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ABSTRACT

Essays on System Efficiency in Service Operations

Can Ozkan

Services have been constantly evolving and operational efficiency has been a key initiative
for progress. In this collection of academic papers, we investigate the efficiency of three differ-
ent industry practices, to each of which we dedicate a chapter. Cliaater ChapteB cover
completed research, while the research covered in Chapdeat preliminary stage.

In Chapterl, we study priority queues to understand the determinants of social efficiency.
Many service providers utilize priority queues. Many consumers revile priority queues. How-
ever, some form of priority service may be necessary to maximize social welfare. Consequently,
it is useful to understand how the priority scheme chosen by a revenue-maximizing firm differs
from the one a social planner would use. We examine this in a single server-queue with cus-
tomers that draw their valuation from a continuous distribution and have a per-period waiting
cost that is proportional to their realized valuation. The decision maker must post a menu of-
fering a finite number of waiting time-price pairs. There are then three dimensions on which a

revenue maximizer and social planner can differ: coverage (i.e., how many customers in total



to serve), coarseness (i.e., how many classes of service to offer), and classification (i.e., how to
map customers to priority levels).

We show that differences between the decision makers priority policies are all about clas-
sification. Both are content to offer very coarse schemes with just two priority levels, and they
will have negligible differences in coverage. However, differences in classification are persis-
tent. Further, a revenue maximizer may — relative to the social planner — have too few or too
many high priority customers. Whether the revenue maximizer over- or under-stuffs the high
priority class depends on a measure of consumer surplus that is captured by the mean residual
life function of the valuation distribution. In addition, we show that there is a large class of
valuation distributions for which a move from first-in, first-out service to a priority scheme that
places those with higher waiting costs at the front of the line reduces consumer surplus.

In Chapterd, we study the impact of the increased availability of real-time information
on the behavior of strategic agents and the implications of this phenomenon for service effi-
ciency. The use of real-time information in on-demand services provides agents with access
to an unprecedented amount of information about their competitors. We use data from one of
the leading e-hailing taxi platforms in South America to study the real-time reactions of agents
to the dynamic entry of new competitors in their serving zone. Information about competitor
locations could potentially induce herding behaviour (because competitors’ actions may convey
information about market opportunity) or scattering (because the entry of competitors reduces
the expected market share and the appeal of a serving zone). We find that the net response to
the real-time information indicating entry of new competitors in a service zone is an increase
in the scattering of the agents previously in the serving zone. The response is hot homogenous

and some agents are more likely to respond to entry. We find that those agents who are more



likely to react to the real-time presence of competitors by scaterring achieve higher utilization.
We investigate the consequences of these behaviors for the efficiency of service systems.
Finally, in Chaptef3, we analyze the effect of carry-on bag policy on the system efficiency.
Air-carriers want to utilize their airplanes as much as possible. One of the obstacles against a
high utilization is the delay due to the boarding process. Some of the low-cost carriers started
to apply fees on carry-on bags so that passengers would be encouraged to check in their bags
instead of taking these bags with theirselves to the board. In this study, we investigate the
effects of this new policy on the air-carrier delay. We use the available data of U.S. Department
of Transportation’s (DOT) Bureau of Transportation Statistics (BTS) which contains flights of
Frontier Airlines that applies this new policy. We observe that this policy change was successful
in decreasing the departure delays. Furthermore, we propose the requirement of robustness

analysis with additional factors that capture the dynamics of the industry more realistically.
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CHAPTER 1

Coverage, coarseness and classification:
Determinants of social efficiency in priority queues

Joint work with Martin Lariviere and Itai Gurvich

1.1. Introduction

In 2013 Walibi, a Belgian amusement park, introduced Speedy-Pass, a premium service
that allowed purchasers to jump to the front of the line at park rides. These shorter waits
did not come cheap; the service more than doubled the price of an adult ticket to the park.
The announcement was met with an outpouring of opprobrium. An educator asked, “How in
the name of God do you explain to a child that he has to wait in line in a long queue, while
other children can go straight to the front, just because their parents have got more money?”
Government ministers also chimed in denouncing the progeaam{ersnews be 7013

Angst over priority queues is not limited to Europe. In the United States, travelers have
petitioned the Transportation Security Administration not to allow airlines to profit from selling
priority access to airport security screerfimghile the implementation of tolled express lanes —
so called Lexus Lanes — has faced opposition in Georgia and Coldvaikd) 201 Whaley

2015,

1SeeTSA: Don't Allow “Priority” Airport Screening Lines www.change.org/p/tsa-don-t-allow-priority-airport-
screening-lines. Accessed Sep 2, 2015.
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On the one hand, such outrage is puzzling. Many firms offer multiple products or ser-
vice formats and consumers presumably benefit from the increased range of options. A cus-
tomer who buys a Chevrolet instead of a Cadillac must believe that the former offers better
value. On the other hand, one must acknowledge that capacity constrained service providers
differ from firms selling physical goods. Queuing creates externalities between customers in
different classes of service so that increased sales to one class can reduce the value obtained by
customers of the other classes. If General Motors sells more Cadillacs, Chevy buyers are un-
harmed, but the more Speedy-Passes Walibi sells, the worse service regular customers receive.

This, however, does not mean that priority schemes necessarily compromise social welfare.
A social planner would use priorities if customers have different waiting costs. Consequently,
the question is not whether a revenue-maximizing firm such as Walibi should use a priority
scheme but whether Walibi’'s implementation differs dramatically from what the social planner
would do.

Such a comparison of the revenue maximizer’s and the social planner’s actions is the subject
of this paper. We consider a service system modeled &g ,avi/1 queue. The decision maker
may or may not offer multiple priority classes. Arriving customers all have the same average
service time but differ in their valuations and waiting costs: they independently draw valuations
for the service from a common, continuous distribution and have a per-unit-time waiting cost
proportional to their valuation. The state of the queue is not observable to the customers, so
they must choose which class of service to purchase based on a posted menu of expected delays
and prices.

The decision maker, whether seeking to maximize revenue or social welfare, must make

three decisions.
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e Coverage. If the arrival rate of customers exceeds available capacity, the decision
maker must turn away some customers. The revenue maximizer might choose to serve,
in total, more or fewer customers than the social planner.

e CoarsenessWe do not assume that the market is exogenouslyaapdori divided
into different classes. It is up to the decision maker to route arrivals into distinct pri-
ority levels. With valuations and waiting costs drawn from a continuous distribution,
both types of decision makers would benefit from posting a continuous menu of prices
and delays. In reality it is more common for service providers to use coarse priority
schemes that split arrivals into a finite number of discrete priority levels. A revenue
maximizer might opt for a coarser or for a more refined division than the social plan-

ner?

e Classification Given a level of coarseness, the decision maker must still determine
how to classify customers into priority levels: how many customers should go into
each class and who these customers are. Even if the revenue maximizer chooses the
same coverage and coarseness as the social planner, social efficiency might suffer.
The revenue maximizer might benefit from pursuinguétra-luxury strategywhere a
smaller high priority class than is socially optimal is charged higher prices. In other
scenarios, the revenue maximizer might benefit from pursumgss-luxury strategy

with a high priority that is larger than socially optimal.

Our analysis shows that the loss of societal efficiency resulting from the revenue maxi-
mizer’s actions is largely a question of classification. We employ a limiting regime akin to

2The term “coarse priorities” is common in the the economic literature, specifically in the study of optimal allo-
cation. Coarse priorities mean there that “rankings are coarse, that is, they rank classes of agents, and everyone
within the same class is deemed in a #&ilersand Erdi(?01(). Nazerzadeh and Randha(Zi 15 appear to be

the first to use the term in the context of designing a queuing priority scheme.
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Nazerzadeh and Randha@@aT5 in which the arrival rate of customers and the processing rate

of the server are scaled up together. We show that both the social planner and revenue maxi-
mizer are content to use extremely coarse priority schemes; for either type of decision maker,
the loss from using just two classes is negligible. Further, the level of coverage that both offer
is essentially the same. Thus, revenue maximization is socially optimal as far as coverage and
coarseness are concerned.

Differences, however, remain in classification. The revenue maximizer may opt for a mass-
luxury strategy and admit more customers to the high priority class than is socially optimal or for
an ultra-luxury strategy and admit fewer customers to the high priority class. Which approach
she chooses depends on how consumer surplus changes with the level of coverage. We show
that this is related to the mean residual life (MRL) of the valuation distribution. If the MRL
function is convex, the elasticity of consumer surplus is decreasing and revenue maximizer
opts for a mass-luxury strategy. When the MRL is concave, the elasticity is increasing and the
revenue maximizer follows an ultra-luxury strategy.

Additional intuition follows from considering the problem of maximizing consumer surplus.
Maximizing either revenue or social welfare calls for putting those with high valuations (and
thus high waiting costs) at the front of the line. This is not necessarily the case with consumer
welfare. If the valuation distribution has a decreasing failure rate, those with high valuations
should be served first. However, with an increasing failure rate distribution, serving those with
low valuations first maximizes consumer welfare. Note that this implies that consumers whose
valuations follow an increasing failure rate distribution are better off under first-in, first-out ser-
vice than under a priority scheme that favors those with high valuations. Further, a decreasing,

convex MRL function implies an increasing failure rate, suggesting that the social planner is
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less aggressive than the revenue maximizer in routing customers to the high priority class in

order to reduce the impact on consumer welfare.

1.2. Literature Review

The comparison of revenue maximization and social optimization in queues has been a topic
of interest since Naor’s seminal papBiapr1969. Hassin‘and Haviy{?003 andHassin(Z01H
provide excellent surveys. In this brief literature review, we focus on research that allows for a
continuum, rather than an exogenously given number, of customer types.

Much of the work in this area builds dfieinrock (T967), which considers customers who
arrive to an unobservable queue and bid for priority. The customer bids are drawn from a
common continuous distribution. The service provider offers, in turn, a continuum of priority
levels and a customer is given priority over any customer who has bid less.

While the distribution of bids irKleinrock (T967) is exogenously determined, subsequent
work ties the distribution of bids to an equilibrium outcome between custon@diEche and
Mendelson(2004) consider customers who draw their valuation for service from a common
distribution and who have a delay cost with two components: one that is proportional to the
realized valuation and one that is independent of the valuation. They show that with a single
first-in-first-out (FIFO) queue—that is, with uniform pricing—a revenue maximizer may offer
greater or smaller coverage than socially optimal depending on the valuation distribution and
the delay-cost structure. Studying priority auctions, they establish conditions for the revenue
maximizer to achieve social efficiendgatta and Sethuramg@00% provide conditions under

which the priority auctions i&f2che and Mendelsg@004) are in fact revenue maximizing.
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Specializing the results cifeéche and Mendelso(®004) to our setting, we would have
that the revenue maximizer admits fewer people than is socially optimal under a uniform price
but admits customers at the socially optimal rate when places in line are auctioned off under
preemptive priorities. If non-preemptive priorities are used, the revenue maximizer does not
achieve social efficiency.

In BfBche and Mendelsof?004) as well as most other work in this vein, types are never
pooled, so small differences in waiting costs may result in absolute differences in priorities.
Depending on the waiting cost structure, the revenue maximizer may pool some types together,
impose a common price and offer the same expected Kattd and Sefthuraman 2()05Ad-
ditionally, Afeche and PaviifiZ016 show that a revenue maximizer facing customers with a
utility structure different than ours may use a complex service discipline that may pool cus-
tomers or exclude some with intermediate valuations or impose strategic delay. Note that in
these papers, the service provider still offers a continuum of priority levels despite pooling
some types: customers who are not pooled are still given distinct priority levels despite small
differences in waiting costs.

A limited set of papers consider how to map a continuum of customers to a coarse set of
priority levels.Ghanem(T97% considers customers that differ only on their per-period waiting
costs drawn from a common distribution, and examines how they should be classified into a
predetermined number of priority classes in order to minimize total delay cGsiand and
Warsing (2009 consider a similar problem from the perspective of revenue maximization but
restrict their analysis to uniformly distributed delay costs and assume that all customers must

be served.
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In Gavirneni-and Kulkarn{?014), customers differ only in their waiting costs which follow
a Burr Type XII distribution and the service provider only offers two levels of priority. They
present examples in which the revenue maximizer classifies more customers as high priority
than the social planner would.

Doroudi_ef al.(?2015% consider the same valuation and cost structure as we do; arriving
customers draw a valuation from a common distribution and have waiting costs that are propor-
tional to their realized valuations. The bulk of their analysis focuses on offering a continuum
of priorities but they do demonstrate numerically that a coarse priority scheme with a limited
number of priority classes performs very well.

Finally, Nazerzadeh and Randhay&)1%h examine how a revenue-maximizing service
provider should manage coverage, coarseness, and classification when customer draw valua-
tions from a common distribution and have per-period waiting costs that are a function of their
realized valuations. They use an asymptotic analysis to show that a very coarse priority scheme
is sufficient; two levels of priority capture nearly all of the possible system value. In examining
coarseness, we take a similar approach. Indeed, their results partly provide the revenue maxi-
mizer side of our comparison. We not only expand the analysis to the social planner but also
strengthen it. To demonstrate the near optimality of two classes for the revenue maximizer (as
done inNazerzadeh and Randha@@#)15), it suffices to identify one solution (among possi-
bly many solutions). In order to compare the decisions (i.e, the price and waiting-time menus)
of the revenue maximizer and social planner, however, we must assure the uniqueness of the

asymptotically optimal prescriptions.
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1.3. Model Formulation

We consider a service modeled as a queuing system. There is a (potential) arrival stream
that is Poisson with ratd. The queue is served by a single server, and the service time is
exponential with rate: and independent across customers. Without loss of generality, we fix
to 1. We further assume that > 1 so that not all customers can be served. How much of the
market the decision maker choses to cover is then a non-trivial question.

Customer valuation for the service is drawn from a distributfowith support(a, b) with
0 < a < b. Valuations are independent across customers. Customers are also adverse to delay.
A customer’s delay cost is linear in her waiting time (which includes the delay in the queue and
the service time) with a coefficient that is proportional to her valuation: a customer with service
valuationwv incurs a cost otvv per unit of delay wherex < 1. This specification provides
heterogeneity in both the cost coefficient and the valuation. We generalize this structure in
Section 62

F is assumed to be differentiable with differentiable dengityLet F'(v) = 1 — F(v), let
h(v) = f(v)/F(v) be the distribution’s failure rate andv) = vh(v) be the generalized failure
rate of F' (v) . We make the following assumption dhandg.

Assumption 1: F' has a finite mean.
Assumption 2: F' has an increasing generalized failure rate, §&y) > 0 on(a,b).
The IGFR assumption is satisfied by many common distributions. It impliesftigstrictly

positive on(a, b) so bothF" and F are invertible. LetV/ RL be the mean residual life df, i.e.,

MRL(U)zE[X—U]XEU]zW—U
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In the reliability literature the mean residual life represents the expected remaining life of a
component given that it has survived to a given age. H&f&L (v) represents the expected
value beyond a base levekreated by serving a customer conditional on that customer having
a value of at least. SinceF' has a finite mean}/ RL(v) is defined for alb in (a, b) .

Customer actions. The service provider offérsc 7, different bundles of price and wait-
ing time, (p;, W;). A customer must consequently choose whether to join the queue and, if she
does, at which grade of service. A customer with valuatidhat chooses menu itefrobtains

the utility

(1.2) Uv;i) = v — avW; — p;.

The service provider must pair higher prices with shorter waiting times as no customer would
buy a bundle that charges a higher price and imposes a longer delay than another menu item.
We must, in particular, havi@; # W, andp; # p; for i # j.

Customers who select a particular menu item have valuations that fall within an interval:

Lemma 1. Suppose that a customer with valuatiooptimally chooses menu itefn;, ;)
and another customer with valuatieroptimally chooses menu itefp;, W;) . If W; > W; and
pi < pj, thenuv < v. Therefore if two customers with valuations< « choose the same menu

item (px, W) , a customer with valuations € (v, ) must choose the same menu item.

Thus, a price-delay menu segments the valuation space into intervals and we may, without
loss of generality, number the offerings such that a higher index corresponds to a higher price
and a shorter wait. Customers with the highest valuations thus chooséitegince the set

of customer valuations for a given menu item is an interval And strictly increasing, there
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exists a unique cutoff valuation such thatU(v;;i) = U(v;i — 1), i.e., a customer with the
valuationy; is indifferent between menu itemsnd: — 1. Letv be the vector of cut off values.
The fraction of all customers choosing menu item {1, ..., K} is given by F'(v;) — F(vi11)

(we definevy ; = oo) and the rate of such customers is
Ai(v) = A(F(v;) = F(vig).

We write A\(v) (dropping the subscript) for the vector of arrival rates. Let

Z)\ = AF(v;)

be the rate of customers that choose menu iteondigher. With this notation, (v) = AF(v;)
is the service provider'soverage the volume of customers who enter the system per time unit.
For stability this volume must be strictly smaller than the service ratgs) < 1—so that no

customer with valuation less than

(vbar) v=F"! (K) ,

enters the service (i.ey > 7).
The menu prices are uniquely determined by the cutoffs and the waiting times. Indeed, since

the customer with valuation is indifferent between and: — 1, we have

U(vi;i—1) =v; — pimy — aviWi_q = v; — pi — av;W; = U3 1),
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so that

(1.2) pi — pi-1 = avi(Wi_1 — W;) .

The lowest-valuation customer who patronizes the service is indifferent between joining and

not joining. Assuming that all customers have an outside option of zero, we then have

(2.3) v —Wiavy —p1 =0 = p; = vy (1 —aWy).

p1 can be interpreted as amtrance fe¢o the system — anyone that enters has to pay atjgast

A customer with valuatiom > v; enters the system and obtains a strictly positive utility since

U(v;i) > v(l —aWy) —p; > v (1 —aWy) —p; = U(vy; 1) = 0.

Thus, given cutoff values, < v, < ... < vx and waiting timedl; > Wy > --- > Wy, the
prices menu is uniquely determined ) and {[-3) regardless of whether the decision maker
seeks to maximize revenue or social welfare. The objective functions of the two providers will
determine how the vectokssandW are set.

The social planner’s problem. For a fixed numbérof classes, the social planner must
choose a vector of cut-off values and a vectdV of waiting times to maximize social welfare,
i.e., the aggregate utility of arriving customers. The expected utility of a ¢lasstomer (a
customer that chooses menu itémvith valuationv is v — avW;. The social welfare following

from a givenv andW can be written as
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Si(v. W) = AZK: (/ uf(u)du) (1— aW))

whereV(z) := [ uf (u)dv so that(V(v;) — V(vi1))/ (F(v;) — F(vi1)) is the average
contribution to social welfare ignoring delay costs of a customer conditional on her selecting
classi. Similarly,c; (v) := a% is the average cost of delay among classstomers.

In maximizing Sk (v, W), the constraints on the social planner’s actions are that the cut-off
valuesv are increasing while the waiting-time vec® must be decreasing and feasible given
the induced arrival rates. We allow the use of preemptive priority scheme§i $&2for the

case of non-preemptive policies. Dat(v) be the set of feasible waiting times giverand the
resulting arrival ratesW(v) is determined by the achievable region; see e.g. Theorem A.10 of
Stidham(2009).

The social planner’s problem can then be written as

S}k( = MaXy,w]| SK(V,W) st.W e W(V)

wherev 1 denotesy; < vy < -+ < v and, W | denotesgV; > W, > --- > Wy. Because
F is strictly increasingV (v;) — V(v;+1) > 0 for all i so that work conservation is optimal
(rather than, say, inserting strategic delay). Giverthe cost coefficients’ (v) are increasing

in 7 so that it is optimal to preemptively prioritize customers in decreasing order(ef and
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the social planner’s problem reduces to a search over cutoff values. We thus have (recall that

Ai(v) = A(F(v;) — F(vit1)))

~—

(1.4) Sy = max Sk(v) :=AV () — OzAZ(V(Ui) — V(vi41))Wi(A(V)

i=1

where, foreachi=1,..., K

1 1
(1.5) Wi(A(v)) = (1= X (V)1 = N(v)) - (1 —AF (v;)) (1 = AF (vi+1))

is the preemptive static priority waiting time of claswith arrival vector\(v) and service rate
equal to one.

The revenue maximizer’s problem. As with the social planner, the revenue maximizer sets
cutoff valuesv and expected wait8v. The relationshipdI(2) and {-3) map prices and waits
to cutoffs and waits. The firm’s revenue is then given by

Rg(v,W) = Z Ai (V) pi = Ap, F (v1) + AZ (Pit1(v) = pi(v)) F (Vig1)
= AuiF () (1= aWh) +al ) (W = Wipn) vin F (vi)

=1

_ (1) — a _(Um) ,
= ) ZA ~Fo "

wherep (v) := vF (v) andp (vgy1) = 0. The coefficient?(v) = a%, captures

the discount given to customers of clas® compensate them for their delay. Usikgv) =

AF(v;), these can also be writtendy(v) = aAZ% (vi ey ~HL () ,wherep(\) := p(F~1(\/A))
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for A > 0. If p is decreasing angd is convex therc?(v) is positive and increasing in Then

much like the social planner, work conservation is optimal and the revenue maximizer will
want to preemptively prioritize customers in decreasing ordet?6¥). In that case, we can
state the revenue maximizer’s problem as choosing cutoff values knowing that customers will

have expected waits given by; (A (v)) .

(1.6) Rjc = max Ry (v) := Ap (1) — A Z(p(vi) = p(vit1))Wi(A(V)),

which should be contrasted witfi-@). The relationship betweéi(v;) — V (v;11) andp(v;) —
p(vir1) will play a key role in our results.

Notice that if customers were not delay sensitive (ice.= 0) the revenue maximizer’s
problem reduces to choosing the cutoff that maximize$'(v) = Ap(v) or equivalently an
arrival rate that maximizesp()\) wherep(\) = F~Y(\/A). If p is a decreasing function,
the revenue can be read as the delay-insensitive revenue minus a delay-diseoynvof —

p (vi11)) for classé customers.
We conclude this section with a lemma that allows us to conclude that, indégd, > 0

and increasing in.

Lemma 2. Given Assumptions 1 and 2:

(1) vy :=inf{v : g (v) > 1} is finite.

(2) p(v) is maximized at}. It is increasing and concave far < v} and decreasing for
v > .

(3) 7 (N) is maximized ab}, ;= AF (vg). For A <\%, p()\) is increasing and concave.

(4) € (A\) == —p(A) /(W' (N)) is increasing in\.
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In what follows we will assume that the system is capacity constrained in the sense that
vy <7,

where recalthat = F~! (1) . In words, the revenue maximizer can not admit as many cus-
tomers as she would want to if customers were not delay sensitive. This restricts us to the
range of)\ such thafp (\) is increasing and concave hand the range of such thatp (v) is

decreasing im.

1.4. The Tension between Social Planning and Revenue Maximization

There is, of course, a link — or perhaps more accurately, a gap — between the objective of
the social planner and that of the revenue maximizer. The social planner’s objective is the sum

of the firm’s revenue and the consumers’ surplus, i.e.,
Sk(v,W) = Rg(v,W) + Cg(v,W)

whereCk (v, W) is the consumer surplus with' classes assuming that incentive compatible
prices are used. It is written as the surplus from admitting all customers with valuations greater

thanv, less the waiting costs they incur:

Cx (v, W) = ACS (v,) —Za(CS (v;) — CS (vis1)) W;

= ACS (1) = > AN(V)ES ()W,
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Weibull(1,0.75) Weibull(1,1.25)
Decreasing Failure Rate (DFR) Increasing Failure Rate (IFR)

80

20

FIFO Priorities FIFO Priorities

m Consumer Surplus  m Revenenue

Figure 1.1. Priority to high valuation customers decreases consumer surplussif
IFR. For ease of comparison, the results are scaled so that social welfare under
priorities is equal to 100. Weibu#, k) is a Weibull distribution with scale parameter
shape parametér.

. o . oo o (O] . CS(Ui)—CS(Ui 1) H
whereC'S(v) = V(v) — p(v) = [7(u—v)f(u)duforv > 0andc®(v) = S Fa s

the loss of surplus per unit of delay of a classistomer.

Recalling that\;(v) = AF(v;), we have that

5001 — ap C5NY) = C5 (A (v))
B\ Ai(v) = Aig1(v) ,

where

(1.7) CS(\) =CS (F’—l (%)) .

Givenv, ¢“S(v) is increasing in if C'S is convex in\.
The tension betweeRx andC’k is important to the results of this paper and, as it turns out,

the nature of this tension depends to a great extent on the failure rate of the distribution.
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In Figurel“1 we plot, for two classes, both the revenue and consumer surplus for different
distributions and service disciplines. The total height of a bar corresponds to the social welfare
under a particular priority scheme while the shading indicates how much is captured by the firm
versus by customers. We compare FIFO service with a priority scheme in which those with
higher valuations — and hence higher waiting costs — are served first.

On the left-hand side of the figure, we consider a Weibull distribution with a shape parame-
ter of 0.75. In this case, both consumers and the firm are better off when priorities are used, and
the increase in social welfare comes from making both parties better off. The right-hand side
of the figure, however, presents a contrasting story. Here we have a Weibull distribution with a
shape parameter of 1.25. Now consumer surplus falls as we move from FIFO service to prior-
ities. Social welfare only increases because the service provider’s revenue rises by more than
consumer welfare drops. This is a generalizable phenomenon. There is a large class of valuation
distributions — those with an increasing failure rate (IFR) — for which consumer surplus falls if
those with higher valuations are given priority. It is straightforward &8tv;) — C'S(v;) > 0
so that work conservation is optimal. As with our analysis of the social planner and the revenue
maximizer, if one wants to maximize consumer surplus it is optimal to preemptively prioritize
customers in decreasing orderscff (v). However, the values®® (v) may not be ordered as
one expects. Specifically, F has a decreasing failure rate (DFR) th@fl is concave, implying
thatcCS(v) is increasing in. Conversely, ifF is IFR, C'S is convex, implying that&s (v) is

decreasing.

Lemma 3. ¢£¥(v) < % (v) if the failure rateh (-) is decreasing and® (v) > &5 (v) if

it is increasing. With constant failure ratef® (v) = ¢&5 (v).
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When the valuation distribution is DERhe priority scheme that maximizes consumer sur-
plus aligns with that used by the social planner or the revenue maximizer: Customers with high
valuations (and thus high waiting costs) are placed at the front of the line while those with low
valuations (and thus low waiting costs) are relegated to the rear. However, the situation is re-
versed when valuations are governed by an IFR distribution. Now it would optimal to let those
with low waiting costs enjoy shorter waits. This explains the phenomenon illustrated in Fig-
urell”L. The Weibull distribution is DFR for shape parameters less than one but IFR for shape
parameters greater than one.

Prioritizing customers with low valuations is not implementable if valuations are private
information. The prices and waiting times must sati§iy2( and {—3) and a menu where cus-
tomers with low valuations wait less cannot be incentive compatible. Yet, the decision maker
could then maximize consumer surplus by using a service discipline such as FIFO that is inde-
pendent of customer valuations.

For intuition on the role of the failure rate, note that when a customer with valuatts
for classi, the price she pays to join that class is determined by the waiting cost of the lowest
type to join that class, i.equ;. However, her waiting costs ane. Her contribution to consumer
surplus is proportional to — v;. Consequently, it is worth considering the distributionyef v;
as a function oby,. If v is IFR [DFR], thenv — v; is stochastically decreasing [increasing] in
v; (Carand Xie (Z006§). Thus under an IFR distribution, customers who choose a higher class
contribute less in expectation to consumer surplus and to waiting costs than those who select a

lower class. That relationship is reversed with a DFR distribution.

3There are IGFR distributions such as the log-normal that have non-monotone failure rates. However, one cannot
easily characterize how a non-monotone failure rate impacts the orderiffg®6#). It may be that all change

points ofh(v) fall below @ so h(v) is monotone over the relevant range. Otherwise, we cannot rule out that the
value ofc$"® (v) may not be monotone.
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Additionally, consider the elasticity aitTS‘(A):

ERYCERON

B T A G O))

We have two ways of interpreting\). The first is just the relative rate of change in con-
sumer surplus. The second is to tie it to waiting costs. The revenue maximizer charges one price
to all customers and that depends on the lowest admitted type. The social planner, of course,
cares about the average waiting ca&fTS()\) is then the gap between these valuesg(id is
the elasticity of this gap.

To examine the behavior of( \), standard results give thAf RL' (v) = M RL(v)h(v) — 1
and MRL'(v) > —1. Additionally, all IFR[DFR] distributions have decreasing[increasing]

mean residual life functiorisairand Xie(2006. The next lemma is then immediate.

Lemma 4.
B 1
-~ MRL'(FL(3))+1

n(A)

If F'(v) is strictly IFR[DFR], thenn(\) > [<]1. If M RL(v) is convex[concave]y(\) is de-

creasing[increasing].

When@é(A) is elastic (i.e.yy(A) > 1), a small change in the throughput results in a rela-
tively large change in surplus. Since a largezorresponds to a lowey, it is those with lower
valuations that would then have an oversized waiting cost relative to the price they have paid
and thus should be given priority. Whé?TS(/\) is inelastic (i.e.n(\) < 1), the situation is
reversed and those with lower valuations should be placed at the back of the line. We will see

below that the last part of the lemma will have implications for classification.
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We close this section by noting that our model, while obviously stylized, has some im-
plications for how priorities impact consumers. In particular, it suggests that there are some
settings in which customers as a whole are better off under FIFO service than under incentive
compatible priority schemes. Any IFR distribution has a coefficient of variation less than one.
Conversely, any DFR distribution has a coefficient of variation greater thanBax&yw and
ProschanT96%). That suggests that consumers may welcome the introduction of a priority
scheme when there is significant dispersion in values and waiting costs. Conversely, when there
is not much dispersion, the average consumer is likely better off under FIFO.

This last assertion implicitly assumes that moving from FIFO to priorities does not increase
coverage. Once coverage is in play, consumer surplus is potentially pulled in two ways. Priori-

ties may harm customers but expanded coverage would benefit them. We examine this question

in Tablel™L
Shape Brameters| Coefficient ofaviation| % Admitted=IFO | % AdmittedPriority | Priority Surplus/ FIFGsurplus
1.0 1.00 13.56% 15.62% 1.0543
15 0.68 14.79% 16.12% 1.0088
2.0 0.52 15.33% 16.29% 0.9871
25 0.43 15.63% 16.38% 0.9743
3.0 0.36 15.82% 16.44% 0.9659

Table 1.1. Weibull valuation with scale parameter set so tjatemains atl0. The
other parameters are setdo= 0.25 andA = 3.

We consider customers whose valuations follow a Weibull distribution and vary the shape
parameter from one to three. This takes the coefficient of variation frdown to t00.36. For
each value, we compute the optimal coverage (reported as the fraction of customers admitted)
offered by a revenue maximizer under both FIFO and a priority scheme with two levels (i.e.,
K = 2). We see that in all examples, the revenue maximizer expands coverage when offering

priorities. However, the increase in coverage falls as valuations become less dispersed. Looking
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at the last column, one sees that the ratio of consumer surplus under the priority scheme to the
surplus under FIFO falls as valuations become less dispersed. For sufficiently low coefficients
of variation consumers are indeed worse off under a priority scheme.

Implications for classification: With IFR valuation distributionss¢®(v) is decreasing in
1 and the social planner faces a tension as it seeks to maximize the sum of firm revenue and
consumer surplus: Revenue maximization dictates prioritizing customer with higher valuations
while consumer surplus is compromised by such priority. We will see that the social planner
will alleviate some of this tension by having a smaller high priority class than the revenue

maximizer; see Remaikfurther below.

1.5. Coverage, Coarseness and Classification

If the providers are restricted to use a single menu item — an admission fee and a delay to

go with it, the revenue maximizer’s problem reduces to
(1.8) R = max Ap(v) (1 = alV1(A(v)))

where W, (A\(v)) = (1 — AF(v))~! is the delay under FIFO service. The social planner’s

problem is

(1.9) ST =max AV (v)(1 — aWi(A(v))),

v>v

The function(1 — W, (\(v))) is concave increasing and(v) is concave and decreasing in

v. The social planner’s objective function is thus strictly concave and has a unique maximizer



34

vs. By Lemmald p(v) is concave and decreasing for all> v so that the revenue has a unique
maximizervy,.

These are special instances of the problem&fiiache and MendelSof?004). It follows
from their Proposition 1 and our Lemna(particularly, part 3) that with an IGFR distribution
vy < vy so thath; (vE) > Ai(vy,). The revenue maximizer offers a smaller coverage than the
social planner. Iff" has a constant generalized failure rate (i.e., it is a Pareto distribution), then
Mi(v7) = A (v5).

Contrast this with a setting in which the providers can tailor a different price and delay to
each valuation. The welfare from a customer with valuations v — avWW (v). The higher the
customer’s valuation, the higher her priority so that a customer with valuatias an expected
waiting time W, (v) = (1 — AF (v))_2 (Kleinrock [T967 Theorem 2) which is a continuous

segmentation analogue @8). The social planner solves the problem

[e.e]

(1.10) S = mfi}_cA (v —avW, (v)) f (v) dv.

The revenue maximizer chooses similarly an admission valuatissuch that a customer
enters if and only if her valuation is> v3,. The price is determined so that the first customer to
enter is indifferent between entering or not, iz(y};,) = vy, — avi W, (vR). All other entering

customers pay the entering price plus a premium for shorter delays, i.e.,

v

p(0) = p(ly) - a / WV (u)du.

YR



35

SinceWW/(v) < 0 the premium is positive. The revenue maximizer’s problem reduces then to

[e.9]

VR>V *

VR

(1.11) R, = max A (—p (vg) F (vg) —I—/ P (v) F(v)dv)

Problems T0) and {T1) are instances of the priority auctions describeddiéche and
Mendelson(Z004). By Proposition 3 therey;, = v§ (i.e., the two providers choose the same
entry cutoff) provided that()\) (recall Lemmald) is increasing in\.

In summary, with a single class, for strictly IGFR valuation distributions, the revenue and
social optimizers choose different coverage levels and the social planner serves more customers.
With a continuum of classes, however, they make identical decisions. We turn to study the
intermediate and practical case in which there is a finite number of classes.

High-volume analysis. When dealing with multiple (but finite number of) classes, the social
and revenue maximizer problems are rather intractable. Fortunately, when the volume is high
we can characterize the decisions of the providers and compare them. We build on the approach
of Nazerzadeh and Randha@@ 15 and study the asymptotic performance, as the arrival rate
and service rate are scaled up by a multipliethe nominal arrival rate idn and the service rate
is n. We superscript all relevant notation withto capture the dependence on this multiplier.
Thus, for exampley;';; [v7'5] is the optimal class-cutoff of the revenue maximizer [social
planner]. Since both the nominal arrival rate and the service rate are multiplietloes not
depend om.

For large values of, it turns out, the differences between subsequent optimal cutoff values,
v, — v become small. Roughly speaking we can then replate’, ;) — V(v}') in the
objective function [Z2) of the social planner with a Taylor expansion arourid It is such

Taylor expansions that enable the analysis of an otherwise intractable problem. Our analysis
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allows us to nail down the optimal arrival-rate vectors (and revenue/welfare outcomes) up to
an error that is negligible relative to the square root of the multiplierAccordingly, two
coverage/classification decisions are distinguishable if they/arapart.

We first re-visit the single-class FIFO queue. Frah#che and Mendelsd2004) it follows
that, in our setting, the revenue maximizer admits fewer customers than socially optimal. We
can now characterize more fully the difference in coverage.

Following standard notation, we say tli@t) = o(y/n) if £(n)//n — 0 asn — oc.

Lemma 5 (coverage difference with FIFO)Vith a single (FIFO) class the cut-off entry

valuations of the social planner and the revenue maximizer satisfy

]
S

e =7 o —Mn_% o(n~3), v = o « Mn_% o(n~3
v = v Vo[- oy 7o), ik =0 Vo [-San e Fo(n ).

<

Optimal admission rates consequently satisfy,

Mg =n — Af(O)vay/—FE0G i+ o(y/n), A =n — Af(@)vay/— T8 /n + o(y/n)

If F'is IGFR thenV (v)/V'(v) > p(v)/p'(v) and, consequently, the social planner has a
larger coverage. Furthermore, the difference in coverage is non-neglig‘i%?\?j}% # o(y/n)

if the inequality is strict.

We next show that with multiple customer classes the coverage gap disappears. Classifica-
tion, however, differs depending on the mean residual life of the distribution. Thébbehow
is the main result of this paper and focuses on the comparison of the actions of the social planner
and the revenue maximizer. The full characterization of their decisions appears in Th@orems

and8in the appendix.
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Theorem 1. (coverage, coarseness and classification: SP Vs. RM/ith K > 1 levels
of service, the coverage of the social planner and the revenue maximizer are asymptotically

identical in the sense

(Coverage) Ag = Al = o(v/n).

For both, two classes are sufficient:

(Coarseness) Sy =S +o(yv/n), and R}, = RY* + o(v/n).
Classification is asymptotically different except for linear MRL.:
(Classification) Ay — Ay =yt + o(n®*),

wherey > 0 (resp.~ < 0) if the valuation distribution has a convex (resp. concave) MRL and

~ = 0 if the MRL is linear. In particular, the revenue maximizer directs more volume to the high
priority whenF has a convex MRL. Further,f # 0 (classification is asymptotically different),

the social cost of revenue maximization grows (at least) as fast as the square root of the arrival

rate:

(Social welfare gap) lim inf 53" — Sy (VE)

> 0.
n—00 \/ﬁ

We find then that both providers choose very coarse priority schemes and offer identical
coverage (up to a small difference) but that their admission to the high priority class differs.
Tablell22 is a numerical illustration of this result. The example serves to illustrate three addi-

tional points: (i) that the asymptotics-based comparison holds also for small valuegiof
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that the difference in classification can be rather large: for Weibull(1,0.3) which has a concave
MRL v = —140 < 0. It can also be rather small: for the Weibull(1,2) which has convex MRL,

~ = 0.011, and (iii) that both the social planner and the revenue maximizer have a high prior-

ity class that is much larger than the low priority class. This latter observation is supported in

Theoremd andB in the appendix.

Coverage High Priority
no | A | AR | AT | A
10 | 8.573 | 8.568 | 5.552 5.57
100 | 95.495| 95.485| 73.683 | 73.861
1000| 985.789| 985.767| 847.413| 848.764
Coverage High Priority
n o ry | A%
10 8.44 7.9 4,487 | 3.548
100 | 95.177 | 92.365 | 64.783 | 53.451
1000| 985.144| 975.720| 786.348| 695.097

Table 1.2. A = 30, a = 0.2: (LHS) Weibull(1,2) for convex MRL (RHS)
Weibull(1,0.3) for concave MRL.

The differences in classification matter. They suffice to make the revenue maximizer’s ac-
tions socially inefficient. Figur@2(LHS) displays(S5* — Sy (vk)/+/n as a function ofn
for a Weibull(1,0.3) distribution (concave MRL). Thus, while a continuum of classes means
that maximizing revenue is equivalent to maximizing welfare, for each figitevenue max-
imization leads to non-negligible social inefficiency. Additional numerical examples appear in
sectionA8 of the e-companion.

Further, any number of classes larger than two has little impact on either revenue or social
welfare. This was proved already for the revenue maximizeNbyerzadeh and Randhawa
(?01H and we extend this result to the social planner. FigUBRHS) provides numerical

evidence for this result.
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Figure 1.2. F =Weibull(1,0.3),a = 0.2, A = 30 (LHS) The social inefficiency of the
RM actions as a function of the multiplier. (RHS) The effect of the number of classes
on social welfare and revenie = 1).

Remark 1 (The Role of Mean Residual Life)lhe mean residual life function plays a deci-

sive role in the comparison between the decisions of the social planner and the revenue maxi-
mizer because it is intimately linked to consumer surplus. If we impose a bit of structure, we can
apply Lemmd. If the MRL is both convex and decreasing, the failure rate is increasing. The
social planner then faces a trade off: Maximizing revenue calls for putting those with high val-
uations at the front of the line but maximizing consumer surplus requires putting those with low
valuations first. The former dominates but limiting the size of the high priority class minimizes
the impact on low-valuation customers. The revenue maximizer has no such compunctions and
thus opts for a larger high priority class. The situation is reversed when the MRL is both con-
cave and increasing. The failure rate would now be decreasing. From the social planner’s
perspective, giving high value customers high priority boosts both firm revenue and consumer
surplus. She then has an incentive to classify a large number of customers as high priority.
The revenue maximizer, of course, does not see any benefit to increasing consumer surplus and

therefore is more conservative than the social planner in expanding the higher priority class.
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From Lemmad, we have that when the MRL is convex, adding more customers to the high
priority class increases consumer surplus at a decreasing rate. Conversely, a concave MRL
implies adding more customers to the high priority class increases the marginal rate at which
surplus increases. In the social planner’s eyes, the former favors a limited high priority class
while the latter favors a large high priority class.

Additionally, recall that we can interpret(\) as the elasticity of the gap between average
waiting costs (the social planner’'s concern) and the wait-driven component of the price (the
revenue maximizer's concern). We then have that\j is decreasing, the revenue maximizer’s
objective underestimates the social cost of waiting axreases (causing to decrease). Con-
versely, the revenue maximizer’s objective will overestimate the cost of waitingagases if

n(\) is increasing [

Remark 2 (Who pays for social inefficiency)When the social planner and the revenue
maximizer’s classification decisions diverge, consumer surplus may be smaller than socially
optimal. Consider the case @& = 2 (two classes). While the average customer stands to
lose from revenue maximization, some customers may gain. In fact, with a concave MRL,
the revenue maximizer has a smaller high priority class and, consequently, offers a shorter
delay to both classes and a higher customer utility (per class); see Tabfer a numerical
example. The total consumer surplus is higher under social planning. Who gains depends on
the convexity/concavity of the MRL.

Figure 28 provides a schematic view of how the ultilifyfv; i) changes with the customer

valuationwv. Informally representing Theorefl the figure has both service providers offering
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(ps, W5) Avg. Utility (ps, W5) Avg. Utility
SP -Low | (53.396, 1.163) 16.046 RM -Low | (63.071,0.737) 23.499
SP -High | (76.921,0.181) 198.197 RM -High | (79.804,0.155) | 236.390

Table 1.3. Waiting and pricing menus faf' = Weibull(1,0.3) (concave MRL),
« = 0.2, and nominal arrival ratdn = 300: (LHS) Social planner (RHS) Revenue

Maximizer
—==:Social Planner (SP) / ~—=. Social Planner (SP)
Revenue Maximizer (RM) /’ Revenue Maximizer (RM)
@ SP high-class cutoff value ," @ SP high-class cutoff value
[ RM high-class cutoff value /I [ RM high-class cutoff value
/
z / z
= 7 =
B ’ =
2 pi—r§ 5 i —p§
g a(Wi —wH) . 2 a(Wi —wH)
2 /x =} '//
7] 7 i k) 4
S ’ > f
“ H L ! © H L :
Pr —Ps ‘ Ps —Pr O :
a(Wk—-wh) .-~ a(Wl —wEk)
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o= >
e G _ g
Customer valuation

Customer valuation

Figure 1.3. Utility of customers under SP and RM: (LHS) Convex MRL, (RHS)
Concave MRL

identical coverage. With a convex MRL (LHS), the revenue maximizer has a smaller high pri-
ority cutoff (represented by a square) than that of the social planner (represented by a circle)
and, in turn, a larger high priority class. The story is reversed with a concave MRL (RHS).

More in detail: let(P%Z, W) and (P&, W) be the two menu items offered by the social
planner (whereL stands for low priority, i.e. W& > W¥). Define similar notation for the
revenue maximizer (with the subscrip}. Because of the equal coverage, we hayve p% —
an Wl = v — pk — avyWk = 0 so that(p — pk) = avy (W — W¥).

For a convex MRL, we hav&’} > ¥ so that the revenue maximizer charges a lower price

than the social planner. However, that price reduction is insufficient to compensate low priority
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customers. Any customer with valuation greater thawho would be classified as low priority

by either decision maker is worse off under the revenue maximizer. One gets similar results at
the other extreme. High priority customers also get a price break from the revenue maximizer
but for those with very high valuations it is does not adequately compensate for increased waits.
Thus, with a convex MRL, those with very high or very low valuations are certain to lose as we

move from the social planning to the revenue maximization.

With a concave MRL, the story is reversed. Customers with valuation greater than than
(p — pH) /(a(WE — W) or smaller than(pZ — pk)/(a(WI — WE)) are better off under
revenue maximization. These are the customers that absorb all the gain in the class utilities
seen in Tabld-3. The burden of social inefficiency is all carried by the “middle class”: the
customers with intermediate valuations. In particular those who would have been classified as
high priority under the social planner but are moved to low priority under the revenue maxi-
mizer are worse off. With convex MRL, in contrast, those with very high or very low valuations
are certain to lose as we move from the social planning to the revenue maximization. However,

we cannot guarantee that those with intermediate values are better off [

1.6. Extensions

1.6.1. Non-Preemptive Policies

Thus far we allowed the provider to use preemptive policies and, indeed, in their optimal
solutions both providers use preemptive static priorities. It is often unrealistic to preempt cus-
tomers in the middle of their service. A restriction to non-preemptive policies entails a change
in the menus offered to customers. We prove, however, that our results do not change: whereas

the preemptive and non-preemptive menus might differ, the differences are relatively negligible.
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The objective functions'x (v, W) andRx (v, W) are the same as §I3. The difference is

that, in optimizing,W must be taken from theon-preemptivachievable regiomVyp(v). Let
5 np be the optimal social welfare (optimized over all valuation cutoffs and non-preemptive

disciplines). Since the providers are now constrained now to use non-preemptive policies it
holds thatS3y p < 53" andRy’yp < R3*. Our next theorem shows that the loss is minimal.

Let S5 v p(v") be the social planner’s objective function value when two-class are used, the
cut-off vectorv” is used for classification and station-preemptiveriority is used with the
highest priority provided to the highest valuations customers. Similarly défjng.(v") for

the revenue maximizer.

Theorem 2. (Optimality of preemptive cut-offs with non-preemptive service) Using two
non-preemptive priority classes with the optimal preemptive cut-off valuations is nearly optimal

in the \/n scale for both the social planner and the revenue maximizer. That is,
pnp(VET) — Sy = o(v/n) and Ry v p (Vi) — 3™ = o(v/n).

respectively.

The non-preemptive provider can use the same coarseness, coverage and classification as
the preemptive provider with negligible compromise to optimality. In turn, the comparisons

that apply to the preemptive case, apply to the non-preemptive restriction.
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1.6.2. General delay costs

In our base model, a customer’s delay cost rate is proportional to her valuation. Here we
show that our results generalize to a broader class of delay cost functions. Specifically, we con-
sider delay costg(v) which are differentiable and increasing at a sub-linear rate, i.e., functions
for which d(v) /v is non-increasing. The sub-linearity ofl (v) preserves the ordering of cus-
tomer types in the sense that if a customer with valuati@mooses to patronize the service,
any customer with valuation’ > v will also purchase the service (although she may choose a
different priority level). Coverage then will be determined by a minimum valuation to admit.

The optimality of preemptive static priorities for social planning follows from the mono-
tonicity of d(v). The sub-linearity, as iNazerzadeh and Randha{@D15, ensures the opti-
mality of preemptive priority also for the revenue maximizer.

Theorem can be extended to this more general setting with a replacement of the MRL

concavity/convexity conditions with one stated in terms of a suitable elasticity measure. We

define
M(N)
(1.12) ) = =370
where
N(v) =D (v) — d(v) F(v), with D(v) = / d(u) f(u)du,
and
(1.13) M(\) =N (F—1 (%)) .

“This does not necessarily imply thét) is a concave function—také&(v) = v + 1/(v + 1) as a case in point.
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Theorem 3. (coverage, coarseness and classification for generalized del&yith X' > 1
levels of service, the coverage of the social planner and the revenue maximizer are asymptoti-

cally identical in the sense

(Coverage) A — Al = o(v/n).

For both, two classes are sufficient:

(Coarseness) Sy =Sy +o(yv/n), and R}, = RY* + o(v/n).
Classification is asymptotically different except for constgnt
(Classification) Nyt — Aoy = yn®/* + o(n**),

wherey > 0 (resp. v < 0) if ¢(-) is increasing (resp. decreasing) and= 0 if the {(-) is
constant. In particular, the revenue maximizer directs more volume to the high priority when
¢(+) is increasing. Further, ify # 0 (classification is different), the social cost of revenue

maximization grows at least with an order gh,

(Social welfare gap) lim inf 53" — Sy (VE)

n—00 \/ﬁ

> 0.

When specializing the delay-cost to be lineardf+) = av — as in our base model, the
elasticity requirements reduce to convexity/concavity requirements on the MRL. For complete-

ness, the formal derivation appears at the end of the e-companion.
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Remark 3 (the role of elasticity) In our base model, whether the revenue maximizer pur-
sued a mass-luxury or ultra-luxury strategy depended on whether the elasticity of consumer
surplusn(\) was increasing or decreasing. That intuition carries over to our generalized cost
structure. Comparing () andn()), one sees that the former is the natural generalization of
the latter. Both can be interpreted the elasticity of the gap between average waiting costs and
the wait-driven component of the price. We again have that a decreasing elasticity results in
the revenue maximizer’s objective function underestimating the consequences of waits while an

increasing elasticity results in the revenue maximizer overestimatingithpact. [

Remark 4 (what may happen with decreasid¢v)). To this point we have an only con-
sidered having waiting costs that are positively correlated with values, making it optimal for
both the revenue maximizer and the social planner to move those with high valuations to the
front of the line. We now briefly consider what happens when valuations and waiting costs are
negatively correlated. Specifically, we suppose that the per unit time waiting cost fush¢tipn
is decreasing inv. Since the priority scheme depends only on the waiting cost and not on the
consumer’s value of the service, it would now be optimal to give high priority to those with low
valuations.

TableT4 reports results for whed (v) = ;. Here we consider a range of market sizes
and degrees of coarseneks(i.e., number of priority classes). For each market size-coarseness
level pair, we determine the optimal incentive-compatible scheme for both types of decision
maker and report their optimal objective valieSome results are not surprising. For exam-

ple, both types of decision makers are better off in large markets in which patient, high-value

SNote that we do not allow a decision maker to offer a degenerate class. Thus fakKeach we constrain the
decision maker offering price and wait menus that result in positive traffic for each class.
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customers are plentiful. Other results are not as straightforward. In particular, the two deci-
sion makers offer very different pricing and priority schemes as the market grows. The revenue
maximizer always benefits from offering as many priority classes as possible. However, the
social planner may prefer coarser and coarser schemes.AFer 3, she prefers to offer four
classes but drops to three classes when 4 and goes down to two classes whens- 5. For A

sufficiently high, the social planner opts for FIFO service, pooling all customers into a single

class.
1 Class 2 Classes 3 Classes 4 Classes Max*
A |RM SP RM SP RM SP RM SP RM SP
2.9| 0.555 3.895 | 0.573 4573 | 0.577 4.663 | 0.578 4.686 | 4 Classes 4 Classes
3 [ 0.571 4.127 | 0.589 4.838 | 0.593 4.930 | 0.595 4.951 | 4 Classes 4 Classes
3.2| 0.602 4.609 | 0.622 5.385| 0.627 5.477 | 0.628 5.492 | 4 Classes 4 Classes
3.5/ 0.647 5.376 | 0.670 6.237 | 0.675 6.326 | 0.677 6.325 | 4 Classes 3 Classes
4 10.718 6.760 | 0.746 7.728 | 0.752 7.795| 0.755 7.760 | 4 Classes 3 Classes
5 10.848 9.861 | 0.885 10.899| 0.893 10.853| 0.896 10.706| 4 Classes 2 Classes
6 | 0.963 13.296| 1.008 14.227| 1.019 13.970| 1.023 13.665| 4 Classes 2 Classes
7 | 1.067 16.961| 1.118 17.620| 1.131 17.088| 1.135 16.564| 4 Classes 2 Classes
8 | 1.160 20.783| 1.217 21.026| 1.231 20.171| 1.237 19.450| 4 Classes 2 Classes
9 | 1.245 24.707| 1.307 24.419| 1.323 23.191| 1.329 22.156| 4 Classes 1 Classes
10 | 1.323 28.697| 1.390 27.794| 1.406 26.117| 1.412 24.838| 4 Classes Classes

Table 1.4. Decreasing delay-cost functialiv) = 1/v2. The valuation distribution is

Weibull(1,1.1).

Even if the two decision makers both prefer offering more priority classes, our results with
positively correlated waiting costs may not carry over to a setting with negatively correlated
costs. Figurel2 presents examples usidgv) = + under which both decision makers prefer
offering multiple priority classes. The top graphs show that on a scaled basis, both decision
makers benefit from offering more classes. That is, the loss from going from arbitrarily many

classes to a very coarse scheme with just two classes is no longer negligible. Further, the
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bottom graph shows that the coverage differences between the social planner and the revenue
maximizer grows on the scale gfn. We conclude that while with positively correlated wait-
ing costs the differences between revenue and welfare maximization are largely questions of

classification, with negatively correlated coverage and classification are also in play =
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Figure 1.4. (TOP) The effect of increasing the number of clasEeseyond 2 is

non-negligible in the,/n scale as captured by the serig&}* — R%*)/+/n for the

revenue maximizer andy* — S3*)//n for the social planner. (BOTTOM) the
difference in coverage persist (for eakl) asn grows.
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1.7. Conclusion

Managing a service system as a priority queue is a challenging endeavor. To map a contin-
uum of customers into a finite number of priority classes requires multiple decisions. One must
determine how much of the market to cover, how coarse a set of priorities to offer, and how to
classify customers into specific grades of service. Given such complexity, it is remarkable that
decision makers pursuing distinct goals — maximizing social welfare and maximizing revenue
— can agree on two out of three of these dimensions. We show in a limiting regime that a social
planner and a revenue maximizer choose essentially identical levels of coverage while being
content to offer very coarse priority schemes.

Meaningful differences exist, however, in how customers are classified. The revenue maxi-
mizer may pursue an ultra-luxury strategy and admit too few customers to the high priority class
(in comparison to the social optimal) or a mass-luxury strategy and admit too many to the high
priority class. These differences in classification are driven by differences in the behavior of
consumer surplus, which is captured by the mean residual life of the customer valuation distri-
bution. A concave MRL implies that consumer surplus becomes more elastic as more customers
are admitted. The revenue maximizer does not consider this change and consequently follows
an ultra-luxury strategy with a limited high priority class. Conversely a convex MRL means
that consumer surplus becomes less elastic as the throughput increases. Again, the revenue
maximizer ignores this factor and opts for a mass-luxury strategy that places more customers
than is socially optimal in the high priority class. These results are robust to generalizations of

the delay cost structure that maintain the positive correlation between a customer’s valuation
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of the service and her waiting cost. However, we show that if values and delay costs are nega-
tively correlated, the decision makers may differ on every dimension, choosing different levels
of coarseness, coverage and classification.

We also address the more general question of how priority schemes affect consumer surplus.
We show that if the valuation distribution has a decreasing failure rate, consumer surplus is
maximized by the most natural priority scheme, the one that puts those with high costs at the
front of the line (which coincidently is the scheme that both the social planner and revenue
maximizer would use). However, when the valuation distribution has an increasing failure rate,
that natural priority scheme results in a lower consumer surplus than simple first-in, first-out
service. Since a decreasing, convex MRL implies an increasing failure rate, this suggests that
a convex MRL should cause the social planner to limit deviations from FIFO waits to protect
consumer surplus; the revenue maximizer has no such concerns.

There are several ways this work can be extended. In particular, introducing competition
could be fruitful. Competition generally results in consumers capturing more of the value the
system creates. Here value can be shifted to customers through lower prices or more efficient

classification. Which is the better means for rewarding customers is an interesting question.
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CHAPTER 2

The Effect of Real-Time Information on Service Efficiency

Joint work with Toni Moreno and Nil Karacaoglu Garro

2.1. Introduction

Real-time information is becoming available in many services, and both customers and
agents can easily access a wealth of information that may affect their decisions. For example,
customers can use the GasBuddy application to monitor the price of gas in stations close to their
location, or the Apple Store application to check the real-time availability of Apple products at
Apple’s brick-and-mortar stores.

The availability of real-time information is particularly important in two-sided markets,
where a platform connects service providers with customers. In those markets, real-time in-
formation not only affects customers’ actions, but also that of service providers. For example,
Airbnb connects individuals looking for accommodation with private property owners, and Uber
connects individuals looking for a ride with drivers able to offer one. The supply side of these
markets consists of a large number of individual agents who try to maximize their individual
profits. When doing so, they have access to very detailed, often real-time information. The
focus of this paper is to study how hypergranular spatial real-time information affects the deci-
sions of individual service providers and to explore the consequences of the availability of such

detailed information for the efficiency of service platforms.
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One of the leading applications of service platforms can be found in e-hailing. E-hailing is
the process of requesting a taxi or another form of transportation by using a computer or mobile
device. E-hailing taxi platforms based on ride-sharing or professional capacity providers are
becoming an important alternative to traditional taxis and the number of drivers on e-hailing
platforms is increasing significantly, with e-hailing platforms becoming one of the fastest grow-
ing business trends. As of December 2014, Uber had 162,037 active drivers in United States
who had completed at least four or more hours for service, and it has continued to grow since
then. The number of such drivers in such markets as Los Angeles, San Francisco and New York
tripled during 2014,

Since the launch of Uber in 2009, e-hailing platforms have helped match supply with de-
mand in a very convenient way for both sides and also have brought more business information
to participants in the market. For example, drivers in traditional taxi services are limited in the
amount of information about their competitors that they can observe. However, the location
of drivers is available to any e-hailing platform user, including competing drivers. Customers
often can see the location of drivers in their mobile application, and drivers can access this
information by using an additional device with the customer-side application on (see Figure
1.2 Therefore, the use of e-hailing platforms provides drivers with access to an unprece-
dented amount of information about their competitors. Some of these platforms provide even
more information to their drivers, such as heat maps indicating locations with higher potential

demand. These new forms of real-time information bring new opportunities for the agents to be

IFor details, se@he Washington Po&Now we know how many drivers Uber has and have a better idea of what
they’re making,” January 22, 2015. https://www.washingtonpost.com/news/wonk/wp/2016/01/20/now-we-know-
how-many-drivers-uber-has-and-have-a-better-idea-of-what-theyre-making

2While some companies do not offer accurate data of driver location, many of them do, including the company we
collaborated with.
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Figure 2.1. An Uber driver with multiple devices to check both customer and driver
applications simultaneously

morestrategicand can lead to changes in agent behavior. For example, agents may interpret the
arrival of another idle agent into their service zone in two different Wa@s one hand, they

may think the new agent is following a high sales opportunity in the zone and therefore agents
may stick to their service zone. On the other hand, agents may see the new agent as a threat to
their business and believe their sales potential decreases significantly because of this arrival and
thus they may decide to move to another zone.

Agents are heterogeneous in how they react to information indicating new arrivals. Differ-
ent interpretations of real-time information, as discussed above, can affect the performance of
the agents differently as well. More specifically, heterogeneity in decisions may affect server
utilization. Since monitoring and reacting to the information is costly for agents, it is interesting
to study whether such behavior substantially increases sales.

Changes in individuals’ behavior in response to real-time information can potentially af-
fect the quality of service as well. Through better balancing of capacity, platforms potentially

can serve more customers and/or respond to their requests in a short time. Previous research

3We call the area surrounding the location of an agent a “service zone.” We describe how we split the city into
service zones in Sectidh4"1
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has studied the consequences of customers’ strategic behavior on the efficiency of service (see
[ariviere_and Van Mieghelm 2004 Recent work has also considered capacity management
problems where a service provider achieves a required service level by giving incentives to its
profit-maximizing agents (séeurvich et al20Th We complement this literature by analyzing

the strategic behavior of servers in an increasingly important empirical setting.

To study these questions, we obtained data from one of the leading e-hailing apps in South
America, with more than 100,000 drivers working in the platform in 20Trough this col-
laboration, we have been able to assemble a novel, high-frequency, spatial data set that contains
very granular data about the movements of drivers affiliated with the e-hailing platform. Using
this data set, we study how agents respond to the availability of rich real-time information about
spatial competition. Our work makes the following contributions:

First, we show that agents tend to scatter more when presented with real-time information
about their competitors. More specifically, the probability that agents will leave a service zone
increases when a competitor enters their vicinity. We refer to this phenomenon as “server scat-
tering.’®

Second, we document that there is heterogeneity in how agents respond to the availability
of real-time information. We show that agents who are more likely to react to this information
achieve a higher average utilization than those who are less sensitive to the availability of real-
time information. Finally, we complement our empirical results with agent-based simulations
informed by the empirical parameters. We estimate and show that an increase in the frequency

of scattering due to the arrival of another agent makes the whole system more efficient, reduces

499Taxis has over 100,000 drivers using the application in Brazil and 30,000 alone in Sao Paulo. For details, see
http://techcrunch.com/2015/02/02/9%9taxis-raises-significant-new-cash-from-tiger-global/

SWe conduct a placebo test that demonstrates in the absence of real-time information “server scattering” is not
observed.
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the likelihood customers will abandon, and decreases customers’ waiting time to get service.
Taken together, our results highlight the importance of real-time information for service ef-
ficiency in distributed settings. It has been documented that the on-demand business model is
often associated with increased costs arising from the platform’s inability to dictate when agents
should work Gurvich et al[20Th We empirically show that sharing real-time information with
agents can increase the efficiency of services, offsetting some of these costs.

The structure of the rest of the paper is as follows: In Sedi@nwe review the relevant
literature. In Sectio®-3, we develop our hypotheses. In Sectibd, we describe our empirical
setting and data set. SectiB analyzes how agents respond to real-time information about
competition. In SectioB-86, we discuss how the (heterogeneous) response to the real-time infor-
mation about competition affects sales. In SecHal we discuss the alternative explanations
that might lead to our results. In Secti@m®, we analyze the efficiency of the system under such

agent-based decisions. Finally, we provide some concluding remarks in SE&ion

2.2. Literature Review

The operations management community has given increasing attention, both theoretical and
empirical, to information availability and its effect on systems. On the theory side, there is
a wide range of papers focusing on models in settings ranging from retailer operations (e.g.,
Allon"and Bassambobd 201 Su-and Zhand 20030 service operations (e.dVeeraraghavan
and Debo 2009Alon et all (20711 Jouini et al..20T). For exampleAllon"and " Bassamboo

(2017 investigate a game-theoretic framework for retailer operations where retailer can share
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non-verifiable information andouini ef al.(2017) consider a queuing model for call centers to
analyze the effect of delay information on system performance.

On the empirical side, information availability has been investigated in several different
contexts. For examplé;allino-and Morenq?014) analyze the effect of product availability
information on store sales ailgeIl et al. (2016 consider the effects of product information in
online retail by studying the introduction of offline showrooms.

In contrast to these research studies that consider the information availablestomers
we focus on the information availableagentsand how such information affects agent behavior
and system performance. One of the few papers that empirically study the effect of information
available to agents Song et al(2016, which examines the effect of information about agents’
performance on productivity and service quality in a complex service organization. The authors
focus on how the way performance-related information is shared (publicly vs privately) affects
the whole system’s productivity. They show that public information leads to higher productivity
without a significant decrease in service quality. Simileéstmg et al (2016, our analysis also
considers the information available to agents, but our setting allows us to study different ques-
tions. Our data set contains hypergranular spatial real-time information that must be processed
quickly by agents when choosing which location to serve in a competitive environment. We can
observe the actions that agents take in response to the information available to them.

Furthermore, competition plays a central role in our setting. Competition between agents
takes place in many different contexts. For example, agents compete with their peers wherever
agents are managed based on their performance, as ndtedassine and Yakuboviga012).
Kalaref al.(1T992 analyze a system where agents compete with each other by choosing appro-

priate service rates, arshand et al (?017) consider a more general model where the service



57

provider sets an admission price in order to maximize its own profit and agents can choose their
own service speed and quality. To our knowledge, no empirical results have been described
on the analysis of competitive environments for agents when they have real-time hypergranular
information.

Our work is related to the emerging literature exploring the on-demand economy and the
sharing economy, including recent work byamer and Kruegg?016), Kabra ef al (2?0161,
andCiCefall (P01%. Cramer and Kruegef?016), for example, find that Uber drivers have
higher utilization than taxi drivers. In our analysis, we show that the utilization of drivers from
an e-hailing platform varies based on how sophisticated drivers are in using the information
provided by the platformKabra ef al (0161 investigate driver and passenger responses to the
incentives given by the platform. They show that the increase in the number of trips completed
is higher for each dollar spent on incentives given to drivers rather than incentives given to
passengers.

Our work is also connected to previous research in economics that has explored the taxi
industry (e.g., see the theoretical work@dirns and T'iSton-Heyegs T996r taxi regulation and
empirical work ofCamerer et al_T996r an analysis on the relation between working hours and
wages in the economics literature). Recent research includes analygésiy et al (2016
on how taxi drivers learn from contextual and spatial informationBndhholz (2015 on the

impact of search frictions on the efficiency of the taxi industry.
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2.3. Hypothesis Development

In this section, we develop our hypotheses about agents’ decisions given the availability of
real-time information and how these decisions affect their sales performance. Since we test our
hypotheses using a data set describing the behavior of drivers in an e-hailing platform, we use
the terms “driver” and “agent” interchangeably, and we refer to the area surrounding the agent
as the “service zone.” In other applications, one can think more generally of service classes
instead of service zones.

We first consider how the behavior of agents is affected by the availability of new agents in
their service zone. A priori, it is unclear whether agents will tend to move to another service
zone or will stay in their zone when new agents become available in that same zone. On one
hand, agents may interpret new arrivals to their zone as an increase in the service zone’s pop-
ularity. Agents may think the new agent arrives because the potential of a sale is (or will be)

L1}

high in their zone and they trust their new peers’ “experience of sales” and therefore decide to
stay. For example, herding behavior happens in queues where each queue has different service
gualities. Customers prefer longer queues since the length of the queue may signal the quality,
as described ilveeraraghavan and Del§@009. Similar herding behavior may occur in the
case of competing agents.

On the other hand, agents may interpret newly arriving agents as a sign that competition is
increasing and they may think their service zone has more agents than needed. This scenario
is similar to spatial competition with entry. For examgi&alirey (1984) considers entry of a

third political party in an ongoing competition of two other parties where each voter prefers

the party that is close to herself. He shows that the entrance of a third party results in spatial
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separation of the other two parties. Similarly, agents may think their chance of making a sale in

their zone decreases significantly after the arrival of another competitor. Such an interpretation
may lead them to change their service zone so that they stay away from this increased level of
competition. Thus, we test the following pair of competing hypotheses:

Hypothesis 1A (Herding). If a new competitor enters the service zone, the probability that
current agents will leave the service zone decreases.

Hypothesis 1B (Scattering).If a new competitor becomes available in a service zone, the
probability that current agents will leave the service zone increases.

We illustrate the theoretical ambiguity with a model in Apper Xl We test Hypothesis
1A and Hypothesis 1B in Section 5.

With the pair of competing hypotheses, 1A and 1B, we test whether agents are interpreting
the arrival of another agent as a signal of a high sale opportunity in their service zone or an
increased level of competition. However, it is highly possible that agents are heterogeneous in
terms of their probability of changing zones following the arrival of new competitors. Some
agents may be more likely than others to scatter. The question, then, is how this heterogeneity
in scattering affects their performance — namely, whether it allows drivers to achieve a higher
utilization rate. Responding to new entrants in a service zone by increasing the probability of
leaving could hurt or help sales. The arrival of a competitor could really be a sign of a high-sales
opportunity. If that is the case, scattering may result in a low utilization rate. Moreover, agents
will spend time in moving to other service zones, which may further decrease the utilization
of the agents. On the opposite side, the arrival of a competitor may increase the level of com-

petition significantly. Therefore, scattering would be beneficial for the agent if she moves to
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another service zone where she has higher chance of making sales. Thus, we test the following
pair of competing hypotheses:

Hypothesis 2A.When agents are more likely to change their service zone following the
entry of a new competitor, they have a higher utilization rate.

Hypothesis 2B.When agents are more likely to change their service zone following the
entry of a new competitor, they have a lower utilization rate.

We illustrate the ambiguity in Hypothesis 2 in AppenBiX2 We test this hypothesis and
compare the magnitude of the effects of scattering behavior in the performance of the individ-
ual driver and the whole system in Section 6. Our empirical analysis resolves this theoretical
ambiguity. In the next section, we provide the details and descriptive statistics of the data set

that we have gathered to test these hypotheses.

2.4. Empirical Setting and Data

2.4.1. Empirical Setting

In this study, we have collaborated with 99Taxis, one of the leading e-hailing platforms in
South America. 99Taxis was founded in 2012 and operates in over 399 cities in Brazil. At the
time of our analysis (September 2014), the company had over 19,000 taxi drivers in Sao Paulo.
Similar to many other e-hailing taxi platforms, customers could see all available taxi drivers
around their location via the mobile phone application, and they could use the application to
make a ride request.

We obtained access to anonymized, high-frequency, hyperlocal information from the GPS

logs of all the drivers in the network working in Sao Paulo during our period of analysis. Our
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data set records the status and location of each driver (latitude and longitude) at a given time
whenever they are logged in. FiguZ&2 shows a sample path followed by a driver during a
10-minute period.

Such data is also available to customers and drivers in real time through the e-hailing ap-
plication and can potentially influence the behavior of drivers. One of the company’s investors
noted that over time, drivers realized how their revenue could increase if they used smartphone
with 3G services instead of an old phone with a prepaid services pladésb&runch 207156
The reason is that a smartphone allowed them to access richer real-time spatial information,
such as the location of competing drivers on a map. Therefore, this data set is very appropriate
to analyze the central question addressed in this paper: how the information on the entry of a
new competitor to a zone affects the behavior of the other drivers in that zone. Moreover, this
data set is a great source to investigate differences in the degree of driver sophistication in terms
of how drivers react to available information and how these differences translate into sales and
system efficiency.

While the GPS logs provide very rich information, they require substantial preprocessing.
As FigureZ2indicates, the different observations for a driver occur at different interval lengths.
Moreover, observations are not recorded at the same time for different drivers—i.e., we may
have a record at 12:02:17 on Monday for one driver and a record at 12:02:18 on Monday for
another driver. Therefore, we transform our data to track the drivers’ movements in hour and
minute levels. The following tables illustrate how we transform the data. The first table is the

original data:
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/ﬁoam
2:00:01 PM 2102:5§PM
2:03:30RM
2:03:33PM

y:ss P
2:04:4M4I

2:07:17 P

2:09:37TM

2:10:31 PM

Figure 2.2. A data record from a driver on September 11 between 2:00 p.m. and 2:10 p.m

Time Longitude|| Latitude|| VacanStatus
12:01:17 g1 912 1
12:02:34|  gn 22 0
12:03:10||  gx 932 0
12:03:30| g a2 1

Then we transform this data into the following information set:

Time Longitude Latitude VacanGtatus
12:01 g11 g12 1

12:02 ) Stxa (0 Thcen | MmOt | poun (xt1n0)
12:03)) 1stlo0-tihean | L0mmtlOb-shmmn | 1 gn (1x8e0-000)
12:04 941 942 1

Note thatVacant Statuslenotes the availability of the driver according to the platform. How-

ever, a driver may have picked up a passenger on the street without using the platform and may
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be still logged in or may have used a different e-hailing service. In such a case, other drivers
who use the application will see this driver as vacant; hence, they may think that this driver is
still a competitor for therf.

Our data covers seven consecutive days in the month of September 2014. In order to under-
stand spatial effects, we divide the space into a grid of square service zones. Our base analysis
usest00 square zones a0 x 500 m?. We also conduct robustness checks by considering dif-
ferent square sizes (e.g50 x 250 m?), as we explain in detail in SectidhZ. We use subscript
zto denote the zone of a given driver. Our data set allows us to track the evolution of drivers and
zones over time. In our empirical analysis, we include hourly weather data and other drivers
of zone-level user interest, such as locations of public transit stops, and over 18,000 points of
interest in the city center of Sao Paulo, such as hotels, restaurants, cinema and theaters, schools,
and hospitals, to check whether our results are robust to prevailing demand levels. Moreover,
we construct a detailed set of dependent, independent, and control variables that capture this
evolution, which we describe next.

There are two types of variables that capture information relevant to a service zone: vari-
ables that capture predictable variability in sales based on the historical evolution, and variables
that capture the real-time status and transitions in a zone. We also construct driver-level vari-
ables that encode some important aspects of driver behavior and outcomes.
2.4.1.1. Predictable Variability in Sales.We want to measure the overall level of sales in a

dayd, hourh, and zonez. First, note that we know the status of taxi drivers whenever they

5Therefore, in addition to considering all drivers logged into the platform, we also make a robustness analysis
where we analyze the drivers with the utilization higher than some specific thresholds, which are explained in
detail in SectiorZ1. Note that Easy Taxi was the biggest competitor of 99Taxis; Uber had not entered Brazil's
e-hailing market at the time.
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are logged in. Therefore, any change from vacant to busy means that a sale has been initiated
through the platform.
We first calculate the number of sales occurring in each zodayd and hourh. We denote

this value bys, .. We use the following model to estimate time and location fixed effects:
(2.1) Sqh. = SalesTimegy, + SalesZone, + €qp, »

whereSalesTime, ), is time fixed effect,SalesZone, is location fixed effect and, . is the
error term” Note thatSalesTime,,, can be interpreted as predictable temporal (hourly and
daily) variability in sales andalesZone, can be interpreted as predictable spatial variability
in sales based on the historical evolution.

2.4.1.2. Real-time Information. In this section, we define variables identifying the transition
from a given minutd to the next onet+1, and some variables capturing the status at a given
minutet (in a given day and hour).

We have several independent and control variables that are constructed through observing
changes from minuteto ¢ + 1. First, we defineNewDrivers ; as the number of new drivers
entering zone from other zones between timeandt + 1. Second, we deno¥acant , as the
number of vacant taxis according to the platform in zeneninutet¢. This is not a transition
variable but individual drivers may observe five possible changes in the status of those vacant
taxis att + 1:

(1) Some of them may be still vacant in the same zone. Number of such drivers is denoted

by Vacantin ;.

’Mean value of estimatefalesTimg¢SalesZoneespectively) is 3.172 (3.222 respectively), and standard deviation
is 3.672 (6.673 respectively).
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Driver monitors the changes in
the platform: NewDrivers,,,
VacantOut,,, Vacantin,,,
GetOut,,, GetIn,,
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Location and vacancy are

monitored to determine
to move or stay whether driver moves or stays
due to changes in the platform,
i.e., ChangeZone;,

Driver decides

Figure 2.3. Sequence of events for a given driver

(2) Some of them may be still vacant in a different zone— i.e., they may have changed their
zone and be still vacant. Denote the number of such drivekébgntOut ;.

(3) Some of them may find a passenger during this one-minute observation period in the
same zone. Number of such drivers is denote®biin, ;.

(4) Some of them may first change their zone and find a passenger in the new zone by minute
t + 1. Denote the number of such drivers GgtOut ;.

(5) The remaining drivers may log out from the system, so they suddenly disappear. We
summarize the sequence of events in FigfiB2
2.4.1.3. Driver Variables. In this subsection, we define some driver-level variables. We start
with a dependent variable. We define the binary vari&ilangeZong, wherel denotes that
individual driveri changes her service zone ahdenotes that she stays in her zone at minute

t.® We definePercentageBusy ;, as ratio of minutes that a driveiis busy— i.e., the minutes

8 We assume that drivers monitor changes in the platform from mintaté + 1 and they either move to another
zone or stay in the same zone. To identify whether they move or stay, we compare the zone of the driver at minute
t+1 andt+ 2 (where the one-minute difference is referred to as implementation time, and for robustness purposes
we also compare the zone of the drivertat 1 andt + 3— i.e., implementation time is set to two minutes). If
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Figure 2.4. Heterogeneity in PercentageReact

that a driver is carrying a passenger hailed through the platform to the total number of minutes
that she is logged into the system in a given hbwand dayd. Note that a driver may carry

a passenger from other platforms, so we carry out robustness checks where we consider this
concern. We calculateercentageReagtwhich is defined as the ratio of times a driver changes
zones to the total number of times the driver is presented with the choice of leave or stay at the
service zone following a competitor’s entry; i.e., this ratio presents the scattering frequency of
the driver’ As demonstrated in Figui&2, drivers are heterogeneous in how they respond to

the entry of new competitors. In SectiBb, we use quartiles to categorize each driver.

the zones are different, we assume the driver changes her zone (seéZE3gareletails). We are interested in the
behavior of vacant drivers since busy drivers do not need to decide to move or stay in order to find a passenger.
Therefore, we only consider the drivers who are vacantiat 1, andt + 2.

9Note that we can calculate this variableiju, (driver, day, hour) levels and we have a robustness analysis with
that level as well.
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Table3=3 provides summary definitions for all variables included in our models. We test
our hypotheses in two different sections. First, we analyze the effect of new drivers on scatter-
ing/herding decisions (namely H1) in Section 5. Then, we analyze the effect of scattering on

the performance of the individual driver (H2) in Section 6. Before these analyses, we provide

descriptive statistics of variables that will be used for these analyses in next sections.

Table 2.1. Definition of Variables

Variable

Description

NewDrivers ;

Zone-level variables
Number of new drivers entering zonet timet.

Vacant ; Number of vacant drivers in zoneand timet.
Getln.; Number of vacant drivers in zoneand timet who stay in the same zone after 1 minute and hail a passenger.
GetOut ; Number of vacant drivers in zone z and timeho move to another zone after 1 minute and hail a passenger.
Vacantlin ; Number of vacant drivers in zoneand timet who are still vacant after 1 minute in the same zone.
VacantOut ; Number of vacant drivers in zoneand timet who are still vacant after 1 minute in a different zone.
SalesZong Spatial predictable variability in sales from zone
Driver-level variables

ChangeZong Indicator that shows whether drivechanges her zone time
PercentageBusy, Proportion of time that driveris busy during houh and dayd.
PercentageReact Fraction of time that drivei changes her zone when there is an entry to her zone.
PercentageRea€ K; Indicator that shows whether PercentageReagreater than (K-I) quartile,

but less than K quartile of all PercentageReact values.

Other variables
RushHour Indicator for rush hour defined for 6am-9am and 4pm-7pm.
Weekend Equal to 1 if day of observation is Saturday or Sunday.
SalesTimg,, Temporal predictable variability in sales.
2.4.2. Descriptive Statistics

Note that we focus our analyses on the city center of Sao Paulo, which is a square-shaped

region around 10 kilometers by 10 kilometers because we have a significant amount of infor-

mation for each zone of the city center. On the other hand, there are many zones outside the

city center where either sales occur very rarely or few vacant drivers go (see BEifufeFor

example, average sales in an hou6.i394 per zone in the city center, but this value is only

1°Similarly, Buchholz(Z0T% focuses on one borough, i.e., Manhattan, and two airports, i.e., JFK and LaGuardia,
in the analysis of New York taxi data since over 90 percent of rides in New York taxi data originate from these

three areas.
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Figure 2.5. Color in each zone represents the hourly average sales of that zone and its
neighbors in Figure (a) and average vacant driver number per minute in Figure (b). The
data for (a) is filtered so that only the zones with positive sales are colored. Similarly,

the data for (b) is filtered so that only the zones with average vacant drivers more than
0.5 are displayed

0.167 per zone outside of the city center. Similarly, there 4299 vacant drivers in a minute

per zone in the city center, but we have o0ly83 vacant drivers outside of the city center.

Table 2.2. Driver-level and zone-level variables

Driver-level variables

Variable Mean SD Min Max N
ChangeZong 257 437 0 1 11,634,626
RushHouy; (H1) 256 436 O 1 11,634,626
Weekengd (H1) A74 379 O 1 11,634,626
PercentageReact .301 .138 0 1 18,246
PercentageBusy, .263 .337 0 1 712,228
RushHour,;, (H2) .215 411 O 1 712,228
Weekend; , (H2) 204 .403 0 1 712,228
Zone-level variables

Variable Mean SD Min Max Obseations
NewDrivers ; 1593 2228 O 38 4,442,193
Vacant ; 4299 5835 O 68 4,442,193
Getln, ; 0623 .307 O 13 4,442,193
GetOut ; .0358 .206 O 6 4,442 193
Vacantin ; 2.706 4168 O 53 4,442,193
VacantOut 1.367 2.103 O 2 4,442,193
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In TableP2, we provide summary statistics, including mean, standard deviation, and min-
imum and maximum value of each driver-level variable. We obséB/@46 drivers make
11,634, 626 scattering or herding decisions in total throughout the observation period. The first
three of the variables listed in Tal#&2 are related to these decisions. For exaniler percent
of these decisions are scattering. The timing of these decisions has the following st&fistics:
percent of these decisions are given in rush hourlantdpercent of them are given during the
weekend.

On average, a driver chooses to scaierl percent of the time among all the scatter-
ing/herding decisions she makes. Note that ti&s246 drivers stayed logged into the platform
during712, 228 driver hours in total, and rows 5, 6, and 7 of TaBl2are related to these hourly
driver-level observations. For example, on average, drivers are2tusyercent of the time
that they are logged in, in a given hour. Of th&3e, 228 observations21.5 percent occurred
during rush hour and0.4 percent of them during the weekend.

In Table2Z2 we report statistical summaries for zone and driver-level variables that are
mostly used for the first hypothesis. We havd42, 193 combinations of zone (in city center)
and time (minutes). On average, there afé drivers newly entering a zone in a minute. We
observe on average299 vacant drivers per zone in a given minu2e70 of these drivers stay
vacant in the same zone ah@67 of them stay vacant in another zone in the following minute.

In the next two sections, we analyze our hypotheses. The next section provides the analysis
of the effect of real-time information on location choice of agents (H1). In Se&iBnwe

analyze how heterogeneity in decisions affects the performance of an individual driver (H2).
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2.5. The Effect of Real-Time Information on Agent Scattering

2.5.1. Econometric Model

In this section, we explain the regression models we use to analyze the effect of newly enter-
ing agents into a service zone on the decisions of the current agents, as discussed in Hypothesis
1. Our unit of observation is at taxi driver and time level. We use logit and probit specifica-
tions to model how the decision to stay in the same zone or move to another zone depends on
the entry of new competitors. To test Hypothesis 1, an ideal experiment would randomly show
different competition situations to drivers and track their reaction to those situations. Such an
ideal experiment is not feasible in a production environment, so we have to restrict our analy-
sis to the observational data generated during the live operation of the platform. In our study,
we follow vacant drivers and study how they react to the different competition situations that
naturally occur during their work shifts. Note that this could create some endogeneity concerns
because the different competition situations drivers face could be correlated with unobserved
factors that drive their decisions. For example, an abundance of vacant drivers could be due
to an unobserved demand change that attracts more vacant drivers to a zone, which could also
affect whether drivers choose to stay in or leave the zone. We discuss how this could potentially
bias our results, and we supplement our analysis with the analysis of a subset of our data where
such concerns are minimized.

We use logit regression with some fixed effects. We conduct robustness checks with logit
regression with random effects and probit regression with fixed/random effects with robust stan-
dard errors, and we obtain consistent findings. Step by step we add controls and check our

hypothesis. Lei denote the driver antldenote the time of the observation. We use control
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variables including individual fixed effects of the driver (denotedulytime fixed effects by
hour (denoted by,,), and location fixed effects where we use the row and column of the driver’s
zone. We denote such column and row effectsbgndn,. The family of specifications we use

is the following:

pit := Pr(Yy; = 1|NewDriver,C) = F(ay+ ayNewDriver + CLB3+ Ye+n, + G+ Ca + 1)

whereC denotes the matrix for control variablés, is the decision of thé” driver at time
t, c is the column,r is the row of the driver's zone, antd denotes thénour and d the day
that t belongs to. We consider predictable variability in sales based on the hour and day of the
observationSalesTimeas well as the locatiorgalesZongeseparately under matriX. Note that
we havel'(z) = ¢*/(1 + ¢*) for the logit model and”’(z) = ®(z) for the probit model, where

® is standard normal cumulative distribution function.
2.5.2. Results

In TableP=3, we provide our first result for Hypothesis 1 based on the fixed effects logit
model. Note that we use both individual-driver fixed effects and location fixed effects in all
the models described in this table. In addition to these fixed effects, Model (5) also considers
hourly and daily time fixed effects.

We observe that the coefficient diewDriversis significant and positive for all of these
models. Therefore, a new competitor’s entrance increases the probability a driver will change
the zone. Hence, Hypothesis 1B (scattering) is supported by these models. Note that driver,

location, and time fixed effects are included in Model (5) and we have the highest log-likelihood
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Figure 2.6. Marginal effect of NewDrivers on probability of changing zone; figure
uses Model (5) from Tablé=3

among all the models listed in TalfE8™ We observe that the predicted probability of changing
the zone increases almost linearly as the numbétefDriversincreases (see Figutes).™
Each additional driver increases the probability of changing the zone almost 1 percent.

For robustness of the results reported above, we consider different sizes for each square
zone. Instead df00m x 500m dimensions for each square zone, we construct zones(hy x
250m on the same city center map. We also change the implementation timd fininute to
2 minutes.

Specifically, we consider three additional setups: (1) same zone setup, but longer implemen-
tation time; (2) smaller zones with the same implementation time; and (3) smaller zones with
longer implementation time. We observe thNswDrivershas a significant and positive effect
on the probability of changing the zone for these setups as well, confirming our support for
Hypothesis 1B. The results of these alternative specifications and additional robustness checks

are described in detalil in SectifZ’l. We also perform an analysis with a binary version of

e provide the results of other regression models, including random effects logit and probit, in our online
appendix.

L2For this calculation, we use Model (5) from TaBIBand calculate the marginal effectéwDriverson Change-
Zone
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1) @) 3) 4) (5)
NewDrivers 0.0242* 0.0244* 0.029%¥* 0.0338** 0.0323**
(29.75) (29.95) (35.35) (35.92) (34.09)
SalesTime 0.0341* 0.0330** 0.0380** 0.0362** 0.0346**
(50.07) (46.45) (52.40) (49.41) (28.37)
SalesZone -0.0291 -0.0292** -0.0303** -0.0195** -0.0194**
(-57.03) (-57.14) (-59.35) (-34.57) (-33.47)
RushHour -0.0293* -0.0153* -0.00825
(-5.33) (-2.79) (-1.49)
Weekend 0.238* 0.165**
(36.61) (24.68)
Getln -0.0251* -0.0248**
(-5.18) (-5.12)
GetOut 0.0200 0.0196*
(2.65) (2.61)
Vacantin -0.029z* -0.0287**
(-58.93) (-54.87)
VacantOut 0.0356* 0.0344*
(36.55) (35.02)
Observations 1,158,965 1,158,965 1,158,965 1,158,965 1,158,965
AIC 1180087.0 1180060.5 1178738.7 1174663.0 1173607.4
BIC 1180601.4 1180586.9 1179277.0 1175249.2 1174516.6

Log-Likelihood -590000.5
X2 10672.6

t statistics in parentheses

All models estimate a logit regression with row, column, and driver fixed effects.
A random 10% sample is taken to estimate the models.

Dependent variable i§hangeZone

Model (5) considers hourly and daily fixed effects.

*p < 0.05,* p < 0.01,** p < 0.001

-589986.3
10701.0

-589324.3
12024.9

-587282.5 -586727.7
16108.6 17218.2

NewDrivers whereBinaryNewDriver , is 1 if NewDrivers ; > 0, and 0 otherwise. We observe
positive and significant estimates for this variable too, which further supports our results.

As noted inManski (1993, an individual's decision can be affected by her peers’ decisions,
which means that there can be a social interaction between each individual. The models we
consider above may suppress such peer effects, which may result in an identification problem

(seeManskiT993for details). We test our first hypothesis with a different model setup and a
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method where we also consider peer effects. For this purpose, we use the spatial autoregressive
(SAR) model to test Hypothesis 1. Our results for the SAR model also show that agents scatter
as the number of new drivers increases. The details of the model and the results are described

in AppendixB=22

2.6. Heterogeneity in Agent Response and Utilization
2.6.1. Econometric Models

In this section, we start by describing the model we use to analyze how heterogeneity in
agent behavior affects agent utilization. In the context of e-hailing taxi platforms, agent uti-
lization is basically the ratio of busy minutes divided by the total number of minutes that the
agent is logged into the platform. We categorize each driver by using the quarBeragnt-
ageReactwalue (fraction of times that a driver changes the zone following a competitor’s en-
try) of all drivers. For examplePercentagReact)2; = 1 if PercentageReacvalue of dri-
ver i is greater than the first quartile and less than the second quartile. Similarly, we define
PercentagReact()1;, PercentagReact()3;, andPercentagReact(4;. To investigate the ef-

fect of scattering oPercentageBusy »,, namely H2, we use the following regression model

PercentageBusy; 4, = o + oy Percentage React_Q2; + cp Percentage React_Q)3;

+ agPercentage React_QQ4; + C{’dvhﬁ + €idh

wherei represents the drivef, represents the hour, control variables are denoted by matrix

C, andg; 4, is the error term. Note that control variables inclutleekendRushHour and
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SalesTime Since our dependent variable, namBrcentageBusyis a fraction, we also use
a fractional logit/probit model, which is commonly used in econometric analysis of fractional

dependent variables (sPapke and Wooldridige T9R6The model has the following form:

Ely|z] = G(Bx)

where0) < G(z) < 1foranyz € R. The most commonly used functions arz) =
exp(z)/[1 + exp(z)] for the logit model and~(z) = ®(z) for the probit model, wher@ is the
standard normal cumulative distribution function. Similar to the binary logit model discussed
in SectionZ®7, the marginal effect of; on E|y|x] is 0E[y|z|/0x; = B;9(%), whereg(z) =
exp(z)/[1 + exp(z)]*. Therefore, sign of; is sufficient to declare the direction of the marginal

effect.
2.6.2. Results

TableP4 reports the effect of heterogeneity in scattering on agent utilization. We observe
that coefficients foPercentageReaajuartiles are positive, significant, and increasing in the
order of the quartile. Therefore, we can conclude that drivers with more frequent scattering
behavior as a response to a newly entering competitors have a higher utilization rate than the
drivers with less frequent scattering behavior.

We also observe that the difference betwPercentagReact QlandPercentagReact Q(k-

1) is highest for the fourth quartile. Hence, increasing the scattering behavior to the highest
scattering category brings the highest additional utilization.

Note thatPercentageReacs a driver-level variable. For robustness of the results reported

above, we add the time dimension to this variable. We ddé¥ereentageReactHourly as the
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Table 2.4. Effect of Strategic Scattering on Agent Utilization

(OLS-1) (OLS-2)  (Frac Logit-1) (Frakogit-2)

PercentageReact Q2 0.00501 0.00238 0.0283** 0.0150*
(4.87) (2.33) (5.01) (2.66)
PercentageReact Q3 0.0125 0.00864** 0.0692** 0.0508**
(11.73) (8.22) (12.05) (8.83)
PercentageReact Q4 0.0350 0.0299** 0.183** 0.160**
(27.42) (23.62) (27.72) (24.13)
Vacant -0.00408* -0.00483**  -0.0237** -0.0278*
(-64.13) (-75.90) (-63.44) (-73.35)
Weekend 0.0585*  0.0775* 0.305** 0.409*
(33.70) (45.71) (33.77) (45.44)
RushHour -0.0404* -0.0792** -0.243** -0.415*
(-16.22) (-31.65) (-17.20) (-29.01)
SalesTime 0.0258¢ 0.125*
(123.65) (116.63)
Constant 0.250* 0.235* -1.093** -1.177
(106.34) (100.95) (-86.83) (-92.37)
Observations 713605 713605 713605 713605
R? 0.061 0.081
AIC 430222.5  414859.4 686458.2 678580.0
BIC 430612.8  415261.1 686848.5 678981.7
Log-Likelihood -215077.3  -207394.7 -343195.1 -339255.0
2 42461.1 57231.7

t statistics in parentheses

Dependent variable is PercentageBusy, which is a fraction.

All of the models above use daily and hourly fixed effects.

*p < 0.05,* p < 0.01, ** p < 0.001
ratio of times that a driver changes zone to the total number of times that the driver is presented
with the choice of leave or stay in the service zone in HauFhis variable helps us to observe
the effect of heterogeneity in the scattering behavior of the individual driver as well. We observe
thatPercentageReactHourlg positive and significant as well (see TaBI& of the Appendix).

Taken together, these results provide strong support for Hypothesis 2A: drivers who are more

likely to respond to the entry of a new driver by changing zone achieve higher utilization rates.
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2.7. Robustness Checks and Alternative Explanations

In the following section, we conduct a battery of robustness checks. These include consid-
ering smaller zone configurations; longer implementation times; a placebo check with a taxi
data set pertaining to a time period when no real-time competition information was available to
drivers; and taking into account the effects of demand shifters, street hailing, and driver experi-
ence. Overall, the results strengthen our claim that drivers use real-time information about their

competitors and scatter as a response to the entry of new drivers.

2.7.1. Zone Configuration and Implementation Time Specification

In our analysis we focus on a 10xkdn? area at the city center of Sao Paulo. We define

our zones as 500x5002 squares. To show that our results are robust to the specification used

to outline the zones, we repeat our analysis with increased granularity by focusing on zones
composed of 250x25@:% squares. Considering smaller zones might impact our results, as the

number of entries into and exits from a specific zone depend on the zone configuration adopted.
First, under this alternative specification the average number of drivers per zone decreases.
Second, the exit ratios (the percentage of drivers who change their zones) as well as the total
number of drivers who change the zone will increase, since a driver whom we considered to be
staying in her service zone under a bigger zone configuration might be considered as changing
her zone under the smaller zone setting. Hence, we will observe the same number of drivers in

total but more zone-changing decisions.
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We find that the new driver entry effect on zone-changing behavior remains significant and
increases in magnitude under this smaller zone configur&tidhus, our main result-the find-
ing that competition leads to scattering—is robust to zone configuration.

Next, we analyze the sensitivity of the new driver entry effect to implementation time. Un-
der this implementation time setting, a driver is considered as having changed her zone if she
moved to another zone within two minutes of observing a new driver enter her service zone.
Consequently, the number of drivers who change their zones should either stay constant or in-
crease, whereas the number of new drivers entering into the zone is not changed. Therefore,
we observe an increase in the magnitude of new driver effect on zone-changing behavior under

every setting?
2.7.2. Placebo Test

In the preceding sections, we showed that sharing real-time information about their com-
petitors with service agents alters agents’ behavior. Agents interpret the arrival of new agents
into their service zone as an increase in competition and tend to change their service zones as
a response to this increased competition. This result implies that drivers monitor the competi-
tion level in their zones by leveraging visual information contained in the e-hailing application.
However, one could argue that such scattering behavior could be unrelated to the availability
of real-time information and that we would have observed such scattering behavior in face of
increased competition even in the absence of real-time information. To understand the impact
msmaller zone configuration, the coefficientNewDriversin the five different models that we use
for TableZ=3 are0.0723, 0.0732, 0.0733, 0.0757, and0.0735 respectively. All these estimations are statistically
significant.

“We observe the textitNewDrivers effect as 0.0339***, 0.0339***, 0.0385***, 0.0387***, 0.0366*** by using
the same models noted in Taldes.
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of new driver entries on agent behavior in the absence of real-time information, we conduct a
placebo test on a different data set in a setting where real-time information was not available.

We use a data set from an Asian city that covers a time span prior the introduction of e-
hailing applications, in May 2008. E-hailing applications were introduced in early 2012 in
Asia. Thus, during our period of observation (May 2009) drivers do not have access to real-
time information provided by e-hailing applications. The analysis of this data set enables us
to test whether the scattering decision of drivers whom we observed in the Sao Paulo data set
could be caused by factors other than the real-time competition information provided by the
e-hailing application.

This data set contains 2.02 millions individual trip records from 3,418 taxis during 29 days
pertaining to May 2009. Each taxi GPS tracking record contains information on the taxi ID, time
stamp the observation was recorded, geographic coordinates, and vacancy status. Following the
procedure described in Sectificdl, we create 2,000 square zones of 500xb30

We follow the econometric model described in detail in Sedldnlto test Hypothesis 1.

Our observation unit is at taxi driver and time level, and we use a logit specification to analyze
how staying in or leaving the zone depends on the entry of new drivers when none of the drivers
can access real-time information. Similar to the analysis in SeEimi, we include individual,

time and location (row/column) fixed effects. Moreover, we analyze the predictable variability
in sales based on hour, day of the weB&lesTimas well as the locatioBalesZone

As observed in TablE5, the coefficient associated wiewDriversis significant anaeg-
ativefor all these models. Hence, in the absence of real-time information sharing, there is no

evidence that Hypothesis 1B (scattering) holds. The results suggest that drivers tend to move

15An analogous data set with information on Sao Paulo drivers’ behavior before the introduction of e-hailing
services was not readily available.
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in a positively correlated way if no real-time information is available to them. Thus, the claim
that the scattering behavior is linked to the availability of real-time information provided by the

e-hailing application is consistent with the results obtained in this data set.

2.7.3. Effect of Traffic Density and Traffic Regulations

In the previous sections, we showed that the entry of new drivers into a zone induces vacant
drivers to change their zones. These results indicate that competition leads to a scattering be-
havior. Thus, Hypothesis 1B is empirically supported. However, it could be argued that traffic
conditions, not the entry of the new drivers, leads to scattering behavior.

High traffic density might impact our results in two opposite directions. First, heavy traffic
might prevent drivers who are willing to change their zones from doing so. Therefore, even
if drivers want to change their zones (scatter) due to the entry of new drivers, they would be
unable to do so due to heavy traffic. If heavy traffic conditions prevent drivers from changing
their zones, our results provide a lower bound.

Second, drivers might prefer to stay in their zones but traffic conditions might push them
out. If traffic conditions are pushing drivers out of their zones, there will be more entry into
and exit from zones. In this case, our results would provide an upper bound, as we would be
attributing traffic-induced zone-changing behavior to the new driver effect.

We devise two methods to eliminate the concerns regarding the impact of traffic conditions
on the analysis of Hypothesis 1. First, we analyze two different data samples with light and
heavy traffic respectively. Second, we calculate the speed of the drivers and measure the new
driver entry effect on zone-changing behavior in data samples with high and low speeds. Our

analysis shows that drivers react more strongly to the entry of new drivers during periods with
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Table 2.5. Effect of Entry of New Drivers on Decision to Change Zone in the Absence
of Real-Time Information

(1) (2) ) (4)
NewDrivers -0.0419***  -0.0428**  -0.0138*** -0.0137**
(-27.88) (-28.36) (-66.64) (-66.24)
SalesTime 0.0102***  0.00569*** 0.000512***  0.000761***
(10.58) (4.91) (3.80) (4.75)
SalesZone -0.000504*** -0.000476** -0.000577*** -0.000579***
(-3.43) (-3.24) (-28.44) (-28.52)
Weekend -0.0464*** 0.00255**
(-6.97) (2.88)
Getln -0.133%** -0.133***
(-111.93) (-111.91)
GetOut 4207 0.420***
(305.48) (305.50)
VacantOut 0.427*** 0.427***
(853.29) (853.03)
Vacantin -0.0726*** -0.0725***
(-344.82) (-344.57)
Constant -0.820%** -0.787%** 0.238*** 0.237***
(-5.90) (-5.66) (12.55) (12.44)
Observations 921591 921591 921591 921591
R? 0.563 0.563
AIC 1072007.8 1071961.2 421486.3 421480.0
BIC 1113440.1 1113405.2 462965.5 462970.9
Log Likelihood -532472.9 -532448.6 -207208.1 -207204.0
X2 61052.1 61100.8

t statistics in parentheses

All the regressions include row, column, hour, and driver fixed effects.

A random 10% sample is taken to estimate the models.

Logit model is used in regressions (1) and (2).

Due to computational challenges, a linear probability model was used in regressions (3) and (4).
*p < 0.05,** p < 0.01, ** p < 0.001

light traffic. Moreover, our results are consistent with Hypothesis 1B, with scattering being

observed regardless of prevailing traffic conditions and data samples considered.
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In order to observe whether heavy traffic prevents drivers from changing their zones or
pushes them out of their zone, we compare time periods with light and heavy traffic conditions.
If heavy traffic is pushing drivers out of their zones, we should observe an increase in the
magnitude of the new driver entry effect on zone-changing behavior under heavy traffic; the
coefficient measuring the new driver entry effect would reflect the combined effects of zone-
changing behavior under heavy traffic and new driver éfitr¥hus, if heavy traffic pushes
drivers out of their zones, we would expect the estimated new driver effect to be bigger under
heavy traffic.

To construct the subsets with light traffic conditions, we consider the time periods between
10:00 a.m. and 12:00 p.m. in the morning and 2:00 p.m. and 3:30 p.m. in the afternoon during
weekdays. In Sao Paulo, the morning shift of primary schools ends at 12:20 p.m. and lunch
break is around noon. Hence, the light traffic subset includes the time periods between the
morning and afternoon rush and between the afternoon and evening rush. This subsample was
chosen based on our analysis of average hourly traffic information provided by Google Maps.
Traffic is relatively light during these perio&§In contrast, the heavy traffic period subsample

includes the evening rush (between 4:30 p.m. and 6:30 f®m.).

16t is possible that demand level under heavy traffic and light traffic are different, and that this difference in
demand size impacts how drivers react to the entry of new drivers. For instance, drivers might scatter when
potential demand is high and herd when potential demand is low. To make sure that the heterogeneity in drivers’
reaction to new driver entry under different traffic conditions is not driven by the difference in demand size, we
conduct additional analyses. Our analyses show that drivers scatter due to the entry of new drivers regardless
of prevailing traffic conditions. Likewise, drivers’ scattering probability increases under light traffic, even after
controlling for demand. Moreover, the analyses in Seddiohdindicate that although the magnitude of the new
driver entry effect on zone-changing behavior is correlated with demand, entry of new drivers always results in
scattering.

1This information is obtained from the traffic section of Google Maps. The traffic density is represented through
visual maps.

8puring the morning rush, traffic density is higher in the arterial roads not in the city center. Since we restricted
our analysis to the city center, we only focused on evening rush.
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The first four columns in Tabl&® show that drivers tend to scatter as a result of new driver
entry. Furthermore, the estimated magnitude of the new driver effect is smaller in the subsample
with heavy traffic conditions. Thus, our results are not driven by the shoving impact of heavy
traffic. However, one possible concern is that time periods with different traffic densities might
also differ in terms of demand level. The results presented in the first four columns in Table
86 could be driven by prevailing demand characteristics. To eliminate this concern, we further
subsample our data set into two time periods with similar demand size (proxied by sales volume)
but different traffic densities. As observed in Figltd, the demand for service and the average
number of active drivers follow a similar pattern between 2 p.m. and 3 p.m. and between 6 p.m.
and 7 p.m. during the weekda¥sTraffic densities, however, differ markedly in these two time
periods; the last four columns in Tal##ed present results in line with the previous analysis. The
effect of traffic conditions on the zone-changing behavior of drivers is robust to demand levels.
These results provide strong support for Hypothesis 1B—i.e., that competition, and not traffic
conditions, causes the observed scattering behavior.

Next, we calculate the speed of drivers during a given RbuFhe average speed of the
driver serves as a proxy for traffic conditions; if the driver is traveling at a low speed, this is an
indication that traffic is heavy. Regardless of whether we control for traffic conditions, the main

results are still present and sizable. Hence, our results cannot be attributed to traffic conditions.

The average number of active drivers includes drivers who logged into the application and changed zone at least
once in a given hour.

20e first calculate speed by using two consecutive observations from the same driver observed in the same zone.
To calculate the average speed for a given zone and hour, we take the average of these speed observations as
long as there are at least five speed observations. We create a median split based on average speed information to
categorize high and low speeds.
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Table 2.6. Effect of Traffic on Strategic Scattering

Light Traffic Heavy Traffic Light Traffic Heavy Traffic
10 am-12 pn& 4:30 pm-6:30 pm 2 pm-3 pm 6 pm-7 pm
2 pm-3:30pm
NewDrivers 0.0358*** 0.0329*** | 0.0355*** 0.0322*** | 0.0331** 0.0290*** | 0.0276*** 0.0259***
(43.01) (37.27) (41.13) (35.08) (30.86) (26.03) (26.47) (23.59)
SaleTime 0.0250***  0.0240*** | 0.0726*** 0.0622*** || 0.0501*** 0.0439*** | 0.0732*** 0.0620***
(9.15) (8.79) (19.01) (16.24) (8.14) (7.11) (17.78) (15.01)
SalesZone -0.0378*** -0.0293*** | -0.0391*** -0.0280*** || -0.0375*** -0.0235*** | -0.0375*** -0.0239***
(-77.11) (-51.77) (-69.08) (-41.66) (-51.54) (-25.63) (-53.12)  (-27.85)
Getln -0.0223*** -0.0111* -0.0241%* -0.0185**
(-5.19) (-2.06) (-3.30) (-2.74)
GetOut 0.0223*** 0.0346*** 0.0204 0.0257*
(3.41) (3.98) (1.69) (2.33)
Vacantin -0.0221*** -0.0237*** -0.0227*** -0.0229***
(-44.70) (-41.66) (-33.88) (-35.42)
VacantOut 0.0358*** 0.0302*** 0.0302*** 0.0235***
(39.28) (32.15) (26.41) (20.89)
Observations 1776335 1776335 2245139 2245139 782413 782413 725271 725271
AIC 1817791.79 1813958.81 2206073.32201059.24| 716322.798/14599.774 705365.304 703794.818
BIC 1818374.12 1814590.7| 2206704.532201740.95 716831.884715155.141] 705871.053 704346.544
Log Likelihood -908848.9 -906928.4| -1102986.7-1100475.6] -358117.4 -357251.89 -352638.65 -351849.41
X2 27566.065 31407.048| 33652.904 38674.981 7193.63 8924.653 6306.017 7884.503

t statistics in parentheses

All models estimate a logit regression with row, column, and driver fixed effects.

Dependent variable iShangeZone
Only weekdays are considered.
*p < 0.05,** p < 0.01,** p<0.001
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Figure 2.7. Total sales and total number of active drivers in each hour

2.7.4. Effect of Demand Characteristics

Another concern is that drivers’ zone changing behavior might be a result of demand dy-

namics or street hailing. Additionally, we might be attributing drivers’ zone changes to new
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driver entries even when the change of zones would have taken place in the absence of driver
entry. In this section, we address these concerns. First, we control for location and time-specific
characteristics that might shift demand for service. Second, we explore other potential explana-
tions of zone-changing behavior and address the issue of street hailing.

The potential demand for taxi service that originates from a zone depends on population
characteristics, time of day, weather conditions, and various zone-specific characte#istics.
lon"ef al.(?0T7) use U.S. Census data, akdbra et al (2?0163 employ data from INSEE, the
French national statistics bureau, to obtain population characteristics of the areas under consid-
eration. To the best of our knowledge, a data set containing population characteristics of the Sao
Paulo city center is not readily available. As a result, we are unable to control for population
characteristics. Nevertheless, we collect data on locations of transportation services, points of
interest, and hourly weather to account for potential demand shifters in our analysis.

Transportation options in a region might impact the demand for service and the scattering
behavior of taxi drivers. Sao Paulo’s broad public transportation system serves almost 14 mil-
lion inhabitants daily. The subway of Sao Paulo is composed of five commuter lines and serves
more than 5 million passengers during weekdays. In addition to the subway, tram, and railway
systems, the city public transportation system also includes 16,000 buses. Through the Google
Places API, we collect data on the locations of 44 subway, 21 train, and 3,187 bus stations in
the city center of Sao Paulo, as well as the locations of taxi stations.

Apart from transportation systems, public places such as restaurants, cinema and theaters,
schools and hospitals might impact the magnitude of demand in the zones in which they are
located. We collect coordinates of more than 18,000 points of interest in the city center of Sao

Paulo using the Google Places API. The points of interests (POI) we geocode are restaurants,
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hotels, nightclubs, cafes, shopping malls, hospitals, schools, cinema and theaters, libraries, and
museums. We believe that these POI data cover most of the demand generators in Sao Paulo’s
city cente™*

Finally, weather conditions, such as rain or extreme temperatures, might impact demand
for taxi services. We collect hourly weather data for the city center of Sao Paulo, including
temperature, humidity, and weather conditions, such as rain, strong thunderstorms, mist, heavy
clouds, haze, and clear skies, from a weather website for the period of analysis.

We retest Hypothesis 1 after controlling for transportation, points of interest, and weather
data. Tabl& 7 shows that Hypothesis 1B—i.e., that competition leads to scattering behavior—
is robust to the inclusion of demand shifters.

In addition to demand shifters, changes in demand level might impact how drivers react
to the entry of new drivers. Changes in potential demand could potentially induce drivers to
herd instead of scatter as a result new drivers entering their zone. So that we can show that
our results are robust to changes in demand size, we separately analyze two time periods with
different demand sizes but an approximately equal number of average active drivers.

Demand size and distribution at a given hour can impact the zone-changing behavior of
drivers in three different ways. First, fixing the number of drivers in a given zone, entry of a
new driver generates a lower marginal decrease in the probability of capturing a unit demand
when demand is low. Second, when demand is low, the search cost—i.e., the sum of fuel costs
and the opportunity cost of time— might well exceed the expected gain obtained by cruising.
Third, during low demand hours, especially during the night, demand might be concentrated in
2lwe searched for events, such as festivals and football games, which might impact demand. No such major event

took place in the city center of Sao Paulo during the time period of our analysis. There was a soccer game that
took place in the Arena Corinthians on September 3, but the stadium is located far from the city center.
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1) @ (©)] 4 () 6) (1) (8)
NewDrivers 0.0286***  0.0309***  0.0284*** 0.0307*** | 0.0233**  0.0261**  0.0237***  0.0257***
(33.43) (32.71) (32.5) (31.75) (26.21) (26.77) (26.42) (26.32)
SaleTime 0.0355***  0.0361**  0.0369*** 0.0373*** | 0.0427**  0.0427***  0.0422***  0.0423***
(28.73) (29) (29.38) (29.46) (29.02) (28.85) (28.67) (28.54)
SalesZone -0.0307***  -0.0193***  -0.0309*** -0.0196*** | -0.0107*** -0.00287*** -0.0107*** -0.00316***
(-59.59) (-33.41) (-58.65)  (-33.10) (-14.16) (-3.65) (-14.26) (-4.00)
Weekend 0.2471%* 0.181*** 0.249***  0.188*** 0.235%** 0.183*** 0.233*** 0.184***
(36.38) (26.78) (36.64) (27.06) (26.9) (20.72) (26.69) (20.77)
Getln -0.0262*** -0.0264*** -0.0239*** -0.0217***
(-5.38) (-5.34) (-4.82) (-4.37)
GetOut 0.0325*** 0.0337*** 0.0291**+* 0.0301***
(4.33) (4.41) (3.8) (3.93)
Vacantin -0.0293*** -0.0293*** -0.0268*** -0.0262***
(-56.29) (-54.85) (-49.38) (-47.28)
VacantOut 0.0354*** 0.0355**+* 0.0302*** 0.0297***
(36.01) (35.36) (29.86) (29.25)
Hourly Weather Data No No No No Yes Yes Yes Yes
PTS No No No No Yes Yes Yes Yes
PTS x Time-of-Day No No No No No No Yes Yes
POls No No No No Yes Yes Yes Yes
POls x Time-of-Day No No No No No No Yes Yes
Observations 1156044 1156044 1106963 1106963 1106963 1106963 1106963 1106963
AlC 1176400.74 1172531.43 1125296.89121609.76 1120702.91 1117799.62 1120065.52 1117364.81
BIC 1177202.09 1173380.62 1126095.33122455.88 1121930.38 1119074.75 1121936.51 1119283.47
Log Likelihood -588133.37 -586194.71 -562581.45560733.88| -560248.46 -558792.81 -559875.76 -558521.41
X2 13523.187 17400.499 12938.05816633.189| 17604.034 20515.331  18349.42421058.136

A random 10% sample is taken to estimate the models.
PTS : Public transportation stops
All models estimate a logit regression with row, column, hour, and driver fixed effects.

For each point of interest and locations of transportation stations category we created quartile vectors. These quartile vectors were included in

the regressions to account for demand shifters. However, the magnitude of the coefficient of new driver entry does not change significantly

when we include the exact number of venues, instead of their quartiles, for each point-of-interest category. Moreover, in order to control for

the temporal effect POIs, we divided the day to four time-of-day periods: midnight (12am-6am), morning (6am-12pm), afternoon
(12pm-6pm), and evening (6pm-12am), and created interaction variables of quartiles of POIs with time-of-day periods. These quartile of POls
and time-of-day interactions were included in the regressions (7) and (8) to account for temporal effects of demand shifters.

*p < 0.05,** p < 0.01,** p<0.001
a few specific zones; thus, the probability of picking up a passenger outside those specific zones
by cruising is low. Consequently, during hours of low demand, we should observe that drivers
are less inclined to scatter as a response to a new driver’s entry.

On the other hand, taxis charge 30 percent more from 8 p.m. to 6 a.m. in Sao Paulo. Hence,

even if demand is low, the increase in expected revenues obtained by picking up an additional
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customer might exceed the cost of searching for a new customer during these periods. Thus,
even under conditions of low demand, we might observe increased scattering behavior due to
competition during the night shift. Our empirical analysis determines which of these effects
dominates.

As we observe in Figurg1 (a), the period with the lowest demand for service is between
4 a.m. and 6 a.m. while the periods with the highest demand are 10 a.m. to 11 a.m., and 8 p.m.
to 10 p.m. In Brazil, taxis typically operate in two separate shifts of 8—12 hours, but we do not
know the exact time at which the shifts change. However, Figutéb) shows that the average
number of active drivers decreases between 4 a.m. and 6 a.m., hits its lowest point at 6 a.m., and
increases gradually afterwards until 12 p.m. This pattern suggests that the shift change usually
occurs sometime between 4 a.m. and 6 a.m. Thus, during this period drivers could be changing
zones frequently due to the shift change, and not as a response to the entry of new drivers. To
minimize the probability that the observed zone changes are due to shift changes, we focus on
the time period from 2 a.m. to 3:30 a.m., where demand is low and shift changes are unlikely.
Moreover, the average number of active drivers between 2 a.m. and 3:30 a.m. is close to the
average number of active drivers between 9 a.m. and 10 a.m., but the total demand between 9
a.m. and 10 a.m. is almost double the total demand between 2 a.m. and 3:30 a.m. The results
in TableZ8 show that Hypothesis 1B—i.e., that entry of new drivers leads to scattering—finds
empirical support regardless of the demand size. However, there is a significant difference in
the magnitude of the new driver entry effect between low-demand and high-demand periods.
During high-demand periods, drivers are much more likely to scatter as a result of competition.
These results suggest that during periods with low demand, incurred search costs dominate the

expected additional revenue that can be obtained by cruising.
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Table 2.8. Effect of Demand and Experience on Strategic Scattering

Low Demand High Demand Low Experience High Experience
(2 am-3.30 am) (9 am-18m)
NewDrivers 0.0133*** 0.0184** | 0.0556***  0.0523*** | 0.0180*** 0.0247*** | 0.0259***  0.0296***
(5.37) (7.2) (14.89) (13.9) (27.11) (33.74) (27.98) (28.74)
SaleTime 0.0330*** 0.0406*** | 0.114*** 0.0759* | 0.00600*** 0.00951*** | 0.0292***  (0.0323***
(7.75) 9.4) (3.5) (2.32) (6.18) (9.71) (22.16) (24.26)
SalesZone 0.00308 0.0110*** | -0.0482*** -0.0342*** | -0.0272*** -0.0124*** | -0.0310*** -0.0196***
(1.84) (6.3) (-22.46) (-14.87) (-70.27)  (-28.21) (-54.81) (-31.11)
Getln -0.0218 -0.0313* -0.0299*** -0.0144**
(-1.74) (-2.02) (-8.00) (-2.72)
GetOut 0.0041 0.0646* 0.0163** 0.0345%**
(0.24) (2.28) (2.82) (4.19)
Vacantin -0.0489** -0.0479%** -0.0339*** -0.0304***
(-25.54) (-20.66) (-84.42) (-54.44)
VacantOut 0.0203*** 0.0469*** 0.0297*** 0.0354***
(7.64) (11.8) (38.95) (33.2)
Observations 261202 261202 284698 284698 1876984 1876984 971159 971159
AIC 247022.358 246348.608 209700.854209144.526 2055584.462047793.54 996365.075 992859.03
BIC 247640.267 247008.41| 210323.846209809.754 2056405.842048664.7| 997142.967 993684.067
Log Likelihood -123452.18 -123111.3| -104791.43-104509.26| -1027726.2-1023826.8 -498116.54 -496359.52
x? 4250.805 4932.555 | 5867.803 6432.132 | 14004.266 21803.19 11068.91 14582.955

t statistics in parentheses

All models estimate a logit regression with row, column, hour, and driver fixed effects.

Only weekdays are considered.
Dependent variable i§hangeZone

A random 20% sample is taken to evaluate the high/low experience regressions.

*p<0.05,* p<0.01,** p<0.001

There might be three other potential reasons why a driver changes zone irrespective of
whether a new driver enters the zone. First, the driver may get a ride request through the plat-
form from another zone, thereby inducing her to change zone. As we only consider instances
where the driver was vacant after the observation time, this first reason is not a matter of concern
for our analysis. Second, the driver may change her zone due to expected higher sales oppor-

tunities in a surrounding zone. To deal with this concern, we estimate a spatial autoregressive
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(SAR) Model, where we consid&alesZoneand Vacantvalues of surrounding zones. Reas-
suringly, even after controlling for these factors, we estimate a positive and significant effect of
entry of new drivers on zone-changing behaffor.

Third, a driver may be carrying a passenger whom she found through another platform
(or hailing from the street), but did not log out from our platform. Thus, we would observe this
driver as vacant in our data set even if she is actually carrying a passenger. To show that our main
results are robust to this last concern, we conduct two separate analyses. In the first analysis,
we analyze the subsample composed by drivers with high utilization rates. High utilization
rates in the 99Taxis platform indicate that the driver is less likely to use other platforms or pick
up hailing passengers from the street. When we estimate the regression for this subsample,
the magnitude of the new driver entry effect on zone-changing behavior increases. This result,
which is in line with the results in Sectidh8, supports Hypothesis 2A— i.e., that drivers who
respond more strongly to the entry of new drivers by scattering are the ones who have higher
utilization®

In the second analysis, we analyze the subsample composed by observations where a driver
waited for at least five minutes in the same zone. Waiting in the same zone for five minutes
minimizes concerns that the driver might be carrying a passenger from other platforms, or
that the driver entered into this zone just to drop off a passenger. Although the effect of new

driver entry upon scattering decreases in this subsample, it remains positive and sigfificant.

223 AR model analysis is provided in the Appendix. See TR

23\e estimate thélewDriverseffect as 0.0276***, 0.0279**, 0.0345***, 0.0387***, 0.0383*** in the same
order of the models used for Talie3.

24We estimate thélewDriverseffect as 0.0192*** 0.0192***, 0.0217*** 0.0143*** 0.0133*** by using the
same models noted in TaliZE3.
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Therefore, the entry of new drivers has a sizable impact upon the zone-changing behavior of

drivers, even after accounting for street hailing.

2.7.5. Effect of Drivers’ Experience

Camerer et al(1997 show that taxi drivers become more sophisticated in adjusting their
supply as they gain experience. On the other helmamer and KriieggP0T6 demonstrate that
services such as Uber enable drivers to accommodate their supply in a sophisticated way even if
they are not experienced. The experience effect could potentially impact the scattering behavior
of drivers in our setting as well. Experienced drivers might be more knowledgeable about
demand size and its distribution throughout the city during different time periods. They might
position themselves and adjust their scattering behavior according to this extra information.

Camerer ef 21997 use the cab-driver license number, which is assigned in chronological
order, to classify drivers as experienced and inexperienced. We don’t have any driver-specific
information except GPS coordinates. In an ideal experiment, we would have information about
the experience level of drivers and be able to assign experienced and inexperienced drivers
to situations with same prevailing competition levels to test for differences in their scattering
behavior. However, we do not know the drivers’ experience levels. The only information we
have is total active time, vacant time, and busy time pertaining to individual drivers in the
system during the period under consideration. Thus, we exploit differences in total active time
as a proxy of the drivers’ experience with the system, and observe subsequent differences in the
scattering behavior of drivers facing competition. We use a median split to classify drivers as
high experience and low experience, and run independent analyses on these two subsamples.

Tablel8 shows that both driver groups react to the entry of new drivers by scattering which is
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in line with Hypothesis 1B. However, drivers who are logged into the system for longer hours
react to competition more strategically relative to users with less experience with the system.

This analysis suggests that system usage provides drivers with a strategic leverage.

2.8. Operational Value of Visibility of the Competition

In this section, we use agent-based simulation models with multiple driver types and zones
to check how agent utilization and the system’s efficiency are affected by the scattering behavior
we documented above. To this end, we design two simulation experiments. First, we alter the
sensitivity of strategic (scattering) agents to the competition level. Second, we change the
proportion of strategic (scattering) agents in the population.

We first start by providing some fundamentals of the analysis. We assume that the arrival of
customers follows a Poisson process with a rate of 50 potential customers per minute. Arriving
customers are spread uniformly over the zones. Whenever there is a vacant taxi in the same
zone, demand occurs. Note that if there are multiple vacant drivers in the same zone as the
potential customer, then each driver is equally likely to serve this customer. We also assume
that a customer may abandon at the beginning of each time period with probability of 0.10;
hence, customers will wait at most 10 minutes on average to receive a service. Passengers are
equally likely to pick any destination zone. Travel time is calculated by the distance from the
center of the originating zone to the center of the destination.

In our analysis, we assume that some of the drivers are more strategic in terms of responding
to the arrival of new competitors in their zones. Thesattering agentshange their zone with

the probability ofp x k + e, wherep is the effect of each new competitdr,is the number of
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Figure 2.8. Utilization comparison of strategic and regular drivers

drivers newly entering the zone, ands the probability of unobservable effects. Other agents
change their zones only due to some unobservable factors with probabilityaofd we call
themregular agents We start with200 scattering an@00 regular agents. We assume that all
of these agents stay logged into the platform during the whole analysis. We also assume that
if an agent decides to change her zone, then she moves to a random neighboring zone without
checking any information available to her. We calculate the average utilization of each type of
agents and average waiting time of customers as well as the number abandoned customers.
We initially have50 customers. Initial locations of both agents and customers are chosen
randomly. We run 00 simulations where each simulation ) minutes to run. We assume
the probability of moving due to unobservable effects is 0.10.
First, we compare the utilization of each type of agent under this system. We gradually
increase thdNewDrivereffect. We observe that utilization of scattering agents is higher than
regular agents, up percent (see Figuig8). Then we compute the average waiting time and

number of abandoned customers in this system. We observe that scattering brings a significant
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Figure 2.9. Efficiency of the system as NewDriver effect increases

reduction in both measures (see Fighi. Average waiting-time of a passenger decreases up
to 20.6 percent and the number of abandoned customers decreasesiuppercent when we
increase thé&lewDrivereffect from0 to 0.2. Therefore, the platform significantly benefits from
the scattering behavior of drivers.

Second, we analyze how the composition of agents impacts the system utilization. As in
the first part of our simulation analysis, customer arrivals follow a Poisson process with a rate
50 potential customers per minute, customers might abandon each minute with probability 0.1.
Moreover, regular agents change zones with probalgldye to unobservable effects, and the
scattering agents change their zone with probability & + ¢ wherep is the effect of the new
competitor andk is the number of new agents in the zone. We start vith agents and we
assume thas percent of these agents are scattering agents and the remdirgsihgercent are

regular agents.
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Initially, 50 customers are waiting for service and they spread uniformly over the zones. We
run 100 simulations for each setting and each simulation runs for 360 minutes. We assume the
probability of moving due to an unobservable events 0.1 and each new competitor increases
the probability of zone changingp, of scattering agents 10 percent. In order to understand
how the proportion of scattering agents in the population impacts the system efficiency and
utilization of agents, we alter the percentage of scattering agents in the popuation,

First, we calculate the utilization difference between the scattering and regular agents, de-
pending on the percentage of scattering agents in the population. Eidiirehows the scat-
tering agents always have higher utilization than the regular agents regardless of the percentage
of scattering agents in the population. However, we can observe that the utilization of regular
agents increases gradually as the percentage of scattering agents in the population increases.
Consequently, the presence of scattering agents helps regular agents as well, creating a positive
externality. Moreover, an increase in the percentage of scattering agents in the population leads
to a significant reduction in average waiting time and customer abandonments. If we move the
system from a composition where there are no scattering agents to a setting where 50 percent
of the agents are scattering agents, we observe decreases of 6.3 percent and 6.09 percent in
the average waiting time and customer abandonments respectively. Moreover, the decreases in
average waiting time go up to 12.1 percent and the customer abandonments go down up to 11
percent as we increase the percentage of scattering agents in the population from 0 percent to

90 percent (see FiguEaTl).
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2.9. Conclusions

In this study, we explore how agents react to real-time information by using data from an
e-hailing taxi platform. We document that agents scatter with respect to the locations of com-

petitors; more specifically, an agent tends to move to another service zone when a competitor
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enters her service zone. Therefore, such new agent arrivals are not interpreted as a signal of
high sales opportunity in the zone; instead, they are considered a threat to sales.

Agents are heterogeneous in their behavior against the arrival of a competitor such that some
agents change their service zone more frequently than others. We show that drivers who have a
higher probability of scattering achieve higher utilization. Therefore, monitoring and reacting to
the information pays off from the perspectives of both the driver and the platform. Similarly, we
observe that agents achieve a higher utilization if they have a better understanding of choosing
less competitive zones.

We also address the more general question of how these decisions affect the whole system.
We find that the system becomes more efficient as we have more agents who engage in the
following two behaviors: scattering against competitors and choosing less competitive zones.
More specifically, we observe that the average utilization rate increases and both the abandon-
ment rate and waiting time of customers decrease significantly as agents respond to competition
by scattering. Moreover, the presence of scattering agents also helps the non-scattering agents,
who now see less competition.

There are several ways this work can be extended. One could consider the behavior of agents
as a response to real-time information about not only their competitors but also decisions of the
service provider. Such information about the service provider brings more complexity because
an agent needs to consider the reaction of her competitors to the service-providers decision as
well as her own decision. For example, understanding how agents react to the surge pricing of
e-hailing taxi platforms can be fruitful because it is not clear whether the agents would find it

worthwhile to go to a zone with a higher than usual price when other competitors are already
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on their way to that zone and when there is a strong chance this high price will drop due to an

increase in supply.
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CHAPTER 3

Impacts of Charging Carry-on Bags in Aviation Industry

3.1. Introduction

Current revenue management literature mostly focuses on seat allocation, pricing or net-
work problems. Revenue management is a field that originates in the Airline Deregulation Act
of 1978 ([alluri'and van Ryzin043). There have been many studies since 1978 on different
aspects of revenue management. Detailed overviews can be follmiiun_and van Ryzin
(0473 andChiang et al(2007). An important building block model for more complicated rev-
enue management is single resource capacity control. It is common in airline companies to
sell identical seats at different fares. The major issue is the decision process of accepting or
rejecting a booking request of a certain class for a given resource. The static model in which
different fare classes arrive at different, non-overlapping time stages ordered in an increasing
fare class prices, is first consideredibitflewood (T977). The dynamic programming model of
this problem is analyzed Hyee and Hersl{1993, and the structure of the optimality policy is
investigated by autenbacher and Sfidhafh999. For further research on single resource ca-
pacity control, seBrumelle and McGill([1993, Talluri and van Ryzi{04 1), Lan ef al.(2008),

Birbil ef all (2009, ©zkan et al(2013. The main focus of the literature is again the allocation
problem. Since this a multi-dimensional problem, most studies focus on approximations to this
problem. For exampleKunnumkal and Topafiit (2010) provides an approximation method

for network revenue management problem with customer choice behavior by solving each flight
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leg as single-leg problenvan Ryzin and Vulcan¢?008 also study an approximation method
for network revenue management under customer choice behavior by using a simulation-based
method. Although current studies provide great insights and benefits to air-carriers, there are
other factors affecting the revenue of the firm other than the optimal allocation and pricing
decision.

Delays due to the boarding process play an important role on the utilization rate of the

airplanes. Spirit Airlines has been applying fee on checked bag since 2007 and all US air

policy has two benefits. First, this is a new source of revenue for air carriers. Most carriers
charge $25 for the first checked bag with increasing amount for the second and third ones as
of June 2014. Second, this policy discourages passengers to carry more than they need which
leads to a fuel saving and also decreases baggage handling problems (which is highly possible
at connecting flights). However, there is a drawback of this second benefit. Most of these
carriers do not charge for carry-on items. Carry-on items usually include one personal item and
a small bag that can fit into to bins which are located above seats. Since there is a fee on the
checked bag, passengers use their free right to have one small carry-on bag which is a potential
source for higher departure delays. In 2010, Spirit Airlines started to charge carry-on as well
(FareCompar€?017). The company charges more for a carry-on than checked bag in order
to discourage passengers to take their bag with them into the plane. Moreover, the carry-on
fee is cheaper online, and increases a lot at the gate. Table 1 provides the current bag fees of
Spirit Airlines. With this new change to its current bag-fee policy, Spirit airlines has $536 M
revenue from non-ticket revenue which corresponds to 40% of its total revenue and 41% of this

non-ticket revenue comes from bag fed&ll Streef .Journg?013). These revenues from bags
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Booking | Check-in | Airport | Gate
Carry-OnBag | $26* | $35| $36* | $45| $50 | $100

Firstone | $21*| $30| $31* | $40|, $45 | $100
CheckedBag | Seconcbne | $31% | $40| $41* | $50| $55 | $100

Third ormore| $76* | $85| $86* | $95| $100 | $100

Table 3.1. Bag fee of Spirit Airlines as of February 2015 (* is the fee for $9 Fare Club,
special program).

are increasing in each year. For example, another low-cost airline company - Frontier Airlines

- made $220 M revenue from bag fees in 2015 which was $69.2 M in 2013. More importantly,
this corresponds to 13% of the overall revenue for these low-cost carriers and the baggage-fee
revenues were 0.2 to 4% of the overall revenue for the other major airlifmesifenver Post
(20186).

In addition to its direct effect on the revenue due to the fees, the question still remains
unanswered about the operational consequences of such policy. Spirit Airlines has declared that
it can board an A320 in 20 minutes which is 10 minutes less than the boarding time of large-
scale carriers such as American and US Airwd&@hes(?013). Average aircraft list price of
an Airbus A320 is $99 M in 201 7Ajirbus (2017), therefore; carriers want to use their airplanes
as much as possible and such reduction in boarding time increases the chance of high utilization
of the plane.

As of June 2017, only two more US carriers, Allegiant Air and Frontier Airlines, use similar
policies on carry-on bag as Spirit Airlines appli@sibAdvisor (2017)). On August 6th 2013,
Frontier Airlines first started to charge carry-on customers that buy from 3rd party suppliers

such as Orbitz and Skyscanner. On April 28th 2014, Frontier Airlines started to charge carry-on
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baggage not only the customers buying from 3rd party suppliers but also customers buying from
Frontier Airlines directly.

In this study, we aim to understand how the new policy on carry-on baggage affects the
carrier delays. By using available data of U.S. Department of Transportation’s (DOT) Bureau
of Transportation Statistics (BTS), we analyze the effects of this new policy on Frontier’s de-
lay times after the first attempt and the last attempt. We believe that pricing policy is a great
opportunity for firms not only to increase their revenue but also to decrease their delay times.
Moreover, this pricing policy simplifies the boarding process because carrier categorizes pas-
sengers into two groups, passengers with carry-on and passengers without carry-on (except
passengers with disabilities, special program passengers etc.).

There is a significant number of studies on evaluating the performance of different the board-
ing processes, sédyquist and MckFadde(P008 andVan Tandeghem and Beuselin¢k00?)
for details. For exampleyan Tandeghem and Beuselin€R0O0? checks the boarding time
performance of seven different boarding procedures by using simulation. They find that any
procedure should separate consecutive passengers far enough to reduce a potential interference.
Even though our study does not focus on the boarding process, the new fee on carry-on bag
changes the dynamics of such processes. Therefore, we believe that our study sheds a light on
a need to explore the effect of carry-on fee on boarding process.

Our study is not the first that uses data from BTS to analyze the operational efficiencies.
For exampleRupp and Sayana?008 show that low-cost carries have slightly lower arrival
delays. Another stream of research focuses on the relation between financial performance and

operational efficiency (SeRamdas et al?013 andPhillips_and Serisio€Z0T3). Consumer
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behavior is also analyzed by using this data set. For exampét all (7014 consider a struc-
tural estimation method where they analyze the effects of strategic customers on financial per-
formance.

To our knowledgeNicolae et al (?0TH is the only paper that investigates effect of baggage-
fee on delays. In their study, they compare policies of charging check-in bags. They find that
charging only one check-in bag provides significant relative improvement in air-carrier’s on-
time departure performance when compared to the carriers that do not charge customers for
their check-in bags. IiNicolae ef al.(?016), the departure delay is recalculated due to the
spill-over effect created by previous flights where they implement a technique ugekan
ef_al. (2013. In our study, we investigate another policy which has potentially more direct
implications on departure delay. We also use the air-carrier delay which is part of arrival delay
and reported separately than the previous delays (previous spill over delays are also reported
separately). Hence, we use a different performance metric to analyze another policy.

We find that implementation of carry-on bag fees was associated with delay. We see a sig-
nificant decrease in the delay when the firm charged a carry-on bag fee on every purchasing
channels. In the rest of this study, our goal is to provide several robustness tests where we con-
sider different measures of delay and other important factors affecting the dynamics of airline
industry such as weather, loading factor for each flight etc.

The remainder of this study is organized as follows. In Section 2, we explain the data,
variables and descriptive statistics. In Section 3, we discuss empirical specifications and initial
results. In Section 4, we discuss the ideal research setting and need of additional data for

robustness purposes. We have our concluding remarks in Section 5.
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3.2. Data Description and Results

We use the data set of On-Time Performance of major air-carriers provided by BTS. Data
set contains detailed arrival and departure information of domestic flights. More specifically,
we have the origin and destination airports, scheduled and actual times for both arrival and de-
parture, flight numbers, flight date (including which day of the week), departure delay amount,
arrival delay amount which is separated into 5 components: Air Carrier delay (such as delay
due to boarding, aircraft cleaning, baggage loading etc.), aircraft arrival (a previous flight with
same aircraft arrived late, causing the present flight to depart late), National Aviation System
(such as airport operations, non-extreme weather conditions, air traffic control, heavy traffic vol-
ume), weather delay (extreme weather conditions), and security (such as re-boarding of aircraft
because of security breach).

We check the effects of the policy change by only using this available data. Please note
that the new policy starts at On April 28th 2014, and we consider the data from August 2013
until February 2015. Therefore, we have 9 months for each of before and after policy periods.
In total, we have 9,059,661 flights to investigate. We utedenote the flight number. As a

dependent variable we use air carrier delay which is denot&dabyier Delay; for flight i.

Table 3.2. Before and after policy comparisons

All Flights Flights with a delay- 0
Before Poliy | After Policy | Change| Before Polic After Policy Change
Frontier (Averagelelay) 2.751 3.321 120.7% 18.922 26.540 1 40.3%
Others (Averagéelay) 3.104 3.771 121.5% 30.706 32.448 15.7
Frontier (FlightNumbers)] 31,590 97,544 4,593 (14.5%) | 12,206 (12.5%)
Others (FlightNumbers) | 2,471,822 | 6,458,705 249,890 (10.1%) | 750,637 (11.6%)

Percentage of flights with a delay among all flights.
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Average delays for both Frontier airlines and other air-carriers are reported in BaBle (
where we take the average of delay among all flights or only among the flights with a delay
strictly greater tha. Frontier airlines faces with an overall increases in delay; however, it is
less than the industry average. On the other hand, the average delay among the flights with a
delay strictly greater than 0 is much higher for Frontier than it is for other airlines. Overall, all
these observations suggest that we need to take additional variables into account because delays
increase across all industry which suggests considering factors related to seasonality.

In the same table, we also report the number of flights operated by Frontier v.s. other airlines
where we calculate the percentage of flights with a delay. We observe that 14.5% of flights
operated by Frontier have a delay before the policy change but this percentage goes down to
12.5% after the policy change. For the other airlines, this percentage increases to 11.6% from
10.1%. Therefore, Frontier Airlines improves the delay performance based on this measure
whereas the other airlines faces with an increase. Overall, this suggest investigating the reason
of changes and control other factors.

We defineFrontier; as the dummy variable whererontier; = 1 if flight 7 is operated by
Frontier, otherwisérontier; = 0 to consider the fixed effect of Frontier Airlines. Similarly, we
defineA fter Policy; is the dummy variable wheré fter Policy; = 1 if flight 7 is after the pol-
icy change, and\ fter Policy; = 0 otherwise. Variable of interest iSrontier; x A fter Policy;
to understand the effect of policy change on air-carrier delay. To consider, air-carrier specific
factors we definelirCarrier; j) to bel if the flight i is operated by air-carrigi, and0 other-
wise. There are 17 air-carriers in our data set during the observation period.

In addition to these variables, we believe that airport related factors should be taken into

account. Therefore, we also consider two variables for congestion. One of them measures the
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Table 3.3. Definition of Variables

Variable Description

CarrierDelay Amount of delay caused by the carrier that operates fligimt minutes).
Frontie Indicator that shows if flight is operated by Frontier Airlines.
AfterPolicy; Indicator that shows if flight is operated after the policy change.
LowCost Indicator that shows if flight is operated by a low-cost air-carrier.
Weekendg Indicator that shows if flight is operated on a weekend.

OverallCongestion Number of flights in the same airport at most 30 minutes before/after.
CongestionCarrigr Number of flights operated by the same air-carrier at most 30 minutes before/after.
AirCarrier; ; Indicator that shows if flight is operated by air-carrig.

Monthy; ,,,) Indicator that shows if flight is occurred in monthn..

congestion regarding to the whole airport, and the other one is the congestion regarding to the
air-carrier. BasicallyCongestionCarrier; is the number of flights operated by the same air-
carrier that also handles flightit the same (departure) airport where each of these flights are at
most 30 minutes before or 15 minutes after flighSimilarly, we define@verallCongestion;

where we consider all flights (independent of the carrier of fliylat the same airport of flight

1 where each flight is at most 30 minutes before or 15 minutes after tligfe also consider

the distance of the flight by using 6 categorical variables which is defined for each 250 miles.
For example, if a flight is from distance group two, then the distance between the origin and
destination is between 250 miles and 500 miles. We denote this varialddesbynceGroup;.

Note that there is a segmentation in terms of the operating cost of firms: low cost or high
cost carriers. Air-carriers which define themselves as low cost air-carriers are the ones with the
AirlinelD of "19393","20409","20436” (Frontier), "20437”, or "21171". Other carriers declare
themselves as high cost carriers. Therefore, we ddfineCost; to bel if flight  is operated
by one of these low-cost carriers , athstherwise. We also control the weekend effect, i.e.,
Weekend; = 1 if flight i is operated on a weekend, afdidtherwise. To control other time

effects, we definé/onth; ) is 1 if the i flight has been operated in monih, otherwise
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it is 0. We also consider the effect of days by definiigeekof Day; 4. For example, if

WeekofDay; 2y = 1, then the flighti is operated on a Tuesday butiifeekof Day; 5 = 1,

then the flight is operated on a Friday. We summarize our variables in TaBle

Table 3.4. Statistical Summary Airline Carrier Delay Data

Mean SD Min Max
CarrierDelay; 3.581 21.054 0 2,402
Frontier; .0143 119 0 1
Frontier x AfterPolicy 011 .103 0 1
AfterPolicy 124 447 0 1
CongestionCarrier 6.610 8.174 1 67
OverallCongestion 18.135 16.404 1 96
LowCost 279 449 0 1
Weekend .261 439 0 1
Observations 9,059,661

In Table33, we provide summary statistics including mean, standard deviation, minimum

and maximum value of each driver-level variable. Among 9,059,661 flights, the average delay

is 3.581 minutes and the percentage of Frontier flights is 1.43%. On average, there are 18.135

flights at most 30 minutes before and 15 minutes after each flight and 6.610 of which is operated

by the same airline. We also provide the correlation between the variables inBl&bl/e

Table 3.5. Correlation between the variables.

) 2 3 4) ®) (6) O
1. CarrierDelay 1
2. Frontier -0.0023 1
3. Frontier x After@licy | -0.0013 0.8676 1
4. Afterbolicy 0.0141 0.0085 0.0645 1
5. CongpstionCarrier | -0.0046 -0.0464 -0.0429 0.0050 1
6. OverallCongstion | -0.0035 0.0138 0.0068 -0.0396 0.7300 1
7. LowCost -0.0025 0.1933 0.1677 0.0213 -0.1292 -0.1746 1
8. Weeknd 0.0004 -0.0001 0.0000 0.0024 -0.0207 -0.0356 -0.00a7
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observe that the correlation betwe@arrier Delay andFrontier x A fter Policy is small but
negative.

By using these variables, we have the following model

(3.1)

AirCarrierDelay; = By + B1Frontier; + GoAfter Policy; + B3 (Frontier; x AfterPolicy;)
+BsLowCost; + BsWeekend; + BgOverallCongestion; + (3;CongestionCarrier;
12 16 ) _ 6 ,
(3.2) +Zm:19mMonth(i,m) + ijlvjAer’armer(i,j) + ZjZICjDzstanceGroup(ivj)

7
+Zj:1VjWeekofDay(i,j) + €

We consider variations of this model and provide our results in Talde Our variable of
interest isFrontier; x AfterPolicy. Under all of the models, we observe that the coefficient

for this variable is negative and significant. Therefore, the policy change caused a significant
decrease in delays for Frontier airlines. For robustness purposes, the ideal research setting
should consider additional variables. Even thodghrrier Delay is separated from weather
related delay, it is important to control the weather forecast during the observation period. We
also need to consider the effect of the airplane utilization for each flight. Unfortunately, air-
carriers are not required to report the seat occupancy. We can only gather the information
of airplane capacity by using the tail number of each flight (which gives us the model of the
airplane). However, this is not sufficient to control the number of tickets sold which may both

be correlated with thé€'arrier Delay and Frontier.
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1) 2) 3 4) ®) (6)
Frontier -0.269 -0.635** -0.635** -0.857* 0.350 3.18%
(-2.25) (-5.23) (-5.23) (-7.07) (0.59) (3.29)
Frontier x AfterPolicy -0.346 -0.438* -0.438* -0.510* -0.820* -0.498**
(-2.53) (-3.20) (-3.20) (-3.73) (-5.91) (-3.64)
AfterPolicy 1.032** 1.002** 1.002** 0.776>* 0.780* 0.778*
(22.83) (22.17) (22.17) (17.16) (17.22) (17.19)
LowCost 1.832+ 2.219* 1.414 0.896
(10.82) (13.10) (0.00) (1.04)
Weekend -0.199* -0.261** -0.265** -0.260**
(-7.66) (-10.05) (-10.22) (-10.04)
OverallCongestion -0.0743 -0.0499* -0.0738**
(-66.83) (-38.35) (-66.15)
CongestionCarrier -0.0586 -0.163* -0.0608**
(-38.09) (-60.73) (-39.24)
Constant 19.49* 21.01* 19.17* 17.80* 24.23 19.80+
(144.32) (50.69) (42.95) (39.88) (0.01) (20.69)
Observations 9,059,661 9,059,661 9,059,661 9,059,661 9,059,661 9,059,661
AIC 80,811,627.9 80,795,748.1 80,795,748.1 80,784,402.7 80,761,776.6 80,780,167.3
BIC 80,812,553.2 80,801,453.9 80,801,453.9 80,790,136.6 80,784,403.9 80,787,625.6
LogLikelihood -40,405,747.9 -40,397,467.0 -40,397,467.0 -40,391,792.3 -40,379,274.3 -40,389,551.7
chi2

t statistics in parentheses

*p <0.05,* p<0.01,"*p < 0.001

All models have airline, day and hour fixed effects.
Models 2, 3, 4, 5 and 6 have origin and distance-group fixed effects.
Models 5 has airline and origin interaction fixed effects.

Models 6 has airline and distance-group interaction fixéetes.

3.3. Concluding Remarks

Charging for carry-on bags is a new policy that has been adopted by a couple of low-cost

air-carriers. It is an immediate revenue source for firms but it is not clear whether firms benefit

or are hurt by this policy operationally. In this paper, we ask how this policy change affect

the delay performance of firms. On one hand, it is highly likely to observe a decrease in the
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boarding time, thereby, a decrease in the overall delay. On the other hand, passengers will
prefer to use checked bags which means an increase in the handling and thereby, an increase in
the overall delay. We show that the new policy caused a decrease in delay times significantly.
To understand how robust our result, we also propose what additional measures we need to

consider.
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APPENDIX A
Proofs for Chapter 1

A.1. Proofs of Lemmas

Proof of Lemmall: The customer with valuation prefers to join classover class, meaning
that

The customer with valuatiot prefers to join clasg over clasg, meaning that
(1—aW;)v—p; > (1 —aW;) 0 — p;.
Adding up these two inequalities gives
(0 —0)a(W; —W;) > 0.

SineW; > W;, we havev < v concluding that the customers who choose the shorter waiting

time IW/; have higher valuation. |

Proof of Lemmal: Part 1 of the lemma follows from Theorem 2 lofriviere (?006. Parts
2 and 3 follow from Proposition 5.1 idiya et al.(2004). Part 4 follows noting that (\) =

LFY(A/A) f (F71(A/A)) and substituting” (v (X)) for A/A. u
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Proof of LemmaB: Recallthat)\; (v) = AF (v;). In what follows, we fixv and suppress the

dependencef ), onv in the notation. LeC'S(z) =C'S (F~'(x/A)) and notice that

1
AR (FY(x/A))

(A1) S ()

(,A‘:S”(x) is then increasing and concave in its argument [convek](if) is decreasing [increas-
ing]. If h (v) is constantCA:?(:c) is linear. In turn, since,; is decreasing in, GNS(X-) is decreas-
ing and convex [concave] if is DFR [IFR]. The result then follows from noting thgt® can

be written as

s _ O8O = C5(hi).
’ Ai — Aig1

By the definition of convexity/concavityf is then increasing inif F is DFR and decreasing

if I'is IFR. Itis constant if the hazard rate is constant. [ |

Proof of LemmaB: The expressions fok{; and A1, follow from Theoremd andB stated
further below.

Here we only need to prove the comparison. The social has a strictly larger coverage (for
all sufficiently largen) if V(v)/|V'(v)| < p(v)/|p'(v)|. Note that, since” is IGFR, p'(v) < 0,

we also havé”’(v) = —vf(v) < 0. Hence, it remains to show that

(A.2) V(0)/V'(©) > p(v)/ ¢ (0).

Because we assume thiathas a strictly positive density there exits, for any valuatioa

unique) such that\ = AF(v) orv(\) = F~1(A\/A). LetV(\) = V(v()\) andp(\) = p(v(N)).
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Then,V’()\)) = V'(v(\)v'()). Sincev'(\) < 0, (B2) will be established if we show that

(A3) V') ff;;(k)'

Notice, to that end, that

Vi)
V(M)A A

— GFR(v(\).

Since F' is IGFR andv’(A) < 0 we have tha% is decreasing im\ and the reciprocal

_‘;'((;))A is mcreasing in\. Notice thatV’(\) + V”()\)/\ = p(A). Thus, we have that +
e (A)
Ty = V decreasmg in\ so that, fixing\, >

6] V,(A) L for any A < A. Hence we have
F(AV/(X) > 7 (\)V'(A) and, consequently,

V’(A)p(k)z/o V’(A)ﬁ(x)d§>/o PV (VX =5 NV (N)

which gives B=3). All inequalities are replaced with equalities if the generalize failuregage

constant. [ |

A.2. Proof of Theoremfl
We use standard sequence notation collected in the following definition.

Definition 1 (scaling comparisons)Given a non-negative functionwith g(n) — oo as
n — oo we write,£ (n) = o (g (n)) if
§(n)

lim 2 = 0.
oo g (n)
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We writef(n) = O (g (n)) if
[€(n)]

limsup — < o©
n—oo  g(n)

Finally, £ (n) = Q (g (n)) is the negation of (n) = o (g (n)), i.e.,

= n imin —|£(n)\
€ (n) = Qg ()  limint 0 >0,

The characterization of the optimal actions of the social planner and the revenue maximizer
in Theoremd andB is used to prove Theorefih The proofs of these theorems appear then in

S0 3

Theorem 4. (optimal decisions of the SP The cutoffs and admission rates

i—1  K—i41 K—i+1 i—1  K—i41 K+4i—1

U, =0+ p RO K 0T 2K+,andj\25:n—/\f(17)<pf<9 K n 2K

where

CF®) o V@O -0 e
0= (@)\/_,go 2 F) 2M RL(v),

are nearly optimal in the sense th&f* — St (0%) = o(y/n).

F
f
The welfare maximizing decisionsust be at most small perturbation 6f: and \%. That

is,

K—it1 . - N K+i—1

(A.4) vzgzﬁzs—f—o(n’ k), 1=2,...,K, and i = Zs+0(n 2K ),

Finally, increasing the number of classes bey@nchn increase social welfare by at most
o(y/n):
AnV (0) — 20/ av/n + o(y/n), forany K > 2.
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The following is a strengthened version of Theorem Blarerzadeh and Randhayza 1%

where we add, to their result, that the optimal actions are asymptotically unique. This is crucial

for the comparison of the social-planner and revenue-maximizer actions.

Theorem 5. (optimal decisions of the RM The cutoffs and arrival rates

1 K—itl K+i—1
2K

S, i =2, K, andAT, = n — Af (0) OF 0T 0

K—itl _ K—itl _
K N 2K +0(n 2K ),Z—

i—1
= i1
Ojp=v+ 0% 0

where

o= Fiava =2 (o
f (@) ' (0) F (v)
are nearly optimal in the sense thBt — R%(0%) = o(y/n).

The welfare maximizing decisionsust be at most small perturbation 6f: and \%. That

is,
(AB) =g +oln ), =2, K, and\j = Ay +o(n" 5 ).

Finally, increasing the number of classes beya@rwhn increase revenue by at mo$t/n):

W = Anp(v) — 20y/av/n+ o (vn), forany K > 2.

In the statement of this theorefn> 0. Also, sincep(\) is concave for\ < A} (see Lemma

D) and, in particular, foh = 1 = AF(v) < AF(vg), we have thap”(1) > 0 so thatd > 0.
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Theoremd andB provide the basis for Theorelih the constant in Theorenil stands for
¢ —®. With K = 2,if y = ¢ — ® > 0, A%, > AJ so that the revenue maximizer has a larger

high priority class. The following lemma studies, then: p — ®.

Lemma 6. Suppose that’ has strictly positive density on its support and that-) is a

convex (respectively concave, linear respectively) MRL. Then,

W ()

(A.6) MRL () (m

+h (a:)) > (<, = respectively) 1

for anyz in the support off.

Recalling the definition of and®, we must show is that

(Vv (77)7 UF (v)) -
F(v) — (@)

(v)
()

(70:

| S

F (v)
+2(f (9))*

“ij\\h

and that the opposite holds for concave MRL. The left hand side of the inequality is precisely

the MRL of F" at the pointy so that this inequality is equivalent to

(M ()
A7 MRL h > 1
(A7) RL() (G 4 h(@) 21
which follows, with convex MRL, from LemmB. [ |

Proof of Theoren®: By definition, the optimal objective function value when policies are
restricted tonon-preemptionis smaller than the optimal value under the larger family of pre-

emptive policies. Thatis§z" vy, < S%*. Then, we have

Sknp(s) < SEvp < Sg = 55"+ o(v/n) = S3(0%) + o(v/n),
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1, 2—i+1

whereog, = v + T 02 n "7 fori = 1,2 . The last two equalities follow from Theorem

@. This holds for allX'. Corresponding arrival rates fof ; are

N K+i—1
no_ Kti-1
s;=n—Cgn 25|

i—1 2—

whereCs,; = f (0) ¢ 2 6 = Similarly for revenue maximization

xnp(0g) < Rifnp < R = Ry + o(v/n) = Ry(0j) + o(v/n).

3—1 i—1  K—i+1

Where@gi =0+En"7 wWithE;, =® x40 % fori = 1,2. Corresponding cumulative arrival

rates foroy ; are

A K+i—1
g1 =n—Cgrn ¥

i—1 ,3—1

= 2 . It then suffices to prove that

whereCr,; = f (v) ®
Ry (0R) — s np(0R) = o(v/n), andS3 (vg) — Sy np(Dg) = o(v/n).
Let us start with the revenue maximizer. Notice that
snp(VR) — Ry (vE) = A”AR2(WJJ§§ - WII;H) + A”ARl(W}Jz\f}j - W}iL)?

whereAR, = Apatf, andARy = Ap 0%, — Ap2i%,. With preemption, the steady-state

sojourn times satisfy

A. D = = n = g n P = 1‘ = 1
( 8) WR,L (n—/\% 1)(n—)\’§ 2) CR,ln}/QCRQ”BM ’ WR,H (n—)\% 2) CR72n3/4’
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where the subscriptd and L are for high and low priority respectively (recall that class 2 is

the high priority) and stands for eithef or R. Similarly under non-preemption

An 1/2
ARy /

(n—AR,1)(n—AR,2)

n—Cr1n 1/2

n—Cgr1n 1
1/2
CR,lnl CR,2n3/4

NP __ DRI T L
WR»L o nCR on3/4 n’

+1= +L W= 1o
WRE — Wi =n""—=Cghyn ™", andWi — Wiy =n™' = CraCryn™™.
Then,
AnARy(WRE = WE ) = Apatpa(n™ — CriCryn™*) = O(1) = o(V/n),
and
AnAR (WRT = WE ) = (Ar1tr1 — Ar2ira2)(n' — CriCrin /") = O(1) = o(v/n),

so that

snp(VE) — Ry (vE) = AnAR2(W1]%Y§ - WII%D,H) + AnARl(ng - W}I%D,L)

For the social planner,

S3(05) — S5 np(05) = AnV(05,)(W3ly — Wsy) + An(V (05,) — V(052)) (W5t — Ws L),
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where the expressions for the waiting times are the same as for the revenue maximizer with the
obvious replacements @t with S everywhere. Using Taylor expansion bit-) atv and that

3—1

0%, =v+ Dmn~7 , we have

AnV (08,) (W = W) = An(V(0) — 0 f(0) Dan™ " + O(n~ 7)) (™" — Cs1Cg3n~"")

and

An(V(081) = V(952)) (WL = Wg1) = An(0f(0) Dan™/* + O(n™ %)) (™! — Cs, COgyn™™"")
= O(n~'*) = o(v/n),
so thatSy (0%) — S yp(0%) = O(1) = o(y/n), as stated.
In passing, it is worthwhile noticing the subtlety in the argument above. It builds on the
fact that, under the optimal preemptive actions, the high-priority volume is order-of-magnitude

larger than that of the low priority. The latter’s is of the ordendf!; see equatiori¥8). N

A.3. Proofs of Theoremdd and B

We consider a sequence of queues indexed by the service. rakte nominal arrival rate in
then' queue is\n.
A perturbation formulation:

We express the cutoffs as deviations frorx F~1(1/A): v; = v+, or, in vector notation,
v = ve + u. As no customer with valuation smaller thars F~1(1/A) joins the queue: is a

non-negative vector. Lét’”"(u) be the expected waiting time of clasgnder preemptive static
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priority under the cutoff vectore + «. The social planner’s problerfié) with nominal arrival

rate An and service rate is re-written as

(SP.) Sk = maxy; Sk (u) := ey An V(@ + ) - oY (V@4 w) = V(@ + uie) WP (Te + w),
and that for the revenue maximizer as

(RM,.) Ry = maxy; Ry (u) = maxy An [p(0+ 1) - 0" (o4 1) — p(0 -+ )W (Te + w)].

Given optimal solutions;}'s andu;'y, for (SHa) (respectively RMig)), the optimal cutoffs are
given byvi's = v + ui's (respectively;'y, = ve + uj'y).

We first state several auxiliary lemmas, the proofs of which appear at the end of this com-
panion. The first of these, analogous to Lemma Riazerzadeh and Randha4 1%, shows

that the optimal cut-offs}}" andvg* are clustered aroungdwhen the volume is high.

Lemma 7. For eachn, there exist optimal solutiong}* andv%* for SP, andRM,, respec-
tively. Let{(v}",v¢");n = 1,2,...} be a sequence of optimal solutions. Thef, — v and

n*

Vg — vasn — oo.

That all “good” decisions must be small perturbations arountans that Taylor expansion

should be useful in uncovering these perturbations.

Lemma 8. Fix a sequence af” = o(1) of cutoff values. Then,

aV'(v _ _ K-1 ’LL;1 n
(A.9)  Si(u") =nAV (7) + (”AV’ (0) uf + A<¥<§>§25¥> N (iﬁ @ +v@) H) +en,
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where

and

Let u?* be the optimal solution to the social planner’s probl&Ry). There are two parts

to this proof.

K—it+1 —itl  _ K—itl
2K

Step 1™ =4 +o(n""2x ) forl <7 < K whereuq? = ol et
p 3 (2 7 (p

(Step 25" — S5 = o(v/n).
(Proof of Step 1) Re-write

(A.10) Sk(u™) =nAV (0) + M (u}) + B(u™) + E (u"),
where,

u”:—i@ 7 Kouiy un:m\/@unMi
(A1) Bl = = (oA 0) =0 00 M) 0 ) = (0

and, using LemmB,

(A.12) E(u") = Zzlo (%;;)) +0(n (u})?*) + O(1).

%

Suppose that” is a sequence that hag, := |u} — u}| = Q (n* KS?I) for somei. Then, we

(2

will show that it must be sub-optimal.
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Step 1.1.First, consider the case of= 1, namely, that, ,, := |[u} — 47| = Q(n~/2). We

will show that, in this case

~

(A13) M) — M(u) = Qnern) = (V).
but
(A.14) B(@") — B(u") = o(y/n), andE(4") — E(u") = o(ney ),

so that, overall

(A.15) Sic(@") — Sp(u") = Qner,n) = Q).

In particular,u™ is sub-optimal for alk sufficiently large.

To prove BZT3), notice that the functiod/(-) is maximized by

where we used the fact that?(v) = 1 and, recallp = f((;’)) \/a. By Lemmald we can assume,

without loss of generality, that ,, = o(1). By definition

M (i) ‘nﬂif“m = —AVE+ Aag(i)))nu @’fl“l’")
vy V@)
= —AV'(v
(0) + A(f ()20 (%4‘61”)
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where we use again the definitionfnd fact that\ = ﬁ Further simplification gives

=

M (") = M (i" +e1.) V' (9) —1+(F(“))2a 1
neLn F (0v) f (@ (?ég)))Za—kQ\/ﬁeLn
V' (v) 1
A.16 = L e ).
(A16) Foy\ " 1+@>

SinceV’ (v) < 0, F (v) = 1+ > 0 andé > 0, we have the relation

M (a?) — M (4" n L
lim inf () (@ + 1) > (0 < liminf \/ﬁeljn >0

n—oo 'n/€17n n—oo

Sincee; ,, = 2 (n*%>, we havdim inf, ., v/ne1, > 0 and, in particular, that

lim inf M () — M (g + El’n)

n—0o0 neyn

>0,

equivalently,

M (4}) — M (4} + €1,) = Q(ner ).

Sinceuy is the maximizer ofV/ (-) we have B~T3).

We next prove IE12) starting with B(-). Since|B(4") — B(u™)| < B(4) + B(u"), it
suffices to prove thaB(u") = o(y/n) and B(u™) = o(y/n). Sinced?,; = o(1) for all  and
since cut-offs satisfyi; 1 > 4, it suffices to hav%% = O(y/n) to conclude thaﬁt%1 = o(y/n)
for all < and, in turn, thaB(u") = o(y/n). Similarly, it suffices to prove th% = O(y/n)
to haveB(u") = o(y/n).
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First, by definitiona? = 6n~'/2 so thatl /a} = O(y/n). Becausé+/ne; ,, = Q(1) we have
that

1 1
limsup —— = limsup ———— < o0.
n—oo nu’il n—oo 6\/%617n

Since/ne1,, = Q(1) by assumption, we also have th\%tm = O(1) and, in turn, that
1 ,n

L = O(y/n). We turntoE(+). Since|E(a") — E(u™)| < E(u™) + E(u™), it again suffices

ﬂ?+€1,n

to show thatF (i) = o(y/n) andE(u™) = o(y/n). Notice that

"
7

(A17) B = S0 (M) +O(n (@)

AN
U + €in

E(u™)) Z;O <(f‘?“ + Ciin) ) + O (A + e10)?)

Sincen(a})? = nf?*n~! = § = O(1) andnife, = 0/ne, we have thaO((na})?) = O(1) =
o(y/n) and
O(n (67 + €1,)°) = O(n(a™)? + 2niler , + net,) = O(1+ Ve, +net ) = O (nef,,)
= o(ney ).
The second to last equality follows sineg, = (n*%), Ve, = O(nel,,) and the last

equality follows since; ,, = o(1). To take care of the other terms B{4") and E(u™) notice

that, since.” = o(1) ande; ,, = o(1) for all ,

N 2 ~ N 2 ~
Ul + € UL+ €41 ur ur
o (B +6in) ik i) ) _,, AL T andO ( i“) =o-21).
U + €y U + €y, ul? uy

~
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It is therefore sufficient to show that

AN

0 (M> — o(y/n), ando (“—;1) — o(V/n).

Ui + €. u;

Moreover, sinceil ; + €11, = o(1) anda?,; = o(1), it is sufficient to show that— =

n_y o
U, +€in

O(y/n) and = = O(y/n). We also know that: < % and 77— < ﬂ?jqn. We already
showed thau% = O(y/n) and—+Lt— = O(y/n).

f/«?‘Fﬁlm

This completes the proof oBET3) and B~14) and hence of~15). We reached a contra-
diction to|u? — | = Q(1/+4/n). Notice that we can repeat the above for any subsequence. We
may thus conclude th&t! — 7| = o(1/y/n).

Step 1.2.We proved that any optimal sequencemust satisfy that? = 47 +o(n~'/2). We

turn to prove that this, in turn, implies that any such sequence musttiavei” + o(n~ " 2x )

fori =2,..., K. We will use the following lemma where, given a vectoe RY andj < K,

we writeu = (uy, ..., u;) andu_f;; = (ujq1, ..., uk).

Lemma 9. Givenuy, ..., u; for somej < K,

K—i+1

w = figlug) = @R () K5 i = 41K,

is the unique solution to

0oy MAX_ B(u_j; )
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We definef;(u;) to be the vector; ;(u;) fori = j +1,..., K. Notice that in the special

case thalj] = {1}, we have

i—1 K—i+1

w=pk (u) £ ,i=2,..., K.

Fix a sequence of cutoffg’ such thati! = 4} +o(1/y/n) and suchthai} fork =1,..., K

K—i+1

are determined by Lemnfawith j = 2 there. In particular, noticey? = /X (a7) & =

41 —i41

ul + o (n*KEK ) and our goal is to prove that* — 4! = o (n*sz ) Letu™ = o(1) be a

sequence of cutoffs wheté = a7 +o(n~/2). We will show first that ifiu — a3 | = Q (n_ I§?<1>

thenul must be sub-optimal; specifically that

1

S™ (™) — 8™ (u") = Qn7E) > 0,

Recall thatS} (u) = M (u") + B(u™) + E(u") whereM, B andE are as defined ir&LT)
and BT2). First, because both? = 4} + o(n~'/?) andu? = @} + o(n~'/?) and, because
u™ = o(1), we have thatV/(a}) — M(u}) = O(1), B(u",,u}) — B(u",,a}) = O(1) and
E(u™y,u}) — E(u™,,a}) = O(1). It suffices, then to consider sequenéewith u} = a}. In

that case,
Si (") = Sp (i}, uy) = B(a" ;@) — B(u"y, @) + B(@"y; @) — E(u”, ).

Since cutoff vectors are increasing’(; > u};i = 1,..., K —1), we have that/(v™*) = O(1).

Since we are considering in this step the case tffat= a7 + o(n~'/?), we also have that
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m)? = O(1). Thus, for any sequence of cutaff that hasu? = @} + o(n~'/2):

%

E(u") =E(u") = Z;o (<“Z+1>> +0(n (ul)?) + O(1)

(A.18) =0 (Zf;lugﬁ) +O(1) = o(—B(u")) + O(1).

By definition of ™ we haved > B(a™,);ua}) > B(u",;a}) so that we further have

Sw(a") = Sg(ar, u?y) = B(f{5ar) — B(uly, af) + E(a”; ay) — E(u”y, ay)
> B(a”y;ay) — B(uy, ay) + eB((u” ;) + O(1)

= B(&Til; ﬁ?) - (1 o €>B(u7117 arll) + 0(1)7

where can be taken to be an arbitrarily small strictly positive constant.

By definition0 > B(f3 (uy); ujy) = B(u”y;ay), so that, further

(A.19) Sk (a") = Sg(ar, uy) = B(a” s ay) — (1 — €)B(f3 (uy); uy) + O(1),

By lemma@ with j = 2, we have

uy /[t nen—EL ) _ i _

(1/;?)11/,( — ug(ii)~ "% and we used the fact thdt) = . Notice thatg(x) =
1

v+ (K — 1)1 (L)% is convex inz and minimized at* = o with g(z*) = p* K.

where(” =
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Notice that
(A20)  B(@") = B(A(a), @) = —¢%~ (0) K (@)% = 1(0) (u—) gla").
Suppose thap := liminf, ., (" > w% we have a constanmf, > 1 such that
B(fa(ufy), uz) < cyB(a"),

for all sufficiently largen in which case by®77) (choosinge so thatf := ¢, (1 —¢) — 1 > 0;

recalle was arbitrary) we have that

Sk (") = Sk(af,u”y) = B(u") = (1 = €)B(f5 (ufy); uizy) + O(1)

1

(A.21) > —¢B(@") + O(1) = Q(n>x) > 0.

The last equality follows sinc&} = a7 + o(n~/?) = On='/2 + o(n~1/?) so that—B(i") =
1

v(0) (in) ¥ g(z*) = Q(n'/2K) and we would conclude that, for allsufficiently largeSy. (") >

Uy

St (ay},u™,) meaning that” is sub-optimal.

The same argument applies if, insteadiofinf,, .., (" > go%, we havelim sup,, . (" <

K-1

©x. It remains to prove that one of these holduf — @7| = Q (n*ﬁ) Indeed, ifu =

K-1

uy + Qn"ow) = g

=

0 7 0w+ Q(n‘%), then there exist > 0 such that, for all

sufficiently largen, either

K—1 _K-1 _K-1 n 1 K-—1 K-1 _K-1
K n~ 2K +0n 2K ,0luy < pKO K n~ 2K —Jjn~ 2K .

1
uy > @kl
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. - K-—1 “ K—1 K—1
Thus, there exists > 0 suchthat™ = v} (a})~ & = ul(a}) " & = ud(On""?+o(\/n))" &
> oV/E L §or¢m < /K — § for all sufficiently largen so that B271) holds. We conclude that
any optimal sequencg’ must have thalts — | = o(n~ 2% ).

Now, one proceeds sequentially. Fixing a sequence suchithat a7 andul* = uf but

|uf —af| = Q(n~ 2% ) we have
(A.22) Sg(u") — S}Q(&&],u’im) = B(f/—l[z]; ﬂ&]) —(1- €)B<f§1(u7[§])§ Uﬁz]) + O(1),

and one proceeds similarly to our argument above to show:thiatsub-optimal ifju} — u%| =

Q(n~"2% ). One then proceeds tg and so on.

(Proof of Step 2) In this step, we first calculate the optimal objective function value for the

social planner by using the optimal decisions we find in step 2. To do so, we cofgiti¢ras

defined in B10)
Sie(u™) = M (uy™) — M(aY) + M(aY) + B(u™) — B(a") + B(@") + E(u™)

whered” = (47, - -, ul) andu™ = (u}*, - -, u}). Note thatE(u™) = O(1) andM (u}*) —

M (4}) = o(y/n) by using BI8). Similarly, we haveB(u™*) — B(4") = o(y/n). Hence we
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for K > 2. Hence, two class policy is asymptotic optimal®fy/n) scale, i.e.

n* n*
Sk — 53

lim =0.

n—so00 \/ﬁ

Now, we check if it's worth to offer whether two classes or only single class. Therefore, we
calculate the optimal objective function value for the case of single class. The social planner’s

problem reduces to the following whét = 1
max ST = nA[V (v]) — aWgV (v])]

U?€R+
max nAV (u}) |1 — « ! @ !
= X e —— _
up R} ! nAf (0) u} n

= max nA [V (0)+ V() + 0 (7)) [1 _ @m _o (%)}
aV” (v) v ©) +nAV (0) uf + O (n (u})? + 1)

= nAV (7) - o) wes “To)a

which gives the following optimal? and .S}

ne -1 @ V (v) o (n-t
U =Van \/f(@)\/@f(@)+ ( >

S™ = nAV (0) 4+ av — 2v/av/n\Vo gg; o)
Then we have
LSy -8y _ |V ()
L e VIO

whereK > 2. Therefore, there is a significant benefit of offering more than 1 class and we

can conclude that offering 2 classes is asymptotically optimal (@/in) scale. [ |
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Proof of TheorenB: Similar to the proof of Theore. We omit the details.

A.4. Proofs of Auxiliary Lemmas

Proof of Lemmad: We prove this result for the social planner. The argument for the revenue
maximizer requires only minor changes. We first prove tftat— v and then proceed to show
thatv* — vforalli =2,... K.

Suppose™ — 1° for some vectorn® € RE (if the sequence does not converge we can
apply to argument below to any convergent subsequence). Suppose, furthef, that We
will prove that this leads to a contradiction to the optimalityf.

Since the cutoffs.?* increase ini, we then have that?* = v — o = Q(1). This, in
turn, implies (recall that\ F'(v) = 1) the existence of < 1 such thatAF'(v7*) < ¢ for all
1=1,..., K, and alln sufficiently large. Consequently, for all sugh

1 1
(1= AF () (L~ AF (o)) = n(1— o)

W} (ve +u™) = =0{1),i=1.. K,
so thatAnW*(ve + u™*) = O(1). Sinced < V(z) < V(o) for all x > v, we then have

S%wm):Anxqﬁ+ﬂﬂ—aE:ZJVﬁwaﬂ—L%@+uﬁQ)WT@e+wﬂ

=An[V(v+u")] + O(1).

Takeu™ = (ul*/2,ub*, ..., u¥) to be the vector obtained fromi* by replacingu}* with

u}* /2 and keeping all other entries the same. ’et= ve + u". Notice that

0 —
v — U
n 0 _ 0 1 0 0
v v _(Ul_ 7U27"'7UK)'
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Sincev! ™ = O(1/n) for all i and all sufficiently

largen so that

S™(u") = An {v (@ + “; )} +0(1)
Therefore,

n*x

ué ) ~V(o+ u’f*)] +0(1)

Sk(") = SE(v™) = An [v <17 +

It follows from the strictly positive density of’, and fromu}* — +{ — v anduf*/2 — (v) —

v)/2, that

(A.23) V (@ + “g) V(04U = /u of(x)de > “g (F’ (“;f) . F(ﬂ*)) = Q(1),

2

and, in particular, that

S — Si(w™) > An" (F (“; ) _ F(u?*>) L o() > In,

for someL > 0 contradicting the optimality ot™*. We conclude that optimal cutoffs must
satisfyv* — ©.

From this first step it follows in particular that a limit of v™* must have)? = v. Suppose
that there exists an index< K such that? > u. Leti, be the smallest such index. Then,

W (ve + u™) = O(1/n) for all i > ig and, in turn,

Sk(u™)=An |V [ 4 ul*) — azm ' +ul) =V (v +ul,)) W (ve + u”*)] +0(1).
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Replicating our arguments above, take

0 —
u* v, — U
n __ n* n* 20 n* nx 10 0
U —(U1 ,...,uio_l,T,uiOH,...,uK)—>(0,..., 5 ,...,UK).

Notice that, by the definition of, we haveu;*/2 > u;* ;| for all sufficiently largen so the

monotonicity of cutoffs (ir¥) is maintained. Let™ = ve + u™. Then, also for",

i0— 1
Sn(u™) = An |V [ v+ ul) — az u) =V (0+uf,)) Wi(ve +u")| + O(1),
so that

Sk (") = Sk (™) = —ahn(V(0 + i) = V(0 + ui /2)) Wi, (0 + u”)

+ahn(V (0 4+ y) = V(0 +up ) )Wi (04 u"™) + O(1)

Using
W25+ ™) = !
ot Cn(1=AF@+ur ) (1 - AP0 +u))’
W’rl (7_‘_ n) 1
X u = =
o T A S ARG+ wp ) (1= AF(6 + w/2))
we get
n n mn n* OCA n n* n n*
Sk(u") = Sg(w™) = = (9" (i) — " (u}}/2)) + O(1),

1-F(o+ ui0—1>

where, forr > up* |,

n( )._V(v+ulo 1)—‘/(?_]—1-1’) _V<1_))_V(7_)+x> V(v+uzo 1)_V(Q_]>
SN T T NP+ 1) 1-AF(0+ ) 1—AF(7+7)
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Notice that since:! ; — 0, we have thatl — AF(v + u}*_;))™" — oo asn — oo SO that,
to prove that™* is sub-optimal, it suffices to show thgg" (u*) — g™ (uf*/2)) = (1) as this
will imply that S} (u") — S (u™*) — oo asn — oo.

To that end, let

o) = VOVEED) VO Vit

1-AF(0+2) AF(0)—AF(v+2x)
(Ag(x) is the expected valuation conditional on it being betweeandv + x). SinceF is

assumed to have a strictly positive densjty;) is strictly increasing inc so that, since:;" /2 =

Q(1) anduy” — up* /2 = Q(1),
gluiy) — g(ugy/2) = Q(1).

Also, sinceu;” = Q(1) butui* ; — 0, we have that

V(o+ul,) - V()
1= AF(0+ u)

=o(1),

and the same holds withf* replaced with.}* /2. Combined, we have that

9" (ui) — 9" (uig /2) = g(ug) — gluig /2) + o(1) = Q(1),

contradicting the optimality of™*.
Finally, in repeating the proof for the revenue maximizgs;) will be replaced by(p(v) —

p(v+2))/(AF(v) — AF (v + x)) which is increasing in: by Lemmal. |
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Proof of Lemma8: The sequence” is fixed throughout the proof. For simplicity of nota-

tion, we writelV* for W;*(ve + u™). Recall that

K-1

(A.24)  S°(v") = nA [V( " g Wr IV () =V ()] — aWRV (v;g)]

=1 Z

Taking a Taylor expansion df (v}*) for i = 1,2,--- | K aroundv and recallingu = v — v}

we have

Sk (v") =nA [ (V(v) + V/ v) - O‘Zl 1 W; < (U? - u?—rl) + %(v_) ((u?)z - (U?H)Q))

+ (—aWp (V (3) + V' (1) u@)] e
where

K-1

(A25) e =0 (nd] " W (u)") + O (Wi (u)’) + On (uh)?),

=1

Collecting terms we have

ST (v™) = nA [(V (0) + V' (0)u}) — aWRV (0) — aV' (v ZZ_ W” u — Uz+1)

K-1

(A.26) —a%@)zizl Wy () - (u;;l)z) —aWp (V' (v)u;})] e

We next apply Taylor expansion 7. First, usingAF' (v + ul) = AF(v) + Af(0)u} +
AO((u?)?) and recalling that\ F'(v) = 1, we have

1 1
n(l—AF@+uk) nAf(©0)ul +nAO ((u)?)

(A.27) W =
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Next, taking further the Taylor expansiondfx atnAf (v) ), we get

In the last equality we use Lemniisby whichu? = o(1) so that there exist, L > 0 such

that
o i O (g, | O (i)?) o ()
-1 / o1 YA
2 Y (f (@) up)™ < 2 (f (@) i)™ _Z“(f (0) [uge )™
L o9 LUnK il =
" Fereliw| <h

The last inequality follows from the fact tha}, = o(1) so thatLu}, < 1/2 for all n sufficiently
large. For the Taylor expansion Bf" (i < K) we have
1
Wy = —— _—
(1—=AF (0 +up)) (1 —AF (0 +up,))
1
(nAS (@) u? + A0 (1)) (A (0) uy + A0 ((ury)*) )

n

We take one more Taylor expansion to get

Wi = _12 - (6)_3 (i+ ! >+O (l ! >+(9 <lu"+1)+0 (1)
n(Af () wiuyy,  2nA2f (0)7 \u - uly N Ui nouj n

n
U
n

Sinceu? ; > ul, O <%u ) = O(1/n) so that
i1

1 "(v 1 1 1 u?
Win — — o f (”U)7 - (_n + T) + O (_ul_';l)
n(Af ()" uful,,  2nA%f (D) \w'  uiy n ul
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Plugging these back int@&{76) we get

=0 (Z?@) + O(n (ul)?) + O(1)

U;

and into BZ17), hence objective function becomes (by also using the factuihat > ')

S 07) = (07 0+ V' @)y — ) - S S (- )
_aVI(0) f1(0) -ty o V" (v) K-1uf
2 (0)° 2 AR (@))QZ

i=1 u?

+em+0(1)

= AV () + A" ©)a) = 0 - S (L) e (M)

f@ug A(f(0)° g uf ui
+€e"+0(1)
=nAV (7) + (mv’ () uf + A“g;g;;%) - (iﬁ () +~ () fo%)
+€e"+0(1)

where

and

and hence

"28) P0) _,V (@) 0P (1)
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|
Proof of LemmaB: To simplify notation we replace:(x) := M RL(z). Using the relation-
ship

(A.29) h(z) = %

between the MRL and the hazard function, the inequaBiy) is equivalent to

(A.30)

Taking a derivative inE=30) we further have

m” (x)m (x) —m' (z) (m' (z) + 1)

o= " (2)

so that inequality®-3T) is equivalent to

(A.31) m’ (z) > —

Any MRL hasm (z) > 0, m’ (z) > —1; seelarand Xié(?006. Therefore, we can multiply
both sides of 8232) by m/(z) + 1 > 0 and say the inequality there holds if and only if
m” (x)m (x) >0,

which holds for allz if and only if m(-) is convex. |

Proof of Lemma&d We provide the detailed proof for the case that 2. The other cases

follow identically.
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Consider the change of variables= u,, /u; and the optimization problem
K 1

(A.32) mz’nZily (0)x; + B (v) zx  subjecttar; > 0 andH ;> —

i=1 t
Becausq—[fi , x; is ajointly concave function (sééarcus and ope€[957)) and the objective
function is linear, this is a convex minimization problem. It therefore has a unique solution
which, we will show, is given by

1\ VK 1\ VK
xr = pi/K (u—l) L i=1,2,--- K —1, andz} = o E-V/K (u—l) :

Denote the KKT multipliers forc; > 0 by u; and for]‘[fi1 T; > u—Cl by . We claim that

i = 0 and
v (v
U
75

satisfy both the complementary slackness and first-oder (stationarity) conditions. The comple-

mentary slackness conditions are

1

K
1
n(Hmf—u—> =0andu;z; =0,i=1,..., K.
i=1

They are both satisfied under our solution. For the first-order (stationarity) conditions, under
u; = 0, we must checky (v) = n]‘[#i x}, i =1,2,--- K — 1 (derivative with respect te;)
andg (v) = n [, «; (derivative with respect to).

Recall that (see Theore#hand equationZ=29))
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Since,

we have that

v B

n= " -,
[Lsuz Ik

which means that the first order conditions are satisfied with the proposed

Finally, notice that with the change of variable = w;,,/u; the minimization problem

(B=33) is equivalent to the minimization problem

U_1 U_1

max B(ur, u_,) = max {— (iKﬁ (©) + 7 (0) ZK ui“) } :

because by definitiop] " | %t = L.

=1 wu; Ul

Thus, from the solutior™ we construct the solution* ; = (“1> . This solution also

satisfies our requirement thaf < uj < --- < uj. |

A.5. Proof of TheoremB

The proof is a simple adaptation of that for the cd&e = «v. We outline the key ingredi-

ents, the first being an analogue of Lem#ia

Lemma 10. Fix a sequence af” = o(1) of cutoff values. Then,

(A-33) Si(u") = nAV (8) + (nAV' (0) uf + 7572 %)—(Lﬁ@ﬂ(mzi‘l%)w,

A(f(0))? i wic
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where
D(v) —d(@)F@®) . F(©)d(®)
)

and

Note that proof of this lemma is similar to the proof of LemBy&ence we skip it here. Rest

of the proof of Theorend is similar toawv case, i.e., Theoreffi We explain the main changes

below.
Optimal cutoff valuations have the same structure except that some parameters are different.

As a remark, optimal cutoff values have the following structure

for1 < i < K where

for the social planner and

i—1  K—i41 K—i+1
2K

for the revenue maximizer.

Under the new cost structure, assumitig) is differentiable, we have

A(0)F (0))
I@)F ()

o200
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where

fr(0)d (@) F(v) — d"(0)F(0) f(0) + 2d'(v) (v)

_ F@ /D) _ F(@) /d@©)
Note thaty changes as well = o\ Vo = Fo

v v

. Therefore, coverage is same when

both service providers offer same number of classes.

==

-

!

—n2k (B (0) " K 0% — 5 (0) (K = 1)pk0 %) + 0 (vV) + O(1)

for K > 2. Hence, two class policy is asymptotic optimal®@fy/n) scale, i.e.

Sk =S5 _ .

lim

n—-s00 \/ﬁ
The optimal value of offering a single class is

D (v)
F (v)

S = nAV (D) + d(v) — 2v/nVD +0(1).

We then have

S e Te _ |D(v)
—_— =2 —2 0
= v+/0d(0) — 2V - <0,

ST
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whereK > 2. The last inequality follows fromd(-) being nondecreasing. Overall, we have that

there is a significant benefit of offerirfg > 2 and thatx” = 2 is nearly optimal irv (/n) scale.

Finally, for classification, we comparte and®. The revenue maximizer admits more the

the high class than the social planner does if

(D (v) -

— +

)F (v)) <f’(?7) d"(v) 2f(17))
) flo) d(@)  F(v)

d(v
d'(v)F (v
This condition is equivalent to

d@F@  d'(@)  f@
(A.34) IO F@) - D@  d@  fo) T Fe) o

Sinced(+) is non-decreasing,(-) (recalll-T2 is increasing i\ if

'@) (D) -F@)dw)) | 2/0)(D@)~F@)d®)  d"@)(D©)-F@)dw))
AF(v)2 f(v)d' (v) AF(v)3d (v) AF(v)2d' (v)? AF( ) =

for all v (after replacing\ with v = F'=*(\/A). Simplifying and taking the special case= v,

leads to

(A.35)

which is equivalent to&-35).
Observe that in the special case théat) = av, ((\) is increasing im\ if and only if the

MRL is convex inv. Since
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replacingu, = F~*(\/A) we have

o) =~ VW =vFR) _ vfE)FE) ~ f(0)V()

(75 F0)) Flo) (F(v))?

is decreasing [increasing] in Recall that
B C[tf () ar
MRL(v)=FE[X —v|X >v] = W—v.
so that
o F@uf@) = f@) [Ctf@dt | of(0)F@) - f0)V(©) |

MRL'(v) = — F ()2 —1=- (F0)? —1=—9(v)-1.
Convexity of the MRL is equivalent then #(v) being decreasing in. [

A.6. Additional Numerical Experiments

We include here additional numerical evidence for the persistence of the results (derived via

asymptotic analysis) for queues with moderate arrival rate (smalTablesA1-A-4 focus on
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the value of increasing segmentation beyond two classes. Evidently, increasing the number of

classes from 1 to 2 — from FIFO to priorities — brings significant benefit. In T&dlethe RM

increases revenues By30% and the SP increases welfare ©4$2%. The important columns

are those in bold: the benefit of offering one more class (i.e., going vpctasses) is only

1.91% for the revenue maximizer arid’37% for the social planner. This is true also with the

convex MRL case in Tabl&2). The corresponding asymptotic statements are reflected then in

TablesA=3 andA=4 wheren is set to the high value df00.

A #ofclasses RM(R;) SPS) (Ri—Ri)/Ri (Ri—Ra)/Ra (Si—S1)/S1 (Si—S2)/Ss
1 0.9025 2.6356
2 0.9774 27625  8.30% 4.81%

4.175 3 0.9961 2.7864  10.37% 1.91% 5.72% 0.87%
4 1.0032 2.7948  11.16% 2.64% 6.04% 1.17%
4 1.0067 2.7986  11.55% 3.00% 6.18% 1.31%
1 1.9374 6.2072
2 2.0676 6.3314  6.72% 2.00%

20 3 2.0947 63492  8.12% 1.31% 2.29% 0.28%
4 2.1045 6.355 8.62% 1.78% 2.38% 0.37%
5 2.1091 6.3576  8.86% 2.01% 2.42% 0.41%

Table A.1. The value of segmentation for a queue with= 1 (small volume) and
valuation distribution Weibull(1,0.7) (Concave MRL).

A #ofclassesK RMR) SPS;) (R — Ri)/Ri (Ri—Ra)/Ry (Si—51)/S1 (Si—S2)/S2
1 0.3467 0.6394
2 0.3663 0.6622  5.65% 3.57%

1.9 3 0.3707 0.6666  6.92% 1.20% 4.25% 0.66%
4 0.3723 0.6682  7.38% 1.64% 4.50% 0.91%
5 0.3731  0.669 7.61% 1.86% 4.63% 1.03%
1 0.5218 1.3593
2 0.5383 13758  3.16% 1.21%

10 3 05414 13784  3.76% 0.58% 1.41% 0.19%
4 0.5426 1.3792  3.99% 0.80% 1.46% 0.25%
5 05431 13796  4.08% 0.89% 1.49% 0.28%

Table A.2. The value of segmentation for a queue with= 1 (small volume) and
valuation distribution Weibull(1,2) (Convex MRL).
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A  #ofclassed¢ RM (Rq) SP (S;) (R1 — Rl)/Rl (Rl - R2)/R2 (57 — Sl)/Sl (Sl — S2)/S2
1 76.390 122.781
2 77.431 122.893 1.363% 0.091%
1.9 3 77.618 122.899 1.607% 0.241% 0.096% 0.005%
4 77.681 122.901 1.690% 0.323% 0.098% 0.006%
5 77.710 122.901 1.728% 0.361% 0.098% 0.007%
1 139.922 179.525
2 140.831 179.561 0.650% 0.020%
10 3 140.939 179.562 0.726% 0.076% 0.021% 0.001%
4 140.972 179.562 0.750% 0.100% 0.021% 0.001%
5 140.987 179.562 0.761% 0.111% 0.021% 0.001%
Table A.3. The value of segmentation for a queue with= 100 (high volume) and
valuation distribution Weibull(1,2) (Convex MRL).
A # Of Classeg( RM (RZ) SP 61) (Rz - Rl)/Rl (Rl - Rz)/Rz (SZ - Sl)/Sl (Sl - SQ)/Sz
1 162.940 370.936
2 164.656 371.270 1.054% 0.090%
4.175 3 164.997 371.284 1.263% 0.207% 0.094% 0.004%
4 165.121 371.288 1.339% 0.282% 0.095% 0.005%
5 165.180 371.289 1.375% 0.318% 0.095% 0.005%
1 448.547 735.216
2 454.389 735.435 1.303% 0.030%
20 3 455.097 735.441 1.460% 0.156% 0.031% 0.001%
4 455.317 735.442 1.509% 0.204% 0.031% 0.001%
5 455.414 735.443 1.531% 0.226% 0.031% 0.001%

Table A.4. The value of segmentation for a queue with= 100 (high volume) and
valuation distribution Weibull(1,0.7) (Concave MRL).
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APPENDIX B

Proofs for Chapter 2

B.1. Appendix A
B.1.1. Theoretical Ambiguity of Hypothesis 1

In Section?=3, we denoted the competing Hypothesis 1A and 1B. Optimal action of the
driver depends on demand characteristics, demand priors of the driver, and number of drivers
entering into the zone. In this section, we illustrate the theoretical ambiguity with the following
setting. Assume that demand in a given zone is either high or low denotée,;bgnd D;,
with Dy > Dy. Agent has partial information about the demand by considering the number
of new agents occur in her zone. More specifically, agent thinks that demand will be high with
probability 7z (n) and it will be low with probabilityl — 75 (n) wheren is the number of new
agents. Assume that the agent is myopic and will stay in her zone if expected revenue in the

current period is greater than her reservation price. Hence, probability of staying in the zone is

63 F (amin (1 22702 D1 =l )

k+n

wherea is the expected revenue for the servikds the number of agents that were already
in the zone and is the (random) reservation price which h&&) as cumulative distribution

function. Therefore, probability of scattering increases as number of new agent increases if

and only if min <1, <DH”H(")227LI(1‘”H(”))>> increases as increases. However, this is not
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necessarily the case. Suppdse> Dy andny(n) = 1 — —=. Then, B) increases by

—Dp++/(Dy—Dr)(Dyk—Dr,

if n < o

) and it decreases by otherwise. Therefore, this framework
shows us that it is not clear how the number of new agents may affect the scattering decision of

the agent. Our empirical analysis allows us to resolve this theoretical ambiguity.
B.1.2. Theoretical Ambiguity of Hypothesis 2 and Derivation of Equation

In SectionZZ3we defined Hypothesis 2A and 2B. It is not a priori clear whether Hypothesis
2A or 2B is more consistent with optimal behavior. We illustrate this theoretical ambiguity by
considering a setting with 2 zones and 2 agents. Assume that ride requests are only from one
zone to the other zone, there is only 1 ride request per zone at each period with probapility of
and it takes one period-time to change zones. If they are in the same zone, each driver can hail
the passenger equally likely when there is a ride request. We also assume that when the ride
request is not satisfied by any of the drivers, the demand is lost. Consider the case where only
one of the drivers changes her zone with probability; @#hen the other driver enters to her
zone. Let us call this driver agrategicdriver. Customer arrival occurs after the driver scatters,
therefore; she losses her chances to hail a passenger for that period if she decides to change her
zone.

In the long-run, strategic driver has the following probability of hailing a passenger in a
given period

2(=2+p)p+ (=1 +p)*pq

(B.2) R e (31290
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which leads to
OrR (=14 p)p(1+p(=5+2p))
dq 2(=34+q+p(2+q(—3+2p)))?

Therefore, ifp < %ﬁ then scattering always increases the chances of the strategic driver’s
finding a passenger, otherwise; herding is a better choice to increase the probability of finding
a passenger. Hence, there can be cases where scattering may payoff even though traveling from
one zone to the other zone vacant takes additional time.

B.1.2.1. Derivation of the Equation B2)

Following state space = {1, 2, 3}, is sufficient to consider every possible scenario that may
occur in this setting where= 1 if drivers are in different zones in the current time periog; 2
if drivers are in the same zone at the current time period because strategic driver did not move
but non-strategic driver changed her zone to the one that strategic driver stays in the previous
time period, and lastly set= 3 for the remaining three scenarios at which all scenarios result
in being in the same zone at the current time period: (3.1) they had been in the same zone and
none of them moved, (3.2) they were in the same zone in the previous time period and moved
together, hence they are in the same zone at the current time period as well, (3.3) only strategic
driver moved in the previous time period and they are in the same zone at the current time
period. Note that strategic driver will scatter with probabiljtpnly whens = 2. To find the

limiting probability, =, we construct the transition probability matrix

P+ (1 —=p)? p(1—p) p(1—p)
P=1q1—p) +(1—qp 0 qp+ (1 -¢q)(1—p)

P 0 I—p
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Since each state communicates with each other and state space is finite, sobftioR = =

is the unique limitingr. Solving this equation yields to

1

T = 5

3 —2p —q+3pq —2pq

_ (1—pp

Ty =

—2p%2q+3pg—2p—q+3
o 2% p 4+ 3pg—3p—q+2
3— .

—2p%q+3pg—2p—q+3

Note that strategic driver will hail a passenger with probability efhens = 1, (1 —q¢)% (since
the driver can hail a passenger only she decides to stay instead of scattery wh2rand £
whens = 3. Therefore, using these results with the equation below yield to the result

R £ m™p + Wz%(l — Q) —|—7T3§.

B.2. Appendix B: Spatial Autoregressive Model and Results

B.2.1. Model

As noted inManski (1993, the decision of the individual can be affected by the decision of
her peers, which means that there can be a social interaction between each individual. Therefore,
the models we consider in previous sections do not formally consider these peer effects, which
may result in so-called identification problem ($é@anskiT993or details). In this section, we
test our first hypothesis with a different model setup and a method where we also consider peer

effects. For this purpose, we use spatial regression model to test Hypothesis 1.



158

Before reporting our results, we provide some basic information about this model. Specifi-
cally, we use Spatial Autoregressive Model (SAR) to capture the effect of peers. Our estimations
require a model setup with balanced data sets, i.e., for each unit of observation we need to have
same number of data points over time. Since this is not possible by using drivers as a unit of
observation, we consider zones as our unit of observation. Therefore, we ldefiviagRatio
which is basically the fraction of the vacant drivers that decides to leave the zone. Suppose we

haveN zones andy regressors. The model is specified as

(B.3) Y, = a+ pWY, + 8X, + u,

whereY; denotes anV x 1 vector consisting of one observation on the dependent variable for
every zone in the sample at timex is NV x 1 vector for individual fixed or random effectd; is
N x N spatial weighting matrixX; is N x K matrix of regressors with associated parameters
(3 contained ink x 1 vector andu; = (uyy, ..., un) iS vector of independently and normally
distributed error terms.

As noted inElhorst(20T0), this model prevents possible identification problems. In order
to understand the effects of regressors on the dependent variable, we need to have the following

modification on B-3)

(B.4) Y = pWY; = a+ BX; + uy

Y, = (1 —pW) Ha+ BX; + uy)



Then, we can identify the effect of regressors on dependent variable easily.

equation gives us the effect bf* regressor among regressors.

oY
Bmlk

oY

®.5) {

Jy,
Oy,

aINk:| o

Oyn
Oxyy,

9y,
Oz N,

=(1- PW)_lﬁk

Oyn
Oz Nk
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The following

Diagonal elements off5) are called thalirect effectof the change in the regressors on

the dependent variable of the corresponding zone. Since many zones are considered in these

models, estimation methods of such models do not list all direct effects and only provide the

average of these estimations. On the other side, non-diagonal elemeBX)ofeflect the

indirect effectbecause they show us the effect of a change in regressor on a dependent variable

in a different zone. Similar to the listing of direct effects, only one result is provided as the

estimate for indirect effect of an regressor. More specifically, the average of the row sums

is reported (For further information about the direct and indirect effects of spatial regression

models se&lhorst’20T0).

Table B.1. Statistical Summary for Spatial Data.

Variable Mean SD Min  Max
LeavingRatig .251595 .2351412 0 1
Vacant 4.299446 5.835457 0 68
Getln .0654602 .3126902 0 13
GetOut .0382696 .2119667 0 6
Vacantin 2.706472 4.167689 0 53
VacantOut 1.445378 2.081628 0 26
Salesime 2.234779 4.032085 -3.765 14.746
SalesZone | 4.163825 6.662402 -2.198 28.969
RushHour 2501737 .433113 0 1
Weelend .2857143 .451754 0 1
Obsenations| 4,442,193
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B.2.2. Results

In this section, we provide our results for the SAR model where we consider spatial effects.
See TabldB71 for the statistical summary. Note that unit of observation is not driver for this
analysis. We have one observation for each minute, day, and zone, leading to a balanced data
which is required for our spatial analysis.

In TableB=2, we provide the results of SAR model with both direct and indirect effects
of each variable. Note that each zone has its own direct and indirect effects as explained in
the previous section but only average of these estimations are reported due to space limitations
since we have(0 zones.

As we had in regression modeNgwDriversvariable has significant and positidérect
effectonLeavingRatio Therefore, we observe that drivers tend to leave their zone as the number
of new drivers increases. Hence, Hypothesis 1B is supported with this model as well. Advantage
of this model compared to regression models is that SAR considers social interaction between
peers. In our SAR models we find that this social interaction parameter is significant, i.e.,

decisions of the drivers in a given zone are affected by decisions of peers in neighboring zones.



Table B.2. Effect of Entry of New Drivers on LeavingRatio under SAR model

(RE-1) (RE-2) (RE-3) (FE-1) (FE-2)
Spatial:p 0.123* 0.121* 0.0676** 0.123* 0.121*
(147.21) (145.78) (78.18) (147.14) (145.71)
Direct Effects
NewDrivers 0.00133* 0.00267**  0.00157* 0.00132** 0.00266™
(21.54) (37.84) (22.32) (21.43) (37.74)
SalesTime 0.00560° 0.00579** 0.000312* 0.00560** 0.00579**
(233.51) (238.01) (8.84) (233.92) (238.07)
SalesZone 0.00102 0.00155 0.00246** 7.33e-14  0.00000236
(1.52) (2.36) (3.67) (0.07) (0.07)
Weekend 0.00631*  0.00381** 0.00631**  0.00381**
(25.44) (18.66) (25.44) (18.67)
RushHour -0.0289*  -0.0282** -0.0289**  -0.0282**
(-101.35)  (-119.60) (-101.34)  (-119.62)
Getin -0.00602*  -0.00643** -0.00601**
(-16.28) (-17.52) (-16.27)
GetOut -0.000688 0.000290 -0.000694
(-1.20) (0.51) (-1.21)
Vacantin -0.00314* -0.00434** -0.00314**
(-85.18) (-114.40) (-85.11)
VacantOut 0.0030%*  0.00199* 0.00304**
(42.37) (27.40) (42.32)
Indirect Effects
NewDrivers 0.000182* 0.000363** 0.000113* 0.000182** 0.000362**
(22.24) (37.29) (20.46) (21.13) (36.01)
SalesTime 0.000769 0.000786** 0.0000224** 0.000768** 0.000786**
(118.68) (112.30) (8.85) (134.37) (118.48)
SalesZone 0.000140 0.000211 0.000176** 1.01e-14  0.000000320
(1.52) (2.36) (3.68) (0.07) (0.07)
Weekend 0.000866° 0.000517** 0.000866** 0.000517**
(25.25) (18.42) (25.15) (19.08)
RushHour -0.00396* -0.00383** -0.00396** -0.00383**
(-87.29) (-90.29) (-84.26) (-93.95)
Getin -0.000818* -0.000462* -0.000816**
(-16.15) (-16.89) (-16.21)
GetOut -0.0000936  0.0000207 -0.0000942
(-1.20) (0.50) (-1.21)
Vacantin -0.000427* -0.000312** -0.000426*
(-72.32) (-61.74) (-75.69)
VacantOut 0.000414* 0.000143* 0.000413*
(39.49) (24.54) (41.05)
Observations 4,442,193 4,442,193 4,442,193 4,442,193 4,442,193
AlC -1098983.6 -1106104.1 -1176422.7 -1102714.4 -1109809.9
BIC -1098664.2 -1105571.9 -1174400.1 -1102474.9 -1109317.6
Log-Likelihood 549515.8 553092.1 588363.3 551375.2 554942.0

t statistics in parentheses

Unit of observation is zone

Zone fixed effects are considered

Dependent variable iseavingRatio

Note: RE-3 Model considers daily and hourly time fixed effects.
*p < 0.05,* p < 0.01,*** p < 0.001
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B.3. Results

Table B.3. Impact of Scattering on Agent Utilization

(OLS-1)  (OLS-2)

(Frac Logit-1) (Frakogit-2)

PercentageReactHourly 0.0719***  0.0725***

-53.49 -55.38
Weekend 0.0615***  0.0826***
-43.63 -60.46
RushHour -0.0286*** -0.0530***
(-14.73) (-27.31)
SalesTime 0.0184***
-118.11
SalesZone 0.00570***
-115.52
Constant 0.115***  0.0549***
-65.5 -30.48

0.467*+*
-55.25

0.409***
-45.28

-0.229%*
(-15.49)

-1.964%+
(-156.16)

0.507***
-58.51

0.562***
-61.65

-0.339%+
(-22.69)

0.109***
-111.96

0.0402%+*
-113.92

-2.450%+
(-181.53)

t statistics in parentheses

Dependent variable is PercentageBusy, which is a fraction.

All of the models above use hourly fixed effects.
*p <0.05,** p <0.01, ** p <0.001
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