
NORTHWESTERN UNIVERSITY

Understanding and Improving Content Distribution Through Expansive

Network Measurements

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Marc Anthony Warrior

EVANSTON, ILLINOIS

August 2019



2

c© Copyright by Marc Anthony Warrior 2019

All Rights Reserved



3

Abstract

Understanding and Improving Content Distribution Through Expansive Network

Measurements

Marc Anthony Warrior

In response to exponentially increasing demand for digital media, today’s Internet landscape

has evolved into a multitude of diverse and interdependent distribution systems designed to

move content as efficiently as possible. While many of these systems have individually been

explored in depth by both academic and industrial communities, a cross-sectional investigation

of the relationships between competing or coexisting content distribution systems and resources

is generally absent from the current narrative. Further, when such expansive studies are given

consideration, they are avoided due to the daunting challenges they present. Scope and van-

tage point concerns become non-trivial when designing experiments that span multiple network

resources, and third-party systems may lack transparency for the curious researcher.

In this thesis, I assert that expansive network measurements such as these are not only

feasible, but essential to our efforts to understand and improve modern content distribution

systems. I demonstrate that anchoring cross-sectional measurements in client-side machines

provides the real-world perspectives necessary for optimizing actual client experience. Rather



4

than examine the performance of a single resource-client pair, I instead obtain, for each client

considered, relative measurements across the set of systems and resources visible to the client

or its peers. Each additional considered Internet resource or system provides relative context

that highlights otherwise unobservable outlier properties.

With this approach, I achieve the following: First, I discover and resolve sub-optimal

resource-client mappings using only a lightweight, client-side implementation. Next, I quantify

the extent to which clients are exposed to the same network resources as each other, and I further

leverage these results to systematically identify opportunities to improve client performance.

Finally, I enable scalable assessment of a crowdsourced ecosystem’s content aggregation and

distribution patterns.



5

Thesis Committee

Aleksandar Kuzmanovic, Northwestern University, Committee Chair

Fabián Bustamante, Northwestern University, Committee Member

Peter A. Dinda, Northwestern University, Committee Member

Theophilus A. Benson, Brown University, Committee Member



6

Acknowledgements

The past five years have been a whirlwind, and the list of people I have to thank for helping

me through this process has grown much longer than I could have ever anticipated. With that

said, I will try my hardest in this section to give honor where honor is due.

First and foremost, I would like to thank my advisor, Aleksandar Kuzmanovic, who wel-

comed me into his lab and provided me with more creative freedom than 22 year old me knew

how to handle. Your guidance has helped shape me from a student into a real researcher, and I

am truly grateful for that. Thank you for trusting me to succeed even when evidence suggested

I would not.

I would also like to express my deepest appreciation for my Committee. Flashbacks to my

qualifying exam questions from Peter Dinda have forever burned the importance of statistics

into my mind. Fabián Bustamante, the very first systems faculty I met from Northwestern, has

happily put up with my frequent requests for Planet Lab slices. In all seriousness, I recognize

that in academia, time is particulary precious, and I am thankful that professors in such high

demand have made time for me. I owe special thanks to Theophilus Benson, who willingly

joined my Committee from across the country before having met me.

I would be remiss to overlook the folks whom I have toiled alongside, through direct collab-

oration or in spirit. Uri Klarman, who is effectively my entire cohort by himself, lives a life that

reminds me to keep dreaming big. To my collaborators, Romain Fontugne and Matteo Varvello,

I owe enourmous thanks for their brilliant contributions and insights towards my research. I will



7

never forget the times I shared with the phenomenal teams at IIJ Innovation Institute and VDMS

(EdgeCast). Lastly, I am forever indebted to Marcel Flores and Zachary Bischof, who each, in

their own way, took me under their wings and offered invaluable mentorship from day one.

Words cannot express my appreciation for my friends and family: my fellow Army Brat

brother, Ameer Jalal, who has consistently been there for me since 6th grade; my Georgia Tech

brothers — Andrew Bryant, Austin Keaton, Kaeland Chatman, and Lance Charles — who rein-

vigorate me with every phone call and gathering; Bruce Lindvall, who has been cheering me on

since before I arrived at Northwestern; the Evanston Church of Christ family, who treated me

as one of their own as soon as I arrived; Penny Warren, whose warm heart made The Graduate

School office a welcoming place; Edison Chen, who has been ever patient with me as a room-

mate for the past several years; the Black Graduate Student Association, which has been my

home away from home; the Keynotes a capella group and the “Anime Night” crew that got me

through each week; the trips to Wednesday night Bible study with Ashley Dennis and Bright

Gyamfi that always lifted my spirits; the countless other loved ones I can’t fit in this document.

Finally, I owe a tremendous shoutout to my incredible parents (still the best in the world):

Anthony Warrior, who has always reminded me to do my best, and Michelle Warrior, who

swears she always knew I’d be a doctor. Thank you!



8

Contents

Abstract 3

Thesis Committee 5

Acknowledgements 6

List of Tables 12

List of Figures 13

Chapter 1. Introduction 18

1.1. Expansive Network Measurements 20

1.2. Approach 21

1.3. Mitigation of Suboptimal Client-Server Mapping 22

1.4. Analysis of Common Network Resource Exposure 23

1.5. Exploration of Open Source Media Platform Infrastructure 24

1.6. Thesis Organization 25

Chapter 2. Thesis 26

Chapter 3. Drongo: Speeding Up CDNs with Subnet Assimilation from the Client 27

3.0.1. Premise 30

3.0.2. Exploring Valleys 35



9

3.0.3. Drongo System Overview 48

3.0.4. Drongo Evaluation 49

3.0.5. Related Work 55

3.0.6. Discussion 56

3.0.7. Summary 57

Chapter 4. Skylines: Demystifying Network Resource Islands with Virtual Landmarks 59

4.1. Introduction 59

4.2. Problem Space and Related Work 62

4.3. Experiment & Data Collection 64

4.3.1. Definitions 64

4.3.2. Domain Collection 65

4.3.3. Per-Provider Performance Measurement 68

4.4. Common Network Resource Exposure 69

4.5. Finding High CNRE Clusters 72

4.5.1. Group Formation Patterns 73

4.5.2. Label Alignment 77

4.6. Cluster Analysis 79

4.7. Discussion 86

4.7.1. Why Web Object Domains 86

4.7.2. Anycast 87

4.7.3. Bettering Catchments 87

4.7.4. Client Labels 88

4.8. Summary 88



10

Chapter 5. de-Kodi: Understanding the Kodi Ecosystem 90

5.1. Introduction 90

5.2. Background & Related Work 93

5.3. de-Kodi System Overview 95

5.3.1. Challenges 96

5.3.2. The DE-KODI Crawler 98

5.3.3. The de-Kodi Source Finder 99

5.3.4. The de-Kodi System 100

5.4. deKodi Benchmarking 103

5.5. Dataset Analysis 105

5.5.1. Data Collection 105

5.5.2. Add-on Discovery Success Rate 106

5.5.3. Banned Add-ons 108

5.5.4. Other Content 108

5.6. Kodi Ecosystem Analysis 109

5.6.1. Add-on Repositories 109

5.6.2. Add-on Providers and Origins 109

5.6.3. Background Network Chatter 113

5.7. Suspicious Activity 114

5.7.1. Banned Add-ons and Piracy 115

5.7.2. User Tracking and Ad Chatter 116

5.7.3. Social Engineering 118

5.8. Summary 118



11

Chapter 6. Conclusion 121

Bibliography 123



12

List of Tables

3.1 Detailed findings for each provider, based on PlanetLab data 40

5.1 Crawl summary 105

5.2 Suspician summary 119



13

List of Figures

1.1 Diagrams of conventional (subfigure 1.1a) and expansive (subfigure 1.1b)

approaches to content distribution system measurement. 19

1.2 High level diagram of abstraction layers in content distribution systems.

Layers pertaining to specific portions of this dissertation are highlighted and

labeled accordingly. 21

3.1 Illustration of a latency valley. 33

3.2 Average divergence and average usable route length per CDN 37

3.3 Scatter plot of HRMs and minimum CRMs. The area below the diagonal is

the valley region. 39

3.4 CDFs of clients by valley frequency. In 3.4a, the subnet-response

measurements are ping times averaged from bursts of 3 back to back pings.

In 3.4b, the subnet-response measurements are total download times on

first attempts, while in 3.4c the subnet-response measurements are total

download times on consecutive attempts (repeated downloads that take place

immediately after first attempt to account for the potential impact of caching).

Downloads were performed by using curl, where I set an IP as a destination

and set the domain as the HOST attribute. Measurements for 3.4b and 3.4c



14

were performed back-to-back so that 3.4c reflects download times with

presumably primed caches. 42

3.5 In both figures, I compare the change in latency ratio between two trial

windows to the distance in time between the two windows. In figure a, I use

all hop client pairs. In figure b, I restrict the set to pairs that experience at least

one valley in at least one of their 45 trials. 44

3.6 Lower bound of latency ratio of all valley occurrences. 47

3.7 Average latency ratio of overall system as I vary vf and vt 50

3.8 Average latency ratio of cases where subnet assimilation was performed 52

3.9 Percentage of clients where subnet assimilation was performed 53

3.10 Per-provider system performance for all queries. Optimal vf is set for each

provider and noted in parentheses 53

3.11 Per-provider system performance for queries where subnet assimilation was

applied. Parentheses contain optimal values for each respective provider,

formatted (vf , vt) 54

4.1 Illustration of network resource allocation. Figure 4.1a shows DNS resolution

at a high level: 1) The client deploys a DNS query for example.com. 2)

This query ultimately reaches nameserver responsible for example.com and

decides which of example.com’s network resources should serve the client.

3) The nameserver’s resource selection is returned to the client. Figure 4.1b

shows an example of how clients with similarly described locations may be

directed to distinct network resources. 61



15

4.2 Diagram illustrating domain name collection: 1) Domains from the Umbrella

top 1-million were loaded via Google Chrome to identify human-targeted

websites. 2) For each human-targeted website’s landing page, a HAR file

was recorded. 3) Domains were extracted from HAR data and ranked by the

number of times observed. 64

4.3 The number of sites containing an object hosted by an included domain vs the

size of the set of included domains. 67

4.4 Mean fraction of page object links (URLs) covered per site vs the number of

domains used. 67

4.5 CDF showing the effect of the number of domains used for CNRE calculation.

The 500 clients and set of domains used for each CNRE calculation were

randomized. 70

4.6 Mean domain error vs # of distinct answers observed from domain (one point

per domain). 71

4.7 Dendrogram of CNRE distance across all client pairs 73

4.8 CDFs of CNREs across client sets with matching (same) and non-matching

(diff) labels. “Same” shows the CDF for the median CNRE distance across

all client pairs matching a given label. “Diff” shows the CDF for the median

CNRE distance from each label group toward all other labels. The red, vertical

line in each subfigure marks the 95th percentile CNRE for for differing labels. 75

4.9 Choropleth with each country shaded by its median CNRE distance from all

other countries. 76



16

4.10 Completeness, homogeneity, and number of clusters versus clustering distance

threshold. The vertical line marks 0.27, the CNRE distance at which clients

with differing labels become distinguishable, and the horizontal line denotes

(using the right-side y-axis) the number of different real labels (for example,

the number of countries) preesent in the data set for the given labeling scheme. 78

4.11 CDF of mean geographic distance between cluster members. The dashed

vertical line marks the median. 81

4.12 Map of world with point for each cluster’s geographic center. 81

4.13 Scatter plot where, for each client, I compare the client’s mean latency (across

all responding sites) to that client’s distance from its cluster’s center. The line

denotes a first order best fit curve for the scatter plot’s points. 83

4.14 Subfigure 4.14a shows a scatter plot of each client’s geographic distance from

its own (“default”) cluster’s center location versus its geographic distance

to the geographically closest center of another cluster (“closest”). Subfigure

4.14b shows a scatter plot of each client’s CNRE similarity with its own

(“default”) cluster’s center location versus its CNRE similarity with the

geographically closest center of another cluster (“closest”). 84

5.1 Screenshot of Kodi’s home menu. 92

5.2 A visual overview of the DE-KODI system. Figure 5.2a shows the structure

of an individual crawler. The crawlers in 5.2b are instances of the crawler

shown in 5.2a, but in the case of 5.2b, I use one instance of mitmproxy per

machine to capture traffic from all crawlers. 96



17

5.3 DE-KODI benchmarking ; Ndocker = [1 : 20] ; Crawling-duration: 30 minutes. 102

5.4 Comparison of the fruitfulness of search seeds used in this experiment. 106

5.5 CDF of add-ons per repository. 110

5.6 World map of Kodi content host locations. Country color shading indicates

the number of content hosting domains discovered there in our experiment. 111

5.7 CDF of the number of found repositories that included a discovered add-on. 113

5.8 CDF of mean bytes per minute for each add-on’s crawl session. 114

5.9 Bar plot of the number of add-ons using each port number used for background

downloads (stack it to show TCP/UDP). The final bar (labeled “other”) is

cumulative across all port numbers not shown (i.e., some add-ons may be

counted multiple times for “other” — once for each port number). 115

5.10 Bar plot of the number of add-ons found to exchange forms of potentially

undesirable traffic. 116



18

CHAPTER 1

Introduction

Digital content is the lifeblood of the modern Internet. The ease with which content flows

from source to consumer can make or break even the most well-established online platforms

[17, 117, 22, 8]. It is therefore no surprise that both academic and corporate communities alike

have invested heavily in the advancement of content delivery techniques. The systems in place

to support efficient and effective content distribution have multiplied and grown substantially

over the past two decades [1], so much so that the very topology of the Internet has evolved

to better address this specific, resource intensive concern [49]. Content distribution networks

(CDNs), the primary component underlying many content delivery models, now host the vast

majority of Internet content from most of the top domains used today [87].

In contrast, however, technology to assess modern content distribution systems has not kept

pace with the systems themselves. The daunting task of measuring the performance of CDNs

— often requiring a large number of diverse, edge network vantage points — has largely fallen

to CDN brokers and so-called “meta-CDNs” which serve as abstractions to multiplex the wide

array of CDNs on behalf of third-party, paying content providers [39, 40]. Such measurement

platforms, comprised primarily of passive techniques silently embedded on their customers’

sites and software, are inherently limited in scope and applicability and do very little to directly

help with individual CDN optimization. Meanwhile, CDNs, whose private infrastructure may

span the globe and employ thousands of machines, are faced with the increasingly difficult tech-

nical challenge of assessing and strategically improving themselves [87, 47]. On top of all of



19

(a) conventional approach (b) expansive approach

Figure 1.1. Diagrams of conventional (subfigure 1.1a) and expansive (subfigure
1.1b) approaches to content distribution system measurement.

this, the content itself, served by these ever-compounding systems of systems, has become dif-

ficult for content providers to trace and control. For example, thorough analyses of the patterns

and implications of illegal distributed content distibution systems are rare, often opaque, and

frequently misquoted [81].

I assert that the key, underlying fault in the aforementioned concerns is a lack of breadth.

In this dissertation, I propose the widespread adoption of what I refer to as expansive net-

work measurements: client-anchored, cross-sectional measurements designed to enable relative

comparison between multiple content distribution resources. I support these claims by demon-

strating the feasibility and effectiveness of expansive network measurements at three distinct

levels of abstraction in real world content distribution systems.



20

1.1. Expansive Network Measurements

Expansive network measurements offer a measurement system design approach for breadth

capturing, client-side measurements. Expansive network measurements span multiple content

resources from a single client. For clarity, I here define “content resources” as any content dis-

tribution infrastructure providing entity — a unique network interface, a virtual machine, server,

service, etc. — that aims to move digital content from some source or provider to content con-

sumers (client machines). It is important that the low level details of resources are allowed to be

opaque, as expansive measures span multiple such resources, each potentially stemming from

different entities with varying levels of transparency. Figure 1.1 contrasts expansive measure-

ments against the more commonly seen conventional measurement style.

While the concept of cross-sectional experiments may appear intuitive, several factors,

which this dissertation aims to debunk, have driven modern industry stakeholders and researchers

away from the expansive measurement model. Most notably, there is general consensus that

client based measurements should avoid being load intensive, coupled with the assumption that

wide-breadth measurements are necessarily high load. I, however, demonstrate that it is both

reasonable and effective to design lightweight, expansive measurements that succeed in obtain-

ing relevant, actionable insights that have gone unobserved in the conventional model. It is often

tempting for researchers to hold a depth-focused measurement paradigm, in which research pur-

suits involve investigating one or two specific service providers (e.g., a “large CDN”), either at-

tempting to demystify part of an otherwise opaque proprietary system, or, through direct collab-

oration, working to address concerns specific to the provider of interest [63, 76, 77, 54, 52, 104].

As I will show in this document, opting to instead span multiple resources, regardless of their

opaque nature, sheds light on properties that cannot be observed via a single provider. Lastly,



21

Figure 1.2. High level diagram of abstraction layers in content distribution sys-
tems. Layers pertaining to specific portions of this dissertation are highlighted
and labeled accordingly.

there are varying concerns regarding the scalability of client-centric measurement paradigms,

such as the marginal benefit of per-client adoption and the number of clients required for the

system to work. I address these concerns on a per experiment basis, providing the reader with

several examples of how to approach this problem in designing expansive network measure-

ments.

1.2. Approach

A typical modern content distribution system can be described in terms of a series of ab-

stractions, each layer multiplexing the one below it. A high level illustration of this is shown in

Figure 1.2. Throughout this disseration, I target each abstraction layer with a demonstrational

study of expansive network measurements.



22

My overall approach is as follows: First, I delve into the lowest layer of the provided model

— content server selection. CDNs and similar services cache content across many network

resources (labeled as servers in Figure 1.2), primarily to achieve low latency for geographi-

cally dispersed clients. In the corresponding project, titled Drongo, clients personally measure

performance across multiple, strategically discovered replica servers and use the results to im-

mediately enhance server-client mapping. Moving up the layers, I next present Skylines, where

I perform the first ever aggregate analysis of DNS redirection catchments across multiple do-

mains, identifying the extent to which clients are exposed to the same content resources. Fi-

nally, I perform an in depth case study of the topmost abstraction layer (far right in Figure 1.2),

leveraging the scope of a platform whose ecosystem spans many websites and other content

resources.

1.3. Mitigation of Suboptimal Client-Server Mapping

Content distribution networks depend heavily on efficient and accurate allocation of their

content resources, which may number in the thousands and geographically span the globe.

Although other factors, such as security, policy, and compute power, may come into play, low

latency remains the chief concern of CDNs and their constituents [17, 117, 22, 39, 8, 104].

Ideally, clients should be directed to the replica server that will likely result in the lowest latency

achievable between the CDN and that client. In practice, however, this has proven to nontrivial,

and optimizating server selection remains an ongoing problem [105, 107, 54, 102].

Until now, the burden of assessing and improving an individual CDN’s resource alloca-

tion scheme rested entirely on that CDN’s shoulders. While CDNs have had some success in

addressing this problem, I argue that their server-to-client mapping models inherently include



23

some “unknown unknowns”: it is difficult for the CDN, or anyone else, to know whether a given

client has been provided the optimal choice (for that client) from the set of servers at the CDN’s

disposal. In addition, the sheer size of the client address space under consideration — nearly

232 for IPv4 alone — renders a per client optimization impractical for the CDN to attempt. Al-

ternatively, as I demonstrate in this dissertation, it is possible for individual clients to participate

and fine tune a CDN’s mapping scheme. I introduce Drongo, a client-side tool by which clients

can 1) identify when they have received a poor server choice, and, 2) in turn, improve resource

allocation for themselves, on behalf of the CDN of interst. Drongo acheieves this by performing

expansive measurements across a small subset of a given CDN’s content resources.

1.4. Analysis of Common Network Resource Exposure

The vastness of today’s Internet creates an intuitive but often overlooked phenomenon: not

everyone is exposed to the same web resources. Even across the set of objects embedded in a

single web page, a pair of clients with apparently similar network properties may be assigned

to barely overlapping sets of network resources to pull from. While the properties of individual

content distribution networks and the like are well explored, there has been, until now, a lack

of insight regarding the aggregate behavior of these many large networks co-existing from the

perspective of the countless domains built on top of them.

I perform a thorough analysis of cross-provider resource allocation patterns and the resulting

aggregate mapping of over 9,000 RIPE Atlas clients around the world. To facilitate my research,

I introduce common network resource exposure (CNRE) — a measure of the degree to which

a pair of clients are exposed to the same content resources as each other across a large set of

domains. I explore the implications of high and low CNRE scores, and use the results to identify



24

catchment anomalies: clients whose latency towards a given set of resources, across hundreds

of web object domains, is substantially higher (by several standard deviations) than that of their

peers (other clients directed primarily to the same resources). In addition, I identify aggregate

catchment centers, which effectively approximate where the set of resources assigned to a given

aggregate catchment are geographically concentrated.

1.5. Exploration of Open Source Media Platform Infrastructure

Free and open source media centers are currently experiencing a boom in popularity for the

convenience and flexibility they offer users seeking to remotely consume digital content. This

newfound fame is matched by increasing notoriety — for their potential to serve as hubs for

illegal content — and a presumably ever-increasing network footprint [106, 103]. As shown

in the rightmost section of Figure 1.2, such platforms serve as a gateway to a multitude of

sites that act as content resources for consumers. These sites may directly demultiplex toward

some physical resource as depicted in the figure, or they may themselves serve as additional

intermediaries and content resource aggregators. I leverage the hub-like one such platform —

Kodi — to perform a cross-provider analysis of a crowd-maintained content distribution system,

reaching across many distinct providers and protocols. The Kodi ecosystem is home to tens of

thousands of user-developed add-ons which act as site-like content resources.

To perform this analysis, I introduce de-Kodi, a client-side system with tunable scalability,

capable of traversing large cross-sections of the Kodi ecosystem to arbitrary levels of depth.

With de-Kodi, I uncover and assess content resources, their interdependencies, and the technol-

ogy behind them. I further explore the life cycles and popularity trends of Kodi add-ons, and I

investigate network traffic patterns for signs of illicit activity often attributed to the platform.



25

1.6. Thesis Organization

The remainder of this dissertation proceeds as described below. In Chapter 2, I produce

my thesis statement, which serves as the foundation and chief motivation of this body of work.

Following this, I present the aforementioned projects, each of which building apon the provided

thesis and preceding sections. In Chapter 3, I demonstrate the effectiveness of expansive net-

work measurements for empowering individual clients to improve their network performance.

Next, Chapter 4 explores the aggregate behavior and implications of content hosting patterns

across hundreds of domains. In Chapter 5, I uncover large cross-sections of disparate, user-

maintained content resources and analyze their interrelationships and network characteristics.

Finally, I offer a brief summary of my findings and contributions in Chapter 6, where I conclude

this dissertation.



26

CHAPTER 2

Thesis

Expansive network measurements — measurements spanning multiple resources or providers

from the vantage point of a single client — are essential to understanding and improving the

allocation of media over the Internet.



27

CHAPTER 3

Drongo: Speeding Up CDNs with Subnet Assimilation from the Client

Latency between clients and servers on the Internet is a key measure that fundamentally

affects users’ perception of the Internet speed. It directly impacts end-to-end page load time,

which in turn affects user experience and business revenues [117]. Amazon has reported that

every 100 ms increase in page load time costs them 1 % in sales [17]. Client-server latency

is essential for other killer apps such as web search [8] and video streaming [77]. Reduced

latency directly improves throughput, which has been shown both theoretically [99] and empir-

ically [111]. It is thus no exaggeration to say that literally every single millisecond of reduced

client-server latency on the Internet counts.

Significant efforts have been invested in an attempt to move servers closer to the clients

via Content Distribution Networks (CDNs), which distribute content via hundreds of thousands

of servers worldwide [2, 10]. Additionally, to minimize the client-server latency, such systems

perform extensive network and server measurements and use them to redirect clients to different

servers. While this significantly improves performance, it is no secret that CDNs do not always

direct clients to the CDN replica that is closest in the network sense [111]. This happens for

several reasons: (i) CDNs’ mapping of the Internet isn’t perfect, particularly for regions that

are more distant from the core CDN infrastructure [18, 83, 111], (ii) CDNs aim to balance

the traffic load or deploy other policies, which may conflict with minimizing the client-server

latency, and (iii) comprehensively measuring the Internet to capture latency variations between

CDN replicas and the rest of the IP space over short timescales is challenging.



28

In this project, I demonstrate that client-server latency is far from optimal. I embrace a

hybrid approach that enables clients to join CDNs in addressing the above challenges as follows:

(i) Clients help with CDN replica mapping; indeed, it is far easier for a single client to find a

subnet that is consistently suggested well-performing replicas, with respect to the client, than

for a CDN to evaluate the entire IP space. (ii) My approach respects load balancing and other

CDN policies: CDNs still make all the replica selection decisions and clients respect those

decisions. (iii) CDNs’ measurement burden is shared with clients who measure CDNs and

help them come up with better, more fine-grained, decisions. Most importantly, all of this is

readily available today, with only minor client-side upgrades, without any changes to CDNs or

to existing protocols, and without the need for broad adoption of the system.

I devise a simple heuristic and a lightweight method that helps clients realize when they are

not served by a nearby CDN replica. After obtaining a replica selection from a CDN, the client

traceroutes the path towards that replica, and explores if the upstream hops on the path are po-

tentially directed to different replicas. This is done by utilizing EDNS0 client subnet extension

(ECS) [62] to issue DNS requests on behalf of hops. If hops are indeed directed to different

replicas, then it is possible that the latency between the client and a replica recommended to a

hop is smaller than the latency between the client and the replica recommended to the client.1 I

refer to such a scenario as a latency valley. My goal is not to find lower-latency replicas – I aim

to find subnets to which lower-latency replicas, relative to the client, are consistently suggested.

By ultimately leaving the decision and access systems entirely up to the CDN, I ensure that any

additional policies a CDN may have (such as network access restrictions and load balancing)

are unaffected.

1 It bears emphasizing that all of my measurements are performed between the client and a CDN replica; no
measurements are performed directly from upstream nodes.



29

By conducting experiments on six major content pro- viders, I show that latency valleys are

common phenomena, and demonstrate that they systematically speed up object downloads. In

particular, latency valleys can be found across all the CDNs I have tested: 26%–76% of routes

towards CDN replicas discover at least one latency valley. My key practical contribution lies in

showing that valley-prone subnets that lead to these lower-latency replicas are easily found from

the client, are simple to identify, incur negligible measurement overhead, and are persistently

valley-prone over timescales of days. Most importantly, I show that we can effectively leverage

latency valleys via valley-prone subnets with subnet assimilation, an approach in which clients

use ECS to improve CDN replica-mapping.

I implement and evaluate Drongo, a client-side system that leverages upstream subnets to

consistently receive lower-latency replicas than what the client would ordinarily have been rec-

ommended. My measurements show that Drongo can improve requests’ latency by up to an

order of magnitude. Moreover, I evaluate the optimal parameters to capture these latency gains,

and find that 5 measurements on the timescale of days are the only requirement to maximize

Drongo’s gains. Using the optimal parameters, Drongo affects the replica selection of 69.93%

of clients, and affected requests experience a 24.89% reduction in latency in the median case.

Moreover, Drongo’s significant impact on these requests translates into an overall improvement

in client-perceived aggregate CDN performance.

I the following contributions:

• I introduce the first approach to enable clients to actively measure CDNs and effec-

tively improve their selection decisions, while requiring no changes to the CDNs, and

while respecting CDNs’ policies.



30

• I extensively analyze client-side CDN measurements and determine critical time-scales

and key parameters that empower clients to leverage their advanced views of CDNs.

• I introduce Drongo, a client-side CDN measurement crowd-sourcing system and demon-

strate its ability to substantially improve CDNs’ performance in the wild.

3.0.1. Premise

3.0.1.1. Background. CDNs attempt to improve web and streaming performance by delivering

content to end users from multiple, geographically distributed servers typically located at the

edge of the network [2, 5, 10, 20]. Since most major CDNs have replicas in ISP points-of-

presence, clients’ requests can be dynamically forwarded to close-by CDN servers. Historically,

one of the key reasons for systematic CDN imperfections was the distance between clients and

their local DNS (LDNS) servers [41, 75, 86, 102]. This issue was further dramatically amplified

in recent years (see [54]) with the proliferation of public DNS resolvers, e.g., [6, 9, 11, 14, 19,

21].

In an attempt to remedy poor server selection resulting from LDNS servers, there has been

a recent push, spearheaded by public DNS providers, to adopt the EDNS0 client subnet option

(ECS) [97]. With ECS, the client’s IP address (truncated to a /24 or /20 subnet for privacy) is

passed through the recursive steps of DNS resolution as opposed to passing the LDNS server’s

address.

However, even when the actual client’s network location is accurate, numerous factors pre-

vent CDNs from providing optimal CDN replica selection [83]. First, creating accurate net-

work mapping for the Internet is a non-trivial task given that routing can inflate both end-to-end



31

latency and latency variance, e.g., [100]. As a result, CDN selections could be heavily under-

performing (see [83] for a thorough analysis). The underlying causes are diverse, including

lack of peering, routing misconfigurations, side-effects of traffic engineering, and systematic

diversions from destination-based forwarding [69]. Second, CDN measurements are necessar-

ily coarse grained – measuring each and every client (each individual IP address) from a CDN is

impossible for scalability reasons and because the actual source IP address isn’t available due to

ECS truncation. On top of this, CDNs often have other optimization goals, e.g., load balancing,

which can divert clients further away from close-by replicas.

The key idea is to enable clients to join CDNs in addressing the above challenges. In

particular, it is far easier for a single client to find a subnet that is consistently recommended

well-performing replicas than it is for a CDN to evaluate the entire IP space. Not only does

the client-supported approach scale, it enables far better CDN replica selection decisions. In

summary, in my approach, (i) clients conduct measurements to find other subnets that lead to

potentially lower-latency CDN replicas, (ii) they evaluate the performance of such subnets and

associated replicas via light, infrequent measurements over long time-scales, and (iii) finally,

they utilize these subnets to drive CDNs’ decisions towards lower-latency replicas.

3.0.1.2. Respecting CDN Policies and Incentives for Adoption. As stated above, CDNs can

sometimes deploy policies that can prevent them from serving clients nearby replicas. In prin-

cipal, there are two such scenarios. First, on longer timescales, a CDN may have a business

logic where it wants a certain IP subnet, and no one else, to be able to use a certain CDN cluster

or server. For example, an ISP may allow a CDN to deploy a CDN server inside its network,

but on the condition that only IP addresses owned by the ISP may benefit from that server. My

approach is completely compatible with such arrangements because such a policy can be easily



32

enforced via access network-level firewalls, which forces my system to avoid such CDN repli-

cas. Second, on shorter timescales, CDNs may deploy load-balancing policies that distribute

the traffic load such that clients are not always directed to the closest replica server. My system

respects such load-balancing policies because it always selects the first CDN replica from a

recommended set, i.e., does not opportunistically select the “best” replica from the set.

Clients have clear incentives to adopt my approach since it directly improves their perfor-

mance. While it is certainly the case that CDNs share the same incentives for my system’s

adoption, this is even more true with the proliferation of CDN brokers, e.g., [40]. CDN brokers

actively measure performance to multiple CDNs and they can redirect a client to a different

CDN on the fly in case the QoE isn’t satisfactory [92]. It has been demonstrated that this partic-

ularly hurts large CDNs, which often have better replicas in the vicinity of the clients, which the

broker is unfortunately unaware of; this leads to the loss of clients and revenues for CDNs [92].

Thus, utilizing clients’ help in selecting the best CDN replicas in their vicinity directly benefits

CDNs.

We thus argue that an unrestricted adoption of the ECS option, which is the key mechanism

that enables the subnet assimilation (Section 3.0.1.3), is in the best interest of every CDN.

In particular, the unrestricted ECS option enables a client to use the ECS field to specify a

subnet different from the client’s to change the way a CDN maps the client to its replicas.

While most CDNs do enable ECS in its unrestricted form, e.g., Google and EdgeCast among

others, Akamai does so only via OpenDNS [15] and GoogleDNS [12] public DNS services,

using the actual IP address of the requester. As such, Akamai’s CDN is currently not directly

usable by my system, as my system requires sending ECS requests on behalf of hop IPs. One

possible reason for such a restriction imposed by Akamai might be the ability of third-parties



33

C
S1

S2
H1 H2 H3 H4

100ms

0ms

laten
cy

Figure 3.1. Illustration of a latency valley.

to accurately reverse-engineer a CDN’s scale and coverage without significant infrastructural

resources, e.g., [53, 110]. However, that even without unrestricted ECS, Akamai’s network

has been quite comprehensively analyzed in the past, e.g., [76, 111, 112]. One of my main

contributions lies in showing that the benefits achievable by letting clients help improve CDNs’

decisions far outweigh the potential drawbacks of unrestricted ECS adoption.

3.0.1.3. Subnet Assimilation. Subnet assimilation is the deliberate use of the ECS field to

specify a subnet different from the client’s to change the way a CDN maps the client to its

replicas. In this thesis I show that the assimilation of subnets found along the path between the

client and its “default” replica may allow the client to “reposition” itself in the CDN’s mapping

scheme, such that the client will consistently receive lower-latency replica recommendations

from the CDN. Subnet assimilation is a key mechanism used both to detect and utilize lower-

latency CDN replicas.



34

Latency valley. Figure 3.1 illustrates the key heuristic that helps clients realize when they

are not optimally served by a CDN. Consider a client C, redirected to a CDN server S1, as

illustrated in the figure. If a hop on the path is not redirected to the same server S1, then it is

possible that a lower-latency replica, e.g., S2, has been observed, such that the latency between

C and S2 is smaller than the latency between C and S1. I refer to such a scenario as a latency

valley.

For the remainder of this project, I refer to the set of replicas suggested to the client’s actual

subnet as the client replica set (CR-set), and a replica from the CR-set as a client replica

(CR). I refer to the routers along the presumed path from the client to any given CR as hops.

Next, I refer to the set of replicas suggested to a hop, discoverable via subnet assimilation, as

a hop replica set (HR-set). I denote a measurement from the client to a CR as a client replica

measurement (CRM ). Likewise, I denote a replica from the HR-set as a hop replica (HR) and

a measurement to that replica from the client as a hop replica measurement (HRM ). Finally, I

define a latency valley to be any occurrence of the following inequality: HRM/CRM < vt ≤

1. I take vt = 1 until optimizing parameter selection in Section 3.0.4.1.

It is imperative to note that the goal of this project is not to find lower-latency replicas,

perhaps included in an HR-set. Instead, I aim to find subnets to which lower-latency replicas are

consistently suggested; in other words, subnets that are prone to valley-occurrences in replica

sets obtained at any time.

3.0.1.4. Identifying Latency Valleys. In order to identify latency valleys, I first identify the

hops along the path, which I achieve using traceroute. I am using the upstream path for sim-

plicity; the downstream path, which may be assymetric, could yield different results, but would

require more overhead or control of the CDN for execution. I then identify the corresponding



35

HR-set for each hop, using ECS queries which assimilate the hops’ subnets. Lastly, I compare

the HRMs to the CRM . Unless otherwise noted, I calculate HRMs and CRMs using ping

RTTs (obtained by averaging the results of three back-to-back pings), and I refer to these values

as latencies. Throughout this project, latency units are milliseconds. For simplicity, I refer to

the ratio HRM/CRM , used in the latency valley definition, as the latency ratio. A latency ratio

below 1 indicates that the HR has outperformed the CR, a latency ratio above one indicates the

CR has outperformed the HR, and finally, a latency ratio equal to 1 indicates that the CR and

HR performed equally (which, in general, only happens when CR and HR refer to the same

replica).

The above operation cannot be executed on-the-fly, as the time consumed by this process

will outweigh any latency gains achieved. Moreover, multiple measurements might be required.

Fortunately, the experiments in Section 3.0.2 show that a small number of measurements per

hop — less than 10 — are required, and that the measurement results remain applicable on

timescales of days. Because we can rely on measurements obtained in idle time, real-time

measurements are not necessary for the system to function. Thus, my proposed technique will

use past measurements to predictively choose a good subnet for future assimilation.

3.0.2. Exploring Valleys

In this section I establish that latency valleys are common phenomena in the wild, and that they

offer substantial performance gains. In addition, I lay the groundwork for finding valleys, a

prerequisite to harnessing their performance gains via subnet assimilation.

3.0.2.1. Testing for Valleys. I perform preliminary tests using PlanetLab nodes, a platform

which offers a large number of vantage points from around the globe, primarily deployed in



36

academic institutions [57]. I further investigate latency valleys as experienced by a large variety

of clients using the RIPE Atlas platform [16], as detailed in Section 3.0.4. While PlanetLab

lacks the scale and variety offered by RIPE Atlas, the flexibility and freedom it provides made

it a prime choice for my preliminary analysis. My PlanetLab experiments use 95 nodes spread

across 51 test locations, and I obtain the IP addresses of hops between nodes and CDN replicas

via traceroute.

While latency valleys are a common occurrence, as demonstrated below, many hops be-

tween the clients and the provider’s servers can be discarded when searching for valleys. One

category of such hops is of those which reside within the same local network as the client, which

will be suggested the same replicas as the client. Another disposable category — hops with pri-

vate IP addresses — will not be recognized by the EDNS server and will yield generic replica

choices, regardless of the hops’ locations. To ensure that a hop is indeed usable, a hop must

(i) belong to a different /16 subnet than the client, (ii) have a different domain than the client,

and (iii) belong to a different ASN than the client. I only filter hops that fail these conditions at

the beginning of the route; once a hop is observed that meets the above three constraints, I stop

filtering for the remainder of the route.

Provider Selection. While ECS is gaining momentum among CDNs, as it allows them to bet-

ter estimate their clients’ location, it is important to note that ECS was only recently deployed,

and its implementation varies among the different providers. “A Faster Internet,” an initiative

headed by Google and OpenDNS, is drawing together a growing number of large CDNs and

content providers to adopt and promote the adoption of ECS [97]. In order to attain a set of

CDNs for my experiments, I have selected those providers which implement an unrestricted

form of ECS, as described in Section 3.0.1.2.



37

Go
og

le

Clo
ud

Fr
on

t

Ali
ba

ba

CD
Ne

tw
or

ks
Ch

ina
Ne

tC
tr

Cu
be

CD
N

0.0

0.2

0.4

0.6

0.8
di

ve
rg

en
ce

mean divergence mean usable route length

0

2

4

6

8

10

12

us
ab

le
 ro

ut
e 

le
ng

th

Figure 3.2. Average divergence and average usable route length per CDN

In order to best select the CDNs for my tests, I scraped URLs from over 3000 sites arbitrarily

selected from the Alexa Top 1M list [3]. Then, I reduced the set of URLs to those that ended

in a known file type, in order to ensure my ability to perform download tests on the selected

URLs. When applicable, I resolved CNAME domains to their respective CDN domains. I then

performed multiple DNS queries for each URL to determine if unrestricted ECS is implemented.

From the remaining URLs I have extracted the 6 CDN domains which have appeared most

frequently, along with their respective URLs.

Before beginning to seek subnets with better mapping-groups, it is first necessary to prove

that subnets with different mapping-groups exist and are easy to find. I define usable route

length as the number of hops along the path that fulfill the above filtering. Next, I define

divergence as the fraction of usable hops along the path which were recommended at least one

replica that was not recommended to the client.



38

Figure 3.2 depicts usable route length and divergence for different CDNs. The figure shows

that, for example, when requesting replicas from Google, each client had an average usable

route length of 7.8 and the divergence is approximately 92%. It is evident from Figure 3.2 that

hops are indeed suggested different replicas than their client. As we encounter a wider variety

of recommendations, we increase the number of opportunities to find latency valleys. The high

divergence shown in Figure 3.2 indicates that other, and possibly lower-latency, replicas can be

mapped to clients if they were to assimilate their hops’ IP addresses.

For the remainder of this project, I use the following set of providers: Google, Amazon

CloudFront, Alibaba, ChinaNetCenter, CDNetworks, and CubeCDN, a set which is both diverse

and comprehensive. Google’s CDN infrastructure is massive and dispersed: as of 2013, around

30000 CDN IP addresses spread across over 700 ASes were observable in one day [52]. As

of this writing, Amazon CloudFront offered over 50 points-of-presence, spread throughout the

world [7]. CDNetworks offers over 200 points-of-presence, also globally dispersed, and heavily

employing anycast for server selection. Alibaba and ChinaNetCenter offer over 500 CDN node

locations, each, within China where they are centered, in addition to a growing number of

service locations outside of China, [4, 56]. Finally, CubeCDN is a smaller CDN with locations

spread primarily across Turkey [13].

Test Execution. In order to assert the existence of latency valleys in the wild, I have executed

a series of trials using the aforementioned URLs, and the PlanetLab nodes as clients. Each trial

consists of the following steps:

(1) Randomly select a URL

(2) Client retrieves CR-set for the selected URL’s domain

(3) For each CR, client uses traceroute to identify hops



39

Figure 3.3. Scatter plot of HRMs and minimum CRMs. The area below the
diagonal is the valley region.

(4) Using subnet assimilation, client retrieves the HR-set for each hop

(5) Client measures CRMs for every CR in its CR-set and HRMs for every HR it has

seen (across all HR-sets obtained in that trial)

I have performed a series of 45 trials per PlanetLab node, executed between one and two

hours apart. For the remainder of this Section, I refer to this dataset.

3.0.2.2. Valley Prevalence. In order to establish the prevalence and significance of latency

valleys, I now compare HRMs to their respective CRMs. It is important to note that it is

possible that a client has multiple CRs, and hence, multiple CRMs, and in practice a client can

only choose one replica. Therefore, I compare all HRMs to the minimum CRM obtained in



40

Table 3.1. Detailed findings for each provider, based on PlanetLab data

Provider % Valley
Overall

Avg %Valleys
per Route

% Routes
with Valley

% Hop-Client Pairs
w/ Valley Freq. >0.5

Google 20.24% 16.41% 53.30% 10.98%
Amazon CloudFront 14.02% 8.72% 25.82% 10.00%
Alibaba 33.68% 35.94% 75.83% 30.97%
CDNetworks 15.61% 24.41% 73.08% 14.09%
ChinaNetCenter 27.42% 14.26% 38.10% 16.74%
CubeCDN 38.58% 17.95% 25.49% 26.32%

their trial, thus establishing a lower bound for expected performance gain, and allowing us to

easily assert any gains or losses provided by the alternative replica choices (the HRs).

With the PlanetLab dataset, I compared each HRM to the minimum CRM , i.e, the best

client replica, obtained in the same respective trial. Figure 3.3 shows the results of this assess-

ment. HRM is plotted on the y axis and minimum CRM on the x axis, thus creating a visual

representation of the latency ratio. I distinguish between the CDNs using different colors. To

better explain the results, the equality line is drawn where HRM = minimum CRM . Every

data point along this line represents a hop’s subnet which is being suggested a replica that per-

forms on a par with the replicas suggested to the client’s subnet. More importantly, every data

point below the equality line represents a valley occurrence, as the alternative replica’s HRM

is smaller than the CRM . The percentage of valleys, by provider, ranges from 14.02% (Cloud-

Front) to 38.58% (CubeCDN), with an average of 22% across all providers. Table 3.1 shows

the results, i.e., Column 2 (% Valleys Overall) lists these percentages for each CDN.

Having established that valleys exist, I wish to determine where we can expect to find val-

leys. I continue using the minimum CRM from each trial, for reasons described above. How-

ever, in order to better reflect practical scenarios where only one of a given set of replicas is

used, I now also begin choosing an individual replica from an HR-set. Instead of choosing



41

the minimum HRM for a given hop, I conservatively choose the median. Each hop’s chosen

HRM is the median of its HR-set for that trial. I continue this pattern (choosing the client’s

best CRM from the trial and a hop’s median HRM ) for the remaining PlanetLab data analysis.

The PlanetLab data thus represents a lower bound on valleys and their performance implica-

tions; I compare the median performance of my proposed procedure to the absolute best the

existing methods have to offer. In Section 3.0.4, using a RIPE Atlas-based testbed, I remove

this constraint to demonstrate the real-world performance of the system.

I further wish to consider how common valleys are within a given route from the client to

the provider. Column 3 (Average % of Valleys per Route) of Table 3.1 shows, given some route

in one trial, the average percent of usable hops that incur valleys. We see for Alibaba that,

on average, over a third of the usable hops in a given route are likely to incur valleys, and for

CDNetworks, nearly a fourth of the route. Meanwhile, for CloudFront, we see that on average,

valleys occur for only a small portion of hops in a given route. Column 4 (% Routes with a

Valley) details the percentage of all observed routes that contained at least one valley in the

trial in which they were observed. For Alibaba and CDNetworks, around 75% of the observed

routes contain valleys, while more than 50% for Google.

Do Valleys Persist? Next I assess whether subnets are persistently valley-prone. For some

number of trials, how often can the client expect a valley to occur from some particular hop? To

answer this, I to be able to describe how frequently valleys occurred for some hop subnet in a

given set of trials.



42

0.0 0.2 0.4 0.6 0.8 1.0
valley frequency

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CD

F 
of

 h
op

-c
lie

nt
 p

ai
rs

Google
CloudFront

Alibaba
CDNetworks

ChinaNetCtr
CubeCDN

(a) ping

0.0 0.2 0.4 0.6 0.8 1.0
valley frequency

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F 

of
 h

op
-c

lie
nt

 p
ai

rs

Google
CloudFront

Alibaba
CDNetworks

ChinaNetCtr
CubeCDN

(b) total download time

0.0 0.2 0.4 0.6 0.8 1.0
valley frequency

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F 

of
 h

op
-c

lie
nt

 p
ai

rs

Google
CloudFront

Alibaba
CDNetworks

ChinaNetCtr
CubeCDN

(c) total post-caching download time

Figure 3.4. CDFs of clients by valley frequency. In 3.4a, the subnet-response
measurements are ping times averaged from bursts of 3 back to back pings.
In 3.4b, the subnet-response measurements are total download times on first
attempts, while in 3.4c the subnet-response measurements are total download
times on consecutive attempts (repeated downloads that take place immedi-
ately after first attempt to account for the potential impact of caching). Down-
loads were performed by using curl, where I set an IP as a destination and
set the domain as the HOST attribute. Measurements for 3.4b and 3.4c were
performed back-to-back so that 3.4c reflects download times with presumably
primed caches.



43

Valley frequency I define a new simple metric, the valley frequency, as follows: if we look

at a hop-client pair across a set of N trials, and v trials are valleys, the valley frequency, vf , is

vf =
v

N
.

A frequency of 0.5 would imply that in half the trials performed, a valley was found in said

hop. For each provider, I plot the valley frequency for each hop-client pair across the PlanetLab

dataset.

Figure 3.4 shows the results. Note that Figures 3.4b and 3.4c use the total download time

and the post-caching total download time, respectively, for the subnet measurements as opposed

to pings.2 I further note that their results closely follow those obtained using pings, as in Figure

3.4a. For simplicity, and because the RIPE Atlas platform cannot perform arbitrary web oject

downloads, I revert to only using pings for the remainder of this project.

Figure 3.4 shows that approximately 5%-20% of hop-client pairs resulted in valleys 100% of

the time (see y-axis in the figures for x=1.0) for every trial across the entire three day test period.

Such hops will be easy to find given a large enough dataset. However, of more interest to us are

hop-client pairs that inconsistently incur valleys. For example, perhaps if valleys can be found

50% of the time for some hop-client pair — i.e., a valley frequency of 0.5 — that hop may be

a sufficiently persistent producer of valleys for us to reliably expect good replica choices. This

would provide the system with more opportunities to employ subnet assimilation and, ideally,

improve performance. Column 5 (% Hop-Client Pairs with Valley Frequency > 0.5) of Table

3.1 shows the percentage of hop-client pairs that have valley frequencies (calculated across all

2I fetched .png and .js files, 1kB – 1MB large, hosted at the CDNs.



44

10 20 30 40 50
distance (hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

la
te

nc
y 

ra
tio

 d
iff

er
en

ce

Wind. 1 Wind. 5 Wind. 10 Wind. 15

(a) All client-hop pairs

10 20 30 40 50
distance (hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

la
te

nc
y 

ra
tio

 d
iff

er
en

ce

Wind. 1 Wind. 5 Wind. 10 Wind. 15

(b) Valley at least once

Figure 3.5. In both figures, I compare the change in latency ratio between two
trial windows to the distance in time between the two windows. In figure a, I use
all hop client pairs. In figure b, I restrict the set to pairs that experience at least
one valley in at least one of their 45 trials.

45 trials), greater than 0.5, i.e., hop-client pairs that incurred valleys in the majority of their

trials.

Can We Predict Valleys? While valley frequency can tell us how often valleys occurred on

a past dataset, the metric makes no strong implications about what we can expect to see for

a future dataset. To answer this, let us consider how the latency ratio changes as we increase

the time passed between the trials we compare. In addition, per my reasoning in the vf metric,

we may want to compare a set of consecutive trials — a window — to another consecutive set

of the same size, rather than only comparing individual trials (which is essentially comparing

windows of size 1). Given a set of trials, I take a window of size N and compare it to all other



45

windows of size N , including those that overlap, by taking the difference in their latency ratios

(HRM/CRM ). If I plot this against the time distance between the windows, we can observe

the trend in latency ratios as the distance in time between windows increases. An upward

slope would imply that the latency ratio is drifting farther apart as the time gap increases, while

a horizontal line would imply that the change in latency ratio is not varying with time (i.e.,

windows an hour apart are as similar to each other as windows days apart). A jagged or wildly

varying line would indicate that future behavior is unpredictable.

Figure 3.5 plots the latency ratio versus distance in time for several window sizes, ranging

from 1 to 15. In these plots, I use the windows’ median latency ratio values for comparison.

In particular, in Figure 3.5a, I use the entire dataset, i.e., consider all hop-client pairs, indepen-

dently of if they ever incur latency valleys or not, and plot latency ratio differences over time.

For example, assume that for a client-hop pair HRM = 80 ms at one measurement point, while

it rises to 120 ms at another measurement point. Meanwhile, assume that CRM remains 100

ms at both measurement points. Thus, the latency ratio HRM/CRM changes from 80/100

to 120/100, i.e., from 0.8 to 1.2. The latency ratio difference is 0.4. Figure 3.5a shows that

the latency ratio difference values both increase and vary wildly as windows become more dis-

tant. This shows that hop-subnet performance, overall, is likely extremely unpredictable. I hy-

pothesize this results from unmapped subnets receiving generic answers, as observed in [111].

However, subnet assimilation requires that I have some idea of how a subnet will perform in

advance.

Since valley-prone subnets are of particular interest to us, in Figure 3.5b, I reduce the dataset

to only include client-hop pairs that have at least one valley occurrence across all 45 of its trials

combined. The plot’s behavior becomes dramatically more stable after applying this simple,



46

minor constraint. The effects of the window size also become apparent in Figure 3.5b. Even

with a window of size 1, the slope is very small and the line is nearly flat; after over 50 hours,

two windows are only 10% to 20% more dissimilar than two windows a single hour apart. For

window sizes greater than 5, latency ratios are often within 5% of each other, regardless of their

distance in time. Going from a window size of 1 to 5 shows drastic improvement, while each

following increase in window size shows a smaller impact. The results clearly show that a client

can effectively identify valley-prone subnets and predict valleys with a sufficiently long window

size.

Valley Utility Analysis. Figure 3.6 shows the distribution of the lower bound latency ratios

seen by the set of all valley occurrences for each provider. The latency ratio represents a lower

bound because I use the minimum latency measure for replicas recommended to the client. For

example, if the minimum CRM is 100 ms and HRM is 80 ms, then the latency ratio is 0.8.

Thus, the closer to 0 the latency ratios are, the larger the gain from subnet assimilation. The

red line shows median, the box bounds the 25th and 75th percentiles, and the whiskers extend

up to data points 1.5 times the interquartile-range (75th percentile - 25th percentile) above the

75th percentile and below the 25th percentile. Data points beyond the whiskers, if they exist,

are considered outliers and not shown.

Figure 3.6 shows that most of the providers show opportunities for significant latency reduc-

tion. From this plot, it appears that Amazon CloudFront and ChinaNetCenter offer the greatest

potential for gains. With the exception of CDNetworks, we see all of tested providers have 25th

percentiles near or below a latency ratio of 0.8, a 20% performance gain. We also observe the

diversity of valley “depth”. For example, we see in Figure 3.6 that ChinaNetCenter’s interquar-

tile range spans over 40% of the possible value space (between 0 and 1). With such a wide



47

Google

CloudFront
Alibaba

CDNetworks

ChinaNetCtr

CubeCDN
0.0

0.2

0.4

0.6

0.8

1.0

la
te

nc
y 

ra
tio

Figure 3.6. Lower bound of latency ratio of all valley occurrences.

variety of gains for 50% of its valleys, it opens the door to being more selective. Rather than

simply chasing all valleys, we could set strict requirements, tightening the definition of what’s

“good enough” for subnet assimilation, as I evaluate in Section 3.0.4.1.

CDNetworks’ performance is more tightly bounded, as its interquartile range covers less

than 10% of the value space and sits very near to 1. This implies CDNetworks probably offers

very little opportunity for my technique to improve its replica selection. I that this is a byproduct

of CDNetworks anycast implementation; for replica selection, anycast depends more on routing

and network properties than DNS and IP selection [53]. In addition, Google’s median and 75th

percentile latency ratios sit very near 1.0. However, by being more selective as described above,

we may be able to pursue better valleys in the lower quartiles, below the median. We could

potentially improve the system’s valley-prone hop selection by filtering out “shallow” valleys

from consideration. I demonstrate and discuss the effects of different levels of selectiveness in

Section 3.0.4.1.



48

3.0.3. Drongo System Overview

I introduce Drongo, a client-side system that employs subnet assimilation to speed up CDNs.

Drongo sits on top of a client’s DNS system. In a full deployment, Drongo will be installed as

a LDNS proxy on the client machine, where it would have easy access to the ECS option and

DNS responses it needs to perform trials. Drongo is set by the client as its default local DNS

resolver, and acts as a middle party, reshaping outgoing DNS messages via subnet assimilation

and storing data from incoming DNS responses. In its current implementation, Drongo uses

Google’s public DNS service at 8.8.8.8 to complete DNS queries.

Upon reception of an outgoing query from the client, Drongo must decide whether to use the

client’s own subnet or to perform subnet assimilation with some known, alternative subnet. If

Drongo has sufficient data for that subnet in combination with that domain, it makes a decision

whether or not to use that subnet for the name resolution. If Drongo lacks sufficient data, it

issues an ordinary query (using the client’s own subnet for ECS).

3.0.3.1. Window Size. I now face the question: What is a sufficient amount of data needed by

Drongo to ensure quality subnet assimilation decisions? I choose to measure the data “quantity”

by the number of trials for some subnet, where the subnet is obtained via traceroutes performed

during times when the client’s network was idle. A sufficient quantity must be enough trials

to fill some predetermined window size. As observed in Section 3.0.2.2, the marginal benefit

of increasing the window size decreases with each additional trial. To keep storage needs low,

while also obtaining most of the benefit of a larger window, I set Drongo’s window size at 5.

3.0.3.2. Data Collection. Drongo must execute trials, defined in Section 3.0.2.1, in order to fill

its window and collect sufficient data. As demonstrated in Figure 3.5b, when these trials occur

is of little to no significance. In my experiments, I perform trials at randomly sampled intervals;



49

the trial spacing varies from minutes to days, with a tendency toward being near an hour apart.

This sporadic spacing parallels the variety of timings I expect to happen on a real client: the

client may be online at random, unpredictable times, for unpredictable lengths of time.

3.0.3.3. Decision Making. Here I detail Drongo’s logic, assuming it has sufficient data (a full

window) with which to make a decision about a particular subnet. For some domain, Drongo

must decide whether a subnet is sufficiently valley-prone for subnet assimilation. If so, Drongo

will use that subnet for the DNS query; if not, Drongo will use the client’s own subnet. From

Figure 3.5b, we know we can anticipate that future behavior will resemble what Drongo sees

in its current window if Drongo has seen at least one valley occurrence for the domain of

interest from the subnet under consideration. However, in Figure 3.6, we see that many valleys

offer negligible performance gains, which might not outweigh the performance risk imposed by

subnet assimilation. To avoid these potentially high risk hops, Drongo may benefit from a more

selective system that requires a high valley frequency in the training window to allow subnet

assimilation. I explore the effects of changing the vf parameter in Section 3.0.4.

It is possible that for a single domain, multiple hop subnets may qualify as sufficiently

valley-prone for subnet assimilation. When this occurs, Drongo must attempt to choose the best

performing from the set of the qualified hops. To do this, Drongo selects the hop subnet with the

highest valley frequency in its training window; in the event of a tie, Drongo chooses randomly.

3.0.4. Drongo Evaluation

Here, I evaluate Drongo’s ability to intelligently choose well-mapped hop subnets for subnet as-

similation, and the performance gains imposed on clients where subnet assimilation is applied.



50

0.2 0.4 0.6 0.8 1.0
valley threshold

0.95

1.00

1.05

1.10

1.15

1.20

1.25
la

te
nc

y 
ra

tio

vf ≥ 0.2 vf ≥ 0.4 vf ≥ 0.6 vf ≥ 0.8 vf = 1.0

Figure 3.7. Average latency ratio of overall system as I vary vf and vt

Using the RIPE Atlas platform [16], I collect a trace of 429 probes spread across 177 coun-

tries for 1 month. In my experiments, I use the first portion of a client’s trials as a training

window. Following the completion of the training window, I use the remaining trials to test

Drongo’s ability to select good hops for real time subnet assimilation. Each client performed 10

trials per provider: trials 0 through 4 to form its training window, and trials 5 through 9 to test

the quality of Drongo’s decisions. In my evaluation, Drongo always selects the first CR from

a CR-set and the first HR from a HR-set, mirroring real world client behavior — no real-time

on-the-fly measurements are conducted, and all decisions are based on the existing window.

3.0.4.1. Parameter Selection. Figure 3.7 shows the effects of Drongo on my entire RIPE

trace’s average latency ratio, i.e., I consider all requests generated by clients, including those

that aren’t affected by Drongo. The figure plots average latency ratio (shown on the y axis) as

a function of the valley threshold, vt, shown on the x axis. The valley threshold, introduced in

Section 3.0.1.3, determines maximum latency ratio a hop-client pair must have to classify as

a valley occurrence. For example, when the threshold equals 1.0, all latency valleys are con-

sidered; on the other hand, when vt is 0.6, Drongo triggers client assimilation only for latency



51

valleys that have promise to improve performance by more than 40%, i.e., latency ratio smaller

than 0.6. The figure shows 5 curves, each representing a different valley frequency parameter,

varied between 0.2 and 1.0.

Figure 3.7 shows the average results, across all tested clients. I draw several insights. If the

valley frequency is small, e.g., 0.2, Drongo will unselectively trigger subnet assimilation for all

valleys that have frequency equal to or larger than 0.2, which requires only one valley occur-

rence for the selected window size of 5. Conversely, as the minimum vf parameter increases,

overall system performance improves — the latency ratio drops below 1.0. Thus, the valley

frequency is a strong indicator of valley-proneness, further supporting my prior findings from

Figure 3.5b.

Meanwhile, two more characteristics stand out as vt is varied. First, the valley frequency

parameter can completely alter the slope of the latency ratio plotted against vt. This behavior

echoes the observation made in the previous paragraph: with extremely loose requirements,

Drongo does not sufficiently filter out poor-performing subnets from its set of candidates. In-

tersetingly, with a strict vf (closer to 1.0), the slope changes, and the average latency ratio

decreases as the valley threshold rises. This is because if Drongo is too strict, it filters out too

many potential candidates for subnet assimilation. Second, we see that the curve eventually

bends upward with high vt values, indicating that even the vt can be too lenient. The results

show that the minimum average latency ratio of 0.9482 (y-axis) is achieved for the valley thresh-

old of 0.95 (x-axis). Thus, with vf == 1.0 and vt == 0.95, Drongo produces its maximum

performance gains, averaging 5.18% (1.0 - 0.9482) across all of tested clients. By balancing

these parameters, Drongo filters out subnets that offer the least benefit: subnets where valleys

seldom occur and subnets where valleys tend to be shallow.



52

0.2 0.4 0.6 0.8 1.0
valley threshold

0.5

1.0

1.5

2.0

2.5

3.0

3.5
la

te
nc

y 
ra

tio

vf ≥ 0.2 vf ≥ 0.4 vf ≥ 0.6 vf ≥ 0.8 vf = 1.0

Figure 3.8. Average latency ratio of cases where subnet assimilation was performed

Figure 3.8 plots the average latency ratio in the same manner as Figure 3.7, yet only for

queries where Drongo applied subnet assimilation. First, the figure again confirms that lower

valley frequency parameters degrade Drongo’s performance. Second, paired with my knowl-

edge of Figure 3.7, it becomes clear that as valley threshold decreases, the number of latency

valleys shrinks while the quality of the remaining valleys becomes more potent. This is why

the latency ratio decreases as vt decreases. However, if the threshold is too small, the number

of available valleys becomes so small that the performance becomes unpredictable, i.e., outlier

behavior can dominate, causing the spike in average latency ratios for valley thresholds under

0.2.

Finally, Figure 3.9 plots the percent of clients for which Drongo performed subnet assimila-

tion for at least one provider. Necessarily, the less strict the frequency constraint is (vf ≥ 0.2 is

the least strict constraint), the more frequently Drongo acts. As shown in Figure 3.9, 69.93% of

tested clients were affected by Drongo with vf and vt set at the the peak aggregate performance

values (1.0 and 0.95, respectively) found above.



53

0.2 0.4 0.6 0.8 1.0
valley threshold

0.0

0.2

0.4

0.6

0.8
fra

ct
io

n 
cli

en
ts

 a
ffe

ct
ed

vf ≥ 0.2 vf ≥ 0.4 vf ≥ 0.6 vf ≥ 0.8 vf = 1.0

Figure 3.9. Percentage of clients where subnet assimilation was performed

0.2 0.4 0.6 0.8 1.0
valley threshold

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

la
te

nc
y 

ra
tio

Google(0.8)
CloudFront(0.8)

Alibaba(0.4)
CDNetworks(1.0)

ChinaNetCtr(0.6)
CubeCDN(1.0)

Figure 3.10. Per-provider system performance for all queries. Optimal vf is set
for each provider and noted in parentheses

Summary: In this section, I selected parameters: vf = 1 and vt = 0.95, where Drongo

reaches its peak aggregate performance gains of 5.18%.

3.0.4.2. Per-Provider Performance. In the previous subsection, I used a constant parameter

set across all six providers in my analysis. In this section, I analyze Drongo on a per-provider

basis. By choosing an optimal parameter for each provider, as done below, Drongo’s aggregate



54

Google

(0.8,0.7)
CloudFront

(0.8,0.8) Alibaba

(0.4,0.9)
CDNetworks

(1.0,0.9)
ChinaNetCtr

(0.6,0.85)
CubeCDN

(1.0,0.95)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

la
te

nc
y 

ra
tio

Figure 3.11. Per-provider system performance for queries where subnet assim-
ilation was applied. Parentheses contain optimal values for each respective
provider, formatted (vf , vt)

performance gains increases to 5.85%. In Figure 3.10, I show how Drongo impacts the aver-

age performance of each provider, while setting valley frequency to each individual provider’s

respective optimal value (noted in parentheses under each provider name). Note that, for most

providers, the individual optimal valley frequency lies near the value obtained in Section 3.0.4.1

(1.0). While the intricacies of each provider’s behavior clearly hinge on opaque characteristics

of their respective networks, I offer several explanations for the observed performance. CDNet-

works, which sees small gains across all valley threshold values, further validates the hypoth-

esis proposed in Section 3.0.2.2 regarding anycast networks. Meanwhile, Google, the largest

provider of my set on a global scale, also experienced the second highest peak average gains

from Drongo. is not well served by Google, it is likely that there exist nearby subnets being

directed to different replicas. In other words, Drongo has great opportunity for improving CDNs

that use fine grained subnet mapping.

Finally, Figure 3.11 shows Drongo’s performance, per-provider, exclusively in scenarios

when it applies subnet assimilation. Comparing to the results shown in Figure 3.6 for the Planet

Lab experiments, we observe significant differences. Most notably, the latency valley ratios are



55

much smaller in Figure 3.11 than in Figure 3.6. For example, the Google’s median latency ratio

is close to 1.0 in Figure 3.6, indicating insigificant gains. On the contrary, Figure 3.11 Google’s

median latency ratio is around 0.5, implying gains of 50% (1.0 − 0.5) and up to an order of

magnitude in edge cases. Considering all providers, Drongo-influenced replica selections are,

on average, 24.89% better performing than Drongo-free selections.

There are three reasons for this behavior. First, Figure 3.6 shows the lower-bound system

performance for PlanetLab, as the best CR is always used for comparison. Such a restriction is

not imposed in the the RIPE Atlas scenario. Second, the RIPE set is more diverse and includes

widely distributed endpoints, thus allowing CDNs greater opportunity for subnet mapping error.

Third, contrary to the Planet Lab scenario where I used all the valleys under the valley threshold

of 1.0, here I use optimal vt values, such that Drongo successfully filters out most “shallow”

valleys that would dilute performance gains.

3.0.5. Related Work

Given a large number of CDNs, with vastly different deployment and performance in different

territories, CDN brokering has emerged as a way to improve user-perceived CDNs’ perfor-

mance, e.g., [39, 71]. By monitoring the performance of multiple CDNs, brokers are capable of

determining which particular CDN works better for a particular client at a point in time. Nec-

essarily, this approach requires content providers to contract with multiple CDNs to host and

distribute their content. Contrary to CDN brokering, Drongo manages to improve performance

of each individual CDN. Still, it works completely independently from CDNs and it is readily

deployable on the clients. Moreover, Drongo is completely compatible with CDN brokering



56

since it in principle has the capacity to improve the performance of whichever CDN is selected

by a broker.

There has been tremendous effort expended in the ongoing battle to make web pages load

faster, improve streaming performance, etc. As a result, many advanced client-based pro-

tocols and systems have emerged from both industry (e.g., QUIC, SPDY, and HTTP/2) and

academia [51, 94, 117] in the Web domain, and likewise in streaming, e.g., [77]. While Drongo

is also a client-based system, it is generic and helps speed-up all CDN-hosted content. By

reducing the CDN latency experienced by end users, it systematically improves all the above

systems and protocols, which in turn helps all associated applications.

Recent work has demonstrated that injecting fake information can help protocols achieve

better performance. One example is routing [115], where fake nodes and links are introduced

into an underlying linkstate routing protocol, so that routers compute their own forwarding

tables based on the augmented topology. Similar ideas are shown useful in the context of traffic

engineering [55], where robust and efficient network utilization is accomplished via carefully

disseminated bogus information (“lies”). While similar in spirit to these approaches, Drongo

operates in a completely different domain, aiming to address the CDN pitfalls. In addition

to using “fake” (source subnet) information in order to improve CDN decisions, Drongo also

invests efforts in discovering valley-prone subnets and determining conditions when using them

is beneficial.

3.0.6. Discussion

A mass deployment of Drongo is non-trivial and carries with it some complexities that deserve

careful consideration. There is some concern that maintainence of CDN allocation policies



57

may still be compromised, despite my efforts to respect their mechanisms in Drongo’s design.

I propose that a broadly deployed form of Drongo could be carefully tuned to effect only the

most extreme cases. Figure 3.11 shows that subnet assimilation carries some risk of a loss in

performance, so it is in clients’ best interests to apply it conservatively. First, I know from

Figure 3.9 that the number of clients using assimilated subnets can be significantly throttled

with strict parameteres. Further, in today’s Internet, many clients are already free to choose

arbitrary LDNS servers ([52, 76]). Many of these servers do not make use of the client subnet

option at all, thus rendering the nature of their side-effects — potentially disrupting policies

enforced only in DNS — equivalent to that of Drongo. It is difficult to say whether or not

Drongo’s ultimate impact on CDN policies would be any more sigificant than the presence of

such clients.

Mass adoption also raises scalability concerns, particularly regarding the amount of mea-

surement traffic being sent into the network. To keep the number of measurements small while

ensuring their freshness, a distributed, peer-to-peer component, where clients in the same sub-

net share trial data, could be incorporated into Drongo’s design. I leave this modification for

future work.

3.0.7. Summary

In this thesis, I proposed the first approach that enables clients to actively measure CDNs and

effectively improve their replica selection decisions, without requiring any changes to the CDNs

and while respecting CDNs’ policies. I have introduced and explored latency valleys, scenarios

where replicas suggested to upstream subnets outperform those provided to a client’s own sub-

net. I have asserted that latency valleys are common phenomena, and I have found them across



58

all the CDNs I have tested in 26-76% of routes. I showed that valley-prone upstream subnets

are easily found from the client, are simple to identify with few and infrequent measurements,

and once found, are persistent over timescales of days.

I have introduced Drongo, a client-side system that leverages the performance gains of

latency valleys by identifying valley-prone subnets. My measurements show that Drongo can

improve requests’ latency by up to an order of magnitude. Moreover, Drongo achieves this

with exceptionally low overhead: a mere 5 measurements suffice for timescales of days. Using

experimentally derived parameters, Drongo affects the replica selection of requests made by

69.93% of clients, improving their latency by 24.89% in the median case. Drongo’s significant

impact on these requests translates into an overall improvement in client-perceived aggregate

CDN performance.



59

CHAPTER 4

Skylines: Demystifying Network Resource Islands with Virtual

Landmarks

4.1. Introduction

You and the person next to you might not be using the same Internet. With ever increasing

diversity and interlinking of online services — content distribution networks, cloud computing,

CDN brokers, cloud brokers, ad brokers, load balancing, user tracking, geoIP, and more —

even the implications of loading a single web page are no longer straightforoard [50]. Often,

failure to recognize the whole as distinct from the sum of its parts has inhibited progress and

hampered performance in networking technology [47, 80]. In the same way a city’s skyline

cannot be anticipated by the artitect of a single building, the “digital skyline” of the Internet can

be neither predicted nor fully controlled by any single entity. However, skylines can always be

observed.

Even across a single network service, client experiences may diverge. In Figure 4.1, I pro-

vide a high level illustration of how this can happen. In subfigure 4.1a, a client intending to

connect to example.com submits a DNS query. I do not show the minute details of the DNS res-

olution process, which is itself multi-tierd and possibly involving cooperation from many sepa-

rate stakeholders. What is important to know is that eventually, the client’s request reaches the

nameserver responsible for example.com. The nameserver uses what is often internal, propri-

etary logic to decide which of example.com’s network resources the client should be connected



60

to. In subfigure 4.1b, we are reminded that this client is not the only one from its subnetwork to

access example.com. However, as illustrated, the client’s peers may not necessarily be directed

to the same content resource, despite having carried out essentially the same DNS resolution

process and possibly sharing the same edge network. This potential for mismatch between

clients only grows as the number of domains considered increases — which it will, often on a

single web page.

In this project, I explore the complex combination of independently operating resource allo-

cation schemes and assess their behavior in aggregate. To enable my research, I introduce a new

similarity measure, common network resource exposure (CNRE), which captures the extent to

which a pair of clients are directed to the same network targets as each other across a broad set

of domains. CNRE is, to my knowledge, the first ever method to quantify cross-provider DNS

redirection patterns and their collective behavior.

I test and assess CNRE using 302 web content hosting domains for each CNRE calculation.

To do this, I collect latency and DNS measurements for each domain from each of 9,024 glob-

ally distributed clients and perform over 40 million pairwise CNRE calculations between them.

My experiments validate common network research exposure as a useful measure and explore

its relationship with other client properties.

In order to understand CNRE, I performed an exhaustive set of measurements to frame client

experience on a per site basis, as opposed to per individual domain. In this work, I capture

a snapshot of both DNS resolutions and latency measurements toward the 304 domains that

appeared most frequently in the top 2441 most popular webpages. My measurements span over

9,000 unique clients spread across 185 countries and 3637 autonomous systems. I performed



61

(a)

(b)

Figure 4.1. Illustration of network resource allocation. Figure 4.1a shows DNS
resolution at a high level: 1) The client deploys a DNS query for example.com.
2) This query ultimately reaches nameserver responsible for example.com and
decides which of example.com’s network resources should serve the client. 3)
The nameserver’s resource selection is returned to the client. Figure 4.1b shows
an example of how clients with similarly described locations may be directed to
distinct network resources.

over 52 million pairwise comparisons with the results of these measurements to explore the

patterns and implications of common network resource exposure.

This project makes the following contributions:

• I perform a large scale exploration of client network performance on a per webpage

level. My raw results are publicly available on the RIPE Atlas platform.

• I introduce the common network resource exposure (CNRE) similarity measure, which

quantifies the extent to which clients are directed to the same set of web resources.



62

• I quantify the degree of alignment between conventional grouping schemes (country,

ASN, and BGP prefix) and CNRE.

• I identify clusters of clients that share especially high levels of common network re-

source exposure and analyze their properties.

• I approximate the effective geographic “centers” of CNRE clusters, where their target

network resources are most likely concentrated.

4.2. Problem Space and Related Work

This projects aims to gain an understanding of which clients are directed to the same set of

resources across many distinct domains. Its most direct and immediate use case is influencing

probe selection in large scale Internet measurements. For researchers, likely unaware of the rel-

atively hidden allocation schemes of the wide array of CDN platforms and other large content

distributors, it is difficult to determine, a priori, the degree of similarity between clients. Knowl-

edge of whether there is a high probability that a pair of clients are being directed to altogether

different resources may be significant to their experiment design. This approach to experiment

design is in line with RIPE Atlas, one of the largest client based measurement platforms, which

maintains an exhaustive set of tags on all of their clients in order to help researchers and net-

work operators filter and refine the set selected for their experiment [16]. Further, more abstract

applications may include, but are not limited to, distributed denial of service mitigation [90]

and CDN node deployment [83, 113].

The most similar body of related work involves anycast CDN catchment analysis, which

aims to investigate the set of clients routed towards particular CDN points of presence (PoPs)



63

[53, 90, 70]. My work differs significantly in scope: to my knowledge, I am the first to in-

vestigate what I refer to as aggregate catchments, the joint behavior of many anycast CDN

catchments as well as unicast CDN targets, spread across many content distribution platforms.

Conversely, this related body work either focuses on individual platforms or specific services

[53, 90, 70].

Several authors have attempted to discover the topology of large CDN platforms through

large scale measurement studies [42, 52, 46]. While their findings are potentially of use in this

project, their goals and contributions run parallel to what I aim to accomplish. They seek to

identify the properties and locations of CDN resources; conversely, I seek to identify the target

pools (sets of clients) of overlapping CDN resource catchments [42, 52, 46]. Other work close

to this space investigates the performance of a particular CDN deployment scheme [54].

To my knowledge, no existing body of work has attempted to quantify the extent to which

clients are exposed to the same web resources across domains. However, work concerning secu-

rity in internationally networked platforms do take network resource exposure into account. For

example, some work has identified scenarios where traffic routed through certain neighboring

countries is sometimes censored or manipulated by middleboxes in the transit country [44]. To

the same end, the authors of [66] developed a means to guarantee traffic is not exposed to spe-

cific territories. In a similar light, many globally distributed platforms employ “geoblocking”

to restrict content access to particular regions [88]. As a new way to quantify resource exposure

in general, my work runs parallel to and may be of use to these areas of study.



64

Figure 4.2. Diagram illustrating domain name collection: 1) Domains from the
Umbrella top 1-million were loaded via Google Chrome to identify human-
targeted websites. 2) For each human-targeted website’s landing page, a HAR
file was recorded. 3) Domains were extracted from HAR data and ranked by the
number of times observed.

4.3. Experiment & Data Collection

The main preliminary steps performed to enable my work are twofold: 1) domain name

collection and 2) per-provider performance measurement. The remainder of this section details

these steps and the reasoning behind them while providing necessary context to understand the

results presented throughout this project.

4.3.1. Definitions

As my aim in this project is to explore the cross-provider behavior of Internet resource-to-client

mapping schemes, it is necessary to first establish what qualifies as “cross-provider” and what

sort of cross-provider behavior is of relevance. For example, the reader may have observed

that, if a pair of providers are not used together for a given online experience, there is no

reason not to keep their analyses separate. I choose to focus on the providers of webpage



65

objects, which are known to often span a multitude of providers [50]. Previous work has well

documented the impact of individual, slow loading objects on page load time [116]. To this end,

I target domains which I empirically found to co-inhabit large numbers of webpages as web

object hosts. Throughout this project, I equate “domain” to “host” or “provider”, recognizing,

however, that it is often the case that a single provider will use several domain aliases.

Likewise, I also note here that my use of the term “[web] resource” is deliberately ambigu-

ous: the explicit implementation method used by each provider — ranging from a single subnet

per geographic point-of-presence to a number of software-partitioned subnets per machine — is

opaque and beyond the scope of this study. My chief concern is that an identifiable distinction

is made between the set of targets (IP addresses) provided in DNS answers: the sheer fact that

they are not labeled as the same target indicates that there is likely some difference, performance

or otherwise, between them. For simplicity, I treat each /24 IPv4 subnet (generally, the most

fine-grained BGP prefix route announcement allowed, by convention) as a potentially distinct

resource, noting that it may be the case that larger providers operate with smaller (more coarse

grained) prefixes.

4.3.2. Domain Collection

I use the top 10,000 most frequently resolved domains from Cisco’s Umbrella Top 1-Million

list [108] as a starting point. However, as this list is obtained from the perspective of DNS

resolution, the relationship between these domains is unclear. Further, as there is no complete

URL information from such a perspective, there is no indication which domains are used for

downloading web content, as opposed to providing some other service or interface. To address

this, I attempt to load pages from this list and ultimately use domains providing web objects



66

discovered on each successfully loaded page. This process is detailed below and illustrated in

Figure 4.2.

First I attempt to load each web page from the Umbrella list using Google Chrome. If a page

loaded, its source was checked for any indication that the page was not intended for human use

(for example, automated server response pages for non-200 HTTP status messages). This filter

reduced the size of the domain set from 10,000 pages to 2,441 pages. For each of these pages,

an HTTP archive (HAR) file was saved to capture the full set of web objects loaded with the

page. By using HAR files instead of just the page source, I avoid missing any dynamically

loaded objects that may not appear in the original source. The HAR file provides the full HTTP

path of each web object retrieved. Domains used in the remainder of this project come from

this resulting dataset.

Due to security related rate limits, my experiment’s progression was capped to 15-20 domain

measurements per client per day, thus further restricting the number of domains to be used in

the experiment. Since the entire domain set obtained was larger than what I could reasonably

cover, I ranked object hosting domains by how frequently they were observed across the set of

HAR files. The most frequently appearing object hosting domains were given priority. Based

on this prioritization, I arbitrarily used the top 304 domains from this set.

In Figues 4.3 and 4.4, I show the decreasing marginal impact of each additional domain in

the set. As shown, both quantities — the number of visited pages including a URL hosted by

a domain from the set and the fraction of URLs on each page covered by domains included in

the set — exhibit logarithmic-like growth patterns, beginning to plateau well before 100 do-

mains are reached. We assert that this demonstrates the aggregate behavior of the 304 domains

obtained above should sufficiently cover the domain diversity of a “typical” popular web page.



67

Figure 4.3. The number of sites containing an object hosted by an included do-
main vs the size of the set of included domains.

Figure 4.4. Mean fraction of page object links (URLs) covered per site vs the
number of domains used.

By inspection after measurements were collected, two of the 304 domains were found to use

a single, global IP address for all clients as opposed to performing redirection. Such behavior is

1) not interesting from a technical perspective in the context of this project and 2) evidently rare



68

(only occurring in two of the 304 tested domains). Further, given my analysis methodology,

the inclusion of such domains would essentially only serve to offset CNRE values — which

themselves are only meaningful in relative comparisons — by a constant factor, having no

impact on results. For this reason, I opt to prune these domains from the list ultimately used,

reducing the set size to 302. It is possible that these two domains operated using a fully anycast

model as opposed to DNS redirection 4.7.2. I consider the possibility of ammending support

for single-IP anycast hosts in Section 4.7.

4.3.3. Per-Provider Performance Measurement

Any attempt to identify the general groups that Internet clients are mapped to requires a dataset

with a uniquely broad scope: not only breadth — a diverse set of clients — but also depth —

many clients from each, yet to be uncovered, group or cluster. In addition, we are required to

minimize the temporal spread of the measurements, as network resource allocation is known

to change over time. I utilize the RIPE Atlas platform [16] for my measurements. RIPE Atlas

offers a large number of globally distributed clients, capable of performing lightweight network

measurements, such as pings, on behalf of configurable requests received by the Atlas API. I

deployed ping measurements to the previously described 304 domains from 10,274 of RIPE’s

clients. Each client performed DNS resolution for pings via their local DNS resolver, ensuring

that they each targeted the web resource they would ordinarily be directed to.

Unavoidable flux in the availability of individual, voluntarily maintained clients lead to

some clients performing only a subset of the given measurements, thus missing some of the

domains of interest. To be sure that this does not dramatically affect my findings, I arbitrarily

enforce a minimal amount of domain coverage — 160 domains, just more than half of the set



69

— for use of a given client’s data. I show in Section 4.4 the effects of domain quantity on

measurement results. Applying this contraint reduced the size of the client set to 9,024 clients.

4.4. Common Network Resource Exposure

This project seeks to explore aggregate network resource catchments — the set of users

exposed to the same set of web resources as each other across a given set of domains. I introduce

a new similarity measure, which I have coined common network resource exposure (CNRE), to

quantify the extent to which two clients are exposed to the same network resources. Inspired by

the Jaccard index [79], CNRE between two clients, C1 and C2, is defined as follows:

CNRE(C1, C2) =

∑D
i mi(r

−1
1i

+ r−1
2i
)∑D

i (r
−1
1i

+ r−1
2i
)

where D represents the intersection of measured domains between both clients, and mi is 1

if C1 and C2’s ith domain answers match (otherwise zero). The values r1i and r2i represent the

fraction of all measurements (across the entire dataset) that matched C1’s and C2’s DNS answer

for that domain, respectively. For example, if C1’s answer for domain i appeared 900 times

across the 9024 times it was tested in the dataset (once by client), r1i = 900/9024, or 0.09973

(i.e. roughly 10% of the answers). In other words, rni
captures the rarity of the DNS answer

received by client Cn for domain i.

In my calculation of CNRE, I use the inverse of rni
to add increased weight to the impact of a

mismatch on rare answers. CNRE is therefore designed to be higher between clients with more

matching rare answers. As it is ultimately a measure of similarity between clients, CNRE values

range from 0 through 1, with 1 being the most similar. To ease discussion in the remainder of



70

Figure 4.5. CDF showing the effect of the number of domains used for CNRE
calculation. The 500 clients and set of domains used for each CNRE calculation
were randomized.

this project, here I also define CNRE distance as 1−. Likewise, where ambiguity is likely, I will

refer to raw CNRE as CNRE similarity.

In Figure 4.5, I plot the effects of the number of domains on CNRE statistics. For each

data point, I performed pairwise CNRE calculations between 500, randomly selected clients.

For each individual comparison, a random set of domains were selected, matching the quantity

being tested. Both upper (90th percentile) and lower (10th) CNRE scores stabilize and plateau

significantly by 150 domains, showing no substantial changes as the number of domains in-

creases beyond that. This validates my use of 160 domains as a cutoff for a client’s admission

into the final dataset.



71

Figure 4.6. Mean domain error vs # of distinct answers observed from domain
(one point per domain).

I pause here to address potential bias given toward individual domains. As CNRE calcula-

tion gives increased weight to rare answers, there is the possibility that the allocation patterns of

large providers (who often have more answer variety related to the scale of their networks) may



72

dominate the results. This would be detrimental to the main purpose of CNRE — a supposedly

aggregate measure — as it would ultimately revert to essentially measuring a single provider,

which is a well explored topic. To determine whether this is occurring, I calculate the domain

error, for a single domain, as follows: Given a pair of clients, first, find their CNRE normally.

Next, let us set d to be 1 if the DNS answer for the domain of interest matches between the

pair of clients, and otherwise 0. Finally, the domain error is the absolute value of d−CNRE. In

Figure 4.6, I plot this, with each point representing the mean domain error for a given domain

across the entire set of client combinations.

With domain error, I capture how different the CNRE would have been had that domain been

the only one used in that client pair’s CNRE calculation. A low mean domain error — close

to zero — implies that the domain is dominating over the CNRE. A high mean domain error

— close to one — implies that the domain has little impact on CNRE’s value. A mean domain

error close to the middle — 0.5 — is ideal, as it implies that the domain is neither dominant nor

irrelevant. We see in Figure 4.6 that domains with many answers (and hence increased rarity per

answer) actually have the highest error. Further, the range of domain error across all domains

spans roughly from 0.4 to 0.6, indicative of the absence of substantial bias towards any given

domain from my approach.

4.5. Finding High CNRE Clusters

Finding aggregate catchments — pools of clients essentially directed toward the same web

resources — necessarily involves finding sets of clients with high CNRE measures between

each other. Because CNRE is a measure of similarity, this problem naturally lends itself to

hierarchical clustering techniques [93]. I employ the complete linkage method to ensure cluster



73

Figure 4.7. Dendrogram of CNRE distance across all client pairs

formation reflects commonalities across all cluster members as opposed to potentially edge-

specific properties. Note that in all clustering calculations, I opt to use the CNRE distance

(1−CNRE) as defined in Section 4.4.

Establishing hierarchical clusters requires that we have some definition of what constitutes a

high or low CNRE measure and at what threshold it is appropriate to consider clients sufficiently

similar such that they appear in the same cluster. In this section, I explore the implications

of various CNRE values, as well as CNRE’s relationship with other, well-established client

grouping systems: country, ASN, BGP prefix, and /24 prefix subnet.

4.5.1. Group Formation Patterns

Figure 4.7 presents a dendrogram derived from pairwise CNRE distances across all clients and

highlights two levels of distinct behavior regarding the distribution of CNRE distances. In the

uppermost portion of the plot — where CNRE distances are beyond a threshold of 0.65 —

we see that distinctions between branches and their implied client groups become well defined.

There is a large cluster composed mainly of European and African probes (green cluster labelled



74

Europe 95%), one representing East Europe (red cluster labelled DE 56%), one composed of

North and South American probes (blue cluster labelled US 59%), a cluster composed of probes

from Asia and Oceania (khaki cluster), and one made exclusively with American probes (black

cluster labelled North America 98%). In the lower region of the tree, where CNRE distances

drop below 0.65, we see that branches begin to fork unpredictably with shorter changes in

CNRE distance. Some of these branches may map to specific countries, but at finer granularities

the geographical location of probes delineate poorly the characteristics of the clusters.

I compare established client group labeling schemes — country, ASN, and BGP prefix — to

CNRE similarity between clients with matching (e.g., same country) and differing (e.g., differ-

ent country) labels. My findings are shown in Figure 4.8. The 95th percentile CNRE between

groups with differing labels is marked on each plot by a vertical red line; at this point, differing

and matching labels become distinguishable. For example, in Figure 4.8b, a pair of clients with

CNRE < 0.73 (see 0.27 in Figure 4.7, which uses CNRE distance) are likely from different

ASes, while clients with CNRE > 0.73 are likely from the AS. Note, however, that 4.8 uses

median values for all points shown. I analyze this further in 4.5.2.

Figures 4.8 and 4.9 together help provide a possible explanation for three partiions observed

in Figure 4.7. In Figure 4.8, we see that in all three subplots, the aforementioned middle region

of Figure 4.7 appears again, this time as a plateau in both the “Diff” and “Same” curves. In

this region, “Diff” and “Same” overlap significantly, rendering them indistinguishable. This

transient zone is given further context in Figure 4.9, where I shade each country’s median CNRE

towards other countries (i.e., outbound comparisons) — the same data used to plot the “Diff”

CDF in Figure 4.8a.



75

(a) country

(b) ASN

(c) BGP prefix

Figure 4.8. CDFs of CNREs across client sets with matching (same) and non-
matching (diff) labels. “Same” shows the CDF for the median CNRE distance
across all client pairs matching a given label. “Diff” shows the CDF for the
median CNRE distance from each label group toward all other labels. The red,
vertical line in each subfigure marks the 95th percentile CNRE for for differing
labels.



76

Figure 4.9. Choropleth with each country shaded by its median CNRE distance
from all other countries.

If a given country tends to have low CNREs between itself and all other countries, this

implies that the country is exposed to a more exclusive set of web resources than its peers. For

example, Australia, which, as shown in 4.8a, has a generally low CNRE with other countries,

likely utilizes very locale-targeted infrastructure given its relative distance from more more

broadly used network resources. Likewise, China, which is well documented as having its

Internet infrastructure deliberately disjoint from much of the world [43], also has a low CNRE

with most other countries. Conversely, we see most that countries within Europe and Africa

tend toward having higher CNREs with most other countries, implying that the majority of web

resources exposed in those regions are neither exclusive nor fine grained.



77

4.5.2. Label Alignment

Having established some concept of what constitutes a “high” or “low” CNRE measure, I fur-

ther consider CNRE in comparison to country, ASN, and BGP prefix — three labeling schemes

commonly used group Internet clients. Specifically, I wish to determine if the information cap-

tured by CNRE (the extent to which clients are exposed to the same web resources) is reasonably

captured by any pre-existing system. If this were the case, one might argue that the premise of

treating CNRE as a separate system would be redundant and arbitrarily complex. Therefore, I

treat this subsection as a means of validating and justifying the CNRE as a separate, currently

unaddressed concept.

In Figure 4.10, I plot the completeness, homogeneity, and number of clustesr for the afore-

mentioned labeling schemes as I cluster clients in the dataset, varying the CNRE distance

threshold used for cluster formation. In addition, I also mark, with a vertical line, the CNRE

distance at which labels become distinct (see Figure 4.5.1), and I mark the number of labels

(i.e., the number countries, ASes, or BGP prefixes) present with a horizontal line (using the

righthand y-axis).

If homogeneity and completeness, which together indicate how well cluster membership

aligns with a given labeling scheme, is not high, the CNRE-related implications of a given

label become ambiguous. We see in Figure 4.10 that for country and ASN, homogeneity and

completeness are never simultaneously high, rendering them unusable for determining CNRE

on their own. BGP prefix, however, requires more thorough consideration. In Figure 4.10c

Figure 4.7 depicts the hierarchical clustering dendrogram based on pairwise CNRE dis-

tances. This representation highlights the similarity of clients and different possible partition-

ing. Each node in the tree is a cluster composed of the underneath denser clusters. A horizontal



78

(a) country (b) ASN

(c) BGP prefix

Figure 4.10. Completeness, homogeneity, and number of clusters versus clus-
tering distance threshold. The vertical line marks 0.27, the CNRE distance at
which clients with differing labels become distinguishable, and the horizontal
line denotes (using the right-side y-axis) the number of different real labels (for
example, the number of countries) preesent in the data set for the given labeling
scheme.

cut in the dendrogram produces a partitioning of clients for which the dissimilarity of two probes

in the same partition is not greater than the y-value where the cut is done.



79

For example, the colored clusters in Figure 4.7 are obtained with a cut at y = 0.65. This

partitioning produces eight clusters including three small ones composed of outliers. The five

large clusters represent a very coarse partitioning of clients. 95% of probes in the green cluster

are from Europe and 4% are from Africa (that is almost all African probes), the red cluster

consists mainly of German, Italian, and Russian probes (79%), the blue cluster is mainly North

and South American probes (resp. 80% and 18%), the khaki cluster has mostly probes from

Asia and Oceania (resp. 67% and 32%), and the black cluster is mostly North American probes

(98%). As each cluster is composed of smaller and denser clusters, one can again partition these

clusters and form groups with clients having more network resources in common.

4.6. Cluster Analysis

Now that I have built up an understanding of how CNRE behaves, I move on to investigate

the aggregate catchments of clients using clustering techniques discussed in the previous sec-

tion. In this section, I use the aforementioned CNRE threshold of 0.73 for cluster formation.

This threshold yields 870 clusters. For analysis, in which I compare clients that cohabit the

same cluster, I consider only clusters for which the dataset has a representation of at least three

clients; this yields 612 clusters from the original 870. The average cluster size from this reduced

set is 15.78 members, with a standard deviation of 9.0 and a median size of 14.19. Note that

cluster size variety is significantly impacted by the dataset, which has more client representation

in western Europe and North America than in the rest of the world where RIPE’s influence is

more sparse [16].

Here I examine each cluster’s geographic spread — the closeness, in terms of geographic

distance, of members of the same cluster. As clients sharing the same cluster are predominantly



80

exposed to the same network resources, the geographic spread of a cluster’s clients must related

to the network performance (latency) they experience. Specifically, if a pair of clients directed

to the same network resource are physically “far” apart from each other, it is likewise impossible

for both clients to simultaneously be near said resource. In such an arrangement, the resource is

either near one client and far from the other, or the resource is equidistant from both clients. In

the latter case, if the clients are sufficiently far from each other, the resource must also far from

both clients.

To calculate these geographic distances, I use coordinates for RIPE Atlas probes — our

client machines in the context of this experiment — obtained from RIPE Atlas’s API. RIPE

acquires probe location information via manual input from volunteers who themselves maintain

Atlas probes, and, where necessary, by autmated input from MaxMind [31]. Figure 4.11 shows

the CDF of the mean geographic distance (in kilometers) between members of a cluster, for

each cluster. Members of a cluster with a larger mean geographic distance are farther apart

form each other, on average, than are the members of a cluster with a lower mean geographic

distance. In the median case, we see an average client distance of 509 km. We observe that for

20% of clusters, members are over 1000 km on average.

Since CNRE potentially spans many, physically distinct resources, it serves as an aggregate

measurement, and I do not attempt to pinpoint the location of any individual resource. Instead,

I identify the effective “center” of each cluster and measure the effect of a member’s distance

from the center. Figure 4.12 marks a point for the the coordinates of each cluster’s center. The

disproportionately high number of centers located in Europe is byproduct of the distribution of

RIPE Atlas probes, which are most densely concentrated in Europe where RIPE operates.



81

Figure 4.11. CDF of mean geographic distance between cluster members. The
dashed vertical line marks the median.

Figure 4.12. Map of world with point for each cluster’s geographic center.

Following the intuition of DNS redirection laid out in other work [52, 110, 45], I hypoth-

esize that the geographic center of a cluster will sit physically close the location of the most



82

of that cluster’s network resources. By this logic, clients closer to their cluster’s center should

experience better network performance (i.e., lower latency) than those farther away. To test

this, I compared each client’s mean latency (taken across all 299 ping responsive domains in

our set) to that client’s distance from its respective cluster’s center. For simplicity, I use a clus-

ter’s geometric median as an estimate of its center. The results of this comparison are shown

in Figure 4.13 as a scatter plot of mean latency versus distance from cluster center. Each point

corresponds to a single client’s latency and distance from its respective cluster’s center. The

figure also includes a best fit line, denoting the overall trend of the points.

Note the positive slope of points in Figure 4.13, indicative of a directly proportional relation-

ship between latency and distance from the cluster’s effective center. As a client’s distance from

its cluster’s center increases, so does its latency. Performance for clients relatively near their

respective centers — closer than 1000 km — is seemingly noisy and no trend is clearly observ-

able. However, as the geographic distance increases beyond 1000 km, the directly proportional

relationship between performance and center distance becomes more apparent.

Also note that the slope of Figure 4.13’s best fit line quantifies this relationship as approx-

imately 8.2 × 107m/s, which implies a general data speed of 1
4
th of the speed of light. This is

comparable to the transmission speeds of the fastest network communication mediums in use at

the time of this writing — approximately 2
3
rds of the speed of light [72, 114]. Traffic, routing

complexity, and the pressence of lower speed mediums may account for the apparently lower

speed in our finding.

As I have demonstrated that one’s distance from their cluster’s center impacts performance,

clients should ideally share resources with the closest cluster center possible. Figure 4.13 raises

an additional concern: many clients are very far away — often thousdands of kilometers — from



83

Figure 4.13. Scatter plot where, for each client, I compare the client’s mean
latency (across all responding sites) to that client’s distance from its cluster’s
center. The line denotes a first order best fit curve for the scatter plot’s points.

their respective cluster centers. For perspective, I remind the reader that the circumference of

the world is approximately 40,075 km; several clients reside over a fourth of that distance from

their cluster’s center. With such large geographic distances, however, it is likely the case that

there exists some alternative cluster whose center is geographically nearer to the client than

the client’s own cluster’s center. For clarity, we will refer to a client’s own cluster’s center as

its “default” center, and the cluster center geographically closest to the client (excluding the

“default” center) as the “closest center” or “alternative center”. In Figure 4.14, I compare the

properties of each client’s default and closest centers.

Subfigure 4.14a shows a scatter plot of the geographic distance from each client (in kilo-

meters) to its default and closest centers. The diagonal line dividing the plot indicates where



84

(a) geographic distance

(b) CNRE similarity

Figure 4.14. Subfigure 4.14a shows a scatter plot of each client’s geographic
distance from its own (“default”) cluster’s center location versus its geographic
distance to the geographically closest center of another cluster (“closest”). Sub-
figure 4.14b shows a scatter plot of each client’s CNRE similarity with its own
(“default”) cluster’s center location versus its CNRE similarity with the geo-
graphically closest center of another cluster (“closest”).



85

the geographic distances are equal. Points beneath the line correspond to clients who are closer

to their alternative centers, while clients with points above the line are closest to their default

centers. Most clients are closer to their alternative centers, but there are several details to note,

discussed below.

First, it is apparent that most clients are geograhpically closer to their alternative cluster

centers than their default centers, in some cases by orders of magnitude. Second, I remind the

reader that I employed the complete linkage method to form our hierarchical clusters. Because

of the behavior of complete linkage, which determines cluster membership by pairwise distance

across all members instead of individual members, it is possible that individual clients may have

a higher CNRE similarity with their alternative center than with their default center. In other

words, it may be the case that I have assigned some clients to the “wrong” cluster. Occurrances

of this may account for some of the noise observed in default center distances below 1000 km

in Figure 4.13. To test for mismatched clients, I plot a point for each client’s CNRE similarity

towards its closest center versus its default center in Subfigure 4.14b. The majority of CNRE

values in Subfigure 4.14b are concentrated between 0.7 and 0.8. This suggests that geograhpi-

cally overlapping resource allocation groups may be responsible for the behavior observed in

the ambiguous regions of Figures 4.7 and 4.8.

Although 95.18% of clients had alternative centers geographically closer than their default

centers (274.69 kilometers closer in the median case), 16.48% of these geographically closer

clients had higher CNRE similarity with their default centers (1.99% higher in the median case).

While I have demonstrated that high geographic distance coupled with high CNRE tends to

result in higher latency, here I paradoxically observe that this is arrangement is a common

occurence. I further explore the implications of this pattern in Section 4.7.



86

4.7. Discussion

4.7.1. Why Web Object Domains

In Section 4.3.2, I described how the set of domains used in my experiment were selected.

The selected domains were extracted directly from web object URLs observed across the set

of checked web pages. Note that these domains are often abstractions of more explicit hosting

schemes. For example, such domains may resolve to unique CNAMES or directly resolve to

third party CDN addresses [111]. In contrast to my approach, I could have converted each

domain into some lower level representation (such as its CDN) and in turn performed a CNRE-

like measurement study using this representation (i.e., ping from each client to each CDN in the

set).

While this alternative approach may provide its own insights, I chose leave each discovered

domain “as is” for two reasons. First, although a given domain may use CDN hosting, it is worth

noting that modern CDN selection techniques are complex and diverse. While some content

providers may opt to utilize a single CDN for their purposes, it has also become common prac-

tice to instead depend on CDN brokers or multi CDNs to dynamically (by cost, performance,

geography, etc.) make use of a set of CDNs. In other words, the “less abstract” representation

of a given content provider is, in many cases, far from comprehensive with regard to a diverse

set of clients. Second, even if a domain or content provider could adequately be reduced to

a lower level description as described, the performance of a given CDN “in general” is not

necessarily representative of the performance of one of its customers. The reasons for this are

plentiful, ranging from customer specific policies and agreements (for example, the customer

might purchase region specific support) to caching algorithms and load balancing.



87

4.7.2. Anycast

I opted for this project, as the first ever exploration of aggregate content resource catchments, to

focus on naturally occuring diversity in DNS redirection across domains and clients. However,

many large Internet platforms, although serving from globally distributed points of presence,

operate with as few as one primary public IP address for all clients, regardless of the client’s

location by employing anycast techniques as opposed to DNS redirection for server-to-client

mapping [82]. In anycast, a provider will advertise different BGP route announcements for

the same IP address in different regions. While, in its current implementation, CNRE is de-

pendent on differing DNS answers, it is in some cases possible to distinguish differing anycast

hosts independently of their IP address [53, 68, 48]. With this approach, it would be trivial to

treat distinct anycast destinations in the same way as distinct IP answers, enabling them to be

incorporated into CNRE’s calculation.

4.7.3. Bettering Catchments

In Section 4.6, I exposed the existance of many clients that likely experience poor mapping

between themselves and content resources: the groups with whom they share a high proportion

of network resources are physically much farther away than the centers of other groups that

may offer the unfortunate client better performance. In related work, researchers found that

many clients experience significantly lower latency toward a specific CDN by simply slightly

by posing as a member of a different subnet [118]. While their results are on a per-CDN scale,

I propose that it may be possible to apply their techniques across providers to outlier clients

discovered in this project. Rather than identify an optimal alternative subnet for each CDN, it

may be the case that a client can choose a single alternative subnet from an aggregate catchment



88

to use for all of its DNS resolution, across domains. I leave in depth analysis of this potential

avenue for future work.

4.7.4. Client Labels

A key contribution of this project is the observation that established client labeling paradigms

— country, ASN, and BGP prefix — fail to describe common network resource exposure, es-

pecially at arbitrary levels of granularity. These finds may warrant the introduction of a new,

heirarchical labeling model to this end. Related work demonstrated that there is much incentive

to decouple catchment labels from IP prefix matching systems, but failed to offer an adequate

and intuitive alternative client naming convention [118, 45]. I argue that this project estab-

lishes CNRE as an appropriate basis for such a new convention. Rather than arbtrarily building

catchment groups and corresponding labels from scratch, CNRE highlights existing resource

allocation trends, from which appropriate insights can be drawn.

4.8. Summary

In this chapter, I performed a large scale analysis of cross-domain DNS redirection for 9,024

globally distributed clients. My experiments spanned 302 content hosting domains, shown

to often coexist within the same popular web pages. To quantify my findings, I introduced

common network resource exposure, a similarity measure that captures the extent to which

clients are directed to the same content resources. I validate CNRE as a necessary new measure

by formally demonstrating that existing alternative labeling schemes fail to adequately capture

the same information.



89

Having established CNRE, I investigate the properties of high and low CNRE measures

between clients, and, from my findings, I derive CNRE clusters, representative of aggregate

content resource catchments. Finally, I show that a client’s geogrpahic relationship with its

cluster’s center is directly proportional to that client’s average performance across hundreds of

domains. In summary, my work in this project provides a baseline by which we can better

understand content resource allocation patterns, independent of the case specific concerns of

individual hosting implementations.



90

CHAPTER 5

de-Kodi: Understanding the Kodi Ecosystem

5.1. Introduction

It is no secret that video streaming constitutes a substantial proportion of the data moving

across today’s global networks. Cisco Systems predicts that video traffic will make up 82%

of all Internet traffic by the year 2021, amounting ot 17,000 hours of video content traversing

the Internet every second [59]. This raises the following question: How can one begin to

digest and analyze the vast landscape of streamable content, from its many content sources to

its network infrastructure and disparate stakeholders? Kodi, an extremely popular home media

center platform estimated to have millions of users [106, 103], may hold the key.

The Kodi software platform, compatible with a wide range of consumer electronics (includ-

ing Windows, Mac, Android, Linux machines), serves as a framework for tens of thousands

of user-made add-ons which each extend Kodi’s feature set. A screenshot of the home menu

screen of a Kodi instance containing a number of installed add-ons is shown in Figure 5.1.

Many of these add-ons serve as interfaces that conveniently connect Kodi to various third-party

streaming platforms. Collectively, such add-ons effectively transform Kodi into a powerful hub,

a “one stop shop” for all things streaming. This large ecosystem, consisting of millions users

and countless user-developed add-ons, presents a uniquely wide, cross-sectional view of the

modern video streaming landscape. I argue that by obtaining a snapshot of the Kodi ecosystem,



91

one has, in effect, obtained a sampled snapshot of online digital content distribution systems

across the Internet at large.

The goal of this work is to perform an in depth analysis of Kodi’s ecosystem and, in so

doing, obtain a snapshot of the infrastructure behind modern, free video streaming. Very little

is known regarding the nature of the thousands of third party applications, or add-ons at the

disposal of Kodi users, although alleged illicit activity (e.g., pirated video streaming and botnet

proliferation) attributed to user-made Kodi add-ons has garnered notoriety for the platform [103,

106, 64, 58]. Accordingly, I wish to investigate the plethora of Kodi add-ons and their respective

content and providers. In particular, I aim to uncover 1) where add-ons are coming from, 2) the

degree to which said add-ons are maintained, 3) the extent of observeable illicit or otherwise

unwanted activity supposedly coupled with Kodi add-ons and 4) the technical properties of the

free content made accessible by Kodi add-ons.

To facilitate this study, I have built a powerful system, DE-KODI, capable of navigating and

assessing Kodi’s vast array of add-ons in an automated fashion; in other words, a tool capable

of “decoding” the complexities of the Kodi ecosystem. DE-KODI leverages the Kodi platform

itself to enable our exploration. I have designed DE-KODI’s performance be both tunable and

scalable so as to better support the diverse range of use cases in which it may be applied.

From this work, my key contributions are as follows:

• I introduce DE-KODI, a system designed to exhaustively traverse the Kodi ecosystem

with arbitrarily set levels of depth, breath, and speed. The source code for DE-KODI

has been made publically available at [24].

• I use DE-KODI to perform the first transparent analysis of Kodi’s add-on ecosystem.

• I quantify the prevelance of apparently malicious traffic across Kodi add-ons.



92

Figure 5.1. Screenshot of Kodi’s home menu.

• I discover 744 distinct second-level domains (SLDs) apparently hosting or having

hosted freely accessible streamed content, and I assess their network characteristics.

The remainder of this project is organized as follows: First, in Section 5.2, I provide the

reader with further context regarding the Kodi platform as well as related work. I then outline

the design of DE-KODI in Section 5.3. Section 5.4 validates DE-KODI’s speed and scalability.

I provide a brief overview of dataset obtained through DE-KODI’s snapshot of Kodi in Section

5.5. Next, in Sections 5.6 & 5.7, I perform an in depth analysis of the Kodi ecosystem. Finally,

I summarize this project’s findings in Section 5.8.



93

5.2. Background & Related Work

Kodi – Among the countless media center platforms available — Plex, OSMC, Emby, Me-

diaPortal, and MrMC, to name a few [101, 98, 67, 89, 91] — Kodi has begun to capture the

attention of news media and groups interested in digital copyright protection. Kodi, an ex-

tremely popular open source project from which several other popular platforms forked, dates

back to 2004 under its previous moniker, Xbox Media Center (XBMC). Originally designed

for Xbox, Kodi is now readily available for easy installation across a wide range of consumer

devices such as personal computers, Amazon Fire TV Sticks, and Raspberry Pis.

Kodi’s community touts thousands of add-ons for video consumption alone, in addition to a

plethora of add-ons for other forms of media, such as photos, music, and games [119]. Add-ons

form the foundation of media consumption on Kodi. Many of the add-ons available to Kodi

users were made not by official Kodi affiliates, but by third-party developers leveraging the

convenience of the Kodi platform. It has been well established that a number of these third-

party add-ons engage in piracy; in fact, Kodi’s official wiki site bans a set of add-ons, primarily

consisting of pirated content aggregators [120].

The Motion Picture Association of America (MPAA) claims that about 26 million (68.5%)

of Kodi’s alleged 38 million users are accessing pirated content through the Kodi platform.

These numbers, representative of Kodi’s global user-base, reflect similar findings in a previous

North America specific study performed by Sandvine [106]. Meanwhile, neither the MPAA nor

Sandvine have produced any clear information regarding how these numbers were obtained,

thus leaving the legitimacy of their claims up for debate — especially when several entities,

including the makers of Kodi, have stated that there exists no mechanism to acquire such mea-

surements [103]. While I do not directly challenge the validity of these claims, the lack of



94

transparency and clear conflict of interst from such studies have served in part as motivation

for this project. Kariiti et. al [81] observed that studies of piracy and its resulting impact are

often grossly exaggerated and readily misquoted by media industry stakeholders. Rather than

attempt to explicitly classify specific content as copyrighted or not, I instead, throughout this

project, highlight the 1) popularity of distribution of Kodi add-ons and 2) the availability of

working, streamable content. By this approach, I drastically lower (by orders of magnitude)

the size of the space warranting investigation from concerned parties, who can further utilize

DE-KODI for an in-depth analysis of each add-on. Most importantly, by offering DE-KODI as a

freely available and open source tool, I present, for the first time, an opportunity for transparent

and repeatable analysis of Kodi’s ecosystem, including the wide range of third-party content

sources upon which Kodi add-ons depend.

The main contribution of this paper is an in depth study of the Kodi ecosystem. To the best

of my knowledge, no previous research paper has investigated this ecosystem yet. Conversely,

researchers have directed their attention in understanding the potential security and privacy

threats of the Kodi application [95] as they allow arbitrary code from unknown sources to be

executed with little control. The authors show, for instance, how addons and video subtitles can

be used as backdoors to gain control on the client device. In this project, I check network traffic

observed during DE-KODI’s crawl for suspicious activity, detailed in Section 5.7.

Copyrighted Video Distribution – More related work can be found in the area of copyrighted

video distribution, a well explored topic over the last 10 years. Since my work also comments

on the legality of content distributed over Kodi, I here summarize the main research papers in

this area.



95

Back in 2007-2011, platforms like YouTube and Vimeo were mostly used for redistributing

illegal content [73], [60]. Even when legal, the majority of the uploaded content was copied

rather than user-generated [65]. Video platforms implemented several technical solutions to

prevent copyrighted materials, which in turn triggered ingenious evasion techniques such a

reversing of the video (particular used in sports), covering of TV logos, etc.

To avoid dealing with copyright detections, uploaders directed their attention to cyberlock-

ers, or services offering remote file storages, sometimes even for free [85]. In [84], the authors

scraped popular cyberlockers, e.g., MegaUpload and RapidShare, and show that 26-79% of the

content infringed copyright. More recently, Ibosiola et al. [78] study streaming cyberlockers,

or illegal websites which distribute pirated content (mostly video). The paper looks at both

cyberlockers and the content they serve. Overall, it finds a centralized ecosystem composed of

few countries and cyberlockers.

An interesting new angle was explored in [74]. In this paper, the authors investigate a very

intuitive question: why are illegal streaming services free?, or what is in it for the streamers?

They focus on illegal sports streaming and show a huge extent of user tracking – much more

than what done in legitimate streaming services. I investigate Kodi network chatter for signs of

tracking in Section 5.7.

5.3. de-Kodi System Overview

This section details the DE-KODI system I have developed to explore the Kodi ecosystem.

I first discuss the key challenges in building DE-KODI. I then present the detail of DE-KODI’s

key components, namely the crawler and source finder. Finally, I describe the overall working

flow of DE-KODI.



96

(a) a single crawler

(b) crawling system

Figure 5.2. A visual overview of the DE-KODI system. Figure 5.2a shows the
structure of an individual crawler. The crawlers in 5.2b are instances of the
crawler shown in 5.2a, but in the case of 5.2b, I use one instance of mitmproxy
per machine to capture traffic from all crawlers.

5.3.1. Challenges

Platform level software changes: The official Kodi team actively updates and improves the

platform’s main software base; Kodi 18.0, the most recent major revision as of this writing,

was released on Jan 29, 2019. As the platform’s base software changes, ill-maintained add-ons

inevitably fall into obsolescence. Well-maintained add-ons release newer, versions compatible

with the latest versions of its dependencies and the Kodi platform itself, old, deprecated versions

of Kodi add-ons persist on the web. As a result, identifying currently functional Kodi add-ons



97

compatible with the latest version of Kodi is nontrivial and often requires some from of “duck

testing”.

Visual dependent interaction: Although Kodi offers a built-in API for generalized operations

(such as moving up and down on a menu), much of the relevant information one may be inclined

to use in a crawling procedure — such as the text displayed in a non-default menu or dialog —

is completely inaccessible. As a result, any automation I attempt must be able to function with

an extremely limited and fragmented view of the system state.

Decentralized add-ons: My primary interests lie not in Kodi’s own software, but in the wide

array of community developed addons at Kodi’s disposal, as well as the disparate content re-

sources they pull from. Although there are many community maintained repositories that ag-

gregate and distribute popular add-on collections, there is no single “app-store-like” database

from which one can reliably obtain a comprehensive list of all Kodi add-ons. Therefore, the size

of Kodi’s overall ecosystem is unknown, and any attempt to explore it must take into account

the potentially large size of the space.

Diverse developer community: Kodi’s international fame has drawn an equally diverse add-on

developer community. Kodi does offer some conventions for the structure of each type of add-

on, but adherence to these convensions are completely arbitrary. Further, different add-ons serve

varied purposes and often require distinct methods of interaction. Paired with the above issue

of visual dependent interaction, it is important that my approach is both robust and resilient to

getting “stuck”.

Malicious add-ons: Previous work and news media have well established the (realized) po-

tential for Kodi add-ons to carry dangerous malware. Out of respect and concern for both lab



98

equipment and the instituion at which my experiments were deployed, I needed to ensure any

potential threats were sufficiently isolated from institutional and lab resources resided outside

of the scope of my work.

5.3.2. The DE-KODI Crawler

The crawler component of DE-KODI serves three purposes: 1) installing add-ons and add-on

sources, 2) browsing add-ons and add-on sources for new add-ons or playable media, and 3)

isolating and documenting the behavior and effects of each individual add-on. A high level

view of the crawler’s design is shown in Figure 5.2a. A Python script, which contains most of

the crawler’s logic and state, launches a docker [23] container derived from an Ubuntu image.

I primed the image to include Kodi’s software platform with DE-KODI, which greatly extends

the functionality of Kodi’s API, add-on pre-enabled. Tstat [37] and additional helper scripts

mounted to the container help capture network statistics and system state changes. Much of

Kodi’s traffic is encrypted, so I also directed the container’s HTTPS traffic through Mitmproxy

[32] (a “man in the middle” proxy server) to expose the contents of such messages. Each

crawler instance runs Kodi headlessly via a virtual screen (Xvfb) [38]. The main python script

communicates directly with DE-KODI’s addon script via RPCs.

As mentioned above, many significant aspects of Kodi’s state cannot be explicitly obtained

programmatically. This renders DE-KODI’s crawler blind in scenarios where an add-on interac-

tion requirements deviate from the most basic conventions. I ultimately settle for a brute force

approach, which I found works well for most add-ons that do no require explicit human inter-

vention (e.g., no required log-in or pay wall). At a high level, I treat each add-on’s respective

menu screens as trees, where non-leaf buttons are assumed to lead to towards child branches



99

(other screens or menus) and streamable content may reside on the leaf-node buttons. In cases

where Kodi’s built-in API falls short of my needs, the DE-KODI crawler attempts to traverse

the tree via a random walk, using one of many case specific implementations designed to avoid

infinitely deep branches and other progress inhibiting phenomena commonly encountered in

browsing Kodi add-ons.

5.3.3. The de-Kodi Source Finder

A key requirement for these experiments is the ability to perform add-on discovery. While there

exists no single comprehensive list of add-ons for the Kodi platform, I was able to leverage two

properties of the Kodi ecosystem to facilitate an expansive crawl.

First, I draw the reader’s attention to what the Kodi community calls sources. Sources are

simply paths — local or remote — that point to files to be used by Kodi. By default, only local

sources are listed within a fresh instance of Kodi. However, the Kodi community often deploys

remote, third-party sources which host zip files of add-ons ready to be installed. By convention,

many of these source derived add-ons are themselves repositories, which aggregate and ease

the installation of some set of add-ons. Sources are remotely maintained and updated by their

owners. DE-KODI’s source finder, which itself contains an instance of a DE-KODI crawler, can

add known sources to Kodi and traverse their sub-directories for add-ons in the form of zip files.

Second, I take advantage of Kodi’s popularity. Due to the lack of a single centralized aggre-

gator, avid Kodi users are forced to socialize to exchange add-ons and sources. This narrows

the scope of my search: rather than scavenge the Internet extensively, I enable the DE-KODI

source finder to browse popular social platforms for potential Kodi add-ons.



100

In these experiments, I ultimately use three such pointers, which I will from here on refer to

as “search seeds”, as starting points for add-on discovery: 1) LazyKodi, a wellknown and ac-

tively maintained Kodi add-on source which aggregates collections of add-on repositories and

add-ons into a convenient, single location [30], 2) Reddit, a large online social platform with

many publically accessible communities [35], and 3) GitHub, a large online software develop-

ment platform often used for hosting, maintaining, and distributing open source code [28].

I further verify the content collected by DE-KODI source finder by checking if it is in fact a

Kodi add-on. When possible, I check the contents of a given web obect for mandatory Kodi add-

on files and formatting, e.g., an addon.xml file in advance of attempting to install an add-on.

It is also worth noting that crawling redundant copies of an add-on is a common and difficult

to avoid occurence. Due to Kodi’s design, add-on repositories each contain their own instances

of their constituent add-on, and therefore popular add-ons are encountered quite frequently. On

top of this, outmoded versions of many add-ons are often frequently encountered in a crawl. I

mitigate the impact of redundancy by hashing unique add-on properties and only proceeding

with add-ons whose hash I have not yet seen. Different versions of the same add-on hash to

different values and therefore do not interfere with each other’s crawls.

5.3.4. The de-Kodi System

In this subsection, I document the relationships between the aforementioned components of DE-

KODI and describe DE-KODI’s overarching control flow and structure, which depicted in Figure

5.2b. First, I start a source server, which contains a list of known add-on sources discovered via

the DE-KODI’s search seeds. The source server can actively attempt to discover new sources

via its included source finder if this feature is enabled. Adjacent to this, I start some number



101

of crawl managers. The source server serves as a centralized point of contact for all crawl

managers, who periodically query the source server for relevant state information, such as the

status of a given add-on as previously hashed or new. The following precedure then occurs

repeatedly indefinitely:

(1) A manager queries the source server, which replies with an item (either a source path

or a link to an add-on zip file) to download and test.

(2) The manager then attempts to install the item using a single instance of a crawler. If

the installation is unsuccessful, it returns to the previous step.

(3) If the installation was successful, the manager checks to see if any previously unhashed

add-ons have been installed or appeared within Kodi as options to be installed. If so, it

continues to the next step. Otherwise, it returns to the first step.

(4) Since new add-ons have been discovered as a result of the item’s installation, the man-

ager makes a new Docker image from the container of the crawler that successfully

installed the item.

(5) The manager spins off new crawlers, using the newly created image, to test and crawl

each newly discovered add-on (one per crawler). To more quickly traverse the set of

new add-ons, managers may run multiple crawlers in parallel. Note that in some cases,

an installed add-on may itself be a repository, pointing to many other new add-ons to

test. In this scenario, new, previously unhashed add-ons are queued to be tested along

with the set currently under examination in this step.

(6) Once the manager has completed its exploration of the given item, it returns to step 1,

repeating the cycle on the next time provided.



102

(a) Number of installed addons. (b) CPU utilization.

(c) DE-KODI primitives benchmarking.

Figure 5.3. DE-KODI benchmarking ; Ndocker = [1 : 20] ; Crawling-duration:
30 minutes.

Because the distribution of items to crawl is handled entirely by the source server, I am able

to run an arbitrary number of crawl managers in parallel, thus covering the set of known items

more quickly.



103

5.4. deKodi Benchmarking

One of the main goals of this project is for DE-KODI to be sufficiently lightweight for use

on commodity hardware and readily scalable for arbitrarily large snapshots. To this end, DE-

KODI was designed to be easily parallelizable, both in term of docker instances and number

of machines where it can run. I setup three machines1 at a university campus connected to the

Internet via a shared Gigabit connection (both in download and upload). Next, I instrument

each machine to run DE-KODI for 30 minutes while crawling the same set of addons. Note that

in a real crawl, each machine would focus on a different set of addons, but the goal here is to

compare their performance while working on the same set of addons. I repeat each crawl 20

times while increasing the number of docker instances (Ndocker) used per machine from 1 to 20.

Kodi’s default addon repo was used for this benchmark.

Figure 5.3a shows the number of successfully crawled Kodi addons as a function of the

number of docker instances used and the machine where the crawler ran. When Ndocker ≤

10, the number of crawled addons grows linearly (between 10 and 100 addons) and no major

difference is observable across machines. When Ndocker > 10, I start observing a sublinear

growth in the number of crawled addons and more “noise” in the results. This suggests that,

eventually, the overhead of running more docker instances on a single machine does not pay off

in term of crawling “speed”.

To further understand the previous result, I investigate the CPU utilization during the above

benchmarking. Figure 5.3b shows the median CPU utilization as a function of the number

of docker instances and machine used. Error-bars relate to 25th and 75th percentiles. Note

1Two machines mount an Intel i5-4590 (3.30GHz, quadcore); one machine mounts an Intel Xeon E5-1620
(3.50GHz, quadcore). All machines are equipped with 8GB of RAM.



104

that the CPU utilization is indeed a distribution since I sample it every 5 seconds during the

benchmarking. The trend mimics the one observed above, i.e., linear increase followed by

a saturation as Iapproach exhaustion of available CPU. It can be observed how the distance

between percentiles becomes more tight as Ndocker increases. This implies that the machines

are under higher CPU utilization for a longer time as the overall load increases (higher Ndocker).

The figure shows an overall lower CPU utilization on the (slightly) more powerful machine

(xeon-e5) which saturates at 80% versus 90-95% for the other machines.

To understand the latter results, I set out to benchmark low level DE-KODI “primitives”, i.e.,

functions like “install addon” or “run addon” which are composed together to enable crawling.

Figure 5.3c shows the average duration of key DE-KODI primitives as a function of Ndocker.

These results refer to one of the machines, but they are representative of all machines. The

figure shows how most DE-KODI primitives are not impacted by Ndocker, i.e., their durations

are limited by Kodi’s internal rather than the machine resources. The primitive “install addon”

is the only one impacted by the machine resources. This happens because this primitive is more

complex and requires network operations (to pull the addon), and CPU usage (to perform its

installation). However, this operation only constitutes a small fraction of DE-KODI operations

which are instead dominated by constant operations.

No significant difference was instead reported in term of memory consumption. Across

the machines, DE-KODI requires a minimum of 500MB (Ndocker = 1) and a maximum of 4GB

(Ndocker = 20). Based on these empirical results, I set for the crawler a conservative Ndocker = 8

which should allow me to crawl, in total, about 11,000 addons per day while not overloading

the test machines.



105

Total links tested 2,662
Fruitful links discovered 1,151

Total repositories discovered 653
Total add-ons discovered 7,362

Banned add-ons discovered 421
Add-ons with media discovered 662

Total media URLs discovered 15,167
Total media domains discovered 1,600

Total media second-level domains discovered 744
Total add-on providers discovered 2,885

Table 5.1. Crawl summary

5.5. Dataset Analysis

In this section I briefly discuss the execution of the experiment and the nature of the dataset.

A synopsis of this discussion can be found in Table 5.1.

5.5.1. Data Collection

I ran DE-KODI across the three machines used for benchmarking in the previous section, en-

abling each machine to deploy up to eight docker instances in parallel. I then crawl Kodi over

one week in May 2019.

In addition to Kodi’s official default repository, the crawl used three addon seeds as starting

points: LaziKodi (a 3rd-party Kodi source), which returned 809 potential links; Reddit (a social

platform), which returned 1,250 potential links; and GitHub (a software development platform),

which returned 603 potential links. After link verification (see Section 5.3.3), 1,151 of the

initially discovered 2,662 links were determined to point to real Kodi add-on zips. Note that this

does not mean that the discovered add-ons were also working or able to be installed successfully,

but merely that Kodi was able to identify the obtained content as an add-on, and present us with

the opportunity to attempt installation.



106

Figure 5.4. Comparison of the fruitfulness of search seeds used in this experiment.

5.5.2. Add-on Discovery Success Rate

The results of this experiment hinge on the breadth and quality of my search for Kodi add-ons.

As there is no “ground truth” against which one can measure the comprehensiveness of the

data, I pause here to analyze the distribution of Kodi add-ons across the three search seeds and

consider its implications with regard to my findings.

Figure 5.4 shows the number of add-ons DE-KODI attempted to install, the number of add-

ons successfully installed, and the unique add-on discoveries (relative to the other search seeds),

for each seed (LazyKodi, GitHub, and Reddit). First, I observe that Reddit, although initially

having provided the largest number of potential links, yielded limited results in comparison

to the other search seeds. This is likely because the Reddit search seed used is inherently

more open-ended than the other two seeds. LazyKodi specifically aggregates Kodi add-ons



107

for easy installation; it is therefore unlikely to yield false positives outside of ill-maintained

or otherwise dysfunctional add-ons. Likewise, for GitHub, I am able to specifically search for

GitHub repositories (not to be confused with Kodi repositories) containering Kodi-specific files

and keywords necessarily present in all Kodi add-ons. In contrast, links acquired via Reddit

provide no information regarding the contents of a linked zip file (unless they point to files

hosted on GitHub), in which case the relevant traits can be tested for. Next, I note that despite

the large number of Kodi add-ons identified via GitHub, very few of them successfully installed.

This stems at least partially from versioning. By inspection, it became clear that many GitHub

located repositories archived entire many past, outmoded versions of each add-on.

Finally, I draw attention to Reddit’s low number of unique add-ons — that is, add-ons

discovered via the Reddit search seed that did not also appear on the GitHub or LazyKodi

results. Although 961 Reddit-discovered add-ons were successfully installed, only 116 add-

ons of that installed set were unique to Reddit. This highlights the practicality of the dataset.

As documented in Table 5.1, the global space of Kodi add-ons is potentially very large or

incalculable. However, I can leverage the fact that the number of users of an add-on is indicative

of the add-on’s popularity. It is well established that popularity follows a power law distribution

— for example, although there exist well over 1 billion websites, the top 0.1% dominates most

of the traffic. Therefore, I assert that the most accessible and shared add-ons (i.e., those that

propagate social media) are the most descriptive of the Kodi ecosystem at large. As the GitHub

and LazyKodi search seed results span the majority of what I uncovered via Reddit, I argue that

this dataset is sufficiently expansive for the purposes of this paper.



108

5.5.3. Banned Add-ons

Although commonly associated with piracy by the public, the official makers of Kodi (the Kodi

Team), actively pushes against the use of their software for flagrantly illicit activities, such as

piracy. Kodi’s official community forum has formally banned any promotion or discussion of

any add-on, add-on repository, or Kodi version included in their manually maintained blacklist

[120]. In the crawl, I discover 421 add-ons associated with entries from this list.

5.5.4. Other Content

The Kodi platform, initially developed to extend the functionality of the original Xbox game

console, is capable of more than only streaming. Kodi has long supported a wide variety of

other media types, including local video and audio, as well as photos, games, radio, and IPTV.

Moreover, even for streaming, a number of Kodi add-ons involve complex additional require-

ments. For example, the content of some legitimate services — such as Netflix — available in

the Kodi ecosystem are only accessible paid accounts. By inspection, I also discovered add-ons

which require accounts with special third-party intermediary services known as “multihosters”

or “debrids” [27, 34, 33] in order to access the add-on’s content. While in depth explanation

of such add-ons lie outside of the scope of this project, I have made DE-KODI available as an

open-source project so that its features can be extended to address cases such as these, as more,

in future work. Note however that, although contained content is not necessarily directly iden-

tified or accessible for some add-ons in this space, the add-ons themselves are still captured and

analyzed accordingly in the crawl results.



109

5.6. Kodi Ecosystem Analysis

in this section we perform a detailed analysis of the Kodi ecosystem, using the data dis-

cussed in Section 5.5

5.6.1. Add-on Repositories

Although Kodi lacks a strong central resource from which to pull add-ons, Kodi add-ons are not

only distributed in a fully ad-hoc fashion. Rather, Kodi encourages users to group add-ons into

“repositories”, special add-ons which themselves facilitate the easy installation of a predeter-

mined set of other add-ons. This has evolved into a tree-like network of add-on relationships, a

significant factor in enabling us to cover such broad space with so few seeds.

In Figure 5.5, I plot the CDF of the number of add-ons provided by each repository. The

vast majority of add-on repositories — many of which are decendents of the distribution “trees”

rooted at the largest repositories — offer less than 100 add-ons each; the median case provides

less than 10. Further, the majority of add-ons provided by smaller repositories (below the 50th)

are of the Kodi-defined type pluginsource, which indicates they are designed to provide the user

with some form of consumable media.

5.6.2. Add-on Providers and Origins

The Kodi platform strongly encourages community driven add-on development. The Kodi

Team, the group responsible for the development of the Kodi platform itself as well as its “of-

ficial” add-ons set, consists entirely of volunteers, takes credit for 216 Kodi add-ons [36]. In

general, it is unclear how many developers are behind any given “provider” title. I observed

2885 different add-on providers (including the Kodi Team) in our crawl. Over 90% of the



110

Figure 5.5. CDF of add-ons per repository.

providers encountered were each responsible for only a single add-on in our dataset. It is worth

noting that completion of add-on metadata, such as the provider-name field, is arbitrary and

unregulated.

Besides the authors of add-ons, I also investigate the target audience of Kodi add-ons. I

acheive this in part by examining the content hosting strategies of Kodi add-ons. Note that, in

addition to existing limitations of IP geolocation [121], our results here may be skewed to North

America, where our hostname resolutions were performed from. While some add-on content is

hosted by globally distributed services (e.g., content distribution networks (CDNs)). Figure 5.6

shows a bar plot of the number of hosts discovered in the top Kodi content hosting countries.

Here, I estimate the popularity of each add-on by observing the frequency with which the

add-on appears across the dataset resulting from DE-KODI’s crawl. I remind the reader that



111

Figure 5.6. World map of Kodi content host locations. Country color shading
indicates the number of content hosting domains discovered there in our experi-
ment.

Kodi repositories contain bundled sets of add-ons for convenient installation, and that the Kodi

Team actively encourages users to create and share repositories on their own. Also note that an

officially endorsed repository, curated and maintained by the Kodi Team, is included with fresh

installations of Kodi. Figure 5.7 shows the number of distinct repositories that included each

add-on. In the figure, I separate so-called “banned” add-ons (defined in Section 5.5.3) from

the set of all other add-ons discovered during this crawl. While a low number of repositories

including a given add-on may not necessarily imply low popularity, it stands to reason that an

add-on referenced by many repositories must necessarily be popular, as more users must have

arbitrarily opted to include the add-on in their custom repository.



112

From Figure 5.7, it is clear that the majority of add-ons discovered in this crawl appear in

very few repositories — only two repositories in the median case. When restricting our scope

to only banned add-ons, this trend becomes omewhat more pronounced, suggesting that illicit

add-ons may not necessarily cominate the Kodi community as much been suggested by Kodi’s

opponents. It is also worth noting that the pattern seen in Figure 5.7 reflects that observed in

Figure 5.6, where most repositories discovered contain less than 10 add-ons. Moreover, we see

that the CDFs of both plots are long tailed, with data points trailing into values over an order of

magnitude larger than that of the majority. These trends are similar to what has been established

in literature as “popularity laws”, where attention is exponentially more concentrated towards

the most popular of a given group [96]. With this assumption, in combination with Figures 5.6

& 5.7, we can draw the following insights. First, it is apparent that banned add-ons are ap-

proximately as popular as the general population of Kodi add-ons we discoved, as the curves of

their distribution across repositories are nearly identical. Second, I propose that such patterns in

popularity conveniently narrow the required scope for expansive measurements of this nature.

What are likely the most popular repositories — and in turn, the easiest to find — contain the

most add-ons. It would appear that in the absence of an official and exhaustive “app-store” for

the Kodi ecosystem, something similar naturally manifests in its stead: large, well known repos-

itories that contain the majority of what a given Kodi user could want. Meanwhile, although

the least popular add-ons may be more difficult to find, their lack of popularity likewise renders

them less significant: their footprint is inherently orders of magnitude smaller than that of that

have attained popularity.



113

Figure 5.7. CDF of the number of found repositories that included a discovered
add-on.

5.6.3. Background Network Chatter

In general, browsable Kodi add-ons — a group which consists primarily of add-ons typed “plu-

ginsource” — perform a considerable amount of network chatter in the background as the user

browses the application. This can occur for a variety of reasons, ranging from remotely loading

stored resources such as video thumbnails and live content lists to performing user tracking and

malicious activities. I consider the latter in detail in Section 5.7. In Figure 5.8, I plot the amount

of network chatter per browseable add-on. To facilitate direct comparison between add-ons, I

normalize byte counts to bytes per minute of the add-on’s crawl sessions. Note that the resulting

values also include bytes exchanged to initially download the add-on. Banned add-ons, which

Figure 5.8 plots separately, exibits overall similar network performance to unbanned add-ons.



114

Figure 5.8. CDF of mean bytes per minute for each add-on’s crawl session.

Figure 5.9 shows the top most frequently used port numbers observed in our experiment. In

this case, we see a notable distinction between banned and unbanned add-ons. While unbanned

add-ons tend towards well known ports, such as ports 80 and 443, banned add-ons also make

heavy use of lesser known ports, especially those associated with torrenting.

5.7. Suspicious Activity

Despite the best interests of the official Kodi team, the inherently open nature of the Kodi

platform ultimately renders it ever susceptible to unintended uses, spanning from piracy to

malware. In this section, I quantify the extent to which I discovered suspcious add-on behavior

over the course of the experiment.



115

Figure 5.9. Bar plot of the number of add-ons using each port number used
for background downloads (stack it to show TCP/UDP). The final bar (labeled
“other”) is cumulative across all port numbers not shown (i.e., some add-ons
may be counted multiple times for “other” — once for each port number).

5.7.1. Banned Add-ons and Piracy

Here I consider the list of add-ons banned from discussion on Kodi’s official forums and the

implications of my findings with regard to them. Although add-ons found to violate any of

Kodi’s official policies are banned from their forums, the also provided general rule of thumb in

determining whether a currently unlisted add-on is “allowed” points users to specifically avoid

piracy. Likewise, per their language, it is safe to assume that the majority of add-ons included

on Kodi’s banned list is or was at some point engaging in flagrant piracy.

Explicit copyright infringment analysis is beyond the scope of this paper. However, some

of my findings indirectly suggest — but do not confirm — that banned add-ons in the dataset



116

Figure 5.10. Bar plot of the number of add-ons found to exchange forms of
potentially undesirable traffic.

are likely designed to engage in piracy. Most notably, we return our attention to Figure 5.9

in Section 5.6.3. Banned add-ons were found to more heavily use lesser known ports often

associated with torrenting clients. While not inherently indicative of illicit activity, it is well

known that many torrenting communities have long served as havens for content piracy [109].

5.7.2. User Tracking and Ad Chatter

Online user tracking, due to its potential to erode privacy, has drawn increased public concern

and sparked new protective legislation [61]. In addition, authors of [74] have shown that free

pirated content accessed via streaming has served as a trojan horse for excessive user tracking

and advertisement. Therefore, although not necessarily indicative of illicit activity, background



117

tracking and ad traffic warrant investigation. Here I investigate the amount of user tracking and

ad traffic background connections and streamable content locations across the dataset.

In order to identify suspicious traffic, I compare all full URLs against well-maintained URL

blacklists. From EasyList [25], a group that aims to minimize unwanted online advertisement, I

use the primary EasyList, which matches advertisement related URLs, and EasyPrivacy, which

matches known tracking URLs. By routing port 80 and 443 traffic through the man in the middle

proxy, I am able to use full URLs — including, for example, parameters — for these checks.

Figure 5.10 plots the number of distinct advertisement and tracking URLs seen by de-Kodi for

add-on in the dataset. Note that throughout this analysis, results shown count distinct domains

as opposed to specific URLs including path information. However, full URLs were used against

all employed filters.

As seen in Figure 5.10, the number of advertisement related traffic initiall obsserved was

suspiciously high — approaching the number of add-ons crawled. Manual inspection revealed

that EasyList’s blacklisting rules filter aggresively and included what could debatably be called

false positives. Most notably, all forms of “www.google.com/adsense/*”, “www.google-analytics.com/*”,

and “https://raw.githubusercontent.com/mash2k3/MashupArtwork/master/skins/vector/adv2.png”

(where “*” is a wildcard) were all marked as sources of advertisement or tracking. In light of

this, I also plot the number of add-ons containing links from the remaining set if the listed

questionable URLs are removed. I reserve a description of the threats bars, as well as final

commentary with regard to this figure, for the following subsection.



118

5.7.3. Social Engineering

Several Kodi add-ons have garnered media attention for hosting malicious software, such as

botnets and background cryptominers. I attempted to identify such behavior across the dataset

by testing observed full URLs against the latest Google Safe Browsing hash, which matches

against current known threats and malware [29]. These are plotted in Figure 5.10 as “threats”.

Note that Google’s Safe Browsing hash targets malicious URLs generally encountered via web

browsing and may not necessarily address threats that operate outside of that space, such as

botnets. To increase coverage, I also compare each observed IP against FireHOL, an automat-

ically updated aggregator of several actively maintained IP banlists [26], labled in Figure 5.10

as “banned IP”. Detailed results for all information shown in Figure 5.10 are presented in Table

5.2.

While an in depth analysis of the uncovered suspicious links is beyond the scope of this

paper, here I provide a cursory overview of the properties that stand out. Most notably, all

“threats” observed in this data were marked by Google Safe Browsing as social engineering.

I also highly that, surprisingly, the amount of advertisement present (having pruned out likely

false positives) is much lower that other identified sources of suspicion — both in its domain

diversity and its spread across add-ons. Finally, I note that the banned IPs warrant further inves-

tigation, as FireHOL [26] spans a number of different IP ban lists, each addressing a different

type of known threat.

5.8. Summary

A large, active user-base and extensive add-on ecosystem uniquely positions Kodi, an im-

mensely popular home media center, as a “window” through which we can capture an expanive



119

Total suspcious domains 182
Total ad-flagged add-ons 5186

Pruned ad-flagged add-ons 34
Total tracking-flagged add-ons 132

Pruned tracking-flagged add-ons 19
Total threat-flagged add-ons 13

Total banned IP-flagged add-ons 105
Total ad-flagged domains 18

Total threat-flagged domains 13
Total tracking-flagged domains 25

Total banned IP-flagged domains 126
Table 5.2. Suspician summary

view of disparate content distribution systems across the Internet. In this chapter, I introduced

DE-KODI, a system designed to enable transparent and repeatable exploration of the Kodi. I

designed DE-KODI to be lightweight and readily scalable to meet the varied needs of those

interested in exploring Kodi, and, having empirically validated these claims, I made my code

available to the public.

Using DE-KODI, I perform the first large scale crawl of the Kodi ecosystem. From my re-

sults, I determine the network characteristics of content streaming resources currently supported

by Kodi add-ons. By using a man-in-the-middle proxy, my analysis demystifies even Kodi’s en-

crypted traffic. I further examine add-on traffic for signs of malicious acivity, where I find urls

currently flagged for social engineering, user-tracking, and advertisement. In parallel to this,

I assess the popularity, distribution, and behavior of add-ons flagged for actively engaging in

illicit activity — chiefly, piracy — in comparison add-ons that have not been flagged. Over the

course of DE-KODI’s crawl, I discover 744 distinct second-level domains hosting freely stream-

able content accessible via the Kodi platform, demonstrating the breadth of Internet snapshots

captured using Kodi’s field of view.



120

A key takeaway from this chapter is the practical tractability of arbitrarily large and complex

content ecosystems. While it is infeasible to declare that one has comprehensively covered such

a space, I show that the most relevant portions of that space (e.g., the most popular) are easily

discovered.



121

CHAPTER 6

Conclusion

The Internet is big. Although the allure of cross-sectional measurements is tainted by load

and scaling concerns, I demonstrate that such client-based, breadth-intensive measurements are

not only feasible, but necessary. Through the work I have presented, I have shown that clients

offer opportunities for arbitrarily fine grained and easily scaled network measurements. I firmly

establish that expansive client perspectives expose relative network properties that otherwise go

unseen in conventional measurement techniques.

First, with Drongo, I showed the existence of suboptimal server-client mappings by en-

ablings clients to test performance across multiple, ordinarily unexposed content replica servers.

I further demonstrated that a poorly mapped client can, on its own, correct for these poor-

mapping scenarios in a manner that still allows CDNs to make dynamic allocation decisions.

In the next section, I introduced a measure for common network exposure between clients.

Measured across multiple domains, this previously completely unexposed dimension revealed

cross-provider, global resource allocation patterns that ultimately play a significant role in client

network performance.

Finally, I presented DE-KODI, designed to capture cross-sectional snap-shots of stream-

able content distribution infrastructure from the perspective of a popular home media center.

I showed that DE-KODI is capable of spanning the breadth of a large content platform (Kodi)



122

in an automated fashion, covering the most popular and relevant portions of the space. I fur-

ther analyzed the Kodi’s network characteristics and quantified the prevalence of suspicious and

illicit network activity present across portions of the Kodi ecosystem.

The above projects serve to strengthen the thesis presented at the beginning of this docu-

ment. I have shown that client-anchored, expansive network measurements are both feasible and

necessary for fully understanding the complexities of content distribution in today’s Internet.



123

Bibliography

[1] The history of content delivery networks (cdn), Dec. 2012. https://www.

globaldots.com/the-history-of-content-delivery-networks-cdn/.

[2] Akamai, 2016. http://www.akamai.com/.

[3] Alexa top sites, 2016. https://aws.amazon.com/alexa-top-sites/.

[4] Alibaba cloud cdn, 2016. https://intl.aliyun.com/product/cdn.

[5] Amazon CloudFront Content Delivery Network (CDN), 2016. https://aws.

amazon.com/cloudfront/.

[6] Amazon Route 53, 2016. https://aws.amazon.com/route53/.

[7] Aws global infrastructure, 2016. https://aws.amazon.com/about-aws/

global-infrastructure/.

[8] The cost of latency, 2016. http://perspectives.mvdirona.com/2009/10/

the-cost-of-latency/.

[9] GoDaddy: Premium DNS, 2016. https://www.godaddy.com/domains/

dns-hosting.aspx.

https://www.globaldots.com/the-history-of-content-delivery-networks-cdn/
https://www.globaldots.com/the-history-of-content-delivery-networks-cdn/
http://www.akamai.com/
https://aws.amazon.com/alexa-top-sites/
https://intl.aliyun.com/product/cdn
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/route53/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
 http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
 http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://www.godaddy.com/domains/dns-hosting.aspx
https://www.godaddy.com/domains/dns-hosting.aspx


124

[10] Google CDN Platform, 2016. https://cloud.google.com/cdn/docs/.

[11] Google Cloud Platform: Cloud DNS, 2016. https://cloud.google.com/dns/.

[12] Google Public DNS, 2016. https://developers.google.com/speed/

public-dns/docs/using?hl=en.

[13] Netdirekt: Content Hosting - CDN, 2016. http://www.netdirekt.com.tr/

cdn-large.html.

[14] Neustar DNS Services, 2016. https://www.neustar.biz/services/

dns-services.

[15] OpenDNS, 2016. https://www.opendns.com/.

[16] Ripe atlas - ripe network coordination centre, 2016. https://atlas.ripe.net/.

[17] Shopzilla: faster page load time = 12 percent revenue in-

crease, 2016. http://www.strangeloopnetworks.com/

resources/infographics/web-performance-andecommerce/

shopzilla-faster-pages-12-revenue-increase/.

[18] Sweden’s Greta wants to disrupt the multi-billion CDN market, 2016. https://

techcrunch.com/2016/08/30/greta/.

[19] Verisign Managed DNS, 2016. http://www.verisign.com/en_US/

security-services/dns-management/index.xhtml.

https://cloud.google.com/cdn/docs/
https://cloud.google.com/dns/
https://developers.google.com/speed/public-dns/docs/using?hl=en
https://developers.google.com/speed/public-dns/docs/using?hl=en
http://www.netdirekt.com.tr/cdn-large.html
http://www.netdirekt.com.tr/cdn-large.html
https://www.neustar.biz/services/dns-services
https://www.neustar.biz/services/dns-services
https://www.opendns.com/
https://atlas.ripe.net/
 http://www. strangeloopnetworks.com/resources/ infographics/web-performance-andecommerce/shopzilla-faster-pages- 12-revenue-increase/
 http://www. strangeloopnetworks.com/resources/ infographics/web-performance-andecommerce/shopzilla-faster-pages- 12-revenue-increase/
 http://www. strangeloopnetworks.com/resources/ infographics/web-performance-andecommerce/shopzilla-faster-pages- 12-revenue-increase/
https://techcrunch.com/2016/08/30/greta/
https://techcrunch.com/2016/08/30/greta/
http://www.verisign.com/en_US/security-services/dns-management/index.xhtml
http://www.verisign.com/en_US/security-services/dns-management/index.xhtml


125

[20] Verizon Digital Media Services, 2016. https://www.verizondigitalmedia.

com/.

[21] Verizon ROUTE: Fast, Reliable Enterprise-Class Services for Domain Name Sys-

tem (DNS), 2016. https://www.verizondigitalmedia.com/platform/

route/.

[22] 2016 Q2 Mobile Insights Report, 2016 (accessed May 2019). https://resources.

mobify.com/2016-Q2-mobile-insights-benchmark-report.html.

[23] Docker, 2018. https://www.docker.com/.

[24] de-Kodi Crawler, 2019. https://github.com/mwarrior92/

dekodicrawler.

[25] EasyList, 2019. https://easylist.to/.

[26] FireHOL IP Lists, 2019. http://iplists.firehol.org/.

[27] Gaia - Kodi Streaming, 2019. https://gaiakodi.com.

[28] GitHub, 2019. https://github.com/.

[29] Google Safe Browsing, 2019. https://safebrowsing.google.com/.

[30] LazyKodi, 2019. http://lazykodi.com/.

[31] MaxMind, 2019. https://www.maxmind.com/en/geoip2-databases.

https://www.verizondigitalmedia.com/
https://www.verizondigitalmedia.com/
https://www.verizondigitalmedia.com/platform/route/
https://www.verizondigitalmedia.com/platform/route/
https://resources.mobify.com/2016-Q2-mobile-insights-benchmark-report.html
https://resources.mobify.com/2016-Q2-mobile-insights-benchmark-report.html
https://www.docker.com/
https://github.com/mwarrior92/dekodicrawler
https://github.com/mwarrior92/dekodicrawler
https://easylist.to/
http://iplists.firehol.org/
https://gaiakodi.com
https://github.com/
https://safebrowsing.google.com/
http://lazykodi.com/
https://www.maxmind.com/en/geoip2-databases


126

[32] mitmproxy, 2019. https://mitmproxy.org/.

[33] Orion Media Index, 2019. https://orionoid.com.

[34] Real-Debrid, 2019. https://real-debrid.com/.

[35] Reddit, 2019. https://www.reddit.com/.

[36] Top Authors — Kodi, 2019. https://kodi.tv/addon-top-authors.

[37] Tstat - TCP STatistic and Analysis Tool, 2019. http://tstat.polito.it/.

[38] XVFB, 2019. https://www.x.org/releases/X11R7.6/doc/man/man1/

Xvfb.1.xhtml.

[39] Citrix Intelligent Traffic Management, (accessed May 2019). https://www.

citrix.com/products/citrix-intelligent-traffic-management/.

[40] Conviva: Video AI Platform, (accessed May 2019). https://www.conviva.com/.

[41] AGER, B., MÜHLBAUER, W., SMARAGDAKIS, G., AND UHLIG, S. Comparing dns

resolvers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet

Measurement (2010), IMC ’10, ACM, pp. 15–21.

[42] AGER, B., MÜHLBAUER, W., SMARAGDAKIS, G., AND UHLIG, S. Web content car-

tography. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measure-

ment Conference (New York, NY, USA, 2011), IMC ’11, ACM, pp. 585–600.

https://mitmproxy.org/
https://orionoid.com
https://real-debrid.com/
https://www.reddit.com/
https://kodi.tv/addon-top-authors
http://tstat.polito.it/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.citrix.com/products/citrix-intelligent-traffic-management/
https://www.citrix.com/products/citrix-intelligent-traffic-management/
https://www.conviva.com/


127

[43] ANDERSON, D. Splinternet behind the great firewall of china. Queue 10, 11 (Nov. 2012),

40:40–40:49.

[44] ANONYMOUS. The collateral damage of internet censorship by dns injection. SIGCOMM

Comput. Commun. Rev. 42, 3 (June 2012), 21–27.

[45] BENCHAÏTA, W., GHAMRI-DOUDANE, S., AND TIXEUIL, S. Stability and optimiza-

tion of dns-based request redirection in cdns. In Proceedings of the 17th International

Conference on Distributed Computing and Networking (2016), ACM, p. 11.

[46] BENSON, K., DOWSLEY, R., AND SHACHAM, H. Do you know where your cloud files

are? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop

(New York, NY, USA, 2011), CCSW ’11, ACM, pp. 73–82.

[47] BLAIR, G., BROMBERG, Y.-D., COULSON, G., ELKHATIB, Y., RÉVEILLÈRE, L.,

RIBEIRO, H. B., RIVIÈRE, E., AND TAÏANI, F. Holons: Towards a systematic approach

to composing systems of systems. In Proceedings of the 14th International Workshop on

Adaptive and Reflective Middleware (New York, NY, USA, 2015), ARM 2015, ACM,

pp. 5:1–5:6.

[48] BOOTHE, P., AND BUSH, R. Dns anycast stability. 19th APNIC,’05 (2005).

[49] BÖTTGER, T., ANTICHI, G., FERNANDES, E. L., DI LALLO, R., BRUYERE, M., UH-

LIG, S., AND CASTRO, I. The elusive internet flattening: 10 years of IXP growth. CoRR

abs/1810.10963 (2018).



128

[50] BUTKIEWICZ, M., MADHYASTHA, H. V., AND SEKAR, V. Understanding website

complexity: measurements, metrics, and implications. In Proceedings of the 2011 ACM

SIGCOMM conference on Internet measurement conference (2011), ACM, pp. 313–328.

[51] BUTKIEWICZ, M., WANG, D., WU, Z., MADHYASTHA, H. V., AND SEKAR, V. Klot-

ski: Reprioritizing web content to improve user experience on mobile devices. In 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 15) (Oak-

land, CA, May 2015), USENIX Association, pp. 439–453.

[52] CALDER, M., FAN, X., HU, Z., KATZ-BASSETT, E., HEIDEMANN, J., AND GOVIN-

DAN, R. Mapping the expansion of google’s serving infrastructure. In Proceedings of the

2013 Conference on Internet Measurement Conference (2013), IMC ’13, ACM, pp. 313–

326.

[53] CALDER, M., FLAVEL, A., KATZ-BASSETT, E., MAHAJAN, R., AND PADHYE, J. An-

alyzing the performance of an anycast cdn. In Proceedings of the 2015 ACM Conference

on Internet Measurement Conference (2015), IMC ’15, ACM, pp. 531–537.

[54] CHEN, F., SITARAMAN, R., AND TORRES, M. End-user mapping: Next generation

request routing for content delivery. In Proceedings of ACM SIGCOMM ’15 (London,

UK, Aug. 2015).

[55] CHIESA, M., RETVARI, G., AND SCHAPIRA, M. Lying your way to better traffic engi-

neering. In Proceedings of the 2016 ACM CoNEXT (2016), CoNEXT ’16, ACM.



129

[56] CHINANETCENTER. Chinanetcenter - network, 2016. http://en.

chinanetcenter.com/pages/technology/g2-network-map.php.

[57] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L., WAWRZONIAK,

M., AND BOWMAN, M. Planetlab: An overlay testbed for broad-coverage services. SIG-

COMM Comput. Commun. Rev. 33, 3 (July 2003), 3–12.

[58] CIMPANU, C. Windows and Linux Kodi users infected with crypto-

mining malware, Sept. 2018. https://www.zdnet.com/article/

windows-and-linux-kodi-users-infected-with-cryptomining-malware/.

[59] CISCO SYSTEMS, I. Cisco visual networking index: Forecast and methodol-

ogy, 2016-2021, 2017. https://www.cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.html.

[60] CLAY, A. Blocking, tracking, and monetizing: Youtube copyright control and the down-

fall parody. Institute of Network Cultures: Amsterdam, 2011.

[61] COMMISSION, E. 2018 reform of EU data protection rules,

2018. https://ec.europa.eu/commission/priorities/

justice-and-fundamental-rights/data-protection/

2018-reform-eu-data-protection-rules_en.

[62] CONTAVALLI, C., VAN DER GAAST, W., LAWRENCE, D., AND KUMARI, W. Client

subnet in dns queries. RFC 7871, RFC Editor, May 2016.

http://en.chinanetcenter.com/pages/technology/g2-network-map.php
http://en.chinanetcenter.com/pages/technology/g2-network-map.php
https://www.zdnet.com/article/windows-and-linux-kodi-users-infected-with-cryptomining-malware/
https://www.zdnet.com/article/windows-and-linux-kodi-users-infected-with-cryptomining-malware/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en


130

[63] DA SILVA, D. V. C., DE A. ROCHA, A. A., VELLOSO, P. B., AND DOMINGUES, G.

D. M. A first look at mobile-live-users of a large cdn. In Proceedings of the 23rd Brazil-

lian Symposium on Multimedia and the Web (New York, NY, USA, 2017), WebMedia

’17, ACM, pp. 81–84.

[64] DER SAR, E. V. Popular Kodi Addon ‘Exodus’ Turned Users

into a DDoS ‘Botnet’, 2017. https://torrentfreak.com/

popular-kodi-addon-exodus-turned-users-into-a-ddos-botnet-170203/.

[65] DING, Y., DU, Y., HU, Y., LIU, Z., WANG, L., ROSS, K., AND GHOSE, A. Broadcast

yourself: understanding youtube uploaders. In Proceedings of the 2011 ACM SIGCOMM

conference on Internet measurement conference (2011), ACM, pp. 361–370.

[66] EDMUNDSON, A., ENSAFI, R., FEAMSTER, N., AND REXFORD, J. A first look into

transnational routing detours. In Proceedings of the 2016 ACM SIGCOMM Conference

(New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 567–568.

[67] EMBY. Emby - The open media solution., 2019. https://emby.media/.

[68] FAN, X., HEIDEMANN, J., AND GOVINDAN, R. Evaluating anycast in the domain name

system. In 2013 Proceedings IEEE INFOCOM (2013), IEEE, pp. 1681–1689.

[69] FLACH, T., KATZ-BASSETT, E., AND GOVINDAN, R. Quantifying violations of

destination-based forwarding on the internet. In Proceedings of the 2012 ACM Confer-

ence on Internet Measurement Conference (2012), IMC ’12, ACM, pp. 265–272.

https://torrentfreak.com/popular-kodi-addon-exodus-turned-users-into-a-ddos-botnet-170203/
https://torrentfreak.com/popular-kodi-addon-exodus-turned-users-into-a-ddos-botnet-170203/
https://emby.media/


131

[70] FLORES, M., AND MCQUISTIN, S. Seeing the world with ripe atlas,

2017. https://labs.ripe.net/Members/verizon_digital/

seeing-the-world-with-ripe-atlas.

[71] GANJAM, A., SIDDIQUI, F., ZHAN, J., LIU, X., STOICA, I., JIANG, J., SEKAR, V.,

AND ZHANG, H. C3: Internet-scale control plane for video quality optimization. In 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 15) (Oak-

land, CA, May 2015), USENIX Association, pp. 131–144.

[72] GUEYE, B., ZIVIANI, A., CROVELLA, M., AND FDIDA, S. Constraint-based geolo-

cation of internet hosts. IEEE/ACM Transactions on Networking (TON) 14, 6 (2006),

1219–1232.

[73] HILDERBRAND, L. Youtube: Where cultural memory and copyright converge. FILM

QUART 61, 1 (2007), 48–57.

[74] HSIAO, L., AND AYERS, H. The price of free illegal live streaming services. CoRR

abs/1901.00579 (2019).

[75] HUANG, C., BATANOV, I., AND LI, J. A practical solution to the client-ldns mismatch

problem. SIGCOMM Comput. Commun. Rev. 42, 2 (Mar. 2012), 35–41.

[76] HUANG, C., WANG, A., LI, J., AND ROSS, K. W. Measuring and evaluating large-

scale cdns (paper withdrawn at microsoft’s request). In Proceedings of the 8th ACM

SIGCOMM Conference on Internet Measurement (2008), IMC ’08, ACM, pp. 15–29.

https://labs.ripe.net/Members/verizon_digital/seeing-the-world-with-ripe-atlas
https://labs.ripe.net/Members/verizon_digital/seeing-the-world-with-ripe-atlas


132

[77] HUANG, T.-Y., JOHARI, R., MCKEOWN, N., TRUNNELL, M., AND WATSON, M. A

buffer-based approach to rate adaptation: Evidence from a large video streaming service.

In Proceedings of the 2014 ACM Conference on SIGCOMM (2014), SIGCOMM ’14,

ACM, pp. 187–198.

[78] IBOSIOLA, D., STEER, B., GARCIA-RECUERO, A., STRINGHINI, G., UHLIG, S., AND

TYSON, G. Movie pirates of the caribbean: Exploring illegal streaming cyberlockers. In

Proc. INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA (2018).

[79] JACCARD, P. New research on floral distribution. Bull. Soc. Vaud. Sci. Nat. 44 (1908),

223 to 270.

[80] KAKHKI, A. M., JERO, S., CHOFFNES, D., NITA-ROTARU, C., AND MISLOVE, A.

Taking a long look at quic: an approach for rigorous evaluation of rapidly evolving trans-

port protocols. In Proceedings of the 2017 Internet Measurement Conference (2017),

ACM, pp. 290–303.

[81] KARIITHI, N. K. Is the devil in the data? a literature review of piracy around the world.

The Journal of World Intellectual Property 14, 2 (2011), 133–154.

[82] KATABI, D., AND WROCLAWSKI, J. A framework for scalable global ip-anycast (gia).

In Proceedings of the Conference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communication (2000), SIGCOMM ’00, ACM, pp. 3–15.



133

[83] KRISHNAN, R., MADHYASTHA, H. V., JAIN, S., SRINIVASAN, S., KRISHNAMURTHY,

A., ANDERSON, T., AND GAO, J. Moving beyond end-to-end path information to opti-

mize cdn performance. In Internet Measurement Conference (IMC) (Chicago, IL, 2009),

pp. 190–201.

[84] LAUINGER, T., ONARLIOGLU, K., CHAABANE, A., KIRDA, E., ROBERTSON, W.,

AND KAAFAR, M. A. Holiday pictures or blockbuster movies? insights into copyright

infringement in user uploads to one-click file hosters. In Proceedings of the 16th Interna-

tional Symposium on Research in Attacks, Intrusions, and Defenses - Volume 8145 (New

York, NY, USA, 2013), RAID 2013, Springer-Verlag New York, Inc., pp. 369–389.

[85] MAHANTI, A., CARLSSON, N., ARLITT, M., AND WILLIAMSON, C. Characterizing

cyberlocker traffic flows. In 37th Annual IEEE Conference on Local Computer Networks

(2012), IEEE, pp. 410–418.

[86] MAO, Z. M., CRANOR, C. D., DOUGLIS, F., RABINOVICH, M., SPATSCHECK, O.,

AND WANG, J. A precise and efficient evaluation of the proximity between web clients

and their local dns servers. In Proceedings of the General Track of the Annual Confer-

ence on USENIX Annual Technical Conference (Berkeley, CA, USA, 2002), ATEC ’02,

USENIX Association, pp. 229–242.

[87] MATIC, S., TYSON, G., AND STRINGHINI, G. Pythia: A framework for the automated

analysis of web hosting environments. In The World Wide Web Conference (New York,

NY, USA, 2019), WWW ’19, ACM, pp. 3072–3078.



134

[88] MCDONALD, A., BERNHARD, M., VALENTA, L., VANDERSLOOT, B., SCOTT, W.,

SULLIVAN, N., HALDERMAN, J. A., AND ENSAFI, R. 403 forbidden: A global view

of cdn geoblocking. In Proceedings of the Internet Measurement Conference 2018 (New

York, NY, USA, 2018), IMC ’18, ACM, pp. 218–230.

[89] MEDIAPORTAL, T. MEDIAPORTAL - a HTPC Media Center for free - MEDIAPOR-

TAL, 2017. https://www.team-mediaportal.com/.

[90] MOURA, G. C., SCHMIDT, R. D. O., HEIDEMANN, J., DE VRIES, W. B., MULLER,

M., WEI, L., AND HESSELMAN, C. Anycast vs. ddos: Evaluating the november 2015

root dns event. In Proceedings of the 2016 Internet Measurement Conference (New York,

NY, USA, 2016), IMC ’16, ACM, pp. 255–270.

[91] MRMC. MrMC – MrMC Media Center, 2017. https://mrmc.tv/.

[92] MUKERJEE, M. K., BOZKURT, I. N., MAGGS, B., SESHAN, S., AND ZHANG, H.

The impact of brokers on the future of content delivery. In Proceedings of the 15th ACM

Workshop on Hot Topics in Networks (2016), HotNets ’16, ACM, pp. 127–133.

[93] MURTAGH, F. A survey of recent advances in hierarchical clustering algorithms. The

computer journal 26, 4 (1983), 354–359.

[94] NETRAVALI, R., GOYAL, A., MICKENS, J., AND BALAKRISHNAN, H. Polaris: Faster

page loads using fine-grained dependency tracking. In 13th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 16) (Santa Clara, CA, Mar. 2016),

USENIX Association.

https://www.team-mediaportal.com/
https://mrmc.tv/


135

[95] NIKAS, A., ALEPIS, E., AND PATSAKIS, C. I know what you streamed last night: On

the security and privacy of streaming. Digital Investigation 25 (2018), 78–89.

[96] NÉDA, Z., VARGA, L., AND BIRÓ, T. S. Science and facebook: The same popularity

law! PLOS ONE 12 (07 2017), 1–11.

[97] OPENDNS. A faster internet: The global internet speedup, 2016. http://

afasterinternet.com.

[98] OSMC. OSMC, 2019. https://osmc.tv/.

[99] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Modeling tcp throughput:

A simple model and its empirical validation. In Proceedings of the ACM SIGCOMM ’98

Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication (1998), SIGCOMM ’98, ACM, pp. 303–314.

[100] PAXSON, V. End-to-end routing behavior in the internet. SIGCOMM Comput. Commun.

Rev. 26, 4 (Aug. 1996), 25–38.

[101] PLEX. Media Server — Plex media server allows you to stream video smarter., 2019.

https://www.plex.tv/.

[102] POESE, I., FRANK, B., AGER, B., SMARAGDAKIS, G., AND FELDMANN, A. Improv-

ing content delivery using provider-aided distance information. In Proceedings of the

10th ACM SIGCOMM Conference on Internet Measurement (2010), IMC ’10, ACM,

pp. 22–34.

http://afasterinternet.com
http://afasterinternet.com
https://osmc.tv/
https://www.plex.tv/


136

[103] PRITCHARD, T. Nearly 70 Per Cent of Kodi Users are Pirates,

Claims MPAA, 2017. http://www.gizmodo.co.uk/2017/11/

nearly-70-per-cent-of-kodi-users-are-pirates-claims-mpaa/.

[104] PUZHAVAKATH NARAYANAN, S., NAM, Y. S., SIVAKUMAR, A., CHAN-

DRASEKARAN, B., MAGGS, B., AND RAO, S. Reducing latency through page-aware

management of web objects by content delivery networks. In Proceedings of the 2016

ACM SIGMETRICS International Conference on Measurement and Modeling of Com-

puter Science (New York, NY, USA, 2016), SIGMETRICS ’16, ACM, pp. 89–100.

[105] RULA, J. P., AND BUSTAMANTE, F. E. Behind the curtain: Cellular dns and content

replica selection. In Proceedings of the 2014 Conference on Internet Measurement Con-

ference (2014), IMC ’14, ACM, pp. 59–72.

[106] SANDVINE. Global Internet Phenomena Spotlight - Kodi, 2018.

https://www.sandvine.com/hubfs/downloads/archive/

2017-global-internet-phenomena-spotlight-kodi.pdf.

[107] SARKAR, D., RAKESH, N., AND MISHRA, K. K. Problems in replica server placement

(rsp) over content delivery networks (cdn). In Proceedings of the Sixth International

Conference on Computer and Communication Technology 2015 (New York, NY, USA,

2015), ICCCT ’15, ACM, pp. 175–179.

[108] SCHEITLE, Q., HOHLFELD, O., GAMBA, J., JELTEN, J., ZIMMERMANN, T.,

STROWES, S. D., AND VALLINA-RODRIGUEZ, N. A long way to the top: significance,

http://www.gizmodo.co.uk/2017/11/nearly-70-per-cent-of-kodi-users-are-pirates-claims-mpaa/
http://www.gizmodo.co.uk/2017/11/nearly-70-per-cent-of-kodi-users-are-pirates-claims-mpaa/
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf


137

structure, and stability of internet top lists. In Proceedings of the Internet Measurement

Conference 2018 (2018), ACM, pp. 478–493.

[109] SMITH, M. D., AND TELANG, R. Competing with free: The impact of movie broadcasts

on dvd sales and internet piracy. MIS Quarterly 33, 2 (2009), 321–338.

[110] STREIBELT, F., BÖTTGER, J., CHATZIS, N., SMARAGDAKIS, G., AND FELDMANN,

A. Exploring EDNS-client-subnet adopters in your free time. In Proceedings of IMC ’13

(2013), IMC ’13.

[111] SU, A.-J., CHOFFNES, D. R., KUZMANOVIC, A., AND BUSTAMANTE, F. E. Drafting

behind akamai (travelocity-based detouring). SIGCOMM Comput. Commun. Rev. 36, 4

(Aug. 2006), 435–446.

[112] SU, A.-J., AND KUZMANOVIC, A. Thinning akamai. In Proceedings of the 8th ACM

SIGCOMM Conference on Internet Measurement (2008), IMC ’08, ACM, pp. 29–42.

[113] TARIQ, M., ZEITOUN, A., VALANCIUS, V., FEAMSTER, N., AND AMMAR, M. An-

swering what-if deployment and configuration questions with wise. In Proceedings of

the ACM SIGCOMM 2008 Conference on Data Communication (New York, NY, USA,

2008), SIGCOMM ’08, ACM, pp. 99–110.

[114] TOOMEY, F. Data, The Speed Of Light And You, 2015. https://techcrunch.

com/2015/11/08/data-the-speed-of-light-and-you/.

https://techcrunch.com/2015/11/08/data-the-speed-of-light-and-you/
https://techcrunch.com/2015/11/08/data-the-speed-of-light-and-you/


138

[115] VISSICCHIO, S., TILMANS, O., VANBEVER, L., AND REXFORD, J. Central control

over distributed routing. In Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication (2015), SIGCOMM ’15, ACM, pp. 43–56.

[116] WANG, X. S., BALASUBRAMANIAN, A., KRISHNAMURTHY, A., AND WETHERALL,

D. Demystifying page load performance with wprof. In Presented as part of the 10th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 13)

(2013), pp. 473–485.

[117] WANG, X. S., KRISHNAMURTHY, A., AND WETHERALL, D. Speeding up web page

loads with shandian. In 13th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 16) (Santa Clara, CA, Mar. 2016), USENIX Association, pp. 109–

122.

[118] WARRIOR, M. A., KLARMAN, U., FLORES, M., AND KUZMANOVIC, A. Drongo:

Speeding up cdns with subnet assimilation from the client. In Proceedings of the 13th In-

ternational Conference on emerging Networking EXperiments and Technologies (2017),

ACM, pp. 41–54.

[119] XBMC. Kodi — Open Source Home Theater Software, 2019. https://kodi.tv/.

[120] XBMC. Official:Forum rules/Banned add-ons, 2019. https://kodi.wiki/view/

Official:Forum_rules/Banned_add-ons.

[121] ZANDER, S. On the accuracy of ip geolocation based on ip allocation data.

https://kodi.tv/
https://kodi.wiki/view/Official:Forum_rules/Banned_add-ons
https://kodi.wiki/view/Official:Forum_rules/Banned_add-ons

	Abstract
	Thesis Committee
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Expansive Network Measurements
	1.2. Approach
	1.3. Mitigation of Suboptimal Client-Server Mapping
	1.4. Analysis of Common Network Resource Exposure
	1.5. Exploration of Open Source Media Platform Infrastructure
	1.6. Thesis Organization

	Chapter 2. Thesis
	Chapter 3. Drongo: Speeding Up CDNs with Subnet Assimilation from the Client
	3.0.1. Premise
	3.0.2. Exploring Valleys
	3.0.3. Drongo System Overview
	3.0.4. Drongo Evaluation
	3.0.5. Related Work
	3.0.6. Discussion
	3.0.7. Summary


	Chapter 4. Skylines: Demystifying Network Resource Islands with Virtual Landmarks
	4.1. Introduction
	4.2. Problem Space and Related Work
	4.3. Experiment & Data Collection
	4.3.1. Definitions
	4.3.2. Domain Collection
	4.3.3. Per-Provider Performance Measurement

	4.4. Common Network Resource Exposure
	4.5. Finding High CNRE Clusters
	4.5.1. Group Formation Patterns
	4.5.2. Label Alignment

	4.6. Cluster Analysis
	4.7. Discussion
	4.7.1. Why Web Object Domains
	4.7.2. Anycast
	4.7.3. Bettering Catchments
	4.7.4. Client Labels

	4.8. Summary

	Chapter 5. de-Kodi: Understanding the Kodi Ecosystem
	5.1. Introduction
	5.2. Background & Related Work
	5.3. de-Kodi System Overview
	5.3.1. Challenges
	5.3.2. The de-Kodi Crawler
	5.3.3. The de-Kodi Source Finder
	5.3.4. The de-Kodi System

	5.4. deKodi Benchmarking
	5.5. Dataset Analysis
	5.5.1. Data Collection
	5.5.2. Add-on Discovery Success Rate
	5.5.3. Banned Add-ons
	5.5.4. Other Content

	5.6. Kodi Ecosystem Analysis
	5.6.1. Add-on Repositories
	5.6.2. Add-on Providers and Origins
	5.6.3. Background Network Chatter

	5.7. Suspicious Activity
	5.7.1. Banned Add-ons and Piracy
	5.7.2. User Tracking and Ad Chatter
	5.7.3. Social Engineering

	5.8. Summary

	Chapter 6. Conclusion
	Bibliography

