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ABSTRACT

On Adaptive Time-Constrained Macro X-Ray Fluorescence Scanning and Analysis of

Works of Art

Henry Hayashi Chopp

In the late 2000’s, scientific studies in cultural heritage saw a great advancement in

macro X-ray fluorescence (XRF) imaging of paintings. These images are used to generate

elemental distribution maps, which aid in identifying chemical elements and paint pig-

ments as well as their locations throughout the layers of the paintings. However, since

this technique uses a scanning probe that operates pixel by pixel, it often requires many

hours, or even days, to collect high quality image data.

We introduce novel image processing techniques to reduce the acquisition time of

the image data regardless of the XRF hardware. We investigate two image denoising

techniques: XRF volume denoising, which merges dictionary learning with a Poisson noise

model, and elemental map denoising, which incorporates a novel Poissonian regularizer.

These denoising methods allow for fast, noisy scans without losing image quality.

Additionally, we detail a pair of sampling algorithms to collect the most informative

data. In one method, an initial fast raster scan is conducted, which is then followed by a
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pixel-wise dwell time-varying scan designed to minimize the expected error. Our second

approach builds upon the first, whereby we predict the initial scanning pattern using only

a handful of samples. Knowing that artists paint with a finite number of paints (and

therefore XRF responses), these initial samples are strategically chosen via a color image

of the painting.

To find these sampling patterns, we detail novel optimization schema that allow users

to include strict time constraints. One method, called the Constrained Average, Variance,

and Extrema (CAVE) function, is a differentiable function meant to impose strict global

mean, range, and/or variance constraints on the output. CAVE is designed for gradient

descent-based optimization algorithms, including applications in neural networks. Our

other solver is non-differentiable, but is quick to converge upon the exact solution and

even allows for additional time constraints to be imposed on the pixel level.

We demonstrate that by combining the denoising and adaptive sampling techniques,

we have a powerful framework that can reduce XRF acquisition times to hours or even

minutes.
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CHAPTER 1

Image Processing Perspectives of X-Ray Fluorescence Data in

Cultural Heritage Sciences

Abstract

XRF analysis of art objects has rapidly gained popularity since the late 2000s due to

its increased accessibility to scientists. This introduced an imaging component whereby

the XRF image volume provides clues as to which chemical elements are present and

where they are located spatially in the object. However, as is the nature of collecting

measurements, there are limitations preventing perfect acquisition; e.g. spatial resolution,

signal-to-noise ratio, etc. The field of image processing, in part, aims to overcome these

limitations. Image processing applications in XRF imaging are only just starting to arise

due to the increased interest and availability in XRF analysis. In this chapter, we aim to

reach readers in XRF imaging or image processing in an effort to call for further research

in the field. We review the basics of XRF imaging and analysis that is tailored for those

unfamiliar with this imaging modality. We then delve into various publications of image

processing methods as applied to XRF data. Throughout this chapter, we examine (and

opine on) the XRF field through a lens of the image processing field.
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1.1. Introduction

In 1887, Vincent van Gogh painted a patch of grass, aptly titled, Patch of Grass. This

painting is shown on the left of Fig. 1.1. Its surface appearance only provides a part of the

work and the artist’s history; it is known that van Gogh by this time was transitioning

from a darker paint palette to a lighter one. Underneath the visible surface, however,

the painting in its entirety embodies this transition. Little would van Gogh have known

that over a century later, Dik et al. [1] would use XRF imaging to analyze it (especially

considering van Gogh lived until 1890, and x-rays were yet to be discovered by Wilhelm

Röntgen in 1895). Their colorized result, shown on the right of Fig. 1.1, uncovered in

detail a woman’s face that van Gogh painted over. Known to reuse canvases, van Gogh

composed the woman and the background with dark pigments prior to overpainting a

more vibrant grassy scene. XRF imaging is powerful in that it is capable of revealing the

iterations of a painting before the final coat is applied.

The use of XRF in cultural heritage science is not new. Other art objects (aside from

paintings) underwent XRF studies, particularly in archaeometrical analysis [2, 3] since ac-

quiring XRF data is non-invasive and non-destructive—certainly an ideal for preservation.

What differs is the use of imaging as opposed to spot analysis: prior XRF applications

examine select locations of interest to identify pigments and materials. A select few loca-

tions would be chemically understood, but these areas are not necessarily representative

of other areas similar in visual appearance.

With the advent of XRF imaging in the late 2000s, a flurry of research in cultural her-

itage science incorporated XRF imaging of paintings. Researchers published applications

that expose other hidden paintings [4, 5], authenticate paintings [6], or aid in conservation
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Figure 1.1. (Left) Vincent van Gogh, Patch of Grass, Paris, April–June
1887, oil on canvas, 30 × 40 cm2, Kröller-Müller Museum, Otterlo, The
Netherlands (KM 105.264; F583/JH1263). The red frame indicates the
field of view of the right image (rotated 90◦ counter-clockwise). (Right)
Approximate color reconstruction using chemical elements Sb and Hg from
XRF data. Adapted from [1].

efforts [7] for example. Additionally, researchers developed various low-cost, mobile XRF

imaging instruments [8, 9, 10, 11, 12]. These devices provide other scientists increased

access to XRF analysis due to their affordability and mobility compared to early exper-

iments using synchotron sources. Mobility is desirable since the artwork remains where

it is housed. This minimizes the risk of damaging the painting during transit, easing the

concerns of the parties involved.

As with any imaging instrument, however, there are limitations to its capabilities,

e.g. signal-to-noise ratio, spacial resolution, acquisition time, etc. Image enhancement

techniques prove to alleviate these concerns in a wide variety of signal domains. A

plethora of denoising, super-resolution, and subsampling methods exist in the literature.

Oftentimes these algorithms are domain-specific in order to incorporate prior knowledge
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of the signal. Due to the relative newness of XRF imaging, there are understandably

fewer dedicated publications of XRF image enhancement techniques. Perhaps because

spectroscopists instead of imaging scientists first developed the field, XRF images are

conventionally viewed as a stack of spectra rather than a stack of images. This is not to

say that writing this chapter on XRF image processing techniques is unwarranted; rather,

the limited number of existing algorithms surveyed in this chapter only adds purpose.

We want in this chapter to provide an image processing perspective to XRF analysis.

For example, many of the papers that address interpretability of XRF data use denoising

methods, yet denoising is often nowhere mentioned in these papers. This is by no means

a critique of the works, but hopefully via this chapter we bring an additional viewpoint

to the published work. We have two main goals for this chapter: we aim to reach readers

from (1) the XRF community to provide a resource for enhancing XRF imaging and why it

should be further researched, and (2) the image processing community to introduce XRF

imaging, establish the current state of XRF image processing research, and emphasize

the need for further developments in the area. In the discussion to follow, we hope that

researchers of either discipline can identify aisles of opportunity for further development

in XRF image processing and perhaps foster new interdisciplinary collaborations.

This chapter is structured as follows: we first introduce the science of XRF imaging

and analysis. Second, we review and provide new insights in different areas of XRF image

processing, namely denoising, super-resolution and inpainting, and subsampling. Lastly,

we opine on the state of XRF image processing research as well as directions of further

research.
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1.2. X-Ray Fluorescence Imaging Overview

XRF imaging was introduced as an alternative to other techniques that image art

objects beneath their surfaces. X-ray- and infrared radiation-based imaging are com-

mon ways of viewing internal structures of paintings [13], although practically the entire

electromagnetic spectrum has been used for these investigations [9]. These methods are

employed to avoid extracting samples of the painting. What distinguishes XRF from

other modalities is its ability to elucidate atomic elemental composition; this only further

reduces the need to remove paint samples for chemical analysis. We will discuss how the

underlying science of XRF imaging is used to identify pigments and materials throughout

the layers of paints. For a more in-depth yet gentle introduction to XRF spectrometry

than provided here, we refer the reader to Brouwer’s work [14], which is tailored towards

those new to the field.

1.2.1. Physics of XRF Spectroscopy

To collect XRF data, a source illuminates an object with a continuous spectrum of x-

rays. These x-rays are collimated on a small spot. As the sample is exposed to x-rays,

some of the x-rays are absorbed by the electrons in the sample. Impacted electrons may

be dislodged from the atom if the energy of the incoming x-rays are larger than that of

the binding energies. Losing electrons creates energetically unfavorable vacancies in the

atom’s electron configuration. To stabilize, electrons in outer orbitals move inward to fill

the vacancy.
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During this transition, energy is conserved. Outer orbitals have higher energies than

inner orbitals, so the transitioning electron loses energy. This loss is realized as a photon

emitted by the atom. The photon’s energy equals the energy loss.

Not all photon energies are possible, however. Within any type of atom, there are

different electron orbitals/shells at unique and distinct energy levels. The lowest energy

orbital is the K-shell, which holds two electrons. The L-shell, subdivided into three sub-

shells, has the next three lowest energy levels for eight additional electrons. The M-shell

has five sub-shells, all with greater energy than those of the L-shell; it can hold eighteen

electrons. These shells constitute the main transition lines whereby electrons fill the

vacancies: electrons typically move from (1) the L- to K-shell, (2) the M- to K-shell, and

(3) the M- to L-shell. Not all transitions are possible, and some transitions that are more

likely to occur than others.

The fluorescence photons are emitted in an isotropic manner, and those not absorbed

on their path to the detector are recorded by it. In the semiconductor detector, the

photons create a charge that enhances the conductivity. This is transferred into the

energy dispersive spectrum used in XRF analysis.

The sources of the incoming x-rays are not only from the electrons in atoms of the

top surface layer. X-rays have high energy that can penetrate below the surface layer and

interact with hidden atoms. Photons from these atoms must pass back through interme-

diate layers and into the detector to be recorded. These photons are less frequent than

those of the same element that lie on the top level, but are still present in large quanti-

ties. There are established limits on the penetration depth that depend on a multitude of

factors, but paintings are often thin enough to record photons throughout all the layers.
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1.2.2. XRF Measurement Challenges

There are some challenges that arise in XRF spectrometry that introduce noise or artifacts

into the recorded spectrum. Here, we highlight some problems that are characteristic of

XRF spectroscopy.

1.2.2.1. X-Ray Source. X-ray tubes emit incoherent, polychromatic x-rays by acceler-

ating electrons from a filament towards an anode. Upon contact, the electrons decelerate,

and x-rays are generated. A sizeable portion of these x-rays are inadvertently reflected

back into the detector, which records a broad spectrum of signals. This is called the con-

tinuum, which can be estimated and subsequently subtracted from the spectrum. Some

collisions even result in electron vacancies in the anode itself. Photons characteristic of the

anode’s material are then emitted from the source, which can create a false (or amplified)

peak in the XRF spectrum due to this backscattering.

1.2.2.2. Interactions between X-Rays and the Object. Aside from the source, x-

ray interactions with electrons of the object of interest do not always involve electron

ejection or x-ray reflection. Rayleigh scattering may occur when electrons hit by x-rays

instead vibrate at the same frequency as the incident photons. The vibrations cause

photons of the same frequency to be released, which contributes towards the continuum.

Compton scattering occurs when the incoming x-ray is backscattered, but loses some of

its energy. This scattering phenomenon is more apparent in low Z elements (i.e. elements

of low proton count), but can disappear in high Z elements.

1.2.2.3. Detector. One last major origin of error occurs at the detector. Escape peaks

occur when incoming photons excite the detector itself. The XRF photon is not re-

absorbed but rather escapes the detector. The photon then loses some of its energy
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before being converted to a voltage, but the energy loss is well-documented based on the

material of the detector.

Pileup peaks can also be produced where two photons are incident on the detector

in a small time window. This creates a seemingly large energy equal to the sum of the

individual photon contributions that the post-processor cannot resolve as two distinct

photons. Pileup is enhanced by high count rates.

These sources of error cannot be controlled, but they can be mitigated in XRF analysis.

What can be (roughly) controlled is the number of photons recorded by adjusting the

scan time. Photons arrive according to a Poisson process with some unknown underlying

rate. Since XRF spectrometry is a photon counting measurement, photon peaks can only

be detected if there are enough arrivals to distinguish them from both noise and the

continuum. The longer the scan time, the more apparent the peaks will be. XRF imaging

presents a challenge in that the dwell times per spot cannot be too small such that peaks

are lost in the noise, and cannot be too long such that it takes an excessive amount of

time to collect the volume.

Collection times are long since XRF systems are single pixel scanners. In order to gen-

erate an XRF image volume, the x-ray source and detector are mounted on a gantry that

moves in a (typically) raster scanning motion to cover the desired area. The acquisition

process can be lengthy depending on the dwell time and spatial resolution. For example,

the XRF volume in Fig. 1.1 reportedly took two days to collect a 17.5×17.5 cm2 area [1],

although being an early paper, care was taken to get good statistics. While XRF systems

have since improved, the scan times are still generally on the order of hours or days. The
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same area that was scanned in Patch of Grass can nowadays be scanned in approximately

an hour.

1.2.3. Notation

Before understanding how XRF analysis is done, we need to establish notation. Through-

out the thesis, we use the following rules: (1) lowercase lettering denotes scalars, (2)

uppercase lettering denotes matrices and vectors, and (3) boldface uppercase letters de-

note 3D tensors.

Let X ∈ NC×H×W be the collected XRF data where N is the set of nonnegative

integers. The volume has height H, width W , and channels C. Each channel corresponds

to an energy level where the incoming photons are binned. Each entry Xc,h,w contains

the number of recorded photons at pixel (h,w) with energy c.

As will become clear, many XRF analysis techniques revolve around dictionary learn-

ing or other matrix factorization methods. Thus, we introduce here some additional terms:

D ∈ RC×M
+ is the dictionary composed of M different spectra, and A ∈ RM×H×W

+ denotes

the abundances of each of the M spectra.

In dictionary learning, D and A are found such that

(1.1) X ≈ DA

where the matrix-tensor multiplication is carried out via

(1.2) (DA)c,h,w =
M∑
m=1

Dc,m ·Am,h,w.

This is the basis for many of the techniques surveyed here.
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1.2.4. XRF Analysis of Individual Response Lines

The core of XRF analysis is unmixing the resultant spectra: which atomic elements

are present, and of the present elements, how much is present? All collected spectra

are essentially linear combinations of the spectra of individual elements (along with the

continuum, noise, backscattering, etc.). Even within the elemental spectra, they too can

further be decomposed into the different emission lines.

The first step in XRF analysis is identifying the peaks that indicate the presence of a

certain element. This is done manually or automatically by examining the sum spectrum,

i.e. the spatial sum of all the spectra,

(1.3) Sc =
∑
(h,w)

Xc,h,w.

This provides the least noisy presentation of which elements lie in the object. Since it

is very likely the same elements/compounds exist throughout the painting spatially, the

sum of many measurements reduce the noise. Any elements identified are included in a

dictionary composed of the elemental responses. Fig. 1.2 shows a sample sum spectrum

as well as a single pixel’s spectrum. The peaks are easy to notice in the sum spectrum,

but are more difficult to identify when analyzing the single pixel—some maxima may be

due to noise in the individual pixel. Once the peaks are identified, a table can be used to

attribute the peak’s energy to an atomic element.

Of the identified elements, the next step is to decompose the XRF signal at each

pixel according to the dictionary. Each peak is often modeled as a Gaussian, and each

element consists of one or more peaks. These XRF response curves for elements present
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Figure 1.2. Sample XRF spectra with select peaks labeled. Note the dif-
ferent y-scales for the spectra. (Blue) The sum spectrum. (Green) The
continuum. (Red) A sample pixel.

in the sample are the columns of the dictionary D. The continuum response is oftentimes

included in the dictionary. A nonnegative least-squares approach is then used to fit the

XRF signal at each pixel individually:

(1.4) A∗ = arg min
A≥0

L (X, D,A)

for some objective (loss) function L, typically the `2 norm. Optimal abundance A∗

conveys the relative amount of each element present. One can then visualize the individual

channels of the abundance matrix to see how much of each element are present across the

painting—these are the elemental maps.
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PyMca [15] is a commonly used platform that can carry out the tasks above in a

streamlined approach. It also takes into account other modeling factors beyond the scope

of this chapter.

1.2.5. XRF Analysis using Different Bases

Since XRF data analysis is fundamentally an unmixing problem, most techniques use

some form of dictionary learning and matrix factorization to analyze the data. Whereas

the elemental decomposition formulation of Eq. (1.4) only solves for the abundance matrix

A, another formulation solves for the dictionary as well:

(1.5) D∗,A∗ = arg min
D,A≥0

L (X, D,A) .

This allows for a more complex representation of the data that can aid in interpreting the

data.

In particular, interpretability has posed an issue in terms of identifying trace elements.

Trace elements have short peaks that may be lost in the total sum spectrum. A priori

knowledge is sometimes needed to identify the trace elements in the sum spectrum, and

it can be just as difficult to predict the abundance of the trace elements in the individual

spectra [16].

In addition to finding trace elements, XRF analysis seeks out correlations in the data.

Correlations can be difficult to identify using the individual elemental peaks alone. For

example, say an element is present in multiple distinct compounds. It is a difficult task to

separate out how much of each compound (as well as which compounds) may be present.
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Many classical and some newer methods in data processing are used to analyze the

chemical composition of paintings. These analysis techniques can also be used to denoise

data in the spectral domain; we will explore this in the next section.

1.3. XRF Interpretation Methods as Spectral Denoising Mechanisms

The first attempts to better interpret XRF image data revolve around the fact that

pure elements typically do not exist on their own in paintings, but rather as a com-

pound. Vermillion, for example, is a red paint that was previously made from a Hg and S

compound. In XRF analysis, characteristic peaks of Hg and S would appear should ver-

million exist. This perhaps allows for dimensionality reduction that identifies pigments

and mixtures of different paints that the artist used.

In XRF imaging, changing the composition of the dictionary D from individual ele-

mental responses to a new basis is how many published analyses are carried out. As will

become clear, these methods can often be considered denoising algorithms that are able

to smooth the original data.

Data denoising is often overlooked in XRF analysis. Notice the bottom plot of Fig. 1.2

again. The signal is quite noisy compared to the sum spectrum, as the signal is inherently

discretized and most peaks occur under 20 photon counts. There are two primary ways

to mitigate the effects of noise on the individual spectra of a pixel: (1) increase the dwell

time for each pixel, and/or (2) use image processing techniques to denoise the data. The

former option is typically not available since experimentalists already set the dwell time

to the longest reasonable length. Even the slightest addition of dwell time can have

immediate impacts on the total scan time. For example, if the scan area is 500× 600 px,
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each additional millisecond of dwell time per pixel adds 5 minutes of overall scan time.

Instead of increasing the dwell time as a way to denoise the data, denoising techniques in

image processing can be applied.

In this section, we first address early methods that use principal component analysis

(PCA) or clustering approaches. Then, we go into more popular methods used today

to perform XRF analysis. Throughout this section, we note how these techniques can

be repurposed as potential denoising methods alongside its use as an analysis method in

XRF literature.

1.3.1. Principal Component Analysis and Clustering Methods

Much of the early work in XRF interpretation uses PCA to generate a new XRF basis [17].

PCA is known to be an easy but effective way to extract correlations in data as the

components (dictionary members) are the eigenvectors of the covariance matrix. The

eigenvectors corresponding to the largest eigenvalues are chosen as they best capture the

direction of highest variance in the data. Oftentimes only a few components are needed

to capture a significant amount of the variation. Each pixel is then approximated by a

linear combination of the PCA vectors, which compose D. The abundances A are found

via Eq. (1.4). XRF interpretation here identifies peaks that correlate with one another.

What is perhaps missed in the XRF analysis is that PCA is also effective at signal

denoising [18]. Many denoising algorithms have been developed around PCA to remove

noise in images along the spectral and spatial components that could be of use in XRF

analysis. The application of PCA here would be no exception, although perhaps rudi-

mentary by today’s image processing standards in terms of complexity.
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Later, Vekemans et al. [19] used a combination of PCA and K-means clustering to

automatically extract correlations. The goal here was to identify distinct regions of similar

XRF response. By doing so, the authors are able to find sum spectra of similar regions.

This aided them in the identification of trace elements that may be lost in the overall sum

spectrum.

To find these regions, the authors first perform principal component analysis (PCA)

over the channels of the XRF data. This finds the eigenvectors (or equivalently eigenim-

ages) of the covariance matrix. Then, they perform K-means clustering of the pixels of

the first n principal eigenimages to find clusters that represent a combination of elemental

XRF responses. This method helped them approach the goal of automatic segmentation:

by segmenting the images, sum spectra of each cluster can be used to better detect trace

elements. This was one of the earliest work that used a combination of spectral and

spatial methods for XRF analysis.

Clustering-based methods have also been shown as a way to denoise the data as

well [20]. By establishing representative cluster centroids, the data is mapped into a

lower dimension where the noise is mitigated. In this case, spectral denoising is done

through K-means clustering while spatial denoising is done via PCA.

Image processing is rich in PCA and clustering methods for denoising, although more

common now is the use of neural networks, which are often not an option in XRF analysis

due to the lack of available data. That being said, there are a plethora of image and

spectral denoising algorithms in signal processing literature more advanced than PCA

and K-means clustering. Some of these algorithms may be suitable for XRF analysis

perhaps with some changes that incorporate prior XRF domain knowledge.
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1.3.2. Nonnegative Matrix Factorization

While PCA-based techniques were popular, the results are not always physically inter-

pretable since a PCA decomposition can contain negative values. What exactly would

a negative amount of a spectrum indicate? All raw XRF data consists of nonnegative

photon counts, so it is not clear at all how to interpret a PCA decomposition in a phys-

ical sense. This realization led to the additional constraint that both the dictionary and

abundances must be nonnegative to provide feasible results.

Instead of PCA-based interpretation methods, Alfeld et al. [21] proposed using non-

negative matrix factorization (NMF) as a way to analyze the XRF correlations along the

spectral dimension. NMF is a problem that directly addresses the constraints of Eq. (1.5)

unlike PCA. Once the basis (dictionary) and abundance matrix are found, the results can

be more readily interpretable as the values are all nonnegative. Despite the more realistic

interpretation, the cost function typically evaluates higher than, say, that of a solution

found through PCA. This is due to the additional constraint. The other downside with

the general NMF algorithm is that the solution is non-deterministic and must go through

an iterative optimization process. The dictionary D and abundance matrix A must be

initialized to some nonnegative values before the NMF algorithm can proceed. After

many iterations, the algorithm converges to a local minimum. Many trials with different

initializations should be conducted to find the best local minimum.
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NMF is often solved using an algorithm called Fast Non-Negative Least Squares

(FNNLS) [22]. The method iteratively solves the following two equations until con-

vergence:

Ak+1 ← arg min
Ak≥0

‖X−Dk Ak‖2
F(1.6)

Dk+1 ← arg min
Dk≥0

‖X−Dk Ak+1‖2
F(1.7)

where the superscript denotes the iteration number for k ≥ 0 and ‖·‖F is the Frobe-

nius norm. The entire, simple algorithm for solving Eqs. (1.6) and (1.7) individually is

provided in the reference.

It was found in [21] that NMF does indeed provide more interpretable results with

nonnegativity enforced. There was however some difficulty in distinguishing between

different pigment groups that contain some of the same elements. This was mitigated

by incorporating the additional information that some of the compounds were known a

priori. NMF here was also done on some of the elemental maps instead of the XRF volume

as a whole. Santos et al. [23] also used NMF, but on the entire XRF volume.

Again, just as PCA can smooth the data, so too can NMF. Perhaps one of the most

noticeable differences is the nonnegativity constraint imposed on the NMF problem that

introduces sparsity to some extent. There is a possibility that in the final spectral decom-

position, D and A contain entries of 0. Sparse representations of A are known to be able

to effectively denoise when redundancies exist in the data [24]. Intuitively, these zero-

valued elements indicate the nonexistence of some XRF response. The absence of certain

responses can be just as beneficial in XRF analysis as a response that is present [25].



33

1.3.3. Other Factorization Methods

NMF provides a nonnegative factorization of the XRF data, but in its native form does not

require any other constraints be imposed. Take, for example, the issue of many solutions

for the decomposition. This so-called rotational ambiguity is easily illustrated by choosing

some nonsingular matrix Q ∈ RM×M [26]. The XRF decomposition of Eq. (1.1) can be

rewritten as

(1.8) X ≈ (DQ)
(
Q−1A

)
.

Any invertible matrix Q can be chosen so long as the entries of DQ and Q−1A are all

nonnegative. No matter Q, there is no error added (or subtracted) to the original factor-

ization. Additional constraints can be added in order to further constrain the solution.

1.3.3.1. Multivariate Curve Resolution–Alternating Least Squares. One con-

strained NMF algorithm that is employed is called multivariate curve resolution–alternating

least squares (MCR-ALS) [26]. While this may not be familiar to those in the image

processing community, this algorithm is in essence a nonnegative matrix factorization

framework where certain additional constraints can be added. A popular constraint to

include is that the final dictionary is a combination of the individual elemental spectra.

As a least squares minimization, we have that

(1.9)
(
Amix

)∗
,A∗ = arg min

Amix,A≥0

‖X−
(
DAmix

)
A‖2

F

where Amix ∈ RM×N
+ is the mixing matrix describing the linear combination of the indi-

vidual elemental spectra D. Note that Amix need not be a square matrix; in fact, it is the
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Figure 1.3. (Left) Pollock Number 1A, 1948 (1948). Oil and household
enamel paint on canvas (172.7 × 264.2 cm) The Museum of Modern Art.
(Right) Plots of the dictionary after applying MCR-ALS. From [27].

case that N < M to reduce the dimensionality of the dictionary and establish XRF cor-

relations. The new dictionary is DAmix ∈ RC×N . The dimensions of A are also modified

to A ∈ RN×H×W
+ in order to have a valid matrix multiplication operation.

With Amix known, dictionary DAmix is quite easily interpreted as it is simply a linear

combination of the original dictionary. This can be seen in the work by Martins et al. [27]

where they analyzed a painting by Jackson Pollock seen in Fig. 1.3. Their analysis shows

that the dominant colors can be identified based on the peaks of each spectrum in the

dictionary. It however does not encompass a complete separation of the compounds

present in the painting, which would be ideal considering the many overlapping paints

that are characteristic of Pollock’s work. Still, with only twelve dictionary endmembers,

MCR-ALS is able to capture correlations that are present in the XRF spectra. The

authors report that their criterion for selecting N is in part based on whether at least

95% of the variance can be explained.

We note that along with the other aforementioned techniques, MCR-ALS can be used

to denoise the original data in addition to the XRF interpretation. Representing all
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pixels as a linear combination of twelve spectra does not allow for much of the noise to be

reconstructed without incurring more error in the overall cost of the objective function of

Eq. (1.9).

1.3.3.2. Simplex Volume Maximization. Aside from MCR-ALS, Simplex Volume

Maximization (SiVM) has also been proposed [28] to overcome computational speed issues

of NMF and MCR-ALS. SiVM is also unique in that the dictionary is composed of data

points in the XRF volume X. These points are chosen from the set of points that lie on the

convex hull of X. Oftentimes the number of vertices of the hull is more than the desired

number of endmembers in the dictionary. SiVM chooses the M extreme points such that

the volume of the resulting simplex is maximized. These extreme points compose the

dictionary, making XRF interpretation perhaps even easier than that of MCR-ALS since

the basis can be readily found in the original data.

The authors reported some overlap in the elements present in the dictionary, but were

still able to glean new information from the process that can be seen in Fig. 1.4. In

particular, they noticed a glow around the hair in one of the bases that was not present

in the individual elemental maps that highlights the intersection of paint that compose

the hair (Ca) and the sky (Cu and Pb).

This method illustrates another way to select the dictionary, which has been shown

to be a possible denoising algorithm [29]. The authors of this paper similarly note that

hyperspectral unmixing is a form of denoising the data.

1.3.3.3. Dictionary Denoising of Poisson Data. A final method involves the com-

bination of Poisson noise modeling and dictionary learning for the explicit purpose of

denoising the XRF volume. We propose to use the Poisson negative log likelihood loss
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Figure 1.4. (Left) Portrait of a man from the Lespinette family, Hans Mem-
ling, 1485–1490, Mauritshuis, The Hague, Oil on panel, 30.1 × 22.3cm2.
(Middle) Abundance map of base 7. The base pixel is denoted by a yellow
plus in the map. (Right) The spectrum of base 7. Adapted from [28].

(PNLL) when solving for the dictionary, particularly when the XRF pixels have relatively

low photon counts [30]. This provides a better model for the noise instead of the `2 norm

which assumes the data is drawn from a Gaussian model.

The PNLL loss is the average of the individual PNLL errors; the loss is defined by

(1.10) LNLL (DA,X) =
1

N

∑
i∈(c,h,w)

(DA)i −Xi · ln (DA)i

where the summand is the PNLL error. Minimizing this loss is equivalent to maximizing

the Poisson log likelihood. The objective function uses the PNLL instead of the `2 norm

and is regularized using an adaptive total variation (TV) regularizer as well as an L0

penalty term on the abundance tensor to introduce sparsity, which is known to be an

effective modeling strategy in smoothing data with redundancies [24].

They provide experiments comparing different denoising algorithms of fast XRF raster

scans where the ground truth is known. The algorithm outperformed MCR-ALS as a
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denoising method, both in terms of the error in the denoised XRF volume and the denoised

elemental maps.

1.3.4. Perspectives

The dictionary-based XRF analysis algorithms reviewed here can be thought of as a

method to denoise the data, even when this is not explicitly mentioned or studied in the

papers present. Clearly, there is room for more advanced algorithms to arise for both

XRF analysis as well as denoising. Perhaps by applying other denoising algorithms in

image processing literature (or developing a method on one’s own), better XRF analysis

can be accomplished. The converse could also hold true whereby developing a new XRF

analysis technique can decrease the noise present in the original data volume.

We encourage those that have applied dictionary decomposition methods in XRF

imaging to revisit their techniques from a denoising perspective. Using the smoothed DA

volume in place of X, the original elemental maps can be found. Noisier maps with low

count rates may appear smoother than before, and it would be an interesting study to

see how well each of these methods performs as a denoiser.

We would also like to note that many of the algorithms for XRF interpretation only

use spectral denoising techniques. It is well known in image processing literature that

pixels in a local area generally have low variance in their values. This knowledge could

be applied in the spatial domain in the form of a TV regularizer:

Lreg (A) = LHreg (A) + LWreg (A)(1.11)

LHreg (A) =
M∑
m=1

H−1∑
h=1

W∑
w=1

(Am,h+1,w −Am,h,w)2(1.12)
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LWreg (A) =
M∑
m=1

H∑
h=1

W−1∑
w=1

(Am,h,w+1 −Am,h,w)2 .(1.13)

This term penalizes large changes in neighboring pixels. If we incorporate this regularizer

into the objective function, we have

(1.14) D∗,A∗ = arg min
D,A≥0

L (X, D,A) + αreg · Lreg (A)

for some scalar αreg > 0. Solving minimization problems of this form could improve how

XRF signals are analyzed with the added prior knowledge, particularly in overcoming peak

detection limits with weak XRF signals as seen in [30]. Using neighboring information

could provide a better decomposition of the pixels individually.

Take the Memling painting in Fig. 1.4 which has many spatially smooth regions. It is

reasonable to predict that most neighboring signals do not have wildly varying spectra.

Adding TV regularization could provide a different optimized dictionary that takes these

spatial relations into account. Of course, the TV term is not set in stone, and could be

adapted.

An adaptation is likely needed in the Pollock painting of Fig. 1.3 for example, since

there is a large amount of high spatial frequency. There are many different thin paint lines

that intersect each other, so it is reasonable to assume that neighboring spectra vary quite

a bit. The TV regularizer in Eq. (1.11) may inadvertently be detrimental to the results if

the spatial resolution of the XRF image is low. Having an adaptive TV regularizer that

identifies similar regions could be a way to modify the standard TV equation.
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1.4. Spatial Deblurring, Super-resolution, and Inpainting Methods for XRF

Volumes

Although XRF interpretation through known spectral denoising techniques is quite

common in XRF literature, we have not yet focused on the spatial component of XRF

image processing. There have been some published works on deblurring, super-resolution,

and inpainting techniques applied to XRF data. The deblurring problem focuses on

restoring high frequency components of the images lost in the data acquisition process.

This is mainly an issue in Micro X-Ray Fluorescence (µ-XRF) where the spot size is more

of a factor than in Macro X-Ray Fluorescence (MA-XRF) with paintings and other art

objects.

In super-resolution and inpainting problems, some pixels are excluded or missing from

measurements for some given reason. Following hard acquisition time constraints may

be a factor that affects the spatial resolution. Instead of capturing the XRF data at the

resolution that one desires, time can be saved by decreasing the resolution or sampling

select areas.

In this section, we’ll review the different image processing techniques that have been

applied/developed for improving XRF imaging in the spatial domain.

1.4.1. Fourier-based Deblurring Approaches

General algorithms for image deblurring already exist and can be readily applied to XRF

data. Yang et al. [31] conducted an experiment on some elemental maps that compare four

different Fourier transform-based super-resolution methods: (1) Wiener deconvolution, (2)

Richardson-Lucy [32], (3) Fast iterative shrinkage-thresholding algorithm (FISTA) [33],
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and (4) blind deblurring with L0-regularized intensity and gradient prior (L0RIGP) [34].

The first three algorithms are non-blind methods, i.e. the point spread function (PSF)

is known. L0RIGP is a blind method where the PSF is not known. Since the authors

reported that the Richardson-Lucy algorithm performed the best for their µ-XRF datasets,

we only review this method and refer the reader to Yang et al. ’s work [31].

Let Z,L ∈ RH×W
+ be the underlying super-resolved elemental map and the acquired

elemental map respectively. With a PSF P , Z can be approximated by

(1.15) Z ≈ L ∗ P

where ∗ denotes convolution. Richardson-Lucy is an algorithm that can notably be used

to deblur images with Poisson noise. The algorithm is iterative and converges at the

maximum likelihood solution given the PSF:

(1.16) Zk+1 = Zk ·
(
P̂ ∗ L

P ∗ Zk

)

where P̂ is the “flipped” version of P whereby the rows and columns are reversed.

Element-wise multiplication is denoted by ·, and division is carried out element-wise as

well.

The authors tested this method on the Fe Kα, Ca Kα, and Si Kα elemental maps of

an iron skarn, which is known to have sharp boundaries that are difficult to capture with

µ-XRF imaging. These results are shown in Fig. 1.5. While the Fe Kα and Ca Kα maps

have sharper boundaries as they expected, the Si Kα maps shows more degradations than

there should be. They attribute this to the high noise in the Si Kα image due to the

chemical nature of the quartz (which is composed of Si) as it interacts with x-rays. The



41

Figure 1.5. Elemental maps of an iron skarn. (Top row) Raw maps of
Fe Kα, Ca Kα, and Si Kα respectively. (Bottom row) Denoised maps of
Fe Kα, Ca Kα, and Si Kα respectively. From [31].

authors conclude that the Richardson-Lucy algorithm can be applied to elemental maps

that have high XRF responses, but is not as effective with elements that are harder to

detect.

1.4.2. Super-Resolution and Inpainting Approaches

The goal of super-resolution is to predict the value of certain pixels that were not mea-

sured. Here, the object is sampled along a uniform rectangular grid, which composes

the low resolution image. This is in contrast to generalized inpainting methods which

are not classically constrained to be sampled in a uniform fashion. Whether due to time
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constraints or x-ray spot size, the resolution needs to be increased for improved spatial

analysis.

Dai et al. [35] proposed a sparse dictionary based method for super-resolution of the

XRF volume, X ∈ RC×Hl,Wl
+ , using information from a high resolution color image of a

painting, I ∈ [0, 1]3×Hs×Ws . It is understood that Hl < Hs and Wl < Wh to conform with

the super-resolution problem. They propose to first separate the low resolution XRF data

X and the super-resolved XRF image Y ∈ RC×Hs×Ws into two components: a visible (·)v

and non-visible component (·)nv such that

X = Xv + Xnv(1.17)

Y = Yv + Ynv.(1.18)

The visible component is defined as the portion of the XRF signal attributed to the

surface response of the painting. The non-visible component contains the XRF signal

that originated from underneath the painting’s top layer of paint.

The purpose of separating the XRF signal is to establish a relationship with the

RGB signal, which only images the top layer of paint. They propose using a dictionary

decomposition of Yv, Ynv, and I:

Yv = Dxrf
v Av(1.19)

Ynv = Dxrf
nv Anv(1.20)

I = Drgb Av.(1.21)
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Notice the abundance Av is shared across the XRF and RGB domains. The amount of

contributions from the XRF and RGB domains at each pixel is proposed to be equal.

Further, the low and high resolution XRF volumes are related by a binary sampling

matrix T ∈ {0, 1}1×Hs×Ws by

Xv = Yv ·T =
(
Dxrf
v Av

)
·T(1.22)

Xnv = Ynv ·T =
(
Dxrf
nv Anv

)
·T(1.23)

where · is an element-wise multiplication and T multiplies each channel of the multipli-

cand.

The optimization problem is then

arg min
Θ≥0
‖A‖0≤s

∥∥X− (Dxrf
v Av

)
·T−

(
Dxrf
nv Anv

)
·T
∥∥2

F

+
∥∥I−Drgb Av

∥∥2

F
+ αreg · Lreg

(
Dxrf
nv Anv

)
(1.24)

where set Θ = {Dxrf
v , Dxrf

nv , D
rgb, Av, Anv}, abundance A = Av + Anv, and ‖·‖0 is the

`0 pseudonorm. This equation is constrained to have a sparse representation, which has

been shown to have smoothing effects when there are redundancies in the data [24]. The

first two terms of Eq. (1.24) are fidelity terms, and the third is the TV regularizer from

Eq. (1.11) that captures spatial correlations. We refer the reader to the original paper to

learn how to minimize this complicated objective function.

Their solution provided better super-resolution results than the other methods de-

signed for hyperspectral images. Fig. 1.6 shows a super-resolved XRF image of The
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Figure 1.6. (Left) The low resolution XRF image. (Middle) The super-
resolved XRF image. (Right) The high resolution RGB image: The Bed-
room, Vincent van Gogh, 1853–1890, Arles, October 1888, oil on canvas,
72.4× 91.3 cm2. Adapted from [35].

Bedroom by Vincent van Gogh. They were able to capture the XRF response of the

curtain in a more accurate manner than the other methods that either filter the curtain

out or add artifacts to the map.

As was mentioned earlier, inpainting is closely related to the super-resolution problem

since both problems require estimation of unknown pixels values. Dai et al. [36] further

pushed their optimization algorithm to be applied to any sampling matrix. The sampling

matrix will be discussed in the next section, but the updated optimization algorithm

introduces a new penalty term. They postulate that the gradient of the visible component

of the XRF volume should be similar to the gradient of the RGB image. This is included

in the optimization algorithm of Eq. (1.24) as a weighted TV regularizer Lreg

(
Dxrf
v Av; I

)
.

The new penalty term weighs the TV loss based on the RGB image gradient. Within the

summand of the TV Eqs. (1.12) and (1.13), a multiplier controls the penalty based on

the spatial location. In low varying areas of the RGB image, they expect the visible XRF

component is low varying as well. Thus, a relatively higher penalty in the smoothing is
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applied on pixels with like neighbors. On the other hand, along the edges of the RGB

image, there is high contrast; relatively low penalties should be applied here because high

variation is expected that should not be smoothed. We refer the reader to the work [36]

for the full optimization and a definition of the adaptive TV regularizer.

These methods provide a good RGB-XRF fusion method for super-resolution and

inpainting, although the algorithm was recently improved upon by Su et al. [37]. They

make a slight change in the framework from Dai et al. [35]: instead of separating the XRF

volume into visible and non-visible components, they propose to separate the volume

by common and unique components. This slight change in thinking introduces a new

decomposition scheme:

X = Xc + Xu =
(
Dxrf
c Ac

)
·T +

(
Dxrf
u Axrf

u

)
·T(1.25)

I = Ic + Iu = Drgb
c Ac +Drgb

u Argb
u(1.26)

where (·)c denotes the common components and (·)u denotes the unique components.

There are also new and updated terms in their objective function:

arg min
Θ≥0

∥∥X−Dxrf
c Ac ·T−Dxrf

u Axrf
u ·T

∥∥2

F

+
∥∥I−Drgb

c Ac −Drgb
u Argb

u

∥∥2

F

+αreg · Lreg

(
Dxrf
u Axrf

u

)
+αMI ·MI

(
I ·T, Dxrf

u Axrf
u ·T

)
(1.27)
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Figure 1.7. (Left) The low resolution Fe map and high resolution ground
truth Fe map. (Middle) The super-resolved Fe map. (Right) The high
resolution RGB image: Bloemen en Insecten, Jan Davidsz. de Heem, 49×
67cm, Royal Museum of Fine Arts Antwerp, inv. no. 54, oil on canvas.
Adapted from [37].

where Θ = {Dxrf
c , Dxrf

u , Drgb
c , Drgb

u , Ac, Axrf
u , Argb

u }. The first two terms of Eq. (1.27)

are fidelity terms similar to that of Eq. (1.24). The third term is again a TV regularizer

term that penalizes high spatial variation in neighboring pixels. The last term MI(·) is

novel in that it penalizes the estimated amount of mutual information shared between

the unique components between the low resolution XRF and RGB data. Notice that

the sparsity constraint was dropped as well, which perhaps is replaced by the mutual

information loss to ensure separation of the representations. We refer the reader to Su et

al. ’s work [37] and Kraskov et al. ’s work on estimating mutual information [38] from

which the penalty term was derived.

They performed experiments showing that their method outperforms Dai et al. ’s work

on the painting Bloemen en Insecten by Jan Davidsz. de Heem. Their results are shown

in Fig. 1.7. They also report a 2.42 dB increase in the Peak Signal-to-Noise Ratio (PSNR)

to reach 47.71 dB.
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Super-resolution and inpainting of XRF image volumes using joint dictionary optimiza-

tion methods prove to be quite effective in estimating an XRF cube in higher dimensions.

Whether the dictionaries are found from a sparsity lens or a mutual information stand-

point, these early methods are already powerful. Perhaps a joining of these two ideas can

reduce the reconstruction error even further.

1.5. XRF Subsampling Design

The last category we will address is the design of subsampling algorithms. Subsampling

is a staple in signal processing. In the XRF image setting, the goal of this problem is to

find a subsampling pattern that reduces the total acquisition time of the XRF data. Since

the scan time is quite long in many cases, quickly acuiring this data without sacrificing

quality is starting to emerge in the literature.

While not a method to find an optimal sampling pattern, we briefly note the work by

us that provided some analysis on subsampling as it relates to the dwell time [30]. Using

simulated fast XRF scans of Bloemen en Insecten, they tested the limits of how short the

dwell time could be without incurring too much error. Scan times that are 20 times as

fast as the original scan were reported as a possibility, which would greatly speed up the

XRF acquisition process.

In an effort to break from the raster scan, three existing methods are used to find

the optimal sampling pattern: (1) manual mask design, (2) convolutional neural networks

(CNNs), and (3) reinforcement learning (RL). We will cover each in this section.
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Figure 1.8. The hand-selected mask algorithm. (a) A quickly acquired XRF
map of Si. (b) The region of interest. (c) The sampling mask with added
sparse uniform sampling. (d) The Si map of a full raster scan. (e) The Si
map of the masked scan, found approximately 3 times faster than the full
raster scan. (f) The inpainted Si map of (e) using biharmonic inpainting.

1.5.1. Manual Mask Design

One simple approach to take is designing the sampling mask on one’s own. Kourousias

et al. [39] provided a proof of concept whereby they imaged a sampled to improve the

quality of the Si map.

First, the XRF data is rapidly acquired, which results in blurry elemental maps. Next,

using the blurry images as a guide (in this case Si only), the user manually selects the

regions of interest for further scanning. A sparse, uniform sampling pattern is overlaid on

the mask so that the background is not completely ignored. These locations are scanned
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again. An inpainting algorithm then estimates the pixels that were not scanned. The

authors provide an example in Fig. 1.8.

This approach is able to better capture the foreground, but it certainly has its lim-

itations. First, the algorithm ignores the initial scan in the final reconstruction. The

information may be blurry or noisy, but it can still be used as prior information to aid in

the inpainting algorithm.

Additionally, there is a possibility of human error when some of the foreground is

mistakenly excluded. A different display method (e.g. linear vs. log scale) may highlight

details in the first maps that could be undetected by human vision.

This is where calculated methods come into play. Aside from automating the mask

design (and therefore further reducing the total acquisition time), an algorithmic approach

may not only select different areas, but also provide insight into how to allocate dwell

times that vary per pixel.

1.5.2. Convolutional Neural Networks

Convolutional neural networks have grown in popularity over the past decade due to the

increase in computational power on computers and their proven effectiveness at solving

tasks. CNNs are excellent for extracting correlations along the dimensions that they are

applied along. When designing a sampling mask, the spatial correlations are exploited to

find the best pixels to sample. These selected pixels are typically the most difficult ones

to estimate should they have been excluded from the set of samples.

Dai et al. [36] sought to bring neural networks to find the best sampling mask. To

do so, they introduced a convolutional network network (CNN) NetM whose purpose is
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to find the optimal sampling mask T for some given image I and sampling rate r ∈ (0, 1)

which determines the fraction of pixels to sample. This is tricky to accomplish since there

are no ground truth sampling masks available. Without these training pairs, the neural

network cannot be trained. To circumvent this issue, another CNN they call NetE was

appended to the output of the mask network. NetE requires a subsampled RGB image

as input that is inpainted at the output.

The inpainting network was trained first separate from the mask generating network

using the `2 norm as a loss function:

(1.28) Θ∗E = arg min
ΘE

‖I− NetE (I ·T; ΘE)‖2
F

where ΘE are the neural network weights.

Once this network is trained, NetM can be trained with a fixed NetE in a feedforward

manner. Instead of providing T, it is instead estimated via NetM. The loss function for

training NetM is

(1.29) Θ∗M = arg min
ΘM

‖I− NetE (I · NetM (I; r,ΘM))‖2
F

where ΘM are the neural network weights for NetM. At inference time, the inpainting

network NetE is dropped. The output of NetM is not binary; the final mask is instead

drawn from a Bernoulli distribution where the pixel values of the mask is the probability

of drawing a 1. This binarizes the output with the desired rate. Fig. 1.9 shows a sample

random mask and a mask from NetM when Bloemen en Insecten (see Fig. 1.7, Right) is

the input.
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Figure 1.9. (Left) A random uniform mask with 20% of the pixels selected,
denoted with white. (Right) A NetM mask of Bloemen en Insecten also
with 20% of the pixels selected. From [36].

Notice that the background is sparsely sampled due to its uniformity. The remaining

samples are concentrated in the foreground where the flowers are located, which is intu-

itively where one would place the samples. This mask was shown to have improvements

for inpainting over other algorithms that solve for an optimal sampling mask. The results

were consistent over different sampling rates as well.

1.5.3. Reinforcement Learning

Reinforcement learning, much like CNNs, has gained in popularity for solving tasks related

to action taking. The general framework of reinforcement learning is based on a reward

structure. With each action that is taken, a reward (or penalty) is calculated. The

larger the reward at the end of an episode (i.e. a complete set of actions), the more the

network will learn to take similar steps that previously rewarded it with a high score.
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Figure 1.10. From left to right: (1) The ground truth XRF sample; (2) The
XRF estimation using the method of [40]; (3) The XRF estimation using a
raster scan of equal time; (4) The initial scan; (5) The next adaptive scan;
(6) The final adaptive scan. The scale in (4)–(6) denotes the scan time.
Adapted from [40].

Reinforcement learning is typically framed as a maximization problem, but this is not

always the case.

Betterton et al. developed a RL algorithm for XRF sampling. They formulated a

unique sampling method that uses different apertures for the x-ray beam. This is to first

capture the general scene in a quick manner, then allot more time on the areas of interest

with more focused apertures. The scan times for local areas of the object are optimized

with each aperture.

There are two objectives to jointly minimize in their formulation: (1) the main objec-

tive, LQ, which is to provide the best quality image at the end of the scans, and (2) the

amount of time spent scanning, LC , is penalized if it is excessive. A simplified representa-

tion of their algorithm for training tries to find a path τk for each time step k ∈ {1, . . . , K}

that minimizes the expected sum of the quality penalty and time penalties:

(1.30) τ ∗ = arg min
τ

E

[
LQ(τK) + αC

K∑
k=1

LC(τk)

]
.

The first term only penalizes the deviation of the XRF estimation from the ground truth

after the final time step. The second term penalizes the time taken different for each of
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the K trajectories. Hyperparameter αC controls how much the time taken is penalized

relative to the XRF fidelity term.

Fig. 1.10 shows results on a cropped region of an XRF scan. The RL approach has

both qualitative and quantitative improvements over the raster scanning method. More

noise is present in the raster scan, and the foreground is better estimated as well. This

is attributed to how the algorithm allocates more time to the foreground and avoid the

background.

These results are undoubtedly impressive, but may be hard to adapt to on a large scale.

The resolution of the ground truth is 50 × 50 px, which is small for XRF volumes now

that typically are on the order of hundreds of pixels in height and width. Reinforcement

learning problems are hard to optimize normally, not to mention the lack of XRF data

needed to train large scale networks.

1.6. Conclusion

The field of XRF imaging is quite young. Yet despite its youth, many paintings and

other art objects have been studied by many groups using many techniques. It is only

recently that efforts are being made to join image processing research with XRF research.

We first introduced XRF imaging and analysis particularly for the signal processing

community to become acquainted with this new imaging modality—establishing goals

and problems that are faced by researchers in the XRF field. We then provided a take

of XRF analysis through the lens of image and signal processing particularly as it relates

to denoising techniques. Many XRF analysis methods can also be classified as denoising

algorithms (mostly denoising in the spectral domain). This aspect, we believe, should see
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more attention as the metaphorical field is ripe for research. No matter if the goal is to im-

prove how XRF signals are analyzed or denoise the data, we encourage cross collaboration

between the two disciplines to provide perspectives on one another’s research.

In addition, we also reviewed some existing techniques that are classical problems

in the image processing community, namely deblurring, super-resolution and inpainting,

and signal subsampling. We hope that those in the XRF community can see the value of

applying these algorithms to their own work, whether out of analytical necessity or just

to collect more data in a faster manner.

The lack of published algorithms is apparent, but we hope that the methods high-

lighted here serve as stepping stones for improving the aspects of XRF acquisition and

analysis. Again, this will require cross collaboration in order for the image processing

community to understand the needs and concerns of the XRF imaging community and

vice-versa.

With time, these paintings fade and degrade. The sooner we as a collective group can

develop better tools for XRF analysis and acquisition, the more of these timeless pieces

we can understand and potentially delay their degradation.
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CHAPTER 2

Denoising the Volumes of Fast X-Ray Fluorescence Raster

Scans of Paintings

Abstract

XRF imaging of cultural heritage objects, while a popular non-invasive technique for

providing elemental distribution maps, is a slow acquisition process in acquiring high

signal-to-noise ratio XRF volumes. Typically on the order of tenths of a second per pixel,

a raster scanning probe counts the number of photons at different energies emitted by the

object under x-ray illumination. In an effort to reduce the scan times without sacrificing

elemental map and XRF volume quality, we propose using dictionary learning with a

Poisson noise model as well as a color image-based prior to restore noisy, rapidly acquired

XRF data.

2.1. Introduction

In the growing field of applying scientific methods to cultural heritage research, XRF

imaging is frequently used as a non-invasive tool to analyze works of art. This approach

leverages the insights gained from XRF point analysis in providing elemental information

on a per-pixel basis. These elemental distribution maps provide information as to what

chemical elements compose the layers of paint. With these maps for example, an art
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Figure 2.1. Jan Davidsz. de Heem’s Bloemen en Insecten, 49×67 cm, Royal
Museum of Fine Arts Antwerp, inv. no. 54, oil on canvas.

conservator can better preserve paintings [7], or an art historian can deduce an artist’s

painting techniques—sometimes revealing hidden paintings [4].

In XRF imaging, a source excites a small target area of the painting by irradiating it

with x-rays. An inner orbital electron can be ejected if the impinging x-ray has greater

energy than the electron’s binding energy. An electron at an outer orbital then drops to

fill the inner orbital vacancy by emitting a photon of energy equal to the energy difference

of the orbitals. Each element has characteristic orbital energy levels (and therefore a

characteristic XRF spectrum). A detector and digital post processor records and bins

each photon according to its energy.

While macro XRF is a powerful, increasingly popular technique, acquiring elemental

maps for entire paintings with good signal-to-noise ratios often translates to long acqui-

sition times. Depending on the painting size, spot size, and dwell time, it can take many

hours or even days to acquire the XRF volume. Take as an example a painting of modest
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size 600× 720 mm2. If we specify a scan with spot size 1 mm2 and dwell time 200 ms/px,

it would take exactly 1 day to scan. There are two problems in these long scan times

since (1) access to paintings often occur in short time windows when they are off-view,

en route to other sites, etc., and (2) the x-ray exposure time should be minimized to best

preserve the painting.

Analysis of XRF volumes uses photon count rates instead of photon counts, as the

dwell time can vary by scan. These volumes are then separated into elemental maps

using a least squares fit where the feature matrix is composed of known elemental XRF

responses. Before collecting XRF data, a trade-off between image quality, such as the

root mean-square error (RMSE), and time must be taken into account: the longer the

dwell time, the more accurate the measured photon count rates from the count-limited

photon data. Our goal here is to develop an XRF denoising algorithm where we test it

on simulated scans at different dwell times based on real XRF data. We focus on Jan

Davidsz. de Heem’s Bloemen en Insecten as shown in Fig. (2.1), the data of which has

been generously shared by de Keyser et al. [41].

2.2. Related Work

Dictionary learning approaches frequently appear in XRF literature since each element

emits a characteristic set of discrete fluorescent lines. Limiting the number of spectral

representations to the number of elements makes intuitive sense, as each pixel is then

a linear combination of different elemental spectra. Martins et al. proposed denoising

XRF volumes using multivariate curve resolution-alternating least squares (MCR-ALS),
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a simple dictionary learning approach in the spectral domain to separate elemental compo-

sitions [27, 42]. Kogou et al. used an unsupervised learning method called self-organizing

maps (SOMs) that also extracts a set of spectral dictionary atoms to decompose the XRF

volumes into a representative basis [43]. This method effectively uses k-means clustering

to generate the set of dictionary endmembers. More elaborate dictionary methods have

been explored by Dai et al. whereby joint RGB and XRF dictionaries inpaint a spatially

selective subsampled XRF volume [44].

Even though photons arrive according to a Poisson process [45], each of these methods

(implicitly) uses a Gaussian noise model since the dwell times are assumed to be long.

This noise model was shown to be a good approximation in XRF denoising due to the

central limit theorem and Poissonian data resembling Gaussian data at high count rates.

This assumption, however, can break down with short dwell times when Gaussian noise

is no longer an accurate approximation as our experiments show.

PURE-LET from Luisier et al. is an algorithm specifically for Poisson image denoising

that minimizes the Poisson unbiased risk estimate in the Haar-wavelet domain [46]. This

method was originally published using tests on conventional images, MRI brain data, and

fluorescence-microscopy of biological samples. To the best of our knowledge, it has not

been applied to XRF data, but is another tool that can be used as it partially addresses

the concerns of current dictionary learning approaches for XRF denoising.

Our method merges the best characteristics of the two solution approaches: a spectral

dictionary learning approach with a Poisson model (instead of a Gaussian model) for

denoising XRF volumes. An RGB image prior and sparsity coding are also used to

denoise the data.
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2.3. Algorithm

Assume for now that we have the XRF count volume from a fast raster scan, X ∈

NC×H×W of channels (i.e. energy bins) C, height H, and width W . Each pixel has an

identical dwell time t ∈ R+ where R+ is the set of nonnegative real numbers. The photons

arrive with unknown underlying photon arrival rate Ψ ∈ RC×H×W
+ . Additionally, assume

we have an RGB image of the painting I ∈ [0, 1]3×H×W registered with the XRF data.

We want to estimate Ψ using X, I, and t in our optimization formula detailed here. Keep

in mind that t is short relative to a standard raster scan. Standard scans often spend on

the order of low hundreds of milliseconds per pixel, but we will test values of t at least 5x

faster.

2.3.1. Formulation

Before beginning, we need to define the relationships between our data. During the

sampling process, Poisson noise is introduced into our scan via

(2.1) X ∼ Poiss (Y)

where

(2.2) Y = t ·Ψ

is the average number of photons we expect to record given the dwell time t. Note that

the longer the scan is conducted, the more photons will be recorded. At shorter and

shorter dwell times, it can even become unlikely to record a photon that would otherwise
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likely be present with a standard dwell time. This is the targeted time regime we propose

for our denoising algorithm.

2.3.1.1. Data Fidelity Derivation. Recall that the XRF signal is a combination of

elemental spectra. Each element has its own unique XRF response that we can exploit

for sparse coding, which has been shown to be effective in signal denoising [24]. We can

use dictionary learning as a means to deconstruct our XRF signal into a finite set of

signals and corresponding abundances for each pixel. Let D ∈ RC×M
+ be the nonnegative

dictionary with M endmembers representing spectral responses, and let A ∈ RM×H×W
+

be the nonnegative sparse abundance volume. We need to ensure that the entries are

nonnegative since negative spectral responses and negative abundances have no physical

meaning. The XRF signal is decomposed via

(2.3) X ≈ DA

where the matrix-tensor multiplication is carried out via

(2.4) (DA)c,h,w =
∑
m

Dc,m ·Am,h,w.

Learning the dictionary D and abundance matrix A provides both a spectrally smooth

XRF volume and a more accurate representation of the chemical processes governing XRF

data acquisition.

When scanning each pixel, photons of different energies arrive according to a Poisson

sum model, which can be split into multiple independent Poisson processes [47]. Each

pixel we also assume to be spatially independent from one another for now. It follows

that each entry of X is independent from one another as well.
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In denoising problems, a data fidelity term is often needed so that the output does not

deviate too far from the original data. Since our data is Poissonian, we use the Poisson

negative log likelihood (PNLL) loss as the data fidelity term:

(2.5) PNLL (Xi,Ψi) = Xi −Yi · ln (Xi)

where i represents any index. The PNLL differs from the mean-squared error (MSE)

in that it is a relative error that accounts for the variance of the Poisson distribution,

which is identical to the mean. For example, the MSE of Xi + a and Yi + a is the same

regardless of the value of a. The PNLL on the other hand decreases with increasing a

since we expect large absolute errors at large magnitudes.

Since Y is unknown, we instead try to best match the dictionary decomposition results

of Eq. (2.3) with the data we measured:

(2.6) PNLL ((DA)i ,Xi) = (DA)i −Xi · ln ((DA)i)

which combines Eq. (2.3) and Eq. (2.5) together. As a loss function, we can compute the

mean PNLL given our data, which uses our assumption that all X entries are independent

of each other:

(2.7) LNLL (DA,X) =
1

N

∑
i∈(c,h,w)

PNLL ((DA)i ,Xi) .

where N = CHW is the number of entries in X. Note that by using the PNLL instead of

the MSE, small magnitude counts can contribute just as much error as the large magnitude
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counts. The MSE would prioritize minimizing the error of the high counts, but the PNLL

prioritizes the error equally regardless of the count magnitude.

2.3.1.2. Spatial Denoising. We know, however, that neighboring pixels are not uncor-

related. In fact, they are often highly correlated with each other. To promote spatial

smoothness, we include an often-used regularizer in the `2 norm of neighboring pixel

differences. This is equivalent to the squared error, which penalizes large spatial differ-

ences. We choose to use the 4-neighborhood of a pixel; the total, vertical, and horizontal

regularizers are

Lreg (A) = LHreg (A) + LWreg (A)(2.8)

LHreg (A) =
M∑
m=1

H−1∑
h=1

W∑
w=1

(Am,h+1,w −Am,h,w)2(2.9)

LWreg (A) =
M∑
m=1

H∑
h=1

W−1∑
w=1

(Am,h,w+1 −Am,h,w)2(2.10)

respectively. The abundance matrix is used instead of DA since we want similar mixture

amounts of the dictionary endmembers.

Our spatial regularizer in Eq. (2.8) smooths identically without regard to edges in the

XRF volume. This can pose a problem: for example, local areas in the painting similar in

color likely have similar spectra. These areas should be penalized for spatial differences.

On the other hand, local areas of different colors likely have different spectra, and should

not be penalized as heavily as the smooth areas. We seek to incorporate the RGB image,

I since it provides valuable and rudimentary insight into the spatial structure of the XRF

volume (at least on a surface level).
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Weighting mechanisms can be introduced into Eq. (2.8) to account for the color edges:

Lreg (A; I) = LHreg

(
A; ΩH

)
+ LWreg

(
A; ΩW

)
(2.11)

LHreg (A) =
M∑
m=1

H−1∑
h=1

W∑
w=1

ΩH
h,w (Am,h+1,w −Am,h,w)2(2.12)

LWreg (A) =
M∑
m=1

H∑
h=1

W−1∑
w=1

ΩW
h,w (Am,h,w+1 −Am,h,w)2(2.13)

where ΩH ∈ R(H−1)×W and ΩW ∈ RH×(W−1) are the weights defined as

ΩH
h,w = exp

(
−β

3∑
c=1

(Ic,h+1,w − Ic,h,w)2

)
,(2.14)

ΩW
h,w = exp

(
−β

3∑
c=1

(Ih,w+1,c − Ih,w,c)
2

)
,(2.15)

which are adapted from Dai et al. [44]. Hyperparameter β ≥ 0 controls the reliance on

the color edges; at β = 0, the adaptive regularizer of Eq. (2.11) simplifies to the standard

regularizer of Eq. (2.8). Note that these adaptive weights ΩH and ΩW are large when the

RGB gradient is small and vice-versa. We postulate that similar weighting schemes can

be developed for other modalities outside of color imaging, but the RGB image can be

quickly captured.

2.3.1.3. Sparsity. Lastly, we assume that not every spectral response is expected to be

present in every pixel. For instance, assume we have a painting with one or a couple

paint layers. In blue regions, which may be due to a copper-based pigment, we should not

expect mercury, which is often present in red pigments in old paintings. Mathematically,
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we add the `0 pseudonorm of the abundance volume in order to promote spectral sparsity:

(2.16) L`0 (A) = ‖A‖0,

which counts the number of nonzero entries in A. The `0 pseudonorm is difficult to

optimize since it is non-differentiable, but there are means to approximate it that will be

discussed.

2.3.1.4. Optimization. We now define the full optimization problem as a weighted sum

of the losses defined in Eqs. (2.7), (2.11), and (2.16):

(2.17) D∗,A∗ = arg min
D,A≥0

LNLL (DA,X) + αreg · Lreg (A; I) + α`0 · L`0 (A) .

Hyperparameters αreg and α`0 control the weighting for their respective losses.

Once we have the optimized dictionary and abundance, we can then find the optimized

XRF count volume by

(2.18) X∗ = D∗A∗

and subsequently the count rate by

(2.19) Λ∗ =
X∗

t
.

Further XRF processing and analysis can be done using these volumes, such as extracting

the elemental distribution maps.
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2.3.2. Solution

The LNLL term in Eq. (2.17) is complex, and affects the optimization methods we can

use. Ideally, we would use methods like ADDM [48], but the separable losses in D and A

have no analytical solution. Thus, we propose to use gradient descent-based optimization

methods to minimize the loss function.

As was mentioned, the `0 norm is not differentiable, so we require a differentiable

substitute. Instead, we use the Elastic Net loss [49] to replace the l0 norm. Elastic Net

penalizes elements of A by a convex combination of the `1 and `2 norms:

(2.20) Lelas (A) = ρ‖A‖2
2 + (1− ρ) ‖A‖1

for some ρ ∈ [0, 1]. The optimization equation used for implementation is updated from

Eq. (2.17) as

(2.21) D∗,A∗ = arg min
D,A≥0

LNLL (DA,X) + αreg · Lreg (A; I) + αelas · Lelas (A)

by replacing the `0 loss with the Elastic Net loss.

This loss penalizes nonzero entries, but in almost all cases, it can never set entries

to exactly zero. Zero-valued entries are possible using the Least Absolute Shrinkage and

Selection Operator (LASSO) [50] method. LASSO is an optimization technique that sets

values in A below a certain threshold to zero, then removes those entries from future

optimization updates to maintain the zero value. This, in conjunction with the Elastic

Net loss, produce the intended effect of the `0 norm in an optimization-friendly manner.
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Good initializations of D and A are also important in the convergence of the optimiza-

tion. We use K-means clustering of the pixels to initialize the dictionary. This method

ensures that all cluster centers are nonnegative given that the dataset is nonnegative.

The abundance volume is the found via a nonnegative least squares fit of the K-means

dictionary and the XRF data.

Adam [51] optimizes D and A until convergence, although we employ an alternating

optimization framework. The abundance matrix A is updated by itself, then the dictio-

nary D in another iteration. This is to accommodate for LASSO since we do not want

the dictionary to update based on abundances that may be reduced to zero.

2.4. Experiments

We test our algorithm on Jan Davidsz. de Heem’s Bloemen en Insecten as shown in

Fig. 2.1. It was scanned by de Keyser et al. [41] and consists of 2048 photon energy

channels and has a resolution of 578× 673 after registering the RGB image to the target

XRF volume. In our experiments, we treat this volume Y ∈ R578×673×2048 as the ground

truth photon count. The ground truth count rate Ψ is found by

(2.22) Ψ =
Y

tY

where the reported dwell time per pixel is tY = 285 ms/px. Scanning an area of 578×673

pixels with this dwell time would require over 30 hours of scanning.
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2.4.1. Procedure

Using Ψ, we simulate raster scans at various dwell times from a 5-fold speedup (57 ms/px,

about a 6 hr scan) to a 100-fold speedup (2.85 ms/px, about a 19 min scan). To test

our algorithm, we identified 37 elements likely to compose a painting, leading to our

choice of M = 37 dictionary atoms. Additionally, we set λTV = 10−2 and λEN = 10−4.

Hyperparameters β = 16 of Eqs. (2.14) and (2.15), and ρ = 0.2 of Eq. (2.20). We compare

against three other methods: (1) PURE-LET2 with cycle-spinning (5 cyclic shifts) and

5 Haar wavelet scales [46, 52], (2) our implementation of MCR-ALS [27] also with 37

dictionary endmembers, and (3) the original simulated data without optimization.

2.4.2. Evaluation Methods

There are two metrics we use for comparison: the RMSE and mean Poisson Kullback-

Leibler divergence (PKLD). Whereas the RMSE is a measure of the absolute error, the

PKLD measures the statistical distance between two Poisson variables. It is defined as

(2.23) LKLD (Λ,Ψ) =
1

N

∑
i∈(c,h,w)

Λi −Ψi (ln Λi − ln Ψi + 1) .

This is identical to the PNLL loss shifted such that the minimum value is zero:

(2.24) LKLD (Λ,Ψ) = LNLL (Λ,Ψ)− LNLL (Ψ,Ψ) .

The same properties that the PNLL enjoys, the PKLD also enjoys. Including the PKLD

as a metric provides a measure of the relative error, which the RMSE cannot capture. We
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compare the denoised volume rates against the ground truth rates since the respective

dwell times are different.

In addition to evaluating the performance on the XRF volume, we also compare the

performance of the elemental distribution maps. These maps are generated from the XRF

volumes by factoring X∗ with a dictionary of known XRF responses for each chemical

element. PyMca [15], a platform for XRF analysis, is used to generate the elemental

maps for all the XRF volumes. The RMSE and PKLD are the metrics for comparing the

elemental distribution maps as well.

2.4.3. Results

Fig. 2.2 shows some elemental maps of varying count rate distributions and their corre-

sponding RMSEs and PKLDs. The dwell time for those elemental maps is 20x faster than

tY, which is approximately 14.25 ms/px (≈ 92 min scan time).

Numerically, PURE-LET is the main competitor of our algorithm. PURE-LET per-

formed best for As K, Ca K, and the PKLD of Cl K. MCR-ALS only performed best in

PKLD for Si K and erratically in the other maps. Some maps, such as Ca K and Cu K,

were the second best performing for MCR-ALS, but other maps were wildly off from the

other algorithms (see As K and Pb L3). Our algorithm performed best for Co K, Cu K,

Pb L3, and the RMSEs of Cl K Si K, which is a slight majority of the comparisons.

Interestingly, there is one element in each denoising method where the results were

worse than the raw data. Our algorithm has higher error for Ca K, while PURE-LET and

MCR-ALS were outperformed by the raw data in Cu K. This suggests that there may not

be one set of XRF volume denoising parameters that can denoise all the maps equitably.
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Fast Scan PURE-LET MCR-ALS Ours Ground Truth
A

s
K

579.97 95.44 437.23 105.94
178.63 22.85 131.20 74.55

C
a

K

78.79 70.09 78.60 90.83
13.42 7.38 11.86 15.02

C
l

K

17.67 4.75 4.93 4.64
5.71 0.95 1.03 1.05

C
o

K

64.16 17.30 18.22 16.70
20.47 2.73 2.81 2.50

C
u

K

136.84 236.36 138.42 117.46
12.82 15.10 15.01 8.96

P
b

L
3

947.71 191.77 648.32 149.19
278.07 11.33 152.25 7.12

S
i

K

11.72 3.59 3.51 3.36
3.17 0.48 0.40 1.63

Figure 2.2. Visual comparison of seven elemental maps. Numbers below
are the RMSE (top) and PKLD (bottom).



70

Qualitatively, PURE-LET tends to show different structures than the ground truth

despite all the maps being shown in the same display range per element. Elements Cl K

and Si K show similar noise patterns that may be beneficial quantitatively, but is difficult

to deduce visually. Just as MCR-ALS was numerically erratic, so too is the visual quality.

For example, As K and Pb L3 appear minimally denoised, but MCR-ALS extracted

structural information from the noisiest of elements Cl K, Co K, and Si K. However, false

high counts are introduced in Cl K and Co K in some areas such as the bright flower in

the top left that is not apparent in the ground truth. Introducing false high or low counts

can be highly detrimental to XRF analysis, especially if it is used to inform painting

treatments for example. Our algorithm reliably denoises each map without introducing

egregious artifacts.

Both quantitatively and qualitatively, we believe our algorithm performs best for de-

noising the elemental maps.

A volumetric comparison of the algorithms are shown in the plots of Fig. 2.3. These

plots show the error in the denoised volumes for different sampling times. As expected,

the error decreases with increasing scan time regardless of the metric or algorithm. The

differences lie in the magnitude of the error and the rate of error decrease.

Our algorithm starts off with a higher RMSE and PKLD than PURE-LET, but over-

takes it at about 11.5 ms/px for the RMSE and 7.5 ms/px for the PKLD. Depending on

the instrument, these low dwell times, while fine for simulations, may approach or even

exceed the recommended scanning speed. The ability of the gantry to localize where it is

in real space becomes increasingly difficult at higher scan speeds. We recommend this be

tested on one’s system before conducting fast scan experiments. Considering the volume
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(a) RMSE errors of the optimized XRF volumes.

(b) PKLD errors of the optimized XRF volumes.

Figure 2.3. Error plots of the XRF volumes at different dwell times.

error plots and elemental distribution map results, we believe our algorithm should be

the algorithm of choice.
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2.5. Conclusion

We introduced a new method for denoising XRF volumes that combines a Poisson

noise model with sparse dictionary learning. A regularizer that uses gradient information

from a color image spatially smooths the data. The `0 norm approximation offers further

spectral denoising beyond the dictionary model. Our algorithm outperforms methods

designed for XRF denoising and Poisson denoising in general both in quantitative and

qualitative terms.

Despite these speedups, our algorithm can still recover high-quality XRF volumes and

elemental maps. Scans that require 20x less time can not only ease time-related issues for

scanning works of art, but could also open the opportunity for researchers to scan more

paintings in a session. We hope that this opens the door for more XRF scans of historical

paintings.
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CHAPTER 3

Denoising the Elemental Maps of Fast X-Ray Fluorescence

Raster Scans of Paintings

Abstract

Macro x-ray fluorescence (XRF) imaging of cultural heritage objects, while a popular

non-invasive technique for providing elemental distribution maps, is a slow to acquire high

signal-to-noise ratio XRF volumes. In an effort to reduce the scan times without sacrificing

elemental map quality, we propose a Poisson-based optimization to remove noise incurred

from these faster scans. A Poisson noise model and regularizer restores the data quickly;

an optional color image-based prior improves upon the denoising algorithm. Simulated

experiments demonstrate that scan times can be reduced by an order of magnitude with

minimal error.

3.1. Introduction

In the scientific studies of paintings, macro x-ray fluorescence (XRF) imaging is fre-

quently used as a non-invasive tool to analyze works of art. This approach leverages the

insights gained from XRF point analysis by scanning over an area. The data collected

from these XRF measurements can be used to determine the presence and location of

chemical elements. These elemental distribution maps provide information not just on

the surface layer of the artwork, but throughout all the paint layers. With these maps,
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Figure 3.1. Bernardo Biti, Raising of the Cross, 31× 23 cm2, The Thoma
Foundation, inv. no. 2017.72, oil on copper.

for example, an art conservator can better preserve paintings [7], or an art historian can

deduce an artist’s painting techniques—sometimes revealing hidden paintings [4].

While collecting XRF data has evolved from sampling single points to sampling a

two dimensional array, spectroscopists still use a point scanner mounted on a gantry to

perform XRF imaging since it is cheap and effective. As the gantry moves the scanner in a

whisk broom motion, the detector captures the spectral response emitted from the atoms

bombarded by x-rays at each point. These photons are binned based on their energy, which

then compose a single pixel. Without an array of sensors like a conventional camera, the
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time to acquire the XRF data increases drastically having to go point by point instead of

in a single capture akin to a conventional camera.

Depending on the scanning area, spot size, and sampling time per pixel (typically

on the order of low tenths of a second), it often takes many hours to acquire the XRF

volume. Take as example a modest painting of size 600 × 720 mm2. If we specify a

scan with spot size 1 mm2 and dwell time 0.2 s/px, it would take exactly 1 day to scan.

Normally, this time scale would not be a problem; however, the cultural significance of

these samples cannot be discounted. Access to historical paintings is under the discretion

of their owners, who may only allow data collection when, for example, the painting is

not on display, under supervision, etc. Of note, Alfeld et al. had to leave the bottom

left corner of a painting unscanned due to these time constraints [53]. Spectroscopists

may also want to scan multiple paintings in a collection, which further increases the

time needed to complete all the scans. Additionally, time is not the only issue for the

spectroscopists themselves. Cultural heritage objects cannot be replaced, so the x-ray

exposure time should be minimized to best preserve the painting. These considerations

introduce an engineering trade-off between the time spent scanning the artwork and the

quality of the signal: the longer the scan, the higher the signal-to-noise ratio.

Analysis of XRF volumes uses the recorded photon counts. These photon count vol-

umes are then separated into elemental maps using a nonnegative least squares fit with

a matrix composed of known elemental XRF responses [14]. The quality of the volume

and elemental maps depends heavily on the amount of time each pixel was sampled. Be-

fore collecting XRF data, the spectroscopist must determine the trade-off between image

quality (e.g. mean squared error) and acquisition time: the longer the sampling time, the
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less noisy the sample. Without postprocessing algorithms, increasing the sampling time

is the only way to improve the quality (aside from hardware upgrades). Our goal here is

to provide such an algorithm so that spectroscopists are able to quickly and confidently

acquire high quality data in a fraction of the time. We test our technique on simulated

elemental maps at different dwell times based on XRF data of Bernardo Biti’s Raising of

the Cross as shown in Fig. 3.1.

3.2. Related Work

Dictionary learning approaches frequently appear in XRF literature since each element

emits a characteristic set of discrete fluorescent lines. Limiting the number of spectral

representations makes intuitive sense, as each pixel is then composed of a linear combina-

tion of different spectra. We detailed how many XRF analysis techniques can themselves

be considered spectral denoising techniques [54]. Of note, Alfeld et al. proposed using

nonnegative matrix factorization to better analyze XRF correlations than principal com-

ponent analysis [21]. Martins et al. proposed denoising XRF volumes using multivariate

curve resolution-alternating least squares (MCR-ALS), a dictionary learning approach

in the spectral domain to separate different elemental compositions [27, 42]. Kogou et

al. used an unsupervised learning method called self-organizing maps that also extracts

a set of spectral dictionary atoms to decompose the XRF volumes into a representative

basis [43]. This method effectively uses k-means clustering to generate the set of dictio-

nary endmembers. Vermeulen et al. [55] combined sparse coding and dictionary learning

to identify pigments or pigment mixtures.
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There are some concerns with these algorithms. Primarily, even though photons arrive

according to a Poisson process [45], each of these methods (implicitly) uses a Gaussian

noise model since the dwell times are assumed to be long enough. The central limit

theorem allows this noise model to be used as an approximation with long sampling

times. However, in low XRF count regimes the Gaussian noise model is no longer an

accurate approximation. Poisson noise instead becomes the dominant noise model.

Even at long dwell times though, oftentimes these algorithms do not account for

the unidentical variance at each pixel. The variance of a Poisson process is equal to

its mean, not constant. Mean-squared error (MSE) losses for example would prioritize

minimizing the highest count rates instead of equally regardless of the count rate. There

are means to still use the MSE, such as the Anscombe transformation and other similar

transforms [56, 57] that approximately convert Poissonian data to Gaussian. Applying an

inverse-variance weighting mechanism can be applied [58] so that all the data are equally

weighted. For XRF data, Li et al. [59] propose using a log-log-square root operator as a

preprocessing step. This heavily compresses the data to approximately the same order of

magnitude while maintaining the shape of the data (e.g. peaks are preserved, etc.). The

inverse log-log-square root is done as a post-processing step. These are approximations,

however, so we suggest fitting the noise model to the data instead of the data to the noise

model whenever possible.

Spectral denoising is only considered in these algorithms, but spatial correlations can

also be leveraged to improve results [60, 61]. There are a plethora of spatial denoising

algorithms, but only a portion are devoted to Poisson noise. Recent advancements include

Poissonian Fractional Order Total Variation (FOTV) from Chowdhury et al. [62] is an
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algorithm that uses a fractional derivative of the total variation (TV) of the image instead

of the standard total variation regularizer. They show that this mitigates the quantiza-

tion effects that often arise in TV minimization problems. This method was originally

published using tests on conventional images, but to the best of our knowledge has not

been applied to XRF data.

Neural networks have grown in popularity in the past decade. One of the more recent

publicly available Poisson denoising algorithms is Noise2Void originally proposed by Krull

et al. [63]. They show that it is possible to train a small neural network using the noisy

image itself to remove the noise. This class of neural networks is useful for XRF data

since there is no large, publicly available dataset to train a general XRF denoiser.

Many times, the goal of XRF sampling of paintings is generating high quality elemental

maps. To this end, we propose to denoise the elemental maps directly instead of the

XRF volume. This allows for tuning the denoising parameters to suit each maps need,

which can vary by map as will be seen. Chapter 2 showed as well that the volume

denoising algorithms can sometimes fail with regard to the elemental distributions; the

three algorithms tested all had an elemental map of worse error than the raw data.

3.3. Denoising Formulation

In this section, we’ll mathematically derive the elemental map denoising optimization.

Assume that we have the XRF count volume X ∈ NC×H×W from a fast raster scan of

sampling rate t seconds per pixel. Typically t is on the order of hundreds of milliseconds,

but we will examine the cases of shorter times. There are C channels (i.e. energy bins),

spatial height H, and spatial width W composing the volume of natural numbers N.
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We also assume that the XRF volume is drawn from an unknown, underlying Poisson

distribution:

X ∼ Poiss (Y)(3.1)

Y = t ·Ψ(3.2)

where Ψ ∈ RC×H×W is the ground truth photon arrival rate in counts per second, and

Y ∈ RC×H×W is the expected number of photons given time t. While Ψ is unobtainable,

it can be estimated provided that that dwell times are sufficiently long.

In practice, XRF analysis is performed on the counts X instead of the count rates

since the time scale is just a multiplicative factor (assuming identical scan times per

pixel). However, in this chapter, we will use XRF count rates so that we can fairly assess

each algorithm across time scales. We will denote the measured XRF count rates as

(3.3) Λ =
X

t
,

which will be used in place of X, and should approximate Ψ.

From Λ, the M distinct elemental maps are then derived from Λ via the minimization

of a nonnegative matrix factorization of Λ:

(3.4) Ael = arg min
A≥0

1

NA

∑
i∈(m,h,w)

(
Λi −

(
DelA

)
i

)2

where Del ∈ RC×M
+ is the dictionary composed of M spectral responses, Ael ∈ RM×H×W

+

is the abundance matrix showing the location and relative quantities of each spectral

response (i.e. the elemental distribution maps), and NA = 1
MHW

is the number of entries
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in Ael. The matrix-tensor multiplication is carried out via

(3.5)
(
DelA

)
c,h,w

=
M∑
m=1

Del
c,m ·Am,h,w,

which is akin to matrix-matrix multiplication.

PyMca [15] is a widely used platform for generating the dictionary and elemental maps.

Each column of Del is a spectral response for a single atom, which can include any number

of emission lines. An additional column in Del is reserved for removing the background

XRF signal. The background consists of incoherent x-rays from the source that were

reflected back into the XRF detector. These dictionaries are made by associating peaks

in the sum spectra to known elemental emission lines. Non-background endmembers of

Del are typically Gaussian curves fit to these peaks [15]. Once Del is determined, the

elemental maps Ael can be found via Eq. (3.4). Given elemental maps Ael, our goal is to

estimate the actual elemental rates, which we will denote as B ∈ RM×H×W
+ . These maps

are found using Eq. (3.5) as well.

3.3.1. Poisson Negative Log Likelihood Loss

In order to evaluate the denoising performance, we need to establish an objective/loss

function that minimizes the error. In many applications, the root mean squared error

(RMSE) is used:

(3.6) RMSE
(
Ael,B

)
=

√
1

NA

∑
i∈(m,h,w)

(
Ael
i −Bi

)2
.

In using the RMSE as an error, there is an implicit assumption that the data being

compared was drawn from a normal distribution with constant variance across all entries.
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Our model assumes the data arrives according to a Poisson model, which has variance

equal to the count rate. Accordingly, we need a loss function that takes this into account.

If the MSE is used for minimizing Gaussian noise, the Poisson negative log likelihood

(PNLL) is the analogous log likelihood loss function for minimizing Poissonian noise. The

minimum loss occurs when Ael = B, but the minimum value can vary; this is not a

concern for optimization however. The PNLL loss for the elemental maps is

(3.7) LNLL

(
Ael,B

)
=

1

NA

∑
i∈(m,h,w)

Ael
i −Bi · ln Ael

i ,

which prevents the rate estimation from deviating too far from the measurements.

The PNLL is akin to a relative error that depends on the magnitude of the counts.

For example, if an entry Ael
i = 10 and Bi = 15, this would incur a larger error than if

Ael
i = 110 and Bi = 115 despite the same absolute difference. During optimization, this

forces small count rates to stay close to their original value, but allows for larger absolute

deviations for high count rates. The RMSE would treat these errors equally since it is an

absolute error.

3.3.2. Spatial Smoothness Regularizer

The PNLL we have defined operates pixel-wise, meaning there is an implicit assumption

that the pixels are independent of one another (i.e. the PNLL is separable for each pixel).

Intuitively, this is seldom the case—neighboring pixels should be highly correlated with

one another. Take Fig. 3.1 for example, which has large areas of the same blue paint.

Naturally, we would expect the spectra of these neighboring pixels to be correlated with

one another. In local areas where the paint color changes, we expect less of a correlation.
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If we first assume that for any pixel, all adjacent pixels are perfectly correlated with

it, then we need a regularizer that penalizes the difference in count rate estimations. Of-

tentimes these regularizers penalize the absolute difference in some form, such as the `1 or

`2 norm. Here, since we established that our data is Poissonian, we use the corresponding

Kullback-Leibler divergence (KLD) to compare distribution Ai at entry i against spatially

neighboring distribution Aj at entry j:

(3.8) PKLD (Ai,Aj) = Ai −Aj · (ln Ai − ln Aj + 1) .

The KLD is a statistical distance measure that compares any one probability distribution

against any other. The Poissonian KLD (PKLD) of Eq. (3.8) happens to be identical to

the PNLL if it is shifted such that the minimum value is zero for all rate estimations.

One item to note is that the PKLD not a symmetric function. The asymmetry poses

an issue since spatial regularizers compare pairs of neighboring data. Instead of using the

PKLD as a spatial regularizer, we use the Poissonian Jeffreys divergence (PJD), which is

a sum of the two PKLD argument combinations:

PJD (Ai,Aj) = PKLD (Ai,Aj) + PKLD (Aj,Ai)(3.9)

= (Ai −Aj) · (ln Ai − ln Aj) .(3.10)

Like the PNLL, the Poissonian Jeffreys divergence provides a relative error where the

absolute difference is weighted by the difference in magnitude.

Now, when comparing neighboring pixels, the penalty depends on the magnitudes of

the pixels being compared. This is important for denoising since there are often different
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magnitude scales in elemental maps, but the same relative amounts of noise. Some areas

may have counts in the thousands, while other areas may have counts in the tens. If we

were to use the `1 or `2 norm, the denoising would be prioritized in the high count rate

regions despite having similar relative noise levels.

With the PJD defined, we can define losses

LJD (A) = LHJD (A) + LWJD (A)(3.11)

LHJD (A) =
M∑
m=1

H−1∑
h=1

W∑
w=1

PJD (Am,h,w,Am,h+1,w)(3.12)

LWJD (A) =
M∑
m=1

H∑
h=1

W−1∑
w=1

PJD (Am,h,w,Am,h,w+1)(3.13)

which penalize statistical distances from neighboring pixels both vertically in Eq. (3.12)

and horizontally in Eq. (3.13). The sum of the two gives the total PJD loss in Eq. (3.11)

3.3.2.1. RGB Image Prior. One drawback with the spatial regularizers we defined is

that edges are disregarded. If we are able to fuse other information with the optimization,

we can mitigate over-smoothing of the XRF data. If available, we can exploit the color

image I ∈ [0, 1]3×H×W . The color image contains information from the visible spectrum,

which can be used to identify pigments on the surface level of a painting. We can rea-

sonably assume that where there is a transition in the color, there should be a transition

in the pigments (and therefore the XRF data). By examining the spatial gradient of I,

higher gradients will indicate an edge, and therefore the PJD should be reduced in those

areas. The weights we use are adapted from Dai et al. [44] and are found via
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(3.14) ΩH
h,w = exp

(
−β

3∑
c=1

(Ic,h+1,w − Ic,h,w)2

)

and

(3.15) ΩW
h,w = exp

(
−β

3∑
c=1

(Ic,h,w+1 − Ic,h,w)2

)

where ΩH and ΩW are the weights for the vertical and horizontal penalties. Hyperparam-

eter β ≥ 0 is used to control the edge sensitivity: the case where β = 0 is non-adaptive

denoising. Note that these weights are small where the RGB gradient is large.

The weighted regularizers are then

LJD (A; I) = LHJD (A; I) + LWJD (A; I)(3.16)

LHJD (A; I) =
M∑
m=1

H−1∑
h=1

W∑
w=1

ΩH
h,w · PJD (Am,h,w,Am,h+1,w)(3.17)

LWJD (A; I) =
M∑
m=1

H∑
h=1

W−1∑
w=1

ΩW
h,w · PJD (Am,h,w,Am,h,w+1) .(3.18)

Now, edges are better preserved in the optimization process.

3.3.3. Denoising Optimization

With the losses defined, we can create the full optimization equation. We have a weighted

sum of Eqs. (3.7) and (3.16) to get

(3.19) A∗ = arg min
A≥0

LNLL

(
A,Ael

)
+ αJD · LJD (A; I) .
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Here, αJD is a weighting parameter. Since we have no access to the ground truth infor-

mation B, we instead replace it with Ael, which we do have. In order to solve Eq. (3.19),

we first initialize A = Ael. Although this formulation is a candidate for the Alternating

Direction Method of Multipliers [48], the update equations are difficult to minimize since

there is no analytical solution. Thus, we turn to gradient descent based methods to solve

the equation. We found that the Adam optimizer [51] works well. We determine that the

algorithm has converged when the percent improvements in the loss function falls below

a threshold.

Additionally, the amount of smoothing needed depends on the elemental map. Instead

of optimizing the elemental maps with one αJD value, it can be beneficial to optimize the

maps individually (or at once with different αJD per elemental map). The algorithm

converges quickly on a CPU, so experimentation to find an appropriate αJD is quick.

3.4. Experiments

For our experiments, we focus on Bernardo Biti’s Raising of the Cross as shown in

Fig. 3.1, which was painted using oil-based paints on a copper plate. Before being restored,

there were some areas of the painting where the paint was chipped away, exposing the

copper plate. Measurements were taken using the gantry designed by Pouyet et al. [12]

every 0.5 mm for an overall dimension of 423×566 px. Dwell times were 100 ms per pixel.

We treat this original XRF volume as the ground truth Y since it was scanned long

enough where the Poisson noise is less apparent.
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2 ms/px 5 ms/px 10 ms/px

Raw FOTV N2V Ours Raw FOTV N2V Ours Raw FOTV N2V Ours

Au L
RMSE 686.06 429.52 348.68* 171.42 490.12 318.53 305.21* 183.25 389.69 264.60* 264.70 181.78

PKLD 348.00 201.00 135.52* 41.14 211.17 167.02 110.64* 52.62 150.19 90.53* 91.17 42.72

Ca K
RMSE 462.34 289.39 153.61 197.29* 298.40 180.57 130.47 150.10* 216.03 127.80 116.17* 115.16

PKLD 267.57 208.90 30.64 63.49* 123.93 99.52 25.28 43.66* 72.41 46.76 20.88 23.79*

Cu K
RMSE 1976.04 1304.30 1488.46 1439.11* 1256.51 961.30 1572.19 1058.44* 893.58 843.10* 1383.68 825.47

PKLD 306.77 79.87* 83.54 78.56 114.10 44.31 72.99 47.96* 56.81 29.95 59.30 31.68*

Fe K
RMSE 983.01 480.39 448.20 448.39* 625.33 340.18 391.03 348.81* 443.10 306.07* 364.30 284.89

PKLD 302.67 124.28 55.15 67.65* 123.27 43.98 39.22* 35.19 60.68 24.44* 33.01 21.33

Hg L
RMSE 976.89 548.83 528.42* 524.64 691.69 464.91 490.53 466.65* 528.54 412.37* 457.43 402.17

PKLD 225.57 89.78 76.18 77.80* 124.13 64.85 75.84 68.29* 82.99 54.72 61.93 56.18*

Hg M
RMSE 810.34 516.90 374.80 393.55* 583.41 385.80 353.23* 335.63 465.08 335.96 334.12* 331.26

PKLD 285.46 179.59 32.80 76.10* 150.22 66.80 23.93* 20.99 84.34 26.23* 19.64 28.26

Mn K
RMSE 419.79 211.36 160.59 160.84* 267.32 135.20 134.22* 123.87 191.24 109.10* 118.85 106.16

PKLD 146.73 75.24 22.85 27.09* 72.26 32.77 18.80* 15.47 39.89 15.65 14.16* 11.56

Ni K
RMSE 463.85 231.07 189.72 200.02* 303.16 163.78 170.02* 170.67 225.11 146.63 176.21 148.61*

PKLD 137.20 47.17 21.24* 20.31 60.49 17.65 17.54* 15.83 33.05 12.94* 20.54 12.92

Pb L
RMSE 5841.67 2379.70 2730.38 2393.89* 3719.41 2180.30 1962.26* 1881.18 2637.82 1737.00 1708.85* 1573.47

PKLD 311.90 58.76 73.87 62.57* 127.36 49.93 40.42* 39.00 64.54 31.54 30.29* 26.30

Pb M
RMSE 1709.02 929.21 604.40 775.63* 1128.15 580.62 574.07* 559.77 841.76 508.24* 533.40 505.05

PKLD 640.90 244.55 82.51 201.51* 273.09 79.76* 73.20 86.09 147.61 56.81 62.72 57.37*

Sn L
RMSE 484.55 286.85 135.18 146.84* 311.32 187.34 118.30 120.84* 224.99 136.12 110.28* 99.64

PKLD 260.53 176.81 39.53 55.63* 153.39 102.72 32.61 39.41* 94.42 52.01 29.25* 27.81

Ti K
RMSE 214.32 117.65 81.13 88.68* 134.76 80.11* 81.94 68.79 96.55 66.86* 118.77 56.43

PKLD 165.34 72.72 18.74 33.78* 78.49 50.11 15.39 17.46* 47.73 34.77 15.35* 12.88

Table 3.1. Table of errors for each denoising algorithm. Each row denotes
the elemental map to denoise and its corresponding errors. Bold values
denote the best performing mask, and asterisked values indicate the second
best performing mask.

3.4.1. Experimental Procedure

To get the fast scan, we find the ground truth rates via Eq. (3.3), then resample via

Eqs. (3.1) and (3.2) varying the dwell time t ∈ {2, 5, 10}ms/px. These represent speedups

of 50x, 20x, and 10x respectively, all of which would result in scan times under an hour.

The fastest time was chosen based on the gantry proposed by Pouyet et al. [12], which
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they noted can scan at speeds of 600 mm/s while maintaining localization accuracy. For

our experiments, this corresponds to a minimum dwell time of 0.83 ms/px, but we selected

2 ms/px as a minimum to be more comfortably above the maximum speed. We identified

20 elements present in the sum spectrum, 12 of which are of interest. Using PyMca,

we generate the maps for each of the XRF volumes sampled at the four different rates,

including the ground truth.

We then denoise the 12 elemental maps of interest using each algorithm, FOTV and

N2V. As we mentioned before, we optimize the elemental maps individually instead of

as a volume to achieve the best performance. This is the case for all methods. The

optimization is carried out with knowledge of the ground truth—meaning we find the

parameters that minimize the error between the denoised elemental maps and the ground

truth elemental maps. This tests how well the algorithm is able to perform, even though

in practice the ground truth would not be known.

3.4.2. Results Evaluation

Our evaluation criteria include the RMSE, which indicates how the average photon count

rates of the denoised maps differ from the ground truth count rates. This is the intuitive,

often-used metric. We also provide results for the PKLD, which indicates the average

distance in a probabilistic sense. Recall that the PKLD measures a relative distance

between two Poisson variables, while the RMSE measures an absolute distance regardless

of the underlying distribution. Thus, we feel it is appropriate to provide a measure of the

absolute error, as well as the average relative error.



88

Fig. 3.2 shows some elemental maps and their corresponding RMSEs and PKLDs for

a t = 10 ms/px scan. We invite the reader to zoom into the images to see them in greater

detail. For the other data, we provide the results in Table 3.1. Note that our method

often outperforms the other techniques both in terms of the RMSE and PKLD starting at

5 ms/px. FOTV has mixed performance across all time scans in terms of both the RMSE

and PKLD. N2V excels at very low photon counts, but is overtaken by our algorithm

for higher dwell times. There appears to be a cutoff time that our algorithm requires

where enough raw XRF data is collected to outperform N2V. We would suggest using our

algorithm for longer dwell times, but for very short dwell times N2V appears to be the

method of choice.

Given the option between the three algorithms, however, we argue that ours would

be preferable. While it is easy to determine which algorithm performs best in each time

scale, it is more difficult to choose the algorithm when the ground truth is not known. In

addition to looking at the best performance, we should also see which method is the most

reliable. The placement ranking should be considered to evaluate the overall performance.

Our algorithm was outperformed by both FOTV and N2V in only three instances across

all dwell times and all elemental maps (72 comparisons total). N2V and FOTV, however,

came in last in 24 and 45 instances respectively. FOTV tended to perform worst in

the 2 ms/px regime, and N2V as we noted performed worst in the 10 ms/px regime.

Our algorithm only had the worst Ni K RMSE and Pb M PKLD for 5 ms/px, and the

worst Hg M PKLD. Because our algorithm performed well across all the dwell times

and elemental maps, we believe that our algorithm should be the method of choice for

denoising elemental maps.
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3.5. Conclusion

We introduced a straightforward denoising algorithm that shows that it is possible to

drastically speed up the XRF acquisition technique (up to 50x in our experiments) while

maintaining integrity in the elemental maps. It is a more robust algorithm that can be

used at any Our algorithm uses a Poisson model to effectively remove noise present in

these fast scans. Speedups of these high factors can not only ease time related issues for

accessing works of art, but could also open the opportunity for researchers to scan more

paintings in a single session. This allows more paintings to be analyzed for historical

research and more quickly addressed for conservation concerns. Future research will test

our algorithm on real fast XRF scans. The potential for sub 1-hour XRF scans of entire

paintings is closer to reality.
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Figure 3.2. Visual comparison of seven elemental maps denoised using dif-
ferent algorithms. Numbers below the maps are the RMSE (top) and PKLD
(bottom). Bold numbers indicate the minimum error.
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CHAPTER 4

The Design of Supplementary X-Ray Fluorescence Scans of

Paintings

Abstract

The time to acquire a macro x-ray fluorescence image of paintings is often a timely

process on the order of hours or even days. This is sometimes intractable for spectro-

scopists and other parties with interest in the painting. Image processing algorithms exist

that can address these concerns, but are rarely, if ever, widely implemented by spectro-

scopists. We propose a novel adaptive sampling technique that is easy to implement,

and allows for broad customization depending on the goals of the scan. By quickly and

iteratively collecting XRF data, higher quality data can be recorded with or without the

use of denoising algorithms.

4.1. Introduction

XRF imaging has become a widely used method for the chemical analysis of historically

significant paintings. In an effort to understand the chemical makeup of a painting, XRF

provides valuable information of the individual elements that compose the paint pigments.

XRF analysts including spectroscopists, art historians, and the like, can then for example

inform conservation of the painting [7], or reveal under-paintings [4, 5] to name a few

applications.
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By illuminating a painting with x-rays, the atoms throughout all the paint layers (and

even the canvas itself) will begin to fluoresce. Fluorescing atoms emit photons with a

characteristic energy, which occurs when low energy level electrons are dislodged by the

x-rays. Electrons occupying higher energy orbitals then transition to occupy the lower

energy level left vacant by the dislodged electron. During transition, a photon with energy

equal to the energy level difference is emitted to conserve energy. A detector then records

the energy of the photons incident upon it. Tables containing the possible photon energies

for each element are widely available and are used to identify elements that exist within

the scanned object. XRF image data consists of multi-channel pixels that count the

number of photons recorded at each energy level.

The popularity of XRF imaging as a cultural heritage tool has promoted research and

development in XRF hardware to make it more affordable and more powerful [8, 10, 11,

12]. Software development too has been growing for XRF analysis [21, 26, 28, 15]. One

characteristic that has remained constant, though, is the acquisition process.

Instead of a camera that can capture all the XRF responses at once, a gantry moves

the XRF source and detector across the painting, capturing XRF data one pixel at a

time. This process can be quite time intensive. Even with hardware improvements, the

acquisition time can be quite long. Paintings of modest size often require many hours, if

not days, to sample using XRF imaging. In a timescale for chemistry experiments this is

not long at all, however these measurements are taken under special circumstances. Pri-

marily, the samples in these experiments are one-of-a-kind and hold cultural significance.

Particularly noteworthy paintings are typically housed in museums displaying them to

the public, so access to them is limited. Raising of the Cross by Bernardo Biti shown in
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Figure 4.1. Bernardo Biti, Raising of the Cross, 31 × 23 cm2, The Thoma
Foundation, inv. no. 2017.72, oil on copper.

Fig. 4.1, the painting we will examine in this chapter, is owned by the Thoma Foundation.

Alfeld et al. for example had to leave the lower left corner of a painting unscanned due

to the time limitations imposed by the museum housing the painting [64]. Museums may

also require human supervision of the experiment to protect the painting from damage as

best as possible. The time limitation and human capital required make XRF sampling a

challenging task for spectroscopists.

Recently, work has been done to accelerate the XRF acquisition process via image

processing as opposed to hardware upgrades. For example, denoising [30, 31], super-

resolution [35, 37], and subsampling XRF algorithms [36, 40] have been proposed in
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Figure 4.2. Flowchart for XRF sampling algorithm. Denoising is an op-
tional step.

recent years. While these methods may not be explicitly used for speeding up the acqui-

sition process, it is conceivable that they could be: denoising allows for fast, noisy scans,

and super-resolution allows for more measurements to be approximated.

Yet, these papers have not been widely adapted in the XRF literature despite showing

improvements in their respective goals. One can critique these papers in the following

ways: (1) the post-processed data was never explicitly measured (how can the post-

processed data be fully trusted?), (2) in cases where the post-processing algorithm fails,

the original data may be very noisy, and (3) many experiments have been conducted

under simulations, not in the real world. Other criticisms such as accessibility in terms of

computational resources and algorithmic understanding steer spectroscopists away from

the proposed work.

This chapter aims to alleviate these concerns by introducing a method for time-limited,

supplementary scans of paintings that breaks from the traditional raster scan of constant

time. We instead propose a smart allocation of the sampling time that effectively mini-

mizes the error in the XRF volume estimations. The algorithm we present here is easy
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to implement and quick in providing a sampling strategy, yet powerful for the commu-

nity’s efforts to accelerate XRF acquisition. It can be used in conjunction with denoising

algorithms, or as a standalone algorithm working with only the collected data.

Fig. 4.2 shows a flowchart of the proposed algorithm. After an initial fast scan, a

sampling mask is designed to strategically collect data that suits the goal of the spectro-

scopist. The mask is generated with the raw XRF data or the denoised data to mitigate

the effects of noise on the mask. Multiple passes can be done within the time limit, or be

stopped early if the gains from subsequent scans are not worth it as determined by the

spectroscopist. We will look at a two-pass acquisition in this chapter.

Our work first addresses earlier work, then we formulate the sampling algorithms and

the optimization process. Additionally, we propose a modification of an existing denoising

algorithm to aid in the mask design and (optionally) in the final XRF volume. Our results

are simulated from real data, but show the potential of the algorithm in fast XRF imaging.

4.2. Related Work

As was mentioned, there are algorithms that can already be used as a means to

accelerate the XRF acquisition process. Subsampling algorithms explicitly address this

concern.

Dai et al. [36] proposed a subsampling algorithm that uses a neural network to de-

termine the top subset of pixel locations to sample. By feeding a color image of the

painting into the network, they find the optimal binary sampling mask; positive pixels

are scanned at a “regular” scan time as determined by the spectroscopist and their sys-

tem. Every other pixel is skipped in an effort to reduce the scan time. These missing
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pixels are inpainted via a dictionary-based optimization. The algorithm proposed allows

for tight control of the sampling time since the percentage of pixels sampled is controlled

(provided the neural network was trained with the same percentage). Sample locations

for this method are solely based on the surface-level RGB image—hidden paintings may

not be captured well if the underlying structures differ. Given this, along with the other

general concerns, a spectroscopist may understandably opt to perform a standard raster

scan with their time to ensure the raw data is as interpretable as possible.

Betterton et al. [40] proposed an algorithm that would work well in terms of the raw

data quality. They too employ a multi-pass approach that uses progressively narrowing

apertures. An initial wide-view scan of the painting in its entirety produces blurry re-

sults. Their reinforcement learning (RL) algorithm then suggests subsequent scans with

more focused lenses in the areas of interest as determined by the neural network. Their

simulation shows a well-sampled foreground in less time than that of a standard scan.

Again, there are barriers here preventing spectroscopists from adapting this algorithm:

(1) the RL algorithm was trained on a small image size (50 × 50 px) with a relatively

small region of interest, and (2) the total scan time is not deterministic since it depends

on a hyperparameter weighing a time penalty term. The spectroscopist would need to

train a RL network prior to sampling their painting to ensure the correct dimensions are

used. Training RL models are notoriously difficult, especially for scientists in other disci-

plines not well-versed in RL. Further, there is a lack of training data for generalizing this

algorithm to a large scale. XRF data is slow to collect, so naturally there are very few

samples compared to, say, RGB data. These issues may dissuade spectroscopists from

adopting this algorithm in every scan.
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The method proposed by us [30] denoises quickly scanned XRF data using dictionary

learning, and Yang et al. [31] use classic image processing denoising algorithms on XRF

data. The output of these algorithms alter the raw data to denoise the data, which is

unappealing to some spectroscopists due to the changing data and the potential for false

positive/negative regions of interest. This dictionary denoising method is also computa-

tionally intensive, and would be very slow sans a GPU with enough memory for the XRF

optimization.

Similarly, Dai et al. [35] and Yan et al. [37] use dictionary learning methods to super-

resolve XRF images, but also suffer from requiring large computational resources, as

well as the hallucination of data not sampled. In the field of image processing, inferring

unsampled data is a widely acceptable practice, but may not be as acceptable in the

cultural heritage and XRF fields.

The purpose of this chapter is, in part, to alleviate the aforementioned concerns. If

we can find a method to collect the highest quality raw data, there is a chance for it to

actually be implemented in XRF systems.

4.3. Formulation

We begin our formulation by mathematically defining the XRF acquisition process.

Let X ∈ NC×H×W be the XRF data recorded after a scan where N is the set of natural

numbers. The time it took to collect the data at each spatial location is denoted as

T 0 ∈ RH×W
+ where R+ is the set of nonnegative real numbers. In a typical scan, T 0 is

constant across all entries, but, for completeness, we generalize T 0 such that each entry

can be any nonnegative value.
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(a) Hg L map (b) MSE Mask (c) PKLD Mask (d) Uniform Mask

Figure 4.3. Denoised Hg L map and the potential masks. The Hg L map
was scanned under simulation at 5 ms/px. The masks were designed for
a subsequent scan with an average dwell time of 5 ms/px. Each pixel is
scanned for at least 1 ms. Count rates of at least 1200 are the set of
pixels that can receive more time allocation. The display range is [0, 11000]
counts/s for the map, and [1, 30] ms for the masks.

Since photons arrive at the sensor according to a Poisson process, we model X as being

drawn from some unknown, underlying Poisson distribution Y ∈ RC×H×W
+ . The ground

truth counts Y depends on the sampling time; longer dwell times produce more photons.

This relation between time and counts is linear with an unknown count rate that does

not depend on time. We denote this count rate Ψ ∈ RC×H×W
+ . The process for obtaining

X is thus

Xc,h,w ∼ Poiss (Yc,h,w)(4.1)

Yc,h,w = T 0
h,w ·Ψc,h,w.(4.2)

Our initial estimation for the count rates is then

(4.3) Λc,h,w =
Xc,h,w

T 0
h,w
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where Λ ∈ RC×H×W
+ is the measured count rates.

There will inevitably be some error between the measurements Λ and the underlying

count rate distribution Ψ which we would like to minimize. Our problem statement

allows us extra scan time τ ∈ R+ after the initial scan T 0. Further sampling the painting

improves upon the initial measurements. How should should we distribute time τ amongst

the subsequent scan T ∈ RH×W
+ such that we minimize the count rate error? To solve this,

we take a probabilistic approach that depends on the chosen error metric. There are two

errors we choose: (1) mean-squared error (MSE), and (2) mean Poisson Kullback-Leibler

divergence (PKLD). These errors have interesting properties that prioritize sampling of

different types of pixels.

4.3.1. Mean Squared Error Metric

Perhaps the most widely used error metric, the mean squared error is an intuitive way to

measure the error between data. For our data, we formulate the MSE as

(4.4) EMSE =
1

N

∑
i∈(c,h,w)

(Ψi −Λi)
2

where N = CHW is the number of entries in Λ. Since EMSE is itself a random variable,

we can find the expected error:

(4.5) E
[
EMSE

]
=

1

N

∑
c,h,w

Ψc,h,w

T 0
h,w

where E [·] is the expected value operator. Note that minimizing the expected MSE

error is equivalent to minimizing the variance of Λ. We readily find Eq. (4.5) with the
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understanding that the expected value of Λ is

(4.6) E [Λc,h,w] = Ψc,h,w,

and the variance is

(4.7) var (Λc,h,w) =
Ψc,h,w

T 0
h,w

.

The expected error of Eq. (4.5) suggests that the majority of the error occurs where

the underlying rate Ψ is high and also where the sampling time T 0
h,w is low. Of course,

we can never be absolutely certain of Ψ, but we can use Λ (or a denoised Λ) as an

appropriate estimation.

We then formulate a predictive model that estimates the MSE given additional scan

time on top of the initial time:

(4.8) E
[
EMSE (T )

]
≈ 1

N

∑
c,h,w

Λc,h,w

T 0
h,w + Th,w

.

Since there is an initial dwell time, we incorporate the total dwell time to minimize the

error of the total XRF volume, not just the subsequent volume. The best allocation of

the next scan time τ can then be found by minimizing the expected error of Eq. (4.8):

(4.9) T ∗ = arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
c,h,w

Λc,h,w

T 0
h,w + Th,w

.

The first constraint ensures that the total scan time of the dwell map does not exceed

the total available time. It is clear (both mathematically and intuitively) that without the
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total time constraint, the dwell time at each pixel would tend towards infinity to minimize

the measurement error; the minimization would then be trivial.

We introduce the second constraint to better control the design of the dwell map

by establishing the minimum dwell time Tmin ∈ RH×W
+ and the maximum dwell time

Tmax ∈ RH×W
+ where Tmin

h,w ≤ Tmax
h,w . Fly scanning gantries for example are capable of

recording measurements and moving at the same time. These gantries have a maximum

speed limited by motor capabilities or other factors such as gantry localization or even

safety concerns for the painting. A maximum speed corresponds to a minimum dwell time

that the gantry must measure as the gantry translates across the painting. Maximum dwell

times can also be used to ignore certain regions of the painting by setting the maximum

to zero. Oversampling a pixel may occur without setting a maximum dwell time too.

Spectroscopists often scan paintings in the low hundreds of milliseconds because those

times provide acceptable signal-to-noise ratios. Capping dwell times forces the scan time

to be redistributed to other less sampled pixels.

Fig. 4.3a shows a sample image of the Hg L line that was generated from simulated

XRF data acquired at 5 ms/px. Using the Hg L data for the mask optimization, we show

a corresponding MSE mask in Fig. 4.3b where the average dwell time in the next scan

is also 5 ms/px. To ensure that each pixel has some additional scan time, we set the

minimum dwell time per pixel at 1 ms. Note that the MSE mask appears roughly as a

gamma adjusted Hg L map, which will be explained in the solution of the optimization.
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4.3.2. Poisson Kullback-Leibler Divergence

In the previous subsection, we formulated a way to minimize the MSE error. The im-

plicit assumption with using the MSE is that the data is drawn from a Gaussian of unit

variance. This is not the case with XRF data since it follows a Poisson distribution.

Instead, an appropriate way to compare two Poisson rates is via the Kullback-Leibler

divergence, which measures the statistical distance between two random variables. The

average Poisson Kullback-Leibler divergence can be derived as

(4.10) EPKLD =
1

N

∑
i∈(c,h,w)

Λi −Ψi · (ln Λi − ln Ψi + 1) .

Similar to the derivation of the MSE mask, we find the expected PKLD error:

(4.11) E
[
EPKLD

]
=

1

N

∑
i∈(c,h,w)

Ψi (ln Ψi − E [ln Λi]) .

The expectation of a logarithm of a random variable is difficult to calculate, but can be

approximated using a Taylor series expansion of ln Λi about E [Λi]:

E [ln Λi] = E

[
∞∑
k=0

ln(k) E [Λi]

k!
(Λi − E [Λi])

k

]

= ln Ψi +
∞∑
k=2

(−1)k+1

k ·Ψk
i

E
[
(Λi −Ψi)

k
]

(4.12)

where ln(k) (·) is the kth derivative of the natural logarithm. If we approximate the ex-

pected value with a maximum order of
(
Ψc,h,w · T 0

h,w

)−1
, we obtain

(4.13) E [ln Λc,h,w] ≈ ln Ψc,h,w −
1

2 Ψc,h,w · T 0
h,w

.
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There are other terms that are of smaller order, but we ignore them for now. If we

substitute Eq. (4.13) into Eq. (4.11), we can approximate the error as

(4.14) E
[
EPKLD

]
≈ 1

N

∑
c,h,w

1

2T 0
h,w

.

Now, just like the MSE optimization, we can form a PKLD predictive model by substi-

tuting the ground truth rates with our measured rates and the dwell time by the total

dwell:

(4.15) E
[
EPKLD (T )

]
≈ 1

N

∑
c,h,w

1

2
(
T 0
h,w + Th,w

) .
Given our constraints, we can then formulate the minimization for the PKLD mask:

(4.16) T ∗ ≈ arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
c,h,w

1

2
(
T 0
h,w + Th,w

) .
Note that this optimization does not depend on the count rates at all. In fact, if the first

scan was constant, the optimization of Eq. (4.16) is also a uniformly sampled volume:

(4.17) T ∗h,w ≈
τ

HW
.

The uniform is perhaps a gross simplification since there are the lower order terms

that were dropped in Eq. (4.12). These terms are of
(
Ψc,h,w · T 0

h,w

)−2
and lower order.

Since the rate is in the denominator in the expansion, the optimal dwell time allocation

is inverse to the count rate.
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Instead of the uniform mask, we suggest a cost function that takes this inverse relation

into account. If we include more terms in the Taylor series expansion, the optimization

becomes untenable in terms of calculation speed. This cannot be discounted since often-

times the spectroscopists conducting the experiments have a limited time window to scan

the painting. Therefore, we propose a different cost function simplification that accounts

for the inverse relationship between count rate and sampling time allocation:

(4.18) T ∗ ≈ arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
c,h,w

Λ−1
c,h,w

T 0
h,w + Th,w

.

We will show in our experiments that this loss is able to better optimize the PKLD than

that of a constant scan in some cases. Like the MSE mask, our intuition still holds that

the more time that is allocated to any pixel, the lower the expected error.

Fig. 4.3c shows a PKLD mask for the same Hg L mask in Fig. 4.3a. This mask,

like the MSE mask of Fig. 4.3b, has an average dwell time of 5 ms/px. Since the mask

favors low count rates, we need to exclude the background. Only rates over 1200 counts/s

were considered for the optimization. Slower rates are automatically given the minimum

dwell time of 1 ms/px. Notice how the PKLD mask appears complementary to the MSE

mask: the bright garment in the bottom is now dark, signaling that the PKLD is (likely)

relatively low compared to the other regions. Thus, it requires less scan time to minimize

the PKLD.

Perhaps an added benefit of this mask is that the edges are sometimes sampled longer

than the interior of the regions of interest. This is due in part to the machine’s point

spread function that mix neighboring signals and the denoising algorithm, both of which
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blur edges. The edges of these regions will inevitably sharpen with the longer sampling

times.

4.3.3. Joint MSE and PKLD Mask

Given the MSE optimization of Eq. (4.9) and the PKLD optimization of Eq. (4.18), the

two are in conflict with one another: the MSE mask prioritizes high count rates, while

the PKLD mask prioritizes low count rates. What happens with a convex combination of

the two mask designs? We need to analyze the effect of the weighting parameter for the

joint optimization

(4.19) T ∗ ≈ arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
c,h,w

ρΛc,h,w + (1− ρ) Λ−1
c,h,w

T 0
h,w + Th,w

for some ρ ∈ [0, 1]. One can quickly verify that count rates approaching zero or infinity

incur an infinite penalty in the loss. In between, there exists some rate that is least

prioritized, which can be found by minimizing the summand. The least penalized rate

occurs where

(4.20) Λc,h,w =

√
1− ρ
ρ

.

It can be difficult to know which rate should be given the smallest weight, so we instead

weigh not by a convex combination, but by a gamma correction of the rates. Note that

the exponent of the weighted rates Λ is 1 for the MSE mask in Eq. (4.9) and −1 for the

PKLD mask in Eq. (4.18). We can instead use ρ ∈ [−1, 1] as a weighting mechanism
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between the two masks. The generalized mask optimization is then

(4.21) T ∗ ≈ arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
c,h,w

Λρ
c,h,w

T 0
h,w + Th,w

where ρ controls the preference for the MSE mask (ρ = 1) or the PKLD mask (ρ = −1).

What is interesting is the case where ρ = 0, which is the uniform sampling mask that

arose in Eq. (4.16). Here, the optimization does not depend on the rates at all. Perhaps

this gives some comfort to spectroscopists in knowing that the default uniform raster scan

attempts to weight the MSE and PKLD equally. Fig. 4.3d shows a uniform sampling mask

applied to pixels whose rate is at least 1200 counts/s. There is a minimum dwell time of

1 ms/px, similar to the other masks in Fig. 4.3.

4.4. Optimization

As was mentioned previously, finding the optimal mask in a short amount of time is

not only ideal for any algorithm, but strictly required for it to be adopted by XRF spec-

troscopists in the context of performing fast scans. Algorithms that do not immediately

provide a sampling pattern takes valuable time away from collecting more data.

Before we begin the solution, note that the cost function is not indexed by the channel

in the denominator. This is beneficial in an optimization sense since the weights can be

added together prior to carrying out the minimization. Instead of optimizing a mask

based on N values, we instead only need N/C = HW values. We strategically rewrite



107

Algorithm 1 Sampling Mask Generation

Require: Λ, τ, T 0, Tmin, Tmax ≥ 0
Ensure:

∑
h,w T

∗
h,w ≤ τ

function MaskOpt(Λ, ρ, τ, T 0, Tmin, Tmax)
Λρ
h,w ←

∑
c Λρ

c,h,w

Qh,w ←
√

Λρ
h,w

τnet ← τ −
∑

h,w T
min
h,w

while τnet > 0 and any
(
Tmin
h,w < Tmax

h,w

)
do

Di ← (h,w) :
−Λρ

h,w

(T 0
h,w+Tmin

h,w )
2 ≤

−Λρ
h,w

(T 0
j,k+Tmin

j,k )
2 ∀ (j, k) and Tmin

h,w < Tmax
h,w

Ri ←
∑i

j=1 T
0
Dj

+ Tmin
Dj

Si ←
∑i

j=1 QDj

Ki ← Si
Qi
·
(
T 0
Di

+ Tmin
Di

)
−Ri

k∗ ← maxKi≤τ i

Vi ←
QDi
Sk∗
· (τnet +Rk∗)−

(
T 0
Di

+ Tmin
Di

)
, i ≤ k∗

Tmin
i ← min

(
Tmin
i + Vi, T

max
i

)
τnet ← τ −

∑
h,w T

min
h,w

end while

T ∗ ← Tmin

return T ∗

end function

Eq. (4.21) as

(4.22) T ∗ ≈ arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

N

∑
h,w

∑
c Λρ

c,h,w

T 0
h,w + Th,w

with the channel summation separated.
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There is independence of each entry in T from one another, which also aids in the

optimization. The approach we take to solve Eq. (4.22) is therefore one of incremental

allocation: keep allocating time to the pixels where the error will be reduced the most

until there is no time left to allocate. We will first focus on the case where we ignore the

minimum and maximum time constraints, i.e. Tmin
h,w = 0 and Tmax

h,w =∞ for all (h,w).

4.4.1. No Individual Time Constraint Optimization

In order to find the pixels to allocate time to, we first denote the generic expected error

as

(4.23) E [E (T )] =
1

N

∑
h,w

∑
c Λρ

c,h,w

T 0
h,w + Th,w

for simplification. The greatest loss reduction occurs at the pixel with the greatest negative

derivative. These derivatives of T are quickly found as:

(4.24)
∂

∂ Th,w
E [E (T )] =

−
∑

c Λρ
c,h,w

N
(
T 0
h,w + Th,w

)2 .

Again, notice that the derivatives of the dwell entries are also independent of one another.

Weighted rates Λρ are not dependent on T .

If we sort the pixels by their derivative in ascending order at Th,w = 0 for all entries,

we now have a list of how the pixels should be prioritized in the optimization—the first

entry has the greatest negative derivative, i.e. the greatest expected reduction in error

given an incremental time allotment δ � 1. How much time should then be allocated to

this first pixel? We keep allocating time until the derivative of the first pixel is equivalent

to the derivative of the second pixel without any time allocation. At this point, it is
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equally beneficial to allocate δ to these pixels. Let us denote i ∈ {1, 2, . . . , HW} as

the indexing scheme where i corresponds to the ith most negative derivative at location

(hi, wi). Mathematically, we need to know when

(4.25)
∂

∂ Ti
E [E (Ti)] =

∂

∂ Tj
E [E (0)] ,

where i < j. The dwell time Ti in Eq. (4.25) determines how much time to allocate to

pixel i before considering pixel j. Fortunately, the equation is a quadratic, which can be

easily solved. The nonnegative solution

(4.26) Ti =

√∑
c Λρ

c,i∑
c Λρ

c,j

· T 0
j − T 0

i ,

is when there is equal reduction in the loss between pixels i and j.

Of course, there are more than two pixels to optimize. For any pixel k, the amount of

time that needs to be allocated to pixels 1, . . . , k − 1 prior to pixel k is a sum of the the

results found in Eq. (4.26):

(4.27) τk =
k∑
i=1

(√∑
c Λρ

c,i∑
c Λρ

c,k

· T 0
k − T 0

i

)
.

We include pixel k in the summation since the summand when i = k is zero, and it

simplifies the optimization in the coming steps.

This length of time τk must not exceed the total scan time. Thus, we need to find the

maximum value for k given the total time constraint. Denote k∗ as the maximal k that
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satisfies

(4.28)
k∑
i=1

(√∑
c Λρ

c,i∑
c Λρ

c,k

· T 0
k − T 0

i

)
≤ τ.

All pixels with indices i ≤ k∗ are considered for new time allocation, but all indices i > k∗

are excluded and assigned zero time.

With the set of pixels to optimize known, all that is left is to find the appropriate

time allocation that uses all the time available. We find some average value λ that would

maximize the time usage. Hypothetically, if Λρ
c,k∗ = λ for all c, this would be the average

weighted rate where all the time is allocated. This value is found via equality of Eq. (4.28)

(4.29)
k∗∑
i=1

(√∑
c Λρ

c,i∑
c λ
· T 0

k∗ − T 0
i

)
= τ

with a solution of

(4.30) λ =
1

C

T 0
k∗ ·
∑k∗

i=1

√∑
c Λρ

c,i

τ +
∑k∗

i=1 T
0
i

2

.

If we substitute Eq. (4.30) into Eq. (4.29), we have a simplified summation that uses

all the available time to scan:

(4.31)
k∗∑
i=1


√∑

c Λρ
c,i∑k∗

j=1

√∑
c Λρ

c,j

·

(
τ +

k∗∑
j=1

T 0
j

)
− T 0

i

 = τ
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where each summand is the optimal amount of time to scan each pixel. We have a final

minimization solution of

(4.32) T ∗i =


√∑

c Λρ
c,i∑k∗

j=1

√∑
c Λρ

c,j

·
(
τ +

∑k∗

j=1 T
0
j

)
− T 0

i , i ≤ k∗

0, i > k∗

which includes the scan time of every pixel. The fractional component of Eq. (4.32) is a

weighting term that sums to unity across the k∗ pixels. What is being weighted is the

total scan time including the initial scan times of the pixels included in the optimization

set. The subtraction of the initial scan time ensures that the subsequent scan does not

exceed the time allotted. No matter the optimization objective, we can find the optimal

allocation using this algorithm given that there are no individual pixel time constraints.

4.4.2. Minimum and Maximum Dwell Time Constraints

There are only a few modifications needed to incorporate the minimum dwell times Tmin

and maximum dwell times Tmax. The minimum dwell time constraint can be accounted

for in the start of the optimization steps. If we assign

(4.33) T 0 ← T 0 + Tmin

and

(4.34) τ ← τ −
∑
h,w

Tmin
h,w ,
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then we optimize the sampling mask over the time that is left over after allocating the

mandatory minimum time. The optimal dwell mask is then found using the remaining

time. To get the true optimal sampling mask, we simply add the minimum dwell time

back to the optimal mask:

(4.35) T ∗ ← T ∗ + Tmin

calculates the final mask accounting for the minimum scan time.

Accounting for the maximum dwell time is also a simple solution by repeating the

optimization. First, carry out the optimization steps as if there were no maximum time

constraints. Next, assign the optimized values or the maximum values to the minimum

dwell time, whichever is lesser:

(4.36) Tmin ← min
(
Tmin
h,w + T ∗h,w, T

max
h,w

)
.

If there is no clipping by the maximum dwell time, then we are done and assign the new

minimum dwell time as the optimal dwell time. Otherwise, there is remaining time that

can be allocated to pixels that have not reached the maximum dwell time:

(4.37) τ ← τ −
∑
h,w

Tmin
h,w ,

and an additional iteration of the algorithm is needed. Pixel locations where Tmin
h,w = Tmax

h,w

are excluded/ignored from the next iteration since the maximum amount of time is already

allocated. This process is repeated until all the time is allocated or all the pixels are

allotted their maximum dwell times. Algorithm 1 provides pseudocode for the mask
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computation. The algorithm is quite fast, regularly producing results for our XRF volume

in under one second.

4.5. XRF Preprocessing

While we have derived the algorithm for generating the sampling mask, there are

additional considerations before using it. After collecting the XRF data, it is decomposed

into elemental maps that show the location and relative amount of the element present.

Generating high quality elemental maps is very often the goal for further XRF analysis.

Some elements typically have a strong presence (i.e. high PSNR), while other elements

appear noisier in the elemental maps. Instead of an optimization over the entire XRF

volume, it would be more beneficial for XRF analysts to select which elemental maps

should be further sampled to reduce noise.

Aside from the elemental maps, the noise in the initial scan also may pose a problem.

The rates measured Λ are not perfect, and this can affect the performance of the mask

sampling algorithm. Prior to applying the sampling algorithm, it may be beneficial to

apply a denoising algorithm to the data that will be optimized. We will discuss both of

these concerns.

4.5.1. Elemental Maps

The elemental maps are generated from a nonnegative matrix factorization of the XRF

volume. Fig. 4.3a provides the denoised, 5 ms/px Hg L elemental map for example. Recall

that each element emits its own characteristic XRF spectrum; this aids in identifying

elements present in the painting. One of copper’s strongest peaks named Kα1 for example
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(a) Au L (b) Ca K (c) Cu K

(d) Fe K (e) Hg L (f) Hg M

(g) Mn K (h) Ni K (i) Pb L

(j) Pb M (k) Sn L (l) Ti K

Figure 4.4. XRF maps of Raising of the Cross, depicted in Fig. 4.1. These
maps are from the original XRF scan of 100 ms/px (left) and a simulated
scan of 2 ms/px (right). We invite the reader to zoom in to better view the
maps and the effects of noise.
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is around 8.05 keV, and Pb’s Lα1 peak is around 10.55 keV. Once an XRF volume is

acquired, the spectroscopist looks at the sum spectrum, which is a summation of the

spectra at all pixel locations. The sum spectrum is used instead of identifying elements

in each individual pixel since it is less noisy.

Once the peaks in the sum spectrum are assigned an elemental line, a platform like

PyMca [15] generates a dictionary Del ∈ RC×M
+ where the M columns are Gaussian curves

fitted to the peaks in the sum spectrum. The abundance Ael ∈ RM×H×W
+ is found by a

nonnegative factorization of the XRF volume Λ by the dictionary Del:

(4.38) Ael = arg min
A≥0

1

NA

∑
i∈(c,h,w)

(
Λi −

(
Del A

)
i

)2
.

To avoid unnecessarily introducing more variables, the volume DA is found similarly to

matrix multiplication:

(4.39)
(
DelA

)
c,h,w

=
M∑
m=1

Del
c,m ·Am,h,w.

The factorization is nonnegative since negative elemental quantities bears no physical

meaning.

Once the maps are generated, XRF analysis can be conducted since the location of

the elements are known as well as the relative quantities. Typically, there are a select few

elements that are of importance such as copper, iron, mercury, and lead. Rhodium for

instance is a common anode material to generate x-rays for XRF measurements. Photons

originating from rhodium can reflect back into the detector and appear as peaks in the

sum spectrum. Rhodium is included in Del with the understanding that the painting
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does not contain it. We identified twelve elemental lines in the original 100 ms/px scan of

Raising of the Cross, the maps of which are shown in Fig. 4.4 on the left of each subfigure.

These elemental maps are used in part for XRF analysis of, say, pigment identification.

The entire or partial XRF volume Λ can be used as the input to the mask design, but

if there are certain maps of Ael that are of more interest to the spectroscopist, it is best

to use those maps in place of the volume. These maps can optionally be weighted since

the magnitude scale of the maps can vary; Ca K for example has an average count rate of

310 counts/s while Pb L has a mean of 52600 counts/s. An MSE mask would highly favor

the Pb L map if the two were jointly optimized. Since elemental map quality is often the

highest priority for XRF spectroscopists and analysts, we can perform a substitution of

(4.40) Λ← diag (w) Ael

as the input to the mask optimization. Weights w ∈ RM×1
+ is a weighting vector; diag (w)

is a diagonal matrix where the diagonal values are w. The product is calculated exactly

as the matrix-tensor multiplication of Eq. (4.39). Maps can be excluded from the op-

timization by zeroing the corresponding entry in w. The magnitude of w also has no

influence on the optimization as scaling factors do not change the optimization results.

4.5.2. Denoising

In a fast scan, fewer photons are recorded, so the resulting maps are noisier. The images

on the right in Fig. 4.4 show the results of a fast XRF scan of 2 ms/px, a 50x speedup in

the acquisition. The Hg M and Pb M maps (Figs. 4.4f and 4.4j respectively) show high

levels of noise in the foreground due to the fast scan. If we were just to use these maps as
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inputs to, say, the MSE mask algorithm, we would oversample the overestimated rates,

and undersample the underestimated rates. In order to equitably distribute the sampling

time, we propose to denoise the maps after each pass of the XRF gantry as a correction

mechanism. Even if denoising is not done in the final step, it is important to obtain a

better prediction of where the high and low count rates are.

We provide a volumetric denoising algorithm [30] detailed in Chapter 2. As discussed

in the related work, there are serious computational barriers that makes the algorithm

infeasible considering the time constraint to scan the painting. A subsequent work of ours

performs denoising on the elemental maps directly. This is a faster calculation that often

completes in under a minute on a CPU. We will adapt their algorithm to our work, noting

that this can be replaced by another denoising algorithm.

There are two terms in their optimization: (1) the data fidelity term, and (2) a

regularization term. Both of these terms were designed for Poisson image optimization.

The data fidelity term is the zero-shifted Poisson negative log likelihood (PNLL), which is

defined to penalize deviations of the free variable from the observed data. For elemental

maps, the PNLL at any pixel i ∈ (m,h,w) is

(4.41) PNLL

(
Ai,A

el
i

)
= Ai −Ael

i · ln Ai

where Ai is the free variable, and Ael
i contains the measured count rates. The zero-shifted

PNLL is equivalent to the summand of the PKLD defined in Eq. (4.10). The work by us

previously assumed that the dwell time is constant for each pixel, but our algorithm now

clearly does not assume this. We decide to weigh the PNLL by the dwell time to account
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for the confidence in the measurements. Our PNLL loss is defined as

(4.42) LNLL

(
A,Ael;T 0

)
=

1

NA

∑
m,h,w

PNLL

(
T 0
h,w ·Am,h,w, T

0
h,w ·Ael

m,h,w

)
where NA = MHW is the number of entries in the map volume. The incorporation of

time as a multiplier is identical to using the PNLL of the elemental map counts instead

of the count rates.

The regularization term is included to promote spatial smoothness in the image. The

PKLD is a Poisson penalty term that finds the statistical distance from one rate to

another, but it is asymmetric. The Jeffreys divergence of two Poisson variables is a

symmetrized version of the PKLD. This divergence is a way to compare two spatially

neighboring values when neither rate is considered a “ground truth” measurement. For

two rates Ai and Aj, the Poissonian Jeffreys divergence (PJD) is

(4.43) PJD (Ai,Aj) = (Ai −Aj) · (ln Ai − ln Aj) .

The absolute difference is weighted by the difference in magnitude, which accounts for

the varying count rate magnitudes within an elemental map.

The authors provide an optional weighting scheme of the PJD. Based on an RGB

image of the painting I ∈ [0, 1]3×H×W registered to the XRF data, adaptive weights

(4.44) ΩH
h,w = exp

(
−β

3∑
c=1

(Ic,h+1,w − Ic,h,w)2

)
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and

(4.45) ΩW
h,w = exp

(
−β

3∑
c=1

(Ic,h,w+1 − Ic,h,w)2

)

suppress large smoothing penalties that arise in edges. The edges are detected in the

vertical and horizontal directions. Hyperparameter β ≥ 0 controls the sensitivity of the

edge suppression (β = 0 is the unweighted case). During the denoising optimization, this

mitigates smoothing in regions where there are known edges—we expect XRF changes in

these areas since the edges often correspond to pigment changes.

The average weighted PJD loss is then

(4.46) LJD (A; I) = LHJD (A; I) + LWJD (A; I)

where

(4.47) LHJD (A; I) =
1

NA

M∑
m=1

H−1∑
h=1

W∑
w=1

ΩH
h,w · PJD (Am,h,w,Am,h+1,w)

for the vertical dimension, and

(4.48) LWJD (A; I) =
1

NA

M∑
m=1

H∑
h=1

W−1∑
w=1

ΩW
h,w · PJD (Am,h,w,Am,h,w+1)

for the horizontal dimension.

The full denoising optimization sums the losses from Eqs. (4.42) and (4.46) to get

(4.49) A∗ = arg min
A≥0

LNLL

(
A,Ael

)
+ αJD · LJD (A; I)
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where αJD ∈ R+ determines the smoothing strength. The optimization is carried out

via gradient descent and on each elemental map separately as the authors suggest. The

optimized maps can then be used in place of the raw count rates:

(4.50) Λ← diag (w) A∗

where diag (w) are the elemental map weights as previously defined, but as the diagonal

entries of a square matrix. Now, the dwell times for the next scan are based on a more

accurate estimate of the elemental map rates.

We have outlined our adaptive sampling algorithm. After an initial fast XRF scan,

the (denoised) elemental distribution maps determine the sampling strategy for the next

scan. Depending on the choice of ρ in Eq. (4.21), the sampling mask is designed for

minimizing the MSE and/or PKLD error. In the next section, we provide results.

4.6. Experiments

Here, we examine the mask’s performance on the XRF data of Raising of the Cross.

The data was originally scanned at 100 ms/px to get an XRF volume of Λ ∈ R4096×566×423
+ .

Scanning this volume took about 6 hr 40 min. Imagine a scenario where we have not yet

scanned this painting, but we only have 40 min before the painting is needed back for

public viewing. This is one tenth of the original scan time, so the average dwell time is

10 ms/px. Our spectroscopist wants the highest quality raw data for XRF analysis. We

will compare the quality of the maps generated from our method against a constant dwell

time. The image quality is measured in terms of the root mean squared error (RMSE),

which measures absolute error, as well as the PKLD, which measures relative error.
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Figure 4.5. Select results showing the process of the algorithm. Column
1 is the initial 2 ms/px scan. Column 2 is the denoised Column 1 used
to generate the mask. Column 3 is the MSE mask for 8 ms/px average.
Column 4 is the raw, cumulative data. Column 5 is the final denoised data.
Column 6 is a standard 10 ms/px raster scan for comparison. Column 7
is the maps from the original 100 ms/px scan. We invite the reader to
compare the last three columns. Results for Au L are in the first two rows,
Hg L then next two, and Pb M the last.

4.6.1. Data Updating

There are some update steps we must first cover. Once a new XRF volume is sampled, we

need to update the previous data. Let the superscript of the following variables denote
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the iteration number; these variables are accumulated amounts. Variables without a

superscript will denote the newly collected data independent of prior iterations. We first

update the time by

(4.51) T k+1 = T k + T,

then the XRF volume by

(4.52) Λk+1
c,h,w =

T kh,w ·Λk
c,h,w + Th,w ·Λc,h,w

T k+1
h,w

.

These variables accumulate the total dwell time and measured rate over all iterations.

The elemental maps are then updated via Eq. (4.38) with the new rates Λk+1. They are

not updated similarly to Eq. (4.52) since the endmembers of Del are adjusted with new

data.

4.6.2. Optimizing One Elemental Map

The optimization of a single elemental map (i.e. w is a standard unit basis vector) as

opposed to multiple maps provides the greatest gains for that map. Generally, the more

maps that are included in the optimization, the smaller the gains since the elemental maps

have different high and low rate regions (and therefore higher and lower priority regions).

Single map optimization has grounding in reality too—sometimes the spectroscopist is

interested in a specific elemental distribution [53]. Here, we show the maximum potential

gains that can be achieved using our algorithm on one elemental map.

We compare different adaptive scans against a fast raster scan of 10 ms/px, which is

ten times faster than the original scan. There are two different initial uniform scans: a 2
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ms/px scan and a 5 ms/px scan. After each scan, we denoise the elemental maps; these

are used for the mask design instead of the raw elemental maps. The remaining time

to reach an average of 10 ms/px is reserved for the adaptive mask. Within each time

distribution, we apply three different masks: the PKLD mask (ρ = −1), uniform mask

(ρ = 0), and MSE mask (ρ = 1).

Since the PKLD mask focuses on low counts, we establish a count rate minimum for

each elemental map to avoid oversampling the background. The pixels that meet or exceed

this threshold are considered to be a part of the foreground. The threshold is applied to

the uniform and MSE masks as well. Additionally, we set the minimum dwell time for

every pixel as 1 ms to guarantee that each pixel receives some additional scan time in an

effort to simulate the maximum speed of the gantry. We do not set the maximum dwell

time for foreground pixels, but note that no dwell time ever exceeded the original scan

time of 100 ms/px. Once the mask for a single elemental map is found, we resample the

XRF volume, following the steps outline in Eqs. (4.51) and (4.52) for updating the time

and XRF volume respectively. The elemental maps are updated using PyMca with the

new XRF volume, then denoised as a final step.

There are two evaluation criteria: root mean-squared error (RMSE) and PKLD, which

provide a measure of the absolute and relative error respectively. There are also two sets

of pixel data used for comparison: the foreground pixels only, as well as all the pixels.

The foreground pixel comparison is appropriate since there are regions in all the elemental

maps where there are negligible rates; knowledge of an element’s absence in a region of

interest is usually sufficient. We note that the foreground error is calculated using the

foreground pixels of the ground truth, which may have discrepancies with the foreground



124

determination in the denoised maps. The results for each map of interest are detailed in

Table 4.1 for foreground errors and Table 4.2 for all errors. Four different intermediary

results are shown in Fig. 4.5. Further, we test the algorithm when there is no denoising

after the initial scan. The adaptive scanning mask is then based on the raw elemental

map data. These results are in Table 4.3 for foreground errors and Table 4.4 for all errors.

Two additional tables, Tables 4.5 and 4.6, show the foreground and all errors respectively

using denoising after the first scan, but not after the second scan like Tables 4.1–4.4.

The errors here are calculated from the raw count rates of all the collected data that the

spectroscopist would actually measure.

4.6.2.1. Analysis. We start our analysis by comparing across Tables 4.1–4.6. The ben-

efits of denoising at the final step are apparent since the non-denoised errors of Tables 4.5

and 4.6 are all greater than that of the denoised maps. However, we do acknowledge that

denoising can be unappealing for some spectroscopists. With this assumption, we still

tend to outperform, particularly with an initial scan of 5 ms/px and an MSE mask for

the remaining 5 ms/px average scan. While this mask performed best in 13 errors to the

10 ms/px uniform’s 5, the 5 ms/px adaptive scan outperformed the uniform mask in 18

out of 24 errors. Our mask shows that it can often produce the best raw data compared

to a standard raster scan.

Our next analyses focus on Tables 4.1–4.4 where we perform denoising on the data

after the second scan. First note that the denoised masks tend to outperform the non-

denoised masks. By removing some of the noise prior to generating the mask, more

time is allocated to underestimated pixel locations. Without the denoising, the mask

assumes that the actual rate is quite low, and assigns an incorrect prioritization. This is
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particularly noticeable in maps with high levels of noise (e.g. Sn L). In maps of low noise,

we see minor improvements (e.g. Fe K), or even minor detriments to using the denoised

map (e.g. Cu K). For fast XRF scans, we recommend denoising the elemental maps.

However, as the scans last longer and longer, it may be acceptable to forgo the denoising

steps. Cu K and Fe K have a high PSNR, so denoising offers minimal improvements to

the mask design.

When comparing the different initial dwell times, the results vary by mask. In maps

of low levels of noise, it is more beneficial to design the mask based on a faster scan

(e.g. Cu K). Of course, if the data is less noisy, the mask will be closer to the true

underlying mask, and therefore will have a better overall performance. Maps with higher

noise levels prefer the longer dwell times. Even after using the denoising algorithm, the

noise levels may still be too high to get an accurate count rate estimation. The Hg M map

is a good example where the noise levels are so high that it is best to perform a uniform

scan given the allotted time. The Ca K map has a moderate level of noise, and given an

appropriate initial scan time of 5 ms/px, the adaptive mask performs better than the 10

ms/px uniform scan in terms of the MSE. An initial scan time of 2 ms/px is too fast for

this mask as it performs worse compared to the 5 ms/px initial scan.

Within each time split, the MSE mask often outperforms the other masks in both

RMSE and even PKLD; this is particularly true for the maps with low levels of noise.

Noisier maps tend to have a preference for either the uniform mask or the PKLD mask.

Relative errors tend to be amplified in these maps since the order of magnitudes can differ

between the estimates and ground truth. The lower count regions mostly have these large
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(a) Au L mask, display
range [1, 40] ms

(b) Au L + Hg L mask,
display range [1, 31] ms

(c) Au L + Hg L +
Cu K mask, display
range [1, 22] ms

(d) Au L + Hg L +
Cu K + Fe K mask,
display range [1, 18] ms

Figure 4.6. MSE masks with an average of 8 ms/px designed from denoised
2 ms/px scan elemental maps. Each following mask includes an additional
elemental map. (a) Au L mask alone. (b) Joint Au L and Hg L mask. (c)
Joint Au L, Hg L, and Cu K mask. (d) Joint Au L, Hg L, Cu K, and Fe K
mask.

magnitude differences, which also contribute to a larger RMSE. If the masks focus the

dwell time here, they can effectively minimize the RMSE and PKLD at the same time.

4.6.3. Optimizing Multiple Elemental Maps

Multiple maps can be optimized at the same time, but there are diminishing returns with

each additional map. We choose to optimize the maps that are the most susceptible to

our algorithm to illustrate the case for using multiple maps. Elemental maps Au L, Cu K,

Fe K, and Hg L showed some of the greatest potential for our algorithm.

We compare four different sampling masks to the standard uniform scan: (1) Au L

alone, (2) Au L and Hg L, (3) Au L, Hg L, and Cu K, and (4) Au L, Hg L, Cu K, and

Fe K. Specifically, each 8 ms/px average mask was found from the denoised elemental

maps A∗ at an initial rate of 2 ms/px. We only consider the MSE mask optimization here
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since it performed the best for these elements in the single map optimization case. In

order to balance the weights between each map, we found it best to normalize each map

such that the maximum rates of each map are identical. If we let Θ denote the maps to

design a mask around, map weight vector w is defined as

(4.53) wi =
max

(
{A∗j}j∈Θ

)
max (A∗i )

for i ∈ Θ

and is zero otherwise.

The four masks are displayed in Fig. 4.6. Notice how the high count regions of each

map are represented in the joint mask. The Au L and Hg L mask of Fig. 4.6b for example

primarily resembles the Hg L mask, but it also includes the lettering from the Au L map

in the top right for example (which is not present in the Hg L map). Similarly, there are

many high and medium count rate regions in the Cu K map represented in Fig. 4.6c such

as the blue sky. The Fe K map has high count rates in the wooden crosses as well as the

weaponry, and these details are highlighted in the mask of Fig. 4.6d.

As more maps are added even beyond the four here, it becomes clear why a uniform

mask generally works so well: there are differing areas of high count rates in each map.

This decreases the range of dwell times with an increasing number of mask elements. This

is especially true when the weighting scheme of Eq. (4.53) is applied because we normalize

the rates so that no one map can overpower any other. The standard deviation of the

dwell times understandably decreases as well—from 6.86 ms in the Au L map to 3.18 ms

in the four map mask. Both of these facts suggest that with more maps added, the more

each dwell time will converge towards the mean.



128

4.6.3.1. Analysis. Table 4.7 contains the foreground errors of these masks. A primary

conclusion is that the best performing mask for each element is when that element is first

included in the mask optimization. The Au L mask alone is best for Au L, but as more

elements are included in the mask design, the Au L map increases in RMSE. The dwell

times are more and more diverted from the high Au L count rate regions. The other masks

also enjoy improvements, albeit diminishing, when their respective map is added to the

optimization. When Hg L is included, there is a 21% decrease in RMSE over the standard

uniform scan, but this is only a portion of the 32% decrease when Hg L is optimized alone.

For Cu K, there is a 14% decrease when three maps are included in the mask, which is

less of a decrease than 34% for the sole Cu K mask. Fe K when it is added to a four-map

mask sees a 7% decrease as opposed to a 17% decrease. Interestingly, even with four

different elemental maps incorporated into the mask, they all outperformed the standard

raster scan in terms of RMSE, and all but Au L show improvements in the PKLD.

We also illustrate the effects of these masks on the elements that were not included

in the mask. The Fe K map decreases in RMSE and PKLD with each additional map,

which supports the theory around the strength of the uniform mask: every additional

map pushes the mask closer to a uniform scan. The same can be said for the Cu K map

in that it performs worst with the Au L map alone, yet sees an error reduction when the

Hg L map is included.

Overall, these results show that there is great potential for our algorithm in terms of

optimizing certain elemental maps and in terms of a speedy acquisition. Future work will

test the mask design in a real world scenario.
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4.7. Conclusion

We have provided an algorithm to smartly acquire XRF samples. After a first scan,

an adaptive mask can be designed based on the collected XRF data. The choice of mask

is also adjustable in many ways: we are able to design masks that focus on high count

rates, low count rates, or equally amongst the rates. Control of the mask is even more

refined as it allows for setting a dwell time range for each individual pixel. This allows

spectroscopists to adjust the sampling mask to best suit their gantries. These masks work

well, particularly the MSE-based mask in minimizing the RMSE and PKLD errors. A

negligible amount of time is needed to carry out the mask optimization, allowing for a

practical implementation in existing gantry systems.

Denoising plays a key role as well. After the first scan, it is often beneficial to denoise

the maps prior to generating the mask. In particular, noisy maps see a benefit in a

denoised sampling mask to mitigate erroneous oversampling and undersampling. Once

the second batch of XRF is recorded according to the adaptive sampling mask, further

denoising provides the greatest benefit.

While we did not discuss here, future work will look at finding the optimal number of

scans. Perhaps three, four, or even more scans would be even more beneficial than a two

pass scheme. The number of maps included in the mask design at each stage would be an

interesting study as well. Testing our mask design in domains outside of XRF imaging is

also a possibility that should be explored. Until then, we believe our algorithm is a great

step in making adaptive XRF scanning more practical for spectroscopists, whether it is

used for speedy acquisitions or reducing error in the elemental maps in full length scans.
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Foreground Pixel Errors with Denoising after each Scan

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 194.76 190.27 154.63* 225.44 197.15 173.13* 214.52

PKLD 50.99 49.26 47.12* 51.40 50.42 49.25* 41.67

Ca K
RMSE 191.09 187.56 185.84* 154.69 144.51 143.21* 148.76

PKLD 63.65* 63.84 65.00 37.42 36.84* 39.65 28.20

Cu K
RMSE 1201.85 848.17 749.06* 1239.68 962.72 766.23* 1082.28

PKLD 33.61 26.33 24.84* 37.58 29.03 26.27* 35.51

Fe K
RMSE 364.12 336.56 323.57* 402.87 348.88 325.87* 389.95

PKLD 24.67 23.68* 24.03 21.28 18.79* 18.93 22.56

Hg L
RMSE 553.56 476.50 435.86* 626.46 527.57 485.46* 639.67

PKLD 45.22 38.80 36.82* 53.41 46.23 44.59* 64.97

Hg M
RMSE 261.50* 262.84 266.54 207.13 198.27* 200.73 184.99

PKLD 76.30* 78.66 81.21 37.13 35.83* 40.42 27.42

Mn K
RMSE 134.58 129.86 115.08* 140.56 123.00 113.51* 129.42

PKLD 13.89 13.78 13.04* 11.89 10.56* 10.61 10.98

Ni K
RMSE 171.51 152.15 138.62* 176.23 155.84 138.72* 163.48

PKLD 11.27 10.09 9.52* 11.46 10.09 9.34* 10.58

Pb L
RMSE 1642.26 1646.78 1640.72* 1561.92* 1587.95 1640.64 1552.87

PKLD 25.34* 25.55 25.48 22.84* 23.98 26.22 23.03

Pb M
RMSE 584.16* 590.69 592.05 518.53* 524.42 534.38 518.96

PKLD 122.92* 125.09 128.53 56.22* 62.00 70.30 57.15

Sn L
RMSE 128.02 126.66* 127.30 129.36 120.80 119.06* 119.61

PKLD 43.56* 43.65 45.57 44.31 39.26 38.30* 32.39

Ti K
RMSE 132.58 106.38 101.77* 120.23 92.64 83.43* 158.87

PKLD 72.52 71.63* 73.86 61.93 60.78* 61.26 34.82

Table 4.1. Table of foreground pixel errors for single map optimization with
denoising prior to generating the mask and after the second scan. Each
row denotes the elemental map to optimize and its corresponding errors.
Amongst each element, asterisks denote the best performing mask for a
given time length. Bold values denote the best performing mask across all
time lengths.
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All Pixel Errors with Denoising after each Scan

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 162.60 161.22 141.12* 191.21 172.99 159.24* 181.78

PKLD 43.93 43.79 43.28* 51.07 49.95 49.50* 42.72

Ca K
RMSE 143.74 141.43 140.43* 118.76 112.07 111.26* 115.16

PKLD 44.24* 44.36 45.05 29.75 29.47* 30.95 23.79

Cu K
RMSE 914.24 679.49 619.67* 939.71 750.54 627.52* 825.47

PKLD 34.39 30.75 29.98* 35.39 29.95 29.19* 31.68

Fe K
RMSE 280.53 264.56 257.93* 296.35 263.37 251.00* 284.89

PKLD 37.79 37.59* 37.98 26.17 25.17* 25.66 21.33

Hg L
RMSE 346.90 321.68 316.11* 390.89 356.64 347.19* 402.17

PKLD 44.32 44.25* 46.87 52.51 52.02* 53.38 56.18

Hg M
RMSE 360.13* 360.33 363.95 338.97 336.57* 339.38 331.26

PKLD 72.19* 74.32 76.74 37.61 36.69* 40.84 28.26

Mn K
RMSE 109.69 107.05 96.35* 114.18 101.81 95.60* 106.16

PKLD 14.62 14.75 14.28* 12.58 11.88* 12.11 11.56

Ni K
RMSE 150.70 139.01 131.22* 157.91 145.29 135.93* 148.61

PKLD 12.84 12.43 12.28* 13.77 13.11 12.95* 12.92

Pb L
RMSE 1685.24* 1690.87 1686.73 1591.01* 1620.38 1677.23 1573.47

PKLD 32.83* 33.07 33.07 27.78* 29.09 31.48 26.30

Pb M
RMSE 567.18* 573.55 574.95 504.34* 510.17 519.75 505.05

PKLD 120.35* 122.54 125.89 56.85* 62.54 70.54 57.37

Sn L
RMSE 105.53 104.40* 104.62 106.23 99.38 98.09* 99.64

PKLD 35.70 35.59* 36.54 35.25 31.56 30.77* 27.81

Ti K
RMSE 52.03 45.85 44.21* 48.75 42.56 40.80* 56.43

PKLD 23.85 23.74 23.09* 25.00 24.92* 25.13 12.88

Table 4.2. Table of all pixel errors for single map optimization with denois-
ing prior to generating the mask and after the second scan. Each row de-
notes the elemental map to optimize and its corresponding errors. Amongst
each element, asterisks denote the best performing mask for a given time
length. Bold values denote the best performing mask across all time lengths.
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Foreground Pixel Errors with Denoising after Scan 2 only

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 218.42 174.48 162.65* 406.40 354.16 279.25* 214.52

PKLD 48.83 48.06* 48.75 93.90 86.11 80.41* 41.67

Ca K
RMSE 198.42 195.74 194.92* 178.33 171.98 171.09* 148.76

PKLD 68.65* 69.22 69.81 60.07 59.54* 60.84 28.20

Cu K
RMSE 1240.07 857.44 713.31* 1242.86 945.05 754.81* 1082.28

PKLD 36.02 27.67 25.95* 38.47 29.67 26.80* 35.51

Fe K
RMSE 375.92 339.06 323.58* 406.19 352.76 325.24* 389.95

PKLD 24.55 22.83* 23.46 22.15 19.58 19.14* 22.56

Hg L
RMSE 607.14 523.59 468.00* 661.91 567.63 504.57* 639.67

PKLD 54.31 45.86 41.40* 61.02 53.14 47.19* 64.97

Hg M
RMSE 275.29* 275.62 279.94 223.58 223.20* 224.18 184.99

PKLD 85.94* 87.25 90.75 54.89* 55.54 56.48 27.42

Mn K
RMSE 129.82 120.31 116.92* 155.39 135.54 123.84* 129.42

PKLD 13.35 13.13* 13.32 11.95 10.19 9.75* 10.98

Ni K
RMSE 169.43 146.99 135.76* 191.38 161.08 141.63* 163.48

PKLD 10.87 9.99 9.60* 11.51 9.66 8.77* 10.58

Pb L
RMSE 1649.94 1638.62 1636.63* 1618.72 1586.83* 1647.80 1552.87

PKLD 25.55 25.30* 25.39 24.48 23.95* 26.09 23.03

Pb M
RMSE 604.47 599.03 597.38* 532.99 530.13 529.48* 518.96

PKLD 135.96 135.72* 137.22 67.92 67.68* 69.25 57.15

Sn L
RMSE 141.91 140.17* 142.12 148.51* 149.18 149.61 119.61

PKLD 45.05* 45.48 47.67 57.89* 58.67 60.06 32.39

Ti K
RMSE 137.06 115.75 106.57* 392.67 240.87 166.17* 158.87

PKLD 83.39 82.99 82.69* 51.73 34.38 30.31* 34.82

Table 4.3. Table of foreground pixel errors for single map optimization
without denoising prior to generating the mask but with denoising after
the second scan. Each row denotes the elemental map to optimize and
its corresponding errors. Amongst each element, asterisks denote the best
performing mask for a given time length. Bold values denote the best per-
forming mask across all time lengths.
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All Pixel Errors with Denoising after Scan 2 only

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 179.54 150.22 143.15* 180.53 168.76 153.90* 181.78

PKLD 43.71 42.54* 42.82 49.79 49.08 48.45* 42.72

Ca K
RMSE 148.71 146.84 146.34* 134.36 130.05 129.40* 115.16

PKLD 46.96* 47.23 47.56 41.62 41.30* 41.80 23.79

Cu K
RMSE 941.42 688.32 602.30* 937.06 736.57 621.10* 825.47

PKLD 35.42 31.26 31.16* 34.65 29.88 29.58* 31.68

Fe K
RMSE 286.31 264.73 256.61* 296.58 264.33 249.16* 284.89

PKLD 36.94 36.33* 37.02 25.93 25.07* 25.44 21.33

Hg L
RMSE 366.85 336.37 320.88* 397.19 362.78 345.95* 402.17

PKLD 43.46 42.71* 43.68 49.36 48.55* 49.73 56.18

Hg M
RMSE 366.91 365.30* 367.77 348.18 344.60 343.07* 331.26

PKLD 80.61* 81.74 84.99 53.50* 54.10 54.90 28.26

Mn K
RMSE 106.80 100.11 97.78* 113.31 101.94 95.80* 106.16

PKLD 14.42 14.31* 14.55 12.77 12.13* 12.22 11.56

Ni K
RMSE 151.08 137.02 129.92* 156.00 140.50 131.04* 148.61

PKLD 13.05 12.60 12.36* 13.15 12.43 12.07* 12.92

Pb L
RMSE 1711.31 1701.20 1700.70* 1655.79 1625.09* 1672.20 1573.47

PKLD 34.12 33.93* 34.07 29.98 29.41* 29.98 26.30

Pb M
RMSE 586.77 581.56 580.02* 517.22 514.77 514.28* 505.05

PKLD 132.85 132.68* 134.22 68.91 68.80* 70.31 57.37

Sn L
RMSE 118.25 116.74* 118.13 109.28* 109.62 109.58 99.64

PKLD 39.78* 39.97 41.40 38.12* 38.41 38.79 27.81

Ti K
RMSE 53.66 48.44 46.50* 61.63 48.86 44.13* 56.43

PKLD 28.55* 28.63 28.61 26.94 26.74 26.69* 12.88

Table 4.4. Table of all pixel errors for single map optimization without de-
noising prior to generating the mask but with denoising after the second
scan. Each row denotes the elemental map to optimize and its correspond-
ing errors. Amongst each element, asterisks denote the best performing
mask for a given time length. Bold values denote the best performing mask
across all time lengths.
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Foreground Pixel Errors with Denoising after Scan 1 only

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 428.73 378.51 359.55* 510.68 404.43 349.15* 428.20

PKLD 128.61 114.07 108.09* 172.83 131.42 108.65* 136.55

Ca K
RMSE 304.98 288.61 284.33* 325.59 263.68 248.66* 277.37

PKLD 107.16 104.48* 104.84 97.79 85.07 83.86* 78.88

Cu K
RMSE 1209.07 1005.01 941.87* 1234.00 996.89 911.73* 1122.26

PKLD 72.72 66.86* 67.10 58.90 50.10* 51.19 56.51

Fe K
RMSE 624.00 547.78 520.91* 657.87 524.16 483.14* 597.52

PKLD 104.13 98.30 97.73* 65.14 55.50* 55.21 56.51

Hg L
RMSE 821.84 649.65 572.58* 936.20 696.69 594.53* 859.05

PKLD 99.84 80.32 73.88* 104.56 75.61 65.07* 104.83

Hg M
RMSE 452.72 423.56 418.90* 457.04 393.76 373.09* 377.56

PKLD 125.72 121.85* 123.33 113.24 101.76* 102.82 84.44

Mn K
RMSE 246.49 211.58 201.61* 274.11 212.30 189.98* 230.95

PKLD 61.04 57.43* 57.92 48.78 39.90 39.31* 36.39

Ni K
RMSE 256.14 238.35 231.22* 281.62 231.14 212.53* 242.11

PKLD 44.64 42.30 42.06* 37.53 29.72 27.61* 28.39

Pb L
RMSE 2690.87 2646.71 2629.81* 2987.48 2780.17 2699.75* 2648.69

PKLD 66.46 64.95 64.87* 78.92 71.13 70.03* 64.65

Pb M
RMSE 1008.63 920.43 908.07* 1003.69 891.38 839.64* 866.64

PKLD 244.66 229.91* 242.41 184.54 170.71* 177.14 148.38

Sn L
RMSE 291.13 256.48 253.58* 324.42 242.21 222.55* 271.18

PKLD 102.10 92.86* 94.26 109.97 89.56 86.59* 92.08

Ti K
RMSE 189.96 156.47 146.46* 241.75 149.67 117.98* 221.27

PKLD 43.11* 43.14 43.63 50.73 44.74 44.08* 58.34

Table 4.5. Table of foreground pixel errors for single map optimization with
denoising prior to generating the mask, but without denoising after the
second scan. Each row denotes the elemental map to optimize and its
corresponding errors. Amongst each element, asterisks denote the best
performing mask for a given time length. Bold values denote the best
performing mask across all time lengths.
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All Pixel Errors with Denoising after Scan 1 only

2 + 8 ms/px Mask 5 + 5 ms/px Mask 10 ms/px

PKLD Uniform MSE PKLD Uniform MSE Uniform

Au L
RMSE 358.27 346.93 343.01* 405.20 399.41 398.38* 389.69

PKLD 144.15 142.21 141.25* 157.42 156.43* 156.78 150.19

Ca K
RMSE 225.33 215.25 212.37* 222.26 206.80 204.29* 216.03

PKLD 93.38 90.24* 91.72 76.51 73.33* 74.88 72.41

Cu K
RMSE 1017.20 912.98 882.57* 987.43 848.18 817.02* 893.58

PKLD 114.80 113.13* 114.75 70.56 67.02* 71.12 56.81

Fe K
RMSE 470.57 435.21 425.21* 477.25 406.08 393.10* 443.10

PKLD 125.59 124.94* 126.21 77.69 74.22* 78.12 60.68

Hg L
RMSE 502.25 462.37 452.51* 530.41 471.56 458.41* 528.54

PKLD 98.23 96.68* 98.90 86.65 84.23* 85.81 82.99

Hg M
RMSE 489.95 476.52 470.26* 499.64 470.81 462.75* 465.08

PKLD 102.09 100.88* 101.11 96.68 87.47 87.38* 84.34

Mn K
RMSE 203.76 175.19 168.77* 218.81 184.40 178.05* 191.24

PKLD 49.44 47.37* 49.49 46.08 42.94* 47.79 39.89

Ni K
RMSE 242.11 235.33 234.56* 241.04 230.03* 233.65 225.11

PKLD 53.06 52.96* 54.10 37.87 37.68* 41.45 33.05

Pb L
RMSE 2651.60 2636.88 2620.87* 2836.43 2774.80 2734.71* 2637.82

PKLD 65.67 65.43 65.06* 72.40 71.44* 71.77 64.54

Pb M
RMSE 912.70 859.23 842.96* 933.46 864.86 838.97* 841.76

PKLD 181.16 173.49* 181.59 164.97 158.71* 166.71 147.61

Sn L
RMSE 251.47 218.82 206.33* 242.27 220.82* 221.85 224.99

PKLD 99.84 90.84 88.85* 101.29 92.07* 93.65 94.42

Ti K
RMSE 100.55 94.82 94.41* 104.08 97.56 96.99* 96.55

PKLD 65.88* 65.97 66.38 61.20 60.96* 61.53 47.73

Table 4.6. Table of all pixel errors for single map optimization with denois-
ing prior to generating the mask, but without denoising after the second
scan. Each row denotes the elemental map to optimize and its correspond-
ing errors. Amongst each element, asterisks denote the best performing
mask for a given time length. Bold values denote the best performing mask
across all time lengths.
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Au L + Hg L + Cu K + Fe K Uniform

Au L
RMSE 154.63* 178.39 180.39 189.75 214.52

PKLD 47.12* 50.59 48.85 49.81 41.67

Hg L
RMSE 704.24 504.75* 558.60 586.83 639.67

PKLD 70.59 47.29* 55.60 59.81 64.97

Cu K
RMSE 1448.58 1436.60 926.46* 945.65 1082.28

PKLD 51.27 50.67 32.06* 32.90 35.51

Fe K
RMSE 438.15 427.97 399.09 362.72* 389.95

PKLD 29.28 26.79 24.05 21.62* 22.56

Table 4.7. Foreground errors for the masks in Fig. 4.6. Each column rep-
resents a mask. Asterisks denote the best performing adaptive mask, and
bold values denote the best performing mask including the regular uniform
scan.
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CHAPTER 5

Adaptive Macro X-Ray Fluorescence Scanning via Predicted

Image Volumes

Abstract

The time to acquire a macro x-ray fluorescence image of paintings is often a timely

process on the order of hours or even days. This is sometimes intractable for spectro-

scopists and other parties with interest in the painting. Image processing algorithms exist

that can address these concerns, but are rarely, if ever, widely implemented by spectro-

scopists. We propose a novel adaptive sampling technique that is easy to implement,

and allows for broad customization depending on the goals of the scan. By quickly and

iteratively collecting XRF data, higher quality data can be recorded with or without the

use of denoising algorithms.

5.1. Introduction

In the past decade, cultural heritage research has relied more and more on x-ray fluo-

rescence (XRF) imaging. Of all the historical artifacts and objects, paintings in particular

are the focus of many an XRF-related publication since they are (relatively) flat objects

easy to image. This imaging modality is powerful in its ability to find the distribution of

chemical elements throughout the paint layers of a painting. Other analytical methods

involve extracting paint samples from the painting itself—clearly an undesirable approach
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since these paintings are unique and often hold significant cultural and even monetary

value. XRF imaging captures the elemental distributions across the entire painting (not

just a small sample) without damaging it. These data include the response from paint

layers below the surface as X-rays can penetrate the painting further than visible light.

The distributions are then analyzed according to the goal of the XRF scan. For example,

XRF has been used for painting conservation [7] or authentication [6].

Modern XRF systems are only able to record data one pixel at a time, often requiring

many hours or even days to obtain a full sample [9, 10, 11, 12]. Many factors determine

the total scan time, such as the painting size, the XRF spot and step sizes, and dwell

time at each pixel. Fig. 5.1 shows a color image of the painting Raising of the Cross by

Bernardo Biti; it was originally scanned with a step size of 0.5 mm and a dwell time of

100 ms/px. With these settings, over 6.5 hours of was required for a painting not much

larger than a standard A4- or Letter-sized paper.

Recent software and algorithmic advancements quicken the collection process by em-

ploying signal processing techniques [54] regardless of the XRF hardware. Subsam-

pling and inpainting for example allows for step size increases or irregular sampling pat-

terns [35, 36, 31, 37]. Other efforts optimize the dwell time at each pixel outside of a

binary sample/skip approach to reduce the scan time [39, 40, 30].

In this chapter, we propose an extension of the work by us. Our work uses a two-

stage sampling procedure that strictly complies with time requirements often imposed by

outside owners of the painting. A first fast uniform scan collects initial XRF data. Then,

depending on the chemical elements of interest, a second adaptive mask is designed to

better sample areas of interest using the remaining time. Our work aims at replacing the
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initial uniform mask with a mask that predicts where to sample to further reduce the

error.

Instead of a uniform mask to begin sampling, we propose sampling a small subset

of the pixels strategically selected to represent a painter’s palette. Then, we “repaint”

the painting by mixing the colors in the palette (and therefore mix the XRF spectra).

We then extract the elemental distribution maps from the predicted XRF volume. These

predicted maps determine the first full sampling mask.

We recognize that there are issues with our approach, namely that the color image only

captures surface level information; hidden paintings can easily make the XRF estimation

quite poor. Other fast imaging modalities outside of RGB that can capture sub-surface

data may provide beneficial supplementary information. However, this chapter is meant to

be exploratory in whether it is possible to use a few samples to design an initial sampling

pattern. We will show that it is, in fact, possible, with some reliance on prior knowledge

in pigment science, art history, and related fields.

5.2. Related Work

The primary contribution of this work is the use of a predicted XRF volume to inform

a real XRF scan. We first discuss XRF prediction when no or a minimal amount of XRF

samples are available. Little research on this front has been conducted since underpaint-

ings are known to exist in some historical paintings [1, 65, 66, 4]. These subsurface layers

can contain not only different pigments, but different structures altogether that depict

entirely different scenes. This makes it challenging, if not near impossible, to estimate

the XRF signals using the color image alone should an underpainting exist. If there is no
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underpainting, we examine if we can harness any of the predicted XRF data for better

acquiring actual XRF data.

We also address some existing XRF sampling algorithms that researchers proposed to

shorten the total scan time. These publications are more abundant than ones on XRF

prediction, and each have their own strengths and drawbacks that we enumerate.

5.2.1. XRF Prediction

In XRF applications, there are two stages: acquiring the volume, and analyzing the

volume. Oftentimes the goal of XRF analysis oftentimes is identifying the pigments used

and where they exist in the painting. This has been studied extensively across many

different paintings. Recent developments use learning-based methods to automatically

identify these pigments [55, 67, 68]. Our problem here is roughly the inverse where we

need to generate XRF data from color data.

Some work has been proposed for predicting XRF data. Martin-Ramos and Chiari

for example provide a simple tool to predict the XRF data using any combination of

appropriate imaging modalities (e.g. RGB, X-ray diffraction, etc.) [69]. They assume

registered, full volume data are available for the chosen modalities except XRF. The XRF

data in their experiments are sparse with tens to low hundreds of samples, from which

their pigments are found. A clustering algorithm assigns pigments to the unsampled

pixels via a straightforward least-squares minimization of all the imaging data as well as

the location.

This algorithm inpaints pigment data, but it is mainly applicable when other sub-

surface image data is available. A recent proposal by Bombini [70] attempts to recreate
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the XRF signal using a color image and a pigment database. Bombini suggests using a

color similarity score between all the entries in the pigment database and each pixel of

the color image. For each pixel, these scores become the weights for mixing the known

XRF signals in the pigment database via a Monte Carlo method. Once all the mixtures

at each point are found, the XRF volume can be analyzed as if it were true data.

We want a merge between the two options whereby we are able to mix the XRF

signals given a few samples from the painting. This would provide a best-of-both-worlds

approach where the XRF data is not entirely hallucinated, and it allows for a mixture of

signals. We note that no external information outside of the RGB image is required for

our proposed method.

5.2.2. XRF Subsampling

There are many factors in choosing the direction for XRF subsampling algorithms. As

was mentioned, there are generally two classes of subsampling techniques: binary/discrete

dwell times and continuous dwell times. Binary on and off sampling occurs in inpaint-

ing [36] and super-resolution [35, 71]. Here, the unsampled locations are inferred using

image processing techniques from the existing data. Typically these algorithms are based

in dictionary learning. These techniques may not be ideal for XRF analysis since the

predicted pixels have not been sampled. In certain applications such as conservation,

there should be some samples at every point to ensure that the predicted data has some

grounding in reality. This provides extra insurance of sorts to ensure the elemental data

is as we would expect.
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Other algorithms such as the one proposed by Betterton et al. [40] sample the entire

painting at different discrete time steps. A first unfocused pass collects blurry data, but at

a quick speed. Their reinforcement learning algorithm then determines where to sample

for the next pass using progressively more focused apertures. This is a good algorithm,

although strict time constraints cannot reliably be met, and some paintings have enough

detail where the entire painting could be the region of interest.

We choose to extend the work by us because it (1) can follow strict time requirements,

(2) sample every location at the desired resolution, and (3) is fast, modular, and easily

customizable for any painting. We designed a sampling mask based on data collected from

a fast scan, then denoise the accumulated data. Instead of a standard scan to initialize

our algorithm, we want to use the predicted XRF data for a more informed first scan.

5.3. Formulation

We begin the formulation by outlining our strategy. First, we want to capture the

XRF emissions of a select few pixels. This set of pixels should try to capture the paint

palette that the painter used as best as possible. Next, we try a paint mixing strategy:

using the paint palette, we recreate the color image using those pixels alone. The amount

of mixing for each paint should be correlated with an equivalent mixture in the XRF

domain.

5.3.1. Pixel Selection

In order to establish a paint palette, we need to select representative pixels in the color

image, IRGB ∈ [0, 1]3×H×W where H is the image height and W is the image width. There
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Figure 5.1. Bernardo Biti, Raising of the Cross, 31 × 23 cm2, The Thoma
Foundation, inv. no. 2017.72, oil on copper.

are a multitude of ways to choose representative pixels, primarily via clustering algorithms

or matrix factorization approaches. Ideally, the selection algorithm we use has two special

properties. First, the cluster centers (or matrix endmembers) are themselves data points

within the painting. This is here in order to make the selection process less ambiguous;

if, for example, a center is not represented in the data, which location should we sample?

We aim to avoid this ambiguity with our algorithm selection. Further, the selected points

should be well-suited for nonnegative mixing. Because we are mixing paints, it does not

make physical sense to have negative amounts of mixing given the palette. This suggests
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that we pick the colors most unlike every other color so that we span the color space as

best as possible.

With these characteristics in mind, we turn to simplex volume maximization (SiVM)

[72], which satisfies both of our criteria. SiVM’s goal is to select the best P data points

that maximize the volume of the convex hull. It has been applied in XRF data analysis

by Alfeld et al. [28]. This is an ideal algorithm for our purposes since the selected data

exist in the color image, and it selects the extreme points of the dataset, which can be

used for better image reconstruction. We refer the reader to the work by Thurau et al. for

the full details of their SiVM algorithm.

The RGB data may work well, but we look to other color spaces. Instead of using

the RGB data, we opt for the CIELAB color space to mimic how people perceive colors.

Small differences in color in the RGB space may be larger in the CIELAB space and

vice-versa. This should be taken into account since different perceptual colors are more

likely to be different paints (and therefore have different XRF responses). If the paints

were not very perceptually different, it is more understandable that the paints arose from

a mixture. Our palette selection represented in RGB space, DRGB ∈ [0, 1]3×P , is

(5.1) DRGB = RGB
(
SiVM

(
CIELAB

(
IRGB

)))
where RGB (·) converts the CIELAB data to RGB. The CIELAB image is found through

a conversion CIELAB (·) from the RGB image.
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5.3.2. Mixture Model: Color

With a palette selected, we now want to “repaint” the painting. In order to do this, it

is important to remember some elementary color theory. Namely, we are working with

paints, which undergo subtractive color mixing. Mixing a red paint with yellow paint

produces an orange paint, for example. This is different in RGB space: red light and

green light for example produce yellow light. Thus, we need to once again change the

color representation from the additive RGB to a subtractive color space. CMY is that

subtractive color space, often used in color printing. It is complementary to the RGB

space:

ICMY
i,h,w = 1− IRGB

i,h,w(5.2)

DCMY
i,p = 1−DRGB

i,p(5.3)

convert the RGB image and dictionary respectively into CMY space. When we mix the

paints in CMY, it mixes similarly to paints.

Now, we can repaint the painting. Using our palette as a dictionary, we want to

determine the amount of mixing that occurred. This is a nonnegative matrix factorization

problem with one of the matrices known. The abundance (i.e. mixture) for each pixel is

found by

(5.4) ACMY = arg min
A≥0

1

PHW

∑
j∈(i,h,w)

(
ICMY
j −

(
DCMYA

)
j

)2



146

where ACMY ∈ RP×H×W
+ is the abundance volume. The matrix-tensor multiplication is

carried out similarly to matrix multiplication as

(5.5)
(
DCMYA

)
i,h,w

=
P∑
p=1

DCMY
i,p ·Ap,h,w.

A plethora of solvers exist to solve the nonnegative minimization problem of Eq. (5.4).

Once we have the mixture amounts, we can now move into the XRF domain.

5.3.3. Mixture Model: XRF

When the pixels were selected for the color dictionary, we collect the XRF data there.

The underlying, unknown XRF rates Ψ ∈ RC×H×W
+ determine the samples we measure.

The set of nonnegative numbers is denoted by R+, and the channels C denote the number

of different counting bins split by photon energy. The measurements are also dictated by

the initial time spent sampling, namely T 0 ∈ RH×W
+ ; the longer the sampling time, the

more photons arrive. The collection is modeled by a Poisson process that factors in these

traits:

(5.6) Xc,h,w = Poiss
(
T 0
h,w ·Ψc,h,w

)
where X is the XRF count volume. Of course, we initially only sample P pixels as

determined by the CMY dictionary. We represent these XRF data as a dictionary as well:

DXRF ∈ RC×P
+ is the XRF dictionary where each column corresponds to the columns of

the CMY dictionary. The choice of dwell time for these pixels should be at least as long

as a standard scan since there are only a few points selected. Noisy readings hamper the

initial mask design.
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Our theory is that we can mix the XRF spectra just as we mix the paints. We

acknowledge that this poses numerous problems, especially if underlying paintings are

present. However, our end goal is not to estimate the XRF volume. Rather, we want to

know if the estimation effectively informs an initial scan.

The estimated XRF volume is built from the P pixels of the XRF dictionary and the

CMY abundance:

(5.7) X̃ = DXRFACMY.

The dwell times are also mixed by the CMY abundance. If DTime ∈ R1×P
+ contains the

dwell times for the sampled locations, then the mixed dwell times T̃ 0 ∈ RH×W
+ are

(5.8) T̃ 0 = DTimeACMY.

The mask design algorithm requires that the count rates be used, so we normalize the

predicted counts by time:

(5.9) Λ̃c,h,w =
X̃c,h,w

T̃ 0
h,w

.

With the predicted rates, we can decompose the XRF volume into the elemental

distribution maps. These maps show the relative quantities and locations of each element

present in the painting. Because each element emits a characteristic XRF spectrum,

we can identify the elements present using a lookup table matching photon energy to

an element and its emission line. PyMca [15] is an open-source software that factors the

XRF volume by a dictionary of elemental responses, Del ∈ RC×M
+ , where M is the number
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of chemical elements identified as part of the painting. Each column is a Gaussian (or

a Gaussian mixture) fitted to the XRF data. The elemental distribution maps are thus

found via

(5.10) Ãel = arg min
A≥0

1

NA

∑
i∈(m,h,w)

(
Λ̃i −

(
DelA

)
i

)2

,

which is identical to how ACMY is calculated in Eq. (5.5). Each channel of the elemental

maps Ãel ∈ RM×H×W
+ contains the distribution for some corresponding elemental emission

line. With these distributions, we will see that so long as we are able to predict the high

and low count rate areas, we can better design an initial sampling pattern.

5.3.4. Mask Design

The mask design we follow is based on the count rates of the elemental maps that we

predict. It also depends on the minimization goal, typically the mean-squared error

(MSE) between the underlying rates and the predicted rates. The Poisson Kullback-

Leibler divergence (PKLD) is also used to measure the statistical distance between the

two rates, although this mask tends to underperform compared to the MSE mask. We will

therefore focus on the design of the MSE mask, which is the result of an optimization.

Given a total time constraint τ and pixel-wise dwell minima and maxima of Tmin and

Tmax respectively, the optimal scanning pattern is

(5.11) T 0 = arg min∑
h,w Th,w≤τ

Tmin
h,w≤Th,w≤T

max
h,w

1

NA

∑
m,h,w

wm

Ãel
m,h,w

Th,w
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where w ∈ RM
+ weighs the contribution for each elemental map. Not all the elemental

maps need to be optimized, so a subset of Ãel can be selected by setting entries of w to

zero. Eq. (5.11) is solved by allocating time primarily to the pixels where the MSE is

expected to decrease the greatest. We do not incorporate the predicted dwell time into

the denominator as a prior dwell time since it is just that—predicted, not an actual dwell

time. Once the mask is found, we perform an initial XRF scan.

5.4. Experiments

Our goal is to find an initial sampling mask that can outperform a traditional raster

scan. These masks will be designed for fast raster scans. Since the XRF predictions are

mixed based on surface level information, there should not be a heavy reliance on the

predictions. Thus, these masks can be beneficial for dictating the parameters of a first

XRF pass. Subsequent scans can be found using the same mask design instead based on

the data collected from the first scan.

5.4.1. Elemental Map Predictions

There are plenty of colors present in the painting, indicating a multitude of different

pigments and XRF spectra. We found that a palette of P = 25 colors chosen via SiVM is

sufficient to recreate the painting. The palette and locations of the samples are shown in

Fig. 5.2. In fact, the root mean squared error (RMSE) of the reconstruction in Eq. (5.4)

is 8.34× 10−4.

These 25 locations are then sampled at a rate of 100 ms/px, which is the original

sampling rate. After mixing the XRF samples according to Eqs. (5.7)), (5.8), and (5.9),
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Figure 5.2. (Left) Palette locations. (Right) Palette colors.

we decompose the count rate volume via Eq. 5.10. We identified 12 different elements

present in the volume of interest. Fig. 5.3 shows the predicted elemental distributions on

the right as well as the original, ground truth scan on the left for reference.

Clearly, there are discrepancies between the original scan and the predicted scan. Some

maps are more informative than others, though. For example, the predicted Hg L map

of Fig. 5.3e seems to be the most correlated: the high count rates of the ground truth

match the high count rates of the predicted map. There are, however, many overestimated

regions in the predicted map. The Sn L map, despite its noisiness, tends to overestimate

areas as well, but in this case is able to roughly predict areas without Sn L. The flag in
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the top right and the garment in the bottom middle are the clearest examples, but the

people also tend to have lower levels of Sn L than the average. Other predicted maps may

be visually appealing, but are anti-correlated to the ground truth. The predicted Pb L

map in Fig. 5.3i shows relatively low count rates for the people, but the ground truth

has them at higher count rates. Without knowing beforehand that there is this negative

correlation, it would be unwise to rely on a Pb L-based sampling mask.

We analyze these intermediary results by looking at the adjusted cosine similarity

(ACS) between the predicted and ground truth maps. This is formulated as

(5.12) sm =

∑
h,w

(
Ãel
m,h,w − Āel

m

) (
Bm,h,w − B̄m

)
√∑

h,w

(
Ãel
m,h,w − Āel

m

)2
√∑

h,w

(
Bm,h,w − B̄m

)2

where

Āel
m =

1

HW

∑
h,w

Ãel
m,h,w(5.13)

B̄m =
1

HW

∑
h,w

Bm,h,w.(5.14)

The ACS is equivalent to the Pearson correlation coefficient for a sample population. We

denote the ground truth elemental maps as B. In our experiments, B are the elemental

maps from an XRF volume originally scanned at 100 ms/px. This metric is beneficial

since we primarily care about where the high and low count rates exist within the paint-

ing for each elemental map without regard to any scale factor. The ACS is used over

the cosine similarity since the vectorized elemental maps will always occupy the orthant
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containing nonnegative values. Negative correlations are therefore impossible with the

standard cosine similarity metric for our data. The cosine similarity always suggests high

correlation, while the ACS is more nuanced in its ability to determine the true correlation.

The raw ACS scores for each elemental map are shown in the third column of Table 5.1

along with the correlation type.

Additionally, we note that some of the elemental maps are noisy. These maps are the

basis for the optimization, so we apply a denoising algorithm to maximize the ACS score.

The results of the denoising are shown in the last column of Table 5.1. Denoising shows

improvements for elements with a non-negligible positive correlation. Elements with no

correlation (Au L, Hg M, and Ti K) may or may not see improvements in their respective

ACS scores; elements with negative correlations (Pb L and Pb M) understandably see

lowered ACS scores post-denoising.

These results back up our prior analysis of the Hg L map with a positive correlation

and the Pb L map with a negative correlation. We can rely on some other maps as well

that have a substantially positive ACS, namely Ca K, Cu K, Fe K, Hg L, Mn K, Ni K, and

Sn L. Of course, these scores cannot be known a priori; however there are some indicators

pointing towards a positive, negative, or no correlation. For example, mercury-based red

pigments are often present in older paintings. With the color image, we can see that

where there are reds, there is a high count rate for Hg L in the predicted and ground

truth maps. Similar art historical or materials science-based arguments can be applied

for other paints as well to determine how plausible the predicted elemental maps align

with the true maps.
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Map Correlation ACS Raw ACS Denoised

Au L 0 0.0809 0.0899

Ca K + 0.2623 0.2921

Cu K + 0.2493 0.2523

Fe K + 0.4199 0.5263

Hg L + 0.6333 0.6437

Hg M 0 -0.0408 -0.0283

Mn K + 0.3191 0.5022

Ni K + 0.1971 0.2166

Pb L – -0.2838 -0.2838*

Pb M – -0.2289 -0.2289*

Sn L + 0.2941 0.4302

Ti K 0 -0.0426 -0.0426*

Table 5.1. ACS scores for each elemental map of interest. The correlation
type is the second column. The raw and denoised ACS scores are the last
two columns respectively. Asterisked values indicate that the raw map
performed best.

5.4.2. Single Shot Mask Design

When we design the mask, there are some practical considerations to make, particularly

our reliance on the predicted map. Placing too much reliance on the predictions could

result in egregious oversampling or undersampling that may be more detrimental than the

standard raster scan since the predictions are not perfectly correlated with the ground

truth.

Our first experiment determines how much weight we can place on these predicted

maps. We accomplish this by controlling the minimum and maximum dwell times in the

mask design. For each element and average dwell time combination, we progressively

increase the dwell time range. We choose to have an equal raise in the maximum dwell
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time as the decrease in the minimum dwell time, beginning with a standard raster scan.

Both the maximum and minimum are adjusted jointly so that the dwell time can be

allocated appropriately. Mathematically, for an average dwell time x, we want to find

the best dwell mask where we cap the minimum dwell time as Tmin = x − r and the

maximum dwell time as Tmax = x + r for some r ∈ [0, x]. Once the mask is found, we

sample accordingly, then evaluate the RMSE error.

Fig. 5.4 illustrates the effect of the dwell time range on the elemental maps. The plots

show the percent change in the RMSE when compared to the standard raster scan where

all the pixels are sampled for the same amount of time. We first analyze across different

average dwell times. Note that the respective curves are roughly identical in shape and

in magnitude. This suggests that the optimal range is proportional to the average dwell

time regardless of the underlying scan time. The optimal Fe K line for example has a

dwell time range that is approximately 80% of the average dwell time.

For the positively correlated elements, we see a pattern in the minima: the higher

the correlation, the larger the dwell range that should be utilized. Further, with the

(welcomed) exception of the Fe K map, the higher the correlation, the more improvements

in the RMSE we can expect. These patterns follow intuition as well: high correlation

means high confidence in the areas to sample, thus resulting in reduced errors.

Many of these positively correlated curves have a valley shape with apparent min-

ima. At small dwell ranges typically less than 80% of the average dwell time, the dwell

masks oftentimes are binary in nature: either sample for the minimum dwell time or the

maximum dwell time. Masks with longer dwell ranges break from the binary nature and

contain dwell times on a spectrum. At some point, the plots plateau. Masks along the
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plateau are identical, which happens when the dwell range exceeds the minimum and

maximum of the unconstrained case. Fig. 5.5 shows the progression of the Fe K mask

with increasing dwell times. Note that there are only two dwell times for the first four

dwell ranges, but becomes non-binary afterwards. Additionally, we see that at the final

mask (Fig. 5.5f), it more closely resembles a uniform sampling mask compared to, say,

the mask of Fig. 5.5d even though the dwell range is lesser. This explains why many of

these plots converges closer to the uniform mask results at high dwell ranges.

The non-positively correlated maps experience a similar pattern, but inverted. While

the positively correlated maps have different dwell times that minimize the error, this is

not the case for the other elemental maps. For example, Pb L has an ACS score of −0.28,

and TI K has a score of −0.04, but both peak around 80% to 100% of the average dwell

time. The maximum error instead occurs where the masks become no longer binary. When

this happens, more pixels are sampled at times greater than the minimum dwell time, and

less than the maximum dwell time. These characteristics push the mask towards a uniform

sampling pattern, which is the preferred mask for non-positively correlated maps. Fig 5.6

shows the Pb L-based dwell maps for different sampling ranges. At a 4 ms dwell range,

the dwell mask also has the greatest actual dwell range of 4 ms (between 3 and 7 ms/px).

At a 6 ms dwell range, the allowed dwell range is between 2 and 8 ms/px, but the actual

dwell range after optimization is between 3.1 and 5.9 ms/px. This smaller range, and

that all pixels are sampled above the allowed minimum, results in a smaller RMSE than

the 4 ms dwell range mask. The standard deviation of the 4 ms and 6 ms dwell range

masks are 1.67 ms and 0.48 ms respectively; the latter indicates the dwell mask is closer

to a uniform mask.
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The challenge in real experiments is not only predicting which elemental maps are

positively correlated with the ground truth, but the strength of the correlation. Opting

for small dwell ranges minimizes errors should the map be negatively correlated, but

the potential gains may be reduced. Large dwell ranges may see greater gains, but the

losses are greater as well. Although, there should be some solace in the fact that ridding

the minimum and maximum dwell time constraints can still provide decent results for

positively correlated maps—non-positively correlated maps grow in error, but oftentimes

not maximally.

5.4.3. Multi Shot Mask Design

We acknowledge that predictive scans of this nature can be quite risky with regard to

the available time to scan a painting. While we demonstrated that it is possible to use

the predicted elemental map predictions to design more effective sampling patterns than

uniform scans, subsequent scans provide another layer of insurance. Instead of using the

entirety of the scan time on the predicted mask, we can split our time into two scans:

the first scan based on the predicted mask, then a second scan based on data actually

collected.

In our experiments, we assume that we have a total of 10 ms/px on average to scan a

painting. We test different divisions of time: (1) 2 ms/px for the first scan and 8 ms/px

for the second, (2) 5 ms/px for the first scan and 5 ms/px for the second scan, and (3) 10

ms/px for the only scan. There are two options for the first scan: the predicted scan or

a uniform scan. For predictive scans, we select the optimal dwell range. The second scan

is based on the data collected in the first scan with a minimum dwell time per pixel of 1
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Element Metric Mask #1
2 + 8 ms/px Scan 5 +5 ms/px Scan 10 ms/px Scan

Scan 1 Den. 1 Scan 2 Den. 2 Scan 1 Den. 1 Scan 2 Den. 2 Scan 1 Den.1

Ca K

0.2921

RMSE
Predicted 578.42 254.62 260.70 183.80 376.67 199.15 233.21 151.34 272.49 145.63

Uniform 590.13 257.62 263.03 185.84 382.57 201.81 243.05 143.21* 277.37 148.76

PKLD
Predicted 227.39 83.28 76.26 63.79 123.20 68.33 66.98 37.63 76.72 27.34

Uniform 233.82 83.72 76.46 65.00 126.16 63.82* 67.30 39.65 78.88 28.20

Cu K

0.2523

RMSE
Predicted 2434.56 1858.32 865.05 748.32 1524.11 1420.90 896.51 766.37 1090.86 1082.40

Uniform 2485.23 1914.78 864.25* 749.06 1579.71 1396.85* 910.77 766.23* 1122.26 1082.28*

PKLD
Predicted 277.44 94.23 48.85 24.72 106.75 55.14 48.56 26.06 53.68 34.45

Uniform 287.40 96.81 48.61* 24.84 112.82 56.01 48.59 26.27 56.51 35.51

Fe K

0.5263

RMSE
Predicted 1196.02 588.41 450.85 323.64 760.80 444.46 454.08 316.79 539.53 373.28

Uniform 1330.87 616.22 452.68 323.57* 845.67 479.49 475.92 325.87 597.52 389.95

PKLD
Predicted 263.68 70.62 61.36 23.98 98.72 31.74 47.32 18.53 47.77 21.38

Uniform 326.80 73.49 62.31 24.03 117.78 34.28 46.61* 18.93 56.51 22.56

Hg L

0.6437

RMSE
Predicted 1456.07 838.84 514.35 435.29 1017.51 712.06 572.26 472.69 757.97 581.07

Uniform 1636.88 873.83 521.59 435.86 1152.33 762.10 604.76 485.46 859.05 639.67

PKLD
Predicted 280.22 100.80 50.49 36.66 146.21 79.49 59.14 42.38 88.44 56.79

Uniform 335.87 105.45 51.59 36.82 171.18 86.79 64.90 44.59 104.83 64.97

Mn K

0.5022

RMSE
Predicted 481.88 187.11 187.32 115.29 306.19 147.53 187.48 112.29 219.15 125.47

Uniform 508.56 196.31 187.62 115.08* 323.26 153.04 197.96 113.51 230.95 129.42

PKLD
Predicted 141.62 26.04 39.48 13.67 67.67 15.63 36.09 10.89 34.96 10.70

Uniform 155.88 27.16 40.47 13.04* 71.84 15.96 36.93 10.61* 36.39 10.98

Sn L

0.4302

RMSE
Predicted 570.97 163.55 246.08 128.02 369.12 145.31 224.96 119.37 267.43 118.32

Uniform 580.82 165.70 244.37* 127.30* 374.16 144.73* 256.58 119.06* 271.18 119.61

PKLD
Predicted 208.45 52.92 85.98 44.75 136.42 52.96 74.38 31.95 89.99 31.14

Uniform 211.85 51.81* 85.96* 45.57 138.97 46.23* 83.80 38.30 92.08 32.39

Table 5.2. Foreground errors across different 10 ms/px average scans. Each
mask is found to minimize the error of its respective map alone. Bold
values indicate the best performing RMSE and PKLD across all columns.
Asterisked values indicate where the uniform Mask #1 outperformed the
predicted Mask #1 in any column.

ms. We would like to know how much of a benefit a predictive first scan provides over a

uniform sampling pattern.

Our evaluation methodology is slightly adjusted here since we include the PKLD as

an evaluation tool. The PKLD is highly sensitive to noise in the background areas, so

for each element we determine a threshold to distinguish between the foreground and

background signals. We only consider pixels in the foreground to ensure the background
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PKLD errors are not dominant. All the masks, however, are designed to minimize the

RMSE.

From the single-shot experiments, we know that the positively correlated elements are

the only maps that have a chance of decreasing the error. Thus, we test the elements

Ca K, Cu K, Fe K, Hg L, Mn K, and Sn L. Although Ni K is positively correlated, it did

not show improvements from the uniform scan. For each element, we assigned the dwell

range that provided the best RMSE in our single-shot experiments.

Table 5.2 enumerates each experiment at each stage of the process. Each elemental

row had masks designed to minimize the RMSE errors of that element alone. We report

the results of the raw and denoised data for full clarity in our experiments. The baselines

for the experiments are the denoised uniform scans for the full 10 ms/px (last column,

uniform rows). Notice that of the twelve optimal RMSE and PKLD errors, ten favor the

use of the predicted map over the uniform scan for the first mask. The Sn L map even

favored full reliance on the predicted map. Regardless of which full scan to use though,

the improvements are often not enough to justify the means of using a predictive mask

over a uniform mask. No final RMSE improvement exceeds 3% compared to the uniform

scan. The PKLD has greater percent improvements, but on average is still relatively

small.

The greatest improvements are seen if we were to just perform a single scan using the

predictive maps. This aligns with the single shot experiment, although here we also have

denoised results to compare. In general, the raw data after the first scan has the largest

differences between the predicted mask and the uniform mask. In terms of the foreground

RMSE, the top performer is the Hg L predicted map with an average 11.5% improvement
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over the uniform mask across the three first scan times. The Fe K maps were similarly

improved by 10.0%, and Mn K by 5.2%. The remaining maps were only improved by less

than 3%.

Other benefits can be seen after denoising the first scan, but these gains are not as

strong as the ones seen with the raw data. For example, the denoised Hg L map using

the predictive mask saw an average improvement of 6.6% compared to the uniform mask.

The other elements saw similar cuts in improvement: Fe K has a 5.4% decrease in error,

and Mn K has a 3.8% decrease. The Ca K map has a 1.5% improvement, and Cu K and

Sn L have sub 1% improvements.

We have two conclusions from these results. First, if a predictive mask is used, it

should be the only scan performed; otherwise, the resulting gains may not be enough to

justify employing the predictive scan procedure. Second, we recommend applying this

technique when the ACS is at least 0.5. For the same reason why we recommend one

predicted scan, the potential gains of elemental maps with an ACS less than 0.5 may not

be beneficial enough. With other works of art, the primary issue becomes predicting what

the ACS score is without knowledge of the ground truth. Yet, as we mentioned earlier,

there are art historical and chemical indicators that can aid ACS prediction.

5.4.4. Multiple Map Optimization

In some XRF applications, there may be interest in finding more than one elemental

distribution map. Our final experiment analyzes the impact of optimizing multiple maps

in the predictive scan. Previously we saw that the Fe K, Hg L, and Mn K maps performed

well with their high ACS score. Thus, we will optimize these three elements.
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Element Metric Mask #1
2 + 8 ms/px Scan 5 + 5 ms/px Scan 10 ms/px Scan

Scan 1 Den. 1 Scan 2 Den. 2 Scan 1 Den. 1 Scan 2 Den. 2 Scan 1 Den.1

Fe K

0.5263

RMSE
Predicted 1223.78 593.92 484.89 344.02 780.10 465.17 522.29 347.73 551.54 373.30

Uniform 1330.87 616.22 509.58 344.86 845.67 479.49 526.24 347.78 597.52 389.95

PKLD
Predicted 281.01 68.34 50.57 21.24 106.03 33.74 54.25 20.58 50.35 21.38

Uniform 326.80 73.49 51.77 20.70* 117.78 34.28 55.06 20.61 56.51 22.56

Hg L

0.6437

RMSE
Predicted 1596.07 867.99 719.39 566.12 1104.27 743.92 696.34 550.77 821.08 621.87

Uniform 1636.88 873.83 694.12* 550.82* 1152.33 762.10 722.84 559.14 859.05 639.67

PKLD
Predicted 327.24 104.98 84.16 56.30 163.68 84.43 82.04 54.69 99.41 62.19

Uniform 335.87 105.45 80.49* 54.32* 171.18 86.79 86.50 55.94 104.83 64.97

Mn K

0.5022

RMSE
Predicted 474.00 189.08 200.19 116.74 301.76 147.58 204.85 117.78 215.71 124.01

Uniform 508.56 196.31 201.81 123.15 323.26 153.04 209.84 118.27 230.95 129.42

PKLD
Predicted 138.09 28.20 36.55 12.70 67.04 16.34 37.74 11.08 35.22 10.96

Uniform 155.88 27.16* 36.29* 11.95* 71.84 15.96* 38.43 10.93* 36.39 10.98

Table 5.3. Foreground errors across different 10 ms/px average scans. Each
mask is found to minimize the errors of Fe K, Hg L, and Mn K jointly. Bold
values indicate the best performing RMSE and PKLD across all columns.
Asterisked values indicate where the uniform Mask #1 outperformed the
predicted Mask #1 in any column.

We begin by repeating the dwell range experiment in Section 5.4.2, except here we

want to find the optimal dwell range for a multiple element mask. With multiple maps,

we need a weighting scheme, especially since the magnitude of the maps differ. We first

normalize each predicted map by their respective maximum values. Next, we note the

similarity in the predicted maps of Fe K and Mn K. They themselves have an ACS of

0.9715, indicating very high agreement not just with where the high and low rates are,

but how relatively high and low. Instead of equally weighing all three normalized maps,

we choose to equally weigh the predicted Hg L map with an averaged Fe K and Mn K

predicted map. This is the basis for the mask optimization.

Fig. 5.7 provides error plots for the joint predictive mask for each of the three elements.

Again, the shape of the curves are roughly identical in shape and magnitude across each

of the average dwell times. However, other than the optimal dwell range, the curves
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are not identical to the single element masks. The Hg L map, for instance, has a lesser

improvement compared to its single mask counterpart—it no longer outperforms the other

elements when the full dwell range is used. This is to be expected on some level since the

dwell time focus is diverted to include multiple maps. There are also many more high

count rate areas in the predicted Fe K and Mn K maps compared to the predicted Hg L

map, which heavily dilutes the Hg L gains. On the other hand, the Fe K and Mn K map

errors are not as affected for the same reason. Fig. 5.8 shows the different masks tested

with varying dwell time ranges. Amongst the Fe K and Mn K mask, there are highlights

of the Hg L mask such as the red garment in the bottom center, which is not in either

the Fe K or Mn K predictions.

With these plots, we found that the greatest average decrease amongst the three maps

is when the dwell range is 60% of the average dwell time. This is true across each of the

three different average dwell times. Once we found the optimal dwell range, we continue

through the same procedure as the multishot approach in Section 5.4.3. The same 10

ms/px average dwell time splits are tested with denoising after each collection of XRF

data. Table 5.3 enumerates these results. Note that the predicted mask #1 is identical

for all elements unlike in Table 5.2 where the masks were independently found.

After the last denoising step, we arrive at similar conclusions as the multishot opti-

mization. The gains, where they appear, are not significant enough to justify deviating

from an initial uniform scan. In this case, we only see the best improvements in terms of

the RMSE; the best PKLD is always better with an initial uniform mask.

Looking at the first sampling stage, we again see the greatest gains. Here, the Hg L

map has the smallest change in percent error with an average 3.7% improvement in the raw
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data and 1.9% in the denoised data. The other two maps enjoy greater gains than the Hg L

map. For Fe K, the percent decreases are 7.8% and 3.6% for the raw and denoised results

respectively. The Mn K map sees 6.7% and 3.8% decreases for the raw and denoised.

Since we are optimizing multiple maps, these percent decreases are understandably lower

than in the single map cases.

5.5. Conclusion

We proposed an updated method for fast XRF sampling. Using only a few samples,

we are able to provide rough estimates of the painting’s elemental maps. Some of these

estimates, we show, are accurate enough to identify high and low count rate regions. These

predictive data dictate how to first scan the painting. Our results show comparable, yet

slight improvements of a two-pass system with this predicted data over the raster scan

without predicted data. The potential for our algorithm on a first scan is primarily in

a first scan since there is a noticeable decrease in error for both the raw data and the

denoised data.

Predicting the XRF response is a monumental task, especially with only surface-level

information. Yet, there is still enough information that we are able to extract to improve

upon fast XRF scans for some elemental maps.
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(a) Au L (b) Ca K (c) Cu K

(d) Fe K (e) Hg L (f) Hg M

(g) Mn K (h) Ni K (i) Pb L*

(j) Pb M* (k) Sn L (l) Ti K*

Figure 5.3. Elemental maps of Raising of the Cross. These maps are from
the original XRF scan of 100 ms/px (left) and a predicted, denoised scan
using 25 XRF samples (right). Asterisked elements show the raw predicted
scan. The display ranges for each elemental map are adjusted individually
to maximize the contrast. We invite the reader to zoom in to better view
the maps and the effects of noise.
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(a) 2 ms/px avg., Positive
correlation

(b) 5 ms/px avg., Positive
correlation

(c) 10 ms/px avg., Positive
correlation

(d) 2 ms/px avg., Nonposi-
tive correlation

(e) 5 ms/px avg., Nonposi-
tive correlation

(f) 10 ms/px avg., Nonposi-
tive correlation

Figure 5.4. Percent change in RMSE errors for each mask as the allowable
dwell time range increases. Plots (a)–(c) contain only the elements with
high ACS values are plotted. Plots (d)–(f) contain the remaining elements.
Negative values indicate improvements from the raster scan.

(a) 1 ms (b) 2 ms (c) 3 ms (d) 4 ms (e) 5 ms (f) ≥6 ms

Figure 5.5. Dwell masks based on the predicted Fe K map with an average
dwell time of 5 ms/px. The dwell range for each subsequent mask is in-
creased by 1 ms. Masks with dwell ranges of at least 6 ms are all identical.
The display range for these masks is between 2.5 and 6.8 ms. The optimal
mask is found to be the 4 ms range of Fig. 5.5d.
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(a) 1 ms (b) 2 ms (c) 3 ms (d) 4 ms (e) 5 ms (f) ≥6 ms

Figure 5.6. Dwell masks based on the predicted Pb L map with an average
dwell time of 5 ms/px. The dwell range for each subsequent mask is in-
creased by 1 ms. Masks with dwell ranges of at least 6 ms are all identical.
The display range for these masks is between 2.5 and 7.0 ms.

(a) 2 ms/px avg., Joint mask (b) 5 ms/px avg., Joint mask
(c) 10 ms/px avg., Joint
mask

Figure 5.7. Percent change in RMSE errors for the joint mask as the al-
lowable dwell time range increases. Negative values indicate improvements
from the raster scan.

(a) 1 ms (b) 2 ms (c) 3 ms (d) 4 ms (e) 5 ms (f) ≥6 ms

Figure 5.8. Dwell masks based on the predicted joint Fe K, Hg L, and Mn K
maps with an average dwell time of 5 ms/px. Masks with dwell ranges of
at least 6 ms are all identical. The display range for these masks is between
2.5 and 7.2 ms.
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CHAPTER 6

CAVE: A Class of Activation Functions that Constrains the

Average, Variance, and Extrema

Abstract

Oftentimes in machine learning and optimization problems, the output must follow

certain constraints known a priori. Activation functions at the output of a network are

typically used to enforce these constraints. For example, the sigmoid function limits the

output range in image and video applications, and the softmax function ensures that

the output vector in classification tasks does not violate axioms of probability. While

sigmoid constrains the output range, and softmax constrains the output sum to unity,

it is difficult to find a function where one can specify the desired range and sum (or

equivalently the mean). In this chapter, we present the benefits of using a shifted sigmoid

in image processing tasks as the final activation function. We detail how this shift is

found, and show its benefits in classification and autoencoding tasks.

6.1. Introduction

In the past decade, deep learning has rapidly risen in popularity as a means to solve

a variety of tasks. The foundation of deep learning neural networks is based on learning

weights such that a loss function is minimized over a set of known input/output pairs.

These weights appear in the compositions of both linear and nonlinear differentiable
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(activation) functions that constitute the neural network. Of the activation functions

in a network, the final activation is of particular importance in that it is often used to

constrain the output to conform with prior knowledge. In color image generating tasks

for example, the display range is [0, 1]. The sigmoid function is typically used here as a

final activation function since it maps an input in RN onto the range (0, 1)N . In single

label classification tasks, the probability vector at the output should follow a likelihood

measure where the elements are all nonnegative and the `1 norm is unity. The output of

a softmax activation function satisfies these restrictions, which explains its ubiquity as a

final activation function in classification problems.

The last activation function can be thought of as a constraining function characterizing

the neural network’s search space. A problem may occur, however, when incorporating all

known constraints into the last activation function. In cases where the known constraints

cannot all be encompassed in a single activation function, the unaddressed constraints

can be relaxed via the method of Lagrangian multipliers. These constraints are instead

added into the loss function and weighted by the Lagrangian multiplier. The issue is then

choosing the value of the multiplier, not to mention the output of the neural network may

not be feasible if the constraints are not allowed to be relaxed.

In this chapter, we introduce the Constrained Average, Variance, and Extrema (CAVE)

activation function, whose output has the desired range, mean, and variance specified by

the user. It is a type of constrained optimization layer that optimizes just up two to

variables in an efficient manner both in terms of speed and memory usage. While this is a

very specific scenario, we show that it is more beneficial to use over a softmax function in

classification tasks. First, we briefly review some work on constrained optimization using
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neural networks. Second, we introduce the CAVE functions and how they are calculated.

Finally, we apply it to an image classification problem to show its potential in these tasks.

6.2. Related Work

Constrained optimization, while not a new topic, has recently made advances as it

relates to neural networks. We should first point out that most neural networks implicitly

incorporate some constraint via the last activation layer. As was mentioned, sigmoid,

ReLU, and other such layers constrain the output range to ensure inequality constraints

are met. In image classification, equality constraints are implied in the softmax function

to ensure the sum of the elements is unity and the values are nonnegative. These functions

appear everywhere in neural network architectures as they are generally sufficient for the

task at hand.

Aside from image processing, other problems require a different set of constraints to be

met. Outputs satisfying ordinary differential equations [73] have been incorporated into

neural networks for example. Generalized frameworks to address equality and/or inequal-

ity constraints have also been introduced [74, 75, 76, 77], although they are generally

computationally heavy. One way that it has been introduced is in bilevel optimization by

(6.1)

min
Ω

L (X, θ∗; Ω)

s.t. θ∗ ∈ arg min
θ

f (X, θ)

where L is a loss function, X is the input data, θ∗ is some optimized parameter with re-

spect to function f , and Ω is the set of weights in the neural network. Bilevel optimization

is often thought of as a leader and follower optimization. The leader (upper objective)
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optimizes its parameters based on the decision of the follower (lower objective). In a ma-

chine learning context, the leader resembles the network itself, and the follower resembles

an activation function. The network must learn to adapt to the activation function.

While there are different ways to solve this problem, often these solutions are not

differentiable [78, 79], rendering them inaccessible in machine learning environments

that rely on gradient information to learn. Gould et al. [74, 77] revisited the solution

of bilevel optimization problems using gradient descent approaches, the latter citation of

which is for neural networks. This is an elegant solution, but requires exact (or near exact)

optimization solutions for the gradients to be properly calculated for back propagation.

If we can maintain clearly differentiable operations, the network is more likely to learn a

better mapping function.

Throughout this chapter, let X ∈ RN be some input data. Additionally, let Θ ⊆

{l, h, µ, ν} be the set of desired output constraints where l denotes the allowable minimum,

h denotes the allowable maximum, µ denotes the mean, and ν denotes the variance. By

“allowable”, we cannot guarantee that the minimum of the output is l, but that it will

not be less than l. This is similar to what we mean by the allowable maximum. Let

f (X,Θ) : RN → RN be some activation function such that the output satisfies the

constraints set forth by Θ. Mathematically, the set of constraints are

f (X; Θ)i ≥ l ∀i(6.2)

f (X; Θ)i ≤ h ∀i(6.3)

E [f (X; Θ)] = µ(6.4)

var (f (X; Θ)) = ν.(6.5)
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There are plenty of functions that constrain the output in some manner. The softplus

function S+ (·) has a semi-infinite range in (0,∞) which can be used to constrain the

minimum or maximum, while the sigmoid function σ (·) with range (0, 1) constrains both

the minimum and maximum. These are seen in rows 1–3 of Table 6.1 by using simple

linear transforms to reach the target range. Statistical constraints are shown in rows 4–6,

which are well-known linear transforms that can be used to constrain the mean and/or

variance for any output. Nothing is particularly noteworthy with these functions.

More interesting functions begin to arise when both range and statistical constraints

are required. The next four rows 7–10 are activation functions that overlap range and

moment specifications (one each). They are found using a linear transform of the softplus

activation to ensure the mean or variance constraints are met. Proofs that the constraints

are met for a given Θ are omitted, but can be easily verified. Dai et al. proposed using

row 7 of Table 6.1 with a sigmoid function instead of a softplus function in the specific

case where l = 0 to ensure nonnegativity in the output with a constrained mean [36].

The maximum for that case, while bounded by the sigmoid initially, is then inadvertently

scaled. This is why finite range constraints cannot be combined with statistical constraints

using linear transformations alone.

When ‖Θ‖ > 2, linear transforms applied after the range-limited activation functions

cannot satisfy all the constraints. One could use Lagrangian regularization to promote

the unmet constraints. For example, if the desired output range is l = 0, h = 1, and

µ = 0.5, one could design a loss function such as

(6.6) L (X,Y) = ‖σ (X)−Y‖2
2 + λ (E [σ (X)]− 0.5)2
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where σ (X) resembles the sigmoidal output of a neural network, Y is the target output,

and λ is a hyperparameter (Lagrangian multiplier). The output range would be valid by

nature of the sigmoid, but there is no guarantee that the resulting mean will be µ. Small

λ would prioritize minimizing the mean-squared error (MSE), but the result may not be

feasible with the error in the mean; high λ would prioritize matching the mean, but would

likely result in a high MSE compared to the low λ case. We speculate that the network

with high λ would output values very close to the mean with low variance.

CAVE functions are the solution to the remaining constraint combinations. They are

beneficial in that (1) they reduce the number of regularizers in the loss function, and

(2) the constraints are met, not simply promoted. Using a CAVE function, the loss in

Eq. (6.6) would be rewritten as

(6.7) L (X,Y) = ‖CAVE (X; Θ)−Y‖2
2

where CAVE (X; Θ) is defined in rows 11–15 of Table 6.1 based on Θ. In the following

section, we delve into how the activation framework works.

6.3. CAVE Functions

In order to satisfy at least three of Constraints (6.2)–(6.5), we propose to apply a linear

transform before and after a range-limited activation function. We denote the inner linear

transform by scalars a and b, which need to be solved for in order to constrain the mean

and/or variance.

Notice that the CAVE functions are the first three functions in Table 6.1 with a

linearly transformed input. It’s easy to see that the minimum and maximum constraints
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Row # Θ f (X; Θ) Min Max Mean Var
1 {l} S+ (X) + l l
2 {h} −S+ (X) + h h
3 {l, h} (h− l)σ (X) + l l h
4 {µ} X− E [X] + µ µ

5 {ν}
√

ν
var(X)

X ν

6 {µ, ν}
√

ν
var(X)

(X− E [X]) + µ µ ν

7 {l, µ} µ−l
E[S+(X)]

S+ (X) + l l µ

8 {h, µ} µ−h
E[S+(X)]

S+ (X) + h h µ

9 {l, ν}
√

ν
var(S+(X))

S+ (X) + l l ν

10 {h, ν} −
√

ν
var(S+(X))

S+ (X) + h h ν

11 {l, µ, ν} S+ (aX + b) + l l µ ν
12 {h, µ, ν} −S+ (aX + b) + h h µ ν
13 {l, h, µ} (h− l)σ (X + b) + l l h µ
14 {l, h, ν} (h− l)σ (aX + b) + l l h ν
15 {l, h, µ, ν} (h− l)σ (aX + b) + l l h µ ν

Table 6.1. List of activation functions constraining all combinations of the
minimum, maximum, mean, and variance. Proposed CAVE functions are
in rows 11–15. Empty entries indicate values that cannot be constrained.

are satisfied since the inner linear transform does not affect the output of the nonlinear

activation.

Here, we will only examine the case where Θ = {l, h, µ, ν}. The CAVE function from

here on is thus

(6.8) CAVE (X; Θ) = (h− l)σ (aX + b) + l.

In the following subsections, we first show how a and b are found via an optimization.

Then, we establish bounds on the mean and variance. Appendix A examines the CAVE
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function in greater detail, including a proof that no matter X, µ, or ν, an a and b can be

found such that E [CAVE (X; Θ)] = µ and var (CAVE (X; Θ)) = ν.

6.3.1. Finding the Linear Transform

Solving for the correct a and b is non-trivial. By separately taking the expected value and

variance of Eq. (6.8) and isolating a and b as much as possible, we get two equations:

E [σ (aX + b)] =
µ− l
h− l

(6.9)

var (σ (aX + b)) =
ν

(h− l)2 .(6.10)

Variables a and b cannot be solved for analytically, so we turn to numerical approxima-

tions. We first define the CAVE loss function C to minimize the sum of squared errors

between the actual and target means and variances:

a∗, b∗ = arg min
a,b

C(6.11)

C = Cµ + Cν(6.12)

Cµ =

(
E [σ (aX + b)]− µ− l

h− l

)2

(6.13)

Cν =

(
var (σ (aX + b))− ν

(h− l)2

)2

.(6.14)

In the case where the mean or variance alone is specified (rows 13 and 14 of Table 6.1),

the CAVE loss is just Cµ or Cν .

Since we are optimizing only two scalar variables, we first use gradient descent to ap-

proach the minimum, then Newton’s second order optimization to quickly and accurately
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reach the minimum. The gradient ∇a,b C and Hessian ∇2
a,b C with respect to a and b can

be found analytically. Taking a few gradient descent steps and Newton’s method steps

finds the appropriate linear transform weights. Gradient descent here is defined asa
b


k+1

=

a
b


k

− ηgd∇a,b C(6.15)

and Newton’s method is defined asa
b


k+1

=

a
b


k

− ηnm

(
∇2
a,b C

)−1∇a,b C(6.16)

where ηgd and ηnm are the respective learning rates. Since neural networks learn via the

gradient with respect to X, we note that the gradient and Newton steps to optimize a

and b are themselves differentiable with respect to X. This allows learning to occur in

neural networks and other optimization tasks. Appendix A includes a derivation of these

CAVE optimization steps. Appendix B includes a derivation of the gradient of the CAVE

optimization steps.

In order to ensure the best possible convergence, we first standardize normalize the

input to roughly center the data. We initialize a0 = 1 and b0 = 0, which corresponds to a

standard sigmoid activation. We found that learning rates of 1 work well for both gradient

descent and Newton’s method. The more optimization steps, the more C is minimized,

but not many steps are needed for convergence as will be seen in the experiments. We

provide an efficient PyTorch [80] implementation of the CAVE functions.1

1https://github.com/Henchopp/CAVE
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6.3.2. Solution Space of CAVE

To better understand how CAVE operates, we need to study the solution space as defined

by Eqs. (6.2))–(6.5). This is necessary because CAVE will optimize Eq. (6.11) regardless

of whether the mean and variance are feasible. For example, if we specify l = 0, h = 1,

and µ = 2, there is no possible output where the minimum CAVE error is zero. Here we

discuss these bounds on the mean and variance given the output range.

The bounds on the mean are straightforward: the smallest possible mean is l, which

occurs when b → −∞. When b → −∞, each entry of the output in Eq. (6.8) is l. A

similar argument for the maximum mean can be shown, except b→∞ in this case. Since

the CAVE function is smooth with respect to b, we can use the intermediate value theorem

to show that

(6.17) l ≤ µ ≤ h

are the only valid options for the mean.

The variance is more difficult to establish bounds on, but we note that Popoviciu’s

inequality of variance [81] establishes a bound on the variance of random variables as

(6.18) ν ≤ (h− l)2

4

which can roughly be followed for sample populations. The maximum variance occurs

when half of the output takes on the low l, and the other half is the high value h. This

is true only when the variance is constrained, but not the mean. If the mean were

constrained, tighter bounds are needed.
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Later derivations provided by Bhatia and Davis [82] further constrain the variance

when the mean is provided:

(6.19) 0 ≤ ν ≤ (h− µ) (µ− l) .

We see that as the mean approaches either the high or low values, the allowable variance

goes to zero. This is in line with our prior analysis of the mean: where the mean is equal

one of the extrema, all the output values are identical. Of course, when all values are

identical, there is no variance. On the other hand, the maximum possible variance occurs

when the mean is an average of the extrema. In this case, the Bhatia-Davis bounds of

Eq. (6.19) simplifies to Popovichu’s inequality of variance of Eq. (6.18). Like Popovichu’s

inequality, these bounds are for random variables, but can be reasonably approximated

for sample populations. Appendix A provides variance bounds for sample populations.

6.4. Experiments

We perform a small experiment demonstrating where CAVE can be used. In single

label classification, the output of the classifier Ŷ is typically a vector of size N for N

classes. It has the additional properties that it must follow a probability distribution

where Ŷ ∈ [0, 1] and E
[
Ŷ
]

= 1/N . This is a perfect candidate for CAVE as the final

activation function.

Typically in classification tasks, a neural network would use a softmax function as a

means to estimate class probabilities at the final output. The softmax function is

(6.20) Smax (X)i =
eX̂i∑N
j e

X̂j

.
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Note that the output is constrained: l = 0, h = 1, and µ = 1
N

.

We trained two identical shallow convolutional neural networks except for the final

activation function: one experiment uses the softmax activation, and the other uses CAVE

activation. The dataset we use is CIFAR-100 [83], which provides image data of size

32 × 32 for classification with 100 different classes. About 500 training images and 100

testing images are included for each class. We therefore set the CAVE constraints with

values of l = 0, h = 1, and µ = 1/100.

The CAVE neural network used no gradient descent steps and seven Newton’s method

steps to minimize the CAVE loss. The neural network has two convolutional layers each

with ReLU activation. This is followed by two linear layers where the first layer has

ReLU activation, but the second layer is the final activation. Shallow networks often do

not perform as well as deep neural networks, but the shallowness in this case can better

highlight the differences in activation functions. Lastly, we use the negative log likelihood

loss as the loss function. Table 6.2 shows the results of the two different activation

functions.

Metric Softmax CAVE
Test Loss 5.546 3.394

Top 1 Accuracy 22.9% 25.5%
Top 5 Accuracy 47.3% 50.5%

Avg. Time/Epoch (s) 62.07 62.96
Epochs Trained 25 7
Total Time (s) 1551.75 440.72

Table 6.2. CIFAR-100 classification results comparing softmax and CAVE
activation functions

CAVE enjoys improvements in both accuracy and convergence speed. It provides a

three percentage point boost in top 1 and top 5 metrics. While the average time per epoch
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is understandably longer due to the CAVE optimization every batch, it adds less than

one second per epoch. This is considering seven Newton steps with a batch size of 600

samples where each sample has 100 values for CAVE to optimize individually. We have a

relatively fast implementation since we implemented the forward and backward methods

of one step of gradient descent and Newton’s method. Regardless, CAVE is shown here

to converge must faster in terms of the number of epochs.

This is curious in a way since both CAVE and softmax functions evaluate the spread

of the data. These functions are both independent of the mean of the input data. We

postulate the reason behind the improvements is because CAVE provides more stable

gradient information than the softmax. CAVE appears to provide the same spread of

gradient information regardless of the spread of the input data. Softmax on the other

hand tends to have gradient spreads that are dependent on the input data spread.

For example, we tested the gradients of a random uniform distribution, which was an

input to the softmax and CAVE functions. For each entry, we then took the negative log

likelihood to see the potential errors for good and poor estimations. We tested this across

different scaling factors of the uniform distribution. As the spread of the distribution

increased, so too did the variance of the gradients for the softmax function. On the other

hand, no matter the scaling factor, CAVE always had the same gradient variance. When

the input data spread is small, which is realistically what occurs when neural networks are

initialized, the softmax function had an average loss of 4.61 with a variance of 8.08×10−6.

CAVE had an average loss of 4.98 with a variance of 9.83 × 10−1. It’s easy to see that

the gradient information is much more nuanced with the CAVE activation function than
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the softmax. In these low spread regimes, the differential in the maximum and minimum

losses is much greater than that of the softmax (and therefore the gradients as well).

6.5. Conclusion

We provided a novel activation function for constraining the output of a neural net-

work. Any user can request a desired minimum, maximum, mean, and variance, and

CAVE will be able to provide a differentiable output that satisfies these requirements. It

is shown to be fast to converge, despite taking slightly more time per epoch than softmax

in a comparison study. Additionally, it is shown to be more accurate as well. Further

development and testing of CAVE could include image outputs where a variance is set.

In doing so, it may be able to help neural networks mitigate oversmoothing by requiring a

variance of the image itself. Of course, other applications exist, and we invite the reader

to explore them using CAVE.
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APPENDIX A

CAVE Derivation

Here we derive the CAVE function in full. For completeness, we additionally pro-

vide analysis and evaluations showing that the mean and variance can be found exactly

provided the mean and variance are within certain bounds.

A.1. CAVE Function & Constraints

CAVE functions guarantee that the following conditions are met so long as the solution

space is not empty:

min
i

(CAVE (X; Θ)i) ≥ l(A.1)

max
i

(CAVE (X; Θ)i) ≤ h(A.2)

E [CAVE (X; Θ)] = µ(A.3)

var (CAVE (X; Θ)) = ν(A.4)

where l is the lower bound, h is the upper bound, µ is the mean, and ν is the variance

of the output, all chosen by the user. Set Θ = {l, h, µ, ν} contains the specified output

constraints. Input data X ∈ RN is a real-valued N -dimensional vector (or any arbitrary

shape).
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In order to enforce the constraints, CAVE proposes a linear transform prior to a

function f . Function f should have the following properties, the reason for which is

discussed in Section A.3:

(1) f : R→ R, and operates element-wise for multidimensional inputs

(2) f is range limited to [fmin, fmax] for some −∞ < fmin < fmax <∞

(3) f is smooth

(4) f is strictly increasing.

CAVE finds a linear transform such that when pre-applied to the input prior to a nonlinear

activation, the target mean and variance are matched. Mathematically, the full CAVE

function is defined as

(A.5) CAVE (X; Θ) = (h− l) f (aX + b)− fmin
fmax − fmin

+ l

where variables a ∈ R and b ∈ R constitute the linear pre-transform. The fractional

component reduces the range to [0, 1]. This is then linearly transformed to reach the

target range.

We can quickly verify that the minimum and maximum Constraints (A.1) and (A.2)

are met because of the finite range of f :

min
i

(CAVE (X; Θ)i) ≥ l(A.6)

max
i

(CAVE (X; Θ)i) ≤ h.(A.7)

The output mean and variance, however, are dependent on the value of a and b. We

need to solve for a and b such that Constraints (A.3) and (A.4) are met. The mean and
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variance of the cave function are

E [CAVE (X; Θ)] = (h− l) E [f (aX + b)]− fmin
fmax − fmin

+ l(A.8)

var (CAVE (X; Θ)) =

(
h− l

fmax − fmin

)2

var (f (aX + b)) ,(A.9)

which are dependent on variables a and b. From Constraints (A.3) and (A.4), we want

(h− l) E [f (aX + b)]− fmin
fmax − fmin

+ l = µ(A.10) (
h− l

fmax − fmin

)2

var (f (aX + b)) = ν,(A.11)

so we massage Eqs. (A.10) and (A.11) to isolate a and b as far as possible:

E [f (aX + b)] = µ′(A.12)

var (f (aX + b)) = ν ′(A.13)

µ′ =
fmax − fmin

h− l
(µ− l) + fmin(A.14)

ν ′ =

(
fmax − fmin

h− l

)2

ν.(A.15)

Variables µ′ and ν ′ are the CAVE-adjusted mean and variance.

While we have two equations and two unknowns, we cannot analytically solve for a

and b since function f must strictly be nonlinear. Thus, we turn to numerical approaches

for the solution.
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A.2. CAVE Optimization

To approximate the solution, we need to develop an optimization framework. The

goal of the optimization is to find an a and b such that Constraints (A.3) and (A.4) are

met. We do this by defining a loss function that we minimize through gradient descent

and Newton’s method.

Using gradient descent and Newton’s method requires further constraints to the func-

tion f . Primarily, since Newton’s method is a second order optimization technique, we

require that f be a smooth, twice differentiable function.

A.2.1. CAVE Loss Function

In order to find a and b, we introduce a loss function to minimize the error of the mean

and variance between the target and output. We define the minimization as

(A.16) a∗, b∗ = arg min
a, b

C (a, b,X;µ′, ν ′)

where

C (a, b,X;µ′, ν ′) = Cµ (a, b,X;µ′) + Cν (a, b,X; ν ′)(A.17)

Cµ (a, b,X;µ′) = ‖Eµ (a, b,X;µ′) ‖2
2(A.18)

Cν (a, b,X; ν ′) = ‖Eν (a, b,X; ν ′) ‖2
2(A.19)

Eµ (a, b,X;µ′) = E [f (aX + b)]− µ′(A.20)

Eν (a, b,X; ν ′) = var (f (aX + b))− ν ′.(A.21)



193

Solutions a∗ and b∗ are the values that minimize C and produce a function that satisfy

Conditions (A.1)–(A.4).

A.2.2. CAVE Minimization

Since there are only two variables, we can use gradient descent in conjunction with New-

ton’s method of optimization to find a∗ and b∗. It is well known that the size of the

Hessian is on the order of O (n2) for n variables, which often limits its practicality in

large scale machine learning and optimization tasks. However, optimizing n = 2 variables

is second in memory simplicity behind single variable optimization.

Gradient descent is first used to approach the minimum. Newton’s method moves the

solution towards a minimum if the loss manifold is concave up at the initial a and b, but

towards a maximum if the manifold is concave down. It is essential that the initialization

be close to the solution, which is why gradient descent is used first. For two variable

optimization of weights a and b, gradient descent in its most basic form is defined asa
b


k+1

=

a
b


k

− η SG


a
b


k

(A.22)

SG


a
b


k

 = ∇a,b C


a
b


k

(A.23)

where k is the iteration index, SG (·) is the gradient descent step function, η is the learning

rate, and ∇a,b is the gradient operator with respect to a and b. After taking some number

of steps, we approach the minimum where the loss manifold is concave up.
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Newton’s method is then utilized to finish the optimization. The iterative method is

defined as a
b


k+1

=

a
b


k

− η SN


a
b


k

(A.24)

SN


a
b


k

 =

∇2
a,b C


a
b


k



−1∇a,b C


a
b


k


(A.25)

where SN (·) is the Newton’s method step function, and ∇2
a,b is the Hessian operator with

respect to a and b. We need to find SG and SN in terms of function f , the furthest

decomposition.

In the coming subsections, we use a shorthand notation whereby we drop the argu-

ments to the loss and error functions, which all return scalar values.

A.2.3. Gradient and Hessian of CAVE Loss

We can solve for the gradient analytically by

∇a,b C =

∂C∂a
∂C
∂b

(A.26)

=

∂Cµ∂a + ∂Cν
∂a

∂Cµ
∂b

+ ∂Cν
∂b

(A.27)

where

∂Cµ
∂a

= 2Eµ
∂Eµ
∂a

(A.28)
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∂Cν
∂a

= 2Eν
∂Eν
∂a

(A.29)

∂Cµ
∂b

= 2Eµ
∂Eµ
∂b

(A.30)

∂Cν
∂b

= 2Eν
∂Eν
∂b

.(A.31)

The Hessian is found by taking the second derivative of C:

∇2
a,b C =

 ∂2C
∂a2

∂2C
∂a∂b

∂2C
∂a∂b

∂2C
∂b2

(A.32)

=

∂2Cµ∂a2
+ ∂2Cν

∂a2
∂2Cµ
∂a∂b

+ ∂2Cν
∂a∂b

∂2Cµ
∂a∂b

+ ∂2Cν
∂a∂b

∂2Cµ
∂b2

+ ∂2Cν
∂b2

(A.33)

where

∂2Cµ
∂a2

= 2

((
∂Eµ
∂a

)2

+ Eµ
∂2Eµ
∂a2

)
(A.34)

∂2Cν
∂a2

= 2

((
∂Eν
∂a

)2

+ Eν
∂2Eν
∂a2

)
(A.35)

∂2Cµ
∂a∂b

= 2

(
∂Eµ
∂a

∂Eµ
∂b

+ Eµ
∂2Eµ
∂a∂b

)
(A.36)

∂2Cν
∂a∂b

= 2

(
∂Eν
∂a

∂Eν
∂b

+ Eν
∂2Eν
∂a∂b

)
(A.37)

∂2Cµ
∂b2

= 2

((
∂Eµ
∂b

)2

+ Eµ
∂2Eµ
∂b2

)
(A.38)

∂2Cν
∂b2

= 2

((
∂Eν
∂b

)2

+ Eν
∂2Eν
∂b2

)
.(A.39)
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The losses are now all defined in terms of the mean error function Eµ and variance error

function Eν .

A.2.4. Gradient and Hessian of CAVE Errors

We use an identical shorthand here for function f (·). Explicitly, this shorthand is

(A.40) f ← f (aX + b)

so f and its derivatives with respect to a and b represent a multidimensional output of

the same size as X. All multiplications in this appendix we also assume are point-wise

Hadamard products.

The mean error function and its derivatives are found as

Eµ = E [f ]− µ′(A.41)

∂Eµ
∂a

= E
[
∂f

∂a

]
(A.42)

∂Eµ
∂b

= E
[
∂f

∂b

]
(A.43)

∂2Eµ
∂a2

= E
[
∂2f

∂a2

]
(A.44)

∂2Eµ
∂a∂b

= E
[
∂2f

∂a∂b

]
(A.45)

∂2Eµ
∂b2

= E
[
∂2f

∂b2

]
.(A.46)

The variance error function and its derivatives are also found as

Eν = E
[
f 2
]
− E2 [f ]− ν ′(A.47)
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∂Eν
∂a

= 2

(
E
[
f
∂f

∂a

]
− E [f ]

∂Eµ
∂a

)
(A.48)

∂Eν
∂b

= 2

(
E
[
f
∂f

∂b

]
− E [f ]

∂Eµ
∂b

)
(A.49)

∂2Eν
∂a2

= 2

(
E

[(
∂f

∂a

)2

+ f
∂2f

∂a2

]
−
(
∂Eµ
∂a

)2

− E [f ]
∂2Eµ
∂a2

)
(A.50)

∂2Eν
∂a∂b

= 2

(
E
[
∂f

∂a

∂f

∂b
+ f

∂2f

∂a∂b

]
− ∂Eµ

∂a

∂Eµ
∂b
− E [f ]

∂2Eµ
∂a∂b

)
(A.51)

∂2Eν
∂b2

= 2

(
E

[(
∂f

∂b

)2

+ f
∂2f

∂b2

]
−
(
∂Eµ
∂b

)2

− E [f ]
∂2Eµ
∂b2

)
.(A.52)

The error functions are now all defined in terms of the range-limited function f .

A.2.5. Gradient and Hessian of CAVE Base Function

Lastly, we have the derivatives of the base function f :

∂f

∂a
=

∂

∂a
[f (aX + b)] = f ′ (aX + b) X(A.53)

∂f

∂b
=

∂

∂b
[f (aX + b)] = f ′ (aX + b)(A.54)

∂2f

∂a2
=

∂2

∂a2
[f (aX + b)] = f ′′ (aX + b) X2(A.55)

∂2f

∂a∂b
=

∂2

∂a∂b
[f (aX + b)] = f ′′ (aX + b) X(A.56)

∂2f

∂b2
=

∂2

∂b2
[f (aX + b)] = f ′′ (aX + b)(A.57)

where f ′ and f ′′ denote the first and second derivatives of the base function. Recall that

function f operates element-wise, and so too do its derivatives. The base function f is

chosen by the user, so we conclude the derivation here. All the user would need to do is

provide the function f as well as its first and second derivatives to use CAVE.
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A.2.6. Single Variable Optimization Modes

We provided a solution to minimizing the loss of the mean and variance for CAVE func-

tions. While the derivation was for joint minimization, one does not always need to specify

both the mean and variance (assuming the minimum and maximum values are specified).

In these cases, we only specify the mean or the variance, but not both. If only the mean

is specified, the overall loss function is Cµ (a, b,X;µ′); if only the variance is specified, the

overall loss function is Cν (a, b,X; ν ′).

A.3. CAVE Feasibility Space

We have a framework for minimizing the mean and variance losses via Eq. (A.16),

but there is no guarantee that the minimum loss is necessarily 0. For example, one can

specify l = 0, h = 1, and µ = 2, but it is clearly impossible that µ > h. The optimization

can still be carried out to reach a minimum, but the minimum will certainly be positive.

Bounds on the mean and variance need to be established to prevent cases with positive

minima.

Since the loss is a sum of quadratics as shown in Eqs. (A.17)–(A.19), we have that

(A.58) min
a, b
C (a, b,X;µ′, ν ′) ≥ 0.

When the optimal minimum is strictly positive, it indicates that the CAVE constraints

are not met despite optimizing the loss. We need to find a feasible region of µ and ν

where

(A.59) min
a, b
C (a, b,X;µ′, ν ′) = 0,
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noting the strict equality.

We will discuss three different constraints for the three different CAVE optimization

modes: (1) mean optimization only, (2) variance optimization only, and (3) mean and

variance joint optimization.

There is also a question concerning Eqs. (A.12)–(A.15): given any mean and variance

satisfying the bounds constraints, does there exist an a and b that satisfies CAVE Con-

straints (A.1)–(A.4) for any f , X, and valid µ, and ν? Certainly there are some functions

f that are not suitable for the CAVE framework. Take for example a Heaviside function

(A.60) u (x) =


1, x > 0

0, x ≤ 0

which is clearly a range-bounded function. The CAVE framework would not work in part

because only a set of discrete means and variances can be matched. For N = 10, there

can only be means of µ = 0.1k for k ∈ {0, 1, . . . , 10}. A specified mean of µ = 0.01 for

example is infeasible.

We need to address certain properties of f needed to make the CAVE framework

feasible for any data X and all mean µ and variance ν provided they both comply with

their constraints in Section A.3. We’ll revisit the constraints on function f introduced

without much explanation in Section A.1:

(1) f : R→ R, and operates element-wise for multidimensional inputs,

(2) f is range limited to [fmin, fmax] for some −∞ < fmin < fmax <∞,

(3) f is smooth,

(4) f is strictly increasing.
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As will be shown, these properties are needed to prove that there does exist an a and b

that satisfies CAVE Constraints (A.1)–(A.4) for any f and X as well as any valid µ and

ν values.

A.3.1. CAVE Mean Constraints

In order to establish the bounds for the mean µ, we first examine the lower bound. The

minimization Eq. (A.8) over X to get the lower bound for the mean, µmin:

(A.61) µmin = min
X

(h− l) E [f (aX + b)]− fmin
fmax − fmin

+ l.

Since we are in a minimization environment, we simplify by removing the summands

without X, as well as the coefficient of the expectation since it is strictly a positive value:

(A.62) µ′min = min
X

E [f (aX + b)] .

This is the same µ′ as in Eq. (A.14). To minimize the expectation, we assume f (aXi + b) =

fmin for all i. Thus,

(A.63) µ′min = fmin.

A similar argument follows to find the upper bound of the mean, µmax, where we instead

perform a maximization in Eq. (A.61):

(A.64) µ′max = fmax.
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The feasible range of µ′ is then

(A.65) fmin ≤ µ′ ≤ fmax.

Substituting µ′min and µ′max separately into Eq. (A.61), we conclude that the specified

mean must be in the range

(A.66) l ≤ µ ≤ h

in order for the CAVE optimization to have a minimum of 0.

A.3.2. CAVE Mean Feasibility

To show that any mean under Constraint (A.66) can be found, we will fix a = 1 and only

provide a linear shift. We want to show that any b can be found to satisfy Eq. (A.10) for

any mean µ under Constraint (A.66).

First, we note that f must be strictly increasing, and its output range is [fmin, fmax].

This implies that

lim
b→−∞

f (x+ b) = fmin(A.67)

lim
b→∞

f (x+ b) = fmax(A.68)

for any x ∈ R. We can apply these limits to Eq. (A.8):

(h− l)
E
[

lim
b→−∞

f (X + b)

]
− fmin

fmax − fmin
+ l = l(A.69)
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(h− l)
E
[

lim
b→∞

f (X + b)
]
− fmin

fmax − fmin
+ l = h.(A.70)

Since f is defined as being smooth, and the expectation operator is smooth about b,

we conclude by the intermediate value theorem that there exists an a and b such that

Eq. (A.10) is satisfied for any mean µ under Constraint (A.66).

A.3.3. CAVE Variance Constraints

Here, we establish an upper bound on the variance νmax such that the minimum of the

CAVE loss function is 0. The variance is always nonnegative, so the variance lower bound

is simply

(A.71) νmin = 0.

For the maximum variance, we maximize Eq. (A.9):

(A.72) νmax = max
X

(
h− l

fmax − fmin

)2

var (f (aX + b)) .

We can remove the coefficient of the variance term since it is nonnegative, so we have

(A.73) ν ′max = max
X

var (f (aX + b)) .

It’s been shown through Popoviciu’s inequality of variance [81] that the maximum vari-

ance of a bounded random variable is

(A.74) ν ′max =
(fmax − fmin)2

4
.
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For a sample population, the maximum variance depends on the parity of N [84]:

(A.75) ν ′max =


(fmax−fmin)2

4
, N even

(N2−1)(fmax−fmin)2

4N2 , N odd

.

After substituting ν ′max into Eq. (A.72), we conclude that the specified variance ν must

be in the range

(A.76) 0 ≤ ν ≤


(h−l)2

4
, N even

(N2−1)(h−l)2

4N2 , N odd

for the CAVE loss to have a minimum of 0.

A.3.4. CAVE Variance Feasibility

To show that any variance under Constraint (A.76) can be found, we first use a slightly

different notation than that of (A.9):

(A.77)

(
h− l

fmax − fmin

)2

var (f (a (X− b))) = ν.

We then find b such that

‖{i | Xi < b}‖ =

⌊
N

2

⌋
(A.78)

b 6∈ X.(A.79)
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The value of b can be anywhere between the two middle values of X. Half of the values

of X − b are negative, and the other half are positive. Since b is not in X, there are no

zero values of X− b.

We now show that any a can be found to satisfy Eq. (A.11) for any variance ν under

Constraint (A.76). The lower bound of the variance is ν = 0, which is easily achieved by

choosing a = 0. This gives

(A.80)

(
h− l

fmax − fmin

)2

var (f (0)) = 0

where 0 ∈ {0}N . All the values of f (0) are the same, thus the variance is 0.

For the upper bound, we examine what happens as a→∞:

(A.81) lim
a→∞

f (a (X− b)) ∈ {fmin, fmax}N .

As a→∞, the values where Xi− b < 0 approach fmin while the values where Xi− b > 0

approach fmax. Recall that half of the values of X are greater than b, and the other half

are less than b. For an even N ,

(A.82) var
(

lim
a→∞

f (a (X− b))
)

=
N
2
f 2
min + N

2
f 2
max

N
−

(
N
2
fmin + N

2
fmax

N

)2

which simplifies to

(A.83) var
(

lim
a→∞

f (a (X− b))
)

=
(fmax − fmin)2

4
.
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For an odd N ,

(A.84) var
(

lim
a→∞

f (a (X− b))
)

=
N−1

2
f 2
min + N+1

2
f 2
max

N
−

(
N−1

2
fmin + N+1

2
fmax

N

)2

which simplifies to

(A.85) var
(

lim
a→∞

f (a (X− b))
)

=
(N2 − 1) (fmax − fmin)2

4N2
.

We can then conclude that

(A.86)

(
h− l

fmax − fmin

)2

var
(

lim
a→∞

f (a (X− b))
)

=


(h−l)2

4
, N even

(N2−1)(h−l)2

4N2 , N odd

which are the upper bounds of Constraint (A.76).

Since f is defined as smooth, and the variance operator is itself smooth about a, we

can conclude via the intermediate value theorem that there exists an a and b such that

Eq. (A.11) is satisfied for any variance ν under Constraint (A.76).

A.3.5. CAVE Joint Mean & Variance Constraints

While Constraints (A.66) and (A.76) can be applied when optimizing either the mean or

the variance, joint optimization of the mean and variance introduces further constraints

on the allowed mean and variance. The Bhatia-Davis inequality [82] provides a tighter

constraint on the variance of a bounded random variable than Popoviciu’s inequality of

variance. When the mean is given, the variance has an upper bound of

(A.87) ν ≤ (h− µ) (µ− l) .
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In a finite sample population, this only works in certain cases.

As a simple example, let N = 2, l = 0, h = 1, and µ = 0.1. To maximize the variance,

we maximize the distance from X1 and X2, so X1 = 0 and X2 = 0.2 lies within the

bounds and has a mean µ = 0.1. The maximum variance here would be 0.01, but the

upper bound from Constraint (A.87) would be 0.09. Clearly, a tighter bound is possible

for sample populations instead of random variables.

We prove a new upper bound by first showing the cases when Constraint (A.87) holds

true. Using a similar argument to that of Section A.3.4, we first use the slightly different

notation than that of Eq. (A.9):

(A.88)

(
h− l

fmax − fmin

)2

var (f (a (X− b))) = ν.

We then find bk such that

(A.89) ‖{i | Xi < bk}‖ = k

for some k ∈ Z where 0 ≤ k ≤ N . Here, Eq. (A.81) holds true as well: as a → ∞,

f (a (X− bk)) = {fmin, fmax}N . In fact, k of the values of lim
a→∞

f (a (X− bk)) are fmin,

and the other N − k values are fmax. This gives an average of

E
[

lim
a→∞

f (a (X− bk))
]

= µ′k(A.90)

µ′k =
kfmin + (N − k) fmax

N
.(A.91)
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The non-adjusted mean follows the transform of Eq. (A.14), which yields

(A.92) µk =
kl + (N − k)h

N
,

where each µk is within the bounds of Constraint (A.66). The variance is then

var
(

lim
a→∞

f (a (X− bk))
)

= ν ′k(A.93)

ν ′k =
k (N − k) (fmax − fmin)2

N2
.(A.94)

Notably, we can massage the equation to show that

ν ′k =

(
fmax −

kfmin + (N − k) fmax
N

)(
kfmin + (N − k) fmax

N
− fmin

)
(A.95)

= (fmax − µ′k) (µ′k − fmin) .(A.96)

By substituting Eq. (A.14) in and using the relation of Eq. (A.15), we get the non-adjusted

variance νk as

(A.97) νk = (h− µk) (µk − l) ,

which is the upper bound of Constraint (A.87). Therefore,

(A.98)

(
h− l

fmax − fmin

)2

var
(

lim
a→∞

f (a (X− bk))
)

= (h− µk) (µk − l)

is a maximum variance for µk.

For other means µ 6= µk, we show that the maximum variance is achieved when all

values of Xi ∈ {fmin, fmax}N for all i except for i = j for some j; the value Xj is bounded
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by l < Xj < h. This is shown via a relaxation of Eq. (A.81) where instead of using the

limit a→∞, we instead use the limit a→M for some sufficiently large M <∞:

(A.99) lim
a→M

f (a (Xi − bk)) ∈


{fmin + δi, fmax − εi}N , i 6= j

(fmin, fmax) i = j

for some small 0 < δi, εi. This relaxation is important in order to be able to control

the location of Xj. We can then find a bk such that M (Xj − bk) = c for some finite

0 < c�∞ when Xj > bk or some −∞� c < 0 when Xj < bk. The value of f (c) = d is

then

(A.100) fmin < d < fmax.

We first find the mean of this set of a→M and b = bk:

E
[

lim
a→M

f (a (Xi − bk))
]

= µ′k(A.101)

µ′k ≈
kfmin + (N − k − 1) fmax + d

N
.(A.102)

From Constraint (A.100), we can establish bounds on µ′k as

(A.103)
(k + 1) fmin + (N − k − 1) fmax + d

N
< µ′k <

kfmin + (N − k) fmax + d

N
.

Note that as 0 ≤ k ≤ N − 1 varies, we encompass the remaining values of the mean.

We then examine the variance when a→M and b = bk:

(A.104) var
(

lim
a→M

f (a (Xi − bk))
)

= ν ′k
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where

(A.105) ν ′k ≈
kf 2

min + (N − k − 1) f 2
max + d2

N
−
(
kfmin + (N − k − 1) fmax + d

N

)2

,

which cannot meaningfully be simplified further. We claim that this is the maximum

possible variance when µ′k 6=
kfmin+(N−k)fmax

N
. The non-adjusted variance is then

(A.106) νk ≈
(

h− l
fmax − fmin

)2

ν ′k.

To prove that only one value should deviate from the extrema to get the maximum

variance for means µ′k 6=
kfmin+(N−k)fmax

N
, let’s design a maximization problem. We want

to maximize the variance of f (a (X− b)) given the mean of the data by changing the

number of non-extrema values in X. From the definition of the mean here, we formulate

the mean as

(A.107) µ′m =

kfmin + (N − k −m) fmax +
m∑
i=1

ci

N

where m is the number of non-extrema values in X, and fmin < ci < fmax for all i. The

range of means covered by µ′m is

(A.108)
(k +m) fmin + (N − k −m) fmax

N
< µ′m <

kfmin + (N − k) fmax
N

.

For any m ≥ 1, as k varies 0 ≤ k ≤ N −m, it can be shown that it covers the range of

possible mean values fmin < µ′m < fmax.
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Without loss of generality, we perform a linear shift of f (aX + b) by −fmin. The new

range is

(A.109) 0 ≤ f (aX + b)− fmin ≤ fmax − fmin.

We can do this since the variance is shift invariant. The variance of the transformed

variable is

(A.110) ν ′k =

(N − k −m) f 2
max +

m∑
i=1

c2
i

N
−

(N − k −m) fmax +
m∑
i=1

ci

N


2

.

If we maximize ν ′k over m, we can greatly simplify it by (1) removing terms independent

of m, and (2) solving for and substituting
m∑
i=1

ci in Eq. (A.107):

(A.111) arg max
m

ν ′k = − (fmax − fmin)2 m+
m∑
i=1

c2
i

for 0 < ci < fmax− fmin. Since 0 < ci < fmax− fmin, we can maximize the variance when

m = 0, the case we covered previously with a discrete set of means. We can see that as m

increases, we deviate further away from the maximal variance of 0, however we can cover

the remainder of the range of means. Thus, we conclude that m = 1, and we found the

maximum variance in Eq. (A.106) when µ 6= kl+(N−k)h
N

for 0 ≤ k ≤ N .

A.3.6. CAVE Mean & Variance Feasibility

We have shown in Section A.3.2 that we can achieve a mean l ≤ µ ≤ h. We also know

through the intermediate value theorem that f (c) can take on any value [fmin, fmax] for
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some c. By setting a = 0, we quickly show that it is possible to achieve zero variance for

any mean l ≤ µ ≤ h:

(A.112)

(
h− l

fmax − fmin

)2

var (f (b)) = 0

for b ∈ {b}N . All the values of f (b) are the same, so the variance is 0. We are also

able to find b such that f (b) = µ′ from Eq. (A.14) with bounds from Constraint (A.65).

Again, because the values of b are identical, we quickly verify that

(A.113) (h− l) E [f (b)]− fmin
fmax − fmin

+ l = µ.

Additionally, we showed in Section A.3.5 that there exist values of a and b that can

approximately achieve the maximal variance given a mean. Since we found bounds for

zero variance and maximal variance for all µ, and the variance operator is smooth for

the non-extreme value c, we can conclude again via the intermediate value theorem that

we can find any mean and variance within the mean bounds of Constraint (A.66) and

variance bounds of Constraint (A.106).
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APPENDIX B

The Gradient of CAVE Functions

As is outlined in Appendix A, there are many calculations that need to be carried

out even for a single gradient descent or Newton’s method step. This is not an issue in a

mathematical sense, but becomes an issue for implementation. PyTorch [80] for example

stores the input of operations in order to track the gradients. This can lead to GPU

memory issues if the process is not simplified to store fewer inputs.

In this appendix, we find the gradient of one update step of gradient descent SG and

Newton’s method SN not with respect to a or b, but to the input X. Variable X contains

the information on the weights outside of the CAVE environment. Specifically, we derive

∇X SG = ∇X (∇a,b C)(B.1)

∇X SN = ∇X

((
∇2
a,b C

)−1
(∇a,b C)

)
(B.2)

where ∇X is the gradient operator with respect to all the values in X.

We find the derivative of the step functions since it maximizes the number of op-

erations. Only the input X to each gradient or Newton step needs to be saved, thus

drastically reducing the memory allocated for backpropagation. We choose one step since

it is impractical to unravel multiple steps of either gradient descent or Newton’s method.
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We continue the derivation from the end of Appendix A using the same shorthand

notation. Additionally, we will only explicitly solve for SN in terms of the base function

f . Step function SG is found via the solution of SN .

B.1. Gradient of Newton’s Method w.r.t. Xi

We can expand the gradient step by

(B.3)
(
∇2
a,b C

)−1∇a,b C =
1

D

Na

Nb


where

Na =
∂C
∂a

∂2C
∂b2
− ∂C
∂b

∂2C
∂a∂b

(B.4)

Nb =
∂C
∂b

∂2C
∂a2
− ∂C
∂a

∂2C
∂a∂b

(B.5)

D =
∂2C
∂a2

∂2C
∂b2
−
(
∂2C
∂a∂b

)2

.(B.6)

All of these values were found in Appendix A, however we need to find the derivative of

each entry with respect to each Xi:

∂

∂Xi

[
Na

D

]
=
D ∂Na

∂Xi
−Na

∂D
∂Xi

D2
(B.7)

∂

∂Xi

[
Nb

D

]
=
D ∂Nb

∂Xi
−Nb

∂D
∂Xi

D2
(B.8)

where

∂Na

∂Xi

=
∂2C
∂a∂Xi

· ∂
2C
∂b2

+
∂C
∂a
· ∂3C
∂b2∂Xi

− ∂2C
∂b∂Xi

· ∂
2C

∂a∂b
− ∂C
∂b
· ∂3C
∂a∂b∂Xi

(B.9)
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∂Nb

∂Xi

=
∂2C
∂b∂Xi

· ∂
2C
∂a2

+
∂C
∂b
· ∂3C
∂a2∂Xi

− ∂2C
∂a∂Xi

· ∂
2C

∂a∂b
− ∂C
∂a
· ∂3C
∂a∂b∂Xi

(B.10)

∂D

∂Xi

=
∂3C

∂a2∂Xi

· ∂
2C
∂b2

+
∂2C
∂a2
· ∂3C
∂b2∂Xi

− 2
∂2C
∂a∂b

· ∂3C
∂a∂b∂Xi

.(B.11)

Now, we need to find the new derivatives with respect to Xi. These derivatives of L are

decomposed into their Cµ and Cν counterparts:

∂2C
∂a∂Xi

=
∂2Cµ
∂a∂Xi

+
∂2Cν
∂a∂Xi

(B.12)

∂2C
∂b∂Xi

=
∂2Cµ
∂b∂Xi

+
∂2Cν
∂b∂Xi

(B.13)

∂3C
∂a2∂Xi

=
∂3Cµ
∂a2∂Xi

+
∂3Cν
∂a2∂Xi

(B.14)

∂3C
∂a∂b∂Xi

=
∂3Cµ

∂a∂b∂Xi

+
∂3Cν

∂a∂b∂Xi

(B.15)

∂3C
∂b2∂Xi

=
∂3Cµ
∂b2∂Xi

+
∂3Cν
∂b2∂Xi

.(B.16)

B.1.1. Gradient of Losses w.r.t. Xi

Using previous definitions, we can find the above loss derivatives. The second order

derivatives are

∂2Cµ
∂a∂Xi

= 2

(
∂Eµ
∂Xi

· ∂Eµ
∂a

+ Eµ ·
∂2Eµ
∂a∂Xi

)
(B.17)

∂2Cν
∂a∂Xi

= 2

(
∂Eν
∂Xi

· ∂Eν
∂a

+ Eν ·
∂2Eν
∂a∂Xi

)
(B.18)

∂2Cµ
∂b∂Xi

= 2

(
∂Eµ
∂Xi

· ∂Eµ
∂b

+ Eµ ·
∂2Eµ
∂b∂Xi

)
(B.19)

∂2Cν
∂b∂Xi

= 2

(
∂Eν
∂Xi

· ∂Eν
∂b

+ Eν ·
∂2Eν
∂b∂Xi

)
(B.20)
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and the third derivatives are

∂3Cµ
∂a2∂Xi

= 2

(
2
∂Eµ
∂a
· ∂

2Eµ
∂a∂Xi

+
∂Eµ
∂Xi

· ∂
2Eµ
∂a2

+ Eµ ·
∂3Eµ
∂a2∂Xi

)
(B.21)

∂3Cν
∂a2∂Xi

= 2

(
2
∂Eν
∂a
· ∂

2Eν
∂a∂Xi

+
∂Eν
∂Xi

· ∂
2Eν
∂a2

+ Eν ·
∂3Eν
∂a2∂Xi

)
(B.22)

∂3Cµ
∂a∂b∂Xi

= 2

(
∂2Eµ
∂a∂Xi

· ∂Eµ
∂b

+
∂Eµ
∂a
· ∂

2Eµ
∂b∂Xi

+
∂Eµ
∂Xi

· ∂
2Eµ
∂a∂b

+ Eµ ·
∂3Eµ

∂a∂b∂Xi

)
(B.23)

∂3Cν
∂a∂b∂Xi

= 2

(
∂2Eν
∂a∂Xi

· ∂Eν
∂b

+
∂Eν
∂a
· ∂

2Eν
∂b∂Xi

+
∂Eν
∂Xi

· ∂
2Eν
∂a∂b

+ Eν ·
∂3Eν

∂a∂b∂Xi

)
(B.24)

∂3Cµ
∂b2∂Xi

= 2

(
2
∂Eµ
∂b
· ∂

2Eµ
∂b∂Xi

+
∂Eµ
∂Xi

· ∂
2Eµ
∂b2

+ Eµ ·
∂3Eµ
∂b2∂Xi

)
(B.25)

∂3Cν
∂b2∂Xi

= 2

(
2
∂Eν
∂b
· ∂

2Eν
∂b∂Xi

+
∂Eν
∂Xi

· ∂
2Eν
∂b2

+ Eν ·
∂3Eν
∂b2∂Xi

)
.(B.26)

B.1.2. Gradient of Errors w.r.t. Xi

Next, we find the derivatives of the error functions. The mean error functions are

∂Eµ
∂Xi

=
1

N

∂f

∂Xi

(B.27)

∂2Eµ
∂a∂Xi

=
1

N

∂2f

∂a∂Xi

(B.28)

∂2Eµ
∂b∂Xi

=
1

N

∂2f

∂b∂Xi

(B.29)

∂3Eµ
∂a2∂Xi

=
1

N

∂3f

∂a2∂Xi

(B.30)

∂3Eµ
∂a∂b∂Xi

=
1

N

∂3f

∂a∂b∂Xi

(B.31)

∂3Eµ
∂b2∂Xi

=
1

N

∂3f

∂b2∂Xi

(B.32)
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and the variance error functions are

∂Eν
∂Xi

=
2

N

(
∂f

∂Xi

− E [f ]
∂f

∂Xi

)
(B.33)

∂2Eν
∂a∂Xi

=
2

N

(
∂f

∂a

∂f

∂Xi

+ f
∂2f

∂a∂Xi

− ∂Eµ
∂a

∂f

∂Xi

− E [f ]
∂2f

∂a∂Xi

)
(B.34)

∂2Eν
∂b∂Xi

=
2

N

(
∂f

∂b

∂f

∂Xi

+ f
∂2f

∂b∂Xi

− ∂Eµ
∂b

∂f

∂Xi

− E [f ]
∂2f

∂b∂Xi

)
(B.35)

∂3Eν
∂a2∂Xi

=
2

N

(
2
∂f

∂a

∂2f

∂a∂Xi

+
∂f

∂Xi

∂2f

∂a2
+ f

∂3f

∂a2∂Xi

− · · ·(B.36)

2
∂Eµ
∂a

∂2f

∂a∂Xi

− ∂2Eµ
∂a2

∂f

∂Xi

− E [f ]
∂3f

∂a2∂Xi

)
∂3Eν

∂a∂b∂Xi

=
2

N

(
∂2f

∂a∂Xi

∂f

∂b
+

∂2f

∂b∂Xi

∂f

∂a
+

∂f

∂Xi

∂2f

∂a∂b
+

∂3f

∂a∂b∂Xi

f − · · ·(B.37)

∂Eµ
∂a

∂2f

∂b∂Xi

− ∂Eµ
∂b

∂2f

∂a∂Xi

− ∂2Eµ
∂a∂b

∂f

∂Xi

− E [f ]
∂3f

∂a∂b∂Xi

)
∂3Eν
∂b2∂Xi

=
2

N

(
2
∂f

∂b

∂2f

∂b∂Xi

+
∂f

∂Xi

∂2f

∂b2
+ f

∂3f

∂b2∂Xi

− · · ·(B.38)

2
∂Eµ
∂b

∂2f

∂b∂Xi

− ∂2Eµ
∂b2

∂f

∂Xi

− E [f ]
∂3f

∂b2∂Xi

)
.

B.1.3. Gradient of CAVE Base Functions w.r.t. Xi

Lastly, we can find the additional function derivatives as

∂f

∂Xi

=
∂

∂Xi

[f (aXi + b)] = f ′ (aXi + b) a(B.39)

∂2f

∂a∂Xi

=
∂2

∂a∂Xi

[f (aXi + b)] = f ′′ (aXi + b) aXi + f ′ (aXi + b)(B.40)

∂2f

∂b∂Xi

=
∂2

∂b∂Xi

[f (aXi + b)] = f ′′ (aXi + b) a(B.41)

∂3f

∂a2∂Xi

=
∂3

∂a2∂Xi

[f (aXi + b)] = f ′′′ (aXi + b) aX2
i + 2f ′′ (aXi + b) Xi(B.42)
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∂3f

∂a∂b∂Xi

=
∂3

∂a2∂Xi

[f (aXi + b)] = f ′′′ (aXi + b) aXi + f ′′ (aXi + b)(B.43)

∂3f

∂b2∂Xi

=
∂3

∂a2∂Xi

[f (aXi + b)] = f ′′′ (aXi + b) a(B.44)

where f ′′′ is the third derivative of f . All of these equations constitute the gradient of

Newton’s method. In addition to the function f and its first and second derivatives, one

would also implement the third derivative for a memory-optimized CAVE function. We

conclude the derivation.
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