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ABSTRACT

Essays on System Efficiency in Service Operations

Can Ozkan

Services have been constantly evolving and operational efficiency has been a key initiative

for progress. In this collection of academic papers, we investigate the efficiency of three differ-

ent industry practices, to each of which we dedicate a chapter. Chapter1 and Chapter2 cover

completed research, while the research covered in Chapter3 is at preliminary stage.

In Chapter1, we study priority queues to understand the determinants of social efficiency.

Many service providers utilize priority queues. Many consumers revile priority queues. How-

ever, some form of priority service may be necessary to maximize social welfare. Consequently,

it is useful to understand how the priority scheme chosen by a revenue-maximizing firm differs

from the one a social planner would use. We examine this in a single server-queue with cus-

tomers that draw their valuation from a continuous distribution and have a per-period waiting

cost that is proportional to their realized valuation. The decision maker must post a menu of-

fering a finite number of waiting time-price pairs. There are then three dimensions on which a

revenue maximizer and social planner can differ: coverage (i.e., how many customers in total
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to serve), coarseness (i.e., how many classes of service to offer), and classification (i.e., how to

map customers to priority levels).

We show that differences between the decision makers priority policies are all about clas-

sification. Both are content to offer very coarse schemes with just two priority levels, and they

will have negligible differences in coverage. However, differences in classification are persis-

tent. Further, a revenue maximizer may — relative to the social planner — have too few or too

many high priority customers. Whether the revenue maximizer over- or under-stuffs the high

priority class depends on a measure of consumer surplus that is captured by the mean residual

life function of the valuation distribution. In addition, we show that there is a large class of

valuation distributions for which a move from first-in, first-out service to a priority scheme that

places those with higher waiting costs at the front of the line reduces consumer surplus.

In Chapter2, we study the impact of the increased availability of real-time information

on the behavior of strategic agents and the implications of this phenomenon for service effi-

ciency. The use of real-time information in on-demand services provides agents with access

to an unprecedented amount of information about their competitors. We use data from one of

the leading e-hailing taxi platforms in South America to study the real-time reactions of agents

to the dynamic entry of new competitors in their serving zone. Information about competitor

locations could potentially induce herding behaviour (because competitors’ actions may convey

information about market opportunity) or scattering (because the entry of competitors reduces

the expected market share and the appeal of a serving zone). We find that the net response to

the real-time information indicating entry of new competitors in a service zone is an increase

in the scattering of the agents previously in the serving zone. The response is not homogenous

and some agents are more likely to respond to entry. We find that those agents who are more
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likely to react to the real-time presence of competitors by scaterring achieve higher utilization.

We investigate the consequences of these behaviors for the efficiency of service systems.

Finally, in Chapter3, we analyze the effect of carry-on bag policy on the system efficiency.

Air-carriers want to utilize their airplanes as much as possible. One of the obstacles against a

high utilization is the delay due to the boarding process. Some of the low-cost carriers started

to apply fees on carry-on bags so that passengers would be encouraged to check in their bags

instead of taking these bags with theirselves to the board. In this study, we investigate the

effects of this new policy on the air-carrier delay. We use the available data of U.S. Department

of Transportation’s (DOT) Bureau of Transportation Statistics (BTS) which contains flights of

Frontier Airlines that applies this new policy. We observe that this policy change was successful

in decreasing the departure delays. Furthermore, we propose the requirement of robustness

analysis with additional factors that capture the dynamics of the industry more realistically.
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CHAPTER 1

Coverage, coarseness and classification:

Determinants of social efficiency in priority queues

Joint work with Martin Lariviere and Itai Gurvich

1.1. Introduction

In 2013 Walibi, a Belgian amusement park, introduced Speedy-Pass, a premium service

that allowed purchasers to jump to the front of the line at park rides. These shorter waits

did not come cheap; the service more than doubled the price of an adult ticket to the park.

The announcement was met with an outpouring of opprobrium. An educator asked, “How in

the name of God do you explain to a child that he has to wait in line in a long queue, while

other children can go straight to the front, just because their parents have got more money?”

Government ministers also chimed in denouncing the program (Flandersnews.be 2013).

Angst over priority queues is not limited to Europe. In the United States, travelers have

petitioned the Transportation Security Administration not to allow airlines to profit from selling

priority access to airport security screening1 while the implementation of tolled express lanes –

so called Lexus Lanes – has faced opposition in Georgia and Colorado (Walker 2012, Whaley

2015).

1SeeTSA: Don’t Allow “Priority” Airport Screening Lines, www.change.org/p/tsa-don-t-allow-priority-airport-
screening-lines. Accessed Sep 2, 2015.
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On the one hand, such outrage is puzzling. Many firms offer multiple products or ser-

vice formats and consumers presumably benefit from the increased range of options. A cus-

tomer who buys a Chevrolet instead of a Cadillac must believe that the former offers better

value. On the other hand, one must acknowledge that capacity constrained service providers

differ from firms selling physical goods. Queuing creates externalities between customers in

different classes of service so that increased sales to one class can reduce the value obtained by

customers of the other classes. If General Motors sells more Cadillacs, Chevy buyers are un-

harmed, but the more Speedy-Passes Walibi sells, the worse service regular customers receive.

This, however, does not mean that priority schemes necessarily compromise social welfare.

A social planner would use priorities if customers have different waiting costs. Consequently,

the question is not whether a revenue-maximizing firm such as Walibi should use a priority

scheme but whether Walibi’s implementation differs dramatically from what the social planner

would do.

Such a comparison of the revenue maximizer’s and the social planner’s actions is the subject

of this paper. We consider a service system modeled as anM/M/1 queue. The decision maker

may or may not offer multiple priority classes. Arriving customers all have the same average

service time but differ in their valuations and waiting costs: they independently draw valuations

for the service from a common, continuous distribution and have a per-unit-time waiting cost

proportional to their valuation. The state of the queue is not observable to the customers, so

they must choose which class of service to purchase based on a posted menu of expected delays

and prices.

The decision maker, whether seeking to maximize revenue or social welfare, must make

three decisions.
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• Coverage. If the arrival rate of customers exceeds available capacity, the decision

maker must turn away some customers. The revenue maximizer might choose to serve,

in total, more or fewer customers than the social planner.

• Coarseness. We do not assume that the market is exogenously anda priori divided

into different classes. It is up to the decision maker to route arrivals into distinct pri-

ority levels. With valuations and waiting costs drawn from a continuous distribution,

both types of decision makers would benefit from posting a continuous menu of prices

and delays. In reality it is more common for service providers to use coarse priority

schemes that split arrivals into a finite number of discrete priority levels. A revenue

maximizer might opt for a coarser or for a more refined division than the social plan-

ner.2

• Classification. Given a level of coarseness, the decision maker must still determine

how to classify customers into priority levels: how many customers should go into

each class and who these customers are. Even if the revenue maximizer chooses the

same coverage and coarseness as the social planner, social efficiency might suffer.

The revenue maximizer might benefit from pursuing anultra-luxury strategywhere a

smaller high priority class than is socially optimal is charged higher prices. In other

scenarios, the revenue maximizer might benefit from pursuing amass-luxury strategy

with a high priority that is larger than socially optimal.

Our analysis shows that the loss of societal efficiency resulting from the revenue maxi-

mizer’s actions is largely a question of classification. We employ a limiting regime akin to

2The term “coarse priorities” is common in the the economic literature, specifically in the study of optimal allo-
cation. Coarse priorities mean there that “rankings are coarse, that is, they rank classes of agents, and everyone
within the same class is deemed in a tie”Ehlers and Erdil(2010). Nazerzadeh and Randhawa(2015) appear to be
the first to use the term in the context of designing a queuing priority scheme.
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Nazerzadeh and Randhawa(2015) in which the arrival rate of customers and the processing rate

of the server are scaled up together. We show that both the social planner and revenue maxi-

mizer are content to use extremely coarse priority schemes; for either type of decision maker,

the loss from using just two classes is negligible. Further, the level of coverage that both offer

is essentially the same. Thus, revenue maximization is socially optimal as far as coverage and

coarseness are concerned.

Differences, however, remain in classification. The revenue maximizer may opt for a mass-

luxury strategy and admit more customers to the high priority class than is socially optimal or for

an ultra-luxury strategy and admit fewer customers to the high priority class. Which approach

she chooses depends on how consumer surplus changes with the level of coverage. We show

that this is related to the mean residual life (MRL) of the valuation distribution. If the MRL

function is convex, the elasticity of consumer surplus is decreasing and revenue maximizer

opts for a mass-luxury strategy. When the MRL is concave, the elasticity is increasing and the

revenue maximizer follows an ultra-luxury strategy.

Additional intuition follows from considering the problem of maximizing consumer surplus.

Maximizing either revenue or social welfare calls for putting those with high valuations (and

thus high waiting costs) at the front of the line. This is not necessarily the case with consumer

welfare. If the valuation distribution has a decreasing failure rate, those with high valuations

should be served first. However, with an increasing failure rate distribution, serving those with

low valuations first maximizes consumer welfare. Note that this implies that consumers whose

valuations follow an increasing failure rate distribution are better off under first-in, first-out ser-

vice than under a priority scheme that favors those with high valuations. Further, a decreasing,

convex MRL function implies an increasing failure rate, suggesting that the social planner is
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less aggressive than the revenue maximizer in routing customers to the high priority class in

order to reduce the impact on consumer welfare.

1.2. Literature Review

The comparison of revenue maximization and social optimization in queues has been a topic

of interest since Naor’s seminal paper (Naor 1969). Hassin and Haviv(2003) andHassin(2016)

provide excellent surveys. In this brief literature review, we focus on research that allows for a

continuum, rather than an exogenously given number, of customer types.

Much of the work in this area builds onKleinrock (1967), which considers customers who

arrive to an unobservable queue and bid for priority. The customer bids are drawn from a

common continuous distribution. The service provider offers, in turn, a continuum of priority

levels and a customer is given priority over any customer who has bid less.

While the distribution of bids inKleinrock (1967) is exogenously determined, subsequent

work ties the distribution of bids to an equilibrium outcome between customers.Af èche and

Mendelson(2004) consider customers who draw their valuation for service from a common

distribution and who have a delay cost with two components: one that is proportional to the

realized valuation and one that is independent of the valuation. They show that with a single

first-in-first-out (FIFO) queue—that is, with uniform pricing—a revenue maximizer may offer

greater or smaller coverage than socially optimal depending on the valuation distribution and

the delay-cost structure. Studying priority auctions, they establish conditions for the revenue

maximizer to achieve social efficiency.Katta and Sethuraman(2005) provide conditions under

which the priority auctions inAf èche and Mendelson(2004) are in fact revenue maximizing.
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Specializing the results ofAf èche and Mendelson(2004) to our setting, we would have

that the revenue maximizer admits fewer people than is socially optimal under a uniform price

but admits customers at the socially optimal rate when places in line are auctioned off under

preemptive priorities. If non-preemptive priorities are used, the revenue maximizer does not

achieve social efficiency.

In Af èche and Mendelson(2004) as well as most other work in this vein, types are never

pooled, so small differences in waiting costs may result in absolute differences in priorities.

Depending on the waiting cost structure, the revenue maximizer may pool some types together,

impose a common price and offer the same expected wait (Katta and Sethuraman 2005). Ad-

ditionally, Af èche and Pavlin(2016) show that a revenue maximizer facing customers with a

utility structure different than ours may use a complex service discipline that may pool cus-

tomers or exclude some with intermediate valuations or impose strategic delay. Note that in

these papers, the service provider still offers a continuum of priority levels despite pooling

some types: customers who are not pooled are still given distinct priority levels despite small

differences in waiting costs.

A limited set of papers consider how to map a continuum of customers to a coarse set of

priority levels.Ghanem(1975) considers customers that differ only on their per-period waiting

costs drawn from a common distribution, and examines how they should be classified into a

predetermined number of priority classes in order to minimize total delay costs.Gilland and

Warsing(2009) consider a similar problem from the perspective of revenue maximization but

restrict their analysis to uniformly distributed delay costs and assume that all customers must

be served.
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In Gavirneni and Kulkarni(2014), customers differ only in their waiting costs which follow

a Burr Type XII distribution and the service provider only offers two levels of priority. They

present examples in which the revenue maximizer classifies more customers as high priority

than the social planner would.

Doroudi et al.(2015) consider the same valuation and cost structure as we do; arriving

customers draw a valuation from a common distribution and have waiting costs that are propor-

tional to their realized valuations. The bulk of their analysis focuses on offering a continuum

of priorities but they do demonstrate numerically that a coarse priority scheme with a limited

number of priority classes performs very well.

Finally, Nazerzadeh and Randhawa(2015) examine how a revenue-maximizing service

provider should manage coverage, coarseness, and classification when customer draw valua-

tions from a common distribution and have per-period waiting costs that are a function of their

realized valuations. They use an asymptotic analysis to show that a very coarse priority scheme

is sufficient; two levels of priority capture nearly all of the possible system value. In examining

coarseness, we take a similar approach. Indeed, their results partly provide the revenue maxi-

mizer side of our comparison. We not only expand the analysis to the social planner but also

strengthen it. To demonstrate the near optimality of two classes for the revenue maximizer (as

done inNazerzadeh and Randhawa(2015)), it suffices to identify one solution (among possi-

bly many solutions). In order to compare the decisions (i.e, the price and waiting-time menus)

of the revenue maximizer and social planner, however, we must assure the uniqueness of the

asymptotically optimal prescriptions.
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1.3. Model Formulation

We consider a service modeled as a queuing system. There is a (potential) arrival stream

that is Poisson with rateΛ. The queue is served by a single server, and the service time is

exponential with rateμ and independent across customers. Without loss of generality, we fixμ

to 1. We further assume thatΛ ≥ 1 so that not all customers can be served. How much of the

market the decision maker choses to cover is then a non-trivial question.

Customer valuation for the service is drawn from a distributionF with support(a, b) with

0 ≤ a < b. Valuations are independent across customers. Customers are also adverse to delay.

A customer’s delay cost is linear in her waiting time (which includes the delay in the queue and

the service time) with a coefficient that is proportional to her valuation: a customer with service

valuationv incurs a cost ofαv per unit of delay whereα < 1. This specification provides

heterogeneity in both the cost coefficient and the valuation. We generalize this structure in

Section1.6.2.

F is assumed to be differentiable with differentiable densityf . Let F̄ (v) = 1 − F (v), let

h(v) = f(v)/F̄ (v) be the distribution’s failure rate andg (v) = vh(v) be the generalized failure

rate ofF (v) . We make the following assumption onF andg.

Assumption 1: F has a finite mean.

Assumption 2: F has an increasing generalized failure rate, i.e.,g′ (v) ≥ 0 on (a, b).

The IGFR assumption is satisfied by many common distributions. It implies thatf is strictly

positive on(a, b) so bothF andF̄ are invertible. LetMRL be the mean residual life ofF , i.e.,

MRL(v) = E [X − v|X ≥ v] =

∫∞
v

tf (t) dt

F̄ (v)
− v.
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In the reliability literature the mean residual life represents the expected remaining life of a

component given that it has survived to a given age. Here,MRL (v) represents the expected

value beyond a base levelv created by serving a customer conditional on that customer having

a value of at leastv. SinceF has a finite mean,MRL(v) is defined for allv in (a, b) .

Customer actions. The service provider offersK ∈ Z+ different bundles of price and wait-

ing time,(pi,Wi). A customer must consequently choose whether to join the queue and, if she

does, at which grade of service. A customer with valuationv that chooses menu itemi obtains

the utility

(1.1) U(v; i) = v − αvWi − pi.

The service provider must pair higher prices with shorter waiting times as no customer would

buy a bundle that charges a higher price and imposes a longer delay than another menu item.

We must, in particular, haveWi 6= Wj andpi 6= pj for i 6= j.

Customers who select a particular menu item have valuations that fall within an interval:

Lemma 1. Suppose that a customer with valuationṽ optimally chooses menu item(pi,Wi)

and another customer with valuation̂v optimally chooses menu item(pj ,Wj) . If Wi > Wj and

pi < pj, thenṽ ≤ v̂. Therefore if two customers with valuationsv < u choose the same menu

item(pk,Wk) , a customer with valuationsw ∈ (v, u) must choose the same menu item.

Thus, a price-delay menu segments the valuation space into intervals and we may, without

loss of generality, number the offerings such that a higher index corresponds to a higher price

and a shorter wait. Customers with the highest valuations thus choose itemK. Since the set

of customer valuations for a given menu item is an interval andF is strictly increasing, there
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exists a unique cutoff valuationvi such thatU(vi; i) = U(vi; i − 1), i.e., a customer with the

valuationvi is indifferent between menu itemsi andi− 1. Letv be the vector of cut off values.

The fraction of all customers choosing menu itemi ∈ {1, . . . , K} is given byF̄ (vi) − F̄ (vi+1)

(we definevK+1 ≡ ∞) and the rate of such customers is

λi(v) = Λ(F̄ (vi) − F̄ (vi+1)).

We writeλ(v) (dropping the subscript) for the vector of arrival rates. Let

λ̄i(v) =
K∑

j=i

λj(v) = ΛF̄ (vi)

be the rate of customers that choose menu itemsi or higher. With this notation̄λ1(v) = ΛF̄ (v1)

is the service provider’scoverage: the volume of customers who enter the system per time unit.

For stability this volume must be strictly smaller than the service rate—λ̄1(v) < 1—so that no

customer with valuation less than

(vbar) v̄ = F̄−1

(
1

Λ

)

,

enters the service (i.e.,v1 > v).

The menu prices are uniquely determined by the cutoffs and the waiting times. Indeed, since

the customer with valuationvi is indifferent betweeni andi − 1, we have

U(vi; i − 1) = vi − pi−1 − αviWi−1 = vi − pi − αviWi = U(vi; i),
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so that

(1.2) pi − pi−1 = αvi(Wi−1 − Wi) .

The lowest-valuation customer who patronizes the service is indifferent between joining and

not joining. Assuming that all customers have an outside option of zero, we then have

(1.3) v1 − W1αv1 − p1 = 0 =⇒ p1 = v1 (1 − αW1) .

p1 can be interpreted as anentrance feeto the system – anyone that enters has to pay at leastp1.

A customer with valuationv > v1 enters the system and obtains a strictly positive utility since

U(v; i) ≥ v(1 − αW1) − p1 > v1(1 − αW1) − p1 = U(v1; 1) = 0.

Thus, given cutoff valuesv1 < v2 < . . . < vK and waiting timesW1 > W2 > ∙ ∙ ∙ > WK , the

prices menu is uniquely determined by (1.2) and (1.3) regardless of whether the decision maker

seeks to maximize revenue or social welfare. The objective functions of the two providers will

determine how the vectorsv andW are set.

The social planner’s problem. For a fixed numberK of classes, the social planner must

choose a vectorv of cut-off values and a vectorW of waiting times to maximize social welfare,

i.e., the aggregate utility of arriving customers. The expected utility of a class-i customer (a

customer that chooses menu itemi) with valuationv is v−αvWi. The social welfare following

from a givenv andW can be written as



24

SK(v,W) = Λ
K∑

i=1

(∫ vi+1

vi

uf(u)du

)

(1 − αWi)

= ΛV (v1) − α

K∑

i=1

λi (v)
(V (vi) − V (vi+1)

F̄ (vi) − F̄ (vi+1)
Wi

= ΛV (v1) −
K∑

i=1

λi (v) cS
i (v)Wi

whereV (x) :=
∫∞

x
uf (u) dv so that(V (vi) − V (vi+1))/

(
F̄ (vi) − F̄ (vi+1)

)
is the average

contribution to social welfare ignoring delay costs of a customer conditional on her selecting

classi. Similarly,cS
i (v) := α (V (vi)−V (vi+1)

F̄ (vi)−F̄ (vi+1)
is the average cost of delay among class-i customers.

In maximizingSK (v,W) , the constraints on the social planner’s actions are that the cut-off

valuesv are increasing while the waiting-time vectorW must be decreasing and feasible given

the induced arrival rates. We allow the use of preemptive priority schemes; see§1.6.1for the

case of non-preemptive policies. LetW(v) be the set of feasible waiting times givenv and the

resulting arrival rates.W(v) is determined by the achievable region; see e.g. Theorem A.10 of

Stidham(2009).

The social planner’s problem can then be written as

S∗
K = maxv↑,W↓ SK(v,W) s.t.W ∈ W(v).

wherev ↑ denotesv1 < v2 < ∙ ∙ ∙ < vK and,W ↓ denotesW1 > W2 > ∙ ∙ ∙ > WK . Because

F is strictly increasing,V (vi) − V (vi+1) > 0 for all i so that work conservation is optimal

(rather than, say, inserting strategic delay). Givenv, the cost coefficientscS
i (v) are increasing

in i so that it is optimal to preemptively prioritize customers in decreasing order ofcS
i (v) and
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the social planner’s problem reduces to a search over cutoff values. We thus have (recall that

λi(v) = Λ(F̄ (vi) − F̄ (vi+1)))

(1.4) S∗
K = max

v↑
SK(v) := ΛV (v1) − αΛ

K∑

i=1

(V (vi) − V (vi+1))Wi(λ(v))

where, for eachi = 1, . . . , K

(1.5) Wi(λ(v)) =
1

(1 − λ̄i+1(v))(1 − λ̄i(v))
=

1
(
1 − ΛF̄ (vi)

) (
1 − ΛF̄ (vi+1)

)

is the preemptive static priority waiting time of classi with arrival vectorλ(v) and service rate

equal to one.

The revenue maximizer’s problem. As with the social planner, the revenue maximizer sets

cutoff valuesv and expected waitsW. The relationships (1.2) and (1.3) map prices and waits

to cutoffs and waits. The firm’s revenue is then given by

RK(v,W) =
K∑

i=1

λi (v) pi = Λp1F̄ (v1) + Λ
K∑

i=1

(pi+1(v) − pi(v)) F̄ (vi+1)

= Λv1F̄ (v1) (1 − αW1) + αΛ
K∑

i=1

(Wi − Wi+1) vi+1F̄ (vi+1)

= Λρ (v1) − α
K∑

i=1

λi(v)
ρ (vi) − ρ (vi+1)

F̄ (vi) − F̄ (vi+1)
Wi

= Λρ (v1) −
K∑

i=1

λi(v)cR
i (v)Wi,

whereρ (v) := vF̄ (v) andρ (vK+1) = 0. The coefficientcR
i (v) = α (ρ(vi)−ρ(vi+1))

F̄ (vi)−F̄ (vi+1)
, captures

the discount given to customers of classi to compensate them for their delay. Usingλ̄i(v) =

ΛF̄ (vi), these can also be written ascR
i (v) = αΛ ρ̃(λ̄i(v))−ρ̃(λ̄i+1(v))

λ̄i(v)−λ̄i+1(v)
, whereρ̃(λ) := ρ(F̄−1(λ/Λ))
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for λ ≥ 0. If ρ is decreasing and̃ρ is convex thencR
i (v) is positive and increasing ini. Then

much like the social planner, work conservation is optimal and the revenue maximizer will

want to preemptively prioritize customers in decreasing order ofcR
i (v). In that case, we can

state the revenue maximizer’s problem as choosing cutoff values knowing that customers will

have expected waits given byWi (λ (v)) .

(1.6) R∗
K = max

v↑
RK (v) := Λρ (v1) − αΛ

K∑

i=1

(ρ(vi) − ρ(vi+1))Wi(λ(v)),

which should be contrasted with (1.4). The relationship betweenV (vi) − V (vi+1) andρ(vi) −

ρ(vi+1) will play a key role in our results.

Notice that if customers were not delay sensitive (i.e.,α = 0) the revenue maximizer’s

problem reduces to choosing the cutoff that maximizesΛvF̄ (v) = Λρ(v) or equivalently an

arrival rate that maximizesλp(λ) wherep(λ) = F̄−1(λ/Λ). If ρ is a decreasing function,

the revenue can be read as the delay-insensitive revenue minus a delay-discount ofα(ρ (vi) −

ρ (vi+1)) for class-i customers.

We conclude this section with a lemma that allows us to conclude that, indeed,cR
i (v) > 0

and increasing ini.

Lemma 2. Given Assumptions 1 and 2:

(1) v∗
0 := inf{v : g (v) ≥ 1} is finite.

(2) ρ (v) is maximized atv∗
0. It is increasing and concave forv < v∗

0 and decreasing for

v ≥ v∗
0.

(3) ρ̃ (λ) is maximized atλ∗
0 := ΛF̄ (v∗

0). For λ <λ∗
0, ρ̃ (λ) is increasing and concave.

(4) ε (λ) := −p (λ) /(λp′ (λ)) is increasing inλ.
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In what follows we will assume that the system is capacity constrained in the sense that

v∗
0 < v,

where recallthatv = F̄−1
(

1
Λ

)
. In words, the revenue maximizer can not admit as many cus-

tomers as she would want to if customers were not delay sensitive. This restricts us to the

range ofλ such that̃ρ (λ) is increasing and concave inλ and the range ofv such thatρ (v) is

decreasing inv.

1.4. The Tension between Social Planning and Revenue Maximization

There is, of course, a link – or perhaps more accurately, a gap – between the objective of

the social planner and that of the revenue maximizer. The social planner’s objective is the sum

of the firm’s revenue and the consumers’ surplus, i.e.,

SK(v,W) = RK(v,W) + CK(v,W)

whereCK (v,W) is the consumer surplus withK classes assuming that incentive compatible

prices are used. It is written as the surplus from admitting all customers with valuations greater

thanv1 less the waiting costs they incur:

CK (v,W) = ΛCS (v1) −
K∑

i=1

α (CS (vi) − CS (vi+1)) Wi

= ΛCS (v1) −
K∑

i=1

λi(v)cCS
i (v)Wi,
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Figure 1.1. Priority to high valuation customers decreases consumer surplus ifF is
IFR. For ease of comparison, the results are scaled so that social welfare under

priorities is equal to 100. Weibull(η, k) is a Weibull distribution with scale parameterη
shape parameterk.

whereCS(v) = V (v)− ρ(v) =
∫∞

v
(u− v)f(u)du for v ≥ 0 andcCS

i (v) = αCS(vi)−CS(vi+1)

F̄ (vi)−F̄ (vi+1)
is

the loss of surplus per unit of delay of a classi customer.

Recalling that̄λi(v) = ΛF̄ (vi), we have that

cCS
i (v) = αΛ

C̃S(λ̄i(v)) − C̃S(λ̄i+1(v))

λ̄i(v) − λ̄i+1(v)
,

where

(1.7) C̃S(λ) = CS

(

F̄−1

(
λ

Λ

))

.

Givenv, cCS
i (v) is increasing ini if C̃S is convex inλ.

The tension betweenRK andCK is important to the results of this paper and, as it turns out,

the nature of this tension depends to a great extent on the failure rate of the distribution.
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In Figure1.1we plot, for two classes, both the revenue and consumer surplus for different

distributions and service disciplines. The total height of a bar corresponds to the social welfare

under a particular priority scheme while the shading indicates how much is captured by the firm

versus by customers. We compare FIFO service with a priority scheme in which those with

higher valuations – and hence higher waiting costs – are served first.

On the left-hand side of the figure, we consider a Weibull distribution with a shape parame-

ter of 0.75. In this case, both consumers and the firm are better off when priorities are used, and

the increase in social welfare comes from making both parties better off. The right-hand side

of the figure, however, presents a contrasting story. Here we have a Weibull distribution with a

shape parameter of 1.25. Now consumer surplus falls as we move from FIFO service to prior-

ities. Social welfare only increases because the service provider’s revenue rises by more than

consumer welfare drops. This is a generalizable phenomenon. There is a large class of valuation

distributions – those with an increasing failure rate (IFR) – for which consumer surplus falls if

those with higher valuations are given priority. It is straightforward thatCS(vi) − CS(vi) > 0

so that work conservation is optimal. As with our analysis of the social planner and the revenue

maximizer, if one wants to maximize consumer surplus it is optimal to preemptively prioritize

customers in decreasing orders ofcCS
i (v). However, the valuescCS

i (v) may not be ordered as

one expects. Specifically, ifF has a decreasing failure rate (DFR) theñCS is concave, implying

that cCS
i (v) is increasing ini. Conversely, ifF is IFR, C̃S is convex, implying thatcCS

i (v) is

decreasing.

Lemma 3. cCS
i (v) ≤ cCS

i+1(v) if the failure rateh (∙) is decreasing andcCS
i (v) ≥ cCS

i+1(v) if

it is increasing. With constant failure rate,cCS
i (v) = cCS

i+1(v).



30

When the valuation distribution is DFR3, the priority scheme that maximizes consumer sur-

plus aligns with that used by the social planner or the revenue maximizer: Customers with high

valuations (and thus high waiting costs) are placed at the front of the line while those with low

valuations (and thus low waiting costs) are relegated to the rear. However, the situation is re-

versed when valuations are governed by an IFR distribution. Now it would optimal to let those

with low waiting costs enjoy shorter waits. This explains the phenomenon illustrated in Fig-

ure1.1. The Weibull distribution is DFR for shape parameters less than one but IFR for shape

parameters greater than one.

Prioritizing customers with low valuations is not implementable if valuations are private

information. The prices and waiting times must satisfy (1.2) and (1.3) and a menu where cus-

tomers with low valuations wait less cannot be incentive compatible. Yet, the decision maker

could then maximize consumer surplus by using a service discipline such as FIFO that is inde-

pendent of customer valuations.

For intuition on the role of the failure rate, note that when a customer with valuationv opts

for classi, the price she pays to join that class is determined by the waiting cost of the lowest

type to join that class, i.e.,αvi. However, her waiting costs areαv. Her contribution to consumer

surplus is proportional tov − vi. Consequently, it is worth considering the distribution ofv − vi

as a function ofvi. If v is IFR [DFR], thenv − vi is stochastically decreasing [increasing] in

vi (Lai and Xie(2006)). Thus under an IFR distribution, customers who choose a higher class

contribute less in expectation to consumer surplus and to waiting costs than those who select a

lower class. That relationship is reversed with a DFR distribution.

3There are IGFR distributions such as the log-normal that have non-monotone failure rates. However, one cannot
easily characterize how a non-monotone failure rate impacts the ordering ofcCS

i (v). It may be that all change
points ofh(v) fall below v̄ soh(v) is monotone over the relevant range. Otherwise, we cannot rule out that the
value ofcCS

i (v) may not be monotone.
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Additionally, consider the elasticity of̃CS(λ):

η(λ) =
λC̃S

′
(λ)

C̃S(λ)
=

1

MRL
(
F̄−1

(
λ
Λ

))
h
(
F̄−1

(
λ
Λ

)) .

We have two ways of interpretingη(λ). The first is just the relative rate of change in con-

sumer surplus. The second is to tie it to waiting costs. The revenue maximizer charges one price

to all customers and that depends on the lowest admitted type. The social planner, of course,

cares about the average waiting cost.αC̃S(λ) is then the gap between these values andη(λ) is

the elasticity of this gap.

To examine the behavior ofη(λ), standard results give thatMRL′(v) = MRL(v)h(v) − 1

andMRL′(v) ≥ −1. Additionally, all IFR[DFR] distributions have decreasing[increasing]

mean residual life functionsLai and Xie(2006). The next lemma is then immediate.

Lemma 4.

η(λ) =
1

MRL′
(
F̄−1

(
λ
Λ

))
+ 1

.

If F (v) is strictly IFR[DFR], thenη(λ) > [<]1. If MRL(v) is convex[concave],η(λ) is de-

creasing[increasing].

WhenC̃S(λ) is elastic (i.e.,η(λ) > 1), a small change in the throughput results in a rela-

tively large change in surplus. Since a largerλ corresponds to a lowerv, it is those with lower

valuations that would then have an oversized waiting cost relative to the price they have paid

and thus should be given priority. WheñCS(λ) is inelastic (i.e.,η(λ) < 1), the situation is

reversed and those with lower valuations should be placed at the back of the line. We will see

below that the last part of the lemma will have implications for classification.
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We close this section by noting that our model, while obviously stylized, has some im-

plications for how priorities impact consumers. In particular, it suggests that there are some

settings in which customers as a whole are better off under FIFO service than under incentive

compatible priority schemes. Any IFR distribution has a coefficient of variation less than one.

Conversely, any DFR distribution has a coefficient of variation greater than one (Barlow and

Proschan(1965)). That suggests that consumers may welcome the introduction of a priority

scheme when there is significant dispersion in values and waiting costs. Conversely, when there

is not much dispersion, the average consumer is likely better off under FIFO.

This last assertion implicitly assumes that moving from FIFO to priorities does not increase

coverage. Once coverage is in play, consumer surplus is potentially pulled in two ways. Priori-

ties may harm customers but expanded coverage would benefit them. We examine this question

in Table1.1.

Shape Parameters. Coefficient of Variation % AdmittedFIFO % AdmittedPriority Priority Surplus/ FIFOSurplus
1.0 1.00 13.56% 15.62% 1.0543
1.5 0.68 14.79% 16.12% 1.0088
2.0 0.52 15.33% 16.29% 0.9871
2.5 0.43 15.63% 16.38% 0.9743
3.0 0.36 15.82% 16.44% 0.9659

Table 1.1. Weibull valuation with scale parameter set so thatv∗0 remains at10. The
other parameters are set toα = 0.25 andΛ = 3.

We consider customers whose valuations follow a Weibull distribution and vary the shape

parameter from one to three. This takes the coefficient of variation from1 down to to0.36. For

each value, we compute the optimal coverage (reported as the fraction of customers admitted)

offered by a revenue maximizer under both FIFO and a priority scheme with two levels (i.e.,

K = 2). We see that in all examples, the revenue maximizer expands coverage when offering

priorities. However, the increase in coverage falls as valuations become less dispersed. Looking
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at the last column, one sees that the ratio of consumer surplus under the priority scheme to the

surplus under FIFO falls as valuations become less dispersed. For sufficiently low coefficients

of variation consumers are indeed worse off under a priority scheme.

Implications for classification: With IFR valuation distributions,cCS
i (v) is decreasing in

i and the social planner faces a tension as it seeks to maximize the sum of firm revenue and

consumer surplus: Revenue maximization dictates prioritizing customer with higher valuations

while consumer surplus is compromised by such priority. We will see that the social planner

will alleviate some of this tension by having a smaller high priority class than the revenue

maximizer; see Remark1 further below.

1.5. Coverage, Coarseness and Classification

If the providers are restricted to use a single menu item – an admission fee and a delay to

go with it, the revenue maximizer’s problem reduces to

(1.8) R∗
1 = max

v>v̄
Λρ(v) (1 − αW1(λ(v)))

whereW1 (λ(v)) = (1 − ΛF̄ (v))−1 is the delay under FIFO service. The social planner’s

problem is

(1.9) S∗
1 = max

v>v̄
ΛV (v)(1 − αW1(λ(v))),

The function(1 − W1(λ(v))) is concave increasing andV (v) is concave and decreasing in

v. The social planner’s objective function is thus strictly concave and has a unique maximizer
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v∗
S. By Lemma2 ρ(v) is concave and decreasing for allv > v̄ so that the revenue has a unique

maximizerv∗
R.

These are special instances of the problems inAf èche and Mendelson(2004). It follows

from their Proposition 1 and our Lemma2 (particularly, part 3) that with an IGFR distribution

v∗
S ≤ v∗

R so thatλ1(v
∗
S) ≥ λ1(v

∗
R). The revenue maximizer offers a smaller coverage than the

social planner. IfF has a constant generalized failure rate (i.e., it is a Pareto distribution), then

λ1(v
∗
R) = λ1(v

∗
S).

Contrast this with a setting in which the providers can tailor a different price and delay to

each valuationv. The welfare from a customer with valuationv is v−αvW (v). The higher the

customer’s valuation, the higher her priority so that a customer with valuationv has an expected

waiting timeWc (v) =
(
1 − ΛF̄ (v)

)−2
(Kleinrock 1967, Theorem 2) which is a continuous

segmentation analogue of (1.5). The social planner solves the problem

(1.10) S∗
∞ = max

vS≥v̄
Λ

∫ ∞

vS

(v − αvWc (v)) f (v) dv.

The revenue maximizer chooses similarly an admission valuationv∗
R such that a customer

enters if and only if her valuation isv ≥ v∗
R. The price is determined so that the first customer to

enter is indifferent between entering or not, i.e.,p (v∗
R) = v∗

R − αv∗
RWc (v∗

R). All other entering

customers pay the entering price plus a premium for shorter delays, i.e.,

p (v) = p(v∗
R) − α

∫ v

v∗
R

uW ′
c(u)du.
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SinceW ′
c(v) ≤ 0 the premium is positive. The revenue maximizer’s problem reduces then to

(1.11) R∗
∞ = max

vR≥v̄
Λ

(

−p (vR) F̄ (vR) +

∫ ∞

v∗
R

p′ (v) F̄ (v)dv

)

Problems (1.10) and (1.11) are instances of the priority auctions described inAf èche and

Mendelson(2004). By Proposition 3 there,v∗
R = v∗

S (i.e., the two providers choose the same

entry cutoff) provided thatε(λ) (recall Lemma2) is increasing inλ.

In summary, with a single class, for strictly IGFR valuation distributions, the revenue and

social optimizers choose different coverage levels and the social planner serves more customers.

With a continuum of classes, however, they make identical decisions. We turn to study the

intermediate and practical case in which there is a finite number of classes.

High-volume analysis. When dealing with multiple (but finite number of) classes, the social

and revenue maximizer problems are rather intractable. Fortunately, when the volume is high

we can characterize the decisions of the providers and compare them. We build on the approach

of Nazerzadeh and Randhawa(2015) and study the asymptotic performance, as the arrival rate

and service rate are scaled up by a multipliern: the nominal arrival rate isΛn and the service rate

is n. We superscript all relevant notation withn to capture the dependence on this multiplier.

Thus, for example,vn∗
i,R [vn∗

i,S] is the optimal class-i cutoff of the revenue maximizer [social

planner]. Since both the nominal arrival rate and the service rate are multiplied byn, v̄ does not

depend onn.

For large values ofn, it turns out, the differences between subsequent optimal cutoff values,

vn∗
i+1 − vn∗

i become small. Roughly speaking we can then replaceV (vn
i+1) − V (vn

i ) in the

objective function (1.4) of the social planner with a Taylor expansion aroundvn
i . It is such

Taylor expansions that enable the analysis of an otherwise intractable problem. Our analysis
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allows us to nail down the optimal arrival-rate vectors (and revenue/welfare outcomes) up to

an error that is negligible relative to the square root of the multipliern. Accordingly, two

coverage/classification decisions are distinguishable if they are
√

n apart.

We first re-visit the single-class FIFO queue. FromAfèche and Mendelson(2004) it follows

that, in our setting, the revenue maximizer admits fewer customers than socially optimal. We

can now characterize more fully the difference in coverage.

Following standard notation, we say thatξ(n) = o(
√

n) if ξ(n)/
√

n → 0 asn → ∞.

Lemma 5 (coverage difference with FIFO). With a single (FIFO) class the cut-off entry

valuations of the social planner and the revenue maximizer satisfy

vn∗
1,S = v̄ +

√
α

√

−
F̄ (v̄) V (v̄)

f (v̄) V ′(v̄)
n− 1

2 + o(n− 1
2 ), vn∗

1,R = v̄ +
√

α

√

−
F̄ (v̄) ρ (v̄)

f (v̄) ρ′(v̄)
n− 1

2 + o(n− 1
2 ).

Optimal admission rates consequently satisfy,

λ̄n∗
1,S = n − Λf(v̄)

√
α
√
− F̄ (v̄)V (v̄)

f(v̄)V ′(v̄)

√
n + o(

√
n), λ̄n∗

1,R = n − Λf(v̄)
√

α
√

− F̄ (v̄)ρ(v̄)
f(v̄)ρ′(v̄)

√
n + o(

√
n)

If F is IGFR thenV (v̄)/V ′(v̄) > ρ(v̄)/ρ′(v̄) and, consequently, the social planner has a

larger coverage. Furthermore, the difference in coverage is non-negligible,λ̄n∗
1,S−λ̄n∗

1,R 6= o(
√

n)

if the inequality is strict.

We next show that with multiple customer classes the coverage gap disappears. Classifica-

tion, however, differs depending on the mean residual life of the distribution. Theorem1 below

is the main result of this paper and focuses on the comparison of the actions of the social planner

and the revenue maximizer. The full characterization of their decisions appears in Theorems4

and5 in the appendix.
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Theorem 1. (coverage, coarseness and classification: SP Vs. RM) With K > 1 levels

of service, the coverage of the social planner and the revenue maximizer are asymptotically

identical in the sense

(Coverage) λ̄n∗
1,R − λ̄n∗

1,S = o(
√

n).

For both, two classes are sufficient:

(Coarseness) S∗
K = Sn∗

2 + o(
√

n), andR∗
K = Rn∗

2 + o(
√

n).

Classification is asymptotically different except for linear MRL:

(Classification) λ̄n∗
2,R − λ̄n∗

2,S = γn3/4 + o(n3/4),

whereγ ≥ 0 (resp.γ ≤ 0) if the valuation distribution has a convex (resp. concave) MRL and

γ = 0 if the MRL is linear. In particular, the revenue maximizer directs more volume to the high

priority whenF has a convex MRL. Further, ifγ 6= 0 (classification is asymptotically different),

the social cost of revenue maximization grows (at least) as fast as the square root of the arrival

rate:

(Social welfare gap) lim inf
n→∞

Sn∗
2 − Sn

2 (vn∗
R )

√
n

> 0.

We find then that both providers choose very coarse priority schemes and offer identical

coverage (up to a small difference) but that their admission to the high priority class differs.

Table1.2 is a numerical illustration of this result. The example serves to illustrate three addi-

tional points: (i) that the asymptotics-based comparison holds also for small values ofn, (ii)
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that the difference in classification can be rather large: for Weibull(1,0.3) which has a concave

MRL γ = −140 < 0. It can also be rather small: for the Weibull(1,2) which has convex MRL,

γ = 0.011, and (iii) that both the social planner and the revenue maximizer have a high prior-

ity class that is much larger than the low priority class. This latter observation is supported in

Theorems4 and5 in the appendix.

Coverage High Priority
n λ̄n∗

1,S λ̄n∗
1,R λn∗

2,S λn∗
2,R

10 8.573 8.568 5.552 5.57
100 95.495 95.485 73.683 73.861
1000 985.789 985.767 847.413 848.764

Coverage High Priority
n λ̄n∗

1,S λ̄n∗
1,R λn∗

2,S λn∗
2,R

10 8.44 7.9 4.487 3.548
100 95.177 92.365 64.783 53.451
1000 985.144 975.720 786.348 695.097

Table 1.2. Λ = 30, α = 0.2: (LHS) Weibull(1,2) for convex MRL (RHS)
Weibull(1,0.3) for concave MRL.

The differences in classification matter. They suffice to make the revenue maximizer’s ac-

tions socially inefficient. Figure1.2(LHS) displays(Sn∗
2 − Sn

2 (vn∗
R )/

√
n as a function ofn

for a Weibull(1,0.3) distribution (concave MRL). Thus, while a continuum of classes means

that maximizing revenue is equivalent to maximizing welfare, for each finiteK revenue max-

imization leads to non-negligible social inefficiency. Additional numerical examples appear in

sectionA.6 of the e-companion.

Further, any number of classes larger than two has little impact on either revenue or social

welfare. This was proved already for the revenue maximizer byNazerzadeh and Randhawa

(2015) and we extend this result to the social planner. Figure1.2(RHS) provides numerical

evidence for this result.
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Figure 1.2. F =Weibull(1,0.3),α = 0.2, Λ = 30 (LHS) The social inefficiency of the
RM actions as a function of the multipliern. (RHS) The effect of the number of classes

on social welfare and revenue(n = 1).

Remark 1 (The Role of Mean Residual Life). The mean residual life function plays a deci-

sive role in the comparison between the decisions of the social planner and the revenue maxi-

mizer because it is intimately linked to consumer surplus. If we impose a bit of structure, we can

apply Lemma3. If the MRL is both convex and decreasing, the failure rate is increasing. The

social planner then faces a trade off: Maximizing revenue calls for putting those with high val-

uations at the front of the line but maximizing consumer surplus requires putting those with low

valuations first. The former dominates but limiting the size of the high priority class minimizes

the impact on low-valuation customers. The revenue maximizer has no such compunctions and

thus opts for a larger high priority class. The situation is reversed when the MRL is both con-

cave and increasing. The failure rate would now be decreasing. From the social planner’s

perspective, giving high value customers high priority boosts both firm revenue and consumer

surplus. She then has an incentive to classify a large number of customers as high priority.

The revenue maximizer, of course, does not see any benefit to increasing consumer surplus and

therefore is more conservative than the social planner in expanding the higher priority class.
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From Lemma4, we have that when the MRL is convex, adding more customers to the high

priority class increases consumer surplus at a decreasing rate. Conversely, a concave MRL

implies adding more customers to the high priority class increases the marginal rate at which

surplus increases. In the social planner’s eyes, the former favors a limited high priority class

while the latter favors a large high priority class.

Additionally, recall that we can interpretη(λ) as the elasticity of the gap between average

waiting costs (the social planner’s concern) and the wait-driven component of the price (the

revenue maximizer’s concern). We then have that ifη(λ) is decreasing, the revenue maximizer’s

objective underestimates the social cost of waiting asv increases (causingλ to decrease). Con-

versely, the revenue maximizer’s objective will overestimate the cost of waiting asv increases if

η(λ) is increasing.

Remark 2 (Who pays for social inefficiency). When the social planner and the revenue

maximizer’s classification decisions diverge, consumer surplus may be smaller than socially

optimal. Consider the case ofK = 2 (two classes). While the average customer stands to

lose from revenue maximization, some customers may gain. In fact, with a concave MRL,

the revenue maximizer has a smaller high priority class and, consequently, offers a shorter

delay to both classes and a higher customer utility (per class); see Table1.3 for a numerical

example. The total consumer surplus is higher under social planning. Who gains depends on

the convexity/concavity of the MRL.

Figure 2.8 provides a schematic view of how the utilityU(v; i) changes with the customer

valuationv. Informally representing Theorem1, the figure has both service providers offering
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(pi,Wi) Avg.Utility
SP -Low (53.396, 1.163) 16.046
SP -High (76.921, 0.181) 198.197

(pi,Wi) Avg.Utility
RM - Low (63.071, 0.737) 23.499
RM - High (79.804, 0.155) 236.390

Table 1.3. Waiting and pricing menus forF = Weibull(1,0.3) (concave MRL),
α = 0.2, and nominal arrival rateΛn = 300: (LHS) Social planner (RHS) Revenue

Maximizer

Figure 1.3. Utility of customers under SP and RM: (LHS) Convex MRL, (RHS)
Concave MRL

identical coverage. With a convex MRL (LHS), the revenue maximizer has a smaller high pri-

ority cutoff (represented by a square) than that of the social planner (represented by a circle)

and, in turn, a larger high priority class. The story is reversed with a concave MRL (RHS).

More in detail: let(PL
S ,W L

S ) and (PH
S ,W H

S ) be the two menu items offered by the social

planner (whereL stands for low priority, i.e.,WL
S ≥ WH

S ). Define similar notation for the

revenue maximizer (with the subscriptR). Because of the equal coverage, we havev1 − pL
R −

αv1W
R
L = v1 − pL

S − αv1W
L
S = 0 so that(pL

S − pL
R) = αv1(W

L
R − WL

S ).

For a convex MRL, we haveWL
R ≥ WL

S so that the revenue maximizer charges a lower price

than the social planner. However, that price reduction is insufficient to compensate low priority
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customers. Any customer with valuation greater thanv1 who would be classified as low priority

by either decision maker is worse off under the revenue maximizer. One gets similar results at

the other extreme. High priority customers also get a price break from the revenue maximizer

but for those with very high valuations it is does not adequately compensate for increased waits.

Thus, with a convex MRL, those with very high or very low valuations are certain to lose as we

move from the social planning to the revenue maximization.

With a concave MRL, the story is reversed. Customers with valuation greater than than

(pH
R − pH

S )/(α(WH
S − WH

R )) or smaller than(pH
S − pL

R)/(α(WH
S − WL

R )) are better off under

revenue maximization. These are the customers that absorb all the gain in the class utilities

seen in Table1.3. The burden of social inefficiency is all carried by the “middle class”: the

customers with intermediate valuations. In particular those who would have been classified as

high priority under the social planner but are moved to low priority under the revenue maxi-

mizer are worse off. With convex MRL, in contrast, those with very high or very low valuations

are certain to lose as we move from the social planning to the revenue maximization. However,

we cannot guarantee that those with intermediate values are better off.

1.6. Extensions

1.6.1. Non-Preemptive Policies

Thus far we allowed the provider to use preemptive policies and, indeed, in their optimal

solutions both providers use preemptive static priorities. It is often unrealistic to preempt cus-

tomers in the middle of their service. A restriction to non-preemptive policies entails a change

in the menus offered to customers. We prove, however, that our results do not change: whereas

the preemptive and non-preemptive menus might differ, the differences are relatively negligible.
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The objective functionsSK(v,W) andRK(v,W) are the same as in§1.3. The difference is

that, in optimizing,W must be taken from thenon-preemptiveachievable regionWNP (v). Let

Sn∗
2,NP be the optimal social welfare (optimized over all valuation cutoffs and non-preemptive

disciplines). Since the providers are now constrained now to use non-preemptive policies it

holds thatSn∗
2,NP ≤ Sn∗

2 andRn∗
2,NP ≤ Rn∗

2 . Our next theorem shows that the loss is minimal.

Let Sn
2,NP (vn) be the social planner’s objective function value when two-class are used, the

cut-off vectorvn is used for classification and staticnon-preemptivepriority is used with the

highest priority provided to the highest valuations customers. Similarly defineRn
2,NP (vn) for

the revenue maximizer.

Theorem 2. (Optimality of preemptive cut-offs with non-preemptive service) Using two

non-preemptive priority classes with the optimal preemptive cut-off valuations is nearly optimal

in the
√

n scale for both the social planner and the revenue maximizer. That is,

Sn
2,NP (vn∗

S ) − Sn∗
2 = o(

√
n) andRn

2,NP (vn∗
R ) − Rn∗

2 = o(
√

n).

respectively.

The non-preemptive provider can use the same coarseness, coverage and classification as

the preemptive provider with negligible compromise to optimality. In turn, the comparisons

that apply to the preemptive case, apply to the non-preemptive restriction.
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1.6.2. General delay costs

In our base model, a customer’s delay cost rate is proportional to her valuation. Here we

show that our results generalize to a broader class of delay cost functions. Specifically, we con-

sider delay costsd(v) which are differentiable and increasing at a sub-linear rate, i.e., functions

for which d(v)/v is non-increasing.4 The sub-linearity ofd (v) preserves the ordering of cus-

tomer types in the sense that if a customer with valuationv chooses to patronize the service,

any customer with valuationv′ > v will also purchase the service (although she may choose a

different priority level). Coverage then will be determined by a minimum valuation to admit.

The optimality of preemptive static priorities for social planning follows from the mono-

tonicity of d(v). The sub-linearity, as inNazerzadeh and Randhawa(2015), ensures the opti-

mality of preemptive priority also for the revenue maximizer.

Theorem1 can be extended to this more general setting with a replacement of the MRL

concavity/convexity conditions with one stated in terms of a suitable elasticity measure. We

define

(1.12) ζ(λ) = −
M(λ)

M ′(λ)λ

where

N(v) = D (v) − d (v) F̄ (v), with D(v) =

∫ ∞

v

d(u)f(u)du,

and

(1.13) M(λ) = N

(

F̄−1

(
λ

Λ

))

.

4This does not necessarily imply thatd(∙) is a concave function—taked(v) = v + 1/(v + 1) as a case in point.
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Theorem 3. (coverage, coarseness and classification for generalized delay) WithK > 1

levels of service, the coverage of the social planner and the revenue maximizer are asymptoti-

cally identical in the sense

(Coverage) λ̄n∗
1,R − λ̄n∗

1,S = o(
√

n).

For both, two classes are sufficient:

(Coarseness) S∗
K = Sn∗

2 + o(
√

n), andR∗
K = Rn∗

2 + o(
√

n).

Classification is asymptotically different except for constantζ(∙):

(Classification) λ̄n∗
2,R − λ̄n∗

2,S = γn3/4 + o(n3/4),

whereγ ≥ 0 (resp. γ ≤ 0) if ζ(∙) is increasing (resp. decreasing) andγ = 0 if the ζ(∙) is

constant. In particular, the revenue maximizer directs more volume to the high priority when

ζ(∙) is increasing. Further, ifγ 6= 0 (classification is different), the social cost of revenue

maximization grows at least with an order of
√

n,

(Social welfare gap) lim inf
n→∞

Sn∗
2 − Sn

2 (vn∗
R )

√
n

> 0.

When specializing the delay-cost to be linear —d(v) = αv — as in our base model, the

elasticity requirements reduce to convexity/concavity requirements on the MRL. For complete-

ness, the formal derivation appears at the end of the e-companion.
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Remark 3 (the role of elasticity). In our base model, whether the revenue maximizer pur-

sued a mass-luxury or ultra-luxury strategy depended on whether the elasticity of consumer

surplusη(λ) was increasing or decreasing. That intuition carries over to our generalized cost

structure. Comparingζ(λ) andη(λ), one sees that the former is the natural generalization of

the latter. Both can be interpreted the elasticity of the gap between average waiting costs and

the wait-driven component of the price. We again have that a decreasing elasticity results in

the revenue maximizer’s objective function underestimating the consequences of waits while an

increasing elasticity results in the revenue maximizer overestimating theirimpact.

Remark 4 (what may happen with decreasingd(v)). To this point we have an only con-

sidered having waiting costs that are positively correlated with values, making it optimal for

both the revenue maximizer and the social planner to move those with high valuations to the

front of the line. We now briefly consider what happens when valuations and waiting costs are

negatively correlated. Specifically, we suppose that the per unit time waiting cost functiond (v)

is decreasing inv. Since the priority scheme depends only on the waiting cost and not on the

consumer’s value of the service, it would now be optimal to give high priority to those with low

valuations.

Table1.4 reports results for whend (v) = 1
v2 . Here we consider a range of market sizesΛ

and degrees of coarsenessK (i.e., number of priority classes). For each market size-coarseness

level pair, we determine the optimal incentive-compatible scheme for both types of decision

maker and report their optimal objective value.5 Some results are not surprising. For exam-

ple, both types of decision makers are better off in large markets in which patient, high-value

5Note that we do not allow a decision maker to offer a degenerate class. Thus for eachK > 1, we constrain the
decision maker offering price and wait menus that result in positive traffic for each class.
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customers are plentiful. Other results are not as straightforward. In particular, the two deci-

sion makers offer very different pricing and priority schemes as the market grows. The revenue

maximizer always benefits from offering as many priority classes as possible. However, the

social planner may prefer coarser and coarser schemes. ForΛ = 3, she prefers to offer four

classes but drops to three classes whenΛ = 4 and goes down to two classes whenΛ = 5. For Λ

sufficiently high, the social planner opts for FIFO service, pooling all customers into a single

class.

1 Class 2 Classes 3 Classes 4 Classes Max*
Λ RM SP RM SP RM SP RM SP RM SP

2.9 0.555 3.895 0.573 4.573 0.577 4.663 0.578 4.686 4 Classes 4 Classes
3 0.571 4.127 0.589 4.838 0.593 4.930 0.595 4.951 4 Classes 4 Classes

3.2 0.602 4.609 0.622 5.385 0.627 5.477 0.628 5.492 4 Classes 4 Classes
3.5 0.647 5.376 0.670 6.237 0.675 6.326 0.677 6.325 4 Classes 3 Classes
4 0.718 6.760 0.746 7.728 0.752 7.795 0.755 7.760 4 Classes 3 Classes
5 0.848 9.861 0.885 10.899 0.893 10.853 0.896 10.706 4 Classes 2 Classes
6 0.963 13.296 1.008 14.227 1.019 13.970 1.023 13.665 4 Classes 2 Classes
7 1.067 16.961 1.118 17.620 1.131 17.088 1.135 16.564 4 Classes 2 Classes
8 1.160 20.783 1.217 21.026 1.231 20.171 1.237 19.450 4 Classes 2 Classes
9 1.245 24.707 1.307 24.419 1.323 23.191 1.329 22.156 4 Classes 1 Classes
10 1.323 28.697 1.390 27.794 1.406 26.117 1.412 24.838 4 Classes 1Classes

Table 1.4. Decreasing delay-cost functiond(v) = 1/v2. The valuation distribution is
Weibull(1,1.1).

Even if the two decision makers both prefer offering more priority classes, our results with

positively correlated waiting costs may not carry over to a setting with negatively correlated

costs. Figure1.4 presents examples usingd (v) = 1
v

under which both decision makers prefer

offering multiple priority classes. The top graphs show that on a scaled basis, both decision

makers benefit from offering more classes. That is, the loss from going from arbitrarily many

classes to a very coarse scheme with just two classes is no longer negligible. Further, the
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bottom graph shows that the coverage differences between the social planner and the revenue

maximizer grows on the scale of
√

n. We conclude that while with positively correlated wait-

ing costs the differences between revenue and welfare maximization are largely questions of

classification, with negatively correlated coverage and classification are also in play.

Figure 1.4. (TOP) The effect of increasing the number of classesK beyond 2 is
non-negligible in the

√
n scale as captured by the series(Rn∗

4 − Rn∗
2 )/

√
n for the

revenue maximizer and(Sn∗
4 − Sn∗

2 )/
√

n for the social planner. (BOTTOM) the
difference in coverage persist (for eachK) asn grows.
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1.7. Conclusion

Managing a service system as a priority queue is a challenging endeavor. To map a contin-

uum of customers into a finite number of priority classes requires multiple decisions. One must

determine how much of the market to cover, how coarse a set of priorities to offer, and how to

classify customers into specific grades of service. Given such complexity, it is remarkable that

decision makers pursuing distinct goals – maximizing social welfare and maximizing revenue

– can agree on two out of three of these dimensions. We show in a limiting regime that a social

planner and a revenue maximizer choose essentially identical levels of coverage while being

content to offer very coarse priority schemes.

Meaningful differences exist, however, in how customers are classified. The revenue maxi-

mizer may pursue an ultra-luxury strategy and admit too few customers to the high priority class

(in comparison to the social optimal) or a mass-luxury strategy and admit too many to the high

priority class. These differences in classification are driven by differences in the behavior of

consumer surplus, which is captured by the mean residual life of the customer valuation distri-

bution. A concave MRL implies that consumer surplus becomes more elastic as more customers

are admitted. The revenue maximizer does not consider this change and consequently follows

an ultra-luxury strategy with a limited high priority class. Conversely a convex MRL means

that consumer surplus becomes less elastic as the throughput increases. Again, the revenue

maximizer ignores this factor and opts for a mass-luxury strategy that places more customers

than is socially optimal in the high priority class. These results are robust to generalizations of

the delay cost structure that maintain the positive correlation between a customer’s valuation
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of the service and her waiting cost. However, we show that if values and delay costs are nega-

tively correlated, the decision makers may differ on every dimension, choosing different levels

of coarseness, coverage and classification.

We also address the more general question of how priority schemes affect consumer surplus.

We show that if the valuation distribution has a decreasing failure rate, consumer surplus is

maximized by the most natural priority scheme, the one that puts those with high costs at the

front of the line (which coincidently is the scheme that both the social planner and revenue

maximizer would use). However, when the valuation distribution has an increasing failure rate,

that natural priority scheme results in a lower consumer surplus than simple first-in, first-out

service. Since a decreasing, convex MRL implies an increasing failure rate, this suggests that

a convex MRL should cause the social planner to limit deviations from FIFO waits to protect

consumer surplus; the revenue maximizer has no such concerns.

There are several ways this work can be extended. In particular, introducing competition

could be fruitful. Competition generally results in consumers capturing more of the value the

system creates. Here value can be shifted to customers through lower prices or more efficient

classification. Which is the better means for rewarding customers is an interesting question.
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CHAPTER 2

The Effect of Real-Time Information on Service Efficiency

Joint work with Toni Moreno and Nil Karacaoglu Garro

2.1. Introduction

Real-time information is becoming available in many services, and both customers and

agents can easily access a wealth of information that may affect their decisions. For example,

customers can use the GasBuddy application to monitor the price of gas in stations close to their

location, or the Apple Store application to check the real-time availability of Apple products at

Apple’s brick-and-mortar stores.

The availability of real-time information is particularly important in two-sided markets,

where a platform connects service providers with customers. In those markets, real-time in-

formation not only affects customers’ actions, but also that of service providers. For example,

Airbnb connects individuals looking for accommodation with private property owners, and Uber

connects individuals looking for a ride with drivers able to offer one. The supply side of these

markets consists of a large number of individual agents who try to maximize their individual

profits. When doing so, they have access to very detailed, often real-time information. The

focus of this paper is to study how hypergranular spatial real-time information affects the deci-

sions of individual service providers and to explore the consequences of the availability of such

detailed information for the efficiency of service platforms.
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One of the leading applications of service platforms can be found in e-hailing. E-hailing is

the process of requesting a taxi or another form of transportation by using a computer or mobile

device. E-hailing taxi platforms based on ride-sharing or professional capacity providers are

becoming an important alternative to traditional taxis and the number of drivers on e-hailing

platforms is increasing significantly, with e-hailing platforms becoming one of the fastest grow-

ing business trends. As of December 2014, Uber had 162,037 active drivers in United States

who had completed at least four or more hours for service, and it has continued to grow since

then. The number of such drivers in such markets as Los Angeles, San Francisco and New York

tripled during 2014.1

Since the launch of Uber in 2009, e-hailing platforms have helped match supply with de-

mand in a very convenient way for both sides and also have brought more business information

to participants in the market. For example, drivers in traditional taxi services are limited in the

amount of information about their competitors that they can observe. However, the location

of drivers is available to any e-hailing platform user, including competing drivers. Customers

often can see the location of drivers in their mobile application, and drivers can access this

information by using an additional device with the customer-side application on (see Figure

2.1).2 Therefore, the use of e-hailing platforms provides drivers with access to an unprece-

dented amount of information about their competitors. Some of these platforms provide even

more information to their drivers, such as heat maps indicating locations with higher potential

demand. These new forms of real-time information bring new opportunities for the agents to be

1For details, seeThe Washington Post“Now we know how many drivers Uber has and have a better idea of what
they’re making,” January 22, 2015. https://www.washingtonpost.com/news/wonk/wp/2016/01/20/now-we-know-
how-many-drivers-uber-has-and-have-a-better-idea-of-what-theyre-making
2While some companies do not offer accurate data of driver location, many of them do, including the company we
collaborated with.
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Figure 2.1. An Uber driver with multiple devices to check both customer and driver
applications simultaneously

morestrategicand can lead to changes in agent behavior. For example, agents may interpret the

arrival of another idle agent into their service zone in two different ways.3 On one hand, they

may think the new agent is following a high sales opportunity in the zone and therefore agents

may stick to their service zone. On the other hand, agents may see the new agent as a threat to

their business and believe their sales potential decreases significantly because of this arrival and

thus they may decide to move to another zone.

Agents are heterogeneous in how they react to information indicating new arrivals. Differ-

ent interpretations of real-time information, as discussed above, can affect the performance of

the agents differently as well. More specifically, heterogeneity in decisions may affect server

utilization. Since monitoring and reacting to the information is costly for agents, it is interesting

to study whether such behavior substantially increases sales.

Changes in individuals’ behavior in response to real-time information can potentially af-

fect the quality of service as well. Through better balancing of capacity, platforms potentially

can serve more customers and/or respond to their requests in a short time. Previous research

3We call the area surrounding the location of an agent a “service zone.” We describe how we split the city into
service zones in Section2.4.1.
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has studied the consequences of customers’ strategic behavior on the efficiency of service (see

Lariviere and Van Mieghem 2004). Recent work has also considered capacity management

problems where a service provider achieves a required service level by giving incentives to its

profit-maximizing agents (seeGurvich et al. 2015). We complement this literature by analyzing

the strategic behavior of servers in an increasingly important empirical setting.

To study these questions, we obtained data from one of the leading e-hailing apps in South

America, with more than 100,000 drivers working in the platform in 2015.4 Through this col-

laboration, we have been able to assemble a novel, high-frequency, spatial data set that contains

very granular data about the movements of drivers affiliated with the e-hailing platform. Using

this data set, we study how agents respond to the availability of rich real-time information about

spatial competition. Our work makes the following contributions:

First, we show that agents tend to scatter more when presented with real-time information

about their competitors. More specifically, the probability that agents will leave a service zone

increases when a competitor enters their vicinity. We refer to this phenomenon as “server scat-

tering.”5

Second, we document that there is heterogeneity in how agents respond to the availability

of real-time information. We show that agents who are more likely to react to this information

achieve a higher average utilization than those who are less sensitive to the availability of real-

time information. Finally, we complement our empirical results with agent-based simulations

informed by the empirical parameters. We estimate and show that an increase in the frequency

of scattering due to the arrival of another agent makes the whole system more efficient, reduces

499Taxis has over 100,000 drivers using the application in Brazil and 30,000 alone in Sao Paulo. For details, see
http://techcrunch.com/2015/02/02/99taxis-raises-significant-new-cash-from-tiger-global/
5We conduct a placebo test that demonstrates in the absence of real-time information “server scattering” is not
observed.
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the likelihood customers will abandon, and decreases customers’ waiting time to get service.

Taken together, our results highlight the importance of real-time information for service ef-

ficiency in distributed settings. It has been documented that the on-demand business model is

often associated with increased costs arising from the platform’s inability to dictate when agents

should work (Gurvich et al. 2015). We empirically show that sharing real-time information with

agents can increase the efficiency of services, offsetting some of these costs.

The structure of the rest of the paper is as follows: In Section2.2, we review the relevant

literature. In Section2.3, we develop our hypotheses. In Section2.4, we describe our empirical

setting and data set. Section2.5 analyzes how agents respond to real-time information about

competition. In Section2.6, we discuss how the (heterogeneous) response to the real-time infor-

mation about competition affects sales. In Section2.7, we discuss the alternative explanations

that might lead to our results. In Section2.8, we analyze the efficiency of the system under such

agent-based decisions. Finally, we provide some concluding remarks in Section2.9.

2.2. Literature Review

The operations management community has given increasing attention, both theoretical and

empirical, to information availability and its effect on systems. On the theory side, there is

a wide range of papers focusing on models in settings ranging from retailer operations (e.g.,

Allon and Bassamboo 2011, Su and Zhang 2009) to service operations (e.g.,Veeraraghavan

and Debo 2009, Allon et al. 2011, Jouini et al. 2011). For example,Allon and Bassamboo

(2011) investigate a game-theoretic framework for retailer operations where retailer can share
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non-verifiable information andJouini et al.(2011) consider a queuing model for call centers to

analyze the effect of delay information on system performance.

On the empirical side, information availability has been investigated in several different

contexts. For example,Gallino and Moreno(2014) analyze the effect of product availability

information on store sales andBell et al.(2016) consider the effects of product information in

online retail by studying the introduction of offline showrooms.

In contrast to these research studies that consider the information available forcustomers,

we focus on the information available toagentsand how such information affects agent behavior

and system performance. One of the few papers that empirically study the effect of information

available to agents isSong et al.(2016), which examines the effect of information about agents’

performance on productivity and service quality in a complex service organization. The authors

focus on how the way performance-related information is shared (publicly vs privately) affects

the whole system’s productivity. They show that public information leads to higher productivity

without a significant decrease in service quality. Similar toSong et al.(2016), our analysis also

considers the information available to agents, but our setting allows us to study different ques-

tions. Our data set contains hypergranular spatial real-time information that must be processed

quickly by agents when choosing which location to serve in a competitive environment. We can

observe the actions that agents take in response to the information available to them.

Furthermore, competition plays a central role in our setting. Competition between agents

takes place in many different contexts. For example, agents compete with their peers wherever

agents are managed based on their performance, as noted inNetessine and Yakubovich(2012).

Kalai et al.(1992) analyze a system where agents compete with each other by choosing appro-

priate service rates, andAnand et al.(2011) consider a more general model where the service
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provider sets an admission price in order to maximize its own profit and agents can choose their

own service speed and quality. To our knowledge, no empirical results have been described

on the analysis of competitive environments for agents when they have real-time hypergranular

information.

Our work is related to the emerging literature exploring the on-demand economy and the

sharing economy, including recent work byCramer and Krueger(2016), Kabra et al.(2016b),

and Li et al. (2015). Cramer and Krueger(2016), for example, find that Uber drivers have

higher utilization than taxi drivers. In our analysis, we show that the utilization of drivers from

an e-hailing platform varies based on how sophisticated drivers are in using the information

provided by the platform.Kabra et al.(2016b) investigate driver and passenger responses to the

incentives given by the platform. They show that the increase in the number of trips completed

is higher for each dollar spent on incentives given to drivers rather than incentives given to

passengers.

Our work is also connected to previous research in economics that has explored the taxi

industry (e.g., see the theoretical work ofCairns and Liston-Heyes 1996for taxi regulation and

empirical work ofCamerer et al. 1997for an analysis on the relation between working hours and

wages in the economics literature). Recent research includes analyses byZhang et al.(2016)

on how taxi drivers learn from contextual and spatial information andBuchholz(2015) on the

impact of search frictions on the efficiency of the taxi industry.
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2.3. Hypothesis Development

In this section, we develop our hypotheses about agents’ decisions given the availability of

real-time information and how these decisions affect their sales performance. Since we test our

hypotheses using a data set describing the behavior of drivers in an e-hailing platform, we use

the terms “driver” and “agent” interchangeably, and we refer to the area surrounding the agent

as the “service zone.” In other applications, one can think more generally of service classes

instead of service zones.

We first consider how the behavior of agents is affected by the availability of new agents in

their service zone. A priori, it is unclear whether agents will tend to move to another service

zone or will stay in their zone when new agents become available in that same zone. On one

hand, agents may interpret new arrivals to their zone as an increase in the service zone’s pop-

ularity. Agents may think the new agent arrives because the potential of a sale is (or will be)

high in their zone and they trust their new peers’ “experience of sales” and therefore decide to

stay. For example, herding behavior happens in queues where each queue has different service

qualities. Customers prefer longer queues since the length of the queue may signal the quality,

as described inVeeraraghavan and Debo(2009). Similar herding behavior may occur in the

case of competing agents.

On the other hand, agents may interpret newly arriving agents as a sign that competition is

increasing and they may think their service zone has more agents than needed. This scenario

is similar to spatial competition with entry. For example,Palfrey(1984) considers entry of a

third political party in an ongoing competition of two other parties where each voter prefers

the party that is close to herself. He shows that the entrance of a third party results in spatial
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separation of the other two parties. Similarly, agents may think their chance of making a sale in

their zone decreases significantly after the arrival of another competitor. Such an interpretation

may lead them to change their service zone so that they stay away from this increased level of

competition. Thus, we test the following pair of competing hypotheses:

Hypothesis 1A (Herding). If a new competitor enters the service zone, the probability that

current agents will leave the service zone decreases.

Hypothesis 1B (Scattering).If a new competitor becomes available in a service zone, the

probability that current agents will leave the service zone increases.

We illustrate the theoretical ambiguity with a model in AppendixB.1.1. We test Hypothesis

1A and Hypothesis 1B in Section 5.

With the pair of competing hypotheses, 1A and 1B, we test whether agents are interpreting

the arrival of another agent as a signal of a high sale opportunity in their service zone or an

increased level of competition. However, it is highly possible that agents are heterogeneous in

terms of their probability of changing zones following the arrival of new competitors. Some

agents may be more likely than others to scatter. The question, then, is how this heterogeneity

in scattering affects their performance — namely, whether it allows drivers to achieve a higher

utilization rate. Responding to new entrants in a service zone by increasing the probability of

leaving could hurt or help sales. The arrival of a competitor could really be a sign of a high-sales

opportunity. If that is the case, scattering may result in a low utilization rate. Moreover, agents

will spend time in moving to other service zones, which may further decrease the utilization

of the agents. On the opposite side, the arrival of a competitor may increase the level of com-

petition significantly. Therefore, scattering would be beneficial for the agent if she moves to
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another service zone where she has higher chance of making sales. Thus, we test the following

pair of competing hypotheses:

Hypothesis 2A.When agents are more likely to change their service zone following the

entry of a new competitor, they have a higher utilization rate.

Hypothesis 2B.When agents are more likely to change their service zone following the

entry of a new competitor, they have a lower utilization rate.

We illustrate the ambiguity in Hypothesis 2 in AppendixB.1.2. We test this hypothesis and

compare the magnitude of the effects of scattering behavior in the performance of the individ-

ual driver and the whole system in Section 6. Our empirical analysis resolves this theoretical

ambiguity. In the next section, we provide the details and descriptive statistics of the data set

that we have gathered to test these hypotheses.

2.4. Empirical Setting and Data

2.4.1. Empirical Setting

In this study, we have collaborated with 99Taxis, one of the leading e-hailing platforms in

South America. 99Taxis was founded in 2012 and operates in over 399 cities in Brazil. At the

time of our analysis (September 2014), the company had over 19,000 taxi drivers in Sao Paulo.

Similar to many other e-hailing taxi platforms, customers could see all available taxi drivers

around their location via the mobile phone application, and they could use the application to

make a ride request.

We obtained access to anonymized, high-frequency, hyperlocal information from the GPS

logs of all the drivers in the network working in Sao Paulo during our period of analysis. Our
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data set records the status and location of each driver (latitude and longitude) at a given time

whenever they are logged in. Figure2.2 shows a sample path followed by a driver during a

10-minute period.

Such data is also available to customers and drivers in real time through the e-hailing ap-

plication and can potentially influence the behavior of drivers. One of the company’s investors

noted that over time, drivers realized how their revenue could increase if they used smartphone

with 3G services instead of an old phone with a prepaid services plan (seeTechCrunch 2015).

The reason is that a smartphone allowed them to access richer real-time spatial information,

such as the location of competing drivers on a map. Therefore, this data set is very appropriate

to analyze the central question addressed in this paper: how the information on the entry of a

new competitor to a zone affects the behavior of the other drivers in that zone. Moreover, this

data set is a great source to investigate differences in the degree of driver sophistication in terms

of how drivers react to available information and how these differences translate into sales and

system efficiency.

While the GPS logs provide very rich information, they require substantial preprocessing.

As Figure2.2indicates, the different observations for a driver occur at different interval lengths.

Moreover, observations are not recorded at the same time for different drivers—i.e., we may

have a record at 12:02:17 on Monday for one driver and a record at 12:02:18 on Monday for

another driver. Therefore, we transform our data to track the drivers’ movements in hour and

minute levels. The following tables illustrate how we transform the data. The first table is the

original data:
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Figure 2.2. A data record from a driver on September 11 between 2:00 p.m. and 2:10 p.m

Time Longitude Latitude VacantStatus

12:01:17 g11 g12 1

12:02:34 g21 g22 0

12:03:10 g31 g32 0

12:03:30 g41 g42 1

Then we transform this data into the following information set:

Time Longitude Latitude VacantStatus

12:01 g11 g12 1

12:02 34×g11+(60−17)×g21

34+(60−17)
34×g12+(60−17)×g22

34+(60−17)
round

(
34×1+(60−17)×0

34+(60−17)

)

12:03 10×g21+(60−34)×g31

10+(60−34)
10×g22+(60−34)×g32

10+(60−34)
round

(
10×0+(60−34)×0

10+(60−34)

)

12:04 g41 g42 1

Note thatVacant Statusdenotes the availability of the driver according to the platform. How-

ever, a driver may have picked up a passenger on the street without using the platform and may
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be still logged in or may have used a different e-hailing service. In such a case, other drivers

who use the application will see this driver as vacant; hence, they may think that this driver is

still a competitor for them.6

Our data covers seven consecutive days in the month of September 2014. In order to under-

stand spatial effects, we divide the space into a grid of square service zones. Our base analysis

uses400 square zones of500× 500 m2. We also conduct robustness checks by considering dif-

ferent square sizes (e.g.,250×250 m2), as we explain in detail in Section2.7. We use subscript

z to denote the zone of a given driver. Our data set allows us to track the evolution of drivers and

zones over time. In our empirical analysis, we include hourly weather data and other drivers

of zone-level user interest, such as locations of public transit stops, and over 18,000 points of

interest in the city center of Sao Paulo, such as hotels, restaurants, cinema and theaters, schools,

and hospitals, to check whether our results are robust to prevailing demand levels. Moreover,

we construct a detailed set of dependent, independent, and control variables that capture this

evolution, which we describe next.

There are two types of variables that capture information relevant to a service zone: vari-

ables that capture predictable variability in sales based on the historical evolution, and variables

that capture the real-time status and transitions in a zone. We also construct driver-level vari-

ables that encode some important aspects of driver behavior and outcomes.

2.4.1.1. Predictable Variability in Sales.We want to measure the overall level of sales in a

day d, hourh, and zonez. First, note that we know the status of taxi drivers whenever they

6Therefore, in addition to considering all drivers logged into the platform, we also make a robustness analysis
where we analyze the drivers with the utilization higher than some specific thresholds, which are explained in
detail in Section2.7. Note that Easy Taxi was the biggest competitor of 99Taxis; Uber had not entered Brazil’s
e-hailing market at the time.
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are logged in. Therefore, any change from vacant to busy means that a sale has been initiated

through the platform.

We first calculate the number of sales occurring in each zonez, dayd and hourh. We denote

this value bysd,h,z. We use the following model to estimate time and location fixed effects:

(2.1) sd,h,z = SalesT imed,h + SalesZonez + εd,h,z

whereSalesT imed,h is time fixed effect,SalesZonez is location fixed effect andεd,k,z is the

error term.7 Note thatSalesT imed,h can be interpreted as predictable temporal (hourly and

daily) variability in sales andSalesZonez can be interpreted as predictable spatial variability

in sales based on the historical evolution.

2.4.1.2. Real-time Information. In this section, we define variables identifying the transition

from a given minutet to the next one,t+1, and some variables capturing the status at a given

minutet (in a given day and hour).

We have several independent and control variables that are constructed through observing

changes from minutet to t + 1. First, we defineNewDriversz,t as the number of new drivers

entering zonez from other zones between timest andt + 1. Second, we denoteVacantz,t as the

number of vacant taxis according to the platform in zonez, minutet. This is not a transition

variable but individual drivers may observe five possible changes in the status of those vacant

taxis att + 1:

(1) Some of them may be still vacant in the same zone. Number of such drivers is denoted

by VacantInz,t.

7Mean value of estimatedSalesTime(SalesZonerespectively) is 3.172 (3.222 respectively), and standard deviation
is 3.672 (6.673 respectively).
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Figure 2.3. Sequence of events for a given driver

(2) Some of them may be still vacant in a different zone— i.e., they may have changed their

zone and be still vacant. Denote the number of such drivers byVacantOutz,t.

(3) Some of them may find a passenger during this one-minute observation period in the

same zone. Number of such drivers is denoted byGetInz,t.

(4) Some of them may first change their zone and find a passenger in the new zone by minute

t + 1. Denote the number of such drivers byGetOutz,t.

(5) The remaining drivers may log out from the system, so they suddenly disappear. We

summarize the sequence of events in Figure2.3.

2.4.1.3. Driver Variables. In this subsection, we define some driver-level variables. We start

with a dependent variable. We define the binary variableChangeZonei,t, where1 denotes that

individual driveri changes her service zone and0 denotes that she stays in her zone at minute

t.8 We definePercentageBusyi,d,h as ratio of minutes that a driveri is busy— i.e., the minutes

8 We assume that drivers monitor changes in the platform from minutet to t + 1 and they either move to another
zone or stay in the same zone. To identify whether they move or stay, we compare the zone of the driver at minute
t+1 andt+2 (where the one-minute difference is referred to as implementation time, and for robustness purposes
we also compare the zone of the driver att + 1 andt + 3— i.e., implementation time is set to two minutes). If
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Figure 2.4. Heterogeneity in PercentageReact

that a driver is carrying a passenger hailed through the platform to the total number of minutes

that she is logged into the system in a given hourh and dayd. Note that a driver may carry

a passenger from other platforms, so we carry out robustness checks where we consider this

concern. We calculatePercentageReacti, which is defined as the ratio of times a driver changes

zones to the total number of times the driver is presented with the choice of leave or stay at the

service zone following a competitor’s entry; i.e., this ratio presents the scattering frequency of

the driver.9 As demonstrated in Figure2.4, drivers are heterogeneous in how they respond to

the entry of new competitors. In Section2.6, we use quartiles to categorize each driver.

the zones are different, we assume the driver changes her zone (see Figure2.3for details). We are interested in the
behavior of vacant drivers since busy drivers do not need to decide to move or stay in order to find a passenger.
Therefore, we only consider the drivers who are vacant att, t + 1, andt + 2.
9Note that we can calculate this variable ini, d, h (driver, day, hour) levels and we have a robustness analysis with
that level as well.
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Table3.3 provides summary definitions for all variables included in our models. We test

our hypotheses in two different sections. First, we analyze the effect of new drivers on scatter-

ing/herding decisions (namely H1) in Section 5. Then, we analyze the effect of scattering on

the performance of the individual driver (H2) in Section 6. Before these analyses, we provide

descriptive statistics of variables that will be used for these analyses in next sections.

Table 2.1. Definition of Variables

Variable Description
Zone-level variables

NewDriversz,t Number of new drivers entering zonez at timet.
Vacantz,t Number of vacant drivers in zonez and timet.
GetInz,t Number of vacant drivers in zonez and timet who stay in the same zone after 1 minute and hail a passenger.
GetOutz,t Number of vacant drivers in zone z and timet who move to another zone after 1 minute and hail a passenger.
VacantInz,t Number of vacant drivers in zonez and timet who are still vacant after 1 minute in the same zone.
VacantOutz,t Number of vacant drivers in zonez and timet who are still vacant after 1 minute in a different zone.
SalesZonez Spatial predictable variability in sales from zonez.

Driver-level variables
ChangeZonei,t Indicator that shows whether driveri changes her zone timet.
PercentageBusyi,d,h Proportion of time that driveri is busy during hourh and dayd.
PercentageReacti Fraction of time that driveri changes her zone when there is an entry to her zone.
PercentageReactQKi Indicator that shows whether PercentageReacti is greater than (K-1)st quartile,

but less than Kth quartile of all PercentageReact values.
Other variables

RushHour Indicator for rush hour defined for 6am-9am and 4pm-7pm.
Weekend Equal to 1 if day of observation is Saturday or Sunday.
SalesTimed,h Temporal predictable variability in sales.

2.4.2. Descriptive Statistics

Note that we focus our analyses on the city center of Sao Paulo, which is a square-shaped

region around 10 kilometers by 10 kilometers because we have a significant amount of infor-

mation for each zone of the city center. On the other hand, there are many zones outside the

city center where either sales occur very rarely or few vacant drivers go (see Figure2.5).10 For

example, average sales in an hour is6.394 per zone in the city center, but this value is only

10Similarly, Buchholz(2015) focuses on one borough, i.e., Manhattan, and two airports, i.e., JFK and LaGuardia,
in the analysis of New York taxi data since over 90 percent of rides in New York taxi data originate from these
three areas.
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(a) (b)

Figure 2.5. Color in each zone represents the hourly average sales of that zone and its
neighbors in Figure (a) and average vacant driver number per minute in Figure (b). The
data for (a) is filtered so that only the zones with positive sales are colored. Similarly,
the data for (b) is filtered so that only the zones with average vacant drivers more than

0.5 are displayed

0.167 per zone outside of the city center. Similarly, there are4.299 vacant drivers in a minute

per zone in the city center, but we have only0.183 vacant drivers outside of the city center.

Table 2.2. Driver-level and zone-level variables

Driver-level variables
Variable Mean SD Min Max N
ChangeZonei,t .257 .437 0 1 11,634,626
RushHouri,t (H1) .256 .436 0 1 11,634,626
Weekendi,t (H1) .174 .379 0 1 11,634,626
PercentageReacti .301 .138 0 1 18,246
PercentageBusyi,d,h .263 .337 0 1 712,228
RushHouri,d,h (H2) .215 .411 0 1 712,228
Weekendi,d,h (H2) .204 .403 0 1 712,228

Zone-level variables
Variable Mean SD Min Max Observations
NewDriversz,t 1.593 2.228 0 38 4,442,193
Vacantz,t 4.299 5.835 0 68 4,442,193
GetInz,t .0623 .307 0 13 4,442,193
GetOutz,t .0358 .206 0 6 4,442,193
VacantInz,t 2.706 4.168 0 53 4,442,193
VacantOutz,t 1.367 2.103 0 2 4,442,193
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In Table2.2, we provide summary statistics, including mean, standard deviation, and min-

imum and maximum value of each driver-level variable. We observe18, 246 drivers make

11, 634, 626 scattering or herding decisions in total throughout the observation period. The first

three of the variables listed in Table2.2are related to these decisions. For example,25.7 percent

of these decisions are scattering. The timing of these decisions has the following statistics:25.6

percent of these decisions are given in rush hour and17.4 percent of them are given during the

weekend.

On average, a driver chooses to scatter30.1 percent of the time among all the scatter-

ing/herding decisions she makes. Note that these18, 246 drivers stayed logged into the platform

during712, 228 driver hours in total, and rows 5, 6, and 7 of Table2.2are related to these hourly

driver-level observations. For example, on average, drivers are busy26.3 percent of the time

that they are logged in, in a given hour. Of these712, 228 observations,21.5 percent occurred

during rush hour and20.4 percent of them during the weekend.

In Table 2.2 we report statistical summaries for zone and driver-level variables that are

mostly used for the first hypothesis. We have4, 442, 193 combinations of zone (in city center)

and time (minutes). On average, there are1.59 drivers newly entering a zone in a minute. We

observe on average4.299 vacant drivers per zone in a given minute;2.70 of these drivers stay

vacant in the same zone and1.367 of them stay vacant in another zone in the following minute.

In the next two sections, we analyze our hypotheses. The next section provides the analysis

of the effect of real-time information on location choice of agents (H1). In Section2.6, we

analyze how heterogeneity in decisions affects the performance of an individual driver (H2).
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2.5. The Effect of Real-Time Information on Agent Scattering

2.5.1. Econometric Model

In this section, we explain the regression models we use to analyze the effect of newly enter-

ing agents into a service zone on the decisions of the current agents, as discussed in Hypothesis

1. Our unit of observation is at taxi driver and time level. We use logit and probit specifica-

tions to model how the decision to stay in the same zone or move to another zone depends on

the entry of new competitors. To test Hypothesis 1, an ideal experiment would randomly show

different competition situations to drivers and track their reaction to those situations. Such an

ideal experiment is not feasible in a production environment, so we have to restrict our analy-

sis to the observational data generated during the live operation of the platform. In our study,

we follow vacant drivers and study how they react to the different competition situations that

naturally occur during their work shifts. Note that this could create some endogeneity concerns

because the different competition situations drivers face could be correlated with unobserved

factors that drive their decisions. For example, an abundance of vacant drivers could be due

to an unobserved demand change that attracts more vacant drivers to a zone, which could also

affect whether drivers choose to stay in or leave the zone. We discuss how this could potentially

bias our results, and we supplement our analysis with the analysis of a subset of our data where

such concerns are minimized.

We use logit regression with some fixed effects. We conduct robustness checks with logit

regression with random effects and probit regression with fixed/random effects with robust stan-

dard errors, and we obtain consistent findings. Step by step we add controls and check our

hypothesis. Leti denote the driver andt denote the time of the observation. We use control
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variables including individual fixed effects of the driver (denoted byμ), time fixed effects by

hour (denoted byζh), and location fixed effects where we use the row and column of the driver’s

zone. We denote such column and row effects byγc andηr. The family of specifications we use

is the following:

pit := Pr(Yit = 1|NewDriver, C) = F (α0 +α1NewDriver +C ′
itβ + γc + ηr + ζh + ζd +μi)

whereC denotes the matrix for control variables,Yit is the decision of theith driver at time

t, c is the column,r is the row of the driver’s zone, andh denotes thehour andd the day

that t belongs to. We consider predictable variability in sales based on the hour and day of the

observation,SalesTime, as well as the location,SalesZone, separately under matrixC. Note that

we haveF (z) = ez/(1 + ez) for the logit model andF (z) = Φ(z) for the probit model, where

Φ is standard normal cumulative distribution function.

2.5.2. Results

In Table2.3, we provide our first result for Hypothesis 1 based on the fixed effects logit

model. Note that we use both individual-driver fixed effects and location fixed effects in all

the models described in this table. In addition to these fixed effects, Model (5) also considers

hourly and daily time fixed effects.

We observe that the coefficient ofNewDriversis significant and positive for all of these

models. Therefore, a new competitor’s entrance increases the probability a driver will change

the zone. Hence, Hypothesis 1B (scattering) is supported by these models. Note that driver,

location, and time fixed effects are included in Model (5) and we have the highest log-likelihood
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Figure 2.6. Marginal effect of NewDrivers on probability of changing zone; figure
uses Model (5) from Table2.3

among all the models listed in Table2.3.11 We observe that the predicted probability of changing

the zone increases almost linearly as the number ofNewDriversincreases (see Figure2.6).12

Each additional driver increases the probability of changing the zone almost 1 percent.

For robustness of the results reported above, we consider different sizes for each square

zone. Instead of500m×500m dimensions for each square zone, we construct zones by250m×

250m on the same city center map. We also change the implementation time from1 minute to

2 minutes.

Specifically, we consider three additional setups: (1) same zone setup, but longer implemen-

tation time; (2) smaller zones with the same implementation time; and (3) smaller zones with

longer implementation time. We observe thatNewDrivershas a significant and positive effect

on the probability of changing the zone for these setups as well, confirming our support for

Hypothesis 1B. The results of these alternative specifications and additional robustness checks

are described in detail in Section2.7.1. We also perform an analysis with a binary version of

11We provide the results of other regression models, including random effects logit and probit, in our online
appendix.
12For this calculation, we use Model (5) from Table2.3and calculate the marginal effect ofNewDriversonChange-
Zone.
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Table 2.3. Effect of Entry of New Drivers on Decision to Change Zone

(1) (2) (3) (4) (5)

NewDrivers 0.0242∗∗∗ 0.0244∗∗∗ 0.0291∗∗∗ 0.0338∗∗∗ 0.0323∗∗∗

(29.75) (29.95) (35.35) (35.92) (34.09)

SalesTime 0.0341∗∗∗ 0.0330∗∗∗ 0.0380∗∗∗ 0.0362∗∗∗ 0.0346∗∗∗

(50.07) (46.45) (52.40) (49.41) (28.37)

SalesZone -0.0291∗∗∗ -0.0292∗∗∗ -0.0303∗∗∗ -0.0195∗∗∗ -0.0194∗∗∗

(-57.03) (-57.14) (-59.35) (-34.57) (-33.47)

RushHour -0.0293∗∗∗ -0.0153∗∗ -0.00825
(-5.33) (-2.79) (-1.49)

Weekend 0.238∗∗∗ 0.165∗∗∗

(36.61) (24.68)

GetIn -0.0251∗∗∗ -0.0248∗∗∗

(-5.18) (-5.11)

GetOut 0.0200∗∗ 0.0196∗∗

(2.65) (2.61)

VacantIn -0.0294∗∗∗ -0.0287∗∗∗

(-58.93) (-54.87)

VacantOut 0.0356∗∗∗ 0.0344∗∗∗

(36.55) (35.02)
Observations 1,158,965 1,158,965 1,158,965 1,158,965 1,158,965
AIC 1180087.0 1180060.5 1178738.7 1174663.0 1173607.4
BIC 1180601.4 1180586.9 1179277.0 1175249.2 1174516.6
Log-Likelihood -590000.5 -589986.3 -589324.3 -587282.5 -586727.7
χ2 10672.6 10701.0 12024.9 16108.6 17218.2

t statistics in parentheses

All models estimate a logit regression with row, column, and driver fixed effects.

A random 10% sample is taken to estimate the models.

Dependent variable isChangeZone.

Model (5) considers hourly and daily fixed effects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

NewDrivers, whereBinaryNewDriverz,t is 1 if NewDriversz,t > 0, and 0 otherwise. We observe

positive and significant estimates for this variable too, which further supports our results.

As noted inManski(1993), an individual’s decision can be affected by her peers’ decisions,

which means that there can be a social interaction between each individual. The models we

consider above may suppress such peer effects, which may result in an identification problem

(seeManski 1993for details). We test our first hypothesis with a different model setup and a
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method where we also consider peer effects. For this purpose, we use the spatial autoregressive

(SAR) model to test Hypothesis 1. Our results for the SAR model also show that agents scatter

as the number of new drivers increases. The details of the model and the results are described

in AppendixB.2.2.

2.6. Heterogeneity in Agent Response and Utilization

2.6.1. Econometric Models

In this section, we start by describing the model we use to analyze how heterogeneity in

agent behavior affects agent utilization. In the context of e-hailing taxi platforms, agent uti-

lization is basically the ratio of busy minutes divided by the total number of minutes that the

agent is logged into the platform. We categorize each driver by using the quartile ofPercent-

ageReactvalue (fraction of times that a driver changes the zone following a competitor’s en-

try) of all drivers. For example,PercentageReactQ2i = 1 if PercentageReacti value of dri-

ver i is greater than the first quartile and less than the second quartile. Similarly, we define

PercentageReactQ1i, PercentageReactQ3i, andPercentageReactQ4i. To investigate the ef-

fect of scattering onPercentageBusyi,d,h, namely H2, we use the following regression model

PercentageBusyi,d,h = α0 + α1PercentageReact Q2i + α2PercentageReact Q3i

+ α3PercentageReact Q4i + C ′
i,d,hβ + εi,d,h

wherei represents the driver,h represents the hour, control variables are denoted by matrix

C, andεi,d,h is the error term. Note that control variables includeWeekend, RushHour, and
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SalesTime. Since our dependent variable, namelyPercentageBusy, is a fraction, we also use

a fractional logit/probit model, which is commonly used in econometric analysis of fractional

dependent variables (seePapke and Wooldridge 1996). The model has the following form:

E[y|x] = G(βx)

where0 < G(z) < 1 for any z ∈ R. The most commonly used functions areG(z) =

exp(z)/[1 + exp(z)] for the logit model andG(z) = Φ(z) for the probit model, whereΦ is the

standard normal cumulative distribution function. Similar to the binary logit model discussed

in Section2.5.1, the marginal effect ofxj on E[y|x] is ∂E[y|x]/∂xj = βjg(z), whereg(z) =

exp(z)/[1 + exp(z)]2. Therefore, sign ofβj is sufficient to declare the direction of the marginal

effect.

2.6.2. Results

Table2.4 reports the effect of heterogeneity in scattering on agent utilization. We observe

that coefficients forPercentageReactquartiles are positive, significant, and increasing in the

order of the quartile. Therefore, we can conclude that drivers with more frequent scattering

behavior as a response to a newly entering competitors have a higher utilization rate than the

drivers with less frequent scattering behavior.

We also observe that the difference betweenPercentageReact QkandPercentageReact Q(k-

1) is highest for the fourth quartile. Hence, increasing the scattering behavior to the highest

scattering category brings the highest additional utilization.

Note thatPercentageReactis a driver-level variable. For robustness of the results reported

above, we add the time dimension to this variable. We definePercentageReactHourlyi,h as the
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Table 2.4. Effect of Strategic Scattering on Agent Utilization

(OLS-1) (OLS-2) (Frac Logit-1) (FracLogit-2)
PercentageReact Q2 0.00501∗∗∗ 0.00238∗ 0.0283∗∗∗ 0.0150∗∗

(4.87) (2.33) (5.01) (2.66)

PercentageReact Q3 0.0125∗∗∗ 0.00864∗∗∗ 0.0692∗∗∗ 0.0508∗∗∗

(11.73) (8.22) (12.05) (8.83)

PercentageReact Q4 0.0350∗∗∗ 0.0299∗∗∗ 0.183∗∗∗ 0.160∗∗∗

(27.42) (23.62) (27.72) (24.13)

Vacant -0.00408∗∗∗ -0.00483∗∗∗ -0.0237∗∗∗ -0.0278∗∗∗

(-64.13) (-75.90) (-63.44) (-73.35)

Weekend 0.0585∗∗∗ 0.0775∗∗∗ 0.305∗∗∗ 0.409∗∗∗

(33.70) (45.71) (33.77) (45.44)

RushHour -0.0404∗∗∗ -0.0792∗∗∗ -0.243∗∗∗ -0.415∗∗∗

(-16.22) (-31.65) (-17.20) (-29.01)

SalesTime 0.0258∗∗∗ 0.125∗∗∗

(123.65) (116.63)

Constant 0.250∗∗∗ 0.235∗∗∗ -1.093∗∗∗ -1.177∗∗∗

(106.34) (100.95) (-86.83) (-92.37)
Observations 713605 713605 713605 713605
R2 0.061 0.081
AIC 430222.5 414859.4 686458.2 678580.0
BIC 430612.8 415261.1 686848.5 678981.7
Log-Likelihood -215077.3 -207394.7 -343195.1 -339255.0
χ2 42461.1 57231.7

t statistics in parentheses

Dependent variable is PercentageBusy, which is a fraction.

All of the models above use daily and hourly fixed effects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

ratio of times that a driver changes zone to the total number of times that the driver is presented

with the choice of leave or stay in the service zone in hourh. This variable helps us to observe

the effect of heterogeneity in the scattering behavior of the individual driver as well. We observe

thatPercentageReactHourlyis positive and significant as well (see TableB.3 of the Appendix).

Taken together, these results provide strong support for Hypothesis 2A: drivers who are more

likely to respond to the entry of a new driver by changing zone achieve higher utilization rates.
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2.7. Robustness Checks and Alternative Explanations

In the following section, we conduct a battery of robustness checks. These include consid-

ering smaller zone configurations; longer implementation times; a placebo check with a taxi

data set pertaining to a time period when no real-time competition information was available to

drivers; and taking into account the effects of demand shifters, street hailing, and driver experi-

ence. Overall, the results strengthen our claim that drivers use real-time information about their

competitors and scatter as a response to the entry of new drivers.

2.7.1. Zone Configuration and Implementation Time Specification

In our analysis we focus on a 10x10km2 area at the city center of Sao Paulo. We define

our zones as 500x500m2 squares. To show that our results are robust to the specification used

to outline the zones, we repeat our analysis with increased granularity by focusing on zones

composed of 250x250m2 squares. Considering smaller zones might impact our results, as the

number of entries into and exits from a specific zone depend on the zone configuration adopted.

First, under this alternative specification the average number of drivers per zone decreases.

Second, the exit ratios (the percentage of drivers who change their zones) as well as the total

number of drivers who change the zone will increase, since a driver whom we considered to be

staying in her service zone under a bigger zone configuration might be considered as changing

her zone under the smaller zone setting. Hence, we will observe the same number of drivers in

total but more zone-changing decisions.
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We find that the new driver entry effect on zone-changing behavior remains significant and

increases in magnitude under this smaller zone configuration.13 Thus, our main result–the find-

ing that competition leads to scattering–is robust to zone configuration.

Next, we analyze the sensitivity of the new driver entry effect to implementation time. Un-

der this implementation time setting, a driver is considered as having changed her zone if she

moved to another zone within two minutes of observing a new driver enter her service zone.

Consequently, the number of drivers who change their zones should either stay constant or in-

crease, whereas the number of new drivers entering into the zone is not changed. Therefore,

we observe an increase in the magnitude of new driver effect on zone-changing behavior under

every setting.14

2.7.2. Placebo Test

In the preceding sections, we showed that sharing real-time information about their com-

petitors with service agents alters agents’ behavior. Agents interpret the arrival of new agents

into their service zone as an increase in competition and tend to change their service zones as

a response to this increased competition. This result implies that drivers monitor the competi-

tion level in their zones by leveraging visual information contained in the e-hailing application.

However, one could argue that such scattering behavior could be unrelated to the availability

of real-time information and that we would have observed such scattering behavior in face of

increased competition even in the absence of real-time information. To understand the impact

13Under the smaller zone configuration, the coefficient forNewDriversin the five different models that we use
for Table2.3 are0.0723, 0.0732, 0.0733, 0.0757, and0.0735 respectively. All these estimations are statistically
significant.
14We observe the textitNewDrivers effect as 0.0339***, 0.0339***, 0.0385***, 0.0387***, 0.0366*** by using
the same models noted in Table2.3.
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of new driver entries on agent behavior in the absence of real-time information, we conduct a

placebo test on a different data set in a setting where real-time information was not available.

We use a data set from an Asian city that covers a time span prior the introduction of e-

hailing applications, in May 2009.15 E-hailing applications were introduced in early 2012 in

Asia. Thus, during our period of observation (May 2009) drivers do not have access to real-

time information provided by e-hailing applications. The analysis of this data set enables us

to test whether the scattering decision of drivers whom we observed in the Sao Paulo data set

could be caused by factors other than the real-time competition information provided by the

e-hailing application.

This data set contains 2.02 millions individual trip records from 3,418 taxis during 29 days

pertaining to May 2009. Each taxi GPS tracking record contains information on the taxi ID, time

stamp the observation was recorded, geographic coordinates, and vacancy status. Following the

procedure described in Section2.4.1, we create 2,000 square zones of 500x500m2.

We follow the econometric model described in detail in Section2.5.1to test Hypothesis 1.

Our observation unit is at taxi driver and time level, and we use a logit specification to analyze

how staying in or leaving the zone depends on the entry of new drivers when none of the drivers

can access real-time information. Similar to the analysis in Section2.5.1, we include individual,

time and location (row/column) fixed effects. Moreover, we analyze the predictable variability

in sales based on hour, day of the week,SalesTimeas well as the locationSalesZone.

As observed in Table2.5, the coefficient associated withNewDriversis significant andneg-

ative for all these models. Hence, in the absence of real-time information sharing, there is no

evidence that Hypothesis 1B (scattering) holds. The results suggest that drivers tend to move

15An analogous data set with information on Sao Paulo drivers’ behavior before the introduction of e-hailing
services was not readily available.
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in a positively correlated way if no real-time information is available to them. Thus, the claim

that the scattering behavior is linked to the availability of real-time information provided by the

e-hailing application is consistent with the results obtained in this data set.

2.7.3. Effect of Traffic Density and Traffic Regulations

In the previous sections, we showed that the entry of new drivers into a zone induces vacant

drivers to change their zones. These results indicate that competition leads to a scattering be-

havior. Thus, Hypothesis 1B is empirically supported. However, it could be argued that traffic

conditions, not the entry of the new drivers, leads to scattering behavior.

High traffic density might impact our results in two opposite directions. First, heavy traffic

might prevent drivers who are willing to change their zones from doing so. Therefore, even

if drivers want to change their zones (scatter) due to the entry of new drivers, they would be

unable to do so due to heavy traffic. If heavy traffic conditions prevent drivers from changing

their zones, our results provide a lower bound.

Second, drivers might prefer to stay in their zones but traffic conditions might push them

out. If traffic conditions are pushing drivers out of their zones, there will be more entry into

and exit from zones. In this case, our results would provide an upper bound, as we would be

attributing traffic-induced zone-changing behavior to the new driver effect.

We devise two methods to eliminate the concerns regarding the impact of traffic conditions

on the analysis of Hypothesis 1. First, we analyze two different data samples with light and

heavy traffic respectively. Second, we calculate the speed of the drivers and measure the new

driver entry effect on zone-changing behavior in data samples with high and low speeds. Our

analysis shows that drivers react more strongly to the entry of new drivers during periods with
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Table 2.5. Effect of Entry of New Drivers on Decision to Change Zone in the Absence
of Real-Time Information

(1) (2) (3) (4)

NewDrivers -0.0419*** -0.0428*** -0.0138*** -0.0137**
(-27.88) (-28.36) (-66.64) (-66.24)

SalesTime 0.0102*** 0.00569*** 0.000512*** 0.000761***
(10.58) (4.91) (3.80) (4.75)

SalesZone -0.000504*** -0.000476** -0.000577*** -0.000579***
(-3.43) (-3.24) (-28.44) (-28.52)

Weekend -0.0464*** 0.00255**
(-6.97) (2.88)

GetIn -0.133*** -0.133***
(-111.93) (-111.91)

GetOut .420*** 0.420***
(305.48) (305.50)

VacantOut 0.427*** 0.427***
(853.29) (853.03)

VacantIn -0.0726*** -0.0725***
(-344.82) (-344.57)

Constant -0.820*** -0.787*** 0.238*** 0.237***
(-5.90) (-5.66) (12.55) (12.44)

Observations 921591 921591 921591 921591
R2 0.563 0.563
AIC 1072007.8 1071961.2 421486.3 421480.0
BIC 1113440.1 1113405.2 462965.5 462970.9
Log Likelihood -532472.9 -532448.6 -207208.1 -207204.0
χ2 61052.1 61100.8

t statistics in parentheses

All the regressions include row, column, hour, and driver fixed effects.

A random 10% sample is taken to estimate the models.

Logit model is used in regressions (1) and (2).

Due to computational challenges, a linear probability model was used in regressions (3) and (4).
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

light traffic. Moreover, our results are consistent with Hypothesis 1B, with scattering being

observed regardless of prevailing traffic conditions and data samples considered.
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In order to observe whether heavy traffic prevents drivers from changing their zones or

pushes them out of their zone, we compare time periods with light and heavy traffic conditions.

If heavy traffic is pushing drivers out of their zones, we should observe an increase in the

magnitude of the new driver entry effect on zone-changing behavior under heavy traffic; the

coefficient measuring the new driver entry effect would reflect the combined effects of zone-

changing behavior under heavy traffic and new driver entry.16 Thus, if heavy traffic pushes

drivers out of their zones, we would expect the estimated new driver effect to be bigger under

heavy traffic.

To construct the subsets with light traffic conditions, we consider the time periods between

10:00 a.m. and 12:00 p.m. in the morning and 2:00 p.m. and 3:30 p.m. in the afternoon during

weekdays. In Sao Paulo, the morning shift of primary schools ends at 12:20 p.m. and lunch

break is around noon. Hence, the light traffic subset includes the time periods between the

morning and afternoon rush and between the afternoon and evening rush. This subsample was

chosen based on our analysis of average hourly traffic information provided by Google Maps.

Traffic is relatively light during these periods.17 In contrast, the heavy traffic period subsample

includes the evening rush (between 4:30 p.m. and 6:30 p.m.).18

16It is possible that demand level under heavy traffic and light traffic are different, and that this difference in
demand size impacts how drivers react to the entry of new drivers. For instance, drivers might scatter when
potential demand is high and herd when potential demand is low. To make sure that the heterogeneity in drivers’
reaction to new driver entry under different traffic conditions is not driven by the difference in demand size, we
conduct additional analyses. Our analyses show that drivers scatter due to the entry of new drivers regardless
of prevailing traffic conditions. Likewise, drivers’ scattering probability increases under light traffic, even after
controlling for demand. Moreover, the analyses in Section2.7.4indicate that although the magnitude of the new
driver entry effect on zone-changing behavior is correlated with demand, entry of new drivers always results in
scattering.
17This information is obtained from the traffic section of Google Maps. The traffic density is represented through
visual maps.
18During the morning rush, traffic density is higher in the arterial roads not in the city center. Since we restricted
our analysis to the city center, we only focused on evening rush.
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The first four columns in Table2.6show that drivers tend to scatter as a result of new driver

entry. Furthermore, the estimated magnitude of the new driver effect is smaller in the subsample

with heavy traffic conditions. Thus, our results are not driven by the shoving impact of heavy

traffic. However, one possible concern is that time periods with different traffic densities might

also differ in terms of demand level. The results presented in the first four columns in Table

2.6could be driven by prevailing demand characteristics. To eliminate this concern, we further

subsample our data set into two time periods with similar demand size (proxied by sales volume)

but different traffic densities. As observed in Figure2.7, the demand for service and the average

number of active drivers follow a similar pattern between 2 p.m. and 3 p.m. and between 6 p.m.

and 7 p.m. during the weekdays.19 Traffic densities, however, differ markedly in these two time

periods; the last four columns in Table2.6present results in line with the previous analysis. The

effect of traffic conditions on the zone-changing behavior of drivers is robust to demand levels.

These results provide strong support for Hypothesis 1B—i.e., that competition, and not traffic

conditions, causes the observed scattering behavior.

Next, we calculate the speed of drivers during a given hour.20 The average speed of the

driver serves as a proxy for traffic conditions; if the driver is traveling at a low speed, this is an

indication that traffic is heavy. Regardless of whether we control for traffic conditions, the main

results are still present and sizable. Hence, our results cannot be attributed to traffic conditions.

19The average number of active drivers includes drivers who logged into the application and changed zone at least
once in a given hour.
20We first calculate speed by using two consecutive observations from the same driver observed in the same zone.
To calculate the average speed for a given zone and hour, we take the average of these speed observations as
long as there are at least five speed observations. We create a median split based on average speed information to
categorize high and low speeds.
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Table 2.6. Effect of Traffic on Strategic Scattering

Light Traffic Heavy Traffic Light Traffic Heavy Traffic
10 am-12 pm& 4:30 pm-6:30 pm 2 pm-3 pm 6 pm-7 pm
2 pm-3:30pm

NewDrivers 0.0358*** 0.0329*** 0.0355*** 0.0322*** 0.0331*** 0.0290*** 0.0276*** 0.0259***
(43.01) (37.27) (41.13) (35.08) (30.86) (26.03) (26.47) (23.59)

SaleTime 0.0250*** 0.0240*** 0.0726*** 0.0622*** 0.0501*** 0.0439*** 0.0732*** 0.0620***
(9.15) (8.79) (19.01) (16.24) (8.14) (7.11) (17.78) (15.01)

SalesZone -0.0378*** -0.0293*** -0.0391*** -0.0280*** -0.0375*** -0.0235*** -0.0375*** -0.0239***
(-77.11) (-51.77) (-69.08) (-41.66) (-51.54) (-25.63) (-53.12) (-27.85)

GetIn -0.0223*** -0.0111* -0.0241*** -0.0185**
(-5.19) (-2.06) (-3.30) (-2.74)

GetOut 0.0223*** 0.0346*** 0.0204 0.0257*
(3.41) (3.98) (1.69) (2.33)

VacantIn -0.0221*** -0.0237*** -0.0227*** -0.0229***
(-44.70) (-41.66) (-33.88) (-35.42)

VacantOut 0.0358*** 0.0302*** 0.0302*** 0.0235***
(39.28) (32.15) (26.41) (20.89)

Observations 1776335 1776335 2245139 2245139 782413 782413 725271 725271
AIC 1817791.79 1813958.81 2206073.322201059.24 716322.798714599.774 705365.304 703794.818
BIC 1818374.12 1814590.7 2206704.532201740.95 716831.884715155.141 705871.053 704346.544
Log Likelihood -908848.9 -906928.4 -1102986.7-1100475.6 -358117.4 -357251.89 -352638.65 -351849.41
χ2 27566.065 31407.048 33652.904 38674.981 7193.63 8924.653 6306.017 7884.503

t statistics in parentheses

All models estimate a logit regression with row, column, and driver fixed effects.

Dependent variable isChangeZone.

Only weekdays are considered.

* p < 0.05, ** p < 0.01, *** p < 0.001

(a) Total hourly sales (b) Average number of active drivers

Figure 2.7. Total sales and total number of active drivers in each hour

2.7.4. Effect of Demand Characteristics

Another concern is that drivers’ zone changing behavior might be a result of demand dy-

namics or street hailing. Additionally, we might be attributing drivers’ zone changes to new
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driver entries even when the change of zones would have taken place in the absence of driver

entry. In this section, we address these concerns. First, we control for location and time-specific

characteristics that might shift demand for service. Second, we explore other potential explana-

tions of zone-changing behavior and address the issue of street hailing.

The potential demand for taxi service that originates from a zone depends on population

characteristics, time of day, weather conditions, and various zone-specific characteristics.Al-

lon et al.(2011) use U.S. Census data, andKabra et al.(2016a) employ data from INSEE, the

French national statistics bureau, to obtain population characteristics of the areas under consid-

eration. To the best of our knowledge, a data set containing population characteristics of the Sao

Paulo city center is not readily available. As a result, we are unable to control for population

characteristics. Nevertheless, we collect data on locations of transportation services, points of

interest, and hourly weather to account for potential demand shifters in our analysis.

Transportation options in a region might impact the demand for service and the scattering

behavior of taxi drivers. Sao Paulo’s broad public transportation system serves almost 14 mil-

lion inhabitants daily. The subway of Sao Paulo is composed of five commuter lines and serves

more than 5 million passengers during weekdays. In addition to the subway, tram, and railway

systems, the city public transportation system also includes 16,000 buses. Through the Google

Places API, we collect data on the locations of 44 subway, 21 train, and 3,187 bus stations in

the city center of Sao Paulo, as well as the locations of taxi stations.

Apart from transportation systems, public places such as restaurants, cinema and theaters,

schools and hospitals might impact the magnitude of demand in the zones in which they are

located. We collect coordinates of more than 18,000 points of interest in the city center of Sao

Paulo using the Google Places API. The points of interests (POI) we geocode are restaurants,
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hotels, nightclubs, cafes, shopping malls, hospitals, schools, cinema and theaters, libraries, and

museums. We believe that these POI data cover most of the demand generators in Sao Paulo’s

city center.21

Finally, weather conditions, such as rain or extreme temperatures, might impact demand

for taxi services. We collect hourly weather data for the city center of Sao Paulo, including

temperature, humidity, and weather conditions, such as rain, strong thunderstorms, mist, heavy

clouds, haze, and clear skies, from a weather website for the period of analysis.

We retest Hypothesis 1 after controlling for transportation, points of interest, and weather

data. Table2.7shows that Hypothesis 1B—i.e., that competition leads to scattering behavior—

is robust to the inclusion of demand shifters.

In addition to demand shifters, changes in demand level might impact how drivers react

to the entry of new drivers. Changes in potential demand could potentially induce drivers to

herd instead of scatter as a result new drivers entering their zone. So that we can show that

our results are robust to changes in demand size, we separately analyze two time periods with

different demand sizes but an approximately equal number of average active drivers.

Demand size and distribution at a given hour can impact the zone-changing behavior of

drivers in three different ways. First, fixing the number of drivers in a given zone, entry of a

new driver generates a lower marginal decrease in the probability of capturing a unit demand

when demand is low. Second, when demand is low, the search cost—i.e., the sum of fuel costs

and the opportunity cost of time— might well exceed the expected gain obtained by cruising.

Third, during low demand hours, especially during the night, demand might be concentrated in

21We searched for events, such as festivals and football games, which might impact demand. No such major event
took place in the city center of Sao Paulo during the time period of our analysis. There was a soccer game that
took place in the Arena Corinthians on September 3, but the stadium is located far from the city center.
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Table 2.7. Strategic Scattering

(1) (2) (3) (4) (5) (6) (7) (8)
NewDrivers 0.0286*** 0.0309*** 0.0284*** 0.0307*** 0.0233*** 0.0261*** 0.0237*** 0.0257***

(33.43) (32.71) (32.5) (31.75) (26.21) (26.77) (26.42) (26.32)

SaleTime 0.0355*** 0.0361*** 0.0369*** 0.0373*** 0.0427*** 0.0427*** 0.0422*** 0.0423***
(28.73) (29) (29.38) (29.46) (29.02) (28.85) (28.67) (28.54)

SalesZone -0.0307*** -0.0193*** -0.0309*** -0.0196*** -0.0107*** -0.00287*** -0.0107*** -0.00316***
(-59.59) (-33.41) (-58.65) (-33.10) (-14.16) (-3.65) (-14.26) (-4.00)

Weekend 0.241*** 0.181*** 0.249*** 0.188*** 0.235*** 0.183*** 0.233*** 0.184***
(36.38) (26.78) (36.64) (27.06) (26.9) (20.72) (26.69) (20.77)

GetIn -0.0262*** -0.0264*** -0.0239*** -0.0217***
(-5.38) (-5.34) (-4.82) (-4.37)

GetOut 0.0325*** 0.0337*** 0.0291*** 0.0301***
(4.33) (4.41) (3.8) (3.93)

VacantIn -0.0293*** -0.0293*** -0.0268*** -0.0262***
(-56.29) (-54.85) (-49.38) (-47.28)

VacantOut 0.0354*** 0.0355*** 0.0302*** 0.0297***
(36.01) (35.36) (29.86) (29.25)

Hourly Weather Data No No No No Yes Yes Yes Yes
PTS No No No No Yes Yes Yes Yes
PTS x Time-of-Day No No No No No No Yes Yes
POIs No No No No Yes Yes Yes Yes
POIs x Time-of-Day No No No No No No Yes Yes
Observations 1156044 1156044 1106963 1106963 1106963 1106963 1106963 1106963
AIC 1176400.74 1172531.43 1125296.891121609.76 1120702.91 1117799.62 1120065.52 1117364.81
BIC 1177202.09 1173380.62 1126095.341122455.88 1121930.38 1119074.75 1121936.51 1119283.47
Log Likelihood -588133.37 -586194.71 -562581.45-560733.88 -560248.46 -558792.81 -559875.76 -558521.41
χ2 13523.187 17400.499 12938.05816633.189 17604.034 20515.331 18349.42421058.136

A random 10% sample is taken to estimate the models.
PTS : Public transportation stops

All models estimate a logit regression with row, column, hour, and driver fixed effects.
For each point of interest and locations of transportation stations category we created quartile vectors. These quartile vectors were included in

the regressions to account for demand shifters. However, the magnitude of the coefficient of new driver entry does not change significantly
when we include the exact number of venues, instead of their quartiles, for each point-of-interest category. Moreover, in order to control for

the temporal effect POIs, we divided the day to four time-of-day periods: midnight (12am-6am), morning (6am-12pm), afternoon
(12pm-6pm), and evening (6pm-12am), and created interaction variables of quartiles of POIs with time-of-day periods. These quartile of POIs

and time-of-day interactions were included in the regressions (7) and (8) to account for temporal effects of demand shifters.

* p < 0.05, ** p < 0.01, *** p < 0.001

a few specific zones; thus, the probability of picking up a passenger outside those specific zones

by cruising is low. Consequently, during hours of low demand, we should observe that drivers

are less inclined to scatter as a response to a new driver’s entry.

On the other hand, taxis charge 30 percent more from 8 p.m. to 6 a.m. in Sao Paulo. Hence,

even if demand is low, the increase in expected revenues obtained by picking up an additional
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customer might exceed the cost of searching for a new customer during these periods. Thus,

even under conditions of low demand, we might observe increased scattering behavior due to

competition during the night shift. Our empirical analysis determines which of these effects

dominates.

As we observe in Figure2.7 (a), the period with the lowest demand for service is between

4 a.m. and 6 a.m. while the periods with the highest demand are 10 a.m. to 11 a.m., and 8 p.m.

to 10 p.m. In Brazil, taxis typically operate in two separate shifts of 8–12 hours, but we do not

know the exact time at which the shifts change. However, Figure2.7(b) shows that the average

number of active drivers decreases between 4 a.m. and 6 a.m., hits its lowest point at 6 a.m., and

increases gradually afterwards until 12 p.m. This pattern suggests that the shift change usually

occurs sometime between 4 a.m. and 6 a.m. Thus, during this period drivers could be changing

zones frequently due to the shift change, and not as a response to the entry of new drivers. To

minimize the probability that the observed zone changes are due to shift changes, we focus on

the time period from 2 a.m. to 3:30 a.m., where demand is low and shift changes are unlikely.

Moreover, the average number of active drivers between 2 a.m. and 3:30 a.m. is close to the

average number of active drivers between 9 a.m. and 10 a.m., but the total demand between 9

a.m. and 10 a.m. is almost double the total demand between 2 a.m. and 3:30 a.m. The results

in Table2.8show that Hypothesis 1B—i.e., that entry of new drivers leads to scattering—finds

empirical support regardless of the demand size. However, there is a significant difference in

the magnitude of the new driver entry effect between low-demand and high-demand periods.

During high-demand periods, drivers are much more likely to scatter as a result of competition.

These results suggest that during periods with low demand, incurred search costs dominate the

expected additional revenue that can be obtained by cruising.
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Table 2.8. Effect of Demand and Experience on Strategic Scattering

Low Demand High Demand Low Experience High Experience
(2 am-3.30 am) (9 am-10am)

NewDrivers 0.0133*** 0.0184*** 0.0556*** 0.0523*** 0.0180*** 0.0247*** 0.0259*** 0.0296***
(5.37) (7.2) (14.89) (13.9) (27.11) (33.74) (27.98) (28.74)

SaleTime 0.0330*** 0.0406*** 0.114*** 0.0759* 0.00600*** 0.00951*** 0.0292*** 0.0323***
(7.75) (9.4) (3.5) (2.32) (6.18) (9.71) (22.16) (24.26)

SalesZone 0.00308 0.0110*** -0.0482*** -0.0342*** -0.0272*** -0.0124*** -0.0310*** -0.0196***
(1.84) (6.3) (-22.46) (-14.87) (-70.27) (-28.21) (-54.81) (-31.11)

GetIn -0.0218 -0.0313* -0.0299*** -0.0144**
(-1.74) (-2.02) (-8.00) (-2.72)

GetOut 0.0041 0.0646* 0.0163** 0.0345***
(0.24) (2.28) (2.82) (4.19)

VacantIn -0.0489*** -0.0479*** -0.0339*** -0.0304***
(-25.54) (-20.66) (-84.42) (-54.44)

VacantOut 0.0203*** 0.0469*** 0.0297*** 0.0354***
(7.64) (11.8) (38.95) (33.2)

Observations 261202 261202 284698 284698 1876984 1876984 971159 971159
AIC 247022.358 246348.608 209700.854209144.526 2055584.462047793.54 996365.075 992859.03
BIC 247640.267 247008.41 210323.846209809.754 2056405.842048664.7 997142.967 993684.067
Log Likelihood -123452.18 -123111.3 -104791.43 -104509.26 -1027726.2-1023826.8 -498116.54 -496359.52
χ2 4250.805 4932.555 5867.803 6432.132 14004.266 21803.19 11068.91 14582.955

t statistics in parentheses

All models estimate a logit regression with row, column, hour, and driver fixed effects.

Only weekdays are considered.

Dependent variable isChangeZone.

A random 20% sample is taken to evaluate the high/low experience regressions.

* p < 0.05, ** p < 0.01, *** p < 0.001

There might be three other potential reasons why a driver changes zone irrespective of

whether a new driver enters the zone. First, the driver may get a ride request through the plat-

form from another zone, thereby inducing her to change zone. As we only consider instances

where the driver was vacant after the observation time, this first reason is not a matter of concern

for our analysis. Second, the driver may change her zone due to expected higher sales oppor-

tunities in a surrounding zone. To deal with this concern, we estimate a spatial autoregressive
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(SAR) Model, where we considerSalesZoneandVacantvalues of surrounding zones. Reas-

suringly, even after controlling for these factors, we estimate a positive and significant effect of

entry of new drivers on zone-changing behavior.22

Third, a driver may be carrying a passenger whom she found through another platform

(or hailing from the street), but did not log out from our platform. Thus, we would observe this

driver as vacant in our data set even if she is actually carrying a passenger. To show that our main

results are robust to this last concern, we conduct two separate analyses. In the first analysis,

we analyze the subsample composed by drivers with high utilization rates. High utilization

rates in the 99Taxis platform indicate that the driver is less likely to use other platforms or pick

up hailing passengers from the street. When we estimate the regression for this subsample,

the magnitude of the new driver entry effect on zone-changing behavior increases. This result,

which is in line with the results in Section2.6, supports Hypothesis 2A— i.e., that drivers who

respond more strongly to the entry of new drivers by scattering are the ones who have higher

utilization.23

In the second analysis, we analyze the subsample composed by observations where a driver

waited for at least five minutes in the same zone. Waiting in the same zone for five minutes

minimizes concerns that the driver might be carrying a passenger from other platforms, or

that the driver entered into this zone just to drop off a passenger. Although the effect of new

driver entry upon scattering decreases in this subsample, it remains positive and significant.24

22SAR model analysis is provided in the Appendix. See TableB.2.
23We estimate theNewDriverseffect as 0.0276***, 0.0279***, 0.0345***, 0.0387***, 0.0383*** in the same
order of the models used for Table2.3.
24We estimate theNewDriverseffect as 0.0192***, 0.0192***, 0.0217***, 0.0143***, 0.0133*** by using the
same models noted in Table2.3.
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Therefore, the entry of new drivers has a sizable impact upon the zone-changing behavior of

drivers, even after accounting for street hailing.

2.7.5. Effect of Drivers’ Experience

Camerer et al.(1997) show that taxi drivers become more sophisticated in adjusting their

supply as they gain experience. On the other hand,Cramer and Krueger(2016) demonstrate that

services such as Uber enable drivers to accommodate their supply in a sophisticated way even if

they are not experienced. The experience effect could potentially impact the scattering behavior

of drivers in our setting as well. Experienced drivers might be more knowledgeable about

demand size and its distribution throughout the city during different time periods. They might

position themselves and adjust their scattering behavior according to this extra information.

Camerer et al.(1997) use the cab-driver license number, which is assigned in chronological

order, to classify drivers as experienced and inexperienced. We don’t have any driver-specific

information except GPS coordinates. In an ideal experiment, we would have information about

the experience level of drivers and be able to assign experienced and inexperienced drivers

to situations with same prevailing competition levels to test for differences in their scattering

behavior. However, we do not know the drivers’ experience levels. The only information we

have is total active time, vacant time, and busy time pertaining to individual drivers in the

system during the period under consideration. Thus, we exploit differences in total active time

as a proxy of the drivers’ experience with the system, and observe subsequent differences in the

scattering behavior of drivers facing competition. We use a median split to classify drivers as

high experience and low experience, and run independent analyses on these two subsamples.

Table2.8shows that both driver groups react to the entry of new drivers by scattering which is
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in line with Hypothesis 1B. However, drivers who are logged into the system for longer hours

react to competition more strategically relative to users with less experience with the system.

This analysis suggests that system usage provides drivers with a strategic leverage.

2.8. Operational Value of Visibility of the Competition

In this section, we use agent-based simulation models with multiple driver types and zones

to check how agent utilization and the system’s efficiency are affected by the scattering behavior

we documented above. To this end, we design two simulation experiments. First, we alter the

sensitivity of strategic (scattering) agents to the competition level. Second, we change the

proportion of strategic (scattering) agents in the population.

We first start by providing some fundamentals of the analysis. We assume that the arrival of

customers follows a Poisson process with a rate of 50 potential customers per minute. Arriving

customers are spread uniformly over the zones. Whenever there is a vacant taxi in the same

zone, demand occurs. Note that if there are multiple vacant drivers in the same zone as the

potential customer, then each driver is equally likely to serve this customer. We also assume

that a customer may abandon at the beginning of each time period with probability of 0.10;

hence, customers will wait at most 10 minutes on average to receive a service. Passengers are

equally likely to pick any destination zone. Travel time is calculated by the distance from the

center of the originating zone to the center of the destination.

In our analysis, we assume that some of the drivers are more strategic in terms of responding

to the arrival of new competitors in their zones. Thosescattering agentschange their zone with

the probability ofp × k + e, wherep is the effect of each new competitor,k is the number of
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Figure 2.8. Utilization comparison of strategic and regular drivers

drivers newly entering the zone, ande is the probability of unobservable effects. Other agents

change their zones only due to some unobservable factors with probability ofe, and we call

themregular agents. We start with200 scattering and200 regular agents. We assume that all

of these agents stay logged into the platform during the whole analysis. We also assume that

if an agent decides to change her zone, then she moves to a random neighboring zone without

checking any information available to her. We calculate the average utilization of each type of

agents and average waiting time of customers as well as the number abandoned customers.

We initially have50 customers. Initial locations of both agents and customers are chosen

randomly. We run100 simulations where each simulation has360 minutes to run. We assume

the probability of moving due to unobservable effects is 0.10.

First, we compare the utilization of each type of agent under this system. We gradually

increase theNewDrivereffect. We observe that utilization of scattering agents is higher than

regular agents, up to2 percent (see Figure2.8). Then we compute the average waiting time and

number of abandoned customers in this system. We observe that scattering brings a significant
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(a) Waiting-time comparison (b) Customer abandonment comparison

Figure 2.9. Efficiency of the system as NewDriver effect increases

reduction in both measures (see Figure2.9). Average waiting-time of a passenger decreases up

to 20.6 percent and the number of abandoned customers decreases up to17.9 percent when we

increase theNewDrivereffect from0 to 0.2. Therefore, the platform significantly benefits from

the scattering behavior of drivers.

Second, we analyze how the composition of agents impacts the system utilization. As in

the first part of our simulation analysis, customer arrivals follow a Poisson process with a rate

50 potential customers per minute, customers might abandon each minute with probability 0.1.

Moreover, regular agents change zones with probabilitye due to unobservable effects, and the

scattering agents change their zone with probabilityp × k + e wherep is the effect of the new

competitor andk is the number of new agents in the zone. We start with400 agents and we

assume thats percent of these agents are scattering agents and the remaining(1-s)percent are

regular agents.
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Initially, 50 customers are waiting for service and they spread uniformly over the zones. We

run 100 simulations for each setting and each simulation runs for 360 minutes. We assume the

probability of moving due to an unobservable event,e, is 0.1 and each new competitor increases

the probability of zone changing,p, of scattering agents 10 percent. In order to understand

how the proportion of scattering agents in the population impacts the system efficiency and

utilization of agents, we alter the percentage of scattering agents in the population,s.

First, we calculate the utilization difference between the scattering and regular agents, de-

pending on the percentage of scattering agents in the population. Figure2.10shows the scat-

tering agents always have higher utilization than the regular agents regardless of the percentage

of scattering agents in the population. However, we can observe that the utilization of regular

agents increases gradually as the percentage of scattering agents in the population increases.

Consequently, the presence of scattering agents helps regular agents as well, creating a positive

externality. Moreover, an increase in the percentage of scattering agents in the population leads

to a significant reduction in average waiting time and customer abandonments. If we move the

system from a composition where there are no scattering agents to a setting where 50 percent

of the agents are scattering agents, we observe decreases of 6.3 percent and 6.09 percent in

the average waiting time and customer abandonments respectively. Moreover, the decreases in

average waiting time go up to 12.1 percent and the customer abandonments go down up to 11

percent as we increase the percentage of scattering agents in the population from 0 percent to

90 percent (see Figure2.11).
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Figure 2.10. Utilization comparison of scattering and regular drivers

(a) Waiting-time comparison (b) Abandoned customer comparison

Figure 2.11. Efficiency of the system as percentage of scattering agent increases

2.9. Conclusions

In this study, we explore how agents react to real-time information by using data from an

e-hailing taxi platform. We document that agents scatter with respect to the locations of com-

petitors; more specifically, an agent tends to move to another service zone when a competitor
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enters her service zone. Therefore, such new agent arrivals are not interpreted as a signal of

high sales opportunity in the zone; instead, they are considered a threat to sales.

Agents are heterogeneous in their behavior against the arrival of a competitor such that some

agents change their service zone more frequently than others. We show that drivers who have a

higher probability of scattering achieve higher utilization. Therefore, monitoring and reacting to

the information pays off from the perspectives of both the driver and the platform. Similarly, we

observe that agents achieve a higher utilization if they have a better understanding of choosing

less competitive zones.

We also address the more general question of how these decisions affect the whole system.

We find that the system becomes more efficient as we have more agents who engage in the

following two behaviors: scattering against competitors and choosing less competitive zones.

More specifically, we observe that the average utilization rate increases and both the abandon-

ment rate and waiting time of customers decrease significantly as agents respond to competition

by scattering. Moreover, the presence of scattering agents also helps the non-scattering agents,

who now see less competition.

There are several ways this work can be extended. One could consider the behavior of agents

as a response to real-time information about not only their competitors but also decisions of the

service provider. Such information about the service provider brings more complexity because

an agent needs to consider the reaction of her competitors to the service-providers decision as

well as her own decision. For example, understanding how agents react to the surge pricing of

e-hailing taxi platforms can be fruitful because it is not clear whether the agents would find it

worthwhile to go to a zone with a higher than usual price when other competitors are already
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on their way to that zone and when there is a strong chance this high price will drop due to an

increase in supply.
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CHAPTER 3

Impacts of Charging Carry-on Bags in Aviation Industry

3.1. Introduction

Current revenue management literature mostly focuses on seat allocation, pricing or net-

work problems. Revenue management is a field that originates in the Airline Deregulation Act

of 1978 (Talluri and van Ryzin(04 a)). There have been many studies since 1978 on different

aspects of revenue management. Detailed overviews can be found inTalluri and van Ryzin

(04 a) andChiang et al.(2007). An important building block model for more complicated rev-

enue management is single resource capacity control. It is common in airline companies to

sell identical seats at different fares. The major issue is the decision process of accepting or

rejecting a booking request of a certain class for a given resource. The static model in which

different fare classes arrive at different, non-overlapping time stages ordered in an increasing

fare class prices, is first considered byLittlewood(1972). The dynamic programming model of

this problem is analyzed byLee and Hersh(1993), and the structure of the optimality policy is

investigated byLautenbacher and Stidham(1999). For further research on single resource ca-

pacity control, seeBrumelle and McGill(1993), Talluri and van Ryzin(04 b), Lan et al.(2008),

Birbil et al. (2009), Özkan et al.(2013). The main focus of the literature is again the allocation

problem. Since this a multi-dimensional problem, most studies focus on approximations to this

problem. For example,Kunnumkal and Topalŏglu (2010) provides an approximation method

for network revenue management problem with customer choice behavior by solving each flight



100

leg as single-leg problem.van Ryzin and Vulcano(2008) also study an approximation method

for network revenue management under customer choice behavior by using a simulation-based

method. Although current studies provide great insights and benefits to air-carriers, there are

other factors affecting the revenue of the firm other than the optimal allocation and pricing

decision.

Delays due to the boarding process play an important role on the utilization rate of the

airplanes. Spirit Airlines has been applying fee on checked bag since 2007 and all US air

carriers (except Southwest) charge checked bags as of June 2017 (FareCompare(2017)). This

policy has two benefits. First, this is a new source of revenue for air carriers. Most carriers

charge $25 for the first checked bag with increasing amount for the second and third ones as

of June 2014. Second, this policy discourages passengers to carry more than they need which

leads to a fuel saving and also decreases baggage handling problems (which is highly possible

at connecting flights). However, there is a drawback of this second benefit. Most of these

carriers do not charge for carry-on items. Carry-on items usually include one personal item and

a small bag that can fit into to bins which are located above seats. Since there is a fee on the

checked bag, passengers use their free right to have one small carry-on bag which is a potential

source for higher departure delays. In 2010, Spirit Airlines started to charge carry-on as well

(FareCompare(2017)). The company charges more for a carry-on than checked bag in order

to discourage passengers to take their bag with them into the plane. Moreover, the carry-on

fee is cheaper online, and increases a lot at the gate. Table 1 provides the current bag fees of

Spirit Airlines. With this new change to its current bag-fee policy, Spirit airlines has $536 M

revenue from non-ticket revenue which corresponds to 40% of its total revenue and 41% of this

non-ticket revenue comes from bag fees (Wall Street Journal(2013)). These revenues from bags



101

Booking Check-in Airport Gate
Carry-OnBag $26* $35 $36* $45 $50 $100

CheckedBag
First one $21* $30 $31* $40 $45 $100

Secondone $31* $40 $41* $50 $55 $100
Third ormore $76* $85 $86* $95 $100 $100

Table 3.1. Bag fee of Spirit Airlines as of February 2015 (* is the fee for $9 Fare Club,
special program).

are increasing in each year. For example, another low-cost airline company - Frontier Airlines

- made $220 M revenue from bag fees in 2015 which was $69.2 M in 2013. More importantly,

this corresponds to 13% of the overall revenue for these low-cost carriers and the baggage-fee

revenues were 0.2 to 4% of the overall revenue for the other major airlines (The Denver Post

(2016)).

In addition to its direct effect on the revenue due to the fees, the question still remains

unanswered about the operational consequences of such policy. Spirit Airlines has declared that

it can board an A320 in 20 minutes which is 10 minutes less than the boarding time of large-

scale carriers such as American and US Airways (Forbes(2013)). Average aircraft list price of

an Airbus A320 is $99 M in 2017 (Airbus(2017)), therefore; carriers want to use their airplanes

as much as possible and such reduction in boarding time increases the chance of high utilization

of the plane.

As of June 2017, only two more US carriers, Allegiant Air and Frontier Airlines, use similar

policies on carry-on bag as Spirit Airlines applies (TripAdvisor (2017)). On August 6th 2013,

Frontier Airlines first started to charge carry-on customers that buy from 3rd party suppliers

such as Orbitz and Skyscanner. On April 28th 2014, Frontier Airlines started to charge carry-on
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baggage not only the customers buying from 3rd party suppliers but also customers buying from

Frontier Airlines directly.

In this study, we aim to understand how the new policy on carry-on baggage affects the

carrier delays. By using available data of U.S. Department of Transportation’s (DOT) Bureau

of Transportation Statistics (BTS), we analyze the effects of this new policy on Frontier’s de-

lay times after the first attempt and the last attempt. We believe that pricing policy is a great

opportunity for firms not only to increase their revenue but also to decrease their delay times.

Moreover, this pricing policy simplifies the boarding process because carrier categorizes pas-

sengers into two groups, passengers with carry-on and passengers without carry-on (except

passengers with disabilities, special program passengers etc.).

There is a significant number of studies on evaluating the performance of different the board-

ing processes, seeNyquist and McFadden(2008) andVan Landeghem and Beuselinck(2002)

for details. For example,Van Landeghem and Beuselinck(2002) checks the boarding time

performance of seven different boarding procedures by using simulation. They find that any

procedure should separate consecutive passengers far enough to reduce a potential interference.

Even though our study does not focus on the boarding process, the new fee on carry-on bag

changes the dynamics of such processes. Therefore, we believe that our study sheds a light on

a need to explore the effect of carry-on fee on boarding process.

Our study is not the first that uses data from BTS to analyze the operational efficiencies.

For example,Rupp and Sayanak(2008) show that low-cost carries have slightly lower arrival

delays. Another stream of research focuses on the relation between financial performance and

operational efficiency (SeeRamdas et al.(2013) andPhillips and Sertsios(2013)). Consumer
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behavior is also analyzed by using this data set. For example,Li et al. (2014) consider a struc-

tural estimation method where they analyze the effects of strategic customers on financial per-

formance.

To our knowledge,Nicolae et al.(2016) is the only paper that investigates effect of baggage-

fee on delays. In their study, they compare policies of charging check-in bags. They find that

charging only one check-in bag provides significant relative improvement in air-carrier’s on-

time departure performance when compared to the carriers that do not charge customers for

their check-in bags. InNicolae et al.(2016), the departure delay is recalculated due to the

spill-over effect created by previous flights where they implement a technique used inArıkan

et al. (2013). In our study, we investigate another policy which has potentially more direct

implications on departure delay. We also use the air-carrier delay which is part of arrival delay

and reported separately than the previous delays (previous spill over delays are also reported

separately). Hence, we use a different performance metric to analyze another policy.

We find that implementation of carry-on bag fees was associated with delay. We see a sig-

nificant decrease in the delay when the firm charged a carry-on bag fee on every purchasing

channels. In the rest of this study, our goal is to provide several robustness tests where we con-

sider different measures of delay and other important factors affecting the dynamics of airline

industry such as weather, loading factor for each flight etc.

The remainder of this study is organized as follows. In Section 2, we explain the data,

variables and descriptive statistics. In Section 3, we discuss empirical specifications and initial

results. In Section 4, we discuss the ideal research setting and need of additional data for

robustness purposes. We have our concluding remarks in Section 5.



104

3.2. Data Description and Results

We use the data set of On-Time Performance of major air-carriers provided by BTS. Data

set contains detailed arrival and departure information of domestic flights. More specifically,

we have the origin and destination airports, scheduled and actual times for both arrival and de-

parture, flight numbers, flight date (including which day of the week), departure delay amount,

arrival delay amount which is separated into 5 components: Air Carrier delay (such as delay

due to boarding, aircraft cleaning, baggage loading etc.), aircraft arrival (a previous flight with

same aircraft arrived late, causing the present flight to depart late), National Aviation System

(such as airport operations, non-extreme weather conditions, air traffic control, heavy traffic vol-

ume), weather delay (extreme weather conditions), and security (such as re-boarding of aircraft

because of security breach).

We check the effects of the policy change by only using this available data. Please note

that the new policy starts at On April 28th 2014, and we consider the data from August 2013

until February 2015. Therefore, we have 9 months for each of before and after policy periods.

In total, we have 9,059,661 flights to investigate. We usei to denote the flight number. As a

dependent variable we use air carrier delay which is denoted byCarrierDelayi for flight i.

Table 3.2. Before and after policy comparisons

All Flights Flights with a delay> 0
Before Policy After Policy Change Before Policy After Policy Change

Frontier (Averagedelay) 2.751 3.321 ↑ 20.7% 18.922 26.540 ↑ 40.3%
Others (Averagedelay) 3.104 3.771 ↑ 21.5% 30.706 32.448 ↑ 5.7

Frontier (FlightNumbers) 31,590 97,544 4, 593 (14.5%) 12, 206 (12.5%)
Others (FlightNumbers) 2,471,822 6,458,705 249, 890 (10.1%) 750, 637 (11.6%)
Percentage of flights with a delay among all flights.
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Average delays for both Frontier airlines and other air-carriers are reported in Table (3.2)

where we take the average of delay among all flights or only among the flights with a delay

strictly greater than0. Frontier airlines faces with an overall increases in delay; however, it is

less than the industry average. On the other hand, the average delay among the flights with a

delay strictly greater than 0 is much higher for Frontier than it is for other airlines. Overall, all

these observations suggest that we need to take additional variables into account because delays

increase across all industry which suggests considering factors related to seasonality.

In the same table, we also report the number of flights operated by Frontier v.s. other airlines

where we calculate the percentage of flights with a delay. We observe that 14.5% of flights

operated by Frontier have a delay before the policy change but this percentage goes down to

12.5% after the policy change. For the other airlines, this percentage increases to 11.6% from

10.1%. Therefore, Frontier Airlines improves the delay performance based on this measure

whereas the other airlines faces with an increase. Overall, this suggest investigating the reason

of changes and control other factors.

We defineFrontieri as the dummy variable whereFrontieri = 1 if flight i is operated by

Frontier, otherwiseFrontieri = 0 to consider the fixed effect of Frontier Airlines. Similarly, we

defineAfterPolicyi is the dummy variable whereAfterPolicyi = 1 if flight i is after the pol-

icy change, andAfterPolicyi = 0 otherwise. Variable of interest isFrontieri×AfterPolicyi

to understand the effect of policy change on air-carrier delay. To consider, air-carrier specific

factors we defineAirCarrier(i,j) to be1 if the flight i is operated by air-carrierj, and0 other-

wise. There are 17 air-carriers in our data set during the observation period.

In addition to these variables, we believe that airport related factors should be taken into

account. Therefore, we also consider two variables for congestion. One of them measures the
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Table 3.3. Definition of Variables

Variable Description

CarrierDelayi Amount of delay caused by the carrier that operates flighti (in minutes).
Frontieri Indicator that shows if flighti is operated by Frontier Airlines.
AfterPolicyi Indicator that shows if flighti is operated after the policy change.
LowCosti Indicator that shows if flighti is operated by a low-cost air-carrier.
Weekendi Indicator that shows if flighti is operated on a weekend.
OverallCongestioni Number of flights in the same airport at most 30 minutes before/after.
CongestionCarrieri Number of flights operated by the same air-carrier at most 30 minutes before/after.
AirCarrier(i,j) Indicator that shows if flighti is operated by air-carrierj.
Month(i,m) Indicator that shows if flighti is occurred in monthm.

congestion regarding to the whole airport, and the other one is the congestion regarding to the

air-carrier. Basically,CongestionCarrieri is the number of flights operated by the same air-

carrier that also handles flighti at the same (departure) airport where each of these flights are at

most 30 minutes before or 15 minutes after flighti. Similarly, we defineOverallCongestioni

where we consider all flights (independent of the carrier of flighti) at the same airport of flight

i where each flight is at most 30 minutes before or 15 minutes after flighti. We also consider

the distance of the flight by using 6 categorical variables which is defined for each 250 miles.

For example, if a flight is from distance group two, then the distance between the origin and

destination is between 250 miles and 500 miles. We denote this variable byDistanceGroupi.

Note that there is a segmentation in terms of the operating cost of firms: low cost or high

cost carriers. Air-carriers which define themselves as low cost air-carriers are the ones with the

AirlineID of ”19393”,”20409”,”20436” (Frontier), ”20437”, or ”21171”. Other carriers declare

themselves as high cost carriers. Therefore, we defineLowCosti to be1 if flight i is operated

by one of these low-cost carriers , and0 otherwise. We also control the weekend effect, i.e.,

Weekendi = 1 if flight i is operated on a weekend, and0 otherwise. To control other time

effects, we defineMonth(i,m) is 1 if the ith flight has been operated in monthm, otherwise
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it is 0. We also consider the effect of days by definingWeekofDay(i,d). For example, if

WeekofDay(i,2) = 1, then the flighti is operated on a Tuesday but ifWeekofDay(i,5) = 1,

then the flighti is operated on a Friday. We summarize our variables in Table3.3.

Table 3.4. Statistical Summary Airline Carrier Delay Data

Mean SD Min Max
CarrierDelayi 3.581 21.054 0 2,402
Frontieri .0143 .119 0 1
Frontier× AfterPolicyi .011 .103 0 1
AfterPolicyi .724 .447 0 1
CongestionCarrieri 6.610 8.174 1 67
OverallCongestioni 18.135 16.404 1 96
LowCosti .279 .449 0 1
Weekendi .261 .439 0 1
Observations 9,059,661

In Table3.4, we provide summary statistics including mean, standard deviation, minimum

and maximum value of each driver-level variable. Among 9,059,661 flights, the average delay

is 3.581 minutes and the percentage of Frontier flights is 1.43%. On average, there are 18.135

flights at most 30 minutes before and 15 minutes after each flight and 6.610 of which is operated

by the same airline. We also provide the correlation between the variables in Table3.5. We

Table 3.5. Correlation between the variables.

(1) (2) (3) (4) (5) (6) (7) (8)
1. CarrierDelay 1
2. Frontier -0.0023 1
3. Frontier x AfterPolicy -0.0013 0.8676 1
4. AfterPolicy 0.0141 0.0085 0.0645 1
5. CongestionCarrier -0.0046 -0.0464 -0.0429 0.0050 1
6. OverallCongestion -0.0035 0.0138 0.0068 -0.0396 0.7300 1
7. LowCost -0.0025 0.1933 0.1677 0.0213 -0.1292 -0.1746 1
8. Weekend 0.0004 -0.0001 0.0000 0.0024 -0.0207 -0.0356 -0.00071



108

observe that the correlation betweenCarrierDelay andFrontier× AfterPolicy is small but

negative.

By using these variables, we have the following model

AirCarrierDelayi = β0 + β1Frontieri + β2AfterPolicyi + β3 (Frontieri × AfterPolicyi)

(3.1)

+β4LowCosti + β5Weekendi + β6OverallCongestioni + β7CongestionCarrieri

+
∑12

m=1
θmMonth(i,m) +

∑16

j=1
γjAirCarrier(i,j) +

∑6

j=1
ζjDistanceGroup(i,j)(3.2)

+
∑7

j=1
νjWeekofDay(i,j) + εi

We consider variations of this model and provide our results in Table3.6. Our variable of

interest isFrontieri × AfterPolicy. Under all of the models, we observe that the coefficient

for this variable is negative and significant. Therefore, the policy change caused a significant

decrease in delays for Frontier airlines. For robustness purposes, the ideal research setting

should consider additional variables. Even thoughCarrierDelay is separated from weather

related delay, it is important to control the weather forecast during the observation period. We

also need to consider the effect of the airplane utilization for each flight. Unfortunately, air-

carriers are not required to report the seat occupancy. We can only gather the information

of airplane capacity by using the tail number of each flight (which gives us the model of the

airplane). However, this is not sufficient to control the number of tickets sold which may both

be correlated with theCarrierDelay and Frontier.
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Table 3.6. Carry-on Policy Effect on Carrier Delay

(1) (2) (3) (4) (5) (6)
Frontier -0.269∗ -0.635∗∗∗ -0.635∗∗∗ -0.857∗∗∗ 0.350 3.181∗∗

(-2.25) (-5.23) (-5.23) (-7.07) (0.59) (3.29)

Frontier × AfterPolicy -0.346∗ -0.438∗∗ -0.438∗∗ -0.510∗∗∗ -0.820∗∗∗ -0.498∗∗∗

(-2.53) (-3.20) (-3.20) (-3.73) (-5.91) (-3.64)

AfterPolicy 1.032∗∗∗ 1.002∗∗∗ 1.002∗∗∗ 0.776∗∗∗ 0.780∗∗∗ 0.778∗∗∗

(22.83) (22.17) (22.17) (17.16) (17.22) (17.19)

LowCost 1.832∗∗∗ 2.219∗∗∗ 1.414 0.896
(10.82) (13.10) (0.00) (1.04)

Weekend -0.199∗∗∗ -0.261∗∗∗ -0.265∗∗∗ -0.260∗∗∗

(-7.66) (-10.05) (-10.22) (-10.04)

OverallCongestion -0.0743∗∗∗ -0.0499∗∗∗ -0.0738∗∗∗

(-66.83) (-38.35) (-66.15)

CongestionCarrier -0.0586∗∗∗ -0.163∗∗∗ -0.0608∗∗∗

(-38.09) (-60.73) (-39.24)

Constant 19.49∗∗∗ 21.01∗∗∗ 19.17∗∗∗ 17.80∗∗∗ 24.23 19.80∗∗∗

(144.32) (50.69) (42.95) (39.88) (0.01) (20.69)
Observations 9,059,661 9,059,661 9,059,661 9,059,661 9,059,661 9,059,661
AIC 80,811,627.9 80,795,748.1 80,795,748.1 80,784,402.7 80,761,776.6 80,780,167.3
BIC 80,812,553.2 80,801,453.9 80,801,453.9 80,790,136.6 80,784,403.9 80,787,625.6
LogLikelihood -40,405,747.9 -40,397,467.0 -40,397,467.0 -40,391,792.3 -40,379,274.3 -40,389,551.7
chi2

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01,∗∗∗p < 0.001
All models have airline, day and hour fixed effects.
Models 2, 3, 4, 5 and 6 have origin and distance-group fixed effects.
Models 5 has airline and origin interaction fixed effects.
Models 6 has airline and distance-group interaction fixed effects.

3.3. Concluding Remarks

Charging for carry-on bags is a new policy that has been adopted by a couple of low-cost

air-carriers. It is an immediate revenue source for firms but it is not clear whether firms benefit

or are hurt by this policy operationally. In this paper, we ask how this policy change affect

the delay performance of firms. On one hand, it is highly likely to observe a decrease in the
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boarding time, thereby, a decrease in the overall delay. On the other hand, passengers will

prefer to use checked bags which means an increase in the handling and thereby, an increase in

the overall delay. We show that the new policy caused a decrease in delay times significantly.

To understand how robust our result, we also propose what additional measures we need to

consider.
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APPENDIX A

Proofs for Chapter 1

A.1. Proofs of Lemmas

Proof of Lemma 1: The customer with valuatioñv prefers to join classi over classj, meaning

that

(1 − αWi) ṽ − pi ≥ (1 − αWj) ṽ − pj.

The customer with valuation̂v prefers to join classj over classi, meaning that

(1 − αWj) v̂ − pj ≥ (1 − αWi) v̂ − pi.

Adding up these two inequalities gives

(ṽ − v̂)α(Wj − Wi) ≥ 0.

SineWi > Wj, we havẽv ≤ v̂ concluding that the customers who choose the shorter waiting

timeWj have higher valuation. �

Proof of Lemma 2: Part 1 of the lemma follows from Theorem 2 ofLariviere (2006). Parts

2 and 3 follow from Proposition 5.1 inZiya et al.(2004). Part 4 follows noting thatε (λ) =

Λ
λ
F̄−1 (λ/Λ) f

(
F̄−1 (λ/Λ)

)
and substitutinḡF (v (λ)) for λ/Λ. �
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Proof of Lemma 3: Recallthatλi (v) = ΛF̄ (vi) . In what follows, we fixv and suppress the

dependenceof λi onv in the notation. Let̃CS(x) =CS
(
F̄−1(x/Λ)

)
and notice that

(A.1) C̃S
′
(x) =

1

Λh
(
F̄−1(x/Λ)

) .

C̃S(x) is then increasing and concave in its argument [convex] ifh (v) is decreasing [increas-

ing]. If h (v) is constant,̃CS(x) is linear. In turn, sincēλi is decreasing ini, C̃S(λ̄i) is decreas-

ing and convex [concave] ifF is DFR [IFR]. The result then follows from noting thatcCS
i can

be written as

cCS
i =

C̃S(λi) − C̃S(λi+1)

λi − λi+1

.

By the definition of convexity/concavitycCS
i is then increasing ini if F is DFR and decreasing

if F is IFR. It is constant if the hazard rate is constant. �

Proof of Lemma 5: The expressions for̄λn∗
1,S andλ̄n∗

1,R, follow from Theorems4 and5 stated

further below.

Here we only need to prove the comparison. The social has a strictly larger coverage (for

all sufficiently largen) if V (v̄)/|V ′(v̄)| < ρ(v̄)/|ρ′(v̄)|. Note that, sinceF is IGFR,ρ′(v̄) < 0,

we also haveV ′(v̄) = −v̄f(v̄) < 0. Hence, it remains to show that

(A.2) V (v̄)/V ′(v̄) > ρ(v̄)/ρ′(v̄).

Because we assume thatF has a strictly positive density there exits, for any valuationv, a

uniqueλ such thatλ = ΛF̄ (v) or v(λ) = F̄−1(λ/Λ). Let V̂ (λ) = V (v(λ)) andρ̃(λ) = ρ(v(λ)).
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Then,V̂ ′(λ)) = V ′(v(λ))v′(λ). Sincev′(λ) ≤ 0, (A.2) will be established if we show that

(A.3)
V̂ ′ (λ)

V̂ (λ)
>

ρ̃′ (λ)

ρ̃ (λ)
.

Notice, to that end, that

Ṽ ′(λ)

−Ṽ ′′(λ)λ
= Λ

F̄−1
(

λ
Λ

)
f
(
F̄−1

(
λ
Λ

))

λ
= GFR(v(λ)).

SinceF is IGFR andv′(λ) ≤ 0 we have that Ṽ ′(λ)

−Ṽ ′′(λ)λ
is decreasing inλ and the reciprocal

−Ṽ ′′(λ)λ

Ṽ ′(λ)
is increasing inλ. Notice thatṼ ′(λ) + Ṽ ′′(λ)λ = ρ̃′(λ). Thus, we have that1 +

Ṽ ′′(λ)λ

Ṽ ′(λ)
= ρ̃′(λ)

Ṽ ′(λ)
decreasing inλ so that, fixingλ,

ρ̃′(λ̃)
Ṽ ′(λ̃)

> ρ̃′(λ)

Ṽ ′(λ)
for any λ̃ ≤ λ. Hence we have

ρ̃′(λ̃)Ṽ ′(λ) > ρ̃′(λ)Ṽ ′(λ̃) and, consequently,

Ṽ ′(λ)ρ(λ) =

∫ λ

0

Ṽ ′(λ)ρ̃′(λ̃)dλ̃ >

∫ λ

0

ρ̃′(λ)Ṽ ′(λ̃)dλ̃ = ρ̃′(λ)Ṽ (λ)

which gives (A.3). All inequalities are replaced with equalities if the generalize failure rateg is

constant. �

A.2. Proof of Theorem1

We use standard sequence notation collected in the following definition.

Definition 1 (scaling comparisons). Given a non-negative functiong with g(n) → ∞ as

n → ∞ we write,ξ (n) = o (g (n)) if

lim
n→∞

ξ (n)

g (n)
= 0.
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We writef(n) = O (g (n)) if

lim sup
n→∞

|ξ(n)|
g(n)

< ∞.

Finally, ξ (n) = Ω (g (n)) is the negation ofξ (n) = o (g (n)), i.e.,

ξ (n) = Ω (g (n)) ⇔ lim inf
n→∞

|ξ (n) |
g (n)

> 0.

The characterization of the optimal actions of the social planner and the revenue maximizer

in Theorem4 and5 is used to prove Theorem1. The proofs of these theorems appear then in

§A.3

Theorem 4. (optimal decisions of the SP) The cutoffs and admission rates

v̂n
i,s = v̄ + ϕ

i−1
K θ

K−i+1
K n−K−i+1

2K , and ˆ̄λn
i,S = n − Λf (v̄) ϕ

i−1
K θ

K−i+1
K n

K+i−1
2K

where

θ =
F̄ (v̄)

f (v̄)

√
α, ϕ = 2

V (v̄) − ρ(v̄)

F̄ (v̄)
= 2MRL(v̄),

are nearly optimal in the sense thatSn∗
K − Sn

K(v̂n
S) = o(

√
n).

The welfare maximizing decisionsmust be at most small perturbation of̂vn
S and λ̂n

S. That

is,

vn∗
i,S = v̂n

i,S + o(n−K−i+1
2K ), i = 2, . . . , K, andλ̄n∗

i,S = λ̂n
i,S + o(n

K+i−1
2K ),(A.4)

Finally, increasing the number of classes beyond2 can increase social welfare by at most

o(
√

n):

ΛnV (v̄) − 2v̄
√

α
√

n + o(
√

n), for anyK ≥ 2.
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The following is a strengthened version of Theorem 3 inNazerzadeh and Randhawa(2015)

where we add, to their result, that the optimal actions are asymptotically unique. This is crucial

for the comparison of the social-planner and revenue-maximizer actions.

Theorem 5. (optimal decisions of the RM) The cutoffs and arrival rates

v̂n
i,R = v̄ + Φ

i−1
K θ

K−i+1
K n−K−i+1

2K + o(n−K−i+1
2K ), i = 2, . . . , K, and ˆ̄λn∗

i,R = n − Λf (v̄) Φ
i−1
K θ

K−i+1
K n

K+i−1
2K

where

θ =
F̄ (v̄)

f (v̄)

√
α, Φ = 2

(
f (v̄) F̄ (v̄)

f ′ (v̄) F̄ (v̄) + 2 (f (v̄))2

)

= −
2

Λρ̃′′(1)

F̄ (v̄)

f(v̄)2
,

are nearly optimal in the sense thatRn∗
K − Rn

K(v̂n
R) = o(

√
n).

The welfare maximizing decisionsmust be at most small perturbation of̂vn
S and λ̂n

S. That

is,

vn∗
i,R = v̂n

i,R + o(n−K−i+1
2K ), i = 2, . . . , K, andλ̄n∗

i,R = λ̂n
i,R + o(n

K+i−1
2K ).(A.5)

Finally, increasing the number of classes beyond2 can increase revenue by at mosto(
√

n):

Rn∗
K = Λnρ(v̄) − 2v̄

√
α
√

n + o
(√

n
)
, for anyK ≥ 2.

In the statement of this theoremθ ≥ 0. Also, sincẽρ(λ) is concave forλ < λ∗
0 (see Lemma

2) and, in particular, forλ = 1 = ΛF̄ (v̄) < ΛF̄ (v∗
0), we have that̃ρ′′(1) ≥ 0 so thatΦ ≥ 0.
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Theorems4 and5 provide the basis for Theorem1: the constantγ in Theorem1 stands for

ϕ − Φ. With K = 2, if γ = ϕ − Φ > 0, λ̄n∗
2,R > λ̄n∗

2,S so that the revenue maximizer has a larger

high priority class. The following lemma studies, then,γ = ϕ − Φ.

Lemma 6. Suppose thatF has strictly positive density on its support and thatm (∙) is a

convex (respectively concave, linear respectively) MRL. Then,

(A.6) MRL (x)

(
h′ (x)

h (x)
+ h (x)

)

≥ (≤, = respectively) 1

for anyx in the support ofF .

Recalling the definition ofϕ andΦ, we must show is that

ϕ =

(
V (v̄) − v̄F̄ (v̄)

)

F̄ (v̄)
≥

f (v̄) F̄ (v̄)

f ′ (v̄) F̄ (v̄) + 2 (f (v̄))2 = Φ.

and that the opposite holds for concave MRL. The left hand side of the inequality is precisely

the MRL ofF at the point̄v so that this inequality is equivalent to

(A.7) MRL (v̄)

(
h′ (v̄)

h (v̄)
+ h (v̄)

)

≥ 1,

which follows, with convex MRL, from Lemma6. �

Proof of Theorem2: By definition, the optimal objective function value when policies are

restricted tonon-preemption is smaller than the optimal value under the larger family of pre-

emptive policies. That is,Sn∗
K,NP ≤ Sn∗

K . Then, we have

Sn
K,NP (v̂n

S) ≤ Sn∗
K,NP ≤ Sn∗

K = Sn∗
2 + o(

√
n) = Sn

2 (v̂n
S) + o(

√
n),
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wherev̂n
S,i = v̄ + ϕ

i−1
2 θ

2−i+1
2 n− 3−i

4 for i = 1, 2 . The last two equalities follow from Theorem

4. This holds for allK. Corresponding arrival rates forv̂n
S,i are

λ̂n
S,i = n − CS,in

K+i−1
2K ,

whereCS,i = f (v̄) ϕ
i−1
2 θ

2−i+1
2 . Similarly for revenue maximization

Rn
K,NP (v̂n

R) ≤ Rn∗
K,NP ≤ Rn∗

K = Rn∗
2 + o(

√
n) = Rn

2 (v̂n
R) + o(

√
n).

wherev̂n
R,i = v̄+Ein

− 3−i
4 with Ei = Φ

i−1
K θ

K−i+1
K for i = 1, 2. Corresponding cumulative arrival

rates forv̂n
R,i are

λ̂n
R,1 = n − CR,in

K+i−1
2K .

whereCR,i = f (v̄) Φ
i−1
2 θ

3−i
2 . It then suffices to prove that

Rn
2 (v̂n

R) − Rn
2,NP (v̂n

R) = o(
√

n), andSn
2 (v̂n

S) − Sn
2,NP (v̂n

S) = o(
√

n).

Let us start with the revenue maximizer. Notice that

Rn
2,NP (vn∗

R ) − Rn
2 (vn∗

R ) = ΛnΔR2(W
NP
R,H − W P

R,H) + ΛnΔR1(W
NP
R,L − W P

R,L),

whereΔR2 = λ̂R,2v̂
n
R,2 andΔR1 = λ̂R,1v̂

n
R,1 − λ̂R,2v̂

n
R,2. With preemption, the steady-state

sojourn times satisfy

(A.8) W P
R,L = n

(n−λ̂n
R,1)(n−λ̂n

R,2)
= n

CR,1n
1/2
1 CR,2n3/4

,W P
R,H = 1

(n−λ̂n
R,2)

= 1
CR,2n3/4 ,
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where the subscriptsH andL are for high and low priority respectively (recall that class 2 is

the high priority) andt stands for eitherS or R. Similarly under non-preemption

WNP
R,L =

λ̂n
R,1

(n−λ̂R,1)(n−λ̂R,2)
+ 1

n
=

n−CR,1n1/2

CR,1n
1/2
1 CR,2n3/4

+ 1
n
, W NP

R,H =
λ̂n

R,1

n(n−λ̂n
R,2)

+ 1
n

=
n−CR,1n1/2

nCR,2n3/4 + 1
n
.

Hence

WNP
R,L − W P

R,L = n−1 − C−1
R,2n

−3/4, andWNP
R,H − W P

R,H = n−1 − CR,1C
−1
R,2n

−5/4.

Then,

ΛnΔR2(W
NP
R,H − W P

R,H) = λ̂R,2v̂R,2(n
−1 − CR,1C

−1
R,2n

−5/4) = O(1) = o(
√

n),

and

ΛnΔR1(W
NP
R,L − W P

R,L) = (λ̂R,1v̂R,1 − λ̂R,2v̂R,2)(n
−1 − CR,1C

−1
R,2n

−5/4) = O(1) = o(
√

n),

so that

Rn
2,NP (vn∗

R ) − Rn
2 (vn∗

R ) = ΛnΔR2(W
NP
R,H − W P

R,H) + ΛnΔR1(W
NP
R,L − W P

R,L)

= O(1) = o(
√

n).

For the social planner,

Sn
2 (v̂n

S) − Sn
2,NP (v̂n

S) = ΛnV (v̂n
S,2)(W

NP
S,H − W P

S,H) + Λn(V (v̂n
S,1) − V (v̂n

S,2))(W
NP
S,L − W P

S,L),
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where the expressions for the waiting times are the same as for the revenue maximizer with the

obvious replacements ofR with S everywhere. Using Taylor expansion onV (∙) at v̄ and that

v̂n
S,i = v̄ + Din

− 3−i
4 , we have

ΛnV (v̂n
S,2)(W

NP
S,H − W P

S,H) = Λn(V (v̄) − v̄f(v̄)D2n
−1/4 + O(n−1/2))(n−1 − CS,1C

−1
S,2n

−5/4)

= O(1) = o(
√

n),

and

Λn(V (v̂n
S,1) − V (v̂n

S,2))(W
NP
S,L − W P

S,L) = Λn(v̄f(v̄)D2n
−1/4 + O(n−1/2))(n−1 − CS,1C

−1
S,2n

−5/4)

= O(n−1/4) = o(
√

n),

so thatSn
2 (v̂n

S) − Sn
2,NP (v̂n

S) = O(1) = o(
√

n), as stated.

In passing, it is worthwhile noticing the subtlety in the argument above. It builds on the

fact that, under the optimal preemptive actions, the high-priority volume is order-of-magnitude

larger than that of the low priority. The latter’s is of the order ofn3/4; see equation (A.8). �

A.3. Proofs of Theorems4 and 5

We consider a sequence of queues indexed by the service raten. The nominal arrival rate in

thenth queue isΛn.

A perturbation formulation:

We express the cutoffs as deviations fromv̄ ≡ F̄−1(1/Λ): vi = v̄ +ui or, in vector notation,

v = v̄e + u. As no customer with valuation smaller thanv̄ ≡ F̄−1(1/Λ) joins the queueu is a

non-negative vector. LetW n
i (u) be the expected waiting time of classi under preemptive static
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priority under the cutoff vector̄ve + u. The social planner’s problem (1.4) with nominal arrival

rateΛn and service raten is re-written as

(SPn) Sn∗
K = maxu↑ Sn

K(u) := maxv↑ Λn
[
V (v̄ + u1) − α

∑K

i=1
(V (v̄ + ui) − V (v̄ + ui+1)) W n

i (v̄e + u)
]
,

and that for the revenue maximizer as

(RMn) Rn∗
K = maxu↑ Rn

K(u) := maxu↑ Λn
[
ρ(v̄ + u1) − α

∑K

i=1
(ρ(v̄ + u1) − ρ(v̄ + ui+1))W

n
i (v̄e + u)

]
.

Given optimal solutionsun∗
i,S andun∗

i,R for (SPn) (respectively (RMn)), the optimal cutoffs are

given byvn∗
i,S = v̄ + un∗

i,S (respectivelyvn∗
i,R = v̄e + un∗

i,R).

We first state several auxiliary lemmas, the proofs of which appear at the end of this com-

panion. The first of these, analogous to Lemma 2 inNazerzadeh and Randhawa(2015), shows

that the optimal cut-offsvn∗
R andvn∗

S are clustered around̄v when the volume is high.

Lemma 7. For eachn, there exist optimal solutionsvn∗
S andvn∗

R for SPn andRMn respec-

tively. Let{(vn∗
R , vn∗

S ); n = 1, 2, . . .} be a sequence of optimal solutions. Then,vn∗
R → v̄ and

vn∗
S → v̄ asn → ∞.

That all “good” decisions must be small perturbations aroundv̄ means that Taylor expansion

should be useful in uncovering these perturbations.

Lemma 8. Fix a sequence ofun = o(1) of cutoff values. Then,

(A.9) Sn
K(un) = nΛV (v̄) +

(
nΛV ′ (v̄) un

1 + αV ′(v̄)

Λ(f(v̄))2
1

un
1

)
−

(
1

un
K

β (v̄) + γ (v̄)
∑K−1

i=1

un
i+1

un
i

)

+ εn,
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where

β (v̄) :=
αV (v̄)

f (v̄)
−

αv̄

Λf (v̄)
, γ (v̄) :=

α F̄ (v̄)

2f (v̄)
,

and

εn := O

(
∑K−1

i=1

(
un

i+1

)2

un
i

)

+ O(n (un
1 )2) + O(1).

Let un∗
i be the optimal solution to the social planner’s problem (SPn). There are two parts

to this proof.

(Step 1)un∗
i = ûn

i + o(n−K−i+1
2K ) for 1 ≤ i ≤ K whereûn

i = ϕ
i−1
K θ

K−i+1
K n−K−i+1

2K .

(Step 2)Sn∗
K − Sn∗

2 = o(
√

n).

(Proof of Step 1) Re-write

(A.10) Sn
K(un) = nΛV (v̄) + M (un

1 ) + B(un) + E (un) ,

where,

(A.11) B(un) = −

(
1

un
K

β (v̄) + γ (v̄)
∑K

i=1

un
i+1

un
i

)

, M (un
1 ) = nΛV ′ (v̄) un

1+
αV ′ (v̄)

Λ (f (v̄))2

1

un
1

,

and, using Lemma8,

(A.12) E (un) =
∑K−1

i=1
O

((
un

i+1

)2

un
i

)

+ O(n (un
1 )2) + O(1).

Suppose thatun is a sequence that hasεi,n := |un
i − ûn

i | = Ω
(
n−K−i+1

2K

)
for somei. Then, we

will show that it must be sub-optimal.
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Step 1.1.First, consider the case ofi = 1, namely, thatε1,n := |un
1 − ûn

1 | = Ω(n−1/2). We

will show that, in this case

(A.13) M(ûn
1 ) − M(un

1 ) = Ω(nε1,n) = Ω(
√

n),

but

(A.14) B(ûn) − B(un) = o(
√

n), andE(ûn) − E(un) = o(nε1,n),

so that, overall

(A.15) SK(ûn) − Sn
K(un) = Ω(nε1,n) = Ω(

√
n).

In particular,un is sub-optimal for alln sufficiently large.

To prove (A.13), notice that the functionM(∙) is maximized by

ûn
1 =

1

Λf (v̄)
n− 1

2
√

α =
F̄ (v̄)

f (v̄)
n− 1

2
√

α = θn− 1
2 ,

where we used the fact thatΛF̄ (v̄) = 1 and, recall,θ = F̄ (v̄)
f(v̄)

√
α. By Lemma7 we can assume,

without loss of generality, thatεi,n = o(1). By definition

M (ûn
1 ) − M (ûn

1 + ε1,n)

nε1,n

= −ΛV ′ (v̄) +
αV ′ (v̄)

Λ (f (v̄))2

1

nûn
1 (ûn

1 + ε1,n)

= −ΛV ′ (v̄) +
αV ′ (v̄)

Λ (f (v̄))2

√
n

nθ
(

θ√
n

+ ε1,n

)

= V ′ (v̄)




−

1

F̄ (v̄)
+

F̄ (v̄) α

(f (v̄))2

1
(

F̄ (v̄)
f(v̄)

)2

α + θ
√

nε1,n




 ,
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where we use again the definition ofθ and fact thatΛ = 1
F̄ (v̄)

. Further simplification gives

M
(
û1,n

1

)
− M

(
û1,n

1 + ε1,n

)

nε1,n

=
V ′ (v̄)

F̄ (v̄)




−1 +

(
F̄ (v̄)

f (v̄)

)2

α
1

(
F̄ (v̄)
f(v̄)

)2

α + θ
√

nε1,n






=
V ′ (v̄)

F̄ (v̄)

(

−1 +
1

1 +
√

nε1,n

θ

)

.(A.16)

SinceV ′ (v̄) < 0, F̄ (v̄) = 1
Λ

> 0 andθ > 0, we have the relation

lim inf
n→∞

M (ûn
1 ) − M (ûn

1 + ε1,n)

nε1,n

> 0 ⇔ lim inf
n→∞

√
nε1,n > 0

Since,ε1,n = Ω
(
n− 1

2

)
, we havelim infn→∞

√
nε1,n > 0 and, in particular, that

lim inf
n→∞

M (ûn
1 ) − M (ûn

1 + ε1,n)

nε1,n

> 0,

equivalently,

M (ûn
1 ) − M (ûn

1 + ε1,n) = Ω(nε1,n).

Sinceûn
1 is the maximizer ofM(∙) we have (A.13).

We next prove (A.14) starting withB(∙). Since|B(ûn) − B(un)| ≤ B(û) + B(un), it

suffices to prove thatB(ûn) = o(
√

n) andB(un) = o(
√

n). Sinceûn
i+1 = o(1) for all i and

since cut-offs satisfŷui+1 ≥ ûi, it suffices to have1
ûn
1

= O(
√

n) to conclude thatûi+1

ûi
= o(

√
n)

for all i and, in turn, thatB(ûn) = o(
√

n). Similarly, it suffices to prove that 1
ûn
1 +ε1,n

= O(
√

n)

to haveB(un) = o(
√

n).
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First, by definition,̂un
1 = θn−1/2 so that1/ûn

1 = O(
√

n). Becauseθ
√

nε1,n = Ω(1) we have

that

lim sup
n→∞

1
√

nûn
1

= lim sup
n→∞

1

θ
√

nε1,n

< ∞.

Since
√

nε1,n = Ω(1) by assumption, we also have that 1√
nûn

1 +
√

nε1,n
= O(1) and, in turn, that

1
ûn
1 +ε1,n

= O(
√

n). We turn toE(∙). Since|E(ûn)−E(un)| ≤ E(ûn)+E(un), it again suffices

to show thatE(û) = o(
√

n) andE(un) = o(
√

n). Notice that

E(ûn) =
∑K

i=1
O

((
ûn

i+1

)2

ûn
i

)

+ O(n (ûn
1 )2))(A.17)

E(un)) =
∑K

i=1
O

((
ûn

i+1 + εi+1,n

)2

ûn
i + εi,n

)

+ O(n (ûn
1 + ε1,n)2)

Sincen(ûn
1 )2 = nθ2n−1 = θ = O(1) andnûn

1 εn = θ
√

nεn we have thatO((nûn
1 )2) = O(1) =

o(
√

n) and

O(n (ûn
1 + ε1,n)2) = O(n(ûn

1 )2 + 2nûn
1ε1,n + nε2

1,n) = O(1 +
√

nε1,n + nε2
1,n) = O

(
nε2

1,n

)

= o(nε1,n).

The second to last equality follows sinceε1,n = Ω
(
n− 1

2

)
,
√

nε1,n = O(nε2
1,n) and the last

equality follows sinceε1,n = o(1). To take care of the other terms ofE(ûn) andE(un) notice

that, sinceun = o(1) andεi,n = o(1) for all i,

O

((
ûn

i+1 + εi,n

)2

ûn
i + εi,n

)

= o

(
ûn

i+1 + εi+1,n

ûn
i + εi,n

)

andO

((
ûn

i+1

)2

ûn
i

)

= o

(
ûn

i+1

ûn
i

)

.
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It is therefore sufficient to show that

o

(
ûn

i+1 + εi+1,n

ûn
i + εi,n

)

= o(
√

n), ando

(
ûn

i+1

ûn
i

)

= o(
√

n).

Moreover, sincêun
i+1 + εi+1,n = o(1) and ûn

i+1 = o(1), it is sufficient to show that 1
ûn

i +εi,n
=

O(
√

n) and 1
ûn

i
= O(

√
n). We also know that1

ûn
i

< 1
ûn
1

and 1
ûn

i +εi,n
< 1

ûn
1 +ε1,n

. We already

showed that1
ûn
1

= O(
√

n) and 1
ûn
1 +ε1,n

= O(
√

n).

This completes the proof of (A.13) and (A.14) and hence of (A.15). We reached a contra-

diction to|un
1 − ûn

1 | = Ω(1/
√

n). Notice that we can repeat the above for any subsequence. We

may thus conclude that|un
1 − ûn

1 | = o(1/
√

n).

Step 1.2.We proved that any optimal sequenceun must satisfy thatun
1 = ûn

1 +o(n−1/2). We

turn to prove that this, in turn, implies that any such sequence must haveun
i = ûn

i + o(n−K−i+1
2K )

for i = 2, . . . , K . We will use the following lemma where, given a vectoru ∈ RK
+ andj < K,

we writeu[j] = (u1, . . . , uj) andu−[j] = (uj+1, . . . , uK).

Lemma 9. Givenu1, . . . , uj for somej < K,

ui = fi,j(uj) := ϕ
i−j

K−j+1 (uj)
K−i+1
K−j+1 , i = j + 1, . . . , K,

is the unique solution to

max
0<uj+1<∙∙∙<uK

B(u−[j]; u[j]).
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We definefj(uj) to be the vectorfi,j(uj) for i = j + 1, . . . , K . Notice that in the special

case that[j] = {1}, we have

ui = ϕ
i−1
K (u1)

K−i+1
K , i = 2, . . . , K.

Fix a sequence of cutoffs̃un such that̃un
1 = ûn

1 +o(1/
√

n) and such that̃un
k for k = 1, . . . , K

are determined by Lemma9 with j = 2 there. In particular, notice,̃un
i = ϕ1/K(ũn

1 )
K−i+1

K =

ûn
i + o

(
n−K−i+1

2K

)
and our goal is to prove thatun∗

i − ũn
i = o

(
n−K−i+1

2K

)
. Let un = o(1) be a

sequence of cutoffs whereun
1 = ûn

1+o(n−1/2). We will show first that if|un
2−ûn

2 | = Ω
(
n−K−1

2K

)

thenun
2 must be sub-optimal; specifically that

Sn
K(ũn) − Sn

K(un) = Ω(n
1

2K ) > 0.

Recall thatSn
K(u) = M(un) + B(un) + E(un) whereM,B andE are as defined in (A.11)

and (A.12). First, because both̃un
1 = ûn

1 + o(n−1/2) andun
1 = ûn

1 + o(n−1/2) and, because

un = o(1), we have thatM(ũn
1 ) − M(un

1 ) = O(1), B(un
−1, u

n
1 ) − B(un

−1, ũ
n
1 ) = O(1) and

E(un
−1, u

n
1 ) − E(un

−1, ũ
n
1 ) = O(1). It suffices, then to consider sequenceun with un

1 = ũn
1 . In

that case,

Sn
K(ũn) − Sn

K(ũn
1 , u

n
−1) = B(ũn

−1; ũ
n
1 ) − B(un

−1, ũ
n
1 ) + E(ũn

−1; ũ
n
1 ) − E(un

−1, ũ
n
1 ).

Since cutoff vectors are increasing (un
i+1 > un

i ; i = 1, . . . , K−1), we have thatE(un∗) = O(1).

Since we are considering in this step the case thatun
1 = ûn

1 + o(n−1/2), we also have that
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n (un
1 )2 = O(1). Thus, for any sequence of cutoffun that hasun

1 = ûn
1 + o(n−1/2):

E(un) = E (un) =
∑K

i=1
O

((
un

i+1

)2

un
i

)

+ O(n (un
1 )2) + O(1)

= o

(∑K−1

i=1

un
i+1

un
i

)

+ O(1) = o(−B(un)) + O(1).(A.18)

By definition ofũn we have0 ≥ B(ũn
−1); ũ

n
1 ) ≥ B(un

−1; ũ
n
1 ) so that we further have

Sn
K(ũn) − Sn

K(ũn
1 , u

n
−1) = B(fn

1 ; ũn
1 ) − B(un

−1, ũ
n
1 ) + E(ũn

−1; ũ
n
1 ) − E(un

−1, ũ
n
1 )

> B(ũn
−1; ũ

n
1 ) − B(un

−1, ũ
n
1 ) + εB((un

−1; ũ
n
1 ) + O(1)

≥ B(ũn
−1; ũ

n
1 ) − (1 − ε)B̃(un

−1, ũ
n
1 ) + O(1),

where can be taken to be an arbitrarily small strictly positive constant.

By definition0 ≥ B(fn
2 (un

2 ); un
[2]) ≥ B(un

−1; ũ
n
1 ), so that, further

Sn
K(ũn) − Sn

K(ũn
1 , u

n
−1) ≥ B(ũn

−1; ũ
n
1 ) − (1 − ε)B(fn

2 (un
2 ); un

[2]) + O(1),(A.19)

By lemma9 with j = 2, we have

B(f2(u
n
2 ), un

[2]) = −γ (v̄)
un

2

ũn
1

+ ϕ
1

K−1 γ (v̄) (K − 2)(un
2 )

−1
K−1 + ϕ

1
K−1

β (v̄)

ϕ
(un

2 )
−1

K−1

= −γ (v̄)

(
un

2

ũn
1

+ (K − 1)ϕ
1

K−1 (un
2 )

−1
K−1

)

= −γ(v̄)

(
1

ũn
1

) 1
K

(

ζn + (K − 1)ϕ
1

K−1

(
1

ζn

) 1
K−1

)

whereζn =
un
2 /ũn

1

(1/ũn
1 )

1/K = un
2 (ũn

1 )−
K−1

K and we used the fact thatβ(v̄)
γ(v̄)

= ϕ. Notice thatg(x) =

x + (K − 1)ϕ
1

K−1

(
1
x

) 1
K−1 is convex inx and minimized atx∗ = ϕ

1
K with g(x∗) = ϕ

1
K K.
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Notice that

(A.20) B(ũn) = B(f1(ũ
n
1 ), ũn

1 ) = −ϕ
1
K γ (v̄) K(ũn

1 )−
1
K = −γ(v̄)

(
1

ũn
1

) 1
K

g(x∗).

Suppose thatη := lim infn→∞ ζn > ϕ
1
K we have a constantcη > 1 such that

B(f2(u
n
[2]), u

n
2 ) ≤ cηB(ũn),

for all sufficiently largen in which case by (A.22) (choosingε so thatξ := cη(1 − ε) − 1 > 0;

recallε was arbitrary) we have that

Sn
K(ũn) − Sn

K(ũn
1 , u

n
−1) ≥ B(ũn) − (1 − ε)B(fn

2 (un
[2]); u

n
[2]) + O(1)

≥ −ξB(ũn) + O(1) = Ω(n
1

2K ) > 0.(A.21)

The last equality follows sincẽun
1 = ûn

1 + o(n−1/2) = θn−1/2 + o(n−1/2) so that−B(ũn) =

γ(v̄)
(

1
ũn
1

) 1
K

g(x∗) = Ω(n1/2K) and we would conclude that, for alln sufficiently largeSn
K(ũn) >

Sn
K(ũn

1 , u
n
−1) meaning thatun is sub-optimal.

The same argument applies if, instead oflim infn→∞ ζn > ϕ
1
K , we havelim supn→∞ ζn <

ϕ
1
K . It remains to prove that one of these hold if|un

2 − ûn
2 | = Ω

(
n−K−1

2K

)
. Indeed, ifun

2 =

ûn
2 + Ω(n−K−1

2K ) = ϕ
1
K θ

K−1
K n−K−1

2K + Ω(n−K−1
2K ), then there existδ > 0 such that, for all

sufficiently largen, either

un
2 > ϕ

1
K θ

K−1
K n−K−1

2K + δn−K−1
2K , or un

2 < ϕ
1
K θ

K−1
K n−K−1

2K − δn−K−1
2K .
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Thus, there exists̃δ > 0 such thatζn = un
2 (ũn

1 )−
K−1

K = un
2 (ûn

1 )−
K−1

K = un
2 (θn−1/2+o(

√
n))−

K−1
K

> ϕ1/K + δ̃ or ζn ≤ ϕ1/K − δ̃ for all sufficiently largen so that (A.21) holds. We conclude that

any optimal sequenceun must have that|un
2 − ûn

2 | = o(n−K−1
2K ).

Now, one proceeds sequentially. Fixing a sequence such thatun∗
1 = ũn

1 andun∗
2 = ũn

2 but

|un
3 − ûn

3 | = Ω(n−K−2
2K ) we have

Sn
K(ũn) − Sn

K(ũn
[2], u

n
−[2]) ≥ B(ũn

−[2]; ũ
n
[2]) − (1 − ε)B(fn

3 (un
[3]); u

n
[3]) + O(1),(A.22)

and one proceeds similarly to our argument above to show thatun is sub-optimal if|un
3 − ûn

3 | =

Ω(n−K−i+1
2K ). One then proceeds tou4 and so on.

(Proof of Step 2) In this step, we first calculate the optimal objective function value for the

social planner by using the optimal decisions we find in step 2. To do so, we considerSn
K(∙) as

defined in (A.10)

Sn
K(un∗) = M (un∗

1 ) − M(ûn
1 ) + M(ûn

1 ) + B(un∗) − B(ûn) + B(ûn) + E(un∗)

whereûn ≡ (ûn
1 , ∙ ∙ ∙ , ûn

K) andun∗ ≡ (un∗
1 , ∙ ∙ ∙ , un∗

K ). Note thatE(un∗) = O(1) andM (un∗
1 )−

M(ûn
1 ) = o(

√
n) by using (A.16). Similarly, we haveB(un∗) − B(ûn) = o(

√
n). Hence we

have

Sn∗
K = nΛV (v̄) − 2v̄

√
n
√

α

−n
1

2K

(
β (v̄) ϕ

K−1
K θ

1
K − γ (v̄) (K − 1)ϕ

1
K θ−

1
K

)
+ o

(√
n
)

+ O(1)
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for K ≥ 2. Hence, two class policy is asymptotic optimal ono (
√

n) scale, i.e.

lim
n−→∞

Sn∗

K − Sn∗

2√
n

= 0.

Now, we check if it’s worth to offer whether two classes or only single class. Therefore, we

calculate the optimal objective function value for the case of single class. The social planner’s

problem reduces to the following whenK = 1

max
vn
1 ∈R+

Sn
1 = nΛ [V (vn

1 ) − αWKV (vn
1 )]

= max
un
1∈R+

nΛV (un
1 )

[

1 − α
1

nΛf (v̄) un
1

−O

(
1

n

)]

= max
un
1∈R+

nΛ
[
V (v̄) + V ′ (v̄) un

1 + O
(
(un

1 )2)]
[

1 − α
1

nΛf (v̄) un
1

−O

(
1

n

)]

= nΛV (v̄) −
αV ′ (v̄)

f (v̄)
+ max

un
1∈R+

−α
V (v̄)

f (v̄) un
1

+ nΛV ′ (v̄) un
1 + O

(
n (un

1 )2 + 1
)

which gives the following optimalun∗

1 andSn∗

1

un∗
1 =

√
αn− 1

2

√
F̄ (v̄)

f (v̄)

√
V (v̄)

v̄f (v̄)
+ o

(
n− 1

2

)

Sn∗
1 = nΛV (v̄) + αv̄ − 2

√
α
√

n
√

v̄

√
V (v̄)

F̄ (v̄)
+ O (1)

Then we have

lim
n−→∞

Sn∗

1 − Sn∗

K√
n

= 2v̄
√

α − 2
√

α
√

v̄

√
V (v̄)

F̄ (v̄)

whereK ≥ 2. Therefore, there is a significant benefit of offering more than 1 class and we

can conclude that offering 2 classes is asymptotically optimal ono (
√

n) scale. �
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Proof of Theorem5: Similar to the proof of Theorem4. We omit the details.

A.4. Proofs of Auxiliary Lemmas

Proof of Lemma7: We prove this result for the social planner. The argument for the revenue

maximizer requires only minor changes. We first prove thatvn∗
1 → v̄ and then proceed to show

thatvn∗
i → v̄ for all i = 2, . . . , K.

Supposevn∗ → v0 for some vectorv0 ∈ RK
+ (if the sequence does not converge we can

apply to argument below to any convergent subsequence). Suppose, further, thatv0
1 > v̄. We

will prove that this leads to a contradiction to the optimality ofvn∗.

Since the cutoffsun∗
i increase ini, we then have thatun∗

i = vn∗
i − v̄ = Ω(1). This, in

turn, implies (recall thatΛF̄ (v̄) = 1) the existence ofδ < 1 such thatΛF̄ (vn∗
i ) ≤ δ for all

i = 1, . . . , K , and alln sufficiently large. Consequently, for all suchn,

W n
i (v̄e + un∗) =

1

n(1 − ΛF̄ (vn∗
i ))(1 − ΛF̄ (vn∗

i+1))
≤

1

n(1 − δ)2
= O (1) , i = 1 . . . , K,

so thatΛnW n
i (v̄e + un∗) = O(1). Since0 < V (x) ≤ V (v̄) for all x ≥ v̄, we then have

Sn
K(un∗) = Λn

[
V (v̄ + un∗

1 ) − α
∑K

i=1

(
V (v̄ + un∗

i ) − V
(
v̄ + un∗

i+1

))
W n

i (v̄e + un∗)
]

= Λn [V (v̄ + un∗
1 )] + O(1).

Takeun = (un∗
1 /2, un∗

2 , . . . , un∗
K ) to be the vector obtained fromun∗ by replacingun∗

1 with

un∗
1 /2 and keeping all other entries the same. Letvn = v̄e + un. Notice that

vn → v0 =

(

v0
1 −

v0
1 − v̄

2
, v0

2, . . . , v
0
K

)

.
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Sincev0
1 − v0

1−v̄

2
> v̄ we have, as before, thatW n

i = O(1/n) for all i and all sufficiently

largen so that

Sn
K(vn) = Λn

[

V

(

v̄ +
un∗

1

2

)]

+ O(1)

Therefore,

Sn
K(vn) − Sn

K(vn∗) = Λn

[

V

(

v̄ +
un∗

1

2

)

− V (v̄ + un∗
1 )

]

+ O(1)

It follows from the strictly positive density ofF , and fromun∗
1 → v0

1 − v̄ andun∗
1 /2 → (v0

1 −

v̄)/2, that

(A.23) V

(

v̄ +
un∗

1

2

)

−V (v̄+un∗
1 ) =

∫ un∗
1

un∗
1
2

xf(x)dx ≥
un∗

1

2

(

F̄

(
un∗

1

2

)

− F̄ (un∗
1 )

)

= Ω(1),

and, in particular, that

Sn
K(vn) − Sn

K(vn∗) ≥ Λn
un∗

1

2

(

F̄

(
un∗

1

2

)

− F̄ (un∗
1 )

)

+ O(1) ≥ Ln,

for someL > 0 contradicting the optimality ofvn∗. We conclude that optimal cutoffs must

satisfyvn∗
1 → v̄.

From this first step it follows in particular that a limitv0 of vn∗ must havev0
1 = v̄. Suppose

that there exists an indexi ≤ K such thatv0
i > v̄. Let i0 be the smallest such index. Then,

W n
i (v̄e + un∗) = O(1/n) for all i ≥ i0 and, in turn,

Sn
K(un∗) = Λn

[
V (v̄ + un∗

1 ) − α
∑i0−1

i=1

(
V (v̄ + un∗

i ) − V
(
v̄ + un∗

i+1

))
W n

i (v̄e + un∗)
]
+O(1).
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Replicating our arguments above, take

un =

(

un∗
1 , . . . , un∗

i0−1,
un∗

i0

2
, un∗

i0+1, . . . , u
n∗
K

)

→

(

0, . . . ,
v0

i0
− v̄

2
, . . . , v0

K

)

.

Notice that, by the definition ofi0 we haveun∗
i0

/2 > un∗
i0−1 for all sufficiently largen so the

monotonicity of cutoffs (ini) is maintained. Letvn = v̄e + un. Then, also forun,

Sn
K(un) = Λn

[
V (v̄ + un

1 ) − α
∑i0−1

i=1

(
V (v̄ + un

i ) − V
(
v̄ + un

i+1

))
W n

i (v̄e + un)
]

+ O(1),

so that

Sn
K(un) − Sn

K(un∗) = −αΛn(V (v̄ + un∗
i0−1) − V (v̄ + un∗

i0
/2))W n

i0−1(v̄ + un)

+ αΛn(V (v̄ + un∗
i0−1) − V (v̄ + un∗

i0
))W n

i0−1(v̄ + un∗) + O(1)

Using

W n
i0−1(v̄ + un∗) =

1

n
(
1 − ΛF̄ (v̄ + un∗

i0−1)
) (

1 − ΛF̄ (v̄ + un∗
i0

)
) ,

W n
i0−1(v̄ + un) =

1

n
(
1 − ΛF̄ (v̄ + un∗

i0−1)
) (

1 − ΛF̄ (v̄ + un∗
i0

/2)
) ,

we get

Sn
K(un) − Sn

K(un∗) =
αΛ

1 − F̄ (v̄ + un∗
i0−1)

(
gn(un∗

i0
) − gn(un∗

i0
/2)
)

+ O(1),

where, forx ≥ un∗
i0−1,

gn(x) :=
V
(
v̄ + un∗

i0−1

)
− V (v̄ + x)

1 − ΛF̄ (v̄ + x)
=

V (v̄) − V (v̄ + x)

1 − ΛF̄ (v̄ + x)
+

V
(
v̄ + un∗

i0−1

)
− V (v̄)

1 − ΛF̄ (v̄ + x)
.



141

Notice that sinceun∗
i0−1 → 0, we have that(1 − ΛF̄ (v̄ + un∗

i0−1))
−1 → ∞ asn → ∞ so that,

to prove thatun∗ is sub-optimal, it suffices to show that
(
gn(un∗

i0
) − gn(un∗

i0
/2)
)

= Ω(1) as this

will imply that Sn
K(un) − Sn

K(un∗) → ∞ asn → ∞.

To that end, let

ḡ(x) :=
V (v̄) − V (v̄ + x)

1 − ΛF̄ (v̄ + x)
=

V (v̄) − V (v̄ + x)

ΛF̄ (v̄) − ΛF̄ (v̄ + x)
.

(Λḡ(x) is the expected valuation conditional on it being betweenv̄ and v̄ + x). SinceF is

assumed to have a strictly positive density,ḡ(x) is strictly increasing inx so that, sinceun∗
i0

/2 =

Ω(1) andun∗
i0

− un∗
i0

/2 = Ω(1),

ḡ(un∗
i0

) − ḡ(un∗
i0

/2) = Ω(1).

Also, sinceun∗
i0

= Ω(1) butun∗
i0−1 → 0, we have that

V
(
v̄ + un∗

i0−1

)
− V (v̄)

1 − ΛF̄ (v̄ + un∗
i0

)
= o(1),

and the same holds withun∗
i0

replaced withun∗
i0

/2. Combined, we have that

gn(un∗
i0

) − gn(un∗
i0

/2) = ḡ(un∗
i0

) − ḡ(un∗
i0

/2) + o(1) = Ω(1),

contradicting the optimality ofvn∗.

Finally, in repeating the proof for the revenue maximizer,ḡ(x) will be replaced by(ρ(v̄) −

ρ(v̄ + x))/(ΛF̄ (v̄) − ΛF̄ (v̄ + x)) which is increasing inx by Lemma2. �
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Proof of Lemma8: The sequenceun is fixed throughout the proof. For simplicity of nota-

tion, we writeW n
i for W n

i (v̄e + un). Recall that

(A.24) Sn
K (vn) = nΛ

[
V (vn

1 ) − α
∑K−1

i=1
W n

i

[
V (vn

i ) − V
(
vn

i+1

)]
− αW n

KV (vn
K)
]

Taking a Taylor expansion ofV (vn
i ) for i = 1, 2, ∙ ∙ ∙ , K aroundv̄ and recallingun

i = v̄ − vn
i

we have

Sn
K (vn) = nΛ

[
(V (v̄) + V ′ (v̄) un

1 ) − α
∑K−1

i=1
W n

i

(

V ′ (v̄)
(
un

i − un
i+1

)
+

V ′′ (v̄)

2

(
(un

i )2 −
(
un

i+1

)2)
)

+ (−αW n
K (V (v̄) + V ′ (v̄) un

K))
]

+ εn

where

(A.25) εn = O
(
n
∑K−1

i=1
W n

i

(
un

i+1

)3)
+ O

(
nW n

K (un
K)2)+ O(n (un

1 )2),

Collecting terms we have

Sn
K (vn) = nΛ

[
(V (v̄) + V ′ (v̄) un

1 ) − αW n
KV (v̄) − αV ′ (v̄)

∑K−1

i=1
W n

i

(
un

i − un
i+1

)

−α
V ′′ (v̄)

2

∑K−1

i=1
W n

i

(
(un

i )2 −
(
un

i+1

)2)
− αW n

K (V ′ (v̄) un
K)

]

+ εn(A.26)

We next apply Taylor expansion toW n
i . First, usingΛF̄ (v̄ + un

K) = ΛF̄ (v̄) + Λf(v̄)un
K +

ΛO((un
K)2) and recalling thatΛF̄ (v̄) = 1, we have

(A.27) W n
K =

1

n
(
1 − Λ F̄ (v̄ + un

K)
) =

1

nΛf (v̄) un
K + nΛO

(
(un

K)2)
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Next, taking further the Taylor expansion ofWK atnΛf (v̄) un
K we get

W n
K =

1

nΛf (v̄) un
K

+
1

nΛ

∑∞

i=1
(−1)i O

(
(un

K)2)i

(f (v̄) un
K)i+1

=
1

nΛf (v̄) un
K

+ O

(
1

nΛ

)

.

In the last equality we use Lemma7 by whichun
K = o(1) so that there existL, L̄ > 0 such

that

∣
∣
∣
∣
∣

∑∞

i=1
(−1)i O

(
(un

K)2)i

(f (v̄) un
K)i+1

∣
∣
∣
∣
∣

≤
∑∞

i=1

∣
∣
∣
∣
∣
O
(
(un

K)2)i

(f (v̄) un
K)i+1

∣
∣
∣
∣
∣
≤
∑∞

i=1

Li
∣
∣
∣(un

K)2i
∣
∣
∣

(f (v̄) |un
K |)i+1

=
L

f (v̄)2

∑∞

i=1

∣
∣
∣
∣
Lun

K

f(v̄)

∣
∣
∣
∣

i−1

≤ L̄.

The last inequality follows from the fact thatun
K = o(1) so thatLun

K ≤ 1/2 for all n sufficiently

large. For the Taylor expansion ofW n
i (i < K) we have

W n
i =

1
(
1 − ΛF̄ (v̄ + un

i )
) (

1 − ΛF̄
(
v̄ + un

i+1

))

=
1

(
nΛf (v̄) un

i + nΛO
(
(un

i )2))
(
Λf (v̄) un

i+1 + ΛO
((

un
i+1

)2)) .

We take one more Taylor expansion to get

W n
i =

1

n (Λf (v̄))2 un
i un

i+1

−
f ′ (v̄)

2nΛ2f (v̄)3

(
1

un
i

+
1

un
i+1

)

+O

(
1

n

un
i

un
i+1

)

+O

(
1

n

un
i+1

un
i

)

+O

(
1

n

)

Sinceun
i+1 > un

i , O
(

1
n

un
i

un
i+1

)
= O(1/n) so that

W n
i =

1

n (Λf (v̄))2 un
i un

i+1

−
f ′ (v̄)

2nΛ2f (v̄)3

(
1

un
i

+
1

un
i+1

)

+ O

(
1

n

un
i+1

un
i

)
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Plugging these back into (A.26) we get

εn = O

(
∑K−1

i=1

(
un

i+1

)2

un
i

)

+ O(n (un
1 )2) + O(1)

and into (A.27), hence objective function becomes (by also using the fact thatun
i+1 > un

i )

Sn
K (vn) = nΛ

(

(V (v̄) + V ′ (v̄) un
1 ) −

αV (v̄)

nΛf (v̄) un
K

)

−
αV ′ (v̄)

Λ (f (v̄))2

∑K−1

i=1

(
1

un
i+1

−
1

un
i

)

−
αV ′ (v̄) f ′ (v̄)

2Λf (v̄)3

∑K−1

i=1

un
i+1

un
i

+ α
V ′′ (v̄)

2Λ (f (v̄))2

∑K−1

i=1

un
i+1

un
i

+ εn + O(1)

= (nΛV (v̄) + nΛV ′ (v̄) un
1 ) −

αV (v̄)

f (v̄) un
K

−
αV ′ (v̄)

Λ (f (v̄))2

(
1

un
K

−
1

un
1

)

− γ (v̄)
∑K−1

i=1

(
un

i+1

un
i

)

+ εn + O(1)

= nΛV (v̄) +

(

nΛV ′ (v̄) un
1 +

αV ′ (v̄)

Λ (f (v̄))2

1

un
1

)

−

(
1

un
K

β (v̄) + γ (v̄)
∑K−1

i=1

un
i+1

un
i

)

+ εn + O(1)

where

γ (v̄) =
α

2Λ (f (v̄))2

(
V ′ (v̄) f ′ (v̄)

f (v̄)
− V ′′ (v̄)

)

=
α

2Λf (v̄)
=

α F̄ (v̄)

2f (v̄)
,

and

β (v̄) =
αV (v̄)

f (v̄)
+

αV ′ (v̄)

Λ (f (v̄))2 = α
V (v̄)

f (v̄)
− α

v̄F̄ (v̄)

f (v̄)
=

α

f (v̄)

(
V (v̄) − v̄F̄ (v̄)

)
,

and hence

(A.28)
β (v̄)

γ (v̄)
= 2

V (v̄) − v̄F̄ (v̄)

F̄ (v̄)
.
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Proof of Lemma6: To simplify notation we replacem(x) := MRL(x). Using the relation-

ship

(A.29) h (x) =
m′ (x) + 1

m (x)
,

between the MRL and the hazard function, the inequality (A.6) is equivalent to

(A.30)
m′ (x)

m (x)
≥ −

h′ (x)

h (x)

Taking a derivative in (A.30) we further have

h′ (x) =
m′′ (x) m (x) − m′ (x) (m′ (x) + 1)

m2 (x)
.

so that inequality (A.31) is equivalent to

(A.31) m′ (x) ≥ −
m′′ (x) m (x) − m′ (x) (m′ (x) + 1)

(m′ (x) + 1)

Any MRL hasm (x) ≥ 0, m′ (x) ≥ −1; seeLai and Xie(2006). Therefore, we can multiply

both sides of (A.32) by m′(x) + 1 ≥ 0 and say the inequality there holds if and only if

m′′ (x) m (x) ≥ 0,

which holds for allx if and only if m(∙) is convex. �

Proof of Lemma9 We provide the detailed proof for the case thatj = 2. The other cases

follow identically.
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Consider the change of variablesxi = ui+1/ui and the optimization problem

min
∑K−1

i=1
γ (v̄) xi + β (v̄) xK subject toxi ≥ 0 and

K∏

i=1

xi ≥
1

u1

(A.32)

Because
∏K

i=1 xi is a jointly concave function (seeMarcus and Lopes(1957)) and the objective

function is linear, this is a convex minimization problem. It therefore has a unique solution

which, we will show, is given by

x∗
i = ϕ1/K

(
1

u1

)1/K

, i = 1, 2, ∙ ∙ ∙ , K − 1, andx∗
K = ϕ−(K−1)/K

(
1

u1

)1/K

.

Denote the KKT multipliers forxi ≥ 0 by μi and for
∏K

i=1 xi ≥ C
u1

by η. We claim that

μi ≡ 0 and

η :=
γ (v̄)
∏

j 6=i x
∗
j

satisfy both the complementary slackness and first-oder (stationarity) conditions. The comple-

mentary slackness conditions are

η

(
K∏

i=1

x∗
i −

1

u1

)

= 0 andμixi = 0, i = 1, . . . , K.

They are both satisfied under our solution. For the first-order (stationarity) conditions, under

μi ≡ 0, we must checkγ (v̄) = η
∏

j 6=i x
∗
j , i = 1, 2, ∙ ∙ ∙ , K − 1 (derivative with respect toxi)

andβ (v̄) = η
∏

j 6=K x∗
j (derivative with respect toxK).

Recall that (see Theorem4 and equation (A.29))

β(v̄)

γ(v̄)
= 2

V (v̄) − ρ(v̄)

F̄ (v̄)
= ϕ.
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Since, ∏
j 6=K x∗

j∏
j 6=i x

∗
j

=
x∗

i

x∗
K

=
x∗

1

x∗
K

= ϕ,

we have that

η =
γ (v̄)
∏

j 6=i x
∗
j

=
β (v̄)
∏

j 6=K x∗
j

,

which means that the first order conditions are satisfied with the proposedη.

Finally, notice that with the change of variablexi = ui+1/ui the minimization problem

(A.33) is equivalent to the minimization problem

max
u−1

B(u1, u−1) = max
u−1

{

−

(
1

uK

β (v̄) + γ (v̄)
∑K

i=1

ui+1

ui

)}

,

because by definition
∏K

i=1
ui+1

ui
= 1

u1
.

Thus, from the solutionx∗ we construct the solutionu∗
−1 =

(
u1

ϕ

)K−i+1
K

. This solution also

satisfies our requirement thatu1 < u∗
2 < ∙ ∙ ∙ < u∗

K . �

A.5. Proof of Theorem3

The proof is a simple adaptation of that for the cased(v) = αv. We outline the key ingredi-

ents, the first being an analogue of Lemma8.

Lemma 10. Fix a sequence ofun = o(1) of cutoff values. Then,

(A.33) Sn
K(un) = nΛV (v̄) +

(
nΛV ′ (v̄) un

1 + D′(v̄)

Λ(f(v̄))2
1

un
1

)
−

(
1

un
K

β (v̄) + γ (v̄)
∑K−1

i=1

un
i+1

un
i

)

+ εn,
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where

β (v̄) :=
D(v̄) − d(v̄)F̄ (v̄)

f(v̄)
, γ (v̄) :=

F̄ (v̄)d′(v̄)

2f(v̄)
,

and

εn := O

(
∑K−1

i=1

(
un

i+1

)2

un
i

)

+ O(n (un
1 )2) + O(1).

Note that proof of this lemma is similar to the proof of Lemma8, hence we skip it here. Rest

of the proof of Theorem3 is similar toαv case, i.e., Theorem1. We explain the main changes

below.

Optimal cutoff valuations have the same structure except that some parameters are different.

As a remark, optimal cutoff values have the following structure

un∗
i = ûn

i + o(n−K−i+1
2K )

for 1 ≤ i ≤ K where

ûn
i = ϕ

i−1
K θ

K−i+1
K n−K−i+1

2K

for the social planner and

ûn
i = Φ

i−1
K θ

K−i+1
K n−K−i+1

2K

for the revenue maximizer.

Under the new cost structure, assumingd(u) is differentiable, we have

ϕ = 2

(
D (v̄) − d(v̄)F̄ (v̄)

)

d′(v̄)F̄ (v̄)
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where

D(v) =

∫ ∞

v

d(u)f(u)du

Similarly, the key parameter for the revenue maximizer’s cutoff points becomes

Φ = 2
d′(v̄)f(v̄)F̄ (v̄)

f ′(v̄)d′(v̄)F̄ (v̄) − d′′(v̄)F̄ (v̄)f(v̄) + 2d′(v̄)f 2(v̄)

Note thatθ changes as wellθ = F̄ (v̄)
f(v̄)

√
D′(v̄)
V ′(v̄)

= F̄ (v̄)
f(v̄)

√
d(v̄)

v̄
. Therefore, coverage is same when

both service providers offer same number of classes.

Sn∗
K = nΛV (v̄) − 2

√
n
√

v̄d(v̄)

−n
1

2K

(
β (v̄) ϕ

K−1
K θ

1
K − γ (v̄) (K − 1)ϕ

1
K θ−

1
K

)
+ o

(√
n
)

+ O(1)

for K ≥ 2. Hence, two class policy is asymptotic optimal ono (
√

n) scale, i.e.

lim
n−→∞

Sn∗

K − Sn∗

2√
n

= 0.

The optimal value of offering a single class is

Sn∗
1 = nΛV (v̄) + d(v̄) − 2

√
n
√

v̄

√
D (v̄)

F̄ (v̄)
+ O (1) .

We then have

lim
n−→∞

Sn∗

1 − Sn∗

K√
n

= 2v̄
√

v̄d(v̄) − 2
√

v̄

√
D (v̄)

F̄ (v̄)
< 0,



150

whereK ≥ 2. The last inequality follows fromd(∙) being nondecreasing. Overall, we have that

there is a significant benefit of offeringK ≥ 2 and thatK = 2 is nearly optimal ino (
√

n) scale.

Finally, for classification, we compareϕ andΦ. The revenue maximizer admits more the

the high class than the social planner does if

(
D (v̄) − d(v̄)F̄ (v̄)

)

d′(v̄)F̄ (v̄)

(
f ′(v̄)

f(v̄)
−

d′′(v̄)

d′(v̄)
+

2f(v̄)

F̄ (v̄)

)

≥ 1.

This condition is equivalent to

(A.34)
d′(v̄)F̄ (v̄)

d(v̄)F̄ (v̄) − D (v̄)
−

d′′(v̄)

d′(v̄)
+

f ′(v̄)

f(v̄)
+

2f(v̄)

F̄ (v̄)
≥ 0

Sinced(∙) is non-decreasing,ζ(∙) (recall1.12) is increasing inλ if

f ′(v))(D(v)−F̄ (v)d(v))
ΛF̄ (v)2f(v)d′(v)

+
2f(v)(D(v)−F̄ (v)d(v))

ΛF̄ (v)3d′(v)
−

d′′(v)(D(v)−F̄ (v)d(v))
ΛF̄ (v)2d′(v)2

− 1
ΛF̄ (v)

≥ 0,

for all v (after replacingλ with v = F̄−1(λ/Λ). Simplifying and taking the special casev = v̄,

leads to

(A.35)
f ′(v̄)

f (v̄)
+

2f (v̄)

F̄ (v̄)
−

d′′ (v̄)

d′ (v̄)
−

F̄ (v̄)d′ (v̄)

D(v̄) − F̄ (v̄)d (v̄)
≥ 0,

which is equivalent to (A.35).

Observe that in the special case thatd(v) = αv, ζ(λ) is increasing inλ if and only if the

MRL is convex inv. Since

M ′(λ) =
1

Λ
d

(

F̄−1

(
λ

Λ

))

− d

(

F̄−1

(
λ

Λ

))
1

Λ
+

d′
(
F̄−1

(
λ
Λ

))

f
(
F̄−1

(
λ
Λ

))
λ

Λ
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replacingvλ = F̄−1(λ/Λ) we have

ζ(λ) = −
D (vλ) − d (vλ) F̄ (vλ)(

d′(vλ)
f(vλ)

ΛF̄ (vλ)
)

F̄ (vλ)
.

With d(v) = αv, this reduces to

ζ(λ) = −
V (vλ) − vλF̄ (vλ)(

1
f(vλ)

F̄ (vλ)
)

F̄ (vλ)
.

Sincevλ is decreasing inλ, ζ(λ) is increasing [decreasing] if and only if

ϑ(v) = −
V (v) − vF̄ (v)
(

1
f(v)

F̄ (v)
)

F̄ (v)
=

vf(v)F̄ (v) − f(v)V (v)

(F̄ (v))2

is decreasing [increasing] inv. Recall that

MRL(v) = E [X − v|X ≥ v] =

∫∞
v

tf (t) dt

F̄ (v)
− v.

so that

MRL′(v) = −
F̄ (v) vf(v) − f(v)

∫∞
v

tf (t) dt

(F̄ (v))2
−1 = −

vf(v)F̄ (v) − f(v)V (v)

(F̄ (v))2
−1 = −ϑ(v)−1.

Convexity of the MRL is equivalent then toϑ(v) being decreasing inv. �

A.6. Additional Numerical Experiments

We include here additional numerical evidence for the persistence of the results (derived via

asymptotic analysis) for queues with moderate arrival rate (smalln). TablesA.1-A.4 focus on
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the value of increasing segmentation beyond two classes. Evidently, increasing the number of

classes from 1 to 2 – from FIFO to priorities – brings significant benefit. In TableA.1, the RM

increases revenues by8.30% and the SP increases welfare by4.82%. The important columns

are those in bold: the benefit of offering one more class (i.e., going up to3 classes) is only

1.91% for the revenue maximizer and0.87% for the social planner. This is true also with the

convex MRL case in TableA.2). The corresponding asymptotic statements are reflected then in

TablesA.3 andA.4 wheren is set to the high value of100.

Λ # of classesK RM (Ri) SP (Si) (Ri − R1)/R1 (Ri − R2)/R2 (Si − S1)/S1 (Si − S2)/S2

4.175

1 0.9025 2.6356
2 0.9774 2.7625 8.30% 4.81%
3 0.9961 2.7864 10.37% 1.91% 5.72% 0.87%
4 1.0032 2.7948 11.16% 2.64% 6.04% 1.17%
4 1.0067 2.7986 11.55% 3.00% 6.18% 1.31%

20

1 1.9374 6.2072
2 2.0676 6.3314 6.72% 2.00%
3 2.0947 6.3492 8.12% 1.31% 2.29% 0.28%
4 2.1045 6.355 8.62% 1.78% 2.38% 0.37%
5 2.1091 6.3576 8.86% 2.01% 2.42% 0.41%

Table A.1. The value of segmentation for a queue withn = 1 (small volume) and
valuation distribution Weibull(1,0.7) (Concave MRL).

Λ # of classes K RM (Ri) SP (Si) (Ri − R1)/R1 (Ri − R2)/R2 (Si − S1)/S1 (Si − S2)/S2

1.9

1 0.3467 0.6394
2 0.3663 0.6622 5.65% 3.57%
3 0.3707 0.6666 6.92% 1.20% 4.25% 0.66%
4 0.3723 0.6682 7.38% 1.64% 4.50% 0.91%
5 0.3731 0.669 7.61% 1.86% 4.63% 1.03%

10

1 0.5218 1.3593
2 0.5383 1.3758 3.16% 1.21%
3 0.5414 1.3784 3.76% 0.58% 1.41% 0.19%
4 0.5426 1.3792 3.99% 0.80% 1.46% 0.25%
5 0.5431 1.3796 4.08% 0.89% 1.49% 0.28%

Table A.2. The value of segmentation for a queue withn = 1 (small volume) and
valuation distribution Weibull(1,2) (Convex MRL).
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Λ # of classesK RM (Ri) SP (Si) (Ri − R1)/R1 (Ri − R2)/R2 (Si − S1)/S1 (Si − S2)/S2

1.9

1 76.390 122.781
2 77.431 122.893 1.363% 0.091%
3 77.618 122.899 1.607% 0.241% 0.096% 0.005%
4 77.681 122.901 1.690% 0.323% 0.098% 0.006%
5 77.710 122.901 1.728% 0.361% 0.098% 0.007%

10

1 139.922 179.525
2 140.831 179.561 0.650% 0.020%
3 140.939 179.562 0.726% 0.076% 0.021% 0.001%
4 140.972 179.562 0.750% 0.100% 0.021% 0.001%
5 140.987 179.562 0.761% 0.111% 0.021% 0.001%

Table A.3. The value of segmentation for a queue withn = 100 (high volume) and
valuation distribution Weibull(1,2) (Convex MRL).

Λ # of classesK RM (Ri) SP (Si) (Ri − R1)/R1 (Ri − R2)/R2 (Si − S1)/S1 (Si − S2)/S2

4.175

1 162.940 370.936
2 164.656 371.270 1.054% 0.090%
3 164.997 371.284 1.263% 0.207% 0.094% 0.004%
4 165.121 371.288 1.339% 0.282% 0.095% 0.005%
5 165.180 371.289 1.375% 0.318% 0.095% 0.005%

20

1 448.547 735.216
2 454.389 735.435 1.303% 0.030%
3 455.097 735.441 1.460% 0.156% 0.031% 0.001%
4 455.317 735.442 1.509% 0.204% 0.031% 0.001%
5 455.414 735.443 1.531% 0.226% 0.031% 0.001%

Table A.4. The value of segmentation for a queue withn = 100 (high volume) and
valuation distribution Weibull(1,0.7) (Concave MRL).
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APPENDIX B

Proofs for Chapter 2

B.1. Appendix A

B.1.1. Theoretical Ambiguity of Hypothesis 1

In Section2.3, we denoted the competing Hypothesis 1A and 1B. Optimal action of the

driver depends on demand characteristics, demand priors of the driver, and number of drivers

entering into the zone. In this section, we illustrate the theoretical ambiguity with the following

setting. Assume that demand in a given zone is either high or low denoted byDH andDL

with DH > DL. Agent has partial information about the demand by considering the number

of new agents occur in her zone. More specifically, agent thinks that demand will be high with

probabilityπH(n) and it will be low with probability1 − πH(n) wheren is the number of new

agents. Assume that the agent is myopic and will stay in her zone if expected revenue in the

current period is greater than her reservation price. Hence, probability of staying in the zone is

(B.1) F

(

a min

(

1,

(
DHπH(n) + DL(1 − πH(n))

k + n

)))

wherea is the expected revenue for the service,k is the number of agents that were already

in the zone andv is the (random) reservation price which hasF (∙) as cumulative distribution

function. Therefore, probability of scattering increases as number of new agent increases if

and only if min
(
1,
(

DHπH(n)+DL(1−πH(n))
k+n

))
increases asn increases. However, this is not
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necessarily the case. Supposek ≥ DH andπH(n) = 1 − 1
n+1

. Then, (B.1) increases byn

if n <
−DL+

√
(DH−DL)(DHk−DL)

DH
and it decreases byn otherwise. Therefore, this framework

shows us that it is not clear how the number of new agents may affect the scattering decision of

the agent. Our empirical analysis allows us to resolve this theoretical ambiguity.

B.1.2. Theoretical Ambiguity of Hypothesis 2 and Derivation of Equation

In Section2.3we defined Hypothesis 2A and 2B. It is not a priori clear whether Hypothesis

2A or 2B is more consistent with optimal behavior. We illustrate this theoretical ambiguity by

considering a setting with 2 zones and 2 agents. Assume that ride requests are only from one

zone to the other zone, there is only 1 ride request per zone at each period with probability ofp

and it takes one period-time to change zones. If they are in the same zone, each driver can hail

the passenger equally likely when there is a ride request. We also assume that when the ride

request is not satisfied by any of the drivers, the demand is lost. Consider the case where only

one of the drivers changes her zone with probability ofq when the other driver enters to her

zone. Let us call this driver asstrategicdriver. Customer arrival occurs after the driver scatters,

therefore; she losses her chances to hail a passenger for that period if she decides to change her

zone.

In the long-run, strategic driver has the following probability of hailing a passenger in a

given period

(B.2) R ,
2(−2 + p)p + (−1 + p)2pq

2(−3 + q + p(2 + (−3 + 2p)q))
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which leads to

∂R

∂q
= −

(−1 + p)p(1 + p(−5 + 2p))

2(−3 + q + p(2 + q(−3 + 2p)))2

Therefore, ifp < 5−
√

17
4

, then scattering always increases the chances of the strategic driver’s

finding a passenger, otherwise; herding is a better choice to increase the probability of finding

a passenger. Hence, there can be cases where scattering may payoff even though traveling from

one zone to the other zone vacant takes additional time.

B.1.2.1. Derivation of the Equation (B.2)

Following state space,S = {1, 2, 3}, is sufficient to consider every possible scenario that may

occur in this setting wheres = 1 if drivers are in different zones in the current time period,s = 2

if drivers are in the same zone at the current time period because strategic driver did not move

but non-strategic driver changed her zone to the one that strategic driver stays in the previous

time period, and lastly sets = 3 for the remaining three scenarios at which all scenarios result

in being in the same zone at the current time period: (3.1) they had been in the same zone and

none of them moved, (3.2) they were in the same zone in the previous time period and moved

together, hence they are in the same zone at the current time period as well, (3.3) only strategic

driver moved in the previous time period and they are in the same zone at the current time

period. Note that strategic driver will scatter with probabilityq only whens = 2. To find the

limiting probability,π, we construct the transition probability matrix

P =









p2 + (1 − p)2 p(1 − p) p(1 − p)

q(1 − p) + (1 − q)p 0 qp + (1 − q)(1 − p)

p 0 1 − p








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Since each state communicates with each other and state space is finite, solutionπ of πP = π

is the unique limitingπ. Solving this equation yields to

π1 =
1

3 − 2p − q + 3pq − 2p2q

π2 =
(1 − p)p

−2p2q + 3pq − 2p − q + 3

π3 =
−2p2q + p2 + 3pq − 3p − q + 2

−2p2q + 3pq − 2p − q + 3
.

Note that strategic driver will hail a passenger with probability ofp whens = 1, (1− q)p
2

(since

the driver can hail a passenger only she decides to stay instead of scatter) whens = 2 and p
2

whens = 3. Therefore, using these results with the equation below yield to the result

R , π1p + π2
p

2
(1 − q) + π3

p

2
.

B.2. Appendix B: Spatial Autoregressive Model and Results

B.2.1. Model

As noted inManski(1993), the decision of the individual can be affected by the decision of

her peers, which means that there can be a social interaction between each individual. Therefore,

the models we consider in previous sections do not formally consider these peer effects, which

may result in so-called identification problem (SeeManski 1993for details). In this section, we

test our first hypothesis with a different model setup and a method where we also consider peer

effects. For this purpose, we use spatial regression model to test Hypothesis 1.
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Before reporting our results, we provide some basic information about this model. Specifi-

cally, we use Spatial Autoregressive Model (SAR) to capture the effect of peers. Our estimations

require a model setup with balanced data sets, i.e., for each unit of observation we need to have

same number of data points over time. Since this is not possible by using drivers as a unit of

observation, we consider zones as our unit of observation. Therefore, we defineLeavingRatio

which is basically the fraction of the vacant drivers that decides to leave the zone. Suppose we

haveN zones andK regressors. The model is specified as

(B.3) Yt = α + ρWYt + βXt + ut

whereYt denotes anN × 1 vector consisting of one observation on the dependent variable for

every zone in the sample at timet, α is N×1 vector for individual fixed or random effects,W is

N × N spatial weighting matrix,Xt is N × K matrix of regressors with associated parameters

β contained inK × 1 vector andut = (u1t, . . . , uNt) is vector of independently and normally

distributed error terms.

As noted inElhorst(2010), this model prevents possible identification problems. In order

to understand the effects of regressors on the dependent variable, we need to have the following

modification on (B.3)

Yt − ρWYt = α + βXt + ut(B.4)

Yt = (1 − ρW )−1(α + βXt + ut)
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Then, we can identify the effect of regressors on dependent variable easily. The following

equation gives us the effect ofkth regressor amongX regressors.

(B.5)

[
∂Y

∂x1k
∙ ∙ ∙ ∂Y

∂xNk

]

=









∂y1

∂x1k
∙ ∙ ∙ ∂y1

∂xNk

...
...

...

∂yN

∂x1k
∙ ∙ ∙ ∂yN

∂xNk









= (1 − ρW )−1βk

Diagonal elements of (B.5) are called thedirect effectsof the change in the regressors on

the dependent variable of the corresponding zone. Since many zones are considered in these

models, estimation methods of such models do not list all direct effects and only provide the

average of these estimations. On the other side, non-diagonal elements of (B.5) reflect the

indirect effectbecause they show us the effect of a change in regressor on a dependent variable

in a different zone. Similar to the listing of direct effects, only one result is provided as the

estimate for indirect effect of an regressor. More specifically, the average of the row sums

is reported (For further information about the direct and indirect effects of spatial regression

models seeElhorst 2010).

Table B.1. Statistical Summary for Spatial Data.

Variable Mean SD Min Max
LeavingRatio .251595 .2351412 0 1
Vacant 4.299446 5.835457 0 68
GetIn .0654602 .3126902 0 13
GetOut .0382696 .2119667 0 6
VacantIn 2.706472 4.167689 0 53
VacantOut 1.445378 2.081628 0 26
SalesTime 2.234779 4.032085 -3.765 14.746
SalesZone 4.163825 6.662402 -2.198 28.969
RushHour .2501737 .433113 0 1
Weekend .2857143 .451754 0 1
Observations 4,442,193
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B.2.2. Results

In this section, we provide our results for the SAR model where we consider spatial effects.

See TableB.1 for the statistical summary. Note that unit of observation is not driver for this

analysis. We have one observation for each minute, day, and zone, leading to a balanced data

which is required for our spatial analysis.

In TableB.2, we provide the results of SAR model with both direct and indirect effects

of each variable. Note that each zone has its own direct and indirect effects as explained in

the previous section but only average of these estimations are reported due to space limitations

since we have400 zones.

As we had in regression models,NewDriversvariable has significant and positivedirect

effectonLeavingRatio. Therefore, we observe that drivers tend to leave their zone as the number

of new drivers increases. Hence, Hypothesis 1B is supported with this model as well. Advantage

of this model compared to regression models is that SAR considers social interaction between

peers. In our SAR models we find that this social interaction parameter is significant, i.e.,

decisions of the drivers in a given zone are affected by decisions of peers in neighboring zones.
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Table B.2. Effect of Entry of New Drivers on LeavingRatio under SAR model

(RE-1) (RE-2) (RE-3) (FE-1) (FE-2)
Spatial:ρ 0.123∗∗∗ 0.121∗∗∗ 0.0676∗∗∗ 0.123∗∗∗ 0.121∗∗∗

(147.21) (145.78) (78.18) (147.14) (145.71)

Direct Effects
NewDrivers 0.00133∗∗∗ 0.00267∗∗∗ 0.00157∗∗∗ 0.00132∗∗∗ 0.00266∗∗∗

(21.54) (37.84) (22.32) (21.43) (37.74)

SalesTime 0.00560∗∗∗ 0.00579∗∗∗ 0.000312∗∗∗ 0.00560∗∗∗ 0.00579∗∗∗

(233.51) (238.01) (8.84) (233.92) (238.07)

SalesZone 0.00102 0.00155∗ 0.00246∗∗∗ 7.33e-14 0.00000236
(1.52) (2.36) (3.67) (0.07) (0.07)

Weekend 0.00631∗∗∗ 0.00381∗∗∗ 0.00631∗∗∗ 0.00381∗∗∗

(25.44) (18.66) (25.44) (18.67)

RushHour -0.0289∗∗∗ -0.0282∗∗∗ -0.0289∗∗∗ -0.0282∗∗∗

(-101.35) (-119.60) (-101.34) (-119.62)

GetIn -0.00602∗∗∗ -0.00643∗∗∗ -0.00601∗∗∗

(-16.28) (-17.52) (-16.27)

GetOut -0.000688 0.000290 -0.000694
(-1.20) (0.51) (-1.21)

VacantIn -0.00314∗∗∗ -0.00434∗∗∗ -0.00314∗∗∗

(-85.18) (-114.40) (-85.11)

VacantOut 0.00305∗∗∗ 0.00199∗∗∗ 0.00304∗∗∗

(42.37) (27.40) (42.32)
Indirect Effects

NewDrivers 0.000182∗∗∗ 0.000363∗∗∗ 0.000113∗∗∗ 0.000182∗∗∗ 0.000362∗∗∗

(22.24) (37.29) (20.46) (21.13) (36.01)

SalesTime 0.000769∗∗∗ 0.000786∗∗∗ 0.0000224∗∗∗ 0.000768∗∗∗ 0.000786∗∗∗

(118.68) (112.30) (8.85) (134.37) (118.48)

SalesZone 0.000140 0.000211∗ 0.000176∗∗∗ 1.01e-14 0.000000320
(1.52) (2.36) (3.68) (0.07) (0.07)

Weekend 0.000866∗∗∗ 0.000517∗∗∗ 0.000866∗∗∗ 0.000517∗∗∗

(25.25) (18.42) (25.15) (19.08)

RushHour -0.00396∗∗∗ -0.00383∗∗∗ -0.00396∗∗∗ -0.00383∗∗∗

(-87.29) (-90.29) (-84.26) (-93.95)

GetIn -0.000818∗∗∗ -0.000462∗∗∗ -0.000816∗∗∗

(-16.15) (-16.89) (-16.21)

GetOut -0.0000936 0.0000207 -0.0000942
(-1.20) (0.50) (-1.21)

VacantIn -0.000427∗∗∗ -0.000312∗∗∗ -0.000426∗∗∗

(-72.32) (-61.74) (-75.69)

VacantOut 0.000414∗∗∗ 0.000143∗∗∗ 0.000413∗∗∗

(39.49) (24.54) (41.05)
Observations 4,442,193 4,442,193 4,442,193 4,442,193 4,442,193
AIC -1098983.6 -1106104.1 -1176422.7 -1102714.4 -1109809.9
BIC -1098664.2 -1105571.9 -1174400.1 -1102474.9 -1109317.6
Log-Likelihood 549515.8 553092.1 588363.3 551375.2 554942.0

t statistics in parentheses

Unit of observation is zone

Zone fixed effects are considered

Dependent variable isLeavingRatio

Note: RE-3 Model considers daily and hourly time fixed effects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B.3. Results

Table B.3. Impact of Scattering on Agent Utilization

(OLS-1) (OLS-2) (Frac Logit-1) (FracLogit-2)

PercentageReactHourly 0.0719*** 0.0725*** 0.467*** 0.507***
-53.49 -55.38 -55.25 -58.51

Weekend 0.0615*** 0.0826*** 0.409*** 0.562***
-43.63 -60.46 -45.28 -61.65

RushHour -0.0286*** -0.0530*** -0.229*** -0.339***
(-14.73) (-27.31) (-15.49) (-22.69)

SalesTime 0.0184*** 0.109***
-118.11 -111.96

SalesZone 0.00570*** 0.0402***
-115.52 -113.92

Constant 0.115*** 0.0549*** -1.964*** -2.450***
-65.5 -30.48 (-156.16) (-181.53)

t statistics in parentheses

Dependent variable is PercentageBusy, which is a fraction.

All of the models above use hourly fixed effects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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