
A Process Control System for the John F. Kennedy 
Memorial Bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Principal Investigator:  Professor Pablo L. Durango-Cohen 
 

A final report submitted to the Infrastructure Technology Institute  

DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. This document is disseminated under the sponsorship 
of the Department of Transportation University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Process Control System for the John F. Kennedy Memorial Bridge 
 

Yikai Chen 
 

David J. Corr 
 

Pablo L. Durango-Cohen 
 

 
 
 
Department of Civil & Environmental Engineering and Northwestern University Transportation 
Center, 2145 Sheridan Road, A332, Evanston, IL, 60208-3109, Phone: 847-491-4008, Fax: 847-
491-4011, Email: pdc@northwestern.edu . 

 
 
 
 
 
 
 
 
 
 
 
 
1. Background and Objective  



The John F. Kennedy Memorial Bridge is a cantilever through truss that carries Interstate 65 
across the Ohio River between Louisville, KY and Jeffersonville, IN. During a routine 
inspection in 2006, one of the anchor bolts on its northwest bearing was found fractured, 
leading to concerns over performances of the uplifting bearing. A retrofit system was then 
installed consisting of a threaded rod and clamp-down keepers. Additionally, continuous 
remote monitoring was implemented to provide thorough characterization of the retrofit 
performance in the long term, so as to support managerial decisions related to inspection & 
maintenance planning. 

This system has continuously monitored the condition of the repaired bearing assembly, and 
was able to detect an abrupt failure in one of the components of the retrofit in the fall of 
2008.  This failure resulted in immediate and obvious changes to the stream of data collected 
by the system.  However, there is a need for techniques to monitor long-term trends in 
condition, which may be subtle and not immediately obvious upon reviewing the raw data. 

In this study, we developed and implemented an automatic system to process and analyze the 
data collected.  The objectives are to: 

- Allow engineers to make inferences about the structural integrity, i.e., the condition, of 
the elements, and how they evolve over time in response to normal operating factors 
such as weather, traffic loading, etc.   

- Detect external events that may have either a transitory or a permanent effect on the 
structural integrity of the bridge elements and how they evolve over time.   

In both cases the goal is to support decisions to inspect the components when structural 
deficiencies are either anticipated due to regular deterioration or directly related to external 
events. 

During the progress of this project, the system has monitored and controlled the performance 
of the J.F.K memorial bridge using available data dating from summer 2008, and has 
demonstrated its capability to achieve the objectives listed above. However, due to 
unexpected breaks of the instrumentation process in early 2009 and after mid-2010, no 
complete data were available anymore to further testify and improve updated features of the 
system. This is beyond our control and we have started to implement the same set of 
techniques and framework in the system on other infrastructures for continued research. 

In line with the USDOT’s research goals, this work involves development and 
implementation of cutting-edge, transformative research tools to support information 
management, and decisions related to the management/renewal of surface transportation 
infrastructure.  In addition, this work is also complementary to the work/expertise of 
Northwestern University’s Infrastructure Technology Institute (ITI) in developing advanced 
remote monitoring systems. 



 

2. Scope of the Work: 

(1) Data collecting and pre-processing 

The replacement rod was on the northeast side of a bearing 
assembly that locates on the northwest corner of the entire 
bridge truss. Strain, stress, displacement, and acceleration 
data were recorded simultaneously to monitor the 
deterioration conditions. Continuous data were collected on 
the following critical components of the undermined bearing 
at a sample rate of 50 Hz: 

o Replacement threaded rod 
- Axial strain 
- B

ending strain (two directions) 
- Torsional strain 

o Clamp-down keepers 
- Stress on keepers (four total) 

o Bearing assembly  
- Displacement relative to pier (three 

directions) 
o Environmental factors  

- Ambient temperature 
- Humidity 

(2) Statistical analysis 

The statistical analyses in this part were built on the work described in Chu and Durango-
Cohen (2007), where they proposed state-space specifications of various time series models 
as a framework to formulate and estimate performance conditions of transportation 
infrastructure facilities and their components. 

The framework decomposed the dynamic bridge performance into long-term trends, seasonal 
patterns, measurement errors and system randomness. This generated reliable estimates of 
the true structural conditions as well as how they response to external factors. 

(3) Statistical process modeling 
In this part we adapted techniques from statistical process control in the context of 
manufacturing to the problem of monitoring bridge elements. It involves comparing the 
sequence of measurements to the expected sequence with confidence intervals.   

We exploited properties of the statistical models described in the previous part to set 
benchmarks and triggers for the data collection process.  We also implement an automated 
process control system to analyze the data streams, and detect anomalies/changes.  By 
coupling this process control analysis with the statistical analysis described earlier, we were 
able to assess the nature of these changes: transitory or permanent. 

3.  Context of Research and Results 

In engineering practices, a long-term deterioration process of facilities is commonly regarded 
as a dynamic stochastic system whose performance is subject to both intrinsic randomness 



and related measurement noises. Even if tightly coupled in the data stream, these two sets of 
information provide different implications for managers/engineers, motivating them to focus 
on different perspectives of the process when trying to identify existing or potential issues. 

Therefore, a key feature of the system developed herein is to distinguish measurement 
noises from system randomness. Such an idea could be formulated using a basic statistical 
model called “Random Walk” introduced in Durbin and Koopman (2001): 

    (1)  

       (2) 

At each time , the observed data is an addition of the true facility condition and an error 
term in the measurement process, while the true facility condition transitions into the next 
time period with a slight random shift. It implements time series framework to fit the data 
and yields two paired sets of innovations: one illustrates errors in the measurement process 
while the other profiles randomness on the system level.  

If the underlying facility is working properly, both the error term and the randomness term 
should appear as a Gaussian noise. As a result, according to the Central Limit Theorem, 99% 
of the data points should fall into a 3 standard deviation interval from the mean value. 
Points falling out of the interval would indicate an out-of-control occurrence. 

The result can help management personnel to distinguish system level change in the structure 
from instrumentation defects, to identify explanatory causes, hence facilitate their decision 
making: whether to send a bridge inspector or an instrument technician.  

Case I: Alerting Structural Level Break 

In this case we implemented the 
aforementioned model to the axial 
strain of the replacement rod. The raw 
measurement observations were dotted 
in purple and the estimated true 
condition was curved in black. 

In addition, the measurement errors and 
system randomness were normalized 
and plotted in separate frames, with 3 
standard deviations drawn respectively 
as confidence boundaries. In our 
system, three consecutive points out of 
the boundaries would trigger an out-of-
control event. 

As a result, an alert of system level 
break was triggered on August 14th, 
which showed transitory effect on the 
structural performance of the bridge. 
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This event was later confirmed to correspond with a short-term storm.  

 

Another key component of the system is to detect long-term trends in the structure 
performances, which is hardly available from short-term tests.  

We developed time series models in a state space framework to exploit the measurement 
data, which is proved to be a statistically rigorous approach to estimating/forecasting facility 
conditions. Specifically there are two classes of models in this practice:  

i) Autoregressive Moving Average (ARMA) models 
ii) Structural time series models  

Both of them have advantages and disadvantages depending on the study objective and 
properties of data. In this project where long-term measurements are to be recorded, it is of 
huge value to identify components such as trend, seasonal variation, and system randomness 
from the observations, and therefore we focused on structural time series models first. 

A basic form of the structural time series model is formulated as follows: 

   (3)  
       (4)  

     (5) 
     (6) 

At each time , the observed data is an additive composition of trend, seasonal effect, and an 
error term, all of which follow a stochastic transitioning process. , , and 

are independent Gaussian noises and  is the cycle length of the seasonal effect. 
The resulting trend gives engineers reliable inferences about how the structure integrity 
evolves over time. 

Case II: Detect Long-term Trends  

In this case, we implemented the basic structure model on the measured axial strain of the 
replacement rod based on the data in August 2008. Four days of hourly observations were 
used to determine parameters of the model. And a fifth day was used to validate the results. 
 

Observations were decomposed 
into different structural components, 
each showing a specific feature of 
the rod performance. 

Importantly, a downward trend was 
detected (dashed grey) which 
indicated an increasing stress 
loaded on the rod. This was 
believed to have gradually and 
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latently contributed to the sudden break of the rod a month later. 



 

4. Conclusion 
 
We developed an automated system in this work to monitor and control the long-term 
deterioration process of the John F. Kennedy memorial bridge. It implemented statistical time 
series models in a state-space framework to make reliable inferences on the structural 
integrity of the facilities. Specifically, the system demonstrated its capability to: 

1) Monitor the deterioration trend of the facilities and their seasonal patterns, 
2) Detect burst events of the bearing system and make alerts to minimize risks, 
3) Make predictions of its future condition with certain confidences, and hence 
4) Provide valuable information for maintenance and repair decisions. 

Further improvement of the system behavior and exploration of potential capabilities are 
unavailable at this point due to unexpected break of data stream caused by errors in the 
instrumentation process. However, we are continuing our researches onto other bridge 
infrastructures in a similar context with the goal to develop more advanced systems. 

Throughout this project we disseminated the results of our work at academic conferences and 
research seminars. In addition, all the aforementioned models are formulated with computer 
programs written in Matlab. A list of all the deliverables are appended at the end of this 
report. 
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Appendix II – Matlab Programs 
 
1. Random Walk and Kalman Filter 
 
%% Random Walk Model 
% (1)  y = U + epsilon     
% (2)  U(t+1) = U + eta 
  
% U - the true state value 
% y - n point observations 
% P - state variance, P(t+1) = Var[U(t+1) | y(1~t)] 
  
% R - variance of measurement errors, Var[epsilon] 
% Q - variance of system randomness, Var[eta] 
  
% x - estimation of O, x(t+1) = E[U(t+1) | y(1~t)] 
% v - estimation error (also called 'innovations'), v = y - x 
% F - prediction variance, F(t+1) = Var[v(t) | y(1~n)] = P(t+1) + R 
  
% m - backward smoothing of U, m(t) = E[U(t) | y(1~n)] 
% V - smoothing variance, V(t) = Var[U(t) | y(1~n)] 
% e - smoothing error, e = E[epsilon | y(1~n)] = y - m 
% r - (auxiliary) smoothing cumulant (weighted sum of innovations after t-1) 
% N - (auxiliary) smoothing variance cumulant (weighted sum of inverse variances of innovations 
after t-1) 
  
% sd_ep - standardised observation residuals, E[epsilon] / sqrt(Var[epsilon]) 
% sd_et - standardised state residuals, E[eta] / sqrt(Var[eta]) 
% u - (auxiliary) smoothing error, u = e/R = v/R - K*r 
% D - (auxiliary) D = 1/F + K^2 * N 
  
  
%% Loading Data 
load set1.mat;   
tpdata = ne_axial1(690:690+5041);  len = 5042; 
  
s.A = 1;  % system transformation matrix 
s.H = 1; % measurement transformation matrix 
s.B = 0; % input transformation matrix 
s.u = 0;  % input control 
  
R = 15099; % variance of measurement errors 
Q = 1469.1; % variance of system error 
 
s.x = tpdata(1); % initial state estimate 
s.P = R; % initial state variance 
s.F = s.P + R; % initial prediction variance 
s.K = 0;  % regression coefficient K = P/F = P/(P+R) 
s.v = 0;  % forecast error v = y-x 
  
%% Calculate P(state variance) & K which don't depend on observations 
for t=1:len 
    s(end).y = tpdata(t); 
     
    if isnan(s(end).y)    s(end).K = 0;    % set the current K to 0 if the observation is missing 
    else    s(end).K = s(end).P / (s(end).P + R);    % otherwise update K = P/(P+R) 
    end 
     
    s(end+1).P = s(end).P * (1 - s(end).K) + Q;    % update P = P*(1-K) + Q 
    s(end).F = s(end).P + R;    % prediction variance F = P + R 
end 
  
  
%% Use Kalman filter to do one-step filtering, i.e., x = E[U(t+1) | y(1~t)] 
for t=1:len 
    if isnan(s(t).y)    s(t).v = 0;    % set the current v to 0 if the observation is missing 



    else    s(t).v = s(t).y - s(t).x;    % otherwise update v = y - x, v is prediction error    
end 
     
    s(t+1).x = s(t).x + s(t).K * s(t).v;    % update x = x + K*v 
     
    % calculate upper and lower bound of 50% CI on x 
    s(t).x_upper = s(t).x + 0.5*sqrt(s(t).F); 
    s(t).x_lower = s(t).x - 0.5*sqrt(s(t).F); 
end 
  
  
%% Backward smoothing after obtaining all observations, i.e., m = E[U(t) | y(1~n)]  
s(len).r = 0;    % r is smoothing cumulant (weighted sum of innovations after t-1) 
s(len).N = 0;    % N is smoothing variance cumulant (weighted sum of inverse variances of   
innovations after t-1)  
for t=1:len 
    temp_r = s(len+1-t).v / s(len+1-t).F + (1-s(len+1-t).K)*s(len+1-t).r;    % backward update 
r(t-1) = v/(P+R) + (1-K)*r 
    temp_N = s(len+1-t).K/s(len+1-t).P + (1-s(len+1-t).K)^2 * s(len+1-t).N;    % backward update 
N(t-1) = K/P + (1-K)^2 * N 
    if t<len     % to avoid assign r(0) or N(0) which is illegal in Matlab 
        s(len-t).r = temp_r; 
        s(len-t).N = temp_N; 
    end 
     
    s(len+1-t).m = s(len+1-t).x + s(len+1-t).P*temp_r;    % calculate smoothed state m = x'hat' = 
x + P*r(t-1) 
    s(len+1-t).V = s(len+1-t).P - (s(len+1-t).P)^2*temp_N;    % calculate smoothed state variance 
V = P - P^2 * N(t-1) 
    s(len+1-t).e = s(len+1-t).y - s(len+1-t).m;    % calculate smoothed error e = y - m = 
E[epsilon | y(1~n)]; 
     
    % calculate upper and lower bound of 99% CI on m 
    s(len+1-t).m_upper = s(len+1-t).m + 3*sqrt( s(len+1-t).V ); 
    s(len+1-t).m_lower = s(len+1-t).m - 3*sqrt( s(len+1-t).V ); 
end 
  
  
%% Smoothing disturbances: epsilon & eta 
% they could be estimated from e=y-m, but sometimes it is needed to 
% estimate them directly w/o calculating m (e.g. outlier detection) 
for t=1:len 
    s(t).u = s(t).v/s(t).F - s(t).K*s(t).r; 
    s(t).D = 1/s(t).F + (s(t).K)^2*s(t).N; 
     
    s(t).sd_ep = s(t).u / sqrt(s(t).D); % standardised observation residuals, E[epsilon] / 
sqrt(Var[epsilon]) 
    s(t).sd_et = s(t).r / sqrt(s(t).N); % standardised state residuals, E[eta] / sqrt(Var[eta]) 
end 
  
  
%% J-step minimum mean square error forecasting, i.e., E[y(n+j) | y(1~n)]  
J=0;    % set to 0 to disable forecasting 
for t=1:J 
    s(len+t).x = s(len+1).x;    % E[y(n+j) | y(1~n)] = E[U(n+j) | y(1~n)] = x(n+1)  
    s(len+t).P = s(len+1).P + (t-1)*Q;     
    s(len+t).F = s(len+t).P + R;    % forecasting variance 
     
    % upper and lower bound of 50% CI on forecast 
    s(len+t).x_upper = s(len+t).x + 0.5*sqrt(s(len+t).F); 
    s(len+t).x_lower = s(len+t).x - 0.5*sqrt(s(len+t).F); 
end 
  
  
%% Plot filtering and backward smoothing results 
figure; 
hold on; 
scale = 0.031;  % scale of convertion from mV to ustrain 
  
% plot 99% CI of smoothed states 
%aa = [1:len+J]; aa=[aa fliplr(aa)]; 



%bb = [[s(1:len+J).m_upper] fliplr([s(1:len+J).m_lower])]; 
%hf = fill(aa,bb, [0.75,0.75,0.75]); 
%alpha(0.4);    % set scale of transparency of the filled color 
  
hz = plot([s(1:len).y].*scale,'g.','MarkerSize',15, 'Color', [0.5,0,1]);  % plot measurement data 
hb = plot([s(1:len).m].*scale,'k','LineWidth',5);  % plot (backward) smoothed states 
h = gca; set(h,'Fontsize',32); 
xlim([1,len]);    % limit of x axis 
ylabel('Axial strain (ustrain)', 'FontSize', 32); 
%ylabel('Bending strain on the threaded rod (ft-lbs)', 'FontSize', 28); 
set(gca,'xlim',[0 5040]); 
set(gca,'xtick',[1200:1440:4080]); 
set(gca,'xticklabel',['Aug 14'; 'Aug 15'; 'Aug 16';]); 
legend1 = legend([hz,hb], 'Observations','Smoothed state','Location','NorthEast'); 
set(legend1, 'FontSize', 32); 
text(800,-3.2,'System level break','FontSize',28); 
title('Modeling of axial strain on replacement rod', 'Fontsize', 40); 
hold off; 
  
  
%% Plot smoothed residuals for outlier detection 
figure; 
axes('position', [0.13, 0.55, 0.75,0.3]); 
hold on; 
plot([s(1:len).sd_ep],'b','LineWidth',2); 
plot(3*ones(len,1),'k--','LineWidth',3) 
plot(-3*ones(len,1),'k--','LineWidth',3); 
h = gca; set(h,'Fontsize',32); 
xlim([1, len]); 
ylim([-5,7]); 
set(gca,'ytick',[-3 0 3 6]); 
set(gca,'xlim',[0 5040]); 
set(gca,'xtick',[1200:1440:4080]); 
set(gca,'xticklabel',['Aug 14'; 'Aug 15'; 'Aug 16';]); 
title('Model innovations of measurement error', 'FontSize', 40); 
ylabel('Normalized') 
hold off; 
  
figure(); 
axes('position', [0.13, 0.08, 0.75, 0.3]); 
hold on; 
plot([s(1:len).sd_et],'r','LineWidth',2); 
plot(3*ones(len,1),'k--','LineWidth',3) 
plot(-3*ones(len,1),'k--','LineWidth',3); 
h = gca; set(h,'Fontsize',32); 
xlim([1, len]); 
ylim([-8,7]); 
set(gca,'ytick',[-6 -3 0 3 6]); 
set(gca,'xlim',[0 5040]); 
set(gca,'xtick',[1200:1440:4080]); 
set(gca,'xticklabel',['Aug 14'; 'Aug 15'; 'Aug 16';]); 
%annotation('arrow',[0.4285 0.4576],[0.3508 0.3291],'LineWidth',3); 
%text(540,6.1,'System level break','FontSize',28); 
title('Model innovations of system randomness', 'FontSize', 40); 
ylabel('Normalized') 
hold off; 
  
%% Plot ACF 
figure(); 
axes('position', [0.13, 0.60, 0.4,0.3]); 
hold on; 
[acf1 lags1 bounds1] = autocorr([s(1:len).sd_ep]); 
 
plot(lags1, acf1, 'r.', 'MarkerSize', 20); 
line([lags1;lags1], [zeros(1,21);acf1], 'Color', 'r', 'LineWidth', 1); 
line([0 20],[0 0],'Color','k','LineWidth',1); 
line([0.5 0.5; 20 20],[bounds1; bounds1], 'Color', 'b', 'Linewidth', 1); 
h = gca; set(h,'Fontsize',32); 
title('ACF of measurement residual', 'FontSize', 40); 
ylim([-0.2,1]); 
set(gca,'ytick',[0,0.5,1]); 



set(gca,'xtick',0:2:20); 
xlabel('Lag (minute)', 'Fontsize', 28); 
hold off; 
figure(); 
axes('position', [0.13, 0.11, 0.4, 0.3]); hold on; 
[acf2 lags2 bounds2] = autocorr([s(1:len-1).sd_et]); 
plot(lags2, acf2, 'r.', 'MarkerSize', 20); 
line([lags2;lags2], [zeros(1,21);acf2],'Color', 'r', 'LineWidth', 1); 
line([0 20],[0 0],'Color','k','LineWidth',1); 
line([0.5 0.5; 20 20],[bounds2; bounds2], 'Color', 'b', 'Linewidth', 1); 
h = gca; set(h,'Fontsize',32); 
title('ACF of system residual', 'FontSize', 40); 
ylim([-0.2,1]); 
set(gca,'ytick',[0,0.5,1]); 
set(gca,'xtick',0:2:20); 
xlabel('Lag (minute)', 'Fontsize', 28); hold off; 
 
 

2. Basic Structural Models 
 
% Use structural model for decomposition of trend and seasonality 
 
%% read data 
load set2_hour; 
tpdata = ne_axial1(1:103); 
wholedata = ne_axial1; 
data = iddata(tpdata, zeros(size(tpdata,1),1), 1); 
  
%% construcr model 
%  x(t+1) = A*x(t) + B*u(t) + K*e(t) 
%  y(t) = C*x(t) + D*u(t) + e(t) 
  
A = [0  1  1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1; 
     0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1; 
     0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0; 
     0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0]; 
  
B = zeros(size(A,1),1); 
C = [0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
D = 0; 
  
As = A; 
Bs = B; 
Cs = C; 
Ds = D; 
Ks = [NaN NaN NaN NaN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'; 
X0s = [tpdata(1) NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
NaN NaN NaN NaN NaN]'; 



  
ms = idss(A,B,C,D); 
setstruc(ms,As,Bs,Cs,Ds,Ks,X0s); 
set(ms, 'Ts', 1); 
  
% estimate the model parameter using only sample 1:103 
model = pem(data,ms); 
  
% introduce the whole data set 
time = 1:1:size(wholedata,1); 
data1 = iddata([wholedata], zeros(size(wholedata,1),1), 1); 
yp = predict(model,data1,21); 
[yh,fit,x0] = compare(data, model); 
mdl = yh{1}(:,1,:); 
 
ttt = meanf(mdl.y(2:97), 24); 
a = (ttt(4) - ttt(1))/72; 
b = ttt(1) - 14*a; 
trend = a * time(1:103) + b; 
  
figure(); hold on; grid on; 
plot(time(1:103),tpdata.*0.031,'r.-','MarkerSize',30,'LineWidth',3); 
plot(time(1:103),mdl.y.*0.031,'b','LineWidth',4); 
plot(time(1:103),trend.*0.031, 'm--','LineWidth',4,); 
plot(time(103:124),wholedata(103:124).*0.031,'g.-‘,'MarkerSize',30,'LineWidth',3) 
plot(time(103:124), yp.y(103:124).*0.031,'k','LineWidth',4); 
h = gca; set(h,'Fontsize',28); 
legend1 = legend('In-sample observation','In-sample estimate', 'Trend','Validating observation', 
'Prediction'); 
set(legend1,'FontSize',22, 'Location','Northwest'); 
set(gca,'ylim',[-0.27 -0.15]); 
set(gca,'xlim',[0 124]); 
set(gca,'xtick',[20:24:118]); 
set(gca,'xticklabel',['Aug 13'; 'Aug 14'; 'Aug 15'; 'Aug 16'; 'Aug 17']); 
ylabel('Axial strain on threaded rod (ustrain)', 'FontSize', 32); 
title('Condition forecasting using Basic Structural Model', 'Fontsize', 36); 
hold off; 
  
%% Calculate RMSE 
count = 0; 
for i=103:124 
    count = count + (yp.y(i)-wholedata(i)).^2; 
end; 
count = sqrt(count); 

 


