NORTHWESTERN UNIVERSITY

Practical Techniques for Nonlinear Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTTAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

Long Hei

EVANSTON, ILLINOIS

June 2007

(© Copyright by Long Hei 2007
All Rights Reserved

ABSTRACT

Practical Techniques for Nonlinear Optimization

Long Hei

At the heart of nonlinear optimization methods lies the solution of linear systems of
equations. As the size of the problem increases, it is imperative to use iterative methods,
such as the conjugate gradient algorithm, to solve these linear systems. In the context
of constrained optimization, it has proved to be effective to use the projected conjugate
gradient method to solve the equality constrained quadratic subproblems used to generate
a step. In the first part of this thesis we present new preconditioners for the projected
conjugate gradient method used in interior point methods. They fall under the category
of “constraint preconditioners” and make use of the so-called condensed system to exploit
the structure arising in interior point methods. We also give attention to the requirements
imposed by trust region techniques.

In the second part of the thesis we study nonlinear programming formulations and nu-
merical methods for solving a strategic bidding problem in a short term electricity market.
This problem can be formulated as a bilevel program whose lower level problem is linear.
We analyze the properties of the constraints of the strong duality formulation of this bilevel
program and show that the LICQ and MFCQ constraint qualification conditions fail at every
feasible point. Therefore, even finding local minimizers is a difficult problem. We then con-
sider the use of nonlinear programming algorithms for solving the bilevel program. They are
appealing because they are well suited for large problems, but since the objective function

of the strategic bidding problem is discontinuous and has many local minima, we consider

heuristics (based on multistart) to attempt to find a solution. We report good solutions in
acceptable time.
The thesis concludes with some observations about the practical limitations of filter

techniques.

ACKNOWLEDGMENTS

I am extremely grateful to have the privilege of working with my advisor Jorge Nocedal.
Jorge is an intelligent and energetic advisor, a knowledgeable and enthusiastic teacher, and
also a caring and encouraging mentor. I thank him for his generous spiritual and finan-
cial support, for his immense patience and tolerance throughout my years at Northwestern
University, especially during the most difficult period of time.

My appreciation is also expressed to the other members of my graduate committee,
Robert Fourer, Sanjay Mehrotra and Richard Waltz, for their valuable comments on this
thesis. I would also like to thank Richard for his input in the implementation of the pre-
conditioning ideas, as well as for being a great mentor in the early stages of my graduate
study.

I thank Professor Ya-xiang Yuan for introducing me to the area of nonlinear programming.
I also express my gratitude to many people in the optimization community, whom I have had
the pleasure of learning from or collaborating with, including but not limited to: Richard
Byrd, Sven Leyfter, Steve Benson, Jose Luis Morales, Dominique Orban and Guanghui Liu.

The people in the IEMS Department deserve special acknowledgment for providing an
enjoyable and friendly working atmosphere and for their support in various ways during these
years. Instead of listing many names, I single out Gabriel Lépez-Calva and Frank Curtis
— they are great officemates and colleagues. Also, I would like to thank many friends from
outside the department, outside the university and even outside the country.

This work is dedicated to my parents and my brother for their never-ending love and
constant support to me, and to my wife Wenli Lv for her immeasurable help in many aspects
of my life over the past years, especially in finding more than what is contained in research

work. This thesis would not exist without her effort and support.

This work was supported in part by the National Science Foundation Grant CCF-0514772
and by Department of Energy Grant DE-FG02-87ER25047-A004.

Contents

List of Tables
List of Figures

1 Background on Nonlinear Optimization
1.1 CG Method for Unconstrained Optimization
1.1.1 The CG Algorithm L L L
1.1.2 CG with a Trust Region
1.2 Equality Constrained Quadratic Programs
1.3 General Nonlinear Optimization
1.3.1 Problem Statemento Lo
1.3.2 Constraint Qualification Conditions
1.4 Interior Point Algorithms.
1.4.1 Step Computation L oo

1.4.2 Solving Linear Systems Arising in Interior Methods

2 Preconditioning
2.1 Concept of Preconditioning oo L.
2.2 Preconditioned CG for Unconstrained Optimization

2.2.1 The Preconditioned CG Algorithm

2.2.2 Preconditioning CG with a Trust Region 36
2.3 Preconditioning General EQPs L oo oo 37
2.3.1 Reduced Space Preconditioned CG Algorithm 37
2.3.2 Constraint Preconditionerso oL 38
2.3.3 Non-Constraint Preconditioners 42
2.4 Preconditioning the Linear Systems Arising in Interior Methods 44
2.4.1 Sources of Ill-conditioningo 44
2.4.2 Preconditioning the Full System 45
2.4.3 Preconditioning the Semi-condensed System 49
2.4.4 Preconditioning the Condensed System 51
2.4.5 Preconditioning the Parametric Augmented System o7
2.4.6 Preconditioning the Augmented Normal System 29
2.5 Numerical Experimentso Lo 60
2.5.1 Numerical Experiments with a MATLAB Implementation 60
2.5.2 Numerical Experiments with KNITRO/CG 69
A Strategic Bidding Problem 76
3.1 Introduction 76
3.1.1 The Independent Operator’s Problem 77
3.1.2 Dual Formulation of the Operator’s Problem 79
3.1.3 Bilevel Optimization Formulation 81
3.2 Nonlinear Programming Formulations of the Problem 82
3.2.1 MPCC Formulation 0. 82
3.2.2 Strong Duality Formulation 84
3.2.3 Existing Methods and Heuristics 85
3.3 Bilevel Program with Linear Lower Level Problem 87

3.3.1 Relation between Two NLP Reformulations 88
3.3.2 Failure of Constraint Qualifications 92
3.4 Discontinuous Objective Function of Bilevel Programs 101
3.4.1 Objective of the Strategic Bidding Problem 101
3.4.2 Objective of the General Bilevel Program 106
3.5 Allowing Uncertainty in Strategic Bidding 109
3.6 Numerical Experiments with the Strong Duality Formulation 112
3.6.1 Numerical Experiments with One Scenario 112
3.6.2 Numerical Experiments with More Scenarios 114

4 Step Acceptance Comparison 115

10

List of Tables

2.1
2.2
2.3
24

3.1

Preconditioning options for MAKCG.o L. 62
MAKCG results for bound constrained problems. 66
MAKCG results for problems with only inequality constraints. 67
MAKCG results for problems with both equality and inequality constraints. . 68

Performance of KNITRO on the strong duality formulation of the strategic

bidding problem with 10 scenarios. 114

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

Performance profile for KNITRO/CG on 29 bound constrained problems, num-
ber of iterations. L
Performance profile for KNITRO/CG on 29 bound constrained problems, num-
ber of function evaluations. oL
Performance profile for KNITRO/CG on 29 bound constrained problems, aver-
age number of CG iterations. Lo o L.

Performance profile for KNITRO/CG on 29 bound constrained problems, CPU

Performance profile for KNITRO/CG on problems with only inequality con-
straints, number of iterations. L.
Performance profile for KNITRO/CG on problems with only inequality con-
straints, number of function evaluations.
Performance profile for KNITRO/CG on problems with only inequality con-
straints, average number of CG iterations.
Performance profile for KNITRO/CG on problems with only inequality con-

straints, CPU time (reduced problem set).

The objective value of the strategic bidding problem projected onto the x-y4

11

3.2
3.3
3.4

4.1

12

The dependence of the profit of Company A onitsbidz. 104
Discontinuous feasible set when all constraints are continuous. 105
Feasible sets of two bilevel linear programs. 108

Performance profile for KNITRO-CG and FILTER on 291 small constrained prob-

lems, number of iterations. L oL 116

13

Chapter 1

Background on Nonlinear

Optimization

1.1 CG Method for Unconstrained Optimization

We consider the linear system of equations
Az = b, (1.1)

where A € R™*" is invertible and z,b € R". Let z* = A7'b be the exact solution of (1.1).
There are two classes of methods for solving (1.1): direct methods and iterative methods.
The former performs certain types of factorization to the coefficient matrix A, and then
backsolves the variables x directly. The latter does not rely on any factorization of A.
Instead, it generates a series of iterates {x1, o, - ,xk,- -} that approaches z*. See Golub
and Van Loan [20] and references therein. Normally iterative methods only require us to
compute certain matrix-vector products. For example, Krylov space methods, an important

class of iterative methods, only require the computation of Av for any vector v € R" in each

14

iteration.
When the number of variables n increases, the factorization performed to A may become
prohibitively expensive. Therefore iterative methods have received much attention over the

last decades.

1.1.1 The CG Algorithm

The Conjugate Gradient (CQG) algorithm is a special Krylov space method that solves
symmetric and positive definite linear system of equations. If A € R"*" is symmetric and
positive definite, linear systems of equations (1.1) is equivalent to an unconstrained Quadratic

Program (QP) of the form

inimi = 12TAz — bT2. 1.2
minimize q(z) = ;0" Az —b'x (1.2)

The CG algorithm is shown in Algorithm 1.1.

Algorithm 1.1 (CG algorithm for (1.1)) Choose xy, compute ro = Azo—b, define py = —ro,

k = 0. Repeat until convergence

g = (ri7)/ (D Apr) (1.3a)
Tpi1 = Tk + OkPg (1.3b)
Tk+1 = Tk + apApy (1.3c)
Brir = (rigparisn)/ (ri7s) (1.3d)
Pr+1 = —Thkt1 + Ber1Dk (1.3e)

k=k+1. (1.3f)

15

In this algorithm {py} is a series of conjugate directions of A. In each iteration an exact
line search is performed along p; and the steplength is ay.

We now list a few properties of the CG algorithm. Detailed discussion on Algorithm 1.1
can be found in Nocedal and Wright [33].

1. The quadratic function value g(xy) at the iterates decreases monotonically. That is,

q(wk11) < g(zx) for any k > 0.

2. The norm of the iterates increases monotonically if zo = 0. That is, ||zg41] > ||z]| for

any k > 0.

3. The convergence rate of the CG algorithm heavily depends on the eigenvalue distribu-
tion of matrix A. If matrix A has r distinct eigenvalues, in exact arithmetic Algorithm
1.1 terminates at the solution of (1.1) or (1.2) in at most r iterations. Furthermore,

the CG algorithm converges fast when matrix A has clustered eigenvalues.

We emphasize that Algorithm 1.1 is designed for the case when A is positive definite,
which corresponds to a convex quadratic program of the form (1.2). When A is symmetric
but has negative eigenvalues, problem (1.2) does not have a finite solution in R". This can

be easily shown by the fact that the value of g(x) decreases along the negative eigendirection

of A.

1.1.2 CG with a Trust Region

Now let us consider a quadratic program with a trust region constraint

mini;enize q(z) = 12T Az — bTx (1.4a)
TER?

subject to || Bz|| < A, (1.4b)

16

where A € R™*" is symmetric and B € R"*" is nonsingular. When B is the identity matrix
or a multiple of it, constraint (1.4b) is a circular trust region; otherwise it is an elliptical
trust region.

We can try to solve problem (1.4) using an iterative method such as CG. Because of
the trust region constraint (1.4b), the solution of problem (1.4) does not necessarily satisfy
Az = b. Hence our goal is to find the (local) minimum of function ¢(x) in the trust region.
Note that a local minimum of ¢(x) in the trust region exists even if A has negative eigenvalues.
In other words, the quadratic problem (1.4) has a local solution even if it is non-convex. The
usual starting point is xy = 0.

When the trust region is circular (for example, B = I), we can take the advantage of the
properties of Algorithm 1.1 and solve problem (1.4) efficiently. We know that the quadratic
model value ¢(x) decreases monotonically while ||z|| increases monotonically along all the
CG iterates, hence whenever we find a certain CG iterate z such that ||zg|| > A we know
that no further CG iterate will be feasible to (1.4b), and that no previous CG iterate gives
lower quadratic model values than ¢(xy). For these reasons it is safe to terminate the CG
iterations.

Based on these arguments, Steihaug [40] suggests to solve (1.4) using a modified version
of Algorithm 1.1 when the trust region is circular. There are two modification rules to the

CG algorithm:

1. If the search direction is a negative curvature direction, defined as a direction p such
that p” Ap < 0, the steplength should be chosen such that the next iterate lies on the

trust region bound.

2. If the exact line search is such that the new iterate lies outside the trust region, the

steplength should be chosen such that the next iterate lies on the trust region bound.

Unfortunately, the above rules do not work well for problems of the form (1.4) with

17

elliptical trust regions (i.e. B # I for any «y). The reason is: If we still apply CG to problem
(1.4), the generated iterates x will still give decreasing quadratic model values ¢(zy), but
we only know that ||z|| increases monotonically, while ||Bz|| does not necessarily increase
monotonically. Hence, even if we find a CG iterate xj such that ||Bxy|| > A, there could
be a further CG iterate that is feasible to (1.4b) while giving even lower quadratic model
values. If we terminate the CG iterations at xy, as suggested by the regular rules above, it
is possible that it is only a poor solution estimate to the problem and we could find a better
solution if we keep running CG.

One possible way to solve (1.4) with elliptical trust regions is the following: Since B is
nonsingular, we introduce change of variables £ = Bz or x = B~'%, and thus in terms of

the new variables &, problem (1.4) becomes

minimize q(7) = $7 (B~ AB™)3 — (Bb)"3 (1.5a)
TeR™
subject to ||Z|| < A. (1.5b)

Problem (1.5) has a circular trust region, which can be solved efficiently by the CG algorithm
with Steihaug’s modification rules. The solution x of problem (1.4) is then computed by
x = B~'% where Z is the solution of (1.5).

We note that this approach works for (1.4) with circular trust regions as well, where the

change of variables £ = Bx amounts to “no change of variables” when B = I.

18
1.2 Equality Constrained Quadratic Programs

The following problem is an Equality constrained Quadratic Program (EQP):

minimize fz"Hz+ 'z (1.6a)
TER"
subject to Az = b, (1.6b)

where H € R"*" is symmetric, A € R™*" ¢ € R™ and b € R™. We assume that H is positive
definite in the null space of A. Note that the first order necessary conditions of (1.6) form
a linear system of equations of the form

H AT z* —c

= . (1.7)

A 0 A b
As is well known, the coefficient matrix in (1.7) is indefinite. Equation (1.7) is sometimes
referred to as a saddle point problem or a KKT system.

There are three classes of methods to solve problem (1.6):

e Direct method: We can factorize the coefficient matrix in (1.7) and solve for (z*, A*)
directly. For example, sparse indefinite factorization methods such as MA27 (Duff and
Reid [14]), MA57 (Duff [13]), and PARDISO (Schenk and Gértner [39]) are chosen by
some modern optimization solvers. These methods can be expensive when matrix H

is large and dense.

e Range space method: This is also known as the Schur complement method. We can
eliminate z* from (1.7) and get (AH 'A")A* = —AH 'c — b, which we solve for *.
The value of * is then recovered by solving Hz* = — AT * — ¢. This method requires

the nonsingularity of H and expensive operations associated with forming and solving

19

AH1AT when m is not small.

e Null space method: Let Z € R**(»=™) be the null space basis of A (i.e. AZ = 0) and
x* = ATz, + Zx,, where x, is the solution of (AAT)x, = b. It is then easy to see that

Az* = b, and x, solves the reduced problem
(Z"THZ)x,=-Z"(HA"z, +c). (1.8)

Linear system of equations (1.8) can be solved by any approach mentioned in the
previous section, especially the iterative method presented in Algorithm 1.1. We note
that this method may require us to form the null space basis Z and the reduced
Hessian ZT HZ. Later in this thesis we will present CG algorithms for (1.6) that does

not require explicit knowledge of Z.

1.3 General Nonlinear Optimization

1.3.1 Problem Statement

We are interested in solving the following general nonlinear program (NLP) problem

minimize f(z) (1.9a)
subject to cx(z) =0 (1.9b)
ci(z) >0, (1.9¢)

where f(z) : R" — R, cx(z) : R" — R and ¢,(z) : R — R™ are smooth functions. We
assume that ¢ < n. Problem (1.9) is of particular interest when the number of variables n,

and possibly also the number of constraints ¢ and m are large.

20

1.3.2 Constraint Qualification Conditions

Let £ and Z be the sets of indices of equality constraints and of inequality constraints,
respectively. At any feasible set x of problem (1.9), we define the active set A(x) to be the

union of set £ with the indices of the active inequality constraints at point x. That is,
def .
A(z) = EU{i €T | ¢i(x) =0}.

The following two definitions are the Linear Independence Constraint Qualification (LICQ)

and Mangasarian-Fromovitz Constraint Qualification (MFCQ) in nonlinear programming:

Definition 1.2 (LICQ) At given point x, LICQ holds if and only if the set of active con-

straint gradients {Vc;(z) | i € A(z)} is linearly independent.

Definition 1.3 (MFCQ) At given point x, MFCQ holds if and only if there exists a vector
d € R" such that

Vei(z)'d >0 for all i € A(z) NZ,

Vei(z)'d=0 for all 1 € €,

and the set of equality constraint gradients {Ve;(x) | i € £} is linearly independent.

1.4 Interior Point Algorithms

Active set methods and interior point methods are two main classes of methods for
solving (1.9). During the step computation stage, active set methods guess the set of active
constraints (known as the working set, which contains all the equality constraints and all the

active inequality constraints) at the current iterate, then a step is computed by enforcing

21

the constraints in the working set as equalities.

Interior point methods, on the other hand, do not guess which inequality constraints are
active. Instead, they introduce nonnegative slack variables s € R™ associated with all the
inequality constraints, and then use a barrier term to keep the slack variables away from
their bounds s > 0. A step in the (z, s) space is then computed using a primal or primal-dual
approach. We will give a more detailed description of a specific interior point algorithm in

this section.

1.4.1 Step Computation

Standard interior point methods for (1.9) (see Nocedal and Wright [33], Gould, Orban
and Toint [23] and references therein) introduce non-negative slack variables s € R™ and

formulate a series of barrier problems of the form

inimi — Ins; 1.1
minimize f(x) u; ns (1.10a)
subject to cyz(x) =0 (1.10b)
c(z) —s=0, (1.10¢)

where y — 0 is the penalty parameter. The Lagrangian for the barrier problem (1.10) is
given by
L(x,s, g, A;) = f(z) — uZln si— g cx(x) — AT (c)() — 5), (1.11)
i=1

where A\, € R and)\, € R™ are the Lagrange multipliers of the barrier problem (1.10).
According to the basic ideas of Sequential Quadratic Programming (SQP) approaches,
there are two ways for us to derive a linear system of equations, which can be solved for a

step:

22

The first is to construct the following local quadratic programming model for the barrier

problem (1.10):

e 14T (72 1T Tg _ o (G=1,\T

Minimize 50y (Vi L)dy + 5d, 3ds + V fdy — p(S™re)" d (1.12a)

subject to Apd, + ¢y =0 (1.12b)
Ady —ds+ (¢, —s) = 0. (1.12¢)

Here the terms V2 L € R™" is the Hessian of Lagrangian, and matrix ¥ € R™*™_ known
as the Hessian of barrier terms, is diagonal and defined to be

¥ =S"'A,, where S =diag{s;};",, A, = diag {(\,);} - (1.13)

t=1"

Obviously the SQP problem (1.12) is a special case of the EQP problem (1.6). Therefore
the first order necessary conditions of the quadratic programming subproblem (1.12) give a

linear system of equations

viLe o A5 AT dy ~Vf
0 Y 0o -I ds uS~le
= . (1.14)
Ag 0 0 0 AL —Cp
A, -1 0 0 AT —(c;—9)

The second derivation works directly with the first order necessary conditions of the

23

barrier problem (1.10):

Vf(z) = Ag(x)"As — A(z)TX; =0 (1.15a)
—uS7le+ X, =0 (1.15b)

cs(z) =0 (1.15¢)

c,(z) — s =0. (1.15d)

If Newton’s method is applied to the nonlinear system (1.15), we see that the resulting linear
system of equations is also (1.14).
When the nonlinear programming problem does not have any equality constraints, linear

system (1.14) reduces to

vie o AT dy -Vf
0 X -1 ds | = uS~le . (1.16)
A, -1 0 Af —(c;—9)

In order to ensure global convergence of the algorithm and the positivity of the slack
variables, we have to consider globalization techniques such as trust region and/or additional
constraints such as the fraction to the boundary rule. In each iteration of the interior point
algorithm we solve the quadratic programming subproblem (1.12) or the nonlinear system
(1.15) governed by possible additional constraints for a step, during which the solution of
linear system (1.14) or (1.16) will be the main computation.

Note that the solution of (1.14) or (1.16) is needed in every iteration of the interior point
algorithm. When the problem is large, a lot of computation effort is spent on solving linear

systems. Therefore it is important that we solve these linear equations efficiently.

24

1.4.2 Solving Linear Systems Arising in Interior Methods

It is not difficult to see that (1.14) and (1.16) are both special cases of the general KKT
system (1.7). Hence any method we have mentioned for solving (1.7) can be applied to solve
(1.14) or (1.16). However, recall that we are interested in solving large scale problems, so the
size of these linear equations must be large. Thus some previously described methods may
not work well for these specific equations. At the same time, due to the special structure of
the coefficient matrices in (1.14) and (1.16), we may have more choices in choosing pivots
to perform block eliminations when we solve these equations. These choices are based on a

few important equivalences of (1.14) and (1.16), which we discuss below.

1. Full system: The original equation (1.14), without any block elimination, is often

referred to as the full system. With definition

V2L 0 Ay 0
H= L A= , (1.17)

0 by A -1

the problem has the same form as (1.7). Similarly, the full system for the problem

without equality constraints is (1.16), which has the same form as (1.7) with

[v2.c 0| o 1] s

w-] s

Because the Hessian of Lagrangian V2 L is usually large and sometimes not very
sparse, its inverse is difficult to compute, which makes the range space method less
attractive, as the range space method corresponds to a particular pivot choice, not
necessarily the one that preserves sparsity the best. Instead, direct method and null

space method are often used. For example, KNITRO/DIRECT (Waltz, Morales, Nocedal

25

and Orban [44]) implements the direct method and KNITRO/CG (Byrd, Hribar and
Nocedal [7]) implements a null space method where the reduced problem is solved by

an iterative approach.

. Semi-condensed system: After eliminating d; from the full system (1.14), we get

the semi-condensed system:

VL AT AT | dy ~Vf
A =X 0 AP = pE S te — (¢, —) (1.19a)

A, 00 At e
ds =X "\ +uX 'S e, (1.19b)

Another type of semi-condensed system is obtained by eliminating A} from (1.14):

V2L AfY AL dy ~Vf+uArS e
YA, - 0 d, | = —Y(c; — s) (1.20a)
A, 0 0 AL —Cp
A =%d, — uS e, (1.20b)

The semi-condensed systems without equality constraints are simpler in format:

V:2C:C‘C A]T d,f,c _Vf
_ (1.21a)

A = A pX 1S te — (¢, — s)

dy =S INF +puX7tS e (1.21b)

26

and

Vi L A'Y dy ~Vf+upATS e
= (1.22a)
YA, -X% d; —¥(¢; — s)
A =%d, — uS e, (1.22b)

With proper definitions of H and A, we see that equations (1.19a) and (1.20a) have
the same form as (1.6), so they can be solved by the same techniques such as full
space method and null space method with iterative solvers for the reduced problem.
However, equations without equality constraints (1.21a) and (1.22a) have received more
attention, although they do not have the format of the EQP problem (1.6). We will

explain this in a slightly more general setting later in this section.

. Condensed system: Further eliminating d, or A} from the semi-condensed system

(1.19) and (1.20) respectively, we have the condensed system:

V2 L+ ATSA, AT dy ~Vf+pALS e — AFS(c, — s)
A, 0 AF —Cp
(1.23a)
ds = Ad, + (¢, — s) (1.23b)

AF=%d, — uS e, (1.23c)

27

Without equality constraints, the condensed system is

(V2,L+ A"YA)d, = -V f+pA"S e — A" (c; — 5) (1.24a)
ds = Ay + (c;—) (1.24b)
A =3%d, — uSe. (1.24c)

Matrix V2, L + A YA, is normally referred to as the condensed Hessian. Again, we
point out that (1.23a) has the EQP form and can be solved by direct method or
null space method, although the term ATYA, may be dense and expensive to form
for nonlinear programming problems with general constraints. For example, software
IPOPT (see Wichter [42] and Wichter and Biegler [43]) works with the condensed
system (1.23) and implements a null space approach with the natural null space basis.
Equation (1.24a) is an unconstrained linear system, and so can be solved by any linear

algebra solver, especially the iterative approaches such as CG.

. Parametric augmented system: We follow the idea proposed in Forsgren, Gill and
Griffin [17] and consider a parametric point of view for some of the equivalent forms of
the linear systems arising in interior point methods. The following family of equations

is equivalent to (1.14):

V2 L+ (1+0)ASA, ocAT AT
O-AI 0'2_1 —)\+ (1253)
Ag 0

&
D>

(1.25b)

28

where b, (0) = (1+0)A;" (uS~te — X(c; — s)) —Vf and by(0) = poX 1S te—o(c,—s).
It is easy to see that when o = —1, equation (1.25) becomes the semi-condensed system
(1.19). When o = 0, equation (1.25) reduces to the condensed system (1.23), where
At is computed by (1.23c). When o = 1, (1.25) is called the doubly augmented system,

and takes the form
meﬁ +24,'04, AT AT d, b
A, =10 =M= by (1.26a)
ds = Ay + (¢; —), (1.26b)

where the right hand side vectors are b; = =V f + 24, (uS~'e — X(c, — 5)) and by =
pXtSte — (¢, — s).
We note that the coefficient matrix in (1.25) or (1.26) is indefinite because of the

existence of the zero matrix in the (3,3) block. However, when there are no equality

constraints in the problem, the parametric augmented system becomes

V2 L+ (1+0)ATSA, cAT dy bi(0)
= (1.27a)

oA, o1 —Af by (o)
ds = Ay + (¢, — s), (1.27b)

where b, (o) and by(0) are defined above. When o takes value at —1 or 0, the paramet-
ric augmented system reduces to the semi-condensed system (1.21) or the condensed

system (1.24), respectively. Especially when o = 1, the doubly augmented system

29

without equality constraints has the form

V2, L+2A"%A, AT d, by
A, x-t =S bs
ds = Ay + (¢, — 3). (1.28b)

We define B(o) to be the coefficient matrix in (1.27).Then it can be shown that

inertia(B(o)) = inertia(V2, L + A,"$A,) + inertia(c X 7). (1.29)

Considering the fact that the inertia of X! is determined by the sign of o because
¥ is diagonal and positive definite, we know from (1.29) that when V2 _L+ A YA, is

positive definite,

(n,m,0) ifo <0
inertia(B(0)) = ¢ (n,0,m) ifo=0 (1.30)

(n+m,0,0) ifo>0.

In other words, when the condensed Hessian is positive definite, the parametric aug-
mented system is also positive definite for any ¢ > 0. In this case we can choose to
directly or iteratively solve any member of the family by fixing parameter o, especially
the doubly augmented system. Although in a larger space, it is positive definite for
all the variables and A\ does not have to be recovered by extra calculations, therefore

iterative methods like CG may work well for these equations.

. Augmented normal system: Lu, Monteiro and O’Neal [31] assumes that the Hessian

of Lagrangian V2_L has the eigenvalue factorization V2 L = VEVT where E € RI*!

30

is a diagonal matrix composed of the nonzero eigenvalues of V2 L. Let d, = EV7Td,,

then (1.14) is equivalent to

A (ATSA)TTAT A (ATYA)V b vy
= (1.31a)
VI(AT2A)TAT VI(ATSA)TWV + B d, vy
d, = (A" SA) vy (1.31b)
ds = Ad, + (¢, —s) (1.31c)

AF=%d, — uSte, (1.31d)
where

v = cp— A(ATSA)TH (VS — pATS e+ ATS(e, — s))
v, = VI(AS2A)? (—Vf + pATS e — AN (¢, — s))

v3 = —ASN —Vd, —Vf+puATST e — A S(c; - s).

Equation (1.31) is called the augmented normal system. It is important for us to note
that the coefficient matrix in (1.31a) can be factorized into

A, 0 (AFsA)T 0 ALV
(1.32)

VT T 0 E-1 0 I

To conclude this section, we point out the following while using the above equivalent

systems to solve for a step in each iteration of the interior point algorithm:

e Every block elimination is equivalent to a Gaussian elimination to the full system (1.14)
or (1.16) with a pre-defined order of pivots. In our derivation of the semi-condensed

system and condensed system, matrices > and [are selected as pivots.

31

e For the lack of proper pivots, the displacement of the multipliers associated with the
equality constraints A} cannot be eliminated from the linear systems. In other words,
At will always have to be solved together with d,, as long as equality constraints are
present in the nonlinear programming problem. However, if a small regularization term

is added to the (3,3) block of linear system (1.14), that is, if we consider to solve

V2L o0 A0 AT || 4 vy
0 Y 0 -I ds uS~te
- , (1.33)
A, 0 —I 0 AF —cy
A -1 0 0 AP —(c;—9)

where v is a small regularization parameter, A} can be eliminated and the resulting

system is fully decoupled, which has the form

(VE,L+2AT A+ ATSA)d, = v
ds = Ady+ (¢, —s)

A= 2d, — pS7 e,

where v = =V f — %AETCE — AITE(CI— s) —|—,LLA,TS*16. However, the solution of system
(1.33) does not satisfy the last two equations of (1.14). We will discuss this issue in a

later chapter.

e When the nonlinear programming problem does not have equality constraints, the
condensed system corresponds to a null space approach applied to (1.16) with a specific

choice of the null space basis Z of the matrix A defined in (1.18). In detail, given the

32

definition of H and A in (1.18), the natural null space basis is defined as

Z= . (1.34)

With this null space basis, it is easy to verify that the reduced Hessian ZTHZ = V2 L+
A"SA,, which is the coefficient matrix in (1.24a). In other words, the condensed
Hessian V2 L + A IS A, is a specific reduced Hessian. Further more, when equality
constraints are not present in the problem, the full system (1.16) has n + m positive
eigenvalues, m negative eigenvalues and no zero eigenvalues when V2_L + A YA, is

positive definite.

The work of solving the condensed system and the parametric augmented system is
affected by the sparsity of the condensed Hessian. Even if matrices V2 L and A; are
both sparse and ¥ is diagonal, the n x n condensed Hessian V2_L + A" ¥ A; may be
dense (for example, when A; has a dense row). However, if the nonlinear programming
problem is a bound constrained problem, the rows of matrix A, are all coordinate
vectors, and it is easy to show that ATY A, is also a diagonal matrix. In this case the

condensed Hessian is easy to form.

Solving the augmented normal system will not be efficient unless the eigenvalue fac-
torization of V?w/l can be performed at a reasonable cost and ATS A, can be formed

and inverted easily.

33

Chapter 2

Preconditioning

2.1 Concept of Preconditioning

Preconditioning can be explained well in the context of solving a square linear system
of equations (1.1). We have mentioned that Krylov space methods are widely used iterative
methods when solving (1.1). However, the convergence of Krylov space methods heavily
depends on the condition number of the coefficient matrix A. If the condition number of A
is large, Krylov space methods tend to converge slowly.

In order to accelerate the iterative algorithm, we consider an equivalent linear system of

equations

P 'Az =P, (2.1)

where P € R™*™ is an invertible matrix called a preconditioner. We apply the Krylov space
method to (2.1) instead of the original problem (1.1). It is easy to see that (1.1) and (2.1)
have the same solution in exact arithmetic. Instead of (1.1), we solve (2.1) with the hope
that the condition number of P~!A is better than that of A. Obviously when P = A, P14

becomes the identity matrix and (2.1) gives the exact solution z*. Hence P = A is called

34

the perfect preconditioner. Generally speaking, matrix P should be an approximation to the
coefficient matrix A. The “closer” P is to A, the better preconditioning effect we should
expect from using this preconditioner.

Another way to view preconditioning is to transform the space in which the unprecon-
ditioned iterative algorithm works. In other words, we introduce an invertible linear change
of variables, hoping that the equivalence of the original problem (1.1) has a better condition
number in the transformed space. Then we use an unpreconditioned iterative algorithm
to solve the transformed problem, and retrieve the solution in the original space. We will
explain this point of view in later sections.

We point out that the concept of preconditioning applies when we solve linear system
of equations of specific forms, such as when A is symmetric and positive definite in system
(1.1). Particularly, the convergence rate of the CG algorithm is related to the eigenvalue
distribution of the coefficient matrix A. In this case the idea of preconditioning can be
explained by the following: Finding a symmetric and positive definite matrix P such that
P~1'A has clustered eigenvalues. Obviously when P = A, we know that P~'A = I, which
has exactly one cluster of eigenvalues, and according to the discussion in Section 1.1, the
CG algorithm should find the solution in 1 iteration in exact arithmetic.

For the optimization problem (1.2), preconditioning can be explained in a similar way:
Finding a proper change of variables and transforming the space in which the unprecondi-
tioned CG algorithm works, such that the second-order gradient of the transformed problem

has a better condition number or a better eigenvalue distribution.

35
2.2 Preconditioned CG for Unconstrained Optimiza-
tion

2.2.1 The Preconditioned CG Algorithm

We introduce linear change of variables z = C~'% or & = Cz to problem (1.1) or (1.2),
and apply unpreconditioned CG Algorithm 1.1 to the transformed problem. Let M = CTC
or M~ = C'C~T. After some algebra we have the preconditioned CG algorithm for (1.1),

shown in Algorithm 2.1.

Algorithm 2.1 (Preconditioned CG algorithm for (1.1)) Choose xqy, compute ro = Azg —b

and yo = M 'ry, define py = —vyo, k = 0. Repeat until convergence

a = (g yr)/ (Pk Apr) (2.2a)
Tk+1 = T + Dk (2.2b)
Tkt1 = T + Ay (2.2c)
Yhi1 = M 'Tp (2.2d)
B = (Teatrin)/ (T i) (2.2¢)
Pr+1 = —Yk+1 + Br+1D% (2.2f)

k=k+1. (2.2g)

From another point of view, matrix M can be seen as a positive definite approximation of
A. Better numerical performance is expected for a “good” approximation of A. Algorithm
2.1 reduces to unpreconditioned CG when M = I. Note that matrix C' does not explicitly
appear in Algorithm 2.1, and the preconditioning step (2.2d) requires us to solve a linear

system of equations with coefficient matrix M.

36

The preconditioning step in Algorithm 2.1 is (2.2d), where we are interested in finding
vector y,.1. More generally speaking, matrix M may not even be defined explicitly, in which
case the preconditioning step becomes yy1 = P(7g+1), where P is an operator that maps

Tk+1 80 Yky1-

2.2.2 Preconditioning CG with a Trust Region

Let us consider the solution of a quadratic programming problem (1.4) governed by a
trust region constraint.

We have discussed in Section 1.1.2 that we can introduce a change of variables £ =
Bz, which changes the shape of the trust region from elliptical into circular for a general
nonsingular matrix B. It is important for us to realize that this change of variables does not
necessarily change the eigenvalue distribution of A in our favor. In other words, in problem
(1.5) the eigenvalue distribution of matrix BT AB~! may not be better than that of A.
Hence we may need another change of variables £ = C'Z in order to do preconditioning.

With this additional change of variables, the problem becomes

mipiglize q(z) = 23" (C"BTAB™'C)z — (C""B b))% (2.3a)
TeR?
subject to HC*IEH <A, (2.3b)

which is equivalent to (1.4). Note that the trust region (2.3b) becomes elliptical again, in
which case there are yet no convenient rules on when to terminate the CG iterations.
One may argue that we can solve instead
mipigﬂze q(z) = 227 (C"BTAB~'C)z — (C-"B~ b))% (2.4a)
zeER™

subject to ||Z]] < A. (2.4Db)

37

We point out that problem (2.4) is not equivalent to (2.3), and therefore not equivalent to
the original problem (1.4), because it has a different trust region constraint. In terms of the
original variables z, the trust region of (2.4) is ||CBz|| < A, which is obviously different
from (1.4b) unless C' = I. This indicates that the solution of (2.4) may or may not be seen

as an approximation of the solution of the original problem (1.4).

2.3 Preconditioning General EQPs

2.3.1 Reduced Space Preconditioned CG Algorithm

We now present preconditioning ideas for the CG algorithms used in the null space
methods when solving the equality constrained quadratic program (1.6).

As discussed in Section 1.2, we can use the null space approach to solve (1.6), where
the expensive computation is the solution of the reduced problem (1.8). The following
reduced space preconditioned CG algorithm is proposed in Golub and Van Loan [20], which
is the application of Algorithm 2.1 on the reduced problem. For simplicity we denote ¢, =

ZT(HAz, + c) and let P, be the given preconditioner to Z1HZ.

Algorithm 2.2 (Reduced space preconditioned CG algorithm for (1.8)) Choose an initial

z,, computer, = Z'HZx,+ ¢, and y, = P, 'r,, define p, = —y,. Repeat until convergence

38

a=(ry,)/(p;" Z" HZp,) (2.52)
Tz =Tz+ ap;g (2.5Db)
r,m=r,+aZYHZp, (2.5¢)
y,m =P, T (2.5d)
B= ")y (rs) (2.5¢)
pz=~y;" +Bp; (2.5f)
Yz =Yz, Tz =75 (2.5g)

The preconditioning step in Algorithm 2.2 is (2.5d). We note that this algorithm requires
the explicit knowledge of the null space basis Z. After computing x, from Algorithm 2.2,

the full space solution of problem (1.6) is given by z = ATz, + Zz,.

2.3.2 Constraint Preconditioners

In order to avoid the explicit use of the null space basis Z, Gould, Hribar and Nocedal
in [21] consider particular preconditioners of the form P, = ZTGZ, where G € R™" is an
approximation to H and must be positive definite in the null space of A. We may incorporate
the multiplication by Z and the addition of ATz, into the reduced space preconditioned CG
algorithm, and expand the algorithm into (n + m)-dimensional space, which results in the
projected-preconditioned CG method shown in Algorithm 2.3. Here we define auxiliary

vector v € ™ and

G AT
pP= . (2.6)
A 0

Algorithm 2.3 (Projected-preconditioned CG algorithm for (1.6)) Choose o that satisfies

39

Yo To

Azxg = b, compute ro = Hxo + ¢ and = p~! , define po = —yo, k = 0. Repeat
v 0
until convergence
ar = (rg yx)/ (0 Hpy) (2.7a)
Tg+1 = T + QP (2.7b)
Tkl = Tk + . Hpy (2.7¢)
T

Yk+1 _pt k+1 (2.7d)

v 0
Brer1 = (Phaer1)/ (75 Ur) (2.7¢)
Pr+1 = —Yk+1 + Br+1Dk (2.71)
k=Fk+1. (2.7g)

In Algorithm 2.3, (2.7d) is known as the projection-preconditioning step, because it
projects rgy1, the residual of the problem, onto the null space of the constraints A. This
can be shown by the fact that the second equation in (2.7d) is Ayg,1 = 0. In fact, yg.1 can
be explicitly expressed as yx1 = Z(ZTGZ)™'Z"ry,1, where Z is any null space basis of A,
hence yx1 is called the projected residual or preconditioned residual of the problem. It is
seen that Algorithm 2.3 is independent of the choice of the null space basis Z, or it works
for any choice of Z, and it does not require any explicit knowledge of Z.

Matrix G determines the projections onto the null space, and further determines other
parts of the algorithm. Usually we expect G to be some approximation to H. In this sense,
matrix P defined in (2.6) is not only a projection matrix, but also a preconditioner. When
G = I, yi1 is the orthogonal projection and the unpreconditioned residual. Precondition-

ers of this form are widely regarded as constraint preconditioners because they respect the

40

constraint Jacobian A of the original problem (1.6).
When applying projected-preconditioned CG algorithm to solve (1.6) and computing the
preconditioned residual y;,1, various methods can be used, depending on how matrix G is

defined. In the following we analyze a few cases:

1. If the user provides an explicit matrix G or it is easy to generate an explicit approxi-
mation G to matrix H from the real application, we can directly factorize P and solve
(2.7d) exactly. This is necessary because we must have Ayy,; = 0, which implicitly
requires that GG should be sparse enough if the size of the problem is large. A possible

approximation to H could be the diagonal matrix proposed in Roma [37].

2. If G is given in a way such that its inverse G~! is not expensive to compute, we can use
the Schur complement method to solve (2.7d). For example, if H is positive definite,
it may be possible to perform an incomplete Cholesky factorization H = LLT + R and
define G = LLY. We do not have to multiply L and LT explicitly to form G, instead
we compute G~ 'w = L™ L™'w by two backsolves, for any vector w. Then (2.7d) is

equivalent to

LL” AT Yetr | Tk+1 (2.8)
0 ALTL'AT v AL L=y

Another example is when we have a limited memory quasi-Newton approximation to

H~1 which can be used as G™!, then (2.7d) is equivalent to

I G_lAT Yk+1 G_l’f']H_l
0 AG AT v AG rp

We can solve (2.8) or (2.9) for v and recover the value of yg ;.

41

3. In Dollar, Gould and Wathen [12] the so-called implicit factorization constraint precon-
ditioners are considered, where matrix P in the form of (2.6) is not formed explicitly.

Instead, it is assumed that P has the factorization

P AT B, Bf Pl pPr
P, 0 B, Bj A 0

Specific choices of matrices Py, P», By, B and Bj are discussed such that the three
block structured matrices above are not expensive to form and invert. The precondi-
tioned residual ¥y, is then computed by solving linear systems associated with these

matrices.

We point out that the projected-preconditioned CG algorithm 2.3 is actually the ex-
panded form of the preconditioned CG algorithm applied to the null space approach for
solving (1.6). In the null space, the reduced space problem (1.8) is an unconstrained positive
definite problem solved by CG with a positive definite preconditioner. Hence, the convergence
rate of Algorithm 2.3 is determined by the eigenvalue distribution of (Z'GZ)~(Z"HZ) for
any null space basis Z. See Keller, Gould and Wathen [28] for more theoretical analysis.
Some people tend to think of Algorithm 2.3 as a full space indefinite preconditioner applied
to a full space indefinite problem, which often prevents us from seeing the null space nature
of the algorithm.

The projected-preconditioned CG algorithm implemented in practice may need some
modification to Algorithm 2.3. In KNITRO/CG, a projected-preconditioned CG algorithm
with a circular trust region on the step is implemented, where Steihaug’s rule [40] is adopted

in case the search step is too long or negative curvature is detected.

42

2.3.3 Non-Constraint Preconditioners

Besides constraint preconditioners (2.6), some researchers have proposed other precondi-
tioning ideas for the iterative method when solving (1.6).

Coleman and Verma in [9] follow the reduced space preconditioned CG framework 2.2 and
consider a specific reduced space preconditioner. When we solve (1.8) using Algorithm 2.2,
the preconditioning is performed by (2.5d). [9] proposes to use preconditioners of the form
pP,=Z7THZ , where Hisa positive definite approximation of H, and Z is an approximation
of Z. The main concern when we choose Z is that we should avoid forming Z7H Z explicitly.

In order to do so, we suppose that A is an approximation of A such that A can be
partitioned into A = [/L 1212] where A; is nonsingular. The natural null space basis of A is

then given by

- —1‘11_11‘12
7 — , (2.10)
I
which has two good properties:
1. For any vector r, € R" ™,)
- 0
7T =7, (2.11)
Tz
2. For any vector w € R"™™)
- —/Nll_lfigw
Tw —) (2.12)
w

In other words, the last n — m elements of Zw form vector w itself.

With matrix Z defined by (2.10), we perform the preconditioning step y,* = (ZTHZ) 'r,*

43

in Algorithm 2.2 by first solving

0
H AT y
_ = T, (2.13)
A 0 U

0

for y € R, and then letting y,* be the vector formed by the last n —m elements of y (Note
that these procedures do not require Z and ZTHZ explicitly). This can be explained by

noticing the solution y of (2.13) can be expressed by

vz a2 7 | | 2 2 a2 = 2yt
r,t
The second equality holds because of (2.11). According to (2.12), the last n — m elements
of y = Zy,* form vector y," itself.

Comparing with the projected-preconditioned CG algorithm, this reduced space precon-
ditioned CG has its own pros and cons: The advantage is that we have freedom in choosing
A, so we have control on the sparsity of the preconditioner in (2.13), while in Algorithm
2.3 we must use the exact matrix A in (2.6). The disadvantage is that this reduced space
algorithm is all at the null space level only except the preconditioning step, thus the exact
null space Z is still needed in the computation, while Algorithm 2.3 is a null space method

completely expanded in the full space and it is independent of Z.

44
2.4 Preconditioning the Linear Systems Arising in In-

terior Methods

In this section we discuss the preconditioning issues when we use the CG algorithm to
solve the linear system of equations and their equivalences arising in each iteration of an

interior point method.

2.4.1 Sources of Ill-conditioning

For later references, we point out three possible sources of ill-conditioning in these linear
systems, and note that not all of them will necessarily appear in a specific linear system to

be solved.

e Tll-conditioning in the Hessian of Lagrangian V2_L: This is caused by the poor eigen-

value distribution of VZ_L.

e Ill-conditioning in the Hessian of barrier terms Y: From (1.15b), we have that for a
specific inequality constraint (c;);, s;(\;); & p near the solution of the barrier prob-
lem with barrier parameter p. According to the definition (1.13) of matrix X, the

corresponding diagonal element of ¥ is s; 1 (A,); ~ p/(s;)2. We consider two cases:

— If (¢,); is active, then s; — 0, so pu/(s;)? — +oc for any fixed p;

— If (¢,); is inactive, then u/(s;)? — 0 as u — 0.

Therefore we conclude that some diagonal elements of ¥ will diverge to infinity for
each barrier problem, and some diagonal elements will shrink to zero as the iterates
are approaching the solution of the nonlinear programming problem. This obviously
indicates that matrix ¥ has widely spread eigenvalues and becomes more and more

ill-conditioned, which is unfavorable to CG.

45

e Ill-conditioning in the constraints: Matrices Az and A; could also be ill-conditioned.
However, if we consider constraint preconditioners of the form (2.6), the ill-conditioning

in the constraints will be removed.

In this thesis we will focus on the implementation of constraint preconditioners applied
to the linear systems arising in interior methods. In the following we will discuss the pre-

conditioning issues for different types of these linear systems classified in 1.4.2.

2.4.2 Preconditioning the Full System

The full system (1.14) and (1.16) both suffer from the ill-conditioning in the Hessian of La-
grangian V2_£ and the Hessian of barrier terms ¥, no matter whether equality constraints are
present in the problem. The projection-preconditioning step in the projected-preconditioned

CG algorithm has the form

P, 0 AL AT Yo Ty
0 P, 0 -1 Ys Ty
= , (2.14)
A, O 0 0 o 0
when equality constraints are present, or
0o P, I ys | = | s |5 (2.15)
AI -1 0 Vg 0

when equality constraints are not present.
We note, again, that the projected-preconditioned CG algorithm is in fact a specific

preconditioned CG algorithm used in the null space approach. Hence we should target

46

on improving the eigenvalue distribution of the reduced Hessian. However, analyzing the
reduced Hessian itself is difficult because most of the time the null space basis is not explicitly
formed and operated. Therefore, we will only consider the Hessian matrices defined in (1.17)-

(1.18).

Strategies Used to Perform Block Eliminations

In terms of solving for the preconditioned residual y, and y, from (2.14)-(2.15), there
are two main strategies: We can either solve these equations without any block elimination
(which requires P, and P; to be explicitly available), or solve a certain equivalent form of
these equations after some block elimination (where P, and P; are not necessarily required

to be explicitly available). The most useful block elimination takes the form

P,+ATP,A, A, Yz re + AT,
' ' ’ = ' y Ys = Alyw (216)
AE 0 V1 0
for (2.14) or
(Pac + AITPSAI)y.’E =Ty + AITrsa Ys = ALYy (2'17)

for (2.15). In these equations we can form matrix P, + A" P,A, instead of P, and P,
individually.

Later in this chapter we will see that the equations above share the same format as
the constraint preconditioners (2.21)-(2.23) for the condensed form of the linear systems in
interior point methods. In fact, in an interior point framework without trust regions and in

exact arithmetic, we can show that the following two methods are equivalent:

1. Form the linear system as (1.14)-(1.16), use preconditioners of the form (2.14)-(2.15),

and solve for y, and y, using (2.16)-(2.17). That is, the “condensing” (block elimina-

47

tion) happens at the projection-preconditioning level.

2. Form the linear system as (1.23)-(1.24), and solve them using constraint preconditioners
(2.21)-(2.23). That is, the “condensing” (block elimination) happens at the level of

linear equations to be solved.

Nevertheless, the two methods above are slightly different in a CG framework with trust
regions. The trust region for the CG algorithm in the first method is on (d,, d;), while the
trust region for the CG algorithm in the second method is on d, only. If the trust region
bound is reached by some iterate during the CG process and special stopping rules (such as
Steihaug’s rule) truncate the search step, the two methods above may give different total
steps.

In the following we will talk about using the first method to solve (2.14)-(2.15), where
P, and P, are explicitly available. We leave the discussion on forming P, + A,F P,A, in
(2.16)-(2.17) to the section of preconditioning the condensed system, while keeping in mind

the difference between the two methods mentioned above.

Preconditioning X

We note that ¥ is a diagonal matrix, therefore it is natural to use a diagonal matrix P
to approximate it. As a result, P, ! is diagonal and cheap to form as well. A few possible

8

choices of P, are:

1. Perfect barrier preconditioner: P, = ¥ = S~!'A,. This choice is such that P, 'Y = I,

which has only one cluster of eigenvalues at 1.

2. Approximately perfect barrier preconditioner: P, = ;S~2. This is an approximation to
the exact barrier preconditioner, because we know from (1.15b) that A, &~ uS™" near

the solution of each barrier problem, and then ¥ = S7'A; ~ S~} (uS™!) = uS~2. With

48

this choice P;'S = 5?5 = 1SA, ~ (ul) = I. Hence the preconditioned matrix has

some eigenvalues tightly clustered at 1.
3. Slack scaling barrier preconditioner: P, = S~2. This is the choice in Byrd, Hribar and
Nocedal [7]. With this choice P, 'Y = SA, ~ ul. Thus the preconditioned matrix has

some small eigenvalues tightly clustered at 0.

Preconditioning VZ L

1. If a matrix P, is given by the user or easy to be generated to approximate V2, L (for
example, P, is a diagonal matrix), we can directly factorize the coefficient matrix in

(2.14) or (2.15) and solve for y, and y, exactly. This is necessary because we must

A 0 Yu 0
A, -1 Ys 0

for problems with equality constraints or Ay, — ys; = 0 for problems without equality

constraints.

2. If P, is defined such that P! is easy to compute, and we know that P;! is easy to
compute as well, we can use the Schur complement approach to solve (2.14) or (2.15).
For example, if P! is defined by a limited memory quasi-Newton approach, we can

solve for the preconditioned residual y, and y, by (2.9), where

49

for problems with equality constraints or

for problems without equality constraints. We point out that an incomplete Cholesky
approximation of V2_£ may not be a good choice for P, because V2_L is not necessary
positive definite, so its incomplete Cholesky factorization may not exist. However, if
we know V2_L is positive definite, we can first find matrix L such that V2 £ ~ LLT
and define P, = LLT without explicit multiplication, then use the Schur complement
approach to do preconditioning, since AG™1AT = (L71AT)T(L71AT) and L71AT can

be formed by some backsolves.

2.4.3 Preconditioning the Semi-condensed System

In this section we discuss the preconditioning issues when using CG to solve the semi-
condensed system (1.19)-(1.22). We observe that in (1.19) and (1.21) the Hessian of barrier
terms appears as ¥ !, which is still diagonal, and still has some elements diverging to
infinity for each barrier problem and some elements shrinking to zero near the solution of

the nonlinear programming problem, according to our discussion in Section 2.4.1.

When Equality Constraints Are Present

When equality constraints are present in the nonlinear programming problem, the semi-
condensed system is (1.19) or (1.20). For either of them, the coefficient matrix has the form
of the EQP (1.7), and suffers from the ill-conditioning in both the Hessian of Lagrangian
V2 L and the Hessian of the barrier terms .

For (1.19), the projection-preconditioning step in the projected-preconditioned CG algo-

20

rithm with a constraint preconditioner will be

P, AIT AET Yz Ty
A et 0 | |w|=]n] (2.15)
AE 0 0 V1 0

Similarly, for (1.20), the projection-preconditioning step will be

P, AITPS AET Yx Ty
PsAI _Ps 0 Ys = Ts . (219)
AE 0 0 U1 0

We have the same three choices for matrix Ps in (2.18)-(2.19) as in the discussion on the
full system (see Section 2.4.2). However, in order to compute the preconditioned residual
efficiently, we must have an explicit form of P, and perform a direct factorization to the
coefficient matrices in (2.18) and (2.19). The Schur complement method in Section 2.4.2 no
longer works because the 2 x 2 leading submatrices of (2.18)-(2.19) do not have the block

diagonal form, so their inverse matrices are expensive to form and operate.

When Equality Constraints Are Not Present

When equality constraints are not present in the nonlinear programming problem, the
semi-condensed system (1.21)-(1.22) both suffer from the ill-conditioning in the Hessian of
Lagrangian V2_L and the Hessian of the barrier terms 3.

Equations (1.21)-(1.22) are no longer of the form (1.7), so the projected-preconditioned
CG algorithm does not work. However, we can still use a preconditioned iterative approach,
such as Algorithm 2.1, to solve these equations. Bergamaschi, Gondzio and Zilli in [3]

consider such preconditioned iterative methods when V2_L is positive definite. They propose

o1

to construct a diagonal approximation to V2, £ and form preconditioners of the form

D A"
P, = (2.20)
A, =¥
for (1.21), where D = diag {V?2_L}. They also prove that when (2.20) is used to precondition
(1.21), the eigenvalues of the preconditioned matrix
vVZ,L AT

-1
D

A =¥t
are all distributed between min{1, A\p;n(D™'V2,£)} and max{l, \pax(D~'V2,L)}. Espe-
cially, at least m eigenvalues of the preconditioned matrix are 1.

Similar preconditioners of the form (2.20) are also possible. For example, D can be
defined as a limited memory quasi-Newton approximation to VZ L.

After a preconditioner in the form of (2.20) is constructed, we factorize it directly and
perform backsolves. We mention that incomplete Cholesky factorization of VZ_£ is not an
efficient choice for D in this case, even if VZ_ L is known to be positive definite, since the
Schur complement approach is expensive to implement, given the nonzero (2,2) blocks in

(1.21)-(1.22).

2.4.4 Preconditioning the Condensed System

We consider the preconditioning issues when solving the condensed system (1.23)-(1.24)
in this section. We point out that these equations may not individually suffer from either
the ill-conditioning in the Hessian of Lagrangian V2 L, or the Hessian of barrier terms ..

Instead, the source of ill-conditioning is the poor eigenvalue distribution of the condensed

92

Hessian V2_L + A"YA,. The ill-conditioning in V2_£ or ¥ may be shaded by the matrix
multiplication or summation.

Here we assume that the condensed Hessian can be formed efficiently.

When Equality Constraints Are Present

When there are equality constraints in the nonlinear programming problem, the con-
densed system (1.23) has the form of an EQP (1.7). Therefore if the condensed Hessian is
formulated, we an use any constraint preconditioned iterative method described in Section

2.3.2 to solve (1.23). The projection-preconditioning step is

P, + AITPSAI AET Yz Ty
= . (2.21)
AE 0 U1 0
Obviously it is natural to use a diagonal matrix P as an approximation of . So we

have the same three choices for P, as the ones mentioned in Section 2.4.2. We summarize

the ideas in the following, depending on how P, is given:

1. If P, is given by the user or easy to be generated, we can formulate P, + ATP,A,
explicitly and factorize it directly to solve for y,. This is necessary because we must

have Azy, = 0.

2. If (P, + A" P,A;)~" is easy to be computed, then we can use the Schur complement
approach to compute y,. For example, we can apply incomplete Cholesky factorization
to V2, L+ A YA, and get V2 L+ A SA, = LL” + R (note that it is not required that
V2,_L to be positive definite, but that V2 £ + A,7YA, is positive definite, which is a

weaker requirement since A,” XA, is positive definite), then we define P, + A," P, A, =

93

LL”. We have from (2.21) that

LL*" AET Yz Tz

0 (LT'ANT(LTAT) | | w L~"L7r,
from the second equation of which we solve for v; and recover the value of y,.

. One possible way for us to avoid using the Schur complement approach is to add a
small regularization term to the (2, 2) block of (2.21), as we discussed in Section 1.4.2.

The resulting system is

Py + AITPSAI AET Yz Ty
AE —’)/I () 0
which is equivalent to
(P, + %AETAE + ATPA)Y, =1, (2.22a)
v1 = > Asys (2.22Db)

Then we can compute y, from (2.22a) if (P, + }YAETAE + A"P,A)"" is easy to be
computed. For example, we can apply incomplete Cholesky factorization to V2, L +
%AETAE + A YA, and get Vizﬁ + %AETAE + AYYA, = LLT + R, then define P, +
}YAETAE + A P,A, = LL" and backsolve y, from (2.22). One important thing to
remember is that the vector y, computed this way does not satisfy Azy, = 0, the

second equation of (2.21). We can use an additional projection step and solve

I AF o Yo

A, 0 v 0

04

for 7., and return ¢, as the preconditioned residual in the projected CG algorithm.
This approach, because of the difficulty to determine a proper regularization parameter

~v and the extra workload to compute A" Ay, is not very promising.

We also point out that the regularization technique described above can also be used
to avoid the Schur complement approach when preconditioning the full system. If we
add regularization term —v/ to the (3, 3) block of (2.14) and perform eliminations, the
coefficient matrix for computing y, will be the same as that in (2.22a). Again, we need
an additional projection step to ensure that the preconditioned residual is in the null

space of

A, O
A -1

Instead of the projected-preconditioned CG algorithm, in Wéchter [42] a null space ap-
proach for the condensed system (1.23) is implemented with the natural null space basis Z
of the equality constraints. That is, the overall reduced Hessian has the form ZT(VZ L +
A"SA))Z and is solved by a preconditioned CG algorithm. Preconditioning issues for this
CG algorithm are discussed and several ideas are tested. The first idea is to use a limited
memory BFGS for Z7 (V2 L + A" A,)Z, following the idea in Morales and Nocedal [32].
The limited memory quasi-Newton preconditioner for the CG algorithm is obtained by the
information from the CG iterations in the previous interior point iteration. The second idea
is to build a quasi-Newton approximation P ~ ZTV2_LZ and use P + ZTATYA,Z as the

preconditioner for the overall reduced Hessian.

When Equality Constraints Are Not Present

When equality constraints are nor present in the nonlinear programming problem, the

condensed system reduces to (1.24). Note that (1.24a) is an unconstrained linear system of

95

equations whose coefficient matrix is the condensed Hessian, which we can use the precon-
ditioned CG approach presented in Algorithm 2.1 to solve. The preconditioned step then
takes the form

(Py+ ATPA)y, =15 (2.23)

Again we mention that the three choices of P, are given in Section 2.4.2. We consider

the following cases:

1. If P, is given or (P, + A" P,A,)~" is easy to be computed, we can solve (2.23) for
Y- In [24] Hei, Nocedal and Waltz consider the solution of bound constrained opti-
mization problems, where A, T A, is diagonal. The exact condensed Hessian is formed
explicitly and incompletely Cholesky factorized as V2, L + A" YA, = LL" + R. The
preconditioner is defined as P, + AT P,A, = LLT, and we backsolve Lw = r, and
LTy, = w to compute y,. Without any modification, this approach can be generalized
to the problems with only inequality constraints, provided that 4,73 A, is not very
dense. Johnson and Sofer [27] also studies the bound constrained problems, where a
preconditioned CG algorithm with a diagonal preconditioner is applied to (1.24a). The
diagonal elements of the preconditioner are the same as those of V2 L+ A, $A,, which
amounts to use a diagonal approximation for V2_£ and use the 4,”% A, term exactly.
The diagonal preconditioner is then easily inverted to compute y,. This approach
enjoys the nice property of the image reconstruction application that the Hessian of
Lagrangian VZ_ L, which has its own special structure, does not have to be formed
explicitly and the matrix-vector product (V2 £)v can be computed at a reasonable
cost. The preconditioner can also be formed by only computing the diagonal elements

of V2_L instead of the whole matrix.

When the optimization problem has general nonlinear constraints other than bounds,

forming and inverting P, + A, P,A, may be prohibitively expensive, even if P, is

o6

diagonal (for example, P; = ¥). This can shown by the fact that
APA, =) (P);a]q;, (2.24)
j=1

where a; is the j-th row of A, and (F); is the j-th diagonal element of P;. The following
observations may prevent us from forming and inverting P, + A,” P, A, efficiently. First,
even if A, only has one dense row, the matrix A, P, A, will be dense, so the whole matrix
P, + A" P,A, will be dense, no matter P, is sparse or dense. Second, when m is large,
there are too many terms in the right hand side of (2.24), so computing A,7 P, A, will

be expensive.

Hei, Nocedal and Waltz in [25] propose to properly drop terms from the right hand side
of (2.24) and reduce the workload to form matrix A,” P,A,. We drop a term (Py);a] a;

from (2.24) if the following two conditions are both satisfied:

o The density of a; (that is, the percentage of nonzero elements in a;) is greater

than a certain threshold value;

e The diagonal element (P;); is less than a certain threshold value.

The first condition aims at reducing the number of terms caused by the dense rows of
A;, but it does not necessarily always achieve this goal. The second condition is aligned
with the preconditioning idea in Forsgren, Gill and Griffin [17], where we think small

terms of (P;); do not make great contributions to (2.24) and can be safely dropped.

. We recall that the preconditioning step in Algorithm 2.1 does not necessarily require
an explicit preconditioner matrix. Instead it only requires the image of a mapping from
T%. A possible approach is to solve equation (V2L + A,”¥A,)w = r; approximately

and regard the approximate solution vector as yi, which also can be considered as

o7

preconditioning.

2.4.5 Preconditioning the Parametric Augmented System

In Section 1.4.2 we have expressed some equivalent forms of the linear systems arising
in interior point methods by a family of linear equations (1.25) characterized by a single
parameter o. In this section we will study the preconditioning issues when solving (1.27),
under the assumption that there are no equality constraints and A,” A, can be formed.
We note that the doubly augmented system (1.28) is a special member of the family, so
preconditioning the doubly augmented system becomes a special case of preconditioning the
family of linear systems. The discussion in this section is based on Forsgren, Gill and Griffin
[17].

Constraint preconditioners of the form

M+ (1+0)A'SA, cAT
P(o) = (2.25)
oA, ox !
are considered for the iterative algorithm for solving equation (1.27a), where M is a sym-
metric approximation to V2_£ such that M + A, "X A, is positive definite. Similarly to
(1.29)-(1.30), we have

(n,m,0) ifo<0
inertia(P(0)) = ¢ (n,0,m) ifo=0 (2.26)

(n+m,0,0) ifo>0.

Therefore P(c) is positive definite when o > 0. Especially when ¢ = 1, this positive definite
preconditioner can be applied to the doubly augmented system, which is also positive definite

when V2 L+ A'S A, is positive definite. When ¢ = 0, the full matrix (2.25) is not positive

o8

definite but M + A, 7S A, is positive definite and can be applied to the condensed system
(1.24a) only in the variables d,.

Additionally, [17] constructs two so-called active set preconditioners for the doubly aug-
mented system (o = 1). We notice that some elements of the diagonal matrix ¥ tend to
be very large (those corresponding to the active constraints) and the rest of them converge
to zero (those corresponding to inactive constraints), when the iterations are close to the
solution of each barrier problem. The difference in the size of these diagonal elements is one

of the sources of the ill-conditioning. Without loss of generality we denote

S = A= , (2.27)

where ¥, is made of the large elements of ¥, 35 is made of all the rest diagonal elements of

¥, and matrix A, is partitioned accordingly. Then (2.25) becomes

M + (]_ + O')A{ElAl + (]_ + O')AgZQAQ O'A{ O'Ag
P(o) = oA, oSt 0 |- (2.28)

oA 0 o%;!

The two active set preconditioners considered by [17] are:

M + (]_ -+ O')A{ElAl + OAgzzAz O'A{ O'Ag
Pi(o) = oAy oxt 0 (2.29a)

oA 0 o%,"

M+ (1+0)ATS A, oAT 0
Py(o) = oA ot 0 |- (2.29b)

0 0 oyt

99

Preconditioner (2.29a) can be seen as obtained by removing A3 %9 A, from the (1, 1) block of
(2.28). This is reasonable, because Y5 does not contain large elements of ¥ and so ATy, A,
will not play an important role in the preconditioner. Preconditioner (2.29b) further removes
all the terms related to A,, so it is not exactly a constraint preconditioner, but is more
attractive when A, is expensive to form. Theoretical results show that P, (o) and P,(o) work

almost as well as the constraint preconditioner P(o) defined by (2.28) when o > 0.

2.4.6 Preconditioning the Augmented Normal System

Preconditioning ideas for the augmented normal system (1.31) can be motivated by the
factorization (1.32) of the coefficient matrix in (1.31a). Since the matrix V' comes from the
eigenvalue factorization of V2_L, the first and third matrices in (1.32) are readily available.
The second matrix of (1.32) has a block diagonal structure, and the (2,2) block itself is a

diagonal matrix. It is therefore natural for us to construct a sparse and easily invertible

approximation M ~ A,"$A,, and design a preconditioner of the form

Ay 0 || M7t 0 A"V
(2.30)

VT 0 E! 0 I
for equation (1.31a). As mentioned in the case of the condensed system, forming and invert-
ing M could be expensive (see (2.24) and the discussion there). A possible way to construct
M is using the dropping rule mentioned for (2.24), according to the density of the rows of

A, and the size of the diagonal elements of X.

When the nonlinear programming problem is only bound constrained, however, matrix
ATYA, is diagonal and cheap to form, and it is natural to use M = AT A,. Lu, Monteiro
and O’Neal in [31] consider the bound constrained case and assume that matrix E is positive

definite (i.e. V2Z_L is positive semidefinite). A preconditioner is designed by ranking the

60

diagonal elements of M~! and E~! and selecting the rows of the third matrix in (2.30) only

corresponding to the large elements of these diagonal matrices.

2.5 Numerical Experiments

2.5.1 Numerical Experiments with a MATLAB Implementation

We develop MAKCG, a MATLAB interior point code that solves general nonlinear pro-
gramming problems with constraints, following the framework of Byrd, Hribar and Nocedal
[7]. The search step, a combination of a normal step and a tangential step, is the solution
of a linear system of equations of the form (1.14), which is solved by the decomposition
approach proposed in Byrd [5] and Omojokun [34]. Particularly, the tangential step is the
solution of an equality constrained quadratic subproblem governed by a trust region, which
we solve by the null space method. Although MAKCG does not contain all the features of
KNITRO/CG, we believe that it is sufficiently robust and efficient to test the preconditioners

for interior point methods.

Experiment Setup

Some test problems are chosen from the CUTEr collection (see Gould, Orban and Toint
[22] and Bongartz, Conn, Gould and Toint [4]) using versions of the models formulated in
Ampl (see Fourer, Gay and Kernighan [18]). Since the MAKCG code is not optimized for
speed, we have chosen test problems with a relatively small number of variables. These
test problems are classified into three categories: bound constrained problems, nonlinear
programming problems with only inequality constraints and general nonlinear programming
problems with both equality and inequality constraints.

We implement in MAKCG some of the preconditioning ideas mentioned in earlier sections

61

and compare the results with the unpreconditioned solvers. In the following we will report in
each experiment the name of the problem (problem), the characteristics of the problem (the
number of variables n, the number of equality constraints ¢ and the number of inequality
constraints m), the preconditioning options being used (option), the final objective function
value (final objective), the number of iterations of the interior method (#iteration),
the total number of CG iterations (#total CG), the average number of CG iterations per
interior point iteration (#average CG) and the CPU time (time).

The preconditioning ideas tested are based on the full system formulation that we have

discussed in Section 2.4.2. The preconditioning options are labeled as

option = (a, b, ¢).

where ¢ indicates the way we solve for the preconditioned residual and it takes values at either
1 or 2. @ = 1 means that we have P, and Py explicitly available and directly factorize (2.14)-
(2.15) to obtain y, and y,, while a = 2 indicates that we do not have P, and P; explicitly,
but we incompletely factorize V2 L + A;"% A, = LLT + R using the cholinc function in
MATLAB with drop tolerance 0.001, define P, + A, P,A, = LL" and solve for y, and y,
from (2.16)-(2.17). The values of b and ¢ indicate the preconditioning options used for the
Hessian of Lagrangian and the Hessian of barrier terms, respectively. Obviously b and c are
meaningful only when a = 1. Different combinations of b and c give different preconditioners.
For example, option (1,1,2) means that we explicitly have P, = |diag {V2,£}| and P, = ¥,
and then factorize (2.14)-(2.15) to solve for y, and ys. The current default in KNITRO/CG is
option (1,0, 0).

The MAKCG experiment options are summarized in Table 2.1.

62

a =1 (P, and P explicitly known)
b=0 No Hessian preconditioning (P, = I)
b=1 Diagonal Hessian preconditioning (P, = |diag {V?2_L}|)
c =0 Slack scaling barrier preconditioning (P, = S~2)
c=1 Approximately perfect barrier preconditioning (P, = .S~2)
¢ =2 Perfect barrier preconditioning (P; = X)
a=2 (P, + A"P,A, determined implicitly)
P, + AP,A, = LLT where V2 L+ A'YA, = LL"+ R

Table 2.1: Preconditioning options for MAKCG.

Experiment Results and Observations

The results for some bound constrained problems, for some problems with only inequality
constraints but not just bounds and for general problems with both equality and inequality
constraints are listed in Table 2.2, Table 2.3 and Table 2.4, respectively. We have some

interesting observations and basic conclusions:

1. We see that the choice of preconditioners does not greatly affect the number of interior
point iterations in the set of bound constrained problems, except problem cvxbgpl.
However, the number of interior point iterations is dramatically affected for most of
the general nonlinear programming problem. We will discuss the deterioration in the

number of interior point iterations later in more details.

2. If we compare the average number of CG iterations when only barrier preconditioners
are used (i.e. options (1,0,1) and (1,0,2)). As expected, we see that the average
number of CG iterations is generally decreased with respect to the benchmark option
(1,0,0). Hence these barrier preconditioners can be considered as successful in this

context. But it is not clear which barrier preconditioner is to be preferred.

3. The diagonal preconditioner for the Hessian of Lagrangian (i.e. options (1,1, %)), al-

though sometimes reduces the average number of CG iterations, only provides marginal

63

benefit. We then conclude that this type of preconditioners are of limited use.

4. The incomplete Cholesky implementation of the preconditioners (i.e. option (2, —, —))
is very successful. It almost always substantially reduce the average number of CG
iterations. It also provides some benefit in terms of CPU time, but in a less effective
manner. We explain this by the cost of performing the incomplete Cholesky factoriza-
tions, which is related to the density of the condensed Hessian, and the multiplication
and re-factorization operations when solving (2.16) for problems with equality con-

straints.

Deterioration of Interior Point Iterations

Generally, one may expect that the preconditioners will not affect the number of inte-
rior point iterations dramatically, since it is simply a mechanism for accelerating the step
computation procedure. Nevertheless, we see the deterioration of interior point iterations in
many of our test problems. We analyze the implementation of the preconditioning ideas and
conclude that the deterioration of the number of interior point iterations is due to two main
reasons: the shape of the trust region and the barrier stop test.

For simplicity we assume that P, = I, that is, there is no preconditioning for the Hessian
of Lagrangian.

In our interior point implementation, there is a trust region constraint for the step in
each iteration (see the description in Section 1.4.1). In more details, the trust region for the

step computation has the form

dy
<A, (2.31)
S,

where A is the trust region radius for the step. The S~! part of the trust region is often

referred to as the affine scaling strategy, which is a standard approach to ensure the global

64

convergence of the interior method. See Byrd, Gilbert and Nocedal [6] for more details. Also

note that all the three proposed preconditioners have at least S~! in the form of P;.
Meanwhile, we remember that preconditioning can be seen as a change of variables that

transforms the original problem. We can see the standard choice, P, = S~2, corresponds to

a change of variables of the form

dy = dy, dy=S7"d,. (2.32)

This change of variables has its pros and cons: On one hand, it is easy to see that under
(2.32) the trust region (2.31) happens to become circular and has form
d,
“1l<a

— Y

d;

which makes the implementation of the projected-preconditioned CG algorithm very easy,
since we know that Steihaug’s rules described in Section 1.1.2 work well for circular trust
regions. The success of KNITRO/CG indicates that trust regions of the form (2.31) control
well the rate at which the slacks approach zero. Therefore we would like to respect the trust
region. On the other hand, we have shown in Section 2.4.2 that the Hessian of barrier terms
after the change of variables (2.32) is approximately p/, which has some eigenvalues tightly
clustered at zero, increasing the ill-conditioning of the linear system.

This disadvantage motivates us to design other barrier preconditioners, among which we

consider P, = S~2. This choice corresponds to a change of variables of the form

dy = dy, dy=\/uS™'d,. (2.33)

Because of the lack of efficient stopping rules for CG algorithms with an elliptical trust

65

region, we have to enforce a circular trust region for the scaled variables (Jx, cis) That is, in

terms of the original variables, the trust region that we actually enforce is

< A. (2.34)

dy

VES Y, ||
Obviously this means that the desired trust region (2.31) is not respected. We have seen that
the Hessian of barrier terms after (2.33) is approximately I. That is, the condition number
of the linear system is improved. Nevertheless, when the barrier parameter y is small, (2.34)
does not penalize a step approaching the slack bounds as severely as (2.31). This allows the
interior method to approach the boundary of the feasible region of the problem prematurely
and produce very small steps, which explains the deterioration in the number of interior
point iterations.

Another proposed barrier preconditioner P, = ¥ = S~!A; can also be ineffective for
similar reasons because we know A; ~ 1S~! near the solution of the barrier problem, so this
choice of P; is close to the one we have discussed above. Moreover, if the multiplier estimates

A; are inaccurate, the trust region will not properly control d;.

problem

(n,tym) final objective #titeration | #total CG | #average CG time (sec)
biggsbl +1.5015971301e — 02 31 3962 1.278e + 02 3.138e + 01
(100,0,198) +1.5015971301e — 02 29 2324 8.014e + 01 1.931e 4+ 01
+1.5015971301e — 02 28 2232 7.971e + 01 1.848e + 01
+1.5015971301e — 02 30 3694 1.231e + 02 2.813e + 01
+1.5015971301e — 02 30 2313 7.710e + 01 1.858e 4 01
+1.5015971301e — 02 30 2241 7.470e + 01 1.876e 4 01
+1.5015971301e — 02 31 44 1.419e + 00 1.950e + 00
cvxbgpl +9.0450040000e + 02 11 91 8.273e + 00 4.360e + 00
(200,0,400) +9.0453998374e + 02 8 112 1.400e 4 01 4.240e + 00
+9.0450040000e + 02 53 54 1.019e + 00 1.146e + 01
+9.0454000245¢ + 02 30 52 1.733e + 00 9.130e + 00
+9.0450040000e + 02 30 50 1.667e + 00 9.400e + 00
+9.0454001402¢ + 02 47 48 1.021e + 00 1.330e 4 01
+9.0450040000e + 02 11 18 1.636e + 00 2.480e + 00
jnlbrngl —1.7984674056e¢ — 01 29 5239 1.807e + 02 8.500e + 01
(324,0,324) —1.7984674056e — 01 27 885 3.278e + 01 1.999¢ 4 01
—1.7984674056e — 01 29 908 3.131e + 01 2.016e + 01
—1.7984674056e — 01 29 5082 1.752e + 02 9.563e + 01
—1.7984674056e — 01 27 753 2.789%¢ + 01 2.940e + 01
—1.7988019171e — 01 26 677 2.604e + 01 2.702e + 01
—1.7984674056e — 01 30 71 2.367e + 00 6.780e + 00
obstclbm +5.9472925926¢e + 00 28 7900 2.821e + 02 1.931e + 02
(225,0,450) +5.9473012340e + 00 18 289 1.606e + 01 1.195e 4 01
+5.9472925926¢e + 00 31 335 1.081e + 01 1.587e 4 01
+5.9472925926¢e + 00 27 6477 2.399¢ + 02 1.391e 4+ 02
+5.9472925926e + 00 29 380 1.310e + 01 1.998e 4 01
+5.9473012340e + 00 18 197 1.094e + 01 1.154e + 01
+5.9472925926¢e + 00 27 49 1.815e + 00 7.050e + 00
pentdi —7.4969998494e — 01 27 260 9.630e + 00 6.460e + 00
(250,0,250) —7.4969998502¢ — 01 25 200 8.000e + 00 5.620e + 00
—7.4969998500e — 01 28 205 7.321e + 00 5.920e + 00
—7.4969998494e — 01 28 256 9.143e + 00 1.091e + 01
—7.4992499804e — 01 23 153 6.652¢e + 00 8.510e + 00
—7.4969998502¢ — 01 26 132 5.077e + 00 9.020e + 00
—7.4969998494¢ — 01 27 41 1.519e 4+ 00 3.490e + 00
torsionl —4.8254023392¢ — 01 26 993 3.819¢ + 01 8.200e + 00
(100,0,200) —4.8254023392¢ — 01 25 298 1.192e + 01 4.020e + 00
—4.8254023392¢ — 01 24 274 1.142e + 01 3.660e + 00
—4.8254023392¢ — 01 26 989 3.804e + 01 9.390e + 00
—4.8254023392¢ — 01 25 274 1.096e + 01 3.980e + 00
—4.8254023392¢ — 01 25 250 1.000e + 01 3.770e + 00
—4.8254023392¢ — 01 25 52 2.080e + 00 1.720e 4 00
torsionb —4.0993481087¢ — 01 25 1158 4.632e + 01 1.038e 4 01
(100,0,200) —4.0993481087e¢ — 01 25 303 1.212e 4+ 01 4.050e + 00
—4.0993481087e¢ — 01 23 282 1.226e + 01 3.710e + 00
—4.0993481087e¢ — 01 25 1143 4.572e + 01 1.038e + 01
—4.0993481087e¢ — 01 24 274 1.142e + 01 3.910e + 00
—4.0993481087¢ — 01 23 246 1.070e + 01 3.190e + 00
—4.0993481087e — 01 24 49 2.042e + 00 1.360e 4 00

Table 2.2: MAKCG results for bound constrained problems.

problem

(n,tym) final objective #titeration | #total CG | #average CG time (sec)
airport +4.7952710080e + 04 20 760 3.800e + 01 7.770e + 00
(84,0,210) +4.7952710204¢ + 04 18 412 2.289% + 01 4.780e + 00
+4.7952710203e + 04 18 234 1.300e + 01 3.290e + 00
+4.7952703365¢ + 04 88 631 7.170e + 00 1.157e + 01
+4.7952710080e + 04 24 133 5.542e + 00 2.940e + 00
+4.7952703360e + 04 34 92 2.706e + 00 3.280e + 00
+4.7952710202¢ + 04 14 29 2.071e + 00 1.080e + 00
chandheq +3.8074663778e — 08 23 332 1.443e + 01 3.330e + 00
(100,0,100) +3.8582052731e — 08 20 362 1.810e + 01 3.280e + 00
+3.8583031712e — 08 20 361 1.805e + 01 3.260e + 00
+5.0615075579¢ — 09 24 104 4.333e + 00 2.590e + 00
+3.8945183881e — 08 18 78 4.333e + 00 1.970e + 00
+3.8588499524e — 08 19 82 4.316e + 00 2.080e + 00
+3.8074663759¢ — 08 23 48 2.087e + 00 2.610e + 00
expfitc +2.3312955877¢ — 02 21 97 4.619¢ + 00 9.990e + 00
(5,0,501) +2.3304184127e — 02 33 162 4.909¢e + 00 1.619e + 01
+2.3304184127e — 02 41 168 4.098¢e + 00 1.838e + 01
+2.3310364663e — 02 38 170 4.474e + 00 1.746e + 01
+2.3310201248e — 02 272 1297 4.768e + 00 1.286e 4 02
+2.3302627540e — 02 266 966 3.632e + 00 1.114e + 02
+2.3304184127e — 02 27 67 2.481e + 00 7.860e + 00
gpp +1.4400931122¢ + 04 17 4558 2.681e + 02 1.883e + 02
(250,0,498) +1.4400927187e + 04 22 489 2.223e + 01 2.996e + 01
+1.4400927347e + 04 29 933 3.217e + 01 5.001e + 01
+1.4400931122¢ + 04 21 978 4.657e + 01 5.118e + 01
+1.4400931111e + 04 32 321 1.003e + 01 3.193e + 01
+1.4400931121e + 04 21 70 3.333e + 00 1.587e + 01
+1.4400931122¢ + 04 17 211 1.241e + 01 2.142e + 01
himmelbi —1.7549999889%¢ + 03 38 4142 1.090e + 02 2.125e + 01
(100,0,112) —1.7549999889¢ + 03 43 5167 1.202e + 02 2.644e + 01
—1.7549999976e + 03 47 4018 8.549¢ + 01 2.093e + 01
—1.7549999528e + 03 183 7088 3.873e + 01 4.063e + 01
—1.7549999949¢ + 03 42 5213 1.241e + 02 2.705e + 01
—1.7549999708e + 03 133 5516 4.147e + 01 3.121e + 01
—1.7549999890¢ + 03 48 659 1.373e + 01 3.330e + 00
ksip +5.7580344773e — 01 37 996 2.692¢ + 01 2.768e + 02
(20,0,1001) +5.7580344773e — 01 40 409 1.022e¢ + 01 1.475e 4 02
+5.7580344773e — 01 35 352 1.006e + 01 1.266e + 02
+5.7580344773e — 01 37 671 1.814e + 01 2.028e + 02
+5.7580344621e — 01 35 118 3.371e + 00 7.600e + 01
+5.7580344758e — 01 28 28 1.000e 4 00 4.486e + 01
+5.7580344773e — 01 37 312 8.432¢ + 00 4.577e 4 01

Table 2.3: MAKCG results for problems with only inequality constraints.

problem
(n,tym) option final objective #titeration | #total CG | #average CG time (sec)
duall (1,0,0) +3.5018630104e — 02 69 6056 8.777e + 01 4.914e + 01
(85,1,170) (1,0,1) +3.5018629747e — 02 52 1854 3.565¢e + 01 1.695e + 01
(1,0,2) +3.5018629747e — 02 42 1676 3.990e + 01 1.448e + 01
(1,1,0) +3.5018630007e — 02 93 5637 6.061e + 01 4.736e + 01
(1,1,1) +3.5020065859% — 02 59 1655 2.805e + 01 1.578e 4+ 01
(1,1,2) +3.5018629747e — 02 71 1712 2.411e + 01 1.731e + 01
(2,-) +3.5018629747e — 02 62 154 2.484e + 00 5.240e + 00
hs119 (1,0,0) +2.4489970752¢ + 02 13 85 6.538e + 00 3.400e — 01
(16,8,32) (1,0,1) || +2.4489970752¢ + 02 12 70 5.833¢ + 00 | 3.100e — 01
(1,0,2) +2.4489970752¢ + 02 18 88 4.889¢ + 00 4.100e — 01
(1,1,0) +2.4489970752¢ + 02 26 78 3.000e + 00 4.400e — 01
(1,1,1) +2.4489970752¢ + 02 28 74 2.643e + 00 4.500e — 01
(1,1,2) +2.4489970752¢ + 02 25 55 2.200e + 00 3.800e — 01
(2,-) +2.4489970752¢ + 02 13 22 1.692e + 00 1.800e — 01
linspanh (1,0,0) —7.6999999996¢ + 01 11 188 1.709e + 01 1.780e + 00
(72,32,144) | (1,0,1) —7.7000000004¢e + 01 9 276 3.067e + 01 2.360e + 00
(1,0,2) —7.7000000000e + 01 39 65 1.667e + 00 1.990e + 00
(1,1,0) —7.7000000045¢e + 01 19 312 1.642e + 01 3.010e + 00
(1,1,1) —7.7000000001e + 01 28 431 1.53% + 01 4.260e + 00
(1,1,2) —7.7000000005¢e + 01 7 105 1.500e + 01 1.140e + 00
(2,-) —7.7000000020e + 01 14 14 1.000e + 00 6.500e — 01
loadbal (1,0,0) +4.5285331684e — 01 17 167 9.824e + 00 7.600e — 01
(31,11,62) (1,0,1) +4.5285430574e — 01 69 735 1.065e + 01 3.040e + 00
(1,0,2) +4.5285430593e — 01 71 763 1.075e 4+ 01 3.160e + 00
(1,1,0) +4.5285464232¢ — 01 27 269 9.963e + 00 1.240e + 00
(1,1,1) +4.5285430588e — 01 63 646 1.025e + 01 2.810e + 00
(1,1,2) +4.5285430588¢ — 01 47 482 1.026e + 01 2.120e + 00
(2,-) +4.5285326581e — 01 17 20 1.176e + 00 3.200e — 01
model (1,0,0) +5.7421652154e + 03 12 132 1.100e + 01 1.160e 4 00
(60,26,126) | (1,0,1) +5.7421633528¢ + 03 14 137 9.786e + 00 1.310e + 00
(1,0,2) +5.7421634994e + 03 9 41 4.556e + 00 5.200e — 01
(1,1,0) +5.7421651307e + 03 12 123 1.025e + 01 1.170e + 00
(1,1,1) +5.7421662179¢ + 03 8 60 7.500e + 00 6.900e — 01
(1,1,2) +5.7421637049¢ + 03 8 29 3.625e + 00 5.300e — 01
(2,-) +5.7257898047¢ + 03 15 24 1.600e + 00 5.400e — 01
portflé (1,0,0) +2.5794194264e — 02 15 120 8.000e + 00 3.500e — 01
(12,1,24) (1,0,1) +2.5793715666e — 02 27 263 9.741e + 00 6.500e — 01
(1,0,2) +2.5793715666e — 02 26 265 1.019e + 01 6.500e — 01
(1,1,0) +2.5791918205e¢ — 02 13 119 9.154e + 00 3.300e — 01
(1,1,1) +2.5791918158e — 02 15 119 7.933e + 00 3.300e — 01
(1,1,2) +2.5794194264e — 02 16 101 6.312e + 00 3.000e — 01
(2,-) +2.5794194264e — 02 15 25 1.667e + 00 1.700e — 01

Table 2.4: MAKCG results for problems with both equality and inequality constraints.

69

2.5.2 Numerical Experiments with KNITRO/CG
Experiment Setup

We implement the most successful preconditioning idea so far, the incomplete Cholesky
preconditioning, in KNITRO/CG and perform a series of numerical experiments. Therefore in
this section we will only compare two versions of KNITRO/CG: the default version (without
preconditioning) and the preconditioned version (with incomplete Cholesky preconditioning).
For the latter, we factorize V2, L + A" A, = LLT + R using the incomplete Cholesky
algorithm proposed by Lin and Moré [30], define P, + A" P,A, = LL" and solve for y,
and y, from (2.16)-(2.17). We allow the user to choose the memory parameter pmem, which
controls the amount of fill-in in the incomplete factorization. The most frequent used values
of pmem (0,2,5 and 10) are tested in our experiments, among which 0 means that LLT has
the same sparse pattern as V2 L + ATYA,, and larger values of this parameter indicates
that LL" is closer to the complete Cholesky factorization of V2 L + A YA,

The test problems are still chosen from the CUTEr collection with the Ampl format. We
test two classes of problems: bound constrained problems and problems with only inequality
constraints. We exclude some of the repeated models from the bound constrained problems
in the CUTEr set and select 29 problems for which the sizes can be large enough. For the
general nonlinear programs, we select all the problems in the CUTEr set that do not have

equality constraints, and whose inequality constraints are not just bounds.

Results for Bound Constrained Problems

We present the numerical results with some performance profiles. Figures 2.1-2.4 show
the results on the 29 bound constrained problems in terms of number of iterations, number
of function evaluations, average number of CG iterations and CPU time, respectively.

We see from Figures 2.1-2.2 that the robustness of the preconditioned version of the

70

interior point method, measured by the number of iterations and the number of function
evaluations, is slightly worse than that of the unpreconditioned version because of the change
in the shape of the trust regions, which we have explained in the previous section. This hap-
pens for all the values of pmem. However, in terms of efficiency, measured by the average
number of CG iterations and CPU time, the performance of the solver is dramatically im-
proved by the incomplete Cholesky preconditioners, as seen from Figures 2.3-2.4. This is due
to the fact that the term A," YA, is a diagonal matrix for bound constraints, which is cheap
to form and does not add to the density of the Hessian of Lagrangian VZ, L. Thus the in-
complete Cholesky factorization of the condensed Hessian V2 _L+ A" ¥ A, can be performed
at a reasonably low cost and provides a very good preconditioner.

Moreover, the value of pmem also affects the efficiency of the interior method in a mean-
ingful way: The larger value pmem takes, the closer is LLT to the condensed Hessian, the
better preconditioner it gives, the less CG iterations are taken and the more CPU time is

reduced.

Results for General NLPs with Only Inequality Constraints

Figures 2.5-2.8 show the experiment results on the problems with only inequality con-
straints. We also observe from Figures 2.5-2.6 that the robustness of the interior point
method is slightly deteriorated by the preconditioners, again explained by the change in the
shape of the trust regions.

In terms of efficiency, we also notice that the average number of CG iterations, as ex-
pected, is dramatically reduced by the preconditioners, as shown by Figure 2.7. Generally
speaking, the larger value pmem takes, the less CG iterations are taken. In terms of CPU time,
Figure 2.8 gives the performance profile based on 37 problems for which all the solvers tested

converge and the CPU times are larger than 0.1 second, in order to make a more accurate

71

comparison. We see that the preconditioners help to reduce the CPU time substantially.
On the other hand, we predict that the unpreconditioned version of the interior method
could be faster than the ones with the preconditioners for larger scale problems with dense
rows in the constraint Jacobian A;, because in this case the condensed Hessian will be dense,
and its incomplete Cholesky factorization will not be applicable although it may still give
good preconditioners. Further numerical experiments are to be conducted to show how useful
the incomplete Cholesky preconditioners are for these problems. The incomplete Cholesky
preconditioners with dense rows of A, properly dropped, as proposed in Section 2.4.4, are to

be investigated with care.

Number of iterations

T T T T 1]
[7

Percentage of problems

0.2+ i
1 Knitro-CG.default
Knitro-CG.precond.pmem=2 =«+==x=x
H Knitro-CG.precond.pmems=5 s
o i L L Il I h 1 |
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.1: Performance profile for KNITRO/CG on 29 bound constrained problems, number
of iterations.

72

Number of function evaluations

T T T i T 1
I H

Percentage of problems

B e e
1

0.2
Knitro-CG.default
Knitro-CG.precond.pmem=0
Knitro-CG.precond.pmem=2
Knitro-CG.precond.pmem=5
0 1 1 1 1 1 1 1
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.2: Performance profile for KNITRO/CG on 29 bound constrained problems, number
of function evaluations.

Average number of CG iterations
l T T T T T T T

Percentage of problems

Knitro-CG.default
Knitro-CG.precond.pmem=0
Knitro-CG.precond.pmem=2
1 Knitro-CG.precond.pmem=5

ol ! ! ! ! ! 1 1
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.3: Performance profile for KNITRO/CG on 29 bound constrained problems, average
number of CG iterations.

73

CPU time

1 T T

SRU—— |

Percentage of problems

o e o v

Knitro-CG.default
Knitro-CG.precond.pmem=0
Knitro-CG.precond.pmem=2
Knitro-CG.precond.pmem=5

16

Figure 2.4: Performance profile for KN
time.

64 256 1024 4096 16384 65536

x times slower than the best

ITRO/CG on 29 bound constrained problems, CPU

Number of iterations

AR TSR

¥ BV R B SR

D

0.8 B

g 5
[} H
o 0.6 B
<]
o
ks 1
) I
D '
8 |
c
& 04 B
5] |
a i

i

i

0.2 - B

1 Knitro-CG.default

i Knitro-CG.precond.pmem=0

1 Knitro-CG.precond.pmem=2

| Knitro-CG.precond.pmem=5

0 1 1 1 1 1 1 1 1 1
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.5: Performance profile for KNITRO/CG on problems with only inequality constraints,

number of iterations.

74

Number of function evaluations

T T T i T T T
.
“““ B T T Tr S TAnsT

l'."l 7

3

=

]
» i
£ &
@ I
= i
[S] |
S i
5 |
) I
{=2 i
8 |
=4
8 04 4
5] 1
a i

i

i

0.2 é— -

i Knitro-CG.default

I Knitro-CG.precond.pmem=0

i Knitro-CG.precond.pmem=2

| Knitro-CG.precond.pmem=5

0 1 1 1 1 1 1 1 1 1
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.6: Performance profile for KNITRO/CG on problems with only inequality constraints,
number of function evaluations.

Average number of CG iterations

Percentage of problems

Knitro-CG.default
Knitro-CG.precond.pmem=0
Knitro-CG.precond.pmem=2
Knitro-CG.precond.pmem=5

1 1 1 1 1 1
1 4 16 64 256 1024 4096 16384 65536
x times slower than the best

Figure 2.7: Performance profile for KNITRO/CG on problems with only inequality constraints,
average number of CG iterations.

75

CPU time
1 R S . . . L T T
0.8 2—; 1

s

i
%] £
£
< t
) 0.6 f 1
<]]
Q.]
kS
(5]
{=2
8
g 04 -
5]
a

0.2 r -

i Knitro-CG.default

I Knitro-CG.precond.pmem=0

i Knitro-CG.precond.pmem=2

| Knitro-CG.precond.pmem=5

0 1 1 1 1 1 1 1 1 1
1 4 16 64 256 1024 4096 16384 65536

x times slower than the best

Figure 2.8: Performance profile for KNITRO/CG on problems with only inequality constraints,
CPU time (reduced problem set).

76

Chapter 3

A Strategic Bidding Problem

3.1 Introduction

In this chapter we study a strategic bidding problem in a short term electricity market and
consider solving it by nonlinear programming techniques. In this market, different companies
that own electricity generation plants compete with each other to provide electricity for the
market in a given period of time. On a timely basis, each company has to propose how much
to charge for each unit of the electricity production at each individual plant they own, and/or
the production capacity of each individual plant. These proposals are called bids, and the
plants are called bidders or generators. Note that the bids from the generators belonging to
the same company are not necessarily the same.

There is an independent operator who gets all the bids from the companies and determines
a production schedule that satisfies the electricity demand of the market. The independent
operator solves an economic dispatch problem in order to find the production schedule and a
spot price that minimize the aggregated possible cost for the consumers. Once the production
schedule and the spot price are determined, each generator in the system is paid the spot

price (instead of its own bid) for each unit of its electricity production. Hence the profit of

7

each company is determined by the difference between the spot price and the production
cost of the generators belonging to this company.

The strategic bidding problem is defined for a specific company that owns several gen-
erators in the market. The company would like to find the optimal bids that maximize the
company’s total profit, assuming the bids from other companies are known (we will discuss
later how to relax this assumption). The main constraint is that the independent operator
determines the production schedule by solving the economic dispatch problem. Therefore
this problem can be seen as a bilevel optimization problem. We will provide later in this
chapter the details of the problem formulation. See also Hobbs, Metzler and Pang [26],
Weber and Overbye [45] and Pereira, Granville, Fampa, Dix and Barroso [36].

As indicated above, the bid of a generator may, in general, include two parts: a price bid
and a capacity bid. In our discussion we will assume the production capacity of each plant
in the system is a constant and is not part of the decision variables. The optimization model

under this assumption is called the Bertrand model (see Fudenberg and Tirole [19]).

3.1.1 The Independent Operator’s Problem

In this section we discuss the independent operator’s optimization problem and show
that it has some characteristics in common with a knapsack problem.

We assume that there are altogether n bids/generators in the system, where only t of
them are from Company A (n > t). We denote the bids from Company A by z € R, and
the bids outside Company A by b € R *. Our goal is to solve the strategic bidding problem
of Company A.

The independent operator solves the economic dispatch problem for the generation sched-

ule y € R", given the bids from all the n generators. Given the bids = and b, the economic

78

dispatch problem is

T
x
minimize y (3.1a)
Y b
subject to yTe >d (multiplier: \) (3.1b)
0<y<FE (multiplier: m,m,), (3.1c)

where e € R™ is the vector of all ones, £ € R" is the vector of generators’ capacities and d
is the demand of the market. In the Bertrand model we assume that E is a known vector.
The multiplier A associated with the demand constraint (3.1b) is called the spot price, as it
determines how much the objective function would change if the demand increases by one
unit.

Note that the economic dispatch problem (3.1) is a linear program that it is similar to
the knapsack problem. We can solve it by making the generator with the lowest bid produce
at its full capacity, unless the market demand is satisfied. When there are no equal bids, we
know that at the solution of the problem (3.1), there will be some elements of y that are
at their upper bounds, some elements of y that are zero, and at most one element of y that
is between its upper bound and zero. We also know that the demand constraint (3.1b) is

always active at the solution of the economic dispatch problem.

79

3.1.2 Dual Formulation of the Operator’s Problem

The dual problem of (3.1) is

mz;ximize d\ — E'r, (3.2a)
Ty
x
subject to e — my, +m = (3.2b)
b
A>0,m>0,m, > 0. (3.2¢)

Constraint (3.2b) consists of n equations. For the moment we assume that there are no
equal bids in the market. In the previous section we have mentioned that at the solution
of the economic dispatch problem there is at most one element of the production schedule
between its upper and lower bounds. Suppose we know that 0 < y, < Ej holds for a certain
1 < k < n. Then it is easy to see that (m;), = (my)r = 0 because the bounds on y; are both

inactive. Hence the k-th equation in (3.2b) shows that

k

This indicates that the bid of the k-th generator is the spot price of the market. In other
words, when there are no equal bids, if a generator produces electricity for the market, but
not at its full capacity, then its bid is the spot price.

From constraint (3.2b) we have

x
Ty = Ae+ T —

b

80

We eliminate 7, from the dual problem (3.2) using the above equation and get

maximize (d— ETe)A - ETm+V

A,y
_ x
subject to A > 0,7 > 0, e +m — >0,
b
where V & g7 . We consider the solution of this problem in three cases:

(i)

(i)

When d > ETe: The above problem is unbounded above, because we may set m; = 0,
and the larger value A takes, the larger objective value we will get. In this case the
strong duality property of linear program does not hold. That is, the optimal primal
objective does not necessarily equal the optimal dual objective. In our strategic model,
if the demand is larger than the total production capacity of the generators, all the

generators will produce at full capacity and can bid as large as they want.

When d = ETe: The above problem becomes trivial and has infinite number of solu-
tions at any value of A and m; = 0. The optimal objective value is V. This indicates
that if the system demand is exactly what the generators can provide, all the gener-
ators will produce at full capacity and the independent operator can decide the spot

price.

When d < E%e: The above problem has a unique solution and finite optimal objective
value. In practice, if the primal problem (3.1) is well defined, we should have d <
E”e because otherwise the demand constraint (3.1b) cannot be satisfied even if every
generator is producing at full capacity. In this case the strong duality property holds,

which indicates that the optimal primal objective equals the optimal dual objective.

81

3.1.3 Bilevel Optimization Formulation

We are now ready to present the strategic bidding problem and its bilevel formulation.

Company A would like to determine its optimal bids x such that the total profit by all
the generators belonging to this company is maximized. Since each generator is paid the
spot price, while the spot price and the production schedule are obtained from the economic
dispatch problem by the independent operator after all the bids are collected, the strategic

bidding problem for Company A can be formulated as

ma:?mize (Ne(1:t) —)T y(1:1) (3.4a)

TyY s AT T

subject to x> ¢ (3.4b)
y solves (3.1) with multipliers A, 7, 7, (3.4c)

where ¢; € R and ¢, € R" ! are the operating costs of the generators from Company A and
from outside Company A, respectively. Constraint (3.4a) makes intuitive sense because each
generator would not like to bid lower than its own operating cost.

In practice, the company can only decide the bids x, while the production schedule y
and all the multipliers A\, m; and 7, are not controlled by the company. In the optimization
problem, however, the decision variables include the bids of Company A, the production
schedule, and the multipliers associated with all the constraints of the economic dispatch

problem.

82
3.2 Nonlinear Programming Formulations of the Prob-
lem

One way to solve the strategic bidding problem is to reformulate it into a single level
optimization problem. In this section we discuss two different nonlinear programming for-
mulations of the strategic bidding problem (3.4), namely, the MPCC formulation and one
based on strong duality. MPCC stands for mathematical program with complementarity

constraints.

3.2.1 MPCC Formulation

We have noted that the economic dispatch problem (3.1) is a linear program. Therefore
its first order necessary optimality conditions are sufficient to characterize a solution. In
other words, any point satisfying these optimality conditions must be a global solution of
the problem, but it is not necessarily the unique global solution of (3.1).

As a common approach to reformulate a bilevel optimization problem, the MPCC formu-
lation of the strategic bidding problem replaces the lower level problem in (3.4) by its first

order necessary optimality conditions. After reorganizing the terms, we have the MPCC

83

formulation

ma>/<\imize e(1:t) —e) y(1:1) (3.5a)
TyY, AT Ty
subject to x> ¢ (3.5b)
T
Ae — T, +m = (3.5¢)
b
0<AL (y'e—d)>0 (3.5d)
0<mLy=>0 (3.5e)
0<m, L (E—y)>0. (3.5f)

Here we use the complementarity notation L to indicate some logical conditions. Specifically,

0 <m Ly >0 stands for

m > 0, y > 0 and either (m); =0ory; =0 forall 1 <i < n.

The variables of problem (3.5) are z € R, y € R, A € R!, m € R" and 7, € R". The
total number of variables is 3n + ¢ + 1. The total number of constraints is 7n + ¢t + 3, of
which the number of equality constraints is 3n + 1 and the number of inequality constraints
is4n +1+ 2.

Problem (3.5) includes complementarity constraints (3.5d)-(3.5f), and therefore is a Math-
ematical Program with Complementarity Constraints (MPCC). Since it is widely known that
the constraint qualification conditions LICQ and MFCQ do not hold at every feasible point

of an MPCC, care needs to be used when (3.5) is solved numerically.

84

3.2.2 Strong Duality Formulation

Another way to reformulate the bilevel optimization problem (3.4) as a nonlinear program
is to use the strong duality condition for linear programming. That is, we require that the
lower level linear program is primal feasible and dual feasible, and that the primal objective
value equals the dual objective value. With these requirements, the strategic bidding problem

for Company A is

ma>§\imize Me(1:t)—e) y(1:1) (3.6a)
TyY s AT Ty

subject to x> ¢ (3.6b)
yTe>d (3.6¢)
0<y<E (3.6d)

T
Ae—m, +m = (3.6e)

b
A>0,m>0,m >0 (3.6f)

T
y=d\— E'T,. (3.6g)
b

The variables of problem (3.6) are z € R, y € R, A € R, m € R" and 7, € R". The
total number of variables is 3n 4+ ¢ 4+ 1. The total number of constraints is 5n + ¢t + 3, of
which the number of equality constraints is n + 1 and the number of inequality constraints
is 4n +t + 2. More specifically, the problem has a quadratic objective function. Constraints

(3.6b)-(3.6f) are all linear, while (3.6g) is the only nonlinear constraint, which is quadratic.

85

3.2.3 Existing Methods and Heuristics

In this section we will briefly talk about the existing methods and heuristics used to solve
the two nonlinear programming formulations of the strategic bidding problem. More detailed
discussion can be found in Pereira, Granville, Dix and Barroso [35] and the references therein.

The MPCC formulation (3.5) of the strategic bidding problem has complementarity con-
straints, so special techniques must be used when it is solved numerically. KNITRO (Byrd,
Nocedal and Waltz [8]) is able to solve MPCCs using the interior-penalty algorithm proposed
in Leyffer, Lépez-Calva and Nocedal [29]. The active set SQP method FILTER (Fletcher and
Leyffer [16, 15]) is also able to handle this type of problems. An exact penalty approach
is proposed by White and Anandalingam [46], where the complementarity constraints are
penalized.

The strong duality formulation (3.6) has a quadratic objective function and linear and
quadratic constraints. Two types of methods have been used to solve this formulation.

The first is to use a general nonlinear programming solver. The second type of method

is to penalize the quadratic equality constraint (3.6g) using an l; approach and solve the

86

penalization problem

T
x
ma>/<\imize Qe(l:t)—c)Ty(1:t)—p y —d\+ E"m, (3.7a)
LY AT T b
subject to x > ¢ (3.7b)
yTe>d (3.7¢)
0<y<FE (3.7d)
x
e — T, +m = (3.7e)
b
A>0,m>0,m >0. (3.7f)

Note that when the economic dispatch problem (3.1) and its dual problem (3.2) are both

feasible, the weak duality condition of linear programming gives

T

Yy Z d)\ - ETT‘-’UJ

hence the absolute value operation is not needed in (3.7a). The objective function of the pe-
nalization problem (3.7) has been shown to be an exact penalty function (see Anandalingam
and White [1]), thus the solution of the penalization problem is a local solution or stationary
point of the original problem (3.6), when the penalty parameter is large enough. The penal-
ization can either be directly solved by a quadratic programming solver, or be approximately
solved by a series of linear programs, where the production schedule y is fixed and the re-
sulting linear program is solved for other variables, then these variables are fixed and the

resulting linear program in terms of y is solved. This process is repeated until the penalty

87

gap is small enough.

In order to avoid local optimal solution, some heuristics are proposed when solving the
strong duality formulation, such as using different starting points (KNITRO has amultistart
feature), or performing local searches after a local solution is obtained.

In this thesis we will focus on solving the strong duality formulation of the strategic

bidding problem directly, instead of the penalization method.

3.3 Bilevel Program with Linear Lower Level Problem

The strategic bidding problem (3.4) that we have discussed in previous sections is a
specific example of a general bilevel optimization problem. More general discussions about
bilevel programming can be found in Bard [2] and Dempe [11].

In this section we will study bilevel programs whose lower level problems are linear.
Obviously the strategic bidding problem is in this class.

The general form of this class of problems is:

. a3
minimize f (z,9) (3.8)
subject to x solves LP (3.9) with y being given data, (3.8b)

where the lower level linear program has the form

minigr%nize 'z +dy (3.9a)

TER™

subject to Az + By > r (multiplier: \) (3.9b)
x>0 (multiplier: 7), (3.9¢)

where we assume that A € R, Be R re R™, ce R*, de R, A € R™ and 7 € R".

88

We note that there is a little difference between the general form (3.8) and the strategic
bidding problem. First, the strategic bidding problem has some “outer” level constraints like
(3.4b), namely, these constraints are part of the constraints of the bilevel program but not
part of the lower level linear program. We will see later in this section that these constraints
do not interfere with our analytical results. Second, in problem (3.9), the given vector y
appears as the right hand side vector of inequality (3.9b) and serves as parameters of the
lower level problem, and the coefficient vector ¢ and d in the lower level objective function
are given constants. In the strategic bidding problem, the bids x appear as part of the
coefficients of the lower level objective. In this section we will analyze the properties of the
constraints of the general form (3.8), and the strategic bidding problem can be analyzed by
similar techniques.

Moreover, we also note that the term d”y is a constant in the objective function of (3.9)
with any given value of y. We will still include it in (3.9a) because y is part of the variables

of the bilevel problem.

3.3.1 Relation between Two NLP Reformulations

In this section we will discuss the relation between the two nonlinear programming refor-
mulations of a bilevel program with a linear lower level problem. We start from the following

low dimensional example and then consider the general case.

Example 3.1 (An LP as the lower level problem of a bilevel program)

89

Consider linear program

minimize ¢z + CaTo (3.10a)

21,82
subject to x; +x9 > d (multiplier: \) (3.10b)
1 >0 (multiplier: \p). (3.10c)

Note that problem (3.10) has a unique finite solution only if ¢;/c; > 1; we assume that this

inequality holds. The dual problem of (3.10) is

manliE\r;ize Aid (3.11a)
subject to ¢ — A1 — A= 0 (3.11b)
co— A =0 (3.11c)
AL Az > 0. (3.11d)

The KKT conditions for (3.10) are:

ci—M—X=0 (3.12a)
=AM =0 (3.12b)
T1+29—d >0 (3.12¢)

21 >0 (3.12d)

Mz +29—d)=0 (3.12¢)
Aoy =0 (3.12f)

90

Now suppose that (3.10) is the lower level problem of a bilevel program; then (3.12)
will be the constraints in the MPCC reformulation of the bilevel program. We add up the

complementarity conditions (3.12¢)-(3.12f) and group the terms to get

T (/\1 +)\2) + .Tg/\l = /\1d

Further making use of the dual feasibility conditions (3.12a)-(3.12b), we get

C1T1 + Coxo = Ald

Note that this is the strong duality property in linear programming, that is, the primal
objective equals the dual objective. We then use this equation to replace the complementarity

conditions (3.12e)-(3.12f). System (3.12) becomes

1= A=A =0 (3.13a)

e — M\ =0 (3.13b)

1+ 2o —d>0 (3.13c)

1 >0 (3.13d)

171 + e — Aid =0 (3.13e)
AL >0 (3.13f)

As > 0. (3.13g)

It is easy to see that (3.13) are the constraints in the strong duality reformulation of the
bilevel program. a
The example above discovers the relation between the MPCC formulation and the strong

duality formulation of the bilevel program with linear lower level problem (3.10): We can add

91

up the complementarity constraints in the MPCC formulation and derive the strong duality
formulation using the dual feasibility conditions. We note that the derivation procedure has
nothing to do with the objective function of the bilevel program. In fact, Example 3.1 shows
that the KKT conditions of linear program (3.10) can be transformed into its strong duality
conditions. This inspires us to study the more general linear program of the form (3.9).
We can transform the KKT conditions of linear program (3.9) into its strong duality

conditions as follows: First, the KKT conditions of problem (3.9) are

c— A"\ —71=0 (3.14a)

Az +By—r>0 (3.14b)
x>0 (3.14c)
M(Az+By—1r)=0 (3.14d)
e =0 (3.14e)

A>0 (3.14f)

7w > 0. (3.14g)

Then we sum up the complementarity conditions (3.14d)-(3.14e) and group terms to get

(ATX+)Tz = (r — By)" A

Using this equation and (3.14a), we have

c'r=(r— By)"\

This is the strong duality property of linear program (3.9): the primal objective equals the

dual objective (in both of which the constant d’y is omitted). Hence the strong duality

92

conditions of (3.9) are obtained by replacing the complementarity conditions (3.14d)-(3.14e)

with the strong duality condition in (3.14):

c—ATA—71=0 (3.15a)
Ar+By—r>0 (3.15b)
x>0 (3.15c¢)

e+ (By—r)TA=0 (3.15d)
A>0 (3.15€)

T > 0. (3.15f)

In the context of bilevel program with linear lower level problem, the above procedure
reveals the relation between two nonlinear programming formulations of problem (3.8): Since
(3.14) are the constraints of the MPCC formulation and (3.15) are the constraints of the
strong duality formulation, we can derive the strong duality formulation of bilevel program

(3.8) from its MPCC formulation.

3.3.2 Failure of Constraint Qualifications

We have studied two nonlinear programming reformulations of a bilevel program with
a linear lower level problem. It is well known that the constraint qualification conditions
LICQ (Definition 1.2) and MFCQ (Definition 1.3), which we describe in Section 1.3.2, fail
at any feasible point of an MPCC, which makes MPCCs hard. See Scheel and Scholtes [38]
for more details. Therefore the MPCC formulation of a bilevel problem is also hard because
of the existence of the complementarity constraints.

Let us now consider the constraint qualifications for the strong duality formulation. Again

we will start from the low dimensional example in the previous section by way of motivation,

93
and then consider the more general case.
Example 3.2 (Continued with Example 3.1)

Let us consider the strong duality formulation (3.13) and assume that d is part of the
variables of the bilevel program. With respect to variables (z1, z2,d, A1, A2), the gradients of

all the constraints in system (3.13) are:

v, = (0,0,0,—1,—1)T
vy = (0,0,0,—1,0)7

vs = (1,1,-1,0,0)7

vy = (1,0,0,0,0)"

vs = (c1,62,— M1, —d,0)"
vs = (0,0,0,1,0)"

v; = (0,0,0,0,1)7.

Note that constraints (3.13a), (3.13b) and (3.13e) must be active at any feasible point because

they are all equality constraints. Equations (3.13a)-(3.13b) give

)\1 = Co Z 0, AQ = C1 — Co 2 0. (316)

We first show that at least one of (3.13c) and (3.13f) must be active, and at least one of

(3.13d) and (3.13g) must be active. That is, we want to show that

/\1(.%1 + Ty — d) = /\2331 =0. (317)

94

Considering (3.16), we want to show that

62(371 —+ Ty — d) = (01 - Cz)xl =0.

If this is not true, we have from (3.13c)-(3.13g) and (3.16) that co(zy + 22 — d) > 0, or

(¢1 — ¢o)z1 > 0. In either of these two cases we know that

co(x1 + g — d) + (¢4 — c2)x1 > 0.

We simplify this inequality and get

0 < ey + cx9 — Cod = €121 + Coxe — Aid.

This clearly contradicts (3.13e). Hence we know that (3.17) holds. In other words, at least
one of (3.13¢) and (3.13f) must be active, and at least one of (3.13d) and (3.13g) must be
active.

Now we check the constraint qualifications. Recalling that (3.13a), (3.13b) and (3.13e)
are always active and their gradients are linearly independent, we consider the following four

cases at any feasible point of (3.13):

(i) When (3.13c) and (3.13d) are both active: The gradients of active constraints are vy,

v, V3, ¥4 and vs. Assume that there exists vector w € R® such that wv; = wlvy =

wlvs = 0 and wlvy > 0, wlvy > 0. From w'v; = wTvy, = 0 we have wy = w; = 0.
From w”vs = 0 we have cyw; + cowy — \ws — dwy = 0, hence cywy + cowy — \yws = 0.

Since ¢, = A1 > 0, we have

ClLW1 + CoWo — CoW3 = 0. (318)

95

On the other hand, from w”v3 > 0 we have w; + wy — w3 > 0, hence

Cowq + cowy — cowsz > 0 (319)

because ¢; > 0. We then conclude from (3.18)-(3.19) that (¢; —c2)w; < 0. This cannot
be true because we know from (3.16) that ¢; — ¢; = Ay > 0 and from wlv, > 0 that

w; > 0. So such vector w does not exist.

(ii) When (3.13c) and (3.13d) are both inactive: Then (3.17) indicates (3.13f) and (3.13g)
are active. The gradients of active constraints are vy, vq, vs, v and v7. Assume that
there exists vector w € R° such that w’v; = wlv, = wlvs = 0 and wlvg > 0,

wlv; > 0. From wvy = 0 we have wy = 0. From w’vs > 0 we have wy, > 0. This

contradiction indicates that such vector w does not exist.

(iii) When (3.13c) is active and (3.13d) is inactive: Then (3.17) indicates (3.13g) is active.
The gradients of active constraints are vy, vy, v3, vs and v;. Assume that there exists
vector w € RN° such that w'v, = wlvy = wlvs = 0 and wlvgy > 0, wv; > 0. From
wlvy = w'vy = 0 we have wy = ws = 0. From w”v; > 0 we have ws > 0. This

contradiction indicates that such vector w does not exist.

(iv) When (3.13d) is active and (3.13c) is inactive: Then (3.17) indicates (3.13f) is active.
The gradients of active constraints are vy, vy, vy, v5 and vg. Assume that there exists
vector w € R° such that wv; = wlve = wlvs = 0 and wlv, > 0, wvg > 0. From
wlvy = 0 we have wy = 0. From w’vg > 0 we have wy > 0. This clear contradiction

indicates that such vector w does not exist.

Hence we have shown that MFCQ also fails at any feasible point of (3.13), and then LICQ

also fails at any feasible point of (3.13). This is to say, LICQ and MFCQ fail at any feasible

96

point of the strong duality formulation of the bilevel program whose lower level linear problem
is (3.10). O
In order to analyze the constraint qualifications for the general bilevel program (3.8), we

eliminate 7 from system (3.15) and get

Ar+By—r>0 (3.20a)
z>0 (3.20b)

'z + (By—r)'A=0 (3.20¢)
A>0 (3.20d)

c—ATA>0. (3.20e)

We have shown that the complementarity conditions in (3.14) imply the strong duality
condition (3.20c). The following lemma shows that the strong duality condition (3.20c), on
the other hand, implies the complementarity conditions in (3.14) at a point where the primal
and dual linear programs are both feasible. Therefore we know that the complementarity

conditions are equivalent to the strong duality condition for a linear program.

Lemma 3.3 At any feasible point of system (3.20), the i-th constraint of (3.20a) must be
complementary to the i-th constraint of (3.20d), and the j-th constraint of (3.20b) must be

complementary to the j-th constraint of (3.20e). That is,

(Az+ By —1)ihi=0 (V1<i<m), zj(c—A"X); =0 (V1 <j<n). (3.21)

Proof. We use contradiction to prove the lemma.
At any feasible point of (3.20), assume that there exists an index 1 < i < m such that

the i-th constraint of (3.20a) is not complementary to the i-th constraint of (3.20d). In other

97

words, (Az + By —r); > 0 and A; > 0. Then we have from (3.20) that

c'r=(r—By)'A = (r—By)\+ Z (r — By)r Xk

1<k<m, ki
< (An)hi+) (Az)ed = ATAz = (AT\) 2.
1<k<m,k#i
Hence we have (c— ATA\)Tx < 0, which contradicts the fact that at any feasible point (3.20b)
and (3.20e) hold. This indicates that (Az + By —r);A; =0 for all 1 <i < m.
The second part of (3.21) can be shown similarly: Assume that there exists an index
1 < j < n such that the j-th constraint of (3.20b) is not complementary to the j-th

constraint of (3.20e). In other words, z; > 0 and (c — AT)); > 0. We have

(r=By)"A=clz = cjrj + Z CrTk
1<k<n,k#j

> (ATA)zi+ > (ATA)gz = 2T ATA = (Az)T A,

1<k<n.k#j

Hence (r — By — Az)TX > 0, which contradicts the fact that at any feasible point (3.20a)
and (3.20d) hold. This indicates that z;(c — ATA); = 0 for all 1 < j < n. The proof is
completed. O

The following theorem is our main conclusion:

Theorem 3.4 LIC(Q) and MFCQ both fail at every feasible point of the strong duality for-

mulation of bilevel program (3.8), with (3.9) as the lower level problem.

Proof. It is sufficient to show that LICQ and MFCQ both fail at every feasible point of
nonlinear system (3.20).

Let us consider MFCQ. According to Lemma 3.3 and without loss of generality, we assume

that there exist index sets J; € {1,2,---,m}, I € {1,2,--- ,n} such that

(Az+ By —r)W =0 AU >0
(Az+ By —r)" >0 A2 =0
2 =0 (c—ATN)I) >0

) >0 (c— ATN)I2) =,

98

(3.22a)
(3.22b)
(3.22¢)

(3.22d)

where Jo = {1,2,--- ,m}\J; and I, = {1,2,--- ,n}\I;. Note that the following derivation

also holds when any index set Ji, Jo, I or I3 is empty.
dy

Assume there exists a vector d = d, | € RtH™ such that

dy

c"d, + \"Bd, + (By —1)"dy, =0
(Ad,)"") + (Bd,)" >0
d) >0

d >0

—(ATdy)") > 0.
Therefore by (3.22¢), (3.22d) and (3.23c¢),

(INT (1) ~ (AT \\IYT g) — \T A1) g(Ih)
(M) = (AN) = ATAI GG

T

()T) = ((ATA))

Zz

d2) = \T Al)q2),

(3.23a)
(3.23b)
(3.23¢)
(3.23d)

(3.23¢)

(3.24a)

(3.24b)

99

Also noticing that A(/2) = 0, we have

T'd, + \"Bd,
T

A1) Bd,)1)

— Csz+ (y)
2(2) (Bd,)\2)

= Td,+ (A)" (Bd,)™ + (A" (Bd,)

= (™M)Td 1 (42T d) 4 (A)" (Bd,) ™) +0

> ATAEGUD) 4 \TAE)) 4 (AT (B, (by (3.24))

(1)
— /\T [A(Il) A(Iz)} dz + (/\(J1))T (de)(Jl)
dg™

T
= MAd, + (A" (Bd,)
T
A1) A(Jl)dx

= + () (Bdy) ")
2\(J2) Al) g,
- (/\(Jl))T (AYUDd, + (Bd,)) + (Aw))T (AV2)d,)
> 070+ 07 (AY)d,) (by (3.22a), (3.22b) and (3.23b))

= 0. (3.25)
Similarly, by (3.22a), (3.22b) and (3.23d),

By —r (J1) Td(Jl) — — ((Az)UV) Td(Jl) = 2T (AU Td(Jl) (3.26a)
A A A

((By —r)¥)" d > — ((Az)¥)" d?) = —2™ (AU2)" (. (3.26b)

100

So we have

(By —r)Tdy
= ((By _ T)(Jl))ng\Jl) + ((By _ r)(Jz))TdE\JZ)
> —aT (A" 4 — o (AU 4 (by (3.26))

T
400) ™

= —./I,‘T
A(JQ) / dg\JZ)
= —.ITATd)\
T r
2(0) (Am)"
= — d
z(I2) (A®))T ’

= — (3;(11))T (A<11))T dy — (x(fz))T (A(Iz))T dy
> =07 (A" dy +070 (by (3.22¢), (3.22d) and (3.23¢))

= 0. (3.27)
Thus (3.25) and (3.27) give
c'd, + A\"Bd, + (By —r)"dy > 0,

which contradicts (3.23a). So such vector d does not exist.

Hence we know that MFCQ fails at every feasible point of (3.20), then LICQ also fails
at every feasible point of (3.20). Therefore we conclude that LICQ and MFCQ both fail at
every feasible point of the strong duality formulation of bilevel program (3.8). a

For a bilevel program with linear lower level problem (3.9), Theorem 3.4 indicates that
the strong duality formulation will be as difficult for any general nonlinear programming

solver as the MPCC formulation.

101

In the beginning of this section, we have mentioned that the strategic bidding problem
has other “outer” level constraints that are not included in the general form (3.8) of the
bilevel program that we have analyzed. We point out that these constraints are all lower
bound constraints, thus the existence of these constraints will not reduce the number of
active constraints at any feasible point. Instead, they may only provide the strong duality
formulation with more gradient vectors of the form (¢!, 0,0)”, where ¢; indicates a coordinate
vector, that are the same as those of the constraints (3.9c). Therefore one can easily show
that our analysis in this section still holds well when these extra bound constraints are

present.

3.4 Discontinuous Objective Function of Bilevel Pro-
grams

In the previous section we have analyzed the properties of the constraints of the strong
duality reformulation of a bilevel program with a linear lower level problem. The failure of
the constraint qualifications may or may not be a source of difficulties for the strong duality
formulation. In this section we analyze an important property of the objective function value
of bilevel programs, namely, the objective function may not be continuous. This property
makes the strong duality formulation of the bilevel program hard for nonlinear optimization

solvers.

3.4.1 Objective of the Strategic Bidding Problem

We first consider the objective function of the bilevel formulation of the strategic bidding
problem (3.4).

For simplicity we assume that the production cost ¢ = 0. Then the net profit of Company

102

A, the objective of the strategic bidding problem, is given by Ae(1 : ¢)"y(1 : ¢). Let us
consider the example where ¢t = 1 and E7e > d, which means that there is only one generator
belonging to Company A, and the total production capacity of the market is larger than the
system demand. Without loss of generality, we rank the bids from outside Company A to
be by < by <---<b, 1. Let k be the minimum index such that E4 + Zle Ep, > d, where
E, is the production capacity of the (only) generator belonging to Company A, and Ep, is
the production capacity of the i-th generator outside Company A, whose bid is b;.

When ¢t = 1, the lower level linear program can be solved by a supply-demand graph
because of its knapsack-like property. The relationship between the bid z and the production
level y4 of the generator belonging to Company A is the step-like function shown in Figure
3.1. Obviously for the lower problem the production level of Company A is not a continuous

function of the bid z.

Ya

o X

Figure 3.1: The objective value of the strategic bidding problem projected onto the z-14
plane.

Now consider the full strategic bidding problem (3.4). Figure 3.2 shows the dependence

of the profit of Company A on the bid z. We consider the following cases:

e When the bid z is less than b, the spot price of the system is determined by b;, and

103

the generator belonging to Company A is always producing at its full capacity, so its
profit is a constant by E4. When z is equal to by, the generator belonging to Company
A is making a bid that is equal to some other generators outside Company A, so the
independent operator may choose any combination of the production schedule in order

to satisfy the demand, and thus the profit of Company A is not uniquely determined.

e When the bid = exceeds that of some outside generator by, ; where j > 1 but is less than
bi+j+1, © determines the spot price (i.e. A =), but the generator belonging to Com-
pany A no longer produces at its full capacity. Instead, the amount of its production
isyqa = d_ZISigj Ep,. Hence the profit of Company A is Ay, = (d — 219‘53' EBi) x,
which is a linear function of x, and the slope of this linear function is y4. It can be seen
that the value of y4 is decreasing as = increases, so the slope of the linear segments in
Figure 3.2 is decreasing. Again, when the bid x is equal to some other bid, the profit of
Company A is not uniquely determined because the independent operator can choose

any combination of the production schedule to meet the demand.

e When the bid z is greater than a certain value by, the generator belonging to Company
A will not be included in the production schedule, that is, y4 = 0. In this case the

profit of Company A is 0.

Figure 3.2 shows that the objective function of the strategic bidding problem is generally
discontinuous. Moreover, the problem has many local minima. Therefore, the strategic
bidding problem is numerically hard for any solver.

In Figure 3.1, we imagine that the third dimension is the profit z = Ay4. If projected
on the z-y, plane, the profit seems to be continuous and differentiable, as shown by the
dashed curves in Figure 3.1. However, we can see if the profit is restricted to the feasible

(x,ya) pairs on the piecewise linear segments, it is no longer continuous. Rather, the value of

104

profit

bE,

o bn 8, B, I, » X

Figure 3.2: The dependence of the profit of Company A on its bid z.

the profit can “jump” across different contours. The profit z, projected onto the z-z plane,
should actually be the piecewise linear profit curve in Figure 3.2.

Now we study the objective of the strong duality reformulation of the strategic bidding
problem. As expected, this formulation is also a hard problem.

At the first glance, (3.6) is a problem with quadratic objective function, one quadratic
constraint and some linear constraints, all of which are continuous and even differentiable.
Especially, the objective function seems to be continuous.

However, we note that continuous objective function and constraints do not necessarily
indicate continuous set of feasible points. Figure 3.3 shows such an example. Let a, b, ¢
and d be linear inequality constraints, e be a nonlinear equality constraint and f be a linear
equality constraint. We see that the only feasible points are P and P’. Hence the set of
feasible points is discontinuous. It is possible that P and P’ lie on different contours of the
objective function, therefore the objective function could be discontinuous.

Numerically, the jumping value of the objective function can be observed if we solve

Figure 3.3: Discontinuous feasible set when all constraints are continuous.

a (inequality)

c (inequality)

f (equality)

e (equality)

b (inequality)

d (inequality)

105

(3.6) using a nonlinear programming solver, such as KNITRO. In the following run from

KNITRO/DIRECT, the objective function value shows dramatic changes with a non-monotone

manner in the cited iterations. This also happens in many other runs.

Acc
Acc
Acc
Acc
Acc
Acc
Acc
Acc
Acc
Acc

Acc

Acc

Iter(maj/min)
o/ 0
1/ 1
5/ 5
6/ 6
7/ 7
8/ 8
9/ 9

10/ 10
11/ 11
12/ 12
13/ 13
14/ 14
15/ 15
106/ 106
107/ 107

Acc

Objective

.524395e+02
.566778e+02

.478716e+02
.350291e+03
.684500e+02
.076703e+02
.741726e+00
.031360e+03
.694611e+02
.931478e+03
.769676e+02
.141958e+02
.030830e+03

.169720e+05
.981375e+05

Feas err

S N N N N N N

.154e+04

.107e+04

.573e+04
.500e+04
.487e+04
.474e+04
.454e+04
.398e+04
.386e+04
.302e+04
.290e+04
.279e+04

.254e+04

.365e+03
.225e+03

Opt err

.TT7e+01

.077e+01
.824e+01

3.808e+01

w w w w

w w w

.793e+01
.195e+01
.161e+01
.146e+01
.023e+01
.021e+01
.007e+01
.890e+01

.385e+01
.436e+01

| |Stepl |

4.252e+01

5.907e+02
9.346e+01
1.619e+01
1.263e+01
1.880e+01
4.955e+01
1.277e+01
7.444e+01
1.841e+01
1.143e+01
1.980e+02

2.841e+01
3.649e+01

CG its

» N w o o

N & o o

16

108/ 108
314/ 314
315/ 315
316/ 316
418/ 418
419/ 419
420/ 420
468/ 470

Acc

Acc
Acc

Acc

Acc

Acc

Acc

Acc

.022549e+05

.038441e+05
.688233e+05
.692100e+05

.278114e+05

.998244e+05

.996839e+05

.051810e+05

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics

Final objective value
Final feasibility error (abs / rel)

Final optimality error

(abs / rel)

of iterations (major / minor)

of function evaluations

of gradient evaluations

of Hessian evaluations

Total program time (secs)

3.4.2 Objective of the General Bilevel Program

.192e+03 8.
.778e+02 1.
.493e+02 2.
.493e+02 2.
.024e+01 1.
.737e+00 3.
.718e+00 6.
.106e-08 2.

403e+01

148e+02
683e+02
668e+02

024e+01

310e+01

718e+00

663e-05

3.496e+01

8.296e-01
1.053e+03
1.038e+02

3.148e+00

2.716e+03

2.212e+01

2.838e+01

4.05180999137220e+05

9.11e-08 / 1.77e-12

2.66e-05 / 2.70e-08

468 /
483
469
468

47

6.77338 (

0

2.560 CPU time)

106

It is well known that the objective function of a general bilevel program could be dis-

continuous on its feasible region. The following example illustrates that a bilevel program

of the form (3.8) could have a discontinuous objective function because its feasible set could

be discontinuous, even if the bilevel program is a bilevel linear program, that is, the lower

level problem and the upper level problem are both linear.

Example 3.5 (A two-dimensional bilevel linear program)

107

Consider the following linear program in terms of x:

minimmize - (3.28a)
z—2y<0 (3.28b)
r+y<6 (3.28c)
x> 0. (3.28d)

Note that y is the given data for this problem. For each fixed value of y, we look for the
maximum possible value of z such that constraints (3.28b)-(3.28d) are satisfied. The solution
set of this problem is marked by the bold line segments AB and BO in Figure 3.4(a).

Let (3.28) be the lower level problem of the following bilevel program:

minimize — x4+ 3y (3.29a)

w,y
subject to 0<y <6 (3.29b)
x solves (3.28). (3.29¢)

In Figure 3.4(a), it is seen that the outer level constraint (3.29b) does not interfere with the
solution set of the lower level problem (segments AB and BO). So the feasible set of the
bilevel problem (3.29) is still the bold line segments AB and BO, and it is continuous. The
contours of the objective function —x + 3y are shown in the figure by the dashed lines. We

see then the optimal solution is O(0,0), which is both local and global.

v - 2 -
6 A /////’/ 6l A ///,//
st _ " N //,//// st _+-"7 \ /,//’///
4 /,/’/// //////// 4t - ////////
J L N JoLT Ne--
2L T ///// /B 2t - /,/’// .

////// - //////// D -

L ///// i _+ 7 ///”/

o ///’/// o ///////
OF—— > O——=

0 1 2 3 4 o] 1 2 3 4

(a) Graph for problem (3.29). (b) Graph for problem (3.30).

Figure 3.4: Feasible sets of two bilevel linear programs.

Let us consider another bilevel problem of the form

minimize — x4+ 3y
z,y

subject to 0<y <6
<3

x solves (3.28).

108

(3.30a)

(3.30D)
(3.30c)

(3.30d)

The only difference between (3.29) and (3.30) is the constraint (3.30c). However, this con-

straint will interfere with the solution set of the lower level problem AB and BO. We can

easily see from Figure (3.4)(b) that the feasible set of the bilevel program (3.30) is given by

the bold segments AC' and DO, which indicates that (3.30) has a discontinuous feasible set.

Therefore this bilevel problem has two local solutions (3, 3) and (0, 0), of which the latter is

the global solution.

O

109

We conclude from this example that the discontinuous feasible set for a bilevel program is
caused by the fact that it has a lower level optimization problem as part of the constraints,
and some outer level constraints may restrain part of the solution set of the lower level
problem from being feasible for the bilevel problem. The discontinuity is not dependent
on the reformulation techniques we may use to generate a single level problem, such as the
strong duality condition. Discontinuous feasible set often implies that bilevel programs have
more than one local solutions, which make them difficult for general nonlinear programming
solvers. In fact, it has been shown in Vicente, Savard and Judice [41] that finding the local

optimal solution of a bilevel linear program is an NP-hard problem.

3.5 Allowing Uncertainty in Strategic Bidding

In earlier sections the properties of the strategic bidding model (3.4) are analyzed, where
we assume that the electricity demand of the market and the bids of other companies are
known. In practice this is not very likely to happen, and the strategic bidding model (3.4)
is artificial. In this section we will slightly relax this assumption and improve the model by
allowing uncertainty in the demand and other companies’ price bids. The improved model
is called the strategic bidding problem under uncertainty.

We consider a finite number of scenarios indexed by s = 1,2,---,S and the probability
of the occurrence of the s-th scenario is given by p® € [0,1]. In each scenario we allow
for a market demand d°, a production capacity vector E*, which we assume is known in
the Bertrand model, and a vector of the price bids b° from generators outside Company
A. Accordingly, the production schedule, the spot price and the multipliers associated with
the lower and upper bounds of the production schedule are also distinguished by scenarios.
We denote these variables by y°, A*, 7j and 7, respectively. It is noted that only one

vector of bids x from Company A is allowed, even for different scenarios. We set up the

110

strategic bidding model by maximizing Company A’s average total profit over its bid, with

the main constraints being that the independent operator determines the production schedule

by solving the economic dispatch problem in each scenario. In other words, we would like

to find the optimal bids for Company A such that the expected total profit for all different

scenarios is maximized.

The economic dispatch problem for the s-th scenario (1 < s < 5) is

T
T

minimize Y
y® b’
subject to (y*)Te > d* (multiplier: *)

0 <y’ <E° (multiplier: 7}, 7).
Then the stochastic version of the bilevel strategic bidding problem is

s
ma>§imize E ps(Ne(1:t) —e) y°(1: 1)
I)ysi s,“f’”"a 521

subject to x> ¢;

y® solves (3.31) with multipliers A\°, 7], 7

S
ur

(3.31a)

(3.31D)

(3.31c)

(3.32a)

(3.32b)

(3.32¢)

We can again reformulate this bilevel optimization problem into a single level nonlinear

program. The stochastic version of the MPCC formulation of problem (3.32) is

s
maximize Zps Ne(l:t)—e) 31 : 1)

s
z,y° aAS T ,Wi s=1

subject to = > ¢;

T
Ne—m, +m = (V1<s<9)
bS

0<N L ((¥)'e—d°)>0 (VI<s<0)
0<7 Ly >0 (VI<s<09)

0<m L (E°—9y°)>0 (V1<s<08).
The stochastic version of the strong duality formulation of problem (3.32) is

maximize Zps (Ne(l:t)—e) (1 : 1)

s \S 8
z,y%,A 5T Ty

subject to x> ¢

0<y* <E (V1<s<08)
x

Ne—m +m =] (V1<s<09)
bS

A >0,m >0, >0 (V1<s<8S)
T

v =d°)\ — (E)Trs (V1 <s<8S).
bS

111

(3.33a)

(3.33b)

(3.33¢)

(3.33d)
(3.33e)

(3.33f)

(3.34a)

(3.34b)
(3.34c)

(3.34d)

(3.34e)

(3.34f)

(3.34g)

We note that the stochastic versions of the nonlinear programming reformulations of the

112

strategic bidding problem under uncertainty keep the basic structure of their deterministic
counterparts (3.5) and (3.6), but the sizes of problems (3.33) and (3.34) can grow rapidly with
the number of scenarios S. For a modest number of scenarios, they can be solved directly
by modern nonlinear programming solvers. When the number of scenarios is large, the
numerical solution of these problems would require special techniques such as decomposition

techniques, which is beyond the range of this thesis.

3.6 Numerical Experiments with the Strong Duality
Formulation

In this section we discuss some numerical experience with the strong duality formulation

of the strategic bidding problem.

3.6.1 Numerical Experiments with One Scenario

We first solve the strong duality formulation using data from only one scenario using

KNITRO and observe the following from the results:

e KNITRO/DIRECT: The problem is solved in 468/470 (major/minor) iterations, and the
final objective value is 4.052 x 10°. In 337 minor iterations the solver has to revert to
KNITRO/CG because the KKT matrix has wrong inertia or the direct step is rejected.
Among these CG steps, 70 of them report negative curvature, 250 of them report trust
region bound crossed, and only 17 of them are exact steps. In terms of the steps, in the
133 minor iterations where direct steps are taken, the length of the step (||d||) ranges
from 10° to 10® (steps are very large when close to the solution), but the slack bound

cuts most of these long steps (a, ranges from 1075 to 1071); in the 337 minor iterations

113

where CG steps are taken, ||d|| is usually 10 to 10?, and many CG steps reach the

trust region bound even if the trust region radius is large.

e KNITRO/CG: The problem is solved in 311/314 (major/minor) iterations, and the final
objective value is 4.052 x 10°. Among all the 314 minor iterations, 7 of them report
negative curvature, 197 of them report trust region bound crossed, and 110 of them

are exact steps. ||d|| ranges from 10° to 103.

e KNITRO/ACTIVE: The problem is solved in 39/40 (major/minor) iterations, but the
final objective value is 2.332 x 10°. In the EQP phase, in most of the iterations the

solver reports negative curvature after the first CG iteration.

We see that the interior point solvers KNITRO/DIRECT and KNITRO/CG perform poorly on
this problem. Our observations could suggest some possibilities: the Hessian of Lagrangian
is singular, LICQ fails, or multiple local solutions are present.

In order to counteract the effect of singular Hessians, we regularize the problem by adding
a term of the form —pXT X to the objective function (3.6a) (since this is a maximization
problem), where p = 1075 and X is the vector of all variables (z,y, \,m;,7,). However,
this regularization technique only brings marginal improvements in the performance of the
solvers.

In order to look for explicit evidence of the failure of constraint qualification conditions,
we use KNITRO to solve problem (3.6) (with regularization) to a very high accuracy (with
KNITRO option opttol=5.0e-9). It takes KNITRO/DIRECT 474/541 (major/minor) itera-
tions to achieve the desired accuracy, but when close to the solution (beyond iteration 448),
there are more than 30 minor iterations in which the solver only takes 1 CG iteration to the
trust region bound. By evaluating the constraint values and their gradients at every iterate

of the run, we observe that the Jacobian matrix of the active constraints is rank deficient

114

close to the optimal solution. From major iteration 442 the smallest singular value of the
Jacobian of the active constraints is of order 107!°, which suggests that there are linearly
dependent constraint gradients. Therefore we know that LICQ fails at these iterates of the

rumn.

3.6.2 Numerical Experiments with More Scenarios

We allow uncertainty in the strategic bidding model and solve the strong duality formu-
lation (3.34) using data from 10 scenarios (S = 10) with equal possibilities (p; = 0.1 for all
1 < s <10). We also use the multistart option in KNITRO and test more than one starting
points with the hope to find a good local solution. Table 3.1 reports the performance of the
solvers.

We observe from the numerical results that the problem is still difficult for all algorithms
implemented in KNITRO. When only one starting point is used, KNITRO/DIRECT gives the
best objective value; when more starting points are used, KNITRO/CG gives another local
solution with better objective value. This shows that the multistart heuristic helps to find
better solutions of the strategic bidding problem. The CPU time for finding a good solution

is high but acceptable.

| solver || #starts | final objective | CPU time (sec) |
1 5.44957 x 10° 245.360
KNITRO /DIRECT 3 5.44957 x 10° 1937.880
10 5.44957 x 10° 8281.650
1 5.27291 x 10° 495.360
KNITRO/CG 3 5.48548 x 10° 1729.050
10 5.48548 x 10° 3153.160
1 4.78499 x 10° 2.950
KNITRO/ACTIVE 3 4.78499 x 10° 7.690
10 4.78499 x 10° 24.380

Table 3.1: Performance of KNITRO on the strong duality formulation of the strategic bidding
problem with 10 scenarios.

115

Chapter 4

Step Acceptance Comparison

Filter techniques have been proposed as a way to promote fast convergence of optimiza-
tion algorithms. They are designed to replace exact penalty functions, which require the
appropriate choice of a penalty parameter. The stated goal of filter techniques is to interfere
as little as possible with Newton steps. This is a worthy goal as it has been observed that
unrestricted Newton steps often result in fast convergence even far away from the solution.
There are, however, some conceptual drawbacks in the way filters are defined (see Curtis
[10]). In particular, as a filter is constructed based on previous function and constraint
values, steps that result in an increase in the objective function may be prohibited, even if
they give rise to a reduction in the constraints. Contemporary penalty techniques adjust the
penalty parameter to allow these kinds of steps.

The goal of this study is to observe whether the potential drawbacks of filter techniques
can be observed in practice. To this end, we made some controlled experiments with two
codes, both of the trust region type. The first code is FILTER, which implements an active-set
SQP method and uses a filter globalization technique (Fletcher and Leyffer [16, 15]). The
second code is KNITRO/CG, an interior point method that uses an exact penalty function for

step acceptance. Our goal is to measure the frequency with which each code accepts a full

116

step.

We selected 291 small scale constrained optimization problems from the CUTEr collection
in Ampl format. These problems were selected so that the sum of the number of variables
and the number of constraints is no larger than 500. The performance profile in Figure 4.1
shows that the two solvers have a similar level of robustness. As expected, FILTER tends to
require fewer iterations because an active-set algorithm tends to be very effective on small

problems.

Number of iterations

Percentage of problems

Knitro-CG

0 | I I I I I I I
1 4 16 64 256 1024 4096 16384

x times slower than the best

Figure 4.1: Performance profile for KNITRO-CG and FILTER on 291 small constrained prob-
lems, number of iterations.

Since both solvers implement a trust region approach, the computed step in each minor
iteration is not subject to a line search, so the full step is judged by the penalty function or
the filter. If the step is rejected, a second order correction (SOC) step is computed and the
corrected step is examined by the penalty function or the filter again. There are 230 problems
from the set of 291 problems for each of which both solvers terminate with optimality in
1000 iterations and report the same optimal objective function value. We compare the step

acceptance rate of the two solvers for these 230 problems.

117

In our comparison we will consider two cases:

1. When second order correction steps are not counted: In this case we will only consider

the Newton step computed in each iteration.

For KNITRO/CG, the total number of iterations is 6883, and the total number of ac-
cepted steps for which SOC steps are not performed is 5080. So the step acceptance
rate is 5080/6883 = 73.81%.

For FILTER, the total number of iterations is 2784, the total number of feasibility
restoration iterations is 295, and the total number of accepted steps for which SOC
steps are not incurred is 1666. So the step acceptance rate is 1666/(2784 — 295) =

66.93%.

2. When SOC steps are counted: In this case we consider the Newton step with possible

second order corrections in each iteration.

For KNITRO/CG, the total number of iterations is 6883, and the total number of ac-
cepted steps is 5439. So the step acceptance rate is 5439/6883 = 79.02%. There
are 446 iterations distributed in 50 problems, where negative curvature is reported, of
which there are 216 accepted steps with negative curvature, so if we only consider the
steps with possible SOC but without negative curvature, the step acceptance rate is

(5439 — 216) /6883 = 75.88%.

For FILTER, the total number of iterations is 2784, the total number of feasibility
restoration iterations is 295, the total number of accepted steps for which SOC steps
are not incurred is 1666, and the total number of accepted steps for which SOC steps

are incurred is 223. So the step acceptance rate is (1666 +223) /(2784 —295) = 75.89%.

In summary, by none of these measures is the filter mechanism more tolerant than the

penalty function. To our knowledge, this is the first time that such an observation has

118

been made. One should make some qualifications. First of all, our experiments were done
using two different algorithms and codes. A more accurate approach would be to try to
implement a filter and a penalty function in the same algorithm. This is not easy, however,
as filter techniques usually include a feasibility restoration phase that significantly alters the
underlying algorithm. A second observation is that the step acceptance mechanism should
accept as many productive steps as possible, not just any steps. This is difficult to measure.

However, we are able to make more observations by looking closely at the data for the
FILTER code. There are 52 problems for which FILTER rejects Newton steps. Let f denote
the function value and ||c|| denote the constraint violation. For every computed step, we

divide the f-||c|| space into four regions:

1. Region 1: f increases and ||c|| increases;
2. Region 2: f decreases and ||c|| increases;
3. Region 3: f decreases and ||c|| decreases;

4. Region 4: f increases and ||c|| decreases.

Steps into Region 3 will be accepted by both step acceptance techniques. Therefore we
consider the proportion of steps into the other regions. For each the 52 problems, we calculate
the percentages of rejected Newton steps falling into each of the four regions described above.
After that we calculate the averages of the percentages of rejected steps into these regions.
We find that on average the percentages of rejected steps into Regions 1, 2 and 4 are 49.7%,
27.3% and 21.78%, respectively.

As suspected, the filter mechanism is rejecting a significant proportion of steps (21%)
in Region 4. These can be valuable steps, as it can be useful to allow an increase in the

objective function in order to approach the feasible region. A contemporary penalty method

119

often permits these steps and we speculate that an important weakness of filter methods is

its inability to do so in some circumstances.

120

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

G. ANANDALINGAM AND D. WHITE, A solution method for the linear static stackelberg
problem using penalty functions, IEEE Transactions on Automatic Control, 35 (1990),

pp. 1770-1773.

J. F. BARD, Practical Bilevel Optimization: Algorithms and Applications, Springer
Series in Nonconvex Optimization and Its Applications, Vol. 30, Springer Verlag, Hei-
delberg, Berlin, New York, 1999.

L. BERGAMASCHI, J. GONDzIO, AND G. ZILLI, Preconditioning indefinite systems in
wntertor point methods for optimization, Tech. Rep. MS-02-002, Department of Mathe-
matics and Statistics, University of Edinburgh, Scotland, 2002.

I. BonGARTZ, A. R. CoNnN, N. I. M. GouLp, AND P. L. ToiNT, CUTE: Constrained
and Unconstrained Testing Environment, ACM Transactions on Mathematical Software,
21 (1995), pp. 123-160.

R. H. BYRD, Robust trust region methods for constrained optimization. Third SIAM
Conference on Optimization, Houston, Texas, May 1987.

R. H. ByrDp, J.-C. GILBERT, AND J. NOCEDAL, A trust region method based on
interior point techniques for nonlinear programming, Mathematical Programming, 89

(2000), pp. 149-185.

R. H. ByrD, M. E. HRIBAR, AND J. NOCEDAL, An interior point algorithm for large
scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), pp. 877-900.

R. H. BYRD, J. NOCEDAL, AND R. WALTZ, KNITRO: An integrated package for non-
linear optimization, in Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma,
eds., Springer, 2006, pp. 35-59.

T. F. COoLEMAN AND A. VERMA, A preconditioned conjugate gradient approach to
linear equality constrained minimization, tech. rep., Computer Science Department and
Cornell Theory Center, Cornell University, Ithaca, NY 14850, USA, July 1998.

121

[10] F. E. CurTIs, Inezact Sequential Quadratic Programming Methods for Large-Scale Non-
linear Optimization, PhD thesis, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, Illinois, USA, 2007.

[11] S. DEMPE, Foundations of Bilevel Programming, Springer Series in Nonconvex Opti-
mization and Its Applications, Vol. 61, Springer Verlag, Heidelberg, Berlin, New York,
2002.

[12] H. S. DoLLAR, N. I. M. GouLp, AND A. J. WATHEN, On implicit-factorization
constraint preconditioners, Tech. Rep. RAL-TR-2004-036, Rutherford Appleton Labo-
ratory, Chilton, Oxfordshire, England, 2004.

[13] 1. S. DuFrF, MA57 — a code for the solution of sparse symmetric definite and indefinite
systems, ACM Transactions on Mathematical Software, 30 (2004), pp. 118-144.

[14] 1. S. DurF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric
linear equations, ACM Transactions on Mathematical Software, 9 (1983), pp. 302-325.

[15] R. FLETCHER AND S. LEYFFER, User manual for filterSQP, Numerical Analysis Re-
port NA /181, Department of Mathematics, University of Dundee, Dundee, Scotland,
1998.

[16] ——, Nonlinear programming without a penalty function, Mathematical Programming,
91 (2002), pp. 239-269.

[17] A. FORSGREN, P. E. GiLL, AND J. D. GRIFFIN, [lterative solution of augmented
systems arising in interior methods, Tech. Rep. NA 05-3, Department of Mathematics,
University of California, San Diego, 2005.

(18] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, AMPL: A Modeling Language for
Mathematical Programming, Scientific Press, 1993. www.ampl.com.

[19] D. FUDENBERG AND J. TIROLE, Game Theory, MIT Press, 1996. Fifth printing.

[20] G. H. GoLuB AND C. F. VAN LoAN, Matriz Computations, Johns Hopkins University
Press, Baltimore, second ed., 1989.

[21] N. I. M. GouLp, M. E. HRIBAR, AND J. NOCEDAL, On the solution of equality con-
strained quadratic problems arising in optimization, STAM Journal on Scientific Com-
puting, 23 (2001), pp. 1375-1394.

[22] N.I. M. GouLp, D. OrRBAN, AND P. L. ToiNT, CUTEr and sifdec: A Constrained and
Unconstrained Testing Environment, revisited, ACM Trans. Math. Softw., 29 (2003),
pp- 373-394.

122

(23] N. I. M. GouLp, D. OrRBAN, AND P. L. TOINT, Numerical methods for large-scale
nonlinear optimization, Technical Report RAL-TR-2004-032, Rutherford Appleton Lab-
oratory, Chilton, Oxfordshire, England, 2004.

[24] L. HE1, J. NOCEDAL, AND R. A. WALTZ, A numerical study of active-set and interior-
point methods for bound constrained optimization, Technical Report, Department of
Electrical Engineering and Computer Science, Northwestern University, Evanston, Illi-
nois, USA, June 2006. Submitted for publication.

[25] ——, On constraint preconditioners for interior point algorithms in general nonlinear
programming. Working paper, 2007.

[26] B. F. HoBBs, C. B. METZLER, AND J.-S. PANG, Strategic gaming analysis for electric
power systems: An MPEC approach, IEEE Transactions on Power Systems, 15 (2000),
pp- 638—645.

[27] C. A. JOHNSON AND A. SOFER, A primal-dual method for large-scale image reconstruc-
tion in emission tomography, SIAM Journal on Optimization, 11 (2001), pp. 691-715.

(28] C. KELLER, N. I. M. GouLDp, AND A. J. WATHEN, Constraint preconditioning for
indefinite linear systems, SIAM Journal on Matrix Analysis and Applications, 21 (2000),
pp. 1300-1317.

[29] S. LEYFFER, G. LOPEZ-CALVA, AND J. NOCEDAL, Interior methods for mathematical

programs with complementarity constraints, SIAM Journal on Optimization, 17 (2006),
pp. 52-77.

[30] C. J. LiN AND J. J. MORE, Incomplete Cholesky factorizations with limited memory,
SIAM Journal on Scientific Computing, 21 (1999), pp. 24-45.

[31] Z. Lu, R. D. C. MONTEIRO, AND J. W. O’NEAL, An iterative solver-based infeasible
primal-dual path-following algorithm for convex quadratic programming, STAM Journal
on Optimization, 17 (2006), pp. 287-310.

(32] J. L. MORALES AND J. NOCEDAL, Automatic preconditioning by limited memory quasi-
newton updating, ACM Transactions on Mathematical Software, 10 (2000), pp. 1079-
1096.

(33] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer Series in Opera-
tions Research, Springer, second ed., 2006.

[34] E. O. OMOJOKUN, Trust region algorithms for optimization with nonlinear equality
and inequality constraints, PhD thesis, University of Colorado, Boulder, Colorado, USA,
1989.

123

[35] M. V. PEREIRA, S. GRANVILLE, R. Dix, AND L. A. BARROSO, Strategic bidding
under uncertainty: A comparison between the binary erpansion approach and nonlinear
optimization methods, tech. rep., PSR Inc., 2004.

[36] M. V. PEREIRA, S. GRANVILLE, M. H. C. FAmpPA, F. Dix, AND L. A. BARROSO,
Strategic bidding under uncertainty: A binary expansion approach, IEEE Transactions
on Power Systems, 20 (2005), pp. 180-188.

[37] M. RomA, Dynamic scaling based preconditioning for truncated Newton methods in
large scale unconstrained optimization: The complete results, Technical Report R. 579,
Istituto di Analisi dei Sistemi ed Informatica, 2003.

[38] H. SCHEEL AND S. SCHOLTES, Mathematical programs with complementarity con-
straints: Stationarity, optimality and sensitivity, Mathematics of Operations Research,

25 (2000), pp. 1-22.

[39] O. ScHENK AND K. GARTNER, Solving unsymmetric sparse systems of linear equations
with PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475—
487.

[40] T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimiza-
tion, SIAM Journal on Numerical Analysis, 20 (1983), pp. 626-637.

[41] L. VICENTE, G. SAVARD, AND J. JUDICE, Descent approaches for quadratic bilevel
programming, Journal of Optimization Theory and Applications, 81 (1994), pp. 379-399.

[42] A. WACHTER, An interior point algorithm for large-scale nonlinear optimization with
applications in process engineering, PhD thesis, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2002.

[43] A. WACHTER AND L. T. BIEGLER, On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programmaing, Mathematical
Programming, 106 (2006), pp. 25-57.

[44] R. A. WALTzZ, J. L. MORALES, J. NOCEDAL, AND D. ORBAN, An interior algorithm
for nonlinear optimization that combines line search and trust region steps, Mathemat-
ical Programming, Series A, 107 (2006), pp. 391-408.

[45] J. D. WEBER AND T. J. OVERBYE, An individual welfare mazimization algorithm for
electricity markets, IEEE Transactions on Power Systems, 17 (2002), pp. 590-596.

[46] D. WHITE AND G. ANANDALINGAM, A penalty function approach for solving bi-level
linear programs, Journal of Global Optimization, 3 (1993), pp. 397-419.

