and ¹³CH₂=CHCH₃ originating from an exchange between Mo=CH₂ and Mo=CHCH₃ with ¹³CH₂=¹³CH₂ was monitored by a mass spectrometer at m/z=29 and m/z=43, respectively. To allow for a direct comparison with previously published results, active site counting was performed following 10 min of propene metathesis reaction. Figure A.6 shows the isotope traces recorded at different times within the reaction for 2.8MoO₃/SiO₂. Figures A.6A and A.6D show spectra

environment. The fraction of active sites was determined to be 5.8%. Another isotope tracing experiment was performed 6 hours after the first one. The observed catalyst deactivation was faster following the first active site counting procedure. The fraction of active sites was calculated as 0.5% based on the spectra shown in Figures A.6B and A.6E. Next, high temperature regeneration under an inert atmosphere was performed and the active sites were counted following this procedure. Figures A.6C and A.6F illustrate the products formed during this isotope exchange. The resulting active site fraction was 7.6%, which may be within error of the initial 5.8% value. It is not expected that new metathesis active sites are formed during the regeneration under an inert atmosphere. The active site fraction reported for 2.8MoO₃/SiO₂ prepared by IWI was 8.6%.¹⁸⁴ This implies that the grafting of MoO₂Cl₂(dme) on SiO₂ does not increase the number of metathesis active sites in MoO₃/SiO₂. As shown in Figure A.1 a variety of surface MoO_x species is present on the silica surface following grafting and calcination procedures. The aggregation of MoO_x sites may be support dependent or a result of the high temperature treatment.

Scheme A.1. Illustration of the isotope exchange during active site counting experiments.

160

Figure A.6. ¹³CH₂=CH₂ (m/z=29) (A,B,C) and ¹³CH₂=CHCH₃ (m/z=43) (D,E,F) spectra following isotope exchange experiments after high temperature pretreatment in propene (A,D), 6 hours of propene metathesis reaction following the first active site counting experiment (B,E) and after regeneration at high temperature under inert (C,F) for $2.8MoO_3/SiO_2$.

A.3.3. Catalyst Deactivation

The formation of energetically stable yet inactive metallacyclobutanes with time-on-stream has been previously reported for metathesis reactions.^{191, 195-197} In order to gain insight into this deactivation process and find out whether it is simply time-dependent, we performed propene metathesis reaction experiments, where the feed of the reaction mixture was interrupted by a N₂ purge at RT. Two different N₂ flow rates were tested in this experiment and their impact on catalyst deactivation in shown in Figure A.7. We found that the purging step does not affect the deactivation profile of MoO₃/SiO₂. When C₃H₆ is reintroduced to the reaction mixture, the conversion does not drop significantly in comparison to that immediately prior to the purge step, but continues to steadily decrease under C_3H_6 flow with time. This implies that C_3H_6 is involved in the deactivation of MoO₃/SiO₂ catalysts. This is in agreement with a previous study of CH₃-ReO₂ on γ -Al₂O₃, where catalyst deactivation was associated with the products formed during propene metathesis based on solid-state NMR spectroscopy.¹⁹⁵

Figure A.7. Evaluation of catalyst deactivation with time at reaction conditions (A) and in the absence of propene following a 5 sccm N_2 purge (B) and a 50 sccm N_2 purge (C) for $5.8MoO_3/SiO_2$ prepared by IWI.

The propene feed was mixed with ethylene to determine whether the latter can accelerate the deactivation of MoO_3/SiO_2 catalysts. It has been previously hypothesized that the deactivation of metathesis active sites in CH₃-ReO₃/ γ -Al₂O₃ is due the products formed during the reaction and specifically the presence of ethene.¹⁹⁵ The deactivation profiles with varying amounts of C₂H₄ in the reaction mixture are shown in Figure A.8. At 12.5% ethylene, the reaction profile is similar to that of pure propylene. The conversion values are within experimental error. A larger drop in propene conversion is observed for a 1:1 C₂H₄:C₃H₆ reactant mixture. This is in agreement with a previous report of decreased propene metathesis activity in the presence of ethylene. In a manner

similar to this work, it has been reported that the negative effect of ethylene on propene metathesis activity cannot be observed at low ethylene concentrations.¹⁹⁵

Figure A.8. 2.8MoO₃/SiO₂ catalyst deactivation as a function of time in the presence of ethylene in the reaction mixture. The remaining fraction of the feed corresponds to the concentration of C₃H₆.

A.4 Conclusions and Future Directions

 MoO_3/SiO_2 catalyst prepared by grafting of $MoO_2Cl_2(dme)$ on a silica surface were characterized in their oxidized state and evaluated for propene metathesis. These materials were expected to possess an increased fraction of metathesis active sites. However, HAADF images showed a distribution of surface MoO_x species with a limited amount of monomeric sites. The observed catalytic activity of materials prepared by grafting did not significantly differ from that of catalysts prepared by IWI. Rapid deactivation of the metathesis active sites was observed with time-onstream. In addition, active site counting experiments revealed a similar amount of metathesis active sites was present in the grafted materials and those synthesized by IWI. This implies that the grafting of MoO₂Cl₂(dme) on a silica surface and the following high temperature treatment result in the aggregation of MoO₃ surface sites, in contrast to previously reported $(O_c)_2Mo(=O)_2@C$ materials, which were postulated to consist of exclusively isolated Mo(=O)₂ sites on the surface. The results presented in this work are consistent with the report of Ding *et al.*, where different IWI precursors and SiO₂ supports were compared in control experiments, which showed similar initial conversion values independently of the synthesis method.¹⁸⁴ Catalyst deactivation was shown to be dependent on the presence of propene and ethene in the reaction mixture.

The presence of a variety of surface MoO_x structures in MoO_3/SiO_2 can be attributed to the inhomogeneity of the silica support with different structures being favored on distinct silanol groups. The local silica structure has been previously shown to significantly impact metathesis activity of supported MoO_3 domains.¹⁹⁸ A more effective control over the distribution of available catalytic sites could be accomplished by atomically precise synthesis with ALD. SiO₂ domains could be deposited on an inert support, such as boron nitride, prior to the deposition of MoO_x . This approach would allow for the formation of isolated active sites, which have been previously shown to improve catalytic activity in metathesis reactions.¹⁹⁹⁻²⁰⁰ It could also facilitate an improved understanding of any preferential binding of MoO_x species to different silanol groups and further correlation of these species to the formation of active alkylidene complexes and their transformation to either trigonal-bypiramidal or square planar metallacyclobutanes. The abundance of the trigonal-bypiramidal isomers has been previously correlated with higher metathesis activity.¹⁹⁹

Appendix B: Supplemental Information for Chapter 2

B.1 Computational Details

B.1.1 Relaxation of the Alumina Surface

We performed relaxations on 160 alumina surfaces with randomly distributed Al vacancies to find reasonable structures. In many cases, tetrahedral Al atoms near the surface moved into the plane of the octahedral Al atoms and assumed octahedral bonding positions, as shown in Figure B.1. We found the binding sites between a transformed tetrahedral Al atom and two neighboring octahedral Al atoms to be the most favorable for VO₄ and TiO₄H binding. Without the formerly tetrahedral Al assuming the position of a neighboring octahedral Al, the next nearest octahedral Al is too far away to form a favorable binding site.

B.1.2 Finding Favorable Surfaces

 γ -Alumina has a defective spinel crystal structure, with randomly distributed vacancies on the Al sites. For this work we used a 160-atom unit cell with 96 O atoms, 64 Al atoms, and 8 vacant Al sites. In order to find some reasonable structures with different configurations of vacancies, we tested four different surfaces: two [001] surfaces terminated in different planes and two [111] surfaces terminated in different planes. [001]A is terminated in the plane of octahedral Al atoms, while [001]B is terminated in the tetrahedral plane. Likewise, [111]A and [111]B are terminated in the octahedral and tetrahedral planes, respectively. For each of these four surfaces, we tested 40 random configurations of vacancies with up to 3 (out of 8) Al vacancies on tetrahedral sites. The geometry of each surface was minimized in VASP. We then used the two lowest energy structures, which were both [001] surfaces. Figure B.2 shows histograms of the minimized energy of the 160 surfaces.

B.1.3 Vibration Calculations

DFT vibrational calculations were performed in VASP to help assign Raman peaks to surface structures such as Ti-O-V, Ti-O-Ti, and V-O-Al bonds. The structures were fully optimized prior to performing the frequency calculation so that the largest force on any atom was below 0.02 eV/Å. Frequency calculations were performed using central differencing for the dynamical matrix with a step size of 0.01 Å, with an SCF tolerance of 10^{-8} .

Vibrations for the V=O structure were performed by moving the V atom and four connecting O atoms and leaving all other atoms frozen. Calculations involving the surface Al atoms were also carried out, but we found a change of only 2 wavenumbers or 0.2% in the V=O stretching bond, and a substantially higher computational cost. For structures containing Ti, we included the Ti atoms and connecting O (and –OH) atoms.

Based on our calculated V=O frequency of 959 cm⁻¹ compared to the experimental value of 1010 cm⁻¹, we scaled the frequencies we calculated for other surface bonds (including Ti-O-Ti, Ti-O-V, and V-O-Al) by a factor of 1.05 to correct the systemic underprediction of DFT. V=O frequencies were reported with no scaling factor.

B.1.4 Surface Structure Vibrations

Figure B.3 shows the vibrational density of states for various surface structures on alumina. Figure B.4 depicts the examined surfaces. The spectra have been weighted by the relative contributions to the eigenvector of the atoms of interest (e.g., for the Ti-O-Ti modes, contributions from other atoms are projected out of the spectrum). A Gaussian broadening of 20 cm⁻¹ was applied. The frequencies have been scaled by 1.05.

In Figure B.3A and B.3C, the V=O stretching peak is clear at 1000 cm⁻¹. Figure B.3B shows the Ti-O-Ti stretching modes clearly around 800 cm^{-1.} The dashed line in Figure B.3B is from a Ti₃ structure on the alumina surface. This structure also has a peak at 921 cm⁻¹ which suggests that larger Ti surface structures where Ti is connected to multiple other Ti atoms may have higher frequency bands.

B.1.5 VO₄ on Extended TiO₄ Domains

We created an extended surface by duplicating Surface 2 and added three Ti atoms with a V=O on top of them. The V is connected only to Ti and not to any Al atoms. The computed V=O stretching frequency is 1067 cm⁻¹. Due to the size of this system, the frequency was computed by vibrating only the V and double-bonded O atom. This structure is depicted in Figure B.5. Based on the low surface densities of V and Ti and the high predicted vibration of the V=O band for this structure, it is unlikely that such structures are present in the synthesized materials. The computed V=O frequency is in contrast to that calculated for VO₄ on a bulk anatase support depicted in Figure B.6, which has a theoretical V=O band at 1020 cm⁻¹. The discrepancy between these two frequencies may be associated with the fact that some of the bridging O atoms in the structure containing 3 Ti atoms on Al₂O₃ are not fully coordinated in comparison to bulk TiO₂.

B.1.6 Finding a Favorable Binding Site

We assessed the favorability of V and Ti binding near each other on the alumina surface using DFT calculations (Figure 2.4). In order the preserve the stoichiometry of the system and compare the total energies directly, we added a H atom to a randomly chosen –OH group (making a H_2O) for the structures in which V and Ti are not adjacent. Thus the total number of H atoms is the same in all of these structures. We find that the total energy is sensitive to the placement of this extra H

atom. As shown in Figure B.7, both H atoms on the H₂O form hydrogen bonds with neighboring hydroxyl groups (Figure B.7C). The H-O distances for these bonds are 1.86 and 1.79 Å. In Figure B.7B, the water molecule is isolated at a distance and forms only one hydrogen bond with the neighboring –OH group (H-O distance 1.77 Å). We chose to report this structure in Figure 2.4 because it does not contain the additional stabilizing hydrogen bond observed in Figure B.7C. We note that the structures in Figure B.7B and B.7C are both less favorable than the structure reported in Figure B.7A with Ti and V adjacent to each other, which confirms our hypothesis that the Ti and V atoms prefer to bind in proximity of each other on the alumina support.

B.2 Additional Results

Figure B.1. Top down view of the [001] surface of ideal γ -alumina (Surface 1) (A). The relaxed version of the ideal structure shown in A is shown in (B). Side view of the unrelaxed surface shown in A (C). Side view of the relaxed surface shown in B (D). In all structures, O atoms are marked in red, octahedral Al atoms are pink, and tetrahedral Al atoms are yellow. The

highlighted blue sphere represents a tetrahedral Al atom in A and C that moves to an octahedral position in B and D.

Figure B.2. Histograms for the minimized energy of 40 configurations of vacancies (each) in [001]A, [001]B, [111]A, and [111]B surfaces.

Figure B.3. Projected VDOS for surface structures on alumina. V-O-Al bonds on Surface 1 and Surface 2 (A), Ti-O-Ti bond frequencies for Ti₂ and Ti₃ structures on Surface 2 (B), Ti-O-V frequencies on Surface 2 (C).

VO₄ on Surface 1

VO₄ on Surface 2

Two TiO₄H sites on Surface 2

Three TiO₄H sites on Surface 2

VO₄-TiO₄H on Surface 2

Figure B.4. Depictions of the structures used for VDOS calculations shown in Figure B.3. V atoms are shown in blue and Ti atoms are shown in green.

Figure B.5. VO₄ bound to three neighboring TiO₄ sites on Al₂O₃. V atom is shown in blue and Ti atoms are shown in green.

Figure B.6. Structure of VO_4 on anatase used to calculate the V=O stretching frequency on a bulk TiO₂ support. V atom is shown in blue.

Α

В

67.9 kJ/mol

Figure B.7. Top-down view of [001] surface of γ -alumina (2x1 supercell, Surface 2) with V (blue) and Ti (green) atoms on the surface in various configurations: V occupies the most

favorable site with Ti adjacent to it (A), Ti and V occupy equivalent sites in separate unit cells (B). An additional H atom (purple) is added to an -OH group far from the V and Ti atoms (lower right) to preserve the stoichiometry. These structures are equivalent to Figure 2.4A and 2.4C, respectively. A structure similar to B with the extra hydrogen atom (purple) in a different location (middle right) is shown in (C).

Figure B.8. Deconvoluted spectra of $V2p_{3/2}$ for ALD-synthesized samples. The dashed lines represent V^{5+} in red, V^{4+} in blue and V^{3+} in green. The black solid line is the cumulative fit.

Figure B.9. Deconvoluted V2p_{3/2} spectra of VO_x/1cTiO₂/Al₂O₃ (A) and 1cTiO₂/VO_x/Al₂O₃ (B) following re-oxidation at 450 °C. The dashed lines represent V⁵⁺ in red, V⁴⁺ in blue and V³⁺ in green. The black solid line is the cumulative fit.

Appendix C: Supplemental Information for Chapters 3 and 4

Figure C.1. UV Raman spectra of the Al_2O_3 support and the porous disk of the fluidized bed setup. The spectral collection time was 10 min. A broad band above 800 cm⁻¹ has been previously reported for γ -Al₂O₃ and the enhanced signal between 800 and 1000 cm⁻¹ shown in the blue spectrum can be associated with the Al₂O₃ support.¹² The remaining sharp bands are due to the experimental setup.