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Abstract

Fluid-Structure Interaction

Hongwu Wang

Spectral elements are p-type element which can provide better accuracy and faster con-

vergence. However, applications of these elements make conformation to discontinuities

in the function or its derivative di�cult. The eXtended Finite Element Method (XFEM)

recently developed at Northwestern University can easily treat the arbitrarily aligned dis-

continuities, i.e. independent of the mesh, for both the function and its derivative. A

spectral �nite element with arbitrary discontinuities is developed. We show an optimal

convergence rate of the spectral element for straight discontinuities and slightly subopti-

mal convergence rate for curved discontinuity in the energy norm error.

A variational principle is developed for �uid-structure interaction of bodies. The varia-

tional principle is applicable to models where the �uid is described by Eulerian coordinates

while the solid is described by Lagrangian coordinates, which suits their intrinsic charac-

teristics. The momentum equation and the coupling are uni�ed in one weak form. This

weak form is in accord with the standard Finite Element Method (FEM) and is easy to

implement. The method enables the �uid and solid meshes to be arbitrary and there is no
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limit on the extent of the deformation of the solid. Although a compressible viscous �uid

formulation is implemented here, the method can be extended to incompressible �uids.

Both explicit and implicit time integration can be used with this method.

The constraint method for �uid-structure interaction is further developed. As for the

variationally consistent method for the �uid-structure interaction problem, the meshes

for the �uid and solid are independent. Eulerian coordinates are used for the �uid and

Lagrangian coordinates for the solid. The coupling is furnished through the enforcement of

the continuity equation on the interface by a constraint method. The momentum balance

on the interface is supplied by the weak form. The interface integration required by the

coupling is regularized by a window function. This avoids the awkward line integration

in 2D and surface integration in 3D.
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CHAPTER 1

Introduction

In chapter 2, methods for constructing arbitrary discontinuities within spectral �nite

elements are described and studied. We use the concept of the eXtended Finite Element

Method (XFEM), which introduces the discontinuity through a local partition of unity, so

there is no requirement for the mesh to be aligned with the discontinuities. A key aspect of

the implementation of this method is the treatment of the blending elements adjacent to

the local partition of unity. We found that a partition constructed from spectral functions

one order lower than the continuous approximation is optimal and no special treatment

is needed for higher order elements. For the quadrature of the Galerkin weak form,

since the integrand is discontinuous, we use a strategy of subdividing the discontinuous

elements into 6-node and 10-node triangles; the order of the element depends on the

order of the spectral method for curved discontinuities. Several numerical examples are

solved to examine the accuracy of the methods. For straight discontinuities, we achieved

the optimal convergence rate of the spectral element. For the curved discontinuity, the

convergence rate in the energy norm error is suboptimal. We attribute the sub-optimality

to the approximations in the quadrature scheme. We also found that modi�cation of the

adjacent elements is only needed for lower order spectral elements.

For the �uid-structure interaction problem, there are basically two approaches we have

taken to the coupling. They are
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(1) the variationally consistent immersed element method which gives a uniform weak

form for the coupling and the momentum equation.

(2) the constraint method which enforces the continuity condition along the interface

by a constraint method.

In Chapter 3, the variationally consistent immersed element method is developed and in

Chapter 4, the constraint method is further developed. Both of the methods share these

common features

(1) the �uid is described by Eulerian coordinates while the solid is described by

Lagrangian coordinates.

(2) the �uid and solid meshes are arbitrarily aligned.

(3) there is no limit on the extent of the deformation of the solid.

(4) both explicit and implicit time integration can be used.

(5) both compressible and incompressible �uids can be used.

(6) the solution procedure for the coupling is concurrent instead of sequential, i.e.

no transformations of physical variables between the �uid and solid.

(7) both of the methods are equivalent to the strong form.

However, the two methods demonstrate distinct aspects in consideration of the coupling

between the �uid and solid.

(1) in the variationally consistent immersed element method, the continuity condition

is implicit in the weak form, i.e. a uniform velocity �eld is provided.

(2) in the constraint method, the continuity condition is explicitly supplied by the

constraint method.
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(3) by using Lagrange multipliers, the constraint method augments system unknowns

which may become costly in computation.

(4) lumped mass can be used for the variationally consistent immersed element

method.

(5) a line integration in 2D and a surface integration in 3D along the interface are

necessary for the constraint method.

In Chapter 5, some numerical examples are presented for both methods. The variationally

consistent immersed element method is implemented by both the lumped and consistent

mass. Comparisons between them are displayed. Finally, the conclusions are drawn in

Chapter 6.
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CHAPTER 2

Strong and Weak Arbitrary Discontinuities In Spectral Finite

Elements

2.1. INTRODUCTION

Spectral elements o�er substantial accuracy advantages over conventional elements for

smooth problems. However, for problems with interior discontinuities in the functions or

their gradients that arise, for example, from discontinuous changes in the coe�cients of the

partial di�erential equation, spectral elements can become quite awkward. Discontinuities

in the function arise between unlinked subdomains, such as the surfaces of a crack. Gen-

erally, such discontinuities are treated in �nite element methods by aligning the element

interfaces with the discontinuity. However, when the interface between the subdomains

with di�erent coe�cients in the partial di�erential equation is curved, it would be neces-

sary to use curved spectral elements, which degrades their accuracy. Furthermore for the

modeling of thin layers of materials in solid mechanics problems, conforming the mesh to

the discontinuities entails the use of small spectral elements, which is often awkward. The

di�culties are compounded for moving interface problems, where the approach of making

element interfaces coincident with the discontinuity requires continuous remeshing.

Therefore, it is quite desirable to have techniques for modeling discontinuities in func-

tions and their gradients that are not coincident with element interfaces by allowing them
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within an element. Such techniques have already been developed for standard �nite ele-

ments by Moes et al [69] and Belytschko et al [13] based on the earlier work by Belytschko

and Black [6], but their studies were limited to low order elements; the method was called

the extended �nite element method (XFEM) [25, 7, 86]. The method is based on a local

partition of unity, which is an extension of the partition of unity methods proposed by

Babuska et al [2], Babuska and Melenk [68, 3] and Duarte and Oden [38]; a study of local

partitions of unity is reported in Chessa et al [26]. It is shown here that the application

of these techniques to higher order elements requires some additional considerations, such

as improved quadrature methods of the Galerkin weak form and careful design of the ele-

ments adjacent to the local partition of unity. Remarkably, with the methods given here,

one can develop methods for constructing higher order elements with interior function

discontinuities or gradient discontinuities that almost maintain the optimal convergence

properties.

We will see that the modeling of discontinuities in functions is substantially simpler

than the modeling of discontinuities in gradients. For the treatment of discontinuities in

the functions themselves, there is no need for special treatment of the domain adjacent to

the local partition of unity, called the blending domain. On the other hand, for disconti-

nuities in the gradients, a blending partition must be constructed in the blending domain

from functions at least one order lower than those used for the basic approximation. Since

a blending approximation that is one order lower cannot be constructed for linear and

bilinear elements, these elements require a special treatment in the blending subdomain

to eliminate extraneous functions. This situation for low order elements has already been

treated by Chessa et al [26] where special enhanced blending element were developed. The
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interesting �nding here is that enhanced blending elements are unnecessary for higher or-

der elements for rectilinear discontinuities and that the blending partition for order p

elements should be constructed from order p− 1 spectral functions for optimal accuracy.

In the following, we will describe these methods in the context of the Poisson equation

and linear elasticity, but the methods are applicable to any partial di�erential equations,

including nonlinear partial di�erential equations. We will formulate the methods in terms

of implicit functions, i.e. level sets, but this specialization is not necessary. The level set

approach simpli�es the notation and provides bene�ts in implementation since it enables

the location of the discontinuity to be described entirely in terms of nodal data.

The method is here formulated in the context of level sets. XFEM was �rst combined

with level sets to treat cracks by Stolarska et al [84], Belytschko et al [13], Chessa et al

[23, 24], Ji, Chopp and Dolbow [57] and Chopp et al [27].

In the next Section, we describe the approximations for discontinuous functions and

functions with discontinuous gradients. In Section 3, we describe the Galerkin weak form

and its discretization, with particular emphasis on the quadrature issues that are unique

to this method. Some implementation issues are also remarked upon. In Section 4, results

are given for a variety of problems where closed form solutions or information about the

solution is available, which enables us to judge the accuracy of the method. Section 5

discusses this approach and gives some conclusions.

2.2. METHODOLOGY

Consider a domain Ω with boundary Γ and a discontinuity on a surface (a line in two

dimensions) ΓD as shown in Figure 2.1. For clarity, we consider a single discontinuity but
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Figure 2.1. Domains with a discontinuity ΓD surrounded by a local partition

of unity domain ΩLPU and a blending domain ΩB.

the method is also applicable to multiple discontinuities. The discontinuity may be either

in the function or its gradient. In Figure 2.1, we have shown two cases:

(1) where the discontinuity bisects the domain Ω.

(2) where the discontinuity ends within the domain.

The former could be the interface between two materials, the latter a crack. Around the

discontinuity, we de�ne a domain ΩLPU , which we call the local partition of unity domain;

adjacent to that domain are blending partition domains ΩB.

We de�ne the location of the discontinuity ΓD implicitly by

∀x ∈ Ω | f(x) = 0 (2.1)
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ΓD

f (x) = 0

(a) A domain cut by the disconti-
nuity.

ΓD

f (x) = 0

g(x) = 0

g(x) < 0

g(x) > 0

(b) A discontinuity that ends in the domain.

Figure 2.2. Implicit function description of discontinuities for the two cases

in Figure 2.1.

For the case where the discontinuity ends within the domain, we de�ne the location by

constructing another function g(x) such that g(x) > 0 in the subdomain cut by ΓD as

shown in Figure 2.2(b). The location of the discontinuity is then given by

∀x ∈ Ω | f(x) = 0 ∧ g (x) > 0 (2.2)

On the domain ΩLPU we construct a local partition of unity, Babuska and Melenk

[3], Chessa et al [26]. The domain ΩLPU ∪ ΩB is covered by overlapping subdomains ΩI

and a set of functions φI is selected so that the supports of φI correspond to ΩI . These

functions are required to satisfy

∑
φI = 1 in ΩLPU (2.3)
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(enriched elements)

(blending elements)

Figure 2.3. Spectral mesh for local partition of unity showing elements in

ΩLPU and ΩB, the enriched elements and blending elements, respectively.

A structured mesh is shown but the application to unstructured meshes is

similar.

∑
φI = 0 on ΓB (2.4)

The construction of the discontinuous approximation for u(x) is based on an additive

decomposition of the function into its continuous and discontinuous parts

u(x) = ucont(x) + udisc(x) (2.5)

We have chosen to illustrate the procedure �rst for a scalar function; in some cases, we

generalize the results to vector functions.
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To develop the spectral element approximation, the domain Ω is subdivided into ele-

ments Ωe, as shown in Figure 2.3. Figure 2.3 shows a Cartesian mesh, but the concept

applies equally to unstructured meshes; the outside boundary is de�ned by h(x) = 0,

the interior by h(x) > 0. The local partition of unity is then constructed from the shape

functions NI(x). The choice of the domain ΩLPU is governed by the location of the discon-

tinuity; all elements that are crossed by the discontinuity must be in ΩLPU . The selection

of ΩB is then dictated by the fact that the functions φI vanish on ΓB, (2.4). Moreover, it

is advantageous to make ΩB as small as possible. For an element shape function partition,

these conditions are met by including all elements that are crossed by the discontinuity

in ΩLPU ; ΓB is then the boundary of the next layer of elements.

Let the set of nodes in the model be S and the subset of S of nodes in ΩLPU be SP . We

now approximate the continuous part of u(x) by the standard spectral shape functions

and the discontinuous part by the local partition of unity

u(x) =
∑
I∈S

NP
I (x)uI +

∑
I∈SP

φI(x)ψ(x)qI (2.6)

where NP
I (x) are the spectral shape functions of order p, uI are the nodal values, ψ(x)

is an enrichment function, and qI are additional parameters. We will next describe how

we construct the enrichment separately for discontinuous functions and discontinuous

gradients. In both cases, we let the partition of unity functions be the spectral shape

functions; the domains ΩI therefore correspond to the union of the elements that share

node I.
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2.2.1. Gradient discontinuity

The enrichment for a gradient discontinuity that cuts the entire domain is given by

u(x) =
∑
I∈S

NP
I (x)uI +

∑
I∈SP

NP−1
I (x) (|f(x)| − |f(xI)|) qI (2.7)

The construction of the enrichment in terms of NP−1(x), i.e. spectral functions one order

lower than those used for the continuous approximation, is crucial in achieving optimal

convergence. This is an extension of an enrichment proposed in Belytschko et al [13]

and Sukumar et al [85]. Approaches of this type were previously proposed for meshless

methods by Krongauz and Belytschko [59].

2.2.2. Discontinuity in function

We next consider strong discontinuities [47] for vector functions. To approximate a dis-

continuity in a function for a discontinuity that cuts the domain completely, as in Figure

2.1(a), we let

ψ(x) = H (f (x)) (2.8)

where H(•) is the Heaviside step function. For a partial cut, such as shown in Figure

2.1(b), we let

ψ(x) = sin

(
θ

2

)
H (f (x))H (g (x)) (2.9)

θ = tan−1 f√
f 2 + g2

(2.10)
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The approximation is then given by

u(x) =
∑
I∈S

NP
I (x)uI +

∑
I∈SP

N1
I (x) (ψ(x)− ψ(xI))qI (2.11)

where ψ(x) is given by (2.8) or (2.9). Note that we use the �rst order (bilinear or linear)

shape functions for the enrichment for function discontinuities.

For tangential discontinuities, we use [13]

u(x) =
∑
I∈S

NP
I (x)uI +

∑
I∈SP

et(x)N1
I (x) (H(f(x))−H(f(xI))) qI (2.12)

where et is a vector in the tangential direction. Note that the above enrichment func-

tion (the second term) automatically vanishes in the blending elements since H(f(x)) is

constant in the blending elements. The gradient ∇f provides the normal direction as

en =
∇f
‖∇f‖

(2.13)

the tangent plane is then de�ned by any two unit vectors orthogonal to en. In two

dimensions, we have et = ez × en.

Remark : As noted in [13], we subtract ψ(xI) from ψ(x) in (2.11) so that implementa-

tion is easier; in this way, u(xI) = uI which simpli�es the imposition of essential boundary

conditions. Furthermore, the step function enrichment then vanishes in elements not cut

by the discontinuity.
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Remark : We can use several functions to improve the enrichment around the end of

the discontinuity, i.e. we can use

udisc(x) =
∑
I∈SP

∑
α

NI(x)ψα(x)qαI (2.14)

[ψα] = sin

(
θ

2

)
(H (f(x))H (g(x))−H (f(xI))H (g(xI))) [r r2 r3] (2.15)

r2 = f 2 + g2 (2.16)

Remark : Approximations for intersecting and branching discontinuities can be con-

structed in the same way by adding additional functions as described for low order ele-

ments by Belytschko et al [13] and Daux et al [34].

2.3. GALERKIN WEAK FORM

In most cases, we will consider the Poisson equation in domain Ω with boundary Γ.

∇ (k (x)∇u) + b = 0

with u = ū on Γu, k(x)n · ∇u = ḡ on Γg, Γu ∪ Γg = Γ Γu ∩ Γg = ∅ (2.17)

Note that k(x) may be discontinuous. The weak form is

for u ∈ U,
∫

Ω

∇δu k(x) ∇u dΩ =

∫
Ω

δu b dΩ +

∫
Γg

δu ḡ dΓ ∀δu ∈ U0 (2.18)

where U is the space of trial functions, U = {u|u ∈ H1, u = ū on Γu}; U0 is the space

of test functions, U0 = {δu|δu ∈ H1, δu = 0 on Γu} with H1 denoting the Hilbert space.

The introduction of enrichments with discontinuities introduces certain di�culties into
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the quadrature of the weak form since the integrand on the left hand side is not contin-

uous. Consider an element Ωe that is cut by the line Γe where the gradient of u(x) is

discontinuous. If we de�ne this line by an implicit function f(x) = 0, then the integrand

can be split into two subdomains within which the integrand is continuous, i.e.

∫
Ω

∇δu k(x) ∇u dΩ =

∫
Ω

H (f(x))∇δu k(x) ∇u dΩ +

∫
Ω

H (−f(x))∇δu k(x) ∇u dΩ

(2.19)

In our implementation we approximate f(x) by the spectral interpolants of the same order

as for u(x), i.e.

f(x) =
∑
I∈S

fIN
P
I (x) (2.20)

The interpolation is only constructed in ΩLPU .

2.3.1. Spectral approximation

We used the spectral elements [50] of Patera [76] with a formulation based on Karniadakis

and Sherwin [58]. The element employs variably spaced nodes corresponding to the zeros

of the Chebyshev or Legendre polynomials, called a Chebyshev-Gauss point repartition

[76]. The P -th order Chebyshev polynomial is:

TP (x) = cos (Pθ) with θ = arccos (x) and x ∈
[
−1 1

]
(2.21)

Nodal coordinates in the element are chosen such that:

T ′P (xI) = 0 , I = 1, 2, . . . , P − 1 and x0 = −1 , xP = 1. (2.22)
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where the prime denotes di�erentiation with respect to the argument. One can then show

that:

xI = − cos
Iπ

P
, I = 0, 1, 2, . . . P (2.23)

Note that this repartition of nodes allows us to write the shape functions in terms of

Chebyshev polynomials [21]:

N1D
I (x) =

(−1)I+P (x2 − 1) T
′
P (x)

cI P 2 (x− xI)
=

2

P

P∑
J=0

1

cIcJ
TJ(xI)TJ(x) (2.24)

where cI = 2 if I is 0 or P , cI = 1 otherwise. In two dimensions, the same nodal

distribution is taken in each direction. The following notation is used for node IJ :

xIJ = (xI , yJ) =

(
− cos

(
Iπ

P

)
,− cos

(
Jπ

P

))
(2.25)

where I and J vary from 0 to P . The shape functions are obtained by a tensor product

of the one dimensional shape functions N1D
I :

NIJ(x) = NIJ(x, y) = N1D
I (x)N1D

J (y) (2.26)

Figure 2.4 shows a 3rd order spectral element and its nodes.

2.3.2. Blending elements

The elements adjacent to the enriched elements, see Figure 2.3, have some nodes enriched

and some nodes unenriched. We call them blending elements [26]. When the enrichment

is activated for the discontinuous gradient enrichment, higher order terms appear in the

blending elements which must be canceled by the continuous �eld. When p = 1, the
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(−1,−1)

(1,1)

x

y

Figure 2.4. Nodes in the third order spectral element and node repartition.

blending element �elds are not constant when the enrichment is activated. Consequently,

the method then cannot exactly match solutions consisting of two constant gradient �elds.

We have found that this shortcoming drastically curtails the rate of convergence. To

eliminate the e�ects of those enriched terms in the blending elements, we use the assumed

strain method to project out these strains as in [26]. We �nd that while for the 1st order

spectral elements we do need this assumed strain projection for good convergence, for

spectral elements of order greater than 1, the proposed method can give good convergence

without the assumed strain projection. This is due to the fact that the polynomial basis

of higher order spectral elements can provide the polynomial terms needed to eliminate

the extraneous enriched terms in blending element.
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(a) Whole domain. (b) Zoom in.

Figure 2.5. Integration of a third order enriched spectral element by recti-

linear triangular sub-domains; ◦ denotes the quadrature points.

2.3.3. Element subdivision for quadrature

For elements cut by the discontinuity, the quadrature of the weak form needs to be

modi�ed. For this purpose, we need to approximate Ωe+ and Ωe− where

Ωe+ = Ωe ∩ (f(x) > 0)

Ωe− = Ωe ∩ (f(x) < 0)

While in our previous work with low order elements [26], we have found approximations

of the domains Ωe+ and Ωe− by simple patterns of straight sided triangles su�cient; for

higher order spectral elements, to exploit their innate accuracy, better approximations of

the shape are needed. An approach to extending this 'cutting' method to higher order
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element is to consider those small rectangles Ωf
R formed by a repartition of a higher

order element, see Figure 2.4, i.e. Ωe =
⋃

f Ωf
R. Figure 2.5 shows one 3rd order spectral

element subdivided into rectilinear quadrature subdomains. In each sub-rectangle Ωf
R,

if it contains the discontinuity, we split it into triangles according to the values of the

signed distance function for the corner nodes of this rectangle, so that Ωf
R =

⋃
g Ωg

T . The

small circles indicate the quadrature points (the quadrature order, which determines the

number of the quadrature points needed, is explained in the next section). The dotted line

indicates the location of the discontinuity. If we zoom in, we can see from Figure 2.5(b)

that this method introduces some errors, which impairs the convergence of the method,

as shown later.

Our studies show that for curved discontinuities, a better technique is to subdivide

the quadrilateral into isoparametric triangles with curved sides. We have used 6-node

quadratic and 10-node cubic triangles for subdivision of a spectral element as shown in

Figure 2.6. Figure 2.7 shows the domain subdivision for a 4 element mesh around a

circular inclusion.

2.3.4. Quadrature order

For the p-th order spectral element in 1D without enrichment, the continuous approxima-

tion �eld is p-th order, the derivative is p− 1, so the sti�ness matrix is order 2 (p− 1). In

the enriched elements, the enrichment function ψ is approximated through the interpola-

tion by the same spectral element as in (2.20). For a p = 1 local partition of unity, the

polynomial order is then p + 1 since the enriched part is the product of the linear shape

function and the enrichment function ψ (x) approximated by the spectral interpolation.
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(a) 6-node triangle subdivision for a 2nd
order spectral element. ∗ denotes the
nodes for spectral elements; . denotes the
nodes for 6-node triangles.
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(b) Quadrature points obtained from the 6-node tri-
angle subdivision for a 2nd order spectral element.
∗ denotes the nodes for spectral elements; ◦ denotes
the quadrature points; . denotes the nodes for 6-
node triangles.
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(c) 10-node triangle subdivision for a 3rd or-
der spectral element. ∗ denotes the nodes for
spectral elements; ◦ denotes the nodes for 6-
node triangles.
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(d) Quadrature points obtained from the 10-
node triangle subdivision for a 3rd order spec-
tral element. Blue ∗ denotes the nodes for spec-
tral elements; black ∗ denotes the quadrature
points; ◦ denotes the nodes for 6-node trian-
gles.

Figure 2.6. Element subdivision and quadrature points for the 6-node qua-

dratic and 10-node cubic triangles.
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discontinuity 

Figure 2.7. Element subdivision and quadrature points for the 3rd order

spectral element mesh around a circular inclusion. ∗ denotes the nodes for

spectral elements; ◦ denotes the quadrature points; � denotes the nodes for

6-node triangles.

In 2D, the sti�ness matrix is integrated by nQ × nQ Gauss quadrature, where nQ is the

number of quadrature points. Gauss quadrature gives exact integration for polynomials

up to order (2nQ−1). The polynomial is of order p+1, so the sti�ness is of order 2(p+1).

Therefore, we need at least nQ = integer([2(p + 1) + 1]/2) quadrature points along one

direction. Here, integer() is the next highest integer.

In order to integrate the weak form for higher order spectral elements, we map quadri-

lateral to a triangle as shown in Figure 2.8. Note that this method doesn't distribute the
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y

1
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−1

Figure 2.8. Integration points in quadrilaterals for triangles; ◦ denotes the

quadrature points.

quadrature points evenly, their distribution is not symmetric, and the quadrature points

depend on the node numbering, but these e�ects are minor.

2.4. NUMERICAL RESULTS

In the following, we examine the performance of our method. The enrichment function

ψ(x) is chosen to be the function of the signed distance.

2.4.1. Analysis of eigenmodes

Consider the problem of two bodies smoothly contacting with relative sliding as shown

in Figure 2.9, which is a strong discontinuity problem. These problems were proposed

in Ref. [13] as checks on methods for discontinuities. Rectangular meshes not aligned

with the discontinuities as shown in Figure 2.10 are used. One eigenvalue should equal
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Tangential discontinuity

(a) Tangential discontinuity of a square black.

R

(b) Tangential discontinuity of the journal bearing.

Figure 2.9. Tangential discontinuities.

exactly zero, corresponding to the rigid body mode of the top body in Figure 2.9(a). The

enrichment given in equation (2.12) is used.

Figure 2.10(a) shows the eigenvector corresponding to the rigid-body mode for the

straight discontinuity problem of Figure 2.9(a). The mark �*� denotes the nodes for the

spectral elements. The lowest eigenvalues are−1.094×10−16, 2.233×10−16, −1.045×10−15,

2.252 × 10−15 for the 1st, 2nd, 3rd and 4th order spectral elements, respectively. Figure

2.10(a) gives the results for p = 4.

Figure 2.9(b) shows an inclusion in an elastic body; relative tangential displacement

is permitted between the bodies, so the problem represents a frictionless journal bearing.

Figure 2.10(b) gives the results for the journal bearing with p = 1. The lowest eigenvalues

for the journal bearing problem are 1.224× 10−4, 1.813× 10−6, 8.222× 10−7 for the 1st,
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(a) Sliding blocks. (b) Journal bearing.

Figure 2.10. Displacement mode corresponding to the lowest eigenvalue; *

denotes the nodes of the spectral element.

2nd and 3rd order spectral elements, respectively. In both problems the eigenvalues are

within machine precision of zero.

2.4.2. Poisson equation with discontinuous coe�cients

The con�guration of this problem is illustrated by Figure 2.11. The material parameters

are k1 = 1, k2 = 10. We generate the meshes so that the interface is not coincident with

the element edges. The governing equation is

∇ · (k∇u) + b = 0 where

 k(x) = k1 = 1 for 0 ≤ x < 5

k(x) = k2 = 10 for 5 ≤ x ≤ 10.
(2.27)
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k = k1

u,y = 0

u,y = 0

k = k2

ΓD

h

y

x

Figure 2.11. Bi-material plate problem with mesh.

with boundary conditions

u,y|y=0 = 0 and u,y|y=h = 0

u|x=0 = 0

k2u,x|x=10 = 1 (2.28)

The exact solution to this problem for b = 0 is

u(x, y) =


q
k1
x 0 ≤ x < 5

q
(

x−5
k2

+ 5
k1

)
5 ≤ x ≤ 10

(2.29)

The enrichment given in equation (2.7) is used. Figure 2.12 shows the convergence of the

energy norm error. In these results, only N1
I (x) was used for the local partition of unity.
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(a) Standard spectral element.
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(b) Enriched and enhanced spectral element.

Figure 2.12. Convergence of the error in energy norm for bi-material plate

problem; cr = rate of convergence, std = standard.

As can be seen from Figure 2.12(a), the performance of standard spectral elements is very

poor in the presence of the discontinuity. For the enriched element with p = 1, the results

are improved over the standard solution without enrichment but still quite poor and the

convergence rate is suboptimal, cr= 0.2443. The convergence rate reported in this and the

next problems are regression �ts to the data. When the blending elements are enhanced

as in Chessa et al [26] by the assumed strain method, the results improve tremendously

for p = 1 and are almost exact (the slight error can be attributed to roundo� errors). For

p = 2 or p = 3, the assumed strain method is not needed and excellent results can be

obtained by just enrichment.
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2.4.3. Manufactured bimaterial problem

The previous problem does not provide a good picture of the accuracy of various methods

since the results are converged within machine precision for p ≥ 2. Therefore we have

�manufactured� a problem with a discontinuity for which the solution is not spanned

by the enriched basis. The problem is identical to the previous problem except that

k1 = 1, k2 = 2 and

b(x) =

 4k1 sin 2x for − 0.4 ≤ x < 0

k2 sin x for 0 ≤ x ≤ 0.5.
(2.30)

The exact solution is

u(x, y) =

 sin 2x for − 0.4 ≤ x < 0

sin x for 0 ≤ x ≤ 0.5.
(2.31)

We apply the exact solution on left and right sides as Dirichlet boundary conditions.

For comparison, Figure 2.13(a) gives the energy norm error versus the element size for

standard spectral elements. The meshes considered here are 3, 6, 12, 24 elements along x

direction for up to 4th order spectral elements. Figure 2.13(b) shows the same results

but with the discontinuity residing on the edge. As can be see in Figure 2.13(a), the

accuracy for the standard spectral element is very poor when the discontinuity occurs

within the element. Comparison with Figure 2.13(b) shows that accuracy is many orders

of magnitude less than when the discontinuity occurs at an edge, and the rate is only

about 0.5, regardless of the order of the spectral interpolant.
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(a) Not coincident with element edges.

0.04 0.06 0.08 0.1 0.2 0.3

10
−8

10
−6

10
−4

10
−2

10
0

element size

en
er

gy
 n

or
m

 e
rr

or

p=1, cr=1.0555
p=2, cr=2.2242
p=3, cr=3.2847
p=4, cr=4.4532

(b) Coincident with element edges.

Figure 2.13. Convergence of the error in energy norm for manufactured bi-

material problem with discontinuity (a) not coincident with element edges

and (b) coincident with element edges; cr=rate of convergence; no enrich-

ment is used here.

Figure 2.14 shows the results for the enriched spectral elements. The accuracy is

nearly as good as when the discontinuity is on an edge and the rates of convergence are

nearly optimal. For p = 1, assumed strain blending elements are needed to recover the

optimal rate of convergence. On the other hand, for p ≥ 2, we found that assumed strain

blending elements have little e�ect.

2.4.4. Circular inclusion

We consider next the elastostatic problem of a circular inclusion; it was previously con-

sidered in [85]. The Lamé constants for the inclusion with the radius R and the outside

matrix with the radius b are di�erent (λ1, µ1) and (λ2, µ2). The exact solution for this
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Figure 2.14. Convergence of the error in energy norm for manufactured

bimaterial problem with XFEM; cr=rate of convergence.

problem is

ur =
[(

1− b2

R2

)
α+ b2

R2

]
r uθ = 0

εrr =
(
1− b2

R2

)
α+ b2

R2 εθθ =
(
1− b2

R2

)
α+ b2

R2

εrθ = 0

(2.32)

inside the inclusion (0 ≤ r ≤ R) and

ur =
(
r − b2

r

)
α+ b2

r
uθ = 0

εrr =
(
1 + b2

r2

)
α− b2

r2 εθθ =
(
1− b2

r2

)
α+ b2

r2

εrθ = 0

(2.33)

outside the inclusion (R ≤ r ≤ b) where

α =
(λ1 + µ1 + µ2)b

2

(λ2 + µ2)R2 + (λ1 + µ1)(b2 −R2) + µ2b2
. (2.34)
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(a) 1st order element.

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

element size

en
er

gy
 n

or
m

 e
rr

or

std spectral, p=2, cr=0.50432
enriched, p=2, cr=1.8981
std spectral, p=3, cr=0.46446
enriched, p=3, cr=2.2408

(b) 2nd and 3rd order element.

Figure 2.15. Convergence rates of energy norm error for circular inclusion

problem with the rectilinear triangular subdomains for quadrature; cr=rate

of convergence, std=standard.

and R is the radius of the material interface and b is the outer radius. We use the following

parameters: R = 0.4, b = 2.0, λ1 = 0.4, µ1 = 0.4, λ2 = 5.769, µ2 = 3.846. The radial

(σrr) and hoop (σθθ) stresses are

σrr = 2µεrr + λ(εrr + εθθ)

σθθ = 2µεθθ + λ(εrr + εθθ) (2.35)

We studied the convergence rate of the energy norm error for this problem. In these

studies, we used a local partition of unity based on N1(x). We have found that for

curved boundaries, there is no improvement for an NP−1(x) local partition of unity. For

comparison, we also show the results with the subdomain quadrature method illustrated

in Figure 2.7. From Figure 2.15 we see that integration on rectilinear subdomains impairs
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Figure 2.16. Convergence rates of energy norm error for circular inclusion

problem with curved 6-node triangular subdomains for quadrature; cr=rate

of convergence, std=standard.

the results for the spectral element with order greater than 1. In Figure 2.16, we show the

results obtained by the 6-node triangular subdivision quadrature method. The 2nd and

3rd order spectral methods give convergence rates around 2 and 2.6, respectively. But for

the 4th order spectral elements, the convergence rate is impaired. We believe this is due

to the e�ects of quadrature again although the accuracy of the results is slightly higher

than for order 3.

The condition numbers for the sti�ness matrix for di�erent orders of the spectral

element and di�erent meshes are shown in Table 2.1. We can see the condition numbers

increase exponentially with the orders of the spectral element. For a speci�c order, the

condition numbers become bigger as the meshes get �ner.
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Table 2.1. Condition numbers for the sti�ness matrix of the circular inclu-
sion problem.

mesh used 6× 6 12× 12 24× 24

p = 1, enriched 5.56× 102 4.25× 103 2.66× 104

p = 1, enriched and enhanced 1.82× 103 1.11× 104 2.23× 105

p = 2, enriched 1.43× 105 7.04× 105 2.15× 107

p = 3, linear enriched 6.89× 106 2.00× 108 2.79× 108

p = 3, quadratic enriched 1.00× 108 8.85× 107 2.63× 108

2.5. CONCLUSIONS

An enrichment method for treating arbitrary discontinuities in functions and their

gradients in the context of spectral elements has been presented. With this method,

the edges of the elements do not need to be coincident with the discontinuity. This

is particularly useful in moving discontinuity problems, where maintaining coincidence

between element edges and the discontinuity entails remeshing.

The methodology is based on a local partition of unity technique and is similar to

the developments for low order elements in Belytschko et al [13], and Chessa et al [26].

However, we found that for spectral elements with p > 1, there is no need to employ special

blending elements in the blending domain. Similarly, for discontinuities in functions, the

blending domain treatment is not important. On the other hand, care must be taken in

the quadrature of the weak form. For curved interfaces, approximation of the subdomains

of the element with the discontinuity by rectilinear triangles severely impairs the accuracy

of the method.

We have studied local partitions of unity that employ p = 1 elements and p − 1

elements for the construction of the local partition of unity (where p is the order of the

continuous approximation.) We found that for straight discontinuities, the p−1 partition
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of unity elements provides optimal convergence. For curved discontinuities, p = 1 was

somewhat more accurate than p− 1, but neither recovered the optimal convergence rate

of the spectral element. We are still not clear why the optimal convergence rate cannot

be recovered for curved discontinuities.

The methodology is promising for a wide variety of applications involving partial di�er-

ential equations with discontinuous coe�cients. The implementation of these techniques

in a �nite element program is quite straightforward since only the element is modi�ed.
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CHAPTER 3

A Variationally Consistent Immersed Element Method For Fluid-

Structure Interaction

3.1. INTRODUCTION

The immersed boundary (IB) method [89], pioneered by Peskin [77, 78], is widely

used in the simulation of the �uid-structure interactions (FSI) for biomechanical problems

such as the heart. In this method, the interaction between the �uid and the solid is

accomplished by smoothed Dirac delta functions which transfer forces from the volumeless

solid and enforce velocity continuity across the �uid-structure interface. A variational

basis for the method has not been given. Wang et al. [92] extended this method to �nite

element methods. Zhang et al. [95, 94] have developed the immersed �nite element

method (IFEM) based on this work. Liu et al. [65] have proposed a mathematical basis

for this method. Their method is sequential [96], i.e. the �uid and the solid are solved

separately and they use an incompressible �uid.

Legay et al. [61] developed an Eulerian-Lagrangian method using level sets [13]

based on the work by Chessa and Belytschko [24, 23, 22] for solving two-phase �ow

problems by eXtended Finite Element Method (XFEM) [69]. Independent Lagrangian

description for the solid and Eulerian description for the �uid are used, which enables

arbitrary alignments between the solid and the �uid meshes. The continuity of velocities

of the solid and �uid on the interface must be imposed by penalty or Lagrange multiplier
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methods. The irregular interface is regularized by the zero level set. The characteristic

Galerkin method [37, 97, 98] is used for the �uid solver. However, the method needs

the interface integration for the coupling which is a line integration in 2D and a surface

integration in 3D. Wagner et al. [91] applied XFEM on particulate �ow for rigid particles.

They enriched the �nite element space by the asymptotic solutions for particles �oating

in Stokes �ow [51].

The ghost �uid method [42, 41] captures the interface continuity conditions by de�n-

ing ghost cells on the other side of the interface. An Eulerian description is employed for

the �uid for this method. The interface conditions are captured by constructing ghost

cells with the velocity and the pressure of the real �uid and the entropy on the other

side of the interface. In combination with the level sets [70, 87, 81] and the isobaric �x

technique [43], they have treated multi dimensional problems. Radovitzky et al. [29, 88]

implemented the ghost �uid method with the �nite volume method to calculate shell-

�uid coupling problems in which a Lagrangian description is used for the shell. A priori

knowledge of the interface location is used to extrapolate �elds into the ghost cells. Ma-

nipulation of the �elds in the ghost cells to enforce the interface conditions is crucial in

this method.

Glowinski et al [44, 45] and Patankar et al. [75] have developed the �ctitious domain

method to treat the coupling of �uid and the rigid body particles. The rigid solid is �lled

with a �ctitious �uid with the same density and viscosity as the surrounding �uid. Some

of the mass and inertia is assigned to the �ctitious �uid. Compatibility between the �uid

and solid is imposed by Lagrange multiplier in the solid region [46].
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The mortar method [93] is originally developed as a domain decomposition method for

coupling nonconforming subdomains modeled for spectral elements [62]. In this method,

the interface continuity conditions are realized by Lagrange multipliers [74]. Baaijens

developed the �ctitious domain/mortar element method for incompressible �uid-structure

interaction [1]. Slender solids are coupled to the �uid by Lagrange multipliers for the

velocities. His work is applied to the computations of aortic valve in [48].

Belytschko and Kennedy [9, 4] exploited the advantages of Lagrangian meshes for

�uid formulations for �uid-structure interaction problems. Radovitzky and Ortiz [80]

developed fully Lagrangian �nite element analysis for Newtonian �ows. Although La-

grangian description for �uid can easily treat the problems as free surface �ow and inter-

faces between two phases, unavoidable continuous remeshing has to be carried on for large

deformation problems. Belytschko et al. [10, 5, 11, 15] developed Arbitrary Lagrangian-

Eulerian method (ALE). ALE [73, 83, 56, 60, 40, 39, 63, 19, 67, 18] adopts an inter-

mediate mesh between the initial and the current con�guration. By specifying the mesh

velocity, it can ameliorate the severe mesh distortion but can not completely resolve the

problem for extreme large deformations.

3.2. NOTATION

We consider a �uid-structure problem such as that shown in Figure 3.1 along with

our nomenclature. We show only a single solid domain for simplicity, but the method

can be applied to any number of solids. Superscripts �F� and �S� indicate whether the

variables pertain to the �uid or solid. The �uid domain is denoted by ΩF and the solid by

ΩS. External traction forces τF are applied on the �uid on the boundary ΓF
τ and on the
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Figure 3.1. Fluid solid system with solid domain ΩS and �uid domain ΩF.

structure by τ S on ΓS
τ . Note that this boundary ΓF

τ does not include the �uid-structure

interface. In addition we have the body forces on the �uid and solid, which are denoted

by bF and bS, respectively, which are in units of force per unit mass. We assume that

the material constants, such as density and bulk modulus are smooth within the domain,

except on some interfaces ΓD
i , which may occur either within the �uid or solid. We assume

that these discontinuities move with the material. The surfaces of discontinuity include

the �uid-structure interface, so the totality of surfaces of discontinuity is

ΓD = ΓI ∪
∑

i

ΓD
i (3.1)
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Note that the �uid-solid interface moves with the material.

The spatial coordinates are denoted by x, the material coordinates by X. The motion

of the solid is given by

x = xS (X, t) (3.2)

for X ∈ ΩS0 . The velocity �eld of the structure is given by the material time derivative

of the above:

vS (X, t) =
∂xS (X, t)

∂t
(3.3)

The kinematics of the �uid is described by a velocity �eld vF (x, t). Note that the de-

scription of the �uid is Eulerian (spatial).

The Cauchy stress is denoted by σ, the density by ρ, and a superposed dot is material

time derivative.

3.3. FLUID SOLVER

3.3.1. Momentum equation

The momentum equation is

ρv̇ = ∇ · σ + ρb (3.4)

in Lagrangian description. If an Eulerian description is used, we have

ρ
∂v

∂t
= −ρv · ∇v +∇ · σ + ρb (3.5)

The additional term on the right hand side is from the material time derivative of the

velocity. It is this term that brings the advection e�ect. Here the reference frame is the

spatial coordinate instead of material coordinate. We de�ne the right hand side of (3.5)
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as the spatial residual

r = −ρv · ∇v +∇ · σ + ρb (3.6)

So (3.5) becomes

ρ
∂v

∂t
= r (3.7)

As far as solving �uid problem by FEM, it is well known that we must overcome the

instability problem caused by the convection term [36]. Various stabilization methods

have been developed to solve �uid problems since 1970s such as SUPG[20, 52], GLS[53],

and ENO[49, 82]. Taylor-Galerkin [35], [66] and Characteristic-Galerkin [37], [79], [66]

are also two methods to stabilize �uid problems in Finite Element Method. Codina

gave some comparisons of �nite element methods used in �uid problems [31, 33, 32] .

In [97], [98], they are combined with the projection method due to Chorin [28]. The

Characteristic-Galerkin method can overcome the two major problems when solving �uid

problem by FEM, i.e. violation of the BB condition and the instability caused by the

convection term in Eulerian description. We follow this method to solve �uid problems.

Instead of using the two step version of this method, we use the one step method which

will not give us another Poisson equation for the mid-step velocity. The method is brie�y

reviewed here.

In the Characteristic Galerkin method, the term ∆t
2
v · ∇r is added to the equation

(3.7). This term can be explained as the gradient of the spatial residual projected onto

the direction of streamline and also the time step as an parameter. It is similar to the

Galerkin Least Square method [53]. The stabilized momentum equation becomes

ρ
∂v

∂t
= r − ∆t

2
v · ∇r (3.8)
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The weak form is obtained by multiplying (3.8) with the test function and integrate

on the computational domain.

∫
Ω

δv · ρ∂v
∂t

dΩ =

∫
Ω

δv · rdΩ−
∫

Ω

δv · ∆t

2
v · ∇rdΩ (3.9)

Integrate by parts the second term on the right hand side and ignore the boundary term

∫
Ω

δv · ρ∂v
∂t

dΩ =

∫
Ω

δv · rdΩ−
∫

Ω

(∇δv · v + δv∇ · v) · (−r) dΩ (3.10)

For clarity, the Cartesian component form for the tensor is written out as

∫
Ω

δviρvi,tdΩ =

∫
Ω

δviridΩ− ∆t

2

∫
Ω

(δvivk),k(−ri)dΩ (3.11)

Here comma �,� means the partial derivative. The �nal form for the momentum equation

is

∫
Ω

δviρvi,tdΩ = −
∫

Ω

δviρvjvi,jdΩ +

∫
Γ

δvitidΓ−
∫

Ω

δvi,jσijdΩ

+

∫
Ω

δviρbidΩ− ∆t

2

∫
Ω

(δvivk),k(ρvjvi,j − σij,j − ρbi)dΩ (3.12)

where t is the traction on the boundary.

3.3.2. Constitutive relation of �uid

We use the following constitutive law for the �uid.

σ = −pI + τ (3.13)
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where I is the second order isotropic tensor and τ is the viscous stress which is considered

as a linear function of the rate of deformation tensor D here. For an isotropic Newtonian

�uid, τ and D are related by a fourth order isotropic tensor which has only two indepen-

dent parameters. As the two Lamé parameters for the linear elastic solid, if λ∗ and µ∗ are

introduced, the viscous stress can be expressed as

τ = λ∗trace (D) I + 2µ∗D (3.14)

The viscous stress can also be written as

τ =

(
λ∗ +

2

3
µ∗

)
trace (D) I + 2µ∗

(
D − 1

3
trace (D) I

)
(3.15)

τ = k∗trace (D) I + 2µ∗D′ (3.16)

where k∗ =
(
λ∗ + 2

3
µ∗

)
is the bulk viscosity and D′ is the deviatoric rate of deformation

tensor. Considering the Stokes condition, k∗ = 0, which comes from the evidence of rare

observation of the bulk viscosity in experiments, the �rst term in (3.16) is dropped

τ = 2µ∗D′ (3.17)

We also mention that for incompressible �uid, D′ = D, so that the viscous stress is

τ = 2µ∗D (3.18)

For convenience, we list the Cartesian component forms

τij = λ∗Dkkδij + 2µ∗Dij (3.19)
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τij = λ∗vk,kδij + µ∗ (vi,j + vj,i) (3.20)

τij = k∗Dkkδij + 2µ∗D′
ij (3.21)

τij = k∗vk,kδij + µ∗
(
vi,j + vj,i −

2

3
vk,kδij

)
(3.22)

3.3.3. Continuity equation

The mass conservation equation in Eulerian description is

ρ̇+ ρ∇ · v = 0 (3.23)

It is equivalent to the following two forms

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0 (3.24)

∂ρ

∂t
+∇ · (ρv) = 0 (3.25)

Similar to the momentum equation, we also need to stabilize this equation. We will use

the Characteristic-Galerkin method [97, 98]. The stabilized continuity equation becomes

∂ρ

∂t
+∇ · (ρv)−∆tθ1∇2p = 0 (3.26)

where ∇2 is the Laplacian. The weak form is obtained by multiplying the test function

to the above equation and integrate on the computational domain.

∫
Ω

δρ

(
∂ρ

∂t
+∇ · (ρv)−∆tθ1∇2p

)
dΩ = 0 (3.27)
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Also, if we integrate by parts on the stabilization term and ignore the boundary term, we

get ∫
Ω

δρ

(
∂ρ

∂t
+∇ · (ρv)

)
dΩ + ∆tθ1

∫
Ω

∇δρ · ∇pdΩ = 0 (3.28)

3.3.4. Equation of state

We use the following equation as equation of state to update the pressure.

∆p = c2∆ρ =
k

ρ
∆ρ (3.29)

where c is the sound velocity in the media and k is the bulk modulus.

3.3.5. Shock capturing

For hyperbolic equations, if there are strong and weak discontinuities, it is known that

around those discontinuities, there will be some wiggles appearing in the numerical so-

lution. And also the shock waves are likely to appear in compressible materials. Shock

capturing method can suppress these wiggles and give smoother numerical solutions. For

the sake of capturing potential shocks, many shock capturing methods have been de-

veloped [71]. Considering that the streamline direction is already stabilized by some

viscosity, an anisotropic di�usion tensor is adopted to smooth the results as in [97], [30].

With the addition of the anisotropic term, equation (3.8) becomes

ρvi,t = ri −
∆t

2
vkri,k +

Nel∑
e=1

∫
Ωe

(
νscδkjvi,j + (νsl − νsc)

(vkvj

v2

)
vi,j

)
,k

dΩ (3.30)
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where νsc is the shock capturing viscosity and νsl is streamline viscosity. The viscosity

parameters are listed below

νsc = βh
|ri|
|∇vi|

νsl = max(0, νsc − νsg)

νsg =
∆t

4
v2 (3.31)

where h is the size of element and β is 0.3 for linear elements and 0.15 for quadratic

elements. v2 is the magnitude of the velocity. For example, in one dimension, the system

will be

ρv,t = r − ∆t

2
vr,x +

Nel∑
e=1

∫
Ωe

(νscv,x + (νsl − νsc) v,x),x dΩ

νsc = βh
|r|
|v,x|

νsl = max(0, νsc − νsg)

νsg =
∆t

4
v2 (3.32)

3.4. GOVERNING EQUATIONS

We denote a unit normal to a surface by n. The governing equations for the �uid/solid

system are

ρFv̇F = ∇ · σF + ρFbF in ΩF (3.33)

ρSv̇S = ∇ · σS + ρSbS in ΩS (3.34)

σF · nF = τF on ΓF
τ

(3.35)
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σS · nS = τ S on ΓF
τ

(3.36)

ρ̇F + ρF∇ · v = 0 in ΩF (3.37)

ρS (X) J (X) = ρS
0 (X) in ΩS (3.38)

σF · nF + σS · nS = 0 on ΓI (3.39)

vF = vS on ΓI (3.40)

The �rst two are the momentum equations for the �uid and solid. Equations (3.35) and

(3.36) are the traction boundary conditions. Equations (3.37) and (3.38) enforce mass

conservation in the �uid and solid, respectively; note that since we anticipate a Lagrangian

description for the solid, we use an algebraic equation for mass balance, see Belytschko

et al [12]. The equations (3.39) and (3.40) give the continuity of momentum balance and

velocities on the �uid-solid interface ΓI. In the above, J = det (F), Fij = ∂xi

∂Xj
.

3.5. FORMULATION OF THE FLUID-STRUCTURE INTERACTION

PROBLEM

3.5.1. Weak form

The material in the entire domain is governed by the momentum equation

ρv̇ = ∇ · σ + ρb on Ω/ΓD (3.41)

Jn · σK = 0 on ΓD (3.42)
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where J K is the jump function. The above momentum equations hold whether the �uid is

treated by Eulerian or Lagrangian formulations. The weak form is: for σ ∈ C−1 (i.e. the

space of piecewise continuous integrable functions).

∫
Ω

w · (ρv̇ −∇ · σ (v)− ρb) dΩ = 0 ∀w ∈ U onΩ (3.43)

where

U =
{
w ∈ H1

(
ΩF

)
,w = 0 on ΓFu ∪ ΓSu

}
(3.44)

The strong form corresponding to (3.43) is (3.41) and (3.42). Note that the jump condition

(3.42) on the �uid-solid interface is identical to that on any other material interface.

Equations (3.43) must be supplemented by a constitutive equation. The constitutive

equations can be of two forms:

either σ = σF (∇v) (3.45)

or σ = σ̄S (F ) (3.46)

where F is the deformation gradient. We have given the stress in the �uid as a function of

the velocity gradient and in the solid as a function of the deformation gradient, which is

customary but not essential. Examples of relevant constitutive equations are given later.

It is assumed that the stresses are at lest C0 functions of the strain measures.

We consider the development of discrete momentum equation for a formulation where

the �uid is solved throughout the computational domain Ω, the solid is solved separately
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and the two are combined to obtain the solution of the coupled problem. For this purpose,

we let

δWF =

∫
ΩF

(
∇w · σ

(
vF

)
+ w ·

(
ρFv̇ − ρFb

))
dΩ (3.47)

δW S =

∫
ΩS

(
∇w · σ

(
vS

)
+ w ·

(
ρSv̇ − ρSb

))
dΩ (3.48)

δWFS =

∫
ΩS

(
∇w · σ

(
vFS

)
+ w ·

(
ρFv̇ − ρFb

))
dΩ (3.49)

It is easy to verify that equation (3.43) becomes

δWF + δW S − δWFS = 0 (3.50)

Equation (3.50) is an alternative weak form for the coupled system.

The strong form, i.e. the Euler-Lagrange equations, is extracted by integrating (3.50)

by parts, taking into account the discontinuities of the stress σ on ΓD. This gives (after

a change of sign)

∫
ΩS

(
w ·

(
∇ · σS

(
vS

))
−w ·

(
ρSv̇ − ρSb

))
dΩ

+

∫
ΩF

w ·
(
∇ · σF

(
vF

))
dΩ−

∫
ΩF

w ·
(
ρFv̇ − ρFb

)
dΩ

−
∫

ΩS

w ·
(
∇ · σFS

(
vFS

))
dΩ +

∫
ΩS

w ·
(
ρFv̇ − ρFb

)
dΩ

−
∫

ΓD

w · Jσ · nKdΓ = 0 (3.51)



60

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

Ω
S

Ω
FS

Ω
F

(a)

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

Ω
S

Ω
FS

Ω
F

(b)

Figure 3.2. Conceptual depiction of the model: energetically, the total sys-

tem consists of δWF + δW S − δWFS.

From the arbitrariness of the test function and the density theorem, it follows that

∇ · σ
(
vF

)
+ ρb = ρv̇ in ΩF (3.52)

∇ · σ
(
vS

)
+ ρb = ρv̇ in ΩS (3.53)

Jσ · nK = 0 in ΓI (3.54)

Note the tractions on ΓF
τ and ΓS

τ are omitted for simplicity .

The resulting conceptual model is illustrated in Figure 3.2. As is shown there, the

total system consists of the �uid covering the entire domain, plus the solid, minus the

�uid on the domain occupied by the solid. It is important to note that the velocities in
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the three integrals in (3.47), (3.48) and (3.49) are identical �elds

v = vF = vS = vFS (3.55)

Therefore, in constructing the approximation, this identity should be observed. However,

the independent variables for the velocity �elds may di�er. Thus it is possible to use

vF (x, t), vS (X, t), vFS (x, t), i.e. to use an Eulerian description for the �uid and the

overlaid �uid and Lagrangian descriptions for the solid .

The mass conservation equations are

∂ρ

∂t
+∇ · (ρv) = 0 on Ω/ΓD (3.56)

Jv · nK = 0 on ΓD (3.57)

3.5.2. Discretization

We now construct a discretization with a Lagrangian description for the solid and an

Eulerian description for the �uid, so we let

vF (x, t) = vI (t)NF
I (x) (3.58)

vS (x, t) = vS
I (t)NS

I (X) (3.59)

where repeated indices are summed over the relevant nodes. We have now distinguished

the �uid and solid velocities, but bear in mind they must be equal for the equivalence of

(3.50) with the strong form to hold. There are several approaches that can be taken to

construct the weight functions and enforce the equality of the velocity �eld.
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To enforce the equality (3.55), though only approximately, we compute the solid ve-

locities at the nodes from the �uid velocity �eld, so

vS
K (t) = vF

I (t)NF
I (xK) (3.60)

Substituting (3.60) into (3.59), we obtain

vS (x, t) = vF
I (t)NF

I (xK)NS
K (X) (3.61)

Let

w =

 wIN
F
I (x) in ΩF

wIN
F
I (xK)NS

K (X) in ΩS

(3.62)

Substituting into (3.50) and taking advantage of the arbitrariness of wI gives

∫
ΩF

∇NF
I · σF +

∫
ΩF

(
ρFNF

I v̇ −NF
I ρ

Fb
)
dΩ−

∫
ΓFτ

NF
I τdΓ

+NF
I (xK)

∫
ΩS

∇NS
K · σS −NF

I (xK)

∫
ΓSτ

NS
KτdΓ

+NF
I (xK)

∫
ΩS

ρSNS
KN

S
LdΩNF

J (xL) v̇F
J −NF

I (xK)

∫
ΩS

NS
Kρ

SbdΩ

−
∫

ΩS

∇NF
I · σFdΩ−

∫
ΩS

(
ρFNF

I v̇ −NF
I ρ

Fb
)
dΩ = 0 (3.63)

where the nodal material �uid velocity v̇F
J is given by

v̇F
J = v̇F (xJ , t) = NF

I (xJ) vF
I,t (t) +NF

I (xJ) vF
I (t) · ∇NF

I (xJ) vF
I (t)

v̇F
J = vF

J,t (t) + vF
J (t) · ∇NF

I (xJ) vF
I (t) (3.64)
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To evaluate the last two terms in (3.63), we use the technique developed in [13] of

approximating the �uid-solid interface by an implicit function (often called a level set)

φ (x, t) = 0 (3.65)

where φ (x) is the signed distance function and

φ (x, t) > 0 in ΩF/ΩS (3.66)

φ (x, t) < 0 in ΩS (3.67)

The construction of this function is described in section 4.1.2.

Then the integrals can be written as

∫
ΩS

(
∇NF

I · σF + ρFNF
I v̇ −NF

I ρ
Fb

)
dΩ =

∫
ΩF

H (−φ)
(
∇NF

I · σF + ρFNF
I v̇ −NF

I ρ
Fb

)
dΩ

(3.68)

as shown in Figure 3.3, the evaluation of the above right hand side involves integral over a

domain with a boundary that is not coincident with the element edges. These integrals can

be e�ciently integrated for low order elements by the procedure developed by Ventura

[90]; otherwise, the elements through which the boundary passes must be broken into

sub-elements as described in [69] to evaluate these integrals.

The discrete momentum equation (3.63) can be written as

(
MF

IJ + MS
IJ −MFS

IJ

)
v̇J − fF

I − fS
I + fFS

I = 0 (3.69)
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Figure 3.3. Example of a solid in a structured �uid mesh showing that only

that portion of some elements that contribute to integrals of the form∫
Ω
H (φ) f (x) dΩ.

where

MF
IJ =

∫
ΩF

ρFNF
I N

F
J dΩ (3.70)

MS
IJ = NI (xK)NJ (xL)

∫
ΩS

ρSNS
KN

S
LdΩ

= NI (xK)NJ (xL)

∫
ΩS

0

ρS
0N

S
KN

S
LdΩ0 (3.71)

MFS
IJ =

∫
ΩF

H (−φ) ρFNF
I N

F
J dΩ (3.72)

fF
I =

∫
ΓFτ

NF
I τdΓ +

∫
ΩF

(
−∇NF

I · σF +NF
I ρ

Fb
)
dΩ−

∫
ΩF

NF
I ρ

Fv · ∇vdΩ (3.73)
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fS
I = NF

I (xJ)

∫
ΓSτ

NS
J τdΓ +NI (xJ)

∫
ΩS

(
−∇NS

J · σS +NS
J ρ

Sb
)
dΩ

= NF
I (xJ)

∫
ΓSτ0

NS
J τ 0dΓ +NF

I (xJ)

∫
ΩS

0

(
−∇0NJ · P S +NS

J ρ
S
0b

)
dΩ (3.74)

fFS
I =

∫
ΩF

H (−φ)
(
−∇NF

I · σF +NF
I ρ

Fb
)
dΩ−

∫
ΩF

H (−φ)NF
I ρ

Fv · ∇vdΩ (3.75)

For convenience, we rewrite (3.69) as

Mv̇ = f (3.76)

where

M = MF
IJ + MS

IJ −MFS
IJ (3.77)

f = fF
I + fS

I − fFS
I (3.78)

On examining (3.61), (3.71) and (3.74), it can be seen that the solid nodes are treated as

slave-nodes in a master/slave procedure, see [12, p. 183].

It is also possible to treat the �uid nodes that are within ΩS as slave nodes. In that

case, we let

vF (x, t) = vF
I (t)NF

I (x) if xI ∈ ΩF/ΩS (3.79)

vF (x, t) = vS
I (t)NS

I (xK)NF
K (x) (3.80)

vS (X, t) = vS
I (t)NS

I (X) (3.81)

3.5.3. Solution procedure

Equations (3.76) and (3.69) can be solved by explicit or implicit methods [14, 64, 55, 54].

For example, for explicit integration of (3.63), we can use the central di�erence method,
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which relates the acceleration to the velocities by

v̇n
J =

vn+1/2 − vn−1/2

∆t
(3.82)

The update equation is then

v
n+1/2
I = vn−1/2 + (Mn

IJ)−1 fn
J∆t (3.83)

The displacement of the solid nodes u is then obtained by

un+1
I = un

I + ∆tvn+1/2 (3.84)

For implicit integration by the trapezoidal rule, then the equation is

vn+1 = vn −A−1 (Mvn − fn) (3.85)

where A = ∂r
∂vI

and r = Mv − f is the system residual.
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CHAPTER 4

Fluid-Structure Interaction By The Constraint Method

4.1. INTRODUCTION

4.1.1. Weak form

De�ne the test and trial function spaces

U0 = {w|w ∈ H 1,w = 0 on Γu} (4.1)

U = {v|v ∈ H 1,v = v0 on Γu} (4.2)

U λ = {λ|λ ∈ L2} (4.3)

the weak form is: �nd
(
vF,vS,λ

)
∈

(
U ×U ×U λ

)
∫

ΩF

(
wF · ρFbF −wF · v̇FρF −∇wF : σF

)
H (φ) dΩ +

∫
ΓF

τ

wF · τFdΓ

+

∫
ΩF

(
wS · ρSbS −wS · v̇SρS −∇wS : σS

)
H (−φ) dΩ +

∫
ΓS

τ

wS · τ SdΓ

+s1δ

∫
ΓI

λ ·
(
vF − vS

)
dΓ + s2

β

2
δ

∫
ΓI

(
vF − vS

)2
dΓ

= 0 (4.4)

∀
(
wF,wS, δλ

)
∈

(
U0 ×U0 ×U λ

)
where s1 and s2 are two switches to choose di�erent

constraint methods. Their meanings are listed in Table 4.1. Another possible constraint

method is Nitsche's method [72].
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Table 4.1. Switches for choice of constraint method.

switch s1 switch s2 constraint method

1 0 Lagrange multiplier
0 1 penalty
1 1 augmented Lagrangian

In Cartesian's component form, the weak form is

I + C = FF + F S (4.5)

where

I =

∫
ΩF

δvF
i ρ

FvF
i,tH(φ)dΩ +

∫
ΩF

δvS
i ρ

Sv̇S
i H(−φ)dΩ (4.6)

C = −s1

∫
ΓI

δλi(v
F
i − vS

i )dΓ− s1

∫
ΓI

λi(δv
F
i − δvS

i )dΓ

−s2β

∫
ΓI

(δvF
i − δvS

i )(vF
i − vS

i )dΓ (4.7)

FF = −
∫

ΩF

δvF
i ρ

FvF
j v

F
i,jH(φ)dΩ−

∫
ΩF

δvF
i,jσ

F
ijH(φ)dΩ

+

∫
ΩF

δvF
i ρ

FbFi H(φ)dΩ +

∫
ΓF

τ

δvF
i τ

F
i dΓ (4.8)

F S = −
∫

ΩS

δvS
i,jσ

S
ijH(−φ)dΩ +

∫
ΩS

δvS
i ρ

SbSiH(−φ)dΩ +

∫
ΓS

τ

δvS
i τ

S
i dΓ (4.9)

The equivalence to the strong form is brie�y shown below. To distinguish the domains

occupied respectively by the solid and �uid, ΩCD is used to denote the whole computational
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domain. Note �rst that

∫
ΩCD

δvF
i,jσ

F
ijH(φ)dΩ =

∫
ΩF

δvF
i,jσ

F
ijdΩ

=

∫
ΓF

τ

δvF
i σ

F
ijn

F
j dΓ +

∫
ΓI

δvF
i σ

F
ijn

F
j dΓ−

∫
ΩF

δvF
i σ

F
ij,jdΩ (4.10)

∫
ΩCD

δvS
i,jσ

S
ijH(−φ)dΩ =

∫
ΩS

δvS
i,jσ

S
ijdΩ

=

∫
ΓS

τ

δvS
i σ

S
ijn

S
j dΓ +

∫
ΓI

δvS
i σ

S
ijn

S
j dΓ−

∫
ΩS

δvS
i σ

S
ij,j dΩ (4.11)

Substituting equations (4.10) and (4.11) into the weak form (4.4), we obtain

0 =

∫
ΩCD

δvF
i (ρFbFi − ρFv̇F

i )H(φ)dΩ +

∫
ΩCD

δvS
i (ρSbSi − ρSv̇S

i )H(−φ)dΩ

−
(∫

ΓF
τ

δvF
i σ

F
ijn

F
j dΓ +

∫
ΓI

δvF
i σ

F
ijn

F
j dΓ−

∫
ΩF

δvF
i σ

F
ij,jdΩ

)
−

(∫
ΓS

τ

δvS
i σ

S
ijn

S
j dΓ +

∫
ΓI

δvS
i σ

S
ijn

S
j dΓ−

∫
ΩS

δvS
i σ

S
ij,jdΩ

)
+

∫
ΓF

τ

δvF
i τ

F
i dΓ +

∫
ΓS

τ

δvS
i τ

S
i dΓ + s1

∫
ΓI

δλi(v
F
i − vS

i )dΓ

+

∫
ΓI

(δvF
i − δvS

i )
(
s1λi + s2β(vF

i − vS
i )

)
dΓ (4.12)

Reorganizing (4.12) by collecting the integrals on the same domain, we obtain
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0 =

∫
ΩCD

δvF
i (ρFbFi − ρFv̇F

i + σF
ij,j)H(φ)dΩ−

∫
ΓF

τ

δvF
i (σF

ijn
F
j − τF

i )dΓ

+

∫
ΩCD

δvS
i (ρSbSi − ρSv̇S

i + σS
ij,j)H(−φ)dΩ−

∫
ΓS

τ

δvS
i (σS

ijn
S
j − τS

i )dΓ

+

∫
ΓI

δvF
i

(
−σF

ijn
F
j − s1λi + s2β(vF

i − vS
i )

)
dΓ

+

∫
ΓI

δvS
i

(
−σS

ijn
S
j − s1λi − s2β(vF

i − vS
i )

)
dΓ

+s1

∫
ΓI

δλi(v
F
i − vS

i )dΓ (4.13)

From the arbitrariness of the test function and the density theorem, it follows that

ρFv̇F
i − bFi − σF

ij,j = 0 in ΩF

σF
ijn

F
j = τF

i on ΓF
τ

ρSv̇S
i − bSi − σS

ij,j = 0 in ΩS

σS
ijn

S
j = τF

i on ΓS
τ

vF
i − vS

i = 0 on ΓI

−σF
ijn

F
j + s1λi + s2β(vF

i − vS
i ) = 0 on ΓI

σS
ijn

S
j + s1λi + s2β(vF

i − vS
i ) = 0 on ΓI

(4.14)

The last 3 equations of (4.14) are the continuity condition and the balance of the mo-

mentum on the interface.

vF
i − vS

i = 0 (4.15)

σS
ijn

S
j = −σF

ijn
F
j (4.16)
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Although the no-slip interface is developed here, the derivation is similar for a slip inter-

face.

4.1.2. Level set description of the interface

The interface ΓI between the two domains is de�ned by the level set function (or implicit

function):

ΓI =
{
x ∈ ΩCD|φ (x, t) = 0

}
(4.17)

Thus φ (x, t) = 0 corresponds to the interface as shown in Figure 3.1. Furthermore, we

specify that:

φ (x, t) > 0 in the fluid domain,

φ (x, t) < 0 in the solid domain. (4.18)

and that φ (x, t) is a signed distance function. The signed distance is de�ned by:

φ (x, t) = min
x̄(t)∈ΓI

‖ x− x̄ (t) ‖ sign
(
nS · (x− x̄ (t))

)
(4.19)

so it is the distance to the orthogonal projection of x on ΓI. Level set functions other

than the signed distance function can also be used. The normal to the solid is given by:

nS
i = φ,i or nS = ∇φ (4.20)

where the notation •,j denotes a derivative with respect to xj; the above relation is not

normalized in a theoretical description since the gradient of a signed distance function is
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a unit normal; in computations, it must be normalized since it seldom equals the gradient

precisely. The normal to the �uid is given by nF = −nS.

4.1.3. Discretization

De�ne

fF−adv =

∫
ΩF

δvF
i ρ

FvF
j v

F
i,jH(φ)dΩ (4.21)

fF−ext =

∫
ΩF

δvF
i b

F
i H(φ)dΩ +

∫
ΓF

τ

δvF
i τ

F
i dΓ (4.22)

fF−int =

∫
ΩF

δvF
i,jσ

F
ijH(φ)dΩ (4.23)

fF = fF−ext − fF−adv − fF−int (4.24)

fS =

∫
ΩF

δvS
i b

S
iH(−φ)dΩ +

∫
ΓS

τ

δvS
i τ

S
i dΓ−

∫
ΩF

δvS
i,jσ

S
ijH(−φ)dΩ (4.25)

MF
IJ =

∫
ΩF

ρF (x, t)NF
I (x)NF

J (x)H (φ) dΩ (4.26)

MS
IJ =

∫
ΩF

0

ρS
0 (X, t)NS

I (X)NS
J (X)H (φ) dΩ0 (4.27)

MFF
IJ =

∫
ΓI

NF
I N

F
J dΓ (4.28)

MSS
IJ =

∫
ΓI

NS
I N

S
J dΓ (4.29)

MFS
IJ =

∫
ΓI

NF
I N

S
J dΓ MSF =

(
MFS

)T
(4.30)

MλS
IJ =

∫
ΓI

Nλ
I N

S
J dΓ MSλ =

(
MλS

)T
(4.31)

MλF
IJ =

∫
ΓI

Nλ
I N

F
J dΓ MFλ =

(
MλF

)T
(4.32)
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where (•)T is the transpose operation. If the forward Euler scheme is used along time,

the �nal discretized equation is
−s2β

a
tMFF s2β

a
tMFS −s1

a
tMFλ

s2β
a
tMSF −s2β

a
tMSS s1

a
tMSλ

−s1

a
tMλF s1

a
tMλS 0




vF,n+1

vS,n+1

λ



+


MF 0 0

0 MS 0

0 0 0




vF,n+1 − vF,n

vS,n+1 − vS,n

λ

 =


a
tfF

a
tfS

0

 (4.33)

Note the terms MFF
IJ , M

SS
IJ , M

FS
IJ , M

λS
IJ , M

λF
IJ in the �rst term in equation (4.33) are

integrals on the interface which is a curve in 2D and a surface in 3D.

4.1.4. Interface integration

A possible interface integration for 2D problems is described here. The interface in 2D

is a curve de�ned by the boundary of the solid, the solid �eld on the interface will be

piece-wise linear on each line segment. Since the position of the solid is independent to

the �uid, the loci of the interface relative to a �uid element will be arbitrary.

Figure 4.1 shows one possible con�guration. A, B, C, D are nodes in the �uid mesh

which compose one �uid element while E, F , G, H are nodes in the solid mesh. The

segments EF , FG and GH represent the interface which are line elements forming part

of the solid boundary. The points Pi represent the intersection points between the line

elements and the edges of the quadrilaterals for the �uid. qi represent the quadrature

points used in the curve quadrature. We need �rst �nd those intersection points Pi.
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A

B

C

D

F

G

H

E

q1
q2

q3

q4

q5 q6

P1

P2

Figure 4.1. Curve integration in 2D.

Then the interface is divided into small segments among the solid nodes, i.e. E, F , G,

H and those intersection points like P1, P2. On each segment, the quadrature points,

i.e. qi are located. For each qi, the speci�c elements of the �uid and solid are identi�ed

which supplies the interpolation information for the quadrature point qi. After obtaining

the parent coordinates for the quadrature point qi for its corresponding �uid and solid

elements, the numerical integration is carried out. For 3D problems, the procedure will

be similar.

4.2. WEAK FORM

A key step in the following development is the characterization of the interface by a

regularized step function and its derivative, the Dirac delta function. This is the same



75

methodology presented in SXFEM by Belytschko et al [16, 17]. In this approach, a weak

form is developed on the domain that is completely equivalent to the strong form as shown

in section 4.1.1. The derivative of the step function is the Dirac delta function D. The

Dirac function D (x) has the property that for an arbitrary function f (x):

∫
Ω

f (x)D (φ (x)) dΩ =

∫
ΓI

f (x) dΓ (4.34)

Therefore we have the identity

∫
Ω

f (x)∇H (φ) dΩ =

∫
Ω

f (x)D (φ)nidΩ =

∫
ΓI

f (x)nidΓ (4.35)

Note here we have used ∇H (φ (x)) = H,φ∇φ = D (φ)ni. The Dirac function is then

regularized for numerical implementation.

The weak form is given by

foru ∈ U , andλ ∈ C0,

0 =

∫
ΩF

(
∇δvF : σF + δvF ·

(
v̇F − b

)
ρF

)
H (φ) dΩ +

∫
ΓF

τ

δvF · τFdΓ

+

∫
ΩS

(
∇δvS : σS + δvS ·

(
v̇S − b

)
ρS

)
dΩ +

∫
ΓS

τ

δvS · τ SdΓ

+δ

∫
ΩF

D (φ) λ ·
(
vF − vS

)
dΩ, ∀δv ∈ U0, δλ ∈ C0 (4.36)

It has been shown that the above yields the strong form.
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For application of the weak form, we regularize the Dirac delta function by using the

following

D (φ) ∼ w (φ) (4.37)

where w (φ) is a smooth weight function (we can also call it a window function) that is

normalized so that ∫ ∞

−∞
w (x) dx = 1 (4.38)

Several examples of the regularized function are shown in Figure 4.2. We have used spline

for the weight functions. The cubic symmetric weight function is given by

w (r) =


2
3
− 4r2 + 4r3 for 0 ≤ r ≤ 1

2

4
3
− 4r + 4r2 − 4

3
r3 for 1

2
< r ≤ 1

0 for 1 < r

(4.39)

r = 1
dreg

‖x− x̄ (t)‖ , x̄ (t) ∈ ΓI (4.40)

where dreg is the width of the regularization domain and x̄ is the projection of x on ΓI.

A similar method was used in Belytschko et al [16, 8].

4.3. DISCRETIZATION

The discretization is performed with standard �nite element interpolants NI by

vF (x, t) = NF
I (x) vF

I (t)H (φ) (4.41)

uS (X, t) = NS
I (X) uS

I (t) (4.42)
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x = 0

w

−

ǫ

2

ǫ

2

(a) Symmetric.

w

−ǫ x = 0

(b) Structure biased.

x = 0 ǫ

w

(c) Fluid biased.

Figure 4.2. Cubic spline functions for the regularization of the Dirac delta function.

where repeated upper case indices in the above and henceforth are summed over the ap-

propriate set of nodes. Note that the motion of the solid is described by the displacement

�eld in terms of the Lagrangian coordinates, whereas the motion of the �uid is described



78

by the velocity �eld in terms of the Eulerian (spatial) coordinates. The test functions, or

variations, are approximated by the same interpolants

δvF (x) = NF
I (x) δvF

IH (φ) (4.43)

δuS (X) = NS
I (X) δuS

I (4.44)

The �uid density is approximated by

ρF (x, t) = NF
I (x) ρF

I (t)H (φ) (4.45)

The discrete momentum equations are

∫
ΩF

(
−NF

I,j (x)σF
ij − ρF

(
NF

I (x) v̇F
i (x, t)− bi

))
H (φ) dΩ

+

∫
ΓF

τ

NF
I (x) τF

i dΓ +

∫
ΩF

NF
I (x)λw (φ) dΩ = 0 (4.46)

∫
ΩS

0

(
−NS

I,j (X)σS
ij − ρ0

(
NS

I (X)NS
J (X) v̇S

Ji − bi
))

dΩ0

+

∫
ΓS

τ

NS
I (X) τS

i dΓ−
∫

ΩF

NS
I (X)λw (φ) dΩ = 0 (4.47)

with the weak form for Lagrange multiplier

∫
ΩF

δλ
(
vF

i − vS
i

)
w (φ) dΩ = 0 (4.48)
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The discrete mass conservation equation is

∫
ΩF

NF
I N

F
J ρ

F
J,tH (φ) dΩ +

∫
ΩF

NF
I

(
ρFvF

i

)
,i
H (φ) dΩ = 0 (4.49)

which can be written as

Mρ
IJρJ,t = fρ

I (4.50)

where

Mρ
IJ =

∫
ΩF

NF
I N

F
J H (φ) dΩ (4.51)

fρ
I =

∫
ΩF

NF
I ρ

F
(
vF

i

)
,i
H (φ) dΩ (4.52)

where H (•) is the Heaviside step function. The step function in this case can be either

the exact step function or a regularization.

The Lagrange multiplier �eld and its test function (variation) are approximated by

Dirac functions on a set of points inside the structure. Let this set of points be denoted

by xK , K = 1 tonλ. Then

λ = λKD (x− xK) , δλ = δλKD (x− xK) (4.53)

This approximation is of course not C0.

If we use the usual de�nition of internal and external nodal forces and the mass matrix,

we obtain

MF
IJ v̇F

J + f intF
I − f extF

I + fλF
I + f convF

I = 0 (4.54)

MS
IJ v̇S

J + f intS
I − f extS

I + fλS
I = 0 (4.55)
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where

MF
IJ =

∫
ΩF

ρF (x, t)NF
I (x)NF

J (x)H (φ) dΩ (4.56)

MS
IJ =

∫
ΩS

0

ρS
0 (X)NS

I (X)NS
J (X) dΩ0 (4.57)

f intF
I =

∫
ΩF

NF
I,j (x)σF

ij (x, t)H (φ) dΩ (4.58)

f extF
I =

∫
ΩF

ρF (x, t)NF
I (x) bi (x, t)H (φ) dΩ +

∫
ΓF

τ

NF
I (x) τidΓ (4.59)

f convF
I =

∫
ΩF

NF
I (x) ρF (x, t) vF

j (x, t) vF
i,j (x, t)H (φ) dΩ (4.60)

f intS
I =

∫
ΩS

0

NS
I,j (X)σS

ij (X, t) dΩ (4.61)

f extS
I =

∫
ΩS

0

ρS (x, t)NS
I (x) bi (x, t) dΩ +

∫
ΓS

τ

NS
I (x) τidΓ (4.62)

fλF
I =

∑
K

NF
I (x̄K)w (φ (x̄K))λK (4.63)

fλS
I = −

∑
K

NS
I (x̄K)w (φ (x̄K))λK (4.64)

In addition we have the discretized constraint equation for (4.48) which are the coe�cients

of δλK :

vF
JN

F
J (x̄K)w (φ (x̄K))− vS

JN
S
J (x̄K)w (φ (x̄K)) = 0 no sum onK, sum on J (4.65)

In the above, the points x̄K are the set of points selected as interaction point. Note in

equation (4.54), v̇F
J =

∂vF
J (x,t)

∂t
and the convection force appears. Compared to the mass

matrix (3.71) on page 64 which changes with time, (4.57) is constant.

The nodal forces fλS
I and fλF

I are the �uid-structure interaction force. While the forces

appear somewhat di�erent, the total forces on the interfaces are equal and opposite, in
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agreement with momentum balance. This is shown as follows. From the weak form (4.36)

and the property of the Dirac delta function (4.34), we can get

0 =

∫
ΓF

τ

δvF · τFdΓ−
∫

ΩF

δvF ·
(
∇ · σF

)
H (φ) dΩ−

∫
ΩF

δvF · ρF
(
v̇F − b

)
H (φ) dΩ

+

∫
ΓS

τ

δvS · τ SdΓ−
∫

ΩS

δvS ·
(
∇ · σS

)
dΩ−

∫
ΩS

δvS · ρS
(
v̇S − b

)
dΩ

+

∫
ΓI

δvF · σF · nFdΓ +

∫
ΓI

δvS · σS · nSdΓ

+

∫
ΓI

δλ ·
(
vF − vS

)
dΓ +

∫
ΓI

λ ·
(
δvF − δvS

)
dΓ (4.66)

Note the last 4 integrations re�ect the coupling on the interface. Since δvF and δvS are

arbitrary on the interface, we have

σF · nF = −λ (4.67)

σS · nS = λ (4.68)

So

σF · nF = −σS · nS (4.69)

Considering δλ is also arbitrary on the interface, we have

∫
ΓI

δλ ·
(
vF − vS

)
dΓ =

∫
ΩF

D (φ) δλ ·
(
vF − vS

)
dΩ = 0 (4.70)

If we regularize the Dirac delta function as w (φ), we obtain

∫
ΩF

w (φ) δλ ·
(
vF − vS

)
dΩ = 0 (4.71)
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solid

support for regularization

φ = ǫ

φ = 0 φ = −ǫ

(a) Support of regularized Dirac delta func-
tion.

(b) A 3D depiction of regularized Dirac delta function.

Figure 4.3. Regularized Dirac delta function.

Substituting 4.43 and 4.44 and considering the Lagrange multiplier discretization 4.53,

we obtain ∑
K

NF
I (x̄K)w (φ (x̄K))λK =

∑
K

NS
I (x̄K)w (φ (x̄K))λK (4.72)

Note that since we decrease monotonically with φ, the interaction forces tend to de-

crease with the distance of the interaction point from the interface. For �uid and struc-

tural nodes that are not on the interface, this tendency diminishes somewhat because

the shape function for those nodes increases as we move away from the interface. Notice

that the interaction forces are applied only at points within a speci�ed distance of the

�uid-structure interface, namely the support of the regularized Dirac delta function. The

support depends on which of the regularizations. For example, the support and the regu-

larized Dirac delta function for a symmetric regularization (see Figure 4.2(a)) are shown

in Figure 4.3 for a cylinder in a �uid.
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4.3.1. Updating

Forward-Euler scheme is employed for updating. To ensure equation (3.40), Backward-

Euler is exerted for the interaction forces (4.63), (4.64) and the constraint equation (4.65)

(refer to (4.48)). The momentum equation system is
0 0 −∆tMFλ

0 0 ∆tMSλ

−∆tMλF ∆tMλS 0




vF,n+1

vS,n+1

λ



+


MF 0 0

0 MS 0

0 0 0




vF,n+1 − vF,n

vS,n+1 − vS,n

λ

 =


∆tfF

∆tfS

0

 (4.73)

where

fF = f extF − f intF − f convF (4.74)

fS = f extF − f intF (4.75)

MFλ = NF
I (x̄K)w (φ (x̄K)) no sum onK (4.76)

MSλ = NS
I (x̄K)w (φ (x̄K)) no sum onK (4.77)

MλF =
(
MFλ

)T
(4.78)

MλS =
(
MSλ

)T
(4.79)

and ∆t is the time step.

The updating procedure is

(1) Update velocities for the �uid and solid by equation (4.73).
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(2) Update solid displacement and the level set for interface by equation (4.19).

(3) Update the density by (4.50).

(4) Update the pressure by (3.29).

(5) Go into next time step

4.3.2. Fluid domain integration

Since the �uid domain integrations include the function H(φ) which will cut some �uid

elements into two parts, the integration should only be performed within the part which

contains �uid. The adaptive quadrature is conducted to represent the curvature of the

interface. If the value of the level set function for a quadrature point is greater than

zero, the variables on this point should be evaluated for the integration, otherwise this

quadrature point is not within �uid domain.

Figure 4.4 shows the quadrature points obtained from the adaptive quadrature method.

There is only one quadrilateral element in both cases, i.e. the biggest one. The curve

in each of them represents the possible zero level set which is the approximation of the

interface in �uid. The small quadrilaterals show the adaptive re�nements around the

curve. The ∗ denote the quadrature points obtained. We re�ne 4 times and use 2 × 2

Gauss quadrature rule for quadrilaterals in Figure 4.4(a) and re�ne 5 times and use 1

point Gauss quadrature rule in Figure 4.4(b). It can seen that those quadrature points

can be adaptively aligned along the curve. Eight re�nements and 3× 3 Gauss quadrature

rule are used in the numerical examples for better accuracy.
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(a) Re�ne 4 times; 4-node quadrature rule (b) Re�ne 5 times; 1-node quadrature rule

Figure 4.4. Adaptive quadrature for a �uid element
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CHAPTER 5

Comparisons And Numerical Examples

5.1. SOLID OBSTACLE IN THE FLUID CHANNEL

The problem con�guration is shown in Figure 5.1. We prescribe zero pressure on the

right end of the �uid channel. On the left end of the �uid channel, we prescribe the

pressure as shown in Figure 5.2. On the top and bottom of the �uid channel vy = 0. The

solid is the shaded part in Figure 5.1; the shape and the location are indicated in this

�gure. The bottom edge of the solid is completely �xed. The �uid is water with density

ρF = 1.0 × 103 kg/m3, bulk modulus KF = 2.102 GPa and sound speed c = 1450 m/s.

The solid is an aluminum box beam with average density ρS = 2.7× 103 kg/m3, Young's
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0.2256 m

3.152387 m
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x
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Figure 5.1. Solid obstacle in the �uid channel.
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t

p

0.21 Gpa

1.4 ms 2.8 ms

Figure 5.2. Prescribed pressure on the left end of the �uid channel for the

solid obstacle problem.

modulus E = 70 GPa and Poisson ratio ν = 0.35. The coordinates for points A and B

are (3.152387, 1.0) and (3.265187, 0.5).

We used 3 meshes for this problem as listed in Table 5.1. Note that the meshes for

the solid part of mesh m1 and mesh m2 are the same while the �uid mesh for mesh m2 is

�ner than mesh m1, so that we can examine the e�ects of the element size ratios between

the solid and �uid on the results. For nodes A and B in Figure 5.1, we compare some

physical variables computed by di�erent meshes. A typical mesh m1 is shown in Figure

5.3. Note that the element edges of the meshes for the solid and the �uid are independent

of each other.
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Table 5.1. Meshes used for the solid obstacle problem.

mesh m1 mesh m2 mesh m3

Total number of Elements 3923 6951 15595
Fluid number of Quadrilaterals 3379 (31 × 109) 6407(43 × 149) 13359(61 × 219)

Solid number of Triangles 544 544 2236
Total number of Nodes 3834 6914 14841
Fluid number of Nodes 3520 6600 13640
Solid number of Nodes 314 314 1201

Figure 5.3. A typical mesh m1 for the solid obstacle problem.

5.1.1. Results from the immersed element method by lumped mass

The pressure contours are shown in Figure 5.4 along with the deformation of the solid.

The results here are from mesh m3 with a lumped mass. At t = 2.19 ms as shown in

Figure 5.4(a), we can clearly see the propagating triangular wave in the �uid channel.

At t = 3.17 ms as shown in Figure 5.4(b) , we can see that the wave has propagated

around the back of the solid. At t = 4.80 ms as shown in Figure 5.4(c), the free end of

the solid reaches the maximum de�ection. At t = 7.00ms as shown in Figure 5.4(d), the

calculation is stopped as the solid bounces back from its maximum de�ection.

The �uid and solid velocities at di�erent times around the solid are shown in Figure

5.5, Figure 5.6, and Figure 5.7. At t = 3.46 ms and t = 4.51 ms as in Figure 5.5(a) and
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(a) 2.11ms. (b) 3.17 ms.

(c) 4.80 ms. (d) 7.00 ms.

Figure 5.4. Snapshots of pressure contours and deformations for the solid

obstacle problem.

Figure 5.5(b) the �uid velocity distributions can be seen adapted to the shape of the solid

and the free end of the solid gets bigger velocities and the solid bends as a beam. At

t = 4.65 ms as in Figure 5.6(a), the solid almost reach the maximum de�ection and its

velocity is almost zero. At t = 5.22ms as in Figure 5.6(b) , since the solid is bounced back,

the velocities are in the opposite directions from previous times and the �uid downstream

behind the solid is dragged by the solid in the same direction. Further snapshots of the

velocities are shown in Figure 5.7(a) and Figure 5.7(b)

We compare the velocity and the displacement time histories for points A and B in

Figure 5.8. We can see that the di�erent ratios of the element sizes between solid and �uid

don't in�uence the results for the range of ratios considered. For both nodes A and B,

the velocity and displacement time histories calculated by the three meshes match quite

well.
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(a) 3.46 ms. (b) 4.51 ms.

Figure 5.5. Snapshots of the velocities for the �uid and solid in the solid

obstacle problem.

(a) 4.65 ms. (b) 5.22 ms.

Figure 5.6. Snapshots of the velocities for the �uid and solid in the solid

obstacle problem.

5.1.2. Results from the immersed element method by consistent mass

As in previous section , the evolutions of the velocities and displacements for nodes A

and B calculated on the 3 meshes are shown in Figures 5.9. Compared to Figures 5.8

which is obtained by the same method but with lumped mass, they are almost the same

although the results from the consistent mass method show a little bit more oscillations
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(a) 6.28 ms. (b) 7.00 ms.

Figure 5.7. Snapshots of the velocities for the �uid and solid in the solid

obstacle problem.

than the results from the lumped mass method. Both results re�ect the physical process

quite well.

5.1.3. Results from the constraint Lagrange multiplier method

The evolution of the velocities and displacements for nodes A and B calculated on the 3

meshes are shown in Figures 5.10. Compared to Figures 5.8 and 5.9 which are obtained

by the immersed element method with lumped and consistent mass, the results match

each other quite well which shows the validation for both methods developed.

5.1.4. Comparisons

For the 3 methods, i.e. the immersed element lumped mass method, the immersed element

consistent mass method and the Lagrange multiplier method, we compare the evolutions

of the velocities and displacements for nodes A and B calculated on the same mesh m3 in

Figures 5.11. From the velocities for nodes A and B, we can see that the values from the
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(b) Point B velocity.
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(c) Point A displacement.
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(d) Point B displacement

Figure 5.8. Velocity and displacement evolutions for nodes A and B in the

solid obstacle problem by the immersed element method (lumped mass

used).

Lagrange multiplier method are a little bit lower before the maximum de�ection and a

little bit higher after the maximum de�ection than both of the immersed element methods.

This is re�ected in the displacements for nodes A and B. The displacement predicted by

the Lagrange multiplier method before the maximum de�ection is smaller while after the
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(a) Point A velocity.
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(b) Point B velocity.
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(c) Point A displacement.
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(d) Point B displacement

Figure 5.9. Velocity and displacement evolutions for nodes A and B in the

solid obstacle problem by the immersed element method (consistent mass

used).

maximum de�ection, the displacement by the Lagrange multiplier method is larger. The

Lagrange multiplier method gives a little bit more resistance for the system to change

than the immersed element method.
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(b) Point B velocity.
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(c) Point A displacement.
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Figure 5.10. Velocity and displacement evolutions for nodes A and B in the

solid obstacle problem by the constraint Lagrange multiplier method.

5.2. SOFT SOLID IN THE FLUID CHANNEL

The problem setup is shown in Figure 5.12. We prescribe zero pressure on both the

right and left sides of the �uid channel. On the top and bottom of the �uid channel, we

�x the y component of the �uid velocity. The solid is the shaded part in Figure 5.12, the

shape and the location of the solid are indicated in this �gure. An impulse is applied to
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(a) Point A velocity.
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(b) Point B velocity.
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(c) Point A displacement.

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time (ms)

di
sp

la
ce

m
en

t (
m

)

 

 

Lag−Mul
Var−Con−Consis
Var−Con−Lump
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Figure 5.11. Comparisons of velocity and displacement time histories for

nodes A and B in the solid obstacle problem by the immersed element

lumped mass method (denoted as �Var-Con-Lump�), the immersed element

consistent mass method (denoted as �Var-Con-Consis�) and the Lagrange

multiplier method (denoted as �Lag-Mul�),.

the solid by applying a force over a time interval T = 5∆t where ∆t is the initial time

step in the numerical simulation. The impulse results in a velocity of the body given



96

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Node A

Node B

0.5 m

10 m

10 m

2 m

5 m

4m

Figure 5.12. Solid �oating in the �uid.

by
∫ T

0
f (t) dt = mv, where T is the duration time for the load, f (t) is the force, m

is the mass of the body and v is the velocity for the body. If we assume f (t) = kt,

we get k = 2mv
T 2 and f (t) = 2mv

T 2 t. For this problem, we set k so that v = 100 m/s.

The �uid is water with density ρF = 1.0 × 103 kg/m3, bulk modulus KF = 2.102 GPa,

viscosity µ = 1 × 10−3 Ns/m2 and sound speed c = 1450 m/s. For the solid, density

ρS = 7.8 × 103 kg/m3, Young's modulus E = 0.6 GPa, Poisson ratio ν = 0.3. The

coordinates for points A and B are (4.24015, 5.907980) and (4.237464, 5.013881).

We have two sets of meshes as shown in Table 5.2. . Here, we will also compare the

results obtained by consistent mass and lumped mass.
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Table 5.2. Meshes used for the �oating solid problem.

mesh ms1 mesh ms2

Total number of Elements 1137 4585
Fluid number of Quadrilaterals 961(31 × 31) 3721(61 × 61)

Solid number of Triangles 176 864
Total number of Nodes 1141 4348
Fluid number of Nodes 1024 3844
Solid number of Nodes 117 504

Several snapshots of the pressure and deformed solid are shown in Figure 5.13. The

results shown here are for the lumped mass with mesh ms2. Figure 5.13(a) shows the

contours of the pressure wave which re�ect the shape of the solid. Figure 5.13(c) shows

the �uid pressure and the solid deformation at the end of the calculation. Figure 5.13(d)

shows the initial and �nal con�gurations (t = 20.00 ms) of the solid.

5.2.1. Comparisons between the immersed element method and the Lagrange

multiplier method

Figure 5.14 shows the absolute velocity comparisons for node A and node B for the con-

sistent and lumped mass immersed element method and the Lagrange multiplier method

for mesh ms2. We emphasize that lumped mass speeds up the simulation since it doesn't

need to solve a linear equation system. Figure 5.15 compares velocity for nodes A and

B by the consistent mass method for meshes ms1 and ms2. Figure 5.16 compares the

velocity for nodes A and B for the lumped mass method for meshes ms1 and ms2. Figure

5.17 compares the velocity for nodes A and B by the Lagrange multiplier methods for

meshes ms1 and ms2. For the immersed element method, the lumped mass gives smoother

results which match the skeleton of the results from the consistent mass. The Lagrange
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(a) 1.97 ms. (b) 12.85 ms.

(c) 20.00 ms. (d) 20.00 ms.

Figure 5.13. Snapshots of pressure and deformation for the �oating solid problem.

multiplier method seems apparently oscillating much more than the results obtained from

either the consistent or lumped mass immersed element method. However, We can see all

results from the 3 methods here have the same trends although there are some di�erences

in the details of the response.

5.3. FALLING BALL IN FLUID

We consider a solid ball freely dropped in a �uid as shown in Figure 5.18. We prescribe
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(b) Node B.

Figure 5.14. Velocities of nodes A and B by mesh ms2 for the �oating solid

problem by the consistent and lumped mass immersed element method and

the Lagrange multiplier method.
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(b) Node B.

Figure 5.15. Velocities of nodes A and B by the consistent mass immersed

element method for meshes ms1 and ms2 for the �oating solid problem.
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(b) Node B.

Figure 5.16. Velocities of nodes A and B by lumped mass immersed element

method for meshes ms1 and ms2 for the �oating solid problem.
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Figure 5.17. Velocities of nodes A and B by the Lagrange multiplier method

for meshes ms1 and ms2 for the �oating solid problem.

zero pressure on the top and bottom ends of the �uid channel. On the left and right sides

of the �uid channel, the x component of the �uid velocity is set to zero. The solid is the
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Figure 5.18. Problem setup for the freely falling ball problem.

shaded part in Figure 5.18, the shape and the location are indicated in the �gure. The

�uid is water with density ρF = 1.0×103kg/m3, bulk modulus KF = 2.102GPa, viscosity

µ = 0.1Ns/m2 and sound speed c = 1450m/s. For the solid, density ρS = 2.0×103kg/m3,

Young's modulus E = 0.1 GPa, Poisson ratio ν = 0. A gravitational force ρg with

g = 8.8 m/s2 is applied to only the solid; it is not applied to the �uid so that we don't

need to consider buoyancy.

The mesh is described in Table 5.3. Figure 5.19(a) shows the positions of the ball

at di�erent times while Figure 5.19(b) shows the velocity �eld of the �uid and the solid

at the end of the calculation. We can see the vorticity forming in the �uid. Figure 5.20

shows the computed average y component of the velocity compared with the analytical

terminal velocity by the lumped and consistent mass immersed element method and the
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Table 5.3. Mesh used for the falling ball problem.

mesh

Total Elements 1265
Fluid number of Quadrilaterals 1105(17 × 65)

Solid number of Triangles 160
Total number of Nodes 1294
Fluid number of Nodes 1188
Solid number of Nodes 106

(a) Di�erent positions
at di�erent time.

(b) Velocity at t=0.5 s.

Figure 5.19. Numerical results for the falling ball problem.
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(b) 5th order polynomial �ts to data.

Figure 5.20. Velocity of falling ball; �exact� is the exact terminal velocity.

Lagrange multiplier method. The terminal velocity satis�es the formula [92]:

v =
(ρs − ρf ) gr

2

4µ

(
ln

(
L

r

)
− 0.9157 + 1.7244

( r
L

)2

− 1.7302
( r
L

)4
)

= 0.35 m/s (5.1)

Figure 5.20(a) shows the computed data and Figure 5.20(b) shows the curve �t to the

computed data by a 5th order polynomial. We can see that all the three simulations are

close to the exact solution. The small oscillations in Figure 5.20(a) are probably caused

by the long wavelength waves in the �uid channel since our simulation is dynamic. The

result obtained from the Lagrange multiplier method is observably less than the results

obtained from the other two methods.
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CHAPTER 6

Conclusions

The proposed variationally consistent immersed element �uid-structure interaction

method is concise in the derivation and is easy to implement. There is no need to modify

the current program for �uid or solid. They are ready to use for this method. The

coupling is achieved by the uniform variation. The method permits independent meshing

for the �uid domain and the solid domain respectively. Eulerian description for the �uid

and Lagrangian description for the solid are exerted. There is no limit on the extent of

the deformation of the solid. Lumped mass can expediate the computation.

The awkward line integration in 2D and surface integration in 3D are avoided by

regularization for the constraint �uid-structure interaction method which makes it easy to

extend this method to 3D. This method shares the common features listed in Chapter 1 as

the variationally consistent immersed element method. For Lagrange multiplier method,

the system unknowns are augmented. The Lagrange multiplier entails a consistent mass

for this method which may be more costly in computation than the lumped immersed

element method.

From the numerical examples, we can see that both the methods produce good results.

Mesh dependence is not observed. The lumped mass for the immersed element method

generates as satisfactory results as the consistent mass. In the 3 examples, all the results

given by the variationally consistent immersed element method and the constraint method

match quite well.
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APPENDIX

Solving Parent Coordinates In An Element From The Physical

Coordinates For A Node

Here given a node with the coordinates x̄ which in 2D are (x̄, ȳ), we solve its parent

coordinates ξ which in 2D are (ξ, η) in an element. The procedure here is a Newton-

Raphson method and it can be applied to any type of element. The mapping between

the parent and physical domains is

x̄ = NI (ξ) xI (.1)

where I denotes the index for the nodes of a speci�c element type. The dummy summation

is assumed here and in the following. Then the residual is

r = x̄−NI (ξ) xI (.2)

The Jacobian for this equation is

J =
∂r

∂ξ
= NI,ξ (ξ) xI =

∂x

∂ξ
(.3)
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which in 2D is

J =

 · · · xI · · ·

· · · yI · · ·




...
...

NI,ξ NI,η

...
...

 =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 (.4)

which is also the Jacobian for the element relative to its parent domain. So the updating

procedure �nally comes out as

ξν+1 = ξν − J−1r (.5)

until the convergence criteria is satis�ed. The detailed procedure is

(1) given a node with the physical coordinates x̄ and an element with its local nodes

xI , start from ξ0.

(2) evaluate the residual by equation (.2).

(3) evaluate the Jacobian by equation (.3).

(4) update the new parent coordinates by equation (.5).

(5) check the convergence criteria; if not satis�ed, go back to step 2; if satis�ed, stop.



107

Bibliography

[1] F.P.T. Baaijens. A �ctitious domain/mortar element method for �uid-structure in-
teraction. International Journal for Numerical Methods in Fluids, 35:743�761, 2001.

[2] I. Babuska, G. Caloz, and J.E. Osborn. Special �nite-element methods for a class
of 2nd-order elliptic problems with rough coe�cients. SIAM, Journal on Numerical
Analysis, 31(4):945�981, 1994.

[3] I. Babuska and J.M. Melenk. The partition of unity method. International Journal
for Numerical Methods in Engineering, 40:727�758, 1997.

[4] T. Belytschko. Methods and programs for analysis of a �uid-structure systems. Nu-
clear Engineering and Design, 42:41�52, 1977.

[5] T. Belytschko. Fluid-structure interaction. Computers and Structures, 12:459�469,
1980.

[6] T. Belytschko and T. Black. Elastic crack growth in �nite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering, 45(5):601�
620, 1999.

[7] T. Belytschko, Hao Chen, Jingxiao Xu, and Goangseup Zi. Dynamic crack propaga-
tion based on loss of hyperbolicity and a new discontinuous enrichment. International
Journal for Numerical Methods in Engineering, 58:1873�1905, 2003.

[8] T. Belytschko, W.J.T. Daniel, and G. Ventura. A monolithic smoothing-gap algo-
rithm for contact-impact based on the signed distance function. International Journal
for Numerical Methods in Engineering, 55:101�125, 2002.

[9] T. Belytschko and J.M. Kennedy. A �uid-structure �nite element method for the
analysis of reactor safty problems. Nuclear Engineering and Design, 38:71�81, 1976.

[10] T. Belytschko and J.M. Kennedy. Computer models for subassembly simulation.
Nuclear Engineering and Design, 49:17�38, 1978.



108

[11] T. Belytschko, J.M. Kennedy, and D.F. Schoeberle. Quasi-Eulerian �nite-element
formulation for �uid-structure interaction. Journal of pressure vessel technology-
transactions of the ASME, 102(1):62�69, 1980.

[12] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua
Structures. John Wiley & Sons, LTD, 2001.

[13] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities in �nite
elements. International Journal for Numerical Methods in Engineering, 50(4):993�
1013, 2001.

[14] T. Belytschko and R. Mullen. Stability of explicit-implicit mesh partitions in time in-
tegration. International Journal for Numerical Methods in Engineering, 12(10):1575�
1586, 1978.

[15] T. Belytschko and R. Mullen. Two-dimensional �uid-structure impact computa-
tions with regularization. Computer Methods in Applied Mechanics and Engineering,
27(2):139�154, 1981.

[16] T. Belytschko, C. Parimi, N. Moës, N. Sukumar, and S. Usui. Structured extended
�nite element methods for solids de�ned by implicit surfaces. International Journal
for Numerical Methods in Engineering, 56:609�635, 2003.

[17] T. Belytschko, S.P. Xiao, and C. Parimi. Topology optimization with implicit func-
tions and regularization. International Journal for Numerical Methods in Engineer-
ing, 57:1177�1196, 2003.

[18] D.J. Benson. An e�cient, accurate, simple ALE method for nonlinear �nite element
programs. Computer Methods in Applied Mechanics and Engineering, 72:305�350,
1989.

[19] H. Braess and P. Wriggers. Arbitrary Lagrangian Eulerian �nite element analysis of
free surface �ow. Computer Methods in Applied Mechanics and Engineering, 190:95�
106, 2000.

[20] N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulation for
convection dominated �ows with particular emphasis on the incompressible Navier-
Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199�
259, 1982.

[21] J.M. Carcione. A 2d chebyshev di�erential operator for the elastic wave equation.
Computer Methods in Applied Mechanics and Engineering, 130:33�45, 1996.



109

[22] J. Chessa. The Extended Finite Element Method for Free Surface and Two-Phase
Flow Problems. Ph.d. thesis, Northwestern University, 2003.

[23] J. Chessa and T. Belytschko. An enriched �nite element method and level sets for ax-
isymmetric two-phase �ow with surface tension. International Journal for Numerical
Methods in Engineering, 58(13):2041�2064, 2003.

[24] J. Chessa and T. Belytschko. An extended �nite element method for two-phase �uids.
Journal of Applied Mechanics-Transactions of the ASME, 70(1):10�17, 2003.

[25] J. Chessa, P. Smolinski, and T. Belytschko. The extended �nite element method
(XFEM) for solidi�cation problems. International Journal for Numerical Methods in
Engineering, 53(8):1957�1977, 2002.

[26] J. Chessa, H.W. Wang, and T. Belytschko. On the construction of blending ele-
ments for local partition of unity enriched �nite elements. International Journal for
Numerical Methods in Engineering, 57:1015�1038, 2003.

[27] D.L. Chopp and N. Sukumar. Fatigue crack propagation of multiple coplanar cracks
with the coupled extended �nite element/fast marching method. International Jour-
nal of Engineering Science, 41(8):845�869, 2003.

[28] A.J. Chorin. Numerical solutions of the Navier-Stokes equations. Mathematics of
Computation, 22(104):745�762, 1968.

[29] Fehmi Cirak and Raúl Radovitzky. A Lagrangian-Eulerian shell-�uid coupling algo-
rithm based on level sets. Computers and Structures, 83:491�498, 2005.

[30] R. Codina. A discontinuity-capturing crosswind - dissipation for the �nite element so-
lution of the convection-di�usion equation. Computer Methods in Applied Mechanics
and Engineering, 110:325�342, 1993.

[31] R. Codina. Comparison of some �nite element methods for solving the di�usion-
convection-reation equation. Computer Methods in Applied Mechanics and Engineer-
ing, 156:185�210, 1998.

[32] R. Codina. Numerical solution of the incompressible Navier-Stokes equations with
coriolis forces based on the discretization of the total time derivative. Journal of
Computational Physics, 148:467�496, 1999.

[33] R. Codina. CBS versus GLS stabilization of the incompressible Navier-Stokes equa-
tions and the role of the time step as stabilization parameter. Communications in
Numerical Methods in Engineering, 18:99�112, 2002.



110

[34] C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. Arbitrary branched
and intersecting cracks with the extended �nite element method. International Jour-
nal for Numerical Methods in Engineering, 48(12):1741�1760, 2000.

[35] J. Donea. A Taylor-Galerkin method for convection transport problems. International
Journal for Numerical Methods in Engineering, 20:101�119, 1984.

[36] J. Donea and A. Huerta. Finite element methods for �ow problems. John Wiley &
Sons, LTD, 2003.

[37] J. Douglas. Numerical methods for convection dominated problems based on combin-
ing the method of charasteristics with �ninte elements or �nite di�erence procedures.
SIAM Journal on Numerical Analysis, 19:871�885, 1982.

[38] C.A. Duarte and J.T. Oden. An h-p adaptive method using clouds. Computer Meth-
ods in Applied Mechanics and Engineering, 139:237�262, 1996.

[39] C. Farhat, P. Geuzaine, and G. Brown. Application of a three-�eld nonlinear �uid-
structure formulation to the prediction of the aeroelastic parameters of an f-16 �ghter.
Computers and Fluids, 32:3�29, 2003.

[40] C. Farhat, P. Geuzaine, and C. Grandmont. The discrete geometric conservation
law and the nonlinear stability of ALE schemes for the solution of �ow problems on
moving grids. Journal of Computational Physics, 174:669�694, 2001.

[41] R.P. Fedkiw. Coupling an Eulerian �uid calculation to a Lagrangian solid calculation
with the ghost �uid method. Journal of Computational Physics, 175:200�224, 2002.

[42] R.P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A nonoscillatory Eulerian ap-
proach to interfaces in multimaterial �ows (the ghost �uid method). Journal of Com-
putational Physics, 152:457�492, 1999.

[43] R.P. Fedkiw, A. Marquina, and B. Merriman. An isobaric �x for the overheating prob-
lem in multimaterial compressible �ows. Journal of Computational Physics, 148:545�
578, 1999.

[44] R. Glowinski, T.W. Pan, T.I. Hesla, and D.D. Joseph. A distributed Lagrange mul-
tiplier/�ctitious domain method for particulate �ows. International Journal of Mul-
tiphase Flow, 24:755�794, 1999.



111

[45] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Périaus. A �ctitious domain
approach to the direct numerical simulation of incompressible viscous �ow past mov-
ing rigid bodies: Application to particular �ow. Journal of Computational Physics,
169:363�426, 2001.

[46] R. Glowinski, T.W. Pan, and J. Périaus. Numerical simulation of a multi-store sep-
aration phenomenon: A �ctitious domain approach. Computer Methods in Applied
Mechanics and Engineering, 195:5566�5581, 2006.

[47] A. Hansbo and P. Hansbo. A �nite element method for the simulation of strong and
weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and
Engineering, 193:3523�3540, 2004.

[48] J.D. Hart, F.P.T. Baaijens, G.W.M Peters, and P.J.G Schreurs. A computational
�uid-structure interaction analysis of a �ber-reinforced stentless aortic valve. Journal
of Biomechanics, 36:699�712, 2003.

[49] A. Harten. ENO schemes with subcell resolution. Journal of Computational Physics,
83:148�184, 1989.

[50] E.J. Holm and H.P. Langtangen. A uni�ed element model for the injection mold-
ing process. Computer Methods in Applied Mechanics and Engineering, 178:413�429,
1999.

[51] H.H. Hu, N.A. Patankar, and M.Y. Zhu. Direct numerical simulations of �uid-solid
systems using Arbitrary-Lagrangian-Eulerian technique. Journal of Computational
Physics, 169, 2001.

[52] T.J.R. Hughes. Simple scheme for developing upwind �nite elements. International
Journal for Numerical Methods in Engineering, 12(9):1359�1365, 1978.

[53] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new �nite element formulation
for computational �uid dynamics : VIII. the Galerkin/least-squares method for
advective-di�usive equations. Computer Methods in Applied Mechanics and Engi-
neering, 73:173�189, 1989.

[54] T.J.R. Hughes and W.K. Liu. Implicit-explicit �nite-elements in transient analysis-
implementation and numerical examples. Journal of Applied Mechanics-Transactions
of the ASME, 45(2):375�378, 1978.

[55] T.J.R. Hughes and W.K. Liu. Implicit-explicit �nite-elements in transient analysis-
stability theory. Journal of Applied Mechanics-Transactions of the ASME, 45(2):371�
374, 1978.



112

[56] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian �nite ele-
ment formulation for viscous �ows. Computer Methods in Applied Mechanics and
Engineering, 29:329�349, 1981.

[57] H. Ji, D.L. Chopp, and J.E. Dolbow. A hybrid extended �nite element/level set
method for modeling phase transformations. International Journal for Numerical
Methods in Engineering, 54(8):1209�1233, 2001.

[58] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford
University Press, Inc., 1999.

[59] Y. Krongauz and T. Belytschko. Efg approximation with discontinuous derivatives.
International Journal for Numerical Methods in Engineering, 41(7):1215�1233, 1998.

[60] E. Kuhl, S. Hulsho�, and R. de Borst. An arbitrary Lagrangian Eulerian �nite-
element approach for �uid-structure interaction phenomena. International Journal
for Numerical Methods in Engineering, 57:117�142, 2003.

[61] A. Legay, J. Chessa, and T. Belytschko. An Eulerian-Lagrangian method for �uid-
structure interaction based on level sets. Computer Methods in Applied Mechanics
and Engineering, 195:2070�2087, 2006.

[62] A. Legay, H.W. Wang, and T. Belytschko. Strong and weak arbitrary discontinuities
in spectral �nite element. International Journal for Numerical Methods in Engineer-
ing, 64:991�1008, 2005.

[63] P. LeTallec and J. Mouro. Fluid structure interaction with large structural displace-
ments. Computer Methods in Applied Mechanics and Engineering, 190:3039�3067,
2001.

[64] W.K. Liu and T. Belytschko. Mixed-time implicit-explicit �nite-elements for transient
analysis. Computers and Structures, 15(4):445�450, 1982.

[65] W.K. Liu, D.W. Kim, and S. Tang. Mathematical foundations of the immersed �nite
element method. Computational Mechanics, 39(3):211�222, 2005.

[66] R. Löhner, K. Morgan, and O.C. Zienkiewicz. The solution of non-linear hyperbolic
equations system by the �nite element method. International Journal for Numerical
Methods in Fluids, 4:1043�1063, 1984.

[67] L.G. Margolin. Introduction to "An Arbitrary Lagrangian-Eulerian Computing
Method for All Flow Speeds. Journal of Computational Physics, 135:198�202, 1997.



113

[68] J.M. Melenk and I. Babuska. The partition of unity �nite element method: Basic
theory and applications. Computer Methods in Applied Mechanics and Engineering,
139:289�314, 1996.

[69] N. Moës, J. Dolbow, and T. Belytschko. A �nite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering,
46(1):131�150, 1999.

[70] W. Mulder, S. Osher, and J.A. Sethian. Computing interface motion in compressbile
gas dynamics. Journal of Computational Physics, 100:209�228, 1992.

[71] P. Nithiarasu, O.C. Zienkiewicz, B.V.K. Satya Sai, K. Morgan, R. Codina, and
M. Vázquez. Shock capturing viscosities for the general �uid mechanics algorithm.
International Journal for Numerical Methods in Fluids, 28:1325�1353, 1998.

[72] J. Nitsche. über ein Variationsprinzip zur Lösung von Dirichlet -Problemen bei Ver-
wendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandun-
gin aus dem Mathematischen Seminar der Universitat Hamburg, 36:9�15, 1970.

[73] T. Nomura and T.J.R. Hughes. An arbitrary Lagrangian-Eulerian �nite element
method for interaction of �uid and a rigid body. Computer Methods in Applied Me-
chanics and Engineering, 95:115�138, 1992.

[74] K.C. Park, C.A. Felippa, and R. Ohayon. Partitioned formulation of internal �uid
structure interaction problems by localized Lagrange multipliers. Computer Methods
in Applied Mechanics and Engineering, 190:2989�3007, 2001.

[75] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski, and T.W. Pan. A new formula-
tion of the distributed Lagrange multiplier/�ctitious domain method for particulate
�ows. International Journal of Multiphase Flow, 26:1509�1524, 2000.

[76] A.T. Patera. A spectral method for �uid dynamics: Laminar �ow in a channel ex-
pansion. Journal of Computational Physics, 54:468�488, 1984.

[77] C.S. Peskin. Numerical analysis of blood �ow in the heart. Journal of Computational
Physics, 25:220�252, 1977.

[78] C.S. Peskin. The immersed boundary method. In Acta Numerica, volume 11, pages
479�517. Cambridge University Press, 2002.

[79] O. Pironneau. On the transport-di�usion algorithm and its application to the Navier-
Stokes equations. Numerische Mathematik, 38:309�332, 1982.



114

[80] R. Radovitzky and M. Ortiz. Lagrangian �nite element analysis of Newtonian �uid
�ows. International Journal for Numerical Methods in Fluids, 28:1325�1353, 1998.

[81] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-
ence. Cambridge University Press, 1999.

[82] C.W. Shu. Numerical experiments on the accuracy of ENO and modi�ed ENO
schemes. J. Sci. Computations, 5:127�149, 1990.

[83] M. Souli, A. Ouahsine, and L. Lewin. ALE formulation for �uid-structure interaction
problems. Computer Methods in Applied Mechanics and Engineering, 190:659�675,
2000.
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