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Abstract 

Development of a Generalizable Strategy for Converting Metabolite Binding 

Proteins into Metabolite Responsive Transcription Factors 

 

Andrew K. D. Younger 

 Metabolite biosensors are powerful tools for basic biological research, medical diagnostics, 

and biotechnological applications. However, a generalizable strategy for developing new 

metabolite biosensors when an existing sensor cannot be found in nature, is a persistent challenge. 

Furthermore, while transcription factor biosensors have the broadest range of applications, the pool 

of naturally occurring transcription factor biosensors is small. There is however, a wealth of 

metabolite binding proteins that can be found in nature, that bind many metabolites, but are unable 

to regulate transcription.  

Therefore, the primary objective of my thesis was to develop a methodology by which a 

metabolite binding protein could be converted into a metabolite responsive transcription factor. 

Toward this goal, two hypothesis and literature driven approaches were investigated in order to 

determine the feasibly of converting a model metabolite binding protein into a metabolite 

responsive transcription factor. The split protein (SP) strategy ultimately resulted in a functional 

metabolite responsive transcription factor by fusing the BCR-ABL1 zinc finger DNA-binding 

domain (ZFP) internally to maltose binding protein (MBP) at amino acid 316R. This initial 

demonstration validated the feasibility of the idea that a metabolite binding protein can be 

converted into a metabolite responsive transcription factor.  
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Next, in order to investigate the generalizability of the SP conversion strategy, the 

biosensor engineering by random domain insertion (BERDI) method was developed to construct 

and test all possible insertions of the ZFP into MBP. Because the original biosensor developed by 

the SP strategy used a previously published split of MBP (316R) that resulted in an enzymatic 

biosensor, the BERDI method was developed so that reliance on this type of information would 

not be required for future biosensor development. In addition, the BERDI method is not specific 

to MBP as the metabolite binder, therefore the method can be used on any metabolite binding 

protein enabling this method to be as generalizable as possible. Using the BERDI method, three 

new splits of MBP were found to generate maltose responsive biosensor illustrating not only that 

the method can generate novel biosensors with no reliance of previously published information, 

but also that one metabolite binding protein can result in several functional biosensors.  

Finally, to apply the BERDI method to metabolite binding enzyme for a biotechnologically 

relevant metabolite, farnesyl pyrophosphate (FPP), a screening strain for the inducible 

overproduction of FPP was developed. This strain enables the same cell to inducible over produce 

FPP such that cells containing potential FPP responsive biosensors experience a change in internal 

FPP levels to enable screening for functional FPP responsive biosensors. This strain enables the 

BERDI method to be applied to FPP binding enzymes to continue the investigation into the 

generalizability of the SP biosensor conversion strategy.  

Overall, this work demonstrates the feasibility of a potentially transformative technology 

and lays the ground work for future investigations and applications of the BERDI method for 

biosensor engineering and development.  
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Chapter 1. Introduction and Background 

1.1 The need for and applications of metabolite biosensors 

 Cellular metabolism is complex; even the simplest of organisms have thousands of nodes 

connected by tens of thousands of edges. While the connections and the chemical transformations 

they describe are well known, the dynamics of metabolism are hard to observe in real time, on a 

single celled level. Bulk measurements of metabolites from whole populations of cells can be 

evaluated using analytic equipment such as Gas Chromatography Mass Spectrometry (GC-MS). 

However, this is relatively low throughput (~103 samples per day) and because the data represent 

a population average, information on cellular heterogeneity is lost1. By contrast, metabolite 

biosensors can provide information on the levels of metabolites at the single cell level in real time. 

Here, a metabolite biosensor will be defined as a protein2-15 or RNA16, 17 species that can interact 

with a metabolite and can transduce this interaction into an output signal. Here I will survey both 

the applications of metabolite biosensors in addition to the various types of biosensors that exist 

and how they were developed.  

Metabolite biosensors can provide a window into the complex state of cellular metabolism 

through a variety of output modalities. The simplest use of this information is to build a better 

understanding of how a metabolite flows through its pathway by having the output modality be a 

measureable signal, or linking its output to such a signal3, 8, 15. Another use for metabolite 

biosensors is the screening of very large (>108) libraries of cells by fluorescence-activated cell 

sorting (FACS)1, 4. Finally, transcription factor biosensors can enable the processing of the 

metabolite signal into more advanced outputs such as controlling the expression of enzymes to 

modulate the flux of metabolites through a pathway of interest. Below, I will survey three distinct 

applications of metabolite biosensors, to illustrate their use as tools for basic biological research 
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and discovery, and then I will describe the potential to use biosensors for the development of highly 

productive cell systems.  

 

1.1.1 Biosensors for fundamental research and discovery 

 Here I will describe two examples of how metabolite biosensors have been used to answer 

basic biological questions. Metabolite biosensors can provide new information on the dynamics of 

a variety of intermediate metabolites to deepen the understanding of these natural systems. 

 Nicotinamide adenine dinucleotide (NADH) is the most important molecule involved in 

many cellular redox reactions. In order to probe the spatiotemporal activity of NADH and its 

oxidized form NAD+, a fluorescent biosensor was made by the fusion of the NADH responsive 

repressor Rex from Staphylococcus aureus18, and a circularly permutated fluorescent protein GFP 

T-Sapphire19. This fusion, named Peredox by the authors, increases green fluorescence when 

bound to NADH, but remains dim when bound to NAD+. Using a second, unaffected red 

fluorescent protein (mCherry), the ratio of green to red fluorescence could be quantified to gain 

insight into the levels of NADH/NAD+. The relative expression of the protein and the GFP output 

signal can be normalized by dividing this signal by the mCherry signal, this way only the change 

in GFP signal that is attributable to the NADH/NAD+ ratio is analyzed. By adding different ratios 

of lactate and pyruvate to the cell media, which get interconverted using a NADH/NAD+ 

intermediate, the intracellular ratio of NADH/NAD+ could be modulated to allow for the 

calibration of Peredox. As a demonstration of the utility of the Peredox sensor, the PI3K pathway 

was inhibited, and the sensor’s fluorescence was monitored. Over the next hour, fluorescence of 

the sensor dropped, indicating a decrease in NADH levels associated with glycolytic inhibition, 

which is hypothesized to occur following PI3K blockade. Furthermore, this sensor was then used 
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to probe the native NADH/NAD+ ratios within several mammalian cell types with the ability to 

measure dynamic changes in the cell with a temporal resolution on the order of seconds. In addition 

to NADH, other important metabolic intermediates such as ATP, glucose, lactate, pyruvate, and 

amino acid sensors have been similarly developed and employed for single celled metabolic 

monitoring8, 20-30. These sensors have proved especially effective at distinguishing intracellular 

differences in concentrations by imaging highly compartmentalized eukaryotic cells. Furthermore, 

the data these biosensors provide can be analyzed on a living single cell level, in real time.  

 In a dramatically different example, the CdaR transcription factor biosensor, native to 

Escherichia coli3, was utilized as a tool to evaluate the performance of several non-native enzymes 

in the glucarate metabolic pathway. CdaR is a transcriptional activator that regulates transcription 

of its cognate promoter in response to glucarate, galactarate, and glycerate 31. Glucarate is 

important as it can be used as a renewable replacement for plastics such as nylon. Glucarate can 

be produced from myo-inositol, however the conversion of myo-inositol to glucuronate by the 

native myo-inositol oxygenase enzyme (MIOX) is extremely slow. The subsequent transformation 

of glucoronate into glucarate by the glucoronate dehydrogenase enzyme (Udh) is fast. Therefore, 

the ability to monitor glucarate production is vital to be able to find new enzymes that can take the 

place of the slow native MIOX enzyme. A glucarate reporter was assembled by placing a CdaR 

responsive promoter in front of Green Fluorescent Protein (GFP) and introduced into E. coli. Next, 

four MIOX orthologs were tested and compared. The authors found that the ortholog from Mus 

musculus performed better than the native enzyme, and the other three orthologs. Importantly, the 

fluorescent reporter for glucarate production trended with the mass spectrometry, when glucarate 

was measured directly3.  
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 In both examples, metabolite biosensors quickly and easily provided new insights into 

native metabolism, helped tackle new scientific questions, and do so in real time on a single cell 

level.  

 

1.1.2 For biotechnology 

1.1.2.1 Medical and diagnostic applications 

 Another area where metabolite biosensors have shown promise is in the field of 

biotechnology. From low cost, noninvasive medical diagnostic sensors to sensors that enable the 

high throughput screening of large genetic libraries, and transcription factor biosensors that can 

transduce their signal into complex genetic programing, metabolite biosensors have been very 

successful in driving these biotechnological applications forward.  

 One major advantage of biologically inspired biosensors for medical diagnostic purposes 

is the inherent high degree of specificity that the biological sensors can achieve. Zinc deficiency 

is a common problem in the developing world and leads to a wide range of medical problems, 

especially in children under five32. Blood serum testing is the state of the art; however, this process 

requires cold storage and transport along with electricity, neither of which can be guaranteed in 

the developing world or following natural disasters. A cell based sensor of Zinc was constructed 

utilizing E. coli’s natural zinc responsive system of promoters and repressors10. In this proof of 

concept, an initial purple pigment, violacein, was produced under low zinc levels, then above a 

threshold, the cells would switch from violacein to b-carotene, an orange pigment. The cells could 

then be lyophilized for long term storage, and transport, then be rehydrated in blood samples to 

provide a colorimetric readout. While the system suffered from leaky expression and hard to 
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control pigment thresholds, it is an example of a low-cost implementation of a metabolite biosensor 

that could address issues for developing world medical diagnostic tools.  

 Viral outbreaks such as the Zika virus transmitted quickly by mosquitoes can rapidly 

become enormous global health challenges in detection and containment, especially in heavily 

populated areas. Traditionally, detection and diagnostic tools lag the spread of the disease because 

the development of these tools is often slow for novel pathogens. To attempt to address this need, 

an RNA based reporter system was developed. Utilizing RNA toehold switches, a lacZ reporter 

mRNA was translationally-inactivated by an upstream hairpin formation in the basal state. In the 

presence of the trigger RNA from the species intended to be detected, the secondary structure can 

unfold and translation of the reporter enzyme can take place33. The trigger and hairpin sequence 

can be designed to respond to nearly any viral DNA or RNA species. In addition, this sensor 

mRNA can be lyophilized on paper with cell free translation machinery and stored at room 

temperature. The user then adds fluid to be tested, rehydrating the paper based system, and waits 

for a color change indicating whether the trigger DNA/RNA is found in the sample. As a proof of 

concept, the development of new sensors for Ebola, and Zika viruses was accomplished under a 

week, and such paper diagnostics are stable at room temperature for over a year34, 35. These sensors 

could differentiate between several stains of each virus, and importantly, not give false positives 

for similar viruses such as the dengue virus. For less than $50 and one week to develop, yielding 

diagnostic paper that costs less than $1 to produce, these RNA-based sensors could rapidly have 

an impact on global health problems and diagnostics.  

 Metabolite biosensors have also been applied to challenges related to disease states in the 

gastrointestinal track. Changes in the gastrointestinal microbiota can lead to or be a symptom of a 

diverse host of disease states36. However, techniques such as colonoscopies are invasive, 
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expensive, and disruptive to the patient. Therefore, a whole cell biosensor was developed with a 

genetic memory circuit to detect the presence of the metabolite cue anhydrotetracycline (aTc)37. A 

lacZ reporter is tripped on in the presence of aTc, in addition, the aTc also triggers a stable memory 

circuit that produces lacZ after the aTc has passed. This idea was validated in the gut of mice, 

where the mice were treated -/+ aTc and then E. coli containing the memory circuit were fed to 

the mice. Fecal samples were collected and analyzed for lacZ positive colonies. Cells containing 

the circuit that had been exposed to aTc in the gut were still producing the lacZ reporter a week 

after the stimulus was provided. The modularity of the system also enables the rapid switching of 

the input trigger to sense other biologically relevant cues (other than aTc). This technology could 

enable the noninvasive detection of many disease biomarkers by utilizing cell-based metabolite 

biosensors linked to long lasting memory circuits. Additionally, it is possible to envision a cell 

based therapy that not only provides a diagnostic readout in the gut but then activates a therapeutic 

program in response to the disease state signal.  

 

1.1.2.2 Screening applications 

 Metabolite biosensors can sense metabolites that are hard to measure via traditional 

analytical chemistry techniques. Furthermore, metabolite biosensors can monitor metabolites on a 

single celled level, not bulk population averages. Therefore, these biosensors can provide a unique 

opportunity to screen large libraries of genetic variants for the presence of hard to detect 

metabolites in single cells in a timescale that’s on the order of magnitude of days, not weeks or 

months. Screening is typically accomplished by linking the output of the metabolite biosensor to 

either an antibiotic resistance marker to give a growth advantage or a fluorescent signal that can 

be analyzed and sorted using fluorescence-activated cell sorting (FACS).  
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 Branched chain amino acids are valuable products and precursors in the drug and herbicide 

industries, but due to the lack appropriate sensors, high producing strains were difficult to screen 

for. However, a transcriptional regulator Lrp from Corynebacterium glutamicum was found to 

activate transcription of its cognate promoter in response to branched chain amino acids or 

methionine. This system was constructed to express Yellow Fluorescent Protein (YFP) to allow 

for the screening of high producing cells38. To find mutants that would allow for the over 

production of branched chain amino acids, wild type C. glutamicum cells were chemically 

mutagenized and subjected to FACS screening. After several rounds of sorting and enriching, 

mutants were isolated that were producing up to 8 mM valine, 2 mM leucine and 1 mM isoleucine. 

Given that wild type levels of these amino acids are in the nM to µM range, this strategy greatly 

enriched for high producing mutants. Similar strategies that couple a fluorescent reporter followed 

by directed evolution have been implemented to (1) increase the responsiveness of an existing 

alkane biosensor by 5-fold39; (2) find new genomic targets for improved malonyl-CoA 

production7; (3) find mutants with increased Lysine synthesis40; and (4) find mutants with 

increased triacetic acid lactone production41.  

 In addition to utilizing fluorescence as a screening method, resistance to an antibiotic, and 

therefore growth selection, can provide an additional level of selection by which large libraries can 

be sorted. 1-butanol is a potential fuel alternative to both gasoline and ethanol, however, high 

throughput screening of alcohols like 1-butanol is a challenge due to its high volatility. BmoR, 

from Thauera butanivorans was found to activate transcription of its cognate promoter PBMO in 

response to 1-butanol, among other alcohols4. In this system, BmoR drove the expression of a tetA 

such that high producing strains would be more resistant to the antibiotic tetracycline. The 

heterologous pathway to 1-butanol was then subjected to directed evolution under the selective 
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pressure of tetracycline and new strains producing as much as 120-fold more than the initial strains 

were isolated. The strategy of coupling cell fitness to production of an important molecule is an 

effective way of screening for higher producing strains and a quick way to test how individual 

perturbations of the pathway effect product titers.  

 

1.1.2.3 Dynamic transcriptional control 

 Metabolic engineering has benefitted from the use of metabolite biosensors to do more than 

just monitor metabolism or screen for high producing strains. Transcription factor biosensors can 

not only sense and report on levels of a metabolite, but also use this signal as an input to control 

the behavior of a system dynamically. The ability to dynamically control certain elements of a 

metabolic pathway has led to increased yields and titers over traditional static configurations where 

the expression of the pathway components is constitutively expressed9, 11. The advantage of 

dynamic control is that the expression of enzymes in the pathway can be increased and decreased 

in response to the changing level of the metabolite being sensed. This is crucial for increased titers 

because static overexpression often results in the imbalance of co-factors, toxic accumulation of 

pathway intermediates, decreased growth, and or unproductive byproduct formation5, 9, 11, 12.  

 An elegant example of dynamic control was constructed using the FadR transcription factor 

that naturally binds fatty acids to balance the production of fatty acid ethyl ester (FAEE)5. FAEE 

is biologically produced fuel that is a drop-in replacement for petroleum-derived diesel. FAEE is 

formed by the condensation reaction of ethanol and fatty acyl-CoA by the atfA enzyme. When 

there are high amounts of ethanol and fatty acyl-CoA, there needs to be high levels of the atfA 

enzyme, however when those reactants drop, the amount of atfA can be repressed. In addition, an 

overabundance of ethanol is toxic, so the ethanol production must match the fatty acyl-CoA 
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production. Further, if there is an overabundance of fatty acyl-CoA, this product will be converted 

into unproductive side products. Therefore, FadR was a perfect candidate to control this system as 

it is a repressor that alleviates repression upon binding to fatty acid. When the levels of fatty acid 

are low, the conversion of fatty acid to fatty acyl-CoA is repressed, ethanol is produced, and atfA 

is expressed. However, when fatty acids are being produced, FadR releases repression and thus the 

fatty acids are converted into fatty acyl-CoA, ethanol is produced, and these products are 

condensed by atfA to form FAEE. If the system becomes unbalanced, it will be reflected in the 

fatty acid pool and FadR will respond accordingly. By using FadR to control the metabolic 

pathway and balance the formation of intermediates, FAEE titers were increased three-fold to 

within 28% of the theoretical maximum.  

 A different style of control involves separating the growth stage of the organism from the 

production stage. The advantage of this strategy is that in many cases, the production of some 

desired product often draws on resources that the cells would normally use to grow and divide, 

slowing both processes down. By segregating the growth from production phases, a cell can first 

use all its resources to grow to a high density, and then metabolism can be switched to a production 

stage after most cell growth has ceased. This process allows for a potentially better time-dependent 

allocation of resources to maximize yields in both growth and production phases. In a recent 

example, the conversion of glucose through glycolysis was inducibly interrupted to start 

production phase to shunt glucose-6-phosphate to a two-step reaction ending in the desired 

product, myo-inositol42. To increase titers, several side reactions from glycolysis were knocked 

out and Pfk-1, the enzyme that converts fructose-6-phosphate into fructose-1,6-bisphosphate in 

glycolysis, was modified to allow for inducible degradation of the enzyme. Therefore, when the 

cells grew, glycolysis functioned normally, and then upon the addition of a small molecule inducer, 
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the Pfk-1 enzyme was degraded, allowing much of the glucose-6-phosphate to be converted into 

myo-inositol. By varying the growth phase at which the degradation of Pfk-1 was induced, thereby 

shifting the point at which the culture shifted from growth phase to production phase, myo-inositol 

titers were doubled.  

 There are numerous other examples (reviewed here9, 11, 43) of transcription factor biosensors 

dynamically balancing pathway intermediates or controlling growth/production phase transitions 

resulting in the increased production of lycopene44, malonyl-CoA45, gluconate46, amorphadiene12, 

and isopropanol47, compared to the traditional static overexpression/knockout systems. Through a 

variety of mechanism of action, metabolite biosensors have a diverse set of applications from basic 

research and discovery, to medical devices, and cells with modified metabolic processes. 

Furthermore, metabolite biosensors have provided live single celled analysis of intracellular 

dynamics of a particular metabolite. In many cases, the utilization of a metabolite biosensor 

allowed researchers to answer questions or address needs that would have otherwise been 

infeasible.  

 

1.2 Current types of biosensors and their method of development  

 Given the wide range of biosensor applications that exist, there also exists a diversity of 

methods by which biosensors are developed and act. Different applications require different 

operating parameters and output modalities which gives rise to the many different classes of 

biosensors that have been described. In addition, the generalizability varies greatly with the type 

of development method, i.e. how simple is it to develop a new biosensor in a class of sensors. 

Therefore, the following sections are an overview of these different classes of biosensors and a 

commentary on their generalizability.  
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1.2.1 Fluorescent, antibiotic resistant, and FRET-based sensors.  

1.2.1.1 Fluorescent biosensors 

 Fluorescent biosensors are a commonly used sensor architecture that is useful for cell 

staining and imaging in addition to FACS-based screens. In this class of sensor, a florescent protein 

is fused directly to the sensing domain. This class does not include transcription factors that 

regulate the expression of fluorescent reporter genes, which will be covered in a later section.  

 In all cases where a fluorescent protein is being fused to a sensing domain, the way the 

fusion occurs is the differentiating feature. The most commonly used method is to circularly 

permute the florescent protein and the sensing domain. This process involves inserting the 

permutated fluorescent protein, with its original N and C termini fused by a short (2-8 amino acid) 

flexible linker into a loop or unstructured region of the sensing domain. Circularly permuted GFP 

or YFP has been inserted into (1) a NADH binding protein Rex to generate an NADH/NAD+ 

sensor19, (2) a hydrogen peroxide binding protein OxyR to generate a hydrogen peroxide sensor 

for mammalian live cell imaging48, (3) a ATP binding protein GlnK1 to provide a sensors for 

ATP:ADP levels49, (4) calmodulin/M13 to generate a Ca2+ biosensor 50, (5) three separate cGMP 

binding fragments of PKG1 to detect changes in cGMP:cAMP ratios51. However, in all cases 

except the cGMP sensor, the chimeric protein underwent directed evolution by error prone PCR 

or site directed mutagenesis after the initial fusion to improve or optimize performance. Typically, 

several mutations were required before the chimera functioned in an acceptable range for the 

desired use.  

 A distinct strategy has been described and validated by generating a maltose biosensor. 

Instead of permuting and inserting the fluorescent protein into the sensing domain, in this example, 

GFP was split into two, non-fluorescent fragments, and fused to the N and C termini of maltose 
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binding protein (MBP)52. Upon binding maltose, MBP experiences a major change in 

conformation, which results in the reorientation of the two fragments of GFP in a closer proximity 

to allow for the reconstitution of the fluorescent protein. While different in construction from the 

circularly permutated fluorescent biosensors, the resulting biosensor is functionally very similar.  

 Fusing metabolite responsive domains with fluorescent proteins has proven to be a 

successful strategy for generating biosensors. However, the successes of these biosensors are due 

to how flexible the coding regions of the fluorescent proteins are, and how conformationally 

sensitive their chromophores are, not necessarily that the metabolite sensing domains fused to the 

fluorescent proteins are well suited for this application. Additionally, the common reliance on 

directed evolution following fusion, highlights the challenges associated with developing this type 

of a sensor. Furthermore, in the case of MBP, the requirement of the large conformational change, 

makes this strategy not necessarily straightforward or broadly generalizable.  

1.2.1.2 Antibiotic resistant biosensors 

 Instead of a fluorescence output, another commonly used output modality is the ability to 

grow in the presence of an antibiotic. The TEM-1 b-lactamase enzyme (bla) confers resistance to 

ampicillin and penicillin, two commonly used gram-negative antibiotics, and this resistance is the 

output modality for this class of biosensors.  

 Similar to the fluorescent biosensors, a metabolite sensing domain was fused to bla by 

circularly permuting either bla, or both bla and the sensing domain. Since it is simple to screen for 

constructs that still retain bla activity after fusion (growth on ampicillin), large libraries of fusion 

proteins may be constructed and evaluated. The bla coding region is isolated, circularized, then 

both this species and the coding region of the sensing domain are digested with DNase1 or S1 

nuclease to randomly cut each piece once. These two linear fragments are then ligated to each 
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other, transformed into E. coli, and screened for their ability to grow in the presence of ampicillin 

and the metabolite. The constructs that grow are then tested for metabolite dependent growth, 

which are then isolated as metabolite responsive biosensors. This method was successfully used 

to transform (1) maltose binding protein (MBP)53, 54, (2) ribose binding protein55, (3) glucose 

binding protein56 and (3) xylose binding protein56, into sugar dependent biosensors. Interestingly, 

while all these proteins are from a closely related class of sugar binding proteins, no insights, 

trends, or general rules about where the insertion would be successful were gleaned; all four 

proteins needed to be made via library generation, screening, and linker optimization56.  

 In addition to the circular permutation method, the MuA transposase has been used to 

generate similarly functioning bla based biosensors. In this method, bla is transposed with a 

transposon sequence. Following transposition, the transposon can be replaced with the ligand-

binding domain. In this case, the transposon was replaced with cytochrome b562 (cyt b)57. Cyt b is 

small peptide that undergoes a large conformation change upon binding to haem. This strategy was 

successful at generating several insertional positions where cyt b resulted in haem-dependent 

growth on ampicillin.  

 Finally, utilizing the many examples of successful splits of the bla enzyme, eight published 

splits were analyzed for their ability to accept the calmodulin, a sensor domain for Ca2+, and the 

M13 peptide58, a calmodulin binding peptide originally from skeletal muscle myosin light chain 

kinase . Of the eight, two could constitutively hydrolyze ampicillin, five were never able to do so, 

and one could do so in a Ca2+-dependent fashion. While a successful biosensor was generated, it 

remains unclear how translatable insertions found by one library can be co-opted to incorporate 

new ligand-binding domains in a general sense. Furthermore, while these sensors are very sensitive 



 

 

28 
to their ligand, the switch characteristics are effectively digital; these sensors do not discriminate 

between different levels of their ligand.  

 

1.2.1.2 FRET based biosensors 

 Förster resonance energy transfer (FRET) is a phenomenon by which two light sensitive 

moieties transfer energy in a distance-dependent manner. For fluorescent proteins, FRET occurs 

when the first fluorescent protein’s emission wavelength matches the excitation wavelength of the 

second fluorescent protein. The resulting interaction is highly sensitive to the distance between the 

two proteins. Therefore, when the two proteins are close, excitation of the first protein results in 

the transfer of a virtual photon to the second protein, exciting it, and causing emission of the second 

proteins wavelength. However, if the proteins are far apart, the excitation of the first protein leads 

to its standard emission, and no energy is transferred. Therefore, by monitoring the emission of 

each fluorescent protein in the pair, it can be determined if the two proteins are close enough to 

experience FRET, or not, by analyzing the ratio of the two emissions. Similar to the split and 

reconstituted GFP-MBP fusion52 mentioned earlier, FRET pairs can be fused to metabolite 

responsive domains in order to form a switch, if and only if, the ligand-binding changes the 

orientation of the FRET pairs in or out of a geometry permissive for energy transfer.  

 Cyan fluorescent protein (CFP) paired with yellow fluorescent protein (YFP), or blue 

fluorescent protein (BFP) paired with green fluorescent protein (GFP), are often used as FRET 

pairs. Calmodulin/M13 was once again utilized as a protein that undergoes a large conformational 

change in response to Ca2+. Either the CFP/YFP pair or the BFP/GFP pair was fused on either side 

of calmodulin/M13, and to enable visualization of eukaryotic compartment differences, different 

versions were constructed (in addition to the cytosolic form) that included either an endoplasmic 



 

 

29 
reticulum localization signal or a nuclear localization signal59. Additionally, known mutations in 

calmodulin were made to change the sensitivity of the fusion protein, which was necessary since 

different subcellular compartments can have very different Ca2+ levels, and thus different sensor 

sensitivities are required to monitor changes in Ca2+ levels. These sensors successful functioned 

to quickly provide a readout for intracellular Ca2+ changes due to exogenously added signals such 

as histamine, ATP, ionomycin, and CaCl2. While FRET sensors can be extremely sensitive to 

changes in protein conformation, the protein must undergo a conformational change upon ligand-

binding in order for such a sensor modality to work. Furthermore, the attachments points of the 

pairs must be in a location that is close enough such that when the protein changes conformation, 

the pairs are either moved in, or out, of a geometry that enables FRET.  

 One solution to this challenge is to use families of proteins that are all structurally similar. 

Indeed, the sugar-binding family of periplasmic proteins, of which maltose binding protein is a 

member, all undergo significant conformational changes upon ligand-binding and have 

appropriated spaced N and C termini to accommodate a FRET pair. Using this strategy FRET 

sensors for glucose60, 61, maltose62, 63, and ribose22, 64 have been developed and used in both 

prokaryotic and eukaryotic model systems. A caveat to these sensors, like the calmodulin-based 

sensors, is that the ligand-binding proteins must undergo mutagenesis to their binding pockets to 

alter the affinity of the protein for its ligand such that the range is suitable for the desired 

application. While there are successful examples of FRET-based biosensors, the stringent 

conditions on the sensing domain that must be met to qualify the protein to be a successful FRET 

sensor limits pool of potential candidates and may not be a broadly applicable strategy for 

generating new metabolite biosensors.  

 



 

 

30 
1.2.2 De novo protein design 

 The ability to computationally design a protein that can bind a metabolite de novo has, until 

recently, been an unsolved challenge. A computational method was developed based on forming 

favorable hydrogen bonds and van der Waals interactions to the ligand in addition to having a 

binding pocket that structurally fit the ligand. This method was evaluated to design a protein that 

binds to the steroid digoxigenin (DIG)65. Of the 17 computationally selected designs, two could 

bind DIG, and the best had an affinity for DIG in the low µM range. After further tweaking of the 

hydrogen bond network, the protein could selectively distinguish between DIG and two related 

steroid progesterone and b-oestradiol. In addition, the crystal structures of the protein showed very 

close agreement to the computationally predicted structure.  

 To convert this ligand-binding domain into a metabolite biosensor, the protein was fused 

to GFP. In the absence of DIG the ligand-binding domain was so unstable that it caused the 

degradation of the entire biosensors. Adding DIG-mediated stabilization of the biosensor, which 

led to a longer half-life and steady fluorescence resulting in a 5-fold induction of fluorescence over 

the unbound state66. This mechanism was also utilized to construct a transcription factor by fusing 

the unstable ligand-binding domain to a DNA-binding domain and transcriptional activator 

domain. In this scenario, only in the presence of DIG would the transcription factor be stabilized 

enough to activate transcription of a reporter gene. In the evaluation of this construct, high levels 

of DIG resulted in nearly a 60-fold induction of the reporter gene66. While the success of this 

computational method is a tour de force, and several ligand-binding proteins have been designed, 

whether this approach is readily generalizable remains to be determined.  
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1.2.3 RNA-based biosensors 

 RNA, much like a protein polypeptide, can fold into a huge diversity of structures, and 

have cis and trans catalytic activity. Therefore, RNA has been a medium by which natural 

metabolite responsive system have been discovered and characterized and a platform for which 

new sensors have been developed.  

 Thiamine pyrophosphate (TPP) and flavin mononucleotide (FMN) were discovered to have 

a novel translational attenuation mechanism for regulating their own biosynthesis pathways67, 68. 

The mRNAs for thiM and thiC, two enzymes responsible for thiamine biosynthesis, were both 

found to have sequences in the 5’ untranslated region of their mRNA that formed a hairpin 

structure when bound to TPP. This hairpin, or riboswitch, prevents the translation by the ribosome 

and substantially downregulated the enzymes expression in the presence of thiamine, without the 

need for any protein co-factors. It was also demonstrated that there are riboflavin riboswitches in 

the biosynthesis pathway enzymes that undergo a similar form of translational control upon 

binding to FMN67.  

In addition to riboswitches, there are also ribozymes, RNA molecules that not only bind a 

small molecule, but then perform a catalytic activity such as cleavage. The glmS gene, which 

encodes the GlmS enzyme, is responsible for the formation of glucosamine-6-phosphate from 

frusctose-6-phoshate and glutamine. Like the riboswitches, there is a hairpin forming region in the 

5’ untranslated region of the mRNA that can bind the product of the enzyme, glucosamine-6-

phosphate. Under high concentrations, glucosamine-6-phosphate binds the glmS mRNA, 

undergoes self-cleavage and is degraded, demonstrating a simple negative feedback loop69. Some 

researchers have even suggested that the presence of the natural RNA-based switches and enzymes 
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are potential evidence for an RNA world hypothesis about the development of life, as examples of 

situations where proteins are not required68, 69. 

 To develop a strategy to create new ligand-binding RNA oligomers, a method called 

systematic evolution of ligand by exponential enrichment (SELEX) was created70. A large (1014) 

pool of DNA molecules, each 100 nucleotides long and of random sequence, was generated, 

transcribed into RNA, then washed over columns containing a small molecule. After washing the 

column, and eluting remaining bound RNA molecules, the selected RNA molecules were reverse 

transcribed back into DNA, where the process would begin again. This way, a very large library 

of RNA molecules could be screened, and enriched for their ability to bind small molecules. 

Interestingly, 102-105 molecules were isolated for their ability to bind to one of the tested ligands. 

Considering the size of the initial library, this number is an incredibly small fraction, indicating 

how rare this phenomenon is. Yet, simultaneously, the number of molecules was much larger than 

zero, indicating there are many sequences that can accomplish the goal of ligand-binding.  

In fact, it was using SELEX that an incredibly popular RNA aptamer for theophylline was 

developed71. The theophylline riboswitch has been utilized in a variety of contexts16, 17. A self-

splicing intron was engineered to incorporate the theophylline aptamer, allowing the splicing 

decision to be regulated by the presence or absence of theophylline72. As a small molecule inducer 

for gene expression, the theophylline aptamer and a tetracycline aptamer were designed to interact 

with a GFP mRNA73. In this example, both aptamers were developed to be antiswitches, meaning 

that without the small molecule ligand, the RNA switch is unbound to the GFP mRNA, and 

fluorescence can be observed. However, in the presence of the small molecule, the RNA 

antiswitch’s hairpins are rearranged, enabling the aptamer to bind to the GFP mRNA and inhibit 

translation. Further work has demonstrated the flexibility of the theophylline aptamer sequences 
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by mutating the RNA sequence to make it more sensitive to other related ligands such as caffeine 

and 3-methylxanthine74. Additionally, the theophylline aptamer has been integrated into 

ribozymes75, and ncRNAs76, to endow these RNAs with theophylline-responsiveness.  

Other RNA aptamers to lysine and tryptophan have been implemented in screens77 and as 

regulators for balancing metabolic flux78. In one example, the gene for citrate synthase, an essential 

TCA cycle enzyme, and a competing reaction for the biosynthesis of lysine, was put under the 

control of the lysine riboswitch. In this scenario, when there are low levels of lysine, citrate 

synthase is produced. However, when lysine levels are elevated, translation of citrate synthase is 

stopped by the bound lysine aptamer. This dramatically slows cell growth, but also improved 

lysine production by 63%.  

RNA based biosensors have been shown to have very high specificity to their substrate, 

have a detection threshold than can be adjusted by varying the RNA sequence, and be flexible to 

mutation-based reengineering for different ligands79. However, because the sequence of the 

aptamer and its output domain must interact with each other so that their activities are linked, this 

method frequently requires a redesign by screening for new aptamer and output domain fusions, 

limiting the modularity of RNA base biosensors16. Another downside is the limited number of 

ligands that RNA aptamers have been developed for, suggesting that there may be classes of 

molecules that are unable to be bound by RNA species80. Therefore, these factors limit the 

generalizability of RNA aptamers as the backbone for the development of new metabolite 

biosensors.  
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1.2.4 Naturally occurring transcription factor biosensors 

 Genetic feedback control is a basic, commonly used mechanism for controlling metabolite 

levels in natural systems. Naturally occurring transcription factor biosensors often balance the 

production of pathway enzymes by monitoring the amount of a key intermediate or final product 

of a pathway. In native systems, genetic feedback control is commonly a cost-savings mechanism, 

by which if the cell has an abundance of a product, it can tune down the expression of the enzymes 

that produce that product, to conserve resources. The opposite is also true: if there is not enough 

of a given product, the enzymes to produce the product can be upregulated. This process is 

primarily accomplished by transcription factors, some of which are directly metabolite responsive. 

LacI and TetR are classic examples of this mechanism, responding to lactose/IPTG and the 

antibiotic tetracycline respectively. These two biosensors have been used countless times 

(reviewed here81-83) to control the expression of exogenously added open reading frames with their 

cognate small molecule inducers.  

 While LacI and TetR have been extensively used to control the expression of heterologous 

genes, there exists many situations in which controlling the gene expression of a reporter or a 

pathway would be better served by a native transcription factor that can dynamically control 

expression in response to a key intermediate or product of interest rather than exogenously added 

small molecule inducers such as IPTG or tetracycline. One method to find such a biosensor is to 

do a global transcriptional analysis of promoter expression that varies with the presence or absence 

of the metabolite of interest. In an example of this approach, cells expressing an engineered 

pathway to overproduce farnesyl pyrophosphate (FPP) were compared to a wild type strain, and 

promoters that were differentially regulated in those two conditions were identified12. Using 

transcriptome analysis, the GadE and RstA transcriptional activators, were found to downregulate, 
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or upregulated (respectively) their native targets in the presence of FPP. These FPP 

overexpression-responsive transcriptional activators and their cognate promoters were then 

implemented to control the FPP overexpression pathway. By dynamically controlling the pathway 

with the GadE transcriptional activator, production of the final product doubled compared to the 

initial, constitutive overexpression strain. This is likely due to the GadE-mediated downregulation 

of the enzymes that produce FPP, upon high levels of intracellular FPP. FPP accumulation is toxic, 

and therefore balancing the level of FPP production with the rate of FPP conversion into 

amorphadiene can help prevent the buildup of FPP. While GadE was successful at dynamically 

balancing FPP production and conversion, it is not a direct biosensor for FPP, and more directly 

involved in acid stress response, and pH regulation84.  

 There are many examples of previously characterized transcription factor biosensors that 

can be applied to new systems to enable high throughput screening or dynamic control. BmoR, an 

alcohol-responsive transcriptional activator from T. butanivorans, was implemented to screen for 

cells that contained 1-buanol4. By using BmoR’s congnate promoter PBMO, the expression of tetA, 

and therefore growth under tetracycline section, was induced in the presence of 1-butanol. Thus, 

cells producing more 1-butantol would be more fit under tetracycline selection and could be 

serially enriched and isolated. Using a similar tetA-based screening system, the NahR 

transcriptional activator from P. putida was implemented to screen for the presence of benzoate 

and 2-hydroxybenzoate85. Using a known high producing strain of benzoate, it was demonstrated 

that the NahR biosensor could discriminate between this strain and a low producing strain even 

after a 1:106 dilution of the high producing strain to low producing strain. Other examples of 

known transcription factor biosensors being co-opted for strain discovery and development goals 

include: (1)  LysG, the lysine responsive transcription factor from C. glutamicum40; (2) FadR, the 
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fatty acid responsive transcription factor from E. coli5; (3) FapR, the malonyl-CoA responsive 

transcription factor from Bacillus subtilis7, 13, 86; and (4) NR1, the acetyl phosphatase responsive 

transcription factor from E. coli44.  

A commonly required alteration to these natural systems is the reengineering of the native 

cognate promoter that accompanies the transcription factor5, 7, 13, 40, 44, 86. Native promoters rarely 

have the dynamic range or high expression that is commonly needed for the expression of the 

desired open reading frames. In all these cases, hybrid promoters were engineered by the 

incorporation of the native binding sites for the transcription factor, often from several different 

native promoters, all into a single synthetic promoter.  

Despite these alterations prior to usage, naturally occurring transcription factor biosensors 

are a powerful tool for strain discovery and development. The generalizability of these biosensors 

is the inherently limited to known or previously characterized transcription factors. However, as 

was demonstrated with the FPP-responsive biosensors12, new biosensors can be screened for using 

global transcriptional analysis if it is possible to overproduce the metabolite of interest.  

 

1.2.5 Re-engineering natural sensors for different ligands or new activities 

 Transcription factor biosensors can be a powerful tool for metabolite biosensing, however 

when a suitable transcription factor biosensor is not known, a variety of techniques have been 

employed to re-engineer natural transcription factor biosensors for new ligands. 

 The simplest example of this technique is the ability to leverage a family of similarly 

structured transcription factors in the LacI/GalR family. These transcription factors have a ligand-

binding domain and a DNA-binding domain and rely on an allosteric interaction between these 

two domains for regulating transcription in response to the binding of the metabolite87. Therefore, 
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two orthogonal DNA-binding domains and their cognate promoters (PLAC and PTAN) were mixed 

with ligand-binding domains that recognize different metabolites (lactose, fructose, fucose, ribose, 

trehalose, guanine, galatactose, cellobiose, and cytidine)87, 88. These chimeras all showed ligand-

specific transcriptional regulation of the matching cognate promoter, corresponding to the attached 

DNA-binding domain. Interestingly, the native allosteric interaction was still active in the 

chimeras despite a smaller linker region in each fusion. This finding argues that this regulation 

does not require precise control or positioning of the ligand-binding domain relative to the DNA-

binding domain87 Furthermore, it was shown that these new chimeric transcription factors could 

be arranged into logic gates with the different ligands being the various inputs88. Using a similar 

concept, the DNA-binding domain from AraC, a native regulator of arabinose metabolism, and the 

DNA-binding domain Gal4 were each fused to the enzyme idi, which dimerizes in response to 

binding its ligand isopentyl pyrophosphate (IPP)89. Following fusion, mutagenesis and screening 

was performed to isolate clones that could regulated an AraC-responsive promoter in an IPP-

dependent fashion.  

 Another strategy for generating new transcription factor biosensors is to use error prone 

PCR mutagenesis and high throughput screening of a known transcription factor to evolve it to 

sense a new ligand. The LuxR quorum sensing transcription factor natively recognizes 

oxohexanoyl-homoserine lactone (oxohexanoyl-HSL), and it very weakly recognizes octanoyl-

HSL. After several rounds of mutagenesis and screening, eight LuxR variants were isolated that 

had a 100-fold increase in sensitivity to octanoyl-HSL90. Seven out of eight of the variants had 

mutants in the ligand-binding domain region, indicating that there is inherent plasticity in this 

pocket. However, these variants still recognized the original oxohexanoyl-HSL. Therefore, in a 

follow up study, the screen following mutagenesis was altered to included negative selection 
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against the original ligand in addition to positive selection for the new ligand. Under these 

conditions, a new variant was isolated that only responded to octanoyl-HSL and not oxohexanoyl-

HSL91. Using a similar strategy of saturating mutagenesis in the ligand-binding pocket, AraC was 

evolved to recognize D-arabinose instead of L-arabinose92, triacetic acid lactone41, and 

mevalonate93. This strategy is not specific for AraC, XlyR, a native xylose responsive transcription 

factor as similarly mutated to bind a new ligand 1,2,4-trichlorobenzene94.  

By taking advantage of a structurally similar family of transcription factors or using 

saturating mutagenesis and high throughput screening, it is possible to re-engineer natural 

transcription factors to bind new ligands. In all these examples, the new ligand was either already 

partially recognized by the transcription factor, or the new ligand was structurally similar. It 

remains an open question whether any given transcription factor can be reengineered to sense a 

highly structurally divergent ligand.  

 

1.2 Conclusions and thesis overview   

 From a broad perspective, there are many challenges associated with developing a truly 

generalizable method for creating, or finding, new metabolite biosensors. The primary reason for 

this is that there exists a large range of applications for metabolite biosensors, which potentially 

necessitates a number of different sensor properties. It may certainly be the case that no one method 

could generate any biosensor, for any application. For example, a transcription factor biosensor is 

highly desirable when the goal is to dynamically control a metabolic pathway at the transcriptional 

level. However, this same sensor would do a poor job of sensing metabolite levels in different 

cellular compartments, nor would it have an output that could monitor fast (seconds or less) 

changes in metabolite levels, such as a fluorescent or FRET-based sensor could. Additionally, for 
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diagnostic applications, it may be useful for the output of the biosensor to be highly visible such 

that the level of output can be determined qualitatively without any specialized lab equipment, 

whereas in a research setting, even dim outputs can be readily quantified using flow cytometry or 

microscopy paired with image processing. Therefore, a major challenge associated with 

developing a fully generalizable method is the diversity of the applications and biosensor 

properties required for each application.  

 With this in mind, I chose to focus my efforts to developing a generalizable strategy for 

generating transcription factor biosensors to narrow the search window and parameter space. 

Through the transcriptional regulation of fluorescent or enzymatic reporters, transcription factor 

biosensors can provide information on the levels of a particular metabolite, in single cells, in real 

time. In addition, transcription factor biosensor can also dynamically regulate the transcription of 

any open reading frame (ORF) with its cognate promoter. These properties make transcription 

factor biosensors amenable to a range of applications, ranging from basic discovery-based research 

to application-driven medical and biotechnology projects.  

 The upsides associated with a generalizable method for developing transcription factors 

are the potential for modularity and the ability for high-throughput construction and screening 

methodologies. From a modularity standpoint transcription activator-like effectors (TALEs) and 

zinc finger proteins (ZFP) are both classes of DNA-binding domains that have designable binding 

sites, allowing the user to specify or pick from a range of binding site sequence options. Utilizing 

these proteins as part of a method to generate new biosensors streamlines the DNA-binding domain 

aspect of the transcription factor by enabling the binding site to be modularly changed without 

substantially effecting the three-dimensional structure of the biosensor. From the DNA-binding 

domain up, developing a method that could combine the chosen DNA-binding domain with the 
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metabolite sensor domain can also be modular if the construction method does not depend on some 

feature of the sensing domain. By utilizing a known DNA-binding domain, and a construction 

method that is not dependent on the properties of the sensing domain, a further upside is the ability 

to assemble and screen libraries of potential biosensors in a high-throughput fashion. Since the 

parts are modular and the method in generalizable, this allows for the high-throughput sampling 

of many biosensor libraries without substantially changing the biosensor development process. 

Using DNA-binding domains with known binding sites also enables one to screen any biosensor 

made with a particular DNA-binding domain with a single promoter/reporter system. Even if 

downstream applications would require a different binding site sequence, the modular nature of 

both TALEs and ZFPs enable binding-site specificity to be readily changed after the biosensor has 

been developed. Therefore, the ability to both assemble and screen biosensors in a uniform way, 

regardless of the metabolite being sensed, is an upside that would make such a method very 

powerful.  

In summary, harnessing transcription factor biosensors is currently limited to the utilization 

of naturally occurring transcription factors, or to the evolution of these natural sensors to sense 

new ligands. Furthermore, although the number of known transcription factors is limited, there is 

a wealth of known metabolite-binding proteins such as transporters and enzymes. This thesis is 

therefore motivated by the following open questions: (1) Can a metabolite binding protein be fused 

with a modular DNA-binding protein to generate a metabolite-dependent regulator of 

transcription? (2) If a metabolite-binding protein can be converted into a transcription factor, can 

this be done in a generalizable manner that enables the conversion of other metabolite-binding 

proteins into biosensors? (3) Are there classes of metabolite-binding proteins that are more 

amenable to conversion than are others?  To address these questions, this thesis aims to investigate 
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several strategies for converting metabolite binding proteins into metabolite-responsive 

transcription factors, to provide a demonstration of a generalizable, high-throughput method for 

this conversion, and to generate a platform for evaluating the conversion of novel metabolite-

binding proteins into metabolite-responsive transcription factors.  
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Chapter 2. Engineering modular biosensors to confer metabolite-

responsive regulation of transcription  

2.1 Context 

 Toward the goal of developing a generalizable strategy for converting the large pool of 

metabolite binding proteins into metabolite responsive transcription factors, this chapter addresses 

the feasibility of this idea by using maltose binding protein (MBP) and the BCR-ABL1 zinc finger 

DNA-binding domain (ZFP) as a model system. Prior to biosensor development, the design rules 

for zinc finger responsive promoters was first investigated. Understanding how zinc finger binding 

site placement would affect the ability of the ZFP or ZFP based biosensor to regulate transcription 

was an important open question to address, as all future biosensors could be based on ZFP DNA-

binding domains. The design features for one ZFP should be true for all ZFPs in the Cys2-His2 

class, regardless of binding site, and thus lead to generalizable design features for all ZFP based 

biosensors.  

Another open question was how could MBP and the ZFP be combined in such a way to 

enable, maltose responsive regulation of transcription. In this chapter, we evaluated two distinct 

fusion strategies for converting MBP into a maltose responsive transcription factor. Utilizing the 

prior literature of biosensors made from MBP, a split zinc finger approach (SZF) was first 

investigated based off of successful FRET biosensor made by fusing fluorescent FRET pairs to the 

N and C terminal of MBP95. It was also known that the BCR-ABL1 ZFP had been shown to be 

split and reconstituted using self splicing inteins96. Taken together, I hypothesized that splitting 

the ZFP and fusing one finger to the N terminal and two fingers to the C terminal would enable 

maltose dependent change in conformation of the ZFP fragments in and out of a geometry 
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favorable to DNA-binding. The second conversion strategy was inspired by a fusion of MBP to 

TEM1 b-lactamase (bla), where bla was circularly permutated and fused internally to MBP at 

316R53. The insertion of bla into MBP at 316R created an allosterically regulated bla enzymatic 

biosensor that would only cleave its substrate ampicillin in the presence of maltose. I hypothesized 

that this insertional position in MBP would also produce an allosterically regulated ZFP protein. 

This split protein (SP) conversion strategy was ultimately successful at generating a maltose 

responsive biosensor.  

I lead the work described in this chapter including the design and execution of all 

experiments. This chapter is published as a paper in ACS Synthetic Biology97. This manuscript and 

chapter would not have been possible without the help of two talented undergraduate researchers 

Neil Dalvie and Austin Rottinghaus who helped with experimental execution, and writing of the 

manuscript.  

 

2.2 Abstract 

Efforts to engineer microbial factories have benefitted from mining biological diversity and high 

throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic 

pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these 

persistent challenges by enabling the monitoring of metabolite levels in individual cells and 

metabolite-responsive feedback control. We are currently limited to naturally-evolved biosensors, 

which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering 

novel biosensors would be powerful, yet we lack a generalizable approach that enables the 

construction of a wide range of biosensors. As a step towards this goal, we here explore several 

strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional 
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regulator. By pairing a modular protein design approach with a library of synthetic promoters and 

applying robust statistical analyses, we identified strategies for engineering biosensor-regulated 

bacterial promoters and for achieving design-driven improvements of biosensor performance. We 

demonstrated the feasibility of this strategy by fusing a programmable DNA-binding motif (zinc 

finger module) with a model ligand binding protein (maltose binding protein), to generate a novel 

biosensor conferring maltose-regulated gene expression. This systematic investigation provides 

insights that may guide the development of additional novel biosensors for diverse synthetic 

biology applications. 

 

2.3 Introduction 

Cells evaluate and respond to their internal states through a range of mechanisms, including the 

wide use of molecular biosensors. In a general sense, a biosensor may be understood to comprise 

a species that senses one or more analytes, typically through a molecular recognition event 

involving binding to the analyte, such that recognition of the analyte is transduced into a change 

in the biosensor that enables it to effect a change in cell state. Biosensors may be composed of a 

range of biomolecules, most commonly including RNA 16, 17, 78 or protein 2-13. Early applications 

included the generation of whole-cell biosensors, in which an environmental analyte enters a cell 

through active or passive transport. Upon recognition of the analyte by an intracellular biosensor, 

an output signal such as fluorescence, luminescence, or color-change is generated, most commonly 

by biosensor-induced expression of a reporter gene or by analyte binding-induced changes in the 

activity of a fluorescent or enzymatic biosensor protein. A particularly exciting frontier is the use 

of biosensors to sense not external factors, but rather a cell’s internal metabolic state. 
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 Metabolite-responsive biosensors may help to address several pervasive and persistent 

challenges in the fields of synthetic biology and metabolic engineering 2-5, 7, 9, 11-13, 44, 78. First, 

biosensors may help overcome the costliest and rate-limiting step in the development of new 

biosynthetic pathways – screening and evaluating pathway or strain variants to both identify well-

performing constructs and glean insights into pathway function that may be utilized in subsequent 

iterative rounds of the design-build-test engineering cycle. By coupling metabolite-binding to 

outputs such as fluorescence or antibiotic resistance, biosensors can enable the screening of large 

libraries (e.g., >108 members), which remain beyond the capacity of even contemporary automated 

platforms for performing clonal evaluations. For example, the naturally occurring transcription 

factor BmoR was harnessed to confer growth in the presence of butanol, which enabled the 

screening of a plasmid library to identify strains exhibiting robust production of 1-butanol 4. 

Similar approaches have been harnessed to screen plasmid libraries to achieve enhanced 

production of mevalonate 93, triacetic acid lactone 41, and L-lysine 77. Such an approach may be 

extended to screen for high-performing variants generated through genomic mutation, including 

both random mutagenesis, which has been utilized to optimize L-lysine production via mutation 

of endogenous enzymes 40, and targeted genome-wide mutagenesis, which has been used to 

optimize naringenin and glucaric acid production via combinatorial perturbation of endogenous 

gene regulation 2. While most investigations to date have applied these methods to bacterial 

chasses, such approaches may also be extended to yeast and other organisms 7. In general, “digital” 

biosensor outputs, such as expression of antibiotic resistance, are most useful for screening, while 

“analog” biosensor outputs, such as fluorescence, enable both screening and characterization of 

internal metabolite concentrations, potentially at the single-cell level, to guide construct analysis 

and iterative refinement. 
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 A powerful, yet less explored extension of this approach is the use of metabolite-responsive 

transcriptional regulators to implement feedback control in order to optimize system performance. 

An early demonstration of this opportunity was the use of an acetyl phosphate biosensor to sense 

excess glycolytic flux, and in response, regulate the expression of limiting genes in the lycopene 

biosynthesis pathway. This activity resulted in both enhanced lycopene production and diminished 

growth defects 44. More recently, feedback control was used to achieve balanced flux through 

several pathways that led to enhanced yields and improved cell survival during the production of 

a biofuel (fatty acid ethyl ester) 5. This investigation made use of the natural FadR biosensor, which 

is antagonized by Acyl-CoA, paired with synthetic promoters engineered to achieve robust 

regulation by FadR. Similarly, lysine-responsive riboswitches were utilized to control the 

expression of citrate synthase and thereby increase lysine production by controlling flux in the 

TCA cycle 78. The potential utility of biosensor-mediated feedback control is now widely 

recognized 1, 9, 98, and further implementation is currently limited largely by the pool of suitable 

biosensors. 

 A general challenge in the use of biosensors is that the pool of metabolites one would like 

to measure and potentially utilize for feedback control is much larger than the pool of metabolite-

responsive transcriptional regulators that have been identified. Bioinformatic approaches and 

surveys of published literature may identify a number of useful biosensors that have simply not 

yet been utilized as such. For example, a recent study elegantly applied a systematic 

characterization of known metabolite-responsive transcriptional regulators to generate quantitative 

fingerprints enabling these biological “parts” to be harnessed for engineering applications 3. 

However, since the entire pool of naturally-evolved biosensors is likely much smaller than the pool 

of metabolite targets, it would be attractive to develop approaches for engineering novel 
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biosensors. Ideally, such a biosensor could be constructed to recognize an analyte of interest (with 

some practical degree of specificity), would exhibit a dynamic range suitable (or tunable) to the 

application of interest, and could be directed to regulate a gene (or genes) of interest in a ligand-

dependent fashion. Although this comprises a daunting protein engineering challenge, a number 

of smaller-scale successes suggest strategies that may help to achieve this goal. 

 The most widely used approach for engineering novel biosensors is to genetically fuse a 

ligand-binding protein with a distinct functional domain, such that the fusion causes the activity 

of the functional domain to be conditional upon the presence or absence of the ligand of interest 8, 

14, 52-54, 57, 58, 76. Most commonly, the functional domain comprises a fluorescent protein or enzyme 

conferring antibiotic resistance, each of which comprises an output amenable to screening the large 

libraries required to identify functional fusion proteins. For example, maltose binding protein 

(MBP) and β-lactamase (BLA) were circularly permutated to generate a library of fusion proteins, 

such that successful fusions exhibited high BLA activity only in the presence of maltose 53. 

Calmodulin, which experiences a conformational change upon binding to Ca2+, is similarly 

amenable to such a fusion strategy to create fusion proteins based upon BLA 58 or GFP and its 

derivatives 59. Indeed, many similar approaches have harnessed proteins in which ligand binding 

induces a conformational change in order to generate biosensors in which fluorescence, often via 

FRET, provides a metric of intracellular metabolite concentration (reviewed in 8, 15, 43, 99). 

Furthermore, zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and 

CRISPR-based DNA-binding domains have been fused to putative repressor and activator domains 

to create novel transcription factors to regulate both prokaryotic and eukaryotic transcription, 

although such functions are not generally regulated by ligand binding to the transcription factor 

(100-105). However, recently an allosterically regulated version of Cas9 has been developed by 
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fusing the estrogen receptor-a to create a protein that represses transcription in the presence of the 

ligand, 4-hydroxytamoxifen106. Given the broad homology within the LacI/GalR family of ligand-

responsive transcription factors, novel biosensors have also been constructed by fusing the ligand-

binding domains from LacI paralogs to the LacI DNA-binding domain, conferring regulation of 

the lac promoter by fructose, ribose, or other species 41, 87, 88, 93. Ultimately, computational protein 

design could guide the development of novel biosensors. To date, such methods have been used 

primarily to shift ligand specificity of existing biosensor proteins 90, 93, 107-110, although de novo 

design of novel ligand-binding proteins and biosensors is another promising frontier 65, 66. Overall, 

these approaches bespeak the promise of engineering novel biosensor proteins, but to date no 

generalizable approach for engineering novel metabolite-responsive transcriptional regulators has 

been described. 

 In this study, we investigated, validated, and developed a strategy for engineering novel 

metabolite-responsive transcriptional regulators. Our central goals were to quantitatively evaluate 

several strategies for converting a ligand-binding protein into a functioning biosensor that 

regulates transcription, and to elucidate design principles governing the performance of biosensors 

constructed in such a fashion. To this end, we leveraged the facts that MBP is a well-characterized 

ligand-binding protein, and that zinc finger proteins (ZFP) are well-characterized and 

programmable DNA-binding domains. Furthermore, we applied quantitative analyses to identify 

rules for designing biosensor-regulated promoters and quantitatively characterize these new 

biological parts. This systematic investigation establishes a foundation for applying a potentially 

generalizable strategy towards the ultimate goal of engineering customized metabolite-responsive 

biosensors. 
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2.4 Materials and methods 

2.4.1 Bacterial strains and culturing 

All experiments were conducted in TOP10 Escherichia coli cells (F- mcrA Δ(mrr-

hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 

rpsL(StrR) endA1 λ-) (Life Technologies). Cells were maintained in Lysogeny Broth (LB) Lennox 

formulation (10 g/L of tryptone, 5 g/L of yeast extract, 5 g/L of NaCl) supplemented with 

appropriate antibiotics (Ampicillin 100 µg/mL or Kanamycin 50 µg/mL). All experimental 

analysis was conducted in M9 minimal media (1X M9 salts, 0.2% Casamino Acids, 2 mM MgSO4, 

0.1 mM CaCl2, 1 mM Thiamine HCl) containing glycerol (0.4%) as the primary carbon source. 

1% arabinose and variable amounts of maltose monohydrate and isopropyl β-D-1-

thiogalactopyranoside (IPTG) were added as indicated. M9 medium containing both Ampicillin 

and Kanamycin was used to maintain the strains that contained both a reporter plasmid and a 

biosensor plasmid. 

 

2.4.2 Plasmid construction 

All plasmids were assembled using standard molecular biology techniques. Plasmid 

backbones containing “plug-and-play” multiple cloning sites and compatible plasmids containing 

synthetic parts (mCherry, GFPmut3b, pBAD, AraC, pTrc2) were generously provided by Jim 

Collins (MIT) 111. Custom RBS sequences were designed using the RBS Calculator 112. The pA15 

low copy number origin was obtained from the Registry of Standard Biological Parts, plasmid 

pSB3K3. Template sequences derived from published descriptions were used for terminators 113, 

BCR-ABL1 96, and the Zif268 portion of human EGR1 114 (AddGene #52724). MBP was PCR 

amplified directly from TOP10 genomic DNA. The library of constitutive reporters was cloned in 
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a low copy number pA15 backbone (~10 copies per cell) with the ampicillin resistance cassette. 

All of the pBAD-based inducible ZFP and pTrc-based inducible biosensor expression constructs 

included a ColE1 backbone (~300 copies per cell) and kanamycin resistance cassette. The mCherry 

gene was cloned behind each ZFP or biosensor gene to act as a co-cistronic reporter to confirm 

arabinose and IPTG mediated induction of gene expression. Representative plasmid maps are 

included in Appendix A2.1.  

 

2.4.3 Microplate-based fluorescence assays and analysis 

Cultures were inoculated from single colonies into 2 mL of M9 media and grown overnight 

to stationary phase. Overnight cultures were diluted 1:20 and grown into exponential phase (OD600 

~0.5). Cultures were again diluted to an OD600 ~0.05, plated in black-walled clear bottom 96-well 

plates in biological triplicate, and induced with 1% arabinose (to drive expression of the ZFP) or 

IPTG as indicated (to drive expression of the biosensor), +/- maltose as specified. In each 

experiment, IPTG-induced expression of biosensor constructs was confirmed via the co-cistronic 

expression of mCherry (data not shown). Plates with lids were incubated and shaken in a 

continuous double orbital pattern at 548 cpm (2 mm) inside a BioTek Synergy H1 plate reader for 

10 h with GFP, mCherry, and OD600 measurements taken every 15 min. Monochrometer settings 

were 481/511 nm for GFP and 585/620 nm for mCherry. 

 To quantify reporter output, GFP fluorescence per OD600 was quantified and averaged over 

7 time points that span ~1.5 h of exponential growth (unless otherwise indicated). The specific 

fluorescence of each sample was defined as the mean (GFP/ OD600) averaged across these 7 time 

points, and this specific fluorescence was averaged across 3 biological replicate samples. To 

quantify fluorescence attributable to GFP, each sample was background-subtracted using a control 
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sample comprising cells expressing no fluorescent proteins. To enable comparisons between 

promoters, each specific fluorescence value from the arabinose or IPTG-induced condition was 

normalized to the specific fluorescence of the uninduced condition, yielding “relative specific 

fluorescence”. To normalize this metric of promoter performance to the base case, the relative 

specific fluorescence calculated for each promoter-ZFP (or promoter-biosensor) combination was 

then normalized to the same value calculated for that repressor using the “No sites” promoter, 

yielding a quantity we termed, “relative expression”. This normalization strategy was utilized in 

order to implicitly correct for any minor effects that arabinose, IPTG, or maltose many confer on 

GFP/ OD600 in a manner that is unrelated to expression of the ZFP or biosensor. Thus, when 

quantifying biosensor performance, relevant control samples for the “+maltose” case (e.g., the 

uninduced case and No sites control case) were also quantified in the presence of maltose. For 

each metric, error was propagated according to the division rule to generate reported standard 

deviations. 

 

2.4.4 Flow cytometry 

Flow cytometry was used to quantify fluorescent reporter output on a single cell basis. 

Cells were grown and induced as described for the microplate-based fluorescence assays. Samples 

were collected after 5 hours of growth. Cells were then placed on ice, diluted 1:2 in chilled 

phosphate buffer saline (PBS) supplemented with 5 mM EDTA, and analyzed on an LSR II flow 

cytometer (BD). A minimum of 100,000 events were collected per sample. Mean fluorescent 

intensity was calculated using a minimum of 20,000 cells per sample using FlowJo software 

(Treestar), and relative expression calculations and error propagation were conducted as described 

for the microplate assays. 
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2.4.5 Statistical analysis of promoter design features 

In order to use computational analysis to compare promoter designs, it was necessary to 

define quantitative descriptors, or features, that capture distinguishing architectural aspects of each 

promoter. Because our goal was to elucidate general design principles, we chose to limit our 

features to those describing the quantity and location of the various 9 bp ZFP binding sites. 

Following this approach, we defined 17 features that describe the locations of ZFP binding sites 

relative to both the -10 box (TATA box) and -35 region and relative positioning amongst the ZFP 

binding sites. In order to determine which promoter features were important for explaining 

variation in performance between promoters, several feature selection methods were applied to 

each set of input and output data (both of which were mean-centered and variance-scaled) to 

generate rankings of feature importance, noting that feature independence was not assumed. For 

these analyses, features always served as the regression inputs. The output was the “repressibility”, 

which we defined as the negative of relative expression, such that a promoter-ZFP combination 

with a high repressibility exhibits low relative expression.  

 Three feature selection techniques were utilized: partial least squares regression (PLSR), 

Random Forest, and Lasso. PLSR was executed using the built-in MATLAB function, plsregress. 

To determine feature importance, a permutation test was used 115. Briefly, the output vector was 

randomly permuted, and PLSR was executed for this meaningless output vector, such that when 

this process was repeated multiple times, we calculated the standard deviation associated with each 

coefficient (one coefficient per feature); thereby, the ratio of true coefficient magnitude to the 

standard deviation associated with this coefficient provided a metric by which features can be 

ranked in order of importance. To implement the Random Forest method, we modified a 

MATLAB script developed by Jaiantilal (https://code.google.com/p/randomforest-matlab/), which 
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was based upon a method originally described by Breiman and Cutler 

(http://www.stat.berkeley.edu/~breiman/RandomForests/). The last feature selection method used 

was Lasso regression, also known as sparse or regularized regression 116. Lasso feature selection 

is generally considered more robust than a permutation test or Random Forest, because the 

selection is built into model generation and does not require removing features from a predictive 

model. Each of these methods is described in full detail in Supplementary Methods.  

 

2.5 Results 

2.5.1 Developing novel zinc finger protein-regulated constitutive promoters 

In this investigation, we sought to develop a readily generalizable strategy for engineering 

novel biosensor proteins from the ground up. We hypothesized that such a goal might be achieved 

by first using an orthogonal DNA-binding protein to regulate transcription of an engineered 

promoter, and then fusing this DNA-binding domain to a distinct protein capable of binding the 

target ligand, such that when the fusion protein binds ligand, DNA-binding (and thus 

transcriptional regulation) is either disrupted or enhanced.  

To begin investigating this overall strategy, we first sought to engineer a novel 

transcriptional regulator by leveraging the modular, programmable DNA-binding properties 

conferred by the zinc finger protein (ZFP) architecture 117-119. ZFPs are small (compared to 

alternative architectures such as TALEs 104, 105), easy to manipulate, and can be designed to bind 

to nearly any sequence. The ZFP architecture has previously been utilized to create novel 

transcription factors in E. coli 102, as well as in eukaryotes 80, 100, 101. The Cys2-His2 class of ZFPs 

is an attractive DNA-binding domain, since each “finger” of the ZFP binds to a distinct 3 bp DNA 

sequence (Figure 2.1A) 120, and thus sequence specific binding is achieved by engineering ZFPs 
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comprising multiple “fingers” fused in tandem. Therefore, to initially investigate our strategy for 

biosensor engineering, we utilized the BCR-ABL1 ZFP as our DNA-binding domain. BCR-ABL1 

is well-characterized, exhibits a low equilibrium dissociation constant when binding its cognate 9 

bp DNA-binding site with three tandem fingers (Kd ~78 pM), and has been shown to exhibit 

conditional DNA-binding when genetically split and reconstituted 96, 117. Notably, although the 

BCR-ABL1 consensus binding sequence is known, no E. coli promoters have been previously 

repressed by BCR-ABL1.  

 In order to begin elucidating the rules for building novel ZFP-regulatable promoters, a 

library of 68 different constitutive promoters was designed (Appendix A2.2). The library was built 

by inserting BCR-ABL1 binding site(s) at various locations around the consensus -10 box 

(TATAAT) and -35 region (TTGACA). The -10 box and -35 region are critical for recruitment of 

the s70 factor of RNA polymerase, and these sequences are necessary and sufficient to create a 

constitutive promoter121, 122. Design features that varied across the library included BCR-ABL1 

binding site location(s), relative to the consensus elements, and spacing between BCR-ABL1 

binding sites. Although this design did not presuppose that ZFP-binding would repress 

transcription from these constitutive promoters, this was the anticipated mechanism because BCR-

ABL1 was not fused to a transactivation domain 102. Each promoter was encoded on a low copy 

number plasmid and drove expression of E. coli-optimized GFP as a reporter. 

 To quantify the extent to which each promoter was repressed or activated by BCR-ABL1 

during exponential growth, we defined a metric of “relative expression” that describes how 

induction of BCR-ABL1 expression impacts expression from the promoter as compared to a “No 

Sites” control promoter lacking BCR-ABL1 binding sites (see Material and Methods). This 

relative expression normalization strategy was utilized in order to implicitly correct for any effects 
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that arabinose many confer on GFP/ OD600 in a manner unrelated to expression of the ZFP. Thus, 

low relative expression indicates that a promoter is highly repressed by BCR-ABL1. The library 

of promoters exhibited wide ranges of basal expression (Appendix A2.3) and repressibility by 

BCR-ABL1 (Figure 2.1B). Nearly all of the promoters exhibited a decrease in GFP expression 

upon the induction of the BCR-ABL1 ZFP, and no promoters showed any level of activation upon 

BCR-ABL1 induction. When relative expression was quantified at 10 h post-induction, at which 

point cultures had reached stationary phase, the observed repressibility was much more 

pronounced (Figure 2.1C). To investigate how relative expression patterns differed between cells 

within each population, we also examined several representative promoter cases at the single cell 

level using flow cytometry (Figure 2.1D). Overall, responses were unimodal, such that population-

averaged fluorescence measured by flow cytometry corresponded well to comparable metrics 

obtained by microplate-based assays (Appendix A2.4), and thus the latter method was used for 

subsequent analyses. Given this wide range of phenotypes, we next investigated the relationship 

between promoter design and repressibility.  
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Figure 2.1 Developing novel zinc finger protein-regulated constitutive promoters 
(A) Crystal structure of a Cys2-His2 class of zinc finger binding to its cognate 9 bp DNA sequence (PDB #4R2A) (B) 
Repression of the constitutive promoter library by BCR-ABL1 (normalized to No Sites control, shown in red, which 
lacks BCR-ABL1 binding sites) (C) Relative expression of the top 5 most repressible promoters was evaluated during 
both exponential growth (as in panel B) and after reaching stationary phase. (D) Select promoter constructs were 
evaluated by flow cytometry to assess variation in expression and repression across the population; one plot 
representative of three biological replicates is shown for each condition. A concentration of 1% arabinose was used to 
induce the expression of the BCR-ABL1 zinc finger. Relative expression is defined as the ratio of GFP/OD600 (for 
any given promoter) of the induced case relative to that of the uninduced case, divided by this same ratio for the No 
Sites promoter (a full description and rationale can be found in the Materials and Methods section). Relative expression 
values calculated from these data are explicitly compared to comparable microplate assay-based metrics in Appendix 
A2.4. Microplate data were collected over 7 sequential time points, spanning ~1.5 h of mid-exponential phase growth, 
and averaged. All data represent mean values calculated from three independent experiments, and error bars represent 
one standard deviation. 
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 We first examined the impact of promoter design on repressibility by inspection. As 

depicted in Figure 2.2, promoters representing variations on a particular design feature were first 

grouped together in order to identify simple trends, with the caveat that such trends are potentially 

restricted to the scope of promoters evaluated in our library. Generally, placing two ZFP binding 

sites in between the -10 box and the -35 region (the promoter “core”) led to greater repressibility 

than did insertion of a single ZFP binding site, regardless of its position (Figure 2.2A). Go15 is an 

exception to this trend, as it was not dramatically less repressible than was Go14. Furthermore, 

promoters with two ZFP binding sites in the core were more repressible than were comparable 

promoters that lacked these core sites but shared other ZFP binding sites (Figure 2.2B). Compared 

to promoters including all three ZFP binding sites required for recognition by BCR-ABL1, 

promoters in which only two sites were present exhibited reduced repressibility by BCR-ABL1 

(Figure 2.2C). Adding additional ZFP binding sites downstream of the -10 box did not increase 

repressibility (Figure 2.2D). However, adding additional binding sites upstream of the -35 box did 

effectively increase repressibility (Figure 2.2E). Decreasing the spacer distance between the -10 

box and the first downstream binding site increased repressibility (Figure 2.2F). Similarly, 

removing any spacer between the ZFP binding sites and the -10 box and -35 region resulted in 

greater repressibility than did removing spacers adjacent to either the -10 box or -35 region alone 

(Figure 2.2G). To explain the increase in repressibility observed for Go85 compared to Go66, we 

hypothesize that BCR-ABL1 cannot simultaneously occupy adjacent binding sites, and 

furthermore, that binding to the sites directly upstream of the -10 box and downstream of the -35 

region results in greater repressibility than is conferred by BCR-ABL1 binding to the more distal 

binding sites present in Go66. Altogether, promoter Go92 exhibited the greatest repressibility of 
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any library member, and this promoter appears to follow many of the design rules suggested by 

the above inspection-based analysis. However, since only a subset of our promoter library was 

amenable to this direct inspection-based analysis, we next pursued a systematic analysis of the 

entire library to further refine our understanding of the applicable design rules.  

 

Figure 2.2 Inspection-based evaluation of promoter design rules 
Promoters were manually grouped  to represent exploration of design features including (A) presence and location of 
ZFP binding sites between the -10 box and -35 region, (B) combinatorial effects of having a pair of binding sites 
between the -10 box and -35 region, (C) variations in the locations of individual ZFP binding sites within the core, 
(D, E) contributions of additional BCR-ABL1 binding sites either downstream or upstream of the -10 box and -35 
region, (F) spacing between the -10 box and the downstream ZFP binding sites, (G) combinatorial effects of directly 
flanking the -10 box and -35 region with ZFP binding sites. All data are re-plotted from Figure 2.1B. Abbreviations 
and conventions: ZF is the 9 bp BCR-ABL1 binding site; 1, 2, and 3 represent the first, second, or third, 3 bp finger 
binding sites within the BCR-ABL1 binding site; yellow boxes represent spacer sequences of the indicated length. 
Microplate data were collected over 7 sequential time points, spanning ~1.5 h of mid-exponential phase growth, and 
averaged. All data represent mean values calculated from three independent experiments, and error bars represent one 
standard deviation. 
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2.5.2 Computational identification of promoter design features conferring ZFP-mediated 

repression 

Statistical methods can provide insights into large or diverse data sets that are difficult to compare 

qualitatively or by inspection alone. Therefore, we performed a series of statistical analyses termed 

computational “feature selection” in order to determine which promoter features are important for 

predicting the relative repressibility of a given promoter in the presence of the ZFP. Given a set of 

feature “inputs,” feature selection seeks to eliminate those features that are redundant or irrelevant 

to the prediction of a particular output. In our analysis, the output was defined as the repressibility 

(the negative of relative expression) exhibited by each promoter in the library. To generate the 

input list, we defined a set of 17 quantitative features that described each promoter in the library. 

Because we sought to elucidate general design rules and avoid over-fitting our particular promoter 

library, we defined the 17 features strictly on the basis of describing the locations of each ZFP 

binding site relative to the -10 box, the -35 region, and to other ZFP binding sites (Figure 2.3A). 

 Three different feature selection methods were applied to analyze BCR-ABL1-mediated 

repression of our promoter library. We first used partial least squares regression (PLSR), in which 

the regression coefficient associated with each feature indicates the degree to which that feature 

explains variations in repressibility within our dataset. Each coefficient was scaled using a 

permutation test to correct for the coefficient one would calculate for a randomized (meaningless) 

output vector 115, and these corrected coefficients were used to generate a ranked lists of features 

(for PLSR coefficients, see Appendix A2.5). By repeating the PLSR using only fixed numbers of 

most important features, we found that the first few features explained much of the variance in the 

overall dataset (Figure 2.3B). A similar trend was observed when repeating the PLSR with a 
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limited number of principal components, indicating that principal components do not provide 

deeper understanding of this system than do single features. The second method used was Random 

Forest, which creates a predictive model of the system using decision trees. By iteratively 

generating decision trees using a subset of features, this method calculates the mean loss of 

accuracy when a given feature is removed, and this quantity is used to generate a ranked list of 

features by importance (Appendix A2.5). The final method used was Lasso regression, which 

performs least squares regression with an additional penalty placed on the magnitudes of 

regression coefficients 116. This penalty is weighted by a parameter, 𝜆, such that as 𝜆 is increased, 

the coefficients of unimportant features shrink to zero; features are thus ranked by the number of 

iterations that they retain a non-zero coefficient as 𝜆 is increased. For each value of 𝜆, the 

regression fit was tested with 10-fold cross validation, to obtain a mean squared error (MSE) and 

number of retained coefficients for each value of 𝜆 (Figure 2.3C). A reasonable fit of the system 

was obtained using 3-5 features, with lower MSE for larger feature numbers likely representing 

over-fitting of noise in the dataset.  

Overall, the three feature selection methods (PLSR, Random Forest, and Lasso) generated 

similar but not identical ranked lists of features (Figure 2.3D). The most important features 

included spacer inside -10 and spacer -10, which were undesirable for repressibility, and BS in 

core, core middle space, and pairs in core, which were desirable for repressibility. Together, these 

findings indicate that placing binding sites as close as possible to the -10 box and -35 region are 

predicted to confer strong repressibility. Interpreting other features is less straightforward, such as 

core middle space, which describes whether there exist base pairs in the core other than ZFP 

binding sites; the three methods appear to disagree on the importance of core middle space. One 

possible explanation for this discrepancy is the influence of Go22 and Go92 on this analysis, since 
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both of these promoters contain space in the core but no space on either side of the -10 box (Go22 

and Go92) and no space on either side of the -35 region (Go92). As such, for these promoters, 

containing space in the core may be merely associated with the presence of other promoter features 

conferring repressibility. These cases may well emphasize the importance of spacer inside -10 and 

spacer -10. Moreover, Lasso, which is considered the most robust method for feature selection, 

ranked core middle space as unimportant, potentially by resolving this contradiction better than 

did the other methods. Altogether, this analysis enabled us to leverage our diverse promoter library 

to glean general, quantitative design principles for engineering ZFP-repressible promoters. 

However, it was not yet clear whether such rules would extend to the design of promoters regulated 

by ZFP-based biosensors. 
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Figure 2.3 Computational identification of promoter design features conferring ZFP-mediated repressibility  
(A) Shorthand names and descriptions of the 17 features chosen to describe the promoter library. One binding site is 
defined as the nine base pair ZFP binding site. One pair is defined as two adjacent binding site sequences. (B) PLSR 
analysis of the degree to which promoter features explain variance in the relative expression data (BCR-ABL-mediated 
repressibility) reported in Figure 2.1. Each series evaluates the explanatory power achieved using an increasing 
number of features or principle components, each of which is added to the set in ranked order from most to least 
important. (C) Lasso regression analysis of the degree to which promoter features explain variance in the relative 
expression data reported in Figure 2.1. This plot displays the number of features with non-zero coefficients (and the 
resulting mean squared error) as 𝜆 is increased, causing less important features to be eliminated from the regression 
analysis. The mean squared error was obtained through 10-fold cross validation, which also produced a standard error 
for the mean squared error, which is shown as error bars. (D) Relative importance of each feature, vis-à-vis explaining 
BCR-ABL1-mediated repressibility as determined by PLSR, Random Forest, and Lasso regression, with the overall 
order listed here determined by average rank across the three feature selection methods. The color each feature name 
indicates the sign of its regression coefficient: green indicates positive coefficients (large feature values confer more 
repressibility) and pink indicates negative coefficients (small feature values confer more repressibility). Detailed 
regression coefficients and importance values are provided in Appendix A2.5. 
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2.5.3 Conversion of transcriptional repressors into ligand-responsive biosensors 

Having established that BCR-ABL1 functions as a transcriptional repressor, we next 

investigated two strategies for converting this repressor into a biosensor. Here, the primary goal 

was to investigate general strategies for converting a ligand-binding protein into a ligand-

responsive transcription factor. As described above, we hypothesized that such conditional 

regulation of gene expression may be achieved by fusing BCR-ABL1 to a ligand-binding domain. 

To investigate the feasibility of this approach, we chose the uniquely well-studied maltose binding 

protein (MBP), in part because this protein experiences a substantial and well-characterized 

conformational change (~9 Å decrease in separation between N and C termini) upon ligand binding 

123-128. The first strategy we explored was termed the Split Zinc Finger (SZF) approach, in which 

BCR-ABL1 was split genetically such that the N and C termini of MBP were fused to BCR-ABL1-

derived ZFPs. This strategy leverages prior observations in which the N and C termini of MBP 

were fused to FRET-paired fluorophores 22, 62, 63, 129, split GFP fragments 52, or context-dependent 

fluorophores 109, each enabling the monitoring of ligand binding-induced conformational changes 

in MBP. Further rationale for this strategy is that ZFPs exhibited conditional DNA-binding when 

this domain was genetically split and then reconstituted using either self-splicing inteins or protein-

protein interactions 96, 130. The second strategy we explored was termed the Split Protein (SP) 

approach, in which MBP was genetically split, with the halves fused to the N and C termini of 

intact BCR-ABL1. We hypothesized that such a construct may permit ZFP-DNA interactions in a 

manner that depends upon whether MBP is bound to maltose. The three most repressible reporters 

(Go66, Go85, and Go92) were used to evaluate the feasibility of each of these proposed biosensor 

mechanisms. 
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 To investigate the SZF strategy, BCR-ABL1 was split between the first and second zinc 

fingers as previously described 96 (see Figure 2.4A for the proposed mechanism). None of the 

reporters evaluated exhibited repression upon the induction of SZF biosensor expression (Figure 

2.4B). One potential explanation is that the three zinc fingers could not localize with the spacing 

or geometric orientation required to simultaneously bind a single BCR-ABL1 DNA-binding site. 

While it may be possible to improve SZF biosensor-mediated repression by identifying promoters 

that place BCR-ABL1 binding sites in geometries that enable a split ZFP to bind, there is no 

guarantee that such a configuration would exist. Moreover, even if such a promoter were identified, 

such a design is likely to be a “one-off” solution specific to the MBP SZF biosensor. Therefore, 

we next evaluated the alternative SP biosensor design strategy, which has the potential to be more 

generalizable.  

 To initially investigate the SP strategy, MBP was genetically split at the point previously 

reported to generate a functional chimera with beta-lactamase (BLA), termed “RG13” 53, and 

BCR-ABL1 was inserted between these N and C terminal fragments (see Figure 2.4C for the 

proposed mechanism). We hypothesized that such a split site might support the SP mechanism 

because (a) in RG13, MBP retains the capacity to bind maltose and (b) in RG13, binding of maltose 

to MBP likely induces a conformational rearrangement of the overall fusion protein (or at least the 

stabilization of a conformation that alleviates disruption of the BLA active site 131). This SP 

biosensor was again evaluated against a select set of reporters. Notably, induction of biosensor 

expression suppressed reporter output in a manner that was significantly alleviated in the presence 

of maltose (Figure 2.4D). These data thus support the fundamental feasibility of the SP strategy. 

This observation is also consistent with our hypothesis that DNA-binding was impaired in the SZF 

architecture, at least compared to the SP architecture. Notably, repressibility conferred by the SP 
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biosensor was only slightly less than that observed with BCR-ABL1 ZFP alone (Figure 2.4E). This 

correspondence suggests that the rules for predicting robust ZFP-mediated repression of reporter 

output (Figures 2.2, 2.3) seem to hold true for the SP biosensor, which also supports the 

generalizability of the SP strategy with respect to reporter construct design. As was observed for 

BCR-ABL1-mediated repression (Figure 2.1D), SP biosensor-mediated repression and alleviation 

was also unimodal when analyzed by flow cytometry (Appendix A2.6).  

Given these promising initial results, we next investigated how the method of SP biosensor 

implementation impacts the performance of the system. We first investigated how biosensor 

expression levels impact performance (Figure 2.4F). With increasing biosensor expression levels, 

repression of the promoter increased (red series), although maltose-mediated alleviation of reporter 

output also decreased (blue series). Such a trend is the expected behavior of this system if, at higher 

levels of biosensor expression, intracellular concentrations of maltose are insufficient to drive all 

of the biosensors into the ligand-bound (alleviated) state. We would propose two hypotheses that 

could explain this phenomenon. First, at higher concentrations of maltose, transport limitations 

may confer an upper bound on the intracellular concentration of maltose, irrespective of the 

extracellular maltose concentration. Second, it remains possible that even at saturating intracellular 

concentrations of maltose, the maltose-bound form of our biosensor may still bind DNA (and 

repress transcription) to a lesser but finite extent, compared to the apo form of the biosensor. Thus, 

we determined that for the case of a relatively high extracellular concentration of maltose (100 

mM in medium, which is expected to be substantially higher than the concentration in the 

cytoplasm), induction of biosensor expression with 30 µM IPTG conferred a robust balance 

between repression and maltose-mediated alleviation of reporter output. To exclude the possibility 

that some other aspect of cell biology or ZFP function could explain the maltose-mediated 
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alleviation of reporter output, a similar analysis was performed using cells expressing the ZFP 

alone (i.e., in place of the SP biosensor). As expected, the addition of maltose had no significant 

impact on ZFP-mediated repression of the reporter (Appendix A2.7). Moreover, the addition of 

maltose did not substantially impact cell growth (Appendix A2.8). We next investigated how 

extracellular maltose concentration impacts biosensor performance (Figure 2.4G). With the caveat 

that intracellular concentrations of maltose are expected to be substantially lower than are 

extracellular concentrations, we observed that biosensor responsiveness varied with extracellular 

maltose concentration, and for the most sensitive reporters (Go92 and Go85), modest but 

significant alleviation was observed at extracellular maltose concentrations as low as 0.1 mM. To 

further investigate how maltose binding to MBP domains impacts SP biosensor performance, we 

repeated this dose-response analysis after making a mutation in the MBP domain (W340A), which 

has been reported to substantially weaken, but not ablate, MBP binding to maltose 132 (Figure 

2.4H). As expected, a substantially higher (~400x) extracellular concentration of maltose was 

required to alleviate reporter output in the W340A SP mutant case. Altogether, these observations 

demonstrate the feasibility of engineering novel biosensors using the SP strategy. Although the 

MBP split site used in this initial construct was not selected to optimally implement the SP strategy, 

our overall goal was to evaluate the SP strategy in general. Therfore, we carried this functional SP 

biosensor forward for further development.  



 

 

67 

 

Figure 2.4 Engineering novel biosensors using the split zinc finger (SZF) and Split Protein (SP) strategies 
(A) This cartoon illustrates the proposed mechanism of action of an SZF biosensor. Gray loops indicate the ZFP 
secondary structure, and purple regions indicate α-helices that mediate DNA recognition. (B) SZF biosensor 
performance, when paired with the reporter plasmids indicated, was evaluated by inducing biosensor expression (30 
µM IPTG) and evaluating alleviation of repression upon addition of maltose (100 mM). (C) This cartoon illustrates 
the proposed mechanism of action of an SP biosensor. The small yellow regions indicate the positions of linker amino 
acids. Gray loops indicate the ZFP secondary structure, and purple regions indicate α-helices that mediate DNA 
recognition. (D) SP biosensor performance was evaluated as in panel B. (E) Comparison of the repression (i.e., 
reduction of relative expression) of reporter output upon expression of the SZF and SP biosensors compared to that 
mediated by inducing expression of the BCR-ABL1 ZFP alone. (F) Tradeoff between level of expression of the SP 
biosensor (IPTG dose) with both repression (-maltose) and alleviation (+100 mM maltose) of expression from the 
Go66 reporter. (G) Response of reporter output to various extracellular concentrations of maltose, under two levels 
of biosensor expression (IPTG doses). Light and dark blue horizontal bars indicate the 0 mM maltose case (for 10 µM 
or 30 µM IPTG, respectively), with the width of each bar indicating one standard deviation. (H) The impact of the 
W340A mutation, which is reported to diminish maltose binding 132, on biosensor performance was evaluated using 
the Go92 reporter and analyses paralleling those used in panel G. Colored bars correspond to the indicated biosensor 
with 0 mM maltose, with the width of each bar indicating one standard deviation. Microplate data were collected over 
7 sequential time points, spanning ~1.5 h of mid-exponential phase growth, and averaged. Relative expression was 
utilized in order to implicitly correct for any minor effects that IPTG or maltose many confer on GFP/ OD600 in a 
manner that is unrelated to expression of the ZFP or biosensor (see Materials and Methods for details). All data points 
represent mean values calculated from two independent experiments, each run in biological triplicate, and error bars 
represent one standard deviation (**p £ 0.01, ***p £ 0.001). 
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2.5.4 Contributions of biosensor biophysical properties to biosensor performance.  

In order to investigate how general biophysical properties of a biosensor impact its 

performance, we next performed a series of rational modifications of the SP biosensor protein. 

First, we hypothesized that if DNA-binding affinity limits the degree to which our biosensors 

repress transcription, then replacing the BCR-ABL1 domain with a ZFP that binds to DNA with 

higher affinity would improve transcriptional repressibility in the absence of maltose. However, 

since BCR-ABL1 interacts with its binding site with a Kd ~78 pM 117, a simple model of binding 

equilibrium would suggest that promoter occupancy should not vary much with changes in this 

high affinity binding constant. As a point of reference, we note that the dimeric tetracycline 

repressor (TetR) binds to its operator sequence (tetO) with a similar Kd ~20 pM 133, although tetR 

is understood to achieve exquisite transcriptional repression through contorting the target DNA 

rather than through high affinity binding alone134. In order to directly investigate the relationship 

between affinity and repression in our system, and to investigate the modularity of our biosensor 

vis-à-vis ZFP domain choice, we replaced BCR-ABL1 with the Zif268 ZFP domain from the 

human EGR1 protein. Zif268 binds its 9 bp binding site with a Kd ~8 pM (~10 times tighter than 

that of BCR-ABL1) 117. Go92 was converted to Zif268-responsive promoter by replacing the BCR-

ABL1 binding sites with Zif268 binding sites (GCAGAAGCC versus GCGTGGGCG, 

respectively). The SP biosensor was also modified to replace the BCR-ABL1 ZFP with Zif268 

(SP-Zif268). SP-Zif268 did not exhibit an enhanced capacity to suppress reporter output, although 

it instead exhibited reduced fold-alleviation in the presence of maltose compared to the original 

SP biosensor (Figure 2.5A). Altogether, these observations are consistent with a simple model 

wherein increasing the affinity of the biosensor for its target DNA did not increase repression, 
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presumably because such a change would not impact promoter occupancy. Moreover, the fact that 

the SP-Zif268 biosensor exhibited significant (if somewhat diminished) functionality indicates that 

the ZFP domains within SP biosensors may be exchanged in a modular fashion.  

 We next investigated how biosensors size may impact reporter repression, for example by 

sterically occluding RNA polymerase binding to the -10 box and -35 region. To this end, the 

fluorescent protein mCherry was fused to either the N- or C- terminus of the SP biosensor to 

generate mC-SP or SP-mC, respectively. In this experiment, mCherry was selected as a 

functionally “neutral” fusion partner in order to investigate the impact of increasing the bulk of 

the biosensor alone. Although the SP-mC modification did not improve biosensor performance, 

the mC-SP construct notably exhibited both improved repression and increased fold-induction of 

reporter output upon the addition of maltose (Figure 2.5). Altogether, these data suggest a useful 

strategy for building novel biosensors in which the tradeoff between desired performance 

characteristics may be optimized for a particular application. In general, adding steric “bulk” may 

outperform enhancing DNA-binding for increasing repression in the “off” state without sacrificing 

the degree to which the regulated gene is expressed when in the “on” state.  
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Figure 2.5 Contributions of biosensor biophysical properties to biosensor performance 
 (A) At top, the illustration summarizes the biosensor design space explorations described in this figure, using the SP 
biosensor as a reference case. SP-Zif268 incorporates the tighter binding Zif268 ZFP in place of BCR-ABL1. In SP-
mC and mC-SP, mCherry was fused to the C-terminus or N-terminus of the SP biosensor, respectively. Below, 
biosensor performance, when paired with the Go92 reporter, was evaluated by inducing biosensor expression (30 µM 
IPTG) and evaluating alleviation of repression upon addition of maltose (100 mM). Microplate data were collected 
over 7 sequential time points, spanning ~1.5 h of mid-exponential phase growth, and averaged. All data represent 
mean values calculated from two independent experiments, each run in biological triplicate, and error bars represent 
one standard deviation (*p £ 0.05, *** p £ 0.001). 
 

2.6 Discussion 

In this study, we investigated a potentially generalizable strategy for converting metabolite-

binding proteins into metabolite-responsive transcription factors. By systematically and 

quantitatively evaluating the design principles governing the performance of such biosensors, 

which was the focus of this investigation, this work establishes a foundation for pursuing the long-

term goal of engineering repertoires of customized metabolite-responsive biosensors. By 

leveraging modular design of both promoter libraries and biosensor proteins, these investigations 

elucidated a number of design principles that are useful for both explaining the variations observed 

in our libraries and for guiding the design of novel biosensors in subsequent work. 
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 Using a library of engineered promoters, we identified several important rules by which 

binding of a ZFP to DNA confers a repression of transcription. Interestingly, nearly all promoters 

evaluated were repressed, at least to some degree, and none exhibited increased expression in the 

presence of the ZFP. The BCR-AB1 ZFP alone was sufficient to achieve significant transcriptional 

repression, even though this protein is smaller than canonical natural transcription factors, such as 

TetR and LacI (106 aa compared to 221 aa (TetR) and 374 aa (LacI)). This minimal ZFP also 

regulated gene expression in manner somewhat different from that conferred by a previously 

described fusion between a ZFP and a transactivation domain from CRP. Lee at al. observed that 

this ZFP-CRP fusion conferred transcriptional activation when bound upstream of the +1 site and 

repression when bound downstream of the +1 site 102, while our minimal ZFP (which lacks a 

transactivation domain) conferred repression even when bound upstream of the +1 site (Figure 

2.2). We determined that placing ZFP binding sites as close as possible to the consensus -10 box 

and -35 region of the promoter yielded the highest level of transcriptional repression. The -10 box 

and -35 region are the sites at which the transcription initiation factor σ70 binds in order to mediate 

recruitment and assembly of the RNA polymerase (RNAP) complex. Therefore, we hypothesize 

that placing the ZFP binding sites very close to the -10 box and -35 region effectively prevents the 

σ70 from binding to this region of DNA and/or σ70-mediated recruitment of RNAP. The greatest 

repression was observed when both the -10 box and -35 region were abutted with ZFP binding 

sites, and blocking the -10 box may confer greater repression than does blocking the -35 region 

(Figures 2.2G, 2.3D). It is possible that these observations may be leveraged to achieve greater 

repression by overlapping the ZFP binding sites with the conserved -10 box and -35 region, since 

binding of biosensors to these sites may more efficiently block σ70-mediated recruitment of 

RNAP. One potential challenge associated with this strategy is the potential to repress endogenous 
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genes that share the consensus -10 box and -35 regions, although minimizing overlap with these 

consensus sequences could mitigate this problem. 

 Our comparison of two potential biosensor engineering strategies – the SP (split protein) 

and SZF (split zinc finger) architectures – revealed several insights into the feasibility and 

generalizability of each approach. The SP biosensors repressed the most-repressible reporters to 

nearly the same extent as did the ZFPs alone, suggesting that the rules governing promoter design 

may be generalizable across SP biosensors (Figure 2.4D). In contract, the SZF biosensor evaluated 

conferred no repression of reporter output (Figure 2.4B). We hypothesize that insertion of MBP 

between the fingers of BCR-ABL1 precluded simultaneous binding of DNA by all three zinc 

fingers. Even if this geometric constraint were alleviated by modulating the protein or DNA 

sequences, it is likely that such a solution would be unique to each biosensor. Therefore, the SZF 

approach may be generalizable, but not readily so. In contrast, the SP approach was both more 

effective and may also be more readily generalizable.  

 Our investigation also provided several insights into the mechanism by which this initial 

SP biosensor functions and the prospects for extending this approach to generate novel biosensors. 

In many ways, these insights leverage the wealth of information available to describe our model 

ligand-binding domain, MBP. The SP biosensors utilized the MBP split sites that were identified 

by using a random domain insertion approach to generate the “RG13” MBP/BLA fusion protein 

53; the N terminal half of SP comprises the first 316 aa of MBP, and the C terminal half comprises 

residues 319-370 of MBP. In the crystal structures of both MBP and RG13, residues 316R and 

319A are ~10 Å apart 125, 131. However, it should be noted that the RG13 crystal structure was 

obtained in the presence of saturating Zn2+, a condition which ablated the activity of the BLA 

subdomain of the protein, and that no maltose-bound (or zinc-free) structure of RG13 has been 
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obtained. Thus, these distances should be treated as estimates as to how RG13 residues 316R and 

319A are positioned when the protein is expressed under physiological conditions. When MBP 

binds maltose, the separation of these residues increases by no more than ~3 Å 123. In contrast, 

when a Cys2-His2 class ZFP binds to its cognate 9 bp of DNA, the distance separating the N- and 

C-termini of the ZFP is ~40 Å 135. Therefore, we hypothesize that in order for the ZFP domain of 

the SP biosensor to adopt a conformation capable of binding its 9 bp DNA target, residues 316R 

and 319A may be separated by as much as 40 Å. Furthermore, since the addition of maltose 

alleviates biosensor-mediated repression of transcription (and therefore impairs or ablates DNA-

binding), we hypothesize that maltose binding to the SP biosensor stabilizes interactions between 

the split MBP fragments, such that residues 316R and 319A are retained in a close (~13 Å) spacing, 

which prevents the ZFP domain from adopting a conformation capable of DNA-binding (Figure 

2.4C). Importantly, if the SP biosensor operates via this ligand binding-induced stabilization 

mechanism, then biosensor function need not rely upon a ligand-binding induced conformational 

change in MBP. Thus, this mechanism could be extended to ligand-binding proteins that do not 

experience a ligand binding-induced conformation change as dramatic as that exhibited by MBP. 

Moreover, the proposed ligand binding-induced stabilization mechanism is consistent with the 

“induced fit” model of substrate binding, in which ligand binding causes a shift in protein structure 

that results in an increase in the stability of the ligand-bound complex. Indeed, ligand binding-

induced stabilization may confer allosteric regulation of many proteins, and this property may even 

be engineerable 136. Thus, we speculate that the mechanism of the MBP-based SP biosensor may 

be extended to biosensors based upon distinct ligand-binding domains. Moreover, there exist many 

methods by which proteins can be split, fused, and screened, including in vitro methods such as 

circular permutation and domain insertions, as well as computational methods for predicting 
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effective split sites, such that evaluating whether a given ligand-binding protein is amenable to 

conversion into a biosensor using the SP approach is relatively straightforward 54, 137-140. In fact, 

periplasmic binding proteins such as MBP may be generally amenable to conversion into 

molecular switches via domain insertion, as was demonstrated by the insertion of TEM-1 beta-

lactamase into ribose binding protein, glucose binding protein, and xylose binding protein56. 

Additionally, an allosterically regulated version of Cas9 has been developed by using domain 

insertion to fuse Cas9 to estrogen receptor-a to create a repressor that is inducible by the addition 

of 4-hydroxytamoxifen106. In this study, a site in Cas9 that is permissive to protein insertion was 

first identified using random domain insertion of a PDZ domain. Thereafter, the estrogen receptor-

a was inserted into this site following the rationale that this receptor undergoes a substantial 

conformation change upon ligand binding, bringing its termini within 21 Å of one another in the 

presence of ligand, such that only the ligand bound conformation of the receptor may exhibit a 

structure that avoids disruption of the Cas9 structure (and, presumably, function). Thus, while this 

technology is of substantial utility for regulating Cas9, it is not yet clear whether or how this 

approach may be extended to generate Cas9-based regulators that are responsive to a range of 

metabolites or ligands. Altogether, the SP strategy appears to be a promising and potentially 

generalizable method for generating novel biosensors, although further investigation is required to 

determine which types of ligand-binding proteins may be most readily converted into biosensors 

via this approach.  

 Our investigation also provided several insights into how biophysical properties of the 

biosensor itself could impact its overall performance. First, comparing SP biosensors based upon 

BCR-ABL1 to those based upon Zif268, the latter of which binds its cognate DNA with 

approximately 10-fold greater affinity, we observed that the SP-Zif268 biosensor repressed 
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transcription to a similar extent but exhibited a reduced response to the addition of maltose. As 

discussed above, the observed comparable degree of repression is consistent with a simple model 

of high affinity binding, in which both SP and SP-Zif268 biosensors achieve a similar level of 

promoter occupancy. To interpret the reduced response to maltose, we hypothesize that due to the 

tighter binding of Zif268 to DNA, even the maltose-bound state may interact with DNA to some 

extent that represses reporter output (indeed, the same may be true to a lesser extent for the original 

SP biosensor). For example, if each maltose-bound biosensor exists in an equilibrium between 

states that are competent (disfavored) versus incompetent (favored) for DNA-binding, then the 

higher affinity with which Zif268 binds DNA may cause biosensors based upon this protein to 

become “trapped” in a DNA-bound state, even when bound to maltose. Finally, the fact that the 

SP-Zif268 biosensor nonetheless exhibited significant (if somewhat diminished) functionality 

indicates that, within the SP framework, the ZFP domains may be exchanged to tune biosensor 

performance or to regulate novel reporter constructs.  

 We also investigated the role of biosensor size on performance, which provided some 

insights into how biosensor performance may be tuned. We observed that fusing mCherry to the 

N terminus of the SP biosensor (mC-SP) improved both reporter repression and fold induction 

upon the addition of maltose, although no such effect was observed when mCherry was fused to 

the C terminus of the SP biosensor (SP-mC). While it is not possible to provide a specific structural 

explanation for these effects, a reasonable speculation is that the mC-SP biosensor sterically 

occludes recruitment of the RNAP to a greater extent than does the original SP biosensor. If this 

were true, it could be possible to achieve even greater repression of reporter expression by 

exploring the addition of “bulky” domains of various sizes, shapes, and linker geometries to a 

candidate SP biosensor. 
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 We also attempted to compare the performance of our initial SP biosensors to that of some 

naturally-evolved biosensors, using the systematic characterization of the latter that was recently 

reported by Rogers et al. 3. Rogers et al. evaluated fold-induction after cells had reached stationary 

phase, while we evaluated both repression and alleviation during exponential growth, so we re-

analyzed our data from the experiments reported in Figure 2.5 using a later time point at which 

cell growth had slowed, to facilitate this comparison (Appendix A2.9). While this analysis did 

indeed lead to higher calculated values for degree of repression and fold-alleviation upon the 

addition of ligand (6 ± 0.4 fold-repression and 3.8 ± 0.3 fold-alleviation for the mC-SP biosensor), 

the natural biosensors generally achieved a greater fold-induction, due in large part to the more 

efficient suppression of output gene expression when in the ligand-free “off” state. While such 

nuances reflect the manner in which biosensor performance is evaluated to some extent, this 

investigation more importantly identifies specific performance attributes of SP biosensors that 

might be targeted to better approach the performance of naturally-evolved biosensors. 

 Although we evaluated and identified several promising strategies for improving biosensor 

performance, it is possible that when extending the SP approach to target applications, biosensor 

performance may be further improved by either design-driven or screening-based methods. Some 

strategies could entail refining reporter design. Depending on the application requirements, fold-

induction may be improved by locating the reporters on single-copy plasmids or on chromosomal 

DNA (instead of on low copy number plasmids as described here) to increase promoter occupancy 

for a given quantity of biosensors. Alternatively, the promoter sequence could be altered to 

partially diminish interactions with σ70, potentially using either targeted mutations or random 

promoter mutagenesis followed by selection to “tune” a promoter to match the properties of a 

given biosensor. Other strategies could improve the biosensor proteins. In particular, although 
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utilizing the RG13 split site for MBP proved to be feasible for generating our initial SP biosensors, 

it is likely that evaluating all possible ZFP insertion sites into a ligand binding protein may identify 

fusion proteins that are specifically suited to the SP mechanism. Based upon our observations of 

the factors limiting SP biosensor performance, candidate biosensors may also be improved by 

random mutation and directed evolution (e.g., optimizing allosteric regulation to enhance ligand 

binding-induced alleviation of DNA-binding). A final strategy could be to process the output of 

our existing biosensor/reporter(s) system to achieve preferable overall performance characteristics. 

For example, reporter output could be coupled to additional genetic circuitry, such as RNA-based 

toe hold switches or positive feedback circuits to amplify reporter output, and with some tuning, 

increase fold-induction33, 141. By leveraging the modularity conferred by programmable ZFP 

binding 117, 135, it may also be possible to implement multiple SP biosensors in a single cell. 

Moreover, high throughput genome engineering approaches such as MAGE 142 could make it 

possible to place even endogenous genes under partial or total control of such engineered 

biosensors. In sum, a modular approach to biosensor engineering is likely to accelerate the 

generation of novel biosensors, iterative improvement of biosensor performance, and adaptation 

of biosensors for novel applications in metabolic engineering and synthetic biology.  
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Chapter 3. Development of novel metabolite responsive transcription 

factors via, transposon mediated, high throughput protein fusion  

3.1 Context 

 In the previous chapter, we successfully demonstrated the conversion of a metabolite 

binding protein into a metabolite responsive transcription factor using maltose binding protein and 

a zinc finger DNA-binding domain. In principle, the split protein (SP) strategy demonstrated in 

chapter 2 is generalizable to any protein. However, the amino acid position where MBP was split 

had been previously published and demonstrated to make a maltose responsive enzymatic 

biosensor out of MBP and the enzyme TEM1 b-lactamase (bla). Therefore, our next goal was to 

develop a method by which all possible insertions of the ZFP into any protein could be created and 

evaluated for biosensing capabilities such that the reliance on previously publish information could 

be minimized. To accomplish this task, the MuA transposase was utilized for its ability to 

randomly insert a transposon into a target DNA sequence. The insertions that occurred inside the 

gene of interest could then be isolated, and the transposon exchanged for the ZFP. This strategy, 

in theory, could allow us to sample all possible insertions of a ZFP into any gene of interest. 

Therefore, if the SP strategy for the conversion of metabolite binding proteins into metabolite 

responsive transcription factors can be applied to proteins other than MBP, this transposase based 

method would be able to evaluate that. Since we had already developed a biosensor for MBP, any 

new method for finding biosensors, if successful, should be able to pull out the original split of 

MBP. Therefore, to test our new transposase based method, we once again turned to MBP as a 

model system for which we know there is a minimum of one biosensor that can be made via the 

fusion of MBP with the ZFP. This work was a collaboration between myself and Peter Su. Together 
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we designed and executed all experiments and wrote the manuscript. This paper would not have 

been possible with the help of two talented undergraduate research assistants Andrea Shepard and 

Shreya Udani who helped conduct some of the experiments, and Ted Cybulski who helped Peter 

Su with the python based NGS analysis pipeline. This paper will be submitted to Protein 

Engineering, Design and Selection.  

 

3.2 Abstract 

 Metabolic engineering has benefitted from using naturally occurring metabolite biosensors 

to dynamically regulate and balance heterologous pathways. However, the pool of biosensors that 

can accomplish this is small, and there exist many metabolites for which a biosensor does not exist. 

To address this challenge and take advantage of the wealth of metabolite binding proteins that 

exist, we developed a high-throughput method for Biosensor Engineering by Random Domain 

Insertion (BERDI). Our approach takes advantage of an unbiased in vitro transposon insertion 

reaction to examine all possible insertions of a DNA-binding domain into a metabolite-binding 

protein and uses FACS to sort for functional biosensors. The advantage of this approach is that it 

efficiently evaluates all possible metabolite-responsive transcription factors stemming from a 

parent metabolite binder with a DNA-binding domain. We developed and evaluated this method 

by creating a library of insertions of a zinc finger DNA binding domain into maltose binding 

protein, characterized the insertional landscape of the library, and ultimately discover several 

functional biosensors. Our results validate a generalizable method that may be applied towards 

converting a wide range of metabolite binding proteins into novel biosensors for applications in 

metabolic engineering and synthetic biology. 
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3.3 Introduction 

Metabolite biosensors have a wide variety of uses, from basic research and discovery, to 

diagnostics, and application-driven biotechnology 79. There are many classes of metabolite 

biosensors that can accomplish these tasks, ranging from fluorescent and FRET based biosensors 

6, 15, to RNA based biosensors 16, 17, and transcription factor biosensors 1, 9, 11. Transcription factor 

biosensors have proved to be especially powerful as they enable basic metabolic profiling such as 

monitoring the levels of glucarate 3 and malonyl-CoA 7, in additional to high-throughput screening 

of large genetic libraries for 1-butantol, succinate, and adipate 4, benzoic acids 85, and L-Lysine 40. 

Finally, transcription factor biosensors have demonstrated substantial utility to balance metabolic 

flux to increase production titers and yields by implementing dynamic feedback control of pathway 

intermediates for the production of lycopene 44, fatty acid ethyl ester 5, amorphadiene 12, 1-butanol 

4, and malonyl-CoA 13.  

However, these examples rely on the existence of naturally occurring transcription factor 

biosensors. New transcription factor biosensors have been generated through the chimeric fusion 

of the ligand binding domain from one transcription factor to the DNA binding domain from a 

different transcription factor, however, these biosensors are generally limited to families of 

structurally related transcription factors such as the LacI/GalR family to preserve ligand responsive 

allosteric regulation 87, 88. Additionally, metabolite binding proteins have been fused to known 

transcription factors such as AraC and Gal4 to rewire the transcription factor’s natural regulation 

66, 89. Finally, the binding pocket of transcription factors such as LuxR 90, 91, AraC 41, 92, 93, and 

XylR 94, have mutagenized and evolved to bind new ligands; however, this was limited to 

structurally similar ligands. In all cases mentioned above, a naturally occurring metabolite 
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responsive transcription factor was a required starting point to generate a new biosensor. However, 

there exist many metabolites for which transcription factors are not known, or cannot be evolved.  

 Fortunately, nature has evolved a wealth of transporters and enzymes that sense and 

subsequently bind an enormous range of metabolites; they don’t however, regulate transcription. 

Recently, a strategy for fusing the native maltose transporter in Escherichia coli, maltose binding 

protein (MBP), with a zinc finger DNA binding domain (ZFP), was implemented to generate a 

maltose responsive transcription factor 97. The zinc finger was fused internally at a split of MBP 

(316R) that was previously optimized for the fusion of MBP and TEM1 b-lactamase (bla) 53. 

However, for this to be a generalizable technique, we need to be able to generate novel biosensors 

without the reliance on previously published information. Therefore, we developed a general 

method by which all insertions of a ZFP into a ligand binding protein could be generated in a high-

throughput fashion, and be screened for functional biosensors.  

 This method, Biosensor Engineering by Random Domain Insertion (BERDI), utilizes the 

MuA transposase to insert a transposon nonspecifically into a given plasmid encoding the 

metabolite binding protein. Transposon mutagenesis provides a simple and efficient method for 

generating a library of insertions due to its nonspecific and single insertion into each target DNA 

molecule, minimal scar sequence, and ability to generate > 105 variants in a single pot in vitro 

reaction. The transposon is later simply exchanged for a ZFP coding sequence to generate a library 

of potential biosensors. This method has been used to successfully circular permute proteins as 

well as profile proteins for permissible insertion points 57, 106, 138, 143, 144. Here, we demonstrate that 

this high-throughput, protein fusion technique can be used to generate a library of fusions between 

a ZFP and MBP to test if any other sites in the MBP can accept the ZFP insertion in a manner that 

produces a maltose responsive transcription factor biosensor. By combining this library with a 
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previously described zinc finger responsive fluorescent reporter 97 and FACS, we successfully 

enriched for three novel maltose-responsive biosensors. The generalizability of this method 

enables the rapid and high-throughput creation of new biosensors from metabolite binding 

proteins.  

 

3.4 Materials and methods 

3.4.1 Bacterial strains and culturing 

All experiments were conducted in DS941 Z1 Escherichia coli cells (AB1157, recF143, 

lacIq lacZ ΔM15, Placiq-LacI, PN25-TetR). Cells were maintained in Lysogeny Broth (LB) Lennox 

formulation (10 g/L of tryptone, 5 g/L of yeast extract, 5 g/L of NaCl) supplemented with 

appropriate antibiotics (Ampicillin 100 µg/mL, Kanamycin 50 µg/mL, and or Chloramphenicol 34 

µg/mL). All experimental analysis was conducted in M9 minimal media (1X M9 salts, 0.2% 

Casamino Acids, 2 mM MgSO4, 0.1 mM CaCl2, 1 mM Thiamine HCl) containing glycerol (0.4%) 

as the primary carbon source. Variable amounts of isopropyl β-D-1-thiogalactopyranoside (IPTG) 

were added as indicated to induce biosensor expression. Maltose monohydrate was added to the 

media at a final concentration of 100 mM.  

The biosensor expression vector was built using standard molecular biology techniques 

using synthetic parts generously provided by Jim Collins (MIT)111. The green fluorescent protein 

(GFP) reporter plasmid driven by the pGo92 zinc finger responsive promoter was used a 

previously described 97. Custom RBS sequences for the biosensor and reporter plasmids were 

designed using the RBS calculator 112. The camR and sacB ORF was acquired from pKM154 as a 

gift from Kenan Murphy 145 (Addgene plasmid #13036) and cloned into a storage vector containing 

MuA transposon recognition sequences, flanked by BglII restriction sites (pAY438). The BCR-
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ABL1 zinc finger protein was subcloned into a storage vector flanked by NotI restriction sites 

(pAY437). Description of all plasmids used in this study can be found in Supplemental Table B1.5, 

and electronic plasmid sequence files are included in the supplementary materials.  

 

3.4.2 Library construction and transposition reactions 

The MuA transposase inserts the transposon randomly, and in either a forward or reverse 

direction. Furthermore, the transposon can be inserted in any of the 3 possible codon frames in 

MBP. Therefore, three frames multiplied by a forward or reverse insertion yields six possible 

insertions for a given codon of target DNA, but only one combination (forward and in-frame) will 

produce a productive insertion. The transposase also leaves a partially controllable scar, therefore 

to keep the ZFP in frame with the rest of MBP, and to avoid undesirable scar products, a three 

alanine linker on either side was selected. A detailed description of the transposon sequence and 

potential scar options can be found in Supplemental Figure B1.1.  

A transposon conferring chloramphenicol resistance as well as containing the sacB gene 

for negative selection with sucrose was digested out of a storage plasmid (pAY438) using BglII, 

gel extracted, and subjected to an ethanol precipitation to maximize purity. In vitro transposition 

reactions were carried out according to the protocol within Thermo Scientific’s Mutation 

Generation System kit (catalog # F701). 100 ng of the purified transposon was combined with 200 

ng of the target plasmid containing MBP (pAY447), and incubated with the MuA transposase for 

4 hours at 30⁰ C. Care was taken to use clean nuclease-free water, as the reaction is sensitive to 

contamination. After the reaction was heat inactivated (10 min at 75 ⁰C), a PCR cleanup was 

conducted on the reaction contents. The entire contents were then electroporated into two tubes 

(~250 uL each) of electrically competent E. coli cells. The cells were selected on plates containing 
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chloramphenicol (transposon) as well as ampicillin (plasmid backbone) to reach ~8 x 105 colonies, 

over 100x the possible library size of 6,288 (the number of directions the transposon can insert in, 

2 by the total length of the target plasmid, 3144 bp). A summary of these values can be found in 

Supplemental Table B1.6. Serial dilutions were made at each cloning step and extrapolated to 

estimate library size. The MBP gene was digested out with restriction enzymes KpnI and SphI and 

gel purified to size-select for genes that had a successful insertion, and moved to an expression 

plasmid under the control of a lac-inducible promoter pTrc (pAY431). Restriction digestion using 

the NotI site present in the transposon scar was used to replace the transposon with the ZFP gene, 

and the resulting ligation was transformed into competent E. coli cells that already contain the zinc 

finger responsive GFP reporter plasmid (pAY430). Cells were selected with ampicillin and 

kanamycin for both plasmids as well as 10% sucrose to maximize loss of the transposon. See 

Figure 3.1 for a visual description of this process.  
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Figure 3.1 Transposon based method high throughput generation of fusion proteins.  
(A) Library generation. The donor plasmid containing the gene of interest, the transposon, and the transposase 
enzymes are incubated for 4 hours at 30° to create a library of random insertions. The plasmid pool is transformed and 
selected for using chloramphenicol and ampicillin markers. (B) Cloning of the transposed gene. Gene containing the 
inserted transposon is isolated using the restriction enzymes KpnI and SphI, gel extracted, and cloned into a similarly 
digested expression plasmid. This pool of plasmids is transformed and selected for using kanamycin and 
chloramphenicol markers. (C) Exchanging the transposon for the ZFP. The transposon is replaced with ZFP using the 
NotI sites, and is the resulting plasmids are transformed into DS941 cells containing the reporter GFP plasmid. Cells 
containing the biosensor plasmid, without the transposon, and the reporter plasmids are selected for using kanamycin, 
ampicillin, and 10% sucrose. (D) Cartoon of potential enrichment strategy for metabolite responsive biosensors using 
FACS. The gray distribution represents the biosensor and reporter plasmid’s GFP expression prior to induction of the 
biosensor protein. The red distribution is the GFP expression with the biosensor after induction. The blue distribution 
is the GFP expression with the induced biosensor in the presence of ligand. 
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3.4.3 Gel electrophoresis and ImageJ analysis 

All gel electrophoresis experiments were conducted with a 1% agarose gel and run in 1x 

TAE (tris acetate EDTA) at 120 volts. DNA was stained using SYBR Safe (Thermo Scientific) 

and imaged under blue light. Approximate band sizes were estimated using a 1 kb ladder (New 

England BioLabs). Plot profiles of resulting gel images were analyzed using ImageJ’s plot profile 

function. Gray values for each lane were background subtracted from an empty gel lane.  

 

3.4.4 Microplate-based fluorescence assays and analysis 

Cultures were inoculated from single colonies into 2 mL of M9 media and grown overnight 

to stationary phase. Overnight cultures were diluted 1:10 and grown for 1-2 h (OD600 ∼ 0.5). 

Cultures were again diluted 1:10 (OD600 ~0.05), plated in black-walled clear bottom 96-well 

plates in biological triplicate, and induced with 30 µM IPTG and or 100 mM maltose. Plates with 

lids were incubated and shaken in a continuous double orbital pattern at 548 cpm (2 mm) inside a 

BioTek Synergy H1 plate reader for 10 h with GFP fluorescence and OD600 absorption 

measurements taken every 15 min. Monochrometer settings were 485/515 nm for GFP. 

 

3.4.5 Flow cytometry and fluorescence activated cell sorting (FACS) 

Overnight cultures were diluted 1:10 and grown for 1-2 h (OD600 ∼ 0.5). Cultures were 

again diluted 1:10 (OD600 ~0.05) in either M9 media, or M9 media containing 100 µM IPTG. 

Cultures were grown for 4 h post-induction prior to FACS sorting. Cells were then diluted down 

to a concentration of 107 cells/mL in 4° PBS. 
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Sorting was performed on a BD FACS Aria II instrument (BD Biosciences, San Jose, USA) using 

an 85 µm tip with a 488 nm excitation laser and a FITC emission filter (530/30 nm). This FITC 

channel was used for analysis of GFP expression. Cells were first gated based on forward and side 

scatter, then the population of single cells were plotted on a GFP histogram. Uninduced cells with 

the constitutive level of GFP expression were analyzed prior to sorting (100,000 events), and 

gating was set such that no more than 1% of this population would be selected for. 100 µM IPTG 

was used to achieve maximal expression of the library to assay for members that can repress the 

GFP reporter. The gating threshold was set such that at most 1% of the uninduced population was 

used to sort the induced population for repressors. Cells were sorted into 3 mL of M9 minimal 

media containing ampicillin and kanamycin. For each round of sorting, 100,000 cells were 

collected in this media and subsequently inoculated into 75 mL of M9 and grown overnight at 

37°C. Subsequent sorts were done the next day using this sorted population, repeating the steps 

above. 

Traditional flow cytometry was performed on a LSRII flow cytometer (BD Biosciences, 

San Jose, USA). For all flow cytometry analyses, mean fluorescent intensity was calculated based 

on the GFP histograms of single cells (gated by forward and side scatter) using FlowJo Software 

(Tree Star) 

 

3.4.6 Next generation sequencing and analysis 

The naïve library of fusions was first digested out of the expression vector using KpnI and 

SphI. This DNA fragment was gel extracted and subjected to probe sonication to shear the library 

into fragments less than 500 bp. Library preparation was done by PCR amplifying four equally 

sized regions of MBP, with common sequences attached to the primers. The PCR primers were 
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designed to bind either the MBP or ZFP sequence, and an MBP primer was always paired with a 

ZFP primer for library preparation such that the insertion site could be determined from each 

amplicon. In total, 8 unique PCRs were run on the naive library: (four evenly spaced MBP primers) 

x (forward or reverse ZFP primer). See Supplemental Figure B1.2 for a visual layout of the primers 

and Supplemental Table B1.7 for a list of PCR reactions. Two biological replicates of the library 

were prepared for a total of 16 total reactions. Samples were then submitted to the University of 

Illinois at Chicago (UIC) Sequencing Core, where adapters and barcodes were further appended 

to the amplicons via another PCR reaction. All samples were run together on an Illumina MiSeq 

lane using paired end DNA sequencing. In total, ~8M reads were generated from the 16 PCRs. 

All data analysis was done in with a custom pipeline in Python. Briefly, reads were filtered for 

presence of the transposon scar sequence as well as for the primers that generated that reads’ 

amplicons. Then, forward reads were filtered for those with a paired-end match of at least 12 

contiguous bases, and then filtered out reads that had base calls that fell below a minimum Phred 

quality score of 20. Next, the reads were assigned to specific bins depending on their read length, 

in roughly 50 bp ranges, to allow for length-appropriate score filtering Reads were then aligned to 

the MBP template sequence using the Needleman-Wunsch algorithm (using a gap opening penalty 

of 10.0, gap extension penalty of 0.5, and the EDNAFULL scoring matrix), and filtered based on 

length-adjusted alignment scores, as scores generally increase with length of alignment. These 

alignments were then analyzed for insertion sites based on a contiguous region of alignment to the 

MBP template via a regular expression search. A graphical representation of this pipeline can be 

found in Supplemental Figure B1.3. In all cases, the insertion site refers to the last base of MBP 

upstream (5’) of the transposon insertion. All of the NGS analysis code and data is available at 

https://github.com/PeterSu92/BERDI-NGS-insertion-analysis. 
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3.5 Results 

3.5.1 Generation of random domain insertion libraries via transposon mutagenesis 

The target library generation numbers were calculated with the prior knowledge that MuA 

inserts randomly into target DNA molecules as well as in either forward or reverse, as the 

transposon recognition sites on either end of the transposon are palindromic. Therefore, for a 

plasmid of length n bases, the total number of possible insertions is 2n. Finally, given that the 

insertions are random and independent of one another, we aimed to achieve at least 10x of this 

number of colonies in each step to ensure library diversity. All calculations of library sizes can be 

found in Supplemental Table S2. The first step in the process is the incubation of a plasmid 

containing MBP with the transposon and transposase enzyme (Figure 3.1A). After the 

transposition reaction, the library of transposed plasmids is transformed and selected for using 

ampicillin and chloramphenicol. Our initial transposition library had well over 8 x 105 colonies, 

or ~125x the possible library size (Supplemental Table B1.6). Next, MBP containing the 

transposon sequence is digested out of the initial plasmid using the restriction enzymes KpnI and 

SphI and cloned into a expression plasmid containing the Lac promoter pTrc2 (Figure 3.1B). The 

library was again transformed and selected for successful ligation products using kanamycin and 

chloramphenicol. The transposon was then excised using NotI and replaced with the ZFP. This 

ligation was transformed into cells containing the zinc finger responsive GFP reporter and 

selection for plasmids that have lost the transposon, but have both plasmids, was done by using 

kanamycin, ampicillin, and 10% sucrose (Figure 3.1C). Both cloning steps in Figures 3.1B and 

3.1C also achieved the target 10x oversampling, as shown in Supplemental Table B1.6. The library 

could then be sorted using FACS for functional repressors, followed by sorting in the presence of 

ligand for functional biosensors as described by the Figure 3.1D cartoon.  
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3.5.2 Analyzing diversity landscape of the naïve library 

In order to confirm library diversity prior to sorting for functional biosensors, we analyzed 

the naïve library using three distinct methods. First, the library was digested out of the expression 

vector and subsequently digested with a restriction site unique to the ZFP (Figure 3.2A). The plot 

profiles, made in ImageJ, from each lane is plotted in Figure 3.2B. The gel image and plot profile 

show a distribution of DNA sizes consistent with diverse insertions. To evaluate insertions that 

were too rare to show up on a gel, we next performed both Sanger sequencing on 46 colonies and 

next-generation sequencing (NGS) on the library by amplifying regions containing both the MBP 

and ZFP. The insertions identified by both Sanger and NGS are plotted according to their position 

in MBP (Figure 3.2C). The insertions found by NGS are plotted on top of MBP in black arrows. 

The insertions that are unique to Sanger sequencing are plotted below MBP in red, and the 

insertions that were found common to both methods are plotted in blue. A full list of quantified 

insertions by Sanger sequencing and NGS can be found in Supplemental Table B1.8.  
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Figure 3.2 Comprehensive analysis of naïve library topology.  
(A) Gel electrophoresis image comparing the naive library of biosensors, to the same sample now treated with a 
restriction enzyme unique to the ZFP. Lane 1, full length biosensors (1455bp). Lane 2, digested biosensors. Lane 3, 
DNA ladder with the corresponding bp values listed. (B) Plot profile of both lanes from panel A created in ImageJ. 
(C) ZFP insertion positions into MBP. Insertions found via NGS are displayed in black. Insertions found via traditional 
Sanger sequencing that were common to NGS are displayed in blue, and unique to Sanger sequencing are displayed 
in red.  
 

 Based on our amplification method and conservative NGS analysis parameters, we can 

confidently identify at least 153 insertions across MBP, or 13.7% of all possible insertions. Out of 

these, 48 (31%) were in frame, and 102 (49%) contain a forward-facing ZFP, matching well with 

the expected distribution from MuA’s random insertions. (Table 3.1) We confidently identified 37 

productive insertions (forward-facing and in-frame) from these analyses. Additionally, 12 

insertions (71%) found by Sanger sequencing individual colonies were also present in the NGS 

analysis. We observe a dynamic range in insertion counts of 106 in our NGS data, but the fact that 

the transposon insertion ratios (forward/reverse, in-frame vs. out of frame) demonstrate proper 

biochemistry carried out by the transposase (Table 3.1) lead us to believe our library is unbiased. 
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Additionally, since only 1 of the colonies that were Sanger sequenced showed any of the top 5 

most frequent (63%) of the insertions calculated from our NGS, and 5 colonies were not found by 

NGS, we hypothesize that PCR bias significantly affected our NGS results. This is further backed 

by the fact that 66% of our insertions were present at 5 counts or less.  

 Therefore, to determine whether our NGS method produced the same distribution as Sanger 

sequencing of individual colonies, we performed the Chi-squared statistical test on both the 

distribution and counts of insertions determined from the both methods (Supplemental Table 

B1.9). The P-value obtained from this study was << 10-10, affirming that these two distributions 

are statistically different. The fact that we found 5 unique insertions from 17 total insertions in 

Sanger sequencing not only contributes to this statistical difference, but also gives us confidence 

that our library is in fact diverse. 

 

Table 3.1 Naïve library insertion statistics 
Condition Expected if unbiased Observed by NGS and 

Sanger 

In frame 33% 31% 

Out of frame 

 

66% 69% 

Forward ZFP 50% 49% 

Reverse ZFP 50% 51% 
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3.5.3 Biosensors found via screening of the naïve library 

The naïve library was first sorted for the ability to repress the GFP reporter. The uninduced 

library was compared to the library that had the biosensor induced with 100 µM IPTG. The gating 

selection for repressors was determined selecting only the dimmest 1% of the uninduced library, 

then sorting the induced library with that gate. This process was iterated on three consecutive days 

to enrich for repressors from the initial library. Next, the population of reversible repressors was 

sorted for to minimize false positive repressors. Following four rounds of sorting, the cells were 

plated and individual clones were grown, and assayed for maltose responsiveness, using a 

microplate reader with 30 µM IPTG and 100 mM maltose. Library members that were both at least 

a 2-fold repressor as well as maltose responsive were sent for Sanger sequencing (Figure 3.3A). 

Following sequencing, the insertional position of the ZFP was visualized by highlighting the amino 

acid that was disrupted by the insertion of the ZFP on the crystal structure of MBP (Figure 

3.3B)(PDB# 1ANF)123. The previously described reference biosensor, ZFP insertion at 316R, is 

highlighted in yellow for comparison purposes 97. Three distinct biosensors were enriched: an 

insertion at 277A, an insertion of two ZFPs at 270A, and an insertion at 335P. Interestingly, the 

four insertion points are distributed in three distinct regions of MBP. All four are on the outside of 

the protein and are either in a loop (270A) or at the end of an a-helix, near a loop (316R, 277A, 

and 335P). Given the sample size, and the lack of crystal structures of the new biosensors, it is 

difficult to predict if they share other features that lend themselves to maltose-responsive 

transcriptional regulation. Performance of the new biosensors was evaluated in comparison to the 

reference biosensor by flow cytometry (Figure 3.3C). Biosensors were evaluated with 30 µM IPTG 

to induce the expression of the biosensor and 100 mM maltose to determine the extent of the 

maltose responsiveness. This IPTG dose lead to the largest maltose sensitivity of the reference 
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biosensor, therefore it was chosen as a starting point 97. Both the 277A and 270A biosensors have 

similar repression compared to 316R (~3 to 4-fold), however, neither are as sensitive to maltose. 

The 335P biosensor on the other hand is a better repressor (~10-fold) and is substantially 

responsive to maltose. The enrichment of the 270A double ZFP insertion but not the 270A single 

ZFP insertion prompted us to generate the 270A single to better understand why the double ZFP, 

presumably a much rarer ligation product, compared to the single, would have been enriched over 

single. This double insertion is a potential product (albeit rare) given the cloning to replace the 

transposon with the ZFP uses the same NotI restriction site on both the 5’ and 3’ end of the 

fragment, allowing for double ZFP insertions to be cloned into a single transposon insertional 

position. The 270A single construct is a milder repressor compared to the 270A double at high 

levels of IPTG (60 and 100 µM) which explains why it was not as enriched as the 270A double 

during FACS (Supplemental Figure B1.4). Furthermore, at 30 µM IPTG where the maltose 

responsiveness was measure on the microplate reader, the 270A double outperforms the single as 

well. Taken together, this explains why the enrichment strategy would not have enriched for 270A 

single, but does enrich for the 270A double.  
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Figure 3.3 Functional biosensors found via screening of the naïve library. 
(A) Cartoon of the sorting strategy. Briefly, three rounds of FACS were done, each time isolating no more than 1% of 
the “ON” population. One subsequent round of sorting was done to isolate only repressors that were reversible. Cells 
were then plated, and clonally evaluated for maltose responsiveness. Successful biosensors were sent for Sanger 
sequencing to determine the insertions position. (B) Crystal structure of MBP is shown in gray, with the insertional 
positions (in amino acid number) of each biosensor labeled. The reference biosensor insertional position is highlighted 
in yellow, compared to the three new biosensors highlighted in purple, blue, and red. Space filling spheres represent 
the position of the ligand maltose. (C) Flow cytometry of the reference biosensor compared to the three new 
biosensors. The gray curve represents the biosensor and reporter plasmid’s GFP expression prior to induction of the 
biosensor protein. The red curve is the GFP expression with the biosensor induced with 30µM IPTG. The blue curve 
is the GFP expression with the biosensor induced with 30µM IPTG and 100mM maltose. The insertional position (in 
amino acid number), and whether the ZFP is a single, or double insertion, is listed in the top left corner of each plot. 
Plots represent a minimum of 10,000 cells in each condition.  
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3.4). At a high concentration (60 µM), the repression is not significantly higher compared to at 25 

or 30 µM IPTG, indicating that at these lower concentrations, there are already saturating levels 

of the biosensor to achieve that level of repression. However, at 60 µM IPTG, the system is no 

longer sensitive to maltose, indicating there is an overwhelming level of biosensor not bound to 

maltose. As the level of IPTG (and thus biosensor expression) decreases, the sensitivity to maltose 

increases, indicating there is an optimal window of biosensor expression for maximal maltose 

sensitivity while maintaining sufficient repressibility around 25 µM IPTG. However, once the 

IPTG level drops below 20 µM IPTG, the overall repression of the reporter decreases, as expected 

given the decrease in biosensor protein. The vertical line at 103 is a visual aid to ease the 

comparison of the different conditions.  

 

Figure 3.4 Impact of 335P biosensor dose on overall performance.  
Response of reporter output to the addition of IPTG and IPTG along with maltose measured by flow cytometry. The 
gray curve represents the biosensor and reporter plasmid’s GFP expression prior to induction of the biosensor protein. 
The red curve is the GFP expression with the biosensor induced with the indicated amount of IPTG. The blue curve 
is the GFP expression with the biosensor induced with the indicated amount of IPTG and 100mM maltose. 
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possible explanation for this is that the linkers introduced by the transposase were altering the 
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difference, the 316R biosensor with three alanines on each side of the ZFP was constructed and 

compared to the original 316R reference biosensors (Figure 3.5A). Surprisingly, this new reference 

biosensor with the three alanines had completely lost its ability to repress the GFP reporter. This 

demonstrates the importance of both the length and composition of the linker sequences to overall 

biosensor performance. To further investigate how linker length effects performance, three 

variants of the 335P biosensor were made, each containing a different linker length. The original 

335P contains three alanines on each side of the ZFP (3AA), so variants with two alanines (2AA), 

one alanine (1AA), or no linkers (0AA) were constructed and analyzed via flow cytometry (Figure 

3.5B and 3.5C). As the linker length shortened, the repression of the biosensor decreased indicating 

that the ZFP was less able to bind to the promoter region, presumably due to more constrained 

nature of the folding of the ZFP portion of the biosensor. The maltose responsiveness varied non-

linearly as a function of linker length. The 1AA 335P biosensor offered the best combination of 

repressive abilities and maltose responsiveness. This is further evidence that the linker length is 

important to overall biosensor performance, and that changing the linkers results in the alteration 

of performance.  
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Figure 3.5 Impact of biosensor linkers on overall performance.  
(A) Comparison of the effect of amino acid linkers between reference biosensor and its transposon-created counterpart 
(B) Flow cytometry data of reporter output when the linker lengths on the 335P biosensor are shortened from the wild 
type 3x (Ala) to 2x Ala, 1x Ala, and 0 AA scarless fusions. The gray curve represents the biosensor and reporter 
plasmid’s GFP expression prior to induction of the biosensor protein. The red curve is the GFP expression with the 
biosensor induced with 30µM IPTG. The blue curve is the GFP expression with the biosensor induced with 30µM 
IPTG and 100mM maltose. (C) Mean fluorescence intensity of the four linker variants of the 335P biosensor. The 
dark gray bars represent the biosensor and reporter plasmid’s GFP expression prior to induction of the biosensor 
protein. The light gray bars represent the biosensor and reporter plasmid’s GFP expression prior to induction of the 
biosensor protein in the presence of 100 mM maltose. The red bars represent the GFP expression with the biosensor 
induced with 30µM IPTG. The blue bars represent the GFP expression with the biosensor induced with 30µM IPTG 
and 100mM maltose. Mean fluorescence intensity is averaged from samples run in biological triplicates, and error 
bars represent one standard deviation.  
 

 

3.6 Discussion 

In this study, we developed and implemented the BERDI method for the generation of 
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biosensors. The fact that multiple insertions produced a bi-functional protein is not surprising 

given that a previous study found twelve functional insertions for a circular permuted GFP into 

MBP using a similar method 144. Additionally, another transposon insertion study demonstrated 

multiple bi-functional insertions of a cytochrome into β-lactamase 57. A possible explanation for 

the tolerance of the proteins studied both here and in previous research is that many circularly 

permuted proteins are able to retain their function, demonstrated in a study that found 15 unique 

functional circular permutations of an adenylate kinase using transposon mutagenesis 138. These 

findings strengthen the need for library based approaches, like the one described here, for 

developing and screening novel transcription factor biosensors.  

Given our goal of identifying possible biosensors using this method, it is important to 

evaluate the diversity in our naïve library. Although our conservative estimate of coverage from 

our combined NGS and Sanger sequencing is 13.7%, we have many reasons to believe this number 

is far from representative of our true diversity. First, the three biosensors that were enriched in the 

screening process were not detected by either Sanger sequencing or NGS, indicating that our 

screening method can isolate out rare fusions from the initial library. Furthermore, NGS library 

preparation requires a PCR-based amplification step and therefore there is a chance of certain 

insertions providing more favorable priming than others, and the exponential nature of PCR 

substantially compounds this. The difference in distributions of insertions from the NGS data and 

the Sanger sequencing of individual colonies further underlines this bias, as does the fact that 10 

insertions represented 93% of our total NGS insertion counts and 66% of our insertions identified 

in our NGS were present at 5 or fewer counts. We believe these combined facts lead to a masking 

of less frequently amplified insertions in the NGS dataset. This is most apparent in the first window 

of MBP, where all insertions pooled from forward/reverse insertions and both biological replicates 
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yielded only 16 distinct insertions, one of which was observed 868,175 times (encompassing 94% 

of the reads), and out of which 11 were observed less than 10 times each. Were we to repeat this 

deep sequencing analysis, we would likely explore an alternative method of amplification, such as 

using blunt-end ligated adapters on all library fragments for primer binding, instead of relying on 

primers that bind to the MBP and ZFP sequences directly.  

In addition to finding three productive new biosensors in our library, we found many 

variants that were out-of-frame, but that still exhibited mild (less than 2-fold) inducible repression 

(data not shown). We hypothesize that this is due to non-specific translation, as the start codon of 

the ZFP remained in the final constructs. Therefore, we recommend that the start codon be 

removed in subsequent library construction to minimize this issue and further enrich for productive 

biosensors over these false positives.  

One of our newly discovered biosensors (270A) had a double zinc-finger insertion, which 

arises from the fact that the ZFP insertion contains NotI on both the 5’ and 3’ end to be properly 

inserted into the palindromic transposon scar, making it possible, however rare, for a double 

insertion. Our investigation into the single-ZFP variant of that biosensor revealed that the double 

insertion variant exhibited significantly better repression at the gating threshold used in sorting. It 

is possible that the presence of two zinc fingers, if correctly folded, increases repression due to the 

higher local concentration of binding domains. Therefore, this is not inherently problematic or 

advantageous, but the fact that it originates from the transposon recognition sequences leads us to 

accept this as a possibility in our library creation. A mutagenesis study on the transposon 

recognition sequences might reveal an alternative method that removes this possibility, but such a 

study is outside the scope of this work.  
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 Biosensor dose is critical when evaluating biosensor performance. Increasing biosensor 

expression increases the repression of the GFP reporter, however it also limits the sensitivity to 

maltose. This is potentially due maltose transport becoming a limiting factor, and thus the system 

is overwhelmed with unbound biosensors that are free to bind the reporter. 100 mM maltose was 

used here as the highest level of maltose that could be added extracellularly before growth was 

impacted. It is possible if the biosensor and promoter could interact in a purified, in vitro system, 

enough maltose could be added to completely ablate DNA binding. However, if this level is 

unattainable intracellularly via native maltose transporters then it is of no practical use. 

Additionally, it is possible that the binding of maltose does not ever completely ablate the ability 

of the biosensor to bind DNA, therefore, regardless of intracellular maltose concentrations, the 

GFP reporter may never be completely unbound by biosensors. This performance characteristic is 

likely to be unique for every biosensor created, necessitating the need for a dose curve of both 

biosensor and ligand to be performed to find the desired biosensor properties.  

 Linker composition is vital to biosensor performance. The reference biosensor was not 

found in the transposon based screen due to the differences in the linkers. However, three novel 

biosensors were found. This implies that not only does linker composition matter, but that if we 

had chosen different linkers in the transposon design, we likely still would have found biosensors, 

albeit potentially an entirely different set. We hypothesized that too long of a linker length would 

insulate any allosteric interaction upon ligand binding, while no linker may prevent the ZFP from 

folding in a viable conformation for DNA binding. Therefore, three alanine linkers on would 

theoretically provide an inert and flexible linker composition. In fact, the variants of the 335P 

biosensor support this hypothesis: shortening linkers reduced the repression, and changed the 

maltose responsiveness. Furthermore, why the reference biosensor would be able to bind DNA 
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with lysine and leucine on the 5’ end and asparagine and valine on the 3’ end of the ZFP, but not 

with three alanines implies that potentially both length and composition of linkers are important 

for performance. As with biosensor expression level, the linkers are likely to impact every 

biosensor differently.  

The 335P biosensor has the performance characteristics that make it capable of 

distinguishing between a high and low state of maltose that could be utilized for high-throughput 

screening or feedback control mechanisms. However, the biosensors found by BERDI may not 

always have the performance characteristic desired for a particular application. Therefore, using 

BERDI as a starting point to generate functional biosensors, it may be possible to evolve the 

biosensor by saturating mutagenesis on the three alanine linkers, or even the whole protein, 

followed by additional rounds of sorting to enrich for different performance characteristics. The 

three novel biosensors described here were all found by sorting for repressors, then clonal 

examination for maltose responsiveness. However, if ligand responsive biosensors prove to be 

exceptionally rare, it would be prudent to use the ligand to sort and enrich for ligand responsive 

biosensors. Additionally, instead of using GFP and FACS as the screening system for ligand 

responsive biosensor, GFP could be replaced with the tetA gene encoding the tetracycline/H+ 

antiporter. Since the ZFP represses transcription, cells that cannot alleviate this repression in the 

presence of the ligand would be selected against under tetracycline challenge. Whereas biosensor 

that were ligand responsive would express more tetA. Therefore, growth on tetracycline could be 

used as another way to enrich for rare, ligand responsive, variants.  

Using MBP as a model system for which a biosensor had already been described was useful 

as it enabled the comparison of new biosensors to the previous reference biosensor. It was also 

important to design the BERDI method in such a way that did not depend on any previously 
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described permutation of the protein in addition to being generalizable to any metabolite binding 

protein of interest. The BERDI method successfully demonstrated that it can generate several 

novel biosensors from a model metabolite binding protein. Library diversity can be evaluated by 

restriction enzyme digestion, in addition to sequencing the library members by both Sanger 

sequencing and NGS. Furthermore, by evaluating biosensor dose along with linker length and 

composition, the performance of the enriched biosensor can be changed. In summary, the BERDI 

method is capable of rapidly converting a metabolite binding protein into a metabolite responsive 

transcription factor without any prior knowledge of permissive sites.  
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Chapter 4. Development of a screening strain for the inducible 

overproduction of Farnesyl Pyrophosphate (FPP) to develop a 

biosensor in the DXP pathway 

4.1 Context 

 In Chapters 2 and 3, evaluating maltose and MBP as a ligand and metabolite binding 

protein pair comprised an effective model system for a variety of reasons. Maltose monohydrate 

is an inexpensive sugar, easily soluble in water and media at high concentrations, and non-toxic 

and readily imported from the media by E. coli. MBP is a maltose transporter without catalytic 

activity on its substrate, and was previously converted into maltose responsive biosensors52, 53, 95. 

Additionally, MBP has many crystal structures and mutants characterized and described. This 

detailed biophysical understanding of the protein allowed informed hypotheses to be postulated 

about the potential mechanism of maltose mediated transcriptional regulation of the discovered 

biosensors. These features made maltose and MBP an attractive model system. However, the 

utility and applications of a maltose-responsive transcription factor, as described in Chapters 2 and 

3, are limited. Therefore, to test the generalizability of the BERDI strategy, developed in Chapter 

4, a new ligand and binding protein pair is required.  

 In comparison to transporters like MBP, there are many metabolite-binding proteins whose 

primary activity is catalytic. Metabolite binding enzymes are a promising target for biosensor 

conversion as many have high specificity for their target metabolite. However, metabolite 

responsive transcription factors are not catalytic, so the target enzymes must have catalytically 

inactive mutants described. I hypothesize that without this type of mutation available, the residence 

time of the ligand in the active site would be too short to effectively convey metabolite mediated 
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regulation of transcription. Additionally, intact catalytic activity may also change the intracellular 

levels of the metabolite that is being measured, which could confound and complicate the output 

of the sensor. Therefore, prior to selection of a ligand and enzyme pair I identified a desirable 

starting point by defining six properties that are most important for this initial investigation: (1) 

importance of the ligand to be sensed (for basic and applied research), (2) known crystal structure 

(at least ligand-bound), (3) known kinetic parameters (esp. Km, the substrate concentration at half-

maximal velocity), (4) known active site or mutations that disrupt catalysis without abolishing 

metabolite binding, (5) knowledge of ligand consumption, production, and, toxicity in E. coli, and 

(6) known method/s for enhancing ligand accumulation to facilitate initial biosensor evaluation. 

 With this mind, two farnesyl pyrophosphate (FPP) binding enzymes, ispU from E. coli and 

crtM from Staphylococcus aureus, were chosen that fulfill all six of the desired properties. FPP is 

an important precursor molecule for many industrially relevant compounds such as terpenes, 

terpenoids (isoprenoids), and sterols146. FPP, unlike maltose, would not be able to be added 

exogenously to test biosensor function due to toxicity to E. coli147. However, E. coli natively 

produces FPP, and the enzymes known to be rate limiting in the pathway have been previously 

identified142, 148, 149. While static overexpression of key rate limiting enzymes has been shown to 

increase FPP levels, for FACS based screening purposes, the same cell needs to be able to toggle 

on the overproduction of FPP in an inducible manner. Therefore, to facilitate the testing of an FPP 

biosensor, a screening strain that inducibly overproduces FPP was developed. I designed and 

conducted the experiments described in this chapter with the help of three talented undergraduate 

researchers: Neil Dalvie, Andrea Shepard, and Shreya Udani. This chapter will eventually become 

an introductory part of a larger paper based on the design and development of FPP-responsive 

transcription factor biosensors.  
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4.2 Abstract 

 Farnesyl pyrophosphate is a valuable metabolic intermediate whose overproduction and 

accumulation leads to cellular toxicity by an unknown mechanism. Furthermore, general stress 

responsive promoters have been used as a proxy for FPP toxicity to dynamically regulate 

production a downstream product of FPP, amorphadiene12. However, there currently is no known 

transcription factor biosensor for FPP directly. Yet there are many naturally occurring FPP binding 

enzymes that could be converted into transcription factor biosensors using the previously described 

BERDI method. A screening strain must first be developed to inducibly overproduce FPP to enable 

single cells the ability to toggle from a low FPP level to a high FPP level, as required for biosensor 

evaluation by FACS. Since there is not an easy way to monitor FPP production the enzymes that 

convert FPP into b-carotene, a visible red-orange product that can be quantified via absorption at 

450nm, can be introduced as a proxy for FPP. By inducibly expressing the rate limiting enzymes 

in the pathway upstream of FPP together with enzymes that convert FPP into b-carotene, an 

inducible FPP production landscape was determined. This strain can inducibly overproduce FPP 

to physiological, and biotechnologically relevant levels to enable the evaluation of FPP responsive 

biosensors.  

 

4.3 Introduction 

FPP is an intermediate in the biosynthetic pathway for producing industrially relevant 

terpenes, terpenoids (isoprenoids), and sterols 146. FPP is also a key branch point for native 

terpenoid use in cell wall synthesis and redox mediators (quinols). Therefore, careful management 

of the FPP node controls branching between two native pathways and recombinant synthesis of 
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higher (>15 carbon) terpenoids. Accumulation of FPP is also toxic by an unknown mechanism 147, 

and optimization of E. coli metabolism to maximize FPP flux while overcoming toxicity has been 

extensively investigated 142, 148, 149. Moreover, FPP is readily converted into a visible carotenoid 

product such as b-carotene, via expression of the crtEBIY operon from Pantoea ananatis, which 

provides a useful metric of FPP production 142, 149. FPP-responsive promoters have been identified 

and utilized to implement feedback control, although the mechanism of FPP recognition is indirect 

12; thus this case study comprises a useful point of comparison even though it does not utilize or 

identify an FPP-specific biosensor. Therefore, prior to the development of an FPP responsive 

transcription factor, a strain that can inducibly overproduce FPP was constructed using b-carotene 

as a proxy. Using this strain, a range of inducer concentrations and several media formulations 

were investigated to generate a set of conditions that produce a 13-fold induction of b-carotene 

over the uninduced strain. The strain was further validated by recapitulating phenotypes associated 

with high over production of FPP such as cellular toxicity and response to previously described 

stress responsive promoters.  

 

4.4 Materials and methods 

4.4.1 Bacterial strains and culturing 

All experiments were conducted in DS941 Z1 Escherichia coli cells generously provided 

by Sean Colloms (University of Glasgow) (AB1157, recF143, lacIq lacZ ΔM15, Placiq-LacI, PN25-

TetR)149. Cells were maintained in Lysogeny Broth (LB) Lennox formulation (10 g/L of tryptone, 

5 g/L of yeast extract, 5 g/L of NaCl) supplemented with appropriate antibiotics (Ampicillin 100 

μg/mL, Kanamycin 50 μg/mL, or Chloramphenicol 15 μg/mL). All experimental analysis was 

conducted as noted in either LB media, M9 minimal media (1X M9 salts, 0.2% Casamino Acids, 
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2 mM MgSO4, 0.1 mM CaCl2, 1 mM Thiamine HCl) containing glycerol (0.4%) as the primary 

carbon source, or R media150. Variable amounts of anhydrotetracycline (aTc) and isopropyl b-D-

1-thiogalactopyranoside (IPTG) were added as indicated.  

 

4.4.2 Plasmid construction 

All plasmids were assembled using standard molecular biology techniques. Plasmid 

backbones containing “plug-and-play” multiple cloning sites and compatible plasmids containing 

synthetic parts (mCherry, pTrc2) were generously provided by Jim Collins (MIT)111. The low copy 

number plasmid (pSC101 origin ~1-5 copies per cell) containing a TetR-based aTc-responsive 

promoter driving the expression of the enzymes for dxs, idi, and ispA with a chloramphenicol 

resistance cassette was modified from pJKR-L-tetR, a gift from George Church3 (Addgene 

#62562). The pA15 medium copy number origin (~10 copies per cell) was obtained from the 

Registry of Standard Biological Parts, plasmid pSB3K3. The stress-responsive promoters (gadE, 

rstA) were each PCRed from the E. coli genome and cloned into a medium copy number pA15 

backbone with the ampicillin resistance cassette, driving the expression of mCherry. The crtE, 

crtB, crtI, and crtY genes from P. ananatis that convert FPP into b-carotene were generously 

provided by Sean Colloms (University of Glasgow) and cloned into a pTrc-based IPTG-inducible 

expression plasmid in a ColE1 backbone (∼ 300 copies per cell) and ampicillin resistance cassette. 

Custom ribosome binding site (RBS) sequences were developed using the RBS calculator 112. A 

summary of the plasmids used in this chapter can be found in Table 4.1.  

 

 

 



 

 

110 
Table 4.1 Summary of plasmids used in Chapter 4  

Plasmid name Description Resistance Origin 

pAY449 pLtetO-dxs-idi-ispA and constitutive TetR 
Upstream enzymes.  

CmR pSC101 

pAY475 
 

pTrc2-crtEBIY 
Downstream enzymes. b-carotene producing.  

KanR ColE1 

pAY471 pGadE-mCherry. 
FPP stress responsive reporter.  

AmpR   pA15 

pAY472 pRstA-mCherry. 
FPP stress responsive reporter. 

AmpR pA15 

 

4.4.3 Microplate-based fluorescence assays and analysis 

Cultures were inoculated from single colonies into 2 mL of M9 media and grown overnight 

to stationary phase. Overnight cultures were diluted 1:10 and grown for 1-2 hours (OD600 ∼  0.5). 

Cultures were again diluted 1:10, plated in black-walled clear bottom 96-well plates in biological 

triplicate, and induced with aTc (to drive expression of the upstream enzymes, pAY449) and or 

IPTG (to drive expression of the β-carotene enzymes pAY475) as indicated. Plates with lids were 

incubated and shaken in a continuous double orbital pattern at 548 cpm (2 mm) inside a BioTek 

Synergy H1 plate reader for 16 h with mCherry, and OD600 measurements taken every 15 min. 

Monochrometer settings were 585/620 nm for mCherry. (mCherry) / (OD600) per well was 

averaged across biological triplicates and plotted over time. Each error bar represents the standard 

deviation of the means.  

 

4.4.4 b-carotene extraction and quantification 

Cultures were inoculated from single colonies into 2 mL of indicated media and grown 

overnight to stationary phase. The overnight cultures were diluted 1:10 in biological triplicate and 

grown for 24 or 48 hours at 30° C while shaking. 2 mL of cultures were then centrifuged for 1 min 
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at 15000 RCF. The pellets were washed with 500 μl of water, and centrifuged for 1 min at 15000 

RCF. The washed cells were re-suspended in 1 mL of dimethyl sulfoxide (DMSO), and placed 

into a 55°C water bath for 10 minutes. Next, the cells are centrifuged for 2 min at 15000 RCF with 

the resulting pellet being devoid of any b-carotene. To measure b-carotene levels, the supernatant 

was pipetted off and the absorbance at 450 nm was quantified using spectrophotometer that had 

been blanked with plain DMSO. To normalize b-carotene production by cell growth, the optical 

density at 600 nm wavelength (OD600) was also collected using the spectrophotometer. The cell 

density measurements were taken by diluting the overnight cultures 1:10 in corresponding media, 

on a media blanked spectrophotometer. The b-carotene production was defined as 

(OD450)/(OD600), and was averaged across three biological replicate for comparison between 

conditions. 

 

4.5 Results 

4.5.1 Native DXP pathway and accompanying and inducible overexpression constructs 

 The first step to develop a strain that could inducibly overexpress FPP was to introduce a 

plasmid that can convert FPP into the colored pigment b-carotene, because FPP is not readily 

quantifiable. This was accomplished by expressing four enzymes, crtE, crtB, crtI, and crtY from 

P. ananatis on a high copy plasmid (~300 copies per cell) from the pTrc2 lacI-based inducible 

promoter. To ensure that b-carotene was a true proxy for FPP level, these enzymes were placed on 

a high copy plasmid to maximize expression so that all the FPP is converted into b-carotene (Figure 

4.1B). Next, to upregulate the native DXP pathway upstream of FPP (Figure 4.1A), three enzymes 

that had been previously described (dxs, idi, and ipsA)142 to be rate limiting were expressed on a 
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separate plasmid. The overexpression of these enzymes has the potential to generate FPP at toxic 

levels. Therefore, these enzymes were expressed from the pLtetO promoter, which has a strong 

TetR repressed “OFF” state, and placed on a pSC101 based single copy number plasmid (Figure 

4.1B). By co-transforming both inducible plasmids into the same cell, the upstream enzymes that 

overexpress FPP can be induced with anhydrotetracycline (aTc), and the downstream enzymes 

that convert the FPP into b-carotene can be induced with isopropyl b-D-1 thiogalactopyranoside 

(IPTG). This way, the expression of both plasmids can be independently tuned with their matching 

small molecule inducers, within the same cell.  

 

Figure 4.1 Native DXP pathway and inducible overexpression constructs 
(A) Native DXP pathway in E. coli to generate FPP. Metabolites are shown in black, enzymes are shown in red. 
crtEBIY is added heterologously on a plasmid to convert FPP into b-carotene. (B) Graphical description of the two 
inducible expression constructs used in this chapter.  
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4.5.2 Evaluation of inducer concentrations to assess the b-carotene production landscape 

 Next, to evaluate the b-carotene production landscape, a combinatorial variation of inducer 

concentrations was performed. To first evaluate if the downstream enzymes are rate limiting, cells 

containing only the downstream enzymes were induced with a matrix of inducer concentrations 

(Figure 4.2A). As the IPTG dose increased, the b-carotene production does not change, until the 

highest dose of IPTG (100 µM) where the b-carotene production decreases potentially due to the 

stress associated with the high overproduction of four non-native enzymes. Overall, this indicates 

that the upstream enzymes are not rate-limiting when FPP is expressed at the basal level. When 

both the upstream enzymes and downstream enzymes were transformed together, b-carotene 

production is analyzed using the same range of inducer concentrations (Figure 4.2A). Unlike the 

downstream plasmid alone, when the levels of FPP are elevated by inducing the upstream pathway 

enzymes, the downstream enzymes become rate limiting. This can be seen across a row of aTc 

concentrations; as the IPTG concentration increases, the b-carotene production does as well. The 

100 µM IPTG dose together with the 100 ng/mL aTc dose produced the highest level of b-carotene 

from both plasmids. This combinatorial variation of inducer concentrations was performed in 

standard LB media as a starting point to determine the optimal concentration of each inducer to 

use. 

 Next to evaluate whether b-carotene induction can be further increased by varying the 

nutrient level the cells receive, three different media types were surveyed. The no inducer case and 

the 100 µM IPTG + 100 ng/mL aTc case were repeated in standard LB media, in addition to a 

minimal media (M9) and an extra rich bioreactor media (R). Under these conditions, the b-carotene 
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production was induced ~ 13-fold from the M9 case without any inducers to the R media case with 

induction (Figure 4.2B). This indicates that for maximum b-carotene induction, increasing the 

nutrient level in addition to overexpressing the upstream pathway is an effective strategy for 

inducible FPP production.  

 

Figure 4.2 Evaluation of inducer concentrations to assess the b-carotene production landscape 
(A) Heat map of a matrix of inducer concentrations for both the downstream enzymes alone, or the downstream and 
upstream enzymes together. (B) b-carotene production is quantified without any inducers or with the indicated inducer 
concentrations in three different media types. b-carotene production is quantified as absorbance at 450 nm divided by 
the OD600. Darker blue indicates higher b-carotene production per OD600.  
 

4.5.3 DXP pathway overexpression effect on cell health and stress-responsive reporters  

 To validate that the inducible system is capable of overexpressing FPP to relevant 

physiological levels, the ability to induce cellular toxicity was evaluated. High levels of FPP is 

known to slow down growth through an unknown mechanism, therefore if the inducible upstream 

pathway can generate high levels of FPP, the growth should be impacted by this induction. To test 

this, only the upstream pathway enzymes were included so that FPP would build up instead of 

being converted to b-carotene. Cell growth readings, measured as OD600, were taken every 15 

minutes for 16 hours post-induction, with a range of aTc doses (Figure 4.3A). As expected, the 
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higher the dose of aTc, the larger the growth effect was, confirming that the inducible system can 

recapitulate the known cellular toxicity phenotype.  

 Next, two stress responsive promoters, driving the expression of the fluorescent protein 

mCherry that have been previously shown to respond to FPP induced cellular stress, were also 

evaluated with the inducible system. The two promoters GadE and RstA were both found to be 

differentially regulated when the transcriptome from cells with a basal level of FPP was compared 

to cells that had a static overexpression of FPP12. Therefore, to evaluate whether the inducible 

system can trigger the GadE and RstA stress responsive promoters, mCherry reporters were 

constructed and transformed with the upstream and downstream plasmids. Natively, GadE is 

highly expressed under normal conditions and decreases its expression with cellular stress, while 

RstA has the reverse logic. As previously described, the GadE promoter has high expression 

without any cell stress, then upon addition of the upstream enzymes, the expression drops, and 

drops again when the upstream and downstream plasmids are present (Figure 4.3B). Next using 

the RstA stress responsive promoter, expression was induced when both the upstream and 

downstream plasmids were present (Figure 4.3C). The behavior of the GadE and RstA reporters 

is consistent with previously described findings, indicating that this inducible system is producing 

similar levels of FPP mediated cell stress.  
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Figure 4.3 DXP pathway overexpression effect on cell health and stress responsive reporters 
(A) Cell growth, as measured by OD600, over time of the upstream pathway enzymes being expressed with increasing 
concentrations of the inducer aTc. (B) mCherry fluorescence normalized by OD600 of the GadE stress responsive 
promoter plotted over time. (C) mCherry fluorescence normalized by OD600 of the RstA stress responsive promoter 
plotted over time.  
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4.6 Discussion 

 Taken together, these results suggest that the inducible upstream enzymes are capable of 

inducibly increasing intracellular FPP levels. Using separate plasmids for the upstream enzymes 

and the downstream enzymes, the 100 µM IPTG dose together with the 100 ng/mL aTc dose 

produced the highest level of b-carotene from both plasmids. Then by changing the nutrient level 

with different media formulations, a ~13-fold induction of b-carotene was achieved. Through 

recapitulating known, high FPP phenotypes, the inducible system was validated.  

 The most direct way to measure FPP is to use gas chromatography-mass spectrometry 

(GCMS). However, FPP itself is not volatile enough to be effectively detected, and must first be 

derivatized into its alcohol farnesol. While there are published methods on this, initial attempts 

proved challenging to accurately quantify farnesol levels from cellular extracts. The body of 

evidence, however, for this strains ability to inducibly overproduce FPP is strong in the absence 

of this direct measurement data.  

 When analyzing the performance of the stress response promoters, it was unexpected that 

the addition of the downstream enzymes did not decrease the cell stress associated with FPP levels. 

Presumably, the conversion of FPP into b-carotene would have relieved the cells FPP related 

stress, however the opposite was observed. When the downstream plasmid was included, this 

increased the cell stress that is reported on by both promoters. This is the potential downside of 

using general stress responsive promoters, even if they respond to high FPP stress, they also 

respond to other forms of stress. It is possible that having a third plasmid expressing the 

downstream enzymes in addition to the upstream enzyme plasmid and the reporter plasmid caused 

more general stress on the cells that was subsequently reported. This underscores the need for a 

direct way to measure FPP, and the generation of an FPP responsive transcription factor biosensor 
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could be one possible solution instead of relying on more indirect measurements like b-carotene 

or the stress responsive promoters.  
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Chapter 5. Conclusions and Recommendations 

5.1 Chapter 2. Engineering modular biosensors to confer metabolite-responsive regulation 

of transcription 

5.1.1 Conclusions 

 Before the evaluation of several biosensor conversion strategies, zinc finger responsive 

promoters first needed to be developed. Previously, zinc fingers fused to transcriptional activators 

or repressors and their cognate promoter had been developed100-102, however there were no known 

promoters for the BCR-ABL1 zinc finger, and no investigation into just using the DNA-binding 

domain without any fusion partners such as transcriptional activator or repressor domains. The 

latter point was especially important as we intended to use the metabolite binding protein as the 

transcriptional regulator, and not an additional domain. By rational design, a library of BCR-ABL1 

zinc finger-responsive promoters was built, and features important for transcriptional repression 

by the ZFP were identified by qualitative introspection and computational regression methods. The 

most repressible promoters were carried forward to be paired with the ZFP based biosensors. In 

fact, when the repression by the ZFP was compared to the repression by the SP biosensor, the same 

promoters that were highly repressible by the zinc finger alone were also highly repressible by the 

biosensor, indicating that the design rules for developing zinc finger responsive promoters also 

holds true for biosensors built from the same zinc finger.  

Prior to the development of the SP biosensor, where a ZFP was inserted internally into 

MBP at amino acid 316R, all unnatural transcription factor biosensors had relied on the re-

engineering, or fusion of a known transcription factor. While a ZFP is a known DNA-binding 

domain, it is not a transcription factor. Additionally, MBP is natively a periplasmic sugar 

transporter, so it too has no inherent transcriptional regulation activity. The SP biosensor was the 
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first example of a way to combine a DNA-binding domain and a metabolite-binding protein into a 

metabolite responsive transcription factor. Furthermore, the construct did not rely on directed 

evolution/mutagenesis in order to obtain maltose responsive transcriptional regulation. The SP 

biosensor did, however, rely on a wealth of previous literature on the development of enzymatic 

biosensors from MBP fused to other domains. In fact, the 316R split of MBP was previously used 

to generate a non-transcription factor enzymatic biosensor 53. Unlike the SP biosensor strategy, the 

SZF strategy where the zinc finger was split in two and fused to the N and C terminal domains of 

MBP proved unsuccessful at producing a transcription factor biosensor. This is likely due to a 

combination of the distance the two halves of the ZFP were held apart by the N and C termini, and 

their orientation relative to one another, that precluded their ability to bind DNA. Furthermore, 

this strategy is overall less generalizable as it relies on the N and C termini to be in appropriate 

orientation to all the two halves of the ZFP to be reconstituted to a degree that enables DNA-

binding. The SP strategy on the other hand just relies on the ability to find an internal split site that 

enables the ZFP to fold in a manner that enables binding, and a position that allows for ligand 

responsive regulation of the DNA-binding event. While this is by no means trivial, there is not any 

known inherent structural feature that would always prevent the ability to form a biosensor by the 

SP method, unlike the SZF method.  

 

5.1.2 Recommendations 

 The SP biosensor is a successful, maltose responsive transcription factor, however the 

mechanism of transcriptional regulation is not understood. I hypothesize that in the unbound state, 

the ZFP portion of the biosensor is folded in a conformation that permits DNA-binding. In the 

presence of maltose, the two halves of MBP that are split by the ZFP, reconstitute upon ligand 
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binding. This reconstitution event changes the conformation of the protein and inhibits, at least 

partially, the ZFPs ability to bind DNA. This hypothesis could be addressed by evaluating a 

truncation of the SP biosensor that only contains the first half of MBP and the zinc finger. If this 

protein is no longer able to alleviate transcriptional repression, it could be evidence that the second 

domain of MBP is required for transcriptional regulation. However, another possible explanation 

could be that all the maltose binding and transcriptional regulation happens in the front half of 

MBP and the change in conformation upon ligand binding is transduced into the ZFP and that is 

what prevents DNA-binding. If that is the mechanism, then this conformational transduction could 

be dependent on the ZFP being tethered to MBP on both ends, and therefore the truncation 

biosensor would potentially not be able to differentiate between these two hypotheses. A crystal 

structure of the protein would answer many of these questions as it would enable a detailed look 

at the folding of the chimeric biosensor. Additionally, if both the apo and holo versions of the 

biosensor were solved, it could provide valuable insights into the mechanism of action of the 

biosensor.  

 A potential limitation of the biosensor work presented in chapter 2 is the mild repression 

exhibited by the biosensor, for example relative to that mediated by tetR. Thus, a fair question is 

– what could be done to improve the repression and fold change of the signal? From a promoter 

design aspect, placing the zinc finger binding sites right next to the -10 and -35 regions of the 

promoter provided strong repression upon ZFP expression. The -10 and -35 regions are where the 

sigma factor (s70) binds and recruits RNA polymerase to transcribe the GFP reporter. I 

hypothesize that this repression was due to the ZFP partially occluding the s70’s ability to bind 

DNA. Therefore, a way to improve repressibility of the promoter could be to overlap the ZFP 

binding site with the s70 binding sites. This could block s70 binding more dramatically and 
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potentially decreases the recruitment of RNA polymerase to the promoter. From a biosensor 

perspective, the length or composition of the linkers between the ZFP and MBP were not 

thoroughly permutated. As demonstrated in chapter 3, the linkers can dramatically impact overall 

biosensor performance. Therefore, this could be another way in which to improve the performance 

characteristics of the biosensor.  

 

5.2 Chapter 3. Development of novel metabolite responsive transcription factors via 

transposon-mediated, high-throughput protein fusion  

5.2.1 Conclusions 

 Chapter 2 demonstrated that the internal fusion of the ZFP into MBP, at a split of MBP that 

was previously described to make an enzymatic biosensor, created a maltose responsive 

transcription factor. However, as previously stated in Chapter 1, this split of MBP is highly 

unlikely to turn any other protein into a biosensor, even if it was extremely structurally related. 

MBP is one of the few proteins for which enzymatic biosensors have been developed for, therefore 

a published split of the protein was available, but most proteins will not have this literature support, 

or if they do, the split may not result in a functional biosensor. Therefore, to develop a more 

generalizable method for converting metabolite binding proteins into biosensors using the SP 

strategy without the reliance on any prior information on potential fusions points, the Biosensor 

Engineering by Random Domain Insertion (BERDI) method was developed.  

 By sampling a diverse library of insertions of the ZFP into any metabolite binding protein, 

functional biosensors can be screen for using the zinc finger responsive GFP reporter developed 

in Chapter 2. After several rounds of FACS sorting, three new maltose-responsive biosensors were 

discovered. Including the biosensor generated in Chapter 2, the four insertion positions mapped to 
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three distinct regions in the three-dimensional structure off MBP, indicating there are several 

regions where the ZFP can be inserted to generate a functional biosensor. Not surprisingly, the 

insertions were all on the outside surface of the protein, presumably because internal insertions 

would destabilize the folding of MBP. Furthermore, a brief investigation into linker length and 

composition indicated the importance of the linkers in between the ZFP and the MBP on overall 

biosensor performance.  

 The success of the BERDI method with MBP is a potentially transformative technology 

that could enable the conversion of a metabolite binding protein into a metabolite responsive 

transcription factor with no prior knowledge of previously described splits of the protein.  

 

5.2.2 Recommendations 

 While our initial application of the BERDI method was successful in generating novel 

MBP-based biosensors, there are certain aspects of our method that can be improved prior to future 

applications. The naïve library created by the MuA transposase was analyzed prior to sorting by 

both Sanger sequencing of individual colonies, and deep sequencing of the entire library pooled 

together. The two distributions were far from similar, indicating that the PCR amplification of the 

pool library during NGS preparation introduced a bias into the library. This is potentially due to 

mis-priming of the amplification primers, or a bias associated with the relative rates of 

amplification as a function of the insertional position. This could potentially be addressed by 

ligating on common sequences to each library fragment and then PCR amplify the library using 

primers that bind to these common sequences. This way all amplification was done by the same 

primer binding to the same sequence, they could potentially reduce the differences in priming and 

variable relative amplification biases.  
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 Additional improvement of our method can be accomplished by changing the FACS 

strategy. After several rounds of sorting for functional repressors, the library was clonally assayed 

in a microplate for maltose responsive regulation of transcription. These resulted in many colonies 

that were functional biosensors, however the throughput of this evaluation was much lower 

compared to the FACS that was done to enrich for repressors. If the biosensors are too rare to be 

screened with 96-well plates, an alternative strategy could be to use the ligand to sort for functional 

biosensors. The limitation of this idea is that the entire library must repress the GFP reporter in the 

presence of biosensor prior to ligand based sorting. Full ligand-induced alleviation of the 

repression would look just like a library member that could not repress the reporter in the presence 

of inducer. Therefore, there can be no non-repressors, as these will subsequently be enriched as 

false positives as candidate ligand-responsive biosensors. An alternative approach would be to use 

the zinc finger-responsive promoter to drive the expression of the tetA gene. TetA encodes a 

tetracycline/H+ antiporter that confers resistance to the antibiotic tetracycline. Since the ZFP 

represses the zinc finger responsive promoter, it could repress the production of tetA, making the 

cells sensitive to tetracycline in the presence of biosensor. However, if the biosensor is sensitive 

to the ligand, it will alleviate this repression and survive the challenge with tetracycline. This way, 

the growth on tetracycline could be a way of enriching for ligand responsive biosensors from a 

large pool of repressors.  

 Finally, like the original biosensor from Chapter 2, the new biosensor regulate transcription 

via an unknown mechanism, furthermore the distinct regions of MBP where the ZFP has been 

inserted make it very difficult to generalize any one particular mechanism for all successful MBP 

biosensors. Additionally, the rational changes to the linkers of the 335P biosensor indicate that 

there is a stepwise change in biosensor performance associated with these linker changes. 
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Therefore, an in vitro study of the 316R and 335P biosensors, including linker variants, using 

purified protein could provide new evidence for their mechanism of action. An electrophoretic 

mobility shift assay (EMSA) using purified promoter DNA sequences and purified biosensors 

could provide evidence for the promoter occupancy, to determine if more than one biosensor can 

bind to the promoter, or if the biosensor is prevented from binding DNA in the presence of maltose 

or if the strength of the interaction is only weakened. By assaying the linker variants of 335P, the 

impact of the linker changes could be described in more mechanistic detail how a biosensors 

performance is changed by varying the linker length. These experiments could provide new 

information on the molecular mechanism of biosensor transcriptional regulation.  

 

5.3 Chapter 4. Development of a screening strain for the inducible overproduction of 

Farnesyl Pyrophosphate (FPP) to develop a biosensor in the DXP pathway 

5.3.1 Conclusions 

 FPP is a valuable metabolite because it can be enzymatically converted into a wide variety 

of industrially important, high value compounds. There are many example in the literature of 

metabolic pathway engineering to overproduce FPP and its downstream molecules. However, in 

order to evaluate FPP-responsive biosensors, a inducible screening strain needed to be developed. 

By controlling the overexpression of the upstream rate limiting enzyme on a tightly controlled 

single copy plasmid, the induction of FPP levels were ~13-fold over baseline after a conversion of 

FPP into b-carotene. After validation by the recapitulation of FPP toxicity phenotypes, and 

response to known stress-responsive promoters, an inducible system of FPP production was 

confirmed. This system can now allow for the evaluation of FPP-responsive biosensors, by 

inducibly toggling on the overproduction of FPP levels.  
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5.3.2 Recommendations 

 FPP was chosen as important model system for the next target BERDI primarily because 

there is no know transcription factor biosensor for FPP. However, there are many FPP binding 

enzymes that have been described and crystalized. Two in particular, ispU and crtM, are excellent 

candidates for biosensor conversion as they have both been crystallized, the FPP binding pocket 

is known, and mutants that abolish catalytic activity without also abolishing ligand binding are 

known. Attempting to convert ispU and crtM into FPP-responsive biosensors will address some 

questions about the generalizability of the BERDI method. Both FPP-binding proteins are 

enzymes, and therefore it was critical to the selection process that catalytic mutants were available, 

as catalysis could limit the time the FPP ligand spends bound to the biosensor. How using these 

mutants will impact biosensor performance, especially in the FPP-bound state, is an interesting 

and open question. Furthermore, both enzymes are naturally dimers; presumably some insertions 

cold disrupt dimerization, and it will be interesting to see whether such higher order complex 

formation helps or hurts biosensor performance. In Chapter 2, fusing non-reactive bulk in the form 

of the fluorescent protein mCherry increased the repressibility of the 316R/SP biosensor. I 

hypothesize that the added bulk of a dimeric biosensor will increase its ability to block the sigma 

factor and RNA polymerase from initiating transcription at the regulated promoter. The 

development of successful FPP-responsive biosensors, or the failure to do so, will inform the types 

of proteins that are likely to result in functional biosensors following the BERDI strategy for future 

investigations.  
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Appendix A. Supplementary information for Engineering modular 

biosensors to confer metabolite-responsive regulation of transcription 

A.1 Supplementary methods 

A.1.1 Statistical analysis of promoter design features 

Statistical analysis of promoter design features 

This document provides additional details describing the statistical analysis used to 

evaluate which promoter design features conferred regulation of the engineered promoters by 

either DNA-binding proteins or engineered biosensors. 

In order to apply computational methods to describe the library of promoters, it was 

necessary to choose quantitative descriptors, or features, that describe architectural properties of 

each promoter. We chose 17 features to describe the location of binding sites, relative to the -10 

and -35 boxes, and to other binding sites. Two assumptions are associated with our choice of 

features. First, features were not assumed to be independent. Second, the expression of the reporter 

gene was assumed to depend solely on the repression of a bound biosensor or zinc finger protein. 

In order to determine which promoter features are important, three feature selection methods were 

used. All three methods used the same input and output data to generate a ranking of feature 

importance. All data were mean-centered and variance-scaled before these methods were applied. 

Input data consisted of a matrix of promoter indices and feature variables (62 promoter indices in 

rows, 17 feature variables in columns). Output data are described in the Materials and Methods 

and Results sections. The “repressibility” value for each promoter was defined as the negative 

relative expression of the reporter gene (GFP).  
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 The following three feature selection techniques generated rankings of the features in order 

of importance.  

 

A.1.2 Partial least squares regression 

The first feature selection method used was a permutation test using partial least squares 

regression (PLSR). First, PLSR was executed using the built-in MATLAB function, plsregress. 

This function returns a predictive model for the output values through regression coefficients for 

each feature. To determine feature importance, a permutation test was used 115. The output vector 

was randomly permuted, and PLSR was executed for the meaningless output vector. Regression 

coefficients were recorded for 1000 permutations, and a mean and standard deviation was 

calculated for the coefficient for each feature. After many permutations, coefficient means 

approached zero, as is expected for random permutations, but the standard deviations associated 

with each coefficient approached a different finite value for each feature, which indicates the 

degree to which that coefficient fluctuates randomly. Features for which the coefficients were 

greater in magnitude than the random variance are likely to be more significant. Therefore, the 

ratio of coefficient magnitude to the standard deviation associated with each coefficient provided 

a metric by which features were ranked in order of importance. In addition to rankings described 

in chapter 2 (Figure 2.3), coefficients and standard deviations for each feature are reported 

Appendix A2.5.  

The MATLAB function, plsregress, also provides a vector of output variance explained by 

each feature. Summing these gives the overall variance explained in the output data by the 

regression. PLSR was executed with one feature removed, and the loss of output variance 

explained was recorded for each feature. It is important to note that ranking through this loss of 
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output variance explained, or loss of predictive power, yields the same ranking as the permutation 

test. Using this ranking, PLSR was executed with an increasing number of features, in order of 

importance, with the output variance explained recorded each time. The output variance explained 

was also recorded for an increasing number of principal components used in the regression. These 

both were plotted to show the contribution of each feature or principal component to the regression 

model (Figure 2.3B).  

 

A.1.3 Random forest 

The second feature selection method utilized was Random Forest. To implement the 

Random Forest method, we modified a MATLAB script developed by Jaiantilal 

(https://code.google.com/p/randomforest-matlab/), which was based upon a method originally 

described by Breiman and Cutler (http://www.stat.berkeley.edu/~breiman/RandomForests/). First, 

the promoter library was divided into 54 promoters selected randomly to comprise a training set, 

leaving 8 promoters as a test set. Next, 6 features were “bagged” into a subset by random selection 

without replacement. The size of this subset is traditionally one third of the total set of features, 

which in this case rounds to 6 features (http://statweb.stanford.edu/~tibs/ElemStatLearn/). Next, a 

subset of promoters from the training set was randomly selected with replacement. The size of this 

subset is similarly one third of the total number of promoters in the training set, yielding an 18 

promoter subset. A decision tree was then generated, its predictions were tested against the data 

from the test set of promoters, and the mean square error was recorded. This process was repeated 

for a large number of bagged promoter training sets, while retaining the same subset of 6 features. 

This overall sequence was then repeated for a large number of feature subsets, generating a total 

of 100 decision trees, each of which used the same test set. Finally, this entire process was repeated 



 

 

149 
for 100 different random choices of test set, generating a total of 10,000 decision trees. To assess 

the importance of a feature, the input data within the test set were perturbed such that the feature 

values associated with each promoter (e.g., number of ZFP binding sites) were randomly permuted 

by shuffling. Any decision tree that included the feature of interest was then retested using the 

perturbed input data. The increase in mean squared error (i.e., reduction in predictive power) was 

averaged over all trees containing this feature. This metric (average increase in mean square error) 

was thus used to generate a ranking of features by importance, such that features with a greater 

average increase in mean square error were ranked as more important. (Appendix A2.5).  

 

A.1.4 Lasso regression 

The last feature selection method used was Lasso regression, also known as sparse or 

regularized regression. This type of feature selection is generally considered more robust than a 

permutation test or random forest, because the selection is built into the model generation, and 

does not require removing features from a predictive model 116. Lasso regression uses the least 

squares method, and is regularized by placing a constraint on the sum of the absolute value of the 

regression coefficients. Mathematically, the method places a penalty on large coefficient 

magnitudes by minimizing the following expression: 

(𝑦$ − 𝛽'𝑥$')* + 𝜆 𝛽'
''

,

$-.

 

In this expression, yi represents output data for the ith promoter, β is the regression 

coefficient for the jth feature, and xij is input data (feature variable j for promoter i). The value of 

𝜆 is a tunable parameter that determines the extent of regularization. With this method, coefficients 

of unimportant features shrink to zero as 𝜆 is increased. Using the MATLAB function, lasso, Lasso 
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regression was executed for 100 increasing values of lambda, with the number of features with 

non-zero coefficients shrinking from 17 to 0. Each regression iteration (corresponding to each 

value of 𝜆) was tested using 10-fold cross validation, and a mean squared error was recorded for 

each iteration. For each feature, the number of regression iterations for which it had a non-zero 

coefficient was recorded. This metric was used to generate a ranking of features in order of 

importance, with the most important features having non-zero coefficients for larger values of 𝜆. 

In addition to the feature ranking, the mean squared error and number of features with non-zero 

coefficients were plotted together versus the value of 𝜆 (Figure 2.3C).  
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A2. Supplementary tables and figures 

 

Figure A2.1 Plasmid maps of representative plasmids used in Chapter 2  
pAY242 is the pBAD (arabinose-inducible) vector expressing the BCR-ABL1 zinc finger and mCherry (co-
cistronically). This is a high copy plasmid (ColE1 origin) and contains the KanR resistance marker. pAY268 is a 
representative reporter plasmid with the Go3 promoter, driving the expression of EGFP. This is a medium copy 
plasmid (pA15 origin) and contains the AmpR resistance marker. pAY419 drives expression of the SP biosensor (and 
mCherry, co-cistronically) from the pTrc2 promoter (which is IPTG-inducible). The site at which MBP is split via the 
BCR1 insertion is indicated on this map. This is a high copy plasmid (ColE1 origin) and contains the KanR resistance 
marker. 
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Figure A2.2 Engineered promoter library details. Each BCR-ABL1-based promoter used in this study is listed 
and annotated as per the key at top 
All Zif268 promoters (not listed) are identical in every way to their BCR-ABL1 counterparts except that the Zif268 
binding site (GCGTGGGCG) replaces each instance of the BCR-ABL1 binding site. 
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Figure A2.3 Specific fluorescence variation across the promoter library  
(A) The impact of BCR-ABL1 expression on GFP reporter output was evaluated using a library of promoters bearing 
BCR-ABL1 sites at various locations in the promoter. The specific fluorescence (GFP fluorescence per OD600) was 
measured for each promoter in the library in the absence of BCR-ABL1 and normalized to that of the No Sites control 
promoter, shown in red. (B) Comparison of specific fluorescence without BCR-ABL1 to BCR-ABL1-mediated 
repressibility (relative expression); note that each quantity was normalized to value associated with the No Sites 
control promoter, shown in red. Relative expression is defined as the ratio of GFP/OD600 (for any given promoter) 
of the induced case relative to that of the uninduced case, divided by this same ratio for the No Sites promoter (a full 
description and rationale can be found in the Materials and Methods section of the main manuscript). All experiments 
were run in biological triplicate, and error bars indicate one standard deviation. 
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Figure A2.4 Comparison of flow cytometry and microplate assay-based quantification of BCR-ABL1-mediated 
repressibility  
Select promoter constructs were analyzed by both methods. Close association of each point with the diagonal line (y 
= x) drawn as a visual guide indicates agreement between the two methods of quantifying relative expression, with 
the possible exception of Go19, which was the least repressible promoter analyzed. All samples were normalized to 
the No Sites control promoter, shown as a red circle. Experiments were conducted in biological triplicate, and error 
bars indicate one standard deviation. 
  

1.2
Relative expression (by microplate assay)

R
el

at
iv

e 
ex

pr
es

si
on

 (b
y 

flo
w

 c
yt

om
et

ry
)

0
0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

BCR-ABL1

Go66
Go36

Go14

Go19

No Sites



 

 

155 

 

Figure A2.5 Feature selection for BCR-ABL1-mediated repression 
(A) Partial least squares repression (PLSR) coefficients associated with each feature (blue bars) are plotted along with 
corresponding standard deviations (error bars, which indicate the error around the mean coefficient value obtained by 
iterative permutation; this mean value was 0 in all cases, and thus error bars are plotted as deviations from 0). (B) 
PLSR coefficients associated with each feature were normalized by dividing each coefficient by its associated standard 
deviation, as obtained by iterative permutation (see Supplementary Methods). Features with a large normalized 
coefficient value are most important. (C) Average mean squared errors obtained when each feature was permuted 
during the Random Forest analysis (see Supplementary Methods). Features associated with a high mean squared error 
(when permuted) are more important. Feature numbers correspond to those listed in Figure 2.3A in chapter two. 
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Figure A2.6 Analysis of SP biosensor performance at the individual cell level  
Cells containing the SP biosensor and the Go92 reporter were grown and induced in the same manner as was used for 
microplate reader analysis, and then these cells were analyzed by flow cytometry. Cell were gated using forward and 
side scatter to exclude debris. The gray histogram represents cells that contain neither the biosensor nor the reporter 
plasmids. The remaining (colored) histograms represent cells expressing the SP biosensor and the Go92 reporter, 
cultured under the medium conditions indicated.  
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Figure A2.7 The effect of maltose on the BCR-ABL1 zinc finger’s repressibility over a range of IPTG induction 
levels  
The BCR-ABL1 zinc finger was expressed with the pTrc2 promoter in combination with the Go66 reporter. Compare 
to biosensor performance in Figure 2.4F. Note that the differences in repressibility between pTrc-BCR-ABL1 (shown 
here) and pBAD-BCR-ABL1 (shown in Figure 2.1, Figure 2.2, A2.3, and A2.4) may be attributed to different levels 
of expression of this ZFP from the aforementioned promoters. Given the potential for catabolite repression of the 
pBAD promoter in the presence of maltose, pTrc-BCR-ABL1 was constructed to enable testing the effect of maltose 
on BCR-ABL1-mediated repression of the reporters. All data represent mean values calculated from two independent 
experiments, each run in biological triplicate, and error bars represent one standard deviation. 
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Figure A2.8 Impact of 100mM maltose and IPTG on cell growth 
(A, B) Growth curves were collected for cells transformed with either the SP biosensor + the No Sites reporter (A) or 
the SP biosensor + the Go66 reporter (B). Experiments were conducted in biological triplicate, and error bars indicate 
one standard deviation. 
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Biosensor SP SP-Zif SP-mC mC-SP 

Fold repression 4.1 ± 0.1 2.4 ± 0.4 3.5 ± 0.1 6.0 ± 0.4 

Fold alleviation 3.0 ± 0.1 1.8 ± 0.3 2.0 ± 0.1 3.8 ± 0.3 

 

 

Figure A2.9 Fold induction and alleviation calculated using metrics previously applied to natural biosensors  
Using the fold induction methods described by Rogers et al. 3, fold repression was calculated by dividing the 
(maximum, uninduced background subtracted GFP/OD600) by the (induced, background subtracted GFP/OD600, 
repressed fluorescence). Fold alleviation was similarly calculated by dividing the (maximum, background subtracted 
GFP/OD600, maltose-induced fluorescence), by the (induced, background subtracted GFP/OD600, repressed 
fluorescence). GFP/OD600 values were calculated 10 hours after induction. Each range indicated is one standard 
deviation, in which error was propagated according to the division rule.  
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Appendix B. Supplementary information for Development of novel 

metabolite responsive transcription factors via, transposon mediated, 

high throughput protein fusion. 

B.1 Supplemental results 
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Figure B1.1 Transposon key features and scar options.  
(A) Cartoon representation of the transposon. The transposon is digested out of its storage vector pAY438 using the 
BglII restriction enzymes. This leaves the minimal 3’ “A” that is essential for MuA mediated strand transfer during 
the transposition reaction. All bases outside of this “A” get cleaved from the transposon following transposition. Purple 
highlighted bases will remain in the gene of interest after the transposon has been excised out. The NotI site is 
embedded in the MuA recognition site. The MuA recognition sites are show in gray boxes. The CamR and SacB ORFs 
with their own constitutive promoters are contained within the MuA recognition sequences. (B) The transposon will 
insert irrespective of frame: therefore, for each of the three frames, we describe the potential bases that need to be 
added to the ZFP to ensure that both regions of MBP are in frame with the ZFP insertion. By adding a single base to 
the front of the ZFP for frame 2, all the linkers will be alanines, except for the codon interrupted by transposon, and 
this cannot become a STOP codon. Frames 1 and 3 yielded poor linker options after the frame of the ZFP and MBP 
was preserved. Codons containing a “*” are controllable by varying the “X” base identity.  
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Figure B1.2 Representative graphic of the primers used to prepare library for deep sequencing. 
The zinc finger could potentially be anywhere inside MBP and is only drawn in the middle here for ease of 
visualization. All primers contained a variant of the common sequences necessary for the downstream amplification 
conducted by the next generation sequencing core. Primers were spaced apart in order to capture insertions in windows 
of ~300 bp, as the NGS required amplicons < 500 bp in length. The top cartoon describes the primers used for the 
forward facing ZFP, whereas the bottom cartoon described the reactions that were done to account for possible reverse 
ZFP insertions due to the palindromic nature of the transposon recognition sequence. Please see table S3 for 
description of the 8 PCRs.  
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Figure B1.3 Flow Chart of NGS Analysis Pipeline.  
Functions were created to conduct each task are outlined in the boxes. The yellow boxes indicate steps where a 
Needleman-Wunsch alignment. The green boxes indicate post-processing steps that only require the alignment needle 
file of the insert aligned against the template.  
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Figure B1.4 270A double ZFP versus 270A single ZFP.  
The effects the number of zinc finger inserts into MBP at position 270A on biosensor performance were evaluated 
using flow cytometry for this construct. IPTG was used to induce biosensor repression, and the maltose addition 
relieved repression. The plots shown use varying concentrations of IPTG and are grouped by the number of zinc 
fingers present with (A) two zinc finger insertions, (B) one zinc finger insertion.  
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Table B1.5 Plasmids used in this study 
 

Plasmid name Description Resistance Origin Reference 

pAY430 pGo92-GFP. Zinc finger repressible promoter 

driving GFP.  

AmpR pA15 Younger et al., 

2016 

pAY447 

 

MBP (no promoter)  AmpR ColE1 This work  

pAY438 BglII and transposon recognition sequences 

flanking CmR and SacB 

KanR  CmR ColE1 This work  

pAY437 BCR-ABL1 zinc finger, without a stop codon 

or promoter, flanked by NotI sites 

AmpR ColE1 This work  

pAY431 pTrc2 promoter and RBS followed by KpnI 

and SphI MCS, followed by a terminator 

KanR ColE1 This work 

pAY419 316R reference biosensor (SP from Younger et 

al. 2016) 

KanR ColE1 Younger et al., 

2016 

pAY470 277A biosensor (in pAY431) KanR ColE1 This work  

pAY450 270A double ZFP biosensor (in pAY431) KanR ColE1 This work  

pAY453 270A single biosensor (in pAY431) KanR ColE1 This work  

pAY451 335P (3AA) biosensor (in pAY431) KanR ColE1 This work  

pAY469 335P (2AA) biosensor (in pAY431) KanR ColE1 This work  

pAY468 335P (1AA) biosensor (in pAY431) KanR ColE1 This work  

pAY460 335P (0AA) biosensor (in pAY431) KanR ColE1 This work  
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Table B1.6 Targeted and experimental library sizes 
 

Experimental Step Theoretical library size Targeted library size 

(10x oversampling) 

Experimental 

Results 

Experimental 

Oversampling 

Generate library 3144 (bp MBP plasmid) x 

2 (forward or reverse) = 

6,288 

62,880 ~800,000 ~125x 

Clone transposed gene 

into expression plasmid 

 

1116 (bp of MBP) x 2 

(forward or reverse) = 

2,232 

22,320 ~30,000 ~14x 

Exchange transposon for 

ZFP 

1116 (bp of MBP) x 2 

(forward or reverse) = 

2,232 

22,320 ~30,000 ~14x 
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Table B1.7 PCR primer pairs for NGS. CS – Common sequence 

PCR Number Forward primer 

(common sequence #) 

Reverse primer 

(common sequence #) 

ZFP 

direction  

1 AYP828 (CS1) AYP829 (CS2) Forward 

2 AYP830 (CS1) AYP829 (CS2) Forward 

3 AYP831 (CS1) AYP833 (CS2) Forward 

4 AYP831 (CS1) AYP832 (CS2) Forward 

5 AYP828 (CS1) AYP835 (CS2) Reverse 

6 AYP830 (CS1) AYP835 (CS2) Reverse 

7 AYP834 (CS1) AYP833 (CS2) Reverse 

8 AYP834 (CS1) AYP832 (CS2) Reverse 
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Table B1.8 List of all insertions found by NGS and Sanger sequencing 

Insertion site 
[bp] 

Count by 
NGS 

Count by 
Sanger 
 

1 7 0 
2 35358 0 
9 2 1 

10 1 0 
12 1 0 
13 1 0 
14 13 0 
15 868175 1 
16 4 0 
18 1 0 
32 2 0 
40 1 0 
59 4 0 
60 24625 0 
74 2 0 

152 15 0 
201 42 0 
285 1 0 
286 2708 4 
287 2 0 
300 3366 0 
306 0 1 
325 12 0 
326 4 0 
329 1 0 
330 10 0 
331 4 0 
332 3 0 
333 3 0 
334 1 0 
336 3 0 
337 2 0 
340 8 0 
341 1 0 
346 1 0 
348 1 0 
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349 5 0 
350 7 0 
351 2 0 
354 4 0 
360 1 0 
361 2 0 
363 3 0 
364 1 0 
365 2 0 
366 14 0 
367 3 0 
371 1 0 
373 16 0 
382 8 0 
383 3 0 
384 2 0 
391 2 0 
394 3 0 
404 1 0 
405 1 0 
410 2 0 
412 2 0 
417 1 0 
422 1 0 
423 1 0 
442 1 0 
443 66 1 
444 318427 0 
445 1 0 
448 1 0 
494 1 0 
550 1 0 
561 1 0 
563 1 0 
564 7093 4 
565 130462 0 
566 4 0 
570 1 0 
580 2299 0 
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581 8766 0 
594 27159 2 
595 68187 0 
614 2642 0 
615 2269 0 
616 1 0 
623 8349 0 
637 39957 1 
638 5345 0 
639 1 0 
680 8378 0 
681 118 0 
670 0 1 
706 1 0 
711 201312 0 
712 1659 0 
713 8 0 
715 1 0 
716 1 0 
717 1 0 
719 1 0 
723 1 0 
748 1 0 
757 1 0 
758 181930 0 
759 884 0 
762 5 0 
771 1 0 
779 1 0 
785 5 0 
786 662975 0 
787 666 0 
788 1 0 
789 1 0 
791 4 0 
794 1 0 
807 66 0 
808 2 0 
809 262424 0 
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810 192 0 
812 6 0 
814 2 0 
867 2 4 
870 21 0 
896 0 1 
897 0 1 
898 0 1 
899 2840 0 
900 7824 2 
901 41428 15 
902 1 0 
903 44428 5 
904 3 0 
907 1 0 
938 2 0 
953 1 0 
976 4 0 
978 32589 0 
979 14 0 
987 3932 0 
993 1 0 

1004 3219 0 
1068 595 0 
1080 1 0 
1086 72 0 
1087 183665 1 
1088 3 0 
1090 2 0 
1099 1 0 
1102 1 0 
1103 1 0 
1104 1 0 
1105 1 0 
1110 1 0 
1111 4 0 
1112 236842 0 
1113 113 0 
1115 1 0 
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Table B1.9 Χ2 statistical test was calculated per the formula: 

 𝜒* = 	 2345675895:;5<=58 >

5:;5<=58
 

 

Variable Value 

χ2 740,018 

Degrees of Freedom 

 

1115 

P-value 0.00E+00 

 

 

 
 


