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ABSTRACT

Endogenous Information Acquisition: Essays in Applied Game Theory

Colin Shopp

This dissertation endogenizes information acquisition in two-player games across three

different settings. The first chapter explores when moral hazard in a principal-agent contract

can lead to pareto improvements when it is preceeded by information gathering. The second

chapter studies how product differentiation affects the amount of market research done by

firms that compete on price. The third chapter examines the role of costly risk in a production

process when there is a debt contract between an investor and an entrepreneur.

In Chapter 1, I consider an agent who designs an experiment that reveals information

about a state to a principal. The principal subsequently decides whether or not to im-

plement a project. If she does, then she offers a limited-liability contract to motivate the

agent to exert effort, which together with the state stochastically determines the project’s

output. If effort is contractible, the contract “holds up” the agent so that conditional on

implementation his payoff is independent of the principal’s beliefs. In equilibrium, he pro-

vides only enough information to maximize the probability that the principal implements

the project. In contrast, if effort is non-contractible then the principal must promise the

agent rent to motivate effort. Since the promised rent varies across beliefs, the agent may
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provide more precise information. Thus, although the non-contractibility of effort lowers

the principal’s payoff at a given belief, it can improve welfare by mitigating hold-up and

encouraging information provision.

In Chapter 2, I apply the main result in Persico (2000), that decision-makers acquire

more information when their payoffs are more risk-sensitive, to a duopoly model of Bertrand

competition with uncertain demand following Vives (1984) in order to show how the amount

of private market research firms undertake depends on competition, measured as the level of

product differentiation. I decompose the relative marginal return of research across compe-

tition levels into two effects, a competitive profit effect and a coordination effect, and show

how each of these depends on competition. When the cost of market research is sufficiently

high, the amount firms invest in market research is decreasing in the level of competition. In

contrast, when the cost of market research is sufficiently low, firms perform the most market

research at an intermediate level of competition. I partially extend this result to a public

market research setting.

In Chapter 3, I extend a simple model of debt between a liquidity-constrained en-

trepreneur and an investor to allow one of the players, according to the governance structure,

to choose either risky or safe production at time 1. Risky production causes capital to de-

preciate, lowering the value of collateral and production at time 2. When the entrepreneur is

tempted to choose risky production in order to foreclose more often in the low state and less

often in the high state, he must offer more collateral to the investor. In this way, his inability

to commit to safe production can lower his expected value from the project in equilibrium. I

provide necessary and sufficient conditions such that the entrepreneur strictly prefers for the

investor to have governance over time 1 production in order to overcome this commitment

problem.
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CHAPTER 1

Persuasion, Hold-Up, and Incentive Contracts

1.1. Introduction

Firms use information not only to determine whether or not to implement a project but

also as the basis for the incentive contracts they offer. When deciding how much information

to provide, an agent will anticipate both the firm’s implementation decision and the value

he can capture in the ensuing contract, which depends on the contracting environment. In

particular, the existence of contracting frictions partially determines the agent’s anticipated

value from the contract and consequently affects how much information he initially provides.

Consider for example a consultant performing exploratory analysis to discover whether or

not an opportunity is profitable for a prospective client. That analysis will be the basis of a

contract with the client, including the work required of the consultant and his compensation.

On one hand the consultant is incentivized to provide information to increase the likelihood

that the project goes forward (perhaps so that he can establish a reputation or make beneficial

contacts), but on the other hand he must consider how he will be compensated once his

analysis has been shared. Providing too much information puts him at risk of revealing

that the project is not profitable, preventing it from going forward. The client, for her part,

prefers the analysis to be as informative as possible.

Similarly, consider a pharmaceutical firm deciding whether or not to buy a drug from

a biotech company. The biotech can conduct initial research to test how effective the drug

is. The results determine both whether the pharmaceutical firm makes the purchase as well
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as the nature of the ongoing interaction between the two parties. If the biotech is able to

recoup some of the value of the information they provide then they will conduct more precise

research. If instead the pharmaceutical can contract away all of the value of information

then the biotech will conduct less precise research. Thus, while the pharmaceutical would

like to capture as much value as possible, their ability to do so may reduce their profits if it

leads to less precise initial information.

This paper studies a setting in which an agent engages in Bayesian persuasion1 to con-

vince a principal to implement a project, after which the principal offers the agent a spot

contract to motivate him to exert effort. I compare information provision and payoffs across

two contracting environments: the benchmark setting and the moral hazard setting. In the

benchmark setting the principal can extract all the value of information, i.e. she holds up

the agent. Before the information is shared, she cannot credibly promise to implement the

project or to share the gains of information conditional on implementation. After the results,

she offers a contract on effort and thereby retains all of the surplus created. Therefore, the

agent’s incentive to provide information is restricted to how it affects the implementation

decision, and he may underprovide information. By contrast, in the moral hazard setting

the principal must promise rent to motivate the agent because effort is non-contractible.

Moral hazard functions as a commitment device that alleviates the hold-up problem. The

contract is inefficient; at any given posterior belief, conditional on implementation both the

principal’s payoff and total surplus are lower relative to the benchmark setting. This re-

sults in a further cost: the principal implements the project more rarely. However, since

the agent’s rent from the contract may depend on beliefs, moral hazard potentially leads to

1See Kamenica & Gentzkow (2011).
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more information provision. I provide conditions under which the existence of moral hazard

leads to ex ante gains for both players.

Formally, I consider a game with two players: a sender (the agent, “he”) and a receiver

(the principal, “she”). The game has two distinct stages, a persuasion stage and a con-

tracting stage. In the persuasion stage, the sender chooses an experiment, the design and

results of which are verifiable, to test some underlying binary state. Based on the outcome,

the receiver chooses whether or not to pursue the project at some fixed cost. In the subse-

quent contracting stage, the receiver offers a limited-liability contract to the sender. In the

benchmark setting, the contract is a schedule of payments conditional on both effort and

output. In the moral hazard setting it is a schedule of payments conditional on output only.

If the sender accepts the contract, he chooses effort that, jointly with the state, stochasti-

cally determines the output of the project. The receiver gets the value of the output net

of the implementation cost and any payment to the sender. The sender gets not only any

payment from the receiver net of his cost of effort, but also a direct benefit if the project is

implemented.2

I find the unique equilibrium in the benchmark contracting setting and show that while

the contract is efficient at any given belief, the hold-up problem leads to the underprovi-

sion of information. In the benchmark setting the receiver captures all the value from the

project conditional on implementation because she can condition transfers perfectly on ef-

fort. Consequently, the sender earns only his direct benefit from implementation.3 Since the

sender’s payoff is solely determined by whether or not the receiver implements the project,

he will design an experiment to maximize the probability that she does so. I show that the

2This can be interpreted as reputational concerns, ego, state-independent monetary compensation, etc.
3The receiver is unable to contract this away from him due to limited liability.
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receiver’s payoff is increasing in her beliefs, so that her implementation rule is a cutoff. The

sender maximizes the probability of implementation in equilibrium. That is, he chooses an

experiment that maximizes the probability that posterior beliefs equal the implementation

cutoff, in which case the receiver gets no value from the project on average.4 The sender

will not risk providing more precise information since that would decrease the probability of

implementation.

I partially characterize the sender’s equilibrium persuasion in the moral hazard setting.

The main focus of this paper is the dual effects of moral hazard, namely the effect on

contracting payoffs and the effect on information provision. Moral hazard leads to inefficient

spot contracts and reduces the probability of implementation. However, it also forces the

receiver to share some of the surplus with the sender. Most importantly, because the receiver

can only condition payments on output and not on effort directly, the amount of rent the

receiver promises the sender varies in beliefs. Therefore, the sender faces a tradeoff when

choosing an experiment. If he chooses a more informative experiment, the probability that

the receiver implements the project decreases, but conditional on implementation the rent

the sender gets from the contract may increase. I show that, as in the benchmark setting,

the hold-up problem sometimes leads to the underprovision of information in the moral

hazard setting. However, I find conditions such that the sender does not underprovide

information, i.e. such that moral hazard mitigates the hold-up problem. I also show that

in some settings moral hazard mitigates the hold-up problem only when the receiver’s fixed

cost of implementation is high. This implies that a firm would sometimes prefer both to be

4See the leading example in Kamenica & Gentzkow (2011) for a detailed discussion of this particular per-
suasion behavior.



14

unable to write perfect contracts and to face higher fixed costs, rather than have lower fixed

costs or be able to write complete contracts.

I compare the players’ payoffs across contracting settings. Since moral hazard leads to

more information provision at the persuasion stage but lower total surplus in the contracting

stage after any given experiment, either player may be better or worse off from moral hazard

relative to the benchmark setting. Both players are subject to an information effect (the

change in the experiment) and a contracting effect (the change in expected payoff from the

contract). From the sender’s perspective, the information effect is negative because the

probability of implementation has decreased, but the contracting effect is positive because

the receiver gives him positive rent. From the receiver’s perspective, the information effect

is positive because more information allows her to better tailor her implementation decision

and the contract she offers to the state, but the contracting effect is negative both because the

contract is inefficient and because she does not capture all of the surplus from the contract.

For both players, the relative magnitude of these effects depends on the prior belief on the

state. I show that the sender is better off from moral hazard when the prior is high, where

the contracting effect dominates the information effect, while the receiver is better off from

moral hazard when the prior is low, where the information effect dominates the contracting

effect. I show that these regions sometimes overlap, such that at some priors moral hazard

leads to a strict pareto improvement ex ante in spite of interim inefficiencies in the spot

contract.

The rest of the paper is organized as follows. Section 1.2 gives the timing of the model and

the equilibrium concept. Section 1.3 restricts the model to a particular class of multiplicative-

quadratic functional forms. This class has convenient features that allow me to find equi-

librium in closed form and make detailed payoff comparisons across contracting settings. I
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give comparative statics on the parameters and discuss the intuition behind the tradeoffs of

moral hazard. Section 1.4 extends the results to a general model in which the probability of

high output exhibits increasing differences in effort and the state, and the cost of effort is

convex. Section 1.5 contains an extension in which I restrict effort to be binary. This allows

me to closely examine the role of the production function in determining whether or not

moral hazard mitigates the hold-up problem. While in the general continuous effort model

I focus on the role of the parameters when the production function exhibits increasing dif-

ferences, in the binary model I show that moral hazard mitigates the hold-up problem when

production satisfies either (sufficiently) increasing differences or decreasing differences.5 I

discuss the different mechanisms by which these two types of production function affect the

sender’s tradeoff in information provision. Section 1.6 concludes.

To my knowledge, this is the first model to ground a sender’s payoff in a persuasion

context as the result of a limited liability contract, as well as to compare that payoff across

different contracting environments. There are, however, several papers that take up some

combination of these elements. Hörner & Skrzypacz (2016) study the problem of information

design to induce a receiver to move forward with a project. Their model focuses on multiple

stages of information transmission and a sender who knows the underlying state and gets

flow payments, rather than benefitting from the project moving forward per se. Similar

to my model, Boleslavsky & Kim (2017) consider the interrelation between persuasion and

moral hazard, but in their model information design itself is used both to motivate an agent’s

hidden effort and to persuade a principal to take a preferred action. Effort takes place before,

and partially determines, signal realizations.

5“Sufficiently” increasing differences refers in part to the rate of increasing differences relative to the cost of
effort.
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This work is related more broadly to the burgeoning literature on Bayesian persuasion,

largely incited by the seminal papers Kamenica & Gentzkow (2011), hereafter “KG”, and

Rayo & Segal (2010) using mathematical tools developed extensively in Aumann & Maschler

(1995). Many papers extend or amend the theoretical results of KG to other environments,

for instance by including multiple receivers [Wang (2013)] or multiple senders [Gentzkow

& Kamenica (2016, 2017)], considering heterogeneous priors [Alonso & Câmara (2016)],

allowing the receiver to have private information [Kolotilin et al. (2017)], or considering

a dynamic environment [Ely (2017)]. This literature often focuses on the effectiveness of

persuasion from the sender’s perspective, whereas I am interested in the determinants of the

specific shape of the sender’s persuasion policy and how they affect both the sender’s and

the receiver’s payoff.

Moral hazard in the presence of limited liability has been studied extensively since Innes

(1990). Pitchford (1998), which considers the effects of bargaining power in such an envi-

ronment, provides several examples of production and cost functions and the resulting shape

of the agent’s payoffs. Poblete & Spulber (2012) characterize optimal contracts in terms of

a simple condition when both the agent and the principal are risk-neutral. Their results

are extended to include costly, private information acquisition in Su (2016) . There, a prin-

cipal sometimes offers a contract that deters information acquisition while simultaneously

motivating hidden state-independent effort, thereby implementing moral hazard. My work

focuses in particular on how the sender’s value in the receiver’s (principal’s) optimal moral

hazard contract changes in the underlying distribution on the state, which is not something

about which these papers are primarily concerned. It is important here because it determines

the sender’s optimal persuasion policy.
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This work shares several similarities with the literature on hold-up, such as Gul (2001)

and Che & Sákovics (2004). I focus in particular on a hold-up problem in information

provision, rather than in investment or effort. As pointed out in Arrow (1962), there is a

sense in which hold-up is intrinsic to selling information in that the value of information is

unknown until that information is revealed. This is an idea taken up in the literature on

intellectual property rights. Anton & Yao (2002) and Aghion & Tirole (1994) explore this

friction under different contracting assumptions. Like my model, their models include both

information transmission and effort, but in very different frameworks.

At its core this paper is an example of the theory of second best as detailed in Lipsey

& Lancaster (1956): while one source of contracting incompleteness can reduce payoffs and

lead to inefficiencies, an additional source of contracting incompleteness may alleviate, rather

than exacerbate, this loss.

1.2. Model

This section describes the model. Subsection 1.2.1 contains timing and payoffs. Subection

1.2.2 gives the equilibrium concept and key definitions.

1.2.1. Timing and Payoffs

Consider a game between a receiver (“she”) and a sender (“he”). The sender designs a signal

structure mapping from a binary state to signals. This is a Bayesian persuasion game as in

KG, meaning the sender publically commits to a signal structure before the state is realized.

The receiver observes both this signal structure and its realization.

The signal is commonly observed, after which the receiver decides whether or not to

implement a project. If she chooses not to implement the project, the game ends. If she
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chooses to implement the project, she pays a fixed cost β and the sender gets a strictly

positive fixed benefit α that need not equal β. The receiver makes a take-it-or-leave-it offer

of an incentive contract to the sender. The sender chooses (costly) effort, which together

with the state determines the distribution over output.

Formally, the timing of the model is as follows:

(1) The sender chooses a signal structure S(·|θ), which is a conditional distribution on

signals given θ. The receiver observes the signal structure.

(2) Nature chooses θ ∈ {0, 1} according to the common prior p0 ∈ (0, 1) on θ = 1, i.e.

E(θ) = p0.

(3) Signal s is realized according to S(·|θ). Both the sender and receiver observe s.

(4) The receiver chooses d ∈ {0, 1}. If d = 0, the game ends and the sender and receiver

get payoff 0. If d = 1, the game continues.

(5) The receiver offers the sender a contract specifying t(e, y), with t(·, ·) ≥ 0, which

the sender accepts or rejects. If the sender rejects, the game ends. If the sender

accepts, the game continues.

(6) The sender chooses effort e ∈ [0,∞).

(7) Output y ∈ {0, 1} is realized. P (y = 1|e, θ) = f(e, θ) for some function f(·, ·) ∈

[0, 1].

If d = 1, the receiver’s payoff v(e, y) and the sender’s utility u(e, y) are as follows:6

6If d = 0 then v(e, y) = u(e, y) = 0.
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v(e, y) = y − β − t(e, y).

u(e, y) = α− c(e) + t(e, y).

The receiver captures the value of the output, but must pay a fixed cost β along with

any transfer promised to the sender. The sender gets a fixed benefit α from the project7

along with any promised transfer, but incurs a cost of effort c(e).

I consider two contracting settings. In the benchmark setting the receiver can condition

transfers on both effort and output. For ease of notation, I restrict attention to transfers

that depend only on effort and not on output, i.e. t(·, 1) = t(·, 0), which is without loss of

generality for my results. I suppress the second argument in that setting and write t(e). In

the moral hazard setting the receiver is restricted to transfers that depend only on output,

i.e. t(e, 0) = t(e′, 0) and t(e, 1) = t(e′, 1) ∀e, e′. In that setting I suppress the first argument

and write t(y).

1.2.2. Equilibrium Concept

The solution concept in this model is Perfect Bayesian Equilibrium (PBE). In some cases

there may be multiple equilibria. I restrict attention to the class of PBEs that maximize the

receiver’s ex ante payoff. In the benchmark setting I write this PBE∗, which at a given prior

is a tuple:

7For simplicity I treat α as exogenous and independent of β, but one can think of α as the purchase price
of the project and β as this price plus any additional up-front investments the receiver must make. This
interpretation fits the model if the sender cannot recoup any value of the project if the receiver does not
make a purchase offer, but conditional on the offer can shop the project around and obtain a price α for
it, in other words if his outside option depends on the receiver’s continuation decision but not directly on
beliefs.
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{L∗, H∗, d∗(p), t∗(e|p), e∗(p, t(e|p))}

.

I write p to denote the (common) posterior belief on θ = 1 after the signal is realized.

Effort e∗(p, t(e|p)) is the sender’s optimal effort at posterior p for a given transfer rule t(e|p).

The optimal transfer rule t∗(e|p) takes this effort choice into account and maximizes the

receiver’s expected payoff at posterior p. The equilibrium continuation rule is such that

d∗(p) = 1 whenever the receiver’s expected value at a given posterior is positive given

continuation behavior e∗(p, t(e|p)) and t∗(e|p). The sender’s signal structure for some prior

p0 maximizes the sender’s ex-ante expected utility. As shown by KG, I can model optimal

signal structures as a choice over at most two posteriors without loss of generality in this

setting. The posteriors L∗ and H∗ are the two (possibly identical) optimal posteriors chosen

by the sender in the persuasion stage.

I write PBE∗N to denote an equilibrium that maximizes the receiver’s ex ante payoff in

the moral hazard setting. It is defined analogously to the benchmark setting:

{L∗N , H∗N , d∗N(p), t∗N(y|p), e∗N(p, t(y|p))}.

In both contracting settings, I assume for simplicity that the receiver breaks ties in favor

of implentation, and the sender breaks ties in favor of accepting a contract. This is without

loss of generality in my setting.

Some results include equilibrium uniqueness. I define equilibrium to be unique if all

equilibria in a particular setting are identical on-path.
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It is useful for the analysis to distinguish player’s payoffs at different stages for a given

set of strategies. I write the receiver’s contracting payoff as Π(p) ≡ Eθ[v(e, y) + β|p] and the

sender’s contracting rent as R(p) ≡ Eθ[u(e, y) − α|p]. These are the players’ payoffs from a

contract alone, assuming the receiver implements at some posterior p and suppressing direct

cost (to the receiver) and benefit (to the sender) from implementation. I write the receiver’s

continuation payoff as V (p) ≡ d(p)(Eθ[v(e, y)|p]) and the sender’s continuation payoff as

U(p) ≡ d(p)(Eθ[u(e, y)|p]). These are the players’ expected payoffs at any given posterior,

taking into account the implementation rule in addition to effort and transfers. Finally I

write the receiver’s and sender’s ex ante payoffs as V̄ (p0) ≡ ES(·|θ)[d(p(s))(Eθ[v(e, y)|p(s)])|p0]

and Ū(p0) ≡ ES(·|θ)[d(p(s))(Eθ[u(e, y)|p])|p0], respectively.

To distinguish equilibrium payoffs at various stages in an equilibrium PBE∗ I use super-

script “∗”, for example R∗(p). In an equilibrium PBE∗N I also use a subsript “N”, for example

V̄
∗
N(p0). In any PBE∗, Ū

∗
(p0) is the concavication of U∗(p), and in any PBE∗N , Ū

∗
N(p0) is

the concavication of U∗N(p).

1.3. Multiplicative-Quadratic Example

In this section I restrict attention to a particular example, the multiplicative-quadratic or

“m-q” game. This example has useful properties that make the analysis straightforward and

clearly illustrates the effects of moral hazard and the role of the parameters. The intuition

for the results in this section extends to the more general setting analyzed in Section 1.4.

Definition 1. A Multiplicative-Quadratic game is such that f(e, θ) = eθ and c(e) = k
2
e2,

for some k > 1 s.t. 2
√
kβ ∈ (0, 1).8

8The parametric assumptions guarantee an interior solution in effort and an interior implementation cutoff
in both the benchmark setting and the moral hazard setting.
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In Subection 1.3.1 I find the unique PBE∗ in the benchmark setting. In Subsection 1.3.2 I

find the unique PBE∗N in the moral hazard setting and characterize when the sender provides

full information in equilibrium. Subsection 1.3.3 compares payoffs between the two settings.

I first restrict attention to a particular (low) region of priors. In that region I characterize

when moral hazard leads to a strict pareto improvement and provide comparative statics on

the parameters. I then discuss the role of the prior. I show that the receiver is better off in

the moral hazard setting when the prior is low, while the sender is better off in the moral

hazard setting when the prior is high.

1.3.1. Benchmark Equilibrium

I find the unique PBE∗ in the benchmark setting using backward induction. I show that

while the spot contract is efficient, ex ante payoffs are less than first best. From the receiver’s

perspective, the sender underprovides information.

Suppose at some posterior p the recevier has implemented the project. Her optimal

incentive contract in the benchmark setting solves the following maximization problem.

Π∗(p) =max
e,t(·)

ep− t(e)− β

s.t. t(·) ≥ 0 LL

t(e)− k

2
e2 ≥ 0 IR

t(e)− k

2
e2 ≥ t(e′)− k

2
e′2 ∀e′ IC
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To implement some e, the principal can set t(e′) = 0 for e′ 6= e. Then IR will bind

without violating IC by setting t(e) = k
2
e2. Therefore, her maximization problem simplifies

to the following.9

max
e

ep− k

2
e2

By standard first order approach the solution is first best effort e∗(p) = p
k

and transfer

t∗(e∗(p)) = p2

2k
. The receiver’s contracting payoff at a given posterior is Π∗(p) = p2

2k
.

The receiver implements the project whenever her contracting payoff covers her fixed

cost of implementation. Since her contracting payoff is strictly increasing in the posterior,

her optimal implementation policy is a cutoff, which I call p̂. In equilibrium, it must be that

d∗(p) = 1 iff p ≥ p̂. In the m-q game, p̂ =
√

2kβ. This is the point at which Π∗(p) = β.

Figure 1.1 depicts the receiver’s continuation payoff in the posterior.

Figure 1.1. Receiver’s Continuation Payoff

Given this implementation policy, the sender’s continuation utility is U∗(p) = α at p ≥ p̂

and U∗(p) = 0 otherwise. This is depicted in the left-hand graph in Figure 1.2.10 His ex

ante expected utility given optimal persuasion is the concavication of his continuation utility,

9Note that this is the same as maximizing total surplus conditional on implementation.
10The sender’s persuasion problem is essentially identical to the motivating example in KG precisely because
the sender gets no rent from the incentive contract beyond his implementation benefit α.
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shown in the right-hand graph of Figure 1.2. At low priors p0 < p̂, i.e. priors such that the

receiver would not continue without additional information, he achieves this by designing

a signal structure leading to posteriors L∗ = 0 and H∗ =
√

2kβ. This is his persuasion

strategy in the unique PBE at low priors. At higher priors, any signal structure that never

leads to a posterior p < p̂ is optimal; thus, there are multiple PBEs. Since the receiver’s

continuation payoff in that region is convex, the sender’s persuasion strategy in the unique

PBE∗ at priors p0 > p̂ is the most informative one: L∗ =
√

2kβ and H∗ = 1.11

Figure 1.2. Sender’s Continuation and Ex Ante Payoffs

Proposition 1 fully characterizes the unique PBE∗ at every prior in the benchmark setting

of the m-q game. I defer discussion of equilibrium payoffs to Subsection 1.3.3

Proposition 1. In the m-q game, at priors (i) p0 ∈ (0,
√

2kβ), (ii) p0 =
√

2kβ, (iii)

p0 ∈ (
√

2kβ, 1) there exists a unique PBE∗ with strategies:

(1) (i) L∗ = 0, H∗ =
√

2kβ, (ii) L∗ = H∗ =
√

2kβ, (iii) L∗ =
√

2kβ, H∗ = 1

(2) d∗(p) = 1 iff p ≥
√

2kβ

(3) t∗(e∗(p)|p) = p2

2k
and t∗(e|p) = 0 ∀e 6= e∗(p)

(4) e∗(p) = p
k
.

11At p0 = p̂, the unique optimal persuasion strategy is an uninformative signal.
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Even though effort is first best, this equilibrium is inefficient. The receiver does not

implement at some posteriors where implementation maximizes total surplus. The sender

does not provide full information, but instead persuades in such a way to maximize the

probability that the posterior belief is equal to the implementation cutoff. 12

1.3.2. Moral Hazard Equilibrium

I find the unique equilibrium in the moral hazard setting in the same manner as in the bench-

mark setting. Effort is inefficient at the contracting stage, and the receiver’s implementation

cutoff is consequently higher than in the benchmark setting. The key difference between equi-

librium in the moral hazard setting and equilibrium in the benchmark setting is that in the

moral hazard setting the sender’s continuation payoff depends on beliefs to the extent that

he sometimes reveals more information than would maximize the probability of implemen-

tation. The sender’s contracting rent is convex in the posterior, so his persuasion strategy

is either to maximize the probability of implementation (as in the benchmark setting) or to

fully reveal the state. I characterize which of these strategies obtains in equilibrium.

The receiver’s maximization problem at posterior p is as follows.

Π∗N(p) =max
e,t(y)

ep(1− t(1))− (1− ep)t(0)

s.t. t(·) ≥ 0 LL

ept(1) + (1− ep)t(0)− k

2
e2 ≥ 0 IR

e ∈ argmax
e′
{e′pt(1) + (1− e′p)t(0)− k

2
e′2} IC

12Without limited liability, full revelation is first best. With limited liability, full revelation is first best if
α is sufficiently low, while if α is sufficiently high the sender’s equilibrium persuasion strategy is first best
given the receiver’s equilibrium contracting and implementation behavior.
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The sender’s IC constraint pins down t(1) as a function of t(0) for any given e: t(1) =

t(0) + ke
p

. Since t(1) is increasing in t(0) the best the receiver can do without violating LL

is set t(0) = 0 and t(1) = ke
p

. Her simplified maximization problem is:

max
e

ep(1− ke

p
)

The unique solution is e∗N(p) = p
2k

, t∗N(0) = 0, t∗N(1) = 1
2
.13 Effort is less than first best (by

exactly half).

The receiver’s contracting payoff is Π∗N(p) = p2

4k
, which is lower pointwise in the posterior

relative to the benchmark setting both because total surplus has decreased and because

she is forced to give some of the surplus as rent to the sender to motivate effort. As in

the benchmark setting, the optimal implementation policy in the moral hazard setting is a

cutoff: p̂N = 2
√
kβ =

√
2p̂.

Unlike in the effort-contract case, here the sender’s continuation utility is no longer

constant in the posterior conditional on implementation. Instead, it is strictly increasing

and convex.

U∗N(p) =


0, if p < p̂N

α + p2

8k
, otherwise

As in the benchmark setting, the sender’s ex ante utility given optimal persuasion is the

concavication of his continuation utility. Because there is a discrete jump in his continuation

utility at the implementation cutoff, after which it is increasing and strictly convex, one

of two persuasion strategies is optimal. The first candidate is cutoff persuasion, in which

13The fact that the transfer in the high state does not depend on the posterior is a feature of the particular
multiplicative-quadratic game that does not hold in general settings.
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depending on the prior either L∗N = p̂N or H∗N = p̂N .14 This maximizes the probability

of implementation, much like his equilibrium persuasion strategy in the benchmark setting.

The second candidate is full revelation in which the signal perfectly reveals the state. In

that case he trades off some probability of implementation for higher rent conditional on

implementation. Figure 1.3 characterizes which persuasion strategy is optimal. The solid

green line is the sender’s continuation payoff assuming the receiver always implements the

project. The dashed black line connecting the origin to his continuation payoff at posterior

p = 1 is his ex ante payoff if he fully reveals the state. I call the point at which these intersect

p̄. If p̂N > p̄ then full revelation is optimal. If p̂N < p̄ then cutoff persuasion is optimal.15

Figure 1.3. Optimal Persuasion Characterization

Figure 1.4 shows an example in which full revelation is optimal in the left-hand graph

and an example in which cutoff persuasion in the right-hand graph. As in Figure 1.3, the

dashed black line in the right-hand graph of Figure 1.4 represents the sender’s ex ante utility

if he (suboptimally) fully reveals the state.

14At priors p0 < p̂N , L∗
N = 0 and H∗

N = p̂N , while at priors p0 > p̂N , L∗
N = p̂N and H∗

N = 1.
15If p̄ = p̂N then both persuasion strategies are optimal, but full revelation is the persuasion strategy in the
unique PBE∗

N .
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Figure 1.4. Two Cases of Optimal Persuasion

All that remains to characterize the unique PBE∗N is to find p̄, which solves the following

equation:

R(p) + α = p(R(1) + α) ⇐⇒ α +
p2

8k
= p(α +

1

8k
)

This has two solutions in p: p = 1 (by construction) and p = 8kα. Thus p̄ = 8kα, which is

interior by the parametric assumptions in the definition of the m-q game. Full revelation is

optimal whenever p̄ ≤ p̂N , which is equivalent to the condition below. Cutoff persuasion is

optimal otherwise.

(1.1) α ≤
√

β

16k

Proposition 2 fully characterizes the unique PBE∗N at every prior in the moral hazard

setting of the m-q game. As in the benchmark setting, I defer discussion of equilibrium

payoffs to Subsection 1.3.3.

Proposition 2. In the unique PBE∗N of the m-q game, if α ≤
√

β
16k

then at priors

p0 ∈ (0, 1) the equilibrium persuasion strategy is L∗N = 0, H∗N = 1. If α >
√

β
16k

then at

priors (i) p0 ∈ (0, 2
√
kβ), (ii) p0 = 2

√
kβ, (iii) p0 ∈ (2

√
kβ, 1) the equilibrium persuasion



29

strategy is (i) L∗N = 0, H∗N = 2
√
kβ, (ii) L∗N = H∗N = 2

√
kβ, (iii) L∗N = 2

√
kβ, H∗N = 1. In

either case, equilibrium implementation, transfers, and effort are as follows:

(1) d∗N(p) = 1 iff p ≥ 2
√
kβ

(2) t∗N(1|p) = 1
2

and t∗N(0|p) = 0

(3) e∗N(p) = p
2k

.

Even if the sender provides full information, this equilibrium is always inefficient, for

somewhat different reasons than in the benchmark setting. In the moral hazard setting,

effort is less than first best conditional on implementation. As in the benchmark setting,

the receiver does not implement at some posteriors where implementation maximizes total

surplus conditional on equilibrium contracting behavior. The sender’s persuasion strategy

is efficient when he fully reveals.16

1.3.3. Welfare Effects of Moral Hazard

This section compares both players’ ex ante equilibrium payoffs across contracting settings

and discusses how the comparison extends to more general settings. I first focus on equilib-

rium payoffs when the prior is equal to the benchmark setting implementation cutoff: p0 = p̂.

All of the results apply to all lower priors p0 ∈ (0, p̂]. Moral hazard sometimes benefits only

one player, sometimes both players, and sometimes neither player. I characterize each case.

Next, I discuss the role of the parameters α, β, and k in the characterization. These pa-

rameters affect the relative continuation payoffs and implementation rules in both settings,

which in turn affect equilibrium persuasion and relative ex ante payoffs. I give comparative

statics in each parameter. Finally, I examine the role of the prior itself and show that the

16If he chooses cutoff persuasion, that maximizes total surplus given the receiver’s equilibrium behavior only
if α is sufficiently high (as in the benchmark setting).
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receiver is better off in the moral hazard setting when the prior is low, while the sender is

better off in the moral hazard setting when the prior is high.

I discuss first the receiver’s and then the sender’s ex ante payoffs in each setting when

p0 = p̂. As this is the implementation cutoff, by definition the receiver’s continuation payoff

in the benchmark setting is V ∗(p̂) = 0. As shown in Proposition 1, in the unique PBE∗

the sender guarantees implementation by providing no information. The receiver’s ex ante

equilibrium payoff in the benchmark setting is V̄
∗
(p̂) = V ∗(p̂) = 0.

In the moral hazard setting, the receiver’s ex ante equilibrium payoff depends on whether

the sender engages in cutoff persuasion or fully reveals the state. In the first case V̄
∗
N(p̂) =

V̄
∗
(p̂) = 0. If instead the sender fully reveals the state, then V̄

∗
N(p̂) = p̂V ∗N(1) > 0.

Thus, at the prior p0 = p̂, the receiver is strictly better off in the moral hazard setting than

in the benchmark setting exactly when the sender fully reveals. She is otherwise indifferent

between the two settings. Define X ≡
√

β
16k

. From Equation 1.1, the sender fully reveals,

and thus the receiver is strictly better off in the moral hazard setting than in the benchmark

setting, whenever α ≤ X. This is further illustrated in Figure 1.5, which shows the receiver’s

equilibrium payoffs in both the benchmark and moral hazard equilibrium. In the left-hand

graph the sender’s equilibrium persuasion strategy in the moral hazard setting is cutoff

persuasion, while in the right-hand graph he fully reveals in the moral hazard setting. It is

clear from the figure that at priors p0 ∈ (0, p̂] the receiver is strictly better off in a PBE∗N than

in a PBE∗ if the sender fully reveals in the moral hazard setting, but that she is indifferent

across settings if the sender chooses cutoff persuasion in the moral hazard setting.

Now consider the sender’s equilibrium payoffs in each contracting setting at the same

prior p0 = p̂. In the benchmark setting, he guarantees implementation but does not get

any rent, so Ū
∗
(p̂) = α. We can compare this to his expected payoff in the moral hazard
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Figure 1.5. Receiver Payoff Comparison: Cutoff vs. Full Revelation

setting by examining his payoff when he chooses cutoff persuasion and his payoff when

he fully reveals the state. Whichever type of persuasion the sender chooses in the moral

hazard setting, his continuation payoff conditional on implementation increases relative to

the benchmark setting, but the probability of implementation decreases. Proposition 3

characterizes when the sender’s equilibrium payoff is higher in the benchmark setting than

his equilibrium payoff in the moral hazard setting, which is the maximum of his payoff in

the moral hazard setting from cutoff persuasion and from full revelation. The expression

Y captures this comparison in the full revelation case, and the expression Z captures the

comparison in the cutoff persuasion case.

Proposition 3. In the multiplicative-quadratic game, at p0 =
√

2kβ, Ū
∗
(p0) > Ū

∗
N(p0)

iff α > max{Y, Z}.

Where Y ≡ β

2(
√

2−1)
and Z ≡

√
2kβ

8k(1−
√

2kβ)
.

Proof. Fix p0 =
√

2kβ . Then Ū
∗
(p0) = α. At any p such that the receiver implements

the project, U∗N(p) = α + p2

8k
.

Case 1: X ≥ α. Then Ū
∗
N(p0) =

√
2kβ(α + 1

8k
), and
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Ū
∗
(p0) > Ū

∗
N(p0) ⇐⇒ α > Y.

Case 2: X < α. Then Ū
∗
N(p0) = 1√

2
(α + β

2
), and

Ū
∗
(p0) > Ū

∗
N(p0) ⇐⇒ α > Z.

Finally, X ≥ α ⇐⇒ Y ≥ Z. �

Figure 1.6 shows examples of the sender’s relative equilibrium payoffs in both contracting

settings, analogously to Figure 1.5 for the receiver.17 Restricting attention to priors p0 ∈

(0, p̂], in the top left graph the sender fully reveals in the moral hazard setting and is better

off in the benchmark setting. In the top right graph the sender persuades to the cutoff in the

moral hazard setting and is better off in the benchmark setting. In the bottom left graph,

the sender fully reveals and is better off in the moral hazard setting, while in the bottom

right graph he persuades to the cutoff and is better off in the moral hazard setting.

Table 1.1 summarizes both players’ relative payoffs across contracting settings at prior

p0 = p̂. I suppress the argument (p0) in the payoff functions for neatness.18 The four cases

correspond to the four graphs in Figure 1.6, left to right and top to bottom. In Case 3,

moral hazard leads to a strict pareto improvement.

I now discuss the channels through which each of the parameters α, β, and k determines

whether or not moral hazard increases equilibrium payoffs, namely (1) their effects on the

continuation payoffs conditional on implementation, in both settings, and (2) their effects on

the implementation rules in both settings. These two interim effects result in (3) changes in

17Since the sender may be better or worse off in either setting whether he fully reveals or persuades to the
cutoff, there are four cases to consider rather than two.
18I ignore corner cases in which any of the conditions are satisfied with equality. Those cases are straight-
forward.
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Figure 1.6. Sender Payoff Comparisons

Case Conditions Persuasion Receiver Sender

1 Y < α < X full V̄
∗
N > V̄

∗
Ū
∗
N < Ū

∗

2 max{Z,X} < α cutoff V̄
∗
N = V̄

∗
Ū
∗
N < Ū

∗

3 α <min{X, Y } full V̄
∗
N > V̄

∗
Ū
∗
N > Ū

∗

4 X < α < Z cutoff V̄
∗
N = V̄

∗
Ū
∗
N > Ū

∗

Table 1.1. Welfare Comparison

equilibrium persuasion.19 The discussion of these channels extends across all priors as well

as to more general settings, but for the purpose of the results I continue to restrict attention

to low priors p0 ∈ (0, p̂]. I consider each of the parameters in turn.

The sender’s direct implementation benefit α has the most straightforward effect. As α

decreases, both the receiver and the sender are better off in the moral hazard setting relative

to the benchmark setting. A change in α does not change either the implementation rule or

19Algebraically, the comparative statics for each parameter follow immediately from X, Y, and Z, but I focus
on the effects of each parameter on the different channels to get the general intuition across.
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the receiver’s payoff conditional on implementation in either setting, so the effects of α are

unambiguous and extend to the general model, as stated formally in Subsection 1.4.2.

Changes in α directly affect the sender’s continuation payoffs; specifically, decreasing

α decreases the sender’s continuation payoff linearly in both settings. Fixing the sender’s

moral hazard persuasion strategy to be either cutoff or full revelation, the probability of im-

plementation is higher in the benchmark setting than in the moral hazard setting. Therefore

his expected payoff changes more steeply in α in the benchmark setting than in the moral

hazard setting. Thus, if at some α′ the sender is better off in the moral hazard setting, the

same is true at all α ∈ (0, α′). Additionally, changes in α may change the sender’s persuasion

strategy. As α decreases, the sender cares less about implementation per se relative to the

rent he receives conditional on implementation. For low enough α he fully reveals the state

rather than persuading to the cutoff. In that case the receiver is better off in the moral

hazard setting than in the benchmark setting.

The receiver’s fixed cost of implementation β has competing effects on the players’ relative

payoffs across contracting settings. In the m-q game, both the sender and the receiver are

better off from moral hazard when β is high. Because of the competing effects, this does

not fully extend to the general setting. In settings that are similar to the m-q game, the

receiver is better off from moral hazard when persuasion is high. I discuss the general result

in Subsection 1.4.2.

Increasing β leads to increases in the implementation cutoff in both settings because it

directly decreases the receiver’s continuation payoffs in both settings. Since the cutoff is

increasing, at fixed low p0, if the sender chooses cutoff persuasion in both settings then he

must provide more precise information. The probability of implementation decreases in both

settings, which hurts the sender. In the m-q game the effect is stronger in the benchmark
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setting than in the moral hazard setting, so that the sender’s payoff in the moral hazard

setting increases relative to his payoff in the benchmark setting as β increases. Once β is

high enough, the sender switches to full revelation in the moral hazard setting, at which

point any further increase in β has no effect on his expected payoff.

When β is low enough that the sender persuades to the cutoff, the receiver has expected

payoff 0 in both settings, so changes in β do not affect her. Once β is high enough that

the sender fully reveals, the receiver is better off in the moral hazard setting than in the

benchmark setting. The sender switches from cutoff persuasion to full revelation as β in-

creases because his marginal rent from more information at the cutoff is increasing as the

cutoff increases, i.e. because the sender’s rent is convex in the posterior. In the general

setting, the sender’s rent need not be convex, so increases in β do not necessarily lead to

more information provision.

The comparative static on β implies that if the receiver had the opportunity ex ante to

reduce her fixed cost and directly contract on effort, she would choose to do neither in some

settings, even for free. In other words, if the game were extended to allow the receiver both to

choose fixed cost from a pair {β1, β2} with β2 > β1 and to choose whether or not the contract

was subject to moral hazard, there exist parameter values such that she would choose β2 and

moral hazard. A firm will sometimes willingly forego ex ante investments in cost reduction

and monitoring or contracting technologies, even at very low cost and even though it would

be beneficial in the interim, because the high fixed cost and contracting friction jointly act

as a commitment device to sufficiently condition on beliefs the value that an information

provider receives from a contract, thereby encouraging more precise information provision.

I briefly discuss the effects on the cost parameter k in order to illustrate the multiple

channels through which the cost function affects equilibrium persuasion. In moral hazard
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problems in general, the relative curvatures of the cost and production functions jointly

determine both players’ expected payoffs in an optimal contract. The complexity of the IC

constraint is such that very little can be said about costs in the general setting without

additional restrictions.

Like β, increasing k lowers the receiver’s payoff conditional on implementation in both

contracting settings and therefore increases the implementation cutoffs in both settings.

Unlike β, an increase in k also directly reduces the sender’s rent in both settings. This effect

is non-linear; changes in k affect the sensitivity of the sender’s continuation payoff in the

state. In the m-q game, these additional effects on the sender’s rent are small enough that

an increase in k has the same impact as an increase in β. As k increases, the sender prefers

the moral hazard setting to the benchmark setting when k is high enough. He also switches

from cutoff persuasion to full revelation in the moral hazard setting, so that the receiver also

prefers the moral hazard setting to the benchmark setting when k is high enough.

I now discuss the role of prior beliefs in determining the players’ relative payoffs across

contracting settings. The prior affects equilibrium payoffs in a way that is fundamentally

different from the other parameters. It has no effect on implementation rules or continuation

payoffs, but directly affects the probability distribution over continuation payoffs for a given

persuasion strategy.

I show the receiver is better off from moral hazard only at low priors, while the sender

is better off from moral hazard only at high priors. After stating the result formally in

Proposition 4, I explain the result by decomposing the change in equilibrium payoff from

moral hazard into two effects, the information effect and the contracting effect.

Proposition 4. In the m-q game (i) ∃pR0 ∈ [0, 1] s.t.:
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(1) If p0 ≥ pR0 then for any PBE∗ and PBE∗N , V̄
∗
(p0) ≥ V̄

∗
N(p0).

(2) If p0 < pR0 then for any PBE∗ and PBE∗N , V̄
∗
(p0) ≤ V̄

∗
N(p0).

And (ii) ∃pS0 ∈ [0, 1] s.t.:

(1) If p0 > pS0 then for any PBE∗ and PBE∗N , Ū
∗
(p0) ≤ Ū

∗
N(p0).

(2) If p0 ≤ pS0 then for any PBE∗ and PBE∗N , Ū
∗
(p0) ≥ Ū

∗
N(p0).

Furthermore, if ∃p′0 s.t. V̄
∗
(p′0) < V̄

∗
N(p′0) then for any p0 ∈ (0, p′0), V̄

∗
(p0) < V̄

∗
N(p0)

and if ∃p′′0 s.t. Ū
∗
(p′′0) < Ū

∗
N(p′′0) then for any p0 ∈ (p′′0, 1), Ū

∗
(p0) < Ū

∗
N(p0).

Proof. This is a special case of Theorem 3 in Subsection 1.4.2. �

The proposition follows by inspection of Figure 1.5 and Figure 1.6. First, consider the

receiver (Figure 1.5). If the sender chooses cutoff persuasion in the moral hazard setting, the

receiver is better off in the benchmark setting at all priors. If the sender chooses full revela-

tion, the receiver is better off in the moral hazard setting at low priors and the benchmark

setting at high priors. Now consider the sender. In both the cutoff persuasion case and the

full revelation case, the sender is either better off in the moral hazard setting at every prior,

or is better off in the moral hazard setting at high priors and in the benchmark setting at

low priors. The result extends to the general model.

The ranking of pR0 and pS0 depends on the parameters. Whenever pR0 > pS0 , at every prior

p0 ∈ (pS0 , p
R
0 ), moral hazard leads to a pareto improvement.20

To further illustrate the result, I separate the difference in payoffs across settings into

two effects, the information effect and the contracting effect, and discuss how these change

in the prior. I restrict attention to the case in which the sender fully reveals in the moral

hazard setting. The same intuition applies more generally.

20Case 3 in Table 1.1 provides a specific example of this, in which pR0 > p̂ > pS0 so that moral hazard leads
to a strict pareto improvement at the prior p0 = p̂.
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First, consider the receiver. Define VF (p0) to be the receiver’s ex ante expected payoff if

the sender fully reveals the state and play is otherwise as in a PBE∗. I define the (receiver’s)

information effect at a given prior VF (p0)− V̄ ∗(p0), i.e. the change in the receiver’s ex ante

expected payoff from an increase in information from the level provided in the benchmark

setting to the level provided in the moral hazard setting. I define the (receiver’s) contracting

effect at a given prior is V̄
∗
N(p0)−VF (p0). Fixing the information level to be as in the moral

hazard setting, the contracting effect is the change in the receiver’s expected payoff from the

benchmark setting to the moral hazard setting through the change in continuation payoffs.

The sum of these two effects is the total difference between what the receiver gets in a PBE∗N

and what she gets in a PBE∗, V̄
∗
N(p0)− V̄ ∗(p0).

As was shown above, at low priors p0 ∈ (0, p̂] whenever the sender fully reveals the state

the receiver is better off in the moral hazard setting. In that region, the information effect,

which is positive, is always greater in absolute terms than the contracting effect, which is

negative. At priors p0 > p̂ the information effect is decreasing in the prior. As the receiver

becomes more certain that the state is high, additional information is less valuable to her

because it is less likely to have a substantial impact on her future behavior. On the other

hand, the contracting effect, which is negative, is increasing in the prior in absolute terms.

As the probability of her posterior being p = 1 increases, the discrepancy in continuation

payoffs at that posterior becomes more important. Both effects are illustrated in Figure 1.7.

Now consider the sender. Define UF (p0) analogously to VF (p0), and the sender’s infor-

mation effect and contracting effect analogously to the receiver’s. Unlike the receiver, the

sender’s information effect is always negative, and the sender’s contracting effect is always

positive. This is because additional information lowers the probability of implementation,
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Figure 1.7. Decomposed Receiver Payoffs

but moral hazard allows the sender to capture additional rent. At p0 = 0, the information

effect and the contracting effect are zero. The information effect increases as the prior in-

creases up to the benchmark cutoff p0 = p̂, then decreases at higher priors. This is because

at priors below the cutoff the probability of implementation increase to one quickly in the

prior in the benchmark setting, while under full revelation the probability of implementation

increases more slowly up to the degenerate prior p0 = 1. The contracting effect increases

linearly in the prior. Like the receiver, the continuation payoff at posterior p = 1 becomes

more salient for the sender as the prior approaches 1. At p0 = 1, the information effect is

zero and the contracting effect is strictly positive. Both effects for the sender are illustrated

in Figure 1.8.

Figure 1.8. Decomposed Sender Payoffs
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If the sum of the two effects is positive at p0 = p̂ then the sender is better off from moral

hazard at every interior prior (cf. the right-hand graphs in Figure 1.6). If he is worse off

from moral hazard at p0 = p̂, then he is better off from moral hazard only at a high range

of priors (cf. the left-hand graphs in Figure 1.6).

The results on the prior demonstrate why it can be useful to restrict attention to the

benchmark continuation cutoff. To answer the questions, “Does there exist a prior such that

V̄
∗
N(p0) > V̄

∗
(p0)?” and, “Does there exist a prior such that Ū

∗
N(p0) < Ū

∗
(p0)?” one need

only check the equilibrium payoffs at the prior p0 = p̂. This extends to the general setting

whenever implementation cutoffs are interior.21

1.4. General Results

This section generalizes the results from the m-q game. In Subsection 1.4.1 I characterize

equilibrium in both the benchmark contracting setting and the moral hazard contracting

setting. In Subsection 1.4.2 I discuss welfare effects and show that, as in the m-q setting,

the receiver is better off in the moral hazard setting at low priors, and the sender is better

off in the moral hazard setting at high priors. I then give comparative statics on α and β.

1.4.1. Equilibrium Characterization

As in the m-q game, in the general benchmark setting equilibrium effort is efficient, there is

an implementation cutoff, and information is underprovided. The sender gets no rent other

than his benefit from implementation, so he maximizes the probability of implementation. In

the moral hazard setting, equilibrium effort is inefficient, the implementation cutoff is higher

21Restricting attention to the benchmark prior is not sufficient to determine whether or not there exists a
prior such that moral hazard leads to a strict pareto improvement. In general it may be that pR0 > pS0 > p̂.
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than in the benchmark setting, and information is sometimes, but not always, underpro-

vided. The sender gets rent in addition to his benefit from implementation. For this reason,

the sender sometimes provides more information than would maximize the probability of

implementation.

In the general setting, the receiver-maximal equilibrium may not be unique. I focus on the

“most-informative” equilibrium. Define a persuasion strategy inducing posteriors L, H to be

more informative than a persuasion strategy L′, H ′ if L ≤ L′ and H ≥ H ′. I define a PBE∗

at a particular prior to be most-informative if the sender’s equilibrium persuasion strategy in

that PBE∗ is more informative than his persuasion strategy in every other receiver-maximal

equilibrium at that prior. I define a most-informative PBE∗N analogously.

I make two assumptions that guarantee a cutoff implementation rule and a unique interior

optimal effort in the benchmark contract at every posterior.

Assumption 1. c(0) = c′(0) = 0, c′(e) ≥ 0, c′′(e) > 0, f(e, 1) ≥ f(e, 0), and fe(e
′, θ) ≥

0 ∀e′. Furthermore, if f(e, 0) < 1 then f(e, 1) > f(e, 0), and if at any e′ f(e′, θ) < 1 then

fe(e
′, θ) > 0.

This assumption states that f(e, θ), the likelihood of the project leading to high output

as a function of the sender’s effort and the underlying state, is strictly increasing in both

arguments. I assume the sender’s cost of effort is increasing and convex, with zero cost at

zero effort.

Assumption 2. f(c−1(1), 1) < 1
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This assumption guarantees that effort is not so cheap that the receiver simply pays

the sender to provide high enough effort to guarantee high output. There is always some

probability of low output in equilibrium.

I find the unique most-informative PBE∗ in the general setting using the same approach

as in the m-q game. I write the probability of high output given effort level e and posterior p

as g(e, p) ≡ pf(e, 1)+(1−p)f(e, 0). At any posterior p, the receiver’s maximization problem

in the benchmark setting is as follows.

Π∗(p) =max
e,t(·)

g(e, p)− t(e)

s.t. t(·) ≥ 0 LL

t(e)− c(e) ≥ 0 IR

t(e)− c(e) ≥ t(e′)− c(e′) ∀e′ IC

The solution is straightforward and can be solved using the first order approach. For a

given effort, an optimal transfer rule is t∗(e∗(p)) = c(e∗(p)) and t∗(e 6= e∗(p)) = 0. At this

transfer rule the IR constraint binds at the optimal effort level e∗(p), and IC and LL are

satisfied. Given this, the receiver can capture all of the surplus from output net of α so she

optimally chooses first best effort, which (uniquely) solves ∂
∂e

[g(e, p)] = c′(e).

Given these optimal effort and transfers, Π∗(p) is continuous, strictly increasing, and

(weakly) convex in p by Assumptions 1-2.22 The receiver’s implementation rule is a cutoff

p̂, i.e. d∗(p) = 1 iff p ≥ p̂.23 She will continue (d = 1) whenever Π∗(p) ≥ β and will not

continue (d = 0) otherwise.

22Fixing any e, Π(p|e) increases linearly in p.
23It is possible that p̂ > 1, in which case the receiver never implements. It can also be that Π∗(p) > β ∀p,
in which case she always implements, i.e. p̂ = 0. In both of these cases the sender is indifferent across all
persuasion strategies. I restrict attention to the interesting case in which p̂ is interior.
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The sender’s continuation utility, U(p), is the same in the general model as in the m-

q game. The sender gets α whenever the receiver implements. His optimal persuasion

strategy is to induce implementation as often as possible. There are multiple persuasion

strategies that guarantee implementation at priors above the implementation cutoff. Since

the receiver’s continuation payoff is convex provided she implements, an optimal persuasion

strategy in that region that maximizes the receiver’s ex ante payoff is the most informative

one, namely he persuades to p̂ and to 1, as in the m-q game.24

The following theorem formally summarizes the benchmark equilibrium in the general

model.

Theorem 1. Under Assumptions 1 and 2, ∃p̂ s.t. if (i) p0 < p̂, (ii) p0 = p̂, (iii) p0 > p̂,

the following is a unique most-informative PBE∗:

(1) (i) L∗ = 0, H∗ = p̂, (ii) L∗ = H∗ = p̂, (iii) L∗ = p̂, H∗ = 1

(2) d∗(p) = 1 iff p ≥ p̂

(3) t∗(e∗(p)) = c(e∗(p)) and t(e) = 0 ∀e 6= e∗(p) ∀p

(4) e∗(p) solves ∂
∂e
g(e, p) = c′(e).

In the benchmark setting the only distinction between the general case and the m-q game

is that in the general case, equilibrium is only unique up to changes in persuasion rules over

which both players are indifferent. The most-informative PBE∗ is unique in general.

I now partially characterize equilibrium in the general moral hazard setting. The re-

ceiver’s contracting problem is complex in that the optimal contract depends on the relative

curvatures of the cost function and the production function.25 Assumptions 1 and 2 alone

24When the receiver’s continuation payoff is not strictly convex, there exist other optimal strategies in that
region of priors that maximize the receiver’s ex ante payoff, in which case there are multiple distinct PBE∗s.
25See Section 1.5 for a more detailed discussion.
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do not guarantee that standard solution techniques are valid. The following assumption is

a technical restriction that guarantees the first-order approach is valid for finding optimal

contracts in the moral hazard setting.

Assumption 3. ∂2

∂e2
[f(e, θ)] < 0 and ∂2

∂e2
[g(e, p)(1 − c′(e)

ge(e,p)
)] < 0 ∀e ∈ [0, c−1(1)],∀p ∈

[0, 1].

In the moral hazard setting, the receiver’s maximization problem given that she has

chosen to implement at some posterior p is as follows:

Π∗N(p) =max
e,t(y)

g(e, p)(1− t(1))− (1− g(e, p))t(0)

s.t. t(0), t(1) ≥ 0 LL

g(e, p)t(1) + (1− g(e, p))t(0)− c(e) ≥ 0 IR

e ∈ argmax
e′
{g(e, p)t(1) + (1− g(e, p))t(0)− c(e′)} IC

The sender’s IC constraint pins down the optimal transfer rule for any effort the receiver

wants to induce. The IC constraint is easier to satisfy as t(0) decreases, so t∗N(0|p) = 0.

At high output, the receiver must balance the sender’s marginal cost of effort against the

marginal productivity of effort to motivate the sender. The transfer t(1) satisfies the following

for a given effort.

t(1) =
c′(e)

∂
∂e

[g(e, p)]

Given the optimal transfer, the receiver’s maximization problem is:

Π∗N(p) =max
e,t(y)

g(e, p)

(
1− c′(e)

∂
∂e

[g(e, p)]

)

By Assumptions 1-3, this has a unique interior solution e∗N(p), which is less than first best.



45

In general, the receiver’s maximized contracting payoff need not be increasing in the

posterior. As the probability of high output increases, the receiver has to pay the sender a

positive transfer with higher probability, and the sender’s expected return to effort is not

necessarily increasing. However, if f(·, ·) satisfies increasing differences as formalized in the

assumption below, the receiver’s payoff conditional on implementation in the moral hazard

setting is increasing in the posterior.26 This guarantees that her equilibrium implementation

rule is a cutoff, p̂N . Lemma 1 formalizes this.

Assumption 4. ∂
∂e

[f(e, 1)] ≥ ∂
∂e

[f(e, 0)] ∀e.

Lemma 1. Under Assumptions 1-4, ∂
∂p

[Π∗N(p)] ≥ 0.

Proof. First, ΠN(p) increases in p for fixed e with optimal transfers t(0) = 0 and t(1) =

c′(e)
∂
∂e

[g(e,p)]
. Fixing e, the derivative of the receiver’s contracting payoff in p is as follows:

∂

∂p
[g(e, p)(1− c′(e)

∂
∂e

[g(e, p)]
)]

= (f(e, 1)− f(e, 0)) ∗

(
1− c′(e)

∂
∂e

[g(e, p)]

)
+ g(e, p)

c′(e) ∂2

∂e∂p
[g(e, p)]

( ∂
∂e

[g(e, p)])2

> 0.

Therefore when effort is optimal it must be that ΠN(p) increases in p. �

At any fixed posterior the receiver is worse off in the moral hazard setting than in the

benchmark setting, since any effort she can induce in this problem she could induce more

cheaply in the the benchmark problem. This implies that p̂N ≥ p̂.

26Note that the m-q game satisfies Assumptions 1-4.
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As in every setting, the sender’s ex ante utility in the prior is a concavication of his con-

tinuation payoffs in the posterior. The persuasion strategies that induce this concavication

need not be unique. In the benchmark setting, it was straightforward to argue for the exis-

tence of the unique most-informative PBE∗, since it can be found directly due to the weak

convexity of the receiver’s continuation payoff conditional on implementation. However, in

the moral hazard setting the receiver’s continuation payoff need not be weakly convex in

general. The most-informative equilibrium at priors p0 > p̂N is not necessarily L = p̂N ,

H = 1, and the equilibrium persuasion strategy at high priors cannot be found in closed

form.

Although the most-informative PBE∗N cannot be directly found at all priors, it does exist

and is unique because of a convenient feature of concavication in one dimension. If at any

prior both the receiver and the sender are indifferent over a pair of persuasion strategies

{L1, H1} and {L2, H2}, then their ex ante equilibrium payoffs across priors are linear in the

region p0 ∈ (min{L1, L2},max{H1, H2}). At any prior, let the sender choose the minimum L

and the maximum H from all persuasion strategies over which both players are indifferent.

This strategy must satisfy a type of monotonicity in the prior, stated formally in the following

remark.

Remark 1. If at some prior p0 the most-informative equilibrium persuasion strategy is

L,H, then at any prior p0 ≥ H, the most-informative equilibrium strategy L′, H ′ will satisfy

L′ ≥ H and at any prior p0 ≤ L, the most-informative equilibrium strategy L′′, H ′′ will

satisfy H ′′ ≤ L.

This implies that the most-informative equilibrium in the moral hazard setting is uniquely

pinned down as stated in Theorem 2.
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Theorem 2. Under Assumptions 1-4, ∃p̂N , H∗∗ with H∗∗ ≥ p̂N ≥ p̂ s.t. if (i) p0 < H∗∗,

(ii) p0 ≥ H∗∗ there exists a unique most-informative PBE∗N with the following strategies:

(1) (i) L∗N = 0, H∗N = H∗∗, (ii) H∗N ≥ L∗N ≥ H∗∗

(2) d∗N(p) = 1 if p ≥ p̂N , d∗N(p) = 0 if p < p̂N

(3) t∗N(1|p) =
c′(e∗N (p))

ge(e∗N (p),p)
and t∗N(0|p) = 0

(4) e∗N(p) = argmax
e

[
(g(e, p))(1− c′(e)

ge(e,p)
)
]
≤ e∗(p)

The equilibrium persuasion strategy is fully characterized across an interval of low priors.

The sender persuades to 0 and to some posterior H∗∗. At priors above H∗∗, the persuasion

rule is only partially characterized. The existence of H∗∗ is enough for the purpose of

payoff comparisons in the following subsection. Whenever H∗∗ = p̂N the persuasion strategy

resembles the cutoff strategy as in the benchmark setting. Whenever H∗∗ > p̂N , the sender

persuades beyond the cutoff. While in the m-q game persuasion was either cutoff or full

revelation in the moral hazard setting, in the general game persuasion may be somewhere in

between, with H∗∗ ∈ (p̂N , 1).

1.4.2. Relative Payoffs and Comparative Statics

This subsection extends the payoff comparisons across contracting settings from the m-q

game to the general game. The key observation is that the only way for the receiver to

benefit from moral hazard is if it leads the sender to persuade beyond the cutoff, i.e. to

provide more information than maximizes the probability of implementation. I first extend

Proposition 4 to show that the receiver is better off from moral hazard at low priors while

the receiver is better off from moral hazard at high priors. I then give a general comparative

static on the sender’s implementation benefit, α. Both the receiver and the sender are better
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off from moral hazard when α is low. I give a comparative static on the receiver’s fixed

cost of implementation, β, for a restricted set of games that resemble the m-q game. At low

priors in that setting, the receiver is better off from moral hazard when β is high.

Theorem 3 formally states the result on the prior for general games.

Theorem 3. Under Assumptions 1-4 (i) ∃pR0 ∈ [0, 1] s.t.:

(1) If p0 ≥ pR0 then for any PBE∗ and PBE∗N , V̄
∗
(p0) ≥ V̄

∗
N(p0).

(2) If p0 < pR0 then for any PBE∗ and PBE∗N , V̄
∗
(p0) ≤ V̄

∗
N(p0).

And (ii) ∃pS0 ∈ [0, 1] s.t.:

(1) If p0 > pS0 then for any PBE∗ and PBE∗N , Ū
∗
(p0) ≤ Ū

∗
N(p0).

(2) If p0 ≤ pS0 then for any PBE∗ and PBE∗N , Ū
∗
(p0) ≥ Ū

∗
N(p0).

Furthermore, if ∃p′0 s.t. V̄
∗
(p′0) < V̄

∗
N(p′0) then for any p0 ∈ (0, p′0), V̄

∗
(p0) < V̄

∗
N(p0)

and if ∃p′′0 s.t. Ū
∗
(p′′0) < Ū

∗
N(p′′0) then for any p0 ∈ (p′′0, 1), Ū

∗
(p0) < Ū

∗
N(p0).

Proof. See Appendix A.1. �

As in the m-q game, whether or not there exists a prior such that the receiver is better off

in the moral hazard setting than in the benchmark setting is entirely dependent on whether

H∗∗ > p̂N or H∗∗ = p̂N . If the sender chooses cutoff persuasion in the moral hazard setting,

the receiver is always better off in the benchmark setting. If instead the sender chooses to

persuade to a posterior higher than the cutoff, then the receiver is strictly better off in the

moral hazard setting at low priors.

Whether or not he persuades beyond the cutoff, the sender is always better off in the moral

hazard setting at high enough priors that he can guarantee implementation, since his rent is

higher than in the benchmark setting. At lower priors the probability of implementation is
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lower in the benchmark setting than the moral hazard setting, since H∗∗ ≥ p̂, but his rent

conditional on implementation is higher. As in the m-q game, the sender’s payoff is either

higher in the moral hazard setting at all priors, or is higher in the moral hazard setting at

high priors and in the benchmark setting at low priors.

Comparative statics on α and β can be thought of in terms of their effects on H∗∗, in

particular whether or not H∗∗ is above the implementation cutoff in the moral hazard setting.

As in the m-q game, changes in α have no effect on the implementation cutoff in either setting,

the receiver’s continuation payoff in either setting, or the sender’s equilibrium persuasion in

the benchmark setting. The net effects on the sender across settings are identical to the m-q

game.

In the moral hazard setting, H∗∗ decreases in α. Since a decrease in α linearly decreases

the sender’s continuation payoff conditional on implementation, the posteriors such that the

ex ante payoff is the concavication of the continuation payoff must move to the right.27 This

immediately implies Proposition 5.

Proposition 5. If ∃α, β and ∃p0 ≤ p̂ s.t. V̄
∗
N(p0) > V̄

∗
(p0), then for any α′ ∈ (0, α),

V̄
∗
N(p0) > V̄

∗
(p0). Similarly, if ∃α, β, p0 s.t. Ū

∗
N(p0) > Ū

∗
(p0), then for any α′ ∈ (0, α),

Ū
∗
N(p0) > Ū

∗
(p0).

Unlike α, changes in β have an ambiguous effect on H∗∗ in general because the sender’s

contracting rent need not be convex. The comparative statics on β in the m-q game apply

for the receiver in the restricted setting where R∗N(p) and Π∗N(p) are convex.28 The effect of

changing β on the sender’s relative equilibrium payoff from moral hazard is ambiguous even

27This is immediate by geometric argument and relies on the fact that the continuation payoff does not
change at priors p0 < p̂N .
28Note that the restriction is on equilibrium behavior rather than on the primatives. The m-q game provides
one example of parametric assumptions that satisfy this condition.
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under this restriction, as the implementation cutoffs change in both contracting settings.

However, under the restriction the sender unambiguously chooses cutoff persuasion (H∗∗ =

p̂N) at low β and full revelation (H∗∗ = 1) at high β, so the receiver is better off from

moral hazard at priors p0 < p̂ whenever β is high enough, as in the m=q game. Remark 2

formalizes this comparative static.

Remark 2. If R∗N(p) and Π∗N(p) are convex, then if ∃α, β, p0 s.t. V̄
∗
N(p0) > V̄

∗
(p0), then

for any β′ > β s.t. p̂N < 1, ∃p′0 s.t. V̄
∗
N(p′0) > V̄

∗
(p′0).

1.5. Binary Effort

In this section I restrict effort to be high or low, e ∈ {0, 1}, in order to find conditions on

the production function such that the receiver benefits from moral hazard.29 While in the

general model I examined the payoff implications of moral hazard under the assumption of

increasing differences in production, in the binary effort model I show that either (sufficiently)

increasing differences or decreasing differences can lead to persuasion beyond the cutoff in the

moral hazard setting, through different mechanisms. I briefly discuss how these mechanisms

extend to the continuous effort model.

The timing and payoffs in the binary effort model are the same as in Section 1.2. I drop

Assumptions 1-4 and assume the following.

Assumption 5. c(0) = 0, c(1) = k > 0, 1 ≥ f(e, 1) > f(e, 0), and f(1, θ) > f(0, θ).

As in the continuous effort game, in the binary effort benchmark setting the receiver

extracts all the value from the contract other than the sender’s implementation benefit. The

29This is somewhat related to the risk neutral moral hazard model in Poblete & Spulber (2012), though I
emphasize the role of beliefs.
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implementation rule is a cutoff, and the sender persuades to the cutoff. In the binary moral

hazard setting, the contract is inefficient and the receiver is therefore worse off than in the

benchmark setting at any given posterior. If there exists a prior such that the receiver is

better off in a PBE∗N than in a PBE∗, then it must be that the sender persuades beyond the

cutoff in the moral hazard setting.30

I partially characterize the optimal contract in the moral hazard setting. The receiver’s

maximization problem at posterior belief p is as follows.

max
e,t(0),t(1)

g(e, p)(1− t(1)) + (1− g(e, p))(−t(0))

s.t. t(y) ≥ 0 ∀y LL

g(e, p)t(1) + (1− g(e, p))t(0)− c(e) ≥ 0 IR

g(e, p)t(1) + (1− g(e, p))t(0)− c(e) IC

≥ g(e′, p)t(1) + (1− g(e′, p))t(0)− c(e′) ∀e′

As in the continuous effort model, the optimal transfer after low output is t∗N(0) = 0.

If the receiver wants to induce e = 1 then the sender’s IC constraint pins down t∗N(1) =

k
g(1,p)−g(0,p) . If instead the receiver wants to induce e = 0 then t∗N(1) = t∗N(0) = 0.

The maximization problem can therefore be expressed:

(1.2) max

{
g(0, p) , g(1, p)

(
1− k

g(1, p)− g(0, p)

)}
,

where the first value obtains when e∗N = 0 and the second value obtains when e∗N = 1.

30When the production function does not satisfy increasing differences, it is possible that the equilibrium
implementation rule in the moral hazard setting is not a cutoff. Since this does not affect the results in this
section, I restrict attention to parameters such that the implementation rule is a cutoff to streamline the
exposition.
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The sender’s continuation rent is constant at R∗N(p) = 0 whenever e(p) = 0. When

e∗(p) = 1, R∗N(p) is weakly positive and varies in the posterior. There are only two reasons

that the sender would persuade beyond the cutoff in this setting. Either (1) equilibrium

effort must increase from 0 to 1 at some posterior above the implementation cutoff, or (2)

the sender’s continuation payoff must be increasing and convex over a region of posteriors at

which the receiver implements and induces effort e∗N(p) = 1.31 Figure 1.9 shows an example

of the first type of persuasion beyond the cutoff on the left and the second type of persuasion

beyond the cutoff on the right.

Figure 1.9. Persuasion Beyond the Cutoff with Binary Effort

The first example, in which equilibrium effort increases in the posterior, obtains when

the production function exhibits sufficiently increasing differences. The second example, in

which the sender’s continuation payoff is increasing and convex, obtains when the production

function exhibits decreasing differences. These results are stated formally in Proposition 6

and Proposition 7. Both results follow from Equation 1.2.

31It is immediate by geometric argument that if neither of these conditions hold the sender will persuade to
the cutoff, supposing that the equilibrium implementation rule is a cutoff.
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Proposition 6. Under Assumption 5, if (f(1,1)−f(0,1))2

f(1,1)
> k > (f(1,0)−f(0,0))2

f(1,0)
then in a

PBE∗N there exists a region of posteriors [0, p1) s.t. e∗(p) = 0 ∀p ∈ [0, p1) and a region of

posteriors (p2, 1] with p2 ≥ p1 s.t. e∗N(p) = 1 ∀p ∈ (p2, 1].

Proof. See Appendix A.2. �

The proposition states that if returns to effort in the high state are high enough relative

to the cost of effort, which is high enough relative to returns to effort in the low state, that is

sufficient for high optimal effort at high posteriors and low optimal effort at low posteriors.

The condition on the production function is stronger than standard increasing differences,

and it also restricts the cost of effort. This is required because the IC constraint in the

receiver’s maximization problem depends on the sender’s cost of effort and the fact that

the sender only gets compensated when output is high. This is a common feature of moral

hazard problems.

The condition on the production function alone is not sufficient for the sender to persuade

beyond the cutoff. It must be that the implementation cutoff p̂N is interior on the region of

posteriors at which the optimal contract induces zero effort. Let b̂N be the lowest posterior

such that e∗N(p) = 1. Corollary 1 gives sufficient conditions for the existence of parameter

values such that the receiver is better off in the moral hazard setting than in the benchmark

setting.

Corollary 1. Suppose 0 < p̂ < p̂N < b̂N < 1. Then, if (f(1,1)−f(0,1))2

f(1,1)
> k > (f(1,0)−f(0,0))2

f(1,0)

then ∃α, p0 s.t. V̄
∗
N(p0) > V̄

∗
(p0).

Sufficiently increasing differences leads to persuasion beyond the cutoff because equilib-

rium effort increases in the posterior. Decreasing differences leads to persuasion beyond
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the cutoff because of changes in the sender’s continuation payoff in the posterior, holding

effort constant. Proposition 7 states that the sender’s equilibrium continuation payoff con-

ditional on implementation is both increasing and convex in the posterior exactly when the

production function exhibits decreasing differences.32

Proposition 7. Under Assumption 5, over any region [p′, p′′] s.t. e(p) = 1 ∀p ∈ [p′, p′′],

the following two inequalities are jointly satisfied iff f(1, 1)− f(0, 1) < f(1, 0)− f(0, 0):

(1) ∂
∂p

[R(p)] > 0

(2) ∂2

∂p2 [R(p)] > 0.

Proof. See Appendix C. �

Under decreasing differences, as the posterior increases the receiver must compensate

the sender increasingly more to provide high effort to prevent her from shirking, because

the marginal return to effort (in terms of probability of high output) is decreasing in the

posterior. At the same time, the probability of high output, and therefore the probability

that the sender receives the transfer, is increasing. The net effect is that the sender’s rent is

both increasing and convex holding effort constant at e∗N(p) = 1.

These results show that increasing differences and decreasing differences lead to persua-

sion beyond the cutoff through two different mechanisms. Sufficiently increasing differences

can lead to persuasion beyond the cutoff because of the rate at which total continuation sur-

plus increases in the posterior. The receiver encourages more effort as the returns to effort

32Under increasing differences the sender’s rent when e∗N (p) = 1 is either increasing and concave or decreasing
and convex in the posterior.
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increase and compensates the sender accordingly. Decreasing differences can lead to persua-

sion beyond the cutoff not because of increases in total continuation surplus, but because of

the rate at which the sender’s share of the continuation surplus increases in the posterior.33

Although Proposition 6 and Proposition 7 do not hold when effort is continuous, the

intuition of these results extends to the continuous effort model. The binary effort model

allows for results on the production function by simplifying the effects of the marginal cost of

effort. In the continuous model, both mechanisms may encourage (or discourage) persuasion

beyond the cutoff, even restricting attention to production functions that exhibit increasing

differences. In the continuous effort model the optimal contract must prevent local deviations

in effort, unlike the binary setting in which the sender can only deviate discretely to zero or

one. As the posterior increases, the receiver must consider marginal returns to effort across

all effort levels, as well as the marginal cost of effort. Effort in the optimal contract may

be either increasing or decreasing in the posterior. Even holding effort fixed, the transfer

the receiver must pay to motivate that effort level may increase or decrease in the posterior.

However, the results in the binary model illustrate the ways in which the production function

affects whether or not moral hazard benefits the receiver in general.

The m-q game serves as an example of how sufficiently increasing differences can lead to

persuasion beyond the cutoff in a continuous effort game. In the m-q game, the equilibrium

transfer rule under moral hazard is constant in the posterior, and effort is increasing in

the posterior. Interim payoffs are increasing and convex in the posterior so that the sender

will sometimes persuade beyond the cutoff. The sender’s continuation payoffs are increasing

and convex in the posterior for two reasons. First, holding effort constant, interim payoffs

33Interim total surplus may be increasing or decreasing in the posterior when the production function exhibits
decreasing differences.



56

increase linearly in beliefs. Second, because of increasing differences and linear marginal cost

(because cost of effort is quadratic), equilibrium effort is increasing. Thus, the mechanism

by which sufficiently increasing differences leads to persuasion beyond the cutoff is the same

in both the m-q game and the binary model.34

1.6. Conclusion

This paper explores how moral hazard mitigates a hold-up problem in information rev-

elation. While the results depend on the timing of the game, the hold-up problem that

arises from the receiver’s ability to contract on effort after implementation is salient under

some alternate specifications. For example, suppose a biotech can move beyond the R&D

stage of drug development prior to a pharmaceutical buying them out. Formally, suppose

the model is extended to allow the sender to publicly perform some “early effort” after the

signal realization in stage 3 and before the implementation decision in stage 4. The contract

still holds up the sender if effort (in stage 5) is contractible. In equilibrium, the sender will

provide even less information than in the benchmark setting, such that the persuasive mes-

sage alone would not convince the receiver to implement, but the additional effort “makes

up the difference.” Figure 1.10 shows an example of the sender’s continuation and ex ante

payoffs in such a setting. The receiver’s continuation payoffs are identical to the benchmark

setting.

This paper restricts attention to a receiver who makes a go-no-go decision about a par-

ticular project. In many cases it may be that a sender persuades a receiver not only about

34As an example of a continuous effort game in which there are insufficiently increasing differences for
persuasion beyond the cutoff, consider f(e, θ) = (1 − ε)(e + θ) + εeθ and c(e) = k

2 e
2. For small ε and large

k the sender’s equilibrium continuation payoff is concave in the posterior because the marginal returns to
effort increase slowly in the state relative to the marginal cost of effort.
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Figure 1.10. Persuasion with Early Effort

whether or not to pursue a project, but about which project to pursue.35 Multiple senders

may also send competing persuasive messages. It remains to be seen how the trade-off I

identify would extend to such settings.

35For example, one could extend Rayo & Segal (2010) to a contract setting.
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CHAPTER 2

Market Research and Differentiated Bertrand Competition (joint

with Rafayal Ahmed)

2.1. Introduction

Firms learn demand in order to optimally set prices. In competitive settings, market

research not only directly informs a firm about demand for its own good, but indirectly

informs the firm about how its competitor will price in the face of uncertain demand for its

good. Firms will only perform market research to the extent that the returns from doing so

exceed the costs, and these returns may vary with the level of differentiation between one

firm’s product and its competitor’s product.

We explore this phenomenon in the context of a standard differentiated duopoly Bertrand

model with uncertain linear demand, in the style of Vives (1984). Rather than assume exoge-

nous signals of the demand intercept, we instead allow firms to covertly choose the accuracy

of their signals at some cost. We compare the level of market research in (symmetric) equilib-

rium across different levels of competition, as measured by how differentiated the goods are.

We give sufficient conditions such that endogenous market research monotonically decreases

in the level of competition, as well as sufficient conditions such that endogenous market

research is non-monotonic in the level of competition.

In this model, fixing some exogenous level of market research, a firm optimally prices by

setting an average price plus a linear function of its signal. The more accurate a firm’s signal,

the more it will condition its price on its signal. Its average price will not change, fixing the
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other firm’s behavior. As the goods become less differentiated, competition sharpens: both

firms’ prices will go down for any given signal, which lowers overall profits.

Fixing the level of competition, as one firm’s accuracy increases, its expected profits

increase through two channels. First, it is better able to match its price to demand. Second,

it is better able to coordinate its price with the other firm. Fixing average prices, one firm

would rather price high when the other firm prices high, and low when the other firm prices

low. A more accurate signal of demand is also a more accurate signal of the other firm’s price.

Because of this, if either firm’s accuracy exogenously increases, both firms will condition their

prices more on their signals. Otherwise, they will price conservatively in order to coordinate

better. At any level of differentiation (other than perfectly homogenous goods), profits for

both firms increase when either firm’s accuracy increases.

The size of the marginal return to increasing accuracy varies with the amount of com-

petition and can be broken down into two effects, which we call the competitive profit effect

and the coordination effect. Both of these effects are weighted by the sensitivity of the

firm’s price to its signal; prices compress towards marginal cost as competition increases, so

that the accuracy of a signal becomes less important fixing the other firm’s behavior. The

competitive profit effect is that as goods become less differentiated, so that both firms not

only set prices lower on average but also condition prices less on the state, the firm cannot

improve profits as much by setting high prices when the state is high and low prices when the

state is low. If a firm is a monopoly, it can better align its prices with the state by increasing

the accuracy of its signal. However, when the firm is forced to price conservatively because

of increased competition, it cannot fully take advantage of a more accurate signal to match

its price to the state.
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The coordination effect has two components in addition to the sensitivity of the firm’s

price to its signal: the substitution effect and the competitor pricing effect. The substitution

effect is that as goods become less differentiated, demand for one firm’s good is more sensitive

to the difference between the firms’ prices. It becomes more important for a firm to coordinate

its price with the other firm’s price. The competitor pricing effect moves in the other

direction. As competition intensifies, the firm’s competitor not only lowers its price after

any signal, but also compresses those prices towards marginal cost. This makes it easier to

coordinate pricing, since the firms’ prices are close even if their signals are very different.

In the extreme case of homogenous goods, prices equal marginal cost and the competitor

pricing effect is zero. At the other extreme, when goods are completely differentiated and

firms function as monopolies, the substitution effect is zero. The total coordination effect is

inverted U-shaped, so that it is highest at some intermediate level of competition.

We examine the competitive profit and coordination effects together. Marginally increas-

ing accuracy always helps firms match the state better and coordinate better. However, the

amount that it allows one firm to better coordinate with the other depends on the other’s

accuracy level. When both firms have very low accuracy, one firm marginally increasing its

accuracy does not help it coordinate much with the other firm, whose price is not very cor-

related with demand. When both firms have high accuracy, one firm increasing its accuracy

also allows it to better coordinate its price with the other firm. Thus, the relative importance

of the competitive profit effect and the coordination effect depends on accuracy levels. We

show that the competitive profit effect dominates when research costs are sufficiently high,

so that equilibrium market research is monotonically decreasing in the level of competition.

We also show that when research costs are sufficiently low, the coordination effect is large

enough that equilibrium research is highest at an intermediate level of competition.
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This paper is related to a wider literature on market research and competition. Building

on the differentiated duopoly models of Singh & Vives (1984), Vives (1984) examines whether

firms would prefer to commit to making their endogenous research public. He shows that

firms prefer to pool their information in a Bertrand setting but not in a Cournot setting.

Other models have endogenized market research, although they have tended to focus on

Cournot rather than Bertrand competition, overt rather than covert research, and on differ-

ent measures of competition than we do. For example, Hwang (1993) studies overt research

in Cournot duopolies when goods are homogenous, but firms face different costs of acquiring

information. Hwang (1995) also studies overt research in a Cournot setting with homogenous

goods, but measures competition as the number of firms as well as a somewhat idiosyncratic

“conjectural variation” model of competition. That paper finds a result qualitatively sim-

ilar to ours: firms perform the least amount of research when competition is perfect, and

perform the most amount of research either in an oligopoly or in a monopoly, depending on

the parameters. Hauk & Hurkens (2000) study covert research in a Cournot setting, where

competition is measured as the number of firms and goods are homogenous. Vives (2000)

is an excellent overview of competition more broadly, and addresses some models of market

research.

We utilize the central result of Persico (2000) in order to compare equilibrium market

research at different levels of competition. That paper shows that when signals are ordered

by accuracy, a concept first presented by Lehmann (1988), marginal returns to accuracy can

be ranked according to a relatively straightforward single crossing condition. The paper then

applies that ranking to compare information acquisition in first and second price auctions,

building on the work of Milgrom and Weber (1982). To our knowledge, this is the first direct

application of the theorem to a duopoly setting.
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The paper shares some similarities to the literature on innovation, though in our setting

market research hurts rather than helps consumers, since firms use the information to ex-

tract more surplus rather than to create better products.1 Questions about the effects of

competition on innovation have been raised and debated since seminal works by Schumpeter

(1912, 1942). We do not address this debate, except to note that Aghion et al. (2005) find

evidence of an inverted-U shape in equilibrium innovation that is qualitatively similar to

our coordination effect. Goettler & Gordon (2014) also find an inverted-U shape between

innovation and competition in their model of dynamic oligopoly with endogenous market

structure.

The rest of the paper is organized as follows. Section 2.2 contains the model. Section 2.3

applies Persico’s theorem to identify the two effects of competitiveness on returns to market

research and gives the main results. Section 2.4 concludes.

2.2. Model

We give the timing and payoffs and review the relevant result of Vives (1984). Two

symmetric firms indexed by i each privately choose a signal distribution indexed by vi ∈

[0,∞) at differentiable cost K(vi). The state α ∼ N (ᾱ, Vα) is realized. The cdf of this

disribution, G(α), is commonly known to the firms when they choose vi. Each firm receives

a private signal realization si = α + εi, where εi ∼ N (0, vi), and ε1 and ε2 are independent.

Define ti = Vα
Vα+vi

∈ (0, 1]. Since for any Vα there is a one-to-one, continuous relationship

between vi and ti, we consider firm i to be choosing ti at cost C(ti). We assume that C(ti) ≥ 0

and C ′(ti) ≥ 0.

1We address this further in Section 2.4.
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We write the conditional distribution on α after seeing signal realization si as Gti(α|si).

For a given α′ and ti we write the conditional distribution on all signals si as F ti(si|α′). For

a given ti, we write the prior distribution on all signals si as F ti(si).

After privately receiving signals, firms simultaneously set prices p1 and p2. Following

Vives (1984), firm i faces the following linear inverse demand:2

pi = α− qi − γq−i.

Direct demand is

qi =
α

1 + γ
− 1

1− γ2
pi +

γ

1− γ2
p−i.

Goods are substitutes, i.e. γ ∈ [0, 1).3 The state α, the demand intercept, captures the level

of demand, while increasing γ decreases the level of differentiation between firms. When

γ = 0 the firms are monopolies, while as γ → 1 demand approaches perfect competition. We

normalize the marginal cost of production to be 0 for simplicity. After privately observing a

signal, each firm chooses price. Firm i earns profits piqi.

We consider Perfect Bayesian Equilibrium of this game, with firm i’s equilibrium strategy

written {t∗i , p∗i (si|ti)}. In the Bertrand competition stage, firms maximize their expected

profits given their conjecture of the other firm’s pricing strategy as a function of their signal.

Firm i’s maximization problem after receiving signal si when their signal structure is indexed

by ti and the conjectured signal structure of firm −i is indexed by t−i, is

max
pi

∞w

−∞

∞w

−∞

piqi(pi, p−i(s−i), α, γ)dF t−i(s−i|α)dGti(α|si).

2This is a special case of Vives (1984) with β normalized to 1, so that γ ∈ [0, 1] fully characterizes the level
of substitutability across firms, and with independent signals to simplify the firm’s choice of t.
3Direct demand is undefined at γ = 1, where profits are discontinuous in price.
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Equilibrium prices must be as in Vives (1984):

p∗i (si|γ, ti) = A+Biti

(
si −

ᾱ

1 + γ

)

Where

A =
ᾱ(1− γ)

2− γ

Bi =
(2 + γt−i)(1− γ2)

4− γ2t1t2
.

Anticipating this, firm i chooses ti to maximize R(ti)− C(ti), with

R(ti) ≡
∞w

−∞

∞w

−∞

∞w

−∞

p∗i (si|γ, ti)qi(p∗i (si|γ, ti), p−i(s−i|γ, t−i), α, γ)dF t−i(s−i|α)dF ti(si|α)dG(α).

We call this the market research problem and we call ti firm i’s accuracy level.

Following Persico (2000), let asymmetric marginal revenue AMRγ(t, t
′) be firm i’s mar-

ginal returns from increasing ti from ti = t when the level of differentiation is γ and firm −i

plays pricing strategy p∗−i(si|γ, t−i = t′, ti = t′), i.e. when firm −i has accuracy level t′ and

prices as if firm i also has accuracy level t′. Define marginal revenue of accuracy at level

of differentiation γ as as MRγ(t) ≡ AMRγ(t, t). Define the marginal cost of accuracy as

MC(t) ≡ C ′(t).

We focus on symmetric equilibrium in which t∗i = t∗−i = t∗(γ) and p∗i (si|γ, t∗(γ)) =

p∗−i(s−i|γ, t∗(γ)) ∀si = s−i. At such an equilibrium it must be thatMRγ(t
∗(γ)) = MC(t∗(γ)).

2.3. Returns to Market Research

This section contains the main results of the paper. We state the relevant result from Per-

sico (2000) in the framework of our model. Without directly solving for marginal returns to
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accuracy, we are able to apply the result in order to rank marginal returns to accuracy across

different levels of differentiation. We decompose relative marginal revenue from accuracy into

two components, the competitive profits component and the coordination component. We

then give two main results: (1) when the cost of accuracy, C(·), is sufficiently high, market

research in the unique symmetric equilibrium is decreasing in the level of competition, and

(2) when C(·) is sufficiently low, equilibrium market research is higher at an intermediate

level of competition than in either the monopoly or perfect competition setting. Finally, we

show that the second result extends to a setting in which the both firms’ choice of accuracy

is publicly observed.4

Let uγ(α, p
∗
i (si|γ, ti, t−i)) ≡

∞r

s−i=−∞
p∗i (si)qi(p

∗
i , p
∗
−i, α, γ)dF t−i(s−i|α). When t1 = t2 = t,

denote this as uγ(α, p
∗(s, t)). Given two payoff functions uγ′(α, p

∗
i (s, t)) and uγ′′(α, p

∗
i (s, t)),

we write uγ′ � uγ′′ if uγ′−uγ′′ has the single-crossing property, i.e. if
∂uγ′ (α,p)

∂p
crosses

∂uγ′′ (α,p)

∂p

at most once, and from below, as α increases. We write uγ′ � uγ′′ if uγ′ � uγ′′ and uγ′′ � uγ′ .

Lemma 2. For γ′ and γ′′, if uγ′(α, p
∗(s, t)) � uγ′′(α, p

∗(s, t)), then MRγ′(t) > MRγ′′(t).

Proof. See Appendix B.1. �

The lemma states that in order to compare the marginal returns of accuracy at two

different competition levels, it suffices to show that their difference satisfies single-crossing.5

Note that p∗i (si) is non-decreasing in si. In order to show for a given pair γ′,γ′′ that

MRγ′′(ti) > MRγ′(ti), it suffices to show that

∂

∂si
[uγ′′(α, p

∗
i (si|γ′′, t))− uγ′(α, p∗i (si|γ′, t))]

4We do not extend the first result to the public setting.
5See Persico (2000) for a detailed discussion.
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is increasing in α. To that end, we first examine ∂2

∂si∂α
[uγ(α, p

∗
i (si|γ, ti, t−i))] for fixed γ ∈

[0, 1), which satisfies the following.6

(2.1)
∂2

∂si∂α
[uγ(α, p

∗
i (si|, ti))] =

∂q∞
∂α

∂p∗i
∂si

+

(
∂qi
∂p−i

∂p−i
∂s−i

∂p∗i
∂si

)
.

Where q∞ denotes qi(p
∗
i , p
∗
−i(∞), α, γ).

From the equation we see that firm i’s marginal return to accuracy has two components.

Both components are weighted by the sensitivity of the firm’s optimal price to their signal,

and they are smaller if the firm’s optimal price is not very sensitive to the signal.

The first component is the competitive profit effect, CMP (t, γ) ≡ ∂q∞
∂α

∂p∗i
∂si

. This depends

on the change in expected profit as the state changes evaluated when firm −i sets its price

at ∞. When the state increases, the quantity demanded at any price also increases. As the

firm’s accuracy increases, it is better able to tailor its demand to the state, α. However, if

the firm’s are very insensitive to their signal due to either low accuracy or high competition,

then the firm cannot benefit as much from a high state. Even though this effect is evaluated

when the competing firm chooses a fixed high price, we call it the “competitive” profit effect

because it is dependent on the firm’s ability to price high and condition its price on the state,

which is determined by the level of competition.

The second component is the coordination effect, CRD(t, γ) ≡ ∂qi
∂p−i

∂p−i
∂s−i

∂p∗i
∂si

. As the firm’s

accuracy increases, it not only learns more about the state, but also learns more about the

other firm’s pricing. It is able to better coordinate its pricing with the competing firm.

6See Appendix B.2 for a derivation of this equation, which depends on our distributional and linear demand
assumptions. Arguments are suppressed for neatness.
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Fixing an average price, the firm is better off pricing high when its competitor prices high,

and low when its competitor prices low. The coordination effect measures this benefit.

The coordination effect has two components in addition the sensitivity of firm i’s price

to its signal: the sensitivity of firm i’s demand to firm −i’s price, ∂qi
∂p−i

, i.e. the substitution

effect, and the sensitivity of firm −i’s price to its signal, ∂p−i
∂s−i

, i.e. the competitor pricing

effect. The substitution effect reflects that if demand is more sensitive to firm −i’s price, it

is more important that firm i prices accordingly. As goods become less differentiated, then

the quantity a firm sells is highly dependent on the difference between the two firms’ prices.

This is magnified by the competitor pricing effect. If firm −i’s price is more sensitive to

its signal, then it is more important for firm i to coordinate signals with firm −i. A small

difference in signals leads to a large difference in prices when firm −i’s price is very sensitive

to its signal.

We now plug in equilibrium prices to Equation 2.1. For given accuracy levels ti, t−i, the

equation is equivalent to

(2.2)
∂2uγ(α, p

∗
i (si|γ, ti))

∂α∂si
=

1

1 + γ
Biti +Biti

γ

1− γ2
B−it−i.

Recall that Bi = (2+γt−i)(1−γ2)
4−γ2t1t2

. Since we are interested in symmetric equilibrium, suppose

ti = t−i = t, in which case Bi = B−i. Then Equation 2.2 is equivalent to

(2.3)
∂2uγ(α, p

∗
i (si|γ, t))

∂α∂si
=

1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

We can now examine how both CMP and CRD depend on the level of competition γ.

Proposition 8. For any t ∈ (0, 1], the competitive profit effect CMP (t, γ) is strictly

decreasing in γ.
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Proof. For t ∈ (0, 1], ∂
∂γ

[
1−γ
2−γtt

]
= −t(2−t)

(2−γt)2 < 0. �

As the environment becomes more competitive and firms price more aggressively, not

only does the size of the pie effectively shrink, but the firms are less able to maximize their

profits by tailoring prices to demand. The more a firm is forced to compete, the less it is

able to condition its price on its signal and better match its price to the state. Accuracy

becomes marginally less valuable.

Proposition 9. For any t ∈ (0, 1], the coordination effect CRD(t, γ) is single-peaked in

γ, and CRD(t, 0) = lim
γ→1

CRD(t, γ) = 0.

Proof. First note that at γ = 0 and at γ = 1 the coordination effect is (1−γ2)γ
(2−γt)2 t

2 = 0.

The derivative of the coordination effect w.r.t. γ is

∂

∂γ

[
(1− γ2) γ

(2− γt)2 t
2

]
=
−6γ2 + (γ3 + γ)t+ 2

(2− γt)3 t2.

This is continuous, positive at γ = 0, and negative at γ = 1. Setting it equal to zero, there is

only one real-valued solution in γ, which must be interior by the intermediate value theorem.

It must be the global maximum in γ on γ ∈ [0, 1). �

Changes in competition change the relative size of the coordination effect in two ways.

First, as γ increases, firm i’s profits are more dependent on firm −i’s price. Thus, it becomes

more important to learn the state in order to learn more about firm −i’s price. Second,

the size of this effect depends on how sensitive firm −i’s price is to the signal s−i. Since

these effects are multiplicative, the coordination effect is highest at intermediate levels of

competition, where prices are sensitive enough to signals that coordinating prices requires

high accuracy, and goods are similar enough that price coordination is important.
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Examples of the competitive profit effect and the coordination effect as a function of γ

are shown in Figure 2.1 for t = 0.5.

Figure 2.1. Competitive Profit Effect and Coordination Effect

Corollary 2. For any t ∈ (0, 1], MR0(t) > lim
γ→1

MRγ(t).

The competitive profit effect is positive in the monopoly case, i.e. γ = 0, where firms’

profits when they price optimally are very sensitive to the state. The coordination effect is

0 in the monopoly case, since one firm’s price has no impact on the other firm’s demand or

optimal price. In the (almost) perfect competition case, i.e. as γ approaches 1, both the

competitive profit effect and the coordination effect approach 0. Each firm’s equilibrium price

approaches marginal cost at all signals, so there are minimal returns to better information.

The change in the total effect across competition levels, ∂
∂γ

[CMP (t, γ) + CRD(t, γ)],

depends on the level of accuracy, t. If both firms’ signals are not very accurate, then one

firm getting better accuracy does not help coordination very much, but it does help that

firm better match the state. Thus, when t is low enough, the competitive profit effect is

relatively more important than the coordination effect. The marginal return to accuracy

is monotonically decreasing in γ in that case. When t is high enough, the coordination

effect becomes relevant so that the marginal return to accuracy is no longer monotonically
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decreasing in the level of competition, but instead is highest at some intermediate level of

competition. Examples of CMP (t, γ)+CRD(t, γ) are shown in Figure 2.2 for t = 0.5 on the

left and t = 0.98 on the right. In the right-hand graph, CMP (t, γ)+CRD(t, γ) is maximized

at an interior value of γ.

Figure 2.2. Total Effect at Low Accuracy and High Accuracy

The following lemmas formally state that the marginal return to accuracy is monoton-

ically decreasing in γ when t is low, and that it is maximized at some interior γ when t is

high.

Lemma 3. ∃t̄ such that for any t ∈ (0, t̄), ∂
∂γ

[MRγ(t)] < 0.

Proof. See Appendix B.3. �

Lemma 4. ∃t
¯

s.t. for any t > t
¯
∃γ′ > 0 s.t. MRγ′(t) > MR0(t).7

Proof. See Appendix B.4. �

We can compare equilibrium levels of market research across levels of competition as

long as there exists a symmetric equilibrium in market research. For any pair t, γ both

7The lowest such t
¯

is approximately 0.96778. Note that the notation is somewhat idiosyncratic in that the

minimum t
¯

satisfying Lemma 3 is larger than the maximum t̄ satisfying Lemma 2.
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the competitive profit and coordination effects are weakly positive. This is true even if

ti 6= t−i, as in Equation 2.2. It is immediate by inspection that for any tuple {γ, ti, t−i},

AMRγ(ti, t−t) > 0, i.e. firm i always benefits from more accuracy.8

This implies that we can find a cost function C(t) such that when this is the cost of

accuracy for both firms, at any γ there exists a unique symmetric equilibrium in accuracy

t∗(γ). Furthermore, we can find a cost function such that for some t̄, t∗(γ) ∈ (0, t̄) ∀γ ∈ [0, 1].

Call such a cost function C t̄(t). We can also find a cost function such that for some t
¯
> t̄,

t∗(γ) ∈ (t
¯
, 1) ∀γ ∈ [0, 1]. Call such a cost function Ct

¯
(t).

Finally, in order to state the main result we must formally define “higher costs” and

“lower costs” of accuracy. For a given cost function Ĉ(t), let {Ĉ(t)}L be the set of all

cost functions C(t) such that ∀γ there exists a symmetric equilibrium, and ∀t′ ∈ [0, 1],

C(t′) ≤ Ĉ(t′) and C ′(t′) ≤ Ĉ ′(t′). Similarly, let {Ĉ(t)}H be the set of all cost functions

C(t) such that ∀γ there exists a symmetric equilibrium, and ∀t′ ∈ [0, 1], C(t′) ≥ Ĉ(t′) and

C ′(t′) ≥ Ĉ ′(t′).

Theorem 4. There exist {t̄, t
¯
} with 1 > t

¯
> t̄ > 0 such that:

(1) ∃C t̄(t) such that for any cost function C(t) ∈ {C t̄(t)}H , at every γ ∈ [0, 1) there exists a

unique symmetric equilibrium with market research t∗(γ) s.t. ∂
∂γ

[t∗(γ)] < 0, and

(2) ∃Ct
¯
(t) such that for any cost function C(t) ∈ {Ct

¯
(t)}L, at every γ ∈ [0, 1) there exists a

unique symmetric equilibrium with market research t∗(γ) s.t. t∗(γ′) > t∗(0) > lim
γ→1

t∗(γ) for

some γ′ ∈ (0, 1).

Proof. By Lemma 2, single crossing is sufficient for ranking marginal returns to accuracy.

Existence of symmetric equilibrium is immediate from Lemmas 3 and 4. t∗(γ) is continuous

8AMRγ(ti, t−t) approaches 0 as γ → 1.
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in γ by the continuity of equilibrium prices and equilibrium payoffs in all arguments. For

(1), by Lemma 3 there exist some t̄ and C t̄(t) such that ∂
∂γ

[MRγ(t)] ≤ 0 ∀t ∈ [0, t̄] ∀γ

and t∗(γ) < t̄ ∀γ. This is true for all higher cost functions such that there exists a unique

equilibrium at every γ. For (2), by Lemma 4 there exist some t
¯

and Ct
¯
(t) such that ∀t >

t
¯
∃γ′ ∈ (0, 1) s.t. MRγ′(t) > MR0(t) and t∗(γ) > t

¯
∀γ. In particular, for t∗(0) ∃γ′ s.t.

MRγ′(t
∗(0)) > MR0(t∗(0)). Therefore it must be that t∗(γ′) > t∗(0). This is true for all

lower cost functions such that there exists a unique equilibrium at every γ. �

The theorem states that, for cost functions such that there exists a unique equilibrium

at all levels of competition, equilibrium private market research is decreasing in competition

when accuracy costs are sufficiently high, and is maximized at some intermediate level of

competition when accuracy costs are sufficiently low.

The second part of the result readily extends to the case of public market research.

Suppose that after firms choose accuracy levels vi and v−i, both firms observe vi and v−i

prior to choosing prices. The game is otherwise as in Section 2.2. Call this the overt game. In

this setting, both accuracy and prices are strategic complements.9 Thus, firms have weakly

higher marginal returns to accuracy compared to the private market research game. However,

in the monopoly case there is no strategic effect from increasing accuracy, so marginal returns

are the same in both settings. Let t∗O(γ) denote market research in a symmetric equilibrium

of the overt market research game. For any cost function such that there exists a unique

symmetric equilibrium in both the private research game and the overt game at some γ, it

must be that t∗O(γ) ≥ t∗(γ). In the monopoly case (γ = 0), t∗O(0) = t∗(0). Furthermore,

9See Chapter 8 in Vives (2000) for a more thorough discussion.
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returns to market research approach zero in both settings as competition approaches perfect

competition: lim
γ→1

t∗O(γ) = lim
γ→1

t∗(γ) = 0.

As in the private market research setting, in the overt game for any t
¯

one can find a cost

function Ct
¯
(t) such that at every γ there exists a symmetric equilibrium in the overt game

with 1 > t∗O(γ) > t
¯
. Define {Ĉ(t)}OL in the overt game analogously to {Ĉ(t)}L in the private

market research game. Corollary 3 immediately follows.

Corollary 3. ∃t
¯
, Ct

¯
(t) such that for any cost function C(t) ∈ {Ct

¯
(t)}OL , at every γ ∈ [0, 1)

there exists a unique symmetric equilibrium with market research t∗O(γ) s.t. t∗O(γ′) > t∗O(0) >

lim
γ→1

t∗O(γ) for some γ′ ∈ (0, 1).

As in the private market research game, in the overt game when accuracy costs are

sufficiently low, firms facing some intermediate level of competition invest more in market

research than monopolistic firms.

2.4. Conclusion

This paper examines how differentiation affects equilibrium market research in a Bertrand

duopoly. We conjecture that in symmetric Bertrand oligopolies with n > 2 firms, the results

hold qualitatively, meaning there exist parameters such that firms with partially differentated

goods invest more in market research than firms with completely differentiated goods.

We do not explicitly analyze consumer welfare across differentiation levels, as to do so

would require finding equilibrium market research in closed form, but we can say something

about it. Increased accuracy has competing effects on consumer welfare. When firms increase

their accuracy, they condition their prices more on their signals and thus better align their

prices with the state. This is partially beneficial for consumers, since fixing the average price,
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they would prefer to pay a high price when the state is high and a low price when the state

is low, rather than the same price in all states. However, consumers also prefer for firms to

have different prices from each other, as it allows them to substitute the cheaper good for

the more expensive good. When firms increase their accuracy, their prices tend to be closer.

This harms consumers. The net effect in our model is that consumer surplus decreases in

the firms’ accuracy.10

Fixing the accuracy of both firms, consumer welfare increases as goods become closer

substitutes. However, as we have shown accuracy is sometimes non-monotonic in the level

of differentiation. This highlights a challenge in regulating either market research or pricing

behavior when market research is endogenous. For a given market research cost function, it

may be that consumer welfare is sometimes higher when goods are less differentiated than

when goods are more differentiated.

10See Proposition 6 in Vives (1984).
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CHAPTER 3

Governance, Depreciation, and Debt (Joint with Alexander

Limonov)

3.1. Introduction

Liquidity-constrained entrepreneurs require funding from investors. If an entrepreneur is

unable to write a long-term contract with an investor, the entrepreneur will be tempted to

appropriate returns instead of repaying a loan. The entrepreneur can put up collateral to

partially alleviate this commitment problem. However, the value of that collateral depends

on how it is used by the entrepreneur.

The entrepreneur may benefit from using capital in a state-dependent, uncertain pro-

duction process, rather than a state-independent production process, because its success

or failure gives him better information about the future value of capital. In this way, he

forecloses more often when the expected value of the project is low and less often when

it is high. On the other hand, such a production process may require experimentation or

trial-and-error that damages capital so that it depreciates more, lowering its value both with

respect to its future productive output for the entrepreneur and as collateral for the investor.

If the entrepreneur cannot commit to a production process, then the investor will anticipate

this and require more collateral to fund the project.

If the entrepreneur were not liquidity-constrained, he would always choose a safe produc-

tion process rather than a state-dependent production process in order to avoid the deprecia-

tion cost, provided the expected returns from the two processes are the same. However, since
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in a debt contract he will foreclose when output is low, he may prefer to depreciate capital in

exchange for foreclosing more often in low states and less often in high states. If the benefit

from shifting foreclosure to the low state is high enough relative to the depreciation cost,

then the entrepreneur will choose the risky production process, forcing him to offer more

collateral to the investor. If the benefit is high enough, then this is efficient given that there

is sometimes foreclosure. If the benefit is low enough, then the entrepreneur will efficiently

choose the safe process. However, if the benefit is high enough to tempt the entrepreneur to

choose the state-dependent process but not high enough to make up for the higher collateral

he must promise, then his choice of state-dependent production is inefficient. This occurs

because the entrepreneur does not internalize the lowered value of collateral from depreci-

ation when he forecloses. In that case, the entrepreneur would be better off if the investor

had decision rights over which production process is used.

To model this, we consider a one period debt contract offered by a liquidity-constrained

entrepreneur to an investor with deep pockets, followed by a two period production process.

The debt contract consists of a promised payment and percentage of capital to be used

as collateral should the entrepreneur fail to make that payment. During the first period of

production, either the investor or the entrepreneur, whoever has governance, decides whether

to use a state-dependent production process (where the state is unknown and persistant) or

a safe production process. Both processes have the same expected first period output. If

after first period output is realized the entrepreneur fails to repay the contracted amount,

he can renegotiate a new repayment amount, which he pays if the investor accepts this

renegotiation. If the investor rejects the renegotiation, then the entrepreneur must turn over

a percentage of capital as originally agreed, i.e. “foreclose.” The entrepreneur then receives

time 2 output in proportion to the amount of capital he has not turned over to the investor. If
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whoever has governance chose the state-dependent production process, then time two output

is lowered by some depreciation percentage. The investor also receives some time 2 output

in proportion to the capital she has received, lowered by the depreciation percentage if first

period production was state-dependent. In the second period, there is only one production

process, which depends on the state. Regardless of the state, we assume that for the same

amount of capital, the entrepreneur’s time 2 output is higher than the investor’s time 2

output to capture the idea that the project is more valuable to the entrepreneur than the

investor.1

We show that in equilibrium in this setting, the entrepreneur will always renegotiate

with the investor when output is high enough to do so, so that foreclosure only occurs when

first period output is low. We then provide two simple conditions that fully characterize

when the entrepreneur is better off in equilibrium when production is under the investor’s

governance than when production is under his own governance. Since the investor always

chooses the safe production process if she has governance, the first condition is that the

entrepreneur is not sufficiently better off from the state-dependent process that it is worth

the higher collateral he must offer in equilibrium when he has governance. In other words,

the state-dependent production process is inefficient. The second condition is that at the low

level of collateral in equilibrium under the investor’s governance, the entrepreneur prefers

the state-dependent production process. This condition prevents him from offering the same

level of collateral when he has governance that he can offer when the investor has governance,

since he cannot credibly commit to choosing the safe production process. In other words, if

he has governance, the entrepreneur will choose the state-dependent production process.

1We interpret this as some non-appropriable skill that the entrepreneur has in using capital for production.
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To understand when these two conditions are satisfied, consider how the production

process affects the entrepreneur’s payoff for some fixed debt contract. When the production

process is state-dependent, the posterior on the state is higher after high output and lower

after low output, so that foreclosure occurs more often in the low state than in the high state

relative to when the production process is safe. After high time 1 output, the entrepreneur’s

expected time 2 output increases, but so does the expected value of the contracted collateral.

The entrepreneur will have to pay the investor more in a renegotiation to prevent foreclosure.

After low output, the entrepreneur always defaults rather than paying off the investor, so

the investor’s value of collateral in that state does not affect the entrepreneur’s payoff. Thus,

state-dependent production leads to a benefit if the entrepreneur’s time 2 output is more

sensitive to the state than the investor’s time 2 output, i.e. the value of collateral. If

instead the investor’s time 2 output is more sensitive to the state than the entrepreneur’s,

then the entrepreneur is always better off from the safe production process, even if there

is no depreciation cost. In that case, he can offer the same low collateral when he governs

the production process as when the investor governs the production process, since he will

credibly choose the safe production process. He is indifferent between governance structures,

and our second condition is not satisfied.

Suppose that the entrepreneur’s time 2 output is more sensitive to the state, so that he

benefits when foreclosure shifts in probability from the high state to the low state. Then,

for a fixed contract, he will prefer the state-dependent production process as long as it is

sufficiently aligned with the state and the depreciation rate is sufficiently small. The more

the state-dependent production process is aligned with the state, the more he can shift the

probability of foreclosure towards the low state. This is enough to compensate for the cost
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of depreciation (which occurs in all states), as long as that cost is not too high. In this case,

our second condition is satisfied.

The investor is always worse off from state-dependent production. She is held to her

outside option (the value of collateral) after high output and receives collateral after low

output, so ex ante she always receives the value of contracted collateral in equilibrium. When

production is state-dependent, that collateral is depreciated. When our second condition is

satisfied, the entrepreneur cannot credibly commit to choosing the safe production process.

He must offer higher collateral under his governance than he would under the investor’s

governance.

Even though the entrepreneur must offer higher collateral in this case, he may still prefer

his own governance to the investor’s governance if time 1 output is sufficiently aligned with

the state and the depreciation cost is sufficiently small. In that case, our first condition is

not satisfied. The first condition is satisfied when the benefit of shifting foreclosure to the

low state is sufficiently small relative to the cost of depreciation and the loss from higher

collateral. Thus, the two conditions are satisfied whenever the state-dependent production

process is moderately dependent on the state, and the depreciation cost is in an intermediate

range, provided the entrepreneur’s time 2 output is more sensitive to the state than the

investor’s time 2 output. In that case, state-dependent production is beneficial enough

holding the contract fixed to prevent the entrepreneur from offering low collateral, but not

beneficial enough to cover the loss from being forced to offer higher collateral. Then, it is

better for the entrepreneur if the investor has governance.

This paper is related to the liquidation and renegotation models of Hart (1995) and Hart

& Moore (1998), as well as to the residual control models of Grossman & Hart (1986), Hart

& Moore (1990), and Aghion & Bolton (1992). Aghion & Bolton (1992) in particular show
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how control rights might be imperfectly allocated across different states, so that governence

structures are contingent and can be conditioned on a verifiable state of the world. Hart &

Moore (1998) instead model debt contracts when capital ownership from foreclosure on debt

is an endogenous consequence of defaulting. Capital ownership can be thought of as a type

of Aghion & Bolton (1992) style governance that is different from governance in our model.

Our model is a special case of Hart & Moore (1998) if we exogenously fix the production

process.

We can think of governance in our model as qualitatively similar to Aghion & Bolton

(1992), who show that it is optimal for the entrepreneur to have governance in states where

private benefits from the action are high, while the investor should have governance in states

where the entrepreneur’s private benefits are low. In our model, the entrepreneur’s private

benefit comes from allocating time 2 capital ownership to the low state through Hart &

Moore (1998) style foreclosure. We show that the investor should have governance if the

entrepreneur’s time 2 payoffs are more sensitive to the state than the investor’s, and his

private benefit from state-dependent production is in an intermediate range.

We restrict attention to debt contracts. Many papers take up the question of whether

debt or equity (or some other contract) is optimal for financing under various frictions,

including Hart & Moore (1998), Dewatripont & Tirole (1994), Fluck (1998), and Holmström

& Tirole (1997). We do not speak to the optimality of debt, instead focusing on the optimal

governance structure when the contract is restricted to be debt.

The rest of the paper is organized as follows. Section 3.2 contains the details of the model.

Section 3.3 characterizes when the entrepreneur is better off under investor governance than

under his own governance. Section 3.4 discusses remaining questions and concludes.
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3.2. Model

A project requires capital that costs K. A liquidity constrained entrepreneur E with no

wealth at time 0 offers a contract {r, l} to an investor I in exchange for K, where r is a time

1 repayment amount and l is the percentage of capital that E puts up as collateral. Should

E fail to pay r, that capital is turned over to I (the project is partially liquidated), or E can

offer a renegotiated payment up to his time 1 liquidity constraint.

If the project is funded, E produces noisy time 1 output Y ∈ {0, y}. Output may partially

depend on a hidden state θ which distributed equally on {θL, θH}, with 1 > θH > θL > 0.

Let θ̄ ≡ E[θ] and let ε ≡ θH − θ̄ = θ̄ − θL.2 There is a state-dependent production process

that depends on realized θ, and a safe production process that depends only on θ̄. Whichever

player has governance chooses the time 1 production process. There is a second round of

production with only one possible production process that always depends on the state. The

timing is as follows.

(1) Time 0: E offers a contract {r, l} to I, with r ≥ 0, and l ∈ [0, 1]. If I rejects, the

game ends and both players receive payoff zero. If I accepts, the game continues.

(2) If governance is gE (gI), E (I) chooses a ∈ {0, 1}.3

(3) θ is determined. Pr(θ = θH) = Pr(θ = θL) = 1
2
. This is not observed.

(4) Time 1: Y ∈ {0, y} is publicly realized with Pr(Y = y) = aθ + (1− a)θ̄.

(5) E chooses to default (d = 1) or not default (d = 0). E must choose d = 1 if Y = 0.

(6) E offers renegotiation {r̂, l̂} with r̂ ∈ [0, Y ] and l̂ ∈ [0, 1], which I accepts or rejects.

2The results hold qualitatively without assuming the states are equally likely, but this formulation allows for
clear comparative statics on ε.
3This can be extended to a ∈ [0, 1] without affecting our results.
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(7) Time 2: If the renegotiation was accepted, I gets time 2 payoff l̂v2(θ)(1− ca) and E

gets time 2 payoff (1− l̂)u2(θ)(1−ca). Otherwise, I gets time 2 payoff lv2(θ)(1−ca)

and E gets time 2 payoff (1− l)u2(θ)(1− ca)

If output is high, E chooses whether to divert funds, thereby defaulting, or not. If output

is low, E must default since he is liquidity constrained and cannot pay I the promised amount.

If he does not default, he pays r to I and maintains ownership of the project. If E defaults,

he must either turn over l of the project to I, or he can instead offer a renegotiated payement

and collateral {r̂, l̂} to I, where r̂ cannot exceed realized time 1 output. If I does not accept

this renegotiation, a proportion l of capital is turned over to I according to the original

contract. If I does accept, E pays I the renegotiatied payment r̂ and turns over proportion

l̂ of the project. At time 2, players earn payoffs that depend on θ and the amount of the

project they possess at time 2.

We call u2(θ) the production value of capital, and v2(θ) the collateral value of capital.

Aligning time 1 production with the state (a = 1) “uses up” some of the capital, for exam-

ple through increased wear-and-tear. We model this as a state-independent percentage loss

c ∈ (0, 1) to time 2 payoffs, which we call the cost of depreciation. E’s payoff for a given θ is

u(θ) = Y−R+(1−L)u2(θ)(1−ca), and I’s payoff for a given θ is v(θ) = R+Lv2(θ)(1−ca)−K,

where repayment amount R and collateral percentage L are as follows.

R =


r̂ if I accepts renegotiation

r(1− d) if I rejects renegotiation

L =


l̂ if I accepts renegotiation

ld if I rejects renegotiation

Our equilibrium concept is Perfect Bayesian Equilibrium. When a = 0, posterior beliefs

on the high state are Pr(θ = θH |Y = y) = Pr(θ = θH |Y = 0) = 1
2
. When a = 1, posterior
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beliefs are characterized as follows for j ∈ {L,H}:

Pr(θ = θj|Y = y) =
θj
2θ̄

P r(θ = θj|Y = 0) =
1− θj

2(1− θ̄)

When a = 1, time 1 output Y is a more precise signal of θ.

After observing output, we write E’s interim expected payoff with posterior p on θ = θH

as u1(p, Y ) = Y −R+(1−L)(pu2(θH)+(1−p)u2(θL))(1−ca). We write I’s interim expected

payoff with posterior p on θ = θH as v1(p, Y ) = R+L(pv2(θH)+(1−p)v2(θL))(1−ca)−K. We

write ex ante expected equilibrium payoffs as u (for E) and v (for I). We restrict attention

to equilibria that maximize u + v. Since in any equilibrium the entrepreneur will offer an

initial contract such that the investor’s IR constraint binds, this is equivalent to equilibria

that maximize u. We write u(gi) to denote equilibrium ex ante payoffs under government

structure gi.

We assume that both the production value and collateral value are higher when the state

is high than when the state is low. We also assume that in both states the production value

is higher than the collateral value, i.e. capital is worth more to the entrepreneur than to

the investor at time 2. Furthermore, we assume high output y is sufficiently high that the

entrepreneur can afford to pay the investor the value of her collateral when Y = y. This

allows us to use backward induction to solve for equilibrium. Finally, we assume that K is

small enough that the project is always funded in equilibrium.4

4The assumption on K does not qualitatively affect the results, but makes comparisons between governance
structures clearer.
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Assumption. u2(θH) > u2(θL) > 0, v2(θH) > v2(θL) ≥ 0, u2(θ) > v2(θ),

y > K (θHv2(θH)+θLv2(θL))

θ̄(v2(θH)+v2(θL))
, and K < (1−c)(v2(θH)+v2(θL))

2
.

3.3. Equilibrium and Optimal Governance

This section characterizes the conditions such that it is strictly better for the entrepreneur

when the investor has governance. We first solve for the optimal default rule and renegoti-

ation given any initial contract {r, l} and action a. We then find equilibrium collateral and

payoffs under governance gI . The investor always chooses a = 0. We provide a condition

such that this makes the entrepreneur worse off than if the action a were exogenously chosen

to be a = 1. We then provide a necessary and sufficient condition such that collateral is

higher in equilibrium under governance gE than under gI . Finally, we show that these two

conditions together characterize when the entrepreneur is better off under gI than under gE,

and we discuss the role of the parameters.

We first find E’s optimal renegotiation for some {r, l, a} given that Y = y and he has

defaulted. E offers a renegotiation contract that solves the following maximization problem.

max
r̂∈[0,y],l̂∈[0,1]

y − r̂ + (1− l̂) (1− ca)

(
aε+ θ̄

2θ̄
u2(θH) +

(
1− aε+ θ̄

2θ̄

)
u2(θL)

)
s.t. r̂ + l̂ (1− ca)

(
aε+ θ̄

2θ̄
v2(θH) +

(
1− aε+ θ̄

2θ̄

)
v2(θL)

)
≥ l (1− ca)

(
aε+ θ̄

2θ̄
v2(θH) +

(
1− aε+ θ̄

2θ̄

)
v2(θL)

)
IR2

The constraint IR2 must be satisfied for I to accept the renegotiation, given the originally

contracted collateral as her outside option. The solution is l̂ = 0 and

r̂ = l(1− ca)

(
aε+ θ̄

2θ̄
v2(θH) +

(
1− aε+ θ̄

2θ̄

)
v2(θL)

)
.
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If the entrepreneur renegotiates, he pays off the investor rather than liquidating, since the

project is more valuable under the entrepreneur’s ownership than under the investor’s own-

ership (u2(θ) > v2(θ)). The entrepreneur’s interim expected payoff is

u1(p, y) = y + (1− ca)

(
aε+ θ̄

2θ̄
(u2(θH)− lv2(θH)) +

(
1− aε+ θ̄

2θ̄

)
(u2(θL)− lv2(θL))

)
.

The investor’s interim expected payoff is v1(p, y) = l(aε+θ̄
2θ̄
v2(θH) + (1− aε+θ̄

2θ̄
)v2(θL))−K.

If Y = y and E does not default, then the initial contract will remain in effect. The

entrepreneur’s interim expected payoff is

u1(p, y) = y − r + (1− ca)

(
aε+ θ̄

2θ̄
u2(θH) +

(
1− aε+ θ̄

2θ̄

)
u2(θL)

)
.

The investor’s interim expected payoff is v1(p, y) = r −K.

Based on these payoffs, E’s default decision when Y = y is d = 1 whenever r > l(1 −

ca)(aε+θ̄
2θ̄
v2(θH) + (1 − aε+θ̄

2θ̄
)v2(θL)).5 He defaults if the originally agreed upon repayment is

more expensive than paying off the investor’s collateral value.

If Y=0, there is no room for renegotiation; the collateral l is turned over to I. The

investor’s interim expected payoff is v1(p, 0) = l(1−aε−θ̄
2(1−θ̄) v2(θH)+(1− 1−aε−θ̄

2(1−θ̄) )v2(θL))−K. The

entrepreneur’s interim expected payoff is u1(p, 0) = (1−l)(1−aε−θ̄
2(1−θ̄) u2(θH)+(1− 1−aε−θ̄

2(1−θ̄) )u2(θL)).

We now solve for equilibrium payoffs under governance gI . First, I’s optimal a for any

{r, l} is a = 0, as is immediate from her maximization problem.

5The assumption that E breaks ties in favor of not defaulting does not effect our results on equilibrium total
surplus.
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max
a∈{0,1}

θ̄min

{
l(1− ca)

(
aε+ θ̄

2θ̄
v2(θH) +

(
1− aε+ θ̄

2θ̄

)
v2(θL)

)
, r

}

+ l(1− ca)(1− θ̄)
(

1− aε− θ̄
2(1− θ̄)

v2(θH) +

(
1− 1− aε− θ̄

2(1− θ̄)

)
v2(θL)

)
Increasing a from 0 to 1 makes I’s interim expected payoff lower after low output and

higher after high output. However, her interim expected payoff after high output is capped

by the intially agreed upon repayment, r. If r is low, changing from a = 0 to a = 1 hurts

the investor even without considering depreciation. If r is high, then the expected value of

collateral is unchanged between a = 0 and a = 1, but collateral is depreciated at a rate c

when a = 1. Since the investor gets no benefit from high a, she will always choose a = 0 to

avoid costly depreciation.

In the initial contracting stage under governance gI , E offers a contract {r, l} that solves

the following maximization problem.

max
r≥0,l∈[0,1]

θ̄y +
1

2
(u2(θH) + u2(θL))− l

(
1− θ̄

2

)
(u2(θH) + u2(θL))

−min

{
θ̄
l

2
(v2(θH) + v2(θL)), θ̄r

}
s.t. min

{
θ̄
l

2
(v2(θH) + v2(θL)), θ̄r

}
+ (1− θ̄) l

2
(v2(θH) + v2(θL)) ≥ K IR1

The solution is l = 2K
v2(θH)+v2(θL)

and r ≥ K. The entrepreneur would like to offer as little

collateral as possible. Since he has the ability to renegotiate, promised payments r in excess

of the collateral value after high output are not credible. The entrepreneur therefore must
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offer I collateral that has expected value of at least K.6 Lemma 5 gives E’s equilibrium

payoff from this contract.

Lemma 5. Under governance gI , the entrepreneur’s ex ante expected equilibrium payoff

is

u(gI) = θ̄y +
1

2
(u2(θH) + u2(θL))

−
(

K

v2(θH) + v2(θL)

)(
θ̄(v2(θH) + v2(θL)) + (1− θ̄)(u2(θH) + u2(θL))

)
.

If the entrepreneur were not liquidity constrained, then his expected utility would be

θ̄y + 1
2
(u2(θH) + u2(θL)) − K, i.e. the expected value of the project net of its initial cost.

However, in equilibrium foreclosure occurs with positive probability, which is inefficient.

Thus, the cost K is scaled by a factor greater than 1.

Before solving for equilibrium payoffs under governance gE, we find the entrepreneur’s op-

timal initial contract and payoff holding a = 1 fixed, which solves the following maximization

problem.

max
r≥0,l∈[0,1]

θ̄y +
1

2
(u2(θH) + u2(θL))(1− c)− l

2
(1− c)((1− θH)u2(θH) + (1− θL)u2(θL))

−min

{
(1− c) l

2
(θHv2(θH) + θLv2(θL)), θ̄r

}
s.t. min

{
(1− c) l

2
(θHv2(θH) + θLv2(θL)), θ̄r

}
+ (1− c) l

2
((1− θH)v2(θH) + (1− θL)v2(θL)) ≥ K IR1

The solution is l = 2K
(1−c)(v2(θH)+v2(θL)

and r ≥ K (θHv2(θH)+θLv2(θL))

θ̄(v2(θH)+v2(θL))
. Much like when a is

fixed at a = 0, when a = 1 the entrepreneur must promise collateral with expected value to

cover cost K. In this case, capital will be depreciated so that E must promise a higher l.

6This result is similar to Hart & Moore (1998), as for fixed a this game is a special case of their model.
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E’s payoff is:

ū(1) = θ̄y +
1

2
(u2(θH) + u2(θL))(1− c)

−
(

K

v2(θH) + v2(θL)

)(
θ̄(v2(θH) + v2(θL)) + (1− θ̄)(u2(θH) + u2(θL))

)
+

(
Kε

v2(θH) + v2(θL)

)
((u2(θH)− u2(θL))− (v2(θH)− v2(θL))) ,

where we write ū(a) to denote E’s optimal payoff when action a is exogenously fixed.

There are two distinctions between this payoff and ū(0) = u(gI). First, when a = 1

the entrepreneur’s expected time 2 payoff decreases due to depreciation. The second term

is scaled by (1 − c). Second, since the entrepreneur pays off the investor and keeps the

collateral when time 1 output is high and turns it over when time 1 output is low, choosing

a = 1 shifts the probability of foreclosure to the low state from the high state relative to

when a = 0. As when a = 0, the investor still sometimes receives collateral in equilibrium,

which is inefficient. However, that loss of efficiency is mitigated (or exacerbated) by shifting

the probability of foreclosure between states. The last term of ū(1) captures the change in

the entrepreneur’s payoff from this shift. We subtract ū(1) from u(gI) to get the following

condition, which we call Condition 1.

Condition 1.

2Kε
(

(u2(θH)− u2(θL))− (v2(θH)− v2(θL))
)
< c
(

(u2(θH) + u2(θL))(v2(θH) + v2(θL)
)

Lemma 6. ū(1) < u(gI) iff Condition 1 is satisfied.

Notice that the condition is always satisfied if u2(θH) − u2(θL) < v2(θH) − v2(θL), in

other words, if the collateral value v2(θ) is more sensitive to the state than the production
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value u2(θ). In that case, the entrepreneur is better off when a = 0 than when a = 1. The

intuition is straightforward. Choosing a = 1 increases posterior beliefs on the state after

high output and decreases posterior beliefs on the state after low output. This means that

in the high state, the entrepreneur’s continuation value increases, but the amount he must

pay off the investor increases even faster. In the low state, he doesn’t pay off the investor so

his continuation value is unaffected by the value of collateral.7

If instead u2(θH) − u2(θL) > v2(θH) − v2(θL), then in the high state the entrepreneur’s

continuation value increases more than the amount he must pay off the investor. Thus

it is beneficial for him to chooose a = 1. If this benefit is large enough relative to the

depreciation cost, then ū(1) > ū(0). The distinction between these two cases highlights a

fundamental aspect of liquidity constraints and renegotiation. Choosing a = 1 always leads

to more precise information at time 1 than a = 0, but because of liquidity constraints, that

information can only be used to shift foreclosure probability from the high state to the low

state, not from the low state to the high state.

We now turn to equilibrium under governance gE. We solve for optimal a, which we

write as a∗(r, l), for a given contract {r, l}. We restrict attention to l ≥ 2K
v2(θH)+v2(θL)

since equilibrium l can never be lower than that value. We also restrict attention to

r ≥ max{(1 − c) l
2
(θHv2(θH) + θLv2(θL)), l

2
θ̄(v2(θH) + v2(θL))}. In this range, E will al-

ways (weakly) prefer to default after high output. This restriction does not affect E’s payoff

in the payoff-maximizing equilibrium.

7In this case, Condition 1 will always be satisfied, meaning a = 0 is efficient, but Condition 2 will always be
violated. E will optimally choose a = 0. We discuss this further below.
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Fixing some some {r, l} satisfying these restrictions, E’s expected payoff from choosing

a = 0 is:

(3.1) θ̄y +
1

2
(u2(θH) + u2(θL))− l

2

(
(1− θ̄)(u2(θH) + u2(θL))− θ̄(v2(θH) + v2(θL))

)
E’s expected payoff from choosing a = 1 is:

(3.2)

θ̄y+
1

2
(u2(θH)+u2(θL))(1−c)− l

2
(1−c)

(
(1−θH)u2(θH)+(1−θL)u2(θL)+θHv2(θH)+θLv2(θL)

)
E chooses a = 1 whenever Expression 3.2 is greater than Expression 3.1.8 We subtract

Expression 3.1 from Expression 3.2 at the optimal level of collateral under governance gI ,

l = 2K
v2(θH)+v2(θL)

, to obtain the following condition, which we call Condition 2.

Condition 2.

2Kε
(

(u2(θH)− u2(θL))− ((v2(θH)− v2(θL))
)
>

c
(

(u2(θH) + u2(θL))(v2(θH) + v2(θL))

+ 2Kε((u2(θH)− u2(θL))− ((v2(θH)− v2(θL)))

− 2K(θ̄(v2(θH) + v2(θL)) + (1− θ̄)(u2(θH) + u2(θL)))
)

Lemma 7. For l = 2K
v2(θH)+v2(θL)

and r ≥ K (θHv2(θH)+θLv2(θL))

θ̄(v2(θH)+v2(θL))
, a∗(r, l) = 1 iff Condition 2

is satisfied.

Proof. For r ≥ K (θHv2(θH)+θLv2(θL))

θ̄(v2(θH)+v2(θL))
, E’s optimal default choice is d = 1 for a = 0 and

a = 1, so payoffs are as in Expression 3.1 and Expression 3.2, respectively. The result

follows. �
8We assume E breaks ties in favor of a = 0, which is without loss of generality for our results.
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The result can be extended to higher l, but for our purposes it suffices to provide the

condition such that E cannot credibly offer the same collateral under gE as it would under

gI , which is l = 2K
v2(θH)+v2(θL)

. When Condition 2 is satisfied, at the equilibrium collateral level

under gI , E prefers to choose a = 1. The gains from aligning output with the state offset

the losses from depreciation. Notice that if Condition 2 is violated, Condition 1 must be

satisfied.9 This is because fixing some a, E’s payoff is decreasing in l. If at l = 2K
v2(θH)+v2(θL)

,

E prefers a = 0 to a = 1, then E also prefers a = 0 and that collateral level to a = 1 and

collateral l = 2K
(1−c)(v2(θH)+v2(θL))

, the minimum collateral I will accept when a = 1.

Notice that if the entrepreneur could fund the project himself, he would never choose

a = 1. The state-dependent production process does not on average perform better than the

safe production process, and it results in costly depreciation. The entrepreneur only chooses

a = 1 because of the asymmetric effect of his time 1 liquidity constraint at different levels

of output.

The following proposition states that Condition 1 and Condition 2 together characterize

when the entrepreneur is better off under governance gI than under governance gE.

Proposition 10. u(gI) > u(gE) iff Condition 1 and Condition 2 are satisfied.

Proof. See Appendix C. �

If Condition 2 is satisfied, then E cannot credibly promise action a = 0 at contracted

collateral l = 2K
v2(θH)+v2(θL)

. In equilibrium under gE, he must offer more collateral, which

fixing his action makes him worse off. However, if he chooses a = 1 then he gains the

benefit of turning over collateral more often in the low state and less often in the high state.

When Condition 1 is satisfied, that benefit is not large enough to make up for the increased

9If instead Condition 2 is satisfied, Condition 1 may or may not be satisfied, depending on the parameters.
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collateral he must offer. Thus, when both conditions are satisfied the benefit from a = 1 is

high enough that it prevents him from playing the same equilibrium as under gI , but not so

high that it compensates for the inefficiency of higher collateral. In that case, it is better for

the investor to have governance.

As discussed above, Condition 1 is satisfied if u2(θH)−u2(θL) ≤ v2(θH)−v2(θL). Similarly,

Condition 2 is violated when this inequality holds. At all collateral levels, if the collateral

value of capital is more sensitive to the state than the production value of capital, then

the entrepreneur is better off not aligning output to the state. It is more efficient to turn

collateral over to the investor in high states than in low states, and choosing a = 0 maximizes

the probability of that. Both the investor and the entrepreneur prefer a = 0, and ū(0) =

u(gE) = u(gI).

If instead u2(θH)− u2(θL) > v2(θH)− v2(θL), but (u2(θH)− u2(θL))− (v2(θH)− v2(θL))

is not too large, then both conditions are satisfied at intermediate values of ε and c. When

ε is very low and c is very high, the entrepreneur will choose a = 0 in equilibrium, so that

ū(0) = u(gE) = u(gI). When ε is very high and c is very low, then the gains from a = 1

are worth the increased equilibrium collateral, so ū(1) = u(gE) > u(gI) = ū(0). However, at

intermediate ranges of ε and c, the entrepreneur cannot credibly choose a = 0, but would

prefer to be able to commit to do so rather than be forced to offer high collateral. In that

region, ū(0) = u(gI) > u(gE).

When u2(θH)−u2(θL) > v2(θH)−v2(θL), both conditions are also satisfied at intermediate

values of K. When the initial cost of capital is high, collateral in equilibrium must also

be high to compensate the investor. When collateral is high, it becomes relatively more

important to shift foreclosure to the low state. Thus, K functions similarly to ε. At very

low values Condition 2 is violated, and at very high values Condition 1 is violated.
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3.4. Conclusion

We have extended a very stylized model of debt and renegotiation to accomodate learning

and governance over production. We suppress potential confounding tradeoffs in order to

isolate the relationship between governance and risk-taking in production. However, the

model can easily accommodate other features, such as costly a, different expected output

under different capital or governance structures, and continuous output and capital.

The model could also be altered to have a slightly different interpretation. Rather than

comparing payoffs between two exogenous governance structures, we could instead allow the

initial contract to consist of a repayment, collateral, and governance, {r, l, g}. Then, rather

than characterizing when E is better off under the investor’s governance, our two conditions

would characterize when gI would obtain uniquely in equilibrium. Under this formulation,

our model gives one reason why entrepreneurs might contract away more direct control over

the production process to their investors: in order to get better terms on their debt contracts

when they can’t be trusted not to choose costly production processes.

We take as exogenous that either the entrepreneur’s or the investor’s continuation payoff

is more sensitive to the state. An important question that we have not addressed is when

each of these cases would occur. One way to answer that question is to embed our model

into a larger market model. For example, suppose when the investor seizes capital from

foreclosure, she faces a market of entrepreneurs who would like to purchase it (perhaps using

funds raised from other investors). The value of capital to any of these entrepreneurs is

lower than the value to the original entrepreneur, but the size of that difference may depend

on the state. Highly effective capital (a high state) may be more “transferable” to a new

entrepreneur than less effective capital (a low state), or vice versa. This would correspond
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to the investor’s continuation payoff being more or less sensitive to the state (or to beliefs

about the state) than the original entrepreneur’s continuation payoff. We leave to future

research the question of what types of capital exhibit which type of transferability.
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APPENDIX A

Omitted Proofs: Chapter 1

A.1. Proof of Theorem 3

Let L∗N = 0, H∗N = H∗∗ be the persuasion strategy in the most-informative PBE∗N at

priors p0 < p̂N . Let L′, H ′ be the persuasion strategy in the most-informative PBE∗N at some

prior p′0 ≥ H∗∗.

V̄
∗
(p′0) ≥ H ′ − p′0

H ′ − L′
V ∗(L′) +

p′0 − L′

H ′ − L′
V ∗(H ′) ≥ H ′ − p′0

H ′ − L′
V ∗N(L′) +

p′0 − L′

H ′ − L′
V ∗N(H ′) = V̄

∗
N(p′0)

At all priors less than H∗∗, V̄
∗
N(p0) increases linearly in the prior to V ∗N(H∗∗), while V̄

∗
(p0) =

0 for priors less than some p̂ ≤ p̂N ≤ H∗∗, then increases linearly to V ∗(H∗∗) ≥ V ∗N(H∗∗). If

V ∗N(H∗∗) > 0 then V̄
∗
(p0) crosses V̄

∗
N(p0) once from below. Call that crossing pR0 . If instead

V ∗N(H∗∗) > 0 then let pR0 = 0

At p′0 ≥ H∗∗, Ū
∗
N(p′0) ≥ U∗N(p′0) ≥ α = Ū

∗
(p′0). At all priors less than H∗∗, Ū

∗
N(p0)

increases linearly in the prior to U∗N(H∗∗), while Ū
∗
(p0) increases linearly to α at priors less

than some p̂ ≤ H∗∗, then is constant at α at all higher priors. If p̂
H∗∗

U∗N(H∗∗) < α then

Ū
∗
N(p0) crosses Ū

∗
(p0) once from below. Call that crossing pS0 . If instead p̂

H∗∗
U∗N(H∗∗) ≥ α

then let pS0 = 0

A.2. Proof of Proposition 6

If the principal chooses e = 0 for every posterior her payoff is continuous in p. The same

is true for e = 1. Therefore if (i) at p = 0 the principal strictly prefers e = 0, and (ii) at
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p = 1 the principal strictly prefers e = 1, then there exists a region where e = 0 with strictly

positive width to the left of a region where e = 1 with strictly positive width. (i) can be

restated as follows:

g(1, 0)− g(0, 0)− g(1, 0)k

g(1, 0)− g(0, 0)
< 0

⇐⇒ (g(1, 0)− g(0, 0))2

g(1, 0)
< k

⇐⇒ (f(1, 0)− f(0, 0))2

f(1, 0)
< k.

(ii) can be restated as follows:

g(1, 1)− g(0, 1)− g(1, 1)k

g(1, 1)− g(0, 1)
> 0

⇐⇒ (g(1, 1)− g(0, 1))2

g(1, 1)
> k

⇐⇒ (f(1, 1)− f(0, 1))2

f(1, 1)
> k.

A.3. Proof of Proposition 7

Fix e = 1. Then R(p) = kg(0,p)
g(1,p)−g(0,p) . The signs of the derivatives are the same for any

k > 0. Let k = 1. If f(1, 1)− f(0, 1) < f(1, 0)− f(0, 0), then:

∂

∂p
[R(p)] =

g(1, p)(f(0, 1)− f(0, 0))− g(0, p)(f(1, 1)− f(1, 0))

(g(1, p)− g(0, p))2
> 0.

If ∂
∂p

[R(p)] > 0, then:

∂2

∂p2
[R(p)] = 2

∂

∂p
[R(p)] ∗ (f(1, 0)− f(0, 0))− (f(1, 1)− f(0, 1))

g(1, p)− g(0, p)
> 0

⇔ f(1, 1)− f(0, 1) < f(1, 0)− f(0, 0).
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APPENDIX B

Omitted Proofs: Chapter 2

B.1. Proof of Lemma 2

The result is a special case of Theorem 2 in Persico (2000). It suffices to show that the

market research problem satisfies the assumptions of that Theorem.

First we show that for each firm i, signal si is affiliated with α. Two random variables

S and A with joint density f(s, α) are affiliated if for any realizations s
′
> s and α

′
> α,

f(s
′
, α
′
)f(s, α) ≥ f(s, α

′
)f(s

′
, α).

Using the probability density functions of normal distributions with equal variance, for

any two states α
′
> α and any two signal realizations s

′
> s, we can see that

f(s
′
, α
′
)

f(s, α′)
=

exp
(
− (s

′−α′ )2

2v

)
exp

(
− (s−α′ )2

2v

) = exp

(
(2α

′ − s′ − s)(s′ − s)
2v

)

> exp

(
(2α− s′ − s)(s′ − s)

2v

)
=

exp
(
− (s

′−α)2

2v

)
exp

(
− (s−α)2

2v

) =
f(s

′
, α)

f(s, α)
.

So by definition of affiliation, si is affiliated with α.

Given two signals St1 and St2 , we say that St1 is more accurate than St2 if F t−1
1 (F t2(s|α)|α)

is nondecreasing in α, for every s; where F t1(·|·) and F t2(·|·) are cumulative distibution func-

tions for St1 and St2 , respectively. [See Lehmann (1988).] For each firm i, the accuracy of

its signal si is increasing in ti. [See example 4 in Section 3.2 of Persico (1996).]
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By inspection, for each firm i, ui(α, pi) ≡
∞r

−∞
piqi(pi, p−i(s−i), α)dF t−i(s−i|α) is differen-

tiable in pi, and the optimal action p∗i (si, ti) is differentiable in si and ti.

Finally, the cdf of the normal distribution with variance vi and state α is

F (x|α, vi) =

xw

−∞

(
1√
2πvi

exp

(
−(z − α)2

2vi

))
dz,

which is differentiable with respect to vi and continuous in α. Now, because vi = Vα
ti
− Vα is

differentiable in ti, it follows that F (x|α, vi) is differentiable in ti.

Thus, the conditions of Theorem 2 in Persico (2000) are satisfied by the market research

problem.

B.2. Derivation of Equation 2.1

At a given signal si and with accuracy ti, denote firm i’s optimal price p∗i as in Vives

(1984). Define p∗−i similarly.

uγ(α, p
∗
i ) =

∞w

s−i=−∞

p∗i qi(p
∗
i , p
∗
−i, α, γ)dF (s−i|α)

Integrating by parts:

uγ(α, p
∗
i ) = p∗i

{[
qi(p

∗
i , p
∗
−i, α, γ)F (s−i|α)

]∞
s−i=−∞

−
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i

}

= p∗i

{(
qi(p

∗
i , p
∗
−i(∞), α, γ)F (∞|α)− qi(p∗i , p∗−i(−∞), α, γ)F (−∞|α)

)
−
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i

}

= p∗i q∞ − p∗i
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i
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Where q∞ denotes qi(p
∗
i , p
∗
−i(∞), α, γ). We take the derivative with respect to si. Note that

when pricing functions are as in the equilibrium of Vives (1984), both ∂qi
∂p−i

and
∂p∗−i
∂s−i

are

independent of s−i.

∂uγ(α, p
∗
i )

∂si
=

(
q∞ + p∗i

∂q∞
∂pi

)
∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p∗−i
∂s−i

∞w

−∞

(F (s−i|α)) ds−i

}

We take the derivative with respect to α. Note that ∂qi(∞)
∂pi

, p∗i , and
∂p∗i
∂si

are independent of

α, and that conditional on some realization α′ of the state signals are normally distributed

with mean α′ and some variance that is independent of α. The derivative is

∂2uγ(α, p
∗
i )

∂α∂si
=
∂q∞
∂α

∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

∞w

−∞

(Fα(s−i|α)) ds−i

}

=
∂q∞
∂α

∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

∞w

−∞

(−f(s−i|α)) ds−i

}

=
∂q∞
∂α

∂p∗i
∂si

+

(
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

)
.

B.3. Proof of Lemma 3

By Lemma 2, it suffices to show that ∃t′ s.t. ∂
∂γ

[CMP (t, γ) + CRD(t, γ)] < 0 ∀t < t′.

CMP (t, γ) + CRD(t, γ) =
1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

∂

∂γ
[CMP (t, γ) + CRD(t, γ)] =

t (t2γ3 + t (4 + 2γ − 6γ2)− 4)

(2− tγ)3

∴
∂

∂γ
[CMP (t, γ) + CRD(t, γ)] < 0⇔

(
t2γ3 + t

(
4 + 2γ − 6γ2

)
− 4
)
< 0.
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Suppose t ≤ 1
2
. Then t2γ3 + t (4 + 2γ − 6γ2)− 4 is maximized on the domain 0 ≤ γ < 1 at

γ = 0. At γ = 0

t2γ3 + t
(
4 + 2γ − 6γ2

)
− 4 = 4t− 4 < 0.

The result follows.

B.4. Proof of Lemma 4

CMP (t, γ) + CRD(t, γ) =
1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

At γ = 0, CMP (t, 0) + CRD(t, 0) = t
2
. Since lim

γ→1
[CMP (t, γ) + CRD(t, 0)] = 0 and

both CMP (t, γ) and CRD(t, γ) are continuous, it must be that if there exists some γ

s.t. CMP (t, γ) + CRD(t, γ) > t
2
, then there exist two values of γ such that CMP (t, γ) +

CRD(t, γ) = t
2
. There are two solutions γ∗ for CMP (t, γ∗) + CRD(t, γ∗) = t

2
:

γ∗ =
1

2
− t

4
±
√
t3 − 4t2 + 36t− 32

4
√
t

If t < 1, the solutions are real-valued and interior exactly when

t3 − 4t2 + 36t− 32 ≥ 0.

When t = 1, the smaller of the two solutions is not interior, but the higher solution is interior.

The left hand side of this expression is increasing in t, strictly negative at t = 0 and strictly

positive at t = 1. The results follow.
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APPENDIX C

Omitted Proof: Chapter 3

C.1. Proof of Proposition 10

First, Condition 1 and Condition 2 are jointly necessary for u(gI) > u(gE). If Condition

2 fails, then by Lemma 7 E can choose the same {r, l} under governance gE as he does

under governance gI and receive payoff u = u(gI). Suppose Condition 2 is satisfied. Then

for any l ≥ 2K
v2(θH)+v2(θL)

and r ≥ (1 − c) l
2
(θHv2(θH) + θLv2(θL)), a∗(l, r) = 1. Therefore,

u(gE) ≥ ū(1). If Condition 1 is not satisfied, then by Lemma 6 u(gE) ≥ ū(1) > u(gI). Thus,

both conditions are necessary for u(gI) > u(gE).

Second, Condition 1 and Condition 2 are jointly sufficient for u(gI) > u(gE). Suppose

Condition 2 is satisfied. Then if a = 0 in equilibrium under governance gE, it must be that

u(gE) < u(gI). Suppose that a = 1 in equilibrium under governance gE. Then u(gE) = ū(1).

By Lemma 6, when Condition 1 is satisfied ū(1) < ū(0) = u(gI). Thus, Condition 1 and

Condition 2 are necessary and sufficient for u(gI) < u(gE).
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