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AI for Wireless:

I Data-driven, model-free AI for wireless can learn sophisticated strategies
to enhance the network performance by processing limited previous data.

I The industry is very interested in AI based wireless resource management.
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Progress:

I Power Control:
Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation
in Wireless Networks (IEEE JSAC 2019)
I Adding Mobility:

Deep Actor-Critic Learning for Distributed Power Control in Wireless
Mobile Networks (Asilomar 2020)

I Joint Spectrum and Power Allocation:
Deep Reinforcement Learning for Joint Spectrum and Power Allocation in
Cellular Networks (submitted to Globecom 2021)

I Both Varying Traffic and Channel Conditions
Traffic-driven Radio Resource Management via Deep Reinforcement
Learning (to be submitted)
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System Model:

I N links, K cells, SISO, M subbands.

I K = {1, . . . ,K}, N = {1, . . . , N}, and M = {1, . . . ,M}
I If link n’s user is inside cell k, its associated base station bn ∈ K is at the

center of cell k.

I Base station bn transmits to user n over m in time slot t with p
(t)
n,m ≥ 0.

I The power constraint restricts the total transmit power on subband m:∑
n∈N :bn=k

p(t)n,m ≤ Pmax,∀k, ∀m.
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Link Model:

I g
(t)
bn→n,m: direct channel gain.

I g
(t)
bj→n,m: interfering channel gain.

I Spectral efficiency:

C(t)
n,m

(
p(t)m

)
= log

1 +
g
(t)
bn→n,mp

(t)
n,m∑

j∈N ,j 6=n g
(t)
bj→n,mp

(t)
j,m + σ2

 ,

where p
(t)
m =

[
p
(t)
1,m, p

(t)
2,m, . . . , p

(t)
N,m

]ᵀ
.

I

C(t)
n =

∑
m∈M

C(t)
n,m

(
p(t)m

)
.
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Traffic Model:

I Each link has a queue.

I N
(t)
n is link n’s queue length in bits at the beginning of time slot t.

I W : total bandwidth.

I T : time slot duration.

I A
(t)
n : newly arrived packets.

I

N (t)
n = max

(
N (t−1)
n − C(t−1)

n WT, 0
)

+A(t)
n L,
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Channel Variations:

The downlink channel gain:

g
(t)
bn→n,m = βbn→n

∣∣∣R(t)
bn→n,m

∣∣∣2 , t = 1, 2, . . . ,

where

• βbn→n ≥ 0 is the large-scale fading that includes path loss and
log-normal shadowing. It is same across all subbands.

• R(t)
bn→n,m is the small-scale fading. It is is frequency selective and

modeled by Jakes’ Model:

R
(t)
bn→n,m = ρR

(t−1)
bn→n,m +

√
1− ρ2e(t)bn→n,m,

where ρ = J0(2πfdT ), R
(0)
bn→n,m ∼ CN (0, 1), and e

(1)
bn→n,m, e

(2)
bn→n,m, . . .

consists of i.i.d. CSCG random variables with unit variance.
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The Fundamental Problem:

I A control policy that maps traffic & channel
conditions to physical layer allocations.

I The long-term utility of user n, Un, should
reflect the average packet delay.

I The fundamental problem becomes finding an
optimal control policy that maximizes
U =

∑
n∈N Un.
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The Fundamental Problem and Reinforcement Learning

interference

interference

.

.

.

channel conditions

channel conditions

.

.

.

I Model-free reinforcement learning learns
directly from trial-and-error-interactions:

Agent

Environment
 

a
(t)

s
(t+1)

r
(t+1)

r
(t)

s
(t)

( , , , )s
(t)

a
(t)

r
(t+1)

s
(t+1)

I The policy π(a|s) denotes the probability of
taking action a conditioned on the current
state being s. The Q-function:

Qπ(s, a) = Eπ
[
R(t)

∣∣∣s(t) = s, a(t) = a
]

where R(t) =
∑∞
τ=0 γ

τr(t+τ+1) and γ ∈ (0, 1].

I For radio resource management, r(t+1) can be

thought as −
∑
n∈N N

(t+1)
n .
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Deep Q-learning algorithm

I indirectly optimize agent performance by learning a value function.

I Use a deep Q-network (DQN) parameterized by ψ to represent the
Q-function values q(·, ·;ψ)

I It is an off-policy learning that stores experiences in a memory D.

I ψ is updated using a stochastic gradient descent algorithm by

∇ψ
1

|B|
∑

(s,a,r′,s′)∈B

(y(r′, s′)− q (s, a;ψ))
2
,

where the target is y(r′, s′) = r′ + γmaxa′ q (s′, a′;ψtarget) .
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Conventional Divide-and-Conquer Solution
I Non-negative user weights (priorities), α

(t)
n ,∀n ∈ N , are used to separate

the network layer problem and the physical layer problem:

maximize
p(t)

N∑
n=1

α(t)
n

∑
m∈M

C(t)
n,m

(
p(t)m

)
subject to p(t)n,m ≥ 0,∀n ∈ N , m ∈M,∑

j∈Nk

p
(t)
j,m ≤ Pmax,∀ k ∈ K, m ∈M.

I Proportionally fair scheduling: Recall [Tse and Viswanath ’05]:

α(t+1)
n = 1/C̄(t)

n ,

where C̄
(t)
n = β · C(t)

n + (1− β)C̄
(t−1)
n with β ∈ (0, 1].

This scheme maximizes: ∑
n∈N

log C̄(t)
n .
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Existing Solutions:

I Conventional Optimization Based:
I Weighted MMSE (WMMSE) [Shi, Razaviyayn, Luo, and He ’11]
I Fractional programming (FP) [Shen and Yu ’18]

I State of the art when
I a mathematically tractable accurate system model is available;
I full channel state information (CSI) is available;
I iterations converge instantly (for time-varying channels);
I no network backhaul latency (for time-varying channels).

I Deep Learning Based Solution: [Sun, Chen, Shi, Hong, Fu, and
Sidiropoulos ’17] proposed a centralized supervised learning scheme;
I Trains a faster deep neural network (DNN) to approximate WMMSE;
I Achieves 90% or higher of the sum-rate achieved by WMMSE.
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Literature on reinforcement learning for power control:

I [Bennis and Niyato ’10] and [Simsek, Czylwik, Galindo-Serrano, and
Giupponi ’11] used classical Q-learning to reduce the interference in
LTE-Femtocells.

I [Amiri, Mehrpouyan, Fridman, Mallik, Nallanathan, and Matolak ’18]
have used cooperative Q-learning to increase QoS of users in femtocells
without considering channel variations.

I [Xu, Wang, Tang, Wang, and Gursoy ’17] proposed a centralized deep
reinforcement learning approach.

I [Calabrese, Wang, Ghadimi, Peters, and Soldati ’17] proposed a similar
distributively executed framework to us by using deep Q-learning. No
channel variations.

I [Liang, Ye, and Li ’19] applied deep Q-learning to minimize V2V links’
interference to V2I links, channel variations are simulated by Jakes fading
model similar to us.
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Our main contributions:

I Time varying traffic and channel conditions;

I Practicality constraints on measurements;

I Assume information exchange only between nearby links (delays);

I Distributively executed resource allocation;

I Flexible Objective: The agents collaboratively maximize a quality of
service (QoS) objective over their local environment, that can be

• the average packet delay, or
• the sum rate, or
• a proportionally fair throughput, or
• anything else specified by the network layer.
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Distributed Execution

I Centralized vs Distributed Execution:

× A centralized single learning agent that outputs joint actions by observing
the complete environment state.

X Multiple learning agents that output their own action by observing local
environment.

I The environment transition is no longer stationary as other agents in the
system update their policies/behaviors simultaneously. Multi-agent
learning schemes have good empirical performance, but no theoretical
guarantee.

I A global DQN is trained by the experiences of all agents.

I Training is centralized to ease implementation and to improve stability.
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Preliminaries: Local Information & Aggregates

I Neighborhood set of n, On, is the set of c
receivers with largest βbn→i.

I The aggregated interference at user n on
subband m in time slot t− 1:

ζ(t−1)n,m =
∑

j∈N ,j 6=n

g
(t−1)
bj→n,mp

(t−1)
j,m + σ2.

I The aggregated interference at the end of
time slot t− 1 with updated channel gains
but with power allocation during t− 1:

ζ̄(t)n,m =
∑

j∈N ,j 6=n

g
(t)
bj→n,mp

(t−1)
j,m + σ2.
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Proposed Distributed Execution Framework

neighbor observations

translatelocal observations
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.

.

.

.

.
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Local State Set Design and The Policy
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I Local state of agent n, s
(t)
n , is composed of:

1. priority of user n, α
(t)
n ;

2. most-recent channel measurements of user n;
3. priorities and delayed channel measurements of all neighbors ∈ On.
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Local State / priority of user n

I Traffic-Aware Scheduling: α
(t)
n has two entries:

1. total number of packets waiting in link n’s queue;
2. the rate estimate of link n for time slot t,

λ̄(t)
n =

∑
τ ξ

τA
(t−τ)
n∑Tr

τ=1 ξ
τ

,

I Proportionally fair scheduling: α
(t)
n = 1/C̄

(t−1)
n .
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Local State / most-recent channel measurements of user n

I M feature subgroups corresponding to M subbands.

I For subband m, reserve 6 entries:

• C(t−1)
n,m ;

• p(t−1)
n,m ;

• last two measurements of the direct channel gains, g
(t)
bn→n,m and g

(t−1)
bn→n,m;

• last two aggregated interference measurements, ζ̄
(t)
n,m and ζ

(t−1)
n,m .
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Local State / priorities and delayed CSI of neighbors

I For each neighbor i ∈ On:

• neighbor i’s priority: α
(t)
i ;

• neighbor i’s significance βbn→i;

• for subband m, 3 entries for neighbor i’s delayed channel measurements:

1. C
(t−1)
i,m ;

2. link i’s direct channel gain, g
(t−1)
bi→i,m;

3. most-recent aggregated interference measurement of user i that is
available at base station bn, ζ

(t−1)
i,m .

Y. S. Nasir p. 22

Deep Reinforcement Learning Based Resource Allocation in Wireless Networks



Introduction Radio Resource Management Problem Multi-Agent DRL based Solution Full-buffer Simulations Traffic Simulations Conclusion

Action Set

I Allowed actions on subband m:

Am =

{
0, Pmin, Pmin

(
Pmax

Pmin

) 1
|Am|−2

, . . . , Pmax

}
,

where Pmin is the minimum positive transmit power level.

I The action space of agent n:

A = A1 × · · · × AM .
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Reward function / Local Objective
I We enable collaboration by including signal from neighbors to agent’s

reward,

r
(t+1)
local objective,n = π(t)

n +
∑
i∈On

π
(t)
i ,

where π
(t)
n is agent n’s direct contribution.

I For the traffic-aware scheduling, let:

π(t)
n = −max

(
N (t)
n − C(t)

n WT, 0
)
.

I Alternatively, to maximize weighted sum-rate, let:

π(t)
n = α(t)

n C(t)
n .
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Reward function / Externalities
I Ideally, we would use a reward function with externalities

r
(t+1)
externalities,n = π(t)

n −
∑
i∈On

π
(t)
n→i,

where π
(t)
n→i is the externality from link n to neighbor i.

I The externality computation would require individual interfering channel

gains from base station bn to neighbor i, i.e., g
(t)
bn→i, ∀i ∈ On.

I For example, for weighted sum-rate maximization,in time slot t

π
(t)
n→i = α

(t)
i

(
C

(t)
i\n − C

(t)
i

)
,

where C
(t)
i\n is the spectral efficiency of neighbor i without the

interference from link n: C
(t)
i\n =

∑M
m=1 log

(
1 +

g
(t)
bi→i,mp

(t)
i,m

ζ
(t)
i,m−g

(t)
bn→i,mp

(t)
n,m

)
.
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Episodic Training Scheme with Varying Traffic Load

I Goal is to train a single policy to handle various traffic load conditions in
the execution stage without further adjustment on the policy.

I The proposed episodic training scheme is composed of multiple
consecutive episodes with each episode having a random wireless network
initialization and an average arrival rate (traffic load) λavg.

I Inside each episode, training is structured as a series of interactions
between two algorithms namely “Distributed exection” and “Centralized
Training”. These interactions occur on a time scale of 1 time slot.

I Training samples a mini-batch from global memory Dg and
experience-replay memory D of current episode.

I At the end of each time slot, training checks for the queue stability.

I If queues remain stable for Tmax time slots, training moves to next
episode. If resulting average delay is converged, λavg is increased by λinc.
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Centralized training and
distributed execution framework:

1: Centralized training (ψ,ψbroadcast,Dg,D):
2: Sample B from the experiences in Dg and D.
3: Update ψ using a gradient descent step.
4: If it has been Tu since last policy broadcast,

update ψbroadcast by ψ to update ψagent.
Output: Updated ψ, ψbroadcast, ψagent.

1: Parameters: ε-greedy algorithm’s ε.
2: Distributed exec. (ψagent) at time slot t:
3: for agent n = 1, 2, . . . , N do

4: Agent n observes its current local state s
(t)
n ;

5: sets a
(t)
n = arg maxaq(s

(t)
n , a;ψagent).

6: If t mod N = n− 1, set a
(t)
n to a random

action with a probability of ε.

7: Translate action to [p
(t)
n,1, . . . , p

(t)
n,M ]ᵀ, after

auction at base station bn.
8: end for

Output: p
(t)
m ∀m ∈M &

(
s
(t)
n , a

(t)
n

)
∀n ∈ N .
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Simulation Setup
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Base station
User

maximum transmit power Pmax 38 dBm
total bandwidth 10 MHz
slot duration T 20 ms
traffic pattern full-buffer

path loss (in dB) 120.9 + 37.6 log10(d)
shadowing standard deviation 8 dB

AWGN power -114 dBm

I DQN:
I 3 hidden layers of 200, 100, and 50 neurons, respectively;
I Fully connected; the activation function is tanh( );
I Limited to 5 neighbors;
I Limited to 10 discrete power levels.
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DQN training

I The trainer broadcasts the new parameters once every 100 slots; these
parameters are available at the agents after 50 slots; minimum required
downlink/uplink capacity for all backhaul links is about 1 Mbps.

I D stores 1,000 most recent experiences from each link;

I Use RMSProp to train with a random mini-batch of 256 experiences.

I The proposed algorithms:

1. Matched DQN – train and test on same deployment.
2. Unmatched DQN – trained for a different network (different device

locations and fading)

I Benchmark allocations:

1. WMMSE (genie-aided with full instantaneous CSI)
2. FP (genie-aided with full instantaneous CSI)
3. centralized (FP with delayed full CSI)
4. full-power (or max-power) allocation.
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Sum-rate maximization: scalability
1 user per cell, M=1 subband, R = 500 m, fd = 10 Hz.
(cross-link CSI is available to the DQN.)

average sum-rate in bps/Hz per link
DQN benchmark power allocations

N (links) matched unmatched WMMSE FP central full-power

19 2.78 2.50 2.66 2.58 2.44 1.37
50 2.28 1.99 2.17 2.13 2.00 1.02

100 1.92 1.68 1.90 1.88 1.74 0.89

I Each link determines its action within 0.3 ms.

I A single batch takes up to 17 ms (without GPU).

I FP requires about 15 ms to converge for n = 19 links, but with n = 100
links this becomes 35 ms.

I WMMSE converges slightly slower than the FP algorithm.

Y. S. Nasir p. 30

Deep Reinforcement Learning Based Resource Allocation in Wireless Networks



Introduction Radio Resource Management Problem Multi-Agent DRL based Solution Full-buffer Simulations Traffic Simulations Conclusion

cross-link CSI vs aggregates
N = 20 links, K = 10 cells, M=1 subband, R = 500 m, fd = 10 Hz.
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(left) sum-rate maximization; (right) proportionally fair scheduling.

Average sum-rate performance in bps/Hz per link. without aggregates.
(cells,links) DQN trained for (10,20) WMMSE FP FP w delayrandom full

(10,20) 2.59; 99.2% of WMMSE 2.61 2.45 2.37 0.93 0.91
(20,60) 1.58; 94.0% of WMMSE 1.68 1.59 1.50 0.37 0.35

(20,100) 1.14; 92.7% of WMMSE 1.23 1.15 1.09 0.18 0.17
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Extension # 1 / Mobile Users & Continuous Action Space

I Replace deep Q-learning by a deep actor-critic learning algorithm called
deep deterministic policy gradient (DDPG) for continuous action space.

I Haas mobility model: travel between training episodes.
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I Policy better experiences various device positions and interference
conditions with mobility, so the performance consistently increases.
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Extension # 2 / Subband Selection & Power Control.

I A link can be active on a single subband at a time with p
(t)
j,m ≤ Pmax.

I [Tan, Zhang, and Liang ’19] proposed an FP based solution for joint
subband selection and power allocation.

I Joint DRL scheme’s action set is the Cartesian product of available
subbands and quantized transmit power levels.

I The computational complexity of FP and the action set complexity of
joint DRL do not scale well for a large number of subbands.

I We propose a two-layer learning scheme, where
I the top layer does discrete subband scheduling by deep Q-learning,
I the bottom layer is responsible for continuous power allocation at the

physical layer by DDPG
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Extension # 2 / Simulation results / Training convergence
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M = 10 subbands, (K,N) = (10, 50).
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Benchmarks:

I Benchmarks:

1. pfs: WMMSE (centralized and genie-aided with full instantaneous CSI)
with user priorities adjusted to achieve proportional fairness.

2. pfs with traffic information: WMMSE that enhances pfs’ user priority
assignment by also setting user priority to zero if user’s queue is empty.
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Testing the policy along the episodic training. M = 1.
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Policy is trained on N = 5 users on K = 5 cells, and tested on a larger
deployment with N = 20 users on K = 20 cells.
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Testing the policy on multiple subbands and seeds.
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Testing a pre-trained policy on 10
different testing seeds. N = 20 links,
K = 10 cells, M = 2 subbands.
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CDF of all packet delays (N,K,M) = (20, 10, 2).
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Summary

I A new distributed dynamic spectrum and power allocation algorithm
based on deep reinforcement learning.

I The policy successfully maps traffic and channel states to physical
resource allocations.

I User priorities connect physical layer resource management with network
layer. Policy can achieve any traffic related network objective with a
suitably designed reward function.

I Policy works well with delayed CSI and mismatched parameters.

I No need to produce a large amount of training data.

I In certain scenarios, the performance exceeds that of state-of-the-art
algorithms WMMSE and FP. The distributed solution scales well.

I Available repositories:

• https://github.com/sinannasir/Power-Control-asilomar

• https://github.com/sinannasir/Spectrum-Power-Allocation
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Future work on additional features:

• Multiple-input multiple-output (MIMO) beamforming: The challenge is
the additional state-action complexity. Solution may involve a more
sample-efficient DRL algorithm and a better neural network architecture
or compressed parameters to reduce the complexity.

• User association: The distributed execution scheme needs to be modified.
If user associations are not pre-determined, the agents should work above
the base stations.

I Thank you for your time, questions?
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Deep Q-learning algorithm
I Use a deep Q-network (DQN) parameterized by ψ to represent the

Q-function values q(·, ·;ψ)
I The optimal Q-function satisfies:

Qπ
∗
(s, a) = R(s, a) + γ

∑
s′∈S
Pass′ maxa′ Q

π∗(s′, a′),

where R(s, a) = E
[
r(t+1)

∣∣s(t) = s, a(t) = a
]
.

I It is an off-policy learning that stores experiences in a memory D.
I For training, the mean-squared Bellman loss is defined as

L (ψ,D) = E(s,a,r′,s′)∼D

[
(y(r′, s′)− q (s, a;ψ))

2
]
,

where the target is y(r′, s′) = r′ + γmaxa′ q (s′, a′;ψtarget) .
I ψ is updated using a stochastic gradient descent algorithm by

∇ψ
1

|B|
∑

(s,a,r′,s′)∈B

(y(r′, s′)− q (s, a;ψ))
2
,

where the target is y(r′, s′) = r′ + γmaxa′ q (s′, a′;ψtarget) .
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Local Information and Neighborhood Set
I Interferer set I

(t)
n : transmitters that cause interference at receiver n;

I(t)n =
{
i ∈ N , i 6= n

∣∣∣g(t−1)i→n p
(t−1)
i > ησ2

}
.

I Interfered set: O
(t)
n : links that suffer from transmitter n.

O(t)
n =

{
k ∈ N , k 6= n

∣∣∣g(t−1)n→k p
(t−1)
n > ησ2

}
.

( )g
(t−1)
j→i p

(t−1)
j

j∈I
(t)
i

Receiver 

 

Transmitter

w
(t−1)
i

C
(t−1)
i

i

+∑
l∈N,l≠i

g
(t−1)
l→i p

(t−1)
l σ2

∀j ∈ I
(t)
ig

(t−1)
j→i p

(t−1)
j

g
(t−1)
i→i

C
(t−1)
i

w
(t−1)
i

∀k ∈ O
(t)
i

i

( )g
(t)
j→ip

(t−1)
j

j∈I
(t)
i
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Preliminary for state set

I Regulated interferer and interfered neighborhood sets
(
Ī
(t)
n , Ō

(t)
n

)
.

I We set
∣∣∣Ī(t)n ∣∣∣ =

∣∣∣Ō(t)
n

∣∣∣ = c.

I Pick c-most significant interferer and interfered neighbors with following
criteria:

I the current received power from interferer i ∈ I
(t)
n at receiver n,

I the share of agent n on the interference at receiver k ∈ O
(t)
n .

I If necessary, append virtual noise agents with an arbitrary negative weight
and spectral efficiency. A virtual noise agent has zero downlink and
interfering channel gains.
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States
1. Local Information (7 inputs to DQN):

p(t−1)n , 1/w(t)
n , C(t−1)

n , g(t)n→n, g
(t−1)
n→n ,∑

j∈N,j 6=n

g
(t)
j→np

(t−1)
j + σ2,

∑
j∈N,j 6=n

g
(t−1)
j→n p

(t−2)
j + σ2

2. From interfering neighbors (3 inputs each):

c interferers of current time slot: g
(t)
i→np

(t−1)
i , 1/w

(t−1)
i , C

(t−1)
i , ∀i ∈ Ī(t)n

c interferers from history: g
(t−1)
i′→n p

(t−2)
i′ , 1/w

(t−2)
i′ , C

(t−2)
i′ , ∀i′ ∈ Ī(t−1)n

3. From interfered neighbors (4 inputs each):
t′n is the last time slot transmitter n was active,

g
(t−1)
k→k , 1/w

(t−1)
k , C

(t−1)
k ,

g
(t′n)
n→kp

(t′n)
n∑

j∈N,j 6=k g
(t−1)
j→k p

(t−1)
j + σ2

, ∀k ∈ Ō(t′n)
n .
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Sum-rate maximization: multiple links per cell (IMAC)
Constraint

∑
j∈Nk

p
(t)
j,m ≤ Pmax becomes p

(t)
j,m ≤ Pmax

K = 19 cells, M=1 subband, R = 500 m, fd = 10 Hz.
(cross-link CSI is available to the DQN.)

average sum-rate in bps/Hz per link
DQN benchmark power allocations

links per cell matched unmatched WMMSE FP central full-power

2 1.84 1.58 1.78 1.74 1.59 0.57
4 1.25 1.06 1.24 1.22 1.10 0.25

random
(1–4)

1.61 1.37 1.57 1.53 1.40 0.44
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2 links per cell; (left) training (moving average of previous 250 slots); (right) testing.
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Sum-rate maximization

N = 19 links, K = 19 cells, M=1 subband, R = 100 m, fd = 10 Hz.
(cross-link CSI is available to the DQN.)
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(left) training (moving average of previous 250 slots); (right) testing.
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Proportionally fair scheduling

N = 19 links, K = 19 cells, M=1 subband, R = 500 m, fd = 10 Hz.
(cross-link CSI is available to the DQN.)
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Continuous Action Space

I [Men, Chen, Wu, and Cheng ’19] showed that quantizing the action
space with a logarithmic step size gives better outcomes than that of a
linear step size for a different channel model.

I They proposed to replace deep Q-learning scheme by a deep actor-critic
learning scheme called deep deterministic policy gradient (DDPG).

I Actor-critic learning trains an action-value function using a critic network,
defined by φ;

I and uses this function estimate to train a policy parameterized by an
actor network, defined by θ.

I Actor-critic learning is

• as sample efficient as value based methods, and
• as direct as policy based methods.
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Actor-critic learning (deep deterministic policy gradient)
I The action is determined by a = µ(s;θ) with policy parameters being θ.
I For exploration, a noise term can be added on the action values.
I The target policy µ∗ satisfies the Bellman property:

Qµ
∗
(s, a) = R(s, a) + γ

∑
s′∈S
Pass′Qµ

∗
(s′, µ∗(a′)),

I Critic network is updated by

∇φ
1

|B|
∑

(s,a,r′,s′)∈B

(ycritic(r
′, s′)− q (s, a;φ))

2
,

where ycritic(r
′, s′) = r′ + γq (s′, µ(s′;θ);φtarget).

I q(s, a;φ) is differentiable with respect to continuous action.
I The policy parameters are updated by the following gradient:

∇θ
1

|B|
∑

(s,... )∈B

q (s, µ(s;θ);φ) .
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DDPG based centralized training and distributed execution
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Mobile Users / Training episodes and traveling
I Steady channel may cause overfitting to a certain network deployment.
I Haas mobility model: travel between training episodes.
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I Correlation in Jakes model becomes ρ
(t)
n = J0(2πf

(t)
d,nT ), f

(t)
d,n = v

(t)
n fc/c;

I large scale-fading also varies with ρ
(t)
s,n = e

∆x
(t)
n

dcor
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Problem Formulation
• If link n selects subband m , we have α

(t)
n,m = 1 and α

(t)
n,j = 0, ∀j 6= m.

• SINR at receiver n on subband m in time slot t:

γ(t)n,m =
α
(t)
n,mg

(t)
n→n,mp

(t)
n∑

l 6=n α
(t)
l,mg

(t)
l→n,mp

(t)
l + σ2

,

• Spectral efficiency:

C(t)
n =

M∑
m=1

C(t)
n,m =

M∑
m=1

log
(

1 + γ(t)n,m

)
.

• Let α(t) =
[
α
(t)
1,1, α

(t)
1,2, . . . , α

(t)
N,M

]ᵀ
and p(t) =

[
p
(t)
1 , . . . , p

(t)
N

]ᵀ
, the optimization problem

in slot t:

maximize
p(t),α(t)

N∑
n=1

C(t)
n

subject to 0 ≤ p(t)n ≤ Pmax,∀n ∈ N ,
α(t)
n,m ∈ {0, 1},∀n ∈ N ,∀m ∈M,∑
m∈M

α(t)
n,m,∀n ∈ N ,
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DDPG based centralized training and distributed execution
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Extension # 2 / Simulation results / Testing performance

average sum-rate performance in bps/Hz per link output layer size average
(K,N) M reinforcement learning other schemes reinforcement learning iterations

(cells, links) subbands proposed joint ideal FP delayed FP random proposed joint FP

1 1.51 1.50 1.58 1.46 0.41 1 + 1 10 70.30
(5, 20) 2 2.63 2.64 2.66 2.46 0.99 2 + 1 20 102.08

4 4.57 4.38 3.81 3.57 2.12 4 + 1 40 122.15

1 1.26 1.26 1.31 1.21 0.25 1 + 1 10 72.83
2 2.08 2.10 2.08 1.92 0.59 2 + 1 20 96.32

(10, 50) 4 3.34 3.34 2.90 2.68 1.31 4 + 1 40 185.93
5 3.79 3.76 3.18 2.94 1.64 5 + 1 50 206.38

10 5.71 4.41 4.44 4.08 2.99 10 + 1 100 287.70

I Results show that a pretrained policy is still usable on new deployments
and the proposed approach is better scalable than the benchmarks.
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Pseudo-code for distributed execution.
1: Parameters: ε-greedy algorithm’s ε.
2: Inputs: Deep Q-network parameters at agents ψagent.
3: Distributed execution (ψagent) for time slot t:
4: for agent n = 1, 2, . . . , N do
5: Agent n observes its local environment and uses information from its

neighbors to form its current local state s
(t)
n .

6: Agent sets its current action to a
(t)
n = arg maxaq

(
s
(t)
n , a;ψagent

)
using

deep Q-network with parameters ψagent.
7: If index n is divisible by t mod N , apply ε-greedy strategy for

exploration during training and agent replaces a
(t)
n with a random

action with a probability of ε.
8: Agent translates its action to its allocation decision, i.e.,[

p
(t)
n,1, . . . , p

(t)
n,M

]ᵀ
, after power auction at base station bn.

9: end for

Output: p
(t)
m , ∀m ∈M, and state-action pairs

(
s
(t)
n , a

(t)
n

)
∀n ∈ N .
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Pseudo-code for centralized training.

1: Parameters: Learning rate λlr.
2: Inputs:
3: Deep Q-network parameters ψ, ψbroadcast, ψagent.
4: Global memory Dg & experience-replay memory of the current episode D.
5: Centralized training (ψ,ψbroadcast, ψagent,Dg,D):
6: Randomly sample a mini-batch B from the experiences in Dg and D.
7: Update the parameters ψ using a gradient descent step with learning rate

equal to λlr and the gradient ∇ψ 1
|B|
∑

(s,a,r′,s′)∈B (y(r′, s′)− q (s, a;ψ))
2
.

8: If it has been Tu since last policy broadcast, update ψbroadcast by ψ and
initiate a broadcast process which will take Td time slots. At the end of
the broadcast process, ψagent will be set to ψbroadcast.

Output: Updated deep Q-network parameters ψ, ψbroadcast, ψagent.
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Simulation Setup
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Base station
User

maximum transmit power Pmax 23 dBm
subband bandwidth 10 MHz
number of subbands 1 to 4

slot duration T 20 ms
traffic arrivals Poisson arrivals / 500 Kbits

path loss (in dB) 120.9 + 37.6 log10(d)
shadowing standard deviation 8 dB

AWGN power -114 dBm
maximum Doppler frequency 10 Hz
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Testing the policy along the episodic training. M = 1.
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Policy is trained on N = 5 users on
K = 5 cells, and tested on a larger
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CDF of average user delay (N,K,M) = (20, 10, 2).
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Some other side problems:

I Better and easily tunable training and exploration schemes to better
adapt to the environment non-stationarity of the multi-agent setting.

I We simplified the state set design, but its design can be improved by
analyzing the hidden-layer weights of a trained policy that uses global CSI
and picking the environment features that impact the decision strategy
most strongly.
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