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ABSTRACT 

Expanding Computational Metabolic Modeling Methods for Novel Metabolic Engineering 
Applications 

 
Jennifer Greene 

 
 Computational models greatly benefit metabolic engineering efforts by helping to elucidate 

experimental observations and predict engineering targets for improved cellular performance.  

Additionally, supplementing experimental efforts with computational modeling can reduce the loss 

of time and resources in the lab by narrowing down testing conditions. In optimal cases, 

computational models can be continuously improved as more experimental feedback is applied, 

lending to the success of iterative experimental and computational testing cycles.  

 In this dissertation, existing metabolic modeling paradigms are expanded for use on 

previously untested systems.  First, constraint-based modeling methods are used to predict essential 

gene knockouts leading to metabolically active, non-growth states in Escherichia coli cells. Thirty of 

our predicted candidates were screened in the lab and predicted metabolite auxotrophies were 

confirmed. The goal of this effort is to identify ways to turn off growth in cells without shutting down 

metabolic activity (i.e. carbon uptake). The initial modeling work described here provides a 

foundation for uncovering the governing objectives of cells during non-growth conditions.  These 

factors are currently unknown as most constraint-based modeling methods have been developed 

exclusively to predict optimal growth conditions where maximizing flux toward biomass production 

is always assumed.  In a non-growing cell, this assumption no longer holds and the best identifier of 

cell health to optimize under these conditions is unclear. However, being able to accurately predict 

the flux distribution of non-growth metabolism is an essential step toward enabling the development 
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on non-growth, high-carbon yield biosynthetic processes where cells will no longer divert fed 

substrates toward growth. 

 Second, we look toward expanding the application of kinetic models of metabolism to predict 

engineering targets for increased product formation.  We specifically focus on improving the 

limitations of the computationally intensive kinetic ensemble modeling (EM) framework. EM is a 

Monte Carlo-based modeling method used to sample many, possible kinetic parameter sets of 

metabolism from a previously defined reference state and then screening them against additional 

phenotypic datasets. In its original form, the framework is prohibitively slow when applied to large 

metabolic networks and often results in non-stable solution sets.  To alleviate these challenges, we 

implemented three acceleration strategies, each providing increased computational efficiency. 

Furthermore, by screening for locally stable parameter sets, we greatly reduce the sample space and 

generate more biologically representative solutions.  Lastly, we applied our accelerated EM 

framework to develop a novel kinetic representation of Clostridium autoethanogenum which 

accurately predicts intracellular metabolite concentrations and engineering targets for increased 

ethanol production.  Specifically, our average ensemble predictions fall within demonstrated 

experimental error ranges for sixty percent of observed metabolite species.  Additionally, we were 

able to demonstrate the experimental observation of a limiting acetyl-CoA pool with increasing 

biomass concentration and confirm the production of ethanol from acetate to increase adenosine 

triphosphate (ATP) generation.  Finally, through sensitivity analysis, we have identified several 

enzyme targets for improving ethanol production.  Encouragingly, we show that two of the enzymes 

we have identified as potential down-regulation targets, phosphate acetyltransferase (PTA) and 

carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH_ACS), have previously shown 

increased ethanol production when knocked out in similar clostridia strains.  
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 Ultimately by demonstrating expanded applications for existing modeling methods, this 

dissertation highlights the expansive opportunities to improve metabolic engineering outcomes 

through creative computational design.  These results will improve efforts to harness and optimize 

non-growth metabolism as well as increase access to kinetic exploration of metabolic pathways.  
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Chapter 1: Introduction 

1.1 Research Motivation 

 Efforts to engineer microorganisms to produce commodity chemicals, pharmaceuticals, and 

biofuels from cheap, readily-available substrates span multiple research fields. In metabolic 

engineering specifically, we focus on mapping and altering metabolic pathways. Stephanopoulos 

describes metabolic engineering as “the directed improvement of cellular properties through the 

modification of specific biochemical reactions or the introduction of new ones.”1 This description 

includes not only experimental efforts to improve microbe strain design but computational efforts, 

too.  Despite their small size, single-cell organisms are complicated systems. While a lot is known 

about some of these organisms (especially model organisms Escherichia coli and Saccharomyces 

cerevisiae), global understanding of metabolic factors governing their behavior under various 

conditions is lacking.  To start to resolve gaps in knowledge and culminate known system properties, 

computational metabolic engineering efforts are being increasingly adopted and improved.2,3 Local 

changes to a cell caused by changes in media, enzyme expression, or growth state often result in 

sometimes non-intuitive global changes across the metabolic network.  As our knowledge of cellular 

genomics, fluxomics, and metabolomics increases, the opportunities to improve our computational 

models and their predictive power increase as well.3  

 This work highlights two areas where computational modeling would greatly benefit 

metabolic engineering goals.  First, inducing and then mapping non-growth metabolism in cells is 

crucial to developing a quiescent, high-carbon yield bioproduction platform. Currently, many 

industrial biotechnology applications employing growing microbes to produce biofuels and other 

commodity chemicals are unable to maximize the conversion of feedstock to target products.4 

Cellular growth competes for nutrients that might otherwise be converted to the desired product 
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(e.g., biofuel). Furthermore for most non-growth states, metabolism is unacceptably slow making 

bioproduction platforms infeasible. If production and growth could be uncoupled, theoretical 

maximum yields would be feasible in stationary phase. In addition to improving industrial 

applications, our development of computational and experimental tools for investigating the induced 

stationary phase of microbes would benefit the fundamental microbiology and human health fields 

too.  Most cells in the human body exist in a quiescent state.  Also, diseases like tuberculosis and cystic 

fibrosis persist when microbes, Mycobacterium tuberculosis and Pseudomonas aeruginosa, 

respectively, take up extended residency in the human body by entering a quiescent persister 

phase.5,6 Growing cells divert significant resources toward growth processes and to achieve efficient 

product yields, understanding how to turn growth down or off while maintaining high, non-dormant 

metabolic activity requires computational insight.  While a few governing factors affecting cell 

growth are known, many remain unknown and the interactions between factors are not easily 

mapped intuitively.  Instead we can use computational modeling techniques to interrogate these 

systems and begin to understand the possibilities and limitation of non-growth metabolism. 

 To fully understand metabolism (growth and non-growth) our second area of opportunity, 

kinetic modeling, must be strengthened.  While constraint-based steady state flux modeling methods 

are well-characterized and have successfully aided in achieving numerous metabolic engineering 

successes they lack some necessary insights for improved pathway design.2,3,7 Steady state models 

can predict flux distributions through pathways based on assumptions of growth or product 

maximization but their ability to capture regulatory behavior or identify rate-limiting steps is limited. 

However kinetic models, which do provide these insights, are very difficult to develop due to a lack 

of experimental data and an inability to observe individual enzymatic behavior in vivo.  However, by 

improving the most promising kinetic modeling tools and adapting their framework to interrogate 

novel systems their utility and accuracy can be greatly improved.   
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 In this work I will outline initial efforts to apply steady state, constraint-based models to non-

growth metabolism.  Then I will introduce work I have completed to advance kinetic modeling 

methods of microorganisms.  Lastly, I will describe how we applied both steady state and kinetic 

modeling methods to develop a novel kinetic representation of the gas-fermenting acetogen, 

Clostridia autoethanogenum.  This work demonstrates the power of computational metabolic 

modeling to provide insight into experimental observations and predict novel engineering targets.  

Additionally, these initial efforts open the door to broader applications and expanded capability to 

use these tools on existing and new metabolic engineering questions. 

1.2 Research Outline 

 This work broadly aims to elucidate factors governing metabolic pathways in 

microorganisms specifically through developing and improving computational frameworks for 

modeling cellular metabolism.   

 In Chapter 2, the traditional constraint-based steady state modeling techniques used in 

Chapter 3 are introduced, and a case is made for developing improved kinetic models.  Additionally, 

the traditional kinetic ensemble modeling framework which serves as the starting point for the work 

performed in Chapters 4 and 5 is described in detail. 

 In Chapter 3, initial work into predicting and inducing quiescence in Escherichia coli is 

described. Existing constraint-based modeling techniques are harnessed in a novel application to 

induce metabolically active, non-growing cells.   This chapter also highlights how effective 

computational modeling can aid in experimental design and how interchange between 

computational and experimental insights benefits the overall investigative process.  The inevitable 

goal of this work is to identify existing or develop new computational methods capable of predicting 

non-growth metabolism. 
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 In Chapter 4, the focus shifts to improving the kinetic ensemble modeling framework 

specifically through reducing computation time and optimizing parameter sampling.  We first reduce 

the structural complexity of the network by removing dependent species, and then we sample locally 

stable parameter sets to reflect realistic biological states of cells. Lastly, we presort the screening 

data to eliminate the most incorrect predictions in the earliest screening stages, saving further 

calculations in later stages.  Our complementary improvements to the current EM framework are 

easily incorporated into concurrent EM efforts and broaden the application opportunities and 

accessibility of kinetic modeling across the field. 

 In Chapter 5, I describe using the methods developed in Chapter 4 to generate a novel kinetic 

representation of a gas-fermenting acetogen, Clostridia autoethanogenum, in collaboration with 

LanzaTech, a biotechnology company in Skokie, IL.  Developing autotrophic, acetogenic bacteria 

strains as gas fermentation platforms is a promising avenue for converting industrial waste gas 

streams into valuable chemical products.  One such strain, Clostridium autoethanogenum, naturally 

converts CO, CO2, and H2 gases into ethanol and acetate.   Currently, lowering the acetate to ethanol 

production ratio is a key strategy for accomplishing large-scale industrial application of C. 

autoethanogenum gas fermentation.  Unfortunately, the limited availability and time-intensive 

implementation of genetic engineering tools for clostridia strains greatly hinders metabolic 

engineering efforts toward this goal. To alleviate the lack of sufficient mutant phenotype data 

interrogating the pathways of interest, computational tools are needed to resolve experimental 

observations and predict engineering targets to help minimize experimental characterization in the 

lab.  While stoichiometric models of C. autoethanogenum metabolism are available, they are unable 

to provide insight into regulatory relationships, rate-limiting steps, or the effects of altering enzyme 

expression. These limitations highlight the benefits of developing a robust, kinetic model of 

metabolism to supplement information unobtainable from traditional constraint-based models. In 
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this work, we offer the first kinetic representation of C. autoethanogenum developed using the 

Ensemble Modeling (EM) framework.  We have adapted the existing method to enable the usage of 

non-genetic perturbation data, specifically the effects of changing biomass concentration, to sample 

and train our kinetic parameter sets. Our final kinetic parameter ensemble accurately predicts 

intracellular metabolite concentrations and engineering strategies for improved ethanol production. 

 In Chapter 6, the body of work presented is summarized and future areas of study are 

discussed. Elucidating metabolic factors governing non-growth metabolism will rely on modifying 

old and developing new computational tools.  Additionally, the scope of kinetic ensemble modeling 

is vast and several avenues for expanding predictions and elucidating unknown metabolic features 

are possible. Lastly combining the two areas of this work by developing kinetic models of non-growth 

metabolism is a crucial step toward understanding and developing non-growth, metabolically active 

biosynthesis platforms. 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Chapter 2: Background on Computational Metabolic Modeling 

2.1 Constraint-Based Steady State Models 

Metabolic models have been developed and refined for many species including the model 

organisms, E. coli and S. cerevisiae.8,9  Metabolic models are developed from knowledge provided by 

gene sequencing and reported gene-protein-reaction relationships.2,3,10 For E. coli in particular, 

various levels of metabolic models exist.  Core models cover just the central carbon metabolism and 

basic energy generation processes while genome scale models aim to map the entire metabolic 

network of a cell.  Specifically, the core model covers 56 genes and 95 reactions while genome scale 

models cover up to 1366 genes and up to 2251 reactions.11–13 While the genomic models do provide 

more fine grain network data, there are still many applications necessitating the use of a simpler core 

model.  Many metabolic processes are governed by central metabolism, and cells shuttle a majority 

of their flux through these main core pathways.    

Developing and refining metabolic models is of great importance to the systems biology, 

metabolic engineering, and synthetic biology fields as they provide key insights and understanding 

to non-intuitive cellular pathway responses.7,8,14 Cellular metabolic networks are robust and small 

perturbations to a cell’s native state often result in global, rather than just local, changes across the 

network.  The ability to take a small data set of experimentally measured extracellular concentrations 

and fluxes and then infer larger network insights underlines the importance of using highly curated 

metabolic models.    

Moreover, well-developed models can help predict untested network perturbations.  

Specifically using metabolic models and constraint-based computational methods we can simulate, 

among others, gene knockouts, heterogeneous gene expression, and changing media conditions.   
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This predictive power can be utilized to engineer new production pathways, to redesign or optimize 

existing pathways, to understand the effects of changing media conditions, and to predict lethal 

cellular perturbations.  Perhaps most importantly, by testing these experimental conditions in silico, 

we can run hundreds to thousands of potential simulations in relatively small computational time 

frames.  These computational test cases help narrow down the best cases for in vivo experimental 

testing in the lab.  In practice, metabolic modeling efforts minimize costly experiments and save 

countless person-hours at the lab bench. 

Metabolic models allow us to model network wide flux distributions in a cell.  Using a steady 

state approximation we can assume the rate of change in concentration of each metabolite is 0 or 

𝑑𝑋

𝑑𝑡
= 0 (2.1) 

where 𝑋 is a vector of all metabolites in the defined metabolic system.13 Building on this the sum of 

the stoichiometry-weighted fluxes of all reactions consuming and producing a given metabolite must 

also equal 0.   

𝑆𝑚,𝑛 ∙ 𝑣 = 0 (2.2) 

where 𝑆𝑚,𝑛 is the 𝑚 x 𝑛 stoichiometric matrix containing the stoichiometric coefficients of each 

metabolite (𝑚) for every reaction (𝑛) in the defined metabolic network. Constraint-based models 

solve for 𝑣, the 𝑛 x 1 vector of reaction fluxes, satisfying the steady state assumption.13 Additionally, 

reaction bounds can be set to limit the maximum forward and reverse rates of reactions and to limit 

nutrient uptake: 

𝑙𝑏 ≤ 𝑣 ≤ 𝑢𝑏 (2.3) 
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where 𝑙𝑏 and 𝑢𝑏  are 𝑛 x 1 vectors containing the lower and upper bounds on reaction fluxes 

respectively.13 These reaction bounds can incorporate thermodynamic constraints by setting the 

directionality for reversible and irreversible reactions.11,15 Reversible reactions have unconstrained 

upper and lower flux bounds, while irreversible reactions have their lower flux bound set to 0.     

Therefore, if we know the uptake and production reaction fluxes of a few key reactions (i.e. 

carbon source uptake), we can model all possible intracellular flux sets that meet the net flux 

constraints described above.  Metabolic models are often underdetermined because there are far 

more reactions with calculated flux values than metabolites leading to multiple feasible flux solution 

sets.  To identify the best solution set to describe the cell’s true metabolic state, several methods have 

been developed.  This work will focus and draw most from the flux balance analysis (FBA), flux 

variability analysis (FVA), and minimization of metabolic adjustments (MOMA) methods.  

FBA methods select a network flux solution set by defining an objective function, 𝑧: 

𝑧 =  𝑐𝑇𝑣 (2.4) 

where 𝑐 is an 𝑛 x 1 vector of weights used to identify which reactions should contribute to the 

objective function. Then by choosing to maximize or minimize the objective function, the FBA method 

will select the solution set with the largest or smallest objective value respectively.13  Most 

applications select for maximized growth rate, and most metabolic models include finely curated 

biomass production reactions.16,17 While maximizing growth is the most used objective function, one 

can also select an objective function to calculate theoretical energy and product yields or to minimize 

substrate consumption.  ATP generation, production formation, or oxygen consumption are other 

frequently used objective function selections.17,18 In some cases multiple objectives can be selected 
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by either successively optimizing hierarchical objective functions or co-optimizing dual selected 

objective functions.18–21   

It is important to note that multiple distinct solution sets may still equally optimize the 

selected objective function as the system is underdetermined.  This redundancy underlies the robust 

metabolisms of cells as they can quickly adapt to survive in varying environmental conditions.22   

When multiple solutions exist, flux variability analysis (FVA) methods can provide additional insight 

into which areas of the metabolism have flexible flux values and which areas are more stringently 

controlled for a given set of solutions.23  FVA is a supplement to FBA and uses the same constraints-

based solution strategies.  Using FVA, a more computationally intensive method, one can identify all 

possible optimal solutions sets and generate the maximum and minimum flux values for each 

reaction in the network.  By running FVA methods, we can ascertain a confidence level for our flux 

predictions and understand how certain perturbations lead to larger uncertainty than others in 

network simulations.23 

When one or more reaction fluxes may not be the best objective function when predicting 

metabolic flux distribution, other methods have been developed using different hypotheses.  For 

example, the Minimization of Metabolic Adjustments method (MOMA) selects a flux solution within 

all specified constraints most similar to a reference state.24 The idea behind MOMA is that cells 

undergoing perturbation likely adjust their metabolic flux profile just enough to overcome the 

perturbation while still staying as close as possible to the initial, wild type (WT) state initially.  

However over longer time-scales, cells would eventually achieve the new optimal solution through 

evolutionary pressure. In some cases, the closest possible solution and the new optimal solution are 

the same, but often they are not.  Using the MOMA method, flux predictions can be made even under 
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conditions when optimizing growth or ATP production cannot be assumed.  As you will see in Chapter 

3, we harness the MOMA method to predict the flux behavior of non-growing cells.   

The Regulatory On/Off Minimization method (ROOM) is another constraint-based steady 

state modeling alternative to FBA.25 ROOM hypothesizes a cell’s metabolism will adjust to make the 

fewest significant changes to its flux distribution after a perturbation.  Therefore, ROOM predicts the 

flux distribution state within the prescribed constraints with the smallest number of significant flux 

changes to mirror possible genetic regulatory control decisions following a gene expression change.  

Another approach called Relative Change (RELATCH) combines insights from the FBA, MOMA, and 

ROOM methods to predict flux distributions both immediately after and over longer periods 

following a reaction knockout.26  The continuous development and refinement of these constraint-

based steady-state modeling methods highlights the importance of accurately predicting a cell’s 

response to an enzyme knockout.  Similarly, the vast field of constraint-based modeling work implies 

the importance of aiding experimental characterization through computational modeling and 

predicting engineering targets for improved chassis strain design.  These modeling techniques 

provide a great avenue for predicting gene knockouts, media changes, and the effects of expressing 

heterologous metabolic pathways, but are less suited for modeling regulatory effects and changes in 

enzyme expression.  As highlighted in the next section, developing kinetic modeling methods building 

on the expansive constraint-based modeling efforts is the next key step in fully understanding 

cellular metabolism. 

2.2 Kinetic Modeling 

Kinetic and regulatory modeling of cellular metabolism is a major challenge in metabolic 

engineering and systems biology.  Specifically, it is non-trivial to access true enzyme kinetic data.  In 

vitro derived kinetic parameters and rate laws for enzymes do not necessarily reflect true in vivo 
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behavior and are often determined under varying experimental conditions.  Additionally, these in 

vitro studies often use purified enzymes which prevents observation of any potential in vivo 

activation or inhibition by other cellular molecules. Therefore, to use these in vitro derived 

parameters together in a single metabolic kinetic model would be unrepresentative.  As discussed 

above, constraint-based stoichiometric modeling has made great strides in improving and 

characterizing strain designs but without kinetic information it is difficult to identify rate limiting 

steps and system bottlenecks.  This last point emphasizes the importance of developing kinetic 

regulatory models of non-growth metabolism. 

Initial kinetic modeling efforts used simplified approximations of kinetic formulas to 

interrogate kinetic limitations and identify design parameters for improved metabolic engineering 

efforts.27 Approximate methods including lin-log kinetics are able can be useful tools but only within 

prediction limits close to the reference state at which they were developed.28–30 An alternative to 

approximation methods, Monte Carlo-based sampling and screening methods have emerged as 

strong tools for developing kinetic representations of metabolic models.27,31–35 The ensemble 

modeling framework is one such method, first demonstrated by the Liao Lab and later built upon by 

the Maranas Lab.33,34,36–44  The kinetic modeling work detailed in this work builds off of this existing 

ensemble modeling framework described below.  However, it is important to note that despite the 

demonstrated benefits of both approximate and Monte Carlo kinetic modeling techniques, kinetic 

metabolic modeling as a whole is still greatly unqualified to truly fit accurate system-wide kinetic 

parameters due to limitations in data, understanding of regulatory interactions, and computational 

efficiency.  However as reviewed by Saa and Nielsen, the work published by various groups across 

the kinetic modeling field overwhelmingly demonstrates that accurate kinetic predictions are 

possible and effective without object determination of individual kinetic parameter values.27  The 

kinetic modeling work described here reflects these findings and accurate, qualitative predictions 



24 
 
are verified by the ability of these models to predict observed cellular behavior not used during the 

development of the models.   

2.3 Ensemble Modeling 

As discussed above, several methods have been developed to generate kinetic models from a 

single set of network-wide fluxomic data.34,45–47  Unfortunately, the feasible solution space of larger 

networks quickly grows too large to sample fully as the number of kinetic parameters and unique 

solution sets increase. To address these problems, the ensemble modeling (EM) method developed 

by the Liao lab uses thermodynamic, stoichiometric, and steady state assumptions.  These 

assumptions coupled with phenotypic perturbation data greatly reduce the feasible solution space 

and allow for more accurate kinetic parameter determination.36,40,41,43,48   

Using the methods described by Tran et al., the only inputs required for performing EM 

simulations are the network stoichiometry, the steady state network fluxes, and the standard Gibbs’ 

free energy values for each network reaction.33  Metabolic models provide the required network 

stoichiometry.  Well curated models for most widely-used microorganism are available and 

techniques for generating, novel accurate models are readily available and user friendly.49,50 C-13 flux 

data sets available in the literature and constraint-based stoichiometric modeling provide the 

reference steady state fluxes.  Lastly, values for the Gibb’s free energy of each reaction, calculated 

using group contribution methods, are available in the literature as well as through online 

webtools.15,50–53  

The traditional EM framework breaks all network reactions down into elementary reaction 

steps.  An elementary reaction formalism is the most fundamental way to describe enzymatic kinetics 

and serves as the basis for other lumped kinetic approximations.34 As detailed below, EM formulates 

each elementary reaction rate using mass action kinetics so they are proportional to the 
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concentration of all involved substrates and enzyme complexes.  This aspect of elementary reaction 

formalism allows for easy incorporation of regulation interactions.33  If a particular enzyme’s kinetic 

rate law form is well-characterized it can be used instead of the elementary reaction formalism.  

However, the EM method does not require individual curation of each enzyme’s kinetic rate law form.  

This alleviates any potential bias introduced through inconsistent experimental conditions.   

 

As described by Tran et al., each reaction in the specified metabolic network is broken down 

into elementary reaction steps as follows33: 

𝑋𝑖 

𝐸𝑖
↔  𝑋𝑖+1 (2.5)                                                                        

      𝑣𝑖,1         𝑣𝑖,3              𝑣𝑖,5 

𝑋𝑖 + 𝐸𝑖 ⇄  𝑋𝑖𝐸𝑖 ⇄  𝑋𝑖+1𝐸𝑖 ⇄  𝑋𝑖+1 + 𝐸𝑖 (2.6) 

     𝑣𝑖,2          𝑣𝑖,4              𝑣𝑖,6 

   𝑗 = 1       𝑗 = 2          𝑗 = 3 

so that each elementary reaction rate 𝑣𝑖,𝑘 is described using mass action kinetics like 𝑣𝑖,1 below33: 

𝑣𝑖,1 =  𝑘𝑖,1[𝑋𝑖][𝐸𝑖] (2.7) 

where 𝑗 is the elementary step of the reaction catalyzed by enzyme 𝑖, [𝑋𝑖] is the concentration of 

metabolite 𝑋𝑖 , [𝐸𝑖] is the concentration of the free enzyme 𝐸𝑖 , and 𝑘𝑖,𝑘 is the rate constant of the 

corresponding elementary reaction.  By weighting metabolite concentrations and free enzyme and 

enzyme complex concentrations in the elementary reaction rate equations by their reference steady 
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state concentrations,[𝑋𝑖
𝑟𝑒𝑓,𝑆𝑆

] and total enzyme concentrations, [𝐸𝑖,𝑡𝑜𝑡𝑎𝑙
𝑟𝑒𝑓

], respectively, Eq. (2.7) 

becomes33: 

𝑣𝑖,1 =  𝑘𝑖,1[𝑋𝑖
𝑟𝑒𝑓,𝑆𝑆

][𝐸𝑖,𝑡𝑜𝑡
𝑟𝑒𝑓

] ×
[𝑋𝑖]

[𝑋𝑖
𝑟𝑒𝑓,𝑆𝑆

]
×

[𝐸𝑖]

[𝐸𝑖,𝑡𝑜𝑡
𝑟𝑒𝑓

]
=  𝐾̃𝑖,1

𝑟𝑒𝑓
𝑋̃𝑖𝑒̃𝑖,1 (2.8)                                    

Taking the log of equation (2.8), we get a linear representation33: 

ln 𝑣 𝑖,1
=  ln 𝐾̃𝑖,1

𝑟𝑒𝑓
 +  ln 𝑋̃𝑖 + ln 𝑒̃𝑖,1 (2.9) 

where 𝐾̃𝑖,𝑘
𝑟𝑒𝑓

is a lumped kinetic parameter and 𝑒̃𝑖,𝑗 is the fraction of enzyme 𝑖 in each enzyme complex 

involved in each elementary step 𝑗. This log-linear form is more easily handled by computational 

solvers and allows for more-efficient scale up of EM methods on larger metabolic networks.65 Now, 

using the reference steady state flux values provided from C-13 studies or constraint-based flux 

calculation simulations, we can sample the enzyme fractions and kinetic parameters for the entire 

network.  At the reference steady state,  𝑋̃𝑖  is equal to  
[𝑋𝑖

𝑟𝑒𝑓,𝑆𝑆
]

[𝑋
𝑖
𝑟𝑒𝑓,𝑆𝑆

]
 i.e. 1.  Therefore, ln 𝑋̃𝑖 , equals zero. 

So for Eq. (2.9) at the reference steady state we have33: 

ln 𝑣 𝑖,1

𝑟𝑒𝑓
=  ln 𝐾̃𝑖,1

𝑟𝑒𝑓
 +  ln 𝑒̃𝑖,1

𝑟𝑒𝑓 (2.10) 

For every enzyme 𝑖, the total fraction of free enzyme 𝑖 and all possible enzyme complexes 

between enzyme 𝑖 and different metabolites participating in catalytic or regulatory elementary 

reaction steps must equal one33: 

∑ 𝑒̃𝑖,𝑗
𝑟𝑒𝑓

𝑛𝑖

𝑗= 1

= 1 (2.11) 
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where 𝑛𝑖 represents the number of elementary steps in which enzyme 𝑖 participates either in 

standard enzymatic catalysis or through regulation with inhibiting or activating metabolites. 

Additionally the reference elementary reaction rates are constrained by the provided net reference 

steady state fluxes, 𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

, through each reaction33: 

𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

=  𝑣 𝑖,2𝑗−1

𝑟𝑒𝑓
− 𝑣 𝑖,2𝑗

𝑟𝑒𝑓 (2.12) 

As many possible combination of the elementary reaction rates, 𝑣 𝑖,2𝑗−1
𝑟𝑒𝑓

and 𝑣 𝑖,2𝑗
𝑟𝑒𝑓

 could 

provide the required net flux rate, 𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

, Tran et al. sample reaction reversibilities constrained by 

thermodynamic principles to calculate these values instead to narrow the solution space.  The 

reaction reversibility is defined as33: 

𝑅𝑖,𝑗 =  
min (𝑣 𝑖,2𝑗−1

𝑟𝑒𝑓
, 𝑣 𝑖,2𝑗

𝑟𝑒𝑓
)

max (𝑣 𝑖,2𝑗−1

𝑟𝑒𝑓
, 𝑣 𝑖,2𝑗

𝑟𝑒𝑓
)

(2.13) 

This definition constrains reversibility values between 0 and 1.  A reversibility of 0 indicates 

an irreversible reaction step while a reversibility of 1 indicates a reaction step in equilibrium.  Using 

the Gibbs free energy values for each reaction, ∆𝐺𝑖, which can be obtained from group contribution 

method calculations performed by Henry et al., the sum of all elementary step reversibilities for 

reaction 𝑖 equals15,33:  

∑ ln (𝑅𝑖,𝑗)

𝑛𝑖

𝑗=1

= 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑛𝑒𝑡) ×
∆𝐺𝑖

𝑅𝑇
(2.14) 
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where 𝑅 is the gas constant and 𝑇 is the temperature at which the reaction occurs.  However as the 

Gibbs free energy values are dependent on the possible metabolite concentration ranges, Eq. (2.14) 

is reworked to reflect these possible ranges33: 

(
∆𝐺𝑖

𝑅𝑇
)

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
≤  𝑠𝑖𝑔𝑛(𝑉𝑖,𝑛𝑒𝑡

𝑟𝑒𝑓
) × ∑ ln 𝑅𝑖,𝑗

𝑟𝑒𝑓

𝑛𝑖

𝑗=1

≤  (
∆𝐺𝑖

𝑅𝑇
)

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

(2.15) 

The derivations of Eqs. (2.14) and (2.15) are more explicitly detailed in the appendix of Tran 

et al.33  

In summary, to generate a single solution set of kinetic parameters for the entire network, 

the following workflow is completed33: 

1. Sample reaction reversibilities for all elementary steps 𝑗 of each enzyme catalyzed reaction 𝑖.  

If the sampled reversibilities satisfy Eq. (2.15) for each reaction 𝑖, proceed to step 2. If Eq. 

(2.15) is not satisfied, then reversibilities are resampled. 

2. Elementary reaction rates 𝑣 𝑖,2𝑗−1
𝑟𝑒𝑓

and 𝑣 𝑖,2𝑗
𝑟𝑒𝑓

 are calculated from Eqs. (2.12) and (2.13) using 

the provided steady state net reaction fluxes, 𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

, and sampled reversibilities, 𝑅𝑖,𝑗
𝑟𝑒𝑓

, from 

step 1. 

𝑣 𝑖,2𝑗−1

𝑟𝑒𝑓
=  

𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

1 − 𝑅
𝑖,𝑗

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

)
 

(2.16) 

 

𝑣 𝑖,2𝑗

𝑟𝑒𝑓
=  

𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

𝑅
𝑖,𝑗

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

)

1 − 𝑅
𝑖,𝑗

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑛𝑒𝑡
𝑟𝑒𝑓

)
 

(2.17) 

 

3. If enzyme fractions, 𝑒̃𝑖,𝑗
𝑟𝑒𝑓

, are unknown, sample 𝑛𝑖 − 1 enzyme fractions for each enzyme 𝑖 to 

satisfy Eq. (2.11).  

4. Calculate kinetic parameters, 𝐾̃𝑖,𝑗
𝑟𝑒𝑓

, from Eq. (2.10) using elementary reaction rates 

calculated in step 2 and enzyme fractions sampled in step 3.   
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So for each unique set of sampled reaction reversibilities and enzyme fractions, a unique set of 

possible kinetic parameters to define the system can be generated.  Each solution set of kinetic 

parameters is considered to be one potential model describing the kinetics of the entire metabolic 

system.64 

𝑀𝑜𝑑𝑒𝑙𝑛 = 𝑓(𝑹𝑖,𝑗
𝑟𝑒𝑓

, 𝒆̃𝑖,𝑗
𝑟𝑒𝑓

) (2.18) 

Using the models, we can calculate the change in metabolite concentrations over time by 

solving the following ODE for each model64: 

𝑑𝑋̃𝑖

𝑑𝑡
=  

1

𝑋̃𝑖
𝑟𝑒𝑓,𝑆𝑆

(∑ 𝑣𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − ∑ 𝑣𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) (2.19) 

Completing the above workflow iteratively, an initial ensemble of models can be generated, 

all of which will contain different feasible kinetic parameter sets to describe the reference steady 

state flux behavior.  To narrow down the true kinetic parameter solution, each model can be 

perturbed. These perturbations can include an enzyme knockout or overexpression.  Data sets 

containing resulting fluxes from E. coli and other organism genetic perturbations are available in the 

literature for a variety of conditions. Therefore, after perturbing the models, new steady state fluxes 

can be calculated using the kinetic parameters from the initial ensemble.  Then models whose 

resulting fluxes best match the behavior of the experimental data being considered are kept for 

additional screening while models with incorrect behavior are removed from the set.  In this manner 

iterative rounds are run to continuously narrow down the models that correctly describe all tested 

perturbation conditions.   Once a robust sampling of models remains, they can be used to predict the 

behavior of future genetic perturbations to aid in strain design.  As described by Tran et al., to perturb 
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individual models by changing the enzyme concentration (i.e. through a knockout or 

overexpression), the elementary reaction rates are recalculated as33: 

𝑣𝑖,1 =  𝑘𝑖,1[𝑋𝑖
𝑟𝑒𝑓,𝑆𝑆

][𝐸𝑖,𝑡𝑜𝑡
𝑟𝑒𝑓

] ×
[𝐸𝑖,𝑡𝑜𝑡𝑎𝑙]

[𝐸𝑖,𝑡𝑜𝑡
𝑟𝑒𝑓

]
×

[𝑋𝑖]

[𝑋𝑖
𝑟𝑒𝑓,𝑆𝑆

]
×

[𝐸𝑖]

[𝐸𝑖,𝑡𝑜𝑡
𝑟𝑒𝑓

]

=  𝐾̃𝑖,1
𝑟𝑒𝑓

𝐸𝑖,𝑟𝑋̃𝑖𝑒̃𝑖,1 (2.20)

 

where [𝐸𝑖,𝑡𝑜𝑡𝑎𝑙] is the new total concentration of enzyme 𝑖 after the perturbation and 𝐸𝑖,𝑟 is the fold 

change of enzyme 𝑖. The traditional ensemble modeling framework is best depicted pictorially in Fig. 

2.1, from Contador et al.41 

 
Other groups have improved on the EM method and have utilized it successfully to guide 

metabolic engineering efforts in traditional growth coupled microbe systems.41,43,48 One such 

improvement by the Maranas lab involves a less limiting phenotype data screening process.39,54  Their 

method involves using a genetic algorithm method to screen through grouped elementary reaction 

kinetic parameter sets.  It mixes and matches elementary parameter sets clustered by enzyme from 

different models generated in the initial ensemble seeding.  It then looks to see if different 

combinations of these theoretically accurate parameters better fit the provided data than the original  
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Figure 2.1: Metabolic Ensemble Modeling Framework.  a) Given a metabolic network, a set of dynamic 
models are sampled that reach the same steady-state flux at a given condition.  b) After changing an enzyme 
concentration, the different dynamic models predict different flux solutions.  c) The flux at new enzyme 
concentration is measured experimentally.  d) Dynamic models unable to predict the new perturbed steady 
state flux are discarded, and the cycle is iterated. Figure from Contador et al.41 

 

individual model sets.  This method keeps all originally generated parameters in contention for the 

solution rather than completely throwing out models that do not accurately predict the data gathered 

for a number of cellular perturbations.  Additionally, ensemble modeling has been used to interrogate 

the robustness and stability of metabolic pathways.38,42  These efforts highlight the expansive 

applications for kinetic ensemble modeling and the potential new areas for using this tool to better 

understand cellular metabolism. 

Despite its many benefits, kinetic ensemble modeling still requires improvements and further 

characterization to understand its limits.  In its traditional form, ensemble modeling attempts to 

perform the difficult task of sampling and fitting many (anywhere from 102 to 103) kinetic parameters 

using a small amount of experimental data (typically less than ten).  To best perform this task, a large 
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number of parameter sets need to be sampled and screened.  However, integrating the parameter 

sets to solve for the new steady state metabolite concentrations is time intensive so large 

implementations of the method are computationally limited.  The work detailed in Chapter 4 features 

the improvements we have made to the traditional ensemble modeling framework that now allow us 

to complete ensemble modeling faster and generate more robust, biologically relevant solutions.  
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Chapter 3: Constraint-Based Modeling of Non-Growth Metabolism 

3.1 Introduction 

3.1.1 DECOUPLING GROWTH AND PRODUCTION  

Most commercially developed applications utilizing microbial cells to generate products at 

an industrial scale employ growing cells.  This is not ideal as the primary objective of most cell types 

is to grow and reproduce when in a resource rich environment.  Therefore, microbial production is 

inherently limited by substrate loss to the cell’s native competitive growth pathways.  Some groups 

have harnessed this survival-based reproduction drive of cells by computationally designing growth-

coupled production pathways that require the production of their target product to achieve 

growth.55,56  For example, to increase production of lactic acid, knocking out phosphofructokinase, a 

non-intuitive choice, can help improve production.  This particular knockout forces more of the cell’s 

carbon flux down the pentose phosphate and Entner-Doudoroff pathways leading to increased 

NADPH and pyruvate production.  The lactate production pathway consumes pyruvate and NADPH.  

Then to restore redox balance and maximize growth potential, the cell will also reroute more carbon 

flux toward producing lactic acid.20  While this clever workaround does increase overall titers by 

coupling the cell’s growth and production objectives, it is limited in the type of product pathways one 

can target.  Most importantly, this method still suffers from substrate loss to growth.    

The above scenario exemplifies how microbial production in growing cells does not allow 

achievement of maximum theoretical product yields.  Regardless of how many other side reactions 

and carbon sinks are eliminated, a sizeable portion of fed carbon sources still must go toward growth-

related processes and essential metabolite production.  In some systems, more than fifty percent of 

fed carbon substrate goes toward biomass production and maintenance requirements.57 As biomass 

is often not the desired product, its formation should really be re-envisioned as an unwanted side 



34 
 
reaction to the desired chemical synthesis.  In this view, eliminating biomass production is an obvious 

area to target for optimizing cellular production processes moving forward.  

Some groups, recognizing this potential, are working to eliminate substrate loss to growth 

processes by developing cell free systems.  In these systems, purified enzyme mixtures or crude cell 

lysates are used to perform metabolic chemistry without using living, growing cells.58–60  In this way, 

cell free systems do not lose carbon and energy substrates to biomass production.  However, cell free 

systems are still subject to limiting regulatory effects.   

The alternative to growing cells or using a cell free system would be to harness non-growing 

cells.    To do this we would need to 1) halt the cell’s native desire and ability to grow and 2) remove 

or inhibit the cell’s regulatory mechanisms preventing metabolic activity in the absence of growth.  

This second point is the idea of inducing cellular quiescence, a non-growth state in which cells 

maintain metabolic activity.  Instead of quiescence, E. coli tend to enter dormant or non-growth states 

characterized by low metabolic activity and increased resistance to environmental stresses.61  

Microbes enter a stationary phase under conditions of environmental stress or nutrient 

starvation. Historically, stationary phase metabolism studies are performed under carbon-starvation 

conditions while carbon-rich stationary phase behavior is not well characterized. Without carbon, 

many microbes are unable to produce sufficient energy to be metabolically active.  However, non-

carbon nutrient starvation and genetic perturbations can also induce stationary phase even in 

carbon-rich environments.  In this chapter, we have identified non-carbon starvation strategies using 

computational metabolic modeling methods.  
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3.1.2 MODELING NON-GROWTH METABOLISM  

We specifically use constraint-based stoichiometric steady state models to predict 

engineering strategies for turning off cellular growth without abolishing metabolic activity.  We 

hypothesize that identifying strategies leading to a net flux distribution throughout metabolism most 

similar to the native wild type (WT) flux distribution are the best targets.  Unfortunately, the 

traditional objective functions utilized in the flux balance analysis (FBA) and flux variability analysis 

(FVA) methods are less suited for modeling non-growth metabolism.  Specifically maximizing 

biomass production cannot be used because the cells are not growing.  As far as using other objective 

functions, it is not completely understood what a cell’s specific metabolic objective is while under 

growth arrest.  Survival is the believed objective, but the primary mechanism for that metabolically 

is not known; it may not be a single objective.  We do know resting cells must generate maintenance 

energy requirements, but additional requirements for survival are not well-characterized.   

Instead we can look to the Minimization of Metabolic Adjustment (MOMA) method for 

answers.  MOMA is a quadratic programming method designed to identify the flux solution set with 

the smallest overall difference from a reference flux solution set.24  This idea is based on the solution 

that cells, in small time frames following a genetic or environmental perturbation in which full 

cellular evolution would not have time to transpire, will reroute fluxes in the smallest way possible 

to survive.  Therefore, the optimal solution following a perturbation is the solution closest to the 

reference solution.  If a reaction is knocked out, then MOMA will provide a solution set closest to the 

reference solution set that still meets all previously defined mass balance constraints (Fig. 3.1).  The 

creators of MOMA argue that while FBA may provide the best solution for an evolved strain after a 

perturbation, MOMA provides a more accurate representation of cellular network flux immediately 

after an environmental or genetic perturbation.24,62,63   
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Figure 3.1: Example of difference between MOMA and FBA predicted solutions.  A) WT network flux 
solution to maximize production of metabolite D.  B) FBA solution to maximize production of D if reaction R3 
is knocked out.  C) MOMA solution if reaction R3 is knocked out.  D) Example of changes in solution space after 
knockout.  FBA solution select optimal path for production of D.  MOMA instead predicts solution closest to 
original network flux solution.  Figure adapted from Segrè et al: OMICS: A Journal of Integrative Biology 7(3): 
301-316 (2003). 
 

Ultimately, MOMA provides two key benefits toward our objective of modeling non-growth 

cellular metabolism.  First, it can generate non-growth solution sets.  Second, it better predicts 

immediate network flux changes in cells.  This is more appropriate in non-growing cells with limited 

capacity to undertake the protein network overhaul required to achieve the new optimal flux 

solution.  To best design non-growing, metabolically active cells we need to harness the power of 

metabolic modeling to fully understand the current limitations and bottlenecks preventing a full 

metabolic program.  While many metabolic methods have been developed, they have not yet been 

applied to non-growth metabolism.  Using metabolic modeling, we can begin to understand 

differences in experimental observations for cells entering a non-growth state under different 

environmental and genetic conditions.  Different perturbation types lead to different levels of 

metabolic activity.  Through modeling, we can begin to understand what metabolic features lead to 
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“healthier” non-growing cells and what limitations are hindering catabolic activity through 

production pathways the most. 

In this work we identify a set of thirty essential reaction knockouts causing auxotrophy in 

cells for one or more non-carbon metabolites.  We also predicted the metabolites rescuing the 

auxotrophy to aid in experimental design.  These candidates are now being characterized 

experimentally and the results of those tests will help us ascertain the ability of MOMA to predict 

non-growth metabolic pathway flux distributions.   

3.2 Materials and Methods 

3.2.1 METABOLIC MODEL 

 In this work we used the genome-scale metabolic model of Escherichia coli, iJO1366.12 This 

model includes 2251 metabolic reactions and 1136 metabolites.  It includes all core reactions of E. 

coli metabolism and extensively covers secondary metabolism as well.   

3.2.2 MINIMIZATION OF METABOLIC ADJUSTMENTS (MOMA) SIMULATIONS 

To identify all single enzyme knockouts leading to non-growth, a MOMA calculation was 

performed to test elimination of each reaction in the network.  All MOMA simulations were 

performed using the COBRA Toolbox.64 First a reference wild type (WT) flux distribution was 

determined by fitting experimental fluxomic data published by Haverkorn et al. to the iJO1366 

model.65 Thirty-three model fluxes were constrained to match the published experimental values 

within reported confidence intervals. The flux constraints imposed are listed in Appendix A. Then, 

flux balance analysis was performed to determine the flux values for the remaining reactions in the 

network.  The solution maximizing flux through the biomass reaction was selected as the reference.  

The MOMA framework uses the reference flux distribution when calculating the perturbed state flux 

distributions (Fig. 3.1).  The solver identifies the solution closest to the reference state that does not 
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violate the added constraints (i.e. no flux through the knocked-out reaction).  To simulate knocking 

out reactions, the constraints were set to match the reference state.  However, the minimum glucose 

uptake flux was set to -1000 (i.e. allowed to be any value) and the flux through the knocked out was 

set to zero.  Additionally, the lower bound of the non-growth associated ATP maintenance reaction 

was set to 0 rather than 3.15 mmol ATP gDCW-1 h-1, the requirement determined by Orth et al. for 

maximum growth on glucose.12  This change was made as we assume ATP requirements for maximal 

growth will not necessarily hold for a non-growth metabolic state. 

The MOMA solutions for each reaction knockout were compared to the reference flux.  

Knocked out reactions resulting in solutions predicting zero flux through the biomass reaction were 

marked as essential.   

3.2.3 PREDICTING AUXOTROPHIES 

MOMA simulations of each essential knockout candidate on glucose minimal media were 

used to identify if one or more metabolites could rescue the growth of each essential knockout 

candidate.  These simulations allowed us to design a rich media containing all the supplements 

required for each knockout to achieve growth. Similar to determining essential reactions above, we 

used the same reference WT flux state.  However, when simulating the MOMA results for a reaction 

knockout we also allowed uptake of a single media supplement to test if it would rescue growth.  Each 

essential knockout was simulated across each of the 324 exchange metabolites.  When no one 

supplemental metabolite could rescue growth, the knockout pathway was examined individually, 

and new simulations were run where combinatorial supplement metabolites were allowed to enter 

the cell. Essential knockouts able to predict growth when one or more additional metabolites was 

available for uptake by the cell were labeled as auxotrophic essential knockouts. 
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3.2.4 COMPUTATIONAL RESOURCES 

All calculations were written and executed in MATLAB (MATLAB and SimBiology Toolbox 

2015/2016a, The MathWorks, Inc., Natick Massachusetts, United States).  Scripts and results for each 

reaction tested and the resulting auxotrophy predictions are available in the Tyo lab Box repository.  

3.3 Results 

3.3.1 IDENTIFYING ESSENTIAL REACTIONS  

After completing single knockout MOMA simulations, we identified 279 internal and 21 

external reactions essential for biomass production (Appendix E).  The essential knockouts span 28 

of the 37 subsystems identified in the iJO1366 model (Fig. 3.2).  However most of the knockouts fall 

into cofactor and amino acid synthesis pathways indicating the inability to produce essential biomass 

precursors prevents growth most often. 

 

Figure 3.2: Essential reaction span most metabolic network subsystems. The ‘Other’ category includes the 
following subsystems: Cysteine Metabolism; Transport, Inner Membrane; Citric Acid Cycle; 
Glycolysis/Gluconeogenesis; Alanine and Aspartate Metabolism; Alternate Carbon Metabolism; Folate 
Metabolism; Membrane Lipid Metabolism; Murein Biosynthesis; Glutamate Metabolism; Oxidative 
Phosphorylation 
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3.3.2 DESIGNING RICH MEDIA TO RESCUE ESSENTIAL AUXOTROPHIES 

Of the approximately 300 target essential reactions, we identified that 153 of these reactions 

could achieve growth through supplementation of a single metabolite.  Furthermore, 95 of these 

reactions were able to grow by supplementation of several different individual metabolites. See 

Appendix D for a list of auxotrophic reactions and metabolites predicted to recover growth. 

Thirty of these reactions inducing cellular autotrophy were chosen as a representative subset 

of the E. coli core metabolism (Fig. 3.3) for experimental characterization (see Appendices B-C for 

details).  These thirty reactions span E. coli metabolism and include amino acid, nucleotide, and 

vitamin auxotrophies. 

 

Figure 3.3: Essential reaction knockout candidates selected for experimental characterization. Blue 
circles indicate metabolites. Green rectangles indicate knockout candidates. Solid lines indicate direct 
enzymatic reactions.  Dashed lines indicate a pathway between reaction includes two or more individual 
enzymatic reactions. Abbreviations for metabolite and enzyme names are taken directly from original iJO1366 
publication and Ecocyc database.12,51  
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3.4 Discussion 

In our design scheme we need to be able to rapidly shut off the essential reaction we aim to 

study after the cells have grown up to a desired level.  As the reactions are essential, we cannot 

generate a starting culture if they are initially inactive.  Collaborators in the lab are working on 

different experimental methods for rapid induction of protein degradation and nutrient-dependent 

toggles for gene expression.  However, for this work, we wanted to identify a quicker, experimentally 

easier method for analyzing and modeling the metabolic activity of non-growth metabolism.  To do 

this we chose thirty unique reaction knockouts inducing cellular auxotrophy from the 205 

auxotrophic candidates.  Auxotrophic cells are unable to catabolize one or more essential metabolite 

required for biomass production. Therefore, if the auxotrophic cell is not grown in media 

supplemented with its missing essential metabolite(s), it is unable to grow.  Usefully, we can grow 

these auxotrophic cells up in rich media containing the essential metabolite they cannot make.  Then 

we can switch them to a minimal media that does not contain their needed essential metabolite to 

halt their growth.  The minimal media does contain glucose allowing us to monitor the metabolic 

activity, if any, these non-growing cells display.  By rapidly inducing a non-growth state, we can better 

monitor and capture the catabolic activity of non-growing cells in a carbon rich environment.   

Experimental collaborators in the lab, led by fellow PhD student Will Bothfeld, are currently 

collecting data including the glucose uptake and product secretion rates for these thirty auxotrophic 

cells.  The thirty reactions map to thirty different enzyme knockouts available in the Keio collection.66  

The data from these lab studies will be used to calculate the strength of MOMA as a modeling method 

for non-growth metabolism using the methods described above.  Initially studies were done using 

MOPS EZ rich media containing supplemental metabolites covering the auxotrophies of a majority of 

the candidate knockouts.67,68  The results of this preliminary study are provided in Appendix B.  These 
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initial observations confirm we have accurately predicted the auxotrophic metabolites needed for 

each reaction knockout.  Additional experiments were then performed using minimal media only 

containing the predicted additional metabolite and then switching to minimal media without the 

supplement to further confirm our auxotrophy predictions.  These experiments are referred to as 

shock switch experiments and the initial results have been presented in the master’s thesis of Michael 

Brotz (2015) and summarized in Appendix C. 

Ideally once further experimental characterization is completed, the glucose uptake and 

product fluxes measured can be compared to the MOMA flux distribution predictions for each 

candidate.  Should the MOMA predictions not accurately predict the observed results, additional 

constraint-based methods and different non-growth hypotheses could be tested.  However, this work 

does display the utility of using MOMA to predict essential single enzyme knockouts and to design 

experimental conditions needed to test auxotrophic behavior.  
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Chapter 4: Acceleration strategies to enhance metabolic ensemble 
modeling performance 
 

4.1 Introduction  

Enabling kinetic and regulatory modeling of cellular metabolism is a major challenge in 

metabolic engineering and systems biology.35,69–73 Constraint-based stoichiometric modeling greatly 

aids in characterizing and improving strain designs, but without kinetic information, it is difficult to 

identify rate limiting steps and interrogate regulatory behavior. Some studies using kinetic models 

for metabolic applications do exist, but they are limited. For example, individual kinetic models were 

developed for the red blood cells of 24 different patients to interrogate differences in metabolite 

levels and enzyme activities which are difficult to capture with constraint-based models alone.74 

Another example is in strain design efforts where the cellular objective of maximizing growth cannot 

be assumed (i.e. studying stationary, non-growth phase metabolism), the constraint-based 

stoichiometric methods are harder to utilize effectively. The ability to incorporate extensive 

regulatory behavior in kinetic models is also useful when studying systems where regulation heavily 

governs a cell’s metabolism and even prevents cells from operating at maximum metabolic 

capacity.47,75,76 Constraints-based models can not explicitly track metabolite concentrations, making 

regulation based on metabolites difficult. Ultimately, generating quality kinetic models of cellular 

metabolism will allow us to better resolve and interrogate cellular metabolism for strain design and 

biological discovery applications.  

To build a kinetic model of metabolism the rate laws and parameters are needed for each 

enzyme in the network. Some kinetic modeling methods combine rate laws and kinetic parameters 

from public databases or literature and combine them into a single metabolic model.77,78 

Unfortunately, the in vitro derived kinetic parameters for enzymes most often reported in literature 
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do not necessarily reflect true in vivo behavior and are often determined under varying experimental 

conditions without accounting for local concentration effects.78 Moreover, for some enzymes these in 

vitro parameters and rate laws have not been determined, and exhaustive regulatory relationship 

studies have not been completed. Consequently, a single kinetic model combining these in vitro 

derived parameters or several smaller models built on these parameters are often unable to resolve 

experimentally observed in vivo data or describe metabolic states outside the immediate realm of the 

reference state.29,79,80  

The ensemble modeling (EM) framework was previously developed to address these hurdles 

by sampling kinetic parameters for the entire metabolic network simultaneously and screening them 

against an experimental dataset collected under consistent conditions.33,34,36  During the screening 

step, predictions from the sampled kinetic parameters are compared to experimental results, and 

kinetic parameters that predict the results poorly are rejected. While estimates of individual kinetic 

parameters may not be strictly accurate, EM seeks to develop a network model that explains system 

behavior.  Furthermore, the EM method constrains the large kinetic parameter sample space using 

readily available thermodynamic, stoichiometric, and steady state flux data.  The EM method has 

been successfully employed to model and resolve the kinetics of various metabolic pathway designs 

for bioproducts and to interrogate cancer metabolism.40,41,43,48 Additionally, improvements made to 

the screening methods used in EM led to the development of a kinetic core model of E. coli metabolism 

and more recently a genome-scale model, k-ecoli457.39,54 Lastly, the way reactions are defined in 

ensemble modeling allows for sampling different network structures to interrogate different 

potential governing or previously unknown regulation reactions as well as predict unresolvable flux 

distributions previously unconstrainted in traditional constraint-based methods.43,81 
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However, despite its numerous advantages, EM rapidly becomes computationally limiting 

with increasing network size and complexity. As our field increases the availability and uses of larger, 

genome-scale metabolic models for various organisms, it is imperative to improve our ability to 

generate larger kinetic models of these systems as well.8,35,71,82,83  

To enhance the computational efficiency of EM, it is critical to focus efforts on the step in 

which predictions created by the generated kinetic parameter sets are compared to the available 

experimental perturbation data, as it is the major rate limiting step of the EM process.  To compare 

to a single data set, each parameter set in the ensemble is perturbed by solving a system of ordinary 

differential equations (ODE) with different concentrations in one or more proteins (i.e., knockout or 

overexpression). Solving a single ODE calculation is time intensive and screening parameter 

ensembles across the available perturbation data sets requires many iterations of these calculations. 

In total, these ODE-based screening steps account for over 99% of the required time to complete the 

traditional EM method, and we observe that screening times scale non-linearly with increasing 

metabolic network size.   

Another prevalent challenge with the EM method is trying to resolve a large number of kinetic 

parameters using a limited amount of experimental observations.  The predictive power of the 

resulting kinetic model can be limited by the quality of the data used to train it.  Generating more 

experimental data at different states is costly, time intensive, and, depending on the type of 

experiment, sometimes physically infeasible.  Kinetic model systems are traditionally undetermined 

as there are far more parameters to fit than training data sets available. Therefore, the problem is ill-

posed and several, unique kinetic parameter sets can be found with equal ability to fit any one flux 

distribution.  At the same time, unavoidable experimental error or noise means it is likely there will 

be no one set that can describe all the flux distributions at the different cellular states.   This challenge 
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intensifies as the need to develop larger models with increasing numbers of kinetic parameters to 

identify grows while the availability of experimental observations to screen against does not increase 

at the same rate.  To alleviate this widening gap, additional constraints to narrow the kinetic 

parameter sample space and select more accurate kinetic parameters are warranted.  

In this work, we addressed the computational limitations and parameter sampling difficulties 

inherent in the EM method.   We have greatly reduced overall EM run times by utilizing additional 

parameter screening techniques and introducing previously developed methods to reduce structural 

model complexity during ODE integration (Fig. 4.1).  Specifically, we have implemented a 

conservation analysis step to eliminate linear dependency present in the EM models used to date.  

We found eliminating linear dependency reduces the stiffness and screening time of the kinetic 

parameter sets.  We have also elucidated a preferred method for selecting the order of screening data 

sets to reduce the number of incorrect parameter sets carried forward in each screening iteration.   

To improve kinetic parameter sampling, we have also further characterized and implemented a 

parameter screening step capitalizing on the known stability of wild-type cellular metabolism.  This 

screening method was previously incorporated for robustness analysis of metabolic pathways 

designs and metabolic control analysis.38,42,46,84 It  addresses observations of local instability in 

traditional EM solutions and reduces the kinetic parameter sampling space by removing parameter 

sets not locally stable at the initial wild-type (WT) steady state condition.  By incorporating this 

screen into the existing EM framework (Fig 4.1), our final parameter set solutions more accurately 

reflect true biological behavior.  In this work we specifically demonstrate how local instability 

increases with network size and slows down parameter screening making the case for incorporating 

this additional screen in all ensemble modeling efforts outside of its original use in ensemble 

modeling robustness analysis (EMRA) studies. Through our efforts to speed up and optimize the 

method, we are overcoming some of ensemble modeling’s inherent limitations and moving toward 
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enabling the method for more widely-accessible application.  Furthermore, our work can benefit 

concurrent EM efforts to develop genome-scale kinetic models across our field.8,82   

 

Figure 4.1: Modifications to Base Ensemble Modeling Framework. General overview of base ensemble 
modeling framework highlighting where to apply acceleration strategies. In this work, we have implemented 
conservation analysis to reduce our metabolic network and only track independent metabolite and enzyme 
fraction species (Acceleration Strategy 1).  We have also characterized the local stability check after 
implementing it after the initial kinetic parameter sampling process (Acceleration Strategy 2).  Lastly, we have 
described the benefits of pre-ranking perturbation data sets prior to screening the ensemble (Acceleration 
Strategy 3). 
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4.2 Methods 

4.2.1 METABOLIC MODELS  

Three metabolic models were used for this study: a small toy model with six reactions 

adapted from a preexisting toy model34; a medium model with 34  reactions created to resemble  

simplified central carbon metabolism; and a large model with 138 reactions adapted from the core 

E. coli model provided by Khodayari et al. (Fig 4.2).39 Minor changes were made to the large model to 

remove duplicate metabolite entries and correct reaction stoichiometry (Table S1 in the 

Supplemental Material of Greene et al.).85  MATLAB (The MathWorks, Inc. Natick Massachusetts, 

United States) model files are available in the supplement and reaction stoichiometries are detailed 

in Supplemental Tables S2-S11 of Greene et al.85  The previously published k-ecoli457 model was also 

used to demonstrate the opportunity to use conservation analysis on genome-scale models.54 To use 

this model, duplicate reactions and metabolites were removed as with the large model  prior to 

applying conservation analysis calculations (Supplmental Table S1).85 

4.2.2 OBTAINING WT STEADY STATE FLUX DISTRIBUTION 

The experimental fluxomic data for the wild-type and enzyme knockout conditions used to 

screen the large model were taken from the Ishii study.86  Forty-two of the flux values reported in 

this data were mapped to our large model. The method previously described by Khodayeri et al. was 

adapted to determine the full WT flux distribution of our large metabolic model.39 First to determine 

the flux values of unmapped reactions in the large model under growth-optimized conditions, 31 

reactions in the genome scale E. coli model, iAF1260, were mapped to the experimental fluxes, and 

the reported 90% confidence interval values were used to constrain the bounds of these 

reactions.86,87 Next the Flux Variability Analysis (FVA) method provided in the COBRA toolbox was 
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used to determine the flux bounds for the remaining iAF1260 reactions given the experimental flux 

constraints for the 31 reactions and the objective of maximizing growth.88,89  Then the literature data  

 

Figure 4.2: Test Metabolic Networks used Throughout Study. A) Small model with six enzymatic reactions 
adapted from a preexisting toy model.34 B) Medium model with 34 enzymatic reactions and 3 regulation 
reactions created to resemble a simplified central carbon metabolism.  C) Large model with 138 enzymatic 
reactions and 60 regulation reactions adapted from the core E. coli model provided by Khodayari et al.39   The 
line color denotes the reaction type: blue (internal reaction); green (exchange reaction); red (reaction knocked 
out during screening and time trial testing).  Metabolites are represented by blue circles, and common cofactors 
present in the medium and large models are uniquely colored to distinguish their repetitive occurrence 
throughout the models. 
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and the iAF1260 FVA results were used to determine the WT flux distribution of our 138 reaction 

large model. First, the 90% confidence interval flux values reported for the 42 reactions reported in 

the Ishii et al. dataset were used to constrain their corresponding large model reactions. The bounds 

for the remaining unmapped reaction for the large model were then set using the iAF1260 growth-

optimized FVA results as the upper and lower bounds.  Next, the COBRA toolbox Flux Balance 

Analysis (FBA) function was used to determine a feasible WT steady state flux distribution 

constrained by both the experimental values and the previously generated growth-objective driven 

FVA results in the large model.90 Detailed information on reaction mappings used to constrain 

iAF1260 and the large model in these calculations is provided in the published supplemental 

materials (Supplemental Tables S12-S15).85  

For the small and medium models, a random flux distribution satisfying the mass-balance 

constraints of the model was generated and consistently used as the reference WT flux distribution 

throughout all simulations.    

4.2.3 SAMPLING KINETIC PARAMETER SETS 

This work builds directly on the previously developed ensemble modeling method which 

uses steady state metabolic flux data and known thermodynamic constraints to generate and screen 

kinetic models.33,34 Each reaction in our defined metabolic networks was broken down into 

elementary steps defined by elementary kinetic rate laws. Elementary kinetic rate laws are most 

commonly used in ensemble modeling publications as they are generalizable to all reactions and 

allow for easy incorporation of regulatory interactions.33,39–41,43,44,48,54,91,92 For example, the overall 

reaction of enzyme 𝐸 converting reactant 𝐴 to product 𝐵 would be written as 

𝐴 + 𝐸 

𝑣1

⇄
𝑣2

 𝐴𝐸 

𝑣3

⇄
𝑣4

 𝐵𝐸 

𝑣5

⇄
𝑣6

 𝐵 +  𝐸 (4.1) 
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The changes in metabolite concentrations in our network over time were defined as 

𝑑𝑥

𝑑𝑡
=  𝑆𝑀,𝑁𝑣(𝑥, 𝑡);   𝑥 = 𝑥𝑜 𝑎𝑡 𝑡 = 0 (4.2) 

where 𝑥 is the 𝑚 x 1 vector of metabolite concentrations and enzyme fractions and 𝑣 is the 𝑛 x 1 

vector of elementary reaction fluxes. The initial condition 𝑥𝑜 contains the metabolite concentrations 

and enzyme fractions at timepoint 0.  𝑆𝑀,𝑁 is the 𝑀 x 𝑁 elementary stoichiometric matrix where each 

column refers to the elementary reactions and each row refers to a metabolite or enzyme species 

fraction.  The values in the matrix refer to the reactant or product stoichiometry for each elementary 

reaction.  Each elementary reaction flux is defined as  

𝑣𝑛 =  𝑘𝑛 ∏ 𝑥𝑚
𝑆𝑚,𝑛

𝑚
𝑆𝑚,𝑛>0

 (4.3)
 

where 𝑘𝑛 is the elementary kinetic parameter for the corresponding elementary reaction.  All the 

elementary kinetic parameters for the entire metabolic model were combined into one set and 

stored in the 𝑛 x 1 vector 𝑘. 

After obtaining the WT steady state flux through each net model reaction as described above, 

several individual kinetic parameter sets were sampled following the procedure previously 

developed by the Liao group.33,34 The parameter sampling was constrained by the WT flux values as 

well as the Gibbs free energy ranges possible based on the standard Gibbs free energy of the overall 

reaction and selected metabolite concentration ranges. Because the kinetic parameter estimation 

problem is ill-posed, i.e. we are trying to determine many unknown parameters from a relatively 

small set of experimental data, there are several unique parameter sets that correctly predict the 
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wild-type steady state metabolism. Therefore, several, unique 𝑘 sets were sampled that, despite 

having different kinetic profiles, all reach the same steady state.  

4.2.4 SCREENING KINETIC PARAMETER SETS 

 To further parse the sampled kinetic parameter sets, perturbed state experimental data sets 

were compared to parameter set predictions.  For example, using flux or concentration data for a cell 

after a reaction knockout, that same knockout perturbation can be simulated with the sampled 

parameter sets by solving a system of ordinary differential equations with the protein of the reaction 

knockout set to zero, as we describe below.  Then parameter sets unable to predict this new 

perturbed state can be screened out and only the parameter sets accurately predicting the wild type 

and knockout phenotypes are kept.  This screening step can be rerun iteratively until a small subset 

of kinetic parameter sets able to accurately predict all available screening phenotypes is left.  

Furthermore, the resulting post-screen kinetic parameter set ensemble then provides predictive 

power as a metabolic engineering design tool to interrogate untested phenotypes.  

To screen parameter sets sampled for the large model using knockout fluxomic data, the WT 

initial condition concentration values were used but the enzyme fractions corresponding to the 

reaction being knocked out were set to 0.  The system of equations defined by Eq. (4.2) is then 

integrated for each parameter set using the altered initial condition to find the new steady state post 

enzyme knockout.  To determine the predictive power of each parameter set, a scoring function to 

calculate the fitness (𝑦) was devised: 

𝑦 =
1

𝑛𝐾𝑂𝑠
∑

1

𝑛𝑓𝑙𝑢𝑥𝑒𝑠

𝑛𝐾𝑂𝑠

𝑘 =1

∑
1

𝐶𝑉
|

𝑣𝑘,𝑗
𝑝𝑟𝑒𝑑

− 𝑣𝑘,𝑗
𝑟𝑒𝑓

𝑣𝑘,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒
𝑟𝑒𝑓

|

𝑛𝑓𝑙𝑢𝑥𝑒𝑠

𝑗=1

 (4.4) 
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where the absolute difference between the predicted flux (𝑣𝑘,𝑗
𝑝𝑟𝑒𝑑

) and experimentally observed flux 

(𝑣𝑘,𝑗
𝑟𝑒𝑓

) weighted by the experimentally-observed uptake flux of glucose (𝑣𝑘,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒
𝑟𝑒𝑓

) for the 

given perturbation was averaged across all available (1 to 𝑛𝑓𝑙𝑢𝑥𝑒𝑠) observed reaction fluxes for all 

included (1 to 𝑛𝐾𝑂𝑠) perturbed knockout data sets.  The weighted differences were also multiplied 

by the coefficient of variation (𝐶𝑉) for each reaction with available experimental measurements from 

the literature data in the reference strain to favor fitting reaction fluxes with more consistent 

experimental values.  Smaller fitness values indicate kinetic parameter sets that better predict the 

data.   When screening the parameter sets, a fitness threshold was used to determine which 

parameter sets are removed from the ensemble after each perturbation test.  For the large model a 

fitness threshold of 0.1 was selected after testing threshold values ranging from 0.05 to 0.3 on a 

subset of 1000 parameter sets.  The 0.1 threshold was the smallest threshold tested that was not so 

stringent that no parameter set passed all screening tests (i.e. an empty ensemble).   The 0.1 threshold 

value determined using the smaller initial 1000 parameter set ensemble was then used to screen the 

larger ensemble (10000 parameter sets).  The threshold value selected is specific to each EM 

application and data set.   

4.2.5 CONSERVATION ANALYSIS 

We adopted the conservation analysis protocol developed by Vallabhajosyula et al to reduce 

the system stiffness of our metabolic networks.93 Eq. (4.2) is rewritten to separate the metabolite and 

enzyme fraction species into vectors of independent (𝑥𝐼) and dependent (𝑥𝐷) species: 

𝑑𝑥

𝑑𝑡
= [

𝑑𝑥𝐼

𝑑𝑡
𝑑𝑥𝐷

𝑑𝑡

] =  [
𝑆𝐼,𝑁

𝑆𝐷,𝑁
] 𝑣(𝑥, 𝑡)  (4.5) 
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where 𝑆𝐼,𝑁 is the reduced, full rank stoichiometric matrix with 𝐼 independent species rows and 𝑁 

elementary reaction columns.  𝑆𝐷,𝑁 is the dependent species stoichiometric matrix of dependent 

species with 𝐷 dependent species rows and 𝑁 columns of elementary reactions.  The 𝐷 x 𝐼 matrix 

(𝐿𝐷,𝐼) relates the reduced and dependent stoichiometric matrices: 

𝑆𝐷,𝑁 =  𝐿𝐷,𝐼𝑆𝐼,𝑁 (4.6) 

Following the derivation by Vallabhajosyula et al., the 𝐿𝐷,𝐼 matrix allowed us to calculate the 

conserved moieties vector 𝑇 from the initial metabolite concentrations and enzyme fractions93: 

𝑇 =  𝑥𝐷(0) −  𝐿𝐷,𝐼𝑥𝐼(0) (4.7) 

Using COPASI, an existing software toolset, the reduced stoichiometric matrix (𝑆𝐼,𝑁) of our 

metabolic network was calculated.94 COPASI also generated the 𝐿𝑀,𝐼 and 𝐿𝐷,𝐼 matrices needed to 

calculate the reduced Jacobian as well as back calculate the conserved moieties vector and the 

dependent metabolite concentrations.  The MATLAB SimBiology toolbox can also calculate these 

matrices.  Scripts to perform this in MATLAB are provided in the supplemental code. 

The system of differential equations for only the independent metabolite and enzyme fraction 

species was then integrated using this reduced network format:  

𝑑𝑥𝐼

𝑑𝑡
=  𝑆𝐼,𝑁𝑣(𝑥𝐼 , 𝑥𝐷 , 𝑡) (4.8) 

where the dependent metabolite and enzyme fraction species concentrations are a function of the 

independent concentrations and the 𝑇 and 𝐿𝐷,𝐼 matrices: 

𝑥𝐷 = 𝑓(𝑥𝐼 , 𝑇, 𝐿𝐷,𝐼) (4.9) 
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While solving the system of equations defined in Eq. (4.8) for the evolution of the independent 

concentrations over time, the dependent concentrations were also calculated using Eq. (4.7).  The 

dependent concentrations were calculated at each time step in order to solve for the elementary 

reaction fluxes 𝑣 needed in Eq. (4.8).  

4.2.6 LOCAL STABILITY CHECK 

Kinetic parameter sets generated using traditional ensemble modeling sampling were further 

screened for local stability at the wild type steady state equilibrium point. To check for the local 

stability of each kinetic parameter set, 𝑘, the eigenvalues of the reduced Jacobian (𝐽𝑅) at the initial 

metabolite concentration (𝑥𝐼(0)) were calculated: 

 λ = 𝑒𝑖𝑔( 𝐽𝑅(𝑥𝐼(0), 𝑘) ) (4.10) 

If the real parts of the eigenvalues,   λ𝑅𝑒 , were negative, the parameter set, 𝑘,  was marked as 

locally stable. If one or more  λ𝑅𝑒 were positive, the parameter set was marked as locally unstable 

and was rejected.   The maximum  λ𝑅𝑒 represents the slowest timescale of the system.95  To select for 

the most stable parameter sets and avoid computational error with eigenvalue calculations,  λ𝑅𝑒 

values less than or equal to -0.001 were treated as negative and  λ𝑅𝑒  greater than -0.001 were treated 

as  positive.  The MATLAB eig function used to calculate the eigenvalues is subject to numerical round 

off error so -0.001 was used as the zero-threshold value to avoid carrying over false positive 

parameter sets.  When selecting for 100 locally stable parameter sets for the large model, less than 

0.2% of the parameter sets thrown out had a maximum   λ𝑅𝑒  between -0.001 and 0.  

4.2.7 KNOCKOUT ORDER VALIDATION 

 The knockout order test was performed on the large model using the seven available 

knockout data sets (Δpgi, ΔpykA, ΔpykF, ΔppsA, Δzwf, Δgnd, and Δrpe).86  To rank the knockouts by 
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screening power, the cosine similarity 𝑐𝑜𝑠𝑠𝑖𝑚 was first calculated between the WT and knockout 

fluxomic data: 

𝑐𝑜𝑠𝑠𝑖𝑚(𝑣𝑊𝑇,𝑗
𝑟𝑒𝑓

, 𝑣𝑘,𝑗
𝑟𝑒𝑓

) =
∑ 𝑣𝑊𝑇,𝑗

𝑟𝑒𝑓
𝑣𝑘,𝑗

𝑟𝑒𝑓𝑛𝑓𝑙𝑢𝑥𝑒𝑠
𝑗=1

√∑ (𝑣𝑊𝑇,𝑗
𝑟𝑒𝑓

)
2𝑛𝑓𝑙𝑢𝑥𝑒𝑠

𝑗=1
√∑ (𝑣𝑘,𝑗

𝑟𝑒𝑓
)

2𝑛𝑓𝑙𝑢𝑥𝑒𝑠
𝑗=1

  (4.11)

The knockouts were ranked from lowest similarity to highest similarity, and the knockout with the 

lowest cosine similarity was selected as the first for screening.  The remaining knockouts were 

sampled exhaustively in order of which one would result in the smallest average cluster similarity 

score when added to the group of previously selected knockouts.   The distance from the selected 

cluster to a given knockout was calculated as the average cosine similarity value between the 

knockout in question and each knockout previously added to the cluster.  For example, our first pick 

would be the data set whose metabolic state is most different from the WT state.  Then, our second 

pick would be the data set whose metabolic state is most different from the cluster combining the 

WT’s and the first pick’s metabolic states.  We continue to sample the remaining data sets from our 

available pool in this way until all are selected.  

After sampling 10000 kinetic parameter sets using the local stability test described above, 

the sets were screened against one knockout at a time in order of selection.  The fitness value for the 

new predicted perturbed steady state after each knockout was scored using Eq. (4.4). Parameter sets 

with a fitness value falling below the threshold of 0.1 were discarded. The rationale for selecting 0.1 

as the fitness threshold is described in the “Screening Kinetic Parameter Sets” section above.  The 

same initial 10000 sets were then screened in the reverse selection order.  The fitness of the 

remaining ensemble for all seven knockouts was calculated after each screen by substituting the 

average predicted flux values for a given knockout, 𝑘, across all the parameter sets remaining in the 

ensemble (𝑣̅𝑘,𝑗
𝑝𝑟𝑒𝑑

) into our original fitness equation: 
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1
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𝑘=1

∑
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|
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𝑣𝑘,𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒
𝑟𝑒𝑓

|

𝑛𝑓𝑙𝑢𝑥𝑒𝑠

𝑗=1

 (4.12) 

 The CPU time and the number of kinetic parameter sets remaining were recorded after each 

screening step. 

During screening for the knockout order validation test, an event function was used with the 

MATLAB ode15s solver.  If the ODE calculation took longer than 80 seconds (i.e. the parameter set 

was not able to converge to the new steady state in 80 seconds) the ODE was stopped and the 

parameter set did not pass the screen as a new steady state was not reached.  To select the time cut 

off, 100 parameter sets were sampled for the large model and screened against all 7 knockouts in 

triplicate.  Then the time required to include the average calculation times of 99% of all ODE 

calculations was selected as the cutoff.  The lowest fitness scores from the time trial correlated with 

the fastest total ODE solve times for a given parameter set; therefore, stopping the ODEs after 80 

seconds did not eliminate valid candidate parameter sets.  Additionally, the ODE calculation was 

stopped if the mass balance error tolerance fell below 0.0001.  This prevents the need to complete 

the remainder of the integration if the concentration profile has already reached a reasonable, new 

mass-balanced steady state.  The event function code is included in the provided MATLAB scripts.85  

The logic for our event function was derived from previous EM work but a different time cut-off and 

error tolerance was selected.39 

4.2.8 COMPUTATIONAL RESOURCES 

All tests were performed using MATLAB (MATLAB and SimBiology Toolbox 2015/2016a, The 

MathWorks, Inc., Natick Massachusetts, United States) on the Northwestern Quest High Performance 

Computing Cluster. Ensemble modeling code was adapted from MATLAB scripts provided by the Liao 
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and Maranas groups.34,36,39  The parameter screening step was coded to run in parallel and was run 

across 12 nodes on the Quest Computing Cluster.  Sample MATLAB code is available for download.85 

4.3 Results 

4.3.1 CONSERVATION ANALYSIS REDUCES PARAMETER SCREENING TIME 

We used conservation analysis to identify and remove dependent metabolite and enzyme 

fraction species from our three defined metabolic networks.  The number of dependent species 

identified for each model is detailed in Table 4.1.   Furthermore, as a proof of concept we also applied 

the conservation analysis method to the recently published genome-scale kinetic model of  E. coli, k-

ecoli457 (Table 4.1).54   As model size increased, we identified larger numbers of dependent species 

present in the network. 

 

Table 4.1: Breakdown of independent and dependent metabolite and enzyme fraction species identified after 
conservation analysis.  

 

Model 
Net 

Reactions 
Elementary 
Reactions 

Species of 
Metabolites 
and Enzyme 

Fractions  

Independent 
Species of 

Metabolite and 
Enzyme 

Fractions  

Dependent 
Species of 

Metabolite and 
Enzyme 

Fractions 

Small 6 26 16 12 4 

Medium 34 268 164 130 34 

Large 138 1474 828 687 141 

k-ecoli457 455 5209 2987 2529 458 
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Integrating ODEs including implicitly dependent variables is known to create very stiff integration 

conditions.  We hypothesized removing the dependent variables may remove stiffness, and decrease 

integration time.  To investigate the computational speed improvement provided after using 

conservation analysis to reduce the large metabolic network to only independent species, 100 kinetic 

parameter sets were sampled using traditional ensemble modeling methods.  For the large model, 

each of the parameter sets was perturbed seven times by individually knocking out the seven 

enzymes tested when developing the core E. coli kinetic model (Δpgi, ΔpykA, ΔpykF, ΔppsA, Δzwf, Δgnd, 

and Δrpe).86 The ODE calculations were performed using the original formulation where all species 

concentrations were tracked.  Then the same test was performed using the conservation analysis 

formulation where only the independent species were tracked. In total 700 calculations were 

performed for each ODE formulation in triplicate, and the total CPU time was recorded.  As Fig. 4.3 

illustrates, conservation analysis halved the total CPU time for our ODE time test. We ran similar time 

trial tests on the medium and small models and observed this beneficial decrease in solve time scales 

with model size (Fig 4.4).  This trend implies this method of model reduction may provide even 

greater benefit as we move toward generating kinetic models for networks approaching the genome 

scale. To investigate this claim, we performed a small ODE time trial test on the genome-scale model 

to observe the effect of the conservation analysis method on the ODE integration speed. We sampled 

100 kinetic parameter sets for the corrected k-ecoli457 genome-scale model using the traditional 

sampling method.  We then perturbed six of the enzymes used to screen the large model by over and 

under expressing the enzyme values by different fractions (pgi: 0.95, pykF: 1.2, ppsA: 1.3, zwf: 0.9, 

rpe: 0.8, gnd: 1.1 and 0.95).  We integrated each of these cases over twenty time steps for a total of 

700 calculations using the base ODE framework as well as the conservation analysis framework. We 

observed a 96% improvement in solve time reducing the total CPU time from 382 ± 49 hours down 

to 15 ± 1.8 hours after running this comparison in triplicate. These perturbations lead to steady states 
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close to the wildtype conditions, but this test provides a strong first demonstration of the positive 

benefits conservation analysis would provide in training and screening genome-scale models.  

 

Figure 4.3: Conservation Analysis and Local Stability Check Improve Solve Time. The total CPU time for 
integration of 700 ODE calculations (100 kinetic parameter sets for large model perturbed for seven unique 
enzyme knockouts) using different ensemble modeling frameworks: base framework, reduced network after 
conversation analysis, and reduced network after conservation analysis with local stability check. Solve times 
compared using student t-test  indicated p<0.00001 between all condition pairs. Error bars are standard 
deviation (n=3). 
 

4.3.2 LOCAL STABILITY CHECK SELECTS FOR BIOLOGICALLY REPRESENTATIVE PARAMETER 

SETS 

After sampling each individual kinetic parameter set, the reduced Jacobian was calculated for 

the parameter set at the initial independent metabolite concentrations. As shown in Table 4.2, when 

parameter sets are sampled for the small model, all of them pass the local stability test.  However, as  
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Figure 4.4: Solve Time Improvements Conferred by Conservation Analysis and Local Stability Check 
Scale with Model Size. The percent improvement in solve time from the base EM framework for the small, 
medium, and large models after implementing conservation analysis and the local stability check.  Small model: 
100 kinetic parameter sets screened against one knockout. Medium model: 100 kinetic parameter sets 
screened against seven knockouts. Large model: 100 kinetic parameter sets screened against seven knockouts.  
Student’s t-test performed on average solve times across three trials. Average solve times between 
implementing conservation analysis treatment and implementing the conservation analysis and stability test 
for the medium model (p<0.05) and the large model (p<0.00001) were significant.  The small model did not 
see significant improvement when adding the stability test. Error bars are standard deviations using 
propagation of error for percentage change calculations (n=3). 

we move up to the medium model, less than half of the sampled parameter sets are locally stable.  

This trend continues as we sample parameter sets for the large model where less than one percent 

of the parameter sets are locally stable at the WT steady state equilibrium point. To the best of our 

knowledge, other ensemble modeling efforts would likely have similar rates of instability in their 

models. 
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Table 4.2: Number of total parameter sets sampled to acquire 100 locally stable kinetic parameter sets.   

Model No. Parameter Sets Sampled  % Locally Stable 

Small 100 100% 

Medium 217 46% 

Large 13953 <1% 

 

Eigenvalues with negative real parts for the reduced Jacobian imply that small perturbations 

from the equilibrium point will return to the equilibrium point (local stability). Alternatively, 

parameters sets leading to a Jacobian with one or more eigenvalues with positive real parts point to 

local instability.95 We observe an increase in  ODE integration speed when selecting for locally stable 

kinetic parameter sets over locally unstable kinetic parameter sets after a perturbation to the initial 

condition.  As a result, we see an additional decrease in compute time when solving the 700 ODE 

calculations (7 conditions) during the time trial test when we select 100 locally stable kinetic 

parameter sets (Fig. 4.3).  This increase in speed also trends with model size (Fig. 4.4) with the 

exception of the small model. As noted in Table 4.2, all the parameter sets sampled for the small 

model are locally stable, so no additional benefit is seen in solve time when adding the stability check.  

Instead, in some runs a small decrease is shown compared to the conservation analysis step alone 

because of the time needed to check for the local stability of each parameter set, although none were 

rejected.  The time to perform the local stability calculation is negligible for the large and medium 

models compared to the improvements in overall solve time.  A Student t-test (n=3) was performed 

to compare the total CPU run times for each model size (small, medium, and large) at each treatment 

(original ODE formulation, reduced network with conservation analysis, and reduced network with 

conservation analysis and local stability check).  Through these tests we confirmed the run time 
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improvement after adding the local stability check to the small model is not significant whereas it 

does provide significant run time improvement for the other model sizes (Fig. 4.3 & Fig. 4.4).  

4.3.3 PRE-RANKING SCREENING DATA IMPROVES SOLVE TIME 

We ordered the experimental data we would compare to our models based on the cosine 

similarity algorithm.  The final screening order of the available perturbed steady state data after 

selection in order of decreasing average similarity was Δpgi, Δgnd, Δzwf, ΔpykF, Δrpe, ΔppsA, and 

ΔpykA. As shown in Fig 4.5a, when screening kinetic parameter sets for the large model, the Δpgi 

knockout screen provides the majority of the predictive power to our final ensemble, leading to the 

largest drop in the fitness score of our overall ensemble.  This result is confirmed when we feed the 

knockout data sets in the reverse selection order and do not see a significant improvement in overall 

solution fitness until the Δpgi knockout is included.   

Helpfully, more parameter sets are removed early in the process when knockout data sets are 

fed in order of screening rank (Fig 4.5b).  This means fewer ODE calculations are performed during 

the remaining screening steps resulting in a significant decrease in overall solve time (Fig 4.5c).  

Specifically, for the large model, the screening time improves 48% when the knockout data sets are 

fed in rank order instead of reverse rank order.  These solution times are reported in total CPU hours.  
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Figure 4.5:  Screening KOs in Rank Order Eliminates Unpredictive Models Earlier.  A) The solution fitness 
averaged for large model across predictions for all seven knockouts of the initial ensemble of 10000 locally 
stable models is 0.042.  Moving across the figure from left to right, the initial ensemble is screened against 
knockouts one at a time ranked from most to least different (blue) and least to most different (orange) flux 
distribution determined by clustering.  The average solution fitness for all seven knockouts is plotted after each 
additional knockout screen.  B) Total additive solve time after each screening step is recorded in total CPU 
hours. When the knockouts are fed from least to most different from the WT for the large model, the total time 
to screen all 7 knockouts is 118 total CPU hours.  The time to screen all 7 knockouts when fed from most to 
least different is 225 total CPU hours.  The simulations were run in parallel across 12 nodes. Error bars are 
standard deviation (n=3). C) Regardless of knockout screening order, the initial ensemble of 10000 kinetic 
parameter sets for the large model is reduced to 26 kinetic parameter sets. However, when knockouts are fed 
from highest screening power to lowest (blue) the ensemble size is reduced by >98% to 152 kinetic parameter 
sets after the first screening step.  Alternatively, when the knockouts are fed from lowest to highest screening 
power (orange) the ensemble size is only reduced 4% to 9580 parameter sets. Inset plot zooms in on bottom 
2% of remaining models.   
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4.4 Discussion and Conclusion 

4.4.1 REDUCING MODEL SCREENING TIME 

The traditional elementary stoichiometric matrix 𝑆𝑚,𝑛 describing the reactions in a metabolic 

network is often not full rank due to the presence of conserved metabolite relationships.  For 

example, the pool of cofactors like the adenine moieties (ATP, ADP, and AMP) maintains a constant 

total level in the metabolic model.  For every ATP consumed, a stoichiometric amount of ADP or AMP 

is produced and vice versa. Therefore, the concentrations of the adenine moieties are linearly 

dependent. Across large metabolic reaction networks, several of these conserved relationships are 

present, and some are nonobvious.  The presence of these conserved groups in turn leads the 

Jacobian of the system to be singular.  When we solve the system of differential equations to 

determine the new steady state of the network after a perturbation, the singularity of the Jacobian 

makes it difficult to integrate the stiff system, and the solve times are computationally limiting.   

To generate a non-singular Jacobian, we used the conservation analysis method described by 

Sauro et al. to calculate a full rank stoichiometric matrix.93,96 Conservation analysis identifies the 

conserved metabolite and enzyme complex species and generates a reduced stoichiometric matrix 

excluding all dependent metabolite entries. We were then able to calculate the non-singular reduced 

Jacobians for our reduced metabolic networks which resulted in faster ODE calculations.  

Furthermore, despite only solving the concentration time profiles for independent metabolite and 

enzyme fraction species, we do not observe a loss in predictive power of the final overall steady state 

metabolite profiles.   

Conservation analysis was previously developed for use in large biochemical networks.93,96 

However, its effects on ODE integration time in EM has not yet been fully characterized. As we have 

shown, conservation analysis provides significant computational speed improvements to the current 



66 
 
EM process without a loss in solution accuracy.  It requires minimal effort to implement and can be 

plugged in to benefit many concurrent EM applications. Additionally, by applying conservation 

analysis and calculating the reduced Jacobian, we are able to employ the local stability check 

discussed below.   

4.4.2 IMPROVING LOCAL STABILITY 

Wild-type cells at steady state biologically maintain a robust metabolic concentration profile, 

meaning they can quickly recover from small, local perturbations to their environment.86,97 Similarly, 

the kinetic parameter sets we are generating to define cellular metabolism should be robust to small 

deviations from the initial WT metabolite concentrations.  Mathematically, the WT metabolite 

concentration profile of a cell during steady state growth should be a stable fixed point.  Therefore, 

we want the steady state defined by our WT steady state conditions and sampled kinetic parameter 

sets to be locally stable.  Specifically, for a given kinetic parameter set, we expect the ODE integration 

solution to converge to the WT steady state after a small perturbation to the initial condition.   

Consequently, by employing the local stability check, we are further minimizing the available 

parameter search space. To ensure we are generating locally stable kinetic parameter sets, we further 

characterized a local stability test previously implemented by the Liao group as the first step in their 

robustness analysis work.38,42,84 In this analysis we wanted to specifically characterize the local 

stability screen across a range of network sizes.   Using the reduced metabolic network after 

conservation analysis, we calculated the eigenvalues of the reduced Jacobian to determine the 

stability of the WT stationary state using fixed point stability theory.   

For larger models, we have shown most parameter sets sampled are not able to return to 

their steady state metabolite concentrations after small perturbations to their initial conditions.  By 

selecting for local stability, we are generating more biologically-reflective kinetic parameter sets for 
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screening.  We have demonstrated for smaller models, most parameter sets sampled traditionally are 

locally stable at the reference steady state.  Therefore, the unstable behavior around the stationary 

point we observe for the larger model likely did not emerge in previous ensemble modeling efforts 

where smaller models were used to address metabolic engineering challenges.33,34,36,38 This work 

emphasizes that in addition to the robustness analysis of pathways for which the test was first 

implemented by the Liao group38,42,84, the local stability test should be incorporated during the 

parameters sampling step in all ensemble modeling efforts to reduce the screening time and 

parameter sampling space.  The local stability test is an imperfect screen in that some of the 

parameter sets that pass may still exhibit unstable behavior near the stationary state.  However, the 

local stability test does help us identify more-stable parameter set candidates.  Overall we believe 

our observations on instability in larger metabolic models makes the case for continued study in this 

area of kinetic modeling.  Specifically, as we move toward larger kinetic model structures, 

understanding model stability and screening for it become more crucial to generating reliable, 

predictive tools.   Fortunately, like with the conservation analysis step, the local stability test is easy 

to plug into the existing EM framework and can be used in parallel with other EM efforts with great 

benefit.  

4.4.3 EVALUATING STRENGTH OF SCREENING DATA SETS 

Previous work demonstrates the importance of having screening data available with broad 

spatial coverage of the metabolic network.39,44 Some experimental states provide more screening 

value than others which has been demonstrated in a previous leave-one-out analysis.39 For example, 

a knockout near a central pathway branch would provide more resolution than a knockout down a 

peripheral linear pathway.44 However, visual inspection is not enough to identify the best knockout 

phenotypes to test when developing a strong screening data set.  In some cases, a set of perturbation 

data may be available and being able to assess its screening strength prior to running any EM 
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calculations is valuable.  We have found that simply comparing the difference between the WT and 

perturbed metabolic states provides a coarse rank of screening power.  Specifically, perturbations 

leading to a new steady state similar to the WT flux distribution do not provide additional fitness 

resolution. On the other hand, perturbations leading to large deviations from the WT flux profile 

provide more insight.  Additionally, perturbations covering more disparate portions of the 

metabolism provide better screening resolution than several perturbations clustering around the 

same area.  

Our findings emphasize the importance of selecting a strong screening data set when using 

EM.  When designing experiments to capture kinetic information, perturbations can be selected that 

lead to the largest variations using a similar ensemble modeling approach.44 However, when using 

EM to resolve existing perturbation data, it is important to evaluate the best screening order of the 

data to ensure the most incorrect parameter sets are removed first.  This allows our screening step 

to converge to the solution much faster by reducing the number of ODE calculations.  We 

hypothesized and our results confirmed that knockouts leading to metabolic states furthest from the 

WT state provide the most screening power.  To determine the order of the knockouts encompassing 

the largest spread in metabolic states, we derived a sampling method to ensure the knockouts picked 

formed the most varied set of states possible.  For our clustering calculations, we chose cosine 

similarity as our distance metric and minimum average distance (low cosine similarity equates to 

bigger differences) as our linkage method to determine our knockout order as these methods work 

well with sparse, high-dimensional data sets.98,99 Regardless of method, the Δpgi knockout, which 

overwhelmingly provides the most screening resolution, was always selected first.   Our results 

confirm that selecting perturbations in this biased way provides a significant improvement to overall 

run time and does not affect the overall fitness result. In this work, we investigated enzyme knockout 

perturbation sets to maintain consistency with the original data set used to generate the published 
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core E. coli kinetic model.39,86 However this method of ranking datasets collected under consistent 

conditions should hold for other perturbations commonly used in metabolic engineering including 

enzyme overexpression and knockdown cases. 

Additionally, we chose to employ a specific fitness value to consistently measure how well 

the remaining ensemble described the experimental observations across our various simulations.  

For example, screening can be performed based on phenotypic response alone where the ability to 

predict the relative increase or decrease of a product of interest is the only requirement for keeping 

a parameter set after a given perturbation.41  Selecting looser screening criteria decreases the 

likelihood of a null set and does not negate the positive benefits of presorting the perturbation data.  

However, we would also like to note that the observance of a null set (i.e. no parameter sets can 

predict a specific perturbation) may also indicate inconsistencies or errors in the assumed model 

structure.  This can be a useful result when the exact network structure is unknown.  Previous work 

shows generating ensemble predictions for various defined network structures can help elucidate 

unknown regulation relationships and pathway split ratios specifically by identifying cases where a 

given model structure is better able to resolve observed phenotypes.40,43,81 Other EM efforts 

incorporate different screening paradigms when training their sampled ensemble modeling 

parameter sets.  For example the Maranas group regularly employs a genetic algorithm framework 

to identify a single, best-case parameter set which can be beneficial over the traditional ensemble 

solutions for certain applications.39,44,54 These alternative screening methods would still benefit from 

employing the conservation analysis, local stability test, and perturbation data ranking acceleration 

strategies described in this work, specifically by speeding up their integration calculations, 

minimizing their parameter solution space during sampling, and achieving faster convergence to the 

best solution faster by fitting against the perturbations that are hardest to predict first.  
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Lastly, we would like to note the sampled kinetic parameter values are heavily influenced by 

the chosen reference WT flux distribution because they are selected to reach the provided WT steady 

state over time. Previous work demonstrates performing EM on different WT flux distributions can 

even help resolve unknown branch point flux distributions.40 Unfortunately, in most flux data sets, 

there will be reaction fluxes that can still not be resolved, yet a value for that flux must be imposed 

to follow the EM algorithm.  For unresolvable reaction fluxes in the reference flux distribution, i.e. 

reactions where an infinite number of flux values can satisfy the mass balance constraints, the kinetic 

parameters are fit to a flux that might not accurately reflect true metabolic behavior.  While we did 

not specifically investigate this possible limitation in this work, the EM method could be altered in 

future efforts to avoid fitting kinetic parameters to reactions where we do not have high confidence 

in their flux values.   
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Chapter 5: Kinetic Ensemble Model of Gas Fermenting Clostridia 
Ethanogenum Core Metabolism for Improved Ethanol Production 
 

5.1 Introduction  

Acetogenic bacteria can fix one-carbon substrates (i.e. CO and CO2) and convert them to 

acetyl-CoA through the Acetyl-CoA Wood/Ljungdahl pathway.100–102 One such acetogen, Clostridium 

autoethanogenum, can autotrophically produce acetate, ethanol, and 2,3-butanediol through 

consumption of CO, CO2, and H2 gases.103,104 With these capabilities, C. autoethanogenum is a strong 

candidate to enable biofuel production from syngas, a natural waste product of biomass and 

industrial gasification processes rich in CO, CO2, and H2.105–107  C. autoethanogenum was first isolated 

from rabbit feces and reported to produce ethanol and acetate from carbon monoxide in 1994 and 

has since been the subject of several studies aiming to optimize its ability to produce ethanol over 

acetate under industrially-relevant conditions.103,108–111 However complete understanding of forces 

governing the ethanol to acetate production ratio is absent. Unlike more bio-industrially prevalent 

strains (i.e. Saccharomyces cerevisiae and Escherichia coli), the genetic engineering tools needed to 

interrogate the clostridia metabolic pathways are not fully developed or easily implemented.105,112,113 

While rapid advancement of these tools is underway, in many cases the methods developed are 

strain-dependent and not easily transferable across different clostridia.114–116 This lack of easily 

accessible engineering tools prohibits in-depth studies of metabolic pathways because genetic 

modification (i.e. enzyme knockout, knockdown, or overexpression) is expensive, time intensive, and 

often not executable especially when attempting combinatorial changes.117  The potential of C. 

autoethanogenum as a waste-gas fermenting biofuel platform coupled with these genetic engineering 

limitations highlights a pressing need to develop robust, predictive computational models of its 

metabolism. As the number of genetic changes that are able to be implemented to this species is 
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currently limiting, in silico analysis will help confidently elucidate the most informative metabolic 

network features to interrogate experimentally prior to exhausting resources in the lab.113,118 

Previously, a genome-scale metabolic model (GEM) for C. autoethanogenum (iCLAU786) was 

developed and refined to resolve several unknown aspects of the organism’s metabolism including 

cofactor-dependencies of certain reactions and methods for improving ATP production of native 

pathways.110,111,119  However, steady state constraint-based modeling cannot predict some regulatory 

behavior, rate-limiting steps, or changes in metabolite pool concentrations. To bridge this gap, the 

development of kinetic models is crucial to fully understanding and predicting metabolic behavior. 

Kinetic models also build upon the predictive engineering power of traditional steady-state modeling 

methods as they can predict phenotypic responses to enzymatic expression changes. Typically, 

constraint-based models can only predict binary on or off enzymatic states.  Additionally, previous 

studies imply thermodynamics play a major role in governing product distribution in clostridia.120,121 

Therefore, a more detailed free energy analysis of major enzymatic reactions for incorporation into 

a kinetic model is an increasingly valuable next step. 

Building representative kinetic models with coverage of all high flux metabolic pathways is 

challenging as reliable kinetic parameter estimates are not available for most enzymatic reactions, 

especially in the less characterized clostridia strains.  When they are available, they are typically 

defined under in vitro conditions where local concentrations, temperature, and pH dependencies 

present under in vivo conditions are not captured.  Furthermore, even in cases where parameters are 

available for reactions, the varying conditions under which they are typically characterized hinders 

combining them into a single model that can accurately predict cellular behavior under typical 

growth conditions.  The ensemble modeling framework was previously developed to circumvent 

these traditional kinetic modeling issues by sampling multiple kinetic parameter sets constrained by 
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a single, experimental reference state.33,34,36  This initial parameter set ensemble is then screened 

against additional perturbation datasets typically generated in metabolic engineering studies to 

prune down the ensemble iteratively.  The ensemble modeling framework does not require 

knowledge of internal metabolite concentrations or enzyme levels.  The combined predictions of the 

final ensemble provide a confidence landscape for how tightly we can resolve various aspects of 

cellular metabolism.  Ensemble modeling efforts have been successfully used to improve strain 

designs by predicting productive enzyme knockout or overexpression targets and estimating the 

robustness of competing pathway designs.38–43,48,54,92  

In this work, we generate a novel kinetic ensemble representation of C. autoethanogenum 

metabolism that accurately predicts the intracellular concentrations of key metabolites and 

reproduces experimentally observed trends not used to train the model.  Typically, ensemble 

modeling efforts use enzyme perturbation data to prune down the initial ensemble of sampled kinetic 

parameters.33,34,37,39,41,54 However as discussed above, few studies demonstrating phenotypic 

outcomes from genetic modifications to C. autoethanogenum are available.  Valgepea et al. have 

demonstrated that the ratio of acetate to ethanol produced by wild type (WT) C. autoethanogenum 

decreases with increasing biomass concentration but has an inherent lower limit of one.111 

Maximizing ethanol production over acetate is a critical design challenge for enabling this 

bioproduction platform. Therefore, in this study, we demonstrate a novel perturbation strategy in 

which we use the Valgepea et al. dataset, where substrate uptake is modified by increasing biomass 

concentration over three conditions, to screen our parameter sets.111  The traditional ensemble 

modeling framework assumes the concentration of substrates outside the cell and predicts the flux 

distribution after a change in enzyme expression.  In the Valgepea et al. dataset, low (0.5 gDCW/L), 

medium (1.1 gDCW/L), and high (1.3 gDCW/L) biomass concentration states were achieved by 

altering the gas-liquid mass transfer rates and therefore the extracellular concentration of gases in 
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the cultures.111  However, dissolved CO, CO2, and H2 concentrations are difficult to measure in a 

bioreactor so instead the uptake flux was monitored by analyzing the composition of the feed gas and 

off gas streams into and out of the reactor. As the gas uptake fluxes are known, we wanted to 

constrain our models to these observed values and predict resulting changes to the remaining 

metabolic pathway fluxes.  This type of non-genetic perturbation has not been previously 

demonstrated with the current ensemble modeling framework. So, to accommodate this available 

dataset, we redefine the governing equations of the method as a set of differential-algebraic 

equations (DAE).  Then, rather than using genetic perturbation data, we train our model by screening 

against changes in gas uptake fluxes. Most powerfully, our final kinetic ensemble model predicts new 

metabolic engineering strategies to increase production of ethanol. This work is an initial effort to 

understand the kinetic and thermodynamic limitations of C. autoethanogenum metabolism and 

makes a strong case for the value of further analysis and development of these methods.   

5.2. Methods 

5.2.1 METABOLIC NETWORK 

 A model representing the core metabolism of C. autoethanogenum was used in this study.  The 

model accounts for 70 reactions and 62 metabolites (Fig. 5.1).  The model was curated as a subset of 

the published genome scale model, iCLAU786, to include all reactions responsible for carrying 

greater than 97% of the flux at growth optimized conditions.110,111  The leftover reactions accounting 

for the remaining flux were reduced and incorporated into the biomass equation, which was modified 

to reflect these changes.  Four additional reactions were added to the model to reflect findings in the 

literature.122,123 Specifically, NADPH-dependent analogs of acetaldehyde dehydrogenase (ACALDy), 

butanediol dehydrogenase (BTDDy), and alcohol dehydrogenase (ALCDy) were added. Similarly, an 

NADH-dependent electron-bifurcating [FeFe]-hydrogenase reaction (HYDFDNx) was added to  
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Figure 5.1: Metabolic Network of C. autoethanogenum Core Metabolism. Circles indicate metabolites. 
Cofactors and energy equivalents are colored in grey and yellow, respectively, to highlight their prevalence 
throughout the network. Lines indicate enzymatic reactions.  The orange arrows indicate exchange fluxes in 
the screening dataset, and the light blue arrows indicate metabolites consumed in the biomass equation. 
Metabolite and reaction abbreviations provided in Supplemental Information Tables S1-S2. 
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supplement the predominantly active NADPH-dependent hydrogenase.122 The final core model, 

corresponding iCLAU786 reactions, and added reactions are provided in the Supplemental 

Information file located in the Tyo Lab Box repository (Tables S1-S3). 

 

5.2.2 DEFINING REACTION THERMODYNAMICS 

Per the previously published ensemble modeling method, Gibbs free energy ranges 

(∆𝑟𝐺𝑚𝑖𝑛
′ , ∆𝑟𝐺𝑚𝑎𝑥

′ ) were determined for each net metabolic reaction to constrain our kinetic 

parameter space within thermodynamically relevant bounds.33,36  The Gibbs free energy ranges were 

calculated from the standard Gibbs free energy values (∆𝑟𝐺′°) and corrected to account for 

physiological metabolite activity ranges, pH differences from standard state, and energy 

requirements associated with ion transport for exchange reactions as previously described for 

assigning reversibility to genome-scale metabolic models11,15: 

∆𝑟𝐺𝑚𝑖𝑛
′ =  ∆𝑟𝐺′° + 𝑅𝑇 ∑ 𝑛𝑖 ln(𝑥𝑚𝑖𝑛)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑖=1

+  𝑅𝑇 ∑ 𝑛𝑖 ln(𝑥𝑚𝑎𝑥)  

𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑖=1

+ ∆𝐺𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + ∆𝐺𝑝𝐻  −  𝑈𝑟,𝑒𝑠𝑡 (5.1)

 

 

∆𝑟𝐺𝑚𝑎𝑥
′ =  ∆𝑟𝐺′° +  𝑅𝑇 ∑ 𝑛𝑖 ln(𝑥𝑚𝑎𝑥)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑖=1

+  𝑅𝑇 ∑ 𝑛𝑖 ln(𝑥𝑚𝑖𝑛)  

𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑖=1

+ ∆𝐺𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + ∆𝐺𝑝𝐻 + 𝑈𝑟,𝑒𝑠𝑡 (5.2)

 

where 𝑛𝑖 is the stoichiometric coefficient of metabolite 𝑖, 𝑅 is the universal gas constant, and 𝑇 is the 

temperature (298 K). The standard Gibbs free energy values, ∆𝑟𝐺′°, and the calculated uncertainty in 

these values, 𝑈𝑟,𝑒𝑠𝑡 , were predominately provided by the online eQuilibrator, ModelSEED, and 



77 
 
MetaCyc tools which both use group contribution methods to estimate the free energy changes 

associated with enzymatic reactions.50,52,124 For less common, organism-specific reactions not 

included in these repositories, free energies reported in the literature were used.121,122  Corrections 

for ion transport (∆𝐺𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡) and pH (∆𝐺𝑝𝐻) changes were calculated as described previously.15,125  

The internal pH and external pH were assumed to be 6 and 5.3 for C. autoethanogenum to mirror 

experimental conditions.111,123  The minimum and maximum metabolite activities (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) were 

set to 0.01 mM and 20 mM, respectively, for all non-gaseous metabolites. The minimum activities for 

dissolved gases (H2, CO2, and CO) were set to 0.00001 mM, and the maximum activities were set to 

the saturation constants at standard conditions.11,15 Please see the supplemental files for the 

complete list of reaction free energy ranges and standard value references (Supplemental 

Information Table S4).  

5.2.3 DETERMINING REFERENCE FLUX DISTRIBUTION 

Valgepea et al. report gas uptake and production secretion rates for each biomass concentration state 

(low, medium, and high) used in this study.111 The authors also performed flux balance analysis (FBA) 

using their experimental observations and the genome scale model iCLAU786 to determine carbon-

balanced, network-wide flux distribution predictions for each state.13,110,111 Their FBA method was 

adapted in this study to determine the flux distributions for each biomass concentration state for our 

smaller, core model.   First, using the COBRA Toolbox in MATLAB, the lower and upper flux bounds 

for each reaction were set to reflect the reversibility of each reaction as determined by the Gibbs free 

energy ranges (∆𝑟𝐺𝑚𝑖𝑛
′ , ∆𝑟𝐺𝑚𝑎𝑥

′ ) calculated above.64  Specifically, the minimum lower flux bound was 

set to 0 for reactions whose entire Gibbs free energy range is negative (e.g. the ATP synthase and RNF 

complex reactions). Next, the CO and H2 uptake fluxes and the acetate, ethanol, lactate, butanediol, 

and biomass production fluxes were constrained to match the genome-scale flux values predicted by 
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Valgepea et al.111  Flux through the hydrogenase reaction was also constrained to just the NADPH-

dependent enzyme (HYDFDNy) to reflect previously published observations of its prominence in CO 

and H2 feed gas fermentations.123  However, flux was allowed through the NADH-dependent 

counterpart hydrogenase (HYDFDNx) during screening of other biomass concentration states.  

Despite setting these constraints, Flux Variability Analysis (FVA) reveals there are still multiple, valid 

flux distribution solutions remaining, so a distribution maximizing CO2 and ATP production was 

selected to best match the Valgepea et al. analysis.23,111 

5.2.4 SAMPLING KINETIC PARAMETER SETS 

In this work, kinetic parameter sets were selected from a sample space constrained by steady 

state reaction fluxes and Gibbs free energy ranges.   We use the ensemble modeling framework 

previously developed by the Liao group.33,36 In our previous ensemble modeling efforts, we described 

several acceleration strategies for improving the traditional framework which we have incorporated 

into this work as well.85   

First, each net reaction in our network was defined as a set of elementary steps defined by 

elementary kinetic rate laws.  For example, a simple reaction where enzyme 𝐸 converts a substrate, 

𝐴, to a product, 𝐵, would consist of the following elementary steps: 

𝐴 + 𝐸 

𝑣1

⇄
𝑣2

 𝐴𝐸 

𝑣3

⇄
𝑣4

 𝐵𝐸 

𝑣5

⇄
𝑣6

 𝐵 +  𝐸 (5.3) 

The change in each metabolite concentrations 𝑥 over time 𝑡 was defined by: 

𝑑𝑥

𝑑𝑡
=  𝑆𝑚,𝑛𝑣(𝑥, 𝑡);   𝑥 = 𝑥𝑜 𝑎𝑡 𝑡 = 0 (5.4)  
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where 𝑥 is the 1 x 𝑀 vector of all species, either metabolites or enzyme fractions, in our network and  

𝑣 is the 1 x 𝑁 vector of elementary fluxes.  The initial conditions 𝑥𝑜 is a 1 x  𝑀 vector of metabolite 

concentrations and enzyme fractions at the steady state reference condition.  𝑆𝑚,𝑛 is the 𝑀 x 𝑁 

elementary stoichiometric matrix which contains stoichiometric coefficients for each metabolite in 

each elementary reaction. The elementary flux through each reaction 𝑣𝑛 was defined by an 

elementary kinetic rate law: 

𝑣𝑛 =  𝑘𝑛 ∏ 𝑥𝑚

|𝑆𝑚,𝑛|

𝑚
𝑆𝑚,𝑛<0

(5.5) 
 

Here 𝑘𝑛 is the reaction specific elementary kinetic parameter, and 𝑥𝑚 is the metabolite concentration 

or enzyme fraction of each reactant species in the elementary reaction.  In this work, all elementary 

kinetic parameters are combined into a single 1 x 𝑁 kinetic parameter set 𝐾.  As our system is ill-

posed, there are several kinetic parameter sets within the constraints imposed that accurately 

predict our reference state flux distribution.  For this reason, numerous, unique kinetic parameter 

sets were sampled that all accurately describe the reference state.   

 Conservation analysis was applied to our reaction network to identify conserved metabolite 

and enzyme fraction species.93 For our elementary network, 15% of the 458 metabolite and enzyme 

fraction species were identified as linearly dependent on the concentrations and fractions of the 

remaining species. By removing these conserved moieties, a reduced metabolic network was 

generated to represent the core metabolism of C. autoethanogenum. As shown previously, applying 

conservation analysis to elementary metabolic networks reduced computational speed and enabled 

local stability analysis of the reduced network.85 
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 Kinetic parameter sets were screened for local stability at the reference state equilibrium 

point.85  The eigenvalues (λ) of the reduced Jacobian (𝐽𝑟) of our system at the initial independent 

metabolite concentrations and enzyme fractions (𝑥𝑖,𝑜) were calculated for each parameter value: 

 λ = 𝑒𝑖𝑔( 𝐽𝑅(𝑥𝑖,𝑜, 𝑘) ) (5.6) 

If the real parts of all eigenvalues (λ𝑅𝑒) were negative, the parameter set was designated as locally 

stable and retained.  Locally unstable parameter sets were discarded.  To avoid computational error 

associated with the MATLAB eig function, values less than -1x10-7 were considered negative and 

values above -1x10-7 were considered positive.  When selecting locally stable parameter sets using 

the high biomass concentration reference state, only 1.2% of parameter sets sampled passed the 

stability screen. 

5.2.5 DIFFERENTIAL ALGEBRAIC EQUATION (DAE) IMPLEMENTATION AND SCREENING 

KINETIC PARAMETER SETS 

To perturb each kinetic parameter set sampled at the reference state, typically enzyme 

knockouts or overexpressions are simulated by changing the initial conditions (𝑥𝑜) to reflect the loss 

of an enzyme species in the system or an increase in enzyme levels, respectively.40,41  Using these 

perturbed initial conditions, the system of ordinary differential equations defined in Eq. (5.4) is 

solved to calculate the new steady state for each parameter set.  With this data set, no specific 

genetically engineered enzyme perturbations were tested.111  Instead, the tested states are 

distinguished by changing the biomass concentration in the experiment, which results in changes in 

CO and H2 gas as uptake flux.  Therefore, the traditional EM framework could not be directly 

implemented, and a new approach was required.   
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To interrogate how well each kinetic parameter set predicted these changes in gas uptake 

rates, the system of ordinary differential equations describing the change in metabolite 

concentrations and enzyme fractions over time in Eq. (5.4) was restructured as a differential 

algebraic equation (DAE): 

𝑑𝑥

𝑑𝑡
=  𝑆𝑚,𝑛𝑣(𝑥, 𝑡);   𝑥 = 𝑥𝑜 𝑎𝑡 𝑡 = 0

𝑣(𝑟𝑢𝑝𝑡𝑎𝑘𝑒) − 𝑈 =  0 (5.7) 
 

where 𝑟𝑢𝑝𝑡𝑎𝑘𝑒 is a vector containing the indices of the elementary CO and H2 uptake reactions, and 𝑈 

is a constant flux vector containing the experimental gas uptake fluxes. By adding this additional 

algebraic constraint, gas uptake into the model is forced to reflect experimentally observed values.   

After solving the DAE to determine the flux distribution at the new gas uptake flux 

distribution state, a fitness value (𝑦) is calculated to score how well the parameter set predicts the 

new observed state: 

𝑦 =  
1

𝑛𝑓𝑙𝑢𝑥𝑒𝑠
∑ |

𝑣𝑗
𝑝𝑟𝑒𝑑

− 𝑣𝑗
𝑟𝑒𝑓

𝑣 𝐶𝑂 𝑢𝑝𝑡𝑎𝑘𝑒
𝑟𝑒𝑓

|

𝑛𝑓𝑙𝑢𝑥𝑒𝑠

𝑗=1

 (5.8) 

where the absolute difference between the predicted flux (𝑣𝑗
𝑝𝑟𝑒𝑑

) and experimentally observed flux 

(𝑣𝑗
𝑟𝑒𝑓

) is weighted by the experimentally-observed uptake flux of CO (𝑣 𝐶𝑂 𝑢𝑝𝑡𝑎𝑘𝑒
𝑟𝑒𝑓

) for the given 

observed state. 

To calculate the DAE solution for each parameter set at a given gas uptake flux profile, the 

MATLAB ode15s solver was used.  An event function was also incorporated to halt the integration if 

a mass balance was achieved prior to finishing the specified time interval or if the overall 
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computation time exceeded a predetermined limit.  A time trial determined the computation time 

limit where solve time and parameter fitness were compared for 100 parameter sets to understand 

the average time to solve.  In extreme scenarios, certain parameter sets would require tens of minutes 

to solve. Some kinetic parameter sets are unable to resolve the required gas uptake fluxes and result 

in DAE solutions where intermediate metabolites accumulate indefinitely, and a new steady state 

prediction is not achieved. To ensure a valid, mass-balanced, steady state solution was met, the values 

of the  𝑑𝑥/𝑑𝑡 vector calculated using Eq. (5.7) at the final concentration profile were checked.  If any 

individual metabolite balance deviated from 0 by more than 0.1, the fitness score for that parameter 

set was penalized and set to 100, effectively eliminating the parameter set. Our time trial indicated 

that a solve time cut off of 300 seconds captured all parameter sets with fitness values below 100.  

Parameter sets requiring greater than 300 seconds to solve typically did not reach a new mass-

balanced steady state so halting their integration did not negatively reduce the predictive power of 

the final ensemble.  To check for completed mass balance, the norm of the 𝑑𝑥/𝑑𝑡 vector calculated 

using Eq. (5.7) at the final concentration profile was determined.  If the norm was close to 0 (i.e. less 

than 1x10-6), the integration was considered complete, and the solver was halted.  

5.2.6 ESTIMATING CHANGE IN ETHANOL PRODUCTION  

To identify potential engineering targets for increasing ethanol production in the final kinetic 

parameter ensemble, the change in ethanol production with respect to the change in enzyme level 

for each enzymatic reaction in the network was calculated:  

𝑑𝑉𝑒𝑡𝑜ℎ

𝑑𝐸𝑛𝑧𝑟
𝑡𝑜𝑡 =  lim

ℎ→0

𝑉𝑒𝑡𝑜ℎ(𝐾𝑖 , 𝐸𝑛𝑧𝑟
𝑡𝑜𝑡 + ℎ) − 𝑉𝑒𝑡𝑜ℎ(𝐾𝑖 , 𝐸𝑛𝑧𝑟

𝑡𝑜𝑡)

ℎ
(5.9) 

where 𝑉𝑒𝑡𝑜ℎ is the predicted absolute flux through the net ethanol exchange reaction as a function of 

changing the level of an enzymatic reaction (𝑟) for a given kinetic parameter set 𝐾𝑖 in the final 
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ensemble of size 𝐼. 𝐸𝑛𝑧𝑟

𝑡𝑜𝑡 is the sum of all enzyme species fractions (free and metabolite-bound), 𝑒𝑟,𝑙, 

associated with a given enzymatic reaction (𝑟) made up of elementary steps (𝑙).  For the reaction 

described in Eq. (5.3), these species would be 𝐸, 𝐴𝐸, and 𝐵𝐸.  𝐸𝑛𝑧𝑟
𝑡𝑜𝑡 is always constrained to equal 

the initial total value to not violate mass conservation laws.  The initial 𝐸𝑛𝑧𝑟
𝑡𝑜𝑡 for all enzymes at the 

reference state is 1.  To simulate over or under expression conditions, this value would go up or down 

respectively and each initial enzyme fraction associated with the enzyme would be multiplied by the 

new value of 𝐸𝑛𝑧𝑟
𝑡𝑜𝑡. To simulate over or under expression Eq. (5.5) is redefined to reflect the changes 

in initial enzyme fraction values: 

𝑣𝑛 =  𝑘𝑛 ∏ 𝑥𝑚,𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑

|𝑆𝑚,𝑛|

𝑚
𝑆𝑚,𝑛<0

𝑤ℎ𝑒𝑟𝑒 𝑥𝑚,𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑(𝑒𝑟,𝑙) =  𝐸𝑛𝑧𝑟
𝑡𝑜𝑡 (5.10) 

 

The slopes defined in Eq. (5.9) were calculated using the forward finite difference 

approximation of derivatives with the step size ℎ specified as 1 x 10-6.  These slope estimates indicate 

how altering the expression of a given enzyme affects the rate of ethanol production. 

 

5.2.7 COMPUTATIONAL RESOURCES 

All code was written and executed in MATLAB (MATLAB and SimBiology Toolbox 

2015/2016a, The MathWorks, Inc., Natick Massachusetts, United States) on the Northwestern Quest 

High Performance Computing Cluster. The ensemble modeling framework was adapted from 

previous work by the Liao and Maranas groups, and the code was adapted from our previously 

published study.34,36,39,85  The parameter screening tests were run in parallel across 12 nodes on the 
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Quest Computing Cluster.  Sample MATLAB code is provided in the Tyo Lab Box repository for all 

steps described above. 

5.3. Results 

5.3.1 EXHAUSTIVE CROSS-VALIDATION TO SELECT REFERENCE STATE FROM AVAILABLE 

DATASET 

In the traditional ensemble modeling framework, kinetic parameter sets are sampled using a 

reference steady state network flux distribution.33 Typically, the flux distribution describing a 

growth-optimized, wildtype cell is used as the reference state from which the initial ensemble of 

kinetic parameter sets is sampled.  Then, the perturbed enzyme states (i.e. knockout or 

overexpression phenotypes) are used to screen the ensemble.33,34,37,41 In this study published flux 

states for wildtype C. autoethanogenum cells at low (0.5 gDCW/L), medium (1.1 gDCW/L), and high 

(1.3 gDCW/L) biomass concentrations were used.111  There was not an obvious reference state, as 

there were no genetic perturbations.  

To determine which of these three states would best serve as the reference state, 1000 kinetic 

parameter sets were sampled at each biomass concentration state and screened using the remaining 

two states (Table 5.1). This combinatorial, pair-wise pilot test revealed that only parameter sets 

sampled from the high biomass concentration state were able to resolve the remaining biomass 

concentration states.  Given this observation, the high biomass concentration flux state was used as 

the reference flux state for the remaining, larger-scale ensemble modeling efforts. This dataset shows 

that carbon uptake increases with increasing biomass concentration resulting in larger flux values 

for most reactions in the network.  In turn, the cross-validation test illustrates kinetic parameters 

sets that were sampled from lower absolute reaction fluxes are less able to resolve the larger flux 
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values observed at higher biomass concentrations. This trend has not been shown previously and 

highlights a limitation of this sampling method useful to consider in future modeling efforts.  

Table 5.1: Pair-Wise Pilot Test Results as Percentage of Total Parameter Sets Sampled at Each Reference State 
Able to Resolve the Remaining Screening Conditions 

 

Reference State 

Biomass 
Concentration 

(gDCW/L) 

CO Uptake 
Flux 

(mmol/gDCW/h) 
H2 Uptake Flux 
(mmol/gDCW/h) 

Screening Condition 

Low BC Med BC High BC 

Low BC 0.5 -21.4 -13.1  0% 0% 

Med BC 1.1 -25.6 -13.6 3.7%  0% 

High BC 1.3 -31.6 -12.9 2.4% 6.2%  

 

5.3.2 ENSEMBLE GENERATION AND SCREENING  

To generate a kinetic ensemble model of C. autoethanogenum, an initial ensemble of 359,000 

locally stable kinetic parameter sets were sampled at the high biomass concentration reference flux 

state (Fig. 5.2).  Our previous study demonstrated increased computational efficiency when 

parameter sets were screened against flux states in order of greatest distance from the reference 

state.85  For this dataset, the low biomass state is the furthest from the high biomass state when the 

cosine similarity of fluxes through measured uptake and export reactions are compared between 

states.  Therefore, the initial ensemble was screened against the low biomass state first using the DAE 

method described above.  The first screening step took approximately 10,000 CPU hours to complete.   
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Figure 5.2: Screening Steps Used to Reduce Initial Ensemble Down to Final Representative Kinetic 
Parameter Sets. General overview of ensemble modeling framework. Each screening step is denoted by a 
column, and the percent of models removed after each step is displayed in between.  The number of models 
remaining after each step (n) and the compute time (CPU hours) drops significantly following each screening 
step. After the four screening steps are completed, the initial ensemble of 359,000 locally stable kinetic 
parameter sets is reduced by 99.995%. 

As the DAE formulation imposes specific CO and H2 gas uptake rate constraints during 

integration, not all unique kinetic parameter sets in the initial ensemble are able to mathematically 

converge to a new, mass-balanced steady state, but result in the indefinite accumulation of 

intermediate(s).  In the first screening step, 98% of parameter sets were unable to achieve steady 

states at the lower gas uptake condition, leaving only 6,561 parameter sets in the ensemble.  These 

sets were then tested for steady states at the medium biomass condition, and 28% were removed, 

leaving 4,694 members in the ensemble. After removing parameter sets unable to predict the low 

and medium biomass concentration steady states, the fitness of each remaining parameter set was 

calculated, and a fitness threshold was applied (Fig. 5.3).  As shown, the remaining parameter sets 

are overwhelmingly better at predicting the medium biomass state over the low biomass state.  This 
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trend is expected, as the product fluxes of the medium biomass state are closer to the high biomass 

values as discussed above.  Parameter sets with fitness scores below 0.05 for both the low and 

medium biomass states were retained, leaving a final ensemble consisting of 18 unique kinetic 

parameter sets.  

 

Figure 5.3: Final Kinetic Ensemble Accurately Predicts Product Distributions of Low and Medium 
Biomass States. a) Fitness values calculated for low and medium biomass concentrations using Eq. 8 for each 
parameter set remaining after the first two screening steps (n = 4,694). Dark green markers represent the final 
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ensemble parameter sets with fitness scores below 0.05 for both conditions (n = 18). b) Product flux predictions 
for each remaining parameter set (n=18) when screened at the low and medium biomass gas uptake fluxes.  
Red lines indicate the experimentally observed values reported in Valgepea et al.111 2,3-butanediol (BDOH), 
Biomass Concentration (BC), Steady-state Flux (SS Flux).  

The remaining 18 kinetic parameter sets accurately predict the experimental flux values 

reported for gas uptake and product secretion for all three biomass concentration levels despite the 

differences in individual kinetic parameter values across each set (Fig. 5.3).  This final ensemble was 

used for all remaining model predictions to describe the kinetic behavior of C. autoethanogenum 

metabolism.  

5.3.3 PREDICTING INTRACELLULAR METABOLITE CONCENTRATIONS 

The Valgepea et al. publication included intracellular metabolite concentrations for 20 

metabolites included in the scope of our model.111  Metabolite concentrations were not used to 

generate the kinetic parameter sets as the ensemble modeling framework tracks metabolite 

concentrations normalized by the reference state concentrations as opposed to absolute values.33  

However, the model can be used to predict the concentration of these 20 metabolites at both the low 

and medium biomass states by multiplying the predicted relative changes in metabolite 

concentrations by the measured metabolite concentrations at the high biomass reference state.  

The final kinetic ensemble accurately predicts the metabolite concentration of both the low 

and medium biomass states, despite no metabolic concentration information used to train the model 

(Fig. 5.4).  For metabolites in our model where an average measurement and standard deviation were 

reported by Valgepea et al., 78% and 79% of the reported metabolite concentrations fell within the 

range covered by the parameter set predictions for the low and medium biomass concentrations, 

respectively.111  When comparing the mean of the ensemble, 59% of the predicted metabolite 

concentrations averaged across all 18 parameter sets in the model fell within one standard deviation 

of the measured average.   
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Figure 5.4: Kinetic Ensemble Accurately Predicts Intracellular Metabolite Concentrations. Average 
metabolite concentrations reported in Valgepea et al. are plotted in red for both low biomass concentration 
and medium biomass concentration states.111 Blue markers represent individual predictions of each remaining 
kinetic parameter set in the ensmble (n = 18). Concentrations reported on x-axis in μM.  Error bars indicate 
standard deviation of experimental measurements reported by Valgepea et al.111  
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5.3.4 REPRODUCING EXPERIMENTAL OBSERVATIONS 

To further test the predictive power of the final kinetic ensemble model, we wanted to 

determine how well the parameter set could recreate additional experimental observations.  

Valgepea et al. (2017a) observed a diminishing acetyl-CoA pool as biomass concentration increased 

despite an accompanying increased flux through the Wood/Ljungdahl pathway which converts CO 

to the acetyl-CoA intermediate.  Our kinetic ensemble model demonstrates this same behavior (Fig. 

5a-b) and captures the limiting acetyl-CoA pool trend previously identified.  Additionally, the flux 

balance analysis performed by Valgepea et al. (2017a) indicates that most ethanol produced by the 

cell likely results from acetate conversion to acetaldehyde through the acetaldehyde oxidoreductase 

reaction (ACAFDOR) rather than from acetyl-coA through either of the acetaldehyde dehydrogenase 

reactions (ACALDx/y) (Fig. 5.5c). The authors hypothesized this route was preferred as it produces 

an additional ATP energy molecule. Liew et al. also showed knocking out the aldehyde:ferredoxin 

oxidoreductase (AOR) enzyme responsible for the ACAFDOR reaction greatly reduced ethanol 

production during growth on CO and almost completely abolished ethanol production during growth 

on CO2 and H2.117  Our final kinetic ensemble model predicts this same behavior and further 

demonstrates that most individual parameter sets predict excessive acetaldehyde is likely produced 

and converted back to acetyl-CoA, forming an ATP-generating loop in the network (Fig. 5.5d).  This 

requires the ACALDx/y reactions to run in reverse, a possibility validated by our Gibbs free energy 

estimations. Another study indicated Clostridium coskatii’s lack of the ACAFDOR reaction is 

responsible for its lack of ethanol production 126. Our model predictions reiterate the importance of 

this reaction in ethanol production and imply further characterization of this pathway loop might 

benefit ethanol production. 
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Figure 5.5: Kinetic Ensemble Model Validates Previously Observed Phenotypes. a) Intracellular acetyl-
CoA concentration (μM) predicted for each identified kinetic parameter (n=18) set at low (0.5 gDCW/L), 
medium (1.1 gDCW/L), and high (1.3 gDCW/L) biomass concentrations. Individual predictions are plotted over 
box plots representing prediction consistency across the entire ensemble. Light grey boxes indicate 95% 
confidence intervals. Dark grey boxes indicate 1 S.D. Center lines indicate the prediction mean. b) Flux through 
Wood/Ljungdahl pathway toward acetyl-CoA (mmol/gDCW/L) at low, medium, and high biomass 
concentrations.  Please note that all parameter sets predict the same flux at the high biomass state because all 
initial parameter sets are sampled as a function of the high biomass flux distribution. c) Metabolic pathway 
loop governing ethanol production flux. Metabolite and enzyme abbreviations provided in Supplemental 
Information Tables S1-S2.  d) Flux predicted through ACALDx/y, ACAFDOR, and ethanol production reactions 
for each parameter set in the final ensemble. Colors in bar graph correspond with arrow colors in metabolic 
map displayed in part c).  

 

5.3.5 IDENTIFYING ENGINEERING TARGETS FOR INCREASED ETHANOL PRODUCTION 

To determine the best enzyme candidates to target for improved ethanol production, we 

analyzed the change in ethanol production as a function of change in enzyme expression.  By 

calculating the forward finite difference slopes for each enzymatic reaction across each parameter 

set we identified reactions where over or under expression may increase ethanol production (Fig. 
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5.6). As shown in the violin plot, the effect of changing enzyme concentration is tightly predicted by 

the entire ensemble for some reactions (e.g. FTHFL and HYDFDNy) but shows more variation for 

others (e.g. RNF, CODH_ACS, and METR).  

Overall, the predictions are consistent with intuition from the metabolic network.  For 

example, overexpressing alcohol dehydrogenase (ALCDx), which is the final step in ethanol synthesis, 

is predicted to improve productivity. Furthermore, in some cases, our target enzyme predictions 

correlate with previous experiments regarding ethanol production.  For example, a Δpta mutant of C. 

ljungdahlii revealed a lower acetate to ethanol ratio than the WT and reduced acetate production.127  

Similarly, when PTA was inactivated or knocked out in an undisclosed strain, Clostridium sp. MT112, 

acetate production was abolished, and ethanol production increased.128  Berzin et al. do not report 

the effects these changes have on growth rate.128 While the PTA knockouts were performed in a 

different strain, the results do reconfirm our prediction that reducing the PTA enzyme activity might 

increase ethanol production over acetate in C. autoethanogenum. Initially, knocking down PTA 

expression is non-intuitive. Our model predictions indicate most ethanol flux is generated through 

this reaction’s role in acetate production (Fig. 5.5 c-d). However, reducing PTA expression and forcing 

acetyl-CoA flux to acetaldehyde could improve ethanol production to an extent.  Unfortunately, 

knocking down PTA expression  might not be a sustainable engineering solution as  the loss of ATP 

generation from acetate formation is the suspected cause of decreased cell growth for this C. 

ljungdahlii mutant.127 However, this prediction may indicate an opportunity to tune PTA expression 

to an optimum point where all acetate produced is converted to ethanol.  

A similar study in C. autoethanogenum showed knocking out the carbon monoxide 

dehydrogenase and acetyl-CoA synthase enzyme complex (CODH_ACS) increased ethanol production 

and reduced biomass production during heterotrophic (consuming CO and fructose) growth. 
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However, the authors also found that the  CODH_ACS enzyme complex is essential during auxotrophic 

(CO only) growth, and the mutant cannot grow.129  Again, our model predictions imply knocking 

down (rather than completely knocking out) the CODH_ACS reaction may lead to high ethanol 

production without fully compromising cell growth.  Hypothetically, an optimized CODH_ACS 

expression could alleviate this essentiality limitation while still improving ethanol production.  

In some cases, different parameter sets in the ensemble predict under expression would 

increase ethanol production while others predict over expression would be better (e.g. ATPase and 

MTHD).  In these cases, while the type of enzyme engineering to best increase ethanol production 

may not be clear, the variation in ensemble prediction implies ethanol production is sensitive to these 

reactions, suggesting they are potentially additional candidates for further experimental 

characterization. 

Figure 5.6: Evaluating the Change in Ethanol Production as a Function of Enzyme Expression Elucidates 
Potential Engineering Targets. Violin plots show distribution of finite difference estimates of entire kinetic 
ensemble model for multiple enzymatic reactions.  Shorter, wider violins indicate more tightly predicted 
changes while longer, narrower violins indicate a larger variation in ensemble predictions.  The midlines 
indicate the population mean. All enzymes were evaluated, but only enzymes with absolute slope means above 
0.1 are displayed.  
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5.4 Discussion 

Acetogenic clostridia including C. autoethanogenum provide a promising avenue for gas 

phase fermentation of industrial waste products into valuable chemicals. Current engineering efforts 

are focused on ethanol and 2,3-butanediol production, but the metabolic engineering potential of the 

strain could likely be harnessed to develop even higher complexity products.112,115 To best activate 

the full potential of these strains, accurate computational models are needed to identify the 

governing forces of metabolism including but not limited to cofactor and energy limitations, 

regulation pathways, and rate-limiting steps. While progress has been made to develop detailed 

stoichiometric constraint-based models, our work demonstrates the first kinetic representation of C. 

autoethanogenum.110,111,119 Specifically, we have shown that our final ensemble of kinetic parameters 

accurately predicts intracellular metabolite concentrations and reconfirms previously observed 

trends across varying biomass concentrations. 

Traditionally in ensemble modeling, enzyme perturbation data sets are used to iteratively 

screen the kinetic parameter sets.33,34,36,39,41  However, as discussed previously, the genetic 

engineering toolbox for C. autoethanogenum is limited.  Therefore, we needed to utilize datasets 

differentiated by environmental conditions rather than changes in enzyme expression as they are 

more readily available.  To take advantage of an existing published dataset generated at different 

biomass concentration states, we reframed the ensemble modeling governing equations as a DAE 

problem.  Instead of simulating enzyme level changes, specific, constant gas uptake fluxes are 

enforced, resulting in changes to the CO and H2 substrate pools from the initial reference state.  By 

first screening out parameter sets unable to resolve these changes in gas uptake, we drastically prune 
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down our initial kinetic ensembles prior to even comparing their prediction fitness.  In reframing our 

problem as a DAE where we can screen for specific flux values rather than genetic changes, we have 

broadened the application of the method. For example, studies comparing a cell’s ability to uptake 

different substrates could equally benefit from a kinetic analysis utilizing this expanded framework. 

The dataset showed increases in biomass concentration led to increased CO gas uptake by 

cells.111  As the gas uptake distribution changed, the ratio of ethanol to acetate production also 

changed. Our final kinetic ensemble model predicts this shift in product flux distribution across all 

three measured biomass concentration states.  Furthermore, our ensemble confirms a limiting 

acetyl-CoA pool and the importance of the ACAFDOR reaction in ethanol production.111  Additionally, 

as the absolute fluxes increased with increasing biomass concentration, we observed a limitation in 

selecting low flux distributions as the reference state used to sample the initial kinetic parameter 

sets. Parameters screened at the low and medium biomass concentrations were not able to predict 

the higher carbon uptake flux solutions. This observation would likely not surface using traditional 

data sets for ensemble modeling because the wild-type flux distribution under optimal growth 

conditions is typically selected as the reference state. In contrast, knockout or overexpression 

datasets typically do not result in flux values higher than the reference values across the network as 

is the case with the increasing biomass concentration dataset used in this study.  

Importantly, we were able to construct a kinetic representation of C. autoethanogenum core 

metabolism using a small dataset consisting of only three experimental conditions over a range of 

biomass concentrations. Quality experimental data is difficult to collect, and often larger datasets are 

unavailable in the literature. But in the case of our model, fewer observations were needed than 

expected to generate an accurate model with validated predictive power. Interestingly, the inflexible 

topology of the C. autoethanogenum metabolism may be the reason we can successfully capture the 
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cell’s kinetic behavior with fewer screening conditions.  The core metabolic network covered in this 

study has few branch points or cycles and few alternative pathways for producing energy 

equivalents.  Therefore, given the constrained substrate uptake, the network has only so many 

options for resolving the flux through the system. More complex metabolic network representations 

(i.e. E. coli core metabolism) would require more screening observations to achieve the same 

resolution. 

In addition to resolving existing experimental observations, our kinetic model of C. 

autoethanolgenum also informs future experimental efforts.  In this work, we have shown the model’s 

ability to predict enzyme targets for improved ethanol production.  However, the scope of the model 

enables additional predictive capabilities as well.  Lastly, as the ensemble modeling method heavily 

relies on the reference flux state used during parameter sampling as the predominant input, this 

method could be expanded to resolve flux distribution uncertainties.33  When predicting the 

reference flux state, FVA results indicate multiple flux distributions meet the known experimentally 

observed constraints. For this analysis, we chose a solution maximizing CO2 and ATP production. 

However, as demonstrated previously, the procedure outlined in this study could be performed for 

multiple reference states within the allowable FVA solution, and split ratios between parallel 

reactions using different cofactors (e.g. ACALDx/y or HYDFDNx/y) could be elucidated.34,43 In all, our 

DAE-based ensemble modeling framework appears to be a useful strategy for building a kinetic 

metabolic model using non-genetic changes with the capability to make engineering predictions.  
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Chapter 6: Conclusions and Future Directions 

6.1 Conclusions 

 This dissertation presents computational modeling solutions to metabolic engineering 

challenges.  Through iterative efforts between computational and experimental efforts, this work 

demonstrates the importance of model-guided engineering design in tackling complicated biological 

questions.  By adapting existing constraint-based and kinetic modeling methods for novel metabolic 

engineering uses, we have broadened the application of these methods and in some cases improved 

their performance ability. 

 In Chapter 2, I have made a case for the importance of metabolic modeling and provided a 

general overview of major constraint-based modeling methods and their successful 

implementations.  I also highlight the limitations of constraint-based steady models and the inherent 

need for robust kinetic modeling methods.  Lastly, I introduce the specific Monte Carlo sampling-

based Ensemble Modeling method. By describing the simple, step-by-step implementation of the base 

framework, I provide a foundation for the expansive work described in Chapters 4 and 5 which builds 

on this method.  

 In Chapter 3, I discussed the importance of inducing and harnessing non-growth metabolism 

for the development of an improved carbon-yield bioproduction platform.  Current understanding of 

non-growth metabolism is limited but knowledge of what governs cellular metabolism under 
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quiescence has broad potential impacts in the metabolic engineering and human health fields.  Using 

the Minimization of Metabolic Adjustment (MOMA) constraint-based modeling method, essential 

enzyme knockouts resulting in metabolite auxtotrophies were identified as potential targets for 

inducing quiescence in E. coli cells.  Thirty knockouts spanning E. coli metabolism were selected for 

experimental characterization and initial tests comparing growth in rich and minimal media 

confirmed the predicted auxotrophies. Further validating its potential to model non-growth 

metabolism, we also used MOMA to identify the individual media supplements needed to recover 

growth in each knockout candidate for shock switch experimental tests and were able to confirm at 

least one correct supplement for each candidate.  This work indicates the promise of coupling 

experimental and computational efforts to enable the study of non-growth metabolism.  Following 

completion of additional experimental characterization, the MOMA method predictions for non-

growth flux distributions for each auxotrophic candidate will be analyzed and hypothesizes of 

metabolic objectives for non-growing cells can be validated.  

 In Chapter 4, we turn to kinetic ensemble modeling and our efforts to alleviate computational 

limitations in the existing framework.  By identifying and removing linearly dependent metabolite 

and enzyme fraction species and screening for locally stable parameter sets, computational time 

requirements for representative unit tests on a large model were reduced 70%.  We also 

demonstrated a way to rank screening data a priori to ensure the most difficult to predict 

perturbations are screened first.  This simple pre-calculation step is quick and resulted in a 

computational time improvement of 48% over screening data ranked in reverse order for our large 

model unit testing. These improvements, which can be incorporated into all ensemble modeling 

efforts, provide computational benefits but also ensure selection of locally stable and thus more 

biologically representative kinetic descriptions of cellular metabolism. 
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 In Chapter 5, the accelerated ensemble modeling framework described in Chapter 4 was used 

to develop the first kinetic representation of C. autoethanogenum. By broadening the method to 

screen against non-genetic perturbations of metabolism, we used ensemble modeling to accurately 

predict internal metabolite concentrations and potential engineering targets for improving ethanol 

production on syngas.  This work opens avenues for further kinetic modeling efforts to benefit 

commercial strain development and highlights the benefits of supplementing standard constraint-

based modeling with kinetic information on a less-characterized microorganism where a lack of 

genetic engineering tools is limiting. 

6.2 Future Directions 

6.2.1 IMPROVING MODEL ACCURACY 

The Monte Carlo-based ensemble modeling method takes a continuous kinetic parameter 

space and samples several possible kinetic parameter sets that each accurately represent the 

provided reference state flux condition.33  The Maranas Lab adapted the traditional EM method by 

incorporating a global optimization step, specifically implementing a genetic algorithm framework  

into their workflow.39,54 Rather than discarding an entire kinetic parameter set for being unable to 

predict a single enzyme perturbation, as a few bad parameters in a set of several hundred could be 

the culprit, the genetic algorithm allows you to mix and match elementary parameter sets clustered 

by enzyme from different models generated in the initial ensemble seeding.  This is possible as 

parameters are sampled at the reaction level to ensure the net flux through each reaction matches 

the specified reference flux distribution.  The genetic algorithm framework then looks to see if 

different combinations of these theoretically accurate parameters better fit the provided data than 

the original parent parameter sets.  This method keeps all originally generated parameters in 
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contention for the solution rather than completely throwing out models that do not accurately 

predict the data gathered for a number of cellular perturbations.   

While the genetic algorithm potentially helps explore the sample space more thoroughly 

there is no specific evidence it is the best global optimization technique for this type of problem.  

Other non-metabolic kinetic modeling efforts have successfully utilized different metaheuristic 

techniques including particle swarm optimization which may be better suited.130 The genetic 

algorithm method requires setting several parameters in advance, including but not limited to the 

number of mutations per iteration, the number of generations per test case, and the size of population 

screened in each generation.  There are not specific guidelines for pre-determining these parameters 

and therefore extensive characterization must be completed to define the optimal choices for each 

unique application.  Extensive work was completed to determine optimal genetic algorithm 

parameter values for the core E. coli model during the course of this dissertation research.  However, 

the results indicated that each GA design parameter is not independent of the other so clear 

governing factors were not identifiable. Instead solutions generally improved with increasing 

parameter set sample size regardless of the genetic algorithm design parameter tested.  To see the 

detailed results of these tests, please refer to the Tyo Lab Box Repository file “Genetic Algorithm 

Implementation Notes” in my designated dissertation folder. While the results of genetic algorithm 

investigation were not conclusive regarding the effectiveness of implementing this method in 

coordination with the traditional ensemble modeling framework, we do hypothesize that identifying 

and implementing other meta-heuristic global optimization methods in tandem with the initial 

parameter sampling could be very valuable toward defining more accurate kinetic models of 

metabolism.131,132 In any case, we know that there are a range of parameter sets that can equally 

predict all experimental conditions because of the presence of many local optima in the solution 

space.  Therefore, if we later choose to employ an additional optimization step like a genetic 
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algorithm in tandem with the traditional EM framework, we would want to run the analysis multiple 

times to generate several (rather than just one), optimized kinetic parameter solutions.  This could 

provide a more robust way to generate our final, representative kinetic parameter ensemble, with 

the hope being these parameter sets would have better prediction ability than those generated 

without the additional global optimization step.  In addition to expanding the EM-GA idea 

implemented by Khodayari et al. to generate multiple, optimized parameter sets, we would also like 

to explore the potential loss of local stability that might occur when mixing and matching kinetic 

parameter sets for a given reaction across the ensemble.39  Our hypothesis is that by swapping out 

kinetic parameters for a given reaction, the new child parameter set may no longer meet our local 

stability criteria.  However additional analysis of local stability for these child parameter sets could 

also potentially point to net reactions most likely leading to over local instability. 

As the acceleration techniques described in Chapter 4 allow us to sample and screen more 

parameter sets, expanding the method to include a follow-up global optimization step is no longer 

computationally intractable.  For example, the traditional framework could be used to generate a 

final ensemble of parameter sets able to predict the screening data and then these sets could be used 

to seed a global search metaheuristic method.  A more thorough review of the available methods and 

their strengths may also indicate a better metaheuristic algorithm than the genetic algorithm for 

searching the kinetic parameter sample spaces.  For example other evolutionary population-based 

metaheuristic algorithms, including scatter search, particle swarm optimization, or differential 

evolution, may be better choices.133–135 Alternatively, a trajectory-based algorithm could be applied 

but due to the multi-model solution space typically seen in systems biology models, local search 

methods would likely not perform well unless our initial parameter set guesses were each tested 

individually or a uniform initial population was selected covering the sample space.136,137  The final 

Clostrdium autoethanogenum kinetic representation  developed in Chapter 5 would be an optimal 
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test case for investigating the potential benefits of coupling a metaheuristic algorithm to the 

ensemble modeling framework.  The final 18 unique parameter sets could be used as starting points 

for further optimization and improved prediction fitness. 

6.2.2 STRUCTURAL ENSEMBLE MODELING 

Using EM, we can also interrogate possible regulation effects by creating individual 

ensembles of separate structural models that include different unconfirmed regulatory 

relationships.47  For example the base model network would be defined and then a second model 

structure would be created that incorporated a single, unique regulatory interaction (i.e. metabolite 

Xm allosterically inhibits enzyme En).  Then an initial ensemble of parameter sets would be sampled 

for each model structure (the base case and the plus-one regulation case) and screened.  If the model 

structure including the regulation reaction’s final ensemble of parameters had the better group 

fitness scores than the base model, the regulation reaction incorporated would be marked as a 

potential candidate for model inclusion.  After testing several individual regulatory relationships, 

combinatorial model structures would also be interrogated. In this iterative method, a final list of 

highly-probable regulatory reactions would be compiled for better informed experimental 

characterization. 

It is important to note that these simulations quickly expand the number of computations 

required as a traditional ensemble modeling effort would be applied to each model structure tested.  

However, our efforts to accelerate the calculations in the screening step greatly relieve this 

computational strain and allow for more exhaustive, previously intractable, structural interrogation. 

Exploring regulatory control of cellular metabolism is crucial to successfully predicting 

phenotypic outcomes. In some cases, kinetic models lacking allosteric effects were unable to 

accurately predict experimental data, highlighting the importance of including regulation in kinetic 
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models.36,81  By exploiting these structural EM methods, a novel application, we can identify the major 

regulatory effects limiting metabolic activity in quiescent cells as well as uncover previously 

unidentified regulatory relationships in the C. autoethanogenum model. 

6.2.3 INTERROGATING PARALLEL REACTIONS 

 As mentioned in Chapters 4 and 5, ensemble modeling can be used to flush out unresolved 

flux values.  Previous studies have demonstrated the successful use of ensemble modeling to resolve 

unknown split ratios between unresolved branched pathways.40,43 For example, Rizk et al. performed 

ensemble modeling using four unique reference states which varied in the split ratio between the 

glycolysis and pentose phosphate pathways.40 The remaining parameter set ensembles after 

screening were then compared and split ratios resulting in poor fitness results were ruled out.  

Through this analysis they were able to constrain the previously unresolved split ratio more 

accurately. I believe this technique could be adapted to begin to understand flux splits between 

parallel enzymatic reactions using different cofactors.  

For C. autoethanogenum, flux variability when fitting the reference flux state is predominantly 

governed by the need to balance redox cofactors (i.e. NAD(P)H and ferredoxin) system-wide.  Several 

reactions throughout C. autoethanogenum can be performed by parallel enzymes with different 

cofactor requirements. For our analysis in Chapter 5, the reference flux distribution was selected by 

assuming the majority of flux through a given reaction would be utilized by the enzyme with the 

highest measured activity.122,123 However by pre-assuming different flux ratio splits between these 

parallel reactions and comparing ensemble modeling results from different reference flux 

distributions, we could gain insight in to which co-factor specific enzyme dominates flux through its 

respective pathway under varying metabolic conditions.  The most interesting case would be pinning 

down the flux split between the NADP- and NAD-dependent hydrogenases (HYDFDNy and HYDFDNx 



104 
 
respectively in our model).  Previous experimental characterization implies the NADP-dependent 

enzyme is predominantly expressed but a NAD-dependent analog is present at significantly lower 

levels.122 Constraint-based modeling results indicate a significant impact of both enzymes being 

present in the system.  Therefore, using our kinetic modeling technique to determine a reasonable 

flux split between these two enzymes would provide valuable insight into understanding the redox 

balance of the entire metabolism.  Thoroughly understanding energy balances for clostridia strains 

is particularly important as previous work indicates central pathways are governed by 

thermodynamics rather than substrate-level regulation.111,119,120  

6.2.4 EXHAUSTIVE SENSITIVITY ANALYSIS 

 In Chapter 5, a slope-based sensitivity analysis was performed to determine reactions 

throughout the C. autoethanogenum network potentially governing ethanol production.  This analysis 

could be scaled across other areas of metabolism as well. For example, a similar enzyme expression 

analysis could be performed to increase other products of interest including 2,3-butanediol or 

pathway intermediates like acetyl-CoA or pyruvate as starting points for heterologous pathway 

designs.  Combinatorial enzyme expression and knockout changes could be interrogated as well.  We 

could also build upon the framework and expand the scope of the model (i.e. include more reactions) 

as additional screening dataset become available from our experimental collaborators. 

 In addition to an enzyme-specific sensitivity analysis, performing a sensitivity analysis on the 

kinetic parameter set solutions would help elucidate rate-limiting reactions in the network.  

Specifically the rate-determining step of each reaction can be determined by computing the degree 

of rate control for each step l, Xrc,l
138,139: 

Xrc,l = (
kl

R
) (

δR

δkl
)  #(6.1)  
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where R is the net rate of reaction, kl is the rate constant for step l, and the partial derivative 𝛿𝑅/ 𝛿𝑘𝑙 

is taken while holding the equilibrium constant for step l, kl,forward/kl,reverse constant. If the degree 

of rate control is above 0.95, the step is considered rate-determining.138,139 In our networks, linear 

pathway reactions can be lumped to determine the most rate-determining step across all included 

elementary steps. We can also compare the ratio of the forward rate of each step to the net reaction 

rate to identify rate-determining steps.  An elementary step is considered quasi-equilibrated if this 

ratio is close to 0 and rate-determining if this ratio is close to 1.138   

6.2.5 KINETIC MODELS OF NON-GROWTH METABOLISM 

 Ultimately combining the two efforts of this dissertation, predicting non-growth metabolism 

outcomes and building kinetic ensemble models, is a necessary goal in achieving quiescent cell 

biosynthesis platforms.  

Understanding the steady state fluxes of non-growing cells is a necessary first step in 

characterizing stationary metabolism.  However, previous work indicates microbes likely employ 

extensive regulation during stationary phase to reduce metabolic activity and conserve their limited 

resources.140 Specifically, allosteric regulation likely governs the cell’s global response, as opposed to 

transcriptional or translational regulation, because the cells are too resource limited to induce a full 

scale genetic overhaul.86,140 E. coli in particular are known to maintain their genetic and metabolic 

machinery in a way that allows them to quickly ramp back up to a full growth phenotype as soon as 

resources become available again.76  Therefore, once we confidently identify the governing kinetics 

and regulatory behavior of stationary phase metabolism, we can work towards overcoming the 

current limitations to metabolic activity and fully realize uncoupled growth and production. The FBA 

and MOMA methods do not explicitly model regulation, but allow us to make assumptions about 

global optima and indirectly infer regulation. 
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While the ensemble methods for system-wide kinetic parameter determination are well 

developed and have undergone numerous improvements, I propose this method has further 

unexplored application in modeling the kinetic and regulatory behavior of non-growing cells.  This 

work would point to the rate-determining steps in central carbon metabolism and the regulatory 

control parameters governing cellular decisions.   

Unfortunately, while there are several genetic and environmental options for inducing an E. 

coli cell to enter a non-growth phase, as mentioned in Chapter 3, these cells often become 

metabolically dormant.  In essence, the cells enter a lock-down mode to attempt to survive but in 

doing so also shut down large portions of their metabolic activity.    

Despite some consistent mechanisms, the intensity of the cellular response program varies 

significantly in regard to the type of perturbation it experiences.76,141  Some perturbations are less 

intense to the cells and allow them to still maintain some of their metabolic activity.142  For example 

if cells are still able to synthesize energy, cells may not completely reduce their nutrient uptake.140  

To date, most studies investigating cells entering a non-growth phase focus on carbon starvation 

transitions.140  Our work will instead focus on understanding metabolic limitations in carbon-rich 

environments which are not well understood or characterized.  If the limitations can be identified 

through a combination of experimental and computational efforts, we can then work toward 

alleviating them. 

We know complicated regulation networks inside the cell govern the perturbation responses 

leading to non-growth phenotypes.  These regulation mechanisms assess the risk of a given 

perturbation to the cell and then initiate the appropriate response cell-wide.  For this project it is 

important to characterize what regulatory mechanisms govern metabolic activity 1) during the 
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transition from growth to non-growth and 2) during the sustained non-growth phase following a 

growth inhibiting perturbation.   

The exact mechanisms of regulation during and after the transition to non-growth stages are 

not well understood and govern cellular processes at multiple levels including transcription, 

translation, and post-translation. Many studies conclude that transcriptional regulation may be over-

emphasized due to ease of screening methods.143  For example, in a study of the small, genome 

reduced bacteria, Mycoplasma pneumoniae, the authors observed similar complex regulatory 

responses to environmental and genetic perturbations as seen in more complex bacteria.  However, 

M. pneumonia only have about eight transcription and sigma factors available for genetic regulation 

which is far fewer than these more complex bacterial species.144 This disparity indicates that 

transcriptional regulation may play a less significant role in overall metabolic regulation than 

previously assumed.  Ultimately, this smaller bacterium is able to induce equally effective responses 

to perturbations despite far fewer tools for regulating gene expression.143 

Furthermore, other studies indicate post-translational and allosteric regulation of metabolic 

enzymes and other metabolite-protein interactions may play the most prominent roles in stress 

responses.145,146 These studies are especially significant to our work as non-growing cells may not 

have the capacity for a proteome overhaul which further points to the importance of understanding 

post-translational regulation in our systems.   

Similarly the short response times required for cells to quickly recover growth rates when 

nutrients are reintroduced into their environments point to regulation mechanisms occurring on 

faster time scales than gene expression can resolve.143,147  Studies monitoring protein synthesis 

during stationary phase also echo this sentiment.  While protein synthesis still occurs during 

stationary phase, the rates are as low as 0.05% of exponential growth protein synthesis.76  Also while 
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protein synthesis is essential during a cell’s transition from growth to non-growth phases, it can be 

completely knocked out during stationary phase without killing the cells.76  As cells do not seem to 

rely on synthesis of new proteins to survive in stationary phase, it could imply that modification or 

inhibition of existing protein activity, rather than transcriptional or translational regulation, prevents 

metabolic activity in non-growing cells. 

The above work indicates that cells, through years of evolution, have developed robust 

metabolisms with the ability to respond to and survive the dangers of numerous environmental 

perturbations.22  However, cells entering non-growth stages from genetic perturbations may not be 

subject to all of the same extensive levels of regulation.  Recently, Slavov et al. studied auxotrophic 

yeast in a glucose-rich environment.  They observed expression of stationary phase proteins at levels 

40-50% below what is typically seen in naturally starved strains indicating the auxotrophic strain 

was slightly deregulated.148 This research hints that genetically induced auxotrophs, which enter a 

non-growth phase through non-native scenarios, may bypass certain regulation signaling pathways 

normally triggered in natural starvation scenarios.   

The above points lead us to believe that substrate-level regulation of existing metabolic 

proteins in stationary phase govern metabolic activity rather than the production of new gene 

products regulated at the transcriptional and translational levels.  This hypothesis signals to us the 

importance of understanding and adapting protein-level regulation of non-growth cells to improve 

their metabolic activity.  We are interested in genetic manipulation of cellular growth processes by 

inducing non-growth phase in nutrient rich environments.  However, we need to achieve better 

understanding of non-growth metabolism and regulation first.  Through robust computational 

models we can better resolve experimental data to point towards mechanisms of regulation and even 

make predictions for regulatory improvement.  By better understanding the metabolism of non-
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growing cells with the aim of improving their metabolic activity, we will be better equipped to 

decouple microbial production from growth in industrial strains and achieve higher product yields. 

Most importantly the implied prominence of substrate-level regulation indicates our auxotrophic 

studies are well-suited for ensemble modeling characterization as the framework is already well 

suited to capture these effects.39,47,149 
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APPENDICES 

APPENDIX A 
Table A.1: Reaction constraints imposed on iJO1366 when determining WT reference flux distribution 

required for MOMA predictions.  Values taken from 13C fluxomic measurements performed by Haverkorn et 

al.65 

 Reaction Reaction Description Flux Value 95% CI 

1 EX_glc(e) D-Glucose exchange -8.26 0 

2 EX_ac(e) Acetate exchange 4.89 0 

3 GLCptspp D-glucose transport via PEP:Pyr PTS (periplasm) 8.13 0.34 

4 G6PDH2r glucose 6-phosphate dehydrogenase 2.39 0.3 

5 PGL 6-phosphogluconolactonase 1.65 0.44 

6 GND phosphogluconate dehydrogenase 1.65 0.44 

7 PGI glucose-6-phosphate isomerase 5.71 0.39 

8 EDD 6-phosphogluconate dehydratase 0.74 0.65 

9 PFK phosphofructokinase 6.46 0.62 

10 FBA fructose-bisphosphate aldolase 6.46 0.62 

11 TPI triose-phosphate isomerase 6.46 0.62 

12 TKT1 transketolase 0.53 0.15 

13 TKT2 transketolase 0.27 0.15 

14 TALA transaldolase 0.53 0.15 

15 GAPD glyceraldehyde-3-phosphate dehydrogenase 13.87 0.84 

16 PGK phosphoglycerate kinase -13.87 0.84 

17 PGM phosphoglycerate mutase -12.94 0.84 

18 ENO enolase 12.94 0.84 

19 PYK pyruvate kinase 9.99 0.98 

20 PDH pyruvate dehydrogenase 9.14 0.64 

21 CS citrate synthase 2.2 0.45 

22 ACONTa aconitase (half-reaction A, Citrate hydro-lyase) 2.2 0.45 

23 ACONTb aconitase (half-reaction B, Isocitrate hydro-lyase) 2.2 0.45 

24 ICDHyr isocitrate dehydrogenase (NADP) 2.2 0.45 

25 AKGDH 2-Oxogluterate dehydrogenase 1.29 0.44 

26 SUCOAS succinyl-CoA synthetase (ADP-forming) -1.29 0.44 

27 FUM fumarase 1.29 0.44 

28 MDH malate dehydrogenase 0.81 0.5 

29 ICL Isocitrate lyase 0 0 

30 MALS malate synthase 0 0 

31 PPCK phosphoenolpyruvate carboxykinase 0.23 0.26 

32 PPC phosphoenolpyruvate carboxylase 2.64 0.78 

33 PTAr phosphotransacetylase 5.48 0.57 
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APPENDIX B 

Table B.1: Growth outcomes for candidate essential auxotroph knockout strains grown on EZ Rich vs Minimal 
Media. 

   Experimental Results 

 
Knockout Model Predicted Media Supplements 

EZ Rich 
Media 

Minimal 
Media 

1 ArgA arginine  

2 AroA phenylalanine && tyrosine && tryptophan  

3 AroB quinate || shikimate  

4 AroC phenylalanine && tyrosine && tryptophan && histidine  

5 AroEec shikimate  

6 BioC biotin  

7 CysC cysteine  

8 CysD cysteine  

9 CysI or CysJ cysteine  

10 CysQ cysteine  

11 GlnA glutamine  

12 GltA arginine || glutamine || glutamate || proline  

13 GuaA guanine  

14 HisA histidine  

15 Icd arginine || glutamine || glutamate || proline  

16 IcdC  Note: this knockout was used as non-essential control   

17 IlvA isoleucine  

18 LeuB leucine  

19 LysA lysine  

20 MetA methionine  

21 MetF S-Methyl-L-methionine  

22 PanB pantothenate  

23 PanCec pantothenate  

24 PdxAJ pyridoxine  

25 PdxB pyridoxine  

26 ProC proline  

27 PurE guanine || adenine  

28 PyrC cytidine  

29 SerC pyridoxine  

30 ThrB threonine  

Note: Knockout strains requiring pyridoxine did not grow under EZ rich media66,67 because the media did not 
contain pyridoxine.  This result indicates a positive prediction of the appropriate auxotroph metabolite.  See 
Appendix C for further confirmation. 
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APPENDIX C 

Table C.1: Predicted and Confirmed Auxotrophic Supplements by Strain 

  KO Model Predicted Supplements Confirmed Supplements* 

1 ArgA arginine || ornithine arginine 

2 AroA phenylalanine && tyrosine && tryptophan phe&&tyr&&trp 

3 AroB quinate || shikimate shikimate 

4 AroC phenylalanine && tyrosine && tryptophan && histidine  Phe/Tyr/Trp/AA (not His) 

5 AroEec shikimate shikimate 

6 BioC biotin biotin 

7 CysC cysteine || taurine || glutathione cysteine, glutathione, taurine 

8 CysD cysteine || taurine || glutathione cysteine, glutathione, taurine 

9 CysI or CysJ cysteine || glutathione cysteine, glutathione 

10 CysQ cysteine || taurine || glutathione cysteine, glutathione, taurine 

11 GlnA glutamine glutamine 

12 GltA 
arginine || glutamine || glutamate || proline || 2-oxoglutarate || 

citrate || glutathione || ornithine  

glu, gln, pro, combination, 

glutathione 

13 GuaA guanine || guanosine guanosine 

14 HisA histidine histidine 

15 Icd 
arginine || glutamine || glutamate || proline || 2-oxoglutarate || 

glutathione || ornithine  

arginine || glutamine || glutamate || 

proline || glutathione 

16 IcdC 
 Note: incorrect Keio strain obtained so this knockout was 

used as non-essential control  
 n/a 

17 IlvA isoleucine isoleucine 

18 LeuB leucine leucine 

19 LysA lysine lysine 

20 MetA methionine methionine 

21 MetF S-Methyl-L-methionine methionine 

22 PanB pantothenate pantothenate 

23 PanCec pantothenate pantothenate 

24 PdxAJ pyridoxine || pyridoxal || pyridoxamine pyridoxine, pyridoxamine 

25 PdxB pyridoxine || pyridoxal || pyridoxamine pyridoxine, pyridoxamine 

26 ProC proline proline 

27 PurE adenosine || adenine || guanosine || guanine || inosine || xanthine adenine, adenosine, guanosine 

28 PyrC cytidine || cytosine || orotate || uracil || uridine uracil, uridine, cytidine 

29 SerC pyridoxine || pyridoxal || pyridoxamine pyridoxine 

30 ThrB threonine threonine 

* Note: not all predicted supplements were tested for each knockout but at least one supplement was confirmed 

for each candidate. 
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APPENDIX D 

Table D.1: Predicted Auxotrophic Knockouts and Metabolite(s) Needed to Recover Growth 

# Rxn # Rxn Rxn Description MOMA Predicted Recovery Exchange 
Metabolites 

1 460 5DOAN 5-deoxyadenosine nuclosidase val-L[e] 

2 509 ACGK acetylglutamate kinase arg-L[e], orn[e] 

3 510 ACGS N-acetylglutamate synthase arg-L[e], orn[e] 

4 511 ACHBS 
2-aceto-2-hydroxybutanoate 
synthase 

ile-L[e] 

5 513 ACLS acetolactate synthase val-L[e] 

6 532 ACODA acetylornithine deacetylase arg-L[e], orn[e] 

7 536 ACONTa 
aconitase (half-reaction A, 
Citrate hydro-lyase) 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23cgmp[e], 2ddglcn[e], 34dhpac[e], 
3hcinnm[e], 3hpp[e], 3hpppn[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], acac[e], acgal[e], acgam1p[e], 
acmum[e], acolipa[e], acser[e], adocbl[e], ag[e], 
akg[e], ala-L[e], alaala[e], all-D[e], alltn[e], 
amp[e], arbt[e], arbtn-fe3[e], arg-L[e], asn-L[e], 
aso3[e], butso3[e], ca2[e], cbi[e], chol[e], cl[e], 
co2[e], cobalt2[e], colipap[e], crn[e], cu[e], 
cu2[e], cyan[e], cys-D[e], damp[e], dgmp[e], 
dgsn[e], dms[e], duri[e], eca4colipa[e], enlipa[e], 
ethso3[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dhbzs[e], fe3hox-un[e], fecrm-un[e], 
feoxam[e], fru[e], fum[e], g1p[e], g3pe[e], 
g3pg[e], g6p[e], galct-D[e], galt[e], gam6p[e], 
gbbtn[e], gdp[e], glc-D[e], glcn[e], glcr[e], gln-L[e], 
glu-L[e], glyb[e], glyclt[e], gthox[e], gthrd[e], 
gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], k[e], lac-D[e], leu-L[e], lipa[e], 
lipoate[e], mal-L[e], malttr[e], man6p[e], 
melib[e], meoh[e], met-D[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mmet[e], mn2[e], mnl[e], 
mobd[e], n2o[e], na1[e], nh4[e], ni2[e], no[e], 
o16a4colipa[e], o2[e], o2s[e], orn[e], pacald[e], 
phe-L[e], pheme[e], pi[e], pnto-R[e], pro-L[e], 
progly[e], pser-L[e], r5p[e], rib-D[e], sbt-D[e], 
sel[e], slnt[e], so2[e], so3[e], so4[e], succ[e], 
sucr[e], taur[e], tcynt[e], thrp[e], thym[e], 
thymd[e], tma[e], tsul[e], tungs[e], udpacgal[e], 
udpg[e], udpglcur[e], urea[e], uri[e], zn2[e] 



123 
 

8 537 ACONTb 
aconitase (half-reaction B, 
Isocitrate hydro-lyase) 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23cgmp[e], 2ddglcn[e], 34dhpac[e], 
3hcinnm[e], 3hpp[e], 3hpppn[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], acac[e], acgal[e], acgam1p[e], 
acmum[e], acolipa[e], acser[e], adocbl[e], ag[e], 
akg[e], ala-L[e], alaala[e], all-D[e], alltn[e], 
amp[e], arbt[e], arbtn-fe3[e], arg-L[e], asn-L[e], 
aso3[e], butso3[e], ca2[e], cbi[e], chol[e], cl[e], 
co2[e], cobalt2[e], colipap[e], crn[e], cu[e], 
cu2[e], cyan[e], cys-D[e], damp[e], dgmp[e], 
dgsn[e], dms[e], duri[e], eca4colipa[e], enlipa[e], 
ethso3[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dhbzs[e], fe3hox-un[e], fecrm-un[e], 
feoxam[e], fru[e], fum[e], g1p[e], g3pe[e], 
g3pg[e], g6p[e], galct-D[e], galt[e], gam6p[e], 
gbbtn[e], gdp[e], glc-D[e], glcn[e], glcr[e], gln-L[e], 
glu-L[e], glyb[e], glyclt[e], gthox[e], gthrd[e], 
gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], k[e], lac-D[e], leu-L[e], lipa[e], 
lipoate[e], mal-L[e], malttr[e], man6p[e], 
melib[e], meoh[e], met-D[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mmet[e], mn2[e], mnl[e], 
mobd[e], n2o[e], na1[e], nh4[e], ni2[e], no[e], 
o16a4colipa[e], o2[e], o2s[e], orn[e], pacald[e], 
phe-L[e], pheme[e], pi[e], pnto-R[e], pro-L[e], 
progly[e], pser-L[e], r5p[e], rib-D[e], sbt-D[e], 
sel[e], slnt[e], so2[e], so3[e], so4[e], succ[e], 
sucr[e], taur[e], tcynt[e], thrp[e], thym[e], 
thymd[e], tma[e], tsul[e], tungs[e], udpacgal[e], 
udpg[e], udpglcur[e], urea[e], uri[e], zn2[e] 

9 538 ACOTA acetylornithine transaminase arg-L[e], orn[e] 

10 554 ADCL 4-aminobenzoate synthase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

11 555 ADCS 
4-amino-4-deoxychorismate 
synthase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 
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12 575 ADSK adenylyl-sulfate kinase 

ac[e], alltn[e], arab-L[e], arbtn-fe3[e], butso3[e], 
cgly[e], cpgn[e], cu[e], cys-D[e], cys-L[e], damp[e], 
dcmp[e], dgsn[e], dopa[e], enter[e], ethso3[e], 
frulys[e], g3pi[e], gal-bD[e], glu-L[e], gthrd[e], 
gtp[e], hdcea[e], ile-L[e], isetac[e], lac-D[e], 
lcts[e], leu-L[e], lipoate[e], mal-D[e], mal-L[e], 
malttr[e], man[e], melib[e], mso3[e], ocdca[e], 
orot[e], peamn[e], phe-L[e], pro-L[e], succ[e], 
sulfac[e], taur[e], thm[e], tre[e], ttdcea[e], 
udpg[e], udpgal[e], xan[e] 

13 576 ADSL1r adenylsuccinate lyase 
23camp[e], 3amp[e], ade[e], adn[e], amp[e], dad-
2[e], damp[e] 

14 577 ADSL2r adenylosuccinate lyase 

23camp[e], 23cgmp[e], 3amp[e], 3gmp[e], ade[e], 
adn[e], amp[e], dad-2[e], damp[e], dgmp[e], 
dgsn[e], dimp[e], din[e], gmp[e], gsn[e], gua[e], 
hxan[e], imp[e], ins[e], xan[e], xmp[e], xtsn[e] 

15 578 ADSS adenylosuccinate synthase 
23camp[e], 3amp[e], ade[e], adn[e], amp[e], dad-
2[e], damp[e] 

16 602 AGPR 
N-acetyl-g-glutamyl-phosphate 
reductase 

arg-L[e], orn[e] 

17 606 AIRC2 
phosphoribosylaminoimidazole 
carboxylase 

23camp[e], 23cgmp[e], 3amp[e], 3gmp[e], ade[e], 
adn[e], amp[e], dad-2[e], damp[e], dgmp[e], 
dgsn[e], dimp[e], din[e], gmp[e], gsn[e], gua[e], 
hxan[e], imp[e], ins[e], xan[e], xmp[e], xtsn[e] 

18 607 AIRC3 
phosphoribosylaminoimidazole 
carboxylase (mutase rxn) 

23camp[e], 23cgmp[e], 3amp[e], 3gmp[e], ade[e], 
adn[e], amp[e], dad-2[e], damp[e], dgmp[e], 
dgsn[e], dimp[e], din[e], gmp[e], gsn[e], gua[e], 
hxan[e], imp[e], ins[e], xan[e], xmp[e], xtsn[e] 

19 616 ALAR alanine racemase ala-D[e], alaala[e] 

20 656 AMAOTr 
adenosylmethionine-8-amino-
7-oxononanoate transaminase 

btn[e] 

21 658 AMPMS2 
4-amino-2-methyl-5-
phosphomethylpyrimidine 
synthetase 

thm[e] 

22 665 ANPRT 
anthranilate 
phosphoribosyltransferase 

indole[e], trp-L[e] 

23 666 ANS anthranilate synthase indole[e], trp-L[e] 

24 668 AOXSr2 
8-amino-7-oxononanoate 
synthase 

btn[e] 
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25 688 APRAUR 
5-amino-6-(5-
phosphoribosylamino)uracil 
reductase 

12ppd-R[e], 12ppd-S[e], 15dap[e], 23camp[e], 
23cump[e], 23dappa[e], 2ddglcn[e], 34dhpac[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam1p[e], acmana[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], akg[e], ala-B[e], ala-D[e], 
ala-L[e], all-D[e], alltn[e], amp[e], anhgm[e], arab-
L[e], arbt[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
aso3[e], asp-L[e], but[e], ca2[e], cbi[e], cbl1[e], 
cd2[e], cgly[e], chol[e], chtbs[e], cit[e], cl[e], 
cm[e], co2[e], cobalt2[e], colipap[e], crn[e], 
csn[e], cu2[e], cyan[e], cynt[e], cys-D[e], cys-L[e], 
cytd[e], dad-2[e], dca[e], dcmp[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dopa[e], 
doxrbcn[e], dtmp[e], duri[e], eca4colipa[e], 
enlipa[e], etha[e], ethso3[e], f6p[e], fald[e], 
fe2[e], fe3[e], fe3dcit[e], fe3dhbzs[e], fe3hox[e], 
fecrm[e], feenter[e], frulys[e], fruur[e], fuc-L[e], 
fusa[e], g3pc[e], g3pe[e], g3pg[e], g3pi[e], 
g3ps[e], g6p[e], gal-bD[e], gal1p[e], galct-D[e], 
galctn-D[e], galt[e], gam6p[e], gbbtn[e], gdp[e], 
glc-D[e], glcr[e], glcur[e], glu-L[e], glyald[e], 
glyb[e], glyc3p[e], gmp[e], gsn[e], gthox[e], 
gtp[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], imp[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lys-L[e], mal-L[e], malt[e], maltttr[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], mg2[e], mincyc[e], minohp[e], mn2[e], 
mobd[e], n2o[e], na1[e], nac[e], nh4[e], ni2[e], 
no2[e], no3[e], novbcn[e], o16a4colipa[e], o2[e], 
o2s[e], ocdca[e], ocdcea[e], octa[e], orot[e], 
pacald[e], phe-L[e], pheme[e], pi[e], pnto-R[e], 
ppal[e], pppn[e], ppt[e], progly[e], psclys[e], pser-
L[e], ptrc[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sel[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], tartr-L[e], tcynt[e], 
thm[e], thym[e], tma[e], tmao[e], tre[e], trp-L[e], 
tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], tungs[e], tyr-
L[e], tyrp[e], uacgam[e], udpacgal[e], udpgal[e], 
urea[e], uri[e], val-L[e], xan[e], xtsn[e], xylu-L[e], 
zn2[e] 

26 708 ARGSL argininosuccinate lyase arg-L[e] 

27 709 ARGSS argininosuccinate synthase arg-L[e] 

28 714 ASAD 
aspartate-semialdehyde 
dehydrogenase 

3hpppn[e], but[e], uri[e] 
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29 728 ASP1DC aspartate 1-decarboxylase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], all-
D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
asn-L[e], aso3[e], asp-L[e], btn[e], but[e], 
butso3[e], ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], 
chol[e], chtbs[e], cit[e], cl[e], cm[e], cmp[e], 
co2[e], cobalt2[e], colipa[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], crn-D[e], csn[e], cu[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], cys-L[e], cytd[e], dad-
2[e], damp[e], dca[e], dcmp[e], dcyt[e], ddca[e], 
dgmp[e], dgsn[e], dha[e], dimp[e], din[e], dms[e], 
dmso[e], dopa[e], doxrbcn[e], dtmp[e], dump[e], 
duri[e], eca4colipa[e], enlipa[e], enter[e], etha[e], 
etoh[e], f6p[e], fald[e], fe2[e], fe3[e], fe3dcit[e], 
fe3dhbzs[e], fe3hox[e], fe3hox-un[e], fecrm[e], 
fecrm-un[e], feenter[e], feoxam[e], feoxam-un[e], 
for[e], fru[e], frulys[e], fruur[e], fuc-L[e], fum[e], 
fusa[e], g1p[e], g3pc[e], g3pe[e], g3pi[e], g3ps[e], 
g6p[e], gal[e], gal-bD[e], gal1p[e], galct-D[e], 
galctn-D[e], galctn-L[e], galt[e], galur[e], gam[e], 
gam6p[e], gbbtn[e], gdp[e], glc-D[e], glcn[e], 
glcur[e], glcur1p[e], gln-L[e], glu-L[e], gly[e], 
glyald[e], glyb[e], glyc[e], glyc-R[e], glyc2p[e], 
glyc3p[e], glyclt[e], gmp[e], gsn[e], gthox[e], 
gthrd[e], gtp[e], gua[e], h[e], h2[e], h2o[e], 
h2o2[e], h2s[e], hacolipa[e], halipa[e], hdca[e], 
hdcea[e], hg2[e], his-L[e], hom-L[e], hxa[e], 
hxan[e], idon-L[e], ile-L[e], imp[e], indole[e], 
inost[e], ins[e], isetac[e], k[e], kdo2lipid4[e], lac-
D[e], lcts[e], leu-L[e], lipa[e], lipa_cold[e], 
lipoate[e], lys-L[e], lyx-L[e], mal-D[e], mal-L[e], 
malt[e], malthx[e], maltpt[e], malttr[e], 
maltttr[e], man[e], man6p[e], manglyc[e], 
melib[e], meoh[e], met-D[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sel[e], ser-D[e], 
ser-L[e], skm[e], slnt[e], so2[e], so3[e], so4[e], 
spmd[e], succ[e], sucr[e], sulfac[e], tartr-D[e], 
tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
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thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 

30 729 ASPCT aspartate carbamoyltransferase 

23ccmp[e], 23cump[e], 3cmp[e], 3ump[e], 
cmp[e], csn[e], cytd[e], dcmp[e], dcyt[e], 
dump[e], duri[e], orot[e], uacgam[e], udpacgal[e], 
udpg[e], udpgal[e], udpglcur[e], ump[e], ura[e], 
uri[e] 

31 730 ASPK aspartate kinase 3hpppn[e], but[e], uri[e] 

32 736 ASPTA aspartate transaminase 
23cump[e], acmana[e], asn-L[e], asp-L[e], 
glcur[e], h2[e], lyx-L[e], sulfac[e], tartr-D[e], 
uacgam[e] 

33 749 ATPPRT ATP phosphoribosyltransferase his-L[e] 

34 758 BPNT 3,5-bisphosphate nucleotidase 

ac[e], alltn[e], arab-L[e], arbtn-fe3[e], butso3[e], 
cgly[e], cpgn[e], cu[e], cys-D[e], cys-L[e], damp[e], 
dcmp[e], dgsn[e], dopa[e], enter[e], ethso3[e], 
frulys[e], g3pi[e], gal-bD[e], glu-L[e], gthrd[e], 
gtp[e], hdcea[e], ile-L[e], isetac[e], lac-D[e], 
lcts[e], leu-L[e], lipoate[e], mal-D[e], mal-L[e], 
malttr[e], man[e], melib[e], mso3[e], ocdca[e], 
orot[e], peamn[e], phe-L[e], pro-L[e], succ[e], 
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sulfac[e], taur[e], thm[e], tre[e], ttdcea[e], 
udpg[e], udpgal[e], xan[e] 

35 763 BTS5 Biotin synthase btn[e] 

36 812 CHORS chorismate synthase ala-B[e] 

37 813 CHRPL Chorismate pyruvate lyase 

23camp[e], 23cump[e], 26dap-M[e], 3ump[e], 
5dglcn[e], ade[e], agm[e], ala-D[e], amp[e], 
butso3[e], csn[e], dcmp[e], ddca[e], dmso[e], 
fald[e], fe3dhbzs[e], fecrm[e], feoxam-un[e], 
fruur[e], galctn-L[e], glcur[e], gln-L[e], glyc3p[e], 
gmp[e], lcts[e], lyx-L[e], maltpt[e], maltttr[e], 
man6p[e], melib[e], pacald[e], pro-L[e], progly[e], 
sulfac[e], tartr-L[e], udpacgal[e], urea[e] 

38 878 CS citrate synthase 

12ppd-R[e], 23ccmp[e], 23dappa[e], 26dap-M[e], 
2ddglcn[e], 34dhpac[e], 3amp[e], 3hcinnm[e], 
3hpp[e], 3ump[e], 4hoxpacd[e], 5mtr[e], ac[e], 
acald[e], acgal[e], acmum[e], acolipa[e], acser[e], 
adocbl[e], ag[e], akg[e], alaala[e], all-D[e], 
alltn[e], arbt[e], arg-L[e], asn-L[e], aso3[e], ca2[e], 
cbi[e], chol[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipap[e], cpgn-un[e], crn[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], damp[e], dcyt[e], 
dgmp[e], dms[e], dopa[e], doxrbcn[e], dtmp[e], 
dump[e], eca4colipa[e], enlipa[e], enter[e], 
etoh[e], fe2[e], fe3[e], fe3dcit[e], fe3dhbzs[e], 
feoxam[e], feoxam-un[e], fruur[e], fum[e], 
fusa[e], g3pe[e], g3ps[e], gal-bD[e], gal1p[e], 
galctn-D[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
gln-L[e], glu-L[e], glyald[e], glyb[e], glyc[e], glyc-
R[e], glyc3p[e], gthox[e], gthrd[e], gtp[e], h[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hg2[e], his-L[e], hom-L[e], hxa[e], 
hxan[e], ile-L[e], inost[e], ins[e], k[e], 
kdo2lipid4[e], leu-L[e], lipa[e], lipa_cold[e], mal-
D[e], mal-L[e], malthx[e], man[e], manglyc[e], 
melib[e], meoh[e], met-D[e], mg2[e], mincyc[e], 
mn2[e], mnl[e], mobd[e], n2o[e], na1[e], nh4[e], 
ni2[e], nmn[e], no2[e], no3[e], novbcn[e], 
o16a4colipa[e], o2[e], o2s[e], ocdca[e], octa[e], 
orn[e], pheme[e], pi[e], ppa[e], pro-L[e], 
progly[e], pydx[e], r5p[e], rfamp[e], sbt-D[e], 
sel[e], ser-D[e], slnt[e], so2[e], so3[e], so4[e], 
spmd[e], succ[e], tartr-D[e], tartr-L[e], tcynt[e], 
thym[e], tma[e], tsul[e], ttdcea[e], ttrcyc[e], 
tungs[e], udpacgal[e], udpgal[e], urea[e], xtsn[e], 
xyl-D[e], zn2[e] 

39 888 CTPS2 CTP synthase (glutamine) 23ccmp[e], 3cmp[e], cmp[e], cytd[e] 
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40 906 CYSS cysteine synthase 

12ppd-R[e], 23ccmp[e], 23cump[e], 3amp[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpppn[e], 
5dglcn[e], acald[e], acgal1p[e], ade[e], agm[e], 
ala-B[e], ala-L[e], asp-L[e], cgly[e], cm[e], cmp[e], 
crn-D[e], cys-D[e], cys-L[e], dca[e], dgsn[e], 
dha[e], dopa[e], doxrbcn[e], fe3hox[e], fecrm-
un[e], fru[e], frulys[e], fusa[e], g1p[e], g3pc[e], 
g3pg[e], g3pi[e], gal1p[e], galt[e], galur[e], 
glcn[e], glcr[e], glcur[e], glu-L[e], gthrd[e], idon-
L[e], ile-L[e], lac-D[e], mincyc[e], nmn[e], 
novbcn[e], ppt[e], pro-L[e], ptrc[e], rfamp[e], sbt-
D[e], sulfac[e], tmao[e], ttdca[e], ttrcyc[e], val-
L[e] 

41 908 CYSTL cystathionine b-lyase 

23ccmp[e], 23dappa[e], 2ddglcn[e], 3hpppn[e], 
5dglcn[e], ac[e], agm[e], arg-L[e], cmp[e], 
fe3dhbzs[e], glcur1p[e], glu-L[e], gly[e], hdca[e], 
his-L[e], leu-L[e], malthx[e], maltpt[e], man[e], 
met-L[e], metsox-R-L[e], metsox-S-L[e], mmet[e], 
mnl[e], ptrc[e], pyr[e], ser-D[e], thm[e], tyrp[e], 
udpacgal[e], xylu-L[e] 

42 943 DAPDC diaminopimelate decarboxylase 
frulys[e], lys-L[e], psclys[e] 

43 955 DB4PS 
3,4-Dihydroxy-2-butanone-4-
phosphate synthase 

12ppd-S[e], 14glucan[e], 15dap[e], 23camp[e], 
23ccmp[e], 23cgmp[e], 26dap-M[e], 34dhpac[e], 
3amp[e], 3hpp[e], 3hpppn[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], acac[e], acald[e], acgal[e], 
acgal1p[e], acgam[e], acmana[e], acmum[e], 
acnam[e], acser[e], ade[e], adn[e], adocbl[e], 
ag[e], agm[e], akg[e], ala-B[e], ala-D[e], ala-L[e], 
all-D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arg-L[e], aso3[e], asp-L[e], btn[e], but[e], 
ca2[e], cbi[e], cgly[e], chol[e], chtbs[e], cl[e], 
cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
cu[e], cu2[e], cyan[e], cys-D[e], cys-L[e], cytd[e], 
dad-2[e], damp[e], dca[e], dcmp[e], ddca[e], 
dgsn[e], dha[e], dimp[e], dms[e], doxrbcn[e], 
dump[e], duri[e], eca4colipa[e], enlipa[e], 
etha[e], etoh[e], f6p[e], fe2[e], fe3[e], 
fe3dhbzs[e], fe3hox[e], fe3hox-un[e], feoxam[e], 
fru[e], frulys[e], fusa[e], g3pc[e], g3pg[e], gal-
bD[e], gal1p[e], galctn-L[e], gbbtn[e], gdp[e], glc-
D[e], glcn[e], glcur1p[e], gln-L[e], glu-L[e], gly[e], 
glyb[e], glyc[e], glyc2p[e], gmp[e], gthox[e], 
gthrd[e], h[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hg2[e], his-L[e], 
hom-L[e], hxa[e], idon-L[e], inost[e], k[e], lac-L[e], 
lcts[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], 
man6p[e], manglyc[e], meoh[e], met-D[e], 
metsox-R-L[e], metsox-S-L[e], mg2[e], mincyc[e], 
mn2[e], mnl[e], mobd[e], mso3[e], n2o[e], na1[e], 
nac[e], nh4[e], ni2[e], no[e], no3[e], novbcn[e], 
o16a4colipa[e], o2[e], o2s[e], ocdca[e], 
ocdcea[e], orot[e], pacald[e], peamn[e], 
pheme[e], pi[e], ppa[e], ppal[e], pppn[e], ppt[e], 
psclys[e], pydam[e], pyr[e], quin[e], r5p[e], 
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rfamp[e], rmn[e], sbt-D[e], sel[e], ser-D[e], 
slnt[e], so2[e], so3[e], so4[e], succ[e], tartr-L[e], 
tcynt[e], thm[e], thrp[e], thym[e], thymd[e], 
tma[e], tmao[e], tre[e], tsul[e], ttrcyc[e], tungs[e], 
tym[e], tyr-L[e], tyrp[e], udpacgal[e], udpgal[e], 
ump[e], ura[e], urea[e], uri[e], xmp[e], xyl-D[e], 
zn2[e] 

44 956 DBTS dethiobiotin synthase btn[e] 

45 969 DDPA 
3-deoxy-D-arabino-
heptulosonate 7-phosphate 
synthetase 

man[e], quin[e], skm[e] 

46 976 DHAD1 
dihydroxy-acid dehydratase 
(2,3-dihydroxy-3-
methylbutanoate) 

val-L[e] 

47 977 DHAD2 
Dihydroxy-acid dehydratase 
(2,3-dihydroxy-3-
methylpentanoate) 

ile-L[e] 

48 989 DHFS dihydrofolate synthase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

49 994 DHNPA2r 
dihydroneopterin aldolase 
reversible 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
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pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

50 999 DHORTS dihydroorotase 

23ccmp[e], 23cump[e], 3cmp[e], 3ump[e], 
cmp[e], csn[e], cytd[e], dcmp[e], dcyt[e], 
dump[e], duri[e], orot[e], uacgam[e], udpacgal[e], 
udpg[e], udpgal[e], udpglcur[e], ump[e], ura[e], 
uri[e] 

51 1001 DHPPDA2 
diaminohydroxyphosphoribosyl
aminopryrimidine deaminase 
(25drapp) 

12ppd-R[e], 12ppd-S[e], 15dap[e], 23camp[e], 
23cump[e], 23dappa[e], 2ddglcn[e], 34dhpac[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam1p[e], acmana[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], akg[e], ala-B[e], ala-D[e], 
ala-L[e], all-D[e], alltn[e], amp[e], anhgm[e], arab-
L[e], arbt[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
aso3[e], asp-L[e], but[e], ca2[e], cbi[e], cbl1[e], 
cd2[e], cgly[e], chol[e], chtbs[e], cit[e], cl[e], 
cm[e], co2[e], cobalt2[e], colipap[e], crn[e], 
csn[e], cu2[e], cyan[e], cynt[e], cys-D[e], cys-L[e], 
cytd[e], dad-2[e], dca[e], dcmp[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dopa[e], 
doxrbcn[e], dtmp[e], duri[e], eca4colipa[e], 
enlipa[e], etha[e], ethso3[e], f6p[e], fald[e], 
fe2[e], fe3[e], fe3dcit[e], fe3dhbzs[e], fe3hox[e], 
fecrm[e], feenter[e], frulys[e], fruur[e], fuc-L[e], 
fusa[e], g3pc[e], g3pe[e], g3pg[e], g3pi[e], 
g3ps[e], g6p[e], gal-bD[e], gal1p[e], galct-D[e], 
galctn-D[e], galt[e], gam6p[e], gbbtn[e], gdp[e], 
glc-D[e], glcr[e], glcur[e], glu-L[e], glyald[e], 
glyb[e], glyc3p[e], gmp[e], gsn[e], gthox[e], 
gtp[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], imp[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lys-L[e], mal-L[e], malt[e], maltttr[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], mg2[e], mincyc[e], minohp[e], mn2[e], 
mobd[e], n2o[e], na1[e], nac[e], nh4[e], ni2[e], 
no2[e], no3[e], novbcn[e], o16a4colipa[e], o2[e], 
o2s[e], ocdca[e], ocdcea[e], octa[e], orot[e], 
pacald[e], phe-L[e], pheme[e], pi[e], pnto-R[e], 
ppal[e], pppn[e], ppt[e], progly[e], psclys[e], pser-
L[e], ptrc[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sel[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], tartr-L[e], tcynt[e], 
thm[e], thym[e], tma[e], tmao[e], tre[e], trp-L[e], 
tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], tungs[e], tyr-
L[e], tyrp[e], uacgam[e], udpacgal[e], udpgal[e], 
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urea[e], uri[e], val-L[e], xan[e], xtsn[e], xylu-L[e], 
zn2[e] 

52 1002 DHPS2 dihydropteroate synthase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

53 1007 DHQS 3-dehydroquinate synthase man[e], quin[e], skm[e] 

54 1008 DHQTi 
3-dehydroquinate dehydratase, 
irreversible 

skm[e] 

55 1025 DNMPPA 
Dihydroneopterin 
monophosphate 
dephosphorylase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 
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56 1026 DNTPPA 
Dihydroneopterin triphosphate 
pyrophosphatase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

57 1031 DPCOAK dephospho-CoA kinase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], 
alltn[e], amp[e], anhgm[e], arab-L[e], arbt[e], 
arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], asn-
L[e], aso3[e], asp-L[e], btn[e], but[e], butso3[e], 
ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], chol[e], 
chtbs[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipa[e], colipap[e], cpgn[e], cpgn-
un[e], crn[e], crn-D[e], csn[e], cu2[e], cyan[e], 
cynt[e], cys-D[e], cys-L[e], cytd[e], dad-2[e], 
damp[e], dca[e], dcmp[e], ddca[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dmso[e], 
dopa[e], doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc-R[e], 
glyc2p[e], glyc3p[e], glyclt[e], gmp[e], gsn[e], 
gthox[e], gthrd[e], gtp[e], gua[e], h[e], h2[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hdcea[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], hxan[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lipoate[e], lys-L[e], lyx-L[e], mal-D[e], 
mal-L[e], malt[e], malthx[e], maltpt[e], malttr[e], 
man[e], man6p[e], manglyc[e], melib[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
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o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 



135 
 

58 1032 DPR 2-dehydropantoate 2-reductase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 2ddglcn[e], 34dhpac[e], 3amp[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], agm[e], akg[e], ala-B[e], 
ala-D[e], ala-L[e], alaala[e], alltn[e], amp[e], 
anhgm[e], arab-L[e], arbt[e], arbtn[e], arbtn-
fe3[e], arg-L[e], ascb-L[e], asn-L[e], aso3[e], asp-
L[e], btn[e], but[e], butso3[e], ca2[e], cbi[e], 
cbl1[e], cd2[e], cgly[e], chol[e], chtbs[e], cit[e], 
cl[e], cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
csn[e], cu[e], cu2[e], cyan[e], cynt[e], cys-D[e], 
cys-L[e], cytd[e], dad-2[e], damp[e], dca[e], 
dcmp[e], dcyt[e], ddca[e], dgmp[e], dgsn[e], 
dha[e], dimp[e], din[e], dms[e], dmso[e], dopa[e], 
doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], fru[e], frulys[e], fruur[e], fuc-L[e], 
fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], g3pg[e], 
g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc2p[e], 
glyc3p[e], glyclt[e], gmp[e], gsn[e], gthox[e], 
gthrd[e], gtp[e], gua[e], h[e], h2[e], h2o[e], 
h2o2[e], h2s[e], hacolipa[e], halipa[e], hdca[e], 
hdcea[e], hg2[e], his-L[e], hom-L[e], hxa[e], 
hxan[e], idon-L[e], imp[e], indole[e], inost[e], 
ins[e], isetac[e], k[e], kdo2lipid4[e], lac-D[e], lac-
L[e], lcts[e], leu-L[e], lipa[e], lipa_cold[e], 
lipoate[e], lys-L[e], lyx-L[e], mal-D[e], mal-L[e], 
malt[e], malthx[e], maltpt[e], malttr[e], 
maltttr[e], man[e], man6p[e], manglyc[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rib-D[e], sbt-D[e], sel[e], ser-D[e], ser-
L[e], skm[e], slnt[e], so2[e], so3[e], so4[e], 
spmd[e], sucr[e], sulfac[e], tartr-D[e], tartr-L[e], 
taur[e], tcynt[e], thm[e], thr-L[e], thrp[e], 
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thym[e], thymd[e], tma[e], tmao[e], tre[e], trp-
L[e], tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], 
tungs[e], tym[e], tyr-L[e], tyrp[e], uacgam[e], 
udpacgal[e], udpg[e], udpgal[e], udpglcur[e], 
ump[e], ura[e], urea[e], uri[e], val-L[e], xan[e], 
xmp[e], xtsn[e], xyl-D[e], xylu-L[e], zn2[e] 

59 1055 E4PD 
Erythrose 4-phosphate 
dehydrogenase 

pydam[e], pydx[e], pydxn[e] 

60 1100 EGMEACPR 
Enoylglutaryl-[ACP] methyl 
ester reductase 

btn[e] 

61 1102 ENO enolase 

12ppd-R[e], 2ddglcn[e], 4abut[e], akg[e], ala-D[e], 
ala-L[e], alaala[e], arg-L[e], asn-L[e], asp-L[e], 
cbl1[e], chtbs[e], cit[e], dopa[e], fe3dcit[e], 
fum[e], gln-L[e], glu-L[e], glyc3p[e], glyclt[e], 
gthrd[e], ile-L[e], lac-L[e], mal-L[e], orn[e], pro-
L[e], psclys[e], ptrc[e], succ[e], tartr-D[e], tartr-
L[e], thr-L[e], val-L[e] 

62 1106 EPMEACPR 
Enoylpimeloyl-[ACP] methyl 
ester reductase 

btn[e] 
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63 1220 FMNAT FMN adenylyltransferase 

23cump[e], 23dappa[e], 3gmp[e], acald[e], 
acgal1p[e], acmana[e], acnam[e], ade[e], adn[e], 
adocbl[e], ala-B[e], alaala[e], anhgm[e], arbtn-
fe3[e], ascb-L[e], asn-L[e], asp-L[e], butso3[e], 
cd2[e], chtbs[e], csn[e], cys-L[e], cytd[e], damp[e], 
dimp[e], dtmp[e], duri[e], ethso3[e], etoh[e], 
fe3dcit[e], for[e], fruur[e], fum[e], g3pi[e], 
g3ps[e], g6p[e], galct-D[e], gam6p[e], glu-L[e], 
glyc[e], glyc-R[e], gmp[e], gtp[e], gua[e], his-L[e], 
imp[e], indole[e], ins[e], isetac[e], kdo2lipid4[e], 
lac-L[e], leu-L[e], lipoate[e], lys-L[e], lyx-L[e], mal-
L[e], malthx[e], maltpt[e], man[e], man6p[e], 
mnl[e], mso3[e], nac[e], nmn[e], no[e], no3[e], 
ocdca[e], orot[e], pacald[e], peamn[e], ppal[e], 
pro-L[e], psclys[e], pser-L[e], pydam[e], pydx[e], 
r5p[e], rmn[e], spmd[e], taur[e], thr-L[e], thrp[e], 
thymd[e], ttdca[e], tym[e], uacgam[e], uri[e], 
xan[e], xtsn[e], xylu-L[e] 

64 1267 G3PD2 
glycerol-3-phosphate 
dehydrogenase (NADP) 

g3pc[e], g3pe[e], g3pg[e], g3pi[e], g3ps[e], 
glyald[e], glyc[e], glyc2p[e], glyc3p[e] 

65 1280 G5SADs 
L-glutamate 5-semialdehyde 
dehydratase (spontaneous) 

pro-L[e], progly[e] 

66 1315 GAPD 
glyceraldehyde-3-phosphate 
dehydrogenase 

etoh[e] 

67 1319 GCALDD Glycolaldehyde dehydrogenase 

23camp[e], 26dap-M[e], 3cmp[e], 3ump[e], 
adocbl[e], ala-L[e], anhgm[e], arbtn-fe3[e], asn-
L[e], asp-L[e], crn-D[e], cytd[e], dad-2[e], dha[e], 
etha[e], fum[e], g3pg[e], galct-D[e], galt[e], gly[e], 
glyc[e], gua[e], his-L[e], ins[e], isetac[e], lac-L[e], 
lipoate[e], lyx-L[e], mal-L[e], malttr[e], maltttr[e], 
nmn[e], progly[e], pydx[e], r5p[e], spmd[e], 
succ[e], tre[e], trp-L[e], xan[e], xylu-L[e] 

68 1326 GF6PTA 
glutamine-fructose-6-
phosphate transaminase 

acgam[e], acgam1p[e], acmana[e], acmum[e], 
acnam[e], anhgm[e], chtbs[e], gam[e], gam6p[e], 
uacgam[e] 

69 1359 GLNS glutamine synthetase gln-L[e] 

70 1421 GMPS2 GMP synthase 
23cgmp[e], 3gmp[e], dgmp[e], dgsn[e], gmp[e], 
gsn[e], gua[e] 

71 1452 GTPCI GTP cyclohydrolase I 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 
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72 1453 GTPCII2 GTP cyclohydrolase II (25drapp) 

12ppd-R[e], 12ppd-S[e], 15dap[e], 23camp[e], 
23cump[e], 23dappa[e], 2ddglcn[e], 34dhpac[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam1p[e], acmana[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], akg[e], ala-B[e], ala-D[e], 
ala-L[e], all-D[e], alltn[e], amp[e], anhgm[e], arab-
L[e], arbt[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
aso3[e], asp-L[e], but[e], ca2[e], cbi[e], cbl1[e], 
cd2[e], cgly[e], chol[e], chtbs[e], cit[e], cl[e], 
cm[e], co2[e], cobalt2[e], colipap[e], crn[e], 
csn[e], cu2[e], cyan[e], cynt[e], cys-D[e], cys-L[e], 
cytd[e], dad-2[e], dca[e], dcmp[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dopa[e], 
doxrbcn[e], dtmp[e], duri[e], eca4colipa[e], 
enlipa[e], etha[e], ethso3[e], f6p[e], fald[e], 
fe2[e], fe3[e], fe3dcit[e], fe3dhbzs[e], fe3hox[e], 
fecrm[e], feenter[e], frulys[e], fruur[e], fuc-L[e], 
fusa[e], g3pc[e], g3pe[e], g3pg[e], g3pi[e], 
g3ps[e], g6p[e], gal-bD[e], gal1p[e], galct-D[e], 
galctn-D[e], galt[e], gam6p[e], gbbtn[e], gdp[e], 
glc-D[e], glcr[e], glcur[e], glu-L[e], glyald[e], 
glyb[e], glyc3p[e], gmp[e], gsn[e], gthox[e], 
gtp[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], imp[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lys-L[e], mal-L[e], malt[e], maltttr[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], mg2[e], mincyc[e], minohp[e], mn2[e], 
mobd[e], n2o[e], na1[e], nac[e], nh4[e], ni2[e], 
no2[e], no3[e], novbcn[e], o16a4colipa[e], o2[e], 
o2s[e], ocdca[e], ocdcea[e], octa[e], orot[e], 
pacald[e], phe-L[e], pheme[e], pi[e], pnto-R[e], 
ppal[e], pppn[e], ppt[e], progly[e], psclys[e], pser-
L[e], ptrc[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sel[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], tartr-L[e], tcynt[e], 
thm[e], thym[e], tma[e], tmao[e], tre[e], trp-L[e], 
tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], tungs[e], tyr-
L[e], tyrp[e], uacgam[e], udpacgal[e], udpgal[e], 
urea[e], uri[e], val-L[e], xan[e], xtsn[e], xylu-L[e], 
zn2[e] 

73 1484 HBZOPT 
Hydroxybenzoate 
octaprenyltransferase 

23camp[e], 23cump[e], 26dap-M[e], 3ump[e], 
5dglcn[e], ade[e], agm[e], ala-D[e], amp[e], 
butso3[e], csn[e], dcmp[e], ddca[e], dmso[e], 
fald[e], fe3dhbzs[e], fecrm[e], feoxam-un[e], 
fruur[e], galctn-L[e], glcur[e], gln-L[e], glyc3p[e], 
gmp[e], lcts[e], lyx-L[e], maltpt[e], maltttr[e], 
man6p[e], melib[e], pacald[e], pro-L[e], progly[e], 
sulfac[e], tartr-L[e], udpacgal[e], urea[e] 

74 1507 HISTD histidinol dehydrogenase his-L[e] 

75 1508 HISTP histidinol-phosphatase his-L[e] 
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76 1520 HPPK2 
6-hydroxymethyl-dihydropterin 
pyrophosphokinase 

12ppd-S[e], 3ump[e], 5dglcn[e], acgal1p[e], 
acgam1p[e], ade[e], arab-L[e], arg-L[e], btn[e], 
cpgn[e], cytd[e], dha[e], din[e], fe3hox-un[e], 
fum[e], g3pe[e], g3ps[e], gam[e], gam6p[e], 
glcr[e], glcur[e], h2[e], his-L[e], ins[e], malt[e], 
malthx[e], man[e], nac[e], no2[e], octa[e], 
pacald[e], ppa[e], ppal[e], ptrc[e], pydx[e], r5p[e], 
taur[e], thymd[e], ttdcea[e], tyr-L[e], uacgam[e], 
udpglcur[e] 

77 1528 HSK homoserine kinase thr-L[e], thrp[e] 

78 1529 HSST 
homoserine O-
succinyltransferase 

23ccmp[e], 23dappa[e], 2ddglcn[e], 3hpppn[e], 
5dglcn[e], ac[e], agm[e], arg-L[e], cmp[e], 
fe3dhbzs[e], glcur1p[e], glu-L[e], gly[e], hdca[e], 
his-L[e], leu-L[e], malthx[e], maltpt[e], man[e], 
met-L[e], metsox-R-L[e], metsox-S-L[e], mmet[e], 
mnl[e], ptrc[e], pyr[e], ser-D[e], thm[e], tyrp[e], 
udpacgal[e], xylu-L[e] 

79 1530 HSTPT 
histidinol-phosphate 
transaminase 

his-L[e] 

80 1548 ICDHyr 
isocitrate dehydrogenase 
(NADP) 

12ppd-R[e], 15dap[e], 23cgmp[e], 34dhpac[e], 
3amp[e], 3hpp[e], 3ump[e], 4hoxpacd[e], 
5mtr[e], ac[e], acgal[e], acgam1p[e], acmum[e], 
acolipa[e], acser[e], ade[e], ag[e], akg[e], 
alaala[e], anhgm[e], arbt[e], arg-L[e], aso3[e], 
ca2[e], cbi[e], cbl1[e], chol[e], chtbs[e], cl[e], 
cm[e], co2[e], cobalt2[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], cu2[e], cyan[e], dad-2[e], 
damp[e], ddca[e], dgsn[e], dha[e], dimp[e], 
dms[e], doxrbcn[e], eca4colipa[e], enlipa[e], 
fe2[e], fe3[e], feenter[e], feoxam-un[e], fruur[e], 
fum[e], fusa[e], g3pc[e], g3pe[e], galur[e], 
gbbtn[e], gdp[e], glc-D[e], glcn[e], gln-L[e], glu-
L[e], glyb[e], glyc-R[e], glyclt[e], gsn[e], gthox[e], 
gthrd[e], h[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], hom-L[e], hxan[e], 
idon-L[e], inost[e], isetac[e], k[e], lac-D[e], lcts[e], 
lipa[e], lipa_cold[e], lys-L[e], lyx-L[e], mal-L[e], 
meoh[e], met-D[e], mg2[e], mincyc[e], mn2[e], 
mobd[e], na1[e], nh4[e], ni2[e], no[e], no3[e], 
novbcn[e], o16a4colipa[e], o2[e], o2s[e], orn[e], 
pheme[e], pi[e], ppa[e], pro-L[e], progly[e], 
quin[e], rfamp[e], rmn[e], sel[e], slnt[e], so2[e], 
so3[e], so4[e], taur[e], tcynt[e], thym[e], tma[e], 
tmao[e], trp-L[e], tsul[e], ttrcyc[e], tungs[e], 
uacgam[e], udpacgal[e], zn2[e] 

81 1558 IG3PS 
Imidazole-glycerol-3-phosphate 
synthase 

his-L[e] 

82 1559 IGPDH 
imidazoleglycerol-phosphate 
dehydratase 

his-L[e] 

83 1560 IGPS 
indole-3-glycerol-phosphate 
synthase 

indole[e], trp-L[e] 

84 1561 ILETA isoleucine transaminase ile-L[e] 

85 1581 IPMD 
3-isopropylmalate 
dehydrogenase 

leu-L[e] 
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86 1582 IPPMIa 3-isopropylmalate dehydratase leu-L[e] 

87 1583 IPPMIb 2-isopropylmalate hydratase leu-L[e] 

88 1584 IPPS 2-isopropylmalate synthase leu-L[e] 

89 1589 KARA1 
ketol-acid reductoisomerase 
(2,3-dihydroxy-3-
methylbutanoate) 

val-L[e] 

90 1590 KARA2 
ketol-acid reductoisomerase (2-
Acetolactate) 

ile-L[e] 

91 1624 LEUTAi 
leucine transaminase 
(irreversible) 

leu-L[e] 

92 1710 MALCOAMT Malonyl-CoA methyltransferase 
btn[e] 

93 1771 METAT 
methionine 
adenosyltransferase 

3hcinnm[e], acgam1p[e], acmana[e], ddca[e], 
dmso[e], dopa[e], g3pc[e], glcur1p[e], glyc-R[e], 
ile-L[e], indole[e], nac[e], succ[e], tre[e], 
uacgam[e] 

94 1776 METS methionine synthase mmet[e] 
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95 1836 MOHMT 
3-methyl-2-oxobutanoate 
hydroxymethyltransferase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 2ddglcn[e], 34dhpac[e], 3amp[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], agm[e], akg[e], ala-B[e], 
ala-D[e], ala-L[e], alaala[e], alltn[e], amp[e], 
anhgm[e], arab-L[e], arbt[e], arbtn[e], arbtn-
fe3[e], arg-L[e], ascb-L[e], asn-L[e], aso3[e], asp-
L[e], btn[e], but[e], butso3[e], ca2[e], cbi[e], 
cbl1[e], cd2[e], cgly[e], chol[e], chtbs[e], cit[e], 
cl[e], cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
csn[e], cu[e], cu2[e], cyan[e], cynt[e], cys-D[e], 
cys-L[e], cytd[e], dad-2[e], damp[e], dca[e], 
dcmp[e], dcyt[e], ddca[e], dgmp[e], dgsn[e], 
dha[e], dimp[e], din[e], dms[e], dmso[e], dopa[e], 
doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], fru[e], frulys[e], fruur[e], fuc-L[e], 
fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], g3pg[e], 
g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc2p[e], 
glyc3p[e], glyclt[e], gmp[e], gsn[e], gthox[e], 
gthrd[e], gtp[e], gua[e], h[e], h2[e], h2o[e], 
h2o2[e], h2s[e], hacolipa[e], halipa[e], hdca[e], 
hdcea[e], hg2[e], his-L[e], hom-L[e], hxa[e], 
hxan[e], idon-L[e], imp[e], indole[e], inost[e], 
ins[e], isetac[e], k[e], kdo2lipid4[e], lac-D[e], lac-
L[e], lcts[e], leu-L[e], lipa[e], lipa_cold[e], 
lipoate[e], lys-L[e], lyx-L[e], mal-D[e], mal-L[e], 
malt[e], malthx[e], maltpt[e], malttr[e], 
maltttr[e], man[e], man6p[e], manglyc[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rib-D[e], sbt-D[e], sel[e], ser-D[e], ser-
L[e], skm[e], slnt[e], so2[e], so3[e], so4[e], 
spmd[e], sucr[e], sulfac[e], tartr-D[e], tartr-L[e], 
taur[e], tcynt[e], thm[e], thr-L[e], thrp[e], 
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thym[e], thymd[e], tma[e], tmao[e], tre[e], trp-
L[e], tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], 
tungs[e], tym[e], tyr-L[e], tyrp[e], uacgam[e], 
udpacgal[e], udpg[e], udpgal[e], udpglcur[e], 
ump[e], ura[e], urea[e], uri[e], val-L[e], xan[e], 
xmp[e], xtsn[e], xyl-D[e], xylu-L[e], zn2[e] 

96 1849 MTHFR2 
5,10-
methylenetetrahydrofolate 
reductase (NADH) 

mmet[e] 
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97 1870 NADS1 NAD synthase (nh3) 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], all-
D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
asn-L[e], aso3[e], asp-L[e], btn[e], but[e], 
butso3[e], ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], 
chol[e], chtbs[e], cit[e], cl[e], cm[e], cmp[e], 
co2[e], cobalt2[e], colipa[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], crn-D[e], csn[e], cu[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], cys-L[e], cytd[e], dad-
2[e], damp[e], dca[e], dcmp[e], dcyt[e], ddca[e], 
dgmp[e], dgsn[e], dha[e], dimp[e], din[e], dms[e], 
dmso[e], dopa[e], doxrbcn[e], dtmp[e], dump[e], 
duri[e], eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galct-D[e], galctn-D[e], galctn-L[e], 
galt[e], galur[e], gam[e], gam6p[e], gbbtn[e], 
gdp[e], glc-D[e], glcn[e], glcr[e], glcur[e], 
glcur1p[e], gln-L[e], glu-L[e], gly[e], glyald[e], 
glyb[e], glyc[e], glyc-R[e], glyc2p[e], glyc3p[e], 
glyclt[e], gmp[e], gsn[e], gthox[e], gthrd[e], 
gtp[e], gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], hxa[e], hxan[e], idon-L[e], ile-
L[e], imp[e], indole[e], inost[e], ins[e], isetac[e], 
k[e], kdo2lipid4[e], lac-D[e], lac-L[e], lcts[e], leu-
L[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], lyx-
L[e], mal-D[e], mal-L[e], malt[e], malthx[e], 
maltpt[e], malttr[e], maltttr[e], man[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], met-L[e], metsox-R-L[e], metsox-S-L[e], 
mg2[e], mincyc[e], minohp[e], mmet[e], mn2[e], 
mnl[e], mobd[e], mso3[e], n2o[e], na1[e], nac[e], 
nh4[e], ni2[e], nmn[e], no[e], no2[e], no3[e], 
novbcn[e], o16a4colipa[e], o2[e], o2s[e], 
ocdca[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
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D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 

98 1886 NH4tpp 
ammonia reversible transport 
(periplasm) 

23dappa[e], 3amp[e], 3gmp[e], ade[e], adn[e], 
ala-D[e], ala-L[e], alaala[e], alltn[e], amp[e], arg-
L[e], asn-L[e], asp-L[e], cgly[e], csn[e], cytd[e], 
dad-2[e], dgmp[e], dgsn[e], etha[e], gln-L[e], glu-
L[e], gly[e], gmp[e], gsn[e], gthrd[e], gua[e], 
hxan[e], ins[e], orn[e], progly[e], ser-D[e], ser-
L[e], thr-L[e], xan[e], xtsn[e] 
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99 1900 NNATr 
nicotinate-nucleotide 
adenylyltransferase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], all-
D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
asn-L[e], aso3[e], asp-L[e], btn[e], but[e], 
butso3[e], ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], 
chol[e], chtbs[e], cit[e], cl[e], cm[e], cmp[e], 
co2[e], cobalt2[e], colipa[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], crn-D[e], csn[e], cu[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], cys-L[e], cytd[e], dad-
2[e], damp[e], dca[e], dcmp[e], dcyt[e], ddca[e], 
dgmp[e], dgsn[e], dha[e], dimp[e], din[e], dms[e], 
dmso[e], dopa[e], doxrbcn[e], dtmp[e], dump[e], 
duri[e], eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galct-D[e], galctn-D[e], galctn-L[e], 
galt[e], galur[e], gam[e], gam6p[e], gbbtn[e], 
gdp[e], glc-D[e], glcn[e], glcr[e], glcur[e], 
glcur1p[e], gln-L[e], glu-L[e], gly[e], glyald[e], 
glyb[e], glyc[e], glyc-R[e], glyc2p[e], glyc3p[e], 
glyclt[e], gmp[e], gsn[e], gthox[e], gthrd[e], 
gtp[e], gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], hxa[e], hxan[e], idon-L[e], ile-
L[e], imp[e], indole[e], inost[e], ins[e], isetac[e], 
k[e], kdo2lipid4[e], lac-D[e], lac-L[e], lcts[e], leu-
L[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], lyx-
L[e], mal-D[e], mal-L[e], malt[e], malthx[e], 
maltpt[e], malttr[e], maltttr[e], man[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], met-L[e], metsox-R-L[e], metsox-S-L[e], 
mg2[e], mincyc[e], minohp[e], mmet[e], mn2[e], 
mnl[e], mobd[e], mso3[e], n2o[e], na1[e], nac[e], 
nh4[e], ni2[e], nmn[e], no[e], no2[e], no3[e], 
novbcn[e], o16a4colipa[e], o2[e], o2s[e], 
ocdca[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
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D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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100 1902 NNDPR 
nicotinate-nucleotide 
diphosphorylase (carboxylating) 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], all-
D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
asn-L[e], aso3[e], asp-L[e], btn[e], but[e], 
butso3[e], ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], 
chol[e], chtbs[e], cit[e], cl[e], cm[e], cmp[e], 
co2[e], cobalt2[e], colipa[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], crn-D[e], csn[e], cu[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], cys-L[e], cytd[e], dad-
2[e], damp[e], dca[e], dcmp[e], dcyt[e], ddca[e], 
dgmp[e], dgsn[e], dha[e], dimp[e], din[e], dms[e], 
dmso[e], dopa[e], doxrbcn[e], dtmp[e], dump[e], 
duri[e], eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galct-D[e], galctn-D[e], galctn-L[e], 
galt[e], galur[e], gam[e], gam6p[e], gbbtn[e], 
gdp[e], glc-D[e], glcn[e], glcr[e], glcur[e], 
glcur1p[e], gln-L[e], glu-L[e], gly[e], glyald[e], 
glyb[e], glyc[e], glyc-R[e], glyc2p[e], glyc3p[e], 
glyclt[e], gmp[e], gsn[e], gthox[e], gthrd[e], 
gtp[e], gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], hxa[e], hxan[e], idon-L[e], ile-
L[e], imp[e], indole[e], inost[e], ins[e], isetac[e], 
k[e], kdo2lipid4[e], lac-D[e], lac-L[e], lcts[e], leu-
L[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], lyx-
L[e], mal-D[e], mal-L[e], malt[e], malthx[e], 
maltpt[e], malttr[e], maltttr[e], man[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], met-L[e], metsox-R-L[e], metsox-S-L[e], 
mg2[e], mincyc[e], minohp[e], mmet[e], mn2[e], 
mnl[e], mobd[e], mso3[e], n2o[e], na1[e], nac[e], 
nh4[e], ni2[e], nmn[e], no[e], no2[e], no3[e], 
novbcn[e], o16a4colipa[e], o2[e], o2s[e], 
ocdca[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
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D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 

101 1979 OCBT ornithine carbamoyltransferase arg-L[e] 

102 1983 OCTDPS 
Octaprenyl pyrophosphate 
synthase 

12ppd-S[e], 3hpppn[e], acgal1p[e], alaala[e], 
butso3[e], cd2[e], cpgn-un[e], cynt[e], dad-2[e], 
dca[e], dha[e], enter[e], fald[e], fe3dhbzs[e], 
fe3hox[e], glcur1p[e], glu-L[e], glyc-R[e], his-L[e], 
hxan[e], lac-D[e], lac-L[e], leu-L[e], man6p[e], 
metsox-R-L[e], metsox-S-L[e], mso3[e], no[e], 
orn[e], pydxn[e], pyr[e], thr-L[e], tyrp[e], uri[e] 

103 1985 OGMEACPD 
3-Oxo-glutaryl-[ACP] methyl 
ester dehydratase 

btn[e] 

104 1986 OGMEACPR 
3-Oxo-glutaryl-[ACP] methyl 
ester reductase 

btn[e] 

105 1987 OGMEACPS 
3-Oxo-glutaryl-[ACP] methyl 
ester synthase 

btn[e] 

106 1988 OHPBAT 
O-Phospho-4-hydroxy-L-
threonine:2-oxoglutarate 
aminotransferase 

pydam[e], pydx[e], pydxn[e] 
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107 1991 OMCDC 
2-Oxo-4-methyl-3-
carboxypentanoate 
decarboxylation 

leu-L[e] 

108 1994 OMPDC 
orotidine-5-phosphate 
decarboxylase 

23ccmp[e], 23cump[e], 3cmp[e], 3ump[e], 
cmp[e], csn[e], cytd[e], dcmp[e], dcyt[e], 
dump[e], duri[e], uacgam[e], udpacgal[e], 
udpg[e], udpgal[e], udpglcur[e], ump[e], ura[e], 
uri[e] 

109 1998 OPHBDC 
Octaprenyl-hydroxybenzoate 
decarboxylase 

23camp[e], 23cump[e], 26dap-M[e], 3ump[e], 
5dglcn[e], ade[e], agm[e], ala-D[e], amp[e], 
butso3[e], csn[e], dcmp[e], ddca[e], dmso[e], 
fald[e], fe3dhbzs[e], fecrm[e], feoxam-un[e], 
fruur[e], galctn-L[e], glcur[e], gln-L[e], glyc3p[e], 
gmp[e], lcts[e], lyx-L[e], maltpt[e], maltttr[e], 
man6p[e], melib[e], pacald[e], pro-L[e], progly[e], 
sulfac[e], tartr-L[e], udpacgal[e], urea[e] 

110 2001 OPMEACPD 
3-Oxo-pimeloyl-[ACP] methyl 
ester dehydratase 

btn[e] 

111 2002 OPMEACPR 
3-Oxo-pimeloyl-[ACP] methyl 
ester reductase 

btn[e] 

112 2003 OPMEACPS 
3-Oxo-pimeloyl-[ACP] methyl 
ester synthase 

btn[e] 

113 2009 ORPT 
orotate 
phosphoribosyltransferase 

23ccmp[e], 23cump[e], 3cmp[e], 3ump[e], 
cmp[e], csn[e], cytd[e], dcmp[e], dcyt[e], 
dump[e], duri[e], uacgam[e], udpacgal[e], 
udpg[e], udpgal[e], udpglcur[e], ump[e], ura[e], 
uri[e] 

114 2015 P5CR 
pyrroline-5-carboxylate 
reductase 

pro-L[e], progly[e] 
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115 2027 PANTS pantothenate synthase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 2ddglcn[e], 34dhpac[e], 3amp[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], agm[e], akg[e], ala-B[e], 
ala-D[e], ala-L[e], alaala[e], alltn[e], amp[e], 
anhgm[e], arab-L[e], arbt[e], arbtn[e], arbtn-
fe3[e], arg-L[e], ascb-L[e], asn-L[e], aso3[e], asp-
L[e], btn[e], but[e], butso3[e], ca2[e], cbi[e], 
cbl1[e], cd2[e], cgly[e], chol[e], chtbs[e], cit[e], 
cl[e], cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
csn[e], cu[e], cu2[e], cyan[e], cynt[e], cys-D[e], 
cys-L[e], cytd[e], dad-2[e], damp[e], dca[e], 
dcmp[e], dcyt[e], ddca[e], dgmp[e], dgsn[e], 
dha[e], dimp[e], din[e], dms[e], dmso[e], dopa[e], 
doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], fru[e], frulys[e], fruur[e], fuc-L[e], 
fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], g3pg[e], 
g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc2p[e], 
glyc3p[e], glyclt[e], gmp[e], gsn[e], gthox[e], 
gthrd[e], gtp[e], gua[e], h[e], h2[e], h2o[e], 
h2o2[e], h2s[e], hacolipa[e], halipa[e], hdca[e], 
hdcea[e], hg2[e], his-L[e], hom-L[e], hxa[e], 
hxan[e], idon-L[e], imp[e], indole[e], inost[e], 
ins[e], isetac[e], k[e], kdo2lipid4[e], lac-D[e], lac-
L[e], lcts[e], leu-L[e], lipa[e], lipa_cold[e], 
lipoate[e], lys-L[e], lyx-L[e], mal-D[e], mal-L[e], 
malt[e], malthx[e], maltpt[e], malttr[e], 
maltttr[e], man[e], man6p[e], manglyc[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rib-D[e], sbt-D[e], sel[e], ser-D[e], ser-
L[e], skm[e], slnt[e], so2[e], so3[e], so4[e], 
spmd[e], sucr[e], sulfac[e], tartr-D[e], tartr-L[e], 
taur[e], tcynt[e], thm[e], thr-L[e], thrp[e], 
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thym[e], thymd[e], tma[e], tmao[e], tre[e], trp-
L[e], tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], 
tungs[e], tym[e], tyr-L[e], tyrp[e], uacgam[e], 
udpacgal[e], udpg[e], udpgal[e], udpglcur[e], 
ump[e], ura[e], urea[e], uri[e], val-L[e], xan[e], 
xmp[e], xtsn[e], xyl-D[e], xylu-L[e], zn2[e] 

116 2050 PDX5PS 
Pyridoxine 5-phosphate 
synthase 

pydam[e], pydx[e], pydxn[e] 

117 2061 PERD 
Erythronate 4-phosphate (4per) 
dehydrogenase 

pydam[e], pydx[e], pydxn[e] 

118 2078 PGK phosphoglycerate kinase etoh[e] 

119 2081 PGM phosphoglycerate mutase 

3ump[e], 4abut[e], akg[e], ala-L[e], asn-L[e], asp-
L[e], cit[e], fe3dcit[e], galct-D[e], glcr[e], gln-L[e], 
glu-L[e], glyc-R[e], gthrd[e], lipoate[e], mal-L[e], 
orn[e], pro-L[e], sbt-D[e], tartr-D[e] 

120 2113 PHETA1 phenylalanine transaminase phe-L[e] 
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121 2164 PMDPHT pyrimidine phosphatase 

12ppd-R[e], 12ppd-S[e], 15dap[e], 23camp[e], 
23cump[e], 23dappa[e], 2ddglcn[e], 34dhpac[e], 
3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam1p[e], acmana[e], 
acmum[e], acnam[e], acolipa[e], acser[e], ade[e], 
adn[e], adocbl[e], ag[e], akg[e], ala-B[e], ala-D[e], 
ala-L[e], all-D[e], alltn[e], amp[e], anhgm[e], arab-
L[e], arbt[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
aso3[e], asp-L[e], but[e], ca2[e], cbi[e], cbl1[e], 
cd2[e], cgly[e], chol[e], chtbs[e], cit[e], cl[e], 
cm[e], co2[e], cobalt2[e], colipap[e], crn[e], 
csn[e], cu2[e], cyan[e], cynt[e], cys-D[e], cys-L[e], 
cytd[e], dad-2[e], dca[e], dcmp[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dopa[e], 
doxrbcn[e], dtmp[e], duri[e], eca4colipa[e], 
enlipa[e], etha[e], ethso3[e], f6p[e], fald[e], 
fe2[e], fe3[e], fe3dcit[e], fe3dhbzs[e], fe3hox[e], 
fecrm[e], feenter[e], frulys[e], fruur[e], fuc-L[e], 
fusa[e], g3pc[e], g3pe[e], g3pg[e], g3pi[e], 
g3ps[e], g6p[e], gal-bD[e], gal1p[e], galct-D[e], 
galctn-D[e], galt[e], gam6p[e], gbbtn[e], gdp[e], 
glc-D[e], glcr[e], glcur[e], glu-L[e], glyald[e], 
glyb[e], glyc3p[e], gmp[e], gsn[e], gthox[e], 
gtp[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], imp[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lys-L[e], mal-L[e], malt[e], maltttr[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], mg2[e], mincyc[e], minohp[e], mn2[e], 
mobd[e], n2o[e], na1[e], nac[e], nh4[e], ni2[e], 
no2[e], no3[e], novbcn[e], o16a4colipa[e], o2[e], 
o2s[e], ocdca[e], ocdcea[e], octa[e], orot[e], 
pacald[e], phe-L[e], pheme[e], pi[e], pnto-R[e], 
ppal[e], pppn[e], ppt[e], progly[e], psclys[e], pser-
L[e], ptrc[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sel[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], tartr-L[e], tcynt[e], 
thm[e], thym[e], tma[e], tmao[e], tre[e], trp-L[e], 
tsul[e], ttdca[e], ttdcea[e], ttrcyc[e], tungs[e], tyr-
L[e], tyrp[e], uacgam[e], udpacgal[e], udpgal[e], 
urea[e], uri[e], val-L[e], xan[e], xtsn[e], xylu-L[e], 
zn2[e] 

122 2165 PMEACPE 
Pimeloyl-[ACP] methyl ester 
esterase 

btn[e] 

123 2166 PMPK 
phosphomethylpyrimidine 
kinase 

thm[e] 
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124 2167 PNTK pantothenate kinase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], 
alltn[e], amp[e], anhgm[e], arab-L[e], arbt[e], 
arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], asn-
L[e], aso3[e], asp-L[e], btn[e], but[e], butso3[e], 
ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], chol[e], 
chtbs[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipa[e], colipap[e], cpgn[e], cpgn-
un[e], crn[e], crn-D[e], csn[e], cu2[e], cyan[e], 
cynt[e], cys-D[e], cys-L[e], cytd[e], dad-2[e], 
damp[e], dca[e], dcmp[e], ddca[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dmso[e], 
dopa[e], doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc-R[e], 
glyc2p[e], glyc3p[e], glyclt[e], gmp[e], gsn[e], 
gthox[e], gthrd[e], gtp[e], gua[e], h[e], h2[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hdcea[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], hxan[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lipoate[e], lys-L[e], lyx-L[e], mal-D[e], 
mal-L[e], malt[e], malthx[e], maltpt[e], malttr[e], 
man[e], man6p[e], manglyc[e], melib[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
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thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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125 2182 PPCDC 
phosphopantothenoylcysteine 
decarboxylase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], 
alltn[e], amp[e], anhgm[e], arab-L[e], arbt[e], 
arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], asn-
L[e], aso3[e], asp-L[e], btn[e], but[e], butso3[e], 
ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], chol[e], 
chtbs[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipa[e], colipap[e], cpgn[e], cpgn-
un[e], crn[e], crn-D[e], csn[e], cu2[e], cyan[e], 
cynt[e], cys-D[e], cys-L[e], cytd[e], dad-2[e], 
damp[e], dca[e], dcmp[e], ddca[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dmso[e], 
dopa[e], doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc-R[e], 
glyc2p[e], glyc3p[e], glyclt[e], gmp[e], gsn[e], 
gthox[e], gthrd[e], gtp[e], gua[e], h[e], h2[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hdcea[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], hxan[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lipoate[e], lys-L[e], lyx-L[e], mal-D[e], 
mal-L[e], malt[e], malthx[e], maltpt[e], malttr[e], 
man[e], man6p[e], manglyc[e], melib[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
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thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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126 2190 PPNCL2 
phosphopantothenate-cysteine 
ligase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], 
alltn[e], amp[e], anhgm[e], arab-L[e], arbt[e], 
arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], asn-
L[e], aso3[e], asp-L[e], btn[e], but[e], butso3[e], 
ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], chol[e], 
chtbs[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipa[e], colipap[e], cpgn[e], cpgn-
un[e], crn[e], crn-D[e], csn[e], cu2[e], cyan[e], 
cynt[e], cys-D[e], cys-L[e], cytd[e], dad-2[e], 
damp[e], dca[e], dcmp[e], ddca[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dmso[e], 
dopa[e], doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc-R[e], 
glyc2p[e], glyc3p[e], glyclt[e], gmp[e], gsn[e], 
gthox[e], gthrd[e], gtp[e], gua[e], h[e], h2[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hdcea[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], hxan[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lipoate[e], lys-L[e], lyx-L[e], mal-D[e], 
mal-L[e], malt[e], malthx[e], maltpt[e], malttr[e], 
man[e], man6p[e], manglyc[e], melib[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
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thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 

127 2191 PPND prephenate dehydrogenase tyr-L[e], tyrp[e] 

128 2192 PPNDH prephenate dehydratase phe-L[e] 

129 2203 PRAIi 
phosphoribosylanthranilate 
isomerase (irreversible) 

indole[e], trp-L[e] 

130 2204 PRAMPC 
phosphoribosyl-AMP 
cyclohydrolase 

his-L[e] 

131 2205 PRASCSi 
phosphoribosylaminoimidazole
succinocarboxamide synthase 

23camp[e], 23cgmp[e], 3amp[e], 3gmp[e], ade[e], 
adn[e], amp[e], dad-2[e], damp[e], dgmp[e], 
dgsn[e], dimp[e], din[e], gmp[e], gsn[e], gua[e], 
hxan[e], imp[e], ins[e], xan[e], xmp[e], xtsn[e] 

132 2206 PRATPP 
phosphoribosyl-ATP 
pyrophosphatase 

his-L[e] 

133 2208 PRMICI 

1-(5-phosphoribosyl)-5-[(5-
phosphoribosylamino)methylid
eneamino)imidazole-4-
carboxamide isomerase 

his-L[e] 
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134 2220 PSCVT 
3-phosphoshikimate 1-
carboxyvinyltransferase 

ala-B[e] 

135 2242 PTPATi 
pantetheine-phosphate 
adenylyltransferase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], 
alltn[e], amp[e], anhgm[e], arab-L[e], arbt[e], 
arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], asn-
L[e], aso3[e], asp-L[e], btn[e], but[e], butso3[e], 
ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], chol[e], 
chtbs[e], cit[e], cl[e], cm[e], cmp[e], co2[e], 
cobalt2[e], colipa[e], colipap[e], cpgn[e], cpgn-
un[e], crn[e], crn-D[e], csn[e], cu2[e], cyan[e], 
cynt[e], cys-D[e], cys-L[e], cytd[e], dad-2[e], 
damp[e], dca[e], dcmp[e], ddca[e], dgmp[e], 
dgsn[e], dha[e], dimp[e], din[e], dms[e], dmso[e], 
dopa[e], doxrbcn[e], dtmp[e], dump[e], duri[e], 
eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galctn-D[e], galctn-L[e], galt[e], galur[e], 
gam[e], gam6p[e], gbbtn[e], gdp[e], glc-D[e], 
glcn[e], glcr[e], glcur[e], glcur1p[e], gln-L[e], glu-
L[e], gly[e], glyald[e], glyb[e], glyc[e], glyc-R[e], 
glyc2p[e], glyc3p[e], glyclt[e], gmp[e], gsn[e], 
gthox[e], gthrd[e], gtp[e], gua[e], h[e], h2[e], 
h2o[e], h2o2[e], h2s[e], hacolipa[e], halipa[e], 
hdca[e], hdcea[e], hg2[e], his-L[e], hom-L[e], 
hxa[e], hxan[e], idon-L[e], ile-L[e], imp[e], 
indole[e], inost[e], ins[e], isetac[e], k[e], 
kdo2lipid4[e], lac-D[e], lac-L[e], leu-L[e], lipa[e], 
lipa_cold[e], lipoate[e], lys-L[e], lyx-L[e], mal-D[e], 
mal-L[e], malt[e], malthx[e], maltpt[e], malttr[e], 
man[e], man6p[e], manglyc[e], melib[e], 
meoh[e], met-D[e], met-L[e], metsox-R-L[e], 
metsox-S-L[e], mg2[e], mincyc[e], minohp[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no[e], no2[e], no3[e], novbcn[e], o16a4colipa[e], 
o2[e], o2s[e], ocdca[e], ocdcea[e], octa[e], orn[e], 
orot[e], pacald[e], peamn[e], phe-L[e], pheme[e], 
pi[e], pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], 
pro-L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
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so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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136 2276 QULNS quinolinate synthase 

12ppd-R[e], 12ppd-S[e], 14glucan[e], 15dap[e], 
23camp[e], 23ccmp[e], 23cgmp[e], 23cump[e], 
23dappa[e], 26dap-M[e], 2ddglcn[e], 34dhpac[e], 
3amp[e], 3cmp[e], 3gmp[e], 3hcinnm[e], 3hpp[e], 
3hpppn[e], 3ump[e], 4abut[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], ac[e], acac[e], acald[e], 
acgal[e], acgal1p[e], acgam[e], acgam1p[e], 
acmana[e], acmum[e], acnam[e], acolipa[e], 
acser[e], ade[e], adn[e], adocbl[e], ag[e], agm[e], 
akg[e], ala-B[e], ala-D[e], ala-L[e], alaala[e], all-
D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arbtn[e], arbtn-fe3[e], arg-L[e], ascb-L[e], 
asn-L[e], aso3[e], asp-L[e], btn[e], but[e], 
butso3[e], ca2[e], cbi[e], cbl1[e], cd2[e], cgly[e], 
chol[e], chtbs[e], cit[e], cl[e], cm[e], cmp[e], 
co2[e], cobalt2[e], colipa[e], colipap[e], cpgn[e], 
cpgn-un[e], crn[e], crn-D[e], csn[e], cu[e], cu2[e], 
cyan[e], cynt[e], cys-D[e], cys-L[e], cytd[e], dad-
2[e], damp[e], dca[e], dcmp[e], dcyt[e], ddca[e], 
dgmp[e], dgsn[e], dha[e], dimp[e], din[e], dms[e], 
dmso[e], dopa[e], doxrbcn[e], dtmp[e], dump[e], 
duri[e], eca4colipa[e], enlipa[e], enter[e], etha[e], 
ethso3[e], etoh[e], f6p[e], fald[e], fe2[e], fe3[e], 
fe3dcit[e], fe3dhbzs[e], fe3hox[e], fe3hox-un[e], 
fecrm[e], fecrm-un[e], feenter[e], feoxam[e], 
feoxam-un[e], for[e], fru[e], frulys[e], fruur[e], 
fuc-L[e], fum[e], fusa[e], g1p[e], g3pc[e], g3pe[e], 
g3pg[e], g3pi[e], g3ps[e], g6p[e], gal[e], gal-bD[e], 
gal1p[e], galct-D[e], galctn-D[e], galctn-L[e], 
galt[e], galur[e], gam[e], gam6p[e], gbbtn[e], 
gdp[e], glc-D[e], glcn[e], glcr[e], glcur[e], 
glcur1p[e], gln-L[e], glu-L[e], gly[e], glyald[e], 
glyb[e], glyc[e], glyc-R[e], glyc2p[e], glyc3p[e], 
glyclt[e], gmp[e], gsn[e], gthox[e], gthrd[e], 
gtp[e], gua[e], h[e], h2[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hdcea[e], hg2[e], 
his-L[e], hom-L[e], hxa[e], hxan[e], idon-L[e], ile-
L[e], imp[e], indole[e], inost[e], ins[e], isetac[e], 
k[e], kdo2lipid4[e], lac-D[e], lac-L[e], lcts[e], leu-
L[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], lyx-
L[e], mal-D[e], mal-L[e], malt[e], malthx[e], 
maltpt[e], malttr[e], maltttr[e], man[e], 
man6p[e], manglyc[e], melib[e], meoh[e], met-
D[e], met-L[e], metsox-R-L[e], metsox-S-L[e], 
mg2[e], mincyc[e], minohp[e], mmet[e], mn2[e], 
mnl[e], mobd[e], mso3[e], n2o[e], na1[e], nac[e], 
nh4[e], ni2[e], nmn[e], no[e], no2[e], no3[e], 
novbcn[e], o16a4colipa[e], o2[e], o2s[e], 
ocdca[e], ocdcea[e], octa[e], orn[e], orot[e], 
pacald[e], peamn[e], phe-L[e], pheme[e], pi[e], 
pnto-R[e], ppa[e], ppal[e], pppn[e], ppt[e], pro-
L[e], progly[e], psclys[e], pser-L[e], ptrc[e], 
pydam[e], pydx[e], pydxn[e], pyr[e], quin[e], 
r5p[e], rfamp[e], rib-D[e], rmn[e], sbt-D[e], sel[e], 
ser-D[e], ser-L[e], skm[e], slnt[e], so2[e], so3[e], 
so4[e], spmd[e], succ[e], sucr[e], sulfac[e], tartr-
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D[e], tartr-L[e], taur[e], tcynt[e], thm[e], thr-L[e], 
thrp[e], thym[e], thymd[e], tma[e], tmao[e], 
tre[e], trp-L[e], tsul[e], ttdca[e], ttdcea[e], 
ttrcyc[e], tungs[e], tym[e], tyr-L[e], tyrp[e], 
uacgam[e], udpacgal[e], udpg[e], udpgal[e], 
udpglcur[e], ump[e], ura[e], urea[e], uri[e], val-
L[e], xan[e], xmp[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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137 2282 RBFK riboflavin kinase 

12ppd-S[e], 15dap[e], 23camp[e], 23ccmp[e], 
23cgmp[e], 23dappa[e], 26dap-M[e], 2ddglcn[e], 
34dhpac[e], 3amp[e], 3hpp[e], 4hoxpacd[e], 
5mtr[e], ac[e], acgal[e], acgal1p[e], acmana[e], 
acmum[e], acolipa[e], acser[e], ag[e], akg[e], 
amp[e], arab-L[e], arbt[e], arbtn[e], arbtn-fe3[e], 
arg-L[e], aso3[e], but[e], butso3[e], ca2[e], cbi[e], 
chol[e], cl[e], cmp[e], co2[e], cobalt2[e], 
colipap[e], crn[e], cu2[e], cyan[e], cytd[e], dad-
2[e], dgmp[e], dms[e], dmso[e], dopa[e], 
dump[e], eca4colipa[e], enlipa[e], fe2[e], fe3[e], 
fe3dcit[e], fru[e], g3pe[e], g3pi[e], g6p[e], galt[e], 
gbbtn[e], gdp[e], glc-D[e], glu-L[e], gly[e], glyb[e], 
glyc-R[e], gthox[e], h[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hg2[e], hom-L[e], hxa[e], 
inost[e], isetac[e], k[e], lipa[e], lipa_cold[e], mal-
D[e], maltpt[e], man[e], man6p[e], meoh[e], met-
D[e], metsox-R-L[e], metsox-S-L[e], mg2[e], 
mmet[e], mn2[e], mnl[e], mobd[e], mso3[e], 
n2o[e], na1[e], nac[e], nh4[e], ni2[e], nmn[e], 
no2[e], o16a4colipa[e], o2[e], o2s[e], orn[e], 
pacald[e], pheme[e], pi[e], pppn[e], ppt[e], pro-
L[e], psclys[e], pydx[e], rmn[e], sel[e], slnt[e], 
so2[e], so3[e], so4[e], sucr[e], tartr-L[e], tcynt[e], 
thym[e], tma[e], tsul[e], ttdca[e], tungs[e], 
udpacgal[e], urea[e], xtsn[e], xyl-D[e], xylu-L[e], 
zn2[e] 
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138 2283 RBFSa riboflavin synthase 

12ppd-S[e], 14glucan[e], 15dap[e], 23camp[e], 
23ccmp[e], 23cgmp[e], 26dap-M[e], 34dhpac[e], 
3amp[e], 3hpp[e], 3hpppn[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], acac[e], acald[e], acgal[e], 
acgal1p[e], acgam[e], acmana[e], acmum[e], 
acnam[e], acser[e], ade[e], adn[e], adocbl[e], 
ag[e], agm[e], akg[e], ala-B[e], ala-D[e], ala-L[e], 
all-D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arg-L[e], aso3[e], asp-L[e], btn[e], but[e], 
ca2[e], cbi[e], cgly[e], chol[e], chtbs[e], cl[e], 
cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
cu[e], cu2[e], cyan[e], cys-D[e], cys-L[e], cytd[e], 
dad-2[e], damp[e], dca[e], dcmp[e], ddca[e], 
dgsn[e], dha[e], dimp[e], dms[e], doxrbcn[e], 
dump[e], duri[e], eca4colipa[e], enlipa[e], 
etha[e], etoh[e], f6p[e], fe2[e], fe3[e], 
fe3dhbzs[e], fe3hox[e], fe3hox-un[e], feoxam[e], 
fru[e], frulys[e], fusa[e], g3pc[e], g3pg[e], gal-
bD[e], gal1p[e], galctn-L[e], gbbtn[e], gdp[e], glc-
D[e], glcn[e], glcur1p[e], gln-L[e], glu-L[e], gly[e], 
glyb[e], glyc[e], glyc2p[e], gmp[e], gthox[e], 
gthrd[e], h[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hg2[e], his-L[e], 
hom-L[e], hxa[e], idon-L[e], inost[e], k[e], lac-L[e], 
lcts[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], 
man6p[e], manglyc[e], meoh[e], met-D[e], 
metsox-R-L[e], metsox-S-L[e], mg2[e], mincyc[e], 
mn2[e], mnl[e], mobd[e], mso3[e], n2o[e], na1[e], 
nac[e], nh4[e], ni2[e], no[e], no3[e], novbcn[e], 
o16a4colipa[e], o2[e], o2s[e], ocdca[e], 
ocdcea[e], orot[e], pacald[e], peamn[e], 
pheme[e], pi[e], ppa[e], ppal[e], pppn[e], ppt[e], 
psclys[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sbt-D[e], sel[e], ser-D[e], 
slnt[e], so2[e], so3[e], so4[e], succ[e], tartr-L[e], 
tcynt[e], thm[e], thrp[e], thym[e], thymd[e], 
tma[e], tmao[e], tre[e], tsul[e], ttrcyc[e], tungs[e], 
tym[e], tyr-L[e], tyrp[e], udpacgal[e], udpgal[e], 
ump[e], ura[e], urea[e], uri[e], xmp[e], xyl-D[e], 
zn2[e] 
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139 2284 RBFSb riboflavin synthase 

12ppd-S[e], 14glucan[e], 15dap[e], 23camp[e], 
23ccmp[e], 23cgmp[e], 26dap-M[e], 34dhpac[e], 
3amp[e], 3hpp[e], 3hpppn[e], 4hoxpacd[e], 
5dglcn[e], 5mtr[e], acac[e], acald[e], acgal[e], 
acgal1p[e], acgam[e], acmana[e], acmum[e], 
acnam[e], acser[e], ade[e], adn[e], adocbl[e], 
ag[e], agm[e], akg[e], ala-B[e], ala-D[e], ala-L[e], 
all-D[e], alltn[e], amp[e], anhgm[e], arab-L[e], 
arbt[e], arg-L[e], aso3[e], asp-L[e], btn[e], but[e], 
ca2[e], cbi[e], cgly[e], chol[e], chtbs[e], cl[e], 
cm[e], cmp[e], co2[e], cobalt2[e], colipa[e], 
colipap[e], cpgn[e], cpgn-un[e], crn[e], crn-D[e], 
cu[e], cu2[e], cyan[e], cys-D[e], cys-L[e], cytd[e], 
dad-2[e], damp[e], dca[e], dcmp[e], ddca[e], 
dgsn[e], dha[e], dimp[e], dms[e], doxrbcn[e], 
dump[e], duri[e], eca4colipa[e], enlipa[e], 
etha[e], etoh[e], f6p[e], fe2[e], fe3[e], 
fe3dhbzs[e], fe3hox[e], fe3hox-un[e], feoxam[e], 
fru[e], frulys[e], fusa[e], g3pc[e], g3pg[e], gal-
bD[e], gal1p[e], galctn-L[e], gbbtn[e], gdp[e], glc-
D[e], glcn[e], glcur1p[e], gln-L[e], glu-L[e], gly[e], 
glyb[e], glyc[e], glyc2p[e], gmp[e], gthox[e], 
gthrd[e], h[e], h2o[e], h2o2[e], h2s[e], 
hacolipa[e], halipa[e], hdca[e], hg2[e], his-L[e], 
hom-L[e], hxa[e], idon-L[e], inost[e], k[e], lac-L[e], 
lcts[e], lipa[e], lipa_cold[e], lipoate[e], lys-L[e], 
man6p[e], manglyc[e], meoh[e], met-D[e], 
metsox-R-L[e], metsox-S-L[e], mg2[e], mincyc[e], 
mn2[e], mnl[e], mobd[e], mso3[e], n2o[e], na1[e], 
nac[e], nh4[e], ni2[e], no[e], no3[e], novbcn[e], 
o16a4colipa[e], o2[e], o2s[e], ocdca[e], 
ocdcea[e], orot[e], pacald[e], peamn[e], 
pheme[e], pi[e], ppa[e], ppal[e], pppn[e], ppt[e], 
psclys[e], pydam[e], pyr[e], quin[e], r5p[e], 
rfamp[e], rmn[e], sbt-D[e], sel[e], ser-D[e], 
slnt[e], so2[e], so3[e], so4[e], succ[e], tartr-L[e], 
tcynt[e], thm[e], thrp[e], thym[e], thymd[e], 
tma[e], tmao[e], tre[e], tsul[e], ttrcyc[e], tungs[e], 
tym[e], tyr-L[e], tyrp[e], udpacgal[e], udpgal[e], 
ump[e], ura[e], urea[e], uri[e], xmp[e], xyl-D[e], 
zn2[e] 

140 2323 SADT2 Sulfate adenyltransferase 

ac[e], alltn[e], arab-L[e], arbtn-fe3[e], butso3[e], 
cgly[e], cpgn[e], cu[e], cys-D[e], cys-L[e], damp[e], 
dcmp[e], dgsn[e], dopa[e], enter[e], ethso3[e], 
frulys[e], g3pi[e], gal-bD[e], glu-L[e], gthrd[e], 
gtp[e], hdcea[e], ile-L[e], isetac[e], lac-D[e], 
lcts[e], leu-L[e], lipoate[e], mal-D[e], mal-L[e], 
malttr[e], man[e], melib[e], mso3[e], ocdca[e], 
orot[e], peamn[e], phe-L[e], pro-L[e], succ[e], 
sulfac[e], taur[e], thm[e], tre[e], ttdcea[e], 
udpg[e], udpgal[e], xan[e] 
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141 2341 SERAT serine O-acetyltransferase 

3cmp[e], 3gmp[e], acnam[e], ade[e], adn[e], ala-
L[e], amp[e], anhgm[e], arg-L[e], cd2[e], cgly[e], 
cpgn[e], crn-D[e], cys-L[e], dcyt[e], ddca[e], 
dha[e], dump[e], fru[e], glcn[e], glcur[e], glyc-
R[e], gsn[e], gthrd[e], hdcea[e], hxa[e], indole[e], 
isetac[e], leu-L[e], lipoate[e], mmet[e], nac[e], 
no2[e], ppal[e], progly[e], pydx[e], pyr[e], sbt-
D[e], ttdcea[e], tym[e], tyrp[e], ump[e], val-L[e], 
xmp[e] 

142 2355 SHK3Dr shikimate dehydrogenase skm[e] 

143 2356 SHKK shikimate kinase ala-B[e] 

144 2357 SHSL1 
O-succinylhomoserine lyase (L-
cysteine) 

23ccmp[e], 23dappa[e], 2ddglcn[e], 3hpppn[e], 
5dglcn[e], ac[e], agm[e], arg-L[e], cmp[e], 
fe3dhbzs[e], glcur1p[e], glu-L[e], gly[e], hdca[e], 
his-L[e], leu-L[e], malthx[e], maltpt[e], man[e], 
met-L[e], metsox-R-L[e], metsox-S-L[e], mmet[e], 
mnl[e], ptrc[e], pyr[e], ser-D[e], thm[e], tyrp[e], 
udpacgal[e], xylu-L[e] 

145 2394 SULRi sulfite reductase (NADPH2) 

14glucan[e], 23cgmp[e], ac[e], acgal1p[e], 
acgam[e], acgam1p[e], acmana[e], acmum[e], 
adocbl[e], agm[e], ala-B[e], asn-L[e], asp-L[e], 
btn[e], cgly[e], chtbs[e], cm[e], cpgn-un[e], cys-
D[e], cys-L[e], damp[e], dca[e], dcyt[e], ddca[e], 
dgsn[e], doxrbcn[e], dtmp[e], duri[e], fe3dcit[e], 
feenter[e], frulys[e], fum[e], fusa[e], g3ps[e], 
glyald[e], glyc-R[e], glyc3p[e], gthrd[e], ins[e], lac-
D[e], lipoate[e], malt[e], mincyc[e], novbcn[e], 
peamn[e], pppn[e], ptrc[e], rfamp[e], sbt-D[e], 
ttrcyc[e], tyrp[e], ura[e], xtsn[e] 

146 2430 THRD_L L-threonine deaminase ile-L[e] 

147 2432 THRS threonine synthase thr-L[e], thrp[e] 

148 2441 THZPSN3 thiazole phosphate synthesis thm[e] 

149 2452 TMDS thymidylate synthase dtmp[e], thymd[e] 

150 2455 TMPPP 
thiamine-phosphate 
diphosphorylase 

thm[e] 

151 2483 TYRL tyrosine lyase thm[e] 

152 2487 TYRTA tyrosine transaminase tyr-L[e], tyrp[e] 

153 2506 UDCPDP undecaprenyl-diphosphatase 

14glucan[e], 23cgmp[e], 3cmp[e], acald[e], 
acmum[e], ala-B[e], alaala[e], all-D[e], but[e], 
cmp[e], cys-L[e], dca[e], ddca[e], din[e], duri[e], 
ethso3[e], fald[e], fecrm[e], g3pc[e], g3pe[e], 
g3ps[e], glcn[e], glcr[e], glcur[e], gln-L[e], glyc[e], 
glyc2p[e], gmp[e], hdcea[e], hxan[e], mal-L[e], 
maltpt[e], manglyc[e], peamn[e], phe-L[e], ppt[e], 
progly[e], ptrc[e], pydx[e], rmn[e], ser-L[e], 
taur[e], ura[e], val-L[e], xyl-D[e] 

Note: Reaction numbers, reaction names, reaction descriptions, and metabolite names come from the 

iJO1366 model12 
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APPENDIX E 

Table E.1: Essential reactions predicted using Minimization of Metabolic Adjustment method on iJO136612,24 

# iJO1366 Rxn # iJO1366 Rxn Name 

1 1 DM_4CRSOL 

2 2 DM_5DRIB 

3 4 DM_AMOB 

4 5 DM_MTHTHF 

5 74 EX_ca2(e) 

6 82 EX_cl(e) 

7 85 EX_co2(e) 

8 86 EX_cobalt2(e) 

9 95 EX_cu2(e) 

10 187 EX_h2o(e) 

11 206 EX_k(e) 

12 228 EX_meoh(e) 

13 233 EX_mg2(e) 

14 237 EX_mn2(e) 

15 239 EX_mobd(e) 

16 244 EX_nh4(e) 

17 245 EX_ni2(e) 

18 252 EX_o2(e) 

19 263 EX_pi(e) 

20 291 EX_so4(e) 

21 332 EX_zn2(e) 

22 426 3OAR140 

23 438 3OAS140 

24 460 5DOAN 

25 463 A5PISO 

26 498 ACCOAC 

27 509 ACGK 

28 510 ACGS 

29 511 ACHBS 

30 513 ACLS 

31 532 ACODA 

32 536 ACONTa 

33 537 ACONTb 

34 538 ACOTA 

35 554 ADCL 

36 555 ADCS 
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37 575 ADSK 

38 576 ADSL1r 

39 577 ADSL2r 

40 578 ADSS 

41 598 AGPAT160 

42 599 AGPAT161 

43 602 AGPR 

44 604 AHCYSNS 

45 605 AICART 

46 606 AIRC2 

47 607 AIRC3 

48 613 ALAALAr 

49 616 ALAR 

50 656 AMAOTr 

51 658 AMPMS2 

52 665 ANPRT 

53 666 ANS 

54 668 AOXSr2 

55 688 APRAUR 

56 708 ARGSL 

57 709 ARGSS 

58 714 ASAD 

59 728 ASP1DC 

60 729 ASPCT 

61 730 ASPK 

62 736 ASPTA 

63 749 ATPPRT 

64 750 ATPS4rpp 

65 755 BMOCOS 

66 756 BMOGDS1 

67 757 BMOGDS2 

68 758 BPNT 

69 763 BTS5 

70 773 CA2tex 

71 776 CAt6pp 

72 800 CDPMEK 

73 811 CHORM 

74 812 CHORS 

75 813 CHRPL 

76 836 CLt3_2pp 

77 837 CLtex 
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78 842 CO2tex 

79 843 CO2tpp 

80 846 COBALT2tex 

81 847 COBALT2tpp 

82 861 CPMPS 

83 878 CS 

84 888 CTPS2 

85 892 CU2tex 

86 893 CU2tpp 

87 906 CYSS 

88 908 CYSTL 

89 943 DAPDC 

90 944 DAPE 

91 950 DASYN160 

92 951 DASYN161 

93 955 DB4PS 

94 956 DBTS 

95 969 DDPA 

96 976 DHAD1 

97 977 DHAD2 

98 986 DHDPRy 

99 987 DHDPS 

100 988 DHFR 

101 989 DHFS 

102 994 DHNPA2r 

103 999 DHORTS 

104 1001 DHPPDA2 

105 1002 DHPS2 

106 1003 DHPTDCs2 

107 1007 DHQS 

108 1008 DHQTi 

109 1015 DMATT 

110 1025 DNMPPA 

111 1026 DNTPPA 

112 1031 DPCOAK 

113 1032 DPR 

114 1043 DTMPK 

115 1052 DXPRIi 

116 1053 DXPS 

117 1055 E4PD 

118 1100 EGMEACPR 
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119 1102 ENO 

120 1106 EPMEACPR 

121 1157 FCLT 

122 1220 FMNAT 

123 1251 G1PACT 

124 1255 G1SAT 

125 1267 G3PD2 

126 1280 G5SADs 

127 1315 GAPD 

128 1319 GCALDD 

129 1326 GF6PTA 

130 1333 GK1 

131 1359 GLNS 

132 1371 GLUPRT 

133 1372 GLUR 

134 1374 GLUTRR 

135 1375 GLUTRS 

136 1421 GMPS2 

137 1437 GRTT 

138 1452 GTPCI 

139 1453 GTPCII2 

140 1468 H2Otex 

141 1469 H2Otpp 

142 1484 HBZOPT 

143 1487 HCO3E 

144 1507 HISTD 

145 1508 HISTP 

146 1515 HMBS 

147 1520 HPPK2 

148 1527 HSDy 

149 1528 HSK 

150 1529 HSST 

151 1530 HSTPT 

152 1548 ICDHyr 

153 1553 ICYSDS 

154 1558 IG3PS 

155 1559 IGPDH 

156 1560 IGPS 

157 1561 ILETA 

158 1566 IMPC 

159 1581 IPMD 
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160 1582 IPPMIa 

161 1583 IPPMIb 

162 1584 IPPS 

163 1587 K2L4Aabcpp 

164 1588 K2L4Aabctex 

165 1589 KARA1 

166 1590 KARA2 

167 1593 KDOCT2 

168 1594 KDOPP 

169 1595 KDOPS 

170 1600 Ktex 

171 1624 LEUTAi 

172 1641 LPADSS 

173 1710 MALCOAMT 

174 1744 MCOATA 

175 1746 MCTP1App 

176 1763 MECDPDH5 

177 1764 MECDPS 

178 1768 MEOHtex 

179 1769 MEOHtrpp 

180 1770 MEPCT 

181 1771 METAT 

182 1776 METS 

183 1787 MG2tex 

184 1826 MNtex 

185 1827 MOADSUx 

186 1828 MOAT 

187 1829 MOAT2 

188 1831 MOBDabcpp 

189 1832 MOBDtex 

190 1834 MOCOS 

191 1836 MOHMT 

192 1838 MPTAT 

193 1839 MPTG 

194 1841 MPTS 

195 1842 MPTSS 

196 1849 MTHFR2 

197 1850 MTHTHFSs 

198 1870 NADS1 

199 1878 NDPK2 

200 1880 NDPK4 
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201 1885 NH4tex 

202 1886 NH4tpp 

203 1890 NI2tex 

204 1900 NNATr 

205 1902 NNDPR 

206 1975 O2tex 

207 1976 O2tpp 

208 1979 OCBT 

209 1983 OCTDPS 

210 1985 OGMEACPD 

211 1986 OGMEACPR 

212 1987 OGMEACPS 

213 1988 OHPBAT 

214 1991 OMCDC 

215 1994 OMPDC 

216 1998 OPHBDC 

217 2001 OPMEACPD 

218 2002 OPMEACPR 

219 2003 OPMEACPS 

220 2009 ORPT 

221 2015 P5CR 

222 2027 PANTS 

223 2042 PAPPT3 

224 2050 PDX5PS 

225 2055 PE160abcpp 

226 2056 PE161abcpp 

227 2061 PERD 

228 2075 PGAMT 

229 2078 PGK 

230 2081 PGM 

231 2113 PHETA1 

232 2119 PItex 

233 2164 PMDPHT 

234 2165 PMEACPE 

235 2166 PMPK 

236 2167 PNTK 

237 2180 PPBNGS 

238 2182 PPCDC 

239 2190 PPNCL2 

240 2191 PPND 

241 2192 PPNDH 
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242 2201 PRAGSr 

243 2202 PRAIS 

244 2203 PRAIi 

245 2204 PRAMPC 

246 2205 PRASCSi 

247 2206 PRATPP 

248 2207 PRFGS 

249 2208 PRMICI 

250 2220 PSCVT 

251 2224 PSD160 

252 2225 PSD161 

253 2235 PSSA160 

254 2236 PSSA161 

255 2242 PTPATi 

256 2276 QULNS 

257 2282 RBFK 

258 2283 RBFSa 

259 2284 RBFSb 

260 2292 RHCCE 

261 2323 SADT2 

262 2329 SDPDS 

263 2330 SDPTA 

264 2341 SERAT 

265 2353 SHCHD2 

266 2354 SHCHF 

267 2355 SHK3Dr 

268 2356 SHKK 

269 2357 SHSL1 

270 2366 SO4tex 

271 2394 SULRi 

272 2414 TDSK 

273 2419 THDPS 

274 2430 THRD_L 

275 2432 THRS 

276 2441 THZPSN3 

277 2452 TMDS 

278 2454 TMPK 

279 2455 TMPPP 

280 2483 TYRL 

281 2487 TYRTA 

282 2492 U23GAAT 
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283 2493 UAAGDS 

284 2499 UAGAAT 

285 2500 UAGCVT 

286 2501 UAGDP 

287 2502 UAGPT3 

288 2503 UAMAGS 

289 2504 UAMAS 

290 2505 UAPGR 

291 2506 UDCPDP 

292 2507 UDCPDPS 

293 2524 UGMDDS 

294 2525 UHGADA 

295 2531 UMPK 

296 2535 UPP3MT 

297 2536 UPP3S 

298 2537 UPPDC1 

299 2552 USHD 

300 2583 Zn2tex 

 


