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Abstract 

Neural Mechanisms of Olfactory Categorization and Navigation in the Human Brain 

Xiaojun Bao (包笑君) 

 

The brains of humans and animals have the amazing capability of extracting abstract 

relationships between external stimuli efficiently. Knowing such regularities helps us compute 

and react to novel information flexibly without prior experience. The olfactory system is no 

exception. Animals need to infer commonalities across different odors sharing similar meaning, 

while preserving individual distinctions across these odors. They must also locate and predict 

sources of odors to optimize their proximity to the odor-emitting objects. The neural mechanisms 

underlying these critical olfactory cognitions are still full of questions. In two independent fMRI 

experiments, we investigated how the human brain represents 1) categorically organized odor 

objects, and 2) two-dimensional odor space constructed by two-odorant mixtures.  

 

In the first experiment, we took advantage of the anatomical organization of the olfactory system 

and delivered the GABA(B) receptor agonist baclofen to suppress associative input to human 

piriform cortex. Multi-voxel pattern analyses revealed that baclofen disrupted pattern separation 

of within-category odors in the piriform cortex, and disrupted pattern separation of odor 

categories in the orbitofrontal cortex (OFC) and the hippocampus.  

 

In the second experiment, we uncovered evidence of grid-like coding with a two-dimensional 

virtual landscape constructed only of odors. We found that humans can learn to navigate through 
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an odor space, and that the internal maps of the space take the form of periodic, hexagonally 

symmetric patterns in the entorhinal cortex, the ventromedial prefrontal cortex, and the anterior 

piriform cortex, consistent with a grid-like arrangement.  

 

Results from these experiments should advance our understanding of coding mechanisms by 

which the olfactory brain represents odors with relational organizations in different applications. 

They complement and extend earlier literature on olfactory cognition, and advance olfaction as a 

model system for further studies of relational memory.      
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Chapter 1: General introduction and background 

1.1 The olfactory system: an overview 

Here is the recipe of the smell of Spring Festival (normally between late January and February) 

in my hometown Jiaxing, a third-tier city in Southeast China: the odor of gunpowder from 

finished firecrackers, the odor of deep-fried pork meatballs cooked with soy sauce, and the odor 

of maltose from street vendors, mixed in dry air at a temperature around 5°C. How this 

unmistakable smell sensation emerges from networks of neurons, and how it eventually defines a 

time and space in my mind, is a fascinating mystery.  

 

Olfaction is a chemical sense that detects air-borne odorant molecules in the environment and 

forms the sense of smell. The transduction of odor information starts with odorous molecules 

activating olfactory sensory neurons (OSNs) in our nose as we breath or sniff, which creates 

airflow and brings those molecules to the olfactory epithelium lying on the roof of our nasal 

cavity. At the epithelium, odorant molecules bind to olfactory receptors at the sensory endings 

(many hair-like cilia) of OSNs. Olfactory receptors are members of G protein-coupled receptors 

(GPCRs). Each OSN expresses only one receptor subtype out of 400 possible receptors in 

humans (about 1,000 in rodents) (Malnic et al 2004, Zhang & Firestein 2002). A single odorant 

can bind to multiple receptor subtypes with varying affinities, and a single receptor can bind to 

different odorants. Moreover, the binding mechanism between molecules and receptors is 

elusive. The most widely accepted theory is that a molecule’s smell character depends on its 

molecular structure, molecular size, functional groups, etc. Alternatively, the (rather 

controversial) vibration theory proposes that odor molecular recognition lies in the vibrational 

frequency tuning curves of olfactory receptors in the infrared range (Franco et al 2011). 
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Therefore, unlike color vision and tone perception where the stimulus-percept problem is well 

understood, it has been extremely difficult to predict odor percept from the molecular descriptors 

of odor stimuli (Keller et al 2017).  

 

Once activated, OSNs send action potentials along their axons, which form the olfactory nerve 

(the first cranial nerve), and synapse near the surface of the olfactory bulb. In the epithelium, 

OSN subtypes are segregated into a small number of broad yet circumscribed expression zones, 

with stochastic distribution within a given zone (Ressler et al 1993, Vassar et al 1993). In 

contrast, the same OSN subtype terminates on just one or a few glomeruli within the bulb 

(Ressler et al 1994, Vassar et al 1994). A glomerulus is a spherical structure where synapses 

form between the axons of OSNs and the dendrites of mitral and tufted cells (projection cells) 

and periglomerular cells (inhibitory interneurons). The convergence of information from OSNs 

makes the individual glomerulus a molecular feature-detecting unit, and has the likely advantage 

of enhancing sensitivity by summation of low level signals (Mori et al 1999). The olfactory bulb 

also contains several other inhibitory interneurons, the largest population being granule cells, 

which receive top-down cortical feedback and modulate mitral/tufted cells. The interneurons are 

important for establishing lateral inhibitory circuits, gain control, and top-down regulations (Imai 

2014).     

 

Axonal projections from mitral/tufted cells in the olfactory bulb travel through the lateral 

olfactory tract and arrive at several cortical and subcortical areas, collectively called primary 

olfactory cortex, including: the anterior olfactory nucleus, olfactory tubercle, piriform cortex, 

amygdala, and rostral entorhinal cortex (Gottfried 2010). Different from other sensory systems, 
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the olfactory pathway does not require a thalamic relay before reaching cortical areas. Among 

the regions that receive direct input from the olfactory bulb, the piriform cortex is the largest 

target, and is usually split into anterior and posterior subdivisions based on their anatomical and 

functional distinctions. Anatomically, the anterior piriform cortex (APC) receives more abundant 

afferent projections from the olfactory bulb whereas the posterior piriform cortex (PPC) receives 

more associative fiber inputs arising elsewhere (Haberly 2001). Functionally, the APC generally 

represents odor identity and the PPC encodes information about perceptual quality (Gottfried et 

al 2006, Howard et al 2009). In contrast to the convergent organization in the olfactory bulb, 

axons from individual glomeruli project diffusely to the piriform cortex without obvious spatial 

bias (Ghosh et al 2011, Miyamichi et al 2011, Sosulski et al 2011). The distributive projection 

pattern offers an anatomic substrate for combinatorial integration of information from the bulb. 

Functional mapping of odor-evoked activity in rodents (Cattarelli et al 1988, Illig & Haberly 

2003, Rennaker et al 2007, Stettler & Axel 2009) and humans (Howard et al 2009) confirmed 

that different monomolecular odorants elicit unique and distributed ensemble patterns of neural 

activity in the piriform cortex.   

 

Downstream of the primary olfactory cortex is an extended network of brain areas, including the 

orbitofrontal cortex (OFC), agranular insula, hypothalamus, amygdala, perirhinal cortex, the 

hippocampal formation, striatum, thalamus, etc. (Carmichael et al 1994, Courtiol & Wilson 

2014, Illig 2005, Johnson et al 2000, Majak et al 2004, Shipley & Ennis 1996) Most of these 

connections are bidirectional, like those between the olfactory bulb and primary olfactory cortex. 

It takes as few as three synapses for the chemical information to reach the limbic and prefrontal 

areas, which support emotion, learning and memory, expectation and attention. The close link 
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between odor input and high-order associative systems implies that odor percepts are more 

reliant on (and modified by) experience and emotional or cognitive states compared to other 

sensory modalities.    

 

The olfactory system is also unique among sensory systems in sending information 

predominantly to the ipsilateral hemisphere. Studies investigating the olfactory sense in 

unilateral neglect patients have provided insights into the nature of sensory attention and 

awareness. Unilateral neglect is a disorder resulting most commonly from brain damage of the 

right hemisphere, particularly of the right parietal lobe. The right parietal lobe appears to be able 

to direct attention to both left and right sides of space, while the left hemisphere seems to be 

responsible mostly for guiding attention toward contralateral (right) space (Mesulam 1981). 

Split-brain patients and patients with strokes and brain injuries to the right cerebral hemisphere 

often fail to respond to stimuli presented to the left side of the body and space. Two major 

theories have been raised to explain the mechanism: the sensory theory states that unilateral 

neglect involves attenuated afferent input to the right hemisphere from the contralateral side of 

the body and space; in contrast, the representational theory argues that it is due to a diminished 

internal representation, which is not dependent on sensory input. Since the olfactory pathways to 

the cerebral hemispheres are not crossed before reaching the primary olfactory cortex, it provides 

a unique mechanism to test the two theories. If the neglect is caused by a sensory loss, it should 

occur on the ipsilateral side, whereas an internal representation deficit should cause a 

contralateral neglect. A clinical case by Mesulam (Mesulam 1981) described a patient with right 

parietal brain damage who exhibited left-sided extinction of olfactory stimuli, which was later 
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supported by a group study (Bellas et al 1988). These results provided strong evidence for the 

representational theory.  

 

1.2 On olfactory categorization: the effect of GABA(B) receptor activation on the balance of 

discrimination and generalization  

One important function of olfactory cognition is categorization: to recognize odors as members 

of categories, which reflect the conceptual relationships among odors. The abilities to 

discriminate between prey and predator, food and nonfood, ingroups and outsiders, are essential 

functions for survival. At the same time, no two sniffs are the same. Even from the same source, 

the odorant concentration and volatility, as well as airflow (sniff) patterns, can change with time. 

Therefore, being able to generalize odors according to similar perceptual quality or context helps 

to optimize behavioral decisions more efficiently.  

 

Previous research has suggested that the piriform cortex contains neural correlates of odor 

quality and category perceptions. Howard et al. found that odors with different perceptual 

qualities evoked different fMRI activity in the form of spatially distributed (multi-voxel) patterns 

in human piriform cortex. Moreover, perceived quality similarities lined up with piriform pattern 

similarities, and both resulted in the same categorical organization (Howard et al 2009). 

Importantly, odor quality perceptions are experience dependent and cannot always be read out 

solely from olfactory bulb’s glomeruli response profiles. Rats had to go through extensive 

training to learn to discriminate highly overlapping odor mixtures which were initially 

indistinguishable, or to ignore the normally detectable differences between mixtures. Single unit 

recordings from the piriform cortex showed learning-induced pattern separation (discrimination) 
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and pattern completion (generalization), depending on the task demands, whereas such 

bidirectional plasticity was absent in the olfactory bulb (Chapuis & Wilson 2012). The same 

effect was also found in human subjects. With an aversive conditioning paradigm, subjects were 

able to discriminate two mirror-image molecules that initially smelled the same. In parallel, 

fMRI activity patterns in piriform cortex became more distinct after learning (Li et al 2008). 

 

 

Figure 1.1 Circuit diagram of the piriform cortex. 
(A) Feedforward (FF) inhibitory (I) circuit from lateral olfactory tract afferents (aff) and feedback (FB) 
inhibitory circuit onto pyramidal cells (P). (B) Feedback and feedforward circuits from pyramidal cell 
axons, including inhibitory control of the initial segment (IS); assn, association fibers. (C) Pathways for 
lateral inhibition, through long axons of basket cell onto distant pyramidal cell, or long axon collateral of 
pyramidal cell onto distant basket cell. Open profiles: excitatory synaptic action; filled profiles: inhibitory 
synaptic action. (Shepherd 2011) 
 

The structure of the piriform cortex is strikingly similar to that of the hippocampus. Both take the 

form of a phylogenetically conserved three-layered allocortex (Vaughan & Jackson 2014), and 
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share comparable laminar and microcircuit organizations. The most superficial layer (layer I) of 

piriform cortex is a plexiform layer consisting of two sublayers: layer Ia receives axons from the 

olfactory bulb (afferent input), and layer Ib consists of associative axons from other neurons in 

piriform cortex as well as from other olfactory cortical regions (associative input). Layers II and 

III are cellular layers that house principal cells. Multiple classes of GABAergic inhibitory 

interneurons are found across all layers in the piriform cortex. They provide various feed-

forward and feedback inhibition onto the pyramidal cells (Franks et al 2011, Stokes & Isaacson 

2010, Suzuki & Bekkers 2012) (Fig. 1.1).  

 

In addition to the laminar segregation of afferent and associative inputs in layer I, there is also 

laminar selectivity of synaptic suppression by the GABA(B) receptor agonist baclofen in both 

piriform cortex and hippocampus. GABA(B) receptors are metabotropic receptors that mediate 

slow and prolonged synaptic inhibition through a G-protein associated second messenger system. 

They were demonstrated on presynaptic terminals (where they serve as autoreceptors) to 

influence transmitter release by suppressing Ca2+ conductance. They are also located 

postsynaptically, where their activation produces an increase in membrane K+ conductance and 

associated slow hyperpolarization (Bowery 1993, Bowery et al 2002). In both the piriform cortex 

and the hippocampus, functional GABA(B) receptors are absent on afferent fiber terminals. 

Applications of baclofen, a highly selective agonist for GABA(B) receptors, strongly depresses 

associative transmission with no effect on afferent-evoked responses (Lanthorn & Cotman 1981, 

Tang & Hasselmo 1994). Therefore, baclofen has been used as a pharmacological tool in rodent 

studies to examine the role of associative connections in odor coding in the piriform cortex, by 

selectively blocking associative inputs and sparing afferent inputs (Barnes & Wilson 2014, 
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Gerrard et al 2018, Poo & Isaacson 2011). For the first experiment in this dissertation, we used 

baclofen in humans to inspect the role of associative inputs in category coding in the piriform 

cortex via the same mechanism.  

 

Odor category codes have been reported in higher-order brain areas downstream of the piriform 

cortex in human fMRI studies. In an olfactory deprivation study, Wu et al. found category codes 

in multivoxel ensemble patterns in the OFC at baseline, which became decorrelated after 7-days 

of nostril occlusion, and returned to baseline after recovery (Wu et al 2012). Using a paired-

associates learning paradigm, subjects perceptually reorganized novel ambiguous odors into 

categories, and category specific patterns emerged in the piriform, OFC, insular, and perirhinal 

cortices (Qu et al 2016). With this evidence, it is reasonable to expect that higher-order 

association areas would contain odor category codes, which could be changed by baclofen as the 

result of either the direct action of the drug on-site, or the downstream effect from piriform 

changes.  

 

Baclofen, commonly administered orally, was originally approved by the FDA in 1977 as a 

muscle relaxant and antispastic (Brennan et al 2013). Its off-label use has been investigated for 

treatment of alcohol and drug addiction (Dupouy et al 2014, Franklin et al 2012, Franklin et al 

2011, Kahn et al 2009, Terrier et al 2011, Young et al 2014). For a 50-mg dose of oral tablet, the 

expected drug concentration in the cerebrospinal fluid is 106 ng/ml (0.5 μM) after 0.5-1.5 h 

(Terrier et al 2011). Because baclofen would be delivered orally and have a systemic effect, and 

because GABA(B) receptors are distributed throughout the brain (Bowery et al 1987, Chu et al 

1990), the drug could possibly influence all stages the olfactory brain responsible for odor 
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categorization function.  

 

GABA(B) expression in the olfactory bulb. The first synapse of the olfactory pathway – where 

olfactory nerve axons terminate in olfactory bulb glomeruli – is modulated by GABA(B) 

receptors presynaptically. This effect is strong for intraglomerular feedback inhibition via 

periglomerular interneurons, but weak for interglomerular lateral inhibition mediated by 

juxtaglomerular interneurons (McGann et al 2005). Baclofen action at this level is more likely to 

have effects on input sensitivity rather than spatial maps of glomerular input. In the deeper layers 

of the bulb, there are local dendrodendritic circuits formed between lateral dendrites of mitral 

cells and the dendrites of granule cells, potentially mediating lateral inhibition between mitral 

cells. Mitral cells release glutamate onto the dendritic spines of granule cells, which in turn 

release GABA back onto mitral dendrites. This reciprocal inhibition is modulated by GABA(B) 

autoreceptors on granule cells (Isaacson & Vitten 2003). Furthermore, postsynaptic effects of 

baclofen on mitral cells are minor (Aroniadou-Anderjaska et al 2000). It is difficult to analyze all 

potential action sites and deduce the net effect of baclofen on the olfactory bulb responses, but 

evidence so far suggests that GABA(B) receptors in the bulb serve as a gain control and 

modulate signal-to-noise ratio and input sensitivity (Palouzier-Paulignan et al 2002). 

Unfortunately, the human olfactory bulb has been a black box to fMRI, due to its size and high 

susceptibility to artifacts resulting from the adjacent air sinus. 

 

GABA(B) expression in piriform cortex. Activation of presynaptic GABA(B) receptors on the 

terminals of associative fibers reduces associative inputs onto piriform pyramidal cells. 

Presynaptic GABA(B) receptors are also expressed on the axons of GABAergic interneurons, 
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whose activation produces disinhibition of principal cells. Meanwhile, activation of postsynaptic 

GABA(B) receptors hyperpolarizes principal cells and reduces their intrinsic excitability. Again, 

the gross effect of baclofen on the piriform circuit would be hard to compute from all the 

elements. However, except for the presynaptic effect on input fibers, the other potential effects 

have no selectivity in the event of afferent input vs. associative input. Therefore, baclofen can 

still create imbalance between afferent and associative input strengths, and can be used to test the 

effect of weakened associative connection on odor coding. Without odor stimuli, superfusion of 

baclofen reduced spontaneous firing initially, but promoted synchronous epileptiform activity 

later, a seemingly dichotomous modulation of circuit excitability. It is suggested that this 

biphasic effect was possibly due to the variable modulator roles of GABA(B) receptors as the 

agonist diffused deeper into the piriform cortex (Gerrard et al 2018). While looking at odor-

evoked activation of piriform pyramidal cells, application of baclofen narrowed the tuning 

properties of their responses (becoming more odor selective) (Poo & Isaacson 2011). However, 

these results were observed in anesthetized animals, and could be very different from the awake 

state. In a fear conditioning paradigm in rats, baclofen infusion into the piriform cortex after 

learning led to enhanced generalization of odor-evoked freezing behavior (Barnes & Wilson 

2014), potentially due to an impairment in odor discrimination.  

 

GABA(B) expression in hippocampus. As in the piriform cortex, baclofen selectively suppresses 

synaptic transmission at synapses arising from CA3 pyramidal cells (intrinsic fibers) more than 

transmission at performant path synapses (afferent inputs). Computational modeling shows that 

GABA(B) receptor modulation is associated with the endogenous 4-10 Hz theta rhythm, a 

prominent field oscillation in the hippocampal system during exploratory behavior and learning 



20 
 
(Wallenstein et al 1998). Additionally, it is suggested to play a role in both pattern completion 

and pattern separation depending on the task demand (Sohal & Hasselmo 1998, Wallenstein & 

Hasselmo 1997). Therefore, baclofen could act on hippocampus directly and influence its 

function in learning and memory tasks in which discontinuous items must be associated.  

 

The first experiment in this dissertation examines the effect of GABA(B) receptor activation (by 

baclofen) on odor categorization in the human brain. Because of the caveat mentioned above, the 

results observed are interpreted with caution. We focused on multiple odor category coding 

regions, including the piriform cortex. The effect in each region could be the result of changes in 

the local circuit, secondary effects from different sources, or connectivity and state changes on a 

larger inter-regional network scale.   

 

1.3 On olfactory navigation: grid-like representation of a mental map 

Knowing the “what” of odors lays the foundation for a second function: knowing the “where” of 

odors. Spatial orientation to odor sources (or away from them) is the next essential function for 

survival after discriminating prey from predator, food from nonfood, ingroups from outsiders. 

Honeybee recruits locate food sources by olfaction, as odor of the source accumulates in the hive 

(Wenner et al 1969). Homing pigeons rely on odor distributions in the atmosphere to navigate 

home (Gagliardo 2013, Wallraff 2000). As humans, because of our advanced visual system, we 

do not tend to think about olfaction when we think about spatial navigation. However, humans 

can follow a scent trail like a dog, or point to the source of a distant odor from the center of an 

open field. The performance of both tasks benefited from inter-nostril comparisons (Porter et al 

2007). Humans can also define a location in space as a coordinate on an odor space (Jacobs et al 
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2015). The second experiment in this dissertation aims to examine the neural mechanism of how 

an odor space is encoded in the human brain.  

 

It is necessary to define the concept of “odor space” used in this work. Due to the large number 

of combinations between the molecular variability and olfactory receptor types, a considerable 

amount of research has been dedicated to determine the dimensionality of the “odor space”, 

which is a hyperdimensional space made up by hundreds of descriptors about the perceived odor 

quality (Bushdid et al 2014, Castro et al 2013, Keller et al 2017, Koulakov et al 2011, Meister 

2015, Schiffman 1974, Snitz et al 2013). Here, we use “odor space” to refer to a mental map of 

the spatial relationships among odor distributions in the physical world.  

 

A simplest model of an odor space can be an orthogonal coordinate space created by plumes 

from two odorants (A and B), which increase in concentration in two perpendicular directions 

(axes). Lucia Jacobs proposed two possible spatial logics for such an odor space (Jacobs 2012). 

First, in a natural environment, odor concentration decreases with distance from the source, and 

our percept of an odor is intensity-dependent. The intensity gradient of two odorants can form 

local neighborhoods of different mixture combinations, e.g. low A + low B, low A + high B, 

high A + high B, etc. Second, certain odor mixtures can be perceived as synthetic objects, 

making landmarks in the space and increasing the spatial resolution. It was shown that humans 

can infer location from such an Euclidean odor space (Jacobs et al 2015). For the second 

experiment in this dissertation, we want to explore how the odor space is mapped in the brain.  
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Research on spatial navigation has identified the medial temporal lobe – the hippocampal system 

and the adjacent perirhinal, entorhinal, and parahippocampal corteces – to be essential for spatial 

memory, with milestone discoveries of place cells in the hippocampus (O'Keefe & Dostrovsky 

1971) and grid cells in the entorhinal cortex (Hafting et al 2005). A place cell responds to a 

random place field in the environment without a topographic pattern. On the other hand, a grid 

cell responds to a periodic triangular array tiling the environment. The firing structure of grid 

cells can be described by three parameters: grid scale (the distance between grid fields), grid 

orientation (the rotation of grid axes), and grid phase (the x-y locations of firing vertices) (Fig. 

1.2). Grid cells in the same animal have random spatial phase, but modular grid orientation. This 

means there are dominant population of grid cells in the entorhinal cortex sharing a common 

grid-axis orientation (Stensola et al 2012). In addition, there are conjunctive grid × head-

direction cells in the deeper layers, which fire more while the animal is moving along the grid-

axis (Doeller et al 2010, Sargolini et al 2006). These particular features allow the group activities 

of grid cells to be detected by macroscopic fMRI signals (Doeller et al 2010). Briefly, when 

subjects move in a direction aligned with the grid orientation, they will hit firing vertices of the 

grid cells more frequently than a direction aligned at 30° to the grid (misaligned with the grid 

orientation). Theoretically, the resulting fMRI signal will show dynamic response as the function 

of moving direction: a cosine waveform with 60° periodicity, which can be detected by in-phase 

and quadrature decomposition (for details about analysis techniques, see Chapter 3.3 Methods).  

 

Following the introduction of the analysis technique in 2010, grid-like representations of spaces 

of varying nature were reported in multiple human fMRI studies. For example, these were 

detected when subjects navigated a virtual space (Doeller et al 2010, Kunz et al 2015) or 
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imagined navigating such a space (Bellmund et al 2016, Horner et al 2016). They coded the 

visual field when subjects were making gaze movement in a visual space (Julian et al 2018, Nau 

et al 2018), which was supported by single cell recordings in primates (Killian et al 2012). They 

were also found in abstract space navigation, when an arbitrary “bird map” was constructed by 

stretching and shrinking the neck length and the leg length of a bird (Constantinescu et al 2016). 

These results are supporting evidence of the concept of the cognitive map, which was introduced 

by Edward Tolman as an internalized neural representation of physical or metaphorical locations 

(Tolman 1948). Therefore, we expected that a grid-like code might also be employed in mapping 

a space defined by odors.  

 

 

Figure 1.2 Basic parameters of grid fields. 
Cartoons of firing patterns of pairs of grid cells (shown in blue and green), illustrating the parameters of 
grid scale, grid orientation and grid phase. Lines in left and middle panels indicate two axes of the grid 
pattern (which define grid orientation); crosses in the panel on the right indicate grid phase (x–y location 
of grid fields). (Moser et al 2014) 
 

So far, the few rodent studies testing for hexagonal profiles outside of ERC have only identified 

grid cells in the presubiculum and parasubiculum (Boccara et al 2010). However, single-neuron 

recordings from humans have reported grid-like spiking patterns in the cingulate cortex (Jacobs 

et al 2013), and fMRI studies have identified grid-like signals in the medial prefrontal, posterior 

parietal and lateral temporal cortices (Constantinescu et al 2016, Doeller et al 2010). When 
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testing grid-like fMRI signals during odor space navigation, we focused on the entorhinal cortex, 

but also reasoned that such signals might appear in other brain areas as well.  

 

It is worth noting that the olfactory portion of entorhinal cortex receives direct afferent input 

from the olfactory bulb, confined to the lateral subdivision in rodents (Haberly & Price 1977), 

which exhibits little spatial selectivity (Hargreaves et al 2005), whereas grid cells are found 

exclusively in the medial entorhinal cortex. Along the longitudinal axis, the olfactory projection 

covers the whole extent of the entorhinal cortex in rodents. However, it decreases substantially in 

macaques, comprising roughly 15% of the entorhinal cortex in the rostromedial subfield. The 

human homologue defined by topological and cytoarchitectonic criteria may be even smaller 

(Insausti et al 2002).  

 

The major entorhinal subdivisions – lateral and medial in rodents, corresponding to the anterior-

posterior axis in humans – have differential connectivity with the perirhinal cortex vs. the 

parahippocampal cortex, and in turn with the anterior-posterior hippocampus (Maass et al 2015, 

Navarro Schroder et al 2015). Therefore, it is posited that the entorhinal cortex is the hub where 

two memory networks meet: an anterior-temporal system sensitive to object information 

converges on perirhinal cortex, and a posterior-medial system sensitive to spatial information 

converges on the parahippocampal cortex (Ranganath & Ritchey 2012). Thus, the entorhinal 

cortex could be the site where “content” binds to “context”. 

 

1.4 Specific aims 

In the following two chapters I describe two experiments attempting to tackle the neural 
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mechanisms of two critical functions of the olfactory system: categorization and navigation. 

Seemingly two distinct functions, they fall under the same overarching problem of how the brain 

represents odor stimuli with either discrete relational structure (different identities within 

categories) or continuous relational structure (different intensities/identities in space).  

 

In the first experiment, I used a simple odor categorization paradigm and administered the 

GABA(B) receptor agonist, baclofen, in a double-blind, placebo-controlled group design, to 

examine the drug effect on odor-evoked fMRI activity patterns in human olfactory brain areas. 

Because baclofen selectively inhibits associative connections while sparing afferent input in the 

piriform cortex, I aimed to gain insights on the role of piriform associative connections in 

cortical coding of odor category.  

 

In the second experiment, I constructed an arbitrary Euclidean odor space using two odorants 

with varying intensities, as a model of odor intensity gradients encountered in the natural 

environment. I applied a task analogous to common spatial navigation task in human fMRI 

experiments, and tested whether we could detect grid-like neural activities in the brain 

representing the odor space.    
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Chapter 2: The role of piriform associative connections in odor categorization 

2.1 Abstract 

Distributed neural activity patterns are widely proposed to underlie object identification and 

categorization in the brain. In the olfactory domain, pattern-based representations of odor objects 

are encoded in piriform cortex. This region receives both afferent and associative inputs, though 

their relative contributions to odor perception are poorly understood. Here, we combined a 

placebo-controlled pharmacological fMRI paradigm with multivariate pattern analyses to test the 

role of associative connections in sustaining olfactory categorical representations. Administration 

of baclofen, a GABA(B) agonist known to attenuate piriform associative inputs, interfered with 

within-category pattern separation in piriform cortex, and the magnitude of this drug-induced 

change predicted perceptual alterations in fine-odor discrimination performance. Comparatively, 

baclofen reduced pattern separation between odor categories in orbitofrontal cortex, and impeded 

within-category generalization in hippocampus. Our findings suggest that odor categorization is 

a dynamic process concurrently engaging stimulus discrimination and generalization at different 

stages of olfactory information processing, and highlight the importance of associative networks 

in maintaining categorical boundaries. 

 

2.2 Introduction 

Object categorization is an adaptive function of the brain, allowing organisms to sort information 

from the external world into behaviorally relevant classes. Importantly, sensory systems must 

generalize across different objects sharing similar features, but at the same time maintain the 

specificity of individual objects and categories (Riesenhuber & Poggio 2000, Roach 1978). 

Mechanisms of pattern recognition have been proposed to underlie the neural basis of object 
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categorization, which requires a balance between generalizing inputs across a certain range of 

variations (known as pattern completion) and discriminating between distinct inputs (known as 

pattern separation) (Chapuis & Wilson 2012, Haberly 2001, Riesenhuber & Poggio 2000, 

Wilson & Sullivan 2011). Such computations can be achieved by associating sensory inputs with 

internal templates that are established through a lifetime of experience and encoded into memory 

(Bar 2007).  

 

Most neuroscientific research on pattern recognition has concentrated on the visual system, 

where associative areas in the visual ventral stream and the CA3 region of the hippocampus have 

been shown to support processes of object categorization (Haxby et al 2001, Riesenhuber & 

Poggio 2000, Yassa & Stark 2011). In the olfactory system, information in a whiff of scented air 

is transformed into distributed patterns of neural activity in the piriform cortex, with both animal 

and human studies demonstrating that different odor objects evoke distinguishable ensemble 

activity patterns without spatial topography (Bekkers & Suzuki 2013, Gottfried 2010, Howard et 

al 2009, Stettler & Axel 2009, Wilson & Sullivan 2011). Recent work has revealed that fMRI 

multivariate patterns in posterior piriform cortex (PPC) encode not only odor identity, but also 

category information (e.g., minty or woody), whereby odor patterns belonging to the same 

category are more similar (more overlapping) than those across different categories (Howard et 

al 2009). Despite these insights, the mechanisms by which olfactory inputs are organized into 

categorical percepts through their associations with olfactory cortical areas are poorly 

understood. 

 

The neural architecture of the piriform cortex makes it an attractive model for investigating 



28 
 
mechanisms of odor object recognition. As the largest subregion of primary olfactory cortex, the 

piriform cortex receives afferent (bottom-up) inputs from the olfactory bulb through the lateral 

olfactory tract, and extensive associative (top-down) inputs from higher-order association areas 

such as orbitofrontal cortex (OFC), amygdala, and entorhinal cortex (Carmichael et al 1994, 

Haberly & Price 1978, Insausti et al 1987, Insausti et al 2002, Johnson et al 2000). This 

convergence of bottom-up and top-down projections, along with the presence of dense recurrent 

collaterals, is thought to support olfactory pattern recognition and associative learning (Haberly 

2001, Haberly & Bower 1989, Wilson 2009). For example, when confronted with highly 

overlapping odor mixtures, rats can learn to discriminate or ignore detectable differences 

between these mixtures, with piriform activity patterns exhibiting either separation (enhanced 

discrimination) or completion (enhanced generalization), respectively (Chapuis & Wilson 2012). 

Evidence from humans has also pointed to PPC as a substrate for odor discrimination (Li et al 

2008) and categorization (Howard et al 2009). Together these findings suggest that piriform 

cortex is capable of modulating pattern representations along a discrimination-generalization 

spectrum in order to encode behaviorally adaptive meaning through perceptual experience.  

 

While theoretical modelling and empirical evidence propose that piriform associative 

connections are essential for odor recognition (Haberly 2001), few studies have explicitly 

investigated the relative contributions of afferent inputs versus associative networks in 

supporting odor categorization. In a previous fMRI study, human subjects were deprived of 

afferent sensory input for one week, resulting in a reduction of odor-evoked mean activity in 

PPC, without alteration of pattern-based piriform representations of odor categories (Wu et al 

2012). Here we address the inverse question, namely, how attenuation of piriform associative 
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connections influences odor category coding in primary sensory regions and higher-order 

cortical areas. 

 

To this end, we took advantage of the GABA(B) receptor agonist, baclofen, to modify the 

relative balance between afferent and associative inputs within piriform cortex. Baclofen 

selectively suppresses synaptic transmission of association fibers into piriform cortex, but leaves 

afferent inputs from the olfactory bulb unaffected (Tang & Hasselmo 1994). In vivo local 

application of baclofen in the piriform cortex of anesthetized rats modified the strength of odor-

evoked responses of pyramidal neurons, by blocking broadly-tuned neurons and increasing odor-

selective responses (Poo & Isaacson 2011). In behaving animals, injection of baclofen into the 

piriform cortex following an olfactory fear conditioning session resulted in fear memory 

generalization, indicating that piriform associative connections are essential for consolidation of 

stimulus-specific memories (Barnes & Wilson 2014). 

 

Inspired by these animal studies, we conducted a double-blind, placebo-controlled drug study in 

human subjects to examine fMRI ensemble representations of familiar odor categories before 

and after treatment with baclofen. Given that odor object codes take the form of distributed 

ensemble patterns, we used multivariate fMRI analyses to characterize baclofen effects in 

olfactory areas found to represent categorical information. The placebo group served as a control 

to account for session-effect confounds between pre- and post-drug phases of the study. As such, 

we examined the effects of baclofen by comparing pre-to-post changes relative to those observed 

in placebo subjects (i.e., group-by-session interaction). We predicted that baclofen would disrupt 

associative connections, leading to perceptual and neural reorganization of odor categories in 
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piriform cortex and in olfactory downstream areas including OFC, amygdala, entorhinal cortex, 

and hippocampus. 

 

2.3 Methods 

Subjects  

We obtained informed consent from 36 subjects (mean age, 25 years; 18 baclofen and 18 

placebo, with equal numbers of men and women in each group) to participate in this study, 

which was approved by the Northwestern University Institutional Review Board. Subjects were 

right-handed nonsmokers with no history of significant medical illness, psychiatric disorder, or 

olfactory dysfunction.  Four female baclofen subjects were excluded from the results due to 

either excessive movement or falling asleep in the scanner, leaving a total of 14 baclofen 

subjects. 

 

Study design 

The total length of the experiment spanned 5 consecutive days. Following enrollment, subjects 

were randomly assigned to the baclofen (n = 14) or placebo (n = 18) group by the research 

pharmacy at Northwestern Memorial Hospital. Experimenters and subjects were both blinded to 

these assignments. Subjects took 10mg of baclofen or placebo on the first day and progressively 

increased the dosage by 10mg per day to reach 50mg at day 5. On day 1 before drug 

administration, subjects underwent pre-drug baseline tests including cognition, olfactory 

psychophysics, and fMRI imaging measures. On day 5 after medication, subjects completed 

post-drug tests which were the same as the pre-drug session. 
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Odor stimuli and delivery 

Six odorants were used in the fMRI odor categorization experiment and included two “citrus” 

smells (R-(+)-limonene and Citral), two “mint” smells (L-Menthol and Methyl Salicylate), and 

two “wood” smells (Cedrol and Vetiver Acetate). For the fine odor discrimination task outside 

the scanner, two perceptually similar isomers, α- and β-pinene (5% diluted in mineral oil), were 

used in an olfactory three-way forced choice triangular task. Odors were delivered using a 

custom-built olfactometer. In this system, clean air or odorized air was directed towards subjects 

(wearing a nasal mask) via Teflon tubing at a rate of 3L/min. 

 

General cognitive measures 

On days 1 and 5, subjects were tested on four cognitive measures before olfactory testing and 

fMRI scanning: (1) Mini-mental state examination (MMSE), a short questionnaire used to 

measure cognition impairment (Folstein et al 1975); (2) an auditory digit span test (in forward 

and backward order) to assess short-term memory; (3) Trail Making Test B as a measure of 

visual attention and cognitive flexibility(Bowie & Harvey 2006); and (4) subjective report of 

degree of alertness using the Stanford Sleepiness Scale (SSS) (Hoddes et al 1973), which ranges 

from “Feeling active, vital, alert, or wide awake” (1 point) to “No longer fighting sleep, sleep 

onset soon; having dream-like thoughts” (7 points). 

 

Olfactory psychophysical measures 

Four behavioral measures were tested outside of the scanner. (1) Odor detection thresholds and 

(2) odor identification ability were assessed using Sniffin’ Sticks (Burghart) and the University 

of Pennsylvania Smell Identification Test (UPSIT, Sensonics), respectively (Doty et al 1984, 
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Hummel et al 1997). (3) A triangular odor discrimination task was performed to assess the ability 

to discriminate α- and β-pinene (Li et al 2008). (4) For the six odorants used in the fMRI odor 

categorization experiment, visual analog ratings of odor intensity (anchors, “undetectable” and 

“extremely intense”), pleasantness (anchors, “dislike”, ”neutral”, and “like”), pair-wise similarity 

of odor quality (anchors, “not alike at all” and “identical”) (Howard et al 2009) were collected. 

Subjects also rated the applicability of descriptors of the three categories (citrus, mint and wood) 

with anchors (“not at all” and “extremely citrusy/minty/woody”). 

 

fMRI olfactory and visual categorization tasks  

Subjects underwent an odor categorization task designed to assess the multivoxel pattern 

specificity of odor-evoked fMRI activity across pre- and post-drug sessions. The task was 

divided into six 8-min runs of 28 trials each, during which the six odors were presented for 4 or 5 

trials (depending on the run). On each trial, subjects were presented a visual sniff cue prompting 

them to sniff. Odor stimuli were presented for 1.5s, with a 13-s stimulus-onset asynchrony 

(SOA). Each odor was presented 28 times in pseudorandom order. Four out of the 28 trials in 

each run were randomly chosen as “catch trials”, where subjects were asked to indicate the 

category of the received odor with a mouse click. The catch trials were not included in the fMRI 

pattern analysis. The total task lasted for 48min.  

 

Subjects also performed a visual categorization task which was parallel to the olfactory version 

with the equivalent number of trials and runs, and visual and olfactory runs were interleaved. On 

each trial, an image (from a total of six possible images, Fig. 2.7a) was presented for 0.5s, with a 

jittered interval of 3-4 s between trials. The visual fMRI data were absent from 1 male placebo 
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subject due to technical problems during the experiment.  

 

fMRI visual ROI localizer scan  

A separate functional localizer scan was performed to identify regions of image-evoked activity 

to be used in the visual pattern analysis. This scan was done in the pre-drug session, in which 

subjects were shown seven 20-s blocks of images (0.3s presentation and 0.7s inter-stimulus 

interval) with 20-s resting gaps between blocks. Each block contained one of six object 

categories (chairs, houses, teapots, cars, keys, and scissors) or scrambled version of the same 

images. The scrambled images were created by dividing the images into 20 × 20 unit grids and 

shuffling the units. During the image presentation blocks, subjects performed a one-back 

detection task by pressing a button to maintain their focus and attention. 

 

Respiratory monitoring and analysis 

Breathing behavior was monitored during olfactory scanning with a spirometer (affixed to the 

nasal mask) measuring the flow of air during inhalation and exhalation. Respiration signals from 

each run were first smoothed and then scaled to have a mean of 0 and standard deviation of 1. 

The cued sniff waveforms were extracted from each trial, and inhalation peak flow, duration, and 

volume were computed. In the pre-drug session, there were no systematic differences in peak 

flow (F3.4,105.52 = 1.44, P = 0.23, repeated measures ANOVA) or duration (F3.97,123.18 = 0.89, P = 

0.47) across odors, but the inhalation volumes were different (F3.93,121.88 = 3.27, P = 0.014). 

Therefore the inhalation volume was included in the fMRI analysis as a nuisance regressor (see 

below).  
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fMRI data acquisition 

Gradient-echo T2*-weighted echoplanar images were acquired with a Siemens Trio 3T scanner 

using parallel imaging and a 12-channel head-coil (repetition time, 2.3s; echo time, 20ms; matrix 

size, 128 × 120 voxels; field-of-view, 220 × 206mm; in-plane resolution, 1.72 × 1.72mm; slice 

thickness, 2mm; gap, 1mm). A 1 mm3 T1-weighted MRI scan was also obtained for defining 

anatomical regions of interest (ROIs). 

 

fMRI pre-processing 

fMRI data were pre-processed with SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/). All 

functional images across pre- and post-drug sessions were spatially realigned to the first scan of 

the first run to correct for head movement. The T1 structural image was also co-registered to the 

mean aligned functional image. Realigned functional images were then normalized into a 

standard space using the transformation parameter from each individual’s T1-weighted scan to 

the standard T1 template. For multivariate fMRI analysis of olfactory and visual categorization 

scans, we did not perform subsequent spatial smoothing in order to preserve the voxel-wise 

fidelity of the signal. Images from visual localizer scans were smoothed for generating functional 

visual object recognition ROIs.  

 

fMRI data analysis 

General linear model 

For each subject, a general linear model (GLM) was specified for each categorization scanning 

run in pre- or post-drug sessions from the spatially aligned, normalized, and unsmoothed fMRI 

data. An event-related GLM was created by modeling sniff or image onset times of each 

http://www.fil.ion.ucl.ac.uk/spm/
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condition independently with stick (delta) functions, and then convolving with a canonical 

hemodynamic response function (HRF to generate 6 regressors of interest. This model also 

included one regressor of no interest (catch trial onsets), six movement parameters derived from 

spatial realignment, and one sniff parameter (for olfactory scans) derived from inhalation volume 

convolved with HRF and orthogonalized with the main odor events. The data were high-pass 

filtered (cutoff period of 128s) to remove signal drifts, and temporal autocorrelation was adjusted 

using an AR(1) process. Voxel-wise, odor/image-specific β values were then estimated.  

 

To localize visual object recognition ROIs, a block-design GLM was built on normalized and 

smoothed localizer scans by modeling each image block onset with a boxcar predictor convolved 

with HRF. Voxel-wise, condition-specific β values were estimated for object and scramble 

conditions. Subsequently, the contrast of object > scramble from each subject was entered into a 

one-sample t-test model at the group level to look for voxels that responded more strongly to 

objects than scrambles. Continuous clusters of voxels in bilateral LOC (p<0.00001, peak 

coordinate: right LOC, x = 44, y = -76, z = -6; left LOC, -44, -80, -2; MNI coordinate space) and 

fusiform cortex (p<0.001, right: 38, -34, -22; left: -40, -52, -20) were selected as visual ROIs.   

 

Multivariate pattern analysis 

Following GLM estimation, we extracted 36 β pattern vectors (one vector for each of the 6 

odors/images and each of the 6 runs) from all voxels within anatomically defined bilateral ROIs, 

manually drawn on the mean image of normalized T1 scans of all subjects, using MRIcron 

software (http://www.mccauslandcenter.sc.edu/mricro/mricron/). A human brain atlas was used 

to help delineate the anatomical borders of anterior and posterior piriform cortex (APC and 
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PPC), amygdala, and hippocampus (Mai et al 1997). The boundary of anterior and posterior 

hippocampus was delineated at the uncal apex (y = -21 in MNI space) (Poppenk et al 2013). The 

delineation of olfactory OFC was guided by an olfactory fMRI meta-analysis (Gottfried & Zald 

2005). The entorhinal cortex was drawn with reference to an MR volumetric analysis of the 

human entorhinal cortex (Insausti et al 1998). Visual ROIs of LOC and fusiform were defined by 

the independent functional localizer scan, as described above.  

 

For multivariate pattern analysis, because we focused on information encoded in distributed 

fMRI patterns, the pattern vectors from the left and right hemisphere of each ROI were 

individually scaled to have a mean of 0 and standard deviation of 1, and then concatenated 

together for bilateral ROI pattern analysis. This assures that the mean signal and any 

lateralization of activity does not account for information coding.  

 

The LIBSVM  (Library for Support Vector Machines, 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/) implementation was used to decode category 

information from patterns within a given ROI at baseline (Chang & Lin 2011). We trained the 

SVM classifier to separate pairs of odors of different categories (e.g. C1 vs. M1) using all six 

runs, and then tested the SVM by classifying odor patterns of corresponding categories but 

different identities (C2 vs. M2). Because the training set and testing set contain odors of different 

identities, significant above-chance decoding is only possible when the patterns code category-

specific information independent of the identities.  

 

Based on the regions identified by the SVM classifier in the baseline (pre-drug) session, pattern 
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correlation analysis was then applied to these data, in an effort to characterize changes in pattern 

completion and separation from pre- to post-drug sessions. Pattern dissimilarity (correlation 

distance) between presented stimuli was estimated by computing the linear correlation 

coefficient between vectors of β patterns across pairs of runs and subtracting from 1 (thus, 

maximal similarity = minimal distance = 0). Across-category and within-category odor distances 

were calculated by subtracting within-odor correlation distances (e.g., C1 in run 1 vs. C1 in run 

2) from across-odor correlation distances (e.g., C1 in run 1 vs. M1 in run2), with all possible 

pair-wise comparisons tested. A category coding index was then computed by subtracting 

within-category distance from across-category distance (perfect categorization = 2, with maximal 

across-category distance and minimal within-category distance). 

 

Statistics 

Results are shown as mean ± s.e.m. for subjects and sessions. For determining category encoding 

regions, we used one-tailed t tests to compare decoding accuracy to chance. To test for drug 

effects on behavior and fMRI patterns, we used a mixed-model 2-way ANOVA, with one 

between-group “drug” factor (placebo/baclofen) and one repeated-measures within-subject 

factors of “session” (pre/post). Here the critical contrast was the group × session interaction, with 

post-hoc t tests where appropriate. Significance threshold was set at p<0.05, two-tailed, unless 

otherwise stated.  Pearson’s linear correlation coefficient was calculated for the correlation 

analysis of behavioral and fMRI pattern data across subjects. 

 

2.4 Results 

The experiment spanned 5 days (Fig. 2.1a). On day 1, subjects underwent pre-drug cognitive and 
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psychophysical testing and fMRI scanning (Fig. 2.1c). They were subsequently administered 

either placebo (n = 18) or increasing doses of baclofen (n = 14) for 5 consecutive days, in a 

double-blind design. This 5-day schedule was adopted to reach a target dose of 50-mg baclofen 

while minimizing the occurrence of side effects (Terrier et al 2011). After taking the final dose 

on day 5, subjects underwent the same testing and fMRI scanning procedures as in the pre-drug 

session. During scanning, subjects completed an olfactory categorization task, as well as a 

control visual categorization task to establish the sensory specificity of the imaging findings. 

 

  

Figure 2.1 Experimental design. 
a, Timeline of the 5-d experiment involving pre- and post-drug test sessions and the drug administration 
schedule. b, The six odorants included two stimuli for each of the three categories (citrus, mint, and 
wood). c, Paradigm of the fMRI odor categorization experiment. Subjects were prompted to sniff when an 
odorant was presented. They were asked to focus on the quality of the odor. In 14% of the trials 
(designated as catch trials), after the odor presentation, a screen with the names of the three categories 
appeared and subjects indicated the category of the received odor with a mouse click. 
 

General cognition and olfactory perception  

We first established that baclofen did not generally compromise cognitive or perceptual 
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performance. Specifically, we found no significant differences between baclofen and placebo 

groups on neuropsychological assessments of basic cognition, short-term memory, visual 

attention, or task switching (Table 2.1). We also collected subjective reports of sleepiness using 

the Stanford Sleepiness Scale (SSS) during test sessions, given that the most common adverse 

reaction to baclofen medication is transient drowsiness (RxList The internet Drug Index 2007.). 

Baclofen subjects reported feeling sleepier after taking the drug (Fig. 2.2), though reaction times 

during the fMRI categorization task did not differ from placebo subjects (Table 2.1). Finally, we 

examined whether baclofen altered general odor perception. Placebo and baclofen groups did not 

differ on olfactory measures of detection threshold, identification, discrimination, or intensity 

and pleasantness ratings (for stimuli used in the main fMRI experiment) (Table 2.1), thereby 

reducing the possibility that baclofen-induced changes in odor perception could have influenced 

the imaging results. 

 

 

Figure 2.2 Effect of baclofen on subjective sleepiness. 
Ratings from the Stanford Sleepiness Scale (1 = “wide awake”, 7 = “sleep onset soon”, mean ± within-
subject s.e.m., placebo n = 18, baclofen n = 14) indicate that there was a significant interaction between 
drug groups (placebo vs. baclofen) and session (pre vs. post) (F1,30 = 4.57, P = 0.041; *P < 0.05). Post-
hoc within-group comparisons showed no effect of session in placebo subjects (F1,17 = 0.88, P = 0.36), 
and a marginal effect of session in baclofen subjects (F1,13 = 3.85, ‡P = 0.072).  
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Table 2.1 Behavioral performance 

Task Placebo (n = 18) Baclofen (n = 14) P value of  
group × session 

interaction 
Pre Post Pre Post 

MMSE 29.89±0.11 29.94±0.06 29.93±0.07 30.00±0 0.86 
Digit span 
(forward) 

7.22±0.22 7.72±0.14 7.14±0.31 7.43±0.20 0.55 

Digit span 
(backward) 

6.00±0.20 6.00±0.29 5.57±0.31 5.71±0.27 0.69 

Trail making test 
B (s) 

48.32±2.70 39.05±2.01 57.62±5.42 47.11±5.67 0.85 

Stanford 
sleepiness scale 

2.44±0.17 2.22±0.21 1.93±0.20 2.50±0.33 0.041* 

Sniffin’ Sticks 
(odor detection 

threshold) 

7.08±0.84 9.65±1.06 7.82±0.95 8.57±1.01 0.22 

UPSIT (odor 
identification) 

36.28±0.61 36.00±0.56 34.57±0.49 33.79±0.63 0.55 

α- vs. β-pinene 
triangle test (fine 

odor 
discrimination) 

0.66±0.05 0.72±0.05 0.72±0.05 0.73±0.07 0.45 

Odor intensity 
ratings 

4.00±0.32 4.13±0.31 3.05±0.18 2.91±0.28 0.39 

Odor 
pleasantness 

ratings 

5.43±0.16 5.63±0.16 5.64±0.13 5.63±0.16 0.12 

Odor category 
descriptor ratings 
(within – across) 

7.47±0.44 7.49±0.36 7.44±0.46 7.78±0.34 0.59 

Odor pairwise 
similarity ratings 
(within – across) 

4.16±0.60 5.14±0.55 3.93±0.32 4.53±0.44 0.59 

Odor 
categorization 

catch trial 
accuracy 

0.87±0.04 0.89±0.03 0.81±0.04 0.81±0.04 0.80 

Odor 
categorization 

catch trial RT (s) 

3.29±0.23 2.85±0.15 3.89±0.38 3.48±0.34 0.93 

Visual 
categorization 

catch trial 
accuracy 

0.97±0.01 (n = 
14) 

0.99±0.004 0.97±0.01 (n = 
11) 

0.96±0.01 0.21 

Visual 
categorization 

catch trial RT (s) 

0.42±0.02 0.40±0.03 0.44±0.04 0.52±0.06 0.25 

Data are shown for cognitive and olfactory tests, as well as for behavioral performance in fMRI 
experiments from placebo and baclofen groups in pre- and post-drug sessions. Scores are presented as 
mean ± s.e.m. P values reported are for the interaction effects between group and session, based on a 2-
way ANOVA, with one between-group “drug” factor (placebo/baclofen) and one within-subject “session” 
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factor (pre/post). *, P < 0.05. 
 

Odor perceptual categorization 

Before and after drug administration, subjects participated in an fMRI odor categorization task. 

On each trial, subjects smelled one of six odors belonging to three categories: citrus (C1 and C2), 

mint (M1 and M2), and wood (W1 and W2) (Fig. 2.1b). Prior to each scanning session, subjects 

first provided category descriptor ratings (i.e., “how citrusy/minty/woody is odor X?”), as well as 

pair-wise similarity ratings, for each of the six odors. Both descriptor and similarity ratings from 

the pre-drug session showed that subjects were able to categorize the odors successfully (Fig. 

2.3). To quantify these category effects, we calculated the difference between within-category 

and across-category descriptor ratings. In the pre-drug session, placebo and baclofen subjects 

performed equally well (t30 = 0.04, P = 0.97). Similarly, in the pre-drug session, for pair-wise 

similarity ratings, the difference of within-category and across-category similarities did not differ 

between groups (t30 = 0.31, P = 0.76). Finally, session-related changes in descriptor ratings and 

similarity ratings from pre- to post-drug did not differ between baclofen and placebo groups 

(Table 2.1), indicating that baclofen did not affect behavioral measures of odor categorization at 

the group level. 

 

During fMRI scanning, subjects received occasional “catch trials” (every 4-8 trials), in which 

they were prompted to indicate the category of the previously delivered odor. In the pre-drug 

session, subjects categorized odors with high accuracy (84.4% ± 2.7%, chance level at 33%, t31 = 

19.37, P < 0.0001). Of note, neither the catch trial accuracies nor reaction times (RT) differed 

significantly as a function of treatment group from pre- to post-drug session (Table 2.1).  
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Figure 2.3 Subjects successfully classified odors into their relevant categories. 
a, Category descriptor ratings of the six odors (two citrus: C1, C2; two minty: M1, M2; two woody: W1, 
W2) from all subjects during the pre-drug session (mean ± within-subject s.e.m., n = 32). Repeated-
measures ANOVA was conducted separately on each odor (** = P < 0.001). Subjects robustly classified 
the odors into the appropriate perceptual categories (C1: F1.86, 57.77 = 31.62; C2: F 1.72, 53.40 = 74.58; M1: F 
1.92, 59.61 = 144.04; M2: F1.60, 49.46 = 373.79; W1: F 1.82, 56.33 = 140.96; W2: F1.49, 46.10 = 166.84; all P’s < 
0.001). b, Average of category descriptor ratings across odors, sorted by within-category condition and 
across-category condition in pre- and post-drug sessions for placebo (n = 18) and baclofen (n = 14, mean 
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± within-subject s.e.m.) groups. c, Pair-wise similarity ratings of within- and across-category odor pairs in 
pre- and post-drug sessions for placebo and baclofen groups (mean ± within-subject s.e.m.). d, Fine odor 
discrimination between α- and β-pinene in pre- and post-drug sessions for placebo and baclofen groups 
(mean ± within-subject s.e.m.). e, Dendrogram plots obtained from a cluster analysis of the average pair-
wise similarity ratings for placebo and baclofen subjects during pre- and post-drug sessions showed that 
both groups sorted the six odors into three categories in both sessions. Shorter distance indicates greater 
similarity. 
 

Category-specific ensemble codes in PPC, OFC, amygdala and pHIP 

During the fMRI odor categorization task, the six odors were delivered in a pseudorandom order, 

and subjects were cued to sniff upon odor delivery. They were asked to pay attention to the 

quality of the odors throughout the task, and make category judgments during catch trials.  

 

As olfactory information takes the form of distributed patterns of fMRI activity in the human 

brain (Howard et al 2009, Wu et al 2012), multivariate pattern analyses are well-suited for 

examining the impact of baclofen on odor pattern recognition. We first used a support vector 

machine (SVM) classifier to identify brain areas where odor category information is represented, 

among several regions of interest (ROIs) including piriform cortex, higher-order areas that 

directly project to piriform (olfactory subregion of OFC, amygdala, entorhinal cortex), and 

hippocampus (Fig. 2.4a). This analysis was conducted for all subjects in the pre-drug session. 

We trained the SVM classifier on patterns evoked by one pair of odors belonging to different 

categories (e.g., C1 vs. M1), and then tested the classifier on patterns evoked by the 

complementary pair of odors from the same categories (e.g., C2 vs. M2; Fig. 2.4b). Importantly, 

because training and test sets were based on data evoked by different odor identities, significant 

above-chance decoding is only possible if fMRI patterns encode category information 

independent of the specific odor identities. Across all subjects in the pre-drug session, we found 

significant above-chance decoding accuracy in PPC (t31 = 2.05, P = 0.024), OFC (t31 = 1.96, P = 
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0.029), amygdala (t31 = 3.17, P = 0.0017), and posterior hippocampus (pHIP, t31 = 1.90, P = 

0.034; Fig. 2.4c). All subsequent analyses were constrained to these four regions where fMRI 

ensemble patterns encode odor category information. 

 

 

Figure 2.4 Ensemble pattern coding of odor category information at baseline (pre-baclofen 
session). 
a, Axial and coronal slices of the averaged, normalized T1-weighted structural scan from all subjects 
showing anatomically defined regions of interest. Odor-evoked ensemble patterns across all voxels within 
a given ROI were used in a two-step multivariate classification analysis. First, we trained a linear SVM on 
a training data-set (b, left panel) to separate two odors belonging to different categories. Second, odor 
category coding was assessed in an independent test data-set (b, right panel), specifically by testing how 
well the SVM classified the other pair of odors from the corresponding categories; here, cross-decoding is 
only successful if similar patterns code different odors of the same category. c, Category decoding from 
all subjects during the pre-drug session showed that classification accuracy in PPC, OFC, amygdala, and 
pHIP significantly exceeded chance (mean ± between-subject s.e.m., n = 32, *P < 0.05, one-tailed).  
 

Baclofen disrupts within-category odor discrimination in PPC 

In order to characterize the continuous degree of pattern similarity between stimuli (Nili et al 

2014), we next used a linear correlation analysis (Haxby et al 2001, Howard et al 2009, 
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Kriegeskorte et al 2008a), which provides a more direct assessment of pattern overlap. 

Specifically, to examine how baclofen alters the categorical organization of odors, we assembled 

vectors of ensemble pattern activity from all voxels within PPC, and measured the dissimilarity 

(correlation distances) of pattern vectors evoked by across-category odors (e.g., C1/M1) and 

within-category odors (e.g., C1/C2). We tested a three-way analysis of variance (ANOVA), with 

two within-subject factors of session (pre/post) and category type (within-/across-category), and 

one between-subject factor of drug (placebo/baclofen). This yielded a significant session × 

category type × drug interaction effect (F1,30 = 5.49, P = 0.026) in the absence of other main 

effects or two-way interactions (all P’s >0.15), and suggests that baclofen significantly altered 

the categorical structure of odor pattern representations in PPC.  

 

As a way to characterize the effects of baclofen on olfactory categorization in PPC, we derived a 

categorical coding index by subtracting within-category pattern distances from across-category 

pattern distances (higher value indicating better categorization, Fig. 2.5a). Changes from pre- to 

post-treatment were then compared between baclofen and placebo groups. Interestingly, in PPC 

the change in categorization index was significantly higher in PPC for the baclofen group, 

relative to the placebo group, from pre- to post-treatment (Fig. 2.5b), suggesting that baclofen 

promoted emergence of greater distinctiveness among categories. Of course, the categorization 

index is composed of an across-category effect and a within-category effect, meaning that the 

baclofen-induced enhancement of categorization could be due to greater separation of across-

category odors (e.g., C1 and M1 patterns becoming more distinct; Fig. 2.5a, i) or less separation 

of within-category odors (e.g., C1 and C2 patterns becoming more similar; Fig. 2.5a, ii), or both. 

Therefore, we examined these two components separately. We found a significant session × drug 
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interaction effect (F1,30 = 7.36, P = 0.011) in within-category odor distance in PPC, decreasing 

across sessions in the baclofen (vs. placebo) group, consistent with reduced pattern separation 

(Fig. 2.5c). In contrast, changes in across-category odor distance in PPC did not differ between 

the two groups (session × drug interaction: F1,30 = 0.00014, P = 0.99; Fig. 2.5c). This finding 

suggests that associative connections in PPC are involved in preserving representational 

differences among odors belonging to the same category. 

 

 

Figure 2.5 Baclofen effect on odor pattern changes in PPC. 
a, Schematic illustrating within-category and across-category relationships among categorically organized 
odors, and how changes of each distance parameter alter the categorical structure. Worse categorization 
emerges when within-category distances increase or when across-category distances decrease. Better 
categorization emerges when within-category distances decrease or when across-category distances 
increase. b, Odor pattern distance in PPC in pre- and post-drug sessions, sorted by within-category and 
across-category distances, from placebo (n = 18) and baclofen (n = 14, mean ± within-subject s.e.m.) 
subjects. Placebo subjects showed increased within-category distances without across-category 
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changes. There was no significant odor distance change in baclofen subjects. c, A scatterplot showing 
the correlation between the magnitude of within-category odor pattern separation in PPC and behavioral 
changes in a fine odor-discrimination task, from pre- to post-drug session (ρ = 0.51, P = 0.031, n = 14, 
one-tailed). Each diamond represents one baclofen subject. *P<0.05. 
 

If pattern separation in PPC is critical for sustaining stimulus fidelity for categorically related 

odors, it follows that subjects with greater disruption of PPC pattern separation (as a result of 

baclofen treatment) should exhibit greater olfactory perceptual deficits. This hypothesis was 

tested by regressing subject-wise measures of fine odor discrimination against the magnitude of 

baclofen-induced pattern changes in PPC. We found a significant correlation between perceptual 

performance and the degree of odor-evoked pattern separation in PPC (ρ = 0.51, P = 0.031, one-

tailed; Fig. 2.5d). Thus, subjects with less within-category odor separation in PPC showed 

greater difficulty in discriminating between odors sharing semantic features.  

 

Baclofen disrupts category coding in OFC and pHIP 

Because olfactory categorical codes were also identified in OFC, amygdala, and pHIP in the pre-

treatment session (Fig. 2.4), we also investigated the effects of baclofen on categorical 

organization of odor ensemble patterns in these regions. Significant three-way interactions of 

session × category type × drug were found in OFC (F1,30=4.48, P = 0.043) and pHIP (F1,30=5.90, 

P = 0.021) without other main effects or two-way interactions. No significant interaction was 

observed in amygdala (F1,30=0.047, P = 0.83; Fig. 2.6c). Following the same approach used for 

PPC, we next asked how changes in the categorization index differ between baclofen and 

placebo. This interaction was driven by a significant decrease in the categorization index in OFC 

(Fig. 2.6a) and pHIP (Fig. 2.6b), in direct contrast to the index increase in PPC.  
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Figure 2.6 Baclofen effect on odor pattern changes in OFC and pHIP. 
Odor pattern distances in OFC, pHIP, and amygdala in pre- and post-drug sessions, sorted by within-
category and across-category distances, for placebo (n = 18) and baclofen (n = 14, mean ± within-subject 
s.e.m.) subjects. a, In the baclofen group, across-category distances in OFC decreased significantly 
without change in within-category distances, leading to disrupted categorical structure. There was no 
change in the placebo group. b, In pHIP, the placebo group showed a trend decrease in within-category 
odor distances without change in across-category distances. There was no significant odor distance 
change in the baclofen group. c, In amygdala there was no baclofen effect on the categorical 
representation of odors. ‡ P<0.1, * P<0.05.  
 

We then considered whether disruption of category coding was due to a decrease in across-

category separation or an increase in within-category separation (Fig. 2.6d), either of which 

would compromise categorical coding. In OFC, baclofen (vs. placebo) marginally reduced 

across-category odor separation, suggesting a reduction of categorical boundaries (Fig. 2.6f), 

with a trend effect in the session × drug interaction (F1,30=3.21, P = 0.083), in the absence of 

within-category changes (session × drug interaction: F1,30=0.02, P = 0.90). In pHIP, no 

significant interaction effects were found in either across-category separation (F1,30=0.01, P = 

0.94) or within-category separation (F1,30=2.53, P = 0.12) (Fig. 2.6f).  

 

Effects of baclofen are specific to olfactory processing 

The above findings indicate that baclofen had selective effects on odor category coding in PPC, 

OFC, and pHIP. However, because baclofen was administered systemically, it remains unclear 

whether the effects were specific to odor categorization, or merely altered semantic or conceptual 
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processing independently of sensory modality. Therefore, in a parallel fMRI experiment, the 

same subjects performed a visual categorization task (Fig. 2.7a), viewing six images belonging 

to three categories (chairs, teapots, and houses) and identifying the category on catch trials. 

There was no effect of baclofen on response accuracies and reaction times (Table 2.1).  

 

 

Figure 2.7 Visual control experiment. 
a, Paradigm of the fMRI visual categorization experiment. Subjects viewed six images belonging to three 
categories. On catch trials that occasionally followed image presentations, names of the three categories 
appeared on screen, and subjects indicated the category of the image with a mouse click. b, Visual 
category decoding from all subjects during the pre-drug session showed that classification accuracy in 
LOC significantly exceeded chance (*P = 0.013, one-tailed). c, The effect of baclofen on visual 
categorical representations in LOC was not significant (P = 0.50). 
 

We then utilized the same multivariate analysis pipeline to explore the effects of baclofen on 

visual pattern recognition. First we used the SVM classifier to decode visual category 

information in the same ROIs as in the olfactory task. We also included two additional visual 

ROIs located in lateral occipital complex (LOC) and fusiform gyrus as defined by an 

independent functional localizer scan, and which are known to be involved in visual object 



50 
 
recognition (Cox & Savoy 2003, Grill-Spector 2003, Haxby et al 2001, Kriegeskorte et al 

2008b). Across all subjects in the pre-drug session, category decoding accuracy was significantly 

above chance in LOC (t30 = 2.33, P = 0.013), but not in fusiform cortex (t30 = -1.20, P = 0.88) or 

in any of the olfactory ROIs (PPC: t30 = 0.36, P = 0.72; OFC: t30 = -1.36, P = 0.18; amygdala: t30 

= -2.47, P = 0.99; pHIP: t30 = 0.078, P = 0.47; Fig. 2.7b). Next, we performed an fMRI pattern 

correlation analysis to test the drug effect on visual category representations. A three-way 

session × category type × drug interaction was not significant in LOC (F1,29=0.46, P = 0.50; Fig. 

2.7c), suggesting that baclofen did not alter coding of categories in the visual domain.  

 

Finally, we compared the effect of baclofen on the categorization index between olfactory and 

visual tasks, and found that the impact of baclofen on category coding in PPC was specific to 

olfaction. A mixed three-way ANOVA (two within-subject factors of modality and session; one 

between-subject factor of group) revealed a significant interaction of modality × session × drug 

(F1,29 = 4.41, P = 0.044). Thus, while baclofen enhanced odor category coding in PPC, it did not 

alter the visual categorization index compared to placebo (session × drug interaction: 

F1,29=0.056, P = 0.81). These findings imply that the observed effect of baclofen in PPC was not 

due to generic changes in semantic processing, nor to non-specific changes in hemodynamic 

parameters, but instead was due to alterations in information coding in the presence of olfactory 

inputs.  

 

2.5 Discussion  

In this study we investigated the role of piriform associative connections in the neural coding of 

odor categories. We used the GABA(B) receptor agonist, baclofen, to reduce associative input in 
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the olfactory network while sparing afferent input from the periphery. This pharmacological 

manipulation, combined with multivariate pattern analysis, enabled us to examine how baclofen 

treatment alters fMRI pattern representations of odors within and across categories relative to 

placebo. We found that in PPC, baclofen selectively disrupted discrimination of odors belonging 

to the same categorical class. The magnitude of this change correlated with difficulties in fine-

odor discrimination at the perceptual level. In contrast, baclofen selectively disrupted category 

coding in olfactory downstream regions of OFC and pHIP. 

 

Interestingly, the baclofen effect observed in PPC was opposite to our original prediction that 

baclofen would simply weaken the boundaries between categories, leading to reduced pattern 

separation between citrus, mint, and wood odors. Instead, reduced pattern separation among 

odors belonging to the same category was observed following baclofen administration. For 

example, the piriform representations of the two citrus odors became more alike, or more 

overlapping under baclofen. We speculate that piriform associative input normally supports the 

separation of patterns corresponding to unique identities of individual odors, especially those 

sharing perceptual features and associated with the same semantic labels. This mechanism would 

be compatible with prior work showing that perceptual learning enhances discriminability of 

within-category odor pairs, with concomitant fMRI changes in PPC as well as OFC (Li et al 

2006).  

 

It is worth considering why baclofen had no effect on across-category odor separation in PPC. 

One plausible explanation is that piriform cortex has the capacity to enhance either pattern 

separation or completion, as a function of task demands (Chapuis & Wilson 2012, Li et al 2008, 
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Shakhawat et al 2014). Various rodent paradigms of olfactory associative learning have shown 

that the direction of piriform pattern changes can flexibly match the behavioral requirements for 

either odor discrimination (i.e., pattern separation) or odor generalization (i.e., pattern 

completion). In the current experiment, subjects were asked to perform an odor categorization 

task, in which differences across categories, but not within category, were emphasized. As such, 

our experimental design might have helped stabilize category-specific differences in PPC, even 

in the presence of baclofen, though at the expense of within-category odor separation. The fact 

that categorical representations of citrus, mint, and wood odors were already highly familiar to 

the subjects also could have created further stability against across-category pattern changes.  

 

In contrast to PPC, fMRI patterns in olfactory downstream areas, including OFC and pHIP, 

showed deficient category coding in the baclofen group. Thus in OFC, the discrete categorical 

patterns for citrus, mint, and wood became less separated, in the presence of baclofen. In spite of 

these changes, there was no parallel impact on behavior. Indeed, baclofen had no perceptual 

effect on categorical discrimination, and we would argue that such a finding would have been 

unlikely, presumably due to high familiarity and discriminability of odor categories. However, to 

the extent that the existence of an odor category necessitates an association between an olfactory 

stimulus and semantic conceptual knowledge, these results are consistent with the recognized 

integrative role of OFC in guiding olfactory-based behavior. Both animal and human studies 

have demonstrated that OFC patterns can differentiate between odor objects and categories 

(Critchley & Rolls 1996, Howard et al 2009, Schoenbaum & Eichenbaum 1995, Wu et al 2012). 

Moreover, the OFC has been proposed to integrate taste and visual information associated with 

odor stimuli (Critchley & Rolls 1996, Gottfried 2003), encode the reward value of odors 
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(Howard & Gottfried 2014), disambiguate mixtures of categorically dissimilar odors (Bowman et 

al 2012), and represent olfactory lexical-semantic content (Olofsson et al 2014). Viewed in this 

context, our results highlight the role of OFC in preserving the perceptual distinctions between 

different odor categories, likely through its associative access to multimodal and semantic 

information streams.  

 

The demonstration of olfactory category coding in pHIP, and its vulnerability to baclofen, echoes 

hippocampal findings in the visual modality (Seger & Miller 2010). For example, single-unit 

recordings from the hippocampus have identified neurons in both humans and monkeys that are 

able to categorize visual information (Hampson et al 2004, Kreiman et al 2000), and fMRI 

activity in human hippocampus is selectively increased when memory performance relies on 

perceptual generalization across stimuli (Preston et al 2004, Shohamy & Wagner 2008). 

Considered in this framework, the effects of baclofen in pHIP may reflect a breakdown in the 

ability to generalize, or to make inferences, across shared odor features. It is interesting to note 

that both piriform cortex and hippocampus have long been regarded as canonical models of 

autoassociative networks where pattern separation and pattern completion computations can be 

flexibly achieved (Bekkers & Suzuki 2013, Eichenbaum et al 2007, Hunsaker & Kesner 2013, 

LaRocque et al 2013, Leutgeb & Leutgeb 2007, Wilson 2009, Yassa & Stark 2011). That the net 

effect of baclofen was to enhance overall categorization in PPC, but impair categorization in 

pHIP, highlights a unique functional difference between these two anatomically homologous 

regions, and may help bring new mechanistic understanding of the contributions of piriform 

cortex and hippocampus to human olfactory processing and perception. 
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Our behavioral data indicate that the 50-mg baclofen dose did not impair general cognition or 

olfactory perceptual performance, suggesting that off-target effects of the drug were minimal, 

other than a modest effect on subjective sleepiness that did not interfere with online task 

accuracy or response times. While it is possible that the 50-mg dose may not have been potent 

enough to exert a physiological effect, the study medication schedule was similar to those used in 

other human studies that administered baclofen to induce reliable changes in brain activity or 

behavior (Franklin et al 2012, Franklin et al 2011, Terrier et al 2011, Young et al 2014). One 

potential issue is that baclofen can also target GABA(B) receptors that have been identified in 

area CA1 of the hippocampus, influencing visual object recognition and memory (Ault & Nadler 

1982, Lanthorn & Cotman 1981). Therefore, to establish that our findings were specific to the 

olfactory system, and to ensure that baclofen did not disrupt general semantic processing and 

object categorization, subjects also performed a visual categorization fMRI task in which they 

viewed pictures rather than smelled odors. This control study confirmed that our 

pharmacological manipulation induced both regional and modality specificity, thus ruling out 

possible confounds such as altered global attention, arousal, or hemodynamic reactivity. As an 

added way to minimize mere drug effects, we explicitly focused our imaging analyses on the 

interactions between group (baclofen/placebo), session (pre/post), and category level 

(within/across), effectively cancelling out any other session-related confounds. 

 

An unavoidable limitation of this study was that baclofen was administered systemically. While 

our findings demonstrate regionally selective treatment effects in PPC, it is not possible to 

confirm that these changes were due to the direct action of baclofen solely at piriform cortex. 

There are at least three mechanisms by which baclofen could affect categorization in the 
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olfactory network, none of which are mutually exclusive. First, baclofen might directly target the 

layer 1b synapses in piriform cortex where associative intracortical and extracortical inputs 

predominate. This would most closely mirror what has been tested using focal baclofen 

injections in animal models (Barnes & Wilson 2014, Poo & Isaacson 2011), and would 

underscore the idea that categorical odor representations rely on associative information 

processing within this layer of piriform cortex. Second, baclofen might target neurons in OFC, 

entorhinal cortex, and other associative brain areas that project onto piriform cortex. Given that 

the fMRI BOLD response is thought to reflect local dendritic processing and population activity 

(Hipp & Siegel 2015, Logothetis & Wandell 2004), our findings could reflect a distant action of 

baclofen on OFC (or other areas), which in turn alters distributed fMRI patterns measured in 

piriform cortex. Third, the changes seen in PPC could theoretically have arisen in the olfactory 

bulb, where GABA(B) receptors have also been described (Aroniadou-Anderjaska et al 2000, 

Isaacson & Vitten 2003, Karpuk & Hayar 2008, Nickell et al 1994, Okutani et al 2003, 

Palouzier-Paulignan et al 2002, Wachowiak et al 2005). In this instance, one might have 

predicted a more profound olfactory perceptual deficit, including impairments of odor threshold, 

identification, and perceived intensity, though such a profile was not found in our study. 

Irrespective of the specific mechanism or mechanisms, these findings establish a critical role of 

the GABA(B) receptor in modulating categorical representations in PPC and OFC, with 

specificity for the olfactory modality.   

 

In summary, our study provides a foundation for understanding the contribution of afferent and 

associative inputs to odor categorical perception in the human brain. Of note, this work forms a 

counterpoint to an earlier study from our lab in which subjects underwent a 7-day period of odor 
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deprivation (Wu et al 2012): by reducing olfactory afferent input, we were able to show that 

multivariate pattern representations of odor category were selectively altered in OFC, without 

any pattern-based changes observed in PPC. By comparison, in the current study, we were able 

to test the inverse manipulation, using baclofen to reduce olfactory associative input. In this 

instance, we again observed a disruption of odor categorization in OFC, but also a paradoxical 

enhancement of category coding in PPC, arising from reduced pattern separation of within-

category odors. The fact that category pattern changes in PPC were complementary to those in 

OFC, as well as in pHIP, underscores the idea that odor categorization is a dynamic process 

involving multiple stages of an extended olfactory network. We surmise that under normal 

conditions, the ability to maintain discriminability of within-category odors in PPC helps prevent 

perceptual generalization from becoming maladaptive. With the interruption of associative input, 

in the setting of experimental baclofen or even perhaps as the consequence of a neurological 

disorder, within-category boundaries can become obscured, leading to perceptual over-

generalization that can result in detrimental choices. As such, our findings may point toward an 

important mechanism by which associative networks regulate perceptual processing. Whether 

such mechanisms are restricted to the olfactory modality, or apply more widely across different 

sensory systems, remains to be determined. 
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Chapter 3: Grid-like neural representations support olfactory navigation of a two-

dimensional Euclidean space 

3.1 Abstract 

Traditional models of spatial navigation are rooted in visual landscapes adorned with visual 

objects. By compiling a matrix of visual features into physical maps on a sheet of paper, or 

internal maps on a sheet of neurons, a navigator can accurately plan and predict a journey 

through space (Epstein et al 2017). However, this visuocentric perspective obscures the potential 

contributions of other sensory modalities to the navigation of physical spaces. In particular, 

many animals rely on their sense of smell to optimize approach and avoidance behaviors (Li & 

Liberles 2015), and the functional properties of the olfactory system, as well as the natural 

statistics of odor sources, are ideally suited for navigation-based responses (Catania 2013). Here 

we created a stimulus landscape confined to olfactory stimuli, as an initial model of how animals 

might encounter smells in a natural environment, and show that human subjects can mentally 

navigate through a two-dimensional Euclidean space composed purely of odors. During olfactory 

navigation, fMRI BOLD responses in entorhinal cortex (ERC) and ventromedial prefrontal 

cortex (vmPFC) take the form of grid-like representations with hexagonal periodicity, mimicking 

neural profiles in rodents during spatial navigation (Hafting et al 2005). Importantly, grid 

strength in ERC scaled with behavioral performance across subjects. Taken together, these 

findings identify grid-like codes with six-fold symmetry in the human brain as a potential 

mechanism for assembling odor information into spatially navigable maps, and imply more 

broadly that such an organization is independent of the sensory modality used to explore 

relational space (Aronov et al 2017, Killian et al 2012). 
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3.2 Introduction 

A key function of sensory systems is to optimize one’s physical proximity to distant objects. 

Sensory cues are essential for guiding animals closer to appetitive sources and further from 

aversive sources. Through exploration and experience, animals can adaptively learn to harness 

the sensory properties of their environments, enabling them not only to locate salient positions in 

space, but also to plan and predict the most efficient route to those positions. Across different 

sensory modalities, the olfactory system is uniquely suited for achieving these goals. 

 

The sense of smell is fundamentally a predictive sense. Each sniff represents an olfactory 

snapshot at a specific time and place, and simultaneously represents a prediction of what odor is 

likely to be encountered on the next sniff, at the next time and place (Jacobs 2012). The sense of 

smell is also a distance sense, as airborne odors can defy physical boundaries and the absence of 

light in ways that visual information cannot, providing a means of identifying and tracking 

remote sources (Gire et al 2016). Finally, there is a relative physical constancy of an odor source, 

given that a lingering imprint of the odor is typically rooted at a fixed position in the 

environment. These features endow the olfactory system with a keen capacity for using chemical 

cues to navigate physical spaces. Curiously, studies examining the behavioral and neural 

underpinnings of odor navigation are sparse (Jacobs 2012). In the animal kingdom, olfactory 

cues play an indispensable role in navigation, such as foraging in insects (Reinhard et al 2004), 

homing behaviors in pigeons (Papi 1991), and scent-tracking in dogs (Thesen et al 1993). When 

blindfolded, humans are able to track odors (Porter et al 2007) and identify the direction of an 

odor source from distance (Welge-Lussen et al 2014). However, it is unknown whether humans 

can navigate a sensory space informed only by odor cues, and how the brain might internalize a 
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representation of two-dimensional olfactory space. 

 

Here, we posit a world populated exclusively with odor stimuli to determine if and how a 

navigator – with only the luxury of the sense of smell – can traverse an olfactory landscape. Our 

first step was to design an ecologically plausible landscape of smells that might be naturally 

encountered in the environment. We took advantage of the fact that odor concentration decreases 

with distance from its source, and that perceived odor intensity monotonically scales with 

concentration (Conover 2007, Gire et al 2016, Jacobs 2012, Vickers et al 2001). To this end, we 

created a 2-dimensional Euclidean plane where x,y coordinates were defined by two different 

odors (banana and pine) that independently varied in perceived intensity from 0% to 100%, at 

20% increments, forming a 6×6 space (Fig. 3.1a, b). Based on theoretical (Wallraff 2000) and 

empirical (Jacobs et al 2015) data, each position in this 2-dimensional space can be derived from 

the intensity of the two odors, enabling a navigator to extrapolate new information from learned 

odors and to predict future odor percepts, and by extension, to predict future locations (Jacobs 

2012). 

 

An important feature of our stimulus set was guided by hypotheses about how the brain would 

encode a mental map of odor space. In rodents, open-field foraging elicits spatially modulated 

activity in medial entorhinal cortex (ERC), with individual neurons (grid cells) firing at multiple 

discrete and hexagonally periodic locations in space (Hafting et al 2005, Stensola et al 2012). In 

tiling spatial fields, grid cells provide a neural metric and internalized representation for self-

location, route planning, and path integration (Bush et al 2015). Similarly, humans can navigate 

virtual (Doeller et al 2010), visual (Julian et al 2018, Nau et al 2018), abstract (Constantinescu et 
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al 2016), and imagined space (Bellmund et al 2016, Horner et al 2016), inferred solely from 

visual inputs, with single-cell recordings (Jacobs et al 2013) and fMRI (Doeller et al 2010) 

techniques supporting evidence for grid-like representations in ERC as well as medial prefrontal, 

posterior parietal, and lateral temporal cortices (Constantinescu et al 2016, Doeller et al 2010, 

Jacobs et al 2013). Therefore, based on our hypothesis that navigation of an odor-informed space 

would rely on a grid-like coding scheme, we ensured the odor array was optimized to assess 

grid-like fMRI responses, including sufficient angle resolution to identify hexagonal (six-fold) 

symmetry, and sufficient range to characterize odor trajectories rather than odor identities per se 

(Fig. 3.1c, Fig. 3.2).  

 

Figure 3.1 Experimental design and navigation performance.  
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a, Intensity ratings of pure pine and pure banana odors at different concentrations. As odor 
concentrations increased stepwise, subjects’ perceived intensity increased stepwise as well 
(F2.34,56.15=123.58, p<0.001; repeated-measures ANOVA), but ratings did not differ between the two odors 
at each intensity step (F1,24=1.07, p=0.31). b, Conceptual layout of the odor map, in which each 
coordinate on the odor map corresponds to a unique mixture of the two odors. Trajectory angles were 
defined by start and end odor positions, and the end odor might appear on (“on-traj”) or off (“off-traj”) the 
predicted trajectory. There were three difficulty levels according to the difference between on-trajectory θ 
and off-trajectory θ’. Hard trials: |θ-θ’| 15°±5°; medium trials: 30°±5°; easy trials: 60°±5°. c, Trajectory θ 
was sampled evenly across the 60° cycle, with no difference in sampling frequency across directions 
(F2.28,54.84=1.00, p=0.38; repeated-measures ANOVA). d, Timeline of an example trial of the odor 
prediction task. Red box indicates the time period used for the grid-cell analyses; relative movements of 
the banana and pine scale bars (compare left and center screenshots in grey) informed subjects how 
much to expect the intensities of the two odor components to change, who then indicated whether the 
end odor matched their prediction (right screenshot). e, Performance accuracy during 4 training days and 
the following scanning day were consistently and significantly greater than chance (50%, t24>8.12, 
p<0.001). f, Navigation performance (computed as the prediction d’ adjusted for perceptual discrimination 
on a subject-wise basis) revealed a significant effect of training, particularly for easy trials (day 1 vs. days 
2-4; easy trials: t24=-2.17, *p=0.04; medium trials: t24=-1.01, p=0.32; hard trials: t24=0.28, p=0.78; paired t-
tests, two-tailed). In this and all figures, statistical tests are one-tailed unless otherwise noted; error bars, 
±1 s.e.m. 
 

To encourage mental navigation through odor space, we adapted a task similar to those used in 

virtual and abstract navigation studies (Constantinescu et al 2016, Doeller et al 2010). Subjects 

were provided a start location and a trajectory, and then assessed whether their predicted 

(imagined) endpoint along the trajectory corresponded to the veridical endpoint. Our task was 

introduced to subjects as an “odor prediction” task, but the latent structure of the map were not 

revealed until after the experiment. Trajectories were defined using a “start” odor mixture, along 

with a visual instruction screen indicating how much the intensities of banana and pine in the 

mixture would change upon delivery of the “end” odor (Fig. 3.1b, d, Fig. 3.3). After a 6-s period 

of mental navigation along the specified trajectory, subjects received the end odor, and indicated 

whether it matched their prediction. On 50% of trials the end odor was on-trajectory, and on 50% 

of trials the end odor was off-trajectory, varying by 15-60°. Correct answers would be 

compatible with successful navigation. 
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Figure 3.2 Odor trajectory θ distributions across mixtures. 
a, Start odor trial trajectories (pooled from all subjects on the day of fMRI scanning), binned by 15° 
(modulo 60°), show that the same start odor can be associated with a wide range of different θ 
trajectories, and the same θ trajectory can be accessed from different start odors. These data suggest 
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that odor trajectory is not systematically associated with the identity of specific start odor. b, Likewise, the 
same end odor can be associated with many different θ trajectories, and the same trajectory can 
terminate on different end odors, implying no systematic link between trajectory and the identity of the 
end odor.  
 

 

Figure 3.3 Illustration of different trial types. 
The experimental design yielded 4 unique behavioral outcomes, depending on trajectory alignment and 
response type. First row, trial in which movement direction θ is aligned with hypothetical grid axis angle φ 
and the end odor lies on the trajectory; a “hit” is recorded if the end odor elicits a “yes” response, and a 
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“miss” is recorded if the end odor elicits a “no” response. (Small grey circles on the 6×6 grid represent a 
putative grid cell field with six-fold symmetry.) Second row, same as the first row, except the end odor lies 
off the trajectory, yielding either a “yes” response (false alarm) or “no” response (correct rejection). Third 
and fourth rows are similar to the upper two rows, except that these are trials in which movement direction 
θ is misaligned to hypothetical grid axis angle φ. 
 

3.3 Methods 

Participants and experimental design 

Twenty-five participants (22 women, aged 18-37, mean age 24.3 years) completed this study. 

They reported to be right-handed nonsmokers with no history of significant medical illness, 

psychiatric disorder, or olfactory dysfunction. Fifty-two participants (40 women, age range: 18-

39) gave informed consent as approved by the Northwestern University Institutional Review 

Board. All subjects participated in an initial screening session on day 0, which comprised an 

odor intensity rating task and an odor discrimination task. Thirty-four subjects who reached 70% 

accuracy on the odor discrimination task entered four consecutive days of behavioral training 

with an odor prediction task on days 1-4. Twenty-five of them who reached 60% on at least one 

training day then took part in an fMRI scan with the same prediction task on day 5. 

 

Odor stimuli and delivery  

Two monomolecular odorants, β-pinene (pine smell) and isoamyl acetate (banana smell) were 

diluted in mineral oil and matched for intensity. Odors were delivered using a custom-built air-

dilution olfactometer. In the odor intensity rating task, subjects rated each pure odorant at 6 

different levels of air-diluted concentrations (0%, 14.5%, 19.5%, 27%, 36.5%, and 50%). In the 

odor discrimination and odor prediction tasks, the two odorants, at each of the 6 concentrations, 

were combined into 36 different pine-banana mixtures. Each mixture represented a location in a 

6×6 2-D odor space. Clean (odorless) or odorized air was directed towards subjects via Teflon 
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tubing at a rate of 4L/min. Subjects were cued to sniff for the odors upon viewing instructions on 

a computer screen.  

 

Odor intensity rating and odor discrimination task  

On the screening day, subjects first rated 6 concentrations (3 trials per concentration) of pure 

pine odorant and pure banana odorant on a linear visual analogue scale (anchors “not detectable” 

and “extremely strong”, from 0-10). Next, they performed an odor discrimination task with the 

pine-banana mixtures. In the discrimination task, subjects were cued to smell two odor mixtures 

consecutively, and were prompted to respond whether the second odor has “more pine (or 

banana)” or “less pine (or banana)”, compared to the first odor. During half of the trials (72 in 

total) they were asked to focus on discriminating pine, and the other half of trials on 

discriminating banana. They did not know which component they would be asked about until the 

choice options appeared on the screen after the second odor. The stimulus set was drawn from 

the “hard” trials used in the odor prediction task (see below), to ensure that subjects can 

perceptually discriminate between on-trajectory and off-trajectory odors spaced only 15° away 

from each other. 

 

Odor prediction task  

On training days 1-4 and the scanning day 5, subjects performed an odor prediction task. This 

task was designed to be analogous to those in virtual spatial navigation (Constantinescu et al 

2016, Doeller et al 2010).  The basic idea was that subjects would first smell an initial “start” 

odor, then mentally navigate to an “end” odor based on instructive visual cues, and finally smell 

a second odor, reporting whether it corresponded to their mental prediction. Subjects were 
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familiarized on the task with a set of 16 practice trials prior to training day 1. 

 

At the start of a trial, subjects viewed a screen display showing two vertically oriented scale bars, 

one labelled “PINE” and the other labelled “BANANA” (Fig. 3.1d, timeline 0-3 sec). Verbal 

labels were placed alongside the scales: “no change” at the midpoint, and “more” and “less” at 

the endpoints of the scales. The labels “more” and “less” referred to the amounts of intensity 

change to be expected from the first sniff (first odor) to the second sniff (second odor). After 

viewing the scale, subjects were cued to smell an initial “start” odor (timeline 3-5 s) and 

instructed to pay attention to the intensities of pine and banana components in the mixture. The 

next part of the task was designed to encourage mental navigation in the odor space, whereby 

instructive cues in the visual scale bars specified the movement trajectories for a given trial. 

First, two bars appeared at the midpoints of each scale (“no change”), and subjects watched these 

bars move up and/or down along the two scales for 3 seconds (timeline 5-8 s), indicating 

proportional changes of the two odor components (in relation to the initial start odor). The 

further that each bar moved away from the midpoint, the more the respective odor component 

would be expected to change. In an imagination phase of the task, the same screen remained for 

another 3 seconds (timeline 8-11 s) as subjects actively imagined what the end odor would smell 

like, based on the start odor and the movements of the bars. Finally, subjects were cued to smell 

a second (end) odor (timeline 11-13 s), and pressed a button indicating whether they thought the 

end odor was on-trajectory (“YES”) or off-trajectory (“NO”). Half of the end odors were on-

trajectory and half were off-trajectory. Among off-trajectory odors, there were three difficulty 

levels: easy, medium, and hard. The direction of the off-trajectory was 60°±5° away from the on-

trajectory in easy trials, 30°±5° in medium trials, and 15°±5° in hard trials. Subjects received 
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feedback after their response. Another 8 s passed before the next trial began. There were 72 trials 

per training day, and 4-6 fMRI runs (24 trials per run) on the scanning day. 

 

Note, across trials, the “more” and “less” labels randomly switched between top and bottom 

positions, and the “PINE” and “BANANA” labels randomly alternated between left and right 

sides of the visual display. With this randomization, imagined movement within the 2-

dimensional odor space could be dissociated from mere visual cues and directional translations 

of the scale bars and labels. 

 

Odor navigation index  

The performance accuracy of the prediction task depended on two factors: subjects’ perceptual 

ability to discriminate the odor mixtures, and their memory ability to navigate to the designated 

location on the odor map. The former sets the upper limit of their prediction accuracy, and the 

latter is what we would like to capture. Therefore, we adjusted the prediction performance by the 

discrimination performance to derive an odor navigation measure. We calculated the sensitivity 

index d’ of discrimination and prediction tasks to account for response bias (Macmillan & 

Creelman 1990). The odor navigation index was computed as prediction d’ divided by 

discrimination d’. 

 

Respiratory recording and analysis  

During scanning, breathing activity was monitored using an MRI-compatible respiration 

transducer for MRI (BIOPAC Systems) affixed around subjects’ torso and recorded using 

PowerLab (ADInstruments). Breathing traces from each run were smoothed with a low-pass FIR 
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filter (cutoff frequency at 2 Hz) and scaled to have a mean of 0 and standard deviation of 1 

(Howard et al 2016). The cued sniff waveforms were extracted from each trial. Inhalation 

duration and volume were computed and used as nuisance regressors in statistical modelling of 

the fMRI data (see below).    

 

fMRI acquisition  

Gradient-echo T2*-weighted echo-planar images (EPI) were acquired on a Siemens 3T Prisma 

scanner with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 22 ms, 

flip angle = 80°, matrix size = 104 x 98 voxels, field of view (FoV) = 208 mm, voxel size = 2 x 2 

x 2 mm3, 58 slices per volume. The slice angle was set 15° relative to the anterior-posterior 

commissure line to minimize signal dropout in the basal frontal areas of the brain (Deichmann et 

al 2003, Weiskopf et al 2006). In addition, a field map with dual echo-time images was acquired 

for geometric distortion correction of the EPI functional scans, with the following parameters: 

TR = 555 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle = 50°, FoV = 208 mm, voxel size = 2 x 

2 x 2 mm3. A 0.8 x 0.8 x 0.8 mm3 T1-weighted structural MRI scan was also obtained to 

facilitate normalization of EPIs into standard space and to define piriform cortex and entorhinal 

cortex ROI.  

 

Image pre-processing  

fMRI data were pre-processed with SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/) in 

Matlab. Functional images were spatially realigned to the first image in the time series, and were 

corrected for movement-related variance based on the field map and movement-by-distortion 

interactions using the Unwarp tool in SPM (Andersson et al 2001, Hutton et al 2002). The T1 

http://www.fil.ion.ucl.ac.uk/spm/
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structural image was co-registered to the mean aligned functional image, and underwent 

segmentation and spatial normalization to MNI space. Realigned functional images were 

normalized using the transformation parameters derived from the structural image normalization. 

Finally, the normalized functional images were smoothed with a 6mm full-width half-maximum 

Gaussian kernel. For multivariate pattern analysis in the entorhinal cortex, images were 

smoothed with a 2mm kernel.  

 

Univariate analysis in whole brain  

After pre-processing, we modelled fMRI time series using a set of general linear models 

(GLMs). All models included regressors for the main effects of the movement-and-imagination 

period (red box in Fig. 3.1c), parametric modulators of this period (see below), start odor and 

end odor periods, the response event, and nuisance regressors to account for head movement and 

differential sniff sizes. All main regressors were convolved with the canonical hemodynamic 

response function (HRF) in SPM. Nuisance regressors included the following: six movement 

parameters derived from spatial realignment, their squares, derivatives, and squares of 

derivatives (24 in total), within-volume slice variance and odd-vs-even slice differences, their 

derivatives and squares (to account for within-scan motion), breathing trace, trial-by-trial sniff 

volume and duration convolved with HRF and orthogonalized with the sniff events. Additional 

regressors were included when needed to model individual volumes that exhibited excessive 

head motion. Data were high-pass filtered at 1/128 Hz, and temporal autocorrelation was 

adjusted using an AR(1) process.  

 

GLM1: functional localizer for hexagonal modulation  
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GLM1 was used as the first step to localize brain areas that showed the strongest hexagonal 

modulation. This analysis searched for brain areas where fMRI activity profiles fit a waveform 

of cos(6(θ-φ)), where θ is the movement trajectory direction on each trial, φ is the hypothetical 

axis angle of the grid field, and the factor 6 gives a 6-fold periodicity. According to the angle 

difference formula for cosine:  

cos(6(θ-φ)) = (cos6θ*cos6φ) + (sin6θ*sin6φ) 

the cosine term on the left side of the equation (a sinusoid with angle modulation) can be 

decomposed into two amplitude-modulated sinusoids, cos6θ and sin6θ. Therefore, we created 

two parametric modulators for the regressor of the movement-and-imagination period (Doeller et 

al 2010): cos(6θ) and sin(6θ). We used an F-test to search for brain areas where the linear 

combination of the two parameter estimates (βcos and βsin) produced the largest amplitude. We 

transformed the F-statistic to a Z-statistic in each subject (Hughett 2007), and performed a 1-

sample t-test across the group. To test an alternative 4-fold periodicity corresponding to a square 

grid, we included parametric modulators of both 4-fold and 6-fold in the same GLM.  

 

Note that the main purpose of GLM1 was to serve as a functional localizer to identify brain 

regions for subsequent cross-validation analysis (GLM2; see next section). However, statistical 

analyses of hexagonally modulated vmPFC activity in Figs. 3.6c-d (derived from GLM1) should 

be interpreted with care. As discussed in Constantinescu et al., 2016, because of temporal 

autocorrelations that naturally occur in fMRI time-series data, within-subject variance at the first 

level of analysis can be underestimated. As such, analysis of variance (ANOVA) models to 

estimate six-fold symmetry can lead to an overestimation of the F-statistic at the first level, 

which in turn will lead to an inflated Z-score, biasing the group-level effect. Given that a direct 
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comparison of odor vs. visual trajectories (Fig. 3.6d), both of which shared the same 

autocorrelation structure, revealed significant effects, we believe that statistical overestimation 

was not a problem. Nevertheless, these considerations formed part of our rationale for 

conducting cross-validation analyses (GLM2) to obtain unbiased estimates of group-wise effects. 

 

GLM2: iterative cross-validation analysis in vmPFC  

To test whether the 6-fold symmetry was robust and reproducible in vmPFC, we performed a 

leave-one-run-out cross-validation analysis. Each subject completed 4-6 scanning runs. First, per 

subject, we performed GLM1 on all but one scanning run of the data (“training data”), and 

estimated grid angle φ for each voxel within the vmPFC ROI (cluster threshold, p<0.001). To 

this end, we averaged the parametric modulator estimates (betas; β) across all voxels in the ROI, 

then calculated φ as the angular coordinate mapped from Cartesian coordinates (βcos, βsin), 

divided by 6 (Doeller et al 2010). We then performed a new GLM2 on the left-out run of the data 

(“test data”). In GLM2, we aligned the trajectory direction θ to each individual subject’s grid 

angle φ, and separated all directions into 12 bins of every 30° around the unit circle. We created 

12 regressors for trials that belonged to each bin. At the group level, we extracted the 12 

parameter estimates from the vmPFC ROI, and tested whether the resulting betas of aligned 

directions (0° mod 60°) were higher than misaligned directions (30° mod 60°). In the control 

analysis of 4-fold periodicity, we used the same approaches as above, but estimated φ with factor 

4 and separated all conditions into 8 bins of every 45°. 

 

GLM3: interregional consistency angle  

This analysis was similar to GLM2, except that the grid angle φ was estimated from all runs 
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from the vmPFC ROI. Of note, there was no consistency of the preferred grid angle φ across 

subjects (Fig. 3.4). After modelling 12 trajectory directions, we extracted the parameter estimates 

from anatomically defined ROIs of entorhinal cortex (ERC), anterior piriform cortex (APC), and 

posterior piriform cortex (PPC). We used an ERC mask in MNI space available online from a 

study using high-resolution 7-T MRI (Maass et al 2015). APC and PPC were manually outlined 

with reference to a human brain atlas (Mai et al 1997) using MRIcron software 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/). For each of the ROIs, we tested whether 

trials with directions aligned to vmPFC φ evoked higher activities than ones with misaligned 

directions.  

 

 

Figure 3.4 Grid axis angle φ estimated from vmPFC ROI for each subject. 
Each subject has a unique estimated φ, uniformly distributed between 0-60° (Rayleigh test for non-
uniformity: z=1.29, p=0.28). 
 

Multi-voxel pattern analysis in entorhinal cortex  

MVPA offers greater sensitivity to capture distributed signals in the brain compared to 

traditional univariate approaches (Norman et al 2006), which is particularly important in ERC, a 

brain region that is susceptible for distortion and signal drop-out in fMRI recordings. For this 

http://www.mccauslandcenter.sc.edu/mricro/mricron/
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analysis, a trial-by-trial GLM was specified for the movement-and-imagination period of each 

trial separately from 2mm smoothed functional images. To account fully for all variables in the 

task, the model also included onset times for the start odor, the end odor, and the button 

response. Nuisance regressors were the same as those included in the univariate analyses. 

Following GLM estimation, we first extracted single-trial β pattern vectors in each subject, from 

each and every voxel within the ERC ROI (Fig. 3.5). One important aspect of this analysis was 

to realign individual trials according to their trajectory direction θ with respect to each subject’s 

preferred grid angle φ in vmPFC. By defining each individual’s own grid angle φ, rather than 

relying on angle-free MVPA methods, this approach can optimize sensitivity for identifying a 6-

fold periodic signal from ERC pattern correlations between trials separated by 60° increments. 

 

In a following step, all trials (having been realigned to φ) were sorted into 12 conditions for each 

subject, at increments of 30° (±15°) between 0° and 330°, where 0° corresponded to φ. By way 

of example, for a subject with φ = 18°, all trials with θ trajectories of 18° (±15°) would be 

assigned to the first condition (representing φ = 0°±15°); all trials with θ trajectories of 48° 

(±15°) would be assigned to the second condition (representing φ = 30°±15°); and so on. 

Multivoxel pattern correlations (Pearson coefficients) were then computed between each and 

every pair of trials, and these estimates of pattern similarity were mapped onto their respective 

points in a 12×12 representational similarity matrix (Fig. 3.5). In a final step, pattern correlations 

derived from conditions with aligned directions (0° mod 60°) could be compared to conditions 

with one misaligned directions (30° mod 60°) (Fig. 3.8b). 
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Figure 3.5 Multi-voxel pattern analysis (MVPA) method pipeline. 
1. For each subject, a preferred grid axis angle φ was estimated from a vmPFC ROI defined in an initial 
GLM (GLM1; see main text Fig. 3.6c). 2. Beta (β) estimates of a trial-by-trial GLM were extracted from 
voxels within an anatomically defined ROI of entorhinal cortex, and then vectorized as linear patterns. 3. 
Next, the odor trajectory θ for each trial was aligned to each subject’s grid angle φ, and then sorted into 
successive 30° bins with reference to φ. 4. Pearson correlation coefficients were computed between each 
and every pair of θ trajectories, on a trial-by-trial basis, and mapped onto their respective positions in a 
12×12 pattern similarity matrix (collapsed onto the upper right triangle). 5. Finally, the correlation values 
were sorted according to the absolute angular difference between trials, and tested whether patterns from 
trial pairs aligned to the grid angle were more similar than pairs with one misaligned trial. In the similarity 
matrix, orange boxes represent correlations between conditions aligned to 60° increments of φ, and blue 
boxes represent correlations where one condition was misaligned at 30° offsets from φ. Comparisons 
between orange and blue boxes formed the key contrast of interest. Note, the greyed-out boxes represent 
correlations of no interest, as neither of these condition pairs was aligned to φ and therefore would have 
elicited patterns with low signal and high noise. 
 

Statistics  
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Error bars throughout figures are shown as mean ± s.e.m. across subjects (n=25). In figures 

showing the contrast of aligned vs. misaligned conditions with 60° periodicity, bar plots were 

mean-corrected within subjects. The significance threshold was set at p<0.05 one-tailed for 

testing brain areas showing effects of aligned > misaligned directions, as well as testing 6-fold > 

4-fold periodicity, based on our directional hypotheses (Julian et al 2018). Significance threshold 

was otherwise set at p<0.05 two-tailed. 

 

3.4 Results 

Twenty-five subjects underwent behavioral training on the prediction task for 4 days, followed 

by fMRI scanning on day 5. Two different measures of task performance suggested that subjects 

internalized mental maps of the odor space. First, prediction accuracy was consistently higher 

than chance (50%) on training and scan days (Fig. 3.1e), though no significant difference was 

observed across days (repeated-measures ANOVA, F3.41,81.91=1.41, p=0.24). Second, we used 

signal detection methods to derive a navigation index, which adjusted for subject-specific 

olfactory perceptual limits (Methods). This analysis revealed an effect of training on navigation 

performance, particularly for easier trials in which the “off-trajectory” end odor was at a larger 

angle from the instructed trajectory, with a significant performance gain from day 1 to 

subsequent days (t24=-2.17, p=0.04; paired t-test, two-tailed; Fig. 3.1f). Collectively these 

findings indicate that human subjects can generate predictions of to-be-encountered odors that 

vary in magnitude across two independent feature dimensions. 

 

We next asked whether the human brain uses a grid-like architecture as a metric of odor space. 

Because most grid cells share a common grid-axis angle in the same animal (Hafting et al 2005, 
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Sargolini et al 2006), the group activities of grid cells can be manifested in fMRI signals 

showing a hexagonal periodicity as a function of moving direction (Fig. 3.6a, b). Such profiles 

have been identified in ERC and medial prefrontal cortex in neuroimaging studies of human 

navigation (Bellmund et al 2016, Constantinescu et al 2016, Doeller et al 2010, Horner et al 

2016, Julian et al 2018, Nau et al 2018). Here, we first searched for regions where fMRI signals 

were hexagonally modulated by the odor trajectory direction θ during the navigation period (Fig. 

3.1d). Using a quadrature filter (effectively, a pair of sine and cosine regressors with 60° 

periodicities (Doeller et al 2010); Methods), we identified the largest cluster in ventromedial 

prefrontal cortex (vmPFC, Fig. 3.6c).  

 

Our 6-fold model of odor space included the “movement” period of the task, in which vertical 

translations of two visual bars informed upcoming changes in odor intensity. To minimize the 

possibility that the observed grid-like effects could be attributed to visual stimulation, we 

ensured the positions of the odor columns (“pine” and “banana”) and the axis labels (“more” and 

“less”) were randomly alternated across trials, dissociating spatial changes in visual features 

from magnitude changes in odor features. As a formal test that grid-like maps in vmPFC were 

not driven by visual confounds, we designed a complementary model in which θ was determined 

by the absolute directions and translations of the visual bars (Fig. 3.7). Visual stimulation had no 

significant effect on grid-like vmPFC representations, and the emergence of hexagonally 

modulated activity was specific for odor vs. visual trajectory (Fig. 3.6d). 

 

To assess the reproducibility of these effects in vmPFC, we performed a leave-one-out cross-

validation analysis to test whether the 6-fold periodic signals conform to a consistent grid-axis 
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angle across time. Using N-1 scan runs, we estimated each subject’s grid angle φ from the 

vmPFC, and reserved the left-out (Nth) run as the test set, which was organized into 12 

conditions by binning trials into successive 30° bins relative to φ. The key prediction was that 

fMRI activity would be higher for trials aligned to φ (0° modulo 60°) than those misaligned (30° 

modulo 60°). Using this unbiased analysis, we confirmed that the same grid angle was 

consistently identified in vmPFC (Fig. 3.6e), implying stability of grid angle over the duration of 

the experiment. This effect was specific to 6-fold symmetry: a control analysis based on a 4-fold 

periodicity, corresponding to a square grid field, did not elicit significant modulation in vmPFC 

(Fig. 3.6f). 

 

Using the same approach we tested whether other brain regions might align to the same vmPFC 

angle (Fig. 3.6g). The demonstration of interregional angle stability would support the idea that a 

coordinated network of regions – tuned to the same grid angle – helps direct navigation of an 

odor space. Here we focused on ERC, based on its prominent role in grid cell coding (Doeller et 

al 2010, Hafting et al 2005), and anterior and posterior piriform cortex (APC, PPC), given that 

our task centers on exploration of olfactory space (Giessel & Datta 2014). Of note, mean fMRI 

signal activity in APC varied in a 6-fold symmetric manner, entrained to the same angle as in 

vmPFC (Fig. 3.6h). A similar trend was observed in PPC but was not significant 

(aligned>misaligned, t24=2.02, p=0.027, Bonferroni adjusted α=0.016). No hexagonal effect was 

found in the mean ERC signal (aligned>misaligned, t24=0.19, p=0.42).  
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Figure 3.6 Grid-like signals during odor navigation. 
a-b, Analysis schematic. Given a hexagonal grid field with main axis angle φ, trajectories on the odor map 
can be binned as aligned or misaligned with φ. Grid-like fMRI activity with 60° periodicity would thus be 
higher for aligned vs. misaligned trajectories (angle φ modulo 60° vs. angle [φ+30°] modulo 60°). c, 
Hexagonally modulated fMRI signal activity was identified in vmPFC (x=6, y=46, z=-10; MNI coordinate 
space; Z=3.87; cluster-level PFWE-corr=0.0012, cluster-defining threshold p<0.001; voxel-level 
Puncorr=0.000055). Data overlaid on a T1-weighted sagittal brain section (display threshold, p<0.01 
uncorrected). d, Hexagonally modulated activity was not elicited in vmPFC in response to trajectories 
defined by the movement of the visual bars (t24=0.037, p=0.97, two-tailed); the direct comparison of odor 
vs. visual trajectories was significantly different (t24=2.65, *p=0.0070; paired t-test). Bar plot shows 
condition-specific averages of voxels from a 5-mm sphere centered at the vmPFC peak in c. e, Cross-
validation analysis of the grid-like effect in vmPFC (based on cluster in c; threshold, p<0.001) reveals grid 
angle reproducibility across time (aligned>misaligned; t24=2.33, p=0.014). Orange/blue bars: 
aligned/misaligned to φ.  f, The grid-like effect in vmPFC was specific for 6-fold, but not 4-fold periodicity 
(aligned>misaligned; t24=-0.74, p=0.77), and the difference between 6-fold and 4-fold symmetry was 
significant (t24=1.84, *p=0.039; paired t-test). g, Anatomical masks delimiting ROIs in ERC (red), APC 
(blue), and PPC (green). h, The preferred grid angle in vmPFC predicted hexagonally modulated signal in 
APC (aligned>misaligned; t24=3.08, p=0.0026; α=0.016, Bonferroni correction for multiple comparisons of 
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three ROIs).  
 

 

Figure 3.7 Dissociation between odor trajectory and visual trajectory. 
The correspondence between visual cue and odor trajectory θ depends on the indicators on the scale. By 
shuffling “PINE” and “BANANA” columns, and by shuffling “more” and “less” directions, the exact same 
visual movement can lead to eight different odor θ trajectories. For example, in both of the top two rows, 
there is a -3 visual change (down-going) in the left bar and a +2 visual change (up-going) in the right bar. 
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However, there are unique profiles for the odor trajectories: in row one, there is a -3 pine change (less 
pine) and a +2 banana change (more banana), but in row two there is a +3 pine change (more pine) and 
a +2 banana change (more banana). Therefore, odor trajectory is uncoupled from movement changes of 
the visual stimuli. 
 

Although grid-like coding in ERC was not identified in the above analysis, it is possible that 

ERC employs a distributed coding scheme during odor navigation (Diehl et al 2017, Hardcastle 

et al 2017), which might be better characterized using multi-voxel pattern-based 

approaches(Bellmund et al 2016). We reasoned that if distributed grid-like representations of 

odor space exist in ERC, then for each subject, there should be an intrinsic preferred grid angle φ 

(presumably aligned with vmPFC) with 60° periodicity, such that trial trajectory θ at any 60° 

equivalent of φ should exhibit greater pattern overlap than with 30° trajectories (Fig. 3.8a). A 

region-of-interest analysis in ERC (Fig. 3.6g) confirmed this prediction: after aligning trials to φ 

estimated from vmPFC activity, ensemble pattern similarity in ERC was significantly greater for 

trial pairs with trajectories aligned to the same 60° periodicity, in comparison to trial pairs in 

which one of the trajectories was offset by 30° (Fig. 3.8b). Importantly, these effects were 

robustly observed in the 6-fold model, but not in a 4-fold control model (Fig. 3.8c). Finally, to 

establish whether olfactory grid-like pattern representations in ERC are capable of supporting 

behavior, we computed the linear correlation between grid-pattern robustness (aligned vs. 

misaligned) and performance on the odor prediction task. Across subjects, stronger grid-like 

ensemble activity in ERC was associated with greater ability to predict which odor would be 

encountered on a specified trajectory (Fig. 3.8d), highlighting the involvement of this region in 

orienting an olfactory navigator in two-dimensional odor space.  
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Figure 3.8 Grid-like ensemble activity in entorhinal cortex. 
a, Schematic of representational similarity analysis. (Top) fMRI pattern data in ERC were organized into 
trajectory-specific conditions, ranging between direction θ and θ+330° (columns), where θ is aligned to 
each subject’s preferred grid angle φ, estimated from vmPFC in Fig. 3.6c. Numbers at the center of each 
square indicate the absolute angular difference between conditions. (Bottom) Linear correlations between 
all trajectory pairs were then estimated, enabling a test of the hypothesis that on-trajectory patterns 
(directions of 0° mod 60°; orange colors) would elicit greater pattern overlap than off-trajectory patterns 
(directions of 30° mod 60°; blue colors). See Fig. S3.5 for details. b, Pattern similarity between trajectory 
pairs in ERC exhibited hexagonally periodic modulation, with greater similarity for pairs aligned to grid 
angle φ and its 60° multiples (orange vs blue bars; aligned>misaligned, t24=2.15, p=0.021). c, Sinusoidal 
modulation of ERC pattern similarity was specific to 6-fold symmetry, but not 4-fold symmetry 
(aligned>misaligned, t24=-0.55, p=0.71), and there was a significant difference between 6-fold and 4-fold 
symmetry (t24=2.20, *p=0.019; paired t-test). d, Strength of grid-like pattern representations in ERC, 
estimated as the difference between angle-aligned and misaligned conditions, correlated with behavioral 
performance (easy trials) on the odor navigation task across subjects (r=0.44, p=0.026, two-tailed).  
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3.5 Discussion 

One striking finding is that when human subjects chart their course through odor space, fMRI-

based representations in ERC, vmPFC, and APC are all aligned to the same grid angle. It is 

possible that different brain areas utilize hexagonal grid architectures to represent different types 

of mental maps, but for each of these areas to converge on the same preferred grid angle seems 

unlikely unless there was direct interareal coordination. A plausible alternative explanation 

would be that odor navigation engages hexagonally periodic activity in ERC, with feedback 

projections to vmPFC and APC signaling the trajectory on which the subjects is traversing 

through olfactory space (Carmichael & Price 1995). Information about angle alignment could be 

integrated with action-outcome contingencies in vmPFC to refine behavior and support more 

sophisticated cognitive maps (Schiller et al 2015, Wikenheiser & Schoenbaum 2016), and with 

olfactory information in APC to tag or strengthen a set of odor representations associated with 

the current trajectory. 

 

The identification of olfactory grid-like neural representations has important implications for 

understanding how animals navigate through odor space. It has been suggested that odor 

concentration differences across sequential sniffs, and odor timing differences at each nostril, can 

be useful cues for tracking an olfactory source (Catania 2013, Gire et al 2016, Porter et al 2007, 

Rajan et al 2006). However, neither of these models is sufficient for encoding the full relational 

details among elements in an odorous environment. Our data highlight a novel mechanism by 

which the brain can construct a cognitive map of odor space. Having access to such a map would 

enable animals to plan how to navigate through an olfactory terrain, and to select a route that 

optimizes their physical proximity to odor objects. The utility of olfactory cognitive maps is 
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ideal for environments where odor sources are spatially and temporally anchored to a landscape, 

such as fruit trees, watering holes, and nesting sites, but given that grid cell fields can re-map to a 

new set of physical features (Diehl et al 2017, Fyhn et al 2007, Marozzi et al 2015), olfactory 

maps may also be effective in less stationary environments. 
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Chapter 4: Conclusions and future directions 

Olfaction may be the most undervalued sense among the public, as typified by a 2011 McCann 

Worldgroup survey which found that “today's global youth would give up their sense of smell to 

keep their technology”. However, the olfactory system is an ideal model system to study human 

cognition to the eyes of a neuroscience student. It is the simplest amongst all sensory systems in 

terms of the number of information processing steps from receptors to high-order association 

areas of the brain. Its sensory pathways involve structures that are strongly implicated in emotion 

and memory. Odors are often perceived with hedonic judgment (Yeshurun & Sobel 2010), and 

often serve as a trigger of childhood memories (Willander & Larsson 2006). Olfaction provides 

the shortest path from the external world to its abstraction in the mind.  

 

The two experiments described here are generally aimed at unraveling the mechanisms by which 

the human brain encodes odor stimuli organized with certain relationships, forming concepts of 

category or space. In the first experiment we sought to examine how the associative connections 

in the piriform cortex support neural representations of categorically organized odors. We found 

that application of baclofen, which specifically inhibits associative connections in both the 

piriform cortex and the hippocampus, elicited opposing effects in the two regions of comparable 

anatomy and microcircuits. Baclofen suppressed within-category discrimination in piriform 

cortex, but within-category generalization in hippocampus. This could reflect that intrinsic 

functionalities of the two regions are different in odor category coding: the piriform is 

responsible for maintaining discrete identities of stimuli, whereas the hippocampus assigns them 

to the same category through generalization. We also found that baclofen interfered with inter-
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category separation in the OFC, possibly due to attenuated access to semantic information 

(Olofsson et al 2014).  

 

In the first experiment, subjects were performing odor categorization (assigning category names 

to the stimuli) throughout the task. However, there was no name associated with the individual 

odor objects within the same category. One possible argument for the differential impact of 

baclofen on odor patterns at within-category level vs. between-category level is that, between-

category odor patterns could contain and/or be stabilized by the semantic labels, the lack of 

which makes within-category odor patterns susceptible to change. It is unclear to what extend the 

semantic labels contribute to odor categorization. One alternative task could eliminate the 

uneven contribution of the naming processing: to include catch trials where subjects chose the 

name of the identity (e.g. lemon vs. orange) on some trials, and category (e.g. citrus vs. wood) on 

other trials. This way, the sheer effect of having semantic labels at different levels (identity vs. 

category) could be controlled.  

 

The fact that baclofen was administered systemically limited our interpretation of results. We 

could follow up the question with a similar paradigm in animal models combining categorical 

odor learning, focal piriform injection of baclofen, and small animal fMRI. For example, we 

could train mice or rats to “categorize” odors by pairing odors with different food reward, spatial 

context, or sound frequencies, and examine the change of odor-evoked activity in the olfactory 

network as the result of local baclofen application in piriform cortex. With this hypothetical 

experiment, we would be able to ask whether baclofen impedes within-category odor 

discrimination in the piriform cortex as observed in the human study, whether it alters olfactory 
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bulb activity from top-down feedback changes, and how it influences odor representation in 

olfactory areas downstream of the piriform cortex.  

 

The second experiment here demonstrated a grid-like representation of a two-dimensional 

Euclidean space inferred by mixtures of two odors varying in intensities, particularly identified 

in the entorhinal cortex, the vmPFC, and the piriform cortex. Our finding is in line with evidence 

for grid-like map structure of spaces of physical, visual, and abstract format, and supports the 

notion of a generalized cognitive map: the brain adopts the same fundamental mechanism to 

organize information systematically, in order to support a flexible strategy based on acquired 

knowledge in purposeful behavior.  

 

The ability to identify directions towards behaviorally relevant sensory events within the 

extrapersonal space is modulated by a complex neural network responsible for memory, 

prediction, attention, conceptual representation, etc., in addition to the sensory representation. 

We speculate that grid-like maps in entorhinal cortex and vmPFC represent high-order 

conceptual organization of multimodal sensory events (Aronov et al 2017, Constantinescu et al 

2016, Killian et al 2012). Meanwhile, it is unclear whether the grid-like map in APC is a result of 

top-down feedback from the entorhinal cortex, or originates endogenously from sensory inputs. 

This question could be approached by a uni-nostril odor navigation experiment inspired by the 

representational theory of olfactory attention (Mesulam 1981). Subjects would navigate the odor 

space with one nostril occluded. If the grid-like signal in APC originates from sensory 

representation of odor mixtures, we would expect such signal to be absent or attenuated from the 
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ipsilateral APC to the occluded nostril, whereas dissociation of APC laterality and side of 

occlusion would support the top-down feedback hypothesis.   

 

We found that subjects have randomly distributed preferred grid-axis orientations without 

obvious clustering, as shown in studies with circular fields (Doeller et al 2010, Hafting et al 2005, 

Horner et al 2016). However, studies using square-shaped space found that grid axes tend to 

align to 7.5° from the border (Julian et al 2018, Krupic et al 2015, Stensola et al 2015). One 

explanation is that odor perception is inherently noisy, given that odor stimuli fluctuates with 

wind direction, air temperature and humidity, and intensity perception habituates with exposure. 

As a result, our odor space might not have a clearly perceived border, as in real and visual spaces. 

Indeed, it is proposed that grid-axis alignment depends on the information uncertainty of the 

space. Model simulations showed that self-location is decoded with maximum accuracy when 

the grid axes are aligned with the axis of greatest information (Schroder et al 2017). An odor 

space would be an excellent model to test this hypothesis, as subjects usually have differential 

acuities towards the odorants in the mixture, creating varying uncertainty axes in the space.  

 

The piriform cortex emerges in both experiments, carrying information of odor category or odor 

space according to task demands. Although defined as the “primary” olfactory cortex due to its 

anatomical position, the piriform cortex functions analogous to association areas, like the 

fusiform cortex and the lateral occipital complex for visual category coding, and hippocampal 

areas for two-dimensional space mapping. In computational neuroscience, the concept of an 

attractor network is a popular idea to model local circuit computation as a source of pattern 

separation and pattern completion, as well as grid pattern emergence (McNaughton et al 2006, 
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Rolls 2007). In general, it is a network of neurons (nodes), often recurrently connected, whose 

time dynamics can settle to a stable pattern (called “attractor”). It can be traced back to Donald 

Hebb who proposed that co-firing neurons would be more strongly connected to each other than 

to the rest of the network (cells that fire together wire together), forming so-called Hebbian cell 

assemblies (Hebb 1949). Activity in a subset of the neurons facilitate activity in the rest of the 

network. The piriform cortex, which holds a rich autoassociation (recurrent) circuit, provides a 

sufficient anatomical substrate for attractor dynamics (Barkai & Hasselmo 1994, Patil & 

Hasselmo 1999). The precise capacity of the piriform cortex and its interaction with the larger 

network contributing to various aspects of olfactory cognition, calls for further research with 

thoughtful designs and technical advancement.         

 

Understanding the neural mechanisms of how our brain can learn and remember the relationship 

between a myriad of information has a long way to go. The two experiments here took an 

olfactory approach and described two examples of associative memory with odors, seeking to 

contribute a drop to the ocean of the human knowledge of the brain. Advancing knowledge of 

olfactory coding may shed light on universal principles of sensory and memory processing. 

There are more interesting topics worth investigating with odors, such as learning and memory 

of temporal sequences of events. 
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