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ABSTRACT

Motion of Thin Droplets
Due to Surfactants and Gravity

Matthew Allen Clay

The motion of thin drops under the effects of surfactants and gravity is

studied. First, the effects of surfactant and temperature on the spreading of a viscous

droplet are considered. Lubrication theory is used to develop a two-dimensional model

for the evolution of the droplet. The surfactant is assumed to be insoluble, and it

may transport onto and off of the droplet interface at the contact line. A linear

temperature gradient and a gradient in the surface energy along the substrate are

examined. We find that these effects together can increase the speed of the translation

of the droplet. When contact-angle hysteresis is included, surfactant transport along

the interface can cause the droplet to stop moving. These results are compared with

a three-dimensional axisymmetric lubrication model and are found to be in good

agreement. A fully three-dimensional lubrication model is formed that allows the

droplet to translate down an inclined plane. Critical Bond numbers and angles of

inclination are calculated for when the droplet remains pinned to the plane. A larger

hysteresis window is found to require a higher Bond number to force the droplet to

begin moving. These results compare favorably with other published studies. We

construct a stability diagram that details the Bond numbers for which the droplet

will remain pinned to the surface, when it will translate at a steady speed, and when

it will begin to deform. The formation of cusps and pearling behavior of droplets is

discussed.
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Chapter 1

Introduction

The problem of a liquid droplet spreading on a solid substrate is of signif-

icant theoretical and practical interest. This is a free boundary problem where the

droplet interface and its contact line need to be determined as part of the solution.

The line where a solid substrate and two immiscible fluids (e.g. air and water) come

together is called the contact line. Surface tension and the boundary conditions at

the contact line drive the spreading of the droplet. This spreading problem has gener-

ated considerable interest lately and there are several review articles that discuss the

difficulties encountered in this type of problem; see, e.g., Dussan V.[21], Davis[15], de

Gennes[16], Oron et al.[64], and Miksis[61]. In this work, a lubrication approximation

is applied to study the spreading of a thin liquid drop. The first case examined is a

two-dimensional drop with an insoluble surfactant along its surface and both thermal

and surface energy gradients along the substrate. We then extend these results to the

case of a three-dimensional axisymmetric droplet with surfactant but without thermal

or surface energy gradients. Finally, we develop a full three-dimensional formulation

that allows us to explore the spreading of a drop on an inclined plane.

Surfactant has many applications in medicine and industry. Gaver and

Grotberg[30, 31] studied how surfactant is transported on mucus films, with ap-

plications to the lungs, with some recent investigations performed by Craster and

Matar[13], Matar[57], and Matar et al.[58]. Premature infants frequently have un-

derdeveloped lungs which do not have the proper surfactant coatings. Surfactant

replacement therapy aims to coat the air sacs in the lungs with artificial surfactant in

an effort to keep them from collapsing. Another use of surfactants is as a medication

delivery technique. The medicine piggybacks onto an aerosol spray that enters the

lungs. Chabinyc et al.[9] present a method for making thin-film transistors (TFTs)
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by using surfactants coated liquids to selectively dewet a patterned substrate. Other

applications include using surfactants as detergents on droplets of liquid, breaking

apart and dispersing oil droplets from an oil spill, and emulsifiers, which help sta-

bilize a mixture of two immiscible liquids by binding to droplets of one liquid and

keep it dispersed in the other liquid. Surfactants can also be considered contaminants

whose effects must be minimized. In this view, it is important to understand how

different the properties of the droplet’s spreading will be when clean versus when

contaminated.

A more recent application that involves surfactants is microfluidics. The field

of microfluidics, where the length scales may be measured in microns, has begun to

investigate the addition of surfactants into this difficult submillimeter scale. Gallardo

et al.[28] used electrodes to dynamically adjust the surface tension gradients caused by

surfactants. These redox-active surfactants were able to be manipulated into forcing

the liquid into predetermined shapes. Grunze[36] predicted that this line of research

and similar work by Gau et al.[29] will eventually result in a “laboratory on a chip”

where liquids are actively shuttled around the surface of a microchip.

Although the classically accepted boundary condition along the droplet-

substrate boundary is no-slip, when it is applied in a moving contact line problem, a

nonintegrable stress singularity occurs. Dussan V. and Davis[23] examined the flow

of a two-dimensional fluid-fluid interface moving down a solid surface. They found

that the velocity field at the contact line is multi-valued and discontinuous, which, for

Newtonian fluids, leads to one of the fluids exerting infinite forces on the substrate

at the contact line. They showed that these problems existed in the model and were

not due to the lack of exact solutions. Any amount of slip was found to eliminate

the multivaluedness of fluid velocity and thus the infinite forces. Huh and Scriven[46]

had previously found a singularity in the contact line when using the Stokes flow

approximation, but were unable to determine either the nature of cause of the sin-

gularity. They imposed many assumptions on the interface, including requiring that

it be perfectly flat, which prevented them from applying the normal stress boundary

condition.

One method proposed to remove this singularity is to allow for slip near the

contact line. Dussan V. and Davis [23] showed that any form of slip at the contact
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line will eliminate the singularity. Here we will use a Navier slip condition of the form

~u · t̂ = λ µ n̂ · S · t̂ (1.1)

where ~u is velocity vector, n̂ and t̂ are the unit normal and tangential vectors on

the fluid-solid interface, λ is the constant slip coefficient, and µS is the viscous stress

tensor. This slip model provides that the slip is proportional to the shear stress on the

substrate. The slip parameter λ is taken to be numerically small so that away from

the contact line, where shear stresses are small, the slip model effectively enforces the

no-slip constraint. Hocking[39] performed an asymptotic analysis of this slip model

for a moving contact line in a low Reynolds number flow, including flow between

parallel plates and flow through a pipe, and found that, as indicated by Dussan V.

and Davis[23], the stresses remain finite. We will follow the example of Greenspan[35]

and others and allow the slip parameter to vary with the thickness of the droplet.

Haley and Miksis[37] compared three-dimensional axisymmetric droplets spreading

with different slip models. They used the Navier slip condition with constant slip and

with the slip depending on the thickness of the interface as either 1/h or 1/h2. They

found no qualitative differences in the resulting droplet motion.

The Navier slip condition in (1.1) is not the only method to relieve the stress.

For example, Huh and Mason[45] proposed a model that allowed the fluid to slip

freely (no shear stress) in the neighborhood of the contact line but imposed a no-slip

condition away from the contact line. There have also been generalizations of (1.1).

For example, Thompson and Troian[80] have used molecular dynamics simulations to

formulate an alternate relationship. This new formulation relates the amount of slip

to the physical properties of the substrate. At present, the correctness of any one

slip condition has not been proved. Although we use the Navier slip condition, our

numerical scheme could be easily adapted for alternative conditions.

To surmount the difficulties with choosing a slip condition, it is possible to

formulate the problem to eliminate the contact line entirely. A thin precursor film may

be extended from the droplet to cover the substrate, eliminating a physical contact

line[16]. While this model requires the precursor film to coat the entire substrate, thus

being of infinite length, it succeeds in relieving the stress singularity at the contact

line since a contact line does not actually exist in this model (see e.g. de Gennes[16]).
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In some of these models the precursor film is just a liquid film significantly thinner

than the droplet; in other studies additional physics, e.g. Van der Waals forces, are

added into the models. Diez et al.[19] compare the slip model to the precursor model

(without Van der Waals forces) and show that they both display similar behavior.

Figure 1.1: Actual versus apparent contact angles

Studies of contact lines invariably involve questions about the angle the

interface makes with the underlying substrate, denoted θ. Any macroscopic analysis of

the contact line reveals an apparent contact angle, θApp. Unfortunately, this observed

contact angle is not necessarily the actual contact angle θ. The speed of the apparent

contact line has also been found to be related to the apparent contact angle θApp.

Although the slip condition relaxes stresses near the contact line, the stress is still

quite large there. The interface thus undergoes a rapid change in curvature in the

neighborhood of the contact line. Measurements of the contact angle differ when

taken from a distance away from the contact line (θApp) from what the angle is in

the neighborhood of the contact line (θ). Many experiments have been performed

to determine the nature of the contact angle-contact line velocity relationship[26, 70,

44, 10]. A few general features can be gleaned from these experiments. First, the

contact angle increases monotonically for a liquid displacing a gas in all but very high

Reynolds number regimes[61]. Second, there is a region [θRec, θAdv] where the contact

line does not move. This phenomenon is called hysteresis and θRec is referred to as the

receding static contact angle and θAdv as the advancing static contact angle. Finally,

a relationship between contact angle and contact line velocity can be extracted from
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the experiments. In the work presented here, we will assume that this functional

relation relates the actual slip velocity to the actual contact angle θ. The apparent

angle θApp could be thought of as that angle measured from a plane slightly raised

above the substrate. The difference between θ and θApp is demonstrated by Fig. 1.1,

which shows a zoomed in view of the surface. Here the actual contact angle θ is

shown on a surface with heterogeneity. The apparent contact angle θApp is taken as

the angle when the surface irregularities are smoothed out into a smooth plane.

In many cases, the contact angle – slip velocity relationship takes the form

Uµχ

σ
= θm − θm

s (1.2)

where U is the velocity of the contact line, µ is the viscosity of the liquid, χ is a

parameter that depends on the nature of the solid-liquid-gas interaction, σ is the

surface tension of the liquid, and θs is the static contact angle, chosen somewhere

within the hysteresis window. Blake and Haynes[6] derived the m = 1 model for when

θ − θs � 1 and it was the model chosen by Greenspan[35] for his initial work with

lubrication theory. Tanner[77] and Lelah and Marmur[53] conducted experiments

that support the model when m = 3. Zhang[84] conducted numerical simulations

with a fixed actual contact angle and then attempted to determine the relationship

between the contact line velocity and the apparent contact angle. He found that both

m = 1 and m = 3 would fit the data. An alternative model examined by Ehrhard[24]

is
Uµχ

σ
= (θ − θs)

m . (1.3)

Ehrhard examined this model for the case when m = 3. This relationship has been

used by a number of investigators, including Ehrhard and Davis[25] and Anderson

and Davis[2]. Haley and Miksis[37] studied this model for the cases of m = 1, 2, 3 and

found no qualitative difference in the resulting spreading behavior. Hocking[42] has

studied the case when χ → 0, which results in a constant contact angle. Relations

of this form have been used by Greenspan[35], Ehrhard and Davis[25], Haley and

Miksis[37], and Miksis[61] and will be used in this work.

To simplify the problem from the full Navier-Stokes equations, we apply a

lubrication approximation. This model assumes that the droplet’s height is much

smaller than its radius. Greenspan[35] first used this assumption and derived a first
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order in time, fourth order in space partial differential equation for the evolution

of surface of a three-dimensional axisymmetric drop. Hocking[41] used the lubrica-

tion approximation to study droplets sliding and spreading down an inclined plane,

although only for very small gravitational forces. Haley and Miksis[37], Ehrhard

and Davis[25], and López et al.[56] have all extended this lubrication model in new

directions.

The spreading of a nonisothermal drop with a contact line was studied by

Ehrhard and Davis[25]. They used the lubrication approximation and assumed small

capillary numbers but included a heated substrate. One of their results, which we

shall return to later, was that heating could prevent a wetting droplet (zero advancing

static contact angle) from continually spreading; it will only spread a finite distance.

This model was extended to study nonuniform heating along a substrate by Smith[72],

Benintendi and Smith[4], and Smith et al.[73]. These ideas will be extended here to

consider a droplet moving along a nonuniformly heated substrate with a constant

temperature gradient. This temperature gradient creates a thermocapillary-induced

flow in the droplet that affects spreading. The effects of evaporation are neglected,

but could be included by paralleling the model of Anderson and Davis[2].

The droplet dynamics change significantly when the substrate is inclined.

A droplet that lies on a solid inclined plane is affected by two main forces, surface

tension and gravity. Surface tension can be related to the contact angle, θ, resulting

in a balance of forces in the neighborhood of the contact line. Gravity acts as a non-

uniform force to pull the droplet down the plane. The fluid flows toward the front of

the droplet, causing the contact angle to increase above the static angle, which drives

spreading. By this analysis, any inclination of the plane will result in motion of the

droplet.

Providing a nonzero hysteresis window allows the droplet to remain station-

ary on an inclined plane[5, 27]. In this case, the contact angle is able to steepen,

allowing surface tension to balance the gravitational force. As long as the flow of

fluid does not cause the rear of the droplet to drop below the hysteresis window, the

droplet may remain stationary. The important consideration here is the ratio of the

gravitational force to the surface tension force. This ratio is given by B sin(α), where

B is the Bond number and α is the angle of inclination. If this value is too large then
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the droplet will not be able to remain stationary and will continue to travel down the

plane. When gravity exerts a relatively small force on the droplet, in comparison to

surface tension, it translates down the plane at a constant speed while maintaining

its shape. Kim et al.[49] studied this sliding velocity using both analytics and ex-

periments. They use a similar method to de Gennes[16] wherein they compare the

gravitational potential energy with the energy dissipation of the sliding droplet. The

droplet should be steadily sliding when these two functions are equal.

At higher forcing, however, the droplet rapidly travels down the substrate

and deforms as it moves. It may either radically deform and rupture or else it may con-

tinue traveling in an unsteady configuration. In this latter case the droplet becomes

elongated and develops a cusp in the rear. Fast moving but hydrophobic (θAdv ∼ 180◦)

drops were studied by Podgorski et al.[66], who described the “pearling” behavior of

these drops, whereby they emit smaller drops from the tail of the cusp. This corner

singularity and pearling behavior has been studied extensively. Asymptotic analysis

of the cusp formation has been performed by Stone et al.[76], Roura and Fort[69],

and Amar et al.[1]. Thiele et al.[79] briefly examined the cusp phenomenon using

numerical calculations, and it is in this direction that we will go with our studies.

The stability of droplets on inclined planes has been investigated by a number

of authors. Troian et al.[82] studied the linear stability of the leading edge of a thin

fluid sheet using the precursor film model. López et al.[55] found the steady state

profiles for nonisothermal drops and showed that a constant slip model produces

instabilities for droplets on inclined planes. Analysis of the instabilities involved in

the spreading of fluids has been conducted by Hocking[40], who noted the ridge that

formed near the leading edge of the droplet. Hocking and Miksis[43] followed up this

research with further numerical analysis of the ridge model. Thiele and Knobloch[78]

examined the stability of a thin film of finite length. By choosing a finite size for their

film, they are able to examine the stability at both the front and rear contact lines.

Diez and Kondic[17] investigated the flow of wetting films flowing down

inclined planes under the lubrication approximation. They used a thin precursor film

model to relax the contact line singularity and initialized their fluid to a traveling wave

solution. Marching forward in time, they found that the inclination angle affects the

shapes of the instability patterns. While the shapes differed at different inclination
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angles, they did not affect the coating behavior of the fluid, implying that any wetting

fluid would completely cover the surface. They have followed up this research by

investigating the stability of other flows, including heterogeneous substrates[18] where

they adjusted the thickness of the precursor film to achieve good agreement with

experiments. They then perturb the precursor film thickness to model heterogeneities

in the substrate. The heterogeneous surfaces produce fluid patterns similar to those

created via front instabilities when the front is slightly perturbed. Similar work was

performed by González et al.[33], who studied, both experimentally and numerically,

the spreading of a thin two-dimensional film down a vertical plate. The thickness of

the thin precursor region is measured experimentally and linked to their numerical

method, helping to ensure a high quantitative correlation between the two. Gomba

et al.[32] extended previous experiments into the micrometric range, examining the

flow of small quantity of silicon oil down a vertical plane.

Our work extends nonisothermal droplets to include surfactant effects. Sur-

factants are amphiphilic molecules that lower the surface tension of a liquid interface.

In such molecules one end contains a hydrophilic group while the rest of the molecule

is hydrophobic. Because of this structure, they typically sit on the surface of the

liquid, hence the term surface active agent from which the contraction surfactant is

formed. Surfactant gradients create surface tension gradients which, in turn, affect

the droplet spreading. As the droplet spreads, the surfactants move along its sur-

face through advection and diffusion, creating a coupled surfactant-droplet system.

Surfactants lower surface tension by adsorbing at the interface. Surfactants can be

categorized as soluble or insoluble depending on whether they are absorbed into the

bulk of the liquid or remain on the interface. We will be limiting our work to insoluble

surfactants.

There have been many prior studies that examine surfactants spreading on

thin films. Borgas and Grotberg[7] studied the two-dimensional behavior of a droplet

coated with insoluble surfactants that is spreading on a thin film. Their model

neglected gravity and horizontal pressure gradients. They constructed asymptotic

equations that governed the spread of a monolayer of surfactant along the thin film,

while moving with the steadily translating frame so the motion appeared steady.

Surface diffusivity was found to prevent discontinuities at the leading edge of the
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surfactant monolayer, as it instantly spreads to cover the entire thin film. Gaver

and Grotberg[30] extended the work of Borgas and Grotberg by including gravity

and computing numerical solutions to the coupled fluid-surfactant equations for thin

films, i.e., the lubrication approximation. They moved the droplet from a thin film

onto a solid substrate. Using a thin precursor model allowed them to look at a three-

dimensional axisymmetric droplet configuration. Small Peclet numbers were found

to result in surfactant spreading primarily by diffusion, while convection takes over

for larger Peclet numbers. Very large Peclet numbers allowed large disturbances in

surfactant concentrations. This method was used to verify experimental results by

Gaver and Grotberg[31] for dilute concentrations of oleic acid on glycerin.

Jensen and Grotberg[47] studied soluble surfactants where the surfactant

diffuses rapidly across the fluid layer. They used the thin-precursor film model and

lubrication theory to analyze the two-dimensional spreading of the thin film droplet.

They found the transport rates are not significantly affected by the solubility of the

surfactant. The absorption of surfactant by the bulk of the fluid reduces surfactant

gradients, decreasing the spreading rates for small times. At longer times, however,

when the concentration of the surfactant monolayer and bulk have equilibrated locally,

then the spreading of the surfactant monolayer can drive clean fluid before it, creating

a narrow pulse of raised fluid just before the approaching surfactant.

Matar[57] took a slightly different approach when studying soluble surfac-

tants. He constructed a one-dimensional nonlinear model for surfactant transport in

both slow, large Peclet number, and fast, small Peclet number, diffusion cases. Rapid

diffusion allowed him to use a cross-sectionally averaged concentration for the surfac-

tant in the bulk. He then used numerical solutions and linear stability analyses to

determine the effects that aid and retard rupture. For the rapid diffusion model, he

found that increased Marangoni forces and surface viscosity help to retard rupture,

while surfactant solubility and the rate of the sorption kinetics help to promote rup-

ture. He and Ketterson[38] experimentally studied the spreading of water covered by

a surfactant monolayer on a vertical glass slide. They found that the front of the wa-

ter film was highly unstable and that the rate of spreading was linearly proportional

to the surfactant surface pressure.

Palmer and Berg[65] performed an early study on the stability of a shallow
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pool of liquid containing dissolved surfactant that is being heated from below. Their

linear stability analysis showed that even mildly active surfactants had a strong influ-

ence on the fluid. As other authors have also determined, the transport mechanism for

the surfactant is quite important, with diffusion and advection providing different be-

haviors. They found that large surfactant gradients help stabilize the droplet. Kumar

and Matar[52] studied the stability of gravity-modulated (vibrating) thin films coated

with insoluble surfactant. They used the lubrication approximation and Floquet the-

ory to determine that long-wave disturbances are destabilized by gravity modulation,

but only when surfactants are present on the fluid. Without surfactants, such distur-

bances are stable on clean fluids. Fingering instabilities of surfactant spreading on a

thin film were analyzed by Matar and Troian[59, 60]. They found that the insoluble

surfactant was responsible for the fingering instabilities, which result in the spreading

film being sensitive to small disturbances in the film height or surfactant distribution.

Borhan and Mao[8] modeled a surfactant coated droplet moving through a

circular tube at low Reynolds numbers. In this formulation the droplet never touches

the edge of the tube and thus lacks a triple-line. They found that large Peclet num-

bers, by producing Marangoni stresses that oppose droplet motion, require increased

pressure to move the droplet through the tube. Similarly, small Peclet numbers, by

uniformly reducing the surface tension, can reduce the pressure needed to move the

droplet. An analysis of a surfactant-laden drop falling through a low Reynolds num-

ber flow was performed by Johnson and Borhan[48]. As with the Borhan and Mao

work, this, too, lacks a triple-line. They found that surfactants had a destabilizing

effect on spreading droplets. The presence of surfactants caused more extreme defor-

mation of the droplet, similar to the effects of an increased Bond number, preventing

the falling droplet from achieving a steady state. Soluble surfactants were found to

be more stable than insoluble surfactants, requiring a higher Bond number to cause

breakup.

If surfactant can absorb and desorb from the substrate, then the local value

of the surface tension can influence the dynamics of the droplet; this situation will

be considered here. This transfer of surfactant has been investigated by Ramé[68],

following the approach of Cox[12]. The full dynamics of a droplet were not considered,

only the motion near a single contact line. He experienced much difficulty in relieving
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the contact line singularity when flux is permitted, something that we, too, will deal

with. Here we will study how insoluble surfactant effects can influence the dynamics

of a spreading droplet in the thin film limit.

Chengara et al.[11] put forward the idea that the initial rapid spreading of

surfactant coated droplets is due to the high surface tension gradients formed by the

local loss of surfactant when the droplet spreads. As the drop spreads, the surfactant

concentration is locally lowered, creating large surfactant gradients, which reinforce

the spreading. Their conclusion is that contact line motion did not affect the initial

spreading of droplets; the driving force for their surfactant solution on hydrophobic

surface is the surface tension gradient that forms at the air-solution boundary.

Milliken et al.[62], extending the work of Stone and Leal[75], explored how

insoluble surfactants can allow greater deformation of droplets. They found that

surfactants have the greatest effect on the steady behavior of drops when the viscosity

ratio between the drop and the surrounding fluid is small. They also showed that

large surfactant gradients retard droplet spreading, a phenomenon to which we will

be returning. They also analyzed the effects of surfactants on elongating droplets. In

this configuration, surfactants change the time scale of the capillary waves, slowing

the onset of the waves and producing growth modes along the entire length of the

droplet.

In this thesis, we will formulate a lubrication approximation to the full

Navier-Stokes equations for the motion of a droplet. In chapter 2, we formulate

the problem for two-dimensional spreading droplets coated with insoluble surfactants

and affected by thermal and surface energy gradients on the substrates. We describe

our numerical method, which uses pseudo-spectral derivatives to solve a set of non-

linear equations in chapter 3. The results of our two-dimensional investigations are

presented in chapter 4; we explore the general behavior of surfactant coated droplets

and also examine how surface energy gradients and temperature gradients can be

used to propel a droplet along the surface. We then extend the surfactant coated

droplet model into three dimensions, constructing an axisymmetric model in Chapter

5. In this chapter, temperature and surface energy gradients are not considered. In

chapters 6–7, we formulate our numerical method and compare the three-dimensional

axisymmetric results to the two-dimensional results, finding good agreement between
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the two. We then move on to three-dimensions, where, in chapters 8–10, we go

back and reformulate equations for three-dimensions and examine the spreading of a

droplet as it slides down an inclined plane. While we do not include surfactant effects

in the full three-dimensional model, we are able to compare our results to other re-

searchers’ predictions for spreading rates. We also look into the transition of a droplet

from being stationary on the inclined plane, through a steadily translating regime,

and finally to the limits of our model where the droplet catastrophically deforms.
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Chapter 2

Two-Dimensional Problem

Formulation

The spreading of an incompressible Newtonian liquid droplet on a flat sub-

strate is considered. The droplet is bounded above by a passive gas while the sub-

strate below may have a nonuniform temperature gradient applied to it. In this

two-dimensional analysis we will apply a lubrication approximation to the equations

of motion to consider the spreading of the droplet and the translational effects of the

nonuniform temperature gradient. We will also consider the case where the substrate

has been doped with surfactant, which acts as a surface energy gradient, causing the

droplet to translate along the substrate.

2.1 Problem Formulation

Let x be the horizontal variable and y be the vertical variable. The distance

from the substrate the free surface is denoted h(r, t) and R(t) and L(t) are the po-

sitions of the right and left contact lines of the drop, which makes angles θR and θL

with the substrate (see Fig. 2.1). The horizontal and vertical components of velocity

are given by u and v, respectively. Finally, gravity, g, acts in the negative y direction.

We are interested in the following equations in the bulk of the fluid: conser-

vation of mass,
∂u

∂x
+

∂v

∂y
= 0, (2.1)
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Figure 2.1: Two-dimensional droplet configuration

and conservation of momentum in horizontal, x, and vertical, y, directions,

ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= µ∇2u − ∂p

∂x
, (2.2)

ρ

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= µ∇2v − ∂p

∂y
− ρg, (2.3)

where p is the pressure in the drop, ρ is the density of drop’s fluid, and µ is the

viscosity of the drop. At y = 0, the conditions are no penetration,

v = 0, (2.4)

and, in order to relax the no-slip condition and relieve the singularity at the contact

line (see e.g. Dussan V. and Davis[23]), the Navier slip condition

u − λ(h)

(

∂u

∂y
+

∂v

∂x

)

= 0. (2.5)

The slip condition is (1.1) evaluated for our two-dimensional coordinates. The slip

function is given by

λ(h) =
λn

hn
. (2.6)
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The n = 1 case was first introduced by Greenspan[35]. This slip function has been

studied by Haley and Miksis[37] who found no qualitative differences for n = 0, 1, 2.

For our analysis, it is assumed that n = 0. At the free boundary, y = h(x, t), the

governing equations are the kinematic condition

∂h

∂t
+ u

∂h

∂x
− v = 0, (2.7)

and the jump in normal stress condition

p = pA − σ
∂

∂x







∂h

∂x

[

1 +

(

∂h

∂x

)2
]− 1

2







+ 2µ

[

1 +

(

∂h

∂x

)−1
][

(

∂h

∂x

)2
∂u

∂x
− ∂h

∂x

(

∂u

∂y
+

∂v

∂x

)

+
∂v

∂y

]

. (2.8)

Note that here we have assumed that the interface can be written as a function

of x. Here pA is the atmospheric pressure of the surrounding fluid and σ is the

surface tension of the droplet. The other condition at the free surface boundary is

the continuity of tangential stress condition. The general stress condition along the

interface is

n̂ · τ = −σ (∇s · n̂) n̂ + ∇sσ (2.9)

where the unit normal is

n̂ =
< −hx, 1 >
√

1 + h2
x

, (2.10)

the unit tangent is

t̂ =
< 1, hx >
√

1 + h2
x

, (2.11)

the stress tensor is

τij = −pδij + µeij, (2.12)

and ∇s is the surface derivative in the direction of the tangent. The gradient is given

by[51]

∇sf =
< 1, hx >

1 + (hx)
2

∂f

∂x
. (2.13)

Now t̂ can be dotted into (2.9) to pick out the continuity of tangential stress condition,

n̂ · τ · t̂ = −σ (∇s · n̂) n̂ · t̂ + ∇sσ · t̂. (2.14)
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Canceling terms leaves:

n̂ · τ · t̂ = ∇sσ · t̂. (2.15)

Expanding each side of (2.15) gives us:

n̂ · τ · t̂ = nxτxxtx + nxτxyty + nyτyxtx + nyτyyty

=
1

1 + (∂h
∂x

)2

[

− ∂h

∂x

(

−p + µ
∂u

∂x

)

− ∂h

∂x

µ

2

(

∂u

∂y
+

∂v

∂x

)

∂h

∂x

+
µ

2

(

∂u

∂y
+

∂v

∂x

)

+

(

−p + µ
∂v

∂x

)

∂h

∂x

]

=
µ

1 + (∂h
∂x

)2

[

∂h

∂x

(

∂v

∂y
− ∂u

∂x

)

+
1

2

(

1 −
(

∂h

∂x

)2
)

(

∂u

∂y
+

∂v

∂x

)]

= ∇sσ · t̂ =
1

√

(

1 +
(

∂h
∂x

)2
)

∂σ

∂x
.

(2.16)

Now simplifying (2.16) produces the continuity of tangential stress condition:

µ

{

∂h

∂x

(

∂v

∂y
− ∂u

∂x

)

+
1

2

[

1 −
(

∂h

∂x

)2
]

(

∂u

∂y
+

∂v

∂x

)

}

=

√

1 +

(

∂h

∂x

)2
∂σ

∂x
. (2.17)

Boundary conditions at the contact line are still needed. The slip velocity is

defined to be the velocity of the contact line. Recalling the discussion in the previous

chapter, here we set the slip velocities equal to a general function of the contact angle.

The result is our contact angle – slip velocity relationship:

us

∣

∣

∣

∣

x=L

=
dL

dt
(2.18)

= f(θL), (2.19)

us

∣

∣

∣

∣

x=R

=
dR

dt
(2.20)

= f(θR). (2.21)

We will be using a contact angle – slip velocity relationship that includes hysteresis

effects:

f(θ) = k̂



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec.

(2.22)
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Here k̂ is a characteristic unit of velocity. This is the m = 1 form of (1.2)–(1.3)

extended to allow for hysteresis. It has been used by, among others, Greenspan[35]

and Haley and Miksis[37].

Another boundary condition results from the fact that the droplet must

remain in contact with the surface at the contact points, so

h(L(t), t) = 0, (2.23a)

h(R(t), t) = 0. (2.23b)

Finally, geometric analysis shows that

∂h

∂x

∣

∣

∣

∣

x=L(t)

= tan(θL), (2.24a)

∂h

∂x

∣

∣

∣

∣

x=R(t)

= − tan(θR). (2.24b)

This basic model can now be generalized to include the effects of a nonuni-

formly heated substrate. Suppose that the droplet is bounded above by a passive

gas at temperature T∞, and that there is a fixed, linear temperature gradient along

the substrate. A similar situation was considered by Smith[72]. The temperature in

the droplet is given by T (x, y, t). The energy equation, which governs heat transfer

within the droplet, is

ρ c

(

∂T

∂t
+ ~v · ∇T

)

= k∇2T, (2.25)

with c being the specific heat of the liquid, k the thermal conductivity of the droplet,

and ~v being the full velocity vector: ~v =< u, v >. The energy balance on the surface

of the droplet, y = h, is given by

−k∇T · n̂ = hg (T − T∞) (2.26)

with hg being the convection heat transfer coefficient for the free survace. Also assume

that there is a fixed-temperature-gradient along the substrate surface, y = 0, given

by:

T = T0 − b x, (2.27)

where b = −dT/dx is the imposed temperature gradient and T0, the temperature of

the substrate at x = 0, is a prescribed value.
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The final main component of our model is the inclusion of surfactants. This

can be done by introducing a surfactant transport equation along the interface. As-

sume that the concentration of surfactant on the surface of the droplet is given by

S(x, t). The general surfactant transport equation is

St + ∇s · (~usS) − (∇s · n̂) S (~u · n̂) = D∇2
sS + J (2.28)

where D is the surface diffusivity constant, ~us is the surface velocity (velocity in

the tangential direction), n̂ is the unit normal vector to the surface, and J is the

surface absorption term, which is ignored for this analysis[74]. In (2.28), the surface

divergence is given by

∇s · (~usS) =
1 + hx

√

1 + (hx)
2

∂

∂x
(usS) (2.29)

where

us = ~v · t̂. (2.30)

Surfactant will be allowed to be adsorbed and desorbed at the contact line.

This is done by assuming that the gradient of S is linearly related to the surfac-

tant concentration at the contact point. In particular, the boundary conditions for

surfactant transport are given by

∂S

∂x

∣

∣

∣

∣

x=L(t)

= ST

√

1 +

(

∂h

∂x

)2
(

S
∣

∣

x=L(t)
− SS

)

, (2.31a)

∂S

∂x

∣

∣

∣

∣

x=R(t)

= −ST

√

1 +

(

∂h

∂x

)2
(

S
∣

∣

x=R(t)
− SS

)

, (2.31b)

where ST is the transfer rate of surfactant onto and off of the substrate, SS is the

steady concentration of surfactant on the substrate. It is assumed that ST and SS

are constants independent of time. By assuming that these remain constant, it is

implied that if surfactant were absorbed by the advancing contact line, the resulting

surface surfactant concentration would not affect the receding contact line if it were

to transverse the same point twice on the substrate. No-flux at the contact lines can

be modeled by taking ST = 0. Equation (2.31) is clearly a modeling assumption on

our part, but it appears to be reasonable since the surfactant flux might be expected

to increase as the local value of surfactant concentration increases.
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We will also need an equation of state, which we take to be

σ = 1 + ε2Σ (2.32)

where ε � 1 and Σ is given by

Σ = −σT (T − T0) − σSS. (2.33)

Here σT is a constant having units of J/m2K that represents how strongly tempera-

ture affects surface tension while σS represents how strongly surfactants affect surface

tension and has units of J/mol m.

Finally, the volume of the fluid droplet and the amount of surfactant on it

are both constant in time and can be represented as

VF =

∫ R(t)

L(t)

h(x, t)dx, (2.34)

VS =

∫ R(t)

L(t)

√

1 +

(

∂h

∂x

)2

S(x, t)dx. (2.35)

Equations (2.1)–(2.31) are the full nonlinear model for the motion of a

droplet with both thermal and surfactant effects.

2.2 Nondimensionalization

Here we will nondimensionalize the evolution equations. The basic assump-

tion of lubrication theory is that the height of the droplet is much less than its

width along the substrate. This assumption will be used to scale the nondimensional

variables. The lubrication relationship also implies that the contact angle is small.

The dimensional contact angle θ is used to define our small parameter ε � 1. This

parameter is used to scale our nondimensional variables, denoted by tildes:
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t =
t̃Rcµ

σcε3
, x = x̃Rc, y = ỹRcε,

u = ũk̂ε, v = ṽk̂ε2, θR = θ̃Rε,

θL = εθ̃L, θAdv = εθ̃Adv , θRec = εθ̃Rec,

p =
p̃µk̂

Rcε
+ pA, R = R̃Rc, L = L̃RC

VF = ṼF2πR3
cε, σ = σcσ̃, h = h̃Rcε

VS = ṼS2πR2
cSc, λ0 = λ̃0Rcε, S = S̃Sc,

Σ = σcΣ̃, ST = S̃T
Rc

Sc
, SS = S̃S

Rc

Sc
,

f = εk̂f̃ T = (T0 − T∞)T̃ + T∞.

Here Rc is taken to be a characteristic length of the droplet, either an initial half

width or a steady state half width, for example. The constant σc is the surface

tension of a clean surface, which occurs when there is no surfactant on the droplet

and the substrate is kept isothermal. The constant Sc is a characteristic surfactant

concentration. We choose y to be one order of magnitude in ε smaller than x since that

is consistent with the lubrication approximation that the height of droplet is much

less than its width. Scalings for the velocities are chosen by examining the contact

angle – slip velocity relationship (2.22) when substituted into (2.19) and (2.21). This

gives a scaling for u and, because of (2.1), the vertical direction v is again chosen to

be one order of magnitude smaller.

Also introduce the Capillary number, Ca, the Bond number, B, the Reynolds

number, Re, the Peclet number, Pe, the Biot number, Bi, the Prandtl number,

Pr, the Marangoni numbers for surfactant and temperature effects, MS and MT ,

the parameter δ representing the strength of the effect of temperature on surface

tension, the parameter β representing the strength of the surfactant gradient, and
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the parameter N is the prescribed temperature gradient:

Ca =
µk̂

σcε2
, B =

ρgR2
c

σc
, Re =

ρRck̂

µ
,

Pe =
Rck̂ε

D
, Pr =

εµcp

k
, Bi =

εhgRc

k
,

MS =
σcβε2

µk̂
, MT =

σcδε
2

µk̂
, δ =

σT

σc

(T0 − T∞),

β =
ScσS

σc
, N =

bRc

T0 − T∞

.

All of these parameters are assumed to be order one.

Rescaling the conservation of mass equation (2.1) for these new nondimen-

sional variables, we get
∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (2.36)

Using these scalings and nondimensional parameters in (2.2) gives us

Re ε3

(

1

Ca

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)

+
∂p̃

∂x̃
=

∂2ũ

∂ỹ2
+ ε2 ∂2ũ

∂x̃2
. (2.37)

The conservation of momentum in y equation (2.3) now becomes

∂p̃

∂ỹ
+ ε5Re

(

1

Ca

∂ṽ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)

= ε4 ∂2ṽ

∂x̃2
+ ε2 ∂2ṽ

∂ỹ2
− B

Ca
. (2.38)

At ỹ = 0, the no penetration condition becomes

ṽ = 0 (2.39)

while the Navier slip law is

ũ − λ̃0

(

∂2ũ

∂ỹ2
+ ε2 ∂2ṽ

∂x̃2

)

. (2.40)

At the boundary of the droplet, ỹ = h̃(x̃, t̃), the kinematic condition is

1

Ca

∂h̃

∂t̃
+ ũ

∂h̃

∂x̃
− ṽ = 0. (2.41)

The jump in normal stress is now

p̃ = − 1

Ca

∂

∂x̃









∂h̃
∂x̃

√

1 + ε2
(

∂h̃
∂x̃

)2









+

2ε2

1 + ε2
(

∂h̃
∂x̃

)2







∂ṽ

∂ỹ
− ∂h̃

∂x̃

∂ũ

∂ỹ
+ ε2





∂ũ

∂x̃

(

∂h̃

∂x̃

)2

− ∂h̃

∂x̃

∂ṽ

∂x̃











. (2.42)
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The equation of state will be used in the continuity of tangential stress condition, so

we will nondimensionalize it first:

Σ̃ = −δ
(

T̃ − 1
)

− βS̃. (2.43)

The continuity of tangential stress condition now becomes

ε
∂h̃

∂x̃

(

ε
∂ṽ

∂ỹ
− ε

∂ũ

∂x̃

)

+
1

2



1 −
(

ε
∂h̃

∂x̃

)2




(

∂ũ

∂ỹ
+ ε2 ∂ṽ

∂x̃

)

=
1

Ca

√

1 + ε2(
∂h̃

∂x̃
)2

∂Σ̃

∂x̃
.

(2.44)

At the contact line, combining (2.18)–(2.21), the contact angle – slip velocity

relationships become

dR̃

dt̃
= Ca f̃(θ̃R) (2.45a)

dL̃

dt̃
= Ca f̃(θ̃L) (2.45b)

where

f̃(θ̃) =



















(

θ̃ − θ̃Adv

)

, θ̃ > θ̃Adv

0, θ̃Rec ≤ θ̃ ≤ θ̃Adv
(

θ̃ − θ̃Rec

)

, θ̃ < θ̃Rec

(2.46)

The contact conditions remain

h̃(R̃, t̃) = 0, (2.47a)

h̃(L̃, t̃) = 0, (2.47b)

and the geometric relationships are

∂h̃

∂x̃

∣

∣

∣

∣

x̃=R̃(t̃)

= −1

ε
tan(εθ̃), (2.48a)

∂h̃

∂x̃

∣

∣

∣

∣

x̃=L̃(t̃)

=
1

ε
tan(εθ̃). (2.48b)

Temperature has been nondimensionalized such that T̃ = 0 corresponds to

temperature of the gas and T̃ = 1 represents the temperature of the substrate at

x = 0. The energy equation for heat transfer (2.25) becomes

RePr

(

1

Ca

∂T̃

∂t̃
+

∂T̃

∂x̃
ũ +

∂T̃

∂ỹ
ṽ

)

=
∂2T̃

∂x̃2
+

1

ε2

∂2T̃

∂ỹ2
. (2.49)
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At ỹ = h̃

1
√

1 + ε2
(

∂h̃
∂x̃

)2

[

ε2 ∂h̃

∂x̃

∂T̃

∂x̃
− ∂T

∂y

]

= Bi T̃ . (2.50)

At y = 0 the boundary condition is now

T̃ = 1 − Nx̃. (2.51)

The surfactant transport equation (2.28) is more involved and it will be

nondimensionalized piecewise. The unit vectors become

n̂ =
< −ε∂h̃

∂x̃
, 1 >

√

1 +
(

ε∂h̃
∂x̃

)2
, (2.52)

t̂ =
< 1, ε∂h̃

∂x̃
>

√

1 +
(

ε∂h̃
∂x̃

)2
. (2.53)

The surface divergence (2.29) is now

∇s · (~usS) =
εk̂Sc

Rc

1
√

1 +
(

ε∂h̃
∂x̃

)2

∂

∂x̃









ũ + ε2ṽ ∂h̃
∂x̃

√

1 +
(

ε∂h̃
∂x̃

)2
S̃









. (2.54)

The surface Laplacian is given by

∇2
s =

Sc

R2
c

1
√

1 +
(

ε∂h̃
∂x̃

)2

∂

∂x̃









1
√

1 +
(

ε∂h̃
∂x̃

)2

∂S̃

∂x̃









. (2.55)

Combining (2.52)–(2.55) allows us to nondimensionalize the surfactant transport



36

equation (2.28):

1

Ca

∂S̃

∂t̃
+

1
√

1 +
(

ε∂h̃
∂x̃

)2

∂

∂x̃









ũ + ε2ṽ ∂h̃
∂x̃

√

1 +
(

ε∂h̃
∂x̃

)2
S̃









− 1

1 +
(

ε∂h̃
∂x̃

)2

∂

∂x̃









∂h̃
∂x̃

√

1 +
(

ε∂h̃
∂x̃

)2









S̃

(

−εũ
∂h̃

∂x̃
+ εṽ

)

=
1

Pe

1
√

1 +
(

ε∂h̃
∂x̃

)2

∂

∂x̃









1
√

1 +
(

ε∂h̃
∂x̃

)2

∂S̃

∂x̃









.

(2.56)

The surfactant boundary conditions are

∂S̃

∂x̃

∣

∣

∣

∣

x̃=L̃(t̃)

= S̃T

√

1 +

(

ε
∂h

∂x

)2
(

S̃
∣

∣

x̃=L̃(t̃)
− S̃S

)

, (2.57a)

∂S̃

∂x̃

∣

∣

∣

∣

x̃=R̃(t̃)

= −S̃T

√

1 +

(

ε
∂h

∂x

)2
(

S̃
∣

∣

x̃=R̃(t̃)
− S̃S

)

. (2.57b)

Finally, the volume of fluid and amount of surfactant become

ṼF =

∫ R̃

L̃

h̃(x̃, t̃)dx̃, (2.58)

ṼS =

∫ R̃

L̃

√

1 +

(

ε
∂h

∂x

)2

S̃(x̃, t̃)dx̃. (2.59)

2.3 Leading Order Equations

Now that we have derived the nondimensional equations for the system, we

can go about finding the leading order in ε terms. Introduce a regular perturbation

expansion of the form h̃ = h̃0 + εh̃1 + . . . for each of the dependent variables. Sub-

stitutes this expansion into equations (2.36)–(2.57) and group together terms of like

order in ε. At leading order, the conservation of mass equation remains unchanged as

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (2.60)
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and the conservation of momentum in x becomes

∂p̃0

∂x̃
=

∂2ũ0

∂ỹ2
. (2.61)

while conservation of momentum in y gives

∂p̃0

∂ỹ
= − B

Ca
. (2.62)

At the substrate ỹ = 0, the no penetration condition (2.39) remains unchanged as

ṽ0

∣

∣

∣

∣

ỹ=0

= 0. (2.63)

The slip law (2.40) becomes

ũ0 − λ̃0
∂ũ0

∂ỹ
= 0. (2.64)

On the free surface, ỹ = h̃(x̃, t̃), the kinematic condition (2.7) reduces to

1

Ca

∂h̃0

∂t̃
+ ũ0

∂h̃0

∂x̃
− ṽ0 = 0. (2.65)

The continuity of tangential stress condition (2.44) reduces to

∂ũ0

∂ỹ
=

2

Ca

∂

∂x̃
Σ̃0

(

S̃c(x̃), T̃0(x̃)
)

. (2.66)

The jump in normal stress (2.42) becomes

p̃0 = − 1

Ca

∂2h̃0

∂x̃2
(2.67)

Expanding the geometric relation (2.48) for ε � 1 produces

∂h̃0

∂x̃

∣

∣

∣

∣

x̃=R̃

= −θ̃R0 (2.68a)

∂h̃0

∂x̃

∣

∣

∣

∣

x̃=L̃

= θ̃L0 (2.68b)

Combining this result with (2.45) yields

1

Ca

dR̃0

dt̃
= f̃

(

−∂h̃0

∂x̃

∣

∣

∣

∣

x̃=R̃

)

, (2.69a)

1

Ca

dL̃0

dt̃
= f̃

(

∂h̃0

∂x̃

∣

∣

∣

∣

x̃=L̃

)

. (2.69b)
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At leading order, the energy equation for heat transfer becomes

∂2T̃0

∂ỹ2
= 0, (2.70)

the boundary condition at ỹ = h̃ is

∂T̃0

∂ỹ
= −Bi T̃0 (2.71)

and (2.51) remains unchanged as the boundary condition at ỹ = 0.

The surfactant evolution equation at leading order is

1

Ca

∂S̃0

∂t̃
+

∂

∂x̃

(

ũ0S̃0

)

=
1

Pe

∂2S̃0

∂x̃2
(2.72)

and the surfactant boundary conditions are

∂S̃0

∂x̃

∣

∣

∣

∣

x̃=L̃(t̃)

= S̃T

(

S̃0

∣

∣

x̃=L̃(t̃)
− S̃S

)

, (2.73a)

∂S̃0

∂x̃

∣

∣

∣

∣

x̃=R̃(t̃)

= −S̃T

(

S̃0

∣

∣

x̃=R̃(t̃)
− S̃S

)

. (2.73b)

Finally, the volume of surfactant is given by

ṼS =

∫ R̃

L̃

S̃0(x̃, t̃)dx̃. (2.74)

We will now drop the tildes over and subscripts to the nondimensional variables.

2.4 Derivation of Evolution Equations

A set of linked partial differential equations for droplet height, contact line

motion, and surfactant concentration will now be derived from the leading order

nondimensional equations. Integrating (2.62) with respect to y reveals that

p = − B

Ca
y +

1

Ca
q(x, t). (2.75)

Using this result in (2.67) gives

q(x, t) = Bh − ∂2h

∂x2
. (2.76)
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Substituting (2.75) and (2.76) in (2.61) produces

1

Ca

∂q

∂x
=

∂2u

∂y2
, (2.77)

which can be integrated twice to find

u =
1

Ca

∂q

∂x

y2

2
+ A(x, t)y + C(x, t). (2.78)

Use this result in (2.66) and see that

A(x, t) =
2

Ca

∂Σ

∂x
− 1

Ca

∂q

∂x
h. (2.79)

Now, use (2.78) and (2.79) in (2.64) to solve for C:

C(x, t) = λ0A(x, t) =
λ0

Ca

(

2
∂Σ

∂x
− ∂q

∂x
h

)

. (2.80)

Substitute (2.78) - (2.80) into (2.60):

∂u

∂x
+

∂v

∂y
= 0. (2.81)

Now, integrate this one time with respect to y to solve for v:

v = − ∂

∂x

(
∫

udy

)

+ D(x, t)

= − 1

Ca

∂

∂x

[

∂q

∂x

y3

6
+

(

2
∂Σ

∂x
− ∂q

∂x
h

)

y2

2

+
λ0

Ca

(

2
∂Σ

∂x
− ∂q

∂x
h

)

y

]

+ D(x, t)

(2.82)

v =
1

Ca

∂

∂x

[

∂q

∂x

(

y2

2
h − y3

6
+ λ0yh

)

− 2
∂Σ

∂x

(

y2

2
+ λ0y

)]

+ D(x, t). (2.83)

Use (2.78) - (2.82) in (2.63) and solve for D(x, t):

D(x, t) = 0 (2.84)

Finally, substitute (2.78) - (2.84) into (2.65) to get a partial differential equation for

h(x, t):
∂h

∂t
=

∂

∂x

(

W
∂q

∂x
− V

∂Σ

∂x

)

(2.85)
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where

W =

[

h3

3
+ λ0h

2

]

, (2.86)

V = 2

[

h2

2
+ λ0h

]

. (2.87)

Although there is now an evolution equation for the droplet height, one is

still needed for temperature. The first step is to integrate (2.70) twice with respect

to y

T (x, y, t) = J(x, t)y + K(x, t). (2.88)

Now evaluate (2.88) at y = 0 to solve for K(x, t) by using (2.51):

K(x, t) = 1 − N x. (2.89)

Use (2.71) to evaluate (2.88) at y = h:

J(x, t) = −Bi T (x, h, t). (2.90)

It is possible to construct a solution for the temperature at any point in the droplet,

but we are only interested in the temperature on the interface y = h. We thus have

the temperature profile of

T (x, y, t)

∣

∣

∣

∣

y=h

=
1 − N x

1 + Bi h
. (2.91)

Taken together, (2.85)–(2.87) with boundary conditions (2.47) form the

droplet height evolution equation, the contact line is advanced by (2.69), the tem-

perature profile on the surface is given by (2.91), and the surfactant concentration is

determined by (2.72) with boundary conditions (2.73).

2.5 Volume Conservation

Volume is automatically conserved in this formulation of the problem. Fluid

volume is given by

VF =

∫ R(t)

L(t)

h(x, t)dx. (2.92)
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Volume conservation is proved by showing that the change in volume in time is zero:

dVF

dt
= Ṙ(t)h

∣

∣

∣

∣

x=R

− L̇(t)h

∣

∣

∣

∣

x=L

+

∫ R(t)

L(t)

∂h

∂t
dx. (2.93)

The contact conditions (2.47) are used to reduce this to

dVF

dt
=

∫ R

L

∂h

∂t
dx (2.94)

=

∫ R

L

∂

∂x

(

W
∂q

∂x
− V

∂Σ

∂x

)

dx (2.95)

=

(

W
∂q

∂x
− V

∂Σ

∂x

) ∣

∣

∣

∣

x=R

x=L

(2.96)

W is zero at the contact lines. Similarly, for our choice of λ(h) = λ0, V

is zero at the contact lines. If we had chosen λ = λ1

h
, V is non-zero at the contact

lines and thus it is required that ∂Σ
∂x

be zero there. This can only happen if there

is no heat in the problem (δ = 0) and if there is no flux of surfactant at the ends.

This analysis provides an important limitation on the singular slip law; to have a well

posed problem we must restrict ourselves to constant slip if we have a temperature

gradient or flux of surfactant in the problem. For this reason we will only consider

the constant slip case, λ(h) = λ0, in this analysis. As long as the constant slip model

is used, however, volume is conserved:

dVF

dt
= 0. (2.97)

As with the volume of the droplet, it will now be shown that surfactant is

automatically conserved in this formulation of the problem. At leading order, the

total amount of surfactant on the drop is given by (2.74). As before, conservation of

surfactant will be proved by showing that the change in total surfactant in time is

zero.

dVS

dt
=

∂

∂t

∫ R(t)

L(t)

S(x, t) dx (2.98)

= Ṙ S

∣

∣

∣

∣

x=R

− L̇ S

∣

∣

∣

∣

x=L

+

∫ R

L

∂S

∂t
dx (2.99)

= Ṙ S

∣

∣

∣

∣

x=R

− L̇ S

∣

∣

∣

∣

x=L

+ Ca

∫ x=R

x=L

∂

∂x

(

1

Pe

∂S

∂x
− u S

)

dx (2.100)

= Ṙ S

∣

∣

∣

∣

x=R

− L̇ S

∣

∣

∣

∣

x=L

+ Ca

(

1

Pe

∂S

∂x
− u S

) ∣

∣

∣

∣

x=R

x=L

(2.101)
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At the contact points, Ṙ = Ca u
∣

∣

x=R
and L̇ = Ca u

∣

∣

x=L
, which allow (2.98) to be

reduced to
dS

dt
=

Ca

Pe

∂S

∂x

∣

∣

∣

∣

R

L

. (2.102)

If there are no-flux conditions at the boundaries, ST = 0, then

dS

dt
= 0. (2.103)

If, however, there is a non-zero flux, then (2.102) represents how much surfactant

transfers to or from the surface onto the substrate and demonstrates that the amount

of surfactant on the droplet is time dependent.

2.6 Summary

We will now summarize the governing equations. The droplet evolution

equation is given by:
∂h

∂t
=

∂

∂x

(

W
∂q

∂x
− V

∂Σ

∂x

)

(2.104)

where

W =

[

h3

3
+ λ0h

2

]

, (2.105)

V = 2

[

h2

2
+ λ0h

]

, (2.106)

q(x, t) = Bh − ∂2h

∂x2
, (2.107)

Σ = −δ (T − 1) − βS, (2.108)

T (x, y, t)

∣

∣

∣

∣

y=h

=
1 − N x

1 + Bi h
. (2.109)

The boundary conditions on height are

h(R, t) = 0, (2.110a)

h(L, t) = 0, (2.110b)

The surfactant evolution equation is:

1

Ca

∂S

∂t
+

∂

∂x
(uS) =

1

Pe

∂2S

∂x2
(2.111)
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where

u = − 1

Ca

∂q

∂x

h2

2
+

2

Ca

∂Σ

∂x
h +

λ0

Ca

(

2
∂Σ

∂x
− ∂q

∂x
h

)

, (2.112)

and the surfactant boundary conditions are

∂S

∂x

∣

∣

∣

∣

x=L(t)

= ST

(

S
∣

∣

x=L(t)
− SS

)

, (2.113a)

∂S

∂x

∣

∣

∣

∣

x=R(t)

= −ST

(

S
∣

∣

x=R(t)
− SS

)

. (2.113b)

Finally, the contact lines are advanced by

1

Ca

dR

dt
= f

(

−∂h

∂x

∣

∣

∣

∣

x=R

)

, (2.114a)

1

Ca

dL

dt
= f

(

∂h

∂x

∣

∣

∣

∣

x=L

)

(2.114b)

where

f(θ) =



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec

. (2.115)

2.7 Steady State Solution

Here the steady state solutions of the problems are derived under the MS =

0, MT = 0 limit, so there is no interaction between the surfactant and the droplet.

By evaluating the steady state version of (2.104), it is seen that

0 =
∂

∂x

(

W
∂q

∂x

)

. (2.116)

This is a fourth order ordinary differential equation for h. The solution must sat-

isfy the boundary conditions given by (2.110). Setting W = 0 would only produce

constant solutions. A solution of (2.116) can be obtained by setting

∂q

∂x
= 0. (2.117)

Integrating once gives:

Bh − ∂2h

∂x2
= A, (2.118)

where A is some constant.



44

For the B = 0 limit, the solution to this problem, with the appropriate

boundary conditions, is

h = θS

(

R + L

R − L
x − x2

R − L
− RL

R − L

)

(2.119)

with θS being the steady state contact angle. A symmetric result is easily achieved

by setting L = −R.

For B 6= 0, the solution is

h =
θS

exp
[√

BL
]

− exp
[√

BR
]

√

1

B

{

exp
[

−
√

B (x − R − L)
]

− exp
[√

BL
]

− exp
[√

BR
]

+ exp
[√

Bx
]

}

. (2.120)

Once again, a symmetric result is gained by setting L = −R.

For any value of Bond number, the only steady state solution for surfactant

is a constant.

2.8 Substrate Surfactant Gradient

The case of a substrate that has been doped with a gradient of surfactant

is also considered. In particular, the situation envisioned here is where one side of

the substrate is hydrophobic, resulting in a large static contact angle, while the other

side is hydrophilic with a smaller static angle. Such a situation is studied by Daniel

et al.[14]. They formed gradients of this sort by evaporating a drop of surface tension

lowering compound over the substrate. Large amounts of the compound condensed in

the neighborhood of the evaporating drop, resulting in a hydrophobic surface, while

away from it the surface was hydrophilic. Since this gradient affects the static contact

angle; it also affects the dynamics of the droplet spreading. In particular, this gradient

will allow the droplet to translate along the substrate.

A simple model of how the surfactant gradient along the substrate affects

the static contact angle is chosen:

θRec = θRecS
+ GA exp [−GB x] , (2.121a)

θAdv = θAdvS
+ GA exp [−GB x] , (2.121b)
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where GA and GB are constants that depend upon the properties of the surfactant gra-

dient laid down and θRecS
and θAdvS

are the static receding and advancing contact an-

gles that would exist if the substrate had no surface tension gradient. Implicit in this

model is the assumption that surfactant absorbed onto or desorbed from the droplet

interface does not change (2.121). A related model was studied by Greenspan[35].

2.9 Variable Static Contact Angle

σ
LS

 σ
SA

 

σ(S,T) 

θ
S
 

Figure 2.2: Illustration of Young’s Law

Young’s Law is a balance of the horizontal forces at the contact point and

states that

σSA = σLS + σ cos(θ) (2.122)

(see Fig. 2.2). Dimensional coordinates are used here and, for the moment, there is

no restriction on the magnitude of θ. Only the case of a single static contact angle,

θS, at one contact line is considered; a generalization to allow for hysteresis follows

in a straight-forward way.

For constant values of θLS and θSA, equation (2.122) can be rearranged to

show that

σSA − σLS = constant = σ(S, T ) cos(θS) = σc cos(θC), (2.123)

where θC is what θS would be without the presence of surfactant and at T = T∞ (i.e.,

at the reference temperature). Let θ = εθ̃ where ε � 1, i.e., consider the lubrication
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limit where the droplet is thin. Equation (2.123) for small ε gives

σ

(

1 − 1

2
ε2θ2

S

)

∼ σc

(

1 − 1

2
ε2θ2

C

)

. (2.124)

Suppose one, as follows from (2.32), sets

σ(S, T ) = σc

[

1 + ε2Σ̃(S, T )
]

, (2.125)

where the nondimensional Σ̃(S, T ) is given by (2.43). Equation (2.125) ensures that

the surface tension is maximal when no surfactant is present. Using (2.125) in the

equation of state (2.124) leads to

θ2
S ∼ θ2

C + 2Σ̃(S, T )

∣

∣

∣

∣

x=R

. (2.126)

This relationship implies that the surfactant will lower the static contact angle since

adding surfactant lowers surface tension, which requires a smaller θS in order to

balance the horizontal force in (2.123). It is assumed that if θ2
C + 2Σ̃(S, T ) < 0, then

θS simply becomes zero. One important implication of this assumption is that this

formula has no effect on θS if θC = 0 since Σ̃(S, T ) ≤ 0.
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Chapter 3

Two-Dimensional Numerical

Method

The droplet evolution equation, (2.104), subject to boundary conditions

(2.110), the surfactant transport equation, (2.111), subject to boundary conditions

(2.113), and the radii evolution equations (2.114) are solved using a numerical method

employing backward Euler time stepping and Chebyshev pseudo-spectral special deriva-

tives. The Chebyshev scheme has the advantage that it bunches points near the con-

tact lines, where the dynamics are the most sensitive. The resulting nonlinear system

is then solved by Newton’s method. Although the method is only first order in time,

it is extremely robust.

3.1 Singularity Removal

In order to get accurate numerical results when surfactants and temperature

coexist in the problem, it is necessary to account for the contact lines’ singularity

in the numerical method. This is accomplished by first analytically identifying the

singularity then removing it from the numerical calculations.

A Frobenius analysis of the droplet in the neighborhood of the contact line

reveals that the leading order form of the droplet height and surfactant concentrations

at the right end point are

h ∼ − θR

2R
x2 +

R θR

2

+ ε2

{

2λ0 [β g1 + δ (N − Bi θR (1 − NR))] − Ṙ

2θRλ0

ξ2 ln(ξ)

+ bξ2 + O(ξ3)

}

(3.1)
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and

S ∼ S0 + ε
[

g1ξ + O(ξ2)
]

, (3.2)

where

ξ =
R − x

ε
(3.3)

and

g1 =
∂S

∂x

∣

∣

∣

∣

x=R

. (3.4)

For full details of the Frobenius analysis, see Appendix A.

The Frobenius analysis, and a similar one at the left end point, is used to

re-scale the height as

h(x, t) = H(x, t) + aR(t)(R − x)2 ln(R − x) + aL(t)(x − L)2 ln(x − L), (3.5)

where aR and aL are the following time dependent variables

aR =
{

2λ0 [β g1R + δ (N − Bi θR (1 − N R))] − Ṙ
}

(2θRλ0)
−1 , (3.6a)

aL =
{

2λ0 [β g1L − δ (N + Bi θL (1 − N L))] + L̇
}

(2θLλ0)
−1 , (3.6b)

and

g1R =
∂S

∂x

∣

∣

∣

∣

x=R

, (3.7a)

g1L =
∂S

∂x

∣

∣

∣

∣

x=L

. (3.7b)

This change of variables from h to H allows derivatives to be calculated more

accurately because the leading form of the contact lines’ singularity is known and thus

the third derivative of H can be made finite in the neighborhood of the contact lines

whereas h itself is singular. The new formulation of the problem is formally given by

∂H

∂t
= − ∂

∂t

[

aR (R − x)2 ln(R − x) + aL(x − L)2 ln(x − L)
]

+
∂

∂x

(

W
∂q

∂x
− V

∂Σ

∂x

)

,
(3.8)

where W and V are given by (2.105)–(2.106), q is given by (2.107), and Σ is given

by (2.108). The new boundary conditions on H are

H(R, t) = −aL(R − L)2 ln(R − L), (3.9)

H(L, t) = −aR(R − L)2 ln(R − L). (3.10)
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Surfactant is still transported via (2.111) with boundary conditions (2.57). The tem-

perature on the droplet surface is also still given by (2.109).

3.2 Conversion into Chebyshev Space

In order to use Chebyshev derivatives, we must convert our problem from

real space into Chebyshev space. The first step in rescaling the variables is to map

the domain of the problem from x ∈ [L, R] onto ξ ∈ [−1, 1].

x =
R(t) − L(t)

2
ξ +

R(t) + L(t)

2
, (3.11)

H(x, t) = (R(t) − L(t)) H̃(ξ, t), (3.12)

Since x is now a function of t, derivatives with respect to t are now taken as

∂

∂t
=

∂

∂τ
−

dR
dτ

+ dL
dτ

+ ξ
(

dR
dτ

− dL
dτ

)

R − L

∂

∂ξ
(3.13)

where τ = t. Derivatives with respect to x now become

∂

∂x
=

2

R − L

∂

∂ξ
. (3.14)

The problem once again needs to be reformulated. This time the droplet evolution

equation is formally written as

(R − L)
∂H̃

∂τ
= −

(

∂R

∂τ
− ∂L

∂τ

)

H̃ +

[

dR

dτ
+

dL

dτ
+ ξ

(

dR

dτ
− dL

dτ

)]

∂H̃

∂ξ

− ∂

∂τ

[

aR

(

R − L

2
− R − L

2
ξ

)2

ln

(

R − L

2
− R − L

2
ξ

)

+ aL

(

R − L

2
ξ +

R − L

2

)2

ln

(

R − L

2
ξ +

R − L

2

)]

+
dR
dτ

+ dL
dτ

+ ξ
(

dR
dτ

− dL
dτ

)

R − L

∂

∂ξ

[

aR

(

R − L

2
− R − L

2
ξ

)2

ln

(

R − L

2
− R − L

2
ξ

)

+ aL

(

R − L

2
ξ +

R − L

2

)2

ln

(

R − L

2
ξ +

R − L

2

)]

+
4

(R − L)2

∂

∂ξ

(

W
∂q

∂ξ
− V

∂Σ

∂ξ

)

,

(3.15)
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where W and V are given by (2.105)–(2.106), q is given by (2.107), and Σ is given by

(2.108), all having been transformed via (3.5) and (3.11)–(3.12). The new boundary

conditions on H̃ are

H̃(1, t) = −aL(R − L) ln(R − L), (3.16)

H̃(−1, t) = −aR(R − L) ln(R − L). (3.17)

The surfactant transport equation becomes

1

Ca

∂S

∂τ
− 1

Ca

dR
dτ

+ dL
dτ

+ ξ
(

dR
dτ

− dL
dτ

)

R − L

∂S

∂ξ
+

2

R − L

∂

∂ξ
(uS)

=
1

Pe

4

(R − L)2

∂2S

∂ξ2

(3.18)

where the boundary conditions are

∂S

∂ξ

∣

∣

∣

∣

ξ=−1

=
R − L

2
ST [S(−1, t) − SS] , (3.19)

∂S

∂ξ

∣

∣

∣

∣

ξ=1

= −R − L

2
ST [S(1, t) − SS] . (3.20)

Details of the Chebyshev pseudo-spectral method that is used to take the

derivatives are given in Appendix B. One result of the distribution of Chebyshev

collocation points is that it bunches points near the ends of the domain. This is

fortuitous since it results in extra points near the contact line, where the dynamics

occur on the shortest spatial scales.

3.3 Time Derivatives

We use a backward Euler method to advance the scheme in time. The

backward Euler scheme is given by

∂h

∂τ
=

hn+1 − hn

∆τ
. (3.21)

For all purposes other than taking derivatives, t = τ and so we will be using the more

common t designation for time and ∆t for timesteps. We march forward from timestep

tn to tn+1 = tn + ∆t. A series of nonlinear equations for Hn+1
i = H(ξi, t

n+1, tn),

Sn+1
i = S(ξi, t

n+1, tn), Rn+1 = R(tn+1, tn), Ln+1 = L(tn+1, tn), an+1
R = aR(tn+1, tn),
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and an+1
L = aL(tn+1, tn) are constructed, where ξi represents the value of ξ at the

ith Chebyshev collocation point. The resulting nonlinear system is then solved via

Newton’s method. The resulting matrix is full. Using finite differences rather than

a Chebyshev pseudo-spectral method to compute spatial derivatives would result in

a sparse matrix, which would result in significant time savings when solving the

nonlinear system. Unfortunately, in order to maintain a given level of accuracy, we

would have to drastically increase the number of spatial gridpoints, which would

result in a much larger matrix to invert, more than negating any time savings bought

by using finite differences.

To compute the actual numerical scheme, the original h is reconstructed

from H̃ by (3.5) and (3.12). Derivatives of h with respect to x are also reconstructed

by (3.14). The Newton method used to advance the scheme is employed to satisfy

the original evolution equations at each point. For more details on Newton’s method,

please see Press et al.[67]. The advantage of this formulation is that it is much

easier to code than it would be to directly apply backward Euler to (3.15). Although

the original evolution equation is used, the Frobenius analysis and the associated

transformation from h to H is still quite useful as it allows the derivatives of h to

be reconstructed from H more accurately than if the derivatives had been computed

directly from h. The numerical scheme for (2.104) that is employed is given by

(Rn+1 − Ln+1)
h̃n+1 − h̃n

∆t
=

(

−Rn+1 − Rn

∆t
+

Ln+1 − Ln

∆t

)

h̃n+1

+
1

∆t

[

Rn+1 − Rn + Ln+1 − Ln + ξ
(

Rn+1 − Rn − Ln+1 + Ln
)] ∂h̃n+1

∂ξ

+
4

Rn+1 − Ln+1

∂

∂ξ

(

W n+1∂qn+1

∂ξ
− V n+1∂Σn+1

∂ξ

)

(3.22)

where

h = (R − L)h̃. (3.23)

The surfactant transport equation, (2.111), is advanced by

1

Ca

Sn+1 − Sn

∆t
− Rn+1 − Rn + Ln+1 − Ln + ξ (Rn+1 − Rn − Ln+1 + Ln)

∆t(Rn+1 − Ln+1)

∂Sn+1

∂ξ

+
2

Rn+1 − Ln+1

∂

∂ξ

(

un+1Sn+1
)

=
1

Pe

4

(Rn+1 − Ln+1)2

∂2Sn+1

∂ξ2

(3.24)
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Finally, the contact lines, (2.114), are updated by

1

Ca

Rn+1 − Rn

∆t
= f

(

−2
∂h̃

∂ξ

∣

∣

∣

∣

ξ=1

)

, (3.25)

1

Ca

Ln+1 − Ln

∆t
= f

(

2
∂h̃

∂ξ

∣

∣

∣

∣

ξ=−1

)

. (3.26)

3.4 Convergence

Spatial convergence checks were performed for a droplet in the near steady

state case that is investigated in Sec. 4.3. The results of this convergence check

are shown in Table 3.1. For this computation, we select β = 0.25. The timestep

is ∆t = 10−5, and the results are presented at t = 10. Each row of the table cor-

responds to a rough doubling in the number of Chebyshev collocation points. The

convergence checks do not use exactly double the number of points for each succes-

sive grid refinement because there must be 2n + 1 collocation points, where n is a

positive integer, for the chosen derivative scheme to work. The columns indicate

the difference between successive values of the numerically computed fluid volume,

surfactant volume, surfactant concentration at the right endpoint, and the location

of the right endpoint. Table 3.2 shows the results of a convergence check where the

timestep is varied. These computations used 33 spatial collocation points and had a

base timestep of ∆t = 10−5. This timestep equals 1 in the Timestep Change column

in Table 3.2. We varied the timestep from 256 times larger than the base timestep to

one quarter of the base timestep.

Gridpoints VF Difference VS Difference SR Difference R Difference

9 → 17 1.09 · 10−2 2.61 · 10−1 1.42 · 10−1 8.56 · 10−3

17 → 33 5.21 · 10−4 3.17 · 10−2 1.64 · 10−2 5.13 · 10−4

33 → 65 1.35 · 10−5 2.36 · 10−3 1.23 · 10−3 2.17 · 10−5

Table 3.1: Two-dimensional spatial convergence for near steady state droplet

The R Difference column in Table 3.1 gives the difference between the lo-

cation of the right endpoint, depending on the spatial resolution. Examining the

convergence of the location of the right endpoint allows us to examine the spatial
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Timestep Change VF Difference VS Difference SR Difference R Difference

256 → 128 2.59 · 10−7 1.67 · 10−7 1.67 · 10−7 3.94 · 10−6

128 → 64 1.34 · 10−7 9.46 · 10−8 9.46 · 10−8 1.97 · 10−6

64 → 32 8.51 · 10−8 2.42 · 10−8 2.42 · 10−8 2.54 · 10−6

32 → 16 4.18 · 10−8 1.34 · 10−8 1.34 · 10−8 1.28 · 10−6

16 → 8 2.14 · 10−8 5.86 · 10−9 3.41 · 10−8 6.40 · 10−7

8 → 4 1.39 · 10−8 8.46 · 10−10 1.50 · 10−8 3.24 · 10−7

4 → 2 1.03 · 10−8 4.40 · 10−9 5.26 · 10−9 1.56 · 10−7

2 → 1 1.25 · 10−8 1.09 · 10−8 2.28 · 10−9 8.96 · 10−8

1 → 1/2 7.41 · 10−9 7.12 · 10−9 2.04 · 10−9 4.39 · 10−8

1/2 → 1/4 2.27 · 10−9 3.40 · 10−9 2.96 · 10−9 1.59 · 10−8

Table 3.2: Two-dimensional time convergence for near steady state droplet

convergence of the method. As shown in Table 3.1, effectively doubling the number

of points from 9 to 17 results in a difference of 8.56 · 10−3 in the location of the right

endpoint. Doubling the number of gridpoints again to 33 points results in a difference

of 5.13 · 10−4. The change in the location of the endpoint is 16 times smaller in the

second case. Doubling the number of points again from 33 to 65 yields a change of

2.17 ·10−5. This change in the location of the endpoint is 23 times smaller than in the

previous case with 17 and 33 gridpoints. Having the difference continually shrink by

a greater factor each time the points are doubled is characteristic of spectral meth-

ods. Note that the difference in the calculated volume of the fluid shrinks by a factor

of nearly 40 when the cases with 17 and 33 gridpoints and the cases with 33 and

65 gridpoints are compared. Similar reductions in differences are found when the

other columns are examined. The Chebyshev pseudo-spectral method was employed

to achieve this extreme accuracy without the need for large number of collocation

points.

Looking at the temporal convergence presented in Table 3.2, we see that

each doubling of points roughly halves the difference of each computed column. For

example, the amount of surfactant at the right endpoint, the SR Difference column,

is reduced from 1.67 · 10−7 for the case with the largest timesteps, to 9.46 · 10−8 (for
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Timestep Change VF Difference VS Difference SR Difference R Difference

16 → 32 4.53 · 10−3 9.21 · 10−2 5.83 · 10−2 7.96 · 10−2

32 → 64 1.42 · 10−5 1.50 · 10−2 1.01 · 10−2 1.13 · 10−2

64 → 128 3.07 · 10−8 3.00 · 10−3 2.43 · 10−3 2.86 · 10−3

Table 3.3: Two-dimensional space convergence for wetting droplet

timesteps of 128 and 64 times the base timestep), to 2.42 · 10−8 (for timesteps of 64

and 32 times the base timestep). This behavior shows that the method is first order

accurate in time. There are some aberrant values in the table where one of the metrics

increases when the timestep is halved (such as in the VS column for the 8 to 4 and

4 to 2 cases). We do not find this worrying since it is not accompanied by increases

in the other metrics and the general progression of halving of the differences for each

halving of the timestep continues after these aberrations.

Tables 3.3 and 3.4 examine the spatial and temporal convergence of a wetting

droplet, where θAdv = θRec = 0. Here the droplet is initialized as in Sec. 4.2, with

β = 4 and Pe = 25. In this formulation, the droplet will spread to coat the entire

substrate. Examining the VF Difference column in Table 3.3, we see that the difference

in the calculated volume of fluid is reduced by 319 times between the first and second

doubling of spatial points, and 460 times for the second halving of points. In this

case, the accuracy is even higher than it was in the near steady state case. Table 3.4

shows that, for each of the four columns, each halving of the timestep corresponds

to a halving of the difference in the computed metric. Contrary to the results for

the near steady state case, here there are no aberrant results where the difference

increases.
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Timestep Change VF Difference VS Difference SR Difference R Difference

256 → 128 3.79 · 10−3 1.31 · 10−3 8.49 · 10−4 4.17 · 10−3

128 → 64 1.93 · 10−3 6.61 · 10−4 4.28 · 10−4 2.11 · 10−3

64 → 32 9.72 · 10−4 3.36 · 10−4 2.17 · 10−4 1.07 · 10−3

32 → 16 4.88 · 10−4 1.68 · 10−4 1.09 · 10−4 5.39 · 10−4

16 → 8 2.45 · 10−4 8.41 · 10−5 5.44 · 10−5 2.70 · 10−4

8 → 4 1.22 · 10−4 4.21 · 10−5 2.72 · 10−5 1.35 · 10−4

4 → 2 6.12 · 10−5 2.10 · 10−5 1.36 · 10−5 6.76 · 10−5

2 → 1 3.06 · 10−5 1.05 · 10−5 6.80 · 10−6 3.38 · 10−5

1 → 1/2 1.53 · 10−5 5.26 · 10−6 3.40 · 10−6 1.69 · 10−5

1/2 → 1/4 7.66 · 10−6 2.64 · 10−6 1.71 · 10−6 8.47 · 10−6

Table 3.4: Two-dimensional time convergence for wetting droplet
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Chapter 4

Two-Dimensional Results

4.1 Introduction

Initial conditions for the majority of the runs are assumed to be the steady

state solution of the isothermal problem when gravitational effects are ignored. In

parametric terms, this is the steady state of the problem when B = 0, δ = 0, and

β = 0 and is given by (2.119). Here, instead of the steady contact angle θS , we will

be using an initial contact angle, θI , and introduce an initial radius, RI , where the

initial left endpoint is given by −RI . The new formulation is thus

h =
θI

2RI

(

R2
I − x2

)

(4.1)

and the initial droplet profile is a parabola. Note that the initial area of this droplet

is VI = (2/3)θIR
2
I . In Sec. 4.3 the droplet is initialized to the steady state for

B 6= 0, δ = 0 and β = 0. In this case, the solution, rewriting (2.120) for symmetry

(L = −R), is

h =
θI√

B
[

exp
(

−
√

BRI

)

− exp
(√

BRI

)]

[

exp
(

−
√

Bx
)

+ exp
(√

Bx
)

− exp
(

−
√

BRI

)

− exp
(√

BRI

)

]

.

We will now use our model equations to determine the motion of a droplet

with surfactant on a heated substrate. Unless otherwise noted, all of the following

results are assumed to have RI = 1, β = 1, Ca = 0.1, B = 1, P e = 1, λ = 0.01, N =

0.05, and Bi = 0.1. The value of δ is different in Secs. 4.2 and 4.3 and will be specified

separately in each. A no-flux surfactant boundary condition at the contact lines will

be used unless otherwise specified. We will refer to this as our base parameter set.
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The values of the static contact angles will be given for each subsection. A uniform

initial distribution of surfactant is used, with the concentration of surfactant being

initialized to S(0, x) = 1/2 for −RI ≤ x ≤ RI . Other surfactant distributions have

been considered and qualitatively similar dynamics have been observed. We should

note that the value of the slip coefficient should be small in order to simulate a flow

where slip is only important in the neighborhood of the contact line. Smaller values

than the value selected here have been considered and found to give qualitatively

similar computational results[37] but require significantly more computational effort.

The majority of the figures in this chapter are presented at t = 10. This time

is chosen to be illustrative of the phenomena that the droplet experiences. At longer

times, the surfactant tends to reach a uniform distribution. In the completely wetting

case (θAdv = θRec = 0), for long time we see the surfactant concentration approaching

zero uniformly along the interface. Initial conditions are selected to illustrate the

relevant phenomena and we have found that varying the initial conditions from those

used here gives similar results.

4.2 Isothermal wetting droplets

First, consider the case where the droplet completely wets the substrate, i.e.,

θAdv = θRec = 0. Assume that θI = 3, that the initial position of the right endpoint

is x = 1, and the left endpoint is at x = −1. There is no heating for this section, i.e.,

δ = 0, so the results presented here are symmetric. Thermal effects and translating

droplets will be presented in Sec. 4.3.

The effects of surfactant on droplet spreading can be seen in Fig. 4.1. Here

the drop radius R(t) at t = 10 is plotted as a function of β for different values of

Peclet number. We find that increasing β (i.e., increasing the surfactant Marangoni

number) decreases the spreading rate. Increasing Pe also decreases the spreading

rate. As the droplet spreads outward, surfactant is convected along the surface to the

contact lines. This transport lowers the concentration of surfactant on the center of

the droplet and increases it at the endpoints. The resulting positive surfactant gra-

dient leads to a negative surface tension gradient and a Marangoni flow that opposes
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Figure 4.1: Effects of surfactant strength on spreading. Spreading distance versus β at

t = 10. Note that increasing the strength of the surfactant reduces the spreading distance

of the droplet.
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Figure 4.2: Effects of surfactant strength on spreading. Spreading distance versus β at

t = 10. Close-up of Fig. 4.1 with results for higher Peclet numbers included. Note the

minimum spreading distance.

droplet spreading. Thus the spreading rate decreases with increasing β. Higher Peclet

numbers allow the surfactant to form sharper gradients, intensifying the Marangoni

counterflow, and thus reducing the spreading rate. As time progresses and the droplet

continues to spread, the concentration of the surfactant will decrease as it covers an

ever increasing droplet wetting area. The resulting surfactant gradients and resulting

Marangoni flows are thus reduced and the retardant effect of the surfactant decreases

as the droplet expands. Similar results were found for three-dimensional axisymmetric

spreading and are presented in Chapter 7.

Note that Fig. 4.1 is a snapshot in time. Our computations imply that

if a similar plot were drawn at a later time and / or for larger Peclet numbers the
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Figure 4.3: Surfactant profiles at t = 10 for large and small Peclet numbers. Surfactant

strength is given by β = 2.

curves may have a minimum at a finite value of β and then asymptotically increase

to a steady value of the spreading distance R; see Fig. 4.2 for a close-up figure

where we have added additional curves for higher Peclet numbers. At shorter times,

even for large Peclet numbers, the spreading distance decreases monotonically with

surfactant strength. This non-monotonic spreading behavior with β is related to how

the surfactant concentration varies along the surface as time increases, especially for

large Peclet numbers where a boundary layer in surfactant concentration can occur

near the contact line.

Example surfactant profiles can be seen in Fig. 4.3. Surfactant strength is

given by β = 2 for both results. This figure shows how a large Peclet number allows

large surfactant gradients to be maintained even at relatively long times. These larger

surfactant gradients in the Pe = 10, 000 case have retarded the droplet spreading, so

the surfactant concentration on the droplet is, on average, higher than in the Pe = 1
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Figure 4.4: Two-dimensional droplet profiles for β = 2, P e = 1.

case.

Example droplet profiles are shown in Fig. 4.4 for β = 2, P e = 1. This

figure shows the spreading behavior of the drop. As expected, the spreading is fastest

when the droplet first begins to spread; as it spreads, the contact angle decreases,

bringing it closer to the steady contact angle and thus slowing spreading. Since it is

a wetting droplet, spreading will never stop, but it will continually slow. Figure 4.5

is the companion to Fig. 4.3 but showing the droplet profiles instead of surfactant

concentrations. It compares the final profile for the Pe = 1 case to that of the

Pe = 10, 000 case. As previously described, the higher Peclet number retards the

droplet spreading.

Figure 4.6 shows results when the no-flux condition at the contact line is

relaxed and the flux condition (2.113) is used instead. Spreading rates for various

values of ST are shown. The no-flux, ST = 0, spreading rates are also shown for

comparison. In Fig. 4.6 we see that droplet spreading slows as the concentration of
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Figure 4.5: Droplet profiles at t = 10 for large and small Peclet numbers. Surfactant

strength is given by β = 2.

surfactant on the substrate, SS, is increased. In the cases studied here, allowing flux

of surfactant off of the droplet, low SS, increases spreading rates compared to the no-

flux case. This process is easily understood; since the surfactant is leaving the droplet

surface, there is a negative surfactant gradient in the neighborhood of the contact

line, resulting in a reinforcing Marangoni flow in the direction of spreading and hence

increasing the overall droplet spreading rate. Once all the surfactant has been drained

from the surface, then the surface tension gradients are immaterial and the droplet

reverts to an effective β = 0 spreading rate. For higher values of SS this process

is reversed. Surfactant absorbs from the substrate onto the surface of the droplet,

creating positive local surfactant gradients and opposing Marangoni flows which slow

the spreading. At sufficiently long times, allowing surfactant transfer, for SS 6= 0,

will always slow the droplet. The droplet will be continuously spreading, lowering the

surfactant concentration on its surface. At some point, the concentration of surfactant

at the contact line will fall below SS, creating a positive surfactant gradient there as

surfactant is absorbed from the substrate, and hence slowing spreading.
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Figure 4.6: Effects of surfactant flux on spreading. Position of the right endpoint as a

function of SS at t = 10 for various β and ST .
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Figure 4.7: Effects of surfactant flux on spreading. Surfactant profiles at t = 10 with β = 1

and where flux of surfactant is allowed.
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Figure 4.8: Effects of surfactant flux on spreading where a cubic flux boundary condition

is used. Position of the right endpoint as a function of SS at t = 10 for various β and ST .

The effects of flux on the surfactant profiles can be seen in Fig. 4.7. The flux

of surfactant from the droplet is clearly seen in the SS = 0 case. The downward profile

in the surfactant concentration is indicative of the surfactant leaving the droplet at the

edges while remaining in the middle. As one would also expect, the overall surfactant

concentration is lower in this case than in the base case with no flux. These effects

are reversed when surfactant is absorbed by the droplet. In the SS = 1/2 case,

the surfactant is absorbed at the contact lines and increases the overall surfactant

concentration on the droplet.

It is interesting to note the linear or nearly linear effect of many of the

parameters on the spreading rates. For example, our computations imply that the

linear dependence of the spreading rate on the steady surfactant concentration SS,

as shown in Fig. 4.6, is due to the linear form of (2.113). When this is changed to

a cubic of the form ∂S/∂x|x=R = ST (S|x=R − SS)3 there is a nonlinear dependence
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of R on SS. The nonlinear behavior is shown in Fig. 4.8. We should also note that

for the values of the parameters we have considered, varying the Bond and capillary

numbers results in the greatest change in the spreading rate of the droplet. The Bond

and capillary number comparisons are reported by Haley and Miksis[37] for droplets

without surfactants. The qualitative dependence on droplet spreading on Bond and

capillary numbers remains the same even in the presence of surfactants.

4.3 Near steady state comparisons

This section investigates hysteresis effects. We consider the case where θI =

3, θAdv = 3, and θRec = 2.8. The droplet is initialized to the steady state for the case of

no surfactant or temperature gradients. Thus surfactant and temperature gradients

drive the droplet spreading, and if δ = β = 0 then the droplet will not move. Here

we allow a large temperature gradient, δ = 4, which causes the droplet to translate

to the right in the absence of surfactant. More data on translating droplets will be

presented in Sec. 4.5.

First consider the zero Marangoni number case, i.e., β = 0. This situation

corresponds to passive surfactant transport along the droplet surface with no effect of

surfactant on the interface shape. In this case, heating is driving the droplet motion.

The droplet does not move initially since it is stuck in the hysteresis region (see

Fig. 4.9). As time increases, the contact angle at the right end decreases initially,

but remains larger than θRec = 2.8. Eventually, the temperature gradient forces

the droplet to steepen the right contact angle until it is greater than θAdv at which

point the droplet begins translating to the right and does not stop. A similar effect

happens at the left contact line. Hence the heating forces the droplet to move out of

its hysteresis regime and to begin translating.

More revealing is the case with both heating and surfactant. Given the

results in Sec. 4.2, one would expect that, for a spreading droplet, the surfactant

gradients would quickly reorient themselves to oppose droplet spreading. For the

wetting droplet it is found that the concentration of surfactant, and therefore the

strength of the gradients, decreases as the droplet spreads. Thus the presence of

surfactant has the largest effect at short to intermediate times; at long times its
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Figure 4.9: Position of the right endpoint for a near steady state droplet with heating along

the surface. The droplet can become stuck for large β, i.e., large Marangoni numbers.
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Figure 4.10: Surfactant profiles at t = 10 for a near steady state droplet with heating along

the surface.

presence is largely irrelevant to the spreading rate. Since the droplets in this regime

translate and do not change dramatically in width, one would expect the effect of

the surfactant gradients to remain relatively constant; thus as the strength (β) of

the surfactant increases, the droplet spreading rate should decrease as well until

the droplet is barely moving. What is actually seen is that at a certain critical

value of β the droplet halts completely due to hysteresis. The critical value of β is

approximately one and this phenomenon can be seen in Fig. 4.9 for values of β ≥ 1.

Computationally we find that this behavior is not qualitatively dependent upon the

value of the slip coefficient, λ. Note that if a non-uniform distribution of surfactant

were present, short time surfactant driven spreading would occur, but the droplet

would still become trapped for β ≥ 1 after this initial spreading, even though there

is still a temperature gradient on the substrate.

Surfactant profiles at t = 10 for the droplets are given in 4.10. Since the

droplet is travelling, there is a nonsymmetric surface velocity that causes nonsymmet-
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Figure 4.11: Radius of right endpoint for near steady state droplet without hysteresis.

Without hysteresis to allow for the droplet to become stuck, the spreading is merely slowed

by the presence of surfactant. Note that large β can cause a faster initial spreading rate

while lowering spreading rates over longer times.

ric surfactant profiles. At β = 0, the surfactant is being passively carried along by the

fluid. At β = 1, the surfactant is fully opposing droplet motion and has prevented the

droplet from moving. As the surfactant strength increases, the surfactant gradient

needed to oppose the droplet motion decreases. Thus the β = 5 surfactant profile is

much flatter than the β = 1 profile, even though both of them prevent any droplet

motion.

This process of stopping a droplet disappears if hysteresis is eliminated. In

this case, surfactant simply slows the spreading of the droplet (see Fig. 4.11). At

short times, since the droplet wants to contract, the presence of surfactant slows

down the contraction rate because the flow causes a surface tension gradient toward

the contact line which produces a flow opposing the contracting motion. It is only at

longer times, after the droplet begins to spread outward, that surfactants act to limit
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Figure 4.12: Droplet profiles at t = 10 for a near steady state droplet with heating along

the surface.

the spreading rate of the droplet. In this partial wetting case (θAdv 6= 0, θRec 6= 0),

if there were a non-uniform surfactant distribution in the absence of temperature

gradients or hysteresis, the droplet would undergo a short time spreading and then

slowly return to its initial, steady shape. We note that similar results as found here

can also be obtained for other initial data as long as θI is in the hysteresis region.

Droplet profiles for the near steady state droplet are seen in Fig. 4.12. The

clean droplet, β = 0, is translating to the right, driven by the temperature gradient.

The pinned right endpoint is clearly seen for the β = 1 case. This is contrasted with

the droplet profiles presented in Fig. 4.13. Without hysteresis to allow the right

endpoint to become pinned, surfactants merely slow the droplet’s spreading. In this

case both droplets, with and without surfactants, are translating to the right.
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Figure 4.13: Droplet profiles at t = 10 for a near steady state droplet with heating along

the surface without hysteresis.



72

0 2 4 6 8 10

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Time

R
ig

ht
 E

nd
po

in
t

β=5 

β=0 

β=1/4 
β=1 

β=2 

Figure 4.14: Radius of right endpoint when variable static contact angles are used. Large

values of β can drastically increase droplet spreading rates.

4.4 Variable static contact angle

If the static contact angles θAdv and θRec depend upon the local surfactant

concentrations and temperatures as is described in Sec. 2.9, then different dynamics

from those presented in Sec. 4.3 are observed. Suppose that the droplet is initialized

exactly as it is in Sec. 4.3, aside from (2.126) being used instead of constant θAdv and

θRec.

For small surfactant Marangoni numbers, β ≤ 1, the spreading rates are

similar to those that use constant static contact angles. This can be observed by

comparing Fig. 4.14 to Fig. 4.9. We see in Fig. 4.14 that for β = 0 and 1/4 the

droplet does not initially advance because of the hysteresis, but as time increases, the

right contact angle does reach the value of θAdv and it begins to advance. This takes

longer to occur than for a similar case in Fig. 4.9. For β = 1, the droplet initially

spreads slightly but then becomes stuck by hysteresis and our computations do not
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Figure 4.15: Droplet profiles at t = 10 for a near steady state droplet with heating along

the surface when variable static contact angles are used.

imply any advance of the contact line even for large times. The β = 2 and 5 cases

have a drastically different result than seen in Fig. 4.9. In particular, the droplet

spreads. Here the effect of β on the variable static contact angles is much greater

than its direct effect on spreading rate. The result is that the static contact angles

are reduced, and allow for non-zero spreading rates. Droplet profiles contrasting the

β = 0 and β = 5 cases are seen in Fig. 4.15. For β ≤ 1/4 the static contact angles

actually increase due to the temperature gradient, causing the droplet to initially

shrink for a very short time before entering the hysteresis regime. This effect is tiny

and not easily visible in Fig. 4.14.
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Figure 4.16: Droplets spreading on normal vs. gradient substrate at time 10.

4.5 Substrate surfactant gradient

The drop spreading case studied in Sec. 4.3 is now extended by applying a

surfactant gradient to the substrate as described in Sec. 2.8. For these calculations,

we set GA = 1 and GB = 3/4 in (2.121). As is expected, the droplet is propelled

along the substrate. This effect can be combined with temperature gradients on the

surface to increase spreading rates even further. The results of this can be seen in

Fig. 4.16, which shows the profiles of the droplets at t = 10 on clean substrates versus

those that have been doped with a substrate surfactant gradient.

As discussed by Wasan et al.[83], one reason for the rapid translation of the

droplet in the substrate surfactant gradient case is that capillary flows are going in

the same direction as droplet propagation. This is indicated by the fact that the

leading contact angle is less than the receding contact angle. While it is only slightly

less than the receding contact angle here, this contrasts sharply with the case of Sec.

4.3, where the leading contact angle is significantly greater than the receding contact

angle.
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Chapter 5

Three-Dimensional Axisymmetric

Problem Formulation

In this chapter we will extend the previous two-dimensional analysis of a

surfactant-coated droplet into three dimensions. This analysis will remain axisym-

metric; full three-dimensional work will be presented in Chapters 8–10. We will not be

including heat effects as the heat distribution we assumed in Chapter 2 causes trans-

lation, which would break the assumed symmetry in our formulation. Similar work,

although without surfactants and surface energy dependent static contact angles, has

been performed by Haley and Miksis[37].

5.1 Formulation

The problem will be formulated in cylindrical coordinates. Let r be the

radial variable and z be the vertical variable. The distance from the substrate to the

free surface is denoted h(r, t), and R(t) is the radius of the drop, which makes an

angle θ with the substrate (see Fig. 5.1). Gravity, g, acts in the negative z direction.

The radial and vertical components of velocity are given by u and w.

We are interested in the following equations in the bulk of the fluid: conser-

vation of mass,
1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (5.1)

and conservation of momentum in radial and vertical directions,

ρ

(

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)

= µ
(

∇2u − u

r2

)

− ∂p

∂r
, (5.2)

ρ

(

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

= µ∇2w − ∂p

∂z
− ρg, (5.3)
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Figure 5.1: Three-dimensional axisymmetric droplet configuration

where p is the pressure in the drop, ρ is the density of drop’s fluid, and µ is the

viscosity of the drop.

At z = 0, the conditions are no penetration,

w = 0, (5.4)

and, in order to relax the no-slip condition and relieve the singularity at the contact

line (see e.g. Dussan V. and Davis[23]), the Navier slip condition

u − λ(h)

(

∂u

∂z
+

∂w

∂r

)

= 0. (5.5)

The slip condition is (1.1) evaluated for the three-dimensional axisymmetric coordi-

nates and has been used by others, including Greenspan[35] and Haley and Miksis[37].

Our slip function is

λ(h) =
λ1

h
, (5.6)

which was first introduced by Greenspan[35].

At the free boundary, z = h(r, t), the governing equations are the kinematic

condition
∂h

∂t
+ u

∂h

∂r
− w = 0, (5.7)
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and the jump in normal stress condition

p = pa − σ
1

r

∂

∂r







r
∂h

∂r

[

1 +

(

∂h

∂r

)2
]− 1

2







+ 2µ

[

1 +

(

∂h

∂r

)−1
][

(

∂h

∂r

)2
∂u

∂r
− ∂h

∂r

(

∂u

∂z
+

∂w

∂r

)

+
∂w

∂z

]

. (5.8)

Here pa is the atmospheric pressure of the surrounding fluid and σ is the surface ten-

sion of the droplet. The other condition at the free surface boundary is the continuity

of tangential stress condition. The general stress condition is

n̂ · τ = −σ (∇s · n̂) n̂ + ∇sσ (5.9)

where the unit normal is

n̂ =
< −hr, 0, 1 >
√

1 + h2
r

, (5.10)

the unit tangent is

t̂ =
< 1, 0, hr >
√

1 + h2
r

, (5.11)

the stress tensor is

τij = −pδij + µeij, (5.12)

and ∇s is the surface derivative in the direction of the tangent. The gradient is given

by[51]

∇sf =
< 1, 0, hr >

1 + (hr)
2

∂f

∂r
. (5.13)

Now t̂ can be dotted into (5.9) to pick out the continuity of tangential stress condition,

n̂ · τ · t̂ = −σ (∇s · n̂) n̂ · t̂ + ∇sσ · t̂. (5.14)

Simplifying and then expanding terms gives us:

n̂ · τ · t̂ = ∇sσ · t̂ (5.15)
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n̂ · τ · t̂ = nrτrrtr + nrτrztz + nzτzrtr + nzτzztz
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1
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∂w

∂r

)]

= ∇sσ · t̂ =
∂σ

∂r

1
√

1 + (∂h
∂r

)2

(5.16)

Simplifying once again leads us to the continuity of tangential stress condition:

µ

[

∂h

∂r

(

∂w

∂z
− ∂u

∂r

)

+
1

2

(

1 −
(

∂h

∂r

)2
)

(

∂u

∂z
+

∂w

∂r

)

]

=

√

1 + (
∂h

∂r
)2

∂σ

∂r
. (5.17)

Boundary conditions for the contact line are still needed. The slip velocity

is defined to be the velocity of the contact line:

us =
dR

dt
. (5.18)

The slip velocity is set equal to a general function of the contact angle, which is the

contact angle – slip velocity relationship,

us = f(θ). (5.19)

A contact angle – slip velocity relationship that includes hysteresis effects is given by:

f(θ) = k̂



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec.

(5.20)

Here k̂ is a characteristic unit of velocity. This is the m = 1 form of (1.2)–(1.3)

extended to allow for hysteresis. It has been used by, among others, Greenspan[35]

and Haley and Miksis[37].

The droplet must remain in contact with the surface at the contact line and

thus requires that

h(R(t), t) = 0. (5.21)
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Geometric analysis shows that

∂h

∂r

∣

∣

∣

∣

r=R(t)

= − tan(θ). (5.22)

The other main component of our model is the inclusion of surfactants. The

concentration of surfactant on the surface of the droplet is given by S(r, t). The

general surfactant transport equation is

St + ∇s · (~usS) − (∇s · n̂) S (~u · n̂) = D∇2
sS + J (5.23)

where D is the surface diffusivity constant, ~us is the surface velocity (velocity in the

tangential direction), n̂ is the unit normal vector to the surface, and J is the surface

absorption term, which will be ignored for this analysis. The surface divergence is

given by

∇s · (~usS) =
1

r
√

1 +
(

∂h
∂r

)2

∂

∂r
(rusS) (5.24)

where

us = ~v · t̂. (5.25)

One boundary condition for surfactant is that it must maintain symmetry at the

origin:
∂S

∂r

∣

∣

∣

∣

r=0

= 0. (5.26)

Surfactant is allowed to be adsorbed and desorbed at the contact line. This is done

by assuming that the gradient of S is linearly related to the surfactant concentration

at the contact point. In particular, the boundary condition for surfactant transport

is given by

∂S

∂r

∣

∣

∣

∣

r=R

= −ST

√

1 +

(

∂h

∂r

)2
(

S
∣

∣

r=R
− SS

)

, (5.27)

where ST is the transfer rate of surfactant onto and off of the substrate and SS is the

steady concentration of surfactant on the substrate. It is assumed that ST and SS are

constants independent of time. Remaining constant implies that if surfactant were

absorbed by the advancing contact line, the resulting surface surfactant concentration

would not affect the receding contact line if it were to transverse the same point on the

substrate. No-flux at the contact lines can be modeled by taking ST = 0. Equation
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(5.27) is clearly a modeling assumption on our part, but it appears to be reasonable

since the surfactant flux might be expected to increase as the local value of surfactant

concentration increases.

We will also need an equation of state, which we take to be

σ = 1 + ε2Σ (5.28)

where ε � 1 and Σ is given by

Σ = −σSS. (5.29)

Here σS is a constant representing how strongly surfactants affect surface tension and

has units of J/mol m.

Finally, the volume of the fluid droplet and the amount of surfactant on it

are both constant in time and can be represented as

VF = 2π

∫ R(t)

0

rh(r, t)dr, (5.30)

VS = 2π

∫ R(t)

0

rS(r, t)

√

1 +

(

∂h

∂r

)2

dr. (5.31)

5.2 Nondimensionalization

Here will nondimensionalize the evolution equations. The basic assumption

of lubrication theory is that the height of the droplet is much less than its height.

This assumption will be used to scale the nondimensional variables. The lubrication

relationship also implies that the contact angle is small. The dimensional contact

angle θ is used to define our small parameter ε � 1. This scaling is used to scale our

nondimensional variables, denoted by tildes:
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t =
t̃Rcµ

σcε3
, r = r̃Rc, z = z̃Rcε,

u = ũk̂ε, w = w̃k̂ε2, θ = θ̃ε,

θAdv = εθ̃Adv , θRec = εθ̃Rec, λ = Rcελ̃

p =
p̃µk̂

Rcε
+ pA, R = R̃Rc, λ1 = R2

cε
2λ̃1

VF = ṼF2πR3
cε, σ = σcσ̃, h = h̃Rcε

VS = ṼS2πR2
cSc, λ0 = λ̃0Rcε, S = S̃Sc,

Σ = σcΣ̃, ST = S̃T
Rc

Sc
, SS = S̃S

Rc

Sc
,

f = εk̂f̃ .

Here Rc is taken to be a characteristic length of the droplet, either an initial radius or

a steady state radius, for example. The constant σc is the surface tension of a clean

surface, which occurs when there is no surfactant on the droplet. The constant Sc is

a characteristic surfactant concentration. We choose z to be one order of magnitude

in ε smaller than r since that is consistent with the lubrication approximation that

the height of droplet is much less than its width. Scalings for the velocities are chosen

by examining the contact angle – slip velocity relationship (5.20) when substituted

into (5.19). This gives a scaling for u and, because of (5.1), the vertical direction z

is again chosen to be one order of magnitude smaller.

Also introduce the Capillary number, Ca, the Bond number, B, the Reynolds

number, Re, the Peclet number, Pe, the Marangoni number for surfactant, MS, and

the parameter β representing the strength of the effect of surfactant gradients on

surface tension:

Ca =
µk̂

σcε2
, B =

ρgR2
c

σc

, Re =
ρRck̂

µ
,

Pe =
Rck̂ε

D
, MS =

σcβε2

µk̂
, β =

ScσS

σc
.

All of these parameters are assumed to be order one.

Rescaling the conservation of mass equation (5.1) for these new nondimen-
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sional variables, we get
1

r̃

∂

∂r̃
(r̃ũ) +

∂w̃

∂z̃
= 0. (5.32)

Using these scalings and nondimensional parameters in (5.2) gives us

Re ε3

(

1

Ca

∂ũ

∂t̃
+ ũ

∂ũ

∂r̃
+ w̃

∂ũ

∂z̃

)

+
∂p̃

∂r̃
=

∂2ũ

∂z̃2
+ ε2

[

1

r

∂

∂r̃

(

r̃
∂ũ

∂r̃

)

− ũ

r̃2

]

. (5.33)

The conservation of momentum in z equation (5.3) now becomes

∂p̃

∂z̃
+ ε5Re

(

1

Ca

∂w̃

∂t̃
+ ũ

∂ũ

∂r̃
+ w̃

∂ũ

∂z̃

)

= ε4 1

r̃

∂

∂r̃

(

r̃
∂w̃

∂r̃

)

+ ε2∂2w̃

∂z̃2
− B

Ca
. (5.34)

At z̃ = 0, the no penetration condition becomes

w̃ = 0 (5.35)

while the Navier slip law is

ũ − λ̃(h̃)

(

∂2ũ

∂z̃2
+ ε2 ∂2w̃

∂r̃2

)

, (5.36)

with

λ̃(h̃) =
λ̃1

h̃
. (5.37)

At the boundary of the droplet, z̃ = h̃(r̃, t̃), the kinematic condition is

1

Ca

∂h̃

∂t̃
+ ũ

∂h̃

∂r̃
− w̃ = 0. (5.38)

The jump in normal stress is now

p̃ = − 1

Ca

1

r̃

∂

∂r̃









r̃ ∂h̃
∂r̃

√

1 + ε2
(

∂h̃
∂r̃

)2









+

2ε2

1 + ε2
(

∂h̃
∂r̃

)2







∂w̃

∂z̃
− ∂h̃

∂r̃

∂ũ

∂z̃
+ ε2





∂ũ

∂r̃

(

∂h̃

∂r̃

)2

− ∂h̃

∂r̃

∂w̃

∂r̃











. (5.39)

The equation of state will be used in the continuity of tangential stress

condition, so we will nondimensionalize it first:

Σ̃ = −βS̃. (5.40)
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The continuity of tangential stress condition now becomes

ε
∂h̃

∂r̃

(

ε
∂w̃

∂z̃
− ε

∂ũ

∂r̃

)

+
1

2



1 −
(

ε
∂h̃

∂r̃

)2




(

∂ũ

∂z̃
+ ε2 ∂w̃

∂r̃

)

=
1

Ca

√

1 + ε2(
∂h̃

∂r̃
)2

∂Σ̃

∂r̃
.

(5.41)

At the contact line, combining (5.18) and (5.19), the contact angle – slip

velocity relationship becomes
dR̃

dt̃
= Ca f̃(θ̃) (5.42)

where

f̃(θ̃) =



















(

θ̃ − θ̃Adv

)

, θ̃ > θ̃Adv

0, θ̃Rec ≤ θ̃ ≤ θ̃Adv
(

θ̃ − θ̃Rec

)

, θ̃ < θ̃Rec

(5.43)

The contact condition remains

h̃(R̃, t̃) = 0 (5.44)

and the geometric relationship is

∂h̃

∂r̃

∣

∣

∣

∣

r̃=R̃(t̃)

= −1

ε
tan(εθ̃). (5.45)

The surfactant transport equation (5.23) is more involved will be nondi-

mensionalized piecewise. First, the surfactant concentration is nondimensionalized

as

S = ScS̃ (5.46)

where Sc is a characteristic surfactant concentration. The unit vectors become

n̂ =
< −εh̃r̃, 0, 1 >
√

1 + ε2h̃2
r̃

, (5.47)

t̂ =
< 1, 0, εh̃r̃ >
√

1 + ε2h̃2
r̃

. (5.48)

The surface divergence (5.24) is now

∇s · (~usS) =
εk̂Sc

Rc

1

r̃

√

1 +
(

ε∂h̃
∂r̃

)2

∂

∂r̃









ũ + ε2w̃ ∂h̃
∂r̃

√

1 +
(

ε∂h̃
∂r̃

)2
r̃S̃









. (5.49)
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The surface Laplacian is given by

∇2
s =

Sc

R2
c

1

r

√

1 +
(

ε∂h̃
∂r̃

)2

∂

∂r̃









r
√

1 +
(

ε∂h̃
∂r̃

)2

∂S̃

∂r̃









(5.50)

The surfactant transport equation (5.23) now becomes

1

Ca

∂S̃

∂t̃
+

1

r̃

√

1 +
(

ε∂h̃
∂r̃

)2

∂

∂r̃









ũ + ε2w̃ ∂h̃
∂r̃

√

1 +
(

ε∂h̃
∂r̃

)2
r̃S̃









− 1

1 +
(

ε∂h̃
∂r̃

)2

1

r

∂

∂r̃









r̃ ∂h̃
∂r̃

√

1 +
(

ε∂h̃
∂r̃

)2









S̃

(

−εũ
∂h̃

∂r̃
+ εw̃

)

=
1

Pe

1

r̃

√

1 +
(

ε∂h̃
∂r̃

)2

∂

∂r̃









r̃
√

1 +
(

ε∂h̃
∂r̃

)2

∂S̃

∂r̃









.

(5.51)

The boundary conditions are the flux condition,

∂S̃

∂r̃

∣

∣

∣

∣

r̃=R̃

= −S̃T

√

√

√

√1 +

(

ε
∂h̃

∂r̃

)2
(

S̃
∣

∣

r̃=R̃
− S̃S

)

, (5.52)

and the symmetry condition at the origin

∂S̃

∂r̃

∣

∣

∣

∣

r̃=0

= 0. (5.53)

Finally, the volume of fluid and amount of surfactant become

ṼF =

∫ R̃

0

r̃h̃(r̃, t̃)dr̃, (5.54)

ṼS =

∫ R̃

0

r̃S̃(r̃, t̃)

√

√

√

√1 +

(

ε
∂h̃

∂r̃

)2

dr̃. (5.55)

5.3 Leading Order Equations

Now that we have derived the nondimensional equations for the system, we

can go about finding the leading order in ε terms. Introduce a regular perturbation
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expansion of the form h̃ = h̃0 + εh̃1 + . . . for each of the dependent variables. Sub-

stitutes this expansion into equations (5.32)–(5.53) and group together terms of like

order in ε. At leading order, the conservation of mass equation remains unchanged as

1

r̃

∂

∂r̃
(r̃ũ0) +

∂w̃0

∂z̃
= 0. (5.56)

The leading order of conservation of momentum leading in r is

∂p̃0

∂r̃
=

∂2ũ0

∂z̃2
. (5.57)

while in conservation of momentum in z it is

∂p̃0

∂z̃
= − B

Ca
. (5.58)

At the substrate z̃ = 0, the no penetration condition (5.35) remains unchanged as

w̃0

∣

∣

∣

∣

z̃=0

= 0. (5.59)

The slip law (5.36) becomes

ũ0 − λ̃(h̃0)
∂ũ0

∂z̃
= 0. (5.60)

On the free surface, z̃ = h̃0(r̃, t̃), the kinematic condition (5.7) reduces to

1

Ca

∂h̃0

∂t̃
+ ũ0

∂h̃0

∂r̃
− w̃0 = 0. (5.61)

The continuity of tangential stress condition (5.41) reduces to

∂ũ0

∂z̃
=

2

Ca

∂

∂r̃
Σ̃0. (5.62)

The jump in normal stress (5.39) becomes

p̃0 = − 1

Ca

1

r̃

∂

∂r̃

(

r̃
∂h̃0

∂r̃

)

. (5.63)

Expanding the geometric relation (5.45) for ε � 1 produces

∂h̃0

∂r̃

∣

∣

∣

∣

r̃=R̃

= −θ̃0. (5.64)
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Combining this result with (5.42) yields

1

Ca

dR̃0

dt̃
= f̃

(

−∂h̃0

∂r̃

∣

∣

∣

∣

r̃=R̃

)

. (5.65)

The surfactant evolution equation at leading order is

1

Ca

∂S̃0

∂t̃
+

1

r̃

∂

∂r̃

(

r̃ũ0S̃0

)

=
1

Pe

1

r̃

∂

∂r̃

(

r̃
∂S̃0

∂r̃

)

(5.66)

while the boundary conditions become The boundary conditions are the flux condi-

tion,

∂S̃0

∂r̃

∣

∣

∣

∣

r̃=R̃

= −S̃T

(

S̃0

∣

∣

r̃=R̃
− S̃S

)

, (5.67)

and the symmetry condition at the origin

∂S̃0

∂r̃

∣

∣

∣

∣

r̃=0

= 0. (5.68)

Finally, the amount of surfactant on the drop is given by

ṼS =

∫ R̃

0

r̃S̃0(r̃, t̃)dr̃. (5.69)

We will now drop the tildes over and subscripts to the nondimensional variables.

5.4 Derivation of Evolution Equations

A set of linked partial differential equations for droplet height, contact line

motion, and surfactant concentration will now be derived from the leading order

nondimensional equations. Integrating (5.58) with respect to z reveals that

p = − B

Ca
z +

1

Ca
q(r, t). (5.70)

Using this result in (5.63) gives

q(r, t) = Bh − 1

r

∂

∂r

(

r
∂h

∂r

)

. (5.71)

Substituting (5.70) and (5.71) in (5.57) produces

1

Ca

∂q

∂r
=

∂2u

∂z2
, (5.72)
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which can be integrated twice to find

u =
1

Ca

∂q

∂r

z2

2
+ A(r, t)z + C(r, t). (5.73)

Use this result in (5.62) and see that

A(r, t) =
2

Ca

∂Σ

∂r
− 1

Ca

∂q

∂r
h. (5.74)

Now, use (5.73) and (5.74) in (5.60) to solve for C:

C(r, t) = λ(h)A(r, t) =
1

Ca
λ(h)

(

2
∂Σ

∂r
− ∂q

∂r
h

)

. (5.75)

Substitute (5.73) - (5.75) into (5.56):

1

r

∂

∂r
(ru) +

∂w

∂z
= 0. (5.76)

Now, integrate this one time with respect to z to solve for w:

w = −1

r

∂

∂r

(

r

∫

udz

)

+ D(r, t)

= − 1

Ca

1

r

∂

∂r

{

r

[

∂q

∂r

z3

6
+

(

2
∂Σ

∂r
− ∂q

∂r
h

)

z2

2

+ λ(h)

(

2
∂Σ

∂r
− ∂q

∂r
h

)

z

]}

+ D(r, t)

(5.77)

w =
1

Ca

1

r

∂

∂r

[

r
∂q

∂r

(

z2

2
h − z3

6
+ λ(h)zh

)

− 2r
∂Σ

∂r

(

z2

2
+ λ(h)z

)]

+ D(r, t). (5.78)

Use (5.73) - (5.77) in (5.59) and solve for D(r, t):

D(r, t) = 0 (5.79)
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Finally, substitute (5.73) - (5.79) into (5.61) to get a partial differential equation for

h(r, t):

(

1

Ca

∂h

∂t
+ u

∂h

∂r
− w

) ∣

∣

∣

∣

z=h

= 0

1

Ca

∂h

∂t
+

r

Ca

[

∂q

∂r

h2

2
+

(

2
∂Σ

∂r
− ∂q

∂r
h

)

(h + λ(h))

]

∂h

∂r

− 1

r

∂

∂r

(

r

Ca

∂q

∂r

)[

h

3
+ λ(h)h2

]

− 1

Ca

∂q

∂r

[

h2

2

∂h

∂r
+

∂

∂r
(hλ(h)) h

]

+
2

Ca

1

r

∂Σ

∂r

[

h2

2
+ λ(h)h

]

+
2

Ca

∂2Σ

∂r2

[

h2

2
+ λ(h)h

]

+
2

Ca

∂Σ

∂r

∂

∂r
(λ(h))h = 0

(5.80)

which simplifies down to

∂h

∂t
=

1

r

∂

∂r

(

W
∂q

∂r
− V

∂Σ

∂r

)

(5.81)

where

W = r

[

h3

3
+ λ(h)h2

]

, (5.82)

V = 2r

[

h2

2
+ λ(h)h

]

. (5.83)

It should be noted that h still needs boundary conditions at the origin.

Smoothness at the origin requires that

∂h

∂r

∣

∣

∣

∣

r=0

= 0. (5.84)

One more boundary condition is still needed. This is found via a local analysis of

(5.98). In order for the height to remain bounded at the origin, we require that

∂3h

∂r3

∣

∣

∣

∣

r=0

= 0. (5.85)

Taken together, (5.81)–(5.83) with boundary conditions (5.44) and (5.84)–

(5.85) form the droplet height evolution equation, the contact line is advanced by

(5.65), and the surfactant concentration is determined by (5.66) with boundary con-

ditions (5.67) and (5.68).
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5.5 Volume Conservation

Volume is automatically conserved in this formulation of the problem. Fluid

volume is given by

VF =

∫ R(t)

0

h(r, t) r dr. (5.86)

Volume conservation is proved by showing that the change in volume in time is zero:

dVF

dt
= Ṙ(t)h r

∣

∣

∣

∣

r=R

+

∫ R(t)

0

∂h

∂t
rdr. (5.87)

The contact condition (5.44) is used to reduce this to

dVF

dt
=

∫ R

0

∂h

∂t
rdr (5.88)

=

∫ R

0

∂

∂r

(

W
∂q

∂r
− V

∂Σ

∂r

)

dr (5.89)

=

(

W
∂q

∂r
− V

∂Σ

∂r

) ∣

∣

∣

∣

r=R

r=0

(5.90)

It can be shown that ∂q
∂r

∣

∣

0
= 0 and that W is zero at the contact line. This

means that
dVF

dt
= 0. (5.91)

As with the volume of the droplet, it will now be shown that surfactant is automati-

cally conserved in this formulation of the problem. At leading order, the total amount

of surfactant on the drop is given by (5.69). As before, conservation of surfactant will

be proved by showing that the change in total surfactant in time is zero.

dVS

dt
=

∂

∂t

∫ R(t)

0

S(r, t) r dr (5.92)

= ṘS r

∣

∣

∣

∣

r=R

+

∫ R

0

∂S

∂t
rdr (5.93)

= ṘS r

∣

∣

∣

∣

r=R

+ Ca

∫ r=R

r=0

∂

∂r

(

r

Pe

∂S

∂r
− r u S

)

dr (5.94)

= Ṙ S r

∣

∣

∣

∣

r=R

+ Ca

(

r

Pe

∂S

∂r
− r u S

) ∣

∣

∣

∣

r=R

r=0

(5.95)

Now, ∂S
∂r

∣

∣

r=0
= 0 by (5.53) and symmetry requires that u

∣

∣

r=0
= 0 and

Ṙ = Ca u
∣

∣

r=R
. This allows the formulation to be reduced to

dS

dt
= R

Ca

Pe

∂S

∂r

∣

∣

∣

∣

R

. (5.96)
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If there is a no-flux condition at the boundary, ST = 0, then

dS

dt
= 0. (5.97)

If, however, there is a non-zero flux, then (5.96) represents how much surfactant

transfers to or from the surface onto the substrate and demonstrates that the amount

of surfactant on the droplet is time dependent.

5.6 Summary

We will now summarize the governing equations. The droplet evolution

equation is given by:
∂h

∂t
=

1

r

∂

∂r

(

W
∂q

∂r
− V

∂Σ

∂r

)

(5.98)

where

W = r

[

h3

3
+ λ(h)h2

]

, (5.99)

V = 2r

[

h2

2
+ λ(h)h

]

, (5.100)

q(r, t) = Bh − 1

r

∂

∂r

(

r
∂h

∂r

)

, (5.101)

Σ = −βS (5.102)

λ(h) =
λ1

h
. (5.103)

The boundary conditions on height are:

h̃(R̃, t̃) = 0, (5.104)

∂h

∂r

∣

∣

∣

∣

r=0

= 0, (5.105)

∂3h

∂r3

∣

∣

∣

∣

r=0

= 0. (5.106)

The surfactant evolution equation is:

1

Ca

∂S

∂t
+

1

r

∂

∂r
(ruS) =

1

Pe

1

r

∂

∂r

(

r
∂S

∂r

)

. (5.107)

where

u = − 1

Ca

∂q

∂r

h2

2
+

2

Ca

∂Σ

∂r
h +

1

Ca
λ(h)

(

2
∂Σ

∂r
− ∂q

∂r
h

)

(5.108)
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and the surfactant boundary conditions are

∂S

∂r

∣

∣

∣

∣

r=R

= −ST

(

S
∣

∣

r=R
− SS

)

, (5.109)

∂S

∂r

∣

∣

∣

∣

r=0

= 0. (5.110)

Finally, the contact line is advanced by

1

Ca

dR

dt
= f

(

−∂h

∂r

∣

∣

∣

∣

r=R

)

(5.111)

with

f(θ) =



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec

. (5.112)

5.7 Steady State Solution

Here the steady state solutions of the problems are derived under the β = 0

limit, so there is no interaction between the surfactant and the droplet. By evaluating

the steady state version of (5.98), it is seen that

0 =
∂

∂r

(

W
∂q

∂r

)

. (5.113)

We can not set W = 0 for an arbitrary slip law λ, thus the steady state equation

reduces to

∂q

∂r
= 0,

Bh − σ

r

∂

∂r

(

r
∂h

∂r

)

= A,
(5.114)

where A is some constant.

For the B = 0 limit, the solution to this problem, with the appropriate

boundary conditions, is

h =
θSRS

2

(

1 −
(

r

Rs

)2
)

, (5.115)

with θS and RS being the static contact angle and radius.
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If B 6= 0, then the solution is

h =
θS√

BI1(
√

BRS)

[

I0(
√

BRS) − I0(
√

Br)
]

(5.116)

where I0 and I1 are the modified Bessel functions of order 0 and 1.

For any value of Bond number, the only steady state solution for surfactant

is a constant.
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Chapter 6

Three-Dimensional Axisymmetric

Numerical Method

The droplet evolution equation, (5.98), subject to boundary conditions (5.104)

and (5.105)–(5.106), the surfactant transport equation, (5.107), subject to boundary

conditions (5.109) and (5.110), and the radii evolution equation (5.111) are solved

using a numerical method employing backward Euler time stepping and Chebyshev

pseudo-spectral spatial derivatives. The Chebyshev scheme has the advantage that

it bunches points near the contact lines, where the dynamics are the most sensitive.

The resulting nonlinear system is then solved by Newton’s method. Although the

method is only first order in time, it is extremely robust. Unlike the two-dimensional

results, we do not need to analytically remove the singularity that exists near the

contact line because we are not dealing with temperature effects. Also, unlike the

two-dimensional method, we use a singular slip coefficient of the form λ1/h instead

of constant slip.

6.1 Conversion into Chebyshev Space

In order to use Chebyshev derivatives, we must convert our problem from

real space into Chebyshev space. We start with a rescaling of the parameters. We

need to map the domain of the problem from r ∈ [0, R] onto ξ ∈ [−1, 1].

r =
R

2
(ξ + 1), (6.1)

h(r, t) = R(t)H(ξ, t), (6.2)

S(r, t) = R(t)S̃(ξ, t), (6.3)
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Since r is now a function of t, we need to redefine derivatives with respect to t as

∂

∂t
=

∂

∂τ
− ξ + 1

R

dR

dτ

∂

∂ξ
(6.4)

where τ = t. We also need to redefine derivatives with respect to r as

∂

∂r
=

2

R

∂

∂ξ
(6.5)

Combining (6.2) and (6.4) yields

∂h

∂t
=

dR

dτ
H + R

∂H

∂τ
− (ξ + 1)

dR

dτ

∂H

∂ξ
. (6.6)

The droplet evolution equation, (5.98), now becomes

R
∂H

∂τ
= −dR

dτ
H + (ξ + 1)

dR

dτ

∂H

∂ξ
+

4

R(ξ + 1)

∂

∂ξ

(

W
∂q

∂ξ
− V

∂Σ

∂ξ

)

(6.7)

where

W = R(ξ + 1)

(

R

3
H3 + H2λ(RH)

)

(6.8)

V = 2(ξ + 1)

(

R

2
H2 + λ(RH)H

)

, (6.9)

q = BRH − 4

R(ξ + 1)

∂

∂ξ

(

(ξ + 1)
∂H

∂ξ

)

. (6.10)

The surfactant transport equation, (5.107), becomes

1

Ca

∂S̃

∂τ
+

∂R

∂τ
S̃ − ξ + 1

Ca

dR

dτ

∂S̃

∂ξ
+

2

ξ + 1

∂

∂ξ

(

(ξ + 1)uS̃
)

=
4

RPe(ξ + 1)

∂

∂ξ

(

(ξ + 1)
∂S̃

∂ξ

)

(6.11)

where

u = − R

Ca

∂q

∂ξ
H2 +

4

Ca

∂Σ

∂ξ
H +

2

Ca
λ(RH)

(

1

R

∂Σ

∂ξ
− ∂q

∂ξ
H

)

(6.12)

and

Σ = −βRS̃. (6.13)

Finally, the contact line evolution equation, (5.111), is

∂R

∂τ
= Caf

(

−2
∂H

∂ξ

∣

∣

∣

∣

ξ=1

)

. (6.14)
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Details of the Chebyshev pseudo-spectral method that is used to take the

derivatives are given in Appendix B. One result of the distribution of Chebyshev

collocation points is that it bunches points near the ends of the domain. This is

fortuitous since it results in extra points near the contact line, where the dynamics

occur on the shortest spatial scales.

6.2 Time Derivatives

We use a backward Euler method to advance the scheme in time. We march

forward from timestep tn to tn+1 = tn + ∆t. We construct a series of nonlinear

equations for Hn+1
i = H(ξi, t

n+1, tn), Sn+1
i = S(ξi, t

n+1, tn), and Rn+1 = R(tn+1, tn)

where ξi represents the value of ξ at the ith Chebyshev collocation point. We then

solve the resulting system via Newton’s method. The resulting matrix is full. Using

finite differences rather than a Chebyshev pseudo-spectral method to compute spatial

derivatives would result in a sparse matrix, which would result in significant time

savings when solving the nonlinear system. Unfortunately, in order to maintain a

given level of accuracy, we would have to drastically increase the number of spatial

gridpoints, which would result in a much larger matrix to invert, more than negating

any time savings bought by using finite differences. The numerical scheme is give by

Rn+1Hn+1 − Hn

∆t
= −Rn+1 − Rn

∆t
Hn+1 + (ξ + 1)

Rn+1 − Rn

∆t

∂Hn+1

∂ξ

+
4

Rn+1(ξ + 1)

∂

∂ξ

(

W n+1∂qn+1

∂ξ
− V n+1∂Σn+1

∂ξ

)

,

(6.15)

1

Ca

S̃n+1 − S̃n

∆t
+

Rn+1 − Rn

∆t
S̃n+1 − ξ + 1

Ca

Rn+1 − Rn

∆t

∂S̃n+1

∂ξ

+
2

ξ + 1

∂

∂ξ

(

(ξ + 1)un+1S̃n+1
)

=
4

Rn+1Pe(ξ + 1)

∂

∂ξ

(

(ξ + 1)
∂S̃n+1

∂ξ

)

, (6.16)

and
Rn+1 − Rn

∆t
= Caf

(

−2
∂Hn+1

∂ξ

∣

∣

∣

∣

ξ=1

)

. (6.17)
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6.3 Convergence Checks

The results of a spatial convergence check are given in Table 6.1. The same

droplet configuration as in Chapter 7 is used, with no flux of surfactant allowed at the

contact line. The simulation results are evaluated at t = 10 where ∆t = 10−4. As in

the two-dimensional results, the number of spatial points is given by 2n + 1 and each

“doubling” of the spatial points is performed by incrementing n by one each time.

This does not give a perfect doubling, but it is consistent with the actual numerical

scheme that is used to evaluate the derivatives. The columns give the difference in the

volume of fluid, amount of surfactant, the concentration of surfactant at the contact

line, and the location of the contact line. A similar convergence check for temporal

convergence is given in Table 6.2. Here the timestep is varied from its base state of

∆t = 10−4 while a constant 33 collocation points are used.

Gridpoints VF Difference VS Difference SR Difference R Difference

9 → 17 2.92 · 10−1 3.97 · 10−1 7.24 · 10−2 7.60 · 10−2

17 → 33 8.86 · 10−2 9.52 · 10−2 1.56 · 10−2 2.20 · 10−2

33 → 65 3.94 · 10−3 1.26 · 10−2 2.94 · 10−3 1.32 · 10−4

Table 6.1: Three-dimensional axisymmetric spatial convergence

Timestep Change VF Difference VS Difference SR Difference R Difference

2 → 1 3.58 · 10−5 2.98 · 10−5 3.16 · 10−6 1.13 · 10−5

1 → 1/2 1.79 · 10−5 1.49 · 10−5 1.58 · 10−6 5.65 · 10−6

1/2 → 1/4 8.95 · 10−6 7.44 · 10−6 7.91 · 10−7 2.83 · 10−6

1/4 → 1/8 4.48 · 10−6 3.72 · 10−6 3.96 · 10−7 1.41 · 10−6

Table 6.2: Three-dimensional axisymmetric time convergence

These convergence checks show that this three-dimensional axisymmetric

numerical scheme is first order in time and spectrally accurate in space. Halving the

timestep reduces the differences in all the measured quantities by half, as expected

for a first order method. As shown in the first column of Table 6.2, the difference in

the volume of fluid when the timestep is halved from twice the base value to the base
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value is 3.58 · 10−5. The difference in Vf when the timestep is halved again to half

the base value is 1.79 · 10−5, approximately half of the difference in the previous case.

In contrast, doubling the number of collocation points causes the differences

in the quantities listed in Table 6.1 to decrease by increasing amounts, as expected

with a spectrally accurate method. Doubling the number of gridpoints from 9 to 17

and from 17 to 33 resulted in differences in fluid volume VF of 0.292 and 0.0886. The

ratio between those two differences is 3.3. Doubling the number of gridpoints again

from 33 to 65 resulted in a fluid volume difference of 0.00394. The ratio between

the fluid volume differences for the 17 to 33 and 33 to 65 gridpoint cases is 22.5,

significantly greater than the previous case. Comparing these ratios yields increasing

differences, even in the case of the concentration of surfactant at the contact line, SR.

In this case, the ratio of the SR differences for the 9 to 17 and 17 to 33 cases is 4.6.

The ratio of the SR differences for the 17 to 33 and 33 to 65 cases is 5.3.
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Chapter 7

Three-Dimensional Axisymmetric

Results

7.1 Introduction

Initial conditions for these runs are the same as in Chapter 4 as we will

be comparing the two. The droplet is initialized the to steady state solution when

gravitational effects are ignored, B = 0 and β = 0. The result is given by (5.115) and

is reproduced here with the modification that instead of a steady state radius and

steady contact angle, it includes an initial radius and contact angle, RI and θI ,

h =
θIRI

2

(

1 −
(

r

RI

)2
)

. (7.1)

The initial volume of this droplet is VI = (π/4)θIR
3
I . The following parameters are

used unless otherwise noted: RI = 1, β = 1, Ca = 0.1, B = 1, P e = 1, and λ = 0.01.

A wetting droplet is considered, where θAdv = θRec = 0 and θI = 3. The surfactant

is initialized to a constant value of S = 1/2. All the figures are presented at t = 10.

At longer times, the surfactant tends to reach a zero average concentration as the

droplet wets the surface.

7.2 Results

Figure 7.1 shows the effect of surfactant on droplet spreading. For these

runs, a no-flux condition (ST = 0) has been used for surfactant at the contact line.

The radius R(t) at t = 10 is plotted versus β for different Peclet numbers. This

graph is the analogue of Fig. 4.1 but in three dimensions. As one would hope, the



99

0 5 10 15 20 25 30 35 40 45 50

1.6

1.61

1.62

1.63

1.64

1.65

1.66

β

R

Pe = 1 

Pe = 25 

Pe = 100 

Pe = 1,000 

Figure 7.1: Effects of surfactant strength on spreading. Spreading distance versus β at

t = 10. Note that increasing the strength of the surfactant reduces the spreading distance

of the droplet.

results are quite similar. The same qualitative behavior persists from two to three

dimensions. Overall, it is found that surfactants act to retard droplet spreading by

forming negative surface tension gradients and opposing Marangoni flows. Higher

Peclet numbers intensify these results by decreasing surfactant diffusion and allowing

sharper gradients to persist. The minimum spreading distance that was discussed in

Chapter 4 is also encountered in three dimensions. The minimum, while still small,

is quite apparent for Peclet numbers of 100 or greater.

Surfactant profiles are shown in 7.2. This figure shows the surfactant con-

centration for both large and small Peclet numbers at t = 10 for a surfactant strength

of β = 2. Contrary to visual inspection, both the no-flux condition and the symmetry

condition at the origin are fulfilled. The Chebyshev derivatives use the values of the

surfactant concentration over the entire domain to compute a derivative and do not
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Figure 7.2: Surfactant profiles at t = 10 for large and small Peclet numbers. Surfactant

strength is given by β = 2.

require a simple flat interface to produce a zero derivative. It is quite apparent that

a boundary layer is forming near the contact line in the Pe = 10, 000 case as there

is an extremely rapid decrease in the surfactant concentration over a very short dis-

tance. The droplet profiles for these two cases are seen in Fig. 7.3. As was previously

seen, the higher Peclet number retards droplet spreading. While the effect is small,

it correlates with what was seen in the two-dimensional case.

Profiles of the droplet shape as it spreads are seen in Fig. 7.4. As was

the case in two dimensions, the droplet spreads fastest at the beginning, when the

θ − θAdv quantity in (5.112) is greatest. As the droplet spreads and the contact angle

decreases, the spread rate will decrease. Since we are dealing with wetting droplets,

the spreading will never actually end, but it will continue to slow as the contact angle

gets closer and closer to zero.
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Figure 7.3: Droplet profiles at t = 10 for large and small Peclet numbers. Surfactant

strength is given by β = 2.

The effects of flux are shown in Fig. 7.5. Here the no-flux condition on

surfactant at the contact line has been removed and surfactant transport to and

from the surface is governed by (5.52). Spreading rates for different concentrations

of surfactant on the substrate (SS) are plotted for various values of the transport

parameter ST . No-flux results (ST = 0) are also included for comparison. The

comparison graph from the two-dimensional results is Fig. 4.6. The same qualitative

behavior exhibits itself in three dimensions as was seen in two dimensions. A strong

flux of surfactant from the surface of the droplet speeds up the droplet while absorbing

surfactant from the substrate further retards the droplet’s spreading.

Surfactant profiles when flux is allowed are shown in Fig. 7.6. While the

same qualitative behavior as seen in Fig. 4.7 is observed in three dimensions, the

effects are more muted. There is still a downturn in surfactant concentration near

the contact line when surfactant is leaving the droplet (SS = 0) and an upturn when
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Figure 7.4: Three-dimensional axisymmetric droplet profiles for β = 2, P e = 1.

surfactant is being absorbed (SS = 1/2) but these effects are not as prominent as

they were in two dimensions.

We have found that the three-dimensional axisymmetric results provide very

good qualitative agreement with the two-dimensional results. This shows that the

simplifications of the two-dimensional model do not change the droplet dynamics

over the more physical three-dimensional model. While the effects of temperature

could not be captured in three dimensions while maintaining symmetry, given the

high correlation between the two- and three-dimensional models in the absence of

temperature effects, it is quite likely that the temperature dependent observations of

Chapter 4. The three-dimensional axisymmetric computations have thus been very

useful to check the accuracy of the prior two-dimensional results and to ensure that

they do, in fact, adequately capture the droplet’s behavior.
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Figure 7.5: Effects of surfactant flux on spreading. Position of the right endpoint as a

function of SS at t = 10 for various β and ST .
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and where flux of surfactant is allowed.
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Chapter 8

Three-Dimensional Problem

Formulation

We will now construct a fully three-dimensional formulation for the motion

of a drop on a solid inclined plane. The motion of the drop is driven by the force

of gravity. Surfactant and temperature effects are not included in the investigation

here.

8.1 Formulation

We will be formulating our problem using cylindrical coordinates. Let r be

the radial variable, φ be the angle from the origin, and z be the vertical variable, as

measured from the substrate (see Fig. 8.1). The substrate itself is inclined by an

angle α from the horizontal (see Fig. 8.2). The distance from the substrate the free

surface is denoted h(r, t) and R(φ, t) is the radius of the drop for a given angle φ. We

define the contact angle θ as the angle the interface makes with the substrate in a

plane perpendicular to the substrate and normal to the contact line. Gravity, g, acts

in −z cos(α). The velocity vector is given by ~u =< u, v, w >.

We are interested in the following equations in the bulk of the fluid: conser-

vation of mass,
1

r

∂

∂r
(ru) +

1

r

∂v

∂φ
+

∂w

∂z
= 0 (8.1)

and conservation of momentum in the radial,

ρ

(

∂u

∂t
+ u

∂u

∂r
+

v

r

∂v

∂φ
+ w

∂u

∂z
− v2

r

)

= −∂P

∂r
+ µ

(

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2
+

1

r2

∂2u

∂φ2
− 2

r2

∂v

∂φ

)

+ ρg cos(φ) sin(α), (8.2)
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Figure 8.1: Illustrative figure of cylindrical coordinates
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Figure 8.2: Three-dimensional droplet configuration



107

angular,

ρ

(

∂v

∂t
+ u

∂v

∂r
+

uv

r
+

v

r

∂v

∂φ
+ w

∂v

∂z

)

= −1

r

∂P

∂φ
+ µ

(

∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+

1

r2

∂2v

∂φ2
+

∂2v

∂z2
+

2

r2

∂u

∂φ

)

− ρg sin(φ) sin(α),

(8.3)

and vertical directions

ρ

(

∂w

∂t
+ u

∂w

∂r
+

v

r

∂w

∂φ
+ w

∂w

∂z

)

= −∂P

∂z
+ µ

(

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂φ2
+

∂2w

∂z2

)

− ρg cos(α). (8.4)

In these equations, ρ is the density of the fluid in the droplet, µ is the droplet’s

viscosity, and P is the pressure in the droplet. At z = 0, no penetration of fluid

through the interface implies:

w

∣

∣

∣

∣

z=0

= 0, (8.5)

and, in order to relax the no-slip condition and relieve the singularity at the contact

line (see e.g. Dussan V. and Davis[23]) we enforce the Navier slip condition

~u · t̂s = λ(h)µ n̂s · S · t̂s, (8.6)

where

n̂s =< 0, 0, 1 > (8.7)

is the unit normal vector to the substrate and

t̂s1
= < 1, 0, 0 >, (8.8a)

t̂s2
= < 0, 1, 0 > (8.8b)

are the unit tangent vectors on the substrate. Since we have two unit tangent vectors,

we will have two Navier slip conditions. We will be using

λ(h) =
λ1

h
(8.9)

for our slip function, which was first introduced by Greenspan[35].
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At the free boundary, z = h(r, φ, t), we are interested in the kinematic

condition

−∂h

∂t
− u

∂h

∂r
− v

r

∂h

∂φ
+ w = 0 (8.10)

and the jump in normal stress condition

n̂ · τ · n̂ = −σκ, (8.11)

where τ is the stress tensor and κ is the mean curvature of the surface. The other

condition at the free surface boundary is the continuity of tangential stress condition

n̂ · τ · t̂ = 0 (8.12)

where n̂ and t̂ are the unit normal and tangent vectors to the free surface, which are

defined as

n̂ =
< −∂h

∂r
,−1

r
∂h
∂φ

, 1 >
√

1 +
(

∂h
∂r

)2
+ 1

r2

(

∂h
∂φ

)2
, (8.13)

t̂1 =
< 1, 0, ∂h

∂r
>

√

1 +
(

∂h
∂r

)2
, (8.14)

t̂2 =
< 0, 1, 1

r
∂h
∂φ

>
√

1 + 1
r2

(

∂h
∂φ

)2
. (8.15)

It should be noted that, as with the Navier slip condition, since we have two unit

tangent vectors we have two continuity of tangential stress conditions.

We now need boundary conditions for the contact line. Let

n̂p =
< R,−∂R

∂φ
, 0 >

√

R2 +
(

∂R
∂φ

)2
, (8.16)

t̂p =
< ∂R

∂φ
, R, 0 >

√

R2 +
(

∂R
∂φ

)2
(8.17)

be unit normal and tangent vectors in the plane of the substrate. Let

us = < u, v, w > ·n̂p (8.18)

=
R u − ∂R

∂φ
v

√

R2 +
(

∂R
∂φ

)2
(8.19)
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be the slip velocity. We know that the position vector is given by

~x = R r̂. (8.20)

By taking a time derivative of the position vector and dotting it into the unit normal

on the substrate, we will pick out the slip velocity:

∂~x

∂t
=

∂R

∂t
r̂ (8.21)

us =
∂~x

∂t
· n̂p (8.22)

=
R∂R

∂t
√

R2 +
(

∂R
∂φ

)2
. (8.23)

Combining (8.19) and (8.23) we find

R
∂R

∂t
= Ru − ∂R

∂φ
v. (8.24)

While this equation defines the motion of the contact line, it is not convenient to use.

We will construct a relationship between the slip velocity and the contact angle and

then use (8.23) to solve for the evolution of the contact line. To begin, we formally

define the contact line velocity as being related to the contact angle by

us = f(θ), (8.25)

where

f(θ) = k̂



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec

(8.26)

and k̂ is a characteristic unit of velocity, is the m = 1 form of the slip velocity -

contact angle relationship (1.2)–(1.3) extended to allow for hysteresis. It has been

used by, among others, Greenspan[35] and Haley and Miksis[37]. When the droplet

is travelling rapidly down a steeply inclined plane, it can be moving faster than the

contact angle – slip velocity relationship (8.26) can move the rear contact line. In

this situation, the fluid will flow away from the contact line, leaving a nonphysical
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dry spot inside the calculated contact line. We will investigate two additional contact

angle – slip velocity relationships to solve this problem. The first is given by

f1(θ) = k̂



















tan(θ − θAdv), θ > θAdv

0, θRec ≤ θ ≤ θAdv

tan
(

π(θ−θRec)
2θRec

)

3θRec

4 tan( 3π
8 )

, θ < θRec

(8.27)

and the second by

f2(θ) = k̂



















arctanh(θ − θAdv), θ > θAdv

0, θRec ≤ θ ≤ θAdv

arctanh
(

θ−θRec

θRec

)

3θRec

4 arctanh( 3

4)
, θ < θRec

. (8.28)

Both (8.27) and (8.28) have been equalized so that f
(

θRec

4

)

= f1

(

θRec

4

)

= f2

(

θRec

4

)

.

They all behave similarly for θ > θAdv due to the linearity of tan and arctanh near 0.

For θ near 0, then both f1 and f2 will produce large velocities, causing the contact

line to rapidly advance and preventing the fluid from leaving it behind.

We now combine (8.25) with (8.23) to get

∂R

∂t
=

1

R

√

R2 +

(

∂R

∂φ

)2

f(θ). (8.29)

Now that we have determined the motion of contact line as a function of the contact

angle, we must now determine the contact angle. Let

t̂cs = n̂ × t̂p (8.30)

=
< −R, ∂R

∂φ
, −∂h

∂r
R + 1

R
∂h
∂φ

∂R
∂φ

>
√

(

1 +
(

∂h
∂r

)2
+ 1

R2

(

∂h
∂φ

)2
)(

R2 +
(

∂R
∂φ

)2
)

(8.31)

be the unit vector tangent to the surface at the contact line in the plane containing

n̂ and normal to the substrate. We can use the requirement that the droplet make

contact with the substrate at the contact line,

h (R(φ, t), φ, t) = 0, (8.32)

to conclude, by differentiating (8.32) with respect to φ, that

∂h

∂φ
= −∂h

∂r

∂R

∂φ
. (8.33)
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This result allows us to simplify (8.31) to

t̂cs =

< −R, ∂R
∂φ

, −∂h
∂r

(

R +
(

∂R
∂φ

)2
)

>

√

[

1 +
(

∂h
∂r

)2
(

1 + 1
R2

(

∂R
∂φ

)2
)][

R2 +
(

∂R
∂φ

)2
]

. (8.34)

Now we recognize that, since n̂p and t̂cs are both unit vectors, we can use

the definition of the dot product to arrive at a formulation for the contact angle, θ:

n̂p · t̂cs = |n̂p||t̂cs| cos(θ) (8.35)

= cos(θ). (8.36)

We can now use this result to determine tan(θ), which is a slightly more natural form

for the contact angle:

tan(θ) =

√

1 − cos2(θ)

cos(θ)
(8.37)

=

√

1 −
(

n̂p · t̂cs
)2

n̂p · t̂cs
(8.38)

= − 1

R

∂h

∂r

√

R2 +

(

∂R

∂φ

)2

. (8.39)

Finally, the volume of the droplet is given by

V =

∫ 2π

0

∫ R(φ,t)

0

h(r, φ, t) r dr dφ. (8.40)

8.2 Evolution Equations and Nondimensionaliza-

tion

We will nondimensionalize the problem in a different manner than we used

for the two-dimensional and axisymmetric three-dimensional problems. We will still

be using lubrication theory, whose basic assumption is that the height of the droplet is

much less than its height. This relationship also implies that the contact angle is small.

We thus use the dimensional contact angle θ to define our small parameter ε � 1. The

problem that we have with nondimensionalizing the problem is due to the inclination
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of the plane. We can nondimensionalize the problem for small angles of inclination

or for a nearly vertical plane. Unfortunately, these two nondimensionalizations are

mutually exclusive. The scalings used in one become invalid if the angle of inclination

moves away from the assumed range. We will construct a universally valid thin film

equation, then nondimensionalize it.

We know from Section 5.3 which terms should be preserved in the lubrication

approximation. We assume that the height is scaled one order smaller in ε than the

radial and angular coordinates. Similarly, the vertical component of velocity will

be one order smaller than the other two components of velocity. While we will not

formally introduce ε into the problem, we will take advantage of our knowledge of

what its introduction would do to scale the equations and use that knowledge to pick

out the leading order terms of the equations. As before, we will use the h0 notation

to refer to the leading order component of the dependent variables.

Conservation of mass (8.1) remains unchanged as

1

r

∂

∂r
(ru0) +

1

r

∂v0

∂φ
+

∂w0

∂z
= 0 (8.41)

Conservation of momentum in the radial, angular, and vertical directions (8.2)–(8.4)

become:

∂p0

∂r
= µ

∂2u0

∂z2
+ ρg cos(φ) sin(α), (8.42)

1

r

∂p0

∂φ
= µ

∂2v0

∂z2
− ρg sin(φ) sin(α), (8.43)

∂p0

∂z
= ρg cos(α). (8.44)

The two slip conditions from (8.6) are

u0 = λ(h0)
∂u0

∂z
, (8.45)

v0 = λ(h0)
∂v0

∂z
. (8.46)

At the free boundary, the kinematic condition (8.10) is now

∂h0

∂t
= −u0

∂h0

∂r
− v0

r

∂h0

∂φ
+ w0, (8.47)

while the jump in normal stress condition (8.11) is

p0 − pA = −σ

[

1

r

∂

∂r

(

r
∂h0

∂r

)

+
1

r2

∂2h0

∂φ2

]

, (8.48)
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and the two terms of the continuity of tangential stress condition (8.12) become

∂u0

∂z
= 0, (8.49)

∂v0

∂z
= 0. (8.50)

We will now drop the subscripts to the variables. To find the general thin-

film evolution equation, we will integrate (8.44) once with respect to z, finding:

p = −ρg cos(α)z + q(r, φ, t). (8.51)

We will use this solution for the pressure in (8.48) to solve for q:

q = ρg cos(α)h + pA − σ

[

1

r

∂

∂r

(

r
∂h

∂r

)

+
1

r2

∂2h

∂φ2

]

. (8.52)

Substituting (8.51) in (8.42), we can solve for the radial component of velocity:

u =
1

µ

∂q

∂r

z2

2
− ρg

µ
cos(φ) sin(α)

z2

2
+ A(r, φ, t)z + C(r, φ, t). (8.53)

This speed, when evaluated in (8.49), allows us to determine that

A = − 1

µ

(

∂q

∂r
− ρg cos(φ) sin(α)

)

h, (8.54)

and, when used in (8.45), shows that

C = λ(h)A. (8.55)

When we substitute (8.51) in (8.43) we can solve for the angular velocity

v =
1

µ

(

1

r

∂q

∂φ
+ ρg sin(φ) sin(α)

)

z2

2
+ D(r, φ, t)z + E(r, φ, t). (8.56)

We now expand the conservation of mass equation (8.41) to find the vertical velocity

w = −1

r

∂

∂r

[

r

∫

udz

]

− 1

r

∂

∂φ

(
∫

vdz

)

+ F (r, φ, t). (8.57)

We will (8.57) unsimplified for the moment until we determine the remaining variables.

The no-penetration condition (8.5) allows us to determine that

F = 0 (8.58)
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while by substituting (8.56) into (8.45) we can find that

D = − 1

µ

(

1

r

∂q

∂φ
+ ρg sin(φ) sin(α)

)

h, (8.59)

and with (8.46) we solve for

E = λ(h)D. (8.60)

We can now formulate the full equation for the vertical velocity (8.57)

w =
1

µ

1

r

∂

∂r

[

r

(

−z3

6
+

hz2

2
+ λ(h)hz

)(

∂q

∂r
− ρg cos(φ) sin(α)

)]

+
1

µ

1

r

∂

∂φ

[(

−z3

6
+

hz2

2
+ λ(h)hz

)(

1

r

∂q

∂φ
+ ρg sin(φ) sin(α)

)]

. (8.61)

Finally, using (8.53), (8.56) and (8.61) in the kinematic condition (8.47) at z = h

produces the general, dimensional thin-film equation

µ
∂h

∂t
=

1

r

∂

∂r

[

r

(

h3

3
+ λ(h)h2

)(

∂q

∂r
− ρg sin(α) cos(φ)

)]

+
1

r

∂

∂φ

[(

h3

3
+ λ(h)h2

)(

1

r

∂q

∂φ
+ ρg sin(α) sin(φ)

)]

(8.62)

where q is given by (8.52). These equations preserve the terms that capture the

behavior of the droplet at both low and high angles of inclination and should remain

valid for intermediate angles. In order to keep these terms, we choose the following

nondimensionalization:

t = t̃
Rc

k̂
, r = r̃Rc, z = z̃Rc,

u = ũk̂, v = ṽk̂, w = w̃k̂,

p =
p̃µk̂

Rc

+ pA, R = R̃Rc, h = h̃Rc,

V = Ṽ R3
c , σ = σcσ̃, λ1 = λ̃1R

2
c

The variables with tildes over them are nondimensional. We introduce the nondimen-

sional parameters, the Bond, capillary, and Reynolds numbers:

B =
ρgR2

c

σc
, Ca =

µk̂

σc
, Re =

ρRck̂

µ
.
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This nondimensionalization does not include the thin film assumption. We

thus have to make certain that the droplets that we use in our computations are thin,

with their height being much less than their width and a small contact angle. As

long as this is the case then we are within the lubrication limit and the governing

equations remain a reasonable composite approximation for the evolution of a thin

drop sliding down an inclined plane.

We also initialize the droplet to a constant dimensional volume, which allows

us to pick our characteristic length scale Rc. Substituting a simple initial droplet

profile of

h =
θI (R2

I − r2)

2RI
, (8.63)

where θI is the initial contact angle and RI the initial radius, into the volume integral

(8.40) yields

V =
πR3

cθIR
3
I

4
. (8.64)

Requiring a constant volume imposes a condition that θIR
3
I must be equal to a con-

stant. To impose the lubrication approximation requirement that the droplet’s height

be much smaller than its width, we require that

θIR
3
I =

1

3
, (8.65)

which gives us with the length scale

R3
c =

12

π
V. (8.66)

We will return to this relationship when we discuss the initial shape of the droplet.

Applying these scalings to (8.62)–(8.52), we arrive at our nondimensional

evolution equation

∂h̃

∂t̃
=

1

Ca

1

r̃

∂

∂r̃

[

r̃

(

h̃3

3
+ λ̃(h̃)h̃2

)

(

∂q

∂r̃
− B sin(α) cos(φ)

)

]

+
1

Ca

1

r̃

∂

∂φ

[(

h̃3

3
+ λ̃(h̃)h̃2

)

(

1

r̃

∂q

∂φ
+ B sin(α) sin(φ)

)

]

(8.67)

where

q̃ = B cos(α)h̃ − 1

r̃

[

∂

∂r̃

(

r
∂h̃

∂r̃

)

+
1

r̃

∂2h̃

∂φ2

]

=
Rc

σc
(q − pA) . (8.68)
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The contact boundary condition becomes

h̃
(

R̃(φ, t̃), φ, t̃
)

= 0 (8.69)

The nondimensionalization of (8.29) give us

∂R̃

∂t̃
=

1

R̃

√

√

√

√R̃2 +

(

∂R̃

∂φ

)2

f̃(θ) (8.70)

while (8.39) gives us

θ = tan−1






− 1

R̃

∂h̃

∂r̃

√

√

√

√R̃2 +

(

∂R̃

∂φ

)2





, (8.71)

where

f̃(θ) =



















(θ − θAdv) , θ > θAdv

0, θRec ≤ θ ≤ θAdv

(θ − θRec) , θ < θRec

=
1

k̂
f(θ). (8.72)

Similarly,

f̃1(θ) =



















tan(θ − θAdv), θ > θAdv

0, θRec ≤ θ ≤ θAdv

tan
(

π(θ−θRec)
2θRec

)

3θRec

4 tan( 3π
8 )

, θ < θRec

=
1

k̂
f1(θ) (8.73)

and

f̃2(θ) =



















arctanh(θ − θAdv), θ > θAdv

0, θRec ≤ θ ≤ θAdv

arctanh
(

θ−θRec

θRec

)

3θRec

4 arctanh( 3

4)
, θ < θRec

=
1

k̂
f2(θ). (8.74)

Finally, the volume of the droplet is now given by

Ṽ =

∫ 2π

0

∫ R̃(φ,t̃)

0

h̃(r̃, φ, t̃) r̃ dr̃ dφ. (8.75)

We will now drop the tildes from the nondimensional variables.

It should be noted that this parameterization assumes that h is a function

of r and φ with 0 ≤ r ≤ R(φ, t), and that R is a function of φ. This may not be the
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case in all situations, e.g. where there is a rupture or a pearling instability. We will

allow the origin of our cylindrical coordinate system to vary to compensate for more

complicate interface shapes, but this parameterization is a limitation of the current

numerical approach.
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Chapter 9

Three-Dimensional Numerical

Method

9.1 Outline of Numerical Method

The droplet evolution equation, (8.67), subject to boundary conditions (8.69),

and the radius evolution equation (5.111) are solved using a numerical method em-

ploying semi-implicit time stepping and Chebyshev pseudo-spectral spatial deriva-

tives. The Chebyshev scheme has the advantage that it bunches points near the

contact lines, where the dynamics are the most sensitive. The resulting nonlinear

system is then solved by Newton’s method. Although the method is only first order

in time, it is extremely robust.

9.2 Conversion into Chebyshev Space

In order to use Chebyshev derivatives, we must convert our problem from

real space into Chebyshev space. We start with a rescaling of the parameters. We

need to map the domain of the problem from r ∈ [0, R] onto ξ ∈ [−1, 1]. In order

to avoid the numerical singularity at r = 0, we will compute not on r ∈ [0, R(φ)]

but on r ∈ [−R(φ − π), R(φ)] and use an even number of collocation points, thus

skipping over r = 0. This change of variables means that we do not need to evaluate

the equation on the entire φ ∈ [0, 2π) domain; we can restrict ourselves to computing

in φ ∈ [−π/2, π/2). For more information on this approach, please see Trefethen [81].

Let us now formally introduce our new variables. Let

r =
RR(t) − RL(t)

2
ξ2 +

RR(t) + RL(t)

2
ξ (9.1)
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be the new scaling for the radial coordinate, where ξ ∈ [−1, 1], RR = R(φ) and

RL = R(φ − π). Both RR and RL are positive. One advantage of this scaling is that

r and ξ share the same sign, which prevents the numerical instabilities that would

result if ξ > 0 and r < 0.

Since r is now a function of R(φ, t), we need to redefine derivatives with

respect to t as

∂

∂t
=

∂

∂τ
−

∂
∂τ

[(RR − RL) ξ2 + (RR + RL) ξ]

2ξ (RR − RL) + RR + RL

∂

∂ξ
, (9.2)

where τ = t. The change of variables also results in the spatial derivatives becoming

∂

∂r
=

2

2ξ (RR − RL) + RR + RL

∂

∂ξ
, (9.3)

∂

∂φ
=

∂

∂β
−

∂
∂β

[(RR − RL) ξ2 + (RR + RL) ξ]

2ξ (RR − RL) + RR + RL

∂

∂ξ
, (9.4)

where β = φ.

Details of the Chebyshev pseudo-spectral method that is used to take the

derivatives in the radial direction are given in Appendix B. One result of the distri-

bution of Chebyshev collocation points is that it bunches points near the ends of the

domain. This is fortuitous since it results in extra points near the contact line, where

the dynamics occur on the shortest spatial scales.

Spatial derivatives in the angular direction are performed using a Fourier

pseudo-spectral method. Details of this method are presented in Appendix B. The

Fourier pseudo-spectral method requires periodic data, which does not exist in this

formulation of the problem as β ∈ [−π/2, π/2). This problem is easy to rectify,

however, if we construct a temporary data array that reconstructs the height data

on a β ∈ [−π, π) domain and then maps the computed derivatives back. While the

mapping and re-mapping process requires a modicum of computational effort, this

cost is inconsequential in comparison to the increased grid size that would be needed

to preserve accuracy if finite differences were used instead to take the derivatives.

9.3 Time Derivatives

We will use a semi-implicit timestepping scheme. Given that every spatial

derivative involves multiple time dependent quantities, we have a large number of



120

potential schemes from which to choose. We have chosen a method that is robust and

produces accurate results for the problems we have chosen to study. In conservative

form, our numerical method is:

hn+1 − hn

∆t
−
(

Rn
R − Rn−1

R − Rn
L + Rn−1

L

)

ξ2 + ξ
(

Rn
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L

)

∆t [2ξ (Rn
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L) + Rn
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L]

∂hn
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=

1

rn

∂

∂rn

[
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)
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(9.5)

where

q = B cos(α)hn − 1
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[

∂
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(
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)
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∂

∂rn
=

2

2ξ (Rn
R − Rn

L) + Rn
R + Rn

L

∂

∂ξ
, (9.7)

∂

∂βn
=

∂

∂β
−

∂
∂β

[(Rn
R − Rn

L) ξ2 + (Rn
R + Rn

L) ξ]

2ξ (Rn
R − Rn

L) + Rn
R + Rn

L

∂

∂ξ
(9.8)

and the contact line is advanced by

Rn+1 − Rn

∆t
=

1

Rn+1

√

(Rn+1)2 +

(

∂Rn+1

∂φ

)2

× f


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

− 1
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√
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(
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)2






 . (9.9)

The method is computed in conservative form (e.g. the function q is constructed

and derivatives are taken of it, rather than distributing the derivatives through to

its constituent terms). At each timestep, each derivative in (9.5) and (9.9) is recon-

structed from the Chebyshev coordinates into (r, φ) space via (9.3) and (9.4). Once

assembled, the terms are used to advance h to the next timestep. The derivatives are

always taken in Chebyshev space; the transition to (r, φ) space is done solely to cal-

culate the evolution equation. Conservative form derivatives are used because it was

found that they reduce numerical instabilities. The code was more stable when the

derivatives were taken of the combined terms rather than taking fourth derivatives of

h and assembling those. The one exception to this is that the ∂2hn+1

∂(βn+1)2
term in (9.6)
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is calculated by analytically applying (9.4) to itself and then evaluating the resulting

derivatives numerically. This is the only time that terms are expanded further than

presented in (9.5). This one term is more accurate when expanded out analytically;

other terms are not expanded out since the derivative of their sums (conservative

form) is more accurate than the sum of their derivatives (expanded form).

To march forward from timestep tn to tn+1 = tn + ∆t we construct a series

of nonlinear equations for hn+1
i,j = h(ξi, βj, t

n+1, tn), Rn+1
j = R(tn+1, φj, t

n), where ξi

represents the value of ξ at the ith Chebyshev collocation point, βj = j∆β − π/2

and φj = j∆φ. The index for j starts at 0 so β0 = −π/2 and φ0 = 0. We then

solve the resulting system via Newton’s method. The resulting matrix is full. Using

finite differences rather than a Chebyshev pseudo-spectral method to compute spatial

derivatives would result in a sparse matrix, which would result in significant time

savings when solving the nonlinear system. Unfortunately, in order to maintain a

given level of accuracy, we would have to drastically increase the number of spatial

gridpoints, which would result in a much larger matrix to invert, more than negating

any time savings bought by using finite differences.

9.4 Regridding

As the droplet translates down the inclined plane it quickly spreads past the

initial origin. This presents obvious difficulties since the cylindrical coordinates of our

numerical scheme require the origin to be within the droplet so that R(φ) is single

valued.

The solution to this difficulty is to regrid the data onto a new origin as the

droplet translates. To capture the details of the behavior near the leading edge of the

droplet as it spreads down the inclined plane, we keep the origin closer to the leading

edge than to the trailing edge. Figure 9.1 shows the location of the origin before and

after regridding. Regridding occurs whenever the distance between the old origin,

Oold, and the trailing edge, RL(0), is 1.5 times the distance between the old origin

and the leading edge, RR(0). In terms of Fig. 9.1, regridding occurs when dL equals

1.5 dR. We then move the origin to Onew, so that the trailing edge is twice as far away

from the origin as the leading edge. In terms of the figure, we set dLnew
= 2dRnew

.
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dRdL = 1.5 dR

Figure 9.1: Movement of the origin during regridding.

The origin is moved a distance ∆.

The difficulty now is to map the droplet height function h and the droplet

radius R from their old points onto the new ones, while preserving spectral accuracy.

To map the contact line R onto the new origin, we must determine the distance

between the old radii and the new origin. This is more difficult than it first appears,

since by moving the origin an arbitrary distance, we do not know the angle from the

new origin to the old radius. Figure 9.2 demonstrates this problem. (Note that Fig.

9.2 is not to scale.) In Fig 9.2, the locations of Oo and On are known, as is ∆, the

distance between Oo and On. The length of the old radius, Ro is known, as is the

angle φo between the droplet’s centerline and old radius. The length of the new radius

Rn is not known.

Note that the gridpoints on the contact line points are equally spaced in φ

with respect to the old origin, but they are not equally spaced with respect to the

new origin, as illustrated in Fig. 9.3 for four gridpoints. Here the four gridpoints are

spaced at 90 degree intervals around Oo, but they are not equally spaced in φ around

the new origin On.

We want to know the distance from the new origin to the contact line. The
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Figure 9.2: Illustrative figure of angles from new and old origins and distances to the

contact line. Not to scale.

Oo On

Figure 9.3: Illustrative figure of gridpoints spaced equally around the old origin and un-

equally around the new origin. Not to scale.
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Law of Cosines defines the Rn for each point on the contact line:

R2
n = R2

o + ∆2 − 2Ro∆ cos (φo) . (9.10)

These values of Rn are equally spaced in φo about Oo. The Law of Sines allows us to

determine the values of φn that correspond to each Rn:

sin (φo)

Rn

=
sin (φn)

Ro

. (9.11)

We next need to find the values of the radius that lie on equally spaced φ

around On. Refer to these equally spaced around On radii as Rn and the equally

spaced angles as φn. (For the full details on the cubic spline, see Shampine et al.[71].)

This interpolation function allows us to estimate the distance between the new origin

and the contact line for any angle. In particular, we can estimate the values of Re at

the angles φe which are equally spaced about On.

These values of Re are only an initial approximation. We use a Newton

solver based on geometric constraints to find more accurate values for Re. The spline

step is important to determine a good initial guess for the Newton solver; if the spline

is eliminated then the Newton solver has difficulties converging to the correct contact

line. We will discuss the details of the Newton solver shortly.

Let us now reconsider the definitions of φo and Ro. For each φe in our

domain, let (φe, Re) be the angle and radius from the new origin to the point on the

contact line corresponding to this equally spaced angle. Let (φo, Ro) be the angle and

radius from the old origin to this same point. Swapping φn for φe, the picture of these

points is the same as shown in Fig. 9.2, except that the point marked on the contact

line is now on an equally spaced φe rather than an equally spaced φo. At this stage

we only know φe; φo, Ro, and Re are all unknown.

The Law of Sines can be rearranged and considered as a nonlinear equation

for the angle φo:

φo = arcsin

(

Re

Ro
sin (φe)

)

(9.12)

If we knew φo, we could use a Fourier series approximation to determine Ro:

Ro =
N
∑

k=−N

ãke
ikφo (9.13)
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Figure 9.4: Illustrative figure of the Chebyshev coordinates associated with regridding.

where the ãk terms are given by (B.16). Details on Fourier series are presented in

Appendix B, specifically (B.15) and (B.16). Such a Fourier approximation is spec-

trally accurate, as we are already using Fourier derivatives in the angular direction.

We could then use the Law of Cosines, (9.10), to calculate the actual item of interest:

Re.

Re =
√

R2
o + ∆2 − 2Ro∆ cos (φo) (9.14)

The equations (9.12), (9.13), and (9.14) must be solved for the three unknowns φo,

Ro, and Rn. We solve these equations simultaneously with a Newton solver, using

the data from the spline as the initial guess.

After the Newton solver converges, we know the new location of the points

along the new contact line and can extrapolate to find the (rn, φn) locations of all the

points inside the droplet by using (9.1). Using these points, it is trivial to locate the

(ro, φo) locations that correspond to each (rn, φn) inside the droplet by translating

the coordinates into x-y space, attaining the (x,y) coordinates of each (rn, φn) and

then calculating the (ro, φo) of this (x,y) coordinate. Knowing the (ro, φo) locations

in the old space allows us to compute the (ξo, βo) location of these points.

We now need to find the droplet height associated with each (ξo, βo). It is

helpful to now think of our (ξ, β) domain as a series of concentric circles and spokes,
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as seen in Fig. 9.4. We compute Chebyshev coefficients of the height on every spoke.

Then we compute the Fourier coefficients of the Chebyshev coefficients along each

circle. For a given (ξo, βo), we construct an imaginary “spoke” going through our

domain on the angle φo, represented by the line with the stars in Fig. 9.4. To

calculate the height at ξo along this spoke, we need to determine the Chebyshev

coefficients along it. Thus for each “circle,” we interpolate the Chebyshev coefficients

for the angle βo by using our previously calculated Fourier coefficients. Finally, we

interpolate our new Chebyshev coefficients at the point ξo to determine the height at

(ξo, βo). This procedure is then repeated for every (ξo, βo) to interpolate the old height

function onto the new domain. Each interpolation should retain spectral accuracy

since the underlying data was advanced using Fourier and Chebyshev derivatives.

9.5 Convergence Checks

More convergence checks are provided for the full three-dimensional numer-

ical scheme than for the prior schemes since there are now two sets of variables

that need to be analyzed: angular and radial coordinates. The first set of con-

vergence checks is done on a steadily translating droplet. In these calculations,

α = 90◦, Ca = 0.1, B = 2.5, θAdv = 30◦, θRec = 20◦. We use the base contact an-

gle – slip velocity relationship (8.72) and the results are shown at t = 1000. Table

9.1 shows the results when the number of angular gridpoints (in the φ direction) are

kept at a constant 32 points and the number of radial gridpoints (in the r direction)

are varied. Contrary to the previous convergence checks, each row here represents

a true doubling in the number of collocation points. An even number of collocation

points is used in order to avoid laying down a point on the origin, thus allowing for

a proper doubling at each grid refinement. The columns of the table represent the

difference in the volume of the droplet and the difference in the location of the for-

ward edge of the droplet. Table 9.2 represents a similar convergence check but for

successive doubling of the number of angular collocation points while keeping a fixed

32 radial collocation points. Finally, Table 9.3 gives the results of the convergence

check in time. The timesteps represented here are multiples of the base timestep of

10−4, where a constant 32 angular and radial collocation points are used.
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Radial Gridpoints V Difference R Difference

8 → 16 2.70 · 10−1 1.75 · 10−1

16 → 32 4.21 · 10−3 2.37 · 10−3

32 → 64 1.64 · 10−4 1.57 · 10−4

Table 9.1: Three-dimensional radial convergence for translating droplet. Using 32 angular

gridpoints.

Angular Gridpoints V Difference R Difference

8 → 16 1.13 8.92 · 10−2

16 → 32 1.15 · 10−3 1.28 · 10−3

32 → 64 2.26 · 10−4 4.96 · 10−6

Table 9.2: Three-dimensional angular convergence for translating droplet. Using 32 radial

gridpoints.

From Tables 9.1–9.5 we can tell that the method is spectrally accurate in

space. One important conclusion is that 8 points in either the radial or angular

direction appears to be inadequate. While we expect, and see, that the difference

in the computed metrics decreases with each successive doubling on the number of

collocation points, the difference in going from 8 to 16 points is especially large in

the fully three-dimensional method. For example, we see an order one change in the

computed volume when going from 8 to 16 angular gridpoints. In particular, the

method doubled in mass for 8 angular gridpoints. For 16 gridpoints, it has well under

1% mass gain. With 16 and more points, the mass change quickly converges toward

zero as both radial and angular gridpoints are doubled.

Table 9.3 shows that the method converges as first order in time. Each

halving of the timestep, shown on successive rows, results in a halving of the computed

volume or location of the leading edge of the droplet. While the change in volume

when timestep is changed from 8 times the base value to four times the base value

is actually smaller than the change when the timestep is halved again, the difference

in the location of the leading edge is reduced by approximately half. The differences

in the volume after this are roughly halved with each halving of the timestep. As
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Timestep V Difference R Difference

32 → 16 6.07 · 10−3 4.66 · 10−2

16 → 8 3.81 · 10−3 2.56 · 10−2

8 → 4 5.10 · 10−4 1.32 · 10−2

4 → 2 2.77 · 10−3 5.99 · 10−3

2 → 1 1.01 · 10−3 3.11 · 10−3

1 → 1/2 6.37 · 10−4 1.14 · 10−3

1/2 → 1/4 3.17 · 10−4 8.26 · 10−4

1/4 → 1/8 1.65 · 10−4 4.44 · 10−4

Table 9.3: Three-dimensional temporal convergence for translating droplet. Using 32 radial

and angular gridpoints.

Radial Gridpoints V Difference R Difference

8 → 16 9.97 · 10−3 1.75 · 10−1

16 → 32 1.90 · 10−5 2.37 · 10−3

32 → 64 8.68 · 10−7 1.57 · 10−4

Table 9.4: Three-dimensional radial convergence for deforming droplet. Using 32 angular

gridpoints.

with the two-dimensional results, we do not find this aberrant result disturbing since

convergence immediately reverts to first order in time and it only occurs for the

volume calculation; the convergence of the location of the leading edge is always first

order, without exception.

We then compute the convergence of a deforming droplet. Here we take

α = 26◦, Ca = 0.1, B = 1.9, θAdv = 30◦, θRec = 15◦ and the data is taken at t =

100 and we again use (8.72) for the contact angle – slip velocity relationship. The

radial convergence checks are presented in Table 9.4, where the number of radial

collocation points are doubled while the number of angular points is kept constant

at 32. Next, the radial points are held at 32 while the number of angular points

are successively doubled. The results of this check are shown in Table 9.5. These

spatial convergence checks show that the volume and the difference in the location of



129

Angular Gridpoints V Difference R Difference

8 → 16 5.40 · 10−2 1.49 · 10−2

16 → 32 8.62 · 10−4 4.37 · 10−4

32 → 64 1.14 · 10−5 3.83 · 10−6

Table 9.5: Three-dimensional angular convergence for deforming droplet. Using 32 radial

gridpoints.

Timestep V Difference R Difference

64 → 32 1.32 · 10−4 7.26 · 10−5

32 → 16 7.08 · 10−5 4.72 · 10−5

16 → 8 3.52 · 10−5 8.20 · 10−5

8 → 4 3.25 · 10−5 2.77 · 10−5

4 → 2 1.25 · 10−5 1.87 · 10−6

2 → 1 7.03 · 10−6 7.04 · 10−6

1 → 1/2 3.74 · 10−6 4.21 · 10−6

1/2 → 1/4 2.12 · 10−6 1.98 · 10−6

Table 9.6: Three-dimensional temporal convergence for deforming droplet. Using 32 radial

and angular gridpoints.

the droplet’s leading edge converge spectrally as the number of points are doubled.

Finally, both radial and angular points are held at 32 while the timestep is adjusted

from a base of 10−4. This temporal convergence check is shown in Table 9.6. As with

the temporal convergence for the translating droplet, here we see a few occurrences

where halving the timestep does not produce the expected halving of the metrics of

interest. Reducing the timestep from 16 times the base to 8 times the base increases

the difference in the location of the right endpoint when compared to the previous

halving. Also, halving the timestep from 16 times the base to 8 times the base

produces a volume difference of 3.52 · 10−5 while a further doubling only results in a

volume difference of 3.25 · 10−5. Again, these are not considered worrying since they

only occur for one of the two variables of interest at either halving and after that the

difference continues to halve with each halving of the timestep. We thus conclude
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that the method is first order in time for the deforming droplet case.
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Chapter 10

Three-Dimensional Results

10.1 Introduction

Initial conditions are given by the steady-state solution to the axisymmetric

problem, a paraboloid:

h =
θI

2RI

(

R2
I − r2

)

(10.1)

with θI being the initial contact angle of the droplet and RI being the droplet’s initial

radius.

As previously mentioned, to have the dimensional volume of the droplet

remain a constant, we must enforce that

θIR
3
I =

1

3
. (10.2)

To satisfy this relationship we specify θI and then force RI . The initial contact angle

is given as the average of the advancing and receding contact angles,

θI =
θAdv + θRec

2
. (10.3)

Also, unless otherwise specified, (8.72) is used as the contact angle – slip velocity

relation.

10.2 Effects of Inclination Angle on Stability

An important aspect of droplet motion is determining the various stability

boundaries as a function of the physical parameters. On an inclined plane, a droplet

may become “stuck” on the surface, with the forces operating on the droplet remaining

in equilibrium, it may translate in a steady state down the surface at a constant
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velocity, or it may continuously deform as it evolves down the plane. Three primary

mechanisms govern the droplet’s motion: first, the relative strength of gravity versus

surface tension, represented by the Bond number, which, as it increases, exerts greater

forces on the droplet to slide down the surface; second, the greater the hysteresis

window (θAdv − θRec), the more likely the droplet is to remain fixed to the surface;

finally, the greater the inclination angle, the faster the droplet will translate down the

surface. We can compute the stability boundary of the droplet as either a function

of the inclination angle, holding the Bond number constant, or as a function of the

Bond number, holding the inclination angle constant. In this section droplet motion

will be discussed as a function of the inclination angle.

Kim et al.[49] construct the following analytic formulation for the steady

sliding droplet velocity as a function of inclination angle:

U ∼ ρV g (sin (α) − sin (αc))

µLc(θ) ln(Λ/λ)
, (10.4)

where U is the steady velocity of the droplet, αc is the critical inclination angle where

the droplet begins sliding down the plane, L is the peripheral length of the drop/slid

contact area, c(θ) is a monotonically decreasing function of contact angle, Λ is the

length scale for which their wedge approximation of the droplet shape near the contact

line holds, and λ is the cutoff length for which classical hydrodynamic theory ceases

to hold (on the order of 1–100 nm). They derive this formula, given as equation

(20) in their paper, by creating an energy balance between the gravitational potential

energy of the droplet and the energy dissipated by the droplet sliding down the plane

and solving for the speed when the two are equal. They showed that their results,

when using (8.72) for the contact angle - slip velocity relationship, were reducible, in

the lubrication limit, to those produced by Dussan V. and Chow[22]. Their results

differed from those derived by Hocking[41] due to the limitations of Hocking’s two-

dimensional model.

We can compare our numerical calculations to (10.4) for the steady droplet

sliding velocity. While (10.4) is dimensional and contains terms, such as the minimum

distance over which continuum theory is valid, not included in our model, we can

bypass a direct comparison by realizing that these parameters are constant for any

given physical droplet. We instead compare the ratio of the analytical vs. numerical
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Figure 10.1: Comparison of speeds

results. We can then plot the ratio of velocities as a function of inclination angle.

This comparison determines the relationship between the two computations; a straight

line indicates that they differ only by a constant of proportionality. This constant is

expected since we are neglecting constant terms from Kim et al.’s analytical formula.

To perform this comparison, we look at a droplet with Ca = 0.1. Solutions

are then evolved in time until either a steady state or transient behavior was identified.

The Bond numbers and advancing and receding static angles are given for each plot.

As can be seen in Fig. 10.1, we get good agreement with Kim et al. for large

inclination angles, but the agreement breaks down near the critical inclination angle,

αc. At this critical angle, the droplet breaks free of hysteresis and begins to translate

down the substrate. The critical angle αc is given by the leftmost point on the curves

in Fig. 10.1. Obviously, the speed of the droplet is zero at angles lower than αc

and any comparison before this point is meaningless. Equation (20) of Kim et al. is

highly sensitive when the inclination angle is near this critical angle. This sensitivity
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is likely to be the cause of the discrepancies between the numerical and analytic

results when α is close to αc. If the numerical approximation to the critical angle is

slightly off, then using this number in the analytic formula (as we do) will produce

spurious “errors” when compared to the numerical results.

Examples of the steady-state droplet profiles for various inclination angles

can be seen in Fig. 10.2. All the profiles are plotted with all of their origins at x = 0

for ease of viewing and the initial shape at t = 0 is also shown for reference. The

α = 27◦ droplet is stable and pinned to the substrate; it had some initial deformation

but then became reattached to the plane. The α = 29◦−32◦ droplets are all traveling

down the plane in the same basic steady-state profile. The minute differences in their

shapes would not be noticeable in the scale presented here and they are all represented

by a single curve. Snapshots of the droplet motion at t = 1000 are shown in Fig. 10.3.

These are top-down views of the droplet near the critical angle of inclination, hence

the spreading is only minor. At this point in time, the α = 27◦ droplet has become

re-attached to the plane. The α = 32◦ droplet has finished temporary deformations

and has reached its steady-state shape. The α = 29◦ and α = 31◦ droplets are still

undergoing deformations. As shown in Fig. 10.2, they will eventually settle down

into the same shape as the α = 32◦ droplet, but they have not reached that shape by

t = 1000. The α = 32◦ droplet will continue to travel down the plane at its steady

velocity while the α = 29◦ and α = 31◦ droplets deform and travel at a slower speed.

It is only once they reach the steady-state shape that they will be traveling at the

same speed as the α = 32◦ droplet. By that point, however, the α = 32◦ droplet will

have traveled much further down the plane. The droplets in Fig. 10.2 are shown all

starting at x = 0 for this reason; otherwise they would be strung out over a wide area

and it would be difficult to compare their shapes.

Table 10.1 shows the computed critical inclination angles versus those pre-

dicted by Kim et al.[49] (setting their equations (7) and (9) equal to one another).

We get very good agreement to the predicted critical angles. Their model makes the

assumption that the droplet’s contact area is close to a circle. While this is broadly

true, our calculations indicate that the droplet stretches out, taking on a roughly ovoid

profile, as seen in Fig. 10.3. This deviation from the assumption may be responsible

for what discrepancies exist between the two calculations. Roura and Fort[69], like
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θAdv θRec B Computed αc Kim αc

30◦ 25◦ 2 11◦ 8◦

30◦ 20◦ 2 20◦ 16◦

30◦ 15◦ 2 27◦ 22◦

30◦ 10◦ 2 32◦ 28◦

30◦ 5◦ 2 34◦ 34◦

15◦ 10◦ 0.5 20◦ 20◦

15◦ 5◦ 0.5 36◦ 37◦

Table 10.1: Comparison of critical angles

Kim et al., calculate a relationship linking the critical angle of inclination to the con-

tact angle. We do not compare our results to theirs due to difficulties in associating

our advancing and receding contact angles to their single contact angle.

Krasovitski and Marmur[50] look at the differences between the front and

back contact angles, θ measured at the front and rear of the droplet, and the advanc-

ing and receding contact angles, θAdv and θRec. While they note that prior studies

have always considered the two sets equal when the droplet is at the critical angle

of inclination, αc, they contend that there is no reason why the two should be iden-

tical. They examine two-dimensional droplets sliding down a heterogeneous surface,

which provides for hysteresis. They find the highest angle of inclination for which

a metastable equilibrium between the local geometric angle and ideal contact angle

(i.e., the surface contact angle taking into account heterogeneity) is reached. For

hydrophilic droplets, they find that while the advancing and front contact angles

are almost identical at αc, the back and receding contact angles are, in fact, quite

different. They contend that the back contact angle is larger than θRec, especially

when θRec is small. While this does not violate the slip velocity – contact angle re-

lationship presented in (8.70), it does not agree with our results, which show that

the rear contact angle is always equal to θRec at αc. Our results show that in every

case the droplet undergoes a very rapid deformation starting from t = 0, wherein the

rear contact angle decreases quickly, usually pushing below the hysteresis range. The

rear contact angle then slowly increases, returning the rear contact angle to the very
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edge of the hysteresis window. We also find that the front contact angle gradually

moves from its initial value to just below the advancing contact angle. Krasovitski

and Marmur only compute the contact angles of the pinned droplets at αc, so the

dynamics before then cannot be compared. If the angle of inclination is below αc,

the droplet can remain pinned to the surface while the front and rear contact angles

remain within the hysteresis range (below θAdv and above θRec, respectively). At αc,

however, the front and rear contact angles are equal to θAdv and θRec. It is unclear

what effect, if any, the fact that Krasovitski and Marmur rely on two-dimensional

droplets rather than three-dimensional ones might play in the behavior seen.

10.3 Bond number stability

In this section, we compute the stability boundaries for a droplet where we

hold the angle of inclination constant and vary the Bond number. The critical Bond

number, Bd, for when a droplet begins translating for a given hysteresis window has

been calculated for vertical droplets by Dimitrakopoulos and Higdon[20]. They spec-

ified a given Bond number and numerically computed the fixed shape that required

the minimum hysteresis window (θAdv − θRec) using a spectral boundary element

method combined with an optimization algorithm to find the equilibrium free sur-

face. The droplet begins translating for B > Bd while it’s motion is arrested for

B < Bd. We, however, specify the hysteresis window and compute the largest Bond

number for which the droplet remains pinned to the surface. While Dimitrakopoulos

and Higdon were only able to compute steady-state shapes, our code can calculate

dynamics, in particular the steady state translating shapes. We are thus able not

only to compare our results to theirs but also to extend the analysis to calculate a

second critical Bond number at which the steady translation solutions no longer exist

and an unsteady solution is observed. Please note that due to difference in the initial

configuration of the droplet used to define the Bond number in Dimitrakopoulos and

Higdon and our work, the Bond number from Dimitrakopoulos and Higdon, BD&H ,

has been rescaled to match our work: 28/3BD&H = B.

In Fig. 10.4 we examine the behavior of a droplet on a vertical surface

(α = 90◦). Starting with the initial configuration given by (10.1)–(10.3), we apply
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our computational method to determine the evolution of the drop. Relatively good

agreement with the results of Dimitrakopoulos and Higdon for θAdv = 30o is seen.

While they observed static droplets for a hysteresis window less than 10◦ when the

advancing angle was 30◦, we found static droplets for a hysteresis window of up

to 25◦. It should be noted that, for some of the cases considered, the droplet has

some initial motion as it adjusts its shape from the initialized paraboloid, but then

becomes fixed to the surface. The rear contact line is the first to move in this regime

and it slides forward, shortening the droplet and steepening the forward contact line.

Sometimes, as mentioned above, the droplet stabilizes before the forward contact

line begins to move. Other times the forward contact angle becomes larger than the

advancing contact angle and the droplet begins to advance forward. Once this begins,

the droplet does not return to equilibrium and either continues down the plane as

a steadily traveling droplet or else continues deforming. We ignore any transient

behavior and consider the cases where the droplets return to stasis to still be below

the critical Bond number.

For θAdv = 15o and 30o, Fig. 10.4 shows both the transition from fixed

droplets to smoothly traveling droplets and then the transition from steady traveling

droplets (lower curves) to unsteady droplets (upper curves). We discuss this latter

transition, represented by the top two lines, shortly. The transition from fixed, or

pinned, droplets to smoothly traveling ones is shown in the bottom three lines. The

dashed line represents the θAdv = 15 case and the solid line the θAdv = 30 case,

with the results from Dimitrakopoulos and Higdon[20] between them. As expected,

a larger Bond number is required to force the droplet into motion as the hysteresis

window increases, which is exactly what we see in Fig 10.4. This behavior is due

to the fact that it is the back of the droplet that is the first to move and induce

movement throughout the droplet. Thus a larger hysteresis window means a lower

receding contact angle if the advancing contact angle is held fixed, as is the case with

our code. This lower receding angle, in turn, allows the rear of the droplet to deform

more before moving. Similarly, with a smaller advancing contact angle, the critical

Bond number is lower.

The difference in droplet shapes between a pinned droplet and a smoothly

translating droplet can be seen in Figs. 10.5 and 10.6. The different behaviors are
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Figure 10.5: Pinned droplet: α = 90◦, θAdv = 30◦, θRec = 20◦, B = 0.635, t = 1000
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due to increasing the Bond number while keeping all other parameters constant. Note

how the pinned droplet is narrower at the front than the back. In the next section,

we see that this behavior can be reversed, producing cusps in the rear while the front

remains rounded. The translating droplet has elongated slightly and the front has

steepened. This steepening is what allowed it to break free from hysteresis and begin

translating.

As the force acting on the droplet is increased, either due to higher a Bond

number or a greater inclination of the plane, the droplet breaks free from hysteresis

and begins moving. If the hysteresis window is narrow enough, the droplet enters the

smoothly translating state, the area between the upper and lower curves in Fig. 10.4.

As the force acting on the drop increases, the droplet begins to deform and thus leaves

the smoothly traveling regime. The droplet now begins deforming and does not return

to a steady-state shape. This transition to deformation can also take place directly

from the pinned state when the hysteresis window is large enough. The direct pinned

to deformation transition is represented in Fig. 10.4 by the portions of the fixed line

that are not below the traveling curve, thus signifying that the droplet transitions

from the pinned state but not to the traveling state (> 15◦ for the θAdv = 30 case and

> 7.5◦ for the θAdv = 15 case). Even larger Bond numbers cause this deformation

to become more extreme, reaching the computational limits of our code. Above the

traveling line (and above the fixed line where there is no traveling line above it),

the droplets will continue to deform. Unlike the transition from pinned to steady

translation, the transition from steady translation to deformation does not require

ever increasing Bond numbers for greater hysteresis windows. This is most likely due

to greater deformation that results from higher hysteresis window. The greater the

window, the more extreme the deformation of the droplet before it begins to translate

down the plane. It thus does not take that much extra force to push it out of the

translating regime, as seen by the flat curve for θAdv = 30 or the downward sloping

curve for θAdv = 15.

An example droplet profile for a deforming droplet is seen in Fig. 10.7. This

picture is produced with the same parameters as those in Figs. 10.5 and 10.6 but

with an even higher Bond number, B = 1.25, and at a much earlier point in time.

This droplet has begun to spread quite rapidly, with the bulk of the fluid moving
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Figure 10.7: Deforming droplet. This droplet is near the computational limit for our code.

α = 90◦, θAdv = 30◦, θRec = 20◦, B = 6.25, t = 7.5
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toward the front of the drop and the rear of the droplet getting very thin. As time

progresses, the fluid moves away from the rear faster than the contact line retreats

toward the front. Eventually, the droplet is left with dry patches where there is no

fluid within the contact line. This situation is obviously non-physical and represents

the computational limit of the code in this situation.

We find that the smoothly translating droplet regime has a smaller stability

window, as measured by the range of hysteresis for which the droplet is stable, than

does the static droplet. If the droplet becomes too deformed, as results from a large

hysteresis window, it bypasses the translating drop stage completely; once it begins to

deform it does not stop but continues for as long as our code is able to model it. This

phenomenon is visible in the early termination of the upper curves; this translating

stability has a lower stability boundary than does the fixed droplet regime.

Dussan calculates the largest volume of a droplet that can remain stationary

on an inclined plane[22]. This formulation can be transformed to show the largest

Bond number which is stationary, as done by Dimitrakopoulos and Higdon[20]. We
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plot the comparison of our numerical calculation of critical Bond number with Dus-

san’s asymptotic prediction in Fig. 10.8. The lower curve, θAdv = 15, is much shorter

since the hysteresis window can only be half as wide as in the θAdv = 30 case. One po-

tential source of divergence between Dussan’s results and ours is that Dussan assumed

only a small hysteresis window, θAdv − θRec � 1. Thus it should not be surprising

that the results diverge as we increase the hysteresis window and move away from

the region in which the asymptotic result is valid.

When we are increasing the Bond number, it is possible for the effects of

gravity to overpower the method. The droplet is move down the plane at a relatively

high rate of speed, with the fluid in the rear convecting towards the front. This will

reduce the contact angle in the rear of the droplet. The standard slip velocity – contact

angle relationship (8.72) calls for the contact line velocity to increase linearly with the

decrease in contact angle. Unfortunately, in some cases this is not fast enough. The

contact angle does not retreat as fast as the fluid in the droplet. The results of this

is that the contact angle becomes zero and the numerical method predicts negative
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Figure 10.10: Comparison of contact angle at rear for different contact angle – slip velocity

relationships. Here θAdv = 30◦, θRec = 15◦, B = 3.8.

droplet height, a non-physical result. To correct this problem, we introduced two new

contact angle – slip velocity relationships (8.73) and (8.74). The difference between

these three relationships for θ ≤ θRec = 30 is shown in Fig. 10.9. As can be seen, the

tan based f1 (8.73) results in the largest velocity when the contact angle gets small,

the existing linear relation f (8.72) has the smallest velocity for small contact angles,

and the arctanh based f2 (8.73) represents a middle ground.

An example of how these new slip laws can act to keep the contact angle in

the rear from becoming negative is seen in Fig. 10.10. Here the droplet is initialized as

the others in this section, but with θAdv = 30◦, θRec = 15◦, B = 3.8. The existing linear

contact angle – slip velocity relationship is obviously insufficient to keep the contact

angle at the rear from becoming equal to zero. The arctanh based f2 advances the

contact line faster as the contact angle becomes small, and the tan based f1 advances

it the fastest, advancing the contact line faster and thus keeping the contact angle

from getting too small. The location of the trailing edge of the droplet, formally
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Figure 10.11: Comparison of trailing edge of droplet for different contact angle – slip

velocity relationships. Here θAdv = 30◦, θRec = 15◦, B = 3.8.

L(0), is shown in Fig. 10.11. The new relationships do not need to move the contact

line that much in order to prevent the rear contact angle from going negative. An

important question is whether these results hold under grid refinement. We do not

want the new contact angle – slip velocity relationships to only keep the contact

angle from reaching zero for the chosen number of gridpoints. The results of a brief

convergence check for f1 are shown in Tables 10.2 and 10.2. The base number of

gridpoints is 32 in both the angular and radial directions. These tables show how the

minimum contact angle converges as the number of angular and radial gridpoints is

increased. As can be seen, as the number of gridpoints is increased, the minimum

contact angle gets closer and closer to a fixed, nonzero value. We are thus confident

that the new contact angle – slip velocity relationships are able to prevent the contact

angle at the rear of the droplet from becoming zero.

Since f2 has a slower and less severe response to small contact angles than

does f1 (see Fig. 10.9), we expect to be able to find a case where it is incapable of

responding fast enough to the contact angle becoming small. This behavior is seen

in Fig. 10.12. Here θAdv = 15◦, θRec = 2.5◦, B = 3.2 and the initial and rapid descent
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Radial Gridpoints Difference in Minimum Contact Angle

8 → 16 2.07 · 10−1

16 → 32 1.56 · 10−2

32 → 64 1.40 · 10−3

Table 10.2: Radial convergence of contact angle – slip velocity relationship f1. Using 32

angular gridpoints.

Angular Gridpoints Difference in Minimum Contact Angle

8 → 16 3.05 · 10−2

16 → 32 5.96 · 10−3

32 → 64 2.31 · 10−4

Table 10.3: Angular convergence of contact angle – slip velocity relationship f1. Using 32

radial gridpoints.

in the contact angle at the rear has been cropped from the figure to focus on the

behavior near zero. Please note that the contact angles are given in degrees, so the

interface is nearly flat. The tan based f1 retracts fast enough to keep the contact

angle from going negative while the arctanh based f2 does not.

The alternate contact angle – slip velocity relationships are not found to

affect the stability curves in Fig. 10.4. The cases where they have an effect, those

where the contact angle at the rear of the droplet gets very small, are cases where the

droplet is already in the deformation regime. They have a mild effect on the spread

rate of the translating drops, but do not affect the critical Bond numbers. While the

problem of the contact angle going negative represents a limitation of our model, the

problem only appears where the droplet is undergoing severe deformation. As long

as we stay away from these cases, which are well above the top curves in Fig. 10.4,

we can still use our linear (8.72) and trust the results that are produced.
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Figure 10.12: Comparison of contact angle at rear for different contact angle – slip velocity

relationships. Here θAdv = 15◦, θRec = 2.5◦, B = 3.2.

10.4 Rear angle

Stone et al.[76] and Amar et al.[1] have both formulated theories and problem

formulations for the cusp formation and pearling behavior described by Podgorski

et al.[66] and, although their theories differ, both find that pearling begins when

the corner angle of the cusp becomes less than β = π/6 (Fig. 10.13 indicates the

definition of β). Limat and Stone[54] have worked on developing a lubrication model

to describe the nature of the cusp. Their model provides an analytic formulation for

the height profile in the neighborhood of the cusp.

One way of looking at the behavior of the droplet is to look at the curvature

of the rear, where we expect a cusp to form. The upper two curves in Fig 10.14

show the two-dimensional curvature of the contact line at φ = 0 when t = 200 while

the bottom two curves show the three-dimensional mean curvature of the surface at

the same point. In these graphs, the plate is inclined at α = 81◦ and the capillary

number is Ca = 0.6. The base contact angle – slip velocity relationship (8.72) is

used. The two-dimensional curvatures are higher than the full three-dimensional
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Figure 10.13: Example droplet shape showing rear contact angle β
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Figure 10.15: Droplet in pinned state with B=0.01

curvature because the droplets are, in a sense, the top portion of spherical caps.

The mean curvature of a sphere is equal to 1/R everywhere on the sphere, while the

two-dimensional curvature is equal to 1/r, where r is the shrinking radius of the two-

dimensional plane chosen. If the plane goes through the origin of the sphere, then

r = R. If the plane does not go through the origin, though, then r < R and thus the

two-dimensional curvature is higher than the three-dimensional curvature.

As can be seen in Fig 10.14, both the two- and three-dimensional curvatures

increase as the Bond number increases. The decline in three-dimensional mean cur-

vature for B=1–3 is illustrated by Figs. 10.15 and 10.16. For B = 0.01, the droplet

is still near its initial configuration. As it transitions to sliding down the substrate,

the fluid flows to the front of the droplet, thinning the rear and reducing the three-

dimensional curvature. As the droplet gains speed and begins to deform, the rear

becomes narrower, thus increasing the two-dimensional curvature while having a re-

duced impact on the three-dimensional curvature since the droplet continues to thin

in the rear.
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Figure 10.16: Droplet steadily traveling down substrate with B=3
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The rear angle of the droplet, β, is shown for different Bond numbers in Fig.

10.17. As can be seen, for a sufficiently large hysteresis window, θAdv − θRec = 15,

the rear angle approaches the critical β = π/6 ∼ 0.52 value that is associated with

the onset of pearling by Stone et al. and Amar et al.. This occurs at B = 10, which

also represents the computational limit of our code. Past this point the code suffers

instabilities and produces non-physical results. Our code is incapable of modeling the

pearling behavior that is expected to occur at β = π/6 and thus we would expect

that anything past this point would be a non-physical result. That our code suffers

instabilities at this point may be taken as an indication that it is attempting to model

behavior that it simply cannot do, and thus fails, showing that a new phenomenon,

the pearling behavior, is encountered at β = π/6.
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Chapter 11

Conclusion

The effects of insoluble surfactant on the spreading of a viscous droplet have

been explored. The lubrication approximation was applied to the problem, and the

resulting evolution equations were solved numerically using a pseudo-spectral method.

We first considered the spreading of an isothermal droplet with surfactant.

It was found that surfactant decreases the spreading rate of the droplet by forming

negative surface tension gradients near the contact line, which produced a Marangoni

counterflow to oppose spreading. For a completely wetting droplet, i.e., θAdv = 0,

the concentration of surfactant and the magnitude of these gradients decreased as

the droplet spread, allowing the drop to accelerate to nearly its clean spreading rate

at large times. Increasing the surfactant Marangoni number, represented here by

increasing β, slowed the droplet further by increasing the surface tension gradients.

Similarly, increasing the Peclet number slowed the spreading rate by allowing for the

surfactant to form steeper gradients, thus leading to larger surface tension gradients

and stronger Marangoni flows.

We also studied the situation where surfactant was allowed to transfer onto

and off of the droplet surface at the contact line. We used a linear relationship for

the rate of transfer of surfactant between the contact line and the substrate. In this

case, we found that a droplet that allows transfer at the contact line spreads faster

than one with no-flux, if the droplet is losing surfactant to the substrate. If the

droplet is gaining surfactant from the substrate it spreads slower than the no-flux

case. The absorption of surfactant from the substrate offsets the decline in surfactant

concentration along the interface due to the stretching of the interface, allowing the

Marangoni counterflow to retain its strength longer. Similarly, the rapid loss of

surfactant caused by desorption also reduces the slowing effect of the surfactant.
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In the more extreme cases of rapid surfactant loss from the droplet interface, the

presence of surfactant can increase the spreading rate of the droplet. The negative

surfactant gradients in such cases are large enough to produce positive surface tension

gradients and a reinforcing Marangoni flow, increasing the spreading rate.

Heating and hysteresis effects on droplet motion were studied for near steady

state droplets. Without surfactant, the droplet would remain pinned in the hysteresis

regime for some fixed amount of time and then break free due to heating. The presence

of surfactant caused the droplet to slow its spreading rate, as seen in the isothermal

case above. As the surfactant Marangoni number (MS = β/Ca) was increased, the

droplet could not break free of hysteresis and was permanently pinned. This result is

a function of hysteresis, for without hysteresis, an increase in β would simply decrease

the droplet’s spreading rate.

We also allowed the steady contact angles of the droplet to vary with the

surface tension at the contact line according to Young’s Law. In this case, we found

that, as before, a clean droplet would initially be pinned by hysteresis but then would

eventually break free. We found that low surfactant Marangoni numbers (small β)

delay the time at which the droplet breaks free. Increasing the surfactant Marangoni

number (large β) further causes the droplet to remain pinned, as in the static steady

contact angle case above. If we increase β even further, the droplet will immediately

break free of the hysteresis regime and rapidly spread at a rate much faster than the

clean droplet. This dependence of the contact angle on surface tension may explain

experimental situations where surfactants are capable of drastically increasing the

spreading rates of droplets.

We then studied the case where the substrate was assumed to have a surfac-

tant gradient, the effect of which was to adjust its wettability. In this case, we were

able to propel the droplet along the substrate at a faster rate than what was achieved

through simply heating the substrate.

It is interesting to compare the results our model with some recent exper-

iments by Nikolov et al.[63] on the spreading of droplets with surfactant. These

authors were interested in studying superspreading and considered the spreading of

0.1 ml drops of a surfactant solution consisting of trisiloxane ethoxylate (Silwet L-

77 r©) and water on polystyrene. The authors determined the spreading rate as a
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function of surfactant concentration. With increasing surfactant concentration, the

spreading rate initially increased, reached a maximum, and then decreased with in-

creasing concentration. To explain this behavior, they first noted that as the droplet

spreads, a surface tension gradient is generated along the interface as the interface

stretches. The result is a lower surfactant concentration near the contact line than

at the middle, and hence a surface tension gradient which enhances the spreading

rate of the droplet. The effect is small at low concentrations, but as the surfactant

concentration increases, so do the surface tension gradient and the rate of spreading.

As the surfactant concentration increases further, the rate of surfactant diffusion from

the bulk to the surface increases, which decreases the surface tension gradient on the

interface and hence the rate of spreading. We can compare the results of Fig. 4.1

with these experiments. In this figure, we assume that the droplet will completely

wet the substrate (i.e., θAdv = 0). This is a reasonable assumption for the comparison

since the presence of the surfactants in the experiments increases the spreading area

of a water droplet, which in our model means decreasing θAdv. Our insoluble sur-

factant calculations suggest an additional possible reason for the observed decrease

of spreading rate with concentration. As discussed in Sec. 4.2, we find that for the

insoluble surfactant case, surfactant is driven along the interface towards the contact

line as the drop spreads. This produces a surface tension gradient directed towards

the center of the drop, and hence a Marangoni flow that opposes spreading. The

result is a decrease in spreading rate with concentration as shown in Fig. 4.1. This

mechanism clearly does not address the initial increase of spreading rate with concen-

tration observed in the experiments of Nikolov et al.[63], but it may be a contributing

factor at the higher concentrations for the situation they studied.

All the results discussed thus far were two-dimensional. While easy to com-

pute, two-dimensional calculations can produce spurious results. Thus we next con-

structed a three-dimensional axisymmetric method to test our prior results. We did

not include heat effects since they would break the included symmetry. We examined

all the two-dimensional isothermal cases with the new three-dimensional axisymmet-

ric method. While there were, of course, quantitative differences in the results, the

important conclusion was that the qualitative behavior of the droplet and surfac-

tant remained the same in three dimensions. Surfactant gradients still slowed down
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the spreading rate of a wetting drop, with diminishing effects as the droplet contin-

ued to spread. One interesting development from the three-dimensional results was

that it appeared that a boundary layer of surfactant developed near the contact line

when the Peclet number became sufficiently large. Surfactant transfer to the sub-

strate sped up spreading, and absorption from the substrate slowed spreading; both

of these results are identical to the two-dimensional case. We thus feel confident that

the two-dimensional results that include heat effects are also physically accurate.

Having explored the effects of surfactant and heat on the spreading of a

droplet, we next looked at a droplet travelling down an inclined plane. Here gravity

acts to propel the droplet down the plane. We only considered clean, isothermal

droplets, so no surfactant effects were included. We constructed a composite lubrica-

tion theory solution to the Navier-Stokes equations, valid for all inclination angles α

of the plane with respect to the horizontal. This necessitated enforcing the lubrica-

tion approximation with our initial data rather than the nondimensionalization. The

first effect we considered was the stability of the droplet as the angle of the plane was

changed. Hysteresis allows the droplet to remain “stuck” to the plane, if the contact

angles remain within the hysteresis range while the plane is inclined. As the gravita-

tional effects increase, either through greater inclination or increased Bond number,

the droplet will break free and begin translating down the plane. We compared these

translation speeds with the results of Kim et al.[49] and found good agreement. While

there was some disagreement near the critical angle of inclination αc, this was likely

due to slight errors in measuring αc and the sensitivity of the results when near this

angle.

Determining the critical angle of inclination when the droplet began trans-

lating down the plane was then investigated. These results were again compared to

those of Kim et al. and were found to be in close agreement. Their model made the

assumption that the droplet remained circular, while our droplet deformed into an

oblong shape, which likely accounts for some of the discrepancies.

We then turned to droplets sliding down vertical plates, where the param-

eter of interest was the Bond number. Here the droplet can be pinned to the plate

due to hysteresis, smoothly translate down the plate at a constant velocity, or begin

deforming and not return to either of the other two states. The hysteresis window,
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θAdv − θRec, played an important role in the droplet’s behavior. As the window in-

creased, it took larger Bond numbers to force the droplet to become unpinned and

begin motion. For sufficiently large hysteresis windows, though, the droplet would

transition directly from being pinned to continual deformation, never entering the

steady translation state. The critical Bond numbers needed to force the droplet from

the pinned state were compared to those found by Dimitrakopoulos and Higdon[20].

The results were quite close for the range of hysteresis windows considered by Dim-

itrakopoulos and Higdon; we computed pinned states for greater hysteresis windows

than they reported. The critical Bond numbers were also compared to those found

by Dussan[22]. When the hysteresis window was small, as assumed by Dussan, the

results were in close agreement. Larger hysteresis windows resulted in slightly di-

vergent results, as expected when we moved away from Dussan’s assumptions. Our

calculations reported that, in some cases, the droplet would briefly deform from its

initial configuration before returning to a pinned state. We considered these cases

to still be pinned since they remained stationary after this brief deformation. While

the critical Bond number needed to force the droplet from the pinned state increased

with the hysteresis window, the Bond number needed to transition the droplet from

steadily translating to continual deformation was not found to increase with hysteresis

window. We attributed this effect to the increased deformation that was allowed by

the larger hysteresis windows before the droplet exited the pinned state. The droplet

thus did not require as much additional force to move into the deformation regime.

As the droplet moves down the plane, the fluid tends to move towards the

front of the drop. For sufficiently large Bond numbers, this movement happens quite

rapidly. Fluid vacates the rear of the droplet near the contact line, causing the con-

tact angle at the rear to decrease. The linear contact angle – slip velocity relationship

proved insufficient to prevent the contact angle from becoming zero in some circum-

stances. It did not move the contact line back towards the body of the droplet rapidly

enough. To solve this problem we introduced two new contact angle – slip velocity

relationships, one based on tan and the other on arctanh. Both provided for large

velocities when the contact angle became very small. We found that the arctanh

model was superior to the base linear model, but could still result in zero contact

angles. The tan based model solved this problem, converging to a nonzero contact
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angle. The additional movement of the contact line at the rear of the droplet when

compared to the linear case was small, but it was enough to keep the contact angle

from becoming zero and producing nonphysical results. While the results solved a

problem with the model, the problem only occurred when the droplet was deforming

and the new contact angle – slip velocity relationships did not affect the computed

stability diagram. Thus we determined that the linear relationship was valid for the

cases of interest.

An interesting result of droplets sliding down inclined planes is that the

droplets may experience “pearling” behavior whereby they shed small droplets in

their wake. This pearling occurs when the rear of the droplet forms a cusp and the

angle of this cusp equals π/6. We looked at droplets on plates inclined at 81◦ and

showed that the rear curvature increased as the Bond number was increased. For a

hysteresis window of θAdv − θRec = 15◦, we reached the computational limit of our

code just as the rear angle reached the critical π/6. Since the numerical method we

employed is incapable of reproducing the pearling behavior, we took it as a positive

sign that the code became unstable at the point where the physics of the droplet

diverged from what the code was capable of reproducing.

There is certainly much room for future work. Krasovitski and Marmur[50]

recently investigated two-dimensional droplets on an inclined plane and found that

the rear contact angle was sometimes well above θRec. They contend that there is

no physical reason why the contact angles need to be at the limits of the hysteresis

window at the critical angle of inclination. In the three-dimensional results presented

here, when the droplet was at the critical angle of inclination, the contact angle at

the leading edge was almost perfectly equal to θAdv and the angle at the trailing

edge was almost equal to θRec. It is unclear if the difference in results is due to the

two-dimensional nature of the experiments conducted by Krasovitski and Marmur. A

two-dimensional model could be constructed to investigate the behavior. That would

determine if this observation is a two-dimensional only effect or if there is something

more fundamental occurring. Additionally, a thin precursor model that eliminates

the contact line could be used to see if eliminating the slip velocity – contact angle

relationship results in agreement with Krasovitski and Marmur.

Our three-dimensional computation method has certain limitations that



160

should be addressed. When the deformation is too severe, it can surpass the cho-

sen resolution of the method. An adaptive regridding method would likely help to

overcome this problem. It is also possible that, due to the Chebyshev pseudo-spectral

method used, the points can bunch up severely in the neighborhood of the contact

line. This is generally the result of the droplet becoming somewhat pinched in the

neighborhood of the origin. The choice of the origin is thus an important decision.

Place it to the front of the droplet and large deformations are clearly defined, but

resolution at the rear of the droplet is degraded. Place the origin at the rear and any

cusp-forming behavior is captured, but problems can occur if the fluid is pooled at the

front. A seemingly good compromise is to keep the origin at the center of the drop.

This, unfortunately, presents problems if the droplet becomes pinched or narrows as

the rear is sharpening, or if the points bunch near the origin, as described above.

Pearling behavior also deserves further study. Our method, as currently

implemented, is incapable of actually reproducing the pearling. It suffers general in-

stabilities at the parameter values needed to induce pearling. A change to a method

that allows for pearling, such as a level set method, would be most helpful. Also, a

method that employs adaptive regridding would allow the regions of the droplet that

undergo large deformations to be highly resolved without inducing instabilities else-

where. While this would require moving away from spectral methods, the advantages

would more than outweigh any extra computational costs.

Surfactants and heat effects were completely ignored in the study of three-

dimensional droplets on inclined planes. Given that surfactants were found to balance

a non-uniform thermal gradient in the two-dimensional case and pin the droplet, it

would be interesting to see their effects when coupled with gravity. While the effect of

the thermal gradient was ignored in the axisymmetric case due to symmetry, it could

certainly be added to the full three-dimensional problem. It would be interesting

to examine the surfactant distribution during droplet translation, as well as how a

deforming droplet could create large surfactant gradients.
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A. Frobenius Analysis of

Two-Dimensional Droplet

In this section we will perform a Frobenius analysis at the contact lines of

the two-dimensional drop. This analysis will show the nature of the singularity that

develops at the endpoint .

A.1 Right Endpoint

The behavior of the droplet near the right endpoint will be examined first.

Here, x = R, and the droplet makes contact with the substrate with an angle θ. A

stretching in an inner region is introduced by rescaling x by the following relationship:

R − x = εξ, (A.1)

where ε � 1. The height of the droplet near the contact point is also rescaled. The

boundary conditions on h are fulfilled via a generic stretching of the form

h =
−θ

2R
(R − εξ)2 +

Rθ

2
+ εχH, (A.2)

where χ is some as yet undetermined constant. We will now move our frame of

reference with the contact line. In this frame

ξ =
R − x

ε
. (A.3)

Moving with the contact line means that time now scales as

∂

∂t
=

∂τ

∂t

∂

∂τ
+

∂ξ

∂t

∂

∂ξ
, (A.4)

∂

∂t
=

∂

∂τ
+

Ṙ

ε

∂

∂ξ
(A.5)

where τ = t. Then, to leading order,

∂h

∂t
=

Ṙ

ε

∂h

∂ξ
(A.6)
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and
∂S

∂t
=

Ṙ

ε

∂S

∂ξ
. (A.7)

The boundary conditions on the surfactant equation are used to pick the

proper scaling by which to stretch the surfactant concentration S. The general form

of the boundary condition is

(S − c1) + c2
∂S

∂x
= c3, (A.8)

with c1, c2, and c3 being constants. Introducing stretched coordinates local to the

contact line changes (A.8) to

(S − c1) −
c2

ε

∂S

∂ξ
= c3. (A.9)

This implies that, to leading order, the boundary condition is no-flux. Since this goes

against our model, which allows for flux, S must be expanded as

S(ξ) = S0 + εS1(ξ) (A.10)

in order to preserve flux at the contact line. Here S0 is the concentration of surfactant

at the contact line and S1(0) = 0.

In order to derive the scaling on h, the most singular term in (2.104) is

balanced against the velocity term Ṙ and then the value of χ that makes this balance

possible is found:

Ṙεχ−1∂H

∂ξ
= −λε2χ−3θξH

∂4H

∂ξ4
. (A.11)

Balancing these two terms requires that

χ = 2. (A.12)

The rescaled variables are now introduced into (2.104) and the terms are

collected by orders of ε. Balancing terms in (2.104), we find that the leading order

terms in the droplet evolution equation are

− 2λθ2ξ
∂3H

∂ξ3
− λθ2ξ2∂4H

∂ξ4
− 2λθ

[

−β
∂S

∂ξ
− δ (N − Biθ (1 − NR))

]

+ 2λθMS
∂2S

∂ξ2
− Ṙθ = 0 (A.13)
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and the leading order terms in the surfactant transport equation are

λ

Ca

(

2β
∂2S1

∂ξ2
− θξ

∂4H

∂ξ4
− θ

∂3H

∂ξ3

)

S0 +
1

Pe

∂2S1

∂ξ2
= 0. (A.14)

A Frobenius analysis is performed by assuming a solution of the form

H(ξ) = aξ2 ln(ξ) + bξ2 + cξ3 ln(ξ) + dξ3 + eξ4 ln(ξ) + fξ4 + . . . (A.15)

S1(ξ) = g1ξ + g2ξ
2 ln(ξ) + g3ξ

2 + g4ξ
3 ln(ξ) + g5ξ

3 + g6ξ
4 ln(ξ) + . . . (A.16)

where a, b, c, d, e, f, g1, g2, g3, g4, g5, and g6 are constants.

Substituting these ansatzes into (A.13) and (A.14) and collecting orders of ξ

allows one to solve the resulting equations at each order to determine the coefficients

of (A.15)–(A.16). At O(1) in (A.13)

−2λθ2a − 2λθ [βg1 − δ (N − Biθ (1 − NR))] − Ṙθ = 0 (A.17)

and at O(ln(ξ)) in (A.14) it is found that

λ

Ca
(2βg2 − 3cθ) S0 +

g2

Pe
= 0. (A.18)

Solving these two equations gives solutions for a and g2, but these constants are not

yet fully determined since g2 includes c. Not surprisingly, the nature of the contact

line singularity in the coupled system is, indeed, dependent upon the droplet height

and surfactant concentration.

One must now go on to the next order to solve for a and g2. At O (ξ ln(ξ))

in (A.13) it is found that

−12λθ2c + 8βλθg2 = 0 (A.19)

which can be solved to find that c = 0. This gives the surprising result that g2 = 0.

An initial formulation of the droplet height and surfactant concentration at

the right endpoint can now be constructed:

h =
−θ

2R
(R − εξ)2 +

Rθ

2

+ ε2

{

1

2

2λ [βg1 + δ (N − Biθ (1 − NR))] − Ṙ

θλ
ξ2 ln(ξ)

+ bξ2 + O(ξ3)

}

(A.20)
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and

S = S0 + ε
[

g1ξ + O(ξ2)
]

, (A.21)

where

g1 = −∂S

∂x

∣

∣

∣

∣

x=R

. (A.22)

One could go to higher order to pick up more terms in S and h but this is not needed

for accuracy in the method.

A.2 Left Endpoint

The analysis at the left endpoint, x = L, is nearly identical to the above

problem with a few differences, which are discussed below.

First, the stretching near the contact line, (A.1), now becomes

x − L = εξ. (A.23)

The height of the droplet is now stretched by

h =
θ

2L
(L + εξ)2 − Lθ

2
+ εχH. (A.24)

The moving frame of reference is now defined as follows

∂

∂t
=

∂τ

∂t

∂

∂τ
+

∂ξ

∂t

∂

∂ξ
(A.25)

∂

∂t
=

∂

∂τ
− L̇

ε

∂

∂ξ
(A.26)

As before, at leading order,

∂

∂t
= − L̇

ε

∂

∂ξ
. (A.27)

Finally, when the change of variables is performed, one sees that (A.9) becomes

(S − c1) +
c2

ε

∂S

∂ξ
= c3. (A.28)

This still results in the same scaling of S as in (A.10), namely

S(ξ) = S0 + εS1(ξ). (A.29)
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Also, as would be expected, here χ = 2.

The rescaled variables are introduced into (2.104) and the terms are collected

by orders of ε. The first order terms, those with the lower power of ε are O(1) in the

droplet evolution equation:

− 2λθ2ξ
∂3H

∂ξ3
− λθ2ξ2∂4H

∂ξ4
− 2Caλθ

[

−MS
∂S

∂ξ
+ MT (N + Biθ (1 − NL))

]

+ 2CaλθMS
∂2S

∂ξ2
+ Ṙθ = 0 (A.30)

and O(ε−1) in the surfactant transport equation is:

λ

(

−2MS
∂2S1

∂ξ2
+

θξ

Ca

∂4H

∂ξ4
+

θ

Ca

∂3H

∂ξ3

)

S0 +
1

Pe

∂2S1

∂ξ2
= 0. (A.31)

A Frobenius analysis is performed exactly as before by assuming a solution

of the form:

H(ξ) = aξ2 ln(ξ) + bξ2 + cξ3 ln(ξ) + dξ3 + eξ4 ln(ξ) + fξ4 + . . . (A.32)

S1(ξ) = g1ξ + g2ξ
2 ln(ξ) + g3ξ

2 + g4ξ
3 ln(ξ) + g5ξ

3 + g6ξ
4 ln(ξ) + . . . (A.33)

where a, b, c, d, e, f, g1, g2, g3, g4, g5, and g6 are constants.

These ansatzes are substituted into (A.30) and (A.31) and terms are collected

by order of ξ. By solving the resulting equations at each order, the coefficients of

(A.32)–(A.33) are determined. At O(1) in (A.30) it is found that

−2λθ2a − 2Caλθ [−MSg1 + MT (N + Biθ (1 − NL))] + L̇θ = 0 (A.34)

and at O(ln(ξ)) in (A.31) one sees that

λ

(

−2MSg2 +
3cθ

Ca

)

S0 +
g2

Pe
= 0. (A.35)

From here a and g2 can be determined but, since g2 references c, that term is also

needed to understand the singularity in S. To find c one must go to the next order

of terms, O (ξ ln(ξ)), in (A.30):

−12λθ2c + 8MSCaλθg2 = 0 (A.36)

which can be solved to find that c = 0 and g2 = 0.
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An initial formulation of the droplet height and surfactant concentration at

the left endpoint is given by:

h =
θ

2L
(L + εξ)2 − Lθ

2

+ ε2

{

1

2

2Caλ [MSg1 − MT (N + Biθ (1 − NL))] + L̇

θλ
ξ2 ln(ξ)

+ bξ2 + O(ξ3)

}

(A.37)

and

S = S0 + ε
[

g1ξ + O(ξ2)
]

(A.38)

where

g1 =
∂S

∂x

∣

∣

∣

∣

x=L

. (A.39)

The analysis ends here as these terms are sufficient to stabilize the numerical scheme.
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B. Pseudo-Spectral Derivatives

All derivatives performed in this thesis are performed using pseudo-spectral

methods. These methods have the advantage of very high accuracy for sufficiently

smooth functions.

B.1 Chebyshev Derivatives

Chebyshev polynomials, Tn(x), are a set of orthogonal polynomials defined

by

Tn(x) = cos [n arccos(x)] (B.1)

for n = 0, 1, 2, . . . on x ∈ [−1, 1]. A recursion relationship between the Chebyshev

polynomials also exists and is sometimes easier to work with:

T0(x) = 1

T1(x) = x

Tn(x) = 2 x Tn−1(x) − Tn−2(x).

(B.2)

A very useful property of Chebyshev polynomials is their orthogonality relationship:

∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =















0, n 6= m

π
2
, n = m 6= 0

π, n = m = 0

(B.3)

One can approximate any function f(x) via a Chebyshev expansion. The pseudo-

spectral approximation to f(x) is arrived at by truncating the Chebyshev expansion

after N terms:

fN (x) =

N
∑

k=0

akTk(x) (B.4)

where

ak =
2

ckπ

∫ −1

1

f(x)Tk(x)√
1 − x2

(B.5)
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with

ck =

{

1, k 6= 0

2, k = 0.
(B.6)

Unfortunately, the Chebyshev approximation to a function is not useful to use in a nu-

merical method as it requires that the values of the function f are known everywhere

in the domain. A numerical method only knows the values of f at discrete points.

The Chebyshev pseudo-spectral approximation is the solution to these difficulties.

The coefficients ak are computed by introducing the temporary variable x = cos(θ)

to transform (B.5) into a periodic domain and then applying the trapezoid rule. When

transformed back into x, we arrive at:

ãk =
2

Nγk

N
∑

j=0

f(xj)Tk(xj)

γj
(B.7)

where

γj =

{

2, j = 0, N

1, j 6= 0, N
(B.8)

and xj = cos( jπ
N

) is the jth Chebyshev collation point for j = 0, 1, . . . , N . The

pseudo-spectral approximation of f is given by

f̃N(x) =

N
∑

k=0

ãkTk(x). (B.9)

It can be shown that for infinitely smooth functions, the Chebyshev approximation

is “infinitely accurate.” The feature is generally referred to as spectral accuracy and

is highly advantageous as a Chebyshev approximation can accurately reproduce a

function with far fewer collocation points than can other methods. For additional

details on the derivation of the approximation, please see Gottlieb and Orszag[34].

Of primary interest is using the Chebyshev pseudo-approximation to take

derivatives. The derivative can be expressed as a matrix operator, D whose elements

are given by

Djk =



























γj

γk

(−1)j+k

xj−xk
, j 6= k

−1
2

xk

1−x2
k

, j = k, k = 1, 2, . . . , N − 1

2N2+1
6

, j = k = 0

−2N2+1
6

, j = k = N.

(B.10)



177

To take the derivative of a function f , the function is first expressed as an array f

whose entries are f(xj). Then the derivative is given by

df

dx
= Df . (B.11)

The derivative may also be taken via fast Fourier transforms, but this places limita-

tions on the number of collocation points; these limitations are impossible to fulfill

while avoiding placing a collocation point at the origin in three dimensions. We thus

use the fast Fourier transform method in two-dimensional and three-dimensional ax-

isymmetric problems and the matrix formulation is used for full three-dimensional

computations. Bayliss et al.[3] have shown that a minor change to (B.10) can lead

to much greater accuracy when computing higher derivatives. The modification is to

change the diagonal entries to be

Dii = −
N
∑

j=0, j 6=i

Dij. (B.12)

This modification ensures that the entries in each row of the derivative matrix sum

to zero. Roundoff error when numerically computing the entries can introduce small

errors which are magnified when the matrix is raised to powers in order to compute

higher derivatives.

B.2 Fourier Derivatives

A Fourier pseudo-spectral scheme has many of the advantages of Chebyshev

derivatives but it requires a periodic domain. A finite term Fourier series approxima-

tion of a function can be created by

uN(x) =
N
∑

k=−N

ake
ikx (B.13)

where

ak =
1

2π

∫ 2π

0

u(y)e−ikydy. (B.14)

on the interval x ∈ [0, 2π]. This Fourier series approximation is not practical in

numerical studies since the limitation on accuracy will be the integration method
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used to compute ak. This problem can be avoided by using equally spaced points

on [0, 2π] and using the trapezoid rule to integrate. The resulting pseudo-spectral

approximation to u is given by

P̃Nu =
N
∑

k=−N

ãke
ikx (B.15)

where

ãk =
1

2N

1

ck

2N−1
∑

j=0

u(xj)e
−ikxj (B.16)

and

ck =

{

1, |k| ≤ N

2, |k| = N.
(B.17)

The 2N evenly spaced collocation points are given by xj = πj/N . As with the

Chebyshev approximation, the Fourier approximation is highly accurate and produces

extremely accurate derivatives at the collocation points xj. The rth derivative of u is

approximated as

dr

dxr
P̃Nu

∣

∣

∣

∣

x=xk

=
N
∑

j=−N

(ij)rãje
ijxk . (B.18)

As with the Chebyshev pseudo-spectral approximation, this derivative can be com-

puted either using a matrix formulation or using fast Fourier transforms. The matrix

D has the entries

Djk =

{

1
2
(−1)j+k cot

(xj−xk

2

)

, j 6= k

0, j = k.
(B.19)

Since there are no limitations on the number of radial collocation points, there is no

reason to not use 2n collocation points and thus the fast Fourier transform method

of computing the derivatives as it has a significantly shorter computation time than

using the matrix formulation.


