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ABSTRACT

Simulation of Coherent Risk Measures Based on Generalized Scenarios

Vadim Lesnevski

In financial risk management, coherent risk measures have been proposed as a way to

avoid undesirable properties of measures such as value at risk that discourage diversifi-

cation and do not account for the magnitude of the largest, and therefore most serious,

losses. A coherent risk measure equals the maximum expected loss under several different

probability measures, and these measures are analogous to “populations” or “systems”

in the ranking-and-selection literature. However, unlike in ranking and selection, here it

is the value of the maximum expectation under any of the probability measures, and not

the identity of the probability measure that attains it, that is of interest. We propose

procedures to form fixed-width, simulation-based confidence intervals for the maximum of

several expectations, explore their correctness and computational efficiency, and illustrate

them on risk management problems. The availability of efficient algorithms for computing

coherent risk measures will encourage their use for improved risk management.
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CHAPTER 1

Introduction

Both poor risk measures and scarcity of computational resources hamper effective risk

management. For instance, value at risk (VaR) is currently used by nearly all major

financial institutions and is enshrined in the international regulatory framework of the

Basel accords. The owner of a portfolio may experience a loss, and the goal of risk mea-

surement is to quantify the risk inherent in this possibility of loss. VaR is a quantile of

the distribution of this loss, having the interpretation of the largest likely loss. One of

VaR’s flaws is that it can discourage diversification, which would reduce risk, while en-

abling and encouraging business units to hide risks by subdividing portfolios into different

accounts, thus making it more difficult for risk managers and regulators to perform their

supervisory functions. Another flaw is that VaR fails to take into account the magnitude

of the largest losses, which pose the gravest danger. As a result, financial institutions

and regulators are considering moving away from VaR towards superior risk measures,

primarily coherent risk measures of the type introduced by Artzner et al. (1999), as a

suitable basis for financial risk management. Coherent risk measures are also applicable

to the problem of pricing derivative securities (Jaschke and Küchler, 2001; Staum, 2004).

The practice of financial risk management and derivative security pricing frequently

involves intensive computer simulation. With this application in mind, we develop sequen-

tial (multi-stage) simulation procedures that generate a fixed-width, two-sided confidence

interval for a coherent risk measure that is the maximum of several expectations. The
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availability of efficient algorithms for computing coherent risk measures will facilitate

improved risk management.

Any coherent risk measure ρ with suitable continuity properties has a representation

of the form

(1.1) ρ(Y ) = sup
P∈P

EP[−Y/r],

where Y is the value of a portfolio at a future time horizon, 1/r is a stochastic discount

factor which represents the time value of money, and P is a set of probability measures

(Delbaen, 2002, Thm. 3.2). Equations of a similar form exist for the related problems in

derivative security pricing. We simplify the problem somewhat by assuming that the set

P has only a finite number k of elements P1,P2, . . . ,Pk. This assumption often holds,

for instance, when the decision maker designs the coherent risk measure (or the underly-

ing acceptance set, in the case of derivative security pricing) by specifying k generalized

scenarios. The assumption also covers approximation of P by the convex hull of k proba-

bility measures. Let X := −Y/r and µi := EPi
[X]. The risk measurement (1.1) involves

a single random variable X, which is a negative discounted portfolio value or a discounted

loss, viewed under multiple probability measures. For clarity in discussing simulations,

let Xi be a random variable whose distribution under the probability measure Pr is the

same as that of X under Pi, that is, such that Pr{Xi ≤ x} = Pi[X ≤ x].

Financial simulations typically require large samples, so we assume, for purposes of

theoretical analysis, that sample averages of each Xi are approximately normally dis-

tributed. Therefore, we study inference for maxi=1,2,...,k µi based on data Xij ∼ N (µi, σ
2
i )

where the means and variances are all unknown. This problem is the same as that studied
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in the literature on ranking and selection, in which the primary goal is inference about

the identity of the maximum (Bechhofer et al., 1995). Because of this commonality, the

results presented here are applicable to the problem of selecting the best system if one is

also interested in knowing the mean of the best system, which is different from estimating

the mean of the selected system. For convenience, we will refer to “system i” and to µi

and σ2
i as its mean and variance, rather than referring to probability measure Pi and to

the mean and variance of X under it.

The problem of estimating the maximum is more difficult than that of selecting the

best. To see this, we introduce some more notation. Define [i] as the index of the ith

smallest mean, µ[i]. Thus, µ[k] = maxi=1,2,...,k µi is the largest mean, which we want to

estimate. Let X̄i be a sample average of the random variable Xi. The problem features a

natural bias: the most obvious estimator maxi=1,2,...,k X̄i is an upper bound for, and has

a larger expectation than, X̄[k], whose mean is µ[k]. Even maximum likelihood estimation

for this problem is not simple and produces remarkable results (Dudewicz, 1971). The

effect of positive bias in estimating the maximum, applied to risk management, would

be overestimation of risk, resulting in excessively conservative oversight and unduly high

capital charges for risky activities.

The attraction of the fixed-width confidence-interval approach is that it avoids the

need to directly quantify the bias in maxi∈I µ̂i as an estimator for µ[k]; instead, we simply

take the confidence-interval width L small enough that the error is negligible relative to

the decision that must be made.

Our starting point is a two-stage procedure for forming a fixed-width confidence inter-

val for the largest mean of k independent normal populations due to Chen and Dudewicz
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(1976). We enhance this procedure in a number of ways so as to make it useful in the

type of risk management simulations we have in mind. Specifically, we use screening ideas

from ranking and selection to reduce drastically the number of systems that need to be

simulated to estimate the maximum (Chapter 2). We use variance-reduction techniques

to sharpen the screening and reduce the total sample size required for estimating the max-

imum (Chapter 3). To sharpen screening we employ common random numbers (CRN; see

Law and Kelton, 2000) to induce positive correlation between the systems and thereby

reduce the variance of their differences. To reduce the number of replications required

for estimation, we employ control-variate estimators (CV; see Law and Kelton, 2000) to

exploit strong correlation between the response of interest, X, and a collection of ran-

dom variables with known expectations, called control variates. Control variates are often

plentiful in financial simulations where the risks associated with individual components

of a portfolio or the values of simple financial instruments are easily computed.

In Chapter 4 we introduce an adaptive multi-stage procedure that does not require

any previous knowledge about the problem at hand in order to be efficient. In Chapter 5

we explore robustness of the adaptive procedure to non-normality and perform empirical

analysis of the rare errors when the confidence interval does not contain the true value.

In Appendix A we specify the algorithms used in the experiments, and provide proofs

of the validity of the presented procedures in Appendix B. We discuss possible variants

of the procedures in Appendix C, and in Appendix D we give definitions and notation for

the text’s use of control variates.
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1.1. Basket Put

We will test the performance of our procedures in pricing a basket put option. This is

a derivative security whose payoff at a terminal time T is max{0, K − w′S(T )} where K

is a contractually specified strike price, w is a vector of weights, and S(T ) is the vector

of terminal prices of the securities in the basket. The basket put is the right to sell the

basket of securities for the strike price K at time T . If the underlying security price vector

S obeys the Black-Scholes model, the basket put’s price should be its expected discounted

payoff.

Under the Black-Scholes model, the price vector S follows multivariate geometric

Brownian motion with drift r, the risk-free interest rate, and with covariance matrix Σ.

That is, ln Sj(T ) = ln Sj(0) + (r − ‖Aj‖2/2)T + AjZ
√

T where A is a matrix satisfying

AA′ = Σ, ‖Aj‖ is the Euclidean norm of its jth row, i.e., the volatility of the jth asset,

and Z is a multivariate standard normal random vector. The short-term interest rate r

is observable, and there are standard methods for calibrating the underlying securities’

individual volatilities ‖Aj‖, whether from historical data or by fitting to observable prices

of market-traded options on the underlying securities: see Cont and Tankov (2004, Chs. 7,

13) and Shiryaev (1999, Ch. IV). However, estimation of the non-diagonal elements of Σ

poses a greater problem. For pricing the basket put, the crucial quantity is ‖w′A‖, the

volatility of the basket, and this depends strongly on the correlations between assets.

There may be a range of plausible correlations and thus a range of plausible prices for the

basket put.

In this example, the basket is a weighted average of three security prices with weights

w1 = 0.5, w2 = 0.3, and w3 = 0.2. The initial security prices are all 100, and the
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strike price is K = 85. The interest rate r = 5% and the volatilities are ‖A1‖ = 40%,

‖A2‖ = 30%, and ‖A3‖ = 20%. To account for uncertainty about correlations, we use

the k = 43 = 64 probability measures produced by allowing each of the three pairwise

correlations to be 0.2, 0.35, 0.55, or 0.75. Although the payoff in this example is far from

normally distributed, the sample averages are approximately normally distributed, and

the minimum coverage guarantees for the confidence limits held in all our experiments.

The three control variates used in this example in Chapters 3-5 are the discounted

payoffs of put options with strike K on each individual asset in the basket. Their means

are given by the Black-Scholes pricing formula, based on the known volatilities.

1.2. Options Portfolio

In this example we assess the risk of a portfolio of European-style call and put options

on three assets with initial prices of 100 and terminal prices S1(T ), S2(T ), and S3(T ).

All options in the portfolio expire at a terminal time T . We also consider a market

index whose terminal level is S0(T ). For each of j = 0, 1, 2, 3, Sj(T ) follows geometric

Brownian motion with drift dj and volatility σj, so ln Sj(T ) = ln Sj(0) + (dj − σ2
j /2)T +

σjWj

√
T where Wj is standard normal. There is a one-factor model of dependence among

the assets: under a probability measure P, Z0, Z1, Z2, and Z3 are independent standard

normal random variables, W0 = Z0, and Wj = λjZ0 +
√

1− λ2
jZj for j = 1, 2, 3. In this

model, Z0 corresponds to the market factor common to all assets, while Z1, Z2, and Z3

are idiosyncratic factors corresponding to each individual asset.
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The risk measure we consider in this setting is the maximum expected loss incurred

while holding the portfolio, where the maximum is taken over 44 = 256 conditional expec-

tations given a generalized scenario. Of the probability measures Pi in Equation (1.1),

255 are defined by Pi[E] = P[E|Ai] for some event Ai of probability P[Ai] = 1/20 = 5%,

while the 256th probability measure is P itself. This risk measure is similar in spirit to

worst conditional expectation (Artzner et al., 1999, §5). We construct generalized scenar-

ios by restricting some of the factors Z0, Z1, Z2, and Z3. Each of the factors can be “up”

(corresponding to a large increase of the asset price), “down” (a large decrease), “middle”

(not extreme), or “unrestricted.” The probabilities of the restrictions on the restricted

factors are always equal. For example, letting Φ be the standard normal distribution

function, in the scenario “up-down-unrestricted-unrestricted,” Z0 is sampled conditional

on exceeding Φ−1(1 − 1/
√

20), Z1 is sampled conditional on being below Φ−1(1/
√

20),

while Z2 and Z3 are not restricted. By independence among Z0, Z1, Z2, and Z3, the

probability of this event is 1/20. The time horizon T is one week, and the parameters

were calibrated using three years of historical weekly data on the S&P 500 index and

shares of Intel (INTC), ExxonMobil (XOM), and Microsoft (MSFT). The result was the

annualized volatilities σ1 = 39.8%, σ2 = 19.3%, and σ3 = 27.0% and the factor loadings

λ1 = 0.617, λ2 = 0.368, and λ3 = 0.785 to match the observed correlations. Because one

week is such a short period of time that the expected return is negligible, while mean

returns are hard to estimate due to a high ratio of volatility to mean, we take each dj = 0.

Since we do not need to simulate S0, the parameters d0 and σ0 are not relevant.

We investigated the performance of our procedures on several portfolios. The extent

of the efficiency improvement depends on the portfolio, so here we present a portfolio
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Table 1.1. Amounts of Options in the Portfolio

Option Strike Price
Asset Type 85 90 95 100 105 110 115

1 put -2000 -2000 -2500 1000 0 0 0
2 put 2500 -1000 1000 500 0 0 0
3 put 1500 1000 2500 -1500 0 0 0
1 call 0 0 0 -1000 1500 -500 -1000
2 call 0 0 0 1500 -2500 2000 -2000
3 call 0 0 0 -2000 -1000 1000 2500

yielding results we consider typical. Table 1.1 lists the number of each type of option in

this example portfolio. Each option is the right to buy or sell 100 shares. We do not use

control variates in this example.
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CHAPTER 2

Basic Procedures with Screening

Our point of departure is the theorem of Chen and Dudewicz (1976) providing a fixed-

width, two-sided confidence interval for the maximum µ[k], based on a two-stage sampling

plan. We also draw on results of Nelson et al. (2001) to analyze a multi-stage simulation

with screening: those systems which are very likely not to be the best are discarded so

that thereafter computational resources can be devoted to simulating systems that are

more likely to be the best.

2.1. Procedures with Guaranteed Coverage

We use as a standard the two-stage procedure of Chen and Dudewicz (1976). In the

first stage, it samples n0 observations from each system. It then estimates the standard

deviation of each system, and uses this to determine how many additional observations

are required for each system to attain a minimum coverage guarantee for the confidence

interval. In the second stage, it samples this additional data.

For simplicity of presentation, we first consider a two-stage procedure with screening.

It is a modification of the Chen-Dudewicz procedure, in which we screen out those sys-

tems which prove sufficiently uncompetitive in the first stage. We sample only from the
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remaining systems in the second stage. Subsequently we present a multi-stage procedure,

in which screening takes place between every stage.

To facilitate consistency of notation, henceforth let the first stage be denoted the 0th

and the second be denoted the 1st. Let

X̄i :=
1

n0

n0∑
j=1

Xij and S2
i :=

1

n0

n0∑
j=1

(Xij − X̄i)
2

be the stage 0 sample average and sample variance. Then X̄[i] is the stage 0 sample average

associated with the population whose mean is µ[i]. Let the total number of samples from

system i taken by the end of the stage 1 be Ni; this is specified later in Equation (2.6).

Define the stage 1 sample average

X̄i :=
1

Ni

Ni∑
j=1

Xij.

Finally, let Fν be the t distribution with ν := n0 − 1 degrees of freedom.

We want a two-sided confidence interval of the form

(2.1)
(
X̄(k) − a, X̄(k) + b

)

with error bounds

(2.2) Pr

[
µ[k] ≤ max

i∈I
X̄i − a

]
≤ α
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and

(2.3) Pr

[
µ[k] ≥ max

i∈I
X̄i + b

]
≤ β

and having fixed width L := a + b. The reason for specifying the confidence for the lower

and upper confidence limits separately is the asymmetry of the financial problem. It may

be considered worse to underestimate risk than to overestimate it; or worse to set the

price of a derivative security too low, thus incurring losses, than to set it too high, thus

failing to make sales. If so, one would choose β < α.

2.1.1. A Two-Stage Procedure

To begin with, choose a width L and confidence levels 1 − α and 1 − β. There is also

freedom to choose the first-stage sample size n0 and to decompose the upper confidence

level as 1 − β = (1 − β0)(1 − β1) where β0 is the error bound allocated to screening and

β1 is the error bound allocated to mean estimation. Let

(2.4) a = L
F−1

ν ((1− α)1/k)

F−1
ν ((1− α)1/k) + F−1

ν (1− β1)

and

(2.5) b = L
F−1

ν (1− β1)

F−1
ν ((1− α)1/k) + F−1

ν (1− β1)
.
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Take the stage 0 sample of Xij for i = 1, . . . , k and j = 1, . . . , n0. Compute the sample

averages X̄i and variances S2
i .

Construct the set

I :=
{
i|∀j 6= i, X̄i ≥ X̄j −Wij

}

where

Wij := F−1
ν

(
(1− β0)

1/(k−1)
) √

(S2
i + S2

j )/n0.

This is the set of systems which are not too unlikely to be the best, in the sense of not

being statistically dominated by some other system at stage 0. Every i /∈ I has been

screened out.

For all i ∈ I, let the sample size by the end of stage 1 be

(2.6) Ni := max

{
n0,

⌈(
SiF

−1
ν (1− β1)

b

)2
⌉}

and sample Xij for i ∈ I, j = n0 + 1, . . . , Ni. Compute the stage 1 sample averages X̄i,

choose the greatest, and from it compute the confidence interval as in (2.1).

There is a tension in choosing n0. If it is too large, then excessive resources are spent,

as one may wish to have Ni < n0, which is impossible. If it is too small, then there is

insufficient information to screen out poor systems. This motivates the introduction of a

multi-stage procedure, which provides multiple opportunities to screen out poor systems.
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2.1.2. A Multi-Stage Procedure

In this procedure, there are m screening stages and one final estimation stage. The upper

confidence level decomposes as 1− β =
∏m

`=0(1− β`) where βm is for the final estimation

stage and β0, . . . , βm−1 are for the m screening stages.

Stage 0 is the same as in the previous subsection, with sample size n0 for each system.

Construct in the same way the set I of systems that are not screened out. We need at

this point to compute the total sample sizes Ni(`) for system i achieved by the end of

each stage ` > 0. There is substantial freedom to do this.

We choose to do so on the following principles. First, the standard error of the sample

average should be equal for all systems that have not been screened out. Second, this

standard error should decrease by a constant factor C between each stage 1, . . . ,m. Third,

the final sample size should be (much as in the previous subsection)

Ni(m) = max

{
n0,

⌈(
SiF

−1
ν (1− βm)

b

)2
⌉}

.

To satisfy these, use

Ni(`) =

⌈
n0

(
C`−1 Si

minj∈I Sj

)2
⌉

where

C =

(
F−1

ν (1− αm) minj∈I Sj

b
√

n0

)1/(m−1)

.
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After each stage ` = 1, . . . , m, compute the sample averages X̄i(`) :=
∑Ni(`)

j=1 Xij/Ni(`)

for those systems i that have not been screened out, i.e. i ∈ I(`− 1) where the screening

procedure is defined by

I(`) :=
{
i|∀j ∈ I(`− 1) \ {i}, X̄i(`) ≥ X̄j(`)−Wij(`)

}

where I(0) = I and

Wij(`) := F−1
ν

(
(1− β`)

1/(k−1)
)
√

S2
i

Ni(`)
+

S2
j

Nj(`)
.

For ease of theoretical analysis, the preceding formula uses stage-1 sample variances; they

are not updated for purposes of computing screening thresholds.

In the end, the confidence interval is as in (2.1), with final sample average X̄i = X̄i(m).

2.2. Computational Results

We test the performance of our procedures in pricing a basket put option. Although

the payoff in this example is far from normally distributed, the sample averages were

approximately normally distributed, and the minimum coverage guarantees for the confi-

dence limits held in all of our computational experiments, which include 300 independently

simulated confidence intervals.

We report in Tables 2.1 and 2.2 efficiency improvements for this example, expressed

as the ratio of the average number of samples required by the procedure of Chen and
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Dudewicz (1976) to the average number required by our procedures. The results are

reported for the two-stage procedure with various choices of n0, the initial (stage 0)

sample size, and for the multi-stage procedure with 30 stages and n0 = 1000. For each of

four choices of confidence interval width, the best efficiency improvement of a two-stage

procedure is highlighted in bold type.

In all experiments, one fifth of the error is allocated to the upper confidence limit,

and four fifths to the lower confidence limit. For example, in the results of Table 2.1 for a

99% confidence interval, the probability that the true maximum mean exceeds the upper

confidence level is guaranteed to be no more than β = 0.2%, while the probability that it

falls below the lower confidence level is guaranteed to be no more than α = 0.8%.

For ease of interpretation, we specify the confidence interval width L relative to the

true value µ[k], as estimated in advance by a very precise simulation. To assign L equal to

a fraction of an estimate of µ[k] after stage 0 would introduce additional complications. In

financial applications, there is often a previous simulation with similar parameters, which

can supply a value of L giving approximately the desired relative precision.

Table 2.1 uses levels of confidence and precision appropriate for a derivative pricing

problem. The error probability bound β = 0.2% is very low because offering to sell a

derivative security at a low price can lead to large losses, which can be tolerated only

infrequently. We consider confidence interval widths of 0.1% to 1% of the true value,

which are comparable to or slightly smaller than typical bid-ask spreads. That is, at
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Table 2.1. Efficiency Improvement, 99% Confidence

Width of CI 0.1% 0.2% 0.5% 1%
2-stage, n0 = 50000 9.7 9.1 9.1 7.8
2-stage, n0 = 100000 13 14 12 8.3
2-stage, n0 = 200000 22 17 14 6.3
2-stage, n0 = 500000 39 29 9.8 3.4
2-stage, n0 = 1000000 35 22 6.0 1.7
multi-stage, m = 30 43 42 36 27

greater widths, one would be unable to quote competitive prices. Lesser widths would be

unnecessarily precise.

Table 2.2 is appropriate for a risk management problem requiring lower confidence

and precision. Risk management is more a matter of decisions internal to a firm, so there

are no customers to take advantage of violations of the upper confidence limit in the 1%

of cases where it occurs, or whose business is lost when the upper confidence limit is too

far above the true value.

These tables both show that the performance of the two-stage procedure depends

significantly on the initial sample size n0. When n0 is small, increasing it tends to lead to

improved screening, as more information at stage 0 allows more suboptimal systems to be

Table 2.2. Efficiency Improvement, 95% Confidence

Width of CI 0.5% 1% 2% 5%
2-stage, n0 = 5000 2.6 2.7 2.6 2.3
2-stage, n0 = 10000 4.0 4.1 3.8 2.5
2-stage, n0 = 20000 6.3 5.8 4.8 2.0
2-stage, n0 = 50000 9.6 7.8 4.1 1.0
2-stage, n0 = 100000 14 7.6 2.7 0.5
2-stage, n0 = 200000 12 5.0 1.5 0.3
multi-stage, m = 30 36 24 13 4.5
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screened out. If n0 becomes too large, computational resources are wasted on poor systems

that could have been screened out earlier and on systems with low standard deviation,

for which one would have liked to set Ni < n0 if this were possible—see Equation (2.6).

However, because many financial simulations are repeated with parameters only slightly

different from those at the previous repetition, a good value of n0 may well be known in

advance.

Nonetheless, the performance of the multi-stage procedure is entirely superior in the

examples here. It overcomes limitations of the two-stage procedure by using a small

initial sample size n0 = 1000, but continuing screening at subsequent stages. There

seems to be little problem in choosing the multi-stage procedure’s parameters for an

entirely unfamiliar simulation, which makes it superior to the two-stage procedure. The

following investigation of the sensitivity of the multi-stage procedure’s performance to its

parameters is done at 95% confidence and for a confidence interval width of 5%.

Figure 2.1 shows that the efficiency of the multi-stage procedure has low local sensi-

tivity to the number of stages m.

Figure 2.2 shows that the impact of initial sample size n0 on the procedure’s efficiency

is not negligible, but is not as dramatic as it is for the two-stage procedure. Varying

n0 from 200 to 2000 caused efficiency to change by less than 5%. However, n0 = 1000

is not very close to optimal, but noticeably too large, if the required precision is low

and the variances are much smaller (say, one tenth as large) relative to the differences in

expectations. Still, the n0 problem is much less severe than for the two-stage procedure:
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Figure 2.1. Number of Stages and Efficiency
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Figure 2.2. Initial Sample Size and Efficiency

n0 = 1000 is close to optimal for a fairly wide range of variances and confidence interval

widths L.

The performance of the multi-stage procedure also has little local sensitivity to the

decomposition of the upper confidence level 1 − β into confidence 1 − βm for estimation

and 1 − β` for screening at stage ` = 0, . . . ,m − 1. In the examples reported here, we
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have chosen β0 = · · · = βm−1 and
∏m−1

`=0 (1−β`) = 1−β/5, but as Figure 2.3 shows, there

is little change in performance for nearby values of the overall screening confidence level.

Allocating too little of the error to screening makes it very difficult to screen out systems;

allocating too little of the error to estimation inflates the required final sample size Ni(m)

for a system i ∈ I(m− 1) that is never screened out.

2.3. Conclusions

We have introduced a multi-stage screening and selection procedure for producing

a simulated confidence interval for the maximum of several expectations. To choose

good values of the procedure’s parameters (number of stages, initial sample size, and

error allocation) does not require precise knowledge of the problem’s characteristics; this

and superior efficiency are advantages of the multi-stage procedure over the two-stage

procedure. For the financial application of simulating a coherent risk measure of a basket
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put option, this procedure was between 4.5 and 43 times faster than the procedure of

Chen and Dudewicz (1976). The efficiency improvement is greater when the required

levels of confidence and precision are higher, in which case it is possible for substantial

screening to occur while the procedure runs.
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CHAPTER 3

Procedures with Common Random Numbers, Control Variates

and Dynamic Stopping

In the previous chapter we introduced procedures that use screening ideas from ranking

and selection to reduce drastically the number of systems that need to be simulated to esti-

mate the maximum of several expectations. In this chapter we employ variance reduction

techniques to sharpen screening and reduce the total sample size required for estimating

the maximum. The multistage procedures that we develop proceed from screening to

estimation dynamically as soon as all systems but the best are screened out.

3.1. A Framework for Estimating the Maximum

Recall that our goal is to provide a fixed-width confidence interval for µ[k], the largest

mean. Our methods seek a random subset I ⊆ {1, 2, . . . , k}, estimators µ̂i, i = 1, 2, . . . , k,

and constants a, b > 0 such that

Pr

{
µ[k] ≥ max

i∈I
µ̂i − a

}
≥ 1− αa,(3.1)

Pr

{
µ[k] ≤ max

i∈I
µ̂i + b

}
≥ 1− αb,(3.2)
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and a + b = L, where the user specifies the error probability bounds αa, αb ∈ (0, 1/2) and

the confidence interval width L. Together, Inequalities (3.1) and (3.2) imply that

(3.3) Pr

{
max
i∈I

µ̂i − a ≤ µ[k] ≤ max
i∈I

µ̂i + b

}
≥ 1− αa − αb.

The random subset I contains the systems deemed to have a sufficiently high chance of

being the best, and will be generated in such a way as to give the best system [k] a high

probability of being in I. The systems not in I are “screened out.” For an argument that

screening is likely to enhance efficiency, see Section 3.2.3.

The appropriate error probability bounds αa, αb and confidence interval width L de-

pend on the application. In pricing derivatives, we might use an error probability bound

αb = 0.2% that is very low because offering to sell a derivative security at a low price can

lead to large losses, which can be tolerated only very infrequently. We might also consider

confidence interval widths L of 0.1% to 1% of the derivative’s true value, because these

widths are comparable to or slightly smaller than typical bid-ask spreads. That is, at

greater widths, one would be unable to quote competitive prices. Lesser widths would be

unnecessarily precise. A risk management problem, on the other hand, does not require

such high confidence and precision. Risk management is more a matter of decisions in-

ternal to a firm, so there are no customers to take advantage of violations of the upper

confidence limit when they occur (in at most a fraction αb of the cases), or whose business

is lost when the upper confidence limit is too far above the true value. Moreover, in risk
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management problems, X involves the value of a portfolio containing many securities, so

it is usually very expensive to generate. If so, then demanding very high confidence or

precision could result in an unacceptably large time to run the simulation.

Consider the upper confidence limit, and notice that

Pr

{
µ[k] ≤ max

i∈I
µ̂i + b

}
≥ Pr

{
[k] ∈ I, µ[k] ≤ µ̂[k] + b

}

≥ 1− Pr {[k] 6∈ I} − Pr
{
µ[k] > µ̂[k] + b

}
.(3.4)

Thus, if we can guarantee that

Pr {[k] 6∈ I} ≤ αI and(3.5)

Pr
{
µ[k] > µ̂[k] + b

} ≤ α′b(3.6)

where αI + α′b = αb, then the upper confidence limit will be valid as in Inequality (3.2).

Next consider the lower confidence limit, and notice that

Pr

{
µ[k] ≥ max

i∈I
µ̂i − a

}
≥ Pr

{
µ[k] ≥ max

i=1,2,...,k
µ̂i − a

}

= Pr
{
µ̂i ≤ µ[k] + a, i = 1, 2, . . . , k

}

≥ Pr {µ̂i ≤ µi + a, i = 1, 2, . . . , k}

≥ 1−
k∑

i=1

Pr {µ̂i > µi + a} .(3.7)
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Therefore, the lower confidence limit will be valid as in Inequality (3.1) if, for i =

1, 2, . . . , k,

(3.8) Pr {µ̂i > µi + a} ≤ α′a = αa/k.

To obtain a fixed-width confidence interval, we need to determine the half-widths

a and b, given the width L and the error spending structure, so that a + b = L and

Inequalities (3.6) and (3.8) hold. To verify the validity of the confidence limits for the

estimation of the systems’ means µi we need to show that there are increasing functions

Ga and Gb defined on the positive part of the real line, such that, for all i = 1, 2, . . . , k

and x > 0,

(3.9) Pr {µ̂i − µi > x} ≤ 1−Ga(cx) and Pr {µ̂i − µi < −x} ≤ 1−Gb(cx),

where

a =
1

c
G−1

a (1− α′a),(3.10)

b =
1

c
G−1

b (1− α′b), and(3.11)

c =
1

L

(
G−1

a (1− α′a) + G−1
b (1− α′b)

)
.(3.12)



29

This determines the sampling scheme in such a way that it bounds the distribution of

µ̂i − µi by a function that is free of dependence on i (see Sections 3.2.1 and 3.2.2 for

examples).

Proposition 3.1.1. Inequalities (3.1) and (3.2) hold if Inequalities (3.5) and (3.9)

hold, where Ga and Gb are increasing functions defined on the positive part of the real

line, satisfying Ga(0) < 1− α′a < limx→∞ Ga(x) and Gb(0) < 1− α′b < limx→∞ Gb(x).

Proof. Because Ga(0) < 1−α′a < limx→∞ Ga(x) and Gb(0) < 1−α′b < limx→∞ Gb(x),

a and b exist and are positive. For all i = 1, 2, . . . , k, by Inequality (3.9) and Equa-

tion (3.10), Pr {µ̂i − µi > a} ≤ α′a, while Pr {µ̂i − µi < −b} ≤ α′b by Inequality (3.9) and

Equation (3.11). Thus, for all i = 1, 2, . . . , k, Inequality (3.8) holds, which we already

argued implies Inequality (3.1). Inequality (3.6) holds, and we have already argued that

with Inequality (3.5) it implies Inequality (3.2). ¤

To show that a procedure delivers confidence limits with at least the coverage prob-

abilities specified in Inequalities (3.1) and (3.2), we will verify that the screening proce-

dure satisfies Inequality (3.5), and exhibit increasing functions Ga and Gb with Ga(0) =

Gb(0) = 1/2 such that the mean estimators satisfy Inequality (3.9). These results provide

a general framework for estimating µ[k]; the remainder of the chapter works out details for

specific ways to form the subset I and the estimators µ̂i. The procedures we will discuss

all have the following structure.
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1. Simulate all systems, possibly over multiple stages, and retain a subset I ⊆

{1, 2, . . . , k}.

2. For all systems i ∈ I, compute a terminal sample size Ni and simulate more

observations to get a total of Ni.

3. Compute an estimator µ̂i of the mean µi for each system i ∈ I.

4. Report the confidence interval [maxi∈I µ̂i − a, maxi∈I µ̂i + b].

We obtain efficient procedures in two ways:

1. by reducing |I|, the number of means that we estimate, and

2. by employing efficient estimators µ̂i of µi, so that the means we do estimate

require as little computational effort as possible.

In Chapter 2, we reported on two-stage and multi-stage procedures that fit this frame-

work. These procedures used screening to form the subset I, estimated µi using a sample

mean, and assumed that the systems were simulated independently. In this chapter, we

employ CRN to further reduce |I|, estimate µi using control-variate estimators, and in-

vestigate “restarting” the procedure after screening, which allows us, in effect, to tackle

a smaller problem.

3.2. Procedures

In this section, we construct simulation procedures that generate a fixed-width, two-

sided confidence interval for a coherent risk measure that is the maximum of k means.
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Appendix A contains algorithms implementing procedures with various combinations of

these features. Proofs of the procedures’ validity appear in Appendix B.

3.2.1. The Basic Procedure

First we briefly explain our variant of the procedure of Chen and Dudewicz (1976), which

serves as our standard for comparison on examples without control variates. This is a

two-stage procedure. The first stage is called stage 0. For each system i, in stage 0, the

procedure generates n0 replications of Xi, which has the distribution of the discounted loss

X under measure Pi. The replications are used to estimate the variances σ2
i := Var[Xi].

These are

S2
i :=

1

n0 − 1

n0∑
j=1

(
Xij − X̄i

)2

where X̄i :=
∑n0

j=1 Xij/n0 are the stage-0 sample averages. Let dxe represent the smallest

integer greater than or equal to x. After stage 0, the total sample sizes

(3.13) Ni = max
{
n0,

⌈
c2S2

i

⌉}

are computed on the basis of the variance estimators S2
i and the scaling constant c as

defined in Equation (3.12), where Ga = Gb = Ftn0−1 , the t distribution with n0−1 degrees

of freedom. In the second stage, called stage 1, additional replications Xij are simulated

for i = 1, 2, . . . , k and j = n0 + 1, n0 + 2, . . . , Ni. The procedure estimates the means µi
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with the stage-1 sample averages

µ̂i =
1

Ni

Ni∑
j=1

Xij.

Notice that the standard procedure manipulates the marginal distributions of the

estimators µ̂i individually; their relative values and joint distribution have no impact.

3.2.2. Controlled Control Variates

In this section, we present an extension of the Chen-Dudewicz procedure that incorpo-

rates control variates in mean estimation. Although we could also use control variates

in screening, we found little added benefit because common random numbers alone were

so effective for the financial examples we considered. In addition, control variates in

screening introduce technical complications: see Nelson and Staum (2006).

To have a fair comparison of the performance of our procedures on examples using

control variates, the standard of comparison will be this variant of the Chen-Dudewicz

procedure that uses control variates. For details about the construction of the control-

variate estimators, see Appendix D. We introduce a qi-dimensional vector Ci of control

variates with known mean ξi. As Xi comes from a portfolio value simulated under Pi,

usually Ci represents other financial variables generated simultaneously under Pi. Fre-

quently the dimension qi is the same for all i, as the same financial variables are used in

each case. In the basket put example, the control variates are the payoffs of European
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put options whose prices are known by the Black-Scholes formula. For more on control

variates in financial simulations, see Glasserman (2004, §4.1).

We now allocate error αC to a bound on the sample variance of the control-variate

point estimator, which depends on control-variate observations after the first stage of

sampling (see Nelson and Staum, 2006), unlike the sample variance of the sample mean

which only depends on first-stage observations. Define q := maxi=1,2,...,k qi, the maximum

number of control variates used for any system. The functions that generate the scaling

constant c in Equation (3.12) are given by Ga(x) = Gb(x) = Ftn0−q−1(x)− αC , so

c =
1

L
(G−1

a (1− α′a) + G−1
b (1− α′b)) =

1

L
(tn0−q−1,1−α′a+αC

+ tn0−q−1,1−α′b+αC
),

where tν,u represents the u quantile of the t distribution with ν degrees of freedom. This

corresponds to decomposing the error bounds as α′b = αC + α′′b and α′a = αC + α′′a, and

using the 1 − α′′a and 1 − α′′b quantiles of a t distribution. When using control variates,

replace in Equation (3.13) the sample variance S2
i of Xi with the sample residual variance

τ̂ 2
i of the regression of Xi on the control variates Ci (see Appendix D). As in Nelson and

Staum (2006, Procedure 4 and Remark B.2), the effect of spending αC on controlling the

dispersion of the control variates’ sample average from its expectation is to add χ2
qi,1−αC

,

the 1 − αC quantile of the chi-squared distribution with qi degrees of freedom, to the

required number of replications:

(3.14) Ni = max
{
n0,

⌈
c2τ̂ 2

i + χ2
qi,1−αC

⌉}
.
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This formulation subsumes the case without control variates discussed in the previous

section, with qi = 0, αC = 0, and τ̂ 2
i = S2

i .

3.2.3. Screening with Common Random Numbers

Let U1, U2, . . . be a sequence of independent, identically distributed random vectors. Each

Uj is interpreted as a vector of random numbers forming the basis for the jth replication

in the simulation. For all i = 1, 2, . . . , k, the jth realization of the negative discounted

portfolio value Xij = Xi(Uj) and the jth realization of the control-variate vector Cij =

Ci(Uj) are generated from the vector of common random numbers Uj, which are common

to all systems. The result is that random variables such as Xhj and Xij are dependent,

but for different replications j 6= `, Xhj and Xi` are independent.

For screening, define the stage-0 sample variances of the differences Xh −Xi as

S2
hi :=

1

n0 − 1

n0∑
j=1

(Xhj −Xij − (X̄h − X̄i))
2.

Construct the set I :=
{
i|∀h 6= i, X̄i ≥ X̄h −Whi

}
where the threshold

Whi := tn0−1,1−αI/(k−1)
Shi√
n0

.

The set I contains those systems which could plausibly be the best, in the sense of not

being statistically dominated by some other system at stage 0. Every i /∈ I has been

screened out.
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Does screening decrease efficiency? The error spent on screening subtracts from the

error that can be spent on estimating systems’ means (Equations 3.5–3.6), and thus in-

flates the sample size required for each system that survives screening. If screening does

not eliminate enough systems, it will increase the total number of replications that the

procedure requires. However, in financial simulations sample sizes are usually large, and

therefore the benefits of screening out the inferior scenarios early are usually substan-

tial. Even in situations where some systems have means that are very close to the best,

screening will generally be effective. One reason is that the benefits can still exceed the

costs even if only a few systems are eliminated. Another reason is that, in financial appli-

cations, systems whose means are very similar usually also have high correlation, which

makes common random numbers very effective. Therefore, it is often not too hard to

screen out a system that is only slightly inferior to another system.

The worst-case efficiency loss due to screening is in fact very limited. If all k means

are the same, it would be best to forgo screening and use a procedure such as Procedure 4

of Nelson and Staum (2006). However, as long as the screening budget is less than the

required final sample size, the ratio of the sample sizes with and without screening is

approximately
(

Φ−1(1− α′a) + Φ−1(1− α′b − αI)

Φ−1(1− α′a) + Φ−1(1− α′b)

)2

.

This follows from Equation (3.12) for the scaling constant c which determines the total

sample sizes in all of the procedures, and from approximating a t distribution with many
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degrees of freedom by a normal distribution. When αa = 0.8%, αb = 0.2%, αI = (0.2)αb,

and k = 256, as in the options portfolio example, the worst-case efficiency loss is only

7.7%. If k = 64, as in the basket put example, it is 8.8%. Even if k = 2, the worst-case

efficiency loss is just 14%, although it is very unlikely the procedure will be used when

the number of scenarios is so small. For these reasons, screening is very likely to improve

efficiency, and even if it does not, it can not decrease efficiency by much.

As discussed in Chapter 2, the performance of the two-stage procedure depends sig-

nificantly on the initial sample size n0. When n0 is small, increasing it tends to lead to

improved screening, as more information at stage 0 allows more systems to be screened out.

If n0 becomes too large, however, computational resources are wasted on poor systems

that could have been screened out earlier and on systems with low standard deviations

for which the desired terminal sample size Ni < n0; see Equation (3.13). It would be

preferable to have a procedure that is less sensitive to n0, and the multi-stage procedure

described in the next section has this property.

3.2.4. Multi-Stage Screening

In this procedure, there are m screening stages 0, 1, . . . , m − 1 and one final estimation

stage m. Our notation is that a number ` in parentheses indicates a quantity that applies

to or is estimated after the `th stage. For example, the sample average of Xi over all

stages up to ` is X̄i(`) :=
∑N(`)

j=1 Xij/N(`), where N(`) is the total number of replications
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sampled from each surviving system through screening stage `. Appendix C.1 includes an

explanation of why the sample size N(`) is the same for each system still in contention.

There are three main aspects of the multi-stage procedure to resolve. We must specify

1. the screening stage sample sizes N(`) for ` = 1, 2, . . . ,m− 1,

2. the screening thresholds Whi(`) for ` = 0, 1, . . . , m− 1 and h, i = 1, 2, . . . , k, and

3. the sample size Ni used in constructing the mean estimate µ̂i for systems i ∈ I(m)

that survive screening.

We must choose the screening-stage sample sizes and thresholds so that there is an error

decomposition satisfying Inequality (3.5) and choose the final sample size so that Inequal-

ity (3.9) holds. It turns out that these three issues are intimately related by the way in

which simulated data are used to supply variance estimates.

More than one scheme is possible, but here, for simplicity, we set all screening-stage

sample sizes N(0), . . . , N(m − 1) before the simulation begins. We have found experi-

mentally that a good way of choosing these sample sizes is to choose n0 and a constant

growth factor R, and then set N(`) = dn0R
`e. The intuition behind this is that it makes

standard errors likely to decrease by roughly the constant factor
√

R at each stage. If, for

instance, sample sizes grew at a constant arithmetic instead of a constant geometric rate,

later stages would be spending opportunities to look at the data (see point 2 of the list

below) with very little chance of screening out a system that had survived the previous

stage.
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How should the growth factor R be chosen? The maximum number of replications

during screening for each system is N(m−1) = dn0R
m−1e. If this number is too large, the

number of replications sampled during screening can exceed the number Ni required for

the estimate µ̂i, which is wasteful. Suppose that we choose a maximum screening budget

N(m − 1) that is not too large. Given this maximum budget, the initial sample size n0,

and the number of screening stages m, the factor R = (N(m− 1)/n0)
(1/(m−1)). We should

choose n0 and m with the following points in mind.

1. The ends of the m screening stages are the only m opportunities at which systems

can be screened out. The fewer these opportunities, the longer the procedure

must wait to screen out a system, and the more work is expended on systems

that are eventually screened out.

2. On the other hand, the screening thresholds defined in Equation (3.15) below are

increasing in m. Given a fixed amount of data, fewer systems can be screened

out when m is larger. The more opportunities there are to screen out a system,

the less aggressive the procedure can be at each screening opportunity, if a fixed

error probability is to be maintained.

3. It is desirable to have n0 small, so that extremely poor systems can be screened

out quickly. However, if n0 is too small, then the normal approximation used to

justify the confidence limits may break down at early stages.

Next we consider the screening thresholds and error decomposition, given that sample

sizes are fixed in advance. After each stage ` = 0, 1, . . . ,m − 1, screening takes place by
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constructing

I(` + 1) :=
{

i ∈ I(`)
∣∣∣∀h ∈ I(`), X̄i(`) ≥ X̄h(`)−Whi(`)

}

where I(0) = {1, 2, . . . , k}. Define the threshold

(3.15) Whi(`) := tN(`)−1,1−αI/(m(k−1))
Shi(`)√

N(`)
,

where the stage-` sample variance is

S2
hi(`) :=

1

N(`)− 1

N(`)∑
j=1

(
Xhj −Xij − (X̄h(`)− X̄i(`))

)2
.

We use fully updated, cumulative sample variances to set the screening thresholds. Typ-

ically, multi-stage screening procedures for ranking and selection use only stage-0 sample

variances to simplify inference. We find that it is valuable to use updated variance infor-

mation and keep stage 0 very small, because a large fraction of systems were screened out

at stage 0 in our examples.

After screening, we must choose a final sample size Ni for estimation of the mean µi

by µ̂i. We cover the case with CV, which subsumes that without CV (Section 3.2.2). The

scaling constant c comes from Equation (3.12) and Ga(x) = Gb(x) = FtN(m−1)−q−1
(x)−αC .

Equation (3.14) becomes

(3.16) Ni = max{N(m− 1), dc2τ̂ 2
i (m− 1) + χ2

qi,1−αC
e},
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where τ̂ 2
i (m− 1) is the sample residual variance of the regression of Xi1, . . . , Xi,N(m−1) on

the control variates Ci1, . . . , Ci,N(m−1).

In stage m, Xij is simulated for i ∈ I(m) and j = N(m−1)+1, N(m−1)+2, . . . , Ni(m),

and then the confidence limits are constructed around maxi∈I(m) µ̂i, where each estimate

µ̂i is based on all replications j = 1, 2, . . . , Ni(m). That is, µ̂i is either the sample average

X̄i(m) =
∑Ni

j=1 Xij/Ni, or this sample average after correction by control variates, as

detailed in Appendix D.

This works because N(m − 1) is a constant. For purposes of mean estimation, it

does not matter how we screen, as long as the probability of wrongly screening out the

best system satisfies Inequality (3.5) and we finish the screening phase with a variance

estimator that has the desired distribution and is independent of the existing sample

average X̄(m − 1). Fixing the screening stage sample sizes in advance is one way to

achieve this.

The situation would be far more delicate if we allowed the screening-stage sample sizes

to be random, for instance, to depend on sample variances from prior stages. In particular,

the arguments above rely on a constant sample size N(m − 1) at the end of screening

for all systems that survive. This means that we have not entirely solved the n0 problem

faced by a two-stage procedure. The multi-stage procedure has an “N(m−1) problem” in

the same way. If we choose the maximum per-system screening budget N(m−1) to be too

small, not enough screening is done. If we choose N(m−1) too large, then this multi-stage
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procedure wastes effort by exceeding the desired final sample size dc2τ̂ 2
i (m−1)+χ2

qi,1−αC
e

in Equation (3.16) for any system that survives too long.

In the next section, an enhancement to the multi-stage procedure ameliorates this

problem. Nonetheless, even for the procedures described below, there is still some danger

of wasting effort by choosing N(m − 1) too large. In Chapter 4 we present an adaptive

multi-stage procedure that solves this problem.

3.2.5. Early Stopping during Screening

In many of our examples we found that all systems but the best were screened out before

the scheduled end of screening; that is, the event I(`) = {[k]} often occurred for some

screening stage ` < m − 1. Clearly it makes sense to stop screening once the set I

has become a singleton and move immediately to estimation. This helps us to avoid the

problem, mentioned at the end of the previous section, that the screening budget N(m−1)

might be larger than the desired final sample size: frequently I becomes a singleton before

the screening budget is exhausted and before the desired final sample size is exceeded.

Define the random stage

M := min{m, inf{` | |I(`)| = 1}}

at which we would like to proceed to mean estimation. Unfortunately, invoking our

estimation procedure from this random stage alters the distribution of the final estimator

in ways that we cannot explicitly evaluate. Where I(M) = {i}, we might like to use
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Ni = max{N(M − 1), dc2τ̂ 2
i (M) + χ2

qi,1−αC
e}. However, unlike in previous sections, we do

not find a chi-squared distribution related to τ̂ 2
i (M). This is because the event M = ` of

stopping at an early stage ` is associated with low values of S2
ih(M) for all systems h 6= i,

because when these sample variances are low, it helps system i to screen out all the others

quickly. Low values of S2
ih(M) are associated with low values of S2

i (M), and low values

of S2
i (M) are associated with low values of τ̂ 2

i (M), so although there is a chi-squared

distribution related to τ̂ 2
i (`) for any fixed `, there is not for τ̂ 2

i (M). A remedy for this

technical problem is to set the terminal sample size as

(3.17) Ni = max{N(M − 1), dc2σ̂2
i + χ2

qi,1−αC
e},

where σ̂2
i is a variance estimator with the right distribution. We accomplish this by fol-

lowing a fixed screening schedule for a small number of stages and allowing early stopping

only after that.

More precisely, we fix a stage `∗ between 1 and m − 1, and forbid early stopping

until after stage `∗, forcing M ≥ `∗. We only use variance information up through

stage `∗ to determine the terminal sample size for estimation. That is, σ̂2
i = τ̂ 2

i (`∗) is the

sample residual variance of the regression of Xi1, Xi2, . . . , XiN(`∗) on the control variates

Ci1, Ci2, . . . , CiN(`∗). Because τ̂ 2
i (`∗) is computed over a prespecified constant number

N(`∗) of replications, we can find associated chi-squared and t distributions. The scaling
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constant c comes from Equation (3.12) with

(3.18) Ga(x) = Gb(x) = FtN(`∗)−q−1
(x)− αC .

3.2.6. Restarting

The critical values that determine the overall sample size for mean estimation depend upon

the number of systems k. The sample size increases as k increases to compensate for the

greater chance of error when there are more alternatives. Therefore, when K(M) :=

|I(M)|, the number of systems remaining after screening ends at the random stage M−1,

is small, it would be efficient to pretend that the mean-estimation problem only involved

the K(M) systems still in play. Unfortunately, this is invalid when we retain the data

obtained up to stage M . This is because of selection bias: when the number k of systems is

higher, the sample averages through stage M of any systems that survive tend to be higher

(Boesel et al., 2003). If, on the other hand, we “restart” the simulation after screening—

that is, throw out all data from the screening stages—then our mean-estimation procedure

applied only to the K(M) survivors is valid. If K(M) is small enough, then the reduction

in required sample size due to reduced critical values will outweigh the cost of discarding

the data from the simulation stages.

After screening, we will obtain Ni new replications for each surviving system i ∈ I(M)

and form the estimators µ̂i from these replications alone. We will choose the sample size

Ni by performing an independent two-stage procedure. In the follow-up experiment’s
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first stage we simulate ni replications from system i and form a variance estimate σ̂2
i , the

sample residual variance of the regression of Xij on Cij, j = 1, 2, . . . , ni. From σ̂2
i , we

determine the terminal sample size as

(3.19) Ni = max{ni, dc2σ̂2
i + χ2

qi,1−αC
e}.

The scaling constant c comes from Equation (3.12) with

(3.20) G(x) = Ftn−q−1(x)− αC ,

where n := mini∈I(M) ni is used to quantify the minimum degrees of freedom in construct-

ing any variance estimate σ̂2
i for a surviving system i. In the second and last stage, we

simulate replications j = ni + 1, ni + 2, . . . , Ni.

This two-stage procedure for fixed-width interval estimation is valid for any value of

ni. By increasing ni, we increase the degrees of freedom of the t distribution in G(x),

which helps to reduce the sample size Ni, as well as its variability. However, if we choose

ni too large, then ni > dc2σ̂2
i + χ2

qi,1−αC
e and we waste effort. Fortunately, it is valid

to choose ni as a function of τ̂ 2
i (M − 1), the residual variance estimator obtained from

screening, since all data in the follow-up experiment are independent of the screening

data. In particular, we will use this information to form a lower prediction limit for the

terminal sample size Ni.
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As an approximation, suppose that the conditional distribution of τ̂ 2
i (M − 1)/σ̂2

i ,

given M , is FN(M−1)−1,ni−1. Assuming that ni is large, the distribution of (N(M − 1) −

1)τ̂ 2
i (M − 1)/σ̂2

i is approximately χ2
N(M−1)−1. This yields an approximate (1 − ε)100%

lower prediction limit for σ̂2
i of (N(M − 1)− 1)τ̂ 2

i (M − 1)/χ2
N(M−1)−1,1−ε. Because all ni

and hence n := mini∈I(M) ni are large, the t distribution in Equation (3.20) has many

degrees of freedom and is thus approximately a normal distribution. This yields, from

Equation (3.12), c ≈ (Φ−1(1 − α′′a) + Φ−1(1 − α′′b ))/L. Putting these approximations

together, we set

(3.21) ni =

(
Φ−1(1− α′′a) + Φ−1(1− α′′b )

L

)2
(N(M − 1)− 1)τ̂ 2

i (M − 1)

χ2
N(M−1)−1,1−ε

+ χ2
qi,1−αC

,

an approximate lower prediction limit for the desired size c2σ̂2
i +χ2

qi,1−αC
in Equation (3.19).

3.3. Experimental Results

We now report selected results of computational experiments to test the efficiency

and validity of the procedures developed in Section 3.2. We discuss the magnitude of the

procedures’ efficiency gains in Section 3.3.1, as well as the factors that contribute to them.

This includes, in Section 3.3.2, an assessment of the extent to which efficiency depends

on the choice of parameters such as sample sizes and error decomposition. Section 3.3.3

illustrates the validity of the procedures in practice by analyzing the coverage of the

confidence intervals they generate. Before reporting the results, we mention choices of

parameters common to the experiments.
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In all experiments, one fifth of the error is allocated to the upper confidence limit, and

four fifths to the lower confidence limit. For example, for a 99% confidence interval, the

probability that the true maximum mean exceeds the upper confidence limit is nominally

guaranteed to be no more than αb = 0.2%, while the probability that it falls below the

lower confidence limit is nominally guaranteed to be no more than αa = 0.8%.

For ease of interpretation, we specify the fixed confidence interval width L as a per-

centage of a quantity which provides a natural scale for the example. For the options

portfolio example, this quantity is the portfolio’s standard deviation. For the basket put

example, this quantity is the true value µ[k], interpreted as an ask price for the basket

put. In either case, the scaled quantity is estimated in advance by a very precise simula-

tion. To assign L equal to a fraction of an estimate of µ[k] after stage 0 would introduce

additional complications. In financial applications, there is often a previous problem with

similar parameters which can supply a value of L giving approximately the desired relative

precision.

Except when otherwise specified, the level of precision is 1%, the confidence level is

99%, and the algorithms’ parameters are set to the following default values. The error

allocated to screening is αI = (0.2)αb, there are n0 = 30 replications in the initial stage 0,

there are m = 15 stages, and the cumulative sample size grows by a factor of R = 2

at each stage. This makes the budget available for screening N(m − 1) = n0R
m−1 =

30 · 16384 = 491520. When using control variates, the error allocated to controlling

them is αC = (0.01) min{α′a, α′b}. This adds 27 or 31 extra replications (at 95% or 99%
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confidence, respectively) per system that survives screening; the right panel of Figure 3.3

shows that this cost is not large relative to the simulation’s total cost. For the multi-

stage algorithms with early stopping, stopping is forbidden until after stage `∗ = 5,

yielding N(`∗) = n0R
`∗ = 30 · 32 = 960 replications to provide variance information

for use in setting the final sample sizes. For the multi-stage algorithm with restarting,

the significance level used in creating the prediction limit for the final sample size that

underlies Equation (3.21) is ε = 1%.

The results presented in this section for a multi-stage procedure with early stopping

are for a slight variant of the procedure described in Section 3.2.5, differing only as to

the observations used in producing variance estimates for screening and terminal sample

size computation (fewer are used). Both variants are valid, but the procedure described

in Section 3.2.5 is simpler and would be expected to have slightly superior performance

than the results presented in this section.

3.3.1. Efficiency: Procedures and Precision

We report efficiency as a speed improvement relative to the standard procedure. This

is the ratio of the average number of samples required by the standard procedure to

the average number required by our more advanced procedures. The number of samples

required by the standard procedure is
∑k

i=1 Ni where Ni is defined in Equation (3.13)

or (3.14), depending on whether control variates are in use. We have ignored overhead

costs such as those associated with comparisons during screening or with generating and
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Table 3.1. Efficiency relative to the standard procedure, at 99% confidence
and 1% precision.

Procedure Example
Basket Options

Stages CRN Restarting Put Portfolio

15
√ √

157 249
15

√
115 147

15 5.5 146
2

√
41 103

using control variates. In the financial applications we have in mind, generating a single

negative discounted portfolio value Xij is moderately to extremely expensive, because

it involves simulating over many time steps, underlying risk factors, or securities in the

portfolio. Also, the control variates Cij used in such applications are usually cheap to

compute once Xij has already been simulated.

Table 3.1 reports the efficiency of four procedures: the multi-stage procedure with

restarting and CRN, the multi-stage procedure with early stopping and CRN, the multi-

stage procedure with early stopping and without CRN, and the two-stage procedure with

CRN. Recall that we use CVs in the basket put example and not in the options portfolio

example. In practice, the appropriate levels of precision might be 0.1%–1% for the basket

put example, because the statistical error surrounding a simulation estimate to be used

as a derivative security price should be within the bid-ask spread, and 1% or more for a

risk management problem, such as the options portfolio example. For this reason, we use

1% precision in the table. In most cases the improvement is dramatic.
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For the two-stage procedure, the initial sample size n0 is 3000 for the basket put

example and 1000 for the options portfolio example. We chose these values to yield good

performance for these examples, at this level of confidence and precision. Nonetheless,

the two-stage procedure’s performance is markedly inferior to that of the multi-stage

procedure, primarily because the multi-stage procedure does less work by screening out

some systems earlier than others.

Using CRN is very effective for the basket put example, but has little effect for the

options portfolio example at this level of precision and confidence. For the basket put

example, the procedure without CRN usually spends a great deal of effort on screening:

it tends not to stop early because it does not succeed in eliminating all but one of the

systems. Indeed, for low precision, the effort may be more than is needed to estimate

each system’s mean, resulting in a loss of efficiency relative to the standard procedure.

Reducing the total budget available for screening would improve the procedure’s perfor-

mance on this example, but to do so would require advance knowledge of the problem.

The procedure is not adaptive: for instance, it can not stop screening early when the

sample size accumulated during screening reaches a running estimate of the final sample

size required for inference about a system’s mean. For variations on the multi-stage pro-

cedure that become possible without CRN, see Appendix C.1. Here we focus only on the

direct impact of correlation among systems induced by CRN, not the indirect impact of

changing the procedure to accommodate their use.
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Another way to consider the efficiency of the procedures is relative to the maximum

possible benefit that might be achieved, which we define as follows. To produce a fixed-

width confidence interval for the maximum among k means requires at least as many

replications as to produce such a confidence interval for the best system’s mean considered

in isolation. That is, the minimum sample size is what would be required if we were told in

advance which system was best and could ignore the other k−1 systems. The ratio of the

standard procedure’s sample size to this minimum sample size depends on k, the number

of systems, and the size of the best system’s standard deviation relative to the standard

deviations of the other systems. In both examples, the sample size of the multi-stage

procedure with CRN and restarting is within a few percent of this minimum size.

In summary, we recommend using a multi-stage procedure with CRN. We have found

that restarting increases efficiency for most examples. However, in examples where the

number of replications required to screen out all but one system is large enough, it is more

efficient not to restart.

Having examined the performance of different procedures on the same problems, we

now consider the effect of the problem’s difficulty on the procedures’ efficiency. The

same example becomes more difficult when greater confidence or precision is demanded.

Greater difficulty is associated with higher efficiency of procedures with screening but

without CRN or CV. This happens because procedures with screening do only enough

work on most systems to screen them out, and this is much less than the amount of work

the standard procedure must do to estimate means with high confidence and precision.
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Figure 3.1. Effect of required precision on efficiency of the multi-stage
procedure with early stopping and CRN relative to the standard procedure,
at 99% confidence.

Figure 3.1 shows the effect of the confidence interval width L on the efficiency of the

multi-stage procedure with early stopping and CRN. The fixed width is expressed as

a percentage of a quantity which provides the scale for the example, so that a high

percentage indicates that the user asked the procedure to deliver low precision.

In Table 3.1, we saw that the multi-stage procedure with early stopping and CRN

delivered more than 100-fold efficiency improvement for these examples at 1% precision,

which is a reasonable level. From Figure 3.1, we see that the efficiency improvement is

very high for a wide range of precision, and there is substantial improvement even at low

precision. We found that the multi-stage procedures with CRN were more efficient than

the standard procedure in every experiment we ran; we recommend using one of them in

all simulations of coherent risk measures based on generalized scenarios.
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3.3.2. Efficiency: Parameters

We have selected default values of the procedure parameters based on experimentation to

find which values yield good efficiency for a range of problems. Here we present evidence

showing that efficiency is fairly robust to the choice of some parameters, indicating that

they can be used without further tuning.

First we consider the effect of the sample sizes of the screening stages on the efficiency

of the multi-stage procedure with restarting and CRN. The results are easier to inter-

pret than for the multi-stage procedure with early stopping; changing its screening-stage

sample sizes would require an adjustment to `∗, the first stage at which early stopping is

allowed.

Recall that the cumulative sample size after ` stages is N(`) = dn0R
`e, where n0 =

N(0) is the stage-0 sample size and R is a constant growth factor. We consider two

types of changes to the design of the screening phase. The first type is to vary the

number of stages m with R fixed. The primary effect is on the total screening budget,

N(m − 1) = dn0R
m−1e. The second type is to change the number of stages m with

N(m− 1) fixed, so that the growth factor R varies inversely with m. The effect is on how

often the procedure is allowed to look at a fixed amount of data to screen out poor systems.

Figure 3.2 shows how these changes affect the efficiency of the multi-stage procedure with

restarting and CRN.

The graphs in Figure 3.2 show that the procedure’s efficiency is gravely limited when

the total screening budget N(m−1) or the number of screening stages m are too small. If
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Figure 3.2. Effect of screening phase design on efficiency of the multi-stage
procedure with restarting and CRN relative to the standard procedure, at
99% confidence.

N(m− 1) is too small, not enough screening occurs, and in the final stage, the procedure

must estimate an excessive number of systems’ means. If m is too small, screening occurs

too slowly, and excessive work is done on systems that are eventually screened out. In

these examples, choosing m too large does not reduce efficiency by much. There is a

statistical price to be paid for looking frequently at the data, but it has a small effect

on the efficiency of screening. Having a large screening budget N(m− 1) does not mean

that it must be used; the procedure restarts once screening has succeeded in eliminating

all but one system. In the examples shown in the left panel of Figure 3.2, the efficiency

losses due to occasionally sampling too many replications during screening are detectable

but small.

However, a large screening budget poses a danger: as mentioned in the discussion of

Table 3.1, there are examples in which the amount of work required to screen out all but

one system exceeds the amount of work required to estimate the system’s means. An

extremely bad case is when more than one system has the maximum mean. Such ties can
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easily arise in finance when the discounted portfolio value X has the same distribution

under two probability measures. In such cases, making N(m− 1) too large is a mistake.

The other parameter controlling the design of the screening phase is the initial sample

size n0. Our experiments showed that choosing n0 very small maximizes efficiency. The

danger in choosing n0 too small is not a loss of efficiency, but rather a danger that

the resulting confidence interval might provide inadequate coverage, due to failure of the

normal approximation in the early screening stages causing the best system to be screened

out. Results reported in Section 3.3.3 show that n0 = 30 yielded adequate coverage for

these examples.

Next we consider the effect of error allocation on the efficiency of the multi-stage

procedure with early stopping and CRN. The user specifies the confidence levels 1 − αa

and 1 − αb associated with the lower and upper confidence limits respectively, but the

procedures have one or two further parameters controlling how the allowable errors αa and

αb are spent. A portion αI of αb must be allocated to screening (Inequality (3.5)). When

using control variates, a portion αC of both lower and upper error must be set aside for

controlling them (Section 3.2.2). Figure 3.3 displays the effect of changing the fractions

αI/αb and αC/ min{α′a, α′b} on efficiency. It is easy to choose an allocation yielding most

of the possible efficiency improvement.

Allocating too much error to screening or control variates degrades the performance

of the procedure. Having too little error left to spend on inference about the means of the

systems that survive screening inflates the required sample size. However, an implausibly
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Figure 3.3. Effect of error allocation on efficiency of the multi-stage pro-
cedure with early stopping and CRN relative to the standard procedure, at
99% confidence.

large amount of error must be allocated to screening or control variates before efficiency

diminishes much; this mistake is easy to avoid. Likewise, efficiency may decrease if too

little error is spent for these purposes, but the procedure’s performance is even more

robust against insufficiency than excess. If αI is too small, less screening takes place

because the thresholds in Equation (3.15) become larger. However, the behavior of the

quantiles of a t distribution (with many degrees of freedom) as a function of tail probability

makes this effect small for the examples we considered: with m = 15, N(`∗) = 960, and

k = 256, changing αI from 0.04% to 0.002% changes the relevant t quantile from 5.23

to 5.77. This change corresponds to inflating the threshold by approximately 10%, but

screening with CRN eliminates systems so quickly that this has little absolute effect on the

efficiency of screening. Similarly, decreasing αC inflates the chi-squared quantile added to

the required final sample size in Equation (3.14), but αC can be very small without having

much impact. We found that αI = (0.2)αb and αC = (0.01) min{α′a, α′b} are reliably good

choices.
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Finally, there are parameters related to early stopping (Section 3.2.5) and restarting

(Section 3.2.6). After some experimentation, we selected the first stage after which early

stopping is allowed as `∗ = 5. The right choice of `∗ depends on the growth structure of

the screening stages, as embodied in the initial sample size n0, the growth factor R, and

the number of stages m. We found that choosing `∗ too small can substantially degrade

performance because of poor variance estimation. Choosing `∗ too large has a significant

cost only when the maximum screening budget N(m − 1) is far too large, as happened

to the multi-stage procedure with early stopping and without CRN on the basket put

example, shown in Table 3.1. For the multi-stage procedure with restarting and CRN,

we found that, over a very wide range of values, efficiency is also rather insensitive to

the significance level ε used in creating the prediction limit for the final sample size that

underlies Equation (3.21). A good value is ε = 1%.

3.3.3. Coverage

Our procedures come with coverage guarantees (3.1) and (3.2) for their confidence limits,

but the guarantees are proved only for normally distributed data Xij. The distribution

of a negative discounted portfolio value, especially when it contains derivative securities

whose payoffs are nonlinear functions of underlying financial variables, is usually quite far

from normal. The coverage guarantees hold in the basket put example for some simpler

procedures without CRN or CV as in Chapter 2. Table 3.2 supports the conclusion that
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Table 3.2. Error rates of multi-stage procedures with CRN at 95% confi-
dence and 5% precision.

With Early Stopping With Restarting

Error Basket Options Basket Options
Prob. Nominal Estimate Put Portfolio Put Portfolio

UCL 0.90% 1.25% 1.11% 1.18%
Upper 1% point 0.64% 0.94% 0.82% 0.88%

LCL 0.44% 0.69% 0.59% 0.64%
UCL 0.20% 0.07% 3.40% 4.54%

Lower 4% point 0.08% < 0.01% 2.90% 3.96%
LCL 0.02% < 0.01% 2.45% 3.44%

the multi-stage procedures with CRN, either with early stopping or with restarting, also

provide confidence limits with the required coverage for both of our examples.

The experiments reported in Table 3.2 contain 5000 independent simulations. For

each experiment, we report (in bold) the fraction of these 5000 simulations in which µ[k] <

maxi∈I µ̂i− a as a point estimate of the lower error probability Pr
{
µ[k] < maxi∈I µ̂i − a

}
,

and similarly for the upper error probability Pr
{
µ[k] > maxi∈I µ̂i + b

}
. We also give 95%

confidence limits for the error probabilities, based on a binomial distribution for the

observed number of errors.

We present experiments at confidence level 95% and precision 5% because this results

in relatively low sample sizes. Large sample sizes create sample averages with distributions

closer to normal, making it easier for the procedures to attain the nominal coverage. The

nominal error probabilities are αb = 1% for the upper limit and αa = 4% for the lower

limit. Entries less than these values show that the procedure is conservative in this case,

attaining coverage greater than nominal.
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Table 3.2 shows that the multi-stage procedure with early stopping and CRN is very

conservative. Its conservatism is due to allocating an equal amount of error to each system

in Inequality (3.8), even those which are screened out. This was the motivation for the

procedure with restarting, which is indeed much less conservative.

3.4. Conclusions

In this chapter we proposed procedures for constructing a two-sided, fixed width con-

fidence interval for the maximum or minimum of k systems’ means. The motivation is

financial applications in which the “systems” correspond to generalized scenarios and we

are interested in the mean value of the worst-case scenario. The procedures exploit the

advantages that computer simulation provides: the ability to perform sequential experi-

ments and to implement variance-reduction techniques.

Under normal-theory assumptions, our procedures are exact, that is, they deliver at

least the nominal coverage probability. Although these assumptions are reasonable in

many situations, they are never precisely correct. However, it is comforting to know that

our screening procedures, which are usually applied when the sample sizes are small, are

protected by the use of very conservative probability inequalities (such as the Bonferroni

inequality) in their derivation. Our estimation procedures, on the other hand, will typi-

cally require large sample sizes. As we become more demanding, requiring a smaller con-

fidence interval width or higher confidence, the final sample size becomes larger, making
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normality of mean estimators more plausible. In fact, the procedures provided adequate

or even conservative coverage in experiments.

These new procedures are far more efficient than existing ones, and make difficult

simulation problems tractable. One might fear that the time to estimate the maximum

of k means would be on the order of k times as long as the time to estimate a single

mean, and this is true for the standard procedure. Our multi-stage procedures using

screening with CRN improve speed greatly, even when the demand for precision is very

low. In examples with k = 64 and 256 systems, our procedures take not 64 or 256 times

as long to estimate the maximum mean than to estimate a single mean, but usually only

about twice as long or less, sometimes only a few percent longer. This makes simulation

of coherent risk measures based on generalized scenarios affordable, enabling better risk

management and innovative derivative security pricing techniques.
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CHAPTER 4

An Adaptive Procedure

A disadvantage of the procedures presented in Chapter 3 is that, in some cases, they

might require some previous knowledge about the problem to be efficient. For example,

having a large screening budget is usually good, as it allows the procedure to screen out

most of the inferior systems. However, it might significantly decrease efficiency if more

than one system has the maximum mean, or if some systems are nearly tied with the

best. In such situations, screening might not be able to eliminate all systems but one.

Even though the procedure with restarting is usually preferable over other alternatives,

if screening is ineffective, restarting is wasteful of data. Before running the simulation,

the user would have to decide whether or not to use restarting, and how much data to

allocate to the screening stage. Making a good decision without substantial experience

with simulation problems of the same form is difficult.

Without restarting, information generated during screening is reused during estima-

tion of the confidence interval, so the amount of work done during screening is not very

important. With restarting, information generated during screening is thrown away, so it

is important to make sure that no excess work is done during screening. The advantage of

restarting is that the new data are statistically independent of the screening exercise, so

one may ignore the measures which were screened out, and design for the smaller problem.
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In this chapter we develop an adaptive multi-stage procedure which combines good

features of both approaches. The procedure is very efficient for all configurations, as it

gains the benefits of restarting and of having a large budget to use for screening.

4.1. Adaptive Multi-stage Procedure

Our procedures produce a lower confidence limit that covers the coherent risk measure

with probability at least 1−αa, and an upper confidence limit that covers with probability

at least 1−αb. See Appendix B for a proof. The procedures spend some of this allowable

error on screening (αI), some on control variates (αC), and the remainder on estimating

the means of some systems. We use the control variate Ci for the output Xi of system i

to improve estimation of the mean µi of system i.

The adaptive multi-stage procedure consists of two phases. Phase I (“pre-screening”)

consists of multi-stage screening whose purpose is, while controlling relative cost, to screen

out as many inferior systems as possible, so that they do not contribute to the critical

values that determine the overall sample size for mean estimation. No samples obtained

during pre-screening are used during Phase II, which is an estimation procedure with

additional multi-stage screening.



62

4.1.1. Phase I: Pre-screening

The sole purpose of the first phase is to reduce the number of systems and thus the natural

bias of the estimation problem, making a fixed-width confidence interval attainable with

fewer replications.

The maximal number of Phase I stages, m, is specified in advance. The first stage of

Phase I is stage 0 and the first stage of Phase II is stage M , where the random variable

M ≤ m. The decision to proceed to Phase II is made randomly, on the basis of the

simulated data, when the cost of continuing and doing one more stage of Phase I is

greater than the estimated approximate savings due to further pre-screening. The growth

rate R and the initial sample size n0 are also specified in advance, so that the total sample

size during stage ` is N(`) = dn0R
`e.

The initial sample size n0 should be chosen so that sample averages are approximately

normal. In most cases, n0 = 30 is adequate. The procedure is most efficient if the growth

factor R is between 1.2 and 2.0, while m is such that the total budget available for pre-

screening is large. For example, if R = 1.5 and m = 30, the total budget available for

Phase I is dn0R
m−1e = 3, 835, 021, which is large enough for most applications. We found

that R = 1.5 and m = 30 worked well on all problems we consider. It was not possible to

improve on the performance much by altering the parameters, as it was for the procedures

presented in Chapter 3.

Let I be the set of systems that have not been screened out. Initially set I ←

{1, . . . , k}. Each stage ` = 0, . . . , m− 1 of Phase I consists of the following steps:
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(1) Simulation.

Simulate (Xij, Cij) for j = N(`− 1) + 1, . . . , N(`) and all i ∈ I.

(2) Screening.

For each h, i ∈ I such that h 6= i, set

¯̄Dhi ← 1

N(`)

N(`)∑
j=1

(Xhj −Xij),

S2
hi ← 1

N(`)− 1

N(`)∑
j=1

(Xhj −Xij − ¯̄Dhi)
2,

Whi ← tN(`)−1,1−αI/(2m(k−1))√
N(`)

Shi,

where tν,r is the r quantile of the t distribution with ν degrees of freedom.

Then set I ←
{

i ∈ I|∀h ∈ I, ¯̄Dhi ≥ −Whi

}
.

(3) Checking whether to proceed to Phase II.

For each i ∈ I, compute the residual variance σ̂2
i of regressing Xi,1, . . . , Xi,N(`) on

Ci,1, . . . , Ci,N(`) and define

(4.1) cp :=
1

L
(Φ−1(1− αa/p + αC) + Φ−1(1− αb + αI + αC)),

where Φ is the standard normal cumulative distribution function. If ` = m − 1

or

(4.2) |I|N(`)(R− 1) > (c2
|I| − c2

1) max
i∈I

σ̂2
i ,
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the procedure jumps to Phase II by setting M ← ` + 1, which means that the

next stage is the first stage of Phase II, and by setting K ← |I|, which is the

number of systems left after pre-screening and which will be used for determining

final sample sizes. Otherwise, set ` ← ` + 1 and return to Step 1.

Under the transition rule given by Inequality (4.2), pre-screening stops after stage M−

1 when the cost of doing one more stage of pre-screening is greater than the approximate

maximal savings due to continuation, computed under the assumption that after addi-

tional pre-screening there will be only one system left and it will have the largest variance.

4.1.2. Phase II: Screening and Estimation

Phase II begins by restarting, that is, throwing out all the data obtained in Phase I. The

only effect of Phase I on Phase II is that Phase I determines the subset I of systems that

Phase II handles. Phase II contains three parts.

First, in the initial stage M , the procedure determines the required total sample

sizes Ni for each of the systems in I and the maximal necessary number P of subsequent

screening stages. Second, in stages M , . . . , M +P−1, the procedure does more screening.

It maintains two sets of systems: the set I contains systems that have survived screening

and from which the procedure has simulated as many samples as are required to construct

the fixed-width confidence interval, while the set Î contains systems that have survived

screening so far, but which still require more sampling. Finally, once the required sample
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size has been reached for all surviving systems, the procedure constructs a confidence

interval.

Because M is the first stage after restarting, the procedure discards dn0R
M−1e Phase I

samples. To compensate for the discarded samples and keep the growth rate constant,

during Phase II the procedure sets N(`) ← dn0R
`−1(R + 1)e, ` ≥ M . This makes the

total Phase II sample size grow at the rate R. It also makes the initial sample size of

Phase II be N(M) − N(M − 1) ' n0R
M , which is large enough to ensure high-quality

variance estimates.

Initialize Î ← I and then I ← ∅. Also initialize Ni ← N(M) for all i ∈ Î. Each

stage ` = M , . . . , M + P consists of the following steps, except that only stage M

contains Step 2, and Step 4 will not occur during stage M + P because Î will be empty

then:

(1) Simulation.

Simulate (Xij, Cij) for j = N(`− 1) + 1, . . . , min{Ni, N(`)} and all i ∈ Î.

Set n ← N(`)−N(M − 1).

(2) Setting final sample sizes.

If ` > M , skip this step.

Set α′′a ← αa/K − αC and α′′b ← αb − αI − αC , and set the scaling constant

(4.3) c ← 1

L
(tn−q−1,1−α′′a + tn−q−1,1−α′′b ),
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where q := maxi∈I qi and each qi is the number of control variates in Ci.

For each i ∈ Î, compute the residual variance σ̂2
i of regressing Xi,N(M−1)+1, . . . ,

Xi,N(M) on Ci,N(M−1)+1, . . . , Ci,N(M), and from it the total sample size

(4.4) Ni ← dc2σ̂2
i + χ2

qi,1−αC
e+ N(M − 1),

where χ2
ν,p is the p quantile of the chi-squared distribution with ν degrees of

freedom.

Set P ← dlogR maxi∈I(Ni/N(M))e.

(3) Updating I and Î.

Add to I systems that have reached their required sample sizes and remove them

from Î: set I ← I
⋃ {

i ∈ Î|Ni ≤ N(`)
}

and Î ← Î\I.

(4) Screening.

For each h, i ∈ Î such that h 6= i, set

¯̄Dhi ←
N(`)∑

j=N(M−1)+1

Xhj −Xij

n
,

S2
hi ←

N(`)∑

j=N(M−1)+1

(Xhj −Xij − ¯̄Dhi)
2

n− 1
,

Whi ← 1√
n

tn−1,1−αI/(2P (K−1))Shi.

Then set Î ←
{

i ∈ Î|∀h ∈ I, ¯̄Dhi ≥ −Whi

}
.
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(5) Continue or compute confidence interval.

If Î 6= ∅, set ` ← ` + 1 and return to Step 1.

Otherwise, for each i ∈ I, compute the estimate µ̂i from the regression of

Xi,N(M−1)+1, . . . , Xi,Ni
on Ci,N(M−1)+1, . . . , Ci,Ni

. Set

a ← 1

c
tN(M)−N(M−1)−q−1,1−α′′a and

b ← 1

c
tN(M)−N(M−1)−q−1,1−α′′b .

The confidence interval is

(max
i∈I

µ̂i − a, max
i∈I

µ̂i + b).

4.1.3. Efficiency of the Rule for Restarting

The adaptive procedure offers two significant improvements over our previous procedures.

First, we do not need to specify a screening budget in advance. Choosing the screening

budget too small or too big could have a very significant effect on the performance of our

previous procedures, in some configurations making a simulation dozens of times slower:

see Table 4.3 in Section 4.2. The adaptive procedure solves this problem by trying to

screen out a system in Phase II only until its required sample size is reached. In effect,

this allows the screening budget to be arbitrarily large, to vary by system, and to be

determined adaptively by the required sample size.
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Second, the adaptive procedure allows us to restart whatever the configuration of

the means µ1, . . . , µk may be. The effect of the decision whether or not to restart on

performance is much less severe: as we will show below, usually we do not expect to

save more than 40-80%. Restarting is usually beneficial because in a typical case there is

only one best system. Having an adaptive pre-screening phase identifying a good time to

restart allows us to achieve very good performance in a typical case, and reasonably good

performance in all other cases.

How big are the benefits of pre-screening in a typical case? To answer this question

let us first estimate the maximal possible savings due to restarting.

In the following analysis we make several simplifying assumptions. First, we assume

that the estimate of the residual variance σ̂2
i of system i is always approximately equal

to the true residual variance σ2
i . Second, we ignore the effect of the number of degrees

of freedom on the sample sizes for estimation. Third, we assume that the effort required

for screening out an inferior system is always the same, whether in Phase I, Phase II, or

in an alternative procedure without pre-screening and restarting (such as the multi-stage

procedure with early stopping in Chapter 3).

The total cost E of a simulation without pre-screening is the sum of the cost Es of

screening out inferior systems and the cost Ee of estimation of the surviving systems:

E = Es + Ee.
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The total cost Ẽ of a simulation with pre-screening is the sum of the pre-screening

cost Ẽp, the cost Ẽs of screening out inferior systems in Phase II, and the estimation cost

Ẽe of the surviving systems: Ẽ = Ẽp + Ẽs + Ẽe.

Under our assumptions, the sample size Ni in Equation (4.4) is approximately equal

to c2σ2
i . Without pre-screening, the constant c in Equation (4.3) is approximately equal to

ck defined in Equation (4.1), where k is the initial number of systems. With pre-screening,

c is approximately cK , where K is the number of systems remaining after pre-screening.

The smaller K, the bigger the benefit of pre-screening, because smaller cK leads to smaller

sample sizes for estimation.

We will assume that whether we simulate with pre-screening or not, the set I of the

surviving systems is the same. This is generally so when pre-screening is stopped before

the sample sizes for some systems exceed the sample sizes required for estimation, which

is exactly the case when pre-screening could be beneficial.

A simulation without pre-screening costs E = Es + c2
k

∑
i∈I σ2

i , and a simulation with

pre-screening costs Ẽ = Ẽp + Ẽs + c2
K

∑
i∈I σ2

i . The latter is minimized when c2
K is as

small as possible, which occurs when K = 1, i.e. there is only one system left after pre-

screening. Also, under the assumptions we use in this section, the screening cost Es is less

than the total of the pre-screening and screening costs Ẽp + Ẽs, so the maximal efficiency

improvement E/Ẽ is achieved when the pre-screening and screening costs are negligible

compared to estimation costs. This is a typical case in practice: pre-screening and screen-

ing are very fast compared to estimation, and they eliminate all but one system. Under
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Figure 4.1. Maximal Efficiency Improvement Due to Restarting with αa =
0.8α and αb = 0.2α

our assumptions, and if pre-screening and screening costs are negligible, the efficiency

improvement due to restarting (i.e. due to having a pre-screening phase) is

E

Ẽ
≈ c2

k

∑
i∈I σ2

i

c2
K

∑
i∈I σ2

i

=
c2
k

c2
K

≤ c2
k

c2
1

.

Figure 4.1 shows the maximal efficiency improvement c2
k/c

2
1 as a function of the initial

number of systems k. When the number of systems k is between 20 and 1000, the savings

in a typical case are 40-80% at 1 − α = 99% confidence and 60-140% at 1 − α = 95%

confidence.

Recall that the transition rule given by Inequality (4.2) chooses to restart when the

cost of doing one more stage of pre-screening is greater than the approximate maximal

savings due to continuation, computed under the assumption that after additional pre-

screening there will be only one system left and it will have the largest variance. A

typical case indeed has one clear best system, so the effort required for screening out
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inferior systems is relatively small, the approximate maximal savings are relatively large,

and pre-screening makes I a singleton.

How efficient is this transition rule in other situations? Let us consider a configura-

tion when there are several systems which are tied for the best, while other systems are

relatively easy to screen out. In this case we might worry that the cost of pre-screening

could get too high before the adaptive procedure proceeds to Phase II. Is our transition

rule still efficient?

Because now we are concerned that pre-screening may be too expensive, we assume

that pre-screening lasts a long time and eliminates all inferior systems: the set I(M) of

systems used in Phase II equals I, the set of systems that survive screening and reach their

required sample sizes, and the Phase II cost of screening Ẽs = 0. Again we assume that

I is the same whether we use pre-screening or not: here we assume it contains only the

systems that are tied. We now show how the transition rule in Inequality (4.2) provides a

bound on Ẽp−Es, the excess cost of pre-screening in the adaptive procedure over the cost

of screening in a procedure without restarting. The effort required to screen out inferior

systems is similar in either procedure, so Ẽp −Es ≈ KN(M − 1), the number of samples

from the K = |I| surviving systems that the adaptive procedure throws out by restarting.

Pre-screening stops after stage ` = M − 1, the first time that the cost

(R− 1)|I(`+1)|N(`) of the next stage exceeds (c2
|I(`+1)|− c2

1) maxi∈I(`+1) σ̂2
i (`). Under our

present assumption that the residual variance estimates are approximately correct, this
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yields the approximate upper bound

N(M − 2) ≤
(c2
|I(M−1)| − c2

1) maxi∈I(M−1) σ2
i

(R− 1)|I(M − 1)|

≤ (c2
K − c2

1) maxi∈I σ2
i

(R− 1)K

because I(M − 1) contains I(M) = I whose size is K, and c2
p defined in Equation (4.1)

increases in p at a rate that is less than linear. Thus

KN(M − 1) ≤ KRN(M − 2)

≤ R(c2
K − c2

1) maxi∈I σ2
i

R− 1
.

For R = 1.5, R/(R− 1) = 3, and the relative efficiency improvement is

E

Ẽ
=

Es + c2
k

∑
i∈I σ2

i

Ẽp + Ẽs + c2
K

∑
i∈I σ2

i

=
Es + c2

k

∑
i∈I σ2

i

Es + 3(c2
K − c2

1) maxi∈I σ2
i + c2

K

∑
i∈I σ2

i

≈ c2
k

∑
i∈I σ2

i

3(c2
K − c2

1) maxi∈I σ2
i + c2

K

∑
i∈I σ2

i

approximately, if the cost Es of screening is small. If the variances of the tied systems are

approximately equal, this simplifies to

Kc2
k

3(c2
K − c2

1) + Kc2
K

.
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Figure 4.2. Effect of Ties on Approximate Efficiency Improvement Due to
Restarting with αa = 0.8α and αb = 0.2α

For k = 256 and k = 64 the efficiency improvements as a function of the number K of

tied systems are shown in Figure 4.2. A value less than 1 represents a loss of efficiency.

We see that even when some systems are tied, restarting with our transition rule can still

produce substantial benefits. Even when all the systems are tied, the loss of efficiency is

very slight.

The transition rule we presented is heuristic and is one of many similar rules that

all work well. This rule is advantageous because of its simplicity and because it allows

us to reap most of the benefits of restarting, without causing significant inefficiencies

when restarting could be harmful. More efficient transition rules could be designed which

take into account not only the sample variances of the systems, but also their sample

means. However, such rules are complicated, and in most cases provide either small or no

savings. Because the benefits seem insufficient to justify the additional complexity, we do

not consider this approach here.
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4.2. Performance of the Adaptive Multi-stage Procedure

In this section we continue to use the basket put and options portfolio examples to

illustrate our procedure.

To test the adaptiveness of the procedure, in addition to the ordinary configuration

with one best system, we also consider configurations “2 best” (obtained by adding a

duplicate of the best system), “4 best” (by adding 3 duplicates), and “16 best” (by adding

15 duplicates), so that configuration “2 best” in the basket put example has 64 + 1 = 65

systems in total, while configuration “16 best” has 64 + 15 = 79 systems. This is not the

same as in Figure 4.2, where the total number k of systems remains constant while the

number K that are tied varies.

We split the 1 − α = 1% allowable error into components αa = 0.8% for the lower

confidence limit and αb = 0.2% for the upper confidence limit. The error allocated to

screening is αI = 0.04%, and when using control variates, αC = 0.002% is allocated to

controlling them. We choose initial sample size n0 and the maximal number m of Phase

I stages to be 30, and the growth factor R to be 1.5. We use CRN in all examples.

For ease of interpretation, we specify the fixed confidence interval width L as a per-

centage of a quantity which provides a natural scale for the example. For the options

portfolio example, this quantity is the portfolio’s standard deviation. For the basket put

example, this quantity is the true value, the largest mean.

We report efficiency as a speed improvement relative to the standard procedure, a

modification of the two-stage procedure of Chen and Dudewicz (1976), as explained in
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Table 4.1. Efficiency Relative to the Standard Procedure at 99% Confidence

Example
Config. Options Portfolio Basket Put

Precision
0.3% 1% 5% 0.3% 1% 5%

1 best 252 244 154 208 158 22
2 best 104 98 81 85 76 19
4 best 51 48 43 40 38 15
16 best 12 12 12 11 10 6.7

Chapter 3. That is, we report the ratio of the average number of samples required by the

standard procedure to the average number of samples required by the adaptive multi-stage

procedure. The results are summarized in Table 4.1. Recall that efficiency improvement

can be larger than the number of systems k, which is 64 for the ordinary configuration

of the basket put, and 256 for that of the options portfolio. The reason is that the

improvement depends not only on k, but also on the size of the best system’s standard

deviation relative to the standard deviations of other systems.

Table 4.2 shows how much work the procedure does relative to the work required

by the “clairvoyant” procedure, which knows in advance which systems are tied for the

best, and applies the standard procedure to only these systems in isolation. That is, the

clairvoyant procedure screens out all inferior systems by guessing right with no work.

Like the multi-stage procedure with restarting analyzed in Chapter 3, the adaptive

procedure is less than 10% more expensive than estimating a single mean in the “1 best”

configuration when a precise estimate is required. If there are ties the procedure first

tries to break them, but when this becomes too expensive, proceeds to estimation: this is
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Table 4.2. Sample Size Relative to the Clairvoyant Procedure at 99% Confidence

Example
Config. Options Portfolio Basket Put

Precision
0.3% 1% 5% 0.3% 1% 5%

1 best 1.0 1.1 1.7 1.1 1.4 10
2 best 1.2 1.2 1.5 1.2 1.3 5.4
4 best 1.1 1.2 1.3 1.2 1.2 3.2
16 best 1.1 1.1 1.1 1.1 1.1 1.7

its advantage over the multi-stage procedure with restarting. Table 4.2 demonstrates the

robustness of the adaptive procedure’s performance to configuration.

As we see from the last column of Table 4.2, in the configuration with no ties at 5%

precision the adaptive procedure looks relatively inefficient compared to the clairvoyant

procedure (10 times slower), but adding ties can make the adaptive procedure look more

favorable. This is because 5% is a low precision, so the final sample size is not very

large relative to the sample size required for screening. At 5% precision the clairvoyant

procedure has a big advantage in screening perfectly for free.

Table 4.3 shows the efficiency improvement of the adaptive procedure relative to the

most efficient procedure of Chapter 3: the multi-stage procedure with restarting. (In all

cases reported in Table 4.3, the multi-stage procedure with early stopping was somewhat

more expensive than the multi-stage procedure with restarting.) In some cases, the effi-

ciency is slightly less than 1, i.e. the adaptive procedure required slightly more samples

than the multi-stage procedure with restarting: the adaptive procedure does not always

pick the best possible time to restart, but it picks a good time.
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Table 4.3. Efficiency Relative to the Multi-Stage Procedure with Restarting
at 99% Confidence

Options Portfolio Basket Put
Configuration Number of screening stages m
and Precision 5 10 15 20 25 30 5 10 15 20 25 30

0.3% 1.0 1.0 1.0 1.0 1.0 1.0 41 2.8 1.0 1.0 1.0 1.0
1 best 1% 1.0 1.0 1.0 1.0 1.0 1.0 30 2.3 1.0 1.0 1.0 1.0

5% 1.0 1.0 1.0 1.0 1.0 1.0 4.7 1.0 0.9 0.9 1.0 1.0
0.3% 0.9 0.9 0.9 0.9 1.0 1.8 17 1.6 0.9 1.0 1.6 6.1

2 best 1% 0.9 0.9 0.9 1.0 2.0 10 16 1.5 1.0 1.8 7.8 54
5% 0.9 0.9 1.2 4.0 25 205 4.6 1.0 1.6 6.5 44 328

0.3% 0.9 0.9 0.9 0.9 1.0 1.8 8.3 1.3 0.9 1.0 1.5 5.8
4 best 1% 0.9 0.9 0.9 1.0 2.1 10 7.8 1.2 1.0 1.8 7.7 53

5% 0.9 0.9 1.2 4.1 27 197 3.4 1.1 2.0 10 68 509
0.3% 0.9 0.9 0.9 0.9 1.0 1.7 3.1 1.0 1.0 1.0 1.6 5.7

16 best 1% 0.9 0.9 1.0 1.1 2.0 9.2 3.0 1.1 1.1 1.8 7.7 52
5% 0.9 1.0 1.2 4.3 27 201 2.1 1.1 2.7 15 110 833

The efficiency of both of the procedures depends heavily on the actual configuration

of the means and the total screening budget of n0R
m−1 observations per system. We

tested these procedures with n0 = 30 and R = 1.5 while varying the maximal number of

stages available for screening from 5 to 30, so that the total budget available for screening

varied from 152 to 3, 835, 022 observations per system. We set R = 1.5, not R = 2 as in

Chapter 3, as this choice of the growth factor makes all procedures more efficient when

there are ties.

The results in Table 4.3 illustrate the danger for our previous multistage procedures

of choosing the budget for screening either too small or too large. What constitutes too

small or too large depends on the actual configuration, whereas the adaptive procedure

works well in all of them.
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4.2.1. Similar Systems Nearly Tied for the Best

When simulating a coherent risk measure with common random numbers, several highly

correlated systems may have nearly the largest mean. Such situations can occur when one

or several factors that are usually important in computation of a risk measure turn out to

be insignificant in a particular instance, or when parameters differ only slightly for some

systems. For example, an equity derivative may have very similar values in generalized

scenarios that differ only in interest rates. One might worry that simulation in this case

is expensive and relatively inefficient, similar to what we see in Table 4.1.

However, even if the variances of the systems are large, the variances of the differences

of the means of such systems will tend to be small. Unless some systems are identical,

which is easy to recognize when simulating with common random numbers and in which

case the duplicates should be taken out, small variances of the differences allow even very

small differences in performance to be quickly detected, and even slightly inferior systems

will be screened out relatively quickly.

For example, in the case of the basket put, the best system is the one that has pairwise

correlation of 0.75 between the assets. Table 4.4 shows the effect of adding a system that

has pairwise correlation of 0.74 between assets (configuration “2 similar”), adding 3 sys-

tems that have two out of three pairwise correlations of 0.74 and one pairwise correlation

of 0.75 (“4 similar”), and adding 15 similar systems that have pairwise correlations of 0.75,

0.74 and 0.73 in various combinations (“16 similar”). In the case of the options portfolio,

the best system (scenario) is the one that has the first and the fourth factors “up”, while
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the other two factors are unrestricted. We can add a similar system by assigning one

of the “up” events a probability of 9/(10
√

20) (in place of 1/
√

20 in the best system)

and the other a probability of 10/(9
√

20). (configuration “2 similar”). In configuration

“4 similar” we add two more systems by assigning one of the “up” events a probability

of 99/(100
√

20) and 98/(100
√

20), while in configuration “16 similar” we add 12 more

similar systems of this form.

From Table 4.4 we see that the increase in the average sample size due to adding

similar systems is usually small. It is also not very sensitive to the similarity parameter,

such as the pairwise correlation in the basket put example: in configuration “2 similar”

it stays roughly the same whether we use correlation of 0.73 or 0.7499. Even though the

two systems have almost exactly the same mean, the variance of the difference is so small

that it is easily detected with common random numbers. The correlation between the

best system and the similar system that we have added in configuration “2 similar” is

99.99% in the basket put example and 99.83% in the options portfolio example. Adding

more such systems does not increase the sample size by much, as correlation is so high

that the procedure will quickly screen out systems with smaller means. This increase is

mostly due to the larger number of systems that need to be screened out, while the total

sample size per system stays roughly the same.

This allows us to conclude that efficiency loss due to closeness of the best means should

not in general be significant in financial applications, and that in most cases we will have

a clear best.
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Table 4.4. Increase in Average Sample Size Due to Adding Systems Similar
to the Best at 99% Confidence

Example
Config. Options Portfolio Basket Put

Precision
0.3% 1% 5% 0.3% 1% 5%

2 similar < 1% < 1% < 1% < 1% < 1% 1%
4 similar < 1% < 1% 1% < 1% 2% 7%
16 similar < 1% < 1% 7% 1% 7% 28%
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CHAPTER 5

Robustness of the Adaptive Procedure

5.1. Robustness to Non-normality

Under normal-theory assumptions, our procedures are exact, i.e. they deliver at least

the nominal coverage probability. Although these assumptions are reasonable in many

situations, they are usually not precisely correct. Our screening procedures use sample

averages when the sample sizes are still small, and since the sample averages’ distributions

might be very far from normal, one might worry that screening errors might occur much

more often than if distributions were normal.

It is comforting to know that the screening procedures are protected by the use of very

conservative probability inequalities (such as the Bonferroni inequality) in their derivation.

Error is allocated to pairwise comparisons between all systems during maximal possible

number of stages, but many of these comparisons are never performed. Because of this,

we can expect screening to be very robust to non-normality. In fact, in most of our

experiments, all of which included 5,000 independent replications, screening errors never

occurred.

Our estimation procedure will typically require large sample sizes. As we become more

demanding, requiring a smaller confidence interval width or higher confidence, the final
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Table 5.1. Effect of Strike Price and Initial Sample Size n0 on Error Rates
at 90% Confidence and 5% Precision in Basket Put Example

Error Rate
Strike Price n0 Upper Lower Screening

(zero payoff probability) (5% nominal) (5% nominal) (1% nominal)
5 16% 4% 0%

K = 85 7 7% 2% 0%
(≈ 71%) 10 5% 1% 0%

30 7% 6% ¿ 1%
K = 65 50 5% 5% 0%
(≈ 92%) 100 4% 5% 0%

30 42% 7% 3%
K = 55 100 7% 5% 0%
(≈ 98%) 300 4% 5% 0%

sample size becomes larger, making normality of mean estimators more plausible. For this

reason moderate non-normality does not seem to be a problem for the final estimator.

However, if non-normality is extreme and the initial sample size is not adequate, the

sample sizes after Phase I might be too small and the estimates of the variances which are

used to compute final sample sizes could have a distribution that is far from (scaled) χ2.

Let us consider the basket put example (see Table 5.1). In the ordinary configuration

the strike price is 85 and the probability of a zero payoff is approximately 71%. If the

probability of a zero payoff is 98% and n0 is smaller than 200-300, estimates of the

variances are so poor that coverage is inadequate. When the probability of a zero payoff

is 92%, this can happen if n0 is smaller than 50-100. When non-normality is not so

extreme, such as in the case when the probability of a zero payoff is 90% or less, coverage

is adequate as long as n0 is larger than 10-20.
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Table 5.2. Effect of Initial Sample Size n0 on Error Rates at 90% Confidence
and 5% Precision in Options Portfolio Example

Error Rate
n0 Upper Lower Screening

(5% nominal) (5% nominal) (1% nominal)
5 4% 5% 0%
10 4% 5% 0%
30 4% 5% 0%

In the options portfolio example non-normality is not very significant, so the coverage

is adequate even when n0 is very small: see Table 5.2.

The coverage is also adequate when distributions are heavy-tailed. For example, if

in the basket put example logarithmic returns are not normal, but rather have the t

distribution with 3 degrees of freedom, the coverage is adequate: see Table 5.3.

For our experiments in this section we chose relatively low 5% precision and 90%

confidence. Because in this case the total sample sizes are smaller and therefore the

sample averages are less normal, this should represent the hardest test for our procedure.

5.2. Empirical Analysis of Rare Errors

In this section we analyze the event of probability at most 1 − αa − αb, in which the

confidence interval does not contain the true value. Because screening is so conservative

Table 5.3. Error Rates with Log-t Returns in Basket Put Example at 90%
Confidence and 5% Precision (n0=30)

Error Rate
Upper Lower Screening

(5% nominal) (5% nominal) (1% nominal)
4% 5% 0%
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and screening errors are so extremely rare, the error event consists primarily of estimation

errors.

In Table 5.4 we present the relative root mean squared distances from the true largest

mean to the nearest confidence limit: to the upper limit when the true value lies above the

confidence interval and to the lower limit when the true value lies below the confidence

interval, as a percentage of its width. These are conditional on the error event, i.e. they

are distances given that the true value is above or below the confidence interval:

1

L

√√√√E

[(
µk − (max

i∈I
µ̂i + b)

)2

| µk > max
i∈I

µ̂i + b

]

for the upper distance, and

1

L

√√√√E

[(
(max

i∈I
µ̂i − a)− µk

)2

| µk < max
i∈I

µ̂i − a

]

for the lower distance. If we were estimating the mean of just one system in isolation which

has the same mean and variance as the best system and which is normally distributed,

we would have relative root mean squared distance of approximately 17% for both the

upper and the lower confidence limits at 90% confidence:

0.17 ≈ 1

2z.95

√∫ ∞

z.95

(x− z.95)2
φ(x)

0.05
dx,
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Table 5.4. Root Mean Squared Distance from True Value to Confidence
Interval As Percentage of Its Width and Error Rates at 90% Confidence

Options Portfolio Basket Put
Precision Precision

0.3% 1% 5% 0.3% 1% 5%
n0 = 30

Upper Distance 17% 17% 18% 16% 16% 13%
Lower Distance 18% 18% 18% 18% 16% 14%

Upper Error (5% nominal) 4% 4% 4% 4% 4% 5%
Lower Error (5% nominal) 5% 5% 5% 5% 5% 1%

n0 = 10
Upper Distance 17% 16% 17% 900% 92% 91%
Lower Distance 17% 17% 17% 55% 64% 21%

Upper Error (5% nominal) 4% 4% 4% 4% 4% 6%
Lower Error (5% nominal) 5% 5% 5% 5% 5% 1%

where φ is the pdf and z.95 = Φ−1(0.95) is the 95%-quantile of the standard normal

distribution. Table 5.4 shows that when non-normality of sample averages is not extreme

the errors of the adaptive procedure on average are no more severe than the errors that

happen when estimating a mean of a normal population.

However, when non-normality is extreme and n0 has not been chosen adequately

large, the estimation errors can be much more severe. For example, when using n0 = 10

in the case of the basket put, we found that the coverage was adequate, but the root mean

square distance from the upper confidence limit was approximately equal to the confidence

interval width when using 1% precision, and it was about nine times that width when

using 0.3% precision. (Recall that the confidence interval width is proportional to the

precision.) Because non-coverage is a rare event, these large root mean squared distance

estimates are not very precise, even though we used more than 5,000 replications to
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Figure 5.1. Distances from upper confidence limit at 90% confidence and
1% precision as percentages of confidence interval width, for n0 = 30 and
n0 = 10.

estimate them. This indicates that when non-normality is extreme, the procedure might

significantly under- or overestimate the risk measure: see Figure 5.1, representing the

non-coverage events in a representative batch of 5,000 replications.

5.3. Conclusions

Unless non-normality is extreme and n0 is too small, the procedure is very robust: the

coverage is adequate, and even when the confidence interval does not contain the true

value, the errors are usually not severe. In extreme cases we have to make sure that n0

is large enough to get reliable variance estimates. Generally n0 = 30 should be sufficient,

but in some cases a preliminary assessment of normality of sample averages might be

necessary in order to pick an appropriate initial sample size. The problem could also be

fixed by importance sampling.
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APPENDIX A

Algorithms

In this appendix we specify the algorithms used in experiments. The algorithms are

implementations of the procedures developed in Chapters 3 and 4. All algorithms are

stated for the case where at most q control variates are used for any system, but this

includes the case q = 0 where control variates are not used.

The algorithms are constructed for clarity rather than efficiency. They do not address

computational issues such as how to update sample averages and variances, or the order

in which to do the screening comparisons so as to reduce the number that actually have

to be made.

A.1. The Standard Algorithm

This is a two-stage algorithm without screening. It is based on a procedure of Chen

and Dudewicz (1976), but with ordinary sample means instead of generalized sample

means, allowing for user-specified unequal error bounds associated with the lower and

upper confidence limits, and using control variates.

(1) USER INPUT:

The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds αa and αb in (0, 1/2).
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(2) ALGORITHM PARAMETERS:

Choose the number of stage-0 replications n0 > q + 2 and αC < min{αa/k, αb},

the error component devoted to control variates.

(3) STAGE 0 SIMULATION:

Simulate (Xij, Cij) for all i = 1, 2, . . . , k and j = 1, 2, . . . , n0.

(4) COMPUTE FINAL SAMPLE SIZES:

Set α′′a ← αa/k − αC , α′′b ← αb − αC , and the scaling constant

c ← 1

L

(
tn0−q−1,1−α′′a + tn0−q−1,1−α′′b

)
.

For each i = 1, 2, . . . , k, compute the residual variance τ̂ 2
i of regressing Xi1, Xi2, . . . , Xin0

on Ci1, Ci2, . . . , Cin0 , according to Appendix D, and from it the final sample size

Ni ← max
{
n0,

⌈
c2τ̂ 2

i + χ2
qi,1−αC

⌉}
.

(5) STAGE 1 SIMULATION:

Simulate (Xij, Cij) for all i = 1, 2, . . . , k and j = n0 + 1, n0 + 2, . . . , Ni.

(6) COMPUTE CONFIDENCE INTERVAL:

For each i = 1, . . . , k, compute the estimate µ̂i from the regression of Xi1, Xi2, . . . , XiNi

on Ci1, Ci2, . . . , CiNi
, according to Appendix D. Set

a ← 1

c
tn0−q−1,1−α′′a and b ← 1

c
tn0−q−1,1−α′′b ,
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and the confidence interval is [maxi=1,...,k µ̂i − a, maxi=1,...,k µ̂i + b].

A.2. A Two-Stage Algorithm with Screening

(1) USER INPUT:

The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds αa and αb in (0, 1/2).

(2) ALGORITHM PARAMETERS:

Choose the number of stage-0 replications n0 > q + 2, the error component

αI < αb devoted to screening, and αC < min{αa/k, αb}, the error component

devoted to control variates.

(3) STAGE 0 SIMULATION:

Simulate (Xij, Cij) for all i = 1, 2, . . . , k and j = 1, 2, . . . , n0.

For each h, i = 1, 2, . . . , k such that h 6= i, set

D̄hi ← 1

n0

n0∑
j=1

(Xhj −Xij),

S2
hi ← 1

n0 − 1

n0∑
j=1

(Xhj −Xij − D̄hi)
2, and

Whi ← tn0−1,1−αI/(k−1)
Shi√
n0

.

Set I ← {
h = 1, 2, . . . , k|∀i ∈ I(`), D̄hi ≥ −Whi

}
.
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(4) COMPUTE FINAL SAMPLE SIZES:

Set α′′a ← αa/k − αC , α′′b ← αb − αI − αC , and the scaling constant

c ← 1

L

(
tn0−q−1,1−α′′a + tn0−q−1,1−α′′b

)
,

where q := maxi∈I qi and qi is the number of control variates in Ci.

For each i ∈ I, compute the residual variance τ̂ 2
i of regressing Xi1, Xi2, . . . , Xi,n0

on Ci1, Ci2, . . . , Ci,n0 , according to Appendix D, and from it the final sample size

Ni ← max
{
n0,

⌈
c2τ̂ 2

i + χ2
qi,1−αC

⌉}
.

(5) FINAL STAGE SIMULATION:

Simulate (Xij, Cij) for all i ∈ I and j = n0 + 1, n0 + 2, . . . , Ni.

(6) COMPUTE CONFIDENCE INTERVAL:

For each i ∈ I, compute the estimate µ̂i from the regression of Xi1, Xi2, . . . , XiNi

on Ci1, Ci2, . . . , CiNi
, according to Appendix D. Set

a ← 1

c
tn0−q−1,1−α′′a and b ← 1

c
tn0−q−1,1−α′′b ,

and the confidence interval is [maxi∈I µ̂i − a, maxi∈I µ̂i + b].
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A.3. A Multi-Stage Algorithm with Early Stopping

(1) USER INPUT:

The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds αa and αb in (0, 1/2).

(2) ALGORITHM PARAMETERS: Choose

(a) the number of stage-0 replications n0 = N(0) > q + 2,

(b) the maximum number m of screening stages,

(c) the number `∗ ∈ {1, 2, . . . , m−1} of screening stages at which early stopping

is not allowed,

(d) the factor R > 1 by which the sample size grows at each screening stage,

(e) the error component αI < αb devoted to screening, and

(f) the error component αC < min{αa/k, αb − αI} devoted to control variates.

(3) INITIALIZATION:

Set ` ← 0, I(0) ← {1, 2, . . . , k}, and N(−1) ← 0.

(4) SCREENING STAGE SIMULATION:

Simulate (Xij, Cij) for all i ∈ I(`) and j = N(`− 1) + 1, N(`− 1) + 2, . . . , N(`).
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For each h, i ∈ I(`) such that h 6= i, set

¯̄Dhi ← 1

N(`)

N(`)∑
j=1

(Xhj −Xij),

S2
hi ← 1

N(`)− 1

N(`)∑
j=1

(Xhj −Xij − ¯̄Dhi)
2, and

Whi ← tN(`)−1,1−αI/(m(k−1))
Shi√
N(`)

.

Set I(` + 1) ←
{

h ∈ I(`)|∀i ∈ I(`), ¯̄Dhi ≥ −Whi

}
.

(5) PROCEED TO NEXT STAGE:

Increment ` ← ` + 1.

If ` ≤ `∗, or if ` < m and |I(`)| > 1, set N(`) ← dn0R
`e and return to Step 4.

Otherwise, set M ← `.

(6) COMPUTE FINAL SAMPLE SIZES:

Set α′′a ← αa/k − αC , α′′b ← αb − αI − αC , and the scaling constant

c ← 1

L

(
tN(`∗)−q−1,1−α′′a + tN(`∗)−q−1,1−α′′b

)
.

For each i ∈ I(M), compute the residual variance σ̂2
i of regressing Xi1, Xi2, . . .,

XiN(`∗) on Ci1, Ci2, . . ., CiN(`∗), according to Appendix D, and from it the final

sample size

Ni ← max
{
N(M − 1),

⌈
c2σ̂2

i + χ2
qi,1−αC

⌉}
.
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(7) FINAL STAGE SIMULATION:

Simulate (Xij, Cij) for all i ∈ I(M) and j = N(M − 1) + 1, . . . , Ni.

(8) COMPUTE CONFIDENCE INTERVAL:

For each i ∈ I(M), compute the estimate µ̂i from the regression of Xi1, Xi2, . . . , XiNi

on Ci1, Ci2, . . . , CiNi
, according to Appendix D. Set

a ← 1

c
tN(`∗)−q−1,1−α′′a and b ← 1

c
tN(`∗)−q−1,1−α′′b ,

and the confidence interval is [maxi∈I(M) µ̂i − a, maxi∈I(M) µ̂i + b].

A.4. A Multi-Stage Algorithm with Restarting

(1) USER INPUT:

The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds αa and αb in (0, 1/2).

(2) ALGORITHM PARAMETERS: Choose

(a) the number of stage-0 replications n0 = N(0) > q + 2,

(b) the maximum number m of screening stages,

(c) the factor R > 1 by which the sample size grows at each screening stage,

(d) the error component αI < αb devoted to screening,

(e) the error component αC < min{αa/k, αb − αI} devoted to control variates,

and
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(f) the prediction confidence level 0 < ε < 1/2 for use in choosing the number

of replications in the first stage of the restarted procedure.

(3) INITIALIZATION:

Set ` ← 0, I(0) ← {1, 2, . . . , k}, and N(−1) ← 0.

(4) SCREENING STAGE SIMULATION:

Simulate (Xij, Cij) for all i ∈ I(`) and j = N(`− 1) + 1, N(`− 1) + 2, . . . , N(`).

For each h, i ∈ I(`) such that h 6= i, set

¯̄Dhi ← 1

N(`)

N(`)∑
j=1

(Xhj −Xij),

S2
hi ← 1

N(`)− 1

N(`)∑
j=1

(Xhj −Xij − ¯̄Dhi)
2, and

Whi ← tN(`)−1,1−αI/(m(k−1))
Shi√
N(`)

.

Set I(` + 1) ←
{

h ∈ I(`)|∀i ∈ I(`), ¯̄Dhi ≥ −Whi

}
.

(5) PROCEED TO NEXT STAGE:

Increment ` ← ` + 1.

If ` < m and |I(`)| > 1, set N(`) ← dn0R
`e and return to Step 4.

Otherwise, set M ← `.

(6) FIRST STAGE OF MEAN ESTIMATION:

Set α′′a ← αa/|I(M)| − αC and α′′b ← αb − αI − αC .

For each i ∈ I(M), compute the residual variance τ̂ 2
i of regressing Xi1, Xi2, . . . , XiN(M−1)
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on Ci1, Ci2, . . . , CiN(M−1), according to Appendix D, and set

ni ← max

{
q + 3,

⌈(
Φ−1(1− α′′a) + Φ−1(1− α′′b )

L

)2
(N(M − 1)− 1)τ̂ 2

i

χ2
N(M−1)−1,1−ε

+ χ2
qi,1−αC

⌉}
.

Set n ← mini∈I(M) ni and the scaling constant

c ← 1

L

(
tn−q−1,1−α′′a + tn−q−1,1−α′′b

)
.

Simulate (Xij, Cij) for all i ∈ I(M) and j = N(M − 1) + 1, . . . , N(M − 1) + ni.

For each i ∈ I(M), compute the residual variance σ̂2
i of regressing Xi,N(M−1)+1,

Xi,N(M−1)+2, . . ., Xi,N(M−1)+ni
on Ci,N(M−1)+1, Ci,N(M−1)+2, . . ., Ci,N(M−1)+ni

, ac-

cording to Appendix D, and set the final sample size

Ni ← max
{
ni,

⌈
c2σ̂2

i + χ2
qi,1−αC

⌉}
.

(7) SECOND STAGE OF MEAN ESTIMATION:

Simulate (Xij, Cij) for all i ∈ I(M) and j = N(M−1)+ni+1, . . . , N(M−1)+Ni.

(8) COMPUTE CONFIDENCE INTERVAL:

For each i ∈ I(M), compute the estimate µ̂i from the regression of Xi,N(M−1)+1,

Xi,N(M−1)+2, . . ., Xi,N(M−1)+Ni
on Ci,N(M−1)+1, Ci,N(M−1)+2,. . ., Ci,N(M−1)+Ni

, ac-

cording to Appendix D. Set

a ← 1

c
tn−q−1,1−α′′a and b ← 1

c
tn−q−1,1−α′′b ,
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and the confidence interval is [maxi∈I(M) µ̂i − a, maxi∈I(M) µ̂i + b].

A.5. An Adaptive Multi-Stage Algorithm

This algorithm implements the adaptive multi-stage procedure presented in Chapter 4.

(1) USER INPUT:

The user specifies the fixed confidence interval width L and the lower and upper

error bounds αa and αb.

(2) ALGORITHM PARAMETERS: Choose

(a) the number of stage-0 replications n0 = N(0),

(b) the maximum number m of pre-screening stages,

(c) the factor R by which the sample size grows at each stage,

(d) the error component αI < αb devoted to screening,

(e) the error component αC < min{αa/k, αb − αI} devoted to the dispersion of

the control variates’ sample average from its mean.

(3) INITIALIZATION:

Set ` ← 0, M ← m, P ← m, K ← k, Q ← 0, Î ← {1, . . . , k}, N(−1) ← 0, and

Ni ← dn0R
me, i ∈ Î.

(4) SIMULATION:

Simulate (Xij, Cij) for j = N(`− 1) + 1, . . . , min {Ni, N(`)} for all i ∈ Î.

Set F ← N(`)−Q.
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(5) SETTING FINAL SAMPLE SIZES:

If ` 6= M , skip this step.

Set α′′a ← αa/K − αC and α′′b ← αb − αI − αC , and set the scaling constant

c ← 1
L

(
tF−q−1,1−α′′a + tF−q−1,1−α′′b

)
, where q := maxi∈I qi and qi is the number of

control variates in Ci.

For each i ∈ Î, compute the residual variance σ̂2
i of regressing Xi,N(M−1)+1, . . . , Xi,N(M)

on Ci,N(M−1)+1, . . . , Ci,N(M), and from it the sample size

Ni ← dc2σ̂2
i + χ2

qi,1−αC
e+ N(M − 1).

Set P ← dlogR maxi∈Î(Ni/N(M))e.

(6) UPDATING I AND Î:

If ` ≤ M , skip this step.

Set I ← I
⋃ {

i ∈ Î|Ni < N(`)
}

and Î ← Î\I.

(7) SCREENING:

For each h, i ∈ Î such that h 6= i,

• Set ¯̄Dhi ←
∑N(`)

j=Q+1(Xhj −Xij)/(N(`)−Q).

• Set S2
hi ←

∑N(`)
j=Q+1(Xhj −Xij − ¯̄Dhi)

2/(F − 1).

• Set Whi ← tF−1,1−αI/(2(K−1)P )Shi/
√

N(`)−Q.

Set Î ←
{

i ∈ Î|∀h ∈ Î , ¯̄Dhi ≥ −Whi

}
.
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(8) CHECKING WHETHER TO PROCEED TO PHASE II:

If ` ≥ M , skip this step.

For each i ∈ Î, compute the residual variance σ̂2
i of regressing Xi,1, . . . , Xi,N(`) on

Ci,1, . . . , Ci,N(`) and define

cp :=
1

L
(Φ−1(1− αa/p− αC) + Φ−1(1− αb − αI − αC)).

If ` = m− 1 or

|Î|N(`)(R− 1) > (c2
|Î| − c2

1) max
i∈Î

σ̂2
i ,

then set M ← ` + 1, Q ← N(M − 1), K ← |Î|, and I ← ∅.

(9) CONTINUE OR COMPUTE CONFIDENCE INTERVAL:

If Î 6= ∅ :

• Increment ` ← ` + 1.

• Set N(`) ← dn0R
`e if ` < M , or N(`) ← dn0R

`−1(1 + R)e if ` ≥ M.

• Return to step (4).

Otherwise, for each i ∈ I, compute the estimate µ̂i from the regression of

Xi,Q+1, . . . , Xi,Ni
on Ci,Q+1, . . . , Ci,Ni

. Set

a ← 1

c
tF−q−1,1−α′′a and b ← 1

c
tF−q−1,1−α′′b ,

and the confidence interval is (maxi∈I µ̂i − a, maxi∈I µ̂i + b).
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APPENDIX B

Proofs

B.1. Validity of the Basic Procedures with Screening

We present a proof for the two-stage algorithm. A generalization shows that the error

bounds (2.2) and (2.3) hold for the multi-stage algorithm too.

B.1.1. Lower Confidence Limit

The basis for bounding

p := Pr

[
µ[k] ≥ max

i∈I
X̄i − a

]
≥ 1− α

is the motivating observation that maxi∈I X̄i ≤ maxi=1,...,k X̄i. Even for a system j /∈ I,

i.e. which has been screened out, X̄j is defined on the probability space, although we do

not simulate it. So we have

p ≥ Pr

[
µ[k] ≥ max

i=1,...,k
X̄i − a

]

= Pr
[∀i = 1, . . . , k, X̄i ≤ µ[k] + a

]

≥ Pr
[∀i = 1, . . . , k, X̄i ≤ µi + a

]
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because µi ≤ µ[k]. Using independence,

p ≥
k∏

i=1

Pr
[
X̄i ≤ µi + a

]
=

k∏
i=1

Pr

[
X̄i − µi

Si/
√

Ni

≤ a
√

Ni

Si

]
.

From (2.4) and (2.5), a = bF−1
ν ((1 − α)1/k)/F−1

ν (1 − β1), while from (2.6), b
√

Ni/Si ≥

F−1
ν (1− β1). Therefore a

√
Ni/Si ≥ F−1

ν ((1− α)1/k) so

p ≥
k∏

i=1

Fν

(
F−1

ν ((1− α)1/k)
)

= 1− α.

B.1.2. Upper Confidence Limit

The probability of interest is

q := Pr

[
µ[k] ≤ max

i∈I
X̄i + b

]

≥ Pr
[
µ[k] ≤ X̄[k] + b, [k] ∈ I

]

= Pr
[
µ[k] ≤ X̄[k] + b,

∀j 6= k X̄[k] ≥ X̄[j] −W[k],[j]

]
.(B.1)

Define

Zk :=
X̄[k] − µ[k]

σ[k]/
√

N[k]

and for j 6= k,

Zj :=
(X̄[k] − X̄[j])− (µ[k] − µ[j])√

(σ2
[k] + σ2

[j])/n0

.
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The probability (B.1) can be rewritten as Pr[∩k
i=1Ei] where the event Ek is that −Zk ≤

b
√

N[k]/σ[k] and for j 6= k, the event Ej is that−Zj ≤ (W[k],[j]+µ[k]−µ[j])/
√

(σ2
[k] + σ2

[j])/n0.

Now we need to condition on the first-stage sample variances, because they appear

in the event Ej for j 6= k through W[k],[j], and also determine the sample sizes N[k],

which is present in Ek. Let F represent the information in (S2
1 , . . . , S

2
k). The conditional

distribution of each Zi is normal with mean 0. Their joint conditional distribution is

such that each Cov[Zi, Zj|F ] > 0. By Slepian’s inequality (Hochberg and Tamhane 1987,

Thm. A2.2.1),

Pr[∩k
i=1Ei|F ] ≥ Pr[Ek|F ]

∏

j 6=k

Pr[Ej|F ].

Taking expectations,

Pr[∩k
i=1Ei] ≥ E

[
Pr[Ek|F ]

∏

j 6=k

Pr[Ej|F ]

]

≥ Pr[Ek]
∏

j 6=k

Pr[Ej]

where the second line follows from Kimball’s inequality (Hochberg and Tamhane 1987,

Thm. A2.2.6).

The appendix of Nelson et al. (2001) shows that the product over j 6= k is greater

than or equal to 1− β0. This relates to the probability of correct screening:

Pr[[k] ∈ I] ≥
∏

j 6=k

Pr[Ej] ≥ 1− β0.



105

The first factor

Pr[Ek] = Pr

[
− X̄[k] − µ[k]

σ[k]/
√

N[k]

≤ b
√

N[k]

σ[k]

]

= Pr
[
µ[k] ≤ X̄[k] + b

]

= Pr

[
− X̄[k] − µ[k]

S[k]/
√

N[k]

≤ b
√

N[k]

S[k]

]
,

and by (2.6), b
√

N[k]/S[k] ≥ F−1
ν (1−β1), so this probability is at least Fν (F−1

ν (1− β1)) =

1− β1. This relates to the probability of coverage without screening:

Pr

[
µ[k] ≤ max

i=1,...,k
X̄i + b

]
≥ Pr

[
µ[k] ≤ X̄[k] + b

]

= Pr[Ek] ≥ 1− β1.

Putting all the pieces together, and using 1− β = (1− β0)(1− β1), we conclude that

(2.3) holds.

B.2. Validity of the Procedures with CRN, CV and Dynamic Stopping

The proofs rely on Proposition 3.1.1. We show that Inequalities (3.5) and (3.9) hold.

Proposition B.2.1. If for each i = 1, 2, . . . , k, the observations Xi1, Xi2, . . . are in-

dependent and identically distributed (i.i.d.) normal random variables, then the standard

procedure (Algorithm A.1) without control variates makes Inequalities (3.1) and (3.2) hold.
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Proof. This procedure has no screening, so αI = 0, I = {1, 2, . . . , k}, and Inequal-

ity (3.5) holds trivially.

Let Ga and Gb be the cumulative distribution function Ftn0−1 of the t distribution with

n0 − 1 degrees of freedom. Because the error probability bounds α′a and α′b are both in

(0, 1/2), while Ftn0−1(0) = 1/2 and limx→∞ Ftn0−1(x) = 1, Ga(0) < 1−α′a < limx→∞ Ga(x)

and Gb(0) < 1− α′b < limx→∞ Gb(x).

In the absence of control variates, µ̂i =
∑Ni

j=1 Xij/Ni. The distribution of (µ̂i −

µi)/(Si/
√

Ni) is t with n0−1 degrees of freedom (Hochberg and Tamhane, 1987, Thm. 2.1).

By Equation (14), cSi/
√

Ni ≤ 1. Thus, for x ≥ 0,

Pr {µ̂i − µi ≤ x} ≥ Pr

{
µ̂i − µi ≤ xcSi√

Ni

}
= Pr

{
µ̂i − µi

Si/
√

Ni

≤ xc

}
= Ftn0−1(xc).

Similar reasoning provides the other half of Inequality (3.9). ¤

When we employ control variates, the terminal sample size in our procedures is of the

form

Ni = max{n0, dc2τ̂ 2 + χ2
q,1−αC

e}.

However, this formula is a convenient approximation for the exact required sample size

min
n≥n0

{
n :

(
n− q

q

) ( n

c2τ̂ 2
− 1

)
≥ F1−αC ,q,n−q

}
,
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where F1−αC ,q,n−q is the 1 − αC quantile of the F distribution with (q, n − q) degrees of

freedom (Nelson and Staum, 2006). Although the proofs that follow refer to algorithms

incorporating the approximation, they depend on having the exact required sample size.

Proposition B.2.2. If for each i = 1, 2, . . . , k, Xij = µi +(Cij−ξi)
′βi +ηij, where the

residuals {ηij, j = 1, 2, . . .} and controls {Cij, j = 1, 2, . . .} are independent sets of i.i.d.

normal random variables, βi is an unknown constant vector, E[Ci1] = ξi, and E[ηi1] = 0,

then the standard procedure (Algorithm A.1) and the two-stage procedure with screening

(Algorithm A.2) make Inequalities (3.1) and (3.2) hold.

Proof. Inequality (3.9) follows from Prop. 4 of Nelson and Staum (2006), using

Ga(x) = Gb(x) = Ftn0−q−1(x)− αC , where q is the number of controls.

The error probability bounds α′a and α′b are both in (0, 1/2), while αC < min{α′a, α′b}.

From Ga(0) = Gb(0) = 1/2− αC and limx→∞ Ga(x) = limx→∞ Gb(x) = 1− αC , it follows

that Ga(0) < 1− α′a < limx→∞ Ga(x) and Gb(0) < 1− α′b < limx→∞ Gb(x).

If there is no screening (Algorithm A.1), Inequality (3.5) holds trivially. If there

is screening (Algorithm A.2), Inequality (3.5) follows from reasoning along the lines of

the appendix of Nelson et al. (2001b): first, by construction of I, the probability of

correct screening Pr{[k] ∈ I} = Pr{∀i = 1, 2, . . . , k, D̄[k]i ≥ −W[k]i}. Next, define

σ2
hi := Var[Xh−Xi] and Zi := (D̄[k]i− (µ[k]− µi))/(σ[k]i/

√
n0), which is standard normal.
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By symmetry of the standard normal distribution,

Pr{[k] ∈ I} = Pr

{
∀i = 1, . . . , k, Zi ≤

W[k]i + (µ[k] − µi)

σ[k]i/
√

n0

}

≥ Pr

{
∀i = 1, . . . , k, Zi ≤ tn0−1,1−αI/(k−1)

S[k]i

σ[k]i

}
,

by definition of W[k]i and using µ[k] − µi ≥ 0. Applying the Bonferroni inequality, the

probability of correct screening is at least

1−
k∑

i=1

Pr

{
Zi > tn0−1,1−αI/(k−1)

S[k]i

σ[k]i

}
.

The term for i = [k] is zero because Z[k] = 0, while the other k − 1 terms are αI/(k − 1)

because Zi and (n0−1)(S[k]i/σ[k]i)
2 are independent and their distributions are respectively

standard normal and chi-squared with n0 − 1 degrees of freedom. Consequently, Pr[[k] ∈

I] ≥ 1− αI . ¤

Proposition B.2.3. If for each i = 1, 2, . . . , k, Xij = µi +(Cij−ξi)
′βi +ηij, where the

residuals {ηij, j = 1, 2, . . .} and controls {Cij, j = 1, 2, . . .} are independent sets of i.i.d.

normal random variables, βi is an unknown constant vector, E[Ci1] = ξi, and E[ηi1] = 0,

then the multi-stage procedure with early stopping (Algorithm A.3) makes Inequalities (3.1)

and (3.2) hold.
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Proof. Inequality (3.5) follows from a screening error decomposition via the Bonfer-

roni inequality:

Pr {[k] /∈ I(m)} ≤
m−1∑

`=0

∑

i6=[k]

Pr
{
X̄[k](`) < X̄i(`)−W[k]i(`)

} ≤
m−1∑

`=0

∑

i 6=[k]

αI

m(k − 1)
= αI .

The univariate inference Pr
{
X̄[k](`) < X̄i(`)−W[k]i(`)

} ≤ αI/(m(k − 1)) is the same as

in the proof of Prop. B.2.2 because the sample sizes N(`) are constants.

Inequality (3.9) holds with Ga(x) = Gb(x) = FtN(`∗)−q−1
(x)− αC by Prop. 4 of Nelson

and Staum (2006), which applies because there is a residual variance estimator (called σ̂2
i

here and τ̂ 2
i (n0) there) formed from a regression using an initial sample of a fixed number

of observations (called N(`∗) here and n0 there), and the final sample size Ni is set in the

same way as a function of the residual variance estimator. ¤

Proposition B.2.4. If for each i = 1, 2, . . . , k, Xij = µi +(Cij−ξi)
′βi +ηij, where the

residuals {ηij, j = 1, 2, . . .} and controls {Cij, j = 1, 2, . . .} are independent sets of i.i.d.

normal random variables, βi is an unknown constant vector, E[Ci1] = ξi, and E[ηi1] = 0,

then the multi-stage procedure with restarting (Algorithm A.4) makes Inequalities (3.1)

and (3.2) hold.

Proof. Steps 6–8 of Algorithm A.4 are simply the standard algorithm (Algorithm A.1)

applied with unequal initial sample sizes ni and a set I(M) of systems both of which are de-

termined by Steps 1–5 of Algorithm A.4. We can view this as a randomly generated simu-

lation problem, where restarting makes the random variates used in Steps 6–8 independent
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of the mechanism in Steps 1–5 that randomly generates the problem. We compensate for

the unequal sample sizes by using n := mini∈I(M) ni in setting the degrees of freedom while

computing the scaling constant c. Decreasing the degrees of freedom increases the final

sample size and thus also increases the probability that the confidence interval contains

the largest mean µ[k]. Applying Prop. 4 of Nelson and Staum (2006) to the randomly gen-

erated problem shows that Inequality (3.9) holds with Ga(x) = Gb(x) = Ftn−q−1(x)− αC

for each i ∈ I(M). Because there is no screening in Steps 6–8, I = I(M) and Prop. 3.1.1

implies

Pr

{
max
i∈I

µi ≥ max
i∈I

µ̂i − a

}
≥ 1− αa and Pr

{
max
i∈I

µi ≤ max
i∈I

µ̂i + b

}
≥ 1− αb + αI .

The reason that the upper bound for the probability of a violation of the upper confidence

limit is αb − αI is that Step 6 of Algorithm A.4 sets α′′b ← αb − αI − αC while the

corresponding Step 4 of Algorithm A.1 sets α′′b ← αb − αC because no screening takes

place in the standard algorithm.

Consider the lower confidence limit and notice that µ[k] := maxi=1,2,...,k µi ≥ maxi∈I µi,

whatever the subset I ⊆ {1, 2, . . . , k} generated by Steps 1–5 of Algorithm A.4 may be.

Consequently,

Pr

{
µ[k] ≥ max

i∈I
µ̂i − a

}
≥ Pr

{
max
i∈I

µi ≥ max
i∈I

µ̂i − a

}
≥ 1− αa,
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which verifies Inequality (3.1). Next consider the upper confidence limit and notice that

if [k] ∈ I, then µ[k] = maxi∈I µi. Consequently,

Pr

{
µ[k] ≤ max

i∈I
µ̂i + b

}
≥ Pr

{
[k] ∈ I, µ[k] ≤ max

i∈I
µ̂i + b

}

= Pr

{
[k] ∈ I, max

i∈I
µi ≤ max

i∈I
µ̂i + b

}

≥ 1− Pr{[k] /∈ I} − Pr

{
max
i∈I

µi > max
i∈I

µ̂i + b

}
.

From the result of Prop. 3.1, we found Pr {maxi∈I µi > maxi∈I µ̂i + b} ≤ αb−αI . Because

Steps 3–5 of Algorithms A.3 and A.4, which perform screening, are the same, the proof

of Prop. B.2.3 applies here and shows that Inequality (3.5) holds: Pr{[k] /∈ I} ≤ αI .

The result is Pr
{
µ[k] ≤ maxi∈I µ̂i + b

} ≥ 1 − αI − (αb − αI) = 1 − αb, which verifies

Inequality (3.2). ¤

B.3. Validity of the Adaptive Procedure

Proposition B.3.1. If for each i = 1, 2, . . . , k, Xij = µi +(Cij−ξi)
′βi +ηij, where the

residuals {ηij, j = 1, 2, . . .} and controls {Cij, j = 1, 2, . . .} are independent sets of i.i.d.

normal random variables, βi is an unknown constant vector, E[Ci1] = ξi, and E[ηi1] = 0,

then the adaptive multi-stage procedure makes Inequalities (3.1) and (3.2) hold.

Proof. While I is the set of systems that survives screening after Phase II and [k] is

the best system, let I(M) be the set of systems that survives screening in Phase I, and let
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[k]M be the best system in I(M). We decompose the screening error αI in the following

way: allocate αI/2 to Phase I and αI/2 to Phase II.

Phase I has at most m stages and there are at most k systems during any stage, so

there are at most m(k − 1) comparisons with system [k] during screening in Phase I.

Therefore during Phase I we use screening thresholds

Whi(`) =
Shi(`)tN(`)−1,1−αI/(2m(k−1))√

N(`)

at stage ` for differences of sample averages of observations generated during stages 1 to

`. Phase II has at most P screening stages and there are at most K systems during any

stage, so there are at most P (K − 1) comparisons with system [k]M during screening.

Therefore during Phase II we use thresholds

Whi(`) =
Shi(`)tN(`)−N(M−1)−1,1−αI/(2P (K−1))√

N(`)−N(M − 1)

at stage ` for differences of sample averages generated during stages M to `. By the

Bonferroni inequality, Pr[[k] /∈ I(M)] ≤ αI/2 and Pr[[k]M /∈ I] ≤ αI/2.

Applying Prop. 4 of Nelson and Staum (2006) to the randomly generated problem of

estimating the value of the best system in I(M) shows that Inequality (3.9) holds with

Ga(x) = Gb(x) = FtN(M)−N(M−1)−q−1
(x) − αC for each i ∈ I(M). Proposition 3.1.1 then
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implies that

Pr

{
max

i∈I(M)
µi ≥ max

i∈I
µ̂i − a

}
≥ 1−αa and Pr

{
max

i∈I(M)
µi ≤ max

i∈I
µ̂i + b

}
≥ 1−αb+αI/2.

Consider the lower confidence limit and notice that µ[k] = maxi=1,2,...,k µi ≥ maxi∈I(M) µi,

whatever the subset I(M) ⊆ {1, 2, . . . , k} generated after Phase I may be. Consequently,

Pr

{
µ[k] ≥ max

i∈I
µ̂i − a

}
≥ Pr

{
max

i∈I(M)
µi ≥ max

i∈I
µ̂i − a

}
≥ 1− αa,

which verifies Inequality (3.1). Next consider the upper confidence limit and notice that

if [k] ∈ I(M), then µ[k] = maxi∈I(M) µi. Consequently,

Pr

{
µ[k] ≤ max

i∈I
µ̂i + b

}
≥ Pr

{
[k] ∈ I(M), µ[k] ≤ max

i∈I
µ̂i + b

}

= Pr

{
[k] ∈ I(M), max

i∈I(M)
µi ≤ max

i∈I
µ̂i + b

}

≥ 1− Pr{[k] /∈ I(M)} − Pr

{
max

i∈I(M)
µi > max

i∈I
µ̂i + b

}

≥ 1− αI/2− (αb − αI/2) = 1− αb,

which verifies Inequality (3.2).

¤
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APPENDIX C

Variants

This appendix contains remarks about possible variants of the procedures discussed

in the text.

C.1. Common Random Numbers

C.1.1. Grouping

Common random numbers are intended to induce positive correlation between systems,

reducing the variances of the differences of their sample means, and thus facilitating

screening. However, common random numbers may instead induce negative correlation

between some pairs of systems, which inflates the variance of the difference of their sample

means. If this were known in advance, it would be possible to divide the systems into

groups such that no group contains a pair of systems with negative correlation under

common random numbers. Then one would give each group its own set of common random

numbers, independent of those belonging to all other groups. This approach ensures

that all systems have nonnegative correlation, so that common random numbers cannot

hurt screening. Moreover, this approach delivers a multiplicative error decomposition, as

explained in Section C.3.1. However, we found that this was not helpful for the examples

we considered. To screen out an inferior system i quickly requires that there be some
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superior system h such that the expectation of the difference X̄h−X̄i is large relative to its

standard deviation. We found that typically a system has negative correlation only with a

few of the superior systems, not all of them, and that the negative correlations are small in

magnitude. Consequently, negative correlations have a very small effect on screening. The

multiplicative error decomposition discussed in Section C.3.1 also has only a very small

effect on simulation efficiency. Thus, grouping systems to avoid negative correlation has

only very slight benefits. These benefits are less important than the drawback that some

pairs of systems with positive correlation are split between different groups, because one

member of the pair has negative correlation with a third system, and thus the benefits of

common random numbers for this pair are lost. In conclusion, we recommend not dividing

systems into groups that are simulated independently.

C.2. Multi-stage Procedures without CRN

The sample size during screening should be the same for all systems when using

CRN. Suppose instead that screening featured comparisons of averages over samples of

unequal size,
∑nh

j=1 Xhj/nh and
∑ni

j=1 Xij/ni, where nh < ni. The variance of the difference

between these averages is σ2
i /ni − 2σ2

hi/ni + σ2
h/nh, where σ2

hi = Cov(Xhj, Xij). Using

only nh replications to form both sample averages, Var[
∑nh

j=1(Xij − Xhj)/nh] = (σ2
i −

2σ2
hi + σ2

h)/nh. The change in variance due to using the extra replications Xij for j =

nh + 1, nh + 2, . . . , ni is (1/ni − 1/nh)(σ
2
i − 2σ2

hi) = (1/nh − 1/ni)(2ρhiσh − σi)σi, where

ρhi is the correlation that common random numbers induce between Xh and Xi. When
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ρhi > σi/(2σh), this change is positive, meaning that the inclusion of extra replications of

Xi actually increases the variance of the difference used in screening, making screening less

effective. Thus, when common random numbers are effective in inducing high correlation,

the use of unequal sample sizes during screening is a mistake.

In the absence of common random numbers, it would be possible to allow different

systems to have different sample sizes during screening, and to replace sample variances

of differences S2
hi with sums of sample variances S2

h and S2
i . In Chapter 2 we describe

a scheme for choosing different sample sizes during screening. However, the presence of

unequal sample sizes in screening complicates matters. The screening threshold

Whi = tn0−1,1−αI/(m(k−1))

√
S2

h

Nh(`)
+

S2
i

Ni(`)

in Chapter 2 can only be proved to deliver Pr{[k] /∈ I} ≤ 2αI : see the appendix of Nelson

et al. (2001b). However, Pr{[k] /∈ I} ≤ αI holds in limiting cases and held reliably in

extensive simulation experiments (Nelson et al., 2001a). This issue does not affect our

procedures with common random numbers.

C.3. Error Spending

C.3.1. Multiplicative Decomposition

In Chapter 2, we used a multiplicative decomposition 1− αb = (1− αI)(1− α′b). This is

frequently possible in settings such as Inequality (3.4); see also Wilson (2001). However,
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we found that multiplicative decomposition provided negligible efficiency gains over addi-

tive decomposition. Furthermore, in the presence of common random numbers, discussed

in Section 4.3, it is easier to establish coverage bounds given an additive decomposition.

In the case of independent sampling of the Xi, or by means of Slepian’s inequality

(Hochberg and Tamhane, 1987, Thm. A2.2.1) in the case when common random numbers

induce nonnegative correlation among all systems (Corr[Xi, Xj] ≥ 0 for all i, j), one may

use a multiplicative decomposition in Inequality (3.7) instead of an additive decomposi-

tion. That is, instead of αa/k in Inequality (3.8), we would have 1 − (1 − αa)
1/k. The

result is a reduction in the required sample sizes to attain the fixed confidence interval

width, but we found that this effect was negligible in practice.

C.3.2. Unequal Allocations

In Inequality (3.7), we could allocate error unequally across systems as long as the in-

dividual error probabilities sum to αa. If we could guess in advance some information

about the systems, we might allocate less error to those systems that are more likely to

be screened out or have lower variances.

When systems are simulated independently, it is possible to give unequal allocations of

error in constructing the various thresholds Whi(`). While it would require good advance

guesses about the problem’s structure to motivate unequal allocations across systems, the

m screening stages are different because some come before others, and the earlier ones

have higher variances associated with the sample averages. Therefore, it might make sense
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to allocate more error to earlier stages so as to screen out systems more quickly at first,

but we do not explore this possibility here.
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APPENDIX D

Control Variate Estimators

This appendix provides definitions and notation for our use of control variates; it

is based on Nelson and Staum (2006). We assume that Xij, the jth output from the

simulation of system i, can be represented as

Xij = µi + (Cij − ξi)
′βi + ηij.

For each system i = 1, 2, . . . , k and any sample size n, {ηij, j = 1, 2, . . . , n} are i.i.d.

N (0, τ 2
i ) random variables. The qi × 1 vector Cij is called the control variate; for fixed

i and j = 1, 2, . . . , n the control variates are also i.i.d., are independent of ηij, and have

known expected value ξi. The multiplier βi is a qi × 1 vector of unknown constants that

captures the relationship between the output Xij and the control Cij, while ηij represents

that part of the variability in Xij that is not explained by the controls. We define the CV

estimator; the development is based on Nelson (1990).
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Let

Xi(n) =




Xi1

Xi2

...

Xin




and Ci(n) =




Ci1

Ci2

...

Cin




be vectors of the output and controls across all n replications from system i. Define

the sample mean of the outputs and controls as X̄i(n) :=
∑n

j=1 Xij/n and C̄i(n) :=

∑n
j=1 Cij/n. In this appendix, for clarity we append “(n)” to represent quantities defined

across n replications.

To define the CV point estimator, let

L′i(n) :=
[
(Ci1 − C̄i(n)), (Ci2 − C̄i(n)), . . . , (Cin − C̄i(n))

]
.

Then the CV estimator of µi is

µ̂i(n) =

[
1

n
1′n×1 −

(
C̄i(n)− ξi

)′
(L′i(n)Li(n))

−1
L′i(n)

]
Xi(n)

= X̄i(n)− (
C̄i(n)− ξi

)′
β̂i,

where 1n×1 is a column n-vector whose entries all equal one, and β̂i, defined by the equa-

tions immediately above, is the usual least-squares regression slope coefficient (Nelson,
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1990). Also define

τ̂ 2
i (n) :=

1

n− qi − 1

n∑
j=1

[
Xij − µ̂i(n)− (Cij − ξi)

′β̂i(n)
]2

as the residual variance estimator.

It is shown in Nelson and Staum (2006) that if the assumptions made in this ap-

pendix hold and Cij has a multivariate normal distribution, then µ̂i(Ni) − µi satisfies

Inequality (10) with Ga(x) = Gb(x) = Ftn0−q−1(x)− αC .


