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ABSTRACT

The Brink–Schwarz superparticle is a one-dimensional analogue of the Green–Schwarz super-

string. In this thesis, we use the Batalin–Vilkovisky formalism to study the superparticle. After

proving a vanishing result for its Batalin–Vilkovisky cohomology, we explain the sense in which

the superparticle exhibits general covariance in the world-line. Using techniques from rational ho-

motopy theory, we then show how to patch local choices of the light-cone gauge condition together,

and define the path integral in this setting.
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CHAPTER 1

A brief history of the superparticle

The Brink–Schwarz superparticle [3] was introduced as a toy model for the Green–Schwarz

superstring. The latter is a two-dimensional sigma model

Σ
2 → X

where X is a superspace with underlying vector space ten-dimensional Minkowski space. This

model describes a string moving in superspace; the magic number ten is required to achieve

consistency during quantization (a similar constraint in the case of the bosonic string forces us

to restrict attention to 26-dimensional space-time). The main advantage of the Green–Schwarz

formulation of the superstring over the Ramond/Neveu–Schwarz superstring is that, in the former,

one may choose X so that the model exhibits manifest space-time supersymmetry. Its main

disadvantage is that there is no knownmethod for quantizing theGreen–Schwarzmodel in a Lorentz-

covariant manner (one reason this is, indeed, a disadvantage is that computing scattering amplitudes

is simpler when one can take advantage of manifest Lorentz symmetry of the quantization). We

hope that some of the techniques introduced in this thesis may lead to progress towards obtaining

a Lorentz covariant quantiztion in which one can do such computations.

Before considering quantization, we need to understand how supersymmetry and Lorentz

symmetry are exhibited in the classical Green–Schwarz superstring. To do so, we choose X

so that the theory exhibits both space-time Lorentz covariance and supersymmetry. The former

requires that the odd part of the superspace X transforms as a spin representation of the Lorentz
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Lie algebra so(9,1). The latter requires, at the very least, agreement in the number of propagating

bosonic and fermionic degrees of freedom. As in bosonic string theory, these bosonic degrees of

freedom correspond to transverse modes of the string. This feature allows us to study the interplay

between Lorentz covariance and space-time supersymmetry by considering the simpler case of a

one-dimensional sigma model with the same target X .

Start by considering the bosonic portion of such a sigma model, written in the first-order

formalism as ∫
dt

(
pµ∂xµ − 1

2 eηµνpµpν
)

where x is the coordinate of the particle, p is the corresponding momentum, e is the world-

line einbein, and η is the ten-dimensional Minkowski space inner-product. As in the Polyakov

action in string theory, the incorporation of the einbein produces a model which is invariant under

worldline reparameterization. Additionally, as one would expect, this symmetry comes paired with

a constraint; the mass-shell condition on the momentum of the particle

ηµνpµpν = 0.

This leaves eight of the ten bosonic directions in X as freely propagating degrees of freedom and

indicates that we need to choose an eight-dimensional spin representation of so(9,1). Unfortunately,

no such representation exists; the smallest spin representation is the sixteen-dimensionalMajorana–

Weyl representation. Physicists devised a clever way to circumvent this dimensional mismatch

which turns out to be responsible for much fo the richness of the superparticle model (see the

introduction of [8]). Let θa be a fermionic Majorana–Weyl spinor and consider the following action∫
dt

(
pµ∂xµ − 1

2 eηµνpµpν − 1
2 pµγ

µ
abθ

a∂θb
)
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where γµab are the ten-dimensional gamma matrices. The additional term involving θa is the

remnant of the WZW topological term in the Green–Schwarz action; in one-dimension there is no

topological content.

Using the mass shell constraint along with the identity

γ
µ
abγ

ν bc + γνabγ
µ bc = 2ηµνδa

c

we see that this action is invariant under the odd symmetry

δθa = pµγµ abκb.

The mass shell condition implies that the rank of the matrix pµγµ ab is eight, hence eight of the

sixteen fermionic degrees of freedom are redundant. The remaining eight fermionic degrees of

freedom are freely propagating andmatch up with the eight bosonic propagating degrees of freedom

described above.

Another consequence of the degeneracy of pµγµ ab is that the gauge parameters κa themselves

contain redundancies. That is, we are free to perform the transformation

δκa = pµγ
µ
abκ

b
2

without affecting the transformation rule for θ. Since the transformation rule for κ is identical

to that for θ, we see that the same redundancies are present in κ2. As we will explain, in the

Batalin-Vilkovisky formalism this never ending cycle of redundancies requires us to introduce an

infinite number of so-called “ghost for ghost” fields. These additional fields act as negative degrees

of freedom and effectively cancel the eight redundant fermionic degrees of freedom in θ. One of

the key technical results of this thesis implies that, while an infinite number of additional fields are

incorporated to the Batalin-Vilkovisky formulation of the superparticle model, in aggregate we are

left with an equal number of propagating bosonic and fermionic degrees of freedom.
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CHAPTER 2

The Batalin Vilkovisky formalism

2.1. Classical gauge theory

2.1.1. Batalin-Vilkovisky formalism in finite dimensions: a toy model

Gauge theory studies the critical locus of a function S, called the action, and its quotient by the

action of a symmetry group of the model. The aim of the Batalin-Vilkovisky formalism is to model

stacky critical locii as the zeroth cohomology of a differential graded supermanifold. We work in

the setting where S is a function on a supermanifold X and g→ T X is a Lie algebroid acting on X .

Let xi be coordinates on X and ξi
a(x) be the vector fields corresponding to a local frame of g.

We introduce the differential graded supermanifold X = CE∗(X,g) whose coordinates are xi in

degree zero and the exterior algebra on ca, the shifted duals to the frame ξa, in positive degrees.

The differential acts on the degree zero coordinates by

δxi = caξ
j
a∂ j xi .

In particular, the degree zero cohomology is identified with the functions on the leaf space of the

Lie algebroid g. In the case where g is the action Lie algebroid associated to a Lie algebra, this

identification of the quotient with the zeroth cohomology of the Chevalley-Eilenberg complex is

known in physics as the BRST method.

Forgetting, for now, the Chevalley-Eilenberg differential, we form the shifted cotangent bundle

ofX ,M = T∗[−1]X . In addition to the coordinates onX , we denote the dual coordinates to xi and

ca by x+i and c+a . These dual coordinates have degree −1 − deg(xi) and −1 − deg(ca) respectively,
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as well as having opposite parity. We now describe how to construct a differential on M whose

zeroth cohomology is the desired subquotient. To motivate what follows, note that the critical locus

of S in X is defined by the equations
∂S
∂xi = 0

while functions on the quotient of X by the action of g are given by the kernel of the Chevalley-

Eilenberg differential δ acting on xi. A first attempt is to simply piece these two observations

together and define a differential on M which acts by the Chevalley-Eilenberg differential on the

coordinates in non-negative degrees and by

x+i 7→
∂S
∂xi

on the dual coordinates to xi. A simple examples quickly shows that this will not produce a

differential. Let X = R2, let S equal |x |4 − 2|x |2, and g be the action Lie algebroid of R acting by

rotations. Applying the above differential to x+1 followed by the Chevalley-Eilenberg differential

gives

x+1 7→ 4(x3
1 + x1x2

2 − x1) 7→ 4c(x2 − x2
1 x2 − x3

2) , 0.

This failure of the differential to square to zero is easily mended: notice that if we add the terms

x+2 x1c − x+1 x2c

to the action then the Chevalley-Eilenberg differential is defined by the formula

δxi =
∂S
∂x+i

,
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in a sense the dual of the equation defining the differential on the dual coordinates x+i . These terms

also add new terms to the differentials of x+i and c+, and one can easily check that the formulas

xi 7→
∂S
∂x+i

x+i 7→
∂S
∂xi

c+ 7→
∂S
∂c

do define a differential.

Looking back at the general setting, to define a differential onM, begin by adding terms to the

action of the form x+i δxi and c+a δca. Equivalently, we see that this modification to S allows us to

express the action of the Chevalley-Eilenberg differential as

δxi =
∂S
∂x+i

and δca =
∂S
∂c+a

.

Making use of fact that M is naturally endowed with the structure of a −1-shifted symplectic

supermanifold, we can observe that the differential defined in our example above can be written as

Z I 7→ (S, Z I)

where Z I are coordinates onM and ( , ) is the 1-shifted Poisson bracket associcted to the symplectic

structure on M, called the Batalin-Vilkovisky anti-bracket or sometimes just the anti-bracket. A

simple application of the Jacobi identity for the Poisson bracket shows that this formula will define

a differential if the action S satisfies the following, known as the classical master equation

(S,S) = 0.

We can summarize the procedure above as follows. First, we form the graded supermanifold

M and add terms to the action consisting of the dual coordinates multiplied by the action of the

Chevalley-Eileberg differential on the coordinates. Next, we check if the modified action satisfies

the classical master equation. If not, we must incorporate additional terms into the action, which

will be quadratic in the dual coordinates, to ensure that the classical master equation is satisfied.
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The result will be a new action which agrees with the original action when the dual coordinates are

all set to zero.

2.1.2. Higher gauge symmetry

In interesting cases, we may find further symmetries acting onM itself which preserve the critical

locus of the modified action S. In these cases, we need to repeat the above procedure to incorporate

these new symmetries into our model. To see how one may detect when further symmetries are

present, we return to our original setting of a supermanifold X and action S ∈ O(X). If we introduce

the shifted cotangent bundle M = T∗[−1]X we see that, since the action is only a function of the

base variables xi, it trivially satisfies the classical master equation on M . We can think of this as

the zeroth step in the iterative procedure described above. It follows that S defines a differential

s on O(M) whose degree zero cohomology will be functions on the critical locus of S. Suppose

there is a Lie algebroid g→ T X which preserves S. If ξa are vector fields on X corresponding to a

local frame of g then we see that

s(x+i ξa xi) =
∂S
∂xi ξa xi = ξaS = 0

by hypothesis. In other words, we have found closed elements of O(M) in degree −1. It is easy

to check that such en element will be exact precisely when ξa xi is a linear combination of the

equations defining the critical set of S:

ξi
a = f i j ∂S

∂x j .

where f i j is graded skew-symmetric. Since these types of vector fields will always preserve S,

we do not consider them true symmetries of the model. The conclusion is that symmetries of S

correspond to cohomology classes of the differential graded supermanifold (M, s) in degree −1.
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This description gives us, at least in theory, a computational way of determining if a theory has

residual gauge symmetry. At the zeroth stage, one looks for cohomology in degree −1. If such

classes are present, one introduces the Chevalley-Eilenberg coordinates ca of X and their duals,

modifies the action, and tries to solve the master equation once more. Note that the additional term

x+i δxi = x+i ξa xica ensures that there is a term in the modified differential

c+a 7→ x+i ξa xi

which trivializes the cohomology classes found in step zero. Once this has been accomplished and

the degree −1 cohomology vanishes, in stage one we search for cohomology in degree −2. If any

such classes exist, we need to repeat this process. If this iterative procedure terminates or converges,

then we will have successfully resolved the critical locus of S modulo g in the sense that all the

negative degree cohomology of the resolution is trivial. In finite dimensions, this convergence is

always possible when X is a manifold (as opposed to a supermanifold); see [4].

2.1.3. Variational calculus and general covariance in the Batalin–Vilkovisky formalism

We now extend the Batalin-Vilkovisky formalism described above to one-dimensional field theory,

the setting of the superparticle. For this, we must adopt the formalism of variaitonal calculus.

In the finite-dimensional setting, we studied differential graded supermanifoldsMwhich could

be realized as −1-shifted cotangent bundles and whose differentials were Hamiltonian vector fields

s = (S,−).

In field theory, we study sections of bundles over a “world-manifold” Σ whose fibers are the

differential graded supermanifolds described above. We will focus on the case when Σ is one-

dimensional with coordinate t and work locally on Σ. Let the fibers of our bundle be modeled on
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M = T∗[−1]X as above. We introduce the notation ϕa for the coordinates on X and ϕ+a for their

dual coordinates on the fibers of M. To align with the physics terminology, we call the degree of

these fiber coordinates the ghost number and denote it by gh. Sections of ghost number zero are

usually referred to as the classical fields of the theory. Those of ghost numbers one, two, three,

etc. are called ghosts, ghosts for ghosts, and so on. Sections of negative ghost number are referred

to as anti-fields, and sometimes more specifically as anti-fields for the respective dual fields in

non-negative ghost number. For instance, a section with ghost number −1 is just an anti-field, while

one with ghost number −2 is an anti-field for a ghost. Physicists also have special words to describe

the parity of coordinates; even parity coordinates are called bosonic while odd parity coordinates

are called fermionic.

When Σ is one-dimensional the jet-bundle has a relatively simple description. Fiber-wise

coordinates are given by derivatives of the coordinates ϕa and ϕ+a along the base, denoted by

∂kϕa, ∂kϕ+a

for k ≥ 0. In order to deal with graded supermanifolds with coordinates in ghost numbers

unbounded from above or below, we will need to take some special care in specifying what we

mean by functions on the jet bundle. The bosonic fiber coordinates with ghost number zero play a

special role since they describe an ordinary manifold which we will denote M . We may consider

the algebra generated by the fiber-wise coordinates above as a sheaf over M , and denote this algebra

by A. The algebra A is filtered by the ghost number of the anti-fields. Let FkA be the ideal

generated by monomials

∂l1ϕ+a1
· · · ∂lnϕ+an

such that gh(ϕ+a1
) + · · · + gh(ϕ+an) + k ≤ 0. The subspaces FkA define a decreasing filtration of A,

with F0A = A and FiA · F jA ⊂ Fi+ jA. Denote by Â the completion of A with respect to this
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filtration:

Â = lim
←−−

k

A/FkA.

The replacement for functions in the finite-dimensional setting is local functionals. These can

be written as integrals of local densities, and when Σ is one-dimensional, the space of local densities

and the space of local functions are both isomorphic to Â, the former identically so and the latter

via multiplication by the local frame dt. The differential along the base acts on these two spaces

via the operator dt ∂

Â
dt ∂
−−−−−→ Â · dt .

We ignore subtleties of boundary conditions so that the space of local functionals, F , is isomorphic

to the kernel of Â by the image of this differential

F � Â/∂Â.

We find it easier to work with the ring Â and then pass to the quotient F , where there is no

well-defined notion of multiplication. Denote the image of an element f ∈ Â in F by
∫

f . The

following notation will be convenient. Denote the partial derivatives on the jet bundle by

∂k,a =
∂

∂(∂kϕa)
∂a

k =
∂

∂(∂kϕ+a )
.

In the special case when k = 0 we simply write ∂a and ∂a.

Definition 2.1.4. The Soloviev bracket is defined on A by the formula

(( f ,g)) =
∑

a

(−1)(p( f )+1)p(ϕa)
∞∑

k,l=0

(
∂l(∂k,a f )∂k(∂a

l g) + (−1)p( f )∂l(∂a
k f )∂k(∂l,ag)

)
where p(−) denotes the parity of an element of A.
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The Soloviev bracket, and its extension to Â, satisfies the axioms for a 1-shifted graded Lie

superalgebra: it is graded supersymmetric

(( f ,g)) = −(−1)(p( f )+1)(p(g)+1)(( f ,g)),

and satisfies the Jacobi relation

(( f , ((g, h)))) = (((( f ,g)), h)) + (−1)(p( f )+1)(p(g)+1)((g, (( f , h)))).

Furthermore, it is linear over ∂:

∂(( f ,g)) = ((∂ f ,g)) = (( f ,∂g)).

Most importantly, one can check that the Soloviev bracket descends to the usual Batalin-Vilkovisky

anti-bracket on F , defined by(∫
f ,

∫
g
)
=

∑
a

(−1)(p( f )+1)p(ϕa)∫ (
(δa f )(δag) + (−1)p( f )(δa f )(δag)

)
where δa and δa are the variational derivatives

δa =

∞∑
k=0
(−∂)k∂k,a δa =

∞∑
k=0
(−∂)k∂a

k .

An evolutionary vector field on A is a graded derivation that commutes with ∂; such a vector

field has the form

X = ev(Xa∂a + Xa∂
a) :=

∞∑
k=0

(
∂k Xa∂k,a + ∂

k Xa∂
a
k

)
.

We only consider evolutionary vector fields since they are the ones that descend to vector fields on

F .
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Definition 2.1.5. The Hamiltonian vector field X f of an element f ∈ A is the evolutionary

vector field

X f =
∑

a

∞∑
k=0
(−1)(p( f )+1)p(ϕa)

(
∂k(δa f )∂a

k + (−1)p( f )∂k(δa f )∂a,k

)
.

In field theory the classical master equation for a bosonic local functional S of ghost number

zero is the following

(2.1)
(∫

S,
∫

S
)
= 0.

The Batalin-Vilkovisky differential corresponding to an action functional S is the evolutionary

vector field s = XS. The vector field s has ghost number 1 and is indeed a differential precisely

when S satisfies the classical master equation.

We now explore the definition of global covariance in the Batalin-Vilkovisky formalism, fol-

lowing the account in [5]. Consider the element D ∈ A defined by

D = ϕ+a∂ϕ
a.

The Hamiltonian vector field XD generates reparameterizations of Σ. Moreover, this vector field

acts trivially on F since
∫

D is in the center of F ,(∫
D,

∫
f
)
= 0

for any
∫

f ∈ F . A global covariant field theory is one in which XD, and hence, reparameterizations,

acts trivially on the cohomology of s in a coherent way. To make this precise, introduce an auxiliary

bosonic variable u of ghost number 2 and consider the extended space of local functionals F[[u]].
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Definition 2.1.6. A global covariant field theory is a solution
∫

Su ∈ F[[u]] to the following

equation

(2.2) 1
2

(∫
Su,

∫
Su

)
= −u

∫
D.

To unpack this definition, write a solution of (2.2) as a series

Su =

∞∑
n=0

unSn.

The constant term in (2.2), (∫
S0,

∫
S0

)
= 0,

is simply the classical master equation for S0. This means that we may consider S0 as a classical

action in the Batalin-Vilkovisky formalism with associated Batalin-Vilkovisky differential s.

The linear term in u tells us that (∫
S0,

∫
S1

)
=

∫
D,

or in other words,
∫

D is exact under the Batalin-Vilkoviski differential s
∫

S1 =
∫

D.

2.1.7. The Thom–Whitney normalization

In the case of the superparticle, it is difficult to write down closed form solutions Su to (2.2) which

are defined for all values of the momentum pµ. To overcome this difficulty, we use a tool from

rational homotopy theory to patch local solutions together into a global one.

Let X be a manifold with cover

U = {Uα}α∈I .
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The nerve NkU of the cover is the sequence of manifolds indexed by k ≥ 0

NkU =
⊔

α0...αk∈Ik+1

Uα0...αk ,

where

Uα0...αk = Uα0 ∩ · · · ∩Uαk .

Denote by ε : N0U → X the map which on each summand Uα equals the inclusion U ↪→ X .

In order to globalize (2.2), we have to replace the manifold X by a sequence of manifolds of the

form {NkU }. To do this, we will use the formalism of simplicial and cosimplicial objects, and we

now review their definition.

Let ∆ be the category whose objects are the totally ordered sets

[k] = (0 < · · · < k), k ∈ N,

and whose morphisms are the order-preserving functions. A simplicial manifold M• is a contravari-

ant functor from ∆ to the category of manifolds. (We leave open here whether we are working

in the smooth, analytic or algebraic setting.) Here, Mk is the value of M• at the object [k], and

f ∗ : M` → Mk is the action of the arrow f : [k] → [`] of ∆. The arrow di : [k] → [k + 1] which

takes j < i to j and j ≥ i to j + 1 is known as a face map, while the arrow si : [k] → [k − 1] which

takes j ≤ i to j and j > i to j − 1 is known as a degeneracy map.

An example of a simplicial manifold is the Čech nerve N•U of the cover U = {Uα}α∈I . The

face map δi = d∗i : Nk+1U → NkU corresponds to the inclusion of the open subspace

Uα0...αk+1 ⊂ Nk+1U

into the open subspace

Uα0...α̂i ...αk+1 ⊂ NkU,
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and the degeneracy map σi = s∗i : Nk−1U → NkU corresponds to the identification of the open

subspace

Uα0...αk ⊂ NkU

with the open subspace

Uα0...αiαi ...αk+1 ⊂ Nk+1U .

Any simplicial map f ∗ : M` → Mk is the composition of a sequence of face maps followed by a

sequence of degeneracy maps. In particular, we see that in the case M• = N•U of the nerve of a

cover, all of these maps are local embeddings.

A covariant functor F• from ∆ to a category C is called a cosimplicial object of C. These arise

as the result of applying a contravariant functor to a simplicial space: for example, given a cover

U of M from the previous section, applying the local sections functor of the sheaf F(−) to the

simplicial graded supermanifold N•U , we obtain the cosimplicial graded Lie superalgebra

F(N•U)

with the Batalin–Vilkovisky antibracket.

We now generalize the classical master equation of Batalin–Vilkovisky theory to a Maurer–

Cartan equation for the cosimplicial graded Lie superalgebra F(N•U). We use a construction

introduced in rational homotopy theory by Sullivan [12] (see also Bousfield and Guggenheim [2]),

the Thom–Whitney normalization.

Let Ωk be the free graded commutative algebra with generators {ti}ki=0 of degree 0 and {dti}ki=0

of degree 1, and relations

t0 + · · · + tk = 1

and dt0 + · · · + dtk = 0. There is a unique differential δ on Ωk such that δ(ti) = dti, and δ(dti) = 0.
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The differential graded commutative algebrasΩk are the components of a simplicial differential

graded commutative algebraΩ• (that is, contravariant functor from ∆ to the category of differential

graded commutative algebras): the arrow f : [k] → [`] in ∆ acts by the formula

f ∗ti =
∑

f ( j)=i

t j, 0 ≤ i ≤ n.

The Thom–Whitney normalization Ω• ⊗∆ V• of a cosimplicial superspace is the equalizer of

the maps
∞∏

k=0
Ωk ⊗ V k

∞∏
k,̀ =0

∏
f :[k]→[`]

Ωk ⊗ V`

1⊗ f∗

f ∗⊗1

If the superspaces V k making up the cosimplicial superspace are themselves graded V k∗, the

Thom–Whitney totalization of V•∗ is the product superspace

‖V ‖n =
∞∏

k=0
Ω

k
• ⊗∆ V•,n−k .

The Thom–Whitney normalization takes cosimplicial 1-shifted graded Lie superalgebras to 1-

shifted graded Lie superalgebras. The reason is simple: if Lk is a 1-shifted graded Lie superalgebra,

then so is Ωk ⊗ Lk , with differential δ and antibracket

[α1 ⊗ x1, α2 ⊗ x2] = (−1) j2p(x1)+1 α1α2 [x1, x2],

where α` ∈ Ωi`
k and x` ∈ Lk,j` . The Thom–Whitney totalization ‖L‖ is a subspace of the product

of 1-shifted graded superalgebras Ωk ⊗ Lk , and this subspace is preserved by the differential and

by the antibracket. Furthermore, the construction of ‖F(N•U)‖ behaves well under refinement of

covers, see [6].
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The analogue of the classical master equation (2.1) in the global setting is the Maurer–Cartan

equation for the differential graded 1-shifted Lie superalgebra ‖F(N•U)‖:

(2.3) δ
∫

S + 1
2

(∫
S,

∫
S
)
= 0.

Here, S is a consistent collection of elements S j
α0...αk ∈ Ω

j
k ⊗ F− j(Uα0...αk ) of total degree 0 which

satisfies the sequence of Maurer–Cartan equations

δ
∫

S j−1 + 1
2

j∑
i=0

(∫
Si,

∫
S j−i

)
= 0.

The analogue of the definition of global covariance is the curved Mauer-Cartan equation for the

differential graded 1-shifted Lie superalgebra ‖F(N•U)[[u]]‖

δ
∫

Su +
1
2

(∫
Su,

∫
Sn

)
= u

∫
D.

2.2. Quantization

We will review quantization in the Batalin-Vilkovisky formalism. For convenience, we restrict

attention to the finite-dimensional setting. The path integral defines the expression

(2.4)
∫

X
dx

[
eiS(x)/~

]
as an assymptotic series in ~. When S(x) has the form

S(x) = 〈x, Ax〉 + I(x)

where I(x) contains higher degree polynomial terms in the coordinate x, this series involves the

inverse of the operator A. If this operator is degenerate, then one would first need to choose a

decomposition of the coordinates into the kernel of A and its complement in order to construct the

path integral. Unfortunately, such a decomposition is usually not natural when taking into account

symmetries of the theory. The BRST and Batalin-Vilkovisky formalisms for quantization allow us
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to perform this type of path integral in the case the A is degenerate due to symmetry of S under the

action of a Lie algebra/algebroid g.

As described in section 2.1.1 we first replace the supermanifold X with the −1-shifted cotangent

bundle to the Chevalley-Eilenberg complex for g, which we denoted by M. After extending S to

a solution of the classical master equation, we saw that the zeroth cohomology of the resulting

differential graded supermanifold was a model for the quotient of the critical locus of S by the

action of g. By specializing to the case of trivial g we see that this cohomology is not the space

we wish to perform the analog of the integral (2.4) over. Indeed, the path integral (2.4) depends on

the behavior of S not just on the critical locus, but also along a formal neighborhood of the critical

locus [9]. The correct prescription, which we now describe, is to perform the path integral over a

Lagrangian subsupermanifold ofM.

2.2.1. Lagrangians and integration

We follow the presentation of integration of half-forms in odd symplectic supermanifolds given in

[7]. Let V be a superspace with even subspace V0 and odd subspace V1. An endomorphism

A : V → V

may be written in block form

A =

(
A00 A01

A10 A11

)
where A00 : V0 → V0, A11 : V1 → V1, A01 : V1 → V0, and A10 : V0 → V1. Since we are interested

in integration, we study the analog of the determinant for superspaces, called the Berezinian. In

particular, for purely even superspaces, Ber(A) = Det(A). For a general superspace, the Berezinian
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is a rational function

Ber(A) =
Det(A00)

Det(A11 − A10 A−1
00 A01)

=
Det(A00 − A01 A−1

11 A10)

Det(A11)
.

Like the determinant, the Berezinian satisfies Ber(Id) = 1 and Ber(AB) = Ber(A)Ber(B). Further-

more, denoting the parity-reversed supertranspose of A as

A◦ : ΠV∗ → ΠV∗,

we have Ber(A◦) = Ber(A)−1; see [7].

V is an odd symplectic superspace if it comes equipped with a non-degenerate bilinear pairing

ω satisfying

• ω(v, w) = 0 unless v has opposite parity to w;

• ω(v, w) = −(−1)p(v)p(w)ω(w, v) = −ω(v, w).

A polarization of an odd symplectic superspace V is a decomposition

V = L ⊕ M

where L and M are Lagrangian subsuperspaces forω. We see thatω induces a natural isomorphism

M � L◦. A polarization allows us to decompose an endomorphism A : V → V into the block form

A =

(
P Q
R S

)
where P : L → L, S : M → M , Q : M → L, and R : L → M . The key result we will use about

endomorphisms of such superspaces is the following.

Proposition 2.2.2. Let A be an endomorphism of an odd symplectic superspace V preserving

the symplectic form ω. Then Ber(A) = Ber(P)2.

We write Ber1/2(A) = Ber(P).
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Now, since a −1-shifted cotangent bundle of a supermanifold is naturally endowed an odd sym-

plectic form, we see that such a supermanifold is locally modelled on odd symplectic superspaces.

The line bundle of half-forms onM = T∗[−1]X is defined by the transition functions Ber−1/2. We

denote this line bundle by Ω1/2(M). From the local discussion above, we see that a section of

Ω1/2(M) may be integrated over a Lagrangian subsupermanifold L ⊂M. Integrals of ths type are

called Batalin-Vilkovisky integrals and denoted by∫
L
σ

where σ is a section ofΩ1/2. The Lagrangian subsupermanifold L is referred to as the gauge fixing

Lagrangian, or gauge fixing for short.

The following is the main result regarding integration of half-forms over Lagrangian subsuper-

manifolds. For details, see [7].

Proposition 2.2.3. There is a second order differential operator ∆ defined on sections of

Ω1/2(M) which squares to zero and is related to the anti-bracket as follows:

( f ,g) = (−1)p( f )[[∆, f ],g].

Integration of a ∆-closed section σ of Ω1/2(M) over a Lagrangian subsupermanifold L ⊂ M is

invariant under the Hamitlonian flow Φt of the Lagrangian:∫
L
σ =

∫
Φ∗t (L)

σ.

Suppose that σ = eiS/~dϕwhere dϕ is a non-vanishing section ofΩ1/2(M) satisfying ∆dϕ = 0,

and S is an ~-dependent function on M. We see that ∆σ = 0 is equivalent to the quantum master

equation:

(S,S) − i~∆S = 0.
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In the limit ~→ 0, this recovers the classical master equation.

All canonical transformations (diffeomorphisms preserving the anti-bracket) are generated by

Hamiltonian flows. The invariance of the Batalin-Vilkovisky integral under canonical transfor-

mations was the motivation for defining Lagragian subsupermanifolds of simplicial −1-shifted

symplectic supermanifolds, see [7]. In the case of a simplicial −1-shifted symplectic superman-

ifold originating as the nerve of a cover U , such a Lagrangian subsupermanifold is a collection

of Lagranian subsupermanifolds of each open set in the cover together with coherent families of

canonical transformations relating these subsuperanifolds to one another on intersections. This

generalizes the case of an ordinary Lagrangian subsupermanifold, which can be expressed as a col-

lection of Lagrangian subsupermanifolds on each open set which agree identically on intersections.

In a later section, we outline how to construct an example of such a Lagrangian for the superparticle

and explain how it leads to a Lorentz-covariant gauge fixing.
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CHAPTER 3

The classical superparticle and covariance

We now apply the classical Batalin-Vilkovisky formalism to the superparticle model described

in section 1. First, we study the gauge symmetries of the model and how to extend the classical

action to a solution of the classical master equation. We then study the classical BV cohomology

and prove a technical vanishing result. This result is then used to show that the superparticle is a

covariant field theory in the sense of [5].

3.1. Solving the classical master equation

The solution to the classical master equation was originally found by Lindström et al. [10]. We

first define the mathematical context we will be working in and give a useful characterization of

this solution. After doing so, we explain how one may derive this solution from the classical action

and its gauge symmetries.

3.1.1. A characterization of the solution

As the Green–Schwarz supestring is a supersymmetric generalization of the bosonic string, the

Brink-Schwarz sueprparticle is a supersymmetric generalization of the free particle. For reasons

related to consistency of superstrings, we will focus on ten-dimensional spacetime. Let V = R9,1

be ten-dimensional Minkowski space with basis {vµ}0≤µ≤9 and inner product

〈vµ, vν〉 = ηµν .
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In particular, η00 = −1. The free particle has physical fields xµ, and Lagrangian density S =

1
2ηµν∂x

µ∂xν. For technical reasons, we prefer to work in the first-order formalism of this theory,

which has additional fields for the momentum of the particle pµ and Lagrangian density

S = pµ∂xµ − 1
2η

µνpµpν .

In order to have a theory with local reparameterization invariance, we may couple the particle

to “gravity” on the world-line, represented by a nowhere-vanishing 1-form field e. Of course, the

gravitational field in dimension 1 has no dynamical content; the introduction of the einbein e is

reminiscent of the introduction of the world-sheet metric in the Polyakov action for the bosonic

string. The modified Lagrangian density for the particle is

S[0] = pµ∂xµ − 1
2 eηµνpµpν .

The associated BV differential is

s[0] = ev
(
(∂xµ − ηµνepν)

∂

∂p+µ
− ∂pµ

∂

∂x+µ
− 1

2η
µνpµpν

∂

∂e+

)
.

The variation s[0]e+ = 1
2η

µνpµpν may be recognized as the one-dimensional stress-energy tensor.

The local gauge symmetries of this model correspond to cohomology classes of s[0] at ghost

number −1:

s[0](∂e+ − ηµνx+ν pν) = 0.

This cohomology class is killed by the introduction of a ghost field c, with ghost number 1,

transforming as a scalar on the world-line, and the addition to the Lagrangian density of the term

S[1] = (∂e+ − ηµνx+µ pν)c.
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This adds the following terms to the differential:

s[1] = ev
(
ηµνcx+ν

∂

∂p+µ
+ (∂e+ − ηµνx+µ pν)

∂

∂c+
− ηµνcpν

∂

∂xµ
− ∂c

∂

∂e

)
.

Note that this is not the usual way of introducing ghosts for reparameterization invariance via

Lie derivatives. In that prescription we introduce a ghost field c which transforms as a vector

field on the world-line and modify the Lagrangian density so that the additional terms in the BV

differential acted by Lie derivative on the fields xµ, pµ, e, and c itself. Our approach leads to a

simplified solution of the classical master equation and is equivalent to this more typical model

via canonical transformation. Effectively, we are using the einbein to convert the vector fields

appearing in the Lie algebra of the diffeomorphism group of the world-line to scalars. For more

details on the relation between the two descriptions and their relation to world-line diffeomorphism

invariance, see [5].

The sum S[0] + S[1] is the solution of the classical master equation for the free particle. We now

consider the addition of fermionic fields to this model. Recall some properties of Majorana–Weyl

spinors in signature (9,1): for further details see the Appendix of [6]. The spin group Spin(9,1)

is the universal cover of the identity component of SO(9,1). It has two real irreducible sixteen-

dimensional representations: the left and right-handed Majorana–Weyl spinors S+ and S−. The

γ-matrices γµ : S± → S∓ satisfy the relations

γµγν + γνγµ = 2ηµν .

The Lie algebra of the group Spin(9,1) is spanned by the quadratic expressions

γµν = 1
2 (γ

µγν − γνγµ).
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There is a non-degenerate symmetric bilinear form T(α, β) on S = S+ ⊕ S−, which vanishes on

S± ⊗ S± and places S± in duality with S∓. We have

Tµ(α, β) = T(γµα, β) = T(α,γµβ).

In particular, we see that

T(γµνα, β) = −T(α,γµνβ).

Hence, the pairing T(α, β) is invariant under the action of the Lie group Spin(9,1), and, in particular,

S− � (S+)
∗ as a representation of Spin(9,1).

To obtain the superparticle, we adjoin to the free particle a series of fields θn for n ≥ 0 of ghost

number n, which are left-handed Majorana–Weyl spinors if n is even, and right-handed Majorana–

Weyl spinors if n is odd. Additionally, these fields are “fermionic” in the sense that the parity of θn

is the opposite of the parity of n. As functions on the world-line, these fields transform as scalars.

The position and momentum fields xµ and pµ of the theory describe a sigma model with target

M = T∗V . For definiteness, we take the structure sheaf O of M to be functions with analytic

dependence on xµ and algebraic dependence on pµ, but our results are actually insensitive to the

regularity as functions of xµ.

For the correct definition of the superparticle, it is necessary to exclude the states of vanishing

momentum. To this end, we let M0 be the complement in M of the zero-section. Denote by

j : M0 → M the open embedding, and by O0 = j∗O the structure sheaf of M0.

The sheaf A is the graded commutative algebra generated over O0 by the variables

{e, e−1, c} ∪ {∂l xµ,∂l pµ,∂le,∂lc}l>0 ∪ {∂
l x+µ,∂

l p+µ,∂le+,∂lc+}l≥0 ∪ {∂
lθn,∂

lθ+n }n≥0,l≥0.

We denote its completion by Â.
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We can now provide a concise characterization of how one extends the solution of the classical

master equation for the particle to a solution for the superparticle. Introduce the composite spinor

fields

Ψn =



(−1)(
n+1

2 )θ+−n−1, n < −1

θ+0 +
1
2 x+µγ

µθ0 − 2c+θ1, n = −1

∂θn + x+µγ
µθn+1 − 2c+θn+2, n ≥ 0.

Observe that the sheaf A is also generated over O0 by the variables

{e, e−1, c} ∪ {∂l xµ,∂l pµ,∂le,∂lc}l>0 ∪ {∂
l x+µ,∂

l p+µ,∂le+,∂lc+}l≥0 ∪ {θn,∂
l
Ψm}n≥0,m∈Z,l≥0.

Denote byS the solution to the classicalmaster equation for the superparticle, and by s the associated

BV differential.

Proposition 3.1.2. The solution of the classical master equation S for the superparticle is

characterized by the following conditions:

(1) S satisfies the classical master equation;

(2) S = S + S′ where S = S[0] + S[1] is the solution of the classical master equation for the free

particle

S = pµ∂xµ − 1
2 eηµνpµpν + (∂e+ − ηµνx+µ pν)c,

and S′ depends only on the fields and antifields {pµ, θn} ∪ {x+µ, e
+, c+, θ+n } and their

derivatives;

(3) for all n ∈ Z, the differential s acts on the composite fields Ψn as follows:

sΨn = (−1)n+1pµγµΨn+1 − 2e+Ψn+2.
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3.1.3. Deriving the solution by resolving higher syzygies

We now discuss how one may start with the classical superparticle Lagrangian density and arrive at

an explicit solution of the classical master equation satisfying the above conditions by successively

introducing ghosts to resolve gauge symmetries. We approach this task from the physical perspective

of gauge symmetries as vector fields preserving the action, as opposed to the perspective in the

previous section of gauge symmetries as non-trivial BV cohomology classes.

As introduced in section 1, the classical superparticle action is given by∫ (
pµ

(
∂xµ − 1

2Tµ(θ0,∂θ0)
)
− 1

2 eηµνpµpν
)

where θ0 is a left-handed odd Majorana-Wely spinor. This action has two gauge symmetries. First,

there is the aforementioned reparameterization invariance

δξ xµ = ηµνpνξ δξθ0 = 0

δξpµ = 0 δξe = ∂ξ

where ξ is a bosonic gauge parameter corresponding to the ghost field c above. Additionally, there

is a fermionic symmetry

δκ1 xµ = 1
2Tµ(θ0, pνγνκ1) δκ1θ0 = −pµγµκ1

δκ1 pµ = 0 δκ1e = 2T(∂θ0, κ0)

where κ1 is a fermionic gauge parameter transforming as a right handed Majorana–Weyl spinor and

corresponds to the ghost field θ1 above. As prescribed by the BV formalism, we introduce ghost

fields c and θ1 corresponding to these two gauge symmetries and add the following term to the
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action ∫ (
ηµνx+µ pνc + 1

2 x+µTµ(θ0, pνγνθ1) + e+∂c + 2e+T(∂θ, θ1) + pµTµ(θ+0 , θ1)
)
.

To ensure the classical master equation is satisfied, we must incorporate the additional term∫ (
−c+pµTµ(θ1, θ1) − e+x+µTµ(θ1, θ1)

)
.

These additional terms introduce a new gauge symmetry

δκ2 xµ = −e+Tµ(θ0, κ2) δκ2θ0 = 2e+κ2

δκ2e = 2T(θ+0 , κ2) + x+µTµ(θ0, κ2) − 4c+T(θ1, κ2) δκ2θ
+
0 = −e+x+µγ

µκ2

δκ2c = −4e+T(θ1κ2) δκ2θ1 = pµγµκ2

where κ2 is a bosonic gauge parameter transforming as a left handed Majorana–Weyl spinor. This

corresponds to the additional term in the action∫ (
e+x+µTµ(θ0, θ2) + 4e+c+T(θ1, θ2) + pµTµ(θ+1 , θ2) + 2e+T(θ+0 , θ2)

)
where θ2 is the ghost for ghost corresponding to κ2. The action consisting of the sum of the terms

introduced above indeed satisfies the classical master equation. One may think that this is the end

of the story, but it turns out that this composite action exhibits yet another gauge symmetry, namely

δκ3e = 2T(θ+1 , κ3) δκ3θ1 = 2e+κ3 δκ3θ2 = −pµγµκ3,

where κ3 is a fermionic, right-handed MW spinor like κ1. This necessitates the additional term in

the action ∫ (
pµTµ(θ+2 , θ3) + 2e+T(θ+1 , θ1)

)
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where θ3 is the ghost for ghost for ghost corresponding to κ3. While the action built up to this point

again satisfies the classical master equation, one can find another gauge symmetry

δκ4e = 2T(θ+2 , κ4) δκ4θ2 = 2e+κ4 δκ4θ3 = pµγµκ4

where κ4 is a bosonic, left handed MW spinor like κ2. This pattern continues ad infinitum and

results in the presence of two infinite sums of higher ghosts in the action∫ (
pµ
∞∑

i=0
Tµ(θ+i , θi+1) + 2e+

∞∑
i=0

T(θ+i , θi+1)
)
.

This pattern is evident at the first levels of gauge symmetries as well, but it is accompanied by the

clutter of how the bosonic fields in the theory and their ghosts transform. It is a convenient property

of this superparticle action that the transformation rules for the bosonic fields and their ghosts only

involve the first few θn’s except for the einbein e, which is coupled to an infinite series of the spinor

fields/anti-fields/ghosts. One reason for this is the odd manner in which the reparameterization

gauge symmetry is expressed in the action. Had one expressed reparameterization invariance in the

usual way using Lie derivatives, the field c would also be coupled to all of the spinor fields. This

has the advantage of making the action considerably simpler and the disadvantage of the model not

having manifest reparameterization invariance. We will see that proving that the superparticle is,

indeed, a generally covariant model is a non-trivial task.

3.2. A vanishing theorem for BV cohomology of the superparticle

This goal of this section is to prove that the BV cohomology of the superparticle vanishes in

sufficiently negative degrees. As a warm up to proving this vanishing result for the superparticle,

let us consider the simpler case of the particle. Recall that the fields for the particle form a graded
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commutative algebra Aparticle over O generated by the variables

{e, e−1, c} ∪ {∂l xµ,∂l pµ,∂le,∂lc}l>0 ∪ {∂
l x+µ,∂

l p+µ,∂le+,∂lc+}l≥0

with completion denoted Âparticle.

In preparation for the proof, we recall a criterion of Boardman for the convergence of a spectral

sequence. Let V be a complex, with differential d : V i → V i+1. A decreasing filtration on V is a

sequence of subcomplexes

· · · ⊃ F−1V ⊃ F0V ⊃ F1V ⊃ · · ·

The associated graded complex is

grk
F V = FkV/Fk+1V .

The filtration is exhaustive if for each i ∈ Z,⋃
k

FkV i = V i .

The filtration is Hausdorff if for each i ∈ Z,⋂
k

FkV i = 0.

The filtration is complete if

V = lim
←−−

k

V/FkV .

The filtration F• induces a filtration on the cohomology H∗(V), which we denote by the same

letter. The spectral sequence associated to the filtration converges if for all (p,q) ∈ Z2 the induced

morphism

grp
F Hp+q(V) −→ E pq

∞
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is an isomorphism, and the induced filtration on H∗(V) is complete, exhaustive and Hausdorff. The

spectral sequence degenerates if E∞ = Er for r � 0.

Theorem 3.2.1 (Boardman [1]). If the spectral sequence associated to a complete, exhaustive

Hausdorff filtration (V, d,FkV) degenerates, then it is convergent.

Proof. Combine the following results from [1]: Theorems 8.2 and 9.2, the remark after

Theorem 7.1, and Lemma 8.1. �

A filtration on a differential graded algebra A is a filtration on the underlying complex such

that F j A · Fk A ⊂ F j+k A. In this case, the pages (Er, dr) of the spectral sequence are themselves

differential graded algebras, and the product on Er+1 � H∗(Er, dr) is induced by the product on Er .

Introduce the light-cone

C = {(xµ, pµ) ∈ M | ηµνpµpν = 0}.

Theorem 3.2.2. The sheaf Hi(Âparticle, s) vanishes for i < 0 and is concentrated on the light-

cone C.

Let Ãparticle be the quotient of Âparticle by constant multiples of the identity. The sheaf

Hi(Ãparticle, s) also vanishes for i < 0 and is concentrated on the light-cone.

Here, s is the BV differential associated to the solution S of the classical master equation for

the free particle.

Proof. Introduce an auxiliary grading on the sheaf of algebras Aparticle. The structure sheaf

O of the manifold M is placed in degree 0, and the generators of Aparticle over O are assigned the
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degrees in the following table:

ϕ ∂`xµ ∂`pµ ∂`e e−1 ∂`c ∂`x+µ ∂
`p+µ ∂`e+ ∂`c+

deg(ϕ) 0 0 0 0 3 0 0 −1 −1

Write gh( f ) = gh+( f ) − gh−( f ), where gh+( f ) and gh−( f ) are the contributions of the fields,

respectively antifields, to the ghost number. Rearranging, we see that

gh−( f ) = gh+( f ) − gh( f ).

Since

gh+( f ) + 2 gh( f ) ≤ deg( f ) ≤ 3 gh+( f ),

we see that

(3.1) 1
3
(
deg( f ) − 3 gh( f )

)
≤ gh−( f ) ≤ deg( f ) − 3 gh( f ).

From this grading, we construct an exhaustive and Hausdorff descending filtration on Aparticle:

GkAi
particle is the span of elements f ∈ Ai

particle such that deg( f ) ≥ k. By (3.1), the completion of

this filtration is isomorphic to Âparticle.

We now consider the spectral sequence for the filtration induced by G on Âparticle. We will show

that E pq
∞ = E pq

2 , that the sheaf E pq
2 vanishes if p + q < 0, and that it is supported on the light-cone

C. This establishes the theorem.

The differential s0 of the zeroth page E pq
0 of the spectral sequence equals

s0 = ev
( (
∂xµ − ηµνepν

) ∂
∂p+µ

− ∂pµ
∂

∂x+µ
+ ∂e+

∂

∂c+

)
.

This is a Koszul differential and its cohomology E1 is the graded commutative algebra generated

over O by the variables {∂`e, e−1,∂`c, e+}.
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The differential s1 of the first page E1 of the spectral sequence equals

s1 = ev
(
−1

2η
µνpµpν

∂

∂e+

)
.

The element ηµνpµpν ∈ E00
1 is not a zero divisor in E1. We conclude that E2 vanishes in negative

degrees and is concentrated on the zero-locus of ηµνpµpν in M , namely the light-cone C.

We see that the second page E2 of the spectral sequence is a graded commutative algebra,

generated over ON by the variables {∂`e, e−1} and {∂`c}. Thus E pq
2 vanishes unless p ≥ 0 and

p + 2q = 0, hence sr = 0 for r > 2 and the spectral sequence is seen to degenerate at E2.

Turning to the case of the sheaf Ãparticle, we have a long exact sequence for cohomology sheaves

0 −→ H−1(Ãparticle, s) −→ R −→ H0(Âparticle, s) −→ · · ·

But the above proof shows that the morphism R→ E00
∞ is an injection, and hence that

H−1(Ãparticle, s) = 0. �

Corollary 3.2.3. Let Fparticle = Âparticle/Ãparticle. The cohomology sheaf Hi(Fparticle, s) van-

ishes for i < −1 and is concentrated on the light-cone C.

Proof. The sheaf Fparticle has a resolution

0 −→ Ãparticle
∂
−→ Âparticle −→ Fparticle −→ 0.

The associated long exact sequence implies that Hi(Fparticle, s) = 0 for i < −1. �

We now prove the analogous result for the superparticle. Let

C0 = C ∩ M0.

Theorem 3.2.4. The sheaf Hi(Â,s) vanishes for i < 0 and is concentrated on the light-cone

C0.
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Let Ã be the quotient of Â by constant multiples of the identity. The sheaf Hi(Ã,s) also vanishes

for i < 0 and is concentrated on the light-cone C0.

In the proof of Theorem 3.2.4, we need the formula for the differential s = s + s′ on fields and

antifields of the theory, where s is the differential of the particle, and s′ is the contribution to the

differential from S′. We see that s′ vanishes on the fields and antifields {pµ} ∪ {x+µ, e+, c+}, and

s′θn = (−1)n+1pµγµθn+1 − 2e+θn+2

s′p+µ = −1
2Tµ(θ0,∂θ0) − c+Tµ(θ1, θ1) +

∞∑
n=1
(−1)(

n+1
2 )Tµ(Ψ−n, θn)

s′xµ = −1
2 pνTν(γµθ0, θ1) + e+

(
Tµ(θ1, θ1) + Tµ(θ0, θ2)

)
s′e = x+µTµ(θ1, θ1) − 4c+T(θ1, θ2) − 2

∞∑
n=0
(−1)(

n
2)T(Ψ−n, θn+1)

s′c = −pµTµ(θ1, θ1) − 4e+T(θ1, θ2).

The infinite sums in the formulas for s′p+µ and s′e make sense by the completeness property of Â.

Proof of Theorem 3.2.4. We define an auxiliary grading on A extending the grading on

j∗Aparticle used in the proof of Theorem 3.2.2: the generators of A over j∗Aparticle are assigned the

degrees in the following table:

Φ θn ∂`Ψn ∂
`Ψ−n

deg(Φ) 3n + 1 3n −2n

Observe that

deg( f ) ≤ 4 gh+( f ) + 16;
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the factor 4 accounts for the field θ1, which has ghost number 1 and degree 4, while the constant

16 accounts for the 16 modes of the fermionic field θ0, which have ghost number 0 and degree 1.

In the other direction, we have

gh+( f ) + 2 gh( f ) ≤ deg( f ).

Combining these two inequalities, we see that

(3.2) 1
4 deg( f ) − gh( f ) − 4 ≤ gh−( f ) ≤ deg( f ) − 3 gh( f ).

From this grading, we construct an exhaustive and Hausdorff descending filtration onA: GkAi

is the span of elements f ∈ Ai such that deg( f ) ≥ k. By (3.2), the completion of this filtration is

isomorphic to Â.

The differential s0 on the zeroth page of the spectral sequence E pq
0 equals

s0 = ev
(
∂xµ

∂

∂p+µ
− ∂pµ

∂

∂x+µ
− ∂e+

∂

∂c+

)
.

This is a Koszul differential and its cohomology E1 is the graded commutative algebra freely

generated over O0 by the variables

{∂`e, e−1,∂`c, e+} ∪ {θn | n ≥ 0} ∪ {∂`Ψn | n ∈ Z, ` ≥ 0}.

The differential s1 on the first page E1 of the spectral sequence is given by the formula

s1 = ev
(
−1

2η
µνpµpν

∂

∂e+

)
.

The element ηµνpµpν is not a zero divisor in E1: its zero-locus in M0 is the light-cone i : C0, with

structure sheaf OC0 .
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We see that the second page E2 of the spectral sequence is a graded commutative algebra

generated over OC0 by the variables

{∂`e, e−1,∂`c} ∪ {θn | n ≥ 0} ∪ {∂`Ψn | n ∈ Z, ` ≥ 0}.

The differential s2 on the second page E2 of the spectral sequence is given by the formula

s2 =

∞∑
n=1

ev
(
pµTµ

(
Ψ1−n,

∂

∂Ψ−n

))
.

On the light-cone C0, the operator

pµγµ : S± → S∓

has square zero, since (pµγµ)2 = ηµνpµpν = 0. The cohomology of this operator vanishes, in the

sense that

ker(pµγµ) = im(pµγµ).

To see this, choose a vector qµ such that ηµνpµqν > 0: then qµγµ yields a contracting homotopy

for the differential pµγµ. (This is where in the proof we need to have localized away from the zero

section of M .)

The third page E p+q
3 is generated over E00

3 by the variables {∂`c} in E3,−2
3 , {θn} in E3n+1,−2n−1

3 ,

and {∂`Ψn | n ≥ 0} in E3n,−2n
3 . Thus, E pq

r vanishes unless p ≥ 0, p + q ≥ 0, and 3p + 4q ≥ −16;

this last inequality is saturated by the product of the 16 modes of the field θ0, located in E16,−16
0 ,

with monomials in the variables {∂`θ1}. The differential sr of the rth page of the spectral sequence

vanishes for r > 20, and hence the spectral sequence degenerates, proving the first part of the

theorem.

The proof of the vanishing of the cohomology sheaves Hi(Ã,s) follows the same lines as the

proof of the analogous result for the particle. �



43

Corollary 3.2.5. Let F = Â/∂Â. The sheaf Hi(F,s) vanishes for i < −1, and is concentrated

on the light-cone C0.

3.3. General covariance, supersymmetry, and Lorentz covariance

3.3.1. The superparticle as a covariant field theory

In this section, using the Thom–Whitney formalism, we will show that the superparticle is a global

covariant field theory, in the terminology of [5].

Let D ∈ Γ(M0, Â−1) be the element

D = x+µ∂x
µ + p+µ∂pµ − e∂e+ + c+∂c +

∞∑
n=0

T(θ+n ,∂θn)

and recall the following definition.

Definition 3.3.2. A global covariant field theory is a solution of the curved Maurer–Cartan

equation in ‖F(N•U)[u]‖, where U is a cover of M0:

(3.3) δ
∫

Su +
1
2

(∫
Su,

∫
Su

)
= −u

∫
D.

If Su is a covariant field theory with respect to a cover U of M0 and (V, ϕ) is a refinement of U ,

Φ∗Su is again a global covariant field theory with respect to the refined cover.

Theorem 3.3.3. There is a global covariant field theory

Su = S +
∞∑

n=0
un+1Gn

such that S is the solution of the classical master equation for the superparticle.

Proof. Consider the open affine cover U = {Uµ}0≤µ≤9 of M0, where

Uµ = {pµ , 0}.
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We must construct a series of cochains∫
Gn ∈ ‖F(N•U)‖−2n−2,

in the Thom–Whitney totalization ‖F(N•U)‖ of the cosimplicial graded Lie superalgebra F(N•U),

satisfying the curved Maurer–Cartan equation

δ
(∫

Su

)
+ 1

2

(∫
Su,

∫
Su

)
= −u

∫
D.

Equivalently, we must find a solution G0 of the equation

(3.4) (δ + s)
∫

G0 = −
∫

D,

and for n > 0, solutions of the equations

(3.5) (δ + s)
(∫

Gn

)
= −

1
2

∑
j+k=n−1

(∫
G j,

∫
Gk

)
.

Assuming that we have solved these equations for (G0, . . . ,Gn−1), we see that

1
2

∑
j+k=n−1

(δ + s)
(∫

G j,
∫

Gk

)
= −

(∫
D,

∫
Gn−1

)
−

∑
i+ j+k=n−2

( (∫
Gi,

∫
G j

)
,
∫

Gk

)
.

The first term vanishes since
∫

D lies in the center of F , while the second term vanishes by the

Jacobi relation for graded Lie superalgebras. Thus, the right-hand side of (3.5) is a cocycle. Since

the cohomology of the complex ‖F(N•U)‖ vanishes below degree −1 by Theorem 3.2.4, we may

solve the equation for Gn.

Rewrite the formula for D, using the definition (3.11) of Ψn and the formula for the action of s:

(3.6) D = −s(x+µ p+µ + ec+) +
1
2

∞∑
n=−∞

(−1)(
n
2) T(Ψ−n,Ψn−1).

Introduce the vector

qµ =
tµ

2ηµνpν
,
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and its de Rham differential

δqµ =
δtµ

2ηµνpν
.

We will show that the expression

(3.7) G0 = x+µ p+µ + ec+ +
1
2

∑
k≥0

∑
ν0...νk

(−1)k qν0δqν1 . . . δqνk

∞∑
n=−∞

(−1)(
n
2) Tν0...νk (Ψ−n,Ψn−k−2)

in ‖A(N•U)‖−2 gives a solution of the equation

(3.8) (δ + s)G0 = −D,

yielding (3.4). By (3.6), it suffices to show that

(3.9) s
∑
ν0...νk

qν0δqν1 . . . δqνk

∞∑
n=−∞

(−1)(
n
2) Tν0...νk (Ψ−n,Ψn−k−2)

=


∑

ν0...νk−1

δqν0 . . . δqνk−1

∞∑
n=−∞

(−1)(
n
2) Tν0...νk−1(Ψ−n,Ψn−k−1), k > 0,

−

∞∑
n=−∞

(−1)(
n
2) T(Ψ−n,Ψn−1), k = 0.

We have

s
∞∑

n=−∞

(−1)(
n
2) Tν0...νk (Ψ−n,Ψn−k−2)

=

∞∑
n=−∞

(−1)(
n
2) Tν0...νk ((−1)n+1pµγµΨ−n+1 − 2e+Ψ−n+2,Ψn−k−2)

+

∞∑
n=−∞

(−1)(
n
2)+n+1 Tν0...νk (Ψ−n, (−1)n+k+1pµγµΨn−k−1 − 2e+Ψn−k)

= pµ
∞∑

n=−∞

(−1)(
n
2)
(
Tν0...νk (γµΨ−n,Ψn−k−1) + (−1)k Tν0...νk (Ψ−n, γ

µ
Ψn−k−1)

)
− 2e+

∞∑
n=−∞

(
(−1)(

n+2
2 ) + (−1)(

n
2)
)
Tν0...νk (Ψ−n,Ψn−k).
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The sum on the last line vanishes, since (−1)(
n+2

2 ) = −(−1)(
n
2). Using the identity

Tµ1...µk (γµα, β) − (−1)k Tµ1...µk (α,γµβ) = 2
k∑

j=1
(−1)k− jηµµjTµ1... µ̂j ...µk (α, β),

we conclude that

s
∞∑

n=−∞

(−1)(
n
2) Tν0...νk (Ψ−n,Ψn−k−2) = 2

k∑
j=0
(−1)k− j pνj

∞∑
n=−∞

(−1)(
n
2)Tν0...ν̂ j ...νk (Ψ−n,Ψn−k−1),

from which (3.9) follows. �

Corollary 3.3.4. The long exact sequence

· · · H−1(Ã,s) H−1(Â,s) H−1(F,s)

H0(Ã,s) H0(Â,s) H0(F,s) · · ·

∂

∂

splits, in the sense that the morphisms ∂ vanish.

By an extension of this method, wemay show that the space of solutions of (2.2) is a contractible

simplicial set. This amounts to showing that for each n > 0, any solution of (2.2) in Ω(∂∆n) ⊗

‖F(N•U)[[u]]‖ may be extended to a solution of (2.2) in

Ω(∆n) ⊗ ‖F(N•U)[[u]]‖ = Ωn ⊗ ‖F(N•U)[[u]]‖.

In particular, the case n = 1 shows that there is a solution of (2.2) in Ω1 ⊗ ‖F(N•U)[[u]]‖

interpolating between any pair of solutions of (2.2) in ‖F(N•U)[[u]]‖.

3.3.5. Supersymmetry and Lorentz invariance of the solution

The reason for the interest of the superparticle, and of the Green–Schwarz superstring for which

it is a toy model, is that it is manifestly supersymmetric. The supersymmetry is generated by the
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functional
∫

Q, where

Q = θ+0 −
1
2 x+µγ

µθ0 ∈ S− ⊗ A−1.

The formula sQ = ∂
(
pµγµθ0 − 2e+θ1) implies the vanishing of the Batalin–Vilkovisky antibracket

(3.10) (
∫

Q,
∫

S) = 0.

There is an interesting, if not completely rigorous, explanation for this which hints at some fun-

damental structure of the superparticle action S. Consider the two parameter family of composite

fields Ψ(k)m defined recursively by

(3.11) Ψ
(k)
n =



θn, k = 0,n ≥ 0

Ψn, k = 1,n ∈ Z

∂Ψ
(k−1)
n + x+µγ

µ
Ψ
(k−1)
n+1 − 2c+Ψ(k−1)

n+2 , k > 1,n ∈ Z.

As with Ψn, the formula for the action of the BV differntial on these composite fields is elegant:

sΨ(k)n = (−1)n+1pµγµΨ
(k)
n+1 − 2e+Ψ(k)n+2.

Note that Ψ(k)n is only defined for either k > 0 or k = 0 and n ≥ 0. In particular, the composite

field Ψ(0)
−1 is not defined (it would contain anti-derivatives of the anti-fields if it was!). However, the

formulas above do give us a way to express its derivative:

∂Ψ
(0)
−1 = Ψ

(1)
−1 − x+µγ

µ
Ψ
(0)
0 + 2c+Ψ(0)1 = Q.

Then, since s is evolutionary, we see that

sQ = s
(
∂Ψ
(0)
−1

)
= ∂

(
sΨ(0)
−1

)
= ∂

(
pµγµΨ

(0)
0 − 2e+Ψ(0)1

)
where, though Ψ(0)

−1 is not defined, both ∂Ψ(0)
−1 and sΨ(0)

−1 are.
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Let A? be the subalgebra of the sheaf A generated by the fields

{∂`pµ,∂`x+µ,∂
`e+,∂`c+}`≥0 ∪ {∂

`
Ψn}n∈Z,̀ ≥0.

Let Â? ⊂ Â be its associated completion, with respect to the fields of negative degree

{∂`x+µ,∂
`e+,∂`c+}`≥0 ∪ {∂

`
Ψn}n<0,̀ ≥0.

BothA? and Â? may be viewed as sheaves over the momentum space V∨0 = V∨ \ {0}, which is the

fibre of M0 over 0 ∈ V .

Lemma 3.3.6. The subsheaf Â? ⊂ Â satisfies ∂[Â?] ⊂ Â? and is closed under the Soloviev

bracket.

Proof. It follows directly from its definition that Â? is preserved by the action of ∂. In order for

Â? to be closed under the Soloviev bracket, it suffices to observe that for all fields Φ that generate

A?, we have
∂Φ

∂(∂k xµ)
=

∂Φ

∂(∂k p+µ)
=
∂Φ

∂(∂k e)
=
∂Φ

∂(∂kc)
= 0.

This implies that

(( f ,g)) =

∞∑
n=0
(−1)(n+1)(p( f )+1)

∞∑
k,̀ =0

(
∂`

(
∂ f
∂(∂kθn)

)
∂k

(
∂g

∂(∂`θ+n )

)
+ (−1)p( f )∂`

(
∂ f
∂(∂kθ+n )

)
∂k

(
∂g

∂(∂`θn)

))
.

It only remains to observe that for all n ≥ 0 and all k, ` ≥ 0, the terms in the above formula are in

Â? for any f and g in Â?. �

We now have the following analogue of Theorem 3.2.5. The proof follows the same lines, but

is actually somewhat simpler.
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Lemma3.3.7. LetF? = Â?/∂Â?. The cohomology sheaf Hi(F?,s) vanishes unless i ∈ {−1,0}.

Proof. The sheaf Â? is an algebra over the momentum space M?, whose structure sheaf is the

algebra of rational functions in the variables {pµ}. The filtration of Â induces a filtration of Â?,

and the differential s0 on the zeroth page of the associated spectral sequence E pq
0 equals

s0 = − ev
(
∂pµ

∂

∂x+µ
+ ∂e+

∂

∂c+

)
.

This is a Koszul differential and its cohomology E1 is the graded commutative algebra freely

generated over the structure sheaf OM? by the variables

{e+} ∪ {∂`Ψn | n ∈ Z, ` ≥ 0}.

The differential s1 on the first page E1 of the spectral sequence is given by the formula

s1 = ev
(
−1

2η
µνpµpν

∂

∂e+

)
.

The element ηµνpµpν is not a zero divisor in E1: its zero-locus is the light-cone

{pµ , 0 | ηµνpµpν = 0}.

We see that the second page E2 of the spectral sequence is a sheaf of graded commutative

algebras generated over OC? by the variables

{∂`Ψn | n ∈ Z, ` ≥ 0}.

The differential s2 on the second page E2 of the spectral sequence is given by the formula

s2 =

∞∑
n=1

ev
(
pµT µ

(
Ψ1−n,

∂

∂Ψ−n

))
.

On the light-cone, the operator

pµγµ : S± → S∓
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has vanishing cohomology. We see that the third page E p+q
3 is generated over E00

3 by the variables

{∂`Ψn | n ≥ 0} in E3n,−2n
3 , and hence the differential sr of the rth page of the spectral sequence

vanishes for r > 3.

The remainder of the proof follows the proof of Theorem 3.2.5. �

Theorem 3.3.8. There is a choice of the solution Su to the equation (2.2) such that(∫
Q,

∫
Su

)
= 0.

Proof. Let q be the Hamiltonian vector field associated to
∫

Q. It is easily seen that qΨn = 0,

and hence that q annihilates Â?. It is easily seen that qG0 = 0. We prove the theorem by showing

that for all n > 0, Gn may be chosen in ‖F?(N•U)‖−2n−2. In view of Lemma 3.3.7, it suffices to

show that the cocycle

−
1
2

∑
j+k=n−1

(∫
G j,

∫
Gk

)
lies in ‖F?(N•U)‖−2n−1 for n > 0. By induction, we may assume that this holds for all of the terms

of this sum with j, k > 0. It remains to check that(∫
G0,

∫
Gn−1

)
∈ ‖F?(N•U)‖−2n−1.

But modulo Â?, G0 = x+µ p+µ + ec+, and it is easily seen that

((x+µ p+µ + ec+, Â?)) ⊂ Â?.

Indeed, on restriction to Â?, the Soloviev bracket ad(x+µ p+µ + ec+) is given by the evolutionary

vector field

ev
(
−x+µ

∂

∂pµ
+ c+

∂

∂e+

)
,

which preserves Â?. �
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We now turn to the question of Lorentz invariance of the solution Su to (2.2) that we have

obtained. Let C∗(so(9,1)) be the graded commutative algebra of the Lie algebra so(9,1) of the

Lorentz group (the exterior algebra generated by so(9,1)∨), with differential d. The action of the

Lie algebra so(9,1) on the space of fields of the superparticle is generated by the Batalin–Vilkovisky

currents

(3.12) M µν = ηλ[µxν]x+λ − η
λ[µp+ν]pλ −

∞∑
n=0

Tµν(θ+n , θn).

Let S(ε) = S + M µνεµν, where εµν is the dual basis of so(9,1)∨; this is an element of total degree

0 in the tensor product of C∗(so(9,1)) and the Batalin–Vilkovisky graded Lie algebra. The Lorentz

invariance of the action S may be expressed by the following extension of the classical master

equation:

dS(ε) + 1
2

(∫
S(ε),

∫
S(ε)

)
= 0.

Indeed, the coefficient of εµν in the above equation says that(∫
S,

∫
M µν

)
= 0.

The Lorentz group does not act on Thom–Whitney complex, because the open cover itself is

not Lorentz invariant; in particular, G0 is not invariant under the action of so(9,1). Nevertheless, it

may be proved that Su has an enhancement

(3.13) Su(ε) = S(ε) +
∞∑

n=0
un+1Gn(ε),

where Gn(ε) is an element of total degree −2n − 2 in the tensor product of C∗(so(9,1)) and the

Thom–Whitney extension of the Batalin–Vilkovisky graded Lie algebra, such that the following

extension of (2.2) holds:

(3.14) (d + δ)Su(ε) +
1
2

(∫
Su(ε),

∫
Su(ε)

)
= −u

∫
D.
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Moreover, we can choose the Gn(ε) to be supersymmetric, that is, qGn(ε) = 0. In mathematical

terms, this equation, which is nothing but the BRST formalism for the global symmetry Lie algebra

so(9,1), expresses that the covariant field theory is invariant under supersymmetry and Lorentz

invariant up to homotopy.

We solve (3.14) inductively, by an extension of the method used to prove Theorem 3.3.8. Write

Gn(ε) =

10∑
k=0

Gn,k,

where G0,0 equals the explicit solution G0 ∈ ‖F(N•U)‖−2 of (3.7), and Gn,k ∈ Ck(so(9,1)) ⊗

‖F?(N•U)‖−2n−k−2 for n > 0 or k > 0. Assuming we have found Gm,̀ for m < n or m = n and

` < k, we must solve the equation

(3.15) (δ + s)Gn,k = −dGn,k−1 − (M µνεµν,Gn,k−1)

−
1
2

n−1∑
m=0

k∑̀
=0
(Gm,̀ ,Gn−m−1,k−`) ∈ Ck(so(9,1)) ⊗ ‖F?(N•U)‖−2n−k−1.

By the Lorentz invariance of S, sM µν = 0. For n > 0 or k > 0, this is sufficient to imply that the

right-hand side of (3.15) is a cocycle. In the case n = 0 and k = 1, we need in addition the formula

(M µν,D) = 0.

By Lemma 3.3.7, there is a solution

Gn,k ∈ Ck(so(9,1)) ⊗ ‖F?(N•U)‖−2n−k−2.

Thus there exists a supersymmetric solution to the equation (3.14).
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CHAPTER 4

The quantum superparticle

We now discuss first steps towards quantizing the superparticle. Previous attempts have ap-

proached this task at the expense of breaking Lorentz symmetry. One method involves the choice

of a light-cone gauge in which we single out a pair of light-like velocity vectors q↑ and q↓ which

satisfy

〈q↑,q↓〉 = 1.

In the following section, wewill explain how such a choice allows us to choose a suitable Lagrangian

gauge condition; for now we simply observe that such a choice is not fixed under Lorentz trans-

formations. While attempts at choosing a Lorentz covariant gauge fixing have been made [10,11],

these approaches introduce new infinite families of auxiliary fields which lead to subtleties and

discrepancies among the various prescriptions. We instead choose to study families of homotopies

relating different choices of the light-cone gauge to one another.

4.1. Light-cone gauge

We first review gauge fixing for the superparticle in the light-cone gauge. As mentioned above,

this gauge fixing depends on a choice of velocity vectors q↑ and q↓ which satisfy

〈q↑,q↑〉 = 〈q↓,q↓〉 = 0 〈q↑,q↓〉 = 1.
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We call the pair (q↑,q↓) a light-cone frame. This choice gives an orthogonal decomposition of

ten-dimensional Minkowski space

R9,1 = span{q↑,q↓} ⊕ {q↑,q↓}⊥,

where {q↑,q↓}⊥ is an eight-dimensional Euclidean vector space. Let {ea}
8
a=1 be a basis for {q↑,q↓}

⊥

and {fa}8a=1 be its dual basis. Define γ
↑↓ = ηµνqµ

↓↑
γν and p↑↓ = qµ

↑↓
pµ. Clifford multiplication by p

is given by the formula

pµγµ = p↑γ↑ + p↓γ↓ +
8∑

a=1
(pµeµa )(γµfa

µ).

Define the projection operators P↑↓ : S→ ker(γ↓↑) by

P↑↓ = 1
2γ
↓↑γ↑↓.

Since P↑↓P↓↑ = 0 and [P↑↓, γµfa
µ] = 0 for 1 ≤ a ≤ 8, we see that S has a direct sum decomposition

into representations of Spin(8)

(4.1) S � ker(γ↑↓) ⊕ ker(γ↓↑).

On the open subspace defined by p↑ > 0 we consider the Lagrangian subsupermanifold defined

by the equations x+µ = p+µ = c+ = 0, e = 1, and

(4.2) γ↓θi = γ
↓θ+i = 0

for i ≥ 0. We use the notation

ui = P↑θi, u+i = P↑θ+i

so that, when restricting to the gauge fixing above, θi = ui and θ+i = u+i . On this subspace, we have

the relation

pµTµ(−,−) = p↑T↑(−,−) : ker(γ↓) ⊗ ker(γ↓) → R
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for any choice of momentum p. Moreover, the pairing T(−,−) vanishes when restricted to ker(γ↓)

since

T(P↑α,P↑β) = T(12γ
↓γ↑α, 1

2γ
↓γ↑β) = 1

4T(γ↑γ↓γ↓γ↑α, β)

and γ↓γ↓ = 0. Using these facts, we see that the restriction of the superparticle action S to this

Lagrangian is given by

(4.3) Sg f = pµ∂xµ − 1
2η

µνpµpν + e+∂c + 1
2 p↑T↑(∂u0,u0) +

∞∑
i=0

p↑T↑(u+i ,ui+1).

The condition p↑ > 0 ensures that the pairing p↑T↑(−,−) is non-degenerate, allowing us to

perform the path integral over the fermionic variables u0. Making the change of variables

u0 7→ ũ0 = p1/2
↑

u0

the term in the gauge-fixed action involving ũ0 becomes T↑(∂ũ0, ũ0). This now looks like the typical

kinetic term for fermions and can be handled by the usual path integral methods from quantum field

theory. Observe that we could have instead restricted to the subset p↑ < 0, in which case a similar

change of variables,

u0 7→ ũ0 = (−p↑)1/2u0,

could be performed. In this case, the kinetic term in the gauge fixed action for ũ0 would be identical

up to change of sign.

4.2. Homotopies between local light-cone gauge choices

The procedure described above is only valid on the subsets {p↑ > 0} and {p↑ < 0}. We now

construct a global Lagrangian in the sense of [7] using a cover of momentum space by charts of

this form.
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Fix a light-like vector v satisfying v0 < 0. We will consider the space of vectors q which satisfy

〈q,q〉 = 0 and 〈q, v〉 = 1 so that the pair (q, v) forms a light-cone frame. Denote this space by Cq.

Lemma 4.2.1. For any momentum vector p , 0, there is a choice of q ∈ Cq for which pµqµ , 0.

Proof. Choose a Lorentz frame so that v0 = −1, v1 = 1, and va = 0 for 2 ≤ a ≤ 9. Then

q ∈ Cq satisfies the following equations

q0 + q1 = 1, q0 − q1 = (q2)2 + · · · + (q9)2.

The lemma follows since both Cq and the subspace

{q ∈ R9,1 | pµqµ = 0}

are eight-dimensional and the latter is a linear subspace while the former is not. �

Corollary 4.2.2. The open sets U = {U±q }q∈Cq defined by

U±q = {±pµqµ > 0}

form a cover of M0.

On U±q we may define the Lagrangian Lq by the equations (4.2) with light-cone frame q↑ = q

and q↓ = v.

Proposition 4.2.3. Let q0, · · · ,qk be points in Cq. There is a map

q : ∆k → Cq

which attains the value ql at the lth vertex of the simplex ∆k .

Proof. Choose a basepoint q∗ ∈ Cq. There is a diffeomorphism f : {q∗, v}⊥ → Cq defined by

f (w) = q∗ + w − 1
2 v〈w,w〉.
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Indeed,

〈 f (w), v〉 = 〈q∗, v〉 + 〈w, v〉 − 1
2 〈v, v〉〈w,w〉 = 〈q∗, v〉 = 1

since 〈w, v〉 = 0 and v is light-like. Additionally,

〈 f (w), f (w)〉 = 〈q∗,q∗〉 + 2〈q∗, w〉 − 〈q∗, v〉〈w,w〉 + 〈w,w〉 − 〈w, v〉〈w,w〉 + 1
4 〈v, v〉〈w,w〉〈w,w〉

= −〈q∗, v〉〈w,w〉 + 〈w,w〉 = 0

since 〈q∗, v〉 = 1, 〈q∗, w〉 = 〈w, v〉 = 0, and q∗ and v are light-like. Using this, we may define the

map q by

q(t0, . . . , tk) = f
(
t0 f −1(q0) + · · · tk f −1(qk)

)
= q∗ +

k∑
i=0

tiwi −
1
2 v

k∑
i,j=0

tit j 〈wi, w j〉

where wi = f −1(qi). �

Define

Uε0···εk
q0···qk = Uε0

q0 ∩ · · · ∩Uεk
qk

where εl ∈ {+,−} for 0 ≤ l ≤ k. A family of Lagrangians in Uε0···εk
q0···qk is described by a map

ι : L × ∆k → Uε0···εk
q0···qk

where, for each t ∈ ∆k , the image of the restriction ι|L×{t} is a Lagrangian subsupermanifold. A

Lagrangian subsupermanifold of N•U is a supermanifold L with cover L = {L±q } and a collection

of Lagrangian families

ιε0···εkq0···qk : Lε0···εkq0···qk × ∆
k → Uε0···εk

q0···qk
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such that, for each morphism f : [k] → [`] in the simplicial category, the following diagram

commutes
N`L × ∆k N`L × ∆`

N`U

NkL × ∆k NkU .

f ∗×∆k

id× f∗

ι`

f ∗

ιk

We define the supermanifold L with coordinates (xµ, pµ, e+, c, {ui}i≥0, {u+i }i≥0)where p , 0 and

ui and u+i have analogous partity to θi and θ+i , but take values in the eight-dimensional Majorana–

Weyl representations ker(γ↓) of Spin(8) (for any choice of q↑ these representations are isomorphic).

Let L be the cover of L defined by L±q = {±pµqµ > 0}. Define γ↓(t) = ηµνqµ(t)γν, where q(t) is

the map constructed in Proposition 4.2.3, and γ↑ = ηµνvµγν. We define the families of Lagrangians

ι = ιε0···εkq0···qk : Lε0···εkq0···qk × ∆
k → Uε0···εk

q0···qk by

ι∗xµ = xµ, ι∗pµ = pµ, ι∗e = 1, ι∗c = c, ι∗θi = P↑(t)θi,

ι∗x+µ = 0, ι∗p+µ = 0, ι∗e+ = e+, ι∗c+ = 0, ι∗θ+i = P↑(t)θ+i .

where P↑(t) = 1
2γ
↓(t)γ↑. Explicitly, the formula for P↑(t) can be written as

P↑(t) = 1
2η

µνηρσqµ(t)vργνγσ

= 1
2η

µνηρσ
©­«qµ∗ +

k∑
i=0

tiw
µ
i −

1
2

k∑
i,j=0

tit jv
µ〈wi, w j〉

ª®¬ vργνγσ
= 1

2η
µνηρσ

(
∞∑

i=0
ti

(
qµ∗ + w

µ
i −

1
2 v

µ〈wi, wi〉

))
vργνγσ

= 1
2

k∑
i=0

tiηµνηρσqµi v
ργνγσ
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where we have used γ↑γ↑ = 0 and
∑k

i=0 ti = 1. The gauge-fixed action (4.3) is the pull-back of the

solution to the classical master equation S along ι±q . For a general k-simplex, the pull-back of S

along ιε0···εkq0···qk will involve additional terms expressing the dependence on t ∈ ∆k . We describe these

generalizations of the gauge-fixed action in [7].

Let X be the one-form on ∆k taking values in vector fields which describes the flow of the

family ιε0···εkq0···qk ,

X =
∂

∂t l ι
ε0···εk
q0···qkδ

l .

Contracting the Batalin–Vilkovisky symplectic form ω with X and pulling back by ιε0···εkq0···qk produces

a differential form

(4.4)
(
ιε0···εkq0···qk

)∗
(Xyω) ∈ Ω1 (Lε0···εkq0···qk

)
⊗̂Ωk .

The condition that ιε0···εkq0···qk defines a family of Lagrangians is equivalent to the condition that this

differential form is closed under the exterior differential d on L,

d
(
ιε0···εkq0···qk

)∗
(Xyω) = 0.

Since the differential form (4.4) has ghost-number −1 and the de Rham cohomology of L vanishes

outside of ghost-number zero, we may find a differential form τ ∈ O
(
Lε0···εkq0···qk

)
⊗̂Ωk such that

dτε0···εkq0···qk =
(
ιε0···εkq0···qk

)∗
(Xyω)

and δτε0···εkq0···qk = 0. In the present case,

X =
∞∑

i=0
T

(
δP↑(t)θi,

∂

∂θi

)
+

∞∑
i=0

T
(
δP↑(t)θ+i ,

∂

∂θ+i

)
.

The contraction of this vector field with ω can then be computed to be

Xyω =
∞∑

i=0
T(δP↑(t)θi, dθ+i ) +

∞∑
i=0

T(δP↑(t)θ+i , dθi).
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The identity 〈q(t), v〉 = 1 implies that ∂
∂tl 〈q(t), v〉 = 0, hence δγ↓(t)γ↑ = −γ↑δγ↓(t). Using this, we

can rewrite Xyω as

Xyω = 1
2

∞∑
i=0

T
(
δγ↓(t)γ↑θi, dθ+i

)
+ 1

2

∞∑
i=0

T
(
δγ↓(t)γ↑θ+i , dθi

)
= 1

2

∞∑
i=0

T
(
δγ↓(t)γ↑θi, dθ+i

)
+ 1

2

∞∑
i=0
(−1)iT

(
θ+i , γ

↑δγ↓(t)dθi
)

= 1
2

∞∑
i=0

T
(
dθ+i , δγ

↓(t)γ↑θi
)
+ 1

2

∞∑
i=0
(−1)i+1T

(
θ+i , δγ

↓(t)γ↑dθi
)

=

∞∑
i=0

(
T(dθ+i , δP↑(t)θi) + (−1)i+1T(θ+i , δP↑(t)dθi)

)
so we see that τε0···εkq0···qk is given by the formula

τε0···εkq0···qk =

∞∑
i=0

T(u+i , δP(t)ui).

Let {η±q }q∈Cq be a partition of unity subordinate to the cover U . In [7] we describe how to

construct a linear form

Z : | |Ω1/2(N•U)| | → C

from the data of the cover U , the partition of unity {η±q }q∈Cq , the families of Lagrangian subsuper-

manifolds ιε0···εkq0···qk , and the generating one-forms τε0···εkq0···qk . Define the first order differential operator

on half-forms

H±q = [∆, η±q ]

where ∆ is the Batalin-Vilkovisky Laplacian described in Proposition 2.2.3. We also make use of

the notation

ηε0···εkq0···qk =
~k

k + 1

k∑
i=0
(−1)iHε0

q0 · · ·H
εi−1
qi−1η

εi
qiH

εi+1
qi+1 · · ·H

εk
qk .
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The integral of a Thom-Whitney cochain σ• ∈ ||Ω1/2(N•U)| | is then defined as

Z(σ•) :=
∞∑

k=0
(−1)k

∑
(ε0,q0)···(εk,qk )

∫
∆k

∫
L
ε0 · · ·εk
q0 · · ·qk

e−τ
ε0 · · ·εk
q0 · · ·qk /~

(
ιε0···εkq0···qk

)∗ (
ηε0···εkq0···qkσ•

)
.

In [7] we establish the following properties of this linear form.

Proposition 4.2.4 (Stokes’ theorem). Let σ• ∈ ||Ω1/2(N•U)| |. Then

Z
(
(δ + ~∆)σ•

)
= 0.

Proposition 4.2.5 (Lorentz-covariance). Let σ• ∈ C∗(so(9,1)) ⊗ ||Ω1/2(N•U)| | be a Thom-

Whitney cochain with values in the Chevalley-Eilenberg complex of the Lorentz Lie algebra. Then

Z
(
(d + δ + ~∆)σ•

)
= dZ(σ•)

where d is the Chevalley-Eilenberg differential.

Together, these results imply that if dσ• = 0, then dZ(σ•) = 0. In other words, the integral

of a Lorentz invariant cochain is, itself, Lorentz invariant. In particular, the integral of a Lorentz

invariant zero-cocycle σ of the form

σ = eiS(~)/~

is Lorentz invariant. This zero-cochain is a zero-cocycle when S(~) is a global solution of the

quantum master equation. In this case, Z(σ) defines the Lorentz invariant partition function for the

superparticle.
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