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ABSTRACT

The vast majority of interactions between customers and service providers are experi-

ences that extend over time. Service systems that deliver excellent customer experience

achieve greater customer satisfaction and therefore customer loyalty, and eventually raise

revenue. The temporal aspects of service delivery have not yet been analyzed as care-

fully as its monetary aspects, while knowing how to control the timing of the service

delivery and consequently enhancing the customers’ experience can give a competitive

advantage to the service providers in many industries from call centers to hospitals. By

developing analytical data-driven models and conducting empirical studies, we address

the gap between operations management models and the-state-of-the-art in marketing

and psychology literature, using quantitative methods such as Markov Decision Process

(MDP), queueing theory, and predictive analytics as well as qualitative methods such as

surveys and interviews. This line of research has led to the development of practical poli-

cies to control and optimize system’s throughput, customer’s wait-time and customer’s

satisfaction in different service operations, which are presented in three chapters of this

thesis.
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Preface

Most existing models in multi-stage service systems assume full information on the

state of downstream stages. In Chapter 1, motivated by mortgage application process, we

investigate how much the lack of such information impacts the task’s waiting times in a

two-stage system with two types of tasks. The goal is to find the optimal control policy for

a server to switch between type-1 and type-2 tasks while minimizing the average number

of tasks in the system. First, we discuss how and when the server can make the decision of

working on the type-1 tasks or type-2 without knowing full information about the number

of tasks at a downstream stage. Second, we analyze how this lack of information affects

this decision and under what conditions the server can capture the benefit of the full

information. We develop heuristic policies for the server to make this decision without

knowing full information about the number of tasks at a downstream stage and discuss

their implementation in practice.

Design and control of service systems with impatient customers have been extensively

studied in queueing literature. In an extensive literature review, we synthesize recent

advancements and identify current research gaps. One example of such research gaps is

addressed in Chapter 2, where we study a multi-class queuing system with a single server

and customer abandonment. Customer abandonment as a performance measure is of a

great importance in many service systems, especially in Infomercial call centers. However,

minimizing the loss of revenue due to the abandonment of impatient customers is rarely
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studied in the literature. We characterize the structure of the server’s optimal scheduling

policy that minimizes the total average customer abandonment cost. We find that the

optimal service policy is a static priority policy, which is easy-to-implement in practice.

We derive sufficient conditions under which the so-called bµ–rule is optimal. Under the

bµ-rule, it is optimal to give priority to the customer type that has higher service rate

(µ) and higher abandonment cost (b), i.e., higher index bµ. When those conditions are

not met, we introduce bµθ–rule as a heuristic policy that performs well. Our numerical

analysis shows that the optimal scheduling policy results in an average cost saving of 80%

compared to the commonly used first-come-first-served policy.

Excessive wait-time is the most common reason patients become unsatisfied and leave

the emergency department (ED) before being treated. In Chapter 3, we aim to determine

the impact of announcing patient’s wait-times on patients satisfaction considering the

loss-averse behavior of patients. For that purpose, using predictive analytics and two

years of hospital data, a institution specific application is developed to predict patient’s

wait-times. In a field experiment in an urban emergency department, we observe that

providing patients with their estimated wait-times improves their self-report satisfaction

significantly. We also find that even though overestimating the announced delay increases

the average wait-time satisfaction, overestimating too much may have negative impacts

on patients wait-time experience. We discuss how to engineer the delay announced to

maximize the average wait-time satisfaction.
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CHAPTER 1

Optimal Control Policies in Service Systems with Limited

Information on the Downstream Stage

1.1. Introduction

One of the main goals of any multi-stage congested system is to minimize jobs waiting

time to improve the efficiency of process flow Fitzsimmons et al. (2006) and customer

satisfaction Davis and Heineke (1998). One common situation that is observed in multi-

stage service systems is that jobs might be returned for reprocessing. In this case, the

server at upstream stage receives two types of jobs at her stage and faces the decision of

whether to work on a new arriving job or on a returned job.

One example of a two-stage service system in which a server at upstream stage faces a

decision of working on a new job or on a returned job is the Mortgage Application Process.

As described by Freddie Mac mortgage guide1, the application process starts with a Loan

Officer completing the mortgage loan application, see Figure 1.1- Left. The completed

application is sent to a Loan Processor for review and for preparing the application for

presentation to the Underwriter.2 If the application is complete, the Loan Processor sends

it to the Underwriter. If the application needs more documents or revisions, the Loan

Processor sends it back to the Loan Officer for reprocessing. After reprocessing, the Loan

1http://www.freddiemac.com/singlefamily/docs/Step_by_Step_Mortgage_Guide_English.pdf
2The professional authorized to assess if the application is eligible for the mortgage loan he or she is
applying for.

http://www.freddiemac.com/singlefamily/docs/Step_by_Step_Mortgage_Guide_English.pdf
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Officer then sends the completed application directly to the Underwriter herself. In this

process, the Loan Officer receives both new applications and applications that require

reprocessing and therefore, faces the decision of whether to work on a new arriving ap-

plication or on a returned application. This administrative procedure is also common in

other service systems such as law offices or human resource offices. In these systems, both

the report owner and the reviewer have the permission to submit the report to the down-

stream stage and the reviewer’s comments, which are usually simple and straightforward

(e.g, asking for adding/removing a document), need not to be sent back to the report

owner for re-checking. For example, as it is represented in the administrative process flow

charts of Federal Aviation Administration (FAA)3, whenever a Secretary submits a request

(e.g., Procurements Request) to her Manager for approval, the Manager can either ap-

prove the request or send it back to the Secretary for reprocessing and submission. While

our problem was motivated by different administrative processes, the queueing dynamics

with feedback is also prevalent in Manufacturing. For example, Stage 1 can be a produc-

tion/assembly (station or department) and Stage 2 can be a quality control/inspection

(station or department). If quality inspection reveals that jobs require rework, they are

sent to the first stage for rework to fix the quality issues. When the quality is fixed, the

job is sent directly to Finished Goods Inventory (FGI) or to another stage of production.

The decision of which type of application to work on next will directly affect the num-

ber of applications in the system, which affects other operational performance measures

such as flow time and throughput. For example, let us assume that mortgage applica-

tions are coming every 5 hours and suppose it takes an average of 3 hours for a Loan

3www.tc.faa.gov/ota/FlowChartofProcesses_ver6b.ppt

www.tc.faa.gov/ota/FlowChartofProcesses_ver6b.ppt
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Figure 1.1. Left: Two-stage interconnect queue with feedback, Right: Corresponding
three-stage tandem queue with flexible server.

Officer to process a new application and 2 hours to reprocess a returned application (i.e.,

assume Poisson arrivals and exponential service times). Further, suppose a Loan Proces-

sor’s average review time is 4 hours and 90% of the applications are sent back to the Loan

Officer. Two commonly used policies used by for Loan Officer are: (i) the new and re-

turning applications are processed first-come-first-served (FCFS); (ii) priority is given to

the returning applications. These two policies, however, perform poorly compared to the

optimal policy (we characterize the optimal policy in Section 4). In this example, FCFS

can result in 46% higher waiting time and priority policy can result in 7% higher waiting

time than that under the optimal policy. These numbers can be even higher depending

on the processing times and arrival rates.

Motivated by this problem as well as by the opportunity for significant improvement,

this study investigates how a server should make a decision about which job to work on

next when there are two types of jobs (i.e., new and returning jobs) in her stage. Making

this decision optimally requires full information on the state of all stages in the system.

However, it is often difficult (if not impossible) for a server to monitor all stages of the

process. The system may also not allow sharing of such information for privacy reasons.

In mortgage application process, for example, the Loan Officer does not necessarily know
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how busy the Loan Processor (her boss) might be (i.e., how many application is waiting

in her boss’s queue).

To gain insight into the dynamics of such a problem, we consider a two-stage tandem

system with returning jobs at the second stage, as shown in Figure 1.1- Left. All finished

jobs at the Stage 1 are transferred to Stage 2. Jobs completed at Stage 2 leave the system

with probability 1−p (type-1 jobs) or are sent back to Stage 1 for further processing with

probability p (type-2 jobs). Therefore, type-1 jobs require work at Stage 1 and 2, while

type-2 jobs require work at Stage 1, 2 and then 1 again.

There are two servers in the system. Server S1 works at Stage 1 and Server S2 works

at Stage 2. Server S1 faces two queues, one for type-1 jobs and one for type-2 jobs.

This system is equivalent to a three-stage system where Server S1, who is referred to as

“flexible server” in the literature, works at Stages 1 and 3 and Server S2 works at Stage

2, see Figure 1.1- Right. Stage 1 corresponds to type-1 jobs and Stage 3 corresponds

to type-2 jobs. Let N denote the number of jobs in the system. The goal is to find the

optimal control policy for Server S1 to switch between Stage 1 and Stage 3 that minimizes

the long-run average number of jobs in the system, which we refer to E[N ]. Minimizing

E[N ] is one of the main goals of service systems and it is important since for a given

Throughput, minimizing E[N ] minimizes average waiting time in the system.

There are two main considerations for Server S1 when she makes the decision of which

stage to work at. Finishing one type-2 job at Stage 3 can immediately reduce N by 1.

From this perspective, Server S1 should prioritize Stage 3. On the other hand, not working

on type-1 jobs at Stage 1 can temporarily reduce the Throughput of Stage 1, resulting in

starvation and thus idling of Stage 2. This implies that the server should prioritize Stage
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1. Therefore, there is a trade off between reducing number of type-2 jobs at Stage 3 (to

reduce the number of jobs in the system) and reducing number of type-1 jobs at Stage 1

(to prevent the starvation of Stage 2).

In some interconnected systems, servers do not know the number of jobs in the down-

stream stages due to system’s physical limitations or access level restrictions. In case of

the model we study, while information about Stage 1 and 3 is always known to Server S1,

information about the number of jobs at Stage 2 may not be fully known to Server S1.

Therefore, we investigate three different information scenarios about the number of jobs

in Stage 2: Full Information, No Information, and Partial Information.

Under full information scenario, where the number of jobs in each stage is fully known

by Server S1 all the time, we prove that the optimal control policy for Server S1 has a

monotone threshold structure with respect to the number of jobs waiting at Stage 1 and

3. When no information about the number of jobs in Stage 2 is available, we propose

a heuristic policy (called No-Information Threshold (NIT) policy) that works well in

minimizing the total number of jobs in the system. The performance of this heuristic

is compared to the optimal static priority policy (where priority is given to a particular

stage) and to the optimal dynamic policy under full information, where the number of

jobs in each stage is fully known all the time.

Even though the exact number of jobs at Stage 2 may not be known, the server may

know whether that number is small or large (i.e., it is below or above a threshold or

whether the server at Stage 2 is busy or not). Taking this partial information into ac-

count, we finally propose an easy-to-implement heuristic policy (called Partial-Information
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Threshold (PIT) policy) that performs almost as good as the optimal dynamic policy un-

der the full information scenario.

In a comprehensive numerical analysis, we compare the performances of the proposed

heuristics with that of the optimal dynamic policy. Our numerical analysis shows that

PIT policy performs very well and NIT policy works as well as the optimal dynamic

policy under certain conditions. When Server S1 and Server S2 have low utilizations

and the percentage of type-2 jobs (i.e., p) is small, NIT performs well. This suggests

that for systems that a small fraction of jobs are sent back to Stage 1 for rework, NIT

policy can be a good candidate to replace the complicated optimal dynamic policy. We

also examine the robustness of our numerical analysis by checking the impact of errors in

setting thresholds for NIT and PIT policies and also the impact of variability of service

times on the performance of the proposed heuristic policies.

To summarize, the contribution of our study is along two dimensions. First, we charac-

terize the structure of the optimal policy for the flexible server, when she has full informa-

tion about the number of jobs in all three stages. Second, we develop easy-to-implement

polices for cases where no information or partial information about the downstream stage

is available. We also provide insights into situations where these heuristic policies per-

form as well as the complex optimal dynamic policy under full information. To the best

of our knowledge, the literature on flexible workers scheduling assume full information of

all states. Our study is the first study that studies the lack of such information on server’s

policy and system performance.

The remainder of this chapter is organized as follows. We review the related literature

in Section 2. In Section 3, we introduce the model specification. Section 4 discusses
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the control policy under full information and presents the corresponding Markov decision

process (MDP) formulation. In Section 5, control policies under no or partial information

are introduced. Finally, the numerical analysis is presented in Section 6. We conclude

the chapter in Section 7.

1.2. Literature Review

In this chapter, we study the optimal control policy of a flexible server in an intercon-

nected queueing system. Flexible servers, who can be assigned dynamically to work in

different stages of a process, are the foundation of workforce agility. Workforce agility pro-

vides systems with the ability to achieve high level of efficiency while meeting objectives

for quality, operational efficiency and customer service. Hopp and OYEN (2004) outline

frameworks for assessing and classifying the use of flexible servers in manufacturing and

service operations. In a literature review of server assignment problems in manufacturing

systems, Ammar et al. (2013) also acknowledge the impact of servers flexibility on the

system performance.

One of the most commonly used system in manufacturing and service systems is a sys-

tem in which stages of the system are in sequence (e.g., production lines). These systems

are modeled as tandem queues in queueing literature. In recent years, the literature on

tandem queues with flexible servers are growing. In this section, we review the literature

on tandem queues with different combination of servers and stages.

The simplest non-trivial but prevalent queueing networks are two-stage tandem queues

with no feedback and with one flexible server. Rosberg et al. (1982) and Hajek (1984)

consider a two-stage tandem queueing system with one flexible server and one dedicated
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server at Stage 2. Farrar (1993) studies a two-stage tandem queues with a dedicated

server to each stage and a single flexible server for the whole system. He shows that

the optimal allocation policy of an additional server is transition-monotone when holding

cost in Stage 2 is larger than that in Stage 1. A control policy is transition-monotone

if after a service completion at stage i, the optimal service rate at that stage does not

increase, and the optimal service rate at other stages j 6= i does not decrease. Generalizing

the classic tandem (make-to-order) queue to include finished goods inventory (make-to-

stock), Veatch and Wein (1994) analyze a manufacturing facility consisting of two stations

in tandem that operates in a make-to-stock mode. Considering a two-stage tandem queue

attended by a single flexible server, Iravani et al. (1997) show that the optimal dynamic

policy in the second stage is greedy and, if the holding cost rate in the second stage is

greater than the rate in the first stage, then the optimal dynamic policy in the second

stage is also exhaustive. Our study is different from the existing literature on two-stage

tandem queues with one flexible servers in the following dimensions. First, while in the

current literature the server has full information about the number of jobs in each queue

when making decision, in our study, we consider cases where the server has no or has

partial information about the number of jobs in downstream queues. Second, in our

model jobs can return to the first stage for reprocessing, on the contrary to the papers

discussed above.

There are also studies on two-stage tandem queues with feedback, or with departure

from any stage. Pandelis and Teneketzis (1994) consider a two-stage queueing system

where jobs that complete service in Queue 1 join Queue 2 with probability p, and leave the

system with probability 1−p. They assume pre-loaded jobs in the system with no external
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arrivals, while the system in our study has external arrivals. Pandelis (2007) studies a two-

stage tandem queueing system with the same setting as Pandelis and Teneketzis (1994),

but with a dedicated server at each stage and an additional flexible server. They find

conditions under which idling is optimal for the flexible server. In another study, Pandelis

(2008) considers a similar model with external arrivals where there are two dedicated

servers and a flexible server. All servers have exponentially distributed service times and

the service rate (capacity) may change randomly. He shows that the switching policy

for the flexible server is monotone with respect to the number of jobs in the system.

Including customer impatience, Zayas-Cabán et al. (2016) extend the server scheduling

problems for a two-stage tandem queueing system. As a result of customer impatience,

uniformization is not possible since the transition rates are unbounded. To address this

difference, they formulate the server scheduling problem as a continuous-time Markov

decision process (CTMDP) and provide sufficient conditions for when it is optimal to

prioritize Stage 1 or Stage 2 service. On the contrary to our model, the jobs in these

papers cannot return to the first stage for reprocessing and therefore there is no feedback.

Considering feedback, Tang and Zhao (2008) analyze a tandem queue, where customers

may either leave upon completion of service at the second stage or return to the first stage

with some probability. As opposed to our model, server at the first stage do not need to

make any decision on which job to process next and therefore they do not address the

server scheduling problem. They use the tandem queue with feedback to demonstrate

how to deal with a block generating function of GI/M/1 type, and to illustrate of how

the boundary behavior can affect the tail decay rate.
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The optimal control policy of a two-stage tandem queueing system with multiple

flexible servers are also widely studied in the literature. Considering two parallel flexible

servers, Ahn et al. (1999) study stochastic scheduling of a two-stage tandem queueing

system and characterize sufficient and necessary conditions under which it is optimal

to allocate both servers to the upstream or downstream. Javidi et al. (2001) address a

two-stage system with Poisson arrival and exponential service times, considering multiple

flexible servers in each queue. A single job that completes service in Stage 1 creates k

jobs in Stage 2 with probability p and the job leaves the system with probability 1 − p.

The authors give two sets of conditions under which giving priority to Stage 1 is optimal

or giving priority to Stage 2 is optimal. Weichbold and Schiefermayr (2006) study a

scheduling problem with two interconnected queues and two flexible servers. Considering

waiting costs, they find a sufficient condition under which it is optimal to allocate both

servers to Stage 1 for any number of jobs in Stage 1 and Stage 2. More recently, Baumann

and Sandmann (2017) study multi-server tandem queues where both stations have a

finite buffer and service times are assumed to follow phase-type distribution. Two-stage

systems with multiple flexible servers are also studied by Andradóttir and Ayhan (2005),

Schiefermayr and Weichbold (2005), Wu et al. (2006) and Andradóttir et al. (2012). In

contrast to our study, returning jobs is not considered in the setting of these studies and

authors assume that the state information is fully known to all servers when they make

the decisions of which queue to serve next.

There are also some papers that analyze queueing systems with flexible servers with

more than two stages (e.g., Ahn and Righter (2006), Sennott et al. (2006), Andradóttir

et al. (2007), Hopp et al. (2005), Kırkızlar et al. (2010) and Kırkızlar et al. (2014)). Even
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though our underlying model is a two-stage system, the proposed equivalent model that

we analyze in this study can be considered a three-stage system with a flexible server who

works in Stage 1 and Stage 3. Dobson et al. (2013) model a three-stage two-server queueing

system in which Server 2’s work in Stage 2 depends on the decision of the Server 1 in

Stage 1. Server 1 (investigator) collects information from the customer and decides what

work needs to be done in the second stage. In the third stage, Server 1 provides customers

with a conclusion, solution or diagnosis based on additional information or analysis done

by Server 2 (back office). The authors then analyze the impact of server 1’s decision of

working on new customers versus discharging customers on system throughput. They

show that when interruptions are not an issue, Server 1 should prioritize new customers

to maximize throughput, keeping the system as full as possible. If customers who have

been in the system for a long time generate interruptions and thus additional work for

Server 1, it is asymptotically optimal for Server 1 to keep the system occupancy low and

prioritize discharging customers. Even though there are some similarities, our model is

different from Dobson et al. (2013) in several ways. In their model, jobs have to return to

Server 1 after being processed at Stage 2, while in our model with some probability, jobs

may leave the system without returning to Server 1. Therefore, a structurally different

model is addressed in Dobson et al. (2013). Moreover, the unavailability of information

on the state of downstream stage is not discussed in their analysis.

In a multi-stage multi-server interconnected queueing setting, Campello et al. (2016)

propose a stochastic model of a baseline case-manager system. They define a case man-

ager as a server who is assigned multiple customers and has frequent, repeated interactions

with each customer until the customer’s service is completed (e.g., emergency department
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physicians). They formulate models that provide performance bounds and stability con-

ditions for the baseline system. They also develop two approximations, one of which is

based on a two-time-scale approach. The model analyzed in this study is structurally dif-

ferent from our model. Also, the authors do not address the issue of limited information

on the downstream stage, as we do in our study.

In conclusion, the impact of limited information about the downstream stages (Stage

2 in our model) on server’s policy and on system performance has not been studied in

the literature of tandem queues with flexible servers. In this chapter, we characterize

the structure of the optimal control policy under full information about Stage 2. Given

the insights gained from the optimal control policy, we propose close-to-optimal heuristic

polices that perform well when there is no information or limited information available

about the number of jobs at Stage 2.

1.3. Model

Consider a system with two stages. Jobs arrive at Stage 1 according to a Poisson

process with rate λ. All completed jobs at Stage 1 are transferred to Stage 2. Jobs

completed at Stage 2 either leave the system with probability 1−p (type-1) or transferred

back to Stage 1 with probability p (type-2). Type-2 jobs leave the system after their work

is completed at Stage 1. We assume that all stages have unlimited buffers (e.g., jobs are

files or folders that do not need a large space to store).

From the modeling perspective, as we mentioned, this problem is equivalent to a

three-stage system with one dedicated server working at Stage 2, and one flexible server

attending Stage 1 (type-1 jobs) and Stage 3 (type-2 jobs), see Figure 1.1-Right. The
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three-stage model is a generalization of the two-stage tandem queue where the service

rate at the second stage (i.e. µ2) is infinity. When service rate at the second stage (i.e.

µ2) is infinity, our model works as a tandem queue with a flexible server, where jobs leave

the system with probability 1 − p and return to the first stage with probability p. We

assume that the service time at Stage i is exponentially distributed with rate µi. We note

here that the exponential assumption regarding the service times allows us to formulate

the model as a MDP and characterize the structure the optimal dynamic policy. After

our MDP reveals the structure of the optimal dynamic policy, it becomes clear that our

main insights about the structure are not influenced by this assumption on service times.

In Section 6.4, we present the additional numerical analysis to check the robustness of our

findings for the case that the service times are not exponentially distributed. We further

assume that the switchover time (i.e., switching between Stages 1 and 3) is negligible

compared to process times. We also assume that preemption is allowed so Server S1, if

needed, can interrupt her job (processing a job at a stage) and start another job (i.e.

processing a job at another stage, or remain idle).

The goal is to find the best control policy for Server S1 that minimizes the long-run

average number of jobs in the system. We pursue this goal under three different informa-

tion scenarios for Server S1: Full Information, No Information and Partial Information

about the number of jobs at Stage 2. We discuss the control policy under each of these

scenarios in the following sections.
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1.4. Control Policy Under Full Information

In this scenario, we assume that Server S1 knows the number of jobs at each stage of

the three-stage tandem queue, when she makes the decision of working on a type-1 or a

type-2 job. Server S1 has three decisions to make: stay idle, work at Stage 1, or work at

Stage 3.

1.4.1. The MDP Formulation

We formulate the problem as a Markov Decision Process (MDP) as follows:

• Decisions epochs are job completion or job arrival epochs at any stage.

• State Space U consists of 3 dimensional vectors n, where n = (n1, n2, n3), and

ni is the number of jobs at Stage i, including the one in service, ni ≥ 0, ∀i.

• Actions include a ∈ {I, P1, P3} : Idling (I), process (or continue processing) a

job at Stage 1 (P1) and process (or continue processing) a job at Stage 3 (P3).

The optimality equation of the MDP with the objective of minimizing E[N ] in the

system can be expressed as
g

Λ + V (n) = 1
Λ

{
n1 + n2 + n3 + λV (n + e1) + µ2B(n)

+ min
{
AI(n), AP1(n), AP3(n)

}}
,

(1.1)

where g is the long-run average number of jobs in the system and Λ = λ+µ1 +µ2 +µ3 is

the uniformization rate. We define ei as a 3-dimensional vector with zero elements except

for its ith element, which is one. Also, we define

(1.2) B(n) =


V (n) : if n2 = 0

pV (n− e2 + e3) + (1− p)V (n− e2) : if n2 > 0



29

For AI(n), AP1(n) and AP3(n), we have:

AI(n) = (µ1 + µ3)V (n)

AP1(n) =


µ1V (n) + µ3V (n) : if n1 = 0

µ1V (n− e1 + e2) + µ3V (n) : if n1 > 0

AP3(n) =


µ3V (n) + µ1V (n) : if n3 = 0

µ3V (n− e3) + µ1V (n) : if n3 > 0

(1.3)

Operator Aa(n) represents possible transitions at State (n) if action a is chosen.

1.4.2. Structure of The Optimal Control Policy

In this section, we characterize the optimal control policy for Server S1. We first need to

discuss the stability condition for the system in Proposition 1. The proof of the proposition

and other analytical results are presented in the appendix.

Proposition 1.1. The system is stable if:

µi > λ, i = 1, 2

µ3 > pλ

µ1µ3

pµ1 + µ3
> λ

(1.4)

Theorem 1.1. If conditions in Proposition 1.1 hold, then there exists an average-cost

optimal stationary policy for the MDP which has a constant average cost. Moreover, the

value iteration algorithm converges.

Let Υ be the set of functions defined on U such that if function v ∈ Υ, then v satisfies
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C1: v(n) is nondecreasing in n1 ≥ 0, n2 ≥ 0 and n3 ≥ 0.

C2: v(n) ≥ v(n− e1 + e2), for n1 > 0, n2 ≥ 0, n3 ≥ 0.

M1: For n1 > 1, n2 ≥ 0, n3 > 0,
µ3[v(n− e1 − e3)− v(n− e1)] + µ1[v(n− e1)− v(n− 2e1 + e2)]

≤ µ3[v(n− e3)− v(n)] + µ1[v(n)− v(n− e1 + e2)].
M2: For n1 > 0, n2 ≥ 0, n3 > 0,

µ3[v(n + e2 − e3)− v(n + e2)] + µ1[v(n + e2)− v(n− e1 + 2e2)]

≤ µ3[v(n− e3)− v(n)] + µ1[v(n)− v(n− e1 + e2)].
M3: For n1 > 0, n2 ≥ 0, n3 > 0,

µ3[v(n)− v(n + e3)] + µ1[v(n + e3)− v(n− e1 + e2 + e3)]

≤ µ3[v(n− e3)− v(n)] + µ1[v(n)− v(n− e1 + e2)].
Define operator T on the set of real-valued functions defined on U by

Tv(n) = 1
Λ

{
n1 + n2 + n3 + λv(n + e1) + µ2B(n) + min

{
AI(n), AP1(n), AP3(n)

}}
.

The following Proposition shows that properties C1, C2, and M1-M3 are preserved

under operator T. Moreover, it shows V ∈ Υ and therefore value function V (n) satisfies

properties C1, C2, and M1-M3.

Proposition 1.2. If v ∈ Υ, then (a) Tv ∈ Υ; and (b) V ∈ Υ.

From properties C1 and C2 in Proposition 1.2, we have the following results.

Theorem 1.2. Idling is not optimal for Server S1 as long as there are jobs available

at Stages 1 or 3.
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Theorem 2 implies that, when the goal is to minimize long-run average number of jobs

in the system, working on a job and pushing it to a downstream stage or finishing the job

so it leaves the system is preferred to idling.

Theorem 1.3. If at state n, for n1 > 0, n2 ≥ 0, n3 > 0, it is optimal for Server S1 to

work at Stage 3, then it is also optimal for her to work at Stage 3:

• at state (n− e1),

• at state (n + e2),

• at state (n + e3).

Similarly, If at state n, for n1 > 0, n2 ≥ 0, n3 > 0, it is optimal for Server S1 to work at

Stage 1, then it is also optimal for her to work at Stage 1:

• at state (n + e1),

• at state (n− e2),

• at state (n− e3).

Theorem 1.3 implies that it becomes optimal for Server S1 to work at Stage 3 as n3

increases or n1 decreases, and work at Stage 1 as n1 increases or n3 decreases. When

n2 increases, preventing Stage 2 from starvation is less important and it is expected that

there will be more arrivals at Stage 3. Therefore, the optimal dynamic policy recommends

working at Stage 3, when n2 increases.

Figure 1.2 illustrates a typical structure of the optimal dynamic policy. As the figure

shows, the optimal control policy for Server S1 under full information has a monotone

threshold structure. If Server S1 knows the number of jobs at Stage 2 all the time, she is

able to minimize long-run average number of jobs in the system by following the optimal
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Idle Work at Stage 1 Work at Stage 3

𝑛3

𝑛1

0
𝑛3

𝑛2
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Work at 

Stage 1

Work at 

Stage 3

Work at 

Stage 1

Work at 

Stage 3

for a given 𝑛2 for a given 𝑛1

Figure 1.2. Left: A Typical structure of the optimal dynamic policy for given n2, Right:
A Typical structure of the optimal dynamic policy for given n1. Depending on the values
of n1 and n2 the monotone structure changes.

dynamic policy. However, she may not (or cannot) monitor the state of Stage 2 or the

system may not allow sharing of such information for privacy reasons. Due to the fact

that the lack of information on n2 may be inevitable, we must design control policies that

take this into account. In following sections, we introduce policies that can be used when

the information about n2 is not available or is partially available at Server S1. Before

introducing these policies, we discuss an extension to the current MDP model.

Thus far, we assumed that Server S2 receives jobs only from Server S1. However,

in practice, Server S2 may also receive jobs from another server independent of the jobs

Server S2 receives from Server S1. For example, in mortgage application process, another

Loan Officer may send a job to the Loan Processor independent of the Loan Officer at

Stage 1 (i.e., independent of Server S1). We assume that the new arrivals are completely

random and arrive independently according to a Poisson process with rate λe to Stage 2.
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The question is whether the arrival of the new jobs to Stage 2 has any impact on the struc-

ture of the optimal control policy for Server S1? Do the structural properties in Theorem

2 and 3 still hold? In Proposition 3, we show that all the results discussed regarding the

structure of the optimal control policy for Server S1, presented in Proposition 2, Theorem

2 and Theorem 3, still hold for V e(n), the value function with the new arrivals to Stage

2 defined in Equation (1.5). The proof is presented in Appendix for brevity.

Let V e(n) be the value function with the new arrivals to Stage 2. The optimality

equation of the new MDP with the objective of minimizing average number of jobs in the

system can be expressed as

g

Λe
+ V e(n) = 1

Λe

{
n1 + n2 + n3 + λV e(n + e1) + λeV e(n + e2) + µ2B

e(n)

+ min
{
AeI(n), AeP1(n), AeP3(n)

}}
,

(1.5)

where Λe = λ+λe+µ1 +µ2 +µ3 and Be(n), AeI(n), AeP1(n) and AeP3(n) are defined below.

Be(n) =


V e(n) : if n2 = 0

pV e(n− e2 + e3) + (1− p)V e(n− e2) : if n2 > 0

AeI(n) = (µ1 + µ3)V e(n)

AeP1(n) =


µ1V

e(n) + µ3V
e(n) : if n1 = 0

µ1V
e(n− e1 + e2) + µ3V

e(n) : if n1 > 0

AeP3(n) =


µ3V

e(n) + µ1V
e(n) : if n3 = 0

µ3V
e(n− e3) + µ1V

e(n) : if n3 > 0
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Proposition 1.3. All the results discussed regarding the structure of the optimal con-

trol policy for Server S1, presented in Proposition 2, Theorem 2 and Theorem 3, still hold

for V e(n), defined in Equation (1.5).

The intuition behind Proposition 3 is as follows. According to the optimal control

policy, when n2 is high enough (i.e., Server S2 is busy), Server S1 works at Stage 3 to

complete more jobs. However, when n2 is too low (i.e., Server S2 may become idle soon),

Server S1 works at Stage 1 to avoid starvation of Stage 2. The addition of thenew arrivals

to Stage 2 does not change the threshold-type structure of the optimal dynamic policy.

It only changes the value of the thresholds on n2. Therefore, the value function with

additional arrivals satisfies the structural properties and results driven for Equation (1.1).

Since the addition of the new arrivals do not provide any new insights, in the remainder

of this chapter, we assume there is no additional arrival to Stage 2.

1.5. Control Policy Under No or Limited Information

As we mentioned, it is sometimes difficult (if not impossible) for Server S1 to monitor

the number of jobs at Stage 2 due to the system’s limitations. In the mortgage application

process, the firm’s access control procedure may restrict Server S1 to access Server S2’s

account information including the number of jobs at Stage 2. This is because Server S2

usually has a different access level due to higher organization rank or job description.

Moreover, in some cases, the physical layout of the system and distance between servers

may make it hard for the Server S1 to be able to estimate the number of jobs at Stage

2. The physical layout limitation is more prevalent in manufacturing systems. Thus,

optimal control policy under full information would not always be applicable. Finally, even
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when information about n2 is available, as Figure 1.2 shows, the structure of the optimal

dynamic policy is complex and hard-to-implement because it changes with the value of

n2. Therefore, there is a need for simple control policies that do not need information on

n2, while performing relatively close-to-optimal. In this section, we propose three policies

to fulfill this need: Optimal Static policy, No-Information Threshold (NIT) policy and

Partial-Information Threshold (PIT) policy.

1.5.1. Optimal Static Policy

Static priority policies, in general, give priority to a particular stage as long as there is

a job at that stage. In the mortgage application process, there are two static priorities:

(i) working on the new applications as long as there are new applications in the system,

(ii) working on returning applications as long as there are returning applications in the

system. To find the optimal static policy, we need to compare the long-run average

number of jobs in the system when Server S1 gives priority to Stage 1 with that when the

server gives priority to Stage 3. But one might ask when is it optimal to give priority to

a particular stage?

To answer this question, we have the following theorem that provides a sufficient

condition for static priority policy to be optimal.

Theorem 1.4. If Gi, the processing time at each Stage i, has a general distribution

and P (G2 < G3 < G1) = 1, then it is optimal to give priority to Stage 3 when Stage 2 is

not empty.
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If G3 is always smaller than G1, it is optimal for Server S1 to always work at Stage 3.

This is because working at Stage 1 is less rewarding (it takes a long time for Server S1 to

finish a job at Stage 1). When G3 is always smaller than G1, working at Stage 3 results

in less total number of jobs in the system compared to working at Stage 1. In this case, it

is optimal to give priority to Stage 3. Note that we need the processing time of Server S2

at Stage 2 to be smaller than that of Server S1 at Stage 3 to ensure that Stage 3 become

empty faster than Stage 2. Otherwise, to prevent starvation of Stage 2, Server S1 has to

work at Stage 1. Therefore, when Stage 2 is not empty and P (G2 < G3 < G1) = 1, it is

optimal to give priority to Stage 3.

Compared to optimal dynamic policy, a static priority policy does not use any infor-

mation about the system state and is easier to implement. Server S1 continues to work

at the prioritized stage as long as there is job in that stage. However, it is expected that

static policy does not perform as well as the optimal dynamic policy. Even though a large

gap is expected between the optimal static policy and the optimal dynamic policy, as

we will show later, under some conditions beyond that in Theorem 4, the optimal static

policy works relatively well.

1.5.2. No-Information Threshold (NIT) Policy

Even if the information on the number of jobs at Stage 2 is not available for Server S1,

she could still observe the number of jobs at Stage 1 and 3 (n1 and n3). Therefore, one

can use this information to construct a better control policy compared to the optimal

static policy that does not use information about n1 and n3. Using the information on n1

and n3, No-Information Threshold (NIT) policy helps Server S1 to make the decision of
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working at Stage 1 or Stage 3, when no information is available on n2, as follows:

No-Information Threshold (NIT) Policy:

Under the NIT policy, Server S1 monitors n1 in Stage 1 and n3 in Stage 3 and makes her

decisions based on two thresholds R1 and R3 as follows:

• As long as n3 < R3,

– Server S1 works at Stage 1.

• Once n3 ≥ R3 (i.e., the number of jobs at Stage 3 crosses threshold R3)

– If the number of jobs at Stage 1 is less than or equal to threshold R1 (i.e.,

n1 < R1 ), Server S1 starts working at Stage 3.

– Otherwise, she continues working at Stage 1.

• Server S1 idles only if there is no job at Stage 1 and Stage 3.

Idle Work at Stage 1 Work at Stage 3

𝑛3

𝑛1

0

𝑅1 = 7

𝑅3 = 6

Work at 

Stage 1

Work at 

Stage 3

Figure 1.3. A Typical structure of NIT policy with R1 = 7 and R3 = 6.
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Figure 1.3 shows a typical structure of NIT policy with R1 = 7 and R3 = 6. As shown

in the figure, when n1 > R1, Server S1 works at Stage 1 and when n1 ≤ R1, she works at

Stage 1 only if n3 < R3. When n3 ≥ R3, Server S1 works at Stage 3 under NIT policy.

Even though the lack of full information on n2 is a possibility in the system under

study, in some cases, Server S1 may be given access to some partial information about

the number of jobs at Stage 2, namely, she may know if n2 is large or small. In this case,

using this additional information, she might be able to make a better decision of working

at Stage 1 or Stage 3. Taking this into account, in the next section, we suggest another

policy that can be used when partial information on n2 is available.

1.5.3. Partial-Information Threshold (PIT) Policy

In this section, we propose a threshold policy under which Server S1 makes the decision

of working at Stage 1 or Stage 3 using thresholds on the number of jobs at each stage.

We call this policy Partial-Information Threshold (PIT) policy.

The intuition behind this policy is derived from the structure of the optimal dynamic

policy under full information. The optimal dynamic policy under full information reveals

that Server S1’s decision of which stage to work at depends on n2. When n2 is small,

the server is more likely to work at Stage 1 to feed Stage 2. When n2 is large, the

server is more likely to work at Stage 3 since it is expected that Stage 3 will receive a

large number of jobs from Stage 2. PIT policy simplifies the optimal dynamic policy’s

complex threshold structure by defining a threshold on n1, n2 and n3, separately. Under

PIT policy, knowing if n2 is small or large (i.e. whether it is larger or smaller than a

threshold), Server S1 chooses to work at the stage with relatively larger number of jobs in
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the system. More specifically, if n1 exceeds a threshold, Server S1 works at Stage 1 and

similarly if n3 exceeds a different threshold, Server S1 works at Stage 3.

Based on this insight, PIT policy introduces threshold N2 and two different sets of

thresholds (Z1, Z3) and (S1, S3), respectively, depending on whether n2 ≤ N2 or n2 > N2.

The formal description of PIT policy is described below.

Partial-Information Threshold (PIT) Policy:

Under the PIT policy, Server S1 monitors n1 and n3, and makes her decision based on

five thresholds Z1, Z3, S1, S3 and N2 as follows:

• When n2 ≤ N2,

– If n3 ≥ Z3, Server S1 works at Stage 3;

– Otherwise, when n3 < Z3 , if n1 > Z1 , Server S1 works at Stage 1 or else

(when n1 ≤ Z1) Server S1 works at Stage 3.

– Server S1 only idles when n1 = n3 = 0.

• Similarly, when n2 > N2,

– If n3 ≥ S3, Server S1 works at Stage 3;

– Otherwise, when n3 < S3, if n1 > S1, Server S1 works at Stage 1 or else if

n1 ≤ S1 Server S1 works at Stage 3.

– Server S1 only idles when n1 = n3 = 0.

Figure 1.4 shows a typical structure of PIT policy for set of thresholds N2 = 5,

(Z1, Z3) = (1, 6) and (S1, S3) = (2, 4). The graph on the left shows the structure of this

policy when n2 ≤ N2. In that graph, when n3 ≥ Z3, Server S1 works at Stage 3 and

when n3 < Z3, she works at Stage 3 only if n1 < Z1. When n3 ≥ Z3, Server S1 works at
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Figure 1.4. A Typical structure of the PIT policy (Left) for given n2 when n2 ≤ N2,
(Middle) for given n2 when n2 > N2, (Right) for given n1.

Stage 3. If one of the stages is empty, she works at the other one, and if both stages are

empty, she becomes idle. The graph in the middle shows the structure of PIT policy when

n2 > N2. Similarly, when n3 ≥ S3, Server S1 works at Stage 3 and when n3 < S3, she

works at Stage 3 only if n1 < S1. When n3 ≥ S3, Server S1 works at Stage 3. The graph

on the right shows the structure of PIT policy when n2 and n3 are changing. When n3

becomes larger than a threshold, PIT policy assigns Server S1 to Stage 3. The threshold

is different for n2 ≤ N2 and n2 > N2 and are Z3 and S3, respectively.

PIT policy is easier to implement than the optimal dynamic policy, which is a sig-

nificant advantage in practice. One way to implement this policy in practice is Kanban

Board. Similar to the idea of Visual Kanban in manufacturing systems, a Kanban board

is a feature offered by process and document management softwares such as JIRA,4 that

let the servers track the status and the progress of their jobs in a service system.

4https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira
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1.6. Numerical Analysis

To characterize the performance of static, NIT and PIT policies, we design a numerical

study to answer the following questions for each policy:

(1) How does each proposed policy perform compared to the optimal dynamic policy

under full information (i.e., MDP)?

(2) What is the impact of system parameters on the performance of the policy?

(3) How robust is the performance of the policy with respect to errors in setting their

thresholds?

(4) How robust is the performance of the policy with respect to variability in the

system?

In this section, we first explain how we systematically design an experiment to study

these questions. To answer the first question, we perform a numerical study to compare

the performance of all the proposed polices with that of the optimal dynamic policy.

To answer the second question, we perform a sensitivity analysis on system parameters.

Finally, we do robustness analysis with respect to thresholds used in NIT and PIT policies

and service time distributions to further confirm our findings.

1.6.1. Design of Numerical Study

Our numerical study includes a total of 81 cases generated using the parameters in Table

2.1. We consider low (p = 0.2), medium (p = 0.5) and high (p = 0.8) percentage of type-2

jobs. We denote the utilization of server i by ρi. Since Server S1 works at both Stage

1 and 3, the utilization of Server S1 (i.e., ρ1) is ρ1 = λ/µ1 + pλ/µ3. The utilization of

Server S2 (i.e., ρ2) is ρ2 = λ/µ2. In Table 2.1, we consider the case of low utilization
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(ρi = 0.5), medium utilization (ρi = 0.75) and high utilization (ρi = 0.95) for servers

i = 1, 2. Finally, as shown in Table 2.1, there are 3 possible scenarios for µ1 and µ3 to

consider: µ1 = µ3, µ1 < µ3 and µ1 > µ3.

Table 1.1. Parameters of the Experiment.
p ρ1 ρ2 (µ1, µ3)

0.2 0.5 0.5 (10, 10)
0.5 0.75 0.75 (5, 15)
0.8 0.95 0.95 (15, 5)

To generate a case for our numerical study, we first choose a value for ρ1 from three

choices of: low utilization (ρ1 = 0.5), medium utilization (ρ1 = 0.75), and high utilization

(ρ1 = 0.95). We then choose a value for ρ2 from three choices of: low utilization (ρ2 = 0.5),

medium utilization (ρ2 = 0.75), and high utilization (ρ2 = 0.95). Given the values of ρ1

and ρ2, for each combination of (µ1, µ3), p and ρ1, we calculate λ as follows:

λ = ρ1/(1/µ1 + p/µ3)

Finally, we calculate µ2 based on λ and ρ2 as follows:

µ2 = λ/ρ2

For example, we choose ρ1 = 0.5, ρ2 = 0.5, (µ1, µ3) = (10, 10) and p = 0.5. For this
combination of (µ1, µ3), p and ρ1, we calculate λ = ρ1

1/µ1+p/µ3
= 0.5

1/10+0.5/10 = 3.33. Finally,

using the values of λ and ρ2, we calculate µ2 = λ/ρ2 = 3.33/0.5 = 6.67. We compare the

performance of each proposed policy with the optimal dynamic policy for all 81 generated

cases.
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1.6.2. Performance Analysis

In this section, we answer the question of how the proposed heuristic policies perform com-

pared to the optimal dynamic policy under full information. To evaluate the performance

of a policy, we define Performance Loss (PL) of the policy as follows:

PLpolicy = (E[N ]policy − E[N ]MDP )
E[N ]MDP

Hence, PL represents how much (in percentage) the long-run average number of jobs

under a policy is larger than that under the optimal dynamic policy (i.e., MDP), which

corresponds to the case with full information about n2. We use value iteration algorithm

to find E[N ]MDP . The stopping criteria is set at ε = 0.001 (i.e., the algorithm stops when

the difference in E[N ] in two consecutive iterations is less than 0.1%).

To determine the optimal thresholds (R∗1, R∗3) for NIT policy, we enumerate all possible

candidates for (R1, R3) and find the long-run average number of jobs in the system by

forcing the value iteration algorithm to follow NIT policy for each candidate (R1, R3),

instead of choosing the action that minimizes the value function. Optimal values (R∗1, R∗3)

are the threshold numbers that result in the minimum long-run average number of jobs

in the system among all possible candidates for (R1, R3). We call the NIT policy with the

optimal thresholds (R∗1, R∗3), the optimal NIT policy.

To find the long-run average number of jobs in the system under the optimal static

policy, we find the long-run average number of jobs in the system by forcing the value

iteration algorithm to follow (1) static priority policy to Stage 1, and (2) static priority
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policy to Stage 3. The minimum of the two values is the long-run average number of jobs

in the system under the optimal static policy.

To determine the optimal thresholds (N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3) for PIT policy, we enumer-

ate all possible candidates for (N2, Z1, Z3, S1, S3) and find the long-run average number

of jobs in the system by forcing the value iteration algorithm to follow PIT policy for

each candidate (N2, Z1, Z3, S1, S3), instead of choosing the action that minimizes the

value function. Optimal values (N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3) are the threshold numbers that re-

sult in the minimum long-run average number of jobs in the system among all possible

candidates for (N2, Z1, Z3, S1, S3). We call the PIT policy with the optimal thresholds

(N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3), the optimal PIT policy.

Note that when n2 ≤ N∗2 (i.e., the number of jobs at Stage 2 is small), giving priority

to Stage 1 decreases the long-run average number of jobs in the system more than giving

priority to Stage 3, since it prevents the starvation of Stage 2. On the other hand, when

n2 > N∗2 (i.e., the number of jobs at Stage 2 is large), giving priority to Stage 3 decreases

the long-run average number of jobs in the system more than giving priority to Stage 1,

since it immediately reduces the number of jobs in the system. As it is shown in Figure 5,

for Server S1 to work more often at Stage 1, we need a smaller threshold for the number

of jobs at Stage 1 when n2 ≤ N∗2 compared to when n2 > N∗2 . Therefore, the threshold

chosen for the number of jobs at Stage 1 is smaller, when n2 ≤ N∗2 compared to when

n2 > N∗2 , i.e., Z∗1 ≤ S∗1 . Similarly, for Server S1 to work more often at Stage 3, we need

a smaller threshold for the number of jobs at Stage 3 when n2 > N∗2 compared to when

n2 ≤ N∗2 . Thus, the threshold chosen for the number of jobs at Stage 3 is expected to be

smaller, when n2 > N∗2 compared to when n2 ≤ N∗2 , i.e., Z∗3 ≥ S∗3 .
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We evaluate a policy by the average PL value, the worst case PL value and by the

percentage of cases with PL values less than 5% and 10%. Table 1.2 summarizes the

performance of the optimal static policy, optimal NIT policy and optimal PIT policy

compared to the optimal dynamic policy.

Table 1.2. Summary of the performance of the Optimal Static, optimal NIT and optimal
PIT Policies

Item Optimal Static Policy Optimal NIT Policy Optimal PIT Policy
Average PL 4.7% 3.1% 0.6%

Max PL 23.9% 12.7% 3.6%
% of cases with PL < 10% 83% 95% 100%
% of cases with PL < 5% 70% 77% 100%

These results demonstrate that in some cases there may be a large gap between the

performance of the optimal static policy and optimal NIT policy and that of the optimal

dynamic policy. The difference, however, is because of the nature of these policies that do

not utilize the information about the number of jobs in Stage 2 (i.e., n2). Nevertheless, as

the average PL and the percentage of cases with the gap of less than 5% and 10% show,

these policies perform reasonably well where there is a complete lack of information on

the number of jobs at Stage 2 given that they are set optimally. Table 1.2 also shows

that optimal PIT policy has an average PLPIT value of only 0.6% and worst case PLPIT

value of only 3.6%. This implies that not having full information is not critical in making

a near-optimal decision in this setting. By having partial information of whether n2 is

above or below a threshold, we can capture the most benefit of full information.

1.6.3. Sensitivity Analysis

In this section, we investigate the impact of system parameters on the performance of

optimal static, NIT and PIT policies. Specifically, we are interested in finding system
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characteristics under which our proposed policies perform well. Table 1.3 demonstrates

the summary of our observations.

Table 1.3. Extended Numerical Analysis Summary.

optimal static policy optimal NIT policy optimal PIT policy

Parameter Avg PL Max PL Avg PL Max PL Avg PL Max PL

of
ρ

1

Im
pa

ct 0.5 2.5% 12.2% 2.3% 12.2% 0.1% 0.7%

0.75 3.6 % 12.9% 3.3 % 10.1% 0.3% 0.9%

0.95 8.1 % 23.9% 3.8 % 12.7% 1.2% 3.6%

of
ρ

2

Im
pa

ct 0.5 2.5% 16.2% 1.2% 3.62% 0.4% 3.6%

0.75 5.2% 23.7% 3.1% 9.4% 0.6% 3.6%

0.95 6.6% 23.9% 5.1% 12.7% 0.7% 2.5%

of
µ

1,
µ

3

Im
pa

ct µ1 < µ3 1.4% 7.1% 1.4% 7.1% 0.2% 1.1%

µ1 = µ3 7.0% 23.9% 4.1% 11.3% 0.6% 2.9%

µ1 > µ3 5.7% 12.0% 3.8% 12.7% 0.8% 3.6%

of
p

Im
pa

ct 0.2 2.46% 12.20% 1.29% 4.07% 0.4% 2.9%

0.5 4.94% 17.99% 3.32% 8.15% 0.6% 3.6%

0.8 6.99% 23.91% 4.74% 12.69% 0.7% 3.6%

Observation 1 The long-run average number of jobs under the optimal static, optimal

NIT and optimal PIT policies are close to that under the optimal dynamic policy when

Server S1 has low utilization (i.e., ρ1 is small).
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As Table 1.3 shows, as ρ1 becomes larger, we observe that PLS, PLNIT and PLPIT

increase, where PLS, PLNIT and PLPIT are performance loss of the optimal static policy,

optimal NIT policy and optimal PIT policy, respectively. The intuition behind this obser-

vation is that when ρ1 is large, Server S1 is very busy and is the bottleneck. In this case,

the benefit from optimally allocating Server S1 between Stages 1 and 3 becomes significant.

Observation 2 The long-run average number of jobs under the optimal static, optimal

NIT and optimal PIT policies are close to that under the optimal dynamic policy when

Server S2 has low utilization (i.e., ρ2 is small).

As shown in Table 1.3, when ρ2 is small, the average PL of all heuristic policies is

small and therefore they work well. The intuition behind this observation is that when ρ2

is small, the probability of having large number of jobs at Stage 2 (i.e., n2 being large) is

small and a new job from Stage 1 is expected to be processed soon after it arrives to Stage

2. In this situation, it is less important for Server S1 to know n2 at Stage 2, when making

her decision of which stage to work on. Therefore, even the optimal static and optimal

NIT policies, which do not take into account any information about n2, work relatively

well.

Observation 3 The long-run average number of jobs under the optimal static, optimal

NIT and optimal PIT policies are close to that under the optimal dynamic policy when

the processing of type-2 jobs at Stage 3 takes less time than the processing of type-1 jobs
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at Stage 1 (i.e., µ1 < µ3).

As shown in Table 1.3, when µ1 < µ3, all policies perform well. Their performance

becomes worse when µ1 > µ3. The intuition behind this observation is as follows. When

µ1 < µ3, all policies will give priority to Stage 3 in most cases. Similarly, since the pro-

cessing rate at Stage 3 is higher than that at Stage 1, the optimal dynamic policy also

gives priority to Stage 3, which leads to processing more jobs and hence reducing the

number of jobs in the system at a faster rate. Hence, the performance of all policies is

close to that of the optimal dynamic policy and thus all policies perform well.

Observation 4 The long-run average number of jobs under the optimal static, optimal

NIT and optimal PIT policies are close to that under the optimal dynamic policy when

the percentage of type-2 jobs is small (i.e., p is small)

As shown in Table 1.3, when p is small, all policies perform well. The intuition behind

this observation is that when p is small, the number of jobs at Stage 3 (i.e. n3) is small

and there are not many decisions to make. This observation implies that optimal static

and optimal NIT policies can be used for systems in which the fraction of returning jobs

(i.e., p) is small.

Observations 1 to 4 show conditions under which policies with no or partial information

on the number of jobs at Stage 2 work well. Under these conditions, with no information,

Server S1 can capture the benefit of having full information. The small average (0.3%)

and worst case (3.6%) PL of optimal PIT policy show that this policy performs close to
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the optimal dynamic policy in all cases. Nonetheless, the long-run average number of jobs

under PIT policy is the closest to that under optimal dynamic policy when (i) Server S1

has low utilization (i.e., ρ1 is small), or (ii) Server S2 has low utilization (i.e., ρ2 is small),

or (iii) Processing of type-2 jobs at Stage 3 takes less time than the processing of type-1

jobs at Stage 1 (i.e., µ1 < µ3), or (iv) Percentage of type-2 jobs is small (i.e., p is small).

The optimal static and optimal NIT policies do not always perform well. The worst

performance is observed when the utilization of Stage 1 and Stage 2 (i.e. ρ1 and ρ2) are

both high and the percentage of type-2 jobs is large (i.e., p is big). As the system becomes

more congested and has more type-2 jobs, it is more critical to have full information on

the number of jobs at Stage 2 to be able to make a more informed decision of which

stage to work at. Therefore, utilizing the optimal static policy and optimal NIT policy,

when the information about the number of jobs at Stage 2 is not available and certain

conditions are not met, lead to much worse performance compared to that of the optimal

dynamic policy under full information.

1.6.4. Robustness Analysis

In this section, we discuss two robustness checks for our numerical analysis. First, we

check the impact of errors in setting the threshold of NIT and PIT policies. It is possible

that we make errors when estimating system parameters or when computing optimal

thresholds for PIT and NIT polices. This leads us to setting sub-optimal values for the

thresholds of NIT and PIT policies. We analyze how much we lose by using sub-optimal

thresholds. Second, we check the impact of variability of service times on the performance

of the proposed heuristic policies. In previous sections, we assumed that the service times
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are exponentially distributed. In this section, we check the robustness of our results when

service times have non-exponential distributions.

1.6.4.1. Robustness of Optimal NIT and Optimal PIT Policies. In this section,

we run additional numerical studies to test the robustness of our findings with respect to

the errors in setting the optimal thresholds for optimal NIT and optimal PIT policies. To

implement optimal NIT and optimal PIT policies, we need to compute the optimal sets

of thresholds (R∗1, R∗3) and (N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3), respectively. The optimal values of the

thresholds can be found by searching for the threshold numbers that result in the minimum

long-run average number of jobs in the system. However, it is possible that errors are

made when estimating system parameters (e.g., λ, µ1, µ2, µ3, p) or when computing the

threshold numbers. Thus, the thresholds would be sub-optimal. An interesting question

that arises is: how much one loses by using sub-optimal thresholds? In other words, how

sensitive is the optimal long-run average number of jobs in the system with respect to

making errors in setting the thresholds?

To answer these questions, we check the robustness of the performance of optimal

NIT and optimal PIT policies with respect to their thresholds. We recompute the long-

run average number of jobs in the system when thresholds are set 10% and 20% below

or above the optimal thresholds. We then compare the performance of the policy with

sub-optimal thresholds with that of the policy with the optimal thresholds and with the

optimal dynamic policy. Please see Appendix 2 for the details of our robustness analysis.

We define Performance Loss (PL) of the policy with sub-optimal thresholds compared to
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that with optimal thresholds and with the optimal dynamic policy as follows:

PLSuboptimal = E[N ]Suboptimal − E[N ]Optimal

E[N ]Optimal
, PLSub−MDP = E[N ]Suboptimal − E[N ]MDP

E[N ]MDP

Hence, PLSuboptimal represents how much (in percentage) the long-run average number of

jobs under a policy with sub-optimal thresholds is larger than that under the smae policy

with optimal thresholds. Similarly, PLSub−MDP represents how much (in percentage) the

long-run average number of jobs under a policy with sub-optimal thresholds is larger than

that under the optimal dynamic policy.

We observe that the performance of optimal NIT and optimal PIT policies were not

significantly affected by using sub-optimal thresholds. More specifically, for optimal NIT

policy, the average PLSuboptimal of using sub-optimal thresholds is less than 0.5%. The

average PL Sub-MDP is less than 3.7%. The worst performance is observed when the

values of R3 is 20% above or below the optimal value. This indicates that the optimal

long-run average number of jobs in the system is more sensitive to the value of R3 than

R1. Under NIT policy, when n3 ≥ R3, Server S1 works at Stage 3 and by completing a

job at that stage she reduces the number of jobs in the system. Therefore, setting R3

sub-optimally affects the number of jobs in the system. This is the reason that the system

is more sensitive to the value of the threshold R3.

The average PL of using sub-optimal thresholds (N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3) is less than 2% for

optimal PIT policy,. The average PL Sub-MDP is less than 2.6%. The worst performance

is observed when the values of N2 is 10% or 20% below the optimal value and when the

values of S3 and Z3 is 10% or 20% above the optimal value. As we discussed earlier,

Server S1’s decision of which stage to work depends on n2. When n2 is small, the server
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is more likely to work at Stage 1 to feed Stage 2; and when n2 is large, the server is more

likely to work at Stage 3. Therefore, setting N2 sub-optimally affects which stage Server

S1 has to work at and this directly affects the number of jobs in the system. This is the

reason that the system is more sensitive to the value of the threshold N2. Similar to the

argument for (R1, R3), the system is more sensitive to the value of threshold Z3 and S3

than that of thresholds Z1 and S1, since setting S3 and Z3 sub-optimally directly affects

the number of jobs in the system. The worst PL is observed when utilization of Server

S1 or Server S2 is high and return probability p is also high.

1.6.4.2. Non-exponential Service Times. In this section, we run additional numer-

ical studies to test the performance of our proposed policies when service times have a

non-exponential distribution. Without loss of generality and for tractability purposes, we

only consider the case where service time at Stage 2 is non-exponential. Stage 2 is selected

since the optimal dynamic policy under full information structure revealed that Server

S1’s decision of which stage to work at depends on Stage 2’s state. Note that relaxing the

exponential assumption for all stages makes the state space very large and thus makes the

numerical method intractable. We chose Gamma distribution for service time at stage 2,

since it has CV less, equal to or greater than one.

Consider the MDP model presented in the chapter, except than the service time at

Stage 2 is not exponentially distributed. To analyze this system, we discretize the time

horizon into equal, nonoverlapping infinitesimal intervals δt, where δt → 0. We refer

to Appendix 2 for the detail of numerical analysis on non-exponential service times, the

MDP model descriptions and optimality equations.



53

For cases with CV = 0.5, we find that optimal PIT policy performs very well compared

to the optimal dynamic policy with average Performance Loss (PL) of 0.9% and maximum

PL of 5.6%. The average PL for the optimal static policy was 7.3% and for optimal NIT

policy was 4.4%. For the cases with CV = 2, we find that optimal PIT policy performs

well compared to the optimal dynamic policy with average PL of 2.0% and maximum PL

of 9.2%. The average PL for the optimal static policy was 16.6% and for optimal NIT

policy was 10.4%. Similar to the observations made for exponential service times, we

observe that under similar conditions (i.e., low utilization of Server 1 and Server 2 and

low return probability p) the optimal static, optimal NIT and optimal PIT policies work

well compared with the optimal dynamic policy under full information.

1.7. Conclusion

In this chapter, we studied a two-stage system with a flexible server who processes two

types of jobs. We characterized the optimal control policy for Server S1, that minimizes

the average number of jobs in the system. The optimal dynamic policy has a monotone

threshold structure with respect to the number of jobs at Stage 1 and 3. This structure

recommends working at Stage 1 if there are more jobs at Stage 1, and working at Stage

3 if there are more jobs at Stages 2 or 3.

The structure of the optimal dynamic policy is very complex and, in most cases, is

not suitable for practical use. Moreover, due to system’s limitations, information on the

state of downstream stage may not be fully available. To fill the need for more practical

policies that can deliver good performances when there is lack of information on the state

of the downstream stage, we proposed two heuristic policies (i.e. NIT and PIT). We then



54

compared the performances of these heuristics with that of the optimal dynamic policy.

We found that PIT policy consistently performs well. We also found conditions under

which the optimal static and NIT policies perform close to the optimal dynamic policy

with full information. Specifically, when Server S1 and Server S2 have low utilization (i.e.,

ρ1 and ρ2 are small) and the percentage of type-2 jobs (i.e. p) is small, NIT and Static

policy work well. This implies that these policies are good candidates for systems that a

small fraction of jobs are sent back to Stage 1 (i.e., p ≤ 0.2). In addition, the proposed

heuristic policies are simpler and more easily implementable alternatives to the complex

optimal dynamic policy.

There are two possible directions for future study. One is extending the current two-

stage system to general multi-stage systems under different scenarios for the information

about the downstream stages. The other is to study scenarios with multiple flexible

servers. When there are multiple flexible servers, the optimal decision for one server will

not only depend on the state of the system, but also depend on the decisions of other

servers. One can also consider positive switchover time/cost as a more complex case for

further research.
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CHAPTER 2

Optimal Policy in Single-Server Multi-Class Queuing Systems

with Abandonments

2.1. Introduction

The key objective of most service operations is to improve operational performance of

a congested system Zeltyn and Mandelbaum (2005). In this paper, we focus on customer

abandonment as a performance measure. This measure is of a great importance in many

service systems, especially call centers (Gans et al. (2003), Brown et al. (2005) and Aksin

et al. (2007)). Customers waiting in such systems may become impatient and abandon the

system, which results in loss of revenue often modeled as cost of abandonment (Gans et al.

(2003)). Marchex institute, a mobile advertising analytics company, recently published

a report, titled “America’s Call Center Revealed”(Busby and Wisehart (2016)). In this

report, they reveal the first lesson for call centers that is to answer the phone calls as

quickly as possible, since for call center industries, 11%- 14% of customers hang up during

a call.

A good example of service systems that abandonment cost plays the main role is

infomercial call centers. Infomercials, also called long-form television commercials, are

30-minute programs designed to motivate viewers to place an order by phone. The in-

fomercial industry is worth over $200 billion in United States Bogle (2014). An infomercial
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advertises items ranging from household, automotive, health, and beauty products, to fit-

ness products, books, or to toys for children. These items may be promoted as not sold

in stores and therefore, consumer can only purchase the items by calling a phone number

Johnson (2013). Calls received during infomercials usually outsourced to call centers, in

which a Customer Service Representative (CSR) may answer the calls typically in what

is known in call center industry as a shared model. In the shared model, CSRs are shared

among several brands, businesses or products. Ordertaking businesses like infomercials

usually estimate the opportunity cost of lost sales due to abandonment as the main cost

that is directly associated with system performance (for example, see Andrews and Par-

sons (1993) and Akşin and Harker (2003)). Hence, it is important for infomercial call

centers to answer the calls in an order that minimizes the number of unanswered calls

(i.e., abandoned calls), since every abandoned call is a loss of revenue.

Call centers that use toll-free services typically pay out-of-pocket for the time their

customers spend waiting on hold (i.e., line occupancy) Gans et al. (2003). For infomercial

call centers, however, due to the limited time available for callers to contact (usually 30

minutes), the line occupancy cost is negligible compared to the cost of losing customers

due to abandonment. Reported by Marchex institute Busby and Wisehart (2016), an

infomercial call center that receives 3,000 calls a day, may earn up to $150 million in

revenue per year. Considering a line occupancy cost per minute per call of $0.05 for

a typical call center Gans et al. (2003), the cost of losing a customer can be up to 50

times higher. For example, for a call center that operates 360 days per year/24 hours per

day, the revenue is around $20,000 per hour, while the line occupancy expenses are 50
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times smaller and around $400 per hour. Hence, the main effort in call centers, especially

infomercial call centers, focuses on minimizing abandonment cost.

How should a CSR, in a shared model, decide which call to answer next to minimize

abandonment cost? To answer this question, there are three factors to consider.

(i) Prioritizing more valuable customers: We may prioritize customers who are

more costly to abandon than others. For instance, the cost of losing a customer

who wants to purchase a TV is much higher than that of a customer who wants to

purchase an all-purpose cleaner.

(ii) Prioritizing less patient customers: We may prioritize less patient customers to

prevent them from leaving. For example, the abandonment probability of a customer

who wants to purchase an item for which there are not that many similar outside

options (e.g., a unique exercise equipment) is lower than that of a customer who

wants to purchase an item with many similar outside options (e.g., an all-purpose

cleaner).

(iii) Prioritizing customers with shorter processing times: We may prioritize the

customers who we can serve faster. Serving customers with shorter processing time

results in less customer in the queue who may potentially abandon at any moment.

This, in turn, reduces the abandonment cost. In our example, it takes longer to

answer a call of a customer who is willing to purchase a TV than a customer who

wants to buy an all-purpose cleaner, since there are more technical details to be

explained.

All above factors impact the loss of revenue (i.e., abandonment cost). But what is the

optimal scheduling decision that captures the trade-off among the above three factors?
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Should we always prioritize one type of customers over the other (i.e., a static priority

policy)? Or the answer depends on the number of customers of each type on hold (i.e., a

dynamic priority policy)?

To gain insights into dynamics of this scheduling decision, we study a single-server

multi-class queuing system with customer abandonment. There is an extensive literature

on design and control of multi-class queuing system with impatient customers in call

centers (see for example Garnett et al. (2002), Atar et al. (2004), Jouini et al. (2009)

and Kim et al. (2016)). The focus of these papers is on staffing decisions or deriving

system’s performance measures, while we focus on server’s scheduling decision minimizing

the abandonment costs. There are several papers such as Atar et al. (2010), Atar et al.

(2011), Kim and Ward (2013) and Ata and Tongarlak (2013), which focus on server’s

scheduling decisions, considering customer abandonment as a modeling feature but all

focus on minimizing the holding cost solely. More recently, Salch et al. Salch et al. (2013)

consider a stochastic scheduling problem with impatient jobs and develop optimal policies

for a single machine to minimize the expected weighted number of late jobs. In all these

papers, abandonment does not incur costs. In our paper, as mentioned above, we consider

the abandonment cost as our main objective and the goal is to minimize the total expected

abandonment cost per unit time.

Our work is most closely related to Atar et al. (2010). Analyzing a multi-class queuing

system with multiple servers and customer abandonment, Atar et al. Atar et al. (2010)

introduce a server-scheduling policy that assigns priority to classes according to the index

cµ/θ when minimizing holding cost, where θ is the abandonment rate, c is the holding

cost and µ is the service rate. Considering b as the penalty incurred whenever a customer
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abandons the queue, they conjecture that under a many-server fluid scaling and overload

conditions, minimizing only the total abandonment cost leads to the bµ policy, which is

independent of abandonment rate θ. But this conjecture does not hold outside the many-

server queuing system under fluid scaling. For those systems, the optimal scheduling

policy does depend on abandonment rate θ. For example, in a simple two-class example

where b1 = b2 and µ1 = µ2, one can intuitively argue that when the abandonment rate

of one customer class is much smaller than the other (e.g., θ1 << θ2), the optimal policy

that minimizes the abandonment cost depends on the abandonment rate and serves the

customer class with larger abandonment rate (i.e., type-2 customers), since less type-1

customers leave the system.

In this paper, we show that the server’s optimal scheduling policy is not independent

of θ. Formulating the problem as a Markov Decision Process (MDP), we show that the

optimal servers scheduling policy is a static priority policy and derive sufficient conditions

under which the bµ–rule is optimal. Performing a numerical study, we also show that,

when these conditions do not hold, in a system with low/medium utilization, the bµθ–rule

performs as good as the optimal policy.

This paper proceeds as follows. In Section 2, we introduce the model specification

and in Section 3, we present the corresponding MDP formulation. Section 4 discusses the

general characteristics of the optimal policy and Section 5 summarizes the scheduling poli-

cies under special settings. In Section 6, in a numerical study, we study the performance

of the scheduling policy when sufficient conditions do not hold. Moreover, we compare

the performance of the optimal scheduling policy with a First-Come First-Served (FCFS)

policy, which is often used in call centers. We conclude the paper in Section 7.
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2.2. The Model Formulation

To get insight into the structure of the optimal scheduling policy, we consider a single

server queue with M classes of arriving customers. Customers of type i arrive at queue

i according to a Poisson process with rate λi. We assume that the service time for the

type-i customer is exponentially distributed with rate µi and customers may abandon the

system while waiting for service if their waiting time is too long as well as while receiving

service, similar to Phung-Duc and Kawanishi (2014), Righter (2000) and Ward and Glynn

(2003). We assume that the time until a type-i customer abandons the system follows an

exponential distribution with rate θi. The assumption of customers abandonment during

service is not unreasonable. Reports have shown that customers are often put on hold

during service for some time, resulting in some customers hanging up (ICMI1 reports).

We also assume that customer balking cost as well as the customer holding cost is

negligible. This is the case in infomercial call centers, where callers do not hear busy

signals due to the large number of lines (i.e., large buffer size). Strategic Contact Inc.2,

leading company in contact center strategy, operations, and technology, reports that the

balking (blocking) rate is generally kept very low (under 1%) in such call centers.

Considering the long-run average abandonment cost, the server’s scheduling problem

is to determine which type of customer to serve next upon a service completion or upon a

new arrival. The abandonment cost per unit time for type-i customer is a constant bi. We

assume that the preemption is allowed, i.e., CSRs may interrupt the service of a customer

1The Incoming Call Management Institute (ICMI), a highly reputable industry association, regularly
tracks published industry statistics from several sources Aksin et al. (2007).
2www.strategiccontact.com

www.strategiccontact.com
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and put her on hold to serve another customer. There have been practices reported by

ICMI that states caller were put on hold after they had started talking to a CSR.

Finally, we note here that the exponential assumption regarding the service times and

abandonment times allows us to formulate the server’s scheduling problem as a Markov

Decision Process (MDP) and characterize the optimal policy. After our MDP reveals

the structure of the optimal scheduling policy, we observe that our main insights are not

influenced by these assumptions.

2.3. Markov Decision Process

To model this problem as a Markov Decision Process, we assume a maximum limit for

the number of type-i customers allowed in the system, denoted by Ni. In other words, we

assume customers of type i who find the system full (with Ni customers) do not enter the

system (see Figure 2.1). This serves two purposes: (i) It prevents the uniformization rate

(i.e., total transition rate) approaches infinity and thus allows us to model the queuing

dynamics of the system (see optimality equation (2.1)); (ii) The systems with no limit on

queue size are a special case of the more general systems with finite limit on queue size

Ni, when Ni →∞.

With the objective of minimizing the total average abandonment cost per unit time,

we may characterize server’s scheduling decision using MDP as follows:

• Decision epochs are customer arrivals, service completion times and abandonment

epochs.

• State Space N is a set of M -dimensional vectors n = (n1, n2, . . . , nM) where

0 ≤ ni ≤ Ni is the number of customer of type i ∈ {1, 2, . . . ,M} in the system.
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Figure 2.1. A single-server multi-class queue with M classes of customers
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• Actions: Considering An as the set of allowable actions at state n, the action set

A is therefore A = ∪n∈NAn. For any n ∈ N , allowable actions for the server are:

Serving customer of type j ∈ {1, 2, . . . ,M}, if nj > 0; and Idling.

Let Ii
{R} be defined as follows:

Ii
{R} =


ei if R is true,

0 otherwise,

where 0 is an M -dimensional zero row vector, and ei is an M -dimensional row vector with

1 on its ith entry and 0 elsewhere. Let Jn be the set that includes the indices of nonempty

queues at state n; then, for example, for state n = (0, 1, 2, 0, 8) we have Jn = {2, 3, 5}.

Using the Lippmann’s uniformization approach Lippman (1975), the optimality equations
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for the MDP with the objective of minimizing abandonment cost is:

g

Λ + V (n) = 1
Λ

{ M∑
i=1

biθini +
M∑
i=1

λiV (n + Ii{ni<Ni})

+
M∑
i=1

niθiV (n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiV (n) + f(n)
}
,

(2.1)

where

f(n) = min


∑M
i=1 µiV (n) Idle

minj∈Jn{µjV (n− ej) +∑M
i=1,i 6=j µiV (n)} Serve type-j customer

where Λ = ∑M
i=1(λi + µi +Niθi) is the uniformization rate and g is the total average cost

per unit time.

2.4. Characteristics of the optimal policy

In this section, first, we discuss the existence of a stationary optimal policy of MDP

problem (2.1).

Theorem 2.1. There exists a stationary average-cost optimal policy for MDP problem

(2.1).

All proofs are in the On-line Appendix. Define difference operator Dx as

DjV (n) = V (n)− V (n− ej), j = 1, 2, . . . ,M.

Now, we can formulate the following proposition:

Proposition 2.2. The optimality equation (2.1) has the following property:
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Property P1: 0 < bjθj

Λ ≤ DjV (n) ≤ bj, for all n ∈ N and j ∈ Jn.

Based on the definition of the difference operator Dx, Proposition 2.2 implies that

V (n) − V (n− ej) > 0 for all j and n ∈ N . Thus, Proposition 2.2 states that the value

function is increasing in nj for all j and n ∈ N . Proposition 2.3 describes another property

of the value function (2.1).

Proposition 2.3. The optimality equation (2.1) has the following property:

Property P2: V k(n) − V j(n) ≥ 0 is non-decreasing in nz, for all z 6= j, k and

j, k, z ∈ Jn.

Where we define V j(n) as the value function if system is at state n and the server serves

a type-j customer. In other words, V j(n) satisfies the following equation:

g

Λ + V j(n) = 1
Λ

{ M∑
i=1

biθini +
M∑
i=1

λiV (n + Ii{ni<Ni}) +
M∑
i=1

niθiV (n− Ii{ni>0})

+
M∑
i=1

(Ni − ni)θiV (n) + µjV (n− ej) +
M∑

i=1,i 6=j
µiV (n)

}
,

Proposition 2.3 states that if at any given state n, it is less costly to serve customer

type j over type k (i.e., V k(n) > V j(n)), then it would be less costly to serve customer

type j over customer type k at state (n + ez), ∀z 6= j, k and j, k, z ∈ Jn. In other words,

if at state n, serving a type-j customer has lower value than serving a type-k customer,

then serving a type-j customer still has lower value than serving a type-k customer, when

more type-z (z 6= k, j) customers arrive to the system.

Properties P1 and P2 lead us to the following result:
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Theorem 2.4. The optimal scheduling policy for MDP problem (2.1) is characterized

as follows:

(i) Idling is not optimal in a nonempty system, i.e., when n 6= 0.

(ii) Server’s optimal scheduling policy is static priority policy.

Theorem 2.4 states that under the optimal scheduling policy, the server gives a cus-

tomer type static priority over another type, regardless of the number of all each type

of customer in the system. This means that, as long as there is a customer of higher

priority in the system, that customer type is served, regardless of how large the queue of

low priority customers are.

Now that we showed the optimal scheduling policy is a static priority policy, the

question is how should the customers of different types be prioritized? To answer this

question, we define Conditions C1 and C2 for two different customer of types j and k as

follows:

Condition C1: bjθjµj ≥ bkθkµk

Condition C2: bjθjµj < bkθkµk, bjθjµj ≥ bkθkµk
[
1− θk−θj

Λ

]
and θj ≤ θk.

As it was mentioned in the introduction, there are several factors to consider when

minimizing the total expected abandonments cost: the cost of abandonment (b), customer

abandonment rate (θ) and service rate (µ). The index bµθ captures the impact of these

factors altogether. Condition C1 demonstrates the case where the index bµθ of type-j

customer is larger than that of type-k customer. Condition C2 demonstrates the case

where the index bµθ of type-j customer is smaller than that of type-k customer, but
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sufficiently close to it. As the difference between abandonment rates becomes larger (i.e.,

θk become larger than θj), the range covered by Condition C2 becomes smaller.

Proposition 2.5. Suppose at state n, Condition C1 holds for j 6= k, then optimality

equation (2.1) has the following property:

Property P3: µjDjV (n) ≥ µkDkV (n), for all k 6= j and k, j ∈ Jn, n ∈ N .

Property P3 is sufficient to show how to prioritize customer types:

Theorem 2.6. Suppose at state n, bjµj ≥ bkµk, for k 6= j and k, j ∈ Jn. If either

Condition C1 or C2 holds for j 6= k, then type-j customer has a higher static priority

over type-k customer.

Theorem 2.6 demonstrates the direction of the optimal static priority policy. If the

index bµθ of type-j customers is larger than that of type-k customers (i.e., Conditions C1

holds) or if the index bµθ of type-j customers is smaller than that of type-k customers

but sufficiently close (i.e., Conditions C2 holds), the optimal scheduling policy is to give

priority to type-j customers, when the index bµ of type-j customers is larger than that of

type-k customers. Conditions C1 and C2 show that the difference between θ’s of different

customer types plays an important role in specifying server’s optimal scheduling policy

and index bµ index solely is not sufficient to determine the optimal scheduling policy.

In the following section, we introduce scheduling rules for special cases of system

parameters.
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2.5. Scheduling Policies for Special Cases

Condition C1 leads to some scheduling rules for some special cases, summarized in the

following corollaries. These scheduling policies for special cases make the implementation

of the optimal policy easier in practice and give insights about the underlying parameters

and their impact on dynamics of such a server scheduling problem.

Corollary 2.7 (bµ–rule). If customer types can be renumbered such that µ1 ≥ µ2 ≥

· · · ≥ µM and θ1 ≥ θ2 ≥ · · · ≥ θM , and we have b1µ1 ≥ b2µ2 ≥ · · · ≥ bMµM , then type-j

customers have higher priority than type-(j + 1) customers for j = 1, 2, · · · ,M − 1.

As stated by bµ–rule, all classes can be ranked according to bµ index if customer types

are renumbered as suggested by Corollary 2.7. To illustrate, without loss of generality,

consider a type-j customer and a type-k customer, where bjµj ≥ bkµk. Notice that since

θj ≥ θk, Condition C1 holds and, using Theorem 2.6, it is clear that the type-j customers

have higher priority than type-k customers. The intuition behind this corollary is that,

when type-j customers are less patient (i.e., θj ≥ θk) and it takes less time to serve type-j

customers compared to type-k customers (i.e., µj ≥ µk), serving type-j customers leads

to lower number of abandonments and thus lower total abandonment cost.

Corollary 2.8 (bµθ–rule). If customer types can be renumbered such that µ1 ≥ µ2 ≥

· · · ≥ µM and θ1 ≤ θ2 ≤ · · · ≤ θM , but we have b1µ1θ1 ≥ b2µ2θ2 ≥ · · · ≥ bMµMθM , then

type-j customers have higher priority than type-(j+ 1) customers for j = 1, 2, . . . ,M − 1.

As stated by bµθ–rule, all classes can be ranked according to bµθ index if customer

types are renumbered as suggested by Corollary 2.8. Consider a type-j customer and



68

a type-k customer, where bjµjθj ≥ bkµkθk. Since Condition C1 holds, using Theorem

2.6, type-j customers have higher priority than type-k customers. The intuition behind

this corollary is that, when type-j customers are less patient (i.e., θj ≥ θk) and it takes

more time to service type-j customers compared to type-k customers (i.e., µj ≤ µk)

but the overall impact of marginal cost, customer patience and service rate is higher for

type-j customers (i.e., bjµjθj ≥ bkµkθk), serving type-j customers leads to lower total

abandonment cost.

Corollary 2.9. If bjθj = bθ for all j = 1, . . . ,M , then Shortest Expected Processing

Time first rule (SEPT–rule) is optimal.

Therefore, for example, if all customer types have the same marginal abandonment

cost and abandonment rate (i.e., bj = b and θj = θ for j = 1, 2, · · · ,M), then serving the

customers with shortest expected process time is optimal.

Corollary 2.10. If µjθj = µθ for all j = 1, 2, · · · ,M , then giving priority to cus-

tomers with highest abandonment cost is optimal.

Therefore, for example, if all customer types have the same service rate and abandon-

ment rate (i.e., µj = µ and θj = θ for j = 1, 2, . . . ,M), then serving the customers with

highest abandonment cost is optimal.

Corollary 2.11. If bµj = bµ for all j = 1, 2, . . . ,M , then giving priority to customers

with highest abandonment rate (i.e., least patient customers) is optimal.
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Therefore, for example, if all customer types have the same service rate and marginal

abandonment cost (i.e., µj = µ and bj = b for j = 1, 2, . . . ,M), then serving the customers

with highest abandonment rate is optimal.

Corollary 2.12. If customer types can be renumbered such that b1µ1 ≥ b2µ2 ≥ · · · ≥

bMµM and we have b1µ1θ1 ≥ b2µ2θ2 ≥ · · · ≥ bMµMθM , then type-j customers have higher

priority than type-(j + 1) customers for j = 1, 2, . . . ,M − 1.

When both bµ and bµθ indexes are higher for type-j customers, two cases may happen.

Either θj ≥ θk (i.e., type-j customers are less patient than type-k customers) and thus,

giving priority to type-j customers results in lower number of abandonments and therefore

lower abandonment cost. Or θj < θk (i.e., type-j customers are more patient). In this

case, higher bµ and bµθ indexes for type-j customers implies that the impact of θ is much

less than the impact of b or µ (i.e., type-j customers have lower abandonment cost or

type-j customers have higher service rate). Hence, giving priority to the type-j customer

results in lower abandonment cost.

2.6. Numerical Study

So far, we have determined the optimal static priority policy for the server under

conditions in Theorem 2.6 when the goal is to minimize the abandonment cost. However,

when conditions in Theorem 2.6 do not hold, it is not clear which customer type has

higher priority over the others. Theorem 3 addresses the important role of bµ–index in

determining the optimal scheduling policy. Specifically, it shows that Conditions C1 and

C2 are not sufficient to determine the optimal scheduling policy and bµ–index is the

key driver of prioritizing customers. Furthermore, under a many-server fluid scaling and
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overloaded conditions, bµ–rule is conjectured to be the optimal server scheduling policy

(Atar et al. (2010)). When the overloaded conditions are not met, however, bµ–rule may

or may not work well. Nevertheless, bµ–rule can certainly be considered as a candidate

server scheduling policy, when conditions in Theorem 2.6 do not hold.

In addition, because of the role θ plays in prioritizing customers in our setting, we

also consider bµθ–index as a candidate server scheduling policy. This bµθ–index is a key

drivers in both Conditions C1 and C2. Thus, to evaluate the performance of bµ–rule or

bµθ–rule as heuristic policies, when conditions in Theorem 2.6 do not hold, we study the

answer to the following question:

Question 1: How well bµ–rule or bµθ–rule perform when conditions in Theorem 2.6 do

not hold?

On the other hand, typically, in infomercial call centers for example, calls are answered

in the order they are received. Hence, it is important to compare the performance of the

proposed scheduling policy with the typical first-come-first-served policy. Thus, we also

need to investigate the answer to the following question:

Question 2: How does FCFS policy performs compared to the optimal scheduling policy?

6.1 Analysis of the Uncovered Region

To find an answer to Question 1, we give a closer examination of cases for which neither

conditions in Theorem 2.6 holds. We call the region, that is formed by different values of
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b, µ and θ for a customer of type j and type k for which neither conditions in Theorem

2.6 holds, Uncovered Region. Using a little bit of algebra, the Uncovered Region is found

to be the region that satisfies inequalities in (2.2).

(2.2)

Uncovered Region: bkθkµk

[
1− θk − θj

Λ

]
> bjθjµj, bjµj > bkµk and θj ≤ θk.

First, we study how large the Uncovered Region is. The answer to this question

emphasizes on how broad are the conditions in Theorem 2.6. To estimate the size of the

Uncovered Region, we use Monte Carlo simulation to bombard the solution region (i.e.,

region of all possible combination of b, λ, µ and θ for a customer of type j and type k)

with random values for system parameters. This is done by uniformly generating different

combination of b, λ, µ and θ for a customer of type j and type k. All values generated

within the interval [0,100] and total of 108 cases were generated.

The number of cases out of 108 gives a proxy for the size of the uncovered region.

Our procedure reveals that the ratio of the Uncovered Region (i.e., the number of gen-

erated cases which were in Uncovered Region) to the Solution Region (i.e., the number

of all generated values whether or not conditions in Theorem 2.6 hold) is less than 10%.

This shows that the likelihood that the parameters of a system of interest is inside the

Uncovered Region (i.e., outside conditions in Theorem 2.6) is relatively small. Therefore,

bµ–rule is applicable as the optimal scheduling policy more than 90% of the times. How-

ever, since there is still 10% of cases for which neither conditions in Theorem 2.6 holds, it

is still valuable to find a rule that captures the most benefit of the optimal policy in the

Uncovered Region.
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Now, we focus on a two-class queuing system and design a numerical study to answer

Question 1. Specifically, we want to know what would be the optimal static priority

policy if a type-j customer is more patient than a type-k customer (i.e., θj ≤ θk) but it

takes longer to serve the type-k customer (i.e., µj ≥ µk), such that neither conditions

in Theorem 2.6 holds. We use parameters in Table 2.1 to generate different problem

instances with low utilization (i.e., ρ = 0.5), medium utilization (i.e., ρ = 0.75) and high

utilization (i.e., ρ = 0.95). To generate a case for our numerical study, first, we choose

pairs of (µ1, µ2), (θ1, θ2) and (b1, b2) from Table 2.1. We then calculate λ’s to obtain the

set of traffic density ρ = (0.5, 0.75.0.95), where ρ = λ1
µ1

+ λ2
µ2

. To eliminate the impact

of finite queue limit Ni, N1 and N2 are set to 120 in our numerical study to make sure

that the probability of queues reaching their limit N1 and N2 is less than 1%, similar to

infomercial call centers setting where buffer size is large and balking rate is small. Since

we are interested in the performance of the proposed rules when neither conditions in

Theorem 2.6 holds (i.e., Uncovered Region), we only keep instances that are inside the

Uncovered Region.

Table 2.1. Parameters of the Experiment.
(µ1, µ2) (θ1, θ2) (b1, b2)

(10,1),(1,10) (1,0.1),
(0.1,1) (5, 10)

(2,1),(1,2) (0.1,0.2),(0.2,0.1) (10, 5)

(1, 1) (1,1),
(0.1,0.1) (1, 1)

We evaluate the performance of bµ–rule and bµθ–rule as an alternative to the optimal

static priority policy. Recall that, bµ–rule gives priority to customer type with the highest

bµ index and bµθ–rule gives priority to customer type with the highest bµθ index. To
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evaluate the performance of policy π, we define Performance Loss (PL) of policy π as

follows:

PL(π) = Bπ −B∗

B∗

PL(π) represents how much (in percentage) the total average abandonment cost under

policy π ∈ {bµ − rule, bµθ − rule} is larger than that under the optimal static priority

policy. We use value iteration algorithm to find B∗, the optimal average cost per unit

time. The stopping criteria is set at ε = 0.001 (i.e., the algorithm stops when the difference

between average abandonment cost in two consecutive iterations is less than 0.1%). Table

2.2 summarize the performance of bµ–rule and bµθ–rule. Notice that we only consider

cases in the Uncovered Region. This includes 48 cases out of 270 previously designed

cases.

Table 2.2. Summary of performance of bµθ–rule and bµθ–rule

Item bµθ–rule bµ–rule
ρ = 0.5 ρ = 0.75 ρ = 0.95 ρ = 0.5 ρ = 0.75 ρ = 0.95

Average PL 0.0% 1.0% 4.9% 14.1% 15.8% 13.7%
Worst Case 0.0% 4.0% 27% 37% 42% 46%

% of cases has PL < 5% 100% 100% 75% 38% 38% 38%

As shown in the Table 2.2, bµθ–rule results in small PL compared to the optimal

scheduling policy in systems with low utilization (i.e., ρ = 0.5) or medium utilization

(i.e., ρ = 0.75). The average and maximum PL in these cases are (0.0%, 0.0%) and

(1.0%, 4.0%), respectively. When the utilization is high (i.e., ρ = 0.95), the performance

of bµθ–rule is on average better than bµ–rule and bµ–rule does not perform well, on the

contrary to what Theorem 3 and systems with overloaded condition predicted. The in-

tuition is that, in a system with low or medium utilization, the number of customers in
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the system rarely gets large. In this case, the server can control the number of abandon-

ments by considering θ in determining the optimal scheduling policy. This can be done

by using the bµθ–rule, which captures the effect of θ directly and this is why bµθ–rule

performs very well. However, for a highly utilized system, it is more likely to have a large

number of customers in the system. In this case, the role of θ becomes less important in

optimal server scheduling, even though it is still important. In such a system, since the

number of waiting customer is expected to be high, more customers are likely to abandon.

Therefore, to minimize the number of abandoned customers, it is more important to serve

customers with shorter processing time than customers with higher abandonment rate,

since some customers will abandon regardless. This is why bµθ–rule does not perform

well (i.e., results in 27% PL), when ρ = 0.95. Nonetheless, bµθ–rule is still on average as

good as the optimal scheduling policy. It results in PL of less than 5% for 75% of the cases.

6.2 Comparison with First-Come First-Served Policy

In this section, we discuss the answer to Question 2. First-Come First-Served (FCFS)

policy is the most common service policy used in practice because of the fairness. In

call centers for instances, calls are typically answered in the order they are received Gans

et al. (2003). Comparing the performance of the server’s optimal scheduling policy with

that of the FCFS policy reveals how much the optimal scheduling policy can save the

long-run abandonment cost per unit time. We use parameters in Table 2.1 to generate a

total of 270 cases to compare the long-run abandonment cost per unit time under optimal

scheduling policy and under FCFS policy. To compute the long-run abandonment cost

per unit time when FCFS policy is used, we develop a simulation model. To evaluate the
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long-run abandonment cost saving per unit time when server uses the optimal scheduling

policy instead of FCFS policy, we define CSFCFS as follows:

CSFCFS = BFCFS −B∗

B∗
.

Where B∗ is the optimal average cost per unit time and BFCFS is the average cost per unit

time when server uses FCFS policy. We find that, on average, we save 80% on long-run

abandonment cost per unit time when server uses the optimal scheduling policy instead

of FCFS policy. The highest cost saving in our set of experiment is 98%.

When a customer type with shorter service time (i.e., higher µ) has relatively shorter

time between arrivals (i.e., higher λ) and low patience tolerance (i.e., high θ), system

can save considerably on the abandonment cost using optimal scheduling policy instead

of FCFS policy. In this case, giving priority to the customer type with shorter service

time and low patience tolerance become more critical to minimize the abandonment cost.

When serving customers with shorter service time and low patience tolerance is delayed

by serving customer types with longer service times and high patience tolerance, more

customers of the former type leave the system and due to their higher arrival rate, system

incurred larger abandonment cost. Note that the cost saving will be even more when the

customer type with shorter service time, shorter time between arrivals, and low patience

tolerance, also has higher cost of abandonment (i.e., higher b). In this case, the system

under FCFS policy incurs even much higher abandonment cost than before, since delaying

serving the customer type with higher b is more costly.
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2.7. Conclusion

In this paper, we studied the optimal server scheduling policy in a multi-class queuing

system with a single server when minimizing the abandonment cost. We showed that

optimal scheduling policy is a static priority policy. We derived conditions under which

we can determine the optimal scheduling policy among customers of different types. The

optimal scheduling policy gives priority to the customer type with higher service rate (µ)

and higher abandonment cost (b), i.e., higher index bµ, only if either condition C1 or

C2 holds. We also numerically observed that when these conditions do not hold bµθ–

rule performs well. In our numerical analysis, we also observed that using the optimal

scheduling policy results in a significant cost saving compared to the FCFS service policy,

which is commonly used in call centers.

There are still several possible directions for further research. One possible direction

for future research is extending the current model to multi-server multi-class system.

In this case, the optimal scheduling policy for each server would also be dependent on

other servers’ attributes and scheduling policies. Another possible direction for future

research is server scheduling policy for systems where customers’ abandonment cost and

holding cost need to be considered simultaneously, e.g., other types of call centers where

holding cost is not negligible or the delivery of health care where holding cost of patients

is considerable. The trade-off between these two costs may make the optimal scheduling

policy more complicated and different.
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CHAPTER 3

Engineering the Delay Announcement to Improve Patient

Satisfaction

3.1. Introduction

In 2010, Centers for Medicare and Medicaid Services (CMS) initiated the Hospital

Value-Based Purchasing (VBP) Program to adjust payments to hospitals based on the

quality of care they deliver (CMSb 2017). The VBP program includes clinical quality

measures (e.g., 30-Day Mortality Rate) as well as patient satisfaction with care measure,

i.e., Hospital Consumer Assessment of Health care Providers and Systems (HCAHPS)

survey. The clinical measures account for 75 percent of a hospital’s VBP score and the

HCAHPS survey accounts for 25 percent. The total score is used to determine the amount

of incentive payment each hospital receives (AHA 2013). In addition, HCAHPS score are

shared with the public on Medicare website and impact hospitals’ reputation and standing

in the community they serve. Hence, patient satisfaction with care has become a financial

priority for hospitals.

Financial impact of patient satisfaction. Accenture1 analyzed hospital profit

margin data reported to the CMS and survey results from HCAHPS to examine the rela-

tionship between patient satisfaction and hospital financial performance. They reported

1https://www.accenture.com/t20180111T085228Z__w__/us-en/_acnmedia/
Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_17/
Accenture-Happy-Patients-Healthy-Margins.pdf

https://www.accenture.com/t20180111T085228Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_17/Accenture-Happy-Patients-Healthy-Margins.pdf
https://www.accenture.com/t20180111T085228Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_17/Accenture-Happy-Patients-Healthy-Margins.pdf
https://www.accenture.com/t20180111T085228Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_17/Accenture-Happy-Patients-Healthy-Margins.pdf
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that profit margin increase per 10% increase in HCAHPS score is from 0.4% for rural

hospitals to 3.4% for urban hospitals. This means, for example, a hospital system earning

$2B in revenue would have to cut 460 jobs (assuming a salary of $100K) to achieve the

2.3% profit margin that improving the consumer satisfaction might bring through revenue

growth. Considering the relationship between patient satisfaction and hospital financial

performance, hospital leaders are looking for strategies to improve patient satisfaction

and boost their HCAHPS scores.

How to improve patient satisfaction? Wait Time Before Seen By Doctor has a

significant impact on patient satisfaction in EDs (Boudreaux and O’Hea 2004). Recent

internal patient satisfaction report2 at the ED under study shows that the survey ques-

tion asking about patients’ Wait Time Before Seen By Doctor on Press Ganey3 survey

accounts for more than 46% increase in patients’ Likelihood-To-Recommend (i.e., a metric

for patient satisfaction assessment). Therefore, any improvement in patients’ wait-time

before seeing the doctor would have a considerable impact on patient satisfaction. More

recently, patients’ wait-times become even more important since hospitals across the coun-

try struggle with overcrowded EDs and long wait-times for patients who seek emergency

care (GAO 2011). Increase in patient satisfaction consequently boosts hospitals HCAHPS

scores, which in turn leads to an increase in the revenue and Medicare reimbursements.

To improve patient satisfaction, one can reduce the wait-times. Often, the only way to

reduce wait-times without sacrificing quality is to add beds or staff, which is expensive.4

2Patient Satisfaction report FY2012-FY2014- N=4,668 paper surveys
3Press Ganey is the largest HCAHPS administrator in the country, partnering with more than 8,000
clients.
4In the United States, it is estimated that it costs approximately $1,000,000 to build a hospital bed, and
$600,000 to $800,000 to staff that same bed Salway et al. (2017).
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One effective, inexpensive, way to improve patient satisfaction is providing delay informa-

tion, so called delay announcement. Case studies from service systems such as call centers

(Antonides et al. 2002), restaurants, supermarkets (Tom and Lucey 1995, 1997) or air-

lines (Forbes et al. 2017), show that delay announcement can improve customers’ waiting

experience. In this study, we use delay announcement to improve patient satisfaction.

Satisfaction vs. Abandonments. The delay announcement literature chiefly fo-

cuses on the effect of announcing delay information on customers’ behavioral intentions

during a service encounter, in particular the customer abandonment from system caused

by the incurred holding (waiting) cost (Armony et al. 2009, Yu et al. 2016, Akşin et al.

2016). The effect of delay announcement on customers’ self-reported satisfaction, espe-

cially in the context of EDs, has not been carefully studied in the operations management

literature. Yet as discussed above, self-reported satisfaction is important for ED man-

agers considering the direct impact of patient satisfaction on hospital’s reimbursement

and revenue. Hence, we study the impact of delay announcement on patient satisfaction

in EDs.

EDs vs. Call centers. Delay announcement have been chiefly studied in the context

of call centers. However, there are key operational differences between EDs and call

centers, especially when it comes to delay announcement. First, Queues and arrivals are

observables in EDs, while queues are unobservable in call centers. Therefore, patients

may form their own perception about the wait-times and progress in line by observing

the flow. Second, EDs work as a priority system, while call centers typically work as

a first-come-first-served (FCFS) system. Even if a call center does work as a priority

system, due to the unobservability of the queue, customers will not necessarily realize
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that system does not work FCFS. However, in EDs, patients occasionally realize that the

system does not work FCFS by seeing other patients who come after them receive service

before them. Third, patients are different in the severity of their condition and they

may have different sensitivity to the wait-times and announced wait-times. Bolandifar

et al. (2014), observed that patients with sever conditions are less sensitive to wait-times.

Announcing delay to patients with sever conditions with their estimated wait-time may

make them more sensitive to their wait-time and have some negative effects on their

satisfaction. These differences make EDs operationally different than call centers, where

delay announcement’s impact on satisfaction may not be the same.

Delay announcement in EDs. Providing patients with an estimate of their wait-

time is challenging. Uncertainty of patients arrival pattern and treatment times along with

the complexity of process flows in EDs make accurately estimating wait-times difficult.

On the other hand, patients may take the announced wait-time as their reference point

for their wait-time and become dissatisfied if they have to wait beyond the announced

wait-time. Hence, considering the potential inaccuracy of estimated wait-times, it is

important to carefully study what wait-time to announce to maximize patient satisfaction.

In the literature of delay announcement, the mean (or median) of the estimated wait-time

distribution is usually selected to be announced (e.g., call centers (Armony et al. 2009,

Jouini et al. 2011, Yu et al. 2017) and health care (Mowen et al. 1993, Shah et al. 2015)).

However, by announcing the average wait-time, we underestimate the wait-time of a

considerable number of customers. Waiting beyond the announced wait-time is a time

loss for a customer and this may make her dissatisfied. If an overestimate of wait-time is

announced instead (i.e., announcing a larger delay than what is estimated), the customer
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experiences a time gain. However, it is still not clear how much larger than estimated wait-

time the announced wait-time needs to be, considering the potential negative consequences

of announcing large wait-times, which we discuss below. The question of what wait-time to

announce to maximize satisfaction, especially EDs, has not been studied in the literature.

Hence, when designing a delay announcement process in EDs, the first question (Q1) that

ED managers face is whether they should announce the mean (or median) of wait-times in

EDs similar to common practice in some service settings such as call centers, or announce

an overestimate of wait-times instead?

Wait-time Gap, Actual wait-time and Satisfaction. Patients evaluate their

waiting experience based on the difference between expected wait-time and actual wait-

time (Maister 1984), which we call wait-time gap. If actual wait-time exceeds the expected

wait-time, the patient experiences a time loss and may become dissatisfied. If actual wait-

time does not exceed the expected wait-time, the patient experiences a time gain. Patients

derive utility from gains and losses, as stated by Prospect Theory (Kahneman and Tversky

1979). With delay announcement, we tend to set an expectation (i.e., a reference point)

for patients’ wait-time. On the other hand, even though people may derive utility from

gains and losses, the actual wait-time may play an important role in their evaluations as

well (Barberis 2013). The second question (Q2) is how actual wait-time and wait-time

gap contributes to patient satisfaction, in presence of delay announcement?

Announcing long wait-times. Since patients usually experience long wait-time

in urban EDs (e.g., 5-6 hours), the third important question (Q3) that ED managers

face is whether they should tell patients that their wait-time to see the doctor would be

long? Announcing long delays may have a negative initial impact on patient wait-time
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satisfaction (Carmon and Kahneman 1996). On the other hand, not knowing the wait-

times may make patients anxious and dissatisfied (Hui and Tse 1996). Announcing long

wait-times may also turn patients away, which is a health risk for patients and revenue

loss for hospitals. Thus, the effect of announcing long wait-times on patient satisfaction

is not clear and need to be carefully investigated.

Engineering the delay announcement. We define engineering the delay announce-

ment as to study what wait-time to announce to maximize the ED’s average patient wait-

time satisfaction. To engineer the delay announcement and to answer questions Q1-Q3,

we conduct a field experiment in a urban ED in which all patients who get triaged and

have to wait to see a doctor are provided with their estimated personalized wait-times

with no updates, computed using a prediction model developed based on the ED’s histori-

cal data. In this field experiment, we study the effect of different ranges of wait-time gaps

on patient wait-time satisfaction. To create different ranges of wait-time gaps, we cannot

simply add some specific minutes to the estimated wait-times, since the wait-times are dif-

ficult to estimate accurately and therefore unavailable. One way to create different ranges

of wait-time gaps is to announce different prediction upper-bounds on patients’ wait-time

using the developed prediction model. By announcing different prediction upper-bounds

on wait-times, we expect to create different ranges of overestimations and underestima-

tions of wait-time. With this experiment design, we, first, study how patients form their

utility in the presence of delay announcement, and how they evaluate their wait-time satis-

faction retrospectively. Considering the potential positive impact of delay announcement

in reducing patients uncertainty and the possible negative effects of delay announcement

when announcing long delays that may cause an initial negative impact, we explore how
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these positives and negatives together impact patient wait-time satisfaction. We then,

discuss how to engineer the delay announcement to maximize the total average patient

wait-time satisfaction.

This chapter contributes to the literature on patient satisfaction and delay announce-

ment in EDs. The first goal of this chapter is to demonstrate the impact of time gains and

time losses, the actual wait-time and the announced wait-time on patient satisfaction with

their wait-time in an ED setting. EDs perform operationally different from other service

settings and these differences lead us to different implications of current available finding

in the literature. In particular, we show that while patients drive utility from time gains

and time losses relative to the announced wait-time as well as their actual wait-time, the

time gains effect on wait-time satisfaction is not always positive. With a better under-

standing of patients’ evaluation process, we then turn our attention to the second goal

of this chapter, which is developing a model for patient wait-time satisfaction based on

our observations. We also explore how we can maximize the positive impact of delay

announcement on patient satisfaction. As a by-product of this research, we also study

factors that affect wait-times and develop an institution specific and accurate wait-time

predictor application.

Our results enable ED managers to get a better understanding of the relationship

among time perceptions, delay announcement and patient satisfaction. This helps man-

agers design a delay announcement process that improves patient satisfaction in their

ED. We formulate this relationship as a function of wait-time gap and actual wait-time.

Our field experiment delivers a number of key findings. First, considering the positive

and negative impacts of delay announcement in an ED, where patients observe the queue
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and arrivals and typically have to wait for long hours, we find that delay announcement

can improve patients’ wait-time satisfaction. While patients’ overall satisfaction is also

increased as a result of delay announcement in the ED under study, the increase in the

number of patients who left after learning their long announced wait-times was not found

to be significant in our study. Second, we find that announcing an overestimate of the

wait-time improve patient satisfaction more than the current practice of announcing the

mean (or median) of the wait-time. This is because patients are loss averse with respect

to their wait-time and by announcing delays, we can set their expectations and make

them satisfied by exceeding it. Finally, we find evidence that for sufficiently large positive

wait-time gaps, the average wait-time satisfaction is not increasing in the gap, which may

be because of the negative impact of announcing long wait-times on patient satisfaction.

This chapter proceeds as follows. In Section 2, we review related literature and in

Section 3, we develop our hypotheses. The experiment design is presented in Section 4.

We introduce our empirical models and our comprehensive statistical analysis results in

Section 5. In Section 6, we explore how to engineer the delay announcement to maximize

ED’s average wait-time satisfaction. We explore the robustness of our findings in Section

7. We conclude the chapter and discuss our findings in Section 8.

3.2. Literature Review

In this study, we explore the impact of delay announcement on patient wait-time

satisfaction in EDs. We, first, review literature related to customer wait-time satisfaction

in service operations and the literature on the impact of delay announcement. We then,

develop the hypotheses considering the literature review.
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3.2.1. Customers Wait-time Satisfaction

For customers waiting in a line, the concept of disconfirmation (i.e., gap) between actual

wait and expectations and how this disconfirmation affects both cognitive and affective

components with respect to the appraisal of the wait has been discussed in the literature

(e.g., Hornik (1984), Pruyn and Smidts (1993), Taylor and Fullerton (1999)). Research on

the customers wait-time experience focuses on managing customers perception of wait-

time by occupying periods of idle time (Carmon et al. 1995), increasing the feeling of

progress (Soman and Shi 2003), managing anxiety and uncertainty (Osuna 1985), setting

accurate expectations and improving perceptions of fairness (Maister 1984), managing

sequence and duration effects (Chase and Dasu 2001), shaping memories of the experience

(Norman 2009), and operational transparency (Buell and Norton 2011). In ED setting,

there are several studies that propose strategies for improving the experience of waiting

patients. These strategies include expressing empathy for patients and making them

feel occupied while waiting (Cohen et al. 2013) and keeping patients informed about the

treatment process (Krishel and Baraff 1993, White et al. 2005) and the time (Göransson

and von Rosen 2010, Johnson et al. 2012, Shah et al. 2015). Even though, the importance

of providing delay information is recognized in these papers, it is unclear how patients

form their satisfaction with respect to their wait-time, especially when delay information

is provided. We study the effect of delay announcement on patient satisfaction.

3.2.2. Delay Announcement

Delay information (i.e., estimated wait-time in queue or queue length) impacts service

evaluations (Hassin 1986) and the system throughput (Hassin 2007). Customers use the
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delay information to estimate the distribution of delay and then to determine their ex-

pected waiting costs. Comparing the costs to the reward they anticipate from receiving

service, they decide whether to stay or leave. In call center setting, Whitt (1999) an-

alytically shows that if the service provider does communicate anticipated delays, the

customers are more likely to balk when all servers are busy (leave immediately upon

arrival) than renege (leave after waiting for some time) and this reduces the system’s

average waiting time. Guo and Zipkin (2007) extend Whitt (1999) and explore how de-

lay announcements with different levels of precision impact customers’ balking behavior.

They show that different levels of information lead to different delay distributions in the

expected waiting cost calculations, and exact delay information may improve or hurt

system performance. Hu et al. (2017) investigate how information heterogeneity among

customers impacts the throughput and social welfare. They discuss how delay informa-

tion helps system capacity to be more efficiently matched with customer demand, while

selfish joining behavior of informed customers may overload the system. Armony et al.

(2009) extend Hu’s paper by considering customer abandonment in their model. Delay

announcement is not always credible or treated as such by customers. Allon et al. (2011)

address this concern by considering a model in which both the firm and the customers

act strategically. Yu et al. (2015) extend Allon et al. (2011) by incorporating customer

heterogeneity and allowing the firm to prioritize its customers. All the papers above are

analytical in nature and their results are not examined in real systems.

There are a few papers that empirically explore the impact of delay announcement on

system performance. Hui and Tse (1996) conduct an experiment to study the impact of

waiting duration information and queuing information on customers’ service evaluations
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(i.e., the extent of customer’s preference for the provided service). They show that ac-

ceptability of the wait and affective response5 to the wait have a significant mediating

effect on the relationship between waiting information and service evaluation. In call

center setting, Yu et al. (2016), Akşin et al. (2016), and Yu et al. (2017) empirically study

the impact of delay announcement on customers’ beliefs about their wait-time and as a

consequence customer abandonment behavior. Akşin et al. (2016) assumes that delay

announcements only impact customers’ beliefs about their wait-time but do not directly

impact customers per unit waiting cost. Yu et al. (2016) relax this assumption by showing

that the delay announcements also directly impact customers’ per unit waiting cost. They

assume customers’ per unit waiting cost is constant over time. Relaxing this assumption,

Yu et al. (2017) explore the reference effect of delay announcements in a field experiment

and allow the customers’ per unit waiting cost before the reference point to be different

than that after the reference point. Since the value of time is context-dependent (Schmitt

and Leclerc 2002), insights derived from these papers, even though valuable, are limited

to the context of their study and the performance measure of interest. It is still important

to explore the impact of delay announcement on patient satisfaction in EDs.

There are also several papers in ED setting that study the effects of publishing delay

information on patients hospital selection (Xie and Youash 2011) and coordination within

hospital networks (Dong et al. 2015). However, the focus of our study is on the effect of

delay announcement on patients wait-time satisfaction and how to engineer the announced

wait-time to maximize the patient satisfaction.

5The general psychological state of an individual, including but not limited to emotions and mood, within
a given situation.
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3.3. Framework and Hypothesis Development

In this study, we use Delay Announcement, providing patients with their estimated

wait-time, to improve patient satisfaction with their wait-time. As mentioned in introduc-

tion, patient satisfaction is important for hospitals due to its direct impact on hospital’s

reimbursement and revenue. Figure 3.1 shows the conceptual model of delay announce-

ment impact on wait-time satisfaction.

Figure 3.1. The Conceptual Model of Delay Announcement Impact on Wait-time Satisfaction
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As shown in Figure 3.1, patients evaluate their wait-time satisfaction based on (1) the

difference between their expected wait-time and actual wait-time (i.e., wait-time gap) and

(2) the actual wait-time. With delay announcement, we tend to set an expectation for

patients’ wait-time (i.e., provide patients with a reference point on their wait-time). In

the following subsections, we further explain our conceptual framework shown in Figure

3.1 and discuss the answer to questions Q1-Q3 raised in the introduction. First, we

explore the treatment effect of delay announcement on wait-time satisfaction.

Impact of Delay Announcement on Wait-time Satisfaction. In a field experiment,

Shah et al. (2015) find evidence that providing expected wait-time information increases

patients’ overall satisfaction, but they observe no significant improvement with patients’

wait-time satisfaction. No explanation is provided by Shah et al. (2015) about why no
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improvement is observed with patient wait-time satisfaction in their study. One would,

however, expect that wait-time information improves patient satisfaction: Uncertainty

about the wait-times may cause anxiety and dissatisfaction (Hui and Tse 1996). In a

crowded ED, information about the estimated wait-time can reduce the uncertainty of

an anxious patient and make her less dissatisfied. The reasons behind Shah et al. (2015)

not observing any improvement in patient wait-time satisfaction may be as follows. First,

they used a table of expected wait-times for different acuity levels and shifts of day to

communicate the wait-times. Using expected wait-times, may increase the number of pa-

tients who wait longer than what it is announced to them. Having to waiting longer than

the announced wait-time (which happens 50% of the time when the wait-time distribution

is symmetric around the expected wait time) may cause disutility. Second, patients are

asked to fill out an in-house patient satisfaction questionnaire at the ED discharge desk,

i.e., after their treatment process is over. This may cause patients’ evaluations to be influ-

enced by the quality of the treatment process rather than patient wait-time satisfaction.

In our study, we survey patient right after they are seen by the doctor to exclude the

effect of quality of treatment.

Our first hypothesis test the overall impact of delay announcements on patient wait-

time satisfaction, see Figure 3.1. While Shah et al. (2015) find that delay announcement

has no impact on wait-time satisfaction, we hypothesize that delay announcement can

also have a positive impact on patient wait-time satisfaction.

Hypothesis 1A. Delay announcement increases wait-time satisfaction.

Hypothesis 1B. Delay announcement has no impact on wait-time satisfaction.
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If Hypothesis 1A is true, ED managers are encouraged to use delay announcement to

effectively improve patient wait-time satisfaction. Below, we decompose the determinants

of wait-time satisfaction into two components; the wait-time gap (Hypothesis 2) and the

actual wait-time (Hypothesis 3).

3.3.1. Impact of Wait-time Gap on Wait-time Satisfaction.

In a goal-oriented activity such as waiting-in-line, people’s evaluation of the waiting ex-

perience is dominated by the end of their experience (Fredrickson and Kahneman 1993,

Carmon and Kahneman 1996), so called end effect. Experiencing a time gain or loss once

being seen by a doctor relative to the expected wait-time can be considered an end effect

moment in the patient’s waiting experience. Therefore, we expect that the wait-time gap,

i.e., the difference between the expected and the actual wait time, to be a strong predictor

of wait-time satisfaction. In this section, we explore the relationship between wait-time

gap and wait-time satisfaction, as shown in Figure 3.1. Naturally, a negative (positive)

wait-time gap reduces (increases) the satisfaction, as the patient perceives she had to

wait more (less) than expected. From the perspective of Prospect Theory (Kahneman

and Tversky 1979), the expected wait-time is a reference point. First, we hypothesize

that the announced wait time acts as such reference point and that the satisfaction in-

creases in the wait-time gap. In other words, compared with the satisfaction level of

an actual wait-time that is the same as the announced wait-time (i.e., a zero wait-time

gap), the increase (decrease) in satisfaction for a positive (negative) wait-time gap of 30

minutes is higher (lower) than the increase (decrease) in satisfaction for a positive (nega-

tive) wait-time gap of 15 minutes. Second, according to Prospect Theory, people evaluate
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losses more than the same amount of gains, which is referred to as loss aversion. Thus,

compared with the satisfaction for a zero wait-time gap, the decrease in satisfaction of

a negative wait-time gap of 30 minutes is higher than the increase in satisfaction of a

positive wait-time gap of 30 minutes. As the preferences should hold for all levels of

the wait-time gaps (positive or negative), we state the following hypotheses to check the

properties of patients’ wait-time satisfaction to be in accordance with Prospect Theory.

Hypothesis 2A. Wait-time satisfaction increases as wait-time gain increases, for all

levels of positive and negative wait-time gaps.

Hypothesis 2B. The average wait-time satisfaction increases in wait-time gap is

smaller when the wait-time gap is positive compared to when the wait-time gap is negative

(i.e., loss aversion).

Hypothesis 2A help us understand the effect of wait-time gap on wait-time satisfaction

as the wait-time gap size changes. In other words, we study if wait-time satisfaction is an

increasing function of wait-time gap both in the regions of gains and losses. Hypothesis 2B

explores if delay announcement provide patients with a reference point for their wait-time,

whether patients are loss averse with respect to the reference point.

While there is an emerging interest in customers’ reference-dependent and loss aversion

behavior in the operations management literature, most of the works related to consumers’

temporal decisions are analytical in nature, focusing on investigating the managerial im-

plications of customers’ loss aversion in time (Yang et al. 2013). There are several studies

in the literature that explore customers’ loss aversion behavior in the temporal domain

using field data (Abdellaoui and Kemel 2013, Crawford and Meng 2011, Yu et al. 2017).
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Crawford and Meng (2011) show that New York City taxi drivers’ labor supply decisions

are loss averse relative to both the targeted hour and income. In a series of lab exper-

iment, Abdellaoui and Kemel (2013) show that loss aversion exists for both time and

money and the magnitude of loss aversion is significantly lower for time. Yu et al. (2017)

explore customers’ loss aversion behavior in the temporal domain in a field experiment

approach in a call center setting. They found that while delay information does not alter

the nature that customers are loss averse, it does seem to impact the reference points

customers use when the announcements are accurate. To the best of our knowledge, there

has been no study to explore patients’ loss aversion behavior in the temporal domain in

an ED setting. Since EDs works operationally different from the other previously studied

settings, we explore patients’ loss aversion behavior when there is delay announcement in

Hypothesis 2B.

3.3.2. Impact of Actual Wait-time on Wait-time Satisfaction.

In this section, we explore the relationship between actual wait-time and wait-time sat-

isfaction, as shown in Figure 3.1. If patients A and B experience the same amount of

positive wait-time gap of 2 hours, they should have the same evaluation of their service

experience. This is because it is gain or loss relative to a reference point (i.e., can be the

announced wait-time) that drives a customer’s utility. What if patient A has actually

waited only 1 hour and patient B’s actual wait-time was 3 hours. This difference in the

wait-time that patient A and patient B actually experienced should lead them to evaluate

their wait-time satisfaction differently. Hence, it is necessary to explore the contribution
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of patients’ actual wait-time to their evaluation of their wait-time satisfaction, when we

control for the wait-time gap.

Some studies in behavioral economics literature state that the duration of an experi-

ence could have an effect on the experience (Schreiber and Kahneman 2000). However,

other studies (Fredrickson and Kahneman 1993, Varey and Kahneman 1992) have sug-

gested that customer evaluations are uncorrelated with the duration of a experience.

Therefore, further research is needed to test the implications of experience duration in

different service settings. In our setting, the duration of the waiting-time experience is

the actual wait-time of the patients, which may or may not have a direct impact on her

wait-time satisfaction. There are studies in patient satisfaction literature that introduce

actual wait-time as one of the most significant predictors of patients’ dissatisfaction in

EDs (Boudreaux and O’Hea 2004, Welch 2009). Recall from Hypothesis 2A that the

actual duration already plays a role in the wait-time satisfaction via the wait-time gap.

We hypothesize that the actual wait-time has a direct, negative effect on the wait-time

satisfaction, controlling for the wait-time gap.

Hypothesis 3. Keeping the wait-time gap fixed, the actual wait-time has a negative

impact on patient satisfaction.

Hypothesis 3 highlights the extend to which actual wait-time contributes to patients’

evaluation process. This hypothesis is basically testing the relationship between actual

wait-time and wait-time satisfaction as it is shown in Figure 3.1.



94

3.4. Experiment Design

In this field experiment, we study the effects of delay announcement on patient wait-

time satisfaction in a urban ED. In our study, we announce the (1 − α)% prediction

upper-bound on the wait-time to see a doctor, which we call (1 − α)% overestimation

of wait-time, computed using a regression model developed based on historical data and

(1− α) takes the values 0.5, 0.7 and 0.9. The ED under study serves up to 312 patients

per day for 8 shifts daily in two tracks: main track and fast track. Our study focuses on

the patients who are treated in the main track, which accounts for approximately 70%

of patients. Patients assigned to the main track usually wait longer than those assigned

to the fast track. Patients under influence, patient with mental problems and patients

assigned to bed with no wait in the waiting room are excluded from our study.

3.4.1. Participants.

We surveyed 373 patients (66% female; Meanage = 59, Standard Deviationage = 17) who

visited the ED during the period of analysis. All of these patients had to wait in the

waiting room to see a doctor. No inducements were offered to patients in exchange for

their participation.

3.4.2. Design and Procedure.

When a patient arrives at ED, first, she will be checked-in and wait in a waiting room

to be called for triage (typically within 15 minutes). At triage, the triage nurse evaluates

the patient’s medical conditions and determines her severity of condition according to a

5-level severity index, called Emergency Severity Index (ESI). The patient will be asked
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to wait in the waiting room for a bed to get empty. See the process flow in Figure 3.2.

We redesigned this process by asking the triage nurses to guide all patient’s to a desk
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Figure 3.2. Process Flow Chart of Patients under study at Northwestern Medicine ED.

located in the waiting area, right after the triage process is over. A research assistant6

uses the patient’s characteristics and visit information to estimate the patient’s wait-

time and informs the patient of her personalized wait-time according to the planned

intervention. With this manipulation, we are able to investigate the directional effects of

delay announcement in an experiment design summarized in Table 3.1. After the patient

is seen by the doctor, patients are surveyed about their wait-time satisfaction in the

waiting room7 (see Appendix 1).
Table 3.1. Experiment Design

Week Delay Announcement Condition
1 Off No Intervention (Condition C0)
2 On Announce 90% overestimation of wait-time (Condition C1)
3 On Announce 70% overestimation of wait-time (Condition C2)
4 On Announce 50% overestimation of wait-time (Condition C3)

6We used the same research assistant throughout the study to ensure consistency.
7No personally identifiable data were collected.



96

3.4.3. Wait-time Estimation

Using two years of de-identified data of 177,831 patients, we study patient arrival patterns

and hospital factors that affect wait-times and develop an institution specific, accurate

wait-time predictor model. See Appendix 2 for the details of the prediction model. We

found that the most important predictors of patients wait-time are patient ESI level,

patient age, the time of the day, the day of the week, the number of patients in the ED,

and the number of patients waiting to be admitted.

In our study, we compare time-series methods (rolling averages (Dong et al. 2015) and

Holt-Winters (Kalekar 2004)), regression-based methods (Generalized Linear Regression

Model, Stepwise Regression Model, Quantile Regression (Sun et al. 2012) and Q-Lasso

(Ang et al. 2015)) and machine learning methods (Boosted Regression (Bühlmann and

Hothorn 2007)) to predict patients wait-time to see a doctor at the ED under study. We

take triage-to-doctor time (i.e., the time between seeing the triage nurse and seeing the

doctor for the first time) as a proxy of patients wait-time in the system. This definition

of wait-time is due to medical and logistical considerations. Triage-to-doctor time is the

largest portion of time a patient waits to be treated, and is shown to be a strong predictor

of patient satisfaction (Boudreaux and O’Hea 2004, Shah et al. 2015). Moreover, only at

the point of triage, the medical information needed to estimate an individualized wait-time

will be available.

We compare the performance of the statistical learning models, using out-of-sample

and in-sample errors. The boosted regression model produces the lowest out-of-sample

MSE and also provides predictions with particularly low overestimates/underestimates of

wait-time. This result can be explained by the model’s ability to produce coefficients that
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most accurately represented the effect of the variables in our data. This model is therefore

used to estimate arriving patients wait-time. Using the final regression model, we compute

the (1−α)% prediction upper bound on the wait-time W for a given X = (x1, x2, · · · , xp)

as follows.

Ŵ + tα,n−p

√
MSE + [se(Ŵ )]2

where Ŵ is predicted value or fitted value of the response given X∗, and tα,n−p is the

t-multiplier with n − p degrees of freedom (n is the sample size and p is the number of

predictors). The term
√
MSE + [se(Ŵ )]2 is the standard error of the prediction which

consists of standard error of the fit and Mean Squared Error (MSE). By announcing the

(1−α)% prediction upper bound on the wait-time to a patient, with probability (1−α)%

the patient waits less than the announced wait-time and experiences a gain in time. For

example, by announcing the 70% overestimation of wait-time, we expect to overestimate

the wait-times for 70% of patients to whom we announced the wait-time. Note that the

amount of overestimation depends on prediction model’s standard error.

3.4.4. Data Collection

The data collection was performed on Monday, Tuesday and Wednesday of each week noon

to 10 p.m. The reasoning behind our data collection schedule was that the distribution

of patients’ wait-times is almost the same on Mondays, Tuesdays and Wednesdays and

patients wait to see a doctor more often if they arrive between noon to 10 p.m. One

research assistant, who was stationed at the designated desk and interacted with patients,

while a survey collector collected surveys from patients once they were seen by the doctor.

After agreeing to participate, the survey collector asked the survey questions from the
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patient (see Appendix 1 for details of survey). Due to infection concerns, no paper-based

or I-pad based survey were allowed to be given to patients.

3.4.5. Dependent Variables

Our key dependent variable is: Wait-time satisfaction. We asked patient satisfaction with

the wait-time experience between seeing the triage nurse and seeing the doctor (“On a scale

of 1 to 7, how satisfied are you with the wait between seeing the triage nurse and seeing

the doctor?”) as a measure of quality (Edwards 1968, Garvin 1984). Also, we explored

other dependent variables: Overall satisfaction and Perceived fairness. We asked patients

about their overall experience in ED (“On a scale of 1 to 7, how satisfied are you with

your overall experience at our Emergency Department?”) We also investigated whether

patient perceptions of fairness, regarding the order patients received care, are affected

(“On a scale of 1 to 7, how did you feel about the order at which patients receive care

in this Emergency Department?”). Table 3.2 summarizes the definitions of all dependent

and independent variables.

Table 3.2. Summary of Dependent and Independent Variables Definitions
Variable Description

Dependent variables

Wait-time satisfaction Response to question 3 on the survey: ”On a scale of 1 to 7, how satisfied are you with your wait-time in the waiting room
(after seeing the triage nurse and before seeing the doctor)?”. An integer number from 1 to 7.

Overall satisfaction Response to question 4 on the survey: ”On a scale of 1 to 7, how satisfied are you with your overall experience
at our Emergency Department?”. An integer number from 1 to 7.

Perceived fairness Response to question 7 on the survey: ”On a scale of 1 to 7, how did you feel about the order at which patients receive care
in our Emergency Department?”. An integer number from 1 to 7.

Independent and control variables
C90 Indicator variable which equals to 1 if the 90% overestimation of wait-time is announced and equals to 0 otherwise.
C70 Indicator variable which equals to 1 if the 70% overestimation of wait-time is announced and equals to 0 otherwise.
C50 Indicator variable which equals to 1 if the expected wait-time is announced and equals to 0 otherwise.
Actual wait-time Patient’s actual wait-time between seeing the triage nurse and seeing the doctor.

Perceived wait-time Response to question 1 on the survey: ”How long did you wait in the waiting room after seeing the triage nurse and before
seeing the doctor? Provide the best estimate of your wait . . . . . . . . . ”.

Announced wait-time The estimated wait-time announced to the patients, estimated using the developed wait-time predictor.
Wait-time gap The difference between the announced wait-time and the actual wait-time.
Wait-time gap sign Indicator variable which equals to 1 if wait-time gap is positive and equals to 0 otherwise.
High Acuity Indicator Indicator variable which equals to 1 if the patient has ESI level 2 or higher and equals to 0 otherwise.
First time visit Indicator Indicator variable which equals to 1 if the patient visited the ED under study for the first time and equals to 0 otherwise.
Male Indicator Indicator variable which equals to 1 if the patient is male and equals to 0 otherwise.
Age Patient’s age.
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3.4.6. Control Variables

We account for additional factors in our analysis that varied over the period of our study.

In modeling patient wait-time satisfaction, overall satisfaction and perceived fairness, we

control for (I) patients demographics and medical condition, (II) the state of the ED, and

(III) time trends. To account for patients demographics, we control for the age and the

gender of survey respondents. In addition to these variable, we control for patient ESI

level as a proxy for patients chief complaint and pain level. Finally, since treatments were

assigned independent of staffing decisions, and we account for the shift of the day and

the day of week to show that the primary effects of interest are not driven by outliers

corresponding with any particular day or shift. Result patterns appear to fluctuate by

experimental condition (see Table 3.2).

3.5. Empirical Models and Results

Our main analyses examine the relative changes in patient wait-time satisfaction when

there is delay announcement and when there is no delay announcement. We use linear

regression models with time and patient-related control variables to address the proposed

hypotheses. In addition to the standard assumptions of linear regression models, to obtain

unbiased standard errors, we use robust standard errors, clustered by shift of the day and

day of the week.

3.5.1. Overview

Table 3(a) presents means and standard variations of all variables included in the ex-

periment, stratified by the experiment conditions (i.e., C0, C1, C2 and C3). Summary
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definition of all variables is presented in Appendix 3. Table 3(b) presents correlations

between all continuous variables included in the experiment.

Table 3(a). Summary Statistics of All Variables Included in the Experiment
No Announcement (C0) 90% overestimation of wait-time (C1) 70% overestimation of wait-time (C2) 50% overestimation of wait-time (C3) All
n mean SD n mean SD n mean SD n mean SD n mean SD

Age 87 60 19 105 58 17 91 59 14 90 62 16 373 59 17
Female pct. 87 0.67 0.47 105 0.64 0.48 91 0.68 0.47 90 0.66 0.47 373 0.66 0.47
High Priority pct. 87 0.7 0.46 105 0.74 0.44 91 0.73 0.44 90 0.77 0.42 373 0.73 0.44
First time visit pct. 87 0.25 0.43 105 0.31 0.46 91 0.19 0.39 90 0.21 0.41 373 0.24 0.43
Actual Wait-time (min) 87 163 94 105 160 76 91 158 70 90 166 85 373 161 81
Perceived Wait-time (min) 87 181 101 105 194 96 91 178 85 90 189 103 373 186 96
Announced Wait-time (min) 87 NA NA 105 246 49 91 206 29 90 185 51 373 214 51
Perceived Announced Wait-time (min) 87 NA NA 105 208 57 91 166 42 90 165 42 373 181 52
Larger wait-time gap pct. 87 0.59 0.49 105 0.58 0.49 91 0.53 0.5 90 0.66 0.47 373 0.59 0.49
Wait-time Satisfaction (out of 7) 87 3.52 1.98 105 4.19 1.83 91 4.74 1.78 90 3.81 1.96 373 4.08 1.93
Overall Satisfaction (out of 7) 87 5.13 1.8 105 5.82 1.83 91 5.96 1.53 90 5.73 1.53 373 5.67 1.62
Perceived Fairness (out of 7) 87 4.73 1.89 105 5.53 1.82 91 5.67 1.8 90 5.93 1.63 373 5.41 1.85

Table 3(b). Correlations of Continuous Variables Included in the Experiment
Variable 1 2 3 4 5 6 7
1. Wait-time Satisfaction 1.00
2. Age -0.12* 1.00
3. Actual Wait-time -0.64* 0.07 1.00
4. Perceived Wait-time -0.58* 0.10 0.79* 1.00
5. Announced Wait-time -0.18* -0.14* 0.29* 0.36* 1.00
6. Overall Satisfaction 0.54* -0.04 -0.39* -0.46* -0.17* 1.00
7. Perceived Fairness 0.42* 0.03 -0.23* -0.36* -0.23* 0.57* 1.00
Note. N = 286. Excludes the observations from the control week.
*p < 0.05

Closer examination of Table 3(a) leads to some observations. All weeks are similar

in terms of average age, female percentage, first time visit percentage and high priority

percentage. The average actual wait-times of all patients surveyed under experiment

conditions (i.e., actual wait-time under C0 = 163 min, under C1 = 160 min, under C2 =

158 min, and under C3 = 166 min) were close and there was no statistical different in wait-

times under different conditions (i.e., the p-value corresponding to the t-test of equality

of the means are large). This observation leads us to believe that the reason behind

any possible difference in wait-time satisfaction under each condition is not simply the

difference between the actual wait-times. None of the correlations between variables in

the same regression model have level close to or higher than 0.8, minimizing the concerns

about multicollinearity (see Table 3(b)). We also check for multicollinearity by calculating

variance inflation factors (VIF), which will be reported later.
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3.5.2. Impact of Delay Announcement on Wait-time Satisfaction (H1)

To test Hypothesis 1A-B, we model wait-time satisfaction, S, as a linear function of the

treatment condition: (1) indicator variable DA, which equals to 1 if an estimate of wait-

time is announced; (2) the actual wait-time, W ; and (3) a vector of control variables,

X.

E[S] = α0 + α1DA+ α2W + β′X(3.1)

This specification facilitates the direct interpretation of the coefficient corresponding to

the treatment condition (i.e., delay announcement) as the performance difference relative

to the baseline control condition (i.e., no delay announcement). Specifically, coefficient α1

shows the performance difference of delay announcement relative to the baseline condition.

The result of this comparison helps us to confirm or reject the Hypothesis 1A. Note that

a patient wait-time satisfaction is the response to question 3 on the survey: “On a scale

of 1 to 7, how satisfied are you with your wait-time in the waiting room (after seeing

the triage nurse and before seeing the doctor)?”, which is an integer number from 1 to

7. As shown in Table 3(a), we observe that the average wait-time satisfaction is higher

when there is delay announcement (i.e., 4.25) than the no announcement scenario (i.e.,

3.52). To confirm this observation, we estimate Equation (3.1) to access the impact of

delay announcement on patient wait-time satisfaction. To do so, we combine all the data

collected under Conditions C1-C3 and compare it with the baseline (i.e., Condition C0).

Table 3.4 presents different models for wait-time satisfaction.

In Table 3.4, column 1, we compare the mean wait-time satisfaction under treatment

condition. Delay announcement led to statistically large gains in wait-time satisfaction
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Table 3.4. Models for Wait Satisfaction Survey Responses

Dependent variable:
Wait-time Satisfaction

(1) (2) (3) (4)
1. Delay Announcement Indicator 0.728∗∗∗ 0.701∗∗∗ 0.711∗∗∗ 0.704∗∗∗

(0.107) (0.222) (0.221) (0.230)
2. Actual Wait-time −0.016∗∗∗ −0.016∗∗∗ −0.016∗∗∗

(0.001) (0.001) (0.002)
3. High acuity Indicator −0.232 −0.207

(0.071) (0.159)
4. Age −0.007

(0.006)
5. Male Indicator 0.175

(0.425)
6. First Visit Indicator −0.193

(0.258)
Constant 3.517∗∗∗ 6.050∗∗∗ 6.285∗∗∗ 6.658∗∗∗

(0.236) (0.548) (0.473) (0.322)
Observations 373 373 373 373
Adjusted R2 0.023 0.451 0.452 0.454
Pred. difference relative to baseline (%) 20.7 11.59 11.31 10.57

Notes. Parentheses contain robust standard errors, clustered by shift of the day and day of the
week. Predicted differences represent percent increase over baseline condition. Although we use
OLS in our primary analysis to facilitate coefficient interpretation, we note that all reported
results are similar when satisfaction is estimated with an ordinal logistic model. ***, **, and *
denote significance at the 1%, 5%, and 10% levels, respectively (two-tailed tests).

(α1 = 0.728, p < 0.01). This supports Hypothesis 1A, while rejecting Hypothesis 1B. This

result remain robust in the fully specified model, which controls for priority level, age and

gender. In the fully specified model, column 4, wait-time satisfaction was more than 10%

higher than the baseline when delays announced. To check for multicollinearity in the

full model, we use VIFs. The largest VIF is 1.09, which falls well below the conventional

threshold of 10, providing evidence that multicollinearity is not a concern (Wooldridge

2015).

3.5.3. Impact of Wait-time Gap on Wait-time Satisfaction (H2)

To test the impact of wait-time gap in wait-time satisfaction (i.e., Hypothesis 2A-B),

we, first, model wait-time satisfaction, S, as a piece-wise linear function of wait-time gap

∆, as shown below. We denote I(∆>0) as an indicator variables that equals one if the



103

wait-time gap is positive.

E[S] = α0 + α1∆ + α2∆× I(∆>0)(3.2)

In this model, α1 represents the mean wait-time satisfaction change when wait-time gap

increases by 1 minute for patients with negative wait-time gap. Similarly, α1 + α2 repre-

sents the mean wait-time satisfaction change when wait-time gap increases by 1 minute

for patients with positive wait-time gap. To check if patients are loss averse with respect

to their wait-time, we estimate Equation (2). Note that in Equation (2), there is no I(∆>0)

term, since the connection point is zero (i.e., the reference value for wait-time gap is zero).

The equation is derived as shown below:

E[S] = α0 + α1∆ + α2(∆− 0)× I(∆>0)

= α0 + α1∆ + α2∆× I(∆>0)

Table 3.5 presents the regression model summary.

Table 3.5. Model for Loss Aversion

Dependent variable:
Wait satisfaction

1. Wait Gap 0.026∗∗∗
(0.003)

2. Wait Gap ×IWait Gap>0 −0.019∗
(0.011)

Constant 4.096∗∗∗
(0.002)

Observations 286
Adjusted R2 0.291

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).
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As shown in Table 3.5, we find that α1 = 0.026 is statistically significant (p < 0.01)

and positive, while the coefficient α2 = −0.019 is statistically significant (p < 0.01) and

negative. Therefore, the mean wait-time satisfaction change when wait-time gap increases

by 1 minute for patients with negative wait-time gap is α1 = 0.026 and that for patients

with positive wait-time gap α1 + α2 = 0.007. This means that 10 minutes increase in

wait-time gap increases the mean wait-time satisfaction by 0.26 (in scale of 1-7) in the

loss region and increases the mean wait-time satisfaction by 0.07 in the gain region.

Finding α2 to be negative shows that patients weigh time losses more than time gains,

i.e., they are loss averse. Thus, we find support for Hypothesis 2B. Figure 3.3 is used

to better visualize the loss aversion. Assuming the wait-time gap equals to zero as the

reference value, patient wait-time satisfaction increase in wait-time gap is presented in

Figure 3.3. The slope in the negative side of wait-time gap (i.e., 0.026) is more three

times than that in the positive side (i.e., 0.007). In other words, the one unit increase of

wait-time gap in the negative side, increase the wait-time satisfaction more than that in

the positive side.

Moreover, since both slope values are positive, this may lead us to confirm that the

wait-time satisfaction is increasing in wait-time gap, for all levels of positive and negative

wait-time gap (i.e., Hypothesis 2A is true). However, note that the coefficients in Equation

(3.2) are only the average effect of positive and negative wait-time gaps on wait-time

satisfaction. Looking at the different levels of positive and negative wait-time gaps may

show us different effects. To test the impact of different levels of wait-time gap (∆) on

wait-time satisfaction (i.e., Hypothesis 2A), we classify the data based on how much the
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Figure 3.3. The Visualization of Loss Aversion
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wait-time was overestimated, using quartiles of wait-time gap and use several piecewise

regression models, separately for patients with positive and negative wait-time gap.

For patients whose wait-time gap were positive (i.e., we overestimated their wait-time),

the first, second and third quartiles of wait-time gaps in our data are approximately 40

minutes, 80 minutes and 120 minutes, respectively. Using these quartiles, we define Class

1 to be patients whose wait-time gap is positive and less than 40 minutes, Class 2 to

patients whose wait-time gap is positive and between 40 minutes and 80 minutes, Class

3 to patients whose wait-time gap is positive and between 80 minutes and 120 minutes,

and Class 4 to patients whose wait-time gap is positive and more than 120 minutes. The

average wait-time satisfaction for Class 1 is 4.27, for Class 2 is 4.8, for Class 3 is 5.25 and

for Class 4 is 5.02. As the wait-time gap increases, patients are on average more satisfied.

Except than for Class 4, where the average wait-time gap decreases compared to Class 3.

This may suggest more careful analysis of patients who experience large wait-time gaps

is necessary. To test Hypothesis 2A, we use the model in Equation (3.3), where I(∆>120)
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is an indicator variables that equals one if the wait-time gap is more than 120 minutes.

E[S] = α0 + α1∆ + α2(∆− 120)× I(∆>120)(3.3)

In this model, α1 represents the mean wait-time satisfaction change when wait-time

gap increases by 1 minute for patients whose wait-time gap is less than 120 minutes (i.e.,

less than third quartile of positive wait-time gaps). Similarly, α1 +α2 represents the mean

wait-time satisfaction change when wait-time gap increases by 1 minute for patients whose

wait-time gap is more than 120 minutes. To test Hypothesis 2, we estimate Equation (3.3)

to further confirm the impact of actual wait-time value on wait-time satisfaction. Table

3.6 summarizes the estimated regression model.

Table 3.6. Model for Large Wait-time Gaps

Dependent variable:
Wait-time satisfaction

1. Wait-time Gap 0.012∗∗∗
(0.005)

2. Wait-time Gap (> 120 mins) −0.020∗∗∗
(0.011)

Constant 4.009∗∗∗
(0.146)

Observations 211
Adjusted R2 0.045

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).

We find that the coefficient α1 = 0.012 is statistically significant (p < 0.01) and

positive. This shows that as wait-time gap increases, wait-time satisfaction increases, for

patients whose wait-time gap is less than 120 minutes. However, the coefficient α2 = −0.02

is statistically significant (p < 0.01) and negative and therefore α1 + α2 = 0.012 − 0.2 =

−0.008. This shows that for patients whose wait-time gap is more than 120 minutes, as

wait-time gap increases, the wait-time satisfaction decreases. We find evidence that for
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large wait-time gaps, the wait-time satisfaction is not a increasing function of wait-time

gap. Thus, we cannot find full support for Hypothesis 2A.

One explanation for this observation can be that a large wait-time gap is often the

result of announcing a long wait-time and this long announced wait-time may have a

negative initial impact on the patient satisfaction. Receiving a long announced wait-time

from system may be a peak negative moment (Kahneman et al. 1993, Fredrickson and

Kahneman 1993) in a patient’s waiting experience that stays with her when evaluating

her satisfaction and has a stronger effect on the satisfaction than the positive end ef-

fect of a time gain. In a laboratory experiment, Carmon and Kahneman (1996) observe

a substantial effect of initial observation of the queue length on the affective response

recorded at the end of the queuing episode. Subjects indicate more pleasure at the end

of short queues, where they expected wait-time was shorter, than at the end of long ones.

This suggests that patients, who take long announced wait-time as bad news delivered

to them, may still remember it as an unpleasant moment when evaluating their waiting

experience. The negative effect of the long announced wait-time may be one explanation

for the dissatisfaction of patients with large positive wait-time gap.

For patients whose wait-time gap was negative (i.e., we underestimated their wait-

time), the first, second and third quartiles of wait-time gaps in our data are approximately

20 minutes, 40 minutes and 60 minutes, respectively. We define Class 1 to be patients

whose wait-time gap is negative and less than 20 minutes, Class 2 to patients whose

wait-time gap is negative and between 20 minutes and 40 minutes, Class 3 to patients

whose wait-time gap is negative and between 40 minutes and 60 minutes, and Class 4 to
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patients whose wait-time gap is negative and more than 60 minutes. The average wait-

time satisfaction for Class 1 is 3.37, for Class 2 is 3.1, for Class 3 is 2.18 and for Class 4

is 1.74.

Similar to Equation (3.3), we develop a piecewise linear regression model for all pa-

tients with positive wait-time gap, using positive wait-time gap quartiles as the connection

points. To test Hypothesis 3A, we use the model in Equation (3.4), where I(40<∆≤80) is

an indicator variables that equals one if the wait-time gap is between 40 minutes and

80 minutes, I(80<∆≤120) is an indicator variables that equals one if the wait-time gap is

between 80 minutes and 120 minutes, and I(∆>120) is an indicator variables that equals

one if the wait-time gap is more than 120 minutes.

E[S] = α0 + α1∆ + α2(∆− 40)× I(40<∆≤80) + α3(∆− 80)× I(80<∆≤120)

+ α4(∆− 120)× I(∆>120)

(3.4)

Alternatively, we can write the piecewise model as:

E[S] = α0 + α1∆ + α2∆40 + α2∆80 + α2∆120

where ∆40 = (∆−40)×I(40<∆≤80), ∆80 = (∆−80)×I(80<∆≤120) and ∆120 = (∆−120)×

I(∆>120). In this model, α1 represents the mean wait-time satisfaction change when wait-

time gap increases by 1 minute for patients whose wait-time gap is less than 40 minutes

(i.e., less than first quartile of positive wait-time gaps). Also, α1 +α2 represents the mean

wait-time satisfaction change when wait-time gap increases by 1 minute for patients whose

wait-time gap is between 40 minutes and 80 minutes. Similarly, α1 + α3 represents the

mean wait-time satisfaction change when wait-time gap increases by 1 minute for patients
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whose wait-time gap is between 80 minutes and 120 minutes. Similarly, α1 +α3 represents

the mean wait-time satisfaction change when wait-time gap increases by 1 minute for

patients whose wait-time gap is more than 120 minutes. We find that the coefficient

α1 = 0.011 is statistically significant (p < 0.05) and positive (see Table 3.7 for more

details). This shows that as wait-time gap increases, wait-time satisfaction increases,

for patients whose wait-time gap is less than 40 minutes. The coefficients α1 and α2

were not significant, suggesting that the slope of wait-time gap for Class 2 and Class 3 is

positive and not statistically different. However, the coefficient α3 = −0.018 is statistically

significant (p < 0.05) and negative and therefore α1 +α3 = 0.011− 0.018 = −0.006. This

shows that for patients whose wait-time gap is more than 120 minutes, as wait-time gap

increases, the wait-time satisfaction decreases.

Table 3.7. Piecewise Model for Positive Wait-time Gaps

Dependent variable:
Wait-time satisfaction

1. Wait-time Gap 0.011∗∗
(0.004)

2. Wait-time Gap (Class 2) −0.0002
(0.013)

3. Wait-time Gap (Class 3) 0.006
(0.016)

4. Wait-time Gap (Class 4) −0.018∗∗
(0.009)

Constant 4.048∗∗∗
(0.217)

Observations 211
Adjusted R2 0.037

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).

Similar to Equation (3.4), we develop a piecewise linear regression model for all pa-

tients with negative wait-time gap, using wait-time gap quartiles as the connection points.
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To test Hypothesis 3A, we use the model in Equation (3.5), where I(−20<∆≤−40) is an indi-

cator variables that equals one if the negative wait-time gap is between 20 minutes and 40

minutes, I(−40<∆≤−60) is an indicator variables that equals one if the negative wait-time

gap is between 40 minutes and 60 minutes, and I(∆>−60) is an indicator variables that

equals one if the negative wait-time gap is more than 60 minutes.

E[S] = α0 + α1∆ + α2(∆− (−20))× I(−20<∆≤−40)

+ α3(∆− (−40))× I(−40<∆≤−60) + α4(∆− (−60))× I(∆>−60)

(3.5)

The interpretation of the coefficients is similar to Equation (3.4). Table 3.8 summarizes

the estimated regression model.

Table 3.8. Piecewise Model for Negative Wait-time Gaps

Dependent variable:
Wait-time satisfaction

1. Wait-time Gap 0.023∗∗∗
(0.006)

2. Wait-time Gap (Class 2) −0.018
(0.018)

3. Wait-time Gap (Class 3) 0.040
(0.016)

4. Wait-time Gap (Class 4) −0.011
(0.021)

Constant 3.615∗∗∗
(0.001)

Observations 75
Adjusted R2 0.276

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).

We find that the coefficient α1 = 0.023 is statistically significant (p < 0.01) and

positive. This shows that as wait-time gap decreases, wait-time satisfaction decreases,

for patients whose negative wait-time gap is less than 20 minutes. There is no significant



111

difference between the slopes of Class 2-4 and Class 1, since coefficients α2, α3 and α4 are

not significant.

Now, to combine all these findings, we develop a piecewise linear regression model for

all patients with positive and negative wait-time gap, using only first quartile of negative

gaps and third quartile of positive gaps as the connection points. We use the model in

Equation (3.6), where I(−20<∆≤0) is an indicator variables that equals one if the wait-time

gap is negative but below 20 minutes, I(0<∆≤120) is an indicator variables that equals one

if the wait-time gap is positive but lower than 120 minutes, and I(∆>120) is an indicator

variables that equals one if the wait-time gap is more than 120 minutes.

E[S] = α0 + α1∆ + α2(∆− (−20))× I(−20<∆≤0) + α3∆× I(0<∆≤120)

+ α4(∆− 120)× I(∆>120)

(3.6)

The interpretation of the coefficients is similar to Equation (3.4). Table 3.9 summarizes

the estimated regression model.

Table 3.9. Piecewise Model for All levels of Wait-time Gaps

Dependent variable:
Wait-time satisfaction

1. Wait-time Gap 0.0165∗∗∗
(0.006)

2. Wait-time Gap (Neg. and < 20 mins) 0.0173∗
(0.030)

3. Wait-time Gap (Pos. and < 120 mins) 0.0024∗
(0.005)

4. Wait-time Gap (> 120 mins) −0.0261∗∗∗
(0.008)

Constant 3.487∗∗∗
(0.201)

Observations 286
Adjusted R2 0.317

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).
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We find that the coefficient α1 = 0.0165 is statistically significant (p < 0.01) and

positive. We also find that slope for negative wait-time gaps below 20 minutes to be

α1 + α2 = 0.0338. This shows that as wait-time gap decreases, wait-time satisfaction

decreases, for patients with negative wait-time gap and the decrease is more for patients

whose wait-time gap is negative and smaller than 20 minutes. For patients with positive

and below 120 minutes wait-time gap, the slope is α1 +α3 = 0.0189 and for patients with

positive and above 120 minutes wait-time gap, the slope is α1 +α4 = −0.0096. Figure 3.4

summarizes the piecewise model for all levels of wait-time gaps. Note that adding more

connection points may increases the fit accuracy but decreases the statistical significance

of the results. Therefore, we used only 3 connection points for our piecewise linear model.

Figure 3.4. The Visualization of Impact of Wait-time Gap on Wait-time Satisfaction
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Therefore, we find no significant difference between the effect of all 4 classes on wait-

time satisfaction. As wait-time gap decreases in the loss region, the wait-time satisfaction

also decreases. This supports Hypothesis 2A for the levels of negative wait-time gap.
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3.5.4. Impact of Actual Wait-time on Wait-time Satisfaction (H3)

To test Hypothesis 3, we use model wait satisfaction, S, as a linear function of, W , the

actual wait-time, ∆, wait-time gap, and I(∆>0), the indicator wait-time gap sign to be

positive, as shown below. We control for the wait-time gap and the gap’s sign, since

Prospect Theory states that people derive utility from gains and losses measured relative

to a reference point.

E[S] = α0 + α1W + α2∆ + α3∆× I(∆>0)(3.7)

In this model, α1 represents the actual wait-time of the patients between seeing the triage

nurse and the first visit by a doctor (i.e., triage-to-doctor time). Coefficients α2 and α3 can

be interpreted as it is explained in previous section. If the coefficient α1 is statistically

significant and negative Hypothesis 3 will be confirmed. This would confirm that we

should not ignore the actual wait-time, when aiming for improving patient satisfaction.

To examine the impact of actual wait-time on wait-time satisfaction, first, we can

use Equation (3.1) and Table 4. As shown in Table 3.4 column (4), the coefficient of

the actual wait-time is statistically significant and negative (α1 = −0.016 and p < 0.01).

As expected, as the actual wait-time increases, the wait-time satisfaction decreases. To

further demonstrate this effect, Figure 3.5 shows the average actual wait-time with a 95%

Confidence Interval for each wait-time satisfaction score. Patients who waited the longest

evaluate their wait-time satisfaction to be the worst by choosing 1 or 2 on the survey.



114

Figure 3.5. Actual Wait-time and Wait-time Satisfaction
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To test Hypothesis 3, we estimate Equation (4) to further confirm the impact of actual

wait-time value on wait-time satisfaction. Table 3.10 summarizes the estimated regression

model.

Table 3.10. Model for Impact of Actual Wait-time on Wait-time Satisfaction

Dependent variable:
Wait-time Satisfaction

1. Actual Wait-time −0.015∗∗∗
(0.004)

2. Wait-time Gap 0.014∗∗∗
(0.003)

3. IextWait−timeGap>0 −0.018∗∗∗
(0.003)

4. Wait-time Gap ×IWait-time Gap>0 7.068∗∗∗
(0.872)

Observations 286
Adjusted R2 0.433

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).
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As shown in Table 3.10, the actual wait-time is a significant predictor of wait-time sat-

isfaction, when we control for the wait-time gap. We find that the coefficient α1 = −0.015

is statistically significant (p < 0.01) and negative, while α2 and α3 are still statistically

significant. As actual wait-time value increases, the mean wait-time satisfaction decreases.

This supports Hypothesis 3.

3.5.5. Additional Hypotheses and Analyses.

To better understand our findings and consider potential alternative explanations and

possible outcomes, we conduct several additional analyses. First, we explored if delay

announcement changed patients’ perceived wait-time, by making them more sensitive to

their wait-time. Patients are not usually accurate in their estimation of actual waiting

times and they tend to overestimate the amount of time from triage until initial exami-

nation by the emergency physician (Thompson et al. 1996a). Delay announcement may

intensify this overestimation, by making patients more sensitive to their wait-time. We

explore this impact in Hypothesis 4 below.

Hypothesis 4. Delay announcement increases the perception of wait-time.

Since the perception of waiting time better predicts satisfaction than the actual waiting

time (Davis and Heineke 1998), it is important to take the effect of possible overestimation

into account. If delay announcement causes patients to perceive their wait-time to be even

longer than the actual, we should be more cautious how much we overestimate the wait-

time.

To test Hypothesis 4, we model perceived wait-time, Ẇ , as a linear function of each

treatment condition: (1) indicator variable C90, which equals to 1 if 90% overestimation
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of wait-time of patients’ wait-time to see a doctor is announced; (2) indicator variable

C70, which equals to 1 if 70% overestimation of wait-time of patients’ wait-time to see a

doctor is announced; (3) indicator variable C50, which equals to 1 if the expected patients’

wait-time to see a doctor is announced; (5) the actual wait-time, W ; and (6) a vector of

control variables, X.

E[Ẇ ] = α0 + α1C90 + α2C70 + α3C50 + α4W + β′X(3.8)

Coefficients α1, α2 and α3 show the difference in perceived wait-time of Conditions C1 (i.e.,

announcing 90% overestimation of wait-time), C2 (i.e., announcing 70% overestimation of

wait-time), C3 (i.e., announcing 50% overestimation of wait-time) relative to the baseline

condition, respectively. The result of this comparison helps us to confirm or reject the

Hypothesis 4. Coefficient α4 shows how much patients notice the passage of time and

whether they are aware of how much they actually wait. Note that a patient’s perceived

wait-time is the response to question 1 on the survey: “How long did you wait in the

waiting room after seeing the triage nurse and before seeing the doctor? Provide the best

estimate of your wait”.

As shown in Table 3a, even though patients average perceived wait-time patients is

close for all weeks (i.e., average perceived wait-time under C0 = 181 min, under C1 =

194, under C2 = 178, and under C3 = 189), patients perceive their wait-time to be 20 to

30 minutes higher than the actual wait-time on average in all weeks (i.e., under C0: 181

min > 163 min, under C1: 194 min > 160 min, under C2: 178 min > 158 min, and under

C3: 189 min > 166 min).
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To check the relationship between actual wait-times and patients’ perception of wait-

time, we compare all survey patients actual wait-time and perceived wait-time using Welch

two sample t-test. The t-test confirms that patients perceive their wait-time to be longer

than the actual (t(724) = −3.72, p < 0.01), as it is also observed by Thompson et al.

(1996b).

Table 3.11. Model for Impact of Delay Announcement on Perceived Wait-time

Dependent variable:
Perceived Wait-time

1. 90% overestimation of wait-time 15.728
(20.024)

2. 70% overestimation of wait-time 2.512
(10.525)

3. 50% overestimation of wait-time 4.343
(12.464)

4. Actual wait-time 0.896∗∗∗
(0.035)

5. High acuity Indicator −1.788
(5.360)

6. Age −1.657
(5.406)

7. Male Indicator 0.196
(0.409)

8. First Visit Indicator 6.706
(7.885)

Constant 23.595
(28.192)

Observations 373
Adjusted R2 0.575

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).

To test Hypothesis 4, we estimate Equation (3.8). Table 3.11 summarizes the esti-

mated regression model. As shown in Table 3.11, we can further confirm that perceived

wait-time is positively correlated with actual wait-time (α4 = 0.896 and p < 0.01). How-

ever, there is no significant difference between all weeks in how patients perceive wait-time

(α1 = 15.728, p = NS, α2 = 2.512, p = NS, α3 = 4.343, p = NS). Thus, we cannot

find any support for Hypothesis 4. Also, none of the control variables found to be a
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significant predictor of the perceived wait-time. Thus, we found no significant difference

between all weeks in how patients perceive wait-time. This suggests that patients are

fairly aware of their wait and delay announcement did not make patients more sensitive

to their wait-time.

Second, we explored how delay announcement changed the proportion of very unsat-

isfied patients (i.e., those who choose 1 or 2 as their wait-time satisfaction in the surveys)

and very satisfied (i.e., those who choose 6 or 7 as their wait-time satisfaction). It is im-

portant to increase the number of customers who are very satisfied with our service and

reduce the number of customers so unhappy that they speak out against us and discourage

other potential customers from using our service. Leading service companies always try

to quantify customer satisfaction to drive customer loyalty. For example, Heskett et al.

(1994) reports that Xerox polled 480,000 customers per year regarding product and ser-

vice satisfaction using a five-point scale. To achieve 100% satisfaction, which they defined

to be that customers choose 4s and 5s, they analyzed the relationship between the scores

and actual loyalty. They found that customers who gave Xerox 5, were six times more

likely to repurchase Xerox equipment than those giving 4s (6 times more loyalty). This

study shows how important is to increase the number of patients who are very satisfied

with our service. Just as important for profitability is to avoid creating, so called terror-

ist customer, i.e., customers so unhappy that they speak out against a poorly delivered

service at every opportunity and discourage other potential customers from using the ser-

vice. These findings can be easily extended to ED setting, where we want to maximize

the number of very satisfied patients while minimizing the number of dissatisfied patients

for a scale of 1 to 7 in our survey. It is not clear how delay announcement may impact
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the percentage of very satisfied and very unsatisfied patients. Delay announcement may

only increase the percentage of very satisfied patients or decrease the percentage of very

unsatisfied patients or both (or even none). We explore this impact in Hypothesis 5A

below.

Hypothesis 5A. Delay announcement increases the percentage of very satisfied pa-

tients.

Hypothesis 5B. Delay announcement decreases the percentage of very unsatisfied

patients.

This analysis helps us understand whether delay announcement reduce the number

of very unsatisfied patients or it actually increase the number of very satisfied patients.

ED managers may communicate more with the patients throughout the visit process to

amplify the delay announcement’s positive impacts.

To test Hypothesis 5A-B, we compare wait-time satisfaction scores under Conditions

C1 (i.e., announcing 90% overestimation of wait-time), C2 (i.e., announcing 70% overes-

timation of wait-time) and C3 (i.e., announcing 50% overestimation of wait-time) to the

baseline condition in terms of very satisfied and very unsatisfied patients percentage. As

a reminder, We define very unsatisfied to be patients who choose 1 or 2 as their wait-time

satisfaction in the surveys and very satisfied to be patients who choose 6 or 7 as their

wait-time satisfaction. We compute the percentage of very satisfied and very unsatisfied

patients under each conditions to clarify whether delay announcement under each condi-

tion increases the number of happy patients (i.e., patients who choose 6 or 7) or decreases

the number of unhappy patients (i.e., patients who choose 1 or 2) or both. We, then,
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use series of two-proportion z-test to compare the impact of delay announcement under

different conditions.

Table 3.12 shows the very satisfied and very unsatisfied patients percentage under

each conditions. The percentages provided in Table 3.12 represents the ratio of patients

who choose 1 or 2 (i.e., the very unsatisfied patients percentage) and 6 or 7 (i.e., the very

satisfied patients percentage) under each condition.

Table 3.12. The Very Satisfied and Very Unsatisfied Patients Percentage
Statistics Condition C0

Base
Condition C1

90% UB
Condition C2

70% UB
Condition C3

50% UB
Very Satisfied Patients %
(95% CI)

17%
(10%,24%)

26%
(19%,33%)

42%
(33%,51%)

21%
(14%,28%)

Very Unsatisfied Patients %
(95% CI)

33%
(25%,41%)

18%
(12%,24%)

12%
(6%,18%)

29%
(21%,37%)

As shown in Table 3.12, with announcing the wait-times (i.e., under all conditions)

the percentage of very satisfied patients (C1: 26%, C2: 42%, and C3: 21%) increased

compared to the baseline (17%) and the very unsatisfied patients percentage (C1: 18%,

C2: 12%, and C3: 29%) decreased compared to the baseline (33%). The most significant

increase in the very satisfied patients percentage and concurrently decrease in the very

unsatisfied patients percentage occurred under condition C2 (i.e., 70% overestimation of

wait-time). This suggests that by carefully designing the delay announcement procedure,

we not only can increase happy patients but also make the unhappy patients less unhappy.

To compare the very satisfied and very unsatisfied patients percentages among exper-

iment conditions, we use series of two-proportion z-tests. The z-test also confirms that

the percentage of both very satisfied patients (z = 12.786, p < 0.01) and very unsatisfied

patients (z = 11.523, p < 0.01) are statistically different and higher for Condition C2

(i.e., 70% overestimation of wait-time) compare to the baseline. The percentage of very
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satisfied and very unsatisfied patients did not find to be statistically different than the

baseline (very satisfied patients, C1: z = 1.998, p = NS C2: z = 0.427, p = NS, very

unsatisfied patients, C1: z = 5.892, p < 0.05 C2: z = 0.408, p = NS). Thus, we found

that the delay announcement not only can increase happy patients but also make the

unhappy patients less unhappy.

Third, we explored whether delay announcement may make patients more sensitive to

their surroundings or more attentive to the ordering system. ED works as a priority system

and patients are not seen according to their order of arrival. Patients may notice that

patients who arrived after them to be taken to a care space earlier and therefore perceive

the system to be unfair. The ability to secure fairness or equity between patients might

stand as a way to improve satisfaction in EDs. Announcing personalized delay may help

patients build trust on the system’s ordering mechanism and therefore accept its priority

nature. On the other hand, delay announcement may make patients more sensitive to

their surroundings or more attentive to the order of service. This potentially may lead

them to feel that the system is unfair. Thus, we explore whether delay announcement

have any impact on patients perceived fairness using the following hypotheses.

Hypothesis 6. Delay announcement increases perceived fairness.

If delay announcement increases perception of fairness (i.e., Hypothesis 6 is confirmed),

this further encourages ED managers to use delay announcement to improve patient wait-

time satisfaction.

To test Hypothesis 6, we model perceived fairness, F , as a linear function of each

treatment condition: (1) indicator variable C90, which equals to 1 if 90% overestimation
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of wait-time of patients’ wait-time to see a doctor is announced; (2) indicator variable

C70, which equals to 1 if 70% overestimation of wait-time of patients’ wait-time to see a

doctor is announced; (3) indicator variable C50, which equals to 1 if the expected patients’

wait-time to see a doctor is announced; (5) the actual wait-time, W ; and (6) a vector of

control variables, X.

E[F ] = α0 + α1C90 + α2C70 + α3C50 + α4W + β′X(3.9)

Coefficients α1, α2 and α3 show the performance difference in perceived fairness of Con-

ditions C1 (i.e., announcing 90% overestimation of wait-time), C2 (i.e., announcing 70%

overestimation of wait-time), C3 (i.e., announcing 50% overestimation of wait-time) rel-

ative to the baseline condition, respectively. The result of this comparison helps us to

confirm or reject the Hypothesis 6. Note that a patient’s perceived fairness is the response

to question 7 on the survey: “On a scale of 1 to 7, how did you feel about the order at

which patients receive care in our Emergency Department?”, which is an integer number

from 1 to 7.

As shown in Table 3a, the average perceived fairness under all conditions with delay

announcement increased compared to the control condition (i.e., perceived fairness under

C0 = 4.73, under C1 = 5.53, under C2 = 5.67, and under C3 = 5.93), except than for

condition C3 (i.e., announcing 50% overestimation of wait-time). Under condition C3,

patients perceived system to be more fair on average compared to other conditions. We

estimate an equation similar to 3.9 but for perceived fairness to access the impact of

delay announcement on patients perceived fairness. Table 3.13 presents different models

for perceived fairness.
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Table 3.13. Models for Perceived Fairness Survey Responses
Dependent variable:
Perceived Fairness

(1) (2) (3) (4)
1. 90% overestimation of wait-time 0.794∗∗∗ 0.718∗∗∗ 0.719∗∗∗ 0.746∗∗∗

(0.220) (0.144) (0.149) (0.182)
2. 70% overestimation of wait-time 0.941∗∗∗ 0.893∗∗ 0.894∗∗ 0.905∗∗

(0.316) (0.369) (0.424) (0.409)
3. 50% overestimation of wait-time 1.200∗∗∗ 1.248∗∗∗ 1.248∗∗∗ 1.226∗∗∗

(0.100) (0.216) (0.237) (0.209)
4. Actual wait-time −0.007∗∗∗ −0.007∗∗∗ −0.007∗∗∗

(0.002) (0.001) (0.001)
5. High acuity Indicator −0.022 −0.050

(0.561) (0.540)
6. Age 0.009

(0.009)
7. Male Indicator 0.020

(0.337)
8. First Visit Indicator 0.067

(0.293)
Constant 4.732∗∗∗ 5.915∗∗∗ 5.938∗∗∗ 5.434∗∗∗

(0.209) (0.608) (0.200) (0.508)
Observations 274 274 274 274
Adjusted R2 0.053 0.158 0.155 0.152
Pred. difference relative to baseline (90% overestimation of wait-time) (%) 16.78 12.14 12.11 13.73
Pred. difference relative to baseline (70% overestimation of wait-time) (%) 19.89 15.1 15.06 16.65
Pred. difference relative to baseline (50% overestimation of wait-time) (%) 25.36 21.10 21.02 22.56

Notes. Parentheses contain robust standard errors, clustered by shift of the day and day of the week. Predicted
differences represent percent increase over baseline condition. Although we use OLS in our primary analysis to facilitate
coefficient interpretation, we note that all reported results are similar when satisfaction is estimated with an ordinal
logistic model. Some patients did not respond to the perceived fairness questions and are excluded from this model.
***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively (two-tailed tests).

In Table 3.13, column 1, we compare the mean perceived fairness under each experi-

mental condition. All conditions with delay announcement led to statistically large gains

in perceived fairness (α1 = 0.794, p < 0.01, α2 = 0.941, p < 0.01 and α3 = 1.2, p < 0.01).

This result remain robust in the fully specified model, which controls for priority level,

age and gender. Perceived fairness was 13.73% higher than the baseline when 70% over-

estimation of wait-time, 16.65% above the baseline when announcing 90% overestimation

of wait-time and 22.56% above the baseline when announcing 50% overestimation of wait-

time. This results suggests that delay announcement helped improving perceived fairness

of ED and the maximum increase achieved under C3. The reason behind this increase in

perceived fairness might be that delay announcement helped patients’ acceptance of the
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ordering mechanism or reduced patient’s sensitivity to being “jumped” in the line. Thus,

we observed that delay announcement helps improving perceived fairness of ED.

Fourth, in addition to wait-time satisfaction, we need to study the impact of delay

announcement on the overall satisfaction with the ED visit, since any increase in overall

satisfaction can directly translate to an increase in HCAHPS scores, which means more

revenue and government funding for the hospital. We discussed earlier why also delay

announcement may or may not increase the wait-time satisfaction. Since overall satisfac-

tion is a function of the wait-time satisfaction, we also expect all those discussions to be

relevant for overall satisfaction. We explore the impact of delay announcement on overall

satisfaction in Hypothesis 7-B.

Hypothesis 7. Delay announcement increases overall satisfaction.

If delay announcement increases overall satisfaction (i.e., Hypothesis 7 is confirmed),

this further encourages ED managers to use delay announcement to improve patients eval-

uation of the service experience, which as already discussed have direct financial benefits

for the hospitals and the society.

To test Hypothesis 7, we model overall satisfaction, S, as a linear function of each

treatment condition: (1) indicator variable C90, which equals to 1 if 90% overestimation

of wait-time of patients’ wait-time to see a doctor is announced; (2) indicator variable

C70, which equals to 1 if 70% overestimation of wait-time of patients’ wait-time to see a

doctor is announced; (3) indicator variable C50, which equals to 1 if the expected patients’

wait-time to see a doctor is announced; (5) the actual wait-time, W ; and (6) a vector of



125

control variables, X.

E[S] = α0 + α1C90 + α2C70 + α3C50 + α4W + β′X(3.10)

Coefficients α1, α2 and α3 show the performance difference in overall satisfaction of Con-

ditions C1 (i.e., announcing 90% overestimation of wait-time), C2 (i.e., announcing 70%

overestimation of wait-time), C3 (i.e., announcing 50% overestimation of wait-time) rel-

ative to the baseline condition, respectively. The result of this comparison helps us to

confirm or reject the Hypothesis 7. Note that a patient’s overall satisfaction is the re-

sponse to question 4 on the survey: “On a scale of 1 to 7, how satisfied are you with your

overall experience at our Emergency Department?”, which is an integer number from 1 to

7.

Moreover, Boudreaux and O’Hea (2004) classify the statistically significant predictors

of patient overall satisfaction, studied in the literature of patient satisfaction, to be: in-

terpersonal interaction with providers, perceived technical skills of providers, perceived

waiting times, actual waiting times, patient characteristics, visit characteristics, and fa-

cility characteristics. Considering the available data, we use relevant regression models to

determine to what extend wait-time satisfaction predicts the overall satisfaction.

As shown in Table 3a, the average overall satisfaction under all conditions with delay

announcement increased compared to the control condition (i.e., overall satisfaction under

C0 = 5.13, under C1 = 5.82, under C2 = 5.96, and under C3 = 5.73). We estimate

an equation similar to 3.10 but for overall satisfaction to access the impact of delay

announcement on patients overall satisfaction. Table 3.14 presents different models for

overall satisfaction.
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Table 3.14. Models for Overall Satisfaction Survey Responses
Dependent variable:
overall satisfaction

(1) (2) (3) (4)
1. 90% overestimation of wait-time 0.693∗∗∗ 0.665∗∗∗ 0.658∗∗∗ 0.641∗∗∗

(0.182) (0.141) (0.109) (0.091)
2. 70% overestimation of wait-time 0.830∗∗∗ 0.784∗∗∗ 0.782∗∗∗ 0.786∗∗∗

(0.124) (0.090) (0.150) (0.169)
3. 50% overestimation of wait-time 0.607∗∗∗ 0.639∗∗∗ 0.624∗∗∗ 0.637∗∗∗

(0.204) (0.180) (0.153) (0.193)
4. Actual wait-time −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.002) (0.002) (0.002)
5. High acuity Indicator 0.197 0.216

(0.266) (0.283)
6. Age −0.004

(0.007)
7. Male Indicator 0.054

(0.288)
8. First Visit Indicator 0.134

(0.366)
Constant 5.126∗∗∗ 6.533∗∗∗ 6.333∗∗∗ 6.510∗∗∗

(0.148) (0.156) (0.102) (0.370)
Observations 373 373 373 373
Adjusted R2 0.029 0.217 0.217 0.214
Pred. difference relative to baseline (90% overestimation of wait-time) (%) 13.52 10.18 10.39 9.85
Pred. difference relative to baseline (70% overestimation of wait-time) (%) 16.19 12.00 12.35 12.07
Pred. difference relative to baseline (50% overestimation of wait-time) (%) 11.84 9.78 9.85 9.78

Notes. Parentheses contain robust standard errors, clustered by shift of the day and day of the week. Predicted
differences represent percent increase over baseline condition. Although we use OLS in our primary analysis to facilitate
coefficient interpretation, we note that all reported results are similar when satisfaction is estimated with an ordinal
logistic model. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively (two-tailed tests).

In Table 3.14, column 1, we compare the mean overall satisfaction under each ex-

perimental condition. All conditions with delay announcement led to statistically large

gains in overall satisfaction (α1 = 0.693, p < 0.01, α2 = 0.830, p < 0.01 and α3 = 0.607,

p < 0.01). This result remain robust in the fully specified model, which controls for pri-

ority level, age, gender and previous experience with the ED. Wait-time satisfaction was

12% higher than the baseline when 70% overestimation of wait-time, 9.85% above the

baseline when announcing 90% overestimation of wait-time and 9.78% above the base-

line when announcing 50% overestimation of wait-time. This results suggests that delay

announcement helped improving overall satisfaction of ED and the maximum increase

achieved under C2. Table 3b suggests that overall satisfaction is positively correlated

with the wait-time satisfaction and perceived fairness. We confirmed this observation
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by estimating these relationships in a regression model with wait-time satisfaction and

perceived fairness as a predictor of overall satisfaction. This model has adjusted R2 of

53%, showing that wait-time satisfaction and perceived fairness explain a little bit more

than 50% of the variability of overall satisfaction. This suggests that any improvement

in wait-time satisfaction and perceived fairness can potentially have a significant impact

on the overall satisfaction as well. The coefficient of wait-satisfaction and perceived wait-

time are both positive and statistically significant in the corresponding regression model

(α1 = 0.3473, p < 0.01, α2 = 0.369, p < 0.01, respectively).

Finally, we consider the potential impact of delay announcement on patients aban-

donments, which is measured as the left without being seen (LWBS) rate. Patients who

learn that they have to wait for several hours to see the doctor may decide to leave the

ED, which is a health risk for them and revenue loss for the hospital. Thus, this possible

negative impact of announcing the delay on LWBS rates needs to be studied. Thus, we in-

vestigate whether delay announcement have an impact on LWBS rate using the following

hypotheses.

Hypothesis 8. Delay announcement increases LWBS rate.

If delay announcement increases LWBS rate (i.e., Hypothesis 8 is confirmed), hospitals

may design policies or protocols to control this negative consequence. Providing more

information about the medical status of the patient and communicate the reason for the

delays may be good practices to control LWBS rates.

To test Hypothesis 8, we obtain data on whether a patient left without being seen

by a doctor from the hospital’s Electronic Medical Record (EMR) system. We compute
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LWBS rate under each conditions with the corresponding 95% confidence interval to study

this impact. We use series of two-proportion z-tests to compare the LWBS rate under

experiment conditions. Figure 3.6 demonstrates the LWBS rate under each condition

with the 95% Confidence Interval.

Figure 3.6. Left Without Being Seen Rate Under Different Conditions
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As shown in Figure 3.6, even though the LWBS rate increased in presence of delay

announcement compare to the base condition, where there was no delay announcement,

the difference is not significant. The highest LWBS rate was observed in the week we

announced 90% overestimation of wait-time, since on average longer wait-times were an-

nounced. We also run a series of two proportion z-test to confirm the LWBS rates are

statistically not difference under experiment conditions. None of the tests were signifi-

cant. Therefore, we cannot find enough evidence to support Hypothesis 8 and thus delay

announcement did not increase LWBS rate significantly.
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3.6. Engineering the Delay Announcement

In this section, we formulate a patient wait-time satisfaction as a function of her wait-

time gap and actual wait-time, motivated by the results found in the previous sections. We

then, fit the proposed function on the experiment data. We use this function to find what

wait-time to announce to maximize the total average patient wait-time satisfaction, i.e.,

engineer the delay announcement. We define total average patient wait-time satisfaction

to be the average wait-time satisfaction of all patients visiting ED in a specific period.

3.6.1. Wait-time Satisfaction Function

The utility from a service experience consists of two parts: acquisition and transition

utility (Kahneman et al. 2003, Thaler 1985). The former reflects the value of receiving

the service, and latter is the psychological value of the waiting, determined by the wait-

time gap ∆ = a − w between the announced wait-time, a, and the actual wait-time, w.

Prospect theory (Kahneman and Tversky 1979) identifies key properties of the transaction

utility. Specifically, utility increase in the magnitude of the reference gap, ∆, and it is

more sensitive to longer-than-expected waits than shorter-than-expected waits of the same

magnitude (i.e., loss aversion). The loss aversion behavior was confirmed in our study

in Hypothesis 2B. Motivated by Hypotheses 2A-B and 3, we formally define satisfaction

derived from a patient’s wait-time experience, S, as a function of actual wait-time (w)

and wait-time gap (∆), presented in the following equation.

(3.11) S(a, w) = S0(w) + S1(a− w) = S0(w) +


G(a− w) if w ≤ a

L(a− w) if w > a
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In Equation (3.11), S0(w) represents the direct impact of actual wait-time on patient

wait-time satisfaction (i.e., the rational effect of wait-times). This term is motivated by

the finding in Hypothesis 3. This can be a linear or nonlinear function of the actual wait-

time (w). The behavioral effect of wait-times is formulated by S1(a−w). When the actual

wait-time is shorter than the reference wait-time (i.e., w ≤ a), the patient experience a

gain in time and this gain is formulated as the function G(a−w), which is a function of the

difference of the actual wait-time and the announced wait-time. On the other hand, when

the actual wait-time is longer than the announced wait-time (i.e., w > a), the patient

experience a loss in time and this loss is formulated as the function L(a−w), which is also

a function of the difference of the actual wait-time and the announced wait-time. This

term is motivated by the findings in Hypotheses 2A-B. In the following section, we use

the data collected in our experiment at ED to fit Equation (3.11) on patient wait-time

satisfaction. This functional form also matches what is proposed by Spiegler (2011), who

also discusses loss aversion and reference dependent individual’s decision making, but in

the retail setting.

3.6.2. Fitting on the data

To fit Equation (3.11) on patient wait-time satisfaction, we need to assume a functional

form for S0(w), L(a − w) and G(a − w). We assume that S0(w) = β0 + β1 log(w),

L(a−w) = τ−(a−w) and G(a−w) = τ+
0 (a−w)+τ+

1 (a−w)3. This choice of our functional

forms are motivated by our findings in previous sections and data fitting considerations.

For example, we choose the power 3 in function G to capture the observed decrease

in satisfaction after a threshold and because it fits best to our data. Here, we expect
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β0 > 0 and β1 < 0, based on Hypothesis 3. Also, we expect τ− < 0 and τ+
0 > 0 to capture

patients’ loss aversion behavior, which was confirmed in Hypothesis 2B. Finally, we expect

τ+
1 < 0 to capture the finding that the wait-time gap should not be too large (i.e.,

Hypothesis 2A). Using data from our experiment, we find the best values for parameters

in the Equation (3.11) using linear regression and least-squared methods. The wait-time

satisfaction function fitted is as follows:

(3.12) S(a, w) = 11.99− 1.55 log(w) +


0.007(a− w)− (3.2e−07)(a− w)3 if w ≤ a

−0.017(a− w) if w > a

Note that this function satisfies all the proposed properties for a utility function in

Prospect Theory, expect than for the large positive wait-time gaps, we assume that the

wait-time satisfaction decreases as the wait-time gap increases.

Figure 3.7. Fitted Wait-time Satisfaction Function Visualization of S1(∆)
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Figure 3.7 shows how wait-time satisfaction changes as a function of wait-time gap

∆ = a − w. We used our experiment data to generate the values and fixed the value of
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w in S0(w) to the average wait-time of arriving patients. Even though, the loss aversion

is picked-up by the model, there is a threshold on positive wait-time gap after which the

estimated wait-time satisfaction starts to decrease. This fully matches with our empirical

findings. With a utility model in mind, we now turn back the question of what wait-time

to announce to maximize patient wait-time satisfaction.

3.7. What Wait-time to Announce?

To answer this question, we run two sets of regression models. First, we compare

wait-time satisfaction between experiment conditions C0-C3. This comparison helps us

evaluate the effect of announcing a wait-time median (or mean) with announcing an over-

estimation of wait-times. Second, combining the data of weeks with delay announcement

(i.e., week 2-4), we reclassify patients based on how much we overestimate their wait-times

and compare the wait-time satisfaction of these classes with baseline. This comparison

helps us find how much to overestimate to maximize the wait-time satisfaction. First,

we model wait-time satisfaction, S, as a linear function of each treatment condition: (1)

indicator variable C90, which equals to 1 if 90% overestimation of wait-time is announced;

(2) indicator variable C70, which equals to 1 if 70% overestimation of wait-time is an-

nounced; (3) indicator variable C50, which equals to 1 if the expected patients’ wait-time

is announced; (5) the actual wait-time, W ; and (6) a vector of control variables, X.

E[S] = α0 + α1C90 + α2C70 + α3C50 + α4W + β′X(3.13)

The coefficients α1, α2 and α3 show the performance difference of Conditions C1 (i.e.,

announcing 90% overestimation of wait-time), C2 (i.e., announcing 70% overestimation of
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wait-time), C3 (i.e., announcing 50% overestimation of wait-time) relative to the baseline

condition, respectively. As shown in Table 3(a), the average wait-time satisfaction is

higher in all scenarios with delay announcement than the no announcement scenario

(i.e., average wait-time satisfaction under C0 = 3.52, under C1 = 4.19, under C2 =

4.74, and under C3 = 3.81). The highest average wait satisfaction achieved where 70%

overestimation of wait-time is announced. By announcing 70% overestimation of wait-

time we increased the average wait-time satisfaction from 3.52 to 4.74 (i.e., almost 35%

increase).

Table 3.15. Models for Wait Satisfaction Survey Responses
Dependent variable:

Wait-time Satisfaction
(1) (2) (3) (4)

1. 90% overestimation of wait-time 0.673∗∗ 0.624∗∗∗ 0.631∗∗∗ 0.626∗∗∗
(0.272) (0.029) (0.023) (0.040)

2. 70% overestimation of wait-time 1.219∗∗∗ 1.138∗∗∗ 1.141∗∗∗ 1.126∗∗∗
(0.124) (0.370) (0.357) (0.368)

3. 50% overestimation of wait-time 0.294 0.350 0.365 0.367∗
(0.391) (0.382) (0.383) (0.374)

4. Actual wait-time −0.015∗∗∗ −0.016∗∗∗ −0.016∗∗∗
(0.001) (0.001) (0.001)

5. High acuity Indicator −0.200 −0.180
(0.127) (0.150)

6. Age −0.006
(0.005)

7. Male Indicator 0.187
(0.473)

8. First Visit Indicator −0.161
(0.229)

Constant 3.517∗∗∗ 6.030∗∗∗ 6.234∗∗∗ 6.546∗∗∗
(0.266) (0.525) (0.461) (0.294)

Observations 373 373 373 373
Adjusted R2 0.046 0.469 0.470 0.471
Pred. difference relative to baseline (90% overestimation of wait-time) (%) 19.41 10.35 10.12 9.56
Pred. difference relative to baseline (70% overestimation of wait-time) (%) 34.66 18.87 18.30 17.20
Pred. difference relative to baseline (50% overestimation of wait-time) (%) 8.36 5.80 5.85 5.61

Notes. Parentheses contain robust standard errors, clustered by shift of the day and day of the week. Predicted
differences represent percent increase over baseline condition. Although we use OLS in our primary analysis to facilitate
coefficient interpretation, we note that all reported results are similar when satisfaction is estimated with an ordinal
logistic model. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively (two-tailed tests).

We estimate Equation (3.13) to access the impact of delay announcement on patient

wait-time satisfaction. Table 3.15 presents different models for wait-time satisfaction. In
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Table 3.15, column 1, we compare the mean wait-time satisfaction under each experimen-

tal condition. Both 90% and 70% overestimation of wait-time led to statistically large

gains in wait-time satisfaction (α1 = 0.626, p < 0.01 and α2 = 1.126, p < 0.01). Even

though announcing the average overestimation of wait-time did not significantly increase

wait-time satisfaction (α3 = 0.294, p = NS) in the base model, after we control for

the patients’ actual wait-time, this effect become significant at the 10% level (α3 = 0.367,

p < 0.1). This result remain robust in the fully specified model, which controls for priority

level, age and gender.

No significant effect of priority level on wait-time satisfaction is identified (α5 = −0.18,

p = NS). The largest VIF is 1.08, which falls well below the conventional threshold of

10, providing evidence that multicollinearity is not a concern (Wooldridge 2015).

While announcing the 90% overestimation of wait-time and the average wait-time

resulted in 19% and 8% increase in average wait-time satisfaction, respectively, their

positive impact was not as pronounced as the 70% overestimation of wait-time. We

estimate Equation (3.13) to access the impact of delay announcement on patient wait-

time satisfaction.

Both 90% and 70% overestimation of wait-time led to statistically large gains in wait-

time satisfaction (α1 = 0.626, p < 0.01 and α2 = 1.126, p < 0.01). However, announcing

the average overestimation of wait-time did not significantly increase wait-time satisfac-

tion (α3 = 0.367, p < 0.1). This shows that announcing an overestimation of wait-time

increases wait-time satisfaction more significantly than announcing the median (or mean)

of wait-times. Hence, to maximize patients satisfaction, one need to overestimate the wait-

times rather than sharing the mean estimated wait-times. In the fully specified model,
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wait-time satisfaction was 17.2% higher than the baseline when 70% overestimation of

wait-time and 9.56% above the baseline when announcing 90% overestimation of wait-

time. Therefore, announcing 70% overestimation of wait-time has the highest predicted

difference relative to the baseline.

How much to overestimate? The findings above suggest that under 70% overesti-

mation of wait-time scenario, the highest predicted difference in wait-time satisfaction

relative to baseline is achieved. In other words, when we overestimate the wait-time for

around 70% of patients, we observe the highest average wait-time satisfaction in ED.

How about the amount of overestimation? How much overestimation is optimal? If we

know the actual wait-time, how many minutes should we add to that to maximize the

satisfaction?

To address these questions, we classify the data based on how much the wait-time

was overestimated or underestimated, using quartiles of wait-time gap, similar to Section

5.3. We use a linear regression model similar to the model in Equation 3.13 and find

that except than Class 4, all other classes has significantly higher wait-time satisfaction

relative to baseline.

As shown in Table 3.16, the mean wait-time satisfaction is significantly different than

the baseline for Class 1 (α1 = 0.999 and p < 0.01), Class 2 (α2 = 1.258 and p < 0.01)

and Class 1 (α3 = 0.964 and p < 0.01). However, the mean wait-time satisfaction is not

significantly different than the baseline for Class 4. The predicted difference relative to

baseline are 14.99%, 18.87% and 12.46% for Class 1-3, respectively. The highest wait-

time satisfaction is achieved in Class 2, where patients’ overestimation is between 40 to
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Table 3.16. Models for Wait-time Satisfaction Survey Responses (Overestimation Classes)
Dependent variable:

Wait-time satisfaction
1. Class 1 (< 40 mins) 0.999∗∗∗

(0.230)
2. Class 2 (40 mins << 80 mins) 1.258∗∗∗

(0.002)
3. Class 3 (80 mins << 120 mins) 0.964∗∗∗

(0.159)
4. Class 4 (>120 mins) 0.124

(0.006)
5. Actual Wait-time −0.017∗∗∗

(0.425)
6. High acuity Indicator −0.283

(0.258)
7. Age −0.004

(0.008)
8. Male Indicator 0.130

(0.338)
9 First Visit Indicator −0.207

(0.356)
Constant 6.666∗∗∗

(0.322)
Observations 298
Adjusted R2 0.429
Pred. difference relative to baseline (Class 1) (%) 14.99
Pred. difference relative to baseline (Class 2) (%) 18.87
Pred. difference relative to baseline (Class 3) (%) 12.46
Pred. difference relative to baseline (Class 4) (%) 1.86

Notes. Parentheses contain robust standard errors. ***,
**, and * denote significance at the 1%, 5%, and 10%
levels, respectively (two-tailed tests).

80 minutes. This further supports the finding that overestimating too much may have a

negative impact on patient satisfaction.

3.8. Robustness Tests

In this section, we explore the robustness of our main insights by discussing the alter-

natives for the reference point and the actual wait-time (see Appendix 5 for details).

3.8.1. Alternative for Reference Point

In previous sections, we assumed that patients take the announced wait-time as their

expected wait-time since it is the only wait-related information provided to them. How-

ever, patients may have different expected wait-time when visiting the ED and they may

not use the information provided by the system. One alternative for patients expected
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wait-time, commonly used in delay announcement literature (Kőszegi and Rabin 2006, Yu

et al. 2017), is the actual average wait time, which may be formed based on patients pre-

vious visits to ED. To test the robustness of our findings, for each patient, we computed

the average wait-time of all patients who arrived on the same day of the week, same shift

of the day and assigned to the same priority class as that patient over the last two years.

We assume that patients take this average as their expected wait-time. We observed that

our insights continue to hold with this alternative assumption of expected wait-time.

3.8.2. Alternative for Actual Wait Time

In previous sections, we assumed that patients compare their expected wait-time with how

long they actually waited, when their wait-time satisfaction. However, Davis and Heineke

(1998), for example, suggests that the perception of waiting time better predicts the

satisfaction and the satisfaction initially defined as the difference between the expectation

and perception not actual experience. However, perceived wait-time is a function of the

actual wait-time and this is confirmed in our experiment by the high positive correlation

(ρ = 0.79) between actual wait-time and perceived wait-time (see Table 3(b)). We used

patients’ reported perceived wait-time (i.e., question 1 on the survey) to recompute the

wait-time gaps and tests the findings in Hypothesis 2. Our insights continue to hold when

using perceived wait-times instead of the actual wait-times.

3.8.3. Latent Variable Analysis

Latent variables are used for theoretical framework or unobserved variables, such as per-

sonality characteristics, emotions, social status and etc and latent variables are widely
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applied in many aspects (Bollen 2002). In this study, we model patients’ expected wait-

time, perceived wait-time and wait-time gap as latent variables. Figure 3.8 shows the

integrative model of wait satisfaction and latent variables. To test the theory that delay

announcement increases wait-time satisfaction, we used structural equation modeling to

conduct a path analysis using the expected wait-time, perceived wait-time and wait-time

gap measures.

Given our findings in previous sections and the conceptual model presented in Figure

3.2, we model the wait-time satisfaction again by taking the expected wait-time and

perceived wait-time as latent variables. Figure 3.8 shows the wait-time satisfaction path

analysis. This figure is drawn based on the relationships demonstrated in Figure 3.1. In

this model, we assume that expected wait-times are formed based on announced wait-time,

ED waiting room census and whether she has ever visited that ED. We model perceived

wait-times based on actual wait-times and the answer to question 1 on the surveys. We

also model wait-time reference gap sign and wait-time satisfaction based on the answers

to question 2 and question 4 on surveys, respectively.

Figure 3.8. Wait-time Satisfaction Path Analysis
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Coefficients in Figure 3.8 suggest that wait-time satisfaction is positively associated

with wait-time reference gap sign (β1 = 0.262, p < 0.01), which in turn is positively

associated with expected wait-time (β2 = 0.242, p < 0.01) and negatively associated

with perceived wait-time (β3 = −0.74, p < 0.01). Actual wait-time are also negatively

associated with wait-time satisfaction as it was discussed in Hypothesis 3. Since wait-

time satisfaction is positively associated wait-time gap sign (β1 = 0.262, p < 0.01), this

suggests that patients are more satisfied when the gap is positive, which further confirms

the loss aversion behavior of the patients (i.e., Hypothesis 2B). The negative affect of

actual wait-time, and therefore the perceived wait-time, on wait-time satisfaction is also

picked up by this model as perceived wait-time is shown to be negatively associated with

wait-time reference gap (β3 = −0.74, p < 0.01). The model exhibits a good fit, with a

high comparative fit index (CFI) 0.99 and a low root mean squared error of approximation

(RMSEA) 0.039 (p < 0.01).

3.9. Discussion and Conclusion

Using two years of data from a hospital’s ED, we developed a wait-time prediction

model to estimate patients wait-time to see a doctor. We then conduct a field experi-

ment to study the impact of informing patients of their wait-time on patient wait-time

satisfaction. We find that patients are generally more satisfied with their wait-time when

we inform them of their estimated wait-time. Higher patient satisfaction is a financial

priority for hospitals, since the Centers for Medicare and Medicaid Services (CMS) is

tying Medicare reimbursements to patients’ assessment ratings. We also find that giving

patients an overestimate of their wait-time make them more satisfied than giving them the
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average estimated wait-time. In particular, since patients are loss-averse in their wait-

time, overestimating their wait-time increases the probability of time gains than time

losses. In other words, overestimating the wait-times allow the majority of patients to

experience a “shorter than expected” wait-time and therefore become more satisfied with

their waiting experience. We also find evidence that large wait-time gap may decrease

the wait-time satisfaction, when patients experience time gains. The highest increase in

wait-time satisfaction was obtained by adding 40 to 80 minutes to the expected wait-time

(which corresponded with reporting the 70th percentile of the wait time distribution).

This may be because of the negative impact of announcing long wait-times on satisfac-

tion. These findings help system designers to design their delay announcement process to

maximize patient satisfaction.

To quantify the impact of our findings, we compute the effect of announcing the

wait-times under different delay announcement scenarios. We find that announcing 70%

overestimation of wait-time is associated with almost 18% increase in wait-time satisfac-

tion relative to the baseline (i.e., announcing nothing). We also observed a 6% and a 10%

increase in wait-time satisfaction relative to the baseline when announcing the average

and 90% overestimation of wait-time, respectively. This corresponds to more than one

level increase in the seven-scale survey question. This positive impact was also observed

on overall satisfaction and on the likelihood-to-recommend measured by Press Ganey sur-

vey questions, collected by the hospital. Even though separating out the effect of this

intervention on Medicare payments is difficult, once we take into account the importance

of patients rating on hospital’s gains of Medicare payments, it becomes clear that the

implications are substantial. If this findings are generalizable to other EDs, personalized
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delay announcement would have significant practical financial and medical implications

EDs across the country faced with unforeseen crowdedness and long wait-times for pa-

tients. It is also important to note that no statistically significant results found in terms

of the possible effect of patients severity of conditions on their wait-time satisfaction.

This study contributes to the operations management literature on delay announce-

ment and patient satisfaction in several ways. Our study is the among the first to conduct

field experiment to examine the effect of announcing wait-times on satisfaction. Motivated

by Batt and Terwiesch (2015) who called for more field experiment in EDs, we aimed to

shed light on how providing information will influence service evaluation and alter behav-

ior. It has not been clear what would happen if we start announcing delay and sharing

news about the system’s flow in EDs. If the news appears to be bad (e.g., a long wait-

time), abandonment may increase and this is risky for the patients and economically bad

for the hospital. Our field experiments helps determine how changes occur and what the

net impact of the effects is. Lessons learned from such experiments serve to improve both

ED management and the general understanding of human queuing behavior.

Implications for Practice. We suggest that patients in EDs should be provided

with their wait-time while in the waiting room, estimated by an institution-specific wait-

time predictor. Delay announcement is an inexpensive and easy-to-implement process to

increase patients satisfaction in EDs and can be used along with other practices to reduce

wait-times. To our knowledge, this is not currently in place at most EDs. Some EDs

publish the average wait-times on their websites or on highway billboards but no person-

alized delays are provided for patients. We should also engineer the delay announcement

such that for majority of patients the wait-time is overestimated. By minimizing the
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number of patients with negative wait-time gap, we may be able to increase the total

average wait-time satisfaction in the ED. Certainly, we need to be careful about how

much we overestimate. Overestimating too much may cause patients to become dissatis-

fied or even leave the ED. The institution-specific wait-time predictor developed for the

ED under study, is approved to be implemented and will be used by ED managers and

nurses in the waiting room as part of their electronic medical record system to improve

the communication and satisfaction in the ED.

There are also important positive and negative externalities for announcing the delays.

Nurses and staff working in the waiting room area reported the waiting room to be

calmer as a result of delay announcement. Calmer waiting rooms help nurses and staff to

concentrate on their job rather than answering frequent wait-time related questions. The

nurse who is trained to decide which patient gets the next available care space stated that

“Before announcing the delays, many patients came to me to know about their wait-time

and this disrupted my work. After announcing the delay this happens less frequently.”

Even though we did not observe a significant change in LWBS rate as a consequence

of announcing wait-times, ED managers should still plan for providing patients clear

explanation of the long waits and design protocols to help convince the patient not to

leave before seeing a doctor.

Limitation and Future Research. There are several limitations in this study to

take into account when considering the results. First, similar to many empirical studies,

we note the threat of omitted variable bias. Even though it would have been helpful to

control for more patient characteristics in our model, some of these data were protected

information and some were not available. There are also other possible questions that we
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could have asked in our surveys to help with understanding patients’ evaluation process

(e.g., about the emotions and affective responses). However, due to patients medical

condition, we had some limits on the number of questions to ask. Since we wanted to

capture patients’ waiting assessment right after they experience it, we had to limit the

number of questions to the level that best serves our purpose. Second, our study was done

in a single hospital’s ED. The fact that conducting such an experiment in several EDs,

required developing an institution-specific wait-time predictor for each ED and building

trust, which made it impossible for us to use another ED for implementation. Although the

generalizability of our findings is limited because we studied only one ED, we believe our

findings have strong theoretical backgrounds. Nevertheless, future research can examine

a larger sample of EDs to study different delay announcement policies. Third, due to

the limited number of days that this study was conducted over, situations beyond our

control may have influenced some of the results (e.g., long waits due to arrival of a trauma

case). It is important to note that this variability is part of a hospital’s operation and we

controlled for such effects by repeating the conditions that was influenced by extraordinary

events.

Motivated by the findings of the current work, future work should include more ana-

lytical and empirical studies to find other delay announcement policies to maximize the

patients satisfaction. In this study, we announced an estimated wait-time to all patients

with no updates. ED managers may need to restrict the sharing of delay information with

the patients to certain threshold on the estimated wait-time, to avoid possible negative

consequences of announcing long announced wait-time on patient satisfaction. A dynamic

policy may help managers find such a threshold. Also, we did not address the question of
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whether we should provide an update on estimated wait-times if available and how fre-

quently. Updating patients on what is happening in the system and revise the estimates

provided, may have positive or negative impact on satisfaction and behavior, and needs

to be carefully investigated in practice. Given that prior literature has found a variety of

different mechanism such as operational transparency Buell and Norton (2011) to improve

customers’ perception of wait-time and assessment of their experience, the combination

of these mechanisms with delay announcement to maximize satisfaction would also be a

fruitful research area, especially in EDs, where satisfaction ties back to the service provider

finance.
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Andradóttir, Sigrún, Hayriye Ayhan, Eser Kırkızlar. 2012. Flexible servers in tandem lines with
setup costs. Queueing Systems 70(2) 165–186.

Andrews, Bruce, Henry Parsons. 1993. Establishing telephone-agent staffing levels through
economic optimization. Interfaces 23(2) 14–20.

Ang, Erjie, Sara Kwasnick, Mohsen Bayati, Erica L Plambeck, Michael Aratow. 2015. Accurate
ed wait time prediction. Manufaturing and Service Operations Management Forthcoming .

http://www.aha.org/content/13/13-linkqualpaymnt.pdf
http://www.aha.org/content/13/13-linkqualpaymnt.pdf


146

Antonides, Gerrit, Peter C Verhoef, Marcel Van Aalst. 2002. Consumer perception and evalua-
tion of waiting time: A field experiment. Journal of Consumer Psychology 12(3) 193–202.

Armony, Mor, Nahum Shimkin, Ward Whitt. 2009. The impact of delay announcements in
many-server queues with abandonment. Operations Research 57(1) 66–81.
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APPENDIX A

Appendix of Chapter 1: Proof of analytical results
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Proof of Proposition 1.1. Given the job arrival rate at Stage 1 (i.e., λ), and given

that jobs that leave Stage 1 arrive at Stage 2 with probability 1, the average arrival rate

at both Stages 1 and 2 are λ. Since jobs completed at Stage 2 arrive at Stage 3 with

probability p, the average arrival rate at Stage 3 is pλ. We use λi to denote the arrival rate

at Stage i. Let ρi represent the utilization at Stage i. In order to have a stable system,

we need to ensure that there exists a server control policy such that ρi = λi/µi < 1, ∀i.

The system cannot be stable if ∃i such that ρi ≥ 1 (i.e., µi ≤ λ, i = 1, 2 and µ3 ≤ pλ).

When µi > λ, i = 1, 2 and µ3 > pλ (i.e., ρi < 1, ∀i), we show that the system is stable if

the last condition in Proposition 1.1 holds.

Let k ∈ (0, 1) denote the percentage of time that Server S1 works at Stage 1. So the

average processing rate at Stage 1 is kµ1 and the processing rate is at most (1 − k)µ3

at Stage 3. We show that if the condition in Proposition 1.1 holds, then there exists a

solution for k that makes the system stable.

To make Stages 1 and 3 stable we require:

kµ1 > λ

(1− k)µ3 > pλ

Since µi > 0, ∀i, we have

k >
λ

µ1

k < 1− pλ

µ3

To ensure there exists one solution for k, we need

λ

µ1
< 1− pλ

µ3
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It is equivalent to
µ1µ3

pµ1 + µ3
> λ

Thus, if all conditions in Proposition 1.1 holds, there exists a solution for k and the

system is stable. �

Proof of Theorem 1.1. We first prove that there exists an average-cost optimal

stationary policy for the MDP that has a constant average cost. To prove this, we need

to show that (i) the Markov chain corresponding to the class of non-idling policy that

we consider in the MDP model is irreducible; (ii) there exists a stationary policy under

which the Markov chain is positive recurrent; and (iii) the system has finite mean queue

lengths.

Consider state 0 = (0, 0, 0). Since the arrivals are Poisson, state 0 can reach any state

n where n1 > 0. State n can reach state (n− e1 + e2) where n1 > 0, n2 ≥ 0. Since Server

S2 never idles when n2 > 0, state (n) with n2 > 0 can reach (n− e2 + e3) with a positive

probability. On the other hand, since any policy we consider does not idle Server S1 at

state (n) when she is at Stage 3 with n3 > 0, and does not idle state n when she is at

Stage 1 with n1 > 0, then 0 is reachable by any state n.

Therefore, the Markov chain corresponding to the class of non-idling policy we consider

in the MDP model is irreducible. We can use results from Puterman Puterman (1990) to

prove the existence of an average-cost optimal stationary policy. First, we need to show

that when conditions in Proposition 1.1 hold, there exists a stationary policy under which

the Markov chain is positive recurrent and the system has finite mean queue lengths.
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Consider policy γ that assigns Server S1 in the following way: Server S1 works at

Stage 1 and switches to Stage 3 when there is at least 1 job at Stage 3. After switching to

Stage 3, she processes the job then switches back to Stage 1. Since we have µ1µ3
pµ1+µ3

> λ,

using the same argument as the proof of Proposition 1.1, the utilization of Server S1 is

less than 1 and the system is stable under policy γ and has finite mean queue lengths.

Moreover, under policy γ every state can reach state (0) within a finite time, the Markov

chain is positive recurrent. Let g represent the average cost induced by policy γ. We need

to show that set A = {s ∈ S : C(s, a) < g for some a ∈ AS} is not empty and finite, where

C(s, a) = (n1 + n2 + n3)/Λ. First, at state s1 = (0) we have C(s1, a) = 0. Since g > 0

and s1 ∈ S, set A is not empty. Second, C(s, a) is increasing in n1, n2, and n3, and since

g is finite, there are only finite number of states that satisfy C(s, a) < g. Therefore, set

A is finite, and Theorem 8.10.9 in Puterman (1990) holds. Thus, we showed that there

exists a stationary policy under which the Markov chain is positive recurrent. Hence, the

MDP has an average-cost optimal stationary policy.

We now prove that the value iteration algorithm converges. Proposition 4.3 of Sennott

(1996) states that if there exists a stationary policy inducing an irreducible and positive

recurrent Markov chain with finite average cost g, and if there exists ε > 0 such that D =

{s ∈ S : there exists a such that C(s, a) < g+ε} is finite, then the value iteration algorithm

converges. We have a stationary policy γ such that the induced Markov chain is irreducible

and positive recurrent, and has finite average cost g. Since C(s, a) is increasing in n1, n2,

and n3 and since g + ε is finite, like set A, set D is also finite. Therefore, conditions of

Proposition 4.3 of Sennott (1996) is satisfied and the value iteration algorithm converges.

�
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Proof of Proposition 1.2(a). To prove that C1, C2, and M1-M3 are preserved by

operator T, we first show C1 and C2 holds for Tv(n), then we drive a general inequalities

to prove M1 through M3. For any v ∈ Υ, we have

Tv(n) = 1
Λ

{
n1 + n2 + n3 + λv(n + e1) + µ2B(n)

+ min
{
AI(n), AP1(n), AP3(n)

}}
,

(A.1)

B(n) =


v(n) : if n2 = 0

pv(n− e2 + e3) + (1− p)v(n− e2) : if n2 > 0

AI(n) = (µ1 + µ3)v(n)

AP1(n) =


µ1v(n) + µ3v(n) : if n1 = 0

µ1v(n− e1 + e2) + µ3v(n) : if n1 > 0

AP3(n) =


µ3v(n) + µ1v(n) : if n3 = 0

µ3v(n− e3) + µ1v(n) : if n3 > 0

To prove C1, first, we consider C1 as follows:

C1: v(n) is nondecreasing in n1 ≥ 0, n2 ≥ 0 and n3 ≥ 0.

We want to show if v ∈ Υ, then Tv ∈ Υ. We show property C1 is preserved by

operator T, i.e., Tv(n) is nondecreasing in n1 ≥ 0, as an example and the rest can

be shown similarly. There are 8 possible cases for C1 in terms of ni > 0 or ni = 0,
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i ∈ {1, 2, 3}. First, consider the case (n1 > 0, n2 > 0, n3 > 0). Define

ACa(n) =



(µ1 + µ3)v(n), a = I

µ1v(n− e1 + e2) + µ3v(n), a = P1

µ1v(n) + µ3v(n− e3), a = P3

Next, we define ACa∗(n)
(n) = minaACa(n) as the value of ACa(n) under action a∗(n) ∈

{I, P1, P3}, where a∗(n) is the optimal action at state (n). More generally, we define

ACa∗
(n−ei)

(n − ej) (i, j = 1, 2, 3) as the value of ACa(n − ej) under action a∗(n−ei), where

a∗(n−ei) is the optimal action at state (n − ei). Therefore, we can rewrite Equation (A.1)

as follows:

Tv(n) = 1
Λ

{
n1 + n2 + n3 + λv(n + e1)

+ µ2
[
pv(n− e2 + e3) + (1− p)v(n− e2)

]
+ ACa∗(n)

(n)
}
.

Since v ∈ Υ, v(n) is nondecreasing in n1, for n1 ≥ 0, n2 ≥ 0, n3 ≥ 0. Thus, C1

immediately holds for the first three v(.) terms of right hand sides of Tv(n). Therefore,

we only need to show that C1 holds for ACa∗(n)
(n).

If the optimal action at state (n + e1) is idling (i.e., a∗(n+e1) = I ), then

ACa∗
(n+e1)

(n + e1) = (µ1 + µ3)v(n + e1)

ACa∗
(n+e1)

(n) = (µ1 + µ3)v(n)
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If the optimal action at state (n+e1) is working at Station 1 (i.e., a∗(n+e1) = P1), then

ACa∗
(n+e1)

(n + e1) = µ1v(n + e2) + µ3v(n + e1)

ACa∗
(n+e1)

(n) = µ1v(n− e1 + e2) + µ3v(n)

If the optimal action at state (n+e1) is working at Station 3 (i.e., a∗(n+e1) = P3), then

ACa∗
(n+e1)

(n + e1) = µ1v(n + e1) + µ3v(n + e1 − e3)

ACa∗
(n+e1)

(n) = µ1v(n) + µ3v(n− e3)

According to C1, we have ACa∗
(n+e1)

(n + e1) ≥ ACa∗
(n+e1)

(n). On the other hand,

ACa∗
(n+e1)

(n) may not select the optimal action at state (n) (i.e., a∗(n+e1) may not equal

a∗(n)) but ACa∗(n)
(n) always does. Thus, we have ACa∗

(n+e1)
(n) ≥ ACa∗(n)

(n). Therefore, we

get ACa∗
(n+e1)

(n + e1) ≥ ACa∗
(n+e1)

(n) ≥ ACa∗(n)
(n), i.e., ACa∗(n)

(n) is nondecreasing in n1.

Thus, we prove property C1 holds. Similarly, we can easily show that C1 is preserved by

operator T in all 8 cases.

To prove C2, first, we write C2 as follows:

v(n) ≥ v(n− e1 + e2), for n1 > 0, n2 ≥ 0, n3 ≥ 0.

There are 8 possible cases for C2 in terms of n1 > 1 or n1 = 1 and ni > 0 or ni = 0,

i ∈ {2, 3}. First, consider the case (n1 > 1, n2 > 0, n3 > 0). Define

ACa(n) =



(µ1 + µ3)v(n), a = I

µ1v(n− e1 + e2) + µ3v(n), a = P1

µ1v(n + e3) + µ3v(n), a = P3
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We define ACa∗(n)
(n) and ACa∗

(n−ei)
(n− ej) (i, j = 1, 2, 3) as it was previously defined.

we can rewrite Equation A.1 as follows:

Tv(n) = 1
Λ

{
n1 + n2 + n3 + λv(n + e1)

+ µ2
[
pv(n− e2 + e3) + (1− p)v(n− e2)

]
+ ACa∗(n)

(n)
}
.

Since v ∈ Υ, v(n) ≥ v(n− e1 + e2), for n1 ≥ 1, n2 ≥ 0, n3 ≥ 0. Thus, C2 immediately

holds for the first three v(.) terms of right hand sides of Tv(n). Therefore, we only need

to show that C2 holds for ACa∗(n)
(n).

If the optimal action at state (n) is idling (i.e., a∗(n) = I ), then

ACa∗(n)
(n) = (µ1 + µ3)v(n)

ACa∗(n)
(n− e1 + e2) = (µ1 + µ3)v(n− e1 + e2)

If the optimal action at state (n) is working at Station 1 (i.e., a∗(n−e1+e2) = P1), then

ACa∗(n)
(n) = µ1v(n− e1 + e2) + µ3v(n)

ACa∗(n)
(n− e1 + e2) = µ1v(n− 2e1 + 2e2) + µ3v(n− e1 + e2)

If the optimal action at state (n) is working at Station 3 (i.e., a∗(n) = P3), then

ACa∗(n)
(n) = µ1v(n) + µ3v(n− e3)

ACa∗(n)
(n− e1 + e2) = µ1v(n− e1 + e2) + µ3v(n− e1 + e2 − e3)
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According to C2, we have ACa∗(n)
(n) ≥ ACa∗(n)

(n − e1 + e2). On the other hand,

ACa∗(n)
(n − e1 + e2) may not select the optimal action at state (n − e1 + e2) (i.e.,

a∗(n) may not equal a∗(n−e1+e2)) but ACa∗
(n−e1+e2)

(n − e1 + e2) always does. Thus, we

have ACa∗(n)
(n − e1 + e2) ≥ ACa∗

(n−e1+e2)
(n − e1 + e2). Therefore, we get ACa∗(n)

(n) ≥

ACa∗(n)
(n − e1 + e2) ≥ ACa∗

(n−e1+e2)
(n − e1 + e2). Thus, we prove property C2, i.e.,

v(n) − v(n − e1 + e2) ≥ 0, which implies v(n) ≥ v(n − e1 + e2). Similarly, it is tedious

but easy to verify that C2 is preserved by operator T in all 8 cases.

To prove M1 to M3 are preserved by operator T, we first define

A = v(n′ − e3)− v(n′)

B = v(n′)− v(n′ − e1 + e2)

C = v(n− e3)− v(n)

D = v(n)− v(n− e1 + e2)

Therefore, we can rewrite M1 to M3 as follows:

µ3A+ µ1B − µ3C − µ1D ≤ 0.

Properties M1 to M3 can then be directly obtained by replacing n′ with (n − e1),

(n + e2), and (n + e3), respectively. To prove M1 to M3 are preserved by operator T,

we need to show that:

µ3TA+ µ1TB − µ3TC − µ1TD ≤ 0.
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Using Equation A.5, for n1 > 0, n2 > 0, n3 > 0 , we have:

TA = −1
Λ + λ

Λ
[
v(n′ + e1 − e3)− v(n′ + e1)

]
+ µ2

Λ
[
p{v(n′ − e2)− v(n′ − e2 + e3)}+ (1− p){v(n′ − e2 − e3)− v(n′ − e2)}

]

+ 1
Λmin


µ1v(n′ − e1 + e2 − e3) + µ3v(n′ − e3)

µ3v(n′ − 2e3) + µ1v(n′ − e3)

− 1
Λmin


µ1v(n′ − e1 + e2) + µ3v(n′)

µ3v(n′ − e3) + µ1v(n′)

TB = −1
Λ + λ

Λ
[
v(n′ + e1)− v(n′ + e2)

]
+ µ2

Λ
[
p{v(n′ − e2 + e3)− v(n′ − e1 + e3)}+ (1− p){v(n′ − e2)− v(n′ − e1)}

]

+ 1
Λmin


µ1v(n′ − e1 + e2) + µ3v(n′)

µ3v(n′ − e3) + µ1v(n′)

− 1
Λmin


µ1v(n′ − 2e1 + 2e2) + µ3v(n′ − e1 + e2)

µ3v(n′ − e1 + e2 − e3) + µ1v(n′ − e1 + e2)

TC = −1
Λ + λ

Λ
[
v(n− e1 − e3)− v(n + e1)

]
+ µ2

Λ
[
p{v(n− e2)− v(n− e2 + e3)}+ (1− p){v(n− e2 − e3)− v(n− e2)}

]

+ 1
Λmin


µ1v(n− e1 + e2 − e3) + µ3v(n− e3)

µ3v(n− 2e3) + µ1v(n− e3)

− 1
Λmin


µ1v(n− e1 + e2) + µ3v(n)

µ3v(n− e3) + µ1v(n)
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TD = λ

Λ
[
v(n + e1)− v(n + e2)

]
+ µ2

Λ
[
p{v(n− e2 + e3)− v(n− e1 + e3)}+ (1− p){v(n− e2)− v(n− e1)}

]

+ 1
Λmin


µ1v(n− e1 + e2) + µ3v(n)

µ3v(n− e3) + µ1v(n)

− 1
Λmin


µ1v(n− 2e1 + 2e2) + µ3v(n− e1 + e2)

µ3v(n− e1 + e2 − e3) + µ1v(n− e1 + e2)

Furthermore, we let

A′ = 1
Λmin


µ1v(n′ − e1 + e2 − e3) + µ3v(n′ − e3)

µ3v(n′ − 2e3) + µ1v(n′ − e3)

− 1
Λmin


µ1v(n′ − e1 + e2) + µ3v(n′)

µ3v(n′ − e3) + µ1v(n′)

B′ = 1
Λmin


µ1v(n′ − e1 + e2) + µ3v(n′)

µ3v(n′ − e3) + µ1v(n′)

− 1
Λmin


µ1v(n′ − 2e1 + 2e2) + µ3v(n′ − e1 + e2)

µ3v(n′ − e1 + e2 − e3) + µ1v(n′ − e1 + e2)

C ′ = 1
Λmin


µ1v(n− e1 + e2 − e3) + µ3v(n− e3)

µ3v(n− 2e3) + µ1v(n− e3)

− 1
Λmin


µ1v(n− e1 + e2) + µ3v(n)

µ3v(n− e3) + µ1v(n)

D′ = 1
Λmin


µ1v(n− e1 + e2) + µ3v(n)

µ3v(n− e3) + µ1v(n)
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− 1
Λmin


µ1v(n− 2e1 + 2e2) + µ3v(n− e1 + e2)

µ3v(n− e1 + e2 − e3) + µ1v(n− e1 + e2)

Thus, we have:

µ3TA+ µ1TB − µ3TC − µ1TD

= λ
Λ

{
µ3 [v(n′ + e1 − e3)− v(n′ + e1)] + µ1 [v(n)− v(n′ + e1)− v(n′ + e2)]

− µ3 [v(n + e1 − e3)− v(n + e1)]− µ1 [v(n + e1)− v(n + e2)]
}

+ µ2
Λ p
{
µ3 [v(n′ − e2)− v(n′ − e2 + e3)] + µ1 [v(n′ − e2 + e3)− v(n′ − e1 + e3)]

− µ3 [v(n− e2)− v(n− e2 + e3)]− µ1 [v(n− e2 + e3)− v(n− e1 + e3)]
}

+ µ2
Λ (1− p)

{
µ3 [v(n′ − e2 − e3)− v(n′ − e2)] + µ1 [v(n′ − e2)− v(n′ − e1)]

− µ3 [v(n− e2 − e3)− v(n− e2)]− µ1 [v(n− e2)− v(n− e1)]
}

+ µ3A
′ + µ1B

′ − µ3C
′ − µ1D

′.

Since v ∈ Υ, µ3A+ µ1B − µ3C − µ1D ≤ 0, for n1 > 0, n2 ≥ 0, n3 > 0. Thus, M1-M3

are immediately holds for the first three terms of right hand side. Therefore, we only need

to show that M1-M3 hold for µ3A
′ + µ1B

′ − µ3C
′ − µ1D

′ ≤ 0. Note that we consider

without loss of generality n2 > 0. The case n2 = 0 can be proved similarly. Considering

the fact that M1-M3 hold for any v ∈ Υ, there are 5 possible cases we need to discuss in

terms of which stage is optimal for Server S1 to work at states (n′−e3), (n′), (n′−e1 +e2),

(n−e3), (n), and (n−e1 +e2). Note that even though there are total of 64 cases in terms

of which stage is optimal for Server S1 to work at aforementioned states, most of those

cases are not valid, considering the fact that M1-M3 hold for any v ∈ Υ. For example,

we can show that if at state (n) working at Stage 1 is optimal, then at state (n − e3)

working at Stage 1 is also optimal. More specifically, if at state (n), it is optimal for
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Server 1 to work at Stage 1, then AP1(n) ≤ AP3(n). Therefore, for n1 > 0, n2 ≥ 0, n3 > 0,

we have:

µ1v(n− e1 + e2) + µ3v(n) ≤ µ3v(n− e3) + µ1v(n)

⇒ µ1
[
v(n− e1 + e2)− v(n)

]
+ µ3

[
v(n)− v(n− e3)

]
≤ 0

(A.2)

To show that working at Stage 1 is also optimal at state (n − e3), we need to show

AP1(n− e3) ≤ AP3(n− e3). According to M3, for n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1 [v(n− e1 + e2 − e3)− v(n− e3)] + µ3 [v(n− e3)− v(n− 2e3)]

≤ µ1 [v(n− e1 + e2)− v(n)] + µ3 [v(n)− v(n− e3)]

When it is optimal for Server 1 to work at Stage 1 at (n), using inequality (A.2), for

n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1 [v(n− e1 + e2 − e3)− v(n− e3)] + µ3 [v(n− e3)− v(n− 2e3)]

≤ µ1 [v(n− e1 + e2)− v(n)] + µ3 [v(n)− v(n− e3)] ≤ 0

Hence, we can conclude:

µ1 [v(n− e1 + e2 − e3)− v(n− e3)] + µ3 [v(n− e3)− v(n− 2e3)] ≤ 0

⇒ µ1v(n− e1 + e2− e3) + µ3v(n− e3) ≤ µ3v(n− 2e3) + µ1v(n− e3)

This shows that AP1(n−e3) ≤ AP3(n−e3) and thus, it is optimal for Server 1 to work

at Stage 1 at (n− e3), for n1 > 0, n2 ≥ 0, n3 > 0. It is tedious but easy to verify, in all 5

cases, µ3A
′+µ1B

′−µ3C
′−µ1D

′ ≤ 0, which implies µ3TA+µ1TB−µ3TC−µ1TD ≤ 0.

For example, for one of the most general cases where working at Stage 1 is optimal at

(n′ − e3), (n′), (n′ − e1 + e2), (n− e3), (n), and (n− e1 + e2), we will have
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A′ = 1
Λ

{
[µ1v(n′ − e1 + e2 − e3) + µ3v(n′ − e3)]− [µ1v(n′ − e1 + e2) + µ3v(n′)]

}
B′ = 1

Λ

{
[µ1v(n′ − e1 + e2) + µ3v(n′)]− [µ1v(n′ − 2e1 + 2e2) + µ3v(n′ − e1 + e2)]

}
C ′ = 1

Λ

{
[µ1v(n− e1 + e2 − e3) + µ3v(n− e3)]− [µ1v(n− e1 + e2) + µ3v(n)]

}
D′ = 1

Λ

{
[µ1v(n− e1 + e2) + µ3v(n)]− [µ1v(n− 2e1 + 2e2) + µ3v(n− e1 + e2)]

}

Therefore,

Λ [A′ − C ′]

= [µ1v(n′ − e1 + e2 − e3) + µ3v(n′ − e3)]− [µ1v(n′ − e1 + e2) + µ3v(n′)]

−
{

[µ1v(n− e1 + e2 − e3) + µ3v(n− e3)]− [µ1v(n− e1 + e2) + µ3v(n)]
}

= µ1 [v(n′ − e1 + e2 − e3)− v(n′ − e1 + e2)] + µ3 [v(n′ − e3)− v(n′)]

− µ1 [v(n− e1 + e2 − e3)− v(n− e1 + e2)]− µ3 [v(n− e3)− v(n)]

= µ3 [v(n′ − e3)− v(n′)] + µ1 [v(n− e1)− v(n− 2e1 + e2)]

− µ3 [v(n− e3)− v(n)]− µ1 [v(n)− v(n− e1 + e2)]

+ µ1

{
[v(n′ − e1 + e2 − e3)− v(n− e1)]− [v(n− e1 + e2 − e3)− v(n)]

}

Considering the fact that M1-M3 hold, we have

Λ [A′ − C ′] ≤ µ1{[v(n′ − e1 + e2 − e3)− v(n′)]− [v(n− e1 + e2 − e3)− v(n)]}

Similarly,

Λ [B′ −D′]

= [µ1v(n′ − e1 + e2) + µ3v(n′)]− [µ1v(n′ − 2e1 + 2e2) + µ3v(n′ − e1 + e2)]

− {[µ1v(n− e1 + e2) + µ3v(n)]− [µ1v(n− 2e1 + 2e2) + µ3v(n− e1 + e2)]}

= µ1 [v(n′ − e1 + e2)− v(n′ − 2e1 + 2e2)] + µ3 [v(n′)− v(n′ − e1 + e2)]
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− µ1 [v(n− e1 + e2)− v(n− 2e1 + 2e2)]− µ3 [v(n)− v(n− e1 + e2)]

= µ3 [v(n′ − e1 + e2 − e3)− v(n′ − e1 + e2)] + µ1 [v(n′ − e1 + e2)− v(n′ − 2e1 + 2e2)]

−µ3 [v(n− e1 + e2 − e3)− v(n− e1 + e2)]−µ1 [v(n− e1 + e2)− v(n− 2e1 + 2e2)]

+ µ3{[v(n′)− v(n′ − e1 + e2 − e3)]− [v(n)− v(n− e1 + e2 − e3)]}

Considering the fact that M1-M3 hold at state (n− e1 + e2), we have

Λ [B′ −D′] ≤ µ3{[v(n′)− v(n′ − e1 + e2 − e3)]− [v(n)− v(n− e1 + e2 − e3)]}

Therefore, we have:

Λ [µ3A
′ + µ1B

′ − µ3C
′ − µ1D

′] = Λµ3 [A′ − C ′] + Λµ1 [B′ −D′]

≤ µ3µ1{[v(n′ − e1 + e2 − e3)− v(n′)]− [v(n− e1 + e2 − e3)− v(n)]}

+µ1µ3{[v(n′)− v(n′ − e1 + e2 − e3)]−[v(n)− v(n− e1 + e2 − e3)]} = 0

which implies that µ3A
′ + µ1B

′ − µ3C
′ − µ1D

′ ≤ 0. This completes the proof that

M1-M3 are preserved under operator T and therefore the proof of Proposition 1.2 is

complete.

�

Proof of Proposition 1.2(b). The proof is very similar to the proofs in [12] and

[13]. Using the L∞ metric, the limit of any convergent sequence of functions in Υ will be

in Υ as well. Therefore, Υ is complete. Now, define a structure decision rules with the
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state-dependent thresholds:

n∗1,(n2,n3) = min{n1|V (n) ≥ 0, n1 > 0}

n∗2,(n1,n3) = min{n2|V (n) ≥ 0, n2 > 0}

n∗3,(n1,n2) = min{n3|V (n) ≥ 0, n3 > 0}

That is, given n2 ≥ 0 and n3 ≥ 0, the decision for Server S1 is to work at Stage 1, if

the number of task at Stage 1 (i.e., n1) is more than n∗1,(n2,n3), or work at Stage 3 if the

number of task at Stage 1 (i.e., n1) is less than n∗1,(n2,n3) and n3 > 0, or stay idle otherwise.

Similarly, given n1 ≥ 0 and n3 ≥ 0, the decision for Server S1 is to work at Stage 1, if

the number of task at Stage 2 (i.e., n2) is less than n∗2,(n1,n3) and n1 > 0, or work at Stage

3 if the number of task at Stage 2 (i.e., n2) is more than n∗2,(n1,n3) and n3 > 0, or stay

idle otherwise. Finally, given n1 ≥ 0 and n2 ≥ 0, the decision for Server S1 is to work

at Stage 3, if the number of task at Stage 3 (i.e., n3) is more than n∗3,(n1,n2), or work at

Stage 1 if the number of task at Stage 3 (i.e., n3) is less than n∗3,(n1,n2) and n1 > 0, or stay

idle otherwise. It can be shown that the structured decision rules satisfy the optimality

equation (1). By Theorem 5.1 of [23], the optimal value function V is structured and has

properties C1, C2, and M1-M3.

�

Proof of Theorem 1.2. This Theorem is a direct result of the fact that value func-

tion V satisfies properties C1 and C2, as shown in Proposition 1.2. At state (n), we
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have:

AI(n) = (µ1 + µ3)V (n)

AP1(n) =


µ1V (n) + µ3V (n) : if n1 = 0

µ1V (n− e1 + e2) + µ3V (n) : if n1 > 0

AP3(n) =


µ3V (n) + µ1V (n) : if n3 = 0

µ3V (n− e3) + µ1V (n) : if n3 > 0

According to Proposition 1.2(b), since V ∈ Υ, V satisfies property C1 and this implies

that V (n + e3) ≥ V (n). Therefore, we have AP3(n) ≤ AI(n) if n3 > 0. Therefore, idling

cannot be optimal at state (n) if n3 > 0. Similarly, since V satisfies property C2,

V (n) ≥ V (n − e1 + e2), we have AP1(n) ≤ AI(n) if n1 > 0. Therefore, idling cannot be

optimal at state (n) if n1 > 0. This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. Theorem 1.3 has two parts: Work at Stage 3 and Work at

Stage 1. We first prove the first part of Theorem 1.3.

Work at Stage 3: At state (n), if it is optimal for Server S1 to work at Stage 3, then

AP3(n) ≤ AP1(n). Therefore, for n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ3V (n− e3) + µ1V (n) ≤ µ1V (n− e1 + e2) + µ3V (n)

⇒ µ3[V (n− e3)− V (n)] + µ1[V (n)− V (n− e1 + e2)] ≤ 0
(A.3)

There are 3 cases to discuss:

noitemsep,nolistsep Case 1: at state (n− e1),

noitemsep,nolistsep Case 2: at state (n + e2),
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noitemsep,nolistsep Case 3: at state (n + e3).

Case 1 (n− e1): To show that working at Stage 3 is also optimal at state (n − e1), we

need to show AP3(n− e1) ≤ AP1(n− e1). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M1, for n1 > 1, n2 ≥ 0, n3 > 0, and we have:

µ3[V (n− e1 − e3)− V (n− e1)] + µ1[V (n− e1)− V (n− 2e1 + e2)]

≤ µ3[V (n−e3)−V (n)]+µ1[V (n)−V (n−e1 +

e2)]

When it is optimal for Server S1 to work at Stage 3 at (n), using inequality (A.3), for

n1 > 1, n2 ≥ 0, n3 > 0, we have:

µ3[V (n− e1 − e3)− V (n− e1)] + µ1[V (n− e1)− V (n− 2e1 + e2)]

≤ µ3[V (n−e3)−V (n)]+µ1[V (n)−V (n−e1 +

e2)] ≤ 0

Hence, we can conclude:

µ3[V (n− e1 − e3)− V (n− e1)] + µ1[V (n− e1)− V (n− 2e1 + e2)] ≤ 0

⇒ µ3V (n− e1− e3) +µ1V (n− e1) ≤ µ1V (n− 2e1 + e2) +

µ3V (n− e1)

This shows that AP3(n − e1) ≤ AP1(n − e1) and thus, it is optimal for Server S1 to

work at Stage 3 at (n− e1), for n1 > 0, n2 ≥ 0, n3 > 0.

Case 2 (n + e2): To show that working at Stage 3 is also optimal at state (n + e2), we

need to show AP3(n + e2) ≤ AP1(n + e2). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M2, for n1 > 0, n2 ≥ 0, n3 > 0, and we have:

µ3[V (n + e2 − e3)− V (n + e2)] + µ1[V (n + e2)− V (n− e1 + 2e2)]

≤ µ3[V (n− e3)− V (n)] + µ1[V (n)− V (n− e1 + e2)]
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When it is optimal for Server S1 to work at Stage 3 at (n), using inequality (A.3), for

n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ3[V (n + e2 − e3)− V (n + e2)] + µ1[V (n + e2)− V (n− e1 + 2e2)]

≤ µ3[V (n− e3)− V (n)] + µ1[V (n)− V (n− e1 + e2)] ≤ 0

Hence, we can conclude:

µ3[V (n + e2 − e3)− V (n + e2)] + µ1[V (n + e2)− V (n− e1 + 2e2)] ≤ 0

⇒ µ3V (n+e2−e3)+µ1V (n+e2) ≤ µ1V (n−e1 +2e2)+µ3V (n+e2)

This shows that AP3(n + e2) ≤ AP1(n + e2) and thus, it is optimal for Server S1 to

work at Stage 3 at (n + e2), for n1 > 0, n2 ≥ 0, n3 > 0.

Case 3 (n + e3): To show that working at Stage 3 is also optimal at state (n + e3), we

need to show AP3(n + e3) ≤ AP1(n + e3). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M3, for n1 > 0, n2 ≥ 0, n3 > 0, and we have:

µ3[V (n)− V (n + e3)] + µ1[V (n + e3)− V (n− e1 + e2 + e3)]

≤ µ3[V (n− e3)− V (n)] + µ1[V (n)− V (n− e1 + e2)]

When it is optimal for Server S1 to work at Stage 3 at (n), using inequality (A.3), for

n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ3[V (n)− V (n + e3)] + µ1[V (n + e3)− V (n− e1 + e2 + e3)]

≤ µ3[V (n− e3)− V (n)] + µ1[V (n)− V (n− e1 + e2)] ≤ 0

Hence, we can conclude:

µ3[V (n)− V (n + e3)] + µ1[V (n + e3)− V (n− e1 + e2 + e3)] ≤ 0

⇒ µ3V (n) + µ1V (n + e3) ≤ µ1V (n− e1 + e2 + e3) + µ3V (n + e3)
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This shows that AP3(n + e3) ≤ AP1(n + e3) and thus, it is optimal for Server S1 to

work at Stage 3 at (n + e3), for n1 > 0, n2 ≥ 0, n3 > 0. This concludes the proof of the

first part of the Theorem. Now, we prove the second part of Theorem 1.3.

Work at Stage 1: At state (n), if it is optimal for Server S1 to work at Stage 1, then

AP1(n) ≤ AP3(n). Therefore, for n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1V (n− e1 + e2) + µ3V (n) ≤ µ3V (n− e3) + µ1V (n)

⇒ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)] ≤ 0
(A.4)

There are 3 cases to discuss:

noitemsep,nolistsep Case 1: at state (n + e1),

noitemsep,nolistsep Case 2: at state (n− e2),

noitemsep,nolistsep Case 3: at state (n− e3).

Case 1 (n + e1): To show that working at Stage 1 is also optimal at state (n + e1), we

need to show AP1(n + e1) ≤ AP3(n + e1). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M1, for n1 > 0, n2 ≥ 0, n3 > 0, and we have:

µ1[V (n + e2)− V (n + e1)] + µ3[V (n + e1)− V (n + e1 − e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)]

When it is optimal for Server S1 to work at Stage 1 at (n), using inequality (A.4), for

n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1[V (n + e2)− V (n + e1)] + µ3[V (n + e1)− V (n + e1 − e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)] ≤ 0

Hence, we can conclude:

µ1[V (n + e2)− V (n + e1)] + µ3[V (n + e1)− V (n + e1 − e3)] ≤ 0
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⇒ µ1V (n + e2) + µ3V (n + e1) ≤ µ3V (n + e1 − e3) + µ1V (n + e1)

This shows that AP1(n + e1) ≤ AP3(n + e1) and thus, it is optimal for Server S1 to

work at Stage 1 at (n + e1), for n1 > 0, n2 ≥ 0, n3 > 0.

Case 2 (n− e2): To show that working at Stage 1 is also optimal at state (n − e2), we

need to show AP1(n− e2) ≤ AP3(n− e2). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M2, for n1 > 0, n2 ≥ 0, n3 > 0, and we have:

µ1[V (n− e1)− V (n− e2)] + µ3[V (n− e2)− V (n− e2 − e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)]

When it is optimal for Server S1 to work at Stage 1 at (n), using inequality (A.4), for

n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1[V (n− e1)− V (n− e2)] + µ3[V (n− e2)− V (n− e2 − e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)] ≤ 0

Hence, we can conclude:

µ1[V (n− e1)− V (n− e2)] + µ3[V (n− e2)− V (n− e2 − e3)] ≤ 0

⇒ µ1V (n− e1) + µ3V (n− e2) ≤ µ3V (n− e2 − e3) + µ1V (n− e2)

This shows that AP1(n − e2) ≤ AP3(n − e2) and thus, it is optimal for Server S1 to

work at Stage 1 at (n− e2), for n1 > 0, n2 ≥ 0, n3 > 0.

Case 3 (n− e3): To show that working at Stage 1 is also optimal at state (n − e3), we

need to show AP1(n− e3) ≤ AP3(n− e3). According to Proposition 1.2, since V ∈ Υ, V

satisfies property M3, for n1 > 0, n2 ≥ 0, n3 > 0, and we have:

µ1[V (n− e1 + e2 − e3)− V (n− e3)] + µ3[V (n− e3)− V (n− 2e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)]
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When it is optimal for Server S1 to work at Stage 1 at state (n), using inequality

(A.4), for n1 > 0, n2 ≥ 0, n3 > 0, we have:

µ1[V (n− e1 + e2 − e3)− V (n− e3)] + µ3[V (n− e3)− V (n− 2e3)]

≤ µ1[V (n− e1 + e2)− V (n)] + µ3[V (n)− V (n− e3)] ≤ 0

Hence, we can conclude:

µ1[V (n− e1 + e2 − e3)− V (n− e3)] + µ3[V (n− e3)− V (n− 2e3)] ≤ 0

⇒ µ1V (n−e1 +e2−e3)+µ3V (n−e3) ≤ µ3V (n−2e3)+µ1V (n−e3)

This shows that AP1(n − e3) ≤ AP3(n − e3) and thus, it is optimal for Server S1 to

work at Stage 1 at (n − e3), for n1 > 0, n2 ≥ 0, n3 > 0. This concludes the proof of the

second part of the Theorem. This completes the proof of Theorem 1.3.

�

Proof of Proposition 1.3. In this proposition, we want to show when there is a

new independent arrival to Stage 2, the structural properties presented in Proposition

1.2, Theorem 1.2 and Theorem 1.1 still hold.

In this case, system stability conditions will be changed to:

µ1 > λ, µ2 > λ+ λe

µ3 > p(λ+ λe)

µ1µ3 − pµ1λ
e

pµ1 + µ3
> λ

The proof is similar to the proof of Proposition 1.1. If these conditions hold, Theorem

1.1 still holds.
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Here, we discuss that the value function V e(n) satisfies the structural properties and

corresponding results presented for value function V (n) in Proposition 1.2, Theorem 1.2

and Theorem 1.3.

The proof of Proposition 1.2 for the value function V e is very similar to that for the

value function V . Similar to Proposition 1.2, let Υe be the set of functions defined on U

such that if function ve ∈ Υe, then ve satisfies

C1: ve(n) is nondecreasing in n1 ≥ 0, n2 ≥ 0 and n3 ≥ 0.

C2: ve(n) ≥ ve(n− e1 + e2), for n1 > 1, n2 ≥ 0, n3 ≥ 0.

M1: For n1 > 1, n2 ≥ 0, n3 > 0,
µ3[ve(n− e1 − e3)− ve(n− e1)] + µ1[ve(n− e1)− ve(n− 2e1 + e2)]

≤ µ3[ve(n− e3)− ve(n)] + µ1[ve(n)− ve(n− e1 + e2)].
M2: For n1 > 0, n2 ≥ 0, n3 > 0,

µ3[ve(n + e2 − e3)− ve(n + e2)] + µ1[ve(n + e2)− ve(n− e1 + 2e2)]

≤ µ3[ve(n− e3)− ve(n)] + µ1[ve(n)− ve(n− e1 + e2)].
M3: For n1 > 0, n2 ≥ 0, n3 > 0,

µ3[ve(n)− ve(n + e3)] + µ1[ve(n + e3)− ve(n− e1 + e2 + e3)]

≤ µ3[ve(n− e3)− ve(n)] + µ1[ve(n)− ve(n− e1 + e2)].

For any ve ∈ Υe, we have

Tve(n) = 1
Λ

{
n1 + n2 + n3 + λve(n + e1) + λeve(n + e2) + µ2B

e(n)

+ min
{
AeI(n), AeP1(n), AeP3(n)

}}
,

(A.5)
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Be(n) =


ve(n) : if n2 = 0

pve(n− e2 + e3) + (1− p)ve(n− e2) : if n2 > 0

AeI(n) = (µ1 + µ3)ve(n)

AeP1(n) =


µ1v

e(n) + µ3v
e(n) : if n1 = 0

µ1v
e(n− e1 + e2) + µ3v

e(n) : if n1 > 0

AeP3(n) =


µ3v

e(n) + µ1v
e(n) : if n3 = 0

µ3v
e(n− e3) + µ1v

e(n) : if n3 > 0

We want to show if ve ∈ Υe, then (a) Tve ∈ Υe, and (b) V e ∈ Υe. To prove part (a),

we show property C1 is preserved by operator T, i.e., Tve(n) is nondecreasing in n1 ≥ 0,

as an example and the rest can be shown similarly.

Consider property C1: ve(n) is nondecreasing in n1, for n1 ≥ 0, n2 ≥ 0 and n3 ≥ 0.

To prove that C1 is preserved by operator T, we need to consider 8 possible cases for

C1 in terms of ni > 0 or ni = 0, i ∈ {1, 2, 3}. First, consider the case (n1 > 0, n2 > 0,

n3 > 0). Define

ACe
a(n) =



(µ1 + µ3)ve(n), a = I

µ1v
e(n− e1 + e2) + µ3v

e(n), a = P1

µ1v
e(n) + µ3v

e(n− e3), a = P3

Next, we define ACe
a∗(n)

(n) = minaACe
a(n) as the value of ACe

a(n) under action a∗(n) ∈

{I, P1, P3}, where a∗(n) is the optimal action at state (n). More generally, we define
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ACe
a∗

(n+ei)
(n + ej) (i, j = 1, 2, 3) as the value of ACe

a(n − ej) under action a∗(n+ei), where

a∗(n−ei) is the optimal action at state (n − ei). Therefore, we can rewrite Equation (A.5)

as follows:

Tve(n) = 1
Λ

{
n1 + n2 + n3 + λve(n + e1) + λeve(n + e2)

+ µ2
[
pve(n− e2 + e3) + (1− p)ve(n− e2)

]
+ ACe

a∗(n)
(n)

}
.

Since ve ∈ Υe, ve(n) is nondecreasing in n1, for n1 ≥ 0, n2 ≥ 0, n3 ≥ 0. Thus, C1

immediately holds for the first four ve(.) terms of right hand sides of Tve(n). Therefore,

we only need to show that C1 holds for ACe
a∗(n)

(n). If the optimal action at state (n + e1)

is idling (i.e., a∗(n+e1) = I ), then

ACe
a∗

(n+e1)
(n + e1) = (µ1 + µ3)v(n + e1)

ACe
a∗

(n+e1)
(n) = (µ1 + µ3)v(n)

If the optimal action at state (n+e1) is working at Station 1 (i.e., a∗(n+e1) = P1), then

ACe
a∗

(n+e1)
(n + e1) = µ1v(n + e2) + µ3v(n + e1)

ACe
a∗

(n+e1)
(n) = µ1v(n− e1 + e2) + µ3v(n)

If the optimal action at state (n+e1) is working at Station 3 (i.e., a∗(n+e1) = P3), then

ACe
a∗

(n+e1)
(n + e1) = µ1v(n + e1) + µ3v(n + e1 − e3)

ACe
a∗

(n+e1)
(n) = µ1v(n) + µ3v(n− e3)
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According to C1, we have ACe
a∗

(n+e1)
(n + e1) ≥ ACe

a∗
(n+e1)

(n). On the other hand,

ACe
a∗

(n+e1)
(n) may not select the optimal action at state (n) (i.e., a∗(n+e1) may not equal

a∗(n)) but ACe
a∗(n)

(n) always does. Thus, we have ACe
a∗

(n+e1)
(n) ≥ ACe

a∗(n)
(n). Therefore, we

get ACe
a∗

(n+e1)
(n + e1) ≥ ACe

a∗
(n+e1)

(n) ≥ ACe
a∗(n)

(n), i.e., ACe
a∗(n)

(n) is nondecreasing in n1.

Thus, we prove property C1 holds. Similarly, we can easily show that C1 is preserved by

operator T in all 8 cases.

The proof of properties C2 and M1-M3 are exactly the same as that of Proposition

1.2(a) (available as an On-line Appendix). Proof of Proposition 1.2(b) is very similar

to the proofs in Ha (1997b) and Ha (1997a). Using the L∞ metric, the limit of any

convergent sequence of functions in Υe will be in Υe as well. Therefore, Υe is complete.

Now, define a structure decision rules with the state-dependent thresholds:

n∗1,(n2,n3) = min{n1|V e(n) ≥ 0, n1 > 0}

n∗2,(n1,n3) = min{n2|V e(n) ≥ 0, n2 > 0}

n∗3,(n1,n2) = min{n3|V e(n) ≥ 0, n3 > 0}

That is, given n2 ≥ 0 and n3 ≥ 0, the decision for Server S1 is to work at Stage 1, if

the number of jobs at Stage 1 (i.e., n1) is more than n∗1,(n2,n3), or work at Stage 3 if the

number of jobs at Stage 1 (i.e., n1) is less than n∗1,(n2,n3) and n3 > 0, or stay idle otherwise.

Similarly, given n1 ≥ 0 and n3 ≥ 0, the decision for Server S1 is to work at Stage 1, if

the number of jobs at Stage 2 (i.e., n2) is less than n∗2,(n1,n3) and n1 > 0, or work at Stage

3 if the number of jobs at Stage 2 (i.e., n2) is more than n∗2,(n1,n3) and n3 > 0, or stay

idle otherwise. Finally, given n1 ≥ 0 and n2 ≥ 0, the decision for Server S1 is to work
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at Stage 3, if the number of jobs at Stage 3 (i.e., n3) is more than n∗3,(n1,n2), or work at

Stage 1 if the number of jobs at Stage 3 (i.e., n3) is less than n∗3,(n1,n2) and n1 > 0, or stay

idle otherwise. It can be shown that the structured decision rules satisfy the optimality

equation (1.5). By Theorem 5.1 of [23], the optimal value function V e is structured and

has properties C1, C2, and M1-M3. Therefore, the proof of Proposition 1.2 is complete

for the value function V e.

Theorem 1.2 and Theorem 1.3 are direct results of properties presented in Proposition

1.2. Since Proposition 1.2 has been shown to hold for the value function V e, the results

of Theorem 1.2 and Theorem 1.3 will hold as well. Thus, the proof of Proposition 1.3 is

complete.

�

Proof of Theorem 1.4. Taking the processing time at each Stage i, Gi, to be gen-

erally distributed, we want to show that, when P (G2 < G3 < G1) = 1, the policy that

gives priority to Stage 3 incurs less N than any other policy at any time as long as Stage

2 is not empty (i.e., n2 > 0).

Consider a policy Φ that at time t0 assigns Server S1 to Stage 1 to process m jobs,

when there is at least one job at Stage 3 (i.e., n3 > 0). After serving m jobs at Stage

1, Server S1 is then assigned to Stage 3 to process a job. We construct a policy Ω that

mimics policy Φ until time t0. At time t0, Ω assigns Server S1 to Stage 1 for m− 1 jobs

then assigns Server S1 to Stage 3 to process a job, after finishing one job at Stage 3,

policy Ω will then assigns Server S1 back to Stage 1 to process a job. We also define the

time point after processing m− 1 jobs at Stage 1 as time t1. At time t1, policy Ω assigns

Server S1 to Stage 3 and policy Φ continues assigning Server S1 to Stage 1. Note that
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policy Φ and policy Ω are identical and are always at the same state before time t1. To

show that giving priority to Stage 3 is optimal is equivalent to show that policy Φ is not

optimal for any m > 0. In other words, we need to show that policy Ω results in less N

than policy Φ for any m > 0.

Let us assume that the state of the system is (n) at time t1, with n1 > 0, n2 > 0 and

n3 > 0. We define ns = n1 + n2 + n3. Considering that we have P (G3 < G1) = 1, there

are three different cases for n2 at time t1:

• Case 1: n2 = 1,

• Case 2: n2 > 1 and Server S2 is not fully utilized (i.e. is idle) under policy Ω

from time t1 to t1 +G1 +G3,

• Case 3: n2 > 1 and Server S2 never idles under policy Ω from time t1 to t1 +

G1 +G3.

Case 1: n2 = 1.

If n2 = 1, at time t1, Ω assigns Server S1 to Stage 3 and policy Φ assigns Server S1

to Stage 1. Therefore, Server S2 works under both policy Φ and policy Ω at time t1. See

table below for actions and states for both policies during each time period. The first row

is the incremental time period starting at t1 (e.g., [G2, G3) corresponds to time [t1 + G2

to t1 +G3), the second and third row show the actions for Server S1 and Server S2 under

policy Φ and policy Ω (i.e., (1,work) means Server S1 works at Stage 1 and Server S2

works at Stage 2 and is not idle). The fourth and fifth row show the states of the system

at the beginning of each time span under policy Φ and policy Ω, respectively. Finally, the

last row shows the difference in N under two policies.
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Time Period (0, G2) [G2, G3) [G3, G1) [G1, G1 +G3) [G1 +G3, G1 +G2 +G3]
Actions(Φ) (1,work) (1,idle) (1,idle) (3,work ) (1,idle)
Actions(Ω) (3,work) (3,idle) (1,idle) (1,idle) (1,work)
State(Φ) ns ns ns ns ns − 1
State(Ω) ns ns ns − 1 ns − 1 ns − 1

N(Φ)-N(Ω) 0 0 1 1 0

• Time period (0, G2):

Since n2 = 1 and P (G2 < G3 < G1) = 1, the first event for both policies is Server

S2 processing the only job at Stage 2. Thus, both policy Φ and policy Ω have

the same N from t1 to t1 +G2.

• Time period [G2, G3):

At time t1 + G2, Server S2 finishes a job at Stage 2 (under both policy) then

becomes idle. Both policy Φ and policy Ω still have the same N from t1 +G2 to

t1 +G3.

• Time period [G3, G1):

At time t1 + G3, under policy Ω, Server S1 finishes a job at Stage 3 and starts

working on a job at Stage 1 and under policy Φ, Server S1 is working on a job

at Stage 1. Note that Server S1 finishes a job at Stage 3 earlier under policy Ω

than finishes a job at Stage 1 under policy Φ, since P (G3 < G1) = 1. Therefore,

from t1 +G3 to t1 +G1, policy Ω has 1 less N than policy Φ.

• Time period [G1, G1 +G3):

At time t1 + G1, under policy Φ, Server S1 finishes the job at Stage 1. Then,

she starts working at Stage 3. Under this policy, Server S2 also starts working

since now there is a job to be processed at Stage 2. Under policy Ω, Server S1 is
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working on a job at Stage 1 and Server S2 remains idle. Therefore, from t1 +G1

to t1 +G1 +G3, policy Ω has still 1 less N than policy Φ.

• Time period [G1 +G3, G1 +G2 +G3]:

At time t1 + G1 + G3, under policy Φ, Server S1 finishes a job at Stage 3 and

under policy Ω, Server S1 finishes the job at Stage 1 at the same time (Notice that

same sample path realization is considered for both policies). The two policies

have the same N at this time. From t1 + G1 + G3 to t1 + G1 + G2 + G3, both

policies have the same N . At time t1 + G1 + G2 + G3, Server S2 finishes a job

under policy Ω and the two policies reach the same state.

Policy Ω and policy Φ will have exactly the same N after time t1 + G1 + G2 + G3.

From time t1 to time t1 +G1 +G2 +G3, policy Φ has more N than policy Ω, so policy Φ

cannot be optimal.

Case 2: n2 = k, k > 1 and Server S2 is not fully utilized (i.e., is idle) under

policy Ω from time t1 to t1 +G1 +G3.

Same as before, at time t1, policy Ω assigns Server S1 to Stage 3 and policy Φ assigns

Server S1 to Stage 1. Server S2 will start working under both policy Φ and policy Ω.

Since P (G2 < G3 < G1) = 1, it is possible for Server S2 to become idle under policy Ω

after t1 (i.e., while Server S1 is working at Stage 3, Server S2 may finishes up all the jobs

at Stage 2). Now suppose Server S2 idles under policy Ω at time t1 + G′2, then the idle

time for Server S2 under this policy is G1 + G3 − G′2. If P (G′2 < G1) = 1, this case is

the same as Case 1. If P (G′2 < G1) = 1, we need to study each time periods from t1 to

t1 +G1 +G2 +G3. Table below shows the actions and states for both policies during each

time period.
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Time Period (0, G3) [G3, G1) [G1, G
′
2) [G′2, G1 +G3) [G1 +G3, G1 +G2 +G3]

Actions(Φ) (1,work) (1,work) (3,work) (3,work) (1,idle)
Actions(Ω) (3,work) (1,work) (1,work) (1,idle) (1,work)
State(Φ) ns ns ns ns ns − 1
State(Ω) ns ns − 1 ns − 1 ns − 1 ns − 1

N(Φ)-N(Ω) 0 1 1 1 0

• Time period (0, G3):

At time t1, policy Ω assigns Server S1 to Stage 3 and policy Φ assigns Server S1

to Stage 1. Server S2 starts working under both policy Φ and policy Ω. Thus,

both policy Φ and policy Ω have the same N from t1 to t1 +G3.

• Time period [G3, G1):

At time t1 +G3, under policy Ω, Server S1 finishes the job at Stage 3 and starts

working on a job at Stage 1. Under policy Φ, Server S1 is working on a job at

Stage 1. Since P (G3 < G1) = 1, from t1 + G3 to t1 + G1, policy Ω has 1 less N

than policy Φ.

• Time period [G1, G
′
2):

At time t1 +G1, under policy Φ, Server S1 finishes the job at Stage 1 and under

policy Ω, Server S1 is still working on a job at Stage 1. Therefore, from t1 +G1

to t1 +G′2, policy Ω has still 1 less N than policy Φ.

• Time period [G′2, G1 +G3):

At time t1 +G′2, under policy Ω, Server S2 becomes idle. Under policy Φ, Server

S2 does not become idle since there are one more job at Stage 2 under policy Φ.

From t1 +G1 to t1 +G′2, policy Ω has still 1 less N than policy Φ.

• Time period [G1 +G3, G1 +G2 +G3]:

At time t1 + G3 + G1, under policy Ω, Server S1 finishes the job at Stage 1 and
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Server S2 starts working again. At time t1 + G1 + G2 + G3, Server S2 under

policy Ω finishes the job. Under policy Φ, Server S2 works until t1 + G′2 + G2

then remains idle until t1 + G1 + G2 + G3. The idle time for Server S2 under

policy Φ is t1 + G1 + G2 + G3 − (t1 + G′2 + G2) = G1 + G3 − G′2, which is the

same as idle time of Server S2 under policy Ω.

Similar to case 1, policy Ω and Φ will have exactly the same N after time t1 + G1 +

G2 + G3. From time t1 to time t1 + G1 + G2 + G3, policy Φ has more N than policy Ω,

so policy Φ cannot be optimal.

Case 3: n2 = k, k > 1 and Server S2 never idles under policy Ω from time t1 to

t1 +G1 +G3.

In this case, Server S2 never idles under policy Ω from time t1 to t1 + G1 + G3. If

this is true, then we want to show she also never idles under policy Φ since Stage 2 under

policy Φ always has the same or more N than Stage 2 under policy Ω from time t1 to

t1 +G1 +G3. Table below shows the actions and states for both policies during each time

period in this time span.

Time Period (0, G3) [G3, G1) [G1, G1 +G3]
Actions(Φ) (1,work) (1,work) (3,work)
Actions(Ω) (3,work) (1,work) (1,work)
State(Φ) ns ns ns
State(Ω) ns ns − 1 ns − 1

N(Φ)-N(Ω) 0 1 1

• Time period (0, G3):

At time t1, policy Ω assigns Server S1 to Stage 3 and policy Φ assigns Server S1
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to Stage 1. Server S2 starts working under both policy Φ and policy Ω. Thus,

both policy Φ and policy Ω have the same N from t1 to t1 +G3.

• Time period [G3, G1):

At time t1 +G3, under policy Ω, Server S1 finishes the job at Stage 3 and starts

working on a job at Stage 1. From t1 +G3 to t1 +G1, policy Ω has 1 less N than

policy Φ.

• Time period [G1, G1 +G3]:

At time t1 + G1, under policy Φ, Server S1 finishes the job at Stage 1. Then,

she starts working at Stage 3. At time t1 +G3 +G1, policy Φ finishes the job at

Stage 3 and Ω finishes the job at Stage 1 (at the same time). The two policies

reach the same state at this time.

From time t1 +G3 +G1, policy Ω will mimic policy Φ. Policy Ω and policy Φ will have

exactly the same N after time t1 +G1 +G3. From time t1 to time t1 +G1 +G3, policy Φ

has more N than policy Ω, so policy Φ cannot be optimal.

Therefore any policy Φ with m > 0 has more N than policy Ω, so the optimal dynamic

policy must have m = 0, which means the optimal dynamic policy should not assign Server

S1 to Stage 1 as long as there is at least one job at Stage 3. Therefore, the policy which

gives priority to Stage 3 is optimal under conditions in this theorem. �

Extended Numerical Analysis for Robustness Check

Robustness of Optimal NIT Policy

In this section, we check the robustness of optimal NIT policy with respect to the errors

in setting the optimal thresholds (R∗1, R∗3) by running additional numerical studies. We
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recompute the long-run average number of jobs in the system when a threshold is set 10%

and 20% below or above the optimal thresholds, while keeping the other threshold fixed.

This allows us to isolate the effect of change in one threshold on the performance of the

policy without being influenced by the change in the other threshold. We then compare

the performance of the policy with sub-optimal thresholds with that of the policy with

the optimal thresholds as well as with that of the optimal dynamic policy. Table A.1

summarizes the robustness check results on thresholds used for optimal NIT policy. The

top part of Table A.1 shows the the performance of the policy with sub-optimal thresholds

with that of the same policy with optimal thresholds. The bottom part of Table A.1 shows

the the performance of the policy with sub-optimal thresholds with that of the optimal

dynamic policy (obtained using MDP).

Table A.1. Summary of Robustness Analysis on Threshold (R1, R3) for NIT Policy
R1 R3

Item 20% below 10% below 10% above 20% above 20% below 10% below 10% above 20% above
Compared to NIT policy with Optimal Thresholds (R∗1, R∗3)

Average PL 0.0% 0.0% 0.0% 0.0% 0.5% 0.2% 0.2% 0.4%
Max PL 0.6% 0.6% 0.4% 0.4% 6.5% 3.0% 4.9% 7.1%

% of cases with PL < 10% 100% 100% 100% 100% 100% 100% 100% 100%
% of cases with PL < 5% 100% 100% 100% 100% 96% 100% 100% 99%

Compared to Optimal Dynamic Policy
Average PL 3.2% 3.2% 3.1% 3.2% 3.7% 3.3% 3.3% 3.5%

Max PL 12.7% 12.7% 12.7% 12.7% 16.6% 14.1% 14.1% 19.2%
% of cases with PL < 10% 95% 95% 95% 95% 93% 95% 93% 93%
% of cases with PL < 5% 77% 77% 77% 77% 73% 77% 77% 77%

Robustness of PIT Policy

In this section, we perform a similar robustness analysis the robustness of optimal PIT

policy with respect to the errors in setting the optimal thresholds (N∗2 , Z∗1 , Z∗3 , S∗1 , S∗3)

by running additional numerical studies. Similarly, we recompute the long-run average

number of jobs in the system when a threshold is set 10% and 20% below or above the
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optimal thresholds, while keeping the other thresholds fixed. Again, this allows us to

isolate the effect of change in one threshold on the performance of the policy without

being influenced by the change in the other thresholds.

Table A.2. Summary of Robustness Analysis on Threshold N2 for PIT Policy
R1

Item 20% below 10% below 10% above 20% above
Compared to NIT policy with Optimal Threshold N∗2

Average PL 0.9% 0.8% 0.4% 0.5%
Max PL 11.3% 11.3% 2.2% 2.2%

% of cases with PL < 10% 99% 99% 100% 100%
% of cases with PL < 5% 96% 98% 100% 100%

Compared to Optimal Dynamic Policy
Average PL 1.5% 1.3% 1.0% 1.0%

Max PL 15.3% 15.3% 3.9% 3.9%
% of cases with PL < 10% 99% 99% 100% 100%
% of cases with PL < 5% 94% 95% 100% 100%

Table A.3. Summary of Robustness Analysis on Thresholds (Z1, Z3) for PIT Policy
Z1 Z3

Item 20% below 10% below 10% above 20% above 20% below 10% below 10% above 20% above
Compared to NIT policy with Optimal Thresholds (Z∗1 , Z∗3)

Average PL 0.0% 0.0% 1.3% 1.9% 0.6% 0.2% 0.1% 0.1%
Max PL 0.0% 0.0% 6.9% 7.0% 7.0% 3.5% 1.2% 1.2%

% of cases with PL < 10% 100% 100% 100% 100% 100% 100% 100% 100%
% of cases with PL < 5% 100% 100% 90% 89% 96% 100% 100% 100%

Compared to Optimal Dynamic Policy
Average PL 0.6% 0.6% 1.9% 1.9% 1.1% 0.8% 0.6% 0.7%

Max PL 3.6% 3.6% 7.0% 7.0% 7.3% 4.4% 3.8% 4.1%
% of cases with PL < 10% 100% 100% 100% 100% 100% 100% 100% 100%
% of cases with PL < 5% 100% 100% 89% 89% 93% 100% 100% 100%

Table A.4. Summary of Robustness Analysis on Thresholds (S1, S3) for PIT Policy
S1 S3

Item 20% below 10% below 10% above 20% above 20% below 10% below 10% above 20% above
Compared to NIT policy with Optimal Thresholds (S∗1 , S∗3)

Average PL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 2.0%
Max PL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 9.6% 9.6%

% of cases with PL < 10% 100% 100% 100% 100% 100% 100% 100% 100%
% of cases with PL < 5% 100% 100% 100% 100% 100% 100% 90% 90%

Compared to Optimal Dynamic Policy
Average PL 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 2.6% 2.6%

Max PL 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 9.8% 9.8%
% of cases with PL < 10% 100% 100% 100% 100% 100% 100% 100% 100%
% of cases with PL < 5% 100% 100% 100% 100% 100% 100% 89% 89%
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Non-exponential Service Times

In this section, we present the details of numerical studies designed to test the performance

of our proposed policies when service time at Stage 2 has a non-exponential distribution.

Consider the MDP model presented in the chapter, except than the service time

at Stage 2 is not exponentially distributed. To analyze this system, we discretize the

time horizon into equal, nonoverlapping infinitesimal intervals δt, where δt → 0. At the

beginning of each interval, Server S1 decides whether to process (or continue processing)

a job at Stage 1 or at Stage 3 or remain idle, using the system’s state information, which

includes the number of jobs at each Stage i, ni, and the time-interval index t2 (in units

of δt) since Server S2’s last type-2 job processing started. Once the Server S1 decides

to process a job, the service process at Stage 1 is a Poisson process with service rate

µ1, independent of the arrival process and service process at other stages. Similarly, the

service process at Stage 3 is a Poisson process with service rate µ3. Thus, in each period

(time interval δt), the probability that one job is processed at Stage i is close to µiδt.

Similarly, a job may arrive at Stage 1 during this period, and the probability of having

one arrival at Stage 1 in each period is close to λδt as δt→ 0. The service time at Stage

2 follows an independent random variable with gamma(α, β) distribution. We let δt be

small enough so that the followings are true:

• The probability that Server S2 processes a type-2 job in period [t2, t2 + 1] is

close to φ2(t2δt)δt, where t2 is the total number of time intervals (in length of

δt) elapsed from when Server S2’s last started to process a job, and φ2(t) is the

hazard function of gamma(α, β).
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• The probability that Server S1 processes more than one job (either type-1 or

type-3) during the time interval of length δt is almost zero.

• The probability of arrival of more than one job at Stage 1 during an in interval

of length δt is almost zero.

Based on these assumptions, we can develop an MDP model with state space U =

{(n1, n2, n3, t2)|ni ≥ 0 ∀i, t2 ≥ 0}, action space A = {I, P1, P3}, as we defined in Section

4, and decision epochs being the beginning of each period.

Let η(i,j)(t2) be the joint probability that during period [t2, t2+1] (one unit of δt), i jobs

arrive at Stage 1, and j jobs are processed at Stage 2. As an example, η(1,0)(t2) represents

the probability that in period [t2, t2 + 1], a job arrives at Stage 1 and no departure from

Stage 2. Therefore, when δt→ 0,

η(0,0)(t2) = [1− λδt][1− φ2(t2δt)δt]

η(1,0)(t2) = [λδt][1− φ2(t2δt)δt]

η(0,1)(t2) = [1− λδt][φ2(t2δt)δt]

η(1,1)(t2) = [λδt][φ2(t2δt)δt]

and η(i,j)(t2) for all i, j ≥ 2. Thus, we get ∑i,j η(i,j)(t2) = 1. The optimality equation

under the long-run average number of jobs in the system criterion is

gδt+ V (n1, n2, n3, t2) =
{

(n1 + n2 + n3)δt+ min
{
m(n1, n2, n3, t2),

(µ1δt)m([n1 − 1]+, n2, n3, t2) + (1− µ1δt)m(n1, n2, n3, t2),

(µ3δt)m(n1, n2, [n3 − 1]+, t2) + (1− µ3δt)m(n1, n2, n3, t2)
}}
,
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where ∀n1, n2, n3, t2 ≥ 0 we have

m(n1, n2, n3, t2) = η(0,0)(t2)[pV (n1, n2, n3, t2 + 1) + (1− p)V (n1, n2, n3, t2 + 1)]

+ η(1,0)(t2)[pV (n1 + 1, n2, n3, t2 + 1) + (1− p)V (n1 + 1, n2, n3, t2 + 1)]

+ η(0,1)(t2)[pV (n1, [n2 − 1]+, n3 + 1, 0) + (1− p)V (n1, [n2 − 1]+, n3, 0)]

+ η(1,1)(t2)[pV (n1 + 1, [n2 − 1]+, n3 + 1, 0) + (1− p)V (n1 + 1, [n2 − 1]+, n3, 0)],

and g is the optimal average cost per unit time and [x]+ = max(x, 0). Table 2.1 shows

the performance of the optimal static, optimal NIT and optimal PIT when CV is 0.5 or

2.
Table A.5. The performance of the optimal static, optimal NIT and optimal PIT when
CV = 0.5 or 2

optimal static policy optimal NIT policy optimal PIT policy
CV = 0.5 CV = 2 CV = 0.5 CV = 2 CV = 0.5 CV = 2

Average PL 7.3% 16.6% 4.4% 10.4% 0.9% 2.0%
Max PL 81% 91.5% 56% 73.9% 5.6% 9.2%

% of cases with PL < 10% 80% 58% 84% 68% 100% 100%
% of cases with PL < 5% 69% 41% 74% 52% 98% 84%

Our numerical study includes a total of 81 scenarios generated according to the range

of parameters presented in Table 2.1. We calculate µ2 as described in Section 5.3 and

then set the parameters of the Gamma distributed service time at Stage 2 such that the

coefficient of variation is equal to 0.5 and 2. We considered a cycle of length T = 10,

which is discretized into T ≥ 1000 periods of length δt ≤ 0.01. Due to the large number

of states in our MDP model (since T is a very large number, i.e., T = 1000), we had to

truncate the number of jobs in each stage in our numerical study. Table A.5 summarizes

the performance of optimal static, optimal NIT and optimal PIT policies compared to

the optimal dynamic policy under full information.
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APPENDIX B

Appendix of Chapter 2: Proof of analytical results
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PROOF OF THEOREM 2.1: To show that there exists a stationary average-cost

optimal policy for MDP problem presented with the optimality equation (2.1), we must

show that: (i) state space S is finite; (ii) action set A is finite; (iii) per-unit transition

costs incurred at any state for any allowable action are bounded; and (iv) the MDP model

is unichain (Theorem 8.4.5, Puterman [21]).

Clearly, our problem satisfies condition (i) and (ii). To show that condition (iii) holds

for our problem, let c(a,n) denote the cost incurred per unit transition at state n ∈ S for

allowable action a ∈ An. Thus, c(a,n) ≤ ΓNT/Λ < ∞, i.e., per-unit transition costs are

finite, where Γ is the row vector of biθi’s and N is the row vector of Ni’s, where Ni is the

maximum limit for the number of type-i customers allowed in the system.

To show that out MDP is unichain for every deterministic policy, we need to show that

it consists of a single recurrent class plus a possibly empty set of transient states. Since

the state space S is finite in our MDP, there exists at least one positive recurrent class.

We can show by contradiction that there is only one positive recurrent class. Suppose

that there exists more than one positive recurrent class, R1, R2, · · · , RK . Considering

state N as defined above, note that every state n ∈ S leads to state N . If N is transient,

it leads to a closed class Rk for some k. But since every state in Rk also leads to N , then

Rk cannot be closed and this is a contradiction. Thus, N belongs to a positive recurrent

class. Without loss of generality, let N ∈ R1. With the same line of argument, we can

state the R1 is the only positive recurrent class in the model. This concludes the proof of

Theorem 2.1. �

PROOF OF PROPOSITION 2.1: We use induction and value iteration algorithm

to prove property P1. The optimality equation for the value iteration algorithm is as
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follows:

Vt+1(n) = 1
Λ

{ M∑
i=1

biθini +
M∑
i=1

λiVt(n + Ii{ni≤Ni})

+
M∑
i=1

niθiVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiVt(n) + ft(n)
}
,

where

(B.3) ft(n) = min


∑M
i=1 µiVt(n) Idling

minj∈Jn{µjVt(n− ej) +∑M
i=1,i 6=j µiVt(n)} Serve

We first show that property P1 holds at iteration t = 1. Assuming P1 holds at

iteration t, we then show that it holds at iteration t+ 1.

(P1) Iteration 1: Since V0(n) = 0, ∀n ∈ S, then at iteration 1, we will have V1(n) =
1
Λ(∑i biθini) for all n ∈ S, by (B.3). For type-j customer when j ∈ Jn, we have:

DjV1(n) = V1(n)− V1(n− ej)

= 1
Λ

bjθjnj +
M∑

i=1,i 6=j
biθini

− 1
Λ

bjθj(nj − 1) +
M∑

i=1,i 6=j
biθini


= bjθj

Λ .

Thus, property P1 holds since 0 ≤ bjθj

Λ = DjV1(n) ≤ bj, ∀n ∈ S and j ∈ Jn.

(P1) Iteration t: We assume that property P1 holds at iteration t. That is:

(B.4) 0 < bjθj
Λ ≤ DjVt(n) ≤ bj, ∀n ∈ S and j ∈ Jn.
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(P1) Iteration t+ 1: We complete the proof by showing that property P1 holds at

iteration t+ 1. By the optimality equation (B.3), we have:

DjVt+1(n) = Vt+1(n)− Vt+1(n− ej)

= 1
Λ

{
bjθj +

M∑
i=1

λi
[
Vt(n + Ii{ni<Ni})− Vt(n− ej + Ii{ni<Ni})

]

+
M∑
i=1

niθi
[
Vt(n− Ii{ni>0})− Vt(n− ej − Ii{ni>0})

]

+
M∑
i=1

(Ni − ni)θi
[
Vt(n)− Vt(n− ej)

]

− θj
[
Vt(n− ej)− Vt(n− 2ej)

]
+
[
ft(n)− ft(n− ej)

] }

= 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)− θjDjVt(n− ej)

+ Djft(n)
}

(B.5)

where Djft(n) = ft(n)− ft(n− ej), ∀n ∈ S and j ∈ Jn.

The term Djft(n) depends on the optimal policy at states n and n− ej. By induc-

tion assumption (B.4), we know that idling is optimal if there is no customer in system.

Therefore, there are 3 cases to consider.

CASE 1: nj = 1 and nk = 0, ∀k 6= j at state n, then serving type j at state n and idling

at n− ej = (0, 0, . . . , 0) are the only options.

CASE 2: Serving the same customer of type z ∈ {1, 2, . . . ,M} is optimal at both states

n and n− ej.
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CASE 3: Serving different customer of types z, l ∈ {1, 2, . . . ,M} is optimal at states n

and n− ej, respectively.

CASE 1: In this case, nj = 1 and nk = 0, ∀k 6= j. Considering serving type-j and

idling as the only options at states n and n− ej, respectively, we have:

Djft(n) =
M∑

i=1,i 6=j
µiDjVt(n)

DjVt+1(n) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)− θjDjVt(n− ej)

+
M∑

i=1,i 6=j
µiDjVt(n)

}
.

By induction assumption (B.4), we have:

DjVt+1(n) ≤ 1
Λ

{
bjθj +

M∑
i=1

λibj +
M∑
i=1

niθibj +
M∑
i=1

(Ni − ni)θibj − θjbj +
M∑

i=1,i 6=j
µibj

}

= 1
Λ

 M∑
i=1

λi +
M∑
i=1

Niθi +
M∑

i=1,i 6=j
µi

 bj =
[

Λ− µj
Λ

]
bj ≤ bj,

since Λ = ∑M
i=1(λi + µi +Niθi). Similarly,

DjVt+1(n) ≥ 1
Λ

{
bjθj +

 M∑
i=1

λi +
M∑
i=1

niθi +
M∑
i=1

(Ni − ni)θi − θj +
M∑

i=1,i 6=j
µi

 bjθj
Λ

}

= 1
Λ

{
bjθj +

 M∑
i=1

λi +
M∑
i=1

Niθi − θj +
M∑

i=1,i 6=j
µi

 bjθj
Λ

}

= 1
Λ

{
bjθj + [Λ− (θj + µi)]

bjθj
Λ

}
≥ bjθj

Λ .



196

CASE 2: In this case, serving the same customer of type z ∈ {1, 2, . . . ,M} is optimal

at both states n and n− ej. Thus, by (B.3) and (B.5), we have:

Djft(n) =
µzV (n− ez) +

M∑
i=1,i 6=z

µiV (n)
−

µzV (n− ez − ej) +
M∑

i=1,i 6=z
µiV (n− ej)


= µzDjV (n− ez) +

M∑
i=1,i 6=z

µiDjVt(n)

DjVt+1(n) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)

− θjDjVt(n− ej) + µzDjV (n− ez) +
M∑

i=1,i 6=z
µiDjVt(n)

}

(B.6)

By induction assumption (B.4), we have:

DjVt+1(n) ≤ 1
Λ

{
bjθj +

M∑
i=1

λibj +
M∑
i=1

niθibj +
M∑
i=1

(Ni − ni)θibj − θjbj + µzbj +
M∑

i=1,i 6=z
µibj

}

= 1
Λ

[
M∑
i=1

λi +
M∑
i=1

Niθi +
M∑
i=1

µi

]
bj = Λ

Λbj ≤ bj

and

DjVt+1(n) ≥ 1
Λ

{
bjθj +

[
M∑
i=1

λi +
M∑
i=1

niθi +
M∑
i=1

(Ni − ni)θi − θj +
M∑
i=1

µi

]
bjθj
Λ

}

= 1
Λ

{
bjθj +

[
M∑
i=1

λi +
M∑
i=1

Niθi − θj +
M∑
i=1

µi

]
bjθj
Λ

}

= 1
Λ

{
bjθj + [Λ− θj]

bjθj
Λ

}
≥ bjθj

Λ .



197

CASE 3: In this case, serving different customer of types z, l ∈ {1, 2, . . . ,M} is optimal

at states n and n− ej, respectively.

Define [ft(n)]x to be the value of function ft(n) when action ”Serving type-x customer”

is chosen at state n. Thus, since [ft(n)]z ≤ [ft(n)]l, we have:

(B.7) Djft(n) = [ft(n)]z −
[
ft(n− ej)

]
l
≤ [ft(n)]l −

[
ft(n− ej)

]
l
.

Note that it is always feasible to serve l at state n if it is feasible to serve l at n− ej.

Thus, consider DjVt+1(n) for this case,

DjVt+1(n) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)

− θjDjVt(n− ej) + [ft(n)]z −
[
ft(n− ej)

]
l

}

Using (B.7), we get

DjVt+1(n) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)

− θjDjVt(n− ej) + [ft(n)]l −
[
ft(n− ej)

]
l

}
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where [ft(n)]l− [ft(n− ej)]l = µlDjV (n− el) +∑
∀i 6=l µiDjVt(n), which was obtained

in (B.6) in Case 2, except for z being replaced by l. Thus, we have:

DjVt+1(n) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)

− θjDjVt(n− ej) + µlDjV (n− el) +
M∑

i=1,i 6=l
µiDjVt(n)

}
.

The right hand side is the same as the right hand side of the second equation in (B.6)

in Case 2, except for z being replaced by l. Therefore, similar to Case 2 the upper bound

of P1 holds at iteration t+ 1 for Case 3.

For the lower bound we need to consider two cases, namely nz = 1 and nz > 1. When

nz = 1, we have:

Djft(n) = [ft(n)]z −
[
ft(n− ej)

]
l
≥ [ft(n)]l −

[
ft(n− ej)

]
idling

,

since idling has higher cost than serving l at state n− ej. Note that serving serving

l is optimal at state n− ej. Since the actions at states n and n− ej are serving a

customer and idling, respectively, the proof for the lower bound if analogous to the proof

for lower bound in Case 1. Note that the proof for Case 1 is general and does require that

nj = 0,∀j ∈ Jn.

When nz > 1, we will have:

Djft(n) = [ft(n)]z −
[
ft(n− ej)

]
l
≥ [ft(n)]z −

[
ft(n− ej)

]
z
,
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since at state n− ej serving type-l customer has a lower cost than serving type-z

customer. Thus, the proof for the lower bound is analogous to the proof for lower bound

in Case 2. This concludes the proof for lower bound of P1 in Case 3. This completes the

proof of Proposition 2.1. �

PROOF OF PROPOSITION 2.2:

This proposition states that the optimality equation (2.1) has the following property:

V k(n)− V j(n) ≥ 0 is non-decreasing in nz, for all z 6= j, k and j, k, z ∈ Jn.

First, we present and prove following Lemmas.

Lemma B.1. If P2 holds for nj, nk 6= 0, ∀j, k ∈ Jn, then the following equation is

non-decreasing in nz, ∀z 6= j, k and z ∈ Jn:

µk
[
V (n− ek)− V (n)

]
+ µj

[
V (n)− V (n− ej)

]
, ∀j, k ∈ Jn and j 6= k.

PROOF OF LEMMA B.1: Using equation (2.1), we have:

V k(n)− V j(n) = 1
Λ

{ [ M∑
i=1

biθini −
M∑
i=1

biθini

]

+
[
M∑
i=1

λiV (n + Ii{ni≤Ni})−
M∑
i=1

λiV (n + Ii{ni≤Ni})
]

+
[
M∑
i=1

niθiV (n− Ii{ni>0})−
M∑
i=1

niθiV (n− Ii{ni>0})
]

+
[
M∑
i=1

(Ni − ni)θiV (n)−
M∑
i=1

(Ni − ni)θiV (n)
]

+
µkV (n− ek) +

M∑
i=1,i 6=k

µiV (n)− µjV (n− ej) +
M∑

i=1,i 6=j
µiV (n)

}
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Therefore,

Λ
[
V k(n)− V j(n)

]
=

M∑
i=1

µi [V (n)− V (n)]

+ µk
[
V (n− ek)− V (n)

]
+ µj

[
V (n)− V (n− ej)

]
= µk

[
V (n− ek)− V (n)

]
+ µj

[
V (n)− V (n− ej)

]
Therefore, since P2 holds, V k(n)−V j(n) (the left-hand-side) is non-decreasing in nz,

the right-hand-side is also non-decreasing in ni. This completes the proof. �

Lemma B.2. If P2 holds for nj = 0 and nk 6= 0, ∀j, k ∈ Jn and j 6= k, then the

following equation is non-decreasing in nz, ∀z 6= j, k and z ∈ Jn:

µj
[
V (n)− V (n− ej)

]
, ∀j ∈ Jn and j 6= k.

PROOF OF LEMMA B.2: Using equation (2.1) and similar to Lemma B.1, we

have:

Λ
[
V k(n)− V j(n)

]
=

M∑
i=1

µi [V (n)− V (n)]

+ µk [V (n)− V (n)]

+ µj
[
V (n)− V (n− ej)

]
= µj

[
V (n)− V (n− ej)

]
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Therefore, since P2 holds, V k(n)− V j(n) (the left-hand-side) is non-decreasing in nz

, the right-hand-side is also non-decreasing in nz. This completes the proof. �

Lemma B.3. If P2 holds for nj 6= 0 and nk = 0, ∀j, k ∈ Jn and j 6= k, then the

following equation is non-decreasing in nz, ∀z 6= j, k and z ∈ Jn:

µk
[
V (n− ek)− V (n)

]
, ∀k ∈ Jn and k 6= j.

PROOF OF LEMMA B.3: Using equation (2.1), we have:

Λ
[
V k(n)− V j(n)

]
=

M∑
i=1

µi [V (n)− V (n)]

+ µk
[
V (n− ek)− V (n)

]
+ µj [V (n)− V (n)]

= µk
[
V (n− ek)− V (n)

]
Therefore, since P2 holds, V k(n)−V j(n) (the left-hand-side) is non-decreasing in nz,

the right-hand-side is also non-decreasing in nz. This completes the proof. �

Proof of P2:

We use induction and value iteration algorithm to prove property P2.

(P2) Iteration 1: At iteration 0, V0(n) = 0, ∀n ∈ S. Therefore, P2 holds for all j, k,n.

(P2) Iteration t: We assume that property P2 holds at iteration t. That is,

(B.8) V k
t (n + ez)− V j

t (n + ez) ≥ V k
t (n)− V j

t (n), ∀j, k 6= z and j, k, z ∈ Jn.
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(P2) Iteration t+ 1: We complete the proof by showing that property P2 holds at

iteration t+ 1. Using the definition of P2, we want to show:

(B.9) V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n), ∀j, k 6= z and j, k, z ∈ Jn.

To prove that P2 holds at iteration (t+ 1), we consider three cases:

CASE 1: nj, nk 6= 0, ∀j, k ∈ Jn.

CASE 2: nj = 0 and nk 6= 0, ∀j, k ∈ Jn.

CASE 3: nj 6= 0 and nk = 0, ∀j, k ∈ Jn.

CASE 1: In this case, nj, nk 6= 0. We want to show

V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n).

V k
t+1(n + ez)− V j

t+1(n + ez) = 1
Λ

{ M∑
i=1

µi [Vt(n + ez)− Vt(n + ez)]

+ µk
[
Vt(n− ek + ez)− Vt(n + ez)

]
+ µj

[
Vt(n + ez)− Vt(n− ej + ez)

] }
On the other hand,

V k
t+1(n)− V j

t+1(n) = 1
Λ

{ M∑
i=1

µi [Vt(n)− Vt(n)]

+ µk
[
Vt(n− ek)− Vt(n)

]
+ µj

[
Vt(n)− Vt(n− ej)

] }
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According to Lemma 1, since P2 holds at iteration t, we have

V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n)

This concludes the prove for Case 1.

CASE 2: In this case, nj = 0 and nk 6= 0. We want to show V k
t+1(n + ez)−V j

t+1(n + ez) ≥

V k
t+1(n)− V j

t+1(n).

V k
t+1(n + ez)− V j

t+1(n + ez) = 1
Λ

{ M∑
i=1

µi [Vt(n + ez)− Vt(n + ez)]

+ µk
[
Vt(n− ek + ez)− Vt(n + ez)

]
+ µj [Vt(n + ez)− Vt(n + ez)]

}

On the other hand,

V k
t+1(n)− V j

t+1(n) = 1
Λ

{ M∑
i=1

µi [Vt(n)− Vt(n)]

+ µk
[
Vt(n− ek)− Vt(n)

]
+ µj [Vt(n)− Vt(n)]

}

According to Lemma 2, since P2 holds at iteration t, we have

V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n)

This concludes the prove for Case 2.
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CASE 3: In this case, nj 6= 0 and nk = 0. We want to show

V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n).

V k
t+1(n + ez)− V j

t+1(n + ez) = 1
Λ

{ M∑
i=1

µi [Vt(n + ez)− Vt(n + ez)]

+ µk [Vt(n + ez)− Vt(n + ez)]

+ µj
[
Vt(n + ez)− Vt(n− ej + ez)

] }
On the other hand,

V k
t+1(n)− V j

t+1(n) = 1
Λ

{ M∑
i=1

µi [Vt(n)− Vt(n)]

+ µk [Vt(n)− Vt(n)]

+ µj
[
Vt(n)− Vt(n− ej)

] }

According to Lemma 3, since P2 holds at iteration t, we have

V k
t+1(n + ez)− V j

t+1(n + ez) ≥ V k
t+1(n)− V j

t+1(n)

This concludes the prove for Case 3. This completes the proof of Proposition 2.2.

�

PROOF OF THEOREM 2.2: (i) We prove by contradiction. Suppose property P1

holds, but the optimal policy is state n 6= 0 is to idle. Thus, according to the optimality
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equation (2.1), we have

M∑
i=1

µiV (n) < min
j∈Jn
{µjV (n− ej) +

M∑
i=1,i 6=j

µiV (n)}

< µjV (n− ej) +
M∑

i=1,i 6=j
µiV (n) ∀j ∈ Jn

Which means

µj
[
V (n)− V (n− ej)

]
< 0 ∀j ∈ Jn

DjV (n) < 0 ∀j ∈ Jn ⇐= Contradicts P1

Therefore, the optimal scheduling policy at states n 6= 0 cannot be idling.

(ii) Theorem 2 (ii) implies that if it is optimal to serve a type-j customer in state

n ∈ S, it is also optimal to serve a type-j customer in any state n′ ∈ S, where j ∈ Jn′

and Jn′ ⊆ Jn. To illustrate, suppose serving type-j customer is optimal in state n in

which there exists at least one customer of each type. If Theorem 2 (ii) holds true, it

is always optimal to serve type-j customer, regardless of the number of customers of

other types in the system. This means that type-j customer has the highest priority.

Now consider a state n′ where there are no type-j customer but there exists at least one

customer of other types. Without loss of generality, assume that serving type-k customer

is optimal in state n′. Thus, serving type-k customer is always optimal as long as there

is no type-j customer in the system. This means that type-k customer has the second

highest priority. Following the same line of argument, it is clear that the server scheduling

policy is a static priority policy. To formally prove Theorem 2 (ii), we use contradiction.
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Let us assume it is optimal to serve type-j customer in state n, but the optimal action

is to serve type-k customer (k 6= j and k ∈ Jn′), in state n′. Consider another state n′′,

where n′′i = min{ni, n′i} for all i.

There are three possible cases for the optimal action is state n′′:

CASE 1: Serving type-j customer is optimal in state n′′;

CASE 2: Serving type-k customer (k 6= j) is optimal in state n′′;

CASE 3: Serving type-z customer (z 6= j, k) or idling is optimal in state n′′;

CASE 1: Let V i(n) correspond to the value function if system is at state n and we

decide to serve type-i customer. If serving type-j customer is optimal in state n′′, we

have:

V k(n′′)− V j(n′′) ≥ 0

On the other hand, according to P2, V k(n′′)−V j(n′′) ≥ 0 is non-decreasing in n′′i . Thus,

since n′i ≥ n′′i , we have V k(n′)− V j(n′) ≥ 0, which implies that serving type-k customer

cannot be optimal at state n′. This is a contradiction.

CASE 2: If serving type-k customer is optimal in state n′′, we have:

V j(n′′)− V k(n′′) ≥ 0

On the other hand, according to P2, V j(n′′)−V k(n′′) ≥ 0 is non-decreasing in n′′i . Thus,

since ni ≥ n′′i , we have V j(n) − V k(n) ≥ 0, which implies that serving type-j customer

cannot be optimal at state n. This is a contradiction.
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CASE 3: If serving type-z customer (z 6= j, k) or idling is optimal in state n′′, we have:

V j(n′′)− V z(n′′) ≥ 0 and V k(n′′)− V z(n′′) ≥ 0

On the other hand, according to P2, V j(n′′)− V z(n′′) ≥ 0 and V k(n′′)− V z(n′′) ≥ 0 are

non-decreasing in n′′i . Thus, since ni ≥ n′′i and n′i ≥ n′′i , we have V j(n)− V z(n) ≥ 0 and

V k(n)−V z(n) ≥ 0, which imply that serving type-j customer cannot be optimal at state

n and serving type-k customer cannot be optimal at state n′ . This is a contradiction.

Thus, in all three possible cases, we reached a contradiction. Therefore, it is also optimal

to serve type-j customer in state n′. This concludes the proof of Theorem 2.2. �

PROOF OF PROPOSITION 2.3

First, we present and prove following Lemma.

Lemma B.4. If P3 holds for nj > 1, nk ≥ 1, then:

Property L1: DjV (n− ej)−DjV (n− ek) ≥ 0, ∀j, k ∈ Jn and j 6= k.

PROOF OF LEMMA B.4: We use induction and value iteration algorithm to

prove property L1.

(L1) Iteration 1: At iteration 0, V0(n) = 0, ∀n ∈ S. Therefore, DjV0(n− ej) −

DjV0(n− ek) ≥ 0.

(L1) Iteration t: We assume that property L1 holds at iteration t. That is, for nj > 1

and nk ≥ 1, we have:

(B.10) DjVt(n− ej) ≥ DjVt(n− ek), ∀j, k ∈ Jn.
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(L1) Iteration t+ 1: We complete the proof by showing that property L1 holds at iter-

ation t+ 1. Using (B.5), for nj > 1 and nk ≥ 1, we have:

DjVt+1(n− ej) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n− ej + Ii{ni<Ni})

+
M∑

i=1,i 6=j
niθiDjVt(n− ej − Ii{ni>0}) +

M∑
i=1

(Ni − ni)θiDjVt(n− ej)

+ (nj − 1)θjDjVt(n− ej − ej) + Djft(n− ej)
}

DjVt+1(n− ek) = 1
Λ

{
bjθj +

M∑
i=1

λiDjVt(n− ek + Ii{ni<Ni})

+
M∑

i=1,i 6=j
niθiDjVt(n− ek − Ii{ni>0}) +

M∑
i=1

(Ni − ni)θiDjVt(n− ek)

+ (nj − 1)θjDjVt(n− ej − ek) + Djft(n− ek)
}

Thus, we have:

DjVt+1(n− ej)−DjVt+1(n− ek)

= 1
Λ

{ M∑
i=1

λi
[
DjVt(n− ej + Ii{ni<Ni})−DjVt(n− ek + Ii{ni<Ni})

]

+
M∑

i=1,i 6=j
niθi

[
DjVt(n− ej − Ii{ni>0})−DjVt(n− ek − Ii{ni>0})

]

+
M∑
i=1

(Ni − ni)θi
[
DjVt(n− ej)−DjVt(n− ek)

]

+ (nj − 1)θj
[
DjVt(n− ej − ej)−DjVt(n− ej − ek)

]
+
[
Djft(n− ej)−Djft(n− ek)

] }
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According to the induction assumption (B.10), the first four terms are non-negative.

Therefore, we only need to show:

Djft(n− ej)−Djft(n− ek) ≥ 0, ∀j, k ∈ Jn.

There are two cases to consider: nj > 2 and nj = 2

CASE 1: nj > 2 at state n. In this case, when j ∈ Jn, using the result of Theorem 2

(ii) and since property P3 holds at iteration t, it is optimal to serve type-j customer at

iteration t in all four states n− ej, n− ek, n− 2ej and n− ek − ej.

When nj > 2 at state n, using (B.3), we have:

Djft(n− ej) = µjVt(n− 2ej) +
M∑

i=1,i 6=j
µiVt(n− ej)

−

µjVt(n− 3ej) +
M∑

i=1,i 6=j
µiVt(n− 2ej)


= µjDjVt(n− 2ej) + DjVt(n− ej)

M∑
i=1,i 6=j

µi

Djft(n− ek) = µjVt(n− ej − ek) +
M∑

i=1,i 6=j
µiVt(n− ek)

−

µjVt(n− 2ej − ek) +
M∑

i=1,i 6=j
µiVt(n− ej − ek)


= µjDjVt(n− 2ej) + DjVt(n− ej)

M∑
i=1,i 6=j

µi

(B.11)
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Therefore, by the induction assumption (B.10),

Djft(n− ej)−Djft(n− ek) = µjDjVt(n− 2ej) + DjVt(n− ej)
M∑

i=1,i 6=j
µi

−

µjDjVt(n− ej − ek) + DjVt(n− ek)
M∑

i=1,i 6=j
µi


= µj

[
DjVt(n− 2ej)−DjVt(n− ej − ek)

]
+
[
DjVt(n− ej)−DjVt(n− ek)

] M∑
i=1,i 6=j

µi ≥ 0

CASE 2: nj = 2 at state n. In this case, serving type-j customer is still optimal in

states n− ej, n− ek, and n− ek − ej, but serving the customer of type z 6= j is optimal

at n− ej − ej. Thus, Djft(n− ek) is still given by (B.11), but Djft(n− ej) after some

algebra is as follows:

Djft(n− ej) = µz
[
Vt(n− ej)− Vt(n− 2ej − ez)

]
+ DjVt(n− ej)

M∑
i=1,i 6=j,z

µi

= µz
[
DjVt(n− ej) + DzVt(n− 2ej)

]
+ DjVt(n− ej)

M∑
i=1,i 6=j,z

µi

= µzDzVt(n− 2ej) + DjVt(n− ej)
M∑

i=1,i 6=j
µi

Since serving type-z customer is optimal at state n− 2ej, we have

[ft(n− 2ej)]z ≤ [ft(n− 2ej)]k for all k 6= z. Thus, using optimality equation (2.1), we

have:

µzDzVt(n− 2ej) ≥ µkDkVt(n− 2ej)
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Thus, the rest of the proof for Case 2 follows exactly the same steps of the proof

provided for Case 1. This concludes the proof of L1. �

Now, we prove Proposition 3. We use induction and value iteration algorithm to prove

property P3.

(P3) Iteration 1: At iteration 0, V0(n) = 0, ∀n ∈ S. Therefore, µjDjV0(n) = µkDkV0(n).

(P3) Iteration t: We assume that property P3 holds at iteration t. That is, for nj ≥ 1

and nk ≥ 1, we have:

(B.12) µjDjVt(n) ≥ µkDkVt(n), ∀j, k ∈ Jn.

(P3) Iteration t+ 1: We complete the proof by showing that property P1 holds at

iteration t+ 1. Using (B.5), for nj ≥ 1 and nk ≥ 1, we have:

µjDjVt+1(n) = µj
Λ

{
bjθj +

M∑
i=1

λiDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDjVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDjVt(n)

− θjDjVt(n− ej) + Djft(n)
}

(B.13)

µkDkVt+1(n) = µk
Λ

{
bkθk +

M∑
i=1

λiDkVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiDkVt(n− Ii{ni>0}) +
M∑
i=1

(Ni − ni)θiDkVt(n)

− θkDkVt(n− ek) + Dkft(n)
}

(B.14)

There are 2 cases to consider: nj > 1, and nj = 1. Notice that it is clear that property

P3 holds for the case where nj = nk = 1.
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CASE 1: nj > 1 at state n. In this case, when j ∈ Jn, by induction assumption (B.12), it

is optimal to serve customer type-j at iteration t in all three states n, n− ej and n− ek.

CASE 2: nj = 1 at state n. In this case, serving type-j customer is optimal in states n

and n− ek, but serving the type-k customer is optimal at n− ej.

CASE 1: When nj > 1 at state n, using (B.3), we have:

µjDjft(n) = µj

µjVt(n− ej) +
M∑

i=1,i 6=j
µiVt(n)


− µj

µjVt(n− ej − ej) +
M∑

i=1,i 6=j
µiVt(n− ej)


= µjµjDjVt(n− ej) + µjDjVt(n)

M∑
i=1,i 6=j

µi

(B.15)

Similarly,

µkDkft(n) = µk

µjVt(n− ej) +
M∑

i=1,i 6=j
µiVt(n)


− µk

µjVt(n− ej − ej) +
M∑

i=1,i 6=j
µiVt(n− ej)


= µjµkDkVt(n− ej) + µkDkVt(n)

M∑
i=1,i 6=j

µi

(B.16)

Considering induction assumption (B.12), when we compare (B.15) and (B.16), con-

sidering induction assumption (B.16), we can show that

(B.17) µjDjft(n) ≥ µkDkft(n), ∀j, k ∈ Jn.
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Substituting µjDjft(n) with µkDkft(n) in (B.13) and (B.17), we get

µjDjVt+1(n) ≥ 1
Λ

{
bjθjµj +

M∑
i=1

λiµjDjVt(n + Ii{ni<Ni})

+
M∑

i=1,i 6=j
niθiµjDjVt(n− Ii{ni>0}) +

M∑
i=1

(Ni − ni)θiµjDjVt(n)

+ (nj − 1)θjµkDkVt(n− ej) + µkDkft(n)
}

(B.18)

Furthermore, using Lemma B.4 and considering induction assumption (B.12), we have:

µjDjVt(n− ej) ≥ µjDjVt(n− ek) ≥ µkDkVt(n− ek)

Thus, we have

µjDjVt+1(n) ≥ 1
Λ

{
bjθjµj +

M∑
i=1

λiµjDjVt(n + Ii{ni<Ni})

+
M∑

i=1,i 6=j
niθiµjDjVt(n− Ii{ni>0}) +

M∑
i=1

(Ni − ni)θiµjDjVt(n)

+ (nj − 1)θjµkDkVt(n− ek) + µkDkft(n)
}

(B.19)

Therefore,

µjDjVt+1(n)− bjθjµj
Λ + θj

ΛµkDkVt(n− ek) ≥ 1
Λ

{ M∑
i=1

λiµjDjVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiµkDkVt(n− Ii{ni>0})

+
M∑
i=1

(Ni − ni)θiµjDjVt(n)

+ µkDkft(n)
}

(B.20)
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Similarly, using (B.16), we have

µkDkVt+1(n)− bkθkµk
Λ + θk

Λ µkDkVt(n− ek) = 1
Λ

{ M∑
i=1

λiµkDkVt(n + Ii{ni<Ni})

+
M∑
i=1

niθiµkDkVt(n− Ii{ni>0})

+
M∑
i=1

(Ni − ni)θiµkDkVt(n) + µkDkft(n)
}

(B.21)

Comparing (B.20) and (B.21), and considering (B.12), we conclude

µjDjVt+1(n)− bjθjµj
Λ + θj

ΛµkDkVt(n− ek) ≥ µkDkVt+1(n)− bkθkµk
Λ + θk

Λ µkDkVt(n− ek)

or µjDjVt+1(n)− µkDkVt+1(n) ≥ 1
Λ

{
bjθjµj − bkθkµk + (θk − θj)µkDkVt(n− ek)

}

Therefore, to prove P3 holds at iteration t+ 1 in Case 1, we only need to show that

(B.22) bjθjµj − bkθkµk + (θk − θj)µkDkVt(n− ek) ≥ 0

If C1 holds for customer-types j and k, then we have two cases:

(1) bjθjµj > bkθkµk and θk > θj. In this case, since DkVt(n− ek) ≥ bkθk

Λ > 0, we

have bjθjµj − bkθkµk + (θk − θj)µkDkVt(n− ek) ≥ 0.

(2) bjθjµj > bkθkµk and θk ≤ θj. In this case, using P1, we replace DkVt(n− ek)

in (B.22) with its lower bound bk, and considering the fact that (θk − θj) is

non-positive in this case, we have

bjθjµj − bkθkµk + (θk − θj)µkDkVt(n− ek) ≥ bjθjµj − bkθkµk + (θk − θj)µkbk > 0
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since if bjµj > bkµk, then bjθjµj − bkθkµk + (θk − θj)µkbk = θj(bjµj − bkµk) > 0.

If C2 holds between the customer of types j and k, then bjθjµj ≤ bkθkµk, θj ≤ θk and

bjθjµj ≥ bkθkµk
[
1− θk−θj

Λ

]
. Note that,

bjθjµj ≥ bkθkµk

[
1− θk − θj

Λ

]
⇒ bjθjµj − bkθkµk + (θk − θj)µk(

bkθk
Λ )

Using P1, we have DkVt(n− ek) ≥ bkθk

Λ and therefore

bjθjµj − bkθkµk + (θk − θj)µkDkVt(n− ek) ≥ bjθjµj − bkθkµk + (θk − θj)µk(
bkθk
Λ ) ≥ 0

CASE 2: When nj = 1 at state n. In this case, serving type-j customer is optimal in

states n and n− ek, but serving the customer of type z 6= j is optimal at n− ej. Thus,

µkDkVt(n) is still given by (B.16), but µjDjVt(n) we have

µjDjft(n) = µj

µjVt(n− ej) + Vt(n)
M∑

i=1,i 6=j
µi


− µj

µzVt(n− ej − ez) + Vt(n− ej)
M∑

i=1,i 6=z
µi


= µjµz

[
Vt(n)− Vt(n− ej − ez)

]
+ µjDkVt(n)

M∑
i=1,i 6=j,z

µi

= µjµz
[
DkVt(n) + DkVt(n− ej)

]
+ µjDkVt(n)

M∑
i=1,i 6=j,z

µi

= µjµzDzVt(n− ej) + µjDkVt(n)
M∑

i=1,i 6=j
µi

(B.23)

Since serving type-z customer is optimal at state n− ej, we have

[ft(n− ej)]z ≤ [ft(n− ej)]k for all k 6= z. Thus, using the optimality equation (2.1), we
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have:

µjµzDzVt(n− ej) ≥ µjµkDkft(n− ej)

Using the induction assumption (B.12) and comparing (B.23) and (B.16), we have

µjDjft(n) ≥ µkDkft(n), ∀j, k ∈ Jn and j 6= k.

Thus, the rest of the proof for Case 2 follows exactly the same steps of the proof

provided for Case 1. This concludes the proof of Proposition 2.3. �

PROOF OF THEOREM 2.3: By Theorem 2.1, we know that there exists a sta-

tionary average-cost optimal policy for the MDP problem presented with the optimality

equation (2.1) and Idling is not optimal in a nonempty system. We prove by contradiction

that if property P3 holds, then type-j customer always has a higher priority over type-k

customer. Suppose that P3 holds, but it is optimal to give priority to type-k customer.

Thus considering (1) and the fact that idling is not optimal, we have

µkV (n− ek) +
M∑

i=1,i 6=k
µiV (n) < µjV (n− ej) +

M∑
i=1,i 6=j

µiV (n)

µjDjV (n) < µkDkV (n) ⇐= Contradicts P3

Therefore, if property P3 holds, then type-j customer always has a higher priority

over type-k customer. This concludes the proof of Theorem 2.3. �
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APPENDIX C

Appendix of Chapter 3



Section 1 

NORTHWESTERN EMERGENCY MEDICINE QUALITY SURVEY 

Emergency Department Operational Use Only 

Data and Time: “auto-fill”                                                                           

Section 2 

NORTHWESTERN EMERGENCY MEDICINE QUALITY SURVEY 

Your answers will help us make the experience for patients better in Emergency Department (ED). 
All your answers are confidential; your name will not be associated with anything you say.   

When you arrived at this Emergency Department, the triage nurse evaluated your symptoms, vital 
signs and medical history. We would like to ask you about your waiting experiences only between 
seeing the triage nurse and seeing the doctor.  

Patient’s typical progress at ED 

 

Who is filling out this survey? Patient Parent  Family/Friend/Colleague Other 
 
Section 3 (Waiting Experience) 
 

Q1: How long did you wait in the waiting room after seeing the triage nurse and before seeing the 
doctor? Provide the best estimate of your wait ……… 
Less than half an hour 
Half an hour to 1 hour 
1 hour to 2 hours 
2 hours to 3 hours 
3 hours to 4 hours 
More than 4 hours 
I do not remember 
 
Q2: Did you wait … you expected? 
Much longer than 
Longer than 
Almost the same as 
Shorter than 
Much shorter than 
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Q3: On a scale of 1 to 7, how satisfied are you with your wait-time in the waiting room (after seeing 
the triage nurse and before seeing the doctor)? 
1 Least Satisfied 
2 
3 
4 
5 
6 
7 Most Satisfied 
 
Q4: On a scale of 1 to 7, how satisfied are you with your overall experience at our Emergency 
Department? 
1 Least Satisfied 
2 
3 
4 
5 
6 
7 Most Satisfied 
 
Q5: What was the estimated wait-time announced to you? Provide the best estimate of the wait 
announced to you ……… 
Less than half an hour 
Half an hour to 1 hour 
1 hour to 2 hours 
2 hours to 3 hours 
3 hours to 4 hours 
More than 4 hours 
Do not remember 
No Announcement 
 
Q6: How was your wait-time compared to the last time you were here?  
Shorter than last time 
Almost the same as last time 
Longer than last time 
I do not remember 
This is my first time in Northwestern ED. 
 
Q7: On a scale of 1 to 7, how did you feel about the order at which patients receive care in 
Emergency Departments? 
1 Very unfair 
2 
3 
4 
5 
6 
7 Very fair 
Did not notice the order 
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ED Wait Time Predictor

The growth in the number of hospitals publishing their ED wait-times leads to the

rise of severals studies to develop methods for predicting the ED wait-times. From using

a rolling average, the method currently used by some hospitals (Dong et al. 2015), or

Quantile regression, which has the property of monotone equivariance and is less sensitive

to outliers (Sun et al. 2012), to use a more accurate, widely-applicable method called

”Q-Lasso” (Ang et al. 2015), which combines fluid model estimators and statistical learn-

ing. All developed models, even though insightful and somewhat applicable, make some

large errors, sometimes in order of hours. As explained in section 4.3, we use a variety

of statistical and machine learning techniques, introduced in the literature to estimate

Triage-To-Doctor (TTD) time (i.e., the time between seeing the triage nurse and seeing

the doctor). We, then, compare the accuracy of these models using Mean Squared Error

(MSE) and select the one with the highest MSE. After checking for regulatory assump-

tions, we developed a generalized linear model, with the factors found to be a significant

predictor of TTD, to estimate TTD for each patients visiting the ED under study. In this

appendix, we first, describe the data and processing of collecting the data and then we

introduce all the prediction method used and compare their performance.

C.0.1. Description of the ED Under Study, Data and Process

Our data comes a from the ED of an urban hospital in downtown Chicago. This study

employs two years of de-identified data of all 177,831 patients treated in the ED from

January 1, 2016 to December 31, 2017. The data set contains patient-level information

including, but not limited to, the following: the patient’s time of arrival and departure,
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triage time, bed assignment and doctor time, LOS, ESI level, attending Physicians and

Nurses, and ED Census. List of available data with the description is available in appendix

3. We exclude almost 7% of the overall sample which include missing data and patients

who left without being seen. We start with a preliminary analysis of the data.

Figure C.1. Acuity Pie Chart

Figure C.1 demonstrates the pie chart of patients with different acuities, excluding

unidentified acuity cases. This figure illustrates that more than 80% of the patient treated

in NMH ED are acuity 2 (emergent) or 3 (urgent) patients and they are the patients who

usually wait the longest in the waiting room. Around 2% of patients do not have any acuity

level assigned, who were excluded from this analysis. The percentage of male patients

are 45% (excluding the < 0.1% ”Unknown” or ”Not available” cases). The average age of

patients is 48 years old with standard deviation of 19. Table C.1 shows TTD time for all

priority levels.

As shown in Table C.1, acuity level 3 (i.e., urgent patients) waits on average the

longest to see a doctor in this ED. However, the TTD time patterns are so different

between mornings and evenings. Table C.2 shows a typical daily TTD time changes for

different days of week.
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Table C.1. Basic Descriptive Statistics

Priority (acuity) level N Mean St. Dev.
1 - Resuscitation 2,794 18.260 103.972
2 - Emergent 68,571 64.259 85.780
3 - Urgent 67,689 77.706 88.171
4 - Semi Urgent 23,654 66.390 89.138
5 - Nonurgent 2,199 74.523 119.300

Figure C.2. A Typical Daily TTD Time in the ED

As shown in Table C.2, the TTD time of patients are non-stationary and much smaller

in the mornings and increases in the afternoons. This trend is observed in all days of the

week, even though the figures are slightly different throughout the week. This observed

daily seasonality of TTD time will be carefully considered in all our prediction methods.

C.0.2. Wait Time Prediction Models

In this section, we present all models considered in our study. Table C.2 summarizes the

methods used to predict patients wait-times.

In the following sections, we briefly introduce each method, how they generally work

and explain why they are selected to predict patients’ wait-time.
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Table C.2. Prediction Models Grouped by Prediction Method Categories
Model Categories Models

Time Series Models
Rolling Average (K last patients)
Rolling Average (W last hours)

Holt-Winter’s Method

Regression Based Models

Quantile Regression
Stepwise Linear Regression
Generalized Linear Models

Q-Lasso
Machine Learning Models Boosted Regression

C.0.2.1. Time Series Models. This section summarizes the time-series models used

for wait-time prediction.

Rolling Average

Moving averages (or rolling averages) are a variety of models commonly used with time-

series data to conduct forecasting. The rolling average method is often used to smooth

time-series and isolate longer term trends. They take set sized subsets of the data and

calculate the average value of the number of interest. The subset then “moves” to next

observation, drops the farthest observation on the other end of the subset and calculate the

new average. The size of the subsets are defined by a given value N , which sets the number

of observations per subset. We can define the subsets based on a fixed-time-window W

and then take the average of all observations occurred during that time-window. These

models aim to reduce the effect of short-term fluctuations and reveal long term trends.

This approach seemed attractive due to the seasonality exhibited of wait times be-

tween weekdays and between operating hours of each day. The calculations for a moving

average involve a rather simple averaging of the variable of interest. In this study, we used

both forms of the rolling average model approach and changed the parameters N and W

to identify the candidate rolling average and parameter level that achieves the minimum
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MSE. We took the averages for each priority class separately. The best number of obser-

vations that works the best for the ED under study was N∗ = 9 and the time-window

that works the best was W ∗ = 3 hours.

Holt-Winters Model

Holt-Winters method, also known as Triple-Exponential smoothing, is used to forecast

data points in a seasonal time series. Three parameters control smoothing: α, β, and γ,

each of which provides an additional forecast. These parameters take on values between

0 and 1, with values closer to 0 placing less value on the more recent data points, and

are calculated to minimize the total MSE. We computed the values of these parameters

through a cross-validation process. This method provides a seasonal factor, the length of

which varies on the type of data. For detailed introduction to this method, see ?. In the

ED under study, we observed seasonal trends by the day and week. As shown in Figure

C.2, there is a rise and fall of incoming patients throughout different hours of the day and

days of the week. Thus, this smoothing method can be used to forecast waiting times

based on the hour of day and/or day of week. Advantages of this model include being able

to apply and provide accurate forecasts, including any seasonal peaks. However, because

it is a smoothing method, daily variation may not be taken into account appropriately,

resulting in wide confidence intervals when charted out.

C.0.2.2. Regression-Based Models. This section summarizes the regression-based

models.

Stepwise Regression Method

The stepwise method utilizes the linear regression method with an additional element of
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feature selection. The method has three different varieties: forward, backward and both.

The forward method starts with a model with no predictors and sequentially adds more

one by one based on which predictor improves the model based on a set error measure

(e.g., AIC, BIC, R2). This method penalizes having more predictors, but is still based

on the maximum likelihood function. The feature selection aspect of the stepwise model

makes it useful for determining the most important predictors in our model. In this study,

we used the step function in R to run our stepwise regression model. This function takes

two models as inputs. One defines the “upper bound” or the model with the maximum

number of predictors. The second model defines the “lower bound” or the model with the

minimum number of predictors. Our model was set to use bidirectional elimination with

AIC as the error measure. Our model determined that significant predictors in our model

were patient acuity, day of the week, patient age, time of the day, number of patients

already in the ED, patient gender and several interaction between these predictors.

Generalized Linear Models

The generalized linear models are flexible generalization of ordinary linear regression that

allows for response variables that have error distribution models other than a normal

distribution. The model still assumes a linear relationship between the predictors and

response variable. There is no element of feature selection as every predictor available

is used. This can often lead to several insignificant predictors being used in the model.

In this study, we used a model produced by the gamma distribution, since we observed

that the TTD time distribution best fits by gamma distribution. Mathematically, the

GLM with the set to use the gamma family attempts to fit a regression in the form
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f(y;λ, α) = 1
Γ(α)λ

αe−λyα−1 for y ≥ 0, where f(y) is the response variable value, α is the

dispersion or scale parameter and λ is the parameter of interest.

The coefficient values are selected to min∑N
i=1(yi− ŷi)2 where ŷi is the predicted value

and yi is the actual values. In other words, GLM determines which line minimizes the

distance between predicted values and actual values. Our selection of predictors to use

in the GLM model was based off of conversations with providers and managers at the

ED under study as well as wait time predictors previously found to be significant in the

medical literature. For example, the number of patient in the ED at each acuity level

which was used be Sun et al. (2012) and therefore we used patients’ acuity (priority)

level as one of the predictors. The GLM function in R indicates significant predictors

based on the results of t-tests at several significance levels. In our model, we found

that patient acuity, day of the week, patient age, time of the day, number of patients al-

ready in the ED and patient gender were all significant predictors of a patient’s wait time.

Quantile Regression

Quantile regression is used to estimate and conduct inference about conditional quantile

functions. Similar to how classic linear regression methods based on minimizing sums of

squared residuals enable one to estimate models for conditional mean functions, quantile

regression methods offer a mechanism for estimating models for the conditional median

(50th percentile) function, and other conditional quantile (e.g., 1st, 20th, 90th . . . ) func-

tions. By allowing for the estimation of conditional quantile functions, such as the median,

quantile regression gives the capability to thoroughly examine the stochastic relationship

among random variables. Mathematically, quantile regression differs from multiple linear



227

regression which presents a numerical linear algebra problem to solve. Quantile regres-

sion, rather, uses a linear programming approach that is often solved using the Simplex

method. The formulation of this optimization function is as follows.

min
β+,β−,u+,u−∈R2k×R2n

+

{τ1′nu+ + (1− τ)1′nmu−|X(β+ − β−) + u+ − u− = Y },

where β+
j = max(βj, 0), β−j = −min(βj, 0), u+

j = max(uj, 0), u−j = −min(uj, 0).

We used the rq function found in the quantreg library in R to implement our quantile

regression model. In our model, setting τ = 0.5, we construct a model that produced an

estimate of median values, using all previous predictors.

Lasso Regression

The Lasso method falls under the family of shrinkage models. Methods in this family aim

to reduce the magnitude of predictor coefficients which can dramatically reduce the vari-

ance of the coefficient values. In exchange for the decrease in variance the Lasso method

yields higher bias. What sets the Lasso method apart from other shrinkage methods is it

feature selection qualities. While other methods usually shrink non-significant predictor

coefficients to a value close to zero they do not actually set the value to zero. The Lasso

method, with the right shrinkage parameter λ, is more capable selecting a subset of impor-

tant predictors. The Lasso method is useful in our case due to the dual benefits of variance

reduction and feature selection. Plambeck et al. (2014) use Lasso combined with queue-

ing related predictors to forecast wait-times in EDs. Here, we follow their procedure to
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predict wait-time. The objective of the lasso is to solve for minβ0,β1
1
N

∑N
i=1(yi − β0x

T
i β1)2

subject to ∑p
j=1 βj ≤ t.

In our study, the penalty term was determined through cross validation with the

cv.glmnet function. The model was created using the glmnet function in R and the

penalty term was determined to be 0.0105.

C.0.2.3. Machine Learning Models. A key issue in statistical research is the devel-

opment of algorithms for model building and variable selection (Hastie et al. 2009). This

issue is due to the fact that classical techniques for model building and variable selection

(such as generalized linear modeling with stepwise selection) are known to be unreliable

or might even be biased. Hofner et al. (2014) consider component- wise gradient boosting

(Friedman 2001), which is a machine learning method for optimizing prediction accu-

racy and for obtaining statistical model estimates via gradient descent techniques. A key

feature of the method is that it carries out variable selection during the fitting process

without relying on heuristic techniques such as stepwise variable selection. Moreover,

gradient boosting algorithms result in prediction rules that have the same interpretation

as common statistical model fits. This is a major advantage over machine learning meth-

ods such as random forests (Breiman 2001) that result in non-interpretable “black-box”

predictions. The idea of boosting models is to start with several simple models and com-

bine them in an adaptive way that leads to a stronger predictor. The boosted regression

method works well in our case because of the highly complex and non-linear relationship

between our predictors and response variable. In cases such as this, boosting can offer sig-

nificant improvements in terms of prediction accuracy. We used the algorithm presented

in Bühlmann and Hothorn (2007) to predict patients’ wait-times in the ED.
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C.0.3. Comparison of Statistical Learning Models

To select the best prediction method, we use the following selection criteria.

Mean Squared Error (MSE) - Mean squared error is often used as measure of

fit for prediction models. It is calculated by dividing the squared difference between the

predicted value and observed value by the number of observations.

MSE = 1
N

N∑
i=1

(Yi − Ŷi)2

In this study, we use MSE as the primary criteria for model selection.

Standard Error (SE)- Standard Error is an estimate of the standard deviation in a

sample. It allows us to take note of the variance in our sample.

SE =

√√√√ 1
N

N∑
i=1

(Yi − Ȳ )2

where N is the number of observations, Y is the variable value and Ȳ is the variable

mean.

Overestimates/Underestimates Mean- Overestimates mean represents the aver-

age overestimation of wait time by the model. It is calculated by taking all overestimates

and dividing them by number overestimate predictions. Underestimates Mean is of in-

terest because of the greater emotional weight patients place on predictions that under-

estimate the actual wait compared to overestimates. Similar to the overestimates mean

it is calculated by taking all underestimates and dividing them by number overestimate

predictions.
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Our models were trained on a partition of the data and then tested on the remaining

data. Below the error statistics for each model for both in-sample and out-sample error

are reported. We compare the performance of described statistical learning models, using

out-of-sample and in-sample errors in Table C.3.

Table C.3. Comparison of wait-time prediction models
In Sample (min) Out-of-Sample (min)

Prediction method MSE SE Overestimates
Mean

Underestimates
Mean MSE SE Overestimates

Mean
Underestimates

Mean
Rolling Average (K last patients) 4191 48 40 -52 4572 48 39 -52
Rolling Average (W last hours) 3984 53 37 -47 4367 53 36 -47
Quantile Regression (tau = 0.5) 3974 35 29 -54 6695 35 43 -76
Stepwise Linear Regression 3678 45 35 -52 3596 45 35 -52
GLM 3809 45 35 -53 3660 45 36 -52
Boosted GLM 3174 42 33 -49 3249 40 32 -53
Q-Lasso 4156 31 37 -60 4069 31 37 -61



231

Definition of Variables

Table C.4. Summery Definition of Variables
Name Source Description Data Type

Dataset used for wait-time prediction
arrival time Enterprise Data Warehouse (EDW) Patient Arrival Time to ED (recorded at T1 check-in) Date/Time
triage time Enterprise Data Warehouse (EDW) Patient Triage Time (recorded at the beginning of triage) Date/Time
bed assignment time Enterprise Data Warehouse (EDW) Patient Bed Assignment Time Date/Time
doctor initial contact time Enterprise Data Warehouse (EDW) Patient Doctor Time Date/Time
acuity dsc Enterprise Data Warehouse (EDW) Patient Acuity (1:Resuscitation, 2: Emergent, 3: Urgent, 4: Semi-Urgent, 5:Nonurgent Integer
primary doc id Enterprise Data Warehouse (EDW) Primary doctor assigned to the patient ID number Text
primary nurse id Enterprise Data Warehouse (EDW) Primary nurse assigned to the patient ID number Text
is lwbs flg Enterprise Data Warehouse (EDW) If the patient is LWBS 1, otherwise 0. Binary
patient gender Enterprise Data Warehouse (EDW) Patient’s gender (male/female/unknown) Text
patient age Enterprise Data Warehouse (EDW) Patient’s Age Integer
chief complaint ed Enterprise Data Warehouse (EDW) Patient’s chief complaint Long Text
ED census Enterprise Data Warehouse (EDW) Number of all patients in the ED at the hour of arrival (In waiting room or in beds) Integer
inpatient status census Enterprise Data Warehouse (EDW) Number of patients in the inpatient unit Integer
obs status census Enterprise Data Warehouse (EDW) Number of patients in the observation unit Integer
ED pts waiting for inpt bed Enterprise Data Warehouse (EDW) Number of patients discharged but waiting to be admitted Integer
acuity nonurgent null at arrv Enterprise Data Warehouse (EDW) Number of acuity 5 patients in ED at the time of arrival Integer
acuity semiurgent at arrv Enterprise Data Warehouse (EDW) Number of acuity 4 patients in ED at the time of arrival Integer
acuity urgent at arrv Enterprise Data Warehouse (EDW) Number of acuity 3 patients in ED at the time of arrival Integer
acuity emergent at arrv Enterprise Data Warehouse (EDW) Number of acuity 2 patients in ED at the time of arrival Integer
acuity resuscitation at arrv Enterprise Data Warehouse (EDW) Number of acuity 1 patients in ED at the time of arrival Integer
ed team name Enterprise Data Warehouse (EDW) ED Team that treated the patient Text
DTT Computed Door-To-Triage Time = arrival time – triage time (minutes) Non-negative Real Number
DTB Computed Door-To-Bed Time = bed assignment time – arrival time (minutes) Non-negative Real Number
DTD Computed Door-To-Doctor Time = doctor initial contact time - arrival time (minutes) Non-negative Real Number
TTB Computed Triage-To-Bed Time = bed assignment time – triage time (minutes) Non-negative Real Number
TTD Computed Triage-To-Doctor Time = doctor initial contact time - triage time (minutes) Non-negative Real Number
LOS Computed Length-Of-Stay = ed departure time – arrival time(minutes) Non-negative Real Number
month Computed Month the patient arrived Text
day of week Computed Day of the week the patient arrived Text

daily shift Computed Shift of the day the patient arrived (8
shifts:7:30,9:30,11:30,15:30,19:30,22,23:30,3:30) Integer

CAAT Computed If the patient treated at Care-At-Arrival 1, otherwise 0. Binary
Press Ganey survey data

overall
(F68) Press Ganey Survey Overall rating of care received

during your visit Integer (1-5)
LTR
(F4) Press Ganey Survey Likelihood of your recommending

our emergency department to others Integer (1-5)
kept informed
(F1) Press Ganey Survey How well you were kept informed

about delays Integer (1-5)
wait before staff noticed
(A86) Press Ganey Survey Waiting time before staff

noticed your arrival Integer (1-5)
wait before treatment
(A4) Press Ganey Survey Waiting time before you were

brought to the treatment area Integer (1-5)
wait treatment area
(C1) Press Ganey Survey Waiting time in the treatment

area, before you were seen by a doctor Integer (1-5)
wait radiology
(D3) Press Ganey Survey Waiting time for radiology test Integer (1-5)
waiting area comfort
(A5) Press Ganey Survey Comfort of the waiting area Integer (1-5)

Point of care survey data

perceived wait time Point of care survey
Question 1 on survey: ”How long did you wait in the waiting room
after seeing the triage nurse and before seeing the doctor? Provide the best
estimate of your wait . . . . . . . . . ”

Non-negative Real Number

wait time gap Point of care survey Question 2 on survey: ”Did you wait . . . you expected?” Text

wait satisfaction Point of care survey
Question 3 on survey: ”On a scale of 1 to 7, how satisfied are you
with your wait-time in the waiting room (after seeing the triage nurse and
before seeing the doctor)?”

Integer (1-7)

overall satisfaction Point of care survey Question 4 on survey: ”On a scale of 1 to 7, how satisfied are you
with your overall experience at our Emergency Department?” Integer (1-7)

perceived announced wait time Point of care survey Question 5 on survey: ”What was the estimated wait-time announced
to you? Provide the best estimate of the wait announced to you . . . . . . . . . ” Non-negative Real Number

last visit wait time Point of care survey Question 6 on survey: ”How was your wait-time compared to the last
time you were here? ” Notice/not notice

perceived fairness Point of care survey Question 7 on survey: ”On a scale of 1 to 7, how did you feel about
the order at which patients receive care in Emergency Departments?” Integer (1-7)

High
Priority pct. Computed The percentage of patients with

ESI level 2 or higher in our data Percentage
First
time visit pct. Computed The percentage of patients who

visited the ED under study for the first time Percentage

Larger
wait-time gap pct. Computed

The percentage of patients who
choose ”Longer than” or ”Much longer than” for Question 2
on the survey

Percentage
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Robustness Tests Summary Results

This section summarizes the result of robustness checks introduced in Section 3.7.

Table C.5 shows the robustness checks for the model introduced to test Hypothesis 2B

(i.e., loss aversion) and Table C.6 shows the robustness checks for the model introduced

to test Hypothesis 2. Even though, observations made earlier, somewhat repeated in the

provided models, still they may be some concerns about the definition of the wait-time

gap. To address this issue, we used latent variable analysis, discussed in Section 3.7,

where we assume the wait-time gap is unobserved and set of structural equations used to

the test the robustness of our findings.

Table C.5. Models for Loss Aversion for Different Wait-time Gaps

Dependent variable:
A−W W̄ −W A− Ẇ

(1) (2) (3)
1. Wait-time Gap 0.026∗∗∗ 0.017∗∗∗ 0.013∗∗∗

(0.004) (0.002) (0.002)
2. Wait-time Gap ×IWait-time Gap>0 −0.019∗∗∗ −0.007∗ −0.004∗

(0.005) (0.005) (0.004)
Constant 4.096∗∗∗ 5.196∗∗∗ 4.092∗∗∗

(0.166) (0.157) (0.158)
Observations 286 286 286
Adjusted R2 0.291 0.402 0.261

Notes. Parentheses contain robust standard errors. ***, **, and * denote significance at the 1%,
5%, and 10% levels, respectively (two-tailed tests). Note that A, W , W̄ and Ẇ denote announced
wait-time, actual wait-time, average wait-time and perceived wait-time, respectively.

Table C.6. Models for Large Wait-time for Different Wait-time Gaps
Dependent variable:

A−W W̄ −W † A− Ẇ
(1) (2) (3)

1. Wait-time Gap 0.012∗∗∗ 0.009 0.0097∗∗∗

(0.005) (0.011) (0.002)
2. Wait-time Gap (> Third Quartile) −0.02∗∗∗ −0.002 −0.0114∗∗∗

(0.011) (0.005) (0.004)
Constant 4.009∗∗∗ 5.325∗∗∗ 4.237∗∗∗

(0.146) (0.335) (0.158)
Observations 211 63 170
Adjusted R2 0.045 0.027 0.086

Notes. Parentheses contain robust standard errors. ***, **, and * denote significance at the 1%, 5%, and
10% levels, respectively (two-tailed tests). Note that A, W , W̄ and Ẇ denote announced wait-time, actual
wait-time, average wait-time and perceived wait-time, respectively. † The number of observations dropped by
this definition of the reference point and therefore the results did not find to be significant.
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