NORTHWESTERN UNIVERSITY

What Do Algebras Form?

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
for the degree
DOCTOR OF PHILOSOPHY

Field of Mathematics

By

Ann Rebecca Wei

EVANSTON, ILLINOIS

March 2017

ABSTRACT

What Do Algebras Form?

Ann Rebecca Wei

Abstract

Algebras and their bimodules form a 2-category in which 2-morphisms are certain zeroth Hochschild cohomology groups. When we derive this structure (i.e., use Hochschild cochains instead of $H H^{0}$ for 2-morphisms), we find that algebras form a category in dg cocategories. The Hochschild-Kostant-Rosenberg theorem and non-commutative calculus give a rich algebraic structure on Hochschild cohomology along with Hochschild homology. When incorporating the structure on Hochschild homology, we find that algebras form a 2-category with a trace functor. Deriving this again, we conclude that algebras form a category in dg cocategories with a trace functor up to homotopy.

Acknowledgements

First and foremost, thank you to my advisor, Boris Tsygan, for your guidance and patience for the last four years. I am always learning something new from you, in mathematics and in communication simultaneously elegant and kind.

In mathematics, thank you to Elden Elmanto, Peng Zhou, Aron Heleodoro and Dima Tamarkin for suggestions in this work. Thank you to Aaron Peterson, Ben Antieau, Ben Knudsen, Bif Reiser, Bruce Spencer, Chris Elliot, Corinna Wendisch, Dan Lior, Deavon Mitchell, Dylan Wilson, Emily Green, Eric Dolores Cuenca, Greg Jue, Jesse Wolfson, Joel Specter, John Alongi, Karene Chu, Kim Nguyen, Kitty Yang, Lauren Bandklayder, Leanne Merrill, Maggie Ewing, Martha Precup, Massi Ungheretti, Matt Mahowald, Michael Couch, Mihnea Popa, Nicole Looper, Nguyen Nguyen, Orit Davidovich, Paul VanKoughnett, Philsang Yoo, Ryszard Nest, Qiao Zhou, Richard Moy, Rob Legg, Shengfu Chiu, Spencer Liang, Theo Johnson-Freyd, Ursula Porod, Vlad Serban, Yajna Dutta and Zili Huang for your friendship and mathematical chats. Thank you to Miguel Lerma for making nuthesis.cls without which this thesis would not have been written. Thank you to Kathryn Hess for being a role model and general badass.

Nomenclature

$$
\begin{gathered}
k-\text { a fixed ground field of char } 0 \\
k-\bmod s-\text { the category of modules over } k \\
1-\text { the unit in (a vector space isomorphic to) } k \\
{[1]-\text { shift operator on complexes, } C^{\bullet}[1]=C^{\bullet+1}} \\
\Lambda-\text { Connes cyclic category, see Appendix A } \\
\Delta(b)=\sum_{(b)} b_{(1)} \otimes b_{(2)}-\text { Sweedler notation for coproducts } \\
{ }_{f} B_{g}-B \text { as an } A-C \text {-bimodule with left structure given by } \\
\text { the map of algebras } f: A \rightarrow B \text { and right structure } \\
\text { given by the map of algebras } g: C \rightarrow B \\
{ }_{f} B:={ }_{f} B_{i d_{B}}
\end{gathered}
$$

Table of Contents

ABSTRACT 2
Acknowledgements 3
Nomenclature 4
List of Tables 8
List of Figures 9
Chapter 1. Introduction 10
Chapter 2. A category in dg cocategories 15
2.1. Motivation of this chapter 16
2.2. \quad Dg cocategories $\operatorname{Bar}(\operatorname{Hoch}(A, B))$ 17
2.3. Associative Composition 19
Chapter 3. A 2-category with a trace functor 21
3.1. Motivation of this chapter 22
3.2. A trace on C 23
3.3. Redefining the trace functor 25
Chapter 4. Interlude 28
4.1. Motivation of this chapter 29
4.2. From a trace functor to a dg functor 30
Chapter 5. A trace functor up to homotopy 35
5.1. Motivation of this chapter 36
5.2. \quad Dg comodules $T(A)$ 38
5.3. Prescriptions for $\mathcal{F}\left(\mu_{1}, \ldots, \mu_{n}\right)$ 41
5.4. Computational: Composition of maps of dg comodules 44
5.5. Verification of A_{∞} relations 52
Chapter 6. Coda: other directions 55
6.1. Motivation of this chapter 56
6.2. A functor to dg categories 56
References 60
Appendix A. Connes cyclic category, Λ 61
Appendix B. Background on Hochschild chains and cochains 63
Appendix C. Computations 66
C.1. Computational notation 68
C.2. Computational Propositions 69
C.3. More notation 79
C.4. More Propositions 80
Appendix D. Pullbacks, Pushforwards and an Adjunction 88
D.1. Pullbacks of dg comodules 88
D.2. Examples of pullbacks 97
D.3. Adjunction between λ^{*} and $\lambda_{\#} \quad 99$
D.4. Conilpotence 109

List of Tables

C. $1 \quad$ Expansion of terms in Equation 1 C. 2 73
C. 2 Expansion of terms in Equation|C. 4 . "standard terms" and the "extra terms" that cancel them 76
C. 3 Expansion of terms in Equation|C.4| remaining "seventh-row terms"and the "extra terms" that cancel them76
C. 4 Expansion of terms in Equation|C.7. "standard terms" and the termsthat cancel them84
C. 5 Expansion of terms in Equation|C.7| remaining " $11^{\text {th }}$ row terms" andthe "extra terms" that cancel them85

List of Figures

$2.1 \quad$ A morphism in $\operatorname{Bar}(\operatorname{Hoch}(A, B))\left(f_{0}, f_{n}\right)$ 17
$2.2 \quad$ Universal Property of Bar 19
$5.1 \quad$ An element of $T(A)^{\bullet}\left(f=f_{0}\right)$ 39
$5.2 \quad$ Two homotopies between $\left(\delta_{n-2, n-1} \delta_{n-1, n}\right)^{*} \tau_{n-2!}$ and $\hat{\tau}_{n}^{* 2} \tau_{n!} \circ \hat{\tau}_{n}^{*} \tau_{n!} \circ \tau_{n!}$ 54
5.3 Two homotopies between $\tau_{1!}$ and $\hat{\tau}_{1}^{* 2} \tau_{1!} \circ \hat{\tau}_{1}^{*} \tau_{1!} \circ \tau_{1!}$ 54
D. $1 \quad$ Commuting diagram involving $\Delta_{D} \circ \Phi^{-1} F$ 105
D. $2 \quad$ Commuting diagram involving $\left(i d_{B_{1}} \otimes \Phi^{-1} F\right) \circ \Delta_{\lambda_{\#} C}$ 106
D. 3 Commuting diagram involving $\Phi \Phi^{-1} F_{f^{\prime}}$ 107
D. $4 \quad$ Commuting diagram involving $\Phi^{-1} \Phi F_{f}$ 108

CHAPTER 1

Introduction

What do algebras (over a fixed field k of characteristic zero) form? A straight-forward answer is that they form a 2-category as follows:

Objects: k-algebras A, B, \ldots

1-Morphisms: bimodules ${ }_{A} M_{B}$

1-Composition: ${ }_{A} M_{B} \otimes_{B}{ }_{B} N_{C}$

2-Morphisms: morphisms of bimodules.

When we restrict the above 1-morphisms to only those bimodules that come from maps of algebras (i.e., bimodules ${ }_{A} M_{B}$ where ${ }_{A} M_{B}={ }_{f(A)} B_{B}=:_{f} B$ for some map of algebras $f: A \rightarrow B)$, then 2-morphisms have an additional structure, namely they are certain zero-th Hochschild cohomology groups:

$$
\begin{aligned}
& \left\{\text { morphisms of bimodules }{ }_{f} B \rightarrow_{g} B\right\} \stackrel{1: 1}{\leftrightarrow} Z_{A}\left({ }_{g} B_{f}\right) \cong H H^{0}\left(A,{ }_{g} B_{f}\right) \\
& M \mapsto M(1) \\
& \left(M_{b}: b^{\prime} \mapsto b \cdot b^{\prime}\right) \hookleftarrow b
\end{aligned}
$$

In summary, we have the following 2-category \underline{C} :

Objects: k-algebras A, B, \ldots

1-Morphisms: bimodules ${ }_{f} B, f: A \rightarrow B$ map of algebras
1-Composition: ${ }_{f} B \otimes_{B}{ }_{g} C, A \xrightarrow{f} B \xrightarrow{g} C$
2-Morphisms: $H H^{0}\left(A,{ }_{f} B_{g}\right) \cong Z_{A}\left({ }_{f} B_{g}\right)$

The question naturally arises: what happens if we use Hochschild cohomology or cochains instead of just $H H^{0}$ for 2-morphisms? The answer is that algebras form a category, \mathcal{C}, in dg categories as follows:

Objects: k-algebras A, B, \ldots

Morphisms: dg cocategory $\operatorname{Bar}(\operatorname{Hoch}(A, B)$
Composition: • : Bar $(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow \operatorname{Bar}(\operatorname{Hoch}(A, C))$ associative map of dg cocategories

In Chapter 2, we spell out the details of \mathcal{C}. $\operatorname{Bar}(\operatorname{Hoch}(A, B))$ is a cofree dg cocategory that uses Hochschild cochains as morphisms. The composition, \bullet, uses the brace operator on Hochschild cochains (Reference [6], Equation 4.8). The fact that \bullet is associative follows from References [3], 4], 5].

Thus far, we have used Hochschild cochains to show that algebras form a category in dg cocategories. Non-commutative calculus tells us that the pair, (Hochschild cochains $C^{\bullet}(A, A)$, Hochschild chains $\left.C_{-}(A, A)\right)$, is a Calc $_{\infty}$-algebra (Reference [1], Corollary 4). In other words, Hochschild cochains is a Gerstenhaber ${ }_{\infty}$-algebra and acts on Hochschild
chains up to homotopy via (1) an analogue of the Lie derivative, and (2) an analogue of the contraction of a form against a vector field.

Taking advantage of this Calc_{∞} structure, we incorporate $H H_{0}$ and find that algebras form a 2-category with a trace functor (Chapter 3). In Section 3.2, we give the definition of a trace functor on a 2-category à la Kaledin, and describe a trace functor on \underline{C} (the 2-category given in Equation 1.1) that uses the action of $H H^{0}$ on $H H_{0}$.

Again, we ask: can we derive this structure? Can we use Hochschild homology or chains instead of $H H_{0}$ to get a trace functor on \mathcal{C} (the category given in Equation 1.2)? We give the definition of a trace functor on a category in dg cocategories in Section 3.3, but continue massaging the definition in Chapter 4 to make precise the notion of a trace functor "up to homotopy". Ultimately, we settle on the following language: on \mathfrak{C}^{\prime}, a category in dg cocategories, a trace functor gives a dg functor $\chi\left(\mathrm{C}^{\prime}\right) \rightarrow \mathcal{D}$ where $\chi\left(\mathrm{C}^{\prime}\right)$ and \mathcal{D} are dg categories introduced in Section 4.2. Then, a trace functor up to homotopy on \mathfrak{C}^{\prime} is an A_{∞}-functor $\chi\left(\mathrm{C}^{\prime}\right) \rightarrow \mathcal{D}$.

Finally, in Chapter 5, we give an A_{∞}-functor $\chi\left(\mathcal{C}^{\prime}\right) \rightarrow \mathcal{D}$ for \mathcal{C} the category given in Equation 1.2. In Chapter 6, we apply a $\operatorname{Cobar}(-)$ functor to everything to get a category in dg categories with a trace functor up to homotopy. We do this in hopes of constructing something like a category in categories or an E_{2} object. However, our understanding of all of the structures that appear after applying $\operatorname{Cobar}(-)$ is still evolving.

In Appendix A, we give the presentation of Connes cyclic category Λ used throughout the thesis. In Appendix B, we give some background on Hochschild chains and cochains as well as their contraction operator ι and a "Lie derivative like" operator $\lambda(-)$. We reserve all lengthy computations for Appendix C, where we also establish our computing notation.

In Appendix D, we give details on pulling back dg comodules over dg cocategories as well as the adjunction used in Chapter 6 and a note on conilpotence.

CHAPTER 2

A category in dg cocategories

2.1. Motivation of this chapter

In this chapter, we show that algebras form a category in dg cocategories. As stated in the introduction, we will construct such a category with

Objects: k-algebras A, B, \ldots

Morphisms: dg cocategory $\operatorname{Bar}(\operatorname{Hoch}(A, B)$

Composition: • : $\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow \operatorname{Bar}(\operatorname{Hoch}(A, C))$ associative map of dg cocategories.

First, we define the dg cocategories $\operatorname{Bar}(\operatorname{Hoch}(A, B)$ using Hochschild cochains as morphisms, then we define the composition • using the brace operator on Hochschild cochains.

2.2. Dg cocategories $\operatorname{Bar}(\operatorname{Hoch}(A, B))$

Let A, B be k-algebras. We define a dg category, $\operatorname{Hoch}(A, B)$, as follows:

Objects: algebra maps $f: A \rightarrow B$

Morphisms: $\operatorname{Hoch}(A)(f, g)=\left(C^{\bullet}\left(A,{ }_{f} B_{g}\right),{ }_{f} \delta_{g}\right)$
Composition: cup product on cochains.
(See Appendix B for notation and standard operations on Hochschild complexes.) The cup product is an associative map of complexes, so $\operatorname{Hoch}(A, B)$ is a dg category.

Now, we will take $\operatorname{Bar}(-)$ of $\operatorname{Hoch}(A, B)$, which is a categorified bar construction:

$$
\text { Bar : DGCat } \rightarrow \text { DGCocat. }
$$

$\operatorname{Bar}(\operatorname{Hoch}(A, B))$ has the same objects as $\operatorname{Hoch}(A, B)$. A morphism in $\operatorname{Bar}(\operatorname{Hoch}(A, B))$ from object f_{0} to object f_{n} is a sequence of composable morphisms in $\operatorname{Hoch}(A, B)$ starting at f_{0} and ending at f_{n}. We can picture such a morphism as follows:

Figure 2.1. A morphism in $\operatorname{Bar}(\operatorname{Hoch}(A, B))\left(f_{0}, f_{n}\right)$
where $\phi_{i} \in C^{\bullet}\left(A, f_{i-1} B_{f_{i}}\right)$. As a complex,

$$
\begin{aligned}
& \operatorname{Bar}(\operatorname{Hoch}(A, B))^{\bullet}(f, g)= \\
& \quad=\underbrace{k[0]}_{\text {counit }} \oplus \bigoplus_{\substack{n \geq 0, f_{i} \in \operatorname{Obj}(\operatorname{Hoch}(A, B))}}^{\operatorname{Hoch}(A, B)^{\bullet}[1]\left(f, f_{1}\right) \otimes H o c h(A, B)^{\bullet}[1]\left(f_{1}, f_{2}\right) \otimes \cdots \otimes H o c h(A, B)^{\bullet}[1]\left(f_{n}, g\right)} \\
& d_{\operatorname{Bar}(H o c h(A, B))}=\tilde{d}_{H o c h(A, B)}+d_{\cup} \\
& \tilde{d}_{H o c h(A, B)}=\text { extension of } d_{H o c h(A, B)} \text { to a differential on Bar }
\end{aligned}
$$

$d_{\cup}=$ signed sum over composing (cup-producting) two consecutive ϕ_{i} 's
with cocomposition

$$
\Delta\left(\phi_{1} \ldots \phi_{n}\right)=\sum_{0 \leq i \leq n} \pm\left(\phi_{1} \ldots \phi_{i}\right) \otimes\left(\phi_{i+1} \ldots \phi_{n}\right)
$$

For more precise details and explicit signs, see Reference [6], Section 4.6.

2.3. Associative Composition •

Now, we define an associative composition of dg cocategories

$$
\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow \operatorname{Bar}(\operatorname{Hoch}(A, C))
$$

where A, B, C are k-algebras. To define the composition, we use the fact that $\operatorname{Bar}(\operatorname{Hoch}(A, C))$ is the cofree dg cocategory over $\operatorname{Hoch}(A, C)$. In other words, $\operatorname{Bar}(\operatorname{Hoch}(A, C))$ satisfies the following universal property:

Figure 2.2. Universal Property of Bar
where \mathcal{B} is any dg cocategory, the horizontal map is a map of underlying structure (i.e., an association on objects and maps of complexes of morphisms), and the diagonal lift arrow is a map of dg cocategories. For us, $\mathcal{B}=\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C))$. We will define a map of underlying structure $\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow$ $\operatorname{Hoch}(A, C)$, which will lift to the map of dg cocategories

- : $\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow \operatorname{Bar}(\operatorname{Hoch}(A, C))$.

The map on underlying structure is defined as follows:

$$
\operatorname{Bar}(\operatorname{Hoch}(A, B)) \otimes \operatorname{Bar}(\operatorname{Hoch}(B, C)) \rightarrow \operatorname{Hoch}(A, C)
$$

On objects: $f \otimes g \mapsto g \circ f$

All other non-pictured pairings of a morphism from $\operatorname{Bar}(\operatorname{Hoch}(A, B))$ and a morphism from $\operatorname{Bar}(\operatorname{Hoch}(B, C))$ map to zero. The brace operation is given in Reference [6], Equation 4.8, and the fact that it is associative follows from References [3], 4], [5].

CHAPTER 3

A 2-category with a trace functor

3.1. Motivation of this chapter

In this chapter, we give a trace functor on \underline{C}, the 2-category introduced in Equation 1.1. This trace functor enriches the categorical structure on algebras by incorporating the action on Hochschild cohomology $\left(H H^{0}\right)$ on Hochschild homology $\left(H H_{0}\right)$. We start with Kaledin's definition of a trace functor on a 2-category.

In preparation of the following chapters, we generalize Kaledin's definition to a trace functor on a category in dg cocategories in Section.

3.2. A trace on \underline{C}

Definition 3.2.1. (Kaledin): A trace functor on a 2-category \underline{C} is:

- for each $A \in \operatorname{Obj}(\underline{C})$, a functor $T R_{A}: \underline{C}(A, A) \rightarrow k-\bmod$
- for each pair $A, B \in \operatorname{Obj}(\underline{C})$, a natural transformation $\tau_{!}(A, B)$:

such that, for $A, B, C \in \operatorname{Obj}(\underline{C})$,

$$
\tau_{!}(B, A) \circ \tau_{!}(C, B) \circ \tau_{!}(A, C)=i d .
$$

Now, we will give a trace functor on the 2-category, \underline{C}, define in Equation 1.1. Let $A \in \operatorname{Obj}(\underline{C})$ be an algebra and $f: A \rightarrow A$ a map of algebras. Then, we set

$$
T R_{A}\left({ }_{f} A\right):=\frac{A}{\left[A,{ }_{f} A\right]}=\frac{A}{\left(f(a) \cdot a^{\prime}-a^{\prime} \cdot a\right)} .
$$

And for morphisms,

$$
\begin{aligned}
\underline{C}(A, A)(f, g) \otimes \frac{A}{\left[A,{ }_{g} A\right]} \cong Z_{A}\left({ }_{f} A_{g}\right) \otimes \frac{A}{\left[A,,_{g} A\right]} & \rightarrow \frac{A}{\left[A,{ }_{f} A\right]} \\
b \otimes a & \mapsto b \cdot a
\end{aligned}
$$

is a well-defined map on k-modules. For algebra maps $f, f^{\prime}: A \leftrightarrows B: g, g^{\prime}$, we define the natural transformation $\tau_{!}(A, B)$ as follows:

where $b^{\prime} \in Z_{A}\left(f^{\prime} B_{f}\right), a^{\prime} \in Z_{B}\left(g^{\prime} A_{g}\right), a \in A, b \in B$. Clearly, this flip map $\tau_{!}$satisfies Equation 3.1.

3.3. Redefining the trace functor

In this section, we generalize Kaledin's definition of a trace functor on a 2-category to a trace functor on $d g$ cocategories. First, we transform the definition from the language from functors and natural transformations to the language of modules.

Definition 3.3.1. Let \mathcal{C} be a k-linear category. A left module over \mathcal{C} is a k-linear functor $\mathcal{C} \rightarrow k-$ mods .

Given the definition above, we can rewrite the definition of a trace functor on a 2category in the language of modules.

Definition 3.3.2. (Kaledin, reformulated): Let \mathcal{C} be a category in k-linear categories. A trace functor on \mathcal{C} is:

- for each $A \in \operatorname{Obj}(\mathcal{C})$, a left module $T(A)$ over $\mathcal{C}(A, A)$
- for each pair $A, B \in \operatorname{Obj}(\mathcal{C})$, a map of modules over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

$$
\tau_{!}(A, B): m_{A B A}^{*} T(A) \rightarrow \tau^{*} m_{B A B}^{*} T(B)
$$

where $m_{A B A}$ is the composition functor $m_{A B A}: \mathcal{C}(A, B) \otimes \mathcal{C}(B, A) \rightarrow \mathcal{C}(A, A), \tau$ is a flip functor, and pulling back along a functor means pre-composition.

- for $A, B, C \in O b j(\mathrm{C})$,

$$
\tau^{* 2} \tau_{!}(B, A) \circ \tau^{*} \tau_{!}(C, B) \circ \tau_{!}(A, C)=i d .
$$

Now, we will translate from modules to dg comodules. Reversing the arrows in Definition 3.3.1, we have the following definition for a dg comodule over a category in dg cocategories.

Definition 3.3.3. Let \mathcal{C} be a dg cocategory. A dg comodule over \mathcal{C} is: for each $f \in \operatorname{Obj}(\mathcal{C})$, a complex $T^{\bullet}(f)$ and map of complexes

$$
\Delta_{f}: T^{\bullet}(f) \rightarrow \prod_{g \in O b j(\mathcal{C})} \mathcal{C}^{\bullet}(f, g) \otimes T^{\bullet}(g)
$$

such that the following two maps coincide (coassociativity):

$$
\begin{gathered}
T^{\bullet}(f) \\
\Delta(f) \mid \\
\prod_{g \in O b j(\mathcal{C})} \mathcal{C}^{\bullet}(f, g) \otimes T^{\bullet}(g) \\
\Delta_{\mathbb{e}(}(\otimes i d \\
\prod_{g, g^{\prime} \in O b j(\mathcal{C})} \mathcal{C}^{\bullet}(f, g) \otimes \mathfrak{C}^{i d \otimes \Delta(g)}\left(g, g^{\prime}\right) \otimes T^{\bullet}\left(g^{\prime}\right)
\end{gathered}
$$

and the following diagram commutes (counitality):

Finally, we can rewrite Definition 3.3.2 in terms of dg comodules.

Definition 3.3.4. Let \mathcal{C} be a category in $d g$ cocategories. A trace functor on \mathcal{C} is:

- for each $A \in \operatorname{Obj}(\mathcal{C})$, a dg comodule $T(A)$ over $\mathcal{C}(A, A)$
- for each pair $A, B \in \operatorname{Obj}(\mathcal{C})$, a map of dg comodules over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

$$
\tau_{!}(A, B): m_{A B A}^{*} T(A) \rightarrow \tau^{*} m_{B A B}^{*} T(B)
$$

where $m_{A B A}$ is the composition functor $m_{A B A}: \mathcal{C}(A, B) \otimes \mathcal{C}(B, A) \rightarrow \mathcal{C}(A, A)$, τ is a flip functor. We can take any definition for the pullback that is a natural and satisifies

$$
F^{*} G^{*}=(G F)^{*} .
$$

- for $A, B, C \in O b j(\mathrm{C})$,

$$
\begin{equation*}
\tau^{* 2} \tau_{!}(B, A) \circ \tau^{*} \tau_{!}(C, B) \circ \tau_{!}(A, C)=i d \tag{3.1}
\end{equation*}
$$

CHAPTER 4

Interlude

4.1. Motivation of this chapter

The purpose of this chapter is to show that a trace functor T on a category \mathcal{C} in dg cocategories gives a dg functor $\mathcal{F}_{T}: \chi(\mathcal{C}) \rightarrow \mathcal{D}$ where $\chi(\mathcal{C})$ and \mathcal{D} are dg categories introduced in Defintions 4.2.1 and 4.2.2, respectively. We switch from the trace functor T to the dg functor \mathcal{F}_{T} so that we can make precise the notion of a "trace functor up to homotopy". Namely, a trace functor on \mathcal{C} up to homotopy is an A_{∞}-functor from $\chi(\mathcal{C})$ to \mathcal{D} (see Definition 4.2.3). In the next chapter, we give such an A_{∞}-functor for \mathcal{C} being the category given in Equation 1.2 .

4.2. From a trace functor to a dg functor

We begin this section by defining two dg categories.

Definition 4.2.1. Let \mathcal{C} be a category in dg cocategories. Let $\chi(\mathcal{C})$ be the dg category with

- Objects $=\left\{A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}: A_{i} \in \operatorname{Obj}(\mathcal{C}), n \geq 0\right\}$
- Morphisms $=\{$ linear combinations of compositions of

$$
\text { rotations } \tau_{n}: \mathcal{A} \mapsto\left(A_{n} \rightarrow A_{0} \rightarrow \cdots \rightarrow A_{n}\right)
$$

coboundaries $\delta_{j, n}: \mathcal{A} \mapsto\left(A_{0} \rightarrow \cdots \rightarrow A_{j} \rightarrow A_{j+2(\bmod n+1)} \rightarrow \cdots \rightarrow A_{0}\right)$
codegeneracies: $\sigma_{i, n}: \mathcal{A} \mapsto\left(A_{0} \rightarrow \cdots \rightarrow A_{i} \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{0}\right)$
where $\mathcal{A}:=\left(A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}\right)$, subject to the cyclic relations in Appendix $\}[0]$

Definition 4.2.2. Let \mathcal{D} be the dg category with

- Objects $=\{(\underset{B}{\text { dg cocategory }, ~ d g ~ c o m o d u l e ~})\}$
- Morphisms:

$$
\begin{aligned}
& \mathcal{D}^{p}\left(\left(B_{1}, C_{1}\right),\left(B_{0}, C_{0}\right)\right):=\left\{\begin{array}{c}
F: B_{1} \rightarrow B_{0} \text { dg functor, } \\
F_{!}: C_{1} \rightarrow F^{*} C_{0} \text { degree-p linear map }
\end{array}\right\} \\
& d_{\mathcal{D}}\left(F, F_{!}\right)=\left(F,\left[d, F_{!}\right]=d_{F^{*} C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}}\right)
\end{aligned}
$$

- Composition: $(G, G!){ }_{D}(F, F!)=\left(G F, F^{*} G!\circ F!\right)$

Composition in \mathcal{D} will be well-defined and associative for any choice of a natural pullback that satisfies

$$
\begin{equation*}
F^{*} G^{*} \cong(G F)^{*} \tag{4.1}
\end{equation*}
$$

For consistency, we will choose the same pullback of dg comodules for Definitions 3.3.4 and 4.2.2. (See Appendix D for an explicit description of the pullback we've chosen for dg comodules over the endomorphism dg cocategories given in Equation 1.2.)

Now, let \mathcal{C} be a category in dg cocategories and T be a trace functor on \mathcal{C} (Definition 3.3.4. We will show that T gives a dg functor $\mathcal{F}_{T}: \chi(\mathcal{C}) \rightarrow \mathcal{D}$. On objects,

On generating morphisms in $\chi(\mathcal{C})$,
$\delta_{j, n} \underset{\mathcal{F}_{T}}{\longrightarrow}\left(\begin{array}{c}\hat{\delta}_{j, n}:=\text { composition functor over }(j+1)^{t h} \text { factor } \\ \cdots \otimes \mathcal{C}\left(A_{j}, A_{j+1}\right) \otimes \mathcal{C}\left(A_{j+1}, A_{j+2}\right) \otimes \ldots \xrightarrow{\hat{j}_{j, n}=m} \cdots \otimes \mathcal{C}\left(A_{j}, A_{j+2}\right) \otimes \ldots, \\ m^{* n} T\left(A_{0}\right) \xrightarrow{\delta_{j, n!}:=i d} \hat{\delta}_{j, n}^{*} m^{* n-1} T\left(A_{0}\right) \cong\left(m^{n-1} \hat{\delta}_{j, n}\right)^{*} T\left(A_{0}\right) \cong m^{* n} T\left(A_{0}\right)\end{array}\right)$
$\sigma_{i, n} \underset{\mathcal{F}_{T}}{\mapsto}\left(\begin{array}{c}\hat{\sigma}_{i, n}:=\text { insert } i d_{A_{i}} \text { and } 1 \in k \text { into the } i^{\text {th }} \text { slot } \\ \cdots \otimes \mathcal{C}\left(A_{i}, A_{i+1}\right) \otimes \ldots \xrightarrow{\hat{\sigma}_{i, n}} \cdots \otimes \mathcal{C}\left(A_{i}, A_{i}\right) \otimes \mathcal{C}\left(A_{i}, A_{i+1}\right) \otimes \ldots, \\ m^{* n} T\left(A_{0}\right) \xrightarrow{\sigma_{i, n!}!=i d} \hat{\sigma}_{i, n}^{*} m^{* n+1} T\left(A_{0}\right) \cong\left(m^{n+1} \hat{\sigma}_{i, n}\right)^{*} T\left(A_{0}\right) \cong m^{* n} T\left(A_{0}\right)\end{array}\right)$

$$
\tau_{n} \underset{\mathcal{F}_{T}}{\mapsto}\left(\begin{array}{c}
\hat{\tau}_{n}:=\text { rotate factors } \\
\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right) \xrightarrow{\hat{\tau}_{n}} \mathcal{C}\left(A_{n}, A_{0}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n-1}, A_{n}\right), \\
m^{* n} T\left(A_{0}\right) \xrightarrow{\tau_{n}!=m^{* n-1} \tau_{\tau}\left(A_{0}, A_{n}\right)} \hat{\tau}_{n}^{*} m^{* n} T\left(A_{n}\right) \text { where } \\
m^{n-1}:\left(\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n-1}, A_{n}\right)\right) \otimes \mathcal{C}\left(A_{n}, A_{0}\right) \rightarrow \mathcal{C}\left(A_{0}, A_{n}\right) \otimes \mathcal{C}\left(A_{n}, A_{0}\right)
\end{array}\right)
$$

To show that this association on generating morphisms gives a functor, we should check that \mathcal{F}_{T} preserves the cyclic relations in Equation A.2. All of the relations involving δ 's and σ 's are straightforward to check and follow from (1) the associativity of the composition functor m in \mathcal{C}, and (2) the general fact that $f \circ i d=i d \circ f=f$ for a map f. The remaining relation, $\tau_{n}^{n+1}=i d$, is preserved:

- for $n=2$ because this is Equation 3.1 from the definition of a trace functor,
- for $n>2$ because these are pullbacks of Equation 3.1,
- and for $n=1$ because this follows from Equation 3.1 with $B=C$ and the fact that $\sigma_{1,1!}$ is an identity map on comodules.
\mathcal{F}_{T} is dg because $\delta_{j, n!}:=i d, \sigma_{i, n!}:=i d$ and $\tau_{n!}:=m^{* n-1} \tau_{!}$commute with the differentials. Now, we are ready to define a "trace functor up to homotopy".

Definition 4.2.3. Let \mathcal{C} be a category in $d g$ cocategories. A trace functor up to homotopy on \mathcal{C} is an A_{∞}-functor

$$
\mathcal{F}: \chi(\mathcal{C}) \rightarrow \mathcal{D}
$$

where $\chi(\mathcal{C})$ and \mathcal{D} are $d g$ categories defined in Defintions 4.2.1 and 4.2.2, respectively, (and we use the notation and conventions from Reference [2], Appendix A, Definition A. 8 for the definition of an A_{∞}-functor,) satisfying

- $\mathcal{F}\left(A_{0} \rightarrow A_{0}\right) \cong\binom{\mathcal{C}\left(A_{0}, A_{0}\right)}{T,\left(A_{0}\right)$ any dg comodule over $\mathcal{C}\left(A_{0}, A_{0}\right)}$
- for $n>0$,

$$
\mathcal{F}\left(A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}\right) \cong\left(\begin{array}{c}
\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right) \\
m^{* n} T\left(A_{0}\right) \text { where } \\
m^{n}: \mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right) \rightarrow \mathcal{C}\left(A_{0}, A_{0}\right)
\end{array}\right)
$$

- for $\lambda=\delta_{j, n}, \sigma_{i, n}, \mathcal{F}(\lambda) \cong \mathcal{F}_{T}(\lambda)$ given in Equation 4.2
- $\mathcal{F}\left(\tau_{1}\right) \cong\left(\begin{array}{c}\hat{\tau}_{1}:=\text { rotate factors } \\ \mathcal{C}\left(A_{0}, A_{1}\right) \otimes \mathcal{C}\left(A_{1}, A_{0}\right) \xrightarrow{\hat{\tau}_{1}} \mathcal{C}\left(A_{1}, A_{0}\right) \otimes \mathcal{C}\left(A_{0}, A_{1}\right), \\ T\left(A_{0}\right) \xrightarrow{\tau_{11}} \hat{\tau}_{1}^{*} T\left(A_{1}\right) \text { any map of dg comodules }\end{array}\right)$
- for $n>1, \mathcal{F}\left(\tau_{n}\right) \cong \mathcal{F}_{T}\left(\tau_{n}\right)$ given in Equation 4.2.

There are many stipulations in the definition above because not every functor $\chi(\mathbb{C}) \rightarrow$ \mathcal{D} comes from a trace functor. However, an dg functor satsifying Definition 4.2.3 does come from a trace functor.

CHAPTER 5

A trace functor up to homotopy

5.1. Motivation of this chapter

In this chapter, we give a trace functor up to homotopy on the category \mathcal{C} defined in Equation 1.2. To do so, we give an A_{∞}-functor $\mathcal{F}: \chi(\mathcal{C}) \rightarrow \mathcal{D}$ satisfying certain requirements (see Definition 4.2.3). Applying the definition of an A_{∞}-functor (from Reference [2], Appendix A, Definition A.8), the only choices we need to make to define \mathcal{F} are:
(1) for each algebra A, a dg comodule $T(A)$ over $\mathcal{C}(A, A)$,
(2) for a functor of dg cocategories $F: C_{1} \rightarrow C_{0}$ and a dg comodule T_{0} over C_{0}, a definition of a pullback $F^{*} T_{0}$ that is natural in T_{0} and satisfies Equation 4.1,
(3) for each pair of algebras A, B, a map of dg comodules over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$

$$
\tau_{1!}(A, B): T(A) \rightarrow \hat{\tau}_{1}^{*} T(B)
$$

where $\hat{\tau}_{1}: \mathcal{C}(A, B) \otimes \mathcal{C}(B, A) \rightarrow \mathcal{C}(B, A) \otimes \mathcal{C}(A, B)$ is rotation,
(4) for each non-generating morphism $\mu \in \chi(\mathcal{C})$, a map of dg comodules $\mathcal{F}(\mu) \in \mathcal{D}$,
(5) for each pair of morphisms $\mu_{1}, \mu_{2} \in \chi(\mathcal{C})$, a degree- 1 map of comodules $\mathcal{F}\left(\mu_{1}, \mu_{2}\right) \in$ \mathcal{D},
(6) for each sequence of morphisms $\mu_{1}, \ldots, \mu_{n} \in \chi(\mathcal{C})$ where $n>2$, a degree-(n-1) map of comodules $\mathcal{F}\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathcal{D}$.

In Section 5.2, we define item (1), the dg comodule $T(A)$, which is a (categorified) bar construction of the module $C_{\bullet}(A, A)$ over the algebra $C_{\bullet}(A, A)$ acting via contraction. In Appendix D, we give item (2) as well as compute some examples of pullbacks for later use. In Proposition C.1, we define item (3) by adapting known equations for the Lie derivative of a Hochschild cochain against a chain. In Section 5.3.1, we give a prescription for defining
item (4). We see that \mathcal{F} respects composition except for a few cases (Section 5.4), and we give a prescription for defining the few non-zero $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$'s in item (5) (Section 5.3.2). Finally, for item (6), we set $\mathcal{F}\left(\mu_{1}, \ldots, \mu_{n}\right)=$ (zero map on comodules) for all composable $m u_{1}, \ldots, \mu_{n}, n>2$: this is the claim that we have no higher homotopies, justified in Section 5.5.

5.2. Dg comodules $T(A)$

Let A be an algebra and $\operatorname{Hoch}(A, A)$ be the dg category defined in Section 2.2. First, we will define a dg module, $\underline{T}(A)$ over $\operatorname{Hoch}(A, A)$:

$$
\underline{T}(A)^{\bullet}(f):=\left(C_{-}\left(A,_{f} A\right), b\right)
$$

$$
\operatorname{Hoch}(A, A)^{\bullet}(f, g) \otimes T(A)^{\bullet}(g) \cong C^{\bullet}\left(A,_{f} A_{g}\right) \otimes C_{-\bullet}\left(A,_{g} A\right) \xrightarrow{\iota} C_{-\bullet}\left(A,_{f} A\right) \cong T(A)^{\bullet}(f)
$$

where $f: A \rightarrow A$ is a map of algebras, $\left(C_{-} \cdot\left(A,_{f} A\right), b\right)$ is the Hochschild chain complex (see Appendix B) and ι is the contraction operation from Equation B.1.

Now, let $B(A):=\mathcal{C}(A, A)=\operatorname{Bar}(\operatorname{Hoch}(A, A))$ be the endomorphism dg cocategory defined in Section 2.2. Then, we set $T(A):=\operatorname{Bar}_{\text {mod }}(\operatorname{Hoch}(A, A), \underline{T}(A))$, a dg comodule over $B(A)$. $B a r_{\text {mod }}$ is a functor

$$
\operatorname{Bar}_{\text {mod }}:\{\mathrm{dg} \text { modules over } \operatorname{Hoch}(A, A)\} \rightarrow\{\mathrm{dg} \text { comodules over } B(A)\} .
$$

More explicitly,

$$
\begin{aligned}
T(A)^{\bullet}(f) & := \\
& :=\bigoplus_{\substack{n \geq 0, f_{i} \in O b j(H o c h(A, A)) \\
f_{0}=f}} \operatorname{Hoch}(A, A)^{\bullet}[1]\left(f_{0}, f_{1}\right) \otimes \cdots \otimes \operatorname{Hoch}(A, A)^{\bullet}[1]\left(f_{n-1}, f_{n}\right) \otimes \underline{T}^{\bullet}\left(f_{n}\right) \\
& =\bigoplus_{\substack{n \geq 0, f_{i} \geq A \rightarrow A \\
f_{0}=f}} C^{\bullet}\left(A, f_{0} A_{f_{1}}\right)[1] \otimes \cdots \otimes C^{\bullet}\left(A, f_{n-1} A_{f_{n}}\right)[1] \otimes C_{-\bullet}\left(A, f_{n} A\right) .
\end{aligned}
$$

We can picture an element of $T(A)^{\bullet}(f)$ as follows:

Figure 5.1. An element of $T(A)^{\bullet}\left(f=f_{0}\right)$
where $\phi_{i} \in C^{\bullet}\left(A, f_{i-1} A_{f_{i}}\right)$ and $\alpha \in C_{-\bullet}\left(A, f_{n} A\right)$. The differential on $T(A)$ is:

$$
\begin{aligned}
d_{T(A)} & =\tilde{d}_{H o c h(A, A)}+\tilde{b}+\tilde{\iota} \\
\tilde{d}_{H o c h(A, A)} & =\text { extension of } d_{H o c h(A, A)} \text { to a differential on } T(A)
\end{aligned}
$$

$\tilde{b}=$ extension of the Hochschild chain differential b to a differential on $T(A)$
$\tilde{\iota}\left(\phi_{1} \ldots \phi_{n} \mid \alpha\right):=\left(\phi_{1} \ldots \phi_{n-1} \mid \iota\left(\phi_{n}, \alpha\right)\right)$.

The coproduct on $T(A)$ is induced by the coproduct on $B(A)$:

$$
\Delta\left(\phi_{1} \ldots \phi_{n} \mid n\right)=\sum_{0 \leq i \leq n} \pm\left(\phi_{1} \ldots \phi_{i}\right) \otimes\left(\phi_{i+1} \ldots \phi_{n} \mid \alpha\right) .
$$

For more precise details and explicit signs, see Reference [6], Section 4.6. $T(A)$ is the cofree dg comodule over $B(A)$ with cogenerators given by Hochschild chains. In other
words,

$$
\begin{align*}
& \left\{\begin{array}{l}
\text { maps of dg comodules } \\
D \rightarrow T(A) \text { over } B(A)
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\binom{\text { maps of complexes }}{D^{\bullet}(f) \rightarrow C_{-}\left(A,_{f} A\right)}_{f \in \operatorname{Obj}(B(A))}\right\} \tag{5.1}\\
& (F: D \rightarrow T(A)) \mapsto\left(D^{\bullet}(f) \xrightarrow{F_{f}} T(A)^{\bullet}(f) \xrightarrow{\text { project }} C_{-\bullet}\left(A,_{f} A\right)\right)_{f} \\
& \left(\begin{array}{c}
D(f) \xrightarrow{\Delta_{D}} \underset{g \in \operatorname{Obj(B(A))}}{\bigoplus_{g}} B(A) \bullet(f, g) \otimes D(g) \\
\xrightarrow{i d \otimes F} \bigoplus_{g} B(A)^{\bullet}(f, g) \otimes C_{-\bullet}(A, g A) \\
\cong T(A)(f)
\end{array}\right)_{f} \leftarrow\left(D^{\bullet}(f) \xrightarrow{F} C_{-\bullet}\left(A,{ }_{f} A\right)\right)_{f}
\end{align*}
$$

5.3. Prescriptions for $\mathcal{F}\left(\mu_{1}, \ldots, \mu_{n}\right)$

5.3.1. Prescription for $\mathcal{F}(\mu)$

Now, we will define $\mathcal{F}(\mu)$ for μ not a generating morphism in Λ. (A general morphism in $\chi(\mathcal{C})$ is a linear combination of morphisms in Λ, so we extend \mathcal{F} linearly to define \mathcal{F} on any morphism in $\chi(\mathcal{C})$, see Definition 4.2.1.)

Let μ be a non-generating morphism in Λ that induces a morphsim in $\chi(\mathcal{C})$ with source $\mathcal{A}:=\left(A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}\right)$ for some algebras $A_{i}, 0 \leq i \leq n, n \geq 0$. Choose (i.e., fix once and for all) a presentation of μ as a composition of generating morphisms. Within the chosen presentation, in the following order, (1) replace all occurrences of $\tau_{n-1} \delta_{n-1, n}$ with $\delta_{0, n} \tau_{n}^{2}$, (2) replace all $\tau_{n+1} \sigma_{n, n}$ with $\tau_{n+1}^{n+1} \sigma_{0, n} \tau_{n}$, (3) replace all decompositions of identity maps with identity maps, (4) remove all identity maps if $\mu \neq i d$, (5) call this new presentation "the presentation corresponding to μ ", denoted $\mu=\lambda_{\mu, k_{\mu}} \ldots \lambda_{\mu, 1}$. The presentation corresponding to μ is not unique (i.e., still depends on the original chosen presentation). However, letting $\mathcal{F}(\mu)$ act on comodules via

$$
\mathcal{F}(\mu):=\hat{\lambda}_{\mu, 1}^{*} \cdots \hat{\lambda}_{\mu, k_{\mu}-1}^{*}\left(\lambda_{\mu, k_{\mu}!}\right) \circ \ldots \circ \hat{\lambda}_{\mu, 1}^{*}\left(\lambda_{\mu, 2!}\right) \circ \lambda_{\mu, 1!}: T(\mathcal{A}) \rightarrow \hat{\mu}^{*} T(\mu \mathcal{A})
$$

is well-defined because we have made consistent choices. More explicitly, we show in Section 5.4 that the choices we have made for \mathcal{F} (\{generating morphisms\}) respect all of the relations in Λ (Equation A.2) except for Equations 5.4. The above steps ensure that the presentation corresponding to μ only uses the lefthand side of Equation 5.4a and the righthand sides of Equations 5.4 c and 5.4 b .

5.3.2. Prescription for $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$

Before defining \mathcal{F} on pairs of composable morphisms, let's take a look at an A_{∞} relation we expect \mathcal{F} to satisfy: For $\stackrel{\mu_{1}}{\longrightarrow} \xrightarrow{\mu_{2}} \cdot$ composable morphisms in $\chi(\mathcal{C})$, we expect

$$
\begin{equation*}
\mathcal{F}\left(\mu_{2} \circ \mu_{1}\right)=\mathcal{F}\left(\mu_{2}\right) \circ \mathcal{F}\left(\mu_{1}\right)+d_{\mathcal{D}_{\infty}} \circ \mathcal{F}\left(\mu_{1}, \mu_{2}\right) \tag{5.2}
\end{equation*}
$$

Given the definition of $\mathcal{F}(\mu)$ above, we require a non-zero $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$ if and only if: (Condition H) the presentation corresponding to μ_{2} composed with the presentation corresponding to μ_{1} contains, after removing (decompositions of) identity maps except for τ_{n}^{n+1}, one or more of the following terms: $\tau_{n-1} \delta_{n-1, n}, \tau_{n+1} \sigma_{n, n}, \tau_{n}^{n+1}$. If μ_{1}, μ_{2} satisfy Condition H , homotopies given in Section 5.4 .2 can be used to define $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$. If μ_{1}, μ_{2} do not satisfy Condition H, let $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)=0$ on comodules.

We will give some instructive examples of non-zero $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$ that satisfy Equation 5.2 .

Example 5.3.1. Let $\mu_{1}=\delta_{n-1, n}, \mu_{2}=\tau_{n-1}$. Then, the presentation corresponding to $\mu_{2} \mu_{1}$ is $\delta_{0, n} \tau_{n}^{2}$. Let $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$ be the homotopy given in Section 5.4.2.1. Then, Equation 5.2 holds because it is equivalent to Equation 5.4a.

Example 5.3.2. Let $\mu_{1}=\sigma_{0, n-1} \delta_{n-1, n}, \mu_{2}=\tau_{n-1} \delta_{0, n}$. To form the presentation corresponding to $\mu_{2} \mu_{1}$, we follow these steps:

$$
\tau_{n-1} \delta_{0, n} \sigma_{0, n-1} \delta_{n-1, n} \xrightarrow[\text { of identities }]{\text { remove decompositions }} \tau_{n-1} \delta_{n-1, n} \xrightarrow{\text { replace }} \delta_{0, n} \tau_{n}^{2} .
$$

On the other hand,

$$
\begin{aligned}
\mathcal{F}\left(\mu_{2}\right) \mathcal{F}\left(\mu_{1}\right) & =\left(\delta_{0, n} \widehat{\sigma_{0, n-1} \delta_{n-1, n}}\right)^{*}\left(\tau_{n-1!}\right) \circ\left(\widehat{\left(\sigma_{0, n-1} \delta_{n-1, n}\right.}\right)^{*}\left(\delta_{0, n!}\right) \circ \hat{\delta}_{n-1, n}^{*}\left(\sigma_{0, n-1!}\right) \circ \delta_{n-1, n!} \\
& =\hat{\delta}_{n-1, n}^{*}\left(\tau_{n-1!}\right) \circ i d \circ \delta_{n-1, n!} .
\end{aligned}
$$

So, we can let $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$ be the homotopy given in Section 5.4.2.1, and Equation 5.2 holds because it is equivalent to Equation 5.4a.

Example 5.3.3. Let $\left(\mu_{1}, \mu_{2}\right) \in\left\{\left(\tau_{n+1}, \sigma_{n, n}\right),\left(\tau_{n}^{n+1-j}, \tau_{n}^{j}\right): 1 \leq j \leq n, n \in \mathbb{N}\right\}$. Let $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)$ be the homotopy given in 5.4.2.3 if $\mu_{2}=\sigma_{n, n}$ and the homotopy given in 5.4.2.2 if $\mu_{2} \neq \sigma_{n, n}$. Then, Equation 5.2 holds because it is equivalent to either Equation 5.4 . ($\mu_{2}=\sigma_{n, n}$) or Equation 5.4b $\left(\mu_{2} \neq \sigma_{n, n}\right)$.

Example 5.3.4. Let $\mu_{1}=\sigma_{n-1, n-1} \delta_{n-1, n}, \mu_{2}=\tau_{n}$. To form the presentation corresponding to $\mu_{2} \mu_{1}$, we follow these steps:

$$
\left(\tau_{n} \sigma_{0, n-1}\right) \delta_{n-1, n} \xrightarrow{\text { replace }(\cdot)} \tau_{n}^{n} \sigma_{0, n-1}\left(\tau_{n-1} \delta_{n-1, n}\right) \xrightarrow{\text { replace }(\cdot)} \tau_{n}^{n} \sigma_{0, n-1} \delta_{0, n} \tau_{n}^{2}
$$

Let $\mathcal{F}\left(\mu_{1}, \mu_{2}\right)=g_{1}+g_{2}$ where $g_{1}=\hat{\delta}_{n-1, n}^{*}\left(\right.$ homotopy in Section 5.4.2.3) $\circ \delta_{n-1, n!}$ and $g_{2}=$ $\left(\widehat{\tau_{n-1} \delta_{n-1, n}}\right)^{*}\left(\left(\tau_{n}^{n-1} \sigma_{0, n-1}\right) *\left(\tau_{n!}\right) \circ \ldots \circ \hat{\sigma}_{0, n-1}^{*}\left(\tau_{n!}\right) \circ \sigma_{0, n-1!}\right) \circ($ homotopy in Section 5.4.2.1) $)$ Then, Equation 5.2 holds because it reduces to $\delta_{n-1, n}^{*}($ Equation 5.4c) and Equation 5.4 a.

5.4. Computational: Composition of maps of dg comodules

In Equations 4.2 and C.1, we gave the maps of dg comodules re-stated below:

$$
\begin{aligned}
& \delta_{j, n!}: m^{* n} T\left(A_{0}\right) \\
& \sigma_{i, n!}: m^{* n} T\left(A_{0}\right) \\
& \cong \stackrel{i d}{\cong} \hat{\delta}_{j, n}^{*} m^{* n-1} T\left(A_{0}\right) \\
& \tau_{n, n}^{*} m^{* n+1} T\left(A_{0}\right) \\
&: m^{* n} T\left(A_{0}\right) \xrightarrow{m^{* n-1} \tau!\left(A_{0}, A_{n}\right)} \hat{\tau}_{n}^{*} m^{* n} T\left(A_{n}\right)
\end{aligned}
$$

$$
\tau_{1!}: m^{*} T\left(A_{0}\right) \rightarrow \hat{\tau}_{1}^{*} m^{*} T\left(A_{1}\right) \quad \text { Equation C. } 1 \text { for } A=A_{0}, B=A_{1}
$$

Here, we show that these maps satisfy the relations in Λ (Equation A.2) up to homotopy. More precisely, we will show that

$$
\begin{array}{ll}
\hat{\delta}_{j, n}^{*}\left(\delta_{i, n-1!}\right) \circ \delta_{j, n!}=\hat{\delta}_{i, n}^{*}\left(\delta_{j-1, n-1!}\right) \circ \delta_{i, n!} & 0 \leq i<j \leq n-1 \\
\hat{\sigma}_{j, n}^{*}\left(\sigma_{i, n+1!}\right) \circ \sigma_{j, n!}=\hat{\sigma}_{i, n}^{*}\left(\sigma_{j+1, n+1!}\right) \circ \sigma_{i, n!} & 0 \leq i \leq j \leq n
\end{array}
$$

$$
\begin{align*}
& \hat{\sigma}_{i, n}^{*}\left(\delta_{j, n+1!}\right) \circ \sigma_{i, n!}= \begin{cases}\hat{\delta}_{j-1, n}^{*}\left(\sigma_{i, n-1!}\right) \circ \delta_{j-1, n!} & 0 \leq i<j \leq n \\
i d & j=i, i-1 \\
\hat{\delta}_{j, n}^{*}\left(\sigma_{i-1, n-1!}\right) \circ \delta_{j, n!} & 0 \leq j<i-1 \leq n-1\end{cases} \tag{5.3a}\\
& \hat{\sigma}_{i, n}^{*}\left(\tau_{n+1!}\right) \circ \sigma_{i, n!}=\hat{\tau}_{n}^{*}\left(\sigma_{i+1, n!}\right) \circ \tau_{n!} \quad 0 \leq i \leq n-1 \tag{5.3b}\\
& \hat{\delta}_{j, n}^{*}\left(\tau_{n-1!}\right) \circ \delta_{j, n!}=\hat{\tau}_{n}^{*}\left(\delta_{j+1, n!}\right) \circ \tau_{n!} \quad 0 \leq j \leq n-1
\end{align*}
$$

$$
\begin{equation*}
\left(\widehat{\tau_{1} \sigma_{0,0}}\right)^{*}\left(\delta_{0,1!}\right) \circ \hat{\sigma}_{0,0}^{*}\left(\tau_{1!}\right) \circ \sigma_{0,0!}=i d \tag{5.3c}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\tau}_{n}^{* 2}\left(\delta_{0, n!}\right) \circ \hat{\tau}_{n}^{*}\left(\tau_{n!}\right) \circ \tau_{n!} \simeq \hat{\delta}_{n-1, n}^{*}\left(\tau_{n-1!}\right) \circ \delta_{n-1, n!} \tag{5.4a}
\end{equation*}
$$

$$
\begin{gather*}
\hat{\tau}_{n}^{* n}\left(\tau_{n!}\right) \circ \ldots \circ \hat{\tau}_{n}^{*}\left(\tau_{n!}\right) \circ \tau_{n!} \simeq i d \tag{5.4b}\\
\hat{\sigma}_{n, n}^{*}\left(\tau_{n+1!}\right) \circ \sigma_{n, n!} \tag{5.4c}\\
\simeq\left(\widehat{\tau_{n+1}^{n} \sigma_{0, n}} \tau_{n}\right)^{*}\left(\tau_{n+1!}\right) \circ \ldots \circ\left(\tau_{n+1} \widehat{\sigma_{0, n}} \tau_{n}\right)^{*}\left(\tau_{n+1!}\right) \circ\left(\widehat{\sigma_{0, n} \tau_{n}}\right)^{*}\left(\tau_{n+1!}\right) \circ \hat{\tau}_{n}^{*}\left(\sigma_{0, n!}\right) \circ \tau_{n!}
\end{gather*}
$$

5.4.1. Strict relations: showing Equations 5.3 hold

Equation 5.3a has three relations. All of the $\sigma_{!}$'s and $\delta_{!}$'s in Equation 5.3a are identity maps, so it's clear that these relations hold.

Equation 5.3b has two relations. To show that the first one holds, we have

$$
\begin{aligned}
\hat{\sigma}_{i, n}^{*}\left(\tau_{n+1!}\right) \circ \sigma_{i, n!} & =\hat{\sigma}_{i, n}^{*}\left(\left(\delta_{0,2} \widehat{\delta_{0, n+1}}\right)^{*}\left(\tau_{1!}\right)\right) \circ \sigma_{i, n!} \quad \text { definitions of } \tau_{n+1!} \text { and } \hat{\delta}_{\cdot,} \\
& =\left(\delta_{0,2} \widehat{\delta_{0, n+1}} \sigma_{i, n}\right)^{*}\left(\tau_{1!}\right) \circ \sigma_{i, n!} \quad \text { Proposition } D .1 \\
& =\left(\delta_{0,2} \ldots \delta_{0, n}\right)^{*}\left(\tau_{1!}\right) \circ \sigma_{i, n!} \\
& =\tau_{n!} \circ \sigma_{i, n!} \quad \text { definitions of } \tau_{n!} \text { and } \hat{\delta}_{\cdot,} \\
& =\tau_{n!} \circ i d=i d \circ \tau_{n!} \\
& =\hat{\tau}_{n}^{*}\left(\sigma_{i+1, n!}\right) \circ \tau_{n!} .
\end{aligned}
$$

To show that the second relation holds, the reasoning is the same as above. We have

$$
\begin{aligned}
\hat{\delta}_{j, n}^{*}\left(\tau_{n-1!}\right) \circ \delta_{j, n!} & =\hat{\delta}_{j, n}^{*}\left(\left(\delta_{0,2} \widehat{\delta_{0, n-1}}\right)^{*}\left(\tau_{1!}\right)\right) \circ \delta_{j, n!} \\
& =\left(\delta_{0,2} \widehat{\left.\widehat{\delta_{0, n-1}} \delta_{j, n}\right)^{*}\left(\tau_{1!}\right) \circ \delta_{j, n!}}\right. \\
& =\tau_{n!} \circ \delta_{j, n!} \\
& =\tau_{n!} \circ i d=i d \circ \tau_{n!} \\
& =\hat{\tau}_{n}^{*}\left(\delta_{j+1, n!}\right) \circ \tau_{n!}
\end{aligned}
$$

Equation 5.3 C has one relation. The only map in this relation that is not defined to be an identity map is $\hat{\sigma}_{0,0}^{*}\left(\tau_{1!}\right)$. We will compute this map and show that it is also an identity. Let $\left(\phi_{1} \ldots \phi_{k} \mid \alpha\right) \in T\left(A_{0}\right)=: T\left(A_{0} \rightarrow A_{0}\right)$ (see Figure 5.1 for notation). By Proposition D.2,

$$
\begin{aligned}
T\left(A_{0} \rightarrow A_{0}\right) & \stackrel{\cong}{\rightarrow} \hat{\sigma}_{0,0}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \\
\left(\phi_{1} \ldots \phi_{k} \mid \alpha\right) & \mapsto \sum_{0 \leq r \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(1\left|\phi_{r+1} \ldots \phi_{k}\right| \alpha\right) .
\end{aligned}
$$

Applying $\hat{\sigma}_{0,0}^{*}\left(\tau_{1!}\right)$ to the righthand side, we have

$$
\begin{aligned}
& \hat{\sigma}_{0,0}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \xrightarrow{\hat{\sigma}_{0,0}^{*}\left(\tau_{1!}\right)} \hat{\sigma}_{0,0}^{*} \hat{\tau}_{1}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \\
& \sum_{0 \leq r \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(1\left|\phi_{r+1} \ldots \phi_{k}\right| \alpha\right) \mapsto \sum_{0 \leq r \leq s \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes \\
& \quad\left(\phi_{r+1} \ldots \phi_{s}|1| \tau_{1!}\left(1\left|\phi_{s+1} \ldots \phi_{k}\right| \alpha\right)\right) .
\end{aligned}
$$

The righthand side above is equal to

$$
\begin{aligned}
& \sum_{0 \leq r \leq s \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(\phi_{r+1} \ldots \phi_{s}|1| \tau_{1!}\left(1\left|\phi_{s+1} \ldots \phi_{k}\right| \alpha\right)\right) \\
= & \sum_{0 \leq r \leq s \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(\phi_{r+1} \ldots \phi_{s}|1| \tau_{1!}^{0, k-s}\left(1\left|\phi_{0, s_{0}+1} \ldots \phi_{0, k_{0}}\right| \alpha\right)\right) \\
& \left.\quad \text { (see Proposition C. } 1 \text { for definition of } \tau_{1!}^{0, k-s}\right) \\
= & \sum_{0 \leq r \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(\phi_{r+1} \ldots \phi_{k}|1| \alpha\right) \quad\left(\tau_{1!}^{0,>0}=0\right) \\
\in & \hat{\sigma}_{0,0}^{*} \hat{\tau}_{1}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) .
\end{aligned}
$$

Finally, applying Proposition D. 2 again, we have

$$
\begin{aligned}
\hat{\sigma}_{0,0}^{*} \hat{\tau}_{1}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \xrightarrow{\text { project onto cogenerators }} T\left(A_{0} \rightarrow A_{0}\right) \\
\sum_{0 \leq r \leq k}\left(\phi_{1} \ldots \phi_{r}\right) \otimes\left(\phi_{r+1} \ldots \phi_{k}|1| \alpha\right) \mapsto\left(\phi_{1} \ldots \phi_{k} \mid \alpha\right) .
\end{aligned}
$$

So, we've shown

$$
T\left(A_{0} \rightarrow A_{0}\right) \cong \hat{\sigma}_{0,0}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \xrightarrow{\hat{\sigma}_{0,0}^{*}\left(\tau_{1!}\right)} \hat{\sigma}_{0,0}^{*} \hat{\tau}_{1}^{*} T\left(A_{0} \rightarrow A_{0} \rightarrow A_{0}\right) \cong T\left(A_{0} \rightarrow A_{0}\right)
$$

is the identity map.

5.4.2. Weak relations: showing Equations 5.4 hold

5.4.2.1. Showing Equation 5.4a holds. For $n=1$, eliminating the identity maps reduces Equation 5.4a to:

$$
\hat{\tau}_{1}^{*}\left(\tau_{1!}\right) \circ \tau_{1!} \simeq i d
$$

We prove the above in Appendix Proposition C.2. (In the appendix, we fix algebras A_{0}, A_{1}, and $\tau_{1!}=\tau_{1!}\left(A_{0}, A_{1}\right), \hat{\tau}_{1}^{*}\left(\tau_{1!}\right)=\tau_{1!}\left(A_{1}, A_{0}\right)$, and the homotopy is denoted $B\left(A_{0}, A_{1}\right)$.)

For $n=2$, eliminating the identity maps and writing $\tau_{2 \text { ! }}$ in terms of $\tau_{1!}$ reduces Equation 5.4a to:

$$
\left(\widehat{\delta_{0,2} \tau_{2}}\right)^{*}\left(\tau_{1!}\right) \circ \hat{\delta}_{0,2}^{*}\left(\tau_{1!}\right) \simeq \hat{\delta}_{1,2}^{*}\left(\tau_{1!}\right)
$$

We prove the above in Appendix Proposition C.4. (In the appendix, we fix algebras A_{0}, A_{1}, A_{2}, and $\hat{\delta}_{0,2}^{*}\left(\tau_{1!}\right)=\tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right),\left(\widehat{\delta_{0,2} \tau_{2}}\right)^{*}\left(\tau_{1!}\right)=\tau_{1!}\left(A_{2} \bullet A_{0}, A_{1}\right), \hat{\delta}_{1,2}^{*}\left(\tau_{1!}\right)=$ $\tau_{1!}\left(A_{0}, A_{1} \bullet A_{2}\right)$, and the homotopy is denoted $\mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)$.)

For $n>2$, we reduce Equation 5.4a to the case when $n=2$. We have

Lefthand side of Equation 5.4a $=\hat{\tau}_{n}^{* 2}\left(\delta_{0, n!}\right) \circ \hat{\tau}_{n}^{*}\left(\tau_{n!}\right) \circ \tau_{n!}$

$$
\begin{aligned}
& =i d \circ \hat{\tau}_{n}^{*}\left(\left(\delta_{0,2} \ldots \delta_{0, n}\right)^{*}\left(\tau_{1!}\right)\right) \circ \tau_{n!} \\
& =\left(\delta_{0,2} \widehat{\delta_{0, n}} \tau_{n}\right)^{*}\left(\tau_{1!}\right) \circ \tau_{n!} \\
& =\left(\delta_{0,2} \widehat{\tau_{2} \delta_{0,3} \cdots} \delta_{0, n}\right)^{*}\left(\tau_{1!}\right) \circ \tau_{n!} \\
& =\left(\delta_{0,2} \widehat{\tau_{2} \delta_{0,3} \cdots} \delta_{0, n}\right)^{*}\left(\tau_{1!}\right) \circ\left(\delta_{0,2} \widehat{\delta_{0, n}} \tau_{n}\right)^{*}\left(\tau_{1!}\right) \\
& \left.=\left(\widehat{\delta_{0,3} \cdots \delta_{0, n}}\right)^{*}\left(\widehat{\delta_{0,2} \tau_{2}}\right)^{*}\left(\tau_{1!}\right) \circ \hat{\delta}_{0,2}^{*} \tau_{1!}\right)
\end{aligned}
$$

Righthand side of Equation 5.4a $=\hat{\delta}_{n-1, n}^{*}\left(\tau_{n-1!}\right) \circ \delta_{n-1, n!}$

$$
\begin{aligned}
& =\hat{\delta}_{n-1, n}^{*}\left(\left(\delta_{0,2} \widehat{\delta_{0, n-1}}\right)^{*}\left(\tau_{1!}\right)\right) \circ i d \\
& \left.=\left(\delta_{0,2} \cdots \widehat{\delta_{0, n-1}} \delta_{n-1, n}\right)^{*}\left(\tau_{1!}\right)\right) \\
& =\left(\delta_{1,2} \widehat{\delta_{0,3} \cdots \delta_{0, n}}\right)^{*}\left(\tau_{1!}\right) \\
& =\left(\delta_{0,3 \cdots \delta_{0, n}}\right)^{*}\left(\hat{\delta}_{1,2}^{*}\left(\tau_{1!}\right)\right) .
\end{aligned}
$$

So, Equation 5.4a $=\left(\widehat{\delta_{0,3} \ldots \delta_{0, n}}\right)^{*}($ Equation 5.4a, $n=2)$. If \mathcal{B} is a homotopy giving Equation 5.4a for $n=2$, then $\left(\widehat{\delta_{0,3} \cdots \delta_{0, n}}\right) * \mathcal{B}$ is a homotopy giving Equation 5.4 a for $n>2$.
5.4.2.2. Showing Equation 5.4b holds. We prove this by induction on n. For $n=1$, Equation 5.4b is the same as Equation 5.4a, which we established in the previous section. Now, assume that Equation 5.4 b holds for $N=n-1$. We show that Equation 5.4 b holds
for $N=n$ below:

$$
\begin{aligned}
\hat{\tau}_{n}^{* n}\left(\tau_{n!}\right) \circ \ldots \circ \hat{\tau}_{n}^{*}\left(\tau_{n!}\right) \circ \tau_{n!}= & \hat{\tau}_{n}^{* n-1}\left(\hat{\tau}_{n}^{*} \tau_{n!} \circ \tau_{n!}\right) \circ \hat{\tau}_{n}^{* n-2} \tau_{n!} \circ \ldots \circ \tau_{n!} \\
\simeq & \hat{\tau}_{n}^{* n-1}\left(\hat{\delta}_{n-1, n}^{*} \tau_{n-1!}\right) \circ \hat{\tau}_{n}^{* n-2} \tau_{n!} \circ \ldots \circ \tau_{n!} \quad \text { (Equation 5.4a) } \\
= & \left(\widehat{\tau_{n-1}^{n-1} \delta_{0, n}}\right)^{*} \tau_{n-1!} \circ \\
& \circ\left(\hat{\tau}_{n}^{* n-2} \hat{\delta}_{n-2, n}^{*} \tau_{n-1!} \circ \ldots \circ \hat{\tau}_{n}^{*} \hat{\delta}_{1, n}^{*} \tau_{n-1!} \circ \hat{\delta}_{0, n}^{*} \tau_{n-1!}\right) \\
= & \left(\widehat{\tau_{n-1}^{n-1} \delta_{0, n}}\right)^{*} \tau_{n-1!} \circ \hat{\delta}_{0, n}^{*}\left(\hat{\tau}_{n-1}^{* n-2} \tau_{n-1!} \circ \ldots \circ \hat{\tau}_{n-1}^{*} \tau_{n-1!} \circ \tau_{n-1!}\right) \\
= & \hat{\delta}_{0, n}^{*}\left(\hat{\tau}_{n-1}^{* n-1} \tau_{n-1!} \circ \ldots \circ \tau_{n-1!}\right) \\
\simeq & \hat{\delta}_{0, n}^{*}(i d) \quad(\text { Inductive hypothesis) } \\
= & i d .
\end{aligned}
$$

5.4.2.3. Showing Equation 5.4cholds. By manipulating morphisms in Λ, we have

Righthand side of Equation 5.40 $=\hat{\tau}_{n}^{* n+1} \tau_{n!} \circ \hat{\tau}_{n}^{* n} \tau_{n!} \circ \ldots \circ \hat{\tau}_{n}^{*} \tau_{n!} \circ \hat{\tau}_{n}^{* n+1} i d \circ \tau_{n!}$

$$
=\tau_{n!} \circ\left(\hat{\tau}_{n}^{* n} \tau_{n!} \circ \ldots \circ \hat{\tau}_{n}^{*} \tau_{n!} \circ \tau_{n!}\right)
$$

$\simeq \tau_{n!} \circ(i d) \quad$ Equation 5.4 b .

On the other hand, we have

$$
\begin{aligned}
\text { Lefthand side of Equation } 5.4 \mathrm{c} & =\hat{\sigma}_{n, n}^{*}\left(\tau_{n+1!}\right) \circ i d \\
& =\hat{\sigma}_{n, n}^{*}\left(\hat{\delta}_{n, n+1}^{*}\left(\tau_{n+1!}\right)\right) \\
& =\left(\delta_{n, n+1} \sigma_{n, n}\right)^{*}\left(\tau_{n!}\right) \\
& =i d^{*}\left(\tau_{n!}\right) .
\end{aligned}
$$

So, Equation 5.4 Ch holds.

5.5. Verification of A_{∞} relations

Now, we will check that our choices for \mathcal{F} satisfy the rest of the relations for an A_{∞}-functor from Reference [2], Definition A.8: For $\cdot \xrightarrow{\mu_{1}} \cdot \xrightarrow{\mu_{2}} \cdot \xrightarrow{\mu_{3}} \cdot \xrightarrow{\mu_{4}} \cdot$ composable morphisms in $\chi(\mathcal{C})$, we expect

$$
\begin{align*}
0 & =d_{\mathfrak{D}} \circ \mathcal{F}\left(\mu_{1}\right) \tag{5.5}\\
\mathcal{F}\left(\mu_{3}, \mu_{2} \circ \mu_{1}\right)-\mathcal{F}\left(\mu_{3} \circ \mu_{2}, \mu_{1}\right) & =\mathcal{F}\left(\mu_{3}, \mu_{2}\right) \circ \mathcal{F}\left(\mu_{1}\right)-\mathcal{F}\left(\mu_{3}\right) \circ \mathcal{F}\left(\mu_{2}, \mu_{1}\right) \tag{5.6}\\
0 & =\mathcal{F}\left(\mu_{4}, \mu_{3}\right) \circ \mathcal{F}\left(\mu_{2}, \mu_{1}\right) . \tag{5.7}
\end{align*}
$$

Equation 5.5 is satisfied since, for $\lambda \in \Lambda$ a generating morphism, the $\lambda_{\text {! }}$'s we gave at the beginning of Section 5.4 are maps of complexes. Equation 5.7 requires that composing two of our degree -1 homotopies is always equal to zero. This is true because we use reduced Hochschild chains (Section B) and each homotopy (Equations C.3, C.5) inserts a 1 into the first slot of the Hochschild chains component.

We check that Equation 5.6 holds for $n=1$ and $n \geq 2$ separately. For $n \geq 2$, checking Equation 5.6 boils down to the following situation: We have two maps of dg comodules

$$
\begin{align*}
& T\left(A_{0} \rightarrow \ldots\right.\left.\rightarrow A_{n} \rightarrow A_{0}\right) \tag{5.8}\\
& \hat{\tau}_{n}^{* 2} \tau_{n!}!\hat{\tau}_{n}^{*} \tau_{n!}!\tau_{n!} \\
& \text { "apply } \tau_{n!} 3 \text { times" } \\
& T\left(A_{n-2} \rightarrow A_{n-1}\right.\left.\rightarrow A_{n} \rightarrow A_{0} \rightarrow \ldots \rightarrow A_{n-2}\right) .
\end{align*}
$$

These two maps are homotopic via two homotopies: $\hat{\delta}_{n-1, n}^{*} \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-3}, A_{n-2}, A_{n-1} \bullet\right.$ $\left.A_{n}\right)+\tau_{n}^{* 2} \tau_{n!} \circ \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-2}, A_{n-1}, A_{n}\right)$ and $\hat{\delta}_{n-2, n}^{*} \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-3}, A_{n-2} \bullet A_{n-1}, A_{n}\right)+$
$\hat{\tau}_{n}^{*} \mathcal{B}\left(A_{n} \bullet \cdots A_{n-3}, A_{n-2}, A_{n-1}\right) \circ \tau_{n!}$ (see Figure 5.2). If the two homotopies were different, then their difference would be closed and we would desire a higher homotopy (i.e., a degree -2 map of comodules) between them. However, we will show the two homotopies are the same, so that no higher homotopies are needed.

First, it follows directly from the definition of \mathcal{B} (Appendix Equation C.5) that

$$
\hat{\delta}_{n-1, n}^{*} \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-3}, A_{n-2}, A_{n-1} \bullet A_{n}\right)=\hat{\delta}_{n-2, n}^{*} \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-3}, A_{n-2} \bullet A_{n-1}, A_{n}\right)
$$

Second, for $n=2$, we show that

$$
\begin{equation*}
\tau_{2}^{* 2} \tau_{2!} \circ \mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)=\hat{\tau}_{2}^{*} \mathcal{B}\left(A_{2}, A_{0}, A_{1}\right) \circ \tau_{2!} \tag{5.9}
\end{equation*}
$$

in Appendix Proposition C.5. (In the appendix, $\tau_{2}^{* 2} \tau_{2!}=\tau_{1!}\left(A_{1} \bullet A_{2}, A_{0}\right)$ and $\tau_{21}=$ $\tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right)$.) For $n>2$, the equation $\tau_{n}^{* 2} \tau_{n!} \circ \mathcal{B}\left(A_{0} \bullet \cdots \bullet A_{n-2}, A_{n-1}, A_{n}\right)=\hat{\tau}_{n}^{*} \mathcal{B}\left(A_{n} \bullet\right.$ $\left.\cdots \bullet A_{n-3}, A_{n-2}, A_{n-1}\right) \circ \tau_{n!}$ is a pullback along $\hat{\delta}_{0}$'s of Equation 5.9.

For $n=1$, the situation in Equation 5.8 reduces to: We have two maps of dg comodules

$$
\begin{aligned}
T\left(A_{0}\right. & \left.\rightarrow A_{1} \rightarrow A_{0}\right) \\
\hat{\tau}_{1}^{* 2} \tau_{1!} \circ \hat{\tau}_{1}^{*} \tau_{1!} \circ \tau_{1!} & ()_{1!} \\
T\left(A_{1}\right. & \left.\rightarrow A_{0} \rightarrow A_{1}\right) .
\end{aligned}
$$

These two maps are homotopic via two homotopies: $\tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)$ and $B\left(A_{1}, A_{0}\right) \circ$ $\tau_{1!}\left(A_{0}, A_{1}\right)$ (see Figure 5.3). We show that these two homotopies are the same in Appendix Proposition C.3, so no higher homotopies are needed.

Figure 5.2. Two homotopies between $\left(\delta_{n-2, n-1} \delta_{n-1, n}\right)^{*} \tau_{n-2!}$ and $\hat{\tau}_{n}^{* 2} \tau_{n!} \circ$ $\hat{\tau}_{n}^{*} \tau_{n!} \circ \tau_{n!}$

Vertices are maps of dg comodules and arrows are chain homotopies.

$$
\begin{gathered}
i d \circ \tau_{1!}=\tau_{1!}=\tau_{1!} \circ i d \\
B\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)()_{\tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)} \\
\left(\hat{\tau}_{1}^{* 2} \tau_{1!} \circ \hat{\tau}_{1}^{*} \tau_{1!}\right) \circ \tau_{1!}=\hat{\tau}_{1}^{* 2} \tau_{1!} \circ\left(\hat{\tau}_{1}^{*} \tau_{1!} \circ \tau_{1!}\right)
\end{gathered}
$$

Figure 5.3. Two homotopies between $\tau_{1!}$ and $\hat{\tau}_{1}^{* 2} \tau_{1!} \circ \hat{\tau}_{1}^{*} \tau_{1!} \circ \tau_{1!}$ Vertices are maps of dg comodules and arrows are chain homotopies.

CHAPTER 6

Coda: other directions

6.1. Motivation of this chapter

In Chapter 5, we gave an A_{∞}-functor $\mathcal{F}: \chi(\mathcal{C}) \rightarrow \mathcal{D}$ where \mathcal{C} is the category defined in Equation 1.2. Applying Reference [2], Remark A.27, we can rectify \mathcal{F} to a dg functor $\tilde{\mathcal{F}}: U(\chi(\mathcal{C})) \rightarrow \mathcal{D}$ where $U(\chi(\mathcal{C}))$ is the enveloping dg category of χ (see Reference [2], Definition A.25).

In other words, we have shown that algebras form a "category in dg cocategories with a trace functor up to homotopy". In this chapter, we show that algebras form a category in dg categories with a trace functor up to homotopy. In other words, we give a dg functor $U(\chi(\mathcal{C})) \rightarrow \mathcal{E}$ where \mathcal{E} is a dg category with objects pairs (dg category, dg module).

This chapter is not central to the narrative of this thesis, especially since understanding of what happens after applying $\operatorname{Cobar}(-)$ is still evolving.

6.2. A functor to dg categories

In this section, we first give a dg functor $\mathcal{D} \rightarrow \mathcal{D}_{1}$, which makes use of the adjunction in Proposition D.3. Then, we will give a dg functor $\Omega: \mathcal{D}_{1} \rightarrow \mathcal{E}$.

6.2.1. Using the adjunction

Let \mathcal{D}_{1} be the dg category with the same objects as \mathcal{D} and morphisms

$$
\begin{aligned}
& \mathcal{D}_{1}^{\bullet}\left(\left(B_{1}, C_{1}\right),\left(B_{0}, C_{0}\right)\right)=\left\{\left(F: B_{1} \rightarrow B_{0} \quad\right.\right. \text { dg functor, } \\
& \\
& \left.\left.F_{!}: F_{\#} C_{1} \rightarrow C_{0} \quad \text { map of comodules of degree } \bullet\right)\right\} \\
& d_{\mathcal{D}}\left(F, F_{!}\right)=\left(F, d_{C_{0}} \circ F_{!}-(-1)^{\left|F_{!}\right|} F_{!} \circ d_{F_{\#} C_{1}}\right)
\end{aligned}
$$

with composition

$$
\begin{aligned}
\mathcal{D}_{1}^{\bullet}\left(\left(B_{2}, C_{2}\right),\left(B_{1}, C_{1}\right)\right) \otimes \mathcal{D}_{1}^{\bullet}\left(\left(B_{1}, C_{1}\right),\left(B_{0}, C_{0}\right)\right) & \rightarrow \mathcal{D}_{1}^{\bullet}\left(\left(B_{2}, C_{2}\right),\left(B_{0}, C_{0}\right)\right) \\
\left(f, f_{!}\right) \otimes\left(g, g_{!}\right) & \mapsto\left(g f, g_{!} \circ g_{\#}\left(f_{!}\right)\right)
\end{aligned}
$$

This composition is well-defined because we can apply the formulas from $g_{\#}$ to (not necessarily graded) morphisms of comodules. The composition is associative because of the following easy-to-check fact: $g_{\#} f_{\#} C=(g f)_{\#} C$ for $B_{2} \xrightarrow{f} B_{1} \xrightarrow{g} B_{0}$ functors of dg cocategories and C a dg comodule over B_{2}.

Now, we define a dg functor

$$
\text { Adj : } \mathcal{D} \rightarrow \mathcal{D}_{1}
$$

on objects: $(B, C) \mapsto(B, C)$
on morphisms: $\left(\left(B_{1}, C_{1}\right) \xrightarrow{\left(F, F_{1}\right)}\left(B_{0}, C_{0}\right)\right) \mapsto\left(\left(B_{1}, C_{1}\right) \xrightarrow{\left(F, \Phi_{F}^{-1} F\right)}\left(B_{0}, C_{0}\right)\right)$
where $\Phi_{F}^{-1}: \operatorname{Hom}_{\mathrm{dg}}^{\text {comodules }}$ over $B_{1}\left(C, F^{*} D\right) \rightarrow \operatorname{Hom}_{\text {dg comodules }}^{\text {over } B_{0}}\left(F_{\#} C, D\right)$ is defined in the proof of Proposition D. 3 and makes sense as a function on (not necessarily graded) maps of comodules. To check that Adj commutes with the differentials and respects composition, we need

$$
\begin{aligned}
& \Phi_{F}^{-1} \circ d_{H o m_{B_{2}}\left(C_{2}, F^{*} C_{1}\right)}=d_{H o m_{B_{1}}\left(F_{\#} C_{2}, C_{1}\right)} \circ \Phi_{F}^{-1} \\
& \qquad \Phi_{G F}^{-1}\left(F^{*} G_{!} \circ F_{!}\right)=\Phi_{G}^{-1}\left(G_{!}\right) \circ G_{\#}\left(\Phi_{F}^{-1}\left(F_{!}\right)\right) \\
& \text {where }\left(B_{2}, C_{2}\right) \xrightarrow{\left(F, F_{!}\right)}\left(B_{1}, C_{1}\right) \xrightarrow{\left(G, G_{!}\right)}\left(B_{0}, C_{0}\right) \text { in } \mathcal{D} .
\end{aligned}
$$

The equations above follow straight-forwardly from the definitions.

6.2.2. Applying Cobar

In this section, we will use the notion of a dg module over a dg category. This is dual to a dg comodule over a dg cocategory (Definition 3.3.3). Given a dg functor between dg categories $F: A_{1} \rightarrow A_{0}$, we define "restriction of scalars", F^{*}, a functor from the category of dg comodules over A_{0} to the category of dg comodules over A_{1}. For M_{0} a dg comodule over A_{0} and $f \in \operatorname{Obj}\left(B_{1}\right), F^{*} M_{0}(f):=M_{0}(F f)$.

Let \mathcal{E} be the dg category defined below:

$$
\operatorname{Obj}(\mathcal{E})=\{(A, M) \mid \mathrm{A} \text { is a dg category, } \mathrm{M} \text { is a dg module over } \mathrm{A}\}
$$

$\mathcal{E}^{p}\left(\left(A_{1}, M_{1}\right),\left(A_{0}, M_{0}\right)\right)=\left\{\left(f, f_{!}\right) \mid f: A_{1} \rightarrow A_{0}\right.$ is a dg functor,

$$
d_{\varepsilon}\left(f, f_{!}\right)=\left(f, d_{f^{*} M_{0}} \circ f_{!}-(-1)^{|f!|} f_{!} \circ d_{C_{1}}\right)
$$

$\mathcal{E}^{\bullet}\left(\left(A_{2}, M_{2}\right),\left(A_{1}, M_{1}\right)\right) \times \mathcal{E}^{\bullet}\left(\left(A_{1}, M_{1}\right),\left(A_{0}, M_{0}\right)\right) \xrightarrow{\text { composition }} \mathcal{E}^{\bullet}\left(\left(A_{2}, M_{2}\right),\left(A_{0}, M_{0}\right)\right)$

$$
\left(f, f_{!}\right) \times\left(g, g_{!}\right) \mapsto\left(g f, f^{*}(g!) \circ f_{!}\right) .
$$

We will define a dg functor $\Omega: \mathcal{D}_{1} \rightarrow \mathcal{E}$. On objects,

$$
\Omega(B, C):=(\operatorname{Cobar}(B), \operatorname{Cobar}(B, C))
$$

where the first Cobar is a dg functor from the category of dg cocategories to the category of dg categories, and the second Cobar sends dg comodules over B to dg modules over $\operatorname{Cobar}(B)$ (see [6], Section 4.6). On morphisms,

$$
\mathcal{D}_{1} \ni\binom{\stackrel{{ }_{1}}{B_{1} \xrightarrow{F} B_{0}}}{F_{\#} C_{1} \xrightarrow{F_{1}} C_{0}} \mapsto\binom{\operatorname{Cobar}\left(B_{1}\right) \xrightarrow{\operatorname{Cobar}(F)} \operatorname{Cobar}\left(B_{0}\right)}{\operatorname{Cobar}\left(B_{1}, C_{1}\right) \xrightarrow{\Omega\left(F_{1}\right)}(\operatorname{Cobar}(F))^{*} \operatorname{Cobar}\left(B_{0}, C_{0}\right)} \in \mathcal{E}
$$

where $\Omega\left(F_{!}\right): \operatorname{Cobar}\left(B_{1}, C_{1}\right) \rightarrow(\operatorname{Cobar}(F))^{*} \operatorname{Cobar}\left(B_{0}, C_{0}\right)$

$$
\left(b_{1}|\ldots| b_{n} \mid c\right) \mapsto\left(F b_{1}|\ldots| F b_{n} \mid F!c\right)
$$

for $b_{i} \in B_{1}^{\bullet}\left(f_{i-1}, f_{i}\right), c \in C_{1}^{\bullet}\left(f_{n}\right)$, and $f_{i} \in \operatorname{Obj}\left(B_{1}\right), 0 \leq i \leq n$.

It's straightforward from the definitions to check that Ω commutes with the differentials and respects composition.

6.2.3. The end: putting everything together

We have dg functors

$$
U(\chi(\mathcal{C})) \xrightarrow{\tilde{\mathcal{F}}} \mathcal{D} \xrightarrow{A d j} \mathcal{D}_{1} \xrightarrow{\Omega} \mathcal{E} .
$$

This gives our category in dg categories with a trace functor up to homotopy.

References

[1] Dolgushev, V. A., Tamarkin, D. E., Tsygan, B. L. (2008). Formality of the homotopy algebra of Hochschild (co)chains. Retrieved from arxiv.org/pdf/0807.5117v1.pdf
[2] Faonte, G. (2014). A_{∞}-Functors and Homotopy Theory of DG-Categories. Retrieved from arxiv.org/pdf/1412.1255.pdf
[3] Getzler, E. \& Jones, J. D. S. (1994). Operads, homotopy algebra, and iterated integrals for double loop spaces. Retrieved from arxiv.org/pdf/hep-th/9403055v1.pdf
[4] Gerstenhaber, M., \& Voronov, A. A. (1995). Higher operations on the Hochschild complex. Functional Anal. Appl. 29(1), 1-6.
[5] Kadeishvili, T. V. (1988). The structure of the A()-algebra, and the Hochschild and Harrison cohomologies, Proc. of A. Razmadze Math. Inst., 91, 2027.
[6] Tsygan, B. L. (2012). Noncommutative Calculus and Operads. Retrieved from arxiv.org/pdf/1210.5249v1.pdf

APPENDIX A

Connes cyclic category, Λ

Here, we give generators and relations for the cyclic category, Λ. None of this is new, but we do it to establish notation for the rest of the paper.
Λ has objects $\{[n]: n \in \mathbb{N}\}$ and generating morphisms:

$$
\text { rotations } \tau_{n}:[n] \rightarrow[n]
$$

$$
\begin{equation*}
\text { coboundaries } \delta_{j, n}:[n] \rightarrow[n-1], 0 \leq j \leq n-1 \tag{A.1}
\end{equation*}
$$

$$
\text { codegeneracies } \sigma_{i, n}:[n] \rightarrow[n+1], 0 \leq i \leq n
$$

subject to relations:

$$
\left.\left.\left.\begin{array}{rl}
\delta_{i, n-1} \delta_{j, n} & =\delta_{j-1, n-1} \delta_{i, n} \\
\sigma_{i, n+1} \sigma_{j, n} & =\sigma_{j+1, n+1} \sigma_{i, n} \\
\delta_{j, n+1} \sigma_{i, n} & 0 \leq i \leq i \leq j \leq n-1 \\
\sigma_{i, n-1} \delta_{j-1, n} & 0 \leq i<j \leq n \tag{A.2}\\
i d & j=i, i-1 \\
\sigma_{i-1, n-1} \delta_{j, n} & 0 \leq j<i-1 \leq n-1
\end{array}\right\} \begin{array}{rl}
\tau_{n+1} \sigma_{i, n} & =\sigma_{i+1, n} \tau_{n} \quad 0 \leq i \leq n-1
\end{array}\right\} \begin{array}{rl}
\tau_{n-1} \delta_{j, n} & =\delta_{j+1, n} \tau_{n} \quad 0 \leq j \leq n-1
\end{array}\right\} \begin{aligned}
\tau_{n}^{n+1} & =i d \\
\delta_{0,1} \tau_{1} \sigma_{0,0} & =i d \\
\tau_{n+1} \sigma_{n, n} & =\tau_{n+1}^{n+1} \sigma_{0, n} \tau_{n} \\
\delta_{0, n} \tau_{n}^{2} & =\tau_{n-1} \delta_{n-1, n} .
\end{aligned}
$$

Some presentations of Λ include an extra coboundary $\delta_{n, n}$ and codegeneracy $\sigma_{n+1, n}$. In terms of our generators, they are $\delta_{n, n}:=\delta_{0, n} \tau_{n}$ and $\sigma_{n+1, n}:=\tau_{n+1}^{n+1} \sigma_{0, n}$.

APPENDIX B

Background on Hochschild chains and cochains

In this appendix, we give some known constructions on Hochschild chains and cochains for the reader's convenience. Let k be a field of characteristic zero, A a flat unital k algebra, and M be an A - A-bimodule. Then, we can take $\left(C_{\bullet}(A, M), b\right)$, the (reduced or standard) Hochschild chain complex of A with coefficients in M (see Reference [6], Equation 2.1). When $M=B$ is also an algebra over k with left and right module structure given by two maps of algebras $f: A \rightarrow B$ and $g: A \rightarrow B$, respectively, we may write ${ }_{f} B_{g}$ to clarify the module structure.

Let k, A, M be as above. We can also take $\left(C^{\bullet}(A, M), \delta\right)$, the (reduced) Hochschild cochain complex of A with coefficients in M (see Reference [6], Equations 2.12-13, 2.1921). When $M=B$ is an algebra, $\left(C^{\bullet}(A, B), \delta, \cup\right)$ is a dga where the cup product \cup is given in Reference [6], Equation 2.14.

Let $f, g, h: A \rightarrow A$ be maps of algebras. We have a contraction operation of Hochschild cochains and chains, which is a map of complexes:

$$
\begin{aligned}
\iota: C^{p}\left(A, f_{f} A_{g}\right) \bigotimes C_{-q}\left(A,{ }_{g} A_{h}\right) & \longrightarrow C_{-(q-p)}\left(A, f A_{h}\right) \\
\qquad \bigotimes a_{0} \otimes \cdots \otimes a_{q} & \mapsto \iota\left(\phi, a_{0} \otimes \cdots \otimes a_{q}\right):=\phi \cdot\left(a_{0} \otimes \cdots \otimes a_{q}\right):= \\
& :=(-1)^{p(q+1)} \phi\left(a_{q-p+1}, \ldots, a_{q}\right) \cdot a_{0} \otimes a_{1} \otimes \cdots \otimes a_{q-p} .
\end{aligned}
$$

Finally, we have a "Lie derivative like" operation of Hochschild cochains and chains. Fix an algebra A and let $\left(\phi_{1} \ldots \phi_{n} \mid \alpha\right) \in T(A)\left(f_{0}\right)$ (see Figure 5.1) be the following element

We have a map of complexes

$$
\begin{aligned}
& T\left(A \xrightarrow{f_{0}} A\right)^{\bullet} \rightarrow C_{-\bullet}\left(A, f_{0} A\right) \\
& \left(\phi_{1} \ldots \phi_{n} \mid a_{1} \otimes \ldots \otimes a_{p}\right) \mapsto \lambda\left(\phi_{1} \ldots \phi_{n}\right) \cdot\left(a_{1} \otimes \ldots \otimes a_{p}\right) \\
& :=\sum_{0 \leq i_{1} \leq \ldots \leq i_{2 n} \leq p}(-1)^{\substack{\sum_{\text {odd }} i_{j}\left(\left|\phi_{i_{j+1}}\right|+1\right) \\
j \geq 1}} . \\
& \text { - } f_{0} a_{1} \otimes \ldots \otimes f_{0} a_{i_{1}} \otimes \phi_{1}\left(a_{i_{1}+1}, \ldots, a_{i_{2}}\right) \otimes \\
& \otimes f_{1} a_{i_{2}+1} \otimes \ldots \otimes f_{1} a_{i_{3}} \otimes \phi_{2}\left(a_{i_{3}+1}, \ldots, a_{i_{4}}\right) \otimes \\
& \otimes \ldots \otimes \phi_{n}\left(a_{i_{2 n-1}+1}, \ldots, a_{i_{2 n}}\right) \otimes f_{n} a_{i_{2 n}+1} \otimes \ldots \otimes f_{n} a_{p} .
\end{aligned}
$$

It's straightforward to check that $\lambda\left(\left(\phi_{1} \ldots \phi_{n}\right) \bullet\left(\psi_{1} \ldots \psi_{m}\right)\right)=\lambda\left(\psi_{1} \ldots \psi_{m}\right) \lambda\left(\phi_{1} \ldots \phi_{n}\right)$.

APPENDIX C

Computations

In this appendix, we give the computational propositions needed to establish the homotopically sheafy-cyclic structure on dg comodules. All the comodules we work with will be cofree, and we will define maps into them by giving maps into cogenerators (see Equation 5.1).

C.1. Computational notation

For this section's propositions, we establish the following notation:

$$
A_{0}, A_{1} \text { fixed algebras }
$$

$$
(\vec{\phi}|\vec{\psi}| \alpha):=\left(\phi_{1} \ldots \phi_{n}\left|\psi_{1} \ldots \psi_{m}\right| \alpha\right)
$$

$$
\vec{\phi}_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}}:=\phi_{i_{1}} \phi_{i_{2} \ldots} \ldots \phi_{i_{k}}
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is an ordered subset of $\{1, \ldots, n\}$

$$
\begin{aligned}
& \vec{\phi}_{\{ \}}:=1 \in k \cong \operatorname{Bar}_{0}\left(C^{\bullet}\left(A_{0}, A_{1}\right)\right) \\
& \vec{\psi}_{\{ \}}:=1 \in k \cong \operatorname{Bar}_{0}\left(C^{\bullet}\left(A_{1}, A_{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
|I| & :=\text { number of elements in a set } I \\
I_{1} I_{2} & :=\text { concatenation as ordered sets of possibly-empty sets } I_{1} \text { and } I_{2} \\
\epsilon_{I_{1}, J_{1}} & :=(-1)\left(\sum_{r \in I_{1}}\left|\phi_{r}\right|+1\right)\left(\sum_{s \in J_{1}}\left|\psi_{s}\right|+1\right)
\end{aligned}
$$

when I_{1}, J_{1} are ordered indexing sets
$\lambda(\vec{\psi}), \tilde{\delta}, b^{\prime}, b, \psi\{\vec{\phi}\} \cdot \alpha=$ see Appendix B for operations on Hochschild (co)chains

C.1.1. Notation for elements of Hochschild chains

Let $a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}$ denote a typical element of $C_{-}(A, A)$ where A is some algebra. At times, we wish to feed a portion of $a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}$ to a Hochschild cochain (or other map on chains) without specifying the degree of the cochain. To do this, we will rewrite $a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}=a_{0} \otimes \mathfrak{a}_{1} \otimes \ldots \otimes \mathfrak{a}_{r}$ where each $\mathfrak{a}_{i}=a_{j_{i}} \otimes a_{j_{i}+1} \otimes \ldots \otimes a_{j_{i+1}-1}$ and \mathfrak{a}_{i} is an empty chain if $j_{i}=j_{i+1}$.

For example, if $\phi \in C^{2}(A, A)$, then we rewrite

$$
\sum_{1 \leq i \leq n-1} a_{0} \otimes a_{1} \otimes \ldots a_{i-1} \otimes \phi\left(a_{i}, a_{i+1}\right) \otimes a_{i+2} \otimes \ldots \otimes a_{n}=\sum a_{0} \otimes \mathfrak{a}_{1} \otimes \phi\left(\mathfrak{a}_{2}\right) \otimes \mathfrak{a}_{3}
$$

If $\mathfrak{a}_{1}=a_{1} \otimes \ldots \otimes a_{p}$, then $\left|\mathfrak{a}_{1}\right|=p$. For $a_{0} \otimes \mathfrak{a}_{1} \otimes \mathfrak{a}_{2}$, we write $\eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}}=(-1)^{\left|\mathfrak{a}_{1}\right|\left(\left|\mathfrak{a}_{1}\right|+\left|\mathfrak{a}_{2}\right|\right)}$.

C.2. Computational Propositions

Proposition C.1. Fix algebras A, B, and let $\hat{\tau}_{1}: \mathcal{C}(A, B) \otimes \mathcal{C}(B, A) \rightarrow \mathcal{C}(B, A) \otimes$ $\mathcal{C}(A, B)$ be the rotation functor. Recall from Example D.2.2 the descriptions of the cofree
dg comodules

$$
\begin{aligned}
m^{*} T(A) & \cong T(A \rightarrow B \rightarrow A) \\
\hat{\tau}^{*} m^{*} T(B) & \cong T(B \rightarrow A \rightarrow B)
\end{aligned}
$$

Define a map

$$
\tau_{1!}(A, B): m^{*} T(A) \cong T(A \rightarrow B \rightarrow A) \longrightarrow T(B \rightarrow A \rightarrow B) \cong \hat{\tau}^{*} m^{*} T(B)
$$

of comodules over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$ by mapping into cogenerators as follows: for $\left(A \xrightarrow{f_{0}}\right.$ $\left.B \xrightarrow{g_{0}} A\right) \in \operatorname{Obj}(\mathcal{C}(A, B) \otimes \mathcal{C}(B, A))$,

$$
\begin{align*}
\tau_{1!}\left(f_{0}, g_{0}\right): T\left(A \xrightarrow{f_{0}} B \xrightarrow{g_{0}} A\right) & \rightarrow T\left(B \xrightarrow{g_{0}} A \xrightarrow{f_{0}} B\right)^{\bullet} \xrightarrow[\text { cogenerators }]{\text { project onto }} C_{-}\left(B, f_{f_{0} g_{0}} B\right) \\
{\left[\tau_{1!}\left(f_{0}, g_{0}\right)\right]^{n, m}(\vec{\phi}|\vec{\psi}| \alpha)=} & \sum_{\substack{I_{1} I_{2}=\{2, \ldots, n\} \\
\text { as ordered sets }}} \phi_{1}\left(\lambda(\vec{\psi}) \lambda\left(\overrightarrow{\phi_{I_{2}}}\right) \cdot \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\overrightarrow{\phi_{1}}\right) \cdot \mathfrak{a}_{2} \tag{C.1}\\
& \left(+f_{0} a_{0} \otimes \lambda(\vec{\phi}) \mathfrak{a}_{1} \quad \text { if } m=0\right) .
\end{align*}
$$

where $\vec{\phi}$ is an element of length n and $\vec{\psi}$ is an element of length m (see Section C.1). Then, $\tau_{1!}(A, B): m^{*} T(A) \rightarrow \hat{\tau}^{*} m^{*} T(B)$ is a map of dg comodules over $\mathcal{C}(A, B) \otimes \mathcal{C}(B, A)$.

Proof. We must show: (1) τ_{1} ! is a map of comodules, and (2) $\tau_{1!}$ commutes with the differentials. (In this proof, we drop the subscripts and write $\tau_{1!}:=\tau_{1!}(A, B)$.)
(1) This proof is standard for cofree comodules. Let $(\vec{\phi}|\vec{\psi}| \alpha)$ be as in the statement of the proposition. We want to show that $\tau_{1!}$ commutes with the coproducts. On one hand,

$$
\begin{aligned}
& {\left[\left(i d_{B} \otimes \tau_{1!}\right) \circ \Delta_{m * T(A)}\right](\vec{\phi}|\vec{\psi}| \alpha) } \\
= & {\left[i d_{B} \otimes \tau_{1!}\right]\left(\sum_{\substack{I_{1} I_{2}=\{1,2, \ldots, n\} \text { and } \\
J_{1} J_{2} \text { ori,2,w,m\}} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}} \cdot\left(\vec{\phi}_{I_{1}} \mid \vec{\psi}_{J_{1}}\right) \otimes\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \alpha\right)\right) } \\
= & \sum_{\substack{I_{1} I_{2} I_{3}=\{1,2, \ldots, n\} \text { and } \\
J_{1} J_{2} J_{3}=\{1,2, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{I_{2} I_{3}, J_{1}} \cdot \epsilon_{I_{3}, J_{2}} \cdot\left(\vec{\phi}_{I_{1}} \mid \vec{\psi}_{J_{1}}\right) \otimes\left(\vec{\phi}_{I_{2}} \mid \vec{\psi}_{J_{2}}\right) \otimes \tau_{1!}^{\left|I_{3}\right|,\left|J_{3}\right|}\left(\vec{\phi}_{I_{3}}\left|\vec{\psi}_{J_{3}}\right| \alpha\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& {\left[\Delta_{\hat{\tau}^{*} m^{*} T(B)} \circ \tau_{1!}\right](\vec{\phi}|\vec{\psi}| \alpha) } \\
= & \Delta_{\hat{\tau}^{*} m^{*} T(B)}\left(\sum_{\substack{I_{1} I_{2}=\{1,2, \ldots, n\} \text { and } \\
J_{1} J_{2}\{1,2, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}} \cdot\left(\vec{\phi}_{I_{1}} \mid \vec{\psi}_{J_{1}}\right) \otimes \tau_{1!}^{\left|I_{2}\right|,\left|J_{2}\right|}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \alpha\right)\right) \\
= & \sum_{\substack{\left.I_{1} I_{2} I_{3}=\{1,2, \ldots, n\} \text { and } \\
J_{1} J_{2} J_{3}=1,2, \ldots, m\right\} \\
\text { as ordered sets }}} \epsilon_{I_{2} I_{3}, J_{1}} \cdot \epsilon_{I_{3}, J_{2}} \cdot\left(\vec{\phi}_{I_{1}} \mid \vec{\psi}_{J_{1}}\right) \otimes\left(\vec{\phi}_{I_{2}} \mid \vec{\psi}_{J_{2}}\right) \otimes \tau_{1!}^{\left|I_{3}\right|,\left|J_{3}\right|}\left(\vec{\phi}_{I_{3}}\left|\vec{\psi}_{J_{3}}\right| \alpha\right) .
\end{aligned}
$$

Clearly $\left(i d_{B} \otimes \tau_{1!}\right) \circ \Delta_{m^{*} T(A)}=\Delta_{\hat{\tau}^{*} m^{*} T(B)} \circ \tau_{1!}$.
(2) We will show that $\tau_{1!}$ commutes with the differentials by direct computation. Since $\tau_{1!}$ is a map of cofree comodules, we only need to check that $\pi_{1} \circ D\left(\tau_{1!}\right)=0$ where $D\left(\tau_{1!}\right)$ is the differential applied to $\tau_{1!}$ as a linear map between complexes and π_{1} denotes projection
of a comodule onto its cogenerators. More explicitly, we want to check that

$$
\begin{align*}
& \tau_{1!}^{n, m}(\tilde{\delta}(\vec{\phi})|\vec{\psi}| \alpha)+\tau_{1!}^{n, m}(\vec{\phi}|\tilde{\delta}(\vec{\psi})| \alpha)+\tau_{1!}^{n-1, m}\left(b^{\prime}(\vec{\phi})|\vec{\psi}| \alpha\right)+\tau_{1!}^{n, m-1}\left(\vec{\phi}\left|b^{\prime}(\vec{\psi})\right| \alpha\right)+ \\
& \tau_{1!}^{n, m}(\vec{\phi}|\vec{\psi}| b(\alpha))+b \circ \tau_{1!}^{n, m}(\vec{\phi}|\vec{\psi}| \alpha)+ \\
& \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
\text { as ordered sets }}} \epsilon_{I_{2},\{1, \ldots, m-1\}} \cdot \tau_{1!}^{I_{1} \mid, m-1}\left(\vec{\phi}_{I_{1}}\left|\vec{\psi}_{\{1, \cdots, m-1\}}\right| \psi_{m}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right)+ \\
& \sum_{\substack{J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{\{2, \ldots, n\}, J_{1}} \cdot \phi_{1}\left\{\psi_{J_{1}}\right\} \cdot \tau_{1!}^{n-1,\left|J_{2}\right|}\left(\phi_{\{2, \cdots, n\}}\left|\psi_{J_{2}}\right| \alpha\right)+ \tag{C.2}\\
& \epsilon_{\{n\},\{1, \ldots, m\}} \cdot \tau_{1!}^{n-1, m}\left(\vec{\phi}_{\{1, \cdots, n-1\}}|\vec{\psi}| \phi_{n} \cdot \alpha\right)+ \\
& \epsilon_{\{1, \ldots, n\},\{1\}} \cdot \psi_{1} \cdot \tau_{1!}^{n, m-1}\left(\vec{\phi}\left|\vec{\psi}_{\{2, \cdots, m\}}\right| \alpha\right) \\
& =0
\end{align*}
$$

In Equation C.2, we will call the terms in rows 1-2 the "standard terms", and the terms in rows 3-6 the "extra terms".

We compute the sum of the standard terms. In Table C.1, the leftmost column lists the expressions that don't cancel in the sum of the standard terms, the middle column gives the standard term from which the expression comes, and the rightmost column gives the term (extra or standard) that cancels the expression.

All of the terms in Table C. 1 cancel, so $\tau_{1!}$ is a map of complexes.

Expression (Expansion)	Comes from Standard Term in Equation C. 2	Cancelling Term in Equation C. 2
$\begin{aligned} & f_{0} \psi_{1}\left(\lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3}\right) . \\ & \phi_{1}\left(\lambda\left(\vec{\psi}_{\{2, \cdots, m\}} \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{4}, a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2}\right. \end{aligned}$	$\tau_{1!}^{n, m}\left(\delta\left(\phi_{1}\right) \phi_{2} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$	$f_{0} \psi_{1} \cdot \tau_{1!}^{n, m-1}\left(\vec{\phi}\left\|\vec{\psi}_{\{2, \cdots, m\}}\right\| \alpha\right)$
$\begin{aligned} & \phi_{1}\left(\lambda\left(\vec{\psi}_{\{1, \cdots, m-1\}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3},\right. \\ & \left.\quad \psi_{m}\left(\lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{4}\right) \cdot a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2} \end{aligned}$	$\tau_{1!}^{n, m}\left(\delta\left(\phi_{1}\right) \phi_{2} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$	$\tau_{1!}^{\left\|I_{1}\right\|, m-1}\left(\vec{\phi}_{I_{1}}\left\|\vec{\psi}_{\{1, \cdots, m-1\}}\right\| \psi_{m}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right)$
$\begin{aligned} & \phi_{1}\left(\lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3}, g_{m} \phi_{n}\left(\mathfrak{a}_{4}\right) \cdot a_{0}, \mathfrak{a}_{1}\right) \otimes \\ & \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2} \end{aligned}$	$\tau_{1!}^{n, m}\left(\delta\left(\phi_{1}\right) \phi_{2} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$	$\tau_{1!}^{n-1, m}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\|\vec{\psi}\| g_{m} \phi_{n} \cdot \alpha\right)$
$\phi_{1}\left(\lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}\right) \cdot f_{1}\left(a_{0}\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{1}$	$\tau_{1!}^{n, m}\left(\delta\left(\phi_{1}\right) \phi_{2} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$	$\phi_{1} \cdot \tau_{1!}^{n-1,0}\left(\vec{\phi}_{\{2, \cdots, n\}}\|\vec{\psi}\| \alpha\right)$
$f_{0} a_{0} \cdot \phi_{1}\left(\mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{\{1, \cdots, n-1\}}\right) \mathfrak{a}_{2}$	$\begin{aligned} & \tau_{1!}^{n, m}\left(\delta\left(\phi_{1}\right) \phi_{2} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right) \\ & \text { if } \vec{\psi}=1 \end{aligned}$	$\begin{aligned} & b \circ \tau_{1!}^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha) \\ & \text { if } \vec{\psi}=1 \end{aligned}$
$f_{0} g_{m} \phi_{n}\left(\mathfrak{a}_{2}\right) f_{0} a_{0} \otimes \lambda\left(\vec{\phi}_{\{1, \cdots, n-1\}}\right) \mathfrak{a}_{1}$	$\begin{aligned} & b \circ \tau_{1!}^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha) \\ & \text { if } \vec{\psi}=1 \end{aligned}$	$\begin{aligned} & \tau_{1!}^{n-1, m}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\|\vec{\psi}\| g_{m} \phi_{n} \cdot \alpha\right) \\ & \text { if } \vec{\psi}=1 \end{aligned}$
$\phi_{1}\left(\lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{4}, a_{0}, \mathfrak{a}_{1}\right) \cdot \phi_{2}\left(\mathfrak{a}_{2}\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{3}$	$b \circ \tau_{1!}^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$\tau_{1!}^{n-1, m}\left(\phi_{1} \cup \phi_{2} \phi_{3} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$
$\begin{aligned} & \phi_{1}\left(\lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3}\right) \phi_{2}\left(\lambda \left(\vec{\psi}_{J_{2}} \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3},\right.\right. \\ & \left.a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2} \\ & \hline \end{aligned}$	$\tau_{1!}^{n-1, m}\left(\phi_{1} \cup \phi_{2} \phi_{3} \cdots \phi_{n}\|\vec{\psi}\| \alpha\right)$	$\phi_{1}\left\{\vec{\psi}_{J_{1}}\right\} \cdot \tau_{1!}^{n-1,\left\|J_{2}\right\|}\left(\vec{\phi}_{\{2, \cdots, n\}}\left\|\vec{\psi}_{J_{2}}\right\| \alpha\right)$
$f_{0} \psi_{1}\left(\lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}\right) \cdot f_{0} a_{0} \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{1}$	$\begin{aligned} & f_{0} \psi_{1} \cdot \tau_{1!}^{n, 0}(\vec{\phi}\|1\| \alpha) \\ & \text { if } \vec{\psi}=\psi_{1} \end{aligned}$	$\begin{aligned} & \tau_{1!}^{I_{1} \mid, 0}\left(\vec{\phi}_{I_{1}}\|1\| \psi_{1}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right) \\ & \text { if } \vec{\psi}=\psi_{1} \end{aligned}$
Table C.1. (Technically, the last term in the middle	Expansion of terms in Equatio column is not a standard term	n C. 2 but we include it in the table for

Proposition C.2. Let $B\left(A_{0}, A_{1}\right)=B: T\left(A_{0} \rightarrow A_{1} \rightarrow A_{0}\right) \longrightarrow T\left(A_{0} \rightarrow A_{1} \rightarrow A_{0}\right)$ be the map of cofree comodules defined by the following maps to cogenerators:

$$
\begin{equation*}
B^{n, m}(\vec{\phi}|\vec{\psi}| \alpha)=\eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda(\psi) \lambda(\phi) \mathfrak{a}_{2} \otimes a_{0} \otimes \mathfrak{a}_{1} \tag{C.3}
\end{equation*}
$$

Then, $D\left(B\left(A_{0}, A_{1}\right)\right)=\tau_{1!}\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)-$ id where $\tau_{1!}$ is defined in Proposition C. 1.

Proof. We prove the statement by direct computation. Since all of the maps are maps of cofree comodules, we only need to check that $\pi_{1}\left(D\left(B\left(A_{0}, A_{1}\right)\right)-\tau_{1!}\left(A_{1}, A_{0}\right) \circ\right.$ $\left.\tau_{1!}\left(A_{0}, A_{1}\right)-i d\right)=0$ where π_{1} denotes projection of the comodule onto cogenerators. More explicitly, for an element $(\vec{\phi}|\vec{\psi}| \alpha)$, we want to check that

$$
\begin{aligned}
& B^{n, m}(\tilde{\delta}(\vec{\phi})|\vec{\psi}| \alpha)+B^{n, m}(\vec{\phi}|\tilde{\delta}(\vec{\psi})| \alpha)+B^{n-1, m}\left(b^{\prime}(\vec{\phi})|\vec{\psi}| \alpha\right)+B^{n, m-1}\left(\vec{\phi}\left|b^{\prime}(\vec{\psi})\right| \alpha\right)+ \\
& B^{n, m}(\vec{\phi}|\vec{\psi}| b(\alpha))+b \circ B^{n, m}(\vec{\phi}|\vec{\psi}| \alpha)+ \\
& \epsilon_{\{n\},\{1, \ldots, m\}} \cdot B^{n-1, m}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\left|\vec{\psi}_{m}\right| \phi_{n} \cdot \alpha\right)+ \\
& \epsilon_{\{1, \ldots, n\},\{1\}} \cdot \psi_{1} \cdot B^{n, m-1}\left(\vec{\phi}\left|\vec{\psi}_{\{2, \cdots, m\}}\right| \alpha\right)+ \\
& \quad \sum_{\begin{array}{l}
I_{1} I_{2}=\{1, \ldots, n\} \\
\text { as ordered setts }
\end{array}} \epsilon_{I_{2},\{1, \ldots, m-1\}} \cdot B^{\left|I_{1}\right|, m-1}\left(\vec{\phi}_{I_{1}}\left|\vec{\psi}_{\{1, \cdots, m-1\}}\right| \psi_{m}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right)+ \\
& \sum_{\begin{array}{l}
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered setts }
\end{array}}^{\epsilon_{\{2, \ldots, n\}, J_{1}} \cdot \phi_{1}\left\{\psi_{J_{1}}\right\} \cdot B^{n-1,\left|J_{2}\right|}\left(\phi_{\{2, \cdots, n\}}\left|\psi_{J_{2}}\right| \alpha\right)-} \\
& \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1}=\{1, \ldots, m\} \\
\text { as ordered setts }}} \epsilon_{I_{1}, J_{2}} \cdot \tau_{11!}^{\mid J_{J_{2}\left|,\left|I_{1}\right|\right.}\left(\vec{\psi}_{J_{1}}\left|\vec{\phi}_{I_{1}}\right| \tau_{1!}^{\left|I_{2}\right|,\left|J_{2}\right|}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \alpha\right)\right)-\pi_{1}(\vec{\phi}|\vec{\psi}| \alpha)} \\
& =0 \text {. }
\end{aligned}
$$

We will call the terms in rows 1-2 the "standard terms" in the computation of $D\left(B\left(A_{0}, A_{1}\right)\right)$, and the terms in rows 3-6 the "extra terms" in the computation of $D\left(B\left(A_{0}, A_{1}\right)\right)$. The seventh row is $\pi_{1}\left(\tau_{1!}\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)-i d\right)$.

We compute the sum of the standard terms. In Table C.2, the leftmost column lists the expressions that don't cancel in the sum of the standard terms, the middle column gives the standard term from which the expression comes, and the rightmost column gives the extra term that cancels the expression. Table C. 3 lists the remaining terms from the seventh row that are not already listed in Table C.2. In Table C.3, the left column lists the remaining expressions that don't cancel in the seventh row, and the right column gives the extra term that cancels the expression.

All of the terms in the tables describing the expansion of equation C. 4 cancel, so $D\left(B\left(A_{0}, A_{1}\right)\right)=\tau_{1!}\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)-i d$.

Expression (Expansion)	Comes from Standard Term in Equation \mid C.4	Cancels with Extra Term in Equation C.4
$\psi_{1}\left(\lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2}\right) \otimes \lambda\left(\vec{\psi}_{\{2, \cdots, m\}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3} \otimes a_{0} \otimes \mathfrak{a}_{1}$	$b \circ B^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$\psi_{1}\left\{\vec{\phi}_{\left.I_{1}\right\}}\right\} \cdot B^{\left\|I_{2}\right\|, m-1}\left(\vec{\phi}_{I_{2}}\left\|\vec{\psi}_{\{2, \cdots, m\}}\right\| \alpha\right)$
$g_{0} \phi_{1}\left(\mathfrak{a}_{2}\right) \otimes \lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{\{2, \cdots, n\}}\right) \mathfrak{a}_{3} \otimes a_{0} \otimes \mathfrak{a}_{1}$	$b \circ B^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$\phi_{1} \cdot B^{n-1, m}\left(\vec{\phi}_{\{2, \cdots, n\}}\|\vec{\psi}\| \alpha\right)$
$1 \otimes \lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{\{1, \cdots, n-1\}}\right) \mathfrak{a}_{2} \otimes g_{m} \phi_{n}\left(\mathfrak{a}_{3}\right) \cdot a_{0} \otimes \mathfrak{a}_{1}$	$b \circ B^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$B^{n-1, m}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\|\vec{\psi}\| \phi_{n} \cdot \alpha\right)$
$1 \otimes \lambda\left(\vec{\psi}_{\{1, \cdots, m-1\}}\right) \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2} \otimes g_{m} \psi_{m}\left(\lambda\left(\vec{\phi}_{I_{2}} \mathfrak{a}_{3}\right)\right) \cdot a_{0} \otimes \mathfrak{a}_{1}$	$b \circ B^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$B^{\left\|I_{1}\right\|, m-1}\left(\vec{\phi}_{I_{2}}\left\|\vec{\psi}_{\{1, \cdots, m-1\}}\right\| \psi_{m}\left\{\vec{\phi}_{I_{2}}\right\}\right.$ $\alpha)$
$g_{0} f_{0} a_{0} \otimes \lambda(\vec{\psi}) \lambda(\vec{\phi}) \mathfrak{a}_{1}$	$b \circ B^{n, m}(\vec{\phi}\|\vec{\psi}\| \alpha)$	$\tau_{1!}^{\left\|J_{1}\right\|,\left\|I_{1}\right\|}\left(\vec{\psi}_{J_{1}}\left\|\vec{\phi}_{I_{1}}\right\| \tau_{1!}^{\left\|I_{2}\right\|, J_{2} \mid}\left(\vec{\phi}_{I_{2}}\left\|\vec{\psi}_{\left.J_{2} \mid \alpha\right)}\right\| \alpha\right.\right.$
Table C.2. Expansion of terms in Equation C.4	"standard terms" and the "extra terms" that cancel them	

(Technically, the last term in the right column is not an extra term, but we include it in the table for

[^0]Proposition C.3. Let $\tau_{1!}\left(A_{0}, A_{1}\right): T\left(A_{0} \rightarrow A_{1} \rightarrow A_{0}\right) \longrightarrow T\left(A_{1} \rightarrow A_{0} \rightarrow A_{1}\right)$ and $B\left(A_{0}, A_{1}\right): T\left(A_{0} \rightarrow A_{1} \rightarrow A_{0}\right) \longrightarrow T\left(A_{0} \rightarrow A_{1} \rightarrow A_{0}\right)$ be the maps defined in Propositions C. 1 and C.2 above. Then,

$$
\left[\tau_{1!}, B\right]:=\tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)-B\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)=0
$$

Proof. We show that $\left[\tau_{1!}, B\right]=0$ by direct computation. Since all of the maps are maps of cofree comodules, we only need to check that $\pi_{1}\left(\left[\tau_{1!}, B\right]\right)=0$ where π_{1} denotes projection of the comodule onto cogenerators. We check this directly.

$$
\begin{aligned}
& {\left[\pi_{1} \circ \tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)\right](\vec{\phi}|\vec{\psi}| \alpha) } \\
&= \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{I_{1}, J_{2}} \cdot \tau_{1_{1}!\left|,\left|J_{1}\right|\right.}^{\left|I_{1}\right|}\left(\vec{\phi}_{I_{1}}\left|\vec{\psi}_{J_{1}}\right| B^{\left|I_{2}\right|,\left|J_{2}\right|}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \alpha\right)\right) \\
&=\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }}} \tau_{1!} \epsilon_{I_{1}, J_{2}} \cdot \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot \\
&=\sum_{\substack{I_{1}\left|,\left|J_{1}\right| \\
I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\right. \text { as ordered sets }}} \epsilon_{I_{1}, J_{2}} \cdot \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda\left(\vec{\psi}_{J_{1}} \mid 1 \otimes \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right)\left(\lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{2}}\right), a_{0}, \mathfrak{a}_{1}\right)\right. \\
&
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\pi_{1} \circ B\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)\right](\vec{\phi}|\vec{\psi}| \alpha)} \\
& =\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{I_{1}, J_{2}} \cdot B^{\left|J_{1}\right|,\left|I_{1}\right|}\left(\vec{\psi}_{J_{1}}\left|\vec{\phi}_{I_{1}}\right| \tau_{1!}^{\left|I_{2}\right|,\left|J_{2}\right|}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \alpha\right)\right) \\
& \begin{array}{r}
\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\}}} \epsilon_{I_{1}, J_{2}} \cdot B^{\left|J_{1}\right|,\left|I_{1}\right|}\left(\vec{\psi}_{J_{1}}\left|\vec{\phi}_{I_{1}}\right| \phi_{\left|I_{1}\right|+1}\left(\lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{I_{2} \backslash\left|I_{1}\right|+1}\right) \mathfrak{a}_{2}+\right. \\
\left.+a_{0} \otimes \lambda\left(\vec{\phi}_{I_{2} \backslash \backslash I_{1} \mid+1}\right) \mathfrak{a}_{1} \text { if } J_{2}=\emptyset\right)
\end{array} \\
& \text { as ordered sets } \\
& \begin{array}{c}
\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }}} \epsilon_{I_{1}, J_{2}} \cdot \eta_{\mathfrak{a}_{2}, \mathfrak{a}_{3}} \cdot 1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3} \otimes \phi_{\left|I_{1}\right|+1}\left(\lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{4}}\right) \mathfrak{a}_{4}, a_{0}, \mathfrak{a}_{1}\right) \otimes \\
\otimes \lambda\left(\vec{\phi}_{I_{2} \backslash \backslash I_{1} \mid+1}\right) \mathfrak{a}_{2}+ \\
\end{array} \\
& +\epsilon_{I_{1}, J_{2}} \cdot \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{2} \otimes a_{0} \otimes \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{1}
\end{aligned}
$$

It's clear that $\pi_{1} \circ \tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)=\pi_{1} \circ B\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)$: The final expansion of $\pi_{1} \circ \tau_{1!}\left(A_{0}, A_{1}\right) \circ B\left(A_{0}, A_{1}\right)$ is the sum of the two terms in the final expansion of $\pi_{1} \circ B\left(A_{1}, A_{0}\right) \circ \tau_{1!}\left(A_{0}, A_{1}\right)$, which is the sum of terms in which one of the ϕ 's contains a_{0} and the terms in which none of the ϕ 's contains a_{0}).

C.3. More notation

For the next two propositions, we will need some more notation. Set

$$
\begin{aligned}
& A_{0}, A_{1}, A_{2} \text { fixed algebras } \\
& (\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha):=\left(\phi_{1} \ldots \phi_{n}\left|\psi_{1} \ldots \psi_{m}\right| \theta_{1} \ldots \theta_{r} \mid \alpha\right) \\
& \in
\end{aligned}
$$

when $I_{1}, J_{1}, J_{2}, K_{1}$, are ordered indexing sets

We also have the following maps of dg comodules:

$$
\begin{aligned}
\tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right): T\left(A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{0}\right) & \rightarrow \hat{\tau}_{2}^{*} T\left(A_{2} \rightarrow A_{0} \rightarrow A_{1} \rightarrow A_{2}\right) \\
(\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha) & \mapsto \tau_{1!}\left(A_{0}, A_{2}\right)(\vec{\phi} \bullet \vec{\psi}|\vec{\theta}| \alpha) \\
\tau_{1!}\left(A_{0}, A_{1} \bullet A_{2}\right): T\left(A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{0}\right) & \rightarrow \hat{\tau}_{2}^{* 2} T\left(A_{1} \rightarrow A_{2} \rightarrow A_{0} \rightarrow A_{1}\right) \\
(\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha) & \mapsto \tau_{1!}\left(A_{0}, A_{1}\right)(\vec{\phi}|\vec{\psi} \bullet \vec{\theta}| \alpha)
\end{aligned}
$$

C.4. More Propositions

Proposition C.4. Let

$$
\mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)=\mathcal{B}: T\left(A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{0}\right) \rightarrow \hat{\tau}_{2}^{* 2} T\left(A_{1} \rightarrow A_{2} \rightarrow A_{0} \rightarrow A_{1}\right)
$$

be a map of comodules over $\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \mathcal{C}\left(A_{1}, A_{2}\right) \otimes \mathcal{C}\left(A_{2}, A_{0}\right)$ determined by the following maps to cogenerators: for $\left(A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{g_{0}} A_{2} \xrightarrow{h_{0}} A_{0}\right) \in \operatorname{Obj}\left(\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \mathcal{C}\left(A_{1}, A_{2}\right) \otimes\right.$ $\left.\mathcal{C}\left(A_{2}, A_{0}\right)\right)$

$$
\begin{align*}
& \mathcal{B}\left(f_{0}, g_{0}, h_{0}\right): T\left(A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{g_{0}} A_{2} \xrightarrow{h_{0}} A_{0}\right) \rightarrow \hat{\tau}_{2}^{* 2} T\left(A_{1} \xrightarrow{g_{0}} A_{2} \xrightarrow{h_{0}} A_{0} \xrightarrow{f_{0}} A_{1}\right)^{\bullet} \\
& \xrightarrow[\text { cogenerators }]{\text { project onto }} C_{-}\left(A_{1}, f_{0} h_{0} g_{0} A_{1 i d}\right) \tag{C.5}\\
& \mathcal{B}^{n, m, p}(\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha)=\sum_{\substack{I_{1} I_{2}=\{1,2, \ldots, n\} \\
\text { as ordered sets }}} \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left(\lambda(\vec{\theta}) \lambda(\vec{\psi}) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2} \otimes a_{0} \otimes \mathfrak{a}_{1}\right)
\end{align*}
$$

Then,

$$
\begin{equation*}
D\left(\mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)\right)=\tau_{1!}\left(A_{2} \bullet A_{0}, A_{1}\right) \circ \tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right)-\tau_{1!}\left(A_{0}, A_{1} \bullet A_{2}\right) \tag{C.6}
\end{equation*}
$$

Proof. We will show that Equation C.6 holds by direct computation. Since all of the maps are maps of cofree comodules, we only need to check that π_{1} (Equation C.6) holds where π_{1} denotes projection of the comodule onto cogenerators. More explicitly, we want
to check that

$$
\begin{array}{r}
\mathcal{B}^{n, m, p}(\tilde{\delta}(\vec{\phi})|\vec{\psi}| \vec{\theta} \mid \alpha)+\mathcal{B}^{n, m, p}(\vec{\phi}|\tilde{\delta}(\vec{\psi})| \vec{\theta} \mid \alpha)+\mathcal{B}^{n, m, p}(\vec{\phi}|\vec{\psi}| \tilde{\delta}(\vec{\theta}) \mid \alpha)+ \tag{C.7}\\
\mathcal{B}^{n-1, m, p}\left(b^{\prime}(\vec{\phi})|\vec{\psi}| \vec{\theta} \mid \alpha\right)+\mathcal{B}^{n, m-1, p}\left(\vec{\phi}\left|b^{\prime}(\vec{\psi})\right| \vec{\theta} \mid \alpha\right)+\mathcal{B}^{n, m, p-1}\left(\vec{\phi}|\vec{\psi}| b^{\prime}(\vec{\theta}) \mid \alpha\right)+ \\
\mathcal{B}^{n, m, p}(\vec{\phi}|\vec{\psi}| \vec{\theta} \mid b(\alpha))+b \circ \mathcal{B}^{n, m, p}(\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha)+ \\
\sum_{\begin{array}{c}
I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
\text { as ordered sets }
\end{array}}^{\epsilon_{I_{2}, J_{1}, J_{2},\{1, \ldots, p-1\}} \cdot \mathcal{B}^{\left|I_{1}\right|,\left|J_{1}\right|, p-1}\left(\vec{\phi}_{I_{1}}\left|\vec{\psi}_{J_{1}}\right| \vec{\theta}_{\{1, \ldots, p-1\}} \mid \theta_{p}\left\{\vec{\psi}_{J_{2}}\right\}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right)+} \\
\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
\text { as ordered sets }}} \epsilon_{I_{2},\{1, \ldots, m-1\},\{m\},\{1, \ldots, p\}} \cdot \mathcal{B}^{\left|I_{1}\right|, m-1, p}\left(\vec{\phi}_{I_{1}}\left|\vec{\psi}_{\{1, \ldots, m-1\}}\right| \vec{\theta} \mid \psi_{m}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right)+ \\
\epsilon_{\{n\},\{1, \ldots, m\},\{ \},\{1, \ldots, p\}} \cdot \mathcal{B}^{n-1, m, p}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\left|\vec{\psi}_{m}\right| \vec{\theta} \mid \phi_{n} \cdot \alpha\right)+ \\
\sum_{\begin{array}{c}
J_{1} J_{2}=\{1, \ldots, m\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }
\end{array}} \epsilon_{\{2, \ldots, n\}, J_{1}, J_{2}, K_{1}} \cdot \phi_{1}\left\{\vec{\theta}_{K_{1}}\right\}\left\{\vec{\psi}_{J_{1}}\right\} \cdot \mathcal{B}^{n-1,\left|J_{2}\right|,\left|K_{2}\right|}\left(\vec{\phi}_{\{2, \cdots, n\}}\left|\vec{\psi}_{J_{2}}\right| \vec{\theta}_{K_{2}} \mid \alpha\right)+
\end{array}
$$

$$
\sum_{\substack{J_{1} J_{2}=\{1, \ldots, m\} \\ \text { as ordered sets }}} \epsilon_{\{1, \ldots, n\}, J_{1}, J_{2},\{1\}} \cdot \theta_{1}\left\{\vec{\psi}_{J_{1}}\right\} \cdot \mathcal{B}^{n,\left|J_{2}\right|, p-1}\left(\vec{\phi}\left|\vec{\psi}_{J_{2}}\right| \vec{\theta}_{\{2, \cdots, p\}} \mid \alpha\right)+
$$

$$
\epsilon_{\{1, \ldots, n\},\{1\},\{2, \ldots, m\},\{ \}} \cdot \psi_{1} \cdot \mathcal{B}^{n, m-1, p}\left(\vec{\phi}\left|\vec{\psi}_{\{2, \cdots, m\}}\right| \vec{\theta} \mid \alpha\right)+
$$

$$
\tau_{1!}^{n, p \leq * \leq m+p}(\vec{\phi}|\vec{\psi} \bullet \vec{\theta}| \alpha)+
$$

$$
\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\ J_{1} J_{2}=\{1, \ldots, m\} \\ K_{1} K_{2}=\{1, \ldots, p\} \\ \text { as ordered sets }}} \tau_{1!}^{\left|I_{1}\right| \leq * \leq\left|I_{1}\right|+\left|K_{1}\right|,\left|J_{1}\right|}\left(\vec{\theta}_{K_{1}} \bullet \vec{\phi}_{I_{1}}, \vec{\psi}_{J_{1}}, \tau_{1!}^{\left|J_{2}\right| \leq * \leq\left|I_{2}\right|+\left|J_{2}\right|,\left|K_{2}\right|}\left(\vec{\phi}_{I_{2}} \bullet \vec{\psi}_{J_{2}}\left|\vec{\theta}_{K_{2}}\right| \alpha\right)\right)
$$

$$
=0
$$

In Equation C. 7 above, we call the terms in rows 1-3 the "standard terms" in the computation of $D\left(\mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)\right)$, and the terms in rows 4-9 the "extra terms" in the computation of $D\left(\mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)\right)$. The terms in rows 10-11 are π_{1} of the righthand side of Equation C.6; we will call these the " $10^{\text {th }}$ - and $11^{\text {th }}$-row terms".

We compute the sum of the standard terms. In Table C.4, the leftmost column lists the expressions that don't cancel in the sum of the standard terms, the middle column gives the standard term from which the expression comes, and the rightmost column gives the term that cancels the expression. Table C.5 lists the remaining ninth row terms that aren't already listed in Table C.4. In Table C.5, the left column lists the remaining expressions that don't cancel in the ninth row, and the right column gives the extra term that cancels the expression.

All of the terms in the tables describing the expansion of Equation C.7 cancel, so we're done.

Expression (Expansion)	Comes from Standard Term in Equation C. 7	Cancelling Term in Equation C. 7
$\begin{aligned} & 1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda \left(\vec{\theta}_{\{1, \cdots, p-1\}} \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2} \otimes\right.\right. \\ &\left.\otimes \theta_{p}\left(\lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3}\right) \cdot a_{0} \otimes \mathfrak{a}_{1}\right] \end{aligned}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\begin{array}{r} \mathcal{B}^{\left\|I_{1}\right\|,\left\|J_{1}\right\|, p-1}\left(\vec{\phi}_{I_{1}}\left\|\vec{\psi}_{J_{1}}\right\| \vec{\theta}_{\{1, \cdots, p-1\}} \mid\right. \\ \left.\theta_{p}\left\{\vec{\psi}_{J_{2}}\right\}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right) \\ \hline \end{array}$
$\begin{gathered} 1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda \left(\vec{\theta} \lambda\left(\vec{\psi}_{\{1, \cdots, m-1\}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2} \otimes\right.\right. \\ \left.\otimes \psi_{m}\left(\lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3}\right) \cdot a_{0} \otimes \mathfrak{a}_{1}\right] \end{gathered}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\begin{gathered} \mathcal{B}^{I_{1} \mid, m-1, p}\left(\vec{\phi}_{I_{1}}\left\|\vec{\psi}_{\{1, \cdots, m-1\}}\right\| \vec{\theta} \mid\right. \\ \left.\psi_{m}\left\{\vec{\phi}_{I_{2}}\right\} \cdot \alpha\right) \end{gathered}$
$1 \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda\left(\vec{\theta} \lambda\left(\vec{\psi} \lambda\left(\vec{\phi}_{\{1, \cdots, n-1\}}\right) \mathfrak{a}_{2} \otimes \psi_{n}\left(\mathfrak{a}_{3}\right) \cdot a_{0} \otimes \mathfrak{a}_{1}\right]\right.\right.$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\mathcal{B}^{n-1, m, p}\left(\vec{\phi}_{\{1, \cdots, n-1\}}\|\vec{\psi}\| \vec{\theta} \mid \phi_{n} \cdot \alpha\right)$
$\begin{aligned} & \phi_{1}\left(\lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}\right) \otimes \\ & \otimes \lambda\left(\vec{\phi}_{I_{1} \backslash 1}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{3}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3} \otimes a_{0} \otimes \mathfrak{a}_{1}\right] \end{aligned}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\begin{aligned} & \phi_{1}\left\{\vec{\theta}_{K_{1}}\right\}\left\{\vec{\psi}_{J_{1}}\right\} . \\ & \mathcal{B}^{n-1,\left\|J_{2}\right\|,\left\|K_{2}\right\|}\left(\vec{\phi}_{\{2, \cdots, n\}}\left\|\vec{\psi}_{J_{2}}\right\| \vec{\theta}_{K_{2}} \mid \alpha\right) \end{aligned}$
$\begin{aligned} & f_{0} \theta_{1}\left(\lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}\right) \otimes \\ & \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda\left(\vec{\theta}_{\{2, \cdots, p\}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3} \otimes a_{0} \otimes \mathfrak{a}_{1}\right] \end{aligned}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\begin{array}{\|l} \hline \theta_{1}\left\{\vec{\psi}_{J_{1}}\right\} \\ \mathcal{B}^{n,\left\|J_{2}\right\|, p-1}\left(\vec{\phi}\left\|\vec{\psi}_{J_{2}}\right\| \vec{\theta}_{\{2, \cdots, p\}} \mid \alpha\right) \\ \hline \end{array}$
$\begin{aligned} & f_{0} h_{0} \psi_{1}\left(\lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}\right) \otimes \\ & \otimes \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda(\vec{\theta}) \lambda\left(\vec{\psi}_{\{2, \cdots, m\}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3} \otimes a_{0} \otimes \mathfrak{a}_{1}\right] \end{aligned}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$\psi_{1} \cdot \mathcal{B}^{n, m-1, p}\left(\vec{\phi}\left\|\vec{\psi}_{\{2, \cdots, m\}}\right\| \vec{\theta} \mid \alpha\right)$
$\begin{aligned} & f_{0} h_{0} g_{0} \phi_{i_{1}}\left(\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right) \otimes \\ & \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2} \backslash i_{1}}\right) \mathfrak{a}_{2} \end{aligned}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$11^{\text {th }}$ row
$f_{0} h_{0} g_{0} f_{i_{1}} a_{0} \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda(\vec{\theta}) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{1}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$11^{\text {th }}$ row
$\phi_{1}\left(\lambda\left(\vec{\phi}_{I_{1}}\right) \lambda(\vec{\theta}) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\phi}_{I_{1} \backslash 1}\right) \mathfrak{a}_{2}$	$b \circ \mathcal{B}^{n, m, p}(\vec{\phi}\|\vec{\psi}\| \vec{\theta} \mid \alpha)$	$10^{\text {th }}$ row
Table C.4. Expansion of terms in Equation C.7	rd terms	el them

Expression (expansion) from $11^{\text {th }}$-Row Term in Equation C. 7	Cancels with Extra Term in Equation C. 7
$\phi_{1}\left(\lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right)\left[\lambda\left(\vec{\theta}_{K_{3}}\right) \lambda\left(\vec{\psi}_{J_{4}}\right) \lambda\left(\vec{\phi}_{I_{5}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right]\right) \otimes$	$\phi_{1}\left\{\vec{\theta}_{K_{1}}\right\}\left\{\vec{\psi}_{J_{1}}\right\} \cdot$
$\otimes \lambda\left(\vec{\phi}_{I_{1} \backslash 1}\right) \lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{3}}\right) \lambda\left(\vec{\phi}_{I_{4}}\right) \mathfrak{a}_{2}$	$\mathcal{B}^{n-1,\left\|J_{2}\right\|,\left\|K_{2}\right\|}\left(\vec{\phi}_{\{2, \cdots, n\}}\left\|\vec{\psi}_{J_{2}}\right\| \vec{\theta}_{K_{2}} \mid \alpha\right)$
$f_{0} \theta_{1}\left(\lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{3}}\right) \lambda\left(\vec{\phi}_{I_{4}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right]\right) \otimes$	$\theta_{1}\left\{\vec{\psi}_{J_{1}}\right\}$.
$\otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda\left(\vec{\theta}_{K_{1} \backslash 1}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{2}$	$\mathcal{B}^{n,\left\|J_{2}\right\|, p-1}\left(\vec{\phi}\left\|\vec{\psi}_{J_{2}}\right\| \vec{\theta}_{\{2, \cdots, p\}} \mid \alpha\right)$
$f_{0} h_{0} \psi_{1}\left(\lambda\left(\vec{\phi}_{I_{2}}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{4}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right]\right) \otimes \lambda\left(\vec{\phi}_{I_{1}}\right) \lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1} \backslash 1}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{2}$	$\psi_{1} \cdot \mathcal{B}^{n, m-1, p}\left(\vec{\phi}\left\|\vec{\psi}_{\{2, \cdots, m\}}\right\| \vec{\theta} \mid \alpha\right)$
Table C.5. Expansion of terms in Equation C.7. remaining "11" row terms" and the "extra terms"	
that cancel them	

Proposition C.5. Let $\tau_{1!}$ and \mathcal{B} be as defined in the previous propositions. Then, $\left[\tau_{1!}, \mathcal{B}\right]:=\tau_{1!}\left(A_{1} \bullet A_{2}, A_{0}\right) \circ \mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)-\mathcal{B}\left(A_{2}, A_{0}, A_{1}\right) \circ \tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right)=0 . \quad$ (Note that $\left[\tau_{1}!, \mathcal{B}\right]$ is a map from $T\left(A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{0}\right)$ to itself. $)$

Proof. We show the proposition by direct computation. Since all of the maps are maps of cofree comodules, we only need to check that $\pi_{1}\left(\left[\tau_{11}, \mathcal{B}\right]\right)=0$ where π_{1} denotes projection of the comodule onto cogenerators. We check this directly.

$$
\begin{aligned}
& {\left[\pi_{1} \circ \tau_{1!}\left(A_{1} \bullet A_{2}, A_{0}\right) \circ \mathcal{B}\left(A_{0}, A_{1}, A_{2}\right)\right](\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha) } \\
&=\sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}, J_{2}, K_{1}} \cdot \tau_{1!}^{\left|K_{1}\right| \leq * \leq\left|K_{1}\right|+\left|J_{1}\right|,\left|I_{1}\right|}\left(\vec{\psi}_{J_{1}} \bullet \vec{\theta}_{K_{1}}\left|\vec{\phi}_{I_{1}}\right| \mathcal{B}^{\left|I_{2}\right|,\left|J_{2}\right|,\left|K_{2}\right|}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{J_{2}}\right| \vec{\theta}_{K_{2}} \mid \alpha\right)\right) \\
&= \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }}} \tau_{1!}^{\left|K_{1}\right| \leq * \leq\left|K_{1}\right|+\left|J_{1}\right|,\left|I_{1}\right|}\left(\vec{\psi}_{J_{1}} \bullet \vec{\theta}_{K_{1}}\left|\vec{\phi}_{I_{1}}\right| 1 \otimes \lambda\left(\vec{\phi}_{I_{2}}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{2}, a_{0}, \mathfrak{a}_{1}\right]\right) \\
&= \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}, J_{2}, K_{1}} \cdot \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}, a_{0}, \mathfrak{a}_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\pi_{1} \circ \mathcal{B}\left(A_{2}, A_{0}, A_{1}\right) \circ \tau_{1!}\left(A_{0} \bullet A_{1}, A_{2}\right)\right](\vec{\phi}|\vec{\psi}| \vec{\theta} \mid \alpha) } \\
= & \sum_{\substack{I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots, m\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}, J_{2}, K_{1}} \cdot \mathcal{B}^{\left|K_{1}\right|,\left|I_{1}\right|,\left|J_{1}\right|}\left(\vec{\theta}_{K_{1}}\left|\vec{\phi}_{I_{1}}\right| \vec{\psi}_{J_{1}} \mid \tau_{1!}^{\left|J_{2}\right| \leq * \leq\left|I_{2}\right|+\left|J_{2}\right|,\left|K_{2}\right|}\left(\vec{\phi}_{I_{2}} \bullet \vec{\psi}_{J_{2}}\left|\vec{\theta}_{K_{2}}\right| \alpha\right)\right) \\
= & \sum_{\substack{\left.I_{1} I_{2}=\{1, \ldots, n\} \\
J_{1} J_{2}=\{1, \ldots,\}\right\} \\
K_{1} K_{2}=\{1, \ldots, p\} \\
\text { as ordered sets }}} \epsilon_{I_{2}, J_{1}, J_{2}, K_{1}} \cdot \eta_{\mathfrak{a}_{1}, \mathfrak{a}_{2}} \cdot 1 \otimes \lambda\left(\vec{\theta}_{K_{1}}\right) \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{1}}\right)\left[\lambda\left(\vec{\theta}_{K_{2}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{2}, a_{0}, \mathfrak{a}_{1}\right]
\end{aligned}
$$

It's clear that $\pi_{1}\left(\left[\tau_{1!}, \mathcal{B}\right]\right)=0$.

APPENDIX D

Pullbacks, Pushforwards and an Adjunction

In the first section of this appendix, we give the definition of the natural pullback used for dg comodules and show that it satisfies Equation 4.1 (Proposition D.1). We also prove a useful Proposition D. 2 describing the pullbacks of cofree dg comodules in terms of cogenerators. We then use Proposition D. 2 to compute some examples of pullbacks.

In Section D.3, we show that our pullback is right adjoint to a pushforward. This adjunction is used in Chapter 6 when passing from dg cocategories and dg comodules to dg categories and dg modules. Use of this adjunction is not central to our narrative, and may perhaps become unnecessary as understanding of the structure on dg categories and dg modules evolves.

A technical detail in all of this is that we work with conilpotent dg comodules over conilpotent dg cocategories. We discuss these details in Section D.4.

D.1. Pullbacks of dg comodules

Let $\lambda: B_{1} \rightarrow B_{0}$ be a functor between conilpotent dg cocategories. In this section, we will define a functor λ^{*} from the category of conilpotent dg comodules over B_{0} to the category of conilpotent dg comodules over B_{1}. We call λ^{*} "co-extension of scalars".

D.1.1. Category-theoretic definition of λ^{*}

Let λ be as above, and let C be a conilpotent dg comodule over B_{0}. We define $\lambda^{*} C$ as follows:

$$
\begin{equation*}
\lambda^{*} C:=\operatorname{ker}\left(B_{1} \otimes_{\lambda} C \underset{\left(\mathrm{id}_{\mathrm{B}_{1}} \otimes \lambda \otimes \mathrm{id}_{\mathrm{C}}\right) \circ\left(\Delta_{\mathrm{B}_{1}} \otimes \mathrm{id}_{\mathrm{C}}\right)}{\stackrel{\mathrm{id}_{\mathrm{B}_{1}} \otimes \Delta_{\mathrm{C}}}{\leftrightarrows}} B_{1} \otimes_{\lambda} B_{0} \otimes C\right) \tag{D.1}
\end{equation*}
$$

where $B_{1} \otimes_{\lambda} C$ and $B_{1} \otimes_{\lambda} B_{0} \otimes C$ are dg comodules over B_{1} defined below. For $f \in \operatorname{Obj}\left(B_{1}\right)$,

$$
\begin{gathered}
{\left[B_{1} \otimes_{\lambda} C\right](f):=\left(\bigoplus_{h \in \operatorname{Obj}\left(B_{1}\right)} B_{1}^{\bullet}(f, h) \otimes C^{\bullet}(\lambda h), \Delta(f)=\bigoplus_{h} \Delta_{B_{1}(f, h)} \otimes i d_{C(\lambda h)}\right)} \\
{\left[B_{1} \otimes_{\lambda} B_{0} \otimes C\right](f):=\left(\bigoplus_{\substack{h_{1} \in O b j\left(B_{1}\right), h_{2} \in \operatorname{Obj}\left(B_{0}\right)}} B_{1}^{\bullet}\left(f, h_{1}\right) \otimes B_{0}^{\bullet}\left(\lambda h_{1}, h_{2}\right) \otimes C^{\bullet}\left(h_{2}\right),\right.} \\
\left.\Delta(f)=\bigoplus_{h_{1}, h_{2}} \Delta_{B_{1}\left(f, h_{1}\right)} \otimes i d_{B_{0}\left(\lambda h_{1}, h_{2}\right)} \otimes i d_{C\left(h_{2}\right)}\right) .
\end{gathered}
$$

The names of the maps in Equation D.1 are also meant to be suggestive. In full detail, for $f \in \operatorname{Obj}\left(B_{1}\right)$,

$$
\left[i d_{B_{1}} \otimes \Delta_{C}\right](f):=\bigoplus_{h} i d_{B_{1}(f, h)} \otimes \Delta_{C}(\lambda h)
$$

and

$$
\begin{aligned}
{\left[B_{1} \otimes_{\lambda} C\right](f) } & \xrightarrow{\left[\Delta_{B_{1}} \otimes i d_{C}\right](f):=\oplus \oplus_{h} \Delta_{B_{1}}(f, h) \otimes i d_{C(\lambda h)}} \bigoplus_{h_{1}, h_{2} \in O b j\left(B_{1}\right)} B_{1}\left(f, h_{1}\right) \otimes B_{1}\left(h_{1}, h_{2}\right) \otimes C\left(\lambda h_{2}\right) \\
& \xrightarrow{\left[i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right](f):={\underset{h_{1}, h_{2}}{ } \oplus^{i d_{B_{1}\left(f, h_{1}\right)} \otimes \lambda\left(h_{1}, h_{2}\right) \otimes i d_{C(\lambda h)}}}\left[B_{1} \otimes_{\lambda} B_{0} \otimes C\right](f) .} .
\end{aligned}
$$

That the kernel is well-defined follows formally from the abelianness of the category of chain complexes, but it is also easy to check that the induced differentials from $\left[B_{1} \otimes_{\lambda} C\right](f)$
on the kernel are well-defined. Since $\Delta_{\lambda^{*} C}$ is induced by $\Delta_{B_{1}}$, we have that $\Delta_{\lambda^{*} C}$ also satisfies coassociativity, counitality and conilpotency.

Next, we will define λ^{*} on morphisms. Let $F: C \rightarrow D$ be a map of conilpotent dg comodules over B_{0}. By the universal property of $\lambda^{*} D$, we can define a morphism $\lambda^{*} F: \lambda^{*} C \rightarrow \lambda^{*} D$ by giving a morphism from $\left(\lambda^{*} F\right)^{\prime}: \lambda^{*} C \rightarrow B_{1} \otimes_{\lambda} D$ such that the two maps
$\left(i d_{B_{1}} \otimes \Delta_{D}\right) \circ\left(\lambda^{*} F\right)^{\prime},\left(i d_{B_{1}} \otimes \lambda \otimes i d_{D}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{D}\right) \circ\left(\lambda^{*} F\right)^{\prime}: \lambda^{*} C \rightarrow B_{1} \otimes_{\lambda} D \rightrightarrows B_{1} \otimes_{\lambda} B_{0} \otimes D$
coincide. We define $\left(\lambda^{*} F\right)^{\prime}$ as follows:

$$
\left(\lambda^{*} F\right)^{\prime}: \lambda^{*} C \xrightarrow[\text { inclusion }]{\text { canonical }} B_{1} \otimes_{\lambda} C \xrightarrow{i d_{B_{1}} \otimes F} B_{1} \otimes_{\lambda} D
$$

It's easy to check that the two maps in Equation D. 2 coincide: Let $b \otimes c$ be an arbitrary element of $\lambda^{*} C(f) \hookrightarrow\left[B_{1} \otimes_{\lambda} C\right](f)$. Then,

$$
\begin{aligned}
{\left[\left(i d_{B_{1}} \otimes \Delta_{D}\right) \circ\left(\lambda^{*} F\right)^{\prime}\right](b \otimes c)=} & \sum_{(F c)} b \otimes(F c)_{(1)} \otimes(F c)_{(2)} \\
= & \sum_{(c)} b \otimes F c_{(1)} \otimes F c_{(2)} \quad(\mathrm{F} \text { is a map of comodules }) \\
= & {\left[\left(i d_{B_{1}} \otimes F \otimes F\right) \circ\left(i d_{B_{1}} \otimes \Delta_{C}\right)\right](b \otimes c) } \\
= & {\left[\left(i d_{B_{1}} \otimes F \otimes F\right) \circ\left(i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right)\right](b \otimes c) } \\
& (b \otimes c \text { is in the kernel }) \\
= & \sum_{(b)} b_{(1)} \otimes \lambda b_{(2)} \otimes F c \\
= & {\left[\left(i d_{B_{1}} \otimes \lambda \otimes i d_{D}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{D}\right) \circ\left(\lambda^{*} F\right)^{\prime}\right](b \otimes c) . }
\end{aligned}
$$

So, $\lambda^{*} F$ is well-defined. In summary, we have commuting diagrams:

Finally, it is straightforward to see that λ^{*} is a functor, i.e., that λ^{*} preserves composition of morphisms: Let $C \xrightarrow{F} D \xrightarrow{G} E$ be composable morphisms of dg comodules over B_{0}. The maps inducing $\lambda^{*} F, \lambda^{*} G$ and $\lambda^{*}(G \circ F)$ are $i d_{B_{1}} \otimes F, i d_{B_{1}} \otimes G$ and $i d_{B_{1}} \otimes G F$, respectively. The inducing maps respect composition- $\left(i d_{B_{1}} \otimes G\right) \circ\left(i d_{B_{1}} \otimes F\right)=i d_{B_{1}} \otimes G F$-and by the commuting diagrams D.3, the functor λ^{*} does as well.

Proposition D.1. Let $F: B_{2} \rightarrow B_{1}$ and $G: B_{1} \rightarrow B_{0}$ be functors between dg cocategories B_{2}, B_{1} and B_{0}. Let M be a dg comodule over B_{0}. Then,

$$
(G F)^{*} M \cong F^{*} G^{*} M
$$

Proof. We will prove the proposition by showing that $F^{*} G^{*} M$ satisfies the universal property of $(G F)^{*} M$. First, let N be a dg comodule over B_{2} and $H: N \rightarrow B_{2} \otimes_{G F} M$ be a map of $d g$ comodules such that the two maps
$\left(i d_{B_{2}} \otimes G F \otimes i d_{M}\right) \circ\left(\Delta_{B_{2}} \otimes i d_{M}\right) \circ H,\left(i d_{B_{2}} \otimes \Delta_{M}\right) \circ H: N \rightarrow B_{2} \otimes_{G F} M \rightrightarrows B_{2} \otimes_{G F} \otimes B_{0} \otimes M$
coincide. We will show that H determines a map of dg comodules $\tilde{H}: N \rightarrow F^{*} G^{*} M$. Let $x \in \operatorname{Obj}\left(B_{2}\right)$. Define

$$
\begin{aligned}
H_{x}^{\prime}: N(x) & \xrightarrow{H_{x}} \bigoplus_{y \in O b j\left(B_{2}\right)} B_{2}(x, y) \otimes M(G F y) \\
& \xrightarrow{F \otimes i d_{M}} \bigoplus_{y \in O b j\left(B_{2}\right)} B_{1}(F x, F y) \otimes M(G F y) \\
& \subset\left[B_{1} \otimes_{G} M\right](F x) .
\end{aligned}
$$

The image of H_{x}^{\prime} lands in $G^{*} M(F x)$, a subcomplex of $\left[B_{1} \otimes_{G} M\right](F x)$; checking this is straightforward using the universal property of $G^{*} M$, the fact that F commutes with the coproducts, and Equation D.4. So, for each $x \in \operatorname{Obj}\left(B_{2}\right)$, we have a map of complexes
$H_{x}^{\prime}: N(x) \rightarrow G^{*} M(F x)$. Now define \tilde{H} as follows:

$$
\begin{aligned}
\tilde{H}_{x}: N(x) & \xrightarrow{\Delta_{N}} \bigoplus_{y \in O b j\left(B_{2}\right)} B_{2}(x, y) \otimes N(y) \\
& \xrightarrow{\prod i d_{B_{2}} \otimes H_{y}^{\prime}} \bigoplus_{y \in O b j\left(B_{2}\right)} B_{2}(x, y) \otimes G^{*} M(F y) \\
& \subset\left[B_{2} \otimes_{F} G^{*} M\right](x) .
\end{aligned}
$$

Showing that \tilde{H} lands in $G^{*} F^{*} M$, a subcomodule of $\left[B_{2} \otimes_{F} G^{*} M\right]$, is also straightforward; we only need that F and H commute with the appropriate coproducts, and that the cocomposition on B_{2} is coassociative. So, for each $x \in \operatorname{Obj}\left(B_{2}\right)$, we have a map \tilde{H}_{x} : $N(x) \rightarrow G^{*} F^{*} M(x)$. It's clear that \tilde{H} is a map of dg comodules since all of the maps used to construct \tilde{H} are maps of dg comodules.

Now, let $\tilde{H}: N \rightarrow F^{*} G^{*} M$ be a map of dg comodules over B_{2}. We will show that \tilde{H} determines a map of dg comodules $H: N \rightarrow B_{2} \otimes_{G} F M$ satisfying Equation D.4. For $x \in \operatorname{Obj}\left(B_{2}\right)$, let H be defined as follows:

$$
\begin{aligned}
H_{x}: N(x) & \xrightarrow{\tilde{H}_{x}} F^{*} G^{*} M(x) \\
& \xrightarrow[\text { inclusion }]{\text { canonical }} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{1}\left(F y, z_{1}\right) \otimes M\left(G z_{1}\right) \\
& \xrightarrow{i d_{B_{2}} \otimes \epsilon_{B_{1}} \otimes i d_{M}} \bigoplus_{y \in O b j\left(B_{2}\right)} B_{2}(x, y) \otimes M(G F y) .
\end{aligned}
$$

The universal property of $G^{*} M$ implies that $\left(i d_{B_{2}} \otimes \Delta_{M}\right) \circ H$ is equal to:

$$
\begin{aligned}
& N(x) \xrightarrow{\tilde{H}_{x}} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{1}\left(F y, z_{1}\right) \otimes M\left(G z_{1}\right) \\
& \xrightarrow[\left(i d_{B_{2}} \otimes \Delta_{B_{1}} \otimes i d_{M}\right)]{\left(i d_{B_{2}} \otimes i d_{B_{1}} \otimes G \otimes i d_{M}\right) \circ} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
y_{1}, z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{1}\left(F y, y_{1}\right) \otimes B_{0}\left(G y_{1}, G z_{1}\right) \otimes M\left(G z_{1}\right) \\
& \xrightarrow{i d_{B_{2}} \otimes \epsilon_{B_{1}} \otimes i d_{B_{0}} \otimes i d_{M}} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{0}\left(G F y, G z_{1}\right) \otimes M\left(G z_{1}\right) .
\end{aligned}
$$

On the other hand, the universal property of F^{*} implies that $\left(i d_{B_{2}} \otimes G F \otimes i d_{M}\right) \circ\left(\Delta_{B_{2}} \otimes\right.$ $\left.i d_{M}\right) \circ H$ is equal to:

$$
\begin{aligned}
& N(x) \xrightarrow{\tilde{H}_{x}} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{1}\left(F y, z_{1}\right) \otimes M\left(G z_{1}\right) \\
& \xrightarrow[\left(i d_{B_{2}} \otimes \Delta_{B_{1}} \otimes i d_{M}\right)]{\left(i d_{B_{2}} \otimes G \otimes i d_{B_{1}} \otimes i d_{M}\right) \circ} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
y_{1}, z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{0}\left(G F y, G y_{1}\right) \otimes B_{1}\left(y_{1}, z_{1}\right) \otimes M\left(G z_{1}\right) \\
& \xrightarrow{i d_{B_{2}} \otimes i d_{B_{0}} \otimes \epsilon_{B_{1}} \otimes i d_{M}} \bigoplus_{\substack{y \in O b j\left(B_{2}\right) \\
z_{1} \in O b j\left(B_{1}\right)}} B_{2}(x, y) \otimes B_{0}\left(G F y, G z_{1}\right) \otimes M\left(G z_{1}\right) .
\end{aligned}
$$

So, the difference between the two maps in Equation D. 4 comes down to the difference between $\left(\epsilon_{B_{1}} \otimes G\right) \circ \Delta_{B_{1}}$ and $\left(G \otimes \epsilon_{B_{1}}\right) \circ \Delta_{B_{1}}$. However, by the counitality of B_{1}, both of these maps are equal to G. So, H satisfies Equation D. 4 .

Proposition D.2. Let $\lambda: B_{1} \rightarrow B_{0}$ be a functor between conilpotent dg cocategories and C a conilpotent cofree dg comodule over B_{0}. Then, as comodules,

$$
\begin{equation*}
\lambda^{*} C \cong B_{1} \otimes_{\lambda} T \tag{D.5}
\end{equation*}
$$

where righthand side is the following cofree comodule over B_{1} :

$$
\begin{aligned}
{\left[B_{1} \otimes_{\lambda} T\right](f) } & :=\bigoplus_{h \in O b j\left(B_{0}\right)} B_{1}(f, h) \otimes T(\lambda h) \\
T(\lambda h) & =\text { cogenerators of } C(\lambda h)
\end{aligned}
$$

(See Equation 5.1 for an explanation of cogenerators.)

Proof of Proposition D.2. To prove the proposition, we will give maps

$$
F: \lambda^{*} C \rightleftarrows B_{1} \otimes_{\lambda} T: G
$$

and show that $F \circ G=i d_{B_{1} \otimes_{\lambda} T}$ and $G \circ F=i d_{\lambda^{*} C}$. We define F as follows:

$$
F: \lambda^{*} C \xrightarrow[\text { inclusion }]{\text { canonical }} B_{1} \otimes_{\lambda} C \xrightarrow[\text { cogenerators }]{\text { project onto }} B_{1} \otimes_{\lambda} T .
$$

To define G, we will give a map $G^{\prime}: B_{1} \otimes_{\lambda} T \rightarrow B_{1} \otimes_{\lambda} C$, and show that the image of G^{\prime} lands in $\lambda^{*} C$. We define G^{\prime} as follows:

$$
G^{\prime}(b \otimes t)=\sum_{(b)} b_{(1)} \otimes \lambda b_{(2)} \cdot t
$$

where $b \otimes t \in B_{1} \otimes_{\lambda} T$ and $\lambda b_{(2)} \cdot t$ are elements of the appropriate components of C written in terms of cogenerators.

To prove that the image of G^{\prime} lands in $\lambda^{*} C$, we need to show that the two maps $\left(i d_{B_{1}} \otimes \Delta_{C}\right) \circ G^{\prime},\left(i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right) \circ G^{\prime}: B_{1} \otimes_{\lambda} T \rightarrow B_{1} \otimes_{\lambda} C \rightrightarrows B_{1} \otimes_{\lambda} B_{0} \otimes C$
coincide. We have

$$
\begin{aligned}
{\left[\left(1 \otimes \Delta_{C}\right) \circ G^{\prime}\right](b \otimes t) } & =\sum_{(b),(\lambda b)} b_{(1)} \otimes\left(\lambda b_{(2)}\right)_{(1)} \otimes\left(\lambda b_{(2)}\right)_{(2)} \cdot t \\
& =\sum_{(b)} b_{(1)} \otimes \lambda b_{(2)} \otimes \lambda b_{(3)} \cdot t \\
& =\left[\left(i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right) \circ G^{\prime}\right](b \otimes t)
\end{aligned}
$$

where the second equality holds since λ is a map of cocategories and $\Delta_{B_{1}}$ is coassociative.
It's clear from the definitions that F and G are maps of comodules and that $F \circ G=$ $i d_{B_{1} \otimes_{\lambda} T}$. All that remains is to show that $G \circ F=i d_{\lambda^{*} C}$. Let $\kappa=\Sigma_{i} b_{i} \otimes \beta_{i} \cdot t_{i}$ be an arbitrary element of $\lambda^{*} C \hookrightarrow B_{1} \otimes_{\lambda} C$ where $\beta_{i} \cdot t_{i}$ are elements of C written in terms of cogenerators. Then,

$$
G F(\kappa)=G F\left(\Sigma_{i} b_{i} \otimes \beta_{i} \cdot t_{i}\right)=\sum_{\substack{i, \beta_{i}=1,\left(b_{i}\right)}} b_{i(1)} \otimes \lambda b_{i(2)} \cdot t_{i}
$$

We can divide the terms in κ into two groups: (a) terms in which $\beta_{i}=1 \in k$ and (b) terms in which $\beta_{i} \neq 1 \in k$. Likewise, we can divide the terms in $G F(\kappa)$ into (a) terms in which $\lambda b_{i(2)}=1$ and (b) terms in which $\lambda b_{i(2)} \neq 1$. From the definitions of F and G, it's clear that the Group A terms in κ are exactly the Group A terms in $G F(\kappa)$.

To show that the Group B terms are the same, let $b_{i} \otimes \beta_{i} \cdot t_{i}$ be an arbitrary Group B term in κ. Then, there is a term $b_{i} \otimes \beta_{i} \otimes t_{i}$ in $\left(i d_{B_{1}} \otimes \Delta_{C}\right) \kappa$. Since $\left(i d_{B_{1}} \otimes \Delta_{C}\right) \kappa=\left(i d_{B_{1}} \otimes\right.$ $\left.\lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right) \kappa$, there must be a Group A term, $b_{j_{i}} \otimes t_{j_{i}}$, in κ such that $b_{i} \otimes \beta_{i} \otimes t_{i}$ is one of the terms in the sum $\left[\left(i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right)\right]\left(b_{j_{i}} \otimes t_{j_{i}}\right)=\sum_{\left(b_{j_{i}}\right)} b_{j_{i(1)}} \otimes \lambda b_{j_{i}(2)} \otimes t_{j_{i}}$. Thus, $b_{i} \otimes \beta_{i} \cdot t_{i}$ is a Group B term in $G F(\kappa)$.

Now let $b_{i(1)} \otimes \lambda b_{i(2)} \cdot t_{i}$ be an arbitrary Group B term in $G F(\kappa)$. Then, $b_{i(1)} \otimes \lambda b_{i(2)} \otimes t_{i}$ is a term in $\left(i d_{B_{1}} \otimes \lambda \otimes i d_{C}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{C}\right) \kappa=\left(i d_{B_{1}} \otimes \Delta_{C}\right) \kappa$. So, there is a Group B term, $b_{j_{i}} \otimes \beta_{j_{i}} \cdot t_{j_{i}}$, in κ such that $b_{i(1)} \otimes \lambda b_{i(2)} \otimes t_{i}$ is one of the terms in the sum $\left(i d_{B_{1}} \otimes \Delta_{C}\right)\left(b_{j_{i}} \otimes \beta_{j_{i}} \cdot t_{j_{i}}\right)=\sum_{\left(\beta_{j_{i}}\right)} b_{j_{i}} \otimes \beta_{j_{i}(1)} \otimes \beta_{j_{i}(2)} \cdot t_{j_{i}}$. Since t_{i} is a cogenerator, the only term in the sum that could be equal to $b_{i(1)} \otimes \lambda b_{i(2)} \otimes t_{i}$ is $b_{j_{i}} \otimes \beta_{j_{i}} \otimes t_{j_{i}}$. Thus, $b_{i(1)} \otimes \lambda b_{i(2)} \cdot t_{i}$ is a Group B term in κ.

D.2. Examples of pullbacks

Now, we use Proposition D. 2 to compute some examples of pullbacks of dg comodules.
For the examples below, let \mathcal{C} be the category in dg cocategories defined in Equation 1.2 and $T(A)$ be the dg comodule defined in Section 5.2 .

Example D.2.1. Let $m: \mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right) \rightarrow \mathcal{C}\left(A_{0}, A_{0}\right)$ be the composition functor. Then, $T\left(A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}\right):=m^{*} T\left(A_{0}\right)$ is a cofree dg comodule with the following structure. Let $\left(A_{0} \xrightarrow{f_{0}} A_{1} \rightarrow \cdots \rightarrow A_{n} \xrightarrow{f_{n}} A_{0}\right)$ be an object in $\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes$
$\mathcal{C}\left(A_{n}, A_{0}\right)$. Then,

$$
\begin{aligned}
& T\left(A_{0} \xrightarrow{f_{0}} A_{1} \rightarrow \cdots \rightarrow A_{n} \xrightarrow{f_{n}} A_{0}\right)^{\bullet}= \\
& \quad=\left\{\left(\phi_{0,1}|\ldots| \phi_{0, k_{0}}\right) \otimes \cdots \otimes\left(\phi_{n, 1}|\ldots| \phi_{n, k_{n}}\right) \otimes \alpha=\right.
\end{aligned}
$$

s.t. $\left.\phi_{i, j} \in C^{\bullet}\left(A_{i, f_{j-1}} A_{i+1 f_{j}}\right), \alpha \in C_{-\bullet}\left(A_{0, f_{n, k_{n}} \cdots f_{0, k_{0}}} A_{0}\right)\right\}$
$d_{T}=\tilde{d}_{\mathrm{C}}+\tilde{b}+\tilde{\imath}$ where
$\tilde{d}_{\mathrm{C}}=$ extension of the differentials on $\mathcal{C}\left(A_{i}, A_{i+1(\bmod n+1)}\right), 0 \leq i \leq n$ to T
$\tilde{b}=$ extension of the Hochschild chain differential to T
$\tilde{\iota}=$ extension of $\iota_{\left(\phi_{0,1}|\ldots| \phi_{0, k_{0}}\right) \cdots \cdots\left(\phi_{n, 1}|\ldots| \phi_{n, k_{n}}\right)}$) as a coderivation to T (see Equation B.1)

Example D.2.2 (Pullbacks along rotations). Fix algebras A_{0}, \ldots, A_{n} and let $\tau_{n} \in$ $\Lambda([n],[n])$ be a generating rotation. Set

$$
\hat{\tau}_{n}: \mathcal{C}\left(A_{0}, A_{1}\right) \otimes \ldots \mathcal{C}\left(A_{n}, A_{0}\right) \xrightarrow{\text { rotation functor }} \mathcal{C}\left(A_{n}, A_{0}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n-1}, A_{n}\right)
$$

$\tau_{n!}: T\left(A_{0} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{0}\right) \rightarrow \hat{\tau}_{n}^{*} T\left(A_{n} \rightarrow A_{0} \cdots \rightarrow A_{n}\right)$ map of dg comodules.

Then, the target of $\tau_{n!}, \hat{\tau}_{n}^{*} T\left(A_{n} \rightarrow A_{0} \cdots \rightarrow A_{n}\right)$ is a cofree dg comodule with the following structure. Let $\left(A_{0} \xrightarrow{f_{0}} A_{1} \rightarrow \cdots \rightarrow A_{n} \xrightarrow{f_{n}} A_{0}\right)$ be an object in $\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right)$. Then,

$$
\begin{aligned}
& \hat{\tau}_{n}^{*} T\left(A_{n} \xrightarrow{f_{n}} A_{0} \rightarrow \ldots \xrightarrow{f_{n-1}} A_{n}\right)^{\bullet}= \\
& =\left\{\left(\phi_{0,1}|\ldots| \phi_{0, k_{0}}\right) \otimes \cdots \otimes\left(\phi_{n, 1}|\ldots| \phi_{n, k_{n}}\right) \otimes \alpha=\right. \\
& \text { s.t. } \left.\phi_{i, j} \in C^{\bullet}\left(A_{i}, f_{j-1} A_{i+1 f_{j}}\right), \alpha \in C_{-\bullet}\left(A_{n, f_{n-1, k_{n-1} \ldots f_{n, k_{n}}}} A_{n}\right)\right\} \\
& d_{T}=\tilde{d}_{\mathrm{C}}+\tilde{b}+\tilde{\imath} \text { where } \\
& \tilde{d}_{\mathrm{C}}=\text { extension of the differentials on } \mathcal{C}\left(A_{i}, A_{i+1(\bmod n+1)}\right), 0 \leq i \leq n \text { to } T \\
& \tilde{b}=\text { extension of the Hochschild chain differential to } T \\
& \tilde{\iota}=\text { extension of } \iota_{\left(\phi_{n, 1}|\ldots| \phi_{n, k_{n}}\right) \bullet\left(\phi_{0,1}|\ldots| \phi_{0, k_{0}}\right) \bullet \ldots\left(\phi_{n-1,1}|\ldots| \phi_{n-1, k_{n-1}}\right)} \text { a as a coderivation to } T \text {. }
\end{aligned}
$$

D.3. Adjunction between λ^{*} and $\lambda_{\#}$

In this section, we define $\lambda_{\#}$, the left adjoint to λ^{*}. More precisely, for any functor, $\lambda: B_{1} \rightarrow B_{0}$ between conilpotent dg cocategories, we define a functor $\lambda_{\#}$ from the category of conilpotent dg comodules over B_{1} to the category of conilpotent dg comodules over B_{0}.

D.3.1. The functors $\lambda_{\#}$

Let $\lambda: B_{1} \rightarrow B_{0}$ be a functor between conilpotent dg cocategories. Let C be a conilpotent dg comodule over B_{1}. We define $\lambda_{\#} C$ as follows: for $f \in \operatorname{Obj}\left(B_{0}\right)$,

$$
\begin{aligned}
& \lambda_{\#} C(f):=\left(\bigoplus_{f^{\prime} \in \lambda^{-1} f} C^{\bullet}\left(f^{\prime}\right),\right. \\
& \Delta_{\lambda_{\#} C}(f): \bigoplus_{f^{\prime} \in \lambda^{-1} f} C^{\bullet}\left(f^{\prime}\right) \xrightarrow{\substack{f^{\prime} \\
\Delta_{C} \bullet\left(f^{\prime}\right)}} \bigoplus_{\substack{f^{\prime} \in \lambda^{-1} f \\
h^{\prime} \in O b j\left(B_{1}\right)}} B_{1}^{\bullet}\left(f^{\prime}, h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
& \xrightarrow{\substack{h^{\prime}, f^{\prime} \\
\lambda \otimes i d_{C} \bullet\left(h^{\prime}\right)}} \bigoplus_{h^{\prime} \in O b j\left(B_{1}\right)} B_{0}^{\bullet}\left(f, \lambda h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
&\left.\xrightarrow{\text { include }} \bigoplus_{h \in O b j\left(B_{0}\right)} B_{0}^{\bullet}(f, h) \otimes\left(\bigoplus_{h^{\prime} \in \lambda^{-1} h} C^{\bullet}\left(h^{\prime}\right)\right)\right) .
\end{aligned}
$$

To check that $\Delta_{\lambda_{\#} C}$ is well-defined, we need that the image of the first map, $\bigoplus_{f^{\prime}} \Delta_{C} \cdot\left(f^{\prime}\right)$, is a finite sum. This is true since C being conilpotent implies that the image of $\Delta_{C} \bullet\left(f^{\prime}\right)$ is a finite sum for each $f^{\prime} \in \operatorname{Obj}\left(B_{1}\right)$. If $\lambda^{-1} f$ is empty, we set $\lambda_{\#} C(f):=0$. It is straightforward to check that $\left(\lambda_{\#} C, \Delta_{\lambda_{\#} C}\right)$ is coassociative, conilpotent and coaugmented. We will call $\lambda_{\#}$ "co-restriction of scalars".

Let $F: C \rightarrow D$ be map of dg comodules over B_{1}. We define $\lambda_{\#} F$ as follows:

$$
\left(\lambda_{\#} F\right)_{f}: \lambda_{\#} C(f)=\bigoplus_{f^{\prime} \in \lambda^{-1} f} C^{\bullet}\left(f^{\prime}\right) \xrightarrow{\stackrel{\oplus}{f^{\prime} \in \lambda^{-1} f} F_{f^{\prime}}} \bigoplus_{f^{\prime} \in \lambda^{-1} f} D^{\bullet}\left(f^{\prime}\right)=\lambda_{\#} D(f)
$$

It's straightforward to check that $\lambda_{\#}$ is a functor (i.e., respects composition of morphisms).

D.3.2. Adjunction

Proposition D.3. Given a functor between conilpotent dg cocategories, $\lambda: B_{1} \rightarrow B_{0}$, let

$$
\lambda^{*}: \begin{gathered}
\text { Category of } \\
\text { conilpotent } \\
d g \text { comodules over } B_{0}
\end{gathered} \leftrightarrows \begin{gathered}
\text { Category of } \\
\text { conilpotent } \\
d g \text { comodules over } B_{1}
\end{gathered} \quad: \lambda_{\#}
$$

be the functors defined in Sections D.1.1 and D.3.1. Then, $\lambda_{\#}$ is left adjoint to λ^{*}.

Remark D.3.1. Proposition D. 3 is a categorified co-version of the adjunction between extension of scalars (left) and restriction of scalars (right) for modules over algebras.

Proof of Proposition D.3. Let C be a conilpotent dg comodule over B_{1} and D be a dg conilpotent dg comodule over B_{0}. We want to show that

$$
H o m_{B_{1}}\left(C, \lambda^{*} D\right)=\operatorname{Hom}_{B_{0}}\left(\lambda_{\#} C, D\right)
$$

as sets.
We will give maps

$$
\Phi: \operatorname{Hom}_{B_{0}}\left(\lambda_{\#} C, D\right) \leftrightarrows \operatorname{Hom}_{B_{1}}\left(C, \lambda^{*} D\right): \Phi^{-1}
$$

satisfying $\Phi \circ \Phi^{-1}=i d$ and $\Phi^{-1} \circ \Phi=i d$.
First, we define Φ. Let F be a morphism from $\lambda_{\#} C$ to D. By defintion, for $f \in$ $\operatorname{Obj}\left(B_{0}\right)$, we have maps of complexes

$$
F_{f}: \bigoplus_{f^{\prime} \in \lambda^{-1} f} C^{\bullet}\left(f^{\prime}\right) \rightarrow D^{\bullet}(f) .
$$

Define $\Phi F \in \operatorname{Hom}_{B_{1}}\left(C, \lambda^{*} D\right)$ as follows: for $f^{\prime} \in \operatorname{Obj}\left(B_{1}\right)$,

$$
\begin{align*}
\Phi F_{f^{\prime}}: C^{\bullet}\left(f^{\prime}\right) & \xrightarrow{\Delta_{C}} \bigoplus_{h^{\prime} \in O b j\left(B_{1}\right)} B_{1}^{\bullet}\left(f^{\prime}, h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
& \xrightarrow{\oplus_{h^{\prime}}^{\left.i d_{B_{1}} \otimes F_{\lambda h^{\prime}}\right|_{h^{\prime}}}} \bigoplus_{h^{\prime} \in O b j\left(B_{1}\right)} B_{1}^{\bullet}\left(f^{\prime}, h^{\prime}\right) \otimes D^{\bullet}\left(\lambda h^{\prime}\right) \tag{D.6}\\
& \xrightarrow{\text { include }}\left[B_{1} \otimes_{\lambda} D\right]\left(f^{\prime}\right) .
\end{align*}
$$

By the universal property of $\lambda^{*} D$, this defines a morphism $C \rightarrow \lambda^{*} D$ if the two maps

$$
\left(i d_{B_{1}} \otimes \Delta_{D}\right) \circ \Phi F,\left(i d_{B_{1}} \otimes \lambda \otimes i d_{D}\right) \circ\left(\Delta_{B_{1}} \otimes i d_{D}\right) \circ \Phi F: C \rightrightarrows B_{1} \otimes_{\lambda} B_{0} \otimes D
$$

coincide. In fact, on $f^{\prime} \in \operatorname{Obj}\left(B_{1}\right)$, both maps are equal to:

$$
\begin{aligned}
C^{\bullet}\left(f^{\prime}\right) & \xrightarrow{\Delta_{C}} \underset{h^{\prime} \in O b j\left(B_{1}\right)}{\bigoplus} B_{1}^{\bullet}\left(f^{\prime}, h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
& \xrightarrow{\underset{h^{\prime}}{\oplus} i d_{B_{1}} \otimes \Delta_{C}} \bigoplus_{g^{\prime}, h^{\prime} \in O b j\left(B_{1}\right)} B_{1}^{\bullet}\left(f^{\prime}, g^{\prime}\right) \otimes B_{1}^{\bullet}\left(g^{\prime}, h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
& \xrightarrow{\underset{h^{\prime}, g^{\prime}}{\oplus} i d_{B_{1}} \otimes \lambda \otimes 1_{C}} \bigoplus_{g^{\prime}, h^{\prime} \in O b j\left(B_{1}\right)} B_{1}^{\bullet}\left(f^{\prime}, g^{\prime}\right) \otimes B_{0}^{\bullet}\left(\lambda g^{\prime}, \lambda h^{\prime}\right) \otimes C^{\bullet}\left(h^{\prime}\right) \\
& \xrightarrow[h^{\prime}, g^{\prime}]{\oplus} i d_{B_{1} \otimes i d_{B_{0}} \otimes F_{\left.\lambda h^{\prime}\right|_{h^{\prime}}}^{\longrightarrow}}^{\bigoplus_{h^{\prime} \in O b j\left(B_{1}\right)}} B_{1}^{\bullet}\left(f^{\prime}, g^{\prime}\right) \otimes B_{0}^{\bullet}\left(\lambda g^{\prime}, \lambda h^{\prime}\right) \otimes D^{\bullet}\left(\lambda h^{\prime}\right) .
\end{aligned}
$$

This fact follows from F being a map of comodules. It's also clear that ΦF commutes with coproducts and differentials. So, we've shown $\Phi F \in \operatorname{Hom}_{B_{1}}\left(C, \lambda^{*} D\right)$.

Second, we define Φ^{-1}. Now, let $F \in \operatorname{Hom}_{B_{1}}\left(C, \lambda^{*} D\right)$. For $f \in \operatorname{Obj}\left(B_{0}\right)$, define

$$
\begin{aligned}
& \Phi^{-1} F_{f}: \bigoplus_{f^{\prime} \in \lambda^{-1} f} C^{\bullet}\left(f^{\prime}\right) \xrightarrow{\substack{f^{\prime}}} \bigoplus_{\substack{f^{\prime} \in \lambda^{-1} f, h^{\prime} \in O b j\left(B_{1}\right)}} B_{1}^{\bullet}\left(f^{\prime}, h^{\prime}\right) \otimes D^{\bullet}\left(\lambda h^{\prime}\right) \\
& \xrightarrow{{\underset{f}{f^{\prime}, h^{\prime}}}_{\oplus} \lambda \otimes i d_{D}} \bigoplus_{h \in O b j\left(B_{0}\right)} B_{0}^{\bullet}(f, h) \otimes D^{\bullet}(h) \\
& \underset{h}{\oplus} \epsilon_{B_{0}} \otimes i d_{D} \\
& \xrightarrow{\oplus_{h} \epsilon_{B_{0}} \otimes i d_{D}} D^{\bullet}(f) .
\end{aligned}
$$

It's clear that $\Phi^{-1} F$ commutes with the differentials. We will show that $\Phi^{-1} F$ is a map of comodules. Figure D.1 gives a diagram showing that

$$
\begin{equation*}
\Delta_{D} \circ \Phi^{-1} F_{f}=\left(\bigoplus_{f^{\prime}, h^{\prime}, r^{\prime}} \epsilon_{B_{0}} \lambda \otimes \lambda \otimes i d_{D}\right) \circ\left(\bigoplus_{f^{\prime}, h^{\prime}} \Delta_{B_{1}} \otimes i d_{D}\right) \circ\left(\bigoplus_{f^{\prime}} F_{f^{\prime}}\right) \tag{D.7}
\end{equation*}
$$

On the other hand, Figure D. 2 gives a diagram showing that

$$
\begin{equation*}
\left(i d_{B_{1}} \otimes \Phi^{-1} F\right) \circ \Delta_{\lambda_{\#} C}=\left(\bigoplus_{f^{\prime}, h^{\prime}, r^{\prime}} \lambda \otimes \epsilon_{B_{0}} \lambda \otimes i d_{D}\right) \circ\left(\bigoplus_{f^{\prime}, h^{\prime}} \Delta_{B_{1}} \otimes i d_{D}\right) \circ\left(\bigoplus_{f^{\prime}} F_{f^{\prime}}\right) \tag{D.8}
\end{equation*}
$$

We see that the righthand sides of Equations D.7 and D. 8 are the same except for the B_{0} factor on which $\epsilon_{B_{0}}$ acts. However, in general, for $\lambda: B_{1} \rightarrow B_{0}$ a map of dg cocategories,
we have

$$
\begin{aligned}
\left(\lambda \otimes \epsilon_{B_{0}} \lambda\right) \circ \Delta_{B_{1}} & =\left(i d_{B_{0}} \otimes \epsilon_{B_{0}}\right) \circ \Delta_{B_{0}} \circ \lambda \quad(\lambda \text { commutes with coproduct }) \\
& =i d_{B_{0}} \circ \lambda \quad(\text { definition of cocategory }) \\
& \left.=\left(\epsilon_{B_{0}} \otimes i d_{B_{0}}\right) \circ\left(\Delta_{B_{0}}\right) \circ \lambda \quad \text { (definition of cocategory }\right) \\
& =\left(\epsilon_{B_{0}} \lambda \otimes \lambda\right) \circ \Delta_{B_{1}} \quad(\lambda \text { commutes with coproduct })
\end{aligned}
$$

So, $\left(i d_{B_{1}} \otimes \Phi^{-1} F\right) \circ \Delta_{\lambda_{\#} C}=\Delta_{D} \circ \Phi^{-1} F$, and $\Phi^{-1} F \in \operatorname{Hom}_{B_{0}}\left(\lambda_{\#} C, D\right)$.
For $F: C \rightarrow \lambda^{*} D$ a map of dg comodules and $f^{\prime} \in B_{1}$, Figure D. 3 shows that $\Phi \Phi^{-1} F_{f^{\prime}}=F_{f^{\prime}}$. For $F: \lambda_{\#} C \rightarrow D$ a map of dg comodules and $f \in B_{0}$, Figure D. 4 shows that $\Phi^{-1} \Phi F_{f}=F_{f}$. Thus, we have $\Phi \Phi^{-1}=i d$ and $\Phi^{-1} \Phi=i d$.

Figure D.4. Commuting diagram involving $\Phi^{-1} \Phi F_{f}$
$\Phi^{-1} \Phi F_{f}=$ composition of red arrows. The concave pentagon on the left side commutes because F respects coproducts; the triangle in the bottom right corner commutes because D satisfies counitality.

D.4. Conilpotence

In this section, we show that the dg categories and dg comodules we have been working with are conilpotent. For completeness, we start with the definition of a dg cocategory.

Definition D.4.1. A dg cocategory is a cocategory enriched over chain complexes. More explicitly, a dg cocategory B consists of the following data:

- A collection of objects denoted $\operatorname{Obj}(B)$;
- For each pair of objects, $x, z \in \operatorname{Obj}(B)$, a complex $B^{\bullet}(x, z)$ and a morphism of complexes

$$
\Delta_{B}(x, z): B^{\bullet}(x, z) \rightarrow \prod_{y \in O b j(B)} B^{\bullet}(x, y) \otimes B^{\bullet}(y, z)
$$

such that the following diagrams commute (coassociativity):

- For each pair of objects, $x, z \in \operatorname{Obj}(B)$, a morphism of complexes

$$
\epsilon_{B}(x, z): B^{\bullet}(x, z) \rightarrow k
$$

where k is the ground field considered as a chain complex concentrated in degree 0 and $\epsilon_{B}(x, z)=0$ if $x \neq z$, such that the following diagrams commute (counitality):

We will denote a dg cocategory with its cocomposition and counit as $\left(B, \Delta_{B}, \epsilon_{B}\right)$. To make the notation more readable, when the meaning is clear, we will omit references to the objects and write Δ_{B} instead of $\Delta_{B}(x, z), \epsilon_{B}$ instead of $\epsilon_{B}(x, z)$, and for the differentials on morphisms, d_{B} instead of $d_{B}(x, z)$.

Definition D.4.2. A (dg) functor $F: A \rightarrow B$ between two dg cocategories is a functor between the cocategories satisfying $d_{B} \circ F(f)=F \circ d_{A}(f)$ for all morphisms f in A.

Definition D.4.3. A conilpotent dg cocategory is a dg cocategory $\left(B, \Delta_{B}, \epsilon_{B}\right)$ satisfying: for each morphism $f: x \rightarrow y$ in B, there exists $n_{f} \in \mathbb{N}$ such that $\bar{\Delta}_{B}^{n_{f}}(f)=0$ where

$$
\begin{aligned}
\bar{\Delta}_{B}(x, z): B^{\bullet}(x, z) & \rightarrow \prod_{y \in O b j(B)} B^{\bullet}(x, y) \otimes B^{\bullet}(y, z) \\
f & \mapsto \Delta_{B}(f)-\sum_{e_{x} \in \epsilon_{B}(x, x)^{-1}(1)} e_{x} \otimes f-\sum_{e_{z} \in \epsilon_{B}(z, z)^{-1}(1)} f \otimes e_{z} .
\end{aligned}
$$

The following fact follows from the definitions: If B is a conilpotent dg cocategory, then for all $x \in \operatorname{Obj}(B), \epsilon_{B}(x, x)^{-1}(1)$ has exactly one element, which we will denote e_{x}.

Example D.4.1. Let \mathcal{C} be the category in dg cocategories defined in Equation 1.2 and A_{0}, \ldots, A_{n} be algebras. Then, $\mathcal{C}\left(A_{0}, A_{1}\right) \otimes \cdots \otimes \mathcal{C}\left(A_{n}, A_{0}\right)$ is conilpotent:

$$
\bar{\Delta}^{\min \left(k_{0}, \ldots, k_{n}\right)}\left(\phi_{0,1} \ldots \phi_{0, k_{0}}|\ldots| \phi_{n, 1} \ldots \phi_{n, k_{n}}\right)=0
$$

Now, we will discuss conilpotence of the dg comodules. Recall the definition of a dg comodule in Definition 3.3.3.

Definition D.4.4. A conilpotent dg comodule over a dg cocategory B is a dg comodule $\left(C, \Delta_{C}\right)$ over B satisfying: for each $f \in \operatorname{Obj}(B)$ and each element $\alpha \in C^{\bullet}(f)$, there exists $n_{\alpha} \in \mathbb{N}$ such that $\bar{\Delta}_{f}^{n_{\alpha}}(\alpha)=0$ where

$$
\begin{aligned}
\bar{\Delta}_{C}(f): C^{\bullet}(f) & \rightarrow \prod_{g \in O b j(B)} B^{\bullet}(f, g) \otimes C^{\bullet}(g) \\
\alpha & \mapsto \Delta_{B}(\alpha)-\sum_{e_{f} \in \epsilon_{B}(f, f)^{-1}(1)} e_{f} \otimes f .
\end{aligned}
$$

Example D.4.2. Since all of the dg comodules we use are cofree, their comodule structure maps are induced by the cocompositions of the $d g$ cocategories. Any cofree $d g$ comodule over a conilpotent dg cocategory is conilpotent.

[^0]: Expression (Expansion) from Seventh-Row in Equation C.4 $\quad \begin{aligned} & \text { Cancels with Extra Term } \\ & \text { in Equation C.4 }\end{aligned}$
 $\psi_{1}\left\{\vec{\phi}_{I_{1}}\right\} \cdot B^{\left|I_{2}\right|, m-1}\left(\vec{\phi}_{I_{2}}\left|\vec{\psi}_{\{2, \cdots, m\}}\right| \alpha\right)$

 | $\psi_{1}\left(\lambda\left(\vec{\phi}_{I_{1}}\right) \lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{4}}\right) \mathfrak{a}_{4}, f_{\left\|I_{1}\right\|+1} a_{0}, \lambda\left(\vec{\phi}_{I_{2} \backslash I_{1} \mid+1}\right) \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{3}}\right) \mathfrak{a}_{2}$ | $\phi_{1} \cdot B^{n-1, m}\left(\vec{\phi}_{\{2, \cdots, n\}}\|\vec{\psi}\| \alpha\right)$ |
 | :--- | :--- |
 | $g_{0} \phi_{1}\left(\lambda\left(\vec{\psi}_{J_{2}}\right) \lambda\left(\vec{\phi}_{I_{2}}\right) \mathfrak{a}_{3}, a_{0}, \mathfrak{a}_{1}\right) \otimes \lambda\left(\vec{\psi}_{J_{1}}\right) \lambda\left(\vec{\phi}_{I_{1}}\right) \mathfrak{a}_{2}$ | $\psi_{1}\left\{\vec{\phi}_{I_{1}}\right\} \cdot B^{\left\|I_{2}\right\|, m-1}\left(\vec{\phi}_{I_{2}}\left\|\vec{\psi}_{\{2, \cdots, m\}}\right\| \alpha\right)$ |

