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ABSTRACT

Quantum Detection and Coding with Applications to Quantum Cryptography

Ranjith Nair

Analytical lower and upper bounds for the average error probability in M -ary quan-

tum detection are derived. The upper bound is valid when the state ensemble, which can

consist of pure or mixed states, satisfies a certain linear independence condition. The

lower bound is generally valid and also has a classical interpretation. The quantum direct

encryption protocol called αη is described, focusing on its equivalence under individual

identical measurements by the eavesdropper to a classical random cipher. A new char-

acterization of classical random ciphers is given that focuses on their potential security

against known-plaintext attacks. The concept of a quantum random cipher is defined. The

quantum random cipher characteristics of αη against phase and heterodyne measurements

are elucidated. The derived lower and upper bounds on error probability are applied to

the problem of security of αη under known-plaintext and ciphertext-only joint attacks.

The system is shown to be insecure against known-plaintext attacks for sufficiently large

known-plaintext regardless of the values of all system parameters. The eavesdropper’s

error probability is upper and lower bounded by expressions involving respectively the
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minimum and the maximum distance of the code generated by the underlying linear feed-

back shift register. For ciphertext-only attack, it is seen that the upper bound is not

applicable to αη, leaving open the questions of security of αη and also the related key

generation protocol αη-KG.
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CHAPTER 1

Introduction and Background

There are two threads of ideas in the work of this thesis: The first thread relates to

standard private-key cryptography - specifically, the cryptographic objective of data en-

cryption. While standard stream ciphers can provide the maximum possible information-

theoretic security against ciphertext-only attacks, their security against known-plaintext

attacks is assumed in practice (but not proved) on the grounds of complexity alone. In

fact, we can prove that any nonrandom, i.e., standard cipher satisfying a nondegeneracy

condition is broken at a certain length of plaintext under known-plaintext attack, and

therefore, cannot have information-theoretic security. On the other hand, this result does

not hold for random ciphers, which are ciphers in which the sender adds an additional

randomness into the ciphertext that does not prevent the receiver from decrypting it but

can confuse the attacker. This potential advantage of random ciphers has been qualita-

tively understood for some time but has not been systematically studied. We make some

progress in this direction by defining a characteristic of random ciphers that is related to

their security under known-plaintext attack.

Our study of random ciphers was motivated by the data encryption protocol called

αη developed by Yuen [1]. This protocol uses coherent states of laser light as signaling

states that, under the KCQ principle described in [1], yield noisier observations to an

eavesdropper making any individual identical measurement on each signal in a sequence

of signals. It was realized that, once the eavesdropper’s measurement is fixed, this excess
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noise essentially makes the system a classical random cipher to her. Thus, the possibility

of information-theoretic security of some level is opened up, as in the case of classical

random ciphers mentioned above. In this quantum situation, however, the eavesdropper’s

capability is enhanced by allowing her to make joint measurements on the entire sequence

of signals rather than a separate measurement on each signal. With such capability,

analysis of the eavesdropper’s error probability involves the use of quantum detection

theory, i.e. M -ary quantum hypothesis testing, which is the second thread in this work.

As we will see, the exact calculation, even numerically, of the M -ary optimum quantum

measurement, and hence, the optimum error probability, is a difficult task. An explicit

solution is known only for the case of M = 2. Therefore, our goal was to obtain upper

and lower bounds for the M -ary error probability directly, without going through the

calculation of the optimum quantum measurement operators. Indeed, in trying to prove

security or insecurity of a system, we are more concerned with the eavesdropper’s optimal

performance and not with the explicit measurement which achieves it. At the same time,

however, it is important that the bounds derived be rigorous in order to apply to a real

security proof. The reason is that, unlike in communication system design, no amount of

testing or simulation of attacks on the system (unless one simulates the optimal attack,

which is unknown in our case) can establish its security when a real eavesdropper is

present, since she is assumed to be able to launch the optimal attack.

Our progress in addressing these problems is described in this thesis, whose organiza-

tion is as follows: In this section, we devote a subsection to the necessary background in

private-key cryptography, and one to the language of quantum states and measurements.
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In the latter subsection, we give special attention to the M -ary quantum detection prob-

lem that is central throughout the thesis. In Chapter 2, we review the existing results on

M -ary quantum detection and develop the novel upper and lower bounds for this prob-

lem. In Chapter 3, we first give our novel characterization of classical random ciphers and

extend it to the quantum case. We then describe the αη direct encryption protocol and

present its random cipher characteristics. In Chapter 4, we apply the bounds of Chapter 2

to αη security under both ciphertext-only and known-plaintext attacks and suggest future

directions of work.

1.1. Symmetric-Key Cryptography

1.1.1. Basics

We review the basics of symmetric-key data encryption. Further details can be found

in, e.g., [2, 3]. Throughout the paper, random variables will be denoted by upper-case

letters such as K, X1 etc. It is sometimes necessary to consider explicitly sequences of

random variables (X1, X2, . . . , Xn). We will denote such vector random variables by a

boldface upper-case letter Xn and, whenever necessary, indicate the length of the vector

(n in this case) as a subscript. Confusion with the n-th component Xn of Xn should not

arise as the latter is a boldface vector. Particular values taken by these random variables

will be denoted by similar lower-case alphabets. Thus, particular values taken by the

key random variable K are denoted by k, k′ etc. Similarly, a particular value of Xn can

be denoted xn. The plaintext alphabet will be denoted X , the set of possible key values

K and the ciphertext alphabet Y . Thus, for example, the sequences xn ∈ X n. In most

nonrandom ciphers, X is simply the set {0, 1} and Y = X .
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With the above notations, the n-symbol long plaintext (i.e., the message sequence

that needs to be encrypted) is denoted by the random vector Xn, the ciphertext (i.e.,

the output of the encryption mechanism) is denoted by Yn and the secret key used for

encryption is denoted by K. In this paper, we will often call the legitimate sender of

the message ‘Alice’, the legitimate receiver ‘Bob’, and the attacker (or eavesdropper)

‘Eve’. Note that although the secret key is typically a sequence of bits, we do not use

vector notation for it since the bits constituting the key will not need to be singled out

separately in our considerations in this paper. In standard cryptography, one usually

deals with nonrandom ciphers. These are ciphers for which the ciphertext is a function

of only the plaintext and key. In other words, there is an encyption function Ek(·) such

that:

(1.1) yn = Ek(xn).

There is a corresponding decryption function Dk(·) such that:

(1.2) xn = Dk(yn).

In such a case, the Xi and Yi, i = 1, . . . , n are usually taken to be from the same alphabet.

In contrast, a random cipher makes use of an additional random variable R called the

private randomizer [2], generated by Alice while encrypting the plaintext and known only

to her, if at all. Thus the ciphertext is determined as follows:

(1.3) yn = Ek(xn, r).
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Because of the additional randomness in the ciphertext, it typically happens that the

ciphertext alphabet Y needs to be larger than the plaintext alphabet X (or else, Y is a

longer sequence than X, as in homophonic substitution). It may even be a continuous

infinite alphabet, e.g. an analog voltage value. However, we still require, as in [2], that

Bob be able to decrypt with just the ciphertext and key (i.e., without knowing R), so

that there exists a function Dk(·) such that Eq.(1.2) holds. We note that random ciphers

are called ‘privately randomized ciphers’ in Ref. [2] – we will however use the shorter

term ‘random cipher’ (Note that ‘random cipher’ is used in a completely different sense

by Shannon [4]).

We note that the presence or absence of the private randomizer R may be indicated

using the conditional Shannon entropy (We assume a basic familiarity with Shannon

entropy and conditional entropy. See any information theory textbook, e.g., [5].). For

nonrandom ciphers, we have from Eq.(1.1) that

(1.4) H(Yn|KXn) = 0.

On the other hand, a random cipher satisfies

(1.5) H(Yn|KXn) 6= 0,

due to the randomness supplied by the private randomizer R. The decryption condition

Eqs.(1.2) for both random and nonrandom ciphers has the entropic characterization:

(1.6) H(Xn|KYn) = 0.
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Note that this characterization of a random cipher is problematic when the ciphertext

alphabet is continuous, as could be the case with αη, because then the Shannon entropy

is not defined. It may be argued that the finite precision of measurement forces the

ciphertext alphabet to be discrete. Indeed, in Sec. 3.1, we define a parameter Λ that

characterizes the “degree of randomness” of a random cipher. In any case, the definition

makes sense, similar to Eq. (1.5), only when the ciphertext alphabet is finite, or at most

discrete.

In the cryptography literature, the characterization of a general random cipher is

limited to that given by Eqs. (1.3) and (1.5). See, e.g., [2]. In the next section, we will

see that the purposes of cryptographic security suggest a sharper quantitative definition of

a random cipher involving a pertinent security parameter Γ. This new definition, unlike

(1.5), will be meaningful irrespective of whether the ciphertext alphabet is discrete or

continuous. Before we discuss the above new definition of random ciphers, we conclude

this section with some important cryptographic terminology.

By standard cryptography, we shall mean that Eve and Bob both observe the same

ciphertext random variable, i.e., YE
n = YB

n = Yn. Thus, standard cryptography includes

usual mathematical private-key (and also public-key) cryptography but excludes quantum

cryptography and classical-noise cryptography [6]. For a standard cipher, random or

nonrandom, one can readily prove from the above definitions the following result known

as the Shannon limit [2, 4]:

(1.7) H(Xn|Yn) ≤ H(K).
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This result may be thought of as saying that no matter how long the plaintext sequence

is, the attacker’s uncertainty on it given the ciphertext cannot be greater than that of the

key.

By information-theoretic security (or IT security) on the data, we mean that Eve

cannot, even with unlimited computational power, pin down uniquely the plaintext from

the ciphertext, i.e.,

(1.8) H(Xn|Yn) 6= 0.

The level of such security may be quantified by H(Xn|Yn). Shannon has defined perfect

security [4] to mean that the plaintext is statistically independent of the ciphertext, i.e.,

(1.9) H(Xn|Yn) = H(Xn).

With the advent of quantum cryptography, the term ‘unconditional security’ has come to

be used, unfortunately in many possible senses. By unconditional security, we shall mean

near-perfect information-theoretic security against all attacks consistent with the known

laws of quantum physics.

Incidentally, note that the Shannon limit Eq. (1.7) immediately shows that perfect

security can be attained only if H(Xn) ≤ H(K), so that, in general, the key needs to be

as long as the plaintext.

1.1.2. Classes of Attacks on Ciphers

In this section, we summarize some relevant terminology and general results on the key

security of both random and nonrandom ciphers. We first present an overview of the
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various possible cryptographic attacks possible on a cipher and some early results on

the subject. We also present our result on the security of a nonrandom cipher under

known-plaintext attacks. In the process, we define the important term ‘unicity distance’

coined by Shannon and broaden it to include the notion of ‘unicity distance under known-

plaintext attack’ for both random and nonrandom ciphers. We also define the important

concept of ‘nondegeneracy’ for both random and nonrandom ciphers that is needed to

make the concept of unicity distance meaningful. Finally, we discuss how random ciphers

may enhance security against known-plaintext attacks.

The following terminology in regard to cryptographic attacks has been used in this

paper, as in our paper [7]. This terminology is not standard, however. In the cryptography

literature, what we call statistical attacks are sometimes referred to as ciphertext-only

attacks (See, e.g., [3], Ch. 2) but are also often lumped together with known-plaintext

attacks.

By a ciphertext-only attack (CTA), we refer to the case where the probability distri-

bution p(Xn) is completely uniform, i.e., p(Xn) = 2−n to Eve, so that her attack cannot

exploit input frequencies or correlations and must be based only on the ciphertext in her

possession. By a statistical attack (STA), we refer to the case where the probability dis-

tribution p(Xn) is nonuniform, so that Eve may in principle exploit input frequencies or

correlations to launch a better attack. Such an attack is typical when the plaintext is in a

language such as English. It is also the attack that obtains when the {Xi} are independent

and identically distributed (i.i.d.) but each p(Xi) is nonuniform. By a known-plaintext

attack (KPA) we mean the case where Eve knows exactly some length m of plaintext
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xm. Finally, by a chosen-plaintext attack (CPA), we mean a KPA where the data xm is

chosen by Eve.

In standard cryptography, one typically does not worry about ciphertext-only attack

on nonrandom ciphers. The reason is that, under CTA, Eq. (1.7) is satisfied with equality

for large n for the designed key length |K| = H(K) under a certain ‘nondegeneracy’

condition [8] that is readily satisfied. Thus, in practice, the data security is assumed to

be sufficient if H(K) is chosen large enough by adjusting the key length. However, it

follows from (1.7) that no meaningful lower bound on H(Xn|Yn) exists for n À |K|. A

new fundamental treatment of data security in symmetric-key ciphers has to be developed

separately. Under CTA, it is also the case for nonrandom nondegenerate ciphers that [8]

(1.10) H(K|Yn) = H(K),

i.e., the key is statistically independent of the ciphertext. Thus, no attack better than

pure guessing can be launched on the key.

The above two results do not hold for statistical and known-plaintext attacks. Eve

can indeed launch an attack on the key and use her resulting information on the key to

get at future and past data. In fact, it is such attacks that are the focus of concern for

standard ciphers such as the Advanced Encryption Standard (AES). For STAs, Shannon

[4] characterized the security by the so-called unicity distance. The unicity distance n0

of a cipher is the smallest input data length for which H(K|Yn0) = 0. In other words,

if a plaintext sequence of length n0 is encrypted by the cipher, the ciphertext contains

enough information to fix the key (and hence, the plaintext) uniquely – the cipher has

no information-theoretic security. For nonrandom ciphers defined by Eq. (1.4), Shannon,
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in [4], derived in terms of the data entropy an estimate on n0 that is independent of the

cipher. This estimate is actually not a rigorous bound. Indeed, it can be shown that one of

the inequalities used in the derivation goes in the wrong direction. Even so, the estimate

works well empirically for English language plaintexts, for which n0 ∼ 25 characters are

found to be sufficient to break many ciphers.

We now consider, in some detail, security against known-plaintext attacks. Here, a

natural quantity to consider is H(K|XnYn), since it provides a measure of key uncertainty

when both plaintext and ciphertext are known to the attacker. Before we state the main

result, we define the notion of nondegeneracy distance. The reader can readily convince

himself that a finite unicity distance exists only if, for some n, there is no redundant key

use in the cryptosystem, i.e., no plaintext sequence xn is mapped to the same ciphertext

yn by more than one key value. With redundant key use, one cannot pin down the key but

it seems that this may not enhance the system security either, and so is merely wasteful.

In any case, we call a cipher nondegenerate if it has no redundant key use for some finite

n or for n →∞. Under the condition

(1.11) lim
n→∞

H(Yn|Xn) = H(K),

which is similar but not identical to the definition of a ‘nondegenerate’ cipher given in

[8], one may show that, when Eq. (1.4) also holds, one has

(1.12) lim
n→∞

H(K|Xn,Yn) = 0,

so that the system is asymptotically broken under a known-plaintext attack. More gen-

erally, for a nonrandom cipher, we define a nondegeneracy distance nd to be the smallest
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n such that

(1.13) H(Yn|Xn) = H(K)

holds, with nd = ∞ if (1.11) holds and there is no finite n satisfying (1.13). Thus,

a nonrandom cipher is nondegenerate in our sense if it has a nondegeneracy distance,

finite or infinite. In general, of course, the cipher may be degenerate, i.e., it has no

nondegeneracy distance. We can readily show (see Appendix A of [9]) that, under known-

plaintext attack, a nonrandom nondegenerate cipher is broken at data length n = nd, in

the sense that

(1.14) H(K|Xnd
Ynd

) = 0.

More generally, for both random and nonrandom ciphers, we define the unicity distance

under known-plaintext attacks, denoted by n1, to be the smallest integer such that

(1.15) H(K|Xn1Yn1) = 0.

If no such integer exists, the unicity distance under KPA is taken to be infinite if

(1.16) lim
n→∞

H(K|XnYn) = 0.

Thus, n1 is the minimum length of data needed to break the cipher for any possible

known-plaintext Xn. For a nonrandom cipher, it is equal to the nondegeneracy distance.

Many ciphers including the one-time pad and LFSRs (linear feedback shift registers

[3]) have finite nd. Similar to the case of nd for nonrandom ciphers, n1 for a random cipher
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may not always exist. For our definition of n1 to make sense for random ciphers, we will

impose a ‘nondegeneracy’ restriction on random ciphers: A random cipher is said to be

nondegenerate if and only if each nonrandom cipher resulting from an assignment R = r

of the randomizer is nondegenerate. Then we say it has information-theoretic security

against known-plaintext attacks if

(1.17) inf
n

H(K|Xn,Yn) 6= 0,

i.e., if H(K|Xn,Yn) cannot be made arbitrarily small whatever n is. In other words, n1

does not exist. The actual level of the information-theoretic security is quantified by the

left side of (1.17). One major motivation to study random ciphers is the possibility that

they possess such information-theoretic security. Some discussion on this point is also

available in Appendix A of [9].

Even in the absence of information-theoretic security, nondegenerate random ciphers

can be expected (we will discuss this further in Sec. 3.1) to have larger unicity distance

n1 under KPA compared to the case where the randomization is turned off. This would,

as assumed in cryptography practice, increase the complexity of attacking the key signif-

icantly. If Eq. (1.14) holds when Xn is replaced by a specific xn, n defines the unicity

distance corresponding to xn. The overall unicity distance under KPA may be defined by

(1.18) n̄1 = min
H(K|Xn=xn,Yn)=0

n for some xn.

The above result has not been given in the literature, perhaps because H(K|XnYn)

has not been used previously to characterize known-plaintext attacks. Nevertheless, it is
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assumed to be true in cryptography practice that K would be pinned down for sufficiently

long n in a nonrandom ‘nondegenerate’ cipher.

We now discuss the advantages that a random cipher provides as compared to non-

random ciphers. For the case of STA on the key when the plaintext Xn has nonuniform

but i.i.d. statistics, the so-called homophonic substitution method provides complete

information-theoretic security, i.e. H(K|Yn) = H(K) [8]. The original form of ho-

mophonic substitution involves assigning to each plaintext symbol a number of possible

sequences of length l proportional to its a priori probability in such a way that all possible

l-sequences are covered. Then, for every input symbol, if one of its assigned l-sequences is

generated at random, the net effect is to generate l-sequences of plaintext with i.i.d. uni-

form statistics. These sequences may be passed through a non-degenerate cipher without

revealing information on the key as per Eq. (1.10). To put it another way, a statistical

attack has been converted to a ciphertext-only attack. A generalized homophonic substi-

tution that allows each symbol to be coded into sequences of variable length is discussed

in [8], for which it is shown that sometimes data compression instead of data expansion

results.

Unfortunately, this reduction of a STA to a CTA does not work for known-plaintext

attacks. However, we emphasize that there is no result on random ciphers analogous

to Eq. (1.14 ) with nd replaced by any definite n depending on the cipher, since under

randomization, Eq. (1.4), and usually (1.13) also, does not hold for any n. We will say

more on this in Sec. 3.1. In fact, the general problem of attacking a random cipher has

received limited attention because they are not used in practice due to the associated

reduction in effective bandwidth or data rate as is evident in homophonic substitution,
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due to the need for high speed random number generation, and also due to the uncertainty

on the actual input statistics needed for, e.g., homophonic substitution randomization.

Thus, the rigorous quantitative security of symmetric-key random ciphers against known-

plaintext attacks is not known theoretically or empirically, although in principle random

ciphers have actual and potential advantages just discussed.

1.2. Quantum Mechanics Review

This section presents a sketch of the fundamentals of quantum mechanics that are

required for our future treatment. We will focus mostly on the abstract mathematical

description of quantum mechanical systems. A quite comprehensive modern textbook

that includes these topics is Nielsen and Chuang [10]. Another good reference for general

quantum mechanics is [11]. Measurement theory in quantum mechanics is a vast topic

- a good starting place may be the summary of [12]. A standard textbook of quantum

optics is [13].

First, we comment on the Dirac notation [10] for vectors and linear functionals in a

Hilbert space. A vector ψ in the space is written as a so-called ket |ψ〉, and the linear

functional corresponding to taking the inner product with ψ is written as a so-called

bra 〈ψ|. The inner product of two vectors φ and ψ then becomes in Dirac notation the

bra(c)ket 〈φ|ψ〉. A projection operator Pψ onto the (normalized) vector ψ is written

conveniently in Dirac notation as Pψ = |ψ〉〈ψ|. In quantum mechanics, the inner product

is conventionally taken to be linear in the second argument and conjugate-linear in the

first.
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1.2.1. Quantum Mechanics Axioms

(1) Every physical system is associated with a Hilbert space H, i.e. a complete

normed space over the complex numbers with an inner product denoted 〈·|·〉.
The system is completely specified by its state vector , denoted |ψ〉, which is a

unit vector in the space, i.e. 〈ψ|ψ〉= 1.

(2) The time evolution of a closed quantum system is described by a unitary, i.e.,

inner product-preserving, linear operator, on H (via the Schrodinger equation):

(1.19) |ψ(t)〉 = U(t, 0)|ψ(0)〉

(3) A Measurement M with a finite number M of outcomes {m}M
1 on the system is

described by a set of operators {Mm}M
1 that satisfy

(1.20)
∑
m

M †
mMm = I

where I is the identity operator on H, and the † denotes the adjoint opera-

tion. The probability p(m) of obtaining the outcome m when measurement M is

performed on a system in the state |ψ〉 is

(1.21) p(m) = 〈ψ|M †
mMm|ψ〉 = Tr[|ψ〉〈ψ|M †

mMm].

Here Tr stands for operator trace. The state of the system after obtaining the

outcome m is

(1.22) |ψm〉 =
Mm|ψ〉√

〈ψ|M †
mMm|ψ〉

.
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Note that Eq. (1.20) ensures that the probabilities p(m) sum to one and the

denominator of Eq. (1.22) is simply a normalization.

(4) The state space of a composed quantum system with two components is the

tensor product (or Kronecker product) H ⊗ K of the component state spaces H
and K. The extension to more than two component systems is obvious. In Dirac

notation, the tensor product of |ψ〉 and |φ〉 is denoted simply by |ψ〉|φ〉 omitting

the ⊗ sign. Recall that if {|ei〉}m
1 and {|fj〉}n

1 are bases for H and K, then

{|ei〉|fj〉}(m,n)
(1,1) is a basis for H ⊗ K. Thus the dimension of the composite state

space grows multiplicatively. This feature is characteristic of quantum mechanics.

The operator space L(H⊗K) = L(H)⊗ L(K), and so the dimension multiplies

here too. If A1, A2, · · · are operators on H1,H2, · · · respectively, the notation

A1A2 · · · is used conventionally to refer to the tensor product operator A1⊗A2⊗
· · · .

The above axiom (3) is more general than the special case of von Neumann (or Projective)

Measurement that was first recognized historically. The projective measurements are

those where {Mm} are mutually orthogonal projection operators, i.e. M †
m = Mm = M2

m,

and MmMm′ = Mm′Mm = Mmδmm′ . The physical observables like position, total energy

etc. are associated with Hermitian operators X = X†. Every Hermitian operator has a

(discrete or continuous) spectral decomposition:

(1.23) X =
∑

x

xPx
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where {x} is the spectrum of X. The operators {Px} constitute a projective measurement

and it is this measurement that is meant when one speaks in quantum mechanics of

‘measuring an operator X’.

It can be in fact be shown that a general measurement of the form of axiom (3) can

be realized on a system with state space H by adjoining an ancillary system with state

space K of sufficiently large dimension and performing a von Neumann measurement on

the composite system H ⊗K. This follows from Neumark’s extension theorem (See [11]

and [14]) and is in fact how the above definition of a general measurement suggests itself.

It is interesting that the general definition of measurement given above covers a large

set of possible experimental procedures. It can be shown that two successive measurements

{Ll} and {Mm} are equivalent (in terms of final state and probability distribution of

outcomes) to a single measurement {MmLl} ([10], p. 86). An experimenter in the lab can

conceive many operational measurement procedures that seem to fall outside the purview

of the measurement axiom. For example, given a quantum system, the experimenter

may choose to make a measurement on one portion of the system, and depending on the

outcome, make another measurement on the rest of the system and so on. This kind of

procedure is referred to as an Adaptive measurement. However, it can be shown again

that such procedures can also be reduced back to performing an equivalent measurement

of the form of axiom (3) [15]. This fact is of importance to the sequel since we will

be interested in using the measurement formalism to prove results that need to be valid

under very general conditions. We also mention that in many situations of interest, the full

description of a measurement provided by axiom (3) is not required and a less detailed
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description is sufficient. Such situations arise in quantum detection theory that is the

subject of the Subsection 1.2.4.

1.2.2. Density Operators

We now discuss a useful generalization of the concept of state of a quantum system.

Note that the quantum state |ψ〉 is equally well represented by the projection operator

ρ := |ψ〉〈ψ|. Indeed, the overall phase of |ψ〉 has no observable manifestation. Similarly,

the probability distribution of measurement outcomes can be given in terms of ρ (the

second equality in (1.21)). and the post-measurement state conditioned on outcome m is

simply:

(1.24) ρm =
MmρM †

m

Tr[MmρM †
m]

.

This observation allows us to compactly describe the system state when additional

(classical) randomness is present. For example, our knowledge of the system may be

limited to knowing that it is one of many pure states |ψi〉 with probability pi. In this

case, it is convenient to represent the system state by the density operator ρ:

(1.25) ρ =
∑

i

pi|ψi〉〈ψi|.

States whose density operator is not a one-dimensional projection are called mixed states.

ρ in the above equation is said to be a mixture of the states |ψi〉. Those ρ that are of the

form |ψ〉〈ψ| are referred to as pure states. The operator in (3.9)can be seen to have the
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following properties [10] which serve to define a general density operator:

ρ = ρ†(1.26)

ρ ≥ 0(1.27)

Tr[ρ] = 1.(1.28)

Here the operator inequality A ≥ B means that A − B is a positive (semi-definite)

operator. In terms of the density operator formalism, measurement probabilites are given

by

(1.29) p(m) = Tr[M †
mMmρ]

and final states by (1.24). We will use the density operator formulation in the following

except sometimes when dealing with pure states.

1.2.3. Quantum Optics

We quickly mention some facts from quantum optics that are needed in the sequel. The

treatment is mainly to introduce standard notations and omits a lot of detail, which

can be found in [13]. A single field mode has an infinite dimensional Hilbert space that

is isomorphic to L2(R). Thus, as in the case of a particle in one dimension, a pure

state of the field can be given as a wave function ψ(x) where x represents a quadrature

component of the field. The quadrature components, denoted by operators a1 and a2,

when suitably normalized, are analogous to the position and momentum operators and
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satisfy the commutation relation:

(1.30) [a1, a2] = i/2

It is useful to define the non-Hermitian operator a, called the annihilation operator,

by

(1.31) a = a1 + ia2.

The positive operator N = a†a is called the photon number operator and has a discrete

spectrum comprising the non-negative integers. Its eigenvectors span the Hilbert space

and are called number states. The number state corresponding to the eigenvalue n is

denoted |n〉, and so the spectral decomposition of N is:

(1.32) N =
∞∑

n=0

n|n〉〈n|.

The eigenvalues of a are all the complex numbers α = α1 + iα2 ∈ C with correspond-

ing eigenvectors denoted |α〉. These states are called coherent states and are of great

importance. In the number state basis, the coherent state |α〉 has the representation:

(1.33) |α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉.

Note that a measurement of photon number N on the coherent state (1.33) yields a

Poisson distribution of outcomes. The coherent states are usually represented as points

on the two dimensional plane. However, the state space is not two-dimensional - Indeed

the inner product |〈α|β〉| → 0 as the Euclidean distance on the plane between |α〉 and
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|β〉 increases. The coherent states have great practical importance. The quantum state of

a laser operating far above threshold is well-modeled by a coherent state [13]. Coherent

states in a lossy channel, e.g., an optical fiber, are well-behaved and do not become

quantum- correlated or entangled [10] with the environment. The product of the quantum

fluctuations in the field components has the minimum possible value (as given by the

Heisenberg inequality) for coherent states. As we mentioned, the coherent state is a good

model for the states in optical communications, at least when no amplification is done.

Even when amplifiers are used, the field state can be represented by a density operator

that is a mixture of coherent states. Thus, the coherent state is fairly ubiquitous. Indeed,

the ‘α’ in αη highlights the fact that the protocol works with coherent states in contrast

to other quantum key generation protocols which ideally require exotic states like the

photon number eigenstate |1〉 that are hard to produce.

1.2.4. Quantum detection theory: Introduction and the POM concept

We now study the modification of standard communication theory that arises when the

states of a quantum system are used as signals. The associated detection theory is called

Quantum Detection Theory. The aim in this section is to introduce the mathematical

problem, mention its possible solution, and to highlight the features of the theory that

makes key generation possible.

The situation is as follows: As in classical communication, the sender Alice wishes to

communicate to the receiver Bob a random variable X taking values x ∈ X , which we

assume to be a finite set in our work. (If not, as in classical communication theory, we

talk of an estimation problem rather than a detection problem). To do so, she modulates
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a quantum system as a function of the particular value x to generate a state with density

operator ρx ∈ H with a priori probability px. This state is put onto a physical channel

such as an optical fiber, and may suffer some noise and loss before it gets to Bob. In

general, the action of the physical channel can be modeled as a map from the space of

density operators to itself that satisfies some conditions. In the work to follow, however,

we neglect channel noise, and as mentioned in the previous section, the coherent states

that we use in our system transform very simply under loss and retain their coherent state

character. Therefore, we shall not be concerned with the channel map. In either case,

Bob’s task at the receiver is to make a measurement on the states {ρx} with the purpose

of deciding which x was sent. The optimal way of doing this is the subject of quantum

detection theory.

Before we formulate and give the solution of the general quantum detection problem,

we remark that the general theory of quantum measurement that we gave earlier is not

required in its entirety for the detection problem. Specifically, for a measurement M, we

are concerned only with the probabilities of the various outcomes m and not with the final

states MmρM †
m. This is because we are concerned only with the extraction of classical

information (residing in the outcomes m of the measurement) from the system and not

the final quantum state. Indeed, in optics, most measurements that we can do today, in

the final analysis, correspond to the measurement of the photon number operator N of

some or the other field mode using a photodiode, which destroys the post-measurement

state in that mode.

Eq. (1.29) reveals that the set of operators {Πm = M †
mMm}M

1 is sufficient to generate

the probability distribution of outcomes for any state ρ. Such a set of operators can be
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seen to satisfy the properties:

Πm ≥ 0,(1.34)

M∑
m=0

Πm = I.(1.35)

and is called a Positive Operator-Valued Measure or POM and its elements are called POM

elements. Also, any given POM {Πm} can be realized by a measurement Mm = U
√

Πm

where
√· denotes the positive square root of the positive operator Πm and U is any unitary

operator. Note that the earlier discussion of adaptive measurements etc. carries over to

the POM case, so that any such measurement procedure has an equivalent POM associated

with it. It is believed (which is highly plausible but not proved) that any conceivable

measurement procedure in quantum mechanics is associated to a unique POM. In our

discussion of quantum detection theory, therefore, we can confine our characterization of

possible measurements to their associated POM’s. POM’s are discussed in more detail in

[10]. The standard reference for quantum detection and estimation theory is the book by

Helstrom [14].

1.2.5. M-ary Quantum Detection: Setup of the Mathematical Problem and

its Solution

The general M -ary quantum detection (or hypothesis testing) problem is as follows. Given

a set of M density operators {ρi}M
1 with respective a priori probabilities {pi}M

1 and a cost

function Cij on J ×J, J = {1, . . . ,M}. The task is to find a POM {Πj}M
1 that maximizes
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(or minimizes) the average cost:

(1.36) C =
M∑

i,j=1

piCijTr[Πjρi].

Note that Tr[Πjρi] is the conditional probability of obtaining outcome j given state ρi.

We shall only be interested in the cost function Cij = 1 − δij, in which case the average

cost is the average probability of error in distinguishing the states {ρi}M
1 . A necessary

and sufficient condition for operators {Π̂j}M
1 to minimize the cost (1.36) was given by

Yuen, Kennedy and Lax [16]. In the form given in [17] the theorem is:

YKL Theorem: A necessary and sufficient condition for the set {Π̂j}M
1 to minimize

the cost (1.36) is that there exists a Hermitian operator X satisfying

X − p1ρi ≥ 0, ∀i ∈ J(1.37)

(X − p1ρi)Π̂i = 0 ∀i ∈ J.(1.38)

The matrix X is the solution of the dual problem minX∈B Tr[X] subject to the conditions

(23). Here B is the set of Hermitian operators on the space H.

The YKL theorem is useful for checking if a proposed POM is optimal. Actually

obtaining the optimal POM is a quite difficult task. In the case where the range of the

operators {ρi} taken together is finite-dimensional of dimension n, it can be solved numer-

ically by methods of semidefinite programming [17]. The space of Hermitian operators on

a n-dimensional complex vector space is a n2-dimensional real vector space. Since there

are M POM elements, we have a total dimension of Mn2 with the M + 1 constraints
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(1.34). The dimension of the space can be reduced in some cases where the states to be

distinguished have some symmetries.

It may be helpful to explain qualitatively the difference between classical and quantum

detection theory. Classical detection theory is contained in quantum detection theory

as the special case when the density operators {ρx} under consideration all commute,

i.e. have a common set of eigenvectors. In this case, the optimal decision procedure is

simply to make the von Neumann measurement defined by these eigenvectors and map

each possible outcome to the most likely hypothesis. These two steps have as analogs

in classical decision theory the making of an observation of the signal(i.e. obtaining a

point in the observation space which in digital communication is a subset of Rn) and

partitioning the observation space into regions that map to the various hypotheses so as

to minimize the error probability. In the POM formalism given above for the quantum

case, these two steps are collapsed into one but there is no essential difference (Indeed,

a “two-step” formulation of quantum detection can be given -See e.g.[16]. However, the

problem reduces to finding an optimal POM as given above.)

The difference only arises when the {ρx} do not commute. In this case, there is no

single analog of the classical observation space on which all signals {ρX} can be assumed

consistently to live. This is a characteristic feature of quantum mechanics. In effect, each

possible measurement creates its own observation space and the probability distributions

of the outcomes of different observables for a particular state are not compatible with (i.e.

cannot all be derived from) a probability distribution on a “universal” observation space.

In the classical theory, an observation space that includes the values of all the degrees of

freedom of the system serves as such a universal space.
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1.2.6. Binary Signal Sets

In the case of a binary signal set {ρ0, ρ1}, with a priori probabilities {p0, p1}, Helstrom

(See [12]) gave a formula for the optimal error probability Pe

(1.39) Pe =
1

2
− 1

2
||p0ρ0 − p1ρ1||1.

Here ||A||1 = Tr[
√

A†A] is the operator trace-norm. We use this formula to give the

optimum Pe for a quantum binary phase shift keying (BPSK) signal set {|α〉, |−α〉} with

equal a priori probabilities. Here |α〉 and |−α〉 are coherent states. Analogously to clas-

sical communication, we define the average energy S = 〈α|N |α〉 = |α|2. Then Eq. (1.39)

gives:

(1.40) Pe
opt ≈ 1

4
e−4S

Interestingly, this performance can be reached to within a factor of two by a concrete

setup called the Kennedy receiver. As we will see, this signal set is used in our αη key

generation protocol. Two other common suboptimal measurements called the homodyne

and heterodyne measurements (similar to their rf counterparts) on this signal set yield

the respective error probabilities:

(1.41) Pe
hom

=
1

2
e−2S, Pe

het
=

1

2
e−S

This example illustrates the difference in performance that results from using different

measurements on the same signal set.
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CHAPTER 2

Error Probability Bounds for M-ary Quantum Detection

2.1. Literature Review and Motivation

The problem of obtaining the optimum quantum detector is solved explicitly only for

a few special cases. Ban et. al [18] derive the solution for a pure state set |ψi〉, where

the vectors |ψi〉 form a cyclic set, i.e. they are generated by applying a cyclic group of

unitary operators to a single vector of the set. Eldar and Forney [19] discuss the so-

called ‘Least Squares Measurement’ (LSM), which consists of rank-one POM elements

chosen to minimize the sum of the squared differences between the ith state vector and

the ith measurement vector. This measurement is shown to be optimum for geometrically

uniform (GU) state sets, i.e., a set of equally likely pure states that are generated from

one of them by the action of an Abelian group of unitary operators. This optimality

result has also been extended to the case of geometrically uniform mixed states generated

by even some non-Abelian groups of operators under certain conditions [20]. After we

introduce the αη protocol in Chapter 3, we will see that the states corresponding to each

plaintext sequence xn in a ciphertext-only attack are indeed a geometrically uniform set.

Unfortunately, no explicit solution for the measurement operators is found in [20], but the

problem is left as a convex semidefinite programming problem, albeit one of much smaller

dimension than the original one. Therefore, the problem of analytical estimates of error

probability is still open. Furthermore, the semidefinite programming problem deriving
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from it is one of dimension exponential in n, ruling out even the possibility of numerical

computation for large n. Thus, there is good reason to develop new upper bounds on

the error probability that yield analytical estimates even under some assumptions such

as geometric uniformity or less specific ones such as linear independence. In addition, to

the author’s knowledge, there are no general lower bounds on the M -ary error probability

in the literature. Since analytical lower bounds on Eve’s error probability are important

for proving security of a quantum protocol (as opposed to upper bounds which can prove

the insecurity of a protocol), searching for such bounds is well motivated. In the rest of

this chapter, we develop both a novel upper bound and a novel lower bound for the M -

ary quantum detection problem. The lower bound is of general validity, while the upper

bound is valid when the M density operators involved have linearly independent support.

2.2. Sequential Detection Upper Bound on M-ary Quantum Error

Probability

2.2.1. Pure State Case

Consider first the case of a linearly independent (LI) pure state ensemble {πm, ψm}M
1 . Here

the {πm}M
1 represent a priori probabilities, and we dispense with Dirac notation, which

we will only use when convenient. We derive an upper bound on the optimal average

probability of error (which we will call the APE), P e, by estimating it for a particular

detection method that may be called ‘Sequential Detection’.

The general idea is the following:- We first make a two-valued projection measurement

that ‘decides’ between hypothesis H1 and the remaining hypotheses. If H1 is detected, we

declare m̂ = 1 and stop. If not, we make a second projection measurement that ‘decides’
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between H2 and the hypotheses H3, . . . , HM , and continue in a similar fashion until one of

the hypotheses is detected. If the (M−1)th such measurement does not yield m̂ = M−1,

we declare m̂ = M . Note that the said measurements are only made conceptually for the

purpose of bounding the APE and, if made in actuality, would necessitate holding intact

the state after each measurement before making the succeeding one.

Let us make the above precise. Let the M -dimensional subspace spanned by the

M LI states {ψm} be denoted V . Let the (M − k + 1)-dimensional space spanned by

{ψk, . . . , ψM} be denoted Vk, 1 ≤ k ≤ M , so that V = V1 ⊃ . . . ⊃ VM . All the in-

clusions are strict because of the linear independence condition. The Projection Valued

Measurement (PVM) {Pi, Pi} that describes the i-th measurement is given by

(2.1) Pi = PVi+1
; Pi = PVi+1

− PVi+2
.

Here PVi
is the orthogonal projection operator onto the subspace Vi. In the form above,

the i-th measurement PVM is defined on the space Vi and not the entire space, but this is

permissible since the (i− 1)-th measurement projects the state into Vi when the outcome

i is obtained. Let us now write the sequential detection error probability P
seq

e as:

(2.2) P
seq

e =
M∑

m=1

πmPr[Error|ψmsent].

From the way the {Pi} are defined, and because of the linear independence of the states,

we can see that if ψm is sent, one never obtains the results i ∈ {1, . . . , (m− 1)} because

the support space of each such Pi is orthogonal to ψm. Thus, when ψm is sent, an

error occurs if and only if the result m is obtained in the {Pm, Pm} measurement. Since
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Pr[Error|ψmsent] = 〈ψm|Pm|ψm〉 =‖ Pmψm ‖2, we have

(2.3) P
seq

e =
M∑

m=1

πm ‖ Pmψm ‖2,

which is the Sequential Detection upper bound for arbitrary linearly independent pure

states.

2.2.2. Mixed State Case

The upper bound on the APE just derived can be extended to an analogous one valid

for mixed states. Similar to the linear independence condition assumed in the pure state

case, we make the following assumption regarding the M density operators {ρm}M
m=1 corre-

sponding to the M hypotheses. Define V ′
m := support(ρm) = range(ρm). If dim(V ′

m) = dm,

we will assume that dm is finite and that

(2.4) dim(V ′
1 + . . . + V ′

M) =
M∑

m=1

dm.

In other words, if we collect into a larger set the basis vectors of each V ′
m, the larger set is

still linearly independent. A common situation in which this condition holds is when each

ρm is a mixture of pure states ψl
m, l = 1, . . . Lm and the set of vectors

⋃M
m=1

⋃Lm

l=1{ψl
m}

is linearly independent. In particular, the condition holds when the {ψl
m} are distinct

coherent states.

When Eq (2.4) holds, the argument used to define the sequential measurement pro-

jectors {Pm, Pm} in the previous subsection goes through as before with Vm in Eq. (2.1)



38

replaced by

(2.5) Vm = V ′
m + . . . + VM .

The probability of error is again given by

(2.6) P
seq

e =
M∑

m=1

πmPr[Error |ρm sent].

Since the support space of ρm is orthogonal to those of the projectors {Pi}m−1
i=1 , when ρm

is sent, none of the outcomes i ∈ {1, . . . , (m− 1)} can be obtained. Thus, we again have

(2.7) P
seq

e =
M∑

m=1

πmtr(ρmPm).

If ρm =
∑Lm

l=1 pl
m|ψl

m〉〈ψl
m|, we get the following upper bound on the APE for mixed states:

(2.8) P
seq

e =
M∑

m=1

πm

Lm∑

l=1

pl
m ‖ Pmψl

m ‖2≥ P e.

2.2.3. ε-Orthogonal States

To illustrate the above upper bounds, let us calculate them for what may be called ε-

orthogonal states. In the pure state case, we mean by this that we have the uniform

upper bound

(2.9) 0 ≤ |〈ψm|ψm′〉| ≤ ε ∀m 6= m′

on the inner product between any two states. Intuitively, such an upper bound on the

pairwise inner products should yield an upper bound on ‖ Pmψm ‖ for each m, which
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will then also upper bound P
seq

e via Eq. (2.3). Indeed, such an upper bound can be

derivedfrom the following lemma:

Lemma 2.2.1. Let S = {x, e1, . . . , en} be a linearly independent set of unit vectors

with the property that |〈s|s′〉| ≤ ε ∀s, s′ ∈ S. Let E denote the subspace spanned by

{e1, . . . , en} and let E be the orthogonal projector onto this subspace. If (n−1)ε < 1, then

‖ Ex ‖≤ ε
√

n
1−(n−1)ε

.

Proof: First observe that

(2.10) ‖ Ex ‖= max
y∈E,‖y‖=1

|〈y|x〉|.

Now y ∈ E implies that y =
∑n

i=1 yiei for some vector of coefficients y := (y1, . . . , yn) and

‖ y ‖= 1 implies that (y,Gy) = 1. In the latter equation (·, ·) is the usual inner product

on Cn (not to be confused with the inner product in the state space), and G is the matrix

with entries Gij = 〈ei|ej〉. Now

‖ Ex ‖= max
y∈E,‖y‖=1

|〈y|x〉|(2.11)

= max
y∈Cn,(y,Gy)=1

|
n∑

i=1

yi〈x|ei〉|(2.12)

≤ max
y∈Cn,(y,Gy)=1

ε|
n∑

i=1

yi|(2.13)

= max
y∈Cn,(y,Gy)=1

ε ‖ y ‖1(2.14)

≤ ε
√

n max
y∈Cn,(y,Gy)=1

‖ y ‖2(2.15)

=
ε
√

n

λmin(G)
.(2.16)
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Here ‖ · ‖1 and ‖ · ‖2 refer respectively to the l1 and l2 vector norms in Cn and λmin(G)

is the smallest eigenvalue of G. Inequality (2.13) is a consequence of the assumption of

the theorem and the rest of the inequalities are standard matrix theory results (See, e.g.,

[21]). We know that Gii = 1 ∀i and |Gij| ≤ ε ∀i 6= j. Also, being a Gram matrix of

linearly independent vectors, G is positive definite. Thus, according to the Gerschgorin

Disk Theorem (See [22], p. 344), all the eigenvalues of G are located in the interval

[1 − (n − 1)ε, 1 + (n − 1)ε], and hence so is its minimum eigenvalue. If (n − 1)ε < 1,

1− (n− 1)ε > 0 and the result follows.

Applying Lemma 2.1 with the appropriate identifications to Eq (2.3) we get, provided

(m− 1)ε < 1, the bound

(2.17) P e ≤ P
seq

e ≤
M−1∑
m=1

πmε2m

[1− (m− 1)ε]2

for the APE. If πm = 1/M , we may use the integral bound

(2.18)
1

M

M−1∑
m=1

ε2m

[1− (m− 1)ε]2
≤ 1

M

∫ M

x=1

ε2x

[1− (x− 1)ε]2

giving the analytical upper bound

(2.19) P e ≤ ε(1 + ε)

M [1− (M − 1)ε]
+

ln[1− (M − 1)ε]

M
.

As an application of this result, observe that if εM → 0, P e ≤ ε + ln(1 + ε)/M . We will

apply this result to αη in Chapter 4.
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For the states ψl
m in Eq. (2.8), we may also assume an ε-orthogonality condition such

as

(2.20) 0 ≤ |〈ψl
m|ψl′

m′〉| ≤ ε whenever δ(m,m′)δ(l, l′) = 0.

Under this assumption, and assuming that each Lm of Eq (2.8) equals L for all m, and

also that [(M − 1)L − 1]ε < 1, one can again apply Lemma 2.1, which for the case of

uniform a priori probabilities gives the upper bound

(2.21) P e ≤ P
seq

e ≤ ε2L

M

M−1∑
m=1

m

[1− (mL− 1)ε]2
,

from which an integral bound yields

(2.22) P e ≤ 1

M
{ (1 + ε)Lε(M − 1)

[1− (ML− 1)ε][1− (L− 1)ε]
+ ln[

1− (ML− 1)ε

1− (L− 1)ε
]}.
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2.3. Binary Detection Lower Bound on M-ary Quantum Error Probability

2.3.1. Binary Detection Lower Bound

As before, we are concerned with an ensemble {(πm, ρm)}M
m=1 of M quantum states cor-

responding to each of the M hypotheses. If {Mm} denotes the optimal M -ary decision

POM, we have for the optimal average probability of correct decision P c (referred to as

APC in the following):

(2.23) P c =
M∑

m=1

πmtr(ρmMm).

Let us define a state ρm as

(2.24) ρm :=
1

1− πm

∑

m′ 6=m

πm′ρm′ .

Conceptually, this is the state obtained when we know that state ρm was not prepared,

but we do not know which of the remaining states m′ 6= m was prepared. As such,

it is analogous to the classical case of a composite hypothesis (See, e.g., [23], p. 86)

consisting of Hm′ for m′ 6= m. Now consider the situation where ρm is prepared with

probability (1 − πm) and ρm is prepared with probability πm. As far as the receiver is

concerned, this situation is physically identical to the preparation of the original ensemble

{(πm, ρm)}M
m=1. This is also true in the classical case, with density operators replaced by

probability distributions on a given observation space. In both cases, what we mean by

‘physically identical’ is that the receiver sees the same probability distribution for any

observation in the two cases.
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Given this fact, suppose that the receiver desires to distinguish with minimum proba-

bility of error the two hypotheses of the ensemble {(πm, ρm), (1− πm, ρm)}. A suboptimal

way of doing so is to make the optimum M -ary measurement {Mm} and declare all out-

comes m′ 6= m as m. If she does so, her probability of correct decision Pm for the binary

problem is given by

(2.25) Pm := πmtr(ρmMm) +
∑

m′,m′′ 6=m

πm′tr(ρm′Mm′′) ≤ P
bin

c(m),

where we have denoted her optimal probability of correct decision by P
bin

c(m). Incidentally,

comparing the above equation to Eq (2.23) reveals that

(2.26) P c ≤ Pm ≤ P
bin

c(m),

so that the quantity Pm and hence P
bin

c(m) are upper bounds on P c. Instead of using,

e.g., minm P
bin

c(m) as an upper bound, we can attempt to improve on the bound (2.26) by

evaluating
∑M

m=1 Pm by summing over the M equations of the form (2.25) for each m.

Doing so reveals that, in fact,
∑

m=1 Pm = 2P c + (M − 2). Plugging this into Eq. (2.26),

and writing everything in terms of APE’s (P c = 1− P e etc.), we get the simple result

(2.27) P e ≥ 1

2

M∑
m=1

P
bin

e(m).

Substituting the Helstrom formula Eq (1.39) into the RHS gives the following ‘Binary

Detection’ lower bound on P e:

(2.28) P e ≥ 1

4

M∑
m=1

[1− ‖ πmρm − (1− πm)ρm ‖1].
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In order to further evaluate Eq. (2.28), we can write

‖ πmρm − (1− πm)ρm ‖1 = ‖
∑

m′ 6=m

{ πm

M − 1
ρm − πm′ρm′} ‖1(2.29)

≤
∑

m′ 6=m

‖ πm

M − 1
ρm − πm′ρm′ ‖1,(2.30)

where the inequality follows from the convexity of the trace norm. We can further split

up the density operators in the above equation to mixtures of pure states and re-apply

convexity until we end up with trace norm terms involving the difference of pure state den-

sity operators. These can be evaluated in terms of the inner product of the corresponding

states using the following formula:

(2.31) ‖ |ψ0〉〈ψ0| − λ|ψ0〉〈ψ0| ‖1 = [(1 + λ)2 − 4λ|〈ψ0|ψ1〉|2]1/2.

This technique will be applied in Chapter 4.
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CHAPTER 3

Quantum Direct Encryption: The αη protocol

3.1. Random Ciphers – Quantitative Definition

The characterization of a general random cipher in Sec. 1.1 merely using Eq. (1.3)

or (1.5) is perhaps not well-motivated. The reason for studying random ciphers is in

fact the belief that they enhance the security of the cipher against various attacks. By

bringing into focus the intuitive mechanism by which a random cipher may provide greater

security than a nonrandom counterpart against known-plaintext attacks, we will propose

one possible quantitative characterization of a general random cipher (or more exactly,

a general random stream cipher. See below.). For a description of known-plaintext and

other attacks on ciphers, together with the known results on their security, we refer the

reader to Section 1.1.

We now discuss the intuitive mechanism of security enhancement in a random cipher.

To this end, a schematic depiction of encryption and decryption with a random cipher is

given in Fig. 3.1. For a binary alphabet X = {0, 1}, let X n = {a1, . . . , aN} be the set of

N = 2n possible plaintext n-sequences. Let k be a particular key value. One can view the

key k as dividing the ciphertext space Yn into N parts, denoted by theAk
aj

, j ∈ {1, . . . , N},
in the figure. Encryption of plaintext aj proceeds by first determining the relevant region

Ak
aj

and randomly selecting (this is the function of the private randomizer) as ciphertext

some y ∈ Ak
aj

. The decryption condition Eq.(1.2) is satisfied by virtue of the regions
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Ak
aj

being disjoint for a given k. Also shown in Fig. 3.1 is the situation where a different

key value k′ is used in the system. The associated partition of Yn consists of the sets

A′k
aj

that are shown with shaded boundaries in Fig. 3.1. The important point here is

that the respective partitions of the ciphertext space for the key values k and k′ should

be sufficiently ‘intermixed’. More precisely, for any given plaintext aj, and any observed

ciphertext yn, we require that there exist sufficiently many key values k (and hence a

sufficiently large probability of the set of possible keys corresponding to a given plaintext

and observed ciphertext) for which yn ∈ Ak
aj

. In other words, a given plaintext-ciphertext

pair can be connected by many possible keys. This is the intuitive basis why random

ciphers offer better quantitative security (as measured either by Eve’s information on the

key or her complexity in finding it.

While the above arguments hold for any type or random cipher whatsoever, we will

restrict our scope to the so-called stream ciphers. Most ciphers in current use (which are

all nonrandom), such as AES, are stream ciphers [3]. In a nonrandom stream cipher,

the key K is first expanded using a deterministic function into a much longer sequence

(Z1, . . . , Zn) called the keystream or running key. The defining property of a stream cipher

is that the i-th ciphertext symbol yi be a function of just the i-th keystream symbol zi

and the earlier and current plaintext symbols x1, . . . , xi:

(3.1) yi = Ei(x1, . . . , xi; zi).
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Figure 3.1. Schematic of a random cipher: The plaintexts ai are carried,
under the key k, into the corresponding regions Ak

ai
of ciphertext space Y n.

The subsets of Y n associated with a different key value k′ are shown with
curved boundaries.

It follows that decryption of the first i symbols of plaintext is possible from the first i

symbols of ciphertext and the running key. A synchronous stream cipher is one for which

(3.2) yi = Ei(xi; zi).

Thus, the i-th ciphertext symbol depends only on the i-th plaintext symbol and the i-th

keystream symbol, i.e., the cipher is memoryless. For our discussion of random ciphers,

we will restrict ourselves for concreteness to the case of random stream ciphers, that are

defined by:

(3.3) yi = Ei(x1, . . . , xi; zi; ri).
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Here, the {Ri} are randomizers that may be assumed to be independent random variables

(this is the case in αη), but this is not necessary. In the following, a random cipher will

always mean a random stream cipher.

For a nonrandom stream cipher given by Eq. (3.1), it is usually the case that given the

plaintext vector xi of length i and ciphertext symbol yi, the value of the keystream zi is

uniquely determined. This is typically the case also in a random stream cipher when the

value r taken by the randomizer Ri is known. In the absence of such knowledge, however,

the different possible values taken by Ri will in general allow many different values of the

keystream for the given plaintext vector and ciphertext symbol. The more such possi-

bilities exist, the less information is obtained about the keystream and the more ‘secure’

the cipher is. Our quantitative definition of random cipher given below introduces a pa-

rameter Γ that provides one way of quantifying the different knowledge of the keystream

obtained in the above two scenarios by the number of additional possible keystreams for

a given pair of input data and corresponding ciphertext symbols.

Definition (Γ- Random Cipher) :

A Γ-Random Cipher is a random stream cipher of the form of Eq. (3.3) for which the

following condition holds:

For every plaintext sequence, xi, for every i, for every ciphertext symbol yi obtainable by

encryption of xi, and for every value r of Ri,

(3.4) |{zi|yi = Ei(x1, . . . , xi; zi; r
′) for some r′}| − |{zi|yi = Ei(x1, . . . , xi; zi; r)}| ≥ Γ.
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The bars | · | indicate size of the enclosed set. For a nonrandom stream cipher, the

keystream zi is uniquely fixed by the plaintext vector xi and the ciphertext symbol yi.

Therefore, if the randomizer in (3.4) is ignored so that it applies to a nonrandom cipher, a

nonrandom cipher would have Γ = 0. Note that the sets whose sizes appear in the above

equation, both for random ciphers and their nonrandom reductions, are constructed only

on the basis of the i-th ciphertext symbol yi, and not on the basis of the entire ciphertext

sequence. Thus, the definition of Γ only gives the number of possible keys per symbol of

ciphertext under known-plaintext attack, while the number of possible keys based on the

entire ciphertext sequence (that is illustrated schematically by the overlap sets in Fig. 3.1)

may be significantly less. In this sense, our definition has a restricted symbol by symbol

scope but is easy to calculate with, similar to the independent particle approximation in

many-body physics. It does not by itself determine the precise security of the cipher, but

rather is the starting point of precise analysis, which is a difficult task just as correlations in

interacting many-body systems are always difficult to deal with in a rigorous quantitative

manner.

It is possible to satisfy the random cipher condition (1.5) with Γ = 0. This happens,

e.g., when (3.4) holds for some ciphertext symbols with Γ > 0 but some others with

Γ = 0, so the overall condition (3.4) is only satisfied for Γ = 0. A different measure of

randomization Λ, bearing directly on (1.5), may be introduced which has the property

that Λ = 0 is equivalent to a nonrandom cipher. For the case where the ciphertext
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alphabet is finite and for given xi, zi and r, let

(3.5) Λ = |{yi|yi = Ei(x1, · · · , xi; zi; r
′) for some r′}| − |{yi|yi = Ei(x1, · · · , xi; zi; r)}|.

Thus, condition (1.5) is equivalent to Λ > 0 for some xi, zi and r. It follows that Λ = 0

for all (xi, zi) is equivalent to the cipher being nonrandom. Λ + 1 is the number of possi-

ble output signal symbols corresponding to a given input symbol and running key value.

Thus, the parameter Λ measures directly the degree of per symbol ciphertext random-

ization, while Γ measures the per symbol key redundancy. It is possible that a Γ = 0

random cipher is still useful due to the additional loads on Eve to record and store more

information from her observation. On the other hand, for the typical case where zi is in

one-to-one correspondence with yi for given xi and r, Γ > 0 implies Λ > 0 for every xi

and zi, which in turn implies that a cipher with Γ > 0 is random in the sense of (1.5).

The following simple example serves to illustrate the above definitions:

Example (Random cipher)

Let X = {0, 1}, K = {k0, k1, k2, k3, k4} and Y = {a, b, c, d, e}. Fig. 3.2 lists the possible

ciphertexts for each plaintext and key pair.

For this cipher, one can easily verify that at least 2 key values connect every possible

plaintext-ciphertext pair. In addition, every plaintext-key pair can lead to at least two

different ciphertexts. In terms of the definitions given above, this cipher has Γ = 1 and

Λ = 1.
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x k y

0 k0 a, b
1 k0 c, d, e
0 k1 c, d
1 k1 e, a, b
0 k2 e, a
1 k2 b, c, d
0 k3 b, c
1 k3 d, e, a
0 k4 d, e
1 k4 a, b, c

Figure 3.2. Encryption table for a simple random cipher.

An inspection of the defining equation Eq. (3.4) for a random cipher (or Fig. 3.1)

suggests how a random cipher may provide greater security against KPAs. For a given

plaintext-ciphertext sequence pair, Eq.(3.4) suggests that one has some residual uncer-

tainty on the value of the keystream (Z1, . . . , Zn), which does not exist for a corresponding

nonrandom cipher. On the other hand, Eq.(3.4) refers only to the per-symbol uncertainty

of the key stream calculated without regard to the ciphertext observed for the other sym-

bols in the sequence. When such correlations are taken into account, the uncertainty on

the keystream may be drastically reduced and we can give no general quantitative asser-

tions of information-theoretic security. Note, however, that due to the randomization, the

unicity distance n1 of a random cipher under known-plaintext attacks can be expected

to be bigger than that of any of its nonrandom reductions. Thus, the complexity-based

security would be greater.
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3.2. Quantum Random Ciphers

The known and possible advantages of a random classical cipher over a nonrandom

one were discussed in the previous section. While it is possible to implement a random

cipher classically using random numbers generated on Alice’s side, this is not currently

practical at high (∼ Gbps) rates. As will become clear in the sequel, the quantum encryp-

tion protocol αη (Various implementations are described in [24, 25, 26, 27, 28] - The

protocol in [28] is a variation on the original αη of [24]) effectively implements a random

cipher from Eve’s point of view for a given choice of her measurement, the difference from

a classically random cipher being that it uses coherent-state quantum noise to perform the

needed randomization. Before we describe αη, we define some concepts that capture the

relevant features of a quantum random cipher. As emphasized earlier, we will confine our

attention to stream ciphers. First, we straightforwardly extend the usual stream cipher

to one where the ciphertext is a quantum state. Our motivation for this definition is that,

from the point of view of the legitimate users Alice and Bob, αη is a quantum stream

cipher with negligible λ in the sense given below:

Definition (λ-Quantum Stream Cipher (QSC)):

A quantum stream cipher is a cipher for which the following two conditions are satisfied:

A. The encryption map ek(·) takes the n-symbol plaintext sequence xn to a quantum

state n-sequence ρ in the n-fold tensor product form:

(3.6) ρ = ek(xn) = ρ1(x1; z1)⊗ . . .⊗ ρn(x1, . . . , xn; zn),
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and

B. Given the key k, there exists a measurement on the encrypted state sequence, that

recovers each plaintext symbol xi with probability Pdec > 1− λ.

Here, as in Section 3.1, (Z1, . . . , Zn) is the keystream generated from the seed key K.

A few comments will help clarify the definition. First, note that the tensor product form

of the state in condition A retains for a quantum cipher the property of a classical cipher

that one can generate the components in the n-sequence of states that constitute the

output of a cipher one after the other in a time sequence. Note also that, analogous to a

classical stream cipher, the i-th tensor component of ρ depends on just zi and (x1, . . . , xi).

Condition B is the generalized counterpart of the decryption condition Eq.(1.2) for a

classical cipher – we now allow a small enough decryption error probability. Thus, the

per-symbol error probability is bounded above by λ < 1.

We now want to bring the concept of classical random cipher defined in the previous

section into the quantum setting. Our motivation in doing so is to show that, for an

attacker making the same measurement on a mode-by-mode basis without knowledge of

the key, αη reduces to an equivalent Γ-Random Cipher with significantly large Γ. Since

the output of a quantum cipher is a quantum state and not a random variable, we will

need to specify a POM {Πyn} whose measurement result Yn supplies the classical cipher-

text. Note that in this quantum situation different choices of measurement may result

in radically different kinds of ciphertext. Note also that the user’s and the attacker’s

measurements may be different. Our definition of a quantum random stream cipher be-

low will apply relative to a chosen ciphertext Yn defined by its associated POM. We will

also assume that, from the eavesdropper’s viewpoint, the same measurement is made on
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each of the n components of the cipher output. In other words, the POM defining the

ciphertext Yn is a tensor product of identical POMs {πy}.

Definition ((Γ, λ, λ′, {πy})- Quantum Random Stream Cipher (QRC)):

An (Γ, λ, λ′, {πy}) - quantum random stream cipher is a λ-quantum stream cipher such

that for the ciphertext given by the result of the product POM {Πyn =
⊗i=n

i=1 πyi
},

A. one has an Γ-random stream cipher satisfying Eq.(3.4), and

B. the probability of error per symbol P ′
dec using the key after measurement is P ′

dec >

1− λ′.

Several comments are given to explain this definition:

1. While condition QRC-B above appears similar to the condition QSC-B for a quantum

stream cipher, there is a crucial difference. In the latter, the decryption probability Pdec

takes into account the possibility that the quantum measurement (as well as classical

post-processing) made on the cipher state can depend on the key, i.e. it refers to Bob’s

rather than Eve’s error probability. In QRC-B, we are considering the probability of

error involved for Eve when she decrypts using a quantum measurement independent

of the key followed by classical post-processing that is , in general, “collective” and

depends on the key. Thus, the parameter λ′ is related to the symbol error probability

under this latter restriction while the parameter λ in QSC-B is tied to the symbol error

probability for a quantum measurement allowed to depend on the key. We see that

there are two measurements implicit in our definition of a QRC - one made by the user

with the help of the key, and the other given by {πy} made by the attacker without
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the key. See also Item 3 below. As we shall see, αη satisfies QRC-B with negligible λ′

under a heterodyne or phase measurement attack by Eve.

2. Γ in QRC-A, as in Eq.(3.4), is a measure of the ’degree of intermixing’ of the regions

of ciphertext space corresponding to different key values on a symbol-by-symbol basis.

If {πy} describes a discrete measurement, a Λ corrresponding to Eq.(3.5) can also be

introduced.

3. Our stipulation that the same POM be measured on each of the components of the

cipher output is tantamount to restricting the attacker to identical measurements on

each tensor component followed by collective processing. We will call such an attack a

collective attack in this paper (also in [9]). This definition is different from the usual

collective attack in quantum cryptography [29]: in the latter, following the application

of identical probes to each qubit/qumode, a joint quantum measurement on all the

probes is allowed. In our case, there is no probe for Eve to set as we conceptually

allow her a full copy of the quantum state. Doing so, we can upper bound her perfor-

mance. (This is an important feature of our so-called KCQ approach to encryption and

key generation. See [1] for discussion.) Thus, allowing a joint measurement, as also

nonidentical measurements on each output component, will be called a joint attack.

4. In analogy with the classical random cipher definition Eq. (3.4), one may wonder why

the private randomizers Ri used in that definition are missing from that of the quantum

random cipher. Indeed, one may randomize the quantum state ρi(x1, . . . , xi; zi) to

ρi(x1, . . . , xi; zi; ri) using a private random variable with probability distribution pri
.

However, since the value of Ri remains unknown to both user and attacker (Indeed,

the user should not need to know Ri in order to decrypt or even to encrypt in the
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case of αη), one sees that all probability distributions of Bob’s or Eve’s measurements

in this situation are given by the state ρ′i(x1, . . . , xi; zi) =
∑

ri
pri

ρi(x1, . . . , xi; zi; ri),

in which there is no explicit dependence on ri. In particular, we mention here that

exactly such quantum state randomization, called Deliberate Signal Randomization

(DSR), has been proposed in the context of αη in [1] for the purposes of enhancing the

information-theoretic security of αη.

5. It is important to observe that the definitions given above both for classical and quan-

tum random ciphers are not arbitrary ones, but rather the mathematical character-

izations of very typical situations involving randomization in classical and quantum

cryptosystems.

We present an example of a QRC in the next section: the αη cryptosystem.

3.3. The αη cryptosystem

3.3.1. Operation

We now describe the αη system and its operation as a quantum cipher:

(1) Alice and Bob share a secret key Ks.

(2) Using a key expansion function ENC(¦), e.g., a linear feedback shift register or AES

in stream cipher mode, the seed key Ks is expanded into a running key sequence that

is chopped into n blocks: Kmn = ENC(Ks) = (K1, . . . , Kmn). Here, m = log2(µ), so

that Zi ≡ (K(i−1)m+1, . . . , Kim) can take µ values. The Zi constitute the keystream.
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(3) The encrypted state eKs(Xn) of Eq.(3.6)is defined as follows. For each bit Xi of the

plaintext sequence Xn = (X1, . . . , Xn), Alice transmits the coherent state

(3.7) |ψ(Xi, Zi)〉 = |αeiθ(Xi,Zi)〉.

Here, α ∈ R and θ(Xi, Zi) takes values in the set {0, π/µ, . . . , (2µ − 1)π/µ}. The

function θ taking the data bit and keystream symbol to the actual angle on the

coherent state circle is called the mapper. In this paper, we choose θ(Xi, Zi) = [Zi/µ+

(Xi ⊕ Pol(Zi))]π. Pol(Zi) = 0 or 1 according to whether Zi is even or odd. This

distribution of possible states is shown in Fig. 3.3. Thus Ki can be thought of as

choosing a ‘basis’ with the states representing bits 0 and 1 as its end points. In

general, one has the freedom to vary the mapper in various ways for practical reasons.

See, e.g, [26].

(4) In order to decrypt, Bob runs an identical ENC function on his copy of the seed key.

For each i, knowing Zi, he makes a quantum measurement to discriminate just the

two states |ψ(0, Zi)〉 and |ψ(1, Zi)〉.

Figure 3.3. Left – Overall schematic of the αη encryption system. Right –
Depiction of two of µ bases with interleaved logical bit mappings.
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To decrypt in step (4) above, Bob, in general would need a phase reference. This

is effectively provided by the use of Differential Phase Shift Keyed (DPSK) signals in

the implementations of αη. See [25, 26, 27] for details. Doing so does not compromise

security as we still assume that Eve has a perfect copy of the transmitted state.

If the line transmittance between Alice and Bob is η, Bob receives a coherent state

with energy ηS instead of S ≡ |α|2. The optimal quantum measurement Eq (1.39) for

Bob has error probability

(3.8) PB
e ∼ 1

4
exp(−4ηS).

It is thus apparent that αη is a λ-quantum cipher in the sense of Section 3.2 with λ ∼
1
4
exp(−4ηS). For the S ∼ 4 × 104 of [26], over a distance of 80 km at a loss of 0.2

dB/km, we have ηS ∼ 103 photons. For this mesoscopic level, λ is ∼ exp(−1000), which

is completely negligible compared, say, to the standard acceptable BER limit of 10−9,

which arises from device imperfections, for an uncoded optical on-off keyed line.

Let us briefly indicate how this system may provide data security by considering an

individual attack on each data bit Xi by Eve. Under such an attack, one only looks at the

per-bit error probability ignoring correlations between the bits. Under this assumption,

Eve, not knowing Zi, is faced with the problem of distinguishing the density operators ρ0

and ρ1 where

(3.9) ρb =
∑
Zi

1

µ
|ψ(b, Zi)〉〈ψ(b, Zi)|.
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For a fixed signal energy S, Eve’s optimal error probability is numerically seen to go

asymptotically to 1/2 as the number of bases µ → ∞ (See Fig. 1 of [24]). The intu-

itive reason for this is that increasing µ more closely interleaves the states on the circle

representing bit 0 and bit 1, making them less distinguishable. Therefore, at least under

such individual attacks on each component qumode 1 of the cipher output, αη offers any

desired level of security determined by the relative values of S and µ. While we are not

concerned in this paper with key generation, it may be observed that unambiguous state

determination (USD) attacks on αη are totally ineffective due to the large number of 2µ

states involved.

In our security analysis, Eve is always assumed to be at the transmitter so that η = 1

for her. Without knowing the key, however, her performance on the data is still poor as

described in the above paragraph. Her attacks on the key are described in the following.

We have assumed that the users can utilize the signal energy ηS to maintain a proper

bit error rate without channel coding, despite possible interference from Eve. This does

not place a stringent requirement on η itself as one can typically go around 80 km in

fiber before the signal needs to be amplified. In case Eve’s interference is too strong and

causes error, it would be detected in a message authentication code which always goes

with encryption. There is clearly no need to do separate intrusion detection in this direct

encryption case, but it turns out there is also no need in the key generation regime [9, 1]

which we do not discuss here.

1When referring to an optical field mode, we use the term qumode (for ’quantum mode’, in analogy to
’qubit’).
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3.3.2. αη as a Random Cipher

We showed in the previous subsection that αη may be operated in a regime of S, η and

µ where it is a λ-quantum cipher for λ ∼ 0. We now show, that from Eve’s point of

view, under both a heterodyne and phase measurement attack, αη appears effectively as

a quantum random cipher according to the characterization of Section 3.2. Note that

the randomization in αη can also be effected in principle by using an additional classical

random number generator. This is not required in αη as high-speed randomization is

automatically provided by the coherent-state quantum noise.

To see the quantum random cipher characteristic of αη, consider employing the fol-

lowing two measurements for obtaining {πy} in the quantum random cipher definition:

1) (Heterodyne measurement) πy = 1
π
|y〉〈y|, y ∈ C.

2) (Canonical Phase measurement) πθ = 1
2π

∑∞
n,n′=0 ei(n−n′)θ|n〉〈n′|, θ ∈ [0, 2π).

To show that the conditions for a QRC are satisfied, let us first consider QRC-B. It may

be shown [1] that the error probabilities λ′ involved are respectively ∼ 1
2
e−S and ∼ 1

2
e−2S

for the heterodyne and phase measurements.

Turning to QRC-A, let us estimate the value of Γ under heterodyne and phase mea-

surement. For a signal energy S, the heterodyne measurement is Gaussian distributed

around the transmitted amplitude with a standard deviation of 1/2 for each quadrature

while the phase measurement has an approximately Lorentzian distribution around the

transmitted phase with standard deviation ∼ 1/
√

S. If we assume that, given a certain

transmitted amplitude/phase, the possible ciphertext values are uniformly distributed

within a standard deviation on either side and ciphertext values outside this range are

not reached (this will be called the wedge approximation), we get the following estimates
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Nhet and Nphase for the number of keystream values zi covered by the quantum noise under

heterodyne and phase measurements:

(3.10) Nhet = 2Nphase = µ/(π
√

S).

If the value of the randomizer R is fixed (corresponding to rotation by a given angle

within the wedge), Zi is fixed by the plaintext and ciphertext. Thus we have according

to Eq. (3.4) that

(3.11) Γhet = Nhet − 1 ∼= µ/(π
√

S),

and that

(3.12) Γphase
∼= Γhet/2 ∼= µ/(2π

√
S).

As expected, the Γ’s of both measurements increase as the number of bases µ increases,

and decrease with increasing signal energy S that corresponds to decreasing quantum

noise. For example, using the experimental parameters in [26] of S ∼ 4 × 104 photons

and µ ∼ 2 × 103 has Γhet ∼ 3. These numbers can be directly related to bounds on

the unicity distance against known-plaintext attacks with individual measurements and

collective processing. See [30] or [7] for further details. In the rest of this thesis, we will be

concerned with applying the results of Chapter 2 to joint attacks, which are more general

than those that appear in the definition of a Quantum Random Cipher given here.
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CHAPTER 4

Joint Attack Security Analysis of αη: Results and Future

Directions

A general mathematical model for αη, or any other system based on the KCQ (Keyed

Communication in Quantum Noise) principle (see [1] and [9] for detailed discussion of

the KCQ principle in the context of both direct encryption and key generation) is the

following: A pair of random variables Xn (the plaintext/data) and K (the secret key)

together determine a quantum state ρk
xn

in the Hilbert space of the system. Xn and K

are independent random variables with probability distributions p(Xn) and p(K), the

latter being assumed uniform, p(k) = 2−|K| ∀k.

As for the case of classical private-key cryptography, one can consider the cases of

known-plaintext attack (KPA) and ciphertext-only attack (CTA), implying respectively

that p(Xn) is degenerate or uniform. In the case of KPA, Eve tries to obtain the key K

with minimum error probability using a joint measurement attack. In the case of CTA, she

can either attempt to get the data Xn with minimum error probability or she can attempt

to obtain the K with minimum error probability. If the latter attack succeeds with high

enough probability, she can use the obtained key to make the same measurement as Bob

and undermine the system security by obtaining all future data. In this chapter, we set

up the appropriate quantum detection problem for the above attacks, and indicate the
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kind of results obtainable by applying the upper and lower bounds developed in Chapter

2.

4.1. Key Security under Known-Plaintext Attack

The behavior of the minimum error probability P e for attacking the key under KPA

as a function of the data length n provides some understanding of how fast the cryptosys-

tem leaks information on the key to Eve. We mentioned in Chapter 1 that a classical

nonrandom cipher is broken with probability 1 under KPA at its nondegeneracy distance

nd, which is usually quite small. αη, however, is a quantum random cipher, and as such, it

is interesting to study how the attacker’s error probability on the key varies with increas-

ing n. In particular, it would be very significant practically if this probability remains

bounded at a high enough level (i.e., an appreciable fraction of the maximum possible

level 2−|K|) away from zero for arbitrary n. Unfortunately, we shall see that this is not

the case in αη.

Since a fixed xn ∈ X n is known to Eve, she is faced with an M -ary detection problem

between the M = 2|K| states {ρk
xn
}2|K|

k=1 with a priori probabilities pk = 2−|K|. When

the ENC box (see Fig. 3.3) in an αη system consists of a linear feedback shift register

(LFSR), the ρk
xn

are pure states according to Eq. (3.7) and the pairwise inner products

|〈ψ(xn, k)|ψ(xn, k′)〉| (and hence the optimum error probability) are independent of the

particular xn ∈ X n under consideration.

When the ENC box is an LFSR, one can readily obtain simple upper and lower bounds

on the pairwise inner product between any two signals ρk, where we may now suppress

the plaintext subscript. Note that, for any plaintext length n, one may consider the LFSR
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as implementing a linear map from the |K| possible seed keys to mn-bit keystreams Zn.

Let us denote by dmin(n) and dmax(n) respectively the minimum and maximum non-zero

(binary) Hamming weight of a keystream sequence of length n.

Using the notations of Section 3.3, for n = |K|/m, let us compare the keystream

sequences Zk
n and Zk′

n corresponding to different keys k and k′. Since the bit length of Zn

is |K| for this value of n and the LFSR used in the protocol is a |K|-stage one, at least one

of the bits of Zk
n is different from the corresponding one in Zk′

n . Thus, dmin(|K|/m) = 1.

Let us define εmax(n) = maxk 6=k′ |〈ψ(xn, k)|ψ(xn, k
′)〉|. From the form (3.7) of the states

used, we can bound, for integers l > 0,

(4.1) εmax(l|K|/m) ≤ e−2Sl sin2(π/µ) ' e−2Slπ2/µ2

.

Using the above value for ε in Eq. (2.19) of Chapter 2, we get, for the n values above,

under the condition that εmax(l|K|/m)|K| < 1 (this happens eventually as εmax decays

exponentially),

(4.2) P e(n) ≤ 1/M{(M − 1)εmax(n)− (1 + εmax(n)) ln[1− (M − 1)εmax(n)]}.

Here, M = 2|K|. In fact, the following approximate equation follows from the one above:

(4.3) P e(n) ≤ (1−M−1)ε2
max(n) + O(ε3

max(n)).

Thus, as l becomes large, the upper bound goes to zero for any values of S, |K| and

m = log2(µ), and the system is broken under known-plaintext attack.
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We now obtain a lower bound on P e(n) from the Binary Detection lower bound

Eq.(2.28). First, we note that dmax(n) ≤ n, and that a corresponding lower bound for

εmin(n) = mink 6=k′ |〈ψ(xn, k)|ψ(xn, k
′)〉| is εmin(n) ≥ e−2nS. Using convexity repeatedly in

Eq.(2.28) and Eq.(2.31), we get

(4.4) P e ≥ 1−M−1

2
ε2
min(n) ≥ 1−M−1

2
e−4nS.

This is a very weak bound due to the weakness of the bound on dmax(n). It should

be possible to use properties of the LFSR output sequences to obtain better bounds on

dmax(n) and dmin(n) and thereby to improve the above bounds for known-plaintext attack

security.

4.2. Key Security under Ciphertext-Only Attack

Let us first set up the appropriate detection problem for attacking the key under a

ciphertext only attack. If {Mk}|K|k=1 represents the optimal POM for this case, we may

write the probability of correct decision as

(4.5) P c =
∑

xn,k

pkpxntr(Mkρ
k
xn

) =
∑

k

pktr(Mk(
∑
xn

pxnρk
xn

).

The problem is thus equivalent to a standard M = 2|K|-ary detection between the opera-

tors ρk :=
∑

xn
pxnρk

xn
with a priori probabilities p(k) = 2−|K|.

Let us attempt to apply the mixed state upper bound Eq. (2.22) of Section 2.2 to this

case. To do so, we need to find a uniform upper bound on the pairwise inner products

|〈ψ(xn, k)|ψ(x′n, k′)〉|. Here a complication arises when k = k′. It can happen that the
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two sequences xn and x′n differ by only one bit no matter how large n is. In that case,

we would have |〈ψ(xn, k)|ψ(x′n, k′)〉| = e−2S, which is a constant. Thus, with L = 2n, the

condition [(M − 1)L − 1]ε < 1 needed for the validity of Eq. (2.22) would not hold and

the upper bound is not applicable. In the absence of a good uniform upper bound on the

inner product, we are forced to fall back upon the basic bound Eq.(2.8). According to

this equation, we require estimates of the projections ‖ Pkψ
x
k ‖, where Pk is the projector

onto the subspace spanned by ψ(x, k′) for k′ > k and for all x. Following a closely parallel

sequence of steps as in the case of ε-orthogonal signals, we find that a minimum eigenvalue

estimate of a Gram matrix is again called for. Unfortunately, the Gerschgorin Theorem

works in this case only under the condition

(4.6) (1 + γ)n + 2n(2|K| − k − 1)ε(n)− 1 < 1,

where γ = e−2S and ε(n) = e
−n Smπ2

2|K|µ2 . This is not satisfied except for very small values of

n and S, and so our method fails to give good results. The binary detection lower bound

also gives the weak result

(4.7) P e ≥ 2−n (1 + Γ)n − 1

2
,

for Γ = e−4S.

4.3. Conclusion and Future Directions

We saw in the previous subsection that while αη can be proved to be insecure for large

enough n under KPA for any values of the system parameters, no conclusion about its

security or insecurity against CTA could yet be drawn. It seems that the reason for this
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failure are that good estimates of the pairwise inner products between the signal states

of the αη system are not available. These are in turn tied to estimates of the weight

distribution or, at the least, the minimum and maximum distance between codewords

of the code induced by the LFSR. This direction of study seems most urgent for further

results on αη security under joint attack. It is also advisable to look for methods that yield

sharper eigenvalue estimates needed in applying our upper bounds than the completely

general Gerschgorin Disk Theorem. The research directions indicated above are being

pursued as are efforts to apply the lower and upper bounds derived in this thesis to other

problems in quantum information.
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