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Abstract

Asymptotics For The Number Of Critical Points For Two Analytical Models

Xavier Garcia

In this work we explore a connection between some high dimensional asymptotic

problems and random matrix theory. In the first part, we establish a link between the

Wishart ensemble and random critical points of holomorphic sections over complex

projective space and use this to establish asymptotics on the average number of them.

In the second part of this work, we further explore the link between the Gaussian

Elliptic Ensemble and the average number of equilibrium points for a class of random

Gaussian ordinary differential equations as established in Fyodorov [18]. We use this

link to establish asymptotics on the average number of stable equilibrium points for

this class of random Gaussian ordinary differential equations.
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CHAPTER 1

Introduction

Connections between random matrix theory and large dimensional phenomena

were known as early as 1972 from the work of May [25], where he analyzed the stability

for equilibria of high dimensional ordinary differential equations arising from ecolog-

ical models. Since then, random matrix theory has become an effective tool to study

high dimensional problems with great success, as can be seen from the works of Auffin-

ger, Ben Arous and Černý [3], Dedieu and Malajovich [10], Fyodorov [16], [17], [18],

etc. In all of these works, it is the Gaussian Orthogonal Ensemble (GOE) that arises as

the underlying random matrix model, serving as a proof that there is a link between

the eigenvalues of the GOE and critical points of isotropic Gaussian fields both on Rn

and on the sphere. The GOE is not the only such ensemble to be used in high dimen-

sional problems. In multivariate statistics, the Wishart ensemble arises naturally as the

distribution of sample covariance matrices, see Johnstone [23]. In this work, we shall

add to this rich history by considering two additional models. The second of these

models shares the same setting as many of the aforementioned papers, namely high

dimensional spheres in Rn. The first model takes place in the complex analog, namely

complex projective space.
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1.1. Complex holomorphic sections

In the first part of this work, we study the statistics of critical points of Gaussian

random holomorphic sections over a complex projective space. Random holomorphic

sections were originally studied in Douglas, Shiffman, and Zelditch [12], [13] as a tool

to understand the vacuum selection problem in string theory. Since then, there have

been a lot of results about them with most of these results focusing on the distribution

of the zeroes of random holomorphic sections in the large degree limit, see e.g. [6]. We

focus instead in the large dimensional limit and look at critical points instead, as orig-

inally considered Douglas, Shiffman, and Zelditch [12]. This was exactly the type of

problem that was considered in Baugher [5], where bounds for the expected number

of critical points (regardless of Morse index) were established. In this work, we pro-

ceed to establish a link between the statistics of these critical points and the Wishart

ensemble and use this link to establish asymptotics on the exponential rate of the av-

erage number of critical points of a given Morse index, extending the results in [5].

In CHAPTER 2, we introduce our main results as well as some background material

needed for understanding the rest of this part of the thesis. In CHAPTER 3 we discuss

the Wishart ensemble and its large deviations needed in the proof of the main results.

CHAPTER 4 is devoted to explaining the relation between the expected number of crit-

ical points and the Wishart ensemble, as well as providing the proofs for THEOREM

2.1.1 and THEOREMS 2.1.2 and 2.1.5.

It is reasonable to suspect that this link should allow us to derive asymptotics for

the average number of critical points as a whole, as opposed to simply the exponential

rate. By writing the average density of eigenvalues of the Wishart ensemble in terms of
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Laguerre polynomials, it should be possible to derive those asymptotics. Nevertheless,

we do not perform that computation here.

1.2. Equilibrium points for Gaussian ODEs on spheres

In the second part of this work, we return to the more traditional setting of spheres

in Rn. We will be interested in the dynamics of a particular family of random Gauss-

ian ordinary differential equations. This type of ODEs were originally studied by

Cugliando et al. in [9] and serve as a nice framework in which the problem of study-

ing stability of equilibrium is analytically tractable yet still general enough to be non-

trivial. In the case our ODE takes the form of gradient flow (known in the literature

as relaxational dynamics), the results in Auffinger, Ben Arous and Černý [3] and Fyo-

dorov [16] establish asymptotics on the average number of equilibrium points with any

given number of stable directions. In fact, Subag [27] established almost-sure asymp-

totics on the total number of equibrium. To complement that work, we will be per-

forming stability analysis for the non-gradient flow case.

The asymptotics for the average number of equilibrium points (regardless of sta-

bility) was established in Fyodorov [18]. This work complements it by establishing

asymptotics on the average number of stable equilibria, which is more telling of the

dynamics than simply equilibrium points. We do so by expanding the link between

equilibrium points and the Gaussian Elliptic Ensemble(GEE) which Fyodorov estab-

lished in [18].

This part of the thesis is organized as follows. In CHAPTER 5, we establish the

setting we’re working in and state our main results. In CHAPTER 6, we introduce the

Gaussian Elliptic Ensemble and discuss some of its properties. Using properties of the
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logarithm potential of the ellipse, we prove a large deviation result for the eigenvalue

of the Gaussian Elliptic Ensemble with the mth largest real part. The goal of CHAPTER

7 is to relate ENm(B) to a matrix integral involving the Gaussian Elliptic Ensemble as

well as provide the proofs for the main results stated in this chapter.

1.3. Similarities between the models

At first glance, the two models seem vastly different. The first is inherently in the

complex domain, while the second one unequivocally belongs to the real domain. Nev-

ertheless, the two models have three main similarities which allow the same type of

argument to work in both cases. First, the existence of a Kac-Rice formula. Second, the

existence of a large symmetry group to simplify the explicit form of the Kac-Rice for-

mula and lastly, the existence of large deviation results for the empirical distribution

of the eigenvalues of the resulting ensembles that arise from the Kac-Rice formula.
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Part 1

On the expected number of random

holomorphic sections over a complex projective

space
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CHAPTER 2

Main results and background material

The goal of this chapter is to establish some necessary background in order to state

the results of this part of the thesis. In the first section, we present the setting we are

working on as well state the main results. The last section of this chapter presents ad-

ditional background on complex projective space as well as on holomorphic sections.

2.1. Main results

We now describe the setting and our main results, which we retrieve from the au-

thor’s work in Garcia [19]. We consider the line bundle O(N) over CPm equipped

with Fubini-Study metric h, induced Chern connection ∇ and N ≥ 2. We endow the

space of holomorphic sections H0(CPm,O(N)) with the inner product induced by the

metric, namely for two sections s1, s2 we set

〈s1, s2〉 :=
∫

CPm
hz(s1, s2)v(dz),

where v is the Fubini-Study volume element. We view H0(CPm,O(N)) as a finite

dimensional Hilbert space and choose an orthonormal basis sN
i . With this basis, we

can form the Gaussian field

(2.1.1) s = ∑
i

cisN
i ,
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where the ci are independent circularly symmetric complex Gaussians with the nor-

malized variance

E|ci|2 =
Vol(CPm)

dim H0(CPm,O(N))
=

N!πm

(N + m)!
.

With this normalization, we have that the expected value of the L2 norm of s is one. It

is clear that the distribution of s is independent of the choice of the orthonormal basis.

For any Borel set B ⊂ R+ = [0, ∞) and integer k satisfying the inequality m ≤ k ≤ 2m,

we consider Nm,k,N(B)(s), the number of critical points z with Morse index k for a

section s with hz(s, s) = ||s(z)||2h ∈ (m + 1)B; symbolically,

Nm,k,N(B) = ∑
z:∇s(z)=0, Ind(∇2s)(z)=k

1(m+1)B(||s(z)||2h),

where we understand Ind(∇2s) as the index of the real Hessian of log ||s(z)||2h. Thus

Nm,k,N(B) is an integer-valued random number if s is sampled from the Gaussian field

(2.1.1). The random variable

Nm,N(B) = ∑
m≤k≤2m

Nm,k,N(B)

is the total number of critical points regardless of their Morse indices.

We will prove two types of asymptotics for Nm,2m−k,N(B) as the dimension m goes

to infinity: with fixed k and with linearly growing k. More specifically, in the latter case

we will consider a relation of the form k(m)/m→ γ ∈ (0, 1) as m→ ∞.

We now state our main results. For a given γ ∈ (0, 1) define sγ by

(2.1.2)
∫ 4

sγ

fMP(x)dx = γ,



15

where

fMP(x) =
√
(4− x)x
2πx

is the Marchenko-Pastur density function on [0, 4], see Pastur and Shcherbina [26] for

more details on this measure.

Our first main result concerns the exponential growth rate of the expected number

ENm,2m−k,N(x, ∞) of critical points.

Theorem 2.1.1. Fix an integer k.

(1) Suppose that x ≥ 0 and let xN = N
N−1 x. If xN ≥ 4, then

lim
m→∞

1
m

log ENm,2m−k,N[x, ∞) = log(N − 1)− xN

2

(
1− 2

N

)
− (k + 1)

∫ xN

4

√
t− 4

4t
dt.

lim
m→∞

1
m

log ENm,2m−k,N[0, x) = log(N − 1)− 2
(

1− 2
N

)
.

If xN ≤ 4, then

lim
m→∞

1
m

log ENm,2m−k,N[0, x) = −∞.

lim
m→∞

1
m

log ENm,2m−k,N[x, ∞) = log(N − 1)− 2
(

1− 2
N

)
.

(2) If k = k(m) such that k/m→ γ ∈ (0, 1), then

lim
m→∞

1
m

log ENm,2m−k,N(R+) = log(N − 1)−
(

1− 2
N

)
sγ

2
,

where sγ is the number uniquely defined by the relation (2.1.2).

The above results do not include the case k(m) = m. However, in this case we

can compute explicitly the expected value ENm,m,N(R+) and recover the formula in
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Baugher [5]. Define the density function pm,m,N by

E

 ∑
z:∇s(z)=0, Ind(∇2s)(z)=k

f
(

1
m + 1

||s(z)||2h
) =

∫
R+

f (x)pm,m,N(x)dx

for any positive continuous function f on R+. Note that the above sum is simply the

total number of critical points of Morse index m in the case when f := 1. Our second

main result is an explicit formula for pm,m,N.

Theorem 2.1.2. For any x ≥ 0,

pm,m,N(x) = (N − 1)m(m + 1)2e−
(m+1)N
2(N−1) (2−

2
N +m)x.

We can draw two consequences from this explicit density.

Corollary 2.1.3. For any x ≥ 0,

ENm,m,N[x, ∞) =
2(N − 1)m+1(m + 1)

2N − 2 + Nm
e−

(m+1)N
2(N−1) (2−

2
N +m)x.

PROOF. Integrate the density function over [x, ∞). �

For x = 0, the above corollary recovers the formula

(2.1.3) ENm,m,N(R+) =
2(m + 1)

2(N − 1) + mN
(N − 1)m+1

proved in Baugher [5]. For x > 0, it follows from the corollary that there exist positive

constants c1 and c2 such that ENm,m,N(x, ∞) ≤ c1e−c2m2x, which shows that it becomes

exponentially unlikely to find critical values away from 0 whose Morse index is m.
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The next consequence is that we can recover the asymptotics for the exponential

rate of ENm,m+k,N(R+) for any fixed k > 0.

Corollary 2.1.4. For a fixed k > 0, we have

lim
m→∞

1
m

log ENm,m+k,N(R+) = log(N − 1).

PROOF. According to THEOREM 1.4 of Baugher [5], the total number of critical

points Nm,m+k,N(R+) decreases as k increases. Thus, given γ ∈ (0, 1) and q(m)/m →

γ, we have for large m,

Nm,2m−q(m),N(R+) ≤ Nm,m+k,N(R+) ≤ Nm,m,N(R+).

For the right hand side, we have by (2.1.3)

lim
m→∞

1
m

log ENm,m,N(R+) = log(N − 1).

For the left hand side, we have by the second part of THEOREM 2.1.1,

lim
m→∞

log ENm,2m−q(m),N(R+) = log(N − 1)−
(

1− 2
N

)
sγ

2
.

We have sγ → 0 as γ → 1, and the above limit reduces to that log(N − 1). The result

follows immediately. �

Finally, our third and last main result concerns the total number of critical points.
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Theorem 2.1.5. As before, we let x ≥ 0 and xN = N
N−1 x. Then:

lim
m→∞

1
m

log ENm,N(x, ∞) =


log(N − 1)−

(
1− 2

N

)
xN

2
−
∫ xN

4

√
t− 4

4t
dt, xN ≥ 4

log(N − 1)−
(

1− 2
N

)
xN

2
, xN < 4

2.2. Complex projective space and line bundles

In this section we recall some basic facts from complex geometry which are useful

for understanding the setting of this part of the thesis.

The complex projective space CPm is the quotient space of Cm+1\{0} by the equiv-

alence relation

λ(Z0, ..., Zm) ∼ (Z0, ..., Zm), λ ∈ C∗ = C\{0}.

This is a compact complex manifold with local charts Ui = {[Z0, Z1, ..., Zm]|Zi 6= 0}

and trivializing maps Φi : Ui → Cm defined by

Φi(Z) = (Z0/Zi, . . . , Ẑi/Zi, . . . , Zm/Zi).

We denote by O(N) the line bundle with the transition functions

σij : Ui ∩Uj → C∗, σij(Z) =

(
Zi

Zj

)N

.

The sections of this bundle correspond to homogeneous holomorphic polynomials of

degree N in the variables Z0, ..., Zm. To see this, given a homogeneous holomorphic

polynomial p(Z0, ..., Zm) we define the functions f j on Uj by f j(Z) = p(Z/Zj). It is

easy to verify that these functions glue up and yield a section on CPm. Indeed, on the
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intersection Ui ∩Uj, we have

fi(Z)σij(Z) = p
(

Z
Zi

)(
Zi

Zj

)N

= p

(
Z
Zj

)
= f j(Z).

Conversely, a section is just a collection of polynomials f j on the charts Uj satisfying

fi(Z)σij(Z) = f j(Z) on the intersection Ui ∩Uj, which define a homogenous polyno-

mial in a unique way by setting p(Z) = ZN
j f j(Z).

We equip CPm with the Fubini-Study metric h and denote the corresponding Chern

connection on O(1) by ∇. This induces canonically a connection on O(N), also de-

noted by ∇, by requiring that it satisfy Leibniz’s rule on tensors of sections. More

explicitly, a section s ∈ H0(CPm,O(N)) can be written locally as s = f eN, where

eN = ⊗N
i=1e for a trivializing local frame e for O(1) and a holomorphic function f on a

chart of CPm. Then the connection ∇ can be expressed explicitly as

(2.2.1) ∇s =
m

∑
j=1

(∂zj f + f ∂zj KN) dzj ⊗ eN,

where KN is given by

(2.2.2) KN = KN(z, z̄) = N log(1 + |z|2).

Since ∇ also acts on 1-forms canonically, the Hessian ∇2 on holomorphic sections is

well defined. This action can be explicitly written in local coordinates as follows. For

simplicity we introduce the notation ∇zj f := ∂zj f + f ∂zj KN and ∇2
zi,zj

f = ∇zi(∇zj f ).
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In the local basis dzi ⊗ dzj, we can view ∇2s as the 2m× 2m square matrix

∇2s(z) =


∇2

zi,zj
f f ΘN

f ΘN ∇2
zi,zj

f


where ΘN =

{
∂2

zi,zj
KN

}
. Note that this matrix is not Hermitian. For this reason, when

discussing critical points of a section s, it is more convenient to use the real Hessian of

log ||s(z)||2h by viewing CPm as a smooth manifold of real dimension 2m. By a slight

abuse of notation, we use Ind(∇2s)(z) to denote the index of this matrix. From LEMMA

7.1 of Douglas, Shiffman, and Zelditch [13], we know that in local coordinates

Ind(∇2 log ||s(z)||2h) = m + Ind(∇2
zi,zj

f Θ∗N∇2
zi,zj

f −ΘN),

where Θ∗N is the conjugate transpose of ΘN.
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CHAPTER 3

The Wishart Ensemble

In this chapter, we study the Wishart ensemble. This ensemble will arise naturally

when we look at the distribution of the Hessian of random holomorphic sections. In the

first section, we will give a definition of the Wishart ensemble. In the second section,

we will study large deviations for eigenvalues in the Wishart distribution.

3.1. Definition of the Wishart Ensemble

Let X be a real (m + 1)×m random matrix whose entries are i.i.d. Gaussians with

mean zero variance 1/m and W = XTX. We denote the law of W, the Wishart ensem-

ble, by Pm and the corresponding expectation by Em.

The only information we will need about the Wishart ensemble is the explicit distri-

bution of its eigenvalues. For a vector λ = (λ1, ..., λm), we define ∆(λ) = ∏i<j(λi−λj),

the Vandermonde determinant. We write the eigenvalues λ = (λ1, . . . , λm) of W in de-

scending order, so that the vector λ belongs to the region

Rm
≥0 = {λ ∈ Rm : λ1 ≥ ... ≥ λm ≥ 0}.

Theorem 3.1.1. The joint density function of the decreasingly ordered eigenvalues of the

Wishart ensemble with respect to the Lebesgue measure on Rm
≥0 is

1
ZW(m)

∆(λ) exp

(
−m

2

m

∑
i=1

λi

)
,
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where ZW(m) is the normalizing constant given by

(3.1.1) ZW(m) = 2mm−m(m+1)/2
m

∏
j=1

j!

PROOF. See THEOREM 13.3.2 in Anderson [2] for the density, and COROLLARY 2.5.9

of Anderson, Guionnet and Zeitouni [1] for the explicit formula for ZW(m). �

3.2. Large deviations for the largest eigenvalue of the Wishart ensemble

We now turn to the large deviations of the largest eigenvalues of the Wishart en-

semble. We will need the following large deviation principle for the law of kth largest

eigenvalue under Pm.

Theorem 3.2.1. Under Pm, the kth largest eigenvalue λk satisfies the large deviation prin-

ciple (LDP) with the speed m and the good rate function kIMP, where

IMP(x) =
∫ x

4

√
t− 4

4t
dt

for x ≥ 4 and ∞ otherwise.

PROOF. The case for k = 1 is already known, see Feral [15], pages 47 and 48. We

proceed to extend this result for arbitrary m. It is obvious that IMP is a good rate

function. With this in mind, this theorem is equivalent to the following two assertions:

(1) lim supm→∞
1
m log Pm(λk ≤ x) = −∞ for 0 < x < 4.

(2) limm→∞
1
m log Pm(λk ≥ x) = −kIMP(x) for x ≥ 4.

For the proof, we need two previous results.

(a) Under the Wishart ensemble, the empirical measure Lm = 1
m ∑i δλi of the eigen-

values satisfies an LDP with speed m2. Its rate function is minimized uniquely at the
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Marchenko-Pastur distribution µMP on [0,4]

µMP(dx) =
1

2π

√
(4− x)x

x
dx.

This LDP is the content of THEOREM 5.5.7 of Hiai and Petz [21].

(b) The functional

φ(µ, z) =
∫

R+

log |z− y|µ(dy)− z
2

defined on P(R+)×R+ is upper semi-continuous when we restrict it to P [0, M]×

[0, M] for any M > 0, and in fact it is continuous on P [0, r]× [x, y] for y > x > r ≥ 4,

see e.g. Auffinger, Ben Arous and Černý [3]. Here P(A) is the space of probability

measures on a set A ⊂ R+ with a metric compatible with the usual weak convergence

of probability measures. The distribution µMP and the rate function IMP are related

through the functional by

(3.2.1) φ(µMP, x) = −IMP(x)− 1.

See Feral [15], page 48.

To prove assertion (1), we note that by definition, the inequality λk ≤ x for some

x < 4 implies that Lm[x, 4] ≤ (k− 1)/m. Since µMP[x, 4] > 0, there exists a closed set

C ⊂ P(R+) such that µMP /∈ C and {λk ≤ x} ⊂ {Lm ∈ C} for sufficiently large m.

The LDP for Lm recalled above in (a) implies that there exists a c > 0 such that

Pm(λk ≤ x) ≤ Pm(Lm ∈ C) ≤ Ke−cm2
,

which proves assertion (1).
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To prove assertion (2), we first note that for the largest eigenvalue λ1,

(3.2.2) lim
M→∞

lim sup
m→∞

1
m

log Pm(λ1 > M) = −∞,

which is precisely LEMMA 2.6.7 of Anderson, Guionnet and Zeitouni [1]. Now we have

Pm(λk ≥ x) ≤ Pm(λ1 > M) + Pm(λk ≥ x, λ1 < M).

In view of (3.2.2), it is sufficient to show that for sufficiently large M,

(3.2.3) lim
m→∞

1
m

log Pm(λk ≥ x, λ1 < M) = −kIMP(x).

We first prove the upper bound. We introduce variables

ηi =
m

m− k
λi

for 1 ≤ i ≤ m and write the density of Pm in terms of the ηi. On the set

{x ≤ ηk ≤ · · · ≤ η1 < 2M} ⊃ {x ≤ λk ≤ · · · ≤ λ1 < M}
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we have |ηi − ηj| ≤ 2M, and hence

Pm(dλ) =
1

ZW(m)
∆(λ) exp

[
−m

2

m

∑
i=1

λi

]
dλ1 · · · dλm

=

(
m− k

m

)m(m+1)/2 1
ZW(m)

∆(η) exp

[
−m− k

2

m

∑
i=1

ηi

]
dη1 · · · dηm

≤
(

m− k
m

)m(m+1)/2 k

∏
i=1

m

∏
j=k+1

(ηi − ηj) · exp

[
−m− k

2

k

∑
i=1

ηi

]
dη1 · · · dηk×

(2M)(k−1)k/2

ZW(m) ∏
k+1≤i<j≤m

(ηi − ηj) · exp

[
−m− k

2

m

∑
i=k+1

ηi

]
dηk+1 · · · dηm

We can also write this formula in terms of the empirical distribution of the η by

defining the empirical distribution L̃m−k as follows:

L̃m−k =
1

m− k

m−k

∑
i=1

δηk+i .

With this quantity defined, we can further write

Pm(dλ) = (2M)(k−1)k/2
(

m− k
m

)m(m+1)/2 ZW(m− k)
ZW(m)

· dη1 · · · dηk×

exp

[
(m− k)

k

∑
i=1

φ(L̃m−k, ηi)

]
Pm−k(dηk+1 · · · dηm)

For ε > 0, let Bε ⊂ P [0, M] be the ball of radius ε centered around µMP and Bc
ε its

complement. On the set {x ≤ ηk ≤ · · · ≤ η1 < 2M}, we can bound the exponential
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term exp
[
(m− k)∑k

i=1 φ(L̃m−k, ηi)
]

from above by (2M)k(m−k) and thus

exp

[
(m− k)

k

∑
i=1

φ(L̃m−k, ηi)

]
≤

exp

[
k(m− k) sup

µ∈Bε,y∈[x,2M]

φ(µ, y)

]
1Bε(L̃m−k) + (2M)k(m−k)

1Bc
ε
(L̃m−k).

We integrate over {x ≤ ηk ≤ · · · ≤ η1 < 2M} to obtain the following upper bound for

Pm(λk ≥ x, λ1 < M):(
exp

[
k(m− k) sup

µ∈Bε,y∈[x,2M]

φ(µ, y)

]
+ (2M)k(m−k)Pm−k(L̃m−k /∈ Bε)

)
×

(
m− k

m

)m(m+1)
2

(2M)
k(k−1)

2
ZW(m− k)

ZW(m)

Two observations are in order. The first observation is that L̃m−k with respect to Pm−k

satisfies the same LDP as Lm with respect to Pm. In particular, this implies that for m

large enough there exists a c > 0 for which

Pm−k(L̃m−k /∈ Bε) ≤ e−cm2
,

hence the probability Pm−k(L̃m−k /∈ Bε) is negligible in the limit. The second observa-

tion is that from (3.1.1), one has

lim
m→∞

1
m

log

[(
m− k

m

)m(m+1)/2 ZW(m− k)
ZW(m)

]
= k.
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In light of these two observation, we arrive at the inequality

lim sup
m→∞

1
m

log Pm(λk ≥ x) ≤ k + k lim
ε↓0

sup
µ∈Bε,y∈[x,2M]

φ(µ, y).

The second term can be computed explicitly,

lim
ε↓0

sup
µ∈Bε,y∈[x,2M]

φ(µ, z) = sup
y∈[x,2M)

φ(µMP, y) = −IMP(x)− k,

where the first equality follows from the upper-semicontinuity of φ and the second

equality follows from (3.2.1) and the monotonicity of IMP.

To obtain the lower bound, fix y > x > r ≥ 4 and ε > 0, we retain the definition of

the ηi as in the proof of the upper bound, and on the set

{
y ≥ η1 ≥ · · · ≥ ηk ≥

m
m− k

x
}

=

{
m− k

m
y ≥ λ1 ≥ · · · ≥ λk ≥ x

}
⊂ {λk ≥ x}

we can produce the inequality

Pm(dλ) =
1

ZW(m)
∆(λ) exp

[
−m

2

m

∑
i=1

λi

]
dλ1 · · · dλm

≥ (m− k)!
m!

(
m− k

m

)m(m+1)/2 ZW(m− k)
ZW(m) ∏

1≤i<j≤k
|ηi − ηj| · dη1 · · · dηk×

1Bε∩P [0,r](L̃m−k) exp
[

k(m− k) inf
µ∈Bε∩P [0,r],z∈[x,y]

φ(µ, z)
]

Pm−k(dηk+1 · · · dηm),
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where by Bε ∩P [0, r], we mean the set of measures in Bε whose support is contained

in [0, r]. By integrating over
{

y ≥ η1 ≥ · · · ≥ ηk ≥ m
m−k x

}
, we obtain

Pm(λk ≥ x) ≥ Pm

(
y ≥ η1 ≥ · · · ≥ ηk ≥

m
m− k

x
)

≥ (m− k)!
m!

(
m− k

m

)m(m+1)/2 ZW(m− k)
ZW(m)

∫
∏

1≤i<j≤k
|ηi − ηj|dη1 · · · dηk×

exp
[

k(m− k) inf
µ∈Bε∩P [0,r],z∈[x,y]

φ(µ, z)
]

Pm−k(L̃m−k ∈ Bε ∩P [0, r]),

where the integral is over the set

{
y ≥ η1 ≥ · · · ≥ ηk ≥

m
m− k

x
}

.

The integral is bounded away from zero and from above, so it will have no effect in

the limit. The factor Pm−k(L̃m−k ∈ Bε ∩P [0, r]) converges to one by the previously

mentioned LDP, hence it too will not affect the limit. It follows that in the limit the

inequality becomes

lim inf
m→∞

1
m

log Pm(λk ≥ x) ≥ k + k lim
ε↓0

inf
µ∈Bε∩P [0,r],z∈[x,y]

φ(µ, z).

We use the continuity of φ and (3.2.1) to obtain

lim
ε↓0

inf
µ∈Bε∩P [0,r],z∈[x,y]

φ(µ, z) = −IMP(y)− 1.

Finally, we let y→ x and use the continuity of IMP to obtain our desired result. �
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CHAPTER 4

Expected number of critical points and the Wishart ensemble

In this chapter, we first establish the connection between the Wishart ensemble and

critical points of holomorphic sections. In the first section, we make the connection

explicit. Following that, we provide proofs of the remaining theorems.

4.1. Relating the Wishart ensemble to critical points

In this section we relate ENm,2m−k,N(B) to the (k + 1)th largest eigenvalue of an

(m + 1)× (m + 1) Wishart matrix.

Theorem 4.1.1. For a Borel set B ⊂ R+,

(4.1.1) ENm,2m−k,N(B) =
2(N − 1)m+1

N
Em+1

[
e−(1−

2
N )m+1

2 λk+1 ; λk+1 ∈
N

N − 1
B
]

.

The proof of this identity is based on the following Kac-Rice formula adapted to

our setting.

Proposition 4.1.2. Let ρ∇s(z) denote the probability density function of ∇s(z) as a (ran-

dom) vector in Cm (see (2.2.1)). Then ENm,2m−k,N(B) equals

∫
CPm

ρ∇s(z)(0)E[|det∇2s(z)|1(m+1)B(||s(z)||2h)1Ind∇2s(z)=2m−k|∇s(z) = 0]v(dz).

PROOF. See THEOREM 4.4 of Douglas, Shiffman, and Zelditch [12]. �
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Remark 4.1.3. In general ρ∇s(z) depends on our choice of sN
i . Nevertheless, its value

ρ∇s(z)(0) at the origin is independent of the choice.

By SU(m + 1)-invariance, the integrand in the above Kac-Rice formula is indepen-

dent of z, thus the z-integration can be replaced by the multiplication of vol(CPm) and

we need to evaluate the expectation at the point z = 0. For this purpose, we write

s(z) = f (z)eN in local coordinates near the point z = 0. We have ∇zi f = ∂zi f := ∂i f at

z = 0.

Lemma 4.1.4. The covariance of f and its first and second derivatives at z = 0 are given

as follows.

E[ f (0) f (0)] = 1,

E[ f (0)∂i f (0)] = 0,

E[ f (0)∂i∂j f (0)] = 0,

E[∂i f (0)∂j f (0)] = Nδij,

E[∂i f (0)∂j∂k f (0)] = 0,

E[∂i∂j f (0)∂k∂l f (0)] = N(N − 1)(δilδjk + δikδjl).

PROOF. The Gaussian field defined in (2.1.1) is uniquely determined by its covari-

ance kernel

E[s(x)⊗ s(y)] =
N!πm

(N + m)!
ΠN,m(x, y).

Here ΠN,m is the kernel of the projection from L2(CPm,O(N)) into H0(CPm,O(N)).

Note that this kernel is independent of our choice of an orthonormal basis sN
i in (2.1.1).
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In local coordinates, it can be explicitly written as

N!πm

(N + m)!
ΠN,m(x, y) = (1 + z · w̄)NeN(z)⊗ eN(w),

where z and w are the (inhomogeneous) coordinates of x and y. The covariances in the

statement follow by straightforward computations. �

As immediate consequences of LEMMA 4.1.4, we see that ρ∇ f (0)(0) = 1/(Nπ)m

and that both the matrix ∂2
ij f (0) and f (0) are independent of ∂k f (0), hence also in-

dependent of ∇s(0). From (2.2.2) we have ∂2
zi,zj

KN(0) = Nδij, hence from (2.2.1) we

have

det∇2s(0) = det(YY∗ − N2| f (0)|2 Im),

where the matrix Y =
{

∂2
ij f (0)

}
and Im is the m× m identity matrix. Obviously the

value of the determinant depends only on the eigenvalues of YY∗. Therefore we need

to study the distribution of the eigenvalues of YY∗, which is a Hermitian random ma-

trix.

Proposition 4.1.5. The law of the eigenvalues of W = YY∗/mN(N− 1) is identical with

the law of the eigenvalues under the Wishart ensemble.

PROOF. The natural Lebesgue measure on Sym(m, C) as a real vector space is

dH = ∏
i≤j

Re dHij Im dHij.
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From the last covariance identification in LEMMA 4.1.4 the density function of Y with

respect to the Lebesgue measure dH is

(4.1.2)
1

2m(N(N − 1)π)
m(m+1)

2

e−
1

2N(N−1)Tr(HH∗).

Define the map Φ : U(m)×Rm
≥0 → Sym(m, C) by

Φ(U, λ) = Udiag(
√

λ)UT,

where diag(
√

λ) is the diagonal matrix whose entries are
√

λ1, ...,
√

λm and UT is the

transpose of U. By Takagi’s factorization (see COROLLARY 4.4.4 of Horn and John-

son [22]), almost every X ∈ Sym(m, C) can be written uniquely as

X = Udiag
(√

λ(XX∗)
)

UT,

where U is a unitary matrix and λi(XX∗) are the eigenvalues of XX∗ in decreasing

order. A straightforward computation shows that the image of the Lebesgue measure

dH under Φ becomes Φ∗(dH) = ∆(λ) dλ dU, where dU is the properly normalized

Haar measure on U(m). Note that the Jacobian in this case is ∆(λ), a function of λ

alone. On the other hand, the exponent in (4.1.2) is

1
N(N − 1)

Tr(YY∗) = 1
N(N − 1)

m

∑
i=1

λi(YY∗) = m
n

∑
i=1

λi(W).

By passing from Sym(m, C) to U(m)×Rm
≥0, we see from (4.1.2) that the density func-

tions for the distribution of the eigenvalues of W = YY∗/N(N− 1) must be a constant

multiple of ∆(λ) exp
[
−m

2 ∑m
i=1 λi

]
. Comparing this with the density function of the
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eigenvalues under the Wishart ensemble in LEMMA 3.1.1 we obtain the result immedi-

ately. �

Summarizing what we have proved so far, from the Kac-Rice formula in PROPOSI-

TION 4.1.2 we conclude that ENm,2m−k,N(B) equals Vol(CPm)mm(N−1)m

πm times

E

[
1(m+1)B(| f (0)|2)1[λk+1,λk]

(
N| f (0)|2
(N − 1)m

) m

∏
i=1

∣∣∣∣λi −
N| f (0)|2
(N − 1)m

∣∣∣∣
]

,

where λi = λi(W) with W obeying the Wishart ensemble and f (0) is, according to

LEMMA 4.1.4, a standard complex Gaussian random variable independent of W. It

remains to identify this with (4.1.1). For this purpose, we note that N| f (0)|2
(N−1)m is exponen-

tially distributed with mean N
(N−1)m . Thus the mean is

(4.1.3)
m(N − 1)
NZW(m)

∫
N(m+1)
m(N−1) B

∫ m

∏
i=1
|λi − x|∆(λ)e−m

2 (1−
2
N )xe−

m
2 (∑

m
i=1 λi+x)dλdx,

where the inner integral with respect to λ is over the set

{λ1 > ... > λk > x > λk+1 > ... > λm > 0}.

This domain suggests we treat x as if it is another λ. More precisely, introduce the new

variables µi = λi for 1 ≤ i ≤ k, µk+1 = x, and µi = λi−1 for k + 2 ≤ i ≤ m. For the

Vandermonde polynomial we have ∆(µ) = ∆(λ)∏m
i=1 |λi − x|. In terms of the new

variables µ, the integral (4.1.3) becomes

m(N − 1)
NZW(m)

∫
Rm+1
≥0

1 (N−1)(m+1)
mN B

(µk+1)e−(1−
2
N )m

2 µk+1 exp

[
−m

2

m+1

∑
i=1

µi

]
∆(µ)dµ.
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Comparing this with LEMMA 3.1.1, this is exactly the expectation with respect to Pm+1

up to a constant. We will omit the identification of the constant stated in the theorem, it

being a straightfoward computation using Selberg’s integral formula for ZW(m). This

completes the proof THEOREM 4.1.1, our main result of this section.

An immediate consequence of THEOREM 4.1.1 is that ENm,q+1,N(R+) is decreasing

in q in the range m ≤ q < 2m, agreeing with THEOREM 1.4 of Baugher [5]. We can also

obtain a formula for the total number of critical points. We first define the expecteed

density pm+1 of the empirical distribution of the eigenvalues of the Wishart ensemble;

namely, for any bounded continuous function f ,

Em+1

[
1

m + 1

m+1

∑
i=1

f (λi)

]
=
∫

R+

f (x)pm+1(x)dx

Summing over k in (4.1.1), we obtain the following corollary.

Corollary 4.1.6.

ENm,N(B) =
2(m + 1)(N − 1)m+1

N

∫
N

N−1 B
e−(1−

2
N )m+1

2 x pm+1(x)dx.

4.2. Proof of the main results

In this section we prove our main results stated in CHAPTER 2. In the first subsec-

tion, we finish off the proof of THEOREM 2.1.1 by proving a small lemma. In the second

subsection, we present the proof of THEOREM 2.1.2.
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4.2.1. Proof of the asymptotics

THEOREMS 4.1.1 and 3.2.1 together with Varadhan’s lemma (see THEOREM 4.3.1 of

Dembo and Zeitouni [11]) imply the first part of THEOREM 2.1.1. The second part of

THEOREM 2.1.1 is a straightforward corollary of the following lemma.

Lemma 4.2.1. For any ε > 0, γ ∈ (0, 1) and k(m)
m → γ , there exists a constant C = C(ε)

such that

Pm(λk(m) /∈ (sγ − ε, sγ + ε)) ≤ e−Cm2
,

where sγ is defined as in (2.1.2).

PROOF. This is an immediate consequence of the large deviation principle for Lm =

1
m ∑m

i=1 δλi with respect to Pm whose rate function is minimized at the Marchenko-

Pastur distribution µMP (see THEOREM 5.5.7 of Hiai and Petz [21]). To see this, we use

the fact that

Pm(λk(m) > sγ + ε) = Pm

(
Lm(sγ + ε, ∞) ≥ k(m)

m

)
.

Since µMP(sγ + ε, ∞) < µMP(sγ, ∞) = γ, there must exist a positive constant C such

that for large m

Pm

(
Lm(sγ + ε, ∞) ≥ k(m)

m

)
≤ exp(−Cm2)

An analogous argument can be made for Pm(λk(m) < sγ − ε)), which we leave to the

reader. �
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4.2.2. Computation of the density

THEOREM 2.1.2 is equivalent to the statement that for any Borel set B,

ENm,m,N(B) =
∫

B
(N − 1)m(m + 1)2e−

(m+1)N
2(N−1) (2−

2
N +m)xdx

The crux of the proof lies in the following

Lemma 4.2.2. The distribution of the smallest eigenvalue λm of the Wishart ensemble given

by

Pm

(m
2

λm ≥ x
)
= e−mx.

PROOF. This is THEOREM 4.2 of Edelman [14] but we provide a short proof here.

We have

Pm

(m
2

λm ≥ x
)
=

1
m!ZW(m)

∫ ∞

2x
m

...
∫ ∞

2x
m

∆(λ) exp

(
−m

2

m

∑
i=1

λi

)
dλ.

Making a change of variable µ = λ− 2x
m we see that the probability must be of the form

of a constant times e−mx, hence the result.. �

Returning to the proof of THEOREM 2.1.2, we recall from (4.1.1) that

ENm,m,N(B) =
2(N − 1)m+1

N
Em+1

[
e−(1−

2
N )m+1

2 λm+1 ; λm+1 ∈
N

N − 1
B
]

.

LEMMA 4.2.2 allows us to write

Em+1

[
e−(1−

2
N )m+1

2 λm+1 ; λm+1 ∈
N

N − 1
B
]
=
∫

(m+1)N
2(N−1) B

(m + 1)e−(1−
2
N )xe−(m+1)xdx

=
∫

B

(m + 1)2N
2(N − 1)

e−
(m+1)N
2(N−1) (2−

2
N +m)udu,
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where the second equality follows from the change of variables

u =
2(N − 1)
(m + 1)N

x.

Since this is true for any Borel set B, we obtain the desired result.

4.2.3. Asymptotics on the average number of critical points

Finally, we present the proof of THEOREM 2.1.5. To simplify the notation, we introduce

ψ(t) = log(N − 1)−
(

1− 2
N

)
t
2

.

We first consider the case xN ≥ 4. We have the following inequalities:

2
N

Em+1[e(m+1)ψ(λ1); λ1 ≥ xN] ≤
2(m + 1)

N

∫ ∞

xN

e(m+1)ψ(t)pm+1(t)dt

≤ 2(m + 1)
N

e(m+1)ψ(xN)Pm+1(λ1 ≥ xN).

By COROLLARY 4.1.6, the middle expression is ENm,N(x, ∞). For the right hand side,

THEOREM 3.2.1 yields

lim
m→∞

1
m

log
[

2(m + 1)
N

e(m+1)ψ(xN)Pm+1(λ1 ≥ xN)

]
= ψ(xN)− IMP(xN).

For the left hand side, we apply Varadhan’s lemma (THEOREM 4.3.1 of Dembo and

Zeitouni [11]) in conjunction with THEOREM 3.2.1 to obtain

lim
m→∞

1
m

log
[

2
N

Em+1[e(m+1)ψ(λ1); λ1 ≥ xN]

]
= ψ(xN) + IMP(xN).
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The use of Varadhan’s lemma is justified because ψ is bounded from above and thus

the tail condition in THEOREM 4.3.1 of Dembo and Zeitouni [11]) is satisfied.

We now consider the case xN < 4. We can use the same inequality we used in

the case xN ≥ 4 for the upper bound. Unfortunately, the lower bound given by this

inequality is not sharp enough. To remedy this defect, we use a different inequality

2
N

e(m+1)ψ(xN+ε)Pm+1(Lm+1[xN, ∞) > 0) ≤ 2(m + 1)
N

∫ ∞

xN

e(m+1)ψ(t)pm+1(t)dt,

which holds for any positive ε. The LDP on Lm guarantees that

Pm(Lm[xN, ∞) > 0)→ 1

since the rate function for this LDP is minimized at the Marchenko-Pastur distribution

on [0,4], which assigns positive measure to [xN, ∞). Hence,

lim
m→∞

1
m

log
(

2
N

e(m+1)ψ(xN+ε)Pm+1(Lm+1[xN, ∞) > 0)
)
= ψ(xN + ε).

Since ε is arbitrary and ψ is continuous, we are done.
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Part 2

On the number of equilibria with a given

number of unstable directions
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CHAPTER 5

Differential equations on spheres

In this chapter, we introduce the setting of this part of the thesis. In the first section,

we set out to define the notation needed to state the main results. In the next section,

we present the main results of this part of the thesis.

5.1. Gaussian vector fields on spheres

The standard setup is to consider a first order ODE

dx
dt

= F(x)

where F is a random vector field on SN−1(
√

N) and attempt to describe the behavior of

the possible solutions as N → ∞. One natural starting point is to count the numberNtot

of equilibrium points and to study the large-dimensional asymptotics of this quantity.

This is the content of Fyodorov’s work in [17]. In this part of the thesis we classify

the equilibrium points by stability. For an equilibrium point σ and a neighborhood U

around σ, we choose coordinates on U and the tangent space TU such that σ = 0 ∈

RN−1 and write F locally as a function F : RN−1 → RN−1 denoted by

F(x) = (c1(x), ... , cN−1(x)).
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We say σ is an equilibrium point with m unstable directions if the Jacobian matrix

JF(σ) := (∂icj(0)) has exactly m eigenvalues with non-negative real part. While the ex-

plicit formula for JF(σ) depends on the coordinates chosen, its eigenvalues do not. Our

focus on this part of the thesis will be on the number Nm of equilibria with m unstable

directions and its related large-dimensional asymptotics. In the case of a gradient flow

(known in the literature as relaxational dynamics), this problem has been studied in

great detail, as can be found in Auffinger, Ben Arous and Černý [3] and Fyodorov [16].

It is the purpose of this work to obtain the asymptotics in the non-relaxational case. We

compute the exponential rate of ENm under very general conditions as the dimension

goes to infinity. The methods in this paper will follow the tried-and-true approach of

relating the problem to a matrix integral through the Kac-Rice formula, then invoking

a large deviation principle (LDP) to obtain the asymptotics. To be more precise, let us

make our assumptions on F explicit.

Classically, F is viewed as a map F : SN−1(
√

N) ⊂ RN → RN by identifying

SN−1(
√

N) with the usual (N− 1) dimensional sphere in RN centered at 0 with radius
√

N and for x ∈ SN−1(
√

N) ⊂ RN,

TxSN−1(
√

N) = {v ∈ RN : 〈v, x〉 = 0}

where 〈·, ·〉 denotes the usual inner product in RN. With this framework, the vector

fields considered in Fyodorov [17] take the form:

F(x) = −λ(x)x + f (x) + h
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where h = (h1, ..., hN) is an N-dimensional Gaussian vector with covariance structure

E[hihj] = σ2δij

for some σ > 0, δij the usual Kronecker delta and f is an N-dimensional smooth Gauss-

ian field with covariance kernel

E[ fi(x) f j(y)] = δijΦ1

(
〈x, y〉

N

)
+

xjyi

N
Φ2

(
〈x, y〉

N

)

where Φ1 and Φ2 are smooth functions satisfying

(5.1.1) 0 < Φ1(1) < Φ′1(1),−Φ1(1) ≤ Φ2(1) ≤ Φ′1(1).

The Lagrange multiplier λ is chosen so that the vector belongs to TxSN−1(
√

N). Ex-

plicitly,

λ(x) =
1
N
〈x, f (x) + h〉.

We also make the added assumption that h is independent of f . Before stating our

results, we define two quantities which will play an important role in our analysis:

τ =
Φ2(1)
Φ′1(1)

, b2 =
σ2 + Φ1(1)

Φ′1(1)
.

The restrictions given by (5.1.1) imply −1 < τ ≤ 1 and b2 + τ ≥ 0. We additionally

require that b2 + τ > 0 and restrict ourselves to the non-gradient case τ 6= 1.

5.2. Asympotics for ENm

In our first main result, we compute the exponential rate of the expected number

ENm of critical points with m unstable directions:
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Theorem 5.2.1. For b < 1 and −1 < τ < 1, we have:

lim
N→∞

1
N

log ENm = log
1
b
− (1− b2)(1 + τ)

2(b2 + τ)
.

This result says that there exists a curve Γ given explicitly by

Γ =

{
(b, τ) : log

1
b
− (1− b2)(1 + τ)

2(b2 + τ)
= 0

}

such that if (b, τ) are not in the interior of Γ then we have exponentially abundant

equilibria with m unstable directions and otherwise the probability of finding such

equilibria is exponentially small. We remark that the case b > 1 is the “topologically

trivial” case with only two equilibrium points in the limit (see Fyodorov [17]), so we

will omit the analysis of this case.

We are also interested in the case when we have a diverging number of unstable

directions. Let Uτ denote the uniform distribution on the ellipse

Eτ =

{
(x, y) :

x2

(1 + τ)2 +
y2

(1− τ)2 ≤ 1
}

,

γ ∈ (0, 1), and define sγ ∈ (−1− τ, 1 + τ) to be the unique number such that

Uτ(Re z ≥ sγ) = γ.

Theorem 5.2.2. Let m(N) be a sequence of integers which satisfy m(N)
N → γ ∈ (0, 1).

Then,

lim
N→∞

1
N

log ENm(N) = log
1
b
− 1− b2

2(b2 + τ)(1 + τ)
s2

γ.
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Note that this quantity is maximized at sγ = 0 which occurs at γ = 1/2. This allows

us to recover estimates on the average total number of equilibria, since THEOREM 5.2.2

implies

E[Nm(N)] ≤ E[Ntot] ≤ (N + 1)E[Nm(N)]

for N large and m(N)/N → 1/2. Thus, both E[Ntot] and E[Nm(N)] have the exponen-

tial rate given by log 1
b agreeing with PROPOSITION 2.5 of Fyodorov [16].

Our next result details the relationship between the value of the Lagrange multi-

plier and critical points. For a Borel set B ⊂ R, define Nm(B) to be the number of

equilibria with m unstable directions whose Lagrange multiplier has values in B.

Theorem 5.2.3. For −∞ ≤ c < d ≤ ∞ and Nm−1 = Nm−1(c, d), we have:

lim
N→∞

1
N

log ENm−1 =



−∞ if d < (1 + τ)
√

Φ′1(1)

log 1
b −

2(1−b2)Φ′1(1)c
2

(b2+τ)(1+τ)
−mIτ

(
1√

Φ′1(1)
c
)

if c > (1 + τ)
√

Φ′1(1)

log 1
b −

(1−b2)(1+τ)
2(b2+τ)

else

where Iτ is defined in LEMMA 6.2.1 below. Hence, the probability of finding equi-

libria with m unstable directions and a Lagrange multiplier less than (1 + τ)
√

Φ′1(1)

becomes exponentially small. Since the function

c 7→ (1− b2)c2

2Φ′1(1)(b
2 + τ)(1 + τ)

+ mIτ

 1√
Φ′1(1)

c


is increasing, unbounded and attains zero at (1 + τ)

√
Φ′1(1), there is a unique point

z0 > (1 + τ)
√

Φ′1(1) for which it is equal to log
(

1
b

)
. The probability of finding equi-

libria with m unstable directions and a Lagrange multiplier larger than z0 also becomes
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exponentially small. By the symmetry of the problem (and more explicitly by THEO-

REM 7.0.1), we have that Nm(B) = NN−m(−B) so we can make analogous statements

about equilibria with m stable directions.
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CHAPTER 6

On the Gaussian Elliptic Ensemble

In this chapter, we analyze the Gaussian Elliptic Ensemble (GEE). In the first sec-

tion, we define the GEE and discuss ways in which we can talk about a density for the

eigenvalues, even though formally there isn’t one. In the following section we point

out some properties of the logarithm potential function on an ellipse. In that last sec-

tion, we use the results from the previous section to prove a large deviation result for

the eigenvalues of this ensemble.

6.1. Definition of the GEE

We define the GEE as an N × N random matrix X whose entries are mean zero

Gaussian random variables with covariance structure

E[XijXlk] := E[XijXlk] =
1
N
(δilδjk + τδikδjl), 1 < τ ≤ 1

We can write the density of this measure against the Lebesgue measure dX on the space

of real N × N matrices:

PN(dX) =
1

ZN(τ)
exp

(
− N

2(1− τ2)
Tr(XXT − τX2)

)
dX

where

ZN(τ) = 2N/2πN(N+1)/2(1 + τ)N(N+1)/4(1− τ)N(N−1)/4N
N2
2 .
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We shall also think of the eigenvalues of X as ordered by decreasing real parts i.e.,

we will denote them by λ1(X), ... , λN(X) with λ1(X) having the largest real part, with

the understanding that if we have complex eigenvalues, we list the ones with positive

imaginary part first. Almost surely, this is a well-defined ordering. When there is no

room for confusion, we will usually drop the X from the λ(X) to ease the notation.

The purpose of this chapter is to state some properties of the GEE as well as to prove

a large deviation principle for the eigenvalue with the mth largest real part. We first re-

quire a formula for the joint distribution of the eigenvalues. Since a matrix distributed

like the GEE will have real eigenvalues with positive probability, the joint distribution

of the eigenvalues will not be absolutely continuous with respect to the Lebesgue mea-

sure on CN. Nevertheless, we can write out formulas if we restrict ourselves to the

sets

Sk = {X has exactly k real eigenvalues}.

If A ∈ Sk, we can write the eigenvalues of A as σ1, ..., σk, x1 ± iy1, ..., x N−k
2
± iy N−k

2
. This

suggests defining the measure

µ(N,k)(dσ, dx, dy) = 2(N−k)/2
k

∏
i=1

dσi

N−k
2

∏
j=1

dxjdyj

on the set

{(σ, x, y) ∈ Rk ×RN−k : σ1 > ... > σk, x1 > ... > x N−k
2

, yi ≥ 0 ∀i}.

If we define the measure PN,k by PN,k(V) = PN(λ(X) ∈ V, X ∈ Sk) for any Borel set

V ⊂ CN, then PN,k is absolutely continuous with respect to µ(N,k) and the density is
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given by

PN,k(dσ, dx, dy) =
k

∏
i=1

e−
N

2(1+τ)
λ2

i

N−k
2

∏
j=1

e−
N

1+τ (x2
j−y2

j )erfc

(√
2N

1− τ2 yj

)
×

1
KN(τ)

|∆(σ, x± iy)|µ(N,k)(dσ, dx, dy)

where

(6.1.1) KN(τ) = 2N(N+1)/4(1 + τ)N/2N(N+1
2 )/2

N

∏
j=1

Γ(j/2),

∆(σ, x± iy) is the Vandermonde polynomial

|∆(σ, x± iy)|2 = ∏
u,v∈S,u 6=v

|u− v|, S = {σ1, ..., σk, x1 ± iy1, ..., x N−k
2
± iy N−k

2
}

and erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt.

See Lehmann and Sommers [24].

We will find it convenient to rewrite the integrand in a more compact way, namely

as

1
KN(τ)

|∆(λ)| exp

(
− N

2(1 + τ)

N

∑
j=1

λ2
j

)
N

∏
j=1

√√√√erfc

(√
2N

1− τ2 |Im λj|
)

with the understanding that λj = xj + iyj if λ is complex, and λj = σj if it’s real. The

disadvantage of this form is that it obscures the dependence of k and the symmetry

obtained from the fact that the complex eigenvalues come in pairs.
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We find it useful to get rid of the ordering of the eigenvalues by their real parts. We

can do this by simply replacing our region of integration by {(σ, x, y) : yi ≥ 0 ∀i} and

dividing by the factor of k!
(

N−k
2

)
!

6.2. The logarithm potential on an ellipse

In this chapter, we recall some properties of the logarithmic potential for the uni-

form distribution Uτ on the ellipse Eτ

Eτ =

{
(x, y) :

x2

(1 + τ)2 +
y2

(1− τ)2 ≤ 1
}

,−1 < τ < 1.

The logarithmic potential of Uτ is defined as a function φτ : R2 → R explicitly given

by

φτ(x, y) =
∫

Eτ

log |x + iy− w| Uτ(dw).

We summarize the properties of φτ we will need in the lemma below.

Lemma 6.2.1. On the set {x ≥ 1 + τ, y ≥ 0}:

(1) φτ(x, 0) + 1
2 −

x2

2(1+τ)
= −Iτ(x) where

Iτ(x) :=


1

2(1+τ)
x2 − x(x−

√
x2−4τ)

4τ − log( x+
√

x2−4τ
2 ) if τ 6= 0

− log x + 1
2 x2 − 1

2 if τ = 0

(2) ∂xφτ(x, y) ≤ x
1+τ

(3) ∂yφτ(x, y) ≤ y
1−τ

PROOF. In the case τ = 0, we can compute φ0(x, y) = 1
2 log(x2 + y2) from which

we can verify all the results instantly. Henceforth, we shall assume τ 6= 0.
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From page 9 of Bell et. al [7], we have for z = x + iy:

∂xφτ(x, y)− i∂yφτ(x, y) =
∫

Eτ

1
z− w

Uτ(dw) =
1

2τ

(
z−

√
z2 − 4τ

)
.

In particular, this implies

∂xφτ(x, 0) =
1

2τ

(
x−

√
x2 − 4τ

)
.

By integration, we obtain

φτ(x, 0)− φτ(1 + τ, 0) =
1

2(1 + τ)
x2 − 1 + τ

2
− Iτ(x).

By LEMMA 5.3.12 of Hiai and Petz [21], we know that φτ(1 + τ, 0) = τ
2 thus yielding

the first statement. Statements (2) and (3) follow from the proof of LEMMA 5.3.12 of

Hiai and Petz [21]. �

Since y 7→ φτ(x, y) is an even function of y for all x, we have the following corollary

to LEMMA 6.2.1:

Corollary 6.2.2. Define Ψτ(x, y) = φτ(x, y)− x2

2(1+τ)
− y2

2(1−τ)
. For x ≥ 1 + τ, y ∈ R

and τ ∈ (−1, 1),

sup
u≥x,v≥y

Ψτ(u, v) = Ψτ(x, y) ≤ Ψτ(x, 0).

6.3. Large deviation principle for λm(X)

In this section, we establish a result of large deviation type for λm(X).
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Theorem 6.3.1. Under PN, the quantity λm · 1R(λm) satisfies a large deviation principle

with speed N and good rate function mIτ where

Iτ(x) =



∞ if x < 1 + τ

1
2(1+τ)

x2 − x(x−
√

x2−4τ)
4τ − log( x+

√
x2−4τ
2 ) if x ≥ 1 + τ, τ 6= 0

− log x + 1
2 x2 − 1

2 if x ≥ 1 + τ, τ = 0.

In order to prove Theorem 6.3.1, we will first need an exponential tightness result:

Lemma 6.3.2 (Exponential tightness from the right). The following limit holds:

lim
M→∞

lim
N→∞

1
N

log PN

(
|Re λ1(X)| ≥ M or max

j
Im λj(X) > M

)
= −∞.

PROOF. We shall only prove

lim
M→∞

lim
N→∞

1
N

log PN

(
max

i
Im λi > M

)
= −∞

since an analogous argument will provide a proof for the statement involving |Re λ1|.

We shall make use of the following four inequalities:

(1) There exists α > 0 such that for |z| for sufficient large and w ∈ C,

|z− w||z̄− w| exp
[
− |w|

2

1 + |τ|

]
≤ (|z|+ |w|)2 exp

[
− |w|

2

1 + |τ|

]
≤ α2 exp

[
|z|2

2(1 + |τ|)

]
.
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(2) For any z = x + iy ∈ C,

exp
[
− N

2(1 + τ)
(z2 + z̄2)

]
erfc

[√
2N

1− τ2 |y|
]
≤

exp
[
−N|z|2

1−τ

]
√

2N
1−τ2 y2 +

√
2N

1−τ2 y2 + 4
π

(6.3.1)

≤ exp
[
−N|z|2
1 + |τ|

]
.(6.3.2)

(3) For any y ∈ R,

erfc

[√
2N

1− τ2 |y|
]
≤
√

πerfc

√2(N − 2)
1− τ2 |y|

 erfc

[√
4

1− τ2 |y|
]
×

√ 4y2

1− τ2 +

√
4y2

1− τ2 + 2


(4) There exists a C such that for all y ∈ R,

√
π

√
4y2

1−τ2 +
√

4y2

1−τ2 + 2√
4

1−τ2 y2 +
√

4
1−τ2 y2 + 4

π

≤ C−2

We shall establish an inequality for PN,k(|Im λl| > M) for an arbitrary l since

PN

(
max

j
Im λj > M

)
≤∑

k
∑

l
PN,k(|Im λl| > M).

We use this to obtain the following bound for PN,k(|Im λl| > M):

∫
exp

(
− N

2(1 + τ)

m

∑
j=1

λ2
j

)
N

∏
j=1

√√√√erfc

(√
2N

1− τ2 |Im λj|
)
|∆(λ)|
KN(τ)

dµ(N,k) ≤

αN+k−2

CN−k−2
KN−2(τ)

KN(τ)

∫ ∞

−∞

∫ ∞

M
2yl exp

(
−
(N − k + 2)(x2

l + y2
l )

2(1 + |τ|)

)
PN−2,k(Sk) dxldyl
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where the first integral is over {Im λl > M}. The inequality follows from the fact that

we can split the exponential by

exp
(
− N

2(1 + τ)
λ2

j

)
= exp

(
− N − 2

2(1 + τ)
λ2

j

)
exp

(
− 2

2(1 + τ)
λ2

j

)

and use inequality (3) to split the erfc term into three parts, whose first factor cou-

pled with the first factor of the exponential and the appropiate factors from the Van-

dermonde polynomial yields the density for PN−2,k. We then use inequality (2) with

z =
√

2
N λj for j = 1, ..., N to get rid of our remaining erfc factors. This also allows us to

bound the term coming from the last factor on the right hand side of inequality (3) by

C2. We then use inequality (1) to bound the remaining terms from the Vandermonde

polynomial with the exception of |λl − λ̄l|, which is equal to 2yl. Finally, we invoke

inequality (2) again to deal with the remaining erfc factors involving λl. After some

simplification, the inequality follows. Without loss of generality, we can assume C ≤ 1

and hence CN−k−2 ≥ CN−2 and αN+k−2 ≥ α2N−2. We can sum over l then over k to

obtain:

PN

(
max

j
Im λj(X) > M

)
≤ C2−Nα2N−2 KN−2(τ)

KN(τ)
N2
∫ ∞

−∞

∫ ∞

M
2ye−

(N+2)
2(1+|τ|) (x2+y2)dydx

≤ 2(1 + |τ|)N2

N − k + 2
α2N−2

CN−2
KN−2(τ)

KN(τ)
e−

N−k+2
2(1+|τ|) M2

∫ ∞

−∞
e−

(N−k+2)
2(1+|τ|) x2

dx

=

√
2π(1 + |τ|)
N − k + 2

C2−Nα2N−2 KN−2(τ)

KN(τ)
N2e−

N−k+2
2(1+|τ|) M2

.

where N2 factors comes from the fact that the number of terms is bounded by N2. The

final exponential term will yield the desired asymptotics. �

Finally, we’ll need the two more preliminary results.
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(a) Define P(C) to be the space of probability measures on C which are invariant

under complex conjugation endowed with a metric compatible with the usual weak

convergence of measures. The empirical measure of the eigenvalues LN = 1
N ∑N

j=1 δλj

with respect to PN satisfies an LDP of speed N2 on P(C) whose rate function is min-

imized at the uniform distribution Uτ on the ellipse Eτ. The proof of this LDP for the

case τ = 0 can be found in Ben Arous and Zeitouni [8] but the same argument extends

to τ ∈ (−1, 1).

(b) The functional

Ψ(µ, x + iy) =
∫

C
log |x + iy− z|dµ(z)− x2

2(1 + τ)
− y2

2(1− τ)

defined on P(C)×C is upper-semicontinuous when restricted to P(BM)× BM for any

M > 0, and in fact is continuous when restricted to P(BM) × (BM ∩ {z : Re z > x})

for any x > 1 + τ. The distribution Uτ is related to the rate function Iτ by

(6.3.3) Iτ(x) = −Ψ(Uτ, x)− 1
2

as per (1) of LEMMA 6.2.1 since Ψ(Uτ, x) = Ψτ(x, 0).

With these preparations in order, we can begin the proof of THEOREM 6.3.1.

PROOF OF THEOREM 6.3.1. It is obvious that Iτ is a good rate function. Our theo-

rem will follow if we can prove the following equalities:

(1) limN→∞
1
N log PN(λm ∈ [0, x)) = −∞ for 0 < x < 1 + τ.

(2) limN→∞
1
N log PN(λm ∈ [x, ∞)) = −mIτ(x) for x > 1 + τ.

To prove the first equality, we note that by definition, Re λm(X) < x for some

x < 1 + τ is equivalent to LN(z : x ≤ Re z < 1 + τ) ≤ m−1
N . Since µτ[x, 1 + τ) > 0,
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there exist constants K, κ > 0 such that if x < 1 + τ then

PN(Re λm(X) < x) ≤ PN

(
LN(z : x ≤ Re z < 1 + τ) ≤ m− 1

N

)
≤ Ke−κN2

.

This inequality implies the result.

We now turn to the proof of the second equality. In view of LEMMA 6.3.2, the second

equality is equivalent to the following equality for sufficiently large M satisfying 1 +

τ < x < M:

lim
N→∞

1
N

log PN

(
λm(X) ∈ [x, M], |Re λ1(X)| ≤ M, max

j
Im λj(X) ≤ M

)
= −mIτ(x).

We will estimate this by decomposing PN into a sum of the PN,k for admissible k. To

that end, fix k for the time being, introduce new variables λ̃j =
√

N
N−m λj for 1 ≤ j ≤ N.

On the larger set of

{
λ̃m ∈ [x, 2M], max

j
(Imλ̃j, |Reλ̃1|) ≤ 2M

}
⊃
{

λm ∈ [x, M], max
j

(Im λj, |Reλ1| ≤ M
}

we have the |λ̃j − λ̃i| ≤ 4
√

2M and hence we obtain the following upper bound for

PN,k(dλ):
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1
KN
|∆(λ)| exp

(
− N

2(1 + τ)

N

∑
j=1

λ2
j

)
m

∏
j=1

√√√√erfc

(√
2N

1− τ2 |Im λj|
)

dµ(N,k)(λ)

≤∑
l

∏
1≤i<j≤m

|λ̃j − λ̃i|
m

∏
j=1

e−
N−m

2(1+τ)
λ̃2

j

√√√√erfc

√
2(N −m)

1− τ2 |Im λ̃j| µ(m,l)(dλ̃1, ..., dλ̃m)×

KN−m

KN

(k− l)!
(

N−m+l−k
2

)
!

k!
(

N−k
2

)
!

(
N −m

N

) N(N+1)
4 m

∏
i=1

N

∏
j=m+1

|λ̃i − λ̃j|PN−m,k−l(dλ̃m+1, ..., dλ̃N)

≤ (4
√

2M)
m(m−1)

2
KN−m

KN

(
N −m

N

) N(N+1)
4

∑
l

(k− l)!
(

N−m+l−k
2

)
!

k!
(

N−k
2

)
!

µ(m,l)(dλ̃1, ..., dλ̃m)×

exp

[
(N −m)

m

∑
i=1

Ψ(L̃N−m, λ̃i)

]
PN−m,k−l(dλ̃m+1, ..., dλ̃N)

where

L̃N−m =
1

N −m

N

∑
j=m+1

δλ̃j(X).

and we’ve omitted the dependence on τ on KN for the sake of space. The factor of

1/(k!(N−k
2 )!) arises from removing the ordering on the eigenvalues by real parts and

the factor of (k − l)!(N−m+l−k
2 )! comes from ordering the last N − m eigenvalues by

real parts with the assumption that k− l of them are real. For ε > 0, let Bε ⊂ P(BM)

be the ball of radius ε around Uτ and Bc
ε its complement. On the set

{λ̃m ∈ [x, 2M], max
j

Im λ̃j(X) ≤ 2M},

we have
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exp

[
(N −m)

m

∑
i=1

Ψ(L̃N−m, λ̃i)

]
≤ (4
√

2M)m(N−m),

we can further bound the exponential factor according by whether L̃N−m is in Bε or

not, i.e,

exp

[
(N −m)

m

∑
i=1

Ψ(L̃N−m, λi)

]
≤ exp

[
m(N −m) sup

µ∈Bε,x≤Re z≤M
Ψ(µ, z)

]

+ (4
√

2M)m(N−m)
1Bc

ε
(L̃N−m).

We can now perform the integral with respect to λ̃1, ... , λ̃m. Since we have removed all

appearances of the variables of integration from the integrand and we are integrating

over a compact region, the integral is finite for any l, and since l belongs to a finite

set, we can bound it by a constant γ independent of N, l, and k. For any set A, the

inequality PN−m,k−l(A) ≤ PN−m(A) allows us to replace PN−m,k−l by PN−m.

We continue by summing over admissible l. Since we’ve eliminated any depen-

dencies on l, we can replace the sum over l by a factor of k. By integrating over the

remaining portion of our domain of integration and using the fact that

(k− l)!
(

N−m+l−k
2

)
!

k!
(

N−k
2

)
!

≤ 1,
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we show the following upper bound:

PN,k

(
λm ∈ [x, M], |Re λ1| ≤ M, max

j
Im λj ≤ M

)
≤{

exp

[
m(N −m) sup

µ∈Bε,x≤Re z≤M
Ψ(µ, z)

]
+ (4
√

2M)m(N−m)PN−m(L̃N−m ∈ Bc
ε)

}
×

kγ(4
√

2M)
m(m−1)

2
KN−m(τ)

KN(τ)

(
N −m

N

) N(N+1)
4

The only dependence on k on the right hand side comes from the factor k, so when we

sum over k we can just replace it with N(N − 1)/2. At this we point, we make the

following two observations: the first is that L̃N−m satisfies the same LDP as LN. This

implies that there exists c > 0 such that

PN−m(L̃N−m /∈ Bε) ≤ e−cN2

hence the second term on the right hand side of our upper bound is negligible in the

limit. The second observation is that from (6.1.1) we have

(6.3.4) lim
N→∞

1
N

log

KN−m(τ)

KN(τ)

(
N −m

N

) N(N+1)
4

 =
m
2

.

We use these two observations to establish the following inequality:

lim sup
N→∞

1
N

log PN

(
λm ∈ [x, M], max

j
(|Re λ1|, Im λj) ≤ M

)
≤ m

2
+ m sup

µ∈Bε
x≤Re z<M

Ψ(µ, z).
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The second term on the right hand side can by computed explicitly,

lim
ε↓0

sup
µ∈Bε

x≤Re z<M

Ψ(µ, z) = Ψ(Uτ, x) = −Iτ(x)− 1
2

where the first equality follows from upper semi-continuity of Ψ and COROLLARY 6.2.2

and the second equality follows from (6.3.3). This proves the upper bound for the

equality (2) stated at the beginning of the proof.

To obtain the lower bound, we fix y > x > r > 1 + τ and ε, δ > 0. We first

need a lower bound analogous to (6.3.1). We can obtain one if we restrict ourselves to

|Im z| ≤ δ and N large enough:

exp
[
− N −m

2(1 + τ)
(z2 + z̄2)

]
erfc

√2(N −m)

1− τ2 |Im z|

 ≥ β√
N

exp
[
−(N −m)|z|2

1− τ

]

for some positive constant β < 1 depending on δ. Retaining the previous notation

from the upper bound, we further define Bε ∩P(Br) to mean the set of measures in

Bε whose support is contained in the ball Br ⊂ C of radius r. On the set

{
λ̃m(X) ∈

[√
N

N −m
x, y

]
, Im λ̃j(X) ≤ δ , |Re λ1(X)| ≤ y, |λj(X)| ≤ r ∀j

}

which is a subset of
{

λm(X) ∈ [x, M], maxj Im λj(X), |Re λ1(X)| ≤ M
}

, we can find a

lower bound on the density PN,k(dλ) by noting that its equal to the following quantity:
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∑
l

∏
1≤i<j≤m

|λ̃j − λ̃i|
m

∏
j=1

e−
N−m

2(1+τ)
λ̃2

j

√√√√√erfc

√2(N −m)

1− τ2 |Im λ̃j|

 µ(m,l)(dλ̃1, ..., dλ̃m)×

KN−m(τ)

KN(τ)

(k− l)!
(

N−m+l−k
2

)
!

k!
(

N−k
2

)
!

(
N −m

N

) N(N+1)
4 m

∏
i=1

N

∏
j>m
|λ̃i − λ̃j|PN−m,k−l(dλ̃m+1, ..., dλ̃N)

≥∑
l

(
N −m

N

) N(N+1)
4 (k− l)!

(
N−m+l−k

2

)
!

k!
(

N−k
2

)
!

∏
1≤i<j≤m

|λ̃j − λ̃i| µ(m,l)(dλ̃1, ..., dλ̃m)×

KN−m(τ)

KN(τ)
1Bε∩P(Br)(L̃N−m) exp

m(N −m) inf
µ∈Bε∩P(Br)

x≤Re z≤y,|Im z|<δ

Ψ(µ, z)

×
(

β√
N

)m−l
2

PN−m,k−l(dλ̃m+1, ..., dλ̃N)

We now point out two quantities which will end up becoming negligible in the limit.

We first proceed by integrating out the λ̃1, ... , λ̃m variables which yields a finite quan-

tity since we are integrating over a bounded region and the integrand is bounded.

Moreover, this quantity is bounded both from above and from below by constants in-

dependent of N so this term will be neglible in the limit. The second quantity which is

also negligible in the limit is the one appearing in the following limit which holds for

l ≤ m and all k:

(6.3.5) lim
N→∞

1
N

log

 (k− l)!
(

N−m+l−k
2

)
!

k!
(

N−k
2

)
!

 = 0.
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Since the inequality

∑
k

∑
l

PN−m,k−l(A) ≥ PN−m(A)

is true for any Borel set A, we can use (6.3.4) and (6.3.5) to obtain the following lower

bound:

lim inf
N→∞

1
N

log PN (λm ∈ [x, M]) ≥ m
2
+ m lim

ε↓0
inf

µ∈Bε∩P(Br)
x≤Re z≤y,|Im z|<δ

Ψ(µ, z)

By continuity of Ψ and COROLLARY 6.2.2, we obtain:

lim
ε↓0

inf
µ∈Bε∩P(Br)

x≤Re z≤y,|Im z|<δ

Ψ(µ, z) = Ψ(Uτ, y + δi).

Finally, we take δ → 0 then y → x and use the continuity of Ψ coupled with (6.3.3) to

obtain the desired lower bound for equality (2) stated at the beginning of the proof.

�
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CHAPTER 7

Expected number of equilibria and the Gaussian Elliptic Ensemble

In this chapter, we establish the connection between the GEE and the expected

number of equilibria. In the first section, we make this connection explicit through

THEOREM 7.0.1. In the second section, we provide a proof of this theorem. In the last

section, we use THEOREM 7.0.1 to prove THEOREM 5.2.1 and THEOREM 5.2.2.

We now relate Nm to the eigenvalue with mth largest real part of an N × N GEE

matrix.

Theorem 7.0.1. For a Borel set B ⊂ R, we have:

ENm(B) = 2

√
1 + τ

b2 + τ
b1−NEN

[
exp

(
− N(1− b2)

2(b2 + τ)(1 + τ)
λ2

m(X)

)
1B

(√
Φ′1(1)λm(X)

)]
.

The proof of THEOREM 7.0.1 will follow from two results. The first relates ENm(B)

to a matrix integral through the Kac-Rice formula adapted to our setting.

Theorem 7.0.2. For a matrix A and nonnegative integer m, set

im(A) =


1 if A has exactly m eigenvalues with nonnegative real part

0 if else
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then ENm(B) is equal to 2
√

N−1N

2N/2Γ(N/2)
b1−N
√

b2+τ
multiplied by

∫ ∞

−∞
1√ N

N−1 B

(√
Φ′1(1)λ

)
e
− (N−1)λ2

2(b2+τ) EN−1 [|det (X− λI)| im(X− λI)] dλ

The second result relates the complicated integral against PN−1 appearing in THE-

OREM 7.0.2 to a simpler one against PN.

Lemma 7.0.3. For any bounded Borel measurable function f on R, we have

∫ ∞

−∞
f (t
√

N − 1) exp
(
− N − 1

2(1 + τ)
t2
)

EN−1 [|det (X− tI)| im(X− tI)] dt

=
Γ(N/2)

√
2

N√
1 + τ

√
N − 1

N EN[1R(λm+1(X)) f (
√

N · λm+1(X))].

Given these two results, the proof of THEOREM 7.0.1 goes as follows.

PROOF OF THEOREM 7.0.1. If we apply LEMMA 7.0.3 to the function

f (x) = 1√NB

(√
Φ′1(1)x

)
exp

(
− 1− b2

2(1 + τ)(b2 + τ)
x2
)

then we can use the resulting equality to simplify the formula in THEOREM 7.0.2 to

recover the expression on the right of THEOREM 7.0.1 and hence conclude the result.

�

We relegate the proof THEOREM 7.0.2 to the next section and finish the current sub-

section with a proof of LEMMA 7.0.3.
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PROOF OF LEMMA 7.0.3. We first remark that ∆(λ(X), t) = |det(X− tI)|∆(λ(X)).

Next, note that the factor im(X− tI) = 1 if and only if we have the following inequality:

Re λ1 > ... > Re λm > t > ... > Re λN−1;

otherwise it is 0. These two remarks suggest that t can fit in nicely as a (real) eigenvalue

of a larger GEE matrix. If we restrict to the case of only k real eigenvalues and if we

relabel t as λm and λj := λj+1 for j ≥ m then we can rewrite dµ(N−1,k)dt = dµ(N,k+1)

and expand the left hand side of LEMMA 7.0.3 as KN(τ)
KN−1(τ)

multiplied by

∑
k

∫
f (λm

√
N − 1)

|∆(λ)|
KN(τ)

e−
N−1
1+τ ∑N

j=1

λ2
j

2
N

∏
j=1

√√√√√erfc

√2(N − 1)
1− τ2 |Im λj|

µ(N,k+1)(dλ)

where the integral is over the appropiate domain. The factor to the right of f looks

exactly like the density for PN,k+1 except with an implicit factor of 1R(λm) since we

are mandating that λm be real and the fact that we have N− 1 instead of N scattered in

the density. We can remedy the latter issue by performing a substitution λ :=
√

N
N−1 λ.

Following the substitution, we obtain the left hand side of LEMMA 7.0.3 is equivalent

to the following expression:

KN(τ)

KN−1(τ)

√
N

N − 1

N+(N
2 )

EN[1R(λm+1(X)) f (
√

N · λm+1(X))].

A simple algebra computation using (6.1.1) reveals the leading constant is exactly as

stated in the lemma.

�
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7.1. A Kac-Rice formula for the average number of equilibria

The proof of THEOREM 7.0.2 will be broken up into a series of steps.

Our first step is to invoke the traditional Kac-Rice formula. In order to do so, we

will establish some notation. Given an equilibrium point, we choose coordinates in a

neighborhood around σ so that we can write σ = 0 and F(0) as a random vector in

RN−1. We define ρF(σ) to be the density function for the random vector F(0). This

depends on the choice of coordinates, but its value at 0 does not. Through the use of

local coordinates, the classical Kac-Rice formula (see e.g. THEOREM 6.2 in Azaı̈s and

Wschebor [4]) yields the following formula for ENm(B):

(7.1.1) ENm(B) =
∫

SN−1(
√

N)
E[|det JF(σ)|im(JF(σ))1B(λ(σ))|F(σ) = 0]ρF(σ)(0)dσ.

The second step is to exploit the large symmetry group of the sphere, the orthonor-

mal group O(N), and its relationship with the integrand. It will allow us to reduce the

integral in (7.1.1) to the integrand evaluated at the point

n = (0, ..., 0,
√

N) ∈ SN−1(
√

N) ⊂ RN

times a factor of vol(SN−1(
√

N)).

Lemma 7.1.1. The function

σ 7→ E [|det JF(σ)|1B(λ(σ))im(JF(σ))|F(σ) = 0] ρF(σ)(0)

is invariant under the standard O(N) action on SN−1(
√

N) and hence is constant.
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PROOF. The crux of the argument is that the only probabilistic portion of JF comes

from f , h, and the partial derivatives of f with respect to the ambient RN variables.

To formalize this statement, we define j : SN−1(
√

N)→ RN to be the usual embed-

ding. For x ∈ SN−1(
√

N) ⊂ RN, define projx : RN → TxSN−1(
√

N) to be the standard

projection. Then

JF(x) = projx ◦ JeucFx ◦ djx

where JeucF|x := JeucF(x) :=
(

∂Fj
dxi

(x)
)

is the Jacobian of F (viewed as a function from

RN to RN) at x and djx is the differential of j at x. There is a simple relationship

between the O(N) action and the functions projx and djx. For any g ∈ O(N),we have

the following two equalities: g projx g−1 = projgx and djgx = g djx g−1. We can use this

to the following expression for JF(gx):

JF(gx) = projgx · JeucF|gx · djgx

= g projx
(

g−1 · JeucF|gx · g
)

djx g−1.

We aim to prove that (F(x), JeucF|x) = (gTF(gx), g−1 · JeucF|gx · g) in distribution. The

lemma will follow from this claim since conditioning on F(gx) = 0 is equivalent to

gTF(gx) = 0 and by orthogonality of g, gT = g−1. To obtain the required equality, we

first write out JeucF|x and g−1 · JeucF|gx · g in terms of the ambient RN coordinates:
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(JeucF|x)ij = −
∂λ

∂xj
(x)xi − λ(x)δij +

∂ fi

∂xj
(x)

(
g−1 · JeucF|gx · g

)
ij
= −(gT∇λ(gx))jxi − λ(gx)δij −

(
gT · Jeuc f |gx · g

)
ij

,

where ∇λ is the gradient of λ. We can rewrite the expressions involving λ in terms of

h, f and its derivatives as follows:

λ(gx) =
1
N
〈gx, f (gx) + h〉 = 1

N
〈x, gT f (gx) + gTh〉

∂λ

∂xj
(x) =

1
N
(

f j(x) + hj
)
+ 〈x, jth column of Jeuc f |x〉

gTF(gx) = λ(gx)x +
1
N

(
gT f (gx) + gTh

)
(

gT∇λ(gx)
)

j
=

1
N

(
gT f j(gx) + gThj

)
+ 〈x, jth column of gT · Jeuc f |gx · g〉

From Equation (3.17) in Fyodorov [17], we know that

( f (x), Jeuc f |x) =
(

gT f (gx), gT · Jeuc f |gx · g
)

in distribution. Since h is Gaussian, then h = gTh in distribution and thus by indepen-

dence, we have

( f (x), Jeuc f |x, h) =
(

gT f (gx), gT · Jeuc f |gx · g, gTh
)

in distribution which implies what was desired. �
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The third step is to employ explicit coordinates around n to write down a formula

for JF and F. Let B√N denote the ball centered around 0 ∈ RN−1 of radius
√

N and

define the map PN : B√N → SN−1(
√

N) by

PN(x1, ..., xN−1) =

(
x1, ..., xN−1,

√
N − |x|2

)

where |x|2 := ∑N−1
i=1 x2

i . With these coordinates, it is easy to compute formulas for djn

and projn, yielding:

JF(n) =
(

JeucFij
)N−1,N−1

i=1,j=1 =

(
∂ f j

∂xi
(n)− λ(n)δij

)N−1,N−1

i=1,j=1

Note that the indices go up to N − 1 and not up to N. Next, we compute F(0) in

coordinates as a vector in RN−1. We will compute it by establishing a choice of basis

vectors for TnSN−1(
√

N). Our basis vectors {vi} will be the pushforward of the basis

in RN−1 through our map PN i.e., vi = dPN(ei) where {ei} is the standard basis vectors

for RN−1. In this basis, we can write F(0) as

F(0) = ( fi(n) + hi)
N−1
i=1

and λ(n) as

λ(n) =
fN(n) + hN

N

We also remark that conditioning on F(n) = 0 ∈ RN is the same as conditioning on

F(0) = 0 ∈ RN−1.
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Our fourth step is to relate our random matrix integral to the Gaussian Elliptic

Ensemble. To that end, we now make four assertions which we leave to the reader to

verify:

(1) ∂ fi
∂xj

(n) is independent of fN(n) for i, j ≤ N − 1.

(2) F(0) is independent of JF(n).

(3) fN(n) + hN is a mean zero Gaussian with variance Φ1(1) + Φ2(1) + σ2.

(4) For 1 ≤ i, j, n, m ≤ N − 1, we have:

N
(N − 1)Φ′1(1)

E[∂j fi(n)∂n fm(n)] =
1

N − 1

(
δinδjm +

Φ2(1)
Φ′1(1)

δimδjn

)
.

Through the use of assertion (4) and the formula for JF(n), we can write JF(n) in terms

of the Gaussian Elliptic Ensemble:√
N

(N − 1)Φ′1(1)
JF(n) = X− ZI

in distribution, where X has the law PN−1 and Z is a Gaussian random variable inde-

pendent of X with mean 0 and variance given by

σ2 + Φ1(1) + Φ2(1)
(N − 1)Φ′1(1)

=
b2 + τ

N − 1
.

By the independence of h from f , we know that F(0) consists of N − 1 independent

mean zero Gaussian random variables with variance Φ1(1) + σ2 and hence

ρF(n)(0) = (2π(Φ1(1) + σ2))−(N−1)/2.
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Summarizing all the steps we have taken, we can conclude the following expression

for ENm(B):

ENm(B) = E

[
|det(X− ZI)|1√ N

N−1 B

(√
Φ′1(1)Z

)]
vol(SN−1(

√
N))

√
2πb2N−1

(
N − 1

N

) N−1
2

.

Finally, using the formula for the volume of a sphere,

vol
(

SN−1(
√

N)
)
=

2πN/2

Γ(N/2)

√
N

N−1

and the explicit density function of Z, we obtain the expression on the right hand side

of THEOREM 7.0.2. This completes the proof.

7.2. Proof of the asymptotics for ENm

In this section, we prove the main results stated in SECTION 1. THEOREM 6.3.1 and

THEOREM 7.0.1, coupled with Varadhan’s lemma (see THEOREM 4.3.1 of Dembo and

Zeitouni [11]) yields THEOREM 5.2.3. Setting c = −∞ and d = ∞ in THEOREM 5.2.3

results in THEOREM 5.2.1. Finally, THEOREM 5.2.2 is a trivial corollary of the following

lemma:

Lemma 7.2.1. Define m(N) to be a sequence integers such that m(N)
N → γ ∈ (0, 1) and

let ε > 0. Then, there exists a constant c := c(ε) > 0 such that

PN

(
Re λm(N) /∈ (sγ − ε, sγ + ε)

)
≤ exp(−cN2).

PROOF. This is an immediate consequence of the fact that LN satisfies a large de-

viation principle with speed N2 whose rate function is minimized at Uτ. The proof of
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this LDP for the case τ = 0 can be found in Ben Arous and Zeitouni [8] but the same

argument extends to τ ∈ (−1, 1).

We first break up the left hand side of the equality as follows:

PN(Re λm(N) /∈ (sγ − ε, sγ + ε)) = PN(Re λm(N) < sγ − ε) + PN(Re λm(N) > sγ + ε).

To estimate the first term, we let LN := LN(XN) := 1
N ∑N

i=1 δλi(XN) be the empirical

distribution of the eigenvalues of a matrix XN with law PN. Given the aforementioned

LDP, we have:

PN(Re λm(N) > sγ + ε) = PN

(
LN(z : Re z > sγ + ε) ≥ m(N)

N

)
≤ 1

2
exp(−cN2)

for some c > 0 since Uτ(z : Re z > sγ + ε) < γ. Similarly,

PN(Re λm(N) < sγ − ε) = PN

(
LN(z : Re z > sγ − ε) ≤ m(N)− 1

N

)
≤ 1

2
exp(−cN2).

�
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