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ABSTRACT

The Basic Locus of the Unitary Shimura Variety with Parahoric Level Structure, and

Special Cycles

Sungyoon Cho

In this paper, we study the basic locus in the fiber at p of a certain unitary Shimura
variety with a certain parahoric level structure. The basic locus M5 is uniformized by
a formal scheme N which is called Rapoport-Zink space. We show that the irreducible
components of the induced reduced subscheme N,.; of N are Deligne-Lusztig varieties
and their intersection behavior is controlled by a certain Bruhat-Tits building. Also, we

define special cycles in N and study their intersection multiplicities.
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CHAPTER 1

Introduction

This paper is a contribution to the theory of integral models of certain Shimura vari-
eties. In particular, we will give a concrete description of their basic loci. These problems
have important applications to Kudla’s program which relates arithmetic intersection
numbers of special cycles on integral models of certain Shimura varieties to Eisenstein se-
ries (see [KR11], [KR14a)), and Arithmetic Gan-Gross-Prasad conjecture (see [Zhal2],
[RSZ18a|, |[RSZ18b|, [RSZ17]). In this paper, we study the basic locus of the special
fiber of a certain unitary Shimura variety at an inert prime with parahoric level structure.
Let (G, hg) be a Shimura datum and let K5 be an open compact subgroup in G(A).
We refer to Section {4 for the precise definition. This Shimura variety has a moduli in-
terpretation M KG(G) as a moduli space of abelian varieties with additional structure.
This Shimura variety is a variant of the Shimura variety which appears in [GGP12]
and its integral model M Kg(é') is defined in [RSZ18b|. The basic locus of the special
fiber of My, (é) can be studied using the uniformization theorem of Rapoport and Zink,
[RZ], Theorem 6.30] (more precisely, see Theorem [4.3)). Therefore, we can study the cor-
responding Rapoport-Zink space and use its explicit description to study the basic locus
of the special fiber of the Shimura variety.

We will now describe our main results in more detail. First, let us consider the

Rapoport-Zink spaces which are local analogues of Shimura varieties.



1.1. The local result : relative Rapoport-Zink spaces

Let F' be a finite extension of QQ,, and let £ be a quadratic unramified extension
of F' with ring of integers Op and residue field F 2. We fix a uniformizer m. Let E
be the completion of a maximal unramified extension of F. Fix integers n and 0 <
h,r < n. Here, h is related to a certain self-dual lattice chain, and r is related to the
determinant condition. We define a moduli space N} / r(r,n —r) over Spf Og of quasi-
isogenies of strict formal Op-modules with additional structure (see Section [2] for its
definition). If h =0, r =1, F' = Q,, and E = Q,2, then this moduli space coincides with
the Rapoport-Zink space that is studied by Vollaard and Wedhorn ([VW11]). This case
corresponds to the hyperspecial level structure case. In their paper, they proved that the
irreducible components of the induced reduced scheme of N(SPQ /Qp(l, n — 1) are Deligne-
Lusztig varieties, and their intersection behavior is controlled by a certain Bruhat-Tits
building. Howard and Pappas studied the moduli space ./\/'(SP2 /0,(2:2) in [HP14] (also,
see Remark . When A is not equal to 0, we have a parahoric level structure. When
h =1, n = 2, the moduli space Ny -(1,1) is studied in [KR14b]. In this paper, Kudla
and Rapoport proved that the moduli space is represented by a Drinfeld p-adic half-plane.
Furthermore, they studied NépQ /0, (1,n—1) in their unpublished notes [KR]. They showed
that its reduced scheme has two kinds of Bruhat-Tits strata: One consists of projective
spaces and the other consists of Deligne-Lusztig varieties. Our result is the generalization
of theirs to arbitrary h and F.

The cases where F is a ramified extension of F' are also studied in literature. For

example, we refer to [RTW14], [Wul6| (also, see [RSZ18a|, [RSZ18b|, [RSZ17| for

their connection to Arithmetic Gan-Gross-Prasad conjecture).
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We now state our main result in local situation. Let (X ix, Ax) be a framing object
of Ng/F(l, n —1): X is a supersingular strict formal Op-module of F-height 2n over F;
1x is an Og-action on X, and Ay is a polarization. We note that the integer h is related
to this polarization. For this triple, there is an associated hermitian E-vector space N[ .
An Opg-lattice A in Nj; is called a vertex lattice of type t(A), if #*'AY C A C #*AY for
some ¢ and the dimension of A/7"'AY is ¢(A) as Fp-vector space. Here, A" is the dual
lattice of A. For each ¢ = 0,1, we denote by L; the set of vertex lattices. We also define

the following sets of vertex lattices:
L$ = {Og-lattices A | TAY C A C AV, t(A) > h + 1};

Ly = {Og-lattices A | TAY C A C AV, t(A) < h —1};
L] = {Op-lattices A | 7°AY C A C 7AY, t(A) >n—h+1};
Ly = {Og-lattices A | 7°AY C A C 7AY,t(A) <n—h—1}.

Note that there is a bijection between £] and L£; via the map sending A € L to
wAY € Ly . In this way, the union £J L L] can be identified with £J LU £y and then this
can be identified with the set of vertices of a certain Bruhat-Tits building. For each vertex
lattices A in £§ U LT, we define a projective subscheme N} of the reduced subscheme of
Ngp(l,n —1)o,. Fori=0,1and A € L, we define the set L3 := {A" € L[N C A}
We define the subscheme N} := Ny\ Uy /e ct Nyr. The schemes Ny, N} have the following

properties (see Theorem and Section |3.8)).

Theorem 1.1. The following properties of./\/'g/F(l,n — 1) hold.
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(1) For A € L (resp. A € L), Ny is isomorphic to a Deligne-Lusztig variety and it
is projective, smooth, and geometrically irreducible of dimension %(t(A)—h—l)Jrh
(resp. 3(t(A) — (n—h+1))+n—h).

(2) Fori=0,1, consider A € L. Then N} is open and dense in Ny and we have a
stratification (N/(\))Aecj,izo,l of Nitjp(1,n — 1)o, which is called the Bruhat-Tits
stratification. The closed subschemes N of./\/'g/F(l, n—1)o, are called the closed
Bruhat-Tits strata.

(3) Fori=0,1, consider two vertex lattices N C A in L. Then we have Ny C Ny.

(4) Fori = 0,1, consider two vertex lattices N, A in L. Then two closed Bruhat-
Tits strata Ny, Ny have nonempty intersection if and only if AN AN € L, and
in this case Ny N Ny = Nana:.

(5) For wvertex lattices Ao € L§, Ay € L7, two closed Bruhat-Tits strata Ny, Ny

have nonempty intersection if and only if TA{ C Ay.
We also have the following properties of A}: / F(lin—=T1)o,.

Theorem 1.2. The following assertions hold.

(1) In case h # 0,n, the formal scheme N (1,0 — 1)o, has semistable reduction.
If h = 0,n, Ng/F(l,n — 1)OE is formally smooth over Spt Op. In particular, it
is reqular for all h.

(2) There exists a Rapoport-Zink space Ng/Qp(l,n —1)o, of PEL type that is iso-

morphic to N p(1,n = 1)o,.

Remark 1.3. In case F' is unramified over Q,, the above statements in Theorem

and Theorem [1.2] hold without base change to Op.
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Remark 1.4. In [GHN16|, the authors provide the list of Shimura varieties such
that we have a simple description of the perfection of the basic locus as a union of the
perfection of Deligne-Lusztig varieties. Our cases can be regarded as the cases of (*A/,, wy)
and (A5, wY) (we use the notation in [GHIN16, 2.7]) with specific parahoric level
structures up to perfection (see Section for our parahoric level structure). Their
method does not rely on a direct analysis of lattices, and work for arbitrary parahoric

level structure. Therefore, it is better to study broad classes of Shimura varieties. Also,

Theorem [1.2] (1) is already obtained in [HPR18|.

We now describe in more detail. In Section we study the k-points of A2 / r(1,n—
1) by using the relative Dieudonne theory, where k is an algebraic closure of the residue
field of E. In Section 3 we define a subscheme N for each vertex lattice A and prove that
this is isomorphic to a Deligne-Lusztig variety. Furthermore, we prove the regularity of
./\féﬁp2 /Q, (1,n—1) via the theory of local model. Also, we prove that there is a stratification
of Ni/p(1,n — 1) so called Bruhat-Tits stratification. Finally, we relate N (1,7 — 1)
to a certain PEL-type Rapoport-Zink space as Mihatsch did in [Mih16|. By using this

result, we prove the regularity of N / r(1,n—1).

1.2. The global result: non-archimedean uniformization

In the global situation, we write F' for a CM field, F'* for its totally real subfield
of index 2, and ® for a CM type. We fix an embedding 7,7 € ® and an embedding
7:Q — @p. These two determine places vy of F'™ and wy of F. We assume further

that vy is unramified over p and inert in F. We denote by S, the set of places of F'*

over p. We will define three Shimura data: (G, hg), (Z, hz), (G, hg). The first Shimura
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datum is associated to a unitary group Resp+,oU(V) for a hermitian space V. This
Shimura variety is of abelian type and appears in [GGP12|. The second Shimura datum
is associated to a torus Z. The third Shimura datum is the product of the first two
Shimura data, and is our main interest. This Shimura variety is studied in |[RSZ18b],
and the authors formulate a moduli problem M KG(G') of abelian varieties with additional
structure. Here, K is a certain open compact subgroup of G(Af). We should note
that an integer 0 < h < n also appears in global situation, and this is closely related to
Kg. In particular, if h = 0, K5 gives a hyperspecial level structure, and if h # 0, K
gives a parahoric level structure. This h is also closely related to the h in local situation.
The moduli problem M KG(@) gives a model over a reflex field £ of the Shimura variety
ShKC(é). We write u for the place of E that is determined by ©. In [RSZ18Db|, the
authors define global integral models of M KG(G) over Spec Op and semi-global integral
models over Spec O, in case h = 0, and in case h = 1, F} = Q,. In our paper, we

construct semi-global integral models M (G) over Spec Og, () for arbitrary h.

Now we can formulate the following proposition.

Proposition 1.5. (Proposz’tz'on Proposz'tion We can formulate a moduli prob-
lem that is representable by a Deligne-Mumford stack MKG(G) flat over Spec Og (). For
K? small enough, MKG(@) is relatively representable over MS’W. The generic fiber
MKG(C?) X Spec O, () SPEC B is canonically isomorphic to MKG(G) and MKG.(CJ) is nat-
urally isomorphic to the canonical model of ShKé(é). Furthermore, if h = 0,n, then

M, (G) is smooth over Spec Op,w)- If h# 0,n, then Mg (G) has semistable reduction

over Spec O,y provided that I, is unramified over Q,.
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Now we will state the non-archimedean uniformization theorem of Rapoport and Zink
in our situation. By this theorem, we can relate the basic locus of M Kc(é) and the

Rapoport-Zink space N 1}; (I,n —1). In order to simplify notation, we write M for

wo/ T

MKG(G) and N for N7

IEE (1,n—1). Let E, be the completion of a maximal unramified
wo/ " vg

extension of E,, and let k be the residue field of Op . Let M55 be the completion of
Mo, along the basic locus of Mo, ® k. Then we have the following non-archimedean

uniformization theorem.

Theorem 1.6. (Theorem There is a non-archimedean uniformization isomor-
phism
0 : I(Q)\N' x G(A%) /K% = M>s,

where

N = (2(Q)/Kzp) x Noy, x  T] UWV)ED)/ K.

vESp\{vo}

Here, [ is an inner twist of G. We refer to Section for all notation above and its

detail.

1.3. Special cycles

In this subsection, we use the notation in Section In |[KR], Kudla and Rapoport
defined the special cycles Z(x) in Népz /0, (1;n —1) and computed its reduced scheme as
in their another paper [KR11|. By following their work, we define special cycles Z(x)
and another special cycles Y(y) in N /r(L,n—1)o,. We also study their reduced schemes

and arithmetic intersection numbers in some cases. In order to simplify notation, we write

N for N (0, 1)o,, and N for N p(1,n — 1)o,.

E
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Let k be the residue field of O, and let (Y, ig, Ay) (resp. (X, ix, Ax)) be the framing

object of NV (resp. NV). The space of special homomorphisms V is the E-vector space
V := Homo,, (Y, X) ®7 Q,
with a E-valued hermitian form A such that for all z,y € V,
h(z,y) == )\§1 oyYolxox € Endp,(Y)®Q ~ E.

For each x € V, we define the special cycle Z(z) to be the closed formal subscheme
of N¥ x N with the following property: For each Op-scheme S such that 7 is locally
nilpotent, Z(z)(S) is the set of all points (Y, iy, Ay, pv, X, ix, Ax, px) in NV x N(S) such
that

-1
Y xs S0 T x 85 X%, 8 2% X xg 8

extends to a homomorphism from Y to X.

For each y € V, we define the special cycle Y(y) in a similar way, but here we use
the isomorphism NE/F(l,n —1)o, =~ g;ﬁ(l,n — 1)o, to define the cycle. We refer
to Definition for the precise definition. All of these cycles are relative divisors in
NE /r(1,n —1)o,. Therefore we can consider the arithmetic intersections of these cycles
as in [KR11].

We prove the following theorem.
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Theorem 1.7. (Theorem Let {x1,...,%n_p,y1,...,yn} be an orthogonal basis

of V. Assume that

val(h(z;, z;)) =0 forall 3 <i<n—h,

val(h(y;,y;)) = =1 for all1 < j <h,

and write a := val(h(z1, 1)), b := val(h(xg,z3)). We assume that a < b and a #Z b

mod 2. Then we have

a

¢'(a+b+1-20).
1=0

1

X(Oya) @6y -+ By Ozan) = 5

More generally, consider another basis [x, Y| := [T1, ..., Tn_n,U1,---,Yn| of V such that
T=12q1,Y=1g2 for 1 € GL, 4(Og) and go € GL,(Og). Then we have

1 a
Oy @6+~ @6, Oz(a,) = 5 y_a'(a+b+1-21).
=0

In this case, the reduced scheme of the intersection has dimension 0. Therefore we
can use the deformation theory as in [KR11| for F' = Q, and [Liull| in general.

We have one more case that seems to be realistic, but we do not include it in this paper.
See Remark Also, we believe that the similar conjecture to [KR11} Conjecture 1.3]

can be formulated in our case.
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CHAPTER 2

The moduli space N of strict formal Op-modules

In this section, we will define the moduli problem N and study its structure.

2.0.1. The moduli space N .(r,n—7)

We fix a prime p > 2. Let F' be a finite extension of Q,, with ring of integers Op, and
residue field F,. We fix a uniformizer . Let E be a quadratic unramified extension of
F, with ring of integers Op and residue field Fp2. Let E be the completion of a maximal
unramified extension of E. Denote by * the nontrivial Galois automorphism of E over F'.

We recall the definition of strict formal Op-module from |[RZ17].

Definition 2.1. Let S be a scheme such that p is locally nilpotent in Og. A formal

Op-module over a scheme S is a formal p-divisible group X over S with an Op-action
1:0Op — End X.

Let X be a formal Op-module over an Op-scheme S. We call X a strict formal
Op-module if Op acts on Lie X via the structure morphism Orp — Og. A strict formal

Op-module X is called supersingular if all slopes of X as a strict Op-module are 1/2.

Let h be an integer with 0 < h < n. We fix a triple (X,ix, A\x) consisting of the
following data:

(1) X is a supersingular strict formal Op-module of F-height 2n over F;
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(2) ix : Op — End X is an Og-action on X that extends the Op-action on X;
(3) Ax is a polarization

At X XY,

such that the corresponding Rosati involution induces the involution * on Og.
We also assume that (X ix, A\x) satisfies the following conditions.

(a) For all a € O, the action ix satisfies
Charpol(ix(a)|LieX) = (T — a)" (T — a*)"".

Here, we view (T'—a)" (T — a*)"" as an element of Og[T] via the structure morphism.
We call this condition the determinant condition of signature (r,n — r).

(b) We assume that Ker A\x C X[r] and its order is ¢*".

Now, we can define our moduli problem.

Let (Nilp) be the category of Og-schemes S such that 7 is locally nilpotent on S. Let
NE sr(r,n — 1) be the set-valued functor on (Nilp) which sends a scheme S € (Nilp) to
the set of isomorphism classes of tuples (X, ix, Ax, px)-

Here X is a (supersingular) formal Op-module of F-height 2n over S and ix is an

Opg-action on X satisfying the determinant condition of signature (r,n — r)
Charpol(ix(a)|Lie X) = (T —a)" (T —a*)"", Va € E.

Here we view (1" — a)" (T — a*)"" as an element of Og[T] via the structure morphism

O — OS~
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Furthermore, px is an Og-linear quasi-isogeny

pxng—)XXFq2 S,

of height 0, where S = S X, F2 and Xz is the base change X xg 5.
Finally, Ax : X — XV is a polarization such that its Rosati involution induces the

involution * on O, and the following diagram commutes up to a constant in O

Axz
_ Vv
Xg — XY

b ]
AxX—

Xz — XY,

Two quadruples (X,ix,Ax,px) and (X', ix/, Axs, px+) are isomorphic if there exists

an Opg-linear isomorphism a : X — X’ such that px: o (o Xxg S) = px and @ o Ax/ o«

differs locally on S from Ax by a scalar in O%.

The functor Ng/F(r,n — 1) ® Op is representable by a formal scheme over SpfOp
which is locally formally of finite type. This is explained in [Mih16|. Indeed, we can use
[RZ|, Theorem 2.16], and the fact that the condition that the Op-action on X lifts from
X, and the condition that the lifted action is strict are closed conditions.

Furthermore, when F is unramified extension of Q,, we will fix a decent (X, ix, Ax) in
Remark (3.31, Then N / p(r,n—1) is representable by a formal scheme over Spf O which
is locally formally of finite type. For the moment assume that we fix this triple (X ix, Ax)
so that Nk / p(r,n — 1) is representable by a formal scheme over Spf Op which is locally

formally of finite type, where F' is unramified over Q,.
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From now on, we will restrict ourselves to the case r = 1. Note that the case (r =
1,h=0,F =Q,) is studied in [VW11]. For simplicity, denote by N the moduli problem

2.1. Description of the points of A/

Let k& be a fixed algebraic closure of Og/mOp = Fe. In this subsection, we will
study the set N(k). For this, we need to use relative Dieudonne theory in the sense of
[RZ|, Proposition 3.56]. We use the following notation.

Let F be the completion of a maximal unramified extension of F containing E and
O its ring of integers. Let F™* be the maximal unramified extension of Q, in F' and Opu
its ring of integers. Let L be a perfect field with [ -algebra structure o : F, — L. Then,
we get a map Op« — W(L) induced from oy : F, — L. We define Wy, (L) = Or @0 4u a0
W (L). This is the ring of relative Witt vectors of L. In particular Wo,, (k) = Op.

Let o be the Frobenius element in Gal(F/F).

We recall from |[RZ|, Proposition 3.56] (or [KR14b|, Notation]) the definition of the
relative Dieudonne module. Let X be a formal Op-module of F-height 2n over k. Let
(M, V) be the (absolute) Dieudonne module of X. Consider the decomposition

Or @z, W(k)= [ Or ®0pua W(k).

oaFg—k
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Here, o runs over the set of F,-embeddings o : F, — k. Via this decomposition, the

action of O on M induces the decomposition

M= @ e

oa:Fg—k

We define the relative Dieudonne module of X as
(M, V =V7),

where f = |F": Q,| = |F, : F,|.

Now, let (M, V) be the relative Dieudonne module of X, and let N = M ®7 Q be its
relative Dieudonne crystal. Denote by Ny = M ®pg F its base change. The Og-action ix
on X induces an E-action on Nj. Let F be the Frobenius of M. The polarization Ax of

X induces a nondegenerate F-bilinear alternating form on Ng
()t N x Ny — F,
such that for all z,y € Ny, a € F, it satisfies

(2.1.0.1) (Fz,y) = (z,Vy)”,

(2.1.0.2) {az,y) = (z,a"y).

Since we have the decomposition £ ®p F ~ F x F, the E-action i on Nj, induces
7./27-grading

Ni = Nio @ N 1.
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Note that by (2.1.0.1)), (2.1.0.2), each Ny, is totally isotropic with respect to (-,-).

Also, for ¢ = 0,1, we have that F : Ny; = Ni i1, V : Ni; — Nj+1 are homogeneous of
degree 1 with respect to the decomposition.

For an Og-lattice M = M, @ M;, we define the dual lattice Mf of M; as
M = {x € N1 |(x, M) C Op}.

For Op-lattices M; C M] C Ny, we denote by [M] : M;] the index of M; in M|, i.e.

the length of the Op-module M//M;. If [M] : M;] = t, we write M; ¢ M.

By the relative Dieudonne theory, we have the following proposition.

Proposition 2.2. There is a bijection between the set N'(k) and the set of O p-lattices
M in Ny such that

o M is stable under F,V, and Og-action;

e Charpol,(a, M/VM) = (T — a)(T — a*)" ! for all a € Og;

h —h h —h
o My C Mt '"C a "My, My C Mg "C 7' M,.
We will use the following lemma in the next subsection.

Lemma 2.3. ([Vol10, Lemma 1.5]) Let M = My & M, be an Og-invariant lattice
in N. Assume that M is invariant under F and V. Then M satisfies the determinant
condition of signature (r,n —r) if and only if

n—r

7TMO C .FMléMo,

7TM1 & .FMO nET Ml.
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Proof. See [Voll0, Lemma 1.5]. O

2.2. Description of the points of A/ II

In this subsection, we will describe the set N'(k) as the set of lattices in Ny . We use
the following notation.

Let 7 be the o?-linear operator V™' F on Ny, and let Ni o be the set of T-invariant
elements in Nio. Then Ny, is an E-vector space. Note that for every 7-invariant lattice
A in Ny, there exists a 7-invariant basis of A (see [Vol10, 1.10]). Therefore, we have
Nyo = Nj,®g F.

We define {z,y} := (z, Fy). This is a nondegenerate form on Ny o which is linear in
the first variable, and o-linear in the second variable.

Also, this form {-, -} satisfies the following properties (see [Vol10, 1.11]):
{LE’, y} = _{y7 ,7_*1(1,)}0’

{r(@), ()} = {z,9}""

For an Op-lattice A in Ny, we define A" the dual lattice of A with respect to the
form {-,-} as

AY = {z € Nyol{z, A} € Op}.

For an Op-lattice A C Ny, we have

(A)Y = (4),



24

T(AY) = 1(A)Y.
We can now state the following description of NV (k).
Proposition 2.4. There is a bijection between N (k) and the set
TBY C A'C BY,

h n—
Op-lattices A& B C Nyy | wAY C B'C' A,

m™B C ACB.

Proof. For M = My ® M, € N(k), let A= My, B = Mi-. Then, by Proposition ,

we have 7B C A g B. Now, we will show the following equality.
(2.2.0.1) (M) = FM,.
Indeed, we have
(Mi)Y = {y € Niol{y, Mi'} C O}
= {y € Nol{y, FM;") C O}
={y € Niol(FMi",y) € Op}
= {y € Niol(Mi",Vy) € O}
=V (M) =V M.

Therefore, by multiplying 7, we get the equality (2.2.0.1)).

By Lemma and (12.2.0.1)), we have 7 BY cA'C B
Similarly, we have VM, ¢ My <= M, C V-'M, <= FM, C V'F(M,) <

(M) < T(My) <= wM < Mj-. Therefore, we have mAY CB'C A
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Conversely, if we have Op-lattices A, B satisfying the above conditions, then one can

easily show that A @ B+ is an element in N(k). O

From now on, we identify N (k) with the set defined in the Proposition [2.4]

2.3. The sets R,, S\ indexed by vertex lattices A.

In this section, we will define the sets Ry and S, indexed by the lattices A which are

called vertex lattices. First, we start with the definition of the vertex lattices.

Definition 2.5. Let £; be the set of all lattices A in N[ (hence, 7-invariant) satisfying
AV C A € AV, An element in £; is called a vertex lattice. We say that a vertex
lattice A € L; is of type t if mT1AY & A. We denote by t(A) the type of the vertex lattice

A.

Remark 2.6. For A ¢ B a pair in NV (k), we define
TA:=A+7(A)+-- +771(A),

T;B := B+ 7(B) +'--—|—Ti_1(B),
Then, by [RZ, Proposition 2.17], there exist positive integers c,d such that T,.(A) and
T4(B) are T-invariant.

Now, we will show the following lemma.

Lemma 2.7. Let A g B be a pair in N(k). Let ¢,d be the smallest positive integers
such that T.A, T;B are T-invariant, and write Ay = T.(A), Ap :=Ty4(B). Then, at least

one of the following assertions holds.



(1) Ag is a vertez lattice in Loy, and

WAVéBCABCAYB

U

1
Ay, C #BY C A
(2) A4 is a vertex lattice in Ly, and

WBV&ACAACWAX

U U

1
Ay C 7w*AY C 7B

To prove the Lemma [2.7, we need the following lemma.

Lemma 2.8. For1 <i<c¢, 1 <5 <d,

(2.3.0.1) TANT(T,A) = 7(Ti_1 A),
(2.3.0.2) T, \AC TA,
(2.3.0.3) T,BA+(T;B) = 7(T;_1 B),
(2.3.0.4) T,\BCT;B.

Proof. We will show (2.3.0.1)), (2.3.0.2)). The proof of (2.3.0.3), (2.3.0.4) is similar.

26
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Note that we have

(2.3.0.5) 7B CA'C BY,

(2.3.0.6) TAV C B'C AV

Therefore, we have 7B ¢ Aand 7BY ¢ 7(A) by taking the dual of (2.3.0.6). If A is
T-invariant, then ¢ = 0, and hence there is nothing to prove. Now assume that A is not
T-invariant. Since 7BY C ANT(A) € A and 7B is of index 1 in A, AN 7(A) should be
mBY. Also A and 7(A) should have index 1 in T3 A. This shows when ¢ = 1.

For (2.3.0.1)), note that 7(A) < T1A and 7(A) c 7(T1A). If Ty A is T-invariant, then
¢ = 1. Therefore, there is nothing to show. Assume that T} A is not 7-invariant. Then
TiyANT(TyA) = 7(A). This shows for i = 1.

For arbitrary i, we can use the induction on . O
We now go back to the proof of Lemma

PRrOOF oF LEMMA 2.7 We will prove this lemma by dividing by 6 cases and their
subcases.

Case 1. If B € Ly, then (1) holds.

Case 2. If A € £y, then (2) holds.

Case 3. Assume that A is 7-invariant, but not a vertex lattice in £;. Then A ¢ wAY.
Since mAY is of index 1 in B, and A C B, we have B = A+ wA". Since A is T-invariant,
B is also 7-invariant. Therefore, if B C BY, then B € Ly, and hence (1) holds. Therefore,

it suffices to show that B C BY. Assume that B SZ BY. Since 7BY is of index 1 in A and
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7B C A, we have A = 7B + 7wBY. However, tBY C mAY and 7B C wA" implies that
A =rB+7nBY C mAY which contradicts to our assumption that A is not a vertex lattice.

Case 4. Assume that B is 7-invariant, but not a vertex lattice in £y. Then B ¢ BY.
Since 7B" is of index 1 in A and 7B C A, we have that A = 7B + 7B". In particular, A
is also 7-invariant. Also, tBY C mAY and 7B C wA" implies that A C wAY. Therefore,
A is vertex lattice in £4 and (2) holds in this case.

Case 5. Assume that A, B are not 7-invariant and B C BY. In this case, we have

(2.3.0.7) ANnT(A)=7B",

(2.3.0.8) BNn7(B)=nA".
Also, note that
B+7(B) c BY c n'7(A),
7(B) +7*(B) c 7(BY) Cc n'7(A).

Therefore, we have

TyB C n'7(A) C 7' A,

and,

(2.3.0.9) T,B C n 1T, ,A.
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Case 5-1. Assume that d — 1 < ¢. Since TyB is 7-invariant, (2.3.0.9)) implies that

7B c (a7 (T A) B N riria) N7 (@ BY) = (TuB)".

leZ leZ leZ

The last equality is induced by
(T;B) = B"Nn7(BY)Nn---n7YBY),

and the fact that (7;B)" is T-invariant. Therefore, (1) holds in this case.
Case 5-2. Assume that d — 1 > ¢. Then, T,A C T.B and T.A is r-invariant.

Therefore, we have

r.Ac 018 B N B N7 (xAY) = n(T.A)".

IeZ leZ leZ

The last equality is induced by
(T.A)Y = A"Nnr(AY)N--- N7l (AY),

and the fact that (T.A)Y is 7-invariant. Therefore, (2) holds in this case.

Case 6. Assume that A, B are not 7-invariant and B ¢ BY. In this case, (2.3.0.7)

and (2.3.0.8) hold and we have A = 7B + wBY C mAY (see the case 4). By (2.3.0.8), we
have A C B and A C 7(B). Therefore, TYA C 7(B) and

T, A C 7(T._1B).
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Case 6-1 Assume that ¢ < d. Then, we have
nAc (1B B Nis) N7 (rAY) = n(T,A)".
lez lez lez
Therefore, (2) holds in this case.

Case 6-2 Assume that d < ¢. Then, B C 7~'A implies that TyB C 7T A. There-

fore, we have

1B c (r i (Ta) B M airi(a) N7 'r(xBY) = (TuB)".
leZ

IEZ leZ

This is a contradiction, since B ¢ BY and B C T,B C (I;B)Y C B".

This completes the proof of the Lemma [2.7] O

Now, let us give the definition of the sets Ry (k), Sx(k).

Definition 2.9. (1) For a vertex lattice A € £,, we define the set

O p-lattices U U

AEBC Ny | mAVC A & B
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(2) For a vertex lattice A € Ly, we define the set

O -lattices U

U
ACBCN, | 7AVC 7BY & A
A

Proposition 2.10. We have N'(k) = Uper, Ba(k) UUner, Sa(k).
Proof. This is clear from the Lemma 2.7 O

Proposition 2.11. If A € Ly and Sy is not empty, then h +1 < t(A) < n, and

t(A)=h+1 mod 2.
Proof. This is clear from the Lemma (1). OJ

Proposition 2.12. If A € L1 and Ry is not empty, thenn —h+1 < t(A) <n, and

t(A)=n—h+1 mod 2.
Proof. This is clear from the Lemma [2.7] (2). O

Definition 2.13. We write £ for the set of lattices in £y with ¢(A) > h + 1 and
Ly for the set of lattices in £y with ¢#(A) < h — 1. Similarly, we denote by L] the set of

lattices in £ with ¢(A) > n—h+1 and L7 the set of lattices in £, with ¢(A) <n—h—1.

Remark 2.14. For A; € LT, we have n(7AY)Y = Ay C 7AY C 7 1A; = (7AY)Y.
Therefore, we can regard wA{ as the element of £,. By this identification, we have a

bijection from £§ U Ly to £ U L] by sending A € L to A, and A € Ly to mAY.



32

Remark 2.15. When h = 0 (the case in [VW11]), Rx(k) does not occur in N (k)
(by Proposition 2.12). When h = 1, for any pair (A, B) € Ra(k), A should be A and
t(A) = n. In this case, B can be any lattice satisfying A C B A Hence, we have
Ry (k) ~ P"1(k). We should note that Kudla and Rapoport already proved this result

in their unpublished notes [KR].

Proposition 2.16. Let Ay, Ay be elements in L.
(1) ]fAl C AQ, then SAl(k) C SAQ(]C)

(2) If Ay N Ay is in L, then Sa, (k) N S, (k) = Sa,na, (k). Otherwise, it is empty.

Proof. (1) is clear from its definition.

For (2), we will show that Sy, (k) N Sa, (k) C Sa,na, (k). Let (A, B) be the element in

Sa, (k) NSy, (k). Note that (A, B) satisfies the following diagrams,
AV & B c A C AY
Ay C #BY C A
and

TAY C B C Ay C A

Ay C 7#BY C A
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These two diagrams imply that

7AY C B C AiNAyCAY C (A NAy)Y
U U

T(ANA)Y = 7AY +7AY € 7BY C A

Therefore, Ay N Ay is in £§, and (A, B) should be contained in Sy, (k).

Conversely, Sa,na, (k) C Sa, (k)N Sa, (k) is obvious from (1). This completes the proof

of the proposition. O

Proposition 2.17. Let Ay, Ay be elements in LT .
(1) If Ay C Ay, then Ra, (k) C Ra, (k).

(2) If Ay N Ay is in L7, then Ra, (k) N Ra,(k) = Ra,ra, (k). Otherwise, it is empty.

Proof. The proof is the same as the proof of Proposition [2.10] O

Now, let us consider the intersection Ra, (k) N Sy, (k).

Proposition 2.18. Let Ay € L, Ay € L.
(1) If TAY € Ao, then Ra, (k) N Sa, (k) = 0.
(2) If TAY C Ao, then

1
Ay C mAY C B C A
O jx-lattices

RAI (k> N SA0<k) = h U
A C B C Nip

AL O A D aBY S gAY

Proof. This is clear from the definition. O
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Remark 2.19. Let h = 1, Ay € LT, A € L§, and TA} C Ay. For any (4, B) €

Ry, (k), we have A = A; by Remark Therefore,

O z-lattices L
R, (k) N Sy (k) = TAY C B C Ay
B C Nk70

This is isomorphic to P (k), where m = [Ag : wAY].

Remark 2.20. We can apply our method for Ng/F(Q, 2) which has been studied in
[HP14]. We should note that all of the following descriptions of k-points is already
obtained in loc.cit. with a different method.

By using the relative Dieudonne theory and similar steps in Section [2, we can show

that there is a bijection between N (k) and the set
{ Op-lattice B C Ny | 7B & B & BY }

We can divide the set into three cases.
case 1 BN7(B) ¢ B.
case 2 BN7(B)=nBY and B c T\B.
case 3 BN7(B)=7nBY and T\ B = B".

In case 1, let TAY = BN 7(B). Then, the pair (A, B) satisfies

TAY EBC AV
TBY éAéBV;

7B &AL B

Therefore, by using Lemma we can show that at least one of the following is true.
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(1) A is 7-invariant and A = wAY.

(2) Ag C Aé

In case 2, one can prove that Ag C A}.
In case 3, since BN 7(B) = 7B, we have BY + 7(BY) = 7 !'7(B) by taking dual.

Since BY = B + 7(B), we have
B+7(B)+ (B) = 7 '7(B).

Let d be the smallest integer such that TyB is 7-invariant. Then TyB = 7 '7(T;_5B) is
T-invariant, and this means that T,;_o B is also 7-invariant. This is possible only when B
is T-invariant.
In summary, B N 7(B) is a vertex lattice of type 0 or Agp C AY, (hence Ap is a vertex
lattice). This is the analogue of Lemma [2.7]
Therefore, for each vertex lattice A, we can attach the following set.
(1) If A =mAY, then we attach the set,
O -lattices L ) L
ACBCBYCAY
B C Nk,O
This is the set of k-points of a Fermat hypersurface.
2
(2) If TAY C A, then we attach the set,
O p-lattices

B=A
BCNk’O

This is one k-point.



(3) If AV ¢ A, then we attach the set,

O p-lattices L ) L

AV CmBY C BCA=AY
B C Nk70

This is the set of k-points of a Fermat hypersurface.

N (k) is the union of the above sets and this is the same result as in [HP14].

36
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CHAPTER 3

Subschemes N, of N/

In this section, we will first define the subscheme N, for each vertex lattice A, and
prove that Ny is isomorphic to a generalized Deligne-Lusztig variety. Also, we will prove
the regularity of /\/'g/F(l, n—1) ® Op. Before we begin, let us introduce some notation.
In the end of the Section , we showed that N7 / p(1,n—1)® Op is representable by a
formal scheme over Spf O and furthermore, N / ~(1,n — 1) is representable by a formal
scheme over Spf O if F' is unramified over Q,. For this reason, we will use the following
notation. Let F = Fp if F is an unramified extension of Q,, and let F = F,2 if F is
ramified over @,. Then N} p(1,n — 1) ®o, F is the special fiber of N (1,n — 1) (resp.

Ng/F(l, n—1)® Op) if F' is unramified over Q, (resp. if F' is ramified over Q,).

3.1. Strict formal Op-modules X,+ and X,-

In this subsection, we fix a vertex lattice A € L, for i = 0,1. We will define

the strict formal Op-modules X+, Xx- over F 2 with Og-action, polarizations A\y+ and

q
quasi-isogenies pp+ : Xp+ — X. For this, we will construct the following two Dieudonne
submodules of N.

First, if A € £, we define the lattices A* and A~ by
Af=A

Af =V7H(A)
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Ay =7AY
Ay =V(AY)
AT =Af @ AT
A~ =A; & AT

Then, one can easily show that A~ = (A*)L. Since F = V on AT and A~, we have
that AT and A~ are Dieudonne submodules of N.

In case A € L7, we define the lattices AT and A~ by

AF = A
AT =V7H(A)
0 = w2 AY
A7 =7V(AY)
AT =A@ AT
A=Ay AT
Then, we have A~ = m(AT)+. Again, these AT and A~ are Dieudonne submodules of

N.

For A € L, we have A C 7'AY. Therefore, the pairing 7="!(-,-) on N induces a
Wo, (F2)-pairing on A* and A~.

Now, let X+ and X - be the strict formal Op-modules associated to AT and A~ with

quasi-isogenies pp+ : Xp+ — X.
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We will use these two strict formal Op-modules to define the subschemes A, of N.

3.2. Subschemes N, attached to vertex lattices A

We fix A € L], for i = 0,1. Let S be a F-scheme. We define N} as the subfunctor of

N ®0, F consisting of tuples (X,ix, \x, px) € N(S) such that
pX,A+ X p_x> Xs ;p[ﬁ)g (XA+>5

(pa-)
px.a- (Xa-)s P X 25 X

are isogenies.

We have the following lemma.

Lemma 3.1. The functor Ny is representable by a projective F-scheme and the

monomorphism Ny — N @ F is a closed immersion.
Proof. See [VW11, Lemma 4.2]. O
Lemma 3.2. If A € L, then Ny(k) = Sa(k), and if A € L], then Ny(k) = Ra(k).
Proof. This is clear from the definition of N/,. d

3.3. Deligne-Lusztig varieties

In this subsection, we will recall some results about Deligne-Lusztig varieties.

Let G be a connected reductive group over a finite field K. Denote by G5 the base
change of G over R, where £ is a fixed algebraic closure of 8. Let F : G — G be the
Frobenius morphism with respect to &, and let (W, S) be the Weyl system of Gz. Then F

gives an automorphism on W. By Lang’s theorem, G is quasi-split, and hence F(S) = S.
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For I C S, let W} be the subgroup of W generated by I, and let P = BW;B be the
corresponding standard parabolic subgroup of G.

For I, J C S, we denote by ‘W the set of minimal length representatives w € W in
the double coset W, \W/W;.

Now, we define the generalized Deligne-Lusztig varieties as follows.

Definition 3.3. Let I C S. For each w € W, we define the generalized Deligne-

Lusztig variety Xj(w) by
Xi(w) :={g € G/P:g ' Flg) € PrwPr}.

We will need the following two results later.

Proposition 3.4. (|[Hoel0, Lemma 2.1.3]) For w €'W7)  the Deligne-Lusztig vari-
ety Xi(w) is smooth of dimension l(w) + I(Wr)) — l(Winwz1)), where l(w) is the length

of w, (W) = max{l(w')|w" € Wi}, and “F(I) = wF([)w™.

Proposition 3.5. ([BRO6|) The following assertions are equivalent.
(1) X;(w) is geometrically irreducible.
(2) Xi(w) is connected.

(3) There exists no J C S with F(J) = J such that Wiw C Wy.

3.4. The Deligne-Lusztig variety Y,

In this subsection, we will define the Deligne-Lusztig variety Y. For ¢ = 0,1 we fix a

vertex lattice A € L. We use the following notation.
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e Let V) be AJ /Ay and let (-, ) be the skew-hermitian form on Vj induced by 7={-, -}.
Note that V} is a Fj2-vector space of dimension d := t(A).

e Let Jy be the special unitary group associated to (V,(-,-)). This is a connected
reductive group over F,.

o Let F : Jy — Jj be the Frobenius morphism over F, and (W, S) be the Weyl system
of Jy.

Note that

Ja &F, qu ~ SL(VA) = SLd,IFqg-

Therefore, we can identify W with the symmetric group Sy, and S with {s1,...,s4},
where s; is the transposition of ¢ and ¢ + 1.

The Frobenius F induces an automorphism of W, and this is given by the conjugation
with wy € Sy, where wy(i) = d + 1 — i for all i.

e For a Fj2-algebra R, we denote by V) r the base change V) ®p,2 R. Let o be the
Frobenius of R. For a R-module M, denote by M?) = M ® ro I, the Frobenius twist,
and denote by M* = Hompg(M, R). Let U be a locally direct summand of Vi r of rank

m. We define its dual module U" as follows. Since (-, -) induces an R-linear isomorphism
v (V) = (Var)",

Y(U@) is a locally direct summand of (Vj z)* of rank m. Let U be the kernel of the
composition

Var > (Var)™ — p(U@)*,

This is a locally direct summand of Vj r of rank d — m.
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In particular, if R = k, then
U'={z€Vyg:(z,U) =0}

Remark 3.6. Let R = k. For a lattice A such that 7"*'AY C A C A, the quotient

A/mTAY is a subspace of V) ;. Then by definition, we have
7_‘_’L'+1AV/7T7:+1AV — (A/?Ti+1AV)Y.

We will need the following lemma.

Lemma 3.7. ([Voll0, Lemma 2.17]) Fiz [ C S, and let §l be a flag in Jp/P;.
Then the Frobenius F and the duality morphism §l — FI' define the same morphism

In/Pr — Ja/Prp, i.e. the dual flag §U" is equal to F(FI).

Let A € L§ and d = 2] + h + 1 (recall that h is from NE/F(l,n —1)). We can take

the set Iy C S such that the elements in Jy/P;, parametrize flags
0'EALBCW,
where A, B are subspaces of V. For example, we take
In = {51,580, 8142, - - 5 Si4hs Sl4ha2s > S2A4h |y

where h > 1,1 > 1.
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In case A € L], and d = 2] + (n — h) + 1, we take Iy C S such that the elements in

Jr/ P, parametrize flags

41 — n—h — 1
0cC 7B 'C A C Vi,

where mB, A are subspaces of Vj.

Definition 3.8. In case h = 0,n, we define wy = id. Incase 1 < h < n —1, we
define w, as follows. If A € L, we define wy = s;118142...514n ot wy = (I+1,1+h+1),
the transposition of [ + 1 and [ + h + 1. Note that these two wy gives the same coset in

Wi, waWx(r,). In case A € LT, we define wy = $1418142 - - - Sin—n-
Then we have the following proposition.

Proposition 3.9. We have the following bijections.

(1) If1<h<n-—1and A € L], then

Sa(k) = Xy, (id)(k) U X1, (wa) (k).
(2) If1<h<n-—1and A € L], then

Ry(k) = X1, (id) (k) U Xy, (wa) (k)
(3) If h=0 and A € L], then

Sa(k) = Xy, (id) (k).
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(4) If h=n and A € LT, then
RA(k) = X1, (id) (k).

Proof. (1) Let (A C B) € Sy(k). By sending this to (A/7AY C B/wAY), we have an
clement in X7, (id)(k) U X, (wa)(k) (here we use Lemma [3.7)).
Indeed, if
0EaBY ¢ A'C Ay EBEA,
then (A/7AY C B/mAY) € X, (id)(k).
And if

mBY C AZ nAY C B,

then (A/7AY C B/mAY) € X, (wp)(k).

The proofs of (2), (3), (4) are similar. O

Definition 3.10. For i = 0,1, let A € L. If 1 < h < n — 1, then we define a
IF ;2-scheme

YA = X]A (Zd) L X]A (UJA) = X[A(UJA).

The second equality is from the property of the Bruhat order (see [HP14, Lemma 3.7]).
If h=0and A € L, then we define Y := X, (id). Similarly, if h = n and A € L], then

we define Y, := X7, (id). By abuse of notation, we denote by Y} its base change Y ® F.
By Proposition (3.4 and Proposition [3.5] we have the following proposition.

Proposition 3.11. For A € L (i =0,1), Y, is irreducible, and
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(1) if A € L, the dimension of Yy is

tA)—1—h
Sk
2 +h

(2) if N € LT, the dimension of Yy is

t(A)—1—(n—nh)

5 +n — h.

3.5. Description of the points of AN

In this subsection, we will use the theory of Op-windows in [ACZ16|, [Ahs11] to
obtain a description of N, (k) for an arbitrary field extension k of F (For a perfect field
k, we can use the relative Dieudonne theory as in Section . This will be used
to prove the Theorem [3.14] For simplicity we denote by O the ring of integers Op.
Let k be an arbitrary field extension of F, and let Wy (k) be the ring of ramified Witt
vectors. Let Wo = (Wo(k), Io(k), k% Y™ ) and Wor = (Wo(F), iWo(F),F,° Y™ ) be
Witt O-frames.

Let (M, F,V) be the relative Dieudonne module of X defined in Section [2.1] then
(M, VM, F, V1) is the Wy p-window of X. The inclusion Wo(F) — Wy (k) induces a
morphism of O-frames Wor — Wp . Then by base change, we get the Wy p-window
(M, My, Fie, Vi) of X ® k. More precisely,

o M, = Wo (k) ®we, ) M.

e M. = Ker(wy ® pr), where wy is 0-th Witt polynomial, and pr : Ml — M /VM.

o i =7 QF.
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e V. ! is the unique °-linear morphism which satisfies

Villwoy) ="weV 'y,

Vi'tw ®y) =w e Fy,

for all w € Wy (k), x € M, and y € VM.
Let N = My, ®w,, k) Frac(Wo(k)). The Og-action on M induces the Og-action on Nj.
The polarization A ® k on X ®p k induces a nondegenerate Frac(Wq(k))-bilinear al-

ternating form (-, -) on NV

<.7 > : Ny X N, — Frac(Wo(k))a

such that for all x,y € N, and a € F, it satisfies

<Fkl', Fk?!) = 7T<J], y>07

(az,y) = (z,a"y).

The Og-action on Ny induces Z/2Z-grading
Ni; = Nio @ Ni 1.

Each Ny ; is totally isotropic with respect to (-, ) and Fj is homogeneous of degree 1
with respect to the decomposition. For a Wy (k)-lattice M = My @ M; C Nj, we define

the dual lattice M+ = Mi- @ Mg- as

M- = {2 € Ny |{z, M) € Wo(k)},i=0,1.
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Let (Aki,VA,f,Fk,Vk_l) be the Wo p-windows of X+ ® k. Then by the theory of

O-windows, we have the following proposition.

Proposition 3.12. There is a bijection between the set Ny(k) and the set of Wo(k)-
lattices M = My ® My in Ny, such that
(1) M is Fy, and Og-invariant.
h n—h h n—h
(2) My C M+ C 7'My, My C Mg C =M.
n—1 1 1 n—1
(3) My C My C My, nMy C M{ C M, where M' = M} & M] = Ker(M —
AL JVAL).
(4) A, € M C A}

Proof. The first condition is obvious. The condition (2) is from the condition on
polarization: Ker A\ C X[r] and the order of Ker A is ¢*". The condition (3) is the deter-

minant condition. The last condition is from the definition of N}. OJ

3.6. The isomorphism between N, and Y,

Let A € £;. In this subsection, we will prove that Ny and Yj are isomorphic. Let
S be a F-scheme, and let X be a strict formal Op-module over S. We denote by D(X)
the Lie algebra of the universal extension of X in the sense of [ACZ16|. Recall that
X — D(X) is the functor from the category of m-divisible formal O-module over S to the
category of locally free Og-modules. This is compatible with base change.

Now, we will define a morphism f : Ny — Yj.
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Let R be a F-algebra, and (X, ix, Ax, px) € Na(R). By definition of Ny, we have two

isogenies

pX’AJr

Px,A—
XA—,R >XR XA+,R

Let By = AT/A™, E(X) := Ker (D(pxa-)). Then by [VW11, Corollary 4.7], E(X)
is a direct summand of the R-module By ®r R. By the Og-action on B, and on E(X),

we have the following decompositions
By =Bao @ Bay,

E(X) = Ey(X) © Ex(X).

We write (-, ) for the alternating form 7=*"1(-,-) on B,.

Remark 3.13. Let R = k be an algebraically closed field. If A € Lg, then Ey(X) =
A/mAY and B (X)*Y = B/mAY (* means the dual with respect to (-, -)') with the notation
in the proof of Proposition . Therefore, Eo(X) C Ey(X)Y. Similarly, if A € £7, then

Eo(X) = A/m*AY and E,(X)Y = 7B /n?AV. Therefore, we have E1(X)* C Ey(X).

From the remark, we obtain a map f : Ny(R) — Yy (R) by sending (X, iy, Ax, px)
to (Eo(X) € Ey(X)*) where A € L£§, and to (E1(X)Y € Ey(X)) where A € LT (note
that both Ey(X), £y (X)L/ are subspaces of Byy = Vj in Section . Since this map

commutes with base change, it gives the desired morphism f : Ny — Yi.

Theorem 3.14. The morphism f is an isomorphism.
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Proof. The proof is the same as the proof of [VW] Theorem 4.8. Indeed, f gives a
bijection on k-valued points, where k is algebraically closed field by Lemma [3.2, Proposi-
tion . Therefore, f is universally bijective. Since Ny is proper (by Lemma and Y,
is separated, we have that f is proper. Therefore, f is a universal homeomorphism. Now,
for an arbitrary field extension k of F, we can work systematically using Proposition |3.12
to show that f is a bijection on k-valued points, and hence f is birational. Therefore f is
proper, finite, birational morphism, and Y} is normal (See |Gor09, Fact 2.1]). Now, by

Zariski’s main theorem, f is an isomorphism. [l

3.7. Regularity of N/

In this subsection, we will prove that Np_ = N} /r(L,n—1)o, is regular, where £ =
Qp2. Therefore, in this subsection, 7 = p, F' = Q,, F = Q,2, but, we will use the general
notation. See Proposition for the general case. First, note that NOE = Ng/F(l, n—
1)o,, is formally smooth over Spf Oy, (see [VW11]). This shows that N, (1,7 —1)o, is
formally smooth over Spf O, since N ~ N'™ (see Remark . Therefore, we can assume
that 1 < h <n —1. When h = 1, the regularity of NOE is proved in [RSZ18a, Theorem
5.1]. We can use the same method to prove the regularity of NOE, where h > 2. To
prove this, we need the local model for N as in [RZ| Definition 3.27] and [PRS]. We will
follow the definition in [RSZ18a]. Let [(,-) be a E/F-hermitian form on E™ given by

the matrix

7T[h
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Fix an element § € O, such that §* = —d. Let (-, -) be the F-bilinear alternating form

on K™ defined by

1
(Ivy) = §TTE/F<5Z<I7y))7 x,y € En

Let Ag := O% and A, := 77 '0% @ O%™". Then A, is the dual lattice of A; with respect to
(-,). The local model N is the scheme over Op representing the functor which sends
each Og-scheme S to the set of pairs (Mg, M) satisfying the following conditions:

e For each i = 0,1, M, is an Op ®0,. Og-subsheaf of A; ®¢, Og which Zariski locally
on S is an Og-direct summand of rank n;

e The natural maps Ay @0, Os — A @0, Os and Ay @0, Os 2% Ay @0, Os
carry My into My and M; into M, respectively;

o Mg = M, with respect to the natural perfect pairing (Ag®o, Os) x (A1 ®0, Os) —
Og induced by (-, -);

e It satisfies the determinant condition of signature (n — 1,1)
Charpol(a ® 1|M;) = (T — a)" Y (T — a*) € Og[T)

for all a € Og, 1 =0, 1.
As in [RSZ18a], the base change (N ZOC)OE is the local model for N . Therefore, we

can use this to prove the following local property of NOE'

Proposition 3.15. If 1 < h < n — 1, then the formal scheme NOE has semistable

reduction. In particular, NOE is regular.
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Proof. By |[RZ, Proposition 3.33], it suffices to show that local model N¢ has

semistable reduction. Let S be a Og-scheme. Consider the decomposition
OE ®0F OS — OS X OS

a®b+— (ab,a™d).

For any (Mg, M;) € N'¢(S), the above decomposition induces decompositions
M; = M; & M C A ®0, Os = (Ai ®o, Os)' @ (A ®o, Os)",i=0,1.

By the determinant condition, M} C (A; ®0, Os)’ is Og-locally direct summand of rank
n — 1. Since My = M7, we have that M} and M/ determine M/ and My, respectively.
Therefore, the map (Mg, M;) — (M}, M}) is an isomorphism from N to the standard
local model over O in [G6r01] for the group GL,, the cocharacter u = (1™, 0), and
the periodic lattice chain determined by (A¢®o, Og)’ C (A1 ®o, Og)’. By [Gor01}, 4.4.5]
(in case k = h,r =n — 1 or k = h,r = 1, since two cases are isomorphic by Lemma 4.8

in loc. cit), this standard local model has semistable reduction. U

3.8. The global structure of N: the Bruhat-Tits stratification

In this section, we will study the global structure of N = /\/'g/F(l, n—1). Let Nyeq be
the underlying reduced subscheme of . We define
n  if (n— h) is odd;

tmaX
n—1 if (n—h) is even,
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. 0 if h is odd;

e 1 if h is even.
Let A be the set of lattices in Ly of type tumi, and B the set of lattices in Ly of type
tmax. By Remark we have a bijective map from L£J U Ly to £J U L. This map

sends an element A € A to mAY which is an element of L] of type n — ;.. We have the

following theorem.

Theorem 3.16. The map sending A € A to Nyav and A € B to Ny is a bijective
map from AU B to the set of irreducible components of Nyeq. For A € A, Nyav is an

irreducible component of dimension

h_l_tmm
g (n = h).

For A € B, Ny is an irreducible component of dimension

tmaz — 1 — h

h.
5 +

Proof. This is clear from Proposition [2.16| Proposition Lemma 3.2, Proposition

B.I1 O

Let J = SU(Ny, {-,-}) (recall that N = Ny @ N, is the rational relative Dieudonne
module of X and {-,-} is a form defined in Section . This is an algebraic group over
F . We denote by B(.J, F) the abstract simplicial complex of the Bruhat-Tits building
of J. By [Vol10, Theorem 3.6] and [VW11], Section 4.1], we can identify Lo with the

set of vertices of B(.J, F). Proposition m, Proposition [2.17, Lemma show that the
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intersection behavior of Ny (A € Lg), Nxav (A € Ly) is closely related to the Bruhat-Tits

building structure of B(.J, F). For example, let

1 1 1 1
Ain C...CACAN C...C Apas,

be a chain in Ly, where A, A, A/, Aay are of type tmin, h — 1, h + 1, tay, respectively.
Then we have

NfrAV C"'CNWAV )

min

are irreducible components of N,.4. For

max

By the above Theorem [3.16, Nyyv Ny

an algebraically closed field k containing IF, we have
Naav (k) OV N (k) = {(wAy Ay} # 0.
Also, we have the following proposition.

Proposition 3.17. Let Ao, Ay € L, Ay, N} € L.

(1) The following assertions are equivalent.
(a) NAO ﬂNA() #£ ().
(b) AgN A, € L.

In this case, we have
NAO ﬂNA6 :NAOHAE).

(2) The following assertions are equivalent.
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(a) NA1 ﬂNAll #+ 0.
(b) A, A, € £}

In this case, we have
NA1 ﬂNA/I :NAIQAII.

(3) The following assertions are equivalent.
(a) Na, NNy, # 0.
(b) 7TA\1/ C Ao.
(4) For an algebraically closed field k containing F, we have
NE) = U M)
Aectuct
Proof. (1), (2), (3) are clear from Proposition [2.16, Proposition [2.17, Proposition

2.18 (4) is clear from Proposition [2.10, Lemma [3.2] O
For i = 0,1 and A € L, we define a set
LL:={N e LF|N C A},
and let
X = NA\ U NA’-
NeLf
We have the following analogue of [VW11, Proposition 5.3].

Proposition 3.18. The subset Ny is open and dense in Ny.

Proof. The proof is the same as the proof of [VW11, Proposition 5.3]. U
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By definition, we have a disjoint union of locally closed subschemes

Na=A0U ] A

NeLf

This gives a locally finite stratification (NQ)ycp+ o, of V.

Definition 3.19. The stratification (N}),cp+ 0, of N is called the Bruhat-Tits

stratification. The closed subschemes N, are called the closed Bruhat-Tits strata.

3.9. The moduli space N (r,n —r)

Let K be a finite extension of @, contained in F', with ring of integers Og, and
residue field Fy,. We fix a uniformizer w. In this subsection, we will define the moduli
space NE/K(T‘, n — r). For this, we imitate the construction in [Mih16]. We will use the
notation in Section [2l Also, we will use the theory of O-display in [ACZ16]|.

Let F* (resp. E") be the maximal unramified extension of K in F' (resp. E). Let
[F: K] =ef, where f = [ : K]is the inertia degree, and e = [F' : F"] is the ramification
index. We denote by K the completion of a maximal unramified extension of K, and ¥ :
K — K the Frobenius automorphism. We choose a decomposition ¥ := Hom x(EY, K ) =
Uy LU Wy such that (¥g)* = Uy, where * is the nontrivial Galois automorphism of E over

F. We fix an element ¢y € ¥, and E=F ® B0 K.

Definition 3.20. (][Mih16, Definition 2.7]) For a € E, we define the following poly-

nomials,

Pg/(ast) = T[ @(Charpoly,p(a;t)) € E“[t];
Ppevy
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F/K FE/K *\ —
Py (ast) = Poi Y (ast)(t — a)(t — ") " € Elt];

E/K E/K r E/K n—r
PEE (ast) = (PELS (@) (PE (as )" € B[],

Definition 3.21. (cf. [Mih16| Definition 3.1]) Let S be a scheme over Spf Og. A
(supersingular) hermitian Og-Ox-h-module over S is a triple (X, ix, Ax), where X/S is
a supersingular strict formal Ox-module, ix is an Og-action on X, and Ay : X — XV
is a polarization such that its Rosati involution induces the involution * on Og. Also,
Ker A\x C X|[r] and the order of Ker Ay is s*/" = ¢*".

An isomorphism (resp. quasi-isogeny) of two hermitian Op-Og-h modules (X, iy, Ax)
and (Y,iy,\y) is an Og-linear isomorphism (resp. quasi-isogeny) a : X — Y of the
underlying strict formal Ox-modules and oV o Ay o « differs locally on S from Ax by a
scalar in Op.

We say that a hermitian Og-Og-h-module (X, ix, Ax) is of rank n if the K-height of

X isn[E : KJ.

Let X be a hermitian Og-Og-h-module over a Spf Og-scheme S. Then by Og-action,

we have the grading

Lie(X) = @P Liey(X).

pevw

Here Liey(X) is the direct summand on which Ogu acts via 1. We define the following

determinant condition.
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Definition 3.22. (cf. [Mih16| Definition 2.8]) Let S be a scheme over Spf Og. A

hermitian Og-Og-h-module (X,ix,Ax) of rank n over S is of signature (r,n — r) if for

all a € Og,
(3.9.0.1) Charpol(ix(a)| Lie X) = P(]igfr)(a;t),
(3.9.0.2) (ix(a) = a)|Lie,,(x) = 0.
Here, we view P(i{ffr)(a;t) as an element of Og[t] via the structure morphism. The

second equation means that Op acts on Liey, (X) via the structure morphism. Note that

(3.9.0.1) implies (3.9.0.2) if E is unramified over Q,.

Let (X,ix, Ax) be a hermitian Op-Ok-h-module of signature (r,n — ) over Fp2. Let
NE i (r,n — 1) be the set-valued functor on (Nilp) which sends a scheme S €(Nilp) to
the set of isomorphism classes of tuples (X, ix, Ax, px). Here (X,ix, Ax) is a hermitian

Op-Og-h-module of signature (r,n — r) over S and py is a Opg-linear quasi-isogeny
px : X xgS = X Xpp2 S

of height 0.
Furthermore, we require that the following diagram commutes up to a constant in Oy,

)‘Xg v
Xg % XY

[, #]
Ax_

Xz — XY,
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Two quadruples (X,ix, Ax,px) and (Y,iy, Ay, py) are isomorphic if there exists an
Og-linear isomorphism « : X — Y with py o (a xgS) = px and aV o A\y o« differs locally
on S from Ax by a scalar in Ok.

The functor N} / x(r,m—1)® Op is representable by a formal scheme which is locally

formally of finite type over Spf Op (See [Mih16]).

Remark 3.23. Let us fix a hermitian Og-Z,-h-module (X ix, Ax) of signature (r,n—r)
over Fp such that its rational Dieudonne module (N, F) generated by elements n € N
satisfying F2/n = p/n, where f is a inertia degree of F//Q,. Such a triple exists by
[Mih16, Lemma 2.10] with slight modification of the polarization and the base field.
This is decent in the sense of |[RZ, Definition 2.13], and hence we can use [RZ, Theorem
2.16]. Therefore, if we fix such a triple, then the functor AN} /Qp(r, n —r) is representable

by a formal scheme which is locally formally of finite type over Spf Og.

Remark 3.24. One can see that there is a unique hermitian Og-Z,-h-module (X, ix, Ax)
of signature (r,n — ) over k up to quasi-isogeny, where £ is an algebraic closure of .
This can be proved by using [Mih16, Proposition 2.5], [Mih16|, Lemma 2.10] with slight

modification of the polarization.

Remark 3.25. The definition of N3 x(r,n — r) in Section [2| coincides with the defi-

nition in this section.

Definition 3.26. (cf. [Mih16| Definition 4.2]) We denote by Og-Og-h-Herm the
stack of hermitian Og-Og-h-modules (X, ix, Ax) over Sch /Spf Op such that locally for
Zariski topology, it is of signature (r,n — r) for some r. The morphisms in this category

are the Opg-linear morphisms of p-divisible groups.
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Now, let S = Spec R be an affine scheme over Spf Og and (X, ix, Ax) be an hermitian
Og-Og-h-module of signature (r,n —r) over S. Let (P, Q, F, F}) be the Og-display (i.e.,
Ok-window over Wo, g) of (X,ix,Ax). We denote by (-,-) : P x P — Wy, (R) the
Wo, (R)-bilinear alternating form induced by Ay. From the Og-action, we have the
decomposition

OE R0k WOK(R) ~ H OE ®0Eu WOK<R)
Pew

This decomposition gives gradings

P=T[P,= ][ Ps® Py,

Pew PeW
Q=11 Qu=II QuveQu-
Ppevr PeWy

Let (PY,QY,FY,F)) be the dual Og-window of (P,Q, F, F}) (see [Mih16| Section

11]), and consider its gradings

P =1] P, =11 P)® P,
pevr IS

Q' =TI = I QoQ

Ppew Pev

Let Pyg = P, ®Q, and let (-, )g = (-,-) ® Q. Note that our pairing satisfies

()alpyoxp, o, =0 if W # Q"
Therefore, we have

Py = {x € Pygl(z, Pp-)g C Wo, (R)}.
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Also, we have the following lemma.

Lemma 3.27. The order of Ker \x is ¢*" = s*/" if and only if P, & Py, Y el .

Proof. Let P, = Ly, & Ty, Qy = Ly + 1o, (R)T, be a normal decomposition. By the

signature condition, we have

Ly =Py, Ty =0, if ¢ € Uo\{too},
Ly =0T, =Py, ifve¥\{yg}.
From the normal decomposition, we get a “-linear isomorphism
Oy Py=Ly Ty — Pry,
(I,t)  — (Fi(l)+ F(t)).

By our special signature condition, we have

®¢IP¢

d

PF¢,

r = Fi(z), ifyeV\{oo};

(I)'lZ) : P¢ — PFw
x = F(z), ifyev\{o}}.

k
We claim that if Pry, C P Yo for some k, then for all ¢ € ¥ we have

k
PwCPJ.



First, note that @, is a ©-linear isomorphism, hence

Ty

1110)

i+1 .
%o

)

We will show that (ID(P}Q%) = Pl ,for 1 <i < f—1. Note that

P

T € PF\v/iJrl . = <33,PF1'+1¢3> C WOK(R)

P

= <$,@(Ppiw6)> C WOK(R)

First, assume that 7'¢¢ € Uo\{¢g}, then ® = F} on Py s+ Therefore,

(@, ®(Pri ) C Wo, (R)

i
Yo

& (x, Fy(Pri . )) C Wo, (R)

1'1/)6

& (@7 (2)), Fa(Priy,)) € Wo, (R).

and 7'y € Uy \{¢¢}, we have

Since x € PXH%

(D(Q™(2), F1(Priys)) € Wo, (R)

F1¢6<

& (F(07}(2)), A(P

i
F,ZJS

)) - WOK(R)
ot <(I)_1(ZE), Ppi¢6> C Wo,(R)
& o x) € Pri -

Here, we used the fact that (-, Fy-) = (Fy-, F-) =5 (...

61
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In the case that © iwa‘ € U \{¢¢}, we can prove the claim in the same way.
Therefore, @(P;/iwo) = P}/mwo for1<i< f—1.

k
Now, assume that Pr,, C P¥, vy then we can show inductively that

k
Py, = @(Prsy,) & O(PY,) = P

i+1
Flyg?

Vi<i<f—1.

Since P, & Py if and only if Py~ & PJ., we can conclude that the claim holds.

By this claim, we have

2fh h
|KerAx| =s*" < P'C PV« PyC P, YeU.

With this lemma, we can follow the whole steps in [Mih16, Chatper 4. Indeed,
the only difference is the polarization, hence with the above lemma, one can show the
following analogue of [Mih16, Proposition 4.4]. Let Sch/Spf Og (resp. Sch’/Spf Og) be
the category of schemes (resp. locally noetherian schemes) over Spf Og together with the

Zariski topology.

Proposition 3.28. (¢f. [Mih16, Proposition 4.4]) There is an isomorphism of stacks
over Sch / Spf Op

Ck pu : Op-Ok-h-Herm = Op-Opu-h-Herm

that is equivariant for the Rosati involutions and sends objects of signature (r,n —r) to

objects of signature (r,n —r).
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Proof. One can follow the proof of [Mih16|, Proposition 4.4] with Lemma [3.27, Also

see [Mih16, Remark 4.5]. O

In addition, we can show the following analogue of [Mih16, proposition 4.6].

Proposition 3.29. (¢f. [Mih16, Proposition 4.6]) There is an isomorphism of stacks
over Sch’ / Spf O,

CF”,F . (OE-OFu—h-Herm)oE E) (OE-OF-h-HGT’m)OE

that is equivariant for the Rosatli involutions and sends objects of signature (r,m —r) to

objects of signature (r,n —r). Here, (=)o, means the base change to Oy.

Proof. One can follow the proof of [Mih16| Proposition 4.6] with Lemma [3.27 O

The following proposition is an analogue of [Mih16, Theorem 4.1].

Proposition 3.30. (¢f. [Mih16| Theorem 4.1|) For any intermediate field Q, C K C

F', we have an isomorphism
et (Ngyp(r,n —1))o, = Wik (r,n—1))o,.
Furthermore, if ' is unramified over Q,, then
CKF: /\/'g/F(r,n —r) NE/K(T, n—r).

Proof. This follows from the above two propositions, and by fixing framing objects.

See the proof of [Mih16, Theorem 4.1]. O
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Remark 3.31. Let F' be an unramified extension of Q,. Let (X,ix, Ax) be a her-
mitian Og-Z,-h-module in Remark and we consider a hermitian Og-Op-h-module

Co,,r((X,ix, Ax)) by using Proposition . By Remark , we have that N}g/@p (ryn—r)
is representable by a formal scheme over Spf O which is locally formally of finite type,
with the framing object (X, ix,Ax). Therefore, by Proposition , Ng/F(r,n —r) is
representable by a formal scheme over Spf O which is locally formally of finite type with

the framing object Co, r((X, ix, Ax)).

Remark 3.32. One can see that there is the unique hermitian Opg-Og-h-module
(X, ix, Ax) of signature (r,n — r) over k up to quasi-isogeny, where k is an algebraic
closure of Fp2. This can be proved by using Remark [3.24] Proposition [3.28] Proposition
3.29

Proposition 3.33. If h = 0,n, the formal scheme ./\fg/F(l,n — 1)o, is formally
smooth over Spt Op. If 1 < h <n —1, then Ng/F(l,n — 1>OE has semistable reduction.

In particular, it is regqular, for all h.

Proof. When h = 0, it is proved in [Mih16, Proposition 2.14]. Since Ng/F(l, n—1)o,
and Vg (1,n —1)o, are isomorphic (see Remark , Ngp(1,n—1)o, is also formally
smooth over Spf O;. Now assume that 1 < h <n — 1. By Proposition m, it suffices to
show that N /g, (L,n—1)o, has semistable reduction. Since this moduli problem is PEL-
type, it suffices to show that its local model has semistable reduction ([RZ, Proposition

3.33]). To define the local model ¢ in our case, we need to use the notation in Section

3.7 (here, we follow [RSZ18b|, Appendix B]). Let I(-,-) be a E//F-hermitian form on E"
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given by the matrix

In—h
Fix an element § € Op such that §* = —§. Let GE}QP be a generator of the inverse

different of F'/Q,. Let (-,-) be the Q,-bilinear alternating form,

('r7y) = TTE/Qp(QE/lQp(s“I?y))? T,y c E".

Let Ag = O% and A; = 77'O% @ O%™". Then the dual A} of the lattice A; with respect

to (+,-) is Ag. Now, let £ be the self-dual lattice chain
{"'CTFAl CAOCAlZAgC'ﬂ'ilAOC...}

Then N is the functor which sends each Oz-schemes S to the set of isomorphism
classes of families (A ®z, Og — Pa)aec such that

e For each A, Py is an O ®z, Og-linear quotient of A ®z, Og, locally free on S as an
Og-module.

e For each inclusion A C A" in £, the arrow A ®z, Og — A’ ®z, Og induces an arrow
Pr — Py

e For each A, the isomorphism A ®z, Og LN (mA) ®z, Og identifies Py — Pra.

e For each A, the perfect pairing (A ®z, Og) x (AY ®z, Os) % Og identifies

(KGT(A ®Zp OS - 7)/\))1_ with Ker(AV ®Zp OS - PAV).

We need to impose one more condition.
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By the Og-action on S, there is a natural identification

Ogu Rz, Og — H Ogs.

eV
This induces a decomposition,
Pr — @ ,PA#,‘
PYew
e For each A, P, satisfies
(3.9.0.3) Charpoly, (a ® 1|Py) = P(?;Q_”l)(a; t),
(3904) (CL ®R1-1® a)|PA7¢O = 0.

Here, Py y, is the direct summand on which Ogu acts via 1. These two conditions follow

from the conditions ([3.9.0.1) and (3.9.0.2)).

Now, fix a scheme S over Op, and let (A ®z, Os — Pr)aer € N'(S). By the

signature condition ([3.9.0.3|), we have

P,y is locally free of rank 1 over Og,
Paws = Piyy C (A @z, Os)y;,

Pry =0 if ¥ € U\ {0},

Pay = (A®z, Os)y~ if ¥ € Ui\{¢5}




67

Therefore, (A ®z, Ogs — Pa)nec is determined by (Pa o )rec-
Also, by the condition ([3.9.0.4), Og acts on P, 4, via the structure morphism, therefore
P is a quotient of

Ap = (A ®Zp OS) ®0E®ZPOS OS?

which is locally free of rank n over Og.

It follows that the map (A ®z, Os = Pa)aec — (Ar = Py )aec is an isomorphism
from L£°¢ to the standard local model over Spec O in Proposition m (i.e. the standard
local model with the group G'L,,, the cocharacter u = (1"=1,0), and the lattice chain £).
Therefore, by [Gor01, 4.4.5] (in case k = h,r = 1) again, this local model has semistable

reduction. O
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CHAPTER 4

Uniformization of unitary Shimura varieties

In this section, we will define a Shimura variety and study its basic locus. This Shimura
variety is studied in [RSZ18b]. In this section, we use the notation A for the adele rings
and Ay for the ring of finite adeles and AI} for the finite adeles away from the prime p.

Let F be a CM field over Q and F™ be its totally real subfield of index 2. We fix
a presentation F = FT(y/A). Denote by d the dimension of F* over Q. We denote
by a — a the nontrivial automorphism of F/F*. Denote by ®p+ (resp. ®r) the set of
real (resp. complex) embeddings of F™ (resp. F'). We define ® as the CM type of F

determined by VA, i.e.,
O :={p € bp | p(VA) € RugV/—1}.

We have a natural projection 7 : ®p — Pp+. For every 7 € $p+, denote by 7~
(resp. 77) the unique element in ® (resp. ®r\®) whose image under 7 is 7. We fix a

distinguished element 7y € ®p+ (resp. 7, € ®).
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4.1. The Shimura data

We first define the Shimura data (G,{hg}) as follows. Let V be a F/FT-hermitian

vector space of dimension n with the hermitian form

() : VXV = F,

that is F-linear in the first variable. Let U(V) be the unitary group of V. This is a

reductive group over F'* such that for every Ft-algebra R,

U(V)(R) ={g € Autp(V @+ R)|(gv, gw)y = (v,w)y, Yv,w €V Qp+ R}.

We assume that for 7, the signature of V ®p+ , Ris (1,n—1) and for 7 € ®p+\{n },
the signature of V ®@p+ , R is (0, n).

Let G := Resp+ o U(V). We define the Hodge map

hG : Res@/R Gmﬂj — G]R

by the map sending z € C* = Resc/r Gy, c(R) to

where we identify Gg(R) as a subgroup of GL,(C)? via {r{ ,--- ,7; } = ®. Then we have

a Shimura data (G, {hc}).
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Now, we will define the second Shimura data (Z,{hz}). Let Z be the torus
Z :={z € Resp+ 9 G| Nmp/pi (2) € G}
We define the Hodge map
hz : Resc/r Goc — Zr

by the map sending z € C* = Res¢/r Gy, c(R) to

() (2)=)

where we identify Zg(R) as a subgroup of GL;(C)¢ x C* via {ry ,---,7; }.
Then we have the second Shimura data (Z, hy).

Now, we consider the reductive group G = G x Z over Q. We define its Hodge map

hG : Res@/R Gm@ M GR.

Then (G, {hg}) is the product Shimura data, which is defined in [RSZ18b| (with the
same notation). Denote by E its reflex field. This is the fixed field of the following

subgroup
Aut(C/E) :={o € Aut(C)loc o ® = & and o7y =17 }.

This Shimura variety has a moduli interpretation over Spec E. We recall this moduli
problem from [RSZ18b, Section 3.2]. First, we need to define an auxiliary moduli problem

M{ over Op, where a is a fixed nonzero ideal of Op+. We denote by M{ its generic
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fiber. For a locally noetherian Og-scheme, we define M§(S) to be the groupoid of triples
(Ao, g, Ao) such that

e Ay is an abelian scheme over S with an Og-action iy : O — End(Ay), which satisfies
the Kottwitz condition of signature ((0,1);ce,, ), i-e.,

Charpol(i(a)| Lie(4g)) = [[ (T —7"(a)), for all a € Op;

TE‘I)F+

e )\ is a polarization of Ay such that Ker Ay = Ap[a]. Also, A¢’s Rosati involution
induces on O, via ig, the nontrivial Galois automorphism of F/F*.

A morphism between two objects (Ag,ig, A\g) and (A, iy, Ay) is an Op-linear isomor-
phism g : Ag — Aj, under which A pulls back to Ao.

This M is a Deligne-Mumford stack, finite and étale over Spec Og. Also, we can
choose an ideal a such that M§ is nonempty (JRSZ18b, Remark 3.3]).

Let K, C Z(Ay) be the unique maximal compact subgroup Z(Z).

If F* = Q, then M§ ® C is isomorphic to the Shimura variety Shg,(Z,hz). In
general, M ® C is copies of Shg,(Z, hz) and each copy corresponds to a similarity class
of a certain 1-dimensional hermitian space. More precisely, we define R (F) as the set of
isomorphism classes of pairs (W, (-,-)) where W is a 1-dimensional F-vector spaces and
(-,-) is a nondegenerate alternating form (-,-) : W x W — Q such that

o (ax,y) = (x,ay) for all x,y € W, a € F

o — (\/Zx, x) is a negative definite quadratic form on W;

o IV contains an Op-lattice A whose dual A+ with respect to (-,-) is a tA.

We denote by R§(F')/~ the set of similarity classes of elements of R (F) by a factor

in Q*.
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Then, we have a disjoint union decomposition

l

Mg~ ] wM",

WERS (F)/~

and each M3" ® C is isomorphic to the Shimura variety Shg,(Z, hz). We denote by
M$YW the generic fiber of MG" .
From now on, we fix an element W € R}/

Now, we consider an open compact subgroup Kz C G(Af) of the form
K@ =Kgx Kz C G(AF“r’f) X Z(Af),

where K¢ is an open compact subgroup of G(Ap+ ¢).

We now define a moduli functor My . (G) on the category of locally noetherian schemes
over E as follows. For every such scheme S, let M KG(@)(S) be the groupoid of tuples
(Ao, g, Ao, A, 7, A\, 17), where

o (A, ig, No) is an object of M§" (S);

e A is an abelian scheme over S with an F-action ¢ : F' — End(A)g satisfying the

Kottwitz condition of signature ((1,17 — 1);,, (0,7)rca,,\(n}), i€, for all a € F,
Charpol(i(a)| Lie(A)) = (T — 7 (@))(T = ()" ][ (T —7"(a)™
T€¢F+\{n}

e )\ is a polarization of A, whose Rosati involution induces on F', via i, the nontrivial

Galois automorphism of F'/F7;



73

e 7) is a Kg-level structure. This is a Kg-orbit of Ap s-linear isometries
1 : Homp(V(Ag), V(A) ~ =V @p Ap;

Here, —V is the same E-vector space as V', but its hermitian form multiplied by —1. We
write V(A) for the full rational Tate module of A. Also, we consider Homp(V (Ay), V(A))

as a hermitian space with the hermitian form h 4,
ha(z,y) = Ayt oy¥ oXox € Endy,, (V(A)) = Apy.
A morphism between two objects
(Ao, 0, Ao, A i, A1) — (Ag,ig, Ao, A1, N, 1),

is given by an isomorphism g : (Ag, ig, o) = (A}, ih, ) in Mg" and an F-linear isogeny
i A— A pulling N back to A and 7' back to 7.

Now, we can state the following proposition.

Proposition 4.1. ([RSZ18b, Proposition 3.5]) MKg(é) is a Deligne-Mumford stack
smooth of relative dimension n — 1 over Spec E. The coarse moduli scheme of My, (G’)
is a quasi-projective scheme over Spec E, naturally isomorphic to the canonical model of
ShKG(@, {ha}). For Kg sufficiently small, the forgetful morphism MKG(@) — MPY s

relatively representable.
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4.2. Integral models

In this subsection, we will imitate the semi-global integral model in [RSZ18b, Section
4]. Our case is related to AT parahoric level. We use the following notation. Fix a prime
p # 2 and an embedding 7 : Q — @p. This embedding determines places u of E, vy of F't,
and wy of F' via 71 . Denote by S, the set of places v of F'* over p. Let F, := F ®@p+ F,'.
Then, F), is a quadratic field extension of F)\ (resp. F, ~ F,t x F[), if v is nonsplit (resp.
split). Denote by 7, a uniformizer in F, (when v splits, this uniformizer is an ordered
pair of uniformizers on the right side of the isomorphism F, ~ F.f x FF). Assume that
v is unramified over p and inert in F. We assume that the ideal a in the definition of

8 is prime to p and we fix an element W € Rg /.

Now, we choose lattices A, C V, such that
A, C Af C i tA,,

where A} means the dual lattice of A, with respect to the hermitian form. Let h be the
index of Ay, in Aj, de., [Ay 2 Ay] = A

We take the open compact subgroup Kz C G (Ay) as follows.
Ke=Kgx Kz =K{ x Kgp x Kz,
where K¢ C G(AL, ;) is arbitrary, and

Keap =[] Keo C [] G(E)),

vESp vESp

where K¢, is the stabilizer of A, in G(F").
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Now, we can formulate a moduli problem over Spec Og ) as follows. For a locally
noetherian scheme S over Spec O, (), we associate the set of isomorphism classes of tuples
(Ao, o, Mo, A, i, A, 7P), where

o (Ag,ig, \o) is an object of M§" (S);

e A is an abelian scheme over S;

e i is an Op ® Zy-action satisfying the Kottwitz condition of signature ((1,n —

s, (0,0)red, \(ri}), 1€, forall a € F,
(4.2.0.1)  Charpol(i(a)|Lie(A)) = (T — 7, (a))(T — 7 (a))"* I @)
7€® 4 \{71}
e \ is a polarization of A, whose Rosati involution induces on O ® Z,) the nontrivial
Galois automorphism of F'/F*. Also, we impose the following condition. The action of
Op+ ® Zp >~ Ilyes, Or+,, induces a decomposition of p-divisible group,

Ap=] = ] AP~

vES)

Since Rosati involution of A fixes Op+, A induces a polarization \, : A[v>®] — AV[v>®] ~
A[v>®]Y for each v. We impose the condition that Ker A, is contained in A[i(7,)] of rank
|AL/A,| for each v € Sy;

e 77 is a Kg-orbit of Af, (-linear isometries

1 : Homp(VP(Ay), VP(A)) ~ =V @5 A%
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Here, —V is the same E-vector space as V', but its hermitian form multiplied by —1. We

write V?(A) for the rational prime-to-p Tate module of A. Also, we consider
Hom (VP (Ag), V7(A))
as a hermitian space with the hermitian form A%,
Rh(z,y) = A\t oyYodox € EndA%f(Vp(Ao)) = A%

For v # vy, we impose the Eisenstein condition and the sign condition. Before we

explain these conditions, we define a function r : Hom(F,C) — {0,1,n — 1,n} such that,

1 T="T,
T T = 0 7€ O\{r };

n—r; T ¢ .

First, we recall the Eisenstein condition from |[RSZ18b| Section 4.1]. We impose the
Eisenstein condition only when the base scheme S has nonempty special fiber. In this
case, we may base change via ¥ : O () — Z, (the ring of integers of Q,), and pass to
completions and assume that S is a scheme over Spf 210- We have a decomposition of the
p-divisible group

Ap™] = [[ A[w™].

wlp
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where w runs over the places of F' over p. Since we assume that p is locally nilpotent on

S, there is a natural isomorphism
Lie A ~ Lie A[p™] = @ A[w™].
Ip

By using the embedding o : Q — @p, we can identify

Homg(F, Q) ~ Homg(F,Q,),
and this gives an identification
(4.2.0.2) {7 € Homg(F,Q)|t o 7 = w} ~ Homg(F,, Q,).

For each place w, by the Kottwitz condition (4.2.0.1)), the p-divisible group A[w*] is of

height n[F,, : Q,] and dimension
dim A[w™] = > T
TGHom@(Fw,@p)

For each place w such that w|v and v # vy, the action of F' on A[w™] is of a banal
signature type in the sense of [RSZ18b| Appendix B]. In other words, 7, is 0 or n for
all 7 € Homg(F,,Q,). Let m = 7, be a uniformizer in F,, and let F* be the maximal

unramified extension of Q, in F,,. For each ¢ € Homg(F}2, @p), let

Ay ={r € HomQ(Fw,Qp)]T\Fﬁ =1 and r; = n}.
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Let

Qa, = [[ (T —7(m)).

TEAd,

Then, the Eisenstein condition at v(# vp) is as follows. For each place w that divides v,

and for all 1) € Homg(F*, Q,),
Qa,, (i(m)| Lie A[w™]) = 0.

Now, we will define the sign condition at v(# vg). We impose this condition only when

v does not split in F. The sign condition at v is the condition that for every point s of .S,
inV:;(AO,sa iO,SJ )‘0,37 As; is; )\s) = ian(—%).

We need to explain these two factors. For the left one, we refer to [RSZ18b|, Appendix
Al. Also, we define

inv,(=V,) == (=1)"""Y/2det (=V,) € F;F*/ Nm E>*,

where det(—V,) € F,/*/Nm F;"* is the class of the determinant of any hermitian matrix
of the hermitian space —V,,.

A morphism between two objects

(A07 iOa >\07 A: ia )\7 ﬁp) — (Ai)a 267 )‘67 Ala ila )\/7 ﬁ/p)a
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is given by an isomorphism (A, ig, Ao) =~ (Ab, i), Ny) in M§"(S) and a quasi-isogeny

A — A" which induces an isomorphism
Alp>] ~ A'[p>],

compatible with i and ¢/, with A and )\, and with 7? and 7’*.

Proposition 4.2. The moduli problem defined above is representable by a Deligne-
Mumford stack MKG(G) flat over Spec Og (). For K¢ small enough, MKG(G) is rela-
tively representable over MS’W. The generic fiber MKg(é) X Spec Op oy OPEC E i canon-
ically isomorphic to MKG(@) Furthermore, if h = 0,n, then MKG(G) is smooth over

Spec Op, ). If h # 0,n, then Mk (G) has semistable reduction over Spec O,y provided

that E,, is unramified over Q.

Proof. The representability and the statement for the generic fiber and the smooth-
ness when i = 0 (and hence when h = n) are proved in [RSZ18b, Theorem 4.1]. There-
fore, it suffice to show that this has semistable reduction over Spec Og ) where h # 0,n
and £, is unramified over Q,. To prove this we need to use the theory of the local model
as in |[RSZ18b| Theorem 4.10]. The local model corresponding to Ag is étale because
MS’W is. Let M be the local model corresponding to A. Before we prove that M has

semistable reduction, we introduce some notation. By the identification (4.2.0.2)), we have

(4.2.0.3) Homg(F,Q) ~ | | Homg, (F,, Q,).

vES)
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Let |, : Homg(F,,Q,) — {0,1,n—1,n} be the restriction of the function r to Homg(F,, Q,).

Let

8ig,|, = Z AT,
T€Homg (Fv,Qp)

which is an element of N[® ]|, the commutative monoid freely generated by ®r. Note that
the Galois group Gal(C/Q) acts on ®5 hence on N[®p]. Let E,, be the fixed field of the
stabilizer in Gal(C/Q) of the element sig,, .

Then we have a decomposition

M = H MU XSPQCOET‘U SpecOEu,

vES)

which is induced from (4.2.0.3)).

For v # vy, by our Kottwitz condition, M, is a banal local model as in [RSZ18b|
Appendix B|. Therefore, M, = Spec Og,,,. Also, M,, is a local model which appears
in the proof of Proposition m (here, we used the condition that vy is unramified, and
therefore the condition follows from the condition (3.9.0.1) which follows from
the Kottwitz condition). Therefore, it has semistable reduction over Spec OEMU' Since
E, is unramified over Q, (hence, over E,|,) and semistable reduction is stable under an

unramified base change, M has semistable reduction over Spec Og,, U

4.3. The uniformization theorem

In this subsection, we will relate the basic locus of the special fiber of M. (G) to the

(relative) Rapoport-Zink space ;; JE (I,n — 1) in Section [2| via the non-archimedean
'UJO 'UO

uniformization theorem of Rapoport and Zink. We will follow the proof of [RSZ18b,
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Theorem 8.15]. In order to simplify notation, we write M for MKG(G), and N for

Ny

wo/ Fil

(1I,n—1).

Let E, be the completion of a maximal unramified extension of E,, and k be the
residue field of O . Let Mo, = M ®o, , Op,. We denote by M** the basic locus of
M ®o, ,, k and by M3 the completion of Mo, ~along M.

Choose a point (Ag, %9, Ao, A, %, A, 1) of M*(Op, ). Let

Xo = Ao[p™] = Ilyes, Ao[v™],
X' = A]p™] = Ilyes, Alv™],

and 7x,, Ax,, ix, Ax be the induced Op ® Z,-actions and polarizations. This choice gives
us the following non-archimedean uniformization morphism along the basic locus by [RZ,
Theorem 6.30],

0 : I(Q)\N' x G(A}) /KL ~ M.

Here the group I is an inner form of G associated to the hermitian space V', where V" is
negative definite at all archimedean places and isomorphic to V' at all non-archimedean
places except at vy (hence, by the product formula and the Hasse principle, V' is de-
termined), and N’ is the corresponding Rapoport-Zink space whose framing object is
(X0, 1x05 Ay X, x5 AX)-

By |[RSZ18b| Lemma 8.16], we have

N' = (Z2(Qy)/Ezp) x N, 0,(Ln =)o, x [ UWV)E)/Ke.

Y ves,\{wo}

Also, by Proposition , No,, =~ (Nﬁwo/@p(l, n—1))o, -

The following theorem summarizes the above discussion.
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Theorem 4.3. There is a non-archimedean uniformization isomorphism
0 : I(Q)\N' x G(AR) /K% = M>,

where

N'=(Z(Q)/Kzp) x Noy % TI  UWV)ES) /K.

veSp\{vo}

Proof. This is essentially the same as the proof of [RZ, Theorem 6.30]. For the
convenience of the reader, we will construct the inverse morphism of ©. Let S be a Op, -
scheme such that p is locally nilpotent. Let s be a geometric point of S. Choose a point
P = (Ao, io, Mo, A, i, A\, 77) € M**(S). By |[RZ, Proposition 6.29], we can choose Op-linear

quasi-isogenies

po : Ao X5 Sk — Aok Xk Sk,
ﬁ:AXSSk—)Ak XkSk,

compatible h polarizations. Then, we have the induced quasi-isogenies

po = Ao[p™] xs Sk = Xok X Sk,

p: Ap™] xs Sk, — X X S,

The tuple (Ag[p™], A[p™], po, p) (with the induced Op ® Z,-actions and the induced po-
larizations) gives an element in A”(S) and this is the A7 part of ©7!(P).
Now, we should find an element (z, g) € Z(A%}) x G(A}) = CJ(A?) such that ©71(P) =

((Aolp™], A[p™], po, p), (2,9))-
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The element z in Z (A’}) comes from the moduli space MS’W. More precisely, by

definition of M3", we have two O ® A¥-linear similitudes

€:VP(Ags) = W @ AP,

¢ VP(Agr) = W @ AL

Therefore, the composite
W @ AL £5 VP(Agy) 25 VP(A) S W © A

gives an element z in Z(A%).

For the element g, consider the composite

—V ®@p Al N Hom (V7 (Ags), VP(As))

0 2, Homp(V?(Aor), VP(A) B —V @p AL .

This is an isometry which gives rise to an element g in G(A%).

The construction of © is identical to the arguments in [RZ|, Chapter 6]. O
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CHAPTER 5

Special cycles and arithmetic intersection numbers

In this section, we use the notation in Section [2| Also we denote by k& = I, and by
val the valuation of E. We will define the special cycles and study their intersections.

Let (Y,ig, A\y) be a strict formal Op-module of F-height 2 over k, with an action
iz : Op — End(Y) and with principal polarization Ag. Also, we assume that it satisfies
the determinant condition of signature (0,1). Let N°(0,1) be the corresponding moduli
space. To simplify notation, we write N for N°(0,1)o,, N for Ng/p(l, n—1)o, and N

for g/_ﬁ(l,n — Do,
Definition 5.1. The space of special homomorphisms is the E-vector space
V := Homg, (Y, X) ®7 Q.
For z,y € V, we define a hermitian form A on V as
hz,y) = A%l oy’ olxox € Endp,(Y)®Q &~ E.

We often omit z%l via the identification Endgp, (Y) @ Q~E.

Remark 5.2. We have an isomorphism between N and N. For each O j-scheme S

such that 7 is locally nilpotent, the isomorphism sends (X, iy, Ax, px) € N(S) to

—

(XY, i, Ny, (p) ") € N(S).
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we define iy (a) == ix(a)".

85

: XV — X is the unique polarization such that Ny oAy = ix(w), and for a € Og,

Vv

Definition 5.3. We write 6 : N — N for the isomorphism which is defined in Remark

.2

Definition 5.4.

(1)

For a given special homomorphism = € V, we define the special cycle Z(z) to
be the closed formal subscheme of N x A with the following property: For
each Op-scheme S such that 7 is locally nilpotent, Z(x)(S) is the set of all
points & = (Y, iy, Ay, py, X, ix, Ax, px) in (MO x A)(S) such that the quasi-

homomorphism
py oxopr:Y x5S — X xg 85

extends to a homomorphism from Y to X.

For a given special homomorphism y € V, we define the special cycle Y(y) in
NY x N as follows. First, consider the cycle Z(Ax o) in NV x N. This is
the closed formal subscheme of AN© x A with the following property: For each
Og-scheme S such that 7 is locally nilpotent, Z(Ax o y)(S) is the set of all
points & = (Y, iy, Ay, py, XV, x, Ny, (p%) 1) in (N0 x N)(S) such that the quasi-

homomorphism

p}/(O/\Xoyop?:?X5§—>XV Xg S
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extends to a homomorphism from Y to XV. We define Y(y) as (id x 671)(Z(Ag o

y)) in N0 x .

We note that A/° can be identified with Spf O, hence Z(z), Y(y) can be identified
with closed formal subschemes of A/. Also, by abuse of notation, we often write z : ¥ — X

for the extension of quasi-homomorphism py' oz o py-.

Let M’ = M, @ M, be the Dieudonne module of ¥. As in [KR11, Remark 2.5],
it is easy to see that Mg = O3]y and Mcl] = Oply, where F1;, = Iy, Flyp = 7l; and
{To, 10} = 7. We write N° for M’ ® Q.

Now, let € V. This induces a homomorphism from N° to N. We also write = for
the induced homomorphism. Note that we can write z = x¢ + x1, where 2o : NJ — N
and x; : NV — Ny, since the morphism x has degree 0 with respect to the decompositions
N & NY and Ny & N;.

To study the sets of k-points Z(z)(k), YV(y)(k), z,y € V, recall that we have a bijection
between N(k) and the set of lattices (A, B) in Ny (see Proposition [2.4). Now, we can

state the following analogue of [KR11, Proposition 3.10].

Proposition 5.5. (¢f. [KR11, Proposition 3.10]) For z,y € V, we have the following

bijections.

1 ~1

mBY C A'C BY,
. 1 n—1

Op-lattices | TAY C B C AY,

AEBC N, | nBcAcCB,

[E()(To) S 7TBV.
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1 -1
mBY C A'C BY,
. 1 n—1
Op-lattices | TAY C B C AY,

ACBCN, | nBCACB,

yo(Io) € mAY.

Proof. The proof of (1) is identical to the proof of [KR11, Proposition 3.10]. For
(2), note that for the Dieudonne module M = A® B+ of (X,ix, \x, px) € N(k), its dual
M+ = B @ At is the Dieudonne module of XV (here, - means the dual with respect to

(-,+) in Section 2.1)). Therefore, (2) can be proved in the same way. 0

Lemma 5.6. ([Vol10, Lemma 1.16]) Let t € O with t* = —t and let V' be a E-vector

space of dimension n. Let I,, be the identity matriz of rank n and let J, be the matriz

There exist two perfect skew-hermitian forms on V up to isomorphism. These forms

correspond to tl, and to tJ, respectively. Furthermore, if M is a lattice in' V and i € Z
with

PNy M T MY
then n —r =ni mod 2 in the first case and n —r Z ni mod 2 in the second case.

Proof. See [Vol10, Lemma 1.16]. Note that F' is a finite extension of Q,, therefore

the above statement is more general. But, the proof is identical. O
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Remark 5.7. Recall that the E-vector space Nf , in Section [2.2 has a lattice M with

MY E M .
This fact follows from Lemma 2.7 Therefore, by the above lemma, the form {-,-} is

isomorphic to tI, if n—h—1=0 mod 2 and is isomorphic to t.J, if n—h—1% 0 mod 2.
We need the following analogue of [KR11| Lemma 3.7].

Lemma 5.8. Assume that h # 0,n. Then we have

where A runs over all vertex lattices of type h + 1.

Proof. First, assume that n = h + 1 4+ 2k for some integer £ > 0, and h + 1 is odd.
Then by Remark 5.7} the form {-, -} is isomorphic to ¢I,. Choose a basis {e1, ..., e,} such
that {e;, e;} = td;;. Choose any h+ 1 elements {fi,..., fr41} in {e1,...,e,} and rename
{e1,...,en} to {f1, .., fu}-

Let o, [ be elements in E such that aa® = —1 and gp* = 1/2.

We define
Ght1 = fni1,
G2i+1 = B(fair1 + afaita),
Gaiv2 = B(faiv1 — afaiza), Y0 < i< % —1.

Then we have

{g2i+1> 921’+1} =0, {921+27 92¢+2} =0,

{g2i+1,Goira} =t, VO<i<h/2-1.



Now consider an element v € E such that 1 + yy* = 7, and define
Phii42i41 = frrrg2ie1 + Y nt142i2
hhtitoite ==Y frr1+2i01 — frr142it2, V0 <i<k—1.
Also, we define
Gh+1+2i41 = B(Any142i+1 + Ahpi12i42)
Gh142i+2 = B(Pnt142i01 — @hpi142i42), V0 <i<k—1.

Then we have

{9h 1420415 Grrr42i41) = 0, {Ghs142i42; Gr142i42) = O,

{ghs142i41, Ghr42ig2} = tm, VO<i<k—1.
For I := (a1,...,ap/2,b1,...,b;) € ZM? x 7F, we set
92, ..., TGy, T 2gy,
Gni1s T Ghy2, -« T kg,

Then, this is a vertex lattice of type h + 1 and we have

ﬂ A{glv"'vg’ﬂ}zl = (0)7

{917"'7g’n}71

where {gi,...,g,} runs over all choices and I runs through Z"? x Z*.
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This proves the lemma in the case that n = h + 1 + 2k for some integer k£ > 0, and

h +1 is odd.

Similar arguments work for the other cases.
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Proposition 5.9. The functors Z(z) and Y(y) are represented by closed formal sub-

schemes of N° x N'. In fact, Z(x) and Y(y) are relative divisors in N° x N (or empty)

for any x,y € V\{0}.

Proof. If h = 0 (resp. h = n), then we have Z(z) = Y(z) (resp. Z(mzx) = Y(x)).
Therefore, the case where h = 0 is proved in [KR11| Proposition 3.5] (the case that h = n
is the same since we have the isomorphism 6). For the other cases, we can follow the proof
of [KR11] Proposition 3.5] with Lemma [5.8 Indeed, we only need to show that Z(x)(k)

cannot be N (k). If N'(k) C Z(x)(k), then we have
x € ﬂﬂ'Av7
A

where A runs over all vertex lattices of type A+ 1. This fact follows from Lemma and

Proposition [5.5] Now, since we have

(7AY Cc (A= (0),

by Lemma [5.8 we have that x should be 0. This finishes the proof of the proposition. [J

We have the following analogue of the remarks after [KR11, Lemma 5.2] (and also in

[KR]).

Proposition 5.10.

(1) Ifval(h(x,2)) = 0, then Z(x) ~ Np (1,0 —2)o,.

(2) If val(h(y.y)) = 1, then V(y) = N (10 — 2o,
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Proof. (1) For an O z-scheme S, assume that (X, ix, Ax, px) € Z(x)(S). We can take
a rescaled = by an element in Oj such that h(x,z) = 1. We denote by z* the element
>\%1 ozY o Ax. Then we have that e := z o z* is an idempotent in Endp,(X), so that
X =e(X) x (1—e)(X). Via this decomposition, we have the decomposition of the action
ix = i1 X i3. Also, note that we have the canonical isomorphisms e”(X") = (eX)" and
(1—e")(X) = ((1—-e)(X))". By this identification, we have that the polarization Ax
decomposes into the product of polarizations A\ = Ax oe and Ay = Ay o(1—e) of eX and
(1 — e)(X) respectively. Let p; = eo px, po = (1 — €) o px, the quasi-isogenies of e(X)
and (1 — €)X, respectively. Then x defines an isomorphism Y =~ e(X) compatible with
polarizations, and ((1 — e)(X), 72, Ao, p2) gives an element in Ng/F(l, n—2)o,(S).

Conversely, for an element (Xs, i, Ao, p2) € Ng/F(l,n —2)0,(5), we can take X =
Y x X, with = inc; : Y — X, the action ix = i3 X ig, the polarization Ay x Ay and the
quasi-isogeny py X po. Then this gives an element in Z(z)(S). This construction gives
the inverse of the previous one up to isomorphism.

(2) For an Og-scheme S, let (X, ix, Ax,px) € Y(y)(S). Consider
B((X,ix, Ax, px)) = (XY, ix, Ny, (%) 7).
For z = Ay oy, let 2* = )\%1 0 2¥ o Ny. Then we have

2oz :A%loyvo)\}/(o)\’xo/\xoy
:A%loyvo(—)\X)o)\on)\Xoy

= _ﬂ-h(yv y)
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Therefore, val(z*oz) = 0. We can take rescaled y by an element in O}, such that z*oz = 1.
Then we have that e := z o z* is an idempotent in Endp,(X"). Now, as in the proof of

(1), we have that

(1= €)XY, (1= )Ny, (1= €)(px) ") € N7 (1in = 2)0,(S).

Therefore, by taking 0-1((1 — €)XV, ix, (1 — €)Xy, (1 —¢)(p%) ™)), we have an element
Now, let (Xs,ia, A2, p2) € /\/'g/_Fl(l, n— 2)OE‘ We will construct the inverse of the above

construction. First, consider

0((X27i27)\27P2)) = (Xglal2a)‘/27(p2) ) NE/F( 2)01;

Then we define

XVi=Y x X,

=V . =V

ix =iy X g,

)\IX = /\? X )\12,

(pX) ™= py x (p3) 1
This (XY, 7%, Ny, (p%)™1) is an element of g/}?(l,n — 1o,

NOWa we define (Xa iX7)\X7PX) = 971((vag\)/(a >‘/X? (pgf)il)v with
)xxoy::incl (Y — XV,

Then, this (X,ix,Ax,px) gives an element in )(y) and this construction inverts the

previous one up to isomorphism. 0
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Proposition 5.11. Assume that val(h(z,x)) = 0,val(h(y,y)) = —1. Assume further
that by rescaling as in Proposition ¥ox =1,(Axoy)*o(Axoy) =1. We define

ey ==z oz and e, := (Ax oy) o (Ax o y)*. Fix isomorphisms
O Z(x) ~ Ng/F(l,n —2)o,,
W V() = N0~ 2o,

as in Proposition [5.10. Then the following statements hold.

(1) For z € V such that h(x,z) =0, let 2/ :== (1 — e,) o z. Then, we have ®(Z(x) N
Z(z)) = 2() in E/F(l,n —2) and h(2',2") = h(z, 2).

(2) For w € V such that h(z,w) = 0, let w' := (1 —e,;) ow. Then, we have
O(Z(z)NY(w)) =YW') in g/F(l,n —2) and h(w',w'") = h(w,w).

(3) For z € V such that h(y,z) =0, let 2’ := (1 —ey) o 2. Then, we have ¥(Y(y) N
Z(2))=Z() in }g/—}(l,n —2) and h(Z',2') = h(z, 2).

(4) For w € V such that h(y,w) = 0, let w' := (1 —e)) ow. Then, we have

V(Y (y) NY(w)) =Y') in Ng/_}},(l,n —2) and h(w',w'") = h(w, w).

Proof. We will prove (3). Similar arguments work for (1), (2), (4). For an ele-
ment (X,ix,A\x,px) in Y(y) N Z(z)(S), we denote by (Xa,ix,, Ax,, px,) the element
U((X,ix,\x,px)) in g/_;(l,n —2)0,(5). Also, we denote by (Xy,ix,, Ax,) the fram-
ing object of Ng/_}},(l,n — 2)o,. By definition of Y(y) and Z(z), we have that e, can
be extended to a morphism in End(X"), and z : Y — X can be extended to a mor-
phism z : Y — X. Therefore, 2/ = (1 — eJ) o z can be extended to a morphism

Y — X, = (1 —ey)X. This proves that W(Y(y) N Z(z)) C Z(2').
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Conversely, for a given element (X, ix,, Ax,, px,) in Z(2’), we can use the construction

in Proposition [5.10, with
z=1incs0r : ¥ =5 Xy - X =Y x Xo.

This construction gives an element in Y(y) N Z(z), and it is U ((Xa,ix,, Axy, £xs))-
Therefore, we have V(Y (y) N Z(z)) = Z(Z).

Now, it remains to show that h(z’, z') = h(z, z). We have

h(z',2") :)\go(z’)vo/\;@oz’
=Aglo(2Yo(l—e))o((1—ey)oXx)o((1—e))oz)
:)\gonO(l—ey)o}\on.
:/\;ozvo)\xoz—)\gozvoeyo)\xoz

= h(z,2) = Azt 02V oe, 0 X0z,

Here, we used e, o Ax = Ax o (e,). Now, it remains to show that

/\gozvoeyo)\xoz:o.

Note that

ey = Axoyo Az oy o Ao N,
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Therefore, we have

)\gozvoeyo)\xoz
— ! Y -1 \ i /
_)‘Y oz o)\Xoyo/\§ oy oAgxoAy0Ax0z2

= _h(y7 Z>h(27 y)’ﬂ'
=0.
The last equality follows from our assumption h(y,z) = 0. This finishes the proof of

(3). O

Lemma 5.12. Assume that x1,29,y1,y2 are linearly independent special homomor-

phisms in' V and

val(h(z1, 1)) = 0,val(h(yi, 1)) = —1.

Then we have the following assertions.

1) Oz(z)) @6, Oz(@s) = Oz(a1) ®0p Oz (ay)-

3) Oy) @6,y Oz(a2) = Oyyr) @0xr Oz(a)-

(1)
(2) Oz(1) @65 Oya) = Oz(@1) ®ox Ov(ys)-
(3)
(4) Oy(w) ®H5N Oy(yz) = Oy(yl) Qo O)?(yz)'

Here, we write @" for the derived tensor product of Ox-modules.

Proof. (1) By Terstiege’s proof in [Ter13, Lemma 3.1}, it suffices to show that Z(z)
and Z(xs) have no common component. By Proposition m, Z(xy) ~ Ng/F(l, n—2)o,,
and by Proposition m, Z(z1) N Z(xg) = Z(z)) in g/F(l,n —2)o,. Therefore, by
Proposition , Z(x1)NZ(x2) is a divisor in NE/F(L n—2)o,. This implies that Z(x;)N

Z(x2) has codimension 2 in N and hence, Z(z) and Z(x5) have no common component.
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The proof of (2),(3),(4) are similar. O

Remark 5.13. Let {x,...,2n_pn,%1,.-.,yn} be an orthogonal basis of V.

If val(h(x1, 1)) = 0, then by above lemma, we have

Oy @6, = D6, Ovin) @6, Oz(@1) @6+ @6, O2(@n_n)

= (Oz(1) ®oy Ovn)) ®6s.,,, " 6,0, (Oz@) @6, Oz(@,-n))

)

= (Oz(1) ®ox Oyi)) ®6,,,., " ®6,4,, (Oz@) ®oyx Oz, 1))
= OZ(:c1)ﬂy(y1) ®]IO‘Z(11) o ®Héz(zl) OZ(wl)mZ(zn—h)

_ L L oL
- Oy(yi) ®O_/\/h(1,n72) T OZ("E/?) ®0Nh(1,n72) ®0Nh(1,n72) Oz(xib—h)'

In the last line, we regard the special cycles V(y}), ... Z(x}) as the cycles in N"*(1,n — 2)
via the identification Z(x;) = N"(1,n — 2) as in Proposition [5.11]
Similarly, we can do the same reduction, when val(h(y1,v1)) = —1. In this case, we

have an intersection in N*~(1,n — 2)

Let [x,y] := [#1,...,Zn_n, Y1, .- -,Yn] be an orthogonal basis of V. We will compute

the intersection number

X(Oy) @6, @6, Ovyn) @6, Oz@1) D6 *** @65 OZ(@nn))s
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in some special cases. Here, we write x for the Euler-Poincare characteristic ([KROO],
[Zhal2]). More precisely, for the structure morphism w : N — Spf O and for a sheaf of
On-modules H, we define

X(H) = Z(—l)i lengthOE(Riw*H).

For a bounded complex of sheaves H® of Oy~-modules, we define

Theorem 5.14. Let {x1,..., 2 p,Y1,-..,Yyn} be an orthogonal basis of V. Assume

that
val(h(z;,x;)) =0 forall3<i<mn-—h,

val(h(y;,y;)) = —1  forall1 < j < h,
and write a := val(h(x1,x1)), b := val(h(zs,x2)). We assume that a < b and a Z b

mod 2. Then we have

a

¢ (a+b+1-20).
1=0

DN | —

X(O)}(yl) ®H6N e ®%N Oz(mh)) =

More generally, consider another basis [z, Y| = [Z1, ..., Tn_n, 1, --,Un] of V such that

T=12q1,Y=1g2 for ¢ € GL,_(Og) and go € GL,(Og). Then we have

1 a
X(Oy) @6, ++* D Oz(an) = 5 3 d'(a+b+1-20).
=0
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Proof. By applying Remark repeatedly, the problem reduces to the case of n = 2

and we need to compute the intersection number

X(Oz(:) ®H5NO(1’1) Oz(z))-

This intersection number is computed in [Liull, Theorem 4.13]. Indeed,
1 a
X(Oz(zl) ®H6N0(1,1> 02(21)) = ) Z ql(a +b+1— 2l)-
1=0
For the general cases, first we need to show that (Y(g1) N --- N Z(Z))(k) is a single
point. By Proposition 5.5, (Y(71) N --- N Z(2))(k) is
1 n—1
mBY C A C BY
TAY & BT AY;
(5.0.0.1) Op-lattices A ¢ B C Nig 7B C AC B;

.i'l(To), ce ,Qan_h(To) € 7TBV;

u1(1o), ..., gn(1g) € TAY.

It is easy to see that this is the same as (Y (y1)N---NZ(xp))(k), since the above conditions
in (5.0.0.1)) are invariant under the linear combination X = Zg;,y = 7¢g2. Also, by Remark
[5.13] we know that this is a single point. Therefore, we can use the length of a deformation
ring to compute our intersection number as in [KR11| Section 5], and this is invariant

under the linear combination [X,y] = [xg1,¥y¢2]. Therefore, we have

X(Oy@) ®6y - @6, Oz@n) = X(Oyn) @6, @6, Oz(ay))
1
=5 S o (a+b+1-20).
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Theorem 5.15. Let {x1,..., 2 p,Y1,-..,yn} be an orthogonal basis of V. Assume

that
val(h(z;,x;)) =0 for all1 <i<n—h,

val(h(y;, y;)) = —1 for all 3 < j < h,
and write a = val(h(y1,y1)), b := val(h(ys,y2)). We assume that a < b and a # b

mod 2. Then we have,

1 a+1
X(Oy(4) @+ @6, Ozany) = 5 2 d'a+b+3—20).

1=0
More generally, consider another basis [z, Y| = [Z1, ..., Tn_n, 1, --,Un] of V such that
T=12g1,Y=1gs for ¢ € GL,_(Op) and g, € GLy(Og). Then
1 ot
X Oy ®H5N e ®H5N Oz,) = 3 Z ¢'(a+b+3—2I).

=0

Proof. By applying Remark repeatedly, the problem reduces to the case of n = 2

and we need to compute the intersection number

X(Oy(yl) ®H(3N2 Oy(y2))'

(1,1)

By applying 6, we can change our problem to the problem of computing the intersection

number

X(Oz(xgou) ®H5N0<1,1> Oz (rzoy2))-
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Note that Ax o y1, Ax o y» have orders a + 1 and b + 1, respectively. Therefore, by

[Liul1, Theorem 4.13], we have

a+1

1
X(OZ()\XOZH) ®Hé/\/0(1,1) OZO\X%/Q)) = 5 Z ql(a’ + b + 3 - 2l)
=0

The proof of the general case is the same as Theorem [5.14] U

Remark 5.16. Assume that

val(h(z;,z;)) =0  forall 1 <i<n—h-—1,

val(h(y;,y;)) = —1 forall 1 <j<h-—1.

In this case, by the above remark, we can reduce the problem to the intersection problem
in A''(1,1) that is the Drinfeld upper half-plane. In this case all intersection numbers of
special cycles (even in the case of improper intersection) can be computed explicitly (see

[San17] or [KROO0]). We will compute this in forthcoming work.
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