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Abstract

Ionic Structure at Dielectric Interfaces

Yufei Jing

The behavior of ions in liquids confined between macromolecules determines the outcome of many

nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions,

emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-

liquid boundary is often modeled as a dielectric interface and an important quantity of interest is

the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from

the study of ionic structure in such models can be useful in several industrial applications, such

as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater

desalination.

Electrostatics plays a critical role in the development of such functional materials. Many of

the functions of these materials, result from charge and composition heterogeneities. There are

great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes

because electrostatic interactions remains unknown but depend on the particular density of charge

distributions. Charged molecules in heterogeneous media affect the media’s dielectric response

and hence the interaction between the charges is unknown since it depends on the media and on

the geometrical properties of the interfaces.
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To determine the properties of heterogeneous systems including crucial effects neglected in

classical mean field models such as the hard core of the ions, the dielectric mismatch and inter-

faces with arbitrary shapes. The effect of hard core interactions accounts properly for short range

interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged

molecules for long-range interactions are both analyzed via an energy variational principle that

enables to update charges and the medium’s response in the same simulation time step. In par-

ticular, we compute the ionic structure in a model system of electrolyte confined by two planar

dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state

theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and di-

electric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic

density profiles leading to structure deformation in the fluid which is attributed to the competi-

tion between electrostatic and steric (entropic) interactions. We find that thermal forces that arise

from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can

oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic cor-

relations and inhomogeneous dielectric permittivity significantly changes the character of effective

interaction between two interfaces. We show that, in concentrated electrolytes with confinement,

it is imperative to take into account the finite-size of the ions as well as proper description of elec-

trostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann

based approaches.

The effect of electric field at interface between two immiscible electrolyte solutions is studied

as well. The classical Poisson-Boltzmann theory has been widely used to describe the corre-

sponding ionic distribution, even though it neglects the polarization and ion correlations typical of

these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an

oil-water interface in the presence of an electric field without needing any adjustable parameter,
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including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimen-

tal measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl

and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical

non-linear PoissonBoltzmann theory. More importantly, we show that the size-asymmetry between

small Li+ and large Cl− ions can significantly increase the electric field near the liquid interface,

or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations

suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the

vicinity of the point of zero charge.

In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at

a dielectric interface using coarse-grained MD based on an energy variational principle. The goal

is to explore charge amplification with exact consideration of surface polarization. We find that

both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition,

charge separation is enhanced by interface polarization. We are currently extending the research

to charged interfaces that has broad applications such as batteries and supercapacitors for energy

storage.
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CHAPTER 1

Introduction

1.1. Background and Motivation

The assembly of molecules and nanopariticles into robust nanostructures to perform specific

functions is an exceptionally active and rapidly expanding field in science. Nature utilizes charged

molecules and ions to self-assemble its components into structures that spontaneously adopt vari-

ous shapes to carry out important functions[7]. Indeed, ions and charged molecules are responsible

of the organization and functions of various synthetic materials and biological systems. Molecules

with electrical charges self-assemble into structures with diverse symmetries by unknown mech-

anisms. The understanding of assembling paradigms that determine the shape and composition

through tuning chemical and physical interactions using electrostatics should then enable the de-

sign of inhomogeneous structures for various technological applications.

Many biological materials such as DNA and proteins as well as synthetic systems such as

colloidal dispersions, polymeric gels, and emulsions are immersed in liquids that inhabit charged

objects among which the most abundant are salt ions [8, 9]. In biology, the presence of these salt

ions controls a variety of processes. For example, calcium ions play a key role in the pumping

action of the heart and concentration gradients of sodium and potassium ions help control nerve

signaling [10, 11]. On the other hand, electrolyte ions help drive key processes involved in the

generation and function of many synthetic materials such as the stabilization of colloidal disper-

sions and emulsions [12, 13, 14], morphological changes in hydrogels [15], and pattern formation
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in nanostructures [16, 17]. Further, in some synthetic systems such as dielectric elastomers and su-

percapacitor devices, in addition to the charged macromaterial, counterions and salt ions, external

electric fields are present. The electric field has been related to the proper performance of biolog-

ical functions at the cellular level[18, 19], displaying the ability to accelerate or improve wound

healing when it is applied externally[20]. The knowledge of the electric field at liquid interfaces

is also crucial for the development of enhanced devices to store energy safely and efficiently, such

as double layer supercapacitors[21], or to improve the ion transfer and electro-assisted solvent

extraction of metal ions from wastewater and industrial fluids[22].

The enormously increasing applications indicate the importance of electrostatics in develop-

ing new materials. Besides the role of electrostatics in the development of membranes for water

filtration[23], fouling-resistant surfaces for the preparation of filtration membranes[24], nucleotide

functionalized gold nanoparticles for diagnostic and therapies[25, 26], complexes for drug delivery

and gene therapy[27] and nanogels for drug delivery[28], new applications include the fabrication

of lithium-ion batteries[29, 30] and transistors[31, 32]. Much of the new functions of these mate-

rials derived by the development of charge heterogeneities. Therefore, understanding the charge

distributions in complex electrolytes solution can provide guidance to generate novel functional

materials.

Electrostatic interactions drives the assembly of oppositely charged molecules into structures

which properties can be tuned by changing the ionic concentration[33, 34, 35, 36, 37, 38, 39, 40,

41]. Knowledge of ionic distributions near such liquid-liquid or liquid-solid interface is useful to

examine a variety of processes in the biological context as well as in physicochemical processes.

The structural and functional properties of many biological macromolecules like DNA and ion

channel proteins are fundamentally affected by the distribution of counterions and salt ions near

the macromolecule surface. Similarly, the stabilization of synthetic soft materials such as colloidal
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dispersions and oil-water emulsions is governed by the ionic structure surrounding the colloid-

solvent and oil-water interfaces. In hydrogels and thin shells, this soft structure can be tuned by

varying the pH or salt concentration which often gives rise to interesting phenomena like swelling

of gels and faceting in the latter case. Therefore, investigation of the properties of these soft-matter

systems requires an accurate description of the ionic structure.

There are great challenges in solving electrostatics problem in complex electrolytes computa-

tionally. Basically, detailed atomistic description are more accurate but limited to computational

costs. Therefore, it is necessary to develop a coarse-grained scheme that is detailed enough to cap-

ture relevant physical processes while still possible to simulate. The so-called primitive model for

electrolytes is widely used, where the electrolytes media can be treated in the continuum approxi-

mation and the ions are treated as discrete particles. In this framework, the long-range interaction

between charges depends on the dielectric media that host these charges, and the way the media

respond to these charges depends on where the charges are located. For point-ions restricted to one

uniform medium, it is easy to obtain the medium’s dielectric response and hence the interaction

between the ions (Coulomb’s law). However, in real situations in biology and materials there are

more than one medium, whose dielectric properties differ from one another, forming interfaces and

harboring ions. For example, in biology, proteins and complexes are surrounded by ionic solution

and cell membranes separating intracellular media with different dielectric responses. Similarly

many soft materials, such as charged nanoparticles or colloidal dispersions in salty solutions and

gels of charged molecules, exhibit the situation where two or more different dielectric media form

an interface with ions embedded in the media.The computational challenge is that the electrostatic

polarization due to dielectric heterogeneity requires to solve the Poisson equation at each time

step. Determination of the polarization field through analytical solution of Poisson equation is

very difficult which are known only for specific simple geometries. For more general cases, these
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many charged molecules in heterogeneous media the media’s dielectric response and hence the

interaction between the charges is unknown since it depends on the media and on the geometri-

cal properties of the interfaces that media form. A suitably designed approach is needed to avoid

explicitly solving the Poisson equation.

1.2. Theoretical models

Theoretically, an accurate extraction of electrolytes solution begins with the choice of the

coarse-grained model to represent the associated real system. The primitive model is commonly

used as mentioned above, where the constituent macromolecules and the solvent fluids are both

considered as dielectric continua harboring charged particles such as ions or charged micromolecules

and separated by thin boundaries. In many situations, the dielectric response of the macromolecule

is different from the surrounding solvent medium which often affects the distribution of the ions

near the macromolecule-solvent interface. It is crucial to include this dielectric heterogeneity in

the calculation of the ionic structure as has been revealed by several recent studies[42, 5, 43]. The

effect of polarizability that arise when ions reside in heterogeneous dielectric media is included as

shown in Fig. 1.1.

The thermodynamic Debye and Hückel (DH) theory of electrolytes identify the mean electro-

static potential around an ion with the potential of mean force, which presumes negligible fluctua-

tions. The theory includes many body interactions due to its self-consistent character, but assumes

negligible ionic radius. Also, the theory is often approximated to the well known DH limiting law,

where the Poisson-Boltzmann equation is linearized and mean activity coefficient is proportional

to the square root of the ionic strength. DH theory appears to be accurate at millimolar concen-

trations in 1:1 aqueous electrolyte solutions, and deviations occur at higher concentrations and

with electrolytes that produce ions of higher charges, particularly unsymmetrical electrolytes. It
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Figure 1.1. Ions in dielectric heterogenous media

is now well established that ionic distributions obtained from mean-field approaches based on the

Poisson-Boltzmann theory that ignore the finite size of the ions can not be trusted; this is especially

true in cases where multivalent ions (Calcium, Magnesium) are involved and for high values of salt

concentrations. Thus theoretical and computational methods that incorporate the finite size of the

ions and dielectric inhomogeneities in the system are likely to provide reasonably accurate results

for the ionic structure near the soft interface of interest.

Our group compute the equations of state and phase coexistence of concentrated electrolyte

solutions with a Debye-Hückel approach, where the self-consistent mean potential is obtained from

the nonlinear Poisson-Boltzmann equation[44]. The non-linearized DH theory includes the effect

of Bjerrum pairs, and predicts a coexistence between two dilute phases, and a critical temperature at

micromolar concentrations, which might have implications for charged colloids and nanoparticles

suspensions that involve organic solvents or multivalent salt ions. The equation of state within

the full (non-linearized) DH theory, is practically invariant under the explicit inclusion of Bjerrum

pairs, thus treats the effect of ion pairing in a consistent way, and reveals that the full DH theory
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may be accurate for moderately dilute organic 1-1 electrolyte solutions, or for aqueous multivalent

electrolyte solutions, which are characterized by strong couplings between the ions. Non-linear

DH theory is used to estimate the cohesive effect of ion correlations on the effective interactions

between nanoparticles, and in charged colloids.

For general charged systems, one of the major difficulties in simulation is to accurately measure

the effects of dielectric medium on the charges and similarly the effects of charges on the medium’s

dielectric response. In a MD simulation, for example, only after one correctly figures out these

coupled charge-medium interactions can the charge configuration be propagated. Typically, such

information comes at the expense of computational costs that go into the solving of the Poisson

equation, at each time step of the simulation. Our group has showed that such an explicit solution

of the Poisson equation can be entirely avoided in simulations by adopting a suitably designed

variational approach; thus leading to tremendous speed-ups in computing[42].

Variational principles are important in the investigation of large classes of physical systems.

They can be used both as analytical methods as well as starting points for the formulation of pow-

erful computational techniques such as dynamical optimization methods. Systems with charged

objects in dielectric media and systems with magnetically active particles are important examples.

In these examples and other important cases, the variational principles describing the system are

required to obey a number of constraints. These constraints are implemented within the variational

formulation by means of Lagrange multipliers. Such constrained variational formulations are in

general not unique. For the application of efficient simulation methods, one must find specific

formulations that satisfy a number of important conditions. An often required condition is that

the functional be positive-definite, in other words, its extrema be actual minima. We developed a

general approach to attack the problem of finding, among equivalent variational functionals, those

that generate true minima. This method is based on the modification of the Lagrange multiplier
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which allows us to generate large families of effective variational formulations associated with a

single original constrained variational principle.

How to obtain variational formulations with extrema that are always minima is demonstrated in

Ref. [42]. The electrostatic problem is formulated as an energy minimizing problem by construct-

ing an energy functional of the polarized charge density induced by the free charges in medium.

This functional allowed us to design a Car-Parrinello molecular dynamics(CPMD) scheme that

enabled simulations of charges near a rigid interface of arbitrary shape[45] as compared to the

conventional approach. In this redesigned MD simulation, instead of solving the Poisson equa-

tion, polarized charge is updated on on-the-fly, in tandem with the energy-conserving update of the

charge configuration; thus bypassing all the effort that goes in the explicit solving of the differential

equation.

1.3. Thesis work methodology

The new energy variational principle that enables us to update charges and the medium’s re-

sponse in the same simulation time step is derived in ref.[42]. We introduce a variational formu-

lation of electrostatics that produced an energy functional of the polarization charge density given

by

I[ω] =
1

2

∫∫
ρrGr,r′ (ρr′ + s[ω]) d3r′d3r

− 1

2

∫∫
s[ω]Gr,r′ (ωr′ − s[ω]) d3r′d3r,

(1.1)
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where ω is the polarization charge density and s[ω] is both a functional of ω(r) and a function of

r, and is defined as

(1.2) s[ω] = ∇ ·
(
χr∇

∫
Gr,r′ (ρr′ + ωr′) d

3r′
)
.

In the above equations χ is the susceptibility of the medium, ρ is the free charge density, and

G(r, r′) = |r−r′|−1 is the Green’s function in free space. We assumed that the medium polarization

obeys linear response and also assumed the existence of Dirichlet boundary conditions, which are

standard approximations for constructing electrostatic free energy functional. I[ω] is applicable to

any configuration of free charges and works for arbitrary spatial variation in dielectric response.

We now consider the problem where charges are present in a dielectric that is only uniform

in pieces and the pieces being separated by sharp boundaries. In other words, we have regions of

space separated by infinitely thin interfaces such that each region acts as a uniform dielectric, but

with a different permittivity as relative to its neighbor. Note that the interface is allowed to assume

arbitrary geometry. Although this is just the next level of complexity to the uniform dielectric case,

it is already a theoretically challenging problem for reasons discussed above.

In many cases, it is a reasonable assumption to represent the real system by a coarse-grained

model where regions of different dielectric response are separated from each other by interfaces

with negligent thickness. The functional I[ω] derived in ref works for any medium with linear but

spatial variable dielectric response. but For example, in the problem of colloids in a polar solvent,

modeling the colloid as one uniform dielectric continuum and the surrounding solvent as another

uniform dielectric of different permittivity provides a good representation of the real system. Other

examples where coarse-graining of this kind is often employed include: oil-water emulsions and

biopolymers,such as lipid bilayers, in aqueous solution. We only consider the application of our
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functional to the problem of ions present in a system exhibiting this piecewise-uniform dielec-

tric response. We show that for this specific dielectric response the functional I[ω] reduces to a

functional with only the interfacial induced charge density as the variational field.

In the case of different dielectric media separated by sharp interfaces I, such that the gradient

of permittivity vanishes everywhere except at the interface I. We model the charges as point

charges, with the density of charges given by

(1.3) ρ(r) =
N∑
i=1

qiδ (r− ri)

for a system consisting of N charges. This problem of point charges near an arbitrarily shaped

interface separating dielectrics of different permittivities, will be referred to the different dielectric

problem. In the rest of this section and in appendix, the specific form of our functional for the

different dielectric problem is dereived.

The derivation begins by identifying two distinct sources of induced charges in different di-

electric problem. The first source comes from the point charges themselves. The contribution from

this source to the total induced charge density is in fact known analytically. The second (and only

other) source for induced charges is the discontinuity at I of the normal component of the elec-

tric field, which is itself brought about by the non-vanishing permittivity gradient at the interface.

These induced charges reside only on I and their magnitudes are in general not known.Thus the

total induced charge density splits into a known part, ωP(r), that is present on the point charges

and an unknown part, ωI(r), which is located at the interface:

(1.4) ω(r) = ωP(r) + ωI(r).
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ωP(r) is analytically available:

(1.5) ωP(r) = −ε(r)− 1

ε(r)
ρ (r) ,

where ε(r) is the local dielectric constant around the charge that is located at r. ωI(r) is in gen-

eral unknown. However, since the interface I is a two-dimensional manifold and ωI(r) vanishes

everywhere except on this surface I, one can express ωI(r) as a surface integral:

(1.6) ωI (r) =

∫
I
ωS (r) δ (r− s) d2s,

where ωS is the unknown surface induced charge density. Then we get

s[ω](r) =χ (r)∇2
r

∫
G (r, r′) (ρ (r′) + ω (r′)) d3r′

+∇χ (r) · ∇r

∫
G (r, r′) (ρ (r′) + ω (r′)) d3r′,

(1.7)

which simplifies to

(1.8) s[ω](r) =
1− ε (r)

ε (r)
ρ (r)+∇s·

[
χ (r)∇s

(∫
G (s, r)

ρ (r)

ε (r)
d3r +

∫
G (s, s′)ω (s′) d2s′

)]
.

We define

(1.9) Ω (s) = ∇s ·
[
χ (r)∇s

(∫
G (s, r)

ρ (r)

ε (r)
d3r +

∫
G (s, s′)ω (s′) d2s′

)]

Considering

ε (r) = 1 + 4πχ (r) , ρ (s) = 0,∇χ (r) = 0 unless r = s,
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the variational formulation (1.1) can be further simplified using (1.8)

I[ω] = +
1

2

∫∫
ρ (r)G (r, r′)

ρ (r′)

ε (r′)
d3rd3r′ +

1

2

∫∫
ρ (r)

ε (r)
G (r, s) Ω (s) d3rd2s

− 1

2

∫∫
1− ε (r)

ε (r)
ρ (r)G (r, s)ω (s) d3rd2s− 1

2

∫∫
Ω (s)G (s, s′)ω (s′) d2sd2s′

+
1

2

∫∫
Ω (s)G (s, s′) Ω (s′) d2sd2s′.

(1.10)

I[ω] gives the correct ω(r) when extremized and is an energy functional, thus becoming an ideal

choice for a computational scheme employing dynamical optimization ideas. The particular forms

for the functional in the case of one, two or more sharp, arbitrary shaped dielectric interfaces are

shown in the Appendix A.

1.4. Relevant works on ionic structures

For electrolytes under confinement associated with dielectric heterogeneities, excluded volume

effect is need for computing the accurate ionic distributions. Based on the work by Kjellander and

Marčelja [46, 47], a theoretical approach is to evaluate the Ornstein-Zernike equation with the

(anisotropic) hypernetted chain closure. It is employed recently to study the fluid structure in

planar confinement.

In ref.[4], hard-sphere fluid is confined between two parallel hard interfaces. The anisotropic

pair distribution of the fluid is analyzed using first-principles statistical mechanics of inhomoge-

neous fluids. Spatial confinement induces anisotropy in the pair correlations and modifies the

fluids’ density fluctuations, resulting in anisotropic structure factors(Fig. 1.2). When the distance

between the confining surfaces is increased, an alternating sequence of strongly anisotropic versus

more isotropic local order is observed. This observation highlights the importance of studying

fluids under confinement.
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Figure 1.2. Anisotropic structure factor for a hard-sphere fluid confined between hard planar
surfaces. (a) Theoretical and (b) experimental S(q⊥, q‖) are shown for a reduced slit width of
L = 2.10σ and bulk number density n0 = 0.75σ−3. The dark red feature at q‖ = 0 in the ex-
perimental data is diffraction from the confining channel array, which should be neglected in the
comparison. The experimental data are taken from Ref.[3]. (c) The corresponding isotropic bulk
S(q) for n0 = 0.75σ [4].

In Ref. [5], both the short-range repulsions and electrostatic forces are taken into consideration.

The structure changes near polarizable interfaces and causes diverse attractions between confining

walls. In electrolytes, the mean force caused by Coulomb interaction is induced by the anisotropic

screening cloud around an ion near interfaces. In bulk, the cloud should be spherical on average,

and its point of central charge should coincide exactly with the center of the ion. When close to

the boundary, the ionic cloud symmetry breaks because of the geometric constraints or energetic

considerations if the boundary has excess charge or an external field is applied. As a result, the
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point of central charge may shift. For dielectric boundary, the polarization charge deform the

screening cloud further more. For monovalent ions (green dashed line in Fig. 1.3), net forces

caused by the anisotropic screening of ions is discovered, which enhanced or counteracted by the

Coulomb force of induced charge of the dielectric boundary significantly. This phenomena cannot

be recovered by traditional mean-field theories. In general, any boundary that breaks the symmetry

in the geometric or energetic landscape changes the local ordering of ions that changes the ionic

structure dramatically.

1.5. Outline of research

The objective of my thesis research is to develop MD simulation techniques designed specif-

ically to efficiently simulate charges in the presence of inhomogeneous dielectric response and

accurately extract the density profiles. The background and motivation of the project is reviewed

in first two sections of Chapter 1. The original work begins in the methodology part in Chapter

1 by introducing an energy functional of the induced charge density that enables the replacement

of the expensive solution of the Poisson equation at each simulation step with an on-the-fly com-

putation of polarization effects. I have expand the functional for multiple arbitrary interfaces by

writing the explicit forms of the functional. In Chapter 2, the functional is employed to success-

fully compute the ionic structure in a model system of electrolyte confined by two planar dielectric

interfaces using MD simulations with liquid state theory verification. The effects of high elec-

trolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic

distributions is also explored. In the following Chapter 3, using Monte Carlo simulations, an en-

hanced description of an oil-water interface in the presence of an electric field without needing

any adjustable parameter is provided, considering realistic ionic sizes, ion correlations, and image

charges. It agrees with experimental measurements of excess surface tension, contrasting with the
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Figure 1.3. The normalized density of monovalent ions between two neutral, nonpolarized bound-
aries is shown in Left for several values of the reservoir concentration s (black, red, and blue
atρs = 0.03M , 0.1M and 0.3M , respectively). The green dashed line corresponds to the density
of monovalent ions between two dielectric discontinuities, with ε2 = 70, ε3 = 93, and ρs = 0.1M .
At low densities, depletion near the boundaries is visible over a range of the order of the Debye
length because of the anisotropic screening cloud that pulls ions away from the boundary. The sub-
tle increase in density near contact at ρs = 0.1M is a signature of hard-core correlations that tend
to push ions against the walls, which are caused by anisotropic collisions. At densities above 0.3
M, the accumulation completely overcomes the depletion, and the Gibbs adsorption becomes pos-
itive. The green dashed curve shows additional effects caused by polarization; the right boundary
attracts ions because of its polarization charge of opposite sign, whereas the left boundary repels
the ions because of its polarization charge of similar sign. The local charge density around an anion
at the right boundary is shown in Right, corresponding to the system with the two dielectric dis-
continuities and ρs = 0.1M (green dashed lines) with an illustration of the mean forces that act on
the ion. The screening cloud around an ion becomes anisotropic near the boundary because of geo-
metric constraints and generates a mean force away from the boundary, which becomes relevant at
distances shorter than the typical Debye length. The anisotropic collisions (short-range repulsions)
cause a mean force to the wall within a distance of a few particle radii. The induced polarization
charge generates a force directed away or to the wall, depending on the dielectric contrast, and is
typically of slightly shorter range than the force induced by the anisotropic screening cloud. The
typical range of the correlation functions in the direction parallel to the boundaries increases near
the boundaries and is more affected by the geometry rather than the dielectric properties of the
wall [5].

result of the classical non-linear Poisson-Boltzmann theory. The size-asymmetry between small

cations and large anions can significantly increase the electric field near the liquid interface, or can

even reverse it locally, at high salt concentrations in the aqueous phase. Chapter 4 discusses the

effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using
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coarse-grained MD developed in Chapter 2. The goal is to explore charge amplification with exact

consideration of surface polarization. In the end, Chapter 5 concludes with some recommended

or undergoing future directions based on a summary of the models developed and results found in

this thesis.
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CHAPTER 2

Ionic structure in liquids confined by dielectric interfaces

2.1. Introduction

Electrostatic interactions drives the assembly of oppositely charged molecules into structures

which properties can be tuned by changing the ionic concentration [33, 34, 35, 36, 37, 38, 39, 40,

41]. Charged gels generate patterns in aqueous solutions[48, 49, 50] by external changes of temper-

ature and/or ionic concentration changes via pH, salt or osmotic pressure variations [51, 52, 53, 54],

and electric field[55]. The physical properties of these heterogeneous hydrogels resemble those of

biological chromosomes[56]. In particular, chromosomes and hydrogels undergo hyperconden-

sation and decondensation re-entrant transitions observed when the concentration of divalent salt

concentration increases.

The structure of the ion-containing liquid near charged or neutral materials determines how

they assemble and interact, and often modifies their functional properties. The knowledge of this

so-called soft, ionic structure is exploited in designing double-layer supercapacitor for energy stor-

age [57, 58], stabilizing inks and paints, in water desalinization, and in the extraction of metal

ions from wastewater [59]. It is thus crucial to extract this soft, ionic structure associated with

the fluid near a relatively rigid object such as a colloid or a biological macromolecule. Therefore

the computation of ionic structure has been the focus of recent experiments and theoretical studies

[60, 61, 62, 42, 5, 63, 64, 57, 43].

Theoretically, the real system of macromolecules in an ion-containing liquid is often modeled

in the following approximate way. The first approximation is to treat both the macromolecules
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and the surrounding liquid (solvent) as continuous media, thus removing the discrete character as-

sociated with their constituents. To account for the polarizabilities of the macromolecules (say a

colloid, protein, or oil droplet) and the surrounding solvent (often water), the continuous medium

is characterized with a dielectric constant, which often leads to a model system where the per-

mittivity is only piecewise-uniform due to the differences in the dielectric permittivities of the

macromolecules (ε ∼ 2 − 10) and the surrounding solvent (ε ∼ 80). In the case when the density

of macromolecules is high, the ionic structure is deformed as a result of the enhanced proximity

of the macromolecules. In this scenario, the appropriate model to study involves an ion-containing

liquid confined between two interfaces which represent the boundaries between macromolecule

and the liquid medium.

The small distance between the interfaces leads to the competition between inter-ionic elec-

trostatic interactions and hard-core or steric interactions between the ions and the interfaces and

between the ions themselves. Considering the difference in sizes between the macromolecules and

the associated ions, it often suffices to treat the interfaces as planar. Also, owing to the narrowness

of the gap between the interfaces, it becomes imperative to take into account the finite-size of the

ions in the theoretical investigation. This model of ions of a finite, fixed diameter moving in a

continuum solvent confined between two planar dielectric interfaces is useful in analyzing several

properties of the aforementioned biological and synthetic materials and has been employed in sev-

eral recent studies [65, 60, 5, 66]. Working with this model approximation, a quantity of interest is

the ionic distribution (which encodes the structural information) within the confined liquid for var-

ious electrolyte concentrations, stoichiometric ratios, ion sizes, interfacial dielectric contrasts, gap

between the interfaces, and presence of external electric field. Another important investigation is

the study of how this soft ionic structure arrives at its equilibrium conformation and how it evolves
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dynamically in response to a change in external parameters such as pH, temperature or tuning of

the electric field or dielectric contrast.

The presence of multiple interfaces and associated dielectric heterogeneities, and the neces-

sity to suspend the assumption of point-size ions often complicates computing the desired ionic

distributions. On the simulation side, while incorporating the finite size of the ions is relatively

straightforward, treating the inhomogeneous dielectric response amounts to explicitly solving the

Poisson equation at every step of the simulation in order to propagate the ionic degrees of free-

dom, which leads to very high computational costs. On the analytical side, while including the

spatially-dependent permittivity function is relatively straightforward, taking into consideration

the correlations between the ions presents serious challenges and computational costs raised by the

evaluation of the required anisotropic pair-correlation functions. Due to these difficulties, many

simulation studies of ionic structure near interfaces assume dielectric homogeneity and theoreti-

cal approaches that go beyond mean field or Poisson-Boltzmann theory often retain the assump-

tion of a structureless fluid of ions, with strong coupling corrections limited to a thin boundary

layer. At the same time, recent research efforts have also focused on alleviating these problems

and accurately extracting the ionic structure by developing sophisticated simulation procedures

[67, 68, 69, 42, 45, 70, 71, 43] and advanced theoretical methods [46, 47, 5, 60, 4, 72, 73, 74, 75].

In this article, we carry out a systematic study of ionic structure in an electrolyte solution

confined by two planar dielectric interfaces (see Fig. 2.1) using molecular-dynamics-based simu-

lations and liquid state theory. We study the effects of the competition between electrostatic and

steric interactions by evaluating the profiles for different ion concentrations. We evaluate the role

of ion correlations [76, 77, 78, 79, 80] in determining the ionic structure by considering elec-

trolytes with different stoichiometric ratios (1:1, 2:1, 3:1). We also investigate in detail the role

of dielectric mismatch at the interface by considering a variety of values for the permittivities in



37

Figure 2.1. Sketch showing three uniform dielectric regions of permittivities ε1, ε2, ε3 separated by
two sharp planar interfaces. The figure also shows the presence of finite-sized positive (blue) and
negative (green) ions in the medium confined between the two interfaces. In the case of dielectric
mismatch, the interfaces carry polarized charge. Coarse-grained models of this kind are often
employed to study effective interactions between two bio-macromolecules or colloidal particles.

the three regions (ε1, ε2, and ε3; see Fig. 1). The effects of an external electric field on deforming

the ionic structure are also studied. The case of zero dielectric contrast at both interfaces is sim-

ulated with standard molecular dynamics simulations. For the simulation of ions in media with

piecewise-uniform dielectric response, we employ a recently developed MD method based on the

Car-Parrinello idea[81] of dynamical optimization that allows for a faster, accurate, and stable

computation of dielectric effects via an on-the-fly evaluation of the induced charge at the dielectric

interfaces [42, 45]. On the theoretical front, we evaluate the Ornstein-Zernike equation with the

(anisotropic) hypernetted chain closure (AHNC), based on the work by Kjellander and Marčelja

[46, 47], which has been applied recently to extract the fluid structure in confined geometries [5, 4].
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2.2. Model and Methods

2.2.1. Model

Our model system consists of an electrolyte solution confined within two planar surfaces (inter-

faces) parallel to each other (see Fig. 2.1) [82, 76]. The surfaces are also uncharged, that is, we

do not consider any free charges residing on the surface (except for the case where we introduce

a uniform electric field that can be considered as arising from the presence of free charges on the

two interfaces).The surfaces themselves are considered to be infinite in extent. Two scenarios are

examined in detail. First, we model the interfaces as unpolarizable which allows us to isolate the

roles of interionic steric interactions, ion-interface steric interactions, and ion-ion electrostatic in-

teractions in determining the ionic density distribution in the solvent confined within the interfaces.

Second, we model the scenario where the two interfaces can get polarized due to differences in di-

electric response of the media they separate. Further, we note that our system is closed, in other

words, it is not in contact with an electrolyte reservoir. We highlight the role that induced charges

at the interfaces play in deforming the ionic structure confined within the interfaces.

We choose z = −H/2 and z = H/2 planes as the interfaces and define H as the separation

between them. For all the systems we study, H = 3 nm. We denote the z = −H/2 plane as

interface I and z = H/2 plane as interface II. We often refer to interfaces I and II as left and right

interface respectively. We consider impermeable interfaces, that is, no transport of ions is allowed

across the interface. In all cases, we consider the solvent confined within the planar interfaces

(interior medium) to be water. In our simulations, the ions are modeled as (soft) spheres of radius

σ that interact via a purely repulsive Lennard-Jones (LJ) potential. We choose σ = lB/2 = 0.357

nm, where lB is the Bjerrum length in water at room temperature. In our theoretical calculations,

the ions are modeled as hard spheres of the same radius σ. For both methods of study, we model
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the interaction between an ion and the interface via the purely repulsive LJ potential. The ions also

interact with each other and with the interface, in the case when the latter is polarizable, with a

Coulomb potential. For unpolarizable interfaces, the Coulomb potential energy between two ions

is given by: UC = qiqjlB/rij , where qi and qj are respectively the charges on the ion i and ion j,

and rij is the distance between those ions.

We consider both symmetric and asymmetric electrolytes and study the following stoichiomet-

ric ratios (z+:z−) – 1:1, 2:1, 3:1, and 0:0. Note that all our ions have identical sizes; we do not

take into account possible differences in ionic sizes, for example, between a monovalent anion and

a trivalent cation. The 0:0 study corresponds to a simulation with only LJ interactions and acts

as a reference case aiding in the comparison between the effects of Coulomb interaction against

the steric interactions. We perform simulations for average negative (monovalent) ion concentra-

tions of 0.1, 0.5, and 0.9 M. In all cases, the ions are present in the interior dielectric medium

(water) with permittivity ε2 = 80. For the study of unpolarizable interfaces, the medium left to

the interface I (left dielectric with permittivity ε1) and the medium right to the interface II (right

dielectric with permittivity ε3) are taken to be water and we have ε1 = ε2 = ε3 = 80. For the study

of polarizable interfaces, we study three cases (ε1|ε2|ε3): 20|80|20, 20|80|160, and 40|80|10. All

simulations and theoretical calculations are performed at room temperature T = 298 K.

Unless otherwise stated, we express lengths in the units of σ – the ionic radius in our model

(= 0.5lB). The unit of energy is kBT where kB is the Boltzmann constant, and the unit of mass is

chosen to be the ionic mass m. In these reduced units, time is measured in τ = (mσ2/kBT )1/2.

The unit of charge is taken to be the charge of a proton e and we express concentrations and ionic

densities in molars (M).
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We employ this model to examine the deformation of the ionic structure near interfaces in

response to changes in system attributes such as ion concentrations, ion valencies, external elec-

tric fields, and interfacial dielectric contrasts. In the next two subsections we provide the details

associated with the simulation and theoretical methods that are used to study the model system.

2.2.2. Molecular dynamics simulations

We simulate ions confined by the dielectric interfaces using MD methods. We account for the

infinite extension of the interfaces in the simulation by considering periodic boundary conditions

in the x and y directions. The whole system of ions and solvent confined within the two surfaces

is taken to be in a rectangular simulation box of volume V = H × L × L, where L is a length

that characterizes the size of the interface along the x and y directions. In all our simulations L is

taken to be significantly larger as compared to the ion radius σ and the Debye length λD in order to

accurately simulate the unboundedness of the system in the x and y directions. The long-range the

electrostatic potential is treated within the approximation of the minimum image convention and

using the charged sheets method. The charged sheets method has been described in Refs. [83, 84]

and was employed in the simulation of the primitive model describing two immiscible electrolytes

separated by a planar interface where it was found that the simulation results were in good agree-

ment with experimental data [85]. As a check, we simulated the model systems by employing

the 3D-Ewald sums with dipole corrections and the results were found to be nearly identical to

those obtained using the charged sheets method. The length L is chosen to be large enough to

minimize any errors that stem from the above approximate treatment of the long-ranged Coulomb

interactions. The total number of dissociated electrolyte ions that enter our main simulation cell is

N = Np + Nn, where Np and Nn are the total number of positive and negative ions respectively.

To impose the desired temperature in the system, we employ Nosé-Hoover thermostat chains.
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Table 2.1. Model parameters and simulation variables

z+ : z− cn (M) λD(σ) L (σ) Np Nn N
1 : 1 0.1 2.69 96 212 212 424

0.5 1.20 42.9 212 212 424
0.9 0.89 32 212 212 424

2 : 1 0.1 2.20 96 106 212 318
0.5 0.98 42.9 106 212 318
0.9 0.73 32 106 212 318

3 : 1 0.1 1.90 96 71 213 284
0.5 0.85 42.9 71 213 284
0.9 0.63 32 71 213 284

In order to compare the three asymmetric electrolyte systems (1:1, 2:1, 3:1) we change the

valency of positive ions keeping the average concentration of negative monovalent ions in the slit,

cn = Nn/V , fixed. Keeping cn fixed across the three electrolyte systems generates distributions of

positive ions with a relatively smaller spread in their volume fractions (as compared to the case if

cp = Np/V was held fixed). In addition, it generates all the three electrolyte systems with equal

total positive charge (and equal total negative charge) which is distributed differently among the

ions associated with 1:1, 2:1, 3:1 electrolytes. Thus, a fixed cn enables us to attribute (for the most

part) the differences in the ionic structure of the three systems to the differences in the valency

of the positive ions and the associated changes in the electrostatic interactions. This allows us

to accurately compare the contributions of electrostatic and hard-core interactions in determining

the ionic distributions for the 1:1, 2:1, and 3:1 electrolytes. For the ease of presentation, we also

use cn to characterize the electrolytes, although it should be noted that for a z+:1 electrolyte, the

concentration is generally defined as Np/V .
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In Table. 2.1 we list the systems studied with MD simulations and the relevant parameters as-

sociated with their models. For the study of ions near unpolarizable interfaces, we use the standard

MD simulation procedure. The ionic degrees of freedom are evolved using the velocity Verlet al-

gorithm with a time step ∆ = 0.0005τ . Table. 2.1 also provides the simulation details associated

with this study for various concentrations cn and stoichiometric ratios. Here λD is the Debye length

calculated assuming the background dielectric is water; a large value of λD indicates a longer range

for Coulomb interactions in the system. The length L is chosen much greater than λD in each case

study.

In the case of polarizable interfaces, due to the presence of induced charges at the interface,

the simulations incur a cost of meshing the interface with discrete finite elements to represent

the induced charge density. This sets a limit on the simulation cell size L and for all the case

studies with polarizable interfaces we choose L = 40σ. As is evident from the values of the

Debye length for various cases (see Table. 2.1), this choice for L is still much larger than λD. The

number of positive and negative ions that enter the simulation cell are computed via the relations:

Nn ∼ 367× cn and Np ∼ Nn/z+ where cn is in molars.

The need to accurately compute the induced charges on the interfaces at every step of the

simulation in order to correctly update the ionic configuration makes the use of conventional MD

methods to extract equilibrium densities very time consuming and inefficient. Therefore, we em-

ploy a recently-developed Car-Parrinello molecular dynamics method that allows the propagation

of ionic degrees of freedom in tandem with an accurate update of the polarization charges at the

interfaces [42, 45]. Our Car-Parrinello molecular dynamics simulation scheme is based on the
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variational functional introduced in Ref. [42]:

I[ω] =
1

2

∫∫
ρrGr,r′ (ρr′ + Ωr′ [ω]) dr′dr

− 1

2

∫∫
Ωr[ω]Gr,r′ (ωr′ − Ωr′ [ω]) dr′dr,

(2.1)

where ρ and ω are the free and induced charge densities respectively. The function G(r, r′) =

|r− r′|−1 is the bare Green’s function and Ω is given by

(2.2) Ωr[ω] = ∇ ·
(
χr∇

∫
Gr,r′ (ρr′ + ωr′) dr′

)
,

with χ being the dielectric susceptibility. The particular form for the functional in the case of

two sharp, planar dielectric interfaces is shown in the Appendix A. In this form, I[ω] becomes a

functional of the induced charge density residing at the interfaces.

The minimization of I[ω] leads to the equation: ω = Ω; the solution of this equation generates

the correct induced density on the interfaces. Furthermore, owing to the fact that I[ω] is a true

energy functional, it offers the possibility to be minimized dynamically, that is, we are allowed

to perform a simultaneous update of the free charge (ionic) configuration and the induced charge

densities on interfaces I and II. To do this, we include I[ω] as the potential energy part of the

LagrangianLwhose kinetic part includes the kinetic energy associated with the ions and a fictitious

kinetic energy assigned to the surface induced charge density ω which is treated as a dynamical

variable of mass µ. The value of µ is chosen so as to make the energy contribution of the fake

degrees of freedom small. In practice, we choose these masses to be proportional to the areas of

the finite elements employed to discretize the interface. Further details of the method can be found

in Ref. [42].

We mesh each flat interface with M = 484 points generating a uniform grid of finite elements

that are dressed with induced charges. The area per finite element is L2/M ∼ 3.3σ2 which is
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roughly the same size as the effective cross-sectional area of the ion∼ πσ2. Using the equations of

motion derived from L, we generate the dynamics for the whole system – ions and the fake degrees

of freedom corresponding to the induced charge values, using the standard MD technique with a

time step ∆ = 0.001τ . The ions couple to a Nosé-Hoover thermostat reservoir at temperature

T = 298K while the induced charge (fake) degrees of freedom couple to a second Nosé-Hoover

thermostat at a much lower temperature Tf = 0.002T . The value for fictitious mass µ depends on

the particular system under study (concentration, stoichiometric ratios, etc.) and we find µ to fall

in the range µ = 60 − 1000 to optimize the stability of the simulation. Finally, due to the overall

electroneutrality associated with the system, the net induced charge at each interface vanishes. We

enforce this constraint in each step of our CPMD simulation via the shake-rattle routine [86].

As mentioned above, in CPMD simulations the amount of induced charge at a given interfacial

grid point is treated as a dynamical variable and the overall system is described by an extended

Lagrangian that includes the (fake) degrees of freedom associated with these induced charge vari-

ables in addition to the ionic degrees of freedom. As a result, a system with N ions confined by

unpolarized interfaces effectively translates into a system with 2M additional degrees of freedom

in the case of polarized interfaces (recall that M is the number of finite elements meshing each

interface). As we do not employ any acceleration strategies such as Ewald sums or particle-mesh

methods, the scaling associated with either of the MD methods employed is the typical O(n2)

scaling characteristic of charge simulations. While the time complexity for the conventional MD

simulation of ions confined by unpolarized interfaces isO(N2), the computational costs for CPMD

simulations of ions confined by polarized surfaces scales roughly as O((N + 2M)2). Hence, on

average, we find our CPMD simulations to be slower than conventional MD simulations roughly

by a factor of (N/(N + 2M))2. For instance, in the case of the CPMD simulations of monovalent

electrolyte at cn = 0.5 M with N = 368 ions and M = 484 grid points, the CPU time is 61.4
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milliseconds per time step while for the MD simulation of the same system (with unpolarized in-

terfaces), the CPU time is 9.4 milliseconds per time step. We note that these CPU times are for a

simulation performed on a 16 core CPU node with OpenMP shared memory multiprocessing.

2.2.3. Liquid state theory

We base our theoretical method on the work of Kjellander and Marčelja’s [46, 47], referred to

as the Anisotropic Hyper-Netted Chain (AHNC). The method is thoroughly and completely de-

scribed in these articles, and subsequent works by these authors, and explains in detail how the

Ornstein-Zernike (OZ) equation is solved in an inhomogeneous system of primitive model elec-

trolytes in a planar confinement. A visual interpretation of the mathematical procedure is presented

in the supplemental information of Ref. [5], together with a discussion of some characteristic re-

sults. The theory does not only focus on the 1-particle density profiles, as many density functional

theories and field-theoretical approaches, but also allows for the calculation of the anisotropic pair-

correlation functions. The only approximation in the method is the choice for the particular closure

equation for the OZ equation, in this case the Hyper-Netted Chain (HNC). The pair-correlation

functions h(r, r′) and c(r, r′) (respectively the total correlation function h and direct correlation

function c), are iteratively solved with the OZ equation

(2.3) h(r, r′) = c(r, r′) +

∫
dr′′ c(r, r′′)ρ(r′′)h(r′′, r′)

and the HNC closure

(2.4) c(r, r′) = h(r, r′)− ln(1 + h(r, r′))− βu(r, r′),

for a given pair potential u (in our case, the Coulomb potential plus a hard core repulsion), and for

a given particle distribution ρ(r). The potential is divided by the thermal energy kBT = 1/β. The
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1-particle distribution ρ is calculated with the (exact) Boltzmann distribution

(2.5) ρ(r) = ρ0 exp(−βV (r)− µexc(r)),

with an external field V , and the excess chemical potential µexc (over the ideal contribution, i.e.

due to pair-correlations), related to the logarithm of the activity coefficient. The excess chemical

potential can be expressed in terms of the pair-correlation functions, for example by solving the

exact Lovett-Mou-Buff-Wertheim equation [4], or if one uses the HNC approximation to solve the

OZ equation, one can use a specific expression that follows from that approximation;

(2.6) µexc(r) = ρ(r)

∫
dr′

1

2
h (r, r′) (h (r, r′)− c (r, r′))− c (r, r′) ,

as derived in Ref. [87], and applied in the AHNC in Refs. [46, 47].

The set of equations (2.3)-(2.6) is solved iteratively, until self-consistency is achieved within

a small numerical error. Equations (2.3) and (2.4) yield the pair-correlation functions h and c for

a given ρ, and equation (2.5) yields the density ρ for given pair-correlation functions h and c that

are required to calculate the excess chemical potential, equation (2.6). For notational convenience

and readability we have been omitting indices that denote particle type, but actually one would

have to calculate the density ρi of each particle type i, and pair-correlation functions hij and cij

between each pair of types i and j. In the AHNC, one discretizes the z-axis (the axis perpendicular

to the planar boundaries), and labels the densities according to the distance zk with an additional

index k, and likewise, the pair correlation functions with two indices. A more complete notation

of a correlation function could look like hij(zk, zl, r), denoting the total pair correlation between

a particle of type i at position zk and one of type j at zl, with cylindrical coordinate r (parallel to

the boundaries) separating the pair. The procedure is exactly as described above, except that the
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equations become (high-dimensional) matrix equations. Again, Refs. [46, 47] provide a complete

description, with some application and interpretation in e.g. Refs. [88, 5].

The Coulombic part of the pair-potential should satisfy Poisson’s equation. In the presence of

different dielectric boundaries, we use the so-called method of images to achieve this. The result

of this method is an infinite summation of Coulomb potentials ∝ ∑
1/ri (that decay with the

inverse of the distance ri) between the particles within the slit, and between the particles and their

infinite set of images [5]. The interaction between a particle and all its images can be interpreted

as an external force acting on the particle that depends on the dielectric contrast, distance to the

boundary, and separation between the boundaries [5]. The interaction between a particle and the

images of another particle are included in the total pair-potential u [46, 5]. For the interaction

between the ion and the interfaces we use a “soft” Lennard-Jones repulsive potential, the same

potential as in the case of the simulations,

(2.7) U(z) = 1 +
∑
I=1,2

4

((
σ

|z − zI|

)12

−
(

σ

|z − zI|

)6
)
,

for |z−zI| < 2
1
6σ with zI being the location of the interfaces. Otherwise, the particles are treated as

perfectly hard spheres with a positive or negative charge. We expect this difference in the treatment

of the short range repulsion to contribute towards small differences between the results of the

CPMD and the AHNC. The electrostatic attractions could enable the ions to overcome a small

region of the steep LJ-repulsion. The distance of closest approach is therefore smaller between

oppositely charged ions with a LJ repulsion than between two ions with a perfectly hard core. This

would result in a slightly stronger electrostatic coupling between LJ particles than between two

hard spheres with a same diameter.
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Figure 2.2. Density nz of positive ions for a electrolyte at cn = 0.1 M confined within two unpo-
larizable planar interfaces. Symbols correspond to MD results and dashed lines to AHNC calcula-
tions.

2.3. Results

2.3.1. Unpolarizable Interfaces

We begin by presenting our simulation and theoretical results for the case of ions confined within

unpolarizable planar interfaces that separate media of the same dielectric (water) on either side.

We first show how the equilibrium ionic structure in these systems deforms upon changing the sto-

ichiometric ratio (ion valency) and/or electrolyte concentration. The ionic structure is represented

by the number density nz of ions in the z direction (in molars) and in some cases by their charge

density ρz (in units of eM). In all our plots we show this density as a function of the z coordinate

in nanometers.

2.3.1.1. Effect of ion valency and concentration. In Fig. 2.2, we plot the density profiles of

positive ions for a z+ : 1 electrolyte (z+ = 1, 2, and 3) with concentration cn = 0.1 M. Note

the reduction in the total number of positive ions as the valency of the positive ions is increased

due to the constraint of electroneutrality. We find that the MD results and the AHNC lines are in

good agreement aside from a small discrepancy at distances very close to either interfaces. We
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attribute this mismatch to the differences in the modeling of ions in the two approaches. While in

MD simulations we model ion-ion steric interactions via soft LJ forces, for the AHNC calculations

these interactions are treated as hard-sphere interactions.

For the 1:1 electrolyte, we find the ion density (red squares) peaks near the interfaces as Fig. 2.2

shows. This implies that the positive ions corresponding to the 1:1 electrolyte tend to accumulate

near the interfaces. This accumulation, as will be demonstrated later in this section, is the result of

stronger steric interactions between the ions which dominate the weak interionic Coulomb interac-

tions between the monovalent ions. Further, we observe the presence of a weak modulation in the

density profile near the center of the confinement. As we will soon see, this modulation or layering

in the ionic structure becomes more prominent as the average ion concentration is increased. The

situation is different for the 2:1 and 3:1 electrolyte. We find that the multivalent ions associated

with these electrolytes are depleted near the interface with the depletion more pronounced in case

of the trivalent cations (blue triangles) as compared with the divalent ones (green circles). We at-

tribute this depletion to stronger ionic correlations that are present in the case of multivalent ions.

A graphic description of the microscopic mechanisms is shown Sec. 2.4.

We next show the results for the same systems as above but with higher electrolyte average

concentrations. In Fig. 2.3 we plot the ion density profiles for the case where cn = 0.5 M. Once

again we observe a good agreement between MD (symbols) and AHNC (dashed lines) results with

minor differences in the density values closer to the interface. We find that for the 1:1 electrolyte,

the accumulation of ions (red squares) is enhanced near the interfaces as compared to the case of

cn = 0.1 M. We attribute this enhancement to the stronger steric effects present in the ionic system

at cn = 0.5 M. While in the cn = 0.1 M case we observed a depletion in the ionic density of the 2:1

electrolyte close to the interface, for cn = 0.5 M electrolyte the ion density of divalent ions (green

circles) is enhanced near the interface which indicates the dominance of steric interactions over
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Figure 2.3. Density nz of positive ions for a electrolyte at cn = 0.5 M confined within two unpo-
larizable planar interfaces. Symbols correspond to MD results and dashed lines to AHNC calcula-
tions.

the Coulomb interactions. This competition between steric and electrostatic forces is seen to also

produce the nearly flat (constant) density profile of trivalent ions (blue triangles) near the interface

in the case of 3:1 salt in stark contrast to the situation in Fig. 2.2. In the cn = 0.1 M case, the

Coulomb interactions were sufficient to wash out the layered structure for 2:1 and 3:1 electrolytes.

On the other hand, at cn = 0.5 M we observe that the modulations in the ionic structure for these

electrolytes are more pronounced.

Fig. 2.4 shows the ionic density profiles for the same system at concentration cn = 0.9 M.

We only show the densities generated via MD simulations as at this concentration we find it more

difficult to converge the AHNC, and other closures may be more effective [4, 89, 90]. We find that

the trend of higher accumulation near interfaces upon increasing cn continues. For 1:1 electrolyte

(red squares), the ions strongly prefer to assemble near the interfaces. The accumulation near the

interfaces for the 2:1 electrolyte (green circles) is further enhanced as compared to the cn = 0.5 M

case. More importantly, we find that the strong steric effects at cn = 0.9 M dominate the Coulomb

interactions even for the 3:1 electrolyte. As Fig. 2.4 shows, we find enhanced accumulation of
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larizable planar interfaces obtained from MD simulations.
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Figure 2.5. Density of particles obtained from MD simulations for a 0:0 electrolyte (no electro-
static forces) at concentration cn = cp = 0.1, 0.5, and 0.9 M confined within two unpolarizable
planar interfaces.

trivalent cations (blue triangles) close to the interfaces in stark contrast to the cn = 0.1 M case

where electrostatics causes ion depletion near the interfaces. Furthermore, we find that at this

concentration, for all three stoichiometric ratios, the modulations in the ionic structure become

very prominent as compared to the aforementioned results at lower cn.
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It is useful to isolate and analyze the roles of steric and Coulomb interactions to understand

why in the above studied systems the ions distribute as shown in Figs. 2.2–2.4. To achieve this, we

turn off the charge on the ions in our simulations and obtain the densities for “ions” interacting via

only the purely repulsive LJ forces. In other words, we replace both the positive and negative ions

with electroneutral particles. We denote this system as the 0:0 electrolyte for the sake of brevity. In

Fig. 2.5 we show the density profiles for this system at different concentrations cn = cp = 0.1, 0.5,

and 0.9 M. The plots confirm our earlier assertion that the accumulation of ions near the interfaces

is the result of strong steric interactions. Furthermore we find that the densities of 0:0 electrolyte

at cn = 0.9 M (blue triangles), cn = 0.5 M (green circles), and cn = 0.1 M (red squares, see inset)

are nearly identical to the densities of 1:1 electrolyte at the same concentrations (red squares in

Figs. 2.2–2.4), implying that the distribution of ions for the 1:1 case is largely determined by steric

interactions. In addition, we find that the layering (modulations) of the ionic structure observed

at the higher concentrations in Figs. 2.3 and 2.4 is indeed driven by steric interactions as similar

modulations are seen in Fig. 2.5 at those concentrations as well.

By comparing the densities for the 2:1 and 3:1 multivalent salts with the plots in Fig. 2.5, we

find that electrostatic forces dramatically alter the situation in these cases with their primary effect

being to cause depletion of ions from the interfacial region as asserted before. For cn = 0.1 M,

electrostatics clearly dominates over the steric interactions leading to a fully depleted ionic density

profile for the multivalent ions near the interfaces (see Fig. 2.2). For higher concentrations of

cn = 0.5 and 0.9 M, the two forces are more evenly matched and in some cases (see, for example,

the density of trivalent ions at cn = 0.5 M in Fig. 2.3) they appear to more or less cancel each other

leading to a nearly uniform looking profile. In summary, we find that the steric interactions push

the ions towards the interfaces and drive the layering (modulations) of the ionic structure while

Coulomb forces deplete the ions from the interfacial regions. The competition between these two
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Figure 2.6. Charge density ρz of positive ions, negative ions, and all ions as a function of z for a
2:1 electrolyte at cn = 0.5 M confined within two unpolarizable planar interfaces. The effect of
increasing the external electric field (applied by creating a potential difference V between the two
interfaces) is shown for V = 10, 50, 100 mV. The brown solid line is the total charge density at
V = 0 mV (no external electric field). Symbols are MD simulation results and dashed lines are
AHNC results.

forces, tuned to varying degrees by controlling parameters such as the concentration or ion valency,

leads to a rich gallery of equilibrium ionic structures confined within the planar interfaces.

2.3.1.2. Effect of electric field. In electrochemical capacitors, the charging process creates a po-

tential difference between the parallel plates which drives the ions present in the electrolyte towards

the plate surfaces leading to the formation of electrical double layers[91, 92, 93]. The capacitive

power of such devices comes from the energy stored in the electrical double layers. Thus, in or-

der to understand the physics of electrical double layers formation and suggest improvements in

the design and working of such devices, it is important to study the effects of an external electric

field on the ionic structure formed in the electrolyte under confinement. Such a study also aids

in understanding the effective forces between charged colloids in the presence of electrolyte ions

[12].
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We introduce a uniform electric field pointing from the right to the left interface. Its strength

is measured by the potential difference V between the two interfaces. We analyze the ionic dis-

tributions of a 2:1 electrolyte with a concentration of cn = 0.5 M at V = 10, 50, and 100 mV. In

Fig. 2.6, we plot the charge densities (not the number densities) for positive ions, negative ions,

and all the ions. The results for V = 0 case (depicted in Fig. 2.3) are also plotted for the sake of

comparison. We first note that for all cases the center of the slit (near z = 0) is electroneutral, that

is, it is populated with ions such that the net charge vanishes in the region. Next, we find that for

V = 10 mV the densities are very similar to the case of neutral boundaries (no electric field) and

we only observe a slight accumulation of positive ions on the left interface. However, in the total

charge density we observe a slight asymmetry in the distribution about the z = 0 plane, finding a

net negative charge near the right interface which is not balanced by a net positive charge on the

left interface, but by a very wide peak of positive charge in the center of the slit. We attribute this

to the inherent bias of the neutral system (for 2:1 salt at cn = 0.5 M) towards a net negative total

charge density near the interface as shown by the brown solid line near ρz = 0. We note that a

mean field theory like Poisson-Boltzmann theory would predict a perfect anti-symmetric density

profile for such a system.

As the potential difference between the two plates is increased to 50 mV, we see a more clear

separation of ions in the system. The accumulation of positive ions in the neutral case near the right

interface is now suppressed almost completely by the electric field working against it. The (abso-

lute value of ) charge density for the negative (z− = −1) ions is still found to be maximum near

the interfaces. The total charge density reflects the separation of charge with a near-antisymmetric

distribution of ions. For V = 100 mV, the effects of electric field are the strongest of the studied

cases which is to be expected. The positive ions prefer the left interface while the negative ions are
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Figure 2.7. Charge density of positive ions for a z+ : 1 electrolyte at cn = 0.5 M and under the
influence of an external uniform electric field corresponding to a 100 mV potential difference be-
tween the two interfaces and pointing from the right to the left interface. Interfaces are considered
unpolarizable. Symbols are MD simulation results and dashed lines are AHNC calculations.

accumulated on the right. A clear separation of net charge is seen in the total density which has an

antisymmetric form about the z = 0 center plane.

In Fig. 2.7 we plot the charge density of positive ions associated with 1:1, 2:1, and 3:1 elec-

trolyte which is in the presence of an electric field corresponding to a potential difference of 100

mV between the left and right interfaces. The concentration is cn = 0.5 M for all systems. We

first find that the charge density near the z = 0 region increases as the valency of the positive ions

is incremented. Note that for a fixed stoichiometric ratio, as Fig. 2.6 shows, the charge density

near the central region remained unaffected by an increase of the electric field strength. Next we

observe that the electric field is strong enough to push the positive ions towards the left interface.

The peak value of the density near the left interface is seen to be independent of the valency of

positive ions. Near the right interface, the charge density shows a much stronger dependence on

z+. We find that for the 1:1 electrolyte, the positive ions still accumulate near the right interface

against the potential gradient. Recall that for the same system with neutral boundaries (that is

without the electric field, see Fig. 2.3), ions preferred to assemble near the interfaces, a finding that
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was attributed to the stronger steric forces at cn = 0.5 M. It appears that this accumulation is not

suppressed for the 1:1 case even with the potential bias of 100 mV. On the other hand, for the 2:1

and 3:1 electrolyte, the density plots show ion depletion near the right interface in contrast with the

profiles that showed peak accumulation near the interfaces in the case of neutral boundaries. The

depletion for trivalent cations is found to be stronger as compared with the divalent ions.

2.3.2. Polarizable Interfaces

We now study systems with polarizable planar interfaces, in other words, with interfaces that sep-

arate media of different dielectric permittivity on either side[82, 76]. We consider three different

cases (ε1|ε2|ε3): case i) = 20|80|20, case ii) = 40|80|10, and case iii) = 20|80|160 where ε1, ε2, and

ε3 are the dielectric constants of left, central, and right media respectively (see Fig. 2.1). These

three examples are chosen to showcase the different effects that can arise due to the two polarizable

interfaces. In the 20|80|20 case, we expect the interfaces to cause depletion of the density near the

interface with a symmetric final density profile owing to the equal dielectric contrasts at the two

interfaces. The case of 40|80|10 introduces the element of asymmetric depletion from the left and

the right interface. The third scenario with 20|80|160 is considered to introduce the possibility of

one interface repelling the ions and the other attracting them. For each of these cases we inves-

tigate how the equilibrium ionic structure deforms upon changing the stoichiometric ratio and/or

electrolyte concentration. The simulation results are obtained from CPMD method outlined in

Sec. 2.2.2 where the averages for the ion densities are computed from runs with nearly 30 million

steps (time step ∆ = 0.001τ ). While the polarization charge is treated in a discrete manner in

the CPMD method, it is considered continuous in the AHNC method. The infinite sum of image

charge contributions can be performed conveniently in k-space and results in a single exact expres-

sion. The AHNC therefore provides a reference for potential effects caused by the discretization of
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Figure 2.8. Density nz of positive ions for a cn = 0.1 M electrolyte confined within two polarizable
planar interfaces with dielectric profile (a) 20|80|20, (b) 40|80|10, and (c) 20|80|160 (see text for
the meaning of the notation). Symbols correspond to CPMD results and dashed lines to AHNC
calculations.

the polarization charge in the CPMD. Once again, we represent the ionic structure by the number

density of ions in the z direction and show this density in molars as a function of the z coordinate

in nanometers.

2.3.2.1. Low salt concentration: cn = 0.1 M. In Fig. 2.8 we plot the density profiles of positive

ions for a z+ : 1 electrolyte (z+ = 1, 2, and 3) with a concentration of cn = 0.1 M and dielectric

configurations of 20|80|20, 40|80|10, and 20|80|160 respectively. We find that the CPMD predic-

tions and AHNC results are in very good agreement. Recall that for this same system with unpolar-

izable interfaces, we found the monovalent positive ions to assemble near the interfaces while the

divalent and trivalent ions stayed away from the interfaces (see Fig. 2.2). From Fig. 2.8(a) we see

that the density of monovalent ions (red squares) is depleted near the interfaces for the 20|80|20

system. Further, we find that the depletion of multivalent ions (green circles for divalent ions and

blue triangles for trivalent ions) is stronger as compared with the unpolarizable interface case. This

enhanced depletion is due to the fact that the ion in water (central medium) induces a charge on

either interface of the same sign because of the lower dielectric constants of media adjacent to

the central medium. This same charge repulsion reinforces the already present depletion due to

strong electrostatic ion-ion correlations which is sufficient to overcome the accumulation near the
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interfaces favored by the steric forces for the case of monovalent ions. Additionally, we find that

the profiles for the 20|80|20 are symmetric about the z = 0 plane as in Fig. 2.2.

We next examine the density profiles for the 40|80|10 system which are shown in the plot of

Fig. 2.8(b). We first notice the asymmetric nature of the densities owing to the different values for

the dielectric contrasts at the left (40|80) and the right (80|10) interface. As the dielectric media

adjacent to the central region still have a lower dielectric constant, we find the ionic density profiles

to be depleted relative to the unpolarizable interface case. We find that due to a stronger contrast

at the 80|10 (right) interface, the depletion is stronger near it as compared with the 40|80 (left)

interface. The density for monovalent ions (red squares) near the left interface is nearly uniform

implying that the depletion of ions near the interface caused by the repulsion due to the induced

charges at this interface is not so strong to completely overcome the accumulation caused by the

steric interactions. Next, in Fig. 2.8(c) we show the profiles for 20|80|160 case. Here, while the left

polarized interface causes ions to repel away from the interface, the right interface attracts them

owing to fact that the media right to the central medium has a higher dielectric constant and thus

leads to the induction of a charge of opposite sign on the interface due to the ion in water. Hence,

we find that the density profiles show an accumulation near the right interface and depletion near

the left one, the depletion becoming stronger with rising z+. Unlike Fig. 2.8(a) and Fig. 2.8(b), we

observe an additional non-monotonicity in the density profile for the multivalent ions where the

density starts to first drop as one moves away from the central (z = 0) region and then rises again

close to the right interface.

2.3.2.2. High salt concentration: cn = 0.5 M and cn = 0.9 M. We next show the results for

the same systems as above but at higher electrolyte concentrations. Here, the effects due to the

polarized interfaces are similar to the above discussed case of cn = 0.1 M and hence we will be
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Figure 2.9. Density nz of positive ions for a cn = 0.5 M electrolyte confined within two polarizable
planar interfaces with dielectric profile (a) 20|80|20, (b) 40|80|10, and (c) 20|80|160 (see text for
the meaning of the notation). Symbols correspond to CPMD results and dashed lines to AHNC
calculations.

brief in their description, although, in contrast to the previous case, the effects may be secondary

to the effects of the ionic correlations.

In Fig. 2.9, we plot the ion density profiles for the case where cn = 0.5 M. Once again the

agreement between CPMD (symbols) and AHNC (dashed lines) results is good with minor dif-

ferences in the profiles closer to the interfaces. Recall that for this system with unpolarizable

boundaries we observed that monovalent and divalent cations preferred to be near the interfaces

while the trivalent ions stayed away from the interfaces, and we also saw enhanced modulations in

the ionic structure (see Fig. 2.3). We find a similar overall trend for the density of monovalent ions

(red squares) for all the three systems with polarizable interfaces studied, with some subtle differ-

ences near the interfaces which arise due to the induced charge repulsion or attraction as explained

above. On the other hand, for the divalent ions (green circles) we find that the dielectric effects

are strong enough to alter the density profiles obtained for unpolarizable boundaries. In the case

of 20|80|20, the density is depleted very close to the interface (see Fig. 2.9(a)) and appears to ex-

hibit more modulations relative to the unpolarized systems. For the 40|80|10 system, as Fig. 2.9(b)

shows, the density is depleted near the right interface (strong induced charge effect) and rises near

the left interface (weak induced charge effect unable to overcome steric effects) in accordance with
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Figure 2.10. Density nz of positive ions for a cn = 0.9 M electrolyte confined within two polariz-
able planar interfaces with dielectric profile (a) 20|80|20, (b) 40|80|10, and (c) 20|80|160 (see text
for the meaning of the notation). Symbols correspond to CPMD results.

the induced charge effects suggested by the dielectric contrasts at the two interfaces. Finally, for

the 20|80|160 case we find that the divalent ion density peaks near the right interface and is sup-

pressed close to the left interface in alignment with our expectations from the dielectric response of

the two interfaces (see Fig. 2.9(c)). In the case of 3:1 salt (blue triangles), we find that the ion-ion

electrostatic forces and the Coulomb (dielectric) interactions between the ions and the interfaces

dominate the ionic structure near the interfaces in all the dielectric profiles studied.

Fig. 2.10 shows the ionic density profiles for the same system as analyzed above but now with a

concentration cn = 0.9 M. We only show the densities generated via MD simulations. We find that

for the monovalent and divalent ions the effects of polarizable interfaces on the density profiles are

weak and the steric interactions dominate the physics at this concentration as they did in the case of

the unpolarized interfaces at cn = 0.9 M illustrated by Fig. 2.4. Ion accumulation near interfaces

for 1:1 and 2:1 salts is seen across the board with the polarized interface only slightly diminishing

or enhancing the density near the interface based on the sign of the induced charge. Further, the

modulations in the ionic structure for these systems continue to be present in the case of polarized

interfaces as well. We find that the dielectric contrasts mainly influence the structure of trivalent

cations (blue triangles) close to the interfaces. In stark contrast to the cn = 0.9 M case with no

dielectric contrasts where steric interactions cause ion accumulation near the interfaces for 3:1



61

Figure 2.11. Mean forces acting on an ion near a dielectric boundary. Deformation of the double
layer tends to pull ions away from the boundary (effect I), but steric interactions tend to push
ions against the boundary (effect II). Surface charge and polarization charge can attract or repel
ions, depending on the relative sign of the charges (effect III). We find that effects I and II, which
are absent in mean field theories, can compete with and overcome surface charge effects (effect
III). The effects are shown for a 3:1 electrolyte, but apply to both symmetric and asymmetric
electrolytes.

electrolyte (see Fig. 2.4), we find that the repulsion due to induced charges in conjunction with the

existing ion-ion electrostatic forces cause the suppression of the density close to the interfaces for

20|80|20 and 40|80|10 systems and near the 20|80 interface of the 20|80|160 system. In addition,

the overall density of trivalent cations appears to be nearly uniform in between the interfaces aside

from the strong rise seen near the 80|160 interface for the 20|80|160 system.
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Figure 2.12. Concentration profile of trivalent ions in a 3:1 electrolyte with a mean concentration
of cn = 0.5 M, in a slit with dielectric profile 20|80|160 (a). The corresponding potentials acting
on the trivalent ions are shown separately, calculated by the AHNC (b). The electric potential
generated by local charge segregation is shown as the red line φint. Charge segregation is driven
by the excess chemical potential µexc resulting from electrostatic and steric correlations (effects I
and II in figure 2.11), and Vpol, the polarization charge at the boundaries (effect III in figure 2.11).
The total potential is the sum of the contributions, Vtot = 3φint + µexc + Vpol. The excess chemical
potential from ionic correlations can overcome that of the polarization charge, |µexc| > |Vpol|,
typically at higher concentrations.
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2.4. Discussion

2.4.1. Structural features from ion-ion correlations

Figures 2.2 - 2.5 show several structural features in the ion density profiles that become more pro-

nounced with ion concentration and valency. Ions are found to deplete from the boundaries, adsorb

to the boundaries at higher concentrations, and show density oscillations at high concentrations.

The forces that govern these structural features are not directly exerted by the boundaries, which

are charge neutral and dielectrically matched in Figs. 2.2 - 2.5, but arise from the thermal motion

of the ions and the geometric constraints that the boundaries impose.

The explanation for the adsorption behavior can be understood by investigating the average

local environment of an ion. In addition to yielding density profiles that are in close agreement

with the MD and CPMD simulations, the AHNC also calculates the anisotropic pair correlation

functions between the ions. These functions yield direct information about the mean forces that the

ions experience between the boundaries, resulting from a combination of thermal motion and direct

interactions. The main assumption of mean field theories is to put these forces to zero by assuming

the pair correlation functions to be constant. Such theories will therefore never distinguish the

structural features of Figs. 2.2 - 2.5, and many widely-applied Poisson-Boltzmann theories, for

example, would predict uniform ion density profiles. Still it is possible to refer to the seminal work

of Debye and Hückel to explain the features in a qualitative fashion. However, for quantitative

predictions and a more complete picture of the phenomenology it is necessary to invoke the AHNC.

For a qualitative explanation it is sufficient to know that electrolytes in a charged fluid are

on average surrounded by compensating opposite charge. The “cloud” of screening charges (the

“double layer”) is spherical in bulk by symmetry arguments, but needs to deform close to a hard

boundary because the cloud cannot penetrate the boundary. In what follows, we consider the 3:1
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electrolyte at cn = 0.5 M as an example system to discuss our explanation. Similar arguments can

be invoked for all the other systems studied. Figure 2.11 shows the average charge distribution

around an ion near the boundary (effect I). The asymmetric screening cloud exerts a force on the

central ion, away from the boundary, resulting in an average depletion from the boundary. This

(microscopic) depletion mechanism, which we attribute to electrostatic interactions, would apply to

confined ionic fluids in general, except that its effect may be additive to those of other mechanisms.

A second mechanism, driven by steric interactions, is related to the volume fraction of ions or,

in other words, to their entropy. Adsorption of ions increases the free volume of the remaining

ions, which can be entropically favorable at high densities. An alternative way to rationalize the

adsorption is to realize that ions near the boundary experience more collisions with other ions

towards the boundary than away from it, resulting in a mean force towards the boundary (effect II of

Fig. 2.11). Both effects are visible in Fig. 2.12. The potential φint is the electrostatic potential that

is caused by the mean segregation of charge, whereas Vpol is the electrostatic potential generated

by the polarization charge. The excess chemical potential µexc is the mean potential that an ion

experiences from the average interactions with the other ions, subtracted by the mean potential

φint. By defining µexc in this way, it measures a mean potential purely caused by the local ordering

of charge. The total potential that a trivalent ion experiences is the sum of these contributions:

Vtot(z) = Vpol(z) + 3φint(z) + µexc(z). For the parameters of a 3:1 electrolyte, the variation in

the excess chemical potential µexc is larger than the variation in the mean potential φint. This

demonstrates the importance of calculating the anisotropic correlation functions that are required

to get an accurate value for µexc , as opposed to a majority of mean field methods that ignore the

existence of µexc and solve for φint in a self-consistent manner. For the trivalent ions, the effect of

µexc is also opposite to that of φint, and contributes to the spontaneous formation of a double layer

near the boundaries. Although the double layer near the boundary is unfavorable from a global
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perspective of ion entropy and electrostatic energy (φint), it is compensated by a more favorable

local configuration of charge (µexc), because the trivalent ions are more favorably screened in

the center of the slit. The electrostatics-driven depletion is found to increase with density and

valency, with a range corresponding to the electrostatic correlation length (which decreases with

density). The hard-core-driven adsorption is found to increase sharply at high densities, with a

range corresponding to the ion size.

We ascribe the oscillations in the ionic density to a balance between two mechanisms: a maxi-

mization of free volume (entropy) and minimization of total electrostatic energy. In a recent work,

Nygård et al. investigated density oscillations of a hard sphere fluid in a narrow slit [4]. In our case,

the Coulomb interactions enrich the phenomenology, but at high densities we see similar effects,

especially for monovalent ions.

Figures 2.8 - 2.10 show the additional influence of surface polarization. This effect has been

analyzed in many contexts, and is often approached with the “method of images”. Figures 2.8 -

2.10 show however that it is a secondary effect at higher ion concentrations[94] which only slightly

modifies the structure imposed by ionic correlations (effects I and II in figure 2.11). At the same

time, the spatial variation of the dielectric properties of the environment, particularly in the case of

electrolytes with low concentrations and multivalent ions, was found to have profound effects on

the ionic structure. Hence coarse-grained models and associated theoretical/computational proce-

dures to study charged soft matter systems should include dielectric heterogeneities to accurately

capture the physical properties of these materials.

2.4.2. Features in the total charge density

We point out another important feature of the ionic structure that, for the sake of brevity, we did

not discuss in Sec. 2.3. It is tempting to conclude, especially in the case of neutral, unpolarizable
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Figure 2.13. Charge density corresponding to all the ions in the system for a z+ : 1 electrolyte
at concentration cn = 0.5 M within two unpolarizable planar interfaces with dielectric profile
80|80|80 (see text for the meaning of the notation). Solid lines are MD results and dashed lines
correspond to AHNC calculations.

boundaries, that while the rich variations in the density profile for the positive ions of a z+ : 1

electrolyte can be expected as a result of the aforesaid competition between electrostatic and steric

interactions, the total charge density should be featureless owing to the cancellations coming from

the considerations of both positive and negative ions. Indeed, Poisson-Boltzmann theory and many

of its modifications [95] would predict a uniform distribution coincident with the ρz = 0 line for

the charge density of the total number of ions. This was found to be the case in our AHNC and MD

calculations for the 1:1 electrolyte system at all concentrations where the result is to be expected

from symmetry considerations as well. As Fig. 2.13 shows, our AHNC calculations found that

the total charge density ρt was identically zero everywhere and our MD result for ρt was seen to

fluctuate around zero, the small deviations from zero arising from the statistical noise present in

the simulations. However, deviations from mean field theory predictions were observed for total

charge densities of systems with asymmetric electrolytes containing multivalent ions [96, 97]. We

found features in ρt similar to those seen in the density of positive ions nz in the figures shown
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in Sec. 2.3.1.1 with the modulations in the density and the depletion/accumulation near the inter-

faces becoming significant as cn increased. For example, in Fig. 2.13, we show the total charge

density as a function of z for 1:1, 2:1, and 3:1 electrolytes at cn = 0.5 M. Clearly, for the 2:1

and 3:1 systems, the ionic structure is not washed out because of the cancellations predicted by a

mean field approach. Since the steric interactions in all these systems can be assumed to be the

same, we conclude that the features in ρt arise as a result of the electrostatic correlations between

ions which are neglected in a typical mean field theory. We do, however, expect that in the case

of systems under the influence of external electric field of high strength, these variations in the

density will be overpowered by the external bias and in such situations Poisson-Boltzmann theory

results will yield more accurate predictions of the total charge density. Some examples of modified

Poisson-Boltzmann theories, such as by dos Santos and Levin [98, 43], actually estimate the excess

chemical potentials of the ions and incorporate those self-consistently in the Boltzmann distribu-

tion. These theories actually distinguish features caused by electrostatic correlations between the

ions, and would capture the features in Fig. 2.13.

2.5. Conclusion

We calculate the non-monotonic density profiles of primitive model electrolytes in a dielectric

confinement, with standard molecular dynamics and Car-Parrinello molecular dynamics simula-

tions and a theoretical method known as the AHNC. Both methods are free of adjustable param-

eters and show excellent agreement. We observe several features in the density profiles, such as

adsorption at the ionic length scale, depletion over the electrostatic correlation length, and density

oscillations over the entire profile, and connect a rich phenomenology of effects to three simple

microscopic mechanisms. Two of these mechanisms result purely from ionic correlations and sym-

metry breaking at the interface, and are missed entirely in mean field theories (by assumption). We
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show here that polarization charge at the confining boundaries can modify the ionic profiles signif-

icantly, although it appears to generate a smaller force on the ions compared to the thermal forces

culminating from steric and electrostatic interactions between the ions, i.e. the ionic correlations,

roughly above 0.1 M concentrations. These mechanisms can induce charge segregation in asym-

metric electrolytes that can increase, decrease, or reverse the effective charge of the boundary, and

can induce non-monotonic forces between the boundaries[13, 14]. Although we postpone the dis-

cussion of these forces to future work [99], we reduced the origin to three mechanisms that span

the range of possible interfacial phenomena in the primitive model of electrolytes. The results of

the CPMD and AHNC shed light on the origin of ion-specific and dielectric effects in confine-

ment, which can be meaningful in the interpretation of effective interactions between nanoparti-

cles, biomolecules, and membranes, and for the evaluation of interfacial activity in separation and

process technologies.

Our MD simulations and AHNC did not use any adjustable parameters, and should in princi-

ple yield numerically exact results for the primitive model, which is corroborated by the excellent

agreement. The AHNC has the advantage of being numerically efficient, and converges generally

within a few minutes on a single CPU. The algorithm, however, relies on many coupled numerical

procedures, and the numerical parameters need to be chosen carefully to guarantee convergence,

such that algorithm development is relatively involved (compared to e.g. PB theory). The AHNC

also yields the thermodynamic potentials on the fly, which are expensive to calculate with the

CPMD, as well as the anisotropic correlation functions and potentials of mean force, which allow

us to identify and separate the underlying mechanisms that are responsible for the observed features

in the density profiles (as in Figs. 2.11 and 2.12). The AHNC does however rest on an approxima-

tion for the closure of the Ornstein-Zernike equation, the so-called Hyper-Netted Chain or HNC,

which could lead to deviations that are likely to be nihil for the chosen parameters. In the case of
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polarized interface systems, the accuracy on the density profiles is determined by the interfacial

grid spacing, both for the simulations and the AHNC (lower grid spacing implies finer resolution

of the interface and leads to higher accuracy). In some cases, the assumption of planar shapes

for the dielectric interfaces may break down and curvature effects may become strong. We note

that our CPMD simulations are well suited for systems with curved interfaces as demonstrated in

Ref. [42] where ion distributions near a spherical interface were computed. More complex shapes

will benefit from clever ways of meshing the interface but the overall CPMD procedure is similar

to the method presented here for the two planar interfaces. Furthermore, the costs associated with

the CPMD simulations of ions near interfaces of complex geometry would be similar to the costs

incurred in the simulations for planar interfaces because the CPU time primarily depends on the

interface area rather than its shape. We realize that, although our methods are numerically accurate

for the primitive model, the model system itself assumes a homogeneous structureless medium

without impurities, and will not describe certain effects common in aqueous electrolytes [100].

The model system also assumes infinitely sharp dielectric boundaries, which may oversimplify

the molecular width of e.g. liquid-liquid or liquid-gas interfaces [63]. However, the CPMD and

AHNC could offer pathways to quantify those additional effects, and derive effective potentials

given that the ion thermodynamics within the model system is correctly treated. In the end, we

note that our simulations and theory are versatile enough to treat the case of other multivalent salts

(2:2, 3:3), asymmetric ion sizes, mixture of electrolytes, and the dynamical evolution of the soft

ionic structure.
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CHAPTER 3

Ionic structure and electric field at the oil-water interface with

size-asymmetric monovalent ions

3.1. Introduction

The ionic cloud at the interface between two immiscible electrolyte solutions (ITIES) is the

so-called electrical double layer. This accumulation of diffuse charge can arise from the difference

in the ionic solvation energy in each liquid medium or from the application of an electric field.

In living organisms, different dielectric properties and ion concentrations can be maintained inside

cells in contrast to the external medium via molecular pumps, which can induce transmembrane ion

diffusion metabolizing energy. The molecular details of the ionic distribution near the interfaces

determine the properties of the electric field generated by these charged particles. The relevance of

the electric field (or the electrostatic interactions) to the adsorption and self-assembly properties of

charged colloidal micro/nanoparticles at liquid interfaces has been demonstrated in recent experi-

mental studies as a novel avenue to design more complex molecular structures[101, 102]. In fact,

colloidal nanoparticles can be used to stabilize emulsions producing so-called microcapsules[103],

which could be used to deliver encapsulated materials in biomedical applications. Label-free de-

tection based on liquidliquid interfaces has also been proposed[104].

In order to gain a better understanding of the molecular structure of the ITIES, simulation stud-

ies have been conducted considering explicitly solvent particles. Nevertheless, the vast number of

solvent particles required to study the ITIES under experimental ion concentrations (typically in

the range of millimoles) makes this kind of calculation non-attainable, despite the current advances
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in computing capability. On the other hand, the classical Poisson-Boltzmann theory of point ions

has been used since last century to describe the electrical double layer at the ITIES[91]. One im-

portant limitation of this approach is that it does not take into account the ion correlations and

excluded volume effects[105, 106]. The former is related to the physical fact that an ion likes to

be surrounded by ions of opposite charge, whereas the latter means that two ions cannot occupy

exactly the same position in space. In the classical PoissonBoltzmann theory of point ions, the two

double layers that meet at the ITIES do not interact, and the corresponding polarization effects due

to dielectric heterogeneities are completely neglected[91]. These effects are relevant if the dielec-

tric properties of the two immiscible liquids in contact significantly differ. In the most simple case,

polarization effects can produce the attraction (repulsion) of a single charge toward a macroscopic

sharp interface limiting another medium with a higher (lower) dielectric constant[107].

Given the evident limitations of the classical Poisson Boltzmann picture of point ions, sev-

eral theoretical approaches have been proposed to successfully describe the experimental results

of the ITIES[108, 109, 110]. Nevertheless, these improved schemes are also restricted by ad-hoc

adjustable parameters, which limits their predictive use. Thus, we perform here coarse-grained

Monte Carlo simulations of an experimental oil-water interface in the presence of an electric field

- including realistic ionic size-asymmetry, ion correlations, excluded volume of ions, and image

charges to study its thermodynamic and microscopic properties without needing any adjustable

parameter. In particular, these Monte Carlo simulations are used to study the surface tension of

oil-water interfaces in the presence of size asymmetric monovalent salts with the goal of determin-

ing the effects of ion correlations, polarization, and ionic excluded volume in the diffuse electrical

double layer. At the molecular level, we observe that the electrolyte concentration and the ionic

size-asymmetry can be used to tune the electric field near the liquid-liquid interface. Thus, the elec-

tric field can be significantly increased or even reversed in this region depending on the polarity of
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the difference in the mean electrostatic potential in the bulk phases of oil and water. We reproduce

surface tension experimental data of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate)

near an oil-water interface in the presence of an electric field in the Results and discussion section.

We use only experimental values of all relevant physical parameters of the system, such as the ionic

size and the dielectric constant in the bulk liquid media, without any additional adjustable param-

eter. In the Conclusions section, we argue that the enhancement and the reversal of the electric

field at high electrolyte concentrations is analogous to the surface charge amplification[111, 112]

and the charge inversion observed experimentally in macroscopic colloidal systems[113, 114]. If a

difference due to ion partitioning exists in the mean electrostatic potential in the bulk phases of oil

and water, these phenomena could also be present in synthetic and biomolecular interfaces, even

in the absence of an applied electric field.

3.2. Model and methods

3.2.1. Model

We describe the ion distribution at the interface between two immiscible electrolyte solutions us-

ing the primitive model. In this scheme, the solvent is a continuum medium characterized by a

dielectric constant, ε. Nitrobenzene and water, with dielectric constants εO = 34.8 and εO = 78.4,

respectively, are the two immiscible adjacent solvents placed in contact. Ions are modeled as hard

spheres with point-charges embedded in their centers. TBA+, tetrabutylammonium, and TPB−,

tetraphenylborate, ions are submerged in nitrobenzene, while Li+ and Cl− ions are submerged

in water. The diameter of the ionic species are: dTBA+ = 7.7Å, dTPB− = 8.2Å, dLi+ = 4.2Å,

dCl− = 6.4Å, for TBA+, TPB−, Li+ and Cl− respectively[115]. The sharp dielectric discontinu-

ity is modeled as an impenetrable neutral hard wall (Fig. 3.1). We neglect the ion transfer between

the two solvents because the standard Gibbs energies of transfer of LiCl from water to oil, and of
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Figure 3.1. Schematic representation of the experimental system (top), the Monte Carlo setup used
in the simulations (middle), and the difference in the mean electrostatic potential in the bulk phases
of both immiscible electrolytes (bottom).

TBATPB from oil to water are significant[116]. Polarization effects are included via the image

charge method, as described below.

In typical experiments, an electric field is applied to the liquidliquid interface. As a result,

charge accumulation is observed on both sides of the dielectric discontinuity (see Fig. 3.1). Let us

denote E(~x) as the electric field, and ΨW
∞−ΨO

∞ = ∆W
O Ψ as the difference in the mean electrostatic

potential in the bulk phases of both immiscible electrolytes. The boundary conditions for this

system are ΨO
∞ = 0 and EO

∞ = 0 in oil, with ΨW
∞ = ∆W

O Ψ and EW
∞ = 0 in water. Physically,

these boundary conditions establish that the difference in the mean electrostatic potential in the

bulk phases of both electrolytes is constant, and the electric field vanishes in the bulk electrolytes.

The original applied electric field in the experiments is replaced in our simulations by an imposed

excess of surface charge density in nitrobenzene, σO, and water, σW (Fig. 3.1). As the experimental

system is electroneutral, the global excess charge imposed is equal to zero, σW + σO = 0 . From

the ion distribution around the liquid interface, it is possible to calculate the electric field near the



74

dielectric discontinuity and the difference in the mean electrostatic potential in the bulk phases of

the electrolytes, ∆W
O Ψ for a given excess surface charge density in water, σW , using the Gauss law

as described below. The advantage of this approach is that the specific details of the applied electric

field producing the interfacial ionic accumulation are no longer required because, macroscopically,

the electrodes are completely screened in the bulk phases of both immiscible electrolytes. Thus,

the excess surface tension at the oil-water interface can be calculated as a function of ∆W
O Ψ using

the Lippmann equation[117]:

(3.1) σW = − ∂γ

∂∆W
O Ψ

.

3.2.2. Electrostatic interactions with a dielectric discontinuity-Image charge method

In the primitive model, interactions among charged particles can be grouped into two types: one-

body and two-body. These interactions can also be separated into a hard sphere contribution and

an electrostatic component. The two-body interaction for hard spheres is given by Sij(rij) = 0 if

particles i (~ri = (xi, yi, zi)) and j (~rj = (xj, yj, zj)) do not overlap, and Sij(rij) = ∞ otherwise.

The distance between the particles is defined as rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. α =

O,W and β = O,W as the solvents in which particles i and j reside, respectively. These solvents

have associated dielectric constants εα and εβ . The two-body electrostatic interaction between

particles i(with valence vi) and j (with valence vj) is given as

(3.2) Uαβ
ij (~rij) = lαβ

(
vivj
rij

+
εα − εα′
εα + εα′

vivj
rij′

δαβ

)
,

where α′ is the complementary solvent to α, δαβ is the Kronecker delta, lαβ = e2

4πε0(εα+εβ)/3
,e is the

protonic charge, ε0is the vacuum permittivity, and ~rj = (−xj, yj, zj) system is placed at the liquid

interface according to the method of images[107].
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The one-body hard sphere interaction can be written as Sαi (~ri) = 0, if LiCl ions are in water

and TBATPB ions are in nitrobenzene, and there is no overlapping between the ions and the hard

planes located at x = −H , x = 0, and x = H . Otherwise, Sαi (~ri) = ∞. This definition prohibits

ion transfer between both solvents. The one-body electrostatic interaction is associated with the

self-image electrostatic energy, which is defined as

(3.3) Uα
i (~ri) =

lαα
2

εα − εα′
εα + εα′

v2i
rii′

.

Here, α = O,W is the medium in which ion i is located, and α′ is the complementary

solvent[107]. The one-body and two-body interactions can be written as

(3.4) Hone−body
i (~ri) = Sαi (~ri) + Uα

i (~ri)

and

(3.5) H two−body
ij (~rij) = Sij(~rij) + Uαβ

ij (~rij).

The total energy of the system is then defined as

(3.6) HT =
N∑
i=1

Hone−body
i (~ri) +

1

2

N∑
i=1

N∑
j=1

H two−body
ij (~rij),

where i 6= j, and N is the total number of particles. Electrostatics were properly included via the

Torrie and Valleau’s charged-sheets method[83] using Boda’s modification[84].

3.2.3. Monte Carlo simulations of the liquid interface

In order to efficiently access concentrated electrolyte solutions, Monte Carlo (MC) simulations of

the liquidliquid interface are performed in the NVT ensemble. This approach has been discussed in
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detail in a previous study considering size-symmetric ions[118], so we briefly sketch it here. A box

of volume 2HL2 is used to perform the simulations (see Fig. 3.1). Periodic boundary conditions

along the y- and z-directions, and a finite length of 2H along the x-axis are imposed. The sharp

dielectric interface is modeled using an uncharged hard wall at the center of the simulation box

at x = 0. This hard wall prevents ion transfer of TBATPB ions from oil to water and LiCl ions

from water to oil. In addition, two impenetrable uncharged hard walls are located at x = −H and

x = H . The simulation box must be large enough to mimic a bulk electrolyte reservoir. We have

monitored this condition, obtaining the desired bulk electrolyte concentration with an error of less

than 1%. The total number of particles in the simulation box varied from 2,000 for low electrolyte

concentrations to 5000 for high electrolyte concentrations. In all instances, 50,000 MC cycles

were performed to equilibrate the system. The canonical average was calculated using 900,000

MC cycles for low ion concentrations and 300,000 MC cycles for high ion concentrations.

3.2.4. Calculation of the electric field and the surface tension

Let us consider a distance far enough from the dielectric discontinuity, at which the electrolyte

can be considered in its bulk state. We denote this distance as x0, which is shorter than half the

length of the simulation box, H , in its finite dimension (see schematic representation in Fig. 3.1).

In order to mimic the effect of an applied electric field in our Monte Carlo simulations, a number

of TBA+ or TPB− ions are added to the bulk concentration of TBATPB in nitrobenzene. The

corresponding excess surface charge density can be defined as

(3.7) σO =

∫ 0

−x0

∑
i=TBA+,TPB−

ρi(x)ezid,

where ρi(x) is the density of ions per volume unit of species i, and e is the protonic charge. Adding

the same number of inorganic ions with opposite charge to the bulk concentration of LiCl in water
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allows us to satisfy the global electroneutrality condition. Thus, the excess surface charge density

in water is given by

(3.8) σW =

∫ ∞
0

∑
i=Li+,Cl−

ρi(x)ezid = −σO.

If nitrobenzene is taken as a reference, we define the integrated excess surface charge density

as

(3.9) σ(x) =

∫ x

−x0

∑
i

ρi(x)ezid,

for i = TBA+, TPB−, Li+, Cl− and x ≤ x0. Applying the Gauss law, the electric field (perpen-

dicular to the dielectric discontinuity) is given by

(3.10) E(x) =
σ(x)

ε(x)ε0
,

where ε(x) = εO if x < 0 andε(x) = εW if x > 0 .From this definition, the continuity of the

perpendicular electric displacement

(3.11) D⊥O = D⊥W = lim
x→0−

εOE(x) = lim
x→0+

εWE(x)

is fulfilled, in agreement with the Maxwell equations[107]. The difference in the mean electrostatic

potential in the bulk phases of both immiscible electrolytes, ∆W
O Ψ, is calculated from the electric

field as

(3.12) ∆W
O Ψ = −

∫ x0

−x0
E(x)d.
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Notice that a zero value in the bulk phase of nitrobenzene has been taken as a reference. The

interfacial excess surface tension, γ − γ0 (γ0 is the surface tension at the point of zero charge), can

then be obtained from the Lippmann equation 3.1.

3.3. Result and discussion

In Fig. 3.2, experimental results of the excess surface tension at the nitrobenzenewater inter-

face [6], γ− γ0, are collated with Monte Carlo results and theoretical calculations obtained via the

non-linear PoissonBoltzmann theory[117] for several electrolyte concentrations. In Fig. 3.2(A),

the concentration of TBATPB ions in nitrobenzene is fixed and the concentration of LiCl ions in

water is varied, while in Fig. 3.2(B) the opposite process is performed, that is, the concentration of

LiCl ions in water is fixed and the concentration of TBATPB ions in nitrobenzene is varied. For

all salt concentrations, Monte Carlo data agree with experimental results. The non-linear Pois-

sonBoltzmann results resemble experimental data at low electrolyte concentrations, even though

they deviate significantly at large values of the difference in the mean electrostatic potential in the

bulk phases of the electrolytes, ∆W
O Ψ. These deviations are magnified at higher concentrations,

contrasting with the good agreement between the Monte Carlo simulations and the experimental

results.

In Fig. 3.3, the electric field and the ion distribution around the liquid interface are presented

for several concentrations of LiCl ions in water, while the concentration of TBATPB ions in ni-

trobenzene is fixed. In Fig. 3.2(B), a positive excess surface charge density in oil, σO > 0, is

considered, while the opposite value, σW = −σO, is considered in water. For all LiCl concen-

trations, the contact value of Cl− is larger than the contact value of Li+ (see Fig. 3.3(B)). This

is consistent with the fact that the negative Cl ions are counterions of the positive excess surface

charge in nitrobenzene, σO > 0. On the other hand, a very interesting behavior of the electric field
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Figure 3.2. Excess surface tension, γ − γ0, at the oilwater interface as a function of the difference
in the mean electrostatic potential in the bulk phases of both immiscible electrolytes, ∆W

O Ψ, for
several electrolyte concentrations. g0 is the surface tension at the point of zero charge. In (A), the
bulk concentration of TBATPB in nitrobenzene is 0.1 M in all instances, while the bulk concentra-
tion of LiCl in water is (from bottom to top) 0.01 M, 0.1 M, and 1 M. In (B), the bulk concentration
of LiCl in water is 0.1 M in all cases, while the bulk concentration of TBATPB in nitrobenzene is
(from bottom to top) 0.02 M, 0.05 M, and 0.17 M. Black solid and blue dotted lines correspond to
the experimental electrocapillary data reported in ref. [6], and non-linear PoissonBoltzmann calcu-
lations, respectively. Red empty symbols with dashed lines correspond to Monte Carlo simulation
results. The excess surface tension is shifted for clarity.

in water can be observed in Fig. 3.3(A) when the concentration of LiCl increases. Near the di-

electric discontinuity, the electric field peaks at the closest approach distance of Cl− when the salt

concentration of LiCl increases. As the dielectric constant is larger in water than in nitrobenzene

(σW = −σO), the electrostatic screening in water should be larger accordingly. Nevertheless, in

Fig. 3.3(A) we observe that the magnitude of the electric field in water can be even larger than its

maximum value in nitrobenzene for the highest salt concentration. This behavior can be under-

stood noting that there is a significant amount of small positive Li+ ions adsorbed to the dielectric
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interface at high electrolyte concentrations. These adsorbed cations, which are co-ions of the pos-

itive excess surface charge density in nitrobenzene, σO > 0, enhance significantly the electric field

in the aqueous phase near the liquid interface.

In Fig. 3.3(D), the ion profiles of organic and inorganic ions are displayed as a function of the

distance to the dielectric discontinuity. In this case, a negative excess surface charge density in oil,

σO < 0, is considered, while the opposite value, σW = −σO, is considered in water. For electrolyte

concentrations 0.01 M and 0.1 M of LiCl, the contact values of Li+ are larger than those of Cl−

. This is consistent with the fact that positive Li+ ions are counterions of the negative excess

surface charge density, σO < 0, in nitrobenzene. Nevertheless, at a concentration 1 M of LiCl, the

previous trend inverts: the contact value of large Cl− ions (co-ions of the negative excess surface

charge in nitrobenzene, σO) is larger than the contact value of small Li+ cations (which are the

counterions of σO). The inversion of roles between counterions and co-ions is the so-called charge

inversion[111, 119]. The overcompensation of the negative excess surface charge in nitrobenzene

promotes a reversal of the electric field in water, which peaks again at the closest approach distance

of Cl− (see Fig. 3.3(C)).

The significant adsorption of Li+ ions to the liquid interface at high electrolyte concentrations

is mainly due to the ionic size asymmetry and excluded volume effects (or depletion forces). This

behavior occurs for both polarities of the difference in the mean electrostatic potential in the bulk

phases of the electrolytes, ∆W
O Ψ, in the presence of weak electric fields. Under these conditions,

small cations (Li+) can be significantly adsorbed to the liquid interface in a region that is not

allowed to large anions (Cl− ) in water. If the smallest ions are counterions of the excess surface

charge density in nitrobenzene, σO, this adsorbed layer of small counterions can overcompensate

σO near the dielectric discontinuity, generating the so-called charge reversal[111] and the inversion
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Figure 3.3. Monte Carlo calculations of the electric field and ion distribution as a function of the
distance to the oilwater interface. The bulk concentration of TBATPB in nitrobenzene is 0.1 M
in all instances, while the bulk concentration of LiCl in water is 0.01 M (dotted lines), 0.1 M
(dashed lines) and 1 M (solid lines) for all panels. In (B) and (D), Li+, Cl−, TBA+ and TPB−

are represented by squares, circles, triangles, and diamonds, respectively. In (A) and (B), the
excess surface charge density in water is negative, σW = −0.004C/m2, while in (C) and (D), the
excess surface charge density in water is positive, σW = +0.004C/m2. The difference in the mean
electrostatic potential in the bulk phases of both immiscible electrolytes, ∆W

O Ψ, is displayed in the
insets of (A) and (C) for each ionic concentration.

of the electric field in the aqueous region (see Fig. 3.3(C)). In contrast, if the smallest ions are co-

ions of σO then the net excess surface charge density in water can be larger than σO close to the

dielectric discontinuity, producing the phenomenon of surface charge amplification[111] and the

enhancement of the electric field (see Fig. 3.3(A)).

Finally, the interfacial behavior of the electric field for larger excess surface charge densities in

water, σW , is displayed in Fig. 3.4(A) and (B). In order to facilitate the comparison of our results

with future experimental data, the corresponding differences in the mean electrostatic potential in
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Figure 3.4. Monte Carlo calculations of the electric field as a function of the distance to the oil-
water interface for several excess surface charge densities, sW, in water. The bulk concentration of
TBATPB in nitrobenzene is 0.1 M and the bulk concentration of the LiCl in water is 1 M, in both
panels. The difference in the mean electrostatic potential in the bulk phases of both immiscible
electrolytes, ∆W

O Ψ, is displayed in the insets of (A) and (B) for each excess surface charge density
in water.

the bulk phases of both immiscible electrolytes, ∆W
O Ψ, are also displayed for each ionic concentra-

tion of LiCl in water. In Fig. 3.4(A), we observe that even though the enhancement of the electric
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field still persists for large negative differences of the mean electrostatic potential, ∆W
O Ψ, its mag-

nitude is less pronounced. This means that the increase of positive excess charge in nitrobenzene

increases the electrostatic repulsion exerted over Li+ cations in water, thus gradually overcoming

the attraction of Li+ ions to the interface due to excluded volume effects. In contrast, Fig. 3.4(B)

shows that the reversal of the electric field disappears at large positive differences in the mean

electrostatic potential in the bulk phases of both immiscible electrolytes, ∆W
O Ψ.

3.4. Conclusion

In this study, we provide an enhanced description of the ion distribution and the electric field

near a liquidliquid interface, including realistic ionic size-asymmetry, ion correlations, excluded

volume of ions, and image charge effects via Monte Carlo simulations. This approach goes well

beyond the classical PoissonBoltzmann picture, in which such effects are completely neglected.

The adequacy of this treatment is demonstrated via a comparison with experimental results of

the excess surface tension at the nitrobenzene-water interface, without needing any adjustable pa-

rameter. We observe that the non-linear PoissonBoltzmann theory is limited to low electrolyte

concentrations, deviating significantly from experimental results in the opposite limit. We have

also evinced that the ionic size-asymmetry and excluded volume effects play fundamental roles in

the structure of the electrical double layer around a liquidliquid interface at high electrolyte con-

centrations. In particular, we have shown that at a 1 M concentration of LiCl in water and a 0.1 M

concentration of TBATPB in nitrobenzene, the significant adsorption of small Li+ ions to the liquid

interface is able to (i) enhance the electric field in the aqueous phase for positive excess surface

charge densities in nitrobenzene and (ii) reverse the electric field in the aqueous phase for negative

excess surface charge densities in nitrobenzene. These phenomena are analogous to the surface
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charge amplification and charge inversion reported by our research group in size-asymmetric elec-

trolytes around a charged nanoparticle (even in the absence of image charge effects)[111]. In that

study, we showed that the surface charge amplification (or the adsorption of coions on the surface

of a charged nanoparticle increasing its original bare charge) and the charge inversion (or the over-

compensation of the original bare charge of the nanoparticle by counterions) can appear at high ion

concentrations in the vicinity of the point of zero charge. We demonstrated that these effects are

mainly driven by the ionic size asymmetry and excluded volume effects, and that they disappear at

large valences of the nanoparticle. Here, we have shown that an analogous mechanism can produce

the enhancement and the inversion of the electric field at a liquid interface near the point of zero

charge (that is, for small differences in the mean electrostatic potential in the bulk phases of both

immiscible electrolytes). These findings emphasize the relevance of the proper inclusion of ionic

size-asymmetry, ion correlations and image charge effects in the description of the diffuse ionic

distribution around charged surfaces and interfaces.

It is important to point out that these phenomena are not limited to occur only when an electric

field is applied. The use of an electric field is one possibility to produce ionic charge accumulation

at a liquid interface. In fact, such an ion distribution can also be induced by other mechanisms,

such as ion partitioning, in which ions move from one liquid medium to another depending on

their standard Gibbs energy of transfer [120] or via molecular pumps in cells [121]. These mech-

anisms are highly non-equilibrium processes since the ion’s mobility and the resulting induced

polarizability respond at different time scales [5]. As the distribution of ions around fluid inter-

faces is a common scenario in biological systems, our findings suggest that interesting phenomena

such as the enhancement and reversal of the electric field, as well as the surface charge amplifi-

cation [111, 112] and charge inversion (already observed experimentally in macroscopic colloidal

systems [40, 113, 114] may also be present in nanoscopic biological liquid interfaces. We have



85

also shown how the tuning of the electric field, enhancing or reversing its strength near the liq-

uid interface, depends on the ion concentration and ionic size asymmetry. This suggests a new

reversible physical mechanism to control the adsorption, self-assembly, and trapping/release of

small charged nanoparticles, globular proteins, dendrimers or polyelectrolytes at the interface be-

tween two immiscible liquids in the presence of weak electric fields. Experimental techniques

of atomic resolution [122, 123] and recent theoretical improvements [124, 42, 42] will play an

important role in gaining further insights into these phenomena at the molecular level.
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CHAPTER 4

Effects of size asymmetry and electric field on ion distribution at polarized

interfaces by coarse grained molecular dynamics simulations

4.1. Introduction

Inorganic metal-oxygen clusters anions, called polyoxometalates (POMs), represent an impor-

tant class of compounds with remarkable fundamental structural functionality, such as catalysis,

electron transfer in solution and at metal oxide interfaces, self-assembly and association with bio-

logical systems[125, 126, 127]. The tunability of their size, structure, and elemental composition

render them particularly interesting for design of functional nanomaterials. In most circumstances,

POMs inhabit in solutions in contact with solid or liquid interfaces. A precise understanding of

such complex system requires an analysis of the surrounding solvent, local ionic organization and

the structure of POMs themselves. Considering their high negative charge, large size, and their

chemical properties, it is very challenging to model and simulate POMs effectively.

In the following part, we start with a coarse-grained model that consider POMs as large highly

charged anions while with relatively small cations in the the aqueous solution. We study the ef-

fects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using

coarse-grained MD developed in section 1.3. The goal is to explore charge amplification with

exact consideration of surface polarization. In particular, we choose POM as large anions (e.g.

[PW12O40]
3− , for which force fields are available), and compare with smaller anions (e.g. Cl−).

Different cations of similar sizes but different valence are studied.
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Figure 4.1. Schematic of the coarse grain simulation of ion distribution, and atomic details of the
large keggin ion by MD.

4.2. Model and simulation setup

We study Xx[PW12O40]y solution at 300 K using a Nose-Hover chain, with concentrations of

0.1 M. We choose to study K+ and Eu3+ as the metal cation X. We also compare [PW12O40]
3−

with Cl−, a smaller anion. The diameter of [PW12O40]
3−, K+ , Eu3+, and Cl− are listed in

Table 4.1. To separately investigate the effects of size asymmetry, charge asymmetry, strength of

ion correlation and volume fraction, we study the cases listed in Table 4.2.

The box size is 7.14 nm × 7.14 nm with periodic boundary conditions in x- and y- directions.

The z- direction is divided into three parts by two hard walls with permittivity of ε1 = 15, ε2 = 80,

and ε3 = 80, respectively. ε1 = 15 is corresponding to graphite and ε3 = 80 is corresponding

to water. Ions are confined between the two walls, and the distance between the walls is 30 nm,

which is much larger than the Debye length. Ewald summation is used for long-range electrostatic

interactions[128]. To account for non-periodicity of the z-direction, dipole correction is applied,

and the box size in the z-direction is three times larger than the distance between the walls[129].
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Table 4.1. Ion diameter[1, 2]

Ion [PW12O40]
3− K+ Eu3+ Cl−

Diameter (nm) 1.12 0.24 0.24 0.24

Table 4.2. Ion sizes, ion charges and volume fraction for 7 cases.

Case ID Cation diameter/anion diameter (nm) Cation charge/anion charge Volume fraction
(a) 0.24/0.24 +1/-1 0.00087
(b) 0.24/1.12 +1/-1 0.045
(c) 0.24/0.24 +3/-3 0.00087
(d) 0.24/1.12 +3/-3 0.045
(e) 0.24/0.24 +1/-3 0.0017
(f) 0.714/0.714 +1/-3 0.046
(g) 0.24/1.12 +1/-3 0.046

The hydrophobic interactions between ions, and between ions and the interfaces are modeled

using repulsive Lenard-Jones (LJ) interactions:

(4.1) VLJ =


4ε
[(

σ
r

)12 − (σ
r

)6]
+ ε for r ≤ 2

1
6σ

0 for r > 2
1
6σ

The timestep is 1 fs. The system is equilibriated for 1 ns before data-collecting simulations.

4.3. Result and discussion

The results of ion distribution for cases (a) and (b) are shown in Figure 4.2. In both cases, the

charge ratio is +1/-1. When the cation/anion sizes are 0.24 nm/0.24 nm, both cations and anions

are depleted from the interface, while when the cation sizes are 0.24 nm/1.12 nm, the large anions

aggregate at the interface and the small cations are depleted further from the interface.
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Figure 4.2. Ion distribution for 0.1 M salt at the ε1/ε2 = 15/80 interface with charge ratio of +1/-1,
and cation/anion sizes of 0.24 nm/0.24 nm (solid lines) and cation/anion sizes of 0.24 nm/1.12 nm
(dashed lines).

To understand the mechanisms for the ion distributions, we point out that the forces acting

on an ion at a dielectric interface can be divided into three categories: steric interactions, ion-ion

correlation and surface polarization-ion interactions[130]. To investigate the separate effects of

the three types of forces on the ion distribution, we simulate the cases with only steric effects by

removing charges from the ions, and only steric effects and ion correlation by making 1 = 2 = 80.

As shown in Figure 4.3, when there are only steric effects, both cations and anions aggregate at

the interface. This is because when uncharged ions are close to interfaces, they feel more collision

against the interface than from the interface, leading to an entropic force pushing the ions towards

the interface[131]. Note the pure steric effects are more pronounced at higher volume fractions.

While when ions have a charge ratio of +1/-1 but ε1 = ε2 = 80 more of large anions aggregate

at the interfaces, and small cations start to deplete from the interfaces. The depletion at interfaces
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Figure 4.3. Ion distribution for 0.1 M salt, cation/anion sizes of 0.24 nm/1.12 nm, and charge ratio
of 0/0 (solid lines), charge ratio of +1/-1 and ε1 = ε2 = 80 (dashed dot lines) and charge ratio of
+1/-1 and ε1 = 15 and ε2 = 80 (dashed lines).

is due to ion-ion correlation[130]. The size asymmetry induces a net force on the small cations,

making cations to deplete from the interface. On the other hand, steric effects prevail for larger

anions since they have a larger volume fraction. The aggregation of large anions is even elevated

when ion correlation is present, because depletion of small cations from the interface enhances the

entropic depletion force that pushes large anions towards the interface. When ε1 = 15 and ε2 = 80,

the interface polarization repels ions approaching the interface. Since small cations approach the

interfaces closer than large anions, the polarization is dominated by the small cations. As a result,

small cations are more depleted comparing with non-polarized interfaces, and large anions are

more aggregated. This analysis indicates that the depletion of small cations in Figure 4.2 stems

from ion correlation and interface polarization; while the aggregation of large anions results from

steric effects.
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Figure 4.4. Ion distribution for 0.1 M salt at the 1/2 = 15/80 interface with charge ratio of +3/-3,
and cation/anion sizes of 0.24 nm/0.24 nm (solid lines) and cation/anion sizes of 0.24 nm/1.12 nm
(dashed lines).

We also study stronger ion correlations by simulating the charge ratio of +3/-3, in cases (c) and

(d). As is shown in Figure 4.4, when the cation/anion sizes are 0.24 nm/0.24 nm, both cations and

anions are depleted from the interface, similar to what we observe in case (a) in Figure 4.2. On the

other hand, for cation/anion sizes of 0.24/1.12 nm (case (d)), both types of ions are depleted from

the interface. This is different from case (b) in Figure 4.2, where large anions are aggregated at

the interface. The depletion of large anions at interfaces in case (d) is not surprising, because of

stronger ion-ion correlations in this case. We note that the ion distribution for case (c) is rougher

than in cases (a), (b) and (d). This is possibly because strongly correlated cations and anions bind

to neutral clusters that reduces the effective degrees of freedom.

To separately study the effect of charge asymmetry, we study the cases when cations and anions

have the same sizes, but charge ratio +1/-3. The results are shown in Figure 4.5. Note that the
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density of cations is scaled by 1.0/3.0 for comparison. When cations and anions are both as small

as 0.24, cations are closer to the interface than anions, although both types of ions are depleted

from the interface. This is because anions are three times more charged than cations, they are more

repelled by polarization, which in turn attracts the cations[132]. Similarly, cations are closer to the

interface than anions when sizes of both types of ions is increased to 0.714 nm (case (f)). However,

there is a peak for both types of ions, though at separate locations. Figure 4.6 shows charge density

distribution at the interface, showing a double layer without directly charging the interface. We

note the volume fraction in case (f) is the same as in case (b) (Table 4.2), where steric effects are

important, which explains why ions start to aggregate in case (f).

Figure 4.5. Ion distribution for 0.1 M salt at the ε1/ε2 = 15/80 interface with charge ratio of +1/-3,
and cation/anion sizes of 0.24 nm/0.24 nm (solid lines) and cation/anion sizes of 0.714 nm/0.714
nm (dashed lines).
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Figure 4.6. Charge density distribution for 0.1 M salt at the ε1/ε2 = 15/80 interface with charge
ratio of +1/-3, and cation/anion sizes of 0.24 nm/0.24 nm (solid lines) and cation/anion sizes of
0.714 nm/0.714 nm (dashed lines).

We take a step further and introduced both size and charge asymmetry in case (g). In Figure 4.7,

comparing with case (b), where there is only size asymmetry, the aggregation peak of large anions

for case (f) are bended and higher than case (b). This is a result of stronger repulsion from interface

polarization, as well as stronger ion-ion correlation for +1/-3 charge ratio.

4.4. Summary

In this section we have studied ion distribution at dielectric interfaces using coarse-grained

MD based on the energy functional considering polarization. We find that both size asymme-

try and charge asymmetry lead to charge separation (Figure 4.6) at the interfaces. In addition,

charge separation is enhanced by interface polarization. We are currently extending the research

to charged interfaces that has broad applications such as batteries and supercapacitors for energy
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Figure 4.7. Ion distribution for 0.1 M salt at the ε1/ε2 = 15/80 interface with cation/anion sizes
of 0.24 nm/1.12 nm and charge ratio of +1/-1 (solid lines) and charge ratio of +1/-3 (dashed lines).

storage. In fact, charge separation (Figure 4.6) found at neutral interfaces serves as a fundamental

basis for charge amplification at charged interfaces. The MD simulations can also be adapted to

study dynamic processes such as charging/uncharging processes. Another direction is curved in-

terfaces that are ubiquitous in biological systems, where polarization plays a more important role.

This line of studies will provide the foundation for the studies of self-assembly of colloids and

biological building blocks.
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CHAPTER 5

Summary and Future works

5.1. Summary

The structural and dynamical properties of many biological and synthetic soft materials are

determined by the interaction between the constituent macromolecules which is often dependent

on the nature of the ionic structure near the macromolecular surfaces. Coarse-grained models

of these materials involve ions in an environment consist of piecewise-uniform dielectric media

separated by thin boundaries. A key obstacle in finding the ion distributions in such models via

numerical simulation is the need to solve the Poisson equation at every simulation step.

The ultimate goal of my PhD project was to develop modeling and simulation approaches to

simulate electrostatic problems with dielectric heterogeneities for the understanding of ionic struc-

ture near interfaces and underlying physical mechanism throughout the course of this program.

Car-Parrinello molecular dynamics simulation method is designed specifically to efficiently sim-

ulate charges in the presence of inhomogeneous dielectric response and accurately extract their

density profiles. This method is founded based on an energy functional of the induced charge

density that enables the replacement of the expensive solution of the Poisson equation at each

simulation step with an on-the-fly computation of polarization effects. It demonstrates many fea-

tures of this method including the tracking of exact induced density at all times, excellent energy

conservation, and accurate implementation of constraints stemming from Gauss law.

I have implemented the code including long-range correction designed for one arbitrary inter-

face and two or more interfaces. Ion distributions is computed in a variety of models: ions confined
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between two planar dielectric interfaces, size-asymmetric ions near interfaces with/without electric

field and ions in two liquid-liquid spherical water droplet immersed in oil. The effect of different

dielectric contrasts, ion concentrations, ion valencies, external electric field and different interfa-

cial on the ion distributions is systematically studied. In addition, I investigate the ionic structure

and electric field at the oil-water interface with size-asymmetric monovalent ions using Monte

Carlo simulation based on image charge method. It showed that the ionic size asymmetry between

small cations and large anions can significantly increase or reverse locally the electric field near

a liquid-liquid interface at high salt concentrations. This suggests a robust ionic trapping/release

mechanism at oil-water interfaces.

5.2. Future works

5.3. Ion transport in nanochannel

If charged interfaces immersed in an electrolyte solution, compensating opposite counterions

will accumulate near the interfaces and co-ions are electrostatically repelled. This screening effect

will result in the formation of double layer and the electrostatic effects will decays to its bulk value

over a characteristic length. The characteristic length is known as the Debye length. In aqueous

solutions it is typically 1-100 nanometers and it decreases with increasing concentration of the

electrolyte. In microfluidics, the Debye length is usually much smaller than the systems dimen-

sions, and the bulk of the solution is shielded from the surface charge. Nanofluidics is the study

and application of fluid flow in channels/pores with at least one characteristic dimension below

100nm [133, 134, 135]. Compared with traditional microfluidics, nanofluidics exhibits several

novel transport phenomena at nanoscale which result from some unique features. For example,

the high surface to volume ratio results in capillarity-induced negative pressure in wate [136].

The small characteristic length of nanochannel leads to electrical double layers overlapping and
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thereby results in ion transport manipulating [137, 138, 139]. The proximity of system dimen-

sion and the size of important biomolecules like DNA give rise to selective molecule transport and

DNA separation [140, 141]. Given these unique features, nanofluidic devices have been used for

many chemical or biological applications, such as biosensors [142, 143, 144, 145], water desalin-

ization [146, 147], and energy conversion/storage [148, 149].

A pressure driven flow through a microfluidic or nanofluidic channel will bring the ions in

the diffuse layer downstream, thus generating an electrical current[150]. This phenomenon can

potentially be harnessed for mechanical-to-electrical energy conversion. Alternatively, electrical-

to-mechanical energy conversion is possible by applying an electric field across the length of the

nanochannel, thereby driving fluid through by electroosmosis. However, current flow through

nanofluidic channels at a given pressure, or source-drain voltage, is severely limited due to the no-

slip boundary condition that characterizes most such systems. The reason that no-slip boundary

condition has a lower energy conversion efficiency is that there is no fluid or ion flow at the surface,

where the counter-ion concentration is the highest [150]. If the no-slip boundary condition in

nanochannels could be surmounted, greatly enhanced streaming currents and energy conversion

efficiencies would be possible, making energy conversion in such systems far more feasible.

The ionic structure of the confinement systems in our earlier work intrigue us to study the

ionic transport properties in nanometer-sized dielectric confined systems. Nanofluidics systems

like nanochannels , which have one dimension comparable to or even smaller than the Debye

length, possess an electrostatic potential that can be significantly modulated by soft ionic structure

inside and on the other side, external field and dielectric heterogeneity will affect the transport

properties dramatically. The nanometer scale of the structure allows the discovery of a new range

of phenomena that has not been possible in traditional microfluidics. Most of the present studies

on nanofluidics only deal with a simple symmetric monovalent electrolytes because it is a simple
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physical system that can be easily understood by Poisson Boltzmann theory. However, real appli-

cations may involve multivalent ion species as well as the dielectric interfaces. We need to figure

out how fluid and ions flow through nanochannels and in what ways such transport differs from

expectations based on classical hydrodynamics and the Poisson-Boltzmann equation. The effect of

correlations, finite size of molecules, hydrogen bonding and other short range interactions are all

expected to play a role in understanding of fluid flow and ion transport. Including ion correlations,

finite size of molecules and dielectric heterogeneity, our MD simulations do not use any adjustable

parameters, and should in principle yield numerically exact results for the primitive model. We

note that our simulations, which based on a true energy functional, are versatile enough to treat

the case of multiple and curved interfaces, multivalent salts, asymmetric ion sizes to study the

dynamical evolution of the soft ionic structure. Therefore, one direction of next step is to use our

CPMD method to study the ionic transport properties of electrolytes under dielectric confinement

and understand how different concentrations, multivalency, dielectric heterogeneity etc influence

the transport properties in confinement systems, which will give valuable information for manipu-

lating and designing relevant nanofluidic devices.

The MD simulation of ion transport presents several problems. The first problem regards the

time scale. The translocation of a single ion across a typical ion channel takes place on the order of

a microsecond, which is extremely long compared to the typical length of a calculation trajectory.

Because it is impractical to simulate the entire ion and solvent penetration through nanoscale chan-

nels by using non-equilibrium MD simulations, some other process to simulate must be chosen.

The second problem is how to deal with thermostat dynamically when there is an external pres-

sure/electric field. This last problem frames the difficulty in identifying the process to simulate. At

last, hydrodynamics needs to be taken into consideration for liquids under confinement.
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APPENDIX A

Energy functional employed in the CPMD simulation

Our CPMD simulation scheme is based on the variational functional shown in Eq. (2.1) and

rewritten below:

I[ω] =
1

2

∫∫
ρrGr,r′ (ρr′ + Ωr′ [ω]) dr′dr

− 1

2

∫∫
Ωr[ω]Gr,r′ (ωr′ − Ωr′ [ω]) dr′dr.

(A.1)

Here ρ and ω are the free and induced charge densities respectively. As noted earlier, G(r, r′) is

the Green’s function given by

(A.2) G(r, r′) = |r− r′|−1

and Ω is

(A.3) Ωr[ω] = ∇ ·
(
χr∇

∫
Gr,r′ (ρr′ + ωr′) dr′

)
,

where χ(r) = (ε(r) − 1)/4π is the dielectric susceptibility and ε(r) is the permittivity at position

r which in general is spatially dependent.

A.1. One interface case

In this section, we show the form of the above functional for the particular case of piecewise-

uniform dielectric media with one dielectric interface. Interface separates the dielectric region R1

with permittivity ε1 from the region R2 with permittivity ε2. In other words, the dielectric profile
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is given by

ε(r) = ε1 r ∈ R1

= ε2 r ∈ R2(A.4)

The case of planar interfaces, which we analyze in our simulations, then becomes a special case

of the functional derived below for the above dielectric profile. We first introduce some notations.

We define εd, and εm as:

εm =
ε1 + ε2

2
, εd =

ε2 − ε1
4π

,(A.5)

εm represents the mean of the dielectric permittivities on either side of an interface and εd stores

the amount of dielectric contrast at the interface. We denote n̂ (si) as the normal vector at si where

s denotes the position vector of a point on the interface.

In order to express I[ω] in a more compact and physically clear way we first introduce two

operators:

(A.6) G (a,b) =

∫
G(a, s)n̂ (s) · ∇sG (s,b) d2s,

and

(A.7) G (a,b) =

∫∫
n̂(s) · ∇sG(a, s)G(s, s′)n̂ (s′) · ∇s′G (s′,b) d2sd2s′,

where a and b are position vectors. These operators can be thought of as a kind of renormalized

electrostatic interactions between two unit charges mediated via the interface I, just as the Green’s

function G(a,b) is the bare electrostatic potential of interaction between two unit charges.
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One important thing to note here. The bare Green’s function G(a,b) is symmetric in its vari-

ables, i.e, G(a,b) = G(b, a). The same is not true for the function G(a,b). A simple glance at

equation (A.6) confirms that in general

(A.8) G(a,b) 6= G(b, a).

Looking at equations (1.10) we see that the energy functional is comprised of energies com-

ing from three separate sources of interaction: the interaction energy between free charges (the

ρ(r) . . . ρ(r′) terms), the interaction energy between free charges and induced charges (the

ρ(r) . . . ω(s) terms), and the interaction energy between induced charges (the ω(s) . . . ω(s′) terms).

Using the dielectric profile of Eq. (A.4) and the definitions of G and Ω from Eqs. (A.2) and

(A.3) in Eq. (A.1), we can reduce I[ω] to a form that can be written as

I[ω] =
1

2

∫∫
ρ (r)

(
1

ε (r)
G (r, r′) +

εd
ε(r)
G(r, r′)

1

ε(r′)
+

ε2d
ε(r)

G (r, r′)
1

ε(r′)

)
ρ (r′) d3rd3r′

+
1

2

∫∫
ρ (r)

((
1− εm

ε (r)

)
G (r, s)− εd (2εm − 1)

ε(r)
G(r, s) +

εd
ε(r)
G(s, r) +

2ε2d
ε(r)

G (r, s)

)
ω (s) d3rd2s

+
1

2

∫∫
ω (s)

(
εm (εm − 1)G (s, s′)− εd (2εm − 1)G(s, s′) + ε2dG (s, s′)

)
ω (s′) d2sd2s′.

(A.9)

Defining

(A.10) Rρρ(r, r
′) =

1

ε (r)
G (r, r′) +

εd
ε(r)
G(r, r′)

1

ε(r′)
+

ε2d
ε(r)

G (r, r′)
1

ε(r′)
,

(A.11) Rρω(r, s) =

(
1− εm

ε (r)

)
G (r, s)− εd (2εm − 1)

ε(r)
G(r, s) +

εd
ε(r)
G(s, r) +

2ε2d
ε(r)

G (r, s),
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and

(A.12) Rωω(s, s′) = εm (εm − 1)G (s, s′)− εd (2εm − 1)G(s, s′) + ε2dG (s, s′),

we express the functional for the different dielectric problem in the following compact form:

I[ω] =
1

2

∫∫
ρ(r)Rρρ(r, r

′)ρ(r′)d3rd3r′ +
1

2

∫∫
ρ(r)Rρω(r, s)ω(s)d3rd2s

+
1

2

∫∫
ω(s)Rωω(s, s′)ω(s′)d2sd2s′.

(A.13)

A.2. Two interfaces case

In this section, we show the form of Eq. (A.1) for the particular case of piecewise-uniform

dielectric media with two (open) dielectric interfaces denoted as interfaces I and II. Interface I

separates the dielectric region R1 with permittivity ε1 from the region R2 with permittivity ε2.

Interface II separates R2 from the region R3 characterized by permittivity ε3. In other words, the

dielectric profile is given by

ε(r) = ε1 r ∈ R1

= ε2 r ∈ R2(A.14)

= ε3 r ∈ R3.

The case of planar interfaces, which we analyze in our simulations, then becomes a special case

of the functional derived below for the above dielectric profile. We first introduce some notations.
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We define εmI , εmII , εdI , and εdII as:

εmI =
ε1 + ε2

2
, εmII =

ε3 + ε2
2

,(A.15)

εdI =
ε2 − ε1

4π
, εdII =

ε2 − ε3
4π

.

εm represents the mean of the dielectric permittivities on either side of an interface and εd stores

the amount of dielectric contrast at the interface. We denote n̂i (si) as the normal vector at si where

s denotes the position vector of a point on the interface i. We will use indices i and j to identify an

interface. On interface I the normal vector is chosen to point from R1 to R2 and on the interface

II it is taken to point from R3 to R2. In the particular case of dielectric configuration with planar

interfaces that we analyzed in this paper, we have R1 : z ≤ −H/2, R2 : −H/2 ≤ z ≤ H/2, and

R3 : z ≥ H/2 with z = −H/2 plane as interface I and z = H/2 plane as interface II. As per our

conventions, n̂I points in (0, 0, 1) direction and n̂II points in (0, 0,−1) direction.

Similarly, it is useful to introduce two functions G and G which we can be called indirect or

renormalized Green’s functions and are essentially interaction potentials between a pair of position

coordinates. Gi is defined as

Gi (a,b) =

∫
G (a, si) n̂i (si) · ∇siG (si,b) dsi(A.16)

and Gij is given by

Gij (a,b) =

∫∫
n̂i (si) · ∇siG (a, si)G (si, sj)

n̂j (sj) · ∇sjG (sj,b) dsidsj.

(A.17)

In the event of two interfaces (I and II), we have the following possibilities for these functions: GI,

GII, GI,I, GII,II, GI,II, and GII,I.
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Note that unlike G, Gi and Gij are not symmetric, that is Gi(a,b) 6= Gi(b, a) and Gij(a,b) 6=

Gij(b, a). Also, Gij(a,b) 6= Gji(a,b) for i 6= j. In Eq. (A.17), the self-interaction contributions

(when si = sj) coming from induced charges belonging to the same interface and same location

(grid point) are approximated by a suitable analytical integral [67].

Using the dielectric profile of Eq. (A.14) and the definitions of G and Ω from Eqs. (A.2) and

(A.3) in Eq. (A.1), we can reduce I[ω] to a form that can be written as

I[ω] =
1

2

∫∫
ρ(r)Rρρ(r, r

′)ρ(r′)drdr′ +
1

2

∫∫
ρ(r)RρωI(r, s)ω(s)drds

+
1

2

∫∫
ρ(r)RρωII(r, t)ω(t)drdt +

1

2

∫∫
ω(s)RωIωI(s, s

′)ω(s′)dsds′(A.18)

+
1

2

∫∫
ω(t)RωIIωII(t, t

′)ω(t′)dtdt′ +
1

2

∫∫
ω(s)RωIωII(s, t)ω(t)dsdt,

where ω now denotes the surface charge density, and s, t are position vectors associated with

interfaces I and II respectively. Minimizing this functional gives the correct ω on the two interfaces.

Below we describe the various R functions appearing in Eq. A.18.

TheR functions characterize the effective interaction potential between two charges in different

locations. The subscripts in the notation of these functions indicate the location of the charge and

also whether it is a free charge or an induced charge. Rρρ denotes the effective potential between

two free charges and is given by:

Rρρ(r, r
′) =

1

εr′
G (r, r′) +

εdI

εrεr′
GI (r, r′) +

εdII

εrεr′
GII (r, r′)

+
ε2dI

εrεr′
GI,I (r, r′) +

ε2dII

εrεr′
GII,II (r, r′)

+
εdIεdII

εrεr′
GI,II (r, r′) +

εdIεdII

εrεr′
GII,I (r, r′) .

(A.19)
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The first term on the right-hand side of the above equation contains the Green’s pair interaction

potential. In the evaluation of this term and the associated contribution to the total integral I[ω] of

Eq. (A.18), we assume r 6= r′. The next two terms involve the first renormalized Green’s function

G and the final four terms comprise interactions of the form of G . Note that for the computation of

the terms involving G and G , we take into account the self-terms (r = r′) as these are well defined.

RρωI denotes the effective potential between a free charge and the induced charge on interface I

and is given as:

RρωI(r, s) =
εr − εmI

εr
G (r, s) +

εdI

εr
GI (r, s) +

εdII

εr
GII (r, s)

− εdI (2εmI − 1)

εr
GI (s, r)− εdII (2εmI − 1)

εr
GII (s, r)

+
2ε2dI

εr
GI,I (r, s) +

2ε2dII

εr
GII,II (r, s)

+
2εdIεdII

εr
GI,II (r, s) +

2εdIεdII

εr
GII,I (r, s) .

(A.20)

Similarly, RρωII denotes the effective potential between a free charge and the induced charge on

interface II and can be obtained from Eq. (A.20) by swapping I with II and replacing s with t.

Next we provide the expressions for the functions that represent the effective interactions be-

tween the induced charges on the interfaces. The effective interaction potential between two in-

duced charges on interface I, RωIωI , is given by

RωIωI(s, s
′) = εmI (εmI − 1)G (s, s′) + εdI (1− 2εmI)GI (s, s′)

+ εdII (1− 2εmI)GII (s, s′) + ε2dI
GI,I (s, s′)

+ ε2dII
GII,II (s, s′) + 2εdIεdIIGI,II (s, s′) .

(A.21)

The evaluation of self-interaction (s = s′) terms is, as noted earlier, carried out via an analytically

computed approximate form. Swapping I and II, and replacing s, s′ with t, t′ in Eq. (A.21) leads
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to the expression for RωIIωII(t, t
′). The last term on the right-hand side of Eq. (A.18) involves the

effective potential RωIωII which represents the interaction between an induced charge on interface I

and an induced charge on interface II. RωIωII is given as:

RωIωII(s, t) = εmI (εmII − 1)G (s, t) + εmII (εmI − 1)G (t, s)

+ εdI (1− 2εmI)GI (s, t) + εdII (1− 2εmI)GII (s, t)

+ εdI (1− 2εmII)GI (t, s) + εdII (1− 2εmII)GII (t, s)

+ 2ε2dI
GI,I (s, t) + 2ε2dII

GII,II (s, t)

+ 2εdIεdIIGI,II (s, t) + 2εdIεdIIGI,II (t, s) .

(A.22)
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