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ABSTRACT

The Basic Locus of the Unitary Shimura Variety with Parahoric Level Structure, and

Special Cycles

Sungyoon Cho

In this paper, we study the basic locus in the fiber at p of a certain unitary Shimura

variety with a certain parahoric level structure. The basic locus M̂ss is uniformized by

a formal scheme N which is called Rapoport-Zink space. We show that the irreducible

components of the induced reduced subscheme Nred of N are Deligne-Lusztig varieties

and their intersection behavior is controlled by a certain Bruhat-Tits building. Also, we

define special cycles in N and study their intersection multiplicities.
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CHAPTER 1

Introduction

This paper is a contribution to the theory of integral models of certain Shimura vari-

eties. In particular, we will give a concrete description of their basic loci. These problems

have important applications to Kudla’s program which relates arithmetic intersection

numbers of special cycles on integral models of certain Shimura varieties to Eisenstein se-

ries (see [KR11], [KR14a]), and Arithmetic Gan-Gross-Prasad conjecture (see [Zha12],

[RSZ18a], [RSZ18b], [RSZ17]). In this paper, we study the basic locus of the special

fiber of a certain unitary Shimura variety at an inert prime with parahoric level structure.

Let (G̃, hG̃) be a Shimura datum and let KG̃ be an open compact subgroup in G̃(Af ).

We refer to Section 4 for the precise definition. This Shimura variety has a moduli in-

terpretation MKG̃
(G̃) as a moduli space of abelian varieties with additional structure.

This Shimura variety is a variant of the Shimura variety which appears in [GGP12]

and its integral model MKG̃
(G̃) is defined in [RSZ18b]. The basic locus of the special

fiber ofMKG̃
(G̃) can be studied using the uniformization theorem of Rapoport and Zink,

[RZ, Theorem 6.30] (more precisely, see Theorem 4.3). Therefore, we can study the cor-

responding Rapoport-Zink space and use its explicit description to study the basic locus

of the special fiber of the Shimura variety.

We will now describe our main results in more detail. First, let us consider the

Rapoport-Zink spaces which are local analogues of Shimura varieties.
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1.1. The local result : relative Rapoport-Zink spaces

Let F be a finite extension of Qp, and let E be a quadratic unramified extension

of F with ring of integers OE and residue field Fq2 . We fix a uniformizer π. Let Ĕ

be the completion of a maximal unramified extension of E. Fix integers n and 0 ≤

h, r ≤ n. Here, h is related to a certain self-dual lattice chain, and r is related to the

determinant condition. We define a moduli space N h
E/F (r, n − r) over Spf OE of quasi-

isogenies of strict formal OF -modules with additional structure (see Section 2 for its

definition). If h = 0, r = 1, F = Qp, and E = Qp2 , then this moduli space coincides with

the Rapoport-Zink space that is studied by Vollaard and Wedhorn ([VW11]). This case

corresponds to the hyperspecial level structure case. In their paper, they proved that the

irreducible components of the induced reduced scheme of N 0
Qp2/Qp

(1, n − 1) are Deligne-

Lusztig varieties, and their intersection behavior is controlled by a certain Bruhat-Tits

building. Howard and Pappas studied the moduli space N 0
Qp2/Qp

(2, 2) in [HP14] (also,

see Remark 2.20). When h is not equal to 0, we have a parahoric level structure. When

h = 1, n = 2, the moduli space N 1
E/F (1, 1) is studied in [KR14b]. In this paper, Kudla

and Rapoport proved that the moduli space is represented by a Drinfeld p-adic half-plane.

Furthermore, they studiedN 1
Qp2/Qp

(1, n−1) in their unpublished notes [KR]. They showed

that its reduced scheme has two kinds of Bruhat-Tits strata: One consists of projective

spaces and the other consists of Deligne-Lusztig varieties. Our result is the generalization

of theirs to arbitrary h and F .

The cases where E is a ramified extension of F are also studied in literature. For

example, we refer to [RTW14], [Wu16] (also, see [RSZ18a], [RSZ18b], [RSZ17] for

their connection to Arithmetic Gan-Gross-Prasad conjecture).
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We now state our main result in local situation. Let (X, iX, λX) be a framing object

of N h
E/F (1, n− 1): X is a supersingular strict formal OF -module of F -height 2n over Fq2 ;

iX is an OE-action on X, and λX is a polarization. We note that the integer h is related

to this polarization. For this triple, there is an associated hermitian E-vector space N τ
k,0.

An OE-lattice Λ in N τ
k,0 is called a vertex lattice of type t(Λ), if πi+1Λ∨ ⊂ Λ ⊂ πiΛ∨ for

some i and the dimension of Λ/πi+1Λ∨ is t(Λ) as Fq2-vector space. Here, Λ∨ is the dual

lattice of Λ. For each i = 0, 1, we denote by Li the set of vertex lattices. We also define

the following sets of vertex lattices:

L+
0 := {OE-lattices Λ | πΛ∨ ⊂ Λ ⊂ Λ∨, t(Λ) ≥ h+ 1};

L−0 := {OE-lattices Λ | πΛ∨ ⊂ Λ ⊂ Λ∨, t(Λ) ≤ h− 1};

L+
1 := {OE-lattices Λ | π2Λ∨ ⊂ Λ ⊂ πΛ∨, t(Λ) ≥ n− h+ 1};

L−1 := {OE-lattices Λ | π2Λ∨ ⊂ Λ ⊂ πΛ∨, t(Λ) ≤ n− h− 1}.

Note that there is a bijection between L+
1 and L−0 via the map sending Λ ∈ L+

1 to

πΛ∨ ∈ L−0 . In this way, the union L+
0 t L+

1 can be identified with L+
0 t L−0 and then this

can be identified with the set of vertices of a certain Bruhat-Tits building. For each vertex

lattices Λ in L+
0 t L+

1 , we define a projective subscheme NΛ of the reduced subscheme of

N h
E/F (1, n − 1)OĔ . For i = 0, 1 and Λ ∈ L+

i , we define the set L+
Λ := {Λ′ ∈ L+

i |Λ′ ( Λ}.

We define the subscheme N 0
Λ := NΛ\

⋃
Λ′∈L+

Λ
NΛ′ . The schemes NΛ, N 0

Λ have the following

properties (see Theorem 3.14 and Section 3.8).

Theorem 1.1. The following properties of N h
E/F (1, n− 1) hold.
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(1) For Λ ∈ L+
0 (resp. Λ ∈ L+

1 ), NΛ is isomorphic to a Deligne-Lusztig variety and it

is projective, smooth, and geometrically irreducible of dimension 1
2(t(Λ)−h−1)+h

(resp. 1
2(t(Λ)− (n− h+ 1)) + n− h).

(2) For i = 0, 1, consider Λ ∈ L+
i . Then N 0

Λ is open and dense in NΛ and we have a

stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N h
E/F (1, n − 1)OĔ which is called the Bruhat-Tits

stratification. The closed subschemes NΛ of N h
E/F (1, n−1)OĔ are called the closed

Bruhat-Tits strata.

(3) For i = 0, 1, consider two vertex lattices Λ′ ⊂ Λ in L+
i . Then we have NΛ′ ⊂ NΛ.

(4) For i = 0, 1, consider two vertex lattices Λ′,Λ in L+
i . Then two closed Bruhat-

Tits strata NΛ, NΛ′ have nonempty intersection if and only if Λ ∩ Λ′ ∈ L+
i , and

in this case NΛ ∩NΛ′ = NΛ∩Λ′.

(5) For vertex lattices Λ0 ∈ L+
0 , Λ1 ∈ L+

1 , two closed Bruhat-Tits strata NΛ, NΛ′

have nonempty intersection if and only if πΛ∨1 ⊂ Λ0.

We also have the following properties of N h
E/F (1, n− 1)OĔ .

Theorem 1.2. The following assertions hold.

(1) In case h 6= 0, n, the formal scheme N h
E/F (1, n − 1)OĔ has semistable reduction.

If h = 0, n, N h
E/F (1, n − 1)OĔ is formally smooth over Spf OĔ. In particular, it

is regular for all h.

(2) There exists a Rapoport-Zink space N h
E/Qp(1, n − 1)OĔ of PEL type that is iso-

morphic to N h
E/F (1, n− 1)OĔ .

Remark 1.3. In case F is unramified over Qp, the above statements in Theorem 1.1

and Theorem 1.2 hold without base change to OĔ.
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Remark 1.4. In [GHN16], the authors provide the list of Shimura varieties such

that we have a simple description of the perfection of the basic locus as a union of the

perfection of Deligne-Lusztig varieties. Our cases can be regarded as the cases of (2A′n, w
∨
1 )

and (2A′′2m−1, w
∨
1 ) (we use the notation in [GHN16, 2.7]) with specific parahoric level

structures up to perfection (see Section 4.2 for our parahoric level structure). Their

method does not rely on a direct analysis of lattices, and work for arbitrary parahoric

level structure. Therefore, it is better to study broad classes of Shimura varieties. Also,

Theorem 1.2 (1) is already obtained in [HPR18].

We now describe §2-3 in more detail. In Section 2, we study the k-points ofN h
E/F (1, n−

1) by using the relative Dieudonne theory, where k is an algebraic closure of the residue

field of E. In Section 3, we define a subscheme NΛ for each vertex lattice Λ and prove that

this is isomorphic to a Deligne-Lusztig variety. Furthermore, we prove the regularity of

N h
Qp2/Qp

(1, n−1) via the theory of local model. Also, we prove that there is a stratification

of N h
E/F (1, n − 1) so called Bruhat-Tits stratification. Finally, we relate N h

E/F (1, n − 1)

to a certain PEL-type Rapoport-Zink space as Mihatsch did in [Mih16]. By using this

result, we prove the regularity of N h
E/F (1, n− 1).

1.2. The global result: non-archimedean uniformization

In the global situation, we write F for a CM field, F+ for its totally real subfield

of index 2, and Φ for a CM type. We fix an embedding τ−1 ∈ Φ and an embedding

ṽ : Q̄ → Q̄p. These two determine places v0 of F+ and w0 of F . We assume further

that v0 is unramified over p and inert in F . We denote by Sp the set of places of F+

over p. We will define three Shimura data: (G, hG), (Z, hZ), (G̃, hG̃). The first Shimura
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datum is associated to a unitary group ResF+/Q U(V ) for a hermitian space V . This

Shimura variety is of abelian type and appears in [GGP12]. The second Shimura datum

is associated to a torus Z. The third Shimura datum is the product of the first two

Shimura data, and is our main interest. This Shimura variety is studied in [RSZ18b],

and the authors formulate a moduli problem MKG̃
(G̃) of abelian varieties with additional

structure. Here, KG̃ is a certain open compact subgroup of G̃(Af ). We should note

that an integer 0 ≤ h ≤ n also appears in global situation, and this is closely related to

KG̃. In particular, if h = 0, KG̃ gives a hyperspecial level structure, and if h 6= 0, KG̃

gives a parahoric level structure. This h is also closely related to the h in local situation.

The moduli problem MKG̃
(G̃) gives a model over a reflex field E of the Shimura variety

ShKG̃(G̃). We write u for the place of E that is determined by ṽ. In [RSZ18b], the

authors define global integral models of MKG̃
(G̃) over SpecOE and semi-global integral

models over SpecOE,(u) in case h = 0, and in case h = 1, F+
v0 = Qp. In our paper, we

construct semi-global integral models MKG̃
(G̃) over SpecOE,(u) for arbitrary h.

Now we can formulate the following proposition.

Proposition 1.5. (Proposition 4.1, Proposition 4.2) We can formulate a moduli prob-

lem that is representable by a Deligne-Mumford stack MKG̃
(G̃) flat over SpecOE,(u). For

Kp
G small enough, MKG̃

(G̃) is relatively representable over Ma,W
0 . The generic fiber

MKG̃
(G̃) ×SpecOE,(u) SpecE is canonically isomorphic to MKG̃

(G̃) and MKG̃
(G̃) is nat-

urally isomorphic to the canonical model of ShKG̃(G̃). Furthermore, if h = 0, n, then

MKG̃
(G̃) is smooth over SpecOE,(u). If h 6= 0, n, then MKG̃

(G̃) has semistable reduction

over SpecOE,(u) provided that Eu is unramified over Qp.
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Now we will state the non-archimedean uniformization theorem of Rapoport and Zink

in our situation. By this theorem, we can relate the basic locus of MKG̃
(G̃) and the

Rapoport-Zink space N h
Fw0/F

+
v0

(1, n − 1). In order to simplify notation, we write M for

MKG̃
(G̃) and N for N h

Fw0/F
+
v0

(1, n−1). Let Ĕu be the completion of a maximal unramified

extension of Eu, and let k be the residue field of OĔu
. Let M̂ss be the completion of

MOĔu
along the basic locus of MOĔu

⊗ k. Then we have the following non-archimedean

uniformization theorem.

Theorem 1.6. (Theorem 4.3) There is a non-archimedean uniformization isomor-

phism

Θ : I(Q)\N ′ × G̃(Ap
f )/K

p

G̃

∼−→ M̂ss,

where

N ′ ' (Z(Qp)/KZ,p)×NOĔu ×
∏

v∈Sp\{v0}
U(V )(F+

v )/KG,v.

Here, I is an inner twist of G̃. We refer to Section 4.3 for all notation above and its

detail.

1.3. Special cycles

In this subsection, we use the notation in Section 1.1. In [KR], Kudla and Rapoport

defined the special cycles Z(x) in N 1
Qp2/Qp

(1, n− 1) and computed its reduced scheme as

in their another paper [KR11]. By following their work, we define special cycles Z(x)

and another special cycles Y(y) in N h
E/F (1, n−1)OĔ . We also study their reduced schemes

and arithmetic intersection numbers in some cases. In order to simplify notation, we write

N 0 for N 0
E/F (0, 1)OĔ and N for N h

E/F (1, n− 1)OĔ .
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Let k be the residue field of OĔ, and let (Y, iY, λY) (resp. (X, iX, λX)) be the framing

object of N 0 (resp. N ). The space of special homomorphisms V is the E-vector space

V := HomOE(Y,X)⊗Z Q,

with a E-valued hermitian form h such that for all x, y ∈ V,

h(x, y) := λ−1
Y ◦ y

∨ ◦ λX ◦ x ∈ EndOE(Y)⊗Q
i−1
Y' E.

For each x ∈ V, we define the special cycle Z(x) to be the closed formal subscheme

of N 0 × N with the following property: For each OĔ-scheme S such that π is locally

nilpotent, Z(x)(S) is the set of all points (Y , iY , λY , ρY , X, iX , λX , ρX) in N 0×N (S) such

that

Y ×S S
ρ
Y−→ Y×k S

x−→ X×k S
ρ−1
X−−→ X ×S S

extends to a homomorphism from Y to X.

For each y ∈ V, we define the special cycle Y(y) in a similar way, but here we use

the isomorphism N h
E/F (1, n − 1)OĔ ' N

n−h
E/F (1, n − 1)OĔ to define the cycle. We refer

to Definition 5.4 for the precise definition. All of these cycles are relative divisors in

N h
E/F (1, n− 1)OĔ . Therefore we can consider the arithmetic intersections of these cycles

as in [KR11].

We prove the following theorem.
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Theorem 1.7. (Theorem 5.14) Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis

of V. Assume that

val(h(xi, xi)) = 0 for all 3 ≤ i ≤ n− h,

val(h(yj, yj)) = −1 for all 1 ≤ j ≤ h,

and write a := val(h(x1, x1)), b := val(h(x2, x2)). We assume that a ≤ b and a 6≡ b

mod 2. Then we have

χ(OY(y1) ⊗L
ON
· · · ⊗L

ON
OZ(xh)) = 1

2

a∑
l=0

ql(a+ b+ 1− 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh] of V such that

x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE). Then we have

χ(OY(ỹ1) ⊗L
ON
· · · ⊗L

ON
OZ(x̃h)) = 1

2

a∑
l=0

ql(a+ b+ 1− 2l).

In this case, the reduced scheme of the intersection has dimension 0. Therefore we

can use the deformation theory as in [KR11] for F = Qp and [Liu11] in general.

We have one more case that seems to be realistic, but we do not include it in this paper.

See Remark 5.16. Also, we believe that the similar conjecture to [KR11, Conjecture 1.3]

can be formulated in our case.
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CHAPTER 2

The moduli space N of strict formal OF -modules

In this section, we will define the moduli problem N and study its structure.

2.0.1. The moduli space N h
E/F (r, n− r)

We fix a prime p > 2. Let F be a finite extension of Qp, with ring of integers OF , and

residue field Fq. We fix a uniformizer π. Let E be a quadratic unramified extension of

F , with ring of integers OE and residue field Fq2 . Let Ĕ be the completion of a maximal

unramified extension of E. Denote by ∗ the nontrivial Galois automorphism of E over F .

We recall the definition of strict formal OF -module from [RZ17].

Definition 2.1. Let S be a scheme such that p is locally nilpotent in OS. A formal

OF -module over a scheme S is a formal p-divisible group X over S with an OF -action

i : OF → EndX.

Let X be a formal OF -module over an OF -scheme S. We call X a strict formal

OF -module if OF acts on LieX via the structure morphism OF → OS. A strict formal

OF -module X is called supersingular if all slopes of X as a strict OF -module are 1/2.

Let h be an integer with 0 ≤ h ≤ n. We fix a triple (X, iX, λX) consisting of the

following data:

(1) X is a supersingular strict formal OF -module of F -height 2n over Fq2 ;
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(2) iX : OE → EndX is an OE-action on X that extends the OF -action on X;

(3) λX is a polarization

λX : X→ X∨,

such that the corresponding Rosati involution induces the involution ∗ on OE.

We also assume that (X, iX, λX) satisfies the following conditions.

(a) For all a ∈ OE, the action iX satisfies

Charpol(iX(a)|LieX) = (T − a)r(T − a∗)n−r.

Here, we view (T −a)r(T −a∗)n−r as an element of OS[T ] via the structure morphism.

We call this condition the determinant condition of signature (r, n− r).

(b) We assume that KerλX ⊂ X[π] and its order is q2h.

Now, we can define our moduli problem.

Let (Nilp) be the category of OE-schemes S such that π is locally nilpotent on S. Let

N h
E/F (r, n − r) be the set-valued functor on (Nilp) which sends a scheme S ∈ (Nilp) to

the set of isomorphism classes of tuples (X, iX , λX , ρX).

Here X is a (supersingular) formal OF -module of F -height 2n over S and iX is an

OE-action on X satisfying the determinant condition of signature (r, n− r)

Charpol(iX(a)|LieX) = (T − a)r(T − a∗)n−r, ∀a ∈ E.

Here we view (T − a)r(T − a∗)n−r as an element of OS[T ] via the structure morphism

OE → OS.
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Furthermore, ρX is an OE-linear quasi-isogeny

ρX : XS → X×Fq2 S,

of height 0, where S = S ×OE Fq2 and XS is the base change X ×S S.

Finally, λX : X → X∨ is a polarization such that its Rosati involution induces the

involution ∗ on OE, and the following diagram commutes up to a constant in O×F

XS X∨
S

XS X∨
S
.

λX
S

ρX

λX
S

ρ∨X

Two quadruples (X, iX , λX , ρX) and (X ′, iX′ , λX′ , ρX′) are isomorphic if there exists

an OE-linear isomorphism α : X → X ′ such that ρX′ ◦ (α ×S S) = ρX and α∨ ◦ λX′ ◦ α

differs locally on S from λX by a scalar in O×F .

The functor N h
E/F (r, n − r) ⊗ OĔ is representable by a formal scheme over Spf OĔ

which is locally formally of finite type. This is explained in [Mih16]. Indeed, we can use

[RZ, Theorem 2.16], and the fact that the condition that the OF -action on X lifts from

X, and the condition that the lifted action is strict are closed conditions.

Furthermore, when F is unramified extension of Qp, we will fix a decent (X, iX, λX) in

Remark 3.31. Then N h
E/F (r, n−r) is representable by a formal scheme over Spf OE which

is locally formally of finite type. For the moment assume that we fix this triple (X, iX, λX)

so that N h
E/F (r, n − r) is representable by a formal scheme over Spf OE which is locally

formally of finite type, where F is unramified over Qp.
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From now on, we will restrict ourselves to the case r = 1. Note that the case (r =

1, h = 0, F = Qp) is studied in [VW11]. For simplicity, denote by N the moduli problem

N h
E/F (1, n− 1).

2.1. Description of the points of N

Let k be a fixed algebraic closure of OE/πOE = Fq2 . In this subsection, we will

study the set N (k). For this, we need to use relative Dieudonne theory in the sense of

[RZ, Proposition 3.56]. We use the following notation.

Let F̆ be the completion of a maximal unramified extension of F containing E and

OF̆ its ring of integers. Let F u be the maximal unramified extension of Qp in F and OFu

its ring of integers. Let L be a perfect field with Fq-algebra structure α0 : Fq → L. Then,

we get a map OFu → W (L) induced from α0 : Fq ↪→ L. We define WOF (L) = OF ⊗OFu ,α0

W (L). This is the ring of relative Witt vectors of L. In particular WOF (k) = OF̆ .

Let σ be the Frobenius element in Gal(F̆ /F ).

We recall from [RZ, Proposition 3.56] (or [KR14b, Notation]) the definition of the

relative Dieudonne module. Let X be a formal OF -module of F -height 2n over k. Let

(M̃, Ṽ) be the (absolute) Dieudonne module of X. Consider the decomposition

OF ⊗Zp W (k) =
∏

α:Fq→k
OF ⊗OFu ,αW (k).
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Here, α runs over the set of Fp-embeddings α : Fq → k. Via this decomposition, the

action of OF on M̃ induces the decomposition

M̃ =
⊕

α:Fq→k
M̃α.

We define the relative Dieudonne module of X as

(Mα0 ,V = Ṽf ),

where f = |F u : Qp| = |Fq : Fp|.

Now, let (M,V) be the relative Dieudonne module of X, and let N = M ⊗Z Q be its

relative Dieudonne crystal. Denote by Nk = M⊗E F̆ its base change. The OE-action iX

on X induces an E-action on Nk. Let F be the Frobenius of M. The polarization λX of

X induces a nondegenerate F̆ -bilinear alternating form on Nk

〈·, ·〉 : Nk ×Nk → F̆ ,

such that for all x, y ∈ Nk, a ∈ E, it satisfies

(2.1.0.1) 〈Fx, y〉 = 〈x,Vy〉σ,

(2.1.0.2) 〈ax, y〉 = 〈x, a∗y〉.

Since we have the decomposition E ⊗F F̆ ' F̆ × F̆ , the E-action i on Nk induces

Z/2Z-grading

Nk = Nk,0 ⊕Nk,1.
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Note that by (2.1.0.1), (2.1.0.2), each Nk,i is totally isotropic with respect to 〈·, ·〉.

Also, for i = 0, 1, we have that F : Nk,i → Nk,i+1, V : Nk,i → Nk,i+1 are homogeneous of

degree 1 with respect to the decomposition.

For an OF̆ -lattice M = M0 ⊕M1, we define the dual lattice M⊥
i of Mi as

M⊥
i = {x ∈ Nk,i+1|〈x,Mi〉 ⊂ OF̆}.

For OF̆ -lattices Mi ⊂ M ′
i ⊂ Nk,i, we denote by [M ′

i : Mi] the index of Mi in M ′
i , i.e.

the length of the OF̆ -module M ′
i/Mi. If [M ′

i : Mi] = t, we write Mi

t
⊂M ′

i .

By the relative Dieudonne theory, we have the following proposition.

Proposition 2.2. There is a bijection between the set N (k) and the set of OF̆ -lattices

M in Nk such that

• M is stable under F , V, and OE-action;

• Charpolk(a,M/VM) = (T − a)(T − a∗)n−1 for all a ∈ OE;

• M0
h
⊂M⊥

1
n−h
⊂ π−1M0, M1

h
⊂M⊥

0
n−h
⊂ π−1M1.

We will use the following lemma in the next subsection.

Lemma 2.3. ([Vol10, Lemma 1.5]) Let M = M0 ⊕M1 be an OE-invariant lattice

in Nk. Assume that M is invariant under F and V. Then M satisfies the determinant

condition of signature (r, n− r) if and only if

πM0
n−r
⊂ FM1

r
⊂M0,

πM1
r
⊂ FM0

n−r
⊂ M1.
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Proof. See [Vol10, Lemma 1.5]. �

2.2. Description of the points of N II

In this subsection, we will describe the set N (k) as the set of lattices in Nk,0. We use

the following notation.

Let τ be the σ2-linear operator V−1F on Nk, and let N τ
k,0 be the set of τ -invariant

elements in Nk,0. Then N τ
k,0 is an E-vector space. Note that for every τ -invariant lattice

A in Nk,0, there exists a τ -invariant basis of A (see [Vol10, 1.10]). Therefore, we have

Nk,0 = N τ
k,0 ⊗E F̆ .

We define {x, y} := 〈x,Fy〉. This is a nondegenerate form on Nk,0 which is linear in

the first variable, and σ-linear in the second variable.

Also, this form {·, ·} satisfies the following properties (see [Vol10, 1.11]):

{x, y} = −{y, τ−1(x)}σ,

{τ(x), τ(y)} = {x, y}σ2
.

For an OF̆ -lattice A in Nk,0, we define A∨ the dual lattice of A with respect to the

form {·, ·} as

A∨ = {x ∈ Nk,0|{x,A} ⊂ OF̆}.

For an OF̆ -lattice A ⊂ Nk,0, we have

(A∨)∨ = τ(A),
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τ(A∨) = τ(A)∨.

We can now state the following description of N (k).

Proposition 2.4. There is a bijection between N (k) and the set


OF̆ -lattices A

h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣

πB∨
1
⊂ A

n−1
⊂ B∨,

πA∨
1
⊂ B

n−1
⊂ A∨,

πB ⊂ A ⊂ B.


Proof. For M = M0 ⊕M1 ∈ N (k), let A = M0, B = M⊥

1 . Then, by Proposition 2.2,

we have πB ⊂ A
h
⊂ B. Now, we will show the following equality.

(2.2.0.1) π(M⊥
1 )∨ = FM1.

Indeed, we have

(M⊥
1 )∨ = {y ∈ Nk,0|{y,M⊥

1 } ⊂ OF̆}

= {y ∈ Nk,0|〈y,FM⊥
1 〉 ⊂ OF̆}

= {y ∈ Nk,0|〈FM⊥
1 , y〉 ⊂ OF̆}

= {y ∈ Nk,0|〈M⊥
1 ,Vy〉 ⊂ OF̆}

= V−1((M⊥
1 )⊥) = V−1M1.

Therefore, by multiplying π, we get the equality (2.2.0.1).

By Lemma 2.3 and (2.2.0.1), we have πB∨
1
⊂ A

n−1
⊂ B∨.

Similarly, we have VM1
1
⊂ M0 ⇐⇒ M1

1
⊂ V−1M0 ⇐⇒ FM1 ⊂ V−1F(M0) ⇐⇒

π(M⊥
1 )∨

1
⊂ τ(M0)⇐⇒ πM∨

0
1
⊂M⊥

1 . Therefore, we have πA∨
1
⊂ B

n−1
⊂ A∨.
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Conversely, if we have OF̆ -lattices A,B satisfying the above conditions, then one can

easily show that A⊕B⊥ is an element in N (k). �

From now on, we identify N (k) with the set defined in the Proposition 2.4.

2.3. The sets RΛ, SΛ indexed by vertex lattices Λ.

In this section, we will define the sets RΛ and SΛ indexed by the lattices Λ which are

called vertex lattices. First, we start with the definition of the vertex lattices.

Definition 2.5. Let Li be the set of all lattices Λ in N τ
k,0 (hence, τ -invariant) satisfying

πi+1Λ∨ ⊂ Λ ⊂ πiΛ∨. An element in Li is called a vertex lattice. We say that a vertex

lattice Λ ∈ Li is of type t if πi+1Λ∨
t
⊂ Λ. We denote by t(Λ) the type of the vertex lattice

Λ.

Remark 2.6. For A
h
⊂ B a pair in N (k), we define

TiA := A+ τ(A) + · · ·+ τ i−1(A),

TiB := B + τ(B) + · · ·+ τ i−1(B).

Then, by [RZ, Proposition 2.17], there exist positive integers c, d such that Tc(A) and

Td(B) are τ -invariant.

Now, we will show the following lemma.

Lemma 2.7. Let A
h
⊂ B be a pair in N (k). Let c, d be the smallest positive integers

such that TcA, TdB are τ -invariant, and write ΛA := Tc(A), ΛB := Td(B). Then, at least

one of the following assertions holds.
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(1) ΛB is a vertex lattice in L0, and

πA∨
1
⊂ B ⊂ ΛB ⊂ Λ∨B

∪ ∪

πΛ∨B ⊂ πB∨
1
⊂ A

(2) ΛA is a vertex lattice in L1, and

πB∨
1
⊂ A ⊂ ΛA ⊂ πΛ∨A

∪ ∪

π2Λ∨A ⊂ π2A∨
1
⊂ πB

To prove the Lemma 2.7, we need the following lemma.

Lemma 2.8. For 1 ≤ i < c, 1 ≤ j < d,

(2.3.0.1) TiA ∩ τ(TiA) = τ(Ti−1A),

(2.3.0.2) Ti−1A
1
⊂ TiA,

(2.3.0.3) TjB ∩ τ(TjB) = τ(Tj−1B),

(2.3.0.4) Tj−1B
1
⊂ TjB.

Proof. We will show (2.3.0.1), (2.3.0.2). The proof of (2.3.0.3), (2.3.0.4) is similar.
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Note that we have

(2.3.0.5) πB∨
1
⊂ A

n−1
⊂ B∨,

(2.3.0.6) πA∨
1
⊂ B

n−1
⊂ A∨.

Therefore, we have πB∨
1
⊂ A and πB∨

1
⊂ τ(A) by taking the dual of (2.3.0.6). If A is

τ -invariant, then c = 0, and hence there is nothing to prove. Now assume that A is not

τ -invariant. Since πB∨ ⊂ A ∩ τ(A) ( A and πB∨ is of index 1 in A, A ∩ τ(A) should be

πB∨. Also A and τ(A) should have index 1 in T1A. This shows (2.3.0.2) when i = 1.

For (2.3.0.1), note that τ(A)
1
⊂ T1A and τ(A)

1
⊂ τ(T1A). If T1A is τ -invariant, then

c = 1. Therefore, there is nothing to show. Assume that T1A is not τ -invariant. Then

T1A ∩ τ(T1A) = τ(A). This shows (2.3.0.1) for i = 1.

For arbitrary i, we can use the induction on i. �

We now go back to the proof of Lemma 2.7.

Proof of Lemma 2.7. We will prove this lemma by dividing by 6 cases and their

subcases.

Case 1. If B ∈ L0, then (1) holds.

Case 2. If A ∈ L1, then (2) holds.

Case 3. Assume that A is τ -invariant, but not a vertex lattice in L1. Then A * πA∨.

Since πA∨ is of index 1 in B, and A ⊂ B, we have B = A+ πA∨. Since A is τ -invariant,

B is also τ -invariant. Therefore, if B ⊂ B∨, then B ∈ L0, and hence (1) holds. Therefore,

it suffices to show that B ⊂ B∨. Assume that B * B∨. Since πB∨ is of index 1 in A and
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πB ⊂ A, we have A = πB + πB∨. However, πB∨ ⊂ πA∨ and πB ⊂ πA∨ implies that

A = πB+πB∨ ⊂ πA∨ which contradicts to our assumption that A is not a vertex lattice.

Case 4. Assume that B is τ -invariant, but not a vertex lattice in L0. Then B * B∨.

Since πB∨ is of index 1 in A and πB ⊂ A, we have that A = πB + πB∨. In particular, A

is also τ -invariant. Also, πB∨ ⊂ πA∨ and πB ⊂ πA∨ implies that A ⊂ πA∨. Therefore,

A is vertex lattice in L1 and (2) holds in this case.

Case 5. Assume that A,B are not τ -invariant and B ⊂ B∨. In this case, we have

(2.3.0.7) A ∩ τ(A) = πB∨,

(2.3.0.8) B ∩ τ(B) = πA∨.

Also, note that

B + τ(B) ⊂ B∨ ⊂ π−1τ(A),

τ(B) + τ 2(B) ⊂ τ(B∨) ⊂ π−1τ(A).

Therefore, we have

T2B ⊂ π−1τ(A) ⊂ π−1T1A,

and,

(2.3.0.9) TdB ⊂ π−1Td−1A.
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Case 5-1. Assume that d− 1 < c. Since TdB is τ -invariant, (2.3.0.9) implies that

TdB ⊂
⋂
l∈Z

π−1τ l(Td−1A) (2.8)=
⋂
l∈Z

π−1τ l(A) (2.3.0.7)=
⋂
l∈Z

π−1τ l(πB∨) = (TdB)∨.

The last equality is induced by

(TdB)∨ = B∨ ∩ τ(B∨) ∩ · · · ∩ τ d−1(B∨),

and the fact that (TdB)∨ is τ -invariant. Therefore, (1) holds in this case.

Case 5-2. Assume that d − 1 ≥ c. Then, TcA ⊂ TcB and TcA is τ -invariant.

Therefore, we have

TcA ⊂
⋂
l∈Z

τ l(TcB) (2.8)=
⋂
l∈Z

τ l(B) (2.3.0.8)=
⋂
l∈Z

τ l(πA∨) = π(TcA)∨.

The last equality is induced by

(TcA)∨ = A∨ ∩ τ(A∨) ∩ · · · ∩ τ c−1(A∨),

and the fact that (TcA)∨ is τ -invariant. Therefore, (2) holds in this case.

Case 6. Assume that A,B are not τ -invariant and B * B∨. In this case, (2.3.0.7)

and (2.3.0.8) hold and we have A = πB + πB∨ ⊂ πA∨ (see the case 4). By (2.3.0.8), we

have A ⊂ B and A ⊂ τ(B). Therefore, T1A ⊂ τ(B) and

TcA ⊂ τ(Tc−1B).
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Case 6-1 Assume that c ≤ d. Then, we have

TcA ⊂
⋂
l∈Z

τ l(Tc−1B) (2.8)=
⋂
l∈Z

τ l(B) (2.3.0.8)=
⋂
l∈Z

τ l(πA∨) = π(TcA)∨.

Therefore, (2) holds in this case.

Case 6-2 Assume that d < c. Then, B ⊂ π−1A implies that TdB ⊂ π−1TdA. There-

fore, we have

TdB ⊂
⋂
l∈Z

π−1τ l(TdA) (2.8)=
⋂
l∈Z

π−1τ l(A) (2.3.0.7)=
⋂
l∈Z

π−1τ l(πB∨) = (TdB)∨.

This is a contradiction, since B * B∨ and B ⊂ TdB ⊂ (TdB)∨ ⊂ B∨.

This completes the proof of the Lemma 2.7. �

Now, let us give the definition of the sets RΛ(k), SΛ(k).

Definition 2.9. (1) For a vertex lattice Λ ∈ L1, we define the set

RΛ(k) :=


OF̆ -lattices

A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) πB∨
1
⊂ A ⊂ Λ ⊂ πΛ∨

∪ ∪

π2Λ∨ ⊂ π2A∨
1
⊂ πB

(ii) πB
n−h
⊂ A

h
⊂ B


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(2) For a vertex lattice Λ ∈ L0, we define the set

SΛ(k) :=


OF̆ -lattices

A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) πA∨
1
⊂ B ⊂ Λ ⊂ Λ∨

∪ ∪

πΛ∨ ⊂ πB∨
1
⊂ A

(ii) πB
n−h
⊂ A

h
⊂ B


Proposition 2.10. We have N (k) = ⋃

Λ∈L1 RΛ(k) ∪ ⋃Λ∈L0 SΛ(k).

Proof. This is clear from the Lemma 2.7. �

Proposition 2.11. If Λ ∈ L0 and SΛ is not empty, then h + 1 ≤ t(Λ) ≤ n, and

t(Λ) ≡ h+ 1 mod 2.

Proof. This is clear from the Lemma 2.7 (1). �

Proposition 2.12. If Λ ∈ L1 and RΛ is not empty, then n− h + 1 ≤ t(Λ) ≤ n, and

t(Λ) ≡ n− h+ 1 mod 2.

Proof. This is clear from the Lemma 2.7 (2). �

Definition 2.13. We write L+
0 for the set of lattices in L0 with t(Λ) ≥ h + 1 and

L−0 for the set of lattices in L0 with t(Λ) ≤ h− 1. Similarly, we denote by L+
1 the set of

lattices in L1 with t(Λ) ≥ n−h+ 1 and L−1 the set of lattices in L1 with t(Λ) ≤ n−h−1.

Remark 2.14. For Λ1 ∈ L+
1 , we have π(πΛ∨1 )∨ = Λ1 ⊂ πΛ∨1 ⊂ π−1Λ1 = (πΛ∨1 )∨.

Therefore, we can regard πΛ∨1 as the element of L0. By this identification, we have a

bijection from L+
0 t L−0 to L+

0 t L+
1 by sending Λ ∈ L+

0 to Λ, and Λ ∈ L−0 to πΛ∨.
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Remark 2.15. When h = 0 (the case in [VW11]), RΛ(k) does not occur in N (k)

(by Proposition 2.12). When h = 1, for any pair (A,B) ∈ RΛ(k), A should be Λ and

t(Λ) = n. In this case, B can be any lattice satisfying Λ
1
⊂ B ⊂ π−1Λ. Hence, we have

RΛ(k) ' Pn−1(k). We should note that Kudla and Rapoport already proved this result

in their unpublished notes [KR].

Proposition 2.16. Let Λ1,Λ2 be elements in L+
0 .

(1) If Λ1 ⊂ Λ2, then SΛ1(k) ⊂ SΛ2(k).

(2) If Λ1 ∩ Λ2 is in L+
0 , then SΛ1(k) ∩ SΛ2(k) = SΛ1∩Λ2(k). Otherwise, it is empty.

Proof. (1) is clear from its definition.

For (2), we will show that SΛ1(k) ∩ SΛ2(k) ⊂ SΛ1∩Λ2(k). Let (A,B) be the element in

SΛ1(k) ∩ SΛ2(k). Note that (A,B) satisfies the following diagrams,

πA∨
1
⊂ B ⊂ Λ1 ⊂ Λ∨1

∪ ∪

πΛ∨1 ⊂ πB∨
1
⊂ A ,

and
πA∨

1
⊂ B ⊂ Λ2 ⊂ Λ∨2

∪ ∪

πΛ∨2 ⊂ πB∨
1
⊂ A .
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These two diagrams imply that

πA∨
1
⊂ B ⊂ Λ1 ∩ Λ2 ⊂ Λ∨1 ⊂ (Λ1 ∩ Λ2)∨

∪ ∪

π(Λ1 ∩ Λ2)∨ = πΛ∨1 + πΛ∨2 ⊂ πB∨
1
⊂ A .

Therefore, Λ1 ∩ Λ2 is in L+
0 , and (A,B) should be contained in SΛ1∩Λ2(k).

Conversely, SΛ1∩Λ2(k) ⊂ SΛ1(k)∩SΛ2(k) is obvious from (1). This completes the proof

of the proposition. �

Proposition 2.17. Let Λ1,Λ2 be elements in L+
1 .

(1) If Λ1 ⊂ Λ2, then RΛ1(k) ⊂ RΛ2(k).

(2) If Λ1 ∩ Λ2 is in L+
1 , then RΛ1(k) ∩RΛ2(k) = RΛ1∩Λ2(k). Otherwise, it is empty.

Proof. The proof is the same as the proof of Proposition 2.16 �

Now, let us consider the intersection RΛ1(k) ∩ SΛ0(k).

Proposition 2.18. Let Λ1 ∈ L+
1 ,Λ0 ∈ L+

0 .

(1) If πΛ∨1 * Λ0, then RΛ1(k) ∩ SΛ0(k) = ∅.

(2) If πΛ∨1 ⊂ Λ0, then

RΛ1(k) ∩ SΛ0(k) =


OF̆ -lattices

A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣

πΛ∨1 ⊂ πA∨
1
⊂ B ⊂ Λ0

∪

Λ1 ⊃ A
1
⊃ πB∨ ⊃ πΛ∨0


Proof. This is clear from the definition. �
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Remark 2.19. Let h = 1, Λ1 ∈ L+
1 ,Λ0 ∈ L+

0 , and πΛ∨1 ⊂ Λ0. For any (A,B) ∈

RΛ1(k), we have A = Λ1 by Remark 2.15. Therefore,

RΛ1(k) ∩ SΛ0(k) =


OF̆ -lattices

B ⊂ Nk,0

∣∣∣∣∣∣∣∣ πΛ∨1
1
⊂ B ⊂ Λ0

 .

This is isomorphic to Pm−1(k), where m = [Λ0 : πΛ∨1 ].

Remark 2.20. We can apply our method for N 0
E/F (2, 2) which has been studied in

[HP14]. We should note that all of the following descriptions of k-points is already

obtained in loc.cit. with a different method.

By using the relative Dieudonne theory and similar steps in Section 2, we can show

that there is a bijection between N (k) and the set

{
OF̆ -lattice B ⊂ Nk,0

∣∣∣∣ πB∨ 2
⊂ B

2
⊂ B∨

}

We can divide the set into three cases.

case 1 B ∩ τ(B)
1
⊂ B.

case 2 B ∩ τ(B) = πB∨ and B
1
⊂ T1B.

case 3 B ∩ τ(B) = πB∨ and T1B = B∨.

In case 1, let πA∨ = B ∩ τ(B). Then, the pair (A,B) satisfies

πA∨
1
⊂ B

3
⊂ A∨;

πB∨
1
⊂ A

3
⊂ B∨;

πB
3
⊂ A

1
⊂ B.

Therefore, by using Lemma 2.7, we can show that at least one of the following is true.
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(1) A is τ -invariant and A = πA∨.

(2) ΛB ⊂ Λ∨B.

In case 2, one can prove that ΛB ⊂ Λ∨B.

In case 3, since B ∩ τ(B) = πB∨, we have B∨ + τ(B∨) = π−1τ(B) by taking dual.

Since B∨ = B + τ(B), we have

B + τ(B) + τ 2(B) = π−1τ(B).

Let d be the smallest integer such that TdB is τ -invariant. Then TdB = π−1τ(Td−2B) is

τ -invariant, and this means that Td−2B is also τ -invariant. This is possible only when B

is τ -invariant.

In summary, B ∩ τ(B) is a vertex lattice of type 0 or ΛB ⊂ Λ∨B (hence ΛB is a vertex

lattice). This is the analogue of Lemma 2.7.

Therefore, for each vertex lattice Λ, we can attach the following set.

(1) If Λ = πΛ∨, then we attach the set,


OF̆ -lattices

B ⊂ Nk,0

∣∣∣∣∣∣∣∣ Λ
1
⊂ B

2
⊂ B∨

1
⊂ Λ∨

 .

This is the set of k-points of a Fermat hypersurface.

(2) If πΛ∨
2
⊂ Λ, then we attach the set,


OF̆ -lattices

B ⊂ Nk,0

∣∣∣∣∣∣∣∣ B = Λ

 .

This is one k-point.



36

(3) If πΛ∨
4
⊂ Λ, then we attach the set,


OF̆ -lattices

B ⊂ Nk,0

∣∣∣∣∣∣∣∣ πΛ∨
1
⊂ πB∨

2
⊂ B

1
⊂ Λ = Λ∨

 .

This is the set of k-points of a Fermat hypersurface.

N (k) is the union of the above sets and this is the same result as in [HP14].
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CHAPTER 3

Subschemes NΛ of N

In this section, we will first define the subscheme NΛ for each vertex lattice Λ, and

prove that NΛ is isomorphic to a generalized Deligne-Lusztig variety. Also, we will prove

the regularity of N h
E/F (1, n − 1) ⊗ OĔ. Before we begin, let us introduce some notation.

In the end of the Section 2.0.1, we showed that N h
E/F (1, n− 1)⊗OĔ is representable by a

formal scheme over Spf OĔ and furthermore, N h
E/F (1, n− 1) is representable by a formal

scheme over Spf OE if F is unramified over Qp. For this reason, we will use the following

notation. Let F = Fq2 if F is an unramified extension of Qp, and let F = Fq2 if F is

ramified over Qp. Then N h
E/F (1, n− 1)⊗OE F is the special fiber of N h

E/F (1, n− 1) (resp.

N h
E/F (1, n− 1)⊗OĔ) if F is unramified over Qp (resp. if F is ramified over Qp).

3.1. Strict formal OF -modules XΛ+ and XΛ−

In this subsection, we fix a vertex lattice Λ ∈ L+
i , for i = 0, 1. We will define

the strict formal OF -modules XΛ+ , XΛ− over Fq2 with OE-action, polarizations λΛ± and

quasi-isogenies ρΛ± : XΛ± → X. For this, we will construct the following two Dieudonne

submodules of N .

First, if Λ ∈ L+
0 , we define the lattices Λ+ and Λ− by

Λ+
0 = Λ

Λ+
1 = V−1(Λ)
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Λ−0 = πΛ∨

Λ−1 = V(Λ∨)

Λ+ = Λ+
0 ⊕ Λ+

1

Λ− = Λ−0 ⊕ Λ−1

Then, one can easily show that Λ− = (Λ+)⊥. Since F = V on Λ+ and Λ−, we have

that Λ+ and Λ− are Dieudonne submodules of N .

In case Λ ∈ L+
1 , we define the lattices Λ+ and Λ− by

Λ+
0 = Λ

Λ+
1 = V−1(Λ)

Λ−0 = π2Λ∨

Λ−1 = πV(Λ∨)

Λ+ = Λ+
0 ⊕ Λ+

1

Λ− = Λ−0 ⊕ Λ−1

Then, we have Λ− = π(Λ+)⊥. Again, these Λ+ and Λ− are Dieudonne submodules of

N .

For Λ ∈ L+
i , we have Λ ⊂ πiΛ∨. Therefore, the pairing π−i+1〈·, ·〉 on N induces a

WOF (Fq2)-pairing on Λ+ and Λ−.

Now, let XΛ+ and XΛ− be the strict formal OF -modules associated to Λ+ and Λ− with

quasi-isogenies ρΛ± : XΛ± → X.
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We will use these two strict formal OF -modules to define the subschemes NΛ of N .

3.2. Subschemes NΛ attached to vertex lattices Λ

We fix Λ ∈ L+
i , for i = 0, 1. Let S be a F-scheme. We define NΛ as the subfunctor of

N ⊗OE F consisting of tuples (X, iX , λX , ρX) ∈ N (S) such that

ρX,Λ+ : X ρX−→ Xs

(ρΛ+ )−1
S−−−−−→ (XΛ+)S

ρX,Λ− : (XΛ−)S
(ρΛ− )S−−−−→ XS

ρ−1
X−−→ X

are isogenies.

We have the following lemma.

Lemma 3.1. The functor NΛ is representable by a projective F-scheme and the

monomorphism NΛ ↪→ N ⊗ F is a closed immersion.

Proof. See [VW11, Lemma 4.2]. �

Lemma 3.2. If Λ ∈ L+
0 , then NΛ(k) = SΛ(k), and if Λ ∈ L+

1 , then NΛ(k) = RΛ(k).

Proof. This is clear from the definition of NΛ. �

3.3. Deligne-Lusztig varieties

In this subsection, we will recall some results about Deligne-Lusztig varieties.

Let G be a connected reductive group over a finite field K. Denote by GK the base

change of G over K, where K is a fixed algebraic closure of K. Let F : G → G be the

Frobenius morphism with respect to K, and let (W,S) be the Weyl system of GK. Then F

gives an automorphism on W . By Lang’s theorem, G is quasi-split, and hence F(S) = S.
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For I ⊂ S, let WI be the subgroup of W generated by I, and let PI = BWIB be the

corresponding standard parabolic subgroup of G.

For I, J ⊂ S, we denote by IW J the set of minimal length representatives w ∈ W in

the double coset WI\W/WJ .

Now, we define the generalized Deligne-Lusztig varieties as follows.

Definition 3.3. Let I ⊂ S. For each w ∈ W , we define the generalized Deligne-

Lusztig variety XI(w) by

XI(w) := {g ∈ G/PI : g−1F(g) ∈ PIwPF(I)}.

We will need the following two results later.

Proposition 3.4. ([Hoe10, Lemma 2.1.3]) For w ∈IWF(I), the Deligne-Lusztig vari-

ety XI(w) is smooth of dimension l(w) + l(WF(I))− l(WI∩wF(I)), where l(w) is the length

of w, l(WI) = max{l(w′)|w′ ∈ WI}, and wF(I) = wF(I)w−1.

Proposition 3.5. ([BR06]) The following assertions are equivalent.

(1) XI(w) is geometrically irreducible.

(2) XI(w) is connected.

(3) There exists no J ( S with F(J) = J such that WIw ⊂ WJ .

3.4. The Deligne-Lusztig variety YΛ

In this subsection, we will define the Deligne-Lusztig variety YΛ. For i = 0, 1 we fix a

vertex lattice Λ ∈ L+
i . We use the following notation.
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• Let VΛ be Λ+
0 /Λ−0 and let (·, ·) be the skew-hermitian form on VΛ induced by π−i{·, ·}.

Note that VΛ is a Fq2-vector space of dimension d := t(Λ).

• Let JΛ be the special unitary group associated to (V, (·, ·)). This is a connected

reductive group over Fq.

• Let F : JΛ → JΛ be the Frobenius morphism over Fq and (W,S) be the Weyl system

of JΛ.

Note that

JΛ ⊗Fq Fq2 ' SL(VΛ) = SLd,Fq2 .

Therefore, we can identify W with the symmetric group Sd, and S with {s1, . . . , sd},

where si is the transposition of i and i+ 1.

The Frobenius F induces an automorphism of W , and this is given by the conjugation

with w0 ∈ Sd, where w0(i) = d+ 1− i for all i.

• For a Fq2-algebra R, we denote by VΛ,R the base change VΛ ⊗Fq2 R. Let σ be the

Frobenius of R. For a R-module M, denote by M (σ) = M ⊗R,σ R, the Frobenius twist,

and denote by M∗ = HomR(M,R). Let U be a locally direct summand of VΛ,R of rank

m. We define its dual module Ug as follows. Since (·, ·) induces an R-linear isomorphism

ψ : (VΛ,R)(σ) ' (VΛ,R)∗,

ψ(U (σ)) is a locally direct summand of (VΛ,R)∗ of rank m. Let Ug be the kernel of the

composition

VΛ,R ' (VΛ,R)∗∗ � ψ(U (σ))∗.

This is a locally direct summand of VΛ,R of rank d−m.
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In particular, if R = k, then

Ug = {x ∈ VΛ,k : (x, U) = 0}.

Remark 3.6. Let R = k. For a lattice A such that πi+1Λ∨ ⊂ A ⊂ Λ, the quotient

A/πi+1Λ∨ is a subspace of VΛ,k. Then by definition, we have

πi+1A∨/πi+1Λ∨ = (A/πi+1Λ∨)g.

We will need the following lemma.

Lemma 3.7. ([Vol10, Lemma 2.17]) Fix I ⊂ S, and let Fl be a flag in JΛ/PI .

Then the Frobenius F and the duality morphism Fl 7→ Flg define the same morphism

JΛ/PI → JΛ/PF(I), i.e. the dual flag Flg is equal to F(Fl).

Let Λ ∈ L+
0 and d = 2l + h + 1 (recall that h is from N h

E/F (1, n − 1)). We can take

the set IΛ ⊂ S such that the elements in JΛ/PIΛ parametrize flags

0
l+1
⊂ A

h
⊂ B

l
⊂ VΛ,

where A,B are subspaces of VΛ. For example, we take

IΛ = {s1, . . . , sl, sl+2, . . . , sl+h, sl+h+2, . . . , s2l+h},

where h > 1, l > 1.
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In case Λ ∈ L+
1 , and d = 2l + (n − h) + 1, we take IΛ ⊂ S such that the elements in

JΛ/PIΛ parametrize flags

0
l+1
⊂ πB

n−h
⊂ A

l
⊂ VΛ,

where πB,A are subspaces of VΛ.

Definition 3.8. In case h = 0, n, we define wΛ = id. In case 1 ≤ h ≤ n − 1, we

define wΛ as follows. If Λ ∈ L+
0 , we define wΛ = sl+1sl+2 . . . sl+h or wΛ = (l+ 1, l+h+ 1),

the transposition of l + 1 and l + h + 1. Note that these two wΛ gives the same coset in

WIΛwΛWF(IΛ). In case Λ ∈ L+
1 , we define wΛ = sl+1sl+2 . . . sl+n−h.

Then we have the following proposition.

Proposition 3.9. We have the following bijections.

(1) If 1 ≤ h ≤ n− 1 and Λ ∈ L+
0 , then

SΛ(k) = XIΛ(id)(k) tXIΛ(wΛ)(k).

(2) If 1 ≤ h ≤ n− 1 and Λ ∈ L+
1 , then

RΛ(k) = XIΛ(id)(k) tXIΛ(wΛ)(k)

(3) If h = 0 and Λ ∈ L+
0 , then

SΛ(k) = XIΛ(id)(k).
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(4) If h = n and Λ ∈ L+
1 , then

RΛ(k) = XIΛ(id)(k).

Proof. (1) Let (A ⊂ B) ∈ SΛ(k). By sending this to (A/πΛ∨ ⊂ B/πΛ∨), we have an

element in XIΛ(id)(k) tXIΛ(wΛ)(k) (here we use Lemma 3.7).

Indeed, if

0
l
⊂ πB∨

1
⊂ A

h−1
⊂ πA∨

1
⊂ B

l
⊂ Λ,

then (A/πΛ∨ ⊂ B/πΛ∨) ∈ XIΛ(id)(k).

And if

πB∨ ⊂ A * πA∨ ⊂ B,

then (A/πΛ∨ ⊂ B/πΛ∨) ∈ XIΛ(wΛ)(k).

The proofs of (2), (3), (4) are similar. �

Definition 3.10. For i = 0, 1, let Λ ∈ L+
i . If 1 ≤ h ≤ n − 1, then we define a

Fq2-scheme

YΛ := XIΛ(id) tXIΛ(wΛ) = XIΛ(wΛ).

The second equality is from the property of the Bruhat order (see [HP14, Lemma 3.7]).

If h = 0 and Λ ∈ L+
0 , then we define YΛ := XIΛ(id). Similarly, if h = n and Λ ∈ L+

1 , then

we define YΛ := XIΛ(id). By abuse of notation, we denote by YΛ its base change YΛ ⊗ F.

By Proposition 3.4 and Proposition 3.5, we have the following proposition.

Proposition 3.11. For Λ ∈ L+
i (i = 0, 1), YΛ is irreducible, and
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(1) if Λ ∈ L+
0 , the dimension of YΛ is

t(Λ)− 1− h
2 + h,

(2) if Λ ∈ L+
1 , the dimension of YΛ is

t(Λ)− 1− (n− h)
2 + n− h.

3.5. Description of the points of NΛ

In this subsection, we will use the theory of OF -windows in [ACZ16], [Ahs11] to

obtain a description of NΛ(k) for an arbitrary field extension k of F (For a perfect field

k, we can use the relative Dieudonne theory as in Section 2.1, 2.2). This will be used

to prove the Theorem 3.14. For simplicity we denote by O the ring of integers OF .

Let k be an arbitrary field extension of F, and let WO(k) be the ring of ramified Witt

vectors. Let WO,k = (WO(k), IO(k), k,σ ,V−1 ) and WO,F = (WO(F), πWO(F),F,σ ,V−1 ) be

Witt O-frames.

Let (M,F ,V) be the relative Dieudonne module of X defined in Section 2.1. then

(M,VM,F ,V−1) is the WO,F-window of X. The inclusion WO(F) ↪→ WO(k) induces a

morphism of O-frames WO,F → WO,k. Then by base change, we get the WO,k-window

(Mk,M′k,Fk,V−1
k ) of X⊗ k. More precisely,

• Mk = WO(k)⊗WO(F) M.

• M′k = Ker(w0 ⊗ pr), where w0 is 0-th Witt polynomial, and pr : M→M/VM.

• Fk =σ ⊗F .
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• V−1
k is the unique σ-linear morphism which satisfies

V−1
k (w ⊗ y) =σ w ⊗ V−1y,

V−1
k (Vw ⊗ y) = w ⊗Fy,

for all w ∈ WO(k), x ∈M, and y ∈ VM.

Let Nk = Mk⊗WO(k) Frac(WO(k)). The OE-action on M induces the OE-action on Nk.

The polarization λ ⊗ k on X ⊗F k induces a nondegenerate Frac(WO(k))-bilinear al-

ternating form 〈·, ·〉 on Nk

〈·, ·〉 : Nk ×Nk → Frac(WO(k)),

such that for all x, y ∈ Nk and a ∈ E, it satisfies

〈Fkx, Fky〉 = π〈x, y〉σ,

〈ax, y〉 = 〈x, a∗y〉.

The OE-action on Nk induces Z/2Z-grading

Nk = Nk,0 ⊕Nk,1.

Each Nk,i is totally isotropic with respect to 〈·, ·〉 and Fk is homogeneous of degree 1

with respect to the decomposition. For a WO(k)-lattice M = M0 ⊕M1 ⊂ Nk, we define

the dual lattice M⊥ = M⊥
1 ⊕M⊥

0 as

M⊥
i = {x ∈ Nk,i+1|〈x,Mi〉 ∈ WO(k)}, i = 0, 1.
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Let (Λ±k ,VΛ±k ,Fk,V−1
k ) be the WO,k-windows of XΛ± ⊗ k. Then by the theory of

O-windows, we have the following proposition.

Proposition 3.12. There is a bijection between the set NΛ(k) and the set of WO(k)-

lattices M = M0 ⊕M1 in Nk such that

(1) M is Fk and OE-invariant.

(2) M0
h
⊂M⊥

1
n−h
⊂ π−1M0, M1

h
⊂M⊥

0
n−h
⊂ π−1M1.

(3) πM0
n−1
⊂ M ′

0
1
⊂ M0, πM1

1
⊂ M ′

1
n−1
⊂ M1, where M ′ = M ′

0 ⊕ M ′
1 = Ker(M →

Λ+
k /VΛ+

k ).

(4) Λ−k ⊂M ⊂ Λ+
k .

Proof. The first condition is obvious. The condition (2) is from the condition on

polarization: Kerλ ⊂ X[π] and the order of Kerλ is q2h. The condition (3) is the deter-

minant condition. The last condition is from the definition of NΛ. �

3.6. The isomorphism between NΛ and YΛ

Let Λ ∈ L+
i . In this subsection, we will prove that NΛ and YΛ are isomorphic. Let

S be a F-scheme, and let X be a strict formal OF -module over S. We denote by D(X)

the Lie algebra of the universal extension of X in the sense of [ACZ16]. Recall that

X 7→ D(X) is the functor from the category of π-divisible formal O-module over S to the

category of locally free OS-modules. This is compatible with base change.

Now, we will define a morphism f : NΛ → YΛ.



48

Let R be a F-algebra, and (X, iX , λX , ρX) ∈ NΛ(R). By definition of NΛ, we have two

isogenies

XΛ−,R
ρX,Λ−−−−→ XR

ρX,Λ+
−−−→ XΛ+,R

Let BΛ = Λ+/Λ−, E(X) := Ker (D(ρX,Λ−)). Then by [VW11, Corollary 4.7], E(X)

is a direct summand of the R-module BΛ ⊗F R. By the OE-action on BΛ and on E(X),

we have the following decompositions

BΛ = BΛ,0 ⊕ BΛ,1,

E(X) = E0(X)⊕ E1(X).

We write 〈·, ·〉′ for the alternating form π−i+1〈·, ·〉 on BΛ.

Remark 3.13. Let R = k be an algebraically closed field. If Λ ∈ L+
0 , then E0(X) =

A/πΛ∨ and E1(X)⊥′ = B/πΛ∨ (⊥′ means the dual with respect to 〈·, ·〉′) with the notation

in the proof of Proposition 3.9. Therefore, E0(X) ⊂ E1(X)⊥′ . Similarly, if Λ ∈ L+
1 , then

E0(X) = A/π2Λ∨ and E1(X)⊥′ = πB/π2Λ∨. Therefore, we have E1(X)⊥′ ⊂ E0(X).

From the remark, we obtain a map f : NΛ(R) → YΛ(R) by sending (X, iX , λX , ρX)

to (E0(X) ⊂ E1(X)⊥′) where Λ ∈ L+
0 , and to (E1(X)⊥′ ⊂ E0(X)) where Λ ∈ L+

1 (note

that both E0(X), E1(X)⊥′ are subspaces of BΛ,0 = VΛ in Section 3.4). Since this map

commutes with base change, it gives the desired morphism f : NΛ → YΛ.

Theorem 3.14. The morphism f is an isomorphism.
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Proof. The proof is the same as the proof of [VW] Theorem 4.8. Indeed, f gives a

bijection on k-valued points, where k is algebraically closed field by Lemma 3.2, Proposi-

tion 3.9. Therefore, f is universally bijective. Since NΛ is proper (by Lemma 3.1) and YΛ

is separated, we have that f is proper. Therefore, f is a universal homeomorphism. Now,

for an arbitrary field extension k of F, we can work systematically using Proposition 3.12

to show that f is a bijection on k-valued points, and hence f is birational. Therefore f is

proper, finite, birational morphism, and YΛ is normal (See [Gör09, Fact 2.1]). Now, by

Zariski’s main theorem, f is an isomorphism. �

3.7. Regularity of N

In this subsection, we will prove that NOĔ := N h
E/F (1, n− 1)OĔ is regular, where E =

Qp2 . Therefore, in this subsection, π = p, F = Qp, E = Qp2 , but, we will use the general

notation. See Proposition 3.33 for the general case. First, note that NOĔ = N 0
E/F (1, n−

1)OĔ is formally smooth over Spf OĔ (see [VW11]). This shows that N n
E/F (1, n− 1)OĔ is

formally smooth over Spf OĔ, sinceN 0 ' N n (see Remark 5.2). Therefore, we can assume

that 1 ≤ h ≤ n− 1. When h = 1, the regularity of NOĔ is proved in [RSZ18a, Theorem

5.1]. We can use the same method to prove the regularity of NOĔ , where h ≥ 2. To

prove this, we need the local model for N as in [RZ, Definition 3.27] and [PRS]. We will

follow the definition in [RSZ18a]. Let l(·, ·) be a E/F -hermitian form on En given by

the matrix  πIh

In−h


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Fix an element δ ∈ O×E such that δ∗ = −δ. Let (·, ·) be the F -bilinear alternating form

on En defined by

(x, y) = 1
2TrE/F (δl(x, y)), x, y ∈ En.

Let Λ0 := On
E and Λ1 := π−1Oh

E ⊕On−h
E . Then Λ0 is the dual lattice of Λ1 with respect to

(·, ·). The local model N loc is the scheme over OE representing the functor which sends

each OE-scheme S to the set of pairs (M0,M1) satisfying the following conditions:

• For each i = 0, 1, Mi is an OE ⊗OF OS-subsheaf of Λi ⊗OF OS which Zariski locally

on S is an OS-direct summand of rank n;

• The natural maps Λ0 ⊗OF OS → Λ1 ⊗OF OS and Λ1 ⊗OF OS
(πh,1n−h)−−−−−→ Λ0 ⊗OF OS

carry M0 into M1 and M1 into M0, respectively;

• M⊥
0 =M1 with respect to the natural perfect pairing (Λ0⊗OF OS)×(Λ1⊗OF OS)→

OS induced by (·, ·);

• It satisfies the determinant condition of signature (n− 1, 1)

Charpol(a⊗ 1|Mi) = (T − a)n−1(T − a∗) ∈ OS[T ]

for all a ∈ OE, i = 0, 1.

As in [RSZ18a], the base change (N loc)OĔ is the local model for NOĔ . Therefore, we

can use this to prove the following local property of NOĔ .

Proposition 3.15. If 1 ≤ h ≤ n − 1, then the formal scheme NOĔ has semistable

reduction. In particular, NOĔ is regular.
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Proof. By [RZ, Proposition 3.33], it suffices to show that local model N loc has

semistable reduction. Let S be a OE-scheme. Consider the decomposition

OE ⊗OF OS → OS ×OS

a⊗ b 7−→ (ab, a∗b).

For any (M0,M1) ∈ N loc(S), the above decomposition induces decompositions

Mi =M′
i ⊕M′′

i ⊂ Λi ⊗OF OS = (Λi ⊗OF OS)′ ⊕ (Λi ⊗OF OS)′′, i = 0, 1.

By the determinant condition, M′
i ⊂ (Λi ⊗OF OS)′ is OS-locally direct summand of rank

n− 1. SinceM0 =M⊥
1 , we have thatM′

0 andM′
1 determineM′′

1 andM′′
0, respectively.

Therefore, the map (M0,M1) 7→ (M′
0,M′

1) is an isomorphism from N loc to the standard

local model over OE in [Gör01] for the group GLn, the cocharacter µ = (1(n−1), 0), and

the periodic lattice chain determined by (Λ0⊗OF OE)′ ⊂ (Λ1⊗OF OE)′. By [Gör01, 4.4.5]

(in case k = h, r = n − 1 or k = h, r = 1, since two cases are isomorphic by Lemma 4.8

in loc. cit), this standard local model has semistable reduction. �

3.8. The global structure of N : the Bruhat-Tits stratification

In this section, we will study the global structure of N = N h
E/F (1, n− 1). Let Nred be

the underlying reduced subscheme of N . We define

tmax =


n if (n− h) is odd;

n− 1 if (n− h) is even,
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tmin =


0 if h is odd;

1 if h is even.

Let A be the set of lattices in L0 of type tmin, and B the set of lattices in L0 of type

tmax. By Remark 2.14, we have a bijective map from L+
0 t L−0 to L+

0 t L+
1 . This map

sends an element Λ ∈ A to πΛ∨ which is an element of L+
1 of type n− tmin. We have the

following theorem.

Theorem 3.16. The map sending Λ ∈ A to NπΛ∨ and Λ ∈ B to NΛ is a bijective

map from A ∪ B to the set of irreducible components of Nred. For Λ ∈ A, NπΛ∨ is an

irreducible component of dimension

h− 1− tmin

2 + (n− h).

For Λ ∈ B, NΛ is an irreducible component of dimension

tmax − 1− h
2 + h.

Proof. This is clear from Proposition 2.16, Proposition 2.17, Lemma 3.2, Proposition

3.11. �

Let J̃ = SU(N0, {·, ·}) (recall that N = N0 ⊕ N1 is the rational relative Dieudonne

module of X and {·, ·} is a form defined in Section 2.2). This is an algebraic group over

F . We denote by B(J̃ , F ) the abstract simplicial complex of the Bruhat-Tits building

of J̃ . By [Vol10, Theorem 3.6] and [VW11, Section 4.1], we can identify L0 with the

set of vertices of B(J̃ , F ). Proposition 2.16, Proposition 2.17, Lemma 3.2 show that the
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intersection behavior of NΛ (Λ ∈ L+
0 ), NπΛ∨ (Λ ∈ L−0 ) is closely related to the Bruhat-Tits

building structure of B(J̃ , F ). For example, let

Λmin
1
⊂ . . .

1
⊂ Λ

1
⊂ Λ′

1
⊂ . . .

1
⊂ Λmax,

be a chain in L0, where Λmin,Λ,Λ′,Λmax are of type tmin, h − 1, h + 1, tmax, respectively.

Then we have

NπΛ∨ ⊂ · · · ⊂ NπΛ∨min
,

NΛ′ ⊂ · · · ⊂ NΛmax .

By the above Theorem 3.16, NπΛ∨min
,NΛmax are irreducible components of Nred. For

an algebraically closed field k containing F, we have

NπΛ∨(k) ∩NΛ′(k) = {(πΛ∨k ,Λ′k)} 6= ∅.

Also, we have the following proposition.

Proposition 3.17. Let Λ0,Λ′0 ∈ L+
0 , Λ1,Λ′1 ∈ L+

1 .

(1) The following assertions are equivalent.

(a) NΛ0 ∩NΛ′0 6= ∅.

(b) Λ0 ∩ Λ′0 ∈ L+
0 .

In this case, we have

NΛ0 ∩NΛ′0 = NΛ0∩Λ′0 .

(2) The following assertions are equivalent.
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(a) NΛ1 ∩NΛ′1 6= ∅.

(b) Λ1 ∩ Λ′1 ∈ L+
1 .

In this case, we have

NΛ1 ∩NΛ′1 = NΛ1∩Λ′1 .

(3) The following assertions are equivalent.

(a) NΛ0 ∩NΛ1 6= ∅.

(b) πΛ∨1 ⊂ Λ0.

(4) For an algebraically closed field k containing F, we have

N (k) =
⋃

Λ∈L+
0 ∪L

+
1

NΛ(k).

Proof. (1), (2), (3) are clear from Proposition 2.16, Proposition 2.17, Proposition

2.18. (4) is clear from Proposition 2.10, Lemma 3.2. �

For i = 0, 1 and Λ ∈ L+
i , we define a set

L+
Λ := {Λ′ ∈ L+

i |Λ′ ( Λ},

and let

N 0
Λ := NΛ\

⋃
Λ′∈L+

Λ

NΛ′ .

We have the following analogue of [VW11, Proposition 5.3].

Proposition 3.18. The subset N 0
Λ is open and dense in NΛ.

Proof. The proof is the same as the proof of [VW11, Proposition 5.3]. �
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By definition, we have a disjoint union of locally closed subschemes

NΛ = N 0
Λ t

⊔
Λ′∈L+

Λ

N 0
Λ′ .

This gives a locally finite stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N .

Definition 3.19. The stratification (N 0
Λ)Λ∈L+

i ,i=0,1 of N is called the Bruhat-Tits

stratification. The closed subschemes NΛ are called the closed Bruhat-Tits strata.

3.9. The moduli space N h
E/K(r, n− r)

Let K be a finite extension of Qp contained in F , with ring of integers OK , and

residue field Fs. We fix a uniformizer ω. In this subsection, we will define the moduli

space N h
E/K(r, n− r). For this, we imitate the construction in [Mih16]. We will use the

notation in Section 2. Also, we will use the theory of O-display in [ACZ16].

Let F u (resp. Eu) be the maximal unramified extension of K in F (resp. E). Let

[F : K] = ef , where f = [F u : K] is the inertia degree, and e = [F : F u] is the ramification

index. We denote by K̆ the completion of a maximal unramified extension of K, and F :

K̆ → K̆ the Frobenius automorphism. We choose a decomposition Ψ := HomK(Eu, K̆) =

Ψ0 t Ψ1 such that (Ψ0)∗ = Ψ1, where ∗ is the nontrivial Galois automorphism of E over

F . We fix an element ψ0 ∈ Ψ0, and Ĕ := E ⊗Eu,ψ0 K̆.

Definition 3.20. ([Mih16, Definition 2.7]) For a ∈ E, we define the following poly-

nomials,

P
E/K
(0,1) (a; t) =

∏
ψ∈Ψ1

ψ(CharpolE/Eu(a; t)) ∈ Eu[t];
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P
E/K
(1,0) (a; t) = P

E/K
(0,1) (a; t)(t− a)(t− a∗)−1 ∈ E[t];

P
E/K
(r,n−r)(a; t) = (PE/K

(1,0) (a; t))r(PE/K
(0,1) (a; t))n−r ∈ E[t].

Definition 3.21. (cf. [Mih16, Definition 3.1]) Let S be a scheme over Spf OE. A

(supersingular) hermitian OE-OK-h-module over S is a triple (X, iX , λX), where X/S is

a supersingular strict formal OK-module, iX is an OE-action on X, and λX : X → X∨

is a polarization such that its Rosati involution induces the involution ∗ on OE. Also,

KerλX ⊂ X[π] and the order of KerλX is s2fh = q2h.

An isomorphism (resp. quasi-isogeny) of two hermitian OE-OK-h modules (X, iX , λX)

and (Y, iY , λY ) is an OE-linear isomorphism (resp. quasi-isogeny) α : X → Y of the

underlying strict formal OK-modules and α∨ ◦ λY ◦ α differs locally on S from λX by a

scalar in O×K .

We say that a hermitian OE-OK-h-module (X, iX , λX) is of rank n if the K-height of

X is n[E : K].

Let X be a hermitian OE-OK-h-module over a Spf OE-scheme S. Then by OE-action,

we have the grading

Lie(X) =
⊕
ψ∈Ψ

Lieψ(X).

Here Lieψ(X) is the direct summand on which OEu acts via ψ. We define the following

determinant condition.



57

Definition 3.22. (cf. [Mih16, Definition 2.8]) Let S be a scheme over Spf OE. A

hermitian OE-OK-h-module (X, iX , λX) of rank n over S is of signature (r, n − r) if for

all a ∈ OE,

(3.9.0.1) Charpol(iX(a)|LieX) = P
E/K
(r,n−r)(a; t),

(3.9.0.2) (iX(a)− a)|Lieψ0 (X) = 0.

Here, we view P
E/K
(r,n−r)(a; t) as an element of OS[t] via the structure morphism. The

second equation means that OE acts on Lieψ0(X) via the structure morphism. Note that

(3.9.0.1) implies (3.9.0.2) if E is unramified over Qp.

Let (X, iX, λX) be a hermitian OE-OK-h-module of signature (r, n − r) over Fq2 . Let

N h
E/K(r, n − r) be the set-valued functor on (Nilp) which sends a scheme S ∈(Nilp) to

the set of isomorphism classes of tuples (X, iX , λX , ρX). Here (X, iX , λX) is a hermitian

OE-OK-h-module of signature (r, n− r) over S and ρX is a OE-linear quasi-isogeny

ρX : X ×S S → X×Fq2 S

of height 0.

Furthermore, we require that the following diagram commutes up to a constant in O×K ,

XS X∨
S

XS X∨
S
.

λXs

ρX

λX
S

ρ∨X
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Two quadruples (X, iX , λX , ρX) and (Y, iY , λY , ρY ) are isomorphic if there exists an

OE-linear isomorphism α : X → Y with ρY ◦ (α×S S) = ρX and α∨ ◦λY ◦α differs locally

on S from λX by a scalar in O×K .

The functor N h
E/K(r, n− r)⊗OĔ is representable by a formal scheme which is locally

formally of finite type over Spf OĔ (See [Mih16]).

Remark 3.23. Let us fix a hermitianOE-Zp-h-module (X, iX, λX) of signature (r, n−r)

over Fq2 such that its rational Dieudonne module (N,F) generated by elements η ∈ N

satisfying F2fη = pfη, where f is a inertia degree of F/Qp. Such a triple exists by

[Mih16, Lemma 2.10] with slight modification of the polarization and the base field.

This is decent in the sense of [RZ, Definition 2.13], and hence we can use [RZ, Theorem

2.16]. Therefore, if we fix such a triple, then the functor N h
E/Qp(r, n− r) is representable

by a formal scheme which is locally formally of finite type over Spf OE.

Remark 3.24. One can see that there is a unique hermitianOE-Zp-h-module (X, iX, λX)

of signature (r, n − r) over k up to quasi-isogeny, where k is an algebraic closure of Fq2 .

This can be proved by using [Mih16, Proposition 2.5], [Mih16, Lemma 2.10] with slight

modification of the polarization.

Remark 3.25. The definition of N h
E/F (r, n− r) in Section 2 coincides with the defi-

nition in this section.

Definition 3.26. (cf. [Mih16, Definition 4.2]) We denote by OE-OK-h-Herm the

stack of hermitian OE-OK-h-modules (X, iX , λX) over Sch / Spf OE such that locally for

Zariski topology, it is of signature (r, n− r) for some r. The morphisms in this category

are the OE-linear morphisms of p-divisible groups.
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Now, let S = SpecR be an affine scheme over Spf OE and (X, iX , λX) be an hermitian

OE-OK-h-module of signature (r, n− r) over S. Let (P,Q, F, F1) be the OK-display (i.e.,

OK-window over WOK ,R) of (X, iX , λX). We denote by 〈·, ·〉 : P × P → WOK (R) the

WOK (R)-bilinear alternating form induced by λX . From the OE-action, we have the

decomposition

OE ⊗OK WOK (R) '
∏
ψ∈Ψ

OE ⊗OEu WOK (R).

This decomposition gives gradings

P =
∏
ψ∈Ψ

Pψ =
∏
ψ∈Ψ0

Pψ ⊕ Pψ∗ ,

Q =
∏
ψ∈Ψ

Qψ =
∏
ψ∈Ψ0

Qψ ⊕Qψ∗ .

Let (P∨, Q∨, F∨, F∨1 ) be the dual OK-window of (P,Q, F, F1) (see [Mih16, Section

11]), and consider its gradings

P∨ =
∏
ψ∈Ψ

P∨ψ =
∏
ψ∈Ψ0

P∨ψ ⊕ P∨ψ∗ ,

Q∨ =
∏
ψ∈Ψ

Q∨ψ =
∏
ψ∈Ψ0

Q∨ψ ⊕Q∨ψ∗ .

Let Pψ,Q := Pψ ⊗Q, and let 〈·, ·〉Q = 〈·, ·〉 ⊗Q. Note that our pairing satisfies

〈·, ·〉Q|Pψ,Q×Pψ′,Q ≡ 0 if ψ′ 6= ψ∗.

Therefore, we have

P∨ψ = {x ∈ Pψ,Q|〈x, Pψ∗〉Q ⊂ WOK (R)}.
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Also, we have the following lemma.

Lemma 3.27. The order of KerλX is q2h = s2fh if and only if Pψ
h
⊂ P∨ψ , ∀ψ ∈ Ψ .

Proof. Let Pψ = Lψ ⊕ Tψ, Qψ = Lψ + IOK (R)Tψ be a normal decomposition. By the

signature condition, we have

Lψ = Pψ, Tψ = 0, if ψ ∈ Ψ0\{ψ0},

Lψ = 0, Tψ = Pψ, if ψ ∈ Ψ1\{ψ∗0}.

From the normal decomposition, we get a F -linear isomorphism

Φψ : Pψ = Lψ ⊕ Tψ → PFψ

(l, t) 7→ (F1(l) + F (t)).

By our special signature condition, we have

Φψ : Pψ → PFψ

x 7→ F1(x), if ψ ∈ Ψ0\{φ0};

Φψ : Pψ → PFψ

x 7→ F (x), if ψ ∈ Ψ1\{φ∗0}.

We claim that if PFψ0

k
⊂ P∨Fψ0

for some k, then for all ψ ∈ Ψ we have

Pψ
k
⊂ P∨ψ .
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First, note that Φψ is a F -linear isomorphism, hence

Φ(PFiψ0
) = PFi+1ψ0

,

Φ(PFiψ∗0 ) = PFi+1ψ∗0
.

We will show that Φ(P∨Fiψ0
) = P∨Fi+1ψ0

for 1 ≤ i ≤ f − 1. Note that

x ∈ P∨Fi+1ψ0
⇔ 〈x, PFi+1ψ∗0

〉 ⊂ WOK (R)

⇔ 〈x,Φ(PFiψ∗0 )〉 ⊂ WOK (R).

First, assume that F iψ∗0 ∈ Ψ0\{ψ0}, then Φ = F1 on PFiψ∗0
. Therefore,

〈x,Φ(PFiψ∗0 )〉 ⊂ WOK (R)

⇔ 〈x, F1(PFiψ∗0 )〉 ⊂ WOK (R)

⇔ 〈Φ(Φ−1(x)), F1(PFiψ∗0 )〉 ⊂ WOK (R).

Since x ∈ P∨Fi+1ψ0
and F iψ0 ∈ Ψ1\{ψ∗0}, we have

〈Φ(Φ−1(x)), F1(PFiψ∗0 )〉 ⊂ WOK (R)

⇔ 〈F (Φ−1(x)), F1(PFiψ∗0 )〉 ⊂ WOK (R)

⇔F 〈Φ−1(x), PFiψ∗0 〉 ⊂ WOK (R)

⇔ Φ−1(x) ∈ P∨Fiψ0
.

Here, we used the fact that 〈F ·, F1·〉 = 〈F1·, F ·〉 =F 〈·, ·〉.
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In the case that F iψ∗0 ∈ Ψ1\{ψ∗0}, we can prove the claim in the same way.

Therefore, Φ(P∨Fiψ0
) = P∨Fi+1ψ0

for 1 ≤ i ≤ f − 1.

Now, assume that PFψ0

k
⊂ P∨Fψ0

, then we can show inductively that

PFi+1ψ0
= Φ(PFiψ0

)
k
⊂ Φ(P∨Fiψ0

) = P∨Fi+1ψ0
, ∀1 ≤ i ≤ f − 1.

Since Pψ
k
⊂ P∨ψ if and only if Pψ∗

k
⊂ P∨ψ∗ , we can conclude that the claim holds.

By this claim, we have

|KerλX | = s2fh ⇔ P
2fh
⊂ P∨ ⇔ Pψ

h
⊂ P∨ψ , ∀ψ ∈ Ψ.

�

With this lemma, we can follow the whole steps in [Mih16, Chatper 4]. Indeed,

the only difference is the polarization, hence with the above lemma, one can show the

following analogue of [Mih16, Proposition 4.4]. Let Sch/ Spf OE (resp. Sch′/ Spf OE) be

the category of schemes (resp. locally noetherian schemes) over Spf OE together with the

Zariski topology.

Proposition 3.28. (cf. [Mih16, Proposition 4.4]) There is an isomorphism of stacks

over Sch / Spf OE

CK,Fu : OE-OK-h-Herm '→ OE-OFu-h-Herm

that is equivariant for the Rosati involutions and sends objects of signature (r, n − r) to

objects of signature (r, n− r).
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Proof. One can follow the proof of [Mih16, Proposition 4.4] with Lemma 3.27. Also

see [Mih16, Remark 4.5]. �

In addition, we can show the following analogue of [Mih16, proposition 4.6].

Proposition 3.29. (cf. [Mih16, Proposition 4.6]) There is an isomorphism of stacks

over Sch′ / Spf OĔ

CFu,F : (OE-OFu-h-Herm)OĔ
'→ (OE-OF -h-Herm)OĔ

that is equivariant for the Rosati involutions and sends objects of signature (r, n − r) to

objects of signature (r, n− r). Here, (−)OĔ means the base change to OĔ.

Proof. One can follow the proof of [Mih16, Proposition 4.6] with Lemma 3.27. �

The following proposition is an analogue of [Mih16, Theorem 4.1].

Proposition 3.30. (cf. [Mih16, Theorem 4.1]) For any intermediate field Qp ⊂ K ⊂

F , we have an isomorphism

cK,F : (N h
E/F (r, n− r))OĔ ' (N h

E/K(r, n− r))OĔ .

Furthermore, if F is unramified over Qp, then

cK,F : N h
E/F (r, n− r) ' N h

E/K(r, n− r).

Proof. This follows from the above two propositions, and by fixing framing objects.

See the proof of [Mih16, Theorem 4.1]. �
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Remark 3.31. Let F be an unramified extension of Qp. Let (X, iX, λX) be a her-

mitian OE-Zp-h-module in Remark 3.23 and we consider a hermitian OE-OF -h-module

CQp,F ((X, iX, λX)) by using Proposition 3.28. By Remark 3.23, we have thatN h
E/Qp(r, n−r)

is representable by a formal scheme over Spf OE which is locally formally of finite type,

with the framing object (X, iX, λX). Therefore, by Proposition 3.30, N h
E/F (r, n − r) is

representable by a formal scheme over Spf OE which is locally formally of finite type with

the framing object CQp,F ((X, iX, λX)).

Remark 3.32. One can see that there is the unique hermitian OE-OK-h-module

(X, iX, λX) of signature (r, n − r) over k up to quasi-isogeny, where k is an algebraic

closure of Fq2 . This can be proved by using Remark 3.24, Proposition 3.28, Proposition

3.29.

Proposition 3.33. If h = 0, n, the formal scheme N h
E/F (1, n − 1)OĔ is formally

smooth over Spf OĔ. If 1 ≤ h ≤ n − 1, then N h
E/F (1, n − 1)OĔ has semistable reduction.

In particular, it is regular, for all h.

Proof. When h = 0, it is proved in [Mih16, Proposition 2.14]. SinceN 0
E/F (1, n−1)OĔ

and N n
E/F (1, n− 1)OĔ are isomorphic (see Remark 5.2), N n

E/F (1, n− 1)OĔ is also formally

smooth over Spf OĔ. Now assume that 1 ≤ h ≤ n− 1. By Proposition 3.30, it suffices to

show that N h
E/Qp(1, n−1)OĔ has semistable reduction. Since this moduli problem is PEL-

type, it suffices to show that its local model has semistable reduction ([RZ, Proposition

3.33]). To define the local model N loc in our case, we need to use the notation in Section

3.7 (here, we follow [RSZ18b, Appendix B]). Let l(·, ·) be a E/F -hermitian form on En
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given by the matrix  πIh

In−h

 .
Fix an element δ ∈ O×E such that δ∗ = −δ. Let θ−1

F/Qp be a generator of the inverse

different of F/Qp. Let (·, ·) be the Qp-bilinear alternating form,

(x, y) = TrE/Qp(θ−1
F/Qpδl(x, y)), x, y ∈ En.

Let Λ0 = On
E and Λ1 = π−1Oh

E ⊕ On−h
E . Then the dual Λ∨1 of the lattice Λ1 with respect

to (·, ·) is Λ0. Now, let L be the self-dual lattice chain

{· · · ⊂ πΛ1 ⊂ Λ0 ⊂ Λ1 = Λ∨0 ⊂ π−1Λ0 ⊂ . . . }

Then N loc is the functor which sends each OĔ-schemes S to the set of isomorphism

classes of families (Λ⊗Zp OS � PΛ)Λ∈L such that

• For each Λ, PΛ is an OE ⊗Zp OS-linear quotient of Λ⊗Zp OS, locally free on S as an

OS-module.

• For each inclusion Λ ⊂ Λ′ in L, the arrow Λ⊗Zp OS → Λ′ ⊗Zp OS induces an arrow

PΛ → PΛ′ .

• For each Λ, the isomorphism Λ⊗Zp OS
π⊗1−−→ (πΛ)⊗Zp OS identifies PΛ → PπΛ.

• For each Λ, the perfect pairing (Λ ⊗Zp OS) × (Λ∨ ⊗Zp OS) (·,·)⊗OS−−−−−→ OS identifies

(Ker(Λ⊗Zp OS � PΛ))⊥ with Ker(Λ∨ ⊗Zp OS � PΛ∨).

We need to impose one more condition.
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By the OE-action on S, there is a natural identification

OEu ⊗Zp OS −→
∏
ψ∈Ψ

OS.

This induces a decomposition,

PΛ −→
⊕
ψ∈Ψ
PΛ,ψ.

• For each Λ, PΛ satisfies

(3.9.0.3) CharpolOS(a⊗ 1|PΛ) = P
E/Qp
(1,n−1)(a; t),

(3.9.0.4) (a⊗ 1− 1⊗ a)|PΛ,ψ0 = 0.

Here, PΛ,ψ0 is the direct summand on which OEu acts via ψ0. These two conditions follow

from the conditions (3.9.0.1) and (3.9.0.2).

Now, fix a scheme S over OĔ, and let (Λ ⊗Zp OS � PΛ)Λ∈L ∈ N loc(S). By the

signature condition (3.9.0.3), we have



PΛ,ψ0 is locally free of rank 1 over OS,

PΛ,ψ∗0 = P⊥Λ,ψ0 ⊂ (Λ⊗Zp OS)ψ∗0 ,

PΛ,ψ = 0 if ψ ∈ Ψ0\{ψ0},

PΛ,ψ∗ = (Λ⊗Zp OS)ψ∗ if ψ ∈ Ψ1\{ψ∗0}.
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Therefore, (Λ⊗Zp OS � PΛ)Λ∈L is determined by (PΛ,ψ0)Λ∈L.

Also, by the condition (3.9.0.4), OE acts on PΛ,ψ0 via the structure morphism, therefore

PΛ,ψ0 is a quotient of

AΛ := (Λ⊗Zp OS)⊗OE⊗ZpOS
OS,

which is locally free of rank n over OS.

It follows that the map (Λ⊗Zp OS � PΛ)Λ∈L 7→ (AΛ � PΛ,ψ0)Λ∈L is an isomorphism

from Lloc to the standard local model over SpecOĔ in Proposition 3.15 (i.e. the standard

local model with the group GLn, the cocharacter µ = (1(n−1), 0), and the lattice chain L).

Therefore, by [Gör01, 4.4.5] (in case k = h, r = 1) again, this local model has semistable

reduction. �



68

CHAPTER 4

Uniformization of unitary Shimura varieties

In this section, we will define a Shimura variety and study its basic locus. This Shimura

variety is studied in [RSZ18b]. In this section, we use the notation A for the adele rings

and Af for the ring of finite adeles and Ap
f for the finite adeles away from the prime p.

Let F be a CM field over Q and F+ be its totally real subfield of index 2. We fix

a presentation F = F+(
√

∆). Denote by d the dimension of F+ over Q. We denote

by a 7→ ā the nontrivial automorphism of F/F+. Denote by ΦF+ (resp. ΦF ) the set of

real (resp. complex) embeddings of F+ (resp. F ). We define Φ as the CM type of F

determined by
√

∆, i.e.,

Φ := {φ ∈ ΦF | φ(
√

∆) ∈ R>0
√
−1}.

We have a natural projection π : ΦF → ΦF+ . For every τ ∈ ΦF+ , denote by τ−

(resp. τ+) the unique element in Φ (resp. ΦF\Φ) whose image under π is τ . We fix a

distinguished element τ1 ∈ ΦF+ (resp. τ−1 ∈ Φ).
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4.1. The Shimura data

We first define the Shimura data (G, {hG}) as follows. Let V be a F/F+-hermitian

vector space of dimension n with the hermitian form

(·, ·)V : V × V → F,

that is F -linear in the first variable. Let U(V ) be the unitary group of V . This is a

reductive group over F+ such that for every F+-algebra R,

U(V )(R) = {g ∈ AutR(V ⊗F+ R)|(gv, gw)V = (v, w)V , ∀v, w ∈ V ⊗F+ R}.

We assume that for τ1, the signature of V ⊗F+,τ1 R is (1, n− 1) and for τ ∈ ΦF+\{τ1},

the signature of V ⊗F+,τ R is (0, n).

Let G := ResF+/Q U(V ). We define the Hodge map

hG : ResC/R Gm,C → GR

by the map sending z ∈ C× = ResC/RGm,C(R) to


 z/z̄

In−1

 ,( In

)
, · · · ,

(
In

) ,

where we identify GR(R) as a subgroup of GLn(C)d via {τ−1 , · · · , τ−d } = Φ. Then we have

a Shimura data (G, {hG}).
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Now, we will define the second Shimura data (Z, {hZ}). Let Z be the torus

Z := {z ∈ ResF+/Q Gm|NmF/F+(z) ∈ Gm}.

We define the Hodge map

hZ : ResC/R Gm,C → ZR

by the map sending z ∈ C× = ResC/R Gm,C(R) to

((
z̄

)
, · · · ,

(
z̄

)
; zz̄

)
,

where we identify ZR(R) as a subgroup of GL1(C)d × C× via {τ−1 , · · · , τ−d }.

Then we have the second Shimura data (Z, hZ).

Now, we consider the reductive group G̃ = G× Z over Q. We define its Hodge map

hG̃ : ResC/R Gm,C
(hG,hZ)−−−−→ G̃R.

Then (G̃, {hG̃}) is the product Shimura data, which is defined in [RSZ18b] (with the

same notation). Denote by E its reflex field. This is the fixed field of the following

subgroup

Aut(C/E) := {σ ∈ Aut(C)|σ ◦ Φ = Φ and στ−1 = τ−1 }.

This Shimura variety has a moduli interpretation over SpecE. We recall this moduli

problem from [RSZ18b, Section 3.2]. First, we need to define an auxiliary moduli problem

Ma
0 over OE, where a is a fixed nonzero ideal of OF+ . We denote by M a

0 its generic
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fiber. For a locally noetherian OE-scheme, we defineMa
0(S) to be the groupoid of triples

(A0, i0, λ0) such that

• A0 is an abelian scheme over S with an OF -action i0 : OF → End(A0), which satisfies

the Kottwitz condition of signature ((0, 1)τ∈ΦF+ ), i.e.,

Charpol(i(a)|Lie(A0)) =
∏

τ∈ΦF+

(T − τ+(a)), for all a ∈ OF ;

• λ0 is a polarization of A0 such that Kerλ0 = A0[a]. Also, λ0’s Rosati involution

induces on OF , via i0, the nontrivial Galois automorphism of F/F+.

A morphism between two objects (A0, i0, λ0) and (A′0, i′0, λ′0) is an OF -linear isomor-

phism µ0 : A0 → A′0 under which λ′0 pulls back to λ0.

This Ma
0 is a Deligne-Mumford stack, finite and étale over SpecOE. Also, we can

choose an ideal a such that Ma
0 is nonempty ([RSZ18b, Remark 3.3]).

Let KZ ⊂ Z(Af ) be the unique maximal compact subgroup Z(Ẑ).

If F+ = Q, then Ma
0 ⊗ C is isomorphic to the Shimura variety ShKZ (Z, hZ). In

general,Ma
0⊗C is copies of ShKZ (Z, hZ) and each copy corresponds to a similarity class

of a certain 1-dimensional hermitian space. More precisely, we define Ra
Φ(F ) as the set of

isomorphism classes of pairs (W, 〈·, ·〉) where W is a 1-dimensional F -vector spaces and

〈·, ·〉 is a nondegenerate alternating form 〈·, ·〉 : W ×W → Q such that

• 〈ax, y〉 = 〈x, āy〉 for all x, y ∈ W , a ∈ F ;

• x→ 〈
√

∆x, x〉 is a negative definite quadratic form on W ;

• W contains an OF -lattice Λ whose dual Λ⊥ with respect to 〈·, ·〉 is a−1Λ.

We denote by Ra
Φ(F )/∼ the set of similarity classes of elements of Ra

Φ(F ) by a factor

in Q×.
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Then, we have a disjoint union decomposition

Ma
0 '

⊔
W∈Ra

Φ(F )/∼
Ma,W

0 ,

and each Ma,W
0 ⊗ C is isomorphic to the Shimura variety ShKZ (Z, hZ). We denote by

M a,W
0 the generic fiber of Ma,W

0 .

From now on, we fix an element W ∈ Ra
Φ/∼

Now, we consider an open compact subgroup KG̃ ⊂ G̃(Af ) of the form

KG̃ = KG ×KZ ⊂ G(AF+,f )× Z(Af ),

where KG is an open compact subgroup of G(AF+,f ).

We now define a moduli functor MKG̃
(G̃) on the category of locally noetherian schemes

over E as follows. For every such scheme S, let MKG̃
(G̃)(S) be the groupoid of tuples

(A0, i0, λ0, A, i, λ, η̄), where

• (A0, i0, λ0) is an object of Ma,W
0 (S);

• A is an abelian scheme over S with an F -action i : F → End(A)Q satisfying the

Kottwitz condition of signature ((1, n− 1)τ1 , (0, n)τ∈ΦF+\{τ1}), i.e., for all a ∈ F ,

Charpol(i(a)|Lie(A)) = (T − τ−1 (a))(T − τ+
1 (a))n−1 ∏

τ∈ΦF+\{τ1}
(T − τ+(a))n;

• λ is a polarization of A, whose Rosati involution induces on F , via i, the nontrivial

Galois automorphism of F/F+;
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• η̄ is a KG̃-level structure. This is a KG-orbit of AF,f -linear isometries

η : HomF (V̂ (A0), V̂ (A)) ' −V ⊗F AF,f ;

Here, −V is the same E-vector space as V , but its hermitian form multiplied by −1. We

write V̂ (A) for the full rational Tate module of A. Also, we consider HomF (V̂ (A0), V̂ (A))

as a hermitian space with the hermitian form hA,

hA(x, y) = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndAF,f (V̂ (A0)) = AF,f .

A morphism between two objects

(A0, i0, λ0, A, i, λ, η̄)→ (A′0, i′0, λ′0, A′, i′, λ′, η̄′),

is given by an isomorphism µ0 : (A0, i0, λ0) ' (A′0, i′0, λ′0) in M a,W
0 and an F -linear isogeny

µ : A→ A′ pulling λ′ back to λ and η̄′ back to η̄.

Now, we can state the following proposition.

Proposition 4.1. ([RSZ18b, Proposition 3.5]) MKG̃
(G̃) is a Deligne-Mumford stack

smooth of relative dimension n − 1 over SpecE. The coarse moduli scheme of MKG̃
(G̃)

is a quasi-projective scheme over SpecE, naturally isomorphic to the canonical model of

ShKG̃(G̃, {hG̃}). For KG̃ sufficiently small, the forgetful morphism MKG̃
(G̃) → M a,W

0 is

relatively representable.
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4.2. Integral models

In this subsection, we will imitate the semi-global integral model in [RSZ18b, Section

4]. Our case is related to AT parahoric level. We use the following notation. Fix a prime

p 6= 2 and an embedding ṽ : Q̄→ Q̄p. This embedding determines places u of E, v0 of F+,

and w0 of F via τ−1 . Denote by Sp the set of places v of F+ over p. Let Fv := F ⊗F+ F+
v .

Then, Fv is a quadratic field extension of F+
v (resp. Fv ' F+

v ×F+
v ), if v is nonsplit (resp.

split). Denote by πv a uniformizer in Fv (when v splits, this uniformizer is an ordered

pair of uniformizers on the right side of the isomorphism Fv ' F+
v × F+

v ). Assume that

v0 is unramified over p and inert in F . We assume that the ideal a in the definition of

Ma
0 is prime to p and we fix an element W ∈ Ra

Φ/∼.

Now, we choose lattices Λv ⊂ Vv such that

Λv ⊂ Λ⊥v ⊂ π−1
v Λv,

where Λ⊥v means the dual lattice of Λv with respect to the hermitian form. Let h be the

index of Λv0 in Λ⊥v0 , i.e., [Λ⊥v0 : Λv0 ] = h.

We take the open compact subgroup KG̃ ⊂ G̃(Af ) as follows.

KG̃ = KG ×KZ = Kp
G ×KG,p ×KZ ,

where Kp
G ⊂ G(Ap

F+,f ) is arbitrary, and

KG,p :=
∏
v∈Sp

KG,v ⊂
∏
v∈Sp

G(F+
v ),

where KG,v is the stabilizer of Λv in G(F+
v ).
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Now, we can formulate a moduli problem over SpecOE,(u) as follows. For a locally

noetherian scheme S over SpecOE,(u), we associate the set of isomorphism classes of tuples

(A0, i0, λ0, A, i, λ, η̄
p), where

• (A0, i0, λ0) is an object of Ma,W
0 (S);

• A is an abelian scheme over S;

• i is an OF ⊗ Z(p)-action satisfying the Kottwitz condition of signature ((1, n −

1)τ1 , (0, n)τ∈ΦF+\{τ1}), i.e., for all a ∈ F ,

(4.2.0.1) Charpol(i(a)|Lie(A)) = (T − τ−1 (a))(T − τ+
1 (a))n−1 ∏

τ∈ΦF+\{τ1}
(T − τ+(a))n;

• λ is a polarization of A, whose Rosati involution induces on OF ⊗Z(p) the nontrivial

Galois automorphism of F/F+. Also, we impose the following condition. The action of

OF+ ⊗ Zp '
∏
v∈Sp OF+,v induces a decomposition of p-divisible group,

A[p∞] =
∏
v∈Sp

A[v∞].

Since Rosati involution of λ fixes OF+ , λ induces a polarization λv : A[v∞] → A∨[v∞] '

A[v∞]∨ for each v. We impose the condition that Kerλv is contained in A[i(πv)] of rank

|Λ⊥v /Λv| for each v ∈ Sp;

• η̄p is a Kp
G-orbit of Ap

F,f -linear isometries

η : HomF (V̂ p(A0), V̂ p(A)) ' −V ⊗F Ap
F,f .
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Here, −V is the same E-vector space as V , but its hermitian form multiplied by −1. We

write V̂ p(A) for the rational prime-to-p Tate module of A. Also, we consider

HomF (V̂ p(A0), V̂ p(A))

as a hermitian space with the hermitian form hpA,

hpA(x, y) = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndAp

F,f
(V̂ p(A0)) = Ap

F,f .

For v 6= v0, we impose the Eisenstein condition and the sign condition. Before we

explain these conditions, we define a function r : Hom(F,C)→ {0, 1, n− 1, n} such that,

τ 7→ rτ :=



1 τ = τ−1 ;

0 τ ∈ Φ\{τ−1 };

n− rτ̄ τ /∈ Φ.

First, we recall the Eisenstein condition from [RSZ18b, Section 4.1]. We impose the

Eisenstein condition only when the base scheme S has nonempty special fiber. In this

case, we may base change via ṽ : OE,(u) → Z̄p (the ring of integers of Q̄p), and pass to

completions and assume that S is a scheme over Spf Z̄p. We have a decomposition of the

p-divisible group

A[p∞] =
∏
w|p
A[w∞].
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where w runs over the places of F over p. Since we assume that p is locally nilpotent on

S, there is a natural isomorphism

LieA ' LieA[p∞] =
⊕
w|p

A[w∞].

By using the embedding ṽ : Q̄→ Q̄p, we can identify

HomQ(F, Q̄) ' HomQ(F, Q̄p),

and this gives an identification

(4.2.0.2) {τ ∈ HomQ(F, Q̄)|ṽ ◦ τ = w} ' HomQ(Fw, Q̄p).

For each place w, by the Kottwitz condition (4.2.0.1), the p-divisible group A[w∞] is of

height n[Fw : Qp] and dimension

dimA[w∞] =
∑

τ∈HomQ(Fw,Q̄p)
rτ .

For each place w such that w|v and v 6= v0, the action of F on A[w∞] is of a banal

signature type in the sense of [RSZ18b, Appendix B]. In other words, rτ is 0 or n for

all τ ∈ HomQ(Fw, Q̄p). Let π = πw be a uniformizer in Fw and let F u
w be the maximal

unramified extension of Qp in Fw. For each ψ ∈ HomQ(F u
w, Q̄p), let

Aψ := {τ ∈ HomQ(Fw, Q̄p)|τ |Fuw = ψ and rτ = n}.
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Let

QAψ :=
∏
τ∈Aψ

(T − τ(π)).

Then, the Eisenstein condition at v(6= v0) is as follows. For each place w that divides v,

and for all ψ ∈ HomQ(F u
w, Q̄p),

QAψ(i(π)|LieA[w∞]) = 0.

Now, we will define the sign condition at v( 6= v0). We impose this condition only when

v does not split in F . The sign condition at v is the condition that for every point s of S,

invrv(A0,s, i0,s, λ0,s, As, is, λs) = invv(−Vv).

We need to explain these two factors. For the left one, we refer to [RSZ18b, Appendix

A]. Also, we define

invv(−Vv) := (−1)n(n−1)/2 det (−Vv) ∈ F+,×
v /NmF+,×

v ,

where det(−Vv) ∈ F+,×
v /NmF+,×

v is the class of the determinant of any hermitian matrix

of the hermitian space −Vv.

A morphism between two objects

(A0, i0, λ0, A, i, λ, η̄
p)→ (A′0, i′0, λ′0, A′, i′, λ′, η̄′p),
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is given by an isomorphism (A0, i0, λ0) ' (A′0, i′0, λ′0) in Ma,W
0 (S) and a quasi-isogeny

A→ A′ which induces an isomorphism

A[p∞] ' A′[p∞],

compatible with i and i′, with λ and λ′, and with η̄p and η̄′p.

Proposition 4.2. The moduli problem defined above is representable by a Deligne-

Mumford stack MKG̃
(G̃) flat over SpecOE,(u). For Kp

G small enough, MKG̃
(G̃) is rela-

tively representable over Ma,W
0 . The generic fiber MKG̃

(G̃) ×SpecOE,(u) SpecE is canon-

ically isomorphic to MKG̃
(G̃). Furthermore, if h = 0, n, then MKG̃

(G̃) is smooth over

SpecOE,(u). If h 6= 0, n, then MKG̃
(G̃) has semistable reduction over SpecOE,(u) provided

that Eu is unramified over Qp.

Proof. The representability and the statement for the generic fiber and the smooth-

ness when h = 0 (and hence when h = n) are proved in [RSZ18b, Theorem 4.1]. There-

fore, it suffice to show that this has semistable reduction over SpecOE,(u) where h 6= 0, n

and Eu is unramified over Qp. To prove this we need to use the theory of the local model

as in [RSZ18b, Theorem 4.10]. The local model corresponding to A0 is étale because

Ma,W
0 is. Let M be the local model corresponding to A. Before we prove that M has

semistable reduction, we introduce some notation. By the identification (4.2.0.2), we have

(4.2.0.3) HomQ(F, Q̄) '
⊔
v∈Sp

HomQp(Fv,Qp).
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Let r|v : HomQ(Fv, Q̄p)→ {0, 1, n−1, n} be the restriction of the function r to HomQ(Fv, Q̄p).

Let

sigr|v :=
∑

τ∈HomQ(Fv ,Q̄p)
rττ,

which is an element of N[ΦF ], the commutative monoid freely generated by ΦF . Note that

the Galois group Gal(C/Q) acts on ΦF hence on N[ΦF ]. Let Er|v be the fixed field of the

stabilizer in Gal(C/Q) of the element sigr|v .

Then we have a decomposition

M =
∏
v∈Sp

Mv ×SpecOEr|v
SpecOEu ,

which is induced from (4.2.0.3).

For v 6= v0, by our Kottwitz condition, Mv is a banal local model as in [RSZ18b,

Appendix B]. Therefore, Mv = SpecOEr|v . Also, Mv0 is a local model which appears

in the proof of Proposition 3.33 (here, we used the condition that v0 is unramified, and

therefore the condition (3.9.0.2) follows from the condition (3.9.0.1) which follows from

the Kottwitz condition). Therefore, it has semistable reduction over SpecOEr|v . Since

Eu is unramified over Qp (hence, over Er|v) and semistable reduction is stable under an

unramified base change, M has semistable reduction over SpecOEu , �

4.3. The uniformization theorem

In this subsection, we will relate the basic locus of the special fiber ofMKG̃
(G̃) to the

(relative) Rapoport-Zink space N h
Fw0/F

+
v0

(1, n − 1) in Section 2 via the non-archimedean

uniformization theorem of Rapoport and Zink. We will follow the proof of [RSZ18b,
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Theorem 8.15]. In order to simplify notation, we write M for MKG̃
(G̃), and N for

N h
Fw0/F

+
v0

(1, n− 1).

Let Ĕu be the completion of a maximal unramified extension of Eu, and k be the

residue field of OĔu
. Let MOĔu

=M⊗OE,(u) OĔu
. We denote by Mss the basic locus of

M⊗OE,(u) k and by M̂ss the completion of MOĔu
along Mss.

Choose a point (A0, i0,λ0,A, i,λ, η̄) of Mss(OĔu
). Let

X0 = A0[p∞] = ∏
v∈SpA0[v∞],

X = A[p∞] = ∏
v∈SpA[v∞],

and iX0 , λX0 , iX, λX be the induced OF ⊗ Zp-actions and polarizations. This choice gives

us the following non-archimedean uniformization morphism along the basic locus by [RZ,

Theorem 6.30],

Θ : I(Q)\N ′ × G̃(Ap
f )/K

p

G̃
' M̂ss.

Here the group I is an inner form of G̃ associated to the hermitian space V ′, where V ′ is

negative definite at all archimedean places and isomorphic to V at all non-archimedean

places except at v0 (hence, by the product formula and the Hasse principle, V ′ is de-

termined), and N ′ is the corresponding Rapoport-Zink space whose framing object is

(X0, iX0 , λX0 ,X, iX, λX).

By [RSZ18b, Lemma 8.16], we have

N ′ ' (Z(Qp)/KZ,p)× (N h
Fw0/Qp

(1, n− 1))OĔu ×
∏

v∈Sp\{v0}
U(V )(F+

v )/KG,v.

Also, by Proposition 3.30, NOĔu ' (N h
Fw0/Qp

(1, n− 1))OĔu .

The following theorem summarizes the above discussion.
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Theorem 4.3. There is a non-archimedean uniformization isomorphism

Θ : I(Q)\N ′ × G̃(Ap
f )/K

p

G̃

∼−→ M̂ss,

where

N ′ ' (Z(Qp)/KZ,p)×NOĔu ×
∏

v∈Sp\{v0}
U(V )(F+

v )/KG,v.

Proof. This is essentially the same as the proof of [RZ, Theorem 6.30]. For the

convenience of the reader, we will construct the inverse morphism of Θ. Let S be a OĔu
-

scheme such that p is locally nilpotent. Let s be a geometric point of S. Choose a point

P = (A0, i0, λ0, A, i, λ, η̄) ∈Mss(S). By [RZ, Proposition 6.29], we can choose OF -linear

quasi-isogenies

ρ̃0 : A0 ×S Sk → A0k ×k Sk,

ρ̃ : A×S Sk → Ak ×k Sk,

compatible h polarizations. Then, we have the induced quasi-isogenies

ρ0 : A0[p∞]×S Sk → X0k ×k Sk,

ρ : A[p∞]×S Sk → Xk ×k Sk,

The tuple (A0[p∞], A[p∞], ρ0, ρ) (with the induced OF ⊗ Zp-actions and the induced po-

larizations) gives an element in N ′(S) and this is the N ′ part of Θ−1(P ).

Now, we should find an element (z, g) ∈ Z(Ap
f )×G(Ap

f ) = G̃(Ap
f ) such that Θ−1(P ) =

((A0[p∞], A[p∞], ρ0, ρ), (z, g)).
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The element z in Z(Ap
f ) comes from the moduli space Ma,W

0 . More precisely, by

definition of Ma,W
0 , we have two OE ⊗ Ap

f -linear similitudes

ξ : V̂ p(A0s)→ W ⊗ Ap
f ,

ζ : V̂ p(A0k)→ W ⊗ Ap
f .

Therefore, the composite

W ⊗ Ap
f

ξ−1
−−→ V̂ p(A0s)

ρ0−→ V̂ p(A0k)
ζ−→ W ⊗ Ap

f

gives an element z in Z(Ap
f ).

For the element g, consider the composite

−V ⊗F Ap
F,f

η−1
−−→ HomF (V̂ p(A0s), V̂ p(As))

(ρ−1
0 ,ρ)
−−−−→ HomF (V̂ p(A0k), V̂ p(Ak))

η−→ −V ⊗F Ap
F,f .

This is an isometry which gives rise to an element g in G(Ap
f ).

The construction of Θ is identical to the arguments in [RZ, Chapter 6]. �
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CHAPTER 5

Special cycles and arithmetic intersection numbers

In this section, we use the notation in Section 2. Also we denote by k = F̄p and by

val the valuation of E. We will define the special cycles and study their intersections.

Let (Y, iY, λY) be a strict formal OF -module of F -height 2 over k, with an action

iY : OE → End(Y) and with principal polarization λY. Also, we assume that it satisfies

the determinant condition of signature (0, 1). Let N 0(0, 1) be the corresponding moduli

space. To simplify notation, we write N 0 for N 0(0, 1)OĔ , N for N h
E/F (1, n− 1)OĔ and N̂

for N n−h
E/F (1, n− 1)OĔ .

Definition 5.1. The space of special homomorphisms is the E-vector space

V := HomOE(Y,X)⊗Z Q.

For x, y ∈ V, we define a hermitian form h on V as

h(x, y) = λ−1
Y ◦ y

∨ ◦ λX ◦ x ∈ EndOE(Y)⊗Q
i−1
Y' E.

We often omit i−1
Y via the identification EndOE(Y)⊗Q'E.

Remark 5.2. We have an isomorphism between N and N̂ . For each OĔ-scheme S

such that π is locally nilpotent, the isomorphism sends (X, iX , λX , ρX) ∈ N (S) to

(X∨, i∨X , λ′X , (ρ∨X)−1) ∈ N̂ (S).
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Here λ′X : X∨ → X is the unique polarization such that λ′X ◦λX = iX(π), and for a ∈ OE,

we define i∨X(a) := iX(a)∨.

Definition 5.3. We write θ : N → N̂ for the isomorphism which is defined in Remark

5.2.

Definition 5.4.

(1) For a given special homomorphism x ∈ V, we define the special cycle Z(x) to

be the closed formal subscheme of N 0 × N with the following property: For

each OĔ-scheme S such that π is locally nilpotent, Z(x)(S) is the set of all

points ξ = (Y , iY , λY , ρY , X, iX , λX , ρX) in (N 0 × N )(S) such that the quasi-

homomorphism

ρ−1
X ◦ x ◦ ρY : Y ×S S → X ×S S

extends to a homomorphism from Y to X.

(2) For a given special homomorphism y ∈ V, we define the special cycle Y(y) in

N 0 × N as follows. First, consider the cycle Z(λX ◦ y) in N 0 × N̂ . This is

the closed formal subscheme of N 0 × N̂ with the following property: For each

OĔ-scheme S such that π is locally nilpotent, Z(λX ◦ y)(S) is the set of all

points ξ = (Y , iY , λY , ρY , X∨, i
∨
X , λ

′
X , (ρ∨X)−1) in (N 0×N̂ )(S) such that the quasi-

homomorphism

ρ∨X ◦ λX ◦ y ◦ ρY : Y ×S S → X∨ ×S S
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extends to a homomorphism from Y to X∨. We define Y(y) as (id× θ−1)(Z(λX ◦

y)) in N 0 ×N .

We note that N 0 can be identified with Spf OĔ, hence Z(x),Y(y) can be identified

with closed formal subschemes ofN . Also, by abuse of notation, we often write x : Y → X

for the extension of quasi-homomorphism ρ−1
X ◦ x ◦ ρY .

Let M0 = M0
0 ⊕ M0

1 be the Dieudonne module of Y. As in [KR11, Remark 2.5],

it is easy to see that M0
0 = OF̆10 and M0

1 = OF̆11, where F11 = 10, F10 = π11 and

{10, 10} = π. We write N0 for M0 ⊗Q.

Now, let x ∈ V. This induces a homomorphism from N0 to N . We also write x for

the induced homomorphism. Note that we can write x = x0 + x1, where x0 : N0
0 → N0

and x1 : N0
1 → N1, since the morphism x has degree 0 with respect to the decompositions

N0
0 ⊕N0

1 and N0 ⊕N1.

To study the sets of k-points Z(x)(k),Y(y)(k), x, y ∈ V, recall that we have a bijection

between N (k) and the set of lattices (A,B) in Nk,0 (see Proposition 2.4). Now, we can

state the following analogue of [KR11, Proposition 3.10].

Proposition 5.5. (cf. [KR11, Proposition 3.10]) For x, y ∈ V, we have the following

bijections.

(1)

Z(x)(k) =


OF̆ -lattices

A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πB∨
1
⊂ A

n−1
⊂ B∨,

πA∨
1
⊂ B

n−1
⊂ A∨,

πB ⊂ A ⊂ B,

x0(10) ∈ πB∨.


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(2)

Y(y)(k) =


OF̆ -lattices

A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πB∨
1
⊂ A

n−1
⊂ B∨,

πA∨
1
⊂ B

n−1
⊂ A∨,

πB ⊂ A ⊂ B,

y0(10) ∈ πA∨.


Proof. The proof of (1) is identical to the proof of [KR11, Proposition 3.10]. For

(2), note that for the Dieudonne module M = A⊕B⊥ of (X, iX , λX , ρX) ∈ N (k), its dual

M⊥ = B ⊕ A⊥ is the Dieudonne module of X∨ (here, ⊥ means the dual with respect to

〈·, ·〉 in Section 2.1). Therefore, (2) can be proved in the same way. �

Lemma 5.6. ([Vol10, Lemma 1.16]) Let t ∈ OE with t∗ = −t and let V be a E-vector

space of dimension n. Let In be the identity matrix of rank n and let Jn be the matrix

Jn :=



π

1
. . .

1


.

There exist two perfect skew-hermitian forms on V up to isomorphism. These forms

correspond to tIn and to tJn respectively. Furthermore, if M is a lattice in V and i ∈ Z

with

πi+1M∨ r
⊂M

n−r
⊂ πiM∨,

then n− r ≡ ni mod 2 in the first case and n− r 6≡ ni mod 2 in the second case.

Proof. See [Vol10, Lemma 1.16]. Note that F is a finite extension of Qp, therefore

the above statement is more general. But, the proof is identical. �
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Remark 5.7. Recall that the E-vector space N τ
k,0 in Section 2.2 has a lattice M with

πM∨ h+1
⊂ M

n−h−1
⊂ M∨.

This fact follows from Lemma 2.7. Therefore, by the above lemma, the form {·, ·} is

isomorphic to tIn if n−h−1 ≡ 0 mod 2 and is isomorphic to tJn if n−h−1 6≡ 0 mod 2.

We need the following analogue of [KR11, Lemma 3.7].

Lemma 5.8. Assume that h 6= 0, n. Then we have

⋂
Λ

Λ = (0),

where Λ runs over all vertex lattices of type h+ 1.

Proof. First, assume that n = h + 1 + 2k for some integer k ≥ 0, and h + 1 is odd.

Then by Remark 5.7, the form {·, ·} is isomorphic to tIn. Choose a basis {e1, . . . , en} such

that {ei, ej} = tδij. Choose any h+ 1 elements {f1, . . . , fh+1} in {e1, . . . , en} and rename

{e1, . . . , en} to {f1, . . . , fn}.

Let α, β be elements in E such that αα∗ = −1 and ββ∗ = 1/2.

We define
gh+1 := fh+1,

g2i+1 := β(f2i+1 + αf2i+2),

g2i+2 := β(f2i+1 − αf2i+2), ∀0 ≤ i ≤ h
2 − 1.

Then we have
{g2i+1, g2i+1} = 0, {g2i+2, g2i+2} = 0,

{g2i+1, g2i+2} = t, ∀0 ≤ i ≤ h/2− 1.
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Now consider an element γ ∈ E such that 1 + γγ∗ = π, and define

hh+1+2i+1 := fh+1+2i+1 + γfh+1+2i+2

hh+1+2i+2 := γ∗fh+1+2i+1 − fh+1+2i+2, ∀0 ≤ i ≤ k − 1.

Also, we define

gh+1+2i+1 := β(hh+1+2i+1 + αhh+1+2i+2)

gh+1+2i+2 := β(hh+1+2i+1 − αhh+1+2i+2), ∀0 ≤ i ≤ k − 1.

Then we have

{gh+1+2i+1, gh+1+2i+1} = 0, {gh+1+2i+2, gh+1+2i+2} = 0,

{gh+1+2i+1, gh+1+2i+2} = tπ, ∀0 ≤ i ≤ k − 1.

For I := (a1, . . . , ah/2, b1, . . . , bk) ∈ Zh/2 × Zk, we set

Λ{g1,...,gn},I := [πa1g1, π
−a1g2, . . . , πah/2gh−1, π

−ah/2gh,

gh+1, π
b1gh+2, . . . , π

−bkgn].

Then, this is a vertex lattice of type h+ 1 and we have

⋂
{g1,...,gn},I

Λ{g1,...,gn},I = (0),

where {g1, . . . , gn} runs over all choices and I runs through Zh/2 × Zk.

This proves the lemma in the case that n = h + 1 + 2k for some integer k ≥ 0, and

h+ 1 is odd.

Similar arguments work for the other cases. �
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Proposition 5.9. The functors Z(x) and Y(y) are represented by closed formal sub-

schemes of N 0 ×N . In fact, Z(x) and Y(y) are relative divisors in N 0 ×N (or empty)

for any x, y ∈ V\{0}.

Proof. If h = 0 (resp. h = n), then we have Z(x) = Y(x) (resp. Z(πx) = Y(x)).

Therefore, the case where h = 0 is proved in [KR11, Proposition 3.5] (the case that h = n

is the same since we have the isomorphism θ). For the other cases, we can follow the proof

of [KR11, Proposition 3.5] with Lemma 5.8. Indeed, we only need to show that Z(x)(k)

cannot be N (k). If N (k) ⊂ Z(x)(k), then we have

x ∈
⋂
Λ
πΛ∨,

where Λ runs over all vertex lattices of type h+ 1. This fact follows from Lemma 2.7 and

Proposition 5.5. Now, since we have

⋂
Λ
πΛ∨ ⊂

⋂
Λ

Λ = (0),

by Lemma 5.8, we have that x should be 0. This finishes the proof of the proposition. �

We have the following analogue of the remarks after [KR11, Lemma 5.2] (and also in

[KR]).

Proposition 5.10.

(1) If val(h(x, x)) = 0, then Z(x) ' N h
E/F (1, n− 2)OĔ .

(2) If val(h(y, y)) = −1, then Y(y) ' N h−1
E/F (1, n− 2)OĔ .
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Proof. (1) For an OĔ-scheme S, assume that (X, iX , λX , ρX) ∈ Z(x)(S). We can take

a rescaled x by an element in O×E such that h(x, x) = 1. We denote by x∗ the element

λ−1
Y
◦ x∨ ◦ λX . Then we have that e := x ◦ x∗ is an idempotent in EndOE(X), so that

X = e(X)× (1− e)(X). Via this decomposition, we have the decomposition of the action

iX = i1 × i2. Also, note that we have the canonical isomorphisms e∨(X∨) = (eX)∨ and

(1 − e∨)(X) = ((1 − e)(X))∨. By this identification, we have that the polarization λX

decomposes into the product of polarizations λ1 = λX ◦ e and λ2 = λX ◦ (1− e) of eX and

(1 − e)(X) respectively. Let ρ1 = e ◦ ρX , ρ2 = (1 − e) ◦ ρX , the quasi-isogenies of e(X)

and (1 − e)X, respectively. Then x defines an isomorphism Y ' e(X) compatible with

polarizations, and ((1− e)(X), i2, λ2, ρ2) gives an element in N h
E/F (1, n− 2)OĔ(S).

Conversely, for an element (X2, i2, λ2, ρ2) ∈ N h
E/F (1, n − 2)OĔ(S), we can take X =

Y ×X2 with x = inc1 : Y→ X, the action iX = iY × i2, the polarization λY × λ2 and the

quasi-isogeny ρY × ρ2. Then this gives an element in Z(x)(S). This construction gives

the inverse of the previous one up to isomorphism.

(2) For an OĔ-scheme S, let (X, iX , λX , ρX) ∈ Y(y)(S). Consider

θ((X, iX , λX , ρX)) = (X∨, i∨X , λ′X , (ρ∨X)−1).

For z = λX ◦ y, let z∗ = λ−1
Y
◦ z∨ ◦ λ′X . Then we have

z∗ ◦ z = λ−1
Y
◦ y∨ ◦ λ∨X ◦ λ′X ◦ λX ◦ y

= λ−1
Y
◦ y∨ ◦ (−λX) ◦ λ′X ◦ λX ◦ y

= −πh(y, y).
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Therefore, val(z∗◦z) = 0. We can take rescaled y by an element in O×E such that z∗◦z = 1.

Then we have that e := z ◦ z∗ is an idempotent in EndOE(X∨). Now, as in the proof of

(1), we have that

((1− e)X∨, i∨X , (1− e∨)λ′X , (1− e)(ρ∨X)−1) ∈ N n−h
E/F (1, n− 2)OĔ(S).

Therefore, by taking θ−1((1− e)X∨, i∨X , (1− e∨)λ′X , (1− e)(ρ∨X)−1)), we have an element

of N h−1
E/F (1, n− 2)OĔ .

Now, let (X2, i2, λ2, ρ2) ∈ N h−1
E/F (1, n−2)OĔ . We will construct the inverse of the above

construction. First, consider

θ((X2, i2, λ2, ρ2)) = (X∨2 , i
∨
2 , λ

′
2, (ρ∨2 )−1) ∈ N n−h

E/F (1, n− 2)OĔ

Then we define
X∨ := Y ×X∨2 ,

i
∨
X := iY × i

∨
2 ,

λ′X := λY × λ′2,

(ρ∨X)−1 := ρY × (ρ∨2 )−1.

This (X∨, i∨X , λ′X , (ρ∨X)−1) is an element of N n−h
E/F (1, n− 1)OĔ

Now, we define (X, iX , λX , ρX) = θ−1((X∨, i∨X , λ′X , (ρ∨X)−1), with

λX ◦ y := inc1 : Y→ X∨.

Then, this (X, iX , λX , ρX) gives an element in Y(y) and this construction inverts the

previous one up to isomorphism. �
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Proposition 5.11. Assume that val(h(x, x)) = 0, val(h(y, y)) = −1. Assume further

that by rescaling as in Proposition 5.10, x∗ ◦ x = 1, (λX ◦ y)∗ ◦ (λX ◦ y) = 1. We define

ex := x ◦ x∗ and ey := (λX ◦ y) ◦ (λX ◦ y)∗. Fix isomorphisms

Φ : Z(x) ' N h
E/F (1, n− 2)OĔ ,

Ψ : Y(y) ' N h−1
E/F (1, n− 2)OĔ ,

as in Proposition 5.10. Then the following statements hold.

(1) For z ∈ V such that h(x, z) = 0, let z′ := (1− ex) ◦ z. Then, we have Φ(Z(x) ∩

Z(z)) = Z(z′) in N h
E/F (1, n− 2) and h(z′, z′) = h(z, z).

(2) For w ∈ V such that h(x,w) = 0, let w′ := (1 − ex) ◦ w. Then, we have

Φ(Z(x) ∩ Y(w)) = Y(w′) in N h
E/F (1, n− 2) and h(w′, w′) = h(w,w).

(3) For z ∈ V such that h(y, z) = 0, let z′ := (1− e∨y ) ◦ z. Then, we have Ψ(Y(y) ∩

Z(z)) = Z(z′) in N h−1
E/F (1, n− 2) and h(z′, z′) = h(z, z).

(4) For w ∈ V such that h(y, w) = 0, let w′ := (1 − e∨y ) ◦ w. Then, we have

Ψ(Y(y) ∩ Y(w)) = Y(w′) in N h−1
E/F (1, n− 2) and h(w′, w′) = h(w,w).

Proof. We will prove (3). Similar arguments work for (1), (2), (4). For an ele-

ment (X, iX , λX , ρX) in Y(y) ∩ Z(z)(S), we denote by (X2, iX2 , λX2 , ρX2) the element

Ψ((X, iX , λX , ρX)) in N h−1
E/F (1, n − 2)OĔ(S). Also, we denote by (X2, iX2 , λX2) the fram-

ing object of N h−1
E/F (1, n − 2)OĔ . By definition of Y(y) and Z(z), we have that ey can

be extended to a morphism in End(X∨), and z : Y → X can be extended to a mor-

phism z : Y → X. Therefore, z′ = (1 − e∨y ) ◦ z can be extended to a morphism

Y → X2 = (1− e∨y )X. This proves that Ψ(Y(y) ∩ Z(z)) ⊂ Z(z′).
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Conversely, for a given element (X2, iX2 , λX2 , ρX2) in Z(z′), we can use the construction

in Proposition 5.10, with

z = inc2 ◦z′ : Y→ X2 → X = Y∨ × X2.

This construction gives an element in Y(y) ∩ Z(z), and it is Ψ−1((X2, iX2 , λX2 , ρX2)).

Therefore, we have Ψ(Y(y) ∩ Z(z)) = Z(z′).

Now, it remains to show that h(z′, z′) = h(z, z). We have

h(z′, z′) = λ−1
Y ◦ (z′)∨ ◦ λX2 ◦ z′

= λ−1
Y ◦ (z∨ ◦ (1− ey)) ◦ ((1− ey) ◦ λX) ◦ ((1− e∨y ) ◦ z)

= λ−1
Y ◦ z

∨ ◦ (1− ey) ◦ λX ◦ z.

= λ−1
Y ◦ z

∨ ◦ λX ◦ z − λ−1
Y ◦ z

∨ ◦ ey ◦ λX ◦ z

= h(z, z)− λ−1
Y ◦ z

∨ ◦ ey ◦ λX ◦ z.

Here, we used ey ◦ λX = λX ◦ (e∨y ). Now, it remains to show that

λ−1
Y ◦ z

∨ ◦ ey ◦ λX ◦ z = 0.

Note that

ey = λX ◦ y ◦ λ−1
Y ◦ y

∨ ◦ λ∨X ◦ λ′X .
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Therefore, we have

λ−1
Y ◦ z

∨ ◦ ey ◦ λX ◦ z

= λ−1
Y ◦ z

∨ ◦ λX ◦ y ◦ λ−1
Y
◦ y∨ ◦ λ∨X ◦ λ′X ◦ λX ◦ z

= −h(y, z)h(z, y)π

= 0.

The last equality follows from our assumption h(y, z) = 0. This finishes the proof of

(3). �

Lemma 5.12. Assume that x1, x2, y1, y2 are linearly independent special homomor-

phisms in V and

val(h(x1, x1)) = 0, val(h(y1, y1)) = −1.

Then we have the following assertions.

(1) OZ(x1) ⊗L
ON

OZ(x2) = OZ(x1) ⊗ON OZ(x2).

(2) OZ(x1) ⊗L
ON

OY(y2) = OZ(x1) ⊗ON OY(y2).

(3) OY(y1) ⊗L
ON

OZ(x2) = OY(y1) ⊗ON OZ(x2).

(4) OY(y1) ⊗L
ON

OY(y2) = OY(y1) ⊗ON OY(y2).

Here, we write ⊗L for the derived tensor product of ON -modules.

Proof. (1) By Terstiege’s proof in [Ter13, Lemma 3.1], it suffices to show that Z(x1)

and Z(x2) have no common component. By Proposition 5.10, Z(x1) ' N h
E/F (1, n− 2)OĔ ,

and by Proposition 5.11, Z(x1) ∩ Z(x2) = Z(x′2) in N h
E/F (1, n − 2)OĔ . Therefore, by

Proposition 5.9, Z(x1)∩Z(x2) is a divisor in N h
E/F (1, n−2)OĔ . This implies that Z(x1)∩

Z(x2) has codimension 2 in N and hence, Z(x1) and Z(x2) have no common component.
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The proof of (2),(3),(4) are similar. �

Remark 5.13. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V.

If val(h(x1, x1)) = 0, then by above lemma, we have

OY(y1) ⊗L
ON
· · · ⊗L

ON
OY(yh) ⊗L

ON
OZ(x1) ⊗L

ON
· · · ⊗L

ON
OZ(xn−h)

= (OZ(x1) ⊗L
ON

OY(y1))⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

(OZ(x1) ⊗L
ON

OZ(xn−h))

= (OZ(x1) ⊗ON OY(y1))⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

(OZ(x1) ⊗ON OZ(xn−h))

= OZ(x1)∩Y(y1) ⊗L
OZ(x1)

· · · ⊗L
OZ(x1)

OZ(x1)∩Z(xn−h)

= OY(y′1) ⊗L
ONh(1,n−2)

. . . OZ(x′2) ⊗L
ONh(1,n−2)

· · · ⊗L
ONh(1,n−2)

OZ(x′
n−h).

In the last line, we regard the special cycles Y(y′1), . . .Z(x′h) as the cycles in N h(1, n− 2)

via the identification Z(x1) = N h(1, n− 2) as in Proposition 5.11.

Similarly, we can do the same reduction, when val(h(y1, y1)) = −1. In this case, we

have an intersection in N h−1(1, n− 2)

Let [x,y] := [x1, . . . , xn−h, y1, . . . , yh] be an orthogonal basis of V. We will compute

the intersection number

χ(OY(y1) ⊗L
ON
· · · ⊗L

ON
OY(yh) ⊗L

ON
OZ(x1) ⊗L

ON
· · · ⊗L

ON
OZ(xn−h)),
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in some special cases. Here, we write χ for the Euler-Poincare characteristic ([KR00],

[Zha12]). More precisely, for the structure morphism ω : N → Spf OĔ and for a sheaf of

ON -modules H, we define

χ(H) :=
∑
i

(−1)i lengthOĔ(Riω∗H).

For a bounded complex of sheaves H• of ON -modules, we define

χ(H•) :=
∑
i

(−1)iχ(Hi).

Theorem 5.14. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V. Assume

that
val(h(xi, xi)) = 0 for all 3 ≤ i ≤ n− h,

val(h(yj, yj)) = −1 for all 1 ≤ j ≤ h,

and write a := val(h(x1, x1)), b := val(h(x2, x2)). We assume that a ≤ b and a 6≡ b

mod 2. Then we have

χ(OY(y1) ⊗L
ON
· · · ⊗L

ON
OZ(xh)) = 1

2

a∑
l=0

ql(a+ b+ 1− 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh] of V such that

x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE). Then we have

χ(OY(ỹ1) ⊗L
ON
· · · ⊗L

ON
OZ(x̃h)) = 1

2

a∑
l=0

ql(a+ b+ 1− 2l).
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Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case of n = 2

and we need to compute the intersection number

χ(OZ(z1) ⊗L
ON0(1,1)

OZ(z2)).

This intersection number is computed in [Liu11, Theorem 4.13]. Indeed,

χ(OZ(z1) ⊗L
ON0(1,1)

OZ(z1)) = 1
2

a∑
l=0

ql(a+ b+ 1− 2l).

For the general cases, first we need to show that (Y(ỹ1) ∩ · · · ∩ Z(x̃h))(k) is a single

point. By Proposition 5.5, (Y(ỹ1) ∩ · · · ∩ Z(x̃h))(k) is

(5.0.0.1)



OF̆ -lattices A
h
⊂ B ⊂ Nk,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πB∨
1
⊂ A

n−1
⊂ B∨

πA∨
1
⊂ B

n−1
⊂ A∨;

πB ⊂ A ⊂ B;

x̃1(10), . . . , x̃n−h(10) ∈ πB∨;

ỹ1(10), . . . , ỹh(10) ∈ πA∨.



.

It is easy to see that this is the same as (Y(y1)∩· · ·∩Z(xh))(k), since the above conditions

in (5.0.0.1) are invariant under the linear combination x̃ = x̃g1, ỹ = ỹg2. Also, by Remark

5.13, we know that this is a single point. Therefore, we can use the length of a deformation

ring to compute our intersection number as in [KR11, Section 5], and this is invariant

under the linear combination [x̃, ỹ] = [xg1,yg2]. Therefore, we have

χ(OY(ỹ1) ⊗L
ON
· · · ⊗L

ON
OZ(x̃h)) = χ(OY(y1) ⊗L

ON
· · · ⊗L

ON
OZ(xh))

= 1
2
∑a
l=0 q

l(a+ b+ 1− 2l).
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�

Theorem 5.15. Let {x1, . . . , xn−h, y1, . . . , yh} be an orthogonal basis of V. Assume

that
val(h(xi, xi)) = 0 for all 1 ≤ i ≤ n− h,

val(h(yj, yj)) = −1 for all 3 ≤ j ≤ h,

and write a := val(h(y1, y1)), b := val(h(y2, y2)). We assume that a ≤ b and a 6≡ b

mod 2. Then we have,

χ(OY(y1) ⊗L
ON
· · · ⊗L

ON
OZ(xh)) = 1

2

a+1∑
l=0

ql(a+ b+ 3− 2l).

More generally, consider another basis [x̃, ỹ] := [x̃1, . . . , x̃n−h, ỹ1, . . . , ỹh] of V such that

x̃ = x̃g1, ỹ = ỹg2 for g1 ∈ GLn−h(OE) and g2 ∈ GLh(OE). Then

χ(OY(ỹ1) ⊗L
ON
· · · ⊗L

ON
OZ(x̃h)) = 1

2

a+1∑
l=0

ql(a+ b+ 3− 2l).

Proof. By applying Remark 5.13 repeatedly, the problem reduces to the case of n = 2

and we need to compute the intersection number

χ(OY(y1) ⊗L
ON2(1,1)

OY(y2)).

By applying θ, we can change our problem to the problem of computing the intersection

number

χ(OZ(λX◦y1) ⊗L
ON0(1,1)

OZ(λX◦y2)).
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Note that λX ◦ y1, λX ◦ y2 have orders a + 1 and b + 1, respectively. Therefore, by

[Liu11, Theorem 4.13], we have

χ(OZ(λX◦y1) ⊗L
ON0(1,1)

OZ(λX◦y2)) = 1
2

a+1∑
l=0

ql(a+ b+ 3− 2l).

The proof of the general case is the same as Theorem 5.14. �

Remark 5.16. Assume that

val(h(xi, xi)) = 0 for all 1 ≤ i ≤ n− h− 1,

val(h(yj, yj)) = −1 for all 1 ≤ j ≤ h− 1.

In this case, by the above remark, we can reduce the problem to the intersection problem

in N 1(1, 1) that is the Drinfeld upper half-plane. In this case all intersection numbers of

special cycles (even in the case of improper intersection) can be computed explicitly (see

[San17] or [KR00]). We will compute this in forthcoming work.
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1–109. MR3202556
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