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ABSTRACT 

A Strategy for the Convergent and Stereoselective Assembly of Polycyclic Molecules  

Emily Elizabeth Robinson 

 

 Fused polycyclic scaffolds with three-dimensional complexity from an array of 

stereocenters compose the core structures of countless natural product families with a variety of 

desirable biological activity. The development of synthetic methods and strategies to afford rapid 

access to these structures is essential to expose a wealth of untapped biological potential.  

 Oxidative enolate coupling is a powerful tool in the context of this task, forging a new 

carbon–carbon bond between two fragments. This reaction serves as the foundation for the strategy 

developed herein, facilitating the convergent and stereoselective construction of fused polycyclic 

scaffolds when employed in an oxidative coupling–ring-closing metathesis sequence. The 

established tandem successfully assembled several fused structures with four contiguous 

stereocenters, varying in substitution pattern and carbocyclic composition. Demonstrated selective 

manipulations of the prepared compounds reinforced the value of the strategy to complex molecule 

synthesis. 

The developed strategy was successfully applied to the concise synthesis of marine 

diterpenoid (+)-7,20-diisocyanoadociane. Execution of the established sequence enabled the 

convergent construction of much of the natural product’s all-trans perhydropyrene core structure, 

while exploiting the pseudo-symmetry within the molecule to amplify the efficiency of the final 

stages of the synthesis. 

Thesis advisor: Professor Regan J. Thomson 
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1 Chapter 1 

1.1 Introduction 

Fused polycyclic structures with an array of stereogenic centers are incredibly common 

among naturally occurring compounds, and as such, the synthesis of these scaffolds has been 

central to the research of many synthetic groups in various contexts. The development of novel 

reactions and strategies to build the core structures of bioactive steroids, terpenes, and other natural 

products has been explored to advance the boundaries of synthetic chemistry, and to enable 

biological research through the synthesis of small molecules with attractive properties. Although 

these molecules have been of great interest to the chemical community for a long time, rapid access 

to the three-dimensionally complex carbocyclic cores comprising numerous natural product 

families is recently thought to have enhanced priority due to the acknowledged reservoir of 

untapped biological potential that these molecules represent to drug discovery.1-3 While high-

throughput compound screening has been an invaluable tool for the rapid discovery of novel 

therapeutic agents, these libraries are largely composed of small molecules lacking the sp3-centers 

present in many biologically active natural products that express more potent and selective 

activities.4-9 In fact, a study by Schmidt and Feher comparing drugs and combinatorial library 

compounds to natural products revealed the huge disparity that exists in the number of stereogenic 

centers per molecule between these classes of compounds.10 In 2003, 71% of compounds in 

combinatorial libraries and 45% of drugs on the market did not contain a single stereogenic center. 

The average number of stereogenic centers in natural products was 6.2/molecule, while that for 

drugs and combinatorial library compounds was 2.3/molecule and 0.4/molecule, respectively. The 

advent of transition metal-catalyzed coupling provided facile access to a large variety of these sp2-
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rich compounds, but with the renewed scientific interest in natural products as inspiration for drug 

development comes a revived need for methods and strategies to rapidly afford architecturally 

complex scaffolds in a modular manner.11 

 Three-dimensionally complex fused carbocyclic scaffolds have inspired great synthetic 

innovation spanning from many decades ago through today, as evidenced by the varied strategies 

that have been developed to build the mentioned structures. Three general strategic themes emerge 

from the literature and will be discussed herein. As depicted in Figure 1.1, the fused tricyclic 

scaffold is generally accessed from the cyclization of a linear precursor, the cyclization within a 

macrocyclic precursor, or the convergent coupling of two fragments. 

Figure 1.1 General strategies for the synthesis of fused tricyclic scaffolds 

 

1.2 Synthesis from linear precursors – polyene cyclization cascades 

The synthesis of fused polycyclic scaffolds from linear polyene precursors has captured the 

attention of scientists around the world who are inspired by nature’s remarkable ability to convert 

squalene I-1 to lanosterol I-2 in the biosynthesis of cholesterol (Figure 1.2). The biosynthesis of 

these steroid and terpenoid compounds has been extensively examined and reviewed.12-15 This 

cyclization from
linear

precursors

cyclization from
macrocyclic
precursors

convergent
fragment coupling

+
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extraordinary transformation forms four rings and perfectly sets seven stereocenters, providing one 

single product out of the possible 128 stereochemical outcomes.16 Early synthetic work in this area 

in the 1950s and beyond sought to discover whether this transformation was achievable without 

enzymatic facilitation.  

Figure 1.2 Biosynthesis of cholesterol 

 

1.2.1 Cationic polyene cascades 

In 1955, Stork17 and Eschenmoser18 each rationalized that the stereospecific nature of this 

cyclization was the result of inherent stereoelectronic factors rather than enzymatic control, 

whereby the electrophilic addition of a carbenium ion to the neighboring alkene occurs in an 

antiparallel fashion, leading to the all-trans geometry of the carbon backbone from E-polyenes. 

This hypothesis, named the Stork–Eschenmoser hypothesis by Johnson,16 formed the basis for the 

spark in synthetic interest to replicate this biological process in the absence of enzymes. The 

subsequent contributions by Johnson to this area of research are unparalleled, paving the way to 

our current knowledge of steroids.19-22 Johnson and coworkers’ initial acid-catalyzed cyclization 

attempts proved to be challenging due to promiscuous protonation of the polyene substrate, leading 

to a mixture of different cyclized and isomerized products. Thus, they pioneered investigations 

into polyenes equipped with functional groups conducive to the formation of a cyclizable cationic 

center under conditions that would not disturb the alkenes – a strategy that has been adopted by 

Me Me
HO H

Me

Me

Me
Me

Me
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many. Although this work spans decades and provides access to countless fused ring systems, the 

research with respect to 6,6,6-tricyclic scaffolds will be primarily discussed herein. 

1.2.1.1 Acetal and allylic alcohol-promoted cyclization 

 Johnson and coworkers’ preliminary results employing a trienyl sulfonate ester functional 

handle provided the desired tricyclic product in 3% yield and was uniquely selective for the all-

trans stereochemistry, however the poor yield rendered this approach synthetically impractical.19 

Motivated to discover a worthy initiating functional group for the cascade, Johnson and coworkers 

achieved the successful cyclization of polyenic acetals (i.e. I-3) in the presence of SnCl4 (Scheme 

1.1a),23-24 and of allylic alcohols (i.e. I-5) in the presence of formic acid at room temperature,25-26 

or trifluoroacetic acid at cryogenic temperatures (Scheme 1.1b).27 These methods generated the 

all-trans tricyclic core structures I-4 and I-6, respectively, in synthetically useful yields. 

Scheme 1.1 Johnson’s a) acetal- and b) allylic alcohol-promoted cationic polyene cyclization  

 

The group rendered this transformation enantioselective by employing a chiral acetal (Scheme 

1.2a)28-29 or by incorporating a chiral center along the polyene chain (Scheme 1.2b).30-31 In 2007, 

Loh and coworkers developed a similar chiral acetal-initiated cyclization to achieve enantiopure 
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tricyclic structures.32-33 These strategies have been applied to numerous steroid and natural product 

syntheses, with representative examples cited herein.31, 34-38  

Scheme 1.2 Johnson’s cyclization with asymmetric induction 

 

1.2.1.2 Epoxide-promoted cyclization 

Many investigations of epoxides as enabling functional groups for this cyclization cascade 

led to the determination that epoxysqualene was indeed the biosynthetic intermediate of the 

process.39-42 Corey and coworkers harnessed this reactivity in 1996 by employing methylaluminum 

dichloride to facilitate the key cyclization to the tricyclic scaffold I-12 in their synthesis of 

dammarenediol II I-13 (Scheme 1.3).43 This strategy has also been successfully applied to the 

synthesis of sesquiterpene natural products.44-45 

Scheme 1.3 Corey’s strategy for accessing the tricyclic core of dammarenediol II  
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More recently, other research groups have also investigated the cyclization of these polyene 

epoxides, employing different Lewis acid promotors to form a variety of different fused 

carbocyclic scaffolds.46-48 Most recently, Newhouse and coworkers demonstrated the Brønsted 

acid-promoted cyclization of linear polyene I-14 to form tricyclic intermediate I-15 in 39% yield 

en route to natural products protoaustinoid A, I-16, and berkeleyone A, I-17 (Scheme 1.4).49 

Scheme 1.4 Newhouse’s polyene cyclization 
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Yamamoto and coworkers rendered this cyclization cascade enantioselective with the use 

of a Lewis acid-assisted chiral Brønsted acid (chiral LBA).50-52 As shown in Scheme 1.5a, their 

strategy required two steps to achieve complete cyclization to the tricyclic system. An initial 

enantioselective cyclization of I-18 with chiral LBA (I-19) provided a mixture of tricyclic I-20 

and monocyclized I-21. This mixture converged on the desired tricyclic I-20 through a 

diastereoselective formation of the B ring. Since Yamamoto’s seminal reports, this concept has 

been developed further by multiple groups in recent years.53-54 For example, in 2012, Corey and 

Surendra enhanced this reactivity by using an antimony-based chiral LBA (I-23), allowing for the 

desired cyclization to occur with good yields in one step (Scheme 1.5b).55 Enantioselective polyene 
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Scheme 1.5 a) Yamamoto’s and b) Corey’s enantioselective polyene cyclizations 

 

1.2.1.4 Halogen-promoted cyclization 

In 2007, Ishihara and coworkers reported an impressive alternative strategy for this 
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Scheme 1.6 Ishihara’s chiral nucleophile-promoted enantioselective cyclization 
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tricyclic product I-27 and monocyclized adduct I-28. Treatment of this mixture with 

chlorosulphonic acid in 2-nitropropane provided full conversion to I-27. 

In further development of this halocyclization strategy, Snyder and coworkers established 

a simple reagent for the halonium-induced cation-π cyclization of linear precursors.59-60  As shown 

in Scheme 1.7, they demonstrated that a bromine complex with Et2S and SbCl5 (BDSB, I-30) 

successfully formed tricyclic species I-31 and similar scaffolds in high yields and very fast reaction 

times (5 minutes). Although this process was not enantioselective, the group was able to develop 

a two-step method using Hg(OTf)2 with a chiral ligand to provide the same products that would 

result from asymmetric bromonium-induced cyclization.61 

Scheme 1.7 Snyder's use of BDSB for the synthesis of tricyclic products  
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by an aromatic ring.63-64 As shown in Scheme 1.8, this method allowed for the cyclization of linear 

precursor I-32 to tricyclic I-33, and thus facilitated the successful synthesis of diterpene nimbidiol 

I-34 in traceless fashion, as the enabling sulfur functionality was later reductively removed. 

Scheme 1.8 Livinghouse's sulfenium ion-promoted cyclization 
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Scheme 1.9 Canesi’s oxidative dearomatization cyclization 
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1.2.1.8 Transition metal-promoted cyclization 

In 1990, Negishi and coworkers reported a palladium-catalyzed cyclization of acyclic 

precursors such as I-38, as shown in Scheme 1.10.68 

Scheme 1.10 Negishi’s palladium-catalyzed cyclization cascade 
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Scheme 1.11 Gagné’s platinum-catalyzed cyclization cascade 
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catalyzed approach (b) to polyene cyclizations in an enantioselective fashion, providing access to 

fused trans-anti-trans cyclic products. 

Scheme 1.12 a) Carreira's iridium-catalyzed and b) Toste's gold-catalyzed cyclizations 

 

1.2.2 Radical-based cyclizations 

In the early 1960s, Breslow hypothesized, and later rejected, the idea that sterols and 

terpenes may naturally arrive from their linear polyene counterparts through a radical-based 

mechanism.78-80  Although epoxysqualene was ultimately proven as the biosynthetic intermediate 

for the formation of lanosterol in the cholesterol biosynthesis,39-40 the radical pathway to the 

carbocyclic structure of terpenes and steroids presents a complementary strategy to the well-

explored biomimetic cationic cyclization. Many investigations of this strategy demonstrate that 

diastereoselective polyene cyclizations do not require a carbenium ion.21, 81  

1.2.2.1 Benzyloxy radical-promoted cyclization 

Aside from Breslow, early research in the production of tricyclic species through a radical 

cyclization was conducted by Julia and coworkers in the 1970s.82-83 As shown in Scheme 1.13, the 

a. Carreira's iridium-catalyzed cyclization

Me Me

I-42
HO

OMe

OMe

[Ir(cod)Cl]2
16 mol % I-43

Zn(OTf)2
DCE

O
O

I-43

P N

H

Me Me

H

I-44

OMe

OMe

43% yield
>99.5% ee

b. Toste's gold-catalyzed cyclization

Me Me

I-45

OMe

OMe
E

E
H

Me Me

H

I-46

OMe

OMe

61% yield
97% ee

E
EMeO-DTBM-BIPHEP(AuCl)2

AgSbF6
xylene



 33 

group was able to access the 6,6,6-tricyclic core with an initial addition of a benzyloxy radical to 

polyene I-47 which provoked the 6-endo-trig polycyclization cascade, terminating with a radical 

Friedel-Crafts type reaction to form I-48.83  Consistent with Breslow’s work, the products formed 

contained the all-trans geometry about the ring junctions, paralleling the cation-driven process, 

and displaying that the E-configuration of the linear precursor was translated to the final product. 

This seminal work from Breslow and Julia suffered from low yields, but provided the proof of 

concept and inspiration for further exploration into the potential of this strategy. 

Scheme 1.13 Julia’s radical-based cyclization 
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Scheme 1.14 Demuth’s photoinduced electron transfer strategy  

 

1.2.2.3 Acyl selenide-promoted cyclization  
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one92 and the steroid core.93  

Scheme 1.15 Pattenden’s acyl selenide-promoted cyclization 
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Scheme 1.16 Wang’s cyclization cascade 

 

1.2.2.5 Transition metal oxidant-promoted cyclization 
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Zoretic and coworkers were also successful in the application of this strategy to the synthesis of 

natural product carbocyclic cores, such as isospongiadol I-65 (Scheme 1.17b).99-101 This general 

approach employing Mn(III) has been used for the synthesis of triptolide and its analogues by 

Yang and coworkers, further demonstrating its utility and versatility.102-103 

In the 2000s, single-electron transfer Ti(III) complexes were shown to facilitate the radical-

based cyclization of linear polyenes to produce fused cyclic systems. Cuerva and coworkers were 

major contributors to the development of this chemistry, achieving the titanocene-mediated 

cyclization of epoxypolyprenes for the synthesis of terpenoids. As shown in Scheme 1.18a, linear 

epoxide I-66 was cyclized to tricyclic I-67, enabling the synthesis of stypoldione I-51.104-105 In 

this transformation, single-electron transfer from the titanocene complex resulted in a β-titanoxy 

radical that then underwent the cyclization cascade. This same strategy was also successfully 

applied to the synthesis of furanospongian diterpenes (I-68) in 2012 by Oltra and coworkers 

(Scheme 1.18b).106 

Scheme 1.18 a) Cuerva’s and b) Oltra’s use of titanocene complexes 
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In 2010, MacMillan and coworkers applied their SOMO activation platform to the context 

of enantioselective polyene cyclization (Scheme 1.19).107 In the presence of imidazolidinone 

catalyst I-70 and a copper oxidant, an α-imino radical was generated from I-69, which underwent 

a cascade of 6-endo-trig cyclizations terminated by an aromatic ring to form I-71. This powerful 

methodology harnessed the ability for radical polyene cyclization cascades to produce steroid and 

terpene carbocyclic scaffolds in a catalytic and enantioselective manner for the first time.  

Scheme 1.19 MacMillan’s application of SOMO to polyene cyclizations 
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cycloreversion to I-74 and subsequent [4+2] cycloaddition to furnish carbocyclic scaffold I-75. 

Since these seminal reports, this strategy has been explored by multiple research groups to access 

various fused carbocyclic scaffolds.112-114  

Scheme 1.20 Vollhardt's cobalt-catalyzed cyclization cascade 
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Scheme 1.21 Mukai's bis(allene)-promoted cyclization cascade 
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1.3 Synthesis from macrocyclic species – transannular reactions 

Transannular bond formations within a macrocycle is a powerful strategy that has emerged 

for the formation of fused polycycles. The earliest examples of this concept were reviewed by 

McKervey in 1966.118  In 1981, Olsen and coworkers demonstrated that conjugated trienes within 

an enclosed macrocycle underwent thermal isomerizations to form fused ring systems of varying 

size.119 This transannular ring-closing concept has been developed in a variety of contexts which 

will be discussed herein. 

1.3.1 Transannular Diels–Alder reactions 

The development of transannular Diels–Alder reactions (TADA) within macrocyclic 

polyenes to produce fused polycyclic scaffolds was pioneered by Deslongchamps and 

coworkers.120 While this work has been employed for the formation of an assortment of fused 

carbocyclic systems varying in size, this discussion will focus on the preparation of the 6,6,6-fused 

ring structure. In the 1980s, Deslongchamps’s seminal investigations established the successful 

application of the TADA strategy for the construction of this scaffold. As shown in Scheme 1.22, 

the initial disclosure revealed that 14-membered macrocycles (I-81) containing a diene and a 

dienophile successfully underwent a transannular Diels–Alder reaction to fashion the 6,6,6-fused 

system (I-82).121-122 The stereochemical outcome of the cyclization to form I-82 is dependent upon 

the geometry of the macrocyclic alkenes (I-81).123-127 This understanding of the selectivity for the 

process enabled a modular strategy for accessing a suite of tricyclic stereoisomers (I-87–I-90). 
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Scheme 1.22 Deslongchamps’s TADA strategy 
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Scheme 1.23 Deslongchamps’s access to trans-anti-trans stereoisomers 

 

The application of the transannular Diels–Alder reaction to natural product synthesis was 

reviewed by Deslongchamps and coworkers in 2001.130 Since the publication of that review, a 
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natural product boasts the trans-anti-trans stereochemistry, the TADA approach was used to 

access the trans-anti-cis tricyclic scaffold (I-95) which was later epimerized. 

Scheme 1.24 Deslongchamps’s synthesis of (+)-cassaine 
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macrocyclization–transannulation approach with an initial n-endo-trig macrocyclization followed 

by a cascade of n-exo-trig cyclizations (Figure 1.3b). This strategy, however, has proven to be 

quite challenging.   

Figure 1.3 Complementary radical-based cyclization approaches 

 

The Pattenden research group was a leader of work in this area, presenting early reports in 

1994 of the transannular radical cyclization of macrocycles to form bicyclic systems.136 Later that 

year, they were the first to demonstrate this strategy’s ability to furnish a 5,7,5-tricyclic core 

through a radical-mediated macrocyclization followed by two transannular ring-forming events.137 

The following year, Curran and Jahn published the first example of a triple transannular radical-

based cyclization to form the steroid core, however they only isolated the tetracyclic product in 

4% yield.138 This initial disclosure demonstrated challenges to this approach that persist today, as 

the reaction provided a complex mixture of products arriving from an initial macrocyclization and 

only one ensuing transannular cyclization, with alkene isomerization that prohibited the continued 

ring-closing cascade. This propensity for 1,5-H abstractions within the macrocycle to arrest a 

continuous cyclization cascade was reinforced a few years later when Pattenden and Jones reported 

similar observations under oxidative radical-initiating conditions rather than reductive.139 

The challenge of a radical-based macrocycle formation–transannular cyclization of 

completely linear precursors remains unsolved largely due to the demonstrated susceptibility for 
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reactive radicals in a confined environment to behave in unexpected alternative ways.140-141 

However, the Pattenden research group has since established some well-designed methods to 

access A-aromatic ring steroid scaffolds from ortho-disubstituted aryl polyene species through this 

general approach.142-143 As shown in Scheme 1.25, they developed a process for two different types 

of radical precursors to provide complementary polycyclic outcomes. In the presence of Bu3SnH-

AIBN, dienyne I-97 underwent an initial macrocycle-generating 13-endo-dig cyclization to form 

radical I-98, followed by two transannulation reactions to form I-99 bearing trans-syn geometry 

about the ring junctions in 50% (Scheme 1.25a).  

Scheme 1.25 Pattenden’s macrocyclic cyclization strategies 

 

Alternatively, iodovinylcyclopropane I-100 underwent a separate macrocyclization-

transannulation sequence through radical I-101, providing the trans-anti-trans product I-102 in 

12%, which was successfully converted to estrone I-103 (Scheme 1.25b).143 This strategy was 

further explored in 2009 by the group for the synthesis of C-nor-D homosteroid ring systems.144  

1.4 Synthesis from building blocks – convergent and modular fragment coupling 

Synthetic chemists have placed a real value on achieving convergent syntheses of complex 
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two sections have focused on the impressively efficient construction of 6,6,6-carbocyclic scaffolds 

through a cascade of multiple bond formations in a single transformative event, alternative 

strategies focus on building the core structure in a more convergent manner. This “building block” 

approach unites different fragments and is therefore potentially more amenable to facile 

modularity. Among the most common building blocks that have been employed for the convergent 

synthesis of tricyclic scaffolds is the Wieland-Miescher ketone I-104, or similar bicyclic species 

such as the Hajos-Parrish ketone I-105 (Figure 1.4). The facile preparation of these species has 

been widely developed, allowing for their employment in the synthesis of many natural 

products.145-146 These convergent “building block” strategies often employ known powerful 

reactions to construct the desired carbocyclic structure.  

Figure 1.4 Structures of common bicyclic building blocks 

 

1.4.1 Robinson annulation and similar domino transformations 

The Robinson annulation has been established as a valuable tool for the synthesis of fused 

polycyclic species. In some of the earliest examples, the Villarica,147-148 Ireland,149-151 and Stork152 

research groups displayed that fused tricyclic scaffolds could be achieved using a Robinson 

annulation from bicyclic building blocks. The power of this approach has been demonstrated in its 

continued application to the rapid construction of carbocyclic core structures in natural product 

synthesis. As shown in Scheme 1.26, Mori and Yajima employed this strategy in 2000 to access 

the tricyclic core of (–)-phytocassane D (I-108) from Wieland-Miescher ketone-derived bicyclic 

building block I-106 through an initial formylation, followed by Robinson annulation with 
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methylvinyl ketone I-107 with accompanying formyl group removal.153-154 This strategy facilitated 

the successful synthesis of phytocassane D (I-109), and as such, enabled the determination of its 

absolute configuration. Additionally, this convergent approach has been applied in Maier’s 2012 

synthesis of moluccanic acid methyl ester155 and Yu’s 2015 synthesis of the ABC core structure 

of aglycon echinoside A.156  

Scheme 1.26 Mori’s Robinson annulation strategy 

 

In 2003, Gribble and coworkers displayed the efficiency of this reaction for the formation 

of tricyclic I-112 from Wieland-Miescher ketone-derived bicycle I-110 and ethylvinyl ketone I-

111 in the presence of sodium methoxide at reflux (Scheme 1.27).157-158 This method was again 

employed in the Sasaki’s 2006 synthesis of brevione B159 and Takikawa’s 2012 synthesis of 

decaturin C.160 

Scheme 1.27 Gribble’s Robinson annulation strategy 
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demonstrated in the 1960s by Tsuji and coworkers,161 and has been recently applied in She’s 2016 

synthesis of isospongian diterpenoid polyrhaphin D (I-115, Scheme 1.28)162 and Williams’s 2017 

studies toward the synthesis of tetranortriterpenoid gedunin.163-164  

Scheme 1.28 She’s cyclization strategy 

 

Many variations of this domino type of reactivity to construct tricyclic core structures from 

simple building blocks have been explored over the years to provide tricyclic scaffolds.165-168 One 

example is the development of a comparable one-pot domino acylation-cycloalkylation by Ramana 

and Bhar in 2004, providing rapid access to diterpene core structures and allowing for the 

completed total syntheses of a number of natural products.169 As shown in Scheme 1.29, cyclic 

acid I-116 and anisole I-117 underwent an acylation-cycloalkylation sequence in the presence of 

methanesulfonic acid-phosphorus pentoxide to form tricyclic I-118, which was further elaborated 

to natural product ferruginol I-119. 

Scheme 1.29 Ramana’s convergent domino strategy  
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discussed in Section 1.3.1. In this alternate approach as shown in Scheme 1.30, carvone-derived 

bicycle I-120 and Nazarov reagent I-121 underwent an anionic cyclization in the presence of 

cesium carbonate to deliver tricyclic I-122 as a single diastereomer with an axial methyl 

substituent, which was further elaborated to (+)-cassaine I-96. This anionic cyclization is 

essentially two sequential Michael additions, providing products analogous to those from a Diels–

Alder cycloaddition. 

Scheme 1.30 Deslongchamps’s second synthesis of (+)-cassaine 

 

1.4.2 Diels–Alder cycloaddition 

The Diels–Alder reaction has been proven to be infinitely useful for the rapid construction 

of the complexity present in many natural products.174 As discussed earlier (Section 1.3.1), 

engaging this transformation within a macrocycle presents one valuable strategy for the production 

of the polycyclic structures of interest. The Diels–Alder reaction has also proven to be useful in 

the convergent assembly of different fragments to access the desired scaffolds. 

1.4.2.1 Bicyclic Wieland-Miescher or Hajos-Parrish ketone precursors 

Pioneering work in the late 1970s by Valenta and coworkers demonstrated the use of the 

Diels–Alder reaction to unite a bicyclic Wieland-Miescher ketone-derived diene (I-123) and a 

dienophile (I-124) in the preparation of tricyclic and steroidal core structures (I-125) in good yields 

(Scheme 1.31).175-177 A similar approach was employed by Grieco and coworkers for the first 

synthesis of anticancer agent quassin in 1984.178 
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Scheme 1.31 Valenta’s Diels–Alder approach 

 

The power of this strategy was further demonstrated more recently in the early 2000s by the 

Theodorakis group, applying a Diels–Alder reaction with similar building blocks in their synthesis 

of tricyclic diterpene (–)-acanthoic acid.179-180 In 2003, Danishefsky and Coltart reported a Diels–

Alder strategy to directly access the trans-syn-trans stereoisomer of the fused 6,6,6-scaffold.181 As 

shown in Scheme 1.32a, they established the syn relationship through a Diels–Alder reaction 

between bicyclic sulfone dieneophile I-126 (accessed from the Wieland-Miescher ketone) and 

diene I-127, providing trans-syn-cis tricyclic adduct I-128. As planned, they then used the sulfone 

functionality to facilitate regioselective bridgehead enolate generation, which could be methylated 

from the less hindered face to access the trans-syn-trans perhydrophenanthrene I-129.  

Scheme 1.32 a) Danishefsky’s and b) Hashimoto’s Diels–Alder strategies  
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Inspired by this work from Danishefsky and Coltart, in 2017, Hashimoto and coworkers employed 

a similar approach to build the tricyclic core structure of brasilicardins A and C (I-132), employing 

the same diene I-127 in their key Diels–Alder with bicyclic dienophile I-130 (Scheme 1.32b).182 

1.4.2.2 Alternative Diels–Alder precursors 

This convergent Diels–Alder strategy has been employed using building blocks outside of 

those derived from similar species to the bicyclic Wieland-Miescher ketone or the Hajos-Parrish 

ketone. For example, in the mid 1990s, Crawford and coworkers accessed tricyclic species I-136 

from double diene I-133 and enyne I-134 through an initial intermolecular Diels–Alder reaction 

followed by an intramolecular Diels–Alder (Scheme 1.33).183-184  

Scheme 1.33 Crawford’s Diels–Alder sequence 
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reaction to achieve tricyclic species I-140 bearing the trans-anti-trans stereochemistry (Scheme 

1.34).185 This stereochemistry was confirmed upon conversion to natural product fichtelite I-141, 

a hydrocarbon that had been synthesized by Johnson and coworkers using their developed cationic 

polyene cascade as discussed earlier in Section 1.2.1.1.25-26 
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Scheme 1.34 Taber’s synthesis of fichtelite 

 

In 2007, Tanner and coworkers employed readily available (–)-isocarvone I-142 to access 

their desired dienophile I-143 and then applied a palladium-catalyzed coupling to convergently 

append fragment I-144 to produce the internal diene within I-145 (Scheme 1.35).186 An 

intramolecular Diels–Alder cycloaddition fashioned the fused trans-anti-trans ring system I-146, 

which serves as the ABC core structure of marine alkaloid norzoanthamine. 

Scheme 1.35 Tanner’s Diels–Alder strategy 
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the tricyclic core structure of clionastatin natural products (I-150) by employing a Lewis acid-

promoted Diels–Alder reaction between monocyclic dienophile I-147 and diene I-148 to provide 

tricyclic I-149 (Scheme 1.36).187  
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Scheme 1.36 Vanderwal’s Diels–Alder strategy 

 

 Finally, in 2017 Carreira and coworkers reported the total synthesis of (+)-sarcophytin I-

155, enabled by an intramolecular Diels–Alder reaction.188 As shown in Scheme 1.37, (S)-

citronellal-derived I-151 and (S)-carvone-derived I-152 and were combined in a Mitsunobu 

reaction to afford I-153. The key intramolecular Diels–Alder reaction delivered I-154, which was 

converted to the natural product I-155. 

Scheme 1.37 Carreira’s synthesis of (+)-sarcophytin 
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Scheme 1.38 Marvel’s tethered fragment approach 

 

More modern examples of this strategy take advantage of transition metal catalysis for 

convergent fragment coupling reactions. In the 1990s, Overman and coworkers demonstrated a 

series of palladium-catalyzed intramolecular Heck cyclizations to fashion a fused polycyclic core 

from two linked cyclic fragments.190-191 As shown in Scheme 1.39, the aryl iodide tethered to a 

cycloheptane ring (I-159) underwent sequential intramolecular Heck cyclizations to afford a 

mixture of ketone I-161 and enone I-162, converging on enone I-162 when treated with DDQ, 

which was elaborated to natural product scopadulcic acid B I-163. 

Scheme 1.39 Overman’s intramolecular Heck cyclization 

 

In 2008, Taber and Sheth reported a three-step method to access fused tricyclic 

structures.192 As shown in Scheme 1.40, simple aldehydes such as I-164 were converted to alkenyl 

cyclopropane species I-166 through an olefination with cyclopropylmethyl Wittig reagent I-165. 

This alkenyl cyclopropane underwent a key iron-mediated cyclocarbonylation to form 2-

substituted cyclohexenones tethered to an aromatic fragment, such as I-167. The group 

demonstrated a subsequent Lewis acid-facilitated cyclization of the tethered species I-167 and 

base-promoted epimerization to converge on the trans-ring fusion within tricyclic I-168.  
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Scheme 1.40 Taber’s linked fragment strategy 

 

In  2015 Tang and coworkers reported an additional modern version of this strategy with 

their development of a palladium-catalyzed dearomative cyclization. Joining aromatic fragment I-

169 with cyclic vinyl triflate I-170 formed tethered species I-171, which underwent cyclization in 

the presence of a palladium catalyst and chiral ligand to form tricyclic I-172 (Scheme 1.41).193  

Scheme 1.41 Tang’s tethered fragment approach 
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cyclopropanation step proceeded with enhanced yields when the secondary alcohol within I-175 

was protected prior to the transformation. 

Scheme 1.42 Micalizio’s synthesis of the steroidal core 

 

1.5 Conclusion 

The scope of the different strategies that have been developed to afford access to fused 6,6,6-

polycyclic scaffolds demonstrates the vast synthetic innovation that these structures have inspired 

over many years. From elucidating the biosynthesis of steroids, to achieving that remarkable 

transformation in the absence of enzymes, the cyclization of linear polyenes is an example of how 

nature can serve as the greatest inspiration for chemists. The development of this synthetic 

transformation has been heavily explored and elegantly strengthened such that the strategy is a 

solid approach for the generation of fused polycyclic scaffolds. Alternatively, the construction of 

fused polycycles from larger macrocycles presents a significant strategy, influential in its ability 

to forge ring fusions within a contained environment in a single operation. And lastly, the assembly 

of building blocks offers a powerful avenue to construct complex core structures in a rapid fashion. 

The convergency of this strategy allows for simpler modification of the prepared scaffolds, and as 

such it is perhaps the most relevant within the context of the overarching scientific interest in 

accessing complex structures for novel drug discovery and understanding complex biological 

processes. It is clear that attention and innovation are being directed toward this goal, as many of 

the developed methods across all three strategic categories are the result of recent efforts. 
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Chapter 2 

Development of a “Couple and Close” Strategy for the Construction of Fused Polycyclic 

Scaffolds 

 

 

 

 

 

 

Portions of this chapter appear in the following publication: 

Emily E. Robinson and Regan J. Thomson, A Strategy for the Convergent and Stereoselective 

Assembly of Polycyclic Molecules. J. Am. Chem. Soc. 2018, 140, 1956–1965. 
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2 Chapter 2 

2.1 Introduction 

As described in Section 1.1, the recently renewed interest in natural products as inspiration 

for drug discovery has led to a recognized need for the development of novel methods to rapidly 

access these complex core structures. The intricate biological processes and issues accompanying 

disease require more complex solutions than what are currently available.6-7 The aptitude of high-

throughput screening to push the boundaries of drug discovery has been established, however this 

platform requires access to a more diverse array of small molecules to reach its full potential. Most 

candidates currently available for screening lack the three-dimensional architecture required for 

complex biological interactions, and without rapid and modular access to such structures, a wealth 

of biological potential remains unexplored.1, 3, 8-10 

In response to this demand for more architecturally-complex structures modeled after those 

in nature that may be better equipped to address biological challenges, novel synthetic methods to 

efficiently access these scaffolds must be established. This chapter will discuss the development 

of such a strategy, allowing for the rapid and convergent construction of three-dimensionally 

complex fused polycyclic scaffolds prevalent within numerous bioactive natural product families. 

2.2 Oxidative enolate coupling as a powerful tool 

The development of strategies to assemble complex core structures in a convergent manner 

is particularly valuable for the modular synthesis of varied structures, and is an important feature 

for drug discovery. Within this context, oxidative enolate coupling has emerged as a powerful 

transformation for the rapid generation of complexity. The union of two fragments (i.e. II-1 and 

II-2) by forging a new carbon–carbon bond under oxidative conditions to produce 1,4-diketone 
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products (II-5) is an inherently convergent and efficient approach to complex structures (Scheme 

2.1).195-196 The single-electron oxidation of an enolate species results in a radical intermediate (II-

3) that can combine with another enolate through a carbon–carbon bond forming event to produce 

another radical (II-4). A second single-electron oxidation results in a cation which is relieved by 

hydrolysis, leading to the diketone product II-5. The potential for the key bond formation to set 

vicinal stereocenters within the produced 1,4-diketone (II-5) enhances the level of complexity that 

is accessible through this reactivity. 

Scheme 2.1 Oxidative enolate coupling 

 

Moreover, this enabled access to the 1,4-diketone motif is significant, as the dissonant relationship 

between the two carbonyl groups makes this scaffold challenging to synthesize through classic 

methods (i.e. Michael addition). The value of a synthetic approach to 1,4-diketones is displayed 

through their ability to provide direct access to structures prevalent in bioactive molecules such as 

furans (II-6) and pyrroles (II-7), as well as indirect access to many other structures of interest. The 

power of this versatile reactivity has been demonstrated through the successful employment of 

oxidative coupling in natural product synthesis.197-205 
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2.2.1 Coupling of metal enolates 

Ivanoff and Spasoff reported the first instance of oxidative enolate coupling in 1935, 

demonstrating that the enolate of phenyl acetic acid underwent oxidative dimerization when 

exposed to dioxygen (Scheme 2.2).206 Enolate II-9 was oxidized to radical cation intermediate II-

10 in the presence of dioxygen, and subsequent hydrolysis to radical II-11 then enabled the ensuing 

radical recombination to form dimerized product II-12. 

 
Scheme 2.2 Ivanoff’s preliminary oxidative coupling report 
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promoting the coupling process, but these early observations demonstrated three of the key 

persisting challenges to oxidative coupling: accomplishing the cross-coupling of two different 

enolate species, coupling in sterically-hindered environments, and achieving stereocontrol. 

 
Scheme 2.3 Rathke’s oxidative coupling 

 

In the mid-to-late 1970s, Saegusa and coworkers established a method to couple various 

ketones in the presence of LDA and copper(II) chloride to form 1,4-diketones in good yields 

(Scheme 2.4a).208-209 Notably, they were able to forge the new carbon–carbon bond in sterically 

congested environments, such as for the production of II-17. They also showed the ability of their 

method to couple the lithium enolates of two different ketone species (i.e. II-18 and II-19) to 

provide cross-coupled products (II-20), but this required a three-fold excess of one coupling 

partner (Scheme 2.4b). Over the years, the coupling of enolates has been accomplished with a 

variety of oxidants, such as Cu(OTf)2,210 FeCl3,211 I2,212-213 TiCl4,213-214 and AgCl.215  

 
Scheme 2.4 Saegusa’s oxidative coupling 
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 The Thomson group employed this type of chemistry and reported the successful 

dimerization of cyclic enones (i.e. II-21, Scheme 2.5) upon treatment with LDA and copper(II) 

chloride to form a linked bicycle (II-22) which could be aromatized with complete stereochemical 

transfer to produce a biaryl species (II-23).216 This method was later applied by the group to the 

total synthesis of carbazole alkaloid bismurrayaquinone A II-24 (Scheme 2.5).217  

Scheme 2.5 Thomson’s biaryl synthesis 
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Furthermore, the use of Evans oxazolidinones in the coupling enabled the preparation of 

enantioenriched 1,4-diketones (II-27). This strategy was applied to the enantioselective synthesis 

of (–)-bursehernin II-31, and although the coupling of II-28 and II-29 required a 1.75-fold excess 

of ester II-29 and only provided a 1.6:1 mixture of diastereomers, the subsequent reduction and 

base-mediated lactonization sequence led to epimerization to the favored trans-relationship and 

exclusive production of II-31 (Scheme 2.6b).  

An early report by Nguyen and Schäfer in 2001 exhibited the potential for the asymmetric 

oxidative enolate dimerization of an oxazolidinone (II-32) with stoichiometric amounts of both 

Fe(Cp)2BF4 oxidant and chiral additive II-33.219 With the most successful example shown in 

Scheme 2.7, the reported dimerization proceeded in good yield but with modest enantio- and 

diastereoselectivities. Nevertheless, this report served as inspiration for enantioselective coupling. 

Scheme 2.7 Schäfer’s enantioselective dimerization 
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reactions that had previously not been considered, however predicting the way that different 

substrates will aggregate is a major challenge. 

Finally, in 2012 Daugulis and coworkers reported the dimerization of lithium enolates with 

substoichiometric amounts of a copper oxidant for the first time, utilizing oxygen as the terminal 

oxidant.221 As shown in a representative example in Scheme 2.8, the lithium enolates (derived 

from ketones such as II-35) were stabilized in the reaction conditions with an electrophilic zinc 

salt, allowing for catalytic copper(II) acetylacetonate to deliver the coupled products (i.e II-36) 

under 1 atm of oxygen. Because oxidative coupling transformations up to this point required the 

stoichiometric addition of oxidants, this disclosure represented a significant contribution that may 

shape the direction of future advancements in the field.  

Scheme 2.8 Daugulis's catalytic oxidative coupling 
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reported the cross-coupling of two enol silanes promoted by single-electron oxidant cerium(IV) 

ammonium nitrate (CAN).223-224 They demonstrated that under their reaction conditions, a 5- to 

10-fold excess of one coupling partner was required to minimize undesired dimerization. In 1992, 

Ohshiro and coworkers established the ability for a pentavalent vanadium complex to serve as a 

single-electron oxidant for the coupling of two different enol silane species, as shown in Scheme 

2.9c.225 This process also required the use of a two-fold excess of one coupling partner to access 

the cross-coupled product. Later, Livinghouse and Ryter,226 and more recently, Hirao and 

coworkers,227 also used a vanadium complex to promote the oxidative bond formation between 

silyl enol ethers. As shown in a representative example in Scheme 2.9d, Hirao and coworkers were 

able to expand upon Ohshiro’s work, employing the vanadium complex to achieve the cross-

coupling of boron enolates (II-43) and enol silanes (II-37) in a 1:1 ratio to form unsymmetrical 

1,4-diketones (II-44). 

Scheme 2.9 Coupling of enol silanes 
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different species with similar oxidation potential without requiring a large excess of one coupling 

partner remains a challenge, an issue which significantly dampens the utility of oxidative coupling 

in complex molecule synthesis. Additionally, achieving the desired carbon–carbon bond formation 

with high levels of stereocontrol remains challenging. And lastly, forging a new bond in a sterically 

demanding environment is an ongoing obstacle.  

Powerful in their ability to address these challenges, silyl bis-enol ether species have 

emerged as versatile intermediates for facilitating oxidative coupling transformations. The 

synthesis of these species was first reported by Rathke and Weipert in 1991 (Scheme 2.10), and 

although they did not demonstrate any utility of these intermediates at the time, their method to 

prepare unsymmetrical silyl bis-enol ethers proved useful to research groups in later years.228 The 

three-step sequence was initiated with the generation of an intermediate amino silane species (II-

47) from one coupling partner (II-46), and then following regeneration of the silyl halide with 

acetyl chloride, the enolate of the second coupling partner (II-48) could be attached to deliver 

unsymmetrical II-49. 

Scheme 2.10 Rathke’s unsymmetrical silyl bis-enol ether formation 
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radical cation species II-51, which can forge a new carbon–carbon bond in combination with the 

enolate of the other coupling partner to form intermediate II-52. A second single-electron 

oxidation of this intermediate results in bis(cation) species II-53, which upon hydrolysis of the 

silicon tether, provides the ultimate coupled 1,4-diketone product II-54. Although Schmittel and 

coworkers only reported the synthesis of four different diketones, they showed that silyl bis-enol 

ethers not only underwent oxidative coupling in good yields, but also proceeded with 

diastereocontrol, one of the known challenges of oxidative coupling transformations to this point. 

As shown in Scheme 2.11b, in the presence of single-electron oxidant cerium(IV) ammonium 

nitrate (CAN), ketone II-26 was oxidatively dimerized through symmetrical silyl bis-enol ether 

II-55 to form 1,4-diketone II-56 in 59% and 9:1 dr. Excitingly, the group displayed the ability to 

effectively cross-couple two ketone species II-26 and II-57 through unsymmetrical silyl bis-enol 

ether II-58 to deliver the 1,4-diketone II-59, addressing another key challenge to oxidative 

coupling transformations (Scheme 2.11c). 

Scheme 2.11 Schmittel’s silyl bis-enol ether coupling 
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 The Thomson lab has provided significant contributions to this area, demonstrating the 

ability for silyl bis-enol ethers to combat many of the challenges associated with oxidative 

coupling and rendering the reaction valuable to the synthesis of complex molecules. In 2007, the 

group first reported the use of silyl bis-enol ethers for the successful cross-coupling of 2-methyl 

tetralone II-60 with various acyclic ketone coupling partners to form unsymmetrical 1,4-diketones 

(II-63, Scheme 2.12a).231 They prepared the required unsymmetrical silyl bis-enol ethers (II-62) 

with modified Rathke conditions through the three-step protocol with initial generation of an 

amino silane (Scheme 2.10). CAN was discovered to be the stoichiometric oxidant of choice for 

this transformation, enabling the facile cross-coupling of two ketone coupling partners in a roughly 

1:1 ratio while preparing a quaternary center through the carbon–carbon bond formation.  

Scheme 2.12 Thomson's oxidative coupling methods development 
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With a similar strategy, the group demonstrated the successful oxidative allylation of ketones 

through silicon tethered intermediates (Scheme 2.12b).232 Furthermore, the group developed a 

merged conjugate addition–oxidative coupling sequence that enabled the total synthesis of 

metacycloprodigiosin II-71 and prodigiosin R1 (Scheme 2.12c).233 In this method, unsymmetrical 

silyl bis-enol ethers (II-68) were formed by trapping the conjugate addition product of II-66 with 

an enol silyl halide (II-67). This intermediate then underwent oxidative coupling to form the 

unsymmetrical 1,4-diketones (II-69) in good yields and modest diastereoselectivities (~2:1 dr). In 

this developed methodology, the 1,4-diketones were then smoothly converted to the pyrrole 

species (II-70) through a Paal-Knorr reaction, which could be further elaborated to two prodigiosin 

natural products. This direct method was employed for the group’s second generation synthesis of 

metacycloprodigiosin II-71.234  

In their quest to provide access to more three-dimensionally complex structures, the group 

demonstrated the ability for silyl bis-enol ethers (II-72) to facilitate the coupling of two cyclic 

ketone species to deliver linked bicyclic 1,4-diketones (II-73) with high levels of diastereocontrol 

(Scheme 2.13).235  

Scheme 2.13 Thomson’s diastereoselective coupling of cyclic ketones 
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They performed dimerizations and cross-couplings via silyl bis-enol ether intermediates, accessing 

the unsymmetrical variants through the modified Rathke three-step protocol as mentioned earlier 

(Scheme 2.10). The proposed model for the observed stereoselectivity is shown in Scheme 2.13, 

where a conformational bias of the silyl bis-enol ether leads to selective formation of major product 

II-73.  Of the possible conformations, II-75 is favored because the cyclic coupling partners are 

held in an orientation that minimizes destabilizing interactions between the two rings. On the other 

hand, in conformation II-76, the cyclic coupling partners are held such that they are experiencing 

destabilizing ring–ring interactions. The group further probed this selectivity and discovered that 

increasing the size of the alkyl groups on the silicon tether (R) led to enhanced selectivity for the 

major product II-73. This observation is presumably attributed to a Thorpe-Ingold effect where 

the increased size of the alkyl groups on silicon (R) leads to greater repulsion and thus a larger 

angle between them (θ), which in turn compresses the angle between the two cyclic coupling 

partners (γ). This increased proximity of the two coupling partners exaggerates the destabilizing 

interactions within the minor conformation II-76, leading to the diminished production of minor 

product II-74.  

This silyl bis-enol ether-facilitated coupling of cyclic ketones was successfully applied to 

the total synthesis of propolisbenzofuran B II-81, as shown in Scheme 2.14.236 In this synthesis, 

the unsymmetrical silyl bis-enol ether II-79 was not prepared through the group’s previously 

employed three-step procedure, but rather upon slow, controlled addition of the enolate of one 

coupling partner (II-77) to one equivalent of diisopropyldichlorosilane in the presence of DMPU 

at low temperatures, followed by the controlled addition of the enolate of the other coupling partner 

(II-78). This strategy to streamline the preparation of unsymmetrical silyl bis-enol ethers will be 
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discussed later in the chapter. These disclosures collectively establish the ability for silyl bis-enol 

ethers to facilitate challenging oxidative coupling transformations, elevating the utility of this 

reaction to complex molecule synthesis. 

Scheme 2.14 Thomson’s synthesis of propolisbenzofuran B 
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A subsequent single-electron oxidation from a second equivalent of TBACN resulted in the cation 

species II-87 that was relieved upon hydrolysis of the silane, providing coupled product II-88. 

Although this method required a two-fold excess of the enol silane coupling partner, the concept 

set the stage for some further developments in future years. 

In 2007, MacMillan and coworkers employed their singly occupied molecular orbital 

catalysis platform (SOMO) in the context of oxidative coupling to provide the first enantioselective 

variant of this transformation.238-241 The general concept of this work follows that of the Narasaka 

disclosure but with incorporation of enamine organocatalysis, allowing for asymmetric induction. 

Condensation of an aldehyde species with a chiral amine catalyst produces an enamine 

intermediate that undergoes the previously described oxidation–combination–oxidation–

hydrolysis sequence. As shown in the representative example in Scheme 2.16, in the presence of 

an imidazolidinone organocatalyst II-90, single-electron oxidant CAN, and di-tert-butylpyridine, 

aldehydes (II-89) could be successfully coupled with enol silanes (II-37) in equal stoichiometries 

and in enantioselective fashion to form 1,4-dicarbonyls (II-91). 

Scheme 2.16 MacMillan’s application of SOMO catalysis 
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previous examples. This sequence led to a 1,4-diimine species (II-95) which aromatized to deliver 

pyrrole II-96 (Scheme 2.17a). With this strategy, they successfully completed the synthesis of 

ATP-citrate lyase inhibitor purpurone (II-100, Scheme 2.17b), as well as other similar natural 

products.243  

Scheme 2.17 Jia's pyrrole synthesis 
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As shown in Scheme 2.18, following preparation of the lithium enolates of esters II-101 and II-

102, electrolysis at low temperatures afforded the coupled product II-103 in 48% yield. 

 Moeller and coworkers have successfully employed electrochemistry for a thorough 

investigation of intramolecular coupling reactions of radical cation species generated from 

electron-rich olefins, a strategy that he has recently reviewed.245 As shown in Scheme 2.19, the 

general approach that his group has developed involves the anodic oxidation of the electron-rich 

alkene within II-104 to generate a radical cation species II-105. When the molecule contains a 

nucleophile, it can trap the cation in a cyclization event to form cyclic radical II-106, which can 

be quenched by solvent. These anodic cyclization reactions have been applied to the synthesis of 

various molecules, as discussed in the cited publication, and this work has demonstrated the great 

potential for electrochemical oxidations to promote the rapid construction of complexity.  

Scheme 2.19 Moeller's electrochemical coupling strategy 
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with stereocontrol (Scheme 2.13), we imagined that we could extend this reactivity to access a 

suite of fused polycyclic scaffolds from simple precursors. The general approach is shown in 

Scheme 2.20a, employing a diastereoselective oxidative coupling–ring-closing metathesis 

sequence to deliver fused carbocycles with three-dimensional complexity in just three steps from 

simple ketone substrates. We imagined that the coupling of two cyclic enones equipped with an 

olefin appendage (i.e. II-108 and II-109) through a silyl bis-enol ether (II-110) would yield 

bicyclic intermediates (II-111) with stereocontrol, where the olefin substituents would then be 

poised to undergo a subsequent ring-closing metathesis to forge the fused tricyclic system with 

four contiguous stereocenters (II-112). This “couple and close” strategy could be categorized 

alongside the convergent fragment coupling approaches to provide tethered cyclic species that can 

be converted to polycyclic scaffolds, as discussed in Section 1.4.3. 

Scheme 2.20 General couple and close strategy 
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By simply engaging different starting materials, this strategy would deliver an array of polycyclic 

structures varying in substitution pattern and ring size. This modular approach exploiting two 

sequential powerful carbon–carbon bond forming reactions could provide rapid access to the core 

structures of a variety of natural product families with a wealth of biological activity, with some 

representative examples depicted in Scheme 2.20b. 

2.4 Substrate preparation 

At the onset, we wished to synthesize a suite of cyclic building blocks which could be united 

through the designed approach in any number of combinations to provide an array of carbocyclic 

structures. We strategically elected to employ starting materials bearing enone functionality, as the  

unsaturation inherently allowed for regioselective enolate generation in the formation of the key 

silyl bis-enol ether intermediates (i.e. II-110). It was crucial for the success of the selective 

oxidative coupling that these starting substrates be prepared in enantiopure form, as racemic 

material would surely lead to mixtures of diastereomers. With these concerns in mind, a suite of 

building blocks was prepared for implementation in the strategy (Figure 2.1).  

Figure 2.1 Suite of enone substrates 
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We imagined that known compound (5R)-trimethylsilylcyclohexenone II-133, readily 

prepared in enantiopure form by Jørgensen and coworkers through an organocatalytic Robinson 

annulation between (E)-3-trimethylsilyl-2-propenal II-130 and tert-butyl acetoacetate II-131 

(Scheme 2.21a),246 could serve as a valuable common intermediate from which enones II-118–II-

123 could be assembled (Scheme 2.21b).247-249  

Scheme 2.21 Synthesis of substrates II-118–II-123 

 

Through a simple vinyl conjugate addition to II-133 followed by copper chloride-mediated 

elimination of the silane, parent vinyl substrate II-118 was readily prepared. This intermediate 

could be converted to the 3-substituted variant II-119 via a methyllithium addition followed by a 

1,3-oxidative transposition. Parent compound II-118 could also be used to access α-methyl 

substrate II-120 from a simple alkylation, and this compound could be converted to 4,4-gem-

1. TMS

2. CuCl2, DMF
47% over
two steps

TiCl4, DCM
O

1. MeLi, THF
2. PCC, DCM

68%

MgBr

TMSCl, THF
4. CuCl2, DMF

23% over two steps

3.

O

Me

O O
MeLDA

MeI

HMPA
THF
90%

1. MgBr
CuBr  DMS

HMPA, TMSCl
THF

2. CuCl2, DMF
66% over
two steps

O

Me

Me

1.LDA, MeI, HMPA
THF, 59%

2. H2O2, NaOH, MeOH

3. H2NNH2, AcOH
MeOH, 54%

4. MnO2, DCM
95%

CuBr  DMS, HMPA

O

Me

1. MeLi, THF

2. PCC, DCM
59% over
two steps

II-123 (R)-II-133 II-122

(R)-II-118II-119 II-120 II-121

O

TMS

TMS

O

H

Me

O O

OtBu

N
H OTMS

CF3F3C CF3

CF3

1.

PhCO2H

2. MSA, toluene
68%, 99% ee

OH
1. BuLi, TMS-Cl, THF

2. Red-Al, ether
66%

3. MnO2, DCM
73%

II-129
II-130

II-131
(R)-II-133

a. Synthesis of common enantioenriched silane intermediate

b. Elaboration of key silane into desired building blocks

O

TMS

10 mol %
II-132



 76 

dimethyl substrate II-121 through a subsequent α-methylation, followed by epoxidation, Wharton 

transposition, and oxidation to the enone. Silane II-133 could also be used to deliver allyl 

substituted II-123 through a Sakurai reaction followed by copper chloride-mediated silane 

elimination. Alternatively, silane II-133 was converted to substrate II-122 containing a β-

quaternary center, through a methyllithium addition to the ketone and 1,3-oxidative transposition, 

followed by a vinyl cuprate addition and copper chloride-mediated silane-eliminating sequence. 

In addition to the key silane intermediate II-133, we imagined that commercially available 

(R)- and (S)-carvone (II-35) would not only be useful as substrates themselves but could also be 

further elaborated to produce desired enone building blocks (Scheme 2.22).  

Scheme 2.22 Production of substrates II-124–II-127 
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For example, 2-substituted substrate II-124 could be produced from (R)-carvone II-35 through an 

epoxidation of the pendant olefin and subsequent oxidative cleavage to provide ketone II-134, 

followed by conversion to vinyl iodide II-135 employing hydrazone chemistry developed in the 

Myers laboratory, which was converted to the target substrate with a palladium-mediated 

displacement (Scheme 2.22a).250-251 (S)-carvone (S)-II-35 was converted to 4-acetal-substituted 

enone II-125 employing known conditions to generate the extended linear enolate and trapping 

with trimethyl orthoformate (Scheme 2.22b).252 Commerically available (–)-quinic acid II-136 

was transformed to enone II-137 according to Ventura and coworkers,253 which was protected as 

the triethyl silyl ether to produce substrate II-126 (Scheme 2.22c). As shown in Scheme 2.22d, an 

allylation of cyclohexenone provided II-127.254 Finally, we envisioned that acyclic methylvinyl 

ketone II-128 could be instrumental to the structural diversification of accessible scaffolds. 

2.5 Realization of the couple and close strategy 

2.5.1 Optimization of the process 

With an array of enone building blocks in hand, we wished to explore the potential of the 

approach to unite these fragments and form a variety of phenanthrene-type core structures. As is 

depicted in Scheme 2.23a, and fully detailed within the Experimental Section (2.9), the preparation 

of the symmetrical silyl bis-enol ether intermediates (II-140) proceeded by the addition of the 

lithium enolate of the cyclic starting material (II-139) to 0.5 equivalents of iPr2SiCl2 at –78 ºC. As 

shown in Scheme 2.23b, in order to access the unsymmetrical silyl bis-enol ethers (II-144), the 

lithium enolate of one coupling partner (II-139) was added in a slow and controlled manner to 1.0 

equivalent of iPr2SiCl2 at –78 ºC, providing intermittent chlorosilane II-142, followed by the slow 

addition of the second lithium enolate (II-143). Because the addition of a second enolate to the 
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intermittent monochloro enol silane species II-142 is slower than the first addition to 

dichlorodiisopropylsilane, this protocol allows for the production of unsymmetrical silyl bis-enol 

ethers while minimizing symmetrical species. 

Scheme 2.23 Silyl bis-enol ether preparation 
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aided in diminishing this pathway but did not completely arrest the hydrolysis. Employment of 

organic bases such as 2,6-di-tert-butylpyridine, as opposed to the inorganic sodium bicarbonate, 

did not present any enhancement in yield. Additionally, other oxidants, such as Cu(OTf)2 and Cu2O 

presented elevated hydrolysis compared to CAN. As the reaction takes place very quickly (~5 

minutes) it was challenging to completely remedy this undesired hydrolysis, and the optimal 

conditions as described above were accepted. The ring-closing metathesis to fashion the final ring 

of the fused system was best achieved using 10 mol % Grubbs II in dichloromethane, providing 

superior conversion than Hoveyda-Grubbs II. This could be conducted smoothly at room 

temperature for the less sterically-hindered substrates, but required an elevation of temperature to 

40 ºC for the formation of trisubstituted olefins and larger rings (see Experimental Section 2.9).  

2.5.2 Scaffolds constructed through the developed strategy 

Initial proof of concept experiments focused on the preparation of the “parent” symmetrical 

system originating from the dimerization of enone II-118. As shown in Scheme 2.24, this vinyl 

enone underwent the oxidative coupling to provide a 3:1 mixture of coupled diastereomers in 66% 

overall yield (II-147 and epi-II-147).  

Scheme 2.24 Initial couple and close result 
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These diastereomers were readily separable by column chromatography, and were each 

independently subjected to the subsequent ring-closing metathesis, the products of which were 

both amenable to X-ray crystallography to determine the absolute structures. The major 

diastereomer from the coupling (II-147) underwent ring closure in 86% yield to fashion II-148, 

exhibiting the trans-anti-trans geometry about the ring junctions. Thus, fused tricyclic scaffold II-

148 was accessed from enone II-118 in 43% yield over the three steps. The minor diastereomer 

(epi-II-147) underwent ring-closing in 84% to deliver epi-II-148, displaying the cis-syn-trans 

stereochemistry. 

The demonstrated coupling preference for the trans-anti-trans geometry, as was indicated 

by simplified C2-symmetric NMR spectra and confirmed by X-ray analysis, is consistent with the 

stereochemical model previously developed within the group for the coupling of similar cyclic 

ketone substrates (see Scheme 2.13).235 As shown in Figure 2.2, this stereoselectivity is dictated 

by the conformational preference of the silicon tethered intermediate. 

Figure 2.2 Model for coupling stereoselectivity 
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The “staggered” conformation II-149, leading to the major coupled product II-152 (and then to 

closed product II-148), is preferred because the tether is orienting the cyclic substrates in such a 

way that minimizes destabilizing eclipsing interactions between the rings themselves, as well as 

allowing the new carbon–carbon bond to be formed opposite both β-substituents. In contrast, the 

“eclipsed” conformation II-150, which leads to the minor coupled product II-153 (and then to epi-

II-148), is disfavored because it experiences destabilizing interactions between the two ring 

fragments, as well as necessitating the bond formation to occur across the face of one β-substituent. 

The last conformation II-151, the product of which is not observed, is the highest in energy as it 

would require the new carbon–carbon bond to form across the face of both β-substituents.  

 With the established stereochemistry for the three-step process, a variety of fused tricyclic 

scaffolds were prepared from this sequence and are displayed in Figure 2.3, with the three-step 

yields provided and the individual yields for the major diastereomer from the oxidative coupling 

(two steps from the cyclic enones) and ring-closing metathesis steps shown in parentheses. The 

diastereoselectivities presented below the yields refer to the oxidative coupling step. 

In further investigation of symmetrical systems, a marked enhancement in coupling 

selectivity was observed for enones bearing substitution in the 2-position of the enone, 

demonstrated by the 20:1 ratio of diastereomers that resulted from the dimerization of II-124 in 

the preparation of scaffold II-160. This can be rationalized with the model in Figure 2.2,  

comparing the two relevant conformations II-149 and II-150 when R = Me. The destabilizing 

interactions between the two methyl substituents are exaggerated within conformation II-150 

leading to the diminished production of the minor product II-153. Furthermore, the additional 

instability of conformation II-150 may be the consequence of the methyl substituents interacting 
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with the silicon tether. However, this augmentation of selectivity is not translated to the coupling 

of II-119 bearing substitution in the 3-position, as its dimerization in the sequence to form II-161 

provided a 4:1 dr similar to the parent vinyl substrate. This result is more challenging to explain 

with simple models, but it is possible that the reduced proximity of the methyl substituents to the 

reacting center when X = Me is enough to attenuate the augmentation in selectivity observed when 

R = Me. Alternatively, the reduced proximity between the 3-methyl substituents and the silicon 

tether diminishes the potential for negative interaction between these groups, and thus lessens the 

extent to which conformer II-150 is disfavored when X = Me as compared to when R = Me.  

Figure 2.3 Scaffolds prepared from the developed three-step strategy 
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 The value of the silicon tether to the dimerization of enones was definitively established 

through its ability to augment coupling diastereoselectivity relative to non-tethered reactions. For 

example, the dimerization of enone II-124 by treating the lithium enolate with FeCl3 as reported 

by Frazier and Harlow,211 resulted in a 3:1 mixture of diastereomers, whereas the silicon-tethered 

approach produced the 1,4-diketone in an enhanced 20:1 diastereomeric ratio. The capacity of the 

silicon tether to both enhance stereoselectivity and control the cross-coupling of ketones in a 1:1 

ratio allowed us to generate a suite of more complex phenanthrene-type scaffolds (II-162–II-169).  

 Submission of enones (R)-II-35 and II-124 to the three-step sequence smoothly provided 

structure II-164, demonstrating that the preparation of trisubstituted olefins was well tolerated 

through this ring-closing with a simple elevation of temperature to 40 ºC. Further emphasizing the 

utility of the silyl bis-enol ether method, the coupling of these two enones provided the 1,4-

diketone intermediate in 50% yield and 20:1 dr, whereas treatment of a 1:1 mixture of the 

corresponding lithium enolates with FeCl3 generated a complex mixture of inseparable dimeric 

and cross-coupled products. 

Oxidative coupling in sterically-demanding environments is known to be challenging, 

particularly for the formation of a new carbon–carbon bond that produces a quaternary center. As 

such, we were pleased that this method enabled the facile production of tricyclic structure II-165 

in 44% from enones (R)-II-35 and II-120, setting an α-methyl quaternary center through the 

oxidative coupling. Moreover, this angular methyl substitution pattern is common to many terpene 

natural products, providing added value to the strategy’s ability to prepare II-165. The approach 

also proved to be tolerant of preexisting quaternary centers, allowing the union of enone (S)-II-35  

with II-122 to form scaffold II-166 containing a quaternary center in the β-position. As 
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substitution in the 4-position is prevalent in numerous natural product families, we investigated 

the potential for our strategy to incorporate the ubiquitous 4,4-gem-dimethyl motif. The successful 

formation of scaffold II-167 in 40% yield over three steps (20:1 dr) further supported the ability 

for the approach to withstand fairly sterically-congested environments. The ring-closing 

metathesis to access this structure did prove to be much more challenging due to the steric 

congestion, requiring elevated catalyst loading. The incorporation of alternative functional groups 

in the 4-position was successful by engaging enones (S)-II-35 and II-126 to access protected 

alcohol II-168, and employing enones II-125 and (S)-II-118 to deliver masked aldehyde II-169. 

Both of these functionalities could be efficiently unveiled, as detailed in the Experimental Section 

2.9.  

 In an effort to diversify the carbocyclic composition of the accessible scaffolds, we 

examined the preparation of structures outside of the 6,6,6-phenanthrene core. For example, by 

engaging (R)-II-35 with enone II-127 where the olefin-containing substituent was elongated to an 

allyl group and relocated to the α-position, spirocyclic scaffold II-170 could be produced in 52% 

yield over three steps. The intermediate 1,4-diketone (generated in 20:1 dr) was amenable to X-

ray analysis in order to definitively assign the stereochemical structure (see Experimental Section 

2.9). Alternatively, enone II-123, where the elongated allyl substituent was repositioned back to 

the usual β-position, could be united with parent enone (R)-II-118 to achieve the 6,7,6-tricyclic 

core II-171 in 30% yield over three steps. We imagined that this approach could be applied to 

access the 6,8,6-fused system as well through the dimerization and subsequent RCM of allyl-

substituted enone II-123. Although the oxidative coupling of this substrate achieved II-177 in 52% 

with 5:1 dr (Scheme 2.25a), the RCM of this material at room temperature solely resulted in 
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unchanged starting material. As shown in Scheme 2.25a, when this RCM was conducted at 40 ºC, 

however, the previously intentionally isolated 6,7,6-fused product II-171 was produced rather than 

the desired scaffold with the 8-membered center ring.  

Scheme 2.25 Formation of the 6,8,6-fused system 
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to suppress this reactivity by scavenging the deleterious ruthenium hydride, and although inclusion 

of additive 1,4-benzoquinone successfully arrested production of the 6,7,6-product II-171, the 

formation of the desired 6,8,6-system was not achieved as only unchanged starting material was 

recovered. We imagined that the numerous sp2-hybridized atoms within the desired fused tricyclic 

product may cause a level of conformational strain that inhibits closure of the 8-membered ring. 

Thus, as shown in Scheme 2.25b, the enone functionality within the coupled product II-177 was 

selectively reduced with Stryker’s reagent to afford the saturated bicyclic intermediate II-180. To 
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our delight, this 1,4-diketone successfully underwent ring-closure to deliver the 6,8,6-core 

structure II-172 in 78% yield with no observed alkene isomerization (37% over four steps from 

enone II-123).  

 Aside from the production of various tricyclic species, we imagined that by employing 

acyclic methylvinyl ketone II-128 in the strategy, rapid access to bicyclic structures similar to the 

Wieland-Miescher ketone could be achieved. As discussed in Section 1.4, these types of 

intermediates have proven to be extremely useful for the synthesis of many natural products. The 

success of this aim was demonstrated through the union of (R)-II-35  and methylvinyl ketone II-

128 to form II-173 in good yields, however the oxidative coupling proceeded with greatly 

diminished levels of stereocontrol. Nevertheless, this approach could be engaged to access bicyclic 

species containing quaternary centers in the α-position (II-174) and β-position (II-175), as well as 

the ring-expanded 6,7-bicyclic system (II-176).  

2.5.3 Challenging systems for the strategy 

2.5.3.1 Sterically-demanding oxidative coupling 

While the oxidative coupling of enones proved to be tolerant of a number of sterically-

challenging substrates (Figure 2.3) the developed conditions were not conducive to the formation 

of other desired substitution patterns prevalent in nature (Figure 2.4). The attempted preparation 

of II-181 through the dimerization of enone II-120 led exclusively to aromatized products that 

displayed no ketones in the 13C NMR spectrum of the crude material, and were difficult to separate 

and characterize. The oxidative coupling to produce II-182 with two quaternary centers led to 

hydrolysis to the starting enones, and a complex mixture of products that could not be purified and 

characterized. Likewise, the attempted coupling to produce scaffolds containing both a gem-
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dimethyl motif and an α-methyl quaternary center, such as II-183 and II-184, resulted in 

significant hydrolysis as well as a complex mixture of compounds that could not be purified. 

However, one of the main products in both of these reactions was the same, and although it could 

not be purely isolated and characterized, this suggests a reaction pathway involving the gem-

dimethyl-containing monomer. New coupling conditions must be investigated in order to access 

these desirable substitution patterns. 

Figure 2.4 Inaccessible scaffolds due to unsuccessful oxidative coupling 

 

2.5.3.2 Saturated ketone coupling 

Although the enone functionality within the starting substrates was valuable to enable 

selective enolate generation for silyl bis-enol ether production, initial experiments to probe the 

coupling of saturated analogues were explored. As shown in Scheme 2.26a, a vinyl conjugate 

addition to cyclohexenone II-138 and trapping with 0.5 equivalents of dichlorodiisopropylsilane 

provided the racemic silyl bis-enol ether intermediate, which was subjected to a variety of 

oxidative coupling conditions. These initial experiments uncovered a potential conformational 

requirement for enone unsaturation to allow the coupling of compounds with substitution in the β-

position. Rather than forming the desired carbon–carbon bond, each set of conditions shown in 

Scheme 2.26a provided a mixture of vinyl cyclohexanone, and the corresponding vinyl 

cyclohexenone material. The continued investigation of such saturated systems is required to better 

understand this apparent additional conformational challenge and how it may be remedied. 
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Scheme 2.26 Coupling of saturated systems 

 

 It was discovered, however, that the cross-coupling of unsymmetrical silyl bis-enol ether 

II-188, derived from carvone (R)-II-35 and enantioenriched enolate II-187, provided the coupled 

product II-189 in 31% yield employing the optimal coupling conditions developed for the strategy 

above (Scheme 2.26b). Although this half-saturated system resulted in significant hydrolysis to 

the individual starting enones, the coupled product was produced, albeit in a lower yield over the 

two steps than was typical for the coupling of two similar enones. This coupled product underwent 

successful ring-closing metathesis in 76% yield to form tricyclic compound II-190.  

2.5.3.3 Alternative methods for ring closure 

We imagined that the couple and close approach could be amenable to alternative closure 
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Diels–Alder cycloaddition to fashion the fused tricyclic ring system (II-192). Unfortunately, 

however, the electronic character of this particular system was not favorable enough to promote a 

thermal Diels–Alder reaction, providing unreacted starting material and decomposition after 

prolonged exposure to heat. The continued exploration of this approach certainly deserves further 

attention as an alternative means to construct fused polycyclic scaffolds employing an initial 

oxidative coupling.  

Scheme 2.27 Attempted Diels–Alder to fashion the fused ring system 

 

 

2.6 Selective functionalization of prepared substrates 

We wished to further display the utility of the developed strategy to complex molecule 

synthesis by demonstrating selective manipulations of the prepared scaffolds. As shown in Scheme 

2.28a, scaffold II-148 underwent complementary epoxidation strategies, delivering monoepoxide 

II-193 when treated with mCPBA, or bis(epoxide) II-194 when exposed to nucleophilic 

epoxidation conditions with hydrogen peroxide and sodium hydroxide. A global hydrogenation of 

scaffold II-148 resulted in saturated II-195, which underwent a Baeyer–Villiger reaction to form 

lactone II-196. Notably, it was discovered that the scaffold resulting from the minor diastereomer 

of the oxidative coupling reaction, epi-II-148, could be epimerized to the more thermodynamically 

favorable all-trans configuration (II-195) through an initial global hydrogenation and subsequent 

exposure to base. This epimerization protocol was successfully applied to the bicyclic scaffold II-

176, converging on the trans-fused II-197 (Scheme 2.28b). This valuable development 
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demonstrated that substrates exhibiting poor selectivity through the oxidative coupling can later 

be epimerized to furnish the all-trans products. Finally, selective reduction of the enone 

functionality within scaffold II-167 was conducted without disturbing the isolated alkene upon 

treatment with L-selectride, delivering reduced scaffold II-198 (Scheme 2.28c).  

Scheme 2.28 Elaboration of prepared scaffolds 

 

 

2.7 Investigation of the bioactivity of the prepared compounds 
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drug discovery efforts, we wished to investigate the potential bioactivities of the prepared 

compounds. Our suite of compounds seemed to be structurally related to triterpenoid barboxolone 

methyl (II-199, Figure 2.5), which underwent a Phase 1 clinical trial as a potential therapeutic for 

solid tumors and lymphoma,257-258 and to quassin (II-200), which belongs to the quassinoid family 

of antineoplastic natural products.259  

Figure 2.5 Anticancer compounds with similar carbocyclic cores containing enones 

 

These structural similarities inspired us to investigate the potential anticancer activity of the 

compounds, screening a selection of scaffolds for activity against five tumor cell lines in 

collaboration with Dr. Irawati Kandela in the Developmental Therapeutics Core at Northwestern. 

As detailed in Table 2.1, cell viability studies were conducted at 1 mM concentrations against 

colon (HT29), prostate (PC-3), cervix (HeLa), breast (MDA-MB-231), and metastatic breast 

(MDA-MB-231-LM24) tumor cell lines.  

The results establish a distinct difference in activity between those compounds containing 

enone functionality compared to their saturated counterparts (i.e. II-148 vs. II-195 and II-167 vs. 

II-198). However, the IC50 values for two of the most active compounds, II-170 and II-167, against 

MDA-MB-231 cells were 40.4 µM and 185 µM, respectively, demonstrating a relatively low 

activity. Moreover, a selection of the most active enone-containing compounds (II-148, II-167, 

II-170, and II-193) displayed the same activity against non-tumorigenic MCF10A cells as against 
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the tumor cells, showing no selectivity in their cytotoxic action. Notably, the bis(epoxide) II-194 

presented cytotoxic activity despite lacking the enone functionality present within the other active 

compounds, however the IC50 value for this compound against MDA-MB-231-LM24 proved to be 

just 200 µM. This bis(epoxide) II-194, however, did display a difference in activity between the 

tumor cell lines and the non-tumorigenic cell line, with a high IC50 value of 3100 µM against the 

“normal” MCF10A cells. These results established that certain prepared compounds possess some 

cytotoxic activity, but would require much optimization to obtain relevant levels of potency. 

Table 2.1 Cell Assay Results 

Compound 
    Percent Cell Viability of Treated Cell Lines at 1.0 mM  

HT29 PC-3 HeLa MDA-MB-
231 

MDA-MB-231-
LM24 MCF10A 

II-148 2 0 4 26 2 1 
II-195 51 77 13 75 60 ND 
II-160 1 72 46 69 67 ND 
II-161 66 63 40 11 54 ND 
II-165 1 1 0 0 0 ND 
II-166 31 11 2 43 10 ND 
II-167 0 0 0 0 0 4 
II-198 64 77 41 53 55 ND 
II-170 0 0 3 1 0 4 
II-171 0 0 21 6 1 ND 
II-174 0 1 0 2 16 ND 
II-175 8 2 22 62 26 ND 
II-193 0 0 2 26 3 5 

II-194 1 1 0 25 0 70 

DMSO 100 100 100 100 100 100 
 

2.8 Conclusion 

We have developed a convergent and modular strategy for the construction of fused 

polycyclic structures with three-dimensional complexity through a sequence of powerful carbon–
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carbon bond forming reactions. The flexible approach enabled the preparation of several 

polycyclic scaffolds with facile variation of substitution pattern and structural composition. 

Selective manipulations of the prepared scaffolds demonstrated the value of this approach to 

complex molecule synthesis, and as such, exhibited the potential for the strategy to uncover novel 

compounds with desirable bioactivities.260 

2.9 Experimental Section 

2.9.1 General information 

 All reactions were carried out under a nitrogen atmosphere in flame-dried glassware with 

magnetic stirring unless otherwise stated.  Methanol, THF, ether and DCM were purified by 

passage through a bed of activated alumina.261 Reagents were purified prior to use unless otherwise 

stated following the guidelines of Armarego and Chai.262 Purification of reaction products was 

carried out by flash chromatography using SiliCycle silica gel F60, 40-63 µm (230-400 mesh).  

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F 

plates.  Visualization was accomplished with UV light and p-anisaldehyde stain. Germanium ATR 

infrared spectra were recorded using a Bruker Tensor 37.  1H-NMR spectra were recorded on a 

Varian Inova 500 (500 MHz), Agilent DD2 (500MHz), Agilent DD MR-400 (400MHz), or Bruker 

Advance III 500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal 

standard (CDCl3 at 7.26 ppm). Data are reported as (app = apparent, obs = obscured, s = singlet, d 

= doublet, t = triplet, q = quartet, p = pentet, h = hextet, sep = septet, o = octet, m = multiplet, b = 

broad; integration; coupling constant(s) in Hz. 13C-NMR spectra were recorded on a Bruker 

Advance III 500 spectrometer equipped with DCH CryoProbe, and are reported in ppm using 

solvent as an internal standard (CDCl3 at 77.16 ppm, except where noted).  Mass spectra data were 
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obtained on an Agilent 6210 Time-of-Flight LC/MS. All optical rotation measurements were 

obtained on a Rudolph Research Analytical Autopol IV, Serial #82239. X-ray data were collected 

on the Kappa Apex 2 diffractometer. 

2.9.2 Starting material experimental procedures and characterization data 

Compound (R)-II-133.  

The common enantioenriched silane intermediate was prepared as reported by 

Jørgensen and coworkers.246 The proline-derived catalyst (S)-α,α-Bis[3,5-

bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether II-132 (1.74 g, 2.92 mmol, 

10 mol %), PhCO2H (0.360 g, 2.92 mmol, 10 mol %), and toluene (10 mL) were added to a flame-

dried 250 mL round-bottom flask. II-130 (3.75 g, 29.2 mmol, 1.0 equiv) in toluene (4 mL) was 

added via cannula (1 mL toluene rinse), followed by II-131 (7.14 mL, 43.8 mmol, 1.5 equiv). The 

yellow reaction was allowed to stir at room temperature for 20 hours, after which toluene (97 mL) 

and methanesulfonic acid (0.664 mL, 10.2 mmol, 35 mol %) were added and the mixture heated 

to 90 °C for 40 minutes. The red-orange mixture was cooled to room temperature, diluted with 

water, and extracted with ether. The combined organic layers were dried over MgSO4 and the 

solvent evaporated under reduced pressure. The crude orange oil was purified by flash 

chromatography on silica gel using a 5% ether/pentane to 20% ether pentane gradient, yielding a 

yellow oil (3.40 g, 20.0 mmol, 68%). This procedure was scalable to 12.5 g S1 to provide a 59% 

yield. 1H NMR (499 MHz, Chloroform-d) δ 7.03 (ddd, J = 10.1, 5.6, 2.4 Hz, 1H), 6.00 (ddt, J = 

10.1, 2.6, 1.1 Hz, 1H), 2.43 (ddt, J = 16.5, 3.9, 1.3 Hz, 1H), 2.32 (dddt, J = 19.0, 5.8, 4.7, 1.3 Hz, 

1H), 2.27 – 2.13 (m, 2H), 1.47 – 1.40 (m, 1H), 0.03 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 200.4, 

O

TMS
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151.7, 129.5, 38.7, 26.9, 23.3, –3.6. The ee was determined by HPLC to be 99%, as reported in 

the literature. All spectroscopic data for this compound agrees with previously reported values.246 

Compound (S)-II-133. 

This compound was prepared as described for (R)-II-133 above, according to Jørgensen 

and coworkers, using the (R)-enantiomer of the catalyst. All spectroscopic data for this compound 

agrees with previously reported values.246  

Compound (R)-II-201 

Freshly prepared and titrated vinyl Grignard (0.79 M, 16.5 mL, 13.0 mmol, 2.0 equiv) 

and THF (38 mL) were added to a flame-dried 100 mL round-bottom flask. The mixture was 

cooled to –78 °C, and CuBr•DMS (0.27 g, 1.3 mmol, 20 mol %) and HMPA (2.3 mL, 13.0 mmol, 

2.0 equiv) were added. After stirring at this temperature for 1 hour, (R)-II-133 (1.1 g, 6.5 mmol, 

1.0 equiv) in THF (1 mL) and TMS-Cl (2.5 mL, 19.5 mmol, 3.0 equiv) was added via cannula 

dropwise over 10 minutes (0.5 mL THF rinse). After 40 minutes, the reaction was warmed to room 

temperature. Upon observed consumption of starting material (~2 hours) the black reaction was 

quenched with 1 M HCl, allowing the mixture to stir for 10 minutes, after which it was extracted 

with ether. The combined organic layers were washed with brine, dried over MgSO4, and the 

solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography using silica gel with a 5% ether/pentane to 10% ether/pentane gradient, yielding 

a yellow oil (1.0 g, 5.1 mmol, 78%): [α]D = +90.3 (c 0.088, CHCl3); IR (Germanium ATR): 2954, 

1710, 1249, 838 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 5.78 (ddd, J = 17.4, 10.7, 5.5 Hz, 

1H), 5.10 (dt, J = 10.7, 1.5 Hz, 1H), 5.05 (dt, J = 17.4, 1.5 Hz, 1H), 2.99 (dtt, J = 7.7, 3.7, 1.8 Hz, 

1H), 2.57 – 2.42 (m, 2H), 2.28 (ddt, J = 14.3, 3.7, 1.8 Hz, 1H), 2.10 (td, J = 14.3, 13.3, 0.9 Hz, 

O

TMS
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1H), 1.87 – 1.68 (m, 2H), 1.29 (ddt, J = 13.3, 12.1, 4.0 Hz, 1H), –0.00 (s, 9H); 13C NMR (126 

MHz, CDCl3) δ 212.2, 140.5, 115.8, 45.0, 42.3, 41.0, 30.7, 21.7, –3.5; HRMS (ESI): Exact mass 

calc’d for C11H21OSi [M+H]+, 197.1362. Found 197.1355. All spectroscopic data for this 

compound agrees with previously reported values.263 

Compound (S)-II-201. 

This compound was prepared using the same procedure as for the preparation of (R)-

II-201 detailed above. (S)-II-133 (3.05 g, 18.1 mmol) was converted to (S)-II-201 (1.93 g, 9.83 

mmol, 55% yield). All NMR, IR, and HRMS data is identical to (R)-II-201. [α]D = –83.5 (c 0.62, 

CHCl3).  

Compound (R)-II-118. 

Copper-mediated elimination of the silane was achieved with conditions reported by 

Corey and coworkers.247 CuCl2 (2.1 g, 15.3 mmol, 3.0 equiv) was added to a flame-dried 100 mL 

round-bottom flask outfitted with a reflux condenser. (R)-II-201 (1.0 g, 5.0 mmol, 1.0 equiv) in 

DMF (35 mL, with an additional 3 mL rinse) was added via cannula and the reaction was heated 

to 55 °C for 2 hours. The green reaction was cooled to room temperature, diluted with water, and 

extracted with pentane twice and 5% ether/pentane once. The combined organic layers were dried 

over MgSO4 and the solvent removed under reduced pressure carefully due to the volatility of the 

product. The crude material was purified by flash chromatography with silica gel using 20% 

ether/pentane, yielding a yellow oil (522 mg, 4.3 mmol, 85%): [α]D = –47.6 (c 0.32, CHCl3); IR 

(Germanium ATR): 3081, 2886, 1677, 1642, 1388, 918 cm–1; 1H NMR (500 MHz, Chloroform-d) 

δ 6.97 (ddd, J = 10.1, 5.5, 2.8 Hz, 1H), 6.13 – 5.97 (m, 1H), 5.83 (ddd, J = 17.0, 10.4, 6.4 Hz, 1H), 

5.15 – 4.98 (m, 2H), 2.81 (dddd, J = 15.0, 10.3, 7.4, 4.6 Hz, 1H), 2.57 (dd, J = 16.3, 4.1 Hz, 1H), 

O
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2.54 – 2.46 (m, 1H), 2.31 (dd, J = 16.2, 12.3 Hz, 1H), 2.24 (ddt, J = 18.7, 9.9, 2.7 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 199.2, 149.3, 140.3, 130.0, 114.8, 43.6, 38.8, 31.8; HRMS (ESI): Exact 

mass calc’d for C8H11O [M+H]+, 123.0810. Found 123.0801. The ee was determined to be 99% 

by HPLC on a Chiralpak-As-H column running 2% iPrOH in hexanes with a flow rate of 1.0 

mL/min All spectroscopic data for this compound agrees with previously reported values.263 

Compound (S)-II-118. 

This compound was prepared using the same procedure as for the preparation of (R)-II-

118. (S)-II-201 (1.9 g, 9.7 mmol) was converted to (S)-II-118 (541.7 mg, 4.43 mmol, 46%). All 

NMR, IR, and HRMS data is identical to (R)-II-118. [α]D = +41.4 (c 0.38, CHCl3). 

Compound II-119. 

(R)-II-118 (400 mg, 3.27 mmol, 1.0 equiv) was diluted with THF (6.5 mL, 0.5M) in a 

flame-dried 25 mL round-bottom flask. The solution was cooled to –78 °C and a solution of MeLi 

(1.6 M, 3.1 mL, 4.90 mmol, 1.5 equiv) was added dropwise. The reaction was warmed to 0 °C and 

then slowly allowed to warm to room temperature in the ice bath. After observed consumption of 

the starting material by TLC (2.5 hours), the yellow mixture was quenched with water, and 

extracted with ether. The combined organic layers were washed with brine, dried over MgSO4 and 

the solvent evaporated under reduced pressure. The crude material was used directly in the next 

reaction. To a flame-dried 25 mL round-bottom flask was added PCC (1.4 g, 6.54 mmol, 2.0 

equiv), DCM (13 mL), and 0.3 g silica gel. The crude alcohol in DCM (1 mL) was added via 

cannula at room temperature (0.3 mL DCM rinse). The solution turned dark brown upon addition.  

Following the observed consumption of starting material by TLC (3 hours), the brown mixture 

was filtered through a mixture of Celite and silica gel with 50% ether/pentane and the solvent 

O

O
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evaporated under reduced pressure carefully due to the volatility of the product. The crude material 

was purified by flash chromatography on silica gel with 10% to 15% ether/pentane to yield a slight 

yellow oil (264 mg, 1.94 mmol, 59% over two steps): [α]D = +60.7 (c 0.6, CHCl3); IR (Germanium 

ATR): 3081, 2979, 1664, 1380, 912 cm–1; 1H NMR (400 MHz, Chloroform-d) δ 5.93 – 5.87 (m, 

1H), 5.82 (ddd, J = 17.1, 10.4, 6.4 Hz, 1H), 5.12 – 5.02 (m, 2H), 2.84 – 2.71 (m, 1H), 2.54 – 2.45 

(m, 1H), 2.37 (dd, J = 18.1, 4.8 Hz, 1H), 2.28 – 2.16 (m, 2H), 1.98 (d, J = 1.4 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 199.1, 161.4, 140.4, 126.7, 114.7, 76.9, 42.6, 38.7, 37.0; HRMS (ESI): Exact 

mass calc’d for C9H13O [M+H]+, 137.0966. Found 137.0959. 

Compound II-120.  

A solution of LDA was prepared by adding diisopropylamine (0.169 mL, 1.2 mmol, 1.4 

equiv) and THF (4 mL) to a flame-dried 25 mL round-bottom flask. The solution was cooled to –

78 °C and n-BuLi (1.9 M, 0.56 mL, 1.1 mmol, 1.3 equiv) was added. After 10 minutes at this 

temperature, (R)-II-118 (100 mg, 0.82 mmol, 1.0 equiv) in THF (0.8 mL) was added via cannula 

(0.2 mL THF rinse). This mixture stirred for 30 minutes before adding Me-I (0.10 mL, 1.6 mmol, 

2.0 equiv). This resulting mixture was allowed to stir at –78 °C for 40 minutes before adding 

HMPA (0.47 mL, 2.7 mmol, 3.3 equiv). The reaction was kept at this temperature for 2 hours 

before warming to room temperature. Upon the observed consumption of starting material by TLC 

(after 1 h at room temperature), the yellow reaction was quenched with saturated NH4Cl solution 

and extracted with ether. The combined organic layers were dried over MgSO4 and the solvent 

evaporated under reduced pressure carefully due to volatility of the product. The crude material 

was purified by flash chromatography on silica gel with 15% ether/pentanes, yielding a yellow oil 

as a mixture of diastereomers. This lack of selectivity is insignificant for our purposes, as formation 

O
Me
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of the silyl bis-enol ether destroys the stereochemistry at that alpha position (101 mg, 0.74 mmol, 

90%, the 1H NMR spectrum shows minor impurities from grease, but due to the volatility of the 

compound, it was not purified further): IR (Germanium ATR): 2928, 1678, 1389, 916 cm–1; 1H 

NMR (499 MHz, Chloroform-d) δ 6.94 – 6.86 (m, 2H), 6.06 – 5.97 (m, 2H), 5.76 (dddd, J = 21.7, 

17.8, 10.3, 7.7 Hz, 2H), 5.15 – 5.04 (m, 4H), 2.85 (s, 1H), 2.62 – 2.50 (m, 2H), 2.49 – 2.38 (m, 

3H), 2.38 – 2.30 (m, 1H), 2.30 – 2.22 (m, 1H), 1.12 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 7.1 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 202.5, 201.3, 148.1, 147.9, 140.3, 137.6, 129.5, 129.1, 116.7, 

116.2, 46.8, 46.2, 45.5, 43.4, 32.4, 29.5, 12.9, 11.5; HRMS (ESI): Exact mass calc’d for C9H13O 

[M+H]+, 137.0966. Found 137.0957. 

Compound II-202. 

A solution of LDA was prepared by adding diisopropylamine (0.108 mL, 0.77 mmol, 

1.4 equiv) and THF (2.5 mL) to a flame-dried 10 mL round-bottom flask. The solution was cooled 

to –78 °C and n-BuLi (2.24 M, 0.32 mL, 0.72 mmol, 1.3 equiv) was added. After 10 minutes at 

this temperature, II-120 (75 mg, 0.55 mmol, 1.0 equiv) in THF (0.5 mL) was added via cannula 

(0.4 mL THF rinse). This mixture stirred for 50 minutes before adding Me-I (69 µL, 1.1 mmol, 

2.0 equiv). This resulting mixture was allowed to stir at –78 °C for 40 minutes before adding 

HMPA (0.32 mL, 1.8 mmol, 3.3 equiv). The reaction slowly warmed to room temperature 

overnight. The orange reaction was quenched with saturated NH4Cl solution and extracted with 

ether. The combined organic layers were dried over MgSO4 and the solvent evaporated under 

reduced pressure carefully due to volatility of the product. The crude material was purified by flash 

chromatography on silica gel with 5% ether/pentanes, yielding a yellow oil (49 mg, 0.33 mmol, 

59%): [α]D = –50.7 (c 0.70, CHCl3); IR (Germanium ATR): 2969, 1707, 1676, 1388, 916 cm–1; 1H 
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NMR (500 MHz, Chloroform-d) δ 6.85 (ddd, J = 10.1, 4.8, 3.2 Hz, 1H), 5.96 (ddd, J = 10.1, 2.4, 

1.7 Hz, 1H), 5.84 (ddd, J = 16.6, 10.8, 8.5 Hz, 1H), 5.14 – 5.08 (m, 2H), 2.57 – 2.48 (m, 1H), 2.45 

– 2.32 (m, 2H), 1.13 (s, 3H), 1.00 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 204.4, 147.3, 137.4, 

128.3, 117.3, 49.0, 44.8, 29.6, 22.7, 19.4; HRMS (ESI): Exact mass calc’d for C10H15O [M+H]+, 

151.1123. Found 151.1115. 

Compound II-203.  

II-202 (327 mg, 2.17 mmol, 1.0 equiv) was added to a 50 mL round-bottom flask and 

diluted with MeOH (21 mL). The solution was cooled to 0 °C and aqueous NaOH (1 M, 0.65 mL, 

0.65 mmol, 0.3 equiv) was added dropwise, followed by the slower dropwise addition of 30 wt% 

H2O2 (0.32 mL, 2.8 mmol, 1.3 equiv), and the reaction slowly warmed to room temperature. Upon 

observed consumption of the starting material by TLC (2 hours), the reaction was poured into 

saturated Na2SO3 and extracted with DCM. The combined organic layers were dried over MgSO4 

and the solvent evaporated under reduced pressure. The crude epoxide was taken directly on to the 

next reaction by diluting the material with MeOH (20 mL) in a flame-dried 50 mL round-bottom 

flask. The solution was cooled to 0 °C and NH2NH2•H2O (0.21 mL, 6.7 mmol, 3.1 equiv) was 

added. The reaction stirred for 15 minutes before adding AcOH (0.25 mL, 4.3 mmol, 2.0 equiv). 

The reaction was warmed to room temperature. Upon observed consumption of the starting 

material by TLC (6 hours), the yellow reaction was poured into saturated NaHCO3 and extracted 

with DCM. The combined organic layers were washed with brine, dried over MgSO4, and the 

solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography with silica gel using a 10% ether/pentane to 30% ether/pentane solvent gradient 

(177 mg, 1.16 mmol, 54% over two steps): [α]D = +65.8 (c 0.36, CHCl3); IR (Germanium ATR): 
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3347, 3015, 2934, 1039, 910 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 5.85 – 5.75 (m, 1H), 5.69 

(ddt, J = 9.9, 4.6, 1.3 Hz, 1H), 5.62 (dt, J = 9.9, 1.0 Hz, 1H), 5.10 – 5.07 (m, 1H), 5.05 (d, J = 1.3 

Hz, 1H), 4.18 (dt, J = 6.8, 3.4 Hz, 1H), 2.29 (ddd, J = 12.0, 8.3, 3.7 Hz, 1H), 1.85 – 1.70 (m, 2H), 

1.02 (d, J = 1.0 Hz, 3H), 0.82 (d, J = 1.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 142.8, 139.4, 

125.1, 115.8, 64.1, 43.6, 35.0, 33.9, 28.6, 22.0; HRMS (EI): Exact mass calc’d for C10H16O [M]+, 

152.1201. Found 152.1227.  

Compound II-121. 

II-203 (175 mg, 1.1 mmol, 1.0 equiv) was diluted in DCM (2.5 mL, 0.5 M) in a flame-

dried 10 mL round-bottom flask. MnO2 (0.99 g, 11.5 mmol, 10 equiv) was added at room 

temperature and the reaction stirred overnight. The black mixture was filtered through Celite with 

50% ether/pentane and the solvent carefully evaporated under reduced pressure, yielding pure 

yellow oil product (158 mg, 1.05 mmol, 95%): [α]D = +16.9 (c 0.49, CHCl3); IR (Germanium 

ATR): 2960, 1684, 1268, 920 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.67 (dd, J = 10.1, 1.3 

Hz, 1H), 5.87 (d, J = 10.1 Hz, 1H), 5.85 – 5.75 (m, 1H), 5.14 (d, J = 10.4 Hz, 1H), 5.09 (d, J = 

17.1 Hz, 1H), 2.57 (dt, J = 13.0, 6.9 Hz, 1H), 2.50 – 2.37 (m, 2H), 1.16 (d, J = 1.3 Hz, 3H), 1.03 

(d, J = 1.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 199.6, 160.6, 137.2, 126.7, 117.2, 48.5, 39.7, 

36.0, 27.9, 21.2; HRMS (ESI): Exact mass calc’d for C10H15O [M+H]+, 151.1123. Found 

151.1120.  

Compound II-204. 

(R)-II-133 (1.0 g, 5.9 mmol, 1.0 equiv) and THF (12 mL, 0.5M) were added to a 

flame-dried 50 mL round-bottom flask. The flask was cooled to –78 °C, and a solution of MeLi 

(1.6 M, 5.6 mL, 8.9 mmol, 1.5 equiv) was added dropwise. The reaction was warmed to 0 °C and 
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then slowly to room temperature. Upon observed consumption of starting material by TLC (2h), 

the mixture was quenched with water and extracted with ether. The combined organic layers were 

dried over MgSO4 and the solvent evaporated under reduced pressure. The crude material was 

taken on to the next reaction. To a flame-dried 50 mL round-bottom flask was added PCC (2.5 g, 

11.8 mmol, 2.0 equiv), DCM (25 mL), and 0.5 g silica gel. The crude material was diluted in DCM 

(2 mL) and added via cannula to the reaction flask at room temperature (0.5 mL DCM rinse). 

Following observed consumption of starting material by TLC (1.5 hours), the black mixture was 

filtered through a mixture of Celite and silica gel with 50% ether/pentane. The crude material was 

purified by flash chromatography with silica gel using 10% ether/pentane (0.73 g, 4.0 mmol, 68% 

over two steps): [α]D = +67.6 (c 0.054, CHCl3); IR (Germanium ATR): 2952, 1668, 1630, 1251, 

833 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 5.86 (s, 1H), 2.40 – 2.32 (m, 1H), 2.17 (d, J = 8.1 

Hz, 2H), 2.10 (dd, J = 16.3, 14.6 Hz, 1H), 1.95 (d, J = 1.3 Hz, 3H), 1.44 – 1.33 (m, 1H), 0.03 (d, 

J = 1.0 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 200.3, 163.5, 126.4, 37.8, 32.2, 24.4, 23.1, –3.6; 

HRMS (ESI): Exact mass calc’d for C10H19OSi [M+H]+, 183.1205. Found 183.1195. 

Compound II-205. 

LiCl (34 mg, 0.796 mmol, 20 mol %) and CuI (76 mg, 0.398 mmol, 10 mol %) were 

added to a flame-dried 50 mL round-bottom flask, cooled to 0 °C, and II-204 (0.726 g, 3.98 mmol, 

1.0 equiv) in THF (5 mL) was added (1 mL THF rinse). The solution was further diluted with THF 

(18 mL), and then TMS-Cl (0.56 mL, 4.38 mmol, 1.1 equiv) was added. The mixture stirred for 

20 minutes at 0 °C before adding freshly prepared and titrated vinylmagnesium bromide solution 

(0.93 M, 5.2 mL, 4.78 mmol, 1.2 equiv) dropwise over 20 minutes. Upon observed consumption 

of the starting material by TLC (2 hours), the black reaction was quenched with saturated NH4Cl, 

TMS

O

Me



 103 

and extracted with ether. The combined organic layers were washed three times with 1M HCl 

before drying over MgSO4 and removing the solvent under reduced pressure. The crude material 

was purified by flash chromatography with silica gel using 5% ether/pentane (509 mg, 2.42 mmol, 

61%): [α]D = –41.0 (c 0.30, CHCl3); IR (Germanium ATR): 2954, 1709, 1247, 839 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 5.60 (dd, J = 17.6, 10.9 Hz, 1H), 5.06 (d, J = 10.9 Hz, 1H), 4.99 (d, J 

= 17.6 Hz, 1H), 2.51 (dt, J = 14.2, 2.5 Hz, 1H), 2.27 – 2.15 (m, 2H), 1.96 (t, J = 14.2 Hz, 1H), 1.63 

(dq, J = 13.8, 2.5 Hz, 1H), 1.57 – 1.41 (m, 1H), 1.18 (tt, J = 13.8, 3.4 Hz, 1H), 1.11 (s, 3H), –0.01 

(d, J = 0.8 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 212.1, 144.8, 114.5, 51.2, 43.9, 41.6, 38.6, 

30.5, 22.2, –3.6; HRMS (ESI): Exact mass calc’d for C12H23OSi [M+H]+, 211.1518. Found 

211.1506. 

Compound II-122. 

CuCl2 (0.60 g, 3.84 mmol, 3.0 equiv) was added to a flame-dried 25 mL round-bottom 

flask. DMF (8 mL) was added to the flask. II-205 (270 mg, 1.28 mmol, 1.0 equiv) in DMF (1 mL, 

with an additional 0.8 mL DMF rinse) was added and the reaction heated to 65 °C overnight. The 

green reaction was diluted with water and extracted twice with pentane and once with 5% 

ether/pentane. The combined organic layers were dried over MgSO4 and the solvent removed 

under reduced pressure carefully due to the volatility of the product. The crude material was 

purified by flash chromatography with silica gel using 10% ether/pentane, yielding a yellow oil 

(55.4 mg, 0.41 mmol, 38% unoptimized): [α]D = +37.0 (c 0.60, CHCl3); IR (Germanium ATR): 

2924, 1680, 1388, 914 cm–1; 1H NMR (400 MHz, Chloroform-d) δ 6.86 (dt, J = 10.1, 4.1 Hz, 1H), 

6.03 (dt, J = 10.1, 2.1 Hz, 1H), 5.78 (dd, J = 17.4, 10.8 Hz, 1H), 5.07 – 4.92 (m, 2H), 2.55 – 2.25 
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(m, 4H), 1.14 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 199.2, 147.8, 145.0, 129.6, 112.6, 49.3, 39.7, 

38.1, 26.7; HRMS (ESI): Exact mass calc’d for C9H12ONa [M+Na]+, 159.0786. Found 159.0775. 

It should be noted that unreacted starting material was reisolated, as well as chlorinated products 

that could be converted back to starting material upon treatment with Zn and AcOH.  

Compound II-206. 

The Hosomi-Sakurai reaction was achieved using conditions reported by Takei and 

coworkers.249 (R)-II-133 (300 mg, 1.78 mmol, 1.0 equiv) and DCM (8.9 mL, 0.2 M) were added 

to a flame-dried 25 mL round-bottom flask. The solution was cooled to –78 °C, and allyl 

trimethylsilane (0.42 mL, 2.67 mmol, 1.5 equiv) was added. Then, TiCl4 (1 M, 2.14 mL, 2.14 

mmol, 1.2 equiv) was added to the reaction slowly. After 30 minutes, the starting material was 

consumed as observed by TLC, and water was added to the reaction at –78 °C and the cold bath 

removed. The mixture was extracted with DCM and the combined organic layers dried over 

MgSO4 and solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography with silica gel using 5% ether/pentane, yielding a yellow oil (240 mg, 1.14 mmol, 

64%, 1H NMR shows very minor impurities but the material was taken forward to the next 

reaction): [α]D = +95.2 (c 0.05, CHCl3); IR (Germanium ATR): 2953, 1710, 1641, 1249, 841 cm–

1; 1H NMR (500 MHz, Chloroform-d) δ 5.70 (ddt, J = 17.2, 10.4, 7.1 Hz, 1H), 5.11 – 4.96 (m, 2H), 

2.48 (ddd, J = 13.7, 5.6, 1.0 Hz, 1H), 2.32 – 2.19 (m, 3H), 2.17 – 2.00 (m, 3H), 1.72 – 1.66 (m, 

2H), 1.27 (dddd, J = 12.9, 9.3, 6.8, 4.3 Hz, 1H), –0.01 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

212.9, 136.4, 116.8, 46.5, 42.3, 37.7, 37.6, 29.5, 21.5, –3.4; HRMS (ESI): Exact mass calc’d for 

C12H22OSiNa [M+Na]+, 233.1338. Found 233.1328. 
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Compound II-123.  

CuCl2 (600 mg, 4.17 mmol, 3.0 equiv) was added to a flame-dried 25 mL round-bottom 

flask. II-206 (292 mg, 1.39 mmol, 1.0 equiv) in DMF (9 mL, with an additional 1.7 mL DMF 

rinse) was added via cannula and the reaction was heated to 55 °C for two hours. The green reaction 

was cooled to room temperature, diluted with water and extracted with pentane two times and 5% 

ether/pentane one time. The combined organic layers were dried over MgSO4 and the solvent 

removed under reduced pressure carefully due to the volatility of the product. The crude material 

was purified by flash chromatography with silica gel using 10% ether/pentane, yielding a yellow 

oil (138 mg, 1.01 mmol, 73%): [α]D = –59.4 (c 0.43, CHCl3); IR (Germanium ATR): 3076, 2908, 

1681, 1641, 1388, 916 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.96 (ddd, J = 10.0, 5.6, 2.6 

Hz, 1H), 6.02 (dt, J = 10.0, 2.6, 1.2 Hz, 1H), 5.75 (ddt, J = 16.0, 10.7, 6.9 Hz, 1H), 5.17 – 4.96 (m, 

2H), 2.53 (ddd, J = 14.7, 3.0, 1.8 Hz, 1H), 2.44 (dtd, J = 18.5, 5.6, 3.8, 1.8 Hz, 1H), 2.22 – 2.12 

(m, 4H), 2.13 – 2.03 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 199.9, 149.8, 135.4, 130.0, 117.4, 

44.2, 40.1, 35.0, 31.9; HRMS (ESI): Exact mass calc’d for C9H13O [M+H]+, 137.0966. Found 

137.0961. 

Compound II-134.  

This compound was prepared as reported by Miftakhov and coworkers.250 (R)-

carvone ((R)-II-35) (3.0 g, 20.0 mmol, 1.0 equiv) and DCM (200 mL, 0.1 M) were added to an 

oven-dried 500 mL round-bottom flask. The solution was cooled to 0 °C before adding mCPBA 

(5.2 g, 30.0 mmol, 1.5 equiv) in three portions. Upon observed consumption of the starting material 

by TLC (after 5 hours), the reaction was quenched with saturated NaHCO3 and extracted with 

DCM. The combined organic layers were washed with brine, dried over MgSO4, and the solvent 
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evaporated under reduced pressure. The crude epoxide was taken on to the next reaction, where it 

was diluted in ether (500 mL), cooled to 0 °C, and H5IO6 (7.3 g, 32.0 mmol, 1.6 equiv) was added 

in three portions. The reaction was left to stir overnight, after which it was diluted with saturated 

NaHCO3 and extracted with ether. The combined organic layers were washed with brine, dried 

with MgSO4, and the solvent evaporated under reduced pressure. The crude material was purified 

using flash chromatography on silica gel using 20% to 50% ether/pentanes yielding a yellow oil 

(2.1 g, 13.8 mmol, 69% over two steps): 1H NMR (500 MHz, Chloroform-d) δ 6.70 (ddq, J = 4.8, 

3.0, 1.5 Hz, 1H), 3.10 (dddd, J = 12.1, 9.5, 5.4, 4.2 Hz, 1H), 2.69 (ddd, J = 16.4, 4.2, 1.1 Hz, 1H), 

2.58 – 2.45 (m, 3H), 2.19 (s, 3H), 1.78 (q, J = 1.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 208.0, 

197.6, 142.8, 136.0, 48.3, 39.6, 28.0, 27.6, 15.9; HRMS (ESI): Exact mass calc’d for C9H13O2 

[M+H]+, 153.0916. Found 153.0910.  All spectroscopic data for this compound agrees with 

previously reported values.250 

Compound II-135.  

This vinyl iodide was prepared employing chemistry developed in the Myers 

laboratory.251 Sc(OTf)3 (2 mg, 0.004 mmol, 1.0 mol %) was added to a flame-dried 50 mL conical 

flask, and was purged with N2 for 10 minutes. The flask was cooled to 0 °C and (TBSNH)2 (10.3 

g, 39.4mmol, 1.0 equiv), which was prepared as described by Myers et al. in the same report, was 

added via syringe. II-134 (6.0 g, 39.4 mmol) was added via syringe over 15 minutes. The solution 

gradually warmed to room temperature, and monitored by taking NMR aliquots. After all of the 

starting material had been consumed (after 3 hours), the yellow hydrazone was placed carefully 

on the vacuum manifold for one hour at room temperature, and then heated to 35 °C under high 

vacuum overnight. The crude material was used directly in the next reaction. I2 (50 g, 197 mmol, 

O
Me

I



 107 

5.0 equiv) and THF (200 mL) were added to an oven-dried 1 L round-bottom flask. The mixture 

was cooled to 0 °C and placed under a box with the hood lights off. Tetramethylguanidine (99 mL, 

788 mmol, 20 equiv) was cannulated to the flask. The crude material (11.0 g, 39.4 mmol, 1.0 

equiv) in THF (50 mL) was cannulated to the flask in the dark over 2 hours. After 15 minutes 

following the completed addition of the starting material, the reaction was quenched with saturated 

NaS2O3, extracted with ether, and the combined organic layers washed with saturated NaS2O3, 1 

M HCl, and saturated NaHCO3. The combined organic layers were dried over MgSO4, and the 

solvent evaporated under reduced pressure. The crude orange oil was purified by flash 

chromatography on silica gel using a pentane to 5% ether/pentane solvent gradient (4.95 g, 18.9 

mmol, 48% over two steps, 1H NMR shows very minor impurities, but the material was not 

purified further and taken on to the next reaction): [α]D = +0.6 (c 0.23, CHCl3); IR (Germanium 

ATR): 2921, 1672, 1365, 902 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.72 (ddd, J = 4.9, 3.1, 

1.5 Hz, 1H), 6.19 (t, J = 1.4 Hz, 1H), 5.82 (d, J = 1.9 Hz, 1H), 2.70 – 2.53 (m, 2H), 2.53 – 2.38 

(m, 3H), 1.79 (p, J = 2.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 197.9, 143.3, 135.9, 125.8, 

116.4, 48.2, 44.4, 32.8, 15.8; HRMS (GC-TOF): Exact mass calc’d for C7H9I [M-CH2CO]+, 

219.9749. Found 219.9749.  

Compound II-124.  

II-135 (388 mg, 1.48 mmol, 1.0 equiv) and DMF (4.4 mL, 0.34M) were added to a 

flame-dried 10 mL round-bottom flask outfitted with a reflux condenser. Pd(OAc)2 (7.0 mg, 0.03 

mmol, 2.0 mol %), PPh3 (20 mg, 0.07 mmol, 5.0 mol %), NEt3 (0.66 mL, 4.74 mmol, 3.2 equiv), 

and formic acid (56 µL, 1.48 mmol, 1.0 equiv) were added sequentially and the reaction was heated 

to 60 °C. Upon observed consumption of the starting material by TLC after 1.5 hours, the dark red 
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reaction was cooled to room temperature, diluted with water, and extracted with pentanes. The 

combined organic layers were washed with brine, dried over MgSO4, and the solvent evaporated 

under reduced pressure carefully due to the volatility of the product. The crude material was 

purified by flash chromatography on silica gel using 5% ether/pentane to yield a light yellow oil 

(175 mg, 1.28 mmol, 87%): [α]D = –58.0 (c 0.54, CHCl3); IR (Germanium ATR): 2923, 1672, 

1642, 1365, 910 cm–1; 1H NMR (400 MHz, Chloroform-d) δ 6.72 (ddq, J = 5.7, 2.9, 1.4 Hz, 1H), 

5.82 (dddd, J = 16.9, 10.4, 6.4, 1.1 Hz, 1H), 5.12 – 4.96 (m, 2H), 2.86 – 2.67 (m, 1H), 2.58 (ddt, J 

= 16.2, 4.1, 1.3 Hz, 1H), 2.45 (dddt, J = 18.4, 7.3, 4.3, 1.4 Hz, 1H), 2.38 – 2.14 (m, 2H), 1.78 (dq, 

J = 2.6, 1.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 199.4, 144.3, 140.6, 135.9, 114.5, 43.7, 39.3, 

32.1, 15.9; HRMS (ESI): Exact mass calc’d for C9H13O [M+H]+, 137.0966. Found 137.0957. 

Compound II-125.   

This compound was prepared from S-carvone following a procedure reported by 

Inoue and coworkers.252 FeCl3 (325 mg, 2.0 mmol, 3 mol %) was added to a flame-dried flask and 

diluted with THF (120 mL). The mixture was cooled to –20 °C, and MeMgBr (3.0 M, 49.0 mL, 

147 mmol, 2.2 equiv) was added over 2 hours. Then, a solution of (S)-carvone ((S)-II-35), (10.0 

g, 66.6 mmol, 1.0 equiv) in THF (38 mL) was added over 1.5 hours (2 mL THF rinse). The reaction 

stirred at –20 °C for 1.5 hours, after which it was warmed to 0 °C, and TMS-Cl (11.8 mL, 93.2 

mmol, 1.4 equiv), DMPU (9.6 mL, 80.0 mmol, 1.2 equiv), and NEt3 (12.1 mL, 86.6 mmol, 1.3 

equiv) were added successively. The reaction was warmed to room temperature and stirred 

overnight. The black mixture was then cooled to 0 °C, and quenched with pH 7 buffer. The mixture 

was filtered through Celite with EtOAc, extracted with EtOAc, and dried over MgSO4. The crude 

material was purified by flash chromatography on silica gel using 5% EtOAc/hexane. This product 

O
Me

Me

OMeMeO



 109 

was then diluted with DCM (133 mL) and CH(OMe)3 (8.0 mL, 73.3 mmol, 1.1 equiv), cooled to 

–50 °C, and BF3•OEt2 (8.3 mL, 67.3 mmol, 1.01 equiv) was added. The mixture stirred at –50 °C 

for 2.5 hours, after which the bright orange reaction was poured into saturated NaHCO3 at 0 °C. 

The mixture was extracted with DCM, and dried over MgSO4. The crude material was purified by 

flash chromatography on silica gel with 20% ether/pentane (2.67 g, 11.9 mmol, 18% yield of major 

diastereomer over two steps): 1H NMR (500 MHz, Benzene-d6) δ 6.86 (dt, J = 3.1, 1.6 Hz, 1H), 

4.69 (s, 1H), 4.67 (s, 1H), 4.05 (dd, J = 3.3, 1.1 Hz, 1H), 3.12 (d, J = 1.1 Hz, 3H), 3.05 (d, J = 1.6 

Hz, 3H), 2.72 (ddd, J = 13.5, 9.9, 4.2 Hz, 1H), 2.43 (tdd, J = 13.1, 4.8, 2.3 Hz, 2H), 2.18 (ddd, J = 

16.1, 12.7, 1.0 Hz, 1H), 1.85 (p, J = 2.6 Hz, 3H), 1.41 (s, 3H); 13C NMR (126 MHz, C6D6) δ 197.3, 

145.6, 143.3, 136.0, 112.9, 105.9, 56.2, 55.2, 45.0, 43.5, 42.8, 19.2, 16.1. All spectroscopic data 

for this compound agrees with previously reported values.252 

Compound II-137.  

This compound was prepared from quinic acid II-136 as detailed by Ventura et al.253  

1H NMR (500 MHz, Chloroform-d) δ 6.93 (dd, J = 10.2, 1.9 Hz, 1H), 5.98 (ddd, J = 10.2, 2.3, 1.3 

Hz, 1H), 5.79 (ddd, J = 17.2, 10.4, 8.1 Hz, 1H), 5.31 – 5.19 (m, 2H), 4.36 – 4.25 (m, 1H), 2.72 

(dtd, J = 13.1, 8.7, 4.1 Hz, 1H), 2.57 (ddd, J = 16.7, 4.1, 1.3 Hz, 1H), 2.34 (dd, J = 16.7, 13.4 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 197.9, 152.1, 137.3, 129.1, 118.8, 70.3, 49.2, 41.4. All 

spectroscopic data for this compound, as well as for all compounds leading to II-137, agrees with 

the reported values.253 

Compound II-126.  

II-137 (75 mg, 0.54 mmol) was diluted in DCM (2 mL, 0.27 M). TES-Cl (0.10 mL, 0.60 

mmol, 1.1 equiv) was added to the flask. The mixture was cooled to 0 °C before adding Hünig’s 

O

HO

O

TESO
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base (0.24 mL, 1.36 mmol, 2.5 equiv) dropwise. The reaction slowly warmed to room temperature 

overnight. The yellow reaction was then poured into pH 7 buffer and extracted with DCM. The 

combined organic extracts were dried over Na2SO4. The crude material was purified by flash 

chromatography on silica gel with 10% ether/pentane (116.2 mg, 0.46 mmol, 85%): [α]D = –111.2 

(c 2.48, CHCl3); IR (Germanium ATR): 2955, 2912, 2877, 1691, 1100, 894, 742 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.78 (dd, J = 10.2, 2.1 Hz, 1H), 5.94 (ddd, J = 10.2, 2.0, 1.2 Hz, 1H), 

5.85 (ddd, J = 17.4, 10.5, 7.1 Hz, 1H), 5.15 – 5.14 (m, 1H), 5.12 (dt, J = 10.2, 1.2 Hz, 1H), 4.28 

(dt, J = 8.7, 2.1 Hz, 1H), 2.75 (ddddd, J = 12.4, 9.7, 6.5, 3.1, 2.0 Hz, 1H), 2.59 (ddd, J = 16.5, 4.1, 

1.2 Hz, 1H), 2.33 (dd, J = 16.6, 12.6 Hz, 1H), 0.98 (t, J = 7.9 Hz, 9H), 0.65 (q, J = 8.1 Hz, 6H); 

13C NMR (126 MHz, CDCl3) δ 198.5, 153.4, 138.0, 128.7, 116.7, 71.4, 48.2, 41.0, 6.9, 5.1; HRMS 

(ESI): Exact mass calc’d for C14H24O2SiNa [M+Na]+, 275.1443. Found 275.1445 

Compound II-127.  

A solution of LDA was prepared by adding diisopropylamine (1.02 mL, 7.3 mmol, 1.4 

equiv) and THF (21 mL) to a flame-dried 50 mL round-bottom flask. The solution was cooled to 

–78 °C and freshly titrated n-BuLi added (2.13 M, 3.2 mL, 6.8 mmol, 1.3 equiv). After stirring for 

10 minutes at this temperature, cyclohexenone II-138 (500 mg, 5.2 mmol, 1.0 equiv) in THF (4 

mL, with an additional 1 mL THF rinse) was added. This solution stirred for 30 minutes before 

DMPU (1.33 mL, 10.4 mmol, 2.0 equiv) was added. The resulting solution stirred for another 50 

minutes before allyl bromide (1.9 mL, 15.6 mmol, 3.0 equiv) was added dropwise. The solution 

slowly warmed to room temperature. Upon observed consumption of the starting material by TLC 

(3 hours), the orange reaction was quenched with saturated NH4Cl, and extracted with ether. The 

combined organic layers were dried over MgSO4 and the solvent evaporated under reduced 

O
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pressure carefully due to the volatility of the product. The crude material was purified by flash 

chromatography on silica gel using 5% ether/pentane (191.2 mg, 1.40 mmol, 27% unoptimized): 

1H NMR (499 MHz, Chloroform-d) δ 6.94 (dddd, J = 10.2, 4.4, 3.2, 1.0 Hz, 1H), 6.00 (ddd, J = 

10.0, 2.4, 1.6 Hz, 1H), 5.78 (dddd, J = 16.8, 10.1, 7.8, 6.3 Hz, 1H), 5.15 – 4.93 (m, 2H), 2.70 – 

2.55 (m, 1H), 2.47 – 2.29 (m, 3H), 2.21 – 2.03 (m, 2H), 1.73 (dddd, J = 13.6, 11.5, 9.0, 5.7 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 201.1, 149.9, 136.3, 129.7, 116.9, 46.3, 33.8, 27.5, 25.4. All 

spectroscopic data for this compound agrees with previously reported values.254 

2.9.3 Oxidative coupling experimental procedures and characterization data 

Scheme 2.29 General method A for synthesis of symmetrical silyl bis-enol ethers 

 

General Method A: 

To a flame dried conical flask was added freshly distilled diisopropylamine (1.2 equiv) and THF 

(0.17 M). The flask was cooled to –78 °C, and n-BuLi (freshly titrated, 1.1 equiv) was added. After 

10 minutes, enone II-207 (1.0 equiv) in THF (0.4 M) was added (0.3 mL rinse). The solution 

stirred at this temperature for 30 minutes before adding iPr2SiCl2 (freshly distilled, 0.5 equiv) and 

NEt3 (freshly distilled, 0.5 equiv) in rapid succession. The mixture stirred at –78 °C for 30 minutes 

before warming to room temperature. Upon observed consumption of the starting material by TLC 

(ranging from 1-3 hours), the orange reaction was quenched with pH 7 buffer and extracted with 

pentanes. The combined organic layers were dried over MgSO4, and concentrated under reduced 

O
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pressure. The crude material (II-208) was placed on the vacuum manifold overnight and was then 

used directly in the subsequent oxidative coupling reaction.  

Scheme 2.30 General method B for synthesis of unsymmetrical silyl bis-enol ethers 

 

General Method B: 

To a flame dried conical flask was added freshly distilled diisopropylamine (1.2 equiv) and THF 

(0.72 M with respect to II-209). The flask was cooled to –78 °C, and n-BuLi (freshly titrated, 1.1 

equiv) added. After 10 minutes, enone II-209 (1.0 equiv) in THF (1.7 M with respect to II-209) 

was added (with an additional 0.2 mL rinse). The solution stirred for 30 minutes before very slowly 

adding it via cannula to a flask containing iPr2SiCl2 (freshly distilled, 1.0 equiv) and THF (0.25 M 

with respect to II-209), also at –78 °C, dropwise in a controlled manner, over at least 1 hour (with 

an additional 0.2 mL THF rinse). Meanwhile, LDA was prepared exactly as above in a separate 

conical flask. After 10 minutes, enone II-210 (1.0 equiv) in THF (1.7 M with respect to II-209) 

was added to the LDA (with an additional 0.2 mL rinse). This solution stirred for 30 minutes before 

adding it slowly to the reaction flask via cannula over 1 hour (about 40 minutes following the 

completion of the first enolate addition, with an additional 0.2 mL THF rinse). The mixture stirred 

at –78 °C for 45 min and then was warmed to room temperature. Upon observed consumption of 

the starting materials by TLC (ranging from 1-3 hours), the orange reaction was quenched with 

pH 7 buffer and extracted with pentanes. The combined organic layers were dried over MgSO4, 
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and concentrated under reduced pressure. The crude material (II-211) was placed on the vacuum 

manifold overnight and was used directly in the subsequent oxidative coupling reaction. 

Note: The formation of the silyl bis-enol ether is more successful when the more hindered enone 

is added to the silane first. All enones to form cross-coupled products described below are listed 

in order of addition in the silyl bis-enol ether formation. 

 

Scheme 2.31 General method C for the oxidative coupling of silyl bis-enol ethers 

 

General Method C:  

To a flame dried round bottom flask was added CAN (2.2 equiv), NaHCO3 (4.4 equiv), ACN 

(distilled and dried over activated sieves, 0.03 M), and DMSO (2.0 equiv) The mixture was cooled 

to –30 °C and stirred vigorously while silyl bis-enol ether II-211 in EtCN (distilled and dried over 

activated sieves, 0.2 M) was added (with an additional 0.2 mL rinse) via cannula. Upon observed 

consumption of the starting material by TLC (5-15 min), the orange mixture was diluted with 

saturated NaHCO3 solution, extracted with CHCl3. The combined organic layers were dried over 

MgSO4 filtered through Celite with EtOAc, and concentrated under reduced pressure. The crude 

material was purified by flash chromatography on silica gel using 5-10% EtOAc/hexane to yield 

1,4-diketone product II-212.  
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Compound II-147. 

Enone (R)-II-118 (100 mg, 0.82 mmol) was converted to the silyl bis-enol ether 

according to General Method A, which was then subjected to oxidative conditions via General 

Method C to afford the crude 1,4-diketone as a 3:1 mixture of diastereomers that were separated 

by flash chromatography (major product exhibits C2 symmetry: 48.4 mg, 0.20 mmol, 50% yield 

over two steps; total coupled yield: 65.2 mg, 0.27 mmol, 66%): IR (Germanium ATR): 2923, 1728, 

1671, 1387, 812 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 6.89 (ddd, J = 10.0, 6.0, 2.4 Hz, 1H), 

6.02 (ddd, J = 10.0, 2.8, 1.0 Hz, 1H), 5.61 (dt, J = 17.1, 9.8 Hz, 1H), 5.13 – 5.03 (m, 2H), 3.23 (s, 

1H), 2.81 (broad s, 1H), 2.37 (dt, J = 18.6, 5.4 Hz, 1H), 2.27 (ddt, J = 18.7, 11.3, 2.6 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 199.5, 148.0, 140.8, 130.2, 117.2, 50.2, 44.5, 33.4; HRMS (ESI): Exact 

mass calc’d for C16H19O2 [M+H]+, 243.1385. Found 243.1383. 

Compound epi-II-147. 

From the above reaction to form II-147, the minor diastereomer, epi-II-147, was 

cleanly isolated (16.8 mg, 0.07 mmol, 16%) [α]D = –128.4 (c 0.39, CHCl3); IR (Germanium ATR): 

3075, 2924, 1668, 1386, 911 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 6.91 – 6.84 (m, 1H), 6.81 

(ddd, J = 10.1, 5.0, 3.2 Hz, 1H), 6.19 (dt, J = 10.2, 1.8 Hz, 1H), 5.93 (dt, J = 10.3, 2.1 Hz, 1H), 

5.90 (dt, J = 17.0, 10.0 Hz, 1H), 5.76 (ddd, J = 17.1, 10.2, 8.5 Hz, 1H), 5.19 (dt, J = 17.0, 1.2 Hz, 

1H), 5.11 (dd, J = 10.2, 1.2 Hz, 1H), 4.96 (dd, J = 17.1, 1.7 Hz, 1H), 4.90 (dd, J = 10.0, 1.7 Hz, 

1H), 3.23 (dd, J = 10.0, 6.0 Hz, 1H), 2.92 (qd, J = 8.7, 4.9 Hz, 1H), 2.85 (dq, J = 9.1, 4.6 Hz, 1H), 

2.68 (dd, J = 6.0, 4.9 Hz, 1H), 2.59 (ddt, J = 18.5, 5.4, 2.8 Hz, 1H), 2.51 (dtd, J = 19.1, 5.0, 1.6 

Hz, 1H), 2.43 – 2.35 (m, 1H), 2.31 (ddt, J = 19.1, 8.3, 2.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) 
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δ 198.3, 198.1, 147.0, 146.3, 139.5, 139.2, 130.5, 130.1, 116.6, 115.7, 50.5, 49.2, 41.1, 40.9, 32.2, 

31.6; HRMS (ESI): Exact mass calc’d for C16H19O2 [M+H]+, 243.1385. Found 243.1378. 

Compound II-160a. 

Enone II-124 (100 mg, 0.734 mmol) was converted to the silyl bis-enol ether 

according to General Method A, which was then subjected to oxidative conditions 

via General Method C to afford the C2-symmetric 1,4-diketone II-160a as a 20:1 mixture of 

diastereomers that was purified by flash chromatography (68 mg, 0.25 mmol, 68% yield over two 

steps): IR (Germanium ATR): 3076, 2922, 1659, 1366, 917 cm–1; 1H NMR (500 MHz, 

Chloroform-d) δ 6.64 (dt, J = 6.2, 1.9 Hz, 1H), 5.58 (dt, J = 17.0, 9.8 Hz, 1H), 5.07 (dd, J = 17.0, 

1.8 Hz, 1H), 5.04 – 4.99 (m, 1H), 3.21 (s, 1H), 2.84 – 2.52 (broad m, 1H), 2.31 (dt, J = 18.0, 5.5 

Hz, 1H), 2.21 (ddt, J = 18.0, 11.3, 2.6 Hz, 1H), 1.75 (t, J = 2.6, 1.9 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 199.8, 142.7, 141.2, 135.9, 116.8, 50.8, 45.0, 33.2, 16.2; HRMS (ESI): Exact mass calc’d 

for C18H23O2 [M+H]+, 271.1698. Found 271.1691. 

Compound II-161a: 

Enone II-119 (110 mg, 0.808 mmol) was converted to the silyl bis-enol ether 

according to General Method A, which was then subjected to oxidative conditions via General 

Method C to afford the crude 1,4-diketone II-161a as a 4:1 mixture of diastereomers that were 

separated by flash chromatography (major diastereomer exhibits C2 symmetry: 49.0 mg, 0.18 

mmol, 45% yield over two steps; total coupled yield: 62.2 mg, 0.23 mmol, 57% over two steps): 

IR (Germanium ATR): 2926, 1732, 1659, 1379, 884 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 

5.87 (s, 1H), 5.60 (dt, J = 17.0, 9.8 Hz, 1H), 5.12 – 4.98 (m, 2H), 3.21 (s, 1H), 2.65 (broad s, 1H), 

2.34 – 2.15 (m, 2H), 1.93 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 199.5, 159.7, 141.1, 127.0, 117.0, 
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48.9, 44.3, 38.6, 24.2; HRMS (ESI): Exact mass calc’d for C18H23O2 [M+H]+, 271.1698. Found 

271.1697. 

Compound II-162a. 

Enones II-124 (85.0 mg, 0.62 mmol) and (R)-II-118 (76.0 mg, 0.62 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was then subjected to 

oxidative conditions via General Method C to afford the crude 1,4-diketone II-162a as a 7:1 

mixture of diastereomers that were separated by flash chromatography (major diastereomer: 82.5 

mg, 0.32 mmol, 52% yield over two steps; total coupled yield: 95.1 mg, 0.37 mmol, 60% over two 

steps): [α]D = +24.3 (c 1.06, CHCl3); IR (Germanium ATR): 2922, 1661, 1387, 917 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.88 (ddd, J = 10.1, 6.0, 2.3 Hz, 1H), 6.65 (dt, J = 6.2, 1.8 Hz, 1H), 

6.01 (dd, J = 10.1, 2.9 Hz, 1H), 5.61 (t, J = 9.8 Hz, 1H), 5.57 (t, J = 9.8 Hz, 1H), 5.09 (dd, J = 6.2, 

1.7 Hz, 1H), 5.08 – 5.01 (m, 3H), 3.22 (s, 2H), 2.87 – 2.58 (broad m, 2H), 2.47 – 2.10 (m, 4H), 

1.73 (q, J = 1.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 199.7, 199.7, 147.8, 143.0, 141.1, 140.9, 

135.8, 130.3, 117.1, 117.0, 50.5, 50.4, 45.0, 44.6, 33.3, 33.3, 16.2; HRMS (ESI): Exact mass calc’d 

for C17H21O2 [M+H]+, 257.1542. Found 257.1531. 

Compound II-163a. 

Enones (S)-II-118 (82.0 mg, 0.67 mmol) and II-119 (91.0 mg, 0.67mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was then subjected to 

oxidative conditions via General Method C to afford the crude 1,4-diketone II-163a as a 3:1 

mixture of diastereomers that were separated by flash chromatography (major diastereomer: 67.0 

mg, 0.26 mmol, 39% yield over two steps; total coupled yield: 89.8 mg, 0.35 mmol, 52% over two 

steps): [α]D = +8.1 (c 1.06, CHCl3); IR (Germanium ATR): 3075, 2916, 1656, 1380, 917 cm–1; 1H 
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NMR (500 MHz, Chloroform-d) δ 6.88 (ddd, J = 10.0, 6.0, 2.4 Hz, 1H), 6.01 (dd, J = 10.0, 2.8 

Hz, 1H), 5.87 (q, J = 1.4 Hz, 1H), 5.60 (dtd, J = 17.1, 9.8, 1.7 Hz, 2H), 5.10 (d, J = 1.6 Hz, 1H), 

5.07 (d, J = 1.6 Hz, 1H), 5.06 – 5.02 (m, 2H), 3.24 (d, J = 22.7 Hz, 2H), 2.99 – 2.50 (broad m, 

2H), 2.36 (dt, J = 18.5, 5.5 Hz, 1H), 2.32 – 2.18 (m, 3H), 1.93 (s, 3H); 13C NMR (126 MHz, CDCl3) 

δ 199.7, 199.2, 159.8, 147.9, 141.0, 140.9, 130.2, 127.0, 117.1, 117.1, 50.0, 49.1, 44.5, 44.4, 38.6, 

33.4, 24.2; HRMS (ESI): Exact mass calc’d for C17H21O2 [M+H]+, 257.1542. Found 257.1539. 

Compound II-164a:  

Enones (R)-II-35 (24.8 mg, 0.165 mmol) and II-124 (22.5 mg, 0.165 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford the 1,4-diketone II-164a as 

a 20:1 mixture of diastereomers that was purified by flash chromatography (23.5 mg, 0.083 mmol, 

50% yield over two steps): [α]D = –17.6 (c 0.19, CHCl3); IR (Germanium ATR): 2922, 1659, 1366, 

903 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.69 – 6.65 (m, 1H), 6.63 (dt, J = 6.1, 1.9 Hz, 

1H), 5.59 (dt, J = 17.1, 9.8 Hz, 1H), 5.15 – 5.05 (m, 2H), 4.82 (d, J = 1.3 Hz, 2H), 3.46 (td, J = 

12.3, 4.8 Hz, 1H), 3.41 – 3.29 (m, 1H), 2.63 (dd, J = 14.7, 10.9 Hz, 1H), 2.43 – 2.14 (m, 5H), 1.75 

(ddt, J = 3.9, 2.7, 1.3 Hz, 6H), 1.69 – 1.62 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 200.4, 199.7, 

145.8, 143.1, 142.4, 140.9, 136.0, 135.7, 117.3, 114.6, 50.8, 49.3, 33.1, 31.7, 18.7, 18.7, 16.2, 16.2, 

16.2; HRMS (ESI): Exact mass calc’d for C19H25O2 [M+H]+, 285.1855. Found 285.1853. 

Compound II-165a:  

Enones (R)-II-35 (93.0 mg, 0.62 mmol) and II-120 (85.0 mg, 0.62 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-165a as a 
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20:1 mixture of diastereomers that was purified by flash chromatography (88.0 mg, 0.31 mmol, 

50% yield over two steps): [α]D = –7.3 (c 1.40, CHCl3); IR (Germanium ATR): 3033, 2922, 1655, 

1379, 916 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.70 (dt, J = 10.1, 4.0 Hz, 1H), 6.59 (tq, J 

= 4.2, 1.4 Hz, 1H), 6.01 (dt, J = 10.1, 2.1 Hz, 1H), 5.77 (dt, J = 16.9, 9.8 Hz, 1H), 5.15 (dd, J = 

16.9, 1.8 Hz, 1H), 5.12 (dd, J = 10.2, 1.8 Hz, 1H), 4.76 (s, 1H), 4.74 (p, J = 1.5 Hz, 1H), 3.31 (ddd, 

J = 9.5, 6.6, 5.2 Hz, 1H), 3.13 (q, J = 6.1 Hz, 1H), 2.93 (d, J = 5.9 Hz, 1H), 2.60 – 2.47 (m, 2H), 

2.32 – 2.21 (m, 2H), 1.74 (q, J = 1.9 Hz, 3H), 1.73 – 1.71 (m, 3H), 1.09 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 203.5, 200.7, 149.5, 144.4, 142.4, 137.8, 136.7, 129.4, 118.3, 111.9, 53.1, 52.7, 

47.6, 43.3, 31.1, 30.1, 21.1, 16.5, 16.4; HRMS (ESI): Exact mass calc’d for C19H25O2 [M+H]+, 

285.1855. Found 285.1855.  

Compound II-166a:  

Enones (S)-II-35 (56.0 mg, 0.37 mmol) and II-122 (50.0 mg, 0.37 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was subjected to 

oxidative conditions via General Method C to afford the crude 1,4-diketone II-166a as a 10:1 

mixture of diastereomers that were separated by flash chromatography (major diastereomer: 44.6 

mg, 0.16 mmol, 42% yield over two steps, total coupled yield: 49.2 mg, 0.17 mmol, 47% over two 

steps): [α]D = –62.9 (c 0.17, CHCl3); IR (Germanium ATR): 2924, 1698, 1641, 1279, 849 cm–1; 

1H NMR (500 MHz, Chloroform-d) δ 6.80 (ddd, J = 10.1, 6.4, 2.4 Hz, 1H), 6.63 (ddd, J = 6.2, 2.6, 

1.4 Hz, 1H), 6.07 (dd, J = 10.1, 2.9 Hz, 1H), 5.70 (dd, J = 17.3, 10.8 Hz, 1H), 5.12 – 5.10 (m, 1H), 

5.08 (dd, J = 9.7, 1.0 Hz, 1H), 4.89 (p, J = 1.7 Hz, 1H), 4.84 – 4.82 (m, 1H), 3.23 (td, J = 12.1, 4.7 

Hz, 1H), 2.61 (s, 1H), 2.46 – 2.35 (m, 3H), 2.32 – 2.23 (m, 1H), 2.14 (dd, J = 18.1, 6.4 Hz, 1H), 

1.77 (dt, J = 2.7, 1.3 Hz, 3H), 1.68 (t, J = 1.1 Hz, 3H), 1.20 (s, 3H); 13C NMR (126 MHz, CDCl3) 
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δ 199.3, 198.1, 147.5, 146.0, 146.0, 142.1, 136.0, 130.4, 115.4, 114.0, 54.9, 50.4, 49.2, 44.2, 40.5, 

31.2, 19.7, 19.2, 16.6; HRMS (ESI): Exact mass calc’d for C19H25O2 [M+H]+, 285.1855. Found 

285.1853. 

Compound II-167a:  

Enones (S)-II-35 (62.0 mg, 0.41 mmol) and II-121 (62.0 mg, 0.41 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-167a as a 

20:1 mixture of diastereomers that was purified by flash chromatography (71.9 mg, 0.24 mmol, 

59% yield over two steps): [α]D = +24.7 (c 1.10, CHCl3); IR (Germanium ATR): 2962, 1662, 1376, 

1364, 921, 894 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.68 – 6.61 (m, 1H), 6.56 (d, J = 10.1 

Hz, 1H), 5.82 (d, J = 10.0 Hz, 1H), 5.53 (dt, J = 17.1, 10.3 Hz, 1H), 5.20 (d, J = 10.1 Hz, 1H), 5.13 

– 5.05 (m, 1H), 4.83 (t, J = 4.2 Hz, 2H), 3.49 (td, J = 12.6, 4.8 Hz, 1H), 3.17 (t, J = 11.5 Hz, 1H), 

2.55 (d, J = 13.0 Hz, 1H), 2.49 (d, J = 12.6 Hz, 1H), 2.40 – 2.20 (m, 2H), 1.75 – 1.71 (m, 3H), 

1.65 (s, 3H), 1.07 (s, 3H), 0.99 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 200.4, 200.0, 158.4, 145.7, 

143.3, 136.9, 135.6, 126.9, 120.1, 114.6, 53.8, 49.7, 48.9, 45.6, 36.3, 31.7, 28.6, 20.7, 18.7, 16.0; 

HRMS (ESI): Exact mass calc’d for C20H27O2 [M+H]+, 299.2011. Found 299.2014. 

Compound II-168a. 

Enones (S)-II-35 (120.2 mg, 0.80 mmol) and II-126 (201.9 mg, 0.80 mmol) 

were converted to the silyl bis-enol ether according to General Method B, which was then 

subjected to oxidative conditions via General Method C to afford 1,4-diketone II-168a as a 20:1 

mixture of diastereomers that was purified by flash chromatography (171.6 mg, 0.43 mmol, 54% 

over two steps): [α]D = –62.8 (c 1.69, CHCl3); IR (Germanium ATR): 2954, 2913, 2876, 1666, 
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1381, 1087, 843, 725 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.71 (dd, J = 10.3, 1.7 Hz, 1H), 

6.69 – 6.63 (m, 1H), 5.90 (dd, J = 10.2, 2.3 Hz, 1H), 5.45 (dt, J = 16.9, 10.0 Hz, 1H), 5.24 – 5.12 

(m, 2H), 4.83 (s, 2H), 4.28 (dt, J = 9.7, 2.1 Hz, 1H), 3.48 (s, 1H), 3.35 (s, 1H), 2.66 – 2.55 (m, 

1H), 2.41 – 2.19 (m, 3H), 1.74 (d, J = 2.4 Hz, 3H), 1.66 (s, 3H), 0.95 (t, J = 7.9 Hz, 9H), 0.61 (q, 

J = 8.1 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 199.9, 198.9, 152.3, 145.6, 143.3, 138.2, 135.6, 

128.7, 120.4, 114.8, 71.5, 55.0, 49.5, 48.6, 47.9, 31.7, 18.8, 16.1, 7.0, 5.2; HRMS (ESI): Exact 

mass calc’d for C24H36O3SiNa [M+Na]+, 423.2331. Found 423.2340. 

Compound II-169a.  

Enones II-125 (184 mg, 0.82 mmol) and (S)-II-118 (100 mg, 0.82 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-169a as a 

20:1 mixture of diastereomers that was purified by flash chromatography (163.0 mg, 0.473 mmol, 

58% yield over two steps): [α]D = –47.0 (c 1.41, CHCl3); IR (Germanium ATR): 2925, 1663, 1383, 

1138, 1061, 752 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.89 – 6.78 (m, 2H), 5.98 (dd, J = 

10.1, 2.8 Hz, 1H), 5.63 – 5.49 (m, 1H), 5.09 (dd, J = 14.3, 8.3 Hz, 2H), 4.94 (s, 1H), 4.88 (d, J = 

2.2 Hz, 1H), 4.18 (d, J = 2.7 Hz, 1H), 3.52 – 3.32 (m, 8H), 2.66 (dq, J = 11.5, 2.6 Hz, 1H), 2.59 

(d, J = 12.9 Hz, 1H), 2.38 (dt, J = 18.6, 5.5 Hz, 1H), 2.31 – 2.14 (m, 2H), 1.81 – 1.70 (m, 3H), 

1.66 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 199.8, 199.2, 147.2, 143.3, 142.5, 140.6, 135.9, 130.5, 

117.7, 116.9, 106.1, 57.3, 56.2, 50.5, 50.2, 48.6, 45.3, 44.1, 33.1, 18.5, 16.1; HRMS (ESI): Exact 

mass calc’d for C21H29O4 [M+H]+, 345.2066. Found 345.2063. 
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Compound II-170a. 

Enones (R)-II-35 (75 mg, 0.50 mmol) and II-127 (68 mg, 0.50 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was then subjected to 

oxidative conditions via General Method C to afford 1,4-diketone II-170a as a 20:1 mixture of 

diastereomers that was purified by flash chromatography (80.5 mg, 0.28 mmol, 57% yield). While 

most coupled products were oils, for II-170a, solid crystals suitable for x-ray crystallography were 

obtained by slow diffusion of hexane in ethyl acetate. [α]D = –47.4 (c 1.24, CHCl3); IR 

(Germanium ATR): 3075, 2922, 1657, 1431, 909 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.78 

(dt, J = 10.1, 3.9 Hz, 1H), 6.55 (ddt, J = 4.7, 3.1, 1.4 Hz, 1H), 5.96 (dt, J = 10.1, 2.0 Hz, 1H), 5.75 

(dddd, J = 16.5, 11.0, 8.2, 6.1 Hz, 1H), 5.05 (d, J = 1.3 Hz, 1H), 5.03 – 4.99 (m, 1H), 4.69 (p, J = 

1.5 Hz, 1H), 4.66 (d, J = 1.3 Hz, 1H), 2.94 (d, J = 2.1 Hz, 1H), 2.86 (dd, J = 7.4, 2.1 Hz, 1H), 2.66 

(ddt, J = 20.6, 7.4, 2.8 Hz, 1H), 2.60 (ddt, J = 14.0, 6.1, 1.5 Hz, 1H), 2.36 

– 2.28 (m, 3H), 2.28 – 2.15 (m, 2H), 1.98 (dt, J = 14.2, 6.2 Hz, 1H), 1.76 

(q, J = 1.8 Hz, 3H), 1.70 – 1.66 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 

200.4, 200.0, 149.0, 147.3, 142.5, 136.8, 134.2, 129.8, 118.6, 111.6, 52.4, 

52.1, 41.4, 38.1, 29.6, 29.5, 23.2, 21.2, 16.5; HRMS (ESI): Exact mass 

calc’d for C19H25O2 [M+H]+, 285.1855. Found 285.1852. 

Compound II-171a. 

Enones II-123 (91.0 mg, 0.66 mmol) and (R)-II-118 (82.0 mg, 0.66 mmol) were 

converted to the silyl bis-enol ether according to General Method B, which was then subjected to 

oxidative conditions via General Method C to afford the crude 1,4-diketone II-171a as a 5:1 

mixture of diastereomers that were separated by flash chromatography. The major NMR of the 

X-ray structure 
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major diastereomer shows a small amount of II-177 which could not be separated, however both 

compounds converge to the coupled product II-171 in the RCM (major diastereomer: 70.8 mg, 

0.28 mmol, 42% over two steps; total coupled yield: 86.2 mg, 0.34 mmol, 51% over two steps): 

[α]D = –5.4 (c 1.20, CHCl3); IR (Germanium ATR): 3075, 2924, 1663, 1625, 1388, 915 cm–1; 1H 

NMR (500 MHz, Chloroform-d) δ 7.00 – 6.83 (m, 2H), 6.05 (dddd, J = 9.9, 5.3, 2.8, 1.0 Hz, 1H), 

6.02 – 5.98 (m, 1H), 5.78 – 5.68 (m, 1H), 5.68 – 5.58 (m, 1H), 5.14 – 4.99 (m, 4H), 3.15 (s, 1H), 

2.99 (d, J = 10.7 Hz, 1H), 2.92 – 2.76 (m, 1H), 2.70 – 2.56 (m, 1H), 2.56 – 2.36 (m, 2H), 2.32 (ddt, 

J = 18.7, 11.1, 2.7 Hz, 1H), 2.27 – 2.14 (m, 1H), 2.09 (tdt, J = 18.9, 11.3, 2.7 Hz, 1H), 1.97 (dq, J 

= 14.1, 8.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 200.2, 199.5, 148.6, 148.1, 140.7, 135.6, 

130.1, 129.9, 117.5, 117.2, 51.0, 49.1, 44.3, 38.5, 36.8, 33.3, 32.0; HRMS (ESI): Exact mass calc’d 

for C17H21O2 [M+H]+, 257.1542. Found 257.1538. 

 Compound II-177. 

Enone II-123, (100 mg, 0.73 mmol) was converted to the silyl bis-enol ether according 

to General Method A, which was then subjected to oxidative conditions via General 

Method C to afford C2-symmetric 1,4-diketone II-177 as a 5:1 mixture of diastereomers that could 

not be separated by flash chromatography (51.5 mg, 0.19 mmol, 52% yield over two steps, as a 

mixture of diastereomers): IR (Germanium ATR): 2923, 1663, 1640, 1388, 911 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.93 (ddd, J = 10.0, 5.8, 2.6 Hz, 1H), 6.04 (ddd, J = 10.0, 2.9, 1.0 Hz, 

1H), 5.71 (dddd, J = 16.6, 10.4, 8.1, 6.1 Hz, 1H), 5.12 – 4.99 (m, 2H), 2.98 (d, J = 10.8 Hz, 1H), 

2.56 – 2.48 (m, 1H), 2.48 – 2.38 (m, 1H), 2.18 (dddd, J = 13.5, 5.5, 3.8, 1.7 Hz, 1H), 2.10 (ddt, J 

= 18.6, 9.9, 2.7 Hz, 1H), 1.96 (dt, J = 14.1, 8.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 200.1, 

O O
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148.5, 135.7, 129.7, 117.5, 50.2, 38.7, 36.6, 31.3; HRMS (ESI): Exact mass calc’d for C18H22O2Na 

[M+Na]+, 293.1518. Found 293.1513. 

Compound II-173a. 

Enones (R)-II-35 (157.7 mg, 1.05 mmol) and methylvinyl ketone II-128 (73.6 mg, 

85.2 µL, 1.05 mmol) were converted to the silyl bis-enol ether according to General Method B, 

which was then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-

173a as a 1.5:1 mixture of diastereomers that could not be separated by flash chromatography (157 

mg, 0.72 mmol, 69% yield over two steps, as a mixture of diastereomers): IR (Germanium ATR): 

2922, 1665, 1614, 1400, 896 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.71 (dt, J = 5.9, 1.9 Hz, 

1H), 6.61 (d, J = 4.0 Hz, 1H), 6.41 (ddd, J = 17.6, 14.9, 10.6 Hz, 2H), 6.26 (t, J = 1.2 Hz, 1H), 

6.23 (d, J = 1.2 Hz, 1H), 5.82 (ddd, J = 10.6, 8.5, 1.1 Hz, 2H), 4.84 – 4.78 (m, 3H), 4.58 (dd, J = 

1.7, 0.9 Hz, 1H), 3.38 (q, J = 6.1 Hz, 1H), 3.17 (dd, J = 17.3, 6.4 Hz, 1H), 3.11 (ddd, J = 13.3, 7.9, 

3.2 Hz, 1H), 2.98 – 2.89 (m, 2H), 2.81 – 2.68 (m, 2H), 2.55 – 2.47 (m, 2H), 2.47 – 2.44 (m, 1H), 

2.38 (dddd, J = 19.2, 5.1, 3.5, 1.7 Hz, 1H), 2.34 – 2.26 (m, 1H), 1.77 (ddt, J = 6.3, 2.7, 1.4 Hz, 

6H), 1.69 (t, J = 1.0 Hz, 3H), 1.61 (dd, J = 1.5, 0.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 200.2, 

200.1, 199.3, 199.3, 145.5, 145.0, 143.8, 142.4, 136.9, 136.8, 135.3, 134.9, 128.3, 127.8, 114.3, 

113.8, 48.7, 46.5, 45.6, 45.1, 37.4, 36.9, 31.5, 30.2, 22.2, 18.3, 16.2, 16.1; HRMS (ESI): Exact 

mass calc’d for C14H19O2 [M+H]+, 219.1385. Found 219.1389. 

Compound II-174a.  

Enones II-120 (75.0 mg, 0.55 mmol) methylvinyl ketone II-128 (39.0 mg, 0.55 mmol) 

were converted to the silyl bis-enol ether according to General Method B, which was then 

subjected to oxidative conditions via General Method C to afford 1,4-diketone II-174a and epi-II-
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174a as a 1.3:1 mixture of diastereomers that were separated by flash chromatography. The 

stereochemistry of this major product was elucidated by NMR studies of the corresponding closed 

product II-174 (major diastereomer: 32.7 mg, 0.16 mmol, 29% yield over two steps; total coupled 

yield: 56.6 mg, 0.28 mmol, 51% over two steps): [α]D = –16.6 (c 0.77, CHCl3); IR (Germanium 

ATR): 2933, 1671, 1633, 1389, 921 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.90 (ddd, J = 

10.1, 5.6, 2.5 Hz, 1H), 6.31 (dd, J = 17.6, 10.5 Hz, 1H), 6.19 (dd, J = 17.6, 1.2 Hz, 1H), 6.05 (ddd, 

J = 10.1, 2.9, 1.2 Hz, 1H), 5.82 – 5.70 (m, 1H), 5.76 (dd, J = 10.5, 1.2 Hz, 1H), 5.10 (dd, J = 10.3, 

1.8 Hz, 1H), 5.02 (ddd, J = 17.0, 1.8, 0.9 Hz, 1H), 3.37 – 3.27 (m, 1H), 3.21 (d, J = 18.0 Hz, 1H), 

2.73 (d, J = 18.0 Hz, 1H), 2.39 (ddt, J = 19.2, 11.0, 2.6 Hz, 1H), 2.35 – 2.28 (m, 1H), 1.03 (s, 3H); 

13C NMR (126 MHz, CDCl3) δ 202.4, 198.2, 147.5, 137.2, 136.7, 128.6, 127.8, 118.2, 46.8, 45.0, 

43.5, 29.1, 18.3; HRMS (ESI): Exact mass calc’d for C13H17O2 [M+H]+, 205.1229. Found 

205.1210. 

Compound II-175a. 

Enones II-122  (90.0 mg, 0.66 mmol) and methylvinyl ketone II-128 (46.0 mg, 

0.66mmol) were converted to the silyl bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-175a as a 

1.6:1 mixture of diastereomers that could not be separated by flash chromatography (76.1 mg, 0.37 

mmol, 56% yield over two steps, as a mixture of diastereomers): IR (Germanium ATR): 2971, 

1674, 1641, 1387, 1279, 851 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.81 (ddt, J = 10.1, 5.9, 

2.1 Hz, 2H), 6.42 (ddd, J = 17.6, 10.6, 5.8 Hz, 2H), 6.26 (ddd, J = 17.6, 7.2, 1.0 Hz, 2H), 6.09 – 

6.00 (m, 2H), 5.88 – 5.74 (m, 4H), 5.12 – 4.96 (m, 4H), 3.36 (dd, J = 8.6, 3.1 Hz, 1H), 3.31 (dd, J 

= 7.0, 4.3 Hz, 1H), 3.19 (dd, J = 17.4, 7.0 Hz, 1H), 3.08 (dd, J = 17.2, 8.6 Hz, 1H), 2.62 (ddt, J = 

O
Me
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24.3, 18.9, 2.8 Hz, 2H), 2.41 – 2.38 (m, 1H), 2.35 (td, J = 5.6, 4.9, 3.7 Hz, 1H), 2.25 (dd, J = 17.2, 

3.0 Hz, 1H), 2.17 (dd, J = 19.0, 5.9 Hz, 1H), 1.14 (s, 3H), 1.01 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 199.3, 199.2, 199.1, 199.0, 146.6, 146.5, 145.6, 140.1, 136.7, 136.7, 129.2, 128.9, 128.1, 

127.9, 115.2, 113.9, 52.3, 51.1, 43.6, 43.2, 40.4, 40.0, 34.6, 34.4, 25.7, 16.7; HRMS (ESI): Exact 

mass calc’d for C13H17O2 [M+H]+, 205.1229. Found 205.1224. 

Compound II-176a. 

Enones II-123 (91.0 mg, 0.67 mmol) and methylvinyl ketone II-128 (47.0 mg, 

0.67mmol) were converted to the sily bis-enol ether according to General Method B, which was 

then subjected to oxidative conditions via General Method C to afford 1,4-diketone II-176a as a 

1.3:1 mixture of diastereomers that could not be separated by flash chromatography (76.0 mg, 0.37 

mmol, 56% yield over two steps, as a mixture of diastereomers): IR (Germanium ATR): 3076, 

2922, 1673, 1641, 1390, 917 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.98 – 6.89 (m, 1H), 6.79 

(dddd, J = 9.7, 5.6, 2.6, 1.2 Hz, 1H), 6.43 (ddd, J = 17.7, 10.6, 1.4 Hz, 2H), 6.28 (ddd, J = 17.7, 

10.4, 1.0 Hz, 2H), 6.03 (dtd, J = 10.1, 3.0, 1.1 Hz, 2H), 5.86 (ddd, J = 11.9, 10.5, 1.0 Hz, 2H), 5.79 

– 5.58 (m, 2H), 5.12 – 4.93 (m, 4H), 3.41 (td, J = 6.3, 4.3 Hz, 1H), 3.28 (dd, J = 17.2, 6.9 Hz, 1H), 

3.14 (dd, J = 17.3, 5.7 Hz, 1H), 2.89 (dt, J = 11.2, 5.4 Hz, 1H), 2.74 (dd, J = 17.3, 5.2 Hz, 1H), 

2.61 (ddt, J = 19.3, 5.6, 2.9 Hz, 1H), 2.51 – 2.38 (m, 4H), 2.35 – 2.26 (m, 1H), 2.26 – 2.19 (m, 

1H), 2.18 – 2.00 (m, 3H), 1.93 (ddd, J = 14.2, 10.9, 8.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

199.9, 199.5, 198.9, 198.9, 149.0, 147.1, 136.7, 136.6, 136.6, 135.1, 129.6, 129.1, 128.5, 128.2, 

117.8, 117.2, 48.3, 47.2, 38.4, 38.0, 38.0, 36.8, 36.6, 32.0, 31.6, 30.1; HRMS (ESI): Exact mass 

calc’d for C13H17O2 [M+H]+, 205.1229. Found 205.1212. 
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Scheme 2.32 Oxidative coupling control experiment without the silicon tether 

 

This oxidative coupling procedure was carried under conditions developed by Frazier and 

Harlow.211 A solution of LDA was prepared by adding freshly distilled diisopropylamine (68 µL, 

0.48 mmol, 1.3 equiv) to a flame dried round-bottom flask and diluting with THF (0.4 mL). The 

solution was cooled to –78 °C, and n-BuLi (0.23 mL, 1.99 M, 0.45 mmol, 1.2 equiv) was added. 

After 10 minutes at this temperature, enone II-124 (50 mg, 0.37 mmol) in THF (0.4 mL) was added 

via cannula (with an additional 0.1 mL THF rinse). The reaction stirred at this temperature for 30 

minutes before adding FeCl3 (80 mg, 0.49 mmol, 1.3 equiv) in DMF (0.4 mL) via cannula (with 

an additional 0.1 mL DMF rinse). The reaction warmed to room temperature. After stirring for 15 

hours, the reaction was quenched with 1 M HCl and extracted with 10% ether/pentane. The 

combined organic layers were dried over MgSO4. The diastereoselectivity of the reaction was 

determined from the crude 1H NMR spectrum to be 3:1 II-160a to the minor diastereomer. The 

crude material was purified by flash chromatography on silica gel with 5% EtOAc/hexanes (23.8 

mg major product II-160a, 0.088 mmol, 48%; 8.1 mg minor diastereomer, 0.03 mmol, 16%; 31.9 

mg total, 0.12 mmol, 64% combined yield). This result is compared to the observed 20:1 

diastereoselectivity and 68% yield over two steps when employing the designed silicon tether 

approach.  
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2.9.4 Ring-closing metathesis experimental procedures and characterization data 

Scheme 2.33 General method D for the ring-closing metathesis of coupled products 

 

General Method D:  

To a flame-dried flask was added Grubbs II from the glove box (10 mol %). II-212 in DCM (0.05 

M) was added to the flask via cannula and the reaction stirred at room temperature under N2. Where 

noted below, when forming a trisubstituted olefin or a larger, more challenging ring system 

through the RCM, the reaction was heated to reflux at 40 °C. Upon observed consumption of the 

starting material by TLC (5-15h), DMSO (10 µL) was added, and the mixture stirred for 2h-12h. 

The solvent was evaporated, and the crude material was purified by flash chromatography on silica 

gel with 20% EtOAc/hexanes to yield couple and close product II-213.  

Compound II-148.  

Coupled product II-147 (105.5 mg, 0.44 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-

148 (81.4 mg, 0.38 mmol, 86% yield). Solid crystals for X-ray 

crystallography were obtained by slow evaporation of ethyl acetate. 

IR (Germanium ATR): 3028, 2876, 1685, 1378, 793 cm–1; 1H NMR 

(499 MHz, Chloroform-d) δ 6.79 (ddd, J = 10.1, 5.2, 2.3 Hz, 1H), 6.08 

(ddd, J = 10.1, 3.2, 0.9 Hz, 1H), 5.56 (d, J = 0.8 Hz, 1H), 2.74 – 2.69 (m, 1H), 2.61 – 2.47 (m, 

2H), 2.26 (dddd, J = 18.4, 11.1, 3.2, 2.2 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 199.7, 145.4, 
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130.7, 128.9, 46.7, 38.8, 34.3; HRMS (ESI): Exact mass calc’d for C14H15O2 [M+H]+, 215.1072. 

Found 215.1070.  

Compound epi-II-148. 

Coupled product epi-II-147 (24.6 mg, 0.100 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford epi-II-148 (17.9 mg, 0.084 mmol, 

84% yield). Solid crystals for X-ray crystallography were obtained by slow evaporation of ethyl 

acetate. [α]D = –2.2 (c 0.56, CHCl3); IR (Germanium ATR): 3015, 

2918, 1670, 1390, 867 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 

6.97 (ddd, J = 10.2, 6.1, 2.1 Hz, 1H), 6.72 (ddd, J = 10.1, 5.9, 2.4 

Hz, 1H), 6.16 (dd, J = 10.1, 2.8 Hz, 1H), 5.93 (dd, J = 10.1, 3.0 Hz, 

1H), 5.62 (dt, J = 9.9, 2.5 Hz, 1H), 5.48 (dq, J = 9.9, 2.9, 1.5 Hz, 1H), 

3.59 (dd, J = 5.4, 2.5 Hz, 1H), 3.14 – 3.05 (m, 1H), 2.93 – 2.77 (m, 2H), 2.51 (ddd, J = 18.2, 6.2, 

4.3 Hz, 1H), 2.41 (dd, J = 19.2, 5.6 Hz, 1H), 2.20 – 2.04 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 

197.7, 197.4, 148.2, 145.8, 132.4, 131.1, 130.4, 129.5, 51.2, 43.5, 36.6, 34.2, 32.5, 31.6; HRMS 

(ESI): Exact mass calc’d for C14H15O2 [M+H]+, 215.1072. Found 215.1070.  

Compound II-160.   

Coupled product II-160a (20.0 mg, 0.074 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-160 (15.1 mg, 

0.062 mmol, 84% yield). Solid crystals for X-ray 

crystallography were obtained by slow evaporation of ethyl 

acetate. IR (Germanium ATR): 3019, 2920, 1677, 1690, 1357, 

908 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.50 (qd, J = 3.4, 

X-ray structure 
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2.9, 1.4 Hz, 1H), 5.52 (s, 1H), 2.68 – 2.61 (m, 1H), 2.56 – 2.38 (m, 2H), 2.21 (ddt, J = 18.1, 11.1, 

2.6 Hz, 1H), 1.83 (dt, J = 2.6, 1.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 200.8, 139.8, 137.0, 

129.1, 46.7, 39.0, 34.2, 16.1. HRMS (ESI): Exact mass calc’d for C16H19O2 [M+H]+, 243.1385. 

Found 243.1375. 

Compound II-161.  

Coupled product II-161a (16.8 mg, 0.062 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-161 (9.7 mg, 0.040 mmol, 65% 

yield): IR (Germanium ATR): 2914, 1676, 1627, 1379, 834 cm–1; 1H NMR (500 MHz, 

Chloroform-d) δ 5.91 (dd, J = 2.7, 1.4 Hz, 1H), 5.54 (s, 1H), 2.67 – 2.55 (m, 1H), 2.51 (td, J = 

10.6, 8.5, 3.8 Hz, 1H), 2.37 (dd, J = 17.9, 3.8 Hz, 1H), 2.25 (ddt, J = 17.8, 11.2, 2.7, 1.4 Hz, 1H), 

1.93 (d, J = 1.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 199.4, 156.8, 129.0, 127.3, 46.2, 39.4, 

38.5, 23.6; HRMS (ESI): Exact mass calc’d for C16H19O2 [M+H]+, 243.1385. Found 243.1374. 

Compound II-162.  

Coupled product II-162a (15.0 mg, 0.059 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-162 (11.5 mg, 0.050 mmol, 86% 

yield): [α]D = –615.6 (c 0.39, CHCl3); IR (Germanium ATR): 2920, 1681, 1352, 1041 cm–1; 1H 

NMR (500 MHz, Chloroform-d) δ 6.78 (ddd, J = 10.1, 5.3, 2.2 Hz, 1H), 6.51 (dt, J = 5.3, 1.9 Hz, 

1H), 6.07 (dd, J = 10.1, 3.0 Hz, 1H), 5.55 – 5.53 (m, 2H), 2.72 (t, J = 12.1, 10.6 Hz, 1H), 2.64 (t, 

J = 12.1, 10.6 Hz, 1H), 2.60 – 2.41 (m, 4H), 2.31 – 2.16 (m, 2H), 1.83 (dt, J = 2.8, 1.5 Hz, 3H); 

13C NMR (126 MHz, CDCl3) 13C NMR (126 MHz, CDCl3) δ 200.5, 200.0, 145.3, 139.9, 136.9, 

130.7, 129.3, 128.7, 47.0, 46.5, 39.0, 38.9, 34.4, 34.2, 16.1; HRMS (ESI): Exact mass calc’d for 

C15H17O2 [M+H]+, 229.1229. Found 229.1215. 
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Compound II-163.  

Coupled product II-163a (11.7 mg, 0.046 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-163 (9.5 mg, 0.042 mmol, 91% 

yield): [α]D = +582.4 (c 0.22, CHCl3); IR (Germanium ATR): 2874, 1678, 1630, 1294, 821 cm–1; 

1H NMR (500 MHz, Chloroform-d) δ 6.78 (ddd, J = 10.1, 5.4, 2.2 Hz, 1H), 6.08 (dd, J = 10.1, 3.0 

Hz, 1H), 5.91 (dd, J = 2.6, 1.5 Hz, 1H), 5.65 – 5.49 (m, 2H), 2.76 – 2.44 (m, 5H), 2.38 (dd, J = 

18.0, 4.0 Hz, 1H), 2.26 (ddt, J = 18.3, 11.1, 2.6 Hz, 2H), 2.00 – 1.88 (m, 3H); 13C NMR (126 MHz, 

CDCl3) δ 199.9, 199.3, 157.0, 145.2, 130.8, 129.0, 128.9, 127.2, 46.9, 46.1, 39.4, 39.0, 38.3, 34.3, 

23.7; HRMS (ESI): Exact mass calc’d for C15H17O2 [M+H]+, 229.1229. Found 229.1217. 

Compound II-164.  

Coupled product II-164a (11.5 mg, 0.040 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, 

refluxing at 40 °C, to afford II-164 (9.0 mg, 0.035 mmol, 87% yield): [α]D = –488.1 (c 0.31, 

CHCl3); IR (Germanium ATR): 2920, 1639, 1677, 1366, 863 cm–1; 1H NMR (499 MHz, 

Chloroform-d) δ 6.53 (dq, J = 5.7, 1.8 Hz, 1H), 6.50 (dq, J = 5.1, 1.6 Hz, 1H), 5.25 (q, J = 1.8 Hz, 

1H), 2.73 – 2.57 (m, 3H), 2.50 – 2.32 (m, 3H), 2.16 (dddt, J = 20.5, 16.1, 11.1, 2.5 Hz, 2H), 1.84 

(dt, J = 2.8, 1.5 Hz, 3H), 1.82 (dt, J = 2.6, 1.4 Hz, 3H), 1.68 (dt, J = 2.5, 1.3 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 201.1, 201.1, 140.1, 139.9, 136.8, 136.8, 134.5, 124.9, 47.4, 46.6, 42.0, 38.6, 

34.5, 32.4, 20.1, 16.1, 16.0; HRMS (ESI): Exact mass calc’d for C17H21O2 [M+H]+, 257.1542. 

Found 257.1532. 
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Compound II-165.  

Coupled product II-165a (30.0 mg, 0.105 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, refluxing at 40 

°C, to afford II-165 (23.5 mg, 0.092 mmol, 87% yield): [α]D = –93.3 (c 0.41, CHCl3); IR 

(Germanium ATR): 2923, 1672, 1380, 910 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.60 (dt, 

J = 10.2, 3.8 Hz, 1H), 6.52 (dq, J = 5.7, 1.7 Hz, 1H), 5.92 (dt, J = 10.2, 2.0 Hz, 1H), 5.11 (h, J = 

1.5 Hz, 1H), 2.73 – 2.62 (m, 1H), 2.65 (d, J = 12.7 Hz, 1H), 2.58 (tq, J = 8.2, 2.6 Hz, 1H), 2.46 – 

2.36 (m, 1H), 2.26 (dd, J = 3.4, 2.3 Hz, 1H), 2.24 (dd, J = 3.8, 2.1 Hz, 1H), 2.16 – 2.04 (m, 1H), 

1.82 (dt, J = 2.8, 1.5 Hz, 3H), 1.69 (dt, J = 2.6, 1.2 Hz, 3H), 1.27 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 203.5, 199.3, 143.4, 139.5, 137.2, 134.8, 128.7, 123.3, 52.1, 45.0, 42.3, 40.6, 32.3, 29.8, 

20.1, 16.2, 9.9; HRMS (ESI): Exact mass calc’d for C17H21O2 [M+H]+, 257.1542. Found 257.1536. 

Compound II-166.  

Coupled product II-166a (27.0 mg, 0.095 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, refluxing at 40 

°C, to afford II-166 (19.8 mg, 0.077 mmol, 81% yield): [α]D = +531.9 (c 0.68, CHCl3); IR 

(Germanium ATR): 2962, 1683, 1375, 722 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.63 (ddd, 

J = 10.1, 5.5, 2.2 Hz, 1H), 6.52 (dq, J = 5.4, 1.8 Hz, 1H), 6.08 (dd, J = 10.1, 3.1 Hz, 1H), 5.29 – 

5.23 (m, 1H), 2.89 (d, J = 11.3 Hz, 1H), 2.73 (dd, J = 12.5, 11.2 Hz, 1H), 2.63 (dddd, J = 18.0, 

5.6, 3.9, 1.6 Hz, 1H), 2.45 (dt, J = 18.5, 2.8 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.18 (ddd, J = 18.8, 5.6, 

0.9 Hz, 1H), 2.12 (ddt, J = 16.0, 11.1, 2.5 Hz, 1H), 1.82 (dt, J = 2.8, 1.4 Hz, 3H), 1.65 (t, J = 1.3 

Hz, 3H), 0.87 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 201.0, 199.9, 143.4, 139.9, 136.9, 131.8, 
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131.4, 131.1, 50.2, 44.9, 42.6, 41.3, 38.8, 32.4, 21.8, 20.1, 15.9; HRMS (ESI): Exact mass calc’d 

for C17H21O2 [M+H]+, 257.1542. Found 257.1539. 

Compound II-167.  

Coupled product II-167a (24.0 mg, 0.080 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, refluxing at 40 

°C. As the reaction was proceeding much more slowly than for less hindered substrates, an 

additional 10 mol % Grubbs II was added after refluxing for 24 hours, and an additional 5 mol % 

Grubbs II after another 24 hours. The reaction was worked up after a total of 72 hours to afford II-

167 (14.8 mg, 0.055 mmol, 68% yield; also reisolating unreacted SM): [α]D = +288.2 (c 0.40, 

CHCl3); IR (Germanium ATR): 2923, 1686, 1371, 1083, 700 cm–1; 1H NMR (500 MHz, 

Chloroform-d) δ 6.54 (dt, J = 5.5, 1.9 Hz, 1H), 6.39 (d, J = 10.1 Hz, 1H), 5.88 (d, J = 10.1 Hz, 

1H), 5.40 (q, J = 1.8 Hz, 1H), 2.86 (dd, J = 12.6, 10.9 Hz, 1H), 2.73 – 2.61 (m, 2H), 2.40 – 2.32 

(m, 2H), 2.12 (ddq, J = 18.1, 11.0, 2.5 Hz, 1H), 1.84 (dt, J = 2.9, 1.5 Hz, 3H), 1.72 (p, J = 1.2 Hz, 

3H), 1.18 (s, 3H), 1.03 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 201.1, 201.0, 156.1, 139.9, 136.8, 

135.7, 126.7, 121.2, 47.2, 46.6, 41.5, 41.3, 37.9, 32.3, 27.6, 20.5, 19.6, 16.0; HRMS (ESI): Exact 

mass calc’d for C18H23O2 [M+H]+, 271.1698. Found 271.1696. 

Compound II-168.  

Coupled product II-168a, (80.1 mg, 0.20 mmol) was submitted to ring-

closing metathesis conditions according to General Method D with elevated temperature, refluxing 

at 40 °C. Just as with the reaction to form compound II-167, this reaction was proceeding much 

more slowly than for less hindered substrates, so an additional 10 mol % Grubbs II was added after 

refluxing for 24 hours, and an additional 5 mol % Grubbs II added after 48 hours. The reaction 
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was worked up after a total of 72 hours to afford II-168 (46.9 mg, 0.13 mmol, 64%): [α]D = +261.8 

(c 1.23, CHCl3); IR (Germanium ATR): 2954, 2914, 2876, 1687, 1348, 1078, 835, 731 cm-1; 1H 

NMR (500 MHz, Chloroform-d) δ 6.60 (dd, J = 10.3, 1.8 Hz, 1H), 6.54 (dt, J = 5.7, 1.9 Hz, 1H), 

5.99 (dd, J = 10.3, 2.3 Hz, 1H), 5.64 (d, J = 2.0 Hz, 1H), 4.27 (dt, J = 9.3, 2.1 Hz, 1H), 2.73 – 2.61 

(m, 3H), 2.48 (ddd, J = 11.7, 6.5, 2.3 Hz, 1H), 2.37 – 2.29 (m, 1H), 2.12 (ddt, J = 18.2, 11.2, 2.5 

Hz, 1H), 1.83 (dt, J = 3.1, 1.5 Hz, 3H), 1.70 (dt, J = 2.7, 1.3 Hz, 3H), 1.00 (t, J = 8.0 Hz, 9H), 0.68 

(q, J = 8.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 200.5, 199.5, 149.9, 140.1, 136.6, 135.1, 129.4, 

121.1, 73.7, 47.8, 47.0, 45.0, 41.4, 32.2, 20.3, 15.9, 7.0, 5.1; HRMS (ESI): Exact mass calc’d for 

C22H32O3SiNa [M+Na]+, 395.2018. Found 395.2026. 

Compound II-169.  

Coupled product II-169a (52.0 mg, 0.15 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, 

refluxing at 40 °C. Just as with the reactions to form compounds II-167 and II-168, the reaction 

was proceeding much more slowly than for less hindered substrates, so an additional 10 mol % 

Grubbs II was added after refluxing for 24 hours. The reaction was worked up after a total of 65 

hours to afford II-169 (30.6 mg, 0.097 mmol, 64%): [α]D = +298.5 (c 0.95, CHCl3); IR 

(Germanium ATR): 2922, 1684, 1378, 1119, 1059, 751 cm-1; 1H NMR (499 MHz, Chloroform-d) 

δ 6.75 (ddd, J = 10.2, 5.2, 2.2 Hz, 1H), 6.71 – 6.63 (m, 1H), 6.02 (dd, J = 10.1, 3.0 Hz, 1H), 5.34 

(q, J = 1.8 Hz, 1H), 4.74 (d, J = 2.7 Hz, 1H), 3.48 (s, 3H), 3.39 (s, 3H), 2.82 – 2.72 (m, 2H), 2.67 

(t, J = 11.7 Hz, 1H), 2.55 (t, J = 11.3 Hz, 1H), 2.46 (dq, J = 14.2, 4.5 Hz, 2H), 2.19 (ddt, J = 19.2, 

11.8, 2.7 Hz, 1H), 1.86 (p, J = 1.7 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 201.1, 200.1, 145.3, 

O O

Me H

H

Me

H

H
MeO OMe



 134 

139.1, 137.5, 134.3, 130.5, 128.3, 106.5, 56.8, 56.3, 48.6, 47.1, 46.8, 43.0, 38.1, 34.4, 24.9, 15.9; 

HRMS (ESI): Exact mass calc’d for C19H24O4Na [M+Na]+, 339.1572. Found 339.1569. 

Compound II-170.  

Coupled product II-170a (30.0 mg, 0.100 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, 

refluxing at 40 °C, to afford II-170 (23.4 mg, 0.091 mmol, 91% yield): [α]D = –42.3 (c 1.04, 

CHCl3); IR (Germanium ATR): 2920, 1668, 1381, 728 cm–1; 1H NMR (500 MHz, Chloroform-d) 

δ 6.81 (ddt, J = 9.7, 5.9, 1.8 Hz, 1H), 6.65 (dt, J = 6.0, 1.8 Hz, 1H), 5.89 (dd, J = 10.1, 2.9 Hz, 

1H), 5.33 – 5.22 (m, 1H), 3.28 (t, J = 12.4 Hz, 1H), 3.08 (td, J = 12.6, 5.6 Hz, 1H), 2.72 (dddd, J 

= 18.2, 5.7, 3.9, 1.5 Hz, 1H), 2.53 – 2.40 (m, 2H), 2.30 (dtt, J = 19.3, 5.8, 1.5 Hz, 1H), 2.21 (d, J 

= 12.3 Hz, 1H), 2.15 (dq, J = 18.2, 2.8 Hz, 1H), 2.01 (ddt, J = 18.3, 11.6, 2.5 Hz, 1H), 1.75 (dt, J 

= 2.6, 1.4 Hz, 3H), 1.72 – 1.66 (m, 3H), 1.42 (ddt, J = 12.9, 5.1, 1.6 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 201.9, 200.2, 146.9, 142.3, 136.3, 135.2, 129.0, 117.6, 56.9, 42.4, 41.6, 36.1, 33.1, 32.5, 

22.9, 20.5, 16.0; HRMS (ESI): Exact mass calc’d for C17H21O2 [M+H]+, 257.1542. Found 

257.1534. 

Compound II-171.  

Coupled product II-171a (19.0 mg, 0.074 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D with elevated temperature, refluxing at 40 

°C, to afford II-171 (12.2 mg, 0.053 mmol, 72% yield): [α]D = –254.9 (c 0.34, CHCl3); IR 

(Germanium ATR): 3028, 2905, 1668, 1384, 795 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.85 

(ddd, J = 10.0, 4.9, 3.8 Hz, 1H), 6.77 (ddd, J = 9.9, 5.5, 2.4 Hz, 1H), 6.08 – 5.99 (m, 2H), 5.96 

(dddd, J = 10.4, 8.4, 6.1, 2.2 Hz, 1H), 5.42 (dddd, J = 10.3, 3.6, 2.2, 1.0 Hz, 1H), 3.18 (dd, J = 
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12.9, 8.8 Hz, 1H), 3.07 – 2.95 (m, 2H), 2.59 – 2.50 (m, 2H), 2.44 – 2.21 (m, 3H), 1.99 – 1.85 (m, 

2H); 13C NMR (126 MHz, CDCl3) δ 200.8, 200.2, 146.6, 145.9, 134.4, 132.5, 129.8, 129.5, 53.9, 

45.9, 39.6, 37.0, 36.8, 35.1, 33.3; HRMS (ESI): Exact mass calc’d for C15H17O2 [M+H]+, 

229.1229. Found 229.1215. 

Compound II-180. 

Stryker’s reagent (200.0 mg, 0.10 mmol, 0.8 equiv) was added to a flame-dried round 

bottom flask from the glovebox. The flask was cooled to 0 °C, and benzene (3 mL) 

that had been sparged with argon for 2 hours was added. II-177 (35.0 mg, 0.13 mmol) in benzene 

(1 mL, with an additional 0.3 mL rinse) was added. The reaction was warmed to room temperature 

after 15 minutes and stirred overnight, after which the mixture was filtered through Celite with 

ether and concentrated. The crude material was purified by flash chromatography on silica gel with 

5% EtOAc/hexane (32.2 mg, 0.12 mmol, 92% yield): IR (Germanium ATR): 2934, 1694, 1640, 

1446, 995, 910 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 5.81 – 5.68 (m, 1H), 5.10 – 4.98 (m, 

2H), 2.55 – 2.41 (m, 1H), 2.35 (d, J = 9.9 Hz, 1H), 2.28 – 2.10 (m, 3H), 2.04 – 1.86 (m, 3H), 1.80 

(dqd, J = 16.9, 8.7, 7.8, 4.6 Hz, 1H), 1.31 (dtd, J = 13.3, 11.3, 3.0 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 211.6, 136.2, 117.1, 54.2, 41.6, 40.6, 39.3, 30.5, 23.6; HRMS (ESI): Exact mass calc’d 

for C18H26O2Na [M+Na]+, 297.1831. Found 297.1829. 

Compound II-172. 

Grubbs II (2.2 mg, 0.0026 mmol, 10 mol %) was added to a flame-dried round-bottom 

flask in the glove box. 1,4-benzoquinone (1.0 mg, 0.009 mmol, 35 mol %) was added and the flask 

was purged with N2 for 2 minutes. DCM (1 mL) was added to the mixture. Compound II-180 (7.0 

mg, 0.026 mmol) in DCM (0.7 mL) was added to the flask (with an additional 0.3 mL DCM rinse) 
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at room temperature, and the reaction was heated to 40 °C. Upon observed consumption of the 

starting material by TLC (5.25h), the reaction was cooled to room temperature and DMSO (10 µL) 

was added. After stirring at room temperature for 2h, the solvent was evaporated. The crude 

material was purified by flash chromatography on silica gel with 10% EtOAc/hexane to afford II-

172 (4.9 mg, 0.020 mmol, 78% yield): IR (Germanium ATR): 2932, 1695, 1457, 1262, 909, 730 

cm–1; 1H NMR (499 MHz, Chloroform-d) δ 5.52 (t, J = 3.5 Hz, 1H), 2.48 (d, J = 15.7 Hz, 1H), 

2.37 – 2.26 (m, 2H), 2.21 – 2.10 (m, 2H), 2.00 – 1.92 (m, 1H), 1.86 (q, J = 13.2 Hz, 1H), 1.71 (d, 

J = 13.7 Hz, 1H), 1.56 – 1.47 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 212.4, 128.5, 52.0, 42.0, 

40.6, 35.4, 30.8, 24.1; HRMS (ESI): Exact mass calc’d for C32H45O4 [2M+H]+, 493.3318. Found 

493.3311. 

Compound II-173.  

Coupled product II-173a (40.0 mg, 0.183 mmol, 1.5:1 mixture of diastereomers) 

was submitted to ring-closing metathesis conditions according to General Method D with elevated 

temperature, refluxing at 40 °C, to afford II-173 as a 1.5:1 mixture of diastereomers that could be 

separated by flash chromatography (major diastereomer: 18.6 mg, 0.098 mmol, 53% yield; total 

yield: 34.4 mg, 0.180 mmol, 98%): [α]D = –271.4 (c 0.10, CHCl3); IR (Germanium ATR): 2922, 

1661, 1379, 879 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 6.76 (ddq, J = 4.7, 2.9, 1.3 Hz, 1H), 

5.91 (t, J = 1.3 Hz, 1H), 3.01 (dt, J = 11.7, 4.9 Hz, 1H), 2.92 (dt, J = 9.8, 5.1 Hz, 1H), 2.72 – 2.57 

(m, 2H), 2.50 – 2.39 (m, 2H), 1.99 (d, J = 1.3 Hz, 3H), 1.81 (q, J = 1.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 198.6, 196.6, 162.2, 142.6, 135.7, 127.5, 46.0, 39.7, 35.5, 27.3, 22.8, 16.1; HRMS 

(ESI): Exact mass calc’d for C12H15O2 [M+H]+, 191.1072. Found 191.1051. HSQC data revealed 

that the protons at 3.01 ppm and 2.92 ppm are the protons at the ring junctions (only one proton 
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on each carbon). 1D-NOE experiments individually irradiating each of these protons did not 

display a NOE interaction between them, indicating a trans-relationship. 

Compound II-174.  

Coupled product II-174a (14.0 mg, 0.069 mmol) was submitted to ring-closing 

metathesis conditions according to General Method D to afford II-174 (10.9 mg, 0.062 mmol, 90% 

yield): [α]D = –61.8 (c 0.063, CHCl3); IR (Germanium ATR): 2975, 1669, 1392, 824 cm–1; 1H 

NMR (500 MHz, Chloroform-d) δ 6.94 (ddd, J = 10.1, 5.7, 2.1 Hz, 1H), 6.62 (dd, J = 10.0, 2.0 

Hz, 1H), 6.08 (ddd, J = 10.0, 3.1, 1.2 Hz, 1H), 6.03 (ddd, J = 10.1, 2.9, 1.1 Hz, 1H), 3.06 (dddd, J 

= 12.3, 5.0, 3.1, 2.0 Hz, 1H), 2.81 (dt, J = 16.8, 0.9 Hz, 1H), 2.59 (dddt, J = 19.1, 5.7, 4.8, 1.0 Hz, 

1H), 2.48 – 2.33 (m, 2H), 1.09 (d, J = 1.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 201.4, 198.2, 

148.3, 146.9, 130.0, 128.3, 47.3, 45.8, 41.0, 28.2, 15.4; HRMS (ESI): Exact mass calc’d for 

C11H13O2 [M+H]+, 177.0916. Found 177.0911. HSQC data revealed the proton at 3.06 ppm to be 

the one at the ring fusion (only one proton on that carbon). 1D-NOE experiments irradiating the 

methyl peak at 1.09 ppm did not display a NOE interaction between this proton at 3.06 ppm, 

indicating a trans-relationship. 

Compound II-175.  

Coupled product II-175a (25.0 mg, 0.12 mmol, 1.6:1 mixture of diastereomers) was 

submitted to ring-closing metathesis conditions according to General Method D with elevated 

temperature, refluxing at 40 °C, to afford II-175 as a 1.6:1 mixture of diastereomers that could be 

separated by flash chromatography (major: 12.3 mg, 0.070 mmol, 58% yield; total yield: 19.8 mg, 

0.11 mmol, 94%): [α]D = +237.2 (c 0.34, CHCl3); IR(Germanium ATR): 2967, 1670, 1387, 1244, 

817 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 6.87 (ddd, J = 10.2, 5.8, 2.3 Hz, 1H), 6.73 (d, J = 
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10.0 Hz, 1H), 6.12 (dd, J = 10.2, 3.1 Hz, 1H), 5.94 (dd, J = 10.0, 1.0 Hz, 1H), 3.04 (dd, J = 13.5, 

4.2 Hz, 1H), 2.81 (dd, J = 18.1, 4.2 Hz, 1H), 2.58 (dt, J = 18.5, 2.9 Hz, 1H), 2.53 – 2.41 (m, 2H), 

1.12 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 198.2, 197.5, 156.0, 145.7, 129.6, 127.9, 51.7, 39.0, 

38.9, 33.4, 17.7; HRMS (ESI): Exact mass calc’d for C11H13O2 [M+H]+, 177.0916. Found 

177.0911. HSQC data revealed the proton at 3.04 ppm to be the one at the ring junction (only one 

proton on that carbon). 1D-NOE experiments irradiating the methyl peak at 1.12 ppm did not 

display a NOE interaction between this proton at 3.04 ppm, indicating a trans-relationship. 

Compound II-176.  

Coupled product II-176a (24.0 mg, 0.117 mmol, 1.3:1 mixture of diastereomers) was 

submitted to ring-closing metathesis conditions according to General Method D with elevated 

temperature, refluxing at 40 °C, to afford II-176 as a 1.3:1 mixture of diastereomers that could not 

be separated by flash chromatography (16.5 mg, 0.094 mmol, 80% yield as a mixture of 

inseparable diastereomers): IR (Germanium ATR): 2920, 1667, 1388, 825 cm–1; 1H NMR (500 

MHz, Chloroform-d) δ 6.98 – 6.86 (m, 2H), 6.62 (ddd, J = 11.6, 6.9, 5.7 Hz, 1H), 6.50 (ddd, J = 

11.6, 7.2, 4.1 Hz, 1H), 6.08 (dddd, J = 11.4, 5.6, 2.7, 1.2 Hz, 3H), 6.02 (dd, J = 12.0, 2.6 Hz, 1H), 

3.16 (ddd, J = 15.6, 4.9, 1.0 Hz, 1H), 3.04 – 2.94 (m, 2H), 2.83 (dd, J = 15.6, 6.9 Hz, 1H), 2.76 – 

2.72 (m, 1H), 2.72 – 2.65 (m, 2H), 2.59 (dddd, J = 13.2, 11.9, 6.1, 3.1 Hz, 2H), 2.53 (ddt, J = 9.2, 

4.1, 2.4 Hz, 1H), 2.50 – 2.39 (m, 3H), 2.37 (ddd, J = 9.4, 4.4, 2.0 Hz, 1H), 2.33 (td, J = 4.2, 1.4 

Hz, 1H), 2.32 – 2.23 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 202.1, 201.8, 198.9, 198.0, 148.2, 

147.9, 143.3, 142.5, 134.3, 133.0, 129.7, 129.6, 48.5, 45.7, 42.3, 40.5, 40.3, 37.6, 34.8, 33.7, 33.7, 

32.7; HRMS (ESI): Exact mass calc’d for C11H13O2 [M+H]+, 177.0916. Found 177.0888. 
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2.9.5 Challenging systems 

Compound II-214. 

LiCl (50.4 mg, 1.19 mmol, 20 mol %) and CuI (113 mg, 0.59 mmol, 10 mol %) were 

added to a flame-dried flask, cooled to 0 ºC, and (R)-II-133 (1 g, 5.94 mmol) in THF (30 mL, with 

an additional 5 mL rinse) was added. TMS-Cl (0.83 mL, 6.53 mmol, 1.1 equiv) was added and the 

mixture stirred for 15 minutes before adding freshly prepared vinyl Grignard (1.0 M, 7.13 mL, 

7.13 mmol, 1.2 equiv) dropwise over 25 minutes. After stirring for 20 minutes, the black reaction 

was poured into pH 7 buffer and extracted with ether. The combined organic extracts were washed 

with brine, dried over MgSO4 and the solvent evaporated under reduced pressure. The crude 

material was purified by flash chromatography on silica gel with 5% ether/pentane (0.88 g, 3.3 

mmol, 55%). This material was then used in the coupling reaction below, first regenerating the 

lithium enolate with methyllithium.  

Compound II-189.  

To a flame-dried round-bottom flask was added diisopropylamine (113 µL, 

0.80 mmol, 1.2 equiv) and THF (0.8 mL). The mixture was cooled to –78 ºC, and n-BuLi added 

(2.13 M, 0.35 mL, 0.74 mmol, 1.1 equiv). After 10 minutes at this temperature, carvone (R)-II-35 

(100 mg, 0.67 mmol) in THF (0.3 mL) was added and this solution stirred for 30 minutes before 

adding it in a slow and controlled manner over 45 minutes to a flame-dried flask containing 

iPr2SiCl2 (121 µL, 0.67 mmol, 1.0 equiv) and THF (2.7 mL), also at –78 ºC (an additional 0.1 mL 

THF rinse). Meanwhile, the lithium enolate of II-214 was prepared in a separate flask through the 

addition of MeLi (1.6 M, 0.46 mL, 0.74 mmol, 1.1 equiv) to II-214 (180 mg, 0.67 mmol) in THF 

(0.8 mL) at –78 ºC. This enolate (II-187) was added to the reaction flask after stirring for 25 
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minutes (37 minutes following the completion of the first enolate addition), over 45 minutes. Once 

the second enolate addition was complete, the mixture stirred at –78 ºC for 15 minutes before 

warming to room temperature. After two hours, the solution was poured into pH 7 buffer and 

extracted with pentane. The combined organic extracts were dried over MgSO4, and the solvent 

evaporated under reduced pressure. The crude silyl bis-enol ether was placed on the vacuum 

manifold over night before using directly in the next reaction.  

To a flame-dried flask was added CAN (0.81 g, 1.47 mmol, 2.2 equiv), NaHCO3 (0.25 g, 2.95 

mmol, 4.4 equiv), ACN (22 mL), and DMSO (95 µL, 1.34 mmol, 2.0 equiv). The mixture was 

cooled to –30 ºC, and the crude silyl bis-enol ether in EtCN (3 mL) was added via cannula to the 

vigorously stirring solution (an additional 0.4 mL EtCN rinse). After 3.3 hours, the orange 

heterogeneous reaction was poured into saturated NaHCO3 solution and extracted with CHCl3. 

The combined organic extracts were dried over MgSO4 before filtering through celite with EtOAc, 

and the solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography on silica gel with 5% EtOAc/hexanes (70.6 mg, 0.205 mmol, 31% yield): [α]D = 

+38.7 (c 1.35, CHCl3); IR (Germanium ATR): 2953, 2856, 1709, 1668, 1250, 837 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.65 (ddt, J = 5.8, 3.0, 1.4 Hz, 1H), 5.57 (dt, J = 17.1, 9.8 Hz, 1H), 

5.07 – 4.98 (m, 2H), 4.83 (d, J = 1.7 Hz, 2H), 3.32 (ddd, J = 12.9, 11.3, 4.8 Hz, 1H), 3.10 (dtd, J 

= 11.2, 9.1, 6.7 Hz, 1H), 2.56 (dd, J = 12.7, 1.8 Hz, 1H), 2.47 – 2.17 (m, 6H), 1.83 (ddd, J = 14.1, 

9.6, 6.8 Hz, 1H), 1.75 (dt, J = 2.6, 1.3 Hz, 3H), 1.64 (d, J = 1.3 Hz, 3H), 1.62 – 1.54 (m, 1H), 0.01 

(d, J = 1.4 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 213.8, 200.5, 145.7, 143.3, 141.7, 135.6, 116.0, 

114.5, 50.6, 50.0, 48.4, 43.3, 40.4, 31.6, 30.4, 18.7, 18.3, 16.1, -3.3; LRMS (ESI): Exact mass 

calc’d for C21H33OsSi [M+H]+, 345.2250. Found 345.32. 
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Compound II-190. 

Grubbs II (9 mg, 0.010 mmol, 10 mol %) was added to a flame-dried round-

bottom flask and diluted with DCM (1 mL). Coupled product II-189 (34.5 mg, 0.10 mmol) in 

DCM (0.5 mL) was added to the flask (with an additional 0.5 mL rinse). The mixture was heated 

to 40 ºC. Upon observed consumption of the starting material by TLC (5 hours), the reaction was 

cooled to room temperature and three drops of DMSO were added. After stirring over night, the 

solvent was removed, and the crude material was purified by flash chromatography on silica gel 

with 10% EtOAc/hexane (24.0 mg, 0.076 mmol, 76%): [α]D = –343.2 (c 1.04, CHCl3); IR 

(Germanium ATR): 2949, 2860, 1715, 1683, 1251, 834 cm–1; 1H NMR (500 MHz, Chloroform-d) 

δ 6.56 (dt, J = 5.8, 1.8 Hz, 1H), 5.28 (q, J = 1.8 Hz, 1H), 2.76 (dd, J = 14.2, 8.3 Hz, 1H), 2.71 – 

2.57 (m, 3H), 2.42 – 2.29 (m, 2H), 2.21 – 2.05 (m, 2H), 1.92 (dt, J = 13.6, 4.5 Hz, 1H), 1.79 (dt, J 

= 2.7, 1.4 Hz, 3H), 1.73 (ddd, J = 13.6, 12.2, 7.1 Hz, 1H), 1.66 (dt, J = 2.5, 1.3 Hz, 3H), 1.61 – 

1.54 (m, 1H), 0.00 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 211.2, 200.4, 140.8, 136.3, 134.0, 126.3, 

49.3, 47.9, 41.9, 41.2, 40.0, 32.4, 32.1, 23.7, 20.1, 15.9, -2.0; LRMS (ESI): Exact mass calc’d for 

C19H29O2Si [M+H]+, 317.1937. Found 317.29. 

2.9.6 Selective functionalization of prepared scaffolds 

Compound II-193.  

Compound II-148 (8.5 mg, 0.040 mmol) was diluted in DCM (1 mL) in a flame-dried 

round-bottom flask. NaHCO3 (50.0 mg, 0.60 mmol, 15 equiv) was added at room temperature, 

followed by mCPBA (18.0 mg, 0.10 mmol, 2.5 equiv). The solution stirred at room temperature 

until observed consumption of the starting material by TLC (2.5 h), after which it was diluted with 

saturated aqueous NaHCO3 and extracted with DCM. The combined organic layers were washed 
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with brine, dried over MgSO4, and concentrated under reduced pressure. The crude material was 

purified by flash chromatography on silica gel with 30% EtOAc/hexanes to 50% EtOAc/hexanes 

gradient (6.2 mg, 0.027 mmol, 68% yield): [α]D = –267.8 (c 0.13, CHCl3); IR (Germanium ATR): 

2917, 1685, 1176, 793 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.86 – 6.71 (m, 2H), 6.06 (dtd, 

J = 9.9, 4.1, 3.6, 2.0 Hz, 2H), 3.22 (dd, J = 3.9, 1.9 Hz, 1H), 3.01 (d, J = 3.8 Hz, 1H), 2.75 – 2.66 

(m, 1H), 2.66 – 2.51 (m, 3H), 2.51 – 2.40 (m, 2H), 2.29 (dtt, J = 15.1, 6.6, 3.1 Hz, 2H); 13C NMR 

(126 MHz, CDCl3) δ 199.7, 199.1, 145.0, 144.6, 130.7, 130.2, 56.3, 54.6, 46.2, 43.2, 38.3, 37.9, 

32.8, 31.3; HRMS (ESI): Exact mass calc’d for C14H15O3 [M+H]+, 231.1021. Found 231.1017. 

Compound II-194.  

II-148 (12.0 mg, 0.056 mmol) was diluted in a flame-dried round bottom flask with 

MeOH (0.7 mL), and 30% H2O2 was added (35 µL, 0.30 mmol, 5.0 equiv) The mixture was cooled 

to 0 °C, and aqueous NaOH (1M, 0.12 mL, 0.12 mmol, 2.0 equiv) was added. The reaction was 

warmed to room temperature. Upon observed consumption of starting material by TLC (2.5h), the 

reaction was poured into saturated aqueous Na2S2O3 and extracted with ether. The combined 

organic layers were washed with brine, dried over MgSO4, and concentrated under reduced 

pressure. The crude material was purified by flash chromatography with 20% EtOAc/hexanes (9.6 

mg, 0.039 mmol, 70% yield): IR (Germanium ATR): 2919, 2850, 1783, 1241, 

733 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 5.42 (d, J = 2.4 Hz, 1H), 3.60 

(q, J = 3.9 Hz, 1H), 3.38 – 3.28 (m, 1H), 2.98 (dd, J = 8.8, 3.1 Hz, 1H), 2.46 

(s, 1H), 2.24 (dt, J = 14.5, 5.0 Hz, 1H), 1.90 (t, J = 13.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

205.9, 128.5, 58.4, 55.7, 42.4, 41.5, 30.0; HRMS (ESI): Exact mass calc’d for C14H14O4Na 

[M+Na]+, 269.0790. Found 269.0770.  
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The 1H NMR and 13C NMR spectra are symmetrical, proving preservation of C2 symmetry in the 

product. The epoxide stereochemistry was elucidated through COSY and NOESY NMR spectra, 

as each proton was assigned, and NOE interactions observed between proton HA and protons HB 

and HC. 

Compound II-195. 

II-148 (46.0 mg, 0.21 mmol) was diluted in a flame-dried round bottom flask with 

MeOH (4 mL). Pd/C (22.8 mg, 0.021 mmol, 10 mol %) was added at room temperature. H2 was 

bubbled through the solution for 1 minute, and then the reaction stirred under H2 overnight. The 

reaction was then purged with N2 for 10 minutes before filtering through Celite with EtOAc. The 

solvent was evaporated under reduced pressure, and the crude material was purified by flash 

chromatography with 20% EtOAc/hexanes (45.7 mg, 0.21 mmol, 99% yield): IR (Germanium 

ATR): 2922, 2851, 1709, 1447 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 2.56 – 2.48 (m, 1H), 

2.47 – 2.41 (m, 1H), 2.35 (ddt, J = 12.4, 4.2, 1.9 Hz, 1H), 2.10 (dddt, J = 12.8, 6.3, 4.3, 2.4 Hz, 

1H), 1.82 – 1.74 (m, 2H), 1.65 (qt, J = 13.4, 4.2 Hz, 1H), 1.54 – 1.44 (m, 1H), 1.40 (dtq, J = 11.3, 

8.5, 2.8 Hz, 1H), 1.19 – 1.13 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 211.4, 53.2, 44.8, 42.2, 33.2, 

33.0, 27.8; HRMS (ESI): Exact mass calc’d for C14H20O2Na [M+Na]+, 243.1361. Found 243.1354. 

Compound II-196.  

Trifluoroperacetic acid was prepared by the addition of CHCl3 (3 mL) and TFAA 

(445 µL, 3.2 mmol, 65 equiv) to a flame-dried round-bottom flask. The flask was cooled to 0 °C 

and 30 wt% H2O2 (180 µL, 1.6 mmol, 32 equiv) was added to this solution dropwise. After five 

minutes, this solution was added dropwise over 15 minutes to another flame-dried round-bottom 

flask with II-195 (10.0 mg, 0.045 mmol), CHCl3 (1 mL), and Na2HPO4 (130 mg, 0.92 mmol, 18 
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equiv) at 0 °C. Upon observed consumption of the starting material by TLC (3h), the mixture was 

slowly poured into saturated aqueous NaHSO3 and extracted twice with CHCl3 and once with 

EtOAc. The combined organic layers were washed with brine, dried over MgSO4, and 

concentrated under reduced pressure. The crude material was purified by flash chromatography on 

silica gel with 20% EtOAc/hexanes (5.8 mg, 0.025 mmol, 56% yield): [α]D = –6.7 (c 0.13, CHCl3); 

IR (Germanium ATR): 2918, 2850, 1728, 1713, 1463 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 

4.40 (dd, J = 12.5, 10.4 Hz, 1H), 4.36 – 4.26 (m, 1H), 2.87 (ddd, J = 12.1, 10.5, 1.1 Hz, 1H), 2.75 

(t, J = 10.8 Hz, 1H), 2.48 (tdd, J = 13.7, 6.3, 1.1 Hz, 1H), 2.38 (ddt, J = 13.1, 4.3, 2.2 Hz, 1H), 

2.15 – 2.06 (m, 1H), 2.03 – 1.90 (m, 2H), 1.86 (dt, J = 13.6, 3.9 Hz, 2H), 1.82 – 1.71 (m, 2H), 1.71 

– 1.61 (m, 1H), 1.47 (dtd, J = 15.3, 7.7, 3.8 Hz, 1H), 1.40 – 1.29 (m, 2H), 1.30 – 1.17 (m, 2H), 

1.01 (tdd, J = 13.5, 11.5, 3.6 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 211.4, 177.2, 68.1, 55.8, 

43.2, 43.2, 42.0, 37.9, 35.3, 34.3, 33.1, 32.5, 28.4, 27.1; HRMS (ESI): Exact mass calc’d for 

C14H21O3 [M+H]+, 237.1491. Found 237.1478. 

Scheme 2.34 Epimerization of the minor stereochemistry to the major, all-trans II-195 

 

Compound II-215. 

The same procedure was followed as for the formation of compound II-195 above. 

Compound epi-II-148 (110.0 mg, 0.51 mmol) was diluted in a flame-dried flask with MeOH (9.6 

mL). Pd/C (55.0 mg, 0.051 mmol, 10 mol %) was added at room temperature. H2 was bubbled 

through solution for 1 minute, and then the reaction stirred under H2 overnight. The reaction was 

then purged with N2 for 10 minutes before filtering through Celite with EtOAc. The solvent was 
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evaporated under reduced pressure, yielding the clean hydrogenated product (101.5 mg, 0.46 

mmol, 90%): [α]D = –37.1 (c 0.19, CHCl3); IR (Germanium ATR): 2924, 2851, 1704, 1446, 1121 

cm–1; 1H NMR (500 MHz, Chloroform-d) δ 3.30 (t, J = 4.4 Hz, 1H), 2.52 (ddt, J = 16.1, 4.8, 2.3 

Hz, 1H), 2.42 (td, J = 13.4, 6.4 Hz, 1H), 2.28 (ddt, J = 13.3, 4.1, 2.2 Hz, 1H), 2.19 (ddd, J = 16.2, 

12.7, 6.4 Hz, 2H), 2.05 (qq, J = 12.5, 5.0, 4.2 Hz, 1H), 1.94 (tdd, J = 14.2, 6.9, 3.8 Hz, 3H), 1.89 

– 1.76 (m, 4H), 1.72 – 1.61 (m, 2H), 1.45 – 1.35 (m, 1H), 1.25 (dtd, J = 17.3, 13.3, 4.2 Hz, 2H), 

1.16 – 1.01 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 210.3, 209.6, 55.6, 49.6, 42.6, 41.4, 40.5, 

36.9, 34.1, 32.3, 31.0, 27.7, 23.9, 23.5; HRMS (ESI): Exact mass calc’d for C14H20O2Na [M+Na]+, 

243.1361. Found 243.1360. 

To epimerize to the all trans conformation II-195:  

II-215 (135.0 mg, 0.61 mmol) was dissolved in THF (6 mL, 0.10 M). NaOMe (1.53 mL, 1 M in 

MeOH, 1.53 mmol, 2.5 equiv) was added at room temperature. After stirring for 50 minutes, the 

yellow mixture was quenched with saturated NH4Cl and extracted with ether. The combined 

organic extracts were dried over MgSO4 and the solvent evaporated under reduced pressure, 

yielding the cleanly epimerized material, II-195 (134.8 mg, 0.61 mmol, quantitative yield). 

Compound II-216. 

II-176, a 1.3:1 mixture of diastereomers, (5.0 mg, 0.03 mmol) was diluted in a flame-

dried flask with MeOH (1 mL). Pd/C (3.2 mg, 0.003 mmol, 10 mol %) was added at room 

temperature. H2 was bubbled through solution for 1 minute, and then the reaction stirred under H2 

overnight. The reaction was then purged with N2 for 10 minutes before filtering through Celite 

with EtOAc. The solvent was evaporated under reduced pressure, yielding the clean hydrogenated 

product as a mixture of diastereomers (5.0 mg, 0.03 mmol, quantitative yield): 1H NMR (500 MHz, 
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Chloroform-d) δ 2.98 – 2.92 (m, 1H), 2.88 (d, J = 12.6 Hz, 1H), 2.64 (t, J = 12.1 Hz, 1H), 2.56 (dt, 

J = 17.7, 4.0 Hz, 1H), 2.50 (dd, J = 16.8, 6.5 Hz, 1H), 2.36 (dddd, J = 33.0, 22.8, 16.3, 11.9 Hz, 

6H), 2.23 (t, J = 11.5 Hz, 1H), 2.12 – 1.90 (m, 6H), 1.90 – 1.48 (m, 11H), 1.31 – 1.20 (m, 3H); 13C 

NMR (126 MHz, CDCl3) δ 214.3, 212.7, 211.4, 209.8, 53.6, 50.9, 49.1, 44.1, 44.0, 43.8, 42.2, 

41.8, 41.5, 41.2, 36.7, 34.1, 32.4, 32.0, 26.4, 23.3, 22.6, 22.3. 

Compound II-197. 

The same epimerization conditions were used as detailed above, converting the 

mixture of hydrogenated diastereomers into the trans product. II-216 (5.0 mg, 0.03 mmol) was 

dissolved in THF (0.5 mL). NaOMe (75 µL, 1 M in MeOH, 0.08 mmol, 2.5 equiv) was added at 

room temperature. After stirring for 20 minutes, the yellow mixture was quenched with saturated 

NH4Cl and extracted with ether. The combined organic extracts were dried over MgSO4 and the 

solvent evaporated under reduced pressure, yielding a single diastereomer where the minor 

diastereomer had successfully epimerized to the major trans-product, II-197 (5.0 mg, 0.03 mmol, 

quantitative yield): [α]D = –15.4 (c 0.23, CHCl3); IR (Germanium ATR): 2918, 2849, 1701, 1462, 

1091 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 2.88 (dd, J = 12.7, 1.7 Hz, 1H), 2.67 – 2.60 (m, 

1H), 2.56 (dddd, J = 17.6, 4.9, 3.2, 1.3 Hz, 1H), 2.45 – 2.26 (m, 3H), 2.23 (tt, J = 11.4, 1.4 Hz, 

1H), 2.07 (dtd, J = 12.6, 6.2, 3.2 Hz, 1H), 2.04 – 1.98 (m, 1H), 1.98 – 1.91 (m, 1H), 1.87 – 1.79 

(m, 1H), 1.77 – 1.68 (m, 1H), 1.68 – 1.59 (m, 1H), 1.56 – 1.48 (m, 1H), 1.26 (d, J = 9.9 Hz, 2H); 

13C NMR (126 MHz, CDCl3) δ 214.3, 209.8, 53.6, 49.1, 43.8, 41.8, 41.5, 36.7, 34.1, 26.4, 22.3; 

HRMS (EI): Exact mass calc’d for C11H16O2 [M]+, 180.1150. Found 180.1148. 
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Compound II-198. 

A solution of II-167 (8.0 mg, 0.030 mmol) in THF (0.6 mL) was cooled to  

–78 °C and a solution of L-selectride was added dropwise (1 M, 90 µL, 0.088 mmol, 2.4 equiv). 

The reaction was maintained at this temperature, and upon observed consumption of the starting 

material by TLC, (2h) the gold reaction was warmed to 0 °C and quenched with saturated NH4Cl 

solution. The mixture was extracted with EtOAc, the combined organic extracts were dried over 

Na2SO4, and the solvent evaporated under reduced pressure. The crude material was flashed with 

2% EtOAc/hexanes (4.5 mg, 0.016, 54%): [α]D = +197.6 (c 0.20, CHCl3); IR (Germanium ATR): 

2963, 2929, 1719, 1690, 1373 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 5.35 (s, 1H), 2.82 (t, J 

= 11.3 Hz, 1H), 2.75 – 2.65 (m, 2H), 2.61 (t, J = 11.1 Hz, 1H), 2.28 – 2.19 (m, 2H), 2.19 – 2.10 

(m, 1H), 2.06 – 1.95 (m, 2H), 1.84 – 1.78 (m, 1H), 1.70 (s, 3H), 1.69 – 1.58 (m, 1H), 1.44 (t, J = 

11.7 Hz, 1H), 1.38 – 1.28 (m, 1H), 1.03 (d, J = 3.6 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 212.6, 

211.9, 136.7, 122.5, 52.3, 51.6, 47.3, 46.0, 45.1, 43.1, 39.3, 37.2, 33.9, 29.7, 28.6, 21.4, 19.7, 14.4; 

HRMS (ESI): Exact mass calc’d for C18H26O2Na [M+Na]+, 297.1831. Found 297.1831. 

Compound II-217.  

To a solution of II-168 (14.7 mg, 0.039 mmol) in THF (0.5 mL) at 0 °C was 

added a solution of 1 M TBAF in THF dropwise (50 µL, 0.05 mmol, 1.3 equiv). Upon observed 

consumption of starting material by TLC (40 min), the reaction was filtered through silica gel with 

EtOAc and the solvent evaporated under reduced pressure. The crude material was purified by 

flash chromatography on silica gel with 30% to 50% EtOAc/hexanes (9.3 mg, 0.036 mmol, 91%): 

[α]D = +499.1 (c 0.39, CHCl3); IR (Germanium ATR): 3435, 2922, 2855, 1679, 1372, 1052, 806 

cm–1; 1H NMR (500 MHz, Chloroform-d) δ 6.70 (dd, J = 10.2, 2.0 Hz, 1H), 6.55 (dt, J = 5.7, 1.8 
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Hz, 1H), 6.04 (dd, J = 10.2, 2.4 Hz, 1H), 5.73 (q, J = 1.9 Hz, 1H), 4.27 (dt, J = 9.6, 2.2 Hz, 1H), 

2.74 – 2.63 (m, 3H), 2.43 (tdd, J = 11.6, 4.5, 2.3 Hz, 1H), 2.35 (td, J = 11.7, 11.1, 5.9 Hz, 1H), 

2.14 (ddq, J = 18.5, 10.9, 2.5 Hz, 1H), 1.97 (d, J = 15.9 Hz, 1H), 1.83 (dt, J = 2.9, 1.5 Hz, 3H), 

1.72 (q, J = 1.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 200.5, 199.5, 148.8, 140.3, 136.6, 135.8, 

130.1, 120.3, 73.1, 47.7, 47.0, 45.0, 41.4, 32.2, 20.3, 15.9; HRMS (ESI): Exact mass calc’d for 

C16H18O3Na [M+Na]+, 281.1154. Found 281.1159. 

Compound II-218.  

To a solution of II-169 (10.0 mg, 0.031 mmol) in acetone (0.5 mL) was added I2 

(~1 mg) at room temperature. The brown reaction stirred at room temperature for 

20 minutes before quenching with saturated Na2S2O3. The mixture was extracted with DCM, the 

combined organic extracts were dried over Na2SO4, and the solvent evaporated under reduced 

pressure. The crude material was purified by flash chromatography on silica gel with 20% 

EtOAc/hexanes (7.8 mg, 0.029 mmol, 93%): [α]D = +260.7 (c 0.31, CHCl3); IR (Germanium 

ATR): 3026, 2920, 2825, 1724, 1685, 1378, 1042, 749 cm–1; 1H NMR (500 MHz, Chloroform-d) 

δ 9.59 (d, J = 3.7 Hz, 1H), 6.80 (ddd, J = 10.1, 5.2, 2.2 Hz, 1H), 6.06 (dd, J = 10.1, 3.0 Hz, 1H), 

6.01 (dq, J = 3.3, 1.7 Hz, 1H), 5.34 (q, J = 1.8 Hz, 1H), 3.35 (ddt, J = 9.9, 3.6, 2.4 Hz, 1H), 2.96 – 

2.89 (m, 1H), 2.82 (dd, J = 12.6, 10.8 Hz, 1H), 2.75 (dd, J = 12.3, 10.8 Hz, 1H), 2.55 – 2.45 (m, 

2H), 2.24 (ddt, J = 19.3, 12.0, 2.5 Hz, 1H), 1.94 – 1.89 (m, 3H), 1.61 (dt, J = 2.6, 1.4 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 200.0, 199.5, 199.5, 145.8, 141.3, 133.2, 132.2, 130.5, 126.8, 57.1, 

46.7, 44.6, 40.4, 38.3, 34.3, 23.3, 16.3; HRMS (ESI): Exact mass calc’d for C17H18O3Na [M+Na]+, 

293.1154. Found 293.1159. 
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2.9.7 Cell viability assays 

2.9.7.1 Cell line growth conditions 

Cell lines PC-3, HT29, Hela, and MDA-MB-231 were cultured in RPMI1640 with 10% FBS 

media. Cell line MDA-MB-231-LM24 was cultured in DMEM with 400 ug/mL geneticin. 

Normal breast cell line MCF10A was cultured in DMEM/F12 with 5% horse serum, 20 ng/mL 

EGF, 0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 µg/mL insulin, and 1% pen/strep. 

2.9.7.2 Cell viability experiments at 1 mM 

PC-3, HT29, Hela, and MDA-MB-231, and MDA-MB-231-LM24 cells were plated in 96-

well black plates at a density of 20,000 cells per well (based on NCI recommendation for adherent 

cells) in 90 µL volume of 5% FBS RPMI1640 complete media with 50 µg/mL gentamicin and 

incubated at 37 oC overnight. Each compound was diluted in RPMI1640 complete media 

supplemented with 5% FBS and 50 µg/mL of gentamycin, and 10 µL of this solution was added 

to each well to give a final concentration of 1 mM (1% overall DMSO, N=4 wells). 

Normal breast cells (MCF10A) were plated in 96-well black plates at a density of 20,000 

cells per well (based on the NCI recommendation for adherent cells) in 90 µL volume of 

DMEM/F12 with 2% horse serum, 0.5 µg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 µg/mL 

insulin, and 1% pen/strep, and incubated at 37 oC overnight. The compounds were diluted in the 

media specified above, and 10 µL of this solution was added to each well to give a final 

concentration of 1 mM (1% overall DMSO, N=4 wells). Cells treated with media containing 1% 

DMSO were used as a negative control. 

48 hours following treatment, cell proliferation was evaluated using the CellTiter-GLO 

Luminescent Cell Viability Assay (Promega, Madison, WI). Plates were allowed to equilibrate to 
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room temperature for 20 minutes, and 100 µL of CellTiter-GLO reagent was added to all wells. 

The plates were shaken for 2 minutes and incubated at room temperature for 10 

minutes.  Luminescence was measured using a Syngergy H1-M microplate reader (BioTek 

Instruments, Inc.). 

2.9.7.3 IC50 experiments 

The compound was diluted in RPMI1640 complete media supplemented with 5% FBS and 

50 µg/mL of gentamycin, and 10 µL of this solution was added to each well to give a final 

concentration of 0.00001-1 mM (N=4 wells). DMSO was held constant at 1%, for all dose points. 

48 hours following treatment, cell proliferation was evaluated using the CellTiter-GLO 

Luminescent Cell Viability Assay (Promega, Madison, WI). Plates were allowed to equilibrate to 

room temperature for 20 minutes, and 100 µL of CellTiter-GLO reagent was added to all wells. 

The plates were shaken for 2 minutes and incubated at room temperature for 10 

minutes.  Luminescence was measured using a Syngergy H1-M microplate reader (BioTek 

Instruments, Inc.). The IC50 value was determined by Prism GraphPad Software. 
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Chapter 3 

Application of the Developed “Couple and Close” Strategy to the Synthesis of Antimalarial 

Diterpene (+)-7,20-Diisocyanoadociane 

 

 

 

 

 

 

 

Portions of this chapter appear in the following publication: 

Emily E. Robinson and Regan J. Thomson, A Strategy for the Convergent and Stereoselective 

Assembly of Polycyclic Molecules. J. Am. Chem. Soc. 2018, 140, 1956–1965. 
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3 Chapter 3 

3.1 Introduction 

The development of novel synthetic methods and approaches enables strategic innovation 

for the construction of complex natural products with desirable properties for further investigation. 

Complex structures from nature with inherently selective and potent bioactivities serve as 

unlimited inspiration for effective therapeutics and as a testing ground for novel synthetic methods 

and strategies. The continued synthetic innovation by combining strategy and methods 

development is invaluable to the exploration of these great sources for advanced bioactivity.  

This chapter will discuss the application of the developed “couple and close” strategy for the 

construction of fused polycyclic structures (Chapter 2) to the synthesis of marine diterpenoid (+)-

7,20-diisocyanoadociane (DICA, III-1, Figure 3.1). This unique strategic development enabled 

the synthesis of this intricate natural product, demonstrating the ability to employ the approach in 

complex molecule synthesis in order to facilitate further investigations of bioactive compounds. 

Figure 3.1 Diterpene 7,20-diisocyanoadociane III-1 

 

 
3.2 Isocyanoterpenes 

3.2.1 Structure of isocyanoterpenes 

Isocyanoterpenes (ICTs) are a class of over 130 terpene natural products isolated from 

marine organisms that contain nitrogenous functionality (i.e. isonitrile, isocyanate, formamide, and 
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isothiocyanate) which imparts an array of biological activity among the family. These compounds 

have been of interest to chemists and biologists alike due to their noteworthy biological properties, 

complex chemical structures, and unique nitrogen-containing functionality suggesting interesting 

biosynthetic pathways. As such, they have been central to many investigations and reviewed in 

different capacities over the years.264-270 

Within this class of molecules exists a wide assortment of structures with varied carbocyclic 

composition (Figure 3.2), all of which contain a dense array of stereocenters and are equipped with 

nitrogenous functionality.  

 
Figure 3.2 Various ICT carbocyclic scaffolds 

 

Figure 3.2a depicts representative sesquiterpene carbon skeletons, demonstrating a vast diversity 

from the monocyclic bisabolene core (III-2) to the bicyclic cores of varying ring size and fusion 

(III-3–III-7), to the tricyclic pupukeananes (III-8 and III-9). Figure 3.2b exhibits representative 
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diterpenoid scaffolds, showing the tricyclic kalihinane (III-10) and amphilectane cores (III-11), 

as well as the tetracyclic cycloamphilectane, or adociane, scaffold (III-12). The perhydropyrene 

core of the cycloamphilectane family (III-12) will be the main focus of the discussion herein. 

Isolated in 1976 from the Cymbastela hooperi species of Adocia sponges on the Great Barrier 

Reef near Townsville, Australia, 7,20-diisocyanoadociane (III-1, Figure 3.1) was the first 

isocyanoterpene to be isolated containing a perhydropyrene core.271 The unique structure boasts 

all-trans stereochemistry about the ring junctions with two equatorial methyl substituents at C3 

and C15. One of the molecule’s most intriguing and challenging structural features lies in the two 

isonitrile substituents at C7 and C20, occupying the equatorial and axial positions, respectively. 

3.2.2 Biosynthesis of diterpenoid isonitriles 

3.2.2.1 Construction of the carbocyclic core 

The biosynthesis of terpenes has been heavily investigated and as such, the construction of 

the core structures of many ICTs is well understood, with the introduction of the nitrogen-

containing functionality following the production of the carbocyclic scaffold.267 Diterpenes are 

derived from geranylgeranyl pyrophosphate III-13, and as shown in Scheme 3.1, upon oxidation 

and enzyme-facilitated cyclization of III-13, bicyclic bifloradine intermediate III-14 can be 

produced bearing the trans-relationship as shown, or the cis-relationship, depending on the 

enzyme. This is a key intermediate for the biosynthesis of a variety of structurally distinct ICTs, 

but with respect to the biosynthesis of DICA III-1, a subsequent cyclization and hydroisocyanation 

event, which will be discussed in more detail later in the section, delivers the tricyclic amphilectane 

III-15. Following the cyclization of III-15 to produce tetracyclic cycloamphilectane III-16, 
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another hydroisocyanation with accompanying 1,2-methyl shift is required for the conversion to 

DICA III-1, although the exact process by which this occurs has not been yet proven.267  

Scheme 3.1 Proposed biosynthesis of diisocyanoadociane III-1 

 

3.2.2.2 Incorporation of nitrogen-containing functionality 

Nature’s integration of the nitrogen-containing functionality to this class of molecules has 

been of great interest to the scientific community. It was originally hypothesized that the addition 

of ammonia to a carbenium ion would result in an amine that could be alkylated and subsequently 

dehydrated to the isocyanide.272 However, it is now widely accepted that either unsaturation within 

the terpene structures can undergo a hydroisocyanation with inorganic cyanide, or the 

corresponding alcohol can be ionized and trapped by a cyanide ion (Scheme 3.2).266, 270  

Scheme 3.2 Proposed isonitrile incorporation 
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Garson and coworkers demonstrated for the first time in the late 1980s that the isocyanide 

substituents of 7,20-diisocyanoadociane III-1 were indeed derived from inorganic cyanide, as 

experiments incorporating [14C]-cyanide into the sponge species led to the production of 

radioactive [14C]-III-1.272-273 As shown in Scheme 3.3a, it was proven that the isonitrile 

functionality was responsible for this radioactivity through a series of hydrolyses. The first 

hydrolysis product, bis(formamide) III-20, preserved 96% of the radioactivity of the bis(isonitrile) 

[14C]-III-1; the subsequent monoformamide intermediate III-21 retained 49% of the radioactivity; 

and finally, the bis(amine) species III-22 only maintained 1.5–3.7% of the radioactivity, resulting 

from slight amide impurities. These studies have led to the understanding of how the common 

isonitrile functionality is naturally inserted into these molecules, and as ICTs are often isolated 

alongside the corresponding isothiocyanates, formamides, and amines, many research groups have 

investigated the biological process for the incorporation of these alternative functionalities. 

Scheme 3.3 Origin of isonitrile, formamide, and isothiocyanate functionalities 
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the isothiocyanate or formamide into the isonitrile did not occur (Scheme  3.3b).274 Later, Garson 

and coworkers established cyanide to be a common precursor to isonitrile, isothiocyanate, and the 

less common thiocyanate-containing molecules, indicating the ability for marine sponges to 

interconvert cyanide and thiocyanate at the inorganic level.266-267, 275-276  

3.2.3 Bioactivity of isocyanoterpenes 

Marine ICTs have been investigated for a variety of biological activities. In general, the 

family displays only weak cytotoxic activity in mammalian cells, and demonstrates low toxicity.270 

The kalihinol family of diterpenes have exhibited some antibacterial activity, and some 

amphilectane diterpenes have revealed anti-inflammatory activity.270 

However, this class of compounds is known for their potent and selective antimalarial 

activity, serving as lead compounds for novel malaria therapeutics development. Malaria is a 

devastating disease transmitted by mosquitos that affected 91 countries in 2016, with the large 

majority of cases occurring in sub-Saharan Africa.277 According to the World Health 

Organization’s most recent annual report, roughly 216 million cases of malaria occurred in 2016, 

99% of which can be attributed to the most common malaria parasite, Plasmodium falciparum, 

and 445,000 of which resulted in death.277 The major challenges confronting the elimination of 

this disease include a general lack of sufficient funding, the prevalence of the disease in conflict-

containing areas, and the development of resistance of mosquitos to insecticides and the parasite 

to current therapeutics. While impressive effort and funds have been supplied since 2000 to 

discover novel treatments and create distribution programs for less economically fortunate areas, 

the discovery of novel therapeutics to combat the increasing resistance to available medicines is 

of ever-growing importance.277  
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The need for architecturally complex structures to enhance the selective action of available 

drugs is represented in the history of malaria therapeutics. Early drugs, such as chloroquine (III-

26, Figure 3.3) are flat, composed of a quinoline ring system with only one sp3-center, however 

developing resistance to this compound led to a shift to topologically complex artemisinin-based 

treatments (III-27), with seven chiral centers and four fused rings.278 Adverse effects have been 

reported far less frequently with artemisinin-based treatments than for chloroquine, implicating 

structural sophistication in the selective action leading to less off-target effects.279-280 As the 

compound has saved millions of lives, the 2015 Nobel Prize in Physiology or Medicine was 

awarded to Professor Youyou Tu for her role in its discovery.281 Unfortunately, however, it too is 

beginning to suffer from growing resistance, driving the critical demand for the development of 

new chemotypes for supplementary therapeutics.278  

Figure 3.3 Common malaria therapeutics 

 

3.2.3.1 Mechanism of antimalarial activity 

Marine isocyanoterpenes have displayed potent antimalarial activities, and as such, have 
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heme substances is responsible for destroying the parasitic membrane and proteins.267, 282 This 

inhibition of heme detoxification is the process by which quinoline antimalarial therapeutics have 

been known to derive their activity.283 However, it has been recently revealed that these quinoline-

based compounds may have additional productive targets in addition to binding heme that add to 

the desired activity, and as such, continued research in this area is required to better understand 

the complete process and provide an informed path forward for optimal therapeutic 

development.284  

3.2.3.2 Structural-activity relationship studies 

In addition to the isonitrile functionality, compound structure and orientation of distal 

stereocenters have been shown to affect bioactivity.270 Wright and König published an extensive 

study of the antimalarial activity of a number of natural nitrogenous compounds.285 A selection of 

21 structurally distinct compounds isolated from marine sponges Cymbastela hooperi and 

Laurencia papillosa, a few of which are shown in Figure 3.4, were examined against two clones 

of Plasmodium falciparum (D6 and W2) as well as the mammalian KB cell line in order to probe 

the selectivity of action.  

Their results revealed (7,20)-diisocyanoadociane III-1 to be at the top of its class, 

exhibiting both potent and selective antimalarial activity with an IC50 value down to 4.7 nM against 

Plasmodium falciparum D6 clones and a selectivity index (SI) of 1000 against normal mammalian 

cells. As the family’s gold standard, the steric and electronic properties of all other natural 

compounds were compared to that of III-1 to identify potential structural sources or obstructions 

of activity. The alteration of the steric environment around C20 by disrupting the tetracyclic 

framework of III-1 diminished activity due to the proposed unfavorable steric environment of the 
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side chain, as α-substituted amphilectanes (III-28 and III-29) as well as β-substituted 

amphilectanes (i.e. III-30) provided greatly decreased activity and selectivity. Similarly, bicyclic 

III-31 displayed no antimalarial activity against either parasite clone. It is noted that the electronic 

properties of these natural compounds at C20 is also varied, and for III-30 and III-31, the 

electronic environment at C7 is also altered, and thus it is difficult to ascertain which change led 

to the observed reduction of activity. 

Figure 3.4 Antimalarial activity of nitrogenous terpene natural products 

 

The generation of molecular electrostatic potential maps (MEPs) revealed that compounds 
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C7 and C20 were the sites of particular interest. Investigations of the natural compounds containing 

the tetracyclic framework demonstrated that preservation of isonitrile electron density at C7 was 

best for activity, as compounds containing increased electron density at this position, with the 

isonitrile replaced by an isothiocyanate (III-32) or an isocyanate (III-33) substituent led to a large 

decrease in activity and selectivity. Interestingly, an increase in the electron density with an 

isocyanate substituent at C20, while the C7 isonitrile remains in tact (III-34), maintained effective 

levels of potency and selectivity. König and coworkers published a subsequent study employing 

molecular modeling in conjunction with observed activity to determine that for optimal binding to 

heme, leading to the desired antimalarial activity by inhibiting heme detoxification, a rigid 

carbocyclic backbone composed of at least three rings with an axial isonitrile moiety at C7 is 

required.283  

These investigations into the structural-activity relationship of marine ICT natural products 

established an elementary understanding of the factors that generally maintain or diminish the 

activity of DICA III-1, providing a broad picture of structural requirements for activity. However, 

the conclusions from these studies are limited by the use of only natural samples, as a greater 

number of structural permutations were unavailable. Moreover, the complex results from some of 

these studies suggest that another mechanism aside from the isonitrile binding of heme and 

resulting detoxification may be at play. Many unanswered questions remain about the mechanism 

or mechanisms of action, and how structural features affect these pathways. 

3.3 Previous syntheses of 7,20-diisocyanoadociane 

 In addition to its desirable antimalarial activity, DICA III-1 has been of significant interest 

to the synthetic community due to its complex carbocyclic structure, as has been demonstrated 
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over the years by the six successful syntheses of III-1.260, 286-290 The molecule continues to serve 

as an interesting structural target, as the three most recent syntheses have been disclosed within 

the past two years. The differing strategies that have emerged to build the three-dimensionally 

complex architecture highlight how the same structure can inspire such varied synthetic 

approaches. This variety of strategies emphasizes the challenge associated with the rapid and 

convergent synthesis of complex polycyclic core structures. 

3.3.1 Corey’s synthesis 

The first successful synthesis of DICA III-1 was achieved by Corey and Magriotis in 1987 

in 29 steps.286 The group accomplished two olefination–intramolecular Diels–Alder sequences to 

build the tetracyclic core structure of the natural product, highlighting the power of intramolecular 

Diels–Alder reactions to rapidly build carbocyclic complexity.  

As shown in Scheme 3.4, the synthesis began from the addition of chiral auxiliary (–)-

menthol III-35 to glutaric anhydride and subsequent conversion of the resulting carboxylic acid to 

the acid chloride to allow for a Stille coupling with tributyl(vinyl)tin, delivering enone III-36. 

Upon treatment with TMS phenyl selenide, ethylene glycol, and I2, III-36 was converted to a 

phenylseleno ketal intermediate, which was subsequently oxidized to the selenoxide with mCPBA, 

and eliminated to form ketal III-37. The authors noted that this two-step protocol was required 

because standard acid-catalyzed direct ketalization proved to be unsuccessful. Ketal III-37 was 

transformed to diester III-38 through an enantioselective and diastereoselective Michael addition 

to methyl crotonate (8:1 threo:erythro). Treatment with RedAl selectively reduced the less 

hindered ester, and subsequent protection of the resulting alcohol yielded ester III-39. Reduction 

of the ester with lithium aluminum hydride led to an intermediate primary alcohol which was 
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oxidized to the aldehyde with pyridinium dichromate, and a subsequent Wittig olefination afforded 

trans-diene III-40. This diene underwent the first intramolecular Diels–Alder cycloaddition upon 

heating to 150 ºC to present trans-decalin species III-41 selectively. The acetal was discovered to 

be necessary, as this transformation with the unprotected ketone exclusively provided the cis-

decalin system. To set the stage for the second olefination–Diels–Alder sequence, the silyl ether 

within III-41 was deprotected to the alcohol and subsequently oxidized to the aldehyde with 

pyridinium dichromate. The desired olefination was achieved using Horner–Wadsworth–Emmons 

conditions, providing the (E,E)-diene III-42.  

Scheme 3.4 Corey's synthesis 
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Subsequent DIBAL reduction of the ester and protection of the resulting alcohol gave a benzyl 

ether intermediate which underwent the second intramolecular Diels–Alder reaction upon heating 

to 185 ºC, providing tetracyclic product III-43 as a 1.5:1 mixture of diastereomers. This mixture 

would prove to be inconsequential, as epimerization later in the synthesis was possible. Upon 

treatment with Pd/C and H2, the alkene of III-43 was hydrogenated and the primary alcohol 

unveiled, which was then oxidized to the aldehyde with pyridinium dichromate. This aldehyde 

intermediate was refluxed with pyrrolidine and tosic acid in benzene to give an enamine which 

was oxidatively cleaved at the alkene with ruthenium tetraoxide to deliver III-44. To achieve the 

all trans-carbocyclic core, it was necessary at this stage to epimerize the C11 position using sodium 

methoxide. A subsequent α-methylation upon exposure to LDA and methyl iodide resulted in a 

mixture of axial and equatorial α-methyl ketones, but again, treatment of this mixture with sodium 

methoxide provided smooth epimerization to the desired equatorial α-methyl ketone. The ketal 

was removed upon treatment with HCl in acetone to afford the key tetracyclic diketone 

intermediate III-45, known as the “Corey dione,” which has been the target of three formal 

syntheses to date.260, 288-289 To access the natural product, diketone III-45 was treated with 

methyllithium and cerium chloride to selectively access the diaxial diol, which was converted to 

the bis(trifluoroacetate) upon exposure to trifluoroacetic anhydride and pyridine. In the final step, 

the unselective installation of the isonitrile functionality by trifluoroacetate displacement with 

TMSCN in the presence of titanium tetrachloride resulted in a mixture of four diastereomeric 

isonitriles, two of which were separable using thin-layer chromatography, and the other two were 

isolated by HPLC. This allowed for the assignment of the absolute stereochemistry of the natural 

compound III-1. 
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3.3.2 Mander’s synthesis 

 In 2006, Mander and Fairweather completed a successful 42-step formal synthesis of racemic 

DICA III-1.287 The strategy features multiple key Birch reductions, a late-stage Michael addition 

to fashion the fourth ring of the system, and a double Curtius rearrangement to install the isonitrile 

functionality with stereocontrol.  

 The synthesis began with a Birch reduction of III-46 and subsequent in situ alkylation with 

iodide III-47 (Scheme 3.5). A Lewis acid-mediated cyclization, followed by an acylation catalyzed 

by aluminum trichloride at cold temperatures provided tricyclic ester III-48. Upon treatment with 

lithium metal in ammonia, this intermediate was reduced to cis-fused hydroxy ketone III-49. 

Protection of the primary alcohol, followed by reduction of the carbonyl and subsequent benzoate 

protection of the resulting secondary alcohol afforded III-50 as a single diastereomer. As the 

desired epoxidation of III-50 was hindered by the MOM protecting group, it was replaced with an 

acetate protecting group, which allowed for the epoxidation with mCPBA to yield III-51 as a 

mixture of epimers. Upon exposure to BF3•OEt2, epoxide III-51 successfully rearranged to the α-

methyl ketone, providing a mixture of diastereomers. Fortunately, this mixture proved to be 

inconsequential because the hydrolysis of the acetate group and subsequent retro-aldol 

transformation to remove the substituent under basic conditions led to simultaneous epimerization 

of the α-methyl substituent to the desired more thermodynamically favorable equatorial position, 

providing III-52 as a single diastereomer. A Wittig olefination of the ketone provided an 

intermediate vinyl methyl ether which was hydrolyzed to unveil the aldehyde, however the desired 

subsequent α-alkylation to access aldehyde III-53 proved to be unsuccessful. As a clever solution, 

the vinyl methyl ether Wittig product underwent a Simmons–Smith cyclopropanation, which was  
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Scheme 3.5 Mander's synthesis 

 

reluxed in acid to promote ring-opening to the desired aldehyde III-53. NMR experiments at this 
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 To set the stage for the key late-stage Michael addition, it was first necessary that the 

protected alcohol within III-58 be converted to the ketone. The group hypothesized that upon 

removal of the TBS protecting group, however, the resulting alcohol would rapidly cyclize onto 

the enone, thus the enone carbonyl was first reduced with sodium borohydrate in the presence of 

cerium chloride (Scheme 3.6). Deprotection of the TBS group followed by a double Dess–Martin 

periodinane-mediated oxidation provided diketone III-59.  

Scheme 3.6 Completion of Mander’s formal synthesis 
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then underwent a Barton-McCombie deoxygenation to form tetracyclic intermediate III-62. 

Conversion of bis(ester) III-62 to the bis(acid chloride) was achieved upon treatment with sodium 

propanethiolate followed by oxalyl chloride, and subsequent transformation to the diacyl azide 

III-63 was accomplished with sodium azide. The undesired byproduct from the Michael reaction 

III-60 could also converge on the key late-stage diacyl azide III-63 through a series of eight 

transformations. A final Curtius rearrangement was performed by refluxing III-63 in toluene to 

achieve the bis(isocyanate) III-64. The formal synthesis was then completed when this 

intermediate III-64 was hydrolyzed in concentrated HCl to give the diamine III-22, which was 

found to be identical to samples from the hydrolysis of the natural DICA III-1 (Scheme 3.3).  

3.3.3 Miyaoka’s synthesis 

In 2011, Miyaoka and coworkers published a 29-step formal synthesis of DICA III-1, 

targeting Corey’s late-stage dione intermediate III-45 as their formal endpoint.288 The strategy 

bears much resemblance to the Corey strategy, employing a key olefination and two intramolecular 

Diels–Alder reactions to fashion the carbocyclic core structure.  

As shown in Scheme 3.7, the synthesis began with enantioenriched lactone III-65, 

affecting a stereoselective α-allylation, followed by a reduction of the ketone with DIBAL, and 

subsequent protection of the resulting alcohol as the benzyl ether to afford III-66. A 

hydroboration/oxidation of the alkene and protection of the resulting alcohol delivered III-67. The 

benzyl protecting group was removed upon treatment with Pearlman’s catalyst in the presence of 

hydrogen, and the intermediate hemiacetal was treated with allyl Grignard to produce diol III-68 

as a 5:3 mixture of diastereomers. The primary alcohol was then selectively protected as the 

triphenylmethyl ether, and the remaining secondary alcohol was converted to the tosylate and then 
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eliminated in the presence of sodium hydride in DMSO, providing the (E)-diene. Finally, 

deprotection of the silyl protecting group provided alcohol III-69. The free alcohol was oxidized 

in the presence of IBX, and a vinyl Grignard addition into the resulting aldehyde delivered alcohol 

III-70. Upon treatment with IBX, the allylic alcohol was oxidized to the enone which underwent 

a Diels–Alder cycloaddition, yielding cis-decalin III-71 as the only product. The ketone within 

III-71 was then reduced to the alcohol with sodium borohydride, yielding a mixture of 

diastereomers that were protected as the TBS ether. The triphenylmethyl ether protecting group 

Scheme 3.7 Miyaoka's synthesis 
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was removed in the presence of diethylaluminum chloride to provide the primary alcohol which 

was oxidized to aldehyde III-72 with IBX. This aldehyde underwent a Horner–Wadsworth–

Emmons olefination with III-73 to give the (E,E)-unsaturated ester, which was then reduced with 

lithium aluminum hydride to produce allylic alcohol III-74. The alcohol was protected as a 

triphenylmethyl ether, the silicon protecting group removed with TBAF, and the resulting 

secondary alcohol oxidized to the ketone with IBX to yield III-75. When treated with DBU and 

BHT in mesitylene at 220 °C, this ketone III-75 underwent a key isomerization at the C8 position 

with accompanying intramolecular Diels–Alder reaction to afford tetracyclic III-76 as a 5:6 

mixture of diastereomers (exo:endo). To enable purification of the diastereomers, the 

triphenylmethyl protecting group was removed with diethylaluminum chloride to afford the 

separable alcohols III-77 (exo-adduct) and III-78 (endo-adduct) that were each taken forward to 

converge on the desired target Corey’s intermediate III-45. The exo-adduct III-77 was oxidized 

to aldehyde III-79 with IBX, which was subsequently deformylated and epimerized at the C11 

position in the presence of TBAF to afford III-80. Alternatively, the endo-adduct III-78 was first 

similarly oxidized to the aldehyde with IBX and deformylated with TBAF to achieve intermediate 

III-81. The required epimerization at the C1 position was accomplished in the presence of 

methanesulfonic acid in chlorobenzene at 100 °C to converge on intermediate III-80. The enone 

of this tetracycle III-80 was then hydrogenated with palladium on carbon and hydrogen to achieve 

the saturated diketone, which underwent a base-mediated epimerization at C15, thus accessing 

their formal target, Corey’s dione III-45.  
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3.3.4 Vanderwal’s synthesis 

Diisocyanoadociane III-1 continues to be of interest to the synthetic community, as three 

research groups have published novel syntheses of the molecule with different strategies since 

2016. Vanderwal and Roosen designed a 21-step synthesis formally targeting Corey’s intermediate 

III-45 in an efficient manner, featuring a Friedel-Crafts cyclodehydration and key stereoselective 

reductions.289  

As shown in Scheme 3.8, the racemic synthesis began with cyclohexenone III-82, accessed 

from a Robinson annulation of 3-methyl-4-pentenal and methylvinyl ketone. Conjugate addition 

of the cuprate of aryl nucleophile III-83 and enolate alkylation afforded an intermediate ketone 

with high diastereoselectivity, setting the three stereocenters in a trans-relationship. Reduction of 

the ketone with lithium aluminum hydride afforded diol III-84 as a 7:1 mixture of diastereomers. 

As this C7 position eventually contains the ketone within target III-45, this selectivity was 

inconsequential. Dual protection of both alcohols through generation of a tetrahydrofuran ring was 

achieved due to the observed tendency of the diol to cyclize. This allowed for an oxidative cleavage 

of the pendant alkene with osmium tetraoxide, and subsequent cyclodehydration in the presence 

of toluenesulfonic acid to provide tetracyclic III-85. Enone III-86 was achieved in gram quantities 

by employing a Birch reduction and subsequent acid-mediated hydrolysis and isomerization of the 

alkene to the enone, successfully installing the two new stereocenters at C1 and C3 with complete 

control. Reduction of this intermediate III-86 to the desired trans-product required some 

optimization. Although similar ring systems have been shown in the literature to produce the trans-

ring junction with dissolving metal conditions, this resulted in predominantly the cis-ring-fused 

product (2:1 dr). Other alkali-metal and homogenous hydride reagents (i.e Na, K, Karstedt’s  
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Scheme 3.8 Vanderwal's synthesis 
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the mixture of diastereomers was easily epimerized in the presence of base to afford the 

thermodynamically favored all-trans Corey dione III-45 as the formal endpoint of the synthesis.  

In order to access enantiopure III-45, the group had intended to render the first Robinson 

annulation enantioselective with the use of a chiral organocatalyst, however they were unable to 

discover conditions that allowed for the aldol condensation to occur without loss of enantiopurity. 

Therefore, they redesigned the beginning of the synthesis using readily available chiral (–)-

perillaldehyde III-90 to introduce the desired asymmetry (Scheme 3.9). They accessed 

cyclohexenone III-91 in three steps from III-90, and then successfully achieved the same 

conjugate addition/alkylation cascade as had been developed for their racemic synthesis to install 

the three all-trans stereocenters, followed by reduction with lithium aluminum hydride to provide 

III-92. Again, similar to their racemic synthetic route, generation of the tetrahydrofuran ring was 

accomplished upon treatment of III-92 with TsCl. Subsequent exposure of this intermediate to 

mCPBA generated the epoxide, which was refluxed in acid to form (–)-III-85 through a 

rearrangement to the aldehyde and subsequent ring closure and dehydration. This enantiopure 

tetracycle (–)-III-85 was an intermediate in the developed racemic synthesis, thus allowing for 

extrapolation to access the enantiopure target, Corey dione III-45. The Vanderwal route to Corey’s 

intermediate only required 10 purifications, and demonstrated the utility of a chiral-pool approach 

to rapidly generate enantiopure material in complex molecule synthesis.  

Scheme 3.9 Enantioselective synthesis with chiral pool materials 
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3.3.5 Shenvi’s synthesis 

In 2016, Shenvi and coworkers designed a concise, 17-step synthesis of DICA III-1 that 

cleverly introduced the isonitrile functionality with stereocontrol, which had been a challenge to 

previous syntheses due to difficulty differentiating between the isonitrile at C7 occupying the 

equatorial position, and the isonitrile at C20 occupying the axial position. The group elegantly 

employed chemistry that they had previously developed to convert a tert-alkyl trifluoroacetate to 

an isonitrile with stereoinversion in the presence of Sc(OTf)3 and TMSCN.292 As shown in Figure 

3.5, this required their overall strategy to differentiate the C7 and C20 positions throughout the 

synthesis to arrive at tetracycle III-93 with an axial alcohol at C7 and an equatorial alcohol at C20.  

Figure 3.5 Shenvi’s late-stage strategy for selective isonitrile installation 
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Scheme 3.10 Shenvi's synthesis 
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produce III-104 as a 95:5 mixture of diastereomers. This intermediate underwent a subsequent 

Diels–Alder reaction and auxiliary removal by a heteroretroene/decarboxylation sequence when 

heated to 200 °C to provide III-105. As the group’s overall strategy was rooted in the 

differentiation of the final isonitrile substituents, they sought to selectively achieve a methyl 

addition into the ketone at the C7 position of III-105 while leaving the enone in tact. This proved 

to be more difficult than the group had hoped, however it was eventually discovered that treatment 

of III-105 with tetramethylaluminum magnesium bromide and anisole gave the axial alcohol at 

the C7 position without reacting with the enone carbonyl. Attempts to stereoselectively 

hydrogenate the alkene employing palladium, platinum, or rhodium catalysts were unsuccessful 

because the strain associated with the alkene led to deconjugation and unselective hydrogenation. 

Fortunately, the group had previously developed hydrogen atom transfer hydrogenation 

conditions, using a manganese catalyst in the presence of tert-butyl hydrogen peroxide, phenyl 

silane, and isopropanol, to provide thermodynamically favored axial hydride delivery to other 

systems.293 These conditions successfully eliminated undesired isomerization and produced III-

106 as the major diastereomer (3:1 dr). The ester within III-106 was reduced in the presence of 

DIBAL and the resulting alcohol oxidized to yield aldehyde III-107. N-heterocyclic carbene-

mediated cyclization produced the tetracyclic intermediate, which was deoxygenated with 

samarium diiodide to yield ketone III-108. At this point, with the C7 axial alcohol in place, the 

strategy required a methyl addition into the ketone at C20 to give the equatorial alcohol at that 

position, which would enable the application of their stereoinvertive isonitrile installation to access 

the desired stereochemistry of the natural product III-1.292 With this goal, the group employed 

Yamamoto’s MAD reagent, which had successfully provided the desired equatorial alcohol in 
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model systems, however this reagent only provided the axial alcohol in the presence of 

organolithium, organomagnesium, and organocerium nucleophiles. The solution to this challenge 

resulted from an initial methylenation of the C20 ketone within III-108, followed by an 

oxymercuration, which delivered diol III-93 with the desired equatorial alcohol at C20. Late-stage 

installation of the isonitrile functionality employing their previously developed conditions by 

conversion of the diol III-93 to the bis(trifluoroacetate) and subsequent solvolysis in the presence 

of Sc(OTf)3 and TMSCN delivered DICA III-1 as a 5:1 mixture of diastereomers.  

Shenvi’s robust synthesis enabled biological investigations that led to interesting insights 

into the antimalarial mechanism of action of DICA. While it had been demonstrated previously 

that DICA binds to heme in blood-stage parasites, preventing its crystallization to β-hematin, 

which is necessary for P. falciparum survival (Section 3.2.3.1), these studies demonstrated that the 

compound was still active against liver-stage parasites, which do not require the protective 

crystallization of heme to survive. This activity suggests that another mechanism may also be at 

play, and provides more insight into the interesting and sought after bioactivity of these ICTs. 

3.4 Implementation of the couple and close strategy to DICA 

3.4.1 General strategy 

The all-trans perhydrophenanthrene core of DICA III-1 mapped nicely onto the trans-anti-

trans phenanthrene-type core structures that were readily accessible through the developed 

oxidative coupling–ring-closing metathesis strategy, as detailed in Chapter 2. With this realization, 

we selected the marine diterpenoid as the first natural product target with which to apply the 

approach, reasoning that we could efficiently access the late-stage Corey dione III-45 (Scheme 

3.11). We envisioned that the couple and close strategy would enable us to take advantage of the 
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pseudo-symmetry within the Corey dione III-45 and retrosynthetically dissect the structure down 

the middle. In this way, the synthetic strategy would provide highly convergent access to much of 

the target’s carbocyclic core, and allow for an efficient, symmetry-exploiting end game to furnish 

the final ring in the tetracyclic structure. Therefore, we targeted diketone III-109 as the key 

intermediate from which the Corey dione could be accessed through the appendage of a suitable 

two-carbon bridge to install the fourth ring. This central diketone intermediate could result from 

the global hydrogenation with axial hydrogen delivery of unsaturated tricyclic species III-110, 

which is simply the product of the three-step couple and close sequence from simple 

enantioenriched starting materials III-111 and III-112.  

Scheme 3.11 General strategy to access Corey's intermediate III-45 
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strategy, producing tricyclic diketone III-110 in 41% yield. This compound was amenable to X-

ray analysis, confirming the desired all-trans stereochemistry about the ring junctions. To access 

the required stereochemistry at the C3 and C15 positions within the natural product where both 

methyl substituents occupy the equatorial position, it was required that the ensuing hydrogenation 

of III-110 proceed with axial delivery of the hydrogen atoms.  

Scheme 3.12 Access to the key diketone intermediate III-109 
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semi-hydrogenated products. We were aware that Shenvi and coworkers had reported hydrogen 

atom transfer conditions selective for the production of thermodynamically favored products,293 

however application of these conditions to this system provided a more complex mixture of 

diastereomers than what was observed upon exposure to palladium on carbon and hydrogen.  

3.4.2 Initial late-stage strategy 

With a suitable strategy to access the key diketone intermediate III-109, rapidly 

constructing the majority of the target molecule’s core structure, we shifted our attention to the 

closure of the fourth and final ring of the system. As shown in Scheme 3.13, we imagined that the 

tetracyclic Corey dione III-45 could be accomplished from tetracyclic triene III-115 through a 

selective hydrogenation of the disubstituted olefin over the trisubstituted alkenes,294-297 followed 

by a hydroboration/oxidation sequence to install the ketone functionality at C7 and C20. We 

envisioned that tetracyclic triene III-115 could be accessed from bis(enol triflate) III-116 through 

a double transition metal-catalyzed coupling of a vinyl group to install the required C9 and C10 

carbons, followed by a ring-closing metathesis to close the fourth ring. We imagined that the 

coupling of alternative alkyl groups may be investigated for the C9 and C10 installation should 

the double vinyl coupling be unsuccessful. Finally, III-116 could be rapidly accessed from key 

diketone intermediate III-109 through a double enol triflate formation. 

Scheme 3.13 Initial late-stage strategy 
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With this strategy in mind, we initiated its execution on a model system lacking the 

peripheral methyl substituents due to the ease of preparation and analysis afforded by its C2-

symmetry. Thus, as shown in Scheme 3.14, the conversion of symmetrical diketone III-117 to the 

desired bis(triflate) III-119 was investigated. Unfortunately, all attempts to access the bis(triflate) 

species employing standard hard enolization conditions provided only the monotriflate species III-

120, with the most effective conditions of LDA and Comins’ reagent III-118 shown. Even full 

conversion to this monotriflate compound was difficult to achieve, resulting in significant amounts 

of reisolated starting material. Alteration of the triflating source to N-phenyl-triflimide only 

returned unchanged starting diketone III-117. Sequential additions of base and Comins’ reagent 

III-118 were successful in driving the reaction further to the monotriflate III-120, but this 

approach remained unable to deliver any of the desired bis(triflate) III-119. Additionally, 

resubjection of the isolated monotriflate III-120 to these conditions only resulted in unchanged 

starting material.  

Scheme 3.14 Attempts to form bis(triflate) III-119 
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119, however, proved to be unproductive under transition metal-catalyzed conditions to couple 

two suitable alkyl groups that would serve as the C9 and C10 carbons in the target molecule 

(Scheme 3.15). The double vinyl Stille coupling under a variety of conditions did not achieve the 

desired product III-121, either providing unreacted starting material or resulting in decomposition. 

Attempted conversion of bis(triflate) III-119 to bis(vinyl methyl) species III-122 with 

methyllithium and copper(I) iodide returned unreacted starting material. Similarly, methyl 

Grignard in the presence of NiCl2(dppp), methyl boronic acid in the presence of Ph(CN)2PdCl2, 

dimethyl zinc in the presence of Pd(PPh3)4, and tetramethyl tin in the presence of Pd(PPh3)4 all 

provided reisolated starting material III-119. These conditions were simultaneously employed on 

a model decalone-derived vinyl triflate system, demonstrating successful cross-coupling and 

confirming that the reactivity of the real compound was the root of the failed transformation.  

Scheme 3.15 Access to bis(triflate) III-119 and attempted manipulations 
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approach was less ideal as it would remove the efficiency that could be achieved by exploiting the 

natural pseudo-symmetry of the molecule. 

In the first approach, as shown in Scheme 3.16a on the model system, we imagined that 

the tetracyclic core III-123 could be achieved from triene III-124 through a selective 

hydrogenation and hydroboration/oxidation sequence, as described previously. This time, 

however, we proposed that this tetracycle III-124 could be obtained from diene III-125 through a 

ring-closing intramolecular transition metal-catalyzed coupling. This intermediate could arise 

from the monotriflate III-120 through a vinyl Stille coupling followed by conversion of the other 

ketone to the vinyl triflate. In the forward sense, as shown in Scheme 3.16b, monotriflate III-120 

successfully underwent a vinyl Stille coupling to produce diene III-126. The ketone within III-

126, however, could not be converted to the vinyl triflate III-125. Treatment with LDA and 

Comins’ reagent, conditions successful for the formation of the monotriflate III-120, resulted in 

unchanged starting material. After successive additions of these reagents, only starting material 

remained, and started to decompose over time. Alteration of the base to KHMDS also provided 

unchanged starting material.  

Scheme 3.16 First strategy from monotriflate III-120 
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We then turned our attention to the potential application of an intramolecular aldol 

condensation to fashion the fourth ring within III-123, thus targeting tricyclic tricarbonyl III-127, 

as shown in Scheme 3.17a. We did recognize the potential for this structure to undergo a competing 

aldol condensation with the alternate ketone to form the undesired five-membered ring, but 

nevertheless, we imagined that this intermediate could be accessed from triene III-128 through a 

triple hydroboration/oxidation and subsequent oxidation sequence. Triene III-128 could be 

obtained from the monotriflate III-120 through a transition metal-catalyzed triflate reduction 

followed by vinyl triflate formation of the remaining ketone and subsequent vinyl Stille coupling.  

Scheme 3.17 Second strategy from monotriflate III-120 
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successful, these hydroborations were simultaneously conducted on a model decalin diene system, 

providing successful double hydroboration diol products.  

 In the third designed approach, as shown in Scheme 3.18a, we envisioned that tetracyclic 

dione III-123 could be accessed in the same manner as detailed previously from tetracyclic triene 

III-124. In this case, we imagined that this intermediate could be accessed from bis(aldehyde) III-

132 through a McMurray reaction, which in turn could arrive from tricyclic III-122 through a 

double allylic oxidation and subsequent oxidation sequence. Because the bis(triflate) III-119 was 

unsuccessful in the attempted double palladium-catalyzed methyl installation to afford III-122 

(Scheme 3.15), we imagined that this bis(methyl) tricycle III-122 could be accessed in a stepwise 

manner from monotriflate III-120 through an initial methyl Stille couping, followed by vinyl 

triflate formation of the remaining ketone and subsequent methyl Stille coupling.  

Scheme 3.18 Third strategy from monotriflate III-120 
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the difficulty in forming and further manipulating bis(triflate) III-119, highlighted the instability 

associated with certain unsaturation within the rigid fused ring system. We imagined that with III-

134 in hand, we could repeat the two-step process to install the second methyl substituent and then 

isomerize to the bis(exocyclic olefin). Thus, the methyl coupling of this compound provided III-

135, however subsequent treatment with 2,6-di-tert-butylpyridine and triflic anhydride with the 

intention to promote isomerization to the exocyclic olefin provided instead isomerized III-136.  

3.4.4 Strategic return to symmetry  

It was clear to us at this point that the unsaturation within the rigid ring system was leading 

to challenging reactivity or undesired isomerization to relieve the apparently high levels of ring 

strain present. The unexpected access to the exocyclic olefin within III-134 (Scheme 3.18b) 

provided inspiration to target the bis(exocyclic alkene) in a direct manner from the key diketone 

intermediate. As shown in Scheme 3.19 on the real DICA system, we imagined that tetracyclic 

Corey dione III-45 could be accessed from a central tricyclic bis(enone) III-137 through a 

reductive olefin coupling. We surmised that due to the inherent proximity of the exocyclic alkene 

substituents, if a radical could be generated at the C9 or C10 position, the desired C9–C10 bond 

would readily form to fashion the fourth and final ring of the system. This bis(enone) III-137 could 

be accessed from a double allylic oxidation of bis(olefin) III-138, which could be efficiently 

obtained from a double olefination of the key diketone III-109.  

Scheme 3.19 Revised strategy returning to symmetry 
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 Implementation of this strategy on the symmetrical model system began with investigations 

into the double olefination of diketone III-117. As shown in Table 3.1, this transformation, 

analogous to the triflate formation as discussed above, also proved to be difficult to achieve, often 

producing only the monoolefin III-140. With a variety of known methylenation conditions, an 

assortment of experiments were conducted.  

Table 3.1 Olefination of diketone III-117 
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starting diketone. Wittig olefination conditions at room temperature provided unchanged starting 

diketone (entry 5), and raising the temperature to 70 ºC exclusively generated the monoolefin III-

140 with no bis(olefin) III-139 production (entry 6). However, upon sublimation of the potassium 

tert-butoxide and a slight elevation of the reaction temperature to 80 ºC, the first observation of 

the bis(olefin) III-139 was established (entry 7). As detailed in the Experimental Section 3.6, this 

unoptimized reaction employed 2.2 equivalents of base and 2.4 equivalents of the phosphonium 

reagent, providing a mixture of monoolefin III-140 (39%), and bis(olefin) III-139 (46%). These 

conditions were further optimized on the real DICA system, as will be detailed below. 

 With the bis(olefin) III-139 in hand, we turned our attention to the double allylic oxidation 

required to provide the key late-stage bis(enone). As shown in Table 3.2, initial investigations 

sought to access this bis(enone) III-141 directly. Treatment of bis(olefin) III-139 with known 

allylic oxidant CrO3•3,5-dimethylpyrazole (CrO3•DMP) did not provide the desired bis(enone) 

III-141, but rather bis(epoxide) III-143 (entry 1). Other known conditions for this direct 

transformation employing IBX and diphenyl diselenide at 80 ºC resulted in unchanged starting 

material (entry 2). An elevation of temperature to 115 ºC with these reagents provided a very 

complex mixture of products, with the bis(epoxide) III-143 as the major component (entry 3). 

Thus, we turned our attention to a two-step approach, first achieving the allylic oxidation to diol 

III-142, followed by a subsequent oxidation to the enone. Treatment of bis(olefin) III-139 with 

selenium dioxide, tert-butyl hydrogen peroxide, and salicyclic acid at room temperature provided 

unchanged starting material (entry 4). Exposure of bis(olefin) III-139 to selenium dioxide in 

methanol and dichloromethane at 65 ºC delivered a mixture of desired symmetrical and 

unsymmetrical diol diastereomers III-142, but did not achieve completion, with the isolation of 
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monoalcohol intermediates (entry 5). The same reagents in ethanol and dichloromethane at an 

increased temperature of 78 ºC enabled the reaction to proceed to completion, isolating 69% of the 

desired mixture of diastereomeric diols III-142 (entry 6). Disappointingly, an attempt to oxidize 

this mixture (III-142) to the bis(enone) III-141 with manganese dioxide resulted in only 

unchanged starting material (entry 7). When treated with Dess-Martin periodinane at room 

temperature, however, the mixture of diols (III-142) successfully converged on the desired 

bis(enone) III-141 in 89% yield.  

Table 3.2 Double allylic oxidation of bis(olefin) III-139 
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imagined that this substrate would be a suitable candidate for the application of conditions 

developed by Yoon and coworkers for the photocatalytic reductive cyclization of enones.299 As 

shown in Scheme 3.20, this disclosure allowed for the formation of a variety of cyclized products 

(III-145) from bis(enone) species such as III-144 in good yields and selectivities. The authors 

propose that under irradiation with a fluorescent bulb, the ruthenium catalyst is excited to the 

photoexcited state which is reduced by Hünig’s base to form the Ru+ species that delivers an 

electron to the protonated starting substrate (III-146). This radical delivery produces intermediate 

radical III-147, as well as regenerating the initial Ru2+ catalyst. The radical intermediate is then 

poised to undergo a 5-exo-trig cyclization to generate radical III-148, and a subsequent hydrogen 

atom transfer from the oxidized Hunig’s base species delivers the cyclized product III-145.   

Scheme 3.20 Yoon's reductive cyclization of enones 
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the bis(enone) system. To our delight, when bis(enone) III-141 was subjected to the conditions 

exactly as described by Yoon and coworkers, the desired tetracyclic diketone III-123 was 

smoothly delivered in 85% yield with no required optimization, producing a single symmetrical 

stereoisomer (Scheme 3.21).  

Scheme 3.21 Successful reductive ring closure 

 

3.4.5 Successful synthesis of Corey dione 

Having successfully accessed the symmetrical, demethylated version of the Corey dione 

(III-123), we sought to implement the sequence and optimize the conditions on the real DICA 

system to access Corey dione III-45 (Scheme 3.22). The ideal route to diketone III-109 was 

previously discussed, and the ensuing double olefination of this central intermediate was 

optimized, discovering that an increase in the equivalents of base and phosphonium reagents to 

3.6 and 3.7, respectively, allowed for complete conversion to the bis(olefin) III-138 in 82% yield. 

The two-step double allylic oxidation was operationally simplified to proceed without purification 

of the intermediate mixture of diol diastereomers, but rather a simple removal of the solvent, 

followed by dilution with dichloromethane and addition of Dess-Martin periodinane provided a 

50% yield of bis(enone) III-137 over two steps. The final reductive enone coupling proceeded 

without optimization to deliver the target Corey dione III-45 in 92% yield. Axial protonation for 
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likely favored kinetically due to the strain imparted by the rigid fused system for equatorial 

delivery, as has been observed for similar cyclohexanone and decalone systems.300-301 This 

concluded our synthesis of Corey dione III-45 in 12 steps from (R)-III-113 in 4.2% overall yield 

(or 2.4% yield from commercially available (E)-3-(trimethylsilyl)prop-2-en-1-ol)), thus 

completing a 17-step formal synthesis of (+)-7,20-diisocyanoadociane III-1.260  

Scheme 3.22 Successful synthesis of Corey dione III-45 
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biologists for their complex chemical structures and promising biological activities. As the leader 
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structure. We have successfully applied the developed couple and close strategy to the formal 

synthesis of DICA, demonstrating a novel approach to build the core scaffold compared to the 

previous syntheses. The implementation of our general strategy allowed for much of the 

carbocyclic core to be convergently assembled, and enabled the natural pseudo-symmetry of the 

molecule to amplify the efficiency of the final stages of the synthesis.260 

3.6 Experimental Section 

3.6.1 General information 

 All reactions were carried out under a nitrogen atmosphere in flame-dried glassware with 

magnetic stirring unless otherwise stated.  Methanol, THF, ether and DCM were purified by 

passage through a bed of activated alumina.261 Reagents were purified prior to use unless otherwise 

stated following the guidelines of Armarego and Chai.262 Purification of reaction products was 

carried out by flash chromatography using SiliCycle silica gel F60, 40-63 µm (230-400 mesh).  

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F 

plates.  Visualization was accomplished with UV light and p-anisaldehyde stain. Germanium ATR 

infrared spectra were recorded using a Bruker Tensor 37.  1H-NMR spectra were recorded on a 

Varian Inova 500 (500 MHz), Agilent DD2 (500MHz), Agilent DD MR-400 (400MHz), or Bruker 

Advance III 500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal 

standard (CDCl3 at 7.26 ppm). Data are reported as (app = apparent, obs = obscured, s = singlet, d 

= doublet, t = triplet, q = quartet, p = pentet, h = hextet, sep = septet, o = octet, m = multiplet, b = 

broad; integration; coupling constant(s) in Hz. 13C-NMR spectra were recorded on a Bruker 

Advance III 500 spectrometer equipped with DCH CryoProbe, and are reported in ppm using 

solvent as an internal standard (CDCl3 at 77.16 ppm, except where noted).  Mass spectra data were 
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obtained on an Agilent 6210 Time-of-Flight LC/MS. All optical rotation measurements were 

obtained on a Rudolph Research Analytical Autopol IV, Serial #82239. X-ray data were collected 

on the Kappa Apex 2 diffractometer. 

3.6.2 Construction of the key diketone intermediate III-109  

3.6.2.1 Starting material synthesis from common enantioenriched silane intermediates 

Compound III-149. 

LiCl (95 mg, 2.13 mmol, 20 mol %) and CuI (0.20 g, 1.06 mmol, 10 mol %) were 

added to a flame-dried round-bottom flask. The flask was cooled to 0 °C, and (S)-III-113 (1.79 g, 

10.6 mmol, 1.0 equiv) in THF (50 mL) was added via cannula (12 mL THF rinse). TMS-Cl (1.5 

mL, 11.7 mmol, 1.1 equiv) was added, and the mixture stirred for 25 minutes. The freshly prepared 

and titrated isopropenyl Grignard solution, (0.62 M, 20.7 mL, 12.8 mmol, 1.2 equiv) was added 

dropwise via syringe over 30 minutes and the reaction allowed to slowly warm to room 

temperature. Upon observed consumption of the starting material by TLC (1.5h), the black reaction 

was quenched with saturated NH4Cl solution and extracted with ether. The combined organic 

extracts were washed twice with 3 M HCl and once with brine, then dried over MgSO4, and 

concentrated under reduced pressure. The crude material was purified by flash chromatography on 

silica gel with 5% ether/pentane. (1.45 g, 6.89 mmol, 65% yield): [α]D = –56.3 (c 0.12, CHCl3);  

IR (Germanium ATR): 2953, 1713, 1249, 839 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 4.90 

(d, J = 1.7 Hz, 1H), 4.72 (d, J = 1.7 Hz, 1H), 2.81 (s, 1H), 2.64 – 2.55 (m, 1H), 2.46 (ddd, J = 15.0, 

6.0, 1.0 Hz, 1H), 2.35 – 2.26 (m, 1H), 2.08 (ddd, J = 14.8, 12.9, 1.1 Hz, 1H), 1.94 – 1.84 (m, 1H), 

1.75 – 1.66 (m, 4H), 1.17 (tt, J = 12.6, 3.8 Hz, 1H), 0.00 (d, J = 0.6 Hz, 9H); 13C NMR (126 MHz, 

O

TMS
Me
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CDCl3) δ 212.5, 146.5, 112.8, 45.2, 43.5, 42.2, 28.6, 22.1, 20.7, -3.4; HRMS (ESI): Exact mass 

calc’d for C12H22OSiNa [M+Na]+, 233.1338. Found 233.1328. 

Compound III-111. 

CuCl2 (2.7 g, 20.0 mmol, 3.0 equiv) was added to a flame-dried round-bottom flask. 

III-149 (1.4 g, 6.65 mmol, 1.0 equiv) in DMF (48 mL, with an additional 3 mL DMF rinse) was 

added via cannula and the mixture heated to 55 °C. After 2 hours, the black reaction was cooled 

to room temperature, diluted with brine, and extracted twice with pentane and once with 5% 

ether/pentanes. The combined organic extracts were dried over MgSO4 and the solvent evaporated 

carefully. The crude material was purified by flash chromatography on silica gel with 15% 

ether/pentane. (0.652 g, 4.79 mmol, 72% yield): [α]D = +29.2 (c 0.59, CHCl3); IR (Germanium 

ATR): 2922, 1678, 1388, 881 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 7.01 (ddd, J = 10.1, 5.8, 

2.5 Hz, 1H), 6.11 – 5.98 (m, 1H), 4.83 (q, J = 1.6 Hz, 1H), 4.78 (s, 1H), 2.78 – 2.66 (m, 1H), 2.57 

(dd, J = 16.2, 3.8 Hz, 1H), 2.53 – 2.44 (m, 1H), 2.41 – 2.27 (m, 2H), 1.77 (d, J = 1.5 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 199.8, 149.8, 146.6, 129.7, 110.9, 43.2, 42.2, 31.1, 20.6; HRMS (ESI): 

Exact mass calc’d for C9H13O [M+H]+, 137.0966 Found 137.0962. 

Compound III-112. 

See Experimental Section 2.9.2 for the preparation and characterization of III-112. 

3.6.2.2 Implementation of developed strategy for the synthesis tricyclic III-109 

Compound III-150. 

To a flame dried conical flask was added diisopropylamine (113 µL, 0.81 mmol, 

1.2 equiv) and THF (0.8 mL). The flask was cooled to –78 °C, and n-BuLi (freshly titrated to 2.04 

M, 0.36 mL, 0.74 mmol, 1.1 equiv) was added. After 10 minutes, enone III-111 (92.0 mg, 0.67 
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mmol, 1.0 equiv) in THF (0.3 mL) was added (0.1 mL rinse). The solution stirred for 30 minutes 

before slowly adding it via cannula to a flask containing iPr2SiCl2 (120 µL, 0.67 mmol, 1.0 equiv) 

and THF (2.7 mL), also at –78 °C, over 1 hour. Meanwhile, LDA was prepared exactly as above 

in a separate conical flask. After 10 minutes, enone III-112 (92.0 mg, 0.67 mmol, 1.0 equiv) in 

THF (0.3 mL) was added (0.1 mL rinse). This solution stirred for 30 minutes before adding it 

slowly to the reaction flask via cannula over 1 hour (about 40 minutes following the completion 

of the first enolate addition). The mixture stirred at –78 °C for 45 min before warming to room 

temperature. Upon observed consumption of the starting materials by TLC (2h), the orange 

reaction was quenched with pH 7 buffer and extracted with pentanes. The combined organic layers 

were dried over MgSO4, and concentrated under reduced pressure. The crude material was placed 

on the vacuum manifold overnight and was used directly in the next reaction. 

To a flame-dried round-bottom flask was added CAN (0.81 g, 1.47 mmol, 2.2 equiv), 

NaHCO3 (0.25 g, 2.98 mmol, 4.4 equiv), ACN (22 mL, dried over activated sieves), and DMSO 

(95.2 µL, 1.34 mmol, 2.0 equiv). The mixture was cooled to –30 °C and stirred vigorously while 

the crude material in EtCN (3 mL, dried over activated sieves, 0.4 mL rinse) was added via 

cannula. Upon observed consumption of the starting silyl bis-enol ether by TLC (15 min), the 

orange mixture was diluted with saturated NaHCO3 solution, extracted with CHCl3. The combined 

organic layers were dried over MgSO4 filtered through Celite with EtOAc, and concentrated under 

reduced pressure to yield a 5:1 mixture of diastereomers. The crude material was purified by flash 

chromatography on silica gel using 5% EtOAc/hexane (major diastereomer: 73.0 mg, 0.27 mmol, 

40% yield over two steps;  total coupled yield: 88.8 mg,  0.33 mmol, 49% yield): [α]D = +42.9 (c 

0.84, CHCl3); IR (Germanium ATR): 2916, 1658, 1380, 1211, 916 cm–1; 1H NMR (500 MHz, 



 197 

Chloroform-d) δ 6.90 (ddd, J = 10.0, 5.9, 2.4 Hz, 1H), 5.99 (ddd, J = 10.0, 2.8, 1.0 Hz, 1H), 5.85 

(q, J = 1.5 Hz, 1H), 5.59 (dt, J = 17.0, 9.8 Hz, 1H), 5.14 – 5.08 (m, 2H), 4.84 (dq, J = 3.5, 1.8 Hz, 

2H), 3.52 (td, J = 12.2, 4.9 Hz, 1H), 3.44 – 3.30 (m, 1H), 2.63 (d, J = 12.8 Hz, 1H), 2.44 – 2.27 

(m, 3H), 2.27 – 2.20 (m, 2H), 1.93 (d, J = 1.2 Hz, 3H), 1.66 (t, J = 1.1 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 200.3, 199.1, 159.3, 148.2, 145.5, 140.6, 130.2, 127.2, 117.6, 114.8, 49.3, 48.8, 

48.1, 45.2, 38.4, 31.8, 24.2, 18.6; HRMS (ESI): Exact mass calc’d for C18H22O2Na [M+Na]+, 

293.1518. Found 293.1513. 

Note: scaled up procedure for oxidative coupling:  

While formation of the silyl bis-enol ether is a very scalable process, the developed oxidative 

coupling conditions are not as amenable to large scale ups, which would require re-optimization 

due to reagent solubility issues. Therefore, to bring forward larger amounts of material, the 

following procedure was followed: To a flame dried conical flask was added diisopropylamine 

(1.24 mL, 8.81 mmol, 1.2 equiv) and THF (10 mL). The flask was cooled to –78 °C, and n-BuLi 

(freshly titrated to 2.28 M, 3.55 mL, 8.08 mmol, 1.1 equiv) added. After 10 minutes, enone III-

111 (1.0 g, 7.34 mmol, 1.0 equiv) in THF (4 mL) was added (0.3 mL rinse). The solution stirred 

for 30 minutes before slowly adding it via cannula to a flask containing iPr2SiCl2 (1.32 mL, 7.34 

mmol, 1.0 equiv) and THF (29 mL), also at –78 °C over 1.5 hours. Meanwhile, LDA was prepared 

exactly as above in a separate conical flask. After 10 minutes, enone III-112 (1.0 g, 7.34 mmol, 

1.0 equiv) in THF (4 mL) was added (0.3 mL rinse). This solution stirred for 30 minutes before 

adding it slowly to the reaction flask via cannula over 1 hour (45 min following the completion of 

the first enolate addition). The mixture stirred at –78 °C for 45 min and then was warmed to room 

temperature. Upon observed consumption of the starting materials by TLC (1.5 h from when 
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warmed to room temperature), the orange reaction was quenched with pH 7 buffer and extracted 

with pentanes. The combined organic layers were dried over MgSO4 and concentrated under 

reduced pressure. The crude material was placed on the vacuum manifold overnight. The crude 

silyl bis-enol ether was split into seven equal portions (0.404 g, 1.05 mmol) and each was used in 

the following manner: To a flame-dried 100 mL flask was added CAN (1.27 g, 2.31 mmol, 2.2 

equiv), NaHCO3 (0.39 g, 4.62 mmol, 4.4 equiv), ACN (35 mL, 0.03 M), and DMSO (0.15 mL, 

2.10 mmol, 2.0 equiv). The mixture was cooled to –30 °C, and stirred vigorously while the silyl 

bis-enol ether in EtCN (5 mL) was added to the reaction via cannula (0.3 mL rinse). Upon observed 

consumption of the starting silyl bis-enol ether by TLC (15 min), the orange mixture was diluted 

with saturated NaHCO3 solution, extracted with CHCl3. The combined organic layers were dried 

over MgSO4 filtered through celite with EtOAc, and concentrated under reduced pressure to yield 

a ~7:1 mixture of diastereomers. The combined crude material from all seven partitions was 

purified by flash chromatography on silica gel using 5% EtOAc/hexane (major diastereomer: 0.97 

g, 3.6 mmol, 49% over two steps; total coupled yield: 1.1 g, 4.10 mmol, 56%).  

Compound III-110. 

To a flame-dried flask was added Grubbs II from the glove box (16 mg, 0.02 mmol, 

10 mol %). III-150 (40.0 mg, 0.15 mmol, 1.0 equiv) in DCM (2.5 mL, with an additional 0.4 mL 

rinse) was added to the flask via cannula and the reaction heated to 40 °C. Upon observed 

consumption of the starting material by TLC (22h), 10 µL DMSO were added, and the mixture 

stirred for 2h. The solvent was evaporated, and the crude material was purified by flash 

chromatography on silica gel with 20% EtOAc/hexanes (30.5 mg, 0.126 mmol, 84% yield). Solid 

crystals for X-ray crystallography were obtained by slow evaporation of ethyl acetate. [α]D = 

MeO
O

Me

H H

H
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+561.6 (c 1.13, CHCl3); IR (Germanium ATR): 2923, 1670, 1681, 1379, 1176, 843 cm–1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.81 (ddd, J = 10.0, 5.6, 2.1 Hz, 1H), 6.10 (ddd, J = 10.0, 3.1, 0.9 Hz, 

1H), 5.90 (dd, J = 2.7, 1.4 Hz, 1H), 5.28 (q, J = 1.8 Hz, 1H), 2.78 – 2.66 (m, 2H), 2.56 (dd, J = 

12.4, 10.8 Hz, 1H), 2.52 – 2.38 (m, 2H), 2.34 (dd, J = 18.0, 4.0 Hz, 1H), 

2.27 – 2.12 (m, 2H), 1.93 (d, J = 1.2 Hz, 3H), 1.70 (dt, J = 2.4, 1.2 Hz, 

3H); 13C NMR (126 MHz, CDCl3) δ 200.3, 199.6, 157.2, 145.3, 134.4, 

130.5, 127.1, 124.8, 47.6, 45.9, 42.0, 39.7, 37.8, 32.5, 23.7, 20.3; 

HRMS (ESI): Exact mass calc’d for C16H18O2Na [M+Na]+, 265.1205. 

Found 265.1199. 

Compound III-109. 

III-110 (100 mg, 0.41 mmol, 1.0 equiv) was diluted in MeOH (14 mL, 0.03 M). 

Pd/C (44.0 mg, 0.041 mmol, 10 mol %) was added. H2 was bubbled through the solution for 1 

minute, and then the reaction was left to stir at room temperature under H2 overnight. The reaction 

was then purged with N2 for 1h before filtering through Celite with EtOAc. The solvent was 

evaporated, and the crude material purified by flash chromatography on silica gel with 20% 

EtOAc/hexanes to yield a 3:1 mixture of diastereomers (95.0 mg, 0.38 mmol, 93% yield). The two 

diastereomers were separated by preparative HPLC using a C18 column and a 40-75% ACN/H2O 

gradient solvent system. The structures of the major and minor products were elucidated by X-ray 

crystallography. Solid crystals were obtained by slow evaporation of 

ether. Major isomer: [α]D = +41.2 (c 1.14, CHCl3);  IR (Germanium 

ATR): 2911, 1707, 1455 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 

2.57 – 2.37 (m, 3H), 2.37 – 2.29 (m, 2H), 2.28 – 2.19 (m, 1H), 2.19 – 

X-ray structure 

X-ray structure 
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2.06 (m, 2H), 1.86 (dq, J = 11.9, 6.3 Hz, 1H), 1.77 (dtd, J = 13.2, 3.5, 1.8 Hz, 1H), 1.68 (dt, J = 

13.1, 3.4 Hz, 1H), 1.60 (tdd, J = 14.2, 11.8, 3.3 Hz, 2H), 1.44 (qt, J = 11.8, 3.2 Hz, 1H), 1.38 – 

1.25 (m, 2H), 1.20 (q, J = 12.2 Hz, 1H), 1.12 – 1.03 (m, 1H), 1.03 (d, J = 6.6 Hz, 3H), 0.93 (d, J 

= 6.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 211.5, 210.9, 53.1, 52.6, 50.9, 50.2, 42.3, 42.1, 

42.1, 41.8, 37.3, 35.4, 29.8, 27.7, 22.6, 19.9; HRMS (ESI): Exact mass calc’d for C16H24O2Na 

[M+Na]+, 271.1674. Found 271.1670. 

Compound III-114.  

1H NMR (500 MHz, Chloroform-d) δ 2.65 (t, J = 11.3 Hz, 

1H), 2.46 (ddd, J = 18.5, 12.2, 6.0 Hz, 1H), 2.33 (td, J = 11.2, 9.9, 5.4 Hz, 

3H), 2.23 (t, J = 12.4 Hz, 1H), 2.11 (dq, J = 9.2, 3.2 Hz, 1H), 1.98 – 

1.80 (m, 2H), 1.76 – 1.67 (m, 1H), 1.66 – 1.52 (m, 6H), 1.35 (td, J = 13.1, 4.3 Hz, 1H), 1.18 (q, J 

= 12.1 Hz, 1H), 1.02 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

212.1, 210.9, 52.9, 50.3, 47.2, 47.0, 42.3, 42.2, 40.4, 36.5, 35.4, 32.4, 30.5, 27.7, 22.6, 13.2; HRMS 

(ESI): Exact mass calc’d for C16H24O2Na [M+Na]+, 271.1674. Found 271.1670. 

3.6.3 Triflate strategy – model system 

Compound III-117. 

See Experimental Section 2.9.6 for the preparation and characterization of III-117. 

  Compound III-120. 

A 1 M solution of LDA was prepared by cooling a mixture of diisopropylamine (0.31 

mL, 2.2 mmol) in THF (2 mL) to –78 °C, and adding n-BuLi (0.9 mL, 2.25 M solution in hexanes, 

2.0 mmol). After 10 minutes at this temperature, a portion of this solution (0.31 mL, 0.31 mmol, 

1.5 equiv) was added to a solution of III-117 (45 mg, 0.20 mmol) in THF (1.3 mL) at –78 °C. The 
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mixture stirred for 10 minutes before Comins’ reagent was added (157 mg, 0.40 mmol, 2.0 equiv). 

After an hour at this temperature, the reaction was diluted with water, and extracted with ether. 

The combined organic extracts were washed with brine, dried over MgSO4, and the solvent 

evaporated under reduced pressure. The crude material was purified by flash chromatography on 

silica gel using a gradient from hexane to 20% EtOAc/hexane to yield the pure desired product 

(36.6 mg, 0.104 mmol, 52%): [α]D = –32.1 (c 0.96, CHCl3); IR (Germanium ATR): 2927, 2856, 

1718, 1409, 1204, 1139, 874 cm-1; 1H NMR (499 MHz, Chloroform-d) δ 5.71 (q, J = 3.6 Hz, 1H), 

2.67 (tq, J = 10.4, 3.3 Hz, 1H), 2.53 (ddd, J = 13.4, 11.6, 6.4 Hz, 1H), 2.42 – 2.34 (m, 2H), 2.29 – 

2.22 (m, 2H), 2.12 (dddt, J = 13.2, 6.5, 4.4, 2.2 Hz, 1H), 1.83 – 1.65 (m, 5H), 1.60 – 1.50 (m, 1H), 

1.50 – 1.35 (m, 2H), 1.33 – 1.22 (m, 2H), 1.08 (tdd, J = 12.9, 11.6, 3.2 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 212.5, 149.9, 119.6, 118.4, 117.1, 55.7, 47.2, 42.6, 40.3, 39.8, 33.7, 33.1, 31.6, 

29.3, 28.6, 23.8; LRMS (ESI): Exact mass calc’d for C15H19F3O4SNa [M+Na]+, 375.0854. Found 

375.08. Note: Also reisolated pure starting material: 20 mg, 0.091 mmol. 

Compound III-119. 

To a solution of III-120 (17 mg, 0.05 mmol) in DCM (0.5 mL) at 0 °C was added 2,6-

di-tert-butylpyridine (20 µL, 0.09 mmol, 1.8 equiv), followed by the dropwise addition of Tf2O 

(16 µL, 0.09 mmol, 1.8 equiv). The reaction was allowed to warm to room temperature over night, 

after which time the starting material was observed to be consumed by TLC. The mixture was then 

diluted with water and extracted with DCM. The combined organic extracts were dried over 

MgSO4 and the solvent evaporated under reduced pressure. The crude material was purified by 

flash chromatography on silica gel using a gradient from hexanes to 10% EtOAc/hexanes to yield 

the pure product (17.2 mg, 0.036, 72%): IR (Germanium ATR): 2929, 1446, 1206, 1025, 797 cm-
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1; 1H NMR (500 MHz, Chloroform-d) δ 5.93 (s, 1H), 2.31 – 2.13 (m, 3H), 1.97 – 1.78 (m, 1H), 

1.72 – 1.57 (m, 2H), 1.49 – 1.29 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 147.9, 122.6, 122.3, 

119.8, 117.2, 114.7, 51.0, 45.8, 33.5, 29.1, 24.4; LRMS (ESI): Exact mass calc’d for 

C16H18F6O6S2Na [M+Na]+, 507.0347. Found 507.03. 

Compound III-126. 

Lithium chloride (17 mg, 0.39 mmol, 6.0 equiv) was added to a round-bottom flask 

and flame dried twice. The flask was placed in the glove box, and CuCl (33 mg, 0.33 mmol, 5.0 

equiv) and Pd(PPh3)4 (7.5 mg, 0.0065 mmol, 10 mol %) added. A solution of III-120 (23 mg, 

0.065 mmol) in DMSO (0.7 mL) and tributyl(vinyl)tin (29 µL, 0.10 mmol, 1.5 equiv) was added 

to the flask outside of the glove box, using THF (0.2 mL) to rinse the solution. This mixture was 

cooled to in a liquid nitrogen bath and placed under vacuum for 10 minutes, then removed from 

the vacuum, warmed to room temperature, and purged with argon. This freeze-pump-thaw process 

was repeated four times before allowing the reaction to stir at room temperature for 1 hour, after 

which time it was heated to 60 °C. Upon observed consumption of the starting material by TLC 

(5.5 h), the reaction was cooled to room temperature, diluted with brine, and extracted with ether. 

The combined organic extracts were dried over MgSO4, and the solvent evaporated under reduced 

pressure. The crude material was purified by flash chromatography on silica gel using a gradient 

from pentane to 5% ether/pentane to yield the pure product (9.7 mg, 0.042 mmol, 65%): [α]D = –

68.2 (c 0.05, CHCl3); IR (Germanium ATR): 2920, 2852, 1712, 1455, 1261, 891 cm-1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.03 – 5.94 (m, 1H), 5.66 (d, J = 3.5 Hz, 1H), 5.05 (dd, J = 16.9, 2.5 

Hz, 1H), 4.74 (dd, J = 10.5, 2.5 Hz, 1H), 2.50 – 2.33 (m, 3H), 2.22 (t, J = 11.0 Hz, 1H), 2.17 – 

2.09 (m, 3H), 1.81 – 1.70 (m, 3H), 1.68 – 1.58 (m, 2H), 1.51 – 1.36 (m, 3H), 1.28 – 1.19 (m, 2H), 
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1.06 (qd, J = 12.7, 3.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 215.3, 141.3, 140.1, 125.2, 113.1, 

58.5, 48.0, 43.3, 40.2, 39.4, 34.1, 33.7, 32.4, 30.5, 28.9, 26.2; LRMS (ESI): Exact mass calc’d for 

C16H22ONa [M+Na]+, 253.1568. Found 253.10. 

Compound III-129. 

To a solution of III-120 (106 mg, 0.30 mmol) in DMF (1.7 mL) was added Pd(OAc)2 

(3.1 mg, 0.014 mmol, 4 mol %), PPh3 (9 mg, 0.034 mmol, 10 mol %), and NEt3 (0.15 mL, 1.1 

mmol, 3.2 equiv). Formic acid (13 µL, 0.34 mmol, 1.1 equiv) was added to this mixture, and the 

yellow reaction was heated to 60 °C. After observed consumption of the starting material by TLC 

(1.75 h), the black mixture was cooled to room temperature, diluted with water, and extracted with 

pentane twice and 5% ether/pentane twice. The combined organic layers were dried over MgSO4, 

and the solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography on silica gel using a gradient from pentane to 5% ether/pentane to yield pure 

product (37.3 mg, 0.18 mmol, 60%): [α]D = –103.5 (c 0.51, CHCl3); IR (Germanium ATR): 2913, 

2850, 1707, 1447, 1167, 1050, 732 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 5.70 – 5.51 (m, 

2H), 2.40 – 2.29 (m, 2H), 2.10 – 1.94 (m, 5H), 1.85 – 1.71 (m, 2H), 1.71 – 1.55 (m, 3H), 1.50 – 

1.41 (m, 2H), 1.42 – 1.32 (m, 1H), 1.32 – 1.22 (m, 1H), 1.15 (qt, J = 11.0, 2.2 Hz, 1H), 1.05 (qd, 

J = 12.4, 3.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 213.1, 130.2, 127.4, 59.2, 46.6, 43.2, 40.0, 

39.4, 34.3, 33.7, 32.5, 30.1, 28.1, 26.1; LRMS (ESI): Exact mass calc’d for C14H20ONa [M+Na]+, 

227.1412. Found 226.98. 

Compound III-130. 

To a solution of III-129 (25 mg, 0.12 mmol) in DCM (1.2 mL) at 0 °C was added 2,6-

di-tert-butylpyridine (39 µL, 0.18 mmol, 1.5 equiv), followed by the dropwise addition of Tf2O 
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(31 µL, 0.18 mmol, 1.5 equiv). The reaction was warmed to room temperature after 30 minutes. 

After observed consumption of the starting material by TLC (4h), the light brown reaction was 

diluted with water and extracted with DCM. The combined organic extracts were dried over 

MgSO4, and the solvent evaporated under reduced pressure. The crude material as purified by flash 

chromatography on silica gel using pentane to yield the pure product (37.3 mg, 0.11 mmol, 92%): 

[α]D = –11.0 (c 0.05, CHCl3); IR (Germanium ATR): 2963, 1260, 1091, 1018, 798 cm-1; 1H NMR 

(500 MHz, Chloroform-d) δ 6.17 – 6.06 (m, 1H), 5.82 (d, J = 3.9 Hz, 1H), 5.72 – 5.64 (m, 1H), 

2.27 – 2.14 (m, 2H), 2.14 – 1.98 (m, 3H), 1.95 (d, J = 10.8 Hz, 1H), 1.78 – 1.67 (m, 2H), 1.67 – 

1.58 (m, 2H), 1.51 – 1.42 (m, 1H), 1.42 – 1.29 (m, 4H), 1.29 – 1.18 (m, 1H); 13C NMR (126 MHz, 

CDCl3) δ 152.3, 129.4, 128.2, 121.1, 117.4, 48.6, 46.0, 43.9, 41.5, 33.8, 33.4, 30.6, 29.4, 25.7, 

24.5; LRMS (ESI): Exact mass calc’d for C15H20F3O3S [M+H]+, 337.1085. Found 337.21. 

Compound III-128. 

Lithium chloride (28 mg, 0.65 mmol, 6.0 equiv) was added to a round-bottom flask 

and flame dried twice. The flask was placed in the glove box, and CuCl (54 mg, 0.55 mmol, 5.0 

equiv) and Pd(PPh3)4 (13 mg, 0.011 mmol, 10 mol %) added. A solution of III-130 (36.6 mg, 

0.109 mmol) in DMSO (0.9 mL) and tributyl(vinyl)tin (48 µL, 0.16 mmol, 1.5 equiv) was added 

to the flask outside of the glove box, using THF (0.2 mL) to rinse the solution. This mixture was 

cooled to in a liquid nitrogen bath and placed under vacuum for 10 minutes, then removed from 

the vacuum, warmed to room temperature, and purged with argon. This freeze-pump-thaw process 

was repeated four times before allowing the reaction to stir at room temperature for 1 hour, after 

which time it was heated to 60 °C. Upon observed consumption of the starting material by TLC 

(2.5 h), the reaction was cooled to room temperature, diluted with brine, and extracted with 50% 
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ether/ pentane. The combined organic extracts were dried over MgSO4, and the solvent evaporated 

under reduced pressure. The crude material was purified by flash chromatography on silica gel 

using pentane to yield the pure product (20.5 mg, 0.096 mmol, 88%): [α]D = –25.6 (c 0.1, CHCl3); 

IR (Germanium ATR): 2923, 2856, 1722, 1010, 910 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 

6.38 (ddd, J = 17.4, 11.0, 1.8 Hz, 1H), 6.04 (dq, J = 10.3, 2.1 Hz, 1H), 5.79 (dtd, J = 5.0, 2.4, 1.2 

Hz, 1H), 5.60 – 5.51 (m, 1H), 5.13 (dd, J = 17.1, 2.1 Hz, 1H), 4.82 (dd, J = 10.6, 2.1 Hz, 1H), 2.21 

– 1.97 (m, 4H), 1.85 – 1.69 (m, 3H), 1.63 (dddd, J = 23.2, 12.5, 6.1, 2.4 Hz, 3H), 1.44 – 1.25 (m, 

4H), 1.25 – 1.12 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 141.8, 141.5, 132.3, 127.7, 126.3, 110.7, 

48.0, 45.6, 42.4, 41.9, 34.2, 33.8, 30.9, 30.7, 26.2, 26.0; LRMS (ESI): Exact mass calc’d for 

C16H22Na [M+Na]+, 237.1619. Found 237.00. 

Compound III-133. 

To a flame-dried round-bottom flask was added AsPh3  

(10 mg, 0.033 mmol, 40 mol %), Pd(PhCN)2Cl2 (5 mg, 0.013 mmol, 17 mol %), CuI (10 mg, 0.053 

mmol, 67 mol %) and NMP (0.4 mL) and the solution was heated to 85 °C, turning red upon 

heating. After reaching this temperature, the reaction stirred for 5 minutes before adding III-120 

(27.4 mg, 0.078 mmol) in NMP (0.3 mL with an additional 0.2 mL rinse), followed by 

tetramethyltin (23 µL, 0.16 mmol, 2.0 equiv). After 2.5 hours, the reaction was observed by TLC 

to be incomplete, so an additional 1 mg of AsPh3, Pd(PhCN)2Cl2, and CuI was added, as well as 

an additional 20 µL of tetramethyl tin. The reaction stirred for 2 hours before TLC indicated a 

complete reaction. The mixture was then cooled to room temperature, diluted with saturated KF 

solution, and extracted with ether. The combined organic extracts were dried over MgSO4, and the 

solvent evaporated under reduced pressure. The crude material was purified by flash 
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chromatography on silica gel using 2% ether/pentane to yield the pure product (15.4 mg, 0.071 

mmol, 91%): [α]D = –54.1 (c 0.54, CHCl3); IR (Germanium ATR): 2915, 2852, 1711, 1439, 1171 

cm-1; 1H NMR (499 MHz, Chloroform-d) δ 5.34 (s, 1H), 2.51 (ddd, J = 13.1, 10.9, 6.3 Hz, 1H), 

2.40 – 2.30 (m, 2H), 2.23 (t, J = 11.0 Hz, 1H), 2.17 – 2.09 (m, 1H), 2.10 – 1.99 (m, 2H), 1.82 – 

1.69 (m, 3H), 1.67 – 1.54 (m, 2H), 1.53 – 1.33 (m, 6H), 1.28 – 1.17 (m, 2H), 1.05 (qd, J = 12.7, 

3.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 215.4, 136.4, 124.1, 58.8, 48.5, 43.3, 40.9, 39.7, 34.3, 

33.8, 32.5, 30.8, 29.2, 26.1, 23.7; LRMS (ESI): Exact mass calc’d for C15H23O [M+H]+, 219.1749. 

Found 219.03. 

Compound III-134. 

To a solution of III-133 (14.2 mg, 0.065 mmol) in DCM (0.7 mL) at 0 °C was added 

2,6-di-tert-butylpyridine (22 µL, 0.10 mmol, 1.5 equiv), followed by the dropwise addition of Tf2O 

(24 µL, 0.14 mmol, 2.2 equiv). After 30 minutes the reaction was warmed to room temperature. 

Upon observed consumption of the starting material by TLC (1.25 h), the brown reaction was 

diluted with water and extracted with DCM. The combined organic extracts were dried over 

MgSO4, and the solvent evaporated under reduced pressure. The crude material was purified by 

flash chromatography on silica gel using pentane (16.1 mg, 0.046 mmol, 71%): [α]D = –58.9 (c 

0.08, CHCl3); IR (Germanium ATR): 2925, 2855, 1414, 1206, 1141, 878 cm-1; 1H NMR (500 

MHz, Chloroform-d) δ 5.73 (q, J = 3.7 Hz, 1H), 4.77 (s, 1H), 4.53 (s, 1H), 2.47 – 2.38 (m, 1H), 

2.36 – 2.23 (m, 3H), 2.09 – 2.00 (m, 1H), 1.85 (dtt, J = 11.0, 4.3, 2.3 Hz, 1H), 1.79 – 1.65 (m, 4H), 

1.64 – 1.58 (m, 1H), 1.56 – 1.53 (m, 1H), 1.48 – 1.36 (m, 2H), 1.35 – 1.23 (m, 1H), 1.20 – 1.03 

(m, 3H); 13C NMR (126 MHz, CDCl3) δ 153.0, 150.9, 119.7, 118.7, 104.9, 48.1, 46.7, 42.8, 41.0, 
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37.9, 35.1, 33.4, 32.3, 30.0, 29.4, 23.7; LRMS (ESI): Exact mass calc’d for C16H21F3O3SNa 

[M+Na]+, 373.1061. Found 373.04. 

The identity of this compound was also confirmed by accessing from III-140: To a solution of III-

140 (5 mg, 0.023 mmol) in DCM (5 mL) at 0 °C was added 2,6-di-tert-butylpyridine (10 µL, 0.046 

mmol, 2.0 equiv), followed by the dropwise addition of Tf2O (10 µL, 0.060 mmol, 2.6 equiv). The 

light brown reaction was warmed to room temperature after 30 minutes. Upon observed 

consumption of the starting material by TLC (another 30 minutes), the reaction was diluted with 

water and extracted with DCM. The combined organic extracts were dried over MgSO4, and the 

solvent evaporated under reduced pressure. The crude material was purified by flash 

chromatography on silica gel using a solvent gradient from pentane to 2% ether/pentane to yield 

the same product as isolated from the above reaction. 

Compound III-135. 

To a flame-dried round-bottom flask was added AsPh3  

(6 mg, 0.020 mmol, 43 mol %), Pd(PhCN)2Cl2 (6 mg, 0.016 mmol, 35 mol %), CuI (10 mg, 0.053 

mmol, 1.1 equiv) and NMP (0.3 mL) and the solution was heated to 85 °C, turning red upon 

heating. After reaching this temperature, the reaction stirred for 5 minutes before adding III-134 

(16.1 mg, 0.046 mmol) in NMP (0.2 mL with an additional 0.1 mL rinse), followed by 

tetramethyltin (20 µL, 0.15 mmol, 3.3 equiv). After 2.5 hours, the reaction was observed by TLC 

to be incomplete, so an additional 1 mg of AsPh3, Pd(PhCN)2Cl2, and CuI was added, as well as 

an additional 20 µL of tetramethyl tin. The reaction stirred for 3 hours before TLC indicated a 

complete reaction. The mixture was then cooled to room temperature, diluted with saturated KF 

solution, and extracted with 50% ether/pentane. The combined organic extracts were dried over 
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MgSO4, and the solvent evaporated under reduced pressure. The crude material was purified by 

flash chromatography on silica gel using pentane to yield the pure product (6.0 mg, 0.028 mmol, 

61%): [α]D = –60.9 (c 0.20, CHCl3); IR (Germanium ATR): 2920, 2855, 1260, 1093, 1018, 800 

cm-1; 1H NMR (500 MHz, Chloroform-d) δ 5.37 (t, J = 2.5 Hz, 1H), 4.75 (s, 1H), 4.62 (s, 1H), 

2.34 (ddt, J = 12.3, 4.3, 1.9 Hz, 1H), 2.17 – 2.07 (m, 3H), 2.07 – 1.98 (m, 1H), 1.87 (ddp, J = 11.5, 

4.5, 2.2 Hz, 1H), 1.75 – 1.66 (m, 2H), 1.67 – 1.63 (m, 4H), 1.62 – 1.53 (m, 2H), 1.49 – 1.34 (m, 

2H), 1.31 – 1.12 (m, 3H), 1.11 – 1.01 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 155.5, 138.8, 124.3, 

104.9, 50.7, 47.6, 42.9, 40.7, 38.5, 35.7, 34.0, 33.2, 31.4, 29.9, 25.7, 23.8; HRMS (EI): Exact mass 

calc’d for C16H24 [M]+, 216.1878. Found 216.1872. 

Compound III-136. 

To a solution of III-135 (6 mg, 0.028 mmol) in DCM (0.5 mL) at 0 °C was added 2,6-

di-tert-butylpyridine (11 µL, 0.05 mmol, 1.5 equiv), followed by the dropwise addition of Tf2O 

(15 µL, 0.09 mmol, 3.0 equiv). After 30 minutes the reaction was warmed to room temperature. 

Upon observed consumption of the starting material by TLC (30 minutes), the brown reaction was 

diluted with water and extracted with DCM. The combined organic extracts were dried over 

MgSO4, and the solvent evaporated under reduced pressure. The crude material was purified by 

flash chromatography on silica gel using pentane (3 mg, 0.014 mmol, 50%): IR (Germanium 

ATR): 2921, 2856, 1446, 1378, 755 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 4.69 (s, 1H), 4.33 

(s, 1H), 2.31 (ddt, J = 12.5, 4.4, 2.1 Hz, 1H), 2.09 – 1.0 (m, 18H), 1.50 – 1.45 (m, 3H); 13C NMR 

(126 MHz, CDCl3) δ 151.2, 134.6, 126.9, 105.9, 48.8, 45.5, 39.4, 38.2, 35.8, 35.3, 33.9, 32.2, 31.7, 

29.3, 21.7, 21.0. 
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3.6.4 Olefination strategy – model system 

Compound III-140. 

KOtBu (12 mg, 0.11 mmol, 3.6 equiv) and benzene (0.6 mL) were added to a flame-

dried round bottom flask. The mixture was cooled to 0 °C and Ph3PMeBr (34 mg, 0.095 mmol, 

3.2 equiv) was added. This mixture was heated to 70 °C for 1.5 hours, before cooling again to 0 

°C, adding III-117 (6.5 mg, 0.03 mmol) in benzene (0.1 mL with an additional 0.1 mL rinse), and 

reheating the reaction to 70 °C over night. After 19 hours, the mixture was cooled to room 

temperature, quenched with water, and extracted with 50% ether/pentane. The combined organic 

extracts were dried over MgSO4 and the solvent evaporated under reduced pressure. The crude 

material was purified by flash chromatography on silica gel with hexane (3.8 mg, 0.0174 mmol, 

58%): [α]D = –58.8 (c 0.43, CHCl3); IR (Germanium ATR): 2920, 2851, 1704, 1446, 891 cm-1; 1H 

NMR (500 MHz, Chloroform-d) δ 4.63 (q, J = 1.4 Hz, 1H), 4.04 (q, J = 1.2 Hz, 1H), 2.52 – 2.40 

(m, 2H), 2.39 – 2.28 (m, 2H), 2.17 – 2.09 (m, 2H), 2.03 – 1.97 (m, 1H), 1.88 – 1.65 (m, 5H), 1.60 

(dq, J = 9.4, 3.0 Hz, 1H), 1.54 – 1.44 (m, 2H), 1.35 (qt, J = 12.8, 4.0 Hz, 1H), 1.28 – 1.16 (m, 2H), 

1.14 – 1.00 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 212.8, 151.8, 103.9, 56.7, 46.6, 45.6, 44.2, 

43.2, 37.5, 34.6, 34.0, 33.6, 33.3, 28.8, 28.6; LRMS (ESI): Exact mass calc’d for C15H22ONa 

[M+Na]+, 241.1568. Found 241.07. 

Compound III-139. 

Sublimed KOtBu (0.17 g, 1.48 mmol, 2.2 equiv) and benzene (3 mL) were added to a 

flame-dried round bottom flask. The mixture was cooled to 0 °C and Ph3PMeBr (0.57 g, 1.6 mmol, 

2.4 equiv) was added. This mixture was heated to 80 °C for 1 hour, after which it was cooled to 0 

°C, and III-117 (150 mg, 0.68 mmol) in benzene (0.7 mL with an additional 0.3 mL rinse) was 
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added. The mixture was then reheated to 80 °C over night. After 13 hours, the mixture was cooled 

to room temperature, quenched with water, and extracted with 50% ether/pentane. The combined 

organic extracts were dried over MgSO4 and the solvent evaporated carefully under reduced 

pressure due to the potential volatility of the product. The crude material was purified by flash 

chromatography on silica gel with pentane to 10% ether/pentane (66.8 mg, 0.31 mmol, 46%): IR 

(Germanium ATR): 2919, 2853, 1714 (broad), 1445, 884 cm-1; 1H NMR (500 MHz, Chloroform-

d) δ 4.69 (s, 1H), 4.33 (s, 1H), 2.31 (ddt, J = 12.5, 4.3, 2.1 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.88 – 

1.80 (m, 2H), 1.71 (dtd, J = 12.6, 4.4, 2.3 Hz, 1H), 1.63 – 1.57 (m, 1H), 1.39 (ddt, J = 25.8, 12.9, 

4.1 Hz, 1H), 1.30 – 1.04 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 151.2, 106.0, 48.8, 45.5, 38.2, 

35.3, 33.9, 29.3; LRMS (ESI): Exact mass calc’d for C16H25 [M+H]+, 217.1956. Found 217.07. In 

this unoptimized reaction on the model system, the mono olefin product III-140 was also isolated 

(57.2 mg,  0.26 mmol, 39%). This reaction was optimized using the material to produce the natural 

product. 

Compound III-143. 

CrO3 (120 mg, 1.20 mmol, 24 equiv) was added to a flame-dried flask and diluted 

with DCM (0.5 mL). The mixture was cooled to –20 ºC, and 3,5-dimethylpyrazole 

(115 mg, 1.20 mmol, 24 equiv) was added quickly in one portion. After stirring at this temperature 

for 15 minutes, III-139 (10 mg, 0.046 mmol) in DCM (0.3 mL with an additional 0.2 mL rinse) 

was added and the red-brown mixture was maintained at this temperature over night. After 21 

hours, the mixture was diluted with 3 M NaOH solution and stirred for 1 hour before extracting 

with DCM. The combined organic extracts were washed with 1 M HCl, dried over MgSO4, and 

the solvent evaporated under reduced pressure. The crude material was purified by flash 
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chromatography on silica gel with 10% ether/pentane (7 mg, 0.028 mmol, 61%): IR (Germanium 

ATR): 2922, 2848, 1730, 1448, 1250, 755 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 2.80 (d, J 

= 4.3 Hz, 1H), 2.65 (d, J = 4.3 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.75 – 1.64 (m, 3H), 1.56 – 1.52 (m, 

1H), 1.27 – 1.10 (m, 3H), 1.06 – 0.97 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 61.5, 55.4, 40.2, 

40.1, 34.7, 34.2, 32.4, 24.1; LRMS (ESI): Exact mass calc’d for C16H24O2Na [M+Na]+, 271.1674. 

Found 271.15. 

Compound III-141. 

To compound III-139 (23 mg, 0.106 mmol) in EtOH (0.8 mL) and DCM (0.4 mL) 

was added selenium dioxide (54 mg, 0.49 mmol, 4.5 equiv). The mixture was heated 

to 78 °C. Upon observed consumption of the starting material by TLC (12 hours), the reaction was 

cooled to room temperature and the solvent evaporated under reduced pressure. The crude material 

was purified by flash chromatography on silica gel using 30% EtOAc/hexane, yielding a mixture 

of diastereomers that was taken forward to the oxidation step (18.3 mg, 0.074 mmol 70%).  

To a flame dried round-bottom flask was added DMP (97 mg, 0.23 mmol, 3.0 equiv). To this flask 

was added the mixture of diastereomers (19 mg, 0.076 mmol) in DCM (1 mL with an additional 1 

mL rinse). Upon observed consumption of the starting materials by TLC (4 hours), the yellow 

reaction was poured into saturated Na2S2O3 solution and extracted with DCM. The combined 

organic extracts were washed with saturated NaHCO3, dried over MgSO4, and the solvent 

evaporated under reduced pressure. The crude material was purified by flash chromatography on 

silica gel with 25% EtOAc/hexane to yield the pure product (16.4 mg, 0.067 mmol, 88%): IR 

(Germanium ATR): 2924, 2863, 1695, 1614, 1105, 936 cm-1; 1H NMR (500 MHz, Chloroform-d) 

δ 5.72 – 5.63 (m, 1H), 4.98 – 4.90 (m, 1H), 2.68 (ddd, J = 16.8, 5.7, 2.5 Hz, 1H), 2.43 (ddd, J = 
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16.8, 12.0, 7.4 Hz, 1H), 2.29 – 2.22 (m, 1H), 2.05 (ddt, J = 12.9, 7.1, 2.8 Hz, 1H), 1.92 – 1.83 (m, 

1H), 1.70 – 1.55 (m, 2H), 1.27 – 1.20 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 204.0, 148.7, 119.2, 

46.9, 40.9, 40.3, 32.8, 31.6; LRMS (ESI): Exact mass calc’d for C16H21O2 [M+H]+, 245.1542. 

Found 245.10. 

Compound III-123. 

Employing reductive cyclization conditions developed by Yoon and coworkers,299 

III-141 (8.0 mg, 0.033 mmol, 1.0 equiv) was dissolved in freshly distilled ACN (1 

mL). Ru(bpy)3Cl2•H2O (1 mg, 0.0013 mmol, 4 mol %) was added, followed by HCO2H (7 µL, 

0.17 mmol, 5.0 equiv) and iPr2NEt (58 µL, 0.33 mmol, 10.0 equiv). The orange mixture was placed 

in the dark, cooled in a liquid nitrogen bath, placed under vacuum for 10 minutes, removed from 

vacuum and warmed to room temperature, and purged with N2. This freeze-pump-thaw process 

was repeated three times, after which the orange reaction was irradiated with a 23 W (1600 lumen) 

compact fluorescent lamp at room temperature while stirring vigorously. Upon observed 

consumption of the UV-active starting material by TLC, (4.5h), the solvent was evaporated under 

reduced pressure. The crude material was purified by flash chromatography on silica gel using 

30% EtOAc/hexane to yield pure product (6.8 mg, 0.028 mmol, 85%): IR (Germanium ATR): 

2925, 2855, 1710, 1169, 1084 cm-1; 1H NMR (500 MHz, Chloroform-d) δ 2.42 – 2.35 (m, 2H), 

2.07 – 1.94 (m, 3H), 1.85 – 1.80 (m, 1H), 1.54 – 1.36 (m, 2H), 1.30 – 1.22 (m, 1H), 1.17 – 1.02 

(m, 2H); 13C NMR (126 MHz, CDCl3) δ 211.9, 53.0, 52.3, 41.3, 40.2, 34.0, 32.2, 23.7; LRMS 

(ESI): Exact mass calc’d for C16H23O2 [M+H]+, 247.1698. Found 247.10. 
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3.6.5 Successful synthesis of Corey dione 

Compound III-138. 

KOtBu (84.0 mg, 0.75 mmol, 3.6 equiv, sublimed and stored in the glove box 

freezer) was added to a flame-dried round-bottom flask. Benzene (1 mL) was added, followed by 

Ph3PMeBr (278.0 mg, 0.78 mmol, 3.7 equiv). The yellow mixture was heated to 80 °C for 1h 

before cooling to room temperature and adding III-109 (53.0 mg, 0.21 mmol) in benzene (0.8 mL, 

with an additional 0.3 mL rinse). The reaction was heated back to 80 °C. Upon observed 

consumption of the starting material, and the characterized mono-olefinated product (15.5h), the 

orange reaction was cooled to room temperature, diluted with water, and extracted with 50% 

ether/pentane. The combined organic extracts were dried over MgSO4, and the solvent evaporated 

under reduced pressure. The crude material was purified by flash chromatography on silica gel 

using hexane. (42.3 mg, 0.173 mmol, 82% yield): [α]D = +65.2 (c 0.24, CHCl3);  IR (Germanium 

ATR): 2911, 2850, 1645, 1444, 883 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 4.69 (s, 2H), 4.33 

(s, 1H), 4.31 (s, 1H), 2.35 – 2.25 (m, 2H), 2.08 (dd, J = 13.3, 3.6 Hz, 1H), 2.00 (td, J = 12.8, 4.7 

Hz, 1H), 1.94 – 1.82 (m, 2H), 1.79 (t, J = 10.6 Hz, 1H), 1.73 – 1.63 (m, 2H), 1.59 – 1.49 (m, 2H), 

1.35 (qt, J = 13.1, 4.3 Hz, 1H), 1.20 (ddddd, J = 22.1, 12.6, 9.9, 6.3, 3.2 Hz, 2H), 1.12 – 1.00 (m, 

1H), 0.92 (d, J = 6.3 Hz, 4H), 0.88 (q, J = 5.0 Hz, 3H), 0.85 – 0.79 (m, 2H); 13C NMR (126 MHz, 

CDCl3) δ 151.6, 150.7, 106.1, 105.7, 51.8, 48.5, 48.3, 46.6, 43.9, 43.7, 43.2, 38.2, 37.2, 35.7, 31.7, 

29.5, 22.6, 20.4; HRMS (EI): Exact mass calc’d for C18H28 [M]+, 244.2191. Found 244.2173. 

Compound III-137. 

To III-138 (30.0 mg, 0.12 mmol, 1.0 equiv) in EtOH (0.8 mL) and DCM (0.4 

mL) was added SeO2 (58.0 mg, 0.52 mmol, 4.0 equiv). The mixture was heated 
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to 78 °C. Upon observed consumption of the starting material and the previously characterized 

mono-oxidation products by TLC (40 h), the yellow reaction was cooled to room temperature and 

the solvent evaporated. The crude material in DCM (2 mL, with an additional 0.5 mL rinse) was 

then added to a flame-dried round-bottom flask with DMP (157.0 mg, 0.37 mmol, 3.0 equiv). Upon 

observed consumption of the starting material by TLC, with both alcohol diastereomers 

converging to one UV-active product (4h), the mixture was diluted with saturated Na2S2O3 

solution and extracted with DCM. The combined organic extracts were washed with saturated 

NaHCO3 solution, dried over MgSO4, and the solvent evaporated under reduced pressure. This 

crude material was purified by flash chromatography on silica gel using 10% EtOAc/hexane (16.4 

mg, 0.06 mmol, 50% yield over two steps): [α]D = +165.4 (c 0.73, CHCl3);  IR (Germanium ATR): 

2922, 2853, 1694, 1615, 1260, 1915, 801 cm–1; 1H NMR (500 MHz, Chloroform-d) δ 5.71 (d, J = 

1.7 Hz, 1H), 5.48 (d, J = 1.7 Hz, 1H), 4.95 (d, J = 2.0 Hz, 1H), 4.82 (d, J = 2.0 Hz, 1H), 2.69 (ddd, 

J = 16.3, 6.5, 3.1 Hz, 1H), 2.49 – 2.29 (m, 4H), 2.21 (t, J = 10.4 Hz, 1H), 2.09 (ddd, J = 13.4, 6.7, 

2.7 Hz, 1H), 1.79 – 1.67 (m, 2H), 1.59 (s, 1H), 1.57 – 1.47 (m, 1H), 1.44 – 1.30 (m, 2H), 1.22 

(ddd, J = 21.6, 10.6, 3.2 Hz, 1H), 1.14 (d, J = 6.5 Hz, 3H), 1.02 (d, J = 6.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 206.6, 203.7, 149.6, 148.3, 119.2, 117.4, 48.2, 47.0, 46.4, 45.4, 41.6, 41.3, 41.1, 

39.7, 36.8, 28.2, 20.1, 15.1; HRMS (EI): Exact mass calc’d for C18H24O2 [M]+, 272.1776. Found 

272.1757. 

Compound III-45. 

Employing reductive cyclization conditions developed by Yoon and 

coworkers,299 III-137 (21.0 mg, 0.077 mmol, 1.0 equiv) was dissolved in freshly 

distilled ACN (1.6 mL). Ru(bpy)3Cl2•H2O (2.0 mg, 0.0027 mmol, 3.5 mol %) was added, followed 
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by HCO2H (15 µL, 0.39 mmol, 5.0 equiv) and iPr2NEt (134 µL, 0.77 mmol, 10.0 equiv). The 

orange mixture was cooled in a liquid nitrogen bath, placed under vacuum for 10 minutes, removed 

from vacuum and warmed to room temperature, and purged with N2. This freeze-pump-thaw 

process was repeated three times, after which the orange reaction was irradiated with a 23 W (1600 

lumen) compact fluorescent lamp at room temperature. Upon observed consumption of the UV-

active starting material by TLC, (20h), the solvent was evaporated under reduced pressure. The 

crude material was purified by flash chromatography on silica gel using 10% EtOAc/hexane (19.4 

mg, 0.071 mmol, 92% yield): [α]D = +16.0 (c 0.35, CHCl3);  IR (Germanium ATR): 2924, 2862, 

1707, 1453 cm–1; 1H NMR (499 MHz, Chloroform-d) δ 2.51 – 2.30 (m, 4H), 2.06 – 1.94 (m, 5H), 

1.74 (dt, J = 13.1, 3.5 Hz, 1H), 1.66 (tdt, J = 11.6, 7.1, 3.5 Hz, 1H), 1.35 – 1.04 (m, 8H), 1.00 (d, 

J = 6.5 Hz, 3H), 0.98 (d, J = 6.5 Hz, 3H), 0.86 (q, J = 12.1 Hz, 1H); 13C NMR (126 MHz, CDCl3, 

referenced to 77.0 ppm) δ 213.0, 212.0, 53.6, 52.7, 52.2, 52.1, 46.3, 44.3, 43.0, 41.2, 41.0, 40.4, 

36.4, 31.0, 23.7, 23.6, 19.9, 14.4; HRMS (ESI): Exact mass calc’d for C18H26O2Na [M+Na]+, 

297.1831. Found 297.1827. All spectroscopic data for this compound agrees with previously 

reported values.286 
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4 Chapter 4 

4.1 Introduction 

The developed couple and close methodology has provided access to a suite of trans-anti-

trans carbocyclic scaffolds with varying substitution and composition, as discussed in Chapter 2. 

The strategy enabled the concise synthesis of diterpene (+)-7,20-diisocyanoadociane, 

demonstrating the potential for this approach to be applied to the synthesis of different complex 

molecules. In this chapter, a discussion of the future development and application of this general 

synthetic strategy will be outlined. 

4.2 Further methodology development 

Although the established conditions for this general strategy were successful in the 

generation of straightforward substitution patterns within the scaffolds, there are avenues for the 

continued development to expand the approach. It has often been observed in oxidative coupling 

that the alteration of substrates, particularly with regard to the steric environment, can provide 

vastly different coupling capabilities. This was specifically seen through the challenging 

substitution patterns that were discussed in Section 2.5.3, some of which are shown in Figure 4.1.  

However, the large majority of natural products contain these particular substitution patterns, and 

as such, the development of conditions to allow their access through this sequence is instrumental 

to the enhancement of the strategy, and will expose a wealth of possible targets.  

Figure 4.1 Generally desirable carbocyclic scaffolds 
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4.3 Potential natural product targets 

With the ability to achieve challenging substitution patterns prevalent in numerous natural 

product families, there are many avenues for potential application of the platform to natural 

product synthesis. As the complexity and steric bulk of the individual substrates increases, the 

oxidative coupling and ring-closing metathesis steps will become more challenging and will likely 

require optimization for each individual system. A few of the structurally interesting targets that 

are potentially accessible with the execution of the couple and close strategy are listed herein. 

4.3.1 Quassin 

Isolated from plant species Simaroubaceae, the quassinoids have attracted the attention of 

scientists for their complex carbocyclic structures with a dense array of stereocenters, and for their 

wide range of biological activities. They have exhibited potent antineoplastic activity, as well as 

antiviral, antimalarial, antifeedant, antiamoebic, antituberculosis, and insecticidal abilities.259, 302 

The first synthesis of quassin IV-4, shown in Figure 4.2, was achieved by Grieco and coworkers, 

which has been followed by a number of successful syntheses.178, 302-305 The trans-anti-trans 

tricyclic 1,4-diketone embedded within this core structure is particularly attractive, mapping 

directly onto scaffolds that are potentially accessible through the sequence. 

Figure 4.2 Quassin 
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4.3.2 Fichtelite 

Hydrocarbon fichtelite (IV-5, Figure 4.3) was isolated from the remains of a pine trunk in 

Fictelgebirge, Bavaria, and the absolute stereochemistry of the molecule was determined by 

Burgstahler and Marx in their synthesis from abietic acid.306-307 The molecule has been synthesized 

by Johnson and coworkers, employing cationic polyene cyclizations as discussed in Section 

1.2.1.1,25-26 and by Taber and Saleh, through an intramolecular Diels–Alder reaction, as discussed 

in Section 1.4.2.2.185 The trans-anti-trans nature of this polycyclic molecule should enable the 

facile implementation of the couple and close strategy, should conditions be discovered to allow 

the coupling to proceed with both substitution in the 4- and α-positions. 

Figure 4.3 Fichtelite 

 

4.3.3 Cassaine 

(+)-Cassaine IV-6 (Figure 4.4) was isolated from the bark of Erythrophleum guinneese in 

1935 and the structure was confirmed by Turner and coworkers in the late 1950s, who went on to 

achieve the first total synthesis of the molecule.308 Aside from this seminal synthesis, 

Deslongchamps and coworkers have accomplished two syntheses of this molecule with varying 

strategies, as discussed in Sections 1.3.1135 and 1.4.1.172-173 As an inhibitor of Na+ and K+-ATPase, 

the compound is of interest due to its cardiotonic activity. The tricyclic trans-anti-trans core 

structure of the molecule lends itself as a potential target for the general couple and close strategy. 
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Figure 4.4 Cassaine 

 

4.3.4 Conifer oleoresin diterpenoids 

The viscous resin produced by conifers is composed of a variety of tricyclic terpenes, 

mostly made of abietic, levopimaric, neoabietic, and palustric, and pimaric acids, which are known 

to possess defensive properties against predators and pathogens.309-311 These 4-carboxylic acids 

are likely biosynthetically produced from the corresponding diterpenoid hydrocarbons, as shown 

in Figure 4.5, which possess the trans-anti relationship about the ring fusions of the tricyclic core 

and differ in the location of unsaturation. 

Figure 4.5 Conifer oleoresin hydrocarbons 
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Figure 4.6 Bioactive pimarane diterpenoids 

 

4.3.5 Phytoalexin diterpenoids 

With similar structures and substitution patterns to the diterpenoids discussed in the 

previous section, the compounds shown in Figure 4.7 were isolated from rice plant Oryza sativa 

and are known to be phytoalexins, or species that are not present in healthy plants but are produced 

in the event of an infection as a defense mechanism due to their antimicrobial action.153 Oryzalexin 

F (IV-14)314 and phytocassane D (IV-15, the synthesis of which was discussed in Section 1.4.1)153 

each possess the trans-anti-trans core with substitution in the 4-position and an angular α-methyl 

substituent.  

Figure 4.7 Phytoalexins from rice plants 
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17)316 were isolated from the Pacific Ocean, demonstrating the ability for related mollusks in 

different environments to also biosynthesize these acylglycerols. 

Figure 4.8 Bioactive acylglycerols isolated from mollusks 
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Terpenes containing a fused furan appendage (or tetrahydrofuran or furanone 
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reported the isolation of a variety of these types of structures in 2011.319  
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Aplysilla glacialis and has been synthesized by Ragoussis and coworkers320 and by Abad-

Somovilla and coworkers.321 

Similar furanocassane diterpenoids (Figure 4.9c, IV-22) were recently isolated from the 

seeds of Bowdichia virgilioides in South America and exhibited cytotoxic and antimalarial 

properties.322 These seeds and the accompanying bark is known to produce many species with a 

wide array of biological activities.  

Finally, the isocopalane diterpenes from Darwinella rosea sponges near New Zealand 

shown in Figure 4.9d (dendrillol-3 IV-23 and dendrillol-4 IV-24) were among the structurally 

intriguing compounds isolated in 1997 by Taylor and Toth.318  

Figure 4.9 Furan-containing diterpenes 
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throughout nature and are accompanied by a range of biological activities. Figure 4.10 displays 

select examples that may be accessible through the couple and close strategy. Kanshone I (IV-25) 

was recently isolated alongside several other compounds from the Himalayan herb Nardostachys 

chinensis Batal, which is rich in sesquiterpene species.323 The isolated sesquiterpenes bear 

structural semblance to other species with known cytotoxic, antinociceptive, and antimalarial 

activities. Additionally, novel eudesmane sesquiterpenes were isolated from the fruit of the Alpinia 

oxyphylla plant, which is rich in terpene natural products. As an example, nootkatone IV-26 

exhibited anti-inflammatory activity in mouse peritoneal cells, as well as microglia inhibitory 

activity.324 The 6,7-fused widdrol IV-27 was isolated from Juniperus chinensis and displayed 

notable anticancer activity.325 

Figure 4.10 Putative bicyclic natural product targets  
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Scheme 4.1 Access to the steroid nucleus   

 

4.3.10 Larger polycyclic scaffolds 

The implementation of the developed strategy for the preparation of polycyclic scaffolds 

with larger ring systems may be imagined. Earlier this year, antibiotic sesterterpenes were isolated 

from Nostoc sp. cyanobacterium, with cybastacine B IV-31 shown in Figure 4.11.327 Notably, the 

compound displayed significant antimicrobial activity. This desirable activity, paired with its 

unique pentacyclic structure with guanidinium functionality, make this natural product an 

interesting target, particularly as the discovery of novel antibiotic compounds is of increasing 

importance. 

Figure 4.11 Cybastacine B 
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the majority of these targets, conditions must be developed for the oxidative coupling and ring-

closing metathesis to cater to the increased steric environment of the corresponding coupling 

partners. Should these prevalent substitution patterns become accessible through the general 

strategy, an unlimited number of natural products can be investigated, enabling convergent and 

modular syntheses that may facilitate biological activity studies. 
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