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ABSTRACT

What Do Algebras Form?

Ann Rebecca Wei

Algebras and their bimodules form a 2-category in which 2-morphisms are certain zero-

th Hochschild cohomology groups. When we derive this structure (i.e., use Hochschild

cochains instead of HH0 for 2-morphisms), we find that algebras form a category in dg

cocategories. The Hochschild-Kostant-Rosenberg theorem and non-commutative calculus

give a rich algebraic structure on Hochschild cohomology along with Hochschild homology.

When incorporating the structure on Hochschild homology, we find that algebras form a

2-category with a trace functor. Deriving this again, we conclude that algebras form a

category in dg cocategories with a trace functor up to homotopy.
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Nomenclature

k − a fixed ground field of char 0

k −mods− the category of modules over k

1− the unit in (a vector space isomorphic to) k

[1]− shift operator on complexes, C•[1] = C•+1

Λ− Connes cyclic category, see Appendix A

∆(b) =
∑
(b)

b(1) ⊗ b(2) − Sweedler notation for coproducts

fBg −B as an A-C-bimodule with left structure given by

the map of algebras f : A→ B and right structure

given by the map of algebras g : C → B

fB :=f BidB
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CHAPTER 1

Introduction
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What do algebras (over a fixed field k of characteristic zero) form? A straight-forward

answer is that they form a 2-category as follows:

Objects: k-algebras A,B, . . .

1-Morphisms: bimodules AMB

1-Composition: AMB ⊗B BNC

2-Morphisms: morphisms of bimodules.

When we restrict the above 1-morphisms to only those bimodules that come from maps

of algebras (i.e., bimodules AMB where AMB =f(A) BB =:f B for some map of algebras

f : A → B), then 2-morphisms have an additional structure, namely they are certain

zero-th Hochschild cohomology groups:

{morphisms of bimodules fB →g B}
1:1↔ ZA(gBf ) ∼= HH0(A, gBf )

M 7→M(1)

(Mb : b′ 7→ b · b′)←p b
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In summary, we have the following 2-category C:

Objects: k-algebras A,B, . . .

1-Morphisms: bimodules fB, f : A→ B map of algebras

1-Composition: fB ⊗B gC, A
f−→ B

g−→ C

2-Morphisms: HH0(A, fBg) ∼= ZA(fBg)

(1.1)

The question naturally arises: what happens if we use Hochschild cohomology or

cochains instead of just HH0 for 2-morphisms? The answer is that algebras form a

category, C, in dg categories as follows:

Objects: k-algebras A,B, . . .

Morphisms: dg cocategory Bar(Hoch(A,B)

Composition: • : Bar(Hoch(A,B))⊗Bar(Hoch(B,C))→ Bar(Hoch(A,C))

associative map of dg cocategories

(1.2)

In Chapter 2, we spell out the details of C. Bar(Hoch(A,B)) is a cofree dg cocategory

that uses Hochschild cochains as morphisms. The composition, •, uses the brace operator

on Hochschild cochains (Reference [6], Equation 4.8). The fact that • is associative follows

from References [3], [4], [5].

Thus far, we have used Hochschild cochains to show that algebras form a category in

dg cocategories. Non-commutative calculus tells us that the pair, (Hochschild cochains

C•(A,A), Hochschild chains C−•(A,A)), is a Calc∞-algebra (Reference [1], Corollary 4).

In other words, Hochschild cochains is a Gerstenhaber∞-algebra and acts on Hochschild
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chains up to homotopy via (1) an analogue of the Lie derivative, and (2) an analogue of

the contraction of a form against a vector field.

Taking advantage of this Calc∞ structure, we incorporate HH0 and find that algebras

form a 2-category with a trace functor (Chapter 3). In Section 3.2, we give the definition

of a trace functor on a 2-category à la Kaledin, and describe a trace functor on C (the

2-category given in Equation 1.1) that uses the action of HH0 on HH0.

Again, we ask: can we derive this structure? Can we use Hochschild homology or

chains instead of HH0 to get a trace functor on C (the category given in Equation 1.2)?

We give the definition of a trace functor on a category in dg cocategories in Section 3.3,

but continue massaging the definition in Chapter 4 to make precise the notion of a trace

functor “up to homotopy”. Ultimately, we settle on the following language: on C′, a

category in dg cocategories, a trace functor gives a dg functor χ(C′) → D where χ(C′)

and D are dg categories introduced in Section 4.2. Then, a trace functor up to homotopy

on C′ is an A∞-functor χ(C′)→ D.

Finally, in Chapter 5, we give an A∞-functor χ(C′) → D for C the category given in

Equation 1.2. In Chapter 6, we apply a Cobar(−) functor to everything to get a category

in dg categories with a trace functor up to homotopy. We do this in hopes of constructing

something like a category in categories or an E2 object. However, our understanding of

all of the structures that appear after applying Cobar(−) is still evolving.

In Appendix A, we give the presentation of Connes cyclic category Λ used throughout

the thesis. In Appendix B, we give some background on Hochschild chains and cochains as

well as their contraction operator ι and a “Lie derivative like” operator λ(−). We reserve

all lengthy computations for Appendix C, where we also establish our computing notation.
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In Appendix D, we give details on pulling back dg comodules over dg cocategories as well

as the adjunction used in Chapter 6 and a note on conilpotence.
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CHAPTER 2

A category in dg cocategories



16

2.1. Motivation of this chapter

In this chapter, we show that algebras form a category in dg cocategories. As stated

in the introduction, we will construct such a category with

Objects: k-algebras A,B, . . .

Morphisms: dg cocategory Bar(Hoch(A,B)

Composition: • : Bar(Hoch(A,B))⊗Bar(Hoch(B,C))→ Bar(Hoch(A,C))

associative map of dg cocategories.

First, we define the dg cocategories Bar(Hoch(A,B) using Hochschild cochains as mor-

phisms, then we define the composition • using the brace operator on Hochschild cochains.
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2.2. Dg cocategories Bar(Hoch(A,B))

Let A, B be k-algebras. We define a dg category, Hoch(A,B), as follows:

Objects: algebra maps f : A→ B

Morphisms: Hoch(A)(f, g) = (C•(A, fBg), fδg)

Composition: cup product on cochains.

(See Appendix B for notation and standard operations on Hochschild complexes.) The

cup product is an associative map of complexes, so Hoch(A,B) is a dg category.

Now, we will take Bar(−) of Hoch(A,B), which is a categorified bar construction:

Bar : DGCat→ DGCocat.

Bar(Hoch(A,B)) has the same objects as Hoch(A,B). A morphism in Bar(Hoch(A,B))

from object f0 to object fn is a sequence of composable morphisms in Hoch(A,B) starting

at f0 and ending at fn. We can picture such a morphism as follows:

(φ1 . . . φn) = A

f0

⇓φ1

��

f1

⇓φ2 %%
f2

...

44

fn−1

⇓φn

DD

fn

HH
B

Figure 2.1. A morphism in Bar(Hoch(A,B))(f0, fn)
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where φi ∈ C•(A,fi−1
Bfi). As a complex,

Bar(Hoch(A,B))•(f, g) =

= k[0]︸︷︷︸
counit

⊕
⊕
n≥0,

fi∈Obj(Hoch(A,B))

Hoch(A,B)•[1](f,f1)⊗Hoch(A,B)•[1](f1,f2)⊗···⊗Hoch(A,B)•[1](fn,g)

dBar(Hoch(A,B)) = d̃Hoch(A,B) + d∪

d̃Hoch(A,B) = extension of dHoch(A,B) to a differential on Bar

d∪ = signed sum over composing (cup-producting) two consecutive φi’s

with cocomposition

∆(φ1 . . . φn) =
∑

0≤i≤n

±(φ1 . . . φi)⊗ (φi+1 . . . φn).

For more precise details and explicit signs, see Reference [6], Section 4.6.
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2.3. Associative Composition •

Now, we define an associative composition of dg cocategories

Bar(Hoch(A,B))⊗Bar(Hoch(B,C))→ Bar(Hoch(A,C))

where A,B,C are k-algebras. To define the composition, we use the fact that

Bar(Hoch(A,C)) is the cofree dg cocategory over Hoch(A,C). In other words,

Bar(Hoch(A,C)) satisfies the following universal property:

B //

&&

Hoch(A,C)

Bar(Hoch(A,C))

OO
OO

Figure 2.2. Universal Property of Bar

where B is any dg cocategory, the horizontal map is a map of underlying structure

(i.e., an association on objects and maps of complexes of morphisms), and the diagonal

lift arrow is a map of dg cocategories. For us, B = Bar(Hoch(A,B))⊗Bar(Hoch(B,C)).

We will define a map of underlying structure Bar(Hoch(A,B)) ⊗ Bar(Hoch(B,C)) →

Hoch(A,C), which will lift to the map of dg cocategories

• : Bar(Hoch(A,B))⊗Bar(Hoch(B,C))→ Bar(Hoch(A,C)).
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The map on underlying structure is defined as follows:

Bar(Hoch(A,B))⊗Bar(Hoch(B,C))→ Hoch(A,C)

On objects: f ⊗ g 7→ g ◦ f

On morphisms: A

f0∈Obj(Bar(Hoch(A,B)))

⇓φ1

��

f1

⇓φ2 !!

f2

...

66

fn−1

⇓φn

GG

fn∈Obj(Bar(Hoch(A,B)))

JJ
B

g0∈Obj(Bar(Hoch(B,C)))

⇓ψ
!!

g1∈Obj(Bar(Hoch(B,C)))

>>
C 7→ A

g0f0∈Obj(Hoch(A,C))

ψ{φ1,...,φn}
⇓

""

g1fn∈Obj(Hoch(A,C))

>>
C

A

f0

⇓φ

&&

fn

88
B

g0

⇓1∈k

''

g1

77
C 7→ A

g0f0

⇓φ

&&

g1fn

88
C

A

f0

⇓1∈k

&&

fn

88
B

g0

⇓ψ

''

g1

77
C 7→ A

g0f0

⇓ψ

&&

g1fn

88
C

All other non-pictured pairings of a morphism from Bar(Hoch(A,B)) and a morphism

from Bar(Hoch(B,C)) map to zero. The brace operation is given in Reference [6], Equa-

tion 4.8, and the fact that it is associative follows from References [3], [4], [5].
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CHAPTER 3

A 2-category with a trace functor
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3.1. Motivation of this chapter

In this chapter, we give a trace functor on C, the 2-category introduced in Equation

1.1. This trace functor enriches the categorical structure on algebras by incorporating the

action on Hochschild cohomology (HH0) on Hochschild homology (HH0). We start with

Kaledin’s definition of a trace functor on a 2-category.

In preparation of the following chapters, we generalize Kaledin’s definition to a trace

functor on a category in dg cocategories in Section .
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3.2. A trace on C

Definition 3.2.1. (Kaledin): A trace functor on a 2-category C is:

• for each A ∈ Obj(C), a functor TRA : C(A,A)→ k −mod

• for each pair A,B ∈ Obj(C), a natural transformation τ!(A,B):

C(A,B)⊗ C(B,A)
τ=flip

//

m

��

C(B,A)⊗ C(A,B)

m

��

C(A,A)

TRA ((

⇒
τ!(A,B) C(B,B)

TRBvv

k −mod

such that, for A,B,C ∈ Obj(C),

τ!(B,A) ◦ τ!(C,B) ◦ τ!(A,C) = id.

C(C,A)⊗ C(A,C)⊗ C(B,C)
τ

**
⇐

τ!(B,A)

TRC◦m2

��

C(A,B)⊗ C(B,C)⊗ C(C,A)

τ
44

⇒
τ!(A,C)

TRA◦m2
++

C(B,C)⊗ C(C,A)⊗ C(A,B)

τ
pp

⇒
τ!(C,B)

TRB◦m2
ss

k −mod

Now, we will give a trace functor on the 2-category, C, define in Equation 1.1. Let

A ∈ Obj(C) be an algebra and f : A→ A a map of algebras. Then, we set

TRA(fA) :=
A

[A,f A]
=

A

(f(a) · a′ − a′ · a)
.
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And for morphisms,

C(A,A)(f, g)⊗ A

[A,g A]
∼= ZA(fAg)⊗

A

[A,g A]
→ A

[A,f A]

b⊗ a 7→ b · a

is a well-defined map on k-modules. For algebra maps f, f ′ : A� B : g, g′, we define the

natural transformation τ!(A,B) as follows:

fB ⊗
B
gA/[A,f B ⊗

B
gA]

τ!(A,B)(f,g)
//

��

gA⊗
A
fB/[B,g A⊗

A
fB]

��

[b⊗ a] � //
_

(b′·,a′·)
��

[a⊗ b]
_

(a′·,b′·)
��

[b′ · b⊗ a′ · a] � // [a′ · a⊗ b′ · b]

f ′B ⊗
B
g′A/[A,f ′ B ⊗

B
g′A]

τ!(A,B)(f ′,g′)

//
g′A⊗

A
f ′B/[B,g′ A⊗

A
f ′B]

where b′ ∈ ZA(f ′Bf ), a
′ ∈ ZB(g′Ag), a ∈ A, b ∈ B. Clearly, this flip map τ! satisfies

Equation 3.1.
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3.3. Redefining the trace functor

In this section, we generalize Kaledin’s definition of a trace functor on a 2-category to

a trace functor on dg cocategories. First, we transform the definition from the language

from functors and natural transformations to the language of modules.

Definition 3.3.1. Let C be a k-linear category. A left module over C is a k-linear

functor C→ k −mods.

Given the definition above, we can rewrite the definition of a trace functor on a 2-

category in the language of modules.

Definition 3.3.2. (Kaledin, reformulated): Let C be a category in k-linear categories.

A trace functor on C is:

• for each A ∈ Obj(C), a left module T (A) over C(A,A)

• for each pair A,B ∈ Obj(C), a map of modules over C(A,B)⊗ C(B,A)

τ!(A,B) : m∗ABAT (A)→ τ ∗m∗BABT (B)

where mABA is the composition functor mABA : C(A,B)⊗ C(B,A)→ C(A,A), τ

is a flip functor, and pulling back along a functor means pre-composition.

• for A,B,C ∈ Obj(C),

τ ∗2τ!(B,A) ◦ τ ∗τ!(C,B) ◦ τ!(A,C) = id.
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Now, we will translate from modules to dg comodules. Reversing the arrows in Def-

inition 3.3.1, we have the following definition for a dg comodule over a category in dg

cocategories.

Definition 3.3.3. Let C be a dg cocategory. A dg comodule over C is: for each

f ∈ Obj(C), a complex T •(f) and map of complexes

∆f : T •(f)→
∏

g∈Obj(C)

C•(f, g)⊗ T •(g)

such that the following two maps coincide (coassociativity):

T •(f)

∆(f)

��∏
g∈Obj(C)

C•(f, g)⊗ T •(g)

id⊗∆(g)

��

∆C(⊗id

��∏
g,g′∈Obj(C)

C•(f, g)⊗ C•(g, g′)⊗ T •(g′)

and the following diagram commutes (counitality):

T •(f)
∆(f)
//

id

%%

∏
g∈Obj(C)

C•(f, g)⊗ T •(g)

εC⊗id

��

T •(f).

Finally, we can rewrite Definition 3.3.2 in terms of dg comodules.
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Definition 3.3.4. Let C be a category in dg cocategories. A trace functor on C is:

• for each A ∈ Obj(C), a dg comodule T (A) over C(A,A)

• for each pair A,B ∈ Obj(C), a map of dg comodules over C(A,B)⊗ C(B,A)

τ!(A,B) : m∗ABAT (A)→ τ ∗m∗BABT (B)

where mABA is the composition functor mABA : C(A,B) ⊗ C(B,A) → C(A,A),

τ is a flip functor. We can take any definition for the pullback that is a natural

and satisifies

F ∗G∗ = (GF )∗.

• for A,B,C ∈ Obj(C),

(3.1) τ ∗2τ!(B,A) ◦ τ ∗τ!(C,B) ◦ τ!(A,C) = id.
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CHAPTER 4

Interlude
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4.1. Motivation of this chapter

The purpose of this chapter is to show that a trace functor T on a category C in

dg cocategories gives a dg functor FT : χ(C) → D where χ(C) and D are dg categories

introduced in Defintions 4.2.1 and 4.2.2, respectively. We switch from the trace functor

T to the dg functor FT so that we can make precise the notion of a “trace functor up to

homotopy”. Namely, a trace functor on C up to homotopy is an A∞-functor from χ(C)

to D (see Definition 4.2.3). In the next chapter, we give such an A∞-functor for C being

the category given in Equation 1.2.
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4.2. From a trace functor to a dg functor

We begin this section by defining two dg categories.

Definition 4.2.1. Let C be a category in dg cocategories. Let χ(C) be the dg category

with

• Objects = {A0 → · · · → An → A0 : Ai ∈ Obj(C), n ≥ 0}

• Morphisms = {linear combinations of compositions of

rotations τn : A 7→ (An → A0 → · · · → An)

coboundaries δj,n : A 7→ (A0 → · · · → Aj → Aj+2 (modn+1) → · · · → A0)

codegeneracies: σi,n : A 7→ (A0 → · · · → Ai → Ai → · · · → A0)

where A := (A0 → · · · → An → A0), subject to the cyclic relations in Appendix

}[0]

Definition 4.2.2. Let D be the dg category with

• Objects = {(dg cocategory
B

, dg comodule
C

)}

• Morphisms:

Dp
(
(B1, C1), (B0, C0)

)
:=

 F : B1 → B0 dg functor,

F! : C1 → F ∗C0 degree-p linear map


dD(F, F!) = (F, [d, F!] = dF ∗C0 ◦ F! ± F! ◦ dC1)

• Composition: (G,G!) ◦
D

(F, F!) = (GF,F ∗G! ◦ F!)
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Composition in D will be well-defined and associative for any choice of a natural

pullback that satisfies

(4.1) F ∗G∗ ∼= (GF )∗.

For consistency, we will choose the same pullback of dg comodules for Definitions 3.3.4

and 4.2.2. (See Appendix D for an explicit description of the pullback we’ve chosen for

dg comodules over the endomorphism dg cocategories given in Equation 1.2.)

Now, let C be a category in dg cocategories and T be a trace functor on C (Definition

3.3.4). We will show that T gives a dg functor FT : χ(C)→ D. On objects,

(A0 → · · · → An → A0)︸ ︷︷ ︸
∈Obj(χ(C))

7→
FT


C(A0, A1)⊗ · · · ⊗ C(An, A0) dg cocategory,

m∗nT (A0) dg comodule where

mn : C(A0, A1)⊗ · · · ⊗ C(An, A0)→ C(A0, A0)


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On generating morphisms in χ(C),

δj,n 7→
FT


δ̂j,n := composition functor over (j + 1)th factor

· · · ⊗ C(Aj, Aj+1)⊗ C(Aj+1, Aj+2)⊗ . . . δ̂j,n=m−−−−→ · · · ⊗ C(Aj, Aj+2)⊗ . . . ,

m∗nT (A0)
δj,n!:=id−−−−−→ δ̂∗j,nm

∗n−1T (A0) ∼= (mn−1δ̂j,n)∗T (A0) ∼= m∗nT (A0)



σi,n 7→
FT


σ̂i,n := insert idAi and 1 ∈ k into the ith slot

· · · ⊗ C(Ai, Ai+1)⊗ . . . σ̂i,n−−→ · · · ⊗ C(Ai, Ai)⊗ C(Ai, Ai+1)⊗ . . . ,

m∗nT (A0)
σi,n!:=id−−−−−→ σ̂∗i,nm

∗n+1T (A0) ∼= (mn+1σ̂i,n)∗T (A0) ∼= m∗nT (A0)



τn 7→
FT



τ̂n := rotate factors

C(A0, A1)⊗ · · · ⊗ C(An, A0)
τ̂n−→ C(An, A0)⊗ · · · ⊗ C(An−1, An),

m∗nT (A0)
τn!:=m

∗n−1τ!(A0,An)−−−−−−−−−−−−→ τ̂ ∗nm
∗nT (An) where

mn−1 :
(
C(A0, A1)⊗ · · · ⊗ C(An−1, An)

)
⊗ C(An, A0)→ C(A0, An)⊗ C(An, A0)



(4.2)

To show that this association on generating morphisms gives a functor, we should check

that FT preserves the cyclic relations in Equation A.2. All of the relations involving δ’s and

σ’s are straightforward to check and follow from (1) the associativity of the composition

functor m in C, and (2) the general fact that f ◦ id = id ◦ f = f for a map f . The

remaining relation, τn+1
n = id, is preserved:

• for n = 2 because this is Equation 3.1 from the definition of a trace functor,

• for n > 2 because these are pullbacks of Equation 3.1,

• and for n = 1 because this follows from Equation 3.1 with B = C and the fact

that σ1,1! is an identity map on comodules.
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FT is dg because δj,n! := id, σi,n! := id and τn! := m∗n−1τ! commute with the differentials.

Now, we are ready to define a “trace functor up to homotopy”.

Definition 4.2.3. Let C be a category in dg cocategories. A trace functor up to

homotopy on C is an A∞-functor

F : χ(C)→ D

where χ(C) and D are dg categories defined in Defintions 4.2.1 and 4.2.2, respectively,

(and we use the notation and conventions from Reference [2], Appendix A, Definition A.8

for the definition of an A∞-functor,) satisfying

• F(A0 → A0) ∼=

 C(A0, A0),

T (A0) any dg comodule over C(A0, A0)


• for n > 0,

F(A0 → · · · → An → A0) ∼=


C(A0, A1)⊗ · · · ⊗ C(An, A0),

m∗nT (A0) where

mn : C(A0, A1)⊗ · · · ⊗ C(An, A0)→ C(A0, A0)


• for λ = δj,n, σi,n, F(λ) ∼= FT (λ) given in Equation 4.2

• F(τ1) ∼=


τ̂1 := rotate factors

C(A0, A1)⊗ C(A1, A0)
τ̂1−→ C(A1, A0)⊗ C(A0, A1),

T (A0)
τ1!−→ τ̂ ∗1T (A1) any map of dg comodules


• for n > 1, F(τn) ∼= FT (τn) given in Equation 4.2.
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There are many stipulations in the definition above because not every functor χ(C)→

D comes from a trace functor. However, an dg functor satsifying Definition 4.2.3 does

come from a trace functor.
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CHAPTER 5

A trace functor up to homotopy
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5.1. Motivation of this chapter

In this chapter, we give a trace functor up to homotopy on the category C defined in

Equation 1.2. To do so, we give an A∞-functor F : χ(C) → D satisfying certain require-

ments (see Definition 4.2.3). Applying the definition of an A∞-functor (from Reference

[2], Appendix A, Definition A.8), the only choices we need to make to define F are:

(1) for each algebra A, a dg comodule T (A) over C(A,A),

(2) for a functor of dg cocategories F : C1 → C0 and a dg comodule T0 over C0, a

definition of a pullback F ∗T0 that is natural in T0 and satisfies Equation 4.1,

(3) for each pair of algebras A,B, a map of dg comodules over C(A,B)⊗ C(B,A)

τ1!(A,B) : T (A)→ τ̂ ∗1T (B)

where τ̂1 : C(A,B)⊗ C(B,A)→ C(B,A)⊗ C(A,B) is rotation,

(4) for each non-generating morphism µ ∈ χ(C), a map of dg comodules F(µ) ∈ D,

(5) for each pair of morphisms µ1, µ2 ∈ χ(C), a degree-1 map of comodules F(µ1, µ2) ∈

D,

(6) for each sequence of morphisms µ1, . . . , µn ∈ χ(C) where n > 2, a degree-(n-1)

map of comodules F(µ1, . . . , µn) ∈ D.

In Section 5.2, we define item (1), the dg comodule T (A), which is a (categorified) bar

construction of the module C•(A,A) over the algebra C•(A,A) acting via contraction. In

Appendix D, we give item (2) as well as compute some examples of pullbacks for later use.

In Proposition C.1, we define item (3) by adapting known equations for the Lie derivative

of a Hochschild cochain against a chain. In Section 5.3.1, we give a prescription for defining



37

item (4). We see that F respects composition except for a few cases (Section 5.4), and we

give a prescription for defining the few non-zero F(µ1, µ2)’s in item (5) (Section 5.3.2).

Finally, for item (6), we set F(µ1, . . . , µn) = (zero map on comodules) for all composable

mu1, . . . , µn, n > 2: this is the claim that we have no higher homotopies, justified in

Section 5.5.
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5.2. Dg comodules T (A)

Let A be an algebra and Hoch(A,A) be the dg category defined in Section 2.2. First,

we will define a dg module, T (A) over Hoch(A,A):

T (A)•(f) :=
(
C−•(A,f A), b

)
Hoch(A,A)•(f, g)⊗ T (A)•(g) ∼= C•(A,f Ag)⊗ C−•(A,g A)

ι−→ C−•(A,f A) ∼= T (A)•(f)

where f : A → A is a map of algebras, (C−•(A,f A), b) is the Hochschild chain complex

(see Appendix B) and ι is the contraction operation from Equation B.1.

Now, let B(A) := C(A,A) = Bar(Hoch(A,A)) be the endomorphism dg cocategory

defined in Section 2.2. Then, we set T (A) := Barmod(Hoch(A,A), T (A)), a dg comodule

over B(A). Barmod is a functor

Barmod : {dg modules over Hoch(A,A)} → {dg comodules over B(A)}.

More explicitly,

T (A)•(f) :=

:=
⊕
n≥0,

fi∈Obj(Hoch(A,A))
f0=f

Hoch(A,A)•[1](f0, f1)⊗ · · · ⊗Hoch(A,A)•[1](fn−1, fn)⊗ T •(fn)

=
⊕
n≥0,

fi:A→A
f0=f

C•(A,f0 Af1)[1]⊗ · · · ⊗ C•(A,fn−1 Afn)[1]⊗ C−•(A,fn A).

We can picture an element of T (A)•(f) as follows:
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(φ1 . . . φn|α) = A

f0

⇓φ1

��

f1

⇓φ2

��f2

...

//

fn−1

⇓φn

@@

fn

α

HH

idA

II
A

Figure 5.1. An element of T (A)•(f = f0)

where φi ∈ C•(A,fi−1
Afi) and α ∈ C−•(A,fn A). The differential on T (A) is:

dT (A) = d̃Hoch(A,A) + b̃+ ι̃

d̃Hoch(A,A) = extension of dHoch(A,A) to a differential on T (A)

b̃ = extension of the Hochschild chain differential b to a differential on T (A)

ι̃(φ1 . . . φn|α) := (φ1 . . . φn−1|ι(φn, α)).

The coproduct on T (A) is induced by the coproduct on B(A):

∆(φ1 . . . φn|n) =
∑

0≤i≤n

±(φ1 . . . φi)⊗ (φi+1 . . . φn|α).

For more precise details and explicit signs, see Reference [6], Section 4.6. T (A) is the

cofree dg comodule over B(A) with cogenerators given by Hochschild chains. In other
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words, {
maps of dg comodules
D → T (A) over B(A)

}
1:1←→

{(
maps of complexes
D•(f)→ C−•(A,f A)

)
f∈Obj(B(A))

}
(
F : D → T (A)

)
7→
(
D•(f)

Ff−→ T (A)•(f)
project−−−−→ C−•(A,f A)

)
f

(5.1)


D(f)

∆D−−→
⊕

g∈Obj(B(A))

B(A)•(f, g)⊗D(g)

id⊗F−−−→
⊕
g

B(A)•(f, g)⊗ C−•(A,g A)

∼= T (A)(f)


f

←p
(
D•(f)

F−→ C−•(A,f A)

)
f
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5.3. Prescriptions for F(µ1, . . . , µn)

5.3.1. Prescription for F(µ)

Now, we will define F(µ) for µ not a generating morphism in Λ. (A general morphism in

χ(C) is a linear combination of morphisms in Λ, so we extend F linearly to define F on

any morphism in χ(C), see Definition 4.2.1.)

Let µ be a non-generating morphism in Λ that induces a morphsim in χ(C) with source

A := (A0 → · · · → An → A0) for some algebras Ai, 0 ≤ i ≤ n, n ≥ 0. Choose (i.e., fix

once and for all) a presentation of µ as a composition of generating morphisms. Within

the chosen presentation, in the following order, (1) replace all occurrences of τn−1δn−1,n

with δ0,nτ
2
n, (2) replace all τn+1σn,n with τn+1

n+1σ0,nτn, (3) replace all decompositions of

identity maps with identity maps, (4) remove all identity maps if µ 6= id, (5) call this

new presentation “the presentation corresponding to µ”, denoted µ = λµ,kµ ...λµ,1. The

presentation corresponding to µ is not unique (i.e., still depends on the original chosen

presentation). However, letting F(µ) act on comodules via

F(µ) := λ̂∗µ,1 ...λ̂∗µ,kµ−1(λµ,kµ!) ◦ ... ◦ λ̂∗µ,1(λµ,2!) ◦ λµ,1! : T (A)→ µ̂∗T (µA)

is well-defined because we have made consistent choices. More explicitly, we show in

Section 5.4 that the choices we have made for F({generating morphisms}) respect all of

the relations in Λ (Equation A.2) except for Equations 5.4. The above steps ensure that

the presentation corresponding to µ only uses the lefthand side of Equation 5.4a and the

righthand sides of Equations 5.4c and 5.4b.
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5.3.2. Prescription for F(µ1, µ2)

Before defining F on pairs of composable morphisms, let’s take a look at an A∞ relation

we expect F to satisfy: For · µ1−→ · µ2−→ · composable morphisms in χ(C), we expect

F(µ2 ◦ µ1) = F(µ2) ◦ F(µ1) + dD∞ ◦ F(µ1, µ2).(5.2)

Given the definition of F(µ) above, we require a non-zero F(µ1, µ2) if and only if: (Condi-

tion H) the presentation corresponding to µ2 composed with the presentation correspond-

ing to µ1 contains, after removing (decompositions of) identity maps except for τn+1
n , one

or more of the following terms: τn−1δn−1,n, τn+1σn,n, τn+1
n . If µ1, µ2 satisfy Condition H,

homotopies given in Section 5.4.2 can be used to define F(µ1, µ2). If µ1, µ2 do not satisfy

Condition H, let F(µ1, µ2) = 0 on comodules.

We will give some instructive examples of non-zero F(µ1, µ2) that satisfy Equation

5.2.

Example 5.3.1. Let µ1 = δn−1,n, µ2 = τn−1. Then, the presentation corresponding to

µ2µ1 is δ0,nτ
2
n. Let F(µ1, µ2) be the homotopy given in Section 5.4.2.1. Then, Equation

5.2 holds because it is equivalent to Equation 5.4a.

Example 5.3.2. Let µ1 = σ0,n−1δn−1,n, µ2 = τn−1δ0,n. To form the presentation

corresponding to µ2µ1, we follow these steps:

τn−1δ0,nσ0,n−1δn−1,n
remove decompositions−−−−−−−−−−−−→

of identities
τn−1δn−1,n

replace−−−−→ δ0,nτ
2
n.
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On the other hand,

F(µ2)F(µ1) = ( ̂δ0,nσ0,n−1δn−1,n)∗(τn−1!) ◦ ( ̂σ0,n−1δn−1,n)∗(δ0,n!) ◦ δ̂∗n−1,n(σ0,n−1!) ◦ δn−1,n!

= δ̂∗n−1,n(τn−1!) ◦ id ◦ δn−1,n!.

So, we can let F(µ1, µ2) be the homotopy given in Section 5.4.2.1, and Equation 5.2 holds

because it is equivalent to Equation 5.4a.

Example 5.3.3. Let (µ1, µ2) ∈ {(τn+1, σn,n), (τn+1−j
n , τ jn) : 1 ≤ j ≤ n, n ∈ N}. Let

F(µ1, µ2) be the homotopy given in 5.4.2.3 if µ2 = σn,n and the homotopy given in 5.4.2.2

if µ2 6= σn,n. Then, Equation 5.2 holds because it is equivalent to either Equation 5.4c

(µ2 = σn,n) or Equation 5.4b (µ2 6= σn,n).

Example 5.3.4. Let µ1 = σn−1,n−1δn−1,n, µ2 = τn. To form the presentation corre-

sponding to µ2µ1, we follow these steps:

(τnσ0,n−1)δn−1,n
replace (·)−−−−−→ τnnσ0,n−1(τn−1δn−1,n)

replace (·)−−−−−→ τnnσ0,n−1δ0,nτ
2
n.

Let F(µ1, µ2) = g1 + g2 where g1 = δ̂∗n−1,n(homotopy in Section 5.4.2.3) ◦ δn−1,n! and g2 =

( ̂τn−1δn−1,n)∗
(
( ̂τn−1
n σ0,n−1)∗(τn!)◦ ... ◦ σ̂∗0,n−1(τn!)◦σ0,n−1!

)
◦ (homotopy in Section 5.4.2.1).

Then, Equation 5.2 holds because it reduces to δ∗n−1,n(Equation 5.4c) and Equation 5.4a.
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5.4. Computational: Composition of maps of dg comodules

In Equations 4.2 and C.1, we gave the maps of dg comodules re-stated below:

δj,n! : m∗nT (A0)
id−→∼= δ̂∗j,nm

∗n−1T (A0) Equation 4.2

σi,n! : m∗nT (A0)
id−→∼= σ̂∗i,nm

∗n+1T (A0) Equation 4.2

τn! : m∗nT (A0)
m∗n−1τ!(A0,An)−−−−−−−−−→ τ̂ ∗nm

∗nT (An) Equation 4.2

τ1! : m∗T (A0)→ τ̂ ∗1m
∗T (A1) Equation C.1 for A = A0, B = A1

Here, we show that these maps satisfy the relations in Λ (Equation A.2) up to homotopy.

More precisely, we will show that

δ̂∗j,n(δi,n−1!) ◦ δj,n! = δ̂∗i,n(δj−1,n−1!) ◦ δi,n! 0 ≤ i < j ≤ n− 1

σ̂∗j,n(σi,n+1!) ◦ σj,n! = σ̂∗i,n(σj+1,n+1!) ◦ σi,n! 0 ≤ i ≤ j ≤ n

σ̂∗i,n(δj,n+1!) ◦ σi,n! =



δ̂∗j−1,n(σi,n−1!) ◦ δj−1,n! 0 ≤ i < j ≤ n

id j = i, i− 1

δ̂∗j,n(σi−1,n−1!) ◦ δj,n! 0 ≤ j < i− 1 ≤ n− 1

(5.3a)

σ̂∗i,n(τn+1!) ◦ σi,n! = τ̂ ∗n(σi+1,n!) ◦ τn! 0 ≤ i ≤ n− 1

δ̂∗j,n(τn−1!) ◦ δj,n! = τ̂ ∗n(δj+1,n!) ◦ τn! 0 ≤ j ≤ n− 1

(5.3b)

(τ̂1σ0,0)∗(δ0,1!) ◦ σ̂∗0,0(τ1!) ◦ σ0,0! = id(5.3c)
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and

(5.4a) τ̂ ∗2n (δ0,n!) ◦ τ̂ ∗n(τn!) ◦ τn! ' δ̂∗n−1,n(τn−1!) ◦ δn−1,n!

(5.4b) τ̂ ∗nn (τn!) ◦ ... ◦ τ̂ ∗n(τn!) ◦ τn! ' id

σ̂∗n,n(τn+1!) ◦ σn,n!

' ( ̂τnn+1σ0,nτn)∗(τn+1!) ◦ ... ◦ ( ̂τn+1σ0,nτn)∗(τn+1!) ◦ (σ̂0,nτn)∗(τn+1!) ◦ τ̂ ∗n(σ0,n!) ◦ τn!

(5.4c)

5.4.1. Strict relations: showing Equations 5.3 hold

Equation 5.3a has three relations. All of the σ!’s and δ!’s in Equation 5.3a are identity

maps, so it’s clear that these relations hold.

Equation 5.3b has two relations. To show that the first one holds, we have

σ̂∗i,n(τn+1!) ◦ σi,n! = σ̂∗i,n(( ̂δ0,2 ...δ0,n+1)∗(τ1!)) ◦ σi,n! definitions of τn+1! and δ̂·,·

= ( ̂δ0,2 ...δ0,n+1σi,n)∗(τ1!) ◦ σi,n! Proposition D.1

= ( ̂δ0,2 ...δ0,n)∗(τ1!) ◦ σi,n!

= τn! ◦ σi,n! definitions of τn! and δ̂·,·

= τn! ◦ id = id ◦ τn!

= τ̂ ∗n(σi+1,n!) ◦ τn!.
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To show that the second relation holds, the reasoning is the same as above. We have

δ̂∗j,n(τn−1!) ◦ δj,n! = δ̂∗j,n(( ̂δ0,2 ...δ0,n−1)∗(τ1!)) ◦ δj,n!

= ( ̂δ0,2 ...δ0,n−1δj,n)∗(τ1!) ◦ δj,n!

= τn! ◦ δj,n!

= τn! ◦ id = id ◦ τn!

= τ̂ ∗n(δj+1,n!) ◦ τn!.

Equation 5.3c has one relation. The only map in this relation that is not defined to be

an identity map is σ̂∗0,0(τ1!). We will compute this map and show that it is also an identity.

Let (φ1 ...φk|α) ∈ T (A0) =: T (A0 → A0) (see Figure 5.1 for notation). By Proposition

D.2,

T (A0 → A0)
∼=−→ σ̂∗0,0T (A0 → A0 → A0)

(φ1 ...φk|α) 7→
∑

0≤r≤k

(φ1 ...φr)⊗ (1|φr+1 ...φk|α).

Applying σ̂∗0,0(τ1!) to the righthand side, we have

σ̂∗0,0T (A0 → A0 → A0)
σ̂∗0,0(τ1!)−−−−→ σ̂∗0,0τ̂

∗
1T (A0 → A0 → A0)∑

0≤r≤k

(φ1 ...φr)⊗ (1|φr+1 ...φk|α) 7→
∑

0≤r≤s≤k

(φ1 ...φr)⊗

(φr+1 ...φs|1|τ1!(1|φs+1 ...φk|α)).
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The righthand side above is equal to

∑
0≤r≤s≤k

(φ1 ...φr)⊗ (φr+1 ...φs|1|τ1!(1|φs+1 ...φk|α))

=
∑

0≤r≤s≤k

(φ1 ...φr)⊗ (φr+1 ...φs|1|τ 0,k−s
1! (1|φ0,s0+1 ...φ0,k0|α))

(see Proposition C.1 for definition of τ 0,k−s
1! )

=
∑

0≤r≤k

(φ1 ...φr)⊗ (φr+1 ...φk|1|α) (τ 0,>0
1! = 0)

∈ σ̂∗0,0τ̂ ∗1T (A0 → A0 → A0).

Finally, applying Proposition D.2 again, we have

σ̂∗0,0τ̂
∗
1T (A0 → A0 → A0)

project onto cogenerators−−−−−−−−−−−−−−→∼=
T (A0 → A0)∑

0≤r≤k

(φ1 ...φr)⊗ (φr+1 ...φk|1|α) 7→ (φ1 ...φk|α).

So, we’ve shown

T (A0 → A0) ∼= σ̂∗0,0T (A0 → A0 → A0)
σ̂∗0,0(τ1!)−−−−→ σ̂∗0,0τ̂

∗
1T (A0 → A0 → A0) ∼= T (A0 → A0)

is the identity map.

5.4.2. Weak relations: showing Equations 5.4 hold
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5.4.2.1. Showing Equation 5.4a holds. For n = 1, eliminating the identity maps

reduces Equation 5.4a to:

τ̂ ∗1 (τ1!) ◦ τ1! ' id.

We prove the above in Appendix Proposition C.2. (In the appendix, we fix algebras A0, A1,

and τ1! = τ1!(A0, A1), τ̂ ∗1 (τ1!) = τ1!(A1, A0), and the homotopy is denoted B(A0, A1).)

For n = 2, eliminating the identity maps and writing τ2! in terms of τ1! reduces

Equation 5.4a to:

(δ̂0,2τ2)∗(τ1!) ◦ δ̂∗0,2(τ1!) ' δ̂∗1,2(τ1!).

We prove the above in Appendix Proposition C.4. (In the appendix, we fix algebras

A0, A1, A2, and δ̂∗0,2(τ1!) = τ1!(A0 • A1, A2), (δ̂0,2τ2)∗(τ1!) = τ1!(A2 • A0, A1), δ̂∗1,2(τ1!) =

τ1!(A0, A1 • A2), and the homotopy is denoted B(A0, A1, A2).)
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For n > 2, we reduce Equation 5.4a to the case when n = 2. We have

Lefthand side of Equation 5.4a = τ̂ ∗2n (δ0,n!) ◦ τ̂ ∗n(τn!) ◦ τn!

= id ◦ τ̂ ∗n(( ̂δ0,2 ...δ0,n)∗(τ1!)) ◦ τn!

= ( ̂δ0,2 ...δ0,nτn)∗(τ1!) ◦ τn!

= ( ̂δ0,2τ2δ0,3 ...δ0,n)∗(τ1!) ◦ τn!

= ( ̂δ0,2τ2δ0,3 ...δ0,n)∗(τ1!) ◦ ( ̂δ0,2 ...δ0,nτn)∗(τ1!)

= ( ̂δ0,3 ...δ0,n)∗((δ̂0,2τ2)∗(τ1!) ◦ δ̂∗0,2τ1!)

Righthand side of Equation 5.4a = δ̂∗n−1,n(τn−1!) ◦ δn−1,n!

= δ̂∗n−1,n(( ̂δ0,2 ...δ0,n−1)∗(τ1!)) ◦ id

= ( ̂δ0,2 ...δ0,n−1δn−1,n)∗(τ1!))

= ( ̂δ1,2δ0,3 ...δ0,n)∗(τ1!)

= ( ̂δ0,3 ...δ0,n)∗(δ̂∗1,2(τ1!)).

So, Equation 5.4a = ( ̂δ0,3 ...δ0,n)∗( Equation 5.4a, n = 2). If B is a homotopy giving

Equation 5.4a for n = 2, then ( ̂δ0,3 ...δ0,n)∗B is a homotopy giving Equation 5.4a for

n > 2.

5.4.2.2. Showing Equation 5.4b holds. We prove this by induction on n. For n = 1,

Equation 5.4b is the same as Equation 5.4a, which we established in the previous section.

Now, assume that Equation 5.4b holds for N = n− 1. We show that Equation 5.4b holds
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for N = n below:

τ̂ ∗nn (τn!) ◦ ... ◦ τ̂ ∗n(τn!) ◦ τn! = τ̂ ∗n−1
n (τ̂ ∗nτn! ◦ τn!) ◦ τ̂ ∗n−2

n τn! ◦ ... ◦ τn!

' τ̂ ∗n−1
n (δ̂∗n−1,nτn−1!) ◦ τ̂ ∗n−2

n τn! ◦ ... ◦ τn! (Equation 5.4a)

= ( ̂τn−1
n−1 δ0,n)∗τn−1!◦

◦
(
τ̂ ∗n−2
n δ̂∗n−2,nτn−1! ◦ ... ◦ τ̂ ∗n δ̂∗1,nτn−1! ◦ δ̂∗0,nτn−1!

)
= ( ̂τn−1

n−1 δ0,n)∗τn−1! ◦ δ̂∗0,n
(
τ̂ ∗n−2
n−1 τn−1! ◦ ... ◦ τ̂ ∗n−1τn−1! ◦ τn−1!

)
= δ̂∗0,n

(
τ̂ ∗n−1
n−1 τn−1! ◦ ... ◦ τn−1!

)
' δ̂∗0,n

(
id
)

(Inductive hypothesis)

= id.

5.4.2.3. Showing Equation 5.4c holds. By manipulating morphisms in Λ, we have

Righthand side of Equation 5.4c = τ̂ ∗n+1
n τn! ◦ τ̂ ∗nn τn! ◦ ... ◦ τ̂ ∗nτn! ◦ τ̂ ∗n+1

n id ◦ τn!

= τn! ◦
(
τ̂ ∗nn τn! ◦ ... ◦ τ̂ ∗nτn! ◦ τn!

)
' τn! ◦

(
id) Equation 5.4b.
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On the other hand, we have

Lefthand side of Equation 5.4c = σ̂∗n,n(τn+1!) ◦ id

= σ̂∗n,n(δ̂∗n,n+1(τn+1!))

= ( ̂δn,n+1σn,n)∗(τn!)

= id∗(τn!).

So, Equation 5.4c holds.
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5.5. Verification of A∞ relations

Now, we will check that our choices for F satisfy the rest of the relations for an

A∞-functor from Reference [2], Definition A.8: For · µ1−→ · µ2−→ · µ3−→ · µ4−→ · composable

morphisms in χ(C), we expect

0 = dD ◦ F(µ1)(5.5)

F(µ3, µ2 ◦ µ1)− F(µ3 ◦ µ2, µ1) = F(µ3, µ2) ◦ F(µ1)− F(µ3) ◦ F(µ2, µ1)(5.6)

0 = F(µ4, µ3) ◦ F(µ2, µ1).(5.7)

Equation 5.5 is satisfied since, for λ ∈ Λ a generating morphism, the λ!’s we gave at the

beginning of Section 5.4 are maps of complexes. Equation 5.7 requires that composing

two of our degree −1 homotopies is always equal to zero. This is true because we use

reduced Hochschild chains (Section B) and each homotopy (Equations C.3, C.5) inserts a

1 into the first slot of the Hochschild chains component.

We check that Equation 5.6 holds for n = 1 and n ≥ 2 separately. For n ≥ 2, checking

Equation 5.6 boils down to the following situation: We have two maps of dg comodules

(5.8) T (A0 → ... → An → A0)

( ̂δn−2,n−1δn−1,n)∗τn−2!

“brace together the last 3 algebras,
then apply τn−2! once”

		

τ̂∗2n τn!◦τ̂∗nτn!◦τn!

“apply τn! 3 times”

��

T (An−2 → An−1 → An → A0 → ... → An−2).

These two maps are homotopic via two homotopies: δ̂∗n−1,nB(A0 • · · · •An−3, An−2, An−1 •

An) + τ ∗2n τn! ◦B(A0 • · · · •An−2, An−1, An) and δ̂∗n−2,nB(A0 • · · · •An−3, An−2 •An−1, An) +
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τ̂ ∗nB(An•· · ·•An−3, An−2, An−1)◦τn! (see Figure 5.2). If the two homotopies were different,

then their difference would be closed and we would desire a higher homotopy (i.e., a degree

-2 map of comodules) between them. However, we will show the two homotopies are the

same, so that no higher homotopies are needed.

First, it follows directly from the definition of B (Appendix Equation C.5) that

δ̂∗n−1,nB(A0 • · · · • An−3, An−2, An−1 • An) = δ̂∗n−2,nB(A0 • · · · • An−3, An−2 • An−1, An).

Second, for n = 2, we show that

(5.9) τ ∗22 τ2! ◦B(A0, A1, A2) = τ̂ ∗2B(A2, A0, A1) ◦ τ2!

in Appendix Proposition C.5. (In the appendix, τ ∗22 τ2! = τ1!(A1 • A2, A0) and τ21 =

τ1!(A0 •A1, A2).) For n > 2, the equation τ ∗2n τn! ◦B(A0 • · · · •An−2, An−1, An) = τ̂ ∗nB(An •

· · · • An−3, An−2, An−1) ◦ τn! is a pullback along δ̂0’s of Equation 5.9.

For n = 1, the situation in Equation 5.8 reduces to: We have two maps of dg comodules

T (A0 → A1 → A0)

τ1!

��
τ̂∗21 τ1!◦τ̂∗1 τ1!◦τ1!

��

T (A1 → A0 → A1).

These two maps are homotopic via two homotopies: τ1!(A0, A1)◦B(A0, A1) andB(A1, A0)◦

τ1!(A0, A1) (see Figure 5.3). We show that these two homotopies are the same in Appendix

Proposition C.3, so no higher homotopies are needed.
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( ̂δn−2,n−1δn−1,n)∗τn−2!

“brace together An−2, An−1, An,
then apply τn−2!”

∼= //

∼=

��

δ̂∗n−1,n(δ̂∗n−2,n−1τn−2!)

δ̂∗n−1,nB(A0•···•An−3,An−2,An−1•An)

// δ̂∗n−1,n(τ̂ ∗n−1τn−1! ◦ τn−1!)

∼=

��

( ̂δn−2,n−1δn−2,n)∗τn−2!

δ̂∗n−2,nB(A0•···•An−3,An−2•An−1,An)

��

τ̂ ∗2n τn! ◦ δ̂∗n−1,nτn−1!

“brace together An−1, An
and apply τn−1!,
then apply τn!”

τ∗2n τn!◦B(A0•···•An−2,An−1,An)

��
δ̂∗n−2,n(τ̂ ∗n−1τn−1! ◦ τn−1!) ∼=

// τ̂ ∗n(δ̂∗n−1,nτn−1!) ◦ τn!

“apply τn!,
then brace together An−1, An−2

and apply τn−1!”

τ̂∗nB(An•···•An−3,An−2,An−1)
◦τn! // τ̂ ∗2n τn! ◦ τ̂ ∗nτn! ◦ τn!

“apply τn! three times”

Figure 5.2. Two homotopies between ( ̂δn−2,n−1δn−1,n)∗τn−2! and τ̂ ∗2n τn! ◦
τ̂ ∗nτn! ◦ τn!

Vertices are maps of dg comodules and arrows are chain homotopies.

id ◦ τ1! = τ1! = τ1! ◦ id

τ1!(A0,A1)◦B(A0,A1)

��

B(A1,A0)◦τ1!(A0,A1)

��(
τ̂ ∗21 τ1! ◦ τ̂ ∗1 τ1!

)
◦ τ1! = τ̂ ∗21 τ1! ◦

(
τ̂ ∗1 τ1! ◦ τ1!

)
Figure 5.3. Two homotopies between τ1! and τ̂ ∗21 τ1! ◦ τ̂ ∗1 τ1! ◦ τ1!

Vertices are maps of dg comodules and arrows are chain homotopies.
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CHAPTER 6

Coda: other directions
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6.1. Motivation of this chapter

In Chapter 5, we gave an A∞-functor F : χ(C) → D where C is the category defined

in Equation 1.2. Applying Reference [2], Remark A.27, we can rectify F to a dg functor

F̃ : U(χ(C)) → D where U(χ(C)) is the enveloping dg category of χ (see Reference [2],

Definition A.25).

In other words, we have shown that algebras form a “category in dg cocategories with

a trace functor up to homotopy”. In this chapter, we show that algebras form a category

in dg categories with a trace functor up to homotopy. In other words, we give a dg functor

U(χ(C))→ E where E is a dg category with objects pairs (dg category, dg module).

This chapter is not central to the narrative of this thesis, especially since understanding

of what happens after applying Cobar(−) is still evolving.

6.2. A functor to dg categories

In this section, we first give a dg functor D→ D1, which makes use of the adjunction

in Proposition D.3. Then, we will give a dg functor Ω : D1 → E.

6.2.1. Using the adjunction

Let D1 be the dg category with the same objects as D and morphisms

D•1((B1, C1), (B0, C0)) =
{(
F : B1 → B0 dg functor,

F! : F#C1 → C0 map of comodules of degree •
)}

dD(F, F!) = (F, dC0 ◦ F! − (−1)|F!|F! ◦ dF#C1)
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with composition

D•1((B2, C2), (B1, C1))⊗D•1((B1, C1), (B0, C0))→ D•1((B2, C2), (B0, C0))

(f, f!)⊗ (g, g!) 7→ (gf, g! ◦ g#(f!)).

This composition is well-defined because we can apply the formulas from g# to (not

necessarily graded) morphisms of comodules. The composition is associative because of

the following easy-to-check fact: g#f#C = (gf)#C for B2
f−→ B1

g−→ B0 functors of dg

cocategories and C a dg comodule over B2.

Now, we define a dg functor

Adj : D→ D1

on objects: (B,C) 7→ (B,C)

on morphisms:

(
(B1, C1)

(F,F!)−−−→ (B0, C0)

)
7→
(

(B1, C1)
(F,Φ−1

F F )
−−−−−→ (B0, C0)

)

where Φ−1
F : Homdg comodules

over B1

(C,F ∗D) → Homdg comodules
over B0

(F#C,D) is defined in the proof

of Proposition D.3 and makes sense as a function on (not necessarily graded) maps of

comodules. To check that Adj commutes with the differentials and respects composition,

we need

Φ−1
F ◦ dHomB2

(C2,F ∗C1) = dHomB1
(F#C2,C1) ◦ Φ−1

F

Φ−1
GF (F ∗G! ◦ F!) = Φ−1

G (G!) ◦G#(Φ−1
F (F!))

where (B2, C2)
(F,F!)−−−→(B1, C1)

(G,G!)−−−→ (B0, C0) in D.
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The equations above follow straight-forwardly from the definitions.

6.2.2. Applying Cobar

In this section, we will use the notion of a dg module over a dg category. This is dual to

a dg comodule over a dg cocategory (Definition 3.3.3). Given a dg functor between dg

categories F : A1 → A0, we define “restriction of scalars”, F ∗, a functor from the category

of dg comodules over A0 to the category of dg comodules over A1. For M0 a dg comodule

over A0 and f ∈ Obj(B1), F ∗M0(f) := M0(Ff).

Let E be the dg category defined below:

Obj(E) = {(A,M)|A is a dg category, M is a dg module over A}

Ep((A1,M1), (A0,M0)) = {(f, f!)|f : A1 → A0 is a dg functor,

f! : M1 → f ∗M0 is a degree-p map of modules over A1}

dE(f, f!) = (f, df∗M0 ◦ f! − (−1)|f!|f! ◦ dC1)

E•((A2,M2), (A1,M1))× E•((A1,M1), (A0,M0))
composition−−−−−−−→ E•((A2,M2), (A0,M0))

(f, f!)× (g, g!) 7→ (gf, f ∗(g!) ◦ f!).

We will define a dg functor Ω : D1 → E. On objects,

Ω(B,C) := (Cobar(B), Cobar(B,C))
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where the first Cobar is a dg functor from the category of dg cocategories to the category

of dg categories, and the second Cobar sends dg comodules over B to dg modules over

Cobar(B) (see [6], Section 4.6). On morphisms,

D1 3
(

B1
F−→B0

F#C1

F!−→C0

)
7→
(

Cobar(B1)
Cobar(F )−−−−−→Cobar(B0)

Cobar(B1,C1)
Ω(F!)−−−→(Cobar(F ))∗Cobar(B0,C0)

)
∈ E

where Ω(F!) : Cobar(B1, C1)→ (Cobar(F ))∗Cobar(B0, C0)

(b1|...|bn|c) 7→ (Fb1|...|Fbn|F!c)

for bi ∈ B•1(fi−1, fi), c ∈ C•1(fn), and fi ∈ Obj(B1), 0 ≤ i ≤ n.

It’s straightforward from the definitions to check that Ω commutes with the differentials

and respects composition.

6.2.3. The end: putting everything together

We have dg functors

U(χ(C))
F̃−→ D

Adj−−→ D1
Ω−→ E.

This gives our category in dg categories with a trace functor up to homotopy.
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APPENDIX A

Connes cyclic category, Λ

Here, we give generators and relations for the cyclic category, Λ. None of this is new,

but we do it to establish notation for the rest of the paper.

Λ has objects {[n] : n ∈ N} and generating morphisms:

rotations τn : [n]→ [n],

coboundaries δj,n : [n]→ [n− 1], 0 ≤ j ≤ n− 1,

codegeneracies σi,n : [n]→ [n+ 1], 0 ≤ i ≤ n

(A.1)
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subject to relations:

δi,n−1δj,n = δj−1,n−1δi,n 0 ≤ i < j ≤ n− 1

σi,n+1σj,n = σj+1,n+1σi,n 0 ≤ i ≤ j ≤ n

δj,n+1σi,n =



σi,n−1δj−1,n 0 ≤ i < j ≤ n

id j = i, i− 1

σi−1,n−1δj,n 0 ≤ j < i− 1 ≤ n− 1

τn+1σi,n = σi+1,nτn 0 ≤ i ≤ n− 1

τn−1δj,n = δj+1,nτn 0 ≤ j ≤ n− 1

τn+1
n = id

δ0,1τ1σ0,0 = id

τn+1σn,n = τn+1
n+1σ0,nτn

δ0,nτ
2
n = τn−1δn−1,n.

(A.2)

Some presentations of Λ include an extra coboundary δn,n and codegeneracy σn+1,n.

In terms of our generators, they are δn,n := δ0,nτn and σn+1,n := τn+1
n+1σ0,n.
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APPENDIX B

Background on Hochschild chains and cochains

In this appendix, we give some known constructions on Hochschild chains and cochains

for the reader’s convenience. Let k be a field of characteristic zero, A a flat unital k-

algebra, and M be an A-A-bimodule. Then, we can take (C•(A,M), b), the (reduced

or standard) Hochschild chain complex of A with coefficients in M (see Reference [6],

Equation 2.1). When M = B is also an algebra over k with left and right module

structure given by two maps of algebras f : A→ B and g : A→ B, respectively, we may

write fBg to clarify the module structure.

Let k,A,M be as above. We can also take (C•(A,M), δ), the (reduced) Hochschild

cochain complex of A with coefficients in M (see Reference [6], Equations 2.12-13, 2.19-

21). When M = B is an algebra, (C•(A,B), δ,∪) is a dga where the cup product ∪ is

given in Reference [6], Equation 2.14.
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Let f, g, h : A→ A be maps of algebras. We have a contraction operation of Hochschild

cochains and chains, which is a map of complexes:

ι : Cp(A,f Ag)
⊗

C−q(A,g Ah) −→ C−(q−p)(A,f Ah)

φ
⊗

a0 ⊗ · · · ⊗ aq 7→ ι(φ, a0 ⊗ · · · ⊗ aq) := φ · (a0 ⊗ · · · ⊗ aq) :=

:= (−1)p(q+1)φ(aq−p+1, . . . , aq) · a0 ⊗ a1 ⊗ · · · ⊗ aq−p.

(B.1)

Finally, we have a “Lie derivative like” operation of Hochschild cochains and chains.

Fix an algebra A and let (φ1 ...φn|α) ∈ T (A)(f0) (see Figure 5.1) be the following element

(φ1 ...φn|α) = A

f0

��

⇓φ1

f1 %%
...

fn−1

99

⇓φn

fn

DD

id

α

II
A
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We have a map of complexes

T (A
f0−→ A)• → C−•(A,f0 A)

(φ1 ...φn|a1 ⊗ ... ⊗ ap) 7→ λ(φ1 ...φn) · (a1 ⊗ ... ⊗ ap)

:=
∑

0≤i1≤...≤i2n≤p
(−1)

∑
j odd
j≥1

ij(|φi j+1
2

|+1)

·

· f0a1 ⊗ ... ⊗ f0ai1 ⊗ φ1(ai1+1, ..., ai2)⊗

⊗ f1ai2+1 ⊗ ... ⊗ f1ai3 ⊗ φ2(ai3+1, ..., ai4)⊗

⊗ ... ⊗ φn(ai2n−1+1, ..., ai2n)⊗ fnai2n+1 ⊗ ... ⊗ fnap.

It’s straightforward to check that λ((φ1 . . . φn) • (ψ1 . . . ψm)) = λ(ψ1 . . . ψm)λ(φ1 . . . φn).
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APPENDIX C

Computations

In this appendix, we give the computational propositions needed to establish the

homotopically sheafy-cyclic structure on dg comodules. All the comodules we work with

will be cofree, and we will define maps into them by giving maps into cogenerators (see

Equation 5.1).
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C.1. Computational notation

For this section’s propositions, we establish the following notation:

A0, A1 fixed algebras

(~φ|~ψ|α) := (φ1 ...φn|ψ1 ...ψm|α)

= A0

f0

��

w�φ1

f1 ��
...
fn

DD

id

α

EE
A1

g0

��

w�ψ1

g1 ��
...
gm

DD
A0 ∈ T (A0 → A1 → A0)(g0f0)

~φ{i1,i2,...,ik} := φi1φi2 ...φik

where {i1, i2, ..., ik} is an ordered subset of {1, ..., n}

~φ{} := 1 ∈ k ∼= Bar0(C•(A0, A1))

~ψ{} := 1 ∈ k ∼= Bar0(C•(A1, A0))
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|I| := number of elements in a set I

I1I2 := concatenation as ordered sets of possibly-empty sets I1 and I2

εI1,J1 := (−1)
(
∑
r∈I1

|φr|+1)(
∑
s∈J1

|ψs|+1)

when I1, J1 are ordered indexing sets

λ(~ψ), δ̃, b′, b, ψ{~φ} · α = see Appendix B for operations on Hochschild (co)chains

C.1.1. Notation for elements of Hochschild chains

Let a0⊗ a1⊗ · · · ⊗ an denote a typical element of C−•(A,A) where A is some algebra. At

times, we wish to feed a portion of a0 ⊗ a1 ⊗ ... ⊗ an to a Hochschild cochain (or other

map on chains) without specifying the degree of the cochain. To do this, we will rewrite

a0 ⊗ a1 ⊗ ... ⊗ an = a0 ⊗ a1 ⊗ ... ⊗ ar where each ai = aji ⊗ aji+1 ⊗ ... ⊗ aji+1−1 and ai is

an empty chain if ji = ji+1.

For example, if φ ∈ C2(A,A), then we rewrite

∑
1≤i≤n−1

a0 ⊗ a1 ⊗ ...ai−1 ⊗ φ(ai, ai+1)⊗ ai+2 ⊗ ... ⊗ an =
∑

a0 ⊗ a1 ⊗ φ(a2)⊗ a3.

If a1 = a1 ⊗ ... ⊗ ap, then |a1| = p. For a0 ⊗ a1 ⊗ a2, we write ηa1,a2 = (−1)|a1|(|a1|+|a2|).

C.2. Computational Propositions

Proposition C.1. Fix algebras A,B, and let τ̂1 : C(A,B) ⊗ C(B,A) → C(B,A) ⊗

C(A,B) be the rotation functor. Recall from Example D.2.2 the descriptions of the cofree
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dg comodules

m∗T (A) ∼= T (A→ B → A)

τ̂ ∗m∗T (B) ∼= T (B → A→ B).

Define a map

τ1!(A,B) : m∗T (A) ∼= T (A→ B → A) −→ T (B → A→ B) ∼= τ̂ ∗m∗T (B)

of comodules over C(A,B)⊗ C(B,A) by mapping into cogenerators as follows: for (A
f0→

B
g0→ A) ∈ Obj(C(A,B)⊗ C(B,A)),

τ1!(f0, g0) : T (A
f0→ B

g0→ A)• → T (B
g0→ A

f0→ B)•
project onto−−−−−−−→
cogenerators

C−•(B,f0g0 B)

[τ1!(f0, g0)]n,m(~φ|~ψ|α) =
∑

I1I2={2,··· ,n}
as ordered sets

φ1(λ(~ψ)λ( ~φI2) · a3, a0, a1)⊗ λ( ~φI1) · a2

(
+ f0a0 ⊗ λ(~φ)a1 if m = 0

)
.

(C.1)

where ~φ is an element of length n and ~ψ is an element of length m (see Section C.1). Then,

τ1!(A,B) : m∗T (A)→ τ̂ ∗m∗T (B) is a map of dg comodules over C(A,B)⊗ C(B,A).

Proof. We must show: (1) τ1! is a map of comodules, and (2) τ1! commutes with the

differentials. (In this proof, we drop the subscripts and write τ1! := τ1!(A,B).)



70

(1) This proof is standard for cofree comodules. Let (~φ|~ψ|α) be as in the statement of

the proposition. We want to show that τ1! commutes with the coproducts. On one hand,

[(idB ⊗ τ1!) ◦∆m∗T (A)](~φ|~ψ|α)

= [idB ⊗ τ1!]
( ∑
I1I2={1,2,··· ,n} and
J1J2={1,2,··· ,m}
as ordered sets

εI2,J1 · (~φI1|~ψJ1)⊗ (~φI2|~ψJ2|α)
)

=
∑

I1I2I3={1,2,··· ,n} and
J1J2J3={1,2,··· ,m}

as ordered sets

εI2I3,J1 · εI3,J2 · (~φI1|~ψJ1)⊗ (~φI2|~ψJ2)⊗ τ |I3|,|J3|
1! (~φI3|~ψJ3|α).

On the other hand,

[∆τ̂∗m∗T (B) ◦ τ1!](~φ|~ψ|α)

= ∆τ̂∗m∗T (B)

( ∑
I1I2={1,2,··· ,n} and
J1J2={1,2,··· ,m}
as ordered sets

εI2,J1 · (~φI1|~ψJ1)⊗ τ |I2|,|J2|
1! (~φI2 |~ψJ2|α)

)

=
∑

I1I2I3={1,2,··· ,n} and
J1J2J3={1,2,··· ,m}

as ordered sets

εI2I3,J1 · εI3,J2 · (~φI1|~ψJ1)⊗ (~φI2|~ψJ2)⊗ τ |I3|,|J3|
1! (~φI3|~ψJ3|α).

Clearly (idB ⊗ τ1!) ◦∆m∗T (A) = ∆τ̂∗m∗T (B) ◦ τ1!.

(2) We will show that τ1! commutes with the differentials by direct computation. Since

τ1! is a map of cofree comodules, we only need to check that π1◦D(τ1!) = 0 where D(τ1!) is

the differential applied to τ1! as a linear map between complexes and π1 denotes projection
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of a comodule onto its cogenerators. More explicitly, we want to check that

(C.2)

τn,m1! (δ̃(~φ)|~ψ|α) + τn,m1! (~φ|δ̃(~ψ)|α) + τn−1,m
1! (b′(~φ)|~ψ|α) + τn,m−1

1! (~φ|b′(~ψ)|α) +

τn,m1! (~φ|~ψ|b(α)) + b ◦ τn,m1! (~φ|~ψ|α) +∑
I1I2={1,...,n}
as ordered sets

εI2,{1,...,m−1} · τ |I1|,m−1
1! (~φI1|~ψ{1,··· ,m−1}|ψm{~φI2} · α) +

∑
J1J2={1,...,m}
as ordered sets

ε{2,...,n},J1 · φ1{ψJ1} · τ
n−1,|J2|
1! (φ{2,··· ,n}|ψJ2|α) +

ε{n},{1,...,m} · τn−1,m
1! (~φ{1,··· ,n−1}|~ψ|φn · α) +

ε{1,...,n},{1} · ψ1 · τn,m−1
1! (~φ|~ψ{2,··· ,m}|α)

= 0.

In Equation C.2, we will call the terms in rows 1-2 the “standard terms”, and the terms

in rows 3-6 the “extra terms”.

We compute the sum of the standard terms. In Table C.1, the leftmost column lists

the expressions that don’t cancel in the sum of the standard terms, the middle column

gives the standard term from which the expression comes, and the rightmost column gives

the term (extra or standard) that cancels the expression.

All of the terms in Table C.1 cancel, so τ1! is a map of complexes. �
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Proposition C.2. Let B(A0, A1) = B : T (A0 → A1 → A0) −→ T (A0 → A1 → A0)

be the map of cofree comodules defined by the following maps to cogenerators:

(C.3) Bn,m(~φ|~ψ|α) = ηa1,a2 · 1⊗ λ(ψ)λ(φ)a2 ⊗ a0 ⊗ a1.

Then, D(B(A0, A1)) = τ1!(A1, A0) ◦ τ1!(A0, A1) − id where τ1! is defined in Proposition

C.1.

Proof. We prove the statement by direct computation. Since all of the maps are

maps of cofree comodules, we only need to check that π1(D(B(A0, A1)) − τ1!(A1, A0) ◦

τ1!(A0, A1) − id) = 0 where π1 denotes projection of the comodule onto cogenerators.

More explicitly, for an element (~φ|~ψ|α), we want to check that

(C.4)

Bn,m(δ̃(~φ)|~ψ|α) +Bn,m(~φ|δ̃(~ψ)|α) +Bn−1,m(b′(~φ)|~ψ|α) +Bn,m−1(~φ|b′(~ψ)|α) +

Bn,m(~φ|~ψ|b(α)) + b ◦Bn,m(~φ|~ψ|α) +

ε{n},{1,...,m} ·Bn−1,m(~φ{1,··· ,n−1}|~ψm|φn · α) +

ε{1,...,n},{1} · ψ1 ·Bn,m−1(~φ|~ψ{2,··· ,m}|α)+∑
I1I2={1,...,n}
as ordered setts

εI2,{1,...,m−1} ·B|I1|,m−1(~φI1|~ψ{1,··· ,m−1}|ψm{~φI2} · α) +

∑
J1J2={1,...,m}
as ordered setts

ε{2,...,n},J1 · φ1{ψJ1} ·Bn−1,|J2|(φ{2,··· ,n}|ψJ2|α) −

∑
I1I2={1,...,n}
J1J2={1,...,m}
as ordered setts

εI1,J2 · τ
|J1|,|I1|
1! (~ψJ1|~φI1 |τ

|I2|,|J2|
1! (~φI2|~ψJ2|α))− π1(~φ|~ψ|α)

= 0.
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We will call the terms in rows 1-2 the “standard terms” in the computation of

D(B(A0, A1)), and the terms in rows 3-6 the “extra terms” in the computation of

D(B(A0, A1)). The seventh row is π1(τ1!(A1, A0) ◦ τ1!(A0, A1)− id).

We compute the sum of the standard terms. In Table C.2, the leftmost column lists

the expressions that don’t cancel in the sum of the standard terms, the middle column

gives the standard term from which the expression comes, and the rightmost column gives

the extra term that cancels the expression. Table C.3 lists the remaining terms from the

seventh row that are not already listed in Table C.2. In Table C.3, the left column lists

the remaining expressions that don’t cancel in the seventh row, and the right column gives

the extra term that cancels the expression.

All of the terms in the tables describing the expansion of equation C.4 cancel, so

D(B(A0, A1)) = τ1!(A1, A0) ◦ τ1!(A0, A1)− id. �
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Proposition C.3. Let τ1!(A0, A1) : T (A0 → A1 → A0) −→ T (A1 → A0 → A1)

and B(A0, A1) : T (A0 → A1 → A0) −→ T (A0 → A1 → A0) be the maps defined in

Propositions C.1 and C.2 above. Then,

[τ1!, B] := τ1!(A0, A1) ◦B(A0, A1)−B(A1, A0) ◦ τ1!(A0, A1) = 0.

Proof. We show that [τ1!, B] = 0 by direct computation. Since all of the maps are

maps of cofree comodules, we only need to check that π1([τ1!, B]) = 0 where π1 denotes

projection of the comodule onto cogenerators. We check this directly.

[π1 ◦ τ1!(A0, A1) ◦B(A0, A1)](~φ|~ψ|α)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 · τ
|I1|,|J1|
1! (~φI1|~ψJ1|B|I2|,|J2|(~φI2|~ψJ2|α))

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 · ηa1,a2·

τ
|I1|,|J1|
1! (~φI1 |~ψJ1 |1⊗ λ(~ψJ2)λ(~φI2)a2, a0, a1)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 · ηa1,a2 · 1⊗ λ(~φI1)
(
λ(~ψ)λ(~φI2)a2, a0, a1

)
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[π1 ◦B(A1, A0) ◦ τ1!(A0, A1)](~φ|~ψ|α)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 ·B|J1|,|I1|(~ψJ1|~φI1 |τ
|I2|,|J2|
1! (~φI2|~ψJ2|α))

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 ·B|J1|,|I1|
(
~ψJ1|~φI1|φ|I1|+1(λ(~ψJ2)λ(~φI3)a3, a0, a1)⊗ λ(~φI2\|I1|+1)a2 +

+ a0 ⊗ λ(~φI2\|I1|+1)a1 if J2 = ∅
)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI1,J2 · ηa2,a3 · 1⊗ λ(~φI1)λ(~ψJ1)λ(~φI3)a3 ⊗ φ|I1|+1(λ(~ψJ2)λ(~φI4)a4, a0, a1)⊗

⊗ λ(~φI2\|I1|+1)a2 +

+ εI1,J2 · ηa1,a2 · 1⊗ λ(~φI1)λ(~ψ)λ(~φI3)a2 ⊗ a0 ⊗ λ(~φI2)a1

It’s clear that π1◦τ1!(A0, A1)◦B(A0, A1) = π1◦B(A1, A0)◦τ1!(A0, A1): The final expansion

of π1 ◦ τ1!(A0, A1) ◦ B(A0, A1) is the sum of the two terms in the final expansion of

π1 ◦B(A1, A0) ◦ τ1!(A0, A1), which is the sum of terms in which one of the φ’s contains a0

and the terms in which none of the φ’s contains a0). �
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C.3. More notation

For the next two propositions, we will need some more notation. Set

A0, A1, A2 fixed algebras

(~φ|~ψ|~θ|α) := (φ1 ...φn|ψ1 ...ψm|θ1 ...θr|α)

= A0

f0

��

w�φ1

f1 ��
...
fn

DD

id

α

DD
A1

g0

��

w�ψ1

g1 ��
...
gm

DD
A2

h0

��

w�θ1

h1 ��
...
hp

DD
A0

∈ T (A0 → A1 → A2 → A0)(h0g0f0)

εI2,J1,J2,K1 := (−1)
(
∑
r∈I1

|φr|+1)((
∑
s∈J1

|ψs|+1)+(
∑
t∈K1

|θt|+1))

·

(−1)
(
∑
s∈J2

|ψs|+1)(
∑
t∈K1

|θt|+1)

when I1, J1, J2, K1, are ordered indexing sets
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We also have the following maps of dg comodules:

τ1!(A0 • A1, A2) : T (A0 → A1 → A2 → A0)→ τ̂ ∗2T (A2 → A0 → A1 → A2)

(~φ|~ψ|~θ|α) 7→ τ1!(A0, A2)(~φ • ~ψ|~θ|α)

τ1!(A0, A1 • A2) : T (A0 → A1 → A2 → A0)→ τ̂ ∗22 T (A1 → A2 → A0 → A1)

(~φ|~ψ|~θ|α) 7→ τ1!(A0, A1)(~φ|~ψ • ~θ|α).

C.4. More Propositions

Proposition C.4. Let

B(A0, A1, A2) = B : T (A0 → A1 → A2 → A0)→ τ̂ ∗22 T (A1 → A2 → A0 → A1)

be a map of comodules over C(A0, A1)⊗C(A1, A2)⊗C(A2, A0) determined by the following

maps to cogenerators: for (A0
f0−→ A1

g0−→ A2
h0−→ A0) ∈ Obj(C(A0, A1) ⊗ C(A1, A2) ⊗

C(A2, A0))

B(f0, g0, h0) : T (A0
f0−→ A1

g0−→ A2
h0−→ A0)• → τ̂ ∗22 T (A1

g0−→ A2
h0−→ A0

f0−→ A1)•

project onto−−−−−−−→
cogenerators

C−•(A1,f0h0g0 A1id)

Bn,m,p(~φ|~ψ|~θ|α) =
∑

I1I2={1,2,··· ,n}
as ordered sets

ηa1,a2 · 1⊗ λ(~φI1)
(
λ(~θ)λ(~ψ)λ(~φI2)a2 ⊗ a0 ⊗ a1

)(C.5)

Then,

(C.6) D(B(A0, A1, A2)) = τ1!(A2 • A0, A1) ◦ τ1!(A0 • A1, A2)− τ1!(A0, A1 • A2).
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Proof. We will show that Equation C.6 holds by direct computation. Since all of the

maps are maps of cofree comodules, we only need to check that π1( Equation C.6 ) holds

where π1 denotes projection of the comodule onto cogenerators. More explicitly, we want
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to check that

(C.7)

Bn,m,p(δ̃(~φ)|~ψ|~θ|α) + Bn,m,p(~φ|δ̃(~ψ)|~θ|α) + Bn,m,p(~φ|~ψ|δ̃(~θ)|α) +

Bn−1,m,p(b′(~φ)|~ψ|~θ|α) + Bn,m−1,p(~φ|b′(~ψ)|~θ|α) + Bn,m,p−1(~φ|~ψ|b′(~θ)|α) +

Bn,m,p(~φ|~ψ|~θ|b(α)) + b ◦Bn,m,p(~φ|~ψ|~θ|α) +∑
I1I2={1,...,n}
J1J2={1,...,m}
as ordered sets

εI2,J1,J2,{1,...,p−1} ·B|I1|,|J1|,p−1(~φI1|~ψJ1|~θ{1,··· ,p−1}|θp{~ψJ2}{~φI2} · α) +

∑
I1I2={1,...,n}
as ordered sets

εI2,{1,...,m−1},{m},{1,...,p} ·B|I1|,m−1,p(~φI1 |~ψ{1,··· ,m−1}|~θ|ψm{~φI2} · α) +

ε{n},{1,...,m},{},{1,...,p} ·Bn−1,m,p(~φ{1,··· ,n−1}|~ψm|~θ|φn · α) +∑
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

ε{2,...,n},J1,J2,K1 · φ1{~θK1}{~ψJ1} ·Bn−1,|J2|,|K2|(~φ{2,··· ,n}|~ψJ2 |~θK2|α) +

∑
J1J2={1,...,m}
as ordered sets

ε{1,...,n},J1,J2,{1} · θ1{~ψJ1} ·Bn,|J2|,p−1(~φ|~ψJ2|~θ{2,··· ,p}|α) +

ε{1,...,n},{1},{2,...,m},{} · ψ1 ·Bn,m−1,p(~φ|~ψ{2,··· ,m}|~θ|α) +

τn,p≤∗≤m+p
1! (~φ|~ψ • ~θ|α) +

∑
I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1·

τ
|I1|≤∗≤|I1|+|K1|,|J1|
1! (~θK1 • ~φI1 , ~ψJ1 , τ

|J2|≤∗≤|I2|+|J2|,|K2|
1! (~φI2 • ~ψJ2|~θK2|α))

= 0.
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In Equation C.7 above, we call the terms in rows 1-3 the “standard terms” in the computa-

tion of D(B(A0, A1, A2)), and the terms in rows 4-9 the “extra terms” in the computation

of D(B(A0, A1, A2)). The terms in rows 10-11 are π1 of the righthand side of Equation

C.6; we will call these the “10th- and 11th-row terms”.

We compute the sum of the standard terms. In Table C.4, the leftmost column lists

the expressions that don’t cancel in the sum of the standard terms, the middle column

gives the standard term from which the expression comes, and the rightmost column

gives the term that cancels the expression. Table C.5 lists the remaining ninth row terms

that aren’t already listed in Table C.4. In Table C.5, the left column lists the remaining

expressions that don’t cancel in the ninth row, and the right column gives the extra term

that cancels the expression.

All of the terms in the tables describing the expansion of Equation C.7 cancel, so we’re

done. �
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Proposition C.5. Let τ1! and B be as defined in the previous propositions. Then,

[τ1!,B] := τ1!(A1 • A2, A0) ◦ B(A0, A1, A2) − B(A2, A0, A1) ◦ τ1!(A0 • A1, A2) = 0. (Note

that [τ1!,B] is a map from T (A0 → A1 → A2 → A0) to itself.)

Proof. We show the proposition by direct computation. Since all of the maps are

maps of cofree comodules, we only need to check that π1([τ1!,B]) = 0 where π1 denotes

projection of the comodule onto cogenerators. We check this directly.

[π1 ◦ τ1!(A1 • A2, A0) ◦B(A0, A1, A2)](~φ|~ψ|~θ|α)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1 · τ
|K1|≤∗≤|K1|+|J1|,|I1|
1! (~ψJ1 • ~θK1 |~φI1|B|I2|,|J2|,|K2|(~φI2|~ψJ2|~θK2|α))

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1 · ηa1,a2·

τ
|K1|≤∗≤|K1|+|J1|,|I1|
1! (~ψJ1 • ~θK1|~φI1|1⊗ λ(~φI2)[λ(~θK2

)λ(~ψJ2
)λ(~φI3 )a2,a0,a1])

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1 · ηa1,a2 · 1⊗ λ(~θK1)λ(~ψJ1)λ(~φI1)[λ(~θK2)λ(~ψJ2)λ(~φI2)a2, a0, a1]
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[π1 ◦B(A2, A0, A1) ◦ τ1!(A0 • A1, A2)](~φ|~ψ|~θ|α)

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1 ·B|K1|,|I1|,|J1|(~θK1|~φI1|~ψJ1|τ
|J2|≤∗≤|I2|+|J2|,|K2|
1! (~φI2 • ~ψJ2|~θK2 |α))

=
∑

I1I2={1,...,n}
J1J2={1,...,m}
K1K2={1,...,p}
as ordered sets

εI2,J1,J2,K1 · ηa1,a2 · 1⊗ λ(~θK1)λ(~ψJ1)λ(~φI1)[λ(~θK2)λ(~ψJ2)λ(~φI2)a2, a0, a1]

It’s clear that π1([τ1!,B]) = 0. �
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APPENDIX D

Pullbacks, Pushforwards and an Adjunction

In the first section of this appendix, we give the definition of the natural pullback

used for dg comodules and show that it satisfies Equation 4.1 (Proposition D.1). We also

prove a useful Proposition D.2 describing the pullbacks of cofree dg comodules in terms

of cogenerators. We then use Proposition D.2 to compute some examples of pullbacks.

In Section D.3, we show that our pullback is right adjoint to a pushforward. This

adjunction is used in Chapter 6 when passing from dg cocategories and dg comodules to

dg categories and dg modules. Use of this adjunction is not central to our narrative, and

may perhaps become unnecessary as understanding of the structure on dg categories and

dg modules evolves.

A technical detail in all of this is that we work with conilpotent dg comodules over

conilpotent dg cocategories. We discuss these details in Section D.4.

D.1. Pullbacks of dg comodules

Let λ : B1 → B0 be a functor between conilpotent dg cocategories. In this section,

we will define a functor λ∗ from the category of conilpotent dg comodules over B0 to the

category of conilpotent dg comodules over B1. We call λ∗ “co-extension of scalars”.
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D.1.1. Category-theoretic definition of λ∗

Let λ be as above, and let C be a conilpotent dg comodule over B0. We define λ∗C as

follows:

(D.1) λ∗C := ker
(
B1 ⊗λ C

idB1
⊗∆C

⇒
(idB1

⊗λ⊗idC)◦(∆B1
⊗idC)

B1 ⊗λ B0 ⊗ C
)

where B1⊗λC and B1⊗λB0⊗C are dg comodules over B1 defined below. For f ∈ Obj(B1),

[B1 ⊗λ C](f) : =
( ⊕
h∈Obj(B1)

B•1(f, h)⊗ C•(λh),∆(f) =
⊕
h

∆B1(f,h) ⊗ idC(λh)

)
[B1 ⊗λ B0 ⊗ C](f) : =

( ⊕
h1∈Obj(B1),
h2∈Obj(B0)

B•1(f, h1)⊗B•0(λh1, h2)⊗ C•(h2),

∆(f) =
⊕
h1, h2

∆B1(f,h1) ⊗ idB0(λh1,h2) ⊗ idC(h2)

)
.

The names of the maps in Equation D.1 are also meant to be suggestive. In full detail,

for f ∈ Obj(B1),

[idB1 ⊗∆C ](f) :=
⊕
h

idB1(f,h) ⊗∆C(λh)

and

[B1 ⊗λ C](f)
[∆B1

⊗idC ](f):=
⊕
h

∆B1
(f,h)⊗idC(λh)

−−−−−−−−−−−−−−−−−−−−−→
⊕

h1,h2∈Obj(B1)

B1(f, h1)⊗B1(h1, h2)⊗ C(λh2)

[idB1
⊗λ⊗idC ](f):=

⊕
h1, h2

idB1(f,h1)⊗λ(h1,h2)⊗idC(λh)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [B1 ⊗λ B0 ⊗ C](f).

That the kernel is well-defined follows formally from the abelianness of the category of

chain complexes, but it is also easy to check that the induced differentials from [B1⊗λC](f)
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on the kernel are well-defined. Since ∆λ∗C is induced by ∆B1 , we have that ∆λ∗C also

satisfies coassociativity, counitality and conilpotency.

Next, we will define λ∗ on morphisms. Let F : C → D be a map of conilpotent

dg comodules over B0. By the universal property of λ∗D, we can define a morphism

λ∗F : λ∗C → λ∗D by giving a morphism from (λ∗F )′ : λ∗C → B1⊗λD such that the two

maps

(D.2)

(idB1⊗∆D)◦(λ∗F )′, (idB1⊗λ⊗idD)◦(∆B1⊗idD)◦(λ∗F )′ : λ∗C → B1⊗λD ⇒ B1⊗λB0⊗D

coincide. We define (λ∗F )′ as follows:

(λ∗F )′ : λ∗C
canonical−−−−−→
inclusion

B1 ⊗λ C
idB1

⊗F
−−−−→ B1 ⊗λ D
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It’s easy to check that the two maps in Equation D.2 coincide: Let b⊗ c be an arbitrary

element of λ∗C(f) ↪→ [B1 ⊗λ C](f). Then,

[(idB1 ⊗∆D) ◦ (λ∗F )′](b⊗ c) =
∑
(Fc)

b⊗ (Fc)(1) ⊗ (Fc)(2)

=
∑
(c)

b⊗ Fc(1) ⊗ Fc(2) (F is a map of comodules)

= [(idB1 ⊗ F ⊗ F ) ◦ (idB1 ⊗∆C)](b⊗ c)

= [(idB1 ⊗ F ⊗ F ) ◦ (idB1 ⊗ λ⊗ idC) ◦ (∆B1 ⊗ idC)](b⊗ c)

(b⊗ c is in the kernel)

=
∑
(b)

b(1) ⊗ λb(2) ⊗ Fc

= [(idB1 ⊗ λ⊗ idD) ◦ (∆B1 ⊗ idD) ◦ (λ∗F )′](b⊗ c).

So, λ∗F is well-defined. In summary, we have commuting diagrams:

(D.3)

λ∗C
canonical
inclusion−−−−−→ B1 ⊗λ C

λ∗F

y yidB1
⊗F= map inducing λ∗F

λ∗D
canonical
inclusion−−−−−→ B1 ⊗λ D

Finally, it is straightforward to see that λ∗ is a functor, i.e., that λ∗ preserves composition

of morphisms: Let C
F→ D

G→ E be composable morphisms of dg comodules over B0. The

maps inducing λ∗F , λ∗G and λ∗(G◦F ) are idB1⊗F , idB1⊗G and idB1⊗GF , respectively.

The inducing maps respect composition–(idB1 ⊗G) ◦ (idB1 ⊗F ) = idB1 ⊗GF–and by the

commuting diagrams D.3, the functor λ∗ does as well.
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Proposition D.1. Let F : B2 → B1 and G : B1 → B0 be functors between dg

cocategories B2, B1 and B0. Let M be a dg comodule over B0. Then,

(GF )∗M ∼= F ∗G∗M.

Proof. We will prove the proposition by showing that F ∗G∗M satisfies the universal

property of (GF )∗M . First, let N be a dg comodule over B2 and H : N → B2⊗GF M be

a map of dg comodules such that the two maps

(D.4)

(idB2⊗GF⊗idM)◦(∆B2⊗idM)◦H, (idB2⊗∆M)◦H : N → B2⊗GFM ⇒ B2⊗GF⊗B0⊗M

coincide. We will show that H determines a map of dg comodules H̃ : N → F ∗G∗M . Let

x ∈ Obj(B2). Define

H ′x : N(x)
Hx−→

⊕
y∈Obj(B2)

B2(x, y)⊗M(GFy)

F⊗idM−−−−→
⊕

y∈Obj(B2)

B1(Fx, Fy)⊗M(GFy)

⊂ [B1 ⊗GM ](Fx).

The image of H ′x lands in G∗M(Fx), a subcomplex of [B1 ⊗G M ](Fx); checking this is

straightforward using the universal property of G∗M , the fact that F commutes with the

coproducts, and Equation D.4. So, for each x ∈ Obj(B2), we have a map of complexes
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H ′x : N(x)→ G∗M(Fx). Now define H̃ as follows:

H̃x : N(x)
∆N−−→

⊕
y∈Obj(B2)

B2(x, y)⊗N(y)

∏
idB2

⊗H′y−−−−−−→
⊕

y∈Obj(B2)

B2(x, y)⊗G∗M(Fy)

⊂ [B2 ⊗F G∗M ](x).

Showing that H̃ lands in G∗F ∗M , a subcomodule of [B2⊗F G∗M ], is also straightforward;

we only need that F and H commute with the appropriate coproducts, and that the

cocomposition on B2 is coassociative. So, for each x ∈ Obj(B2), we have a map H̃x :

N(x) → G∗F ∗M(x). It’s clear that H̃ is a map of dg comodules since all of the maps

used to construct H̃ are maps of dg comodules.

Now, let H̃ : N → F ∗G∗M be a map of dg comodules over B2. We will show that

H̃ determines a map of dg comodules H : N → B2 ⊗G FM satisfying Equation D.4. For

x ∈ Obj(B2), let H be defined as follows:

Hx : N(x)
H̃x−→ F ∗G∗M(x)

canonical−−−−−→
inclusion

⊕
y∈Obj(B2)
z1∈Obj(B1)

B2(x, y)⊗B1(Fy, z1)⊗M(Gz1)

idB2
⊗εB1

⊗idM−−−−−−−−−→
⊕

y∈Obj(B2)

B2(x, y)⊗M(GFy).



93

The universal property of G∗M implies that (idB2 ⊗∆M) ◦H is equal to:

N(x)
H̃x−→

⊕
y∈Obj(B2)
z1∈Obj(B1)

B2(x, y)⊗B1(Fy, z1)⊗M(Gz1)

(idB2
⊗idB1

⊗G⊗idM )◦
−−−−−−−−−−−−−→

(idB2
⊗∆B1

⊗idM )

⊕
y∈Obj(B2)

y1,z1∈Obj(B1)

B2(x, y)⊗B1(Fy, y1)⊗B0(Gy1, Gz1)⊗M(Gz1)

idB2
⊗εB1

⊗idB0
⊗idM−−−−−−−−−−−−→

⊕
y∈Obj(B2)
z1∈Obj(B1)

B2(x, y)⊗B0(GFy,Gz1)⊗M(Gz1).

On the other hand, the universal property of F ∗ implies that (idB2 ⊗GF ⊗ idM) ◦ (∆B2 ⊗

idM) ◦H is equal to:

N(x)
H̃x−→

⊕
y∈Obj(B2)
z1∈Obj(B1)

B2(x, y)⊗B1(Fy, z1)⊗M(Gz1)

(idB2
⊗G⊗idB1

⊗idM )◦
−−−−−−−−−−−−−→

(idB2
⊗∆B1

⊗idM )

⊕
y∈Obj(B2)

y1,z1∈Obj(B1)

B2(x, y)⊗B0(GFy,Gy1)⊗B1(y1, z1)⊗M(Gz1)

idB2
⊗idB0

⊗εB1
⊗idM−−−−−−−−−−−−→

⊕
y∈Obj(B2)
z1∈Obj(B1)

B2(x, y)⊗B0(GFy,Gz1)⊗M(Gz1).

So, the difference between the two maps in Equation D.4 comes down to the difference

between (εB1 ⊗G) ◦∆B1 and (G⊗ εB1) ◦∆B1 . However, by the counitality of B1, both of

these maps are equal to G. So, H satisfies Equation D.4. �

Proposition D.2. Let λ : B1 → B0 be a functor between conilpotent dg cocategories

and C a conilpotent cofree dg comodule over B0. Then, as comodules,

(D.5) λ∗C ∼= B1 ⊗λ T
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where righthand side is the following cofree comodule over B1:

[B1 ⊗λ T ](f) :=
⊕

h∈Obj(B0)

B1(f, h)⊗ T (λh)

T (λh) = cogenerators of C(λh)

(See Equation 5.1 for an explanation of cogenerators.)

Proof of Proposition D.2. To prove the proposition, we will give maps

F : λ∗C � B1 ⊗λ T : G

and show that F ◦G = idB1⊗λT and G ◦ F = idλ∗C . We define F as follows:

F : λ∗C
canonical−−−−−→
inclusion

B1 ⊗λ C
project onto−−−−−−−→
cogenerators

B1 ⊗λ T.

To define G, we will give a map G′ : B1 ⊗λ T → B1 ⊗λ C, and show that the image of G′

lands in λ∗C. We define G′ as follows:

G′(b⊗ t) =
∑
(b)

b(1) ⊗ λb(2) · t

where b ⊗ t ∈ B1 ⊗λ T and λb(2) · t are elements of the appropriate components of C

written in terms of cogenerators.

To prove that the image of G′ lands in λ∗C, we need to show that the two maps

(idB1⊗∆C)◦G′, (idB1⊗λ⊗ idC)◦ (∆B1⊗ idC)◦G′ : B1⊗λ T → B1⊗λC ⇒ B1⊗λB0⊗C
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coincide. We have

[(1⊗∆C) ◦G′](b⊗ t) =
∑

(b), (λb)

b(1) ⊗ (λb(2))(1) ⊗ (λb(2))(2) · t

=
∑
(b)

b(1) ⊗ λb(2) ⊗ λb(3) · t

= [(idB1 ⊗ λ⊗ idC) ◦ (∆B1 ⊗ idC) ◦G′](b⊗ t)

where the second equality holds since λ is a map of cocategories and ∆B1 is coassociative.

It’s clear from the definitions that F and G are maps of comodules and that F ◦G =

idB1⊗λT . All that remains is to show that G ◦ F = idλ∗C . Let κ = Σibi ⊗ βi · ti be an

arbitrary element of λ∗C ↪→ B1 ⊗λ C where βi · ti are elements of C written in terms of

cogenerators. Then,

GF (κ) = GF (Σibi ⊗ βi · ti) =
∑
i,

βi=1,
(bi)

bi(1) ⊗ λbi(2) · ti.

We can divide the terms in κ into two groups: (a) terms in which βi = 1 ∈ k and (b)

terms in which βi 6= 1 ∈ k. Likewise, we can divide the terms in GF (κ) into (a) terms in

which λbi(2) = 1 and (b) terms in which λbi(2) 6= 1. From the definitions of F and G, it’s

clear that the Group A terms in κ are exactly the Group A terms in GF (κ).

To show that the Group B terms are the same, let bi⊗ βi · ti be an arbitrary Group B

term in κ. Then, there is a term bi⊗βi⊗ ti in (idB1⊗∆C)κ. Since (idB1⊗∆C)κ = (idB1⊗

λ⊗idC)◦(∆B1⊗idC)κ, there must be a Group A term, bji⊗tji , in κ such that bi⊗βi⊗ti is

one of the terms in the sum [(idB1⊗λ⊗idC)◦(∆B1⊗idC)](bji⊗tji) =
∑
(bji )

bji (1)⊗λbji (2)⊗tji .

Thus, bi ⊗ βi · ti is a Group B term in GF (κ).
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Now let bi(1)⊗λbi(2) ·ti be an arbitrary Group B term in GF (κ). Then, bi(1)⊗λbi(2)⊗ti

is a term in (idB1 ⊗ λ ⊗ idC) ◦ (∆B1 ⊗ idC)κ = (idB1 ⊗ ∆C)κ. So, there is a Group B

term, bji ⊗ βji · tji , in κ such that bi(1) ⊗ λbi(2) ⊗ ti is one of the terms in the sum

(idB1 ⊗ ∆C)(bji ⊗ βji · tji) =
∑

(βji )

bji ⊗ βji (1) ⊗ βji (2) · tji . Since ti is a cogenerator, the

only term in the sum that could be equal to bi(1) ⊗ λbi(2) ⊗ ti is bji ⊗ βji ⊗ tji . Thus,

bi(1) ⊗ λbi(2) · ti is a Group B term in κ. �

D.2. Examples of pullbacks

Now, we use Proposition D.2 to compute some examples of pullbacks of dg comodules.

For the examples below, let C be the category in dg cocategories defined in Equation 1.2

and T (A) be the dg comodule defined in Section 5.2.

Example D.2.1. Let m : C(A0, A1)⊗· · ·⊗C(An, A0)→ C(A0, A0) be the composition

functor. Then, T (A0 → · · · → An → A0) := m∗T (A0) is a cofree dg comodule with the

following structure. Let (A0
f0−→ A1 → · · · → An

fn−→ A0) be an object in C(A0, A1)⊗ · · · ⊗



97

C(An, A0). Then,

T (A0
f0−→ A1 → · · · → An

fn−→ A0)• =

= {(φ0,1| . . . |φ0,k0)⊗ · · · ⊗ (φn,1| . . . |φn,kn)⊗ α =

= A0

f0,0

��

⇓φ0,1

f0,1 ��...
f0,k0 66

α

idA0

99
A1

��...
��

66
· · ·

��
...

��

66
An

fn,0

��

⇓φn,1

fn,1 ��...
fn,kn 66

A0

s.t. φi,j ∈ C•(Ai,fj−1
Ai+1fj

), α ∈ C−•(A0,fn,kn ...f0,k0
A0)}

dT = d̃C + b̃+ ι̃ where

d̃C = extension of the differentials on C(Ai, Ai+1 (modn+1)), 0 ≤ i ≤ n to T

b̃ = extension of the Hochschild chain differential to T

ι̃ = extension of ι(φ0,1|...|φ0,k0
)•···•(φn,1|...|φn,kn )α as a coderivation to T (see Equation B.1)

Example D.2.2 (Pullbacks along rotations). Fix algebras A0, . . . , An and let τn ∈

Λ([n], [n]) be a generating rotation. Set

τ̂n : C(A0, A1)⊗ . . .C(An, A0)
rotation functor−−−−−−−−−→ C(An, A0)⊗ · · · ⊗ C(An−1, An)

τn! : T (A0 → · · · → An → A0)→ τ̂ ∗nT (An → A0 · · · → An) map of dg comodules.
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Then, the target of τn!, τ̂
∗
nT (An → A0 · · · → An) is a cofree dg comodule with the following

structure. Let (A0
f0−→ A1 → · · · → An

fn−→ A0) be an object in C(A0, A1)⊗· · ·⊗C(An, A0).

Then,

τ̂ ∗nT (An
fn−→ A0 → . . .

fn−1−−→ An)• =

= {(φ0,1| . . . |φ0,k0)⊗ · · · ⊗ (φn,1| . . . |φn,kn)⊗ α =

= An

fn,0

��

⇓φn,1

fn,1 ��...
fn,kn 66

α

idAn

88
A0

��...
��

66
· · ·

��
...

��

33
An−1

fn−1,0

��

⇓φn−1,1

fn−1,1 ��...
fn−1,kn−166

An

s.t. φi,j ∈ C•(Ai,fj−1
Ai+1fj

), α ∈ C−•(An,fn−1,kn−1
...fn,kn

An)}

dT = d̃C + b̃+ ι̃ where

d̃C = extension of the differentials on C(Ai, Ai+1 (modn+1)), 0 ≤ i ≤ n to T

b̃ = extension of the Hochschild chain differential to T

ι̃ = extension of ι(φn,1|...|φn,kn )•(φ0,1|...|φ0,k0
)•···•(φn−1,1|...|φn−1,kn−1

)α as a coderivation to T .

D.3. Adjunction between λ∗ and λ#

In this section, we define λ#, the left adjoint to λ∗. More precisely, for any functor,

λ : B1 → B0 between conilpotent dg cocategories, we define a functor λ# from the category

of conilpotent dg comodules over B1 to the category of conilpotent dg comodules over B0.
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D.3.1. The functors λ#

Let λ : B1 → B0 be a functor between conilpotent dg cocategories. Let C be a conilpotent

dg comodule over B1. We define λ#C as follows: for f ∈ Obj(B0),

λ#C(f) :=
( ⊕
f ′∈λ−1f

C•(f ′),

∆λ#C(f) :
⊕

f ′∈λ−1f

C•(f ′)

⊕
f ′

∆C• (f ′)

−−−−−−→
⊕

f ′∈λ−1f
h′∈Obj(B1)

B•1(f ′, h′)⊗ C•(h′)

⊕
h′,f ′

λ⊗idC•(h′)

−−−−−−−−−→
⊕

h′∈Obj(B1)

B•0(f, λh′)⊗ C•(h′)

include−−−−→
⊕

h∈Obj(B0)

B•0(f, h)⊗ (
⊕

h′∈λ−1h

C•(h′))
)
.

To check that ∆λ#C is well-defined, we need that the image of the first map,
⊕
f ′

∆C•(f
′),

is a finite sum. This is true since C being conilpotent implies that the image of ∆C•(f
′)

is a finite sum for each f ′ ∈ Obj(B1). If λ−1f is empty, we set λ#C(f) := 0. It is

straightforward to check that (λ#C,∆λ#C) is coassociative, conilpotent and coaugmented.

We will call λ# “co-restriction of scalars”.

Let F : C → D be map of dg comodules over B1. We define λ#F as follows:

(λ#F )f : λ#C(f) =
⊕

f ′∈λ−1f

C•(f ′)

⊕
f ′∈λ−1f

Ff ′

−−−−−−→
⊕

f ′∈λ−1f

D•(f ′) = λ#D(f).

It’s straightforward to check that λ# is a functor (i.e., respects composition of mor-

phisms).
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D.3.2. Adjunction

Proposition D.3. Given a functor between conilpotent dg cocategories, λ : B1 → B0,

let

λ∗ :
Category of
conilpotent

dg comodules over B0

�
Category of
conilpotent

dg comodules over B1

: λ#

be the functors defined in Sections D.1.1 and D.3.1. Then, λ# is left adjoint to λ∗.

Remark D.3.1. Proposition D.3 is a categorified co-version of the adjunction between

extension of scalars (left) and restriction of scalars (right) for modules over algebras.

Proof of Proposition D.3. Let C be a conilpotent dg comodule over B1 and D

be a dg conilpotent dg comodule over B0. We want to show that

HomB1(C, λ∗D) = HomB0(λ#C, D)

as sets.

We will give maps

Φ : HomB0(λ#C, D) � HomB1(C, λ∗D) : Φ−1

satisfying Φ ◦ Φ−1 = id and Φ−1 ◦ Φ = id.

First, we define Φ. Let F be a morphism from λ#C to D. By defintion, for f ∈

Obj(B0), we have maps of complexes

Ff :
⊕

f ′∈λ−1f

C•(f ′)→ D•(f).
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Define ΦF ∈ HomB1(C, λ∗D) as follows: for f ′ ∈ Obj(B1),

ΦFf ′ : C•(f ′)
∆C−−→

⊕
h′∈Obj(B1)

B•1(f ′, h′)⊗ C•(h′)

⊕
h′
idB1

⊗Fλh′ |h′

−−−−−−−−−→
⊕

h′∈Obj(B1)

B•1(f ′, h′)⊗D•(λh′)

include−−−−→ [B1 ⊗λ D](f ′).

(D.6)

By the universal property of λ∗D, this defines a morphism C → λ∗D if the two maps

(idB1 ⊗∆D) ◦ ΦF, (idB1 ⊗ λ⊗ idD) ◦ (∆B1 ⊗ idD) ◦ ΦF : C ⇒ B1 ⊗λ B0 ⊗D

coincide. In fact, on f ′ ∈ Obj(B1), both maps are equal to:

C•(f ′)
∆C−−→

⊕
h′∈Obj(B1)

B•1(f ′, h′)⊗ C•(h′)

⊕
h′
idB1

⊗∆C

−−−−−−−→
⊕

g′,h′∈Obj(B1)

B•1(f ′, g′)⊗B•1(g′, h′)⊗ C•(h′)

⊕
h′,g′

idB1
⊗λ⊗1C

−−−−−−−−−→
⊕

g′,h′∈Obj(B1)

B•1(f ′, g′)⊗B•0(λg′, λh′)⊗ C•(h′)

⊕
h′,g′

idB1
⊗idB0

⊗Fλh′ |h′

−−−−−−−−−−−−−−→
⊕

g′,h′∈Obj(B1)

B•1(f ′, g′)⊗B•0(λg′, λh′)⊗D•(λh′).

This fact follows from F being a map of comodules. It’s also clear that ΦF commutes

with coproducts and differentials. So, we’ve shown ΦF ∈ HomB1(C, λ∗D).
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Second, we define Φ−1. Now, let F ∈ HomB1(C, λ∗D). For f ∈ Obj(B0), define

Φ−1Ff :
⊕

f ′∈λ−1f

C•(f ′)

⊕
f ′
Ff ′

−−−→
⊕

f ′∈λ−1f,
h′∈Obj(B1)

B•1(f ′, h′)⊗D•(λh′)

⊕
f ′,h′

λ⊗idD

−−−−−−→
⊕

h∈Obj(B0)

B•0(f, h)⊗D•(h)

⊕
h
εB0
⊗idD

−−−−−−→ D•(f).

It’s clear that Φ−1F commutes with the differentials. We will show that Φ−1F is a map

of comodules. Figure D.1 gives a diagram showing that

(D.7) ∆D ◦ Φ−1Ff = (
⊕
f ′,h′,r′

εB0λ⊗ λ⊗ idD) ◦ (
⊕
f ′,h′

∆B1 ⊗ idD) ◦ (
⊕
f ′

Ff ′).

On the other hand, Figure D.2 gives a diagram showing that

(D.8) (idB1 ⊗ Φ−1F ) ◦∆λ#C = (
⊕
f ′,h′,r′

λ⊗ εB0λ⊗ idD) ◦ (
⊕
f ′,h′

∆B1 ⊗ idD) ◦ (
⊕
f ′

Ff ′).

We see that the righthand sides of Equations D.7 and D.8 are the same except for the B0

factor on which εB0 acts. However, in general, for λ : B1 → B0 a map of dg cocategories,
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we have

(λ⊗ εB0λ) ◦∆B1 = (idB0 ⊗ εB0) ◦∆B0 ◦ λ (λ commutes with coproduct)

= idB0 ◦ λ (definition of cocategory)

= (εB0 ⊗ idB0) ◦ (∆B0) ◦ λ (definition of cocategory)

= (εB0λ⊗ λ) ◦∆B1 (λ commutes with coproduct).

So, (idB1 ⊗ Φ−1F ) ◦∆λ#C = ∆D ◦ Φ−1F , and Φ−1F ∈ HomB0(λ#C,D).

For F : C → λ∗D a map of dg comodules and f ′ ∈ B1, Figure D.3 shows that

ΦΦ−1Ff ′ = Ff ′ . For F : λ#C → D a map of dg comodules and f ∈ B0, Figure D.4 shows

that Φ−1ΦFf = Ff . Thus, we have ΦΦ−1 = id and Φ−1Φ = id. �
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��
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��
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⊕

f
′ ∈
λ
−

1
f

C
• (
f
′ )

⊕ f
′
F
f
′

��

⊕ f
′

∆
C

//
⊕

f
′ ∈
λ
−

1
f

h
′ ∈
O
bj

(B
1
)

B
• 1
(f
′ ,
h
′ )
⊗
C
• (
h
′ )

⊕
f
′ ,
h
′
λ
⊗
id
C

//

⊕
f
′ ,
h
′
id
B

1
⊗
F
λ
h
′|
h
′

~~

⊕
h
′ ∈
O
bj

(B
1
)

B
• 0
(f
,λ
h
′ )
⊗
C
• (
h
′ )

⊕ h
′
id
B

0
⊗
F
λ
h
′|
h
′

��
⊕ f

′ ∈
λ
−

1
f
,

r
′ ∈
O
bj

(B
1
)B
• 1
(f
′ ,
r′

)
⊗
D
• (
λ
r′

)

∆
λ
∗
D

=
⊕
f
′ ,
r
′
∆
B

1
⊗
id
D

��

⊕
h
′ ,
r
′ ∈
O
bj

(B
1
)

B
• 0
(f
,λ
h
′ )
⊗
B
• 1
(h
′ ,
r′

)
⊗
D
• (
λ
r′

)

⊕
h
′ ,
r
′
id
B

0
⊗
ε B

0
λ
⊗
id
D

��
⊕
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−

1
f
,
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′ ,
r
′ ∈
O
bj

(B
1
)B
• 1
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′ ,
h
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⊗
B
• 1
(h
′ ,
r′

)
⊗
D
• (
λ
r′

)

⊕
f
′ ,
h
′ ,
r
′
λ
⊗
id
B

0
⊗
id
D

33

⊕
h
∈
O
bj

(B
0
)

B
• 0
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,h

)
⊗
D
• (
h

)

F
ig

u
re

D
.2

.
C

om
m

u
ti

n
g

d
ia

gr
am

in
vo

lv
in

g
(i
d
B

1
⊗

Φ
−

1
F

)
◦

∆
λ

#
C

(i
d
B

1
⊗

Φ
−

1
F

)
◦

∆
λ

#
C

=
co

m
p

os
it

io
n

of
re

d
ar

ro
w

s.
T

h
e

fa
ct

th
at
F

re
sp

ec
ts

co
p
ro

d
u
ct

s
im

p
li
es

th
at

th
e

le
ft

sq
u
ar

e
co

m
m

u
te

s.



106
C
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∆
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⊕
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⊕
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D.4. Conilpotence

In this section, we show that the dg categories and dg comodules we have been working

with are conilpotent. For completeness, we start with the definition of a dg cocategory.

Definition D.4.1. A dg cocategory is a cocategory enriched over chain complexes.

More explicitly, a dg cocategory B consists of the following data:

• A collection of objects denoted Obj(B);

• For each pair of objects, x, z ∈ Obj(B), a complex B•(x, z) and a morphism of

complexes

∆B(x, z) : B•(x, z)→
∏

y∈Obj(B)

B•(x, y)⊗B•(y, z)

such that the following diagrams commute (coassociativity):

B•(x, z)
∆B(x,z)

//

∆B(x,z)

��

∏
y∈Obj(B)

B•(x, y)⊗B•(y, z)

∏
y
idB(x,y)⊗∆B(y,z)

��∏
y∈Obj(B)

B•(x, y)⊗B•(y, z)

∏
y

∆B(x,y)⊗idB(y,z)

//
∏

y,y′∈Obj(B)

B•(x, y)⊗B•(y, y′)⊗B•(y′, z)

• For each pair of objects, x, z ∈ Obj(B), a morphism of complexes

εB(x, z) : B•(x, z)→ k



109

where k is the ground field considered as a chain complex concentrated in degree 0

and εB(x, z) = 0 if x 6= z, such that the following diagrams commute (counitality):

B•(x, z)
∆B(x,z)

//

∆B(x,z)

��

id

((

∏
y∈Obj(B)

B•(x, y)⊗B•(y, z)

∏
y
εB(x,y)⊗idB(y,z)

��∏
y∈Obj(B)

B•(x, y)⊗B•(y, z)∏
y
idB(x,y)⊗εB(y,z)

// B•(x, z).

We will denote a dg cocategory with its cocomposition and counit as (B,∆B, εB). To

make the notation more readable, when the meaning is clear, we will omit references to the

objects and write ∆B instead of ∆B(x, z), εB instead of εB(x, z), and for the differentials

on morphisms, dB instead of dB(x, z).

Definition D.4.2. A (dg) functor F : A → B between two dg cocategories is a

functor between the cocategories satisfying dB ◦ F (f) = F ◦ dA(f) for all morphisms f in

A.

Definition D.4.3. A conilpotent dg cocategory is a dg cocategory (B,∆B, εB) sat-

isfying: for each morphism f : x → y in B, there exists nf ∈ N such that ∆̄
nf
B (f) = 0

where

∆̄B(x, z) : B•(x, z)→
∏

y∈Obj(B)

B•(x, y)⊗B•(y, z)

f 7→ ∆B(f)−
∑

ex∈εB(x,x)−1(1)

ex ⊗ f −
∑

ez∈εB(z,z)−1(1)

f ⊗ ez.
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The following fact follows from the definitions: If B is a conilpotent dg cocategory,

then for all x ∈ Obj(B), εB(x, x)−1(1) has exactly one element, which we will denote ex.

Example D.4.1. Let C be the category in dg cocategories defined in Equation 1.2 and

A0, . . . , An be algebras. Then, C(A0, A1)⊗ · · · ⊗ C(An, A0) is conilpotent:

∆̄min(k0,...,kn)(φ0,1...φ0,k0 |...|φn,1...φn,kn) = 0.

Now, we will discuss conilpotence of the dg comodules. Recall the definition of a dg

comodule in Definition 3.3.3.

Definition D.4.4. A conilpotent dg comodule over a dg cocategory B is a dg comod-

ule (C,∆C) over B satisfying: for each f ∈ Obj(B) and each element α ∈ C•(f), there

exists nα ∈ N such that ∆̄nα
f (α) = 0 where

∆̄C(f) : C•(f)→
∏

g∈Obj(B)

B•(f, g)⊗ C•(g)

α 7→ ∆B(α)−
∑

ef∈εB(f,f)−1(1)

ef ⊗ f.

Example D.4.2. Since all of the dg comodules we use are cofree, their comodule

structure maps are induced by the cocompositions of the dg cocategories. Any cofree dg

comodule over a conilpotent dg cocategory is conilpotent.
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