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Abstract 

Computational Modeling of Metal–Organic Frameworks for the Catalytic Hydrolysis of Nerve 

Agents and Their Simulants 

Matthew L. Mendonca 

 

The effective capture and detoxification of chemical warfare agents (CWAs) is a pressing 

need in the modern world. Materials are needed for both the destruction of weapon stockpiles and 

personal protection via fabric coatings or respirators. Attractive candidates for these applications 

include metal–organic frameworks (MOFs) – highly crystalline materials composed of metal 

nodes connected by organic linkers – due to their high porosity, large surface area, high 

concentration of active sites, and chemical functionality that can be tailored towards specific target 

molecules. Previous experiments, performed in buffered solution, have shown that Zr(IV)-MOFs 

can catalytically degrade organophosphate-based nerve agents into nontoxic products within 

minutes via hydrolysis of the phosphate ester bond. This dissertation uses a molecular modeling 

approach to study the detailed reaction mechanisms and binding interactions involved in MOF-

catalyzed nerve agent hydrolysis to help elucidate experimental observations and screen for 

promising candidate materials with potentially better performance for CWA detoxification. 

By performing density functional theory (DFT) calculations, we explore the effects of 

temperature-induced node dehydration and distortion as well as varying node topologies, 

connectivities, and metal identities on the catalytic activity of M(IV)-MOFs for solution-phase 

organophosphate hydrolysis. To address the recent experimental observation of product inhibition 

in gas-phase nerve agent hydrolysis by Zr-MOFs, we examine the promising alternative of 

depositing single-atom transition-metal catalysts on MOF nodes to facilitate catalytic turnover. 
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Additionally, we perform a DFT screening to identify highly predictive nontoxic simulant 

molecules as candidates for safer and more accurate experimental studies of nerve agent 

hydrolysis. Throughout the dissertation, we also derive quantitative structure-activity relationship 

models and perform statistical analyses to determine the most important features for describing the 

hydrolysis barriers and binding energetics involved in organophosphate hydrolysis reactions. 

Broadly, the body of work described in this dissertation establishes design principles that can be 

used to guide future experimental testing for the optimization of MOF catalysts for nerve agent 

hydrolysis. 
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Chapter 1: Introduction 

 

1.1 Methods for Detoxification of Chemical Warfare Agents 

Chemical warfare agents (CWAs) were first widely used over 100 years ago during World War I, 

yet these dangerous toxic compounds continue to be employed in today’s world. Despite major 

international efforts to prohibit their development and use,3 various CWAs have been used in 

recent years during the Syrian Civil War,4 by the Islamic State terrorist group,5 in an assassination 

in Malaysia,6 and in a poisoning in the United Kingdom.7 There are multiple different forms of 

CWAs, which vary in their degree of toxicity as well as their mode of action on the human body. 

The two main categories of CWAs are vesicant agents (e.g., sulfur mustard) and nerve agents. This 

dissertation will focus on the latter. Nerve agents can be divided into three classes: G-series agents, 

including sarin (GB), soman (GD), tabun (GA), and cyclosarin (GF);8 V-series agents, including 

VX, VR, VE, VG, VS, and VM;9 and Novichok agents, such as A-230, A-232, and A-234.10 

Organophosphate-based nerve agents function by inhibiting the enzyme acetylcholinesterase, 

which is responsible for breaking down the neurotransmitter acetylcholine. If acetylcholine is not 

broken down, it builds up in the synaptic cleft between nerve and muscle cells, causing continuous 

stimulation of muscles and glands, which eventually leads to asphyxiation, paralysis, and possibly 

death.11 For context on the general toxicity of nerve agents, we note that exposure to GD in doses 

as small as 50 µg/m3 can be instantly fatal.12 

Since these highly toxic chemicals remain a serious global threat, materials are needed for 

both the destruction of weapon stockpiles and personal protection via fabric coatings or respirators 

to ensure the safety of military specialists and untrained citizens alike. Research into methods for 

nerve agent decomposition has been ongoing since the discovery of the first G-series agents in 
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1936. For example, incineration has commonly been used as a method for the bulk destruction of 

stockpiles, but this process has significant drawbacks because it can result in the formation of toxic 

gaseous byproducts.13 Unfortunately, the time frame to apply effective treatment after exposure to 

nerve agents can be as short as minutes.14 Thus, the most important measures to protect against 

airborne agents are through capture and degradation to nontoxic products before the chemicals 

reach their biological targets. Conventional solid adsorbents such as activated carbon are effective 

for adsorption, owing to their microporosity and high surface areas, but are inefficient at 

deactivation, which can lead to secondary emission once the materials become saturated and poses 

risks upon disposal.15 For these reasons, reactive removal is preferred over physical adsorption. 

A more promising method for nerve agent detoxification involves hydrolysis, with 

nucleophilic water or hydroxide substituting at the phosphorus atom of the agent, resulting in 

elimination of the toxic leaving group. Some metal oxides such as CaO,16 MgO,17 and Al2O318 

were found to be reactive toward nerve agents, but they show poor stability in water and air and 

suffer from product inhibition, which reduces their activity over time. Nanomaterials based on 

TiO219 and amorphous Zr(OH)420 have also been found to be effective for hydrolysis due to their 

high surface areas and surface hydroxyl groups, but these materials are often tested 

stoichiometrically and may not be effective as catalysts.21,22 Further, metal oxides offer a rather 

limited capacity for chemical functionalization and tunability, thus reducing the potential to 

improve their reactivities through rational design. 

Most metal oxide-based systems for nerve agent hydrolysis are modeled after biological 

enzymes such as phosphotriesterase (PTE), which are capable of catalytic organophosphate 

detoxification.23 The active center of PTE includes dimeric Zn(II) ions, in the form Zn–OH–Zn, 

which act as Lewis acids. One mode of their catalytic activity involves coordination of the agent 
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phosphoryl oxygen to a metal atom of the active site, rendering the agent phosphorus atom more 

vulnerable to nucleophilic attack, thereby enhancing hydrolysis rates.24,25 Histidine residues 

surrounding the enzyme active site may also accelerate catalysis, in a synergistic fashion, through 

favorable hydrogen-bonding interactions. Unfortunately, poor stability outside of buffered media 

and deactivation after long-term storage limit the range of conditions in which enzymes such as 

PTE may find practical use.26 

1.2 Metal–Organic Frameworks 

In the last two decades, research interest in metal–organic frameworks (MOFs) has grown 

dramatically, driven largely by their potential applications in gas storage,27,28 separations,29 

chemical sensing,30–32 drug delivery,33 and catalysis.34 MOFs are highly crystalline porous 

materials composed of inorganic metal (or metal oxide) nodes connected by organic linkers. The 

organic linkers can be modified with functional groups to tune the properties of the MOF, for 

example, by introducing regions of strong electrostatic charge with electron-rich or poor groups. 

Some MOFs also have open metal sites, which can serve as catalytic or chemisorption sites, and 

these metals can be chosen judiciously for desired applications. Therefore, there is vast potential 

to design MOFs for specific purposes. 

There are virtually endless arrangements of nodes, linkers, and functional groups that could 

be combined in different topologies to create a nearly infinite number of unique MOFs. Several 

thousand different MOFs35,36 have already been synthesized and characterized due to the efforts 

of numerous research groups throughout the last two decades,37,38 and yet this figure represents 

only a tiny fraction of the possible structures that remain to be discovered. Because of this, MOFs 

have become a ripe field for computationally-aided materials design and discovery,39,40 where 

computational tools have great potential to accelate scientific advancement in the MOF field. 
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1.3 MOFs as Catalysts for Nerve Agent Hydrolysis 

Among their many applications, MOFs are a promising class of catalysts for CWA degradation 

due to their high porosity, variable pore size, large surface area, high concentration of active sites, 

and chemical functionality that can be tailored to adsorb specific target molecules. Recent research 

has shown that MOFs can adsorb and catalytically degrade nerve agents into nontoxic products 

within a matter of minutes via hydrolysis of the phosphate ester bond. 

Initial studies were directed at adsorption, where [Zn2Ca(BTC)2(H2O)2](DMF)2 was the 

first MOF proven to be capable of capturing a nerve agent simulant, methylphosphonic acid 

(MPA).41 Shortly after, a MOF-5 analogue was shown to adsorb diisopropyl fluorophosphate 

(DIFP), a surrogate for sarin.42 Several MOFs containing open Lewis-acidic metal sites such as 

Al3+, Cu2+, and Cr3+ were then shown to be effective for hydrolysis of nerve agent simulants,43–45 

though they suffered from either poor stability or relatively low catalytic activity. 

Currently, Zr(IV)-based MOFs are the most investigated class of MOFs for nerve agent 

hydrolysis,46 in part due to their high chemical stability (in pH 1–12) and thermal stability (up to 

500 ºC) afforded by their exceptionally strong Zr(IV)–O (node–linker) bonds.47 The impressive 

catalytic ability of Zr-MOFs can be attributed to the periodic distribution of strongly Lewis-acidic 

Zr(IV) metal centers, giving rise to a large number of accessible Zr–OH–Zr active sites reminiscent 

of the dinuclear Zn-based active sites of the PTE enzyme. Importantly, the connectivity of the 

Zr6O8-cluster nodes (hereafter denoted as Zr6 nodes) can be systematically tuned by using different 

organic linkers, thereby altering the number of well-defined48 and quantifiable49 Zr–OH2, Zr–OH, 

and bridging hydroxide groups. Multiple studies have shown that lower Zr6 node connectivity, 

which in turn yields larger numbers of potential binding and catalytic active sites, is directly 

correlated with accelerated hydrolysis rates.22 Decreasing the node connectivity also yields larger 
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pore sizes within the framework, which makes it easier for agents and their hydrolyzed products 

to diffuse to and from active Zr sites. 

According to Kirlikovali et al.,46 there are three essential requirements to achieve 

sufficiently fast catalytic hydrolysis of organophosphate molecules, which are reproduced here due 

to their overall importance for this dissertation: 

(1) Water, from either an aqueous solution (for solution-phase reactions) or a humid 

atmosphere (for gas-phase reactions) 

(2) A Lewis-acidic site for activating the agent’s phosphorus center 

(3) A base, from either basic solutions or solid-phase bases, to ensure that a high 

concentration of hydroxyl groups are present for nucleophilic attack, for the 

displacement of hydrolysis products from the active site to yield catalytic turnover, and 

for neutralizing acidic byproducts (e.g., HF generated from sarin hydrolysis) 

Fortunately, due to their robust nature and inherent chemical tunability, Zr-MOFs can be 

designed to meet all three catalytic requirements. The first experiments reporting Zr-MOFs to be 

capable of efficient hydrolysis of nerve agents and their simulants were performed in basic 

solutions, using a buffering agent such as N-ethylmorpholine to maintain pH values at ~8.5–10. 

Using these buffered solutions, various as-synthesized and functionalized Zr-MOFs yielded 

degradation half-lives on the order of minutes.1,50–54 While promising for the catalytic destruction 

of nerve agent stockpiles, this detoxification method is ultimately not feasible for application in 

gas masks and protective fabrics.55 Nonetheless, the use of basic solutions is still a valuable method 

for testing potential catalysts, as the quantification of gas-phase decontamination kinetics under 

relevant battlefield conditions is a rather difficult experimental challenge.56 
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To address this issue, recent studies have begun to investigate gas-phase organophosphate 

detoxification in various Zr-MOFs. In contrast to previous reports of catalytic turnover in buffered 

solution, initial experiments and computational studies showed that exposure to vapor-phase 

organophosphonates leads to strongly bound hydrolysis products on the Zr6 nodes, albeit under 

ultrahigh-vacuum conditions, which may inhibit further reactions (i.e., product inhibition).57–59 

However, subsequent gas-phase experiments performed under varying relative humidity 

conditions showed that large amounts of moisture present in Zr-MOFs can result in a moderate to 

significant enhancement of nerve agent hydrolysis rates.56 Further improvements could also come 

from base heterogenization, as was recently proved using Zr-MOF/polymer/fiber composite 

materials that showed similar catalytic activity under ambient humidity conditions compared to 

MOF powders in aqueous alkaline solution.55,60 Going forward, an exhaustive investigation into 

the solid-state catalytic activity of MOFs toward nerve agents in the gas phase, under varying 

humidity levels56,61 and in the presence of atmospheric contaminants, is warranted before MOFs 

may be applied in personal protective equipment such as gas-mask filters62 and clothing.63–65 

A more comprehensive overview of MOFs for detoxification of CWAs, in addition to toxic 

industrial chemicals, can be found in our 2017 review article66 and other recent reviews.46,67 

References to other background literature, including both experimental and computational studies, 

on MOF-based nerve agent hydrolysis are provided in the Introduction sections of Chapters 3–5. 

1.4 Density Functional Theory Calculations 

Computational tools such as electronic structure methods are essential complements to 

experimental studies for characterizing the properties and reactivity of catalyst materials, 

especially MOFs.68,69 The majority of the work in this dissertation involves the use of density 

functional theory (DFT), which is briefly summarized below. In this section, we only focus on the 
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basic aspects of performing DFT calculations that are necessary to understand the results presented 

in Chapters 2–5. A more extensive theoretical review of the assumptions/approximations made in 

quantum chemical methods (e.g., Born–Oppenheimer approximation) in general can be found in 

ref 70 and, for quantum chemical characterization of MOFs in particular, ref 68. 

The exact electronic structure of any molecular system can be determined by solving the 

Schrödinger equation, which describes the system’s quantum mechanical wave function. 

Unfortunately, solving the equation exactly for systems larger than a hydrogen atom is 

computationally impossible. Broadly speaking, DFT can be used to find an approximate solution 

to the Schrödinger equation. The theorems that give rise to DFT – devised by Hohenberg and Kohn 

– state that all of the information about a quantum system (e.g., the system’s energy) can be derived 

from its electron density, 𝜌(𝒓), which is simply a function of the three-dimensional coordinates of 

a set of atoms. In the Kohn-Sham formulation of DFT,71 the energy functional can be expressed 

as: 

𝐸[𝜌(𝒓)] = 𝑇%&[𝜌(𝒓)] + 𝑉'([𝜌(𝒓)] + 𝑉(([𝜌(𝒓)] + 𝐸)*[𝜌(𝒓)]                    (1.1) 

where Tfs is the kinetic energy of a fictitious system of non-interacting electrons, Vne is the potential 

energy from nuclear-electron Coulombic attraction, Vee corresponds to the Coulombic interaction 

of the electron density with itself, and Exc represents the exchange-correlation energy of a real 

interacting system of electrons. Contained within Exc are terms correcting for the classical electron-

electron repulsion energy and the kinetic energy due to electron interactions in a real system. 

Unfortunately, Exc cannot be determined exactly, and functional approximations to this energy are 

required, referred to as density functionals. Aside from choosing a density functional, the next 

most important decision for performing DFT calculations is choice of basis set, referring to the set 

of non-orthogonal single-particle functions that are used to construct molecular orbitals.70 



 35 
Ultimately, the choice of a given functional and basis set is highly dependent on desired accuracy, 

the system of interest, and computational time restrictions. 

B3LYP72,73 is a widely used density functional due to its fairly accurate treatment of main-

group thermochemistry, but it is known to underestimate reaction barrier heights.74 The Pople basis 

sets (e.g., 6-311++G**) are commonly used for main-group elements in conjunction with B3LYP. 

For exploring reactions on MOF nodes, the M06-L functional75 is commonly used because it is 

one of the most accurate functionals for transition metals and it is a local functional, which is more 

computationally affordable for large systems. For heavier elements such as transition metals that 

contain large numbers of electrons, and thus large numbers of basis functions, it is more 

computationally efficient to use effective core potentials (ECPs) to treat the electrons in core 

orbitals, which are only weakly affected by chemical bonding. Basis sets used with ECPs are 

typically of split valence (SV) or triple zeta valence (TZV) quality, referring to the number of basis 

functions used to represent valence orbitals, and are often supplemented by polarization functions 

(e.g., def2-SVP or def2-TZVPP).76 Popular pseudopotentials include the Los Alamos National 

Laboratory (LANL2DZ)77,78 and the Stuttgart-Dresden (SDD)79,80 ECPs. 

Although the large unit cells of MOFs make the use of reactive studies on the periodic scale 

difficult, valuable information can be obtained from calculations involving smaller clusters of the 

MOF nodes and linkers. When performing DFT calculations to model reactions on MOF node 

clusters, it is necessary to “cut” the node and surrounding linkers from its periodic structure found 

in a crystallographic information file (CIF), using capping groups such as formate or benzoate to 

represent the linkers and to maintain charge neutrality. By default, geometry optimizations 

(described below) are typically performed in the gas phase. However, to compare to experiments 

done in solution, solvation effects can be simulated implicitly, using models such as the polarizable 
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continuum model (PCM)81 and SMD continuum solvation model,82 or by including explicit solvent 

molecules in the model system.83 In relatively large systems such as MOF-organophosphate 

complexes, it is important to accurately account for weak dispersion forces arising from medium-

range non-covalent interactions.84 One of the most widely used methods is the DFT-D3 dispersion 

correction,85 commonly paired with the Becke-Johnson (BJ) damping function.86,87 

Once a functional and basis set are chosen, in addition to other input parameters, one needs 

to actually perform the DFT calculations. Throughout this dissertation, the phrase “performing 

DFT calculations” generally refers to the process of computing the potential energy surface (PES) 

of a molecular system at various points along a reaction energy profile (or reaction coordinate 

diagram) connecting reactants to products, which is used to determine quantities such as activation 

barriers for a chosen reaction mechanism. For any given system, the geometry of its set of atoms 

can be represented by a vector (r) of the atoms’ coordinates. One can then introduce the concept 

of the system’s electronic energy, E(r), as a function of these atomic positions. Given these 

definitions, the first step in “performing DFT calculations” is a geometry optimization, using a 

chosen optimization algorithm (e.g., Berny algorithm88), where the goal is to find the value of r 

for which E(r) is at a local minimum. Using an initial guess of the correct geometry, an iterative 

optimization procedure is followed to minimize the energy of the chosen system by adjusting the 

geometry until an optimal spatial arrangement of atoms is found such that the net force, ∂E/∂r, on 

each atom is effectively zero and the PES is at a stationary point. If the Hessian matrix (the second 

derivative matrix of the system) describing the curvature of the PES at r has all positive 

eigenvalues (i.e., minimum on the PES), then an intermediate along the reaction energy profile has 

been found. If the Hessian matrix contains exactly one negative eigenvalue (i.e., 1st order saddle 

point on the PES), then a transition state (TS) along the reaction energy profile has been located. 
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To verify the natures of all stationary points (both intermediates and TSs), the next step is the 

calculation of analytic vibrational frequencies, where minimized intermediate structures are 

characterized by zero imaginary frequencies and TS structures display exactly one imaginary 

frequency corresponding to the reaction path of interest. These frequencies can also be used to 

compute molecular partition functions, typically at standard conditions of 298.15 K and 1 atm, 

using the conventional particle in a box, rigid rotor, and quantum mechanical harmonic oscillator 

approximations.70 From these partition functions, one can derive thermochemical properties such 

as enthalpies and Gibbs free energies. 

1.5 Importance of Modeling for CWA Detoxification Research 

Due to the danger involved in working with highly toxic CWAs, experiments are typically done 

using simulant molecules, which are safer to handle than actual CWAs but have similar chemical 

behavior and structure. The use of simulants greatly simplifies the execution of experiments 

pertaining to degradation of CWAs, and there are several simulants that give results similar to their 

respective CWAs. However, with any simulant there is a necessary tradeoff between accurately 

mimicking agent reactivity and being sufficiently nontoxic for researchers to study them in an 

academic setting. By its nature, computational research does not suffer from the same safety issues 

as experimental work. Therefore, computational scientists can simulate reactions of CWAs in 

MOFs using the real agents as well as their simulants. To explain how modeling can be used to 

optimize MOF catalysts for neutralizing CWAs, we present a case study of the first mechanistic 

analysis of organophosphate hydrolysis. 

As a complement to their experimental work, Mondloch et al. performed DFT calculations 

to analyze the hydrolytic degradation of the simulant methyl-paraoxon (DMNP) and the nerve 

agents VX and GD on the Zr-MOF NU-1000, using a cluster model of the node and an implicit 
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solvation model.1 The most favorable binding configuration for DMNP on the NU-1000 node (–

26 kJ/mol, relative to free energy of separated reactants) involves stabilization due to hydrogen 

bonding with the hydroxide and water groups bound to the node, in addition to weak π–π stacking 

interactions between the benzene ring of the TBAPy4– linkers and the DMNP phenyl ring. They 

also considered the case of DMNP interacting directly with the Lewis-acidic Zr(IV) catalytic site 

by removing a terminal node-ligated water molecule. The dissociation of a coordinated water was 

predicted to be the rate-determining step, and the dominant interaction is the electrostatic attraction 

between the Zr atom and the P=O group of DMNP, where the bound configuration is 22 kJ/mol 

uphill in free energy. This provided insight into the experimental observation that dehydrating NU-

1000 prior to reaction (by heating the MOF to remove terminal water ligands) reduces the half-life 

for DMNP hydrolysis to 1.5 minutes, compared to 15 minutes for the fully hydrated MOF. 

Nevertheless, the reaction is driven forward by the product stability, which is considerably 

downhill in free energy (–48 kJ/mol). These calculations also indicated that the mechanism on Zr6 

nodes is similar to those calculated for the PTE-catalyzed reaction of DMNP.89 The authors then 

used the same DFT approach to investigate the binding and hydrolysis of VX and GD on the NU-

1000 node, revealing qualitatively similar mechanisms as for DMNP hydrolysis. However, there 

were no hydrogen-bonding interactions present for the VX and GD analogues with the linkers; the 

calculations instead showed that attractive van der Waals interactions were most prevalent. 

Additionally, the replacement of a node-ligated water molecule had a much lower reaction barrier 

compared to DMNP (5.4 kJ/mol and 48.2 kJ/mol, respectively). The hydrolysis was again driven 

forward by the thermodynamically stable products for the VX and GD analogues (–123 kJ/mol 

and –83 kJ/mol, respectively), showing selective hydrolysis of the P–S bond in VX and the P–F 

bond in GD. 
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These thermodynamic results prompted experimental testing of the NU-1000-catalyzed 

hydrolysis of GD, which showed a reaction half-life of 3 min when run in an N-ethylmorpholine 

buffered solution and 36 min under 50% relative humidity. Also inspired by these DFT 

calculations, a later experimental study on a different Zr-MOF, UiO-67-(NMe)2, showed selective 

hydrolysis of VX by cleavage of the P–S bond with a half-life of 1.8 minutes.21 This is an important 

observation since cleavage of the P–O bond gives rise to EA-2192 (S-2-(diisopropylamino)ethyl 

O-hydrogen methylphosphonothioate), which is another highly toxic organophosphate molecule.90 

This case study serves as a model example for the power of combined theoretical and experimental 

studies for understanding reaction mechanisms and analyzing which degradation products will be 

obtained. 

Computational modeling of nerve agent hydrolysis in MOFs is a relatively new research 

area compared to modeling of other MOF applications such as gas storage. However, the limited 

computational work that has been done since 2015 – in close conjunction with experiment – has 

shown promising results. As this field continues to develop, computational modeling can be used 

to guide collaborating experimental groups by screening candidate materials with potentially better 

performance for the degradation of nerve agents. If the modeling techniques applied are 

sufficiently accurate, this will save time and minimize the number of experiments that must be 

performed with these dangerous chemicals. Further, using techniques such as DFT calculations to 

explore reaction mechanisms in detail, valuable insights can be gained into the molecular-level 

interactions of the agents with the MOF surfaces that cannot be determined through experiments 

alone, which gives researchers a better understanding of the fundamental properties that affect 

catalyst performance. This is a good example of a research problem where computational science 
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has the potential to make significant contributions by probing systems that are difficult and 

dangerous to study experimentally. 

1.6 Outline of Dissertation 

This dissertation is a compilation of three peer-reviewed publications and one manuscript in 

preparation, organized as follows: 

• Chapter 2: M. L. Mendonca and R. Q. Snurr, “Screening for Improved Nerve Agent 
Simulants and Insights into Organophosphate Hydrolysis Reactions from DFT and QSAR 
Modeling,” Chemistry – A European Journal, 2019, 25, 9217-9229. 
 

• Chapter 3: H. Chen*, P. Liao*, M. L. Mendonca*, and R. Q. Snurr, “Insights into Catalytic 
Hydrolysis of Organophosphate Warfare Agents by Metal–Organic Framework NU-
1000,” The Journal of Physical Chemistry C, 2018, 122, 12362-12368. (* represents equal 
contribution) 
 

• Chapter 4: M. L. Mendonca, D. Ray, C. J. Cramer, and R. Q. Snurr, “Exploring the Effects 
of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and 
Their Hydrolysis Products in Metal–Organic Frameworks,” in preparation. 
 

• Chapter 5: M. L. Mendonca and R. Q. Snurr, “Computational Screening of Metal–Organic 
Framework-Supported Single-Atom Transition-Metal Catalysts for the Gas-Phase 
Hydrolysis of Nerve Agents,” ACS Catalysis, 2020, 10, 1310-1323. 
 
Chapter 2, which describes a computational screening to identify highly predictive 

nontoxic simulant molecules as candidates for safer and more accurate experimental studies of 

nerve agent hydrolysis, does not explicitly concern MOFs. Chapter 3 describes the origins of the 

catalytic effects of the Zr-MOF NU-1000 for solution-phase organophosphate hydrolysis to 

provide insights on previous experiments, in addition to exploring the effects of temperature-

induced node dehydration and distortion on the catalytic mechanism. Chapter 4 describes the use 

of DFT to examine the effects of MOF node topology, connectivity, and metal identity on the 

binding energies of multiple nerve agents and their corresponding hydrolysis products, again in 

the context of solution-phase reactions. Chapter 5 describes a study on gas-phase sarin hydrolysis 
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to determine if depositing single-atom catalysts on MOF nodes is a viable strategy to avoid product 

inhibition and accelerate gas-phase hydrolysis compared to unfunctionalized nodes. Finally, 

Chapter 6 summarizes the key findings of the dissertation and provides recommendations for 

future research directions. 

Other articles that I contributed to and that were published over the course of my doctoral 

research are listed below. Several paragraphs from the review article were included in various 

sections of this introductory chapter. The other article, which was the result of a collaboration with 

an experimental group, is not directly related to nerve agent detoxification and is thus omitted from 

this dissertation. 

• N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and 
R. Q. Snurr, “Metal–Organic Frameworks for the Removal of Toxic Industrial Chemicals 
and Chemical Warfare Agents,” Chemical Society Reviews, 2017, 46, 3357-3385. 
 

• R. Limvorapitux, H. Chen, M. L. Mendonca, M. Liu, R. Q. Snurr, and S. T. Nguyen, 
“Elucidating the Mechanism of the UiO-66-Catalyzed Sulfide Oxidation: Activity and 
Selectivity Enhancements through Changes in the Node Coordination Environment and 
Solvent,” Catalysis Science & Technology, 2019, 9, 327-335. 
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Chapter 2: Screening for Improved Nerve Agent Simulants and Insights into 

Organophosphate Hydrolysis Reactions from DFT and QSAR Modeling 

 

This chapter is a modified version of a published manuscript: Mendonca, M. L.; Snurr, R. Q. Chem. 

Eur. J. 2019, 25, 9217–9229. 

 

2.1 Introduction 

The first large-scale use of chemical warfare agents (CWAs) occurred during World War I, and 

dangerous toxic compounds continue to be employed in modern warfare. Despite global efforts to 

ban the stockpiling and use of CWAs, several countries are believed to still have operational 

production facilities. Various CWAs have been used as recently as 2018 during the Syrian Civil 

War,4 by the terrorist group Islamic State,5 in an assassination in Malaysia,6 and in the recent 

poisoning in the United Kingdom.7 In particular, organophosphate-based nerve agents are among 

the deadliest chemicals in the world. These agents function by inhibiting the enzyme 

acetylcholinesterase, causing accumulation of the neurotransmitter acetylcholine. This triggers 

continuous stimulation of muscles and glands, which can lead to asphyxiation and death. Nerve 

agents can be divided into three classes: G-series agents, including sarin (GB), soman (GD), tabun 

(GA), and cyclosarin (GF);8 V-series agents, including VX, VR, VE, VG, VS, and VM;9 and 

Novichok agents, such as A-230, A-232, and A-234.10 Research into methods and materials for 

the capture and decomposition of these lethal agents has been ongoing since their discovery.91 

Detoxification of nerve agents usually involves hydrolysis, with nucleophilic water or hydroxide 

substituting at the phosphorus atom of the agent, resulting in elimination of the toxic leaving group 
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(see Scheme 2.1). Due to the growing threat of their use in modern warfare, there has been a large 

increase in research in the last few years to identify materials capable of destroying CWAs.66,92,93 

Scheme 2.1. Schematic of Two Possible Organophosphate Hydrolysis Mechanisms, (Top) Concerted and 
(Bottom) Stepwise 
 

 
 

Due to the high toxicity of CWAs and regulation under the Chemical Weapons Convention, 

simulants are often used in laboratory experiments to mimic the reactivity of nerve agents when 

screening materials for catalytic detoxification. There exist many simulants that give results similar 

to those of their respective agents, and their use streamlines studies of CWA degradation. 

However, there is a necessary tradeoff between accuracy in simulating agent reactivity and safety 

for academic study.66 Further, there is little reason to believe that the current simulants used in the 

literature will have identical degradation behavior to all types of agents. Sometimes, using actual 

agents can reveal additional mechanisms not observed with simulants.52 For example, dimethyl 

methylphosphonate (DMMP) is commonly used as a simulant58,59 for GB because it exhibits 

similar adsorption behavior. However, it does not contain the P–F bond that is broken during sarin 
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hydrolysis, and is therefore not as effective for mimicking reactivity.62 Choosing the most 

appropriate simulant is non-trivial because it depends on the physical or chemical application of 

interest (e.g., degradation, adsorption, or diffusion), but there are still many cases where 

researchers claim materials are active towards CWAs based on extrapolation of simulant data 

alone.94,95 Conversely, the dismissal of catalytic or sorptive materials based on lack of activity 

towards simulants could result in missed opportunities. Thus, there is a pressing need for the 

discovery and validation of new simulants, or confirmation of current simulants, that are effective 

predictors of nerve agent reactivity under remediation conditions. As with the already widely used 

simulants, these new molecules must be safe enough for researchers to handle them in experiments. 

In addition to determining improved simulants, it is interesting to study how molecular 

features affect organophosphate reaction energetics. Early studies in the nerve agent literature 

studied correlations between physiological action and chemical structure.96–98 However, there have 

been limited reports of correlations between degradation behavior and chemical properties, which 

have only covered structural effects for a small set of compounds due to experimental 

limitations.99–102 Quantitative structure-activity relationship (QSAR) modeling can be used to 

determine correlations between modifications in geometric and electronic structure and 

corresponding changes in a response variable, such as partition coefficient or reactivity.103 QSAR 

models are applied in a diverse range of fields, from predicting biological toxicity based on 

structural descriptors,104 to correlating reaction barriers with molecular orbital parameters.105 With 

advances in computational techniques, quantum chemical methods are increasingly being used to 

calculate descriptors to build the models. Aside from providing valuable insight into the chemistry 

governing certain reaction classes or binding events, QSAR models can also drastically reduce the 

expense and time required to discover and test novel candidate molecules. To the best of our 
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knowledge, there has only been one previous QSAR model on organophosphate hydrolysis using 

molecular orbital descriptors,106 but it only studied a small number of compounds and used 

outdated computational methods. Due to the threat of nerve agent attacks in today’s world, along 

with the significant increase in research aimed at neutralizing these agents in recent years,107,108 

we believe there is a crucial need for a more thorough understanding of the basic chemistry 

underlying their detoxification mechanisms. 

Overall, the main goal of this work is to generate important insights by investigating nerve 

agent hydrolysis reactions computationally, thereby reducing the number of experiments necessary 

with these dangerous chemicals. Herein, we perform a density functional theory (DFT) screening 

of over 100 organophosphate molecules, including hypothetical structures as well as previously 

synthesized chemicals, to determine improved simulants based on criteria such as low toxicity and 

similarity to nerve agent hydrolysis behavior. Both the pathway of degradation and the activation 

energy barrier are investigated as measures for identifying improved non-toxic analogs. We 

systematically vary the functional groups and leaving groups to observe the effects on overall 

reaction energetics and mechanism. Our analysis is focused on comparison to the G-series agents, 

sarin and soman, as they are the most commonly studied and used agents. 

We also investigate correlations between molecular descriptors and reaction barriers for 

the alkaline hydrolysis of these organophosphates, and we use the results to construct QSAR 

models. Through careful consideration of the resulting models, a better understanding of the most 

important descriptors involved in organophosphate hydrolysis is formed. The generated models 

are then subjected to a thorough statistical analysis and validation procedure, in order to ensure 

accurate predictive capability. Through the assessment of applicability domain, we further show 
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that the QSAR models trained on G-series agents and simulants can reliably predict energetics for 

other organophosphate classes as well, including VX. 

 Caution: Some of the organophosphate molecules mentioned herein are considered 

extremely dangerous and should only be handled in a lab with proper facilities and certified 

personnel. 

2.2 Computational Details 

All electronic structure calculations were performed using the Gaussian 09 package (revision 

D.01).109 Geometry optimizations were performed for all species using DFT with the B3LYP 

functional72,73 and 6-311++G** basis set. Several other methods were tested on the uncatalyzed 

hydrolysis reaction of sarin to explore the effect of level of theory on the energy barrier. The DFT-

D3 dispersion correction85 with the Becke-Johnson damping function,86,87 the M06-2X 

functional,110 second-order Møller-Plesset theory (MP2),111 the Hartree-Fock method (HF), and 

the modified Complete Basis Set method (CBS-QB3)112,113 were tested and compared to available 

experimental data (see Table A.1 in Appendix A). In order to compare to experiments done in 

solution, the polarizable continuum model (PCM)81,114 of water was used to model solvation 

effects implicitly. Harmonic vibrational analyses were performed, at the same level of theory, to 

verify the nature of all species and to calculate the thermochemical properties at standard 

conditions (298.15 K, 1 atm). 

 We used the EPA Toxicity Estimation Software Tool (T.E.S.T. v 4.2)115 to compile 

experimental and predicted toxicity data for both nerve agents and all 117 simulants. T.E.S.T. 

allows users to estimate the toxicity of compounds using various QSAR methods such as 

hierarchical,116 FDA,117 and nearest neighbor118 methods that predict values based on 45 molecular 

structure descriptors. We chose to use the consensus method, which takes an average of the 
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predicted toxicities from the above QSAR methods, because it was shown to achieve the best 

prediction results during external validation.115 

 Molecular orbital parameters, used as descriptors for building QSAR models, were 

calculated with the natural bond orbital (NBO) method119 in Gaussian 09. All calculations required 

for QSAR model development and statistical testing were performed in MATLAB using built-in 

functions and a custom script to execute the leave-one-out cross-validation procedure. 

2.3 Results and Discussion 

2.3.1 DFT Screening for Improved Nerve Agent Simulants 

Using DFT, we calculated the uncatalyzed alkaline hydrolysis mechanism for 117 potential 

organophosphate simulant molecules, as well as the nerve agents GB and GD. Functional groups 

and leaving groups were systematically varied to observe the effects on overall reaction energetics. 

For all molecules with a chiral phosphorus center, the SP enantiomer was modeled for consistency 

(note that this isomer is generally more toxic than RP),120 although this convention should not affect 

the reaction energetics. 

All molecules were observed to undergo SN2 nucleophilic substitution pathways, with HO– 

acting as the nucleophile.121–123 The hydrolysis of nerve agents is known to proceed through a 

stepwise mechanism, which generally consists of two transition states connected by a 

pentacoordinated trigonal bipyramidal (TBP) intermediate.123 Organophosphate compounds may 

also hydrolyze through a single-step concerted mechanism in which the transition state mostly 

involves nucleophilic attack but not the departure of the leaving group.124,125 Scheme 2.1 depicts 

the differences between the stepwise and concerted mechanisms. In TBP phosphorus molecules, 

the most electronegative group is more stable in the axial position, where elimination is easiest.126 

Thus, the most electronegative group in each molecule (e.g., –F in sarin) was assumed to be the 
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preferred leaving group, and the nucleophilic hydroxide was positioned to attack each molecule 

directly opposite this leaving group. 

Table 2.1. Effect of Conjugate Acid pKa of Leaving Groups on Organophosphate Hydrolysis Mechanism 
 

Leaving Group Conjugate Acid pKa Mechanism 
Cl– –8(a) Concerted 
F– 3.17(a) Stepwise 

2,4-(NO2)2-C6H3O– 4.07(b) Concerted 
2,4,6-Cl3-C6H2O– 5.99(c) Concerted 
2,4,5-Cl3-C6H2O– 6.72(c) Concerted 
4-NO2-C6H4O– 7.15(b) Concerted 
2-NO2-C6H4O– 7.23(b) Concerted 

3-CH3-4-NO2-C6H3O– 7.33(d) Concerted 
2,4-Cl2-C6H3O– 7.85(c) Concerted 
4-CN-C6H4O– 7.97(b) Concerted 
3-NO2-C6H4O– 8.36(b) Concerted 
3-Cl-C6H4O– 8.56(b) Concerted 
4-Cl-C6H4O– 9.41(b) Concerted 

4-SCH3-C6H4O– 9.53(b) Stepwise 
3-N(CH3)2-C6H4O– 9.78(e) Stepwise 

C6H5O– 9.99(b) Concerted/Stepwise* 
4-OCH3-C6H4O– 10.21(b) Stepwise 

C6H5-CH2O– 15.4(f) Stepwise 
CH3O– 15.54(f) Stepwise 

CH3CH2O– 16(f) Stepwise 
CH3CH2CH2O– 16.1(f) Stepwise 

(CH3)2CHO– 16.5(a) Stepwise 
(CH3)3CCH2O– 16.5(g) Stepwise 

(CH3CH2)2CHO– 18.2(h) Stepwise 
 

Experimental or predicted pKa values of the conjugate acids of leaving groups taken from (a) ref 127, (b) ref 128, (c) ref 
129, (d) ref 130, (e) ref 131, (f) ref 132, (g) estimated value for primary alcohols, and (h) ref 133. *Simulants with the C6H5O– 
leaving group followed stepwise mechanisms when R1 = R2 = –OCH3 or R1 = R2 = –OCH2CH3 and concerted when 
R1 = –OC6H5 and R2 = –CH3. 
 

We observed a relationship between the conjugate acid pKa of the leaving groups and the 

reaction pathway that the molecules followed, in agreement with previous studies.124,125 Simulants 

with a (R)O– leaving group where the conjugate acid pKa is below ≈ 9.5–10 (“good” leaving 

groups) were found to hydrolyze in a concerted mechanism, whereas “poor” leaving groups 

reacted through a stepwise mechanism (Table 2.1). Both nerve agents and all simulants with a F– 



 49 
leaving group followed stepwise mechanisms, while all Cl– leaving groups corresponded to 

concerted pathways. Aside from the conjugate acid pKa of the leaving groups, the size of the 

leaving group may also play a role in the preferred decomposition mechanism due to varying steric 

interactions, although this effect should be less significant for uncatalyzed reactions. 

For accurate comparisons to be made when performing experiments, an ideal simulant 

should have a similar hydrolysis rate as its corresponding nerve agent, while also being less toxic. 

To compile experimental and predicted toxicity data for both nerve agents and all 117 simulants, 

we used the T.E.S.T. software.115 We chose oral rat LD50 –log10(mol•kg–1) as the toxicity 

endpoint,134 which represents the mass of the compound per rat body weight that causes death in 

50% of rats after oral ingestion, because it was the endpoint for which the most experimental data 

was available. 

For those molecules that exhibit a stepwise mechanism, we found that the first transition 

state (TS1) was rate-limiting.135 For molecules that exhibit a concerted mechanism, there is only 

one transition state (also referred to here as TS1). Thus, for all 119 molecules studied, the free 

energy barrier for TS1 (∆GTS1) was chosen as a basis for comparing simulant to nerve agent 

behavior. Here, ∆GTS1 is defined as the difference in free energy between TS1 and the separated 

reactants. For every stepwise mechanism observed, the second transition state (TS2) – involving 

the departure of the leaving group – had a negligibly small energetic barrier, as its structure is 

essentially identical to the connecting TBP intermediate, and thus TS2 does not significantly affect 

the reaction kinetics. In Table A.2, we show the hydrolysis free energy barriers for several 

organophosphate molecules obtained using our DFT procedure and compare them to available 

experimental values to put our screening results into perspective. Although DFT consistently 

under-predicts the experimental barriers, the ordering of the molecules is similar, which makes 
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∆GTS1 a reliable comparison metric. The TS1 free energy barriers from our DFT calculations are 

59.74 kJ•mol–1 and 56.16 kJ•mol–1 for GD and GB, respectively. 

Table A.3 contains ∆GTS1 and rat oral LD50 –log10 values for all organophosphate 

molecules studied. By plotting the DFT-predicted free energy barriers vs. rat oral LD50 values, we 

observed no correlation (R2 = 0.01, Figure A.1) between organophosphate toxicity and hydrolysis 

reaction barrier. 

We calculated the difference between the TS1 free energy barrier for individual simulants 

relative to each nerve agent, |∆∆GTS1|, to identify the best simulants. We chose |∆∆GTS1| < 3.25 

kJ•mol–1 as a criterion for an improved simulant to account for uncertainty in the DFT 

calculations,136 and because this is roughly equal to the difference between the free energy barriers 

for soman and sarin. All simulants studied are indeed less toxic than the nerve agents, where rat 

oral LD50 –log10 values for GD137 and GB138 are 5.66 and 5.41 mol•kg–1, respectively. For context, 

rat oral LD50 –log10 = 4.88 mol•kg–1 for methyl-paraoxon (DMNP),134 which is one of the more 

common simulants used when testing catalysts for detoxification.1,50,139–141 For precautionary 

measures, we set the upper bound toxicity criterion at rat oral LD50 –log10 < 2.50 mol•kg–1. This 

upper bound on the toxicity endpoint was chosen to err on the side of caution, given any possible 

inaccuracies in the T.E.S.T. predictions. To our knowledge, DMNP, with its slightly higher 

toxicity endpoint, has been used safely without incident in many previous studies. One attractive 

feature of DMNP is its low vapor pressure (3.3 × 10–5 mmHg at 25 ºC),134 which reduces the 

inhalation hazard. This is perhaps a more immediate concern for a research scientist, rather than 

oral exposure, and should also be taken into consideration when choosing simulants. However, we 

chose the oral toxicity endpoint because it was the indicator for which the most experimental data 



 51 
was available. Rat oral LD50 –log10 < 2.50 mol•kg–1 was used as a general safety measure, but it is 

unclear what the actual cutoff should be for an academic lab. 

 
 

Figure 2.1. Differences in DFT-calculated hydrolysis free energy barriers for the first transition state, |∆∆GTS1|, for 
simulants relative to (a) soman and (b) sarin vs. their toxicity endpoint. The horizontal grey line indicates |∆∆GTS1| < 
3.25 kJ•mol–1 as the energy barrier criterion for an improved simulant. The vertical purple line indicates LD50 –log10 
< 2.50 mol•kg–1 as the toxicity criterion. The black vertical line indicates LD50 –log10 = 4.88 mol•kg–1 (toxicity of 
DMNP), the red vertical line indicates LD50 –log10 = 5.66 mol•kg–1 (toxicity of soman), and the blue vertical line 
indicates LD50 –log10 = 5.41 mol•kg–1 (toxicity of sarin). 
 

As shown in Figure 2.1, these criteria suggest 4 improved GD simulants for soman and 3 

improved GB simulants for sarin, based on the chosen energy barrier and toxicity bounds. Here, 

“improved” indicates that the simulant molecule has both |∆∆GTS1| < 3.25 kJ•mol–1 and rat oral 

LD50 –log10 < 2.50 mol•kg–1. Note that Figure 2.1 only displays data for |∆∆GTS1| up to 5 kJ•mol–

1, for clarity and to highlight the top simulants, whereas all data points are included in Figure A.2. 

Table 2.2 displays the improved soman and sarin simulants, where each molecule is labeled using 

its unique chemical identifier that can be used for searching chemical databases. Further, if a 

particular application requires an identical degradation mechanism to that of nerve agents, then 

simulants that undergo stepwise hydrolysis should be chosen. When comparing the molecules in 

Table 2.2, it is clear that the simulants do not necessarily have a similar molecular structure as 

their corresponding nerve agents. However, it is apparent that molecules with F– and Cl– leaving 
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groups are generally better reactivity simulants compared to the other 22 (R)O– leaving groups 

considered. We believe that the primary reason molecules with F– and Cl– leaving groups are 

present among the improved simulants is because hydrolysis of the nerve agents involves breaking 

a P–F bond, which is better represented by a simulant with a halogen leaving group as opposed to 

an alkoxy leaving group. 

Table 2.2. Improved Soman (Top) and Sarin (Bottom) Simulants, Labeled Using Their Unique Chemical 
Identifiers 
 

 
 

(a) Experimental toxicity endpoint, which represents the rat oral LD50 –log10 value, obtained using T.E.S.T.115 (b) 
Predicted toxicity endpoint values calculated using the consensus QSAR method in the T.E.S.T. software. (c) Free 
energy barrier for the first transition state in the soman or sarin hydrolysis reaction, calculated with DFT at T = 298.15 
K using B3LYP/6-311++G**. (d) Mechanism of hydrolysis, either stepwise or concerted. (e) Difference between the 
TS1 free energy barrier for the simulant molecule relative to soman or sarin. 
 

Given the inherent uncertainty in DFT and the predicted toxicities, we hesitate to declare 

any one simulant as the best, but these 4 GD and 3 GB simulants may be worthwhile to study in 

experiments, specifically for testing catalyst ability in aqueous nerve agent hydrolysis under 

alkaline conditions. We note that some of these improved simulants may still be considered toxic 

by university standards, so we highly recommend seeking approval from institutional safety 

departments and further study of their toxicity prior to their utilization. Even though there is an 
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overlap between top soman and sarin simulants, it is important to note that there is no single best 

simulant for all types of nerve agents, so molecules should only be chosen based on similarity to 

the CWA of interest. 

Interestingly, many commonly used simulants in the literature showed large energy barrier 

deviations from GD and GB. For example, ethyl-paraoxon and diisopropyl fluorophosphate both 

had |∆∆GTS1| > 10 kJ•mol–1, dimethyl methylphosphonate (DMMP) had |∆∆GTS1| > 20 kJ•mol–1, 

and diisopropyl methylphosphonate had |∆∆GTS1| > 30 kJ•mol–1. This should serve as a caution 

against selecting simulants based on literature precedent alone. A comparison of previous 

computational studies shows that this discrepancy also translates to reactions on metal–organic 

frameworks, where the hydrolysis energy barriers for sarin and DMMP are calculated as 55 

kJ•mol–1 and 84 kJ•mol–1, respectively, on UiO-66.57,58 

Note that the above analysis was focused entirely on ∆GTS1 as an indicator of kinetic 

similarity, but the relative thermodynamics (∆Grxn) compared to nerve agents is also relevant.1,21 

If translating these results for experimental catalysis, simulant size would be another factor to 

consider, as smaller molecules may experience less difficulty accessing catalyst active sites.52 A 

bulky simulant such as dibenzyl chlorophosphonate (CAS RN: 538-37-4, Table 2.2) may have 

significant difficulty diffusing into microporous catalysts, such as the UiO class of MOFs with 

relatively small pore diameters, and thus the degradation reaction may be limited to the exterior 

catalyst surface. In such a case, the kinetic diameter of a simulant should be taken into 

consideration. Also, cost and ease-of-synthesis are important; however, these factors are beyond 

the scope of this work. 
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2.3.2 QSAR Modeling – Calculation of Molecular Descriptors 

In addition to identifying improved simulants, we were interested in studying how specific 

molecular features affect organophosphate reaction energetics. In the previous section, we briefly 

noted that simulants with F– and Cl– leaving groups have similar activation barriers to nerve agents. 

Below, we aim to extend beyond basic structural similarities to probe how electronic structure 

descriptors affect the energetics. Implicitly, this analysis will also help explain which electronic 

structure descriptors are most important when selecting an ideal reactivity simulant. To achieve a 

more comprehensive understanding of the fundamental chemistry underlying organophosphate 

hydrolysis mechanisms, we employed quantitative structure-activity relationship (QSAR) 

modeling. 

 The first step in the development of any QSAR model, besides selecting a molecular 

dataset, is the calculation of relevant molecular descriptors. We calculated molecular orbital 

parameters, using electron population analysis with the NBO method in Gaussian 09, for all 119 

molecules studied in the DFT screening and used these as some of the descriptors to build our 

QSAR models. Based on their potential relevance to the hydrolysis of organophosphate molecules, 

we compiled 12 descriptors, 11 of which were obtained through DFT calculations. All quantum 

chemical descriptors were computed from structures of the individual reactant molecules, as 

opposed to computing them from the transition state structure. The free energy barriers obtained 

from the DFT screening in the previous section (∆GTS1) served as the response variable, which, 

when combined with the descriptors, were used to formulate QSAR models. 
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Figure 2.2. Calculated molecular descriptors used in the QSAR analysis, using the structure of soman as a 
representative example. *Note that all descriptors were obtained through DFT calculations, except for the 
conjugate acid pKa of the leaving group. The experimental pKa values were taken from available databases and 
correspond to those values listed in Table 2.1. 
 

The descriptors are briefly summarized in Figure 2.2, using the structure of soman as a 

representative example. Based on basic chemical intuition and previous reports, we expected to 

see certain relationships (either direct or inverse correlations) between the selected descriptors and 

hydrolysis barriers, and the resulting QSAR model equations were used to confirm or deny our 

hypotheses. For example, we predicted that a higher charge on the central phosphorus atom (qP) 

should facilitate nucleophilic attack through increased electrostatic attraction with the negatively 

charged hydroxide nucleophile.100,135 The molecular dipole moment (µ) was chosen because it 

describes the overall polarity of the molecule. The bond order of the P=O bond (BO) was 

considered important, and we anticipated that the bond strength between P and the leaving group 

atom should weaken as the P=O bond order increases, resulting in a lower barrier. The conjugate 

acid pKa of the leaving group is relevant because the overall hydrolysis rate should be dependent 

on the relative basicity of the leaving group compared to the nucleophile,106 and pKa was already 

shown in the previous section to have an effect on the degradation mechanism followed. The 
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molecular volume (V) was selected to investigate if the relative size has any effect on the approach 

of the nucleophile, and thus the reaction barrier. 

The electron affinity (EA) was selected because the hydrolysis reaction consists of a pair 

of electrons on HO– transferring into an unoccupied molecular orbital of the organophosphate. 

Koopmans’ theorem142 may be used to relate the ionization potential (IP) and EA to the HOMO 

and LUMO eigenvalues, respectively, where IP ≈ –EHOMO and EA ≈ –ELUMO. Using this 

relationship, higher EA values should enable easier electron transfer, and thus lower energy 

barriers. Formally, IP and EA may be calculated as differences in electronic energies as follows:143 

𝐼𝑃 = 𝐸+,- − 𝐸+               (2.1) 

𝐸𝐴 = 𝐸+ − 𝐸+.-                      (2.2) 

where the subscripts 𝑁 − 1, 𝑁, and 𝑁 + 1 denote the cationic, neutral, and anionic molecule, 

respectively. Here, the electronic energies are all calculated at the optimized geometry of the 

neutral molecule. 

Molecular hardness (𝜂) and softness (SOF) may be used to measure the stability and 

reactivity of molecules. Molecular electronegativity (𝜒) describes the ability of a species to attract 

electrons, and molecular electrophilicity (𝜔) measures the reactivity towards a nucleophile, where 

high values of these two descriptors should correspond to lower barriers. Using Koopmans’ 

theorem, Parr and co-workers144 derived equations for 𝜂, SOF, 𝜒, and 𝜔, which are reproduced 

here: 

𝜂 = /0	,	23
4

                          (2.3) 

𝑆𝑂𝐹 = -
5
                     (2.4) 

𝜒 = /0	.	23
4

                     (2.5) 
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𝜔 = 6!

45
                      (2.6) 

To complement these global molecular descriptors, we applied the concept of Fukui 

indices, which are local reactivity descriptors that indicate preferred atomic sites for chemical 

reactions. Specifically, we used the atomic populations obtained from the NBO analysis to 

compute the Fukui index for nucleophilic attack on the phosphorus atom (𝑓0.). 𝑓0. describes the 

tendency of the electronic density to distort at the phosphorus atom upon accepting electrons from 

HO–.145 It can be defined as the difference in atomic populations between the molecule with an 

extra electron (𝑁 + 1) and the neutral molecule with 𝑁 electrons:146 

𝑓0. = 𝑝𝑜𝑝0(𝑁 + 1) − 𝑝𝑜𝑝0(𝑁)                    (2.7) 

where the subscript P denotes that these are populations of the phosphorus atom. Here, populations 

for the anionic system are calculated at the optimized geometry of the neutral molecule. Molecules 

with larger 𝑓0. values indicate more reactive phosphorus centers and should correlate with lower 

reaction barriers. 

The unscaled values of the 12 descriptors for all 119 molecules are listed in Table A.4. 

Since these molecular descriptors have different units, all descriptors were scaled from 0 to 1 so 

that the weights of each descriptor in the developed QSAR models may be more clearly compared 

(see eq A.1 in Appendix A for scaling formula). The scaled descriptors for all molecules are listed 

in Table A.5. We note that there are a virtually infinite number of other chemical descriptors 

available in the literature, but we chose to limit our focus to these 12, whose selection relies only 

on basic chemical intuition. The scaled molecular descriptors, along with the ∆GTS1 response 

variable, were used to construct QSAR models by applying stepwise multiple linear regression 

(MLR), as described below. 
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2.3.3 QSAR Modeling – Linear QSAR Model Development 

Before assessing the developed QSAR models, we first discuss uniparametric correlations for 

individual descriptors (e.g., R2uni for ∆GTS1 vs. qp). The 5 most statistically significant descriptors 

for describing the alkaline hydrolysis of all 119 organophosphates are: pKa (R2uni = 0.52, positive 

slope), qP (R2uni = 0.21, positive slope), BO (R2uni = 0.19, negative slope),	𝑓0. (R2uni = 0.16, negative 

slope), and V (R2uni = 0.15, positive slope). Clearly, the conjugate acid pKa of the leaving group is 

the single most important descriptor (of the 12 considered) for describing the energetics of these 

reactions, and the sign of the term reveals that strongly basic leaving groups correlate with higher 

free energy barriers. Surprisingly, the sign of the qP term indicates that higher charges on P 

correlate with higher barriers, which is opposite to our hypothesis in the previous section. A 

potential explanation is that although the increased charge on the phosphorus center could 

strengthen the interaction with the incoming HO– nucleophile, attraction to the leaving group could 

also increase. The net effect would then be determined by the relative basicity of the leaving group 

compared with that of the nucleophile. The signs of the BO and 𝑓0. terms confirm our expectations 

that higher P=O bond orders and more reactive phosphorus centers correlate with lower barriers. 

The sign of the molecular volume term indicates that smaller molecules generally correlate with 

lower barriers. 

Out of the 119 molecules studied, there are several possible molecular datasets (i.e., sets of 

molecules with a unique characteristic in common) that contain enough molecules to create a 

statistically significant QSAR model including: all molecules (Nm = 119), those hydrolyzing 

through concerted mechanisms (Nm = 57) or stepwise mechanisms (Nm = 62), those with a F– 

leaving group (Nm = 37) or Cl– leaving group (Nm = 25), phosphono– molecules composed of alkyl 

and alkoxy substituents (Nm = 58), and phosphoro– molecules composed of two alkoxy 
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substituents (Nm = 54). Initially, we built non-predictive multi-parametric QSAR models for all 

subsets. The term non-predictive denotes that, for each molecular subset, all molecules were 

included in the model development as opposed to dividing them into training and test sets. This 

was done to gain a better understanding of the most important descriptors involved in the 

hydrolysis of organophosphates having particular attributes. Herein, we focus our discussion on 

the model created using all 119 molecules. Results for the other smaller subsets can be found in 

Appendix A. 

For model development, we used stepwise forward-backward based feature selection 

combined with MLR using a 95% confidence interval, utilizing the built-in stepwiselm function in 

MATLAB. MLR allows for easy interpretation of the contribution each descriptor has on the 

model in terms of its coefficient weight and sign. This algorithm performs forward selection of 

descriptors if their corresponding p-values are less than 0.05, then uses backward elimination of 

the descriptor with the largest p-value if any descriptors in the model at the current step have p-

values higher than 0.10. Here, the p-values are for an F-test of the change in the sum of squared 

error resulting from the addition or removal of a descriptor. Descriptors are also removed at each 

step if they are linearly dependent with other descriptors. The algorithm terminates whenever a 

single step cannot improve the model statistics. We note that there are a number of other more 

sophisticated methods that can be applied to build the models, such as artificial neural networks.147 

However, this added complexity is not warranted for our application here, as is evident by the 

promising statistical results detailed below using simple MLR. 

The non-predictive multi-parametric QSAR model developed using all 119 molecules is: 

∆GTS1 = (73.70 ± 4.88) + (58.81 ± 9.58)qP − (80.68 ± 11.99)BO − (12.33 ± 7.40)pKa  

 − (10.47 ± 2.92)ω + (10.60 ± 4.38)V               (2.8) 
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Nm = 119, Q2LOO = 0.64, R2 = 0.72, RMSE = 8.02 kJ•mol–1, F = 59.2. 

Here, ∆GTS1 is in kJ/mol and the descriptors are dimensionless (scaled from 0 to 1, as described 

earlier). In eq 2.8, Nm is the number of molecules, R2 is the correlation coefficient between 

observed and predicted responses, and RMSE is the root mean square error. The leave-one-out 

cross-validation (LOO-CV) procedure is used to calculate Q2LOO, where every molecule is 

eliminated from the dataset once and then its response variable is predicted using the QSAR 

equation produced from the remaining set. 

We described the most significant uniparametric correlation coefficients above for 

completeness and transparency, and to show that single descriptors are not sufficient to describe 

such a heterogeneous dataset. The results highlight the well-known fact that adding increasingly 

more terms to a regression model will improve the correlation statistics. However, the 5 descriptors 

in eq 2.8 are a reasonably small set of terms, allowing for a clear interpretation of their relationships 

with the free energy barrier. It is important to note that the absence of the other 7 descriptors from 

eq 2.8 does not imply that some of these parameters are not also important for describing 

organophosphate hydrolysis reactions. For example, 𝜔 and EA have an inter-descriptor correlation 

coefficient of R2id = 0.98, as detailed in the matrix below eq A.2 in Appendix A. Theoretically, EA 

could be substituted for 𝜔 in eq 2.8 to produce a slightly different QSAR model, without 

significantly affecting the model statistics. 

Non-predictive multi-parametric QSAR models and uniparametric correlation coefficients 

for the other molecular subsets are described in eqs A.3–A.8 in Appendix A. Predictably, careful 

inspection of these supplementary results shows that the correlation coefficients are higher for the 

smaller molecular subsets because they are more homogeneous datasets, and the most significant 

descriptors vary between subsets. 
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The relatively high R2 and Q2LOO statistics and the low RMSE value of eq 2.8 suggest that 

these 5 descriptors can produce QSAR models with acceptable accuracy for predicting the ∆GTS1 

barriers. To confirm this, we performed statistical validations and predictions. 

2.3.4 QSAR Modeling – QSAR Model Validation and Predictions 

To determine the predictive capacity of the dataset (Nm = 119), we split the molecules into training 

and test sets, making sure that the training set spanned the entire response variable space148 and 

that the test set included ≈15% of the total dataset.149 To create a predictive QSAR model, we 

tested three different algorithms for dividing molecules: (i) random selection, (ii) cluster by rank 

in which molecules were sorted by ∆GTS1 values into a specific number of groups and then 

randomly selected from each group for the test set, and (iii) modified cluster by rank in which a 

rational division of molecules was executed to ensure a reasonable dispersion of conjugate acid 

pKa values within the training and test sets. Each method included molecules with the highest and 

lowest ∆GTS1 values in the training set. More detailed descriptions of the processes used in 

algorithms (ii) and (iii) are included in Appendix A. 

We ran each dataset division algorithm 100 times to examine the variability in model 

statistics. As seen in Figures A.3–A.6, the more rational algorithms (ii) and (iii) did not have a 

strong influence on the resulting QSAR model statistics and actually performed worse on average 

than (i) for certain statistics. The models that used methods (ii) and (iii) and resulted in the best 

statistics are highlighted in Appendix A. We restrict our statistical analysis and discussion herein 

to the best random selection model, using method (i). 

Several tests for statistical significance were used to evaluate the predictive value of the 

models. To evaluate the training set, the Q2LOO correlation coefficient was used. Q2LOO can be 

calculated using the formula: 
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𝑄7884 = 1 −
∑(;"#$(&'()*)	,	;,'-.(&'()*))!

∑(;"#$(&'()*)	,	;=(&'()*))!
                   (2.9) 

where yobs(train) are the actual ∆GTS1 responses, ypred(train) are responses estimated based on the LOO-

CV procedure, yB(>?@A!) is the average response, and summations are over all training set molecules. 

The possibility of chance correlation or structural redundancy in the developed QSAR 

models was measured by the y-randomization method. This involved randomizing the response 

values, while leaving the descriptor matrix unchanged, and repeating the entire process of 

statistical validation. Using the correlation coefficients for the randomized model (R2r) and non-

random model (R2nr), the following parameter was calculated: 

C𝑅04 = 𝑅'B 	× D𝑅'B4 − 𝑅B4                   (2.10) 

where C𝑅04 > 0.5 indicates that the QSAR model is not generated by chance only.150 

To evaluate the test set, the test set correlation coefficient (R2test) was calculated as: 

𝑅C(&C4 = 1 −
∑(;"#$(&-$&)	,	;,'-.(&-$&))!

∑(;"#$(&-$&)	,	;=(&-$&))!
                  (2.11) 

where the summations are over all test set molecules. In general, models are deemed acceptable in 

the QSAR community if Q2LOO > 0.5 and R2test > 0.6.151 

The prediction accuracy for the test set is also typically evaluated in terms of the root mean 

square error in prediction (RMSEtest). There is no definitive criterion for how low the RMSEtest 

should be, as it depends on the application of interest and the user’s error tolerance. Although R2test 

is important to calculate to validate models, the RMSEtest is perhaps a better indicator of a model’s 

practical usefulness.152 Furthermore, the value of a QSAR model is not exclusively dependent on 

the quantitative accuracy of its predictions. The relative ranking of molecules, in terms of response 

variable, is also significant. Thus, the Spearman’s rank correlation coefficient (𝜌) may also be 
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calculated. For our study, accuracy in predicting the ∆GTS1 barriers is just as important as 

predicting trends in the barriers, in the context of determining which simulant molecules have 

predicted barriers closer to the actual nerve agents. Thus, when comparing computed statistics 

across all 100 models generated using the random selection algorithm, we identified the optimal 

model as the one that yielded the lowest RMSEtest. 

The optimal predictive QSAR model developed using the random selection algorithm is: 

∆GTS1 = (139.92 ± 16.84) + (72.47 ± 8.94)qP − (93.91 ± 11.86)BO − (19.75 ± 7.33)pKa

 − (66.51 ± 16.94)η − (76.38 ± 18.23)SOF              (2.12) 

Training set: Nm = 101, Q2LOO = 0.64, C𝑅04 = 0.68, R2train = 0.73, RMSEtrain = 8.25 kJ•mol-1, F = 

50.3 

Test set: Nm = 18, R2test = 0.87, RMSEtest = 4.36 kJ•mol-1, 𝜌 = 0.91. 

As before, ∆GTS1 is in kJ•mol–1 and the descriptors are dimensionless. Based on our established 

criteria, eq 2.12 represents a model with excellent predictive capacity, in terms of both quantitative 

(RMSEtest = 4.36 kJ•mol–1) and ranking (𝜌 = 0.91) accuracy. The y-randomization statistic is C𝑅04= 

0.68, which indicates that the QSAR model is not generated by chance only. Figures A.3–A.6 

contain plots of Q2LOO, R2test, RMSEtest, and 𝜌 for all 100 QSAR models generated using the random 

selection algorithm, highlighting the variability in model statistics. 

We note that some descriptors in eq 2.8 selected when using the entire dataset (Nm = 119) 

are different from those in eq 2.12 that is built on only a training set (Nm = 101). Aside from the 

fact that the two models are constructed using slightly different datasets, the reason for the 

descriptor differences may be due to the stepwise MLR method itself. Stepwise models are locally, 

but not necessarily globally, optimal because a different initial model or a different sequence of 

steps may lead to slightly different fits, all of which may provide equally accurate predictions. 
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Regardless of the cause, these differences highlight the importance of generating both non-

predictive and predictive QSAR models, depending on what the purpose of the model may be. 

While the non-predictive model in eq 2.8 is useful for gaining insight into the most significant 

descriptors involved in organophosphate hydrolysis, only the predictive model in eq 2.12 can be 

used to reliably predict free energy barriers for new molecules. 

 
 

Figure 2.3. Comparison between observed (DFT-calculated) free energy barriers with those predicted by 
the optimal predictive QSAR model developed using the random selection algorithm, eq 2.12. The dashed 
line shows the relationship ypred = yobs, where data points for ideal models should lie close to this line. 
 

∆GTS1 barriers for all 119 molecules predicted using eq 2.12 are given in Table A.6. The 

regression plot of observed (DFT-calculated) and predicted barriers for training and test set 

molecules is represented in Figure 2.3, along with the corresponding linear correlation coefficients 

between observed and predicted barriers (R2train = 0.73, R2test = 0.87). The dashed line in this plot 

that shows the relationship ypred = yobs is included to help assess the predictive power of the model, 

where data points for ideal models should lie close to this line. 
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From the values in Table A.6 and Figure 2.3, it is clear that the agreement between 

observed and predicted barriers is quite good. There is one noticeable outlier in the training set 

(identified as molecule 119 in Table A.3), although the statistical correlations are still significant 

even with this molecule included in building the model. Figure A.8 plots the distribution of raw 

residuals for the model, showing that the residuals have an acceptable normal distribution, with 

the one outlier. Further discussion of this outlier is continued in the next section. 

2.3.5 QSAR Modeling – External Predictions and Assessment of Applicability Domain 

The optimal predictive QSAR model in eq 2.12 was further applied to predict ∆GTS1 barriers for a 

set of 3 external molecules, not included in the training or test sets. Since our QSAR models were 

specifically developed using sarin and soman simulants, we wanted to determine if eq 2.12 could 

also reliably predict other nerve agent types such as cyclosarin (GF), tabun (GA), VX, and their 

related simulants whose structures were not involved in building the model. To accomplish this, 

we performed additional DFT calculations to generate observed ∆GTS1 values and molecular 

descriptors for GF, GA, and VX. Their ∆GTS1 barriers are listed at the end of Table A.3 (identified 

as molecules 120, 121, and 122), and the unscaled and scaled values of their 12 molecular 

descriptors are listed in Table A.4 and Table A.5, respectively. 

To more easily assess how eq 2.12 performed for these external set molecules, we 

established the applicability domain (AD) of the optimal predictive QSAR model using the 

leverage-based method.153,154 Predictions for molecules can only be considered reliable and not 

extrapolations if they lie within this AD. In other words, the AD represents the bounds in which a 

model tolerates a new molecule.154 To visualize the AD, a Williams plot was constructed using the 

standardized cross-validated residuals and the leverage values with established thresholds. 
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Leverage (h) is simply a measure of the influence of a molecule’s structure on the 

regression model. Leverages for individual molecules within the training and test sets, for example, 

may be calculated as the diagonals of the hat matrices (H), defined as: 

𝐻CBDE' = 𝑋CBDE'(𝑋CBDE'F 𝑋CBDE'),-𝑋CBDE'F          (2.13) 

𝐻C(&C = 𝑋C(&C(𝑋CBDE'F 𝑋CBDE'),-𝑋C(&CF                                                 (2.14) 

where Xtrain and Xtest are the design matrices containing the molecular descriptors for the training 

and test set molecules, respectively. More specifically, each row in the design matrices contains 

the 12 scaled descriptor values for an individual molecule. The cut-off leverage is defined as h* = 

3(Nd + 1)/Nm, where Nd is the number of descriptors used in the final model and Nm is the number 

of training set molecules used to build the model.153 A prediction for a molecule is considered 

unreliable and outside the AD if its h > h*. 

 
 

Figure 2.4. (a) Williams plot showing the applicability domain for the optimal predictive QSAR model 
developed using the random selection algorithm, eq 2.12. The horizontal purple lines signify the bounds for 
the standardized residuals (at ± 3 standard deviation units). The vertical purple line represents the cut-off 
leverage (h*). The numbers correspond to molecule numbers, established in Table A.3. (b) The structures 
of the five numbered molecules. 
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From the Williams plot, it is easy to detect response outliers (with standardized residuals 

> 3 standard deviation units) and structurally influential molecules with high leverage (h > h*). 

The AD for the optimal predictive QSAR model is represented in Figure 2.4a, where purple, red, 

and green points denote training, test, and external set molecules, respectively. The horizontal 

purple lines signify the bounds for the standardized residuals (at ± 3 standard deviation units) and 

the vertical purple line represents the cut-off leverage (h* = 0.18). Only 2 out of the 122 total 

molecules are located outside of the AD, and so predictions for all other 120 organophosphates 

using eq 2.12 can be considered reliable. The 2 outliers (molecules 4 and 119) are both in the 

training set. Molecule 4, whose structure is presented in Figure 2.4b, is a structurally influential 

outlier. By comparing its structure with the rest of the molecules in Table A.3, it is apparent that 

molecule 4 is the only organophosphate considered with a hydrogen substituent, whereas all other 

molecules have methyl or larger substituents. However, molecule 4 can be said to have “good” 

leverage since it is in the training set, meaning it reinforces the strength of the model for any future 

predictions. Molecule 119, whose structure is represented in Figure 2.4b, is a response outlier, as 

is also evident from Figure 2.3. Molecule 119 contains a tert-butyl substituent, which is a very 

bulky moiety compared to all the other organophosphates. eq 2.12 wrongly predicts its free energy 

barrier and can be expected to perform poorly for other molecules with equally large alkyl groups. 

Perhaps surprisingly, all 3 external set nerve agents fall within the AD. This inspires further 

confidence in our developed model because both VX and GA (molecules 121 and 122, highlighted 

in Figure 2.4b) contain leaving groups not included in the training or test sets. This result implies 

that eq 2.12 can also be used to make reasonable predictions for organophosphates with new 

leaving groups not considered herein. 
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2.4 Conclusions 

In this work, we performed DFT calculations on the uncatalyzed alkaline hydrolysis mechanisms 

for 119 organophosphate molecules to determine improved simulants for the G-series nerve agents 

soman and sarin, based on criteria such as low toxicity and similarity to nerve agent hydrolysis 

energetics and degradation mechanism. All molecules were observed to undergo SN2 nucleophilic 

substitution pathways, with hydroxide acting as the nucleophile. We observed a relationship 

between the conjugate acid pKa of the leaving groups and the reaction pathway (concerted vs. 

stepwise) that molecules followed. For all 119 molecules, the rate-limiting free energy barrier for 

TS1 was chosen as a basis for comparing simulants to nerve agents. To compare toxicities, we used 

the oral rat LD50 –log10(mol•kg–1) toxicity endpoint obtained from the EPA Toxicity Estimation 

Software Tool. Based on our established energy barrier and toxicity criteria, we identified 4 

improved soman simulants and 3 improved sarin simulants. The improved simulants do not all 

have a similar molecular structure as their corresponding nerve agents, but it is evident that 

molecules with F– and Cl– leaving groups are generally better reactivity simulants. Although there 

is an overlap between top soman and sarin simulants, it is important to recognize that there is no 

single best simulant for all types of nerve agents. Many common simulants like DMMP showed 

large energy barrier deviations from the agents, serving as a caution against selecting simulants 

based on literature precedent alone. 

Overall, we highlighted 5 unique molecules that have low estimated toxicities and are 

predicted to have nearly identical rate-determining hydrolysis reaction barriers to actual nerve 

agents. Our screening aims to narrow down the search space for potential simulants and to aid 

researchers in accurately and safely studying these reactions. If our simulant predictions are proven 

reliable, this could allow researchers to confidently predict kinetic degradation rates for promising 
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catalyst materials, potentially accelerating research in this field and improving overall lab safety. 

When translating our results for potential experimental validation, it is important to remember that, 

just as the choice of simulant depends on the desired application, it also heavily depends on the 

method of degradation. For example, the choice of solvent (water, methanol, etc.), catalyst identity 

(MOF, metal oxide, polyoxometalate, etc.), and the active site environment (elements present, 

steric interactions, etc.) are all important factors that may affect how a simulant degrades relative 

to actual nerve agents. Further experimental testing of the suggested simulants, in terms of toxicity, 

is also warranted if they are to be used in an academic environment. While validation with actual 

nerve agents is still necessary, using simulants with nearly identical reaction barriers will help to 

narrow down promising catalyst materials, as opposed to simply proving that a material is active 

towards organophosphate degradation without a true indicator of exactly how active. We believe 

that our determination of highly predictive and less toxic nerve agent simulants will be valuable 

for the broader scientific community pursuing the challenge of destroying chemical warfare agents. 

To achieve an even more comprehensive understanding of the fundamental chemistry 

underlying organophosphate hydrolysis mechanisms, we employed quantitative structure-activity 

relationship modeling. Twelve molecular descriptors, obtained from quantum chemical 

calculations, were chosen as potentially relevant parameters for predicting the free energy barriers 

for these reactions. From our statistical analysis, we concluded that the most significant 

uniparametric descriptors for describing the alkaline hydrolysis of organophosphates are conjugate 

acid pKa of the leaving group, charge on the phosphorus atom, P=O bond order, the Fukui index 

for nucleophilic attack on the phosphorus atom, and molecular volume. Weakly basic leaving 

groups, lower charges on P, higher P=O bond orders, more reactive phosphorus centers, and 

smaller molecules all correlate with lower free energy barriers. We then built multi-parametric 
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QSAR models using stepwise multiple linear regression, highlighting that single descriptors are 

not sufficient to describe such a heterogeneous dataset. To determine the predictive capacity of 

our models, we split the molecules into training and test sets using three different algorithms and 

performed statistical validations. Each dataset division algorithm was run 100 times, and we 

observed that simple random selection was sufficient for achieving acceptable QSAR model 

statistics. We identified the optimal model as the one that had the lowest root mean square error in 

prediction, which yielded a model that showed excellent predictive capacity, in terms of both 

quantitative and ranking accuracy, for determining free energy barriers. Since our model was 

developed using sarin and soman simulant data, we further tested its robustness by predicting 

barriers for 3 external set nerve agents (cyclosarin, tabun, and VX), whose structures were not 

involved in building the model. Through the assessment of its applicability domain using the 

leverage-based method, we showed that the optimal predictive QSAR model could reliably predict 

energetics for other organophosphate classes, even tabun and VX which contain leaving groups 

not included in the training or test sets. This implies that our model can be used to make reasonable 

predictions for organophosphates with other novel leaving groups. 

The prediction of free energy barriers using DFT-calculated molecular descriptors is 

relatively simple and computationally cheap. Thus, our QSAR models generated using these 

descriptors can be utilized to predict alkaline organophosphate hydrolysis barriers without having 

to perform relatively expensive transition state calculations or dangerous experiments. In addition 

to predicting free energy barriers for uncatalyzed reactions, the molecular descriptors could 

potentially be used in new QSAR models for other applications. For instance, different response 

variables such as binding energies could be implemented to make predictions for uptake in porous 

materials155 or for sensing and detection.  
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Chapter 3: Insights into Catalytic Hydrolysis of Organophosphate Warfare Agents by 

Metal–Organic Framework NU-1000 

 

This chapter is a modified version of a published manuscript: Chen, H.; Liao, P.; Mendonca, M. 

L.; Snurr, R. Q. J. Phys. Chem. C 2018, 122, 12362–12368. Prof. Peilin Liao started this project 

and performed initial calculations before starting a faculty position at Purdue University. Dr. 

Haoyuan Chen and I finished the calculations, analyzed the data, and wrote the manuscript 

together.  

 

3.1 Introduction 

Chemical warfare agents (CWAs) were first used on a large scale in World War I but continue to 

be a major threat to the health and lives of many people in the world. CWAs that contain phosphate 

ester groups, called nerve agents, are extremely toxic because they can rapidly inactivate 

acetylcholinesterase, which is a key enzyme for nerve function.1,156,157 Efficient destruction of 

phosphate CWAs has therefore drawn significant interest in the chemistry community. Although 

there are enzymes such as phosphotriesterase156,158–160 that can break down phosphate ester bonds 

rapidly via catalyzed hydrolysis, the large-scale use of enzymes in nerve agent destruction is 

limited by the restrictive conditions under which the enzymes are active. Hence, solid materials 

that are more robust under different conditions have been applied to the destruction of CWAs, 

including heterogeneous catalysts such as zeolites,161 polyoxometalates,93,162,163 and metal–organic 

frameworks (MOFs).1,21,25,57,62,141 In particular, MOFs have drawn significant attention because of 

their amenability to modular design and synthesis, which opens up the potential to catalytically 

decompose a broad spectrum of CWAs and improve the catalytic efficiency via chemical 
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modification.1,57,62,66,164–167 Among them, zirconium-based MOFs have also been shown to possess 

high thermal (up to 500 °C) and chemical (pH 1–12) stabilities because of the strong Zr–O bonds 

in the nodes, which make them promising candidates for catalysis.47,66 Further improvement of 

MOF catalysts can benefit from the knowledge of enzyme catalysis mechanisms,164,165,168 as has 

already been demonstrated in the design of MOFs for CWA destruction to date.25,169 

 
 

Figure 3.1. Chemical structures of two G-series nerve agents and a simulant that have been studied for catalytic 
hydrolysis on Zr-based MOFs. 
 

In addition to experimental studies, theoretical calculations have also been used to study 

the catalytic destruction of nerve agents and simulants in MOFs with the goal of providing insights 

at the atomistic level and guiding the design of new materials with improved catalytic 

properties.1,51,57–59 For example, Troya reported a gas-phase mechanistic study of the hydrolysis of 

the G-series nerve agent Sarin (GB, propan-2-yl methylphosphonofluoridate) and the simulant 

dimethyl methylphosphate on zirconium-based MOFs UiO-66 and MOF-808.57–59 Mondloch et al. 

studied another Zr-based MOF NU-1000 both experimentally and computationally. In their work, 

dimethyl 4-nitrophenylphosphate (DMNP or methyl-paraoxon) was used as a simulant to mimic 

real nerve agents such as Soman (O-pinacolyl methylphosphonofluoridate, also known as GD, see 

Figure 3.1).1 The use of simulants with similar structures but much lower toxicities than CWAs 

allows more comprehensive experiments to be performed in university laboratories. More recently, 

Islamoglu et al. performed calculations to investigate the effect of amino-functionalized linkers on 

UiO-66-catalyzed DMNP hydrolysis.51 
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In the present work, we aim to gain deeper insights into the phosphate ester hydrolysis 

reaction catalyzed by NU-1000 using density functional theory (DFT) calculations. In the previous 

work by Mondloch et al., the binding between the simulant and the MOF was studied, but the 

reaction free energy barrier and the complete reaction pathway were not investigated. Here, we 

map out the entire catalytic cycle of NU-1000-catalyzed hydrolysis of the simulant DMNP and 

calculate the free energy barrier. Detailed comparisons between the uncatalyzed and catalyzed 

transition states (TSs) are performed to shed light on the origin of the catalytic effect, revealing a 

resemblance to enzyme catalysis in terms of mechanistic fingerprints. The effects of temperature-

induced node dehydration and distortion on catalytic efficiency are also discussed, along with a 

comparison to previous experimental kinetics data. 

3.2 Computational Details 

All electronic structure calculations were performed using the Gaussian 09 package (revision 

D.01).109 The cluster used for representing Zr-based NU-1000 was taken from Mondloch et al.,1 

which corresponds to the mixed-staggered proton topology.48 The bottom four benzene linkers 

were replaced by H atoms to speed up the calculations (see Figure B.1 in Appendix B for the 

geometry of the simplified cluster). Because those benzene linkers are far away from the reactive 

site and do not interact directly with the reactant, this simplification should have a minimal effect 

on the reaction on the other side of the node. The H atoms farthest from the Zr node in each benzene 

ring of the linkers were held fixed to mimic the constraints imposed by the surrounding MOF 

structure, whereas the rest of the benzene atoms were allowed to relax. The reactive species – 

including the DMNP molecule, the attacking hydroxide from solution, and nearby node OH groups 

– were allowed to relax, whereas the remaining atoms were held fixed. The atomic coordinates of 
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the distorted node were obtained from Platero-Prats et al.170 (see Figure B.1 for the geometry of 

the simplified cluster). 

Geometry optimizations were performed for all species using DFT with the B3LYP 

functional,72,73 and the DFT-D3 dispersion correction85 with the Becke–Johnson damping 

function86,87 was applied for single-point energy calculations. The 6-31+G** basis set was used 

for the reactive species (defined above), whereas the 6-31G* basis set was used for the rest of the 

atoms in the node. The LANL2DZ77,78,171 basis sets with effective core potentials were applied for 

Zr. Several other methods were tested on the uncatalyzed hydrolysis reaction of DMNP to explore 

the effect of level of theory on the energy barrier. The M06 and M06-2X functionals,110 second-

order Møller–Plesset theory (MP2),111 Hartree–Fock method, and the modified complete basis set 

method (CBS-QB3)112,113 were tested and compared to the available experimental data (see Table 

B.1). The polarizable continuum model81,114 with default atomic cavity radii was used to model 

solvation effects implicitly. Harmonic vibrational analyses were performed to verify the nature of 

all stationary points and to calculate the thermochemical properties at standard conditions (298.15 

K, 1 atm). Single-point energy calculations were also performed to refine the energies of all 

species, in which the 6-31G* and 6-31+G** basis sets were replaced by a larger 6-311++G** basis 

set. 

3.3 Results and Discussion 

3.3.1 Uncatalyzed Hydrolysis of DMNP 

To investigate the catalytic effects of NU-1000 on DMNP hydrolysis, we first studied the baseline 

reaction, which is uncatalyzed hydrolysis of DMNP in aqueous solution. Phosphate ester 

hydrolysis reactions may have different mechanistic scenarios depending on various factors 
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including the pH.124,172–174 Here, because the corresponding experiments1 were performed at pH = 

10, we focused on the alkaline hydrolysis mechanism where an OH− anion acts as the nucleophile. 

 
 

Figure 3.2. Illustration of the uncatalyzed alkaline hydrolysis mechanism of DMNP. Optimized TS structure and 
key bond lengths (in Å) are also shown. 
 

As shown in Figure 3.2, the reaction is a single-step SN2 nucleophilic substitution in which 

the TS mainly involves attack of the nucleophile but not the departure of the leaving group (also 

referred to as an “early TS”). This is consistent with previously reported calculations on similar 

systems.124,125 The free energy barrier using B3LYP-D3(BJ)/6-311++G**//B3LYP/6-31+G** is 

55 kJ/mol, which is in good agreement with the high-level CBS-QB3 results presented in Table 

B.1. The D3(BJ) dispersion correction is used for all calculations because the adsorbate has 

significant dispersion interactions with the MOF. A comparison of the enthalpic and free energy 

barriers across an extended set of methods is provided in Table B.1. 

3.3.2 Catalytic Effects of NU-1000 

In the previous work by Mondloch et al.,1 the binding mode between DMNP and NU-1000 in the 

reactant state (RS) has been characterized by DFT calculations. Here, we also located the TS 

structure of the reaction and mapped out the complete reaction pathway, which is shown in Figure 

3.3. First, the nonbridging phosphoryl oxygen atom in DMNP (O=P) forms a strong interaction 

with a Zr atom that has an open coordination site on the dehydrated node, as shown in the RS in 

Figure 3.4. Note that in the regular form of NU-1000, the coordination of that Zr atom is saturated 
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by a water molecule. We found that the creation of the open site through dehydration, which is 

essential for the catalysis, requires approximately 35 kJ/mol of energy (Figure 3.5). This node 

topology of partially dehydrated NU-1000 has also been confirmed by experimental IR 

spectroscopy and DFT calculations in previous work.175 

 
 

Figure 3.3. The catalytic cycle of DMNP hydrolysis on a NU-1000 node. 
 

Then, similar to uncatalyzed alkaline hydrolysis, an OH− anion from the solution attacks 

the phosphorous atom in a concerted mechanism, where only one TS is involved. This stands in 

contrast to the stepwise multi-TS mechanism observed for Sarin hydrolysis.57 Upon desorption of 

the product, the catalytic site is regenerated, completing the cycle. 
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Figure 3.4. Schematic drawing (bottom) and optimized RS (node–DMNP complex) and TS structures (top) of 
the DMNP hydrolysis reaction catalyzed by the Zr6 node in NU-1000. Key bond lengths are expressed in Å. The 
organic linker molecules in NU-1000 are also included in the computational model but omitted in the images for 
clarity. 
 

A noticeable difference between the TS for the uncatalyzed reaction and the TS on the Zr 

node is the presence of a hydrogen bond between the leaving group oxygen and an OH group on 

the node (shown at 2.01 Å in Figure 3.4). This resembles a common theme in enzyme-catalyzed 

phosphate ester hydrolysis and phosphoryl transfer reactions, which is the stabilization of the 

negative charges that are building up on leaving group oxygen atoms to facilitate the cleavage of 

the P–O bond.174,176–181 The TS structure here, compared to the TS in the uncatalyzed reaction, is 

even “earlier” (phosphorous is farther away from the nucleophile and closer to the leaving group) 

because the hydrogen bond effectively increases the leaving group ability. A trend has been 

demonstrated for similar types of reactions that the better the leaving group is, the “earlier” the 

rate-limiting TS is and the lower the reaction barrier.124,182–185 Indeed, we also obtain a lower 

barrier for the MOF-catalyzed reaction than the uncatalyzed one. As shown in Figure 3.5, the 

barrier of the MOF-catalyzed reaction (defined as the free energy difference between TS and node–
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DMNP complex) is 12 kJ/mol lower than the uncatalyzed one (54.7 vs 43.0 kJ/mol). This 43 

kJ/mol DMNP hydrolysis barrier for NU-1000 compares well with the 47.3 kJ/mol barrier for UiO-

66 calculated in a recent study using the M06-L functional and a continuum-cluster solvation 

scheme.51 Also, note that the barrier for product desorption (defined as the free energy difference 

between separated products and node–phosphate complex) is only 10.5 kJ/mol, which suggests no 

product inhibition effects in the aqueous solution degradation reaction. 

 
 

Figure 3.5. Comparison of the reaction free energy profiles of uncatalyzed (black), regular NU-1000 node-
catalyzed (blue), and distorted NU-1000 node-catalyzed (red) DMNP hydrolysis reactions. 
 

We further examined the catalytic effect of the Zr node by analyzing the electronic structure 

of key species using electron population analysis with the natural bond orbital (NBO) 

method.119,186 We find that in the catalyzed TS, the phosphorous atom possesses more positive 

charge (2.65 vs 2.54) than in the uncatalyzed TS, as shown in Figure 3.6, which makes it more 

readily attacked by the negatively charged OH− nucleophile. The extra amount of positive charge 

can be traced to the electron-withdrawing Zr atom, which exhibits a lower partial charge of 1.95 

in the TS with DMNP compared to a partial charge of 2.29 in the metal node alone (Figure 3.6). 
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Figure 3.6. Partial charges on key atoms at the TS on the NU-1000 node (light grey bars) and at the uncatalyzed 
TS and metal node alone (dark grey bars), from NBO analysis. 
 

The synergistic catalytic effect observed here, which involves a positively charged species 

acting as a Lewis acid to facilitate the nucleophilic attack together with another species enhancing 

the leaving group via electrostatics, is a common motif in the catalysis of phosphate ester 

hydrolysis and phosphoryl transfer reactions by enzymes,174,178,179,181 synthetic dinuclear metal 

complexes,187–190 and even stand-alone metal ions in solution.191,192 Recognizing and building upon 

this concept could be useful in the development of new MOFs with even faster kinetics for 

catalyzing phosphate ester hydrolysis. 

3.3.3 Effect of Node Distortion 

Recently, Chapman and coworkers observed that the Zr6 nodes in NU-1000 undergo structural 

distortion under high-temperature dehydration conditions (>130 °C) and remain in the distorted 

form for days to weeks upon return to ambient conditions.170 Upon distortion, the distribution of 

Zr–Zr bonds changes from a single distance in the originally symmetric node to two different 

distances in the distorted structure. In spite of this, the long-range order in the crystal was 

maintained, and no conventional defects (e.g., missing linkers or nodes) were formed. The 
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transition was confirmed by DFT calculations and ab initio molecular dynamics (AIMD) 

simulations in their study. In the simulant hydrolysis experiments carried out by Mondloch et al.,1 

faster reaction kinetics were observed if the NU-1000 material was thermally treated at 300 °C 

before running the reaction at room temperature. Therefore, we were interested in investigating 

the reaction mechanism on the distorted NU-1000 node to determine if the temperature-induced 

node distortion enhances DMNP hydrolysis compared to the regular node, as seen in the 

experiment. 

Starting from the optimized node structure determined by DFT and AIMD simulations in 

ref 170, we mapped out the reaction pathway on the distorted node. As shown in Figure 3.5, the 

reaction pathway is similar to the regular node, except that there is no dehydration step because 

the node in the starting structure does not have any coordinating water molecules. Notably, one of 

the core oxygen atoms is separated from the distorted core and leaves a vacancy in the node (see 

Figure B.1 for the geometry of the simplified cluster), which further reduces the coordination on 

the Zr atoms at the reactive site. DMNP binds to the distorted node in a different fashion, where 

the nitrobenzene ring is not situated between the MOF linkers as it is in the regular node–DMNP 

complex (see Figure B.2 for comparison). The dominant interactions on the distorted node are van 

der Waals attractions between the MOF linkers and the methoxy groups of DMNP, compared to 

slight π–π stacking between the nitrobenzene ring and linkers on the regular node. The binding 

free energy of a water molecule on the distorted node is +29 kJ/mol, which suggests that the 

distorted node is more favorable in its completely dehydrated form and that DMNP will not have 

to compete with water to bind to Zr. Because the distorted node is fully dehydrated, there is no 

longer a hydrogen-bonding interaction between a bridging node hydroxide and the leaving group 
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oxygen as in the TS structure on the regular node (Figure 3.7). Nevertheless, the 40 kJ/mol free 

energy barrier from RS to TS is lower than the 43 kJ/mol on the regular node (Figure 3.5). 

 
 

Figure 3.7. Schematic drawing (bottom) and optimized RS (node–DMNP complex) and TS structures (top) of 
the DMNP hydrolysis reaction catalyzed by the distorted Zr6 node in NU-1000. Key bond lengths are expressed 
in Å. The organic linker molecules in NU-1000 are also included in the computational model but omitted in the 
images for clarity. 
 

If we neglect the DFT-D3(BJ) dispersion correction, the barrier on the distorted node is 

calculated to be higher than that on the regular node (see Figure B.3 for reaction free energy 

profiles without dispersion included). Specifically, the inclusion of dispersion corrections results 

in a 37.4% reduction in barrier from RS to TS for the distorted node, compared to a 17.8% 

reduction for the regular node. This suggests that the distorted node has stronger dispersion 

interactions with the DMNP molecule, presumably because of the different binding geometry, that 

makes the hydrolysis reaction more favorable than on the regular node. The absence of a water-

exchange step and the lower barrier on the distorted node suggest that the rate enhancement 

observed in the experiment upon high-temperature treatment of NU-1000 is due to both 

dehydration and node distortion. 
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Figure 3.8. Fitting of experimental kinetics data from Mondloch et al.1 of the catalyzed and uncatalyzed DMNP 
hydrolysis reactions. Adapted from ref 1 with permission from Springer Nature: Nature Materials. Copyright 
2015. 
 

By fitting the experimental kinetics data from ref 1, we extrapolated the rate enhancements 

of DMNP hydrolysis catalyzed by regular and “dehydrated” NU-1000 to be 77-fold and 475-fold, 

respectively, compared to the uncatalyzed reaction (Figure 3.8). From the calculated barrier 

heights (54.7 kJ/mol for uncatalyzed, 43.0 kJ/mol for regular node-catalyzed, and 40.0 kJ/mol for 

distorted node-catalyzed), we estimated the DFT-predicted rate enhancements using the equation 

krel = 𝑒,∆∆H‡/JF. Here, ΔΔ𝐺‡ represents the difference in the TS free energy barrier between the 

respective catalyzed and uncatalyzed reactions. Our results predict that the regular node and the 

distorted node will have a 112-fold and 382-fold rate increase over the uncatalyzed reaction, 

respectively, which is in good agreement with the experimental data. This suggests that the 

catalytic DMNP hydrolysis reaction under standard experimental conditions occurs through the 

regular NU-1000 node pathway, and the reaction under dehydrated conditions corresponds to the 



 83 
distorted NU-1000 node pathway. Thus, these two computational node structures are reasonable 

models for studying catalytic reactions on NU-1000 under varying conditions. 

3.4 Conclusions 

In this work, we performed a mechanistic study on the hydrolysis of the CWA simulant DMNP 

catalyzed by the Zr-based MOF NU-1000 using DFT calculations. Computed barrier heights of 

the uncatalyzed and catalyzed reactions are in line with the experimental kinetics data. The origin 

of the catalytic effect was revealed by the analysis of the TS structures, in which a Zr atom interacts 

with the phosphate ester center and activates the phosphorous, whereas an OH group on the node 

enhances the leaving group on DMNP. This dual-stabilization scheme coincides with a common 

theme in enzymes that catalyze similar types of reactions. Investigation of the distorted node-

catalyzed reaction suggests that dehydrated NU-1000 stays in the distorted form during catalysis, 

which supports previous experimental results. The absence of a water-exchange step and the lower 

barrier on the distorted node suggest that the rate enhancement observed in the experiment upon 

high-temperature treatment of NU-1000 is due to both dehydration and node distortion. The 

relatively small barriers for product desorption from the regular and distorted nodes suggest no 

product inhibition effects in the aqueous solution degradation reactions. The results and analyses 

presented here shed light on the mechanism of this catalytic reaction, and we hope that these 

insights may lead to the design of MOFs with greater catalytic activity for the destruction of 

dangerous organophosphate CWAs. 
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Chapter 4: Exploring the Effects of Node Topology, Connectivity, and Metal Identity on 

the Binding of Nerve Agents and Their Hydrolysis Products in Metal–Organic 

Frameworks 

 

This chapter is the preliminary version of a manuscript: Mendonca, M. L.; Ray, D.; Cramer, C. J.; 

Snurr, R. Q. in preparation. Debmalya Ray (University of Minnesota) performed all periodic DFT 

calculations and performed cluster model DFT calculations for Zr-mono-defect UiO-66, Zr-

bi(cis)-defect UiO-66, and M-MOF-808 (M = Zr, Hf, Ce, Th). I performed cluster model DFT 

calculations for Zr-NU-1000 (large pore), Zr-NU-1000 (c pore), and M-bi(trans)-defect UiO-66 

(M = Zr, Hf, Ce, Th) and I performed all calculations required for QSAR model development and 

statistical testing. Additionally, I analyzed the data and wrote the manuscript. 

 

4.1 Introduction 

Despite being banned by the Chemical Weapons Convention,3 chemical warfare agents (CWAs) 

have been used on both civilians and military personnel within the past few years according to 

various reports.193,194 Nerve agents are an especially dangerous class of CWAs and can be divided 

into three main categories: G-series agents,195 including tabun (GA), sarin (GB), and soman (GD); 

V-series agents,195 such as VX; and Novichok agents,10,196 such as A-230 and A-232 (see Figure 

4.1a for structures). In the human body, organophosphate-based nerve agents inhibit 

acetylcholinesterase, the enzyme that controls the decomposition of the neurotransmitter 

acetylcholine. As a result, acetylcholine is not properly broken down, leading to continuous 

stimulation of muscle cells, asphyxiation, and possibly death.197 Unfortunately, the time frame to 

apply effective treatment after exposure to CWAs can be as short as minutes.14 Thus, the most 
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important measures to protect against nerve agents are through capture and/or degradation to 

nontoxic products before the chemicals reach their biological targets. 

 
 

Figure 4.1. (a) Chemical structures of the 24 molecules explored as adsorbates in our study, including 6 nerve agents, 
a nerve agent simulant (DMMP), and their hydrolysis products. Structures in red, green, and black correspond to 
neutral molecules, bidentate anions, and monodentate anions, respectively. The numbering of molecules is used for 
simpler reference throughout the text. (b) Cluster model representations of the fully hydrated states of the 6 MOF node 
sites that we considered as binding sites for the 24 molecules. Dark gray, white, and red spheres represent C, H, and 
O atoms, respectively. The spheres below each node represent the different metals (M = Zr, Hf, Ce, Th) considered 
for that particular node. Dashed trapezoids are included for NU-1000 (large pore) and NU-1000 (c pore) to clarify 
which binding site was considered for these nodes. 
 

In particular, metal–organic frameworks (MOFs), which are highly porous crystalline 

materials composed of metal nodes connected by organic linkers, have shown promise for efficient 

nerve agent adsorption and detoxification.66 MOFs are attractive candidates for nerve agent 

degradation because of their high concentration of active sites and their large surface areas. 

Perhaps more importantly, MOFs also have much greater chemical tunability compared to 
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traditional filter materials like zeolites. Due to the substantial diversity of possible nodes, linkers, 

and topology combinations, MOFs can be rationally designed and continuously improved for 

chosen applications. The most common method of MOF-catalyzed nerve agent decomposition is 

through hydrolysis, with a nucleophile such as water or hydroxide attacking the agent phosphorus 

atom, resulting in the elimination of toxic leaving groups (see Scheme 4.1a). 

Zr(IV)-based MOFs are the most investigated class of MOFs for nerve agent hydrolysis in 

part because of the high chemical and thermal stability afforded by the exceptionally strong 

Zr(IV)–O node-linker bonds. The impressive catalytic ability of Zr-MOFs can be attributed to the 

high concentration of strongly Lewis-acidic Zr(IV) metal centers. The connectivity of Zr6O8-

cluster nodes (hereafter denoted as Zr6 nodes) can be systematically tuned by using different 

organic linkers, thereby altering the number of terminal node water and hydroxyl groups. Previous 

studies have shown that lower Zr6 node connectivity, which in turn yields larger numbers of 

potential binding and catalytic active sites, is directly correlated with accelerated hydrolysis 

rates.22 One potential explanation is that the strength of the terminal Zr–OH2 bonds get 

progressively weaker as the number of supporting carboxylate linkers decreases, and this water 

displacement was predicted to be the rate-limiting step for solution-phase sarin hydrolysis by 

several Zr-MOFs.198 The modification of node connectivity can also yield different local steric 

environments, resulting in varying degrees of dispersion interactions between MOF linkers and 

the bound nerve agents, which may affect reaction energetics.139 Additionally, the number and 

spatial orientation of missing linker defect sites, which generate catalytically active open metal 

sites, can strongly impact the reactivity of different MOFs for nerve agent hydrolysis.199 

In addition to linker modification, there is potential to further improve the catalytic 

efficiency of Zr6 MOFs by replacing Zr(IV) with other M(IV) cations possessing different 
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chemical properties (e.g., Lewis acid strength, electronegativity, etc.). For example, recent 

experimental and computational results showed that replacing Zr(IV) by Ce(IV) in UiO-66 leads 

to faster rates for the hydrolysis of nerve agents and simulants.199,200 Moreover, there are numerous 

reports on the feasibility of synthesizing different isostructural series of microporous and 

mesoporous MOFs based on hexanuclear Zr(IV), Hf(IV), Ce(IV), and Th(IV) oxide cluster nodes, 

where the node metal identity is systematically changed while keeping the environment 

surrounding each active site constant.170,201–203 The fact that the metal identity and connectivity of 

M6 nodes can be readily tuned offers extensive opportunities to analyze structure-activity 

relationship trends. However, despite the steadily growing number of isostructural M(IV)-MOFs 

(UiO-66, MOF-808, NU-1000, NU-1008, and NU-1200 to name a few), only Ce-UiO-66 has been 

experimentally tested and compared to its Zr analogue for organophosphate hydrolysis to 

date.200,204 

Thus, one major goal of the present work is to computationally explore the MOF 

topological/chemical space and to use the insights gained to guide future experimental testing. 

Herein, we use density functional theory (DFT) to perform a thorough analysis of the binding of 

multiple nerve agents and their corresponding hydrolysis products to M6 nodes with varying metal 

identity and node connectivity. More explicitly, we investigate 24 molecules as adsorbates in our 

study, including 6 nerve agents (GA, GB, GD, VX, A-230, and A-232), a nerve agent simulant 

(dimethyl methylphosphonate (DMMP)), and 17 possible hydrolysis by-products including 

bidentate anions, monodentate anions, and neutral alcohols/thiols (Figure 4.1a). As adsorption sites 

for the molecules, we consider 12 different MOF node sites including Zr-mono-defect UiO-66, M-

bi(trans)-defect UiO-66 (M = Zr, Hf, Ce, Th), Zr-bi(cis)-defect UiO-66, Zr-NU-1000 (large pore), 

Zr-NU-1000 (c pore), and M-MOF-808 (M = Zr, Hf, Ce, Th) (Figure 4.1b). For UiO-66, the 
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terminology “mono-defect” refers to UiO-66-11 (i.e., one missing linker) and “bi-defect” refers to 

UiO-66-10 (i.e., two missing linkers) where we consider both “trans” and “cis” isomers, denoting 

defect sites on opposite and adjacent faces of a M6 node, respectively. We consider two distinct 

binding sites for NU-1000 where the open node face is either directed into the 31 Å hexagonal 

channel (“large pore”) or the 8 Å pore sited between nodes along the crystallographic c axis (“c 

pore”) because these different pore environments were previously shown to affect activation 

energies for sarin hydrolysis.198 Further, we note that there is often a mixed valence of Ce(III) and 

Ce(IV) in Ce-based MOFs204–206 but, for consistency and simpler comparison, we only model M6 

nodes where each metal has a +4 formal oxidation state. 

By examining such a wide range of MOF-adsorbate combinations, we aim to gain a 

comprehensive perspective on how node topology, connectivity, and metal identity affect the 

binding energies of nerve agents and their hydrolysis products. At this stage of exploration, it is 

more computationally practical to calculate binding energies instead of full mechanistic pathways. 

Nonetheless, the displacement of a terminal node water, the subsequent adsorption of nerve agent, 

and the eventual desorption of product are all critical, and potentially rate-limiting, steps in 

hydrolytic degradation under various reaction conditions.57,59,198,207–209 Thus, the computation of 

binding energies for key reaction species (i.e., water, agent, and products) may serve as a reliable 

method for predicting promising MOF catalysts, as suggested by the agreement between our 

results herein and observed experimental trends. Also, by exploring such a chemically diverse set 

of organophosphate molecules, we highlight the important result that no single metal or node 

topology is optimal for all possible nerve agents, in agreement with previous experiments that 

showed varying reactivity trends depending on the particular agent and MOF considered.210 
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Finally, using the large amount of data generated from this study, we also derive 

quantitative structure-activity relationship (QSAR) models based on intuitive molecular and node 

descriptors. The objective of this analysis is twofold: first, by performing simple linear and 

multiple linear regression on our entire dataset, we aim to understand the most important individual 

descriptors for describing the binding energy of both nerve agents and their hydrolysis products to 

M6 nodes. Second, by splitting our data into training and test sets and performing a thorough 

statistical analysis, we aim to develop models capable of making quantitively accurate predictions 

for the binding energies of diverse organophosphate molecules in a wide variety of M(IV)-MOFs. 

4.2 Computational Details 

4.2.1 Periodic Calculations 

Spin-polarized periodic DFT calculations were performed to optimize the unit cells of Zr-mono-

defect UiO-66, M-bi(trans)-defect UiO-66 (M = Zr, Hf, Ce, Th), Zr-bi(cis)-defect UiO-66, Zr-NU-

1000, and M-MOF-808 (M = Zr, Hf, Ce, Th) using the Vienna ab initio Simulation Package 

(VASP)211–214 and projector-augmented wave potentials.215,216 We used the PBE functional217,218 

along with Grimme’s D3 dispersion correction85 and Becke-Johnson damping.87 A plane-wave 

kinetic energy cutoff of 520 eV and Γ-point sampling of the Brillouin zone was used for structural 

optimizations. Energy convergence criteria of 10–5 eV and force convergence criteria of 0.02 eV/Å 

were used for all periodic calculations. 

4.2.2 Cluster Model Calculations 

Cluster models, used to represent the M6 nodes, were cut from the PBE-D3(BJ) optimized periodic 

unit cells of the various MOFs. To obtain these cluster models, the organic linkers around each 

metal node were truncated to benzoate groups (Figure 4.1b). We used benzoate capping groups, 

as opposed to formate, because this cluster model size showed improved fidelity with fully periodic 
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calculations in previous studies.198,207 For the NU-1000 and MOF-808 nodes, we used the mixed-

staggered proton topologies that exhibit alternating –OH2 and –OH groups capping adjacent metal 

sites, as this was previously determined to be the most stable tautomer for these MOF nodes.48,198 

All electronic structure calculations for the cluster models were performed using the 

Gaussian 09 package.109 Geometry optimizations and frequency calculations were performed in 

the gas phase for all species using DFT with the M06-L functional.75 The carbon atoms of the 

benzoate linker groups were held fixed to mimic the constrains imposed by the surrounding MOF 

structure, whereas all remaining atoms were allowed to relax. An automatic density-fitting set 

generated by Gaussian 09 was employed to reduce the computational cost. The def2-SVP basis 

set76,219 was used for H, C, N, O, F, P, and S atoms. The SDD basis set and its associated effective 

core potential (ECP) was used for Zr, Hf, Ce, and Th atoms of the nodes.79,80 The grid used for 

numerical integration in DFT was set to “ultrafine,” i.e., a pruned grid of 99 radial shells and 590 

angular points per shell. 

The natures of all stationary points were determined by calculation of analytic vibrational 

frequencies. All minimized structures were characterized by zero imaginary frequencies. These 

frequencies were also used to compute molecular partition functions (at 298.15 K and 1 atm) using 

the conventional particle in a box, rigid rotor, and quantum mechanical harmonic oscillator 

approximations, except that all vibrational frequencies below 50 cm–1 were replaced with values 

of 50 cm–1 (the quasi-harmonic oscillator approximation).70 Zero-point vibrational energies and 

thermal contributions to enthalpies and free energies were determined from these partition 

functions. 

Electronic energies were further refined by performing single point calculations with the 

M06-2X meta-GGA hybrid density functional74,110 on the gas phase optimized geometries, again 



 91 
using the def2-SVP basis set for main group atoms and the SDD basis set with associated ECP for 

metal atoms. These single point calculations were performed using the SMD continuum solvation 

model82 with parameters for water (𝜀 = 78.355). Default convergence criteria for geometry 

optimizations and single point energy calculations were used. All reported free energies and 

enthalpies were computed by combining M06-2X(SMD) single point energies with 

thermochemical contributions obtained at the M06-L(gas phase) level. The energy values in the 

article correspond to standard-state Gibbs free energies, and self-consistent field (SCF) energies 

and enthalpies are provided in Appendix C along with Cartesian coordinates for all optimized 

structures. 

4.2.3 QSAR Modeling Details 

Molecular orbital parameters, used as several of the descriptors for building QSAR models, were 

calculated with the natural bond orbital (NBO) method119 in Gaussian 09. All calculations required 

for QSAR model development and statistical testing were performed in MATLAB using built-in 

functions and a custom script to execute the leave-one-out cross-validation procedure. 

4.3 Results and Discussion 

4.3.1 Rationale for Molecules Chosen for Study 

To explain why we studied the binding energy of both neutral and anionic species, we first discuss 

a hypothetical organophosphate hydrolysis pathway on M(IV)-MOF nodes, using GB (molecule 

6) as an example (Scheme 4.1a). In their fully hydrated state (Figure 4.1b), all nodes that we 

considered contain at least one active (binding) site where adjacent metal atoms display capping –

OH2 and –OH groups. For catalytic hydrolysis to occur at an active site, the capping –OH2 group 

must first be displaced to generate an open metal site where the nerve agent GB can bind. After 

binding to the open M atom, nucleophilic attack occurs on the P atom of GB, followed by the 
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elimination of a fluoride anion (10) into solution. We note that Scheme 4.1a depicts a simplified 

hydrolysis pathway, where each reaction arrow titled “hydrolysis” actually denotes several 

elementary steps (e.g., nucleophilic attack and fluoride elimination). Further, for the purpose of 

exploring the effect of node properties on product inhibition (explained below), we only consider 

the pathway in which the terminal –OH group capping the adjacent M atom acts as the nucleophile 

because this pathway results in hydrolysis products bound in a bidentate mode.57 The product of 

this initial hydrolysis reaction is isopropyl methylphosphonic acid (IMPA, 7), present in its anionic 

form and bound in a bidentate fashion to the node. In the presence of water and a base (required 

to generate hydroxide anions), IMPA could then either be displaced and desorb from the active 

site, remain bound to the node and cause product inhibition, or remain bound and undergo further 

hydrolysis. A subsequent hydrolysis reaction would result in the elimination of isopropanol (8) 

into solution, as all ionizing groups (alcohols and thiols) were treated as neutral molecules in our 

study. The product of this secondary hydrolysis is methylphosphonic acid (MPA, 9), again 

modeled as a bidentate-bound anion. Finally, with the assistance of a hydroxide anion, MPA could 

then either be displaced and desorb from the active site or remain bound to the node, resulting in 

product inhibition. 
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Scheme 4.1. (a) Hypothetical Hydrolysis Pathway for GB (Molecule 6) on M(IV)-MOF Nodes and Chemical 
Equation Used to Calculate Binding Energies for (b) Neutral Molecules, (c) Bidentate Anions, and (d) 
Monodentate Anions 
 

 
 

Overall, the hypothetical pathway depicted in Scheme 4.1a represents a worst-case scenario 

for nerve agent hydrolysis occurring on M6 nodes. More specifically, this particular pathway 

involves both water displacement by a nerve agent, which corresponds to a large free energy 

barrier,198,199,207 and hydrolysis products bound in a bidentate mode, which corresponds to very 

strong binding energies and may cause product inhibition.57,208 We considered this hypothetical, 

extreme case so that we could analyze the effect of node properties on water displacement and 

product inhibition simultaneously, as both may be significant under varying reaction conditions. 

For example, water displacement may be the rate-limiting step for solution-phase reactions where 

nodes are fully hydrated, whereas product desorption/inhibition is more important for reactions 

occurring without a base to regenerate node active sites.46,58,59 From an experimental design 

perspective, it is important to understand these limiting scenarios that may reduce a MOF’s 

catalytic activity. 
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The hypothetical hydrolysis pathways for all nerve agent and simulant molecules we 

studied are given in Figure C.1. For the G-series agents (1, 6, and 11), we considered the most 

likely product molecules based on selectivities observed in previous MOF-catalyzed nerve agent 

hydrolysis experiments and computational mechanistic studies. For example, previous results 

indicate that Zr(IV)-MOFs selectively hydrolyze the P–F bond of GD (11),1,52,210 eliminating 

fluoride and generating node-bound pinacolyl methylphosphonic acid (PMPA, 12). Under our 

assumed framework, further hydrolysis would result in the cleavage of the P–O bond of PMPA (as 

P–C bonds are fairly inert and do not break readily), eliminating pinacolyl alcohol (13) and forming 

node-bound MPA (9). The common product molecules for DMMP (22) are similarly well-

studied58,59 and typically include methanol (24), node-bound methyl methylphosphonic acid 

(MMPA, 23), and node-bound MPA. Conversely, the degradation of VX (14) is slightly more 

complex because it contains two bonds which can potentially be cleaved during initial hydrolysis. 

If its P–O bond is broken, ethanol (3) is eliminated and the highly toxic byproduct EA-2192 (16) 

is formed. Thus, it is preferable to selectively cleave the P–S bond of VX to generate the nontoxic 

products 2-(diisopropylamino)ethanethiol (DESH, 17) and ethyl methylphosphonic acid (EMPA, 

15).21,52 Then, depending on the hydrolysis conditions, both EA-2192 and EMPA could be further 

hydrolyzed to form node-bound MPA. Finally, arguably much less is known about the hydrolysis 

mechanisms of the Novichok agents A-230 (18) and A-232 (20), so we only considered initial 

hydrolysis of their most labile P–F bonds220 to eliminate fluoride and form node-bound bidentate 

anions 19 and 21, respectively. 

4.3.2 Binding Energy Formulas 

Now, we discuss the methods used to calculate binding energies throughout the study. For all nerve 

agent and simulant molecules (1, 6, 11, 14, 18, 20, and 22), we considered the binding geometry 
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in which the organophosphate binds to the node open metal site through a M–O(=P) bond, as this 

is known to be the most favorable binding mode.57,209,221 The most favorable binding mode for all 

alcohol (3, 8, 13, and 24) and thiol (17) product molecules was calculated to be through the M–

OH(R) and M–SH(R) bonds, respectively. In their optimized node-bound structures, the hydrogen 

atom of each alcohol OH group (or thiol SH group) is effectively shared through hydrogen-

bonding with the neighboring terminal node hydroxyl group. The binding free energies (∆𝐺KE'L) 

for these neutral molecules were calculated via 

∆𝐺KE'L = 𝐺'ML(.NMO − 𝐺'ML(,'M8P! − 𝐺NMO                  (4.1) 

where the subscript node+mol denotes the molecule bound to the node, node–noOH2 denotes the 

bare node where the terminal –OH2 group has been removed from the binding site, and mol denotes 

the individual molecule. Scheme 4.1b shows the chemical equation representation for eq 4.1. 

All bidentate anion product molecules (2, 4, 7, 9, 12, 15, 16, 19, 21, and 23) were 

considered to bind to the node in a bridging fashion through a M–O–P–O–M plane to two adjacent 

M atoms at the binding site. The ∆𝐺KE'L for bidentate anions were calculated via 

∆𝐺KE'L = 𝐺'ML(.NMO − 𝐺'ML(,'M8P!,8P − 𝐺NMO         (4.2) 

where the subscript node–noOH2,OH denotes the bare node where the terminal –OH2 and –OH 

groups have been removed from the binding site. Scheme 4.1c shows the chemical equation 

representation for eq 4.2. 

As their name suggests, the binding mode for the two monodentate anion product 

molecules (5 and 10) involved coordination to a single node M atom, where both anions exhibited 

hydrogen-bonding interactions with the neighboring terminal node water. The most favorable 
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binding mode for cyanide (5) was calculated to be through a M–C(≡N) bond, whereas fluoride 

(10) binds through a M–F bond. The ∆𝐺KE'L for monodentate anions were calculated via 

∆𝐺KE'L = 𝐺'ML(.NMO − 𝐺'ML(,'M8P − 𝐺NMO                     (4.3) 

where the subscript node–noOH denotes the bare node where the terminal –OH group has been 

removed from the binding site. Scheme 4.1d shows the chemical equation representation for eq 

4.3. 

Optimized cluster models for the node–noOH2, node–noOH, and node–noOH2,OH bare 

node structures are shown in Figure C.2a–c, using the node of Zr-NU-1000 (large pore) as an 

example. Optimized cluster models that are representative of the general binding modes for node-

bound nerve agent and simulant molecules, alcohol and thiol product molecules, bidentate anion 

products, and monodentate anion products are shown in Figure C.3a–d, again for Zr-NU-1000 

(large pore). 

4.3.3 Effects of Node Topology and Connectivity on Binding Energies for Zr(IV)-MOFs 

First, we discuss the trends observed in binding free energies across the 6 different Zr(IV)-MOF 

node sites (Figure 4.2). The ∆𝐺KE'L values for water (Figure 4.2a) are calculated as –7.9, –28.1, –

29.9, and –40.9 kJ/mol for MOF-808, NU-1000 (large pore), bi(trans)-defect UiO-66, and mono-

defect UiO-66, respectively, where the number of linkers per node is 6, 8, 10, and 11, respectively. 

This trend agrees with previous results showing that the strength of terminal Zr–OH2 bonds get 

progressively stronger as the number of supporting carboxylate linkers increases.198 However, 

bi(cis)-defect UiO-66 (∆𝐺KE'L = –54.5 kJ/mol) and NU-1000 (c pore) (∆𝐺KE'L = –61.1 kJ/mol) 

notably deviate from this trend, implying that the local binding environment is also important. For 

bi-defect UiO-66, this indicates that the relative orientation of the two defect sites has a large 

impact on the node chemistry.199 Similarly, it appears that the pore environment (large vs. c pore) 
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which the open node face of NU-1000 is directed towards is also influential. A more in-depth 

discussion on the variation in properties (e.g., binding site charges, bond lengths, etc.) across the 

different node sites is provided later in the QSAR modeling sections. 

 
 

Figure 4.2. Binding free energies for (a) water, (b) nerve agent and simulant molecules, (c) alcohol and thiol 
hydrolysis product molecules, (d) bidentate anion products, and (e) monodentate anion products bound to 6 different 
Zr(IV)-MOF node sites. 
 

As stated above, we modeled all nerve agent and simulant molecules as binding to node 

open metal sites through a M–O(=P) bond. In this binding geometry, we considered three possible 

orientations for each nerve agent (1, 6, 11, 14, 18, and 20) and two orientations for DMMP (22), 

adopting the nomenclature introduced by Troya.57 Briefly, each orientation is named according to 

the molecule’s R group (e.g., F, CH3, or OiPr for GB) that is approximately collinear with the 
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neighboring terminal node Zr–OH group in the optimized cluster model. An example is shown in 

Figure C.4 for the three orientations of GB bound to Zr-NU-1000 (large pore) along with their 

relative binding free energies. We performed this orientational analysis for every nerve agent and 

simulant molecule for all 6 Zr(IV)-MOF node sites and the results are listed in Table C.1. Notably, 

we observed that the most favorable molecular orientations vary across the different node sites, 

most likely due to slight changes in molecule-linker interactions and hydrogen-bonding with node 

oxo/hydroxyl groups.209 This observation has important implications because the molecular 

orientation may strongly affect hydrolysis reaction barriers.57 Therefore, we recommend a similar 

orientational analysis for all computational mechanistic studies. Only the ∆𝐺KE'L values for the 

most favorable molecular orientations on each node are shown in Figure 4.2b. 

The general trend in binding free energies for the nerve agent and simulant molecules 

(Figure 4.2b) across the Zr(IV)-MOF node sites is MOF-808 < NU-1000 (large pore) < bi(trans)-

defect UiO-66 ≈ mono-defect UiO-66 < bi(cis)-defect UiO-66 < NU-1000 (c pore). When 

examining these molecules as a group, it is challenging to go beyond a qualitative analysis because 

the trends change markedly for each molecule. The only constant across all 7 molecules is that 

NU-1000 (c pore) consistently displays the strongest binding free energies, which could be 

attributed to the relatively small pore size (8 Å) of this binding site resulting in closer proximity 

and increased interactions between the bound molecules and the benzoate linkers. In terms of the 

molecules themselves, the larger molecules (14, 18, and 20) generally show the strongest binding 

free energies (except for VX (14) bound to MOF-808), which may be caused by increased 

dispersion interactions with the linkers surrounding the binding sites.139 To explore this hypothesis, 

we computed dispersion energies for the node-bound molecules using the DFT-D3 correction 

(with zero damping and parameters for the M06-2X functional)85 and we computed solvent-
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accessible surface areas (SAmol), using VMD 1.9.3 (with default probe radius),222 to quantify the 

size of individual molecules. As shown in Figure C.5a, there is a strong linear relationship between 

SAmol and the computed dispersion energies (R2 ≥ 0.97 for each of the 6 Zr(IV)-MOF node sites). 

Further, the node connectivity has a clear influence on dispersion energies, where every molecule 

follows the trend MOF-808 < NU-1000 (large pore) ≈ NU-1000 (c pore) < bi(trans)-defect UiO-

66 ≈ bi(cis)-defect UiO-66 < mono-defect UiO-66. However, when analyzing the effect of 

molecular size on the binding free energies, we found no discernible relationship for any of the 

nodes (R2 ≈ 0, Figure C.5b), indicating that the trends observed in the ∆𝐺KE'L values for the nerve 

agents are fairly complex and cannot be fully explained by dispersion interactions alone. 

The general trend in binding free energies for the alcohols (Figure 4.2c) is essentially the 

same as that for the nerve agent and simulant molecules. In Figure 4.2c, the only thiol (DESH, 17) 

is a clear outlier and exhibits unfavorable (positive) ∆𝐺KE'L values for every Zr(IV)-MOF node 

site except NU-1000 (c pore), which can be explained by the large Zr–SH(R) bond distance (≥ 

2.87 Å) for all nodes, indicating weak physisorption. Additionally, both ethanol (3) and pinacolyl 

alcohol (13) bind unfavorably to MOF-808 and methanol (24) binds unfavorably to NU-1000 

(large pore). The relative binding strengths of the considered alcohol products is important to take 

into account for the possibility of active site poisoning following organophosphate hydrolysis and 

may also be relevant in the context of MOF-based organophosphate degradation in non-aqueous 

environments (e.g., methanol and isopropanol (8)).223,224 

Similar to the nerve agent and simulant molecules, we considered two possible binding 

orientations for each bidentate anion product. Here, each orientation is named according to the 

anion’s R group that is directed towards the bridging node hydroxyl group at the active (binding) 

site. For example, the two orientations modeled for IMPA (7) are termed “CH3–µ3OH” and “OiPr–
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µ3OH,” which are depicted in Figure C.6 for IMPA bound to Zr-NU-1000 (large pore). We 

performed this orientational analysis for every bidentate anion for all Zr(IV)-MOF node sites and 

the results are listed in Table C.2. As before, the most favorable orientations vary across the 

different node sites, most likely due to varying hydrogen-bonding interactions with the node µ3OH 

group. This observation has implications for product inhibition because which orientation is 

preferred may affect the energy required to desorb these bidentate hydrolysis products from each 

node. Again, only the ∆𝐺KE'L values for the most favorable orientations on each node are shown 

in Figure 4.2d. Unlike the neutral molecules, it is more difficult to identify any clear trends for the 

bidentate anions aside from the observations that MOF-808 generally displays the weakest binding 

free energies and bi(cis)-defect UiO-66 and NU-1000 (c pore) display the strongest. The more 

important conclusion is that all of the bidentate anions bind strongly to each node (∆𝐺KE'L < –70 

kJ/mol), suggesting that product inhibition is likely to occur in the absence of a strong base to 

ensure a high concentration of hydroxide ions necessary to displace the products.46 As before, the 

node connectivities and the bidentate anion sizes have strong influences on the node-bound 

dispersion energies but there is no correlation between these parameters and the binding free 

energies (Figure C.7). 

Finally, the binding free energies for the two monodentate anion products are shown in 

Figure 4.2e. Cyanide (5) shows relatively modest ∆𝐺KE'L values. Conversely, fluoride (10) binds 

very strongly to every node site (∆𝐺KE'L < –240 kJ/mol) due to the strong affinity of fluoride 

towards Zr(IV), which may lead to complete degradation of the MOF structures. Indeed, to better 

analyze solid-phase decontamination rates, Wang et al. used a HF digestion medium to displace 

unreacted nerve agents and their tightly bound hydrolysis products from Zr(IV)-MOF nodes, 

destroying the secondary building units themselves in the process.56 Once again, this validates the 
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importance of using a base (either basic solutions or solid-phase bases) for MOF-catalyzed nerve 

agent hydrolysis, as the base can neutralize acidic reaction byproducts.46 All binding free energy 

values used to make Figure 4.2 are listed in Table C.3. 

The organophosphate molecules we studied vary widely in size and cleavable ester bond, 

among other properties, making it difficult to analyze our dataset as a whole. Moreover, no single 

MOF is likely to be the most active for hydrolyzing every agent, so it is more useful to consider 

the molecules individually. To reiterate, the displacement of a terminal water from the node active 

site, the subsequent adsorption of nerve agent, and the ultimate desorption of bidentate-bound 

products are all critical steps in hydrolytic degradation under various reaction 

conditions.57,59,198,207–209 Thus, to help identify the optimal Zr(IV)-MOF node sites for each nerve 

agent and simulant molecule, we now focus the analysis on the binding energies for the key 

reaction species. Considering the hydrolysis pathways as a whole (Figure C.1), the optimal nodes 

for each agent will exhibit the weakest binding for water, the strongest binding for the nerve agent 

or simulant molecule, and the weakest binding for the corresponding bidentate anion products. 

For each nerve agent (GA, GB, GD, VX, A-230, and A-232) and the simulant DMMP, we 

used the following procedure to rank the 6 Zr(IV)-MOF nodes sites. For each node, we separately 

tabulated the binding free energies for water and the agent (∆𝐺KE'L,RDC(B and ∆𝐺KE'L,DS('C, 

respectively). Additionally, of the considered bidentate anion products for each agent, we tabulated 

the binding free energy of the strongest-bound bidentate anion (∆𝐺KE'L,TBMLU*C) to each node. We 

used the minimum possible value (most negative) of ∆𝐺KE'L,TBMLU*C for each agent because this 

represents the most thermodynamically stable product, which would contribute the most to product 

inhibition. Then, we scaled each of the three ∆𝐺KE'L quantities from 0 to 1 using the formula 
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∆𝐺EV& =

∆H)0	,	∆H),2)*

∆H),2(3	,	∆H),2)*
                                      (4.4) 

where ∆𝐺EV and ∆𝐺EV&  denote the unscaled and scaled binding free energy values for molecule i 

(water, agent, or product) bound to node j, respectively, and the subscripts min and max denote the 

minimum (most negative) and maximum (least negative) binding free energies for molecule i 

based on all 6 Zr(IV)-MOF nodes sites, respectively. According to the arguments above, we aim 

to maximize ∆𝐺RDC(B,V& , minimize ∆𝐺DS('C,V& , and maximize ∆𝐺TBMLU*C,V& . Thus, for each agent-node 

combination, we computed the following optimization metric: 

∆𝐺KE'L
MTC = ∆𝐺RDC(B,V& + L1 − ∆𝐺DS('C,V& M + ∆𝐺TBMLU*C,V&         (4.5) 

where eq 4.5 assumes that each term contributes equally in terms of importance to the overall 

hydrolysis pathway. Finally, we ranked the ∆𝐺KE'L
MTC  values from maximum (best) to minimum 

(worst) to determine the optimal Zr(IV)-MOF node sites for hydrolyzing each agent. The results 

of this analysis are shown in Table 4.1. 
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Table 4.1. Ranking of Optimal Zr(IV)-MOF Node Sites for Hydrolyzing Nerve Agent and Simulant Molecules 
 

Rank GA GB GD VX A-230 A-232 DMMP 

1 MOF-808 MOF-808 MOF-808 
NU-1000 

(large 
pore) 

bi(trans)-
defect 

UiO-66 

bi(trans)-
defect 

UiO-66 
MOF-808 

2 
mono-
defect 

UiO-66 

NU-1000 
(large pore) 

NU-1000 
(large pore) 

MOF-808 MOF-808 MOF-808 
NU-1000 

(large pore) 

3 
NU-1000 
(c pore) 

bi(trans)-
defect 

UiO-66 

bi(trans)-
defect 

UiO-66 

bi(trans)-
defect 

UiO-66 

mono-
defect 

UiO-66 

mono-
defect 

UiO-66 

bi(trans)-
defect 

UiO-66 

4 
NU-1000 

(large pore) 
NU-1000 
(c pore) 

NU-1000 
(c pore) 

mono-
defect 

UiO-66 

NU-1000 
(large 
pore) 

NU-1000 
(c pore) 

NU-1000 
(c pore) 

5 
bi(trans)-

defect 
UiO-66 

mono-
defect 

UiO-66 

mono-
defect 

UiO-66 

NU-1000 
(c pore) 

bi(cis)-
defect 

UiO-66 

NU-1000 
(large 
pore) 

mono-
defect 

UiO-66 

6 
bi(cis)-
defect 

UiO-66 

bi(cis)-
defect 

UiO-66 

bi(cis)-
defect 

UiO-66 

bi(cis)-
defect 

UiO-66 

NU-1000 
(c pore) 

bi(cis)-
defect 

UiO-66 

bi(cis)-
defect 

UiO-66 

 
Overall, we note that no single Zr(IV)-MOF node topology or connectivity is predicted to 

be optimal for hydrolyzing all considered organophosphate molecules, so we advocate that MOFs 

should be chosen on an agent-by-agent basis. However, with regard to bi-defect UiO-66, our 

results predict that the trans isomer should outperform the cis isomer for all considered agents, 

which may inform defect engineering opportunities.225–227 Although the optimization metric we 

devised to rank the nodes cannot be used to quantitatively compare catalyst efficiencies, the results 

in Table 4.1 are in qualitative agreement with observed experimental trends that suggest MOF-808 

to be the most active Zr(IV)-MOF catalyst for organophosphate hydrolysis, followed by NU-1000 

and UiO-66,1,25,66,141,199 if we consider our composite results for the large and c pores of NU-1000 

as well as both mono-defect and bi-defect UiO-66. Thus, the simple calculation of binding energies 

for key reaction species (i.e., water, agent, and bidentate products) may serve as an adequate 
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substitute for full mechanistic studies as the initial computational step used to predict promising 

Zr6 node sites for nerve agent hydrolysis. 

4.3.4 Effect of Node Metal Identity on Binding Energies for M(IV)-MOFs 

To model the binding for all molecules to the nodes of M-bi(trans)-defect UiO-66 and M-MOF-

808 (M = Zr, Hf, Ce, Th), we used the most favorable orientations identified for each molecule on 

the Zr analogues (provided in Table C.1 and C.2) and reoptimized for the other three metals, as 

the metal identity is not likely to affect which orientations are most favorable. The binding free 

energies for M-bi(trans)-defect UiO-66 and M-MOF-808 are shown in Figure 4.3 and Figure C.8, 

respectively. The ∆𝐺KE'L values for water are calculated as –29.9, –35.4, –32.0, and –38.2 kJ/mol 

for Zr-, Hf-, Ce-, and Th-bi(trans)-defect UiO-66, respectively (Figure 4.3a). Previous 

experimental data suggests that the electronegativity of the metal in isostructural M(IV)-MOF 

nodes may influence catalytic performance.203 To explore this, we calculated the electronegativity 

of the four M4+ cations according to the Mulliken scale: 

𝜒W45,'ML( =
/0.23
4

                 (4.6) 

where the values for the ionization potential (IP) for M4+ to M5+ and the electron affinity (EA) for 

M4+ to M3+ were obtained from NIST.228 A plot of the relationship between 𝜒W45,'ML( and the 

binding free energy for water to M-bi(trans)-defect UiO-66 nodes (Figure C.9) shows a linear 

correlation (R2 = 0.87) where metals with a higher electronegativity display weaker binding for 

water, which is important since water displacement from the node is a key hydrolysis step. The 

∆𝐺KE'L values for water are calculated as –7.9, –14.8, –28.8, and –21.6 kJ/mol for Zr-, Hf-, Ce-, 

and Th-MOF-808, respectively (Figure C.8a). Surprisingly, a plot of the relationship between 

𝜒W45,'ML( and the binding free energy for water to M-MOF-808 nodes (Figure C.10) does not 
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show a linear correlation (R2 = 0.33), mainly due to Ce deviating from the linear trend, which 

suggests that the electronegativity of the metal cations in MOF-808 nodes may have a weaker 

influence on catalytic hydrolysis efficiency. 

The general trend in binding free energies for the nerve agent and simulant molecules 

across the M-bi(trans)-defect UiO-66 nodes (Figure 4.3b) is Zr < Hf ≈ Th < Ce. As was the case 

for the different Zr(IV)-MOF node sites, the ordering of the four metals changes from molecule to 

molecule, making it difficult to analyze the molecules all together. Nonetheless, Ce-bi(trans)-

defect UiO-66 consistently displays the strongest binding free energies. The general trend in 

binding free energies for the nerve agent and simulant molecules across the M-MOF-808 nodes 

(Figure C.8b) is Hf < Zr < Th < Ce, where Hf and Ce consistently display the weakest and strongest 

binding free energies, respectively. The main differences between the two node sites are that the 

ordering of the four metals is slightly different and the M-MOF-808 nodes show generally weaker 

binding free energies compared to their M-bi(trans)-defect UiO-66 analogues. Additionally, Zr- 

and Hf-MOF-808 exhibit unfavorable binding for VX (14) whereas Zr- and Hf-bi(trans)-defect 

UiO-66 exhibit strongly favorable binding (∆𝐺KE'L ≈ –40 kJ/mol) for VX. Clearly, the effect of 

the node metal identity on the binding energies changes depending on the node 

topology/connectivity. 
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Figure 4.3. Binding free energies for (a) water, (b) nerve agent and simulant molecules, (c) alcohol and thiol 
hydrolysis product molecules, (d) bidentate anion products, and (e) monodentate anion products bound to the nodes 
of M-bi(trans)-defect UiO-66 (M = Zr, Hf, Ce, Th). 
 

The general trend in binding free energies for the alcohols and thiols across the M-bi(trans)-

defect UiO-66 nodes (Figure 4.3c) is Zr < Hf < Ce < Th and the trend across the M-MOF-808 

nodes (Figure C.8c) is Hf < Zr < Th ≈ Ce. The thiol DESH (17) is the only neutral product 

molecule that displays unfavorable binding free energies to M-bi(trans)-defect UiO-66 nodes, 

similar to the observations made for the different Zr(IV)-MOF node sites. Conversely, ethanol (3), 

pinacolyl alcohol (13), and DESH all display unfavorable binding free energies to both Zr- and 

Hf-MOF-808 nodes, again implying a varying effect of the metal identity across different node 

sites. 
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The general trend in binding free energies for the bidentate anions across the M-bi(trans)-

defect UiO-66 nodes (Figure 4.3d) is Th < Zr ≈ Hf < Ce and the trend across the M-MOF-808 

nodes (Figure C.8d) is Zr ≈ Hf < Th < Ce, where Ce consistently displays the strongest binding 

for both node sites. Perhaps the most interesting observation here is that Th-bi(trans)-defect UiO-

66 displays weaker binding free energies than the other three metals for the majority of the 

bidentate anions, while Th generally displays relatively strong binding for water and the nerve 

agents/simulant compared to the other metals. This highlights the importance of the holistic 

approach we used to analyze organophosphate hydrolysis pathways because considering the 

relative binding strengths of key reaction species from different steps in the hydrolysis mechanisms 

may reveal tradeoffs inherent to a particular node metal or topology (e.g., Th-bi(trans)-defect UiO-

66 nodes may experience less product inhibition due to bidentate-bound products, but these nodes 

would require more energy for water displacement). Aside from this unique case, Hf- and Ce-

bi(trans)-defect UiO-66 nodes as well as Hf-, Ce-, and Th-MOF-808 nodes all exhibit equally 

strong or stronger binding free energies for bidentate anions than their Zr analogues, suggesting 

that product inhibition may be a more general problem for most metals in the absence of a base.208 

The binding free energies for the two monodentate anion products are shown in Figure 4.3e 

for M-bi(trans)-defect UiO-66 and in Figure C.8e for M-MOF-808. Similar to the different Zr(IV)-

MOF node sites, cyanide (5) binds rather weakly to Hf, Ce, and Th, regardless of the node site. 

However, fluoride (10) again binds very strongly to both Hf and Ce nodes, presenting a potential 

problem for degradation of the secondary building units in the absence of a neutralizing base. In 

contrast, both Th node sites exhibit weaker fluoride binding than Zr and may be slightly less 

susceptible to post-hydrolysis node degradation. All binding free energy values for M-bi(trans)-
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defect UiO-66 (M-MOF-808) nodes used to make Figure 4.3 (Figure C.8) are listed in Table C.4 

(Table C.5). 

Finally, to identify the optimal M-bi(trans)-defect UiO-66 and M-MOF-808 node sites for 

each nerve agent and simulant molecule, we used an identical procedure to rank the different 

metals as we used to rank the Zr(IV)-MOF nodes sites. Namely, we tabulated the binding free 

energies for water, agents, and the strongest-bound bidentate anion products for the M-bi(trans)-

defect UiO-66 and M-MOF-808 node sites, scaled the three ∆𝐺KE'L quantities from 0 to 1 using 

eq 4.4 (where scaling was done separately for the four bi(trans)-defect UiO-66 metals and the four 

MOF-808 metals), and then computed the optimization metric (∆𝐺KE'L
MTC ) for each agent-node 

combination using eq 4.5. As before, the ∆𝐺KE'L
MTC  values were ranked from maximum (best) to 

minimum (worst) to determine the optimal M-bi(trans)-defect UiO-66 and M-MOF-808 node sites 

for hydrolyzing each agent. The results of these analyses are shown in Table 4.2 and 4.3 for M-

bi(trans)-defect UiO-66 and M-MOF-808, respectively. 

Table 4.2. Ranking of Optimal M-bi(trans)-defect UiO-66 Node Sites for Hydrolyzing Nerve Agent and 
Simulant Molecules 
 

Rank GA GB GD VX A-230 A-232 DMMP 
1 Ce Zr Ce Zr Zr Zr Ce 
2 Zr Ce Zr Ce Ce Hf Zr 
3 Th Hf Th Th Hf Ce Th 
4 Hf Th Hf Hf Th Th Hf 

 
For the bi(trans)-defect UiO-66 node topology, we note that no single metal is predicted to 

be optimal for hydrolyzing all considered organophosphate molecules, again supporting the notion 

that MOFs should only be selected based on the agent of interest. For example, our optimization 

metric predicts Ce-bi(trans)-defect UiO-66 to be the most active for hydrolyzing GA, GD, and 

DMMP and Zr-bi(trans)-defect UiO-66 to be the most active for hydrolyzing GB, VX, A-230, and 
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A-232. Although there is limited experimental data to compare with these computational 

predictions, our results are in qualitative agreement with experiments showing Ce-UiO-66 to be 

more active than Zr-UiO-66 for GD hydrolysis.200 This agreement, combined with the optimization 

metric’s correct prediction of Zr(IV)-MOF activities (MOF-808 > NU-1000 > UiO-66), suggests 

that our rather simple binding-energy-based approach may be a reasonable method for predicting 

promising M6 node sites for nerve agent hydrolysis. Further, the results in Table 4.2 indicate that 

Hf- and Th-bi(trans)-defect UiO-66 nodes may be less than ideal catalysts, which, at the very least, 

could be used for prioritizing future experimental synthesis and testing. 

Table 4.3. Ranking of Optimal M-MOF-808 Node Sites for Hydrolyzing Nerve Agent and Simulant Molecules 
 

Rank GA GB GD VX A-230 A-232 DMMP 
1 Zr Zr Zr Zr Zr Zr Zr 
2 Hf Hf Hf Th Th Hf Hf 
3 Th Ce Th Hf Hf Th Th 
4 Ce Th Ce Ce Ce Ce Ce 

 
The rankings in Table 4.3 for the MOF-808 node topology are fairly surprising, where Zr 

is predicted to be the most active metal for hydrolyzing all 7 organophosphate molecules while Ce 

is predicted to be the “worst” metal for all agents, with the exception of GB. Notably, these 

predictions disagree with previous computational results that predicted Ce-MOF-808 to be more 

active than its Zr analogue for GB hydrolysis based on a mechanistic study.199 There could be 

multiple reasons for this disagreement; for example, we used cluster models whereas the previous 

study used periodic models, our predictions are based on a hydrolysis pathway where the terminal 

M–OH group acts as a nucleophile and leads to bidentate-bound products whereas the previous 

study treated the M–OH group as a general base and considered monodentate-bound products, and 

our predictions are obtained by considering the binding free energies of water, agent, and bidentate 

products to be of equal importance to the overall hydrolysis pathway whereas the previous study 
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compares Ce- and Zr-MOF-808 on the basis of their computed activation electronic energies for 

water displacement. Put briefly, there are simply too many confounding variables to adequately 

compare the two studies; rather, we await experimental testing. 

In a broader sense, the results in this section show that the effect of the node metal identity 

on binding energies varies depending on the node topology/connectivity, which implies that the 

trends observed for one isostructural M(IV)-MOF series may not necessarily hold for another 

series. Our results suggest that there is a complex underlying relationship between geometric and 

electronic properties that influences the binding strengths of organophosphate molecules and their 

products. We further explore this confluence of properties in the QSAR modeling sections below. 

4.3.5 QSAR Modeling: Rationale for Selected Descriptors 

Until now, our discussion of the trends in binding free energies for the different molecules across 

the various MOF node topologies, connectivities, and metals has been predominantly qualitative 

in nature. In the analysis below, we aim to rationalize some of the observed complexity by 

examining how specific molecular and node features affect the binding energetics. In addition to 

supporting the explanation of the trends predicted by DFT, this analysis will help clarify which 

geometric and electronic structure descriptors are most important for describing the binding of 

nerve agents and their hydrolysis products to M6 nodes. Using the large amount of data generated 

from our DFT calculations, we employed QSAR modeling to achieve a more comprehensive 

understanding of the fundamental chemistry underlying these binding events. Throughout the 

following sections, the DFT-computed binding free energies (∆𝐺KE'L) serve as the response 

variable that we attempt to describe or predict using molecular and node descriptors. 

To develop the QSAR models, we first selected molecular descriptors based on their 

potential relevance to organophosphate binding. Due to their different binding modes, we treated 
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neutral molecules (including water, nerve agents/simulant, and alcohol/thiol products) and 

bidentate anions separately, each with their own unique set of descriptors. We considered 13 

neutral molecules (H2O, 1, 3, 6, 8, 11, 13, 14, 17, 18, 20, 22, and 24), and 10 bidentate anions (2, 

4, 7, 9, 12, 15, 16, 19, 21, and 23). We compiled 25 molecular descriptors for the neutral molecules 

and 22 for the bidentate anions, all of which were obtained either through DFT calculations or 

from evaluating descriptor equations derived in previous literature studies. All quantum chemical 

descriptors were computed for the optimized molecular structures (not including the nodes in the 

calculations) at the M06-2X(SMD) level of theory, some of which required the use of electron 

population analysis with the NBO method119 to compute molecular orbital parameters. The 

molecular descriptors, along with their corresponding notations, units, and ranges of values are 

summarized in Table C.6, where values in red correspond to neutral molecules and those in green 

correspond to bidentate anions. Below, we describe the rationale for selecting particular 

descriptors. 

For the neutral molecules, we selected the NBO-computed partial atomic charge and 

Wiberg bond index229 of the binding O/S atom (qO/S,mol and BIO/S,mol, respectively) because these 

are the atoms that directly coordinate to the open metal sites of the node–noOH2 structures 

(Scheme 4.1b), and thus the electronic properties of these atoms are expected to directly influence 

the molecular binding strengths. Here, “O/S atom” refers either to the O atom of water, the O(=P) 

atom of nerve agent and simulant molecules, the O(H) atom of alcohols, or the S(H) atom of thiols 

that binds to the node open M atom. Due to the different binding mode for the bidentate anions, 

involving a M–O–P–O–M plane formed on adjacent M atoms at the node–noOH2,OH binding sites 

(Scheme 4.1c), we instead computed the average charge and average Wiberg bond index on the 

two binding O atoms (AvqO,mol and AvBIO,mol, respectively). To investigate the effects of the relative 
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sizes of the neutral molecules and bidentate anions, which could influence the dispersion 

components of the binding energies, we selected several descriptors including molecular volume 

(Vmol, computed in Gaussian 09), solvent-accessible surface area (SAmol, computed in VMD 1.9.3), 

total number of atoms (nAtmol) and electrons (nElecmol) in each molecule, molecular weight 

(MWmol), and average molecular weight (AMWmol = MWmol / nAtmol). We note that several of these 

size descriptors are correlated with each other, but we chose to initially consider them all to analyze 

which ones individually yielded the most accurate ∆𝐺KE'L predictions and then we removed the 

less-significant correlated descriptors before performing multiple linear regression analysis. The 

molecular dipole moment (µmol) was chosen because it describes the overall polarity of each 

molecule. To characterize the overall electronic structure of each molecule, we selected six 

descriptors starting with ionization potential (IPmol) and electron affinity (EAmol), computed using 

the IPmol ≈ –EHOMO and EAmol ≈ –ELUMO relations based on Koopmans’ theorem.142 These two 

descriptors were then used to compute molecular hardness (𝜂mol), softness (Smol), electronegativity 

(𝜒mol), and electrophilicity (𝜔mol) using the equations derived by Parr and co-workers144 (see eqs 

C.1–C.4 in Appendix C). 

We also compiled constitutional descriptors including the number of hydrogen (nHmol), 

carbon (nCmol), nitrogen (nNmol), oxygen (nOmol), and non-hydrogen (nNonHmol) atoms in each 

molecule to examine the effects of basic chemical composition. We did not use the nOmol descriptor 

for the bidentate anions due to their limited chemical diversity (i.e., each anion has either two or 

three oxygens). To measure hydrogen-bonding abilities, important for interactions with node 

oxo/hydroxyl groups, we computed the number of donor and acceptor atoms for H-bonds in each 

molecule (nHBdmol and nHBamol, respectively). Here, nHBdmol refers to the number of H atoms 
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bonded to any N and O atoms in each molecule and nHBamol refers to the number of N, O, and F 

atoms per molecule. The nHBdmol descriptor was not used for the bidentate anions because values 

were either zero or one for these molecules. The number of rotatable bonds per molecule (nRBmol), 

defined as the number of single bonds bound to a nonterminal heavy (i.e., non-H) atom, was chosen 

as a measure of molecular flexibility.230 To measure the degree of unsaturation for each neutral 

molecule, we computed the unsaturation index (UImol), as defined in eq C.5.231 Again, UImol was 

not used for bidentate anions due to their more limited chemical diversity. Finally, for both neutral 

molecules and bidentate anions, we computed the hydrophilicity index (HyImol), as defined in eq 

C.6.232 

Pearson’s correlation coefficients between molecular descriptors for the neutral molecules 

and bidentate anions are presented in the form of heatmaps in Figure C.11 and C.12, respectively. 

The unscaled values of the descriptors for neutral molecules and bidentate anions are listed in 

Table C.7 and C.8, respectively. Since the descriptors have different units, all descriptors were 

scaled from 0 to 1 so that their weights in the developed QSAR models may be easily compared 

(see eq C.7 for scaling formula). The scaled values of the descriptors for neutral molecules and 

bidentate anions are listed in Table C.9 and C.10, respectively. 

Next, we selected descriptors to describe the node–noOH2  and node–noOH2,OH bare node 

structures which served as binding sites for the neutral molecules and bidentate anions, 

respectively, where we treated the two types of binding sites separately with their own unique set 

of descriptors. More explicitly, we considered the node–noOH2 sites (Figure C.2a) and the node–

noOH2,OH sites (Figure C.2c) of Zr-mono-defect UiO-66, M-bi(trans)-defect UiO-66 (M = Zr, 

Hf, Ce, Th), Zr-bi(cis)-defect UiO-66, Zr-NU-1000 (large pore), Zr-NU-1000 (c pore), and M-

MOF-808 (M = Zr, Hf, Ce, Th). We compiled 24 node descriptors for the node–noOH2 sites and 



 114 
20 for the node–noOH2,OH sites, all of which were obtained either through DFT calculations or 

taken directly from experimental databases (e.g., NIST). All quantum chemical descriptors were 

computed for the optimized node structures. The node descriptors, along with their corresponding 

notations, units, and ranges of values are summarized in Table C.11, where values in red 

correspond to node–noOH2 sites and those in green correspond to node–noOH2,OH sites. 

For the node–noOH2 sites, we selected the NBO-computed partial atomic charge (qM,node), 

Wiberg bond index (BIM,node), and valence orbital population (ValPopM,node) of the open M atom 

that serves as the binding site for neutral molecules. Similarly, for the node–noOH2,OH sites, we 

computed the average charge (AvqM,node), average Wiberg bond index (AvBIM,node), and average 

valence orbital population (AvValPopM,node) of the two adjacent M atoms that collectively serve as 

the binding site for bidentate anions. To further characterize the electronic structure of the M 

atom(s) at the node binding sites, we compiled six descriptors to describe the different M4+ cations 

including 𝐼𝑃W45,'ML(, 𝐸𝐴W45,'ML(, 𝜂W45,'ML(, 𝑆W45,'ML(, 𝜒W45,'ML(, and 𝜔W45,'ML(, where 

ionization potential and electron affinity values were obtained from NIST.228 We also used 

elemental properties to describe the M atom(s) including the atomic number (ZM,node), atomic 

weight (AtWtM,node), period in the periodic table (PdM,node), and covalent radius (CovRM,node).233 

From the DFT-optimized node structures, we also computed the distance between the two adjacent 

M atoms of the binding sites (dM–M,node), which may be particularly relevant for the binding mode 

of bidentate anions. 

Beyond the M atom(s) that directly bind the molecules, we also considered it important to 

characterize the geometric and electronic properties of the surrounding node oxo/hydroxyl groups, 

which may interact through hydrogen-bonding with the bound molecules. For both the node–

noOH2 and node–noOH2,OH sites, we selected the NBO-computed partial atomic charges of the 
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bridging node hydroxyl atoms (𝑞X68(P),'ML( and 𝑞X6(8)P,'ML() and the bridging node oxo atom 

(𝑞X68,'ML(). Exclusively for the node–noOH2 sites, we computed charges on the atoms of the 

neighboring terminal node hydroxyl group (qtO(H),node and qt(O)H,node) as well as the bond length and 

Wiberg bond order of the neighboring terminal M–OH bond (BLtM–OH,node and BOtM–OH,node, 

respectively). Figure 4.4, depicting the node–noOH2 binding site of Zr-NU-1000 (large pore) as 

an example, includes labels for the referenced metal, oxygen, and hydrogen atoms. 

 
 

Figure 4.4. Top-down view of the node–noOH2 binding site of Zr-NU-1000 (large pore) with labels for the metal, 
bridging oxo, bridging hydroxyl, and terminal hydroxyl atoms referenced in the node descriptors used for QSAR 
modeling. Dark gray, white, red, and turquoise spheres represent C, H, O, and Zr atoms, respectively. The purple 
sphere denotes a dummy atom used to help visualize the linker bite angle, which is shown by the dashed lines. 
 

To characterize the size of each node in its entirety, we chose the total number of electrons 

per node (nElecnode). Further, we selected the total number of linkers per node (nLinknode), as we 

previously showed that the node connectivity has a strong influence on dispersion energies (see 

Figure C.5 and C.7). Finally, to measure the steric effects of the local environments for node–

noOH2 and node–noOH2,OH sites, which could influence dispersion interactions between bound 

molecules and the benzoate linkers surrounding the binding sites, we introduce the concept of a 

!3O

tO(H)

t(O)H

!3(O)H

!3O(H)
M
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linker bite angle (Bitenode). We define the linker bite angle as the angle formed between two para-

carbon atoms of diagonally opposite benzoate linkers surrounding the binding site and a point 

equidistant between the two adjacent M atoms of the binding site. For clarity, this angle is depicted 

with dashed lines in Figure 4.4. To provide context, the linker bite angle is 155.8º, 149.6º, 143.7º, 

142.6º, 142.5º, and 138.2º for the optimized node–noOH2 cluster models of Zr-MOF-808, Zr-NU-

1000 (large pore), Zr-bi(trans)-defect UiO-66, Zr-mono-defect UiO-66, Zr-bi(cis)-defect UiO-66, 

and Zr-NU-1000 (c pore), respectively. 

Pearson’s correlation coefficients between node descriptors for the node–noOH2 and node–

noOH2,OH sites are presented in the form of heatmaps in Figure C.13 and C.14, respectively. The 

unscaled values of the descriptors for the node–noOH2 and node–noOH2,OH sites are listed in 

Table C.12 and C.13, respectively. Similar to the molecular descriptors, the node descriptors were 

scaled from 0 to 1 (using eq C.7) so that their weights in the developed QSAR models may be 

easily compared. The scaled values of the descriptors for the node–noOH2 and node–noOH2,OH 

sites are listed in Table C.14 and C.15, respectively. 

The distributions of binding free energy values for the neutral molecules bound to node–

noOH2 sites and the bidentate anions bound to node–noOH2,OH sites are shown in Figure C.15. 

Together, the scaled molecular descriptors for neutral molecules and the scaled node descriptors 

for node–noOH2 sites (49 total descriptors), along with the corresponding ∆𝐺KE'L response 

variable (156 total molecule-node combinations), were used to construct QSAR models (hereafter 

referred to simply as the “neutrals dataset”). Similarly, the scaled molecular descriptors for 

bidentate anions and the scaled node descriptors for node–noOH2,OH sites (42 total descriptors), 

along with the corresponding ∆𝐺KE'L response variable (120 total molecule-node combinations), 

were used to construct QSAR models (hereafter referred to as the “bidentates dataset”). 
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4.3.6 QSAR Modeling: Most Important Descriptors for Describing Organophosphate 

Binding to MOF Nodes 

Before assessing the developed QSAR models, we first discuss uniparametric correlations based 

on simple linear regression between individual descriptors and the binding free energies (e.g., R2uni 

for ∆𝐺KE'L vs. qO/S,mol) to highlight the most statistically significant (i.e., most important) 

descriptors. The most important molecular descriptor for describing the binding energetics of the 

neutrals dataset is qO/S,mol (R2uni = 0.25, positive correlation). The direction of the correlation 

indicates that lower (more negative) charges on the binding O/S atom correlate with more negative 

(stronger) binding free energies, which is intuitive because this should lead to a stronger attraction 

to the positively charged node M atom. The most important node descriptor for the neutrals dataset 

is Bitenode (R2uni = 0.12, positive correlation), where the correlation direction reveals that smaller 

linker bite angles correlate with stronger binding free energies. This observation helps clarify one 

of the trends observed in Figure 4.2, where Zr-MOF-808 (Bitenode = 155.8º) generally showed the 

weakest binding while Zr-NU-1000 (c pore) (Bitenode = 138.2º) consistently showed the strongest 

binding, implying that the small pore environment of the Zr-NU-1000 (c pore) binding site leads 

to closer proximity and more favorable interactions between bound molecules and the surrounding 

benzoate linkers. The next most important molecular and node descriptors for the neutrals dataset 

are summarized in Figure C.16. 

The most influential molecular descriptor for the bidentates dataset is nNmol (R2uni = 0.10, 

negative correlation), where a larger number of nitrogen atoms per bidentate anion correlates with 

stronger binding free energies. The most important node descriptor for the bidentates dataset is 

𝜔W45,'ML( (R2uni = 0.37, negative correlation), where more electrophilic M4+ cations of the node–

noOH2,OH sites correlate with stronger binding. This observation helps explain why the Ce 
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analogues of the M-bi(trans)-defect UiO-66 and M-MOF-808 node sites consistently showed the 

strongest binding free energies for bidentate anions (Figure 4.3d and C.8d, respectively), where 

Ce4+ displays the largest electrophilicity value (𝜔W45,'ML( = 91.6 eV) of the four considered metals 

and thus has the strongest ability to bind the bidentate anions. The next most important molecular 

and node descriptors for the bidentates dataset are summarized in Figure C.17. 

Despite the useful insights derived from simple linear regression, the correlations based on 

individual molecular and/or node descriptors are clearly very low, indicating that single descriptors 

are not sufficient to describe such complex systems, a similar conclusion drawn in our previous 

organophosphates QSAR study.234 This result is not surprising, given the fairly complex trends 

observed in the binding free energy plots (Figure 4.2, 4.3, and C.8). Thus, we developed multi-

parametric QSAR models for the neutrals and bidentates datasets by performing multiple linear 

regression (MLR), where MLR can improve the correlation statistics while still allowing for a 

simple interpretation of the contribution each descriptor has on the models in terms of its 

coefficient weight and sign. Initially, we built non-predictive models, where this terminology 

denotes that all molecule-node combinations were included for model development for each 

dataset (as opposed to dividing them into training and test sets). This was done to gain a deeper 

understanding of the most important descriptors for describing the binding energetics of our entire 

datasets before assessing the predictive capacity of our models using test sets. 

Before model development, we removed all linearly dependent molecular and node 

descriptors from both datasets. To remove descriptors, we first identified any descriptors that 

showed a high Pearson’s correlation coefficient (|R| > 0.9) with another descriptor (see Figure 

C.11–C.14). Then, for each highly correlated descriptor pair, we removed the descriptor that 

yielded the less accurate ∆𝐺KE'L prediction, as determined by comparing their R2uni and root mean 



 119 
square error (RMSE) values. For development of the non-predictive multi-parametric QSAR 

models, we used stepwise forward-backward based feature selection combined with MLR using a 

95% confidence interval, utilizing the built-in stepwiselm function in MATLAB. For a more 

detailed description of this algorithm, refer to Appendix C. 

The non-predictive QSAR model developed using all 156 molecule-node combinations for 

the neutrals dataset is: 

∆𝐺KE'L = −(33.05 ± 11.67) + (55.02 ± 4.26)qO/S,mol + (17.85 ± 3.91)IPmol            

− (32.35 ± 3.85)nHBdmol − (29.39 ± 13.46)qM,node − (45.68 ± 7.66)BIM,node            

− (17.84 ± 5.60)𝜔W45 ,node + (27.02 ± 6.03)nLinknode + (60.87 ± 6.06)Bitenode     (4.7) 

N = 156, Q2LOO = 0.59, R2adj = 0.68, RMSE = 12.29 kJ/mol 

In eq 4.7, the descriptors are dimensionless (scaled from 0 to 1), so descriptors with larger weights 

can be said to have increased significance to the overall model. As evaluation metrics, we report 

the RMSE and the adjusted coefficient of determination (R2adj) between observed (i.e., DFT-

computed) and predicted responses. We report the R2adj, which takes into consideration the number 

of model variables, to facilitate the comparison of models containing different numbers of terms 

(see eq C.8). Additionally, we report the Q2LOO statistic, calculated using the leave-one-out cross-

validation (LOO-CV) procedure, in which every molecule-node combination is eliminated from 

the dataset once and then its response variable is predicted using the regression equation derived 

from the remaining set (see eq C.9). 

By examining the descriptor weights in eq 4.7, we again observe that qO/S,mol and Bitenode 

are the most significant molecular and node descriptors for the neutrals dataset. The nHBdmol 

descriptor is also important, where neutral molecules possessing more hydrogen-bonding donor 
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atoms correlate with stronger binding free energies, indicating that hydrogen-bonding interactions 

with node oxo/hydroxyl groups plays an important role in binding to M6 node sites. Regarding the 

node properties, the qM,node descriptor is also fairly significant, where higher (more positive) 

charges on the open M atom correlate with stronger binding, serving as a complement to the qO/S,mol 

molecular descriptor. 

The non-predictive QSAR model developed using all 120 molecule-node combinations for 

the bidentates dataset is: 

∆𝐺KE'L = −(80.02 ± 4.68) + (17.44 ± 4.03)AvqO,mol − (19.30 ± 7.31)µmol            

− (12.20 ± 4.90)nNmol + (15.24 ± 7.04)HyImol − (36.36 ± 8.47)AMWmol                        

− (25.34 ± 4.79)𝜔W45 ,node + (11.54 ± 2.77)Bitenode − (16.63 ± 5.05)𝑞X68 ,node     (4.8) 

N = 120, Q2LOO = 0.55, R2adj = 0.65, RMSE = 10.60 kJ/mol 

In eq 4.8, the most influential molecular descriptor is AMWmol, where bidentate anions with larger 

average molecular weights correlate with stronger binding free energies. Similar to the neutrals 

dataset, we also see that the charge on the binding O atoms is important for inducing a strong 

attraction to the two adjacent M atoms of the node–noOH2,OH sites. As was determined by the 

uniparametric correlation analysis, the most influential node descriptor for the bidentates dataset 

is 𝜔W45,'ML(. Also, the 𝑞X68 ,node descriptor term appears to be moderately important, which is 

reasonable considering the typical binding mode of the bidentate anions (Figure C.6) that involves 

hydrogen-bonding interactions between the bridging node oxo atom and the bound molecule. 

Overall, for both the neutrals and bidentates datasets, we observe that adding more 

descriptor terms results in improved correlations compared to simple linear regression using 

individual descriptors. This result is not purely a statistical artifact, but rather an indication that 
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both molecular and node properties, including both structural and chemical features, collectively 

contribute to the binding free energies of organophosphate molecules and their hydrolysis products 

to M6 nodes. Considering the complex nature of the molecules used to build these models, 

compared to simple atomic or small molecule adsorbates, the RMSE values for both datasets are 

relatively low, especially when taking into consideration our use of MLR compared to more 

sophisticated machine learning techniques. To better evaluate the capacity of our descriptors for 

predicting accurate ∆𝐺KE'L values and to determine their robustness for describing new 

organophosphates and/or MOFs, we performed further statistical validations, as described below. 

4.3.7 QSAR Modeling: Model Predictions and Applicability Domains 

To develop predictive QSAR models, we divided each dataset into training and test sets using 

random selection, while ensuring that each training set spanned the entire response variable space 

for its respective dataset (i.e., we included the molecule-node combinations with the highest and 

lowest ∆𝐺KE'L values in the training sets). Each test set included 20% of its respective total dataset. 

Additionally, since we already gained a detailed understanding of the important molecular and 

node descriptors from the non-predictive models generated using standard MLR, we now allowed 

for molecular-node descriptor interaction terms (e.g., qO/S,mol × qM,node) in the regression equations 

to further improve the models’ predictive capabilities. However, the molecular descriptors and 

node descriptors are linearly independent and show no correlation (R = 0), so the resulting models 

developed using MLR with interaction terms are still physically interpretable. 

Several tests for statistical significance were used to evaluate the predictive value of the 

models. To evaluate the training sets, we used the RMSEtrain, R2adj, and Q2LOO values, as discussed 

earlier. Additionally, we used the y-randomization method to measure the possibility of chance 

correlation in the developed QSAR models, utilizing the CR2p > 0.5 test (see eq C.10) to determine 
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that our models were not generated purely by chance.150 To evaluate the test sets in terms of both 

quantitative and ranking accuracy, we used the root mean square error in prediction (RMSEtest, see 

eq C.11), the coefficient of determination (R2test, see eq C.12), and the Spearman’s rank correlation 

coefficient (𝜌test, see eq C.13) values. For both the neutrals and bidentates datasets, we performed 

dataset division 100 times to examine the variability in model statistics (Figure C.18 and C.19). 

For each dataset, when comparing the statistics across all 100 generated models, the optimal model 

was identified as the one that yielded the lowest RMSEtest, while also satisfying the minimum 

QSAR criteria of Q2LOO > 0.5, CR2p > 0.5, and R2test > 0.6.151 

The optimal predictive QSAR model for the neutrals dataset is: 

∆𝐺KE'L = −(71.49 ± 5.09) + (29.85 ± 6.11)nHmol − (43.52 ± 8.00)nHBamol                             

+ (62.99 ± 4.80)Bitenode − (19.72 ± 4.58)nElecnode + (45.30 ± 12.18)(qO/S,mol × qM,node)  

− (27.91 ± 7.34)(qO/S,mol × CovRM,node) + (46.51 ± 10.93)(qO/S,mol × nLinknode)                        

+ (40.65 ± 9.89)(qO/S,mol × qt(O)H,node) + (45.53 ± 7.21)(𝜒mol × nLinknode)                                    

− (31.21 ± 9.21)(nHmol × BOtM–OH,node) − (21.42 ± 9.74)(nHBdmol × nLinknode)                       

+ (24.45 ± 9.82)(nHBamol × BIM,node) − (17.91 ± 9.46)(HyImol × qM,node)                                     

+ (42.40 ± 8.64)(AMWmol × qM,node)               (4.9) 

Ntrain = 125, Q2LOO = 0.59, R2adj = 0.83, RMSEtrain = 9.40 kJ/mol, CR2p = 0.79        

Ntest = 31, R2test = 0.75, RMSEtest = 8.25 kJ/mol, 𝜌test = 0.82 

The optimal predictive QSAR model for the bidentates dataset is: 
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∆𝐺KE'L = −(84.81 ± 4.39) + (14.28 ± 4.85)AvqO,mol − (22.20 ± 3.49)nNmol            

+ (20.86 ± 8.15)HyImol − (32.46 ± 9.71)AMWmol − (23.78 ± 5.59)𝜔W45 ,node                   

+ (10.27 ± 3.32)Bitenode − (18.78 ± 6.07)𝑞X68 ,node                      (4.10) 

Ntrain = 96, Q2LOO = 0.51, R2adj = 0.61, RMSEtrain = 11.23 kJ/mol, CR2p = 0.61        

Ntest = 24, R2test = 0.70, RMSEtest = 9.77 kJ/mol, 𝜌test = 0.82 

Based on the computed statistics, eqs 4.9 and 4.10 represent models with good predictive 

capacity in terms of both quantitative and ranking accuracy, where the optimal model for the 

neutrals dataset has slightly better predictive ability. Comparing eqs 4.7 and 4.9 for the neutrals 

dataset, we observe that using MLR with interaction terms results in models with better 

quantitative accuracy compared to standard MLR. In contrast, the optimal predictive QSAR model 

for the bidentates dataset (eq 4.10) includes no molecular-node descriptor interaction terms and is 

nearly identical to the non-predictive model (eq 4.8). Due to the many differences between the two 

datasets, we could not find a definitive explanation for this observation. The most likely reason for 

the presence of more terms in the regression equation for the neutrals dataset is that the neutral 

molecules are more chemically diverse (including water, nerve agents/simulant, and alcohol/thiol 

products) than the bidentate anions, thus requiring a larger number of descriptors to accurately 

describe their binding energetics. Nonetheless, both predictive models in eqs 4.9 and 4.10 can be 

used to make reliable binding free energy predictions for new organophosphate molecules and 

hydrolysis products and/or new M6 nodes. 

The ∆𝐺KE'L values for all 156 (120) molecule-node combinations predicted using eq 4.9 

(eq 4.10) are given in Table C.16 (Table C.17). The regression plots of observed (DFT-calculated) 

and predicted binding free energies for the training and test sets are represented in Figure 4.5a and 
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4.5b for the neutrals and bidentates datasets, respectively. The dashed line in each plot that shows 

the relationship ypred = yobs is included to help assess the predictive power of the models, where the 

agreement between observed and predicted ∆𝐺KE'L values is slightly better for the neutrals dataset. 

The distribution of raw residuals for the optimal models are shown in Figure C.20 and C.21 for 

the neutrals and bidentates datasets, respectively, where the residuals for both models have an 

acceptable normal distribution with no clear outliers. 

 
 

Figure 4.5. Comparison between observed (DFT-calculated) binding free energies with those predicted by the optimal 
predictive QSAR model developed for (a) the neutrals dataset (eq 4.9) and (b) the bidentates dataset (eq 4.10). The 
dashed line in each plot shows the relationship ypred = yobs, where data points for an ideal model lie close to this line. 
 

To further evaluate the robustness of our models for describing new molecule-node 

combinations, we established the applicability domain (AD) of the optimal predictive QSAR 

model for each dataset using the leverage-based method.153,154 Here, the AD represents the bounds 

in which a model tolerates a new molecule-node combination, where predictions are considered 

unreliable (i.e., extrapolations) if they lie outside the model’s AD. To visualize the AD for each 

model, a Williams plot was constructed using standardized residuals (st) and leverage (h) values, 

where leverage is a measure of the influence of a molecule-node combination’s properties on the 
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regression model. The formulas used to calculate st and h values are provided in Appendix C (eqs 

C.14–C.16). For each model, the cut-off leverage is defined as h* = 3p/Ntrain, where p is the number 

of regression coefficients (which includes the intercept) and Ntrain is the number of training set 

observations.154 Any prediction is considered unreliable and outside the AD if its h > h*. 

 
 

Figure 4.6. Williams plot showing the applicability domain for the optimal predictive QSAR model developed for (a) 
the neutrals dataset (eq 4.9) and (b) the bidentates dataset (eq 4.10). The horizontal lines in each plot signify the bounds 
for the standardized residuals (at ± 3 standard deviation units). The vertical line in each plot represents the cut-off 
leverage (h*). 
 

The Williams plots for the optimal predictive QSAR models developed for the neutrals and 

bidentates datasets are shown in Figure 4.6a and 4.6b, respectively. In these plots, it is simple to 

identify any response outliers (with st > 3 standard deviation units) and influential molecule-node 

combinations with high leverage (h > h*). The horizontal lines in each plot signify the bounds for 

the standardized residuals (at ± 3 standard deviation units) and the vertical line in each plot 

represents the cut-off leverage (h* = 0.36 and 0.25 for the neutrals and bidentates dataset, 

respectively). In Figure 4.6a for the neutrals dataset, only 3 out of the 156 molecule-node 

combinations are located outside of the AD, thus predictions for all other combinations can be 

considered reliable. The 3 high-leverage molecule-node combinations (molecule 14 bound to the 

node–noOH2 site of Ce-bi(trans)-defect UiO-66, 17 bound to Ce-bi(trans)-defect UiO-66, and 17 

bound to Th-MOF-808) are all in the training set. The most likely reason why these combinations 
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lie outside the AD is that molecules 14 (VX) and 17 (DESH) have relatively large steric bulk 

compared to the other neutral molecules and are the only ones that contain sulfur. However, these 

combinations can be said to have “good” leverage because they are in the training set, meaning 

they reinforce the strength of the model for making future predictions for similar molecule-node 

pairs. Conversely, all molecule-node combinations are located within the AD for the bidentates 

dataset (Figure 4.6b). While the distribution of residuals is similar for the two datasets, we note 

that the leverages are generally lower for the bidentates dataset, which we attribute to the more 

limited diversity of the bidentate anions. 

Overall, the results in this section indicate that the optimal predictive QSAR models 

developed for the neutrals and bidentates datasets (eqs 4.9 and 4.10, respectively) can be used to 

make relatively accurate binding free energy predictions for different nerve agents and their 

hydrolysis products bound to M6 nodes not considered herein. 

4.4 Conclusions 

In this work, we used DFT to analyze the binding of water, nerve agents (GA, GB, GD, VX, A-

230, and A-232), a nerve agent simulant (DMMP), and their corresponding hydrolysis products 

(bidentate anions, monodentate anions, and neutral alcohols/thiols) to MOF nodes with varying 

node topology, connectivity, and metal identity. As binding sites for the molecules, we considered 

the hexanuclear M(IV) oxide cluster nodes of Zr-mono-defect UiO-66, M-bi(trans)-defect UiO-66 

(M = Zr, Hf, Ce, Th), Zr-bi(cis)-defect UiO-66, Zr-NU-1000 (large pore), Zr-NU-1000 (c pore), 

and M-MOF-808 (M = Zr, Hf, Ce, Th). Overall, the trends we observed in binding free energies 

for the nerve agents and hydrolysis products are fairly complex due to the significant diversity of 

the molecules and nodes considered, which made it difficult to analyze our data all together. 

Instead, we chose to focus our analysis on identifying the optimal M6 node sites for hydrolyzing 
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each nerve agent and simulant molecule. In MOF-catalyzed organophosphate hydrolysis, the 

displacement of a terminal water from the node active site, the subsequent adsorption of nerve 

agent, and the ultimate desorption of bidentate-bound products are all critical, and potentially rate-

limiting, steps under various reaction conditions. Thus, we used a holistic approach towards 

analyzing hydrolysis pathways by computing an optimization metric for each agent-node pair 

based on the relative binding strengths of key reaction species (i.e., water, agents, and the 

strongest-bound bidentate anion products). This analysis showed that no single metal or node 

topology/connectivity is predicted to be optimal for hydrolyzing all possible organophosphate 

molecules, suggesting that MOFs should be selected based on the agent of interest. In general, our 

results are in qualitative agreement with observed experimental trends, implying that our simple 

binding-energy-based approach may be an adequate substitute for full mechanistic studies as the 

initial computational step used to predict promising M6 node sites for nerve agent hydrolysis. 

Using the large amount of data generated from our DFT calculations, we then derived 

QSAR models to better explain the complex trends observed in binding free energies for the 

different molecules across the various MOF node topologies, connectivities, and metals. Through 

simple linear and multiple linear regression, we identified the most important descriptors for 

describing the binding of nerve agents and their hydrolysis products to M6 nodes. These results 

showed that both molecular and node properties, including both structural and chemical features, 

collectively contribute to the binding energetics. By splitting the data into training and test sets 

and performing a thorough statistical analysis, we showed that our QSAR models are capable of 

making quantitatively accurate binding free energy predictions for neutral molecules and bidentate 

anions in a wide variety of M(IV)-MOFs. To further evaluate the bounds in which our models 

tolerate new molecule-node combinations, we established applicability domains using the 
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leverage-based method, where this analysis showed that the optimal QSAR models can be used to 

make reliable predictions for different nerve agents and their hydrolysis products bound to M6 

nodes not considered herein. Ultimately, the insights gained from our study can be used to guide 

future experiments for the synthesis of MOF systems with enhanced catalytic activity. 
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Chapter 5: Computational Screening of Metal–Organic Framework-Supported Single- 

Atom Transition-Metal Catalysts for the Gas-Phase Hydrolysis of Nerve Agents 

 

This chapter is a modified version of a published manuscript: Mendonca, M. L.; Snurr, R. Q. ACS 

Catal. 2020, 10, 1310–1323. 

 

5.1 Introduction 

The earliest documented use of chemical weapons dates back to ∼400 BCE during the 

Peloponnesian War, where the Spartans used arsenical smoke against their enemies.235 The largest 

deployment of chemical warfare agents (CWAs) occurred during World War I, causing an 

estimated 1.3 million casualties.236 In 1993, the Chemical Weapons Convention was drafted to 

completely ban the development, stockpiling, and use of CWAs as well as destroy existing 

stockpiles.3 Despite international efforts to prohibit their use, various CWAs have been used as 

recently as 2018 on both military and civilian populations.193,196 Of particular concern are nerve 

agents, such as sarin (GB), soman (GD), and VX. In the human body, the acetylcholinesterase 

enzyme is responsible for breaking down the neurotransmitter acetylcholine. Nerve agents 

function by inhibiting this enzyme, which causes the neurotransmitters to keep sending signals, 

but none are broken down. This leads to a buildup of acetylcholine in the synaptic cleft between 

nerve and muscle cells and causes muscles to continuously contract, which can eventually lead to 

death.197 Since these highly toxic chemicals remain a serious global threat, materials are needed 

for both the destruction of weapon stockpiles and personal protection via fabric coatings or 

respirators to ensure the safety of military specialists and untrained citizens alike. 
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Metal–organic frameworks (MOFs) are a promising class of catalysts for nerve agent 

degradation.66 MOFs are highly crystalline materials composed of metal nodes connected by 

organic linkers, which combine to form highly porous frameworks. They are especially attractive 

for detoxification because of their extremely large surface areas, their high concentration of 

periodic active sites, and their chemical functionality that can be tuned to adsorb specific target 

molecules. Some of the most promising catalysts for this application are MOFs containing Zr6 

nodes, which display a periodic distribution of strongly Lewis-acidic Zr(IV) metal centers. Zr-

based MOFs are highly stable under harsh thermal (up to 500 °C) and chemical (pH 1–12) 

conditions because of their strong Zr-oxo node-linker bonds.22 In aqueous base solution (e.g., N-

ethylmorpholine), these MOFs have shown degradation half-lives on the order of minutes for the 

hydrolysis of nerve agents and their simulants,1,50–54 where the buffer moderates the reaction pH 

and regenerates Zr active sites. These buffered solutions are promising for the catalytic destruction 

of nerve agent stockpiles, but they are not feasible for application in gas masks and protective 

fabrics.55 

To address this issue, recent studies have begun to investigate the gas-phase hydrolysis of 

nerve agents.56 Initially, Troya performed a computational mechanistic study of the gas-phase 

hydrolysis of sarin on the Zr-based MOFs UiO-66 and MOF-808.57 In contrast to previous 

experimental reports of catalytic turnover in buffered solution, the calculations showed extremely 

strong binding energies between the phosphonic acid product and the nodes. The product inhibition 

was predicted to be considerably worse when the hydrolysis product bound to the node through 

two adjacent Zr-oxo bonds in a bidentate fashion, compared to a monodentate binding mode on 

one Zr atom. Subsequent experiments were performed to probe the in situ capture and degradation 

of the nerve agent simulant dimethyl methylphosphonate on various Zr-MOFs.58,59 These 
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experiments corroborated the theoretical prediction that exposure to vapor-phase 

organophosphonates leads to strongly bound products on the Zr6 nodes, albeit under ultrahigh-

vacuum conditions, which may inhibit further reactions. 

 
 

Figure 5.1. (a) Structure of NU-1000, viewed along the crystallographic c direction, highlighting the 31 Å 
hexagonal and 10 Å triangular channels (visualized using iRASPA2). Brown, white, red, and green spheres 
represent C, H, O, and Zr atoms, respectively. (b) Simplified representation of a NU-1000 node before and after 
metal deposition by AIM or SIM. For simplicity, only one single-atom site is depicted, although it is possible to 
deposit additional single-atom sites on the three remaining faces of the node. 
 

A potential method to avoid this problem is to deposit metals as single-atom catalysts on 

the MOF nodes, such that the hydrolysis products bind to the active site in a more favorable 

monodentate fashion. Atomic layer deposition in MOFs (AIM)237–240 or solvothermal deposition 

in MOFs (SIM)203,241–244 can be used to synthesize such systems. NU-1000 (Figure 5.1), which is 

constructed from [Zr6(μ3-O)4(μ3-OH)4(OH)4(OH2)4]8+ nodes and tetratopic 1,3,6,8-(p-

benzoate)pyrene (TBAPy4−) linkers, is an ideal platform for metalation. NU-1000 contains 

uniform hexagonal channels with 31 Å diameters that facilitate diffusion of metal precursors 

through the MOF pores to react with the periodic array of Zr6 nodes, which contain reactive 

terminal –OH and –OH2 groups that can substitute with the precursors, resulting in metal 



 132 
deposition at each node face (see Figure 5.1b). Through a combination of various experimental 

techniques, such as single-crystal and powder X-ray diffraction (SCXRD and PXRD), and density 

functional theory (DFT) calculations,245 it is possible to obtain atomically precise characterization 

of the deposited catalyst sites and their attachment to the MOF supports. For example, Hupp and 

Farha and co-workers have used SCXRD and PXRD to analyze single-atom V,241 Mo,246 Cr,247 

and Cu248 species deposited on the nodes of NU-1000. Various postsynthetic strategies also allow 

experimentalists to prevent multiatom cluster growth and to direct the deposition of metal ions 

toward different-sized pores of NU-1000 depending on the desired grafting site.249 In contrast to 

other solid supports, the MOF-supported catalytic active sites are uniformly sized, uniformly 

spaced, and are crystallographically well-defined, which enables detailed computational 

mechanistic studies to be performed to analyze structure–function relationships across an array of 

metals.250–253 

Herein, we use DFT to perform a thorough screening of single-atom transition-metal 

catalysts, in varying oxidation states, deposited on NU-1000 nodes for the gas-phase hydrolysis of 

sarin. Through screening and calculation of molecular descriptors, we explore periodic trends for 

insights into the role of electronic structure in catalyzing organophosphonate hydrolysis. Our initial 

goal in this work is to investigate materials capable of circumventing the product inhibition 

previously observed during gas-phase degradation of nerve agents on Zr6 nodes, by forcing the 

products to bind to the active site in a monodentate fashion, thus facilitating catalyst regeneration. 

By calculating the complete reaction pathways for selected M–NU-1000 systems, we highlight the 

need to consider more than a single reaction step when comparing catalytic cycles across a large 

group of diverse materials. Finally, using the energetic span model (ESM) to calculate relative 
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turnover frequencies (TOFs), we identify single-atom catalysts that are predicted to have higher 

TOFs than unfunctionalized NU-1000 for this reaction. 

5.2 Computational Details 

5.2.1 Cluster Models 

A cluster model was used to represent the Zr6 node of NU-1000, which was obtained from 

Mondloch et al.1 and corresponds to the mixed-staggered proton topology.48 A small “formate 

model” was constructed by truncating all eight pyrene-based linkers to capping formate groups 

([Zr6(μ3-O)4(μ3-OH)4(OH)4(OH2)4]8+(HCOO−)8, Figure 5.2b). This model was used to screen the 

supported single-metal catalysts. A larger “benzoate model” was constructed by modeling the 

bottom four linkers as formate groups and using benzoate groups for the four linkers located 

around the supported transition metals ([Zr6(μ3-O)4(μ3-

OH)4(OH)4(OH2)4]8+(C6H5COO−)4(HCOO−)4, Figure D.1 in Appendix D). This larger model was 

only used to test the effect of model size on the reaction energetics for the TiIV–NU-1000 system. 

 
 

Figure 5.2. (a) Representation of M–NU-1000 systems with metals in +2, +3, and +4 oxidation states. (b) 
Optimized NU-1000 and (c) TiIV–NU-1000 (base catalyst denoted as TiIV–OH) formate cluster models. Dark 
gray, white, red, turquoise, and light gray spheres represent C, H, O, Zr, and Ti atoms, respectively. 
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Initially, we studied 36 M–NU-1000 systems with metals in +2, +3, and +4 oxidation states. 

We considered metals that have been previously deposited using AIM or SIM as well as new 

metal/oxidation state combinations to potentially guide future experiments.254 The MII–NU-1000 

systems were VII, CrII, MnII, FeII, CoII, NiII, CuII, ZnII, MoII, PdII, WII, and PtII. The MIII–NU-1000 

systems were ScIII, CrIII, FeIII, CoIII, CuIII, YIII, RuIII, RhIII, CeIII, IrIII, and AuIII. The MIV–NU-1000 

systems were TiIV, VIV, MnIV, ZrIV, MoIV, RuIV, PdIV, CeIV, HfIV, WIV, ReIV, OsIV, and PtIV. 

Following metal deposition by SIM or AIM, using water as a coreactant,237 the original terminal –

OH and –OH2 groups on the Zr6 node are replaced by a M–OH species bridging two oxo or 

hydroxo groups. This chelating mode has previously been determined as the most energetically 

favorable255 and crystallographically dominant241,246,247 configuration for metals anchored on NU-

1000 nodes. The most stable proton topologies for the single-atom sites, where each structure is 

charge-neutral, were obtained from Ye et al.251 To confirm that these topologies were indeed most 

stable, we reoptimized each system using the computational details described below, and the 

different topologies are depicted in Figure 5.2a. The optimized NU-1000 formate cluster models 

before and after deposition of TiIV are provided in Figure 5.2b,c, respectively. Although additional 

single-atom sites may be deposited on the three remaining faces of the node,255 we only modeled 

one site for simplicity. 

5.2.2 Electronic Structure Calculation Details 

All electronic structure calculations were performed using the Gaussian 09 package (revision 

D.01).109 Geometry optimizations and frequency calculations were performed for all species using 

DFT with the M06-L functional75 and an ultrafine integration grid. We chose M06-L because it 

exhibits a reasonable balance between chemical accuracy and computational expense, it inherently 
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includes some dispersion corrections,110 it performs well for transition-metal systems,256 and it has 

provided reliable results in previous computational studies for NU-1000.255,257,258 An automatic 

density-fitting set generated by Gaussian 09 was employed to reduce the computational cost. The 

def2-SVP basis set was used for H, C, and O atoms of the Zr6 node, linkers, and capping groups. 

The def2-TZVP basis set was used for atoms of the reacting water and sarin molecules and the 

transition metals, including the SDD effective core potential (ECP) for second- and third-row 

transition-metal atoms.76,79,219 For Ce, the SDD basis set with the associated ECP was applied.80 

The C atoms of the formate and benzoate linker groups were held fixed to mimic the 

constraints imposed by the surrounding MOF structure, whereas all remaining atoms were allowed 

to relax. The nature of all stationary points, both intermediates and transition states, were verified 

by the calculation of analytic vibrational frequencies. All minima were characterized by zero 

imaginary frequencies, whereas all transition-state structures had exactly one imaginary frequency. 

These frequencies were used to calculate molecular partition functions using the particle in a box, 

rigid rotor, and quantum mechanical harmonic oscillator approximations, but all frequencies below 

50 cm−1 were replaced with values of 50 cm−1 (quasi-harmonic-oscillator approximation).70 All 

reported thermochemical properties were computed at standard conditions (298.15 K, 1 atm) in 

the gas phase (i.e., with no solvation model). The energy values in the article correspond to 

standard-state Gibbs free energies, and self-consistent field (SCF) energies and enthalpies are 

provided in Appendix D. 

Geometry optimizations were performed for all possible spin states for each metal system, 

and the most stable spin structures (i.e., lowest-energy electronic states) were used to calculate the 

energetics for each species in a mechanism. Cartesian coordinates and spin states for all optimized 

structures are given in Appendix D. 
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5.3 Results and Discussion 

5.3.1 Binding Energies 

The overall reaction is shown in Scheme 5.1, where a vapor-phase water molecule hydrolyzes sarin 

into the products isopropyl methylphosphonic acid (IMPA) and HF. Before calculating the full 

catalytic mechanisms, we were interested in analyzing the binding energies of sarin, water, and 

IMPA to the single-atom catalysts. Because the ultimate goal is to use these materials for 

application in protective equipment such as gas masks, it is important to consider competitive 

adsorption with water that would be relevant in a realistic humid environment. Without a high 

affinity for selective adsorption of sarin under ambient conditions, high levels of catalytic activity 

are irrelevant.155 Other atmospheric contaminants such as CO2, SO2, and NO2 are also 

relevant259,260 but are outside the scope of this initial study. Further, since product inhibition is 

known to be an issue for gas-phase nerve agent hydrolysis, we wanted to calculate the binding 

energies of IMPA to the 36 M–NU-1000 systems to potentially rule out any metals before 

investigating full degradation pathways. 

Scheme 5.1. Overall Reaction for Gas-Phase Sarin Hydrolysis 
 

 
 

We considered the binding geometry in which sarin (or IMPA) binds through a M–O(=P) 

bond, as this is known to be the most favorable binding mode.57,221 All water binding geometries 

were initially modeled through a M–O bond and then optimized. We found that water either stayed 

in this chemisorbed geometry or converged to a physisorbed water molecule depending on the 

system. The binding free energies (ΔGbinding) for the three adsorbate species are shown in Figure 

5.3a–c for MII, MIII, and MIV systems, respectively. The ΔGbinding values are calculated via 
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ΔGbinding = GMOF+adsorbate − GMOF − Gadsorbate                  (5.1) 

where a negative ΔGbinding indicates favorable binding. In Figure 5.3, the x-axes are labeled with 

elements from left to right along the periodic table, where the first-row metals appear first and then 

second-row metals and so on. The values from Figure 5.3 are listed in Tables D.1–D.3. 

 
 

Figure 5.3. Binding free energies for sarin, water, and IMPA to (a) MII–NU-1000, (b) MIII–NU-1000, and (c) 
MIV–NU-1000 systems. 
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As mentioned above, it is ideal for sarin to have a stronger, or at least similar, binding 

energy to the catalysts compared to water. This is true for 32 out of the 36 systems, where 4 MII–

NU-1000 systems (CrII, CuII, PdII, and PtII) showered slight preferential adsorption for water. 

Twenty three out of the 36 systems showed IMPA binding energies larger than 100 kJ/mol and 

thus may be expected to suffer from product inhibition at room temperature. It is interesting to 

note that ZrIV, whether isolated as a single-atom here or in the unfunctionalized parent MOF, 

exhibits very strong product binding, most likely due to its strong Lewis acidity.139 By examining 

periodic trends, it is apparent that MIV–NU-1000 systems generally exhibit the strongest binding 

energies for sarin, whereas MII–NU-1000 systems show the strongest binding of IMPA. In general, 

most of the systems tend to bind IMPA much stronger than sarin, which is especially evident for 

the MII–NU-1000 systems. The large difference in their binding energies can be attributed to the 

different binding geometry for the two adsorbate species on the single-atom sites. As shown in 

Figure D.2, the only interaction for sarin is through a relatively long M–O(=P) bond (e.g., 2.14 Å 

for FeII-Sarin), whereas for IMPA, there is a stabilizing hydrogen bond formed with the M–OH 

group in addition to a shorter M–O(=P) bond (e.g., 1.92 Å for FeII-IMPA). Surprisingly, we 

discovered that some of the MIV–NU-1000 systems (ReIV, OsIV, and PtIV) showed unfavorable 

binding energies for sarin, and so we did not explore these metals any further. PdIV–NU-1000 also 

exhibited unfavorable binding, although its binding free energy for sarin was calculated to be only 

+7.1 kJ/mol, and thus we did not rule it out at this stage. 

5.3.2 Catalytic Cycle and Validation of Formate Cluster Model for TiIV–NU-1000 

To clearly explain each step of the proposed catalytic cycle for sarin hydrolysis on these systems, 

we use TiIV–NU-1000 as an example. We choose to discuss TiIV here because it is quite similar to 

the ZrIV active sites in unfunctionalized NU-1000. Also, the only possible spin state for the TiIV–
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NU-1000 system is a singlet, which simplifies the following discussion. The entire catalytic cycle 

is depicted in Scheme 5.2, starting from the deposited base catalyst, TiIV–OH, active site. 

Throughout the scheme, the sarin and ambient water molecules are colored red and blue, 

respectively, to clarify the movement of atoms during the course of the mechanism. First, sarin 

binds through a relatively strong Ti–O(=P) bond (ΔGbinding = –99.2 kJ/mol). In the Reactant 

Complex, a water molecule (that would be present in a humid environment) binds to the Ti–OH 

group through H-bonding. For direct comparison to Troya’s work, this corresponds to a general 

base hydrolysis mechanism.57 In a concerted step, the Ti–OH group abstracts a H atom from water, 

which then performs a nucleophilic attack on the P atom of sarin in TSnuc. We only discuss one 

pathway herein, where nucleophilic attack occurs directly opposite the –OiPr group but note that 

there are two other pathways where attack can also occur opposite the –F or –CH3 groups. A full 

explanation for this choice is given in Appendix D (see Figure D.3). 

Scheme 5.2. Illustration of the Proposed Catalytic Cycle of Gas-Phase Sarin Hydrolysis on a TiIV–NU-1000 
Cluster 
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Nucleophilic attack leads to the formation of a pentacoordinated trigonal bipyramidal 

(TBP) INT1 species. The hydroxide nucleophile and –OiPr group are axial substituents, whereas 

the –F and –CH3 groups are equatorial. For the purposes of screening across many metals, we were 

only interested in the mechanism involving cleavage of the P–F bond to generate HF product as 

this is known to be the most favorable pathway.57 In TBP phosphorus molecules, the most 

electronegative substituent is more stable in an axial position, from which elimination is more 

energetically favorable.126 Thus, elimination of –F requires a Berry pseudorotation to direct it from 

an equatorial to an axial site,122,261 forming INT2. In TSeli, elimination of HF involves proton 

transfer from the nucleophilic –OH group. The resulting Product Complex is stabilized by three 

hydrogen bonds, as depicted in Scheme 5.2. Once HF desorbs from the active site, the final TiIV–

IMPA species is generated, where IMPA is bound in a monodentate fashion to the Ti atom. 

Finally, the IMPA product desorbs and regenerates the active site, completing the cycle. 

 
 

Figure 5.4. Comparison of the reaction free-energy profiles for gas-phase sarin hydrolysis catalyzed by the 
formate (solid line) and benzoate (dashed line) cluster models of TiIV–NU-1000. 
 

The reaction free-energy profile for the catalytic cycle is shown in Figure 5.4. As 

mentioned before, we calculated the full mechanism for sarin hydrolysis on TiIV–NU-1000 using 
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both formate and benzoate linkers near the active site to test the effect of model size on the reaction 

energetics. Comparing the two profiles in Figure 5.4, we see that the results are quite similar for 

the two models. More explicitly, the free-energy barrier from the bound sarin molecule to the Berry 

pseudorotation transition state, ΔG = G(TSBerry) − G(TiIV–Sarin) − G(H2O), is calculated as 141.0 

and 142.1 kJ/mol for the formate and benzoate models, respectively. The HF elimination barrier, 

ΔG = G(TSeli) − G(INT2), is 36.7 and 35.6 kJ/mol for the formate and benzoate models, 

respectively. Finally, the product desorption barrier, ΔG = G(TiIV–OH) + G(IMPA) + G(HF) − 

G(Product Complex), is 122.9 and 126.2 kJ/mol for the formate and benzoate models, 

respectively. 

Since these barriers differ by only a few kJ/mol and are within the DFT error, our results 

suggest that the replacement of benzoate linkers by formate capping groups does not strongly 

affect the reaction energetics. This observation validates that our smaller formate model is 

acceptable for screening purposes. In addition to being relatively accurate, the formate model also 

considerably reduces the computational expense for screening across a wide variety of catalysts. 

The reason for the striking similarity between the differently sized models can be attributed to the 

effective isolation of the single-atom active site. The deposited metal is located far enough from 

the rest of the Zr6 node support and linkers such that the inclusion of benzoate linkers does not 

affect the reaction, in contrast to the differences observed between formate and benzoate models 

when nerve agent hydrolysis takes place on unfunctionalized Zr6 nodes.198,207,221 Further, by using 

the smaller formate groups, we essentially limit the influence of dispersion interactions with the 

linkers139 and only focus on the effects of metal identity and oxidation state on the reaction 

energetics. 
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5.3.3 Effect of Transition Metal on Key Barriers 

To explore the effect of metal identity and oxidation state on the reaction mechanism described 

above for TiIV–NU-1000, we substituted TiIV in the single-atom catalyst model with the other 32 

metals (omitting ReIV, OsIV, and PtIV based on the initial analysis of binding energies). Because 

the overall pathway is rather large, requiring the calculation of 10 species, we first sought to narrow 

down the number of possible candidates. Examining the profile in Figure 5.4 shows that there are 

two dominant barriers throughout the mechanism – nucleophilic attack and product desorption. 

The calculation of transition states is relatively expensive and more nuanced than optimizing 

minima structures. However, a careful analysis of Figure 5.4 reveals that INT1 is energetically and 

structurally similar to TSnuc, and so the free-energy barrier to form INT1 serves as a good predictor 

of the nucleophilic attack barrier. The validity of this argument is proven in a later section, where 

we show a Brønsted–Evans–Polyani (BEP) relationship between the TSnuc activation barrier and 

the reaction energy to form INT1. Thus, we plotted Δ𝐺YZ[7 versus ΔGIMPA,des. (Figure 5.5) to 

identify the most promising candidates to study in more detail. Here, Δ𝐺YZ[7 = G(INT1) – G(TiIV–

Sarin) – G(H2O) and ΔGIMPA,des. = G(TiIV–OH) + G(IMPA) − G(TiIV–IMPA). Note that after 

identifying the most promising candidates below, the nucleophilic attack transition state (TSnuc) is 

explicitly calculated in all following sections as part of the full hydrolysis mechanisms for the most 

promising catalysts. 
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Figure 5.5. Effect of transition-metal identity and oxidation state on the free-energy barrier to form INT1 and the 
free-energy barrier to desorb the IMPA product from the active site of M–NU-1000 systems, where the optimal 
metals are located closest to the origin. As a visual aid, we classify metals as “ideal” if they exhibit barriers lower 
than 100 kJ/mol. 
 

In Figure 5.5, the optimal metals are located closest to the origin, showing low barriers for 

both nucleophilic attack and product desorption. As a visual aid, we classify metals as “ideal” here 

if they exhibit barriers lower than 100 kJ/mol, although this choice is arbitrary. The dashed box 

highlights PdIV, CuIII, CoIII, FeIII, and CuII as potentially good candidates, followed by WIV, CoII, 

and PdII. By removing the metal labels, which make it somewhat confusing to analyze the overall 

trends, we observe a pseudo-Pareto front (see Figure D.4). In other words, there is a trade-off 

between the energy barrier for nucleophilic attack and the product desorption energy such that no 

metal has perfectly low barriers for both steps. 

In Table 5.1, we list the larger of the two barriers (either Δ𝐺YZ[7 or ΔGIMPA,des.) in order of 

increasing value to convey the magnitude of the key barriers for each M–NU-1000 system. The 

table cells are shaded white and green if the larger free-energy barrier corresponds to Δ𝐺YZ[7 and 

ΔGIMPA,des., respectively. The values for both barriers from Figure 5.5 are listed in Table D.4. For 

23 out of the 33 M–NU-1000 systems, the larger barrier is for desorption of the IMPA product 
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from the active site. This suggests that product inhibition may be a more general problem for most 

metals across the periodic table, regardless of the oxidation state, even though we consider IMPA 

binding in a monodentate fashion. 

Table 5.1. Key Barriers for M–NU-1000 Systems 
 

Metal Larger Barriera (kJ/mol) 
PdIV 61.7 
CuIII 72.6 
CoIII 81.3 
FeIII 89.4 
CuII 98.8 
WIV 108.4 
CoII 109.6 
PdII 109.8 
FeII 113.3 
WII 114.1 
AuIII 115.9 
ZnII 121.1 
CeIV 122.7 
NiII 124.1 
MnII 125.3 
ScIII 125.4 
RhIII 127.6 
RuIII 129.3 
TiIV 132.2 
CrIII 132.5 
RuIV 133.3 
IrIII 135.6 
YIII 137.5 
VIV 137.5 
CrII 138.3 
VII 139.6 

MoII 140.3 
ZrIV 142.3 
MoIV 143.2 
MnIV 143.2 
HfIV 144.8 
CeIII 145.3 
PtII 160.4 

 
aLarger barrier means the free-energy barrier to form INT1 or the free-energy barrier to desorb the IMPA product, 
whichever is larger. Cells shaded white and green signify that the value corresponds to ∆𝐺89:! and ∆GIMPA,des., 
respectively. 
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On the basis of the data in Figure 5.5 and Table 5.1, we decided to calculate the full 

pathways for gas-phase sarin hydrolysis for 19 of the 36 initially considered M–NU-1000 systems 

(PdIV, CuIII, CoIII, FeIII, CuII, WIV, CoII, PdII, FeII, WII, AuIII, ZnII, CeIV, NiII, MnII, ScIII, RhIII, RuIII, 

and TiIV), representing a broad range of metals in different oxidation states. We decided to 

calculate the entire mechanism (including transition states) for such a large number of candidates 

because, as will be argued in the following sections, it is important to consider more than a single 

step when screening across a wide variety of catalysts. In other words, we wanted to include any 

potentially promising single-atom catalysts, even if they exhibited slightly large Δ𝐺YZ[7 or 

ΔGIMPA,des. barriers. The remaining 17 M–NU-1000 systems showed free-energy barriers ranging 

from ∼130 to 160 kJ/mol and can be safely excluded, as the large barriers make them nonideal 

systems for this reaction. 

5.3.4 Comparison of Full Pathways 

With regard to the full mechanism for gas-phase sarin hydrolysis on a M–NU-1000 cluster, as 

depicted in Scheme 5.2, there are four elementary steps that must be considered when assessing 

the catalytic activity: 

1. Nucleophilic attack, Δ𝐺!"#
‡  = G(TSnuc) – G(Reactant Complex) 

2. Berry pseudorotation, Δ𝐺\]??^
‡  = G(TSBerry) – G(INT1) 

3. HF elimination, Δ𝐺]_A
‡  = G(TSeli) – G(INT2) 

4. IMPA desorption, ΔGIMPA,des. = G(M–OH) + G(IMPA) – G(M–IMPA) 

First, we analyze the free-energy barrier for each elementary step for the remaining 19 M–

NU-1000 systems. As mentioned in the Computational Details section, all possible spin states for 

each system were considered. The structures, energies, and frequencies of the lowest-energy spin 
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states were used to calculate the Gibbs free energies for each species in a mechanism at T = 298.15 

K. Note that, for application in personal protective equipment under realistic conditions, room 

temperature is the relevant temperature. The SCF energies and enthalpies corresponding to the 

most stable spin structures are given in Appendix D along with the SCF energies for higher-energy 

spin states. The free-energy barriers for the four elementary steps in the reaction are plotted in 

Figure D.5, and the values are listed in Table D.5. 

The results indicate that the highest free-energy barriers along the reaction pathway vary 

for the 19 catalyst candidates. For M = CoIII, CuIII, PdIV, CeIV, and WIV, the largest barrier is for 

nucleophilic attack. For M = ScIII, TiIV, MnII, FeII, FeIII, CoII, NiII, CuII, ZnII, RuIII, RhIII, PdII, WII, 

and AuIII, the largest barrier corresponds to IMPA desorption. Further, for M = TiIV, CuIII, and 

FeIII, the differences in free-energy barriers for nucleophilic attack and IMPA desorption are 

relatively small (6.3, 7.9, and 9.0 kJ/mol, respectively). Although it is clear that nucleophilic attack 

and IMPA desorption are the most influential elementary steps, it is impossible to state which 

single-atom catalyst model is the most promising based on this data alone. If we were instead 

considering only a small number of catalysts, where there was a single elementary step that 

dominated the reaction kinetics for each metal, then we could employ the philosophy of a “rate-

determining step” (RDS)262 to argue which catalyst is the most promising. Conversely, using the 

concept of an RDS for our study would inherently ignore barriers that are only slightly lower in 

energy than the largest barrier, resulting in misleading or erroneous predictions of the overall 

catalyst activities. Thus, it is important to consider more than a single reaction step when screening 

a large number of potential catalysts.251 To illustrate this point, we discuss PdII–NU-1000. Figure 

D.5 and Table D.5 show that PdII has the smallest RDS barrier (ΔGIMPA,des. = 75.2 kJ/mol) and 

might naively be predicted as the most promising catalyst for gas-phase sarin hydrolysis. However, 
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once we incorporate the relative free energies of all intermediates and transition states in the 

catalytic cycle into our kinetic analysis, we show that the opposite is true – surprisingly, PdII–NU-

1000 is one of the worst catalysts out of the transition metals we examined. 

Before moving on to address this issue, we also calculated the full pathway for gas-phase 

sarin hydrolysis on bare, unfunctionalized NU-1000 for comparison. To compute the reaction on 

unfunctionalized NU-1000 (hereafter referred to simply as NU-1000), we modeled the bottom four 

linkers as formate groups and used benzoate groups for the four linkers located around the active 

site. The bottom formate groups are located far away from the active site and do not directly 

interact with the reactants, and so this simplification should have a negligible effect on the reaction 

occurring on the opposite node face. However, in contrast to the functionalized M–NU-1000 

systems, we considered it important to treat the linkers around the active site as benzoate groups 

because the linkers are in closer proximity to the reactants for the reaction on NU-1000.198,207,221 

We modeled a “partially dehydrated” node of NU-1000 ([Zr6(μ3-O)4(μ3-OH)4(OH)4(OH2)3]8+-

(C6H5COO−)4(HCOO−)4, Figure D.1b), in which one terminal H2O moiety has desorbed, 

generating an open metal site. This node topology, confirmed by experimental infrared 

spectroscopy and DFT in a prior work,175 is essential for the catalysis to occur and is commonly 

used for mechanistic studies.57,139 We note that the cleavage of a Zr–OH2 bond requires 

approximately 84 kJ/mol in free energy. We calculated the general base hydrolysis mechanism for 

NU-1000, in which sarin and IMPA bind to Zr in a monodentate fashion, for the most direct 

comparison to the 19 M–NU-1000 systems. An illustration of the proposed catalytic cycle for gas-

phase sarin hydrolysis on NU-1000 is given in Figure D.6. Note that the energetics for a bidentate 

binding mode on NU-1000 is more unfavorable (see Figure D.7). 
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Figure 5.6. Comparison of the reaction free-energy profiles for gas-phase sarin hydrolysis catalyzed by single-
atom M–NU-1000 systems as well as unfunctionalized NU-1000. The labels Ik and Tj correspond to the 
terminology used in the energetic span model for intermediates and transition states, respectively. 
 

A comparison of the reaction free-energy profiles for NU-1000 and the 19 M–NU-1000 

systems is shown in Figure 5.6. The individual free-energy profiles for each catalyst model are 

provided in Figure D.8. The most striking difference between the supported catalysts and NU-

1000 is that the energy profile for the latter lies lower than all supported metals for nearly every 

species along the mechanism. This can be attributed to the strong Lewis acidity of the ZrIV active 

site in NU-1000, which results in strong binding of all reactive intermediates. More importantly, 

we observe that all 19 of the single-atom catalysts display lower product desorption energies than 

NU-1000. This is true regardless of whether the IMPA product binds to NU-1000 in a monodentate 

or bidentate fashion, where the product desorption energy is ΔGIMPA,des. = 151.7 and 168.4 kJ/mol 

for monodentate and bidentate modes, respectively (Figure D.7). This agrees with Troya’s 

previous results57 showing stronger binding energies for bidentate hydrolysis products. This is an 
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encouraging result, considering one primary aim of this study was to explore materials that can 

overcome the product inhibition previously observed during the gas-phase hydrolysis of nerve 

agents on Zr6 nodes. We now integrate the relative free energies of all intermediates and transition 

states into our kinetic analysis for a more detailed comparison of all 20 catalysts. 

5.3.5 Relative TOFs 

The TOF of a catalytic reaction measures the number of cycles completed per active site per unit 

time, which is a useful quantification of the catalyst efficiency.263 The ESM developed by Kozuch 

and Shaik264,265 translates the energy profile derived from electronic structure calculations to the 

TOF obtained in experiments. A fundamental consequence of the ESM is that the kinetics of a 

catalytic cycle is determined by the relative free energies of all transition states and intermediates 

in the mechanism, instead of being controlled by a single reaction step. Using a DFT-calculated 

free-energy profile, the TOF may be computed as 

𝑇𝑂𝐹 = `;F
a

()Tb,	∆='>? c	,	-

∑ ()Td
?0	A	BC	A	D=E0,C

>? eF
0G7,CGH

           (5.2) 

𝛿𝐺′V,` = R
∆𝐺B 	if	𝑇V 	follows	𝐼
0	if	𝑇V 	precedes	𝐼

                                                       (5.3) 

where kB is the Boltzmann’s constant, T is the temperature, h is the Planck’s constant, R is the ideal 

gas constant, ΔGr is the overall reaction free energy, N is the number of steps in the cycle, Tj is the 

free energy of transition state j (j = 1, 2, ...), and Ik is the free energy of intermediate k (k = 0, 1, 

...). The largest δG = (Tj – Ik – δG′j,k) is defined as the energetic span of the cycle, and the 

corresponding combination of states (j and k) are defined as the TOF-determining transition state 

(TDTS) and TOF-determining intermediate (TDI), respectively. Fundamentally, a smaller 
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energetic span results in a higher TOF and faster catalysis. In eq 5.2, the numerator is independent 

of the catalyst, whereas the denominator strongly depends on the catalyst properties. 

Given the inherent uncertainty in DFT,136 it is difficult to obtain reaction rate constants for 

direct comparison to experiments. For example, a small inaccuracy in the calculation of the 

energetic span results in an exponential error in the TOF calculation, and so it is challenging to 

predict quantitatively accurate absolute TOFs through DFT.264 However, because of error 

compensation, relative TOF values can be useful for quantitatively comparing catalyst efficiencies. 

An additional reason to focus on relative TOFs is that the application of the ESM to compute TOFs 

relies on the assumption of ideal conditions without side reactions.251,263 Whereas the development 

of a microkinetic model would be a more rigorous method to obtain TOFs, performing such an 

analysis would be computationally expensive for such a large-scale catalyst screening. Further, we 

note that eq 5.2 is generalized such that the concentrations or pressures of all reactant and product 

species are assumed to be 1 molar or 1 bar, which may not represent realistic battlefield conditions. 

Because these concentration effects would likely be consistent across all catalysts, our main focus 

in this section is on the relative performance of each catalyst. Thus, the discussion below is 

centered on the calculation of relative TOFs. 

We used the procedures established by Ye et al.,251 reproduced here for clarity, to apply eq 

5.2 to calculate TOFs for all 20 catalysts. There are no corresponding transition states associated 

with the adsorption and desorption reaction steps throughout the mechanism. Thus, if no transition 

state is shown between two connecting intermediates in the free-energy profiles, then the free 

energy of that “missing” transition state is set equal to the energy of the higher of the two 

surrounding intermediates. Also, if a transition-state free energy is lower than the energy of either 
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of the intermediates it connects, then its energy is raised to that of the higher of the two surrounding 

intermediates. 

Table 5.2. Calculated Relative TOFs for Gas-Phase Sarin Hydrolysis at 298.15 K and 1 atm 
 

System Relative TOFa TDTS, TDI 
CuIII 1.00 T4, I5 
FeIII 2.66 × 10–1 T3, I5 
WIV 1.65 × 10–1 T3, I5 
NiII 9.26 × 10–2 T3, I5 
ScIII 2.04 × 10–2 T3, I5 
AuIII 9.66 × 10–3 T3, I5 
TiIV 8.88 × 10–3 T3, I5 
FeII 7.55 × 10–3 T3, I6 
CoII 5.90 × 10–3 T3, I5 
WII 1.60 × 10–3 T3, I5 
CoIII 1.39 × 10–3 T4, I5 
RhIII 1.34 × 10–3 T3, I6 

NU-1000 8.48 × 10–4 T4, I5 
MnII 8.06 × 10–4 T3, I5 
ZnII 5.95 × 10–4 T3, I5 
PdII 4.16 × 10–4 T3, I5 
CeIV 2.34 × 10–4 T4, I5 
RuIII 1.68 × 10–4 T4, I6 
CuII 3.63 × 10–6 T3, I5 
PdIV 2.20 × 10–12 T3, I5 

 
aAll values are relative to 2.03 × 10–9 s–1. 
 

The relative TOFs for NU-1000 and the 19 M–NU-1000 systems are listed in Table 5.2, 

where all values are relative to the largest calculated |TOF| (2.03 × 10−9 s−1 for CuIII–NU-1000). 

The highest relative TOFs are calculated to be 1.00, 0.266, 0.165, 0.0926, and 0.0204 for CuIII, 

FeIII, WIV, NiII, and ScIII, respectively. After an exhaustive analysis, we could not find a single, 

definitive explanation for the observed activity across the series of metals, a similar conclusion 

drawn in related studies.252 Rather, there is most likely a complex relationship between slight 

changes in the electronic structure, coordination geometry, and so forth that affects the catalyst 

efficiencies. Nonetheless, NU-1000 has a relative TOF of 8.48 × 10−4, which means that this 
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method predicts CuIII–NU-1000 to be over 1000 times more active than NU-1000 for gas-phase 

sarin hydrolysis. Moreover, we observe that 12 of the single-atom transition metal catalysts are 

predicted to be faster than NU-1000 for this reaction. This is most likely due to the lower product 

desorption energies calculated for the single-metal systems, as discussed in the previous section. 

Also, it is interesting to note that PdII exhibited a relative TOF of 4.16 × 10−4, which is remarkably 

small, considering it showed the smallest RDS barrier (see Figure D.5 and Table D.5). This serves 

as a caution against using the RDS philosophy as the sole predictor of catalyst activity and enforces 

the notion that it is vital to incorporate the relative free energies of all intermediates and transition 

states into a proper kinetic analysis. We also found that the species that dominate the calculated 

TOFs (the TDTS and TDI) vary across the 20 catalyst systems, as seen in Table 5.2. In various 

combinations, states T3, T4, I5, and I6 (TSBerry, TSeli, Product Complex, and M–IMPA + HF, 

respectively) are predicted to be the most influential states on the catalytic efficiencies. 

For an idea of how sensitive the absolute TOFs are to changes in energy, we mention that 

a 15 kJ/mol error in the free-energy value of the TDI for CuIII–NU-1000 (which is a realistic 

uncertainty estimate for reaction free energies in transition-metal systems using DFT251) changes 

its absolute TOF by a factor of 213 (see Figure D.9). Although we noted that accurate absolute 

TOFs are currently unattainable through DFT calculations, we must emphasize that our predicted 

absolute TOFs are extremely small for these gas-phase reactions. For context, the experimental 

TOF is 1.3 × 10−2 s−1 for the hydrolysis of a related nerve agent, soman, by NU-1000 using a N-

ethylmorpholine buffered solution.1 Recent experiments were conducted to evaluate the gas-phase 

decontamination efficiency of three Zr-MOFs, including NU-1000, toward the nerve agents soman 

and VX under ambient conditions and showed considerably slower hydrolysis rates compared to 

rates in basic buffer solutions,56 in agreement with our computational results. Thus, even though 
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we successfully identified multiple single-atom catalysts that have higher TOFs than NU-1000, 

the gas-phase hydrolysis of sarin is still quite slow (under the current modeling framework). One 

reason for the small absolute TOFs is that the overall reaction (Scheme 5.1) is thermodynamically 

unfavorable in the gas phase (ΔGr = 31.9 kJ/mol). Nonetheless, our calculations predict that 

deposition of single-atom transition metal catalysts may be a viable strategy for improving gas-

phase nerve agent hydrolysis by Zr6 MOFs. The ranking of single-atom catalysts in Table 5.2 can 

also be used to suggest which metals should be tested first in future experiments. Once these 

experiments are performed, we will be able to gauge the accuracy of our computational predictions 

of the relative TOFs and refine our kinetic analysis, if necessary. However, it is a difficult 

experimental challenge to quantify the kinetics of gas-phase decontamination. To the best of our 

knowledge, only one such method has been reported. Wang et al.56 used a digestion method to 

release unreacted nerve agents and tightly bound hydrolysis products from Zr-MOF catalysts to 

measure gas-phase reaction conversion profiles. Similar methods, in addition to accurate 

measurements of concentrations of catalyst active sites and adsorbed water under humid 

conditions, would be required to assess the reactivity of our proposed NU-1000-supported single-

atom catalysts for gas-phase sarin hydrolysis. 

As mentioned in the Computational Details section, we considered metals that have 

previously been deposited using AIM or SIM as well as novel metal/oxidation state combinations 

to guide future experiments and to explore periodic trends. However, from an experimental point 

of view, it is important to note that several metal oxidation states that we considered in this study 

may be challenging to stabilize. For example, it is possible that the WIV single-atom catalyst would 

oxidize to WV during the deposition process, similar to observations made when depositing a VIV 

precursor on NU-1000 nodes.241 This oxidation process would likely affect the resulting catalyst 
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activity and is thus an important consideration when selecting which metals to test in future 

experiments. Also, for realistic application under humid atmospheric conditions, it is essential for 

the node-supported metals to be relatively water-stable. This being said, several metals that were 

predicted to have higher TOFs than NU-1000 have previously been deposited on NU-1000 nodes 

and were found stable under neutral to basic conditions, including TiIV,266 FeIII,266,267 CoII,255,266 

and NiII255,257,266 (listed in order of decreasing stability). 

In terms of methods to potentially improve these TOFs, we note that increases in 

temperature would only modestly improve the catalytic efficiency of these systems. For example, 

the |TOF| is predicted as 3.79 × 10−8 s−1 at 318.15 K for CuIII–NU-1000 (Table D.6 and Figure 

D.10). Much higher temperatures may lead to distortion and/or degradation of the active sites. 

Also, in our current study, we only considered one explicit water molecule that acts as the 

nucleophile. The inclusion of multiple explicit water molecules near the active site, mimicking the 

reservoir of adsorbed water molecules found in MOF pores under humid conditions,56,268 may 

facilitate product desorption,269 stabilize the reaction energetics through H-bonding interactions, 

and/or enable alternative lower-energy pathways through proton-shuttling networks. It is unclear 

exactly how much the presence of atmospheric water would increase the TOFs, but we are 

currently investigating this matter in more detail. Recent gas-phase experiments performed under 

varying relative humidity conditions showed that large amounts of moisture present in Zr-MOFs 

can result in a moderate to significant enhancement of nerve agent hydrolysis rates.56 Further 

improvements to the TOF could also come from base heterogenization, as was recently studied 

using a Zr6 MOF/amino-functionalized dendrimer or polymer mixture for the hydrolysis of a nerve 

agent simulant.55 
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5.3.6 Catalytic Descriptor Relationships 

Last, we discuss the calculation of catalytic descriptor relationships to estimate transition-state 

barriers for the final 19 M–NU-1000 systems. As mentioned, the calculation of transition states 

can be relatively expensive for larger systems. Identifying relationships to accurately predict 

transition-state free-energy barriers can facilitate DFT screening studies such as ours, especially 

in the early stages of selecting which catalysts to explore. More importantly, these relationships 

can help visualize trends in catalytic activity and can provide valuable insight when screening 

across diverse metals in varying oxidation states. 

Linear BEP relationships can be used to estimate activation barriers based on the 

calculation of the reaction energy.270,271 Figure 5.7a shows a plot of the activation free energy, 

Δ𝐺!"#
‡  = G(TSnuc) – G(Reactant Complex), as a function of the reaction free energy, ΔGr,nuc = 

G(INT1) − G(Reactant Complex), for nucleophilic attack. The transition-state barrier was found 

to vary linearly with the free energy of reaction for nucleophilic attack for the 19 M–NU-1000 

systems. A linear fit gives the BEP-type relationship 

Δ𝐺!"#
‡  = 0.75ΔGr,nuc + 21.02 kJ/mol 

with R2 = 0.86. PdIV–NU-1000 is an outlier that deviates from the overall trend; excluding PdIV 

leads to a linear fit for the other 18 systems of 

Δ𝐺!"#
‡  = 0.83ΔGr,nuc + 15.57 kJ/mol 

with R2 = 0.96. However, since we showed that the concept of a RDS is inadequate for our 

screening purposes where multiple elementary steps have similar energetic barriers, accurately 

predicting one activation barrier using this BEP-type relationship will not necessarily result in an 

accurate depiction of the overall catalyst efficiency for various metals. Nonetheless, one important 

conclusion from this BEP-type relationship is that our initial decision to use the reaction energy to 
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form INT1 as a predictor for the TSnuc activation barrier to narrow down the 36 M–NU-1000 

candidates was a reasonable choice. 

 
 

Figure 5.7. Calculated activation free energy (∆𝐺IJK
‡ ) for nucleophilic attack as a function of (a) the reaction free 

energy (∆Gr,nuc) for nucleophilic attack, (b) the calculated NBO population of the d orbitals of the base catalyst 
(M–OH) metal atom, and (c) the calculated NBO charge of the base catalyst (M–OH) metal atom for 19 M–
NU-1000 systems. The dashed lines represent linear regression relationships. 
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To explore possible electronic properties that are related to the catalytic activity, we also 

compared the activation free energy for nucleophilic attack to various molecular descriptors. All 

molecular orbital parameters were calculated with the natural bond orbital (NBO) method119 in 

Gaussian 09. Figure 5.7b shows a plot of Δ𝐺!"#
‡  as a function of the calculated NBO population of 

the d orbitals of the base catalyst (M–OH) metal atom for the 19 M–NU-1000 systems. A linear 

fit gives a coefficient of determination of R2 = 0.58, where the TSnuc free-energy barrier decreases 

with increasing electron population in the d orbitals. Figure 5.7c shows a plot of Δ𝐺!"#
‡  as a 

function of the calculated NBO charge of the base catalyst (M−OH) metal atom. A linear fit gives 

R2 = 0.68, where the TSnuc free-energy barrier increases with increasing charge on the single metal. 

We also explored other possible molecular descriptors such as bond lengths, the sarin binding 

energy, the NBO charge on P in the M–Sarin species, and the P=O bond order in the M–Sarin 

species but found negligible correlations between these parameters and the nucleophilic attack 

barriers. Together, the plots in Figure 5.7b,c show that metals with nearly full d orbitals (∼8–9 

electrons) and lower atomic charges correlate with lower free-energy barriers for nucleophilic 

attack. Because of the relatively low R2 values, the activation free energies computed using these 

molecular descriptors would have low accuracy. Still, the linear relationships are useful for 

exploring periodic trends for nucleophilic attack on sarin by M–NU-1000 systems. Although it 

would be more desirable to derive relationships between descriptors and the catalyst TOFs or 

energetic spans, we note that such correlations are difficult to obtain because these hydrolysis 

mechanisms are complex and consist of different TOF-determining species (the TDTS and TDI) 

across the metals studied; catalytic descriptor relationships for a single elementary step are more 

closely connected to the fundamental chemistry. 
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5.4 Conclusions 

In this work, we utilized DFT to perform a comprehensive screening of single-atom transition-

metal catalysts deposited on NU-1000 nodes for the gas-phase hydrolysis of sarin. To enhance 

MOF-catalyzed nerve agent hydrolysis, previous approaches have focused on either incorporating 

defect sites or synthesizing MOFs with different metal nodes and/or functionalized ligands.272 This 

study represents one of the first reports to specifically consider single-atom catalysts for this 

application. The reason for exploring single-atom systems was to force the products to bind to the 

active site in a monodentate fashion, thereby avoiding unfavorable bidentate binding which 

possibly led to product inhibition in previous studies of gas-phase degradation of nerve agents on 

Zr6 nodes. A similar concept was reported in a very recent study in which the monomerization of 

a Zr-substituted polyoxometalate resulted in the isolation of a single-site Zr that was predicted to 

be active for the hydrolysis of the nerve agent simulant dimethyl chlorophosphate, leading to a 

monodentate-bound phosphate product.273 

Initially, we considered 36 M–NU-1000 systems with metals in +2, +3, and +4 oxidation 

states. We first analyzed the binding energies of sarin, water, and hydrolysis product IMPA to the 

metals to evaluate periodic trends. Thirty two out of the 36 systems showed preferential adsorption 

for sarin over water, which is ideal for realistic applications where competitive adsorption with 

water would be relevant in a humid atmosphere. MIV–NU-1000 systems exhibited the strongest 

binding energies for sarin, whereas MII–NU-1000 systems showed the strongest binding of IMPA. 

We then calculated the full catalytic cycle, using TiIV–NU-1000 as an example. To identify the 

most promising candidates to study in more detail, we then substituted TiIV with the other metals 

and plotted the free-energy barrier to form INT1 versus the free-energy barrier to desorb the IMPA 

product from the active site. This plot showed a tradeoff between the energy barrier for 



 159 
nucleophilic attack and the product desorption energy such that no metal has perfectly low barriers 

for both steps. On the basis of this data, we chose the best 19 M–NU-1000 systems (PdIV, CuIII, 

CoIII, FeIII, CuII, WIV, CoII, PdII, FeII, WII, AuIII, ZnII, CeIV, NiII, MnII, ScIII, RhIII, RuIII, and TiIV) 

and calculated the full pathways for gas-phase sarin hydrolysis and compared them to bare, 

unfunctionalized NU-1000. We observed that all 19 of the single-atom catalysts display lower 

product desorption energies than NU-1000, suggesting that they would experience less product 

inhibition than the parent MOF. The proposed catalytic cycle consists of four elementary steps: 

nucleophilic attack, Berry pseudorotation, HF elimination, and IMPA desorption. Our results 

indicate that the highest free-energy barriers, or “rate-determining steps”, vary across the 20 

catalysts, proving that it is important to consider more than a single reaction step when screening 

a large number of catalysts. Thus, we incorporated the relative free energies of all intermediates 

and transition states into our kinetic analysis and used the energetic span model to calculate relative 

TOFs to determine the efficiency of each catalyst. The highest relative TOFs were calculated to 

be 1.00, 0.266, 0.165, 0.0926, and 0.0204 for CuIII, FeIII, WIV, NiII, and ScIII, respectively. NU-

1000 has a relative TOF of 8.48 × 10−4, which means CuIII–NU-1000 is predicted to be over 1000 

times more active than NU-1000 for gas-phase sarin hydrolysis. Although we found that 12 of the 

single-atom transition-metal catalysts are predicted to be faster than NU-1000, we note that our 

calculated absolute TOFs are very small, partially due to the unfavorable thermodynamics of the 

overall reaction in the gas phase. We are currently investigating whether the inclusion of multiple 

explicit water molecules near the active site, simulating ambient moisture, can facilitate product 

desorption, stabilize the reaction energetics through H-bonding interactions, and/or enable 

alternative lower-energy pathways through proton-shuttling networks. Finally, we calculated 

catalytic descriptor relationships for the final 19 M–NU-1000 systems. We derived a BEP-type 
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relationship, where the activation free-energy barrier was found to vary linearly with the reaction 

free energy for nucleophilic attack. Also, we computed various molecular descriptors for the base 

catalysts and showed that metals with nearly full d orbitals and lower atomic charges correlate 

with lower free-energy barriers for nucleophilic attack on sarin. 

Overall, our calculations predict that deposition of single-atom transition-metal catalysts 

may be a viable strategy for improving gas-phase nerve agent hydrolysis rates by Zr-based MOFs. 

Our results establish design principles for enhancing the gas-phase decontamination of CWAs that 

can be used to guide future experiments. Previous studies of MOFs for nerve agent degradation 

have almost entirely focused on Zr(IV) frameworks. Going forward, the exploration of non-Zr-

based active sites for these reactions200 could have an important influence in the field of CWA 

detoxification. Ultimately, an exhaustive investigation into the solid-state catalytic activity of 

MOFs toward nerve agents in the gas phase, under varying humidity levels56,61 and in the presence 

of atmospheric contaminants, is warranted before MOFs may be applied in personal protective 

equipment such as gas-mask filters. 
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Chapter 6: Conclusions and Future Directions 

 

6.1 Summary 

Due to the high toxicity of CWAs such as nerve agents, simulants are often used in experiments 

as substitutes for the agents. However, there is little reason to believe that the current simulants 

used in the literature are optimal predictors of nerve agent reactivity. Thus, in Chapter 2, we 

performed DFT calculations on the alkaline hydrolysis of over 100 organophosphate molecules to 

identify improved simulants for the G-series nerve agents soman and sarin, based on low toxicity 

and similarity to nerve agent hydrolysis energetics and degradation mechanism. This screening 

highlighted 5 molecules that have nearly identical reaction barriers to the actual agents, while being 

far less toxic. We also derived QSAR models to determine the most significant molecular 

descriptors for describing the hydrolysis free energy barriers of these reactions. The optimal QSAR 

model was subjected to a thorough statistical analysis and validation procedure to confirm its 

predictive capacity, showing excellent quantitative and ranking accuracy. It was further shown that 

the model trained on G-series agents can reliably predict energetics for other organophosphate 

classes as well, including VX. Through these computational insights, experimentalists may be 

aided in accurately and safely studying these reactions with less toxic simulants. 

In Chapter 3, we performed DFT calculations to explore the catalytic hydrolysis of the 

nerve agent simulant DMNP on the Zr-based MOF NU-1000. The energy barriers computed in 

this study are in quantitative agreement with previous experimental kinetics data on the same 

reaction system. A comparison between uncatalyzed aqueous hydrolysis and the MOF-catalyzed 

reaction revealed the origin of the catalytic effects of NU-1000, where a node Zr atom activates 

the phosphate center to facilitate nucleophilic attack and a node hydroxyl group stabilizes the 
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negative charges building up on the leaving group oxygen of DMNP to facilitate the cleavage of 

its P–O bond, which resembles enzymatic catalysis of similar reactions. The effects of 

temperature-induced node dehydration and distortion on the catalytic efficiency were also 

examined, and the results are consistent with experimental findings, where the distorted node of 

NU-1000 shows an increase in the rate of DMNP hydrolysis compared to the completely hydrated 

regular form of NU-1000. 

As described throughout this dissertation, MOFs built from hexanuclear M(IV) oxide 

cluster nodes are effective catalysts for nerve agent hydrolysis, where the properties of the active 

sites on the nodes can strongly influence the reaction energetics. Importantly, the connectivity and 

metal identity of these M6 nodes can be easily tuned, offering extensive opportunities for 

computational screening to predict promising new materials. Thus, in Chapter 4, we used DFT to 

examine the effects of node topology, connectivity, and metal identity on the binding energies of 

multiple nerve agents and their corresponding hydrolysis products. By computing an optimization 

metric based on the relative binding strengths of key hydrolysis reaction species (water, agent, and 

bidentate-bound products), we predicted optimal M6 nodes for hydrolyzing specific nerve agent 

and simulant molecules, where our results are in qualitative agreement with observed experimental 

trends. This analysis highlighted the notion that no single metal or node topology is optimal for all 

possible organophosphates, suggesting that MOFs should be selected based on the agent of 

interest. Using the large amount of data generated from our DFT calculations, we then derived 

QSAR models to help explain the complex trends observed in the binding energies. Through linear 

regression, we identified the most important descriptors for describing the binding of nerve agents 

and their hydrolysis products to M6 nodes. These results suggested that both molecular and node 

properties, including both structural and chemical features, collectively contribute to the binding 
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energetics. By performing a thorough statistical analysis, we showed that our QSAR models are 

capable of making quantitatively accurate binding energy predictions for nerve agents and their 

hydrolysis products in a wide variety of M(IV)-MOFs. The insights gained in this study can be 

used to guide future experiments for the synthesis of MOFs with enhanced catalytic activity for 

organophosphate hydrolysis. 

Some recent studies have suggested that the gas-phase hydrolysis of nerve agents by Zr-

based MOFs may be limited by product inhibition resulting from strong bidentate binding of the 

hydrolysis products to the Zr6 nodes. A potential method to avoid this problem is to deposit single-

atom catalysts on the nodes so that the products bind in a more favorable monodentate fashion. 

Such catalytic active sites can be characterized with atomic precision, enabling detailed 

computational mechanistic studies. Thus, in Chapter 5, we used DFT to perform a comprehensive 

screening of single-atom transition-metal catalysts, in varying oxidation states, deposited on NU-

1000 nodes for the gas-phase hydrolysis of the nerve agent sarin. By calculating the complete 

reaction pathways for M–NU-1000 systems, we discovered that the highest reaction barrier varies 

between catalysts, highlighting the need to consider more than a single reaction step when 

screening a large number of diverse materials. Importantly, the single-metal catalysts are predicted 

to exhibit lower product desorption energies than unfunctionalized NU-1000. By comparing their 

relative turnover frequencies using the energetic span model, we identified several catalysts that 

are predicted to be more active than the parent MOF for this reaction. Finally, we explored periodic 

trends and molecular descriptors for their effect on catalytic activity. 

Overall, this dissertation establishes design principles that can be used to guide future 

experimental testing for the optimization of MOF catalysts for CWA detoxification. As computers 

grow more powerful and molecular modeling techniques are refined for better accuracy and 
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efficiency, computational studies will continue to play a vital role in this rapidly growing research 

area. From providing valuable mechanistic insights into experimental observations to screening 

candidate materials with potentially better performance for the degradation of nerve agents, 

computational modeling has great potential to accelerate scientific advancement in the field of 

MOF-catalyzed nerve agent hydrolysis. 

To further advance the findings of this dissertation, we suggest the research directions 

detailed below. 

6.2 Recommendations for Future Research 

In Chapter 5, we sought to improve MOF-based catalysts for gas-phase nerve agent hydrolysis by 

depositing single-atom transition-metal catalysts on the nodes of NU-1000, with the goal of forcing 

hydrolysis products to weakly bind to the active sites in a monodentate fashion, thus facilitating 

catalyst regeneration. Since the DFT calculations in that study were performed in the gas phase 

(i.e., with no solvation model), we considered one explicit water molecule (that would be present 

in a humid environment) near the single-atom active sites acting as the nucleophile. However, in 

a realistic battlefield environment, the amount of moisture present in the air would likely be much 

higher. Further, recent studies have shown that Zr-MOFs are capable of considerable water 

adsorption under ambient conditions. Using this observation, preliminary solid-phase experiments 

have shown that the water present inside MOF pores under varying relative humidity conditions 

is sufficient for catalytic nerve agent hydrolysis to occur, thereby circumventing the need for liquid 

water.56,60 Since these results were reported less than a year ago, there is still much to be explored 

concerning the exact mechanism behind the observed enhancement of gas-phase hydrolysis rates 

with large amounts of moisture. This presents a great opportunity to study the effects of increased 

humidity on the reaction mechanism through DFT calculations. As a continuation of our work in 
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Chapter 5, we suggest the exploration of gas-phase sarin hydrolysis catalyzed by single-atom 

catalysts supported on the nodes of NU-1000, in addition to various amino-functionalized systems 

as described below. For cluster-model DFT calculations, the inclusion of multiple explicit water 

molecules near the active site, mimicking the reservoir of adsorbed water molecules found in Zr-

MOF pores under ambient conditions, may facilitate product desorption, stabilize the computed 

reaction energetics through hydrogen-bonding interactions, and/or enable alternative lower-energy 

pathways through proton-shuttling networks. Depending on the humidity level chosen for study, 

it may also be worthwhile to perform periodic DFT calculations to fully capture the effects of large 

amounts of water present in the pores. 

Additionally, amino-functionalized linkers have been previously used in experiments to 

enhance the rate of nerve agent hydrolysis in basic buffered solutions, where higher pKas of the 

amine functionalities (i.e., higher basicity) are predicted to enable faster hydrolysis.21,51,169 This 

rate enhancement has also been observed with the use of heterogenized bases (e.g., amine-based 

dendrimers and polymers) to catalyze organophosphate hydrolysis in pure water55,274 and under 

ambient humidity conditions.60 To date, there has been limited computational analysis of the 

effects of amino groups on solution-phase hydrolysis,51,198 which did not consist of a full 

mechanistic study and kinetic analysis. Thus, we recommend further exploration of this topic, 

especially in the context of gas-phase nerve agent hydrolysis. To do so, we suggest performing 

cluster-model DFT calculations using different amino-functionalized linkers on NU-1000 (or other 

Zr-MOFs), with varying pKas, to act as Brønsted bases to aid the proton-transfer process during 

the degradation mechanism, again modeling multiple explicit water molecules near the active site. 

Periodic calculations could also be used to model larger amine-based dendrimers or polymeric 

bases in the MOF pores, although this would present many computational challenges. 
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Combining the hypotheses detailed above, we recommend exploring the synergistic effects 

of ambient moisture and amino-functionalized linkers, to aid proton-transfer and lower 

nucleophilic attack barriers, together with node-supported single-atom catalysts to facilitate 

product desorption. Together, these effects have the potential to significantly accelerate gas-phase 

nerve agent hydrolysis, with the ultimate goal of achieving sufficiently fast kinetics for practical 

application in personal protective equipment such as gas masks and protective suits. By using DFT 

to map out the complete catalytic pathways for the systems listed above and comparing their 

relative degradation kinetics to those obtained with unfunctionalized Zr-MOFs, some very 

promising catalysts could be discovered that warrant experimental testing. In general, future 

computational mechanistic studies should be performed in the gas phase in the presence of 

moisture, heterogenized base, and atmospheric contaminants to better compare with experiments 

as the field of MOF-based CWA detoxification moves forward into conducting studies under 

realistic operating conditions. 
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Appendix A: Supporting Information for Chapter 2 

 

This appendix is a modified version of the Supporting Information for the manuscript in Chapter 

2 (Chem. Eur. J. 2019, 25, 9217–9229). 

 

A.1 Density Functional Sensitivity 
 
Table A.1. Free energy barriers for the first transition state (∆GTS1) in the alkaline hydrolysis reaction of sarin, 
obtained at T = 298.15 K and P = 1 atm. 
 

Single point energy//geometry ∆GTS1 (kJ/mol) 
B3LYP/6-311++G**//B3LYP/6-311++G** 56.16 

B3LYP-D3(BJ)/6-311++G**//B3LYP/6-311++G** 44.32 
MP2/6-311++G**//B3LYP/6-311++G** 46.17 

HF/6-31+G**//HF/6-31+G** 79.01 
M06-2X/6-311++G**//M06-2X/6-311++G** 29.20 

CBS-QB3 50.54 
Experiment(a) 65.53 

 

(a) Experimental data obtained from Larsson, L. Acta. Chem. Scand. 1957, 11, 1131-1142. 
 
Comparing the free energy barriers using different levels of theory in Table A.1, we see that 
B3LYP corresponds to the best agreement with experiment. The B3LYP method also performs 
similar to the high-level CBS-QB3 method, which further inspires confidence in using B3LYP to 
study uncatalyzed organophosphate hydrolysis reactions. Thus, this method was used to screen for 
improved nerve agent simulants in our study. 
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A.2 Comparison to Experimental Results 
 
Next, we calculated the free energy barriers for several other molecules for which experimental 
data was available. This was done to put our screening results into perspective and to obtain a 
rough estimate of expected deviations from experiment. 
 
Table A.2. Free energy barriers for the first transition state (∆GTS1) in the alkaline hydrolysis reaction of several 
organophosphate molecules, obtained at T = 298.15 K and P = 1 atm. All energies are in kJ/mol. 
 

Molecule B3LYP Expt.a Deviation Rank B3LYP Rank Expt. 
isoPropoxy-methyl-phosphoryl fluoride (Sarin) 56.16 65.53 -9.38 3 3 

Methoxy-methyl-phosphoryl fluoride 51.18 61.4 -10.23 6 7 
Ethoxy-methyl-phosphoryl fluoride 52.05 63.09 -11.05 5 6 

n-Propoxy-methyl-phosphoryl fluoride 52.76 63.49 -10.73 4 5 
3,3-Dimethylbutoxy-methyl-phosphoryl fluoride 49.08 63.95 -14.87 7 4 

isoPropoxy-ethyl-phosphoryl fluoride 56.61 67.24 -10.63 2 2 
isoPropoxy-isopropyl-phosphoryl fluoride 60.12 70.94 -10.82 1 1 

 

(a) Experimental data obtained from Larsson, L. Acta. Chem. Scand. 1957, 11, 1131-1142. 
 
Comparing the B3LYP free energy barriers to those from experiment in Table A.2, the average 
deviation is -11.10 ± 1.62 kJ/mol, with the calculated barriers lower than experiment in all cases. 
Comparing the ordering of the molecules, the Spearman’s rank correlation coefficient is 0.79. 
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A.3 DFT Screening Results 
 
Table A.3. Organophosphate molecules analyzed in this study. 
 

Molecule 
#a Database IDb Structurec ∆GTS1 

(kJ/mol)d 
Rat Oral LD50 log10 

(mol/kg)e 

1 CAS RN: 13213-38-2 

 

39.20 2.40g 

2 CAS RN: 1112-37-4 

 

42.30 2.68g 

3 CAS RN: 756-78-5 

 

45.36 2.38g 

4 CAS RN: 762-04-9 

 

47.06 1.55h 

5 CAS RN: 1066-52-0 

 

48.57 2.45g 

6 “Hypothetical” 

 

48.83 2.80g 

7 CAS RN: 14235-74-6 

 

48.86 2.63g 

8 CAS RN: 660-21-9 

 

49.08 5.05g 

9 “Hypothetical” 

 

50.47 3.26g 

10 CAS RN: 5284-09–3 

 

50.73 2.93g 
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11 CAS RN: 5284-10–6 

 

51.12 3.44g 

12 CAS RN: 353-88-8 

 

51.18 2.13g 

13 CAS RN: 18359-05-2 

 

51.22 3.23g 

14 “Hypothetical” 

 

51.45 3.47g 

15 CAS RN: 673-97-2 

 

52.05 2.19g 

16 CAS RN: 665-03-2 

 

52.10 2.46g 

17 CAS RN: 7531-39-7 

 

52.33 4.84g 

18 CAS RN: 1445-76-7 

 

52.40 2.80g 

19 CAS RN: 21502-57-8 

 

52.41 2.83g 

20 CAS RN: 133826-40-1 

 

52.51 2.50g 

21 “Hypothetical” 

 

52.67 3.11g 
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22 CAS RN: 763-14-4 

 

52.76 2.27g 

23 CAS RN: 2053-81-8 

 

53.47 3.55g 

24 CAS RN: 66348-71-8 

 

55.06 3.99g 

25 CAS RN: 358-74-7 

 

55.58 4.01g 

26 CAS RN: 28829-95-0 

 

55.72 3.73g 

27 CAS RN: 107-44-8 

 

56.16 5.41h 

28 CAS RN: 5954-50-7 

 

56.21 2.26g 

29 CAS RN: 1189-87-3 

 

56.61 4.11g 

30 CAS RN: 563-22-4 

 

57.11 3.74g 

31 CAS RN: 5284-12-8 

 

57.20 3.37g 
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32 CAS RN: 761-93-3 

 

57.50 3.81g 

33 CAS RN: 2276-27-9 

 

57.50 3.79g 

34 CAS RN: 813-77-4 

 

57.60 2.26g 

35 CAS RN: 113548-88-2 

 

57.87 3.81g 

36 CAS RN: 54436-53-2 

 

58.59 4.99g 

37 CAS RN: 3735-98-6 

 

58.74 5.18g 

38 CAS RN: 381-45-3 

 

58.96 3.66g 

39 CAS RN: 538-37-4 

 

59.29 2.01g 

40 CAS RN: 814-49-3 

 

59.57 4.20h 

41 CAS RN: 96-64-0 

 

59.74 5.66h 
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42 ChemSpider ID: 21252683 

 

59.77 4.45g 

43 CAS RN: 352-53-4 

 

60.05 4.64g 

44 CAS RN: 665-33-8 

 

60.12 4.25g 

45 CAS RN: 17158-87-1 

 

60.12 2.89g 

46 CAS RN: 1426-08-0 

 

60.26 3.70g 

47 CAS RN: 13538-10-8 

 

60.65 4.90g 

48 PubChem CID: 129642440f 

 

60.93 2.07g 

49 CAS RN: 674-48-6 

 

61.02 3.33g 

50 “Hypothetical” 

 

61.17 3.63g 
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51 “Hypothetical” 

 

61.52 4.24g 

52 CAS RN: 97931-20-9 

 

61.67 4.96g 

53 CAS RN: 403-65-6 

 

61.86 2.46g 

54 CAS RN: 3015-70-1 

 

62.76 3.72g 

55 CAS RN: 2510-89-6 

 

63.07 3.52g 

56 CAS RN: 625-17-2 

 

63.93 3.75g 

57 CAS RN: 950-35-6 

 

64.26 4.88h 

58 “Hypothetical” 

 

64.42 4.46g 

59 ChemSpider ID: 9228613 

 

64.90 4.73g 

60 CAS RN: 1021-47-2 

 

64.98 4.92g 
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61 CAS RN: 2524-64-3 

 

65.15 2.08g 

62 CAS RN: 3015-73-4 

 

65.23 5.02g 

63 CAS RN: 819-43-2 

 

65.28 2.87g 

64 CAS RN: 20362-80-5 

 

66.17 3.16g 

65 “Hypothetical” 

 

66.67 2.75g 

66 CAS RN: 2574-25-6 

 

66.68 3.51g 

67 CAS RN: 3735-97-5 

 

66.79 4.85g 

68 PubChem CID: 58861548 

 

66.80 4.31g 

69 CAS RN: 546-71-4 

 

66.87 5.08g 

70 CAS RN: 113548-85-9 

 

66.99 4.00g 



 194 

71 CAS RN: 13538-11-9 

 

67.02 4.72g 

72 “Hypothetical” 

 

67.55 2.07g 

73 CAS RN: 7526-26-3 

 

67.70 3.03h 

74 “Hypothetical” 

 

67.92 3.92g 

75 CAS RN: 4532-02–9 

 

67.93 4.12g 

76 CAS RN: 2012-00-2 

 

68.38 4.24g 

77 CAS RN: 54757-38-9 

 

69.21 3.77g 

78 CAS RN: 1153-30-6 

 

69.27 4.44g 

79 “Hypothetical” 

 

69.30 3.87g 

80 InChI Key: WVAUFDIKPLFXQL-
UHFFFAOYSA-N 

 

69.54 3.50g 
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81 CAS RN: 311-60-4 

 

69.54 2.23g 

82 CAS RN: 3279-62-7 

 

69.84 3.48h 

83 CAS RN: 2255-17-6 

 

70.83 4.04h 

84 “Hypothetical” 

 

71.27 2.72g 

85 CAS RN: 55-91-4 

 

71.67 4.57h 

86 CAS RN: 16462-86-5 

 

71.91 2.92g 

87 CAS RN: 2255-19-8 

 

71.93 3.83g 

88 CAS RN: 4532-06–3 

 

72.24 4.04g 

89 CAS RN: 311-45-5 

 

72.29 5.18h 

90 CAS RN: 6132-16-7 

 

73.00 4.17g 
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91 CAS RN: 18264-30-7 

 

74.03 3.28g 

92 CAS RN: 6163-75-3 

 

74.16 2.45g 

93 CAS RN: 10113-28-7 

 

74.16 2.53g 

94 CAS RN: 5689-41-8 

 

74.46 2.24g 

95 CAS RN: 5076-63-1 

 

75.75 3.29g 

96 CAS RN: 756-79-6 

 

78.38 1.18h 

97 CAS RN: 19236-58-9 
 

79.80 1.87g 

98 CAS RN: 7357-14-4 

 

80.79 3.01g 

99 CAS RN: 3070-13-1 

 

80.93 4.36g 

100 CAS RN: 2510-86-3 

 

84.09 2.71g 

101 CAS RN: 4619-09–4 

 

84.24 2.74g 
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102 CAS RN: 13538-15-3 

 

86.19 4.42g 

103 CAS RN: 512-56-1 

 

87.69 2.22h 

104 CAS RN: 1445-75-6 

 

88.04 2.34h 

105 CAS RN: 1754-49-0 

 

88.24 3.50g 

106 “Hypothetical” 

 

89.08 4.48g 

107 CAS RN: 2404-75-3 

 

89.59 3.05g 

108 CAS RN: 18812-51-6 

 

90.27 2.61g 

109 CAS RN: 683-08-9 

 

90.80 2.90g 

110 CAS RN: 1067-69-2 

 

91.11 2.86g 

111 CAS RN: 1789-95-3 

 

91.67 3.01g 
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112 CAS RN: 78-38-6 

 

91.97 1.85h 

113 CAS RN: 53803-21-7 

 

93.92 2.83g 

114 CAS RN: 18812-55-0 

 

95.30 2.88g 

115 CAS RN: 3254-66-8 

 

97.30 4.67g 

116 CAS RN: 78-40-0 

 

98.39 2.19h 

117 CAS RN: 814-22-2 

 

100.41 3.30g 

118 “Hypothetical” 

 

104.55 3.27g 

119 CAS RN: 19935-93-4 

 

128.28 2.66g 

120 CAS RN: 329-99-7 

 

57.83 N/Ai 

121 CAS RN: 50782-69-9 
 

83.91 N/Ai 

122 CAS RN: 77-81-6 

 

72.32 N/Ai 

 

(a) Numbers used to identify molecules for QSAR analysis. Molecules 1-119 are numbered in order of increasing 
∆GTS1 values, and 120-122 correspond to external set molecules in the QSAR analysis. (b) Identifiers, such as CAS 
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Registry Numbers, that can be used to easily look up the molecules in chemical databases. “Hypothetical” indicates a 
hypothetical molecule for which a unique chemical identifier could not be found. (c) All molecules are drawn with 
their considered leaving group on the right-hand side. For molecules that have a stereocenter at the phosphorous atom, 
the SP-enantiomer was studied. (d) Free energy barriers for the first (or only) transition state in the hydrolysis reactions, 
calculated with DFT at T = 298.15 K using B3LYP/6-311++G**. (e) Toxicity endpoint, which represents the mass of 
the compound per rat body weight that causes death in 50% of rats after oral ingestion. Values were obtained using 
the EPA Toxicity Estimation Software Tool (T.E.S.T. v 4.2).1 (f) Molecule originally referenced in Cook et al.2 (g) 
Predicted toxicity values calculated using the consensus QSAR method in the T.E.S.T. software. (h) Experimental 
toxicity values from the T.E.S.T. database. (i) These nerve agents were only used as an external set in QSAR analysis, 
so toxicities are omitted here. 
 
 
 

 
 

Figure A.1. DFT-calculated free energy barriers for the first (or only) transition state in the hydrolysis reactions for 
119 organophosphate molecules vs. their toxicity endpoint. The negligible correlation coefficient indicates no 
correlation. 
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Figure A.2. Differences in DFT-calculated hydrolysis free energy barriers for the first transition state, |∆∆GTS1|, for 
simulants relative to (top) soman and (bottom) sarin vs. their toxicity endpoint. The horizontal grey line indicates 
|∆∆GTS1| < 3.25 kJ/mol as the energy barrier criterion for an improved simulant. The vertical purple line indicates 
LD50 –log10 < 2.50 mol/kg as the toxicity criterion. The black vertical line indicates LD50 –log10 = 4.88 mol/kg (toxicity 
of DMNP). The red vertical line indicates LD50 –log10 = 5.66 mol/kg (toxicity of soman). The blue vertical line 
indicates LD50 –log10 = 5.41 mol/kg (toxicity of sarin). 
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A.4 QSAR Analysis – Molecular Descriptors 
 
Table A.4. Unscaled molecular descriptors used for QSAR analysis, calculated using DFT with B3LYP/6-311++G**. 
 

Molecule # qp
a µb IPc EAd BOe pKa

f 𝜼g SOFh 𝝌i 𝝎j Vk 𝒇𝒑"l 

1 1.825 6.132 0.301 0.038 1.240 -8.00m 0.131 7.612 0.169 0.109 92.541 0.201 

2 1.835 6.139 0.297 0.039 1.240 -8.00 0.129 7.746 0.168 0.110 98.724 0.196 

3 2.121 6.029 0.297 0.032 1.259 3.17 0.133 7.543 0.165 0.102 93.178 0.062 

4 2.162 6.740 0.319 0.026 1.258 16.00 0.146 6.843 0.173 0.102 106.886 0.002 

5 2.042 4.170 0.314 0.038 1.276 -8.00 0.138 7.240 0.176 0.112 86.690 0.218 

6 2.048 4.497 0.312 0.037 1.273 -8.00 0.137 7.290 0.174 0.111 149.606 0.202 

7 2.035 4.041 0.263 0.037 1.284 -8.00 0.113 8.849 0.150 0.100 130.833 -0.001 

8 2.332 4.174 0.309 0.027 1.284 3.17 0.141 7.070 0.168 0.100 132.891 0.089 

9 2.043 4.059 0.264 0.037 1.285 -8.00m 0.113 8.840 0.150 0.100 143.710 -0.002 

10 2.047 4.445 0.312 0.037 1.273 -8.00m 0.137 7.275 0.175 0.111 99.021 0.206 

11 2.056 4.441 0.312 0.038 1.273 -8.00m 0.137 7.312 0.175 0.112 98.906 0.199 

12 2.328 4.087 0.325 0.032 1.289 3.17m 0.146 6.843 0.179 0.109 80.506 0.144 

13 2.050 4.597 0.311 0.037 1.272 -8.00m 0.137 7.301 0.174 0.111 132.260 0.196 

14 2.049 4.591 0.311 0.037 1.272 -8.00m 0.137 7.291 0.174 0.111 143.990 0.201 

15 2.332 4.335 0.322 0.032 1.286 3.17m 0.145 6.895 0.177 0.108 89.353 0.110 

16 2.332 4.094 0.326 0.032 1.288 3.17m 0.147 6.806 0.179 0.109 89.669 0.089 

17 2.101 10.150 0.267 0.113 1.223 7.15n 0.077 13.029 0.190 0.235 173.265 -0.005 

18 2.053 4.473 0.308 0.037 1.268 -8.00m 0.135 7.380 0.173 0.110 117.064 0.200 

19 2.051 4.191 0.314 0.039 1.276 -8.00m 0.137 7.280 0.176 0.113 98.186 0.212 

20 2.330 3.941 0.264 0.038 1.305 3.17m 0.113 8.846 0.151 0.101 122.275 0.001 

21 2.055 4.614 0.304 0.037 1.267 -8.00m 0.133 7.492 0.171 0.109 147.963 0.194 

22 2.332 4.449 0.321 0.031 1.286 3.17m 0.145 6.897 0.176 0.107 105.493 0.101 

23 2.333 4.478 0.319 0.032 1.284 3.17m 0.144 6.963 0.176 0.108 115.552 0.071 

24 2.336 4.475 0.310 0.032 1.280 3.17m 0.139 7.178 0.171 0.105 133.889 0.069 

25 2.544 4.863 0.324 0.030 1.302 3.17m 0.147 6.783 0.177 0.106 101.585 0.246 

26 2.062 4.457 0.308 0.038 1.268 -8.00m 0.135 7.405 0.173 0.111 123.914 0.195 

27 2.335 4.343 0.320 0.031 1.281 3.17m 0.144 6.934 0.176 0.107 99.326 0.096 

28 2.540 4.500 0.329 0.033 1.309 3.17m 0.148 6.764 0.181 0.111 82.956 0.429 

29 2.339 4.324 0.318 0.031 1.280 3.17m 0.144 6.965 0.175 0.106 112.523 0.053 

30 2.547 4.709 0.318 0.030 1.299 3.17m 0.144 6.936 0.174 0.105 161.116 0.412 

31 2.074 5.071 0.277 0.068 1.273 -8.00m 0.105 9.562 0.172 0.142 147.365 0.079 

32 2.335 4.403 0.316 0.031 1.280 3.17m 0.142 7.019 0.173 0.106 135.942 0.082 

33 2.546 4.427 0.323 0.032 1.300 3.17m 0.146 6.870 0.178 0.108 111.084 0.181 

34 2.250 4.200 0.321 0.041 1.295 -8.00m 0.140 7.123 0.181 0.117 79.340 0.257 
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35 2.333 4.632 0.303 0.031 1.283 3.17m 0.136 7.362 0.167 0.103 175.072 0.066 

36 2.537 7.356 0.289 0.126 1.298 4.07n 0.082 12.243 0.207 0.263 208.747 -0.003 

37 2.313 11.125 0.272 0.117 1.265 7.15n 0.078 12.902 0.195 0.244 176.173 -0.003 

38 2.545 4.773 0.322 0.029 1.300 3.17m 0.146 6.846 0.176 0.105 146.187 0.443 

39 2.256 5.141 0.265 0.054 1.290 -8.00m 0.105 9.493 0.160 0.121 207.542 0.081 

40 2.261 4.704 0.317 0.039 1.290 -8.00m 0.139 7.174 0.178 0.114 112.930 0.228 

41 2.338 4.516 0.309 0.031 1.280 3.17m 0.139 7.206 0.170 0.104 150.855 0.054 

42 2.546 4.913 0.320 0.031 1.297 3.17m 0.144 6.929 0.175 0.107 120.939 0.037 

43 2.336 4.448 0.313 0.031 1.280 3.17m 0.141 7.079 0.172 0.105 122.578 0.082 

44 2.351 4.480 0.315 0.030 1.279 3.17m 0.142 7.030 0.173 0.105 134.645 0.021 

45 2.265 4.714 0.312 0.039 1.286 -8.00m 0.137 7.308 0.176 0.113 180.447 0.215 

46 2.347 4.487 0.316 0.028 1.284 3.17m 0.144 6.955 0.172 0.103 121.712 0.168 

47 2.336 9.027 0.270 0.114 1.258 7.15n 0.078 12.790 0.192 0.235 178.320 -0.002 

48 2.548 5.044 0.313 0.029 1.298 3.17m 0.142 7.044 0.171 0.102 184.604 0.215 

49 2.546 4.928 0.318 0.029 1.300 3.17m 0.145 6.915 0.173 0.104 175.150 0.493 

50 2.358 4.319 0.310 0.029 1.274 3.17m 0.140 7.119 0.169 0.102 148.036 0.007 

51 2.354 4.327 0.312 0.028 1.279 3.17m 0.142 7.052 0.170 0.102 144.605 0.130 

52 2.343 4.476 0.309 0.031 1.278 3.17m 0.139 7.205 0.170 0.104 155.309 0.036 

53 2.557 5.845 0.264 0.041 1.333 3.17m 0.111 8.979 0.153 0.104 175.290 0.032 

54 2.332 8.750 0.256 0.114 1.256 7.15n 0.071 14.073 0.185 0.240 261.064 -0.003 

55 2.263 4.837 0.317 0.039 1.289 -8.00m 0.139 7.198 0.178 0.114 154.169 0.222 

56 2.552 5.328 0.314 0.029 1.293 3.17m 0.142 7.033 0.172 0.104 165.698 0.006 

57 2.530 9.364 0.277 0.115 1.294 7.15n 0.081 12.410 0.196 0.238 151.576 -0.002 

58 2.545 2.424 0.318 0.030 1.294 3.17m 0.144 6.933 0.174 0.105 163.164 0.221 

59 2.315 8.261 0.271 0.114 1.261 7.15n 0.078 12.748 0.192 0.236 153.900 -0.002 

60 2.534 9.484 0.275 0.115 1.291 7.15n 0.080 12.500 0.195 0.238 163.962 -0.008 

61 2.257 5.869 0.263 0.052 1.312 -8.00m 0.105 9.479 0.158 0.118 168.932 0.165 

62 2.331 8.940 0.269 0.113 1.257 7.15n 0.078 12.847 0.191 0.235 181.732 -0.004 

63 2.263 4.965 0.314 0.038 1.286 -8.00m 0.138 7.255 0.176 0.113 171.165 0.214 

64 2.536 6.440 0.256 0.060 1.290 6.72o 0.098 10.229 0.158 0.128 222.255 -0.002 

65 2.540 5.473 0.263 0.060 1.288 5.99o 0.102 9.829 0.161 0.128 223.966 -0.003 

66 2.286 6.601 0.313 0.040 1.288 -8.00m 0.137 7.318 0.176 0.114 151.930 0.212 

67 2.326 10.819 0.271 0.114 1.256 7.15n 0.079 12.719 0.193 0.236 180.574 -0.003 

68 2.137 6.009 0.287 0.031 1.258 3.17m 0.128 7.797 0.159 0.099 130.217 0.012 

69 2.327 8.820 0.269 0.114 1.256 7.15n 0.078 12.835 0.191 0.235 194.223 -0.003 

70 2.341 4.474 0.308 0.031 1.281 3.17m 0.139 7.214 0.169 0.103 146.473 0.044 

71 2.335 8.826 0.269 0.113 1.253 7.15n 0.078 12.845 0.191 0.235 225.847 -0.003 

72 2.279 6.320 0.312 0.039 1.293 -8.00m 0.137 7.326 0.175 0.113 219.825 0.215 
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73 2.330 6.846 0.257 0.037 1.266 9.99n 0.110 9.102 0.147 0.098 180.295 0.000 

74 2.544 2.614 0.319 0.031 1.299 3.17m 0.144 6.950 0.175 0.106 148.507 0.301 

75 2.538 5.762 0.273 0.111 1.290 7.23n 0.081 12.376 0.192 0.228 183.150 -0.003 

76 2.338 8.635 0.268 0.114 1.261 7.15n 0.077 13.003 0.191 0.237 214.095 -0.002 

77 2.273 5.325 0.310 0.038 1.279 -8.00m 0.136 7.347 0.174 0.111 163.263 0.202 

78 2.538 9.945 0.273 0.115 1.286 7.15n 0.079 12.593 0.194 0.237 222.522 -0.002 

79 2.539 9.985 0.274 0.115 1.286 7.15n 0.079 12.585 0.194 0.237 244.859 -0.002 

80 2.523 10.123 0.275 0.122 1.292 8.36n 0.077 12.991 0.198 0.256 154.531 -0.003 

81 2.553 5.572 0.305 0.029 1.291 3.17m 0.138 7.251 0.167 0.102 224.931 0.002 

82 2.537 5.637 0.255 0.053 1.287 7.85o 0.101 9.898 0.154 0.118 189.851 -0.001 

83 2.530 8.594 0.271 0.109 1.293 7.33p 0.081 12.392 0.190 0.224 172.395 -0.002 

84 2.561 6.593 0.312 0.030 1.295 3.17m 0.141 7.099 0.171 0.104 191.981 0.155 

85 2.558 6.539 0.321 0.030 1.298 3.17m 0.145 6.884 0.176 0.106 142.657 0.196 

86 2.538 4.860 0.257 0.044 1.284 8.56n 0.106 9.399 0.151 0.107 194.695 -0.001 

87 2.538 9.824 0.274 0.115 1.286 7.15n 0.079 12.589 0.194 0.237 255.973 -0.002 

88 2.530 10.491 0.274 0.121 1.286 8.36n 0.076 13.125 0.197 0.256 198.800 -0.003 

89 2.537 9.891 0.275 0.115 1.288 7.15n 0.080 12.530 0.195 0.238 190.080 -0.002 

90 2.537 9.372 0.266 0.070 1.286 7.97n 0.098 10.219 0.168 0.144 191.477 0.000 

91 2.530 6.132 0.255 0.047 1.286 9.41n 0.104 9.607 0.151 0.109 163.257 -0.001 

92 2.335 6.782 0.303 0.029 1.243 15.54s 0.137 7.302 0.166 0.101 102.097 0.012 

93 2.531 5.351 0.259 0.037 1.284 9.99n 0.111 9.035 0.148 0.099 129.549 0.000 

94 2.119 7.823 0.281 0.030 1.201 15.54s 0.125 7.979 0.155 0.096 106.817 0.003 

95 2.537 6.493 0.254 0.046 1.281 9.41n 0.104 9.637 0.150 0.108 166.250 -0.001 

96 2.328 6.866 0.307 0.030 1.244 15.54s 0.139 7.216 0.169 0.103 92.118 0.026 

97 2.319 3.676 0.262 0.042 1.233 15.40s 0.110 9.083 0.152 0.104 222.923 0.014 

98 2.524 5.189 0.233 0.040 1.282 10.21n 0.097 10.318 0.136 0.096 170.948 0.001 

99 2.537 6.081 0.219 0.040 1.277 9.53n 0.090 11.166 0.130 0.094 205.441 -0.001 

100 2.538 5.548 0.257 0.037 1.278 9.99n 0.110 9.069 0.147 0.098 169.552 0.000 

101 2.538 5.015 0.201 0.032 1.275 9.78r 0.085 11.815 0.117 0.080 200.019 0.001 

102 2.349 9.130 0.268 0.113 1.256 7.15n 0.077 12.944 0.191 0.235 249.466 -0.003 

103 2.528 5.501 0.311 0.029 1.268 15.54s 0.141 7.087 0.170 0.102 103.635 0.074 

104 2.344 7.121 0.300 0.030 1.230 16.50m 0.135 7.402 0.165 0.101 159.461 0.006 

105 2.343 4.140 0.272 0.055 1.237 16.00s 0.109 9.202 0.163 0.123 164.326 0.036 

106 2.543 10.212 0.272 0.114 1.276 7.15n 0.079 12.688 0.193 0.236 240.149 -0.002 

107 2.337 3.852 0.296 0.030 1.231 16.00s 0.133 7.529 0.163 0.100 175.527 0.000 

108 2.337 3.877 0.298 0.030 1.231 16.00s 0.134 7.467 0.164 0.101 140.191 -0.001 

109 2.323 3.530 0.302 0.030 1.233 16.00s 0.136 7.339 0.166 0.101 121.148 0.011 

110 2.352 6.964 0.298 0.030 1.229 16.50m 0.134 7.467 0.164 0.100 157.127 0.003 
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111 2.337 4.029 0.297 0.029 1.230 16.10s 0.134 7.451 0.163 0.099 178.866 0.002 

112 2.332 3.769 0.299 0.030 1.231 16.00s 0.135 7.412 0.165 0.100 128.071 -0.001 

113 2.326 3.718 0.300 0.030 1.229 16.50t 0.135 7.415 0.165 0.101 202.369 0.016 

114 2.357 6.981 0.297 0.029 1.229 16.50m 0.134 7.460 0.163 0.099 171.583 0.001 

115 2.542 10.188 0.272 0.114 1.277 7.15n 0.079 12.684 0.193 0.236 210.362 -0.002 

116 2.539 5.863 0.306 0.027 1.260 16.00s 0.139 7.177 0.167 0.100 136.844 0.005 

117 2.539 5.949 0.306 0.025 1.260 16.10s 0.141 7.107 0.165 0.097 149.825 0.001 

118 2.542 5.913 0.303 0.027 1.255 18.20u 0.138 7.240 0.165 0.099 181.294 0.002 

119 2.364 3.346 0.292 0.025 1.229 16.00s 0.133 7.504 0.158 0.094 162.370 0.094 

120 2.335 4.479 0.303 0.026 1.280 3.17m 0.138 7.220 0.164 0.097 127.046 0.000 

121 1.947 3.455 0.217 0.032 1.219 9.60q 0.093 10.808 0.125 0.084 225.971 0.014 

122 2.258 5.680 0.274 0.036 1.252 9.40m 0.119 8.412 0.155 0.101 121.313 0.118 
 

(a) Charge on the phosphorus atom calculated using electron population analysis with the natural bond orbital (NBO) 
method. (b) Molecular dipole moment, in Debye. (c) Ionization potential, in Hartrees. (d) Electron affinity, in Hartrees. 
(e) Bond order of the P=O bond. (f) Experimental pKa values for the conjugate acid of the leaving group. (g) Molecular 
hardness, in Hartrees. (h) Molecular softness, in Hartrees-1. (i) Molecular electronegativity, in Hartrees. (j) Molecular 
electrophilicity, in Hartrees. (k) Molecular volume, in cm3/mol. (l) Fukui index for nucleophilic attack on the 
phosphorus atom. pKa values obtained from (m) Evans,3 (n) Lide,4 (o) Bourne et al.,5 (p) Schwarzenbach et al.,6 (q) 
Wille et al.,7 (r) Chemicalize,8 (s) Sarjeant et al.,9 (t) estimated value for primary alcohols, and (u) FooDB.10 
 
 
The formula used to scale molecular descriptors was as follows: 

 
𝑥EV& =

))0	,	)0,2)*

)0,2(3	,	)0,2)*
         (A.1) 

 
where 𝑥EV and 𝑥EV&  are the unscaled and scaled jth descriptor values for molecule i, respectively, and 
𝑥V,NE' and 𝑥V,ND) are the minimum and maximum values for the jth descriptor. For all descriptors, 
minL𝑥EV& M = 0 and maxL𝑥EV& M = 1. 
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Table A.5. Scaled molecular descriptors used for QSAR analysis, calculated using DFT with B3LYP/6-311++G**. 
 

Molecule # qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

1 0.000 0.426 0.779 0.132 0.298 0.000 0.786 0.116 0.580 0.157 0.073 0.417 
2 0.014 0.427 0.753 0.144 0.299 0.000 0.756 0.134 0.568 0.160 0.107 0.407 
3 0.403 0.414 0.753 0.075 0.440 0.426 0.801 0.107 0.530 0.120 0.076 0.139 
4 0.458 0.496 0.921 0.019 0.433 0.916 0.978 0.011 0.617 0.118 0.152 0.020 
5 0.296 0.201 0.887 0.134 0.571 0.000 0.873 0.065 0.657 0.175 0.040 0.451 
6 0.304 0.238 0.865 0.125 0.545 0.000 0.861 0.072 0.636 0.166 0.387 0.419 
7 0.286 0.186 0.488 0.128 0.634 0.000 0.546 0.285 0.373 0.108 0.283 0.014 
8 0.689 0.201 0.848 0.020 0.632 0.426 0.917 0.042 0.566 0.106 0.295 0.194 
9 0.297 0.188 0.488 0.126 0.637 0.000 0.548 0.284 0.372 0.107 0.354 0.012 
10 0.303 0.232 0.871 0.127 0.548 0.000 0.865 0.070 0.642 0.169 0.108 0.427 
11 0.314 0.232 0.866 0.134 0.545 0.000 0.856 0.075 0.642 0.172 0.108 0.414 
12 0.684 0.191 0.968 0.078 0.671 0.426 0.978 0.011 0.683 0.157 0.006 0.303 
13 0.307 0.250 0.863 0.127 0.539 0.000 0.858 0.073 0.636 0.167 0.291 0.408 
14 0.305 0.249 0.864 0.124 0.542 0.000 0.861 0.072 0.635 0.166 0.356 0.417 
15 0.689 0.220 0.945 0.070 0.644 0.426 0.963 0.018 0.662 0.149 0.055 0.235 
16 0.689 0.192 0.977 0.074 0.664 0.426 0.988 0.006 0.687 0.156 0.057 0.194 
17 0.375 0.888 0.513 0.877 0.169 0.578 0.074 0.857 0.808 0.846 0.517 0.006 
18 0.310 0.235 0.841 0.127 0.512 0.000 0.839 0.084 0.621 0.164 0.208 0.415 
19 0.307 0.203 0.881 0.141 0.568 0.000 0.864 0.071 0.656 0.178 0.104 0.438 
20 0.687 0.174 0.495 0.136 0.793 0.426 0.547 0.285 0.383 0.115 0.236 0.019 
21 0.313 0.252 0.806 0.124 0.504 0.000 0.813 0.100 0.595 0.157 0.378 0.403 
22 0.689 0.233 0.943 0.068 0.644 0.426 0.963 0.018 0.659 0.148 0.144 0.217 
23 0.691 0.236 0.927 0.076 0.633 0.426 0.945 0.027 0.653 0.149 0.199 0.158 
24 0.695 0.236 0.855 0.070 0.598 0.426 0.889 0.057 0.598 0.134 0.300 0.153 
25 0.978 0.280 0.966 0.050 0.765 0.426 0.995 0.003 0.666 0.142 0.122 0.506 
26 0.322 0.234 0.838 0.133 0.508 0.000 0.833 0.088 0.622 0.167 0.245 0.405 
27 0.693 0.221 0.930 0.067 0.607 0.426 0.953 0.023 0.650 0.145 0.110 0.207 
28 0.972 0.239 1.000 0.084 0.819 0.426 1.000 0.000 0.709 0.166 0.020 0.871 
29 0.699 0.218 0.919 0.066 0.598 0.426 0.944 0.027 0.641 0.143 0.183 0.121 
30 0.982 0.263 0.918 0.054 0.747 0.426 0.952 0.024 0.634 0.136 0.450 0.839 
31 0.339 0.304 0.594 0.428 0.549 0.000 0.437 0.383 0.615 0.338 0.374 0.173 
32 0.694 0.227 0.899 0.063 0.601 0.426 0.930 0.035 0.626 0.138 0.311 0.179 
33 0.980 0.230 0.956 0.073 0.754 0.426 0.970 0.015 0.671 0.153 0.175 0.377 
34 0.578 0.204 0.943 0.159 0.717 0.000 0.903 0.049 0.710 0.199 0.000 0.528 
35 0.691 0.254 0.798 0.067 0.626 0.426 0.844 0.082 0.557 0.123 0.527 0.149 
36 0.968 0.567 0.688 1.000 0.734 0.461 0.138 0.750 1.000 1.000 0.712 0.011 
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37 0.663 1.000 0.555 0.915 0.491 0.578 0.084 0.840 0.859 0.896 0.533 0.011 
38 0.979 0.270 0.944 0.048 0.752 0.426 0.977 0.011 0.649 0.137 0.368 0.899 
39 0.586 0.312 0.501 0.296 0.673 0.000 0.446 0.373 0.476 0.223 0.705 0.177 
40 0.593 0.262 0.912 0.140 0.676 0.000 0.890 0.056 0.677 0.183 0.185 0.472 
41 0.697 0.240 0.844 0.066 0.603 0.426 0.882 0.061 0.589 0.130 0.394 0.124 
42 0.981 0.286 0.930 0.065 0.731 0.426 0.954 0.023 0.649 0.144 0.229 0.089 
43 0.695 0.233 0.880 0.063 0.601 0.426 0.914 0.043 0.613 0.134 0.238 0.180 
44 0.715 0.236 0.891 0.057 0.592 0.426 0.927 0.036 0.617 0.133 0.304 0.058 
45 0.598 0.263 0.872 0.140 0.646 0.000 0.857 0.074 0.650 0.177 0.556 0.446 
46 0.710 0.237 0.900 0.038 0.629 0.426 0.947 0.026 0.613 0.124 0.233 0.352 
47 0.695 0.759 0.539 0.881 0.437 0.578 0.093 0.824 0.829 0.848 0.545 0.011 
48 0.982 0.301 0.873 0.040 0.738 0.426 0.923 0.038 0.594 0.121 0.579 0.445 
49 0.980 0.288 0.916 0.043 0.749 0.426 0.958 0.021 0.627 0.129 0.527 1.000 
50 0.725 0.218 0.851 0.042 0.557 0.426 0.904 0.049 0.581 0.119 0.378 0.031 
51 0.720 0.219 0.865 0.034 0.594 0.426 0.921 0.039 0.586 0.116 0.359 0.275 
52 0.705 0.236 0.843 0.065 0.588 0.426 0.882 0.060 0.587 0.129 0.418 0.088 
53 0.995 0.393 0.491 0.164 1.000 0.426 0.525 0.303 0.395 0.131 0.528 0.079 
54 0.690 0.727 0.427 0.881 0.422 0.578 0.000 1.000 0.750 0.874 1.000 0.009 
55 0.596 0.277 0.904 0.140 0.666 0.000 0.884 0.059 0.672 0.181 0.412 0.459 
56 0.988 0.334 0.883 0.049 0.697 0.426 0.926 0.037 0.607 0.127 0.475 0.028 
57 0.958 0.798 0.591 0.899 0.706 0.578 0.124 0.773 0.875 0.865 0.398 0.012 
58 0.979 0.000 0.916 0.049 0.708 0.426 0.953 0.023 0.630 0.133 0.461 0.457 
59 0.666 0.671 0.545 0.883 0.455 0.578 0.096 0.819 0.834 0.850 0.410 0.011 
60 0.964 0.811 0.579 0.896 0.684 0.578 0.116 0.785 0.865 0.862 0.466 0.000 
61 0.587 0.396 0.486 0.274 0.844 0.000 0.448 0.372 0.454 0.206 0.493 0.345 
62 0.689 0.749 0.532 0.879 0.424 0.578 0.088 0.832 0.823 0.846 0.563 0.008 
63 0.595 0.292 0.885 0.137 0.647 0.000 0.870 0.067 0.657 0.177 0.505 0.444 
64 0.967 0.462 0.427 0.353 0.677 0.562 0.348 0.474 0.456 0.259 0.786 0.013 
65 0.972 0.350 0.485 0.347 0.663 0.534 0.400 0.419 0.494 0.261 0.796 0.010 
66 0.627 0.480 0.875 0.148 0.661 0.000 0.854 0.076 0.657 0.182 0.399 0.439 
67 0.681 0.965 0.549 0.885 0.418 0.578 0.098 0.815 0.838 0.852 0.557 0.011 
68 0.424 0.412 0.676 0.063 0.436 0.426 0.745 0.141 0.469 0.101 0.280 0.040 
69 0.682 0.735 0.534 0.880 0.423 0.578 0.089 0.831 0.825 0.847 0.632 0.009 
70 0.702 0.236 0.836 0.060 0.609 0.426 0.880 0.062 0.580 0.126 0.369 0.105 
71 0.693 0.736 0.532 0.879 0.395 0.578 0.088 0.832 0.823 0.846 0.806 0.010 
72 0.618 0.448 0.867 0.141 0.699 0.000 0.852 0.077 0.647 0.176 0.773 0.445 
73 0.687 0.508 0.435 0.124 0.493 0.687 0.505 0.320 0.334 0.098 0.556 0.016 
74 0.978 0.022 0.923 0.065 0.744 0.426 0.949 0.025 0.644 0.143 0.381 0.617 
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75 0.970 0.384 0.560 0.856 0.674 0.581 0.127 0.768 0.829 0.806 0.571 0.010 
76 0.698 0.714 0.523 0.886 0.454 0.578 0.076 0.854 0.820 0.858 0.742 0.012 
77 0.610 0.333 0.852 0.129 0.594 0.000 0.847 0.080 0.630 0.167 0.462 0.420 
78 0.969 0.864 0.566 0.891 0.648 0.578 0.109 0.797 0.853 0.857 0.788 0.012 
79 0.971 0.869 0.567 0.891 0.645 0.578 0.109 0.796 0.854 0.857 0.911 0.012 
80 0.949 0.885 0.582 0.959 0.689 0.624 0.077 0.852 0.902 0.960 0.414 0.010 
81 0.990 0.362 0.815 0.048 0.685 0.426 0.871 0.067 0.559 0.115 0.801 0.020 
82 0.968 0.369 0.425 0.285 0.651 0.605 0.390 0.429 0.416 0.206 0.608 0.014 
83 0.959 0.709 0.545 0.839 0.698 0.585 0.126 0.770 0.810 0.785 0.512 0.013 
84 1.000 0.479 0.868 0.056 0.713 0.426 0.909 0.046 0.601 0.129 0.620 0.325 
85 0.997 0.473 0.939 0.057 0.735 0.426 0.966 0.016 0.651 0.141 0.348 0.407 
86 0.969 0.280 0.437 0.194 0.633 0.632 0.460 0.360 0.375 0.143 0.635 0.014 
87 0.970 0.850 0.567 0.891 0.648 0.578 0.109 0.797 0.854 0.858 0.972 0.012 
88 0.958 0.927 0.567 0.956 0.646 0.624 0.067 0.870 0.891 0.959 0.657 0.010 
89 0.968 0.858 0.575 0.894 0.663 0.578 0.114 0.789 0.861 0.860 0.609 0.012 
90 0.968 0.799 0.505 0.448 0.647 0.610 0.349 0.473 0.563 0.347 0.617 0.016 
91 0.959 0.426 0.420 0.218 0.650 0.665 0.430 0.389 0.376 0.157 0.462 0.014 
92 0.694 0.501 0.800 0.048 0.321 0.898 0.858 0.074 0.548 0.113 0.125 0.039 
93 0.960 0.336 0.450 0.126 0.629 0.687 0.516 0.311 0.345 0.101 0.276 0.017 
94 0.400 0.620 0.623 0.054 0.000 0.898 0.707 0.166 0.426 0.087 0.151 0.022 
95 0.968 0.468 0.411 0.214 0.607 0.665 0.426 0.393 0.367 0.153 0.478 0.013 
96 0.684 0.510 0.832 0.055 0.328 0.898 0.879 0.062 0.574 0.122 0.070 0.068 
97 0.672 0.144 0.474 0.168 0.246 0.893 0.508 0.317 0.385 0.131 0.790 0.044 
98 0.951 0.318 0.251 0.148 0.613 0.695 0.337 0.486 0.218 0.085 0.504 0.018 
99 0.968 0.420 0.142 0.155 0.578 0.669 0.241 0.602 0.145 0.075 0.694 0.014 
100 0.969 0.359 0.440 0.121 0.585 0.687 0.511 0.315 0.336 0.097 0.496 0.016 
101 0.970 0.298 0.000 0.074 0.566 0.679 0.177 0.691 0.000 0.000 0.664 0.019 
102 0.713 0.771 0.523 0.879 0.417 0.578 0.081 0.846 0.816 0.847 0.936 0.010 
103 0.956 0.354 0.861 0.043 0.509 0.898 0.912 0.044 0.588 0.120 0.134 0.164 
104 0.705 0.540 0.777 0.055 0.221 0.935 0.834 0.087 0.536 0.113 0.441 0.029 
105 0.704 0.197 0.553 0.296 0.276 0.916 0.490 0.334 0.513 0.230 0.468 0.087 
106 0.976 0.895 0.553 0.886 0.574 0.578 0.101 0.811 0.841 0.853 0.885 0.012 
107 0.696 0.164 0.743 0.057 0.228 0.916 0.804 0.105 0.512 0.108 0.529 0.016 
108 0.696 0.167 0.759 0.056 0.228 0.916 0.819 0.096 0.524 0.111 0.335 0.014 
109 0.677 0.127 0.791 0.050 0.242 0.916 0.849 0.079 0.543 0.113 0.230 0.038 
110 0.717 0.522 0.756 0.052 0.215 0.935 0.819 0.096 0.519 0.108 0.428 0.022 
111 0.697 0.185 0.753 0.042 0.225 0.920 0.822 0.094 0.512 0.102 0.548 0.021 
112 0.689 0.155 0.770 0.050 0.228 0.916 0.832 0.089 0.528 0.109 0.268 0.014 
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113 0.682 0.149 0.772 0.053 0.219 0.935 0.831 0.089 0.531 0.111 0.677 0.048 
114 0.723 0.524 0.751 0.043 0.217 0.935 0.820 0.095 0.511 0.102 0.508 0.018 
115 0.975 0.892 0.554 0.887 0.580 0.578 0.101 0.810 0.842 0.853 0.721 0.012 
116 0.971 0.395 0.822 0.028 0.446 0.916 0.889 0.057 0.552 0.106 0.316 0.026 
117 0.971 0.405 0.821 0.000 0.447 0.920 0.907 0.047 0.536 0.091 0.388 0.018 
118 0.974 0.401 0.799 0.024 0.409 1.000 0.873 0.065 0.534 0.100 0.561 0.021 
119 0.732 0.106 0.708 0.004 0.216 0.916 0.810 0.101 0.458 0.074 0.457 0.203 
120 0.694 0.236 0.795 0.010 0.604 0.426 0.878 0.062 0.523 0.092 0.263 0.016 
121 0.166 0.118 0.124 0.074 0.140 0.672 0.280 0.553 0.087 0.019 0.807 0.044 
122 0.589 0.374 0.567 0.111 0.387 0.664 0.623 0.225 0.419 0.111 0.231 0.251 
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A.5 QSAR Analysis – Non-Predictive QSAR Models for Molecular Subsets 
 
Before dividing the molecular dataset into training and test sets, non-predictive QSAR models 
were generated for different molecular subsets. The term non-predictive denotes that, for each 
molecular subset (e.g., molecules with leaving group = F–), all molecules were included in the 
model development. This was done in order to gain a better understanding of the most important 
descriptors involved in organophosphate hydrolysis, especially since some descriptors selected 
when using the entire dataset may be different from those when using only a training set. 
 
Out of the 119 molecules studied, there are several possible molecular subsets that contain enough 
molecules to create a statistically significant QSAR model including: all molecules (Nm = 119), 
those hydrolyzing through concerted mechanisms (Nm = 57) or stepwise mechanisms (Nm 
= 62), those with a F– leaving group (Nm = 37) or Cl– leaving group (Nm = 25), 
phosphono– molecules composed of alkyl and alkoxy substituents (Nm = 58), and 
phosphoro– molecules composed of two alkoxy substituents (Nm = 54). The non-predictive 
multi-parametric QSAR models for each of these subsets is included below, along with their 
corresponding model statistics. As described in the main text, ∆GTS1 is in kJ/mol and the 
descriptors are dimensionless (scaled from 0 to 1). Uniparametric correlation coefficients 
(R2uni) for individual descriptors are also listed, in order of decreasing statistical 
significance. 
 
Included below each model is a matrix containing correlation coefficients between descriptors 
(R2id) within that molecular subset. The diagonal is blacked out, omitting correlations between 
descriptors and themselves, for clarity. Inter-descriptor correlations that have R2id > 0.5 are 
considered significant and are highlighted in yellow. Theoretically, these highly correlated 
descriptors could be substituted for one another in the non-predictive multi-parametric QSAR 
models without significantly affecting the model statistics. 
 
All molecules: 
 

∆GTS1 = (73.70 ± 4.88) + (58.81 ± 9.58)qP – (80.68 ± 11.99)BO – (12.33 ± 7.40)pKa       

  – (10.47 ± 2.92)𝜔 + (10.60 ± 4.38)V        (A.2) 

Nm = 119, Q2LOO = 0.64, R2 = 0.72, F = 59.2, RMSE = 8.02 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): pKa (0.52, positive), 
qP (0.21, positive), BO (0.19, negative), 𝑓0. (0.16, negative), V (0.15, positive), IP (0.08, 
negative), 𝜒 (0.05, negative), 𝜂 (0.03, negative), SOF (0.02, positive), µ (0.02, positive), EA (0, 
N/A), 𝜔 (0, N/A). 
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Descriptor qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.05 0.04 0.04 0.16 0.29 0.05 0.06 0.00 0.04 0.19 0.04 
µ 0.05 1.00 0.22 0.71 0.01 0.06 0.61 0.67 0.28 0.70 0.25 0.19 
IP 0.04 0.22 1.00 0.26 0.01 0.08 0.69 0.58 0.09 0.15 0.35 0.37 
EA 0.04 0.71 0.26 1.00 0.00 0.01 0.81 0.89 0.46 0.98 0.31 0.16 
BO 0.16 0.01 0.01 0.00 1.00 0.23 0.00 0.00 0.01 0.00 0.00 0.13 
pKa 0.29 0.06 0.08 0.01 0.23 1.00 0.05 0.05 0.02 0.01 0.06 0.34 

𝜼 0.05 0.61 0.69 0.81 0.00 0.05 1.00 0.98 0.08 0.70 0.43 0.31 
SOF 0.06 0.67 0.58 0.89 0.00 0.05 0.98 1.00 0.15 0.80 0.42 0.28 
𝝌 0.00 0.28 0.09 0.46 0.01 0.02 0.08 0.15 1.00 0.58 0.01 0.01 
𝝎 0.04 0.70 0.15 0.98 0.00 0.01 0.70 0.80 0.58 1.00 0.26 0.12 
V 0.19 0.25 0.35 0.31 0.00 0.06 0.43 0.42 0.01 0.26 1.00 0.14 
𝒇𝒑M 0.04 0.19 0.37 0.16 0.13 0.34 0.31 0.28 0.01 0.12 0.14 1.00 

 
Concerted mechanism: 
 

∆GTS1 = (41.68 ± 2.06) + (24.41 ± 3.83)qP + (10.52 ± 4.47)V      (A.3) 

Nm = 57, Q2LOO = 0.65, R2 = 0.71, F = 64.7, RMSE = 5.97 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): qP (0.68, positive), 
V (0.48, positive), pKa (0.43, positive), µ (0.32, positive), 𝜂 (0.32, negative), SOF (0.30, 
positive), 𝑓0. (0.30, negative), EA (0.25, positive), IP (0.24, negative), 𝜔 (0.22, positive),  
BO (0.08, positive), 𝜒 (0.06, positive). 
 

Descriptor qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.35 0.34 0.36 0.23 0.64 0.45 0.41 0.09 0.31 0.48 0.47 
µ 0.35 1.00 0.29 0.81 0.04 0.62 0.74 0.79 0.46 0.79 0.36 0.50 
IP 0.34 0.29 1.00 0.29 0.00 0.62 0.65 0.53 0.01 0.20 0.38 0.84 
EA 0.36 0.81 0.29 1.00 0.02 0.59 0.87 0.93 0.64 0.99 0.36 0.57 
BO 0.23 0.04 0.00 0.02 1.00 0.01 0.01 0.02 0.02 0.03 0.01 0.00 
pKa 0.64 0.62 0.62 0.59 0.01 1.00 0.77 0.74 0.12 0.52 0.43 0.80 

𝜼 0.45 0.74 0.65 0.87 0.01 0.77 1.00 0.98 0.29 0.80 0.47 0.85 
SOF 0.41 0.79 0.53 0.93 0.02 0.74 0.98 1.00 0.39 0.88 0.45 0.76 
𝝌 0.09 0.46 0.01 0.64 0.02 0.12 0.29 0.39 1.00 0.73 0.08 0.06 
𝝎 0.31 0.79 0.20 0.99 0.03 0.52 0.80 0.88 0.73 1.00 0.32 0.48 
V 0.48 0.36 0.38 0.36 0.01 0.43 0.47 0.45 0.08 0.32 1.00 0.43 
𝒇𝒑M 0.47 0.50 0.84 0.57 0.00 0.80 0.85 0.76 0.06 0.48 0.43 1.00 
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Stepwise mechanism: 
 

∆GTS1 = (73.74 ± 7.30) + (33.67 ± 6.28)qP – (60.14 ± 14.36)BO + (12.29 ± 6.00)pKa       

  + (8.17 ± 4.46)V           (A.4) 

Nm = 62, Q2LOO = 0.69, R2 = 0.84, F = 75.8, RMSE = 7.11 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): pKa (0.68, positive), 
BO (0.45, negative), 𝜔 (0.22, negative), V (0.19, positive), 𝜒 (0.18, negative), IP (0.15, 
negative), 𝑓0. (0.14, negative), 𝜂 (0.11, negative), SOF (0.09, positive), qP (0.02, positive), µ 
(0.02, positive), EA (0, N/A). 
 

Descriptor qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.00 0.01 0.00 0.31 0.03 0.01 0.02 0.01 0.00 0.13 0.16 
µ 0.00 1.00 0.03 0.01 0.04 0.08 0.02 0.01 0.04 0.07 0.00 0.06 
IP 0.01 0.03 1.00 0.30 0.04 0.11 0.98 0.97 0.97 0.37 0.23 0.20 
EA 0.00 0.01 0.30 1.00 0.01 0.00 0.43 0.39 0.16 0.11 0.03 0.02 
BO 0.31 0.04 0.04 0.01 1.00 0.71 0.03 0.01 0.06 0.10 0.01 0.28 
pKa 0.03 0.08 0.11 0.00 0.71 1.00 0.09 0.06 0.14 0.14 0.04 0.23 
𝜼 0.01 0.02 0.98 0.43 0.03 0.09 1.00 0.98 0.91 0.24 0.21 0.18 

SOF 0.02 0.01 0.97 0.39 0.01 0.06 0.98 1.00 0.91 0.26 0.20 0.14 

𝝌 0.01 0.04 0.97 0.16 0.06 0.14 0.91 0.91 1.00 0.53 0.24 0.21 
𝝎 0.00 0.07 0.37 0.11 0.10 0.14 0.24 0.26 0.53 1.00 0.14 0.14 
V 0.13 0.00 0.23 0.03 0.01 0.04 0.21 0.20 0.24 0.14 1.00 0.02 
𝒇𝒑M 0.16 0.06 0.20 0.02 0.28 0.23 0.18 0.14 0.21 0.14 0.02 1.00 

 
Leaving group = F–: 
 

∆GTS1 = (52.12 ± 1.46) + (18.19 ± 3.26)V         (A.5) 

Nm = 37, Q2LOO = 0.34, R2 = 0.47, F = 31.1, RMSE = 4.49 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): V (0.47, positive), 
qP (0.23, positive), µ (0.07, positive), 𝜔 (0.06, negative), EA (0.03, negative), BO (0.03, 
positive), 𝜒 (0.01, negative), IP (0, N/A), 𝑓0. (0, N/A), 𝜂 (0, N/A), SOF (0, N/A). 
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Descriptor qp µ IP EA BO 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.00 0.06 0.00 0.65 0.05 0.03 0.07 0.07 0.21 0.29 
µ 0.00 1.00 0.07 0.01 0.00 0.06 0.05 0.08 0.07 0.07 0.02 
IP 0.06 0.07 1.00 0.38 0.01 0.98 0.96 0.98 0.39 0.09 0.20 
EA 0.00 0.01 0.38 1.00 0.19 0.51 0.56 0.24 0.05 0.03 0.06 
BO 0.65 0.00 0.01 0.19 1.00 0.03 0.05 0.00 0.12 0.05 0.19 
𝜼 0.05 0.06 0.98 0.51 0.03 1.00 0.99 0.92 0.27 0.06 0.19 

SOF 0.03 0.05 0.96 0.56 0.05 0.99 1.00 0.89 0.22 0.05 0.17 
𝝌 0.07 0.08 0.98 0.24 0.00 0.92 0.89 1.00 0.54 0.14 0.21 
𝝎 0.07 0.07 0.39 0.05 0.12 0.27 0.22 0.54 1.00 0.31 0.12 
V 0.21 0.07 0.09 0.03 0.05 0.06 0.05 0.14 0.31 1.00 0.00 
𝒇𝒑M 0.29 0.02 0.20 0.06 0.19 0.19 0.17 0.21 0.12 0.00 1.00 

 
Leaving group = Cl–: 
 

∆GTS1 = (38.33 ± 1.24) + (24.34 ± 1.68)qP + (4.74 ± 1.69)µ      (A.6) 

Nm = 25, Q2LOO = 0.89, R2 = 0.91, F = 116.0, RMSE = 2.40 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): qP (0.88, positive), 
BO (0.57, positive), V (0.43, positive), 𝜔 (0.10, positive), µ (0.09, positive), EA (0.05, 
positive), 𝜒 (0.04, positive), 𝑓0. (0.03, positive), IP (0.01, positive), SOF (0, N/A), 𝜂 (0, N/A). 
 

Descriptor qp µ IP EA BO 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.02 0.01 0.03 0.74 0.00 0.00 0.05 0.06 0.36 0.03 
µ 0.02 1.00 0.00 0.05 0.01 0.01 0.01 0.00 0.04 0.14 0.04 
IP 0.01 0.00 1.00 0.30 0.03 0.94 0.92 0.87 0.01 0.09 0.80 
EA 0.03 0.05 0.30 1.00 0.06 0.55 0.59 0.04 0.77 0.09 0.14 
BO 0.74 0.01 0.03 0.06 1.00 0.05 0.06 0.01 0.03 0.24 0.01 

𝜼 0.00 0.01 0.94 0.55 0.05 1.00 1.00 0.65 0.11 0.11 0.69 
SOF 0.00 0.01 0.92 0.59 0.06 1.00 1.00 0.61 0.13 0.11 0.66 
𝝌 0.05 0.00 0.87 0.04 0.01 0.65 0.61 1.00 0.09 0.05 0.77 
𝝎 0.06 0.04 0.01 0.77 0.03 0.11 0.13 0.09 1.00 0.03 0.00 
V 0.36 0.14 0.09 0.09 0.24 0.11 0.11 0.05 0.03 1.00 0.05 
𝒇𝒑M 0.03 0.04 0.80 0.14 0.01 0.69 0.66 0.77 0.00 0.05 1.00 
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Phosphono– molecules: 
 

∆GTS1 = (75.17 ± 4.00) – (10.10 ± 3.41)µ – (37.20 ± 4.74)BO + (20.36 ± 3.72)pKa 

   (A.7) 

Nm = 58, Q2LOO = 0.81, R2 = 0.86, F = 110.0, RMSE = 6.44 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): BO (0.77, negative), 
pKa (0.68, positive), 𝑓0. (0.24, negative), qP (0.23, positive), V (0.16, positive), 𝜒 (0.07, 
negative), IP (0.06, negative), 𝜂 (0.01, negative), µ (0, N/A), SOF (0, N/A), 𝜔 (0, N/A), EA (0, 
N/A). 
 

Descriptor qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.06 0.01 0.01 0.07 0.66 0.01 0.02 0.01 0.02 0.09 0.45 
µ 0.06 1.00 0.33 0.74 0.05 0.05 0.66 0.71 0.44 0.76 0.30 0.20 
IP 0.01 0.33 1.00 0.47 0.09 0.06 0.78 0.67 0.00 0.39 0.53 0.38 
EA 0.01 0.74 0.47 1.00 0.01 0.00 0.90 0.95 0.56 0.99 0.38 0.14 
BO 0.07 0.05 0.09 0.01 1.00 0.55 0.04 0.03 0.01 0.01 0.20 0.18 
pKa 0.66 0.05 0.06 0.00 0.55 1.00 0.02 0.02 0.02 0.01 0.14 0.52 
𝜼 0.01 0.66 0.78 0.90 0.04 0.02 1.00 0.98 0.25 0.84 0.51 0.26 

SOF 0.02 0.71 0.67 0.95 0.03 0.02 0.98 1.00 0.35 0.92 0.50 0.24 
𝝌 0.01 0.44 0.00 0.56 0.01 0.02 0.25 0.35 1.00 0.64 0.03 0.00 

𝝎 0.02 0.76 0.39 0.99 0.01 0.01 0.84 0.92 0.64 1.00 0.36 0.13 
V 0.09 0.30 0.53 0.38 0.20 0.14 0.51 0.50 0.03 0.36 1.00 0.30 
𝒇𝒑M 0.45 0.20 0.38 0.14 0.18 0.52 0.26 0.24 0.00 0.13 0.30 1.00 

 
Phosphoro– molecules: 
 

∆GTS1 = (83.40 ± 3.70) – (46.07 ± 5.72)BO + (15.26 ± 3.53)pKa      (A.8) 

Nm = 54, Q2LOO = 0.66, R2 = 0.75, F = 77.1, RMSE = 5.89 kJ/mol 
 
Uniparametric correlation coefficients and sign of their slope (R2uni, sign): BO (0.66, negative), 
pKa (0.43, positive), 𝑓0. (0.27, negative), IP (0.12, negative), qP (0.08, positive), µ (0.07, 
positive), 𝜒 (0.06, negative), 𝜂 (0.05, negative), V (0.05, positive), SOF (0.04, positive), EA (0, 
N/A), 𝜔 (0, N/A). 
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Descriptor qp µ IP EA BO pKa 𝜼 SOF 𝝌 𝝎 V 𝒇𝒑M 

qp 1.00 0.05 0.05 0.03 0.00 0.70 0.06 0.07 0.00 0.03 0.02 0.10 
µ 0.05 1.00 0.13 0.73 0.03 0.09 0.57 0.64 0.27 0.71 0.24 0.29 
IP 0.05 0.13 1.00 0.14 0.05 0.16 0.64 0.52 0.22 0.05 0.26 0.47 
EA 0.03 0.73 0.14 1.00 0.00 0.03 0.73 0.82 0.42 0.97 0.22 0.24 
BO 0.00 0.03 0.05 0.00 1.00 0.24 0.02 0.01 0.03 0.00 0.03 0.19 
pKa 0.70 0.09 0.16 0.03 0.24 1.00 0.12 0.12 0.02 0.03 0.01 0.30 
𝜼 0.06 0.57 0.64 0.73 0.02 0.12 1.00 0.98 0.02 0.58 0.34 0.49 

SOF 0.07 0.64 0.52 0.82 0.01 0.12 0.98 1.00 0.07 0.69 0.32 0.44 
𝝌 0.00 0.27 0.22 0.42 0.03 0.02 0.02 0.07 1.00 0.57 0.00 0.01 
𝝎 0.03 0.71 0.05 0.97 0.00 0.03 0.58 0.69 0.57 1.00 0.16 0.16 
V 0.02 0.24 0.26 0.22 0.03 0.01 0.34 0.32 0.00 0.16 1.00 0.21 
𝒇𝒑M 0.10 0.29 0.47 0.24 0.19 0.30 0.49 0.44 0.01 0.16 0.21 1.00 
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A.6 QSAR Analysis – Comparison of Dataset Division Algorithms for Predictive QSAR 

Models 
 
As stated in the main text, we also used more rational algorithms to divide our data into training 
and test sets, which we refer to as cluster by rank and modified cluster by rank. As with the random 
selection approach, both of these methods include the molecules with the highest and lowest ∆GTS1 
values in the training set so that it spans the entire response variable space. Again, 18 out of the 
119 total molecules (~15 %) were included in the test set. 
 
For cluster by rank, we first ranked all 119 molecules by ∆GTS1 values, in order from lowest to 
highest. Once the molecules with the highest and lowest ∆GTS1 values were placed in the training 
set, we divided the remaining 117 molecules into 17 groups. Due to the odd number, the first and 
last groups each had one less molecule. Then, one molecule was randomly selected from each 
group (two for the middle group) until the test set included 18 molecules. 
 
For modified cluster by rank, the molecules with the highest and lowest ∆GTS1 values were first 
placed in the training set. Out of the 119 molecules, there are a total of 23 unique leaving groups 
that have different conjugate acid pKa values. At least one molecule with each specific leaving 
group was included in the training set. For leaving groups that were present for multiple molecules, 
one molecule was randomly chosen for the training set. This was done so that the training set spans 
the entire pKa descriptor space, because we already know that the pKa affects the type of hydrolysis 
mechanism that each molecule follows. Finally, we ranked the remaining molecules and divided 
them into 18 groups, using the same procedure as in cluster by rank, and assigned molecules 
randomly from each group until the test set included 18 molecules. 
 
We ran each dataset division algorithm 100 times to examine the variability in model statistics. As 
seen in Figures A.3–A.6 below, the more rational algorithms do not have a strong influence on the 
resulting QSAR model statistics. Aside from highlighting the optimal cluster by rank and modified 
cluster by rank models, we restricted our analysis to the optimal random selection model. Here, 
“optimal” denotes the models that yielded the lowest RMSEtest. 
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Figure A.3. Training set leave-one-out correlation coefficients for the 100 QSAR models generated using (top) 
random selection, (middle) cluster by rank, and (bottom) modified cluster by rank algorithms. Red points indicate the 
optimal model for each dataset division algorithm. 
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Figure A.4. Test set correlation coefficients for the 100 QSAR models generated using (top) random selection, 
(middle) cluster by rank, and (bottom) modified cluster by rank algorithms. Red points indicate the optimal model for 
each dataset division algorithm. 
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Figure A.5. Test set root-mean-square errors for the 100 QSAR models generated using (top) random selection, 
(middle) cluster by rank, and (bottom) modified cluster by rank algorithms. Red points indicate the optimal model for 
each dataset division algorithm. 
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Figure A.6. Test set Spearman’s rank correlation coefficients for the 100 QSAR models generated using (top) random 
selection, (middle) cluster by rank, and (bottom) modified cluster by rank algorithms. Red points indicate the optimal 
model for each dataset division algorithm. 
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A.7 QSAR Analysis – Optimal Random Selection Predictive QSAR Model 
 
Table A.6. Predictions, residuals, and leverages for training, test, and external set molecules using the optimal random 
selection QSAR model (eq 2.12 in the main text). 
 

Molecule # Set Observation 
(kJ/mol) 

Prediction 
(kJ/mol) 

Raw Residual 
(kJ/mol) 

Standardized 
Residual Leverage 

1 Training 39.20 50.83 -11.63 -1.48 0.098 
119 Training 128.28 92.98 35.30 4.43 0.067 
57 Training 64.26 64.43 -0.17 -0.02 0.051 
14 Training 51.45 48.43 3.02 0.37 0.045 
80 Training 69.54 61.43 8.11 1.02 0.075 
118 Training 104.55 89.29 15.27 1.90 0.053 
86 Training 71.91 80.06 -8.15 -1.02 0.056 
9 Training 50.47 43.52 6.95 0.88 0.086 
35 Training 57.87 60.46 -2.60 -0.32 0.023 
44 Training 60.12 63.23 -3.11 -0.38 0.023 
90 Training 73.00 77.98 -4.99 -0.62 0.052 
100 Training 84.09 83.55 0.54 0.07 0.056 
6 Training 48.83 47.98 0.85 0.11 0.045 

116 Training 98.39 86.82 11.57 1.44 0.047 
73 Training 67.70 71.79 -4.09 -0.51 0.056 
99 Training 80.93 80.60 0.33 0.04 0.042 
70 Training 66.99 61.95 5.04 0.62 0.020 
114 Training 95.30 91.62 3.68 0.46 0.064 
74 Training 67.92 67.49 0.43 0.05 0.045 
111 Training 91.67 89.19 2.49 0.31 0.058 
49 Training 61.02 66.91 -5.89 -0.73 0.047 
8 Training 49.08 57.96 -8.88 -1.09 0.032 
54 Training 62.76 62.50 0.26 0.03 0.140 
38 Training 58.96 66.02 -7.06 -0.88 0.051 
105 Training 88.24 88.87 -0.63 -0.08 0.072 
40 Training 59.57 55.89 3.68 0.46 0.045 
56 Training 63.93 73.17 -9.25 -1.15 0.050 
106 Training 89.08 76.71 12.37 1.54 0.059 
75 Training 67.93 68.36 -0.42 -0.05 0.043 
19 Training 52.41 46.01 6.40 0.79 0.047 
21 Training 52.67 53.65 -0.98 -0.12 0.047 
47 Training 60.65 68.65 -8.00 -1.00 0.050 
48 Training 60.93 69.08 -8.16 -1.01 0.042 
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79 Training 69.30 70.13 -0.84 -0.10 0.045 
5 Training 48.57 44.66 3.91 0.49 0.050 

110 Training 91.11 91.41 -0.30 -0.04 0.063 
46 Training 60.26 58.91 1.35 0.17 0.033 
82 Training 69.84 78.27 -8.43 -1.05 0.055 
102 Training 86.19 71.08 15.10 1.89 0.059 
63 Training 65.28 59.36 5.92 0.74 0.054 
58 Training 64.42 70.81 -6.39 -0.79 0.049 
26 Training 55.72 53.49 2.23 0.28 0.047 
41 Training 59.75 62.12 -2.38 -0.29 0.020 
31 Training 57.20 54.64 2.57 0.32 0.076 
39 Training 59.29 60.98 -1.69 -0.21 0.080 
107 Training 89.59 89.43 0.16 0.02 0.058 
72 Training 67.55 56.51 11.04 1.37 0.044 
55 Training 63.07 57.26 5.81 0.72 0.048 
22 Training 52.76 55.50 -2.75 -0.34 0.046 
97 Training 79.80 89.83 -10.03 -1.26 0.075 
113 Training 93.92 88.25 5.67 0.71 0.059 
3 Training 45.36 57.96 -12.60 -1.56 0.041 

109 Training 90.80 85.65 5.15 0.64 0.054 
85 Training 71.67 69.17 2.50 0.31 0.052 
112 Training 91.97 88.30 3.67 0.46 0.057 
25 Training 55.58 64.19 -8.61 -1.07 0.056 
42 Training 59.77 68.70 -8.93 -1.11 0.047 
11 Training 51.12 48.85 2.27 0.28 0.044 
77 Training 69.21 65.91 3.30 0.42 0.085 
115 Training 97.30 76.09 21.20 2.65 0.057 
7 Training 48.86 43.00 5.86 0.74 0.089 
62 Training 65.23 69.19 -3.96 -0.49 0.053 
33 Training 57.50 66.08 -8.58 -1.07 0.050 
91 Training 74.03 76.93 -2.90 -0.36 0.056 
2 Training 42.30 52.32 -10.03 -1.28 0.098 
64 Training 66.17 75.98 -9.81 -1.22 0.053 
71 Training 67.02 72.21 -5.18 -0.65 0.058 
4 Training 47.06 48.45 -1.39 -0.20 0.305 
81 Training 69.54 75.94 -6.40 -0.80 0.050 
36 Training 58.59 65.57 -6.97 -0.87 0.046 
61 Training 65.15 44.99 20.16 2.57 0.092 
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43 Training 60.05 61.33 -1.29 -0.16 0.023 
18 Training 52.40 52.03 0.37 0.05 0.046 
45 Training 60.12 59.93 0.20 0.02 0.054 
67 Training 66.79 69.76 -2.97 -0.37 0.050 
98 Training 80.79 77.93 2.86 0.36 0.050 
92 Training 74.16 79.65 -5.50 -0.68 0.048 
30 Training 57.11 67.32 -10.21 -1.27 0.046 
103 Training 87.69 79.62 8.07 1.00 0.048 
27 Training 56.16 59.55 -3.39 -0.42 0.032 
117 Training 100.41 86.20 14.20 1.76 0.048 
60 Training 64.98 66.43 -1.45 -0.18 0.047 
17 Training 52.33 69.44 -17.11 -2.20 0.113 
69 Training 66.87 68.87 -2.00 -0.25 0.053 
95 Training 75.75 81.63 -5.88 -0.73 0.056 
87 Training 71.93 69.84 2.09 0.26 0.045 
76 Training 68.38 66.20 2.18 0.27 0.058 
15 Training 52.05 55.55 -3.50 -0.43 0.046 
93 Training 74.16 78.82 -4.65 -0.58 0.053 
78 Training 69.27 69.81 -0.53 -0.07 0.046 
59 Training 64.90 65.08 -0.18 -0.02 0.051 
16 Training 52.10 52.90 -0.80 -0.10 0.062 
37 Training 58.74 60.75 -2.01 -0.25 0.064 
94 Training 74.46 91.50 -17.03 -2.20 0.120 
96 Training 78.38 77.78 0.60 0.07 0.052 
53 Training 61.86 51.60 10.26 1.36 0.165 
68 Training 66.80 61.00 5.79 0.72 0.036 
65 Training 66.67 78.95 -12.28 -1.54 0.061 
66 Training 66.68 60.66 6.02 0.75 0.058 
13 Training 51.22 48.86 2.36 0.29 0.045 
20 Training 52.51 48.68 3.83 0.50 0.138 
52 Test 61.67 64.10 -2.44 -0.56 0.017 
88 Test 72.24 65.46 6.77 1.61 0.067 
32 Test 57.50 60.81 -3.31 -0.77 0.026 
24 Test 55.06 62.21 -7.15 -1.66 0.020 
23 Test 53.47 57.23 -3.76 -0.88 0.037 
34 Test 57.60 50.69 6.91 1.62 0.040 
84 Test 71.27 73.01 -1.74 -0.41 0.048 
29 Test 56.61 61.13 -4.52 -1.05 0.028 
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28 Test 56.21 58.51 -2.31 -0.55 0.070 
108 Test 90.27 89.01 1.26 0.30 0.057 
51 Test 61.52 63.62 -2.10 -0.49 0.022 
83 Test 70.83 65.13 5.70 1.34 0.049 
10 Test 50.73 47.58 3.15 0.74 0.046 
50 Test 61.17 67.90 -6.73 -1.56 0.020 
12 Test 51.18 52.19 -1.01 -0.24 0.064 
104 Test 88.04 89.70 -1.66 -0.39 0.060 
89 Test 72.29 68.51 3.79 0.89 0.045 
101 Test 84.24 79.12 5.11 1.19 0.038 
120 External 57.83 61.82 -3.99 -0.35 0.020 
121 External 83.91 64.73 19.18 1.82 0.140 
122 External 72.32 74.56 -2.24 -0.20 0.042 

 

 
 

Figure A.7. Comparison between observed (DFT-calculated) free energy barriers with those predicted by the optimal 
predictive QSAR model developed using the random selection algorithm (eq 2.12 in the main text). The dashed line 
shows the relationship ypred = yobs, where data points for ideal models should lie close to this line. 
  



 224 

 

 
 

Figure A.8. Distribution of residuals for the optimal predictive QSAR model developed using the random selection 
algorithm (eq 2.12 in the main text). The (top) histogram of raw residuals and (bottom) normal probability plot of raw 
residuals show that the residuals have an acceptable normal distribution, with one outlier (molecule 119). 
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A.8 QSAR Analysis – Optimal Cluster by Rank Predictive QSAR Model 
 

∆GTS1 = (72.86 ± 5.46) + (60.29 ± 10.80)qP – (80.76 ± 13.40)BO – (13.58 ± 8.17)pKa       

  – (9.18 ± 3.43)𝜔 + (10.75 ± 5.11)V         (A.9) 

Training set: Nm = 101, Q2LOO = 0.54, C𝑅04 = 0.68, R2train = 0.70, F = 45.0, RMSEtrain = 8.50 kJ/mol 
Test set: Nm = 18, R2test = 0.86, RMSEtest = 4.91 kJ/mol, Spearman’s 𝜌 = 0.97 
 
A.9 QSAR Analysis – Optimal Modified Cluster by Rank Predictive QSAR Model 
 
∆GTS1 = (139.75 ± 17.72) + (75.14 ± 10.46)qP – (95.61 ± 13.37)BO – (21.56 ± 8.68)pKa 

 – (67.00 ± 17.57)𝜂 – (74.55 ± 19.06)SOF       (A.10) 

Training set: Nm = 101, Q2LOO = 0.62, C𝑅04 = 0.72, R2train = 0.72, F = 48.9, RMSEtrain = 8.24 kJ/mol 
Test set: Nm = 18, R2test = 0.89, RMSEtest = 4.40 kJ/mol, Spearman’s 𝜌 = 0.98 
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Appendix B: Supporting Information for Chapter 3 

 

This appendix is a modified version of the Supporting Information for the manuscript in Chapter 

3 (J. Phys. Chem. C 2018, 122, 12362–12368). 

 

B.1 Benchmarking Different Levels of Theory for the Uncatalyzed Reaction 
 
Table B.1. Free energy barriers (ΔG‡), enthalpy barriers (ΔH‡), and reaction free energies (ΔGr) of the uncatalyzed 
DMNP hydrolysis reaction obtained at T = 298.15 K and P = 1 atm. All energies are in kJ/mol. Experimental data 
obtained from: Ginjaar, L.; Vel, S. Rec. trav. chim. 1958, 77, 956. 
 

Single point energy//geometry ΔG‡ ΔH‡ ΔGr 
B3LYP/6-311++G**//B3LYP/6-31+G** 68 23 -161 

B3LYP-D3(BJ)/6-311++G**//B3LYP/6-31+G** 55 9 -147 
M06/6-311++G**//B3LYP/6-31+G** 44 -1 -167 

M06-D3/6-311++G**//B3LYP/6-31+G** 42 -4 – 
M06-2X/6-311++G**//B3LYP/6-31+G** 44 -1 – 

M06/6-311++G**//M06/6-31+G** 42 -3 -166 
M06-D3/6-311++G**//M06/6-31+G** 40 -5 – 
M06-2X/6-311++G**//M06/6-31+G** 42 -3 – 

HF/6-31+G*//HF/6-31+G* 102 53 – 
MP2/6-311++G**//B3LYP/6-31+G** 57 12 – 

MP2/6-311++G**//M06/6-31+G** 56 12 – 
MP2/6-311++G**//HF/6-31+G* 63 15 – 

CBS-QB3 68 19 – 
Experiment 81 49 – 

 
Comparing the enthalpy barriers in Table B.1, the “lowest” level of theory HF/6-31+G* 
corresponds to the best agreement with experiment. We believe that HF performs so well in this 
situation due to a fortuitous error cancellation. The B3LYP method performs remarkably similar 
to CBS-QB3, which inspires confidence in using B3LYP to study these reactions. For modeling 
the NU-1000-catalyzed reactions, the inclusion of dispersion corrections is necessary since the 
adsorbate has significant dispersion interactions with the MOF, and thus the B3LYP-D3(BJ) level 
of theory was chosen for all calculations. We note that a recent computational study using NU-
1000 clusters found good agreement among the M06-L, PBE-D3, B3LYP-D3, and M06 
functionals for describing trends between energy barriers and molecular descriptors.1 
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Table B.2. Electronic energies, free energies, and enthalpies at different levels of theory for the optimized species of 
the uncatalyzed DMNP hydrolysis reaction obtained at T = 298.15 K and P = 1 atm. 
 

Single point energy//geometry Species E (hartree) G (hartree) H (hartree) 

B3LYP/6-311++G**//B3LYP/6-31+G** 
DMNP 

OH 
TS 

-1158.384872 
-75.950644 

-1234.325195 

-1158.432389 
-75.966902 

-1234.373353 

-1158.367401 
-75.947339 

-1234.306065 

B3LYP-D3(BJ)/6-311++G**//B3LYP/6-
31+G** 

DMNP 
OH 
TS 

-1158.435474 
-75.950890 

-1234.381147 

-1158.482991 
-75.967148 

-1234.429305 

-1158.418003 
-75.947585 

-1234.362017 

M06/6-311++G**//B3LYP/6-31+G** 
DMNP 

OH 
TS 

-1157.870851 
-75.907261 

-1233.777007 

-1157.918368 
-75.923519 

-1233.825165 

-1157.853380 
-75.903956 

-1233.757877 

M06-D3/6-311++G**//B3LYP/6-31+G** 
DMNP 

OH 
TS 

-1157.874476 
-75.907280 

-1233.781453 

-1157.921993 
-75.923538 

-1233.829611 

-1157.857005 
-75.903975 

-1233.762323 

M06-2X/6-311++G**//B3LYP/6-31+G** 
DMNP 

OH 
TS 

-1158.026654 
-75.909315 

-1233.934878 

-1158.074171 
-75.925573 

-1233.983036 

-1158.009183 
-75.906010 

-1233.915748 

M06/6-311++G**//M06/6-31+G** 
DMNP 

OH 
TS 

-1157.873435 
-75.907088 

-1233.779900 

-1157.920735 
-75.923336 

-1233.828047 

-1157.856125 
-75.903783 

-1233.760911 

M06-D3/6-311++G**//M06/6-31+G** 
DMNP 

OH 
TS 

-1157.877084 
-75.907088 

-1233.784262 

-1157.924384 
-75.923336 

-1233.832409 

-1157.859774 
-75.903783 

-1233.765273 

M06-2X/6-311++G**//M06/6-31+G** 
DMNP 

OH 
TS 

-1158.028983 
-75.909107 

-1233.937633 

-1158.076283 
-75.925355 

-1233.985780 

-1158.011673 
-75.905802 

-1233.918644 

HF/6-31+G*//HF/6-31+G* 
DMNP 

OH 
TS 

-1152.916345 
-75.502386 

-1228.396591 

-1152.963684 
-75.518611 

-1228.443567 

-1152.899761 
-75.499082 

-1228.378676 

MP2/6-311++G**//B3LYP/6-31+G** 
DMNP 

OH 
TS 

-1155.748443 
-75.763154 

-1231.505447 

-1155.795960 
-75.779412 

-1231.553605 

-1155.730972 
-75.759849 

-1231.486317 

MP2/6-311++G**//M06/6-31+G** 
DMNP 

OH 
TS 

-1155.748380 
-75.762906 

-1231.505204 

-1155.795680 
-75.779154 

-1231.553351 

-1155.731070 
-75.759601 

-1231.486215 

MP2/6-311++G**//HF/6-31+G* 
DMNP 

OH 
TS 

-1155.725739 
-75.762514 

-1231.480710 

-1155.773078 
-75.778738 

-1231.527686 

-1155.709156 
-75.759210 

-1231.462796 

CBS-QB3 
DMNP 

OH 
TS 

-1156.770051 
-75.846046 

-1232.606791 

-1156.817424 
-75.862308 

-1232.653686 

-1156.752574 
-75.842742 

-1232.588209 
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B.2 Comparison of Regular and Distorted Node Structures 
 

 
 

Figure B.1. Starting structures of (left) regular and (right) distorted NU-1000 node used in this work. Color scheme: 
H - white, C - grey, O - red, Zr - cyan. 
 
 

 
 

Figure B.2. Comparison of the binding mode of DMNP on (left) regular and (right) distorted NU-1000 node. Color 
scheme: H - white, C - grey, N - blue, O - red, P - orange, Zr - cyan. 
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B.3 Effect of Dispersion Corrections on the Reaction Free Energy Profiles 
 
 

 
 

Figure B.3. Comparison of the free energy profiles of the DMNP hydrolysis reaction catalyzed by (top) regular and 
(bottom) distorted NU-1000 node obtained (left) without and (right) with dispersion corrections. “Sep. R”, “RS”, 
“TS”, and “Sep. P” correspond to separated reactants, node–DMNP complex, transition state, and separated products, 
respectively. 
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B.4 Natural Bond Orbital Population Analysis 
 
Table B.3. Partial atomic charges for the uncatalyzed transition state, calculated using the NBO method at B3LYP-
D3(BJ)/6-311++G**//B3LYP/6-31+G**. The ordering of atoms is the same as in the Cartesian coordinates (provided 
in the Supporting Information document but omitted here for conciseness). 
 

Atom NBO Charge 
C -0.237180 
C -0.161960 
C 0.037130 
C -0.155000 
C -0.265940 
C 0.373370 
H 0.232820 
H 0.245160 
H 0.244780 
H 0.238150 
N 0.483120 
O -0.426610 
O -0.426600 
O -0.788480 
P 2.536730 
O -0.842310 
O -0.829190 
O -1.096920 
C -0.206340 
H 0.196200 
H 0.185390 
H 0.184920 
C -0.207260 
H 0.172320 
H 0.232600 
H 0.184700 
O -1.316250 
H 0.412630 
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Table B.4. Partial atomic charges for the NU-1000 node, calculated using the NBO method at B3LYP-D3(BJ)/6-
311++G**//B3LYP/6-31+G**. The ordering of atoms is the same as in the Cartesian coordinates (provided in the 
Supporting Information document but omitted here for conciseness). 
 

Atom NBO Charge 
Zr 1.969840 
Zr 1.945990 
Zr 1.974020 
Zr 2.292270 
Zr 1.989040 
Zr 1.986110 
O -0.692390 
O -0.689190 
C 0.725530 
O -0.705920 
O -0.690440 
H 0.220680 
O -0.698410 
O -0.692910 
H 0.221310 
O -0.685510 
O -0.685800 
C 0.729070 
O -1.052750 
H 0.495680 
O -0.700390 
O -0.662560 
C 0.726070 
O -0.706680 
O -0.693170 
H 0.221050 
O -0.692330 
O -0.717260 
H 0.221440 
O -0.678760 
O -0.702060 
C 0.726670 
O -1.051630 
H 0.497100 
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O -1.073920 
H 0.495170 
O -0.963830 
H 0.517890 
O -1.083010 
O -1.099110 
O -0.978800 
H 0.516160 
O -0.966200 
H 0.518720 
O -1.085420 
O -0.974580 
O -1.095690 
H 0.535140 
O -0.907310 
H 0.516930 
H 0.535030 
O -0.905090 
H 0.512370 
O -0.908210 
H 0.537870 
H 0.518160 
H 0.135430 
H 0.134490 
H 0.134950 
H 0.133020 
C -0.195700 
C -0.195380 
C -0.195890 
C -0.183540 
C -0.167270 
H 0.226990 
C -0.146150 
C 0.847730 
C -0.176560 
H 0.226200 
C -0.193340 
H 0.215640 
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C -0.211820 
H 0.216320 
C -0.166700 
H 0.227030 
C -0.145970 
C 0.847770 
C -0.175960 
H 0.226390 
C -0.193380 
H 0.215710 
C -0.211790 
H 0.216390 
C -0.167530 
H 0.227020 
C -0.145920 
C 0.842780 
C -0.176540 
H 0.226220 
C -0.193530 
H 0.215570 
C -0.211890 
H 0.216330 
C -0.163790 
H 0.227820 
C -0.148210 
C 0.853540 
C -0.165440 
H 0.226200 
C -0.211840 
H 0.217160 
C -0.211500 
H 0.217100 
O -1.029170 
H 0.484180 
H 0.520920 
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Table B.5. Partial atomic charges for the transition state on the NU-1000 node, calculated using the NBO method at 
B3LYP-D3(BJ)/6-311++G**//B3LYP/6-31+G**. The ordering of atoms is the same as in the Cartesian coordinates 
(provided in the Supporting Information document but omitted here for conciseness). 
 

Atom NBO Charge 
Zr 1.974430 
Zr 1.949940 
Zr 1.980050 
Zr 1.953890 
Zr 1.994450 
Zr 1.987020 
O -0.693660 
O -0.689400 
C 0.721700 
O -0.745680 
O -0.695530 
H 0.219650 
O -0.693710 
O -0.705020 
H 0.219800 
O -0.682850 
O -0.689650 
C 0.728890 
O -1.054230 
H 0.493750 
O -0.699210 
O -0.664020 
C 0.725990 
O -0.745450 
O -0.696670 
H 0.219410 
O -0.732700 
O -0.728000 
H 0.219540 
O -0.679820 
O -0.702980 
C 0.724390 
O -1.054300 
H 0.495560 
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O -1.053710 
H 0.494080 
O -0.964270 
H 0.514330 
O -1.084150 
O -1.084920 
O -0.963900 
H 0.515450 
O -0.966440 
H 0.516420 
O -1.085050 
O -0.980240 
O -1.078650 
H 0.509690 
O -0.904240 
H 0.533770 
H 0.535850 
O -0.906860 
H 0.511160 
O -0.909420 
H 0.537760 
H 0.517070 
H 0.134470 
H 0.133010 
H 0.131990 
H 0.130780 
C -0.190180 
C -0.197070 
C -0.191300 
C -0.187440 
C -0.173310 
H 0.225270 
C -0.183810 
C 0.985740 
C -0.171210 
H 0.225480 
C -0.213090 
H 0.215550 
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C -0.213070 
H 0.215430 
C -0.168150 
H 0.226640 
C -0.145020 
C 0.842310 
C -0.177910 
H 0.225910 
C -0.193730 
H 0.215160 
C -0.212160 
H 0.215890 
C -0.172870 
H 0.224470 
C -0.183620 
C 0.973890 
C -0.170070 
H 0.226790 
C -0.213960 
H 0.214890 
C -0.214810 
H 0.214940 
C -0.169860 
H 0.226080 
C -0.187620 
C 0.995710 
C -0.170820 
H 0.221290 
C -0.211210 
H 0.216430 
C -0.211420 
H 0.216330 
O -1.020690 
H 0.484600 
H 0.531230 
O -1.046090 
C -0.273910 
C -0.163390 
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C 0.053310 
C -0.162500 
C -0.275030 
C 0.482870 
H 0.237360 
H 0.246770 
H 0.245550 
H 0.266060 
N 0.487670 
O -0.413720 
O -0.411480 
O -0.862920 
P 2.648180 
O -0.845830 
O -0.834520 
C -0.211740 
H 0.239870 
H 0.185330 
H 0.176240 
C -0.208430 
H 0.185590 
H 0.175820 
H 0.241300 
O -1.323580 
H 0.426870 

 
B.5 References for Appendix B 
 

1. Simons, M. C.; Ortuño, M. A.; Bernales, V.; Gaggioli, C. A.; Cramer, C. J.; Bhan, A.; Gagliardi, 
L. C–H Bond Activation on Bimetallic Two-Atom Co-M Oxide Clusters Deposited on Zr-Based 
MOF Nodes: Effects of Doping at the Molecular Level. ACS Catal. 2018, 8, 2864-2869. 

 
B.6 Optimized Cartesian Coordinates (in Å) and Free Energies of Important Species 
 
For conciseness, the Cartesian coordinates are omitted here, but they are available free of charge 
in the Supporting Information at https://doi.org/10.1021/acs.jpcc.8b03641. 
 
  



 238 
Appendix C: Supporting Information for Chapter 4 

 

This appendix is the preliminary version of the Supporting Information for the manuscript in 

Chapter 4 (in preparation). 

 

C.1 Hypothetical Hydrolysis Pathways on M(IV)-MOF Nodes 
 

 
 

Figure C.1. Hypothetical hydrolysis pathways for the nerve agent and simulant molecules occurring on M(IV)-MOF 
nodes, using the molecule numbering established in Figure 4.1a of the main text. The terminology “Node–N” 
represents molecule N bound to the node. Numbers listed above the curved reaction arrows represent hydrolysis 
product molecules (monodentate anions, alcohols, and thiols) released into solution. The question marks in the 
pathways for A-230 and A-232 indicate that the full hydrolysis mechanisms for these Novichok agents are currently 
unknown. 
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C.2 Representative Binding Modes 
 
In Figure C.2a, the node–noOH2 structure represents a bare node where the terminal –OH2 group 
has been removed from the active (binding) site, which was used in the formula to calculate the 
binding energies of neutral molecules throughout the study. In Figure C.2b, the node–noOH 
structure represents a bare node where the terminal –OH group has been removed from the binding 
site, which was used in the formula to calculate the binding energies of monodentate anions. In 
Figure C.2c, the node–noOH2,OH structure represents a bare node where the terminal –OH2 and –
OH groups have been removed from the binding site, which was used in the formula to calculate 
the binding energies of bidentate anions. 
 

 
 

Figure C.2. Optimized cluster models for the (a) node–noOH2, (b) node–noOH, and (c) node–noOH2,OH bare node 
structures of Zr-NU-1000 (large pore). The benzoate linkers around the binding site are shown in tube format for 
clarity, and only the top half of the node is shown to highlight the site where binding occurs. Dark gray, white, red, 
and turquoise spheres represent C, H, O, and Zr atoms, respectively. 
 
  

(a) (b)

(c)
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Figure C.3 shows structures that are representative of the binding modes for (a) nerve agent and 
simulant molecules, (b) alcohol and thiol product molecules, (c) bidentate anions, and (d) 
monodentate anions. 
 

 
 

Figure C.3. Optimized cluster models for molecules (a) 6 (sarin, GB), (b) 8 (isopropanol), (c) 7 (isopropyl 
methylphosphonic acid, IMPA), and (d) 10 (fluoride anion) bound to the node of Zr-NU-1000 (large pore). The 
benzoate linkers around the binding site are shown in tube format for clarity, and only the top half of the node is shown 
to highlight the site where binding occurs. Dark gray, white, red, orange, light blue, and turquoise spheres represent 
C, H, O, P, F, and Zr atoms, respectively. 
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H-bond

(d)

H-bond



 241 
C.3 Relative Stabilities of Different Binding Orientations: Nerve Agent/Simulant 

Molecules 
 

 
 

Figure C.4. Optimized cluster models for the three possible orientations of GB (6) bound to the node of Zr-NU-1000 
(large pore), along with their relative binding free energies. Each orientation is named according to the R group (F, 
CH3, or OiPr) that is approximately collinear with the neighboring terminal node Zr–OH group. The benzoate linkers 
around the binding site are shown in tube format for clarity, and only the top half of the node is shown to highlight 
the site where binding occurs. Dark gray, white, red, orange, light blue, and turquoise spheres represent C, H, O, P, F, 
and Zr atoms, respectively. 
 
  

CH3F OiPr

Relative ∆Gbind = 0.0 kJ/mol Relative ∆Gbind = 11.6 kJ/molRelative ∆Gbind = 3.2 kJ/mol
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Table C.1. Relative binding free energies (in kJ/mol) for different orientations of nerve agent and simulant molecules 
bound to Zr(IV)-MOF node sites. Values in red indicate the most favorable molecular orientation for each node site. 
 

Molecule Orientation MOF-808 
NU-1000  

(large 
pore) 

bi(trans)-
defect 

UiO-66 

mono-defect 
UiO-66 

bi(cis)-
defect 

UiO-66 

NU-
1000 

(c pore) 

1 
OEt 0.0 4.6 0.0 14.8 30.8 3.1 

NMe2 7.3 0.0 4.2 0.0 0.0 0.0 
CN 43.6 12.5 11.6 18.8 24.2 3.4 

6 
OiPr 0.0 11.6 29.7 12.6 0.4 17.7 
CH3 29.5 0.0 0.0 0.0 14.8 19.7 

F 39.5 3.2 12.5 4.4 0.0 0.0 

11 
OR 0.0 16.8 9.3 5.3 0.0 0.0 
CH3 21.9 0.0 0.0 3.8 2.9 35.2 

F 53.4 19.0 18.3 0.0 18.1 6.6 

14 
CH3 0.0 0.0 0.0 0.0 0.0 6.8 
SR 2.4 30.4 68.6 16.4 20.9 0.0 
OEt 5.8 44.8 N/Aa 17.9 13.4 11.8 

18 
CH3 0.0 0.0 1.3 0.0 0.0 10.3 
NR 9.2 14.9 19.1 1.9 23.9 25.2 
F 20.3 4.9 0.0 3.9 7.2 0.0 

20 
F 0.0 23.8 19.3 21.2 0.0 12.8 

NR 6.2 12.4 24.2 20.3 1.6 39.0 
OMe 19.1 0.0 0.0 0.0 12.3 0.0 

22 
OMe 0.0 0.0 7.3 0.0 0.0 0.9 
CH3 10.7 14.5 0.0 9.6 28.1 0.0 

 
aN/A indicates that the OEt orientation for molecule 14 could not be optimized on the Zr-bi(trans)-defect UiO-66 
node, despite multiple attempts. 
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C.4 Effects of Molecular Size and Dispersion on Binding Energy: Neutral Molecules 
 

 
 

Figure C.5. The effect of molecular solvent-accessible surface area (SAmol) on (a) the dispersion energy and (b) the 
binding free energy computed for node-bound neutral molecules. Neutral molecules refer to molecules 1, 3, 6, 8, 11, 
13, 14, 17, 18, 20, 22, 24, and H2O. 
 
 
C.5 Relative Stabilities of Different Binding Orientations: Bidentate Anions 
 

 
 

Figure C.6. Optimized cluster models for the two possible orientations of IMPA (7) bound to the node of Zr-NU-
1000 (large pore), along with their relative binding free energies. Each orientation is named according to the R group 
(CH3 or OiPr) that is directed towards the bridging node hydroxyl group at the binding site. The benzoate linkers 
around the binding site are shown in tube format for clarity, and only the top half of the node is shown to highlight 
the site where binding occurs. Dark gray, white, red, orange, and turquoise spheres represent C, H, O, P, and Zr atoms, 
respectively. 
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Table C.2. Relative binding free energies (in kJ/mol) for different orientations of bidentate anion products bound to 
Zr(IV)-MOF node sites. Values in green indicate the most favorable orientation for each node site. 
 

Molecule Orientation MOF-808 
NU-1000  

(large 
pore) 

bi(trans)-
defect 

UiO-66 

mono-
defect 

UiO-66 

bi(cis)-
defect 

UiO-66 

NU-
1000 

(c pore) 

2 
NMe2–µ3OH 0.0 0.0 0.0 9.1 12.8 0.0 
OEt–µ3OH 12.9 14.5 5.1 0.0 0.0 7.8 

4 
NMe2–µ3OH 0.0 4.0 3.4 0.0 0.0 8.7 
OH–µ3OH 4.2 0.0 0.0 1.7 7.1 0.0 

7 
CH3–µ3OH 0.0 11.4 0.1 11.6 3.7 0.0 
OiPr–µ3OH 23.9 0.0 0.0 0.0 0.0 4.5 

9 
CH3–µ3OH 0.0 0.0 0.5 0.2 0.0 0.0 
OH–µ3OH 9.4 8.9 0.0 0.0 10.8 0.2 

12 
CH3–µ3OH 0.0 10.8 4.4 11.0 11.6 3.5 
OR–µ3OH 7.6 0.0 0.0 0.0 0.0 0.0 

15 
CH3–µ3OH 0.0 0.0 0.03 2.0 0.0 0.0 
OEt–µ3OH 30.0 35.8 0.0 0.0 2.8 0.4 

16 
CH3–µ3OH 0.0 24.3 16.7 11.1 5.1 15.5 
SR–µ3OH 11.0 0.0 0.0 0.0 0.0 0.0 

19 
CH3–µ3OH 0.0 0.0 0.2 5.1 24.9 4.5 
NR–µ3OH 24.8 6.6 0.0 0.0 0.0 0.0 

21 
OMe–µ3OH 0.0 0.0 0.0 0.0 9.1 0.0 
NR–µ3OH 17.0 7.8 5.6 26.5 0.0 1.0 

23 
CH3–µ3OH 0.0 10.9 1.9 12.2 4.3 3.4 
OMe–µ3OH 4.8 0.0 0.0 0.0 0.0 0.0 
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C.6 Effects of Molecular Size and Dispersion on Binding Energy: Bidentate Anions 
 

 
 

Figure C.7. The effect of molecular solvent-accessible surface area (SAmol) on (a) the dispersion energy and (b) the 
binding free energy computed for node-bound bidentate anions. Bidentate anions refer to molecules 2, 4, 7, 9, 12, 15, 
16, 19, 21, and 23. 
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C.7 Binding Free Energy Values for All Molecules: Zr(IV)-MOF Nodes 
 
Table C.3. Binding free energies (in kJ/mol) for molecules bound to Zr(IV)-MOF node sites in their most favorable 
orientations, corresponding to results in Figure 4.2. Negative and positive values indicate favorable and unfavorable 
binding, respectively. 
 

Molecule MOF-808 NU-1000 
(large pore) 

bi(trans)-
defect 

UiO-66 

mono-defect 
UiO-66 

bi(cis)-defect 
UiO-66 

NU-1000 
(c pore) 

H2O -7.9 -28.1 -29.9 -40.9 -54.5 -61.1 
1 -8.5 1.9 4.6 -10.0 -22.6 -30.3 
2 -72.9 -102.6 -100.4 -97.9 -115.4 -111.6 
3 10.8 -10.8 -21.4 -13.4 -13.6 -57.7 
4 -78.0 -91.5 -96.7 -85.4 -100.0 -101.6 
5 -30.7 -45.3 -26.4 -33.6 -13.5 -32.2 
6 -4.8 -2.7 -17.0 -12.5 -20.3 -53.3 
7 -87.8 -92.7 -89.1 -82.9 -96.0 -102.9 
8 -6.3 -2.8 -12.1 -4.2 -17.0 -27.7 
9 -92.3 -90.9 -107.9 -108.0 -119.7 -118.6 
10 -241.3 -266.8 -242.2 -255.0 -267.0 -248.9 
11 -2.2 -2.8 -4.2 -10.8 -7.5 -40.6 
12 -83.0 -82.7 -70.7 -101.0 -101.9 -83.5 
13 15.9 -17.5 -12.8 -24.2 -31.1 -15.1 
14 8.6 -30.5 -39.1 -24.6 -19.4 -57.5 
15 -101.4 -98.9 -100.2 -89.8 -109.6 -109.2 
16 -92.0 -102.9 -90.4 -75.8 -98.9 -100.8 
17 32.4 52.1 53.6 31.1 46.8 -2.0 
18 -17.5 -18.7 -28.5 -22.4 -45.8 -62.2 
19 -119.4 -122.3 -104.3 -108.2 -129.3 -138.4 
20 -24.9 -26.1 -34.9 -42.3 -22.1 -61.2 
21 -98.8 -114.6 -92.5 -109.1 -111.3 -119.3 
22 -5.3 -5.0 -4.4 -1.1 -24.2 -45.4 
23 -76.3 -90.2 -101.6 -104.9 -121.6 -112.4 
24 -23.6 10.5 -22.7 -22.9 -36.4 -57.9 
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C.8 Binding Free Energies on M-MOF-808 Nodes 
 

 
 

Figure C.8. Binding free energies for (a) water, (b) nerve agent and simulant molecules, (c) alcohol and thiol 
hydrolysis product molecules, (d) bidentate anion products, and (e) monodentate anion products bound to the nodes 
of M-MOF-808 (M = Zr, Hf, Ce, Th). 
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C.9 Effect of Metal Electronegativity on Water Binding Energy: M(IV)-MOF Nodes 
 

 
 

Figure C.9. The effect of the electronegativity of M4+ cations in the nodes of M-bi(trans)-defect UiO-66 on the binding 
free energy for water. 
 
 

 
 

Figure C.10. The effect of the electronegativity of M4+ cations in the nodes of M-MOF-808 on the binding free energy 
for water. 
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C.10 Binding Free Energy Values for All Molecules: M(IV)-MOF Nodes 
 
Table C.4. Binding free energies (in kJ/mol) for molecules bound to M-bi(trans)-defect UiO-66 node sites, 
corresponding to results in Figure 4.3. Negative and positive values indicate favorable and unfavorable binding, 
respectively. 
 

Molecule Zr Hf Ce Th 

H2O -29.9 -35.4 -32.0 -38.2 
1 4.6 -4.6 -27.2 -19.0 
2 -100.4 -103.6 -135.3 -86.8 
3 -21.4 -29.5 -30.6 -37.6 
4 -96.7 -99.7 -129.9 -89.0 
5 -26.4 -26.6 -27.8 -21.1 
6 -17.0 -25.5 -31.1 -12.7 
7 -89.1 -92.4 -131.4 -71.0 
8 -12.1 -17.6 -27.5 -34.5 
9 -107.9 -110.6 -135.5 -92.5 
10 -242.2 -242.8 -250.1 -229.1 
11 -4.2 -13.2 -30.2 -19.3 
12 -70.7 -75.0 -127.4 -58.9 
13 -12.8 -33.5 -30.3 -36.5 
14 -39.1 -40.7 -59.9 -45.9 
15 -100.2 -104.4 -130.1 -101.6 
16 -90.4 -96.5 -145.0 -101.5 
17 53.6 42.3 2.9 33.9 
18 -28.5 -33.5 -42.4 -28.9 
19 -104.3 -110.0 -157.4 -87.4 
20 -34.9 -41.1 -48.0 -32.5 
21 -92.5 -95.2 -154.7 -95.1 
22 -4.4 -10.5 -26.5 -17.4 
23 -101.6 -105.1 -130.9 -84.0 
24 -22.7 -29.3 -28.9 -60.2 

 
  



 250 
Table C.5. Binding free energies (in kJ/mol) for molecules bound to M-MOF-808 node sites, corresponding to results 
in Figure C.8. Negative and positive values indicate favorable and unfavorable binding, respectively. 
 

Molecule Zr Hf Ce Th 

H2O -7.9 -14.8 -28.8 -21.6 
1 -8.5 -0.4 -17.9 -7.4 
2 -72.9 -74.6 -103.4 -88.0 
3 10.8 17.4 -21.8 -20.2 
4 -78.0 -84.1 -112.1 -95.5 
5 -30.7 -34.6 -20.6 -9.5 
6 -4.8 1.9 -18.5 -0.7 
7 -87.8 -90.8 -108.3 -92.5 
8 -6.3 -5.8 -24.6 -24.1 
9 -92.3 -94.4 -120.0 -106.0 
10 -241.3 -263.1 -239.2 -214.9 
11 -2.2 7.4 -20.2 -5.0 
12 -83.0 -80.8 -115.0 -85.3 
13 15.9 18.7 -23.0 -10.6 
14 8.6 14.2 -26.8 -12.5 
15 -101.4 -102.1 -114.8 -100.0 
16 -92.0 -95.0 -107.2 -95.3 
17 32.4 37.9 -10.3 -22.7 
18 -17.5 -12.0 -32.3 -22.0 
19 -119.4 -118.9 -150.4 -119.2 
20 -24.9 -20.0 -29.8 -24.8 
21 -98.8 -105.3 -133.1 -113.5 
22 -5.3 -5.2 -18.3 -14.8 
23 -76.3 -79.0 -105.9 -90.9 
24 -23.6 -16.4 -22.2 -17.0 
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C.11 QSAR Modeling: Molecular Descriptors 
 
Table C.6. List of molecular descriptors used in the QSAR models for the prediction of binding free energies. 
 

Descriptor Notation Unit Rangea 

NBO partial atomic charge on binding O/S atomb qO/S,mol a.u. (–1.149) – (–0.148) 

average NBO partial atomic charge on binding O 
atomsc 

AvqO,mol a.u. (–1.226) – (–1.189) 

Wiberg bond index of binding O/S atomb BIO/S,mol  1.424 – 2.041 

average Wiberg bond index of binding O atomsc AvBIO,mol  1.308 – 1.368 

molecular volume Vmol cm3/mol 17.289 – 205.526, 63.697 – 184.317 

solvent–accessible surface area SAmol Å2 113.827 – 483.313, 220.756 – 420 

molecular dipole moment µmol Debye 1.704 – 7.723, 4.911 – 16.278 

total number of atoms in molecule nAtmol  3 – 42, 9 – 35 

number of electrons in molecule nElecmol  10 – 146, 50 – 130 

molecular ionization potential IPmol hartree 0.261 – 0.383, 0.254 – 0.318 

molecular electron affinity EAmol hartree (–0.112) – (–0.019), (–0.115) – (–0.057) 

molecular hardness 𝜂mol hartree 0.160 – 0.246, 0.162 – 0.217 

molecular softness Smol hartree–1 4.057 – 6.259, 4.611 – 6.180 

molecular electronegativity 𝜒mol hartree 0.092 – 0.147, 0.081 – 0.108 

molecular electrophilicity 𝜔mol hartree 0.025 – 0.065, 0.018 – 0.034 

number of hydrogen atoms in molecule nHmol  2 – 26, 4 – 21 

number of carbon atoms in molecule nCmol  0 – 11, 1 – 9 

number of nitrogen atoms in molecule nNmol  0 – 2, 0 – 2 

number of oxygen atoms in moleculeb nOmol  0 – 3 

number of non-hydrogen atoms in molecule nNonHmol  1 – 16, 5 – 14 

number of rotatable bonds in molecule nRBmol  0 – 8, 0 – 6 

number of donor atoms for H-bonds in moleculeb nHBdmol  0 – 2 

number of acceptor atoms for H-bonds in 
molecule 

nHBamol  1 – 5, 3 – 5 

molecular unsaturation indexb UImol  0 – 1.585 

molecular hydrophilicity index HyImol  (–0.673) – 6.169, (–0.626) – 0.671 

molecular weight MWmol g/mol 18.015 – 267.368, 95.014 – 238.306 

average molecular weight AMWmol g/mol 4.866 – 7.783, 6.636 – 10.557 
 
aThe values in red and green correspond to neutral molecules and bidentate anions, respectively. bThese descriptors 
were only computed for neutral molecules. cThese descriptors were only computed for bidentate anions. 
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Below, we provide more explicit definitions and equations for some of the molecular descriptors 
described in the main text and shown in Table C.6. 
 
Molecular ionization potential (IPmol): refers to the amount of energy required to remove the 
valence electron from an isolated neutral species. Koopmans’ theorem1 may be used to relate the 
ionization potential to the energy of the highest occupied molecular orbital, where IPmol ≈ –EHOMO. 
 
Molecular electron affinity (EAmol): refers to the difference in energy of a neutral species and its 
anion. Koopmans’ theorem1 may be used to relate the electron affinity to the energy of the lowest 
unoccupied molecular orbital, where EAmol ≈ –ELUMO. 
 
Molecular hardness (𝜂mol): measures the stability of a molecule. 
 
Molecular softness (Smol): measures the reactivity of a molecule. 
 
Molecular electronegativity (𝜒mol): describes the strength with which a species attracts electrons. 
 
Molecular electrophilicity (𝜔mol): measures the reactivity of a species towards attracting electrons 
from a nucleophile. 
 
Using Koopmans’ theorem, Parr and co-workers2 derived 𝜂mol, Smol, 𝜒mol, and 𝜔mol as: 
 

𝜂NMO =
/02"N	,	232"N

4
                                          (C.1) 

𝑆NMO =
-

52"N
                                            (C.2) 

𝜒NMO =
/02"N	.	232"N

4
                                           (C.3) 

𝜔NMO =
62"N

!

4f2"N
                                            (C.4) 

 
Molecular unsaturation index (UImol): measures the extent of unsaturated bonds in a molecule. The 
definition as described in the user manual for Dragon3 is: 
 

𝑈𝐼NMO = log4(1 + 𝑛𝐷𝐵NMO + 𝑛𝑇𝐵NMO + 𝑛𝐴𝐵NMO)                                      (C.5) 

where nDBmol, nTBmol, and nABmol denote the number of double, triple, and aromatic bonds in the 
molecule, respectively. 
 
Molecular hydrophilicity index (HyImol): measures the extent of hydrophilicity of a molecule.4 
 

𝐻𝑦𝐼NMO =
(-.'P;2"N) _gh!(-.'P;2"N).'i2"Nj

7
*F"*O2"N

_gh!
7

*F"*O2"N
k.l

*OP2"N
Q*F"*O2"NR

!

_gh!(-.'+M'P2"N)
      (C.6) 
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where nHymol denotes the number of hydrophilic groups (number of H atoms bonded to O, S, or N 
atoms) in the molecule. 
 
 

 
 

Figure C.11. Heatmap of absolute value Pearson’s correlation coefficients between molecular descriptors for the 
neutral molecules. 
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Figure C.12. Heatmap of absolute value Pearson’s correlation coefficients between molecular descriptors for the 
bidentate anions. 
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Table C.7. The unscaled values of the molecular descriptors for the neutral molecules used for QSAR modeling. For 
descriptor units, refer to Table C.6. 
 

Molecule qO/S,mol BIO/S,mol Vmol SAmol µmol nAtmol nElecmol IPmol EAmol 𝜼mol 

H2O -0.972 1.533 17.289 113.827 2.440 3 10 0.383 -0.110 0.246 

1 -1.098 1.492 125.453 342.293 7.046 21 86 0.313 -0.019 0.166 

3 -0.808 1.735 40.278 184.254 2.104 9 26 0.338 -0.107 0.222 

6 -1.127 1.459 102.993 291.424 3.721 18 74 0.372 -0.094 0.233 

8 -0.814 1.736 63.600 209.187 2.184 12 34 0.338 -0.100 0.219 

11 -1.125 1.460 145.404 347.746 3.749 27 98 0.366 -0.086 0.226 

13 -0.809 1.745 89.137 270.280 2.269 21 58 0.330 -0.094 0.212 

14 -1.127 1.460 205.526 483.313 2.713 42 146 0.261 -0.058 0.160 

17 -0.148 2.041 144.837 353.589 1.704 29 90 0.262 -0.079 0.170 

18 -1.149 1.424 152.558 377.772 7.723 28 104 0.292 -0.030 0.161 

20 -1.137 1.445 155.593 388.342 6.867 29 112 0.298 -0.027 0.162 

22 -1.136 1.441 91.313 277.482 5.697 16 66 0.370 -0.096 0.233 

24 -0.793 1.745 28.765 146.818 2.123 6 18 0.343 -0.112 0.227 
 

Molecule Smol 𝝌mol 𝝎mol nHmol nCmol nNmol nOmol nNonHmol nRBmol nHBdmol 

H2O 4.057 0.136 0.038 2 0 0 1 1 0 2 

1 6.031 0.147 0.065 11 5 2 2 10 4 0 

3 4.498 0.115 0.030 6 2 0 1 3 0 1 

6 4.291 0.139 0.041 10 4 0 2 8 2 0 

8 4.566 0.119 0.033 8 3 0 1 4 0 1 

11 4.429 0.140 0.043 16 7 0 2 11 3 0 

13 4.723 0.118 0.033 14 6 0 1 7 1 1 

14 6.259 0.101 0.032 26 11 1 2 16 8 0 

17 5.873 0.092 0.025 19 8 1 0 10 4 0 

18 6.208 0.131 0.053 16 7 2 1 12 4 0 

20 6.158 0.135 0.056 16 7 2 2 13 5 0 

22 4.286 0.137 0.040 9 3 0 3 7 2 0 

24 4.402 0.116 0.029 4 1 0 1 2 0 1 
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Table C.7 (continued). 
 

Molecule nHBamol UImol HyImol MWmol AMWmol 

H2O 1 0 6.169 18.015 6.005 

1 4 1.585 -0.480 162.129 7.720 

3 1 0 0.638 46.069 5.119 

6 3 1 -0.473 140.094 7.783 

8 1 0 0.323 60.096 5.008 

11 3 1 -0.614 182.175 6.747 

13 1 0 -0.088 102.177 4.866 

14 3 1 -0.673 267.368 6.366 

17 1 0 -0.161 161.307 5.562 

18 4 1.585 -0.565 194.190 6.935 

20 5 1.585 -0.523 210.189 7.248 

22 3 1 -0.401 124.076 7.755 

24 1 0 1.262 32.042 5.340 

 
Table C.8. The unscaled values of the molecular descriptors for the bidentate anions used for QSAR modeling. For 
descriptor units, refer to Table C.6. 
 

Molecule AvqO,mol AvBIO,mol Vmol SAmol µmol nAtmol nElecmol IPmol EAmol 𝜼mol 

2 -1.200 1.345 107.803 317.303 8.968 20 82 0.264 -0.102 0.183 

4 -1.204 1.339 78.980 253.376 7.104 14 66 0.271 -0.105 0.188 

7 -1.210 1.332 94.664 293.255 8.660 18 74 0.316 -0.103 0.210 

9 -1.217 1.321 63.697 220.756 4.911 9 50 0.318 -0.115 0.217 

12 -1.210 1.333 138.440 354.065 9.347 27 98 0.315 -0.098 0.206 

15 -1.210 1.332 89.112 279.764 7.724 15 66 0.318 -0.113 0.215 

16 -1.189 1.368 184.317 420.152 16.278 35 130 0.254 -0.091 0.173 

19 -1.226 1.308 152.276 386.074 15.554 28 104 0.258 -0.070 0.164 

21 -1.204 1.341 152.309 387.380 15.213 29 112 0.267 -0.057 0.162 

23 -1.209 1.332 66.722 249.963 6.559 12 58 0.318 -0.114 0.216 
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Table C.8 (continued). 
 

Molecule Smol 𝝌mol 𝝎mol
 nHmol nCmol nNmol nNonHmol nRBmol nHBamol HyImol 

2 5.470 0.081 0.018 11 4 1 9 3 4 -0.424 

4 5.324 0.083 0.018 7 2 1 7 1 4 0.447 

7 4.772 0.106 0.027 10 4 0 8 2 3 -0.473 

9 4.611 0.101 0.024 4 1 0 5 0 3 0.671 

12 4.847 0.108 0.029 16 7 0 11 3 3 -0.614 

15 4.643 0.103 0.024 8 3 0 7 2 3 -0.401 

16 5.792 0.082 0.019 21 9 1 14 6 3 -0.626 

19 6.082 0.094 0.027 16 7 2 12 4 4 -0.565 

21 6.180 0.105 0.034 16 7 2 13 5 5 -0.523 

23 4.632 0.102 0.024 6 2 0 6 1 3 -0.307 
 

Molecule MWmol AMWmol 

2 152.110 7.606 

4 124.056 8.861 

7 137.095 7.616 

9 95.014 10.557 

12 179.176 6.636 

15 123.068 8.205 

16 238.306 6.809 

19 191.191 6.828 

21 207.190 7.144 

23 109.041 9.087 

 
 
The formula used to scale descriptors was as follows: 
 

𝑥EV& =
))0	,	)0,2)*

)0,2(3	,	)0,2)*
                                               (C.7) 

where 𝑥EV and 𝑥EV&  are the unscaled and scaled jth descriptor values for molecule i, respectively, and 
	𝑥V,NE' and 𝑥V,ND) are the minimum and maximum values for the jth descriptor. For all descriptors, 
minL𝑥EV& M = 0 and maxL𝑥EV& M = 1. Scaling was performed separately for the neutral molecules 
descriptors and the bidentate anions descriptors. 
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Table C.9. The scaled values of the molecular descriptors for the neutral molecules used for QSAR modeling. 
 

Molecule qO/S,mol BIO/S,mol Vmol SAmol µmol nAtmol nElecmol IPmol EAmol 𝜼mol 

H2O 0.177 0.176 0.000 0.000 0.122 0.000 0.000 1.000 0.013 1.000 

1 0.051 0.110 0.575 0.618 0.887 0.462 0.559 0.423 1.000 0.070 

3 0.341 0.504 0.122 0.191 0.066 0.154 0.118 0.631 0.050 0.722 

6 0.023 0.057 0.455 0.481 0.335 0.385 0.471 0.912 0.189 0.845 

8 0.335 0.505 0.246 0.258 0.080 0.231 0.176 0.635 0.128 0.683 

11 0.024 0.060 0.681 0.633 0.340 0.615 0.647 0.862 0.279 0.761 

13 0.340 0.521 0.382 0.423 0.094 0.462 0.353 0.563 0.191 0.599 

14 0.022 0.060 1.000 1.000 0.168 1.000 1.000 0.000 0.575 0.000 

17 1.000 1.000 0.678 0.649 0.000 0.667 0.588 0.005 0.355 0.121 

18 0.000 0.000 0.719 0.714 1.000 0.641 0.691 0.254 0.880 0.015 

20 0.012 0.034 0.735 0.743 0.858 0.667 0.750 0.301 0.914 0.030 

22 0.013 0.028 0.393 0.443 0.663 0.333 0.412 0.898 0.164 0.848 

24 0.355 0.520 0.061 0.089 0.070 0.077 0.059 0.672 0.000 0.778 
 

Molecule Smol 𝝌mol 𝝎mol nHmol nCmol nNmol nOmol nNonHmol nRBmol nHBdmol 

H2O 0.000 0.807 0.322 0.000 0.000 0.000 0.333 0.000 0.000 1.000 

1 0.896 1.000 1.000 0.375 0.455 1.000 0.667 0.600 0.500 0.000 

3 0.200 0.433 0.133 0.167 0.182 0.000 0.333 0.133 0.000 0.500 

6 0.106 0.858 0.416 0.333 0.364 0.000 0.667 0.467 0.250 0.000 

8 0.231 0.503 0.195 0.250 0.273 0.000 0.333 0.200 0.000 0.500 

11 0.169 0.879 0.467 0.583 0.636 0.000 0.667 0.667 0.375 0.000 

13 0.302 0.476 0.203 0.500 0.545 0.000 0.333 0.400 0.125 0.500 

14 1.000 0.180 0.189 1.000 1.000 0.500 0.667 1.000 1.000 0.000 

17 0.825 0.000 0.000 0.708 0.727 0.500 0.000 0.600 0.500 0.000 

18 0.977 0.714 0.709 0.583 0.636 1.000 0.333 0.733 0.500 0.000 

20 0.954 0.794 0.788 0.583 0.636 1.000 0.667 0.800 0.625 0.000 

22 0.104 0.821 0.385 0.292 0.273 0.000 1.000 0.400 0.250 0.000 

24 0.156 0.436 0.119 0.083 0.091 0.000 0.333 0.067 0.000 0.500 
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Table C.9 (continued). 
 

Molecule nHBamol UImol HyImol MWmol AMWmol 

H2O 0.000 0.000 1.000 0.000 0.391 

1 0.750 1.000 0.028 0.578 0.979 

3 0.000 0.000 0.192 0.113 0.087 

6 0.500 0.631 0.029 0.490 1.000 

8 0.000 0.000 0.146 0.169 0.049 

11 0.500 0.631 0.009 0.658 0.645 

13 0.000 0.000 0.085 0.338 0.000 

14 0.500 0.631 0.000 1.000 0.514 

17 0.000 0.000 0.075 0.575 0.239 

18 0.750 1.000 0.016 0.707 0.709 

20 1.000 1.000 0.022 0.771 0.817 

22 0.500 0.631 0.040 0.425 0.990 

24 0.000 0.000 0.283 0.056 0.163 

 
Table C.10. The scaled values of the molecular descriptors for the bidentate anions used for QSAR modeling. 
 

Molecule AvqO,mol AvBIO,mol Vmol SAmol µmol nAtmol nElecmol IPmol EAmol 𝜼mol 

2 0.702 0.618 0.366 0.484 0.357 0.423 0.400 0.143 0.227 0.381 

4 0.577 0.513 0.127 0.164 0.193 0.192 0.200 0.252 0.176 0.472 

7 0.418 0.392 0.257 0.364 0.330 0.346 0.300 0.959 0.204 0.867 

9 0.228 0.209 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 

12 0.409 0.405 0.620 0.669 0.390 0.692 0.600 0.944 0.299 0.808 

15 0.433 0.397 0.211 0.296 0.247 0.231 0.200 0.995 0.046 0.973 

16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.418 0.197 

19 0.000 0.000 0.734 0.829 0.936 0.731 0.675 0.061 0.765 0.047 

21 0.584 0.550 0.735 0.836 0.906 0.769 0.775 0.196 1.000 0.000 

23 0.441 0.404 0.025 0.146 0.145 0.115 0.100 0.993 0.026 0.982 
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Table C.10 (continued). 
 

Molecule Smol 𝝌mol 𝝎mol
 nHmol nCmol nNmol nNonHmol nRBmol nHBamol HyImol 

2 0.548 0.000 0.000 0.412 0.375 0.500 0.444 0.500 0.500 0.156 

4 0.455 0.072 0.024 0.176 0.125 0.500 0.222 0.167 0.500 0.827 

7 0.103 0.916 0.554 0.353 0.375 0.000 0.333 0.333 0.000 0.118 

9 0.000 0.747 0.361 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

12 0.151 1.000 0.654 0.706 0.750 0.000 0.667 0.500 0.000 0.010 

15 0.020 0.790 0.406 0.235 0.250 0.000 0.222 0.333 0.000 0.174 

16 0.753 0.038 0.095 1.000 1.000 0.500 1.000 1.000 0.000 0.000 

19 0.938 0.476 0.552 0.706 0.750 1.000 0.778 0.667 0.500 0.047 

21 1.000 0.880 1.000 0.706 0.750 1.000 0.889 0.833 1.000 0.079 

23 0.013 0.766 0.383 0.118 0.125 0.000 0.111 0.167 0.000 0.246 
 

Molecule MWmol AMWmol 

2 0.398 0.247 

4 0.203 0.567 

7 0.294 0.250 

9 0.000 1.000 

12 0.587 0.000 

15 0.196 0.400 

16 1.000 0.044 

19 0.671 0.049 

21 0.783 0.130 

23 0.098 0.625 
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C.12 QSAR Modeling: Node Descriptors 
 
Table C.11. List of node descriptors used in the QSAR models for the prediction of binding free energies. 
 

Descriptor Notation Unit Rangea 

distance between 2 binding site metal atoms dM–M,node Å 3.584 – 3.997, 3.559 – 4.017 

NBO partial atomic charge on binding site M atomb qM,node a.u. 1.921 – 2.341 

average NBO partial atomic charge on binding site 
M atomsc 

AvqM,node a.u. 1.990 – 2.317 

Wiberg bond index of binding site M atomb BIM,node  3.212 – 4.092 

average Wiberg bond index of binding site M 
atomsc 

AvBIM,node  3.235 – 3.903 

NBO population of valence orbitals of binding site 
M atomb 

ValPopM,node  1.590 – 2.072 

average NBO population of valence orbitals of 
binding site M atomsc 

AvValPopM,node  1.622 – 2.000 

experimental ionization potential of M4+ atom IPM4+,node eV 58.000 – 80.348, 58.000 – 80.348 

experimental electron affinity of M4+ atom EAM4+,node eV 28.648 – 36.906, 28.648 – 36.906 

experimental hardness of M4+ atom 𝜂M4+,node eV 14.322 – 22.965, 14.322 – 22.965 

experimental softness of M4+ atom SM4+,node eV–1 0.044 – 0.070, 0.044 – 0.070 

experimental electronegativity of M4+ atom 𝜒M4+,node eV 43.324 – 57.383, 43.324 – 57.383 

experimental electrophilicity of M4+ atom 𝜔M4+,node eV 63.947 – 91.618, 63.947 – 91.618 

atomic number of binding site M atom ZM,node  40 – 90, 40 – 90 
atomic weight of binding site M atom AtWtM,node g/mol 91.224 – 232.040, 91.224 – 232.040 
period in the periodic table of binding site M atom PdM,node  5 – 7, 5 – 7 
covalent radius of binding site M atom CovRM,node Å 1.75 – 2.06, 1.75 – 2.06 

total number of linkers per node nLinknode  6 – 11, 6 – 11 

linker bite angle Bitenode degree 138.194 – 157.337, 138.127 – 156.311 

number of electrons in node nElecnode  790 – 1266, 780 – 1256 

NBO partial atomic charge on binding site µ3O(H) 
atom 

qµ3O(H),node a.u. (–0.974) – (–0.867), (–0.985) – (–0.888) 

NBO partial atomic charge on binding site µ3(O)H 
atom 

qµ3(O)H,node a.u. 0.514 – 0.529, 0.509 – 0.520 

NBO partial atomic charge on binding site µ3O atom qµ3O,node a.u. (–1.137) – (–0.916), (–1.163) – (–0.930) 

NBO partial atomic charge on binding site terminal 
O(H) atomb 

qtO(H),node a.u. (–1.081) – (–0.976) 

NBO partial atomic charge on binding site terminal 
(O)H atomb 

qt(O)H,node a.u. 0.500 – 0.508 

bond length of binding site terminal M–OH bondb BLtM–OH,node Å 2.030 – 2.210 

Wiberg bond order of binding site terminal M–OH 
bondb 

BOtM–OH,node  0.700 – 0.923 
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aThe values in red correspond to node binding sites with the terminal –OH2 group removed (node–noOH2) and values 
in green correspond to node binding sites with the terminal –OH2 and –OH groups removed (node–noOH2,OH). bThese 
descriptors were only computed for node–noOH2 structures. cThese descriptors were only computed for node–
noOH2,OH structures. 
 
 

 
 

Figure C.13. Heatmap of absolute value Pearson’s correlation coefficients between node descriptors for the node–
noOH2 binding sites. 
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Figure C.14. Heatmap of absolute value Pearson’s correlation coefficients between node descriptors for the node–
noOH2,OH binding sites. 
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Table C.12. The unscaled values of the node descriptors for the node–noOH2 binding sites used for QSAR modeling. 
For descriptor units, refer to Table C.11. 
 

node–noOH2 
Site dM–M,node qM,node BIM,node ValPopM,node IPM4+,node EAM4+,node 𝜼M4+,node SM4+,node 𝝌M4+,node 

Zr-MOF-808 3.600 2.056 3.667 1.876 80.348 34.418 22.965 0.044 57.383 

Zr-NU-1000 
(large pore) 

3.611 2.192 3.432 1.735 80.348 34.418 22.965 0.044 57.383 

Zr-bi(trans)- 
defect UiO-66 

3.617 2.233 3.378 1.700 80.348 34.418 22.965 0.044 57.383 

Zr-mono- 
defect UiO-66 

3.606 2.244 3.360 1.689 80.348 34.418 22.965 0.044 57.383 

Zr-bi(cis)- 
defect UiO-66 

3.623 2.203 3.414 1.725 80.348 34.418 22.965 0.044 57.383 

Zr-NU-1000 
(c pore) 

3.610 2.196 3.426 1.731 80.348 34.418 22.965 0.044 57.383 

Hf-bi(trans)- 
defect UiO-66 

3.595 2.341 3.212 1.590 68.370 33.370 17.500 0.057 50.870 

Ce-bi(trans)- 
defect UiO-66 

3.898 2.068 3.768 1.918 65.550 36.906 14.322 0.070 51.228 

Th-bi(trans)- 
defect UiO-66 

3.990 2.224 3.781 1.781 58.000 28.648 14.676 0.068 43.324 

Hf-MOF-808 3.584 2.158 3.517 1.777 68.370 33.370 17.500 0.057 50.870 

Ce-MOF-808 3.896 1.921 4.033 2.072 65.550 36.906 14.322 0.070 51.228 

Th-MOF-808 3.997 2.065 4.092 1.949 58.000 28.648 14.676 0.068 43.324 
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Table C.12 (continued). 
 

node–noOH2 
Site 𝝎M4+,node ZM,node AtWtM,node PdM,node CovRM,node nLinknode Bitenode nElecnode qµ3O(H),node 

Zr-MOF-808 71.693 40 91.224 5 1.75 6 155.759 790 -0.933 

Zr-NU-1000 
(large pore) 

71.693 40 91.224 5 1.75 8 149.637 878 -0.942 

Zr-bi(trans)- 
defect UiO-66 

71.693 40 91.224 5 1.75 10 143.714 966 -0.944 

Zr-mono- 
defect UiO-66 

71.693 40 91.224 5 1.75 11 142.567 1010 -0.944 

Zr-bi(cis)- 
defect UiO-66 

71.693 40 91.224 5 1.75 10 142.463 966 -0.942 

Zr-NU-1000 
(c pore) 

71.693 40 91.224 5 1.75 8 138.194 878 -0.943 

Hf-bi(trans)- 
defect UiO-66 

73.936 72 178.490 6 1.75 10 143.415 1158 -0.974 

Ce-bi(trans)- 
defect UiO-66 

91.618 58 140.120 6 2.04 10 144.622 1074 -0.905 

Th-bi(trans)- 
defect UiO-66 

63.947 90 232.040 7 2.06 10 144.456 1266 -0.882 

Hf-MOF-808 73.936 72 178.490 6 1.75 6 155.763 982 -0.961 

Ce-MOF-808 91.618 58 140.120 6 2.04 6 156.912 898 -0.902 

Th-MOF-808 63.947 90 232.040 7 2.06 6 157.337 1090 -0.867 
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Table C.12 (continued). 
 

node–noOH2 Site qµ3(O)H,node qµ3O,node qtO(H),node qt(O)H,node BLtM–OH,node BOtM–OH,node 

Zr-MOF-808 0.525 -1.053 -1.055 0.503 2.050 0.743 

Zr-NU-1000 
(large pore) 

0.526 -1.064 -1.049 0.504 2.030 0.754 

Zr-bi(trans)- 
defect UiO-66 

0.527 -1.061 -1.052 0.502 2.038 0.743 

Zr-mono- 
defect UiO-66 

0.528 -1.062 -1.052 0.501 2.043 0.737 

Zr-bi(cis)- 
defect UiO-66 

0.527 -1.063 -1.051 0.501 2.044 0.739 

Zr-NU-1000 
(c pore) 

0.527 -1.062 -1.049 0.503 2.035 0.751 

Hf-bi(trans)- 
defect UiO-66 

0.529 -1.137 -1.077 0.500 2.042 0.700 

Ce-bi(trans)- 
defect UiO-66 

0.523 -0.916 -0.976 0.508 2.123 0.923 

Th-bi(trans)- 
defect UiO-66 

0.515 -1.052 -1.058 0.506 2.170 0.785 

Hf-MOF-808 0.527 -1.129 -1.081 0.501 2.053 0.701 

Ce-MOF-808 0.519 -0.917 -0.991 0.503 2.148 0.891 

Th-MOF-808 0.514 -1.040 -1.061 0.500 2.210 0.775 
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Table C.13. The unscaled values of the node descriptors for the node–noOH2,OH binding sites used for QSAR 
modeling. For descriptor units, refer to Table C.11. 
 

node–
noOH2,OH 

Site 

dM–
M,node 

AvqM,node AvBIM,node AvValPopM,node IPM4+,node EAM4+,node 𝜼M4+,node SM4+,node 𝝌M4+,node 

Zr-MOF-
808 3.578 2.117 3.550 1.823 80.348 34.418 22.965 0.044 57.383 

Zr-NU-1000 
(large pore) 

3.567 2.193 3.418 1.744 80.348 34.418 22.965 0.044 57.383 

Zr-bi(trans)- 
defect UiO-

66 
3.597 2.214 3.392 1.725 80.348 34.418 22.965 0.044 57.383 

Zr-mono- 
defect UiO-

66 
3.588 2.211 3.396 1.729 80.348 34.418 22.965 0.044 57.383 

Zr-bi(cis)- 
defect UiO-

66 
3.591 2.182 3.437 1.755 80.348 34.418 22.965 0.044 57.383 

Zr-NU-1000 
(c pore) 

3.563 2.181 3.437 1.756 80.348 34.418 22.965 0.044 57.383 

Hf-bi(trans)- 
defect UiO-

66 
3.575 2.317 3.235 1.622 68.370 33.370 17.500 0.057 50.870 

Ce-bi(trans)- 
defect UiO-

66 
3.911 2.097 3.704 1.889 65.550 36.906 14.322 0.070 51.228 

Th-bi(trans)- 
defect UiO-

66 
4.017 2.254 3.705 1.755 58.000 28.648 14.676 0.068 43.324 

Hf-MOF-
808 3.559 2.218 3.400 1.723 68.370 33.370 17.500 0.057 50.870 

Ce-MOF-
808 3.884 1.990 3.899 2.000 65.550 36.906 14.322 0.070 51.228 

Th-MOF-
808 3.990 2.152 3.903 1.854 58.000 28.648 14.676 0.068 43.324 

 
  



 268 
Table C.13 (continued). 
 

node–
noOH2,OH Site 𝝎M4+,node ZM,node AtWtM,node PdM,node CovRM,node nLinknode Bitenode nElecnode qµ3O(H),node 

Zr-MOF-808 71.693 40 91.224 5 1.75 6 155.406 780 -0.947 

Zr-NU-1000 
(large pore) 

71.693 40 91.224 5 1.75 8 149.531 868 -0.965 

Zr-bi(trans)- 
defect UiO-66 

71.693 40 91.224 5 1.75 10 143.341 956 -0.962 

Zr-mono- 
defect UiO-66 

71.693 40 91.224 5 1.75 11 142.088 1000 -0.961 

Zr-bi(cis)- 
defect UiO-66 

71.693 40 91.224 5 1.75 10 142.144 956 -0.959 

Zr-NU-1000 
(c pore) 

71.693 40 91.224 5 1.75 8 138.127 868 -0.964 

Hf-bi(trans)- 
defect UiO-66 

73.936 72 178.490 6 1.75 10 143.053 1148 -0.985 

Ce-bi(trans)- 
defect UiO-66 

91.618 58 140.120 6 2.04 10 143.581 1064 -0.927 

Th-bi(trans)- 
defect UiO-66 

63.947 90 232.040 7 2.06 10 143.308 1256 -0.902 

Hf-MOF-808 73.936 72 178.490 6 1.75 6 155.416 972 -0.973 

Ce-MOF-808 91.618 58 140.120 6 2.04 6 155.935 888 -0.922 

Th-MOF-808 63.947 90 232.040 7 2.06 6 156.311 1080 -0.888 
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Table C.13 (continued). 
 

node–noOH2,OH Site qµ3(O)H,node qµ3O,node 

Zr-MOF-808 0.520 -1.076 

Zr-NU-1000 
(large pore) 

0.516 -1.088 

Zr-bi(trans)- 
defect UiO-66 

0.514 -1.084 

Zr-mono- 
defect UiO-66 

0.515 -1.084 

Zr-bi(cis)- 
defect UiO-66 

0.515 -1.085 

Zr-NU-1000 
(c pore) 

0.515 -1.087 

Hf-bi(trans)- 
defect UiO-66 

0.514 -1.163 

Ce-bi(trans)- 
defect UiO-66 

0.518 -0.935 

Th-bi(trans)- 
defect UiO-66 

0.509 -1.079 

Hf-MOF-808 0.520 -1.155 

Ce-MOF-808 0.517 -0.930 

Th-MOF-808 0.511 -1.070 
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Table C.14. The scaled values of the node descriptors for the node–noOH2 binding sites used for QSAR modeling. 
 

node–noOH2 Site dM–
M,node 

qM,node BIM,node ValPopM,node IPM4+,node EAM4+,node 𝜼M4+,node SM4+,node 𝝌M4+,node 

Zr-MOF-808 0.039 0.320 0.517 0.594 1.000 0.699 1.000 0.000 1.000 

Zr-NU-1000 
(large pore) 

0.064 0.646 0.250 0.301 1.000 0.699 1.000 0.000 1.000 

Zr-bi(trans)- 
defect UiO-66 

0.079 0.742 0.189 0.228 1.000 0.699 1.000 0.000 1.000 

Zr-mono- 
defect UiO-66 

0.052 0.768 0.168 0.206 1.000 0.699 1.000 0.000 1.000 

Zr-bi(cis)- 
defect UiO-66 

0.094 0.672 0.230 0.280 1.000 0.699 1.000 0.000 1.000 

Zr-NU-1000 
(c pore) 

0.062 0.655 0.243 0.293 1.000 0.699 1.000 0.000 1.000 

Hf-bi(trans)- 
defect UiO-66 

0.025 1.000 0.000 0.000 0.464 0.572 0.368 0.517 0.537 

Ce-bi(trans)- 
defect UiO-66 

0.758 0.350 0.632 0.681 0.338 1.000 0.000 1.000 0.562 

Th-bi(trans)- 
defect UiO-66 

0.983 0.723 0.647 0.397 0.000 0.000 0.041 0.936 0.000 

Hf-MOF-808 0.000 0.564 0.346 0.389 0.464 0.572 0.368 0.517 0.537 

Ce-MOF-808 0.755 0.000 0.934 1.000 0.338 1.000 0.000 1.000 0.562 

Th-MOF-808 1.000 0.344 1.000 0.746 0.000 0.000 0.041 0.936 0.000 
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Table C.14 (continued). 
 

node–noOH2 
Site 𝝎M4+,node ZM,node AtWtM,node PdM,node CovRM,node nLinknode Bitenode nElecnode qµ3O(H),node 

Zr-MOF-808 0.280 0.000 0.000 0.000 0.000 0.000 0.918 0.000 0.390 

Zr-NU-1000 
(large pore) 

0.280 0.000 0.000 0.000 0.000 0.400 0.598 0.185 0.305 

Zr-bi(trans)- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 0.800 0.288 0.370 0.284 

Zr-mono- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 1.000 0.228 0.462 0.281 

Zr-bi(cis)- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 0.800 0.223 0.370 0.304 

Zr-NU-1000 
(c pore) 

0.280 0.000 0.000 0.000 0.000 0.400 0.000 0.185 0.297 

Hf-bi(trans)- 
defect UiO-66 

0.361 0.640 0.620 0.500 0.000 0.800 0.273 0.773 0.000 

Ce-bi(trans)- 
defect UiO-66 

1.000 0.360 0.347 0.500 0.935 0.800 0.336 0.597 0.644 

Th-bi(trans)- 
defect UiO-66 

0.000 1.000 1.000 1.000 1.000 0.800 0.327 1.000 0.868 

Hf-MOF-808 0.361 0.640 0.620 0.500 0.000 0.000 0.918 0.403 0.123 

Ce-MOF-808 1.000 0.360 0.347 0.500 0.935 0.000 0.978 0.227 0.678 

Th-MOF-808 0.000 1.000 1.000 1.000 1.000 0.000 1.000 0.630 1.000 
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Table C.14 (continued). 
 

node–noOH2 Site qµ3(O)H,node qµ3O,node qtO(H),node qt(O)H,node BLtM–OH,node BOtM–OH,node 

Zr-MOF-808 0.766 0.381 0.245 0.429 0.115 0.195 

Zr-NU-1000 
(large pore) 

0.834 0.330 0.296 0.487 0.000 0.245 

Zr-bi(trans)- 
defect UiO-66 

0.886 0.343 0.275 0.342 0.046 0.194 

Zr-mono- 
defect UiO-66 

0.959 0.339 0.275 0.202 0.076 0.169 

Zr-bi(cis)- 
defect UiO-66 

0.868 0.333 0.285 0.169 0.078 0.175 

Zr-NU-1000 
(c pore) 

0.897 0.336 0.305 0.365 0.032 0.230 

Hf-bi(trans)- 
defect UiO-66 

1.000 0.000 0.033 0.000 0.070 0.000 

Ce-bi(trans)- 
defect UiO-66 

0.587 1.000 1.000 1.000 0.517 1.000 

Th-bi(trans)- 
defect UiO-66 

0.065 0.384 0.213 0.766 0.777 0.380 

Hf-MOF-808 0.899 0.036 0.000 0.184 0.128 0.008 

Ce-MOF-808 0.305 0.994 0.857 0.377 0.655 0.857 

Th-MOF-808 0.000 0.438 0.185 0.046 1.000 0.339 
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Table C.15. The scaled values of the node descriptors for the node–noOH2,OH binding sites used for QSAR modeling. 
 

node–
noOH2,OH 

Site 

dM–
M,node 

AvqM,node AvBIM,node AvValPopM,node IPM4+,node EAM4+,node 𝜼M4+,node SM4+,node 𝝌M4+,node 

Zr-MOF-
808 0.041 0.389 0.472 0.531 1.000 0.699 1.000 0.000 1.000 

Zr-NU-1000 
(large pore) 

0.017 0.620 0.274 0.321 1.000 0.699 1.000 0.000 1.000 

Zr-bi(trans)- 
defect UiO-

66 
0.082 0.686 0.235 0.272 1.000 0.699 1.000 0.000 1.000 

Zr-mono- 
defect UiO-

66 
0.064 0.676 0.241 0.282 1.000 0.699 1.000 0.000 1.000 

Zr-bi(cis)- 
defect UiO-

66 
0.069 0.588 0.302 0.351 1.000 0.699 1.000 0.000 1.000 

Zr-NU-1000 
(c pore) 

0.007 0.584 0.302 0.353 1.000 0.699 1.000 0.000 1.000 

Hf-bi(trans)- 
defect UiO-

66 
0.034 1.000 0.000 0.000 0.464 0.572 0.368 0.517 0.537 

Ce-bi(trans)- 
defect UiO-

66 
0.768 0.328 0.701 0.704 0.338 1.000 0.000 1.000 0.562 

Th-bi(trans)- 
defect UiO-

66 
1.000 0.808 0.703 0.350 0.000 0.000 0.041 0.936 0.000 

Hf-MOF-
808 0.000 0.698 0.247 0.267 0.464 0.572 0.368 0.517 0.537 

Ce-MOF-
808 0.710 0.000 0.993 1.000 0.338 1.000 0.000 1.000 0.562 

Th-MOF-
808 0.941 0.495 1.000 0.612 0.000 0.000 0.041 0.936 0.000 
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Table C.15 (continued). 
 

node–
noOH2,OH Site 𝝎M4+,node ZM,node AtWtM,node PdM,node CovRM,node nLinknode Bitenode nElecnode qµ3O(H),node 

Zr-MOF-808 0.280 0.000 0.000 0.000 0.000 0.000 0.950 0.000 0.398 

Zr-NU-1000 
(large pore) 

0.280 0.000 0.000 0.000 0.000 0.400 0.627 0.185 0.212 

Zr-bi(trans)- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 0.800 0.287 0.370 0.240 

Zr-mono- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 1.000 0.218 0.462 0.247 

Zr-bi(cis)- 
defect UiO-66 

0.280 0.000 0.000 0.000 0.000 0.800 0.221 0.370 0.271 

Zr-NU-1000 
(c pore) 

0.280 0.000 0.000 0.000 0.000 0.400 0.000 0.185 0.220 

Hf-bi(trans)- 
defect UiO-66 

0.361 0.640 0.620 0.500 0.000 0.800 0.271 0.773 0.000 

Ce-bi(trans)- 
defect UiO-66 

1.000 0.360 0.347 0.500 0.935 0.800 0.300 0.597 0.602 

Th-bi(trans)- 
defect UiO-66 

0.000 1.000 1.000 1.000 1.000 0.800 0.285 1.000 0.856 

Hf-MOF-808 0.361 0.640 0.620 0.500 0.000 0.000 0.951 0.403 0.128 

Ce-MOF-808 1.000 0.360 0.347 0.500 0.935 0.000 0.979 0.227 0.648 

Th-MOF-808 0.000 1.000 1.000 1.000 1.000 0.000 1.000 0.630 1.000 
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Table C.15 (continued). 
 

node–noOH2,OH Site qµ3(O)H,node qµ3O,node 

Zr-MOF-808 0.930 0.376 

Zr-NU-1000 
(large pore) 

0.615 0.323 

Zr-bi(trans)- 
defect UiO-66 

0.432 0.339 

Zr-mono- 
defect UiO-66 

0.509 0.338 

Zr-bi(cis)- 
defect UiO-66 

0.489 0.337 

Zr-NU-1000 
(c pore) 

0.557 0.328 

Hf-bi(trans)- 
defect UiO-66 

0.461 0.000 

Ce-bi(trans)- 
defect UiO-66 

0.821 0.978 

Th-bi(trans)- 
defect UiO-66 

0.000 0.361 

Hf-MOF-808 1.000 0.036 

Ce-MOF-808 0.688 1.000 

Th-MOF-808 0.174 0.400 
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C.13 QSAR Modeling: Distributions of Binding Free Energies 
 

 
 

Figure C.15. Distribution of binding free energies for (a) the neutral molecules bound to node–noOH2 sites and (b) 
the bidentate anions bound to node–noOH2,OH sites. 
 
  

(a)

(b)
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C.14 QSAR Modeling: Most Important Individual Descriptors 
 

 
 

Figure C.16. The 10 most important descriptors for describing the binding free energies of neutral molecules to node–
noOH2 sites, as identified by uniparametric coefficients of determination (R2uni) for simple linear regression using 
individual descriptors. 
 
 

 
 

Figure C.17. The 10 most important descriptors for describing the binding free energies of bidentate anions to node–
noOH2,OH sites, as identified by uniparametric coefficients of determination (R2uni) for simple linear regression using 
individual descriptors. 
 

0

0.05

0.1

0.15

0.2

0.25
R
2 u
ni

qO/S,mol BIO/S,mol Bitenode !mol BOtM–OH,node qtO(H),node nOmol "mol qµ3O,node nLinknode

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
2 u
ni

!M4+,node qµ3O,node EAM4+,node AvqM,node AvValPopM,node nNmol EAmol Smol CovRM,node SM4+,node



 278 
C.15 QSAR Modeling: Description of Stepwise MLR Algorithm 
 
As stated in the main text, we used stepwise forward-backward based feature selection combined 
with MLR using a 95% confidence interval for development of the multi-parametric QSAR models 
(for both the neutrals and bidentates datasets). In MATLAB, we utilized the built-in stepwiselm 
function. This algorithm performs forward selection of descriptors if their corresponding p-values 
are less than 0.05, then uses backward elimination of the descriptor with the largest p-value if any 
descriptors in the model at the current step have p-values higher than 0.10. Here, the p-values are 
for an F-test of the change in the sum of squared error resulting from the addition or removal of a 
descriptor. Finally, the algorithm terminates whenever a single step cannot improve the model 
statistics. 
 
C.16 QSAR Modeling: Tests for Statistical Significance 
 
Training set: 
 

𝑅DLV4 = 1 − j+&'()*,-
+&'()*,T

k
∑m;"#$(&'()*)	,	;,'-.(&'()*)n

!

∑m;"#$(&'()*)	,	;=(&'()*)n
!                                       (C.8) 

In eq C.8, 𝑦MK&(CBDE') are the observed ∆𝐺KE'L responses computed by DFT for the training set 
molecule-node combinations, 𝑦TB(L(CBDE') are the responses predicted by the regression equation 
(developed using the entire training set), 𝑦B(CBDE') is the average response for the training set, and 
summations are over all training set molecule-node combinations. Further, Ntrain is the number of 
training set observations (i.e., the number of molecule-node combinations used to train the QSAR 
model) and p is the number of regression coefficients (which includes the intercept). 
 

𝑄7884 = 1 −
∑m;"#$(&'()*)	,	;,'-.(&'()*)n

!

∑m;"#$(&'()*)	,	;=(&'()*)n
!                                             (C.9) 

In eq C.9, 𝑦MK&(CBDE') are the observed ∆𝐺KE'L responses computed by DFT, 𝑦TB(L(CBDE') are the 
responses predicted by the leave-one-out cross-validation (LOO-CV) procedure, 𝑦B(CBDE') is the 
average response, and summations are over all training set molecule-node combinations. In the 
LOO-CV procedure, every molecule-node combination is eliminated from the dataset once and 
then its response variable is predicted using the regression equation derived from the remaining 
set. 
 

C𝑅04 = 𝑅'B × D𝑅'B4 − 𝑅B4                                                          (C.10) 

The possibility of chance correlation or structural redundancy in the developed QSAR models was 
measured by the y-randomization method. This involved randomizing the training set response 
values, while leaving the training set descriptor matrix unchanged and repeating the entire process 
of statistical validation. Using the coefficients of determination for the randomized model (𝑅B4) 
and non-random model (𝑅'B4 ), the C𝑅04 parameter was calculated using eq C.10. If C𝑅04 > 0.5, then 
that QSAR model is not generated purely by chance.5 
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Test set: 
 

𝑅𝑀𝑆𝐸C(&C = m∑m;"#$(&-$&)	,	;,'-.(&-$&)n
!

+&-$&
                                                (C.11) 

In eq C.11, 𝑦MK&(C(&C) are the observed ∆𝐺KE'L responses computed by DFT for the test set 
molecule-node combinations, 𝑦TB(L(C(&C) are the test set responses predicted by the regression 
equation (developed using the training set), Ntest is the number of test set observations, and 
summations are over all test set molecule-node combinations. 
 

𝑅C(&C4 = 1 −
∑m;"#$(&-$&)	,	;,'-.(&-$&)n

!

∑m;"#$(&-$&)	,	;=(&-$&)n
!                                                             (C.12) 

In eq C.12, 𝑦B(C(&C) is the average response for the test set. 
 

𝜌C(&CL𝑌MK&(C(&C), 𝑌TB(L(C(&C)M = 1 − o∑L!

!('!,-)
                                         (C.13) 

To compute the Spearman’s rank correlation coefficient for the test set (𝜌test), the observed 
responses and predicted responses are ranked in order of value and then the two columns (𝑌MK&(C(&C) 
and 𝑌TB(L(C(&C)) are compared. In eq C.13, d is the difference between the ranks of the two columns 
and n is the length of each column (i.e., the number of test set observations). 
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C.17 QSAR Modeling: Variability in Predictive QSAR Model Statistics 
 

 
 

Figure C.18. (a) Training set Q2LOO, (b) test set coefficients of determination, (c) test set root mean square errors, and 
(d) test set Spearman’s rank correlation coefficients for the 100 predictive QSAR models generated for the neutrals 
dataset. Red points indicate the optimal model (i.e., the model with the lowest RMSEtest, which also satisfies the 
minimum QSAR criteria of Q2LOO > 0.5, CR2p > 0.5, and R2test > 0.6). 
 

 
 

Figure C.19. (a) Training set Q2LOO, (b) test set coefficients of determination, (c) test set root mean square errors, and 
(d) test set Spearman’s rank correlation coefficients for the 100 predictive QSAR models generated for the bidentates 
dataset. Green points indicate the optimal model (i.e., the model with the lowest RMSEtest, which also satisfies the 
minimum QSAR criteria of Q2LOO > 0.5, CR2p > 0.5, and R2test > 0.6). 
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C.18 QSAR Modeling: Leverages and Standardized Residuals 
 
As stated in the main text, leverage (h) is a measure of the influence of a molecule-node 
combination’s properties on a regression model. Leverages for individual molecule-node 
combinations within the training and test sets are calculated as the diagonals of the hat matrices 
(H), defined as: 
 

𝐻CBDE' = 𝑋CBDE'(𝑋CBDE'F 𝑋CBDE'),-𝑋CBDE'F                                                 (C.14) 

𝐻C(&C = 𝑋C(&C(𝑋CBDE'F 𝑋CBDE'),-𝑋C(&CF                                                     (C.15) 

where Xtrain and Xtest are the design matrices containing the molecular/node descriptors for the 
training and test sets, respectively. More specifically, each row in the design matrices contains the 
49 (42) scaled descriptor values for an individual molecule-node combination in the neutrals 
(bidentates) dataset. 
 
The standardized residuals for response i (sti) are computed as raw residuals (ri) divided by their 
estimated standard deviation: 
 

𝑠𝑡E =
B)

pWq2(-	,	a)))
= ;"#$,)	,	;,'-.,)

pWq2(-	,	a)))
                                                            (C.16) 

where MSE is the mean squared error and hii is the leverage value for ∆𝐺KE'L response i. 
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C.19 QSAR Modeling: Optimal Predictive QSAR Model for Neutrals Dataset 
 
Table C.16. Predictions, residuals, and leverages for training and test set molecule-node combinations using the 
optimal predictive QSAR model for the neutrals dataset (eq 4.9 in the main text). 
 

Node/Molecule Set Observation 
(kJ/mol) 

Prediction 
(kJ/mol) 

Raw Residual 
(kJ/mol) 

Standardized 
Residual Leverage 

Zr-NU-1000 (c pore)/18 Training -62.23 -57.57 -4.66 -0.52 0.104 

Zr-bi(trans)-defect UiO-66/17 Training 53.55 47.49 6.06 0.70 0.157 

Zr-mono-defect UiO-66/24 Training -22.86 -21.82 -1.04 -0.11 0.055 

Zr-MOF-808/3 Training 10.75 1.24 9.51 1.04 0.060 

Ce-bi(trans)-defect UiO-66/3 Training -30.60 -32.02 1.42 0.16 0.084 

Zr-mono-defect UiO-66/17 Training 31.15 47.45 -16.30 -2.08 0.305 

Hf-bi(trans)-defect UiO-66/22 Training -10.52 -10.34 -0.18 -0.02 0.144 

Zr-NU-1000 (c pore)/20 Training -61.17 -61.84 0.67 0.08 0.147 

Th-bi(trans)-defect UiO-66/14 Training -45.92 -42.56 -3.36 -0.40 0.193 

Hf-MOF-808/14 Training 14.21 3.47 10.74 1.27 0.191 

Zr-mono-defect UiO-66/13 Training -24.21 -13.70 -10.51 -1.18 0.100 

Hf-bi(trans)-defect UiO-66/H2O Training -35.37 -44.01 8.64 1.08 0.271 

Ce-bi(trans)-defect UiO-66/20 Training -48.02 -49.29 1.27 0.15 0.170 

Zr-NU-1000 (c pore)/13 Training -15.07 -38.95 23.88 2.69 0.105 

Zr-MOF-808/11 Training -2.17 -5.79 3.62 0.40 0.058 

Zr-NU-1000 (large pore)/18 Training -18.65 -20.35 1.70 0.18 0.042 

Hf-MOF-808/17 Training 37.89 37.30 0.59 0.08 0.298 

Ce-bi(trans)-defect UiO-66/24 Training -28.88 -30.25 1.37 0.15 0.092 

Zr-NU-1000 (large pore)/8 Training -2.77 -4.76 1.99 0.22 0.034 

Zr-bi(cis)-defect UiO-66/14 Training -19.44 -36.46 17.02 1.95 0.138 

Th-MOF-808/18 Training -22.03 -13.76 -8.28 -0.94 0.129 

Zr-bi(trans)-defect UiO-66/24 Training -22.74 -19.85 -2.89 -0.31 0.036 

Zr-MOF-808/13 Training 15.91 8.56 7.35 0.81 0.074 

Hf-MOF-808/20 Training -20.04 -19.72 -0.32 -0.04 0.136 

Hf-bi(trans)-defect UiO-66/20 Training -41.13 -31.53 -9.60 -1.12 0.172 

Ce-bi(trans)-defect UiO-66/13 Training -30.32 -31.57 1.25 0.14 0.125 

Ce-MOF-808/11 Training -20.18 -23.18 3.00 0.33 0.073 

Zr-NU-1000 (c pore)/8 Training -27.65 -43.81 16.16 1.82 0.105 

Hf-MOF-808/3 Training 17.40 -5.31 22.71 2.50 0.068 

Zr-NU-1000 (large pore)/17 Training 52.11 51.55 0.56 0.07 0.213 

Hf-bi(trans)-defect UiO-66/24 Training -29.28 -28.60 -0.68 -0.07 0.075 

Th-bi(trans)-defect UiO-66/18 Training -28.85 -33.37 4.52 0.50 0.082 
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Ce-MOF-808/22 Training -18.32 -23.96 5.64 0.62 0.064 

Zr-bi(trans)-defect UiO-66/20 Training -34.95 -30.29 -4.66 -0.52 0.093 

Hf-bi(trans)-defect UiO-66/13 Training -33.49 -19.33 -14.16 -1.58 0.089 

Ce-MOF-808/17 Training -10.26 -22.97 12.71 1.58 0.265 

Zr-NU-1000 (large pore)/24 Training 10.52 -6.76 17.28 1.88 0.041 

Zr-NU-1000 (large pore)/13 Training -17.51 0.01 -17.52 -1.91 0.046 

Zr-NU-1000 (large pore)/20 Training -26.13 -24.56 -1.57 -0.18 0.095 

Ce-MOF-808/14 Training -26.85 -21.86 -4.99 -0.60 0.226 

Ce-MOF-808/13 Training -23.03 -16.49 -6.54 -0.73 0.092 

Zr-bi(cis)-defect UiO-66/13 Training -31.11 -19.47 -11.64 -1.29 0.073 

Hf-bi(trans)-defect UiO-66/17 Training 42.31 42.88 -0.57 -0.07 0.321 

Th-bi(trans)-defect UiO-66/H2O Training -38.22 -46.35 8.13 0.94 0.157 

Th-bi(trans)-defect UiO-66/6 Training -12.66 -15.31 2.65 0.30 0.112 

Zr-NU-1000 (c pore)/6 Training -53.29 -41.87 -11.42 -1.30 0.128 

Ce-bi(trans)-defect UiO-66/14 Training -59.86 -61.84 1.98 0.27 0.407 

Zr-bi(cis)-defect UiO-66/17 Training 46.79 32.95 13.84 1.63 0.188 

Hf-bi(trans)-defect UiO-66/18 Training -33.49 -28.99 -4.50 -0.50 0.095 

Hf-bi(trans)-defect UiO-66/11 Training -13.15 -12.71 -0.44 -0.05 0.082 

Th-MOF-808/3 Training -20.22 -21.20 0.98 0.11 0.091 

Ce-bi(trans)-defect UiO-66/H2O Training -31.97 -38.33 6.36 0.72 0.124 

Zr-bi(cis)-defect UiO-66/20 Training -22.08 -35.62 13.54 1.52 0.099 

Zr-bi(trans)-defect UiO-66/H2O Training -29.93 -34.33 4.40 0.51 0.142 

Zr-bi(trans)-defect UiO-66/22 Training -4.41 -11.46 7.05 0.78 0.066 

Ce-MOF-808/18 Training -32.30 -28.09 -4.21 -0.47 0.105 

Hf-bi(trans)-defect UiO-66/1 Training -4.56 -9.36 4.80 0.54 0.114 

Th-bi(trans)-defect UiO-66/24 Training -60.15 -34.47 -25.68 -2.87 0.095 

Hf-MOF-808/8 Training -5.76 -3.48 -2.28 -0.25 0.062 

Zr-bi(cis)-defect UiO-66/24 Training -36.40 -27.68 -8.72 -0.95 0.044 

Ce-MOF-808/3 Training -21.76 -17.54 -4.22 -0.46 0.067 

Zr-NU-1000 (c pore)/H2O Training -61.08 -58.70 -2.38 -0.29 0.213 

Zr-mono-defect UiO-66/18 Training -22.41 -26.05 3.64 0.40 0.069 

Zr-bi(trans)-defect UiO-66/14 Training -39.10 -31.65 -7.45 -0.85 0.123 

Zr-MOF-808/22 Training -5.32 -8.56 3.24 0.36 0.064 

Ce-bi(trans)-defect UiO-66/11 Training -30.19 -33.80 3.61 0.42 0.148 

Zr-mono-defect UiO-66/20 Training -42.32 -27.76 -14.56 -1.65 0.120 

Zr-bi(cis)-defect UiO-66/8 Training -16.97 -24.31 7.34 0.80 0.050 

Zr-NU-1000 (c pore)/22 Training -45.37 -44.48 -0.89 -0.10 0.134 

Hf-MOF-808/22 Training -5.23 -6.82 1.59 0.18 0.118 
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Hf-MOF-808/18 Training -11.96 -13.86 1.90 0.21 0.084 

Zr-bi(cis)-defect UiO-66/3 Training -13.59 -27.92 14.33 1.56 0.046 

Zr-NU-1000 (c pore)/3 Training -57.65 -46.09 -11.56 -1.31 0.116 

Zr-MOF-808/H2O Training -7.91 -8.47 0.56 0.06 0.123 

Zr-NU-1000 (large pore)/6 Training -2.67 -4.58 1.91 0.21 0.077 

Zr-mono-defect UiO-66/11 Training -10.84 -8.52 -2.32 -0.27 0.146 

Zr-bi(trans)-defect UiO-66/1 Training 4.59 -9.67 14.26 1.58 0.075 

Ce-bi(trans)-defect UiO-66/6 Training -31.15 -29.18 -1.97 -0.22 0.083 

Th-bi(trans)-defect UiO-66/20 Training -32.48 -33.30 0.82 0.09 0.109 

Th-bi(trans)-defect UiO-66/1 Training -18.98 -14.85 -4.13 -0.47 0.113 

Zr-NU-1000 (large pore)/22 Training -5.00 -7.21 2.21 0.24 0.076 

Ce-bi(trans)-defect UiO-66/17 Training 2.90 7.58 -4.68 -0.68 0.466 

Zr-MOF-808/17 Training 32.39 37.92 -5.53 -0.68 0.251 

Ce-MOF-808/8 Training -24.64 -17.22 -7.42 -0.82 0.063 

Zr-bi(cis)-defect UiO-66/22 Training -24.18 -17.96 -6.22 -0.68 0.056 

Zr-NU-1000 (large pore)/H2O Training -28.06 -20.24 -7.82 -0.89 0.132 

Hf-bi(trans)-defect UiO-66/8 Training -17.57 -25.26 7.69 0.85 0.067 

Th-MOF-808/20 Training -24.76 -17.13 -7.63 -0.93 0.238 

Zr-bi(trans)-defect UiO-66/6 Training -17.01 -7.88 -9.13 -1.01 0.072 

Zr-mono-defect UiO-66/H2O Training -40.93 -36.06 -4.87 -0.58 0.198 

Zr-bi(cis)-defect UiO-66/6 Training -20.29 -14.49 -5.80 -0.64 0.061 

Zr-mono-defect UiO-66/8 Training -4.21 -18.34 14.13 1.56 0.071 

Zr-MOF-808/18 Training -17.53 -13.45 -4.08 -0.45 0.076 

Th-MOF-808/H2O Training -21.56 -23.25 1.69 0.20 0.167 

Th-MOF-808/24 Training -17.00 -22.41 5.41 0.61 0.101 

Th-bi(trans)-defect UiO-66/8 Training -34.53 -32.26 -2.27 -0.25 0.091 

Th-MOF-808/22 Training -14.84 -10.80 -4.04 -0.45 0.099 

Zr-NU-1000 (large pore)/3 Training -10.80 -6.98 -3.82 -0.41 0.035 

Zr-bi(trans)-defect UiO-66/13 Training -12.81 -12.27 -0.54 -0.06 0.063 

Th-MOF-808/8 Training -24.14 -19.80 -4.34 -0.48 0.086 

Hf-MOF-808/13 Training 18.72 3.52 15.20 1.68 0.076 

Ce-MOF-808/H2O Training -28.77 -16.30 -12.47 -1.39 0.084 

Zr-bi(trans)-defect UiO-66/3 Training -21.40 -20.40 -1.00 -0.11 0.037 

Zr-bi(cis)-defect UiO-66/18 Training -45.77 -32.93 -12.84 -1.41 0.056 

Zr-mono-defect UiO-66/3 Training -13.37 -22.43 9.06 0.99 0.061 

Zr-NU-1000 (large pore)/14 Training -30.54 -15.14 -15.40 -1.73 0.104 

Hf-MOF-808/1 Training -0.40 -12.03 11.63 1.32 0.117 

Zr-NU-1000 (c pore)/11 Training -40.63 -45.35 4.72 0.53 0.085 
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Zr-NU-1000 (c pore)/17 Training -1.96 9.83 -11.79 -1.40 0.196 

Zr-MOF-808/8 Training -6.35 2.78 -9.13 -1.00 0.058 

Th-bi(trans)-defect UiO-66/17 Training 33.93 21.64 12.29 1.60 0.335 

Th-MOF-808/11 Training -5.02 -10.14 5.12 0.57 0.078 

Zr-NU-1000 (large pore)/1 Training 1.87 -9.06 10.93 1.20 0.066 

Ce-MOF-808/6 Training -18.51 -23.94 5.43 0.60 0.061 

Zr-mono-defect UiO-66/22 Training -1.06 -8.47 7.41 0.82 0.083 

Th-bi(trans)-defect UiO-66/11 Training -19.34 -20.56 1.22 0.14 0.107 

Ce-bi(trans)-defect UiO-66/8 Training -27.51 -30.26 2.75 0.31 0.081 

Hf-MOF-808/24 Training -16.35 -6.41 -9.94 -1.10 0.081 

Zr-MOF-808/24 Training -23.57 0.22 -23.79 -2.62 0.067 

Ce-MOF-808/20 Training -29.83 -33.40 3.57 0.42 0.190 

Hf-bi(trans)-defect UiO-66/3 Training -29.49 -29.02 -0.47 -0.05 0.071 

Zr-NU-1000 (large pore)/11 Training -2.78 -8.05 5.27 0.57 0.036 

Th-MOF-808/17 Training -22.68 -14.72 -7.96 -1.26 0.548 

Th-bi(trans)-defect UiO-66/22 Training -17.42 -18.53 1.11 0.12 0.110 

Zr-bi(cis)-defect UiO-66/H2O Training -54.46 -40.17 -14.29 -1.62 0.120 

Th-MOF-808/14 Test -12.52 -3.94 -8.58 -1.13 0.152 

Zr-mono-defect UiO-66/6 Test -12.54 -4.46 -8.08 -1.03 0.095 

Zr-NU-1000 (c pore)/1 Test -30.26 -46.51 16.25 2.08 0.102 

Ce-MOF-808/1 Test -17.88 -29.29 11.41 1.47 0.117 

Hf-MOF-808/11 Test 7.37 -5.76 13.13 1.65 0.068 

Zr-NU-1000 (c pore)/14 Test -57.52 -52.29 -5.23 -0.70 0.192 

Zr-bi(cis)-defect UiO-66/11 Test -7.50 -17.39 9.89 1.26 0.097 

Zr-NU-1000 (c pore)/24 Test -57.90 -45.96 -11.94 -1.55 0.125 

Zr-MOF-808/14 Test 8.60 2.33 6.27 0.83 0.156 

Hf-bi(trans)-defect UiO-66/6 Test -25.52 -6.37 -19.15 -2.51 0.144 

Zr-bi(trans)-defect UiO-66/18 Test -28.45 -27.79 -0.66 -0.08 0.045 

Th-MOF-808/13 Test -10.58 -15.39 4.81 0.61 0.091 

Th-bi(trans)-defect UiO-66/3 Test -37.58 -35.31 -2.27 -0.29 0.096 

Hf-MOF-808/6 Test 1.91 -4.94 6.85 0.88 0.117 

Zr-MOF-808/20 Test -24.90 -19.36 -5.54 -0.72 0.127 

Hf-MOF-808/H2O Test -14.76 -16.55 1.79 0.25 0.266 

Ce-bi(trans)-defect UiO-66/22 Test -26.55 -31.32 4.77 0.60 0.077 

Zr-mono-defect UiO-66/14 Test -24.55 -34.42 9.87 1.29 0.135 

Zr-bi(trans)-defect UiO-66/11 Test -4.23 -11.94 7.71 0.98 0.082 

Ce-bi(trans)-defect UiO-66/18 Test -42.44 -47.55 5.11 0.66 0.126 

Ce-bi(trans)-defect UiO-66/1 Test -27.20 -29.46 2.26 0.30 0.144 
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Th-MOF-808/6 Test -0.70 -9.89 9.19 1.17 0.097 

Th-MOF-808/1 Test -7.41 -14.46 7.05 0.93 0.150 

Hf-bi(trans)-defect UiO-66/14 Test -40.74 -31.28 -9.46 -1.30 0.228 

Zr-mono-defect UiO-66/1 Test -9.99 -4.94 -5.05 -0.65 0.125 

Th-bi(trans)-defect UiO-66/13 Test -36.50 -29.08 -7.42 -0.95 0.099 

Zr-MOF-808/1 Test -8.47 -13.17 4.70 0.59 0.081 

Zr-MOF-808/6 Test -4.81 -7.08 2.27 0.28 0.062 

Zr-bi(trans)-defect UiO-66/8 Test -12.14 -16.96 4.82 0.60 0.042 

Zr-bi(cis)-defect UiO-66/1 Test -22.57 -16.23 -6.34 -0.80 0.074 

Ce-MOF-808/24 Test -22.22 -17.96 -4.26 -0.54 0.078 

 
 

 
 

Figure C.20. Distribution of residuals for the optimal predictive QSAR model developed for the neutrals dataset (eq 
4.9 in the main text). The (a) histogram of raw residuals and (b) normal probability plot of raw residuals show that the 
residuals have an acceptable normal distribution, with no clear outliers. 

(a)

(b)
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C.20 QSAR Modeling: Optimal Predictive QSAR Model for Bidentates Dataset 
 
Table C.17. Predictions, residuals, and leverages for training and test set molecule-node combinations using the 
optimal predictive QSAR model for the bidentates dataset (eq 4.10 in the main text). 
 

Node/Molecule Set Observation 
(kJ/mol) 

Prediction 
(kJ/mol) 

Raw Residual 
(kJ/mol) 

Standardized 
Residual Leverage 

Ce-bi(trans)-defect UiO-66/19 Training -157.38 -146.68 -10.70 -1.03 0.149 

Th-bi(trans)-defect UiO-66/12 Training -58.87 -82.62 23.75 2.22 0.091 

Zr-NU-1000 (large pore)/7 Training -92.74 -90.77 -1.97 -0.18 0.028 

Zr-bi(trans)-defect UiO-66/12 Training -70.69 -88.84 18.15 1.67 0.067 

Zr-NU-1000 (large pore)/15 Training -98.88 -94.27 -4.61 -0.42 0.028 

Zr-bi(trans)-defect UiO-66/7 Training -89.10 -94.56 5.46 0.49 0.030 

Hf-MOF-808/16 Training -94.97 -82.54 -12.43 -1.18 0.125 

Zr-NU-1000 (c pore)/9 Training -118.57 -105.96 -12.61 -1.17 0.086 

Zr-NU-1000 (c pore)/19 Training -138.38 -120.43 -17.95 -1.69 0.106 

Zr-NU-1000 (c pore)/16 Training -100.82 -95.87 -4.95 -0.46 0.083 

Th-bi(trans)-defect UiO-66/9 Training -92.55 -97.01 4.46 0.42 0.096 

Ce-MOF-808/7 Training -108.30 -116.98 8.68 0.81 0.093 

Hf-MOF-808/19 Training -118.91 -107.10 -11.81 -1.15 0.158 

Zr-NU-1000 (c pore)/12 Training -83.49 -91.58 8.09 0.75 0.084 

Ce-MOF-808/9 Training -120.02 -125.64 5.62 0.54 0.125 

Th-MOF-808/19 Training -119.16 -104.86 -14.30 -1.37 0.141 

Zr-mono-defect UiO-66/4 Training -85.40 -99.60 14.20 1.32 0.077 

Hf-bi(trans)-defect UiO-66/19 Training -109.98 -113.41 3.43 0.33 0.136 

Zr-NU-1000 (large pore)/12 Training -82.68 -85.05 2.37 0.22 0.065 

Zr-mono-defect UiO-66/23 Training -104.92 -104.42 -0.50 -0.05 0.071 

Hf-MOF-808/7 Training -90.80 -83.98 -6.82 -0.64 0.091 

Hf-bi(trans)-defect UiO-66/21 Training -95.16 -107.02 11.86 1.11 0.088 

Th-bi(trans)-defect UiO-66/16 Training -101.46 -86.92 -14.54 -1.36 0.092 

Zr-bi(trans)-defect UiO-66/21 Training -92.50 -111.29 18.79 1.71 0.046 

Th-MOF-808/7 Training -92.50 -81.73 -10.77 -1.00 0.075 

Zr-NU-1000 (c pore)/21 Training -119.30 -114.03 -5.27 -0.48 0.062 

Zr-NU-1000 (c pore)/23 Training -112.45 -106.47 -5.98 -0.56 0.085 

Th-bi(trans)-defect UiO-66/19 Training -87.40 -111.47 24.07 2.28 0.116 

Zr-bi(cis)-defect UiO-66/7 Training -96.01 -95.21 -0.80 -0.07 0.033 

Th-MOF-808/16 Training -95.33 -80.30 -15.03 -1.42 0.110 

Zr-MOF-808/9 Training -92.27 -97.11 4.84 0.45 0.080 

Zr-MOF-808/15 Training -101.41 -91.94 -9.47 -0.86 0.045 
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Zr-bi(trans)-defect UiO-66/23 Training -101.57 -103.73 2.16 0.20 0.068 

Th-MOF-808/15 Training -99.97 -85.23 -14.74 -1.37 0.077 

Ce-MOF-808/21 Training -133.05 -133.71 0.66 0.06 0.116 

Ce-MOF-808/4 Training -112.07 -121.32 9.25 0.88 0.128 

Th-bi(trans)-defect UiO-66/4 Training -88.95 -92.69 3.74 0.35 0.100 

Zr-MOF-808/4 Training -77.99 -92.79 14.80 1.38 0.086 

Zr-mono-defect UiO-66/12 Training -100.97 -89.53 -11.44 -1.06 0.070 

Zr-mono-defect UiO-66/19 Training -108.18 -118.38 10.20 0.95 0.093 

Ce-bi(trans)-defect UiO-66/15 Training -130.05 -127.05 -3.00 -0.28 0.089 

Zr-MOF-808/23 Training -76.28 -97.61 21.33 1.98 0.084 

Ce-MOF-808/16 Training -107.23 -115.55 8.32 0.79 0.129 

Zr-mono-defect UiO-66/2 Training -97.92 -101.42 3.50 0.32 0.029 

Zr-MOF-808/2 Training -72.86 -94.61 21.75 1.98 0.041 

Zr-bi(cis)-defect UiO-66/21 Training -111.31 -111.94 0.63 0.06 0.049 

Zr-MOF-808/21 Training -98.84 -105.18 6.34 0.58 0.064 

Zr-bi(cis)-defect UiO-66/2 Training -115.40 -101.37 -14.03 -1.27 0.029 

Zr-NU-1000 (large pore)/9 Training -90.93 -99.43 8.50 0.78 0.065 

Zr-bi(trans)-defect UiO-66/19 Training -104.28 -117.69 13.41 1.25 0.091 

Th-bi(trans)-defect UiO-66/15 Training -101.63 -91.85 -9.78 -0.90 0.057 

Hf-bi(trans)-defect UiO-66/16 Training -96.51 -88.85 -7.66 -0.72 0.108 

Ce-bi(trans)-defect UiO-66/7 Training -131.37 -123.55 -7.82 -0.73 0.086 

Zr-mono-defect UiO-66/21 Training -109.14 -111.98 2.84 0.26 0.049 

Th-bi(trans)-defect UiO-66/21 Training -95.08 -105.08 10.00 0.93 0.074 

Th-bi(trans)-defect UiO-66/23 Training -83.96 -97.52 13.56 1.27 0.097 

Hf-MOF-808/9 Training -94.41 -92.64 -1.77 -0.17 0.127 

Zr-NU-1000 (large pore)/2 Training -102.57 -96.94 -5.63 -0.51 0.025 

Hf-MOF-808/2 Training -74.56 -90.14 15.58 1.45 0.086 

Zr-bi(cis)-defect UiO-66/12 Training -101.87 -89.48 -12.39 -1.14 0.069 

Ce-bi(trans)-defect UiO-66/12 Training -127.39 -117.83 -9.56 -0.91 0.120 

Zr-bi(cis)-defect UiO-66/15 Training -109.65 -98.70 -10.95 -0.99 0.033 

Hf-MOF-808/23 Training -78.99 -93.15 14.16 1.35 0.124 

Ce-bi(trans)-defect UiO-66/4 Training -129.87 -127.89 -1.98 -0.19 0.124 

Th-MOF-808/9 Training -106.03 -90.39 -15.64 -1.48 0.113 

Hf-bi(trans)-defect UiO-66/12 Training -74.95 -84.56 9.61 0.91 0.116 

Hf-bi(trans)-defect UiO-66/9 Training -110.57 -98.95 -11.62 -1.10 0.112 

Zr-mono-defect UiO-66/15 Training -89.83 -98.75 8.92 0.81 0.033 

Hf-bi(trans)-defect UiO-66/2 Training -103.62 -96.46 -7.16 -0.66 0.068 

Zr-NU-1000 (large pore)/4 Training -91.49 -95.11 3.62 0.33 0.071 
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Zr-bi(trans)-defect UiO-66/2 Training -100.44 -100.73 0.29 0.03 0.026 

Zr-mono-defect UiO-66/9 Training -108.00 -103.91 -4.09 -0.38 0.071 

Ce-bi(trans)-defect UiO-66/9 Training -135.51 -132.21 -3.30 -0.31 0.121 

Th-MOF-808/12 Training -85.27 -76.01 -9.26 -0.87 0.109 

Ce-MOF-808/12 Training -114.96 -111.25 -3.71 -0.35 0.126 

Th-MOF-808/4 Training -95.47 -86.08 -9.39 -0.89 0.117 

Th-bi(trans)-defect UiO-66/7 Training -70.96 -88.35 17.39 1.59 0.056 

Zr-MOF-808/19 Training -119.41 -111.57 -7.84 -0.74 0.110 

Zr-MOF-808/16 Training -91.96 -87.01 -4.95 -0.46 0.079 

Zr-MOF-808/12 Training -83.00 -82.72 -0.28 -0.03 0.080 

Ce-bi(trans)-defect UiO-66/2 Training -135.32 -129.72 -5.60 -0.52 0.084 

Th-MOF-808/21 Training -113.47 -98.46 -15.01 -1.41 0.096 

Hf-bi(trans)-defect UiO-66/7 Training -92.40 -90.29 -2.11 -0.20 0.075 

Zr-NU-1000 (large pore)/21 Training -114.58 -107.50 -7.08 -0.65 0.046 

Ce-MOF-808/23 Training -105.88 -126.15 20.27 1.94 0.138 

Zr-mono-defect UiO-66/7 Training -82.91 -95.25 12.34 1.12 0.033 

Th-bi(trans)-defect UiO-66/2 Training -86.81 -94.52 7.71 0.71 0.053 

Zr-NU-1000 (c pore)/2 Training -111.63 -103.47 -8.16 -0.74 0.043 

Zr-mono-defect UiO-66/16 Training -75.76 -93.82 18.06 1.67 0.068 

Zr-bi(cis)-defect UiO-66/23 Training -121.62 -104.37 -17.25 -1.59 0.071 

Hf-bi(trans)-defect UiO-66/23 Training -105.05 -99.46 -5.59 -0.53 0.106 

Hf-bi(trans)-defect UiO-66/4 Training -99.71 -94.63 -5.08 -0.48 0.122 

Zr-NU-1000 (c pore)/4 Training -101.60 -101.64 0.04 0.00 0.092 

Zr-MOF-808/7 Training -87.76 -88.45 0.69 0.06 0.044 

Ce-bi(trans)-defect UiO-66/21 Training -154.70 -140.28 -14.42 -1.36 0.106 

Zr-bi(trans)-defect UiO-66/9 Training -107.89 -103.22 -4.67 -0.43 0.068 

Hf-MOF-808/21 Test -105.27 -100.71 -4.56 -0.49 0.108 

Zr-bi(trans)-defect UiO-66/4 Test -96.71 -98.90 2.19 0.23 0.074 

Zr-bi(cis)-defect UiO-66/16 Test -98.87 -93.77 -5.10 -0.54 0.068 

Ce-bi(trans)-defect UiO-66/16 Test -145.02 -122.12 -22.90 -2.50 0.123 

Zr-bi(cis)-defect UiO-66/19 Test -129.35 -118.33 -11.02 -1.18 0.093 

Zr-NU-1000 (large pore)/23 Test -90.24 -99.94 9.70 1.03 0.067 

Zr-bi(cis)-defect UiO-66/4 Test -100.00 -99.55 -0.45 -0.05 0.077 

Hf-MOF-808/4 Test -84.10 -88.32 4.22 0.46 0.136 

Ce-bi(trans)-defect UiO-66/23 Test -130.88 -132.72 1.84 0.20 0.130 

Zr-NU-1000 (large pore)/16 Test -102.89 -89.34 -13.55 -1.43 0.063 

Hf-MOF-808/15 Test -102.06 -87.48 -14.58 -1.56 0.089 

Zr-NU-1000 (large pore)/19 Test -122.33 -113.90 -8.43 -0.91 0.092 
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Ce-MOF-808/15 Test -114.78 -120.48 5.70 0.61 0.096 

Zr-bi(trans)-defect UiO-66/16 Test -90.44 -93.13 2.69 0.28 0.065 

Hf-MOF-808/12 Test -80.79 -78.25 -2.54 -0.28 0.132 

Ce-MOF-808/19 Test -150.40 -140.10 -10.30 -1.15 0.161 

Hf-bi(trans)-defect UiO-66/15 Test -104.35 -93.79 -10.56 -1.12 0.072 

Zr-bi(trans)-defect UiO-66/15 Test -100.24 -98.06 -2.18 -0.23 0.030 

Zr-NU-1000 (c pore)/7 Test -102.89 -97.30 -5.59 -0.59 0.047 

Zr-bi(cis)-defect UiO-66/9 Test -119.69 -103.87 -15.82 -1.68 0.071 

Ce-MOF-808/2 Test -103.36 -123.15 19.79 2.12 0.092 

Th-MOF-808/23 Test -90.91 -90.90 -0.01 0.00 0.118 

Zr-NU-1000 (c pore)/15 Test -109.16 -100.80 -8.36 -0.88 0.047 

Th-MOF-808/2 Test -87.97 -87.90 -0.07 -0.01 0.073 

 

 
 

Figure C.21. Distribution of residuals for the optimal predictive QSAR model developed for the bidentates dataset 
(eq 4.10 in the main text). The (a) histogram of raw residuals and (b) normal probability plot of raw residuals show 
that the residuals have an acceptable normal distribution, with no clear outliers.  

(a)

(b)
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C.22 Cartesian Coordinates and Raw Energy Values 
 
The optimized cartesian coordinates and raw energy values for every system (molecules, nodes, 
and node-bound molecules) will be provided in the supplementary files of the published 
manuscript. 
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Appendix D: Supporting Information for Chapter 5 

 

This appendix is a modified version of the Supporting Information for the manuscript in Chapter 

5 (ACS Catal. 2020, 10, 1310–1323). 

 

D.1 Benzoate Cluster Models 
 
Different “benzoate cluster models” were used at various points throughout the study. They were 
constructed by modeling the bottom 4 linkers as formate groups and using benzoate groups for the 
4 linkers located around the active site. Fig. D.1a corresponds to the “fully hydrated” NU-1000 
node ([Zr6(µ3-O)4(µ3-OH)4(OH)4(OH2)4]8+(C6H5COO–)4(HCOO–)4). Fig. D.1b corresponds to the 
“partially dehydrated” NU-1000 node ([Zr6(µ3-O)4(µ3-OH)4(OH)4(OH2)3]8+(C6H5COO–)4(HCOO–

)4), in which one terminal H2O moiety has desorbed to generate an open metal site. This “partially 
dehydrated” node topology was used to calculate the full pathway for gas-phase sarin hydrolysis 
on bare, unfunctionalized NU-1000. The cleavage of a Zr-OH2 bond (“fully hydrated” → “partially 
dehydrated”) requires approximately 84 kJ/mol in free energy. Fig. D.1c represents the TiIV-NU-
1000 benzoate cluster model, which was only used to test the effect of model size on the reaction 
energetics for the TiIV-NU-1000 system. 
 

 
 

Figure D.1. (a) Optimized NU-1000 (“fully hydrated”), (b) “partially dehydrated” NU-1000, and (c) TiIV-NU-1000 
benzoate cluster models. Dark grey, white, red, turquoise, and light grey spheres represent C, H, O, Zr, and Ti atoms, 
respectively. 
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D.2 Binding Energies for Sarin, Water, and IMPA for All 36 M-NU-1000 Systems 
 
Table D.1. Binding free energies for sarin, water, and IMPA to MII-NU-1000 systems. Values (in kJ/mol) are 
calculated at T = 298.15 K and P = 1 atm. Negative and positive energies indicate favorable and unfavorable binding, 
respectively. 
 

Metal Sarin Water IMPA 
VII -40.4 -21.2 -139.6 
CrII -30.2 -58.5 -138.3 
MnII -52.7 -26.0 -125.3 
FeII -30.4 -15.8 -113.3 
CoII -36.9 -16.0 -109.6 
NiII -48.3 -29.6 -124.1 
CuII -12.0 -29.9 -98.8 
ZnII -43.1 -24.0 -121.1 
MoII -49.6 -36.1 -140.3 
PdII -64.2 -70.5 -75.2 
WII -44.9 -33.8 -114.1 
PtII -79.6 -84.7 -160.4 

 
Table D.2. Binding free energies for sarin, water, and IMPA to MIII-NU-1000 systems. Values (in kJ/mol) are 
calculated at T = 298.15 K and P = 1 atm. Negative and positive energies indicate favorable and unfavorable binding, 
respectively. 
 

Metal Sarin Water IMPA 
ScIII -48.1 -29.5 -125.4 
CrIII -54.0 -23.7 -132.5 
FeIII -19.1 -14.0 -89.4 
CoIII -12.4 8.8 -57.2 
CuIII -15.7 1.4 -72.6 
YIII -58.8 -34.8 -137.5 
RuIII -74.9 -47.4 -129.3 
RhIII -45.6 -37.9 -127.6 
CeIII -53.9 -33.6 -145.3 
IrIII -59.8 -51.5 -135.6 

AuIII -94.6 -62.8 -115.9 
 
  



 294 
Table D.3. Binding free energies for sarin, water, and IMPA to MIV-NU-1000 systems. Values (in kJ/mol) are 
calculated at T = 298.15 K and P = 1 atm. Negative and positive energies indicate favorable and unfavorable binding, 
respectively. 
 

Metal Sarin Water IMPA 
TiIV -99.2 -48.6 -111.7 
VIV -100.8 -56.4 -116.4 

MnIV -53.7 -21.1 -65.2 
ZrIV -127.3 -65.3 -142.3 
MoIV -59.1 -13.4 -59.4 
RuIV -54.0 -28.7 -62.0 
PdIV 7.1 59.1 -17.0 
CeIV -79.0 -42.4 -108.2 
HfIV -135.5 -72.9 -144.8 
WIV -28.8 73.4 -59.7 
ReIV 21.0 34.6 8.2 
OsIV 27.6 59.8 -5.6 
PtIV 23.2 28.2 8.3 

 
 
 

 
 

Figure D.2. (a) Optimized FeII-Sarin and (b) FeII-IMPA species, highlighting the different binding geometry for 
each adsorbate species that contributes to the stronger binding energies for IMPA compared to sarin. Dark grey, white, 
red, turquoise, and purple spheres represent C, H, O, Zr, and Fe atoms, respectively. 
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D.3 Discussion of Mechanistic Pathway Chosen 
 
In the main text, we used a formate cluster model of TiIV-NU-1000 as an example to clearly explain 
each step of the proposed catalytic cycle for gas-phase sarin hydrolysis on these systems (see 
Scheme 5.2). In the first transition state (TSnuc) of the mechanism, the Ti–OH group abstracts a H 
atom from water, which then performs a nucleophilic attack on the P atom of sarin in a concerted 
step. We only discussed one pathway, where nucleophilic attack occurs directly opposite the –OiPr 
group. However, we noted that there are two other pathways where attack can also occur opposite 
the –CH3 or –F groups of sarin. For the discussion below, we will refer to these as the OiPr, CH3, 
and F pathways, respectively, where all pathways are calculated using formate cluster models. For 
each pathway, we only modeled the mechanism involving cleavage of the P–F bond in sarin to 
generate HF product, as this is known to be the most favorable pathway.1 

 
First, we compare the OiPr and CH3 pathways. For both pathways, nucleophilic attack leads to 
the formation of a pentacoordinated trigonal bipyramidal (TBP) INT1 species where the –F group 
is in an equatorial position. For the purposes of screening across many metals, we were only 
interested in the mechanism involving cleavage of the P–F bond to generate HF product. Thus, 
elimination of –F requires a Berry pseudorotation to direct it from an equatorial to an axial site, 
forming INT2. Up until this point, the OiPr and CH3 pathways are unique (i.e., each pathway has 
unique Reactant Complex, TSnuc, INT1, and TSBerry species). Upon the formation of INT2, both 
pathways are exactly the same (i.e., each pathway has identical INT2, TSeli, Product Complex, 
and TiIV–IMPA species). In TSeli, elimination of HF involves proton transfer from the 
nucleophilic –OH group and the resulting Product Complex is stabilized by hydrogen bonds. 
Once HF desorbs from the active site, the final TiIV–IMPA species is generated. Finally, the IMPA 
product desorbs and regenerates the active site, completing the cycle. As seen in Fig. D.3a, the 
OiPr and CH3 pathways have essentially identical reaction free energy profiles. Since the 
pathways differ by only a few kJ/mol and are within DFT error, we chose to only focus on the 
OiPr pathway, although this choice is arbitrary. For the purposes of screening a large number of 
catalysts, it was more computationally feasible to only consider one pathway for comparison. 
Further, in theory, the relative turnover frequencies (TOFs) between catalysts should be similar 
regardless of the hydrolysis pathway considered, given the similarity in the energy profiles. 
 
The F pathway differs significantly from the other two pathways. After nucleophilic attack occurs 
directly opposite the –F group in TSnuc, the INT1 species is formed. Here, the –F group is already 
in an axial position and does not require a Berry pseudorotation, in contrast to the other pathways. 
Further, we could not optimize a stable TSeli species involving elimination of HF. We attempted a 
relaxed potential energy scan by increasing the distance of the P–F bond to simulate bond cleavage, 
but there was no maximum on the potential energy surface identifying a transition state, unlike in 
the other pathways; the F atom simply “flies away” from the sarin molecule and the energy 
decreases monotonically. Thus, the next species after INT1 along the reaction coordinate is TiIV–
IMPA. The F pathway is “missing” four species (TSBerry, INT2, TSeli, and Product Complex) 
overall compared to the OiPr and CH3 pathways. Due to the orientation of sarin in the F pathway, 
it is impossible for there to be a proton transfer from the nucleophilic –OH group to form HF. 
Further, in the modeling scheme we used, we only considered one ambient water molecule in the 
gas-phase reaction. Thus, there are no other surrounding sources of H to participate in proton 
transfer to the leaving F atom. For this reason, the F pathway is an “incomplete” mechanism 
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(indicated in Fig. D.3b), and it is difficult to directly compare it to the other two pathways. Since 
the energetic span model considers the relative free energies of all intermediates and transition 
states in the catalytic cycle to calculate the TOF, we needed a “complete” mechanism in order to 
accurately compare each catalyst. Thus, we chose to only focus on the OiPr pathway in the main 
text. 
 
Finally, comparing the profiles in Fig. D.3, we note that the free energy barriers for the nucleophilic 
attack elementary step (∆G!"#

‡  = G(TSnuc) – G(Reactant Complex)) are nearly identical for all 
three pathways. Explicitly, ∆G!"#

‡  is 105.4, 107.3, and 109.2 kJ/mol for the OiPr, CH3, and F 
pathways, respectively. Since all three pathways have identical TiIV–IMPA species, the free 
energy barriers for the IMPA desorption elementary step are equivalent for each pathway. In the 
main text, we observed that nucleophilic attack and IMPA desorption are the most influential 
elementary steps in the overall reaction. Since the barriers for these key steps are similar for each 
pathway, we chose the OiPr pathway for screening all catalysts. 
 

 
 

Figure D.3. Comparison of the reaction free energy profiles for gas-phase sarin hydrolysis catalyzed by the formate 
cluster model of TiIV-NU-1000, following the (a) OiPr and CH3 pathways and (b) the F pathway. 
  



 297 
D.4 Effect of Transition Metal on Key Barriers – Values 
 
Table D.4. The effect of transition metal identity and oxidation state on the free energy barrier to form INT1 (∆GINT1) 
and the free energy barrier to desorb the IMPA product from the active site (∆GIMPA,des.) of M-NU-1000 systems. 
Values (in kJ/mol) are calculated at T = 298.15 K and P = 1 atm. 
 

Metal ∆GINT1 ∆GIMPA,des. 
PdIV 61.7 17.0 
CuIII 67.3 72.6 
CoIII 81.3 57.2 
FeIII 75.3 89.4 
CuII 62.0 98.8 
WIV 108.4 59.7 
CoII 80.0 109.6 
PdII 109.8 75.2 
FeII 68.0 113.3 
WII 79.5 114.1 
AuIII 94.7 115.9 
ZnII 71.5 121.1 
CeIV 122.7 108.2 
NiII 51.5 124.1 
MnII 77.2 125.3 
ScIII 69.3 125.4 
RhIII 61.3 127.6 
RuIII 91.0 129.3 
TiIV 132.2 111.7 
CrIII 78.0 132.5 
RuIV 133.3 62.0 
IrIII 78.4 135.6 
YIII 64.7 137.5 
VIV 137.5 116.4 
CrII 42.3 138.3 
VII 37.1 139.6 

MoII 90.6 140.3 
ZrIV 127.5 142.3 
MoIV 143.2 59.4 
MnIV 143.2 65.2 
HfIV 131.9 144.8 
CeIII 67.1 145.3 
PtII 59.3 160.4 
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D.5 Effect of Transition Metal on Key Barriers – Pareto Front 
 

 
 

Figure D.4. The effect of transition metal identity and oxidation state (shown in Fig. 5.5) on the free energy barrier to 
form INT1 and the free energy barrier to desorb the IMPA product from the active site of 32 M-NU-1000 systems, 
where the optimal metals are located closest to the origin. A pseudo-Pareto front curve shows the tradeoff between 
the energy barrier for nucleophilic attack and the product desorption energy, such that no metal has perfectly low 
barriers for both steps. PdIV-NU-1000 is omitted from this plot, as it falls outside the Pareto-front curve for the other 
32 metals. 
 
D.6 Comparison of Full Pathways – Free Energy Barriers for Four Elementary Steps 
 

 
 

Figure D.5. Free energy barriers for the four elementary steps in gas-phase sarin hydrolysis: nucleophilic attack, Berry 
pseudorotation, HF elimination, and IMPA desorption. The dashed line indicates the smallest “rate-determining step” 
barrier for all systems (∆GIMPA,des. = 75.2 kJ/mol for PdII-NU-1000). 
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Table D.5. Free energy barriers for the four elementary steps for gas-phase sarin hydrolysis catalyzed by NU-1000 
and M-NU-1000 systems. Values (in kJ/mol) are calculated at T = 298.15 K and P = 1 atm. 
 

System ∆𝐆𝐧𝐮𝐜
‡  ∆𝐆𝐁𝐞𝐫𝐫𝐲

‡  ∆𝐆𝐞𝐥𝐢
‡  ∆𝐆𝐈𝐌𝐏𝐀,𝐝𝐞𝐬. 

ScIII 93.7 12.6 25.9 125.4 
TiIV 105.4 8.8 36.7 111.7 
MnII 98.1 13.0 15.5 125.3 
FeII 87.6 14.4 24.2 113.3 
FeIII 80.4 4.4 28.8 89.4 
CoII 85.6 11.8 21.3 109.6 
CoIII 84.2 23.4 24.8 57.2 
NiII 74.4 20.2 14.6 124.1 
CuII 67.4 20.8 18.9 98.8 
CuIII 80.5 10.4 27.0 72.6 
ZnII 82.7 12.9 16.2 121.1 
RuIII 84.3 22.3 28.1 129.3 
RhIII 61.2 27.5 32.9 127.6 
PdII 51.7 19.5 15.8 75.2 
PdIV 82.3 54.9 8.1 17.0 
CeIV 135.9 10.6 28.4 108.2 
WII 81.7 11.0 19.8 114.1 
WIV 96.9 7.7 43.2 59.7 
AuIII 70.3 27.5 32.4 115.9 

NU-1000 76.0 6.7 19.0 151.7 
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D.7 Proposed Catalytic Cycle for Gas-Phase Sarin Hydrolysis on NU-1000 
 

 
 

Figure D.6. Illustration of the proposed catalytic cycle of gas-phase sarin hydrolysis on a NU-1000 cluster. The sarin 
and ambient water molecules are colored red and blue, respectively, to clarify the movement of atoms during the 
course of the reaction mechanism. 
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D.8 Comparison of Monodentate and Bidentate Product Binding on NU-1000 
 
In the main text, and throughout most of the SI, we present results for unfunctionalized NU-1000 
assuming a general base hydrolysis mechanism, in which sarin and IMPA bind to Zr in a 
monodentate fashion, for the most direct comparison to the 19 M-NU-1000 catalysts. Here, 
“general base hydrolysis mechanism” refers to the case when the nucleophile is an explicit water 
molecule (that would be present from ambient moisture). However, we also performed a 
calculation to confirm that the energetics for a bidentate binding mode on NU-1000 are more 
unfavorable, as shown below. As seen in Fig. D.7, the free energy barrier to desorb the IMPA 
product and regenerate the NU-1000-dehyd active site is ∆GIMPA,des. = 151.7 and 168.4 kJ/mol for 
monodentate and bidentate modes, respectively. This agrees with previous results1 showing 
stronger binding energies for a bidentate hydrolysis product where IMPA is bound through two 
Zr-oxo bonds, compared to only one Zr-oxo bond in the monodentate mode. 
 

 
 

Figure D.7. Optimized NU-1000–IMPA species where IMPA is bound in a (a) monodentate and (b) bidentate fashion, 
highlighting the different binding geometries that contribute to the stronger binding energy for bidentate-bound IMPA 
compared to monodentate-bound IMPA. Dark grey, white, red, and turquoise spheres represent C, H, O, and Zr atoms, 
respectively. 
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D.9 Individual Free Energy Profiles for NU-1000 and 19 M-NU-1000 Catalysts 
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Figure D.8. Reaction free energy profiles (at T = 298.15 K and P = 1 atm) for gas-phase sarin hydrolysis catalyzed 
by single-atom M-NU-1000 systems, as well as unfunctionalized NU-1000. The TDTS (turnover-frequency-
determining transition state) and TDI (turnover-frequency-determining intermediate) for each system are colored red. 
 
The labels Ik and Tj in Fig. D.8 correspond to the terminology used in the energetic span model for 
intermediates and transition states, respectively: 
 
I0: M–OH + Sarin + H2O 
I1: M–Sarin + H2O 
I2: Reactant Complex 
T2: TSnuc 
I3: INT1 
T3: TSBerry 
I4: INT2 
T4: TSeli 
I5: Product Complex 
I6: M–IMPA + HF 
I7: M–OH + IMPA + HF 
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D.10 Influence of TDTS/TDI on Absolute TOFs for CuIII-NU-1000 
 
To get an idea of how sensitive the absolute TOFs are to changes in energy, we calculated absolute 
TOFs for the CuIII-NU-1000 system using different free energy values for the TDTS and TDI. As 
seen in Fig. D.9, lowering the TDTS free energy to that of the next highest TS and raising the TDI 
free energy to that of the next lowest INT leads to a >750x increase in predicted |TOF|. Thus, a 
small inaccuracy in the calculation of the energetic span results in a large error in the absolute TOF 
calculation, which is why we used relative TOFs to compare the catalysts in our study. 
 

 
 

Figure D.9. Calculated absolute TOFs for gas-phase sarin hydrolysis catalyzed by CuIII-NU-1000 using different free 
energy values for the TDTS and TDI. 
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D.11 Influence of Temperature on Absolute TOFs for CuIII-NU-1000 
 
Table D.6. Calculated absolute TOFs for gas-phase sarin hydrolysis catalyzed by CuIII-NU-1000 at P = 1 atm and 
temperatures ranging from T = 298.15 K to T = 500.15 K. 
 

T (K) |TOF| (s–1) 
298.15 2.03 x 10

–9
 

308.15 9.21 x 10
–9

 
318.15 3.79 x 10

–8
 

344.15 1.00 x 10
–6

 
370.15 1.52 x 10

–5
 

396.15 1.34 x 10
–4

 
422.15 7.05 x10

–4
 

448.15 2.46 x 10
–3

 
474.15 6.72 x 10

–3
 

500.15 1.56 x 10
–2

 
 
 

 
 

Figure D.10. Reaction free energy profiles for gas-phase sarin hydrolysis catalyzed by CuIII-NU-1000 at P = 1 atm 
and temperatures ranging from 298.15 K to 500.15 K. The labels Ik and Tj correspond to the terminology used in the 
energetic span model for intermediates and transition states, respectively. 
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D.12 Raw Energy Values for All Spin States for NU-1000 and 19 M-NU-1000 Catalysts 
 
In the tables below, the raw energy values are given for every species involved in the reactions 
catalyzed by NU-1000 and 19 M-NU-1000 catalysts. 
 
Table D.7. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by PdIV–NU-1000, for 
three possible spin states. The lower of the energies is colored red. 
 

M = PdIV (3d6) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
PdIV–OH -3210.8430750 -3210.8651153 -3210.8750646 

PdIV–Sarin -3961.1998650 -3961.2081855 -3961.2302080 
Reactant Complex -4037.6609152 -4037.7095648 -4037.6957955 

TSnuc -4037.6248014 -4037.6776932 -4037.6603385 
INT1 -4037.6411866 -4037.6708251 -4037.6720228 

TSBerry -4037.6313367 -4037.6375535 -4037.6523767 
INT2 -4037.6508120 -4037.6789776 -4037.6792904 
TSeli -4037.6321329 -4037.6712782 -4037.6613149 

Product Complex -4037.6754169 -4037.7180369 -4037.7056577 
PdIV–IMPA -3937.1907149 -3937.1938282 -3937.2037384 

 
Table D.8. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by PdIV–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = PdIV (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
PdIV–OH 0 -3210.875065 -3210.445848 -3210.572717 0.0 0.0 

PdIV–Sarin 0 -3961.230208 -3960.642428 -3960.792716 -53.9 7.1 
Reactant Complex 2 -4037.709565 -4037.093603 -4037.251200 -140.6 -42.6 

TSnuc 2 -4037.677693 -4037.066459 -4037.219851 -69.3 39.7 
INT1 0 -4037.672023 -4037.055806 -4037.208759 -41.4 68.8 

TSBerry 0 -4037.652377 -4037.037030 -4037.187845 7.9 123.7 
INT2 0 -4037.679290 -4037.062817 -4037.215546 -59.8 51.0 
TSeli 2 -4037.671278 -4037.058491 -4037.212474 -48.4 59.1 

Product Complex 2 -4037.718037 -4037.102963 -4037.259902 -165.2 -65.5 
PdIV–IMPA 0 -3937.203738 -3936.603769 -3936.753896 -51.0 14.9 

 
Table D.9. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by CoIII–NU-1000, for 
three possible spin states. The lower of the energies is colored red. 
 

M = CoIII (3d6) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
CoIII–OH -4466.3950953 -4466.3728753 -4466.3585509 

CoIII–Sarin -5216.7581002 -5216.7487010 -5216.7383390 
Reactant Complex -5293.2190805 -5293.2224817 -5293.2097424 

TSnuc -5293.1841795 -5293.1911892 -5293.1703468 
INT1 -5293.1867137 -5293.1957839 -5293.1767376 

TSBerry -5293.1852953 -5293.1774286 -5293.1693849 
INT2 -5293.1915577 -5293.1930882 -5293.1804416 
TSeli -5293.1757665 -5293.1803865 -5293.1664801 

Product Complex -5293.2222821 -5293.2322124 -5293.2101493 
CoIII–IMPA -5192.7423753 -5192.7308345 -5192.7275449 
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Table D.10. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by CoIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = CoIII (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CoIII–OH 6 -4466.3950953 -4465.9552110 -4466.0848640 0.0 0.0 

CoIII–Sarin 6 -5216.7581002 -5216.1590530 -5216.3122930 -72.9 -12.4 
Reactant Complex 2 -5293.2224817 -5292.5946680 -5292.7517030 -118.8 -12.0 

TSnuc 2 -5293.1911892 -5292.5673600 -5292.7196250 -47.1 72.2 
INT1 2 -5293.1957839 -5292.5677380 -5292.7209010 -48.1 68.8 

TSBerry 6 -5293.1852953 -5292.5591880 -5292.7119710 -25.7 92.3 
INT2 2 -5293.1930882 -5292.5647490 -5292.7171030 -40.3 78.8 
TSeli 2 -5293.1803865 -5292.5552280 -5292.7076500 -15.3 103.6 

Product Complex 2 -5293.2322124 -5292.6048660 -5292.7605460 -145.6 -35.3 
CoIII–IMPA 6 -5192.7423753 -5192.1302080 -5192.2813360 -95.8 -25.3 

 
Table D.11. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by WIV–NU-1000, for 
two possible spin states. The lower of the energies is colored red. 
 

M = WIV (3d2) E (S2 = 2) E (S2 = 0) 
WIV–OH -3150.2079499 -3150.2476876 

WIV–Sarin -3900.5945250 -3900.6176382 
Reactant Complex -3977.0482218 -3977.0730616 

TSnuc -3977.0066691 -3977.0402773 
INT1 -3977.0148274 -3977.0400134 

TSBerry -3977.0124686 -3977.0384787 
INT2 -3977.0276113 -3977.0608454 
TSeli -3977.0114971 -3977.0408096 

Product Complex -3977.0561772 -3977.0836774 
WIV–IMPA -3876.5687815 -3876.5926877 

 
Table D.12. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by WIV–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = WIV (3d2) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
WIV–OH 0 -3150.2476876 -3149.8181820 -3149.9458440 0.0 0.0 

WIV–Sarin 0 -3900.6176382 -3900.0292540 -3900.1795090 -91.9 -28.8 
Reactant Complex 0 -3977.0730616 -3976.4567240 -3976.6142210 -116.4 -16.1 

TSnuc 0 -3977.0402773 -3976.4266580 -3976.5772960 -37.5 80.9 
INT1 0 -3977.0400134 -3976.4236040 -3976.5777590 -29.5 79.6 

TSBerry 0 -3977.0384787 -3976.4224350 -3976.5748270 -26.4 87.3 
INT2 0 -3977.0608454 -3976.4428570 -3976.5955310 -80.0 33.0 
TSeli 0 -3977.0408096 -3976.4267360 -3976.5790950 -37.7 76.1 

Product Complex 0 -3977.0836774 -3976.4670760 -3976.6231550 -143.6 -39.5 
WIV–IMPA 0 -3876.5926877 -3875.9917390 -3876.1432770 -92.0 -27.8 
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Table D.13. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by CuIII–NU-1000, 
for two possible spin states. The lower of the energies is colored red. 
 

M = CuIII (3d8) E (S2 = 2) E (S2 = 0) 
CuIII–OH -4724.0438253 -4724.0353133 

CuIII–Sarin -5474.4110371 -5474.4130803 
Reactant Complex -5550.8773118 -5550.8793263 

TSnuc -5550.8386628 -5550.8496361 
INT1 -5550.8396075 -5550.8511393 

TSBerry -5550.8365357 -5550.8453644 
INT2 -5550.8491326 -5550.8566456 
TSeli -5550.8345063 -5550.8429633 

Product Complex -5550.8814257 -5550.8884917 
CuIII–IMPA -5450.3935131 -5450.3963485 

 
Table D.14. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by CuIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = CuIII (3d8) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CuIII–OH 2 -4724.0438253 -4723.6042660 -4723.7333960 0.0 0.0 

CuIII–Sarin 0 -5474.4130803 -5473.8131800 -5473.9620620 -86.2 -15.7 
Reactant Complex 0 -5550.8793263 -5550.2516780 -5550.4078700 -139.7 -32.1 

TSnuc 0 -5550.8496361 -5550.2263990 -5550.3772100 -73.3 48.4 
INT1 0 -5550.8511393 -5550.2242080 -5550.3759970 -67.6 51.6 

TSBerry 0 -5550.8453644 -5550.2185460 -5550.3720470 -52.7 62.0 
INT2 0 -5550.8566456 -5550.2285230 -5550.3806010 -78.9 39.5 
TSeli 0 -5550.8429633 -5550.2184770 -5550.3703020 -52.5 66.5 

Product Complex 0 -5550.8884917 -5550.2616480 -5550.4168710 -165.9 -55.7 
CuIII–IMPA 0 -5450.3963485 -5449.7850960 -5449.9357520 -111.1 -40.7 

 
Table D.15. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by PdII–NU-1000, for 
two possible spin states. The lower of the energies is colored red. 
 

M = PdII (3d8) E (S2 = 2) E (S2 = 0) 
PdII–OH -3212.1766871 -3212.1852764 

PdII–Sarin -3962.5330759 -3962.5664566 
Reactant Complex -4038.9980691 -4039.0019177 

TSnuc -4038.9675883 -4038.9840283 
INT1 -4038.9765386 -4038.9919381 

TSBerry -4038.9688104 -4038.9842440 
INT2 -4038.9821156 -4038.9993732 
TSeli -4038.9726789 -4038.9896402 

Product Complex -4039.0193253 -4039.0352409 
PdII–IMPA -3938.5260573 -3938.5369233 
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Table D.16. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by PdII–NU-1000, using the most stable spin state for each species in the mechanism. 
 

M = PdII (3d8) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
PdII–OH 0 -3212.1852764 -3211.7327920 -3211.8615360 0.0 0.0 

PdII–Sarin 0 -3962.5664566 -3961.9550800 -3962.1086750 -121.3 -64.2 
Reactant Complex 0 -4039.0019177 -4038.3629140 -4038.5214090 -94.3 6.2 

TSnuc 0 -4038.9840283 -4038.3485480 -4038.5017210 -56.6 57.9 
INT1 0 -4038.9919381 -4038.3525790 -4038.5063930 -67.2 45.7 

TSBerry 0 -4038.9842440 -4038.3458240 -4038.4989700 -49.4 65.2 
INT2 0 -4038.9993732 -4038.3591350 -4038.5127190 -84.4 29.1 
TSeli 0 -4038.9896402 -4038.3525890 -4038.5066960 -67.2 44.9 

Product Complex 0 -4039.0352409 -4038.3962560 -4038.5529820 -181.8 -76.7 
PdII–IMPA 0 -3938.5369233 -3937.9127310 -3938.0648890 -108.8 -43.3 

 
Table D.17. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by FeIII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = FeIII (3d6) E (S2 = 8.75) E (S2 = 3.75) E (S2 = 0.75) 
FeIII–OH -4347.3838677 -4347.3368886 -4347.3129595 

FeIII–Sarin -5097.7501282 -5097.7110450 -5097.6855229 
Reactant Complex -5174.2134160 -5174.1790995 -5174.1416041 

TSnuc -5174.1850588 -5174.1496836 -5174.1154438 
INT1 -5174.1879790 -5174.1612754 -5174.1209738 

TSBerry -5174.1879131 -5174.1499891 -5174.1285989 
INT2 -5174.1987323 -5174.1580019 -5174.1286996 
TSeli -5174.1844163 -5174.1460121 -5174.1132674 

Product Complex -5174.2304841 -5174.1961158 -5174.1533482 
FeIII–IMPA -5073.7442940 -5073.7064787 -5073.6741621 

 
Table D.18. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by FeIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = FeIII (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
FeIII–OH 8.75 -4347.3838677 -4346.9445730 -4347.0756670 0.0 0.0 

FeIII–Sarin 8.75 -5097.7501282 -5097.1514760 -5097.3056420 -81.0 -19.1 
Reactant Complex 8.75 -5174.2134160 -5173.5866940 -5173.7465990 -125.8 -22.8 

TSnuc 8.75 -5174.1850588 -5173.5621930 -5173.7159690 -61.5 57.6 
INT1 8.75 -5174.1879790 -5173.5609910 -5173.7165210 -58.3 56.2 

TSBerry 8.75 -5174.1879131 -5173.5615180 -5173.7148500 -59.7 60.6 
INT2 8.75 -5174.1987323 -5173.5712170 -5173.7269140 -85.2 28.9 
TSeli 8.75 -5174.1844163 -5173.5604410 -5173.7159440 -56.9 57.7 

Product Complex 8.75 -5174.2304841 -5173.6041710 -5173.7622890 -171.7 -64.0 
FeIII–IMPA 8.75 -5073.7442940 -5073.1327270 -5073.2844290 -130.3 -57.5 
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Table D.19. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by CuII–NU-1000, using the only possible spin state (doublet) for each species in 
the mechanism. 
 

M = CuII (3d9) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CuII–OH 0.75 -4724.7043261 -4724.2519800 -4724.3813910 0.0 0.0 

CuII–Sarin 0.75 -5475.0662397 -5474.4553570 -5474.6086650 -71.7 -12.0 
Reactant Complex 0.75 -5551.5307208 -5550.8913710 -5551.0506040 -118.6 -18.3 

TSnuc 0.75 -5551.5064524 -5550.8710680 -5551.0249240 -65.3 49.1 
INT1 0.75 -5551.5084828 -5550.8694190 -5551.0246010 -61.0 50.0 

TSBerry 0.75 -5551.5017716 -5550.8628220 -5551.0166670 -43.7 70.8 
INT2 0.75 -5551.5130234 -5550.8727180 -5551.0281660 -69.7 40.6 
TSeli 0.75 -5551.5029137 -5550.8658510 -5551.0209640 -51.6 59.5 

Product Complex 0.75 -5551.5594887 -5550.9198550 -5551.0751950 -193.4 -82.8 
CuII–IMPA 0.75 -5451.0672065 -5450.4425140 -5450.5937260 -136.6 -66.9 

 
Table D.20. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by CeIV–NU-1000, using the only possible spin state (singlet) for each species in 
the mechanism. 
 

M = CeIV (3d0, 3f0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CeIV–OH 0 -3558.3913560 -3557.9635690 -3558.0922030 0.0 0.0 

CeIV–Sarin 0 -4308.7794759 -4308.1928370 -4308.3449980 -139.7 -79.0 
Reactant Complex 0 -4385.2463231 -4384.6319810 -4384.7904290 -194.8 -94.5 

TSnuc 0 -4385.1947364 -4384.5839910 -4384.7386810 -68.8 41.4 
INT1 0 -4385.1962200 -4384.5813850 -4384.7378030 -62.0 43.7 

TSBerry 0 -4385.1932339 -4384.5787820 -4384.7337810 -55.2 54.3 
INT2 0 -4385.2033787 -4384.5875240 -4384.7435520 -78.1 28.6 
TSeli 0 -4385.1908808 -4384.5777740 -4384.7327530 -52.5 57.0 

Product Complex 0 -4385.2448949 -4384.6300820 -4384.7870600 -189.8 -85.6 
CeIV–IMPA 0 -4284.7552818 -4284.1560920 -4284.3081210 -141.8 -76.3 

 
Table D.21. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by CoII–NU-1000, for 
two possible spin states. The lower of the energies is colored red. 
 

M = CoII (3d7) E (S2 = 3.75) E (S2 = 0.75) 
CoII–OH -4467.0131991 -4466.9750198 

CoII–Sarin -5217.3860745 -5217.3509167 
Reactant Complex -5293.8508905 -5293.8077928 

TSnuc -5293.8189284 -5293.7904255 
INT1 -5293.8233291 -5293.7984626 

TSBerry -5293.8205395 -5293.7944577 
INT2 -5293.8294248 -5293.8042252 
TSeli -5293.8191773 -5293.7941206 

Product Complex -5293.8672042 -5293.8383582 
CoII–IMPA -5193.3821318 -5193.3461695 
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Table D.22. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by CoII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = CoII (3d7) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CoII–OH 3.75 -4467.0131991 -4466.5613060 -4466.6926030 0.0 0.0 

CoII–Sarin 3.75 -5217.3860745 -5216.7748430 -5216.9293600 -98.4 -36.9 
Reactant Complex 3.75 -5293.8508905 -5293.2114750 -5293.3705080 -146.9 -41.1 

TSnuc 3.75 -5293.8189284 -5293.1828520 -5293.3379200 -71.8 44.5 
INT1 3.75 -5293.8233291 -5293.1827860 -5293.3384420 -71.6 43.1 

TSBerry 3.75 -5293.8205395 -5293.1805140 -5293.3339480 -65.7 54.9 
INT2 3.75 -5293.8294248 -5293.1884000 -5293.3443980 -86.4 27.4 
TSeli 3.75 -5293.8191773 -5293.1808970 -5293.3362680 -66.7 48.8 

Product Complex 3.75 -5293.8672042 -5293.2272900 -5293.3849970 -188.5 -79.1 
CoII–IMPA 3.75 -5193.3821318 -5192.7572480 -5192.9090440 -150.8 -77.7 

 
Table D.23. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by TiIV–NU-1000 (formate cluster model, OiPr pathway), using the only possible 
spin state (singlet) for each species in the mechanism. 
 

M = TiIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
TiIV–OH 0 -3932.6207000 -3932.1914030 -3932.3175390 0.0 0.0 

TiIV–Sarin 0 -4683.0167169 -4682.4285820 -4682.5780080 -160.4 -99.2 
Reactant Complex 0 -4759.4713551 -4758.8545710 -4759.0101780 -181.1 -79.8 

TSnuc 0 -4759.4320839 -4758.8191570 -4758.9700490 -88.1 25.6 
INT1 0 -4759.4335375 -4758.8160750 -4758.9671920 -80.0 33.1 

TSBerry 0 -4759.4303222 -4758.8137610 -4758.9638460 -73.9 41.9 
INT2 0 -4759.4438831 -4758.8261690 -4758.9780710 -106.5 4.5 
TSeli 0 -4759.4282916 -4758.8137040 -4758.9641110 -73.8 41.2 

Product Complex 0 -4759.4787509 -4758.8618290 -4759.0144610 -200.1 -91.0 
TiIV–IMPA 0 -4658.9878242 -4658.3867040 -4658.5347750 -149.1 -79.8 

 
Table D.24. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by TiIV–NU-1000 (benzoate cluster model, OiPr pathway), using the only possible 
spin state (singlet) for each species in the mechanism. 
 

M = TiIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
TiIV–OH 0 -4856.1180405 -4855.5006950 -4855.6273380 0.0 0.0 

TiIV–Sarin 0 -5606.5171789 -5605.7412980 -5605.8911040 -169.4 -107.8 
Reactant Complex 0 -5682.9662768 -5682.1619510 -5682.3174410 -176.0 -73.1 

TSnuc 0 -5682.9326569 -5682.1313720 -5682.2820860 -95.8 19.7 
INT1 0 -5682.9330755 -5682.1284520 -5682.2802810 -88.1 24.4 

TSBerry 0 -5682.9298327 -5682.1255400 -5682.2765260 -80.5 34.3 
INT2 0 -5682.9436789 -5682.1382160 -5682.2906720 -113.7 -2.8 
TSeli 0 -5682.9285579 -5682.1262420 -5682.2771270 -82.3 32.7 

Product Complex 0 -5682.9760505 -5682.1717100 -5682.3254850 -201.7 -94.2 
TiIV–IMPA 0 -5582.4876430 -5581.6985500 -5581.8472340 -155.8 -86.8 
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Table D.25. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by TiIV–NU-1000 (formate cluster model, CH3 pathway), using the only possible 
spin state (singlet) for each species in the mechanism. 
 

M = TiIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
TiIV–OH 0 -3932.6207000 -3932.1914030 -3932.3175390 0.0 0.0 

TiIV–Sarin 0 -4683.0167169 -4682.4285820 -4682.5780080 -160.4 -99.2 
Reactant Complex 0 -4759.4728164 -4758.8563470 -4759.0112830 -185.7 -82.7 

TSnuc 0 -4759.4329460 -4758.8203160 -4758.9704170 -91.1 24.6 
INT1 0 -4759.4334479 -4758.8159420 -4758.9665270 -79.6 34.8 

TSBerry 0 -4759.4320945 -4758.8154100 -4758.9646840 -78.3 39.7 
INT2 0 -4759.4438831 -4758.8261690 -4758.9780710 -106.5 4.5 
TSeli 0 -4759.4282916 -4758.8137040 -4758.9641110 -73.8 41.2 

Product Complex 0 -4759.4787509 -4758.8618290 -4759.0144610 -200.1 -91.0 
TiIV–IMPA 0 -4658.9878242 -4658.3867040 -4658.5347750 -149.1 -79.8 

 
Table D.26. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by TiIV–NU-1000 (formate cluster model, F pathway), using the only possible spin 
state (singlet) for each species in the mechanism. 
 

M = TiIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
TiIV–OH 0 -3932.6207000 -3932.1914030 -3932.3175390 0.0 0.0 

TiIV–Sarin 0 -4683.0167169 -4682.4285820 -4682.5780080 -160.4 -99.2 
Reactant Complex 0 -4759.4807358 -4758.8638470 -4759.0182030 -205.4 -100.9 

TSnuc 0 -4759.4380729 -4758.8255120 -4758.9766100 -104.8 8.3 
INT1 0 -4759.4384851 -4758.8223280 -4758.9739820 -96.4 15.2 

TiIV–IMPA 0 -4658.9878242 -4658.3867040 -4658.5347750 -149.1 -79.8 
 
Table D.27. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by FeII–NU-1000, for 
three possible spin states. The lower of the energies is colored red. 
 

M = FeII (3d6) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
FeII–OH -4347.9700167 -4347.9174260 -4347.8828451 

FeII–Sarin -5098.3414529 -5098.2864624 -5098.2550917 
Reactant Complex -5174.8069331 -5174.7416793 -5174.7176193 

TSnuc -5174.7760746 -5174.7253175 -5174.7037578 
INT1 -5174.7804670 -5174.7342305 -5174.7147384 

TSBerry -5174.7751548 -5174.7304964 -5174.7097325 
INT2 -5174.7875306 -5174.7392591 -5174.7184799 
TSeli -5174.7766519 -5174.7295917 -5174.7094851 

Product Complex -5174.8240315 -5174.7740510 -5174.7544111 
FeII–IMPA -5074.3394859 -5074.2860639 -5074.2522963 
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Table D.28. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by FeII–NU-1000, using the most stable spin state for each species in the mechanism. 
 

M = FeII (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
FeII–OH 6 -4347.9700167 -4347.5182660 -4347.6497590 0.0 0.0 

FeII–Sarin 6 -5098.3414529 -5097.7302150 -5097.8840470 -94.2 -30.4 
Reactant Complex 6 -5174.8069331 -5174.1680200 -5174.3284210 -145.8 -43.1 

TSnuc 6 -5174.7760746 -5174.1401120 -5174.2950470 -72.6 44.5 
INT1 6 -5174.7804670 -5174.1409350 -5174.2976910 -74.7 37.6 

TSBerry 6 -5174.7751548 -5174.1363090 -5174.2922020 -62.6 52.0 
INT2 6 -5174.7875306 -5174.1473100 -5174.3040700 -91.5 20.8 
TSeli 6 -5174.7766519 -5174.1391050 -5174.2948690 -69.9 45.0 

Product Complex 6 -5174.8240315 -5174.1842860 -5174.3424530 -188.6 -79.9 
FeII–IMPA 6 -5074.3394859 -5073.7151120 -5073.8676140 -153.2 -81.4 

 
Table D.29. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by WII–NU-1000, for 
three possible spin states. The lower of the energies is colored red. 
 

M = WII (3d4) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
WII–OH -3151.3406086 -3151.3425521 -3151.3261634 

WII–Sarin -3901.7078305 -3901.7169470 -3901.6888250 
Reactant Complex -3978.1756922 -3978.1815055 -3978.1479653 

TSnuc -3978.1500894 -3978.1498218 -3978.1144369 
INT1 -3978.1518231 -3978.1481804 -3978.1220840 

TSBerry -3978.1486631 -3978.1398636 -3978.1190754 
INT2 -3978.1572687 -3978.1560926 -3978.1397754 
TSeli -3978.1469519 -3978.1401228 -3978.1169050 

Product Complex -3978.1976799 -3978.1855234 -3978.1590634 
WII–IMPA -3877.7077578 -3877.6983433 -3877.6754308 

 
Table D.30. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by WII–NU-1000, using the most stable spin state for each species in the mechanism. 
 

M = WII (3d4) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
WII–OH 2 -3151.3425521 -3150.8910990 -3151.0221010 0.0 0.0 

WII–Sarin 2 -3901.7169470 -3901.1073240 -3901.2618870 -105.4 -44.9 
Reactant Complex 2 -3978.1815055 -3977.5439720 -3977.7041010 -154.0 -51.9 

TSnuc 6 -3978.1500894 -3977.5159220 -3977.6729680 -80.4 29.9 
INT1 6 -3978.1518231 -3977.5133720 -3977.6711450 -73.7 34.7 

TSBerry 6 -3978.1486631 -3977.5105990 -3977.6669450 -66.4 45.7 
INT2 6 -3978.1572687 -3977.5179170 -3977.6756910 -85.6 22.7 
TSeli 6 -3978.1469519 -3977.5106130 -3977.6681400 -66.5 42.6 

Product Complex 6 -3978.1976799 -3977.5593220 -3977.7194730 -194.3 -92.2 
WII–IMPA 6 -3877.7077578 -3877.0850270 -3877.2402750 -145.5 -82.2 
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Table D.31. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by AuIII–NU-1000, 
for two possible spin states. The lower of the energies is colored red. 
 

M = AuIII (3d8) E (S2 = 2) E (S2 = 0) 
AuIII–OH -3219.3132699 -3219.3215683 

AuIII–Sarin -3969.6714759 -3969.7170265 
Reactant Complex -4046.1271143 -4046.1656189 

TSnuc -4046.0865172 -4046.1414271 
INT1 -4046.0975496 -4046.1448286 

TSBerry -4046.0928477 -4046.1363846 
INT2 -4046.1115276 -4046.1563074 
TSeli -4046.1017434 -4046.1398804 

Product Complex -4046.1404225 -4046.1824970 
AuIII–IMPA -3945.6567854 -3945.6890300 

 
Table D.32. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by AuIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = AuIII (3d8) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
AuIII–OH 0 -3219.3215683 -3218.8814720 -3219.0099910 0.0 0.0 

AuIII–Sarin 0 -3969.7170265 -3969.1173310 -3969.2687080 -157.0 -94.6 
Reactant Complex 0 -4046.1656189 -4045.5387790 -4045.6976150 -165.7 -66.6 

TSnuc 0 -4046.1414271 -4045.5177290 -4045.6708310 -110.4 3.7 
INT1 0 -4046.1448286 -4045.5181310 -4045.6721870 -111.5 0.1 

TSBerry 0 -4046.1363846 -4045.5102260 -4045.6617010 -90.7 27.7 
INT2 0 -4046.1563074 -4045.5289640 -4045.6811000 -139.9 -23.3 
TSeli 0 -4046.1398804 -4045.5164630 -4045.6687660 -107.1 9.1 

Product Complex 0 -4046.1824970 -4045.5564230 -4045.7127920 -212.0 -106.5 
AuIII–IMPA 0 -3945.6890300 -3945.0778320 -3945.2288200 -151.9 -84.0 

 
Table D.33. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by ZnII–NU-1000, using the only possible spin state (singlet) for each species in the 
mechanism. 
 

M = ZnII (3d10) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
ZnII–OH 0 -4863.6096356 -4863.1569020 -4863.2853790 0.0 0.0 

ZnII–Sarin 0 -5613.9848854 -5613.3732770 -5613.5245050 -105.8 -43.1 
Reactant Complex 0 -5690.4512550 -5689.8115120 -5689.9688770 -158.6 -55.8 

TSnuc 0 -5690.4197551 -5689.7834950 -5689.9373830 -85.0 26.9 
INT1 0 -5690.4219874 -5689.7817800 -5689.9368280 -80.5 28.4 

TSBerry 0 -5690.4187246 -5689.7788060 -5689.9319270 -72.7 41.2 
INT2 0 -5690.4258424 -5689.7846660 -5689.9395470 -88.1 21.2 
TSeli 0 -5690.4175693 -5689.7792330 -5689.9333620 -73.9 37.5 

Product Complex 0 -5690.4684910 -5689.8285450 -5689.9854440 -203.3 -99.3 
ZnII–IMPA 0 -5589.9792838 -5589.3548180 -5589.5061860 -156.0 -89.2 
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Table D.34. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by NiII–NU-1000, for 
two possible spin states. The lower of the energies is colored red. 
 

M = NiII (3d8) E (S2 = 2) E (S2 = 0) 
NiII–OH -4592.5469644 -4592.5193883 

NiII–Sarin -5342.9221573 -5342.8993843 
Reactant Complex -5419.3909122 -5419.3391699 

TSnuc -5419.3621548 -5419.3187816 
INT1 -5419.3674778 -5419.3210980 

TSBerry -5419.3603872 -5419.3145374 
INT2 -5419.3695754 -5419.3232403 
TSeli -5419.3604452 -5419.3134641 

Product Complex -5419.4053964 -5419.3602855 
NiII–IMPA -5318.9161992 -5318.8966087 

 
Table D.35. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by NiII–NU-1000, using the most stable spin state for each species in the mechanism. 
 

M = NiII (3d8) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
NiII–OH 2 -4592.5469644 -4592.0940640 -4592.2228260 0.0 0.0 

NiII–Sarin 2 -5342.9221573 -5342.3112670 -5342.4639350 -108.0 -48.3 
Reactant Complex 2 -5419.3909122 -5418.7515980 -5418.9099840 -166.3 -65.4 

TSnuc 2 -5419.3621548 -5418.7267500 -5418.8816560 -101.0 9.0 
INT1 2 -5419.3674778 -5418.7280910 -5418.8838910 -104.6 3.1 

TSBerry 2 -5419.3603872 -5418.7214650 -5418.8761880 -87.2 23.3 
INT2 2 -5419.3695754 -5418.7291750 -5418.8847330 -107.4 0.9 
TSeli 2 -5419.3604452 -5418.7230450 -5418.8791640 -91.3 15.5 

Product Complex 2 -5419.4053964 -5418.7661630 -5418.9250980 -204.5 -105.1 
NiII–IMPA 2 -5318.9161992 -5318.2921760 -5318.4448100 -156.5 -92.2 

 
Table D.36. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by MnII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = MnII (3d5) E (S2 = 8.75) E (S2 = 3.75) E (S2 = 0.75) 
MnII–OH -4235.2866729 -4235.2225562 -4235.1820103 

MnII–Sarin -4985.6654078 -4985.5985106 -4985.5521447 
Reactant Complex -5062.1340502 -5062.0660409 -5062.0065010 

TSnuc -5062.0952865 -5062.0204075 -5061.9891755 
INT1 -5062.1011292 -5062.0396015 -5061.9980681 

TSBerry -5062.0967176 -5062.0185808 -5061.9941940 
INT2 -5062.1047038 -5062.0430331 -5062.0033164 
TSeli -5062.0968034 -5062.0285219 -5061.9924925 

Product Complex -5062.1465775 -5062.0741293 -5062.0364385 
MnII–IMPA -4961.6590769 -4961.5940189 -4961.5505515 
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Table D.37. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by MnII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = MnII (3d5) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
MnII–OH 8.75 -4235.2866729 -4234.8347940 -4234.9654060 0.0 0.0 

MnII–Sarin 8.75 -4985.6654078 -4985.0544110 -4985.2081550 -114.3 -52.7 
Reactant Complex 8.75 -5062.1340502 -5061.4951390 -5061.6539610 -173.7 -69.1 

TSnuc 8.75 -5062.0952865 -5061.4603450 -5061.6166100 -82.3 29.0 
INT1 8.75 -5062.1011292 -5061.4613980 -5061.6183190 -85.1 24.5 

TSBerry 8.75 -5062.0967176 -5061.4579500 -5061.6133840 -76.0 37.5 
INT2 8.75 -5062.1047038 -5061.4641230 -5061.6215510 -92.2 16.0 
TSeli 8.75 -5062.0968034 -5061.4586220 -5061.6156490 -77.8 31.5 

Product Complex 8.75 -5062.1465775 -5061.5069810 -5061.6666870 -204.7 -102.5 
MnII–IMPA 8.75 -4961.6590769 -4961.0348730 -4961.1878170 -161.7 -93.4 

 
Table D.38. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by ScIII–NU-1000, using the only possible spin state (singlet) for each species in 
the mechanism. 
 

M = ScIII (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
ScIII–OH 0 -3844.5298542 -3844.0900380 -3844.2189460 0.0 0.0 

ScIII–Sarin 0 -4594.9063759 -4594.3077070 -4594.4599530 -109.2 -48.1 
Reactant Complex 0 -4671.3798923 -4670.7531600 -4670.9089610 -180.9 -72.9 

TSnuc 0 -4671.3442646 -4670.7211120 -4670.8732730 -96.8 20.8 
INT1 0 -4671.3475708 -4670.7202550 -4670.8731270 -94.6 21.2 

TSBerry 0 -4671.3424592 -4670.7159420 -4670.8683260 -83.2 33.8 
INT2 0 -4671.3563800 -4670.7284830 -4670.8817290 -116.2 -1.4 
TSeli 0 -4671.3438951 -4670.7191730 -4670.8718520 -91.7 24.5 

Product Complex 0 -4671.3896934 -4670.7628090 -4670.9185460 -206.3 -98.1 
ScIII–IMPA 0 -4570.9029133 -4570.2913820 -4570.4413880 -165.0 -93.4 

 
Table D.39. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by RhIII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = RhIII (3d6) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
RhIII–OH -3194.2009712 -3194.2112161 -3194.2163645 

RhIII–Sarin -3944.5629644 -3944.5898047 -3944.5901100 
Reactant Complex -4021.0174055 -4021.0464189 -4021.0454991 

TSnuc -4020.9891287 -4021.0211057 -4021.0269678 
INT1 -4020.9953698 -4021.0289580 -4021.0336090 

TSBerry -4020.9917920 -4021.0208676 -4021.0252362 
INT2 -4021.0046047 -4021.0394188 -4021.0385238 
TSeli -4020.9848747 -4021.0222971 -4021.0249823 

Product Complex -4021.0306441 -4021.0649702 -4021.0693722 
RhIII–IMPA -3920.5419303 -3920.5753404 -3920.5884757 
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Table D.40. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by RhIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = RhIII (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
RhIII–OH 0 -3194.2163645 -3193.7752860 -3193.9020940 0.0 0.0 

RhIII–Sarin 0 -3944.5901100 -3943.9907090 -3944.1421690 -103.3 -45.6 
Reactant Complex 2 -4021.0464189 -4020.4194460 -4020.5777570 -131.2 -35.2 

TSnuc 0 -4021.0269678 -4020.4024180 -4020.5544550 -86.5 26.0 
INT1 0 -4021.0336090 -4020.4052220 -4020.5583610 -93.8 15.7 

TSBerry 0 -4021.0252362 -4020.3976260 -4020.5478700 -73.9 43.3 
INT2 2 -4021.0394188 -4020.4110330 -4020.5641020 -109.1 0.6 
TSeli 0 -4021.0249823 -4020.3995400 -4020.5515660 -78.9 33.5 

Product Complex 0 -4021.0693722 -4020.4414770 -4020.5965290 -189.0 -84.5 
RhIII–IMPA 0 -3920.5884757 -3919.9768370 -3920.1253940 -165.5 -95.7 

 
Table D.41. The SCF energies (in hartrees) for every species involved in the reaction catalyzed by RuIII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = RuIII (3d5) E (S2 = 8.75) E (S2 = 3.75) E (S2 = 0.75) 
RuIII–OH -3178.5470301 -3178.5614276 -3178.5634276 

RuIII–Sarin -3928.9134596 -3928.9473897 -3928.9391351 
Reactant Complex -4005.3726351 -4005.4058563 -4005.3919897 

TSnuc -4005.3450139 -4005.3765277 -4005.3687907 
INT1 -4005.3501319 -4005.3799519 -4005.3750821 

TSBerry -4005.3513354 -4005.3693849 -4005.3620610 
INT2 -4005.3608397 -4005.3806617 -4005.3828561 
TSeli -4005.3489403 -4005.3633050 -4005.3676791 

Product Complex -4005.3962134 -4005.4108066 -4005.4113244 
RuIII–IMPA -3904.9079100 -3904.9345978 -3904.9257275 

 
Table D.42. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by RuIII–NU-1000, using the most stable spin state for each species in the 
mechanism. 
 

M = RuIII (3d5) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
RuIII–OH 0.75 -3178.5634276 -3178.1223400 -3178.2501250 0.0 0.0 

RuIII–Sarin 3.75 -3928.9473897 -3928.3485580 -3928.5013330 -131.7 -74.9 
Reactant Complex 3.75 -4005.4058563 -4004.7789710 -4004.9374400 -163.9 -65.8 

TSnuc 3.75 -4005.3765277 -4004.7528800 -4004.9053200 -95.4 18.5 
INT1 3.75 -4005.3799519 -4004.7522090 -4004.9062230 -93.6 16.2 

TSBerry 3.75 -4005.3693849 -4004.7431290 -4004.8977120 -69.8 38.5 
INT2 0.75 -4005.3828561 -4004.7535880 -4004.9052680 -97.3 18.7 
TSeli 0.75 -4005.3676791 -4004.7424640 -4004.8945680 -68.1 46.8 

Product Complex 0.75 -4005.4113244 -4004.7835800 -4004.9390120 -176.0 -69.9 
RuIII–IMPA 3.75 -3904.9345978 -3904.3224660 -3904.4740530 -161.8 -97.4 

 
  



 319 
Table D.43. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for each species 
involved in the reaction catalyzed by NU-1000, using the only possible spin state (singlet) for each species in the 
mechanism. 
 

NU-1000 S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
NU-1000-hyd 0 -3932.6102671 -3931.8192600 -3931.9759530 -135.1 -83.9 

NU-1000-dehyd 0 -3856.1123160 -3855.3496670 -3855.5044400 0.0 0.0 
NU-1000–Sarin 0 -4606.5074788 -4605.5852600 -4605.7618570 -156.3 -91.2 

Reactant Complex 0 -4682.9700750 -4682.0192840 -4682.2009840 -198.0 -90.0 
TSnuc 0 -4682.9409172 -4681.9941010 -4682.1720340 -131.9 -14.0 
INT1 0 -4682.9430214 -4681.9923250 -4682.1708320 -127.2 -10.9 

TSBerry 0 -4682.9417274 -4681.9915940 -4682.1682790 -125.3 -4.2 
INT2 0 -4682.9435354 -4681.9922650 -4682.1698300 -127.1 -8.2 
TSeli 0 -4682.9327312 -4681.9846070 -4682.1625970 -107.0 10.7 

Product Complex 0 -4682.9852259 -4682.0354070 -4682.2159510 -240.3 -129.3 
NU-1000–IMPA 
(monodentate) 0 -4582.4945568 -4581.5602460 -4581.7369160 -189.2 -119.8 

NU-1000–IMPA 
(bidentate) 

0 -4506.0394998 -4505.1321820 -4505.3037400 -163.2 -136.5 

 
Table D.44. Summary of the open shell species that has the maximum spin contamination for specific M-NU-1000 
systems.* 
 

Metal Species S2 S2cal ∆S2 = S2cal – S2 
PdIV TSnuc 2.000 2.014 0.014 
CoIII INT1 2.000 2.079 0.079 
CuIII CuIII–OH 2.000 2.008 0.008 
FeIII FeIII–OH 8.750 8.760 0.010 
CuII CuII–OH 0.750 0.753 0.003 
CoII CoII–OH 3.750 3.762 0.012 
FeII FeII–OH 6.000 6.040 0.040 
WII WII–OH 2.000 2.091 0.091 
NiII NiII–OH 2.000 2.006 0.006 
MnII MnII–OH 8.750 8.760 0.010 
RhIII INT2 2.000 2.017 0.017 
RuIII INT2 0.750 0.769 0.019 

 

*S2 represents the theoretical value and S2cal is the calculated value. 
 
For the M-NU-1000 systems containing open-shell spin states, we quantified the species 
throughout the respective mechanisms that had the maximum spin contamination and tabulated 
these values in Table D.44. If there is no spin contamination, then the calculated value of the total 
spin, S2cal, should equal the theoretical value, S2. A general rule of thumb is that the spin 
contamination can be considered negligible if the calculated value of the total spin (S2cal) differs 
from the theoretical value of the total spin (S2) by less than 10%. As seen by the ∆S2 values in the 
table, there is no significant spin contamination for any of the open-shell systems that we 
considered. 
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D.13 Raw Energy Values for All Spin States for Other 17 M-NU-1000 Systems 
 
In the tables below, the raw energy values are given for the M–OH, M–Sarin, INT1, and M–
IMPA species for the other 17 M-NU-1000 systems. In the main text, these 17 systems were 
considered non-ideal and excluded from further analysis based on their relatively high free energy 
barriers to form INT1 and desorb IMPA. In other words, we did not calculate the full catalytic 
pathways for these 17 M-NU-1000 systems. 
 
Table D.45. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for CrIII–NU-
1000, for two possible spin states. The lower of the energies is colored red. 
 

M = CrIII (3d3) E (S2 = 3.75) E (S2 = 0.75) 
CrIII–OH -4128.1589235 -4128.1147536 

CrIII–Sarin -4878.5380321 -4878.4859003 
INT1 -4954.9753057 -4954.9185592 

CrIII–IMPA -4854.5322127 -4854.4748627 
 
Table D.46. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for CrIII–NU-1000, using the most stable spin state for each species. 
 

M = CrIII (3d3) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CrIII–OH 3.75 -4128.1589235 -4127.7187260 -4127.847237 0.0 0.0 

CrIII–Sarin 3.75 -4878.5380321 -4877.9386780 -4878.090508 -115.2 -54.0 
INT1 3.75 -4954.9753057 -4954.3471880 -4954.500347 -89.9 24.0 

CrIII–IMPA 3.75 -4854.5322127 -4853.9210090 -4854.07241 -167.4 -100.6 
 
Table D.47. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for RuIV–NU-
1000, for three possible spin states. The lower of the energies is colored red. 
 

M = RuIV (3d4) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
RuIV–OH -3177.9138694 -3177.9414559 -3177.9257416 

RuIV–Sarin -3928.2980099 -3928.3095846 -3928.3230826 
INT1 -4004.7337744 -4004.7348302 -4004.7181709 

RuIV–IMPA -3904.2798100 -3904.2872277 -3904.2725004 
 
Table D.48. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for RuIV–NU-1000, using the most stable spin state for each species. 
 

M = RuIV (3d4) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
RuIV–OH 2 -3177.9414559 -3177.5118840 -3177.63979 0.0 0.0 

RuIV–Sarin 0 -3928.3230826 -3927.7340070 -3927.88304 -120.9 -54.0 
INT1 2 -4004.7348302 -4004.1185470 -4004.27181 -32.7 79.4 

RuIV–IMPA 2 -3904.2872277 -3903.6868880 -3903.83812 -95.8 -30.1 
 
Table D.49. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for IrIII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = IrIII (3d6) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
IrIII–OH -3187.9692489 -3187.9812500 -3187.9916957 

IrIII–Sarin -3938.3175082 -3938.3660811 -3938.3731898 
INT1 -4014.7512083 -4014.8042118 -4014.8086038 

IrIII–IMPA -3914.3025457 -3914.3532170 -3914.3680014 
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Table D.50. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for IrIII–NU-1000, using the most stable spin state for each species. 
 

M = IrIII (3d6) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
IrIII–OH 0 -3187.9916957 -3187.5505690 -3187.67876 0.0 0.0 

IrIII–Sarin 0 -3938.3731898 -3937.7733120 -3937.92425 -122.5 -59.8 
INT1 0 -4014.8086038 -4014.1802470 -4014.33394 -93.1 18.6 

IrIII–IMPA 0 -3914.3680014 -3913.7562120 -3913.90512 -176.3 -103.7 
 
Table D.51. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for YIII–NU-1000, using the only possible spin state (singlet) for each species. 
 

M = YIII (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
YIII–OH 0 -3122.1698029 -3121.7305700 -3121.86124 0.0 0.0 

YIII–Sarin 0 -3872.5506820 -3871.9524890 -3872.10632 -120.4 -58.8 
INT1 0 -3948.9930356 -3948.3663690 -3948.52123 -109.2 5.9 

YIII–IMPA 0 -3848.5485345 -3847.9371040 -3848.08831 -178.6 -105.6 
 
Table D.52. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for VIV–NU-1000, using the only possible spin state (doublet) for each species. 
 

M = VIV (3d1) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
VIV–OH 0.75 -4027.0937857 -4026.6641040 -4026.7901800 0.0 0.0 

VIV–Sarin 0.75 -4777.4910431 -4776.9023750 -4777.0512610 -163.3 -100.8 
INT1 0.75 -4853.9018659 -4853.2852400 -4853.4384410 -70.7 36.7 

VIV–IMPA 0.75 -4753.4598592 -4752.8593980 -4753.0092220 -149.1 -84.5 
 
Table D.53. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for CrII–NU-1000, 
for three possible spin states. The lower of the energies is colored red. 
 

M = CrII (3d4) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
CrII–OH -4128.7351163 -4128.6846896 -4128.6458371 

CrII–Sarin -4879.1051682 -4879.0561057 -4879.0188296 
INT1 -4955.5545434 -4955.5072365 -4955.4490910 

CrII–IMPA -4855.1111020 -4855.0611353 -4855.0020983 
 
Table D.54. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for CrII–NU-1000, using the most stable spin state for each species. 
 

M = CrII (3d4) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CrII–OH 6 -4128.7351163 -4128.2827630 -4128.41318 0.0 0.0 

CrII–Sarin 6 -4879.1051682 -4878.4941890 -4878.64738 -92.8 -30.2 
INT1 6 -4955.5545434 -4954.9152150 -4955.07081 -100.4 12.1 

CrII–IMPA 6 -4855.1111020 -4854.4872230 -4854.64056 -173.2 -106.4 
 
Table D.55. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for VII–NU-1000, 
for two possible spin states. The lower of the energies is colored red. 
 

M = VII (3d3) E (S2 = 3.75) E (S2 = 0.75) 
VII–OH -4028.2639965 -4028.2380387 

VII–Sarin -4778.6387803 -4778.6178205 
INT1 -4855.0910918 -4855.0533496 

VII–IMPA -4754.6421460 -4754.5986672 
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Table D.56. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for VII–NU-1000, using the most stable spin state for each species. 
 

M = VII (3d3) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
VII–OH 3.75 -4028.2639965 -4027.8121210 -4027.9435080 0.0 0.0 

VII–Sarin 3.75 -4778.6387803 -4778.0278750 -4778.1815820 -104.2 -40.4 
INT1 3.75 -4855.0910918 -4854.4517250 -4854.6069950 -119.2 -3.2 

VII–IMPA 3.75 -4754.6421460 -4754.0183010 -4754.1713600 -177.7 -107.7 
 
Table D.57. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for MoII–NU-
1000, for three possible spin states. The lower of the energies is colored red. 
 

M = MoII (3d4) E (S2 = 6) E (S2 = 2) E (S2 = 0) 
MoII–OH -3152.4687820 -3152.4606937 -3152.4372446 

MoII –Sarin -3902.8445127 -3902.8326193 -3902.8225576 
INT1 -3979.2776699 -3979.2686870 -3979.2301978 

MoII –IMPA -3878.8458581 -3878.8228157 -3878.7913820 
 
Table D.58. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for MoII–NU-1000, using the most stable spin state for each species. 
 

M = MoII (3d4) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
MoII–OH 6 -3152.4687820 -3152.0172240 -3152.14874 0.0 0.0 

MoII –Sarin 6 -3902.8445127 -3902.2341210 -3902.3903 -107.2 -49.6 
INT1 6 -3979.2776699 -3978.6384360 -3978.79536 -70.9 41.0 

MoII –IMPA 6 -3878.8458581 -3878.2227630 -3878.37689 -176.0 -108.4 
 
Table D.59. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for ZrIV–NU-1000, using the only possible spin state (singlet) for each species. 
 

M = ZrIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
ZrIV–OH 0 -3130.2527616 -3129.8240310 -3129.9522340 0.0 0.0 

ZrIV–Sarin 0 -3880.6602171 -3880.0727420 -3880.2233990 -190.7 -127.3 
INT1 0 -3957.0760056 -3956.4604040 -3956.6143900 -110.7 0.2 

ZrIV–IMPA 0 -3856.6315512 -3856.0315330 -3856.1811250 -181.1 -110.4 
 
Table D.60. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for MoIV–NU-
1000, for two possible spin states. The lower of the energies is colored red. 
 

M = MoIV (3d2) E (S2 = 2) E (S2 = 0) 
MoIV–OH -3151.3063474 -3151.3244422 

MoIV–Sarin -3901.7039415 -3901.6948838 
INT1 -3978.1143996 -3978.1150485 

MoIV–IMPA -3877.6689025 -3877.6680229 
 
Table D.61. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for MoIV–NU-1000, using the most stable spin state for each species. 
 

M = MoIV (3d2) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
MoIV–OH 0 -3151.3244422 -3150.8951240 -3151.0223720 0.0 0.0 

MoIV–Sarin 2 -3901.7039415 -3901.1159320 -3901.2675760 -117.5 -59.1 
INT1 0 -3978.1150485 -3977.4994730 -3977.6526070 -26.6 84.1 

MoIV–IMPA 2 -3877.6689025 -3877.0684230 -3877.2196990 -91.3 -27.5 
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Table D.62. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for MnIV–NU-
1000, for two possible spin states. The lower of the energies is colored red. 
 

M = MnIV (3d3) E (S2 = 3.75) E (S2 = 0.75) 
MnIV–OH -4234.0117536 -4233.9781473 

MnIV–Sarin -4984.3916517 -4984.3688596 
INT1 -5060.8011273 -5060.7673469 

MnIV–IMPA -4960.3600302 -4960.3218325 
 
Table D.63. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for MnIV–NU-1000, using the most stable spin state for each species. 
 

M = MnIV (3d3) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
MnIV–OH 3.75 -4234.0117536 -4233.5825880 -4233.7102110 0.0 0.0 

MnIV–Sarin 3.75 -4984.3916517 -4983.8029100 -4983.9533500 -116.2 -53.7 
INT1 3.75 -5060.8011273 -5060.1841780 -5060.3383700 -19.4 89.5 

MnIV–IMPA 3.75 -4960.3600302 -4959.7590440 -4959.9097500 -99.6 -33.3 
 
Table D.64. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for HfIV–NU-1000, using the only possible spin state (singlet) for each species. 
 

M = HfIV (3d0) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
HfIV–OH 0 -3131.2377160 -3130.8091250 -3130.9383540 0.0 0.0 

HfIV–Sarin 0 -3881.6482787 -3881.0609500 -3881.2126420 -198.9 -135.5 
INT1 0 -3958.0621999 -3957.4470500 -3957.6019400 -114.8 -3.5 

HfIV–IMPA 0 -3857.6178118 -3857.0179940 -3857.1681950 -184.7 -112.9 
 
Table D.65. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for CeIII–NU-1000, using the only possible spin state (doublet) for each 
species. 
 

M = CeIII (3d1) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
CeIII–OH 0.75 -3559.0327095 -3558.5939520 -3558.7256430 0.0 0.0 

CeIII–Sarin 0.75 -4309.4107538 -4308.8131390 -4308.9688630 -113.2 -53.9 
INT1 0.75 -4385.8523936 -4385.2261270 -4385.3828650 -99.7 13.2 

CeIII–IMPA 0.75 -4285.4133691 -4284.8015840 -4284.9556830 -181.5 -113.4 
 
Table D.66. The SCF energies (in hartrees) for the M–OH, M–Sarin, INT1, and M–IMPA species for PtII–NU-1000, 
for two possible spin states. The lower of the energies is colored red. 
 

M = PtII (3d8) E (S2 = 2) E (S2 = 0) 
PtII–OH -3203.6035043 -3203.6107565 

PtII–Sarin -3953.9633274 -3953.9977450 
INT1 -4030.3847838 -4030.4424506 

PtII–IMPA -3929.9409981 -3929.9963182 
 
Table D.67. The SCF energies, enthalpies, free energies, relative enthalpies, and relative free energies for the M–OH, 
M–Sarin, INT1, and M–IMPA species for PtII–NU-1000, using the most stable spin state for each species. 
 

M = PtII (3d8) S2 E (hartree) H (hartree) G (hartree) Rel. H (kJ/mol) Rel. G (kJ/mol) 
PtII–OH 0 -3203.6107565 -3203.1579780 -3203.2875160 0.0 0.0 

PtII–Sarin 0 -3953.9977450 -3953.3862280 -3953.5405360 -137.0 -79.6 
INT1 0 -4030.4424506 -4029.8028420 -4029.9574900 -133.0 -20.3 

PtII–IMPA 0 -3929.9963182 -3929.3721320 -3929.5233120 -198.6 -128.5 
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D.14 Raw Energy Values for Sarin, H2O, IMPA and HF 
 
Table D.68. The SCF energies, enthalpies, and free energies for the gas-phase Sarin, H2O, IMPA, and HF species. 
 

Species E (hartree) H (hartree) G (hartree) 
Sarin -750.332840 -750.176069 -750.222695 
H2O -76.443285 -76.418134 -76.439555 

IMPA -726.296194 -726.127386 -726.174698 
HF -100.468436 -100.455696 -100.475401 
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D.16 Cartesian Coordinates for Each System 
 
The optimized cartesian coordinates (in Å) for each species, using the most stable spin state (lowest 
E), involved in the gas-phase hydrolysis of sarin catalyzed by each system are provided in the 
supplementary file (Coordinates.zip), available free of charge at 
https://doi.org/10.1021/acscatal.9b03594. 
 


