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Abstract 
 

Proper spatiotemporal expression of genes is essential during development.  One method 

of regulation of signaling-responsive genes is at the level of transcription.  In this work, I present 

the adaptation of single molecule fluorescent in situ hybridization for use in Drosophila imaginal 

disc tissues in order to more precisely quantify transcript levels in these tissues. I show the 

detection of nascent and mature mRNA molecules.  I also present the development of robust 

automated image analysis in order to identify transcripts and localize them to the nearest nuclei 

in a 3D image volume.  Using these methodologies, it is now possible to count individual 

transcripts in Drosophila imaginal disc tissues and to perform spatial analysis of gene expression 

using this method.  Single-cell quantitative studies of transcription have revealed that 

transcription occurs intermittently, in bursts.  I utilized smFISH in the wing imaginal disc in 

order to quantify mRNA of genes downstream of the evolutionarily conserved Wg and Dpp 

morphogen gradients.  I compared these experimental results with predicted results from in silico 

modeling of transcription in order to predict outcomes when transcriptional burst parameters are 

varied.  My results indicate that the transcription levels of these genes appear to share a common 

method of control by burst frequency modulation.  Additionally, I utilized quantitative analysis 

of fluorescent proteins in the eye imaginal disc in order to explore the regulation of a key 

regulator in neuronal fate transition in this tissue, Yan.  I show that in the absence of micro-RNA 

miR-7 regulation, Yan protein levels are mildly derepressed in undifferentiation precursor cells 

in the eye disc.  This is consistent with the known role of miRNAs as weak repressors of gene 

expression during development.  I also present evidence that slowing metabolism makes miR-7 

repression of Yan unnecessary, supporting the hypothesis that weak repressors are required for 

gene expression during rapid growth. 
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Gene regulatory networks in developmental biology 

Multicellular animals consist of many genetically identical cells performing specialized 

functions in order to contribute to the survival and reproduction of the whole.  All of these cells 

descend from a single zygote cell at the moment of conception.  Development is the process by 

which this single cell generates all cells of the body and forms the body plan of an entire 

organism.  The ability to do so is genetically encoded in the nuclear DNA of the organism.   

While an animal’s complement of genes is hard-coded into their DNA, they do not 

operate in a vaccum.  The function of a gene is entirely dependent on its interactions with other 

molecules present in the same cell.  These interactions were largely determined by years of 

mutation analysis.  Genes were disabled and their effects on expression of other genes were 

assessed.  This is a powerful technique that allows us to draw representational interactions 

between genes.  For example, gene A regulates gene B expression, or vice versa.  In actuality, it 

is the molecular products of gene A that regulate the expression of gene B in trans. However, the 

limitations of this approach are that it cannot give us a systems-level understanding of how an 

animal is made, beyond a simple list of the gene required and their effects on one another (Alon, 

2007; Levine and Davidson, 2005). 

As more and more of these interactions were solved, one could see how context-

dependent behavior arises.  For example, gene interactions can create logical network behaviors, 

such as ‘AND’ gates or ‘OR’ gates.  These network interactions can be assembled into complex 

behaviors and network architectures, much like a computer program (Alon, 2007). 

The developmental process can thus be said to be controlled by a collection of gene 

regulatory networks (GRNs).  Each GRN is a group of genes using network logic in order to 
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produce a functional outcome in the developing animal.   During development, GRNs flow from 

the more general such as dividing the embryo in anterior versus posterior space, to highly 

specific, such as specifying individual cell types inside a tissue (Levine and Davidson, 2005; 

Peter and Davidson, 2016). 

It has been found that a gene might be able to function in many different GRNs. How can 

this be?  One solution is that its function is spatially and temporally restricted.  As such, gene 

function may change depending on the expression of other genes in that region or time in 

development.  Another solution is expression dynamics.  Genes may pulse throughout time, or 

show other transient behaviors (Chubb et al., 2006; Peter and Davidson, 2016).     

Genes are highly regulated in terms of when and where they are expressed in the animal.  

This regulation occurs via several avenues at each step of the central dogma of biology. The rate 

of production of mRNA copies from DNA is regulated by transcriptional regulation.  Translation 

rates from mRNA into protein are regulated via ribosome activity and mRNA stability.  Protein-

protein interactions occur to regulate the stability, location, and catalytic activity of resulting 

proteins.  However, on a global scale across all genes, transcriptional regulation alone can 

explain much of the variation in protein abundance in the cell (Lee et al., 2011; Liu et al., 2016; 

Xu et al., 2015).  As such, transcriptional regulation is key to a full understanding of how 

expression of genes are regulated. 

In order to understand and interrogate the behaviors of GRNs and transcriptional 

regulation, we as developmental biologists must develop tools for precise spatial quantification 

of gene expression.  Not only is this important understand spatial restriction, but precise 

quantification of gene expression can reveal new mechanisms of gene expression. 
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Methods for the Detection of Transcription 

The most basic understanding of transcriptional regulation requires investigation into 

which genes are transcribed when, where, and how much.  One way to assay whether 

transcription is occurring is the detection of mature RNA transcripts.  The earliest methods for 

detection of RNA involved hybridization of labeled oligonucleotides designed to be 

complementary to mRNAs of interest. Purified RNA material was run on a denaturing 

electrophoresis gel and detected with radiolabeled probes, in a northern blot (Alwine et al., 

1977).  Northern blotting allowed for quantitation of relative transcript levels, using radiolabeled 

standards as a reference.  However, northern blots require homogenization of large quantities of 

tissue and early hybridization based techniques offered low sensitivity (VanGuilder et al., 2008).  

Transcripts present at very low numbers simply did not rise above the level of background noise 

in hybridization-based radiolabeled RNA detection techniques. Another drawback was that these 

methods were not precisely quantitative – signal did not scale linearly with mRNA abundance 

(Bartlett, 2002). 

In the 1990s, the development of an RNAse protection assay offered improved sensitivity 

in RNA detection relative to using a northern blot.  Similar to a northern blot, RNAs of interest 

are run on an electrophoresis gel and detected with radiolabeled probes.  However, in an RNase 

protection assay, transcripts are hybridized with probes and digested with a single-strand specific 

RNase enzyme prior to electrophoresis and detection (Ma et al., 1996).  Only hybridized RNAs 

escape degradation by the enzyme, therefore only RNAs of interest are detectable on the gel.  

The result was a 10-fold improved sensitivity of detection and linearity of signal to mRNA 

abundance.  Using synthesized double-stranded DNA to create a standard curve allowed for 

precise quantification of RNAs of interest (Bartlett, 2002; VanGuilder et al., 2008).  
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In the early 2000s, even more quantitative detection of mRNA was made possible by 

reverse transcription quantitative polymerase chain reaction (RT-qPCR).  RT-qPCR performs the 

polymerase chain reaction on complementary DNA (cDNA) reverse transcribed from mRNA 

strands harvested from samples of interest.  Using fluorescence, the amount of PCR product can 

be monitored at the end of each cycle of PCR.  It takes many rounds of PCR for a specific PCR 

product to become detectable in the reaction.   The number of cycles it takes for each species to 

cross the threshold of detectability depends on the number of molecules of cDNA present in the 

original sample.  By comparing small differences in amplification time in the PCR, one could 

detect small fold-change differences between genes of interest and reference cDNAs in the 

sample.  As PCR theoretically only requires one molecule of cDNA to be present in the original 

sample for detection to be possible, this method is extremely sensitive.  It is also generally less 

time-consuming and more high-throughput than gel-based detection methods, allowing more 

genes to be assayed at one time (VanGuilder et al., 2008). 

In the 2000s and 2010s, RNA detection technology has been marked by an increase in 

scale and throughput.  Microarrays and high-throughput RNA-sequencing (RNA-seq) have 

dramatically increased the number of genes that can be assayed for transcription at one time.  

Microarrays are based on hybridization of cDNA fragments to a chip or array of DNA oligos of 

known genes.  RNA-seq involves sequencing cDNA libraries generated from RNA fragments 

with adaptors for sequencing.  RNA-seq is generally less noisy than microarrays and is 

quantitative over a greater dynamic range of expression levels.  However, RNA-seq presents 

challenges inherent in high-throughput sequencing approaches, in that it requires mapping the 

sequenced fragments back to a reference genome.  This can be problematic in repetitive 

sequences of the genome (Lähnemann et al., 2020; Wang et al., 2009). 
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Both of these approaches massively increase the scale of RNA detection in a single 

sample, allowing discovery of new transcriptional regulation by measuring the changes in all 

genes in different treatments or experimental conditions.  However, they also require the 

aggregation of many cells or tissues together, which can obscure spatial or individual 

heterogeneity in transcript levels (Vera et al., 2016).   

Assays for Nascent Transcription 

The detection of mRNA transcripts in a tissue is not always sufficient to answer questions 

about transcription.  Though mRNAs have variable half-lives in general, mature transcript levels 

are a readout of transcriptional activity over relatively long time-scales of tens of minutes to 

hours (Larson et al., 2011)(Milo et al., 2010).  In many contexts, we may seek to understand how 

much transcription is happening on a much smaller time-scale.  To do so, we must turn to 

techniques that specifically detect nascent transcriptional activity, as opposed to mRNA 

transcripts in general. 

Nuclear run-on assays were developed in the early 1980s to detect active transcription of 

a gene.  Cells of interest were chilled and lysed to stop transcriptional activity, and the nuclei 

were isolated.  Then, transcription was allowed to proceed in vitro using radiolabeled UTP as a 

substrate.  No new transcription will be able to initialize, but polymerases already present on 

transcripts will continue transcription, incorporating radiolabeled nucleotide into the transcript.  

Transcripts of interest can then be hybridized with DNA probes and detected similar to an 

RNAse protection assay.  The amount of radioactivity detected provided a quantitative readout of 

how many nascent transcripts were present on a gene (Smale, 2009). 

In the 21st century, nuclear run-on assays have largely been replaced by chromatin 

immunoprecipitation (ChIP) using antibodies against the RNA polymerase II holoenzyme.  This 
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isolates fragments of DNA bound to RNA polymerase II and therefore in the process of active 

transcription. These fragments can be detected and quantified using either qPCR or high-

throughput sequencing.  ChiP requires less starting material and shows improved sensitivity over 

nuclear run-on assays.  However, like run-on assays, ChIP requires the homogenization of 

tissues, potentially losing spatial information about gene transcription (Sandoval et al., 2004). 

High Resolution mRNA Assays: Combining Spatial Resolution and Quantitation in 

a Single Assay 

 Broadly speaking, the methods I have reviewed thus far either produce sensitive and 

quantitative estimates of transcript abundance and transcription with poor spatial resolution, or 

qualitative estimates of transcript abundance with high spatial resolution. If one wants both types 

of information, several techniques have been developed.   

 The sensitivity of in situ hybridization was improved such that single molecule mRNAs 

were visible and could be counted.  I review the development of the methodology behind single 

molecule fluorescent in situ hybridization in Chapter II.  In brief, increased availability of 

synthesized oligonucleotides enabled researchers to increase signal to background by using many 

short probes for hybridization instead of a single probe (Kwon, 2013).  While, in situ 

hybridization can only be done on a few genes at a time, other techniques allow a transcriptome-

widge view of mRNA abundance. Spatial RNA-sequencing involves barcoding mRNAs within a 

on a hydrogel according to their spatial location.  Sequencing of the resulting library preserves 

the original spatial information of the entire transcriptome (Ståhl et al., 2016). 

Additionally, groups have pioneered the use of single cell RNA (scRNA) sequencing.  

This requires the dissociation of cells prior to RNA sequencing.  Each cell is suspended in a 

droplet and receives a unique barcode for the RNA contained within, prior to sequencing.  
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Therefore, the sequencing information can be reassembled into which cell it came from.  This 

can produce extremely powerful data that can give us snapshots of entire transcriptional “states” 

of cells (Wang et al., 2009).  However, each cell measurement has a high degree of uncertainty 

stemming from amplification bias and very low amounts of starting material. The process of 

dissociation itself may induce significant gene expression changes as well. 

The field of reconstructing spatial resolution of cells from scRNA sequencing data has 

only just begun.  Groups have used additional barcoding to finely preserve location information, 

reconstruction from known gene expression patterns, and the incorporation of spatial-RNA 

equencing data into cell location reconstruction.  While these techniques are promising for 

producing a high degree of complete transcriptional information, this technique currently serves 

as a tool of discovery which need to be confirmed via other techniques (Lähnemann et al., 2020).  

Imaginal Discs in Drosophila 

 The fruit fly Drosophila melanogaster has long been used as a valuable model organism 

due to its genetic tractability, relatively short generation time, and large number of progeny.  

They offer several experimental contexts for study of their tissues, including a set of epithelial 

structures known as imaginal discs.  Imaginal discs are specialized organs set aside from 10-50 

epidermal cells during embryogenesis.  During the next four days of larval development, these 

groups of cells rapidly divide into a final size of approximately 10,000 to 50,000 cells, depending 

on the type of disc. Each disc is organized into a sac-like epithelial bilayer (Aldaz and Escudero, 

2010).  One layer consists of flat, squamous cells known as the  peripodial membrane.  The other 

layer, known as the disc proper, is made up of columnar epithelial cells.  These cells differentiate 

and eventually give rise to the organs and structures of the adult Drosophila body.  Epithelial 

cells of the disc proper are analogous in structure to epithelial cells making up human organs.  
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Each disc corresponds to the set of structures it will eventually produce in the adult body: eye, 

antenna, wing, leg, haltere, and genitals.  During metamorphosis and pupation, discs evert and 

undergo structural changes necessary to develop the adult body (Aldaz and Escudero, 2010; 

Beira and Paro, 2016). 

Imaginal Discs as a Model System 

 Imaginal discs are a model for organ formation and morphogenesis, as they undergo 

significant structural changes during the Drosophila life cycle.  Imaginal discs have been used as 

model systems for various biological processes.    Physical transplantation and wounding have 

contributed to studies of growth and size control in imaginal discs.  The rapid growth provides an 

opportunity for the study of organ size control and control of cellular proliferation (Beira and 

Paro, 2016).  

 The development of clonal analysis allows for the creation of mitotic clones of mutant 

cells. This enables the study of mutant phenotypes on a cellular level, and allows observation of 

interactions between neighboring cells of mutant and wild-type genotypes (Wu and Luo, 2006).  

This has been used in many ways in the imaginal disc.  Mutations may have different effects 

depending on their location in the disc and their particular signaling milieu, which has helped 

elucidate the role of genes in specifying compartments, and growth regulation.  The partial 

introduction of tumorigenic mutations can create aggressive, cancer-like tumors in imaginal disc 

tissue which are being studied as a simple model for cancer (Mundorf and Uhlirova, 2016).   

Clonal patches of mutant cells can also create scenarios in which competitive cell growth has 

been studied, which also has application in the invasiveness and metastasis of tumor tissue in 

humans (Martín et al., 2009). 
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As all Drosophila external adult structures differentiate from the epithelia of the imaginal 

disc, they are a good model system for cell-cell signaling that gives rise to patterning of tissues.  

Initially, these structures were transplanted to different regions of the larval body, revealing the 

role of the Antennapedia complex and eventually leading to greater understanding of the 

function of Hox selector genes in the body plan (Schneuwly and Gehring, 1985).  

Transplantation experiments have continued to elucidate a finer understanding of cellular 

identity within the larger context of the organism as whole. 

Restricting genetic manipulations to the disc structure itself allows the study of genetic 

mutations that would be lethal or too severe to study in an embryonic context.  The Gal4-UAS 

system allows for tissue and pattern specific expression of genes of interest (Osterwalder et al., 

2001, p. 4). 

Phenotypes that manifest in the adult organs of the fly can be used as convenient readouts 

for defects in patterning that occur at the imaginal disc stage, allowing for rapid genetic screens 

and efficient epistasis experiments.  This has been of particular note in the Drosophila eye, 

where even mild mutations can cause phenotypes that manifest as a disruption of the crystalline 

lattice of the compound eye by disrupting the recruitment and patterning of many different cell 

types.  Such research led to the elucidation of the major components of EGF signaling and 

discovery of the function of Notch signaling (Kumar, 2001).   

Long range signaling molecules are used extensively in the imaginal disc system.  

Hedgehog signaling is required to pattern anterior and posterior compartments of the discs, and 

wingless and decapentaplegic use long-range morphogen activity to control growth and 

development of the disc.  Each of these signaling pathways in conserved in humans, and insights 



 19 

about function of these pathways in the imaginal disc continues to provide insight into signaling 

and its role in development today (Kicheva et al., 2012; Wartlick et al., 2011).  

 Both the genetic tools available for Drosophila as a whole, and the ease of 

experimentation on imaginal discs, make them an intriguing model system for signaling going 

forward.  The imaginal disc has proven to be an analogous signaling environment to human 

organ tissues and provides a generalizable context for understanding how signaling works during 

development and disease. 

  



 20 

 

 

 

 

 

 

 

Chapter II: Single molecule fluorescent in situ 

hybridization: A method for detection of mRNA in 

Drosophila imaginal discs 
 

  



 21 

Introduction 

Imaging assays of gene expression offer unique advantages for the observation of 

biological processes.  In developing tissues, they allow us to observe gene expression in the 

context of the morphology of the organism.  In disease states, researchers can ascertain 

heterogeneity of gene expression in tumors.  Assays that require the bulk preparation of tissue 

inherently lose any quantification of cellular, spatial, or individual heterogeneity of gene 

expression.  In terms of observation of mRNA in tissues, in situ hybridization has been in use for 

over fifty years (Gall, 2016). 

Initial methods for in situ hybridization employed long single-stranded DNA or RNA 

probes that were produced either by digestion of a DNA plasmid or in vitro transcription. Probes 

elicited a signal by associating with an enzyme to provide a colorimetric signal or fluor to 

provide a fluorescent signal (Levsky and Singer, 2003). By nature, these probes produced a 

background signal because a single nonspecific binding event and a single specific binding event 

of the probe introduces an equivalent amount of signal into images.  While this challenge can be 

somewhat overcome by blocking with nonspecific nucleic acids, it nonetheless limits the 

sensitivity and resolution of traditional in situ hybridization assays (Gall, 2016). The addition of 

an enzymatic or fluorescent amplification step to generate signal makes the assays semi-

quantitative.  Thus, for many years, in situ hybridizations were not considered to be strongly 

quantitative, and researchers relied on other methods such as northern blots and RT-qPCR to 

obtain complementary quantitative results.  

In 1998 the Singer lab invented single molecule fluorescent in situ hybridization 

(smFISH). It detected mRNAs using somewhat smaller probes (50 nucleotide-long oligos) that 

were each labeled with multiple fluorophores (Femino et al., 1998).  However, these probes still 
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had many drawbacks.  Synthesis and purification of multiply labeled probes was costly and 

difficult, producing partially labeled probes that introduced additional variability in fluorescence. 

In addition, multiply labeled oligonucleotides appear to be particularly prone to fluorescence 

quenching (Femino et al., 1998; Levsky and Singer, 2003).  For these reasons, the method saw 

only limited use in the early 21st century. 

In 2008, Raj and colleagues used smaller probes, which introduced smFISH to a wider 

audience (Raj and Tyagi, 2010; Raj and van Oudenaarden, 2008). This advance was facilitated 

by broader availability of inexpensive oligonucleotide synthesis.  Large numbers of 20-

nucleotide oligos could be individually labeled with a fluorophore, which was more cost 

effective.   The use of many (at least 24 and up to 96) smaller probes showed an improved signal 

to background because a single nonspecific binding event contributes only marginally to 

background fluorescence.  Many specific binding events are required to observe a signal.   The 

annealing of the probes along the length of the mRNA molecule mitigates the effects of partial 

RNA degradation, occlusion by RNA binding proteins, and the possibility of prohibitive 

secondary structure.  The loss of a few potential binding sites does not necessarily prevent 

detection of that RNA molecule (Raj and Tyagi, 2010). 

Here, I have adapted smFISH for use in the powerful model system of Drosophila 

imaginal discs.   

Results 

Initial Detection of GFP Transcripts via smFISH Using an Anti-GFP Probe Set 

I performed a ‘first pass’ experiment in order to assay the viability of a smFISH 

methodology for Drosophila imaginal discs.  I designed probes complementary to superfolder-

GFP (sfGFP).  These oligos were ordered pre-conjugated to a CalFluorRed dye from  
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Figure 1. Detection of Patched-GAL4 > UAS-GFP expression with smFISH.  (A) Schematic 

of expected GFP expression domain in the wing imaginal disc.  AP boundary represents the 

anterior-posterior compartment boundary, DV boundary represent dorsal-ventral wing boundary.  

(B-C) Widefield deconvoluted sections of imaginal discs expressing Patched-GAL4 > UAS-GFP 

. Nuclei are stained with DAPI. Scale bars= 5 µm. (B) GFP mRNA visualized with anti-GFP 

CalFluorRed smFISH probes.  (C) GFP mRNA (red) visualized along with GFP protein (green) 

and nuclei stained with DAPI (blue). 
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BiosearchTech (See methods for details). smFISH was performed according the protocol 

described in (Raj and Tyagi, 2010). Imaging was performed using a Deltavision wide-field 

microscope.  Initial experiments used a Patched-GAL4 driver crossed to a UAS-GFP line.  This 

produces flies with wing discs expressing GFP very strongly in the Patched pattern, which is a 

stripe immediately anterior to the anterior-posterior compartment boundary in the wing disc 

(Figure 1A). I reasoned that such a high amount of GFP expression should produce some 

smFISH signal if any could be detected.  As expected, I saw smFISH signal that colocalized with 

GFP signal (Figure 1B, C).   

Given these results, I decided to proceed to using the sfGFP probes to detect expression 

from a sfGFP-senseless (sfGFP-sens) transgene (Giri et al., 2020).  I anticipated that this would 

produce signal that was more likely to give individual spots for the following reasons: first, the 

probes were designed specifically for this version of GFP, and second, this transgene is 

expressed at far lower levels than the overexpression caused by the GAL4-UAS system.  By 

confocal microscopy, GFP protein was visible in the expected sens expression pattern of two 

stripes immediately adjacent to the dorsal-ventral boundary of wing discs (Figure 2A-B).  After 

smFISH was performed, the pattern was somewhat visible by widefield microscopy (Figure 2C), 

showing the approximate pattern.  In this region, there were distinct punctae visible in the 

smFISH channel (Figure 2 D & E, red arrows).  It should be noted that these punctae were not 

very bright and only visible after deconvolution using the Deltavision imaging software.  As can 

be seen for the GFP channel (Fig 2C), my imaging setup, including deconvolution, produced 

fluorescent signal that tends towards a punctate appearance.   
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Figure 2. Detection of sfGFP:Sens with smFISH (A) Schematic of Sens expression relative to 

the dorsal-ventral boundary of the wing disc.  (B) Confocal section of sfGFP:Sens GFP 

expression.  (C-E) Representative deconvoluted widefield sections of disc expressing 

sfGFP:Sens. Scale bars= 5 µm.  (C) SfGFP-Sens protein (green) visualized with nuclei stained 

with DAPI (blue). Two stripes of Sens expression run roughly parellel to the x axis of the image.  

(D) SfGFP-Sens mRNA visualized with anti-GFP smFISH probes along with nuclei stained with 

DAPI. (E) SfGFP-Sens mRNA CalFluorRed signal alone. Red arrows indicate presumptive 

transcription sites. 
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To determine the nature of these spots, I designed probes complementary to sens RNA.  

These were expected to detect mRNA from the sfGFP-sens transgene.  The transgene is present 

in a sens protein null background. However, mutant alleles are not mRNA null, and transcription 

still occurs.  These endogenous sens mRNAs would also be detectable with anti-sens probes.  I 

ordered these probes conjugated to the fluorophore Quasar 670, which fluoresces in the far-red 

channel, so that both sens and GFP probes could be visualized simultaneously in the same tissue.  

If detection is perfect, I would expect that each GFP spot would have a corresponding spot in the 

sens channel.  However, FISH performed using both probe sets clearly shows many more anti-

sens Quasar 670 spots than anti-GFP CalFluorRed spots (Figure 3B).  Interestingly, there were 

clearly two classes of spots visible in the anti-sens Quasar 670 channel: very bright spots, located 

in the nucleus, and less bright spots.  It appeared as if the majority of spots visible in the anti-

GFP CalFluorRed channel belong to the class of very bright nuclear spots.  I hypothesized that 

these brighter spots were sites of nascent transcription.  In nuclei containing a lot of overall FISH 

signal, there were clearly two bright spots per nucleus: one that fluoresced in both the anti-GFP 

and anti-sens channel, and one that was only present in the anti-sens channel (Figure 3C).  This 

is consistent with sites of transcription from two loci: the sfGFP-sens locus on the second 

chromosome, and the mutant endogenous sens locus on the third chromosome.  The likely reason 

that I did not see two separate alleles is that chromosomes undergo spatial pairing in Drosophila 

cells (Metz, 1916). Therefore, each spot likely represents transcription from both alleles of that 

locus. 

It was clear from my images that the anti-sens Quasar 670 probes were giving a much 

stronger signal-to-background than their counterparts in the anti-GFP CalFluorRed channel.  I 

wondered if this was due to the properties of the fluorophore, or if this was a probe-set specific  
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Figure 3. Dual color smFISH detection of sfGFP-sens  

(A) Schematic illustrating design method for two independent sets of probes targeting GFP and 

sens portions of mRNA transcripts. CalFluor Red molecules are indicated by red stars and 

Quasar 670 fluorescent molecules are indicated by purple stars.  (B) Single deconvoluted 

widefield sections and maximum projections of both red and far-red channels for discs 

expressing sfGFP:sens. Scale bars= 5 µm. (C) Representative max projection of red and far-red 

channels combined.  Purple outlines indicate the approximate boundaries of a single nucleus. 

Scale bar= 5 µm (D-F) Widefield maximum projections of discs hybridized with anti-GFP 

Quasar 670 FISH (D,E) or anti-sens Quasar 670 (F) probes.  Genotypes are schematized below 

corresponding images to illustrate the DNA copy number producing detectable RNA transcripts 

in each image. Scale bars= 5 µm. (D) Disc with one copy of sfGFP-sens, one copy of mutant 

sensE1, and one sens+ probed for GFP mRNA. (E) Disc with two copies of sfGFP-sens and two 

copies of mutant sensE1 probed for GFP mRNA. (F) Disc with two copies of sfGFP-sens and two 

copies of mutant sensE1 probed for sens mRNA.  Although the mutant alleles are mutant for 

protein, they still make sens mRNA. 
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Figure 4. Effect of fixation methods on smFISH signal.   

Representative confocal z-sections of sfGFP-sens wing discs hybridized with anti-GFP Quasar 

670 FISH probes using (A) formaldehyde and ethanol or (B) methanol-only fixation methods. 

Scale bars= 5 µm. 
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phenomenon.  To this end, I performed smFISH with anti-GFP Quasar 670 probes.  I saw similar 

signal-to-background between the anti-GFP and the anti-sens probe sets in this channel (compare 

Figure 3 E,F).  I concluded that smFISH performance is enhanced in the far-red channel when 

compared to the red channel, regardless of probe set. 

Next I sought to assay whether intentionally changing the levels of transcript by varying 

copy number could produce a change in the number of RNA spots that I could detect.  To do so, 

I compared smFISH images from animals with one copy of sfGFP-sens and two copies of 

sfGFP-sens probed with anti-GFP Quasar 670 probes.  I also compared these to images of 

animals with two copies of sfGFP-sens using anti-sens Quasar 670 (Figure 3 D-F).  

Qualitatively, there are more spots visible in image stacks with more copy numbers of the 

transgene present in cells (Figure 3 D-F).  This indicates I on the right track to be able to obtain 

quantitative results with a large perturbation of mRNA levels.  However, the signal-to-

background quality of the spots remained too poor to precisely quantify spot numbers. 

smFISH Signal Quality Improved with Methods Development 

I next sought to image smFISH treated discs using confocal microscopy.  Protocols for 

smFISH published at this time largely did not use confocal microscopy. However, these 

protocols were primarily optimized for cell culture.  Imaginal disc tissue is much thicker 

(approximately 15-20 µm) than cultured cells.  While deconvolution can assist with localizing 

signal to a plane in thick tissue in z-space, confocal imaging can do so via the microscopy setup 

itself without any need for post-processing.  Confocal microscopy also offers a greater breadth of 

settings for boosting a low signal:  laser power, detector gain, and scanner speed can all be 

manipulated to detect very weak signal.  However, using the Leica SP5 confocal to detect 

smFISH signal resulted in a signal to background very similar to what could be achieved using 
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the widefield setup on the Deltavision (Figure 4 A).  It did however, eliminate some artifacts 

related to deconvolution.   

I further sought to improve signal to background by altering the fixation step of the 

smFISH protocol.  I had been fixing the discs with 4% (w/v) paraformaldehyde (PFA) in PBS. 

PFA might lower the signal-to-background, possibly because crosslinking decreases access to 

target mRNAs preserving contact with RNA binding proteins.  In contrast, methanol fixes tissue 

primarily by protein denaturation rather than crosslinking (Hoetelmans et al., 2001).  By 

eliminating PFA in the fixation in favor of methanol, I thought I might increase probe binding 

efficiency since denatured RNA-binding proteins will not be associated with mRNA.  Indeed, 

methanol fixation greatly increased the signal to background of each fluorescent image (compare 

Figure 4 A & B).  However, methanol fixation caused two significant problems.  First, all RNA 

spots now seemed to be entirely the same intensity.  The bright, nuclear RNA signals I had seen 

in previous imaging were no longer visible.  Secondly, the nuclei, as visualized by the DAPI 

stain, appeared to lack any characteristic structure and appeared as indistinct masses.  Taken 

together, these observations seemed to suggest a severe loss of nuclear structure, possibly due to 

histone denaturation, which would cause the DNA to lose compaction and the nascent RNAs to 

no longer be concentrated in one transcription spot.  I was concerned that this would make it 

impossible to detect individual cells.  It would also make it impossible to know whether an RNA 

spot was nascent or mature in origin, potentially impacting RNA measurements. 

I thought I could mitigate this loss in structure by pre-fixing the discs with a lower 

concentration of PFA, thus creating enough crosslinking to maintain nuclear structure without 

impairing probe binding.  I performed a pre-fixation step prior to the methanol fixation and used  
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Figure 5. Optimal smFISH hybridization conditions.   

(A) Confocal z-sections of wing discs treated with a mock hybridization method using a 15-

minute fixation in PBS-buffered paraformaldehyde solution of the concentration indicated.  

Nuclei are stained with DAPI. (B-C) Confocal sections of sfGFP-sens wing disc dorsal-ventral 

margin hybridized with anti-GFP Quasar 670 smFISH probes. Scale bars= 5 µm. (B) sfGFP-sens 

detected in discs hybridized with 30% formamide at 37oC.  (C) sfGFP-sens detected in discs 

hybridized with 0% formamide at 62o C. 
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Figure 6. Enzymatic conjugation of FISH probes.  

Confocal z-sections of anterior compartment of salm:GFP wing discs hybridized with anti-GFP 

FISH probes prepared by (A) enzymatic or (B) direct conjugation to the ATTO 633 fluorophore. 

Scale bars =5µm. 
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a dilution series of PFA concentrations, followed by DAPI staining and visualization of nuclei.  

The nuclei of these discs experienced a loss of structure for concentrations of 0.04% PFA and 

lower (Figure 5A).  I concluded that a PFA concentration of 0.1% would be appropriate for 

retaining structure.  When a 0.1% PFA pre-fix was performed along with hybridization, I 

observed a good signal-to-background and some evidence of bright putative nascent transcription 

sites (Figure 5B, middle panel).  However, the nuclei still appeared structurally diffuse (Figure 

5B, top panel).  I suspected that this might be due to osmotic stress on the mildly fixed tissue, 

caused by use of 50% (v/v) formamide in the hybridization step.  Formamide decreases the TM of 

annealing by approximately 0.7o C per 1% formamide in hybridization solution for DNA with 

50% G-C content (Farrell, 2005).  I omitted the formamide and increased the hybridization 

temperature to compensate for the change in TM according to this formula.  Hybridization using 

this procedure produced images with superior nuclear signal and nuclei quality, while preserving 

good signal to background (Figure 5C). 

Finally, the most expensive element of the smFISH protocol was the cost of purchasing 

or manufacturing oligo probes.  I intitially used probe sets manufactured by 

Stellaris/Biosearchtech.  These probe sets are conjugated with proprietary fluorophores by 

Biosearchtech.  I noticed significant bleaching over time from these probes, and I hypothesized 

that a different fluorescent dye would give superior results.  I selected ATTO dyes, which 

purportedly do not bleach as rapidly as other available dyes.  For anti-GFP probes, I conjugated 

these fluorophores directly to oligonucleotides ordered from BioSearchTech (see Methods) using 

an esterification reaction between NHS-Ester labeled fluorophore and terminal amino labeled 

oligonucleotides.   
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Figure 7. Detection of sfGFP-sens using optimized smFISH protocol.  

(A) Schematized expression of sens in the wing disc about the D-V margin.  sens is also 

expressed in clusters of cells in the notum, which are not shown.  (B-D) Confocal sections of 

wing discs expressing sfGFP:sens. Scale bars= 10 µm. (B) sfGFP-sens protein fluorescence.  (C) 

sfGFP-sens mRNA visualized using smFISH using anti-sfGFP probes. (D) Higher magnification 

of sfGFP-sens mRNAs visualized using anti-sfGFP probes. (E) Distribution of mean intensity 

for all identified fluorescence objects from one wing disc expressing sfGFP-sens.  
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This procedure was still costly because the 5’ nucleotide in each oligo was a chemical 

derivative that was expensive to add to the oligos. In order to bring down the cost of additional 

probe sets, I utilized an enzymatic procedure for fluor conjugation to oligos.  This involves 

performing a single NHS-Esterification reaction in order to conjugate fluorophore to dideoxy-

UTP (ddUTP).  An enzymatic reaction is then used to add the fluorescent ddUTPs to an 

oligonucleotide that does not require any special chemical modifications and could be purchased 

from IDT.  This reduces the need to repurchase NHS-esterified fluorophores and amino-5’-

labeled oligonucleotides, greatly reducing the cost per probe set.  Probes prepared in this way 

with ATTO-633 dyes perform equivalently to probes conjugated chemically (Figure 6).   

smFISH in the wing imaginal disc is specific for GFP RNA 

Under these optimized conditions, smFISH of sfGFP-sens wing discs generates signal 

specifically in the pattern that is expected for sens (Figure 7A-C).  This signal at high 

magnification shows clear, punctate spots that appear well separated from background signal 

(Fig 7D).  Anti-GFP probes give very little signal when used to probe discs from larvae lacking 

sfGFP-sens (compare Figure 8 A-B).  A typical sfGFP-sens image stack contains approximately 

8,500 spots as assigned by my automated spot finding program, whereas an image stack on a disc 

expressing no GFP construct contains only 40 spots (for details on the spot-finding program 

development, see Chapter III).  These 40 spots were all identified in the first five z-planes, which 

are always captured near the peripodial membrane of the wing imaginal disc.  The source of the 

spots therefore likely represents non-specific binding of probes to the exterior of the disc.   

To further examine the nature of the spots, I incubated wing disc explants in culture 

media supplemented with actinomycin-D before probing for mRNAs expressed from spalt-major 

(salm).   This resulted in a significant reduction in the number of spots visible in images (Fig 8  
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Figure 8. smFISH Positive and Negative Controls.   

(A-B) Representative confocal sections of wing discs hybridized with anti-GFP FISH probes. 

Scale bars= 5 µm. (A) A disc from an animal containing two copies of sfGFP-sens and two 

copies of mutant sensE1 allele.  (B) A disc from an animal containing two copies of endogenous 

sens+. (C) Mean number of fluorescence objects identified in whole wing discs containing either 

two copies of sfGFP-sens or two copies of endogenous sens hybridized with anti-sfGFP probes.  

Error bars are SEM.  (D-E) Representative confocal sections of wing discs hybridized with anti-

Salm RNA probes. Error bars=5 µm.  (D) A disc cultured in growth medium for 30 minutes.  (E) 

A disc cultured in growth medium + 5ng/µL actinomycin-D for 30 minutes. (F) Mean number of 

fluorescence objects idnetified in entire wing discs hybridized with anti-Salm RNA probes 

cultured in growth medium with or without actinomycin-D.  Error bars are SEM. (G) A 

representative confocal section from a wing disc expressing sfGFP-sens and the mutant sensE1 

allele. The disc was probes for GFP (red) and sens (green) RNA using independent probe sets. 

Spots that fluoresce both red and green (purple arrow) are presumptive sfGFP-sens mRNA that 

have annealed to both probe sets.  Spots that only fluoresce with the sens probe set (white arrow) 

are presumptive sens mRNAs that are generated from the endogenous protein sens gene.  

Although these sens alleles are mutant for protein output, they still produce mRNA.  The 

occasional spot (beige arrow) that fluoresces only in the sfGFP set are presumptive sfGFP-sens 

mRNA that failed to hybridize with the anti-sens probe set.  These are false negatives. Scale bar= 

5 µm. 
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D-E).  My automated spot detection found on average, approximately a four-fold reduction in the 

number of RNA spots detected per disc (Figure 8F). This indicates that the spots I detect are 

likely RNA in origin. 

I also visualized sfGFP-sens mRNAs detected by both sens and GFP probes with my 

optimized protocol, in order to estimate the number of mRNAs missed by in situ hybridization 

with a single probe set.  GFP probes conjugated with ATTO 633 detected GFP RNA, whereas 

anti-sens probes conjugated with ATTO 565 detected sens RNA.  This resulted in three sets of 

spots: colocalized spots (sfGFP-sens mRNA), spots detected only in the sens channel, and spots 

detected only in the GFP channel.  Spots detected only in the sens channel may represent 

endogenous sens transcripts, as the sens null alleles used in this study are protein null but not 

RNA null in nature.  Theoretically, every GFP spot should have a corresponding sens spot in the 

other channel, so I sought to analyze exactly how many GFP spots had no colocalized ATTO 

565 RNA spot.  I did this by analyzing the fluorescence intensity of a spot around each identified 

GFP RNA spot in the 565 channel.  I modeled the background fluorescence of the 565 channel as 

a normal distribution about the mean background pixel intensity.  If the intensity of 565 

fluorescence in the region associated with the 633 RNA spot was in the 98th percentile or higher, 

it was considered to be a spot in the 565 channel as well.  Using this method, I found that 93% of 

anti-GFP ATTO 633 spots had a corresponding spot in the anti-sens ATTO 565 channel (Figure 

8G).  Therefore, I concluded that no more than 7% of mRNAs are being missed with a probe set. 

Bright Nuclear Spots are Sites of Nascent Transcription 

While optimizing smFISH for sfGFP-sens, I was able to visualize and detect bright spots 

that appeared to be localized to the nuclei in my images.  These spots appeared to have a 

maximum of one spot per nucleus using anti-GFP probes.  For anti-sens probes in sfGFP-sens  
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Figure 9. Sites of nascent transcription are detected by smFISH.   

(A) Sites of nascent transcription can fluoresce more brightly due to multiple nascent transcripts 

localized to one gene locus. (B) Probes recognizing an omb exon many small dim spots and a 

few bright large spots. Right image shows merge of DAPI and probe fluorescence. (C) Probes 

recognizing an omb intron only generate only large bright spots that are associated with nuclei. 

Scale bars= 5 µm. (D) Frequency distribution for all spots in a wing disc probes with sens 

mRNA.  Using a threshold of 2.5 times the median spot intensity, single mRNA spots were 

filtered out, leaving only spots associated with transcription sites. The frequency distribtuion for 

this class of spot is shown. 
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animals, a maximum of two spots per nucleus could be detected (Figure 3C).  These seemed 

likely to be sites of nascent transcription, as have been described elsewhere in smFISH literature 

(Raj et al., 2006; Raj and Tyagi, 2010) (Figure 9A).  

To confirm this, I designed two sets of probes for mRNA transcribed from optomotor 

blind (omb), one for exonic RNA and one for intronic RNA.   As expected, the intronic RNA 

probes did not generate any cytoplasmic spots, and only showed bright, nuclear localized spots, 

whereas the exonic probes detected both types of spots (Figure 9 B & C).  This supports the idea 

that these bright spots represent sites of nascent transcription.  My automated spot detection 

program finds that the bright nuclear spots are 2-25 fold brighter than the weak cytoplasmic 

spots (Figure 9D for sample quantification). 

smFISH methodology also functions in the eye imaginal disc 

To test whether the protocol optimized in the wing imaginal disc system was broadly 

applicable to other imaginal discs, I performed smFISH using eye-antennal discs from sfGFP-

sens animals and anti-GFP ATTO 633 probes.  sens is expressed in a stripe of clustered 

proneuronal cells near the morphogenetic furrow of the eye disc (Figure 10A).  I observed 

smFISH spots of comparable intensity and quality to those in wing discs expressed in this pattern 

(Figure 10B-C).  I therefore conclude that smFISH is able to function similarly in the eye disc 

and can be used there.  It is likely that this methodology is broadly applicable to any imaginal 

disc, as they all have similar structural properties and physical sizes. 
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Figure 10. smFISH imaging of the eye antennal disc.  

(A) Schematic of the eye antennal disc showing the approximate location of cells expressing 

sens. Anterior is to the left. (B, C) Representative confocal sections of discs expressing sfGFP-

sens probed for GFP mRNA. Scale bars= 5 µm.  (B) Low magnification shows a vertical stripe 

of positive fluorescence that oscillates between high abundance and low abundance of mRNA.  

This is the pattern that has been reported for cells in the morphogenetic furrow (Nolo et al 2000). 

(C) Higher magnification showing two complete clusters of sens-positive cells (ashed purple 

lines). 
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Figure 11. Autofluorescence in smFISH  

(A) Mean pixel intensity of images of mock-hybridized single disc imaged every 20 nm along 

the light spectrum from 440-780nm. Green (488nm), red (550nm) and far-red (633nm) lasers 

were activated and their locations in the spectrum are indicated.  (B-D) Representative optical 

sections of wing discs expressing sfGFP-mCh-sens probed for sfGFP RNA using the ATTO 565 

fluorescent dye.  (B) Disc was hybridized using unaltered optimized smFISH protocol. (C) Disc 

treated with TruBlack Lipofusion Autofluorescence Quencher prior to hybridization. (D) Disc 

treated with sodium borohydride prior to hybridization. 
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Discussion 

smFISH Optimization: General Principles and Strategies for the Future 

In my work, the critical points of optimization for smFISH in this context were fixation 

method and formamide concentration.  Fixation chemically prepares the tissue for optimal probe 

binding while still retaining structural integrity for microscopy.  Formaldehyde crosslinks 

macromolecules with amine groups to one another, preserving secondary and tertiary structure.  I 

found that formaldehyde fixation at concentrations and times used for other smFISH protocols 

did not produce optimal results in imaginal discs.  High degree of cross-linking may decrease 

probe access to RNAs of interest by preserving the structures of RNA-associated proteins, and 

the secondary structures of RNA itself (Hobro and Smith, 2017).  Methanol fixation is more 

appropriate for smFISH in that it denatures proteins, exposing RNAs for annealing (Srinivasan et 

al., 2002).  However, it was clear from my results that methanol fixation profoundly altered the 

structure of the nucleus.  It appears likely that methanol fixation alone with no crosslinking was 

denaturing histones and other DNA associated proteins.  It is also possible that this was causing 

the nuclear membrane to become excessively permeable, resulting in an obscure and 

unstructured nucleus visible with a DAPI stain (Hoetelmans et al., 2001).   

I found that a balance between first fixing with a low concentration formaldehyde and 

followed by methanol fixation was optimal for imaginal disc tissues.  However, optimal fixation 

methods may vary between tissue types.  For example, a methanol fixation alone may not be 

problematic in a tissue with few nuclei, where a loss of structure would not obscure the position 

of said nuclei.  Other contexts may also be more amenable to formaldehyde fixation, particularly 

if the mRNAs of interest are not heavily bound with RNA-binding proteins. 
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Selection of Fluorophores for FISH 

Single molecule detection works most robustly when the signal-to-background ratio is 

maximized.  This can be achieved by maximizing signal and reducing background. Choosing a 

fluorophore with a high quantum yield and low bleaching helps for maximizing signal.  For 

ATTO 565, incomplete enzymatic conjugation diluted the functional probe concentration by 

having to compete with many unconjugated oligonucleotides for binding.  For further use of 

single molecule FISH, I would strongly advise probe concentration (and purity) as a starting 

point for optimization. 

Background fluorescence has two sources:  unbound probe and autofluorescence from the 

tissue itself.  Care should be taken to select fluorophores in the lowest autofluorescence 

wavelengths for the tissue being imaged.  Typically, the greatest levels of autofluorescence are 

detected in the 488 nm region of the visible light spectrum.  For imaginal disc tissue, I found that 

the mid-red 552 laser generated the greatest autoflourescence (Figure 11).  This was not relieved 

by any autofluorescence quenching methods that I tried.  For this tissue, far red 633 was optimal 

for low autofluorescence.  If performing smFISH in a new tissue or context, I would recommend 

initially performing a spectral scan on fixed and mounted (unhybridized) tissue before deciding 

on the correct fluor label to use.   

Additionally, residual fluorescence from the fluorescent proteins expressed in the tissue 

themselves must be avoided.  The methanol fixation denatures a significant portion of the 

expressed fluorescent proteins but does not entirely kill fluorescence.  Therefore, fluorophores 

for smFISH will work best in wavelengths far away from any fluorescently tagged proteins 

expressed in the tissue.  
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Hybridization conditions 

Hybridization can be favored or disfavored by temperature, salt concentration, and 

formamide concentration.  The hybridization conditions I chose were based on previous smFISH 

protocols and are somewhat strictly based on the average Tm of the oligonucleotide probes. In 

theory, the binding of multiple oligos to an RNA is a cooperative process (Kwon, 2013). The 

initial binding events serve to weaken the secondary structure of the RNA and to lower the 

binding energy for additional oligonucleotides.  Thus, strict hybridization conditions help to 

prevent nonspecific binding.   

I used the Stellaris probe designer to design most of my probe sets.  This program allows 

for a relatively wide variation in Tm for probes.  If a sufficient number of oligos are designed, a 

handful of poor oligos may not affect results.  However, one can imagine a scenario where one 

wants to detect a short transcript, and probe number is limited by the available length of the 

RNA.   When working with a smaller number of different oligonucleotide probes, it is helpful to 

design such probes to have highly similar melting temperatures, and to tailor the hybridization 

temperature (or other conditions) to that melting temperature.  Keep in mind that melting 

temperatures calculated by companies that manufacture oligonucleotides are calculated under 

certain conditions and are for DNA-DNA binding rather than RNA-DNA duplex binding (Freier 

et al., 1986).  Therefore, TM may be a starting or reference point for calculating hybridization 

temperature, but independent calculations using proper salt concentrations and empirical testing 

need to be done.   

While hybridization time was never systematically explored by me, I serendipitously 

found that doubling the hybridization time and the subsequent wash did not significantly alter the 

FISH signal-to-background ratio in my hands.  While I never used the resulting images for 
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analysis out of an abundance of caution, I speculate that one hour is long enough for probe 

binding to approach an equilibrium state in this tissue under these conditions.   

Immunostaining and smFISH 

 I never utilized antibody co-staining for any analysis in my data.  I made several 

attempts to use an anti-lamin antibody to detect nuclei, performing the immunostaining both 

before and after hybridization with FISH probes.  These were not successful using the 0.4% PFA 

and methanol fixation method, and resulted in no antibody signal. I speculate that antibodies for 

which their corresponding epitopes are intact after methanol fixation (or denaturation in general) 

could be used for detection.   

Why was smFISH difficult in imaginal discs? 

I speculate that imaginal discs are challenging with regards to smFISH because of their 

tissue geometry.  The columnar cells and pseudo-stratified epithelial structure make for a densely 

packed and irregular cell architecture.  Compared to Drosophila embryos, there is a high density 

of cell membranes, causing a high lipid content in the tissue that possibly causes additional 

autofluorescence.  Other tissues, (such as zebrafish tissue)  have been found to present similar 

difficulties (Trinh and Fraser, 2013).  Thus, additional methodologies for RNA detection may be 

useful for Drosophila tissues in the future. 

Future Directions 

Several recently developed technologies may offer superior imaging-based detection of 

single molecule RNAs in thick tissues. Hybridization-based amplification employ use of 

unlabeled oligo probe sets that are hybridized to target RNAs.  The probes themselves can then 

be detected with secondary fluorescently labeled probes, which can be highly specific and 
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heavily labeled (Sylwestrak et al., 2016). Additionally, new fluorophore products may be 

developed that give higher quantum yield, or many new colors.  Several exciting technologies 

allow FISH to be multiplexed in a manner that will allow the development of image-based 

transcriptomics.  Seq-FISH involves repeated hybridization, imaging, and stripping of a fixed 

sample with multiple sets of FISH probes (Eng et al., 2019).  Alternatively, multiplexed error-

robust-FISH (mer-FISH) uses combinations of fluorophores to produce more colors with non-

overlapping emission spectra than the traditional four-color fluorescence system (Xia et al., 

2019). Both of these approaches allow many genes to be assayed in the same sample in parallel, 

although they each have their own sets of limitations. Even an expanded number of genes 

assayed in each FISH cannot approach the broad transcriptomic approach offered by a 

sequencing based approach.  Some mRNAs are too short or structurally inaccessible to probes, 

and multiplexing does not resolve or improve such a shortcoming.  Additionally, the cost of 

probe sets and imaging time can become exorbitant (Chen et al., 2019; Lubeck et al., 2014). 

Nonetheless, multiplexed RNA detection expands the ease of asking certain types of scientific 

questions. How are sets of genes co-regulated?   

It would allow us to characterize tissues with an unprecedented level of detail, giving us 

information about cell-to-cell heterogeneity for both transcript types and transcript levels.  

Combined with single cell RNA sequencing, this could be particularly powerful tool for 

discovery.  Rare sets of cells with a particular set of expressed genes could be discovered via 

sequencing and then their location and distribution within a tissue characterized, leading to 

insights into tissue function. 

An additional avenue for future research would be to explore how transcript levels 

change over time, using live imaging approaches.  This would require adaptation of the MS2 
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system for Drosophila imaginal discs.  While the technology to bring the MS2 system into 

imaginal discs exists, actually implementing it will require building the proper reagents (Garcia 

and Gregor, 2018). Culture conditions must be worked out for discs that allow transcription to 

proceed the same as it does in vivo.  Additionally, imaging can be much more challenging in live 

tissues, which have even more autofluorescence than live tissues (Wang et al., 2008). However, 

the observation of transcription in real time would undoubtedly help answer many questions and 

lead to new discoveries. 

Materials and Methods 

Drosophila genetics 

All Drosophila were raised at room temperature and grown on standard molasses-cornmeal food.  

The sfGFP-sens transgenic line was used as described in (Cassidy et al., 2013).11/24/2020 

5:02:00 PM 

smFISH Probe Design and Preparation 

smFISH oligonucleotide probes were designed using Stellaris Probe Designer (Biosearch 

Technologies).  Probes sets contain between 45 and 48 non-overlapping 20-nucleotide oligos.  A 

full list of all probe sets is provided in Appendix 1.  Anti-GFP probes were prepared by 

conjugating NHS-ester ATTO 633 dye (Sigma 01464) to the 3' end of each oligonucleotide. 

Anti-sens probes were prepared by conjugating NHS-ester ATTO 565 dye (Sigma 72464) to the 

3' end of each oligonucleotide. These oligos bear a mdC(TEG-Amino) 3′ modification to allow 

conjugation, and were obtained from Biosearch Technologies. Conjugation and purification was 

performed as described (S. C. Little & Gregor, 2018). All other probe sets were prepared using 

the enzymatic conjugation protocol as described (Gaspar, Wippich, & Ephrussi, 2017).  Briefly, 



 57 

amino-11-ddUTP (Lumiprobe) was conjugated to NHS-ester ATTO 633.  Terminal 

deoxynucleotidyl transferase (New England Biolabs) was then used to conjugate ATTO 633-

ddUTP to the 3' ends of oligonucleotides that had been purchased from IDT. After enzymatic 

conjugation, oligos were purified from free ATTO 633-ddUTP using G-25 spin columns (GE 

Illustra) according to manufacturer’s instructions. Final concentration of oligonucleotide was 33 

µM in water.  Probes were stored at -20oC, protected from light, until use. 

smFISH: Initial Protocols 

Wing discs were dissected from wandering 3rd instar larva in cold phosphate buffered saline 

(PBS) and immediately fixed in 4% (w/v) paraformaldehyde / PBS for 45 minutes at room 

temperature. Discs were then fixed for 24 hours in 70% reagent grade ethanol at -20o C.  Discs 

were transferred to hybridization buffer (35% formamide, 10% w/v dextran sulfate, 4X SSC, 

0.01% w/v salmon sperm ssDNA (Invitrogen 15632), 1% v/v vanadyl ribonucleoside (NEB 

S14025), 0.2mg/mL BSA, 0.1% v/v Tween-20).  Oligo probes were added to a 1.5 µM final 

concentration in the hybridization buffer, and hybridization was performed overnight (15 hours) 

at 37o C. After hybridization, discs were washed once for 30 minutes at 37 o C in wash buffer 

(35% formamide, 4X SSC, 0.1% v/v Tween-20, 5 μg/mL 4′,6-diamidino-2-phenylindole (DAPI) 

(Invitrogen)). Discs were washed with PBS + 0.1% Tween-20 and transferred to Vectashield 

(Vector Labs) for mounting.  Discs were mounted in 15 μl of Vectashield on glass microscope 

slides using an 18 X 18 mm No. 1 coverslip (Zeiss). 

smFISH: Final Protocol 

Wing discs were dissected from wandering 3rd instar larva in cold phosphate buffered saline 

(PBS) and immediately fixed in 0.1% (w/v) paraformaldehyde / PBS for 15 minutes at room 

temperature. Discs were then fixed for 30 minutes in methanol at room temperature. Discs were 
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transferred to hybridization buffer (10% w/v dextran sulfate, 4X SSC, 0.01% w/v salmon sperm 

ssDNA (Invitrogen 15632), 1% v/v vanadyl ribonucleoside (NEB S14025), 0.2 mg/mL BSA, 

0.1% v/v Tween-20).  Oligo probes were added to a 1.5 µM final concentration in the 

hybridization buffer, and hybridization was performed for 1 hour at 62o C. After hybridization, 

discs were washed once for 5 minutes at 62 o C in wash buffer (4X SSC, 0.1% v/v Tween-20). 

Discs were then incubated with 2.5 μg/mL 4′,6-diamidino-2-phenylindole (DAPI) (Invitrogen) in 

PBS + 0.1% Tween-20 for 5 minutes at room temperature.  Discs were washed with PBS + 0.1% 

Tween-20 and transferred to Vectashield (Vector Labs) for mounting.  Discs were mounted in 15 

μl of Vectashield on glass microscope slides using an 18 X 18 mm No. 1 coverslip (Zeiss). For 

eye imaginal discs, discs were dissected from late 3rd instar larva in cold PBS with brain and 

mouth hooks attached, then smFISH was performed as described.  Immediately prior to 

mounting, brain and mouth hooks were removed from eye discs and discarded.   

Actinomycin D Treatment 

Wing discs were dissected in room temperature Graces’ Insect Medium (Sigma 69771) 

supplemented with 1X Pen-Strep (Gibco 15140-122) and 5 mM Bis-Tris (Sigma B4429). Half of 

the total dissected discs were transferred to 24-well tissue culture dishes containing this prepared 

media  + 5 g/mL Actinomycin D, and half were transferred to untreated controls containing 

culture media + 1:1000 (v/v) DMSO.  Discs were incubated with gentle shaking for 30 minutes 

at room temperature, protected from light, before being washed with fresh culture media, and 1X 

PBS.  SmFISH was then performed as described. 
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Microscopy 

Widefield imaging:  16-bit 3D image stacks were collected on a Deltavision Olympus IX-71 

inverted microscope using a EMCCD camera and a 100X oil immersion (NA 1.44) objective. 

Deconvolution was automatically performed according to default settings. 

Confocal imaging:  12-bit 3D image stacks were collected with x-y pixel size of 76 nm and z-

intervals of 340 nm on a Leica SP8 scanning confocal microscope, using a pinhole size of 1 Airy 

unit and a 63X oil immersion (NA 1.4) objective.  DAPI, ATTO 565, and ATTO 633 were 

excited by the 405, 555, and 630 nm lasers, respectively.  ATTO dye fluorescence was collected 

using a HyD detector on photon counting mode and a scanning speed of 200 Hz, with 16X line 

accumulation. DAPI fluorescence was collected using PMT detector using 8X line averaging.   
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Chapter III: Development of Image Analysis for 

Automated Detection of smFISH Data 
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Introduction 

Image analysis seeks to automate the organization of visual data in a way that makes 

sense for completing certain tasks.  Such tasks include: segmentation of image features into 

discrete objects, classification of different features of an image into categories, the reconstruction 

of 2D images into 3D, and tracking objects across time and space (Grande, 2012; Pavlidis, 

1988).   

In order to do so, imaging data can be understood as large data sets that take the form of 

3D arrays of numbers.  Therefore, they can be transformed, analyzed and classified in the same 

manner of any data array in order to perform image analysis. 

Most image analysis tasks are performed adeptly and unconsciously by the human visual 

system.  Therefore, our own perceptions are often a good metric for how well automated image 

analysis has completed a task. We compare the output of image analysis to a “ground truth,” or 

unambiguous manually labeled image (Collins, 2007).  It is important to keep in mind that if we 

cannot establish a ground truth, we will never have a strong metric for “how well” image 

analysis has worked.  Sometimes there is a mistaken perception that image processing or analysis 

can “fix” poor imaging data.  However, if you as a human researcher cannot provide the correct 

answers using your own eyes, you will never be able to train an image processing pipeline or 

deep learning network to do so for you, and you will need to focus on obtaining higher quality 

data or adjusting your preprocessing steps until you can do so. 

Finding Objects and Feature Extraction 

A critical step in any image analysis workflow is feature extraction and selection.  This 

entails identifying the critical data features for performing the image analysis task.  Often this is 

done via the use of various preprocessing filters (Collins, 2007). 
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For smFISH data, the goal is to perform varying forms of segmentation, first for RNA 

spots, and then for nuclei.  This task requires the classification of pixels in an image into “object” 

and “background” pixels, followed by clustering them into discrete objects.   In other words, the 

value of grey pixel values is changed into only one of two categories: 0 or 1.  The most simple 

way to achieve this is to call a threshold value, where all pixels with values above the threshold 

become 1 and all with values below the threshold are transformed to zero.  This simple 

mechanism often does not provide robust segmentation due to insufficient contrast between 

signal and background, uneven image textures within objects themselves, or uneven background 

(Grande, 2012). 

There are several methods for preprocessing images that can deal with these problems.  If 

background is uneven in a predictable and consistent way, a control background image can be 

subtracted from the test image to increase contrast. Similarly, images can be added or averaged 

together.  The value of each individual pixel can also be changed according to a nonlinear 

function in order to artificially increase the contrast of an image (Russ et al., 2018). 

Alternatively, there is a class of neighborhood processing functions, that perform a 

calculation using a moving kernel of pixels.   For example, a median filter changes each pixel to 

the median of the pixel values in a kernel surrounding it.  This can be used to blur or reduce the 

texture of objects that may be interfering in segmentation.   Edge detection filters tend to have 

the opposite effect, enhancing edge features in an image (Collins, 2007; Russ et al., 2018).  

Once object and background pixels are satisfactorily discriminated, the pixels must be 

organized into discrete objects.  This is sometimes straightforward if an object’s pixels are all 

connected and objects are far enough apart.  However, objects in the image may need to be 
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dilated, eroded or filled in in order to achieve this.  Nuclei tend to follow this pattern as they are 

often touching each other significantly and have uneven internal structure. 

Deep Learning for Image Analysis 

A form of artificial intelligence known as deep learning has been extremely helpful to the 

image analysis community in that it allows automation of the feature extraction process.  Some 

deep learning uses a neural network, or interconnected layers of functions.  Data is input into the 

network and passes through a series of functions or hidden layers before making a prediction, 

which is then compared to the true output.  This is performed iteratively until the network has 

been trained to perform the image analysis task to some satisfaction.  This training is then tested 

with one or more separate validation sets of data.  Different deep learning engines use different 

types of network architectures (Moen et al., 2019).  Network architectures known as 

convolutional neural networks (CNNs) have met with the most success in the image processing 

field.  CNN networks contain convolution layers and pooling layers.  A convolution layer 

convolutes input images and obtains image features.  The pooling layer compares multiple 

images and selects relevant features (Moen et al., 2019).   The result is automated feature 

extraction before moving onto the classification step.  Additionally, some networks have utilized 

transfer learning to broaden the utility of a trained network.  This entails the use of an existing 

trained and validated deep learning network, applied to a new task.  Provided the new task is 

similar enough, the network will only need a small amount of training for it to achieve the new 

task.  This has been particularly helpful for cell segmentation tasks as the network can be trained 

on “easier” data and then adapted to more challenging image tasks and styles.  Prior to deep 

learning, cell segmentation for each data set required a unique, user-defined set of preprocessing 

tasks that can achieve robust segmentation of that data set but are mostly useless for any other 
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data (Minaee et al., 2020).  With deep learning networks and transfer learning, researchers have 

been able to produce networks that are trained to identify a wider variety of cell shapes and 

image styles. 

For my image data, once I could clearly delineate a ground truth for what was an RNA spot 

and what was not, I was able to do my data analysis robustly using a simple threshold for 

segmentation of RNA spots.  Due to the clustered nature of nuclei in the imaginal disc, and the 

uneven features of DAPI staining, I chose to use a CNN network trained for segmentation of 

imaged nuclei.  While still producing imperfect results, these image analysis modalities still allow 

me to make robust conclusions about my data (see Chapter IV).    

Results 

Accurate smFISH RNA Spot Detection  

My first step in analysis of the smFISH data was to accurately and reproducibly segment 

RNA spots. I faced several challenges when doing so.  First, my data contains a high dynamic 

range of pixel intensities. Many transcription sites contain pixels with values an order of 

magnitude higher than pixels in mature RNA spots (see Figure 1A).  This is very confusing for 

many pre-existing segmentation tools, which appear to perform best when each class of objects 

have similar properties in terms of size, shape, and pixel intensity. From a qualitative assessment, 

I observed that filters that optimized for RNA spots tend to capture a lot of artifactual light from 

transcription sites, whereas filters optimized for transcription sites disregard and misidentify 

many RNA spots.  From the outset, it seemed apparent that identifying nascent and mature RNA 

spots might require somewhat different segmentation processes.  

Secondly, mature RNA spots are very small and potentially close together.  There is a 

high propensity for segmentation tools to segment “dumbbell”-like objects when two RNAs are 
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in close proximity in space, even when these objects appear spatially resolved to a human 

observer (as in Figure 1B). This undercounts the number of objects and interferes with the 

quantification of properties of those objects.  Thirdly, there is some amount of variation in pixel 

intensities from image stack to image stack. This could be due to disc-to-disc variability, as well 

as variability in the laser intensity of the confocal microscope, which is somewhat dependent on 

how long the lasers have been on.   

Initial attempts to segment RNA spots were performed with a machine learning tool 

called Ilastik, an open-source algorithm that specializes in Random Forest classification tasks.  

Ilastik was attractive in that it relies on a “point-and-click” GUI wherein the user classifies pixels 

and clicks on example pixels from their data.  This can be a fast, user-friendly, and reliable 

method for segmentation.  Ilastik then produces a segmentation based on this user input, 

algorithmically determining the types of filtering and classification that will best give the output 

the user has requested.  In an ideal scenario, the user trains a filter in Ilastik that can then be 

automatically run on each image without any additional input from the user.  This filter can be 

saved and provided to future users of the image processing program for reproducibility.   

I sought an alternate approach for several reasons.  Due to the variability in image 

properties between data sets, Ilastik trained on one image rarely performed very well when used 

to segment another image.  Most filters were overfit, or too specific for general use.  I reasoned 

this would be a particular problem for comparing different data sets.  Sets of images in which 

smFISH was performed on the same day and in which microscopy was performed close together 

were more alike than separate experiments.  However, I still wanted to be able to reliably 

compare them and reduce the impact of experimental variability on image processing results.  

The other major issue was that when different users trained Ilastik, we got somewhat different  
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Figure 1. Challenging aspects of smFISH image analysis. (A) Confocal section of smFISH 

illustrating a transcription site spot (red arrow) relative to a single mRNA spot (white arrow). 

Scale bar= 1µm.  (B) Confocal section of smFISH illustrating several mRNA foci within close 

proximity to one another (dashed red outline).  Scale bar=1µm. (C) Comparison of number of 

objects identified from a single smFISH confocal image stack after filtering via an Ilastik filter 

generated by manual training.  Each point represents a separate Ilastik training. Points are 

colored according to the individual who performed the training.  After training and filtering via 

Ilastik, images were all segmented using an identical spot detection function in Matlab. 
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results.  Even though we agreed on what “should” be a real spot (ground truth), we all had 

different criteria for when an Ilastik image was adequately trained for obtaining this ground truth 

(see Figure 1C for example).  This was a concern in that I felt I could not reliably describe what 

criteria I was using to train Ilastik in a reproducible way.  Ergo, since a single filter could 

generate reproducible and reliable data across images, and I could not train separate filters for 

images in a reproducible manner, I chose to pursue a different route for segmentation. 

Instead, I applied a simple threshold to my images, wherein objects above the threshold are 

considered spots and objects below the threshold are considered background.  Each group of 

connected pixels are counted as one object.  For each individual z-slice or optical section, I 

sweep across a range of thresholds and count how many objects are identified at each threshold.  

At low thresholds, the number of objects increases rapidly as many background pixels are above 

the threshold value and counted as objects.  However, as the threshold goes higher, there is a 

point of inflection where the number of objects becomes relatively constant over a range of 

threshold values (Fig 2A).  This range of threshold values where the number of objects is 

constant, identifies a number of objects similar to the number of objects that were manually 

identified (the ground truth) (Figure 2C).  Furthermore, the centroids of the computationally 

identified objects were an average of 2 pixels distance from the centroids of the manually labeled 

objects.   I concluded that this inflection point corresponds to a break between the background 

pixel intensities and signal pixel intensities, and that it can be used as a reliable indicator of an 

appropriate threshold for segmenting spots.  Furthermore, I can independently determine an 

optimal threshold for each individual image stack, minimizing the effects of experimental 

variation in pixel intensity.  In practice however, the necessary threshold for analyzing images 

within a single experimental condition or group tended to be quite close in value.  Additional  



 68 

 
  



 69 

Figure 2. Development of smFISH imaging and analysis.  (A) Imaging and analysis pipeline 

to quantify mRNAs as 3D fluorescent objects. (B) Distribution of mean fluorescence intensity 

for all identified fluorescent objects from one wing disc expressing sfGFP-Sens mRNAs.  (C) 

Representative distribution of the number of fluorescent objects identified at a range of threshold 

values for a subsection of a confocal z-stack.  Fluorescence objects were also manually identified 

for this test set.  The number of objects identified manually is denoted by a green horizontal line.  
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filtering was applied to the identified spots in order to address spots appearing in multiple z-

planes and other potential problems (see Methods for details). 

Transcription Site Identification 

 A histogram of the intensity of identified spots highlights a unimodal distribution of 

intensities (Figure 3A).  This suggests that most spots are comprised of a single molecule of 

mRNA.  However, the distribution has a long tail.  This highlights the challenge of identification 

and quantification of spots of nascent RNA.  Potential nascent RNA spots will occupy a wide 

range of intensities, from being nearly equivalent to mature mRNA spots, to being many times 

brighter than them.  I decided to independently classify spots that were transcription sites for 

analysis.  I did so by selecting a new threshold at which to segment spots.  An appropriate 

threshold would be one that excludes single molecule mRNA spots but includes spots with 

greater than twice the intensity of single molecule spots.  Simply doubling the segmentation 

threshold did not achieve this outcome.  The value would often include many single RNA spots 

because they contain a small population of brighter pixels. Instead, I empirically determined that 

2.5X the median value of a single RNA spot was an appropriate threshold to segment spots of 

nascent RNA for most datasets (see Figure 3B for example). 

 I then normalized nascent RNA spot intensity by dividing the intensity of each nascent 

transcription site by the median single RNA spot intensity (Figure 3C).  This provides an 

estimate of the number of nascent RNAs each transcription site contains, although this estimate 

is likely inaccurate.  It also allows me to compare the intensity of transcription sites across 

samples within a dataset and across datasets, since the value is not dependent on the raw pixel 

values in the image. 
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Figure 3. Detection of transcription sites and their quantification. (A) A representative 

frequency distribution of fluorescence intensity for 3D spots identified in one wing disc 

expressing sfGFP-sens. The median intensity is 28 units. (B) The same wing disc was reanalyzed 

for 3D spots but using a threshold of 70 units as a cutoff, below which spots are not counted. (C) 

The fluorescence intensity of each 3D spot in B is divided by the median intensity of 28 units to 

provide a normalized number of RNAs that are localized to that 3D spot. This is not an actual 

number of RNA molecules but the output from partially transcribed RNAs annealing to a 

variable number of probes depending on the composition of binding sites in the RNA composite.  

(D)  The mean threshold used for transcription site identification for each data set plotted against 

the median normalized RNA molecules per transcription site for all transcription sites in that data 

set. 
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Figure 4. Pipeline for 3D segmentation of cell nuclei. (A) An optical section showing DAPI 

fluorescence. (B) 2D segmentation of this image. (C) 3D segmentation by connecting 2D objects 

in neighboring sections that overlap with one another in the x-y plane. (D) 3D Voronoi 

tessellation of an image stack. The centroids of segmented nuclei (shown as circles) were used to 

tessellate the image stack, creating virtual cells. Cells are represented with different colors. 

Numbers in the x-y plane refer to pixel positions in the 1024 x 1024 sections. (E) An image stack 

showing the centroid positions of 3D mRNA objects as circles. One tessellated cell (green) is 

superimposed to show the mRNA objects that reside in space occupied by the tessellated cell. 

These mRNAs would be assigned to that particular cell. 
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Nuclear Segmentation 

 In order to assign RNAs detected by smFISH to particular cells in the disc tissue, I 

needed a way to define cell boundaries. Due to the methanol fixation, plasma-membrane 

associated proteins were not detectable by innate fluorescence or immunofluorescence.  Dye-

based membrane stains that rely on interactions with lipids in the plasma membrane have not 

shown a great deal of success in Drosophila imaginal discs. The dense, columnar nature of the 

epithelial cells in the discs makes such staining difficult to interpret and analyze. However, I 

could segment nuclei, and so I explored several options.  Attempts were made to stain for nuclear 

lamin but were unsuccessful under the fixation conditions in which smFISH was performed.  

Given these results, I decided to use DAPI as it provided the most robust delineation of nuclei.  I 

segmented each optical section of DAPI fluorescence using NucleAIzer, a masked R-CNN deep 

learning network (Hollandi et al., 2020).  

The network has been trained to do nuclei segmentation on a variety of styles of 

microscopy images.  I used the trained network provided for small fluorescent nuclei, so I had to 

do no further training or validation, and the results were reproducible (Figure 4 A&B).  This 

offered an improvement over previous methods used in the lab, which use a meanshift-root 

algorithm (Qi et al., 2013).  Segmentation using a mean-shift root identified approximately 75% 

of nuclei segmented by hand, whereas NucleAIzer identified approximately 85% of nuclei 

segmented by hand.  Regardless of method, segmentation identified fewer nuclei than a manual 

counting, indicating that these segmentation methods are likely combining or missing nuclei at a 

greater rate than they are inappropriately splitting nuclei. 

 Each optical section only contains a slice of one nucleus, and other sections contain other 

slices of the same nucleus. I did not want to over-count nuclei and so I needed to reconstruct 
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each nucleus as a 3D object. In order to connect the 2D nuclear objects in each z-section to 

homologous objects in other sections, I adapted a cell-tracking script to use in z-stacks.  The 

computer identifies the maximum overlapping object in the next z-slice for each segmented 

object and links these together into one object (see Figure 4C for visualization of this).   

Assignment of RNAs to Cells 

 The next step in analysis was to decide how to assign RNAs to respective cells when I 

only had identified the nuclei of cells and not their membrane boundaries.  I wondered if there 

was any effect of assigning RNA spots to their nearest nuclei compared to dividing the tissue 

into random “cell” volumes.  I divided a test stack into a 16 X 32 grid of equally sized volumes 

and summed the RNAs in each cell volume (Figure 5A).  I compared this to a two-dimensional 

Voronoi diagram wherein each cell corresponded to a segmented DAPI nuclear centroid (Figure 

5C).  RNA spots located within each Voronoi cell were summed.  The notable difference 

between these two methods is that the random grid of cell volumes is an impartial analysis of 

RNA density agnostic to the number or position of cells in a region.  For the Voronoi diagram, 

cells in areas of the tissue that are more sparse have a greater volume than areas that contain 

many nuclei.   

Both methods produce distributions of RNA per cell with similar median values.  The 

distributions are both skewed towards 0 RNAs per cell with a tail of larger values, although the 

Voronoi cells produce distributions with a greater variation (Figure 5 B, D and E).  This 

difference is grounded in a reality in the imaging data: the regions of the tissue with the most 

RNA spots also have fewer nuclei present.  This is largely due to the distribution of Senseless in 

two morphologically distinct stripes, and differentiation of the sensory organ precursor (SOP) 

cells.  Ultimately, despite its flaws, the Voronoi tessellation provides a valuable calculation: 
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normalization for the number of cells in different regions of the tissue.  Areas with fewer cells 

should reasonably have more RNAs per cell.   
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Figure 5.  Comparison of 2D Grid and Voronoi methods (A) Representative heat map of a 

sample disc partitioned into equally spaced cubes.  RNA fluorescence objects were assigned to 

the nearest cube region.  Regions with warmer colors were assigned more RNA fluorescence 

objects.  (B) Smoothed distributions of RNA per spatial region for three test z-stacks of images.  

Each distribution represents one disc.  (C)  Same imaginal disc partitioned using a Voronoi 

diagram based on the centroids of segmented nuclei.  Regions with warmer colors were assigned 

more RNA fluorescence objects. (D) Smoothed distributions of RNA per spatial region for three 

test z-stacks of images.  Each distribution represents one disc.  These are the same test image 

stacks analyzed in (B).  (E) Combined distributions for all three replicates, comparing a grid 

(red) and Voronoi (grey) methods of partitioning the tissue. 
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Discussion 

Limitations of Transcription Site Detection 

 In the data, spots of nascent RNA are treated in the same manner as mature RNA spots: 

the largest object in the 3D stack of objects is counted, and a 2D circle is drawn about it in order 

to extract an intensity measurement.  This underestimates the intensity of nascent RNA spots for 

several reasons.  First, I measure intensity within the diffraction limit, whereas many nascent 

RNA spots appear to be somewhat larger objects than the diffraction limit.  Second, due to their 

small size, mature mRNA spots only occupy 2-3 z-planes, and are usually only present as a 

measurable spot in one z-plane. Spots of nascent RNA can occupy more z-planes than this 

because they are larger.  The result of these limitations is that subtle changes in nascent RNA 

intensity may not be detectable through this analysis.  This analysis has been sufficient for the 

conclusions I have drawn discussed in Chapter IV.     

However, it has limitations. The sfGFP-sens transgene landed in two different loci 

produce statistically identical data using this analysis (Ch. IV Figure 11). However, analysis of 

protein data of these two constructs predicts that they would show a small difference in number 

of nascent RNAs present at the transcription site (Giri et al., 2020).  However, I see no statistical 

difference in the intensity of nascent RNA spots.  Perhaps this difference does not exist as 

predicted.  Alternatively, the experiment is not precise enough in order to produce data sufficient 

for asking the question.  It is possible that differences between the two landing sites exist, yet 

simply are too small to be detected by the analysis presented here.   

 Thus, when trying to ask questions that deal with very subtle differences between sets of 

data, one should draw intensity measurements from entire 3D objects or from all included pixels 

below threshold.  I did not implement this because including intensity data from a variable 
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number of pixels (depending on intensity and threshold) makes the intensity measurements very 

sensitive to the selection of threshold.  This amplifies small differences between replicates, 

diminishing reproducibility.  If one wanted to implement this data analysis, great care would 

need to be taken to standardize the threshold used for all replicates and conditions.  One would 

expect there to be greater variation between replicates using this method as well.   

Limitations of Cell Assignment 

 As discussed above, there are significant challenges in assigning RNAs to cells in the 

imaginal disc, particularly with respect to smFISH.  Nuclear markers are the most robust way to 

mark cells in this tissue but given the complex columnar nature of the epithelial cells, assigning 

cells to their nearest nuclei as I have done is not a particularly accurate method of determining 

exact RNA counts per cell.   The method I have chosen normalizes RNA numbers in a region to 

the number of nuclei in that region and estimates the variability of RNA numbers from region to 

region.  Although errors will occur on a cell-by-cell basis, the errors will be systematic and 

therefore, large-scale trends will not be affected by using this method. This method may not be 

appropriate to draw conclusions about data that are highly dependent on accurate cell assignment 

(like calculating RNA noise per cell).   

 The best way to improve cell assignment, in my view, would be to develop a reliable 

method of membrane staining and 3D cell reconstruction in the imaginal disc.  This presents 

many challenges.  Finding a robust membrane stain that is compatible with methanol fixation is a 

significant challenge.  Alternatively, dyes that interact with lipids could be used.  Also 3D 

reconstruction of cells is a non-trivial task.  Alternatively, experiments could be performed only 

on RNAs that are localized to one part of the cell. For example, wingless mRNAs are apically 

located, making individual cells fairly easy to pick out and segment using the RNA channel 
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alone.  Other gene constructs could be produced that also apically localize RNA for analysis.  

Finally, I suggest that we keep in mind alternative systems in which to ask similar questions.  

Drosophila embryos and ovaries may be more simple to manipulate and image.  Other systems 

should be considered on a case-by-case basis, depending on what manner of question you want 

to ask.   

Materials and Methods 

Image Processing  

Raw smFISH images were processed using a custom MATLAB script with no prior 

preprocessing.  My pipeline is available at github.com/bakkerra/smfish_pipeline.  

The pipeline consists of several modules: 

Selection of mRNA Segmentation Threshold:  Spot segmentation is performed by applying a 

threshold value to an smFISH image and transforming all pixels above the threshold (‘objects’) 

to white and pixels below this threshold (‘background’) to black. To robustly identify RNAs, it is 

therefore important to select a threshold where real RNA fluorescent spots are above the 

threshold, and background fluorescence is below the threshold.  Using this threshold method, I 

classify an object in each 2D image when white components have a connectivity of 8 pixels or 

more. When the number of objects in an image stack is counted across a range of segmentation 

thresholds, the number of objects reaches an inflection point and plateaus at a threshold 

approximately equal to the level of fluorescence that separates real RNA spots from background 

(Figure 2).   

 I manually identified and labeled 347 RNA spots from sub-regions of four independent 

image stacks and found that when a threshold is selected within the plateau after the inflection 

point, the number of objects identified is no more than +/- 5% different than the ground truth 
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manual curation. Furthermore, the centroids of identified objects have an average displacement 

of only 2 pixels from the manually identified centroids. Therefore, this plateau is an appropriate 

threshold for accurate segmentation of RNA spots.   

 I reasoned that the position of inflection might vary from sample to sample. Therefore, 

for each image stack, a range of thresholds is tested, and a threshold is selected within the 

plateau to collect the segmented data.  As a result, each image stack has the potential for a unique 

threshold, allowing robust segmentation of spots despite variation in raw fluorescence between 

image stacks.  In practice, replicates from the same experiment captured in the same imaging 

session did not require thresholds for segmentation more than 15 fluorescent units apart.   If 

image stacks did not show an identifiable inflection point and plateau, the signal-to-background 

of that sample was determined to be insufficient and it was not used for analysis.  The smFISH 

protocol and imaging is robust enough that in my hands, this occurs in less than 10% of image 

stacks collected.  Once a threshold is selected, the following properties of each object are 

recorded: x-y centroid position, z-plane, and a list of the connected pixels. 

Connecting Segmented Objects into mRNA Spots: Diffraction-limited fluorescent spots 

captured with the 63X objective at 633 nm wavelength are estimated to be approximately 600 

nm in diameter. This corresponds to a diameter of 8 x-y pixels in my images (Lipson et al., 

1995).  As each z-plane is 340 nm in depth, it is assumed that genuine diffraction-limited RNA 

spots will appear in 2 or 3 consecutive z-planes, depending on the spot’s position along the z-

axis.  Therefore, candidate RNA spots must satisfy two criteria in order to be counted: 

1. Candidate must have a corresponding object centroid at least one neighboring z-plane 

within a diffraction limited radius of 4 pixels.   
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2. Candidate must be larger (contain more pixels) than corresponding objects in neighboring 

z-planes.  This criterion prevents RNA fluorescence spots from being counted in multiple 

z-planes.  

A candidate that satisfies these criteria is recorded as an mRNA spot, and only the largest 2-D 

object is recorded.  

 The analysis program shows the FISH images overlaid with markers indicating recorded 

spots so that each image stack can be manually inspected for any significant errors or 

inconsistencies.  The most common problem detected at this stage resulted from images taken of 

discs that were “drifting,” or moving significantly between z-slices, which can cause a large 

number of identified spots to be filtered out during processing for not meeting criterion 1. 

Excessive bleaching across the z-stack can also cause clear inconsistencies. In this study, such 

problems were rare enough that any sample experiencing these problems was considered to have 

failed quality control and was simply not included for further analysis. 

 Intensity measurements are recorded from a circle of pixels of radius 4 about the centroid 

of each recorded RNA spot.  By keeping the area of each intensity measurement fixed, I 

uncouple user-generated variation in selection of segmentation thresholds from spot intensity 

measurements.  A 2D circle was used instead of a 3D sphere to extract intensity measurements 

because the spots only appear in 2 or 3 z-planes.  This makes their 3D geometry variable from 

spot to spot, and they cannot be consistently described using a sphere or ellipse. 

Segmentation of Transcription Sites: In my images, nascent RNA spots tend to contain pixels 

that are many times brighter than mature RNA spots.  As a result, the brightest transcription sites 

are frequently misidentified during segmentation of mature RNA spots because the second 

criterion for spot identification only records the largest object within the diffraction limit in z.  
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For transcription sites, this is not always the brightest plane.  Therefore, I segment transcription 

sites independent of mature RNAs using a higher threshold.   

The objective in threshold selection for transcription sites is to select one that includes objects 

with a total fluorescence intensity of twice the average mature RNA and excludes mature RNA 

spots.  I define the “average” intensity for a spot containing a single mRNA to be the median of 

the distribution of all identified mature RNA spot objects.  I empirically determined that merely 

doubling the threshold for segmentation does not achieve this, because mature mRNAs may 

contain a few pixels above the threshold, enough to still be identified as objects and included in 

analysis.  Therefore, I use a threshold calculated by multiplying the median mature RNA 

intensity by a factor of 2.5 (Figure 3).   

 To test the accuracy of this segmentation procedure, I manually inspected three 

particularly RNA-dense regions in independent images where automated segmentation found a 

total of 103 transcription sites and 4,066 mature RNAs.  I determined that only 7 of 4,066 mature 

RNAs were misidentified as transcription sites, and found no examples of transcription sites that 

had been missed by automated segmentation.  

 After identification, object intensity measurements are recorded from a circle of pixels of 

radius 4 (the diffraction limit) about the centroid of each identified transcription site (Figure 3B).  

The average transcription site threshold selected for replicates in a dataset show no correlation 

with the average intensity of transcription sites in that dataset (Figure 3D). Therefore, the 

differences in transcription site intensity between genes cannot be explained merely by 

differences in threshold selection or variability in image fluorescence between datasets. 

Estimation of Nascent RNA Number per Transcription Site:  The intensity measurement of 

each identified transcription site in an image stack is divided by the median intensity of 
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identified mature RNAs in that sample (Figure 3).  This serves two purposes. First, it serves to 

normalize these measurements within each sample so transcription site intensity measurements 

can be pooled across replicates without the effects of image-to-image variability in fluorescence.  

Secondly, each transcription site object is presumed to be the sum of intensities of multiple 

nascent RNA molecules elongating at the transcription site. By dividing each transcription site 

intensity by the average intensity of a single RNA, I obtain an estimate of the number of nascent 

RNAs present at the transcription site.  Because some transcripts are partially elongated, this 

number cannot be completely accurate, and I attempt to compensate for this in my computational 

model when interpreting results. 

Nuclei Segmentation:  DAPI fluorescence images are output as labeled 16-bit images, where 

each nuclear object corresponds to a ‘level’ in the 16-bit image.  These images are input to a 

nuclei segmentation pipeline, which flattens the images to white nuclei objects and black 

background. Nuclei images are segmented in 2D using the NucleAIzer platform maskRCNN 

Network, trained as described in (Hollandi et al. 2020) This is available online at nucleaizer.org. 

It requires the user to define an expected nuclear radius, which I set at 32 pixels (Figure 4B).  To 

ascertain the accuracy of segmentation, I compared results to manually labeled nuclei in four 

randomly selected disc images. The automated method identified at least 85% of nuclei objects 

identified manually for each image.   

 The segmented black and white images are then processed using a custom Matlab script 

in order to join overlapping 2D objects into 3D.  Each nucleus object in each z-slice is assigned 

an identity index.  For each object in the first z-slice, the object with the highest number of 

overlapping pixels in the next z-slice is identified, and this object’s identity index is altered to be 

identical to its overlap partner. This proceeds through the entire z-stack of images, creating 
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objects that resemble ‘pancake stacks’ of linked 2D objects in 3D (Figure 4C).  The 3D-centroid 

and list of included pixels of these new objects is then recorded. Objects not incorporated into a 

3-D object are disregarded. 

Generation of Voronoi Diagrams:  A 3D Voronoi tessellation divides a geometric volume into 

spatial regions with boundaries equidistant from a set of points (Voronoi, 1908).  I use this 

method to assign RNA objects to the nearest nuclear centroid.  The set of segmented 3D nuclear 

centroids are used to divide the z-stack of images into a 3-D Voronoi tesselation using a polytope 

bounded Voronoi diagram available for Matlab, which uses the DeLaunay triangulation to 

calculate the Voronoi diagram (Park, 2020) . The result of this tesselation is a list of 3-D vertices 

of each Voronoi ‘cell’ in space, which is recorded along with the associated nuclear centroid 

(Figure 4D).   

Assignment of RNA to nearest nuclei:  Mature mRNAs and transcription spots located within a 

Voronoi spatial cell are assigned to that particular cell.  To assign spot objects to cells, a 3D 

convex hull of the each Voronoi cell is constructed from the vertices data for that cell.  An entire 

set of image points, either the mRNA or transcription spot centroids, are tested to determine 

whether they fall inside or outside of each hull (Figure 4E).  This is performed using a Matlab 

function called inhull, which uses dot products to shorten calculation times (D’Errico, 2012) .  

Spots that fall inside a given cell’s Voronoi hull are assigned to that cell’s nuclear centroid, and 

the number of assigned spots, as well as their centroid and z-plane information are recorded.  

This is then repeated for every Voronoi cell in the image stack. The final result is a list of cells, 

their nuclear centroids, the total number of RNA spots assigned, and a list of each assigned 

spot’s centroids. 
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Chapter IV:  Wg and Dpp Morphogens Regulate Gene 

Expression by Modulating Frequency of Transcriptional 

Bursts 
 

 

 

 The majority of work in this chapter is published at the online journal eLife (Bakker et 

al., 2020). I developed the methodology and performed all experiments and analyses.  

Mathematical modeling was conceptualized by me and Dr. Madhav Mani.  The manuscript was 

written by me and Dr. Richard Carthew.   
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Introduction 

 Paracrine signaling is a highly conserved means for cells within a tissue to communicate 

with one another to regulate diverse activities including proliferation, differentiation, apoptosis, 

and movement. Many of these activities are mediated by changes in gene transcription that are 

brought about by reception of the signals. Paracrine factors acting as morphogens are a 

particularly important class of gene regulators. Morphogens form spatially-extended gradients 

from the source of their synthesis, and elicit different transcription outputs from target genes, 

depending on local concentration of the morphogen (Tabata and Takei, 2004).   

Many paracrine signals regulate gene transcription via control of the availability or 

activity of sequence-specific transcription factors. Some transcription factors regulate assembly 

of the preinitiation complex (PIC) composed of Pol II and general factors at the transcription 

start site (Esnault et al., 2008). Other factors recruit coregulators that modify nucleosomes or 

remodel the chromatin architecture of the gene (Bannister and Kouzarides, 2011).  However, 

transcription is a dynamic process, and thus, molecular models of regulation via PIC assembly or 

chromatin structure, do not adequately capture what kinetic steps in transcription initiation are 

being regulated.  Recently developed methods have uncovered greater complexity in the 

transcription initiation process than previously imagined. Genes that are constitutively expressed 

rarely show uniform and continuous mRNA synthesis. Rather, mRNA synthesis occurs in bursts 

that are interrupted by periods of dormant output. This phenomenon is known as transcriptional 

bursting (Chen et al., 2019; Chubb et al., 2006; Dey et al., 2015; Raj et al., 2006; Suter et al., 

2011)  
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Various studies have explored how mechanisms of gene regulation affect the size and 

frequency of transcriptional bursts, and thereby affect transcription output. The availability of 

transcription factors has been shown to affect burst frequency (Ezer et al., 2016; Larson et al., 

2011; Senecal et al., 2014).  For example, the Drosophila transcription factors Bicoid and Dorsal 

have been studied in great detail with respect to their effects on transcription burst frequency in 

the embryo (Garcia and Gregor, 2018; Holloway and Spirov, 2017; Little et al., 2013; Xu et al., 

2015).  Enhancer strength and enhancer-promoter contact correlate with burst frequency of genes 

(Bartman et al., 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al., 

2019) .  These studies altogether suggest that bursting frequency is potentiated by enhancer-

promoter contact and is mediated by transcription factors binding to DNA. 

In this study, I have explored how the Wnt protein Wingless (Wg) and BMP protein 

Decapentaplegic (Dpp) regulate transcription dynamics of genes in the Drosophila wing 

imaginal disc. The Wnt and BMP families of proteins are two highly conserved paracrine factors 

that can act as morphogens. In canonical Wnt signaling, the binding of extracellular Wnt protein 

to its transmembrane receptor Frizzled causes β-catenin to be stabilized and free to enter the 

nucleus, where it relieves repression of Wnt-responsive genes by binding to the sequence-

specific transcription factor TCF (Clevers and Nusse, 2012; Swarup and Verheyen, 2012).  In 

canonical BMP signaling, ligand binding to receptor triggers phosphorylation of SMAD proteins, 

which translocate to the nucleus along with co-SMADs, bind to responsive genes, and activate 

their transcription (Hamaratoglu et al., 2014; Shi and Massagué, 2003) . 

To explore the effects of Dpp and Wg signaling on transcription dynamics, I have 

adapted single molecule fluorescent in situ hybridization (smFISH) for use in imaginal disc 

tissues.  I use smFISH to quantify nascent and mature mRNAs for several genes expressed in 
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highly diverse patterns within the wing disc. Despite having different expression patterns, all of 

the genes are regulated by modulation of transcription burst frequency by Dpp and Wg. 

Results 

In this study, I have explored how the Wg and Dpp morphogens regulate transcription 

dynamics in the wing disc. Each morphogen is synthesized in a narrow stripe of cells within the 

disc. Wg is produced in cells at the boundary between Dorsal and Ventral (DV) compartments of 

the wing pouch, while Dpp is produced in cells at the boundary between Anterior and Posterior 

(AP) compartments (Figure 1A).  These factors diffuse from their sources forming concentration 

gradients across the disc and regulate gene expression in a concentration-dependent manner.  

smFISH detection of Sens mRNA 

I first probed for expression of the senseless (sens) gene in the wing disc. Sens is required 

for cells to adopt a sensory organ fate, and the gene is expressed in two stripes of cells adjacent 

to and on either side of the DV boundary in the wing pouch (Figure 1B,C). Sens expression in 

the wing pouch is induced by Wg, which is expressed by cells located at the DV boundary (Nolo 

et al., 2000; Zecca et al., 1996) I probed for sens mRNAs expressed from a transgenic version of 

the sens gene. I did so for a number of reasons. First, the genomic transgene rescues the 

endogenous gene based on function and expression (Cassidy et al., 2013).  Second, the transgene 

is tagged such that the amino-terminal coding sequence corresponds to super-fold GFP (sfGFP). 

By using oligo probes directed against sfGFP, I could easily determine the specificity of 

detection. 

  Samples were probed and imaged, revealing the expected pattern of fluorescence 

localized to two stripes adjacent to the DV midline in the wing pouch (Figure 1D).  The 

abundance of sens mRNAs within the DV stripes varied from one to fifty molecules per cell  
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Figure 1. smFISH analysis of sfGFP-sens mRNA levels in wing imaginal discs. (A) 

Schematic of a wing disc outlining different regional domains, and the positions of boundaries 

betIen Dorsal (D) - Ventral (V) and Anterior (A) - Posterior (P) compartments of the disc. Each 

wing disc is composed of roughly 50,000 cells organized in a pseudostratified epithelium. (B) 

Schematized expression pattern for Sens inside the wing pouch centered around the DV 

boundary. Sens is also expressed in clusters of cells in the notum, which are not shown. (C-E) 

Confocal sections of wing discs expressing sfGFP-Sens. (C) sfGFP-Sens protein fluorescence. 

(D) sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 μm. (E) 

Higher magnification of sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. 

Scale bar = 10 μm. (F) Distribution of wing disc cells as a function of the number of Sens 

mRNA molecules per cell. (G) Sens mRNA number as a function of cell distance from the DV 

boundary. The shortest path length from each cell centroid to the DV boundary was calculated. 

Cells were then binned according to this path length and whether they were dorsal or ventral 

cells. The median mRNA number/cell for each bin is plotted. Error bars represent bootstrapped 

95% confidence intervals. A bimodal distribution captures the expression pattern of Sens. 
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Figure 2. smFISH analysis of mRNA levels from Dpp-responsive genes. (A) Schematic of 

wing discs highlighting the graded distribution of Dpp protein in the wing pouch, centered 

around the AP boundary, and the expression domain for salm, one of the targets of Dpp 

regulation. Not shown is Dpp localization in the notum domain of the disc. (B) Expression 

domains of four target genes of Dpp signaling. (C-F) Confocal sections of wing pouches probed 

for mRNAs synthesized from the salm (C), omb (D), dad (E), and brk (F) genes. Orange arrows 

mark the position of the AP boundary in each image. (G, H) mRNA number as a function of cell 

distance from the anterior-most border of the wing pouch. (G) An axis tangential to the AP 

boundary is used to map cell position. Numbers refer to distance in μm from the wing pouch 

border. (H) Cells were binned according to position along the axis. The median mRNA 

number/cell for each bin is plotted. Error bars represent bootstrapped 95% confidence intervals. 

  



 95 

 

(Figure 1F). This was because the Wg morphogen induces a graded expression pattern of Sens 

protein across the width of each stripe (Nolo et al., 2000; Zecca et al., 1996).  Therefore, I binned 

cells according to their distance from the DV boundary, and I observed peaks in mRNA number 

per cell as a function of distance from the boundary (Figure 1G). 

smFISH detection of gene expression regulated by Dpp  

 I extended the analysis to genes downstream of the BMP family protein Dpp. Dpp 

is expressed in a stripe of cells located at the AP boundary of the wing disc, orthogonal to the 

Wg stripe (Figure 2A). Dpp protein is transported bidirectionally to form gradients across the 

disc, and several genes are regulated by Dpp in a concentration-dependent manner.   Spalt-major 

(salm), optomoter blind (omb), daughters against dpp (dad), and brinker (brk) are expressed in 

symmetric domains within the anterior and posterior compartments of the wing pouch (Figure 

2A,B). Salm is symmetrically expressed in a domain somewhat broader than the Dpp stripe, 

whereas omb and dad are expressed more broadly, and brk is expressed only near the wing 

pouch border (Celis et al., 1996; Grimm and Pflugfelder, 1996; Tabata and Takei, 2004).  When 

smFISH was used to detect mRNAs of these genes, it qualitatively recapitulated their known 

expression patterns (Figure 2C-F). I quantified the number of mRNAs per cell and attempted to 

map the distribution to cell position within the wing pouch. Since the only landmark I could 

reliably use was the border between the wing pouch and the rest of the disc, I measured cell 

position as a function of distance from the border (Figure 2G). When I did so, the distributions in 

mRNA number per cell gave profiles that were somewhat consistent with previous qualitative 

descriptions of their expression patterns (Figure 2H). To ensure that these distributions are not an 

artifact of landmarking the border, I probed for mRNAs produced  from the scalloped (sd) gene. 

The sd gene is expressed uniformly throughout the wing pouch  
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Figure 3. SmFISH analysis of mRNA levels of the sd gene. (A-C) An axis was tangential to 

the AP boundary was used to map cell position.  Numbers refer to distance in in microns from 

the wing pouch border.  Cells were binned according to position along the axis.  (A) mRNA 

number as a function of cell distance from the anterior-most border of the wing pouch. Median 

mRNA number/cell for each bin is plotted.  Error bars represent bootstrapped 95% confidence 

intervals.  (B) Fraction of cells with a transcription site in each bin is plotted.  Error bars 

represent bootstrapped 95% confidence intervals.  (C) Median nascent RNA per transcription 

site for each bin is plotted.  Error bars represent bootstrapped 95% confidence intervals. 
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Figure 4. Sites of nascent transcription are detected by smFISH. (A) Sites of nascent 

transcription can fluoresce more brightly than single mRNA molecules due to multiple nascent 

transcripts localized to one gene locus. (B) Probes recognizing an omb exon generate many small 

dim spots and a few large bright spots. Right image shows the merge of probe and DAPI 

fluorescence. The bright spots are associated with nuclei whereas most dim spots are not. (C) 

Probes recognizing an omb intron only generate large bright spots that are associated with nuclei. 

Scale bars = 5 μm. (D) Frequency distribution of intensity for all spots identified in a wing disc 

probed for sens RNAs. Using a threshold of twice the median spot intensity, all single mRNA 

spots were filtered out, leaving only spots that are associated with transcription sites. The 

frequency distribution for this class of spots is shown. (E) Transcription sites are assigned to 

cells. For each cell that contains one or more mRNA molecules, it is scored for whether it also 

has one or more transcription sites. The average fraction of all such cells with a transcription site 

is shown for each gene. Error bars represent 95% confidence intervals. (F) The variance of 

mRNAs/cell is ratiometrically compared to the mean mRNAs per cells for all genes. This ratio is 

much larger than one, irrespective of the median mRNA number for binned sub-populations of 

cells and the gene type. Error bars represent 95% confidence intervals. 
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(Campbell et al., 1992; Williams et al., 1991), and thus I anticipated a uniform distribution of 

mRNAs/cell if our method was accurate. Indeed, there was a fairly constant level of mRNAs/cell 

across the wing pouch as determined by my smFISH pipeline (Figure 3A).  

Transcription occurs in bursts 

 Transcription sites were counted by applying a threshold that only included spots with at 

least twice the intensity of a mature mRNA spot (Figure 4D). There was a broad distribution of 

transcription site intensities, suggesting a large range of nascent RNA numbers that were present 

on a gene at a given time.  

 Strikingly, many cells did not have a detectable transcription site even though the cells 

contained mature mRNAs (Figure 4E). From 50 - 80% of cells had this feature, and it was 

observed for all genes. This observation is not an artifact of segmentation erroneously assigning  

mature mRNAs to a cell, since the presence of transcription sites was highly variable before 

segmentation (Figure 5).  

 I wanted to know why cells with mature mRNAs lacked detectable transcription sites. 

One explanation is that each gene's promoter is always open, but since transcription is 

fundamentally stochastic, there would be times when zero or just a few Pol II molecules are  

transcribing the gene.  In this scenario, the birth and death of mRNAs can be described as a 

Poisson process.  For simple Poisson processes, the ratio of the variance to the mean number is 

one. In our case, Poisson-like birth-death of mRNAs would yield a ratio of variance in mRNA 

number to mean mRNA number to be one (Munsky et al., 2012; Raj and van Oudenaarden, 

2008). Since mRNA number per cell varied systematically across the wing disc because of Wg 

and Dpp signaling, I binned cells according to their position in the disc, as had been described 

earlier (Figure 1G, 2H). Strikingly, the ratio of variance to mean mature mRNA number per cell  
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Figure 5. Transcription sites and mRNA patterns in unsegmented images. (A,B,C,D,E) 

Three discs were analyzed independently (green, blue, orange dots) for spots that corresponded 

to the mRNAs from sens (A), salm (B), omb (C), dad (D) and brk (E). Spots were binned 

according to their positions along the AP or DV axes, and total mRNAs per bin were plotted. 

Note the strong concordance of independent discs for all genes. (A',B',C',D',E') The same three 

discs were analyzed independently (green, blue, orange dots) for spots that corresponded to 

transcription sites from sens (A), salm (B), omb (C), dad (D) and brk (E). Spots were binned 

according to their positions along the AP or DV axes, and total transcription sites per bin were 

plotted. Note the strong concordance of independent discs for all genes. 
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Figure 6. Modeling transcription sites using bursting dynamics. (A) Model framework 

showing the three rate parameters affecting transcription initiation. Two parameters affect the 

promoter state, while the third parameter only affects how many initiation events occur when the 

promoter is ON. (B) Pol II molecules in elongation mode are distributed along the transcription 

unit. If Pol II is upstream of the probe binding sites, the nascent transcript will not be detected. If 

Pol II is downstream, the nascent transcript will be detected as 100% signal. If Pol II is 

transcribing within the binding sites, the nascent transcript will be detected as a partial signal. 

These three different scenarios are all found in model simulations. For example, in the simulation 

result shown here, four Pol II's are situated such that a total of 12 virtual probe binding sites are 

present. Since each mRNA has 6 binding sites, it means that this simulated transcription site has 

12/6 or 2 units of normalized signal. Applying our filter cutoff for identifying a transcription site 

as 2 or more units, this simulated site would be scored as a positive. (C) The distribution of 

normalized signal intensity for 1,000 transcription site simulations. Shown are two distributions 

from simulations with different initiation rate parameters. Those simulations that result in signal 

intensities of 2 or more units are classified as detectable transcription sites. (D) The phase 

diagram of transcription site detection in the model. When burst size increases at low burst 

frequency, the likelihood of detecting a transcription site remains fairly constant. When burst 

size increases at high burst frequency (horizontal red arrow), the likelihood of detecting a 

transcription site is ultrasensitive to burst size. Likewise, when burst frequency increases at low 

burst size, the likelihood of detecting a transcription site remains fairly constant. When burst 

frequency increases at high burst size (vertical red arrow), the likelihood of detecting a 

transcription site is ultrasensitive to burst size.  
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was between 5 and 10 for all genes and was also fairly independent of mRNA output (Figure 

4F). This indicated that a simple Poisson process could not explain why I failed to detect 

transcription sites in every cell expressing mRNA.  

To determine if my observations were possibly caused by transcription bursting, I 

invoked a classical two-state model of transcription (Figure 6A). A promoter exists in one of two 

possible states - ON and OFF. The promoter switches between states at particular rates kon and 

koff. When the promoter is in the ON state, Pol II is permitted to initiate transcription that is 

subject to a rate constant kini. When the promoter is in the OFF state, Pol II is unable to initiate 

transcription. The model also includes a transcription elongation step, which is assumed to be 

100% processive, and whose timescale depends on the gene length and the rate of elongation.  

The latter is assumed to be 1,100 nucleotides/min, which is a value that has been experimentally 

determined in Drosophila (Ardehali et al., 2009).  

 In the model, transcriptional bursts have a characteristic size (number of transcripts per 

burst) and frequency (rate at which bursts occur). The average burst size is defined as kini / koff , 

whereas the average burst frequency is defined as (kon
-1 + koff

-1)-1. I systematically and 

independently varied the parameters kon, koff, and kini to tune the frequency and size of virtual 

bursts. For each parameter set, I ran 1,000 simulations of the master equation. To capture the 

stochastic nature of gene expression, most reactions in the model were treated as probabilistic 

events, with the exception of transcript elongation time. Therefore, simulations with identical 

parameter values nevertheless gave variable output. 

 To better relate the results of model simulations to experimental data, I performed the 

following treatments. First, I randomly paired two independent simulations to mimic the total 

transcription site activity of paired alleles within a nucleus. Second, I transformed the two 
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simulations' output to capture the heterogeneity in fluorescence signal intensity at a transcription 

site.  The intensity of each site depends on how many binding sites for probe are present in all 

nascent transcripts at the site (Figure 6B). This varies with the number of elongating Pol II 

molecules on the gene and the fraction of molecules that are elongating within or downstream of 

the region complementary to the probe set. Since this variable is highly dependent upon the 

position of the complementary region relative to the transcription start and stop sites, I adjusted 

model conditions to match each particular gene and its region of probe set complementarity. I 

used these constraints to estimate transcription site intensities from 1,000 pairs of simulations for 

each parameter set.  

 When a simulated transcription site intensity fell below the threshold of twice the number 

of probe binding sites per mRNA, I counted that simulation as having no "detectable" 

transcription site. This mimicked the threshold that was applied to the experimental data for 

identifying a transcription site.  I then asked what combination of burst size and frequency could 

theoretically account for the observed frequency of finding cells with a transcription site (this 

ranged from 20 to 50% of cells). A phase diagram revealed that a broad range of burst sizes and 

frequencies would explain our observations (Figure 6C). Therefore, according to my model 

results, tuning burst frequency and/or size can produce a variable likelihood of detecting a 

transcription site by smFISH. 

Burst frequency is regulated by Dpp and Wg 

 I quantified the frequency of detecting a transcription site as a function of cell position 

within the wing pouch (Figure 7A,B).  This frequency varied across the disc in a manner that 

was gene-specific.  Strikingly, for all genes, the spatial distributions of transcription site 

frequency strongly paralleled the mRNA number per cell (compare Figure 7A,B and Figures 1G,  
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Figure 7. Transcription site detection correlates with mRNA number. (A,B) The probability 

of detecting a cell with a transcription site varies with the cell's location relative to the source of 

morphogen. Error bars are 95% confidence intervals. (A) Cells are binned according to their 

distance from the pouch border, and the fraction of cells in each bin with a transcription site are 

shown for each Dpp-responsive gene. (B) Cells are binned according to their distance from the 

DV boundary, and the fraction of cells in each bin with a transcription site is shown for the sens 

gene. (C,D) The probability of detecting a cell with a transcription site varies linearly with the 

number of mRNA molecules in the cell. Fitted lines are from linear regression. Error bars are 

95% confidence intervals. (C) Cells are binned according to the number of mRNAs they contain, 

and the fraction of cells in each bin with a transcription site are shown for each Dpp-responsive 

gene. (D) Cells are binned according to the number of mRNAs they contain, and the fraction of 

cells in each bin with a transcription site is shown for the sens gene. (E) Linear regression 

analysis was performed on samples from C and D, shown is the slope with a parametric 95% 

confidence interval. 
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Figure 8. Burst frequency is regulated by Dpp and Wg. (A,B) The average number of nascent 

RNAs in a transcription site does not vary with the cell's location relative to the source of 

morphogen. Error bars are bootstrapped 95% confidence intervals. (A) Cells are binned 

according to their distance from the pouch border, and the average number of nascent RNAs per 

site in each bin are shown for each Dpp-responsive gene. (B) Cells are binned according to their 

distance from the DV boundary, and the average number of nascent RNAs per site in each bin is 

shown for the sens gene. (C) The average number of nascent RNAs in a transcription site does 

not vary with the probability of detecting a cell with a transcription site. Error bars are 95% 

confidence intervals.  (D,E) Modeling the relationship between average number of nascent RNAs 

in a transcription site and the probability of detecting a site for the dad gene. (D) Simulations are 

performed where the rate parameter kini has been systematically varied so that burst size is 

variable. Resulting values for nascent RNA number and fraction of cells with a site are shown. 

Each datapoint is the average of 1,000 simulations. Simulations are repeated for three different 

values of kon to specifically set the burst frequency to 0.04, 0.2 and 0.4 min-1. (E) Simulations are 

performed where the rate parameter kon has been systematically varied so that burst frequency is 

variable. Resulting values for nascent RNA number and fraction of cells with a site are shown. 

Each datapoint is the average of 1,000 simulations. Simulations are repeated for three different 

values of kini to specifically set the burst size to 1, 4 and 20. 
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2H). I further examined the relationship between mRNA number per cell and transcription site 

frequency (Figure 7C,D). Indeed, average mRNA number per cell and the probability of 

detecting transcription sites in cells were strongly correlated with one another.  Remarkably, the 

slopes of linear fits for three Dpp-responsive genes, brk, omb, and salm, were not significantly 

different from one another (Figure 7E). The slope for dad was similar to brk and omb but smaller 

than for salm. The slope for sens was smaller still. The linear correlation between frequency of 

transcription site detection and mRNA number confirms that gene regulation by Dpp and Wg is 

primarily determined through control of transcription initiation.  

 The likelihood of detecting a transcription site increases because either the promoter is 

spending more total time in the ON state or more RNAs are being transcribed while in the ON 

state. These properties are affected by burst size and burst frequency in different ways. I sought 

to determine whether burst size or frequency was being regulated. I did so by  

estimating the number of nascent RNAs at each transcription site, which was quantified as a 

multiple of the median pixel intensity of mature RNA spots (Chapter III Figure 2).  The average 

number of nascent RNAs per transcription site did not significantly vary between cells that were 

receiving different levels of Dpp and Wg signal (Figure 8A,B). This was observed for all genes. 

Moreover, the average number of nascent RNAs per transcription site was also independent of 

the likelihood that transcription was occurring in a cell (Figure 8C). Therefore, the propensity for 

a cell to generate nascent transcripts does not correlate with the number of nascent transcripts.   

 To understand the relationship between these observed features, I turned to the modeling 

framework. I first considered whether modulation of transcription burst size by Wg and Dpp 

could explain our observations. I modulated burst size by systematically varying the kini 

parameter, and from simulations, then calculated the number of nascent RNAs per transcription  
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Figure 9. Modeling the relationship between average number of nascent RNAs in a 

transcription site and the probability of detecting a site for the brk, omb, salm, and sens 

genes. (A) Simulations are performed where the rate parameter kini has been systematically 

varied so that burst size is variable. Resulting values for nascent RNA number and fraction of 

cells with a site are shown. Each datapoint is the average of 1,000 simulations. Simulations are 

repeated for three different values of kon to specifically set the burst frequency to 0.04, 0.2 and 

0.4 min-1. (B) Simulations are performed where the rate parameter kon has been systematically 

varied so that burst frequency is variable. Resulting values for nascent RNA number and fraction 

of cells with a site are shown. Each datapoint is the average of 1,000 simulations. Simulations 

are repeated for three different values of kini to specifically set the burst size to 1, 4 and 10. 
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site and the transcription site detection frequency. There was a positive correlation between 

nascent RNA number in a transcription site and the probability of detecting a transcription site 

(Figure 8D and Figure 9A). This was observed across a wide range of fixed burst frequencies.  

When nascent RNA number was 3 or higher, the correlation with transcription site frequency 

was strongest. Moreover, when the probability of a transcription site was very low, nascent RNA 

number converged to a common value irrespective of burst frequency. None of these model 

predictions were observed in the experimental results with the target genes (Figure 8C). It 

suggests that transcription burst size is not strongly regulated by Dpp and Wg.  

 I then modulated burst frequency in the model by systematically varying kon and 

calculated the number of nascent RNAs per transcription site and the transcription site frequency. 

There was little change in nascent RNA number as transcription site frequency changed, even 

across a wide range of fixed burst sizes (Figure 8E and Figure 9B).  Interestingly, the burst size 

appeared to determine what nascent RNA number value was held at a constant.  Moreover, there 

was no convergence of nascent RNA number when the probability of a transcription site was 

very low, irrespective of burst size. All of these model predictions agree well with the 

experimental results (Figure 8C). This suggests that Dpp and Wg regulation of genes in the wing 

disc primarily occurs by modulation of transcriptional burst frequency. 

A reduced Wg gradient affects Sens expression 

 I next sought to investigate what would happen to downstream gene expression if the 

upstream morphogen gradient was manipulated.  To do so, I utilized a membrane tethered 

variation of Wg that replaces endogenous Wg with a construct bearing a fusion with the type 2 

transmembrane protein Neurotactin.  This eliminates the ability of Wg to form a gradient but 

allows juxtacrine Wnt signaling.  Animals homozygous for this variation of Wg  
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Figure 10. smFISH analysis of Sens in tethered Wg wing discs. (A) Cells are binned 

according to their distance from the DV boundary, and the median sens mRNA per cell is plotted 

for each bin.  Error bars are 95% confidence intervals.  (B)  Fraction of cells with a sens 

transcription site in each bin is plotted against the median mRNA/cell in that bin.  Error bars are 

95% confidence intervals. Linear regression line is shown for each data set.  (C) Median nascent 

RNA per transcription site in each bin is plotted against the fraction of transcribing cells in that 

bin.  Error bars are 95% confidence intervals.  Loess fit for each data set is shown. 
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have a growth delay.  Expression domains of Wg-dependent genes in the wing disc are reduced, 

but produce normally patterned wings that are slightly reduced in size (Alexandre et al., 2014)).   

I analyzed sfGFP-sens expressions in animals bearing both sfGFP-sens and tethered Wg.  

I found that the expression domain of sfGFP-sens was limited to 15 µm (diameter of 

approximately three nuclei) beyond the D-V midline, as opposed to 40 µm for wild type animals.  

Additionally, Sens expression as measured by the median RNA per cell was reduced by 

approximately 65% in tethered Wg discs (Figure 10A).  

This suggests that sfGFP-sens expression is not being activated by tethered Wg as 

strongly as in wild type animals.  Next, I analyzed transcription sites for sfGFP-sens in tethered 

Wg discs.  If Wg signaling is controlling sfGFP-sens expression via burst frequency, I would 

expect to see fewer overall transcription sites in the tethered Wg discs. Since I predict that burst 

size is unchanged by Wg activity, I would expect these transcription sites to contain 

approximately the same nascent RNAs per transcription site. 

The proportion of cells with transcription sites in animals with tethered Wg decreased 

proportionally to the decrease in mature RNA expression.  The slope of the linear relationship 

between median RNA level and fraction of cells with a transcription site was not significantly 

altered in the tethered Wg discs (Figure 10B).  Additionally, the median intensity of these 

transcription sites was statistically identical to those in wild type discs (Figure 10C).  Therefore, 

the characteristics of transcription sites are exactly what would be predicted for these levels of 

mature RNA expression in discs with wildtype Wg. There are fewer transcribing cells, but their 

transcription sites have approximately the same number of nascent RNAs per site. This evidence 

suggests that these cells receive lower overall levels of Wg signaling from the tethered Wg than 

from wildtype Wg, and sfGFP-sens transcription responds concordantly by decreasing burst 
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frequency of transcription.  While eliminating the Wg morphogen gradient alters the levels and 

expression pattern of its downstream target sens, my data suggests this does alter the underlying 

transcription dynamics in terms of burst size and frequency change in response to Wg signaling.  

Notably, these decreased Sens levels do not lead to a strong wing phenotype in adult 

animals. However, it has been observed that tethered Wg causes growth delays and smaller 

wings (Alexandre et al., 2014).  All animals for this study were dissected at the white prepupal 

stage and should therefore be at the same developmental stage, but it is possible that the wing 

discs have a stronger growth delay than the overall animal.   Therefore, the changes in Sens 

expression domain that I observe may be more due to the earlier developmental age of these 

wing discs relative to controls.  This does not alter my conclusions about the effect of decreased 

Wg signaling on sens transcription dynamics, only the cause of the decreased Wg signaling. 

Salm-GFP shows altered dynamics from endogenous Salm 

 Initial experiments to determine the Dpp morphogen gradient on salm were performed 

using a transgenic version of salm-GFP.  This construct contains the entire known enhancer 

construct for salm, the salm gene, and a GFP tag (“FlyBase Reference Report: model organism 

Encyclopedia of Regulatory Network (modERN) Project, 2015-, Genomic BAC constructs 

containing epitope tagged proteins, generated by the modERN Project.,” n.d.).  Probing this 

construct with anti-GFP FISH probes revealed an apparent increase in salm-GFP fluorescence 

intensity in the anterior compartment of the disc relative to the posterior (Figure 11A).  Such a 

discrepancy between compartments had not been reported in salm literature, where in situ 

hybridization and antibody stains show a more homogeneous stripe about the anterior-posterior 

midline.  This was in contrast to the three other GFP constructs utilized in this study (brk, dad,  
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Figure 11. SmFISH analysis of Salm-GFP (A-B) Optical sections of smFISH. Scale bars=5µm. 

Orange arrows denote approximate location of the AP compartment boundary. (A) Salm-GFP 

animals probed for GFP mRNA.  (B) w1118 animals probed for salm mRNA.  (C-D) An axis 

tangential to the AP boundary was drawn and cells were divided into bins based on their position 

along this axis.  Numbers refer to the distance in µm from the anterior most border of the wing 

pouch. (C) Median mature RNA per cell in each bin is plotted.  Error bars are bootstrapped 95% 

confidence intervals. (D) Median nascent RNA per transcription site in each bin is plotted.  Error 

bars are bootstrapped 95% confidence intervals.  (E) Fractions of cells with a transcription site in 

each bin is plotted as a function of median mature RNA per cell in that bin. Linear regression 

lines are plotted. Error bars are bootstrapped 95% confidence intervals.  (F) Median nascent 

RNA per transcription in each bin is plotted as a function of fraction of transcribing cells in that 

bin. Linear regression lines are plotted. Error bars are bootstrapped 95% confidence intervals.   
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and sens), all of which showed expression domains that were consistent with previously reported 

in situ hybridization and antibody stains.   

When I probed for endogenous salm mRNA in non-transgenic discs, the pattern of 

fluorescence I observed was roughly equivalent in the anterior and posterior compartments 

(Figure 11B).  This pattern agrees with the literature with regards to the salm expression pattern.  

When I compared mRNA numbers between the endogenous salm and salm-GFP, I see that the 

median RNA per cell is elevated in salm-GFP relative to endogenous salm in the anterior 

compartment (Figure 11C).  This suggests that salm-GFP might be responding to Dpp signaling 

in an altered manner to the endogenous gene. The Dpp signaling gradient is not symmetrical in 

the anterior and posterior compartments of the discs and therefore alterations in sensitivity to this 

gradient might generate asymmetry in the salm stripe. 

To investigate this further, I compared salm-GFP and endogenous salm transcription 

sites.  Interestingly, while endogenous salm shows no change in nascent RNA per transcription 

sites across space, salm-GFP shows a marked increase in transcription site intensity across 

space, which correlates with the increase in mature RNA expression (Figure 11D,E).  This 

indicates more nascent RNAs per transcription site for salm-GFP.  Additionally, a smaller 

fraction of cells contained a transcription site for any given mature RNA expression level in 

salm-GFP animals than endogenous salm (Figure 11F).  Salm-GFP cells are less likely to 

contain a transcription site, but they contain more nascent RNAs per transcription site. 

 There are two explanations for these results.  First, Dpp signaling is altering salm-GFP 

burst size along the expression gradient.  According to my simulations, this would cause the 

number of nascent RNA per transcription site to be more labile in general (Figure 8D, 9B).  

Alternatively, salm-GFP could have an overall higher burst size.  As burst frequency increases, 
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this causes multiple bursts to be in close proximity to one another at a transcription site and 

increases the overall median nascent RNA per transcription site (Figure 9A).  It is not possible to 

strongly distinguish between these two possibilities.  However, given that all the other assayed 

genes appear to be regulated by burst frequency, it seems more likely that the salm-GFP is also 

modulated by burst frequency, and that is has a higher baseline burst size.  This might also 

explain the difference between the posterior and anterior compartments, as small asymmetries in 

the Dpp gradient may be amplified somewhat by a larger baseline burst size.   

sfGFP-sens transcription sites are primarily monoallelic 

 I investigated how copy number impacts the number of detected transcripts and 

transcription sites by comparing animals bearing one copy of sfGFP-sens and one copy of wild-

type sens to animals bearing two copies of sfGFP-sens.  I probed these discs with anti-GFP FISH 

probes.   The number of mature mRNA spots per cell detected was not straightforwardly halved 

in cells with one copy of sfGFP-sens.  At the DV midline, the two had approximately the same 

median RNA per cell.  At the peak of expression, 15 µm from the D-V midline, one copy sfGFP-

sens had a median RNA per cell approximately 65% of the level with two copies.  In regions 

further from the DV midline, one copy sfGFP-sens showed approximately 50% the numbers of 

RNA per cell (Figure 12A).   With regards to numbers of transcription sites, the single copy 

sfGFP-sens showed approximately half the number of transcribing cells as two copies of sfGFP-

sens across the entire disc (Figure 12B).  Both groups had statistically identical numbers of 

nascent RNAs present at these sites (Figure 12C).  If each observed transcription site was the 

product of both alleles together, I would expect a similar number of transcription sites and a 

reduction in nascent RNAs at each site in discs with one copy of sfGFP-sens.  Taken together, 

the reduction in number but not intensity of transcription sites indicates that most of the  
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Figure 12. SmFISH analysis of one and two copies of sfGFP-sens. (A-C) Cells are binned 

according to their distance from the DV boundary. (A) Median mature RNA per cell in each bin 

is plotted.  Error bars are bootstrapped 95% confidence intervals. (B) Fraction of transcribing 

cells in each bin is plotted.  Error bars are bootstrapped 95% confidence intervals.   (C) Median 

nascent RNA per transcription site in each bin is plotted.  Error bars are bootstrapped 95% 

confidence intervals.   
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transcription sites observed for sfGFP-sens comprise a single allele.  This suggests that burst 

frequency is low enough in these cells that two alleles bursting at the same time is relatively rare.  

Each allele spends most of its time in an “Off” state. 

Estimating burst frequency 

 The omb gene comprises of two exons separated by a 63 kb intron (Grimm and 

Pflugfelder, 1996). I created two sets of probes for the omb gene, one for each exon.  RNA 

polymerase II is predicted to take approximately 53 minutes to transcribe this intron.  Therefore, 

the 5’ exon is transcribed approximately 53 minutes before the 3’ exon (Ardehali et al., 2009).  

Probes designed to detect the 5’ exon will detect all nascent RNAs initiated in the previous 53 

minutes.  Therefore, even at relatively low burst frequencies, most transcribing cells should show 

a transcription site.  I observed that the fraction of cells with a transcription site increased in a 

non-linear manner, rapidly approaching a maximal value of 40-60%, even in areas of the disc 

with a median level of 1 or 2 transcripts per cell (Figure 13A).   This may represent a ceiling of 

detection in analysis, as no other gene had measured fractions of transcribing cells above 60%.   

I observed that in regions of higher omb expression in the disc, the average number of 

nascent transcripts at that site increased linearly (Figure 13B).  Averaged over such a large 

timescale, this is not informative about whether transcription is controlled by burst size or 

frequency.  With such a long transcription time, smFISH spots of the 5’ exon are likely to 

contain transcription products that represent multiple transcription bursts.  Therefore, I expected 

to see an increase in the number of nascent RNA per transcription site, as these bursts would 

accumulate in regions of higher transcription regardless of transcription dynamics.  However, if I 

were to assume that transcription is controlled primarily by burst frequency as my other data 

suggests, I can estimate the number of bursts occurring in 53 minutes of transcription time. At 
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the highest levels of omb transcription in my dataset, each 5’ exonic spot contains a median of 

4.5-fold more nascent RNAs than a 3’ exonic spot (Figure 13B).  If 3’ spots represent a single 

transcription burst, I can conclude that in 53 minutes, there was an average of 4.5 transcription 

bursts, or one burst every 11.7 minutes. However, this estimation has many caveats.  It assumes 

that the average burst size is entirely captured by 3’ exon spots, which may not be the case.  It 

also is likely an underestimation, because my analysis pipeline must underestimate the 

transcription intensity of very bright transcription sites. 
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Figure 13. smFISH analysis of 5’ and 3’ exons of the omb gene. (A) Fraction of cells with a 

transcription site in each bin is plotted as a function of median mature RNA per cell in that bin. 

Error bars are bootstrapped 95% confidence intervals.  (B) Median nascent RNAs per 

transcription site in each bin is plotted as a function of median mature RNA per cell in that bin. 

Error bars are bootstrapped 95% confidence intervals.   
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Discussion 

 Morphogens elicit different transcriptional outputs from target genes, depending on local 

concentration of the morphogen. The targets of Dpp signaling in the wing offer a well-studied 

example of this concept. Transcription of the gene brk is directly regulated by Mothers-against-

dpp (Mad), the effector of Dpp (Minami et al., 1999; Moser and Campbell, 2005). In complex 

with Medea and Schnurri, Mad represses brk transcription (Cai and Laughon, 2009).  This 

generates a gradient of Brk protein expression that is inverted to the Dpp gradient. In turn, the 

level of Brk protein is instrumental in repressing the expression of genes that are induced by 

Dpp, including omb and salm (Campbell and Tomlinson, 1999). Thus, opposing gradients of 

activation and repression define the expression domains of omb and salm. Since omb is less 

sensitive to Brk repression than salm, its expression domain is broader than that of salm. 

Transcription of salm is directly activated by Dpp, but in this case, Mad and Medea without 

Schnurri activate salm transcription (Moser & Campbell, 2005). Curiously, omb transcription 

does not directly depend on Dpp signaling, and its transcriptional activation is brought about by 

unknown factors (Sivasankaran et al., 2000) . 

 Given the diverse mechanisms by which genes such as omb, brk, and salm are regulated, 

it is illuminating that the frequency of transcription bursting is the regulated step for all of these 

genes. Burst size appears to be independent of Dpp signaling for these genes. If our two-state 

model for initiation is accurate, then kon is the most likely step that is being regulated directly and 

indirectly by Dpp. This is because kon specifically affects burst frequency and not size whereas 

koff affects both frequency and size. If kon is the kinetic step under regulation for all of these 

genes, how is it rendered rate-limiting given such diverse enhancer architectures and 

transcription factor inputs? It has been found that burst frequency correlates with enhancer 
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strength and enhancer-promoter contact, suggesting that kon is potentiated by enhancer-promoter 

contact and is mediated by transcription factor binding to DNA (Bartman et al., 2016; Bothma et 

al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al., 2019)(Bartman et al., 2016; 

Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al., 2019).   

 In spite of this universal regulation of burst frequency by Dpp, there are other factors that 

also help determine the expression domains of these genes. For example, salm and omb are 

expressed in nested domains; cells close to the source of Dpp contain mRNAs for both genes 

while lateral cells more distant from the source contain predominantly omb mRNAs (Figure 2H). 

Although burst frequency control might solely dictate these differences, it appears not to be the 

case. The likelihood a cell is transcribing either gene does not strictly correlate with the breadth 

of their expression domains. Lateral cells that predominantly contain omb mRNAs nevertheless 

are more likely to be transcribing salm than omb (Figure 5A). Looking at the relationship 

between transcription likelihood and mRNA number (Figure 5C), the relationship for both genes 

is linear with similar slopes. But for omb, the curve is shifted such that more mRNAs are found 

in cells that have a lower likelihood to be undergoing transcription. This shift is not due to a 

greater burst size of omb transcription (Figure 6C). Rather, the simplest interpretation is that the 

half-life of omb mRNA is greater than the half-life for salm mRNA, so omb mRNAs are more 

readily detected in cells between transcription bursts. Thus, the broader domain of omb 

expression might be accounted for by mRNA stability. 

 This conclusion is at odds with previous studies of omb regulation that used an enhancer 

trap reporter for omb expression. There, the reporter was expressed in a broad domain within the 

wing. However, this reporter expressed lacZ in response to cis-regulatory elements near the most 

distal promoter driving a minor species of omb transcript (Mayer et al., 2013).  There is a more 
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proximal promoter 13 kb that appears to be the major site of transcription initiation for omb 

(Flybase).  

 My results also challenge the view that salm and omb expression domains have sharp 

boundaries due to transcription thresholds set by Brk and Dpp. I find that omb and salm mRNA 

numbers per cell drop gradually with distance from the source of Dpp (Figure 2H). As well, their 

gradients in mRNA number are inversely correlated with the gradient in brk mRNA number. 

Salm has relatively constant mRNA number in cells near the AP boundary, and those numbers 

gradually diminish in cells located more laterally. A similar pattern is seen with omb, except the 

domain with constant omb mRNA number is smaller than for salm. However, the salm and omb 

enhancer trap reporters as well as anti-Salm immunohistochemistry have reported expression 

domains with sharp boundaries.  Possibly, the discrepancy hints at some threshold of mRNA 

expression below which protein output drops sharply. It is also possible that the previously 

characterized expression domains for salm and omb were distorted by non-linear detection of 

antibodies that recognize Salm and the protein product of lacZ, β-galactosidase.   

Materials and Methods 

Drosophila genetics 

 All Drosophila were raised at room temperature and grown on standard molasses-

cornmeal food.  The sfGFP-sens transgenic line was used as described in (Cassidy et al., 2013). 

The Nrt-Wg stock was used as described in (Alexandre et al., 2014). Experiments were 

performed on dad-GFP, salm-GFP,  and brk-GFP transgenes obtained from Bloomington 

Drosophila Stock Center (stocks 81273 and 38629, respectively). For all transgenic experiments, 

smFISH was performed on homozygous individuals.  Experiments were performed on 

endogenous omb and salm in w1118 individuals.   
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Data Analysis 

Binning of data: Each disc is imaged with the DV boundary located at the y-coordinate midline 

of the image. Therefore, the x-coordinate of the image corresponds to position along the disc's 

AP axis, and the y-coordinate corresponds to position along the DV axis.  In order to analyze 

data across developmental axes, each image is divided into spatial bins of 64 pixels each, 

approximately equal to the diameter of one cell nucleus. RNA spots are assigned to a bin 

according to the position of their associated nuclear centroid.   

Sample size and replicates:  I analyzed image stacks from three independent discs for each 

experiment.  Each image stack contains approximately 1,700 identified nuclei.  Therefore, the 

total sample size is approximately 5,000 cells per experiment. Similar trends in RNA and 

transcription spots feature are observed in each disc individually, and hence, the analysis is not 

distorted by artifacts in pooling and cell segmentation (Figure 5).  

Alignment of replicates along developmental axes:  While each disc is imaged roughly in the 

same region, there is not an unambiguous landmark that precisely registers different disc images 

with one another.  To pool data across space as accurately as possible, I register discs to each 

other based on their mRNA spot distributions over space.   For each image data set, the number 

of RNAs per spatial bin is summed, and the distributions across bins are compared. Bins are then 

manually registered such that the distribution profiles of the 3 datasets line up with one another 

(Figure 5 A-E).  The overlapping bins from the three datasets are then assigned to a pooled bin. 

Pooling includes the nuclei centroids as well as the transcription and RNA spots. This is repeated 

for all bins.   

Calculations:  Median mature mRNAs per cell is calculated from total number of mature mRNA 

spots for each cell within a spatial bin of pooled data.  As the distribution of mRNAs per cell is 
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not normally distributed and has a long tail, I ascertained that the median was a more robust 

descriptor of the “center” of the distribution than mean.   

Median nascent RNAs per cell is calculated from normalized intensity measurements for each 

transcription spot within a spatial bin of pooled data.  All nascent RNA spots are included.  As 

the distribution of RNA per cell is not normally distributed and has a long tail, I ascertained that 

the median was a more robust descriptor of the “center” of the distribution than mean.  Because 

the number of transcription sites varies over space, sample sizes vary for calculating median 

nascent RNAs per cell.  For bins where fewer than 5% of cells contain a transcription site, 

median nascent RNAs per cell was not calculated, as the sample size was determined to be too 

small (<15).  

Fraction of cells with a transcription site is calculated by dividing the number of cells in a 

pooled spatial bin with at least one transcription site assigned to them by the total number of 

cells in that spatial bin.   

Fano factor is calculated for each spatial bin by dividing the variance in the mRNA per cell 

distribution by the mean mRNA per cell for all cells assigned to that pooled spatial bin.   

Curve and line fitting: Linear models are produced by unweighted least squares linear regression.  

LOESS fits are performed using the loess fitter in R, with an optimized span to minimize 

residuals.  

Statistics are calculated by bootstrap resampling analysis using the bias-corrected and 

accelerated method. I resample data within each bin of pooled data and calculate the statistic of 

interest 10,000 times.  The mean value of the statistic and a 95% confidence interval are 

calculated from these resampled values. 
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Stochastic Simulation Model 

 I model the various steps of gene expression, based on central dogma, as linear first order 

reactions. To simulate the stochastic nature of reactions, I implement the model as a Markov 

process using Gillespie’s Stochastic Simulation Algorithm (Gillespie, 1977).  Simple Markov 

processes can be analyzed using a chemical master equation to provide a full probability 

distribution of states as they evolve through time. The master equation defining our gene 

expression Markov process is as follows:  

𝜕𝑃(𝑁𝑚 , 𝑁𝑔, 𝑡)

𝜕𝑡
= 𝐾𝑖𝑛𝑖[(𝑁𝑚 − 1)𝑃(𝑁𝑚 − 1, 𝑁𝑔, 𝑡) − 𝑃(𝑁𝑚 , 𝑁𝑔 , 𝑡)]

+ 𝐾𝑑𝑒𝑔[(𝑁𝑚 + 1)𝑃(𝑁𝑚 + 1, 𝑁𝑔, 𝑡) − 𝑁𝑚𝑃(𝑁𝑚 , 𝑁𝑔, 𝑡)]

+ 𝐾𝑜𝑛[((𝑁𝑔 − 𝑁𝑔𝑡𝑜𝑡))𝑃(𝑁𝑚 , 𝑁𝑔 − 1, 𝑡) − (𝑁𝑔 − 𝑁𝑔𝑡𝑜𝑡)𝑃(𝑁𝑚 , 𝑁𝑔, 𝑡)]

+ 𝐾𝑜𝑓𝑓[(𝑁𝑔 + 1)𝑃(𝑁𝑚 , 𝑁𝑔 + 1, 𝑡) − 𝑁𝑔𝑃(𝑁𝑚 , 𝑁𝑔, 𝑡)] 

where 𝑁𝑚 ,𝑁𝑔, and t are defined as the number of RNA molecules present, as the number of 

transcriptionally active gene copies, and simulation time, respectively. 𝑁𝑔𝑡𝑜𝑡 is defined as the total 

number of gene copies present, and thus is the maximum number of active gene copies that can 

exist in the simulation.  Kini , kdeg , kon , and koff  are rate constants defining the rates of transcription 

initiation, RNA degradation, promoter state switching from off to on, and promoter state switching 

from on to off, respectively. 

As the Markov process gets more complex, the master equation can become too 

complicated to solve. Gillespie’s Algorithm is a statistically exact method that generates a 

probability distribution identical to the solution of the corresponding master equation given that a 

large number of simulations are realized. 

 A brief description of how the Gillespie simulation produces each probability distribution 

is as follows:  
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1. I initialize all simulations to start with no mRNA molecules and promoter state is set to 

OFF.  

2. For each event i in the simulation, a total rate rtot is calculated by summing all ri reaction 

rate constants in the model, given the current promoter state and the total number of 

mRNA molecules present.   

3. A time-step τ is generated from an exponential probability distribution with mean 1/rtot.  

This τ is the time interval between the current event and the next event.   

4. Each event i is selected from the list of reaction steps in the model available at that time 

(promoter switching, transcription initiation, mRNA decay). The probability a reaction 

step is selected is equal to ri / rtot.  An event is selected at random given these 

probabilities.  For each event, the following actions are taken: 

• Promoter switches to ON: Promoter is now in ON state, transcription initiation is now 

included in rtot,  

• Promoter switches to OFF: Promoter is now in OFF state, transcription initiation is no 

longer included in rtot.  

• Transcription Initiation: Number of mature mRNA molecules is increased by 1. 

• RNA degradation: Number of mature mRNA molecules is decreased by 1. 

5.  Simulation time is updated as t + τ where t is the total time elapsed in the simulation. 

 

 Each simulation is run for 10,000 iterative events to approximate steady-state conditions, 

at the end of which the number of mRNA molecules present in the simulation is recorded. 

Independent simulations are then randomly paired to mimic the two alleles within a cell, and the 
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sum of mRNA numbers is recorded as the mRNA output per cell.  A minimum of 1,000 

simulation pairs are generated for each set of rate parameter values.  

 The RNA decay parameter kdeg is fixed at 0.04/min for all simulations, as this rate had 

been experimentally determined for sens mRNA (Giri et al., 2020). The transcriptional rate 

parameters are varied in accordance with the specific hypothesis being tested. I constrain them 

loosely to be within an order of magnitude of reported values for these rates from the literature 

(Milo, Jorgensen, Moran, Iber, & Springer, 2010). I also constrain these rates so as to produce 

steady state mRNA numbers similar to experimental data. 

• kini is varied from 0.2 to 60 /min 

• kon is varied from 0.008 to 38/min 

• koff is varied from 0.016 to 20/min 

To perform a parameter sweep, I vary the relevant parameter across the defined range. Each rate 

parameter value in the sweep is used to make 1,000 paired simulations as described above. 

Nascent Transcripts:  Thus far I have described how model simulations generate in silico data 

for mature mRNA numbers. I also use the same simulations to approximate the number of 

nascent RNAs per gene. After 10,000 iterative events are completed in a simulation, the number 

of nascent RNAs is counted. A single nascent RNA is counted if a single transcription initiation 

event has occurred within an interval of time (τelong) equal to the time it is estimated that RNA 

polymerase takes to elongate from the binding site for the 5’-most oligo probe to the 3' end of the 

RNA. To calculate τelong for each gene, I divide the number of nucleotides from 5' probe-binding 

site to 3' end by the transcription elongation rate. This rate is assumed to be 1,100 

nucleotides/min, as experimentally determined (Ardehali et al., 2009). 
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Gene 
τelong (min) 

brk 
1.35 

dad 
2.05 

sens 
5.15 

salm 
5.30 

omb 
3.05 

 

 I weight the count of nascent RNAs in a simulation to mimic the fluorescence output 

from these nascent RNAs if they are hybridized to probes. I define τprobe to be the time interval 

for RNA polymerase to elongate from the 5’-most probe-binding site to the 3’-most probe-

binding site. If a nascent RNA had been initiated in a time less than τprobe, then I weight the 

counting of that nascent RNA as 0.5 rather than 1. I do this because the probe-binding region of 

the nascent RNA is partially transcribed at this point. For simplicity, the exact locations of 

probes and RNA polymerase are not taken into account to calculate the weighting, and instead I 

assign the overall probability of fluorescence for an ensemble of such partially transcribed 

RNAs. If a nascent RNA had been initiated in a time greater than or equal to τprobe and less than 

τelong, then I weight the counting of that nascent RNA as 1. These RNAs are assumed to produce 

100% of the fluorescence of a mature RNA spot, since all probe-binding sites are transcribed at 

this point. 

 I randomly pair two simulations and sum the number of weighted nascent transcripts. 

This mimics the experimental conditions where the two gene alleles are physically paired and 
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thus their nascent RNAs are co-localized in space. I collate 1,000 paired simulations for each 

parameter set and calculate the following statistics: 

Fraction of virtual cells with a transcription site is calculated by counting how many paired 

simulations have a total number of weighted nascent RNAs of 2.0 or more. This is done in order 

to be consistent with the limitations of the experimental data; only nuclear spots with 

fluorescence greater or equal to 2 mature mRNA spots were called as transcription sites. When 

this number of paired simulations is divided by the total of 1,000 paired simulations, it is the 

fraction of virtual cells with a transcription site. 

Median number of nascent RNAs per virtual cell is calculated from those paired simulations with 

a total number of weighted nascent RNAs of 2.0 or more.  
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Chapter V: Effects of Metabolism on Gene Regulatory 

Networks 
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Introduction 

 

Growth and development are interlinked processes in the formation of an animal.  In 

order for development to proceed appropriately, events must be coordinated in the body through 

time.  The timing of induction of morphogenic events relative to tissue growth can cause changes 

in resulting organ size relative to shape.  Changes in developmental timing of events relative to 

one another are a mechanism of evolutionary change in biology (Gould, 1977).  Therefore, if 

growth rate of an animal is altered during its development, the processes governing development 

must be controlled in a manner that can accommodate such changes.  As gene expression 

dynamics are a critical component of developmental processes, it is reasonable to suggest that 

gene expression must contain some mechanisms conferring robustness to perturbations in growth 

rate.  

 

Environmental factors influence growth and development via metabolism 

Several variables have been shown to influence growth and developmental timescales.  

Fasting and other means of nutrient limitation slows growth and development in many animals, 

meaning that nutritional status affects animal’s developmental rate. Nutrient limitation also 

extends overall lifespan (Arendt, 1997; Pontzer et al., 2016). Ambient temperature can also 

influence the growth rate of ectothermic animals, including Drosophila (Kuntz and Eisen, 2014; 

Zuo et al., 2012).  These environmental factors have complex effects.  Each of these directly 

effects biochemical reactions: temperature alters the speed at which they occur, and nutrient 

deprivation alters the availability of reactants. We might then hypothesize that the mechanism by 
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which environmental factors affect growth rates is via metabolism. A model has been invoked 

wherein developmental timing can be explained by body size and temperature as they impact the 

rate of biochemical reactions in the cell (Gillooly et al., 2002).  However, both temperature and 

nutrient limitation also activate respective signaling pathways which direct cells to coordinate a 

variety of responses across the animal.  Therefore, more precise tools for altering metabolism are 

needed.   Indeed, when cellular metabolism is more directly manipulated by mutations in 

metabolic respiration, the growth and developmental rate of resulting animals is affected (Nakai 

et al., 2001). In Drosophila, direct genetic alterations in glucose metabolism also causes 

developmental delays (Rulifson et al., 2002).   

An observation in animals with perturbed developmental rates is altered penetrance of 

developmental phenotypes.  Lowering temperature and fasting appear to suppress developmental 

phenotypes of many mutations (Child, 1939, 1935).  Likewise, increasing growth rate of broiler 

chickens in an agricultural setting by breeding results in increased musculoskeletal defects 

(Julian, 2005).  It seems intuitive that given more time to complete development, animals are 

more able to correctly develop even with genetic perturbations.   However, it is more difficult to 

precisely conceive of how this occurs on a cellular level.  One method may be to explore the 

effects of metabolism on expression of genes that influence development.  Many developmental 

processes are influenced by gene regulatory networks (GRNs), that control the specification of 

cell types from pluripotent cells.  GRN’s coordinate inputs from many genes to act on a cell’s 

decision if and when to differentiate (Levine and Davidson, 2005). 

The Yan Network 

One example of a GRN critical for differentiation is a network with the Drosophila 

protein Yan as a central component.  The Yan protein is a transcriptional repressor with an ETS 
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domain (Lai and Rubin, 1992). Yan is involved in patterning multiple Drosophila tissues where 

receptor tyrosine kinases (RTKs) are used for patterning, including the embryonic ventral 

midline, the mesoderm, the trachea and the head (Price and Lai, 1999; Rebay and Rubin, 1995).  

Yan is thought to be general repressor of differentiation in contexts where RTK activity is an 

inductive signal. When RTKs activate the Mitogen Activated Protein Kinase (MAPK) signal 

transduction pathway, it down-regulates Yan, allowing differentiation to proceed.  In the larval 

and pupal eye imaginal disc, Yan is expressed in all undifferentiated cells in the morphogenetic 

furrow and is lost as the nuclei rise apically and differentiate (Rebay and Rubin, 1995).  

Yan down-regulation is controlled via multiple pathways.  MAPK activity leads directly 

to phosphorylation and decay of Yan protein, but also to the activation of three factors that 

contribute to Yan’s deactivation.  MAPK activates the transcriptional activator Pointed-P2 (Pnt-

P2), which competes with Yan for DNA binding sites in target gene enhancers.  Pnt-P2 also 

activates transcription of Mae and miR-7.  Mae inactivates Yan and facilitates its 

phosphorylation by MAPK (Vivekendand et al. 2004).  miR-7 post transcriptionally represses 

yan expression (Li and Carthew, 2005).  Thus, an entire network of redundant interactions exists 

to ensure the downregulation of Yan in response to RTK signaling.   

Results 

miR-7 regulates Yan Levels in Eye Imaginal Disc Precursor Cells 

 In order to test the hypothesis that redundant repression is critical for control of gene 

expression in development, I utilized methodology and tools for gene quantification in the eye 

imaginal disc in order to quantify the developmental gene Yan.    
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Figure 1. Redundant repression in the Yan network.  Schematic of the network inputs 

controlling Yan protein expression in the eye imaginal disc.  Yan’s function in the eye disc is to 

repress differentiation of precursor cells (grey) into neuron cells (blue). 
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A transgenic form of YFP-tagged Yan was used as described in (Peláez et al., 2015) 

Confocal z-stacks are captured of fixed eye-antennal imaginal discs from animals bearing 

Yan-YFP and fluorescently tagged histone H2 protein.  The FlyEye Silhouette software package 

segments these images using a meanshift-root algorithm.  Nuclei of differentiating neurons rise 

apically in the tissue and change shape, allowing unambiguous identification by a trained 

observer.  The FlyEye Silhouette graphical user interface allows the user to manually define and 

classify cell types in the image based on nucleus position. The fluorescence data from these cells 

is extracted and plotted as ratio of Yan-YFP fluorescence to histone-RFP fluorescence in order to 

control for nuclear size and other variations in fluorescence across the disc.  Since a column of 

ommatidia is generated every two hours, each column in a single disc can be analyzed 

successively to give an approximation of the time course of gene expression through 

development (Peláez et al., 2015).  

Pelaez et al. (2015) found that Yan-YFP expression is induced strongly in all cells just 

posterior to the morphogenetic furrow of the eye imaginal disc.  In differentiating neurons, Yan 

levels rapidly decline to basal levels.  In precursor cells, Yan-YFP levels slowly decrease over 

time.  There is a great deal of heterogeneity in the levels of Yan-YFP in this precursor cell 

population. 

Several lines of evidence strongly suggested that miR-7 regulates Yan.  Overexpression 

of miR-7 in eye cells phenocopies Yan loss-of-function, producing ectopic R7 cells.  The Yan 3’ 

UTR contains four binding sites for miR-7.  A GFP reporter fusion to the Yan 3’ UTR lacking 

these binding sites is upregulated compared to a reporter with the wild-type Yan UTR (Li and 

Carthew, 2005).  Furthermore, overexpression of the MAPK-resistant YanACT allele is partially 
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rescued by miR-7 overexpression.  In miR-7 mutant animals, Yan expression as visualized with 

immunohistochemistry appears to be qualitatively higher and more variable, but only in animals 

exposed to fluctuating temperature conditions (Li et al., 2009).   

Initial experiments sought to describe the effects of the deletion of yan’s miR-7 binding 

sites on Yan-YFP fluorescence.  To do so, a version of the Yan-YFP gene was created with all 

four miR-7 binding sites scrambled.  This represents a more specific and targeted perturbation 

than previous work from the lab, which had perturbed miR-7 itself.  Yan-YFP and YanΔmiR-7-YFP 

animals were generated with their endogenous yan gene mutated, so that the entire active pool of 

Yan protein would be fluorescently labeled.  A very mild eye roughening was observed in both 

Yan-YFP and YanΔmiR-7-YFP animals, with mutant animals showing a slightly increased 

prevalence of the rough eye relative to the wild-type version (Figure 3B-D).  Rearing the animals 

at a higher temperature resulted in increased penetrance of this phenotype for both variants of 

Yan-YFP.  The fold-change of the effect was not significantly different between miR-7 

insensitive and wild-type Yan-YFP alleles (Figure 3D).  Therefore, while there seems to be a 

miR-7 dependent effect on this phenotype and a temperature related effect on this phenotype, it 

does not appear that these effects interact in a synergistic way.  While this observation could 

argue that miR-7 function itself is not dependent on temperature, it is also possible that the 

observed phenotype is influenced by the different genetic backgrounds of the two strains.  

Eye imaginal discs from animals bearing either the Yan-YFP or YanΔmiR-7-YFP were 

dissected and imaged using confocal microscopy in order to assay YFP fluorescence across the 

disc.  Animals also contained an RFP-labeled Histone H2A in order to normalize fluorescence to 

nucleus size, shape and other factors. Cells were segmented using FlyEye Silhouette software 
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package, where relevant nuclei of neurons and precursors were manually selected.  The ratio of 

YFP to RFP was calculated for each cell.  I assume that each column of ommatidia represents on  
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Figure 2. Imaging Yan-YFP fluorescence. (A) Schematic of eye antennal imaginal disc 

complex, with approximate late third-instar expression pattern of Yan expression colored in 

green.  Red arrow denotes morphogenetic furrow. Purple box indicates approximate region 

imaged for analysis.  Anterior is to the left. (B-E)  Representative confocal sections of eye 

imaginal discs expressing Histone-RFP (left) and Yan-YFP (center).  Approximate location of 

morphogenetic furrow is indicated by red arrow. All sections are imaged about the equator of the 

disc, anterior is to the left. (B) Yan-YFP and Histone-RFP visualized in animals with normal 

metabolism, (dILP2-GAL4 only).  (C) Yan ΔmiR-7-YFP  and Histone-RFP visualized in animals 

with normal metabolism, (dILP2-GAL4 only).  (D) Yan-YFP and Histone-RFP visualized in 

animals with slow metabolism caused by genetic ablation of insulin-producing cells (dILP2-

GAL4> UAS-rpr).  (E) Yan ΔmiR-7-YFP and Histone-RFP visualized in animals with slow 

metabolism caused by genetic ablation of insulin-producing cells (dILP2-GAL4> UAS-rpr).   
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Figure 3. Loss of miR-7 repression on Yan effects in the eye.  (A) Quantification of Yan-YFP 

protein dynamics from eye imaginal discs bearing Yan-YFP. Solid lines represent moving 

averages. Shaded regions denote 95% confidence intervals. Zero marks induction of Yan-YFP 

expression. (B) Representative SEM image of a wild type Drosophila eye. (C) Representative 

SEM image of a Drosophila eye scored as mildly rough. (D) Quantification of penetrance of 

mild eye roughening phenotype among Yan-YFP lines. Each bar represents the mean penetrance 

of the mild rough eye phenotype of 3 independent populations (derived from the same fly line) of 

80-250 individuals.  Error bars are SEM.  P-values are result of Fisher’s Exact Test. 
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average two hours of developmental time, allowing me to use column number as a proxy of 

developmental time by measuring each cell’s distance relative to the nearest column.   

As expected, both Yan-YFP and YanΔmiR-7-YFP levels increased rapidly in precursor cells 

just posterior to the morphogenetic furrow.  Upon specification to a neuronal fate, YFP levels 

decreased rapidly to basal levels as Yan-YFP responds to RTK signaling and is repressed.  In 

precursors, Yan-YFP levels decrease over time at a more modest rate, remaining elevated 

relative to basal levels.  Therefore, each single cell experiences a “pulse” of Yan expression 

followed by a decay over time.  The decay is rapid in cells fated to become neurons and long in 

cells that remain uncommitted.  The maximum level of YanΔmiR-7-YFP seems to be elevated in 

precursor cells relative to Yan-YFP maximum level.  YanΔmiR-7-YFP decay appears also to be 

delayed somewhat in these precursor cells relative to Yan-YFP.  Therefore, I conclude that miR-

7 is acting as a weak repressor of Yan in precursor cells.  This is consistent with known 

information about microRNA function on a molecular scale. 

Metabolic Effects on miR-7 Insensitive Yan 

 A mathematical model was constructed by Sebastian Bernasek in the Amaral group at 

Northwestern to predict how metabolic rate would affect the pulse of Yan.  Modeling was 

performed using a general engineering framework known as control theory. In this framework, 

an input stimulates a pulse of protein in a cell, which is then attenuated by the simulated inputs 

of many repressive control mechanisms. This process is iterated many times to create many 

simulated cells.  Noise is introduced to simulate gene expression stochasticity, making each cell 

have a slightly different pulse trajectory through time. The ensemble of simulated cells created 

generated a range of likely outcomes.  When a weak repressor such as a microRNA is removed 

from the model, the maximum output levels of the protein pulse increase, and attenuation is 
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delayed (Figure 4A).  This behavior recapitulates what is observed in the dynamics of YanΔmiR-7-

YFP  relative to Yan-YFP (Figure 3A and 4C).  Slow metabolism was simulated in the model by 

reducing the rate parameters of all ATP-dependent reactions in the model.  This results in a 

decreased protein output overall.  Crucially, in the slow metabolism simulation, the removal of a 

weak repressor such as a microRNA does not alter the dynamics of the protein pulse (Figure 4B).  

I quantified Yan-YFP and YanΔmiR-7-YFP dynamics in eye discs from larvae with genetic 

ablation of insulin producing cells (IPCs).  In normal flies, IPCs secrete insulin-like peptides 

which regulate glucose uptake by body cells.  IPC ablation results in increased circulating 

glucose, indicating that cells are taking up less glucose for metabolism. Overall energy 

metabolism is reduced 30%, as determined by whole-body calorimetry. As a result, IPC-ablated 

animals experience a decreased rate of growth and development.  As predicted by the 

mathematical model, Yan-YFP dynamics were identical in these (Broughton et al., 2005; 

Rulifson et al., 2002). Slow metabolism flies with or without miR-7 regulation (Figure 4D). This 

result supports the hypothesis that redundant repressors such as miR-7 in gene regulatory 

networks are unnecessary under conditions of reduced metabolism and slowed growth.   

Caloric restriction affects salm RNA levels 

 I wondered how gene expression at the RNA level was affected by slowed growth.  To 

test this, I raised flies on food containing a decreased concentration of yeast, the major source of 

calories for Drosophila larvae (Ferreira and Milán, 2015).  Calorically restricted larvae took 

nearly twice as long to reach pupariation. I performed smFISH on these animals for the imaginal 

disc developmental gene salm.  Salm mRNA levels per cell were quantified per cell for both 

mature and nascent RNAs.   Salm is not known to directly interact with pathways governing 

metabolism in the cell. 
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Figure 4. Gene expression dynamics with slow metabolism. (A-B) Simulated protein output 

under the control of an auxiliary post-transcriptional regulator (green) and when the repressor is 

removed (orange). Shown are ten randomly chosen samples from a total population of 5,000 

simulated trajectories for each condition. Sebastian Bernasek performed these simulations. (A) 

Simulations performed with normal reaction rates. (B) Simulations performed following 50% 

reduction in the rate of ATP-dependent reactions. (C-D) Quantification of Yan-YFP and 

YanΔmiR-7-YFP in precursor cells. Solid lines represent moving averages.  Shaded regions denote 

95% confidence intervals.  Zero marks induction of Yan-YFP expression. (C) Yan-YFP 

dynamics under normal metabolic conditions, in which the animals contain the dILP2-GAL4 

gene only.  (D) Yan-YFP dynamics in animals with genetic IPC ablation via the combination of 

dILP2-GAL4 and UAS-Reaper.   
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Figure 5. Caloric restriction alters mature and nascent salm RNA levels. (A) Median mature 

RNA per cell within the salm stripe for glucose-cornmeal food (red), food with low 

concentration of yeast (green) and molasses-cornmeal food (blue). Error bars are 95% 

bootstrapped confidence intervals.  P-values are the results of a permutation test for significance.  

(B) Median nascent RNAs per transcription site for salm. Error bars are 95% bootstrapped 

confidence intervals. P-values are the results of a permutation test for significance. 
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 One might expect overall gene expression levels to decrease due to anabolic processes 

requiring more energy and calories to complete than catabolic processes. However, calorically 

restricted flies showed a significant increase in median salm mRNA levels per cell (Figure 5A).  

Conversely, flies under starvation conditions showed a significant decrease in the number of 

nascent salm RNAs per cell (Figure 5B).  This suggests that the rate of salm transcription was 

reduced in some respect.  Reduced transcription of salm coupled with an increase in mature 

RNAs seems to suggest that mRNA degradation was lower in these animals, or that some other 

means of post-transcriptional regulation had been affected.  Overall, the results of these 

experiments serve as example of how such overarching processes as nutrient restriction can have 

varied effects on gene regulation.  It is difficult to make broad claims about metabolism and gene 

regulation. 

Discussion 

My results show that miR-7 mediated repression of Yan in the eye imaginal disc 

progenitor cells serves to control Yan levels.  Without it, progenitor cells show increased levels 

of Yan throughout eye development.  When cellular metabolism is slowed by genetic ablation of 

IPCs, Yan levels are identical with or without miR-7 regulation.  This suggests that under slowed 

metabolic conditions, miR-7 is not required to regulate Yan expression levels.  MiR-7 regulation 

is one of many forms of auxilliary repression that ensure Yan levels remain within acceptable 

limits in the progenitor cells of eye disc during development.   The requirement for these 

repressive inputs is relaxed when metabolism is slowed.    

Many mutations in repressors cause phenotypes that are suppressed in slow metabolic 

conditions.  My results help explain this behavior by suggesting that gene expression levels do 

not need to be as tightly regulated in slow metabolic conditions.  However, the YanΔmiR-7-YFP 



 157 

gene has not been unambiguously linked with a phenotype in the adult eye.  While the subtle 

effect of miR-7 on Yan expression doesn’t appear to have noticeable consequence for final form 

of the eye, the existence of many redundant mechanisms for downregulating Yan in developing 

cells indicates that excessive cellular Yan is detrimental to development on some level.  I 

speculate that miR-7 may be even less dispensable for proper Yan regulation outside of standard 

laboratory conditions. 

It was previously observed that animals lacking any miR-7 regulation had elevated Yan 

immunofluorescence only in conditions of fluctuating temperature.  At the time, this was 

conceptualized as miR-7 providing robustness to Yan gene expression in the eye under variable 

environmental conditions.  The data presented here adds to that understanding.  Presumably, the 

changes in Yan levels that are mediated by miR-7 are subtle enough that they are difficult to 

quantify without the genetic and image analysis tools that I used in this study.  Temperature 

fluctuation has a wide range of organismal effects on animals.  Temperature will presumably 

affect the reaction rates of all biochemistry in cells.  Therefore, elevated temperatures put some 

stress on the animal and may result in an increased requirement for regulation of gene expression 

to coordinate growth and development. 

It is also possible that suboptimal metabolic conditions result in a stress-induced 

reorganization of gene regulatory networks that suppresses mutant phenotypes. In the case of 

Yan, the introduction of genetic ablation of IPCs resulted in qualitative reduction in fertility and 

population size, indicating a that these animals may have been generally less healthy than their 

normal metabolism counterparts.  Temperature fluctuations could also induce a stress response.  

Overall, its stands to reason that we require more precise tools for understanding the results of 
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changing conditions with wide-range effects, such as temperature manipulation or nutrient 

starvation. 

Changes in glucose uptake will alter every cellular function that requires ATP.  This 

includes fundamental mechanisms of gene expression such as transcription and translation.  I 

found that in the case of salm, caloric restriction resulted in an increase of mature mRNA levels 

but not nascent mRNA levels.  The simplest explanation for this is that mRNA decay rates have 

been altered by caloric restriction, resulting in accumulation of salm mRNAs in cells. The 

process of mRNA catabolism in not strictly ATP-dependent, therefore this effect would have to 

be achieved via regulation of ribonuclease activity.  Very little is known the regulation of 

ribonuclease activity in any context (Houseley and Tollervey, 2009).  Therefore, I can only 

speculate that caloric restriction might cause some cascading effect that slows mRNA decay. 

Caloric restriction activates a wide array of gene expression responses that may interact with 

salm in unknown ways.  Additionally, I do not have strong developmental markers in the wing 

imaginal disc.  In these studies, I used entry into the white pre-pupa stage as the marker for 

developmental time, but imaginal disc development may be slightly out of step with whole entry 

into the pupal stage.  To date, there are no longitudinal studies of salm expression through 

developmental time in the wing imaginal disc.  It is entirely possible that salm transcript and 

expression levels decrease over developmental time, and that is what I observed. 

Materials and Methods 

Genetics 

Unless otherwise indicated, flies were raised at 25° C on standard cornmeal-molasses 

food.  The recombineered Yan-YFP transgene was described in (Webber et al., 2013).  YanΔmiR-7-
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YFP  was generated as described in (Cassidy et al., 2019).  Yan-YFP and YanΔmiR-7-YFP were 

recombined with His2Av-mRFP and placed in a yanER443/yanE884 mutant background. 

Insulin producing cells were ablated by constructing flies bearing a dILP2-GAL4 gene on 

the third chromosome, and a UAS-Reaper (Rpr) construct on the first chromosome.  dILP2-

GAL4 consists of the promoter for the insulin-like peptide 2 gene fused to GAL4.  This drives 

GAL4 expression specifically in brain IPCs (Rulifson et al., 2002). The Rpr gene creates a pro-

apoptotic protein that causes cell death where expressed (Lohmann et al., 2002).  The 

combination of dILP2-GAL4 UAS-Rpr completely ablates insulin-producing cells in the larval 

brains of animals.  These animals show elevated blood glucose and slow growth, taking nearly 

twice as long to reach maturity.   

For slow-growth experiments with variants of Yan-YFP, flies bearing only the dILP2-

GAL4 gene were used as a control.  Flies with Yan-YFP also contained 2 copies of endogenous 

yan, because introduction of the yan mutant background drastically reduced viability when 

combined with dILP2-GAL4 UAS-Rpr. 

Caloric Restriction 

 All flies were raised at 25° C.  ~30 w1118 flies were allowed to lay eggs on molasses egg-

laying plates for ~12 hours.  Approximately 150 eggs were then collected and transferred to 

sugar-yeast-cornmeal food containing either a standard concentration of yeast, or food containing 

10% of the standard amount of yeast.  Wing discs from white prepupa were dissected, and 

fixation and smFISH was performed as described in Chapter IV.  

Scanning Electron Microscopy 

 Adult flies were placed in small petri dishes and frozen at -20 degrees C for at least 20 

minutes with dessicant to absorb excess moisture.  Whole flies were mounted on stub specimen 
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mounts with carbon paint resin (ElectroDag 502).  Scanning electron microscopy was performed 

using a Hitachi S-3400N-II cold-source field emission scanning electron microscope in low 

vacuum mode (30 pascals). Images were obtained using the 5-segment solid state backscatter 

detector. All imaging was performed at 190X magnification. 

Yan-YFP Imaging 

White pre-pupal eye discs were fixed in 4% paraformaldehyde/PBS, mounted in 

Vectashield, and stored in the dark at 4o C until imaging a maximum of 24 hours later. 1024 X 

512 images were captured using a Leica SP5 confocal microscope and 40X, NA 1.25 oil-

immersion objective.  Yan-YFP was visualized using an Argon 488 nm laser and Histone-RFP 

was visualized with a green HeNe 561 nm laser.  Both channels were detected using HyD 

detectors.  Images were oriented with the equator approximately parallel to the x-axis of the 

image, centered along the y-axis.  Optical slices were set at 0.8um thickness.  Zoom was set at 

1.2-1.4X to minimize blank space in images, with 6-8 rows of ommatidia visible on either side of 

the equator. All discs for each condition were fixed, mounted, and imaged in parallel.  Imaging 

was performed first thing in the morning to reduce variability in length of time the laser had been 

active. 

Summary of Data Analysis 

Segmentation. Cell segmentation and labeling were performed using FlyEye Silhouette, a 

custom GUI for cell labeling and analysis (Pelaez et al 2015, link to download).  Automated cell 

segmentation was performed on each optical section individually, using H2Av-mRFP as the 

reference for nuclei cell boundaries. A single 2D contour was manually selected and labeled for 

each cell.  Cell type identities were assigned based on nuclear position and morphology (Wolff 

and Ready 1993).  Yan-YFP measurements were obtained by normalizing YFP fluorescence to 
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H2Av-mRFP fluorescence in each nucleus in order to normalize for differences in nucleus 

morphology and imaging conditions. 

Distance to time calculations. Cell positions were mapped to developmental time as described 

previously in Pelaez et al. (2015).  This method assumes each column of ommatidia is generated 

at a constant rate of 2 hours per R8 cell, as determined experimentally (Tomlinson and Ready, 

1987).  For each image z-stack, median distance between R8s was determined using a Delaunay 

triangulation and a time-to-distance conversion factor was calculated.   

Calculation of Moving Averages.  First, all replicates for each condition were aligned with one 

another in time. One disc was randomly chosen to be a reference disc.  Each subsequent disc was 

adjusted in time to this reference disc by a factor calculated to maximize cross-correlation of 

moving averages (using a 10-cell window) of normalized Yan-YFP fluorescence.  Once aligned 

in time, all cells were pooled and a 500-cell window moving average was calculated using 

hierarchical bootstrapping within each group.  

Data analysis was done in collaboration with Dr. Sebastian Bernasek. Modeling was 

performed by Dr. Bernasek. 
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Chapter VI:  Discussion 
 

 

 

 
“Reports that say that something hasn't happened are always interesting to me, because as we know, there are 

known knowns; there are things we know we know. We also know there are known unknowns; that is to say 

we know there are some things we do not know. But there are also unknown unknowns—the ones we don't 

know we don't know. And if one looks throughout the history of our country and other free countries, it is the 

latter category that tend to be the difficult ones.” 

 

  -Donald Rumsfeld, United States Secretary of Defense 2001-2006 

 

  



 163 

 

New tools for quantification yield new insights 

The data presented in this thesis serve as an example of how quantification can yield new 

insights into gene expression.   Less quantitative methods of fluorescent in situ hybridization 

could not detect the key observation that nascent RNA per transcription site does not seem to 

change in concert with overall mRNA levels across many different genes in the wing disc.  

Quantifying these developmental genes across the wing disc has also yield intriguing 

observations for further study. The existence of sharper stripe boundaries in protein expression 

relative to mRNA for salm and omb suggest some level of post-transcriptional regulation may be 

occurring for those genes. The asymmetric expression of salm-GFP relative to endogenous salm 

strongly suggests the existence of a distal control element for salm is missing in the salm-GFP 

transgene.  These observations were not expected when I was developing the smFISH 

technology for the imaginal disc, but they offer further avenues for study. 

Quantification of gene expression allowed me to see subtle changes in gene expression 

that are difficult to describe otherwise.  The difference between Yan-YFP and Yan∆miR-7-YFP is 

difficult for untrained eyes to detect from imaging alone but becomes clearer when nuclear YFP 

is quantified. Without the years of effort placed into the FlyEye Silhouette software, I would not 

have been able to detect this change, nor use it to test hypotheses about metabolic effects on gene 

expression. 

 These are examples of how new tools and technologies can lead to greater understanding 

of gene expression.  The development and application of new tools for old problems needs to be 

a continuing research priority. New technologies allow us to further penetrate into the “unknown 
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unknowns,” illuminating phenomena that we didn’t even know existed before they could be 

observed.  

What controls transcriptional bursting?  

Transcriptional bursting is a phenomenon observed across all life, from bacteria to 

animals.  It is reasonable to posit that it is an emergent property from the fundamental process of 

transcription initiation by RNA polymerase. What can bursting tell us about gene regulation on a 

molecular scale? Transcription is a step-wise process that consists of many biochemical reactions 

each characterized by kinetic rates. The existence of transcriptional bursts seems to suggest the 

existence of at least one rate-limiting step in this process that requires a longer period of time to 

overcome relative to the other steps in the process (Nicolas et al., 2017).  

Experiments in bacteria suggest that transcriptional bursting occurs even in the presence 

of only the minimal components necessary for transcription initiation.  Here, bursting might be 

induced by molecular torsion of DNA caused by RNA polymerase. Torsion induces upstream 

supercoiling of DNA that halts further polymerase elongation.  Transcription is arrested until 

supercoiling can be relieved by DNA gyrase, a process which is dependent on availability and 

binding kinetics of these enzymes (Chong et al., 2014; Fujita et al., 2016).  However, this 

hypothesis does not adequately explain the large differences in bursting kinetics seen between 

genes in eukaryotes.  

 Another source of delay in transcription could be the necessary formation of large protein 

complexes prior to transcription initiation.  The formation of a pre-initation complex at the 

promoter has been described in detail.  In eukaryotes, it consists of greater than 85 polypeptides 

which are present in diverse combinations at different genes.  These are transcription factors, 

large complexes such as Mediator, and RNA polymerase subunits.   Together, they prime the 
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promoter and surrounding chromatin for transcription initiation and elongation.  Multi-step or 

progressive complex formation can result in the early protein-DNA interactions lowering the 

activation energy for additional protein-protein or protein-DNA interactions (Esnault et al., 2008; 

Larson et al., 2011).  Thus, the initial formation events occur on longer timescales than later 

events, causing a complex to coalesce.  Such a mechanism could also explain some gene specific 

properties of burst dynamics.  Variation in promoter sequence and structure influences the 

binding and unbinding kinetics of components of the transcription initiation machinery, 

potentially influencing the behavior of the complex as a whole (Spitz and Furlong, 2012). 

Additionally, I think of RNA polymerase binding kinetics as possibly having some 

“search time” across DNA where the molecule must diffuse to an appropriate promoter site 

before it can actually act.  Once the elements of the pre-initiation complex are in place, this 

“search time” is greatly reduced, as they are likely to undergo cycles of DNA binding and 

unbinding before diffusing away.  In such a manner, the formation of this complex could have 

switch-like dynamics.    

Alternatively, the recruitment of RNA polymerase to the initiation complex may not be a 

limiting step.  It has been suggested that what I might think of as initiation rate, or how often a 

polymerase initiates transcription, is not governed by polymerase recruitment, but rather by the 

degree of pause-release of RNA polymerase (Bartman et al., 2019).  That is to say that initiation 

rate depends on how favorable conditions are for initiating transcription in a regulated manner.  

Such a system would certainly be mechanistically more viable in an evolutionary context:  a 

method for the regulation of polymerase firing seems easier to regulate than binding energy of 

the polymerase itself, which is a more immutable property of the transcription start site.  It seems 

that once the initiation complex is formed, RNA polymerase can initiate transcription at a given 
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rate.  This concept of transcription certainly mirrors what I think of as a “burst”: the slower entry 

into a state competent for transcription (the formation of the complex) and then a faster initiation 

rate (polymerase recruitment and firing).   

Another cause of the dynamics may be the function of distal enhancers.  Enhancers 

function as sites for binding of transcription factors.  When contacting the promoter, they help 

foment chromatin changes and the formation of the preinitiation complex. In metazoans, 

enhancers are often located far away on the chromosome from the transcription start site. 

Therefore, there exists some DNA bending or architectural changes to the chromosomes in order 

for these distal enhancers to contact the promoter and affect transcriptions(Spitz and Furlong, 

2012).  This process of DNA bending and physical motion could be a source of burst-like 

dynamics.  Bartman et al. 2016 showed that two separate genes entered states of active 

transcription only when in contact with a shared enhancer.  Their transcription at any single 

moment of time was mutually exclusive.  When the enhancer location moved away from the 

promoter, transcription did not occur (Bartman et al., 2016). 

Recently, it has been suggested that the behavior of so called “super-enhancers” can be 

described as a process in which many components of the transcription machinery coalesce and 

form a liquid-phase body in the nucleus.  This liquid phase body is so dense with proteins that it 

could resemble a droplet, and thus kinetic parameters that rely on the assumption of a uniform 

aqueous solution do not apply (Levine et al., 2014).  Perhaps all enhancers work in a 

fundamentally similar manner separated more by degree: one can speculate that a transcriptional 

burst is caused the formation of a concentrated cluster of transcription proteins that are held 

together by intra-phase forces.  Certainly, such behavior would enhance nonlinear transcription 

dynamics in these genes. 
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 Lastly, we should consider the timescale for bursting behavior.  In eukaryotes, many 

studies have found OFF times for promoters on the scale of tens of minutes, to hours (Milo et al., 

2010; Suter et al., 2011).  My data concurred with these findings, as the model presented in 

Chapter IV fits my smFISH data well with OFF times in this range.   

  Both DNA bending and complex formation are processes that generally have not been 

found to take this amount of time to complete.  Formation of transcription initiation complexes, 

as well as diffusion of an enhancer around the nucleus, appear to occur on the order of seconds.  

Thus, while they may have some input into bursting behavior, they cannot completely explain 

the long off times observed between transcriptional bursts in many genes.  In contrast, the 

process of chromatin remodeling and nucleosome positioning can operate on the timescale of 

minutes to hours.  Therefore, it is reasonable to consider this process as a control mechanism for 

burst frequency.  This idea is supported by the finding that many (if not most) transcription 

factors, recruit chromatin remodelers in order to modulate transcription output (Cai and 

Laughon, 2009; Hill, 2016; Spitz and Furlong, 2012). This idea is further supported by studies 

using model selection techniques.  In our modeling, the simplest bursting model was used, in 

which the promoter has only an active or inactive state.  In model selection, the promoter can 

have any number n states.  The data is fit to these various models, and the best model is selected.  

Studies vary with respect to criteria for which a model is selected as the “best fit.”  Doing so, 

studies such as those by (Zoller et al., 2015) have found that the long OFF times observed in 

living cells are best described by up to five inactive states of the promoter.  If such theoretical 

states have a physical correspondence, it is most likely to be a form of chromatin accessibility. 
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 Ultimately, no one molecular process can be said to be the sole source of bursting 

dynamics.  The phenomenon of transcriptional bursting is likely influenced by all of these 

molecular processes to various degrees, depending on the organism and context. 

Tuning transcriptional bursting and noise 

 Individuals within genetically identical populations can show significant differences in 

gene expression.  This is attributed to the stochastic influence on gene expression, or gene 

expression “noise”.   Transcriptional bursting influences gene expression noise.  For example, 

cells with large, infrequent bursts will experience large fluctuations in levels of mRNA 

transcripts over time (Munsky et al., 2012).  Fluctuations in mRNA can be propagated to 

fluctuations in protein levels.  Fluctuations in one gene product can then be propagated 

throughout a biochemical network, causing noisy gene expression even in genes with low 

intrinsic noise. 

Gene expression noise varies from gene to gene.  Gene expression noise as a trait might 

be important to a gene’s proper function in the cell (Dar et al., 2016).  Therefore, it is possible 

that noise as a gene expression trait is acted upon by natural selection.  Tuning of transcriptional 

bursting may be part of the mechanism by which natural selection acts on gene expression noise.  

Understanding if and how such tuning occurs may be important for synthetic biology, as we seek 

to harness biological circuits for industrial and medical purposes. 

Future directions: Live imaging and the importance of time 

 All of the methods utilized in this thesis used fixed tissue.  As such I can only make 

inferences about the dynamics of gene expression.  I have done this either through the use of 

modeling, or by using position as a proxy for time as in the eye disc.  Time courses are difficult 

to perform in the wing imaginal disc context, because of the difficulty of precise developmental 
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staging of discs.  To make definitive conclusions about gene expression dynamics, I will 

ultimately need to observe these dynamics in real time using live imaging strategies.  

 In many ways, studying transcription via the MS2 system, which allows live-imaging of 

transcript production, is an attractive next step. This would allow us to visualize nascent 

transcription as it happens and physically measure burst size and frequency in vivo.  Some of the 

pieces for such studies are already in place. Imaginal discs can be cultured as explants in growth 

media for several hours.  Drosophila genetic constructs needed for the MS2 system exist (Garcia 

and Gregor, 2018).  One can imagine that the combination of a microfluidics device for culture 

and imaging could allow for the performance of powerful experiments. Imaginal disc tissue 

could be given drugs that affect transcription via the culture media, and the effects of 

transcriptional bursting could be measured in real time. 

Other non-trivial challenges remain to be solved, such as optimal imaging conditions and 

image and data analysis.  Without fixing, clearing and mounting to help improve image quality, 

live-imaging can produce data that requires extensive cleanup and analysis.  Additionally, the 

problems from imaging fixed tissue still exist primarily segmentation of single cells in this 

pseudostratified epithelium. 

 

  



 170 

References 
Aldaz, S., Escudero, L.M., 2010. Imaginal discs. Curr. Biol. 20, R429–R431. 

https://doi.org/10.1016/j.cub.2010.03.010 

Alexandre, C., Baena-Lopez, A., Vincent, J.-P., 2014. Patterning and growth control by 

membrane-tethered Wingless. Nature 505, 180–185. https://doi.org/10.1038/nature12879 

Alon, U., 2007. An introduction to systems biology: design principles of biological circuits, 

Chapman & Hall/CRC mathematical and computational biology series. Chapman & 

Hall/CRC, Boca Raton, FL. 

Alwine, J.C., Kemp, D.J., Stark, G.R., 1977. Method for detection of specific RNAs in agarose 

gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. 

Proc. Natl. Acad. Sci. U. S. A. 74, 5350–5354. 

Ardehali, M.B., Yao, J., Adelman, K., Fuda, N.J., Petesch, S.J., Webb, W.W., Lis, J.T., 2009. 

Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J. 28, 1067–

1077. https://doi.org/10.1038/emboj.2009.56 

Arendt, J.D., 1997. Adaptive Intrinsic Growth Rates: An Integration Across Taxa. Q. Rev. Biol. 

72, 149–177. https://doi.org/10.1086/419764 

Bakker, R., Mani, M., Carthew, R.W., 2020. The Wg and Dpp morphogens regulate gene 

expression by modulating the frequency of transcriptional bursts. eLife 9, e56076. 

https://doi.org/10.7554/eLife.56076 

Bannister, A.J., Kouzarides, T., 2011. Regulation of chromatin by histone modifications. Cell 

Res. 21, 381–395. https://doi.org/10.1038/cr.2011.22 

Bartlett, J.M.S., 2002. Approaches to the analysis of gene expression using mRNA: a technical 

overview. Mol. Biotechnol. 21, 149–160. https://doi.org/10.1385/MB:21:2:149 

Bartman, C.R., Hamagami, N., Keller, C.A., Giardine, B., Hardison, R.C., Blobel, G.A., Raj, A., 

2019. Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control 

Points of Transcriptional Regulation. Mol. Cell 73, 519-532.e4. 

https://doi.org/10.1016/j.molcel.2018.11.004 

Bartman, C.R., Hsu, S.C., Hsiung, C.C.-S., Raj, A., Blobel, G.A., 2016. Enhancer Regulation of 

Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. Mol. Cell 

62, 237–247. https://doi.org/10.1016/j.molcel.2016.03.007 

Beira, J.V., Paro, R., 2016. The legacy of Drosophila imaginal discs. Chromosoma 125, 573–

592. https://doi.org/10.1007/s00412-016-0595-4 

Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., Levine, M., 2014. Dynamic 

regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila 

embryos. Proc. Natl. Acad. Sci. 111, 10598–10603. 

https://doi.org/10.1073/pnas.1410022111 

Broughton, S.J., Piper, M.D.W., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., 

Hafen, E., Withers, D.J., Leevers, S.J., Partridge, L., 2005. Longer lifespan, altered 

metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like 

ligands. Proc. Natl. Acad. Sci. U. S. A. 102, 3105–3110. 

https://doi.org/10.1073/pnas.0405775102 

Cai, Y., Laughon, A., 2009. The Drosophila Smad cofactor Schnurri engages in redundant and 

synergistic interactions with multiple corepressors. Biochim. Biophys. Acta BBA - Gene 

Regul. Mech. 1789, 232–245. https://doi.org/10.1016/j.bbagrm.2009.01.001 



 171 

Campbell, G., Tomlinson, A., 1999. Transducing the Dpp Morphogen Gradient in the Wing of 

Drosophila: Regulation of Dpp Targets by brinker. Cell 96, 553–562. 

https://doi.org/10.1016/S0092-8674(00)80659-5 

Campbell, S., Inamdar, M., Rodrigues, V., Raghavan, V., Palazzolo, M., Chovnick, A., 1992. 

The scalloped gene encodes a novel, evolutionarily conserved transcription factor 

required for sensory organ differentiation in Drosophila. Genes Dev. 6, 367–379. 

https://doi.org/10.1101/gad.6.3.367 

Cassidy, J.J., Bernasek, S.M., Bakker, R., Giri, R., Peláez, N., Eder, B., Bobrowska, A., Bagheri, 

N., Amaral, L.A.N., Carthew, R.W., 2019. Repressive Gene Regulation Synchronizes 

Development with Cellular Metabolism. Cell 178, 980-992.e17. 

https://doi.org/10.1016/j.cell.2019.06.023 

Cassidy, J.J., Jha, A.R., Posadas, D.M., Giri, R., Venken, K.J.T., Ji, J., Jiang, H., Bellen, H.J., 

White, K.P., Carthew, R.W., 2013. miR-9a minimizes the phenotypic impact of genomic 

diversity by buffering a transcription factor. Cell 155, 1556–1567. 

https://doi.org/10.1016/j.cell.2013.10.057 

Celis, J.F. de, Barrio, R., Kafatos, F.C., 1996. A gene complex acting downstream of dpp in 

Drosophila wing morphogenesis. Nature 381, 421. https://doi.org/10.1038/381421a0 

Chen, L.-F., Lin, Y.T., Gallegos, D.A., Hazlett, M.F., Gómez-Schiavon, M., Yang, M.G., 

Kalmeta, B., Zhou, A.S., Holtzman, L., Gersbach, C.A., Grandl, J., Buchler, N.E., West, 

A.E., 2019. Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics 

of Neuronal Activity-Inducible Genes. Cell Rep. 26, 1174-1188.e5. 

https://doi.org/10.1016/j.celrep.2019.01.032 

Child, G., 1939. The effect of increasing time of development at constant temperature on the 

wing size of vestigial of drosophila melanogaster. Biol. Bull. 77, 432–442. 

https://doi.org/10.2307/1537653 

Child, G., 1935. Phenogenetic Studies on Scute-1 of Drosophila Melanogaster. I. the 

Associations between the Bristles and the Effects of Genetic Modifiers and Temperature. 

Genetics 20, 109–126. 

Chong, S., Chen, C., Ge, H., Xie, X.S., 2014. Mechanism of Transcriptional Bursting in 

Bacteria. Cell 158, 314–326. https://doi.org/10.1016/j.cell.2014.05.038 

Chubb, J.R., Trcek, T., Shenoy, S.M., Singer, R.H., 2006. Transcriptional Pulsing of a 

Developmental Gene. Curr. Biol. 16, 1018–1025. 

https://doi.org/10.1016/j.cub.2006.03.092 

Clevers, H., Nusse, R., 2012. Wnt/β-Catenin Signaling and Disease. Cell 149, 1192–1205. 

https://doi.org/10.1016/j.cell.2012.05.012 

Collins, T.J., 2007. ImageJ for microscopy. BioTechniques 43, 25–30. 

https://doi.org/10.2144/000112517 

Dar, R.D., Shaffer, S.M., Singh, A., Razooky, B.S., Simpson, M.L., Raj, A., Weinberger, L.S., 

2016. Transcriptional Bursting Explains the Noise–Versus–Mean Relationship in mRNA 

and Protein Levels. PLOS ONE 11, e0158298. 

https://doi.org/10.1371/journal.pone.0158298 

D’Errico, J., 2012. Inhull. 

Dey, S.S., Foley, J.E., Limsirichai, P., Schaffer, D.V., Arkin, A.P., 2015. Orthogonal control of 

expression mean and variance by epigenetic features at different genomic loci. Mol. Syst. 

Biol. 11. https://doi.org/10.15252/msb.20145704 



 172 

Eng, C.-H.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, 

C., Yuan, G.-C., Cai, L., 2019. Transcriptome-scale super-resolved imaging in tissues by 

RNA seqFISH. Nature 568, 235–239. https://doi.org/10.1038/s41586-019-1049-y 

Esnault, C., Ghavi-Helm, Y., Brun, S., Soutourina, J., Van Berkum, N., Boschiero, C., Holstege, 

F., Werner, M., 2008. Mediator-Dependent Recruitment of TFIIH Modules in 

Preinitiation Complex. Mol. Cell 31, 337–346. 

https://doi.org/10.1016/j.molcel.2008.06.021 

Ezer, D., Moignard, V., Göttgens, B., Adryan, B., 2016. Determining Physical Mechanisms of 

Gene Expression Regulation from Single Cell Gene Expression Data. PLOS Comput. 

Biol. 12, e1005072. https://doi.org/10.1371/journal.pcbi.1005072 

Farrell, R.E., 2005. RNA methodologies: a laboratory guide for isolation and characterization, 3. 

ed. ed. Elsevier, Amsterdam. 

Femino, A.M., Fay, F.S., Fogarty, K., Singer, R.H., 1998. Visualization of Single RNA 

Transcripts in Situ. Science 280, 585–590. https://doi.org/10.1126/science.280.5363.585 

Ferreira, A., Milán, M., 2015. Dally Proteoglycan Mediates the Autonomous and 

Nonautonomous Effects on Tissue Growth Caused by Activation of the PI3K and TOR 

Pathways. PLOS Biol. 13, e1002239. https://doi.org/10.1371/journal.pbio.1002239 

FlyBase Reference Report: model organism Encyclopedia of Regulatory Network (modERN) 

Project, 2015-, Genomic BAC constructs containing epitope tagged proteins, generated 

by the modERN Project. [WWW Document], n.d. URL 

http://flybase.org/reports/FBrf0228168.html (accessed 9.16.20). 

Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., Turner, D.H., 

1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc. 

Natl. Acad. Sci. U. S. A. 83, 9373–9377. 

Fujita, K., Iwaki, M., Yanagida, T., 2016. Transcriptional bursting is intrinsically caused by 

interplay between RNA polymerases on DNA. Nat. Commun. 7, 13788. 

https://doi.org/10.1038/ncomms13788 

Fukaya, T., Lim, B., Levine, M., 2016. Enhancer Control of Transcriptional Bursting. Cell 166, 

358–368. https://doi.org/10.1016/j.cell.2016.05.025 

Gall, J.G., 2016. The origin of in situ hybridization – A personal history. Methods, Methods for 

the Detection of Transcription and mRNA Localization in Cells and Tissues 98, 4–9. 

https://doi.org/10.1016/j.ymeth.2015.11.026 

Garcia, H., Gregor, T., 2018. Live imaging of mRNA synthesis in Drosophila. Methods Mol. 

Biol. Clifton NJ 1649, 349–357. https://doi.org/10.1007/978-1-4939-7213-5_23 

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 

81, 2340–2361. https://doi.org/10.1021/j100540a008 

Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M., Brown, J.H., 2002. Effects of size and 

temperature on developmental time. Nature 417, 70–73. https://doi.org/10.1038/417070a 

Giri, R., Papadopoulos, D.K., Posadas, D.M., Potluri, H.K., Tomancak, P., Mani, M., Carthew, 

R.W., 2020. Ordered patterning of the sensory system is susceptible to stochastic features 

of gene expression. eLife 9. https://doi.org/10.7554/eLife.53638 

Gould, S.J., 1977. Ontogeny and Phylogeny. Harvard University Press. 

Grande, J.C., 2012. Principles of Image Analysis. Metallogr. Microstruct. Anal. 1, 227–243. 

https://doi.org/10.1007/s13632-012-0037-5 



 173 

Grimm, S., Pflugfelder, G.O., 1996. Control of the Gene optomotor-blind in Drosophila Wing 

Development by decapentaplegic and wingless. Science 271, 1601–1604. 

https://doi.org/10.1126/science.271.5255.1601 

Hamaratoglu, F., Affolter, M., Pyrowolakis, G., 2014. Dpp/BMP signaling in flies: From 

molecules to biology. Semin. Cell Dev. Biol., RNA biogenesis & TGFβ signalling in 

embryonic development 32, 128–136. https://doi.org/10.1016/j.semcdb.2014.04.036 

Hill, C.S., 2016. Transcriptional Control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, 

a022079. https://doi.org/10.1101/cshperspect.a022079 

Hobro, A.J., Smith, N.I., 2017. An evaluation of fixation methods: Spatial and compositional 

cellular changes observed by Raman imaging. Vib. Spectrosc., Prominent Young 

Vibrational Spectroscopists 91, 31–45. https://doi.org/10.1016/j.vibspec.2016.10.012 

Hoetelmans, R.W., Prins, F.A., Cornelese-ten Velde, I., van der Meer, J., van de Velde, C.J., van 

Dierendonck, J.H., 2001. Effects of acetone, methanol, or paraformaldehyde on cellular 

structure, visualized by reflection contrast microscopy and transmission and scanning 

electron microscopy. Appl. Immunohistochem. Mol. Morphol. AIMM 9, 346–351. 

https://doi.org/10.1097/00129039-200112000-00010 

Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar, C., Mathe, B., Grexa, I., Molnar, J., 

Balind, A., Gorbe, M., Kovacs, M., Migh, E., Goodman, A., Balassa, T., Koos, K., Wang, 

W., Caicedo, J.C., Bara, N., Kovacs, F., Paavolainen, L., Danka, T., Kriston, A., 

Carpenter, A.E., Smith, K., Horvath, P., 2020. nucleAIzer: A Parameter-free Deep 

Learning Framework for Nucleus Segmentation Using Image Style Transfer. Cell Syst. 

10, 453-458.e6. https://doi.org/10.1016/j.cels.2020.04.003 

Holloway, D.M., Spirov, A.V., 2017. Transcriptional bursting in Drosophila development: 

Stochastic dynamics of eve stripe 2 expression. PLOS ONE 12, e0176228. 

https://doi.org/10.1371/journal.pone.0176228 

Houseley, J., Tollervey, D., 2009. The Many Pathways of RNA Degradation. Cell 136, 763–776. 

https://doi.org/10.1016/j.cell.2009.01.019 

Julian, R.J., 2005. Production and growth related disorders and other metabolic diseases of 

poultry – A review. Vet. J. 169, 350–369. https://doi.org/10.1016/j.tvjl.2004.04.015 

Kicheva, A., Cohen, M., Briscoe, J., 2012. Developmental pattern formation: insights from 

physics and biology. Science 338, 210–212. https://doi.org/10.1126/science.1225182 

Kumar, J.P., 2001. Signalling pathways in Drosophila and vertebrate retinal development. Nat. 

Rev. Genet. 2, 846–857. https://doi.org/10.1038/35098564 

Kuntz, S.G., Eisen, M.B., 2014. Drosophila Embryogenesis Scales Uniformly across 

Temperature in Developmentally Diverse Species. PLOS Genet. 10, e1004293. 

https://doi.org/10.1371/journal.pgen.1004293 

Kwon, S., 2013. Single-molecule fluorescence in situ hybridization: Quantitative imaging of 

single RNA molecules. BMB Rep. 46, 65–72. 

https://doi.org/10.5483/BMBRep.2013.46.2.016 

Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Robinson, M.D., Vallejos, 

C.A., Campbell, K.R., Beerenwinkel, N., Mahfouz, A., Pinello, L., Skums, P., 

Stamatakis, A., Attolini, C.S.-O., Aparicio, S., Baaijens, J., Balvert, M., Barbanson, B. 

de, Cappuccio, A., Corleone, G., Dutilh, B.E., Florescu, M., Guryev, V., Holmer, R., 

Jahn, K., Lobo, T.J., Keizer, E.M., Khatri, I., Kielbasa, S.M., Korbel, J.O., Kozlov, A.M., 

Kuo, T.-H., Lelieveldt, B.P.F., Mandoiu, I.I., Marioni, J.C., Marschall, T., Mölder, F., 

Niknejad, A., Raczkowski, L., Reinders, M., Ridder, J. de, Saliba, A.-E., Somarakis, A., 



 174 

Stegle, O., Theis, F.J., Yang, H., Zelikovsky, A., McHardy, A.C., Raphael, B.J., Shah, 

S.P., Schönhuth, A., 2020. Eleven grand challenges in single-cell data science. Genome 

Biol. 21, 31. https://doi.org/10.1186/s13059-020-1926-6 

Lai, Z.-C., Rubin, G.M., 1992. Negative control of photoreceptor development in Drosophila by 

the product of the yan gene, an ETS domain protein. Cell 70, 609–620. 

https://doi.org/10.1016/0092-8674(92)90430-K 

Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., Singer, R.H., 2011. Real-Time Observation of 

Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science 332, 

475–478. https://doi.org/10.1126/science.1202142 

Larsson, A.J.M., Johnsson, P., Hagemann-Jensen, M., Hartmanis, L., Faridani, O.R., Reinius, B., 

Segerstolpe, Å., Rivera, C.M., Ren, B., Sandberg, R., 2019. Genomic encoding of 

transcriptional burst kinetics. Nature 565, 251. https://doi.org/10.1038/s41586-018-0836-

1 

Lee, M.V., Topper, S.E., Hubler, S.L., Hose, J., Wenger, C.D., Coon, J.J., Gasch, A.P., 2011. A 

dynamic model of proteome changes reveals new roles for transcript alteration in yeast. 

Mol. Syst. Biol. 7, 514. https://doi.org/10.1038/msb.2011.48 

Levine, M., Cattoglio, C., Tjian, R., 2014. Looping Back to Leap Forward: Transcription Enters 

a New Era. Cell 157, 13–25. https://doi.org/10.1016/j.cell.2014.02.009 

Levine, M., Davidson, E.H., 2005. Gene regulatory networks for development. Proc. Natl. Acad. 

Sci. U. S. A. 102, 4936–4942. https://doi.org/10.1073/pnas.0408031102 

Levsky, J.M., Singer, R.H., 2003. Fluorescence in situ hybridization: past, present and future. J. 

Cell Sci. 116, 2833–2838. https://doi.org/10.1242/jcs.00633 

Li, X., Carthew, R.W., 2005. A microRNA mediates EGF receptor signaling and promotes 

photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277. 

https://doi.org/10.1016/j.cell.2005.10.040 

Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W., 2009. A microRNA Imparts 

Robustness Against Environmental Fluctuation During Development. Cell 137, 273–282. 

https://doi.org/10.1016/j.cell.2009.01.058 

Lipson, S.G., Lipson, H., Tannhauser, D.S., 1995. Optical Physics. Cambridge University Press. 

Little, S.C., Tikhonov, M., Gregor, T., 2013. Precise Developmental Gene Expression Arises 

from Globally Stochastic Transcriptional Activity. Cell 154, 789–800. 

https://doi.org/10.1016/j.cell.2013.07.025 

Liu, Y., Beyer, A., Aebersold, R., 2016. On the Dependency of Cellular Protein Levels on 

mRNA Abundance. Cell 165, 535–550. https://doi.org/10.1016/j.cell.2016.03.014 

Lohmann, I., McGinnis, N., Bodmer, M., McGinnis, W., 2002. The Drosophila Hox Gene 

Deformed Sculpts Head Morphology via Direct Regulation of the Apoptosis Activator 

reaper. Cell 110, 457–466. https://doi.org/10.1016/S0092-8674(02)00871-1 

Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., Cai, L., 2014. Single-cell in situ RNA 

profiling by sequential hybridization. Nat. Methods 11, 360–361. 

https://doi.org/10.1038/nmeth.2892 

Ma, Y.J., Dissen, G.A., Rage, F., Ojeda, S.R., 1996. RNase Protection Assay. Methods 10, 273–

278. https://doi.org/10.1006/meth.1996.0102 

Martín, F.A., Herrera, S.C., Morata, G., 2009. Cell competition, growth and size control in the 

Drosophila wing imaginal disc. Development 136, 3747–3756. 

https://doi.org/10.1242/dev.038406 



 175 

Mayer, L.R., Diegelmann, S., Abassi, Y., Eichinger, F., Pflugfelder, G.O., 2013. Enhancer trap 

infidelity in Drosophila optomotor-blind. Fly (Austin) 7, 118–128. 

https://doi.org/10.4161/fly.23657 

Metz, C.W., 1916. Chromosome studies on the Diptera. II. The paired association of 

chromosomes in the Diptera, and its significance. J. Exp. Zool. 21, 213–279. 

https://doi.org/10.1002/jez.1400210204 

Milo, R., Jorgensen, P., Moran, U., Weber, G., Springer, M., 2010. BioNumbers—the database 

of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753. 

https://doi.org/10.1093/nar/gkp889 

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D., 2020. Image 

Segmentation Using Deep Learning: A Survey. ArXiv200105566 Cs. 

Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H., Tabata, T., 1999. brinker is a target of 

Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature 398, 242. 

https://doi.org/10.1038/18451 

Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., Van Valen, D., 2019. Deep learning for 

cellular image analysis. Nat. Methods 16, 1233–1246. https://doi.org/10.1038/s41592-

019-0403-1 

Moser, M., Campbell, G., 2005. Generating and interpreting the Brinker gradient in the 

Drosophila wing. Dev. Biol. 286, 647–658. https://doi.org/10.1016/j.ydbio.2005.08.036 

Mundorf, J., Uhlirova, M., 2016. The Drosophila Imaginal Disc Tumor Model: Visualization and 

Quantification of Gene Expression and Tumor Invasiveness Using Genetic Mosaics. J. 

Vis. Exp. JoVE. https://doi.org/10.3791/54585 

Munsky, B., Neuert, G., Oudenaarden, A. van, 2012. Using Gene Expression Noise to 

Understand Gene Regulation. Science 336, 183–187. 

https://doi.org/10.1126/science.1216379 

Nakai, D., Yuasa, S., Takahashi, M., Shimizu, T., Asaumi, S., Isono, K., Takao, T., Suzuki, Y., 

Kuroyanagi, H., Hirokawa, K., Koseki, H., Shirsawa, T., 2001. Mouse homologue of 

coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q 

synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem. Biophys. 

Res. Commun. 289, 463–471. https://doi.org/10.1006/bbrc.2001.5977 

Nicolas, D., Phillips, N.E., Naef, F., 2017. What shapes eukaryotic transcriptional bursting? Mol. 

Biosyst. 13, 1280–1290. https://doi.org/10.1039/C7MB00154A 

Nolo, R., Abbott, L.A., Bellen, H.J., 2000. Senseless, a Zn finger transcription factor, is 

necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–

362. https://doi.org/10.1016/s0092-8674(00)00040-4 

Osterwalder, T., Yoon, K.S., White, B.H., Keshishian, H., 2001. A conditional tissue-specific 

transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. 98, 12596–

12601. https://doi.org/10.1073/pnas.221303298 

Park, H., 2020. Polytope bounded order-2 Voronoi diagram in 2D/3D. 

Pavlidis, T., 1988. Image Analysis. Annu. Rev. Comput. Sci. 3, 121–146. 

https://doi.org/10.1146/annurev.cs.03.060188.001005 

Peláez, N., Gavalda-Miralles, A., Wang, B., Navarro, H.T., Gudjonson, H., Rebay, I., Dinner, 

A.R., Katsaggelos, A.K., Amaral, L.A., Carthew, R.W., 2015. Dynamics and 

heterogeneity of a fate determinant during transition towards cell differentiation. eLife 4, 

e08924. https://doi.org/10.7554/eLife.08924 



 176 

Peter, I.S., Davidson, E.H., 2016. Chapter Thirteen - Implications of Developmental Gene 

Regulatory Networks Inside and Outside Developmental Biology, in: Wassarman, P.M. 

(Ed.), Current Topics in Developmental Biology, Essays on Developmental Biology, Part 

B. Academic Press, pp. 237–251. https://doi.org/10.1016/bs.ctdb.2015.12.014 

Pontzer, H., Brown, M.H., Raichlen, D.A., Dunsworth, H., Hare, B., Walker, K., Luke, A., 

Dugas, L.R., Durazo-Arvizu, R., Schoeller, D., Plange-Rhule, J., Bovet, P., Forrester, 

T.E., Lambert, E.V., Thompson, M.E., Shumaker, R.W., Ross, S.R., 2016. Metabolic 

acceleration and the evolution of human brain size and life history. Nature 533, 390–392. 

https://doi.org/10.1038/nature17654 

Price, M.D., Lai, Z.-C., 1999. The yan gene is highly conserved in Drosophila and its expression 

suggests a complex role throughout development. Dev. Genes Evol. 209, 207–217. 

https://doi.org/10.1007/s004270050245 

Qi, J., Wang, B., Pelaez, N., Rebay, L., Carthew, R.W., Katsaggelos, A.K., Amaral, L.A.N., 

2013. Drosophila eye nuclei segmentation based on graph cut and convex shape prior, in: 

2013 IEEE International Conference on Image Processing. Presented at the 2013 IEEE 

International Conference on Image Processing, pp. 670–674. 

https://doi.org/10.1109/ICIP.2013.6738138 

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., Tyagi, S., 2006. Stochastic mRNA Synthesis 

in Mammalian Cells. PLOS Biol. 4, e309. https://doi.org/10.1371/journal.pbio.0040309 

Raj, A., Tyagi, S., 2010. Chapter 17 - Detection of Individual Endogenous RNA Transcripts In 

Situ Using Multiple Singly Labeled Probes, in: Walter, N.G. (Ed.), Methods in 

Enzymology, Single Molecule Tools: Fluorescence Based Approaches, Part A. Academic 

Press, pp. 365–386. https://doi.org/10.1016/S0076-6879(10)72004-8 

Raj, A., van Oudenaarden, A., 2008. Nature, Nurture, or Chance: Stochastic Gene Expression 

and Its Consequences. Cell 135, 216–226. https://doi.org/10.1016/j.cell.2008.09.050 

Rebay, I., Rubin, G.M., 1995. Yan functions as a general inhibitor of differentiation and is 

negatively regulated by activation of the Ras1/MAPK pathway. Cell 81, 857–866. 

https://doi.org/10.1016/0092-8674(95)90006-3 

Rulifson, E.J., Kim, S.K., Nusse, R., 2002. Ablation of insulin-producing neurons in flies: 

growth and diabetic phenotypes. Science 296, 1118–1120. 

https://doi.org/10.1126/science.1070058 

Russ, J.C., Neal, F.B., Neal, F.B., 2018. The Image Processing Handbook. CRC Press. 

https://doi.org/10.1201/b18983 

Sandoval, J., Rodríguez, J.L., Tur, G., Serviddio, G., Pereda, J., Boukaba, A., Sastre, J., Torres, 

L., Franco, L., López-Rodas, G., 2004. RNAPol-ChIP: a novel application of chromatin 

immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res. 

32, e88. https://doi.org/10.1093/nar/gnh091 

Schneuwly, S., Gehring, W.J., 1985. Homeotic transformation of thorax into head: 

Developmental analysis of a new Antennapedia allele in Drosophila melanogaster. Dev. 

Biol. 108, 377–386. https://doi.org/10.1016/0012-1606(85)90041-7 

Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F.E., Zimmer, C., Mueller, F., Darzacq, X., 

2014. Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Rep. 8, 75–83. 

https://doi.org/10.1016/j.celrep.2014.05.053 

Shi, Y., Massagué, J., 2003. Mechanisms of TGF-β Signaling from Cell Membrane to the 

Nucleus. Cell 113, 685–700. https://doi.org/10.1016/S0092-8674(03)00432-X 



 177 

Sivasankaran, R., Vigano, M.A., Müller, B., Affolter, M., Basler, K., 2000. Direct transcriptional 

control of the Dpp target omb by the DNA binding protein Brinker. EMBO J. 19, 6162–

6172. https://doi.org/10.1093/emboj/19.22.6162 

Smale, S.T., 2009. Nuclear Run-On Assay. Cold Spring Harb. Protoc. 2009, pdb.prot5329. 

https://doi.org/10.1101/pdb.prot5329 

Spitz, F., Furlong, E.E.M., 2012. Transcription factors: from enhancer binding to developmental 

control. Nat. Rev. Genet. 13, 613–626. https://doi.org/10.1038/nrg3207 

Srinivasan, M., Sedmak, D., Jewell, S., 2002. Effect of Fixatives and Tissue Processing on the 

Content and Integrity of Nucleic Acids. Am. J. Pathol. 161, 1961–1971. 

https://doi.org/10.1016/S0002-9440(10)64472-0 

Ståhl, P.L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, 

S., Asp, M., Westholm, J.O., Huss, M., Mollbrink, A., Linnarsson, S., Codeluppi, S., 

Borg, Å., Pontén, F., Costea, P.I., Sahlén, P., Mulder, J., Bergmann, O., Lundeberg, J., 

Frisén, J., 2016. Visualization and analysis of gene expression in tissue sections by 

spatial transcriptomics. Science 353, 78–82. https://doi.org/10.1126/science.aaf2403 

Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F., 2011. Mammalian 

Genes Are Transcribed with Widely Different Bursting Kinetics. Science 332, 472–474. 

https://doi.org/10.1126/science.1198817 

Swarup, S., Verheyen, E.M., 2012. Wnt/Wingless Signaling in Drosophila. Cold Spring Harb. 

Perspect. Biol. 4, a007930. https://doi.org/10.1101/cshperspect.a007930 

Sylwestrak, E.L., Rajasethupathy, P., Wright, M.A., Jaffe, A., Deisseroth, K., 2016. Multiplexed 

Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell 164, 792–804. 

https://doi.org/10.1016/j.cell.2016.01.038 

Tabata, T., Takei, Y., 2004. Morphogens, their identification and regulation. Dev. Camb. Engl. 

131, 703–712. https://doi.org/10.1242/dev.01043 

Tomlinson, A., Ready, D.F., 1987. Neuronal differentiation in the Drosophila ommatidium. Dev. 

Biol. 120, 366–376. https://doi.org/10.1016/0012-1606(87)90239-9 

Trinh, L.A., Fraser, S.E., 2013. Enhancer and gene traps for molecular imaging and genetic 

analysis in zebrafish. Dev. Growth Differ. 55, 434–445. 

https://doi.org/10.1111/dgd.12055 

VanGuilder, H.D., Vrana, K.E., Freeman, W.M., 2008. Twenty-five years of quantitative PCR 

for gene expression analysis. BioTechniques 44, 619–626. 

https://doi.org/10.2144/000112776 

Vera, M., Biswas, J., Senecal, A., Singer, R.H., Park, H.Y., 2016. Single-Cell and Single-

Molecule Analysis of Gene Expression Regulation. Annu. Rev. Genet. 50, 267–291. 

https://doi.org/10.1146/annurev-genet-120215-034854 

Voronoi, G., 1908. Nouvelles applications des paramètres continus à la théorie des formes 

quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J. Für 

Reine Angew. Math. 1908, 198–287. https://doi.org/10.1515/crll.1908.134.198 

Wang, Y., Shyy, J.Y.-J., Chien, S., 2008. Fluorescence Live-Cell Imaging: Principles and 

Applications in Mechanobiology, in: Artmann, G.M., Chien, S. (Eds.), Bioengineering in 

Cell and Tissue Research. Springer, Berlin, Heidelberg, pp. 65–84. 

https://doi.org/10.1007/978-3-540-75409-1_4 

Wang, Z., Gerstein, M., Snyder, M., 2009. RNA-Seq: a revolutionary tool for transcriptomics. 

Nat. Rev. Genet. 10, 57–63. https://doi.org/10.1038/nrg2484 



 178 

Wartlick, O., Mumcu, P., Jülicher, F., Gonzalez-Gaitan, M., 2011. Understanding morphogenetic 

growth control -- lessons from flies. Nat. Rev. Mol. Cell Biol. 12, 594–604. 

https://doi.org/10.1038/nrm3169 

Webber, J.L., Zhang, J., Cote, L., Vivekanand, P., Ni, X., Zhou, J., Nègre, N., Carthew, R.W., 

White, K.P., Rebay, I., 2013. The Relationship Between Long-Range Chromatin 

Occupancy and Polymerization of the Drosophila ETS Family Transcriptional Repressor 

Yan. Genetics 193, 633–649. https://doi.org/10.1534/genetics.112.146647 

Williams, J.A., Bell, J.B., Carroll, S.B., 1991. Control of Drosophila wing and haltere 

development by the nuclear vestigial gene product. Genes Dev. 5, 2481–2495. 

https://doi.org/10.1101/gad.5.12b.2481 

Wu, J.S., Luo, L., 2006. A protocol for mosaic analysis with a repressible cell marker (MARCM) 

in Drosophila. Nat. Protoc. 1, 2583–2589. https://doi.org/10.1038/nprot.2006.320 

Xia, C., Babcock, H.P., Moffitt, J.R., Zhuang, X., 2019. Multiplexed detection of RNA using 

MERFISH and branched DNA amplification. Sci. Rep. 9, 7721. 

https://doi.org/10.1038/s41598-019-43943-8 

Xu, H., Sepúlveda, L.A., Figard, L., Sokac, A.M., Golding, I., 2015. Combining protein and 

mRNA quantification to decipher transcriptional regulation. Nat. Methods 12, 739–742. 

https://doi.org/10.1038/nmeth.3446 

Zecca, M., Basler, K., Struhl, G., 1996. Direct and long-range action of a wingless morphogen 

gradient. Cell 87, 833–844. https://doi.org/10.1016/s0092-8674(00)81991-1 

Zoller, B., Nicolas, D., Molina, N., Naef, F., 2015. Structure of silent transcription intervals and 

noise characteristics of mammalian genes. Mol. Syst. Biol. 11, 823. 

https://doi.org/10.15252/msb.20156257 

Zuo, W., Moses, M.E., West, G.B., Hou, C., Brown, J.H., 2012. A general model for effects of 

temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B Biol. 

Sci. 279, 1840–1846. https://doi.org/10.1098/rspb.2011.2000 

 

 

Appendix 1: Single Molecule FISH Probe Sequences 
 

EGFP Senseless Spalt Major 

gattctggatctttactttt agacgaacacgtccgtatcg tgcggcactgagagaaatcg 

cgtgatccttgtaatccatt cggttttatcttgactcact gcgcgtgtttagctaattta 

tcgtggtccttgtagtcgcc cttcgatgggtcttattcag cagtgggaaacgcgtagtac 

gtcatcgtccttgtaatcaa gtgatcttggattcgaacgg tcagcttgatcattgcacta 

ggaagtacaagttttccttg caaatctcactttcttggcg acacagaacgttggacaggt 

tgggggtgggaccagttgct ttttctcaatactgttcact tatccttgaagtcactacgc 

catgccgctgcccttctcga ttgctttaacagtctttgga ttttattgatggtctcctgg 

acagctcctcgcccttggac tcactggatctgatttacgt ccttcagctgtttgacaatg 

aggatgggcaccacgccggt ctggatctttactttttgga aaccattcgcaatggtcttg 

cacgtcgccatccagctcca cggcgataggtgattcattt tcataggtatctgtttcctg 
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gcacgctgaacttgtggccg tatcacagtgttgaaggcgg tttattagatgctgacgcgc 

gcgtcgccctcgccctcgcc gcgggttgtacaaaaagggc cttcagagattcagctggag 

cagggtcagcttgccgttgg agtagggcactcgagtagag tgtgttatccaaactcggtc 

tgccggtggtgcagatgaac cgtggccgaggacaacaaaa tggttggtgataatgctgga 

gtgggccagggcacgggcag ctgacccaaaaccacagagg tttctcaccgaaggcaaagt 

gtaggtcagggtggtcacca tcaaggcaaagtcacgatcc tgaagaacggctcattgcga 

agcggctgaagcactgcacg ttcatttggagttcatgctc atcttatgtggatctggagc 

tgctgcttcatgtgatcggg cttgctgttctcattgttat aagtgaaccttaaggttgcc 

catggcgctcttgaagaaat gtgcttagatttagtggcat tgaaacttgtccatgtgctc 

gctcctgcacgtagccctcg gaatcatccgatgtgatgcg gggaatgattgggagagcta 

tcatccttgaagctgatggt ctgctgtgatactgatctcg tagagattctgaaggccagg 

ggcgcgggtcttgtaggtgc cacttcactgctggaactgc ttaaggatttccataggcgg 

tatcgccctcgaacttcacc taacgttcagcgaggtcatc tctgatgaaggagagggtgt 

agctcgatgcggttcaccag tttagattcacagcgctcag gaagaaatcttcgcggggtg 

ctccttgaaatcgatgccct ttgctgtggtgtactcgaac cggtggtaaagttaaggggg 

tgtggcccaggatgttgcca ggtgaccagatgatgttacc tcgtgcttgatggggttaaa 

ctgttgaagttgtactccag cgatctctcgcacatcgagg aggtgttcgaaacctcgatg 

ggcggtgatgtacacgttgt acaataggatccacctggtg atcacagaccacacactgat 

tgatgccgttcttctgctta gcgctcatacttgaactttc cactggtggaagtttctcat 

tggcggatcttgaagttggc gcgaggatatggatgcagtt gcattcgagtacttcttgtg 

cacggagccatcctccacat agcgaggagatcggcgattg ataaagtgaccgggcatcat 

gctggtagtgatcggccagc tcgaactccagatcctggac acgacacatcatcgtcgtag 

ccgtcgccgatgggggtgtt atgggcatacaactgctgtt ctcagcttttgctcgaacaa 

gttatcgggcagcagcactg cgtcaatccggccatgaatg cgaagagctgcgcttgataa 

cgctctgggtgctcaggtag tgagcagctccagattgttg ctgagaagcctctgaacgag 

tcgttggggtccttggacag ctcttcagcttcaagtgctg tcacagatgctgcacttgaa 

cagcaccatgtgatcgcgct ttgatgcgatgctgttgctg tacttattcgcgatcttcgt 

cggcggcggtcacgaactcc tgccaccaaattcatgagtg tcttgatagcggattaagcc 

tcatccatgcccagggtgat gtgttgattacgcatgtagc gcgagaatcgattgcatctt 

gccgctgctctccttgtaca tgatgcaactgttgttgctg ccccggctagatcataaaaa 

ctgggcagcagttcaggaag tgatgctgatgttgctgcgg gcatctttggatacgtttca 

tgccgcccggttccatgcag cgtcgagtcaggatgttgct agattccgttctcagttttg 

ctccgcttcaccgctacctc gacgaggaggacgaacgacg tcggcgatcgcatctaaatt 

aaggcatccccatggtgatg ttcgttttctccttggtaag gcaaagcgtttggatttcga 
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  gtggatgagcagatctggaa gtggttcttcatctgtgata 

  ccacaatattggcagggata ttaatccttccttccaatga 

  atgtccgacttttggtggaa gtacgatcgctcatagactt 

  gtatgtatgtacgtgtgctt acattggcatccgtgtataa 

 

 

 

Omb-5' Exon Omb-3' Exon Omb- Intron 

ggcaaaagcgtttgacgtga ttcaacttgtccgaatcgga agggagagagtctgagtttc 

tttggtttatctgacgacgc tcgtcctgctgattatcaag caagtgtgagtgtgtctcag 

cacacgtaaacacggcgaga ccaagtgattaaaccaggca atcttgcactcacttgacac 

tgccttcggattgaagcaaa tttccgagcaactcgaatcg attgttacgtaagcctttgc 

ttcttgattccttatcgtcg caccgatatattcggtgacg gctgtgcagagcttagaata 

agaatctgcagggtgatgtt aaggcaacaaatgcggcgac ttgaatttggccagctatga 

tttctttaatcttgtcaggt gatacaggccatgtggatac ctttctattggtgttgttgc 

cacactttacgcacttttca ttgggcattgaagagcagac ccaagtgcgaacaaccaaca 

ccttgctgttgtttgatttt caaacaaagccggatgctgg tattttgttcaccgacttgc 

tttatattctttggacctcc cttgtaatggtgataccggt agcatttgccacagaaagga 

aaatctcaggcggaaaccag gcgaaaagcgatggctcttt ttttgcagggtcatgaactc 

ggtcgcattcaaactgcatt aaactgccgggcaaactgta gtgtgctaggtacaagtact 

ggcgatgacgacacgaacta caggagtcactgcatcgaag aaaagggtggcatggtgttt 

agggaaacggcgatttggat ggtgacatcgaaatcggtcg ttcaagtggcactcacatga 

tagttagctggctgctgtaa tggttgcttcatcagggatg gccaagtgaatgcaaatcca 

tcacttggcagttttaagtt atcttctccatgctcttaag aaactatagccacaagcctc 

tcgtttcttttgctttgcaa attgtgttgaacctccagtc acacgtcattctgaaggagc 

gtgtttaaaccttgttctgt catggtgcgagtgtagatgg gaagtaggagcaccgtattg 

tgttttggcgacggcaaaac agtaattgtcactgatccgt tgcgcttagacagcaatttc 

catgtttcattgcttttcgt ccaactctagttccaattcg ggtgtggaaaacgaggggag 

tttctcttcttgttgtttca tcgacgtccagatcaagatc ttctcgcactgaaagtgtcg 

ggacactcactgacttgtac ttcagaggctagaggcaatg ccaataaattgccgctttca 

ctctctagtttgacttttga cgctaaaccacaaagacggt ctgtcacaaagtccgacatc 

gcgatctctccaaaaaaggg gctacaaatgcctatagtct tgaactttgacaggcggttg 

gtcatgcagaaagggtttcc tgagttcgcaacgagagagg catcgataatttttcctgcc 

accgtttcaaacaaccaagt aacactggcgataaacgggc aaggaggtttttgcccaaat 



 181 

tggacgtcgtatctcatcac gctaggctttgcttagaaac gatatgtgtatctaccgcac 

tcctcagcagactgatgaaa gaatcgccagcgatttctag attttccatacgctctacac 

attggcgaacctggcgaatg attagacctctccatcactt aaagtagctaattgcccagt 

gcagaaatggatgatatgcc tttttgctaccttctgtctt atatgcgtatctttcgttgc 

ctgaagtcagtgggtcgttg ttttcctgttttttgtttcc ccgggatctcggaaatatga 

cgccgtcaacagcgaggaaa agttacgacgattctcttgc gtggattgtagttttgacca 

cgctgttgttattgttgcta cttgaagtctggaaccttca ttttgctgtctttctttctc 

agttgttgtttccgctgttg ctcattttattccgtctgtt gcgacggaaacgcttactta 

ttggtgttgttgttggaatt aatttgtctgaggatagccc catcaattttcggctggttg 

gttggtgttattggtgtttg ataaagaggcgccatctttg cctccaccttaaatgtgata 

ttggtgaaacggccacgaga tcatccacctaagactaaga tgtacatttccatcgtttct 

tagaccaacaattgtgggcg gtgtttacggtatcttggta gtcgtaagattgggtctgta 

cgtactgggtgagtgatgtg gcattttctatcgtctacga aatattccattccatgcagt 

agatgatgggcgtgcggatg tcagggggttccgaaattaa tttgtgcatttccaagttgt 

tgaccttgggatcatcgacg cacagaactcttgccctaaa aaggacgtcatcatcgtcat 

ttgtggaacttctcccacag tgcgaggaacatgcgttgaa ttgtcgttatttttctggcg 

ctcttggtgatgaccatttc ctttgtcgctctctcttaaa cgatccgatttttaagcgga 

  ttcttgcttttttctcctta cagcaacagccacgatatta 

  gaagattgtgtggtgttgca tgcttttttgagagaggctt 

  tcataagaatgcctatgcga ttcttttagtcttcgcagtt 

  ggttgtttgcgtttgtttta gaccgttctcattgtttttg 

  cagtgacatgaggtgttgtt   

 

 

 

Scalloped 

gagctggtgatgtttttcat 

aggttgttctgcaattgcag 

caacttccaactcgctgcag 

caactgcctgttgttctgtc 

gtgtccacggtgatggtatg 

atttgtgtctgccgatccaa 

acatccaggtttttgctatc 

tttcgtcatcgctcatatca 
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gcatcagcggatgacaagtc 

cgatatctggactccataca 

aaagcctcttgaaagctctg 

tgatttttctacgtccgcac 

attttaccctcgtcggataa 

tgcgattagctcgttgcgac 

cctgtgcgcagttttatata 

cacttggatgtgcgaactga 

tggatctcgcggagtttacg 

gccagaattgcactttgatt 

aaatcttgggacgtgcttgg 

gaagggcttgatgctgtaat 

aaaccgcagtcgacgttttg 

caattgtgagggcggaattc 

gaatttgtgcgtggcaatgg 

gaacgccgtaaactcgagta 

tttcatctctctggatttcc 

gaacgaatagatgccggtga 

cggaaaaggatggcttgccg 

tcaacagtctcaagcaatgg 

acttgtcgaatatttgccgt 

ttaagtcccccagatttctc 

tggacccttttcgtagagat 

cccagcatttaactaggtaa 

gttagatcggtattcaggtc 

atagaaatcacccgtttcgc 

tttcgtattggctggttacg 

cacacgagcacgacattctc 

tgcttgccaaaggagcaaac 

gattgttctccagtcgagag 

gcgttgaatgcgatagacgt 

gatcatgtactcgcacatgg 

gttcttcagcttctgaataa 

tcatcatatagcgttccggt 
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gtaaagttttccagcacact 

ggccctcattacttgcaata 

atgcacaacagtgtctcctg 

cgccacctcaaacacatagg 

gacggtatatgtgatgggtg 
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