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ABSTRACT

Investigations of Pattern Formation in Dryland Vegetation

Karna Gowda

Vegetation in dryland environments is often patchy in response to water limitation.

This patchiness can take the form of periodic patterning at length scales much larger

than that of an individual plant. Instances of patterns resembling leopard spots and

tiger stripes are widespread in dry regions of Africa, Australia, and North America.

Mathematical modeling efforts over the past two decades have sought to account for

dryland vegetation patterning via a self-organizing interaction between vegetation and

water resources. These efforts have led to predictions for the response of the vegetation

to environmental variation, and have generated speculation that the morphology of the

patterns encodes information about the fragility of the environment.

For a class of patterns that occurs on flat terrain, we use a bifurcation-theoretic

framework to analyze the sequence of morphologically distinct patterns that are pre-

dicted by models to occur in a scenario of increasing aridity. Applying insights from
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the analysis of an idealized problem, we find a strong indication that a specific se-

quence of patterns occurs in the ecologically-relevant parameter space of a widely-

studied dryland vegetation model. This finding is a step towards establishing credibil-

ity for a specific pattern sequence as a signal of dryland ecosystem fragility.

For a class of patterns that occurs on gradually sloping terrain, we use aerial im-

agery over the Horn of Africa to assess the nature of change in the vegetation over six

decades. We observe that the most substantial vegetation change is associated with hu-

man impact rather than climatic pressure, and that a signature of this impact appears

in a readily measurable property of the pattern. These findings illuminate time scales

of patterned vegetation dynamics, and suggest a focus on human impacts for future

observations and theoretical explorations.
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CHAPTER 1

Introduction

Dryland environments make up over 40% of Earth’s terrestrial area and are home

to more than a third of the global human population [1] (Figure 1.1). Drylands are

commonly classified by the degree of imbalance between the influx of rainfall and the

potential1 outflux of water due to evaporation and plant transpiration. The vegetation

phenomena discussed in this dissertation primarily occur in arid and semiarid dry-

lands, where potential water losses due to evaporation and transpiration can exceed

rainfall by as much as factor of 20. Such an imbalance means that scarce water dictates

the pace and extent of life in these environments.

But not all dryland is wasteland. Though rainfall is meager, many drylands are pro-

ductive within their means. Hydrological factors often permit spatially-patchy plant

growth. Dryland rainfall is typically seasonal and concentrated in a small number of

large events [3]. Such events can produce surface runoff that redistributes water from

high ground to low ground, resulting in favorable growth conditions in topographic

channels and local depressions. In cases where existing plants enhance the water infil-

tration properties of the soil, runoff can redistribute water from bare areas to patches of

vegetation [4]. Tightly clustered vegetation can also reduce local soil water evaporation

1“Potential” refers to the amount of water that would be lost due to the processes of evaporation
and plant transpiration if water were in excess. Potential evaporation and transpiration are typically
estimated using surface and air temperature, relative humidity, incoming solar radiation, and wind
information via the Penman-Monteith [2] equation.
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Figure 1.1. Global extent of drylands. Taken from [1].

through shading, and fertilize the surrounding area with leaf litter, thus facilitating the

growth of additional vegetation [5].

In particularly striking cases, dryland vegetation patchiness occurs as periodic pat-

terning at length scales much larger than that of an individual plant. This patterning

most frequently manifests as bands of vegetation separated by stretches of bare ground

aligned along gradual slopes, but can also occur as patches that resemble leopard spots

when viewed from the air. Such vegetation patterning is widespread in Africa, Aus-

tralia, and North America, and isolated examples have also been reported in South

America and Asia [6] (Figure 1.2). These patterns typically comprise some combina-

tion of trees, shrubs, and grasses, with the particular species and composition differing

between regions [6].
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regime in Australia and Mexico than in Africa, which is the
opposite pattern to temperature seasonality; finally the slope,
which must be less than 2%.

The AUC (Fielding & Bell, 1997; Guisan & Zimmermann,
2000) reached a score of 0.96 (95% CI, 

 

±

 

0.01). This index is com-
puted as the probability for randomly selected presence points to
obtain a higher predicted score than a random selection of
absence points (Elith 

 

et al

 

., 2006; Phillips 

 

et al

 

., 2006). This result
therefore indicated a strong predictive power of the potential
distribution model. Visual examination of images from the area
encompassing 75% of the probability distribution function around
the ecological optimum (i.e. all values on the map superior to
0.25) confirmed the pertinence of these predictions by revealing
extensive, yet previously unreported, areas featuring PVPs. These

areas include the Sonoran Desert down to the Baja California
Peninsula (Figs 1e, 2d), the Argentinean arid Chaco (Fig. 2a), the
fringes of the Kalahari Desert, some areas in East Africa (Figs 1d,
2b) and the Australian Gibson Desert (Fig. 2c) (see Appendix S1
in Supplementary Material for a complete global map). Small
isolated areas of PVPs were also noticed on images from mediter-
ranean North Africa (33

 

°

 

47

 

′

 

 N, 2

 

°

 

35

 

′

 

 W) and from the Thar
Desert of India (27

 

°

 

23

 

′

 

 N, 70

 

°

 

44

 

′

 

 E), thereby closing the bound-
ary between the extremely arid Saharo-Sindian Desert and the
surrounding semi-arid regions.

Some types of patterns, though predicted by self-organization
models, had not or had only rarely been observed in the field.
Labyrinthine patterns, previously described from the African
Sahel (Tongway 

 

et al

 

., 2001), were also found to occur in

Figure 2 Predicted and real distribution map of periodic vegetation patterns with enlarged subsets. Orange levels correspond to envelopes of 
the cumulative probability distribution around the ecological optima. For instance, the 5% envelope delineates the area including 95% of the 
distribution. Blue areas represent periodic vegetation patterns localized using the available literature and used for constructing and testing 
the map. Areas with periodic vegetation discovered using map predictions are shown in green. See Appendix S1 for the complete global map.

Figure 1.2. Biogeography of dryland vegetation patterns. Confirmed pat-
terned areas are indicated by blue and green shading. Taken from [6].

The remarkable appearance of these patterns led their discoverer in the Horn of

Africa to speculate in 1950 that “the causes . . . must be investigated by physics and
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mathematics” [7]. Indeed much work in the last two decades has gone into mathema-

tizing the water redistribution and plant facilitation mechanisms into idealized models

that are able to qualitatively reproduce the patterns (see Ref. [8] for a review). One

family of models captures the spatial and temporal dynamics of coarsely-defined wa-

ter and vegetation fields through reaction-advection-diffusion partial differential equa-

tions (PDEs). A schematic representation of an early such model by Klausmeier [9] is

as follows:

(1.1)

∂ soil water
∂t

= rainfall − evapotranspiration + transport,

∂ plant biomass
∂t

= growth − mortality + dispersal.

In these equations, the rates of evapotranspiration and plant growth are nonlinear

functions of both soil water and plant biomass variables, while water transport and

dispersal are idealized using first and second spatial derivatives in the form of advec-

tion and diffusion terms. The form and behavior of this model is similar to models

for pattern formation in chemical reactions, morphogenesis, and patterns in animal

fur [10, 11].

Drylands and the human populations they support are imperiled by global cli-

mate change. Projected temperature increases of over 3°C in many dryland environ-

ments will drive up rates of evaporation, reducing the soil moisture available for plant

growth [12]. Climate models also project that drylands will expand to cover nearly 60%

of Earth’s terrestrial area by the end of the century under probable emissions scenar-

ios [13]. A majority of these changes will play out in developing countries [13], whose
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environments are already under strain due to warming and increasing drought sever-

ity coupled with population growth and land-use shifts [1]. Dryland populations are

often strongly dependent on their local environment for sustenance, which can lead

to destructive feedback between climate change and land-use shifts. In an area we

study in this dissertation, the Sool Plateau of Somalia, it is documented that a severe

drought spanning 2000–2004 killed off nearly all livestock within the region, forcing

the region’s inhabitants to transition from pastoral farming to woodcutting for char-

coal production [14]. This transition likely played a large role in the degradation we

observed in the region.

Given this bleak picture of increasing aridity and environmental strain in global

drylands, many have asked where theoretical work might have some impact. Mod-

els of vegetation pattern formation offer predictions about the response of vegetation

to environmental variation [8], suggest strategies for optimal reforestation [15], and

have contributed to the discussion about tipping points in global climate [16, 17]. In

ecology more broadly, there has been much discussion in recent years about whether

catastrophic transitions (e.g., bifurcations that lead to undesirable configurations of

ecological phase space) can be anticipated using limited data [18, 19]. These ideas have

been applied to infer proximity to desertification from vegetation patch size distribu-

tion scaling behavior, for the case where the dryland vegetation patches lack a distinct

scale [20]. For periodic dryland vegetation, the PDE models have suggested that mor-

phologically distinct states of the vegetation [16] (Figure 1.3) or changes in length scale

of the patterning [21] might signal desertification. These suggestions have generated
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hysteresis between states of spots and stripes
comes from such a system as well (34, 35).

Most theoretical approaches to self-
organized patchiness in ecosystems are
based on the same framework of models as
are used to explain pattern formation in
chemical systems and biological pattern for-
mation on sea shells (32) and animal coats
(36). Here, we concentrated on the overlap
between ecosystems exhibiting both self-
organized patchiness and catastrophic shifts
due to global bistability. The resource concen-
tration mechanism invoked
by ecosystem engineers
provides a general expla-
nation, because ecosystem
engineers at low densities
may be unable to harvest
resources from the sur-
roundings. We suggest that
all ecosystems with self-
organized patchiness re-
sulting from a resource
concentration mechanism
will also exhibit cata-
strophic shifts.

Challenges Ahead
Linking self-organized
patchiness with cata-
strophic shifts by the
resource concentration
mechanism may help to
bridge the present gaps
among theory, observation,
and management (2). The
link may be crucial to a
predictive theory of cata-
strophic shifts from which
early-warning systems can
be developed on the basis
of spatial explicit time-
series data. This is because
predictable forms of self-
organized patchiness may
indicate imminent cat-
astrophic shifts if resource input decreases
in time (Fig. 3). For instance, the spotted state
may develop only when resource input is de-
creased, not when it is increased. This means
that a snapshot in time of a spotted state would
already indicate imminent catastrophic shift.

Human management strategies could be
directed toward preserving and restoring
self-organized patchiness and its natural
resource concentration function (12, 37).
Vegetation structures in resource-poor agro-
ecosystems, such as the African Sahel, may
lose this function because of overgrazing by
cattle, leading to catastrophic shifts to a

desertified ecosystem state. Adequate graz-
ing management of rangelands and patchy
crop production to conserve resources in
marginally arable lands may help to optimize
productivity, thereby preventing such cata-
strophic shifts.

Although this is a promising perspective,
we are far from quantitative predictions. For
that, we need to move away from models that
ignore space and therefore generate only
qualitative predictions. A key question con-
cerns how local geological and soil differ-

ences, seasonality in rainfall, and random
processes affect self-organized patchiness
and ecosystem resistance against catastroph-
ic shifts. Furthermore, the fact that self-
organized patchiness and catastrophic shifts
may occur at different spatial and temporal
scales (11, 12) provides new perspectives for
fine-scale and relatively short-term experiments
to predict large-scale self-organized patchi-
ness and catastrophic shifts in ecosystems.
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Fig. 3. Model showing how ecosystems may undergo a predictable sequence of
emerging self-organized patchiness as resource input decreases or increases (11, 12, 14,
25). Thick solid lines represent mean equilibrium densities of consumers functioning as
ecosystem engineers. Dotted arrows represent catastrophic shifts between self-
organized patchy and homogeneous states, and vice versa. Dark colors in the insets
represent high density. The range of resource input for which global bistability and
hysteresis exists is between these dotted arrows. Solid arrows represent development
of the system toward the coexisting self-organized patchy state or homogeneous state,
depending on initial ecosystem engineer densities.
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 Figure 1.3. Early-warning sign of desertification in the sequence of spatial
patterns that occur as an environment becomes more arid. Taken from [16].

subsequent model analysis and empirical work, which includes the investigations pre-

sented in this dissertation.

In this dissertation, I present two self-contained investigations of pattern formation

in dryland vegetation. In a general sense, the goal of these investigations to better

understand the response of self-organized dryland vegetation to climatic change and

human impact.

Chapter 2 presents a theoretical investigation of vegetation patterns on flat terrain,

and is supported by Appendices A and B. The content of this chapter and its appen-

dices is culled from material published in Refs. [22] and [23]. The results in Section 2.3
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come from joint work with Hermann Riecke and my advisor Mary Silber. The results

in Section 2.4 and Appendices A and B come from joint work with Yuxin Chen, Sarah

Iams, and Mary Silber.

Chapter 3 presents a primarily empirical investigation of vegetation patterns on

sloped terrain via analysis of aerial imagery spanning six decades, and is supported

by Appendix C. The content of this chapter and its appendix is drawn from Ref. [24],

which has been submitted for review. This project was conducted jointly with Sarah

Iams and Mary Silber.
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CHAPTER 2

A theoretical investigation of flat-terrain patterns in a scenario of

increasing aridity

Many studies of spatially periodic patterns in models of dryland vegetation focus

on patterns as potential indicators of ecosystem fragility [25–36]. In particular, pat-

terned states that occur in a scenario of flat terrain (i.e., isotropic topography) in several

models have been shown in simulations to evolve through a sequence of morphologies,

“gaps → labyrinth → spots” (Figure 2.1), as ecosystem aridity increases [25, 28, 37, 38].

This sequence precedes the collapse of vegetation in the models, which has led to the

suggestion that real ecosystems may evolve through this predictable sequence of pat-

terns en route to desertification [16, 18]. In this way, vegetation patterns may serve as

early-warning signs of catastrophic ecosystem transitions.

The “gaps → labyrinth → spots” pattern sequence prediction emerges from a mod-

eling framework comprising a number of different ecological hypotheses, functional

formulations, and restrictions on plausible parameter sets. It is therefore important to

investigate whether the prediction is robust within this framework. In this chapter,

we ask whether easily calculable quantities, derived from bifurcation theoretic analy-

sis of pattern-forming instabilities, can be used to predict where the sequence occurs

in a model’s parameter space. In Section 2.1, we give background information about

flat-terrain patterns and model predictions for how they vary with aridity. In Sec-

tion 2.2, we introduce a framework in which pattern transitions between two Turing
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gaps labyrinth spots

Figure 2.1. Example of the “gaps → labyrinth → spots” sequence in numer-
ical simulations of the vegetation model by Rietkerk et al. (2.13). Qualita-
tively different patterns occur at successively smaller values of a precipita-
tion parameter. Darker shading denotes higher levels of vegetation biomass.

bifurcations can be analyzed at small amplitude. We compute the coefficients of equa-

tions which describe the amplitudes of Fourier modes on a 2D hexagonal lattice near

a pattern-forming instability. In Section 2.3, for limits of the model parameter val-

ues where transitions between patterns all occur in a regime of weak nonlinearity, we

show that the coefficient of the quadratic-order term in the amplitude equations af-

fects the sequence that occurs. In Section 2.4, we show that this quadratic coefficient

appears to serve as a proxy for the sequence of nonlinear patterns that will manifest

for any parameter set of a specific model, even when the system is far from degener-

acy. Additionally, in the ecologically-relevant limit of the model parameters, we find

that quadratic coefficient takes values consistent with the “gaps → labyrinth → spots”

sequence, providing strong evidence that the sequence is a model prediction that is

robust to parameter variation.

2.1. Flat-terrain patterns

Periodic vegetation patterns occurring on approximately flat terrain have been ob-

served in African and Australian drylands [8]. These patterns can be roughly classified
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Figure 2.2. Aerial images of flat terrain vegetation patterns in Sudan. (a)
Gap (10.7549, 28.5955), (b) labyrinth (11.1024, 27.8228), and (c) spot patterns
(11.6280, 27.9177). Images © Google, DigitalGlobe.

on the basis of their morphology as either gaps, labyrinths, or spots (see Figure 2.2 for

examples from Sudan). Gapped patterns appear as mostly uniform cover with a pat-

tern of bare patches occurring at a distinct length scale. Labyrinth patterns appear as

elongated but disordered patches of vegetation. Spotted patterns resemble an inver-

sion of gapped patterning, with vegetation concentrated in small patches separated by

bare areas.

These flat-terrain patterns are thought to arise due to self-organization of vegeta-

tion through water redistribution mediated by plant roots [8, 39]. Roots may increase

the permeability of the surrounding soils, resulting in accumulation of pooled surface

water in vegetated areas following large rainfall events [28, 37]. Roots can also induce

a flow of soil water towards vegetated areas due to suction pressure [25]. Additionally,

plants can facilitate the growth of other plants via shading, which reduces the local

soil evaporation rate [28, 40]. These mechanisms have been incorporated into reaction-

diffusion PDE models for water-vegetation interactions, and where they can generate

patterns via a Turing-type instability.

Numerical simulations of PDE dryland vegetation models show gap, labyrinth, and

spot patterns occurring at successively lower values of a parameter representing mean
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annual precipitation [25, 28, 37] (Figure 2.1). Additionally, a study by LeJeune et al. [38]

used bifurcation analysis to demonstrate analytically that this sequence occurs in a

tractable 1-field model for a particular parameter set. The apparent agreement be-

tween these observations, which come from different model formulations, provides

some support for the standard sequence as a robust prediction of this suite of models.

Empirical support for the “gaps → labyrinth → spots” sequence comes chiefly from

two studies of remotely-sensed imagery. A 2006 study by Barbier et al. [41] used im-

agery over southwest Niger to demonstrate that gap patterns emerged from uniform

vegetation cover during a period of prolonged drought. This result is consistent with

model observations of gap patterns occurring near the onset of pattern formation. A

2011 study by Deblauwe et al. [42] classified pattern morphologies in imagery over

Sudan (see Figure 2.2 for examples of such patterns) and found that different mor-

phologies vary over spatial precipitation gradients in accordance with the standard

sequence prediction. Gaps tended to occur in areas with relatively high mean annual

precipitation, spots occurred in areas with relatively low precipitation, and labyrinths

occurred in between. Pattern dynamics were also assessed using three sets of images

taken over a 35-year span. Gaps in some areas were shown to transition to labyrinths

over a period of time again coinciding with a sustained regional drought. Labyrinths

transitioned to spots in different areas over the same period of time. Though neither

of these studies show the standard sequence preceding the collapse of vegetation, they

demonstrate consistency between some model predictions and empirical observations.
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2.2. Bifurcation-theoretic framework for studying pattern

sequences on flat-terrain

2.2.1. Motivating Example

To motivate the framework for our subsequent analysis, we briefly review the bifurca-

tion structure of the PDE vegetation model by von Hardenberg et al. [25] (VH01). In

nondimensional form, the model is:

(2.1)

∂w

∂t
= p︸︷︷︸

precip.

− (1 − ρn)w︸ ︷︷ ︸
evap.

− w2n︸︷︷︸
transpir.

+ δ∇2(w − βn)︸ ︷︷ ︸
transport

,

∂n

∂t
= γw

1 + σw
n︸ ︷︷ ︸

growth

− νn︸︷︷︸
mort.

− n2︸︷︷︸
satur.

+ ∇2n︸ ︷︷ ︸
dispersal

.

The variable n represents vegetation density and w represents ground water density.

The nonlinear functions in (2.1) capture the effects of plant facilitation and competi-

tion. Spatial terms model the diffusive spread of vegetation and the transport of water,

with cross-diffusion accounting for suction by plant roots in the latter. A parameter

representing mean annual precipitation, p, imposes resource scarcity. Additionally, γ,

σ, ν, ρ and β are O(1) positive parameters and δ, which characterizes the diffusivity of

water relative to that of vegetation, is usually taken to be a large, positive parameter.
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Spatially uniform equilibria of VH01 satisfy

(2.2)
0 = p − (1 − ρn)w − w2n ≡ F (n, w),

0 = γw

1 + σw
n − νn − n2 ≡ G(n, w).

One such equilibrium, corresponding to a non-vegetated “desert” state, is given by

(n, w) = (0, p). The desert state is linearly stable for p < p0 = ν/(γ −νσ), and undergoes

a transcritical bifurcation at p = p0 to a uniform “vegetated” equilibrium, (n∗, w∗), for

which n∗ > 0. The bifurcation diagram depicting these spatially uniform states and

their stability as a function of p is plotted in Figure 2.3. Turing bifurcations on the

uniform vegetated equilibrium produce patterned states at the lower and upper Turing

points p = pℓ, pu. One can determine these points by first linearizing (2.1) about the

uniform vegetated equilibrium and assuming solutions take the form of Fourier mode

perturbations (n − n∗), (w − w∗) ∼ eiqx to this equilibrium, for arbitrary perturbing

wave number q. This linearization results in the Jacobian matrix

(2.3) J(p, q) ≡


∂F
∂n

+ βδq2 ∂F
∂w

− δq2

∂G
∂n

− q2 ∂G
∂w


∣∣∣∣∣∣∣∣
(n,w)=(n∗,w∗)

,

where F (n, w) and G(n, w) are given in (2.2). Det(J(p, q)) = 0 defines a stability

boundary for the spatially uniform state in the p-q plane, which in this case forms

a closed bubble that is plotted in Figure 2.4. The Turing points pℓ and pu are the

left and right endpoints of this stability bubble, and they are each associated with

a preferred critical wave number qℓ, qu > 0. These points are obtained by solving

Det(J(p, q)) = ∂Det(J(p, q))/∂q = 0.
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Figure 2.3. Bifurcation diagram depicting the spatially uniform states of
VH01 with numerical solutions, using the default parameter set γ = σ = 1.6,
ν = 0.2, ρ = 1.5, β = 3 and δ = 100. The desert state loses stability to a veg-
etated state at p = p0 ≈ 0.157. The vegetated equilibrium is unstable to
perturbations n, w ∼ eiqx in the dashed region pℓ < p < pu, where pℓ ≈ 0.169
and pu ≈ 0.413 are the Turing points. Numerical simulations use precipita-
tion values (a) p = 0.20, (b) p = 0.30, and (c) p = 0.40, with higher vegetation
density plotted in darker shading.

Numerical simulations of VH01 using the default parameter set yield asymptotic

states that follow the standard “gaps → labyrinth → spots” sequence for decreasing

values of p (see Figure 2.3). It is natural to idealize these solutions as regular patterns

on a 2D hexagonal lattice [38, 43]. A uniform vegetated state that develops dry gaps

resembles a “down-hexagons” pattern (H−), a labyrinthine intermediate state resem-

bles a distorted stripes pattern (S), and a state of isolated vegetation spots resembles

“up-hexagons” (H+).
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Figure 2.4. Linear stability boundary of uniform vegetated states of VH01
plotted in the p-q plane, where q is the perturbing wave number. The bound-
ary forms a closed bubble whose left and right endpoints are the Turing
points pℓ and pu, which have corresponding critical wave numbers qℓ and
qu. As the diffusion coefficient δ is decreased, the stability bubble collapses
to a degenerate Turing point, (pc, qc).

2.2.2. Formulating the bifurcation problem

Near a Turing point (pcrit, qcrit), the behavior of a solution to a pattern-forming system

is characterized by the modes of a Fourier expansion corresponding to wave number

qcrit. Aspects of pattern formation can be analyzed through the time-varying ampli-

tudes of these critical modes. The form of the amplitude equations for Fourier modes

on a 2D hexagonal lattice can be derived through a standard calculation, described

for instance in [11, 44, 45]. Here, we summarize key points and results of this deriva-

tion, and then formulate the degeneracies that allow us to analyze transitions between

patterned states at small amplitude.
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We consider the evolution of critical Fourier modes on a hexagonal lattice perturb-

ing the uniform state,

z1e
iq1·x + z2e

iq2·x + z3e
iq3·x + c.c. + · · · .(2.4)

The wave vectors q1, q2, q3 are chosen such that

(2.5)

q1 = qcrit(1, 0),

q2 = qcrit

(
−1/2,

√
3/2

)
,

q3 = −(q1 + q2).

These vectors lie on the critical circle |q| = qcrit and z1, z2, z3 (as well as their complex

conjugates z̄1, z̄2, z̄3) are the complex amplitudes of the corresponding critical modes.

Near pcrit, all other complex Fourier modes associated with the hexagonal lattice are

linearly damped.

The form of the equations describing the evolution of the critical mode amplitudes

near a Turing point can be determined using an equivariant bifurcation theory ap-

proach [44]. To cubic order, these equations are

(2.6)

dz1

dt
= µz1 + az̄2z̄3 −

(
b|z1|2 + c(|z2|2 + |z3|2)

)
z1,

dz2

dt
= µz2 + az̄1z̄3 −

(
b|z2|2 + c(|z1|2 + |z3|2)

)
z2,

dz3

dt
= µz3 + az̄1z̄2 −

(
b|z3|2 + c(|z1|2 + |z2|2)

)
z3.

The coefficients µ, a, b, and c are real-valued and are determined by the specific terms

and parameter values of a system in a neighborhood of a Turing point. These equations
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Solution and branching equation Eigenvalues

Stripes (S) −2bx2
s, 0,

z = (xs, 0, 0) (b − c)x2
s + axs (×2),

0 = µxs − bx3
s (b − c)x2

s − axs (×2)

Up-hexagons (H+) −3axh, 0 (×2),
z = (xh, xh, xh) axh − 2(b + 2c)x2

h,
0 = µxh + ax2

h − (b + 2c)x3
h −2axh − 2(b − c)x2

h(×2)

Down-hexagons (H−) 3axh, 0 (×2),
z = −(xh, xh, xh) −axh − 2(b + 2c)x2

h,
0 = µxh − ax2

h − (b + 2c)x3
h 2axh − 2(b − c)x2

h (×2)

Mixed-modes (MM ) Always unstable
z = (x1, x2, x2)
0 = µx1 + ax2

2 − (bx2
1 + 2cx2

2)x1
0 = µx2 + ax1x2 − (b + c)x3

2 − cx3
1

Table 2.1. Branching equations for solutions on a hexagonal lattice, and
eigenvalues of linearizations of (2.6), together with their multiplicities. z =
(z1, z2, z3), and xs, xh, x1, x2 > 0.

describe the branching and relative linear stability of stripes and hexagons solutions

to perturbations on the hexagonal lattice. Solutions and their eigenvalues are listed

in Table 2.1. From these eigenvalues, one may determine conditions for the stability

of a solution. For example, a necessary condition for the stability of stripes is b > 0,

which ensures that the eigenvalue −2bx2
s is negative. Eigenvalues are often repeated

(indicated by ×2 in Table 2.1) due to the spatial symmetries of a solution, and zero

eigenvalues reflect the neutral stability of solutions to translation.
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2.3. Pattern transitions in a degenerate scenario

2.3.1. Formulating the Turing degeneracy

We introduce a distinguished control parameter λ. The coefficients in equations (2.6)

are generally functions of this parameter, i.e. µ = µ(λ), etc. We constrain these parame-

ters to vary with λ in the following way. First, we force the bifurcation problem to occur

in the vicinity of a degenerate Turing point at λ = 0 (without loss of generality), which

corresponds to µ varying quadratically in λ to leading order (i.e. µ(λ) = µ′′(0)λ2/2+· · · ,

where µ′′(0) < 0). Unfolding the degenerate point results in the expansion

µ(λ) = µ0 + µ1λ + µ2λ
2 + · · · ,(2.7)

where µ0 and µ1 are small parameters and µ2 < 0. This unfolding corresponds to

a small parameter perturbation to a Turing degeneracy, and two Turing points may

emerge as real solutions to µ(λ) = 0. An illustration of the Turing instability growth

rate, which is proportional to µ, is shown near a Turing degeneracy in Figure 2.5. Sec-

ond, if the quadratic coefficient a ̸= 0, it can be shown that all solutions to (2.6) bifurcate

unstably [44]. Hence, to capture stable solutions of (2.6), it is standard to consider (2.6)

near a = 0. We therefore unfold a as

a(λ) = a0 + a1λ + · · · ,(2.8)
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above degeneracy

below degeneracy
degeneracy

λ0

μ

Figure 2.5. Growth rate of the critical Fourier mode perturbing a spatially
uniform equilibrium, µ, plotted as a function of the control parameter λ.
The points denote Turing bifurcations.

where a0 is another small parameter. Last, we do not consider the variation of b or c

with λ, which is reasonable if we avoid degeneracies involving those coefficients.

Through a rescaling of time and amplitudes and ignoring higher order terms, we

can write unfoldings of the degenerate linear and quadratic coefficients of (2.6) as

µ(λ) = µ0 + µ1λ − λ2, a(λ) = a0 + sgn(a1)λ,(2.9)

where µ0, µ1 and a0 are small parameters. The equations (2.6) with coefficients (2.9)

now show transitions between pattern solutions that can occur entirely at small ampli-

tude.

2.3.2. Pattern transitions near the Turing degeneracy

For fixed values of the coefficients b and c, the eigenvalues in Table 2.1 specify regions

in the a-µ plane where solutions to (2.6) are stable, and the coefficients (2.9) describe

paths through these regions that are parameterized by the control parameter λ. A path



32

through the stability region of a solution corresponds to the existence of a stable solu-

tion for an interval of the control parameter. Exiting a region through a stability bound-

ary represents a solution losing stability and points to a transition between patterned

states. In the following, we outline our procedure for identifying small-amplitude pat-

tern transition scenarios.

By requiring the non-identically zero eigenvalues in Table 2.1 to be negative, stabil-

ity regions in the a-µ plane for solutions to (2.6) divide consideration into three distinct

cases: (i) 0 < b < c, (ii) −c < b < 0, and (iii) −b/2 < c < b. Together, these make up all

cases in which stable solutions to (2.6) exist. Notably, case (i) is the only case in which

small-amplitude stripes are stable.

Table 2.2 lists stability regions for each case, which are bounded by the curves

µ = −a2/4(b + 2c),(2.10)

µ = a2(2b + c)/(b − c)2,(2.11)

µ = a2b/(b − c)2.(2.12)

(2.10) is derived from the existence condition for hexagons, and (2.11) and (2.12) come

from necessary conditions for stability of hexagons and stripes, respectively. These

stability regions are plotted in Figure 2.6, and the bounding curves are labeled I-VI

and distinguish between regions of stability on either side of the line a = 0.

Varying the control parameter λ in the coefficients (2.9) leads to parabolic paths

in the a-µ plane. Depending on the sign of a1 and the small parameters µ0, µ1, a0,

these parabolic paths cut through the regions of pattern existence/stability in Table
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Figure 2.6. Stability regions in the a-µ plane for S and H+/− solutions to
(2.6) for cases (i) 0 < b < c, (ii) −c < b < 0 and (iii) −b/2 < c < b, with
sample paths (a-i) formed by varying λ in (2.9). The boundaries given by
(2.10)-(2.12) are labeled I-VI and distinguish between boundaries on either
side of a = 0. Cross hatching denotes regions of bistability between S and
H+/− solutions.

Case Stripes (S) Hexagons (H+/−)

(i) µ > a2b/(b − c)2 −a2/4(b + 2c) < µ < a2(2b + c)/(b − c)2

(ii) — −a2/4(b + 2c) < µ < a2(2b + c)/(b − c)2

(iii) — µ > −a2/4(b + 2c)

Table 2.2. Regions of stability for stripes and hexagon solutions to (2.6) in
the a-µ plane for cases (i) 0 < b < c, (ii) −c < b < 0, and (iii) −b/2 < c < b.
H+ is stable when a > 0, and H− is stable when a < 0.
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H +
-H

MM
S |z|

λ
Figure 2.7. Schematic bifurcation diagram corresponding to path (a) in Fig-
ure 2.6, taking sgn(a1) = 1. The Euclidean norm of z = (z1, z2, z3) is plot-
ted, with stable solutions solid and unstable solutions dashed. Bifurcation
points are indicated by dots.

2.2. Some example paths through these regions are sketched in Figure 2.6. We observe

that example path (a) crosses through boundaries I-VI. This means varying λ along

this path leads (2.6) sequentially through the regions of stability for H−, S, and H+

solutions. A bifurcation diagram corresponding to this path is sketched in Figure 2.7,

from which we infer the transition sequence “H− → S → H+” (i.e. “gaps → labyrinth

→ spots”) occurs as λ varies.

It follows from this example that for each case, each distinct boundary crossing

sequence is linked to a pattern transition sequence. Distinct boundary crossings and

inferred transitions for all three cases are listed in Table 2.3. “Symmetric” sequences

occur where boundaries are crossed on one side of the line a = 0 only (e.g. case (i)

sequence “I,I”), while “asymmetric” sequences occur where boundaries are crossed on

both sides of the µ-axis (e.g. case (i) sequence “I,II,III,IV,V,VI”). Path (a) in Figure 2.6

results in an asymmetric sequence, while paths (b-d) result in symmetric sequences.

Only one asymmetric sequence, corresponding to a transition involving both H+ and

H− solutions, exists for each case.
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Case Ex. Sequence Transition scenario

(i) (a) I-VI H− → S → H+,
(b) I,II,III,III,II,I H− → S → H−

(c) I,II,II,I H− (w/ S bistability)
(d) I,I H−

(ii) (e) I,III,IV,VI H− → − → H+,
(f) I,III,III,I H− → − → H−

(g) I,I H−

(iii) (h) I,VI H− → H+

(i) I,I H−

Table 2.3. Distinct boundary crossing sequences and inferred transition sce-
narios for cases (i) 0 < b < c, (ii) −c < b < 0, and (iii) −b/2 < c < b, with
example paths from Figure 2.6 indicated. Dashes in case (ii) indicate that
no intermediate state is stable at small amplitude. “Symmetric” sequences
occurring for a > 0 (e.g. VI,VI) are omitted.

One type of scenario not explicitly described above occurs when a parabolic path

crosses through a region of hexagon stability without crossing the line µ = 0. Since

Turing bifurcations occur when µ = 0, such a scenario can be interpreted as a small-

amplitude hexagon state that occurs without Turing bifurcations. These states coexist

with spatially uniform states that are stable to Fourier mode perturbations, and thus

may only be accessed through a finite amplitude perturbation. Transition scenarios for

such patterned states must necessarily involve only one type of hexagon solution.

This analysis shows that a number of transition scenarios between patterned states,

beyond the standard “gaps → labyrinth → spots,” are possible. Many of these sce-

narios correspond to “symmetric” sequences and therefore only involve one type of

hexagons solution (e.g. case (i) sequence “I,II,III,III,II,I”). This demonstrates that it is

possible for pattern transitions to occur without the appearance of spots, for instance,
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as in paths (b-d) in Figure 2.6. The occurrence of spots as precursors to pattern collapse

may therefore be sensitive to the specific parameters of a system.

2.3.3. Pattern transitions near degeneracy in the model by von Hard-

enberg et al.

In this section, we analyze patterned states near a Turing degeneracy in the model (2.1)

by von Hardenberg et al. [25] (VH01). Note that we only consider the dependence of

pattern transition scenarios on the diffusion parameter δ as an illustration, but that one

could just as well consider the dependence on other parameters. We obtain the coeffi-

cients of the amplitude equations (2.6) following the results of Judd & Silber [46], who

derive these coefficients perturbatively for general two-component reaction-diffusion

systems with diagonal diffusion. (2.1) is transformed into this problem by diagonaliz-

ing the diffusion matrix.

For the default parameter set γ = σ = 1.6, ν = 0.2, ρ = 1.5, β = 3 and δ = 100, Tur-

ing instabilities occur along the spatially uniform vegetated equilibrium at (pℓ, qℓ) ≈

(0.169, 0.106) and (pu, qu) ≈ (0.414, 0.206). The coefficients b and c of (2.6) are negative

at both Turing points, which renders unstable small-amplitude stripes and hexagons.

Weakly nonlinear theory is therefore unable to describe stable patterned solutions to

VH01 near these points. Numerical simulations, which are shown in Figure 2.3, reveal

that the “gaps → labyrinth → spots” sequence occurs at large amplitude as precipita-

tion decreases.

By modifying the value of δ in the default parameter set, we find that VH01 is

amenable to weakly nonlinear analysis in a neighborhood of δ = δc ≈ 24.7 (the two
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Figure 2.8. The coefficients a, b, and c − b, plotted at Turing points (pℓ, qℓ)
and (pu, qu) as functions of the parameter δ (default parameter values used
otherwise). Grey-shaded intervals indicate where a > 0, b > 0, and c − b > 0
at both Turing points.

Turing points collapse to a single degenerate point at δ = δc). This is observed through

the coefficients b and c of (2.6). We saw in case (i) of Section 2.3.2 that both small-

amplitude stripes and hexagons can be stable when 0 < b < c. Plotting b and c − b

evaluated at Turing points (pℓ, qℓ) and (pu, qu) as functions of δ in Figure 2.8, we ob-

serve that 0 < b < c when δ < 30.0. Plotting a in a similar way shows that a changes

sign between the Turing points when δ > 25.5, which permits the assymetric sequences

described in Section 2.3.2, i.e. sequences that involve both gap and spot patterns. To-

gether, these coefficients indicate that the sequence “H− → S → H+” appears at small

amplitude in the interval δ ∈ [25.5, 30.0], which parallels what is observed at large am-

plitude for larger values of δ. A bifurcation diagram depicting this scenario is shown

in Figure 2.9.
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Figure 2.9. Schematic bifurcation diagram for solutions of VH01 with δ ∈
[25.5, 30.0] and numerical solutions with δ = 27.0 (default parameter values
used otherwise). The numerical simulation (a) is evolved to a steady state
resembling an H− solution from spatially noisy initial conditions at p =
0.292 ≈ pu. p is then decreased to 0.259 ≈ (pℓ + pu)/2 and the solution
is allowed to settle to the S steady state shown in (b). This procedure is
repeated once more at p = 0.225 ≈ pℓ, and the S solution initial condition
settles to an H+ steady state, shown in (c).

To simulate this sequence numerically, we set δ = 27.0 so that two Turing points

emerge at (pℓ, qℓ) ≈ (0.225, 0.214) and (pu, qu) ≈ (0.292, 0.247). A numerical solution of

VH01 at p ≈ pu is evolved using a pseudospectral RK4 scheme from spatially random

initial conditions for n and w drawn uniformly from the interval [0.2, 0.4]. After this

solution reaches a steady state, the parameter p is decreased in two steps, and the

solution is allowed to reach a steady state after each step. These steady states, shown

in Figure 2.9, closely resemble H−, S, and H+ solutions at p ≈ pu, (pℓ +pu)/2, and p ≈ pℓ

respectively, which is consistent with the picture suggested by analysis.
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Figure 2.10. Bifurcation diagram for solutions of VH01 and numerical solu-
tions with δ = 25.0 (default parameter values used otherwise). The numer-
ical simulation (a) is evolved to a steady state resembling an H+ solution
from spatially noisy initial conditions at p = 0.269 ≈ pu. p is then decreased
to 0.257 ≈ (pℓ + pu)/2 and the H+ state remains stable, as shown in (b).
This procedure is repeated once more at p = 0.245 ≈ pℓ, and the H+ state
continues to remain stable, as shown in (c).

Figure 2.8 also shows that a > 0 at both Turing points when δ ∈ [24.7, 25.5], resulting

in “symmetric” pattern transition sequences that exclude stable H− (gaps) patterns in

this interval. In Figure 2.10, we plot a bifurcation diagram of solutions to VH01 as

functions of p with δ = 25.0, which shows that only H+ (spot) solutions are stable at

small amplitude between the two Turing points. For this value of δ, the two Turing

bifurcations occur at (pℓ, qℓ) ≈ (0.245, 0.231) at (pu, qu) ≈ (0.269, 0.243). Numerical

simulations at p = pℓ, (pℓ+pu)/2, and pu all yield small amplitude up-hexagon solutions

(see Figure 2.10). We remark that although this analysis is evidence of an alternative
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to the standard sequence in the model by von Hardenberg et al., this alternative occurs

only in a small interval of δ.

2.3.4. Summary and discussion

In order to analyze aspects of transition between patterned states in PDE vegetation

models, we have formulated a bifurcation problem on a 2D hexagonal lattice. Am-

plitude equations capture dynamics that are dominated by the evolution of critical

Fourier mode perturbations to a uniform equilibrium. We enforced degeneracies of

the amplitude equation coefficients that enable transitions between patterned states to

occur at small amplitude, where they can be investigated analytically. We found that

a number of scenarios beyond the standard “gaps → labyrinth → spots” transition se-

quence are possible in this generic setting, and that the appearance of these scenarios is

distinguished by the coefficients of the amplitude equations near the degenerate point.

Since the bifurcation problem exploits symmetries present in a number of vegetation

pattern models near Turing bifurcation points, one can place these models within the

framework we have described. We did this for the model by von Hardenberg et al.

[25] and observed the standard sequence as well as a “spots-only” scenario for two

near-degenerate parameter sets.

Based on our analysis and observations of patterned states in VH01, we specu-

late that specific assumptions make the standard sequence relatively robust in some

PDE models for vegetation pattern formation. This is despite our observation of the

“spots-only” scenario in VH01, which we found to occur only for a small interval of the

parameter we vary. In Section 2.3.2, we found that an analog of the standard sequence
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occurs at small amplitude due in part to the quadratic coefficient of (2.6) changing

sign between the Turing bifurcation points. This weakly nonlinear assessment forms

an organizing center for more strongly nonlinear model behavior away from a degen-

eracy, and we conjecture that the quadratic coefficient changing sign between Turing

points serves as a potential signpost for the standard sequence. Our expectation is that

if a small-amplitude analog of this sequence is observed near a degeneracy, then the

quadratic coefficient will often give a qualitative description of behavior even when no

small-amplitude patterned states are stable away from the degeneracy. In this way, our

approach suggests a framework for assessing the robustness of the standard sequence

under parameter variations in VH01, as well as in other models.

2.4. Pattern transitions in the model by Rietkerk et al.
In the previous section we demonstrated that, in certain limits of model parameter

values, pattern sequences can be studied analytically using bifurcation theory. In lim-

its where transitions between patterns all occur in a regime of weak nonlinearity, we

showed that the coefficient of the quadratic-order term in these equations affects the

sequence that occurs. If this coefficient changes its sign from negative to positive as a

precipitation parameter is decreased in value, an analog of the standard sequence oc-

curs in certain cases. Otherwise, alternative sequences, such as one consisting only of

spot patterns, can occur. Based on a preliminary numerical investigation of the model

by von Hardenberg et al. [25], we speculated that this coefficient also encodes informa-

tion about pattern sequences that occur in more fully nonlinear cases.
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In this section, we ask whether the standard sequence can be identified in the

model by Rietkerk et al. [37] (R02) using the sign of the quadratic coefficient of the

hexagonal lattice amplitude equations. Specifically, we investigate whether the stan-

dard sequence occurs at parameter values where the quadratic coefficient changes its

sign from negative to positive as the precipitation parameter decreases. We calcu-

late the amplitude equation coefficients across broad parameter spaces, and evaluate

these coefficients at two values of the precipitation parameter which correspond to

pattern-forming bifurcation points. We conduct numerical simulations of the model

over the same parameter spaces in order to identify the pattern sequences that occur.

We compare the results of the analysis with those of the simulations in order to ad-

dress whether the standard sequence in this model is signaled by the quadratic coeffi-

cient changing signs as the precipitation parameter decreases. Of particular interest is

whether this is true in regimes where the weakly nonlinear analysis provides no direct

information about pattern stability.

If coefficients from bifurcation analysis can serve as proxies for the standard se-

quence, then this would allow for more efficient exploration of a model’s parameter

space than by direct numerical simulation. This would be useful for assessing the ro-

bustness of the standard sequence in 3-field models, such as the models by Rietkerk et

al. [37] and Gilad et al. [34, 47], which depend on a large number of non-dimensional

parameters.
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2.4.1. Model by Rietkerk et al.

We study the PDE vegetation model by Rietkerk et al. [37] (R02), which consists of three

fields: surface water h, soil water w, and plant biomass n. Using the non-dimensional

form given by Zelnik et al. [34], the model is written as

(2.13)

∂h

∂t
= p︸︷︷︸

precip.

− I(n)h︸ ︷︷ ︸
infil.

+ Dh∇2h︸ ︷︷ ︸
diffusion

,

∂w

∂t
= − νw︸︷︷︸

evap.

+ I(n)h︸ ︷︷ ︸
infil.

− γG(w)n︸ ︷︷ ︸
transpir.

+ Dw∇2w︸ ︷︷ ︸
diffusion

,

∂n

∂t
= − µn︸︷︷︸

mort.

+ G(w)n︸ ︷︷ ︸
growth

+ ∇2n︸ ︷︷ ︸
dispersal

,

where

I(n) = α
n + f

n + 1
and G(w) = w

w + 1
.

In this model, precipitation is a constant input to the surface water field. Surface wa-

ter infiltrates and becomes soil water. The infiltration rate (i.e. the conversion rate of

surface water to soil water) increases in the presence of biomass via the function I(n)

to model the increased permeability of the soil due to plant roots. I(n) saturates to α

as n → ∞. Water leaves the soil via evaporation, and is also transpired by plants. The

growth rate of biomass is directly proportional to the transpiration rate, and increases

with the availability of soil water via the saturating function G(w). Together, these

terms make a positive feedback between infiltration and biomass growth: biomass

growth increases with soil water, soil water increases with infiltration, and the infiltra-

tion rate increases with biomass.
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This model includes surface and soil water diffusion terms. Plant dispersal, which

encompasses seed dispersal and clonal growth, is also modeled using a diffusion term.

The diffusion terms are in two spatial dimensions (2D), i.e. ∇2 = ∂2/∂x2 + ∂2/∂y2.

Surface water diffusion is typically assumed to occur much more rapidly than soil

water diffusion, so Dh ≫ Dw. Among three-field PDE vegetation models, soil water

diffusion and plant dispersal have been modeled as occurring on either similar [37] or

different [47] scales with Dw ≥ 1. An advection term present in the original form of R02

is neglected here, because the focus of our investigation is on flat-terrain patterns. The

dynamics of water on a slope modeled via advection break the symmetry that causes

2D patterns such as gaps or spots at pattern onset.

In general, the form of the growth term varies between models [9, 47], and it de-

termines the number of uniform steady state solutions that occur for a given system.

For R02, the rate of biomass growth depends linearly on the amount of biomass. The

growth rate is also a saturating function of soil water, so that it is linear in the amount of

soil water for small values of this variable, and constant for large values. This growth

rate permits two spatially uniform steady state solutions, which satisfy the equations

0 = p − I(n)h = p − α
n + f

n + 1
h,

0 = − νw + I(n)h − γG(w)n = −νw + α
n + f

n + 1
h − γ

w

w + 1
n,

0 = (−µ + G(w)) n =
(

−µ + w

w + 1

)
.
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Figure 2.11. Schematic diagram depicting the uniform steady state solu-
tions of R02, with insets showing examples of patterned states occurring
at different values of p. The uniform desert state is stable on the interval
p ∈ [0, p0), and the uniform vegetated state is stable to spatially uniform
perturbations for p > p0. The vegetated state is unstable to spatially pe-
riodic perturbations at a range of wavelengths on the interval p ∈ (pℓ, pu).
We refer to the endpoints pℓ and pu as the lower and upper Turing points,
respectively.

One solution, (h, w, n) = (p/fα, p/ν, 0), represents a zero-biomass desert state. The

other solution (h, w, n) = (h0, w0, n0) represents a vegetated state with nonzero biomass,

h0 = p

I(n0)
, w0 = µ

1 − µ
, n0 = 1

γµ

(
p − νµ

1 − µ

)
,(2.14)

for which n0 > 0 when p > µν/(1 − µ) ≡ p0. We note a peculiarity of this model is that

the soil water w0 in the vegetated state depends only on the mortality parameter µ, and

not on the precipitation level p. A diagram of uniform steady state biomass as a func-

tion of the precipitation parameter is shown in Figure 2.11. The desert state is stable to

spatially uniform perturbations at low values of precipitation (0 ≤ p < p0), while the

vegetated state is stable to such perturbations at higher values of precipitation (p > p0).

These steady states exchange stability in a transcritical bifurcation at p = p0.
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For a range of precipitation values within the interval p ∈ (pℓ, pu), the vegetated

state may be unstable to spatially periodic perturbations at a range of wavelengths.

When this is the case, pattern-forming instabilities occur at pℓ and pu via the Turing

mechanism [48], and we refer to these points as the lower and upper Turing points

respectively.

2.4.2. Model parameter variation

We studied variations of the non-dimensional R02 parameters given by Zelnik et al. [34],

which are based on the dimensioned parameter values estimated by Rietkerk et al. [37].

These parameter values are summarized in Table 2.4. The f parameter in R02 controls

the strength of the infiltration feedback, and is bounded between 0 and 1. The default

value given in [34] is f = 0.2. We used f ∈ [0.1, 0.9] in numerical simulations. The α

parameter controls the rate of infiltration, and can plausibly take on a large range of

values depending on the soil type that is modelled. The default value given in [34] is

α = 0.4, and we considered α ∈ [10−1, 103]. The Dh parameter is the ratio of the surface

water diffusion rate and the biomass dispersal rate. Rietkerk et al. [37] use Dh = 103

for R02 and Zelnik et al. [34] use Dh = 104 for the corresponding parameter value in a

simplified version of the model by Gilad et al. [47]. We varied Dh ∈ [100.5, 104]. To con-

sider the dependence of results on co-variation of parameters, we studied the α–f and

Dh–f parameter spaces. In additional analysis described in Appendix A and summa-

rized in Section 2.4.5, we considered an ecologically relevant limit where Dh ≫ α. Our

parameter exploration was conducted primarily in this limit, since α was held fixed at

0.4 while Dh was varied, and Dh was held fixed at 103 while α was varied.
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Interpretation Value in [34] Constraints Variation studied

µ mortality rate 0.5 0 < µ < 1 —
α infiltration rate 0.4 α > 0 10−1 – 103

f infiltration feedback strength 0.2 0 < f < 1 0.1 – 0.9
ν evaporation rate 0.4 ν > 0 —
γ transpiration rate 0.1 γ > 0 —

Dw soil water:biomass diffusion rate 1 1 ≤ Dw < Dh —
Dh surface water:biomass diffusion rate 103 Dh > Dw 100.5 – 104

Table 2.4. Parameters given by Zelnik et al. [34] for the R02 model, and pa-
rameters varied in this study.

2.4.3. Amplitude equation calculations

We computed coefficients of the amplitude equations (2.6) for R02 using the procedure

outlined in Judd & Silber [46], which takes a perturbative approach to obtaining these

coefficients for a 2-field reaction diffusion system. These coefficients are written as ex-

pressions of the reaction functions and diffusion parameters. We adapted the Judd &

Silber [46] procedure for a three-field reaction-diffusion system to obtain expressions

for the amplitude equation coefficients; the aspect of this procedure specific to the cal-

culation of the quadratic coefficient a is described in Appendix A.1. The values of the

amplitude equation coefficients a, b, and c are computed at the lower and upper Tur-

ing points via Mathematica. These calculations are performed on a grid of points in the

α–f and Dh–f parameter spaces. The results of these calculations were verified at a

few non-degenerate points using a center manifold reduction approach (the general

approach is described in [49]). A Nelder-Mead minimization library in Mathematica

was used to find roots of the quantities a, b, c − b, and b + 2c, which are relevant to

assessing the stability of solutions to (2.6).



48

We find that the α–f and Dh–f parameter spaces of the model by Rietkerk et al. [37]

(R02) can be divided into regions where the amplitude equations (2.6) give different

qualitative predictions. The results of the calculations at the upper Turing point are

summarized in Figure 2.12, and the lower Turing point calculations are summarized

in Figure 2.13. In the unlabelled white regions, no Turing points occur because the

uniform vegetated steady state is stable to spatially periodic perturbations, and no

calculations are performed. The black curves separating the white and shaded regions

denote a degeneracy of the Turing points, where the upper and lower Turing points

come together at a single precipitation value. In the shaded regions below this curve,

two Turing points occur on the vegetated state, and analysis is performed at each point.

Each shaded region in Figures 2.12 and 2.13 is associated with a qualitatively dis-

tinct bifurcation diagram applicable to a neighborhood of the Turing point. The qual-

itative aspects (e.g. stability, branching direction) of the bifurcation diagrams are de-

termined by the signs of the quantities a, b, c − b, and b + 2c. These quantities arise

from the amplitude equation steady state eigenvalues and branching equations listed

in Table 2.1. Notably, the sign of the a coefficient serves as a necessary condition for

the stability of either small-amplitude gaps or spots solutions. A necessary condition

for the stability of gaps is given by a < 0, and a necessary condition for the stability of

spots is given by a > 0.

For the analyses summarized in Figures 2.12 and 2.13, the regions are arrayed sim-

ilarly in both α–f and Dh–f parameter spaces. For example, regions A-E in Figure 2.12

corresponding to the upper Turing point occur in the same order when varying pa-

rameters away from the Turing degeneracy curve (e.g. when increasing Dh compared
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Figure 2.12. Summary of upper Turing point amplitude equation calcula-
tions over α–f and Dh–f parameter spaces, along with schematic bifurca-
tion diagrams. The coefficients of the amplitude equations (2.6) are com-
puted, and the curves a = 0, b − c = 0, c + 2b = 0, and b = 0 separate the
parameter spaces into regions labelled A-E. Qualitatively similar bifurcation
structures occur within each region. In the white region, no Turing points
occur on the uniform vegetated steady state of R02 and no calculations are
performed.

to decreasing α, with f fixed). We find that this occurs because the Turing point cal-

culation and the coefficients a, b, and c depend on the quantity α/Dh, and not α and

Dh independently. In the appendices, we show how the Turing point calculation and
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the quadratic coefficient a depend on α/Dh via the quantity δ ∝ α/Dh. Though the

amplitude equation coefficients do not depend on α and Dh independently, this does

not translate to the invariance of full solutions to R02 for fixed ratios of α/Dh. This can

be seen in weakly nonlinear solutions, which have linear eigenfunctions that depend

on α and Dh independently.

We first interpret the results of bifurcation analysis at the upper Turing point, which

are summarized in Figure 2.12. We consider a scenario in which precipitation decreases

slowly over time, so that the upper Turing point threshold is crossed from above. The

sequence of pattern morphologies observed in such a scenario begins with patterns

born near the upper Turing point. The regions in Figure 2.12 specify whether the am-

plitude equations predict a stable patterned state in some neighborhood of the upper

Turing point, and also the morphology of that state. A gap (H−) patterned state stable

near the upper Turing point accords with the standard “gaps → labyrinth → spots”

sequence prediction.

In region A of Figure 2.12, the quantities a, c − b, b + 2c, and b are all positive,

which allows a stable spot solution (H+) to the amplitude equations in a neighbor-

hood of the upper Turing point. This analysis predicts that pattern sequences begin

with spot patterns in region A of the parameter space, which is inconsistent with the

standard sequence. The stripes solution (S) can also be stable in region A. It stabilizes

away from the Turing point, so that spots may transition to stripes as precipitation

decreases. However, since the predictions of the amplitude equations break down out-

side a small neighborhood of the Turing point, it is uncertain whether this stable stripes

solution will manifest in the full system as a successor to spot patterns as precipitation
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decreases. We expect that as we approach the a = 0 boundary of region A, the interval

of stability for the spots branch will diminish in size, allowing stable stripes to appear

as precipitation decreases.

In regions B and C of Figure 2.12, a is negative and b + 2c and b are positive, which

allows a stable gaps solution to the amplitude equations in a neighborhood the upper

Turing point. This predicts pattern sequences that begin with gap patterns, which is

consistent with the standard sequence. The stripes solution to the amplitude equations

can also be stable in region B, as in region A, since c − b > 0. Here, gap patterns may

transition to stripes as precipitation decreases. In region C, c − b < 0 prevents the

stability of stripe steady states. The analysis therefore provides no information in this

region about the patterns that may follow gaps as precipitation decreases.

In regions D and E of Figure 2.12, a, c−b, and b+2c are negative, which means small-

amplitude steady state solutions cannot be stable near the upper Turing point. Regions

D and E differ only by the branching direction of the always-unstable stripes solution.

The stripes solution branches towards the Turing instability interval (i.e. stripes bifur-

cate supercritically) for region D, since b > 0. The stripes solution branches away from

the Turing instability interval (i.e. stripes bifurcate subcritically) for region E, since

b < 0. In both D and E, the gaps solution branches away from the Turing instability

region. Since there are no small-amplitude steady state solutions stable in regions D

and E, we cannot directly infer from this analysis what patterned states occur near the

Turing point. Here, patterned states of the full system likely arise from more strongly

nonlinear behavior than the states in regions A-C.
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Figure 2.13. Summary of lower Turing point amplitude equation calcula-
tions over α–f and Dh–f parameter spaces. The coefficients of the ampli-
tude equations (2.6) are computed, and the curves c − b = 0, b + 2c = 0, and
b = 0 separate the parameter space into regions labelled F-I, each of which
exhibits a qualitatively distinct bifurcation structure. Bifurcation diagrams
applicable to regions F-I resemble diagrams B-E respectively in Figure 2.12,
with the roles of gaps and spots exchanged and the solutions reflected so
that supercritical branches bifurcate in the direction of increasing precipita-
tion.

Figure 2.13 summarizes the results of bifurcation analysis at the lower Turing point.

Over the entire α–f and Dh–f parameter spaces, a is positive, which is a necessary

condition for the stability of spot solutions to the amplitude equations. Regions F-H

all occur in close proximity to the degenerate Turing point curve, while region I fills

the majority of the space. Stable solutions to the amplitude equations occur only in

regions F and G. In region F, the spots solution to the amplitude equations is stable

near the lower Turing point. The stripes solution is also stable away from the Turing

point in this region, so that spots may transition to stripes as precipitation increases.
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In region G, the spots solution is stable near the lower Turing point, but the small-

amplitude stripes solution can never be stable. In regions H and I, solutions to the

amplitude equations are never stable near the lower Turing point, and differ only in

the branching direction of the stripes solution. The stripes solution branches towards

the Turing instability region for region H, and away for region I.

At both the upper and lower Turing points, our bifurcation analysis cannot provide

direct information about stable patterned states for a large region of the parameter

space, where small-amplitude solutions are unstable. The central investigation of this

chapter is whether the a coefficient, obtained via local analysis, contains information

about patterned states near the Turing points in these other regions. In regions B and

C of Figure 2.12, it is expected from the analysis that gap patterns are stable near the

upper Turing point. We conjecture that the same is true in regions D and E, where

no solutions to the amplitude equations are stable, but a < 0. Similarly, our analysis

only shows that spot patterns are stable near the lower Turing point in regions F and

G of Figure 2.13. We conjecture that spots patterns will be stable near the lower Turing

point in regions H and I as well, since a > 0 there. Taken together, this would result in

pattern sequences that begin with gaps and end with spots in a scenario of decreasing

precipitation over time (i.e. analogs of the standard sequence) in the region of param-

eter space where a < 0 at the upper Turing point and a > 0 at the lower Turing point.

We find that these conditions are satisfied over nearly all of the studied α–f and Dh–f

parameter spaces, excluding only region A of Figure 2.12. Region A lies adjacent to the

Turing degeneracy curve, where the two Turing points approach one another and thus

the quadratic coefficients at the Turing points approach the same non-zero value. In
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this region, a > 0 at the both Turing points, and we anticipate pattern sequences that

begin and end with spots.

2.4.4. Numerical simulations

We conducted numerical simulations to identify pattern sequences that occur as pre-

cipitation decreases in the R02 model. We employed a numerical procedure which

simulates the environment undergoing a slow monotonic change in precipitation over

time. These simulations were run using grids of parameter values covering regions of

the α–f and Dh–f parameter spaces. The procedure is outlined schematically in Figure

2.14, and is described in detail in Appendix B.1. For each set of parameter values, pre-

cipitation is incremented in small discrete steps, and the solution is allowed to reach

a steady state between these steps in precipitation. The final state at the previous pre-

cipitation value is used as the initial condition for the new precipitation value. The

precipitation increment step size was chosen based on the distance between the upper

and lower Turing points, pu−pℓ, so that approximately 30-100 end states were saved per

simulation. Discrete steps were chosen instead of continuously varying precipitation

to avoid transient effects, i.e. simulation results that are sensitive to the rate at which

precipitation changes. Simulations were run using the exponential time differencing

Runge-Kutta 4 (ETDRK4) scheme [50, 51] modified for 2D systems [52].

The procedure is constructed to run simulations over the interval of p where pat-

terns are stable and to identify any possible hysteresis in the pattern sequences. This is

accomplished by first incrementing p upward until patterns die out to yield a uniform
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p

Figure 2.14. Diagram of numerical simulation procedure. Numerical sim-
ulations are run at discrete values of p marked by dots. The procedure is
initialized with p just below the upper Turing point pu (star) and run for-
ward in time until a steady state is reached. Then p is stepped upward by
a small increment and the simulation is once again allowed to reach steady
state. This is repeated until patterns lose stability to a uniform vegetated
state at p = pu+ (right circle). Using the previous patterned steady state
(right square) as an initial condition, p is then stepped downward in the
same way until patterns lose stability to a uniform state at p = pℓ− (left
circle). Then p is incremented upward a final time, and the procedure termi-
nates when patterns once again lose stability (octagon). Note that pu+ and
pℓ− do not necessarily coincide with the Turing points pu and pℓ, because
patterns may persist outside of the Turing instability interval.

state. We denote this point of pattern die-off as p = pu+. Precipitation is then decre-

mented, simulating a scenario in which an ecosystem slowly becomes more arid. This

continues until patterns die out again, which yields another uniform state, which we

denote p = pℓ−. Precipitation is incremented upward a final time to assess hysteresis

in the pattern sequence (i.e. whether the sequence occurs differently when p is slowly

increasing versus decreasing). The procedure terminates when patterns die out once

more. An approximate interval for the stability of patterns is given by p ∈ (pℓ−, pu+),

which contains the Turing instability interval p ∈ (pℓ, pu). The Turing instability inter-

val is determined via a linear stability calculation and does not capture the nonlinear

stabilization of patterns. In cases where the amplitude equations (2.6) predict stable

hexagons solutions near a Turing point, these solutions bifurcate in such a way as to be

stable outside the Turing interval. When amplitude equation solutions branch away
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from the Turing interval (e.g. when stripes bifurcate subcritically), these solutions may

also stabilize at large amplitude outside the Turing interval.

In numerical simulations, we find that the quadratic coefficient a of the amplitude

equations (2.6) signals where the standard sequence occurs in the studied parameter

spaces of R02. A summary of pattern sequences observed in these numerical simula-

tions is shown in Figure 2.15. These simulations were conducted at sets of parameter

values marked by letters, and pattern morphologies were identified by visual inspec-

tion. For comparison, the region of the parameter space where a > 0 at both the upper

and lower Turing points (i.e. region A of Figure 2.12) is shaded. Elsewhere, a < 0 at

the upper Turing point and a > 0 at the lower Turing point. From the results of weakly

nonlinear analysis described in Section 2.4.3, we expect pattern sequences beginning

with spots (in a scenario of decreasing precipitation) to appear in the shaded region.

Outside the thin shaded region, we speculated that analogs of the standard sequence

would occur. Indeed, only spot patterned states are observed in numerical simula-

tions in the shaded region; in addition, analogs of the standard sequence are primarily

observed in simulations elsewhere.

Examples of the numerical patterned states using f = 0.2 and different values of

log10(Dh) are also shown in Figure 2.15. The simulation output is accompanied by lines

which plot the locations of the upper and lower Turing points, pu and pℓ respectively,

the transcritical point p0, and upper and lower pattern stability boundaries, pu+ and

pℓ− respectively. We observed only spot-patterned states in the thin shaded region of

Figure 2.15. Examples of such states are shown in simulation output from f = 0.2 and

log10(Dh) = 0.6. Near the upper Turing point, solutions approximately resemble the
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Figure 2.15. Summary of pattern transitions observed numerical simula-
tions over α–f and Dh–f parameter spaces in R02, along with represen-
tative examples of transitions from numerical simulations at f = 0.2 and
log10(Dh) = 0.6 – 4.0. Number lines plot the relative locations of the up-
per and lower Turing points (pu and pℓ respectively), the transcritical point
(p0), and upper and lower pattern stability boundaries (pu+ and pℓ−) for the
example simulations shown. The parameter values corresponding to the ex-
ample simulations are circled. Though pℓ and p0 are nearly coincident, the
distance between these points is exaggerated to illustrate that pℓ > p0.

spots (H+) solution to the amplitude equations (2.6). The profiles of these spot patterns

are roughly sinusoidal about the uniform vegetated steady state. An example profile

is shown in Figure 2.16. At lower values of p, spot patterns remain stable. The spacing
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between spots increases, and the individual spots of vegetation become more sharply

peaked, quickly decaying to zero away from the centre of a spot. An example of a

sharply peaked profile is also shown in Figure 2.16. Patterns other than spots are not

observed in simulations conducted in the shaded region. No notable difference in the

qualitative appearance of the spot patterns was observed as precipitation increased in

discrete steps.

We primarily observed analogs of the standard “gaps → labyrinth → spots” se-

quence in the unshaded region of Figure 2.15, which agrees with our conjecture from

analysis. Examples of this sequence in simulation output for f = 0.2 and log10(Dh)

ranging from 1.0 – 4.0 are shown in Figure 2.15. The sets of simulations at log10(Dh) =

1.0 and log10(Dh) = 1.5 use parameter sets from regions B and C of Figure 2.12 re-

spectively, where gaps solutions to the amplitude equations are expected to be sta-

ble near the upper Turing point. As precipitation decreases in the simulations, pat-

terns resembling the gaps (H−) solution to the amplitude equations are first observed

near the upper Turing point. Gaps then transition to well-ordered stripe patterns in

both sets of simulations. As precipitation decreases further, stripes become disordered

before transitioning to spot patterns. The sets of simulations at log10(Dh) = 2.0 and

log10(Dh) = 4.0 both use parameter sets from region E of Figure 2.12, where no small-

amplitude patterns are stable near the upper Turing point. Still, gaps are observed in

numerical simulations near the upper Turing point in both sets of simulations. As pre-

cipitation decreases, gaps transition directly to disordered labyrinthine stripes. These

stripes eventually transition to spots, which take on non-sinusoidal profiles as shown
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Figure 2.16. Example profiles of individual spot patterns taken from numer-
ical simulations at f = 0.2 and log10(Dh) = 0.6 (sinusoidal), log10(Dh) = 2.0
(sharply peaked), and log10(Dh) = 4.0 (plateau-like). The example si-
nusoidal profile comes from a spot-patterned state near the upper Tur-
ing point. The sharply peaked and plateau-like profiles come from spot-
patterned states well below the lower Turing points in their respective sim-
ulations.

in Figure 2.16. Hysteresis occurs in the points of transition between pattern morpholo-

gies, and this hysteresis is larger in the simulation with the larger value of Dh. The

transitions between gaps and labyrinths occur at a lower value of p when decreasing

precipitation compared to increasing precipitation. The same applies to the transition

between labyrinths and spots.

The simulation examples in Figure 2.15 demonstrate a trend of increasingly non-

linear behavior as Dh increases. This trend is generally representative of what we

observe in the other simulations when parameters are varied away from the Turing

degeneracy curve, e.g. when α decreases. One aspect of the increasing nonlinearity

can be accounted for via our bifurcation analysis. The regions in Figure 2.12 order the

parameter spaces by nonlinearity at the upper Turing point. Moving away from the

Turing degeneracy curve, the amplitude equations first predict stable weakly nonlin-

ear patterns in regions A-C, and then imply strongly nonlinear patterns in regions D

and E since small-amplitude patterns are unstable. This manifests in simulations as
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small-amplitude sinusoidal patterns occurring near the upper Turing point when pa-

rameters are near to the Turing degeneracy curve, sharply peaked patterns occurring

beyond this, and plateau-like patterns occurring when very far away from the curve.

Other aspects of increasing nonlinearity are apparent in certain qualitative behaviors

observed in the simulations. Patterned states increase in their disorder and begin to

exhibit coexistence as distance from the degeneracy curve increases. The interval of

pattern stability, (pℓ−, pu+), increases in length as well. In particular, pℓ− decreases to

extend the length of the interval (pℓ−, pℓ). As this interval increases with increasing

distance from the Turing degeneracy curve, the transition point between stripe and

spot states decreases to lower values of precipitation. This causes spot patterns to re-

main stable at values of precipitation well below the lower Turing point. This implies

the stabilization of a strongly nonlinear patterned state far from the Turing instability

interval.

In addition to the standard sequence, we observed a few instances of “stripes →

spots” sequences in the unshaded region of Figure 2.15. We determined that these

are actually instances of the standard sequence, where gaps do not appear in simula-

tions. Our bifurcation analysis indicates that gap solutions to the amplitude equations

are stable only very near to the Turing point in these parameter sets. Because our

numerical procedure increments precipitation in discrete steps of fixed size, the gaps

branch may be bypassed. To test whether gaps can exist stably for parameter sets

where “stripes → spots” transitions are observed, we conducted additional numerical

simulations, which are described in the electronic supplementary material. In these

simulations, gap patterns were assessed to be stable.



61

We also observed time-varying spiral wave patterns in one instance of the nu-

merical simulations, at f = 0.1 and log10(Dh) = 0.5. We ran additional simulations,

described in the electronic supplementary material, at nearby parameter values and

found that spiral patterns are confined to values of Dh that are smaller than typically

considered ecologically applicable. To our knowledge, there are no previous reports

of spiral wave patterns occurring in R02 or any other vegetation model. However,

we remark that the waves observed in R02 resemble spiral wave patterns observed in

other reaction-diffusion contexts such as chemical reaction systems [53] and models of

phytoplankton dynamics [54].

2.4.5. Quadratic coefficient analysis

In Appendix A.1, we derive a closed-form expression for the quadratic coefficient a.

This expression involves derivatives of nonlinear terms in R02, the infiltration term

I(n)h and the growth term G(w)n, where I(n) = α(n + f)/(n + 1) and G(w) = w/(w +

1). This expression also involves the null vector (H1, W1, N1)T and left null vector

(H̃1, W̃1, Ñ1) of the system linearized about the uniform vegetated steady state (2.14),

both of which are defined in Appendix A.1. Explicitly,

(2.15) a =
(

I ′(n0)H1N1 + 1
2

I ′′(n0)h0N
2
1

)(
W̃1 − H̃1

)
+
(

G′(w0)W1N1 + 1
2

G′′(w0)n0W
2
1

) (
Ñ1 − γW̃1

)
.



62

The infiltration function I(n) is an increasing concave-down function of n, and so

I ′(n) > 0 and I ′′(n) < 0. The growth function G(w) is similarly increasing and concave-

down with respect to w.

In a natural limit of the parameters which corresponds to Dh ≫ α, we find in Ap-

pendix A.3 that a negative term dominates quadratic coefficient a (2.15) at the upper

Turing point and a positive term dominates at the lower Turing point. These arise

through distinct scalings of the critical wavenumber and the onset parameter values

with the quantity δ ≡ I(n0)/Dh ∝ α/Dh at the different Turing points, and are cal-

culated in Appendix A.2. These scalings at onset in turn determine distinct scalings

for the left and right null vector components. At the lower Turing point, for δ suf-

ficiently small, we find that (H1, W1, N1)T = (O(1), O(1), O(1))T and (H̃1, W̃1, Ñ1) =

(O(δ), O(δ), O(1)). Additionally we find that n0 = O(δ). Then at the lower Turing

point,

a = 2Q2
ℓG

′(w0)
Nℓ

N ℓ
1 + O(δ),

where Q2
ℓ and Nℓ are the positive scaling constants given by (A.14). Thus a is pos-

itive at leading order at the lower Turing point. This corresponds to spot patterns.

Sufficiently far from the degeneracy at which the two Turing points merge, the upper

Turing point has the opposite sign. Specifically, at the upper Turing point, we find

that (H1, W1, N1)T = (O(δ1/2), O(δ1/2), O(1))T and (H̃1, W̃1, Ñ1) = (O(δ1/2), O(1), O(1)).

Then at the upper Turing point

a = G′(w0)I ′′(n0)h0n0

ν + γG′(w0)n0
+ O(δ1/2).
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This expression is negative at leading order since I ′′(n) < 0, and thus corresponds to

gap patterns.

In order for this result to hold, we must also be sufficiently far from a Turing de-

generacy. The quadratic coefficient at the two Turing points takes on the same sign in a

neighborhood of the degeneracy, marked by the shaded region in Figure 2.15 (see also

the discussion of region A in Section 2.4.3). The conditions that Dh ≫ α and that we

are sufficiently far from a Turing degeneracy are not independent. As f increases, the

Turing degeneracy occurs at smaller values of δ. This can be observed in Figures 2.12-

2.15, where α decreasing and Dh increasing correspond to smaller δ. At smaller δ, the

regions where a takes the same sign at both Turing points diminish, and less distance

from the Turing degeneracy is necessary for the scaling results given above to hold.

This can be seen in the narrowing of the shaded regions in Figure 2.15 with increasing

f .

2.4.6. Summary and discussion

We find that the quadratic coefficient a from a bifurcation analysis divides the studied

parameter spaces of the Rietkerk et al. [37] (R02) model into two regions. In a thin re-

gion of the parameter space adjacent to the degenerate Turing point curve, where the

Turing points are very close to each other, a is positive at both points. Correspondingly,

we observe only spot patterns in numerical simulations. Elsewhere a takes opposite

signs at the two Turing points. When this happens, we primarily observe the standard

sequence. This strongly suggests that the a coefficient resulting from weakly nonlin-

ear analysis holds predictive value for assessing the nonlinear behavior of the system.
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Specifically, it appears to serve as a proxy for the sequence of nonlinear patterns that

will manifest for any parameter set of R02.

Since a is computed analytically, it is possible to trace the influence of model terms

and parameter values on the sign of a, and thus on the sequence of patterns that

are predicted. This presents an approach for comprehensively exploring the full 7-

dimensional parameter space of the R02 model. Our analysis of the quadratic coef-

ficient in Appendix A shows that in any parameter regime where the surface water

diffusion rate Dh is sufficiently large compared to the infiltration rate α, the quadratic

coefficient takes values consistent with standard sequence.

We believe that Dh ≫ α is an appropriate limit for the R02 model. We have treated

the parameters Dh > 1, α > 0 and infiltration feedback strength 0 < f < 1 as essentially

unconstrained in this study. Our analysis shows, however, that the Turing point calcu-

lation is invariant to fixed values of the ratio α/Dh (see Appendix A.2), and that Turing

bifurcations only occur for α/Dh sufficiently small. This can be seen in Figures 2.12-

2.15, where Turing bifurcations only occur for α sufficiently small with Dh = 103, and

for Dh sufficiently large with α = 0.4. The amount of separation between α and Dh

that is required for Turing points to occur depends on f , which can also be seen in

Figures 2.12-2.15. For values of f greater than 0.6, holding other parameters fixed at

default values, α and Dh must be separated by at least two orders of magnitude for

Turing points to occur. For any value of f ∈ (0, 1), not much additional separation

between α and Dh is required for the quadratic coefficient a to take opposite signs at

the Turing points and for the standard sequence to occur.



65

Moreover, the limit where Dh ≫ α is ecologically relevant. For all soil types, we ex-

pect Dh to be large, because it represents the ratio of surface water diffusion to biomass

dispersal, which occur at quite different scales. Additionally, a global study of the fac-

tors associated with the existence of vegetation patterns by Deblauwe et al. [6] finds

that patterns favor environments with non-sandy soils, where relatively small rates of

infiltration allow for substantial water redistribution via surface runoff. For such non-

sandy soils, Rietkerk et al. [37] estimate an infiltration rate and surface diffusion rate

that results in α/Dh ≈ 5 × 10−4. Holding the other model parameters fixed at their de-

fault values, this corresponds to the standard sequence for 99% of the range of f over

which patterns are present.

Although vegetation patterns tend to occur in non-sandy soils, a notable exception

is the fairy circle phenomenon in Namibia. These patterns occur in a sandy soil en-

vironment marked by a high infiltration rate [55]. In empirical comparisons between

clayey soils and sandy soils, infiltration rates differ only by a factor of approximately

10-20 [56]. In the Namibian system specifically, estimates for the infiltration rate pa-

rameter used in the model by Gilad et al. [28, 34, 47] are at most one order of magnitude

larger than those in the non-sandy R02 system1 [57]. Given similar surface water diffu-

sion rates to R02, this results in the standard sequence over about 95% of the range of

f for which patterns are present in the R02 model (α/Dh ≈ 5 × 10−3).

1Getzin et al. [57] estimate a nondimensional infiltration rate for the model by Gilad et al. [28, 34, 47]
as αGetzin ≡ A/M = 6, where A is a dimensioned infiltration rate and M is a mortality rate. The
nondimensional infiltration and mortality rates for R02 are given by Zelnik et al. [34] as αR02 ≡
A/(cgmax), µR02 ≡ M/(cgmax), where 1/(cgmax) sets the time scale of the nondimensional system.
Therefore, αR02 = αGetzinµR02 < αGetzin.
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We conclude that the standard sequence prediction appears robust to parameter

variation in the R02 model. This conclusion is based on evidence that the quadratic

coefficient serves as a proxy for the standard sequence, along with our finding that the

coefficient takes on values consistent with the standard sequence in the ecologically

relevant region of the parameter space.



67

CHAPTER 3

An empirical investigation of vegetation band dynamics in the Horn

of Africa

Bands of vegetation separated by stretches of bare ground arrayed along gradually-

sloping terrain have been reported at multiple sites in Africa, North America, and

Australia [58]. Vegetation bands often occur on land used for pastoral farming [42, 59,

60] and can serve as crucial buffers against land degradation [61, 62]. Many model

investigations have focused on the dynamics and resilience of vegetation in response

to changes in environmental conditions [16]. Evidence for these predictions has been

limited by an irregular record of remotely-sensed observations from the pre-Landsat-

era.

In this chapter, we investigate the dynamics and resilience of vegetation bands in

two distinct regions of Somalia. We collected and precisely aligned digital scans of

British Royal Air Force (R.A.F.) aerial survey photography taken in 1952, reconnais-

sance photography taken in 1967, and multispectral satellite imagery taken in the last

decade. Among our study areas are locations that remain relatively pristine, and also

locations that experienced a dramatic increase in human pressure. Both regions have

experienced multi-year fluctuations in rainfall and a warming trend over the last half-

century. The aim of this study is to assess the nature of measurable change in veg-

etation banding on a multi-decadal timescale via a systematic visual comparison of

imagery. We also identify band properties for which changes can be readily observed
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in remotely-sensed imagery. Our approach relies on transect-based measurements and

comparative Fourier analysis of the bands.

3.1. Vegetation bands on gradual slopes

Spatially periodic bands of vegetation are widespread in the drylands of Africa,

North America, and Australia [58] (see Figure 3.1 for examples). Due to large scale of

the phenomenon, vegetation banding was not recognized until the systematic use of

aerial survey photography in the 1940s [7, 63]. In general, vegetation bands typically

occur in areas of low topographic relief, with slopes of less than one meter of vertical

change per 200 meters of horizontal change [61]. They reliably orient perpendicularly

to the local elevation gradient, to the extent that they can be used to infer the flow of

surface water and to identify water catchment basins [7].

Vegetation bands are thought to arise due to redistribution of water via surface

flow. Plant roots may increase the permeability of soils, reducing infiltration rates of

surface water runoff following significant rainfall events, thus reinforcing the growth

of vegetation. This infiltration feedback is relevant in many areas investigated by field-

work [58, 64–67]. Compacted clay soils and microbial soil crusts strongly inhibit infil-

tration in unvegetated areas, making the effect of plant roots on local water availability

significant. Additionally, it is proposed that plant growth facilitation via local shading

and laterally-extended plant root systems which gather water over large areas can lead

to vegetation banding [28, 47].
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Figure 3.1. Global distribution of vegetation bands with example imagery.
Points represent banded locations identified by Deblauwe et al. [6]. (A)
Sierra del Diablo, Mexico (27.93° N, 103.35° W, 5/11/2016). (B) Mopti Re-
gion, Mali (14.64° N, 1.56° W, 3/6/2016). (C) Muglad, Sudan (11.27° N,
28.23° E, 3/20/2016). (D) Gode, Ethiopia (5.95° N, 43.96° E, 3/19/2016). (E)
MacDonnell Range, Australia (23.39° S, 133.86° E, 3/20/2016). Figure cour-
tesy of Jake Ramthun.

Vegetation bands are typically composed of a mixture of grasses, shrubs, and trees

[58], and display a characteristic plant composition structure that varies along the di-

rection of slope [66, 68] (Figure 3.2). Since most of the water each band receives after

a rainfall event arrives due to runoff from upslope, the upslope edge of the band is
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Figure 3.2. Schematic cross-section of a vegetation band, adapted from [68].

nourished preferentially, and can support fast-growing grasses which colonize the sur-

rounding bare area. These grasses create conditions beneficial for further plant growth,

supporting the growth of woody, long-lived vegetation in the heart of the band. The

downslope edges of bands receive relatively less water, and experience a higher rate

of plant mortality than other parts of the band. Thus, the spatial structure of the band

results from a dynamic ecological process, which over long time periods can cause the

bands to migrate uphill. This movement was first hypothesized and estimated in field

work conducted in the 1950s [64], and only recently confirmed via analysis of satellite

imagery [69].

3.2. Model predictions from previous studies

Modeling efforts since the late 1990s have focused on mathematizing these mecha-

nisms through partial differential equation approaches [9, 28, 37, 70]. Such models are

able to qualitatively reproduce the appearance of the bands, as well as the slow up-

hill migration of bands estimated in early fieldwork [64]. One such model [28, 34, 47]

that incorporates some of the mechanisms described in Section 3.1 can be written in
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nondimensional form as

∂h

∂t
= p︸︷︷︸

precip.

− α
n + qf

n + q
h︸ ︷︷ ︸

infil.

+ Dh∇2(h2) + 2Dh∇h · ∇ζ + 2Dhh∇2ζ︸ ︷︷ ︸
surface water transport

,

∂w

∂t
= α

n + qf

n + q
h︸ ︷︷ ︸

infil.

− νw︸︷︷︸
evap.

+ νρnw︸ ︷︷ ︸
shading

− γ(1 + ηn)2wn︸ ︷︷ ︸
transp.

+ Dw∇2w︸ ︷︷ ︸
diffusion

,

∂n

∂t
= νwn(1 − n)(1 + ηn)2︸ ︷︷ ︸

growth

− n︸︷︷︸
mort.

+ Dn∇2n︸ ︷︷ ︸
dispersal

.

(3.1)

The variable h represents a surface water height field, w a soil water field, and n a plant

biomass field. Surface water transport terms derived from a shallow-water approxima-

tion describe the flow of thin sheet of water on a surface ζ(x, y). These terms can be

written in conservation form as 2Dh∇ · J, where J = h∇(h + ζ), so that the speed of

flow is proportional to h + ζ . In the case of an idealized planar elevation surface, e.g.,

ζ = vx, this model can generate periodic vegetation bands that migrate in the positive

x direction over time. Often in this topographic scenario, the dynamics of models such

as (3.1) are simulated and analyzed in one spatial dimension only.

Many model investigations have focused on the dynamics and resilience of vege-

tation in response to changes in aridity or rainfall conditions [16]. As aridity increases,

banded vegetation is predicted to increase in wavelength [21, 35, 36, 71, 72], to undergo

abrupt shifts in migration speed [73, 74], and to become susceptible to break-up that

results in a spotted state [75]. Rainfall fluctuations are predicted to affect migration

speed and the widths of bands [72, 73]. Grazing pressure, commonly viewed inter-

changeably with human impact, has been modeled as an increase to the plant mor-

tality rate [21, 76], and by disturbances to the state of vegetation. Such disturbances
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can cause an increase in band wavelength [34] or band break-up [47]. In many of these

investigations, the simulated dynamics of environmental change and the resulting eco-

logical shifts play out over the equivalent of decades to centuries.

Evidence for predictions related to the dynamics and resilience of vegetation bands

has been limited by an irregular record of remotely-sensed observations from the pre-

Landsat-era. Wu et al. used aerial survey photography of tiger bush banding in Niger

over three decades to observe vegetation fragmentation [77], a phenomenon that ap-

pears related to decreases in band width and break-up. Valentin & d’Herbès used

similar imagery over Niger to observe that the widths of bands fluctuated in response

to rainfall history over four decades [61]. Deblauwe et al. used declassified recon-

naissance imagery to measure appreciable band migration over four decades in Texas,

USA, and the Haud region of Somalia. They also observed band width fluctuation in

response to rainfall variation in Texas [69]. Additional studies of dryland vegetation

patterning on flat terrain found that the vegetation transitioned between qualitatively

distinct states during a period of significant drought [42], and that human pressure

hastened this type of transition [41].
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3.3. Band dynamics in the Horn of Africa

3.3.1. Regional information

We studied areas within two distinct regions of the Horn of Africa (Figure 3.3), the Sool

Plateau and Haud pastoral regions of Somalia. Both regions are generally character-

ized by an arid climate (aridity index = 0.04-0.1) [78]. Due to a lack of continuous rain-

fall station monitoring in and around our regions of study, we assessed the historical

regional climate using 20th Century Reanalysis [79] and the CPC/Famine Early Warn-

ing System Dekadal Estimates datasets. Mean annual rainfall in both regions ranges

between 100-300 mm. We found no evidence that rainfall conditions have improved in

either region in recent decades, and we identified a warming trend in average yearly

temperature of 1-2 °C over the last half-century. Additional details of our analysis of

climate data are given in Appendix C.1.

Regional soils are claylike and prone to crust formation, resulting in low permeabil-

ity and surface water runoff following high-intensity rainfall [14, 66]. Hemming found

that soils are wetter beneath bands in the Haud, indicating greater soil permeability in

vegetated areas [66]. Vegetation bands in both regions are dominated by Andropogon

kelleri grasses [63, 66]. Bands also contain a mix of trees and shrubs, most notably Aca-

cia bussei. In recent decades, Acacia bussei has diminished in abundance in the Sool

Plateau due to cutting for charcoal production [14]. Disruption of traditional grazing

patterns has resulted in overgrazing in many areas of the Sool Plateau, including Dha-

har (SP4) [14].



74

c

8 ° N 

47.5°E  

HAUD
Qoriley

Karin Dabayl
Weyn

km
20100

Saaxdheer

Dabataag

Kalabaydh

HD1 HD2

HD4
HD3

b

48.5°E  

9.5° N 

SOOL PLATEAU

km
20100

Baraakta Qol

SP2

SP3

SP5

Dhahar

SP1 SP4

a

 46°E  

 

 

 

ETHIOPIA

E47°E  48°E  49°E  50°
7° N 

8° N 

9° N 

 10° N 

SOMALIA

Las Anod

Gardo
SOOL

PLATEAU

HAUD
Garowe

km
100500

NUGAAL VALLEY

Figure 3.3. Areas studied in this investigation are defined by nine distinct
aerial survey photographs taken in 1952. (a) Study areas are clustered in
two regions of Somalia separated by the Nugaal Valley. (b) SP1–SP5 are
located in the Sool Plateau pastoral region of Somalia. (c) HD1–HD4 are
located in the Haud pastoral region of Somalia. Each photograph covers
an approximate area of 50 km2. Elevation is shown as shaded relief, and
nearby settlements are labeled.

3.3.2. Imagery and elevation data

We studied approximately 260 km2 of imagery within the Sool Plateau and 200 km2 of

imagery within the Haud. Study areas were chosen based on a combination of factors;

in particular, we wished to include areas with different development and degrada-

tion outcomes, areas with recorded soil and floristic information based on field stud-

ies, areas in geographically distinct regions, and areas featuring well-defined banding.

Study area boundaries are defined by our choice of British Royal Air Force (R.A.F.)

aerial survey photography, which comprise our earliest image datasets. Aerial survey

photographs were taken in 1951–52 over broad areas of British Somaliland, and spe-

cific photographs were scanned on request by the Bodleian Library at the University

of Oxford. We also studied declassified reconnaissance satellite imagery taken in 1967,

and DigitalGlobe imagery for dates spanning 2004–2016. Resolution of imagery used
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in this study ranges between 1.4–2.4 m/pixel. Satellite images taken between 2004–

2016 containing red and near-infrared channels were used to compute a Soil-adjusted

Vegetation Index (SAVI) [80]. We manually georeferenced R.A.F. scans and the 1967 re-

connaissance image using visually identified control points. We estimated alignment

error to be approximately 1–2 pixels. Additional information about data sources is

given in Table C.1, and georeferencing analysis and information about calculation of

SAVI are given in Appendix C.2.1.

We estimated local gradient within our study areas using the Shuttle Radar Topog-

raphy Mission Global 1 arc second elevation dataset [81]. Because of the noise charac-

teristics of the dataset and the low relief of our study areas, we used a second-order

finite difference operator with noise-suppressing properties to estimate gradient and

slope [82]. Additional information about calculation of slope and a methodological

analysis are given in Appendix C.2.2.

3.3.3. Human pressure and band degradation

We assessed changes in human activity and vegetation banding over time through a

systematic visual comparison of R.A.F. photography and recent satellite imagery. We

developed a graphical user interface in MATLAB for comparing images. For each area,

we split both R.A.F. scans and recent imagery into 1 km × 1 km boxes, and evaluated

qualitative features within these boxes. Roads and dirt tracks can be visually identi-

fied in both the aerial photographs and the satellite imagery, and their presence and

qualitative appearance served as our primary proxy for inferring the extent of human

pressure. Vegetation in both the aerial photos and satellite imagery contrasts sharply



76

m
5000

vegetation
band loss

roads and
 development

SP1

SP2

SP3

SP4

SP5

HD1

HD2

HD3

HD4

a b

no 
banding

no 

banding

indistinct
banding

distinct
banding

indist
inct

banding
dist

inct

banding
ca.
1952

ca.
2015

no/faint 
road(s)

no/fa
int

road(s)

clear 
road(s)

clear

road(s) dense

roadsca.
1952

ca.
2015

roads and
 development

vegetation
band loss

transition keys

c

d

m
2000

Dhahar

Figure 3.4. Band loss occurs in areas with substantial increases in human
activity. Transitions between the qualitative state of road and track cover ob-
served in aerial photography and recent satellite imagery are shown here for
all study areas. (a) SP1–SP4 in the Sool Plateau show a high degree of road
and track development, and a moderate to high degree of band loss. A large
settlement (Dhahar) developed within SP4, and is indicated with a black
border. SP5 saw little increase in road cover, and no band loss or degrada-
tion was observed. (b) Areas in the Haud (HD1–HD4) show only a small
increase of road and track development, and no substantial band loss or
degradation is observed. (c) An example of band loss and degradation due
to land development in SP4 (9.76° N, 48.82° E, 02/22/1952, 08/16/2016).
(d) An example of band degradation amid dense track cover in SP3 (9.58°
N, 48.57° E, 11/29/1952, 12/03/2011). Satellite images courtesy of the Dig-
italGlobe Foundation.

with the light background of bare soil, and bands are clearly identifiable. We defined

degradation in this context as either the breakdown in regularity or the disappearance

of banding. A detailed description of this procedure is given in Appendix C.3.1.

Substantial road and track development occurred in much of the Sool Plateau, with

most areas (SP1–SP4) transitioning from having either no roads or faint roads in 1952
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to having roads or tracks that densely cover the landscape in the modern images (Fig-

ure 3.4a). The settlement Dhahar was founded within SP4 after the 1952 photograph,

and now supports a population of approximately 13,000 (Figure 3.4c). We observed

much less road and track development in SP5 and in the Haud (HD1–HD4) (Fig-

ure 3.4b). At many sites within the Haud, human-made structures visible in the 1952

images appear to persist into the current decade, suggesting no major change in land

use over the intervening time (Appendix C.3.2, Figure C.5a,b).

Band degradation is prevalent in the human-impacted areas SP1–SP4 (Figure 3.4a).

Bands have disappeared entirely from the landscape in large parts of SP3 and SP4.

Only part of the band loss in these areas appears directly related to clearing for land

development, since loss also occurs in areas without human-made structures. Where

faint remnants of bands are visible in SP4, degradation appears to have occurred with-

out a visible change in band wavelength (Appendix C.3.2, Figure C.5c). In SP2–SP4,

dense tracks often appear between bands (Figure 3.4d). Frequently we observed veg-

etation growing within roads and tracks, which suggests that these structures likely

disrupt the flow of water on the landscape. In SP5 and HD1–HD4, individual bands

often remain identifiable after six decades based on visible details of their morphology,

and we observed no substantial band degradation.

3.3.4. Band wavelength

Models predict that band wavelength should increase in response to sufficient in-

creases in environmental pressure [21, 35, 36, 71]. We measured changes in band wave-

length using the Fourier window method by Penny et al. [83]. The method measures
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band wavelength and orientation in a sliding window using a 2D FFT, and computes a

uniqueness metric based on the unimodality of the power spectrum. We discard data

points which correspond to sites without banding using a manually-drawn mask. We

additionally discard data points with uniqueness values below a threshold.

In areas where bands have not degraded from the landscape, we found that changes

in wavelength are imperceptible. We defined wavelength change as W2/W1 − 1, where

W1 and W2 are wavelengths measured in the 1952 R.A.F. photographs and recent satel-

lite images, respectively. Typical change ranges between 0–10% for all study areas

except SP3 and SP4, where change ranges between 0–20%. We visually inspected sites

with > 25% measured wavelength change. In some cases, it appears that these detected

changes occur due to the loss of an individual band, often near evidence of human ac-

tivity (Appendix C.4.2, Figure C.7). In most cases, however, we saw no clear reason

for a detected wavelength change, and attributed these false detections to wavelength

measurement error.

Band wavelength is predicted by models to vary with local slope, though the nature

of this relationship can be parameter and history-dependent [33, 84]. We found signif-

icant a negative correlation between wavelength and slope at SP3 only (Table 3.1). The

sign of this correlation agrees with empirical findings in other studies [42, 69, 83].

3.3.5. Band widening in human-impacted areas

During the course of visual comparison, we noted that bands in some areas appear to

widen over time in the direction of local slope, and that they appear to migrate up-

hill. We quantified band width change and band migration in all study areas using
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Area Slope (%) Wavelength (m) corr(S, W1) (p, t, df)
S W1 W2

SP1 0.3–0.4 130–170 130–190 -0.15 (0.29, 1.3, 51)
SP2 0.1–0.3 130–170 140–170 0.02 (0.89, 0.0, 83)
SP3 0.1–0.3 120–150 140–180 -0.34 (0.04, 4.5, 35)
SP4 0.1–0.2 130–160 150–180 0.08 (0.53, 0.4, 67)
SP5 0.2–0.4 120–140 120–140 -0.23 (0.06, 3.7, 63)

HD1 0.4–0.6 80–100 80–120 -0.25 (0.33, 1.0, 16)
HD2 0.3–0.5 90–110 90–120 -0.19 (0.20, 1.7, 45)
HD3 0.3–0.5 80–100 80–110 -0.14 (0.17, 1.9, 94)
HD4 0.4–0.5 100–120 100–120 0.08 (0.58, 0.3, 47)

Table 3.1. Band wavelength measured using the Fourier window method
by Penny et al. [83]. Ranges shown are the 25th and 75th percentiles. Wave-
lengths W1 were measured in the 1952 aerial photography datasets, and W2
were measured in recent satellite imagery datasets. Significance of correla-
tions was assessed using a t-test corrected for spatial autocorrelation [85],
and p values, t values, and degrees of freedom are given. Analysis details
are given in Appendix C.4.

automated transect measurements of individual bands. We gathered grayscale image

intensity profiles along transects through the bands in the direction of slope. We used

the same transects for multiple images at the same study area. We then fit a simple

plateau function to each intensity profile to extract band width, as well as the posi-

tions of band edges which were used to measure band migration. Intensity profiles

were measured along multiple parallel transects, and data points with high variance

in measured widths were discarded. A detailed description of this methodology is

given Appendix C.5.1.

We found that bands have widened appreciably since 1952 in the human-impacted

areas SP1–SP4, while band widths remained approximately constant at the other study

areas (Figure 3.5). We computed the ratio of band widths measured in recent imagery
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Area Slope (%) Width ratio Migration (m/yr) corr(S, R) (p) corr(S,Mc) (p) corr(S,Mr) (p)
S R Mc Mr

SP1 0.3–0.4 0.95–1.5 0.26–0.68 0.12–0.48 -0.21 (< 0.005) -0.19 (0.01) 0.01 (0.91)
SP2 0.1–0.3 1.3–2.2 0.57–1.2 0.20–0.55 -0.12 (< 0.005) -0.1 (0.01) 0.03 (0.43)
SP3 0.1–0.3 1.0–1.7 0.23–0.79 0.08–0.51 -0.1 (0.13) -0.09 (0.16) -0.05 (0.47)
SP4 0.1–0.2 1.2–1.9 0.33–0.93 0.08–0.41 -0.12 (0.14) -0.12 (0.17) 0.00 (0.97)
SP5 0.2–0.4 0.74–1.1 0.17–0.38 0.20–0.43 -0.13 (0.01) -0.14 (< 0.005) -0.06 (0.21)

HD1 0.4–0.6 0.93–1.4 0.22–0.55 0.07–0.39 -0.13 (0.16) -0.32 (< 0.005) -0.24 (0.01)
HD2 0.3–0.5 0.85–1.2 0.25–0.47 0.21–0.46 0.12 (0.06) -0.06 (0.31) -0.16 (< 0.005)
HD3 0.3–0.5 0.87–1.2 0.26–0.48 0.22–0.46 0.03 (0.65) -0.14 (0.01) -0.18 (< 0.005)
HD4 0.4–0.5 0.85–1.2 0.19–0.41 0.15–0.39 -0.07 (0.18) -0.14 (0.01) -0.16 (0.01)

Table 3.2. Typical slopes, width ratios and band migration rates in each
study area. Ranges shown are the 25th and 75th percentiles. The width ra-
tios (R) and upslope colonization and retreat rates, Mc and Mr respectively,
were measured between 1952 and c. 2010. Significance of correlations was
assessed using a one-tailed t-test corrected for spatial autocorrelation [85],
and p values are given.

to the widths in 1952. The median ratio exceeded 1.2 at the human-impacted areas SP1–

SP4 (Figure 3.5a). The most substantial widening occurs at SP2, where the median ratio

is 1.8. We measured band widths at SP2 using additional images taken in 1967, 2004,

2006, 2011, and 2013. We found that widths did not change between 1952 and 1967,

and then nearly doubled between 1967 and 2004 (Figure 3.5b,c). From 2004 onward,

band width held approximately constant. Similar analyses over multiple time points at

SP1, SP3, and SP4 showed a similar pattern (Appendix C.5.2, Figure C.9). Since recent

images were taken in a variety of seasonal and rainfall history conditions, we conclude

that the widening observed in SP1–SP4 is not an artifact of seasonality.

Vegetation bands in Africa and North America are reported to migrate uphill over

time due to vegetation colonization at the upslope edge of the band and mortality-

driven retreat at the downslope edge [58, 69]. In all our study areas, we similarly

observed that bands gradually migrate uphill over six decades (Table 3.2). In addition,
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Figure 3.5. Bands widen appreciably in the direction of slope in the most
heavily human-impacted areas, SP1–SP4. (a) The ratio of widths measured
in a recent image to widths measured in a 1952 photograph are shown for all
study areas. (b) The band widths measured in SP2 are shown at six points
in time. Widths change little between 1952 and 1967, and nearly double
between 1967 and 2004. (c) An example of band widening in SP2 (9.73° N,
48.55° E). Satellite images courtesy of the DigitalGlobe Foundation.

we found that bands widen at SP1–SP4 due to increased uphill migration rates at the

upslope edges of the bands (colonization rate) and to decreased rates at the downs-

lope edges (retreat rate) (Figure 3.6). Between 1952 and 1967, both colonization and

retreat rates are comparable in all Sool Plateau study areas, resulting in band widths

that remain unchanged over this period. Between 1967 and c. 2010, colonization rates

increase and retreat rates decrease in SP1–SP4, resulting in band widening. In con-

trast, colonization and retreat rates both decrease in SP5 by the same factor during this

period, resulting in slower migration and no widening in this study area.
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We found evidence that migration rates and band width ratios vary inversely with

local slopes, which are typically shallow and range between 0.1–0.6% (Table 3.2). Col-

onization rates are negatively correlated with slope in a majority of study areas (p ≤

0.01), including the areas in the Sool Plateau where width ratios are also negatively

correlated with slope (p ≤ 0.01). Retreat rates are only negatively correlated with slope

in the Haud study areas (p ≤ 0.01). Since widening in SP1–SP4 occurred due to in-

creased colonization rates, this suggests that bands tend to widen to a greater degree

on shallower slopes due to faster rates of colonization. An inverse relationship between

slope and migration rate seems to contradict previous investigations of a mathematical

model for vegetation banding, which indicate either a negligible [84] or an increasing

relationship [86]. Moreover, a positive relationship between migration and slope is ex-

pected in the limit of vanishing slope, since the migration rate must approach zero as

the anisotropy induced by the slope vanishes. The bands in regions of study may rely

critically on the slopes being above some threshold, yet not too steep, and this could

explain why we do not observe positive relationships between slope and migration.

3.3.6. Model simulations of band widening

In the previous section, we describe a widespread and persistent increase in band

width at the human-impacted areas SP1–SP4. In earlier studies of Niger and Texas,

USA, researchers observed sizable fluctuations in band width on sub-decadal time

scales in response to rainfall variation, with favorable rainfall conditions resulting

in wider bands [61, 69]. In the Sool Plateau, we did not observe appreciable band
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Figure 3.6. Bands widen in areas SP1–SP4 due to increased upslope edge
migration (colonization) and decreased downslope edge migration (retreat).
(a) Example image intensity profiles along a transect in SP2. Profiles along
multiple parallel transects are shown in color, and the mean profile is shown
in black. The estimated band edges are indicated in red. (b) Bivariate distri-
bution of front and back migration rates shown for the periods 1952-1967
(first column) and 1967-c. 2010 (second column), with study areas SP1-
SP4 (first row) compared in aggregate with SP5 alone (second row). Band
widening in SP1–SP4 results from front migration rates increasing and back
migration rates decreasing during the period 1967-c. 2010.

width fluctuations in response to multi-year rainfall variation, nor did we find ev-

idence that rainfall conditions have become more favorable in the region over time

(Appendix C.1). The fact that widening is localized to Sool Plateau areas SP1–SP4, that

it occurs to different degrees in each of these areas, and that it is not observed at nearby

area SP5 strongly suggests that non-climatic factors have driven the apparent changes.

We performed a sensitivity analysis of the PDE vegetation model by Klausmeier [9]

(K99) to examine how changes in band width can be achieved through factors other
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than rainfall. In dimensional form, the model is written as

(3.2)

∂W

∂T
= A︸︷︷︸

precip.

− LW︸ ︷︷ ︸
evap.

− RWN2︸ ︷︷ ︸
transp.

+ V
∂W

∂X︸ ︷︷ ︸
advec.

,

∂N

∂T
= −MN︸ ︷︷ ︸

mort.

+ JRWN2︸ ︷︷ ︸
growth

+ DN
∂2N

∂X2︸ ︷︷ ︸
dispersal

.

The variable N represents vegetation density and W represents ground water density.

The spatial terms are in one spatial dimension, and ∂W/∂X models the downhill move-

ment of water due to runoff and subsurface flow. Descriptions, units, and values of the

parameters used are given in Table 3.3. The baseline parameter set we use for K99 is

based on the values given in [9]. Since bands in our regions of study are composed

of a mix of grasses and shrubs, parameters which are stated in [9] to differ between

grasses and trees (M , J , and R) are set at intermediate values so that the spatial scale

of banding resembles the scales in our regions of study. Water flow rate V was also

approximately tuned so that a comparable time scale of migration is reproduced in the

simulations to that of our regions of study. We set the mean annual rainfall parameter

to 150 mm, which is within the range of typical rainfall levels in our regions of study.

We simulated K99 using the exponential time differencing Runge-Kutta 4 pseudospec-

tral scheme [50, 51], with 2048 grid points, a 1000 m domain, and a time step of 0.1

years.

Acacia cutting for charcoal production has been prevalent in the Sool Plateau since

at least the 1980s [14], and has likely caused a decrease in woody biomass within the

vegetation bands in many areas. A shift in composition from woody to grass biomass
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Parameter Units Description Value

A mm H2O yr−1 mean annual rainfall 150
L yr−1 evaporation rate 4
J kg m−2 (mm H2O)−1 biomass yield per unit H2O 0.0025
M yr−1 mortality rate 0.75
R mm H2O yr−1 (kg dry mass)−2 transpiration rate 50

DN m2 yr−1 plant dispersal rate 1
V yr−1 water flow speed 35

Table 3.3. Baseline parameter set used for sensitivity analysis of K99.

plausibly increases the effective transpiration rate, biomass yield per unit water, dis-

persal rate, and mortality rate of the vegetation. We found that individually increasing

transpiration, yield, and dispersal rates resulted in band widening, while increasing

mortality rate had the opposite effect (Figure 3.7). We found that band widening can

be achieved through a simultaneous increase in transpiration rate, biomass yield per

unit water, dispersal rate, and mortality rate parameters (Appendix C.6, Figure C.10),

and conclude that a shift in species composition is a viable explanation for the changes

we have observed in the Sool Plateau.

3.3.7. Summary and discussion

In many areas, remarkably little about the vegetation bands has changed. We found no

evidence of systematic changes in wavelength despite apparent increases in environ-

mental pressure in the region over the last 65 years (Appendix C.1). Moreover, individ-

ual bands remained largely identifiable between images over time, which allowed us

to observe modest uphill migration. Our findings suggest that large-wavelength (∼150
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Figure 3.7. Simulations of the model by Klausmeier [9, 87] show that in-
creases in band width can be achieved through parameter increases in plant
dispersal rate, transpiration rate, and biomass yield per unit water. Widen-
ing occurs continuously on sub-decadal time scale. (a) A comparison of
equilibrium band profiles, simulated first using an initial parameter set, and
then simulated after applying perturbations to individual parameters. (b)
Width ratio computed between perturbed and initial band profiles, plotted
as a function of time.

m) bands should migrate appreciably (∼5 m) over the span of a decade. Given suffi-

ciently accurate image alignment, migration of this magnitude should be detectable

in current high-resolution satellite imagery, and may in principle be brought to bear

on relevant model predictions [21, 74]. Additionally our findings suggest a counter-

intuitive relationship between migration and slope, one that may be stronger than the

relationship between wavelength and slope. Further theoretical and empirical inves-

tigation of this relationship may shed light on the connection between topography,

hydrology, and the emergent scales of vegetation banding.
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In other areas, the most profound changes in vegetation banding are associated

with increases in human pressure. This mirrors the findings of previous empirical

studies [41, 42, 77], and underscores the importance of human impacts to the resilience

of dryland vegetation. Apart from land clearing for development, we observed wide-

spread degradation in areas with few human-made structures, suggesting more subtle

but important forms of impact. Roads and dirt tracks now densely cover the land-

scapes of many of the study areas, and have likely affected the flow and availability

of water to the vegetation bands [88]. Biomass harvesting, here in the form of Acacia

cutting for charcoal production [14], has no doubt also played a role in the degradation

we observed. Both changes in road cover and vegetation harvesting can potentially be

monitored remotely, and such monitoring efforts should be well-informed by theoret-

ical investigations that account for these and other forms of human impact.

Band wavelength has been a prime focus of theoretical and empirical investiga-

tions of vegetation pattern resilience. The dependence of wavelength on model pa-

rameters can often be studied analytically, and it is conceived that wavelengths are

easily measured in remotely-sensed imagery. However, as we and others [83] have

found, the spacing between bands is often quite irregular, making imprecise both the

notion of wavelength and its measurement. Moreover, because a range of band wave-

lengths may be stable over a range of environmental conditions, wavelength changes

in model scenarios of environmental change are history-dependent and discontinu-

ous [21, 35, 36, 72]. These shortcomings make wavelength changes a poor signal of

ecosystem regime shift, and explain the dearth of evidence for such changes in this

and other studies.
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We have provided new evidence that vegetation band widths change on observ-

able time scales, and we argue that they represent an underutilized window into the

response of dryland vegetation to climatic and human pressure. Our model investi-

gation suggests that band widths change continuously in response to parameter vari-

ation, and that these changes should be observable on sub-decadal time scales (Fig-

ure 3.7b). Band width is straightforward to measure in remotely-sensed imagery, and

comparisons over time need not depend sensitively on the quality of image alignment.

Future theoretical investigation of this pattern property will be important to establish-

ing its utility to dryland vegetation monitoring.
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CHAPTER 4

Discussion & outlook

Much remains unknown about periodic dryland vegetation patterns. Although

mathematical models can qualitatively reproduce the appearance of the patterns, the

empirical study in this thesis has brought forward some apparent contradictions with

model predictions. In particular, in Chapter 3, we found that the local wavelength

of vegetation bands in Somalia is seldom correlated with local slope, while models

can predict increasing [33, 84] or decreasing [33] relationships between these quanti-

ties. Also we found that the migration rates of bands in Somalia are often inversely

correlated with slope, while models indicate either a negligible [84] or an increasing

relationship [86]. These findings underscore the importance of quantitative character-

ization of dryland vegetation patterning. It is possible that our observations could be

reconciled with the models through alternative approaches for determining theoretical

relationships between slope and wavelength or migration rate. For instance, Sher-

ratt [33] found slope-wavelength relationship to be negative in the model by Klaus-

meier [9] in the scenario where vegetation bands arise due to colonization of bare soil,

and positive when bands emerge from uniform vegetation. It is also possible that im-

portant, relevant processes are not represented in the models (e.g., the downhill flow
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of plant litter), or are not represented with the necessary realism (e.g., microtopogra-

phy). Refinement and iteration of the models through comparison with quantitative

observations will likely lead to a fuller understanding of patterned dryland vegetation.

The models discussed in this thesis are not ideal tools for many types of explo-

ration. In Chapter 3, we considered a shift in plant species composition of vegetation

bands from woody to grassy vegetation through changes in aggregate biomass param-

eters. In reality, plant types are distributed along the bands inhomogeneously, with

more grasses at the colonizing upslope edges of the bands, and more woody vegeta-

tion in the mid-band and downslope edges [66, 68]. Models that explicitly account

for different plant functional types may provide more nuanced (or even qualitatively

different) predictions that can be compared with our observations (see Gilad et al. [89]

for a modified model in this direction). Hybrid modeling approaches, which repre-

sent water fields as continuums and biomass through discrete agents (see Vincenot et

al. [90]), could also provide a platform for testing scenarios with multiple plant func-

tional types. Hybrid models may also facilitate direct comparisons between field ob-

servations and simulations, since micro-scale details of field sites such as the spatial

positions of individual plants can be incorporated.

Periodic vegetation patterning has been observed on five continents. Cloud-based

resources such as Google Earth Engine will make global-scale studies of vegetation

patterning more feasible. Already this resource has been used to map global forest

change [91], and to create more accurate inventories of trees in drylands [92]. Google

Earth Engine contains a vast store of satellite imagery as well as global elevation data,
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Figure 4.1. Projected changes in the global extent and classification of dry-
lands by the end of the century. Taken from [13].

making it well-suited to investigate the role of topography on the morphology and spa-

tial scale of vegetation patterning. How flat are the terrains on which gap, labyrinth,

and spot patterns occur? What range of slopes supports vegetation bands, and are

there relationships between slope and wavelengths of bands when comparing differ-

ent parts of the world? These questions may be answered by porting established tools

(e.g., Fourier analysis of vegetation bands [83]) to the rich computational environment

of Google Earth Engine.

Global drylands are projected to expand and intensify in many parts of the world

by the end of the century [13] (Figure 4.1), and such changes are likely to disproportion-

ately impact the poor, who depend strongly on their environments for subsistence [1].

In Chapter 3, we found evidence that human activity exacerbates the degradation of
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vegetation in the Sool Plateau. This highlights a potential feedback between climate

change and human activity: severe droughts devastated livestock populations in the

region, causing human populations to take up destructive biomass harvesting for sub-

sistence [14]. The vegetation loss induced by this harvesting may eventually contribute

to increased regional aridity [17]. The integrity of dryland vegetation is of key impor-

tance to the capacity of drylands to support life. Efforts to monitor vegetation and

anticipate when human activity is destructive may lead to conservation and relief that

can mitigate the effects of a changing climate.
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APPENDIX A

Quadratic coefficient analysis of model by Rietkerk et al.

A.1. Quadratic coefficient calculation

In this appendix, we summarize the calculation of the quadratic coefficient, a, of

the amplitude equations (2.6) for the Rietkerk et al. [37] model (R02). We do so in a

manner that illustrates the role played by the nonlinear functions in R02.

We expand R02 (2.13) to quadratic order about the uniform vegetated steady state

(h0, w0, n0), which is a function of precipitation p given by (2.14). We take H = h −

h0, W = w − w0, N = n − n0:

∂

∂t


H

W

N

 = L


H

W

N

+


−I2(H, N)

I2(H, N) − γG2(W, N)

G2(W, N)

+ ....(A.1)

The linear operator L is

L =


−I(n0) + Dh∇2 0 −I ′(n0)h0

I(n0) −ν − γG′(w0)n0 + Dw∇2 I ′(n0)h0 − γµ

0 G′(w0)n0 ∇2

 ,(A.2)
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the quadratic order terms I2(H, N) and G2(W, N) are

I2(H, N) = I ′(n0)HN + 1
2

I ′′(n0)h0N
2,(A.3)

G2(W, N) = G′(w0)WN + 1
2

G′′(w0)n0W
2,(A.4)

and the ellipsis denotes terms of cubic order in (H, W, N). The linear stability of the

uniform vegetated state to spatially periodic perturbations with wave number q is de-

termined by substituting (H, W, N)T = ξeiqxeσt into equation (A.1) linearized about

H = W = N = 0. This gives the eigenvalue problem σξ = J(q2, p)ξ, where J(q2, p) is

the Jacobian matrix

J(q2, p) =


−I(n0) − Dhq2 0 −I ′(n0)h0

I(n0) −ν − γG′(w0)n0 − Dwq2 I ′(n0)h0 − γµ

0 G′(w0)n0 −q2

 .(A.5)

The Jacobian matrix depends explicitly on the wave number q, as well as on the precipi-

tation parameter p through the uniform vegetated steady state (h0, w0, n0). We consider

p to be the bifurcation parameter in this analysis. A Turing point occurs at a parameter

value p = pc and wave number q2 = q2
c > 0 for which the maximum real part of an

eigenvalue is zero, and all other modes are damped. Necessary conditions for a Turing

point (q2
c , pc) are given by

Det(J(q2
c , pc)) = 0,(A.6)

∂Det(J(q2, pc))
∂q2

∣∣∣∣∣
q=qc

= 0.(A.7)
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We follow a standard procedure [45, 46, 93] to obtain the quadratic coefficient a

of the amplitude equations (2.6). We write a small amplitude hexagonal (spots/gaps)

solution to (A.1) near (q2
c , pc) as


H

W

N

 = ϵ (z(t1)f(x) + c.c.)


H1

W1

N1

+ ϵ2U2 + O(ϵ3),(A.8)

where ϵ ≪ 1, t1 = ϵt,

f(x) = eiq1·x + eiq2·x + eiq3·x,

(H1, W1, N1)T is to be determined, and U2 is a higher-order term which must be bounded.

The wave vectors lie on a 2D hexagonal lattice, with q1 = qc(1, 0), q2 = qc(−1/2,
√

3/2),

q3 = −(q1 + q2). Plugging (A.8) into (A.1) gives the O(ϵ) equation

0 = J(q2
c , pc)


H1

W1

N1

 .

Since J(q2
c , pc) has a zero eigenvalue, we take (H1, W1, N1)T to be the associated right

null vector to satisfy this equation. We choose the convention that H2
1 + W 2

1 + N2
1 = 1

and N1 > 0.



107

At O(ϵ2), we have

f(x) ∂z

∂t1


H1

N1

W1

 = LU2 +


−I2(H1, N1)

I2(H1, N1) − γG2(W1, N1)

G2(W1, N1)

 (z(t1)f(x) + c.c.)2 .

The term (z(t1)f(x) + c.c.)2 generates modes with wave vectors of magnitude qc:

(z(t1)f(x) + c.c.)2 = 2z̄2
(
eiq1·x + eiq2·x + eiq3·x

)
+ c.c. + ...

These modes result in secular terms in the solution (A.8). To eliminate these terms, we

apply the Fredholm alternative theorem to obtain the solvability condition ∂z/∂t1 =

az̄2, where

a = I2(N1, H1)
(
W̃1 − H̃1

)
+ G2(N1, W1)

(
Ñ1 − γW̃1

)
,(A.9)

and (H̃1, W̃1, Ñ1) is the left null vector of J(q2
c , pc). We choose the convention H̃1H1 +

W̃1W1 + Ñ1N1 = 2, which eliminates an overall factor of 2 in (A.9).

A.2. Turing point calculation and scaling

In this appendix, we derive approximations for the critical wave number and the

onset parameter value at the upper and lower Turing points, which give scaling re-

lations with respect to the quantity δ ≡ I(n0)/Dh, where I(n) is the R02 infiltration

function, n0 is the uniform vegetated equilibrium biomass, and Dh is the nondimen-

sional surface water diffusion parameter.
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We introduce the abbreviations I0 ≡ I(n0), ĥ0 ≡ I ′(n0)h0, n̂0 ≡ G′(w0)n0, where

(h0, w0, n0) is the uniform vegetated steady state given in (2.14). In the following anal-

ysis, we will treat n̂0 as the bifurcation parameter, which is justified by the following

observations regarding relationships between n̂0, ĥ0, and the precipitation parameter

p:

I. n̂0 is a linear increasing function of p. Specifically, n0 = (p − p0)/γµ where p0 ≡

νµ/(1 − µ), and n̂0 is proportional to n0 by the constant factor G′(w0) = (1 − µ)2

(w0 depends only on the parameter µ).

II. ĥ0 can be expressed as a function of n̂0, since ĥ0 ≡ I ′(n0)h0 = p(n0)I ′(n0)/I(n0).

III. We will show that Turing points are confined to regions of the parameter space

where ĥ0 > γµ (see (A.12)).

IV. ĥ0 is a monotonic decreasing function of n̂0 when ĥ0 > γµ. This follows from

dĥ0

dn̂0
= dn0

dn̂0

dĥ0

dn0
= 1

G′(w0)
dĥ0

dn0
= 1

(1 − µ)2

(
I ′′(n0)h0 + I ′(n0)

dh0

dn0

)
,

and

dh0

dn0
= d

dn0

p(n0)
I(n0)

= p′(n0)
1

I(n0)
− I ′(n0)

p

I(n0)2

= 1
I(n0)

(γµ − I ′(n0)h0) = − ĥ0 − γµ

I(n0)
< 0 for ĥ0 > γµ.

Since I(n) is a concave-down function (i.e. I ′′(n0) < 0), it follows that dĥ0/dn̂0 < 0.

Together, these relationships give a one-to-one correspondence between n̂0, ĥ0, and

precipitation p in the parameter regime relevant for this analysis. We note that if ĥ0 <

γµ at the lower boundary of the domain, n̂0 = 0, it can never exceed γµ, and no Turing
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points exist. For Turing points to exist, it must be the case that ĥ0 > γµ at n̂0 = 0. This

gives a necessary condition for a Turing bifurcation in R02:

ĥ0(0) = νµ(1 − f)
f(1 − µ)

> γµ.(A.10)

This condition explains the asymptotic approach of the degeneracy curves in Fig-

ures 2.12-2.15 to f = ν/(ν + γ(1 − µ)) = 8/9 as α decreases or Dh increases.

We write the Jacobian matrix (A.5) as

J(q2, n̂0) =


−I0 − Dhq2 0 −ĥ0

I0 −γn̂0 − ν − Dwq2 ĥ0 − γµ

0 n̂0 −q2

 .(A.11)

The determinant of this matrix is

−DhDwq6 − (I0Dw + γDh(n̂0 + ν)) q4 −
(
I0(γn̂0 + ν) − Dh(ĥ0 − γµ)n̂0

)
q2 − I0γµn̂0.

The zero-eigenvalue condition (A.6) and the onset condition (A.7) are necessary for a

Turing point (q2
c , n̂c

0), and result in the equations

Dwq6
c + (δDw + γn̂c

0 + ν) q4
c +

(
δ(γn̂c

0 + ν) − (ĥc
0 − γµ)n̂c

0

)
q2

c + δγµn̂c
0 = 0,(A.12)

3Dwq4
c + 2 (δDw + γn̂c

0 + ν) q2
c + δ(γn̂c

0 + ν) − (ĥc
0 − γµ)n̂c

0 = 0,(A.13)

where

δ ≡ I0

Dh

and ĥc
0 ≡ ĥ0(n̂c

0).
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We treat δ as a small parameter by assuming Dh ≫ 1, noting that I0 is bounded away

from zero (I0 ∈ (αf, α)). The only possible negative term in (A.12) and (A.13) comes

from the factor −(ĥc
0 − γµ), and so Turing points are confined to regions of the param-

eter space where ĥ0 > γµ (as anticipated above in observation III). We note that these

equations depend on α and Dh only through the quantity δ ∝ α/Dh. Therefore the

Turing point calculation is invariant to fixed ratios of α/Dh.

We proceed by seeking approximate Turing point solutions (q2
c , n̂c

0) to (A.12) and

(A.13) in the form of asymptotic expansions in δ. At O(1) in δ, (A.12) and (A.13) are

Dwq6
c + (γn̂c

0 + ν)q4
c − (ĥc

0 − γµ)n̂c
0q

2
c = 0,

3Dwq4
c + 2(γn̂c

0 + ν)q2
c − (ĥc

0 − γµ)n̂c
0 = 0.

The only real-valued solution in q2
c is q2

c = 0, which yields (ĥc
0 − γµ)n̂c

0 = 0. It can be

shown that the equation (ĥc
0 − γµ)n̂c

0 = 0 has only two unique solutions, n̂c
0 = 0 and

ĥc
0 = γµ. Thus there are two solutions at this order: (i) q2

ℓ ≡ q2
c = 0 and n̂ℓ

0 ≡ n̂c
0 = 0,

which corresponds to the lower Turing point, and (ii) q2
u ≡ q2

c = 0 and ĥu
0 − γµ = 0

where ĥu
0 ≡ ĥc

0 = γµ, which corresponds to the upper Turing point. We calculate

corrections to these solutions, which yield distinct scalings for the wave numbers and

onset parameter values with δ at the different Turing points.

For the lower Turing point solution, we assume the leading-order correction takes

the form (q2
ℓ , n̂ℓ

0) = (Q2
ℓδ

β1 , Nℓδ
β2), and we seek values of β1 and β2 which achieve

a balance between terms in (A.12) and (A.13). For this correction, equations (A.12)
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and (A.13) become

δ3β1DwQ6
ℓ +

(
δ2β1+1Dw + δ2β1+β2γNℓ + δ2β1ν

)
Q4

ℓ

+
(
δβ1+β2+1γNℓ + δβ1+1ν − δβ1+β2(ĥℓ

0 − γµ)Nℓ

)
Q2

ℓ + δβ2+1γµNℓ = 0,

3δ3β1DwQ4
ℓ + 2

(
δ2β1+1Dw + δ2β1+β2γNℓ + δ2β1ν

)
Q2

ℓ

+ δβ1+β2+1γNℓ + δβ1+1ν − δβ1+β2(ĥℓ
0 − γµ)Nℓ = 0.

We observe that

• δ3β1DwQ6
ℓ , δ2β1+1DwQ4

ℓ and δ2β1+β2γNℓQ
4
ℓ are always higher order terms than

δ2β1νQ4
ℓ .

• −δβ1+β2(ĥℓ
0 − γµ)NℓQ

2
ℓ must appear at leading order for real solutions in Q2

ℓ .

• δβ1+β2+1γNℓQ
2
ℓ is always a higher order term than −δβ1+β2(ĥℓ

0 − γµ)NℓQ
2
ℓ .

• δβ2+1γµNℓ must appear at leading order for solutions with Q2
ℓ , Nℓ > 0.

A balance is achieved by β1 = β2 = 1. Thus (q2
ℓ , n̂ℓ

0) = (Q2
ℓδ + O(δ2), Nℓδ + O(δ2)), and

Q2
ℓ and Nℓ are solutions to the equations at O(δ2):

(A.14)
νQ4

ℓ +
(
ν − (ĥℓ

0 − γµ)Nℓ

)
Q2

ℓ + γµNℓ = 0,

2νQ2
ℓ + ν − (ĥℓ

0 − γµ)Nℓ = 0,

where ĥℓ
0 = ĥ0(Nℓδ) = νµ(1 − f)/(f(1 − µ)) + O(δ). It can be shown that a unique phys-

ical solution to this system (i.e. Q2
ℓ , Nℓ > 0) exists when the necessary condition (A.10)

is satisfied. See also Dawes et al. [94] for a comparable scaling of the lower Turing point
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critical wave number with the nondimensional water diffusion parameter in the model

by von Hardenberg et al. [25].

For the upper Turing point solution, we assume the leading-order correction takes

the form q2
u = Q2

uδβ3 , ĥu
0 − γµ = Huδβ4 . Invoking a similar argument as for the lower

Turing point correction, we balance terms of order δ2β3 , δβ3+β4 and δ and find β3 = β4 =

1/2. Thus (q2
u, ĥu

0 − γµ) = (Q2
uδ1/2 + O(δ), Huδ1/2 + O(δ)), and Q2

u and Hu are solutions

to the leading order equations at O(δ):

(A.15)
(γn̂u

0 + ν) Q4
u − n̂u

0HuQ2
u + γµn̂u

0 = 0,

2 (γn̂u
0 + ν) Q2

u − n̂u
0Hu = 0,

where ĥ0(n̂u
0) = γµ+Huδ1/2. It can be shown that a unique solution to this system, with

Q2
u > 0, always exists.

A.3. Quadratic coefficient analysis

In Appendix A.2, we derived scaling relations between δ ≡ I(n0)/Dh, the critical

wave numbers qc and the Turing point parameter values in terms of n̂0 ≡ G′(w0)n0.

In this appendix, we use these scaling relations in an analysis of the terms that are

important in setting the sign of a when δ is small.

The leading order scaling behavior of the quadratic coefficient a is determined by

the scaling of the right and left null vectors, (H1, W1, N1)T and (H̃1, W̃1, Ñ1) respectively.

We will use the relations above to derive the null vector scalings. We recall that a can



113

be written as

(A.16) a =
(

I ′(n0)H1N1 + 1
2

I ′′(n0)h0N
2
1

) (
W̃1 − H̃1

)
+
(

G′(w0)W1N1 + 1
2

G′′(w0)n0W
2
1

) (
Ñ1 − γW̃1

)
.

We obtain the following relations between the right null vector components from the

first and third rows of the Jacobian matrix (A.5):

(
Dhq2

c + I(n0)
)

H1 + I ′(n0)h0N1 = 0,

G′(w0)n0W1 − q2
c N1 = 0.

In addition, we recall the right null vector convention H2
1 + W 2

1 + N2
1 = 1 with N1 > 0.

Together, these equations give

(A.17)

H1 = − I ′(n0)h0

Dhq2
c + I(n0)

N1,

W1 = q2
c

G′(w0)n0
N1,

N1 =
(

1 + q4
c

G′(w0)2n2
0

+ I ′(n0)2h2
0

(Dhq2
c + I(n0))2

)−1/2

.

Similarly we obtain the following relations between the left null vector components

from the first and second columns of (A.5):

(
Dhq2

c + I(n0)
)

H̃1 − I(n0)W̃1 = 0,

(
ν + Dwq2

c + γG′(w0)n0
)

Ñ1 + G′(w0)n0W̃1 = 0.
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Together with the left null vector convention H̃1H1 + W̃1W1 + Ñ1N1 = 2, we find

(A.18)

H̃1 = I(n0)
Dhq2

c + I(n0)
W̃1,

W̃1 = 2N−1
1

(
−I(n0)I ′(n0)h0

(Dhq2
c + I(n0))2 + ν + (1 + Dw)q2

c

G′(w0)n0
+ γ

)−1

,

Ñ1 =
(

ν + Dwq2
c

G′(w0)n0
+ γ

)
W̃1.

At the lower Turing point, we found that q2
ℓ ≡ q2

c = Q2
ℓδ + O(δ2) and G′(w0)n0 =

Nℓδ + O(δ2), where Q2
ℓ and Nℓ are given by (A.14). The right null vector at the lower

Turing point, (A.17), is thus given by

Hℓ
1 = − I ′(n0)h0

(1 + Q2
ℓ)I(n0)

N ℓ
1 + O(δ),

W ℓ
1 = Q2

ℓ

Nℓ

N ℓ
1 + O(δ),

N ℓ
1 =

(
1 + Q4

ℓ

N2
ℓ

+ I ′(n0)2h2
0

(1 + Q2
ℓ)2I(n0)2

)−1/2

+ O(δ).

Similarly the left null vector components are

H̃ℓ
1 = δ

2Nℓ

(1 + Q2
ℓ)ν

(N ℓ
1)−1 + O(δ2),

W̃ ℓ
1 = δ

2Nℓ

(1 + Q2
ℓ)ν

(N ℓ
1)−1 + O(δ2),

Ñ ℓ
1 = 2(N ℓ

1)−1 + O(δ).

Substituting these expressions in a (A.16) gives

aℓ = 2Q2
ℓG

′(w0)
Nℓ

N ℓ
1 + O(δ)
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as the leading order behavior of the quadratic coefficient at the lower Turing point.

Since G′(w0), Nℓ, N ℓ
1 > 0, aℓ is positive at leading order, corresponding to a prediction

of spot patterns near the lower Turing point.

At the upper Turing point, given that we are sufficiently far from the degeneracy

with the lower Turing point, we found that q2
u ≡ q2

c = Q2
uδ1/2 + O(δ), where Q2

u is

determined by (A.15). Given this, the right null vector components, (A.17), evaluated

at the upper Turing point are

Hu
1 = −I ′(n0)h0

Q2
uI(n0)

δ1/2 + O(δ),

W u
1 = Q2

u

n0G′(w0)
δ1/2 + O(δ),

Nu
1 = 1 + O(δ)

The left null vector components (A.18) are

H̃u
1 = 2G′(w0)n0

Q2
uν + γQ2

uG′(w0)n0
δ1/2 + O(δ),

W̃ u
1 = 2G′(w0)n0

ν + γG′(w0)n0
+ O(δ1/2),

Ñu
1 = 2 + O(δ1/2).

Putting these expressions in a (A.16) gives

au = G′(w0)I ′′(n0)h0n0

ν + γG′(w0)n0
+ O(δ1/2).
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Since I(n0) is a concave-down function, I ′′(n0) < 0, and thus au is negative at leading

order at the upper Turing point. This corresponds to a prediction of gap patterns near

the upper Turing point.
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APPENDIX B

Numerical simulations of model by Rietkerk et al.

B.1. Numerical simulation procedure

We numerically solved the Rietkerk et al. [37] (R02) model using the exponen-

tial time differencing Runge-Kutta 4 (ETDRK4) scheme [50, 51] modified for 2D sys-

tems [52]. ETDRK4 achieves pseudospectral accuracy in space and fourth-order accu-

racy in time. This scheme alleviates issues of stiffness often associated with reaction-

diffusion systems [52], allowing R02 to be simulated efficiently. Simulations were run

using a time step near the scheme’s empirically derived stability limit, since our pri-

mary concern is with qualitative aspects of patterned solutions. This scheme was im-

plemented in MATLAB and C.

For each set of parameter values marked by a letter in Figure 7, we simulated R02

over a range of precipitation values using a procedure described in detail here. Sim-

ulations are initialised with spatially random initial conditions with fields taking uni-

formly distributed values in [1, 1.5]. The simulation begins just below the upper Turing

point, at p0 = pℓ + 0.95(pu − pℓ). Then the following loop is run to identify the upper

bound of pattern stability beginning with k = 0:

1. R02 is solved using ETDRK4 until either a steady state stop condition or a uniformity

stop condition is reached. The end state of the simulation, (h, w, n)k at pk, is saved.
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2. If the steady state stop condition is reached, precipitation is incremented upward by

a small value ∆p, so that pk+1 = pk + ∆p. The procedure returns to step 1, using the

saved end state (h, w, n)k as the initial condition for a new simulation. If the spatial

uniformity stop condition is reached, the loop ends.

The steady state stop condition occurs when either (a) the root mean square difference

between the current biomass state and the state 400 time units earlier drops below 10−4,

or (b) t = 2 × 105. The uniformity stop condition occurs when the root mean square

difference between the current biomass state and the mean value of that state drops

below 10−4. We infer the upper bound of pattern stability, pu+ = pN , to be the value of

precipitation where the uniformity condition is reached.

After the first loop terminates at pN and the first uniformity condition is reached,

precipitation is decremented by 2∆p so that pN+1 = pN − 2∆p. The previous patterned

(i.e. non-uniform) end state, (h, w, n)N−1, is used as the initial condition for a new

simulation. We run the following loop to identify pattern morphologies that occur as

precipitation decreases, starting with k = N + 1:

1. R02 is solved using ETDRK4 until a stop condition is reached. The end state of the

simulation, (h, w, n)k, is saved.

2. If a steady state stop condition is reached, precipitation is decremented by ∆p so that

pk+1 = pk − ∆p. The procedure returns to step 1, using the saved end state (h, w, n)k

as the initial condition for a new simulation. If the spatial uniformity stop condition

is reached, the loop ends.

When this loop ends at pN+M , we infer this point to be the lower bound of pattern

stability, pℓ− = pN+M .
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We increment precipitation upward in one final loop to identify any potential hys-

teresis effects. Precipitation is first incremented by 2∆p so that pN+M+1 = pN+M + 2∆p.

The previous patterned (non-uniform) end state (h, w, n)N+M−1 is used as the initial

condition for a new simulation. Then the following loop is run, starting with k =

N + M + 1:

1. R02 is solved using ETDRK4 until a stop condition is reached. The end state of the

simulation, (h, w, n)k, is saved.

2. If a steady state stop condition is reached, precipitation is incremented by ∆p so

that pk+1 = pk + ∆p. The procedure returns to step 1, using the saved end state as

the initial condition for a new simulation. If the spatial uniformity stop condition is

reached, the loop ends.

The end result of this procedure is a series of saved end states at a range of precipitation

values over the interval p ∈ (pℓ−, pu+).

The precipitation iteration step size ∆p was chosen based on the distance between

the upper and lower Turing points, pu − pℓ, so that 30-100 end states were saved per

parameter set. The value of ∆p used ranged between 0.0025 and 0.01. For most simu-

lations, a time step size of ∆t = 0.4 was used, which was near the empirical stability

limit of the scheme for most parameter sets. On certain parameter sets, values of ∆t as

small as 0.01 were needed for numerical stability. We tested for time step size errors

using a particular parameter set, with ∆t = 0.4, 0.2, and 0.1, and the end states were

found to be qualitatively indistinguishable. A preliminary set of simulations was run

on all parameter sets to identify a simulation domain size for each that permitted at

least 7 wavelengths of patterns. Square L × L domains with L = 400, 800, and 1600
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were used. Corresponding N × N grid sizes were used, with N = 64, 128, and 256

respectively.

B.2. Investigating the “stripes → spots” sequences

Our bifurcation analysis indicates that gap solutions to the amplitude equations

should be stable near the upper Turing point (region B of Figure 5). When a is suffi-

ciently small, as it may be for the “stripes → spots” observations, the gaps solution is

stable for only a relatively small interval of the precipitation parameter compared to

the stripes branch. This is illustrated schematically in bifurcation diagram B in Fig-

ure 7. Because our numerical procedure increments precipitation in discrete steps of

fixed size, the gaps branch may be bypassed. Also, since gaps are stable only very

near to the Turing point for these parameter sets, gaps may only be stable at the critical

wavelength and may not appear in a domain of arbitrary size.

To test whether gaps can exist stably for parameter sets where “stripes → spots”

transitions are observed, we seeded numerical simulations at p = pu with a hexagonal

lattice gaps pattern at the critical wavelength. This initial condition was perturbed

by spatially random noise drawn from a uniform distribution on the interval [0, 0.1].

An aspect ratio of 1 :
√

3 and a domain size that permits an integer multiple of the

critical wavelength were used. In all simulations, gap patterns persisted as steady

states through t = 1 × 106 and were assessed to be stable in these instances.
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0

p
0.6

Figure B.1. Spiral wave patterns are observed in simulations at f = 0.1 and
log10(Dh) = 0.5. An ordered stripes state transitions directly to spirals at
p = 0.414.

B.3. Investigating the “stripes → spirals” sequence

We observed time-varying spiral wave patterns in one instance of the numerical

simulations, at f = 0.1 and log10(Dh) = 0.5. States from this simulation are shown

in Supplementary Figure B.1. We verified that the observation of spirals is robust to

increased spatial and temporal resolution in the numerical scheme. We ran additional

simulations at nearby parameter values to determine whether spirals are confined to a

region of the parameter space. Holding f = 0.1 fixed, spirals appear in simulations at

log10(Dh) = 0.6 but not log10(Dh) = 0.7. Holding log10(Dh) = 0.5 fixed, spirals appear

at f = 0.16 but not at f = 0.18. We conclude that spirals are confined to smaller values

of Dh than are typically considered ecologically applicable.
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APPENDIX C

Vegetation band dynamics in the Horn of Africa

C.1. Regional climate

Rainfall in Somalia is bimodally distributed between the Gu season, spanning Apr.-

May, and the Deyr season, spanning Oct.-Nov. Separating the rainy seasons are two

dry seasons, Xagaa (Jun.-Sept.) and Jilaal (Dec.-Mar.). Deyr rainfall events are typically

shorter and less significant than those of the Gu. The Jilaal season is typically the

hottest and driest time of year.

Due to a lack of continuous rainfall station monitoring in and around our regions of

study, we assessed the historical regional climate using climate reanalysis and remotely-

sensed rainfall estimation datasets. The 20th Century Reanalysis (V2c) dataset assim-

ilates surface pressure observations, sea-surface temperature, and sea ice extent into

a global climate model to obtain a reconstruction of Earth’s climate spanning 1871-

2011 [79]. The V2c dataset is available at 6-hour temporal and 2° spatial resolution.

The coarse spatial resolution of the data prevents us from distinguishing the Sool

Plateau and the Haud regions. Uncertainty estimates can be derived from 56 repli-

cate model simulations. The CPC/Famine Early Warning System Dekadal Estimates

(RFEv2) dataset uses satellite microwave sensing and ground station observations to

estimate total rainfall over the African continent for dates spanning 2000 to present.

RFEv2 data is available at daily intervals and 0.25° spatial resolution.
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To assess the rainfall conditions surrounding our imagery datasets, we obtained

annual total rainfall estimates from the V2c and RFEv2 datasets (Figure C.1a-d). In the

absence of ground confirmation, we exercise caution in interpreting the V2c estimates

for the 1940s-60s, and conclude only that there is no evidence that rainfall conditions

have improved in either region in recent decades. We speculate that rainfall conditions

surrounding the 1952 and 1967 datasets were quite favorable. We also speculate that

conditions have either declined or reverted to a regional mean in recent decades.

We assessed rainfall conditions for the recent imagery in greater detail by calculat-

ing seasonal rainfall totals from the RFEv2 dataset (Figure C.1c-d). In the Sool Plateau,

the images used in this study were taken in a variety of seasons and rainfall history

conditions. The 2004 image was taken shortly after the return of rains that followed

a very severe multi-year drought. The 2006, 2011, and 2013 images were taken amid

more typical rainfall conditions. The 2016 image was taken during a period of drought,

which is ongoing at the time of writing. In the Haud, the images used in this study

were taken in years (2012 and 2016) with robust rainfall during the wet seasons.

We examined regional temperature history using surface temperature estimates

from the V2c dataset. We computed the average yearly temperature, defined as a

yearly average over the daily midpoint between minimum and maximum tempera-

tures (Figure C.1e). We identified a distinct linear warming trend between 1960 to the

present of 1-2 °C.
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Figure C.1. Annual total rainfall estimates from V2c and RFEv2 datasets, and tempera-
ture estimates from V2c dataset. (a) shows the median V2c annual total rainfall estimates
between 1940 and 2011 for a large region that includes both Sool Plateau and Haud sites.
The area between 25th and 75th percentiles is shaded. The running average of median pre-
cipitation over the previous 5 years is plotted with a red solid line. The average rainfall over
the entire interval is indicated with a red dashed line. (b) shows V2c (2000-2011) and RFEv2
(2000-2016) annual rainfall datasets. The average V2c rainfall estimate over 1940-2011 is in-
dicated with a red dashed line. (c) shows seasonal rainfall totals in an area containing the
Sool Plateau study areas, and (d) shows totals in an area containing Haud study areas. (e)
shows average yearly temperature (°C) computed from V2c reanalysis dataset. Average
yearly temperature is defined as a yearly average over the daily midpoint between mini-
mum and maximum temperatures. One standard deviation about the mean based on 56
reanalysis simulations is indicated with shading. Dates of imagery datasets are indicated
in black dashed lines.
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C.2. Data

C.2.1. Imagery

We studied approximately 260 km2 of imagery in areas of the Sool Plateau and 200 km2

of imagery in areas of the Haud. Study area boundaries are defined by our choice of

British Royal Air Force (R.A.F.) aerial survey photography, which comprise our earliest

image datasets. Aerial survey photographs were taken in 1951-52 over broad areas

of British Somaliland, and are archived at the Bodleian Library at the University of

Oxford. The aerial photographs used in this study were scanned on request by the

Bodleian Library using British Ordnance Survey maps to identify images.

The coordinates of study areas and additional information about imagery used in

this study are given in Table C.1. R.A.F. images were scanned at a nominal resolution

of 1.4-2.5 m/pixel. We obtained more recent imagery through the USGS and Digital-

Globe Foundation. We purchased declassified reconnaissance satellite imagery1 taken

in 1967 from the USGS Earth Explorer site. We downloaded freely available Orbview-3

imagery taken in 2005 from the USGS Earth Explorer site. We were granted Quickbird-

2, WorldView-1, and WorldView-2 imagery for dates spanning 2004-2016 by the Digi-

talGlobe Foundation.

We manually georeferenced aerial survey photograph scans in ArcMap 10.3 against

the ArcGIS World Imagery layer using the WGS84 Web Mercator coordinate system

(EPSG:3857). Because vegetation bands migrate over time, we could not match scans

with geospatial coordinates using the appearance of the bands themselves. Instead

1Corona program, Mission No. 1102-1
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Area (Lat, Lon) Area (km2) Date Res. (m) Bands used Source

02/22/1952† 1.9* Grayscale scan Bodleian
12/12/1967 2.0* Grayscale scan USGS
06/10/2004 2.4 R,G,B,NIR DigitalGlobe
03/23/2006 2.4 R,G,B,NIR DigitalGlobe
09/29/2011† 2.0 R,G,B,NIR-2 DigitalGlobe
12/03/2011 2.0 R,G,B,NIR-2 DigitalGlobe

SP1 (9.79°, 48.55°) 57

02/24/2013 2.0 Panchromatic DigitalGlobe

02/22/1952† 1.9* Grayscale scan Bodleian
12/12/1967 2.0* Grayscale scan USGS
06/10/2004 2.4 R,G,B,NIR DigitalGlobe
03/23/2006 2.4 R,G,B,NIR DigitalGlobe
09/29/2011† 2.0 R,G,B,NIR-2 DigitalGlobe
12/03/2011 2.0 R,G,B,NIR-2 DigitalGlobe

SP2 (9.72°, 48.55°) 58

02/24/2013 2.0 Panchromatic DigitalGlobe

11/29/1952† 1.4* Grayscale scan Bodleian
12/12/1967 2.0* Grayscale scan USGS
06/10/2004 2.4 R,G,B,NIR DigitalGlobe
03/23/2006 2.4 R,G,B,NIR DigitalGlobe
12/03/2011† 2.0 R,G,B,NIR-2 DigitalGlobe

SP3 (9.60°, 48.59°) 46

02/24/2013 2.0 Panchromatic DigitalGlobe

02/22/1952† 1.6* Grayscale scan Bodleian
12/12/1967 2.0* Grayscale scan USGS
11/06/2005 1.0 Panchromatic USGSSP4 (9.75°, 48.83°) 58

08/16/2016† 2.0 R,G,B,NIR-2 DigitalGlobe

02/14/1952† 1.5* Grayscale scan Bodleian
12/12/1967 2.0* Grayscale scan BodleianSP5 (9.36°, 48.79°) 44
08/16/2016† 2.0 R,G,B,NIR-2 DigitalGlobe

02/17/1952† 2.5* Grayscale scan BodleianHD1 (8.14°, 47.21°) 46 11/24/2016† 2.0 R,G,B,NIR-2 DigitalGlobe

02/14/1952† 2.5* Grayscale scan Bodleian
12/25/2011 2.0 R,G,B,NIR-2 DigitalGlobeHD2 (8.14°, 47.39°) 50
01/21/2012† 2.0 R,G,B,NIR-2 DigitalGlobe

01/24/1952† 2.5* Grayscale scan BodleianHD3 (8.06°, 47.44°) 50 12/25/2011 2.0 R,G,B,NIR-2 DigitalGlobe

01/24/1952† 2.5* Grayscale scan BodleianHD4 (8.09°, 47.47°) 50 12/25/2011† 2.0 R,G,B,NIR-2 DigitalGlobe

Table C.1. Study area locations and imagery datasets used in this investi-
gation. Datasets used in visual comparison and Fourier analysis indicated
with †. Nominal resolutions of photograph scans are indicated with *. NIR
and NIR-2 denotes near-infrared band data.



127

we relied upon apparent geological features, such as limestone outcrops, and geomet-

rically distinct clusters of individual trees or shrubs that persisted over time. Aerial

survey photographs were matched using no fewer than 10 control points per image,

and were aligned by fitting a projective transformation. Control points were stored

in a tab-delimited file. A projective transformation is overdetermined for greater than

4 control points, and the root mean squared error (RMSE) of the transformed control

points served as our estimate of alignment error.

To estimate the effect on RMSE of adding additional control points, we used a re-

sampling procedure that calculates the alignment RMSE for different subsets of the

control points. For an image that was aligned using n control points, we computed the

RMSE for permutations of 5 ≤ k ≤ n control points (Figure C.2). The average RMSE

values over the permutations were then computed for each value of k. In this proce-

dure, if the total number of such permutations
(

n
k

)
exceeded 103, a random sampling

of 103 distinct permutations were used. Otherwise, all permutations were used. The

resulting curves were well fit by the saturating function ak̃/(1+bk̃), where k̃ = k −5, to

extrapolate the saturating value of the average RMSE curve. In all cases the saturating

RMSE value was comparable to the resolution of the imagery, suggesting an alignment

error on the order of 1-2 pixels.

A reconnaissance satellite image was also manually georeferenced in ArcMap 10.3

using a third-order polynomial transformation with 18 control points. The image cov-

ers a much broader area than the aerial photographs, and due to distortions arising

from the imaging methodology a projective transformation did not produce a suitable
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Figure C.2. Estimate of alignment error sensitivity to additional control
points. For an image that was aligned using n control points, we computed
the average RMSE for permutations of 5 ≤ k ≤ n control points. The result-
ing average RMSE curves and one standard deviation of the RMSE values
are plotted. The average RMSE curves were fit to the function ak/(1 + bk),
and the saturating value of this function is plotted in red.

fit2. RMSE of this alignment is 0.94 m, which is on the order one pixel. DigitalGlobe im-

agery was pre-georeferenced, and was manually shifted to align more precisely with

the ArcGIS World Imagery layer.

2A third-order polynomial fit is used for comparable imagery in [69]
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Most recent satellite imagery used in this study contain data sensed at different

frequency channels. The red, green, and blue channels were used for visualization,

and the red and near infrared channels were used for computing the Soil-adjusted

Vegetation Index (SAVI) [80], an index of photosynthetic activity:

SAVI = NIR − R

NIR + R + L
(1 + L).

NIR is the near-infrared reflectance value, and R is the red reflectance value. We com-

puted reflectances from raw pixel intensity values using radiometric calibration ad-

justment factors given by DigitalGlobe3 and the imagery metadata. The parameter L is

used to adjust for exposed soil surface in low-vegetation cover scenarios, and is often

used in place of Normalized Difference Vegetation Index (NDVI) in dryland vegeta-

tion inference. SAVI is equivalent to NDVI for L = 0. For all analyses, we used a

conventional value of L = 0.5.

C.2.2. Elevation

We used NASA Shuttle Radar Topography Mission Global 1 arc second (SRTMGL1)

elevation data for our upslope migration assessment and comparison of pattern prop-

erties with slope. Datasets were obtained from the USGS website4. Datasets are pack-

aged in 1° latitude × 1° longitude tiles, and were loaded, georeferenced, projected onto

the WGS84 Web Mercator coordinate system (EPSG:3857) in MATLAB 2016b. This al-

lowed for elevation data to be matched with imagery.

3https://www.digitalglobe.com/resources/technical-information
4https://e4ftl01.cr.usgs.gov/SRTM/
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Though the SRTMGL1 dataset has a nominal resolution of 1 arcsecond (∼30 m/pixel

near the equator), the true resolution is closer to 45-60 m/pixel due to the manner in

which data was collected [81]. The data also contains speckle noise which is auto-

correlated at a length of 1-2 pixels, and also random error, both of which together

result in average vertical error of approximately 4 m in areas like the Sahara Desert. To

eliminate autocorrelated errors, we subsampled the data to 3 arcsecond (∼90 m/pixel)

resolution.

Noise in the SRTM data presents a challenge to gradient estimation in areas of low

relief, such as our regions of study, where in banded areas vertical change can be as

little as 1 m per 500 m of horizontal change. To compute gradient fields, we used a

second-order accuracy finite difference stencil with noise suppressing properties [82].

As an example, a 5 × 3 noise suppressing gradient operator as defined in [82] is

f = 1
32h


−1 −2 0 2 1

−2 −4 0 4 2

−1 −2 0 2 1

 ,

where h is the discretization step size. Convolving this operator with the data array

produces an approximation of the partial derivative in one direction. Operators with

noise suppressing properties discussed in [82] can be computed for arbitrarily large

stencil size.

Using a finite difference operator allows for a straightforward propagation of i.i.d.

normal errors in the elevation data through the calculation of gradient and slope. We
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estimated the magnitude of errors in the elevation data by computing the standard

deviation of residuals from a median subtraction:

slidingmed = medfilt2(SRTM, [5 5]); %median-filtered data

sig = std(SRTM(:)-slidingmed(:)); %standard dev of residuals

The standard deviation of error propagated to each component of the gradient is then

sig*sqrt(sum(f(:).^2))/h

Slope is obtained from the magnitude of the elevation gradient vector, and to lead-

ing order the gradient error value is also equal to the error propagated to the slope

calculation.

We tested the sensitivity of slope calculations to varying stencil size s (which yields

a (2s + 1) × (2s − 1) operator). We note again that the truncation error of the finite

difference operator is second-order for any s. Intuitively too small a stencil size will

have high measurement error, and too large a stencil size will result in oversmoothing.

In Figure C.3 we show the 25th, 50th, and 75th percentiles of the slope values within

each study area computed over an interval of s, and indicate one standard deviation of

propagated error around these values. We conclude that slope values are not sensitive

to stencil size when s ≥ 15, and we use 15 (which gives an operator of size 31 × 29) for

all slope and gradient calculations. We confirmed by visual inspection that this stencil

size produces smooth gradient fields that match hydrological features visible in the

imagery (e.g., hills and channels).
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Figure C.3. Sensitivity analysis of slope calculation to stencil parameter at
different study areas. The 25th (green), 50th (red), and 75th (blue) per-
centiles of slope values are plotted as a function of the stencil parameter,
and one standard deviation of propagated error are indicated in shading.
Slopes are given in units of slope percentage, which is defined as 100 times
the magnitude of the elevation gradient vector.
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C.3. Visual comparison

C.3.1. Protocol

We assessed changes over time at study areas via a systematic visual comparison of im-

agery. Roads can be visually identified in both the aerial photographs and the satellite

imagery, and their presence and qualitative appearance served as our primary proxy

for inferring the extent of human pressure. Vegetation in both the aerial photos and

satellite imagery contrasts sharply with the light background of bare soil, and bands

are clearly identifiable. Degradation was inferred through either the breakdown in

regularity or disappearance of banding.

We developed a graphical user interface (GUI) in MATLAB 2016b for visually com-

paring images (Figure C.4). The GUI allows the user to select two imagery datasets

for comparison, a georeferenced R.A.F. photograph and a more recent image. Images

used for visual comparison are indicated in Table C.1. The recent image is projected

onto the intrinsic coordinate system of the R.A.F. photograph, so that the data can be

cleanly divided into non-overlapping 1 km × 1 km windows. The GUI simultaneously

displays corresponding 1 km2 windows of the R.A.F. photo and more recent imagery.

Additionally the GUI displays a false color overlay of the two images, which was used

to assess whether migration occurred. The GUI plots the local slope direction vector

(computed as described in Section C.2.2) on top of the overlay, which allows the user

to visually assess whether the migration is in the upslope.

For each image window, the user is prompted to enter whether regular banding

is present and whether a dense settlement is present (more than 5 structures in close
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Figure C.4. Graphical user interface (GUI) used for visual comparison of
images. A georeferenced R.A.F. photograph and a recent satellite image are
divided into corresponding windows and shown side by side. A false color
overlay of the two images is also shown, with a local slope vector overlaid
to visually assess upslope migration. Blue in the false color image denotes
vegetation in the R.A.F. photograph, and yellow denotes vegetation in the
recent image.

proximity) using checkboxes. The user can select the extent of apparent road cover

via a dropdown menu. Additionally, the user can check boxes to indicate whether

band widening in the slope direction is apparent, and whether it appears that the same

roads or settlements are present in both images. The user can enter comments for each

image and the overlay. If the recent image contained red and near infrared channels,

the Soil-adjusted Vegetation Index (SAVI) can be displayed in place of the RGB image
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(see discussion of SAVI in Section C.2.1). The GUI selections are automatically saved

to a MATLAB .mat file. When the user has finished assessing the window, the user can

then navigate to different windows in the dataset using buttons.

The checkboxes are ternary; with banding, for example, a fully-checked state is

taken to mean distinct banding, a half-checked state is taken to mean indistinct band-

ing, and an unchecked state is taken to mean no banding. The road cover dropdown

can take on one of four states: “no roads,” “faint road(s),” “clear road(s),” and “clear,

dense road(s).” The last state, “clear, dense road(s),” is taken to mean that a large

number of well-incised, clearly visible roads cover a large portion of the window.

C.3.2. Highlighted examples

In many sites of the Haud study areas, we observed that human-made structures ap-

peared to persist from 1952 to the present. In Figure C.5a,b, we show two examples of

such structures.

In addition, we observed that in some areas of SP4, bands appeared to degrade

without apparent change in wavelength. We show an example in Figure C.5c. We ver-

ified that the pictured bands have significantly lower vegetation index (SAVI) values

than nearby bands in the study area, and are plausibly degraded.

C.4. Fourier analysis

C.4.1. Protocol

We quantitatively assessed changes in band wavelength using a modification of the

Fourier window method by Penny et al. [83]. Penny et al. developed the method to
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(a)

(b)

(c)

Figure C.5. Highlighted examples from visual inspection. (a) and (b) show
examples at HD2 and HD4, respectively, of man-made structures that ap-
pear to persist from 1952 to 2012. (c) shows an example at SP4 where degra-
dation appears to have occurred without an apparent history of change in
band wavelength.
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compute spatial maps of local wavelength and orientation from imagery over banded

areas in Fort Stockton, Texas, USA. In a manner analogous to a short-time Fourier

transform, the method measures wavelength and orientation in a sliding window us-

ing a 2D FFT. Vegetation banding typically contains sufficient irregularity to complicate

the inference of dominant wavelength and orientation from a 2D power spectrum. The

Fourier window method addresses this issue by binning power, radially for estimat-

ing wavelength and angularly for orientation, and by computing a weighted average

among the contiguous bins with largest power. The method computes a uniqueness

metric for both wavelength and orientation based on the distance between the maxi-

mal peak and the nearest peak with 75% of the maximal power, if present. The metric

equals one if the maximal peak is the only powerful peak present, and approaches 0 as

distance to the nearest powerful peak increases. In order to exclude short-wavelength

noise and long wavelengths which are under-sampled for the given window size, the

bins are only computed for a specified minimum and maximum wavelength inter-

val. As presented in [83], the pattern irregularity issue is also addressed by averaging

measurements over overlapping windows. We do not perform the latter step for the

analyses in this study.

Penny et al. provide MATLAB code for their method, which we modify for our

analyses. We modify the main routine to take as input two images that have been re-

sized to the same dimensions. Computations are then performed on square windows.

To reduce aperiodicity effects, we apply a 2D Hamming filter (a bell-shaped function

that decays to zero away from the center) to each window. We note that this filter also
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has the effect of giving more weight to the central area of the image, focusing analy-

sis on this area. Wavelengths and orientations are then computed using Penny et al.’s

routine.

We applied this methodology to all study areas using the image pairs indicated

in Table C.1. In order to perform the windowing on a rectangularly-oriented dataset,

we transformed the recent imagery onto the intrinsic coordinate system of the aerial

photograph. We downscaled image pairs to a resolution of approximately 2.5 m/pixel

to reduce computation time. We then applied two layers of preprocessing to emphasize

the vegetation bands and de-emphasize other features in the imagery: we subtracted

a coarsely gaussian-blurred version of the image to eliminate large scale variations in

pixel intensity (such as darkening near the borders of the aerial photographs), and we

applied a manually-tuned threshold to create a binary image of the vegetation bands.

For each binary image pair, we computed wavelength maps for the three square

window sizes: 384 pixels (∼1 km), 512 pixels (∼1.3 km), and 768 pixels (∼2 km). After

applying a Hamming filter, about 4-8 vegetation bands can be sampled in the central

area of a 512 pixel window (3-5 bands for a 384 pixel window, or 6-10 for a 768 pixel

window). For the binning procedure, we set the minimum wavelength to 10 pixels

(∼25 m), and the maximum wavelength to one-fourth of the window size (∼240 m

for a 384 pixel window, ∼320 m for a 512 pixel window, and ∼480 m for a 768 pixel

window). In order to balance computation time and even-sampling of the data, we set

the step length of the sliding window to be one-fourth of the window size, resulting in

adjacent windows that overlap in 75% of their area.
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After wavelength maps were computed for an imagery pair, we transformed the

measurements from units of pixels to units of meters. We then manually drew a mask

on the imagery and applied it to the measurements in order to exclude measurements

from areas without vegetation bands. Additionally we excluded measurements with

wavelength uniqueness metrics smaller than 0.75. We found that in some areas, a

window size of 384 pixels was too small to detect the largest wavelengths. The results

of 512 and 768 pixel windows did not differ strongly, so we used the 512 pixel window

computation for the results reported in Table 3.1.

C.4.2. Wavelength change

Given spatial maps of wavelength for a pair of images, we computed change maps

where elements are given by

W i,j
2 /W i,j

1 − 1,

where W i,j
1 is the wavelength in the first image at position (i, j), and W i,j

2 is the wave-

length in the second image at (i, j) (Figure C.6). Note that for computing change maps,

we have manually masked out areas with no banding, and we have also excluded mea-

surements with a wavelength uniqueness metric smaller than 0.75. We made the latter

choice to reduce the incidence of falsely detected changes between the maps, reason-

ing that measurements in areas with multiple dominant band wavelengths are error

prone. Typical change ranges between 0–10% for all study areas except SP3 and SP4,

where change ranges between 0–20%.
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Figure C.6. Wavelength change maps for all study areas. White pixels in-
dicate data points in areas without banding or areas with sufficiently low
values of the computed wavelength uniqueness metric. All color axes are
scaled to the interval [-0.25,0.25].

Our previous visual inspection suggested that there were no obvious systematic

changes in wavelength at any study area, except perhaps for those associated with iso-

lated instances of band loss in human-impacted areas. We visually reinspected areas

where measured change was greater than 25% in magnitude. In some cases, it appears

that these detected changes occur due to the loss of an individual band, often near ev-

idence of human activity (Figure C.7). In Figure C.7b-e, significant road cover appears

in the interband areas of the recent imagery, and are likely related to the loss of bands in
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these areas. In most cases, however, we saw no clear indication for the detected wave-

length changes, and attributed these false detections to wavelength measurement error

that arises due to the irregularity of the banding.

C.4.3. Wavelength-slope correlations

We computed the correlation between local wavelength and slope, and the results are

reported in Table 3.1). We used slope values that are closest to the center point of the

window corresponding to the wavelength/migration measurement. To assess the sig-

nificance of correlations, we used a paired t-test for which sample size is corrected to

account for spatial autocorrelation in the data [85]. The test is implemented in the li-

brary SpatialPack for R [95]. The correlation between wavelength and slope has been

empirically investigated in [83] and [69]. We found apparent correlations between

slope and wavelength only at study areas SP3 (r = −0.34, p = 0.04) and SP5 (r = −0.23,

p = 0.06).

C.5. Automated transect measurements

C.5.1. Protocol

We quantified aspects of vegetation dynamics in all study areas using automated tran-

sect measurements of individual bands. To do this, we segmented the aerial photo-

graph to identify bands, gathered image intensity profiles along transects through the

bands in direction of slope, and fit a simple step function to extract band width and
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure C.7. Examples of areas where detected wavelength change corre-
sponds to band loss or degradation. The first column is R.A.F. aerial photog-
raphy, the second column is recent satellite imagery, and the third column is
the detected wavelength change map. Locations of examples are as follows:
(a) SP1, (b) SP2, (c) and (d) SP3, (e) SP4, (f) and (g) HD4.
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position along the transect. We used this information to assess changes in band width

over time, as well as band migration.

We eliminated the large-scale background variations in pixel intensity in the aerial

photographs by subtracting a coarsely gaussian-blurred version of the image. We then

applied a manually-tuned threshold to create a binary image of the vegetation bands.

We passed this binary image to the regionprops function in MATLAB 2016b, and

extracted the areas and centroids of connected components, as well as the major and

minor axis lengths and orientations of ellipses fit to the connected components. We

applied manually tuned criteria on the areas and ratio between major and minor axis

length to isolate the vegetation bands in the binary image.

We then drew linear transects through the centroids of the stripes in the direction

of the minor axis. We visually confirmed that the minor axis direction serves as an

effective proxy for the slope direction. For all study areas, transect lengths are approx-

imately 100 pixels (∼190 m). The transects were drawn so that 25% of the transect

lies downslope of the centroid, and 75% lies upslope. We did this so that the same

transect could be used for both the aerial photographs and the more recent imagery,

accounting for band migration upslope. In order to obtain replicate measurements for

estimation of error and variance, we drew eight additional transects transverse to the

original (four on either side). These transects are spaced approximately 4 m apart,

which precludes double-sampling of pixels by adjacent transects. We then used these

transects to extract pixel intensity profiles of the aerial photography and more recent

imagery. We converted color images to grayscale before extracting intensities using the

rgb2gray MATLAB function. Whenever near-infrared channels were available in the
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data, we computed the SAVI values for the image and extracted the SAVI intensities

along transects as well.

We fit the intensity profile with simple plateau-like curves using MATLAB’s non-

linear least squares curve fitting function, lsqcurvefit. The curve has the form

f(x; b) = b1 + b2

2
[tanh(α(x − b3)) − tanh(α(x − b4))] ,

which approaches a piecewise constant function with levels b1 and b2 and breakpoints

at b3 and b4 in the limit as α → ∞ (Figure C.8). We used α = 500. To fit this function,

we rescaled all transects to lie along the interval x ∈ [0, 1]. For our data, the squared

error cost function typically had many local minima, and so the result was sensitive

to the initial guess for the parameters b3 and b4. We fit each intensity profile using 20

uniformly random initial guesses for b3 and b4 (such that b3 < b4), and chose among

these the result with the minimum squared error. We then used the value w = b4 − b3

as the measured width of the band along the particular transect, and compared b3 and

b4 values along a transect at different time points to measure migration. If the transect

had an accompanying SAVI profile, then the median SAVI value s along the interval

b3 ≤ x ≤ b4 was recorded.

Since each band was measured using multiple parallel transects, we obtained mul-

tiple measurements of w, b3, and b4 for each band. We used a threshold on the standard

deviation (σ ≤ 0.2) of the w measurements to exclude data points where bands may

have substantially degraded or disappeared, or where the measurement is likely poor

for some other reason. After applying the threshold, we calculated the mean w for
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b1

b2

b3 b4

Figure C.8. Schematic example of pixel intensity profile along a transect
(black) and plateau function fit to the profile (red). Levels b1 and b2, as well
as breakpoints b3 and b4 are indicated.

each remaining band at each time point. When SAVI data is available, we calculate the

mean s for each band as well.

C.5.2. Sool Plateau measurements

We observed appreciable increases in band width in SP1-SP4. We measured widths at

multiple time points in these areas to assess when the widening may have occurred and

whether it is a seasonal phenomenon. In Figure C.9, we plot the distribution of band

widths in the Sool Plateau sites SP1-SP5 over time. We have reconnaissance imagery

taken in 1967 for all these sites. We observe that band widths changed little between

1952 and 1967. In SP1–SP4, widths are then larger in the recent imagery (onward from

2004), and do not return to their 1952/1967 widths. In SP5, widths remain unchanged

between 1967 and 2016. We conclude that band widths increased in SP1–SP4 sometime

between 1967 and 2004, and that this widening is not a seasonal effect.



146

Feb. 1952
 (n = 177)

Dec. 1967
 (n = 163)

Jun. 2004
  (n = 76)

Mar. 2006
 (n = 108)

Sep. 2011
 (n = 105)

Dec. 2011
  (n = 56)

Feb. 2013
  (n = 77)

20

40

60

80

100

120

140

160

180

ba
nd

 w
id

th
 (m

)

SP1

Feb. 1952
 (n = 576)

Dec. 1967
 (n = 527)

Jun. 2004
 (n = 293)

Mar. 2006
 (n = 361)

Sep. 2011
 (n = 315)

Dec. 2011
 (n = 194)

Feb. 2013
 (n = 211)

20

40

60

80

100

120

140

160

180

ba
nd

 w
id

th
 (m

)

SP2

SP3

Feb. 1952
 (n = 155)

Dec. 1967
 (n = 151)

Nov. 2005
  (n = 86)

Aug. 2016
  (n = 40)

20

40

60

80

100

120

140

ba
nd

 w
id

th
 (m

)

SP4

Feb. 1952
(n = 459)

Dec. 1967
 (n = 527)

Aug. 2016
 (n = 263)

20

40

60

80

100

120

ba
nd

 w
id

th
 (m

)

Nov. 1952
 (n = 213)

Dec. 1967
 (n = 230)

Jun. 2004
 (n = 116)

Mar. 2006
 (n = 101)

Dec. 2011
  (n = 86)

Feb. 2013
  (n = 50)

20

40

60

80

100

120

ba
nd

 w
id

th
 (m

)

SP5

Figure C.9. Band widths measured at SP1–SP5 are shown at multiple points
in time. At SP1–SP4, widths change little between 1952 and 1967, and in-
crease between 1967 and recent imagery. Widths remain approximately con-
stant at SP5 from 1952-2016.
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C.6. Model simulations of band widening

We performed a sensitivity analysis to estimate the linear response of band width

and peak band biomass in the model by Klausmeier [9] (K99) to changes in the param-

eter set. In dimensional form, the model is written as

(C.1)

∂W

∂T
= A︸︷︷︸

precip.

− LW︸ ︷︷ ︸
evap.

− RWN2︸ ︷︷ ︸
transp.

+ V
∂W

∂X︸ ︷︷ ︸
advec.

,

∂N

∂T
= −MN︸ ︷︷ ︸

mort.

+ JRWN2︸ ︷︷ ︸
growth

+ DN
∂2N

∂X2︸ ︷︷ ︸
dispersal

.

We began each simulation using the parameter set shown in Table C.2 with an initial

state of the uniform equilibrium value plus small-magnitude spatial noise. We evolved

the initial state to 10,000 years to obtain an equilibrium migrating patterned state. We

then began a set of simulations where in each we perturb one value in the parameter

set listed in Table 3.3 by a percentage between 5 and 100% that we tuned to produce a

5-10% response in width ratio. We then evolved the initial equilibrium patterned state

by 50 years. The resulting patterned states are pulselike, and we measured widths

by thresholding using a small value (10−2) and counting the size of the resulting con-

nected components. We stored the maximum values for each band as well. We show

the width ratios and height ratios for all parameter perturbation simulations in Fig-

ure C.10, where the ratios are computed by dividing band widths or band peak values

in perturbed simulations by the widths or peak values from the initial patterned state.
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Parameter Units Description Value

A mm H2O yr−1 mean annual rainfall 150
L yr−1 evaporation rate 4
J kg m−2 (mm H2O)−1 biomass yield per unit H2O 0.0025
M yr−1 mortality rate 0.75
R mm H2O yr−1 (kg dry mass)−2 transpiration rate 50

DN m2 yr−1 plant dispersal rate 1
V yr−1 water flow speed 35

Table C.2. Baseline parameter set used for sensitivity analysis of K99 based
on the values given in [9]. Since bands in our regions of study are composed
of a mix of grasses and shrubs, parameters which are stated in [9] to differ
between grasses and trees (M , J , and R) are set at intermediate values so
that the spatial scale of banding resembles the scales in our regions of study.
Water flow rate V was also approximately tuned to the time scale of migra-
tion in our regions of study. We set the mean annual rainfall parameter to
150 mm, which is within the range of typical rainfall levels in our regions of
study.

Increasing A, J , R, Dn, and V and decreasing L, M , and Dw results in band width in-

creases. All parameter changes which increase band width also increase peak biomass,

except for Dn and Dw.

To simulate a scenario where band species composition shifts from woody to grass

biomass, we simultaneously increase J , R, and M by 10% and Dn by 50% (Figure C.10).

Although increasing mortality by itself reduces the band width, the simultaneous in-

crease of these four parameters results in band width increase.
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Figure C.10. K99 sensitivity analysis to width ratio. Parameters are per-
turbed individually by + (red) or - (blue) the percentage of the parameter
indicated.
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