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ABSTRACT

What Do Algebras Form?

Ann Rebecca Wei

Algebras and their bimodules form a 2-category in which 2-morphisms are certain zero-
th Hochschild cohomology groups. When we derive this structure (i.e., use Hochschild
cochains instead of HH? for 2-morphisms), we find that algebras form a category in dg
cocategories. The Hochschild-Kostant-Rosenberg theorem and non-commutative calculus
give a rich algebraic structure on Hochschild cohomology along with Hochschild homology.
When incorporating the structure on Hochschild homology, we find that algebras form a
2-category with a trace functor. Deriving this again, we conclude that algebras form a

category in dg cocategories with a trace functor up to homotopy.
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Nomenclature

k — a fixed ground field of char 0
k — mods — the category of modules over &
1 — the unit in (a vector space isomorphic to) k
[1] — shift operator on complexes, C*[1] = C**!
A — Connes cyclic category, see Appendix [A]

A(b) = Z b1y ® bzy — Sweedler notation for coproducts
(0)

By — B as an A-C-bimodule with left structure given by
the map of algebras f : A — B and right structure
given by the map of algebras g : C' — B

fB I:f BidB
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What do algebras (over a fixed field k of characteristic zero) form? A straight-forward

answer is that they form a 2-category as follows:

Objects: k-algebras A, B, ...
1-Morphisms: bimodules 4Mp
1-Composition: y,Mp ®p gNe
2-Morphisms: morphisms of bimodules.

When we restrict the above 1-morphisms to only those bimodules that come from maps
of algebras (i.e., bimodules 4 Mp where 4Mp =4y Bp =iy B for some map of algebras
f : A — B), then 2-morphisms have an additional structure, namely they are certain

zero-th Hochschild cohomology groups:
{morphisms of bimodules ;B —, B} & Za(,By) = HH(A, ,By)

M — M(1)

(My: 0 5 b-8) i b
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In summary, we have the following 2-category C"

Objects: k-algebras A, B, . ..

1-Morphisms: bimodules ;B, f: A — B map of algebras

(1.1)

1-Composition: ;B ®@p ,C, A ENY;ENVe,
2-Morphisms: HH"(A, ;B,) = Za(;By,)

The question naturally arises: what happens if we use Hochschild cohomology or
cochains instead of just HH° for 2-morphisms? The answer is that algebras form a

category, C, in dg categories as follows:

Objects: k-algebras A, B, ...

Morphisms: dg cocategory Bar(Hoch(A, B)
(1.2)
Composition: e : Bar(Hoch(A, B)) ® Bar(Hoch(B,C')) — Bar(Hoch(A,(C))

associative map of dg cocategories

In Chapter [2| we spell out the details of €. Bar(Hoch(A, B)) is a cofree dg cocategory
that uses Hochschild cochains as morphisms. The composition, e, uses the brace operator
on Hochschild cochains (Reference [6], Equation 4.8). The fact that e is associative follows
from References [3], [4], [5].

Thus far, we have used Hochschild cochains to show that algebras form a category in
dg cocategories. Non-commutative calculus tells us that the pair, (Hochschild cochains
C*(A, A), Hochschild chains C_4(A, A)), is a Calcw-algebra (Reference [1I], Corollary 4).

In other words, Hochschild cochains is a Gerstenhaber,-algebra and acts on Hochschild
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chains up to homotopy via (1) an analogue of the Lie derivative, and (2) an analogue of
the contraction of a form against a vector field.

Taking advantage of this Clalc, structure, we incorporate H Hy and find that algebras
form a 2-category with a trace functor (Chapter . In Section , we give the definition
of a trace functor on a 2-category a la Kaledin, and describe a trace functor on C' (the
2-category given in Equation that uses the action of HH° on HH,.

Again, we ask: can we derive this structure? Can we use Hochschild homology or
chains instead of H Hy to get a trace functor on € (the category given in Equation ?
We give the definition of a trace functor on a category in dg cocategories in Section [3.3]
but continue massaging the definition in Chapter ] to make precise the notion of a trace
functor “up to homotopy”. Ultimately, we settle on the following language: on €', a
category in dg cocategories, a trace functor gives a dg functor x(C') — D where x(€’)
and D are dg categories introduced in Section [4.2] Then, a trace functor up to homotopy
on €' is an A-functor x(€¢') — D.

Finally, in Chapter [5| we give an A-functor x(€’) — D for € the category given in
Equation . In Chapter @, we apply a Cobar(—) functor to everything to get a category
in dg categories with a trace functor up to homotopy. We do this in hopes of constructing
something like a category in categories or an Fy object. However, our understanding of
all of the structures that appear after applying Cobar(—) is still evolving.

In Appendix [A] we give the presentation of Connes cyclic category A used throughout
the thesis. In Appendix[B] we give some background on Hochschild chains and cochains as
well as their contraction operator ¢ and a “Lie derivative like” operator A(—). We reserve

all lengthy computations for Appendix [C] where we also establish our computing notation.
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In Appendix [D] we give details on pulling back dg comodules over dg cocategories as well

as the adjunction used in Chapter [6] and a note on conilpotence.
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A category in dg cocategories
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2.1. Motivation of this chapter

In this chapter, we show that algebras form a category in dg cocategories. As stated

in the introduction, we will construct such a category with
Objects: k-algebras A, B, ...
Morphisms: dg cocategory Bar(Hoch(A, B)
Composition: e : Bar(Hoch(A, B)) ® Bar(Hoch(B,C)) — Bar(Hoch(A,C))
associative map of dg cocategories.

First, we define the dg cocategories Bar(Hoch(A, B) using Hochschild cochains as mor-

phisms, then we define the composition e using the brace operator on Hochschild cochains.
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2.2. Dg cocategories Bar(Hoch(A, B))

Let A, B be k-algebras. We define a dg category, Hoch(A, B), as follows:

Objects: algebra maps f: A — B
Morphisms: Hoch(A)(f,g) = (C*(A, By), 6,)

Composition: cup product on cochains.

(See Appendix [B| for notation and standard operations on Hochschild complexes.) The
cup product is an associative map of complexes, so Hoch(A, B) is a dg category.

Now, we will take Bar(—) of Hoch(A, B), which is a categorified bar construction:
Bar : DGCat — DGCocat.

Bar(Hoch(A, B)) has the same objects as Hoch(A, B). A morphism in Bar(Hoch(A, B))
from object fj to object f,, is a sequence of composable morphisms in Hoch(A, B) starting
at fy and ending at f,,. We can picture such a morphism as follows:

fo

o1
f1

g2

(¢1¢n):

Figure 2.1. A morphism in Bar(Hoch(A, B))(fo, fx)



where ¢; € C*(A,;, , By,). As a complex,

Bar(Hoch(A, B))*(f,q) =

=k0l® D Hech(AB)I WO Heh(AB)® L1 )0 Hoch(AB) (1) f)
counit n20,

fi€0bj(Hoch(A,B))
dBar(Hoch(A,B)) = dHoch(A,B) + dy
d~HOCh( 4,B) = extension of dp,cn(4,p) to a differential on Bar

dy, = signed sum over composing (cup-producting) two consecutive ¢;’s

with cocomposition

A dn) =D £(61...6) @ (di1--- bn)-

0<i<n

For more precise details and explicit signs, see Reference [6], Section 4.6.

18
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2.3. Associative Composition e

Now, we define an associative composition of dg cocategories
Bar(Hoch(A, B)) ® Bar(Hoch(B,C)) — Bar(Hoch(A,C))

where A, B, C' are k-algebras. To define the composition, we use the fact that
Bar(Hoch(A,(C)) is the cofree dg cocategory over Hoch(A,C). In other words,

Bar(Hoch(A, C)) satisfies the following universal property:

B - Hoch(A,C)

Bar(Hoch(A,(C))

Figure 2.2. Universal Property of Bar

where B is any dg cocategory, the horizontal map is a map of underlying structure
(i.e., an association on objects and maps of complexes of morphisms), and the diagonal
lift arrow is a map of dg cocategories. For us, B = Bar(Hoch(A, B)) ® Bar(Hoch(B, C)).
We will define a map of underlying structure Bar(Hoch(A, B)) @ Bar(Hoch(B,C)) —

Hoch(A,C), which will lift to the map of dg cocategories

o : Bar(Hoch(A, B)) ® Bar(Hoch(B,C)) — Bar(Hoch(A,C)).
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The map on underlying structure is defined as follows:

Bar(Hoch(A, B)) ® Bar(Hoch(B,C)) — Hoch(A, C)

On objects: f® g+ go f

fo€Obj(Bar(Hoch(A,B)))

Y1
f1 go€O0bj(Bar(Hoch(B,C))) gofo€Obj(Hoch(A,C))
TN /Jw\ N
On morphisms: A o B C = A 9,603 C
\/ \U/
91€0bj(Bar(Hoch(B,C))) 91 fn€0bj(Hoch(A,C))
Jo 90 go fo
X\ /X X\
Y Pug @ A ©
fn 9 9g1fn
fo 90 gofo
/0 P S X\
A ek B S C —» A W C
fn g1 glfn

All other non-pictured pairings of a morphism from Bar(Hoch(A, B)) and a morphism
from Bar(Hoch(B,C')) map to zero. The brace operation is given in Reference [6], Equa-

tion 4.8, and the fact that it is associative follows from References [3], [4], [5].



CHAPTER 3

A 2-category with a trace functor
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3.1. Motivation of this chapter

In this chapter, we give a trace functor on C, the 2-category introduced in Equation
[I.1} This trace functor enriches the categorical structure on algebras by incorporating the
action on Hochschild cohomology (HH°) on Hochschild homology (H Hy). We start with
Kaledin’s definition of a trace functor on a 2-category.

In preparation of the following chapters, we generalize Kaledin’s definition to a trace

functor on a category in dg cocategories in Section .
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2. A trace on C

Definition 3.2.1. (Kaledin): A trace functor on a 2-category C' is:

e for each A € Obj(C), a functor TR, : C(A, A) — k — mod

e for each pair A, B € Obj(C), a natural transformation 7(A, B):

T=flip

C(A,B)®@C(B,A) C(B,A)®@C(A, B)
C(A,A) n(4.B) C(B,B)
k — mod

such that, for A, B,C € Obj(C),
n(B,A) on(C,B)omn(A,C) =id.

C(C,A) & C(A,C) & C(B,C)

/ \

C(A,B)® C(B,C)® C(C, A) n(Fa) C(B,C)® C(C, A) @ C(A, B)
() n(C.B)

TR(/ om
TRaom? TRpgom?

k — mod

Now, we will give a trace functor on the 2-category, C, define in Equation Let

A € 0bj(C) be an algebra and f : A — A a map of algebras. Then, we set

A A
(A Al (fla) - d' —a’-a)

TRA(fA) =
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And for morphisms,

A A A
CA AN 9) © p 3 = ZalA0) © Cr—p =
bar—b-a

is a well-defined map on k-modules. For algebra maps f, f': A < B : g, ¢, we define the

natural transformation n(A, B) as follows:

U (A,B)(f,g)
1B® o AllAs B D A ,A® (B/[B,,A@ B

b®a] ——— [a® ]

(b/'va/') I [ (a/'vb/')

V-b@d- -al = [d-axl -

/B /A A /B /A /A /B B/A /B
f %’g /[ o f %)g ] g %f /[ g %f ]

u (A,B)(f/,g/)

where V' € Za(pBy), o € Zp(yA4,), a € A, b € B. Clearly, this flip map 7 satisfies

Equation [3.]
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3.3. Redefining the trace functor

In this section, we generalize Kaledin’s definition of a trace functor on a 2-category to
a trace functor on dg cocategories. First, we transform the definition from the language

from functors and natural transformations to the language of modules.

Definition 3.3.1. Let € be a k-linear category. A left module over C is a k-linear

functor € — k — mods.

Given the definition above, we can rewrite the definition of a trace functor on a 2-

category in the language of modules.

Definition 3.3.2. (Kaledin, reformulated): Let € be a category in k-linear categories.

A trace functor on C is:

e for each A € Obj(C), a left module T'(A) over C(A, A)

e for each pair A, B € Obj(C), a map of modules over C(4, B) ® C(B, A)

n(A,B) : migaT(A) = 7"mp T (B)

where m4p4 is the composition functor mags : (A4, B) ® C(B, A) — C(A, A), T
is a flip functor, and pulling back along a functor means pre-composition.

o for A, B,C € Obj(€),

721(B, A) o 7*1(C, B) o 1i(A, C) = id.
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Now, we will translate from modules to dg comodules. Reversing the arrows in Def-
inition [3.3.1, we have the following definition for a dg comodule over a category in dg

cocategories.

Definition 3.3.3. Let C be a dg cocategory. A dg comodule over € is: for each

f € Obj(@), a complex T*(f) and map of complexes

Ap:1(f) = [ er9eT(y

geOb;(C)

such that the following two maps coincide (coassociativity):

*(f)

0|

[T C(f.9)@T*(g)

g€0b;(C)

Ae(®id ) id®A(g)

I[I ¢ (f,9®C(g,g)T*(g)

9,9'€0b5(C)
and the following diagram commutes (counitality):

A(f)

*(f) I[I C(f.9)®@T*(g)

geO0bj(C)

ee®id

*(f).

Finally, we can rewrite Definition [3.3.2]in terms of dg comodules.
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Definition 3.3.4. Let € be a category in dg cocategories. A trace functor on C is:

o for each A € Obj(C), a dg comodule T'(A) over C(A, A)

e for each pair A, B € Obj(€), a map of dg comodules over C(A, B) ® C(B, A)

(A, B) : migaT(A) = 7"mpT(B)

where map4 is the composition functor mapa : C(A, B) ® C(B, A) — C(A, A),
7 is a flip functor. We can take any definition for the pullback that is a natural

and satisifies

F*G* = (GF)*.

e for A, B,C € Obj(C),

(3.1) 721(B, A) o 7*1(C, B) o 1i(A, O) = id.



CHAPTER 4

Interlude
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4.1. Motivation of this chapter

The purpose of this chapter is to show that a trace functor 7" on a category € in

dg cocategories gives a dg functor Fr : x(€) — D where x(€) and D are dg categories

introduced in Defintions |4.2.1] and [4.2.2] respectively. We switch from the trace functor

T to the dg functor I so that we can make precise the notion of a “trace functor up to
homotopy”. Namely, a trace functor on € up to homotopy is an A, -functor from y(C)
to D (see Definition [4.2.3)). In the next chapter, we give such an A.-functor for € being

the category given in Equation [1.2]
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4.2. From a trace functor to a dg functor

We begin this section by defining two dg categories.

Definition 4.2.1. Let € be a category in dg cocategories. Let x(C) be the dg category

with
e Objects = {Ag — -+ — A, = Ay : A; € Obj(C),n > 0}
e Morphisms = {linear combinations of compositions of
rotations 7, : A — (A, = Ag — -+ = A,)
coboundaries §;, : A+ (Ag = -+ = Aj = Ajlo(modnt1) — -+ — Ao)

codegeneracies: 0, : A (Ag— - = A, = A — - — Ap)

where A := (Ag — -+ — A, — Ap), subject to the cyclic relations in Appendix

HY

Definition 4.2.2. Let D be the dg category with
e Objects = {(dg cocategory, dg comodule)}
B c

e Morphisms:

F: By — By dg functor,
Dp((Bla Cl)y (BO; CO)) =

F : C) — F*Cy degree-p linear map

do(F, F) = (F,[d, F] = dpc, o Fy £ Fr o do,)

e Composition: (G, G) ° (F,F) = (GF,F*G,o F)
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Composition in D will be well-defined and associative for any choice of a natural

pullback that satisfies
(4.1) F*G* = (GF)".

For consistency, we will choose the same pullback of dg comodules for Definitions
and (See Appendix @ for an explicit description of the pullback we’ve chosen for
dg comodules over the endomorphism dg cocategories given in Equation )

Now, let € be a category in dg cocategories and 7" be a trace functor on € (Definition

3.3.4). We will show that T gives a dg functor Fr : x(€) — D. On objects,

C(Ap, A1) ® - ® C(A,, Ag) dg cocategory,

(Ag = -+ = A, — Ay) Lf—> m**T(Ap) dg comodule where
N -— 7/ JT
€0bj(x(€))

m™: C(Ap, A1) ® - @ C(A,, Ag) = C(Ap, Ao)
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On generating morphisms in x(C),

(4.2)
0 := composition functor over (j + 1) factor
I R Ol Ayn) © €y ) © S €Ay, Ajr) © -,
M T (Ag) 2T 55 VT (Ag) = (m15,,) T(Ag) = m* T Ay)
Gin = insert ida, and 1 € k into the i slot
Gintr | @C(AL A) @ T @ (AL A) © C(A; A) B
M T (Ag) 22 Gx T (Ag) = (m i, ) T (Ag) = m* T(Ao)
T, := rotate factors
. C(Ao, A1) @ -+ @ C(Ap, Ag) T €(Ap, Ag) @+ ® €(An-1, An),
" I m*™ T (Ap) T =m0 (Ao, An), 7*m* T (A,) where

mrt (G(Ao, A1> SIRICIN) G(An—la An)) X G(An, Ao) — G(Am An) X G(An, Ao)

To show that this association on generating morphisms gives a functor, we should check
that Fr preserves the cyclic relations in Equation[A.2] All of the relations involving §’s and
o’s are straightforward to check and follow from (1) the associativity of the composition
functor m in €, and (2) the general fact that foid = ido f = f for a map f. The

+

remaining relation, 77! = id, is preserved:

e for n = 2 because this is Equation [3.1] from the definition of a trace functor,
e for n > 2 because these are pullbacks of Equation [3.1]

e and for n = 1 because this follows from Equation with B = C and the fact

that oy 1) is an identity map on comodules.
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Fr is dg because 0,1 1= id, 0; 1 1= id and 7, 1= m* 17 commute with the differentials.

Now, we are ready to define a “trace functor up to homotopy”.

Definition 4.2.3. Let C be a category in dg cocategories. A trace functor up to

homotopy on C is an A..-functor

F:x(€) =D

where x(€) and D are dg categories defined in Defintions [4.2.1] and 4.2.2} respectively,

(and we use the notation and conventions from Reference [2], Appendix A, Definition A.8

for the definition of an A, -functor,) satisfying

©(Ao, Ao),
o F(Ag— Ag) = (4o, o)

T(Ap) any dg comodule over C(Ay, Ao)
e forn > 0,

C(Ap, A1) ® - - ® C(An, Ao),
F(Ag = -+ = Ay — Ag) & m**T'(Ag) where

m" G(Ao, Al) R R G(An, Ao) — Q(Ao, Ao)

o for A\ =10;,,0,,, F(A)=TFr(N) given in Equation
71 := rotate factors

o F(11) = [ @(A, A1) ® C(A1, Ag) = €(Ay, Ag) ® C(Ap, Ay),

1!

T(Ag) — 77T(A1) any map of dg comodules
e for n > 1, F(r,) = Fr(r,) given in Equation [4.2]



34

There are many stipulations in the definition above because not every functor x(€) —
D comes from a trace functor. However, an dg functor satsifying Definition does

come from a trace functor.



CHAPTER 5

A trace functor up to homotopy
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5.1. Motivation of this chapter

In this chapter, we give a trace functor up to homotopy on the category € defined in
Equation [1.2] To do so, we give an A-functor F : x(€) — D satisfying certain require-
ments (see Definition [4.2.3). Applying the definition of an A..-functor (from Reference

[2], Appendix A, Definition A.8), the only choices we need to make to define F are:

(1) for each algebra A, a dg comodule T'(A) over C(A, A),
(2) for a functor of dg cocategories F' : C7 — Cj and a dg comodule T over Cy, a
definition of a pullback F*Tj that is natural in T, and satisfies Equation 4.1}

(3) for each pair of algebras A, B, a map of dg comodules over C(A, B) ® C(B, A)
(A, B) : T(A) = 77T(B)

where 71 : C(A, B) ® C(B,A) — C(B, A) ® C(A, B) is rotation,
(4) for each non-generating morphism p € x(€), a map of dg comodules F(u) € D,
(5) for each pair of morphisms p1, 2 € x(€), a degree-1 map of comodules F(py, ps) €
D,
(6) for each sequence of morphisms p, ..., u, € x(€) where n > 2, a degree-(n-1)

map of comodules F(uq, ..., u,) € D.

In Section [5.2] we define item (1), the dg comodule T'(A), which is a (categorified) bar
construction of the module C(A, A) over the algebra C*(A, A) acting via contraction. In
Appendix @, we give item (2) as well as compute some examples of pullbacks for later use.
In Proposition we define item (3) by adapting known equations for the Lie derivative

of a Hochschild cochain against a chain. In Section[5.3.1] we give a prescription for defining
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item (4). We see that F respects composition except for a few cases (Section , and we
give a prescription for defining the few non-zero F(u, p2)’s in item (5) (Section [5.3.2)).
Finally, for item (6), we set F(y1, ..., pn) = (zero map on comodules) for all composable
My, ..., MUy, n > 2: this is the claim that we have no higher homotopies, justified in

Section [B.5
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5.2. Dg comodules T'(A)

Let A be an algebra and Hoch(A, A) be the dg category defined in Section First,

we will define a dg module, T'(A) over Hoch(A, A):

I(A).(f) = (0_.(A,f A)? b)

Hoch(A, A)*(f,9) ® T(A)*(g) = C*(A,; Ag) ® C_s(A,g A) = C_o(A,; A) = T(A)*(f)

where f : A — A is a map of algebras, (C_4(A,r A),b) is the Hochschild chain complex
(see Appendix [B)) and ¢ is the contraction operation from Equation

Now, let B(A) := C(A, A) = Bar(Hoch(A, A)) be the endomorphism dg cocategory
defined in Section [2.2] Then, we set T'(A) := Barmoa(Hoch(A, A), T(A)), a dg comodule

p—

over B(A). Bar,,q is a functor
Bar,.q : {dg modules over Hoch(A, A)} — {dg comodules over B(A)}.

More explicitly,

T(A)*(f) =
= . Hoch(A, A)*[1)(fo, f1) ® -+ @ Hoch(A, A)*[1](fuz1, fu) @ T°(fn)
f¢€Obj{LfIZo%h(A,A))
fo=f
= P CARANN® - @C (A, , A @ Cu(A,, A).

We can picture an element of T'(A)*(f) as follows:
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fo
o1

g2

(é1...6ula) = 4 " A

ida

Figure 5.1. An element of T(A)*(f = fo)

where ¢; € C*(A,;, , Ay,) and a € C_4(A,s, A). The differential on T'(A) is:

dray = dioenan) +b+1
JHOCh(AA) = extension of dgocn(a,a) to a differential on T'(A)

b = extension of the Hochschild chain differential b to a differential on T(A)

Z<¢1 <o (bn’a) = <¢1 <. ¢nfl|b<¢n7 Oé))

The coproduct on T(A) is induced by the coproduct on B(A):
A(¢r ... guln) = Z (1. ¢i) @ (Dig1 - - - Pulav).
0<i<n

For more precise details and explicit signs, see Reference [6], Section 4.6. T'(A) is the

cofree dg comodule over B(A) with cogenerators given by Hochschild chains. In other
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words,

maps of dg comodules 1:1 maps of complexes
D — T(A) over B(A ) = C_o(A,f A) ,
feObj(B(A))

(5.1)
G D+T<A>) = (DM T Ty 2 Ay )

f

D(f)y *% @ B(A)(f.9) @ D(g)

geObj(B(A))

HE, @ BA(f.9) 0 Ol 1) | (D7) 5 ol A))f
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5.3. Prescriptions for F(uq, ..., u,)

5.3.1. Prescription for F(u)

Now, we will define F(u) for u not a generating morphism in A. (A general morphism in
X(€) is a linear combination of morphisms in A, so we extend JF linearly to define F on
any morphism in x(€), see Definition [4.2.1])

Let i be a non-generating morphism in A that induces a morphsim in x(€) with source
A= (4 — -+ = A, = Ap) for some algebras A;, 0 < i < n, n > 0. Choose (i.e., fix
once and for all) a presentation of p as a composition of generating morphisms. Within
the chosen presentation, in the following order, (1) replace all occurrences of 71,1,
with &y,72, (2) replace all 7,110,, with 7'77:11007”7'”, (3) replace all decompositions of
identity maps with identity maps, (4) remove all identity maps if p # id, (5) call this
new presentation “the presentation corresponding to p”, denoted p = Ayg, ... Au1. The

presentation corresponding to p is not unique (i.e., still depends on the original chosen

presentation). However, letting F(u) act on comodules via
F(i) == Ny N 1 (Na) © o 0 N (Auan) 0 At : T(A) = T (pA)

is well-defined because we have made consistent choices. More explicitly, we show in
Section that the choices we have made for F({generating morphisms}) respect all of
the relations in A (Equation [A.2)) except for Equations . The above steps ensure that

the presentation corresponding to p only uses the lefthand side of Equation and the
righthand sides of Equations and [5.4b]
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5.3.2. Prescription for F(uq, p2)

Before defining & on pairs of composable morphisms, let’s take a look at an A, relation

we expect F to satisfy: For - 25 - 2% . composable morphisms in x(€), we expect

(5.2) Fpz 0 1) = Fpz) 0 Fp) + do,. 0 Fpa, pa).

Given the definition of F(u) above, we require a non-zero F(puy, p12) if and only if: (Condi-
tion H) the presentation corresponding to ps composed with the presentation correspond-
ing to y; contains, after removing (decompositions of) identity maps except for 77, one
or more of the following terms: 7,-10n—11n, Tn+10nn, LT g, po satisfy Condition H,
homotopies given in Section can be used to define F(uy, po). If py, po do not satisfy
Condition H, let F(uq, p2) = 0 on comodules.

We will give some instructive examples of non-zero F(uy, pe) that satisfy Equation

0.2

Example 5.3.1. Let 1y = 0p—1,n, pto = Tu—1. Then, the presentation corresponding to

papty i 0onT2. Let F(pr, p2) be the homotopy given in Section|5.4.2.1. Then, Equation

holds because it is equivalent to Equation [5.4d,

Example 5.3.2. Let 11 = 09 pn—10n—1n, 2 = Tn—100,. 10 form the presentation

corresponding to pspy, we follow these steps:

remove decompositions replace

2
(507,,17'” .

Tn—lfs(],no-o,n—lén—l,n Tn—l(gn—l,n

of identities
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On the other hand,

— — ~

?(m)?(,ul) = (50,n00,n—15n—1,n)*(Tn—1!> o (Uo,n—15n—1,n)*(50,n!) o 5:1_1,71(00,71—1!) O On—1,n!

o )
= 5n71,n(7-n—1!> oido 5n—1,n!~

So, we can let F(u1, p2) be the homotopy given in Section|5.4.2.1), and Equatz’on holds

because it is equivalent to Equation[5.4d,

Example 5.3.3. Let (uy, p2) € {(Tas1, Onn), (079, 79) 0 1 < j < n,n € N}. Let
F(p1, o) be the homotopy given in if o = 0 and the homotopy given in

if iy # onn. Then, Equation holds because it is equivalent to either Equation
(2 = Onn) or Equation (tho 7 Onn)-

Example 5.3.4. Let j11 = 0p—1n—10n—1n, H2 = Tn. To form the presentation corre-

sponding to sy, we follow these steps:

replace (-) ) replace (-)

n n 2
(TnUO,nfl)énfl,n T O-O,n71<7—n715n71,n Th O-O,nfl(sO,nTn-

*
n—1n

(Tn_/ﬁ:l’n)* ((T[}fao\m_l)*(Tm) 0...004, 1(T) OUo,n—u) o (homotopy in Section|5.4.2.1)).
Then, Equation holds because it reduces to 6;_, ,, (Equation and Equation .

Let F(pq, o) = g1 + g2 where gy = h) (homotopy in Section [5.4.2.5) 0 §,—1.n and g2 =
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5.4. Computational: Composition of maps of dg comodules

In Equations [£.2] and we gave the maps of dg comodules re-stated below:

djnt : m T (Ap) % A;nm*”’lT(Ao) Equation [4.2]
Oin : mMT(A) % &5 ,m* T (Ag) Equation

Tt 2 M T (Ap) w0 An), T m™T(A,) Equation
T m*T(Ag) — Tym* T (Ay) Equation for A=Ay, B= A

Here, we show that these maps satisfy the relations in A (Equation [A.2)) up to homotopy.

More precisely, we will show that

Sjm(éi,nfl!) 00jn = 5Zn(6j71,n71!) 00;in 0<i<jyj<n-—1

A%

05 (Cimin) 005 = 07, (Cjrimin) 00 0<i<j<n

Jn
(
(5.3a) 07 1n(Cin-n)0dj1m 0<i<j<n
670 (0jntr) © it = < id j=11—1

5;”(01‘—1,71—1!) 0 djn O0<j<i-1l<n-1

~

0 (Tgnt) 0 Oiy = T (Cip1m) 0Tt 0<i<n—1

(5.3b)

A

o; (Tn—ll) o in! = %;<5j+1,n!) O Th! 0 S ] S n—1

J?n

—

(5.3¢) (7100,0)"(0o,11) © G5 o(T11) © To,00 = id



45

and

(5-42) %;2(50,71!) 0 7y (Tnt) © Ty = 52—1,71(%—1!) O Op—1,n!

(54]3) %;"(Tng) 0...0 %:(Tn') o T, ~ id
5-:,71(7—71-1—1!) O Op.n!

(5.4c)

L —
o —

=~ <T7?+10-0,n7-n)*(7_n+1!) 0...0 (Tn—&—lo-/O\an)*(Tn—l—l!) o (UO,nTn)*(Tn+1!> o 7::;(0-0,110 O Tn!

5.4.1. Strict relations: showing Equations hold

Equation has three relations. All of the o/’s and d,’s in Equation are identity
maps, so it’s clear that these relations hold.

Equation has two relations. To show that the first one holds, we have

A A - < . . <
07 (Tnynr) 0 i = 67, ((602---O0n41)"(T11)) © 04 definitions of 7,1y and 4.

—

= (00.2---00.n+10in)"(Tn1) © 0;,m  Proposition [D.1

—

*
= (80,2---00,n)" (T11) © T4 1
= Tp 00, definitions of 7,y and 4..
= Tp! OidZ’idOTn!

= 7A—7;I<(O-Z'Jrl,rL!) O Thl.
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To show that the second relation holds, the reasoning is the same as above. We have

0% (Tuc1t) © 0 = 5;,n((5072$n—1)*(71!)) © 9jnl
= (50,2~~5/0,7—15jm)*(7_1’) © 9jn!
= Tp1 0 0!
=Ty 0td =1ido Ty
= 77(0j+1.n1) O Thl.
Equation has one relation. The only map in this relation that is not defined to be

an identity map is &4 o(711). We will compute this map and show that it is also an identity.

Let (¢1...0k|a) € T(Ao) =: T(Ag — Ao) (see Figure for notation). By Proposition

D2

T(Ag — Ag) = 65T (Ag — Ay — Ao)

(G1--kla) = Y (1..0p) @ (Udrpr..delx).

0<r<k

Applying 65 o(711) to the righthand side, we have

5'6,0(7'1!)

a-(>)k,()7“'(140 — AO — A()) 6370%1*T(A0 — Ao — Ao)

> (61-00) @ (UpgroGrla) = D (¢1..6,)®

0<r<k 0<r<s<k

(@r41---Os[ 1|1 (L] g1 P| ).
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The righthand side above is equal to

D (01060) ® (Dr1- sl (L ssr- - Brla))

0<r<s<k

= Z <¢1¢7‘) ® ((errl---¢S|1‘Tflykis(1|¢0,so+1-"¢0,ko’a»

0<r<s<k

(see Proposition for definition of 71" )

= 3 (61..0,) ® ($rs1otillla) (70 =0)

0<r<k

€ 6'8707:1*,11(140 — AO — A())

Finally, applying Proposition again, we have

project onto cogenerators\

(3'8707:1*,11(140 — A(] — Ao) > T(AO — Ao)

~

> (G1--60) @ (Gre1-.-Brlller) = (d1...0k]a).

0<r<k

So, we've shown

5,0(T11) %

T(AO — Ao) = 6370T(A0 — AO — Ao) —_— 0'0’07A'1*T(A0 — AO — Ao) = T(AO — Ao)

is the identity map.

5.4.2. Weak relations: showing Equations hold
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5.4.2.1. Showing Equation holds. For n = 1, eliminating the identity maps

reduces Equation to:
7A'l*<7'1[) o7 X id.

We prove the above in Appendix Proposition . (In the appendix, we fix algebras Ay, Ay,
and T = 7'1[(140, A1)7 7A'1*(7'1!) = 7'1;(141, A()), and the hOIl’lOtOpy is denoted B(Ao, A1)>
For n = 2, eliminating the identity maps and writing 79 in terms of 7y, reduces

Equation to:

(60.272)" (T11) © 58,2(7'1!) = 5?2(71!)-
We prove the above in Appendix Proposition . (In the appendix, we fix algebras
Ap, A1, Az, and 53,2<71!> = m1(Ap ® Ay, As), (S02m2) (1) = T11(A2 @ Ay, A1), 512(71!) =

m1(Ap, A1 @ As), and the homotopy is denoted B(Ay, A1, As).)
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For n > 2, we reduce Equation to the case when n = 2. We have

Lefthand side of Equation = 72(8o,m) © T (1) © T
= id 0 #*((80.2-.-00.)" (T11)) © T
= (60200 Tn) " (T11) © T
= (80272005.--00.)" (T11) © T
= (d0272003--000)"(711) © (B0.2---O0.n7)" (711)

(503 00.n) " ((60,272)" (T11) © 58,27'1!)

Righthand side of Equation [5.4a]= 9, _, n(Tn,u) 0 Op—1.n)

—

=671 0 ((02--80,0-1)" (111)) 0 idd
= (80.2--O0m10n_12)" (1))
(512503 50n) (7'1!)

= (dos..-00.0) (37 (7).

So, Equation [5.4a] = (503 60.n)"( Equation [5.4a) n = 2). If B is a homotopy giving

Equation for n = 2, then ((503 .00.,)*B is a homotopy giving Equation for

n > 2.

5.4.2.2. Showing Equation holds. We prove this by induction on n. For n = 1,
Equation is the same as Equation [5.4a}, which we established in the previous section.

Now, assume that Equation holds for N = n — 1. We show that Equation holds
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for N = n below:

FUT) 0 .. 0 T (1) 0 Ty = TN (FE T 0 Ti) 0 B2 0 0 Ty

A

~ 7Oy Tae1t) © T AT 0 L 0 Ty (Equation

n

—

n—1 *
= (Tn—l 50,71) Tp—11©
~Axn—2 O Ak Sk S
o (Tn Op—2nTn—110 .. 07,01 Ty 110 507717”_1;)

—

n—1 * S ~Axn—2 Ak
= (Tn_l 50,n) Tn—1! 0 50,n (Tn_l Tn—110 ... 0Ty _1Tp-110 Tn—u)

Gy (T 11 © . 0 Ty
a 3Sn (id) (Inductive hypothesis)

id.

5.4.2.3. Showing Equation holds. By manipulating morphisms in A, we have

Righthand side of Equation [5.4d = 77, 0 71,1 0 ... 0 #7 0 7" id o 7

= Ty O (’f‘;nTn[ 0...0T Ty o Tnl)

~ 7, 0 (id) Equation



On the other hand, we have

Lefthand side of Equation = G (Tnsn) 0id
- 6-:;,n(6;:,n+1 (TTH-I!))

= <5n,n+10n,n)* (Tn!)

= Zd*(Tnl)

So, Equation holds.

ol
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5.5. Verification of A, relations

Now, we will check that our choices for F satisfy the rest of the relations for an
Aqo-functor from Reference [2], Definition A.8: For - & . 22 . B . B . composable

morphisms in x(C), we expect

(5.5) 0=dpoJF(u)
(5.6)  F(ua, p2 0 i) — Flus o po, pn) = F (s, pi2) 0 F(pa) — Fs) © F (g, 1)

(5.7) 0 = F(pa, p3) © Fpa, p11).

Equation [5.5] is satisfied since, for A € A a generating morphism, the \/’s we gave at the
beginning of Section [5.4] are maps of complexes. Equation [5.7] requires that composing
two of our degree —1 homotopies is always equal to zero. This is true because we use
reduced Hochschild chains (Section [B|) and each homotopy (Equations , inserts a
1 into the first slot of the Hochschild chains component.

We check that Equation holds for n = 1 and n > 2 separately. For n > 2, checking

Equation boils down to the following situation: We have two maps of dg comodules

(5.8) T(Ag— ... > A, = Ap)

- 5 *
A %2 (6n—2,n—15n—1,n) Tn—2!

TR T1OT A T 10Ty

“brace together the last 3 algebras,

“ 3 ”
apply 7n1 3 times then apply 7, _21 once”

T(Ap—2— An1 — Ay = Ag— .. = Apa).

These two maps are homotopic via two homotopies: 5;71,,13(140 o -0 A, 3 A, 2, A, 10

An) + 7—;27—71,! o B<A0 ®---0 An—?a An—la An) and 5;_27713(/10 ®:--0 An—37 An—? . An—b An) +
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TEB(A, e -0A, 3 A, o, Ay_q)oTy (see Figure. If the two homotopies were different,
then their difference would be closed and we would desire a higher homotopy (i.e., a degree
-2 map of comodules) between them. However, we will show the two homotopies are the

same, so that no higher homotopies are needed.

First, it follows directly from the definition of B (Appendix Equation |C.5)) that

Cx
5n—1,n

3(140 o -0, 3 A, 5, A @ A") - S*

n—2,n

B(Age---eA, 3 A, 204, 1 A,).
Second, for n = 2, we show that
(59) 7'2*27'2! OB(Ao,Al,AQ) :%;'B(AQ,Ao,Al)OTQ!

in Appendix Proposition . (In the appendix, 75279 = 711(A; ® Ay, Ag) and 7o =
T11(Age Ay, Ay).) For n > 2, the equation 721, 0 B(Age---0 A, o, A, 1, A,) =7:B(A, e
-0 A, 3, A, 9, A1) 0Ty is a pullback along 50’s of Equation .

For n = 1, the situation in Equation [5.8|reduces to: We have two maps of dg comodules

T(AO — Al — Ao)

#2708 T110m) ( ) T11

T(Al — AO — Al)

These two maps are homotopic via two homotopies: 7;(Ag, A1)oB(Ag, A1) and B(A;, Ag)o
711(Ao, A1) (see Figure[5.3). We show that these two homotopies are the same in Appendix

Proposition [C.3], so no higher homotopies are needed.
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—_— o~ A A A
* = * * * A%
(5n—2,n—15n—1,n) Tn—2! ——> 5n—1,n(5n—27n—17_n—2!) - n—l,n(Tn—lTn—ll © 7_n—ll)
“brace together A, —2, Ap_1,An, 5:,71,113(140.'".An—BaAn—QyAn—l.An)
then apply 7, _21”
—_— 2 A
* 2k *
(5n—27n—15n—2,n) Tn—2! Tn Tn! © 6n—1,n7_n—1!
“brace together A,_1, Apn
and apply T,—11,
R then apply 7,1
fn-zaBllosredn=s dn-aedn-tfin) a2 o (Age e g Ano1,An)
7A—»:;3(1471."‘.1471737A'n.72,A'rL71)
A R R oTp! R N
o (a4 T 11 0 Tuott) == o051 nTn11) O Tat ————> 12Ty 0 771 © Ty
“apply Ty, “apply 7,1 three times”

then brace together A, _1, An_2
and apply 7,_11"

Figure 5.2. Two homotopies between (0,-2,-10n-1n)*Tn-2 and 7327, o

%:Tn! O Tyl
Vertices are maps of dg comodules and arrows are chain homotopies.

idoTmy =71 =Ty014d
B(A1,Ag)ot11(Ao,A1) T11(Ap,A1)0B(Ao,A1)

(ﬂ*2ﬁ! Oﬁkﬁ!) o7 = %1*271! © (ﬁkﬁ! 071!)

Figure 5.3. Two homotopies between 71y and 7727 o 777y o Ty
Vertices are maps of dg comodules and arrows are chain homotopies.
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6.1. Motivation of this chapter

In Chapter [5] we gave an A-functor F : x(€) — D where € is the category defined
in Equation Applying Reference [2], Remark A.27, we can rectify F to a dg functor
F: U(x(€)) — D where U(x(®)) is the enveloping dg category of x (see Reference [2],
Definition A.25).

In other words, we have shown that algebras form a “category in dg cocategories with
a trace functor up to homotopy”. In this chapter, we show that algebras form a category
in dg categories with a trace functor up to homotopy. In other words, we give a dg functor
U(x(€)) — & where € is a dg category with objects pairs (dg category, dg module).

This chapter is not central to the narrative of this thesis, especially since understanding

of what happens after applying C'obar(—) is still evolving.

6.2. A functor to dg categories

In this section, we first give a dg functor D — Dy, which makes use of the adjunction

in Proposition [D.3] Then, we will give a dg functor  : D; — &.

6.2.1. Using the adjunction

Let Dy be the dg category with the same objects as D and morphisms

‘DI((Bh Cl), (B()7 O())) = {(F : By — By dg functor,
F : FuCy — Cy map of comodules of degree o)}

dD(F7E) = (F7 dco © E - <_1)‘FI‘E © dF#Cl)
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with composition

DI((Ba, Cy), (B1,C1)) @ DI((Bi, Ch), (Bo, Co)) — DI((Bz, C2), (B, Co))

(f, ) ®(g,9) = (gf, g0 gx(f1))-

This composition is well-defined because we can apply the formulas from g to (not
necessarily graded) morphisms of comodules. The composition is associative because of
the following easy-to-check fact: guf.C = (gf)xC for By ER B, % By functors of dg
cocategories and C' a dg comodule over Bs.

Now, we define a dg functor

Adj: D — D,

on objects: (B,C) — (B,C)
(F o1 F)

on morphisms: ((Bl,C’l) ) (BO,C’O)) — ((Bl,C’l) 5 (BO,C'O))

where q)frl : Homdg comodules<07 F*D) — Homdg comodules(F#Ca D) is defined in the pl”OOf
over By over Bg

of Proposition and makes sense as a function on (not necessarily graded) maps of

comodules. To check that Adj commutes with the differentials and respects composition,

we need

-1 _ -1
Pp" 0 dromp, (0, F+Cr) = AHomp, (Fy0a,01) © P

Doh(F*Gro 1) = 851 (G) o Gy (97 (F)

)

where (BQ,CQ) (Bl,C'l) (Bo, Co) in D.
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The equations above follow straight-forwardly from the definitions.

6.2.2. Applying Cobar

In this section, we will use the notion of a dg module over a dg category. This is dual to
a dg comodule over a dg cocategory (Definition |3.3.3)). Given a dg functor between dg
categories F': A; — Ag, we define “restriction of scalars”, F**, a functor from the category
of dg comodules over Ay to the category of dg comodules over A;. For M, a dg comodule
over AO and f € Ob](Bl), F*Mo(f) = M()(Ff)
Let € be the dg category defined below:
Obj(€) = {(A, M)|A is a dg category, M is a dg module over A}

EP((Ay, M), (Ao, Mo)) ={(f, f)If : A1 = Ap is a dg functor,

fi: My — f*My is a degree-p map of modules over Ay}

de(f, f) = (f, dpergg 0 fr = (=) fiodey)

composition

E°((Az, My), (A1, My)) x E°((A1, M), (Ao, My)) €°((Az, M), (Ao, My))

(f, 1)) x (g, 9) = (gf. f*(q) o ).
We will define a dg functor €2 : D; — €. On objects,

Q(B,C) := (Cobar(B),Cobar(B,C))
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where the first Cobar is a dg functor from the category of dg cocategories to the category
of dg categories, and the second Cobar sends dg comodules over B to dg modules over

Cobar(B) (see 6], Section 4.6). On morphisms,

F Cobar(F)

B1—B bar(B;) ———>Cobar(B

919( : F!°>H( Cobar o Cobar(Bo) )ee
FyC1—>Co Cobar(B1,01)—— (Cobar(F))*Cobar(Bo,Co)

where Q(F)) : Cobar(By,Cy) — (Cobar(F))*Cobar(By, Cy)
(b1]...]bnlc) — (Fby|...|Fby|Fic)
for b; € Bi(fi-1, fi);c € C7(fa), and f; € Obj(B1),0 <i < mn.
It’s straightforward from the definitions to check that 2 commutes with the differentials
and respects composition.
6.2.3. The end: putting everything together

We have dg functors

UxEe) Lo p e

This gives our category in dg categories with a trace functor up to homotopy.
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APPENDIX A

Connes cyclic category, A

Here, we give generators and relations for the cyclic category, A. None of this is new,
but we do it to establish notation for the rest of the paper.

A has objects {[n] : n € N} and generating morphisms:
rotations 7, : [n] — [n],
(A1) coboundaries §;, : [n] > [n—1],0<j <n-—1,

codegeneracies 0;, : [n] = [n+1],0<i<n



subject to relations:

5i,n—15j7n =

Oin+10jn

5j,n+10i,n

(AQ) Tn+10in
7-nfléj,n
n+1

50,17'100,0

Tn+10n,n

2
50’717'” =

5]'—1,71—151',71

= O0j+1,n+10in

/

ud

ud

=1d

n+1
Th+190,nTn

Tnflénfl,n-

O-i,nfl(sjfl,n

\O-z'—l,n—l(sj,n

0<i<j<n-—1

0<i<j<n

0<i<jyi<n

j=ii—1

0<j<i—-1<n-—1
= 0i+1,nTn nggn—l

_6j+1,n7—n OS]Sn_l
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Some presentations of A include an extra coboundary ¢, , and codegeneracy o,1 .

In terms of our generators, they are d,,,, 1= 00,7, and o471, =
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APPENDIX B

Background on Hochschild chains and cochains

In this appendix, we give some known constructions on Hochschild chains and cochains
for the reader’s convenience. Let k be a field of characteristic zero, A a flat unital k-
algebra, and M be an A-A-bimodule. Then, we can take (C¢(A, M),b), the (reduced
or standard) Hochschild chain complex of A with coefficients in M (see Reference [6],
Equation 2.1). When M = B is also an algebra over k with left and right module
structure given by two maps of algebras f : A — B and g : A — B, respectively, we may
write ;B, to clarify the module structure.

Let k, A, M be as above. We can also take (C*(A, M),d), the (reduced) Hochschild
cochain complex of A with coefficients in M (see Reference [6], Equations 2.12-13, 2.19-
21). When M = B is an algebra, (C*(A, B),0,U) is a dga where the cup product U is

given in Reference [6], Equation 2.14.
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Let f,g,h : A — Abe maps of algebras. We have a contraction operation of Hochschild

cochains and chains, which is a map of complexes:

(B.1)

L CP(Ap Ay) ® C_g(Asg An) — C_q—p)(As5 An)
¢®a0®...®aq|_>L(¢,a0®‘..®aq> ::¢.(a0®...®aq) =
= (1P (ay pi, . ay) a0 @ @ - @ gy

Finally, we have a “Lie derivative like” operation of Hochschild cochains and chains.

Fix an algebra A and let (¢;...¢,|a) € T(A)(fo) (see Figure be the following element

fo

o1

T h N
fn—1

‘u(b”l
fn

id
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We have a map of complexes

T(AL A = C (A, A)

(¢1--'¢n|a1 ® ... Clp) — >\(¢1¢n) . (a1 X ... ap)
deij(l@%lﬂ)

= Yoo (1=

0<ip<...<ign<p

foar @ ... ® foai, ® d1(aiy 41, -, a5,)®
® fiiy41 @ ... @ frai; @ Pa(@izy1, --v5 G3)®

.0 ¢n(ai2n71+17 XS] aizn) @ fnai2n+1 ®X...Q fnap'

It’s straightforward to check that A((¢1...¢n) @ (V1 ... Un)) = A1 ... V) A (@1 ... dn).
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APPENDIX C

Computations

In this appendix, we give the computational propositions needed to establish the
homotopically sheafy-cyclic structure on dg comodules. All the comodules we work with

will be cofree, and we will define maps into them by giving maps into cogenerators (see

Equation [5.1).



C.1. Computational notation

For this section’s propositions, we establish the following notation:

Ag, Ay fixed algebras

(B0]) == (¢1...bnlthr .. tbmla)

fo 90
YA
/AN
= Ao : Al : A

f'n a g;n

o €T(Ag— Ay — Ao)(g0fo)

id
&{il,@,...,ik} = ¢z1¢zz¢zk
where {i1, s, ..., 1} is an ordered subset of {1,...,n}
¢p =1 € k= Barg(C*(Ag, Ay))

dgy =1 € k = Barg(C*(As, Ap))

67
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|I| := number of elements in a set I

I, 15 := concatenation as ordered sets of possibly-empty sets I; and I

(2 lorl+D( 2 [¥s|+1)
€1, = (_1) rely sEJY

when [, J; are ordered indexing sets

—

A1), 5,0, b, w{gg} - = see Appendix [B| for operations on Hochschild (co)chains

C.1.1. Notation for elements of Hochschild chains

Let ap®a; ® - - - ® a,, denote a typical element of C_,(A, A) where A is some algebra. At
times, we wish to feed a portion of ay ® a; ® ... ® a,, to a Hochschild cochain (or other
map on chains) without specifying the degree of the cochain. To do this, we will rewrite
ap®a; @ ... a, =ag®@a; @ ... ®a, where each a; = aj, ® aj,41 ® ... ® a;,,,—1 and a; is
an empty chain if j; = 7;.1.

For example, if ¢ € C?(A, A), then we rewrite

Z g ¥ a1 & ...a;_1 &K (ﬁ(ai,aiﬂ) & (7)) X...Ra, = Z(IO XKa K Qb(ug) X as.

1<i<n—1

Ifa, =a; ® ... ® ap, then |a;| = p. For ap ® a; ® ay, we write 1q, o, = (—1) /a1l HlazD,

C.2. Computational Propositions

Proposition C.1. Fiz algebras A, B, and let 71 : C(A,B) ® C(B,A) — C(B,A) ®

C(A, B) be the rotation functor. Recall from Example the descriptions of the cofree
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dg comodules

m'T(A) 2T(A— B — A)

7*m*T(B) =2 T(B— A— B).
Define a map

m(A,B):m*T(A) 2T(A—- B —A) —T(B—A— B)27"m"T(B)

of comodules over C(A, B) ® C(B, A) by mapping into cogenerators as follows: for (A LY

B% A) € Obj(C(A, B) ® C(B, A)),

mu(forgo)  T(AB BB A) 5 T(BB AR gy 2Ly &0 (B, . B)

cogenerators

mu(fo, o)™ (Bldla) = D> di(AND)AN(6n,) - 83,00, 01) @ A(¢1,) - @

LIx={2,-,n}
as ordered sets

(+ foao @ M@)oy if m = 0).

(C.1)

where qz_g 1s an element of length n and @/7 is an element of length m (see Section. Then,

(A, B) : m*T(A) — 7*m*T(B) is a map of dg comodules over C(A, B) ® C(B, A).

Proof. We must show: (1) 7y, is a map of comodules, and (2) 71 commutes with the

differentials. (In this proof, we drop the subscripts and write 7y, := 7,(A4, B).)
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(1) This proof is standard for cofree comodules. Let (¢[)|cr) be as in the statement of

the proposition. We want to show that 7, commutes with the coproducts. On one hand,

[(idp ® T11) © Aper(a)) (Ol¥]a)

= [idp @ T]( > €ty (61, 101) @ (61, |V]0) )

I I={1,2,-- ;n} and
JiJ2={1,2,--- ,;m}
as ordered sets

— — — — T ,J — —
- Z €lsl3,01 " €l13,J (¢11|77Z}J1) ® (¢I2|¢J2) ® 7—1|!3| | 3|(¢13|77Z)J3|a)‘

I I[5I3={1,2,-- ,n} and
J1J2J3={1,2,~~- ,m}
as ordered sets

On the other hand,

[Aserpsr(B)y © T11 (@J’OO

= A"A'*m*T(B)( Z €L, Jp (¢I1|¢J1) ® 7-1|112‘7|J2‘<¢12|¢J2|a) )

I I,={1,2,-- ,;n} and
J1J2:{1,2,~~~ ,m}
as ordered sets

= > €ntgs €1t - (1 00) @ (91,[01) @ TN (Gr s ).

I1I213={1,2,- ,;n} and
J1J2J3:{1727"' ,’ITL}
as ordered sets

Clearly (idp ® 11) © Apsr(a) = Asemsr(B) © Ti1-
(2) We will show that 7, commutes with the differentials by direct computation. Since
711 is a map of cofree comodules, we only need to check that 7 0 D(7;) = 0 where D(y) is

the differential applied to 7y, as a linear map between complexes and 7; denotes projection
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of a comodule onto its cogenerators. More explicitly, we want to check that

(O ela) + T (@(W)|a) + W (D)D) + ™ (el ()]a) +
T (@d]b(a)) +boT™(gldla) +

S ey T O W ey [ O ) @) +

L L={1,...,n}
as ordered sets

(C.2) S e 0{Cn T G ) +

JiJ2={1,...,m}
as ordered sets

€ty o} Th (D oy || - ) +
€, onp iy 1 T (O iyl @)

= 0.

In Equation [C.2] we will call the terms in rows 1-2 the “standard terms”, and the terms
in rows 3-6 the “extra terms”.

We compute the sum of the standard terms. In Table [C.I] the leftmost column lists
the expressions that don’t cancel in the sum of the standard terms, the middle column
gives the standard term from which the expression comes, and the rightmost column gives
the term (extra or standard) that cancels the expression.

All of the terms in Table cancel, so 71 is a map of complexes. [l
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PI'OpOSitiOH C.2. Let B(Ao,Al) =B T(AO — Al — Ao) — T(AO — Al — Ao)

be the map of cofree comodules defined by the following maps to cogenerators:

(C.3) B"™(Y]a) = Tayay - 1 ® AN¥)A(0)az @ ag ® ay.

Then, D(B(Ag, A1) = m11(A1, Ag) o m1(Ao, A1) — id where Ty, is defined in Proposition
[C 1l

Proof. We prove the statement by direct computation. Since all of the maps are
maps of cofree comodules, we only need to check that m(D(B(Ag, A1)) — 7uu(A41, Ag) ©
111(Ag, A1) — id) = 0 where m; denotes projection of the comodule onto cogenerators.

More explicitly, for an element ((Ehﬂa), we want to check that

B*™(5(8)|¢la) + B ™(@lo(P)]a) + BB ()|dla) + BMTHS ()]a) +
B*™(@|db(a)) +bo B (g|da) +

€ttty B (O 1y | Ol S - @) +

€t mp 1y U1 BTG my )+

> hmeny BN G b ey [ Um0} - @) +
(C4)  rp=fi..n

as ordered setts

Z €2 - G{Un } - B (Ba [t ) —

JiJa={1,..., m}
as ordered setts

J|,|I N e Is|,|J: N N 7
ST e W6 N G nla)) — m(d]d]e)

L1 1={1,..., n}
JiJ2={1,..., m}
as ordered setts

=0.
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We will call the terms in rows 1-2 the “standard terms” in the computation of
D(B(Ao, A1)), and the terms in rows 3-6 the “extra terms” in the computation of
D(B(Aq, Ay)). The seventh row is my (111( A1, Ag) o T11(Ag, A1) — id).

We compute the sum of the standard terms. In Table [C.2] the leftmost column lists
the expressions that don’t cancel in the sum of the standard terms, the middle column
gives the standard term from which the expression comes, and the rightmost column gives
the extra term that cancels the expression. Table lists the remaining terms from the
seventh row that are not already listed in Table [C.2] In Table the left column lists
the remaining expressions that don’t cancel in the seventh row, and the right column gives
the extra term that cancels the expression.

All of the terms in the tables describing the expansion of equation cancel, so
D(B(Ap, A1)) = Tu(Aq, Ag) o m11(Ag, A1) — id. 0J
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PI'OpOSitiOH C.3. Let 7'1!(140,141) : T(AO — Al — Ao) — T(A1 — AO — Al)
and B(Ap, A1) : T(Ag — A1 — Ay) — T(Ay — A1 — Ag) be the maps defined in

Propositions and [C.3 above. Then,
(711, B] == 711(Ao, A1) © B(Ag, A1) — B(A1, Ag) o 711(Ag, A1) = 0.

Proof. We show that [, B] = 0 by direct computation. Since all of the maps are
maps of cofree comodules, we only need to check that ([, B]) = 0 where m; denotes

projection of the comodule onto cogenerators. We check this directly.

[m1 0 711(Ag, A1) 0 B(Ag, A1) (9]¢

I1],|J e - - -
= Y e TG | BN (G 4D )

L I,={1,..., n}
JiJo={1,..., m}
as ordered sets

6111J2 ' nalaaz :

L= (1) TG [ |1 @ AWMy )a, ao, ar)
JiJ2={1,..., m}
as ordered sets

= Z €n,Jy * Nay,a, I® A(Cgh) (A(J)/\(ngz)u% ap, al)
LhI,={1,...n}

JiJo={1,..., m}
as ordered sets
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[m1 0 B(A1, Ag) o 111( Ay, Al)](sglﬁla)

= 3 e B E EE (G L )

LiL={1,..., n}
JiJ2={1,...,m}
as ordered sets

engs - B (4161|6101 (AN )N @1 a5, a0, a1) @ My j+1) a2 +

LI={1,...,n} + ap & )\(5[2\|[1|+1)a1 it Jy = @)
JiJo={1,..., m}
as ordered sets

- Z €1,J2 * TNag,az 1® A(Q;Il))‘(l/;h)/\(ah)ai’) ® ¢|11\+1(/\<'(EJ2))\($I4)Q47 aop, a1)®

LI,={1,..., n} & )\(¢12\|11\+1)a2 +
JiJ2={1,...,m}
as ordered sets

—,

Feng  Tanes - 1 @ Mon )AL D) a2 @ ap @ N(br,)a

It’s clear that 707y (Ag, A7)0 B(Ao, A1) = moB(Ay, Ag)oti(Ag, A1): The final expansion
of m o m1(Ag, A1) o B(Ap, A1) is the sum of the two terms in the final expansion of
7m0 B(A;, Ag) o 11( Ao, A1), which is the sum of terms in which one of the ¢’s contains ag

and the terms in which none of the ¢’s contains ag). 0]



C.3. More notation

For the next two propositions, we will need some more notation. Set

Ag, A1, As fixed algebras

—

(5‘@9‘@) = (¢1--'¢n‘w1'--wm‘61---9r‘&)

fo 90 ho
YAV
N NV TN
= AO : Ay : A : AO

UV AN

(%

id

€ T(Ay — AL — Az — Ag)(hogo fo)

(S |br|+D(( S s+ +( S |0:]+1))
€15,J1,J0, K1 = (—1) rely s€Jy tEKy .

(2 s+ X 16:+1)
tEK,

_1) s€Jg

when [, Jy, Jo, Ky, are ordered indexing sets
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We also have the following maps of dg comodules:

Tl!(AO QAl,AQ) : T(AQ — A1 — AQ — Ao) — 7A'2*T<A2 — AO — Al — AQ)

— —

(B]¢]0]a) = Tu( Ay, Ao)(¢ @ [6]a)

Tu(Ao, A1 [} Ag) : T(AO — A1 — AQ — Ao) — 7/\'2*2T(A1 — Ag — AO — Al)

(@]1]0]ax) = T11(Ag, A1) (] @ 0]c).

C.4. More Propositions

Proposition C.4. Let
B(A(),Al,Ag) =B: T(AO — Al — A2 — A()) — 7A'2)'<2T(A1 — A2 — AO — Al)

be a map of comodules over C(Agy, A1) @ C(A1, Ay) ®C(Az, Ay) determined by the following
maps to cogenerators: for (Ag LN LN TN Ap) € Obj(C(Ap, A1) ® C(Ay, A2) ®

C(Az, Ap))

B(f(),g(), ho) : T(AO f—0> Al g—o) A2 ﬁo—) AQ). — ’7A'2*2T(A1 9_0> A2 £0—> A() f—0> Al).

project onto
C ’ C—O(Alafohogo Alid)
( 5) cogenerators

BP0e) = Y aes - 1O ML) MOMD)AGr)a2 @ ap ® ar)

1112:{1727"' ’n}
as ordered sets

(6-6) D(B(Ao, Ah AQ)) = 71!(142 L A07 A1) o 7’1!(Ao L4 A17A2) - 7’1!(140,141 L Az)-
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Proof. We will show that Equation holds by direct computation. Since all of the
maps are maps of cofree comodules, we only need to check that 7;( Equation ) holds

where m; denotes projection of the comodule onto cogenerators. More explicitly, we want
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to check that

(C.7)

B2 (5()[lbler) + B (S3(4)|0la) + B (S|d16(G)]a) +

- —

B () |l6la) + BTGV (9)[0]er) + BTGl (6)] @) +

- = = —

B (@l |6]b(a)) +bo B (Sl 1h]a) +
> ennmtn.pory s BTN G 5 00 oy 0,400, H O} @) +

as ordered sets

Z €L L1} Lo} - BTG [ ey O { D1} - ) +

I I,={1,..., n}
as ordered sets

Lo b (Lot * B PO a1} [ U |0] B - @) +

Z €{2,...,n}, 1,2, Ky ¢1{5K1}{JJ1} ’ .Bn_L‘h"‘Kz'(gg{?y'“»n}|77;J2"9_»K2|05) +

as ordered sets

Z €Lttty - 01{00n } - BTl |0 pyla) +

JiJ2={1,..., m}
as ordered sets

€1 1142 () U1 BT (9o, my[6e) +

—

TPEET (Gl e Ola) +

Z 6[2 J1,J2,K1°
\11|<*<|11\+|K1\ |J1\ \J2|<*<|I2|+|J2\ | 52|
11[2:{1 ..... n} ( K1 L ¢117¢J1) (¢ .wJ2’9K2‘a))
JiJo={1,..., m}
K1 Ka={1,..., P}
as ordered sets



82

In Equation[C.7 above, we call the terms in rows 1-3 the “standard terms” in the computa-
tion of D(B(Ao, A1, As)), and the terms in rows 4-9 the “extra terms” in the computation
of D(B(Ay, A1, A)). The terms in rows 10-11 are m; of the righthand side of Equation
we will call these the “10?"- and 11"-row terms”.

We compute the sum of the standard terms. In Table [C.4] the leftmost column lists
the expressions that don’t cancel in the sum of the standard terms, the middle column
gives the standard term from which the expression comes, and the rightmost column
gives the term that cancels the expression. Table lists the remaining ninth row terms
that aren’t already listed in Table [C.4] In Table [C.5] the left column lists the remaining
expressions that don’t cancel in the ninth row, and the right column gives the extra term
that cancels the expression.

All of the terms in the tables describing the expansion of Equation [C.7] cancel, so we're

done. O
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Proposition C.5. Let 1y and B be as defined in the previous propositions. Then,
[7’1], B] = 7'11(A1 [ AQ, Ao) @) B(AQ, Al, Ag) — B(AQ, AQ,Al) @) 7'11(A0 [ ] Al, Ag) = 0 (Note

that [y, B] is a map from T(Ayg — Ay — Ay — Ag) to itself.)

Proof. We show the proposition by direct computation. Since all of the maps are
maps of cofree comodules, we only need to check that m([m1,B]) = 0 where m; denotes

projection of the comodule onto cogenerators. We check this directly.
[m1 0 (A1 @ Ay, Ag) 0 B(Ao, Ay, Az)](110]e)

= Y g SO o GGy, | BRI (G, i, )

I I,={1,...,n}
JiJ2={1,...,m}
K1Ky={1,...,p}
as ordered sets

Z €l5,J1,J2,K1 " Tay,az”

K| <s<|K1|+|J1],| I ¢ o g ne - - -
LI,={1,....n} 7'1|! Hses K+ A 1‘(¢J1 ° 9[(1’(?[1‘1 ® )\(¢12)[/\(9K2)>\(¢J2))\(¢13)a2,a0,a1])
J1J2={l,...,m}

KiKy={1,...,p}
as ordered sets

= Z €1y, J1,J2, K1 " Tag,az ~ 1 @ A(gKl)/\<1EJ1))‘($I1)[A(ng)A(JJ2>A($Iz>a27 o, al]

nLL={1,..., n}
JiJ2={1,...,m}
K1Ko={1,...,p}
as ordered sets
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-

[71 0 B(As, Ao, A1) 0 T1(Ag @ Ay, A2)](]¢]0]ar)

o e Jo| <x<Z|Io|+|J2|,|K2| s T 70
- Z €Iz, J1,J2,K1 'BlKlMIlMJvl'(efﬁl(éh|¢J1|T1‘!2|_*_| el 2|(¢12 * wJ2’6K2|a))
LI={1,...,n}
JiJ2={1,..., m}

K1 Ko={1,..., P}

— — —

= Z €, J1,J2, K1 " Tag,az ~ 1 @ /\(‘9_»K1>>‘(1/7J1)/\(511)[)‘(QK2)/\<¢J2))‘(¢]2)(127 ao, 01]

K1 Ko :{ 1,..., p}
as ordered sets

It’s clear that m ([, B]) = 0.
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APPENDIX D

Pullbacks, Pushforwards and an Adjunction

In the first section of this appendix, we give the definition of the natural pullback
used for dg comodules and show that it satisfies Equation (Proposition . We also
prove a useful Proposition describing the pullbacks of cofree dg comodules in terms
of cogenerators. We then use Proposition to compute some examples of pullbacks.

In Section [D.3] we show that our pullback is right adjoint to a pushforward. This
adjunction is used in Chapter [6] when passing from dg cocategories and dg comodules to
dg categories and dg modules. Use of this adjunction is not central to our narrative, and
may perhaps become unnecessary as understanding of the structure on dg categories and
dg modules evolves.

A technical detail in all of this is that we work with conilpotent dg comodules over

conilpotent dg cocategories. We discuss these details in Section [D.4]

D.1. Pullbacks of dg comodules

Let A : By — By be a functor between conilpotent dg cocategories. In this section,
we will define a functor A* from the category of conilpotent dg comodules over By to the

category of conilpotent dg comodules over B;. We call \* “co-extension of scalars”.
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D.1.1. Category-theoretic definition of \*

Let X\ be as above, and let C be a conilpotent dg comodule over By. We define \*C' as

follows:

idp, ®Ac
(D.1) NC = ker(B; @, C = By @ By ® C)
(idBl®>\®idc)O(ABl®idc)

where B;®,C and B;®)By®C are dg comodules over By defined below. For f € Obj(B),

(BraxCl(f):=( € Bif:h)@C* (M), Af) = P Ap,sm @ ideon)

heObj(B1)

[Bi @x By C)(f) : = ( @ Bi(f, 1) @ Bi(Ah1, ha) @ C®(h2),

h1€0bj(B1),
ha€0Vbj(Bo)

A(f) = €D Abiishn) @ iy n) @ idony))-

hi, ha

The names of the maps in Equation are also meant to be suggestive. In full detail,
for f € Obj(By),

lidp, ® Ac)(f) == D idp,(rh) @ Ac(Mh)

h

and

[ABl®idC}(f)::?ABl(fvh)(g)idC()\h)
By @, C(f) » D Bilfi ) ® Bi(hn, hy) ® C(Ahy)

h1,h2€0bj(B1)

lidp, ®>\®idc}(f)1:hEBh idp, (f,ny) @A (h1,h2)®idc(An)
1. ho
[B1 ®x By @ C](f).

That the kernel is well-defined follows formally from the abelianness of the category of

chain complexes, but it is also easy to check that the induced differentials from [B;®,C](f)
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on the kernel are well-defined. Since Ay«¢ is induced by Ap,, we have that Ay«c also
satisfies coassociativity, counitality and conilpotency.

Next, we will define A* on morphisms. Let F : C' — D be a map of conilpotent
dg comodules over By. By the universal property of A*D, we can define a morphism
AF : X*C'— A\*D by giving a morphism from (A*F)' : A*C' — B; ®, D such that the two
maps
(D.2)

(idBl®AD)o()\*F)/, (Zd31®>\®ZdD)O(ABl®ZdD)O()\*F>, . /\*C — Bl®)\D = B1®>\B()®D
coincide. We define (A\*F')" as follows:

canonica id F
(VF) 2 A=C cmomiee, pooy ¢ 0 Bl @y D

inclusion
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It’s easy to check that the two maps in Equation coincide: Let b ® ¢ be an arbitrary

element of N*C(f) — [B1 ® C](f). Then,
[(idp, ® Ap) o (N F)|(b@c) =Y b@ (Fo)a) @ (Fe)
(Fo)

= Z b® Fepy ® Fegy  (F is a map of comodules)
(c)

= [(idp, ® F ® F) o (idg, @ Ac)](b® )
=[(idp, ® F® F) o (idp, ® A ®idc) o (Ap, ® idc)](b® c)
(b ® ¢ is in the kernel)
= by ® Az ® Fe
()

= [(idp, ® A®idp) o (Ap, ®idp) o (A"F)'|(b® ¢).

So, A*F' is well-defined. In summary, we have commuting diagrams:

canonical

)\*C inclusion B1 ®>\ O
(D3) )\*FJ( lidBl®F= map inducing \*F

canonical
inclusion

ND ————= By ®\D
Finally, it is straightforward to see that \* is a functor, i.e., that \* preserves composition
of morphisms: Let C' 5 D& Ebe composable morphisms of dg comodules over By. The
maps inducing A*F', \*G and \*(GoF) are idp, ® F, idg, ® G and idp, @ GF, respectively.
The inducing maps respect composition—(idg, ® G) o (idp, ® F') = idp, ® GF-and by the

commuting diagrams [D.3] the functor A* does as well.
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Proposition D.1. Let F' : By — By and G : By — By be functors between dg

cocategories By, By and By. Let M be a dg comodule over By. Then,
(GF)*M = F*G* M.

Proof. We will prove the proposition by showing that F*G*M satisfies the universal
property of (GF)*M. First, let N be a dg comodule over By and H : N — By ®gr M be
a map of dg comodules such that the two maps
(D.4)

(Zd32®GF®ZdM)O<ABZ®ZdM)OH, (ZdB2®AM)OH N — B2®GFM = BQ@GF®BO®M

coincide. We will show that H determines a map of dg comodules H : N — F*G*M. Let

x € Obj(B2). Define

H,:N@) ™ @ Bulz,y) @ M(GFy)

y€Obj(B2)
“E D Bi(Fw, Fy) ® M(GFy)

y€Obj(B2)

C [B1 ®¢ M|(Fx).

The image of H. lands in G*M (Fx), a subcomplex of [B; ®g M](Fx); checking this is
straightforward using the universal property of G* M, the fact that F' commutes with the

coproducts, and Equation . So, for each x € Obj(B3), we have a map of complexes
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H' : N(x) = G*M(Fz). Now define H as follows:

H, : N(z) ELN @ Bs(z,y) ® N(y)

y€Obj(B2)

[Tidp,®H, i
=2 P Bilx.y) @ GM(Fy)

y€O0bj(B2)

C [By @r G*M|(x).

Showing that H lands in G*F*M, a subcomodule of [Bs @p G*M], is also straightforward;
we only need that F' and H commute with the appropriate coproducts, and that the
cocomposition on By is coassociative. So, for each x € Obj(B3), we have a map H, :
N(x) — G*F*M(z). It’s clear that H is a map of dg comodules since all of the maps
used to construct H are maps of dg comodules.

Now, let H : N — F*G*M be a map of dg comodules over B,. We will show that
H determines a map of dg comodules H : N — By ®¢ FM satisfying Equation . For

x € Obj(By), let H be defined as follows:

H, : N(z) I PG M(2)

cnoniety @ Ba(x,y) ® Bi(Fy, 1) @ M(Gz)

inclusion -
y€Obj(B2)
21€0bj(B1)

P Bulzy) @ M(GFy).

y€O0bj(B2)

id32 ®€Bl ®idpg
—



The universal property of G*M implies that (idp, ® Aps) o H is equal to:

N(z) e @ Bs(z,y) @ Bi(Fy, z1) @ M(Gz)
y€O0bj(Bz)
21€0bj(B1)

idp, ®idp, ®G®idpr)o

(idB,®idp, M) , @ Bg(x,y) ®Bl(Fy’yl) ®Bo(Gy1,G21) ®M(GZI)

(idp, ®A p, ®idyr) ,
y€Obj(Bs2)

y1,21€0b5(B1)

idp, ®ep, ®idp,®idy
\
7

B Bulz.y) ® Bo(GFy, Gz) @ M(Gz).

y€Obj(B2)
21€0bj(B1)

On the other hand, the universal property of F* implies that (idp, ® GF ®idys) o (Ap,

idyr) o H is equal to:

N(z) 22 @ Bs(z,y) ® Bi(Fy,z1) @ M(Gz)
y€Obj(B2)
z1€Obj(Bl)
(idp, ®G@idp, ®ida )0
> By(z,y) @ Bo(GFy,Gy) ® Bi(y1,21) @ M(Gz
iy D, @) @ 2(7,y) o(GFy, Gyr) 1(y1, 21) (G21)

y€O0bj(B2)
y1,21€0b5(B1)

idB2 ®idBO ®€Bl ®idpr
\
7

B Bulz.y) ® Bo(GFy, Gz) @ M(Gz).

y€O0bj(Bz)
21€0bj(By)
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®

So, the difference between the two maps in Equation [D.4] comes down to the difference

between (ep, ® G) o Ap, and (G ® €p,) o Ap,. However, by the counitality of By, both

these maps are equal to G. So, H satisfies Equation [D.4]

of

O

Proposition D.2. Let A\ : By — By be a functor between conilpotent dg cocategories

and C' a conilpotent cofree dg comodule over By. Then, as comodules,

(D.5) NC 2B @, T
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where righthand side is the following cofree comodule over Bj:

[BianTI(f) = €D Bi(f,h)® T(\h)
heObj(Bo)

T(A\h) = cogenerators of C(Ah)

(See Equation for an explanation of cogenerators.)

PrRoOOF OF PROPOSITION [D.2 To prove the proposition, we will give maps
F-NXC=2B,T:G

and show that F'o G = idp,s,r and G o F' = idy-c. We define F' as follows:

canonical project onto
F:NC——— By®,C

inclusion cogenerators

By @, T.

To define G, we will give a map G’ : By ®) T — B; ®, C, and show that the image of G’

lands in A*C. We define G’ as follows:
G/<b ® t) = Z b(l) X )\b(g) -t
(b)

where b ® t € By ®\ T and Ab) - t are elements of the appropriate components of C
written in terms of cogenerators.

To prove that the image of G’ lands in \*C', we need to show that the two maps

(id, ® Ac) oG, (idp, ®A\Ridc) o (Ap, ®idc) oG : By T — By ®,C = B1®,By®C
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coincide. We have

[(1® Ac)oG)( Z bay ® 1) ® (Ab2)) 2)
(b), (A)

= Z b(l) ® )\b(g) ® )\b(g) 7
(b)

= [(idBl ® A ® Zdo) o) (AB1 & Zdo) o GI](b ® Zf)

where the second equality holds since A is a map of cocategories and Ap, is coassociative.

It’s clear from the definitions that F' and G are maps of comodules and that F'o G =
idp,@,r. All that remains is to show that G o F' = idy-¢c. Let Kk = £;b; ® ;- t; be an
arbitrary element of \*C' — B; ®, C where ; - t; are elements of C' written in terms of

cogenerators. Then,

GF(k) = GF(Sibi ® Bi-t;) = > bigty ® Abiga) - L.

We can divide the terms in x into two groups: (a) terms in which 5; = 1 € k and (b)
terms in which ; # 1 € k. Likewise, we can divide the terms in GF (k) into (a) terms in
which Ab;5) =1 and (b) terms in which Ab;5) # 1. From the definitions of F and G, it’s
clear that the Group A terms in k are exactly the Group A terms in GF(k).

To show that the Group B terms are the same, let b; ® f3; - t; be an arbitrary Group B
term in k. Then, there is a term b; ® §; ®t; in (idp, ® A¢)k. Since (idg, ® Ac)k = (idp, ®
A®idc)o(Ap, ®ide)k, there must be a Group A term, bj, ®t,, in & such that b;® 3; ®@1; is
one of the terms in the sum [(idp, @ A®idc) o (Ap, ®idc)](bj, @15,) = 37 b, (1) @Abj, ) @t

(b5,)
Thus, b; ® G; - t; is a Group B term in GF(k).
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Now let b;(1)® Abj(2) - t; be an arbitrary Group B term in GF (k). Then, b;q)® Ab; (o) ®1;
is a term in (idp, ® A ® id¢) o (Ap, ® ide)k = (idp, ® A¢)k. So, there is a Group B
term, b;, ® B;, - t;;, in k such that by ® Abj9) @ t; is one of the terms in the sum
(tdp, @ Ac)(bj, ® By - t,) = 22 bj @ Bjqy ® By gy ~ Ly Since ¢; is a cogenerator, the
only term in the sum that coffél) be equal to b;1) ® Abjg) ® t; 18 bj, ® B, @ t;,. Thus,

bi1y ® Abj(9) - t; is a Group B term in k. O

D.2. Examples of pullbacks

Now, we use Proposition [D.2]to compute some examples of pullbacks of dg comodules.
For the examples below, let € be the category in dg cocategories defined in Equation (1.2

and T'(A) be the dg comodule defined in Section

Example D.2.1. Let m : C(Ap, A1) ®---®C(A,, Ag) — C(Ag, Ag) be the composition
functor. Then, T(Ay — -+ — A, — Ao) := m*T(Ag) is a cofree dg comodule with the

following structure. Let (A Jo, Al — - = A, ELN Ap) be an object in C(Ap, A1) ® -+ ®
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C(A,, Ay). Then,

T(Ag 2 Ay — = A, I Ay =

={(doa] .- [Poke) @+ @ (Dnal ... |np,) @ =

fo,0 fn,0
= A fo:ko Ay A, Frkn A

ida,

s.t. (bi,j S C.(Ai>fj—1 Ai+1fj)7 Q€ C—’(A()’fn,knmfo,ko AO)}
dp = de + b+ 7 where
de = extension of the differentials on C(A;, Ait1 (modn+1)), 0 < i <n to T
b = extension of the Hochschild chain differential to T
L = extension of L(G0,1]---|0,1g )0+ 8(brist || g ) O OS O coderivation to T (see Equation
Example D.2.2 (Pullbacks along rotations). Fiz algebras Ay,..., A, and let 7, €
A([n], [n]) be a generating rotation. Set
0t C(Ag, A ® ... C(Ay, Ag) LB IIN 04 AN @ @ C(An_r, Ap)

T :T(Ag— - — A, = Ay) = 7. T(A, — Ao+ -+ — Ay) map of dg comodules.
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Then, the target of T, TXT (A, — Ao+ — Ap) is a cofree dg comodule with the following
structure. Let (A ECN N A, LN Ap) be an object in C(Ap, A1) ®- - @ C(A,, Ao).
Then,

FT(A D% Ay I 4,0 =

= {(Boa] - [Poke) @+ @ (Dnal .. |Pup,) @ =

fn,0 fn—1,0
- An fn,kn AO An—f”—lﬂkn—lAn

ida,

s.t. (b@j S C.(Ai’fj—l Ai+1fj)7 o€ C*'<An7fn71,kn_1mfn,kn An)}
dr :JQ+B+Z where
de = extension of the differentials on C(A;, Ait1 (modn+1)),0 < i <n to T

b = extension of the Hochschild chain differential to T

U = extension of LGt |- bn i )9(00,1]-- B0,k )0+ 0(Dn—1,1 ]| _1k,, ) QS @ coderivation to T'.

D.3. Adjunction between \* and Ay

In this section, we define Ay, the left adjoint to A*. More precisely, for any functor,
A : By — By between conilpotent dg cocategories, we define a functor Ay from the category

of conilpotent dg comodules over B; to the category of conilpotent dg comodules over Bj.
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D.3.1. The functors A4

Let A : By — By be a functor between conilpotent dg cocategories. Let C' be a conilpotent

dg comodule over B;. We define A\,.C' as follows: for f € Obj(By),

MC(f)=( P c(f

frex-1f
EBA o(f")
A ] / , ‘ [ ) ! ! ] !
rpe(f @ C*( B (f,h) @ C*(h')
frex—1f flex1y
W eObj(By)
@ ARid e
v T B(f, W) @ C* (K
B B C (W)
h'€0bj(B1)
include @ B. f h @ Co h/
heObj(Bo) W ex—

To check that A, ¢ is well-defined, we need that the image of the first map, @ Ace(f),
is a finite sum. This is true since C' being conilpotent implies that the image ];f Ace(f)
is a finite sum for each f' € Obj(By). If A7'f is empty, we set AxC(f) := 0. It is
straightforward to check that (AxC, Ay, ¢) is coassociative, conilpotent and coaugmented.

We will call Ay “co-restriction of scalars”.

Let F': C'— D be map of dg comodules over B;. We define Ay F' as follows:

<)) Ff’

MeF)rxC = @ ootf) s @ Do(f) = 2D,
frex—1f frex—ty

It’s straightforward to check that Ay is a functor (i.e., respects composition of mor-

phisms).



100

D.3.2. Adjunction

Proposition D.3. Given a functor between conilpotent dg cocategories, X : By — By,
let
Category of Category of

A" conilpotent = conilpotent DAy
dg comodules over By  dg comodules over By

be the functors defined in Sections and[D.3.1. Then, Ay is left adjoint to \*.

Remark D.3.1. Proposition[D.3]is a categorified co-version of the adjunction between

extension of scalars (left) and restriction of scalars (right) for modules over algebras.

Proor oF PROPOSITION [D.3] Let C' be a conilpotent dg comodule over B; and D

be a dg conilpotent dg comodule over By. We want to show that
Hompg,(C, \*D) = Homp,(AxC, D)

as sets.

We will give maps
® : Homp,(AxC, D) = Homp, (C, \*D) : &1

satisfying ® o @1 = id and ®~! o ® = id.
First, we define ®. Let F' be a morphism from A4;C to D. By defintion, for f €

Obj(By), we have maps of complexes

Fro @ C*(f) = D(f).

Frex-iy
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Define ®F € Hompg, (C, A\*D) as follows: for f’ € Obj(B,),

OFy: CH(f) =S €D BIf,K) @ C(K)

k' €Obj(B1)
@id}gl QFy\ ‘h’
(D.6) LN @ B (f' 1) ® D*(A\R)
h'€Obj(B1)

include [Bl ®)\ D](f/)

By the universal property of A*D, this defines a morphism C' — A\*D if the two maps
(idp, ® Ap) o ®F, (idp, ® A ®idp) o (Ap, ®idp) o ®PF : C = By ®) By ® D
coincide. In fact, on f € Obj(B;), both maps are equal to:

C(f) =S @ B ) @Ot
h/€Obj(B1)

e?idB1®AC
— P Bif.gd)eBig.n)@C(W)
g’',h’€0bj(B1)

@ idBl RAR1c
W g

B Bif.g) @By, A @ Co (1)
g’,h’GObj(Bl)

<) idBl ®idBO®F)\h’ [
B g

» P BI(f.9) @ Bi(Ag . A) @ D*(AK).
g',h'€0bj(B1)

This fact follows from F' being a map of comodules. It’s also clear that ®F commutes

with coproducts and differentials. So, we've shown ®F € Homp, (C, \*D).
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Second, we define ®~1. Now, let F' € Homg, (C,\*D). For f € Obj(By), define

@Ff/
— { ] f/ [ ] [ ]
o' P o) — By(f', 1) ® D*(AI)
f/e)\—lf f/e)\_lf,
h'€eObj(B1)
D \idp
It ° °
&G B(f.h) @D (h)
heObj(Bo)
EPGBO®idD

—— D*(f).

It’s clear that ® 'F commutes with the differentials. We will show that ®~!F is a map

of comodules. Figure gives a diagram showing that
(D?) AD @) (I)ilFf = ( @ EB())\ &® A &® ZdD) o) (@ AB1 &® ZdD) o) (@ Ff/).
f/,h/,rl f/7h/ f/
On the other hand, Figure gives a diagram showing that
(D8) (idp, ® D' F)oAy,c = (P MA@ epA@idp) o (D A, @idp) o (D Fyr).
f/’h/7,,'./ f/,h/ f/
We see that the righthand sides of Equations and are the same except for the By

factor on which ep, acts. However, in general, for A : By — By a map of dg cocategories,
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we have

(A®epyA) o Ap, = (idp, ®€p,) 0o Ap, o A (A commutes with coproduct)
=1idg, o A (definition of cocategory)
= (ep, ®idp,) o (Ap,) o A (definition of cocategory)
= (e, A® A) o A, (A commutes with coproduct).
So, (idp, ® ®'F) o Ay,c = Apo @ 'F, and &~ 'F € Homp,(A4C, D).
For F : C — XD a map of dg comodules and f' € B, Figure [D.3] shows that

PPy = Fp. For F : \yC — D a map of dg comodules and f € By, Figure shows

that @ '®F; = F;. Thus, we have &~ = id and d~'® = id. O
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D.4. Conilpotence

In this section, we show that the dg categories and dg comodules we have been working

with are conilpotent. For completeness, we start with the definition of a dg cocategory.

Definition D.4.1. A dg cocategory is a cocategory enriched over chain complexes.

More explicitly, a dg cocategory B consists of the following data:

e A collection of objects denoted Obj(B);
e For each pair of objects, =,z € Obj(B), a complex B*(x,z) and a morphism of
complexes
AB<5C7Z) IB.(.%',Z)—> H B’(I,y)@B.(y,Z>
y€O0bj(B)

such that the following diagrams commute (coassociativity):

Ap(z,z)
B*(z, z) I[I B*(z,y) @ B*(y,2)
yeObsj(B)

Ap(z,2) l;[ 1dB(z,y)®AB(Y:2)
H Ap (xzy)®idB(y,z)
Yy

II B*(z,y)® B*(y,?) [ B(zy)®@By,y) @B (Y, 2)
y€Obj(B) y,y'€0bj(B)

e For each pair of objects, z,z € Obj(B), a morphism of complexes

eg(z,z) : B*(z,2) = k
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where k is the ground field considered as a chain complex concentrated in degree 0

and ep(z, 2z) = 0if x # z, such that the following diagrams commute (counitality):

. Ap(z,z) . .
B*(z, 2) [[ B(z,y)® B*(y,2)
y€Obj(B)
AB(QZ,Z) HEB(xvy)®idB(y,z)
id Y
[l B*(v,y) @ B*(y,2) - B*(z, 2).
yeObj(B) I;IldB<z,y>®€B(y’Z)

We will denote a dg cocategory with its cocomposition and counit as (B, Ap,eg). To
make the notation more readable, when the meaning is clear, we will omit references to the
objects and write Apg instead of Ag(z, z), €p instead of eg(x, z), and for the differentials

on morphisms, dp instead of dg(z, 2).

Definition D.4.2. A (dg) functor F' : A — B between two dg cocategories is a

functor between the cocategories satisfying dg o F'(f) = F o d4(f) for all morphisms f in
A.

Definition D.4.3. A conilpotent dg cocategory is a dg cocategory (B, Ap,€p) sat-
isfying: for each morphism f : # — y in B, there exists n; € N such that A% (f) = 0

where

Ap(a,2): Bw,2) = [[ B'lay)®B(y.2)
yeObj(B)

fodp(f)= Y wef- Y [

ezEEB(x7x)_l(1) EZGGB(Z,Z)_l(l)
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The following fact follows from the definitions: If B is a conilpotent dg cocategory,

then for all z € Obj(B), eg(x,r)"'(1) has exactly one element, which we will denote e,.

Example D.4.1. Let € be the category in dg cocategories defined in Equation[1.4 and

Ag, ..., Ay be algebras. Then, C(Ag, A1) ® -+ ® C(A,, Ao) is conilpotent:

Amz‘n(ko,. "’k")(¢071. -'¢O,k0|-- . |¢n,1 . "gbn,kn) = 0.

Now, we will discuss conilpotence of the dg comodules. Recall the definition of a dg

comodule in Definition [3.3.3]

Definition D.4.4. A conilpotent dg comodule over a dg cocategory B is a dg comod-
ule (C,A¢) over B satisfying: for each f € Obj(B) and each element a € C*(f), there

exists n, € N such that A;ﬁ“ (o) = 0 where

Ac(f):C ()= ][] B(f.9@C9)

g€O0bj(B)

a— Ap(a) — Z er® f.
er€ep(f,f)~1(1)

Example D.4.2. Since all of the dg comodules we use are cofree, their comodule

structure maps are induced by the cocompositions of the dg cocategories. Any cofree dg

comodule over a conilpotent dg cocategory is conilpotent.
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