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ABSTRACT

Materials Discovery for Water Splitting Applications Using First-Principles Calculations

and Machine Learning

Antoine A. Emery

Moving away from fossil fuels requires environmentally friendly and economically viable

alternative energy sources. A wide adoption of new technologies for energy production

and storage depends on better performing materials. Computational methods, such as

electronic structure calculations and machine learning, hold the promise to work in con-

junction with traditional experimentation to accelerate the discovery of materials needed

to make those technologies more efficient. This thesis presents a first-principles methodol-

ogy in the context of perovskite discovery for hydrogen fuel production via solar thermo-

chemical water splitting. We calculate the properties of an exhaustive list of compounds

to search for the ideal materials for water splitting, some that have never been experi-

mentally synthesized. In addition, we use this large dataset of materials to benchmark

current machine learning techniques to further reduce the number of expensive calcula-

tions required to discover new materials. Finally, we look at the entropy of reduction of

cerium to explain the good performance of ceria for water splitting.
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CHAPTER 1

Introduction

As a result of an ever-increasing number of power consuming devices, the world’s en-

ergy demands are constantly rising. As this increase cannot be stopped and is necessary

for economical development, there is a need for sustainable and renewable energy to power

today’s and tomorrow’s society.1,2 At the core of clean energy is a materials challenge: we

need to discover new, or improved, materials that meet the requirement for environmen-

tally friendly production of energy. Energy production technologies such as photovoltaic

cells, thermoelectric materials, solid oxide fuel cells, and energy storage processes such as

batteries and solar fuels are all active areas of research. While the performance of a new

material can be assessed experimentally by synthesizing and directly testing materials, it

is time consuming and expensive to perform on a large scale. On the other hand, elec-

tronic structure calculations, such as density functional theory, offer exceptional tools to

perform such performance assessments. In addition to first-principles calculations, recent

developments in materials informatics can be used to predict very cost-effectively certain

properties of materials.

In this work, we use both density functional theory and machine learning to look at

perovskites for hydrogen production via solar thermochemical water splitting. H2 as a

fuel presents several advantages: it has high energy density, can be used in mobile and

stationary devices, and the product of its combustion is water. One carbon-free approach

to produce hydrogen is to split the water molecule using thermal energy from the sun.
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As water is a very stable molecule, doing so directly requires too high temperatures to

be practically feasible. An alternative route is to use metal oxides to perform two-step

thermochemical cycles. Despite success with ceria (CeO2), the state-of-the-art material

for this application, there is a need to discover new materials to increase the efficiency of

the process for large scale hydrogen production. For that purpose, ABO3 perovskites have

shown some promise in reducing the operating temperatures. The remarkable stability of

the perovskite structure with respect to its constituent elements and its ability to tolerate

large amounts of oxygen vacancy without phase transformation, suggests that there could

be potentially superior perovskites yet to be discovered.

In this thesis, we will look at efficient ways to screen perovskites for water splitting

by using density functional theory and machine learning techniques. The structure of

the thesis is shown in Figure 1.1. It highlights how a dataset of ABO3 compounds is

used for two different purposes 1) screening for water splitting materials and 2) machine

learning optimization. The next chapter contains some background on water splitting,

perovskites, density functional theory and machine learning. Chapter 3 will describe the

high-throughput calculations framework and validate our results with experiments. In

chapter 4, we use the calculations from chapter 3 to screen for thermodynamically favor-

able perovskites for thermochemical water splitting. Chapter 5 explains why ceria and

cerium containing compounds are heavily featured for water splitting and redox applica-

tions in general. In chapter 6, we use the perovskite dataset of chapter 3 to benchmark

several machine learning technique and develop models to reduce the need for expensive

density functional calculations. Finally, chapter 7 summarizes and presents outlook for

all the work presented in this thesis.
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Figure 1.1. Visual table of contents of the work presented in this thesis.
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CHAPTER 2

Background

2.1. Water Splitting

The clean and sustainable production of energy is a major challenge faced by today’s

world. The increase of energy demand, the depletion of fossil fuels and the greenhouse

gases emitted during their combustion call for new non-polluting and renewable energy

sources. Hydrogen is a promising solution to address these issues as it has high energy

density and the product of its combustion is water. Furthermore, it can be used for

stationary and mobile applications by direct combustion or as fuel in solid oxide fuel

cells.3

To produce hydrogen from water using solar power, three primary methods are pos-

sible: electrolytic, photochemical and thermochemical processes.4 As these approaches

involve different reaction mechanisms, a consistent way of measuring their efficiency is

required. The solar-to-hydrogen production efficiency is often used for that purpose and

is defined as:

(2.1) η =
mH2 ∗∆HH2

IS

where mH2 is the amount of hydrogen produced in moles per second, ∆HH2 is the upper

heating value of hydrogen in joules per mole and Is is the total solar irradiance of the

solar spectrum, in units of joules per second.
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With the electrolytic approach, the water molecule is dissociated by passing a direct

current, coming from an external source, through two electrodes immersed in water. If the

electric potential is high enough, hydrogen is produced at the cathode and oxygen at the

anode. Solar power is used to create the current with photovoltaic (PV) panels or with a

heat engine driven by solar-generated gases.4 As the electrolysis process is technologically

mature, the solar-to-hydrogen efficiency is mainly governed by the electricity generation

from PV panels or heat engines. The reported solar-to-fuel efficiency for water electrolysis,

using PV panels as source of current, is between 10% and 16%.5 Using a solar thermal

plant to generate steam or other gases in order to run heat engines can double this total

efficiency.4 In addition to the maturity of the electrolysis technique, another advantage

of this route is the flexibility in current source: as long as it is produced in a clean way,

current can be directly drawn form the grid.

With the photochemical route, metal oxides are irradiated with photons to excite elec-

trons. Those excited electrons can then drive the reduction of water at the surface of the

material.6–8 Several metal oxides, including AgNbO3, PbTiO3, CuNbO3 and NaTaO3
8,9

have been successfully used to perform water splitting. The main advantages of this route

are the absence of external power and the simplicity of the setup. However, as only a

portion of light with an energy greater than the materials’ band gaps is useful, the total

efficiency is penalized. Typical values for the solar-to-fuel efficiency is in the order of

1%.4,8
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2.1.1. Thermochemical Water Splitting

The thermochemical approach uses thermal energy to split water molecules. Thermo-

chemical processes have the advantage over electrolytic and photochemical approaches of

using the entire solar spectrum and of not requiring intermediate steps such as electricity

production. As a result, thermochemical processes have potentially higher efficiency than

other routes and is thus suitable for large hydrogen production plants.

Direct thermolysis of water, even if conceptually simple, requires too high temper-

atures and a gas separation mechanism, making it practically not feasible at a large

scale.10–12 Using direct thermolysis, at least 2500 K is required to achieve a reasonable

degree of conversion and the Gibbs free energy equals zero under a pressure of 1 bar at a

temperature of 4300 K.13,14 In order to reduce the water splitting temperatures, thermo-

chemical cycles catalyze the dissociation of water molecules using metal oxides to perform

two, or more, redox reactions.

The idea of splitting water molecules using thermal energy was first explored in the

1960s, as a way to diversify the use of nuclear energy.11,15 Therefore, it was characterized

by the use of temperatures below 1223 K, which was available with nuclear reactors. At

such temperatures, more than two chemical reaction steps are necessary, which proved to

be challenging in terms of product separation and introduced inherent inefficiencies due

to heat transfer.

The concept of using two-step water splitting cycles involving metal oxides came

around 1977.10 The general chemical reactions are presented in Figure 2.1. The top

equation of Figure 2.1 is referred as the thermal reduction (TR) step that occurs at high

temperature (typically around 2000 K) and the bottom equation of Figure 2.1 is the gas
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Figure 2.1. Thermochemical water splitting process. The top equation is
the thermal reduction, the bottom equation is the gas splitting reaction. M
is a metal, MOx its corresponding metal oxide and δ is the degree of oxygen
off-stoichiometry.

splitting step occurring at a lower temperature (around 1000 K).11 In Figure 2.1, δ is the

oxygen off-stoichiometry, i.e. the amount of oxygen vacancy that is created when reducing

the metal oxide. It becomes evident that maximizing δ is key to increase the efficiency

of the water splitting process. The bigger the δ the higher the amount of H2 is produced

per mole of metal oxide. As a result, the overarching goal is to maximize the amount

of oxygen vacancy, while avoiding phase transformation of the metal oxide as it would

impact negatively the kinetics of the reactions.

The use of a metal oxide, that is recycled during the process, essentially solves the prob-

lems from the direct thermolysis (high temperature requirement) and the “more than two
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steps” thermochemical cycles (heat losses due to heat transfer). Indeed, two-step thermo-

chemical cycles reduce the process temperature by about 800-1000 K while diminishing the

energy losses during heat transfer. Furthermore, as oxygen and hydrogen are produced at

different stages of the process, their recombination is avoided. Additionally, temperatures

required for two-steps thermochemical water splitting can be reached using concentrated

solar power, providing a means to produce hydrogen in an environmentally friendly way.

As a consequence, efforts have been directed on metal oxides that would thermodynami-

cally favor both TR and GS reactions. Around 30 thermochemical water-splitting cycles

in a range of 1173-2273 K were discovered and tested.3 The ones encountered frequently

in the literature include zinc oxide (ZnO/Zn),16,17 tin oxide (SnO2/SnO),18,19 iron oxide10

and ceria20–25 based cycles.

Iron oxide (Fe3O4/FeO) was the first redox cycle proposed by Nakamura et al.10 How-

ever, the reduction proceeds above the melting point of Fe3O4 and FeO, resulting in loss

of surface area due to the liquefaction of the material.10,26 Different approaches to circum-

vent this problem were investigated. Among them, alloying metals into ferrite (MFe2O4

with M = Co, Ni and Zn)27 and using yttrium-stabilized cubic zirconia to support the

iron oxide28 were proven to be, at least at a laboratory scale, feasible but kinetically slow.

Ceria was proposed by Otsuka et al.20 as a candidate for water splitting and was re-

cently studied thoroughly as it appears to be one of the most promising material for this

application as it can accommodate a large number of oxygen vacancy without phase trans-

formation.20–25,29,30 The absence of phase transformation impact positively the kinetics of

the reaction and the stability of ceria. Indeed, fast kinetics, at 2273 K, were proven by
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Abanades et al.21 and ceria was cycled 500 times exhibiting stable oxygen release and hy-

drogen production after 100 cycles.23 The main drawback of ceria based cycle is the need

for high temperature during the thermal reduction step. This is impacts negatively the

overall efficiency of the process as large temperature swings causes inevitable heat losses.

To reduce heat losses, isothermal water splitting has been proposed.12,31 In this setup,

oxygen partial pressure is used to control its chemical potential instead of temperature.

Due to having a high tolerance to oxygen vacancy, lanthanum based perovskites have

been experimentally used to perform solar thermochemical water splitting.32–34 Doped

LaAlO3, showed promising results in term of oxygen release during thermal reduction (up

to eight times larger than ceria).33 Additionally, La1−xSrxMnO3 exhibited higher solar-

to-fuel efficiency than ceria under low temperature condition.34,35

2.1.2. Concentrated Solar Power

There are three ways of concentrating solar power: trough, tower and dish systems (Figure

2.2).36 The concentration factors of those setups are measured by C̃.

(a) trough (b) tower (c) dish

Figure 2.2. Three different ways of concentrating solar power. Concentra-
tion factors are equal to 100, 1000 and 10,000 for trough, tower and dish,
respectively.36
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(2.2) C̃ =
Qsolar

I ∗ A

In equation 2.2, Qsolar is the solar power received by the target, A is the targeted area

and I is the incident normal beam insolation.14 When I is normalized to 1000 W m−2,

C̃ is expressed in “suns”. It is on the order of 100, 1000, 10,000 for trough, tower and

dish systems, respectively. When used as a chemical reactor, solar concentrating systems

usually incorporate a cavity-receiver device. It consists of a insulated enclosure with a

small opening to let in concentrated solar radiation. This configuration allows to approach

the characteristics of a blackbody receiver. Following the derivation of Steinfeld et al., the

exergy efficiency, i.e. the efficiency of the conversion between solar and chemical energy

stored in H2, of an ideal thermochemical process is given by:14

(2.3) ηexergy, ideal = ηabsorption ∗ ηCarnot =

(
1− σT 4

IC̃

)
∗
(

1− TL
T

)

where σ is the Stefan-Boltzmann constant (5.67*10−8 W m−2 K−4) and TL is the tempera-

ture of the reservoir for heat rejection (usually room temperature). For instance, a typical

tower setup, with C̃ = 1000 and Toptimal = 1105 K, has a theoretical efficiency of 67%.

In practice, as a result of convection, conduction loss and materials constraints, reported

efficiencies are lower and range between 40% and 60%.4,37

2.2. Perovskites

In this work, we largely focus on perovskite materials. In chapter 3, we calculate an

exhaustive dataset of such compounds that we will use in chapter 4 to screen for water
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splitting materials and in chapter 6 to optimize machine learning techniques. As such, we

briefly describe the perovskite structure and its numerous applications in this section.

The ideal perovskite structure adopts a cubic symmetry and has a formula of ABX3,

where A and B are two different cations and X is an anion. As they are the most

frequently encountered and are relevant for our water splitting application, we will focus

on perovskite oxides, i.e. X = O−2, for the entirety of this work. The cubic structure

consists of a 12-fold coordinated A-site cation sitting in the center of a cube with B-

site cations sitting on the corners of the cube. The B-site cations are octahedrally 6-

fold coordinated by oxygen atoms. Those BO6 octahedra are thus corner-sharing in all

directions (see Figure 2.3 (a)).38,39 Aside from the ideal cubic structure, where the B-atom

and oxygen atoms are linearly arranged, the structure can undergo several distortions.

The most commonly observed ones show tilting of the BO6 octahedra (rhombohedral and

orthorhombic distortion Figure 2.3 (b) and (d)) or displacement of the central A-atom

(tetragonal distortion, 2.3 (c)).40

In an ideal cubic perovskite structure, the following relationship is true:

(2.4) rA + rO =
√

2(rB + rO)

where rA, rB and rO are the ionic radii of the A, B and oxygen atoms respectively. To

quantify the deviation from the ideal cubic perovskite structure, Goldschmidt defined a

tolerance factor as:41

(2.5) t =
rA + rO√
2(rB + rO)

The closer t is to 1, the closer to the ideal cubic structure the perovskite is.
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(a) (b) (c) (d)

Figure 2.3. (a) Cubic perovskite structure (Pm3̄m, 221). Blue atoms are
the A-site cation, white atoms are the B-site cations that are embedded in
oxygen (red atoms) octahedron. (b) Rhombohedral distortion (R3̄c, 167).
(c) Tetragonal distortion (P4mm, 99). (d) Orthorhombic distortion (Pnma,
62). The unit cell (black lines ) of the cubic, rhombohedral, tetragonal
and orthorhombic structure contains 5, 10, 5 and 20 atoms respectively.
Distortions are exaggerated to be visible.

As a result of the numerous distortions and large number of elements that can be

incorporated in the structure, perovskites have a large variety of magnetic, electronic and

ionic properties which makes them invaluable for many technological applications such as

dielectric, ferroelectric, piezoelectric, solid oxide fuel cells, photocatalysis, solar cells, and

thermochemical water splitting.38,39,42–47

2.3. Quantum Mechanics and the Many-body Problem

Most of this work is based on our ability to compute energies of materials by solving

efficiently electronic structures of many compounds. Physics at a small scale, such as

electrons and atoms, is governed by quantum mechanics and the Schrödinger’s equation.
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The relevant form for materials science where electrons are in a steady state, is the time-

independent Schrödinger’s equation48,49 (equation 2.6).

(2.6) ĤΨ = EΨ

where Ψ is a wave function, E is the energy of the state Ψ and Ĥ is the time-independent

Hamiltonian. For systems containing multiple electrons, i.e. technologically relevant

materials, the Hamiltonian is expressed by:

(2.7) Ĥ = − ~2

2m
∇2 + Vn−e(r) + Ve−e(r)

where the first term on the right side of the equation is the kinetic energy, the second term

is the nucleus-electron potential and the last term is the electron-electron interaction which

makes equation 2.7 impossible to solve analytically. As a result, some approximations are

required to use quantum mechanics for real systems.

2.3.1. Hartree-Fock

One way to solve the electron-electron interaction of equation 2.7 is to deal with Ve−e(r) by

considering independent electrons that are moving in an effective potential that represent

the average repulsive interactions of the other electrons (mean-field theory).50 In addition,

the Hartree-Fock method51,52 guarantees that the wave function is anti-symmetric by

using a single Slater determinant.53 Hartree-Fock is widely used in quantum chemistry

but suffers from several problems: even though it includes the exact exchange due to

the Pauli exclusion principle (by ensuring that the wave function is anti-symmetric),
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it neglects any correlations between electrons. In addition, Ψ is still a function of 3N

variables (where N is the number of electrons).

2.3.2. Density Functional Theory (DFT)

Another way of dealing with the many-body problem came when Hohenberg and Kohn

showed that the ground-state energy of the Schrödinger equation is a unique functional of

the electron density, n(r),54 thus reducing the dimensionality of the problem from 3N to

3. Hohenberg and Kohn also showed that the external potential of a system is uniquely

determined by the ground-state charge density and that the total energy of a system can

be written as an unknown functional of the ground-state charge density. This functional

(F [n(r)]) is subject to the variational principle meaning that the ground-state charge

density is the one that minimizes the total energy of the system.

As the energy of an interacting electron gas is still unknown and unsolvable ana-

lytically, Kohn and Sham proposed to transform the problem into a simpler problem.55

In a Kohn-Sham system, the interacting electrons are replaced by non-interacting par-

ticles evolving in an external potential. Doing so allows the separation of the known

terms (kinetic energy, Ts, and Hartree energy, EH) from the unknown part, the exchange-

correlation energy (Exc). The functional is thus defined as:

(2.8) F [n(r)] = Ts[n(r)] + EH [n(r)] + Exc[n(r)]

The exchange-correlation functional contains two quantum effects that are not included

in single-particle Kohn-Sham systems: the difference in energy due to the Pauli exclusion

principle (exchange) and the interaction between electrons of opposite spins (correlation).
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The accuracy of density functional theory (DFT) depends mainly on the approximation of

the exchange-correlation function. Two ways of approximating it are widely used: the lo-

cal density approximation (LDA) and the generalized gradient approximation (GGA).56,57

In practice, DFT is an iterative method where the ground-state charge density is

solved self-consistently. 1) An initial guess of the charge density is made 2) an effective

potential is constructed 3) a new charge density is calculated from the resulting wave

functions. The process is repeated from step 2) until the initial and final charge densities

are the same. The outputs of a DFT calculation are the total energy of the system, the

forces on the atoms (which can be used to relax the structure), the ground-state charge

density and the independent-particle wave functions and eigenvalues.

2.3.3. High-Throughput Density Functional Theory (HT-DFT)

The versatility of density functional theory coupled with the increasing performance of

computers enable high-throughput calculations, where large numbers of calculations (typ-

ically thousands) are performed.58 As a result of this increase of computational power,

several databases of calculations, encompassing ten thousands of compounds were cre-

ated.59–62 In order to compare total energies of all the compounds, such databases require

consistent settings for all the calculations. This often comes at a price of reduced accu-

racy as certain properties, such as complex magnetic structures, have to be neglected.

However, those databases offers a way to screen for certain properties in large dataset of

compounds. This methodology has been successfully tested in the past for a variety of

applications.63–68
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The majority of the calculations from this work are done using the Open Quantum

Materials Database (OQMD) a framework that was developed in the Wolverton group.62

It includes consistent calculations of structures present in the inorganic crystal structure

database (ICSD)69,70 as well as several prototypes, i.e. theoretical structures that were

not necessary experimentally observed. Each compound is relaxed to find the optimal

configuration of atoms with the lowest energy.

2.4. Machine Learning

Machine learning algorithms can learn and make predictions based on data without

being explicitly programmed to do so. It is employed in a variety of fields including com-

puter vision,71 fraud detection,72 speech recognition,73 biology,74 and materials science.75

Machine learning algorithms are classified in two categories: supervised and unsupervised

algorithms. Unsupervised algorithms are used to identify pattern in data. Clustering

data points in different categories is on example of unsupervised learning.76

Most algorithms used in materials science are supervised algorithms where models are

build to map the inputs (feature sets or attributes) of an unknown process to its outputs

(target values). Typically, a model is trained on dataset of known points, i.e. where

both the feature sets and target values are known (training set) and then used to predict

the properties of another set of data where only the feature sets is known (unseen set).

Supervised learning can be as simple as linear regression or polynomial fitting but also

includes more complex algorithms such as neural network and ensemble methods.77–79

Different algorithms have different advantages and disadvantages which can depend

on the type of dataset that are being studied. A key concept to choose the right algorithm
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is the “generalization error” or “out-of-sample error” which measures the ability of the

model to predict the outcome of the unseen set. The generalization error is comprised

of the irreducible error, corresponding to the noise in the dataset, the bias, and the

variance.78 The last two terms are commonly referred as the “bias-variance trade-off” (or

dilemma). It arises because minimizing the error on the training set (bias) increases the

error due to small fluctuations in the data (variance). Indeed, underfitting (high bias)

can cause the algorithm to miss relevant relation between the inputs and the outputs,

whereas overfitting (high variance) increases the error of the prediction on the unseen set.

Qualitatively, finding a complex model to represent accurately the training set can lead

to high variance in the prediction (overfitting) whereas finding a model that is too simple

might not capture all the characteristics of the data (underfitting). The performance of

the model is often measured in function of the n-fold cross-validation score (where n is

typically 10), i.e. partitioning the training set in n part, training a model on n-1 partition,

using the model to predict the data points that were excluded from the training set and

repeating this process n times.

Apart from the different algorithms, the generation of inputs, i.e. feature sets or

attributes, plays a critical role in the adoption of machine learning for materials science. In

short, we have to choose how to represent materials to the algorithm, generally expressed

as a list of numerical values. These representations have to fulfill several requirements

such as being able to distinguish materials from each other while capturing the relevant

physics of the compounds but also simple enough so that computing the representations is

faster than the methods used to generate the training set. Different approaches have been

used in the literature to represent materials, some are composition based with a small
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number of attributes80,81 while others aim at designing a framework broadly applicable

to many materials and properties.82 Generating those representations is an active area of

research.83,84
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CHAPTER 3

High-Throughput DFT Calculations of Perovskites

ABO3 perovskites are oxide materials that are used for a variety of ap-
plications such as solid oxide fuel cells, piezo-, ferro-electricity and water
splitting. Owing to their remarkable stability with respect to cation sub-
stitution, new compounds for such applications potentially await discov-
ery. In this work, we present an exhaustive dataset of formation energies
of 5,329 cubic and distorted perovskites that were calculated using first-
principles density functional theory. In addition to formation energy,
several additional properties such as oxidation states, band gap, oxy-
gen vacancy formation energies, and thermodynamic stability are also
made publicly available. This large dataset for this ubiquitous crystal
structure type contains 395 perovskites that are predicted to be ther-
modynamically stable, of which many have not yet been experimentally
reported, and therefore represent theoretical predictions. The dataset
thus opens avenues for future use, including materials discovery in many
research-active areas.

3.1. Background

As a result of their large tolerance to oxygen vacancy, ABO3 perovskites are widely

used for a variety of applications such as solid oxide fuel cells, piezo-, ferro-electricity

and thermochemical water splitting.38,39,43 Furthermore, their remarkable structural sta-

bility with respect to their constituent elements suggests that potential new compounds

remain to be discovered. As the number of possible ABO3 compounds is large, we use

high-throughput density functional theory (HT-DFT) to compute the thermodynamical

stability of 5,329 compositions in an exhaustive manner. In addition to the compounds
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stability, we also calculate the oxygen vacancy formation energies as it is a relevant quan-

tity for many applications involving reduction of these compounds.38,39,43

All the 5,329 compounds are created by substituting 73 metals and semi-metals of the

periodic table of the elements (see Figure 3.1) on the A and B sites (732 = 5,329) of the

ABO3 perovskite crystal structure. The ideal ABO3 cubic perovskite crystal structure is

composed of a B cation that is octahedrally 6-fold coordinated with oxygen atoms and

an A cation that is 12-fold coordinated by oxygen atoms. Aside from the ideal cubic

structure, many perovskites undergo a local distortion from this cubic structure; these

distorted perovskites can have a variety of symmetries, including rhombohedral, tetragonal

and orthorhombic distortions39 (see Figure 2.3). In this work, all 5,329 compositions are

calculated in the ideal cubic structure and a subset of those are calculated in the three

aforementioned distortions.

The T = 0 K, P = 0 bar ground state stability of all ABO3 compounds was assessed

with respect to all possible linear combinations of phases present in the A-B-O ternary

phase diagram using a convex hull construction. All the phases that are used for the

stability calculation are from the OQMD62 and (as of July 2017) include ≈ 40,000 phases

from the ICSD69,70 and ≈ 430,000 hypothetical compounds based on decoration of com-

mon structural prototypes. The oxygen vacancy formation energy was calculated by using

an A2B2O5 structure, which corresponds to two perovskite unit cells with an oxygen atom

removed. Additionally, other properties readily available from DFT calculations are re-

ported, including the relaxed structure, band gap, and total magnetic moment. Figure

3.2 shows the workflow used to obtain all the quantities.
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The present dataset will be used in a study aiming at identifying suitable perovskites

for thermochemical water-splitting applications using both the stability and oxygen va-

cancy formation energy as screening parameters, see next chapter and ref. 68. This data is

a valuable more generally in guiding experimental synthesis of predicted new compounds,

further screening for a large variety of applications (other than water splitting) or to train

machine learning (ML) models. While machine learning on materials dataset is an area of

active research,85–87 the datasets used by various research groups are often vastly different

from one another with no way to compare various ML models. Having a large, consis-

tent materials dataset that can be used by a variety of research groups to train machine

learning models will allow a more transparent comparison of various methods being used

in the field.

3.2. Methodology

3.2.1. Density Functional Theory

All DFT calculations were performed using the Vienna ab initio package (VASP).88,89

Projector-augmented wave (PAW) potentials90 are used with the Perdew-Burke-Ernzerhof

(PBE)91 generalized gradient approximation to the exchange-correlation functional. To

improve the description of localized charge density of some 3d transition metals and most

actinides, DFT+U is used (see Table 3.1, U is applied on d-electrons for transition metals

and f-electrons for actinides).92,93 Any calculations containing actinides or 3d elements

(Sc-Cu) are spin-polarized with ferromagnetic alignment of spins. We note that this

approach does not capture antiferromagnetism which is present in certain perovskites.94

Based on a study by Stevanovic et al., who calculated ternary compounds with up to ten
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Figure 3.1. List of elements considered for the A and B sites. Elements are
color-coded as a function of the number of stable perovskites predicted by
DFT with the respective elements on the A and B sites.

different relative spin orientations, this computational error was found to be of the order

of 0.01-0.02 eV/atom and thus is considered negligible for the purpose of this paper.95

Calculations are performed through the OQMD framework.62,96 The OQMD contains the

energies of over 470,000 compounds comprising ∼40,000 structures from the ICSD69,70

as well as more than 430,000 theoretical prototype structures. Calculation settings are

explained in more detail in Kirklin et al.62
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Figure 3.2. Workflow to calculate all the properties in the current dataset.
(top left) We start with all the cubic structures and compute all their total
energies using density functional theory (DFT). If the stability (equation
3.1) of the cubic perovskite is less than 0.5 eV/atom (i.e., the cubic phase
is within 0.5 eV/atom of the ground state convex hull), we also compute
3 additional distortions (orthorhombic, tetragonal, rhombohedral). The
geometric properties (lattice parameters, angles, and volume per atom) and
electronic properties (band gap and magnetic moment) are readily available
from the calculations. Formation energies are calculated using elemental
chemical potentials and thermodynamic stability is calculated with respect
to all the other A-B-O phases present in the OQMD. (top right) Defected
perovskites, 2x1x1 supercells with a missing oxygen atom, are calculated
using DFT and their total energies, in conjunction with those of pristine
cubic cells, are used to compute the oxygen vacancy formation energies of
every composition.
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Table 3.1. Chemical potentials and U-values used for the high-
throughput density functional theory calculations.

Element chemical potential [eV/atom] U-value [eV]

Li -1.897 -
Be -3.755 -
B -6.678 -
O -4.523 -
Na -1.199 -
Mg -1.543 -
Al -3.746 -
Si -5.425 -
K -1.097 -
Ca -1.978 -
Sc -6.328 -
Ti -7.698 -
V -6.263 3.1
Cr -6.712 3.5
Mn -6.940 3.8
Fe -6.063 4.0
Co -5.016 3.3
Ni -2.999 6.4
Cu -2.258 4.0
Zn -1.266 -
Ga -3.032 -
Ge -4.624 -
As -4.652 -
Rb -0.963 -
Sr -1.683 -
Y -6.464 -
Zr -8.547 -
Nb -10.094 -
Mo -10.848 -
Tc -10.361 -
Ru -9.202 -
Rh -7.269 -
Pd -5.177 -
Ag -2.822 -
Cd -0.900 -
In -2.720 -
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Table 3.1 – continued

Element Chemical potential [eV/atom] U-value [eV]

Sn -3.914 -
Sb -4.118 -
Te -3.142 -
Cs -0.855 -
Ba -1.924 -
Lu -4.524 -
Hf -9.955 -
Ta -11.853 -
W -12.960 -
Re -12.423 -
Os -11.226 -
Ir -8.855 -
Pt -6.056 -
Au -3.267 -
Hg -0.359 -
Tl -2.359 -
Pb -3.704 -
Bi -4.039 -
La -4.935 -
Ce -4.777 -
Pr -4.775 -
Nd -4.763 -
Pm -4.745 -
Sm -4.715 -
Eu -1.888 -
Gd -4.655 -
Yb -1.513 -
Dy -4.602 -
Ho -4.577 -
Er -4.563 -
Tm -4.475 -
Yb -1.513 -
Ac -4.106 -
Th -6.346 4.0
Pa -9.496 4.0
U -8.717 4.0

Np -10.162 4.0
Pu -12.087 4.0
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3.2.2. Assessment of T = 0 K Stability

To determine, for a given A-B-O system, which phases are stable it is necessary to find,

as a function of composition, the set of phases that have an energy lower than any other

structures or any other linear combinations of structures. These ground-state phases

are then linked with tie lines to form a convex hull (see Figure 3.3). The stability of

a perovskite is given in terms of the energy difference between the perovskite and the

convex hull, also referred as the hull distance, is defined as:

(3.1) ∆HABO3
stab = ∆HABO3

f −∆Hf

where ∆Hf is the convex hull energy at the ABO3 composition (not including the per-

ovskite under consideration). Stable perovskites that are already reported and already in

the OQMD will have a stability energy of zero (equation 3.1). Stable perovskites that are

discovered during the course of this work will have a negative stability energy (equation

3.1) and perovskites with a positive value of ∆HABO3
stab are unstable. Finally, ∆HABO3

f is

the DFT formation enthalpy of the perovskite calculated as follows:

(3.2) ∆HABO3
f = E(ABO3)− µA − µB − 3 ∗ µO

where E(ABO3) is the DFT total energy of the ABO3 compound, µA, µB and µO are the

chemical potentials of the A, B and oxygen species respectively. In most cases, µA and µB

are DFT 0 K total energies of the crystalline elements. However, for elements exhibiting a

phase transition between 0 K and 300 K (Na, Ti, Sn, O, Hg) and elements with DFT+U

correction (V, Cr, Mn, Fe, Co, Ni, Cu, Th, Pa, U, Np, Pu), chemical potentials are fitted
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Figure 3.3. Schematic of a convex hull. ∆HABO3
f is the formation energy

calculated by equation 3.2. The convex hull is formed by the green tie-
lines and phases. Even though the yellow phases have a negative formation
energy, they are not stable and will decompose in a linear combination of
convex hull phases (black arrows).

to experimental values as detailed in ref. 62 (see Table 3.1). In particular, the oxygen

chemical potential (µO) is fitted to experimental oxide ∆Hf values. Extensions of the

grand canonical linear programming method (GCLP)97 are used to construct convex hulls

for every calculated system.62,97 All 470,000 phases present in the OQMD are included in

the stability calculation.

3.2.3. Structural Distortions of Perovskite

Aside from the ideal cubic structure (Figure 2.3 (a)), perovskites can exhibit several distor-

tions.39 The most frequently encountered are rhombohedral, tetragonal and orthorhombic

distortions39 (Figure 2.3 (b), (c) and (d)). Without experimental data for a given compo-

sition, or without using costly crystal structure prediction tools, it is not possible, a priori,
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to know what is the most stable structure of any given compound. As calculating every

distortion for all the 5,329 stoichiometries would be computationally costly, we started by

calculating the 5,329 different compounds in the undistorted cubic perovskite structure.

Subsequently, we investigated the effect of distortions on the stability of perovskites by

randomly selecting one-third of the compositions (1,776) and by computing their stability

in the rhombohedral, tetragonal and orthorhombic distortion. We saw that distortions

generally lower the energy of the ideal cubic structure but found no case where the dis-

torted compound was lower in energy than the cubic phase by more than 0.5 eV/atom.

Thus, we only calculated the distortion of compositions having a cubic stability lower than

0.5 eV/atom. This resulted in 2,162 (1, 776+386) compositions where the four distortions

(cubic rhombohedral, tetragonal and orthorhombic) where calculated.

3.2.4. Oxygen Vacancy Formation Energy

For a general case, the oxygen vacancy formation energy, per vacancy, is calculated as

follows:

(3.3) ∆EO
v =

1

δ
E(ABO3−δ) + µO −

1

δ
E(ABO3)

where δ is the oxygen off-stoichiometry, E(ABO3) is the DFT total energy of the defect-

free cubic perovskite cell and µO is the same chemical potential as used in equation 3.2.

Finally, E(ABO3−δ) is the DFT total energy of a cubic supercell containing an oxygen

vacancy. In the dilute limit, ∆EO
v in equation 3.3 should be converged as a function of

supercell size, until there is negligible interaction between the vacancy and its periodic

images. However, large supercells are too computationally costly for our high-throughput
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approach. Hence, we use small supercell A2B2O5 structures, which correspond to a 2x1x1

supercell size, and have a small unit cell (9 atoms) which enables the calculation of

the oxygen vacancy formation energy for all perovskites in a high-throughput manner.

Additionally, Curnan & Kitchin, who calculated oxygen vacancy formation energies for

LaBO3 and SrBO3 (B = Sc-Cu) with different degrees of simplification, showed that trends

in the oxygen vacancy formation energy are largely unaffected by the supercell size.98 We

confirmed this finding by performing calculations of several LaBO3 perovskite vacancy

formation energies for various supercell sizes, as shown in Figure 3.4.
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Figure 3.4. Comparison of oxygen vacancy formation energy calculated, in
a high-throughput way, in the present work with oxygen vacancy formation
energies calculated with larger supercells. Data are taken from Lee et al.94

for the 40-atoms supercells and Deml et al.99 for the 80-atom supercells.
Experimental data are taken from Kuo et al.100 and Nowotny et al.101 for
LaMnO3, Mizusaki et al.102 for LaFeO3 and Mizusaki et al.103 for LaCoO3.
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3.2.5. Oxidation States and Ionic Size

To keep our high-throughput methodology exhaustive, we did not restrict any compounds

based on their charge balance or oxidation state prior to performing the calculations.

However, to compare our stability results with previous study as well as drawing structure

maps, it is necessary to estimate the oxidation state of A and B atoms in the perovskite

compositions. For that purpose, we used a bond valence method (BVM)104 to obtain the

oxidation states of the cations for each of the 5,329 compositions that we studied. By

fixing the oxidation state of oxygen to -2, we calculated the oxidation state of both cations

using a BVM as implemented in pymatgen.105 Nine elements used in our study (Tc, Os,

Pt, Au, Pm, Ac, Pa, Np and Pu) do not have bond valences. Thus, compounds containing

these elements are labeled as having an unknown charge state. With the oxidation states

and the coordination numbers (12, 6 and 2 for the A-, B-atom and oxygen, respectively)

of all the atoms in the structure, we used Shannon radii,106,107 which were tabulated by

Seshadri and Basu,108 to estimate the size of each elements.

3.2.6. Data Records

The list of 5,329 ABO3 perovskites can be found on figshare.109 All the calculations,

along with all the 470,000 compounds used for the stability calculations are available

for download or for direct consultation at www.oqmd.org. Ref. 62 also contains detailed

information about the calculation parameters. The data is stored in a CSV spreadsheet.

Each row contains a different composition and each column is a property of that compo-

sition (described in Table 3.2). A calculation that did not converge to a final solution is

indicated by a hyphen (“-”) in the table for that composition. Those cases can happen for
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several reasons like having a bad initial structure requiring too many steps to converge or

containing an element with a pseudo-potential that is hard to converge (notably the ce-

sium pseudo-potential). This kind of computational issues is inherent to high-throughput

methods where consistent settings have to be used for the calculation of all compounds

in a reasonable amount of time.

Table 3.2. Description of column keys in the CSV spreadsheet hosted
on Figshare.109

Name Type Unit Description

Chemical formula string None Chemical composition of
the compound. The first
and second elements
correspond to the A- and
B-site, respectively. The
third element is always
oxygen

A string None Chemical element on the
A-site

B string None Chemical element on the
B-site

Experimentally reported boolean None Report of experimental
synthesis of compound in
the literature. True
indicates that the
compound is present in one
of the four review papers.
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Table 3.2 – continued

Name Type Unit Description

Valence A number or string None Valence of atom A as
estimated by bond valence
(BV) theory. If a
compound is not balanced,
it is denoted by not
balanced. If the compound
contains a least one
element without a BV
parameter, it is denoted by
element not in BV

Valence B number or string None Valence of atom B as
estimated by bond valence
(BV) theory. If a
compound is not balanced,
it is denoted by not
balanced. If the compound
contains a least one
element without a BV
parameter, it is denoted by
element not in BV

Radius A number Å Shannon ionic radius of
atom A. When possible,
the oxidation state and
coordination number (12)
of the A atom was used to
estimate its radius.

Radius B number Å Shannon ionic radius of
atom B. When possible,
the oxidation state and
coordination number (6) of
the A atom was used to
estimate its radius.
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Table 3.2 – continued

Name Type Unit Description

Lowest distortion string None Distortion with the lowest
energy (among cubic,
rhombohedral, tetragonal
and orthorhombic
corresponding to space
group 221, 167, 99 and 62,
respectively)

Formation energy number eV/atom Formation energy as
calculated by equation 3.2
of the distortion with the
lowest energy

Stability number eV/atom Stability (hull distance) as
calculated by equation 3.1
of the distortion with the
lowest energy. A compound
is considered stable if it is
within 0.025 eV/atom of
the convex hull

Magnetic Moment number µB Resulting magnetic
moment of the relaxed
structure. If the
composition does not
contain any magnetic
element, the magnetic
moment is set to a hyphen
(“-”).

Volume per atom number Å3/atom Volume per atom of the
relaxed structure

Band gap number eV PBE band gap obtained
from the relaxed structure

a number Å Lattice parameter a of the
relaxed structure

b number Å Lattice parameter b of the
relaxed structure
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Table 3.2 – continued

Name Type Unit Description

c number Å Lattice parameter c of the
relaxed structure

alpha number ◦ α angle of the relaxed
structure. α = 90 for the
cubic, tetragonal and
orthorhombic distortion. α
angle of the relaxed
structure. α = 90 for the
cubic, tetragonal and
orthorhombic distortion.

beta number ◦ β angle of the relaxed
structure. β = 90 for the
cubic, tetragonal and
orthorhombic distortion.

gamma number ◦ γ angle of the relaxed
structure. γ = 90 for the
cubic, tetragonal and
orthorhombic distortion.

Vacancy energy number eV/O atom Oxygen vacancy formation
energy as calculated by
equation 3.3

3.2.7. Graphical Representation of the Data

The top part of Figure 3.1 shows the number of stable perovskites as a function of the

elements occurring on the A- and B-sites. Out of 73 elements, only boron does not appear

in any stable perovskites. Lanthanides and alkaline earths are frequently on the A-site

for stable perovskites whereas transition metals, specially the first row, are comon on the

B-site. Both those observations generally agrees with perovskites that are experimentally
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reported.38,110 Figure 3.5 shows the formation energy and band gap distribution for all

the compounds calculated in this work.

3.3. Technical Validation

In this section, we give different comparison with experiment and literature of our

high-throughput calculations.

3.3.1. The Open Quantum Materials Database

The Open Quantum Materials Database uses DFT to compute the total energies of every

compound. DFT is widely used in solid states physics due to its accuracy and repro-

ducibility.111–113 In addition, previous studies have shown that formation energies calcu-

lated using DFT, when compared against those measured experimentally, have a similar

accuracy as a comparison between experimental values from two different sources.62

3.3.2. Lattice Parameters

For all the compounds that are predicted to be stable and have an entry in the ICSD, we

compared the lattice parameters of the DFT relaxed structure with the lattice parameters

of the experimental structure (Figure 3.6). The mean error (ME), mean absolute error

(MAE), mean relative error (MRE) and mean absolute relative error (MARE) across all

lattice parameter for the 113 compounds are 0.011Å, 0.048Å, 0.19% and 0.82%, respec-

tively. The magnitude and overestimation of the lattice parameters are consistent with

other lattice parameters studies in the literature for DFT-PBE.114
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Figure 3.5. Histogram representation of formation energies and band gaps
of compounds calculated in this work.
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Figure 3.6. Comparison between DFT and ICSD lattice parameters for 113
compounds: (a) lattice parameter a, (b) lattice parameter b, and (c) lattice
parameter c. In the top panels, the horizontal axes measure the differ-
ence between the computed and experimental lattice parameters while the
vertical axes are the experimental lattice parameters. The lower plots cor-
respond to a histogram of the difference in lattice parameters between DFT
and experiment. The solid and dashed red lines indicate the average er-
ror, first and second standard deviations between DFT and experiment,
respectively.

3.3.3. Supercell Size

To analyze the effect of the size of the supercell used to calculate the oxygen vacancy

formation energy of ABO3 compounds, we compared the vacancy energies using differ-

ent supercell sizes, and against experiment.94,99–103 We see good agreement between our

high-throughput approach and data from the literature (see Figure 3.4). Previously, Cur-

nan and Kitchin98 have showed that oxygen vacancy formation energy trend is largely

unaffected by the supercell size for LaBO3 and SrBO3 (B = Sc-Cu).
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3.3.4. Band Gap

The band gaps were calculated with GGA-PBE, with U-values for some 3d-transition

metals and actinides. GGA-PBE tends to underestimate the band gaps of semiconduc-

tors115,116 meaning that band gap values presented in this work have to be taken as lower

bound and are useful to identify insulators. Different, much more expensive, calculations,

such as hybrid functionals or quasiparticle calculations (G0W0, GW0 and GW), can be

done to compute band gap values more accurately.115

3.3.5. Magnetism

Several perovskites are experimentally observed to have complex magnetic structures,

e.g., antiferromagnetic order.94 However, only ferromagnetic configurations are calculated

in the present study. Stevanovic et al.95, who calculated ternary compounds with up to

ten different relative spin orientations, showed that the computational error associated

with the wrong magnetic ordering is of the order of 0.01 to 0.02 eV/atom which is not

significant for the present study.

3.3.6. Comparison with Experimentally Observed Perovskites

Of the 5,329 different compositions that were calculated, 395 are predicted to be thermo-

dynamically stable by density functional theory. Out of those, 165 are reported in the

literature. As a result, 230 new compounds are predicted to be DFT stable but not yet

experimentally reported. This set of compounds represents a wide range of predictions

amenable for materials synthesis.
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The stability values of the 223 compounds that are experimentally reported in the

literature are plotted in Figure 3.7. The plot shows that a large number of these exper-

imentally reported compounds are stable according to our DFT T = 0 K calculations.

However, the remainder of the phases are above the convex hull, and hence metastable

(or unstable). The results of Figure 3.7 shows the measure of metastability in term of

convex hull distance: there is rapid decay of the number of synthesized compounds as the

convex hull distance increases, reaching almost 0 at a hull distance of 0.1 eV/atom. This

0.1 eV/atom metric for metastability is consistent with the results from another recent

high-throughput study of metastability by Sun et al.117

Nine compounds reported in the literature are seen with a stability above 0.5 eV/atom.

All these compounds contain rare earth elements, which are difficult to treat accurately

with DFT because of the complexities associated with f -electron systems. In our high-

throughput study, f -electrons are not included in the valence electrons of the pseudopo-

tentials used, and therefore the DFT calculations of rare-earth-containing perovskites

could have physical errors associated with the approximations made in the DFT cal-

culations. For a more detailed discussion about f -electrons and frozen-core potentials,

we refer the reader to Kirklin et al.62 Error can also come from erroneous experimental

characterization and/or classification.

3.4. Usage Notes

We suggest using the data as it is in the spreadsheet. If one chooses to access the

data from OQMD via qmpy, we note that the OQMD is a constantly-growing database.

Indeed, as a result of compounds being constantly calculated and added to the database,
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Figure 3.7. Histogram of the DFT stability of 223 ABO3 perovskite com-
pounds reported in the literature. The inset shows the rapid decay of stable
compounds as a function of stability.

the stability of the already-present compounds can change: adding new stable compounds

may change the predicted stability of a perovskite.
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CHAPTER 4

Computational Screening of Perovskites for Water Splitting

Applications

The use of hydrogen as fuel is a promising avenue to aid in the reduction
of greenhouse effect gases released in the atmosphere. In this work, we
present a high-throughput density functional theory (HT-DFT) study
of 5,329 cubic and distorted perovskites ABO3 compounds to screen for
thermodynamically favorable two-step thermochemical water splitting
(TWS) materials. From a dataset of more than 11,000 calculations,
we screened materials based on: (a) thermodynamic stability, and (b)
oxygen vacancy formation energy that allow favorable TWS. From our
screening strategy, we identify 139 materials as potential new candidates
for TWS application. Several of these compounds, such as CeCoO3

and BiVO3, have not been experimentally explored yet for TWS and
present promising avenues for further research. We show that taking into
consideration all phases present in the A-B-O ternary phase, as opposed
to only calculating the formation energy of a compound, is crucial to
assess correctly the stability of a compound as it reduces the number
of potential candidates from 5,329 to 383. Finally, our large dataset of
compounds containing stabilites, oxidation states and ionic sizes allowed
us to revisit the structural maps for perovskites by showing stable and
unstable compounds simultaneously.

4.1. Introduction

Hydrogen used as fuel presents several advantages. It can be used in fuel cells for

stationary as well as mobile applications and the product of its combustion is water, mak-

ing it potentially a green alternative to fossil fuels.118–121 Currently, hydrogen is mainly
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produced by steam reforming of natural gas122,123 which decreases the environmental ad-

vantage of its carbon free combustion. Thus, exploring ways to produce hydrogen in a

sustainable and carbon-neutral fashion, is important for its widespread adoption as a fuel.

Among different carbon-free routes to produce hydrogen, such as photoelectrochem-

ical (PEC) and electrolytic processes, solar driven thermochemical water splitting cy-

cles, i.e. the use of solar thermal energy to drive a set of chemical reactions, have the

advantage of using the entire solar spectrum, thus leading to higher theoretical efficien-

cies.4,8,10,11,13,15,124 Specifically, hydrogen can be produced by splitting the water molecule

in a two-step thermochemical cycle as follows:

(4.1) MOx → MOx−δ +
δ

2
O2

(4.2) MOx−δ + δH2O→ MOx + δH2

where M is a metal, MOx its corresponding metal oxide, and δ is the degree of oxygen

off-stoichiometry, i.e. the amount of oxygen loss when reducing the metal oxide which

is a function of temperature, pressure and the metal oxide. Reaction 4.1 is the thermal

reduction (TR) step occurring typically around 2000 K and Reaction 4.2 is the gas splitting

(GS) step occurring at lower temperature (around 1000 K).11 Using a similar concept,

carbon monoxide (CO), a hydrocarbon fuel precursor, can be produced by splitting of

the carbon dioxide (CO2) molecule.13,29 In both cases, the metal oxide and the associated

thermodynamics of equation 4.1 and 4.2 are critical aspects that determine the efficiency

of the gas splitting.125,126
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For practical fuel production, metal oxides are required which increase the efficiency

and rates at which the thermal reduction and gas splitting reactions occur. Ideally,

the materials should be reduced at as low a temperature as possible to avoid energy

loss due to heat transfer and thus increase the overall efficiency of the process.3,8,11,16

However, as the temperature of reduction is also connected to that of the GS, it cannot

be too low as to disallow gas splitting. As phase transformations often negatively impact

the kinetics and the cyclability of both reactions, it is desirable to have a metal oxide

that can accommodate large amounts of oxygen vacancies without changing structure.

Other considerations include structural stability at high temperature, as well as cost and

availability of the metal oxides. Thus, the choice of the metal oxide is key in terms of the

conditions under which solar thermochemical cycles reactions will take place, as well as

the capacity of water splitting.

In the literature, 280 thermochemical water-splitting cycles were reviewed by Abanades

et al.3 Out of those, 30 were selected as technologically feasible based on tempera-

ture of operation, process complexity, cost and toxicity of materials among other cri-

teria.3 Cycles used successfully to split water include zinc oxide (ZnO/Zn),16,17 tin oxide

(SnO2/SnO),18,19 iron oxide10 and ceria20–25 based cycles. Ceria was proposed by Otsuka

et al.20 as a candidate for water splitting and was studied thoroughly as it appears to be

one of the most promising materials for water splitting applications.20–25 Indeed, it can

accommodate a large quantity of oxygen vacancies without phase transformation.20–25 As

a consequence, fast kinetics of thermal reduction and gas splitting reactions were shown

by Abanades et al.21 and ceria was cycled 500 times exhibiting stable oxygen release and
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hydrogen production after 100 cycles.23 One major drawback of the ceria based cycle is

the high temperature needed during the thermal reduction step.

In the search for improved materials for TWS, ABO3 perovskites have been recently

proposed for water splitting.32–34,127,128 Many perovskites show a high degree of oxygen

off-stoichiometry. Furthermore, the alloying potential of both the A and B cation sites

makes a very large compositional space for promising materials. Lanthanum based per-

ovskites, such as Mn+4 and Sr+2 doped LaAlO3, have been experimentally studied and

showed promising results in terms of oxygen release during thermal reduction (up to eight

times larger than ceria).33 Additionally, La1−xSrxMnO3 exhibited higher solar-to-fuel effi-

ciency than ceria under lower temperature conditions.34 Finally, Nalbandian et al. tested

La1−xSrxMO3 (M = Mn, Fe, x = 0, 0.3, 0.7, 1) perovskites in a membrane reactor to

produce hydrogen in an isothermal and continuous fashion.32

The remarkable stability of the perovskite structure with respect to its constituents

elements and its ability to tolerate a high degree of oxygen off-stoichiometry, suggests

that there could be potentially superior perovskite compounds awaiting discovery.39 As

the number of possible compositions for ABO3 structures is too large to be completely

explored experimentally, we use our dataset of ABO3 compounds that was calculated in

chapter 3 to search efficiently for novel perovskite metal oxides for thermochemical water

splitting applications. Today’s computational resources enable high-throughput DFT

where large numbers of compounds (typically ten or hundred thousands) are calculated

to create databases containing energies of numerous materials.58–61,96,129 Databases can

then be searched for materials with desired properties, thus accelerating materials design,

as shown successfully for various applications,63–66,96 most notably a perovskites search for
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photoelectrochemical water splitting.130,131 Here, we build on such approaches to screen

for thermochemical water splitting perovskites.

We start with the central premise that tuning the thermodynamics of oxide reduction

and compound stability is necessary to enable improved material performance of the ther-

mochemical water splitting process. Two filters are used to screen our high-throughput

DFT dataset for potential water splitting oxides: 1) Stability: A perovskite compound

must be thermodynamically stable in order to be considered as a promising candidate.

In this work, stability refers to 0 K and 0 bar DFT stability of ABO3 with respect to all

possible combinations of phases present in the A-B-O ternary phase diagram. In other

words, the ABO3 perovskite should be on the ground-state convex hull, which is defined

as the envelope connecting the lowest energy compounds at every composition in the

phase space.132 2) Oxygen vacancy formation energy: In order to split water, both ther-

mal reduction and gas splitting reactions must be thermodynamically favorable, i.e. have

a negative Gibbs free energies. Meredig and Wolverton125,126 showed that, for typical

TR and GS temperatures, these conditions impose limits on the enthalpy and entropy of

reduction, creating a window where both reactions are thermodynamically favorable. In

the present study, we use these limits on the enthalpy of reduction as a second filter. To

avoid false negative classification of compounds and to account for the approximations

inherent to the high-throughput character of this study, we use a slightly larger oxygen

vacancy formation energy window; we consider compounds that have an oxygen vacancy

formation energy between 2.5 and 5.0 eV/O atom to be suitable for TWS.

After calculating 5,329 different compositions in the cubic, rhombohedral, tetragonal

and orthorhombic distortions of perovskite, we found 383 stable compounds. Among
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those, 139 fell within the suitable oxygen vacancy formation energy range for water split-

ting. In addition, we identified that rare earth elements and 3d-transition metals are

prominent on the A- and B-sites of stable perovskites, respectively. The high-throughput

database of compounds and energies allowed us to reconsider structural maps for the

perovskite phase across a very wide range of possible A- and B-site chemistries.

4.2. Methodology

For all details about the calculation parameters, compounds calculated and properties

computed, we refer the reader to the methodology section of chapter 3.

4.3. Results and Discussion

4.3.1. Stability

The results for perovskite stability of all compositions are summarized in Table 4.1. A vast

majority (92%) of the compounds have negative formation energy (∆HABO3
f as defined

in equation 3.2). This result is expected as we are combining electropositive elements, in

our case metals and semi-metals, to oxygen, the second highest electronegative element.

A negative formation energy only indicates stability of a compound with respect to its

constituent elements and is thus a necessary but not sufficient condition for stability. In

this work, we consider compounds with a stability (∆HABO3
stab ) lower than 25 meV/atom

(approximately kT at room temperature) to be either stable or nearly so. Out of all the

compounds that have ∆HABO3
f < 0, only a small fraction (4%) are stable with respect to all

the phases present in the A-B-O convex hull. We report 383 stable perovskite compounds

which is considerably more than what was reported in a similar recent study.133 We explain
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this discrepancy by the fact that, as opposed to Körbel et al., we included lanthanides

as potential cations. Indeed, lanthanide-containing perovskites represent approximatively

50% of the compounds we predict to be stable. In Table 4.1, rhombohedral, tetragonal

or orthorhombic compounds that are stable and relax to a higher symmetry group (i.e

rhombohedral to cubic, tetragonal to cubic, tetragonal to rhombohedral, orthorhombic to

tetragonal, orthorhombic to rhombohedral or orthorhombic to cubic) are labeled as stable

in their highest symmetry group. The orthorhombic distortion accounts for 84% of all

the stable perovskites, which is in accordance with the literature stating that space group

62 is the most common perovskite structure.134 The difference between negative forma-

tion energy and stability shows the importance of having a large and complete database,

including theoretical prototypes, available when computing the high-throughput stabil-

ity of compounds by first-principles calculations. The database is of particular relevance

when dealing with compounds that contain elements that have not been thoroughly ex-

plored experimentally as missing phases in those systems can lead to inaccurate stability

calculations.

Our high-throughput study allows us to obtain a complete picture of the stability

of the perovskite compounds in terms of frequency of elements on the A- and B-sites.

Figure 3.1 shows the number of stable occurrences for each elements on the A- or B-site.

Out of the 73 elements we considered for this study, 44 appear in stable perovskites on

the A-site and 57 appear on the B-site. Three elements (B, Mg, Zn) do not appear in

any stable ABO3 perovskites, regardless of the other metal or whether these elements are

placed on the A or B sites. Conversely, 30 elements are predicted to form perovskites

in both the A- and the B-site. Numerous perovskites containing elements that are not
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extensively studied experimentally such as lanthanides and actinides are predicted to

be stable and present opportunities for new materials discovery. Alkali metals, alkaline

earths, rare earths and 3d-transition metals are heavily represented as elements forming

stable perovskite structure which is consistent with other work in the literature.38,110

To see similar behavior among elements from the same group, we plotted the stable

perovskites in a network graph by clustering elements by groups (see Figure 4.1). In this

plot, each connecting line represents a stable compounds (i.e. 383 tie-lines are drawn).

Each disk represents an element that is present in at least one stable perovskite (i.e.

70 disks are displayed). Elements are colored and clustered by groups and their size is

proportional to the amount of lines connected to them. The curvature of the lines is

always clockwise which gives an information on which elements is on the A- and the B-

site. For instance, the lines connecting the rare earth and the 3d transition metals are

all convex, indicating that the rare earths are on the A-sites and the 3d transition metals

are on the B-sites. We observe a high occurrence of alkali metals, alkaline earths and rare

earths on the A-sites and 3d-transition metals and 4d-transition metals on the B-sites.

This picture is in agreement with similar studies found in literature.39

We find a total of 383 stable perovskites, shown in Figure 4.2. We observe a cluster

of compounds containing rare earth on the A-site and transition metals on the B-site,

which is likely due to the multiple possible oxidation states for those elements, allowing

them to be in the +1/+5, +2/+4 or +3/+3 A/B cation oxidation state configuration

and form charge neutral compounds with numerous other elements. This result is in

agreement with the observation that the B-site atom is almost always smaller the A-site

atoms in the perovskite structure as it is embedded in a rigid octahedron of oxygen.135–137
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Figure 4.1. Network graph of stable perovskites in terms of cation frequency.
Each disk represents an element that can be on the A- or B-site, their size
is proportional to the number of lines connected to them and their color
and positioning helps clustering elements from the same group. Each line
corresponds to a stable compound, their color is a mixing of both disks that
they connect. The curvature of the lines is always clockwise. TM stands
for transition metals.

Additionally, we see very few compounds containing transition metals (rows labeled 3d,

4d and 5d in Figure 4.2) on the A-site, probably for a similar reason: transition metals

are generally smaller than the other elements and thus preferentially tend to occupy the

B-site. Conversely, most of the perovskites predicted to be stable in the undistorted cubic

geometry contain bigger elements such as alkali and alkaline-earth metals (Li, Be, Na,

Mg, K, Ca, Rb, Sr, Cs and Ba) on the A-site. It is worth noting that the high occurrence
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of distorted orthorhombic perovskites showcases their 0 K ground-state. However, per-

ovskites often exhibit a phase transformation between low and high temperature, which

is likely to happen at temperatures required for TWS.39 With so few rhombohedral and

tetragonal perovskites, no obvious trends emerge in their constituting elements.

Table 4.1. Breakdown of calculated stable perovskites by the type of struc-
tural distortion favored. ∆HABO3

f corresponds to the formation energy with

respect to the constituent elements of the perovskite and ∆HABO3
stab is the sta-

bility of a compound with respect to all other phases present in the A-B-O
phase diagram.

Distortion Number ∆HABO3
f ∆HABO3

stab

calculated <0 meV/at. <25 meV/at.

Cubic 5329 4778 41
Rhombohedral 2162 2107 15
Tetragonal 2162 1910 5
Orthorhombic 2162 2041 322
Total 11,815 10,836 383

4.3.2. Discovery of New, Stable Perovskite Compounds

We wish to analyze which of our list of stable perovskites are already known experimen-

tally, and which represent new, predicted stable compounds. In order to compare our

list of 383 predicted stable perovskites with those found in the experimental literature,

we have compiled a list of experimentally reported perovskites. Four perovskite review

papers (Roth,110 Giaquinta et al.,138 Li et al.139 and Zhang et al.140) were aggregated

to form a list of 251 experimentally observed perovskites. Out of those 251 perovskites,

we predict 170 compounds to be stable. DFT predicts accurately the stability of all the

well-known and studied perovskites such as BaTiO3, SrTiO3, LaAlO3 and CaTiO3. Out
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of the 383 compounds we predict to be stable, 213 of them are not reported in the litera-

ture and thus, represent great potential for discovery of new compounds, even outside of

the thermochemical water splitting application. For instance, BiVO3, CeCoO3, CeAgO3

and LaAgO3, YbMoO3 and LiIrO3 are all perovskites predicted to be stable here but, to

our knowledge, have not been synthesized yet and hence, are amenable for experimental

testing. An extended list of such compounds is given in Table 4.3. We find 81 compounds

that are predicted to be unstable but were found in at least one review paper. Among

those, we found 26 compounds that have different ABO3 stable phases in the OQMD, such

as ilmenite (R3̄, 148) or the hexagonal distortion (P63cm, 185). Thus, we suspect that

those compounds are reported in the literature in a distortion that was not considered

in this high-throughput study. The other 55 compounds are unstable and are predicted

to decompose in a linear combination of more stable unary, binary or ternary phases.

Finally, it is worth noting that among our list of 213 compounds predicted to be stable,

97 contain actinides used in this study (Ac, Th, Pa, U, Np and Pu) or unstable elements

(Tc and Pm). Other elements that are not often encountered in the literature, such as

Europium and Ytterbium are also present in 29 and 26 compounds, respectively. The

high occurrence of such compounds might be attributed to the lack of competing phases

present in the database during the stability calculation, potentially mislabeling them as

stable. However, the prediction of a stable phase at the ABO3 composition indicates that

either the perovskites structure is stable or some other, undiscovered, phase(s) must be

present at that composition to remove the perovskite from the convex hull.
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4.3.3. Oxidation States

For this high-throughput study, we performed calculations for all combinations of metals

in A and B perovskite sites, regardless of metal oxidation state. This approach was chosen

for several reasons: 1) We did not want to rely on chemical intuition for oxidation states, as

it can sometimes fail, which was shown in previous computational studies where ground-

state structures of compounds containing elements from the same group have different

crystal structures.141 2) We expect the majority of the charge unbalanced compounds to

be unstable, giving us a useful test of our stability filter. 3) Nine elements present in our

study (Tc, Os, Pt, Au, Pm, Ac, Pa, Np and Pu) do not have bond valence parameters,

complicating the determination of their oxidation state.

Table 4.2. Oxidation state breakdown for all the 5,329 calculated perovskite
compounds. Oxidation states were calculated using bond valence parame-
ters104 as implemented in pymatgen.105

Oxidation State All compounds Stable compounds

A-site: +1, B-site: +5 222 19
A-site: +2, B-site: +4 884 93
A-site: +3, B-site: +3 935 143
A-site: +4, B-site: +2 146 1
A-site: +5, B-site: +1 28 -
Total charge balanced 2215 256

Charge unbalanced 1881 13
Total charge unbalanced 1881 13

Contains elements not in BVM 1233 114
Total unknown charge 1233 114

Total 5329 383

The different oxidation state configurations for all the compounds are presented in

Table 4.2. Less than half the compounds (2,215 out of 5,329) are predicted to be charge
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balanced using the bond valence method. By removing compounds containing the 9 el-

ements without BVM parameters, we report 1,233 compounds ((2 ∗ 73 − 9) ∗ 9) that

have unknown oxidation states. As expected, the vast majority of the charge unbalanced

compounds are predicted to be unstable. However, we note that 13 compounds (AsKO3,

AsRbO3, BaBiO3, BeEuO3, CaBiO3, CdBiO3, KTeO3, KUO3, SiEuO3, SmScO3, TeEuO3,

TeHgO3 and TeSrO3) are calculated to be stable despite being predicted as charge unbal-

anced by the bond valence method. Additionally, 114 compounds which have oxidation

states that do not have BVM parameters turn out to be stable. These two results em-

phasis the merit of considering all 5,329 compounds for our high-throughput study, as we

would have missed those 127 compounds (about one third of all the stable compounds)

by doing a screening before performing the DFT calculations. We see that the majority

of compounds have both cations in the +3 or +2 on the A-site and +4 B-site probably

because those oxidations states are the most common in the periodic table. On the other

hand, fewer compounds are in the +5 and +1 configuration, as those oxidation states are

less common. There are more +1/+5 and +2/+4 compounds than +5/+1 and +4/+2

respectively, which is consistent with the knowledge than the A-atom is most often the

biggest of the two cations.39

4.3.4. Perovskite Structure Maps

With the large database of perovskites and their stability at hand, it is possible to draw

structure maps of perovskite stability similarly to what has been done in other previous

experimental and theoretical studies.41,110,138,139,142–144 Structure maps are tools designed

to help classify the structure of stable compounds as a function of the radii of their
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constituent elements. They have been previously used in the literature to predict the

stability of a variety of different compounds, including perovskites.110,138,139,142,143 In our

study, we used ionic radii, as tabulated by Seshadri and Basu,108 to create a radius of

A vs B atom (rA vs rB) structure map (Figure 4.3). Figure 4.3 shows that 95% of the

stable perovskites lie in the upper left region, i.e. where rA > rB. This observation is in

agreement with what is reported in the literature where the same rA vs rB map was used

with experimentally observed perovskites.39,138 We also see that, by removing the charge

unbalanced compounds, we are mostly removing the perovskites that have large B-atoms.

Due to the difference in coordination number between the A- and B-atom (12 and 6

respectively), and thus the difference in radius for the ABO3 vs BAO3 compounds, Figure

4.3 is not symmetric with respect to the x = y line. Although the stable compounds are

highly clustered in Figure 4.3, some outliers indicates that the simple purely geometrical

argument is not always sufficient to describe the stability of perovskites. This result

is consistent with a recent density functional theory study of perovskites.144 Also, the

region with clustered stable perovskites contains a large number of unstable compounds.

So, while the map shows a high degree of clustering, it does not show a high degree of

separation between stable and unstable compounds. A highly predictive structure map

needs to have both clustering and separation of data.
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Figure 4.3. Perovskite structure maps of radii of A- and B-cations (rA vs
rB). Colored symbols are stable perovskites and grayed out symbols are
unstable. After calculating the oxidation state of both cations for each
compounds using the bond valence method,104 Shannon radii were used
for each element.106,107 The dashed line represents the x = y line. (a) Plot
containing all compounds (5,329 compositions) and (b) Plot containing only
charge balanced compounds (2215 compositions).

It is also interesting to look at the tolerance factor, defined by equation 2.5, distribution of

stable and unstable compounds. Figure 4.4 represents the frequency at which stable and

unstable perovskites with different tolerance factors appear in our dataset. Most of the

stable perovskites have a tolerance factor comprised between 0.8 and 1.1 which is consis-

tent with other studies that used the tolerance factor as a way to separate stoichiometries

that would form perovskite.39,41 However, we observe that a large number of compounds

with a tolerance factor within this window are calculated to be unstable. Approximately,

750 charge balanced perovskites with a tolerance factor between 0.9 and 1 are predicted

to be unstable. This indicates that, when taking a random composition, geometrical

and charge neutrality arguments are not always sufficient to describe the stability of a

perovskite.
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Figure 4.4. Frequency of stable perovskites in function of their tolerance
factor. Shannon radii were used for to compute the tolerance factors of
each compound.106,107 The y-axis is normalized by the number of stable
perovskites (389) for the stable compounds and unstable compounds (4940)
for the unstable compounds. (a) Plot containing all compounds (5,329
compositions) and (b) Plot containing only charge balanced compounds
(2215 compositions).

4.3.5. Selection of Novel Materials for Water Splitting

By using the stability and the oxygen vacancy formation energy filters, we can now screen

for novel materials for water splitting. Figure 4.5 (a) shows the extent of the present work

by plotting the calculated compounds in a single plot where the x-axis corresponds to the

stability and the y-axis the oxygen vacancy formation energy. For the 2,162 cases where

distortions were calculated, we plot the distortion with the lowest energy; for the cases

where the distortions were not calculated, we plot the energy of the cubic phase. We

clearly see the 0.5 eV/atom threshold below which structural distortions were calculated.

The distorted points shown above the 0.5 eV/atom threshold represent the compounds

that were randomly selected to assess the impact of the distortions on the stability of

perovskites. We note that, due to the use of a cubic supercell to calculate the oxygen

vacancy formation energies, a couple of distorted compounds have negative oxygen forma-

tion energy and are stable. Figure 4.5 (b) shows the region where stable perovskites are

found. Out of the 383 compounds that are calculated to be stable, 139 (12 cubic, 8 rhom-

bohedral and 119 orthorhombic) fall in the target window i.e. have an oxygen vacancy

formation energy between 2.5 and 5 eV/O atom. Ceria stability was calculated through
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the OQMD and added to the plot along with oxygen vacancy formation energies measured

experimentally145 and calculated from first-principles using different techniques.146,147 It

falls within our target windows, giving us confidence in our filtering method. All com-

pounds passing both filters are shown in Table 4.3. Owing to their ability to give or

receive electrons, and thus enforce the charge neutrality of a compound, elements with

multiple possible oxidation states such as transition metals and rare earth elements are

heavily represented in this category. Many of the lanthanum based perovskites that were

mixed together (LaMnO3, LaCrO3 and LaFeO3)
32–34,127,128 and used for water splitting

are also in Table 4.3. Finally, ceria-containing compounds appear frequently in the list of

potential candidate.

Perovskites containing earth-abundant elements such as CaVO3, SrVO3 and SrSnO3, com-

pounds not reported in the literature such as BiVO3 and CeCoO3 or compounds that are

close to ceria on Figure 4.5 (b) such as EuGeO3 and EuSnO3, were all predicted to be

good candidates for water splitting application and might be of special interest to the

reader. On the other hand, some perovskites present in Table 4.3 contains uncommon

elements such as europium and actinium. Even if such compounds are not likely to be

used experimentally, we chose to keep them in our high-throughput study as it might

open new amenities for completely different compositions.

Other descriptors could be used to narrow down the number of candidates. For instance,

previous studies showed that large and positive entropy is a key parameter to insure

thermodynamically viable reactions.125,126 Additionally, reaction kinetics is also critical for

practical fuel production, particularly for the low-temperature water splitting step. Even

though surface reactions are often complex, especially for ceria,148,149 one could imagine
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kinetic arguments to design additional descriptors. For example, oxygen diffusivity could

play a role in the reaction kinetics and could be used as a filter to further enhance our

screening capabilities.
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Figure 4.5. Perovskite oxygen vacancy formation energy (∆EO
v ) plotted

against stability (∆HABO3
stab ). The green windows represents the oxygen va-

cancy formation energy target. (a) The stabilities of distortions with the
lowest energy are plotted. For the 3167 (5329-2162) compounds where we
did not calculate distortions, the cubic stability is plotted. (b) Blowup of
the stable phases region. Experimental and calculated oxygen vacancy for-
mation energies of ceria are taken from Chiang et al.,145 Yang et al.146 and
Murgida et al.147

Table 4.3. List of perovskites, ordered by ascending vacancy formation en-
ergy, for water splitting application. All these compounds pass the stability
(∆HABO3

stab < 0.025 eV/atom) and oxygen vacancy formation energy (2.5
< ∆EO

v < 5 eV/O atom) screens. Compounds in bold are not reported in
any of the review papers used for the literature survey.110,138–140 Oxidation
states were calculated using bond valence parameters104 as implemented in
pymatgen.105

Formula Stable Distortion ∆HABO3
stab ∆EO

v Ox. N.A Ox. N.B
[eV/atom] [eV/O atom]

TbCoO3 orthorhombic 0.001 2.517 3 3
EuOsO3 orthorhombic -0.130 2.517 unknown
BiMnO3 orthorhombic 0.019 2.550 3 3
BiFeO3 orthorhombic 0.012 2.593 3 3
NaNpO3 orthorhombic -0.095 2.664 unknown
AuPaO3 rhombohedral -0.081 2.683 unknown
EuSbO3 orthorhombic -0.036 2.699 3 3
LuFeO3 orthorhombic 0.009 2.732 3 3
EuRuO3 orthorhombic -0.113 2.753 2 4
YbPuO3 orthorhombic 0.024 2.789 unknown
AcRuO3 orthorhombic 0.006 2.793 unknown
SmCoO3 orthorhombic -0.018 2.937 3 3
YbTcO3 orthorhombic 0.003 2.953 unknown
LaCoO3 orthorhombic -0.023 2.970 3 3
PmCoO3 orthorhombic -0.022 2.996 unknown
NaOsO3 orthorhombic -0.024 3.020 unknown
LiTcO3 orthorhombic 0.006 3.047 unknown
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Table 4.3 – continued

Formula Stable Distortion ∆HABO3
stab ∆EO

v Ox. N.A Ox. N.B
[eV/atom] [eV/O atom]

HoFeO3 orthorhombic 0.008 3.100 3 3
NdCoO3 orthorhombic -0.001 3.130 3 3
SrRuO3 orthorhombic -0.017 3.142 2 4
YFeO3 orthorhombic -0.113 3.196 3 3
DyFeO3 orthorhombic 0.008 3.199 3 3
CeCoO3 orthorhombic -0.044 3.216 3 3
TbFeO3 orthorhombic 0.008 3.270 3 3
EuReO3 orthorhombic -0.085 3.289 2 4
PmInO3 orthorhombic 0.023 3.292 unknown
CuUO3 rhombohedral 0.011 3.294 1 5
KOsO3 cubic 0.015 3.300 unknown
SrOsO3 orthorhombic -0.077 3.331 unknown
AcCoO3 rhombohedral 0.000 3.336 unknown
BiVO3 orthorhombic 0.000 3.346 3 3
PrInO3 orthorhombic 0.005 3.349 3 3
YbSnO3 orthorhombic 0.023 3.357 2 4
GdFeO3 orthorhombic -0.022 3.390 3 3
NdInO3 orthorhombic 0.013 3.400 3 3
LaInO3 orthorhombic 0.018 3.403 3 3
CaTcO3 orthorhombic 0.017 3.425 unknown
YMnO3 orthorhombic 0.011 3.474 3 3
TbMnO3 orthorhombic 0.002 3.526 3 3
CeInO3 orthorhombic -0.004 3.536 3 3
CaVO3 orthorhombic -0.020 3.569 2 4
EuPuO3 orthorhombic -0.103 3.589 unknown
GdMnO3 orthorhombic 0.002 3.606 3 3
SmFeO3 orthorhombic -0.029 3.630 3 3
NaTcO3 cubic 0.000 3.635 unknown
EuNpO3 orthorhombic -0.001 3.640 unknown
PuZrO3 orthorhombic 0.021 3.640 unknown
BaOsO3 cubic -0.113 3.677 unknown
EuSnO3 orthorhombic -0.193 3.692 2 4
PmFeO3 orthorhombic -0.072 3.706 unknown
SmMnO3 orthorhombic 0.001 3.736 2 4
AgUO3 rhombohedral -0.009 3.754 1 5
PmMnO3 orthorhombic -0.064 3.769 unknown
SrPuO3 orthorhombic -0.121 3.789 unknown
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Table 4.3 – continued

Formula Stable Distortion ∆HABO3
stab ∆EO

v Ox. N.A Ox. N.B
[eV/atom] [eV/O atom]

SrVO3 orthorhombic -0.001 3.792 2 4
TmVO3 orthorhombic -0.011 3.822 2 4
YbVO3 orthorhombic -0.105 3.829 2 4
NdFeO3 orthorhombic -0.035 3.836 3 3
EuTcO3 orthorhombic -0.164 3.840 unknown
BiCrO3 orthorhombic 0.012 3.849 3 3
NdMnO3 orthorhombic 0.005 3.849 3 3
KTcO3 cubic 0.000 3.883 unknown
ErVO3 orthorhombic 0.005 3.887 3 3
PrMnO3 orthorhombic 0.002 3.889 3 3
LaMnO3 orthorhombic 0.000 3.927 3 3
LuCrO3 orthorhombic -0.011 3.932 3 3
HoVO3 orthorhombic 0.006 3.932 2 4
SrSnO3 orthorhombic -0.047 3.943 2 4
CeMnO3 orthorhombic -0.085 3.955 3 3
PrFeO3 orthorhombic -0.086 3.974 3 3
PuHfO3 orthorhombic -0.042 3.987 unknown
YVO3 orthorhombic -0.037 3.990 3 3
AcInO3 orthorhombic -0.027 3.994 unknown
DyVO3 orthorhombic 0.005 3.995 2 4
YbGeO3 orthorhombic 0.001 4.029 2 4
TmCrO3 orthorhombic -0.022 4.037 3 3
LaFeO3 orthorhombic 0.007 4.043 3 3
TbVO3 orthorhombic 0.004 4.045 2 4
YbWO3 orthorhombic -0.075 4.046 2 4
UScO3 orthorhombic 0.013 4.052 3 3
LiUO3 rhombohedral 0.003 4.062 1 5
CsUO3 cubic 0.009 4.073 1 5
CeFeO3 orthorhombic -0.092 4.100 3 3
AcMnO3 orthorhombic -0.116 4.100 unknown
GdVO3 orthorhombic 0.005 4.112 3 3
EuVO3 orthorhombic -0.075 4.123 2 4
ErCrO3 orthorhombic 0.002 4.126 3 3
CuPaO3 rhombohedral -0.184 4.134 unknown
AcFeO3 orthorhombic -0.115 4.141 unknown
SrTcO3 cubic 0.002 4.154 unknown
BaSnO3 cubic 0.001 4.158 2 4
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Table 4.3 – continued

Formula Stable Distortion ∆HABO3
stab ∆EO

v Ox. N.A Ox. N.B
[eV/atom] [eV/O atom]

TlUO3 cubic -0.105 4.189 1 5
HoCrO3 orthorhombic -0.033 4.191 3 3
BaPuO3 rhombohedral 0.010 4.211 unknown
YbMoO3 orthorhombic 0.007 4.239 2 4
SmVO3 orthorhombic -0.064 4.244 2 4
DyCrO3 orthorhombic 0.003 4.245 3 3
YCrO3 orthorhombic -0.020 4.254 3 3
TmGaO3 orthorhombic 0.019 4.279 3 3
PmVO3 orthorhombic -0.069 4.301 unknown
TbCrO3 orthorhombic -0.047 4.319 3 3
NaReO3 cubic 0.007 4.345 1 5
NaUO3 orthorhombic 0.003 4.356 1 5
EuGeO3 orthorhombic -0.216 4.370 2 4
GdCrO3 orthorhombic -0.052 4.371 3 3
AgPaO3 rhombohedral -0.295 4.373 unknown
NdVO3 orthorhombic -0.077 4.379 3 3
UAlO3 cubic -0.004 4.389 3 3
BaNpO3 orthorhombic -0.088 4.442 unknown
PrVO3 orthorhombic -0.083 4.464 3 3
UVO3 orthorhombic 0.021 4.467 3 3
YGaO3 orthorhombic -0.090 4.492 3 3
NpVO3 orthorhombic -0.032 4.514 unknown
RbUO3 cubic -0.050 4.519 1 5
SmCrO3 orthorhombic -0.064 4.544 3 3
CeVO3 orthorhombic -0.090 4.548 3 3
PuAlO3 orthorhombic -0.071 4.577 unknown
GdGaO3 orthorhombic 0.007 4.590 3 3
PmCrO3 orthorhombic -0.067 4.600 unknown
LaVO3 orthorhombic -0.083 4.615 3 3
NdCrO3 orthorhombic -0.075 4.684 3 3
NaMoO3 cubic -0.004 4.704 1 5
DyTiO3 orthorhombic 0.022 4.721 2 4
SmGaO3 orthorhombic 0.019 4.741 3 3
PrCrO3 orthorhombic -0.079 4.772 3 3
PmGaO3 orthorhombic -0.023 4.795 unknown
TbTiO3 orthorhombic 0.015 4.803 2 4
CeCrO3 orthorhombic -0.081 4.838 3 3
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Table 4.3 – continued

Formula Stable Distortion ∆HABO3
stab ∆EO

v Ox. N.A Ox. N.B
[eV/atom] [eV/O atom]

CeErO3 orthorhombic 0.023 4.848 3 3
LaCrO3 orthorhombic -0.071 4.851 3 3
NdGaO3 orthorhombic -0.006 4.867 3 3
GdTiO3 orthorhombic 0.023 4.871 2 4
NpCrO3 orthorhombic -0.021 4.872 unknown
EuMoO3 orthorhombic -0.119 4.931 2 4
LaGaO3 orthorhombic 0.015 4.940 3 3
PrGaO3 orthorhombic -0.056 4.942 3 3
CeTmO3 orthorhombic 0.015 4.959 3 3
NdLuO3 orthorhombic 0.022 4.969 3 3
AcVO3 orthorhombic -0.106 4.974 unknown

4.4. Summary and Conclusions

Going beyond binary oxides for thermochemical water splitting applications opens a large

composition space that is unreasonably big to be entirely explored experimentally. In this

work, we used high-throughtput density functional theory to screen ABO3 perovskites

based on thermodynamic considerations. We did an exhaustive search of the all the

possible ABO3 combinations, without filtering for charge neutrality prior to performing

the calculations which lead to the discovery of stable perovskites that have hard-to-predict

oxidation states. We used two filters, compounds stability and oxygen vacancy formation

energy, to isolate potential candidates for water splitting. The stability filter showed

the importance of considering all competing phases present in the ternary A-B-O phase

diagram to assess the stability of a compounds accurately. We found the majority of

the stable perovskites to be orthorhombic with rare earth elements on the A-site and

3d-transition metals on the B-site. Plotting stable and unstable compounds in structural
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maps and computing their tolerance factor lead to the conclusion that purely geometrical

argument are not sufficient to describe completely the formability of perovskites. Finally,

we identified 139 perovskites that are predicted to be thermodynamically favorable for

water splitting applications, some of those not reported in the literature. The high-

throughput methodology presented in this paper shows the benefit of using first-principles

calculations to efficiently screen an exhaustively large number of compounds at once. It

provides a baseline for further studies involving more detailed exploration of a restricted

number of those compounds.
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CHAPTER 5

The Uniquely Large Entropy of Reduction of Ceria

Previous studies have shown that a large solid-state entropy of reduc-
tion increases the thermodynamic efficiency of metal oxides, such as ce-
ria (CeO2), for two-step thermochemical water splitting cycles (TWSC).
The configurational entropy arising from oxygen off-stoichiometry in the
oxide has been the focus of most previous work on the entropy of TWSC.
Here we examine a different source of entropy, the onsite electronic con-
figurational entropy (∆Sonsite

elec ), arising from coupling between orbital
and spin angular momenta (L−S) in lanthanide f -orbitals. We find
that ∆Sonsite

elec is sizable in all lanthanides, and reaches a maximum value
of ≈ 4.7 kB per oxygen vacancy for the Ce+4/Ce+3 reduction reaction.
Depending on the degree of non-stoichiometry in ceria, this value can
even surpass the configurational entropy. The unique and large posi-
tive ∆Sonsite

elec in ceria contributes to its excellent water-splitting perfor-
mance as well as its superior properties for other high-temperature cat-
alytic redox reactions. Our calculations also show that TbO2 – generally
Tb+4/Tb+3 based materials – have a high electronic entropy and thus
could also be potential candidates for solar thermochemical reactions.

5.1. Introduction

In the previous chapters, we mentioned ceria (CeO2) as being the current best materials for

water splitting.3,11,23,150 In addition, several compounds from Table 4.3 contain cerium.

Apart from water splitting, ceria is also used for various catalytic and energy applica-

tions such as three-way exhaust automotive catalysts,151–155 solid-state fuel cells,156–159

low-temperature water-gas shift reactions,160 and several other industrial catalytic ap-

plications.161–165 To a large extent, the performance of ceria in these processes depends

strongly on its oxygen storage capacity and facile Ce+4/Ce+3 redox reaction. For water
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splitting, a critical step is the thermal reduction of ceria at around 2000 K:

(5.1) MOx → MOx−δ +
δ

2
O2

where M is a metal, MOx its corresponding metal oxide and δ is the oxygen off-

stoichiometry. Ideally, for equation 5.1 to be thermodynamically favorable, its Gibbs

free energy has to be negative:

(5.2) ∆Gred = ∆Hred − Tred∆Sred < 0

where ∆Hred is the enthalpy of reduction, which we discussed in chapter 4, Tred is the

reduction temperature (typically around 2000 K) and ∆Sred is the entropy of reduction.

Meredig and Wolverton125 showed that a key thermodynamic quantity for increase effi-

ciency is a large ∆Sred. This entropy of reduction for a thermochemical water splitting

process is conventionally defined as:

(5.3) ∆Sred =
1

2
SO2 + ∆Sconf + ∆Svib

where SO2 is the oxygen gas phase entropy, ∆Sconf is the ionic and electronic configura-

tional entropy and ∆Svib is the vibrational entropy. The oxygen gas phase is indepen-

dent from the metal oxide used in equation 5.1 and is approximately 15 kB per oxygen

atom.166,167 The two other terms of equation 5.3 are the materials dependent quantities

and are referred as the solid-state entropy of reduction, ∆Ssolid
red .

Several studies tackled the solid-state entropy. Experimentally, Bevan et al.168 and Pan-

lener et al.166 showed that, by using an ideal solution model, ∆Ssolid
red is logarithmically
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dependent on the oxygen off-stoichiometry, δ. Grieshammer et al.169 calculated the vibra-

tional entropy to be equal to 2.5 kB. Gopal et al.170 did Monte Carlo (MC) simulations

based on DFT-derived cluster expansion Hamiltonian to calculate the configurational and

vibrational entropy of reduction of ceria for various δ. They found that the configura-

tional entropy is much smaller than the ideal solution model. Their values of entropy of

reduction agree with experiment for large δ but have a gap of about 4.5 kB for small δ

(0.01 < δ < 0.12).

To explain this discrepancy, we will look at an additional source of entropy, hereafter

denoted by ∆Sonsite
elec , which arises from distributing electrons over a large number of mul-

tiplet states. This onsite electronic entropy is particularly large for lanthanides with

partially filled f -shells where extremely localized f -orbitals give rise to different possible

configurations associated with the occupations of the same atomic orbitals. In addition,

we calculate the onsite electronic entropy for different lanthanides cations (Pr, Nd, Eu

and Tb) and show that the onsite electronic entropy is the largest for the Ce+4 → Ce+3

reduction reaction, explaining the unique properties of ceria.

5.2. Results and Discussion

5.2.1. L-S Coupling and Crystal Field

The onsite electronic entropy arises from thermal excitations among orbitals created by

orbital angular momentum (L) and spin angular momentum (S) coupling (L−S coupling).

For f -orbitals of lanthanides, we use the Russel-Saunders (L − S) coupling scheme171

to describe the electronic configuration instead of the number of valence electrons (4fn)

notation. In this scheme, coupling of orbital and spin angular momentum results in 2S+1LJ
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term symbol in which 2S+1 is the spin-multiplicity, L is the total orbital quantum number

and J is the total angular momentum, ranging from |L + S| to |L − S| by steps of one.

The degeneracy of each J-multiplet is (2J + 1) and the total number of microstates (m)

for a given term symbol 2S+1L is (2S + 1)(2L+ 1).

When a cation is placed in a crystal where it is surrounded by anions, static electric

field breaks the degeneracy of electron orbitals (crystal field (CF)).172 In our system,

CF further splits each degenerate J-state to several subsets and breaks the spherical

symmetry of the f -shell charge distribution. The crystal field parameters are dependent

on the local symmetry of the ionic environment. Hence, we used a fully Ab initio method,

opposing crystal potential (OCP),173 to calculate the CF parameters of Ce+3 in the host

fluorite CeO2 structure. Figure 5.1 shows the 4f 1 (Russel-Saunders notation: 2F ) energy

level splitting scheme of Ce+3 with SOC and calculated crystal field. Without CF, the f 1

states split into 2F5/2 and 2F7/2 separated by approximately 0.28 eV.174 The CF interaction

further splits the 6-fold degenerate 2F5/2 ground state into a four-fold degenerate Γ8 and

two-fold degenerate Γ7 subsets, separated by 0.12 eV. Crystal field, which was calculated

by OCP method for Ce+3, splits the eight-fold degenerate 2F7/2 state into states with

energies 0.25, 0.32 and 0.46 eV.

5.2.2. Onsite Electronic Entropy

Once the energy levels and degeneracy of each microstates are known, we can calculate

the onsite electronic entropy of the system as follow:

(5.4) Sonsite
elec = −kB

m∑
i

gi pi ln pi
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Figure 5.1. Energy levels of the 4f 1 orbital of Ce+3. Ce+3 splits initially
by SOC and subsequently by cubic CF of the the fluorite structure. The
spin-orbit splitting between J = 5/2 and J = 7/2 is about 0.28 eV.174,175

The color gradient indicates the probability distribution at 1900 K, given
by exp(−Ei/kBT ), and numbers in parentheses stand for the degeneracy of
the electronic states. The first predicted Γ8 to Γ7 excitation for CeO2 is
0.12 eV. Predictions for the higher CF levels of J = 7/2 are 0.25, 0.32, 0.46
respectively.

where kB is the Boltzmann factor (8.617 ∗ 10−5 eV/K), m is the number of microstates,

gi the degeneracy of the microstate mi and pi is the probability of thermal excitation to
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the state with energy Ei given by:

(5.5) pi =
exp(−Ei/kBT )

Z

where T is the temperature and Z is the partition function defined as:

(5.6) Z =
m∑
i

gi exp(−Ei/kBT )

Equations 5.4-5.6 show that the onsite electronic entropy depends mainly on the number

of microstates (m) and the probability of occupying them. This probability is dependent

on the temperature and the size of the multiplet splitting between the energy levels:

stronger SOC means higher energies microstates that are less probable to be occupied at

lower temperatures due to limited thermal excitations. However, for Ce+3 at temperatures

relevant for water splitting (T ≈ 1900 K) a large fraction of microstates are accessible

making the Sonsite
elec close to its ideal limit of kB ln(m).

Table 5.1 contains the onsite electronic entropy for the 5 elements (Ce, Pr, Nd, Eu and

Tb) that were considered in this study. Myers et al.176 extracted the electronic entropy

contribution of lanthanide ions (Ln+3) in lanthanide trihalides from absolute entropy data.

Our calculated electronic entropies per ion at ≈ 300 K in units of kB compared to Myers

et al.176 data (value inside parentheses) are the following: Ce+3, 1.79 (1.77); Pr+3, 2.19

(2.18), Nb+3, 2.30 (2.27); Eu+3, 1.13 (1.10); Tb+3, 2.56 (2.54). The calculated Sonsite
elec

based on L− S coupling shows excellent agreement with previously reported data.
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Table 5.1. Calculated onsite electronic entropy per oxygen vacancy, Sonsite
elec ,

of selected lanthanide ions before and after reduction at 1900 K. Once the
f -orbitals are occupied, the system gains a large electronic entropy which
weakly depends on its occupation number. Therefore, the largest ∆Sonsite

elec

per oxygen vacancy is associated with the f 0 to f 1 transition, where fully
oxidized state has zero entropic contribution. Entropy units are in kB.

Element fn Term Deg. Sonsite
elec ∆Sonsite

elec

Ce+4 f 0 1S 1 0.0
4.68

Ce+3 f 1 2F 14 4.68 (4.53)CF

Pr+4 f 1 2F 14 4.38 (4.22)CF

1.40
Pr+3 f 2 3H 33 5.78

Nd+3 f 3 4I 52 6.28
0.77

Nd+2 f 4 5I 65 7.05

Eu+3 f 6 7F 49 6.59
-2.43

Eu+2 f 7 8S 8 4.16

Tb+4 f 7 8S 8 4.16
2.30

Tb+3 f 8 7F 49 6.46

For thermochemical water splitting applications, the absolute electronic entropy does not

matter, only the entropy difference before (fn) and after (fn+1) reduction is relevant:

(5.7) ∆Sonsite
elec = 2

(
S
onsite(n−1)
elec − Sonsite(n)

elec

)
where the factor two is due to the fact that two Ce+4 ions are reduced per oxygen vacancy.

Table 5.1 shows the onsite electronic entropy of reduction for all the elements considered.

The largest ∆Sonsite
elec is found in Ce+4 → Ce+3 which undergoes an f 0 →f 1 redox reaction.

Indeed, having the oxidized state f 0 (1S) with zero onsite electronic entropy is a unique

feature of ceria, resulting in a large ∆Sonsite
elec of 4.68 kB per oxygen vacancy, which is a
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maximum for the reduction of any rare-earth cation. We assert that this unique entropic

characteristic of the Ce+4/Ce+3 redox reaction helps facilitate the TWSC properties of

CeO2. The second largest value of ∆Sonsite
elec is found in terbium (Tb+4 → Tb+3) with

2.30 kB per oxygen vacancy at 1900 K. This source of entropy could make Tb+4 based

materials promising candidates for TWSC applications, as Tb, like Ce, is stable in two

valence states (Tb+4/Tb+3). This prediction agrees with a recent thermodynamic study

that also suggested TbO2 as a potential candidate for TWSC applications.177

For cerium and praseodymium, we calculated Sonsite
elec with and without crystal field split-

ting and showed that it has a negligible contributions at temperatures relevant for water

splitting (≈ 3% at 1900 K, see Table 5.1 and Figure 5.2). In addition, Walsh et al.178

showed that crystal field splitting significantly decrease with temperature and lattice

thermal expansion. As a result, the CF parameters were not calculated for the remaining

elements.

5.2.3. Other Sources of Entropy

In this section, we compare ∆Sonsite
elec with the other sources of entropy. With the addition

of onsite electronic entropy, equation 5.3 becomes:

(5.8) ∆Sred =
1

2
SO2 + ∆Sconf + ∆Svib + ∆Sonsite

elec

For simplicity we consider a fixed composition of δ = 0.03 roughly corresponding to one

oxygen vacancy in a 96-atom supercell. For this composition, we were able to find several

reported experimental and theoretical data points (Table 5.2).
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elec followed by reduction of TbO2 (see Table
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Table 5.2. Contribution of different entropic terms for δ = 0.03 and a tem-
perature of 1500 K. The values of ∆Sconf are obtained from an ideal solution
model and MC simulations:170 the MC calculated Sconf already includes vi-
brational entropy.170 Experimental value is taken from Panlener et al.166

Method 1
2
S0
O2

∆Svib ∆Sconf ∆Sonsite
elec ∆Stot ∆Stot

exp

Ideal 15.2 2.5 10.4 — 28.1
26.1MC 15.2 5.9 — 21.1

MC+∆Sonsite
elec 15.2 5.9 4.26† 25.4

† This value is calculated for T=1500K

Ideal Monte Carlo Monte Carlo + 
Sonsite

elec
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Figure 5.3. Contribution of different entropic terms for δ = 0.03 and 1500 K.
All the numbers are taken from Table 5.2.

At this composition the calculated ∆Svib is approximately 2.5 kB.169 The ∆Sconf of CeO2−δ,

assuming ideal mixing entropy is calculated by ∆Sc = −nkBln(δ) (where n depends on

the defect structure, here n = 3) and is equal to 10.4 kB.166,170 However, we note that
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a system with extensive ordering of oxygen vacancies,147 such as ceria, will have short

range order and hence the actual configurational entropy is non-ideal and smaller than in

the ideal solution model. For instance, the non-ideal ∆Sconf + ∆Svib, calculated by Monte

Carlo simulation based on a cluster expansion Hamiltonian, is about 5.9 kB,170 almost half

of the ideal ∆Sconf . Our calculations show that the neglected electronic entropy (∆Selec) is

more than 4.7 kB, which is comparable to these other widely considered sources of entropy

and can explain the ≈ 5 kB gap between the calculation and experiment. We note that as

long as oxygen vacancy is compensated by two polarons (i.e. [Ce′Ce] = 2[VO
••

]), ∆Sonsite
elec

is not a function of the off-stoichiometry δ. Being independent of the off-stoichiometry

implies that at large δ the contribution from the electronic entropy surpasses that of

the configurational entropy (which decreases with δ) and becomes the major entropic

contribution. Using the calculated ∆Sconf in ref. 170, we estimate that this crossover

occurs at (δ ≈ 0.05).

Our results show that the electronic contribution to the entropy of reduction explains the

gap between the results of the currently most detailed theoretical calculations of ref. 170

and the experimental data of Panlener et al.166 for small δ (see Figure 5.3). At larger δ,

adding a constant onsite electronic entropy to the vibrational and configurational entropies

from ref. 170 overestimates the experimental data (see Figure 5.3). There could be several

reasons for this apparent discrepancy. For instance, at higher δ, most of the polarons

become bound to oxygen vacancies forming singly charged V−2O – Ce+3 or neutral V−2O –

2Ce+3 complexes.179 The proximity of Ce+3 to an oxygen vacancy could slightly modify

the electronic structure and hence reduce the electronic entropy associated with Ce+3,

but as already discussed the overall effect of oxygen vacancy on the energy levels180 and
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electronic entropy is expected to be small. Furthermore, the experimental measurements

of Panlener et al.166 found that the enthalpy of reduction is composition dependent even

at very small δ. However, this finding has been challenged due to the large experimental

uncertainty.166,168 Since the entropy is obtained from T∆S = ∆H−∆G, the entropy

values of Panlener et al. may be contaminated by contributions from the composition

dependent contribution to ∆H. Indeed, the results of ref. 170 suggest that the entropy

stays approximately constant for δ between 0.05 and 0.15, while the data of Panlener et

al.166 shows a pronounced decrease in this range.

Measurements of the Seebeck coefficient provide another means of estimating the elec-

tronic entropy contribution in the dilute limit where all polarons are unbound.151,181

Unfortunately, the experimental data here are also contradictory. The data of Tuller and

Nowick181 suggests that for small δ the spin degeneracy factor is one, which contradicts

the Kramers theorem requiring that the ground state must be at least doubly degenerate.

However, a later study by the same authors151 concluded that the agreement between

the polaron model with spin degeneracy one and the experimental data for the Seebeck

coefficient was poor, especially at low δ where impurities were thought to play an im-

portant role. On the theory side, the vibrational entropy of an isolated Ce+3 polaron

has not been established accurately. Grieshammer et al.169 have calculated a very large

value of about 7 kB for the entropy of polaron formation at zero pressure, but the largest

contribution to this value is due to a volume contribution from the CeO2 host, which was

treated in an approximate fashion. Such a large positive entropy is inconsistent with the

available data on the Seebeck coefficients in the dilute limit.151,181 Hence, thermoelectric



97

measurements on pure, well-equilibrated samples of CeO2 and more accurate calculations

of the vibrational entropy associated with free polarons are highly desirable.

5.3. Conclusions

We calculated electronic entropies of different lanthanides in the presence of SOC and

CF. We calculated CF splittings for Ce+3 and Pr+4 and found that at temperatures above

1000 K, CF interactions affect the Selec by less than 3%. The results show that, in ceria,

the magnitude of the entropy of reduction due to the commonly neglected onsite elec-

tronic entropy (∆Selec) reaches a maximum of 4.68 kB per oxygen vacancy, which is twice

as large as the vibrational entropy contribution and can be larger than the configurational

entropy. This surprisingly large entropy is the result of the very unique electronic struc-

ture of cerium in ceria where redox reactions change its electronic state from f 0 to f 1.

These entropic properties, together with the excellent chemical stability and tolerance for

large non-stoichiometry, put ceria in a unique position for two-step solar thermochemical

CO2/H2O splitting cycles. In addition, we find that Tb(IV) based materials have the next

highest electronic entropy, for Tb+4 → Tb+3 redox reactions. We therefore propose com-

pounds containing Tb+4 should be experimentally investigated as promising candidates

for TWSC applications.
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CHAPTER 6

Optimizing Machine Learning Methods for Faster Materials

Discovery

In the recent years, machine learning has been used in materials science
to predict materials properties and to accelerate the discovery of new
stable compounds. Here, we take a critical look at methods of discovering
new crystalline compounds to find ways to improve their performance.
Specifically, we use an exhaustive dataset of ABO3 compounds to test
different training set types, algorithms and iterative schemes in order
to improve each step of the materials discovery process. We show that
building a training set from data coming exclusively from literature is
not always necessary and can even be detrimental to the discovery rate of
new compounds. In addition, we show that an iterative search approach,
where unknown compounds are continuously calculated and included
in the training set, lead to faster short-term discovery of compounds.
Finally, we give a roadmap to perform machine learning for materials
discovery in an efficient way.

6.1. Introduction

With the progress in computational power of the recent decades, it is now possible to calcu-

late materials properties from first-principles in a high-throughput fashion. The databases

resulting from such methods contain hundreds of thousands of materials properties, such

as thermodynamic stability, relaxed geometries and band gaps.59,62,129,182 Density func-

tional theory (DFT), the current workhorse of such databases, remains expensive and is

thus limited to structures with small number of atoms (typically < 50 for high-throughput

calculations) or constrained chemical spaces. Additionally, in materials science, the first
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screening criteria is often stability, i.e. the likelihood of synthesizing a compound experi-

mentally.117 Unfortunately, stable compounds often represent a small fraction of the total

number of compounds that are being calculated.62,183–185 As a result, there is a benefit to

reducing the number of calculations performed on unstable compounds which would lead

to acceleration in materials discovery by allowing to explore bigger cells over the entire

periodic table of the elements.

The sheer amount of data available, most often publicly, represents unique opportunities

for machine learning and data mining for materials science.75,85–87,186,187 Previous studies

used such data to predict a variety of properties such as crystal structures,64,81,188,189 melt-

ing temperatures80,190 and mechanical properties of materials.82,191,192 Machine learning

has also frequently been used to discover new crystalline materials.83,184,193 A common

way to perform materials discovery with machine learning is to first build a training set

by sampling experimentally observed compounds as those data are readily available in

the literature.81,194,195 As a result, the training sets are often biased towards positives, i.e.

the ratio stable/non-stable in the training set is much higher than the one of the entire

chemical space. This can potentially hurt the prediction capabilities as a biased training

set will have the tendency to predict a higher number of false positive compounds. In

addition, positive examples of stability are materials being stable in the desired structure

and negative examples are materials stable in a different structure. As a result, there are

very few examples of unstable materials, i.e. materials that decomposes in more than one

phase.

One way to verify the predictions of machine learning based on literature training sets is

to try to synthesize the predicted compounds, which is expensive when many materials are
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predicted to be stable. An alternative way of assessing the machine learning predictions

is to validate the stability by performing ab-initio calculations, such as density functional

theory. However, by doing so, there is a discrepancy between the labels of the training set

(stable/non-stable in the literature) and the verification of the predictions (stable/non-

stable as predicted by DFT). The connection between those two quantities is not always

apparent.

In this work, we explore how to further improve each step each in the materials discovery

process by performing machine learning on a complete dataset of ABO3 compounds com-

puted by DFT. Having a full dataset of 5,329 compounds, will allow us to compare the

effect of different algorithms, training sets and machine learning approaches. We show

that using machine learning can increase the discovery rate of new stable compounds by

a factor 10. Furthermore, the machine learning results indicate that having data from the

literature as a training set is not always necessary. Indeed, efficient machine learning can

be performed with training set containing a random selection of compounds within the

chemical space of interest. Finally, we try a different version of active learning87,196–198

aimed at discovering new stable compounds as fast as possible while spending a minimum

of computer time calculating unstable compositions. The iterative search method showed

in this work uses a greedy approach to compute compounds with a high prediction score

first.
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6.2. Methodology

6.2.1. The Datasets

In a previous work, we calculated the thermodynamic stability of 5,329 ABO3 compounds

with DFT68 by substituting 73 metals and semi-metals on both the A and B sites (732 =

5,329). Out of those, 383 (≈ 7%) were perovskites. This considerable CPU time expendi-

ture gives us the unique opportunity of having an exhaustive and consistent dataset that

can be used for machine learning purposes. In the present work, we use a subset of 65

elements that have been reported in the literature in a ABO3 structure,110,138–140 resulting

in 652 = 4,225 different compositions. Out of those, 305 (≈ 7%) are predicted by DFT

to be stable perovskites. The breakdown of elements used in this study is summarized in

Figure 6.1. By already knowing whether a compound is predicted by DFT to be stable

or not, we can split this dataset into a training and testing set without restrictions, i.e.

without being constrained by having only literature data. Here, we refer to the training

set as the subset of compounds that will be used to train the machine learning model and

the testing set as the remaining compounds, i.e. compounds that the machine learning

model has not seen. To mimic what is typically done in other studies81,184,194,195 and

to study the effects of training set selection on machine learning performance, we will

perform two types of splitting that are represented in Figure 6.2.

Literature Training Set. One approach to starting a machine learning search for

new compounds is to gather all examples of experimentally observed compounds with

the same stoichiometry, and train a model to predict whether the desired structure is

formed.81,194,199 For this work, the training is composed of 343 experimentally known
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Figure 6.1. Elements found in the literature in ABO3 compounds. Elements
are color coded based on their occurrence on the A- and/or B-site. White
elements with black symbols were not included in this study.

ABO3 compounds found in four review papers.110,138–140 To emulate the approaches found

in literature, the compounds are then split according to their DFT stability. In order to

be considered as a stable perovskite, an ABO3 compound has to be on the convex hull

in the perovskite structure, i.e. has a lower energy than any other ABO3 non-perovskite

compounds and any linear combinations of other phases in the A-B-O phase space.62,68,132

For this splitting, we have 173 perovskites and 170 non-perovskites in the training set (see

Figure 6.2 (a)).
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Figure 6.2. Dataset representation for both types of training set. Each
large square represents 65 ∗ 65 = 4225 compositions. The bottom solid
rectangles are the training sets, the top striped rectangles are the testing
sets. (a) Splitting according to compounds found in the literature, the green
and brown colors represent compounds predicted to be perovskite and non-
perovskite, respectively. (b) Random selection of training set, the blue and
yellow represent compounds predicted to be perovskite and non-perovskite,
respectively.

Random Selection of the Training Set. Alternatively, we can compose the training

set by randomly selecting 343 compounds (the same number as the literature training set)

out of the 4,225 compositions, similar to the approach used by Faber et al.184 This method

can be used if the structure of interest is largely absent from the literature. Coupled with

ab-initio tools such as DFT, it offers the advantage of not requiring any previous data to

perform materials discovery. In addition, selecting the training set randomly guarantees

that the ratio perovskite/non-perovskite is identical to the overall dataset (see Figure 6.2

(b)).
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6.2.2. Feature Set and Target Values

In this work, we will use 8 attributes as inputs into our machine learning models. As all

compositions have 3 oxygen atoms, all attributes are derived from the two cations present

in the structure. Those attributes are: 1) Charge state of the ABO3 compound. This is a

binary attribute based on whether a compound is charged balanced or not. The oxidation

state of the two cations in the structure was calculated using a bond valence method.104

The oxidation state of oxygen was fixed to -2 for all compounds. 2-5) The column and

row of the element of the periodic table for the A and B atom. 6-7) the atomic radii

of the A and B atoms. Here, we will investigate the effect of two type of atomic radii:

covalent and ionic radii. Covalent radii measure the size of an atom when forming a

covalent bond200 and are thus independent of the oxidation of coordination number of the

element. In contrast, ionic radii are a measure of the atoms ion and are thus dependent

on the oxidation state and coordination number of the ion.106,107 8) Tolerance factor41

defined by equation 2.5. Tolerance factor is often used in the literature when describing

the formability of perovskites.39 The general consensus based on empirical observations of

stable ABO3 compounds is that 0.8 < t < 1.1 for perovskites. We note that the octahedral

factor, another metrics often encountered, defined as:

(6.1) O =
rB
rO

Is already included in our feature set 6-7) as the oxygen radius is a constant.

The target value for this study is the DFT 0 K, 0 bar stability of the compound. It is a

binary quantity that represents whether the compound is predicted to be stable by DFT
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or not. A phase is considered stable when its energy is lower than any other structures at

that composition or any other linear combinations of structures. Grand canonical linear

programing method (GCLP) is used to calculate the stability of every phase.62,97

6.2.3. Machine Learning Algorithm

Throughout this work, we will use different algorithms from scikit-learn,79 the machine

learning python package, to perform supervised learning. Specifically, we tested two

different classes of learning algorithms.

Decision Trees Ensemble Methods. In order to improve the predictive accuracy of the

model, ensemble methods use a combination of weak predictors to build the final model.

In this work, we will use a random forest (RF)201 and gradient boosting (GB)202 decision

trees classifiers which both use decision trees as weak classifiers. RF performs an average

over decision trees build on a sub-sample of the dataset. While the sub-sample dataset

sizes are always the same, they are created from different random bootstrap samples of the

original training data. Gradient Boosting uses decisions trees that are built recursively to

minimize the error between the residuals, i.e. the difference between the target function

and the prediction. Both ensemble methods are probabilistic. As a result, we train a

model and predict on our dataset 100 times to have statistically meaningful results.

Non-linear support vector machines (SVM). Non-linear SVM (or kernel SVM, k-

SVM) uses kernel trick to implicitly map inputs to higher-dimension space in order to find

a hyperplane that splits the data into two categories (here perovskite and non-perovskite).

SVM are deterministic algorithms meaning that we train a model and predict with it
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only once. In this work, we use the C-vector classification203 with radial basis function as

kernel.

6.2.4. Performance Metrics

The performance of the different algorithms will be compared in terms of confusion ma-

trix (Table 6.1). The accuracy of the algorithm assesses how many machine learning

predictions agrees with DFT over the total number of predictions:

(6.2) accuracy =
TP + TN

TP + TN + FN + FP

where TP, TN, FN and FP correspond for true positive, true negative, false negative and

false positive, respectively. As a result of the sparse number of perovskites in the dataset,

we note that guessing non-perovskite for every compound would yield to an accuracy

of (4225-305)/4225 ≈ 93%. A metric that is more important for accelerating materials

discovery is success rate of the predictions (positive predictive value), i.e. how many

compounds are predicted to perovskite by DFT divided by the total amount of DFT

calculations performed:

(6.3) success rate =
TP

TP + FP

By doing DFT without machine learning on all the possible compositions, the success

rate, referred as the random guessing rate, is 305/4225 ≈ 7%. The hope is that machine

learning can increase this percentage.
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Table 6.1. Confusion matrix. TP, TN, FN and FP stand for true positive,
true negative, false negative and false positive, respectively.

Machine learning predicts

perovskite non-perovskite

DFT perovskite TP FN

predicts non-perovskite FP TN

6.2.5. Iterative Search Approach

Typically, machine learning is performed by training models on a subset of known data

points (referred as the training set) and used to predict the properties of another set

of compounds, usually larger, for which the target property is unknown (unknown set).

With this “single iteration” approach, the quality of the predictions is often measured

in function of the n-fold cross-validation score (where n is typically 10), i.e. partitioning

the training set in n part, training a model on n-1 partition, using the model to predict

the data points that were excluded from the training set and repeating this process n

times. Even if cross-validation offers an insight on how the model should perform on the

unknown dataset, it offers little validation on the predictions.

The single iteration approach only involves training a model and using it to predict com-

pounds once. However, in the case of materials discovery, the search space might be too

big to be calculated at once. Furthermore, the training set size, if taken from literature

data, might be too small to offer accurate predictions. For those reasons, we test a form of

iterative search where DFT calculations of unknown compounds are done successively and

added to the training set continuously. The choice of which compounds to compute first is

based on the prediction confidence made by the machine learning algorithm (compounds
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Figure 6.3. Schematic of the iterative search approach. X represents the
“next generation size”, i.e. the number of compounds that are calculated
and added to the training set at each iteration (in this work, the generation
size is 10 by default).

with higher prediction confidence are calculated first). The process is then repeated until

the desired number of new discoveries is reached or the computational time is exhausted.

A schematic of the iterative search approach is given in Figure 6.3. Even if adaptive

design strategies80,87,197,198 and active search196 approaches lead to faster searches in the

long term (i.e. after several iterations), our greedy iterative search approach shows better

results for short term discovery.

6.3. Results and Discussion

6.3.1. Single Iteration Approach

The results obtained while using a single iteration approach are summarized in Figure

6.4. We remind the reader that the single iteration approach consists of training a single

model on a fixed and known training set (where both the features and target properties

are known) then use the same model to predict all remaining unknown compounds (where

the target properties are not known) at once.81,195
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Figure 6.4. Success rate and accuracy ((a) and (b), respectively) of random
forest, gradient boosting and support vector machines algorithms for differ-
ent attributes and training sets. The first 6 columns represent training sets
taken from the literature (Figure 6.2 (a)). The last 6 columns represent
algorithms trained on a random sampling of the phase space (Figure 6.2
(b)). The numbers represent the height of each bar. The black vertical
lines are the standard deviations for each column. The dashed black line is
the random guessing success rate (7% success rate and 93% accuracy).

Training on Literature Data. The first 6 bars of Figure 6.4 (a) show the success rate

of algorithms trained on the literature dataset (173 perovskites and 170 non-perovskites,

see Figure 6.2 (a)). We can see that we predict stable compounds approximately twice as

well as random guessing. As the training set is biased towards stable compounds (173/343

= 50% as opposed to 7% from the overall dataset), the algorithms predict a large amount

of false positive (FP = 378.26, see Table 6.2) which impacts negatively the success rate

and accuracy of such approach. In addition, the effect of covalent versus ionic radius is

visible. As perovskites structures are mostly ionic compounds, choosing ionic radii yield

to, as expected, better results (20% increase for random forest).

In terms of accuracy (Figure 6.4 (b)), training on literature data performs close to, but not

better, than guessing non-perovskite for every compound. Even if it might look concerning

at first glance, we argue that this problem is inherent with dataset containing a small

fraction of stable compounds, which is typically what is found in nature.62 Furthermore,

achieving 93% accuracy by predicting non-perovskite for every compound does not help

predicting new perovskites.

Training on Randomly Selected Compounds. The 6 rightmost columns of Figure

6.4 (a) show the success rate of algorithm trained on randomly selected data. In this
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Table 6.2. Comparison of machine learning and DFT predictions for the
random forest algorithm using ionic radii as attributes for 2 types of training
set: blue is training on the literature training set and red is training on
randomly selected data. Numbers are averaged over 100 runs.

Machine learning predicts

perovskite non-perovskite perovskite non-perovskite

DFT perovskite 70.91 61.09 82.84 197.83
predicts non-perovskite 378.26 3371.74 43.71 3557.62

case, we randomly select 343 compounds (the same number of compounds found in the

literature) out of the 4,225 compositions, calculate them with DFT and train a model on

those randomly selected compounds. By doing so, we were able to drastically improve

the success rate of the algorithm to about 9-10 times the random guessing rate. It also

appears that training on randomly selected data is the only way to reach the accuracy of

random guessing. This shows the importance of having a training set that is as close as

possible to the overall training set that we are trying to predict as it reduces the number of

false positive predictions (FP = 43.71 see Table 6.2). Furthermore, training on randomly

selected data removes the need for literature data allowing to explore crystal structure

that are mostly unknown experimentally. Not requiring any literature data also saves

some time required to assemble a training dataset from the literature and is not prone to

error due to spurious experimental data.

Different Types of Algorithm. Figure 6.4 shows that, in the case of our perovskite

dataset and our chosen features, random forest performs the best out of the chosen algo-

rithms, both in terms of success rate and accuracy. It is hard to generalize this statement

for other dataset types as algorithms perform differently on different kinds of data.204–206

For instance, SVM models may work better when data are more easily linearly-separable.
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As random forest performs better for our application than gradient boosting and they are

both decision trees ensemble methods, we chose to keep using only random forest for all

further plots.

Support vector machines offers the advantage of being deterministic meaning that we only

need to train a model once, potentially saving some time. However, compared to DFT

calculations time, ML timing is often negligible. Despite being SVM, there is an error

bar on the last column of Figure 6.4. This is a result of training the algorithm on 100

different training set selected randomly. Having different training sets also explains why

the error bar for the RF random training is larger than RF models trained on literature

data where the training sets are always the same. We note that is some cases, SVM

algorithms predict no stable compounds (i.e. TP = FP = 0), in this case, we choose to

ignore this run all together.

Discovery Rate. As alluded to in the methodology section, the relevant quantity for

materials discovery is the discovery rate i.e. the number of compounds predicted to be

perovskites compared to the total number of DFT calculations performed. Therefore,

in subsequent plots, we chose to plot number of compounds found as a function of the

number of DFT calculations done for different algorithms (RF or SVM), training set type

(literature or randomly selected), training set size (100, 200 or 343), machine learning

technique (single iteration or iterative) and number of compounds iteratively added to

the training set (generation size) for the iterative technique (X = 1, 10 or 100). All the

plots that will follow have consistent line styles for the different parameters tested. Those

styles are summarized in Table 6.3. In each plot, the slope of each line corresponds to the

discovery rate for the specified parameters.
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Table 6.3. Line features for the different parameters that are being tested.

Algorithm Training set type Training set size ML technique Generation size

RF dark literature thin 100 red single - - - 1 -.-.-
SVM light random thick 200 green iterative 10

343 blue 100 .....

Figure 6.5 (a) shows the number of compounds found in function of the number of calcu-

lations performed depending on the algorithm used (RF or SVM) and the type of training

set (literature and random). Despite the modest success rate of the models trained on

literature data (≈ 15%), the high percentage of stable perovskite in the training set

(173/343 = 50%) makes it that literature models predict more stable perovskites com-

pared to models trained on random selection of training data. However, most of those

stable perovskites are not true discoveries as most of them were in the training set, i.e.

already in the literature. In contrast, Figure 6.5 (b) reports only new compositions, i.e.

compounds that were not in the training set. For the models trained on literature data, all

the predictions are, by definition, new discoveries. When training on a random selection

of data, some compounds in the testing set might be in the literature and thus should not

be counted as new discoveries. To find out the number of newly discovered compounds, we

have to calculate the probability for a compound of being not in the literature, knowing

that it is stable:

(6.4) P(not literature|stable) =
P(not literature ∩ stable)

P(stable)
=

132/4225

305/4225
= 43.3%
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Figure 6.5 (b) shows that the discovery rate of new compounds is similar if we train

models on literature data or random selection, giving evidence that a literature training

set is not always necessary.

To maximize the initial discovery rate, the order in which the DFT calculations are

performed is based on the probability of being a perovskite: compounds are ranked de-

creasingly in function of their likeliness to form perovskites and we start calculating the

compounds from the top of the list. We observe that the discovery rate is higher for the

first compounds that are predicted but then slows down. This indicates that machine

learning is rarely wrong when it predicts a compound to be perovskite with a high prob-

ability. After the initial high rate of discovery, the slope tapers off to reach the random

guessing rate (7%). It is at this point that machine learning, without active learning, is

not useful anymore. As a result, we stop the lines at that point in all plots.
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Figure 6.5. Number of compounds calculated to be perovskites in function
of the number of DFT calculations performed. (a) Considering all stable
compounds and the training set. The vertical black dashed line represents
the training set size (343) (b) Considering only the compounds not present
in the literature. Lines are stopped when the discovery rate goes below the
random guessing rate (7%).

6.3.2. Iterative Search Approach

Now that we looked at the best strategy for selecting the training set as well as the

algorithm and since the discovery rate is higher right after training a model, we explore

how to best use these parameters in an iterative search approach where compounds are

being calculated and included in the training set continuously. The hope here is to retain

the high discovery rate after each training iterations. In this section, we present results

of machine learning algorithm using an iterative search approach as explained in Figure

6.3.

Single Iteration Versus Iterative Method. Figure 6.6 shows the comparison of dis-

covery rate between the single iteration and the iterative search approach, for both random

forest and support vector machines as well as both types of training set (literature and

random). Similarly to the single iteration approach, RF performs better than SVM across

the board. We note that as we train and predict models several times with the iterative

search approach, no time is saved by using SVM over RF. In addition, the discovery rate

trends between training models on literature and random data are the same as the single

iteration approach.



117

The most important observation is that the iterative search approach is always better

than the single iteration approach, regardless of the algorithm or training set type. This

puts the emphasis on the advantage of continuously training new model and can be use in

autonomous frameworks where machine learning dictates which DFT calculations to run

next. Our iterative search method is comparable to greedy algorithms as it focuses on

finding solutions as fast as possible. In contrast to active search techniques that use look-

ahead or optimal search strategies, our method does not select candidate materials with

an objective of also improving the ML model. With such short-term perspective, greedy

algorithms are rarely optimal to find all stable compounds. Here, we argue that such a

myopic strategy is useful because machine learning is not suitable to find all compounds

due to 1) discovery rate drops off rapidly and 2) the only way to guarantee that we find

all compounds is to calculate them all. As such, the greediness of our approach has little

drawbacks.

Training Size Effect. Figure 6.7 shows the effect of decreasing the training set size

on the discovery rate for (a) RF and (b) SVM. Surprisingly, the initial discovery rate,

i.e. the predictions right after the initial training set, is comparable for all training set

size. Furthermore, all curves are converging to a similar value after 1000 calculations.

These observations imply that machine learning can greatly help materials discovery,

even with little or no literature data. The fact that all methods converge to a same

discovery rate is evidence of the greediness of the iterative search method where all “easy-

to-find” compounds are predicted first, leaving the remaining compounds to be found at

the random guessing rate. Standard deviations over the 100 runs appear to increase with
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Figure 6.6. Number of compounds calculated to be perovskites in function
of the number of DFT calculations performed using different machine learn-
ing technique (single iteration and iterative), different algorithm (RF and
SVM) and training set type (literature and random). The vertical black
dashed line represents the training set size (343). Lines are stopped when
the discovery rate goes below the random guessing rate (7%).

the decrease in training set size. These fluctuations can be explained by the larger number

of candidates left in the testing set when reducing the size of the training set.
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Figure 6.7. Number of compounds calculated to be perovskites in function
of the number of DFT calculations performed using different training set
size. The vertical colored dashed lines represent the training set size (100,
200 and 343) (a) using random forest and (b) using support vector machines.
Lines are stopped when the discovery rate goes below the random guessing
rate (7%).

Generation Size Effect. In Figure 6.6 and Figure 6.7, we used the iterative search

approach by selecting the top 10 materials after each training iteration (i.e. generation

size = 10). However, this number can be tuned. Figure 6.8 explores the effect of this

parameter on the discovery rate of perovskite compounds for (a) RF and (b) SVM. It

appears that a decrease in generation size increases the discovery rate. This apparent gain

must be balanced by the fact that smaller generation size means less DFT calculations

running in parallel and thus increase in total real time. Indeed, X = 1 essentially means

that all compounds will be calculated in series which is impractical. In addition, up

until now machine learning time was considered negligible compared to DFT calculation

time, however, training and predict model after each compound makes the ML timing

significant.

6.3.3. What Works the Best?

In this section, we discuss the optimal parameters to find new stable compounds with a

certain structure. We are trying to answer three questions: 1) how to choose a training

set? 2) how to build a model? And 3) how to iterate on the training set?

How to Choose a Training Set? In order to have a high success rate, the training

set has to have a ratio of stable-to-non-stable compounds that is as close as possible to
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Figure 6.8. Number of compounds calculated to be perovskites in function
of the number of DFT calculations performed using different generation
sizes. The vertical colored dashed lines represent the training set size (343)
(a) using random forest and (b) using support vector machines. Lines are
stopped when the discovery rate goes below the random guessing rate (7%).



122

the overall dataset. One way to achieve this is to randomly select compounds, calculate

their stability and build a model based of those compounds. As long as there is a handful

of stable compounds in the training set, larger training set does not imply faster predic-

tions. In fact, we showed that randomly selecting 100 ABO3 compositions, resulting in 7

perovskites and 93 non-perovskites, is enough to train a machine learning model (thick

red curve in Figure 6.7).

How to Build a Model? We showed that having features that are closely related to the

structure of interest, such as using ionic instead of covalent atomic radii, yields to better

results. As for algorithms, ensemble methods based on decision trees, especially random

forest works the best for our type of datasets, i.e. datasets that are not easily linearly-

separable. We still recommend testing several different algorithms for new problems, as

there is no guarantee that RF will work optimally for all projects. Finally, in the case of

sparse stable compounds, the accuracy of a model is not the relevant performance metrics.

Success rate or positive predictive value gives a better idea of how much DFT computer

time is saved.

How to Iterate on the Training Set? Using an iterative search approach, where

compounds are calculated and included in the training set outperforms the single iteration

approach consisting of training a model and predicting once. For short-terms benefits, i.e.

fast discovery of 80%-85% of the stable compounds, calculating the compounds with the

highest prediction confidence increases drastically the initial discovery rate, right after

finishing training.

What About Training on Literature Labels? Instead of training models based on

DFT stability, it is tempting to train models based on literature labels, i.e. whether a
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Table 6.4. Comparison between literature and DFT labels for the dataset
of 343 ABO3 compounds.

literature labels

perovskite non-perovskites

DFT perovskite 171 2 173

labels non-perovskites 76 94 170

247 96

compound is reported as a perovskite or a different ABO3 structure. This would save

some computer time by not calculating compounds from the training set but is an unwise

strategy as it creates a mismatch between the quantity we are training on (experimental

stability) and the quantity we are predicting (DFT stability). As illustrated in Table 6.4,

and in the case of our ABO3 dataset, those two quantities are not equivalent. Indeed,

when a compound is predicted to be a perovskite by DFT, there is good chance that

it is also reported as a perovskite in the literature (171/173 = 99%). However, many

perovskites reported in the literature are not predicted to be stable in the perovskite

structure by DFT (76, see Table 6.4). We note here that there is a difference between

DFT stability and synthesizability. However, it is not the topic of this paper and we refer

the reader to other studies dealing with this matter.117

6.4. Summary and Conclusions

Having a large dataset of DFT calculated ABO3 energies allowed us to test different

parameters on the performance of machine learning to discover new materials. In addition

to testing different algorithms such as ensemble methods and support vector machines,

we investigated the effect of training set size and training set type on the discovery rate
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of stable perovskites. We showed that building a training set by randomly selecting

compounds out of the entire search space is beneficial for the performance of the algorithm.

Based on the optimal training set and algorithm, we tried an iterative search approach

where unknown compounds are continuously calculated and included in the training set.

We showed that this approach leads to faster materials discovery. The present machine

learning comparisons can serve as a baseline for other studies aiming at discovering new

materials via machine learning.
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CHAPTER 7

Summary and Outlook

7.1. Summary

In this thesis, we used high-throughput density functional theory to calculate electronic

and structural properties of an exhaustive list of 5,329 ABO3 compounds. After comparing

our results with the phases found in the literature, we screened for materials suitable for

thermochemical water splitting based on stability and oxygen vacancy formation energy

criteria. We identified 139 potential new compounds for water splitting, some of those

never reported in the literature. In addition, we drew some structural maps containing

both stable and unstable perovskites.

Along the way, we explained why ceria and cerium containing compounds seem to per-

form the best for redox reactions. For this, we looked at a source of entropy that was

neglected in previous studies, the so-called onsite electronic entropy (∆Sonsite
elec ). It arises

from a coupling between orbital and angular spin momenta in lanthanides f -orbitals and

is uniquely large for the Ce+4/Ce+3 reduction reaction. We showed that this additional

source of entropy can surpass the contribution of the vibrational entropy and configura-

tional entropy at large oxygen off-stoichiometry. In addition, it explains the discrepancy

between previous theoretical studies and experimental measurements.

With the exhaustive ABO3 dataset at hand, we were able to test different types of machine

learning techniques to understand the influences of several parameters. Our aim was to
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discover materials predicted to be stable with a high success rate, i.e. to have a ratio

compounds stable to total number of calculations performed as high as possible. Different

algorithms such as ensemble methods and support vector machines were investigated along

with an iterative greedy approach aiming at maximizing the short-term performance of

the algorithms. This allowed us to propose a way to do machine learning for materials

discovery as efficiently as possible.

7.2. Outlook

The screening work presented in this thesis has some natural extensions that can be per-

formed to strengthen our predictions. Aside from stability and oxygen vacancy formation

energy, several other properties, such as entropy of reduction and kinetics, are crucial for

thermochemical water splitting. Those quantities are more expensive to calculate and

thus, have to be computed on a reduced pool of compounds. Phonons, for instance, can

be calculated with density functional theory207,208 and can be used to get a more accurate

estimate of the free energy of a system. Even though the localization of oxygen vacancies

has been studied experimentally and by density functional theory,209–213 kinetics play a

role in the overall performance of the system and could be further studied to sort out the

new predicted materials.43

Experimentally, mixing perovskite seems to be a good strategy to improve the performance

of water splitting materials. In particular, we can take advantage of the large entropy

of reduction of the Ce+4/Ce+3 and Tb+4/Tb+3 redox reactions by mixing some of these

elements into the perovskite crystal structure. Alternatively, searching for other crystal
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structures where Ce and Tb have an oxidation state of +4 might open additional novel

compounds and structures to explore.

Aside from thermochemical water splitting, perovskites are used in a variety of other do-

mains where different properties are of interest. Having a database of relaxed compounds

predicted to be stable is a great starting point to start investigating other properties for

different applications. For instance, detailed band structures and density of states plots

are useful tools to identify materials suitable for thermoelectrics,214 half-metals used in

spintronics,215 chemical looping216,217 or photochemical water splitting.6

On the side of machine learning, the technique that we have highlighted can be used

to predict the stability of many different crystal structures without spending too much

time on calculating unstable compounds. Common structural prototypes that are heavily

represented in experimental databases such as AB2O4 spinels or ThCr2Si2 can be calcu-

lated and included into the OQMD more efficiently this way. In addition, our exhaustive,

publicly available dataset of ABO3 can be used as benchmark for new machine learning

techniques or algorithms deployed for materials informatics.
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[118] Schlapbach, L.; Züttel, A. Nature 2001, 414, 353–358.
[119] Singhal, S. Solid State Ionics 2002, 152-153, 405–410.
[120] von Spakovsky, M.; Olsommer, B. Energy Conversion and Management 2002, 43,

1249–1257.
[121] Weber, A.; Ivers-Tiffée, E. Journal of Power Sources 2004, 127, 273–283.

http://dx.doi.org/10.6084/m9.figshare.4833587
http://dx.doi.org/10.6084/m9.figshare.4833587


133

[122] Koroneos, C.; Dompros, A.; Roumbas, G.; Moussiopoulos, N. International Journal
of Hydrogen Energy 2004, 29, 1443–1450.

[123] Momirlan, M.; Veziroglu, T. International Journal of Hydrogen Energy 2005, 30,
795–802.

[124] Romero, M.; Steinfeld, A. Energy & Environmental Science 2012, 5, 9234–9245.
[125] Meredig, B.; Wolverton, C. Physical Review B 2009, 80, 245119.
[126] Meredig, B.; Wolverton, C. Physical Review B 2011, 83, 239901.
[127] Demont, A.; Abanades, S.; Beche, E. The Journal of Physical Chemistry C 2014,

118, 12682–12692.
[128] McDaniel, A.; Ambrosini, A.; Coker, E.; Miller, J.; Chueh, W.; O’Hayre, R.; Tong, J.

Energy Procedia 2014, 49, 2009–2018.
[129] Curtarolo, S.; Setyawan, W.; Hart, G. L.; Jahnatek, M.; Chepulskii, R. V.; Tay-

lor, R. H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.; Mehl, M. J.; Stokes, H. T.;
Demchenko, D. O.; Morgan, D. Computational Materials Science 2012, 58, 218–
226.

[130] Castelli, I. E.; Olsen, T.; Datta, S.; Landis, D. D.; Dahl, S.; Thygesen, K. S.;
Jacobsen, K. W. Energy & Environmental Science 2012, 5, 5814–5819.

[131] Castelli, I. E.; Landis, D. D.; Thygesen, K. S.; Dahl, S.; Chorkendorff, I.;
Jaramillo, T. F.; Jacobsen, K. W. Energy & Environmental Science 2012, 5, 9034–
9043.

[132] Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. ACM Transactions on Mathematical
Software 1996, 22, 469–483.

[133] Körbel, S.; Marques, M. A. L.; Botti, S. J. Mater. Chem. C 2016, 4, 3157–3167.
[134] Zhou, J.-S.; Goodenough, J. B. Physical Review B 2008, 77, 132104.
[135] Woodward, P. M. Acta Crystallographica Section B Structural Science 1997, 53,

32–43.
[136] Zhou, J.-S.; Alonso, J. A.; Pomjakushin, V.; Goodenough, J. B.; Ren, Y.; Yan, J.-Q.;

Cheng, J.-G. Physical Review B 2010, 81, 214115.
[137] El-Mellouhi, F.; Brothers, E. N.; Lucero, M. J.; Bulik, I. W.; Scuseria, G. E. Physical

Review B 2013, 87, 035107.
[138] Giaquinta, D. M.; zur Loye, H.-C. Chemistry of Materials 1994, 6, 365–372.
[139] Li, C.; Soh, K. C. K.; Wu, P. Journal of Alloys and Compounds 2004, 372, 40–48.
[140] Zhang, H.; Li, N.; Li, K.; Xue, D. Acta Crystallographica Section B Structural

Science 2007, 63, 812–818.
[141] Huan, T. D.; Amsler, M.; Marques, M. A. L.; Botti, S.; Willand, A.; Goedecker, S.

Physical Review Letters 2013, 110, 135502.
[142] Muller, O.; Roy, R. The Major Ternary Structural Families ; Springer- Verlag: New

York, Heidelberg, Berlin, 1974; pp 1–487.
[143] Kumar, A.; Verma, A. S.; Bhardwaj, S. R. The Open Applied Physics Journal 2008,

1, 11–19.



134

[144] Castelli, I. E.; Jacobsen, K. W. Modelling and Simulation in Materials Science and
Engineering 2014, 22, 055007.

[145] Chiang, Y.-M.; Lavik, E.; Blom, D. Nanostructured Materials 1997, 9, 633–642.
[146] Yang, Z.; Luo, G.; Lu, Z.; Hermansson, K. The Journal of Chemical Physics 2007,

127, 074704.
[147] Murgida, G. E.; Ferrari, V.; Ganduglia-Pirovano, M. V.; Llois, A. M. Physical Review

B 2014, 90, 115120.
[148] Feng, Z. a.; El Gabaly, F.; Ye, X.; Shen, Z.-X.; Chueh, W. C. Nature Communica-

tions 2014, 5, 4374.
[149] Hansen, H. A.; Wolverton, C. The Journal of Physical Chemistry C 2014, 118,

27402–27414.
[150] Otsuka, K.; Hatano, M.; Morikawa, A. Journal of Catalysis 1983, 79, 493–496.
[151] Tuller, H.; Nowick, A. Journal of The Electrochemical Society 1979, 126, 209.
[152] Yao, H.; Yu Yao, Y. Journal of Catalysis 1984, 86, 254–265.
[153] Kašpar, J.; Fornasiero, P.; Graziani, M. Catalysis Today 1999, 50, 285–298.
[154] Mogensen, M.; Sammes, N.; Tompsett, G. Solid State Ionics 2000, 129, 63–94.
[155] Gandhi, H.; Graham, G.; McCabe, R. Journal of Catalysis 2003, 216, 433–442.
[156] Sharma, S.; Hilaire, S.; Vohs, J.; Gorte, R.; Jen, H.-W. Journal of Catalysis 2000,

190, 199–204.
[157] Steele, B. Solid State Ionics 2000, 129, 95–110.
[158] Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345–352.
[159] Navrotsky, A. Journal of Materials Chemistry 2010, 20, 10577.
[160] Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Catalysis Letters 2001, 77, 87–95.
[161] Inaba, H.; Tagawa, H. Solid State Ionics 1996, 83, 1–16.
[162] Park, S.; Vohs, J. M.; Gorte, R. J. Nature 2000, 404, 265–267.
[163] Deluga, G. A.; Salge, J.; Schmidt, L.; Verykios, X. Science 2004, 303, 993–997.
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