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ABSTRACT

Machine learning-based techniques have shown great promises in perception, prediction, plan-

ning, and general decision-making for improving task performance of autonomous driving. Con-

nectivity technology has also presented great potentials in improving the safety and efficiency of

transportation systems by providing information beyond the perception and prediction capabilities

of individual vehicles. However, a number of challenges significantly impede their applications in

realizing connected and autonomous vehicles. These challenges include (1) increasing difficulty

in formally analyzing the behavior of neural network-based planners for ensuring system safety,

(2) preventing over-conservative planning in dense and highly interactive traffic environments, (3)

increasing complexity in analyzing system behavior and quantifying uncertainty in mixed traffic

scenarios, including human-driven and autonomous vehicles, and connected and non-connected

vehicles, (4) difficulty in accurately predicting surrounding vehicles’ behaviors and trajectories,

and (5) defending possible cyber and physical attacks on connected vehicle applications.

To overcome these challenges in connected and autonomous vehicles, we propose several

safety-assured planning schemes and a trust framework in this thesis. In the first work, we pro-

pose a hierarchical neural network based planner that analyzes the underlying physical scenarios

of the system and learns a system-level behavior planning scheme with multiple scenario-specific

motion-planning strategies. We then develop an efficient verification method that incorporates

overapproximation of the system state reachable set and novel partition and union techniques for

formally ensuring system safety under our physics-aware planner. With theoretical analysis, we

show that considering the different physical scenarios and building a hierarchical planner based on

such analysis may improve system safety and verifiability.

In the second work, we propose a safety-driven interactive planning framework in mixed traffic
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scenarios. We identify the driving behavior of surrounding non-connected vehicles and assess

their aggressiveness, incorporate the information shared by surrounding connected vehicles, and

then adapt the planned trajectory for the ego vehicle accordingly in an interactive manner. The ego

vehicle can proceed to execute driving tasks if a safe evasion trajectory exists even in the predicted

worst case; otherwise, it can perform a less preferred behavior or follow the pre-computed evasion

trajectory.

Thirdly, we propose a novel speculative planning framework based on a prediction-planning

interface that quantifies both the behavior-level and trajectory-level uncertainties of surrounding

vehicles. Our framework leverages recent prediction algorithms that can provide one or more pos-

sible behaviors and trajectories of the surrounding vehicles with probability estimation. It adapts

those predictions based on the latest system states and traffic environment, and conducts planning

to maximize the expected reward of the ego vehicle by considering the probabilistic predictions of

all scenarios and ensure system safety by ruling out actions that may be unsafe in worst case.

For these planner designs, we demonstrate the effectiveness of our approaches and their ad-

vantages over other baselines in practical case studies of unprotected left turn, highway merging

or lane changing, through extensive simulations with diverse and comprehensive experimental set-

tings, or in real-world scenarios collected by an autonomous vehicle company.

Finally, we propose an efficient dual cyber-physical blockchain framework to build trust and

secure communication for CV applications. Our approach incorporates blockchain technology

and physical sensing capabilities of vehicles to quickly react to attacks in a large-scale vehicular

network, with low resource overhead. We explore the application of our framework to three CV

applications, i.e., highway merging, intelligent intersection management, and traffic network with

route choices. Simulation results demonstrate the effectiveness of our blockchain-based framework

in defending against spoofing attacks, bad mouthing attacks, and Sybil and voting attacks.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Neural network-based machine learning techniques have been increasingly leveraged in autonomous

driving for perception, prediction, planning, control, etc. In particular, neural networks may greatly

improve performance [1] and efficiency for planning and general decision making in various traffic

scenarios, such as unprotected left turn, highway merging and lane changing. Moreover, compared

with traditional model-based approaches, they can save the time and effort of explicitly modeling

systems with complex dynamics and significant uncertainties.

At the same time, connected vehicle (CV) applications are expected to revolutionize traditional

transportation system. In a connectivity-enhanced transportation system, vehicles can communi-

cate with each other and/or surrounding infrastructures via dedicated short range communication

(DSRC) [2] or cellular vehicle-to-everything (C-V2X) [3]. These communications share important

information of vehicles’ current states (e.g., location, speed, acceleration) and future intentions

(e.g., planned actions and trajectories) that go well beyond the perception and prediction capa-

bilities of individual vehicles, e.g., sharing information that are out of sight of the ego vehicle or

intentions that cannot be accurately predicted. Beyond that, vehicles can negotiate and coordi-

nate in distributed manner [4], or follow instructions from a central unit [5] to further optimize

the system. This makes connectivity a great complementary to both autonomous vehicles and

human-driven vehicles.

However, there are some safety and security challenges that can significantly impede the tran-

sition to an intelligent transportation system, even cause accidents and disrupt traffic flow. Thus

there is an urgent need to address these challenges in connected and autonomous vehicles.
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In this chapter, we start with safety and security challenges in connected and autonomous

vehicles, then discuss related works, present the overview of our approaches and finally summarize

the contributions.

1.1 Challenges

Recently, a variety of neural network-based planner designs, including hierarchical planners, have

been developed for various applications due to their strengths in improving system performance

and reducing accident rate in average [6]–[8]. However, a major challenge for the neural network-

based planners is to ensure system safety, especially in near-accident scenarios [7], [9], such as

unprotected left turn and highway merging in autonomous driving. In those scenarios, with only

minor changes in environment states, dramatically different behaviors may need to be performed

to avoid accidents, which is difficult for both humans and autonomous systems to handle. The

state-of-the-art verification methods have limited efficiency and accuracy for those complex and

high-dimensional systems.

Although safety is the most important metric to evaluate planners, performance should not

be sacrificed too much. There is a common safety-efficiency dilemma in autonomous driving,

especially in those highly interactive and dense traffic scenarios [7], [10]–[14]. Some planners

have larger buffer space for safety [15] to handle uncertainties from surrounding vehicles and the

environment, however can be overly conservative and inefficient; while other planners put more

emphasis on efficiency and task success rate, but risk safety.

It could be even more challenging during the transition period to a fully-automated transporta-

tion system, when human-driven and autonomous vehicles need to share the transportation network

and interact with each other. In mixed traffic, human drivers have different driving patterns, which

can even change over time [16], while autonomous vehicles designed by different companies can
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have varied driving strategies for similar scenarios [17]. With increasing difficulty in accurately

predicting other vehicles’ intentions, the interaction process could be either inefficient or unsafe.

While connectivity technology has the potential to greatly mitigate the challenges in predicting

the intention and future trajectory of surrounding vehicles [18], it is expected that there will be a

long transition period before the full deployment of connected vehicles and traffic infrastructures.

Recent progress has been made to ensure system safety when all vehicles are of the same type [19],

[20], or connectivity is not enabled [21]–[25], and only some works [21], [24], [25] can generalize

to systems with neural network-based components. It is an open challenge to model the behavior

of a general system with all kinds of vehicles, not to mention providing safety guarantee while not

overly sacrificing efficiency.

All these make it critically important in autonomous driving to accurately predict the surround-

ing vehicles’ behavior and effectively leverage the prediction results in planning. In the literature,

some recent prediction algorithms can provide one or more most possible trajectories of a surround-

ing vehicle, albeit does not emphasize their behavior-level difference [26]–[29]. Some planning

algorithms are designed to prevent traffic accidents for the most possible predicted trajectory, but

ignore other possibilities and cannot guarantee safety in those cases [30], [31]. There are other

planning strategies that consider all possible predicted trajectories of a surrounding vehicle. How-

ever, it would be over-conservative if the most cautious action is always selected in considering all

possibilities [32]. Directly taking a ‘weighted’ action across all possibilities can also be risky [7],

[10] – for example, when the traffic signal in an intersection just turns yellow, it may be safe for

a vehicle to maintain its velocity and pass the intersection before the traffic signal turns red or de-

celerate and stop before the intersection, but unsafe for it to take a weighted action like hesitating

and entering the intersection at a low speed.

As for the security challenges, cyber and physical attacks targeting connected vehicle applica-
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tions can severely impact system performance [33], [34], cause accidents or disrupt traffic flow.

For example, an intelligent intersection management system can experience deadlock if messages

have a long transmission delay or get lost under the denial of service attack [5], [35]. Merging in

the highway will be more prone to accidents if vehicles get wrong position data of surrounding

vehicles under spoofing and false message attacks [36]. As the impact of cyber threats [37] on CV

operations can be so destructive, it is essential to develop security solutions against them.

A central issue in CV security is to build trust among vehicles. The authors in [38] reviewed

methods to evaluate message trustworthiness in the vehicular network, including entity-oriented,

data-centric, and collaborative trust models. The entity-oriented trust models evaluate messages’

trustworthiness based on the trustworthiness of their senders. A Certification Authority is of-

ten leveraged to record vehicles’ behavior and provide estimations of trust; otherwise, a vehicle

needs to collect information and make evaluation by itself. The data-centric trust models evalu-

ate the content of messages to estimate the trust for them. In this category, Bayesian inference,

and Dempster-Shafer theory are popular methods to estimate the plausibility and trustworthiness

of messages, however they may result in false positives for detecting valid messages [39]. The

collaborative trust models are based on integrating trust estimates from other peer vehicles, which

could be time-consuming and attacked by malicious players. The Security Credential Management

System (SCMS) is a proof-of-concept message security solution that is supported and developed

by USDOT. Instead of evaluating message trustworthiness by each vehicle, message senders with

credentials can be trusted in the system. However, since a certified vehicle can be attacked later, it

is challenging for certificate authorities to track and update vehicles’ status quickly. Thus, SCMS

on its own does not prevent application level attacks [36].

Blockchain [40] technology has natural strength in recording transactions/events and reaching

a secure consensus among all users. It provides a promising direction for building trust in CV
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applications, as shown in [41]–[45]. However, the required secure consensus operations in those

earlier works introduce high overhead that makes it difficult for applying them in practical CV

applications.

1.2 Related Works

In this section, we summarize related works. We first introduce traditional and machine learning-

based planner designs in autonomous driving, then present the state-of-the-art approaches to ensure

system safety, discuss the prediction-planning interface design, and finally present recent studies

in applying blockchain to transportation systems.

1.2.1 Planner Designs in Autonomous Driving

There are a number of varied planner designs, including classical rule-based [46], optimization-

based [47] and game theory-based [48] planners, as well as emerging neural network-based plan-

ners. [49] reviews the planning and control techniques in an urban environment, [50] reviews mo-

tion planning techniques for highway driving, [51], [52] emphasize the real-time performance of

planning techniques, and [53]–[55] focus on the performance of the proposed methods. [56], [57]

attempt to balance computational efficiency and solution quality. [58], [59] consider communica-

tion delay and reaction time in designing motion planners, and [60]–[62] address the uncertainty in

the driving behavior of surrounding vehicles. [30] proposes a dynamic lane changing planner that

updates its reference trajectory periodically. If necessary, it can plan a trajectory back to the orig-

inal lane to eliminate collision. Similarly, [63] can plan a safe evasion trajectory. However, [30],

[63] assume that the leading and following vehicles in the target lane will remain their velocities

when the ego vehicle changes lanes, which may not hold due to the fluctuation of traffic stream

and the interactions between vehicles. [64] leverages dynamic programming to compute decisions
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for safely changing lanes, but the computation efficiency will be significantly reduced with higher

discretization precision.

Both search-based and sampling-based methods are developed in a discretized space (either

state space or action space), thus the computation efficiency will be significantly influenced if we

increase the discretization precision. Besides this point, search-based methods are limited in spa-

tiotemporal planning while sampling-based methods may lead to jerky paths. Optimization-based

methods, e.g., Model Predictive Control (MPC) [65]–[68], can handle static and dynamic obsta-

cles as constraints and output a smooth trajectory intrinsically. However, these constraints from

obstacles and road boundaries are usually non-convex. It considerably increases the computation

time for the optimization problem, which is hard to be in real-time. Recent proposed algorithms,

Differential Dynamic Programming (DDP) [69], Iterative Linear Quadratic Regulator (ILQR) [70],

and most recently, CILQR [71], [72], can solve real-time optimization with non-convex constraints

within 200 milliseconds by transforming the hard constraints into cost terms.

To improve performance and task success rate, especially in dense traffic, prior works [73]–

[78] have emphasized the importance of modeling inter-vehicle interactions. [73] proposes a game

theory-based lane changing model for connected vehicles, and calibrates different parameters in

the utility functions for mandatory and discretionary lane changing scenarios. [79] assumes that

all vehicles are connected and cooperative, which is not the case during the transition period. [80]

leverages partially observable Markov decision process to model the level of cooperation of other

drivers, and incorporates this belief into reinforcement learning-based planner for higher merging

success rate. [81] uses recurrent neural network (RNN) to model interaction between vehicles, and

then incorporates the prediction results in safety constraints for a MPC planner. Besides RNNs,

transformers have been regarded as an alternative architecture for modeling time-series trajectories

and have achieved superior performance [82]. [74] obtains a probability distribution of different
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intentions for each surrounding vehicle via Bayesian estimation, and then plans trajectories of the

ego vehicle considering its uncertain interactions with surrounding vehicles. [83] leverages game

theory to model cooperative lane changing scenarios, in which vehicles aim to minimize the joint

cost function. [16] defines a parameter called aggressiveness to represent driver’s personality, es-

timates it in real time and incorporates it in the utility function. Different extent of aggressiveness

represents a different preference for travel time, headway and etc. It models vehicle’s interaction

in lane changing process in a Stackelberg game. Machine learning methods have natural strengths

in interaction modeling and prediction [1]. [84] makes discrete behavior decisions for mandatory

lane changing based on Bayes classifier and decision trees. [85] leverages Partially Observable

Markov Decision Process (POMDP) to include surrounding vehicles in the state space, thus plan-

ning interactive behavior. [86] acquires a strategic level k planner for merging in dense traffic by

reinforcement learning and iterative reasoning.

A number of studies focus on the interaction between human drivers and robot drivers [87].

[88] assumes that humans presume robots to behave rationally. As such, robots can predict human

behavior and take advantage of it in their motion planning. [89] uses microscopic traffic simula-

tions to show that the average travel time decreases by a factor of 4 if altruistic AVs are introduced

to traffic streams. [90] models surrounding vehicles based on level-k game theory. Optimal de-

cisions for an AV at roundabouts are computed after estimating the driver type of the opponent

vehicle. [91] and [92] model the interaction between AVs and human drivers using dynamic game

theory. [93] utilizes inverse reinforcement learning to model human drivers, assuming they are

perfectly rational. AVs can thus purposefully elicit desired changes in the human state. [94] claims

that by interacting with humans, robots can learn the humans’ internal states and thus optimize their

operations. However, this information might lead to the robot taking advantage of the humans.

Machine learning-based techniques are increasingly popular in planning and decision-making
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for autonomous driving [81], [95]–[97], for their potential in improving average system perfor-

mance under complex scenarios. Some of those learn a single neural network for planning via

reinforcement learning [98], imitation learning [99], supervised learning [100], etc., while others

employ a hierarchical planner design [7], [101], which usually consists of low-level planners for

different modes and a high-level planner that is responsible for selecting the mode. The work

in [102] proposes a concept of social perception, which inferences surrounding environment from

other vehicles’ reactions. It then leverages inverse reinforcement learning (IRL) to acquire cost

function of human driving, and uses Markov Decision Process (MDP) to get probabilistically op-

timal solutions. [103] formulates the lane changing planning problem as a partially observable

Markov Decision Process (POMDP), in which the cooperativeness of other traffic participants

is an unobservable state. It predicts future actions of human cars via logistic regression classi-

fier, and solves the POMDP by Monta-Carlo Tree Search. [104] leverages reinforcement learning

and considers the possible action of aborting lane changing and returning back to original lane.

[105], [106] are also based on reinforcement learning. [107] develops hierarchical reinforcement

learning-based planners to address both the timing and the specific maneuver for lane changing.

[7] proposes a hierarchical reinforcement and imitation learning (H-REIL) approach that consists

of low-level policies learned by imitation learning under different driving modes and a high-level

policy learned by reinforcement learning for switching between driving modes.

Although these methods demonstrate great performance improvement, it is still quite chal-

lenging to verify the safety for learning-enabled systems. System efficiency is also restricted by

uncertainties from perception [108] and prediction results of individual vehicles. And connectivity

can enhance the transportation system by reducing such uncertainties [109]–[113]. For instance,

the work in [19] proposes an intersection management scheme, in which the central manager as-

signs arriving speed and arriving time to vehicles. Vehicles track optimal trajectories according
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to assignments under proportional–integral–derivative (PID) controllers, which can compensate

bounded model mismatch and external disturbances. It assumes that all vehicles are connected

and autonomous. The approach in [20] leverages Dynamic Bayesian Networks (DBNs) to model

vehicle state evolution. The central manager can send out warning messages to vehicles for col-

lision avoidance. It assumes that all vehicles are connected and human-driven, and collision rate

depends on velocity and driver reaction time. The work in [114] assumes that all vehicles are

connected, and leverages deep reinforcement learning (DRL) for behavior-level decision making

in lane changing. In particular, it gets performance improvement by incorporating traffic status in

the downstream with vehicle-to-vehicle communication.

There are several works developed for mixed traffic [115]–[120] of connected and non-connected

vehicles. The work in [121] presents an RL-based multi-agent longitudinal planner for connected

and autonomous vehicles, which adjusts speeds in upstream traffic to mitigate traffic shock-waves

downstream. The results suggest that even for a penetration rate of 10%, connected and au-

tonomous vehicles can significantly mitigate bottlenecks in highway traffic. The approach in [122]

leverages RL for trajectory recommendation to the connected vehicles in highway merging sce-

narios. It assumes that not all vehicles are connected and uses camera in roadside for data fusion,

in order to map all vehicles. The work in [123] proposes an RL-based method for connected and

autonomous vehicles to decide actions such as whether to change lane or keep lane based on the

observation and shared information from neighbors. The system is modeled by hybrid partially ob-

servable Markov Decision Process (HPOMDP) as not all vehicles are connected. However, it does

not explicitly model inter-vehicle interaction, and the safety highly depends on accurate modeling

of the surrounding vehicles, especially non-connected vehicles.
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1.2.2 Safety-assured Approaches

Even though safety improvement is often considered and demonstrated empirically through ex-

periments in those works [7], [124]–[130], formal system safety verification remains a challeng-

ing problem. Reachability analysis and certification are popular formal techniques for verifying

system safety, with various recent methods for LE-CPSs [131]–[140]. However, these methods

are usually applied to relatively simple scenarios, such as adaptive cruise control and emergency

braking [131], [141]. Regarding the verification of neural network controlled systems in the liter-

ature [132]–[134], [142], [143], a single planner is typically considered. Verification for a hierar-

chical planner and hybrid system is not well studied. Moreover, these methods are challenging to

scale to complex scenarios due to the disturbances and uncertainties from both the physical world

and neural networks [144] and often result in conservative conclusions.

There are several works that try to provide formal safety guarantees. For instance, [145] an-

alyzes the distance between vehicles to ensure safety in lane changing scenarios, however the

distance is derived only based on braking behavior. Without considering steering, the calculated

safe distance is often over-conservative and hard to meet in practice, especially in dense traffic.

Moreover, it does not explicitly analyze the intention of the following vehicle in the target lane.

And such limitation also exists in [22], [146]. The work in [147] analyzes the minimum critical

distance around surrounding vehicles by considering both braking and steering behavior, and as-

sumes that the worst case occurs when the leading vehicle in the target lane has a full stop suddenly

or the following vehicle in the target lane remains its acceleration to close the gap. However, [147]

neglects the fact that the ego vehicle can steer and brake at the same time to avoid collision, and

that the worst case for the leading and the following vehicles can occur at the same time. Moreover,

it does not consider inter-vehicle interactions.

There is an urgent need to prevent overly conservative design while also provide safety guaran-
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tees when considering environment uncertainty and complex inter-vehicle interactions [24], [25],

[32], [148], [149]. The work in [21] proposes a concept of legal safety, which means that au-

tonomous vehicles will not be the cause of accidents and there is no collision if surrounding vehi-

cles obey traffic rules. This is realized by proving the existence of the fail-safe trajectory under the

planner all the time. Similarly, the concept of responsibility-sensitive safety is proposed in [22],

which assumes that other participants behave according to common-sense rules and defines ap-

propriate responses of autonomous vehicles in near-accident scenarios. However, safety can be

compromised if other vehicles’ behaviors violate the assumptions. The works in [23], [32] develop

a non-conservatively defensive driving strategy, which leverages sampling-based or optimization-

based methods. Planned trajectory is executed after the safety evaluation. The work in [150]

presents a MPC-based planner for trajectory tracking, which ensures safety through maintaining

the availability of a collision-free escape maneuver.

1.2.3 Prediction-planning Interface

With the wide adoption of machine learning-based techniques, the performance of trajectory pre-

diction [151], [152] has significantly improved over the last several years. Most works predict

the trajectories of traffic participants and evaluate their accuracy [27], [153]–[155]. There are also

some works that consider both high-level behaviors and low-level trajectories in the prediction

algorithms. For instance, [156] proposes an integrated lane change prediction model to predict

the lane change decisions and lane change trajectories. [157] develops a domain generalization

method for prediction in unseen scenarios, and mainly works on behavior prediction. [158] per-

forms both standard forecasting and the novel task of conditional forecasting, which reasons about

how all agents will likely respond to the goal of a controlled agent. It points out that goal/intent-

conditioned trajectory forecasting can improve joint-agent and per-agent predictions, compared to
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unconditional forecast. [159] proposes a framework that first explicitly predicts the distribution of

an agent’s endpoint over a discretized goal set and then completes the trajectories conditioned on

the selected goal points. The goal set is designed with domain knowledge. [12], [153] propose

an architecture to encode driving behaviors such as lateral intetion and aggressiveness into latent

space, which can enhance the explainability and robustness of trajectory prediction modules.

Various planner designs are reviewed in [49], [50], [160], [161]. These planners can be clas-

sified according to the inputs and assumptions. Most of these planners such as [30], [71] take

the latest system states and environmental information as inputs, e.g., position and velocity of sur-

rounding vehicles, road geometry, and so on. Based on the position and velocity of surrounding

vehicles, it is usually assumed that vehicles keep the same velocity in the next few seconds, thus

the trajectory is acquired. Thus it is appropriate and convenient to take more accurately predicted

trajectories as inputs to these planners [30], [47]. There are also many planners with embedding

models for surrounding vehicles, which describe the reward function with a set of parameters [16],

[48] or neural networks [162], [163]. These methods can model the interaction between the ego

vehicle and surrounding vehicles, and the future trajectories of these agents are derived at the same

time.

Significant progress has been made recently to reduce the uncertainty and safety risks dur-

ing interactions among vehicles. Some works propose that it is safer and more effective to con-

duct motion planning with pre-determined or predicted behavior of surrounding vehicles [4], [7],

[10]. Confidence-based methods [148], [164] are also promising in human-robot interaction, where

robots are designed to use confidence-aware game theoretic models of human behavior when as-

sessing the safety [164]. Confidence gets updated after comparing real human behavior and its

predictions, and safety is ensured by switching to a safe planner when necessary. [31] integrates

a probabilistic prediction model into the design of reachability-based safety controllers to achieve
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more efficient two-car collision avoidance. However, it cannot ensure safety because it only reacts

to the most possible predicted trajectories of surrounding vehicles. [165] introduces a Bayesian

Long Short-term Memory (BLSTM) model to predict the probability distribution of surrounding

vehicles’ positions, which are used to estimate dynamic conflict risks. MPC is then incorporated

to navigate vehicles through safe paths with the least predicted conflict risk. However, it only con-

siders trajectory-level uncertainty, and it could be over-conservative because collision risk is the

only term for optimization.

Some prediction methods provide more information to quantify the uncertainty, which can

improve the performance of planners in uncertain and dynamic environments [129], [130]. For

instance, [166] uses Gaussian Mixture Model to describe the predicted intentions, detailed way-

points, and corresponding covariance for each waypoint. [26], [27] work on multimodal trajectory

predictions, and produce every trajectory’s probability by a prediction network. [167] predicts

multimodal potential trajectories with corresponding probabilities based on a set of anchors. [28],

[29] first predict possible goals for surrounding vehicles and then generate multiple detailed future

trajectories. [168] can learn effective representations for detecting potential anomalous or unsafe

predictions of surrounding vehicles.

1.2.4 Blockchain in Transportation

Blockchain is literally a chain of blocks (called a ledger), in which a block stores a set of trans-

actions and the hash value of the previous block. Transactions are public to every user, and thus

blocks can be verified by every user. Blockchain is updated based on consensus algorithms to

guarantee that the state of the ledger is identical at all nodes. The most well-known blockchain,

bitcoin, is based on proof of work. It assumes that a group of miners will build up new blocks by

consuming CPU resources to find the right cryptographic nonce. Once a new block is proposed
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by a miner, other miners will verify it and start working on the next block. Because the block

generation process is not deterministic, a hacker may successfully build a new block with a slight

possibility. In this way, a block is considered to be confirmed if it is followed by several other

blocks. For bitcoin, the block generating period is about 10 minutes, and the confirmation time

can be 1 hour. Moreover, with proof of work, miners may compete to earn profits and dominate

the blockchain with more CPU resources, which could lead to huge computation cost and energy

consumption. Several alternative consensus mechanisms are proposed to prevent exhausting com-

putation resources [40], [169].

Algorand is a recently proposed blockchain design that enables efficient block confirmation

time. It is based on proof of stake, where users do not need to exhaust computation resources.

Instead, users need to deposit money as the stake. The more money a user owns, the higher chance

the user can be selected as a block proposer or verifier. Its security is guaranteed theoretically

as long as the majority of stake is owned by honest users [170]. Furthermore, its scalability is

demonstrated with simulations of up to 500,000 users, in which transaction confirmation time can

be shortened to be within one minute [171], making it feasible for some systems in real-time. More

specifically, for each round r, a leader lr and a small set of verifiers SV r that are randomly selected

and publicized by cryptographic self-selection participate. The leader will build and propagate a

new block, and then selected verifiers will reach the Byzantine agreement on it within a finite

number of steps. Upon termination, the agreed block Br is added to the ledger. Since the block

has already reached consensus and has been confirmed, the round period is exactly the transaction

confirmation time.

Blockchain has been leveraged by many researchers to advance applications in transportation

systems in the literature. [172] presents a blockchain-based negotiation process to select the most

convenient electric vehicle (EV) charging station. [173] leverages blockchain to record EV charg-
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ing activities, which enables information sharing while securing sensitive user information. [174]

presents a seven-layer conceptual model for blockchain in transportation and discusses ride sharing

in the application layer.

There are also several works that consider using blockchain in vehicular networks. [41] re-

views different models for calculating reputations of vehicles, discusses challenges of previously

centralized and distributed methods, and indicates new directions on blockchain and fog comput-

ing. [42] proposes to secure vehicular communication by recording each message in blockchain,

which is not scalable. Its proof of work scheme also leads to heavy computation burden. [43]

proposes a blockchain-based trust management scheme for vehicular networks, in which road side

units (RSUs) update and maintain the blockchain. Its consensus is partially based on proof of work,

which still leads to high computation cost for every RSU, and its security in one region cannot be

well protected once the RSU is compromised. [175] leverages Bitcoin-NG and hierarchical design

to reduce transmission latency of blocks and increases the throughput capacity. However, this hi-

erarchical design assumes that RSUs will maintain a higher-layer blockchain, which processes all

information from lower-layer blockchains. It also has high computation resource demand and is

not resilient to attacks. [176] proposes a similar idea that may also suffer from the failure of one

node. [177] attempts to mitigate the resource demands by proposing concepts of sub-blockchains

for different node types, e.g., vehicles, RSUs, and stations. However, it lacks implementation

details such as communication across different sub-blockchains.

1.3 Overview of Our Approaches

In this section, we briefly present our approaches to address the challenges discussed above.



35

1.3.1 Safety-assured Hierarchical Neural Network-based Planner

We first observe that for systems that may evolve into different physical scenarios1 under a single

neural network-based planner, it is often difficult to verify their safety or the planner is indeed

unsafe. And we conduct theoretical analysis to show the reason. Based on such observation and

the fact that many safety-critical systems may evolve into multiple different physical scenarios

and thus require dramatically different behaviors to ensure their safety and improve performance,

we propose a hierarchical neural network-based planner that consists of a system-level behavior

planner and multiple scenario-specific motion planners. We then develop an efficient verification

method that incorporates novel partition and union techniques and an approach for overapproximat-

ing system state reachable set to formally verify the system safety under our hierarchical planner.

1.3.2 Safety-driven Interactive Neural Network-based Planner

We propose a safety-driven interactive planning framework with neural network-based planners in

dense traffic scenarios. In the example of lane changing, we have two neural network planners for

longitudinal and lateral motions, respectively. The two planners take motion status of surrounding

vehicles and the ego vehicle as input, and output planned accelerations for the ego vehicle. In order

to enhance safety while improving performance, the ego vehicle can make lane changing attempt

under the neural network planners only if it has a safe evasion trajectory even in the predicted

worst case; and if such safe evasion trajectory does not exist, the planned trajectory from neural

networks will be adjusted according to safety analysis of all involved vehicles. To prevent an overly

conservative planner design, we leverage another neural network to assess the aggressiveness of the

following vehicle in the target lane and predict whether it is willing to let the ego vehicle complete

the lane change. In the case that the following vehicle is cautious (intuitively meaning that it is

1For instance, in unprotected left turn, a vehicle may make the turn, yield or stop based on the situation.
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Figure 1.1: Lane changing scenario. The ego vehicle E, an autonomous vehicle, intends to change
lanes and insert itself downstream of vehicle F , a human-driven or an autonomous vehicle in the
target lane.

willing to let the ego vehicle get in front of it), the ego vehicle can complete the lane changing

confidently; otherwise, the following vehicle is aggressive and the ego vehicle needs to be more

conservative.

Fig. 2.1 shows the specific scenario we consider. The ego vehicleE, an autonomous vehicle, in-

tends to change lanes and insert itself downstream of vehicle F , a human-driven or an autonomous

vehicle in the target lane. We assume that the worst case occurs when the leading vehicle L in the

target lane decelerates abruptly and at the same time the following vehicle F has the highest ac-

celeration under its predicted cautious/aggressive mode. A safe evasion trajectory exists if the ego

vehicle can take that trajectory and return to the original lane without colliding with other vehicles.

1.3.3 Safety-assured Speculative Planning with Adaptive Prediction

This work focuses on addressing complex driving scenarios where the surrounding vehicles’ inten-

tions and planned trajectories have multiple possibilities in prediction. For example, we consider

the lane changing in a multi-lane highway as a representative application (while our proposed ap-

proach can be extended to other driving tasks and scenarios). As shown in Fig. 1.2, the system

includes an ego vehicle E going straight and a surrounding vehicle S indicating a right turn to

change lanes. However, the intention of the surrounding vehicle is ambiguous. It can change lane
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Figure 1.2: Representative case study: In a multi-lane highway, an ego vehicle E goes straight
and a surrounding vehicle S indicates a right turn to change lanes. However, the intention of S is
ambiguous. It can change lane once and follow the route 1, or change lanes twice and follow the
route 2, or exit the highway after lane changing and follow the route 3.

once and follow the route 1, or change lanes twice and follow the route 2, or exit the highway after

lane changing and follow the route 3. Each possible route may be associated with a probability,

i.e., p1, p2 and p3. Moreover, besides the behavior-level uncertainty on taking which route, the

exact parameters for defining each trajectory are also uncertain.

We propose a safety-assured speculative planning framework with adaptive prediction. The

framework leverages prediction algorithms that can provide one or more possible behaviors and

future trajectories of surrounding vehicles [28], [154], [159]. During planning, the framework

considers all those possibilities and first rules out the actions that may be unsafe in the worst case.

Within the remaining actions, it selects the one that maximizes the expected reward (representing

system performance) of all possible intentions and trajectories in prediction results, with larger

weights assigned to the more likely ones. We consider such planning speculative because the

prediction results are likely to change over time. Thus, our framework also checks the updated

prediction results over time and adapts them based on system states and traffic environment, to



38

filter out those impossible behaviors and trajectories of the surrounding vehicles for more effective

planning. Moreover, we incorporate the prediction of the aggressiveness level of the surrounding

vehicles into our prediction-planning interface, which may further reduce prediction uncertainty

and improve system performance.

1.3.4 Securing Connected Vehicle Applications with Blockchain

Our framework leverages Algorand, combining its protocol design with our ideas of designing dual

cyber-physical blockchains at different time scales, using vehicles’ physical sensing capabilities

for verifying messages, and introducing the concept of proof-of-travel credits in stake computation.

Moreover, to scale Algorand to CV applications in a large traffic network, we leverage the sharding

technique [40] for record transferring and sharing between blockchains in different regions. By

choosing an appropriate region size, our framework design can have short round latency and low

overhead, while preventing vehicles from transferring records frequently. In addition, our proposed

summary step further reduces the overhead for new vehicles.

The design of our framework is shown in Fig. 1.3. It builds and updates two blockchains

for recording vehicles’ communication activities and establishing trust among vehicles. The first

blockchain, named trust points blockchain, is used to quickly identify and record malicious mis-

behavior. Intuitively, telling the truth and getting acknowledged by most neighbors will earn trust

points, while telling a lie will lose trust points. The second blockchain, named proof-of-travel

blockchain, accumulates and records each vehicle’s long-term contribution to the CV community.

Intuitively, the more traffic information it shares with others, the more contribution to the CV com-

munity it gets and the higher proof-of-travel credits it can receive from others. This blockchain

serves as a low-cost conceptually-centralized tracker of vehicle trust, enabling two vehicles to es-

tablish trust when they do not have extended experience with each other, in a way that is secure
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Figure 1.3: Overview of our proposed dual cyber-physical blockchains framework. The ego ve-
hicle is traveling and sharing traffic information with surrounding vehicles. In the trust points
blockchain, surrounding vehicles leverage their physical sensing capability to verify the messages
sent from the ego vehicle. If a falsified message is detected and reported, the voting contract will
instantly start collecting surrounding vehicles’ opinions and adjust trust points of relevant vehi-
cles. In the proof-of-travel blockchain, ego vehicle and surrounding vehicles record the number of
received messages from different vehicles, which can reflect the travel activities and their contri-
butions. To reduce resource overhead, the credits are updated in a longer period than that of trust
points blockchain for reflecting long-term reputation. The stake of each vehicle is computed from
both its trust points and proof-of-travel credits. Our dual blockchain design is secure as long as
more than 2/3 of the stake is held by honest vehicles.

and dependent on consensus.

Our proposed framework makes it difficult to launch attacks, and facilitates quick detection and

reaction to misbehavior. Specifically, once a suspicious message is reported, surrounding vehicles

can adapt to more cautious and conservative actions within just hundreds of milliseconds. Within

one minute, surrounding vehicles can leverage their sensing capabilities to verify the message and

reach consensus on it. Then, the trust points of the vehicle that sent the suspicious message will

get updated in the trust points blockchain. On the other hand, as travel history is recorded in the

proof-of-travel blockchain, vehicles with poor travel history cannot easily start certain attacks such

as Sybil attack or flooding attack (or other attacks that require repeated transmission). Moreover, to
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improve the efficiency, we propose the concepts of permanent address and current active address,

which can partition all vehicles into different regions with the sharding technique. Our frame-

work design enables record transfer when vehicles move across different regions. Each region can

have its blockchains updated and maintained with intra-region and inter-region communication to

promote scalability.

1.4 Contributions

In summary, our work makes the following contributions:

• With empirical study and theoretical analysis, we show that for those systems that may evolve

into multiple physical scenarios, single neural network based planner is either unsafe, or ex-

tremely difficult to verify. We design a novel hierarchical neural network-based planner with

assured safety and better verifiability, based on the underlying physical scenarios of the system.

We develop novel partition and union techniques to improve efficiency and accuracy of reacha-

bility analysis, and propose an overapproximation method for the system under our hierarchical

planner. We demonstrate the safety enhancement from our hierarchical design through case stud-

ies of unprotected left turn and highway merging, compared with single neural network-based

planners.

• We propose a safety-driven interactive planning framework. The framework includes a safety-

driven behavior adjustment module that takes the outputs from two neural network-based plan-

ners and decides whether to proceed, abort, or hesitate. This is based on analyzing whether

a safe evasion trajectory exists, considering the aggressiveness of surrounding vehicles. We

demonstrate the advantages of our framework through extensive simulations on synthetic exam-

ples and real-world scenarios, when compared with a traditional optimization-based planner and

an end-to-end neural network planner. In particular, our framework is safe in all simulations.
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Moreover, our framework is guaranteed to be safe if the aggressive assessment is accurate or

if we choose to always treat surrounding vehicles as aggressive. Based on the framework, we

propose a connectivity-enhanced planner in mixed traffic environment with human-driven and

autonomous vehicles, and connected and non-connected vehicles. We demonstrate significant

system performance improvements by leveraging connectivity in dynamic environment. We also

analyze system robustness when coordination between connected vehicles is not perfect.

• We propose a speculative planning method to address the challenges in ambiguous scenarios

where multiple behaviors and trajectories of surrounding vehicles exist. Our method consid-

ers all possible predicted behaviors and trajectories, ensures system safety by ruling out actions

that may be unsafe in the worst case, and improves system performance by sampling all possi-

bilities and choosing the action that maximizes the expected reward. Our planner leverages a

prediction-planning interface that incorporates uncertainty on both behavior level and trajectory

level, including the probability distribution of relevant parameters. It reacts to the prediction

changes in real-time and adapts the prediction results based on the system states and traffic envi-

ronment, to filter out impossible behaviors and trajectories of surrounding vehicles as time goes

by for further improving system performance. We demonstrate the advantages of our approach

over baseline methods in improving system performance and ensuring system safety. Note that

our approach is guaranteed to be safe if the prediction results are conservative and there exists a

safe planning decision at the initial state.

• We develop a novel dual blockchain framework that leverages cyber-security techniques, phys-

ical sensing capabilities of vehicles, and their travel histories to build trust and secure commu-

nication in a large-scale vehicular network, in which every vehicle can get updates timely with

low resource overhead. We use a stake-based consensus mechanism across the faster trust points

blockchain and the slower proof-of-travel blockchain, a sharding technique for partitioning ve-
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hicles into regions, and a dedicated summary step to reduce computation, communication and

storage costs of our framework so that it is practical for CV applications. We demonstrate the ef-

fectiveness of our framework against a few prevalent attacks, including message spoofing attack,

bad mouthing attack, and Sybil attack. We illustrate the performance and timing efficiency of

our defense system via simulations in SUMO simulator, and also analyze its resource overhead

and trade-offs.

The rest of the dissertation is organized as follows. Chapter 2 presents our design of physics-

aware safety-assured hierarchical neural network-based planner. In Chapter 3, we present the

safety-driven interactive planning framework, which considers inter-vehicle interactions in dense

traffic and can incorporate connectivity in mixed traffic. Chapter 4 presents the safety-assured

speculative planning framework with adaptive prediction. In Chapter 5, we present the efficient

dual cyber-physical blockchains framework for securing connected vehicle applications. Chapter 6

concludes the dissertation.
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CHAPTER 2

SAFETY-ASSURED HIERARCHICAL NEURAL NETWORK-BASED PLANNER

A major challenge for the neural network-based planners is to ensure system safety [24], especially

for safety-critical applications [178], [179] and in near-accident scenarios [7], [9], such as unpro-

tected left turn and highway merging in autonomous driving. Our work focuses on addressing such

complex scenarios in safety-critical systems. This chapter is based on the work published at [10].

It is organized as follows. Section 2.1 introduces an illustrating example and defines the problem

formulation. Section 2.2 presents our planner design and verification approach. Section 2.3 shows

the case studies.

2.1 Problem Formulation

We consider the unprotected left turn as a representative application where different planning

decisions and system states can eventually lead to different physical scenarios. The system includes

a left turn vehicle C1 and another vehicle C2 going straight from the opposite direction in an



44

Figure 2.1: The unprotected left turn system.

intersection, as shown in Fig. 2.1. We model it as a 5-dimensional system:



ṗ1(t) = v1(t)

v̇1(t) = u(t)

τ̇min(t) = f1(t)

τ̇max(t) = f2(t)

ṫ = 1

(2.1)

where p1(t) and v1(t) are the position and velocity of vehicle C1. Vehicle C2 is predicted to pass

the conflicting area (where the two vehicles may potentially collide) in this intersection within the

time window [τmin(t), τmax(t)]. u(t) is the control input, representing the acceleration of vehicle

C1. We assume that vehicle C1 follows a given path in the intersection to turn left, thus its

trajectory can be derived with u(t). τmin(t) and τmax(t) may change over time as vehicle C1 can
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Figure 2.2: System in Fig. 2.1 evolves to multiple physical scenarios. The horizontal axis denotes
the position of vehicle C1 along the planned path, and a negative value means that C1 has not
entered the intersection. The vertical axis denotes time. The black region represents simulated
trajectories of the system. From left to right, the three branches correspond to the scenarios where
vehicleC1 stops before the intersection, yields toC2, and proceeds, respectively. The red rectangle
is the unsafe region as vehicle C2 is expected to passing the intersection at time interval [17, 19].

update its prediction for C2. We assume that this time window will become tighter as two vehicles

get closer to each other, i.e., f1(t) >= 0 and f2(t) <= 0. We also assume that the traffic signal

follows a fixed pattern. First it is green for tg seconds, then it turns yellow for ty seconds, and then

it turns red for tr seconds. After that, it turns back to green and repeats this turning pattern.

Fig. 2.2 shows the simulated trajectories based on human driving norm. The horizontal axis

denotes the position of vehicle C1 along the planned path, where a negative value represents that

C1 has not entered the intersection. When p1 = 4.5 meters, C1 enters the region where two

vehicles’ paths may intersect. When p1 = 14 meters, it leaves that conflicting region. There are

three obvious branches as time goes on. The leftmost branch corresponds to the behavior of C1

stopping before the intersection, when it cannot pass the intersection before the signal turns red.
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The middle branch corresponds to the behavior of C1 yielding to vehicle C2 that goes straight,

when there is potential danger for collision and C2 has the right of way. The rightmost branch

corresponds to the behavior of C1 proceeding, when it is safe to pass the intersection before C2.

The red rectangle marks the unsafe region, as vehicle C2 is expected to pass the conflicting region

within the time window [τmin(t), τmax(t)] ≡ [17, 19] seconds.

To react safely and efficiently, depending on the initial system state and changes in the sur-

rounding traffic, vehicle C1 may take different actions. Note that although there may exist some

planner u′(t) that is safe and can lead to only one branch of system trajectories, i.e., braking and

then stopping before the intersection in any case, it is not efficient and ideal in real life.

In some simpler systems such as adaptive cruise control and emergency braking [131], [141],

the system state may converge to a constant distance gap or gradually slows down to full stop.

Here, the potential reachable states of the unprotected left turn system do not converge to a single

scenario, but evolve to multiple different scenarios. This presents significant challenges to safety

verification and assurance.

Thus, in this work, we are interested in the following questions: Can vehicle C1 turn left safely

and efficiently under our designed planner when facing different traffic scenarios, i.e., turning left

without hesitance when it is safe and decelerating when facing potential collision? If so, can

we formally verify the system safety under our designed planner? To answer these, we will first

generally formulate the above-mentioned system where different planning decisions and system

states can eventually lead to different physical scenarios.

General Formulation. We consider a dynamic system:


ẋ(t) = f(x(t), u(t)), ∀t ≥ 0

x(t) ∈ X − Su, x(0) ∈ I , u(t) ∈ U
(2.2)
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where x(t) is the state variable, and u(t) is the control input variable. We assume that f is Lipschitz

continuous in x and continuous in u to ensure the uniqueness of solution. By including time t in

state variable x(t), system function f can be time-variant. X = {x ∈ Rn} is the state space.

Su = {x ∈ Rn| ∧
i
hi(x) ≤ 0} is the unsafe state space, h denotes the linear constraint function and

state x is unsafe if ∧
i
hi(x) ≤ 0 is satisfied. X − Su is the set difference of X and Su. I ⊆ X − Su

is the initial set of system state. U = {u ∈ Rm} is the control input space.

Let δc denote the control time stepsize. At time t = i∗ δc, i = 0, 1, 2, . . . , the system controller

κ takes current state x(i ∗ δc) and computes control input u(i ∗ δc) = κ(x(i ∗ δc)) for the next time

step, the system becomes ẋ(t) = f(x(t), u(i ∗ δc)) in the time interval t ∈ [i ∗ δc, (i+ 1) ∗ δc].

The trajectory ϕx(0) to the system (2.2) starting from an initial state x(0) can be formulated as:

ϕ̇x(0)(t) = f(ϕx(0)(t), u(t)), x(0) ∈ I (2.3)

where ϕx(0)(0) = x(0).

With a well-designed controller u(t), the system trajectories will evolve to disjoint subsets at

step i (and possibly at the following steps as well) to avoid the unsafe set. That is:


ϕx(0)(t) ∈ ∪

k
Sk, ∀t ∈ [(i− 1) ∗ δc, i ∗ δc] , ∀x(0) ∈ I

||x− x′|| > εx, ∃εx > 0, ∀x ∈ Sk, ∀x′ ∈ Sj , ∀k 6= j

(2.4)

where δc is the control time stepsize, Sk is a subset of system states in time interval [(i− 1) ∗ δc, i ∗ δc],

∪
k
Sk is the union of all subsets. The distance between any two elements x ∈ Sk and x′ ∈ Sj is

always strictly greater than a positive real number εx, for any two different subsets Sk and Sj .

It becomes more challenging to design a safety-assured planner due to the properties of the

system as in (2.2) and (2.4). Since the safe state space X − Su is non-convex, the system reach-
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able set needs to evolve to multiple branches to avoid the unsafe set. However, a planner κ(x)

that is Lipschitz continuous in x intuitively cannot output significant different control signal u(x)

under only minor changes in system state x. For these complex systems, accidents cannot be pre-

vented in experiments with previous neural network-based planner designs, including hierarchical

planners [7], [124]–[128]. Thus, we try to answer: is there a planner design that can enable the

change of system trajectory under changing scenarios? If so, can we verify its safety as the system

reachable states evolve to multiple possible scenarios? Formally, we try to solve:

Problem 1. For a dynamical system defined by (2.2) and (2.3), is there a planner design κ that

can satisfy (2.4)?

Problem 2. If there exists a planner κ that can satisfy (2.4), the safety verification problem is to

determine whether the controlled trajectory ϕx(0)(t) ∈ X − Su, ∀t ≥ 0, ∀x(0) ∈ I .

2.2 Planner Design and Safety Verification

In this section we first conduct formal analysis for systems under a single neural network-based

planner. With theoretical analysis, we show that single neural network planners cannot handle

well the systems that may evolve into different scenarios, and are hard to verify. To overcome

these challenges, we present our design of a hierarchical neural network-based planner, and then

introduce the partition and union algorithm we developed for the verification of our hierarchical

planner.

2.2.1 Formal Analysis of Single Planner Design

Using a single neural network for planner design is well-studied [180]–[182]. Deep neural net-

works provide better performance for complex systems than many traditional methods [114], [183],
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[184]. However, single neural network-based planner has its limitations, especially for safety-

critical systems [7]. Below we formally analyze the system under a single neural network-based

planner with reachability analysis of a neural network controlled system [132]–[134], [143], and

we leverage the Bernstein polynomial-based reachability analysis [132], as it can handle neural

networks with general and heterogeneous activation functions. Let us start with introducing reach-

able set and Bernstein polynomial.

Definition 2.2.1. A system state x is reachable at time t ≥ 0 on a system defined by (2.2) and (2.3),

if and only if there exists x(0) ∈ I such that x = ϕx(0)(t). The reachable set R of the system is

defined as the set of all reachable states R = {x|x = ϕx(0)(t), ∀t ≥ 0, ∀x(0) ∈ I}.

The system is considered to be safe if its reachable set R has no overlap with the unsafe set

Su. However, it is proven that computing the exact reachable set for most nonlinear systems is an

undecidable problem [185], not to mention systems with neural network planners. Thus, recent

works mainly consider overapproximation of the reachable set. Safety can still be guaranteed if

the overapproximated reachable set has no overlap with the unsafe set. Note that in this paper, for

simplificy, we use the same notation for both the reachable set and its overapproximation.

For a controller/planner κs defined over a n-dimensional state x, its Bernstein polynomials

Bκs,d(x) under degree d = (d1, d2, . . . , dn) is:

Bκs,d(x) =
∑

0≤aj≤dj
j∈{1, 2, . . . , n}

κs

(
a1

d1

,
a2

d2

, . . . ,
an
dn

) n∏
j=1

((
dj
aj

)
x
aj
j (1− xj)dj−aj

)
(2.5)

where
(
dj
aj

)
is a binomial coefficient.

To obtain an overapproximation of the reachable set for a system with a neural network-based

controller κs, we compute an overapproximation of the controller κs using Bernstein polynomials
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similarly as in [132]. Note that the reachable set is computed step by step and it is sufficient to

perform the overapproximation of κs at step i on the latest computed reachable set Ri−1. That is,

κs is overly approximated by a Bernstein polynomial with bounded error ε on set Ri−1 as:

κs(x) ∈ Bκs,d(x) + [−ε, ε] , ∀x ∈ Ri−1 (2.6)

whereR0 = I when performing overapproximation in the first step. In the rest of the paper,Bκs(x)

is short forBκs,d(x), as it is not necessary to have the same d for the overapproximation of different

controllers.

With the above approach, the dynamic system with a single neural network-based planner κs is

transformed into a polynomial system for computing the overapproximation of the reachable set.

This enables our following analysis.

Challenge on correctness. Intuitively it is unlikely that Lipschitz continuous planners can output

significantly different control signal u(x) under only minor changes in the system state x, and

enable system trajectory go into several disjoint subsets under different scenarios. Next, let us

formally introduce Lipschitz constant and explain that a large number of single neural network

planners may indeed be unsafe for the system.

Definition 2.2.2. A real-valued function f : X → R is called Lipschitz continuous over X ⊆ Rn,

if there exists a non-negative real L, such that ||f(x)− f(x′)|| ≤ L||x− x′|| for ∀x, x′ ∈ X . Any

such L is called a Lipschitz constant of f over X .

Proposition 2.2.1. For a dynamical system defined by (2.2) and (2.3) with single neural network-

based planner κs, if κs is a convolutional or fully connected neural network with ReLU, sigmoid

or hyperbolic tangent (tanh) activation functions, then the controlled trajectory ϕx′(0)(t
′) will not

evolve to several branches as formulated in (2.4).
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Figure 2.3: Our design of the hierarchical neural network-based planner consists of one behavior
planner µ and N motion planners {κ1, κ2, . . . , κN}. Take the unprotected left turn system as an
example, there are three underlying physical scenarios: vehicle C1 may stop before the intersec-
tion, yield to vehicle C2, or proceed, and they correspond to three motion planners shown here in
the figure. The behavior planner decides the most appropriate behavior for vehicle C1 given the
system state x, and then the corresponding motion planner is enabled to control the system. To
compute an overapproximation of the reachable set of the system under such hierarchical planner,
we first compute an overapproximated behavior set with Bernstein polynomial approximation as in
Eq. (2.5) and (2.6), which is illustrated by the grey rectangle in the figure. Then for each behavior
in the overapproximated behavior set, the corresponding motion planner’s output range can be ag-
gregated as the possible control input range, thus computing an overapproximation of the system
state reachable set under all possible behaviors.

Proof. We will first prove that if a neural network planner κs can ensure that the system evolves to

several branches as defined in (2.4), κs is not Lipschitz continuous. We assume it is at step i that

the reachable set Ri can be represented as Ri = ∪
k
Sk as in (2.4) for the first time. Then there exists

xi−1 ∈ Ri−1 and x′i−1 ∈ Ri−1 such that ||xi−1−x′i−1|| → 0, xi−1+f(xi−1, κs(xi−1))∗δt = xi ∈ Rk,

x′i−1 +f(x′i−1, κs(x′i−1))∗δt = x′i ∈ Rj , k 6= j and δt→ 0. According to (2.4), there exists εx > 0

such that ||xi − x′i|| > εx, and we have ||f(xi−1, κs(xi−1))− f(x′i−1, κs(x′i−1))|| > εf and εf > 0.

Because f is Lipschitz continuous, then κs is not Lipschitz continuous. However, since κs is



52

a convolutional or fully connected neural network with ReLU, sigmoid and hyperbolic tangent

(tanh) activation functions, it should be Lipschitz continuous [132]. From this contradiction, we

know that the controlled trajectory ϕx′(0)(t
′) will not evolve to several branches as formulated in

(2.4).

Based on this proposition, for most single neural network-based planners, the system reachable

set will cover the unsafe region Su and there is actually no disjoint subsets.

Challenge on verifiability. Even if κs is a neural network-based planner that can satisfy (2.4), it

will have infinitely large Lipschitz constant according to Proposition 2.2.1. This typically makes

the safety verification extremely hard due to the importance of Lipschitz constant in the construc-

tion of reachable sets. As observed in [134], [137], [142] and shown in our case studies in Sec-

tion 2.3, the reachable set expands more quickly when the Lipschitz constant of neural network-

based planner is larger. In which case, the verification process may terminate due to uncontrollable

approximation error or excessively long computation time. These challenges can be overcome in

our hierarchical planner design as introduced below.

2.2.2 Hierarchical Planner Design and Reachability Analysis

Hierarchical planner design. The drawbacks of a single neural network-based planner motivate

us to propose a hierarchical planner, as shown in Fig. 2.3. The main idea is to learn different

motion planners for different physical scenarios and a system-level behavior planner for changing

between scenarios. Specifically, our hierarchical planner consists of a behavior planner µ and N

motion planners {κ1, κ2, . . . , κN}, assuming that the system may evolve into N different physical

scenarios. These planners are all neural network-based and take system states as inputs. The

behavior planner’s output µ(x) can be mapped to the discrete behavior choice by mapping function

fm and we have fm(µ(x)) ∈ {κ1, κ2, . . . , κN}, while motion planners output control variable u(t).
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To illustrate the idea, we still use the unprotected left turn system as an example: The behavior

planner will decide the most appropriate behavior for vehicle C1 given the system state x. Then

the corresponding motion planner, e.g., motion planner 2 in Fig. 2.3, will be enabled to control the

system. The system will use the same motion planner before the next triggering of the behavior

planner. Note that it is flexible to set the trigger conditions for the behavior planner, e.g., behavior

planner may be triggered every tbp seconds when the system state has significant changes.

The challenges under a single neural network planner κs can be overcome in our hierarchi-

cal planner design as the reachable sets computed under different motion planners correspond to

different physical scenarios and are disjoint. For each underlying physical scenario, the corre-

sponding motion planner can generate system trajectory to avoid the unsafe region. Given that all

motion planners are safe in their corresponding scenarios, system safety can be guaranteed with

the computation of an overapproximated behavior set for the system-level behavior planner.

Reachability verification. Next we first present our partition and union algorithm for general

reachable set computation to improve efficiency and accuracy, and then we introduce our method

to overapproximate the reachable set for a system under a hierarchical planner µ(κ1, κ2, . . . , κN).

We develop a partition and union method that can improve the efficiency and accuracy of the

overapproximated reachable set at every computation step, as shown in Algorithm 1. Specifically,

when the system state has not fully reached the goal set Sg and the system is currently safe (line 2),

we will keep computing the reachable set as follows. We first partition the initial set I into grids

of size δ (line 3), and then compute the reachable set for each grid Iγ in the next n steps (line 5).

The computation process may terminate without returning Rγ (line 6) due to memory limitation,

low accuracy or no result within certain time. In that case, we will further partition the initial set

Iγ (line 7) and compute the reachable set (line 9). Once the reachable set Rγ is computed for each

grid, we union them as the system reachable set for this round, and reset the initial set I = ∪
γ
Rγ
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Algorithm 1: Partition and Union for Reachable Set Computation
Result: Reachable set R and verification result
Input: Initial set I , unsafe set Su and goal set Sg

1 R← I;
2 while I − Sg 6= ∅ and R ∩ Su = ∅ do
3 {Iγ} ← Partition(I , δ);
4 for each grid Iγ do
5 Rγ ← Reach Comp(Iγ , n);
6 while Reach Comp terminates without returning Rγ do
7 {Iγ′} ← Partition(Iγ , δ/2);
8 for each grid Iγ′ do
9 Rγ′ ← Reach Comp(Iγ′ , n);

10 end
11 end
12 end
13 I ← ∪

γ
Rγ;

14 R← R ∪ I;
15 end
16 if R ∩ Su = ∅ then
17 Verification result is safe.
18 else
19 Verification result is uncertain.
20 end

(line 13). This process repeats until the system state reaches the goal set Sg and is verified to

be safe, or the overapproximation of the reachable set has overlap with the unsafe set Su (which

presents an uncertain verification results given the nature of overapproximation).

To compute an overapproximated reachable set for a system with planner µ(κ1, κ2, . . . , κN),

we first overapproximate µ(x) in a similar way as in (2.6) as:

µ(x) ∈ Bµ(x) + [−εµ, εµ] , ∀x ∈ Ri−1 (2.7)

where Ri−1 is the overapproximated reachable set of the system in the (i − 1)-th step. We then



55

compute the overapproximated output range of µ(x),Rµ
i , on the setRi−1. By the mapping function

fm, we have the overapproximated set of the selected planner Sctrl ⊆ {κ1, κ2, . . . , κN}. For any

planner κa(x) ∈ Sctrl, we can compute its overapproximated system state reachable set Rκa
i on

Ri−1. Then, the overapproximated reachable set of the system at step i is Ri = ∪
κa∈Sctrl

Rκa
i . The

soundness of our approach can be proven below.

Proposition 2.2.2. (Soundness). For a dynamical system defined by (2.2), (2.3) and (2.4) with

a hierarchical neural network-based planner µ(κ1, κ2, . . . , κN), the controlled trajectory ϕx(0)(t)

satisfies ϕx(0)(t) ∈ ∪
κa∈Sctrl

Rκa
i , ∀t ∈ [(i− 1) ∗ δc, i ∗ δc] , ∀i ∈ N+, ∀x(0) ∈ I .

Proof. Let us prove by contradiction. We assume that it is at step i that we compute the wrong

reachable set Ri = ∪
κa∈Sctrl

Rκa
i for the first time. Thus ∃x′(0) ∈ I and ∃κ′ ∈ {κ1, κ2, . . . , κN}

such that ϕx′(0)((i − 1) ∗ δc) = x′ ∈ Ri−1, ϕx′(0)(t) /∈ ∪
κa∈Sctrl

Rκa
i and fm(µ(x′)) = κ′. Since

fm(µ(x′)) = κ′, we have κ′ ∈ Sctrl and Rκ′
i ⊆ ∪

κa∈Sctrl

Rκa
i . Finally ϕx′(0)(t) ∈ Rκ′

i contradicts that

ϕx′(0)(t) /∈ ∪
κa∈Sctrl

Rκa
i .

2.3 Case Studies

Our hierarchical neural network-based planner design and safety verification method can be ap-

plied to many safety critical systems defined by (2.2), (2.3) and (2.4). In this section, we demon-

strate its effectiveness in two case studies of unprotected left turn and highway merging in au-

tonomous driving.

For both applications, we generate the trajectory dataset based on human driving norm and use

the same dataset to train all the planning neural networks (κs, µ, κ1, κ2, . . . , κN ). These neural

networks all have two hidden layers, with each layer having ten neurons. We select ReLU and tanh
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Figure 2.4: Reachable set and sampled trajectories for the unprotected left turn system with a
single neural network planner κs. The blue region is the overapproximated reachable set and the
black region is 100 sampled trajectories from the same initial set. Initial set I is set as I = {x ∈
R5|p1 ∈ [−60.4, − 60.3] , v1 ∈ [10.5, 10.51] , τmin ≡ 14, τmax ≡ 16, t = 6}. Unsafe set is
Su = {x ∈ R5|p1 ∈ [4.5, 14] , t ∈ [14, 16]}, and it is marked with a red rectangle.

Figure 2.5: Simulated trajectories with different sampling densities from the initial set I , for the
unprotected left turn system with a single neural network-based planner κs. The black region
represents simulated trajectories and the red rectangle is the unsafe set Su. I and Su are the same
as in Fig. 2.4. From left to right, these three subplots correspond to the trajectories of one hundred,
ten thousand and one million samples from the initial set I , respectively.
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as the activation functions for the hidden layer and the output layer, respectively. We set control

time stepsize δc = 0.5 seconds for all experiments in this work. Based on the verification tool

ReachNN [132] and POLAR [186], we implement Algorithm 1 to compute the overapproximation

of reachable set for the system under the single neural network-based planner and the hierarchical

neural network-based planner, respectively.

2.3.1 Unprotected Left Turn

We conduct experiments for the unprotected left turn system as described earlier in Section 2.1.

Fig. 2.4 shows the overapproximated reachable set under a single neural network-based planner

κs, which is consistent with our analysis in Proposition 2.2.1. We select the initial set I = {x ∈

R5|p1 ∈ [−60.4, − 60.3] , v1 ∈ [10.5, 10.51] , τmin ≡ 14, τmax ≡ 16, t = 6} to cover different

behaviors (proceed and yield) of vehicle C1. The unsafe set Su is determined by τmin and τmax,

i.e., Su = {x ∈ R5|p1 ∈ [4.5, 14] , t ∈ [14, 16]}. In this figure, the blue region represents the

reachable set and the black region is the simulated trajectories of 100 sampling states from the

same initial set. The reachable set cannot be represented with several disjoint subsets as described

in Eq. (2.4) and it overlaps with the unsafe set Su.

By increasing the number of sampling states from the same initial set I , we actually find coun-

terexamples that prove κs is indeed unsafe. Fig. 2.5 shows the simulated trajectories with different

sampling density from I . The three subplots from left to right correspond to the trajectories of

one hundred, ten thousand and one million samples in the initial set I , respectively. Based on our

analysis in Proposition 2.2.1, for any other neural network planner κ′s that is a convolutional or

fully connected neural network with ReLU, sigmoid and tanh activation functions, we can always

find counterexamples by increasing the sampling density.

For the system with our design of a hierarchical planner µ(κ1, κ2, κ3), we compute the overap-
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Figure 2.6: Reachable set and sampled trajectories for the unprotected left turn system under
hierarchical neural network planner with changing time window [τmin, τmax]. From left to right, the
three subplots present the reachable system states under the stop motion planner, proceed motion
planner, and yield motion planner respectively. The blue region is the overapproximated reachable
set and the black region is 100 sampled trajectories from the same initial set. Initial set I is set as
I = {x ∈ R5|p1 ∈ [−60, − 59.7] , v1 ∈ [10.5, 10.51] , τmin = 13, τmax = 21, t = 6}. The time
window [τmin, τmax] is initially [13, 21] at time 6 ≤ t < 7, then [15, 21] at time 7 ≤ t < 8, [17, 21]
at time 8 ≤ t < 9, [19, 21] at time 9 ≤ t < 10, and finally [20, 21] at time t ≥ 10. The unsafe set
Su changes with the time window [τmin, τmax] as time goes on. It is initially the red rectangle with
the dashed line and finally the red rectangle with the solid line.

proximation of the reachable set with the method introduced in Section 2.2.2, and the results are

shown in Figs. 2.7 and 2.6.

First, we assume that τmin and τmax do not change over time. We set the initial set I =

{x ∈ R5|p1 ∈ [−64.35, − 64.05] , v1 ∈ [10.5, 10.51] , τmin ≡ 14, τmax ≡ 16, t = 6} to cover

different behaviors (proceed and yield) of vehicle C1. Then the unsafe set is Su = {x ∈ R5|p1 ∈

[4.5, 14] , t ∈ [14, 16]}. As shown in Fig. 2.7, due to overapproximation, all three behaviors are

included in the reachable set Sctrl by the behavior planner µ at the beginning. Since the motion

estimation for the other vehicle C2 remains the same, we assume that the behavior planner is

triggered only once. From the figure, we can observe three disjoint reachable subsets in the time

interval t ∈ [10, 16] and the reachable set has no overlap with the red unsafe region. Thus the

planner µ(κ1, κ2, κ3) is verified to be safe in this example.
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Figure 2.7: Reachable set and sampled trajectories for the unprotected left turn system with hier-
archical neural network planner µ(κ1, κ2, κ3). The blue region is the overapproximated reachable
set and the black region is 100 sampled trajectories from the same initial set. Initial set I is set as
I = {x ∈ R5|p1 ∈ [−64.35, − 64.05] , v1 ∈ [10.5, 10.51] , τmin ≡ 14, τmax ≡ 16, t = 6}. Unsafe
set is Su = {x ∈ R5|p1 ∈ [4.5, 14] , t ∈ [14, 16]}, and it is marked with a red rectangle. States in
the initial set I is assessed by the behavior planner µ and in this example Sctrl includes all three
behaviors (proceed, yield and stop). At the following time steps, vehicle C1 will not adjust its
behavior and the reachable set of different behaviors are computed independently.

We then consider the case where vehicle C1 updates the motion estimation for vehicle C2 as

the two vehicles get closer to the intersection (which is often the case in practice), and we verify

the system safety with the same hierarchical planner. Fig. 2.6 presents the system state reachable

sets under different motion planners {Rκ1 , Rκ2 , Rκ3}, which all together form the reachable set

R under our hierarchical planner. We set the initial set I = {x ∈ R5|p1 ∈ [−60, − 59.7] , v1 ∈

[10.5, 10.51] , τmin = 13, τmax = 21, t = 6}. The time window [τmin, τmax] is initially [13, 21]

at time 6 ≤ t < 7, then [15, 21] at time 7 ≤ t < 8, [17, 21] at time 8 ≤ t < 9, [19, 21] at

time 9 ≤ t < 10, and finally [20, 21] at time t ≥ 10. The unsafe set Su changes with the time

window [τmin, τmax] as time goes on. In Fig. 2.6, the red rectangle with dashed line is the initial
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unsafe region, and the red rectangle with solid line is the final unsafe region. As there is no overlap

between the reachable set with unsafe region, the planner µ(κ1, κ2, κ3) is verified to be safe in

this case where C1 updates its estimation on C2 and the time window [τmin, τmax] is updated over

time.

Since the behavior planner is triggered multiple times in the case in Fig. 2.6, the eventual

reachable set R includes system trajectories under switched motion planners and is significantly

larger than the reachable set in Fig. 2.7. Intuitively, if the behavior planner is triggered more

frequently, the vehicle C1 can adapt to a more appropriate behavior sooner, but this will also

results in a larger reachable set and more verification effort.

2.3.2 Highway Merging

Another common and challenging task for autonomous driving is highway merging. As shown in

Fig. 2.8, vehicle C1 intends to merge onto the highway from on-ramp while another vehicle C2

stays on the highway. The system can be modeled as follows:



ṗ1(t) = v1(t)

v̇1(t) = u(t)

ṗ2(t) = v2(t)

v̇2(t) = 0

(2.8)

where p1(t), v1(t), p2(t) and v2(t) are the longitudinal position and the velocity of vehicle C1 and

C2, respectively. u(t) is the control input, which is the acceleration of vehicle C1. In this example,

we assume that vehicle C2 is a heavy truck and will maintain its speed.

To simplify this problem, we only discuss longitudinal motion of vehicle C1. Merging is
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Figure 2.8: The highway merging system. Vehicle C1 is merging onto the highway and vehicle
C2 stays on the highway. Depending on the positions and velocities of vehicle C1 and C2, vehicle
C1 may yield to vehicle C2, or proceed.

considered to be feasible and safe if the longitudinal distance |p1(tx) − p2(tx)| is larger than a

threshold dth at some time point tx when vehicle C1 has not reached the end of the side road, i.e,

p1(tx) < pend = 150 meters. Different from the unprotected left turn case, the unsafe set Su is

not fixed here. The system is safe as long as there exists a position window [p1,min, p1,max] for

vehicle C1 and unsafe set Su = {x ∈ R4||p1(t)− p2(t)| ≤ dth, p1(t) ∈ [p1,min, p1,max]} such that

Su ∩ R = ∅ and 0 ≤ p1,min < p1,max ≤ pend. We select the initial set I = {x ∈ R4|p1 = 0, v1 =

25, p2 ∈ [−24.5, − 23.5] , v2 ∈ [24.5, 25.5]} such that vehicle C1 may need to choose different

behaviors according to the system state.

Similarly as the unprotected left turn case study, we first consider the highway merging system

under a single neural network planner κs, and Fig. 2.9 shows the overapproximated reachable set in

this case. The reachability analysis is interrupted due to increasing approximation error, and thus

the blue region only shows the a subset of the reachable set where the position of truck p2 is within

40 meters. This is consistent with our analysis that extremely large Lipschitz constant in this case

may greatly increase the difficulty in verification. The black region is the sampled trajectories,

which should be strictly covered by the reachable set (if it were computed). From this figure, we

cannot find an unsafe set Su that has no overlap with the reachable set, and the system is analyzed
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Figure 2.9: Reachable set and sampled trajectories for the highway merging system under a single
neural network planner κs. Due to the increasing approximation error, reachability analysis is
interrupted and the blue region only shows an overapproximated subset of the reachable set where
the position of truck p2 is within 40 meters. The black region is 100 sampled trajectories from
the same initial set I = {x ∈ R4|p1 = 0, v1 = 25, p2 ∈ [−24.5, − 23.5] , v2 ∈ [24.5, 25.5]}.
An example of unsafe set is Su = {x ∈ R4||p1(t) − p2(t)| ≤ 19.75, p1(t) ∈ [80, 110]}, and it is
marked with a red parallelogram.

to be unsafe under the planner κs.

We then consider the highway merging system under our design of a hierarchical neural network-

based planner µ(κ1, κ2). We use the same method in Section 2.2.2 to compute the overapproxi-

mation of the reachable set in this case, as shown in Fig. 2.10. We assume that the behavior

planner µ is triggered only once at the beginning. The left and right branch correspond to yield

and proceed behavior of vehicle C1, respectively. We can find an unsafe region marked by a red

parallelogram, Su = {x ∈ R4||p1(t) − p2(t)| ≤ 19.75, p1(t) ∈ [80, 110]}. Since this Su has no

overlap with the overapproximated reachable set, vehicle C1 can safely merge into the highway

when p1(t) ∈ [80, 110]. This case study once again demonstrates the verifiability and safety of our
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Figure 2.10: Reachable set and sampled trajectories for the highway merging system under a
hierarchical neural network planner µ(κ1, κ2). The blue region is the overapproximated reachable
set and the black region is 100 sampled trajectories from the same initial set I = {x ∈ R4|p1 =
0, v1 = 25, p2 ∈ [−24.5, − 23.5] , v2 ∈ [24.5, 25.5]}. In this case, we can find an unsafe set Su =
{x ∈ R4||p1(t) − p2(t)| ≤ 19.75, p1(t) ∈ [80, 110]}, and it is marked with a red parallelogram.
Since Su ∩R = ∅, vehicle C1 can safely merge onto the highway when p1(t) ∈ [80, 110].

hierarchical neural network planner.
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CHAPTER 3

SAFETY-DRIVEN INTERACTIVE NEURAL NETWORK-BASED PLANNER

In this chapter, we present our safety-driven neural network-based interactive planning framework

to prevent over-conservative planning while ensuring safety, which is based on the work published

at [25], [119]. In Section 3.1, we present our safety-driven interactive planning framework without

leveraging connectivity. Section 3.2 shows the experimental results. In Section 3.3, we present

our connectivity-enhanced planning framework, which can be employed in mixed traffic scenar-

ios. Section 3.4 shows the experimental results. Although Planner designs in this chapter are

demonstrated in the example of lane changing in dense traffic, they can be widely applied in many

challenging scenarios.

3.1 Planner Design with Safety Guarantee

Our proposed framework design is shown in Fig. 3.1. Let us take lane changing in dense traffic as

a challenging example. In this framework, we consider neural network-based planners for longi-

tudinal and lateral motion planning, with more details in Section 3.1.1. To improve lane changing

success rate in dense traffic, we leverage another neural network to assess the aggressiveness of

the following vehicle F in the target lane, which is discussed in Section 3.1.2. Then, based on the

predicted behavior of vehicle F (aggressive or cautious), we conduct safety analysis and compute

the critical region to avoid collision in the predicted worst case. The trajectory planned under neu-

ral networks is adjusted in advance if there is any possibility of collision during the lane changing

process. This is detailed in Section 3.1.3.
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Table 3.1: Input and output of neural network-based planners.
notation definition
inputs
px longitudinal position of the ego vehicle
py lateral position of the ego vehicle
vx longitudinal velocity of the ego vehicle
vy lateral velocity of the ego vehicle
px,l longitudinal position of the leading vehicle L
vx,l longitudinal velocity of the leading vehicle L
px,f longitudinal position of the following vehicle L
vx,f longitudinal velocity of the following vehicle L

outputs
ax longitudinal acceleration of the ego vehicle
ay lateral acceleration of the ego vehicle

3.1.1 Longitudinal and Lateral Planners

The two neural networks for longitudinal and lateral planning each has seven independent input

variables1 and one of the two output variables, as summarized in Table 3.1. In order to cover as

many traffic scenarios as possible, we synthesize the dataset by simulations according to human

driving norm [10]. The ego vehicle initially is at the center of the original lane and has no lateral

speed. Then it changes lanes under an MPC controller [47] with step size δt = 0.1 second. The

optimization goal is to minimize fuel consumption and lane changing time while satisfying safety

and comfort constraints.

The dataset collects system states and accelerations of the ego vehicle at every step, which is

composed of about 36 million entries. The neural network planner is trained to minimize mean

squared error with the Adam optimizer. Note that using more comprehensive datasets with good

performance (either from human driving trajectories or from synthesized trajectories), the neural

network-based planners can be further improved.

1There are eight input variables in Table 3.1. However, among px, px,l and px,f , only two of them are independent.
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3.1.2 Aggressiveness Assessment and Behavior Prediction

According to [103], the driving behavior of the following vehicle in the target lane follows one

model when it is cautious and another model when it is aggressive. This assumption is validated

by real-world human driving data. In this work, we use similar assumptions. We assume that the

following vehicle F follows the ego vehicle E when it is cautious and follows the leading vehicle

L when it is aggressive.

For both two cases, we leverage a neural network to predict the accelerations of the following

vehicle. Let a1 and a0 denote the accelerations when it is cautious or aggressive, respectively.

Different from the motion planner, we do not need py and vy as input variables of the neural

network.

For this prediction task, we also synthesize the dataset via simulations. We generate various

types of traffic states for the three vehicles and compute the accelerations of the following vehicle

F with the Intelligent Driver Model (IDM) [187]. The parameters in the IDM model are uniformly

sampled by following ax,a = 4 m/s2, vm = ḣ + vx,f , 5 m ≤ hs ≤ 8 m, 1 s ≤ tg ≤ 2 s, ax,d =

6 m/s2. With the dataset of one million entries, we train the neural network to minimize mean

squared error with the Adam optimizer.

The following vehicle’s behavior is predicted by comparing its true acceleration a∗x,f with the

predicted a1 and a0. When a∗x,f is closer to a1, the following vehicle F is predicted as cautious and

follows the ego vehicle E; when a∗x,f is closer to a0, it is predicted as aggressive and follows the
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leading vehicle L:


|a∗x,f − a1| < |a∗x,f − a0| − ath → vehicle F is cautious

|a∗x,f − a0| < |a∗x,f − a1| − ath → vehicle F is aggressive

−ath ≤ |a∗x,f − a0| − |a∗x,f − a1| ≤ ath → uncertain

(3.1)

Here ath is a threshold. Larger ath means higher confidence on the behavior prediction. For those

uncertain scenarios, we assume that the vehicle F is aggressive so that the planned trajectory for

ego vehicle is conservative and safe.

Based on the predicted behavior of the following vehicle, we conduct safety analysis. We

assume that (1) if the following vehicle is cautious and willing to create gap for ego vehicle, it can

at least decelerate with ax,f,d = 6 m/s2; and (2) if the following vehicle is aggressive, in the worst

case, it can accelerate with ax,f,a = 4 m/s2 to prevent ego vehicle from cutting in.

3.1.3 Safety Analysis and Motion Adjustment

We assume that the ego vehicle is safe when it is in the original lane at the very beginning. At

every step during the lane changing, the ego vehicle has a safe evasion trajectory computed at the

last step. As shown in Fig. 3.2, it has three options with decreasing preference: proceed to change

lanes, hesitate around the current lateral position, or abort the lane changing and return back to

the original lane. It analyzes the state after executing selected behavior for one time step. If it has

a safe evasion trajectory following that, it can go ahead with the selected behavior; otherwise, it

has to attempt a less preferred behavior. In summary, safety of the ego vehicle is ensured by only

selecting the strategy with a following safe evasion trajectory, assuming that the aggressiveness

assessment for the following vehicle is correct (if not, safety can only be ensured if the following
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vehicle is always treated as aggressive).

The behavior of proceeding to change lanes is to directly follow the longitudinal and lateral

accelerations computed using the neural network planners. For hesitating, the lateral acceleration

is adjusted to diminish the velocity:

ay = min(max(−vy/δt,−ay,m), ay,m), (3.2)

where ay,m is the absolute value of the maximal lateral acceleration.

Next we will analyze the safe evasion trajectory. The optimal lateral motion is to return back

to the original lane as soon as possible. We define time t = 0 when the ego vehicle just starts

taking the evasion trajectory. The centers of the original and the target lane are y = 0 and y = wl,

respectively. The width of a vehicle is denoted as wv. The ego vehicle is completely in the original

lane when py ≤ wl−wv

2
. The fastest lateral motion is that the ego vehicle has lateral acceleration

ay = −ay,m when t ∈ [0, t1] and then ay = ay,m when t ∈ [t1, ty,f ], and finally it reaches the

position py = wl−wv

2
with vy = 0:


py,t0 + vy,t0t1 −

ay,mt21
2

+ (vy,t0 − ay,mt1)(ty,f − t1) +
ay,m(ty,f−t1)2

2
= wl−wv

2

vy,t0 − ay,mt1 + ay,m(ty,f − t1) = 0

(3.3)

Here py,t0 and vy,t0 are the lateral position and velocity of the ego vehicle when t = 0.

We assume that the ego vehicle E, leading vehicle L and following vehicle F all have the same

maximal longitudinal acceleration ax,a = ax,l,a = ax,f,a and braking deceleration ax,d = ax,l,d =

ax,f,d. Let px,t0 and vx,t0 represent the longitudinal position and velocity of the ego vehicle when

t = 0, respectively. For simplicity of notation, we omit the subscript of t0, and use px,l, vx,l,

px,f and vx,f to denote the longitudinal position and velocity of the leading and following vehicles
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Figure 3.1: Design of our safety-driven neural network-based interactive planning framework.
Safety-driven behavior adjustment module will adjust risky motions based on analyzing whether a
safe evasion trajectory exists, considering the aggressiveness assessment of other vehicles.

Figure 3.2: At every step in the lane changing process, the ego vehicle has three strategy choices.
The first is proceeding to change lanes, in which case the short-term proceeding trajectory (green
dotted line) and following complete aborting trajectory (green dash-dotted line) should be verified
with safety guarantee. If the first strategy is not safe, the ego vehicle can hesitate around the current
lateral position, and we need to verify safety for the short-term hesitating trajectory (blue dotted
line) and following complete aborting trajectory (blue dash-dotted line). If both strategies do not
work, the ego vehicle can directly abort lane changing behavior and go back to the original lane
(red dash-dotted line), which is already verified to be safe in the last planning step.
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when t = 0, respectively. Next we will temporarily neglect the following vehicle F , and analyze

the longitudinal motion when the leading vehicle L decelerates with ax,l,d abruptly.

If vx,l ≥ vx,t0 , then
v2x,l

2ax,l,d
≥ v2x,t0

2ax,d
, and the ego vehicle can prevent collisions with the leading

vehicle if it decelerates with ax,d. If vx,l < vx,t0 , the ego vehicle takes at least tx,f =
vx,t0
ax,d

to fully

stop. If tx,f ≥ ty,f , ego vehicle only needs to keep enough headway when t ∈ [0, ty,f ] because it is

already not in the target lane when t ∈ [ty,f , tx,f ]. We define C1 to reflect the minimum headway2:

C1 =



px,t0 − px,l + vx,t0ty,f −
ax,dt

2
y,f

2
− v2x,l

2ax,l,d
+ pm

if vx,l
ax,l,d

< ty,f

px,t0 − px,l + (vx,t0 − vx,l)ty,f −
(ax,d−ax,l,d)t2y,f

2
+ pm

otherwise

(3.4)

Here pm is the minimum gap between vehicles to avoid collisions. We need C1 < 0 to ensure

safety. If tx,f < ty,f , ego vehicle needs to keep enough headway when t ∈ [0, tx,f ]. Similarly, we

define C2 and need C2 < 0 to ensure safety:

C2 = px,t0 − px,l +
v2
x,t0

2ax,d
−

v2
x,l

2ax,l,d
+ pm (3.5)

Next we assume that at the same time, the following vehicle F accelerates to prevent the ego

vehicle from cutting in. In such case, the ego vehicle can even accelerate and get closer to the

leading vehicle, thus acquiring more time for lateral evasion before the following vehicle catches

up. It is indeed the fastest longitudinal motion to prevent collision with the following vehicle by

first accelerating with ax,a, and then decelerating with ax,d.

We assume that the ego vehicle accelerates with ax = ax,a when t ∈ [0, t2] and then decelerates

2It is indeed a constant minus the minimum headway.
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Table 3.2: Safety and performance evaluation for our proposed framework. From top to bottom,
experimental settings correspond to more challenging lane changing scenarios. Our ‘SafIn NN’
planner results in zero collision rate in all simulations.

experimental settings methods lane changing time final lateral position success rate collision rate

−6 ≤ ax,l ≤ 4,
7 ≤ δp ≤ 37

MPC 1.90 s 3.44 m 92.61% 7.39%
only NN 1.70 s 3.25 m 89.59% 10.41%
SafIn NN 1.90 s 2.73 m 80.31% 0%

−6 ≤ ax,l ≤ 0,
7 ≤ δp ≤ 37

MPC 1.90 s 3.46 m 87.46% 12.54%
only NN 1.68 s 3.30 m 82.37% 17.63%
SafIn NN 2.08 s 2.44 m 67.89% 0%

−6 ≤ ax,l ≤ 4,
7 ≤ δp ≤ 17

MPC 1.90 s 3.44 m 83.06% 16.94%
only NN 1.73 s 3.24 m 84.53% 15.47%
SafIn NN 1.97 s 2.23 m 61.51% 0%

−6 ≤ ax,l ≤ 0,
7 ≤ δp ≤ 17

MPC 1.90 s 3.46 m 71.82% 28.18%
only NN 1.71 s 3.29 m 74.32% 25.68%
SafIn NN 2.34 s 1.66 m 38.76% 0%

with ax = −ax,d until it stops when t ∈ [t2, ty,f ]. By letting the minimum distance between ego

vehicle and leading vehicle be exactly pm to remain safe, t2 can be represented as a function of C1

and C2.

To prevent collisions with the following vehicle accelerating with ax,f,a, we have



px,t0 + vx,t0t2 +
ax,at22

2
+

(vx,t0+ax,at2)2

2ax,d
− px,f − vx,f ty,f −

ax,f,at
2
y,f

2
− pm > 0

if t2 +
vx,t0+ax,at2

ax,d
< ty,f

px,t0 + vx,t0ty,f −
ax,at22

2
+ ax,at2ty,f − ax,d(ty,f−t2)2

2
− px,f − vx,f ty,f −

ax,f,at
2
y,f

2
− pm > 0

otherwise
(3.6)

Similar to Eq. 3.6, we can derive the inequality constraint for ensuring system safety when the

following vehicle is cautious, willing to decelerate and create gap for ego vehicle.

In summary, if the constraints can be satisfied, the ego vehicle is verified to have safe evasion

trajectory after taking planned trajectory; otherwise, it has to adjust the driving behavior to prevent
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possible collisions.

3.2 Experimental Results

In this section, we first demonstrate the effectiveness of our proposed framework via simulations

on synthetic and real-world examples. We compare our approach (denoted as ‘SafIn NN’) with

a neural network-based planner without safety consideration or interactive planning (denoted as

‘only NN’) and an MPC-based planner from [47]. We then further evaluate the performance of our

aggressiveness assessment module for the following vehicle in the target lane.

3.2.1 Evaluation with Synthetic Examples

We first evaluate the performance of our proposed framework through extensive simulations on

synthetic examples, and the results are shown in Table 3.2. We have four classes with different

experimental settings, which indicate the ranges that ax,l and δp will uniformly sample from. δp

is the initial longitudinal distance between leading vehicle and ego vehicle. Thus −6 ≤ ax,l ≤

4 and 7 ≤ δp ≤ 37 correspond to easier lane changing scenarios, while −6 ≤ ax,l ≤ 0 and

7 ≤ δp ≤ 17 correspond to more congested and dangerous scenarios. For each class, we conduct

200,000 simulations with randomly generated relative positions, velocities and IDM parameters.

The following vehicle has 50% probability of being aggressive, and another 50% probability of

being cautious.

For every round simulation with a horizon of 10 seconds, the ego vehicle attempts to change

lanes until it collides with other vehicles. It is successful if the ego vehicle finally crosses the

two lanes within the simulation horizon without any collision. For all successful lane changing

simulations, we compute the average time that it takes to cross the lanes. For all safe simulations,

we compute the average of final lateral positions. The lateral position y = 3.5 meters represents
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Figure 3.3: Illustrating Example. The x and y axes show the longitudinal and lateral positions of
vehicles. Four subplots show the positions at different times. Red rectangle represents the ego
vehicle, and black rectangles are surrounding vehicles. It corresponds to the scenario that initial
velocity is 30 m/s for all vehicles, and the distance between the leading vehicle and the following
vehicle is 20 m. The following vehicle accelerates at t = 2 seconds to prevent the ego vehicle from
cutting in. The ego vehicle is controlled by the ‘only NN’ planner.

Figure 3.4: Illustrating Example. The x and y axes show the longitudinal and lateral positions of
vehicles. Four subplots show the positions at different times. Red rectangle represents the ego
vehicle, and black rectangles are surrounding vehicles. It corresponds to the same scenario as in
Fig. 3.3, except that the ego vehicle is controlled by our ‘SafIn NN’ planner.
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Figure 3.5: Lateral position and longitudinal velocity of the ego vehicle in the same scenario as in
Fig. 3.3.

the center of target lane, and y = 1.75 meters is the border of two lanes.

Table 3.2 shows that: (1) Our approach ‘SafIn NN’ results in zero collision rate in all simula-

tions regardless whether the following vehicle is aggressive or not, while ‘MPC’ and ‘only NN’

both lead to significant collision rate, especially in more challenging scenarios. (2) Under ‘MPC’

and ‘only NN’, the ego vehicle has a higher lane changing success rate, less lane changing time

and larger final lateral position. In easier scenarios, these advantages are relatively small. When

it becomes more congested and challenging, risky behaviors are restricted under our ‘SafIn NN’

planner while lead to higher collision rate for ’MPC’ and ’only NN’.

We further demonstrate the strength of our ‘SafIn NN’ planner with a concrete example. The

initial longitudinal velocities of all three vehicles are set to 30 meters per second. The distance

between leading and following vehicle is 20 meters. Then we let the following vehicle start accel-

erating with ax,f = 4 meters per second squared until px,l−pxf ≤ 17 meters at t = 2 seconds. Then

it adjusts velocity and attempts to maintain the distance to the leading vehicle. Fig. 3.3 and 3.4

present the relative position changes of vehicles when the ego vehicle is controlled by ‘only NN’
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Figure 3.6: Longitudinal and lateral position of the ego vehicle, leading vehicle and following
vehicle. It shows an example of challenging scenario in dataset collected by Pony.ai and the ego
vehicle is controlled by the ‘SafIn NN’ planner.

and ‘SafIn NN’ planners, respectively. Under the ‘only NN’ planner, the ego vehicle completes

lane changing at t = 3 seconds, but collides with the following vehicle at t = 5 seconds. Our

‘SafIn NN’ planner prevents the collision proactively. As shown in Fig. 3.4, the ego vehicle aborts

changing lanes at around t = 3 seconds, and then hesitates around y = 1 meters and looks for the

next chance to change lanes. Fig. 3.5 shows the lateral position and longitudinal velocity of the

ego vehicle in the simulation horizon.

3.2.2 Evaluation with Real-world Challenging Dataset

We further evaluate our approach in challenging scenarios with real-world dataset collected by

Pony.ai, an autonomous vehicle company. The dataset provides road geometry and motion infor-

mation of surrounding traffic participants in congested scenarios with industry-level accuracy. Un-

der our designed planner, the ego vehicle is controlled to change lanes. In all tested 48 real-world

challenging scenarios, the ego vehicle can always remain safe under our planner during the

lane change process, despite that our planner is never trained or optimized with the dataset. Under
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Table 3.3: Performance of aggressiveness assessment.
ath = 0 ath = 0.15 ath = 0.25 ath = 0.5 ath = 1

easy
uncertain rate 0% 2.28% 4.05% 9.16% 19.3%

error rate 4.61% 3.6% 3.05% 2.01% 0.91%
medium

uncertain rate 0% 18.38% 31.33% 56.32% 79.65%
error rate 36.73% 28.82% 24.53% 15.87% 7.16%

hard
uncertain rate 0% 65.26% 74.16% 85.57% 94.39%

error rate 49.76% 17.18% 12.76% 7.1% 2.74%

‘only NN’ planner, there are 12 scenarios in which the ego vehicle collides with other vehicles.

Fig. 3.6 shows a concrete example of the challenging scenario that the gap between the lead-

ing vehicle and the following vehicle is decreasing initially. The ego vehicle under our designed

planner attempts to change lane at the beginning and then hesitates around py = 0.8 meters from

t = 1.1 seconds, and finally continues changing lane from t = 4.5 seconds. While under the ‘only

NN’ planner, the ego vehicle will collide with the following vehicle at t = 1.6 seconds in this

challenging scenario.

3.2.3 Evaluation of Aggressiveness Assessment

We conduct experiments to evaluate the performance of our aggressive assessment module, and

Table 3.3 shows the results. We classify all simulation entries in the dataset into three classes

based on the difference of accelerations under different behaviors, δa∗x,f = |a∗x,f,1 − a∗x,f,2|. It

is classified as easy, medium or hard if δa∗x,f > 0.5, 0.25 < δa∗x,f ≤ 0.5, or δa∗x,f ≤ 0.25,

respectively. We conduct sensitivity analysis over the threshold ath. It shows that with larger ath,

the uncertain rate is higher and the error rate is lower for all three different difficulty levels. It meets

our expectation because a larger ath results in a more robust and conservative predictor, which is

prone to be uncertain when it is less confident. It also presents that for easy cases, the performance
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can be considerably greater because a larger δa∗x,f means that it is more distinguishable.

For simulations conducted in Section 3.2.1, we use ath = 0.5. Although it has a positive error

rate, our overall approach is quite robust and does not result in collisions in all experiments. We

think that there are two reasons: (1) aggressiveness assessment is conducted every 0.1 seconds

along with other modules, and thus occasional mis-prediction is highly likely to be corrected later;

and (2) it is more challenging to make correct assessment when the following vehicle is far away

from the ego vehicle. However, in those cases, incorrect assessment is less critical because of the

large gap between vehicles.

3.2.4 Discussion on MPC and Neural Network-based Planners

In this work, the neural network planners are learned from the synthesized data of the system under

MPC, and thus ‘only NN’ has similar performance as MPC – albeit in more challenging scenarios,

‘only NN’ shows slight advantages in both success rate and collision rate. Moreover, MPC with

the safety-driven behavior adjustment module also provide similar performance as our ‘SafIn NN’

planner. However, note that our safety-driven interactive planning framework can be incorporated

with any state-of-the-art neural network-based planners to improve safety. We believe that with

more high-quality training data, ‘SafIn NN’ can also significantly improve its performance in suc-

cess rate and may perform better than MPC-based planners in all metrics, especially when system

dynamics and interactions are hard to model (in this work the MPC is assumed to have perfect

system model).

3.3 Connectivity-enhanced Planner Design

By leveraging the connectivity technology, our planner design can further improve system effi-

ciency while ensuring system safety at the same time. In this general framework, we assume that
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Figure 3.7: The ego vehicle E intends to change lane. With connectivity technology, vehicle E
receives planned acceleration profiles and real-time motion states from connected leading vehicles
Li, 1 ≤ i ≤ N , and then analyzes the maximum deceleration of vehicle L1 during the lane chang-
ing process. By identifying the behavior of following vehicle F and analyzing system safety in the
worst case, vehicle E may proceed to change lane, hesitate around the current lateral position, or
abort the lane changing plan. This figure shows an example with N = 2 and the following vehicle
F is non-connected.

the ego vehicle is connected and autonomous, while surrounding vehicles can be either connected

or non-connected, and either autonomous or human-driven3. Figure 3.7 shows an example of the

lane changing scenario. The connected ego vehicle E intends to change to the target lane. From

the neighbor area to the traffic downstream, there are a set of connected leading vehicles L1, L2,

· · · , LN and one non-connected leading vehicle LN+1 in the target lane. In this work, we are con-

sidering all possible scenarios with varied type and number of surrounding vehicles in our planner

design. Depending on the dynamic mixed traffic environment, the number of connected leading

vehicles N may vary4. The following vehicle F in the target lane can be either connected or

non-connected.
3For connected human-driven vehicles, we assume that a larger inter-vehicle distance needs to be kept to ensure

safety, as human-driven vehicles can have larger execution error compared with autonomous vehicles.
4By N = 0, it represents that the immediate leading vehicle is non-connected.
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To ensure safety, we verify the existence of a safe evasion trajectory following the planned tra-

jectory in the worst case. We analyze the worst case for the ego vehicle in dynamical environments.

For the case without a connected leading vehicle, i.e., N = 0, we can directly assume that in the

worst case, vehicle L1 takes the maximum deceleration under the mechanical constraints. In other

cases that N > 0, we can leverage the coordination from connected vehicles to prevent overly

conservative planning. We evaluate the fastest evasion trajectory of the ego vehicle in emergency

situations. For instance, when there is an emergency brake in the downstream, connected vehicles

that first realize the event can collaboratively take a smaller deceleration, if it is safe for themselves,

thus leaving more reaction time for the ego vehicle. If the evasion trajectory can prevent collisions,

the ego vehicle can proceed to change lanes under the neural network-based planners, otherwise it

has to hesitate around the boundary of the two lanes or return back to the original lane for safety.

The planning framework is presented in Figure 3.8. Based on the planned acceleration profiles

in the planning horizon and the real-time motion states of surrounding vehicles, we can leverage

neural networks for longitudinal and lateral trajectory planning. At the same time, we can derive

the maximum deceleration of the leading vehicle L1 (scenario as shown in Figure 3.7), and then

perform system analysis for the worst case and adjust trajectory to ensure safety. Here we adopt

the same aggressiveness assessment method for the following vehicle F as in Section 3.1 when

vehicle F is non-connected. For the case that the following vehicle F is connected, we assume

that it is collaborative.

Safety analysis and trajectory adjustment are conducted periodically. At every step during the

lane changing, the ego vehicle has three behavior-level options with strictly decreasing prefer-

ence: proceed changing lane, hesitate around current lateral position, or abort changing lane and

return back to the original lane. It analyzes the state after executing the accelerations under neural

network-based planners for one time step. If it has a safe evasion trajectory in the worst case, it
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Figure 3.8: By incorporating the planned acceleration profiles and the real-time motion states of
surrounding vehicles updated by connectivity technology, we can further improve the performance
of neural network-based lane changing planner. At the same time, we can derive the maximum
deceleration of the leading vehicle L1 (scenario as shown in Figure 3.7), perform aggressiveness
assessment and system analysis for the worst case, and adjust trajectory to ensure safety.

can go ahead and change lanes. Otherwise, it has to attempt a less preferred behavior until a safe

evasion trajectory is found following that.

3.3.1 Connectivity Assumptions

In this work, we assume that the connected leading vehicles Li, 1 ≤ i ≤ N (for example, N = 2

in the scenario from Figure 3.7) will collaboratively assist the lane changing process of the ego

vehicle E and prevent collision with their own immediate leading vehicle Li+1. Specifically, the

connected leading vehicle Li will keep its acceleration within the range [−am,di , am,ai ] to execute

its own driving task if that is sufficient for keeping a safe distance between Li and Li+1. It is

noted that the values of am,di and am,ai will be communicated to other connected vehicles. Only in
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emerging scenarios, e.g., when the leading vehicle Li+1 decelerates suddenly, Li can violate such

‘promise’ and take a deceleration ax,i,d > am,di to ensure safety. Note that this is considered as

an expected violation of the promise, and our planner framework can ensure safety in such cases

(later in Section 3.4, we will demonstrate the impact when such promise is violated unexpectedly,

e.g., when one surrounding vehicle is malfunctioning or influenced by other unknown obstacles).

To generalize the model, we assume that both connected human-driven vehicles and connected

autonomous vehicles communicate their planned acceleration range to other vehicles in the same

manner. However, human-driven vehicles could have larger acceleration range because there is

typically larger uncertainty in human driver’s behavior and execution process. For non-connected

vehicles, we assume that it can take any acceleration value within their mechanical constraints.

3.3.2 Safety Analysis

Next we will analyze the evasion trajectory given the system states. Assuming that vehicle Li

decelerates with ax,i,d, vehicle Li−1 needs to decelerate with zx,i−1,d to prevent collisions. By

letting pm denote the minimum safe distance between two vehicles, we have



px,i + vx,itLi
+

ax,i,dt
2
Li

2
− px,i−1 − vx,i−1tLi

−
zx,i−1,dt

2
Li

2
− pm = 0

if vx,i < vx,i−1 and vx,i
ax,i,d

≥ vx,i−1

zx,i−1,d
,

px,i +
v2x,i

2ax,i,d
− px,i−1 −

v2x,i−1

2zx,i−1,d
− pm = 0

otherwise,

(3.7)

where px,i, vx,i, px,i−1 and vx,i−1 denote the position and velocity of vehicle Li and Li−1, respec-

tively. The first equation corresponds to the case that two vehicles can have the same velocity

at tLi
=

vx,i−1−vx,i
zx,i−1,d−ax,i,d

and reach minimum distance gap at the same time. The second equation
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corresponds to the case that Li−1 is the closest to Li when it stops.

Then we can obtain the deceleration of vehicle Li−1 by solving Equation (3.7)

zx,i−1,d =



3(vx,i−1−vx,i)2
2(px,i−px,i−1−pm)

+ ax,i,d

if vx,i < vx,i−1 and vx,i
ax,i,d

≥ vx,i−1

zx,i−1,d
,

v2x,i−1

2(px,i−px,i−1−pm)+
v2
x,i

ax,i,d

otherwise.

(3.8)

Considering that vehicle Li−1 has claimed in a message that it will take an acceleration in range

[−am,di−1 , a
m,a
i−1 ] to execute its own driving task, we then have the deceleration of vehicle Li−1 in the

worst case

ax,i−1,d = max(am,di−1 , zx,i−1,d). (3.9)

Let ax,d and ax,a denote the maximal longitudinal deceleration and acceleration of a vehicle un-

der mechanical constraints. Let ay,m denote the absolute value of the maximal lateral acceleration

under mechanical constraints. In the worst case, we assume that the non-connected leading vehi-

cle LN+1 can decelerate with ax,N+1,d = ax,d, and then we can obtain ax,N,d with Equations (3.8)

and (3.9). Similarly, we can compute the decelerations ax,N−1,d, ax,N−2,d, · · · , ax,1,d for the other

leading vehicles in the worst case.
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Given that the leading vehicle L1 decelerates with ax,1,d, its position at time t is

px,1,t =



px,1 + vx,1t− ax,1,dt
2

2

if t ≤ vx,1
ax,1,d

,

px,1 +
v2x,1

2ax,1,d

otherwise.

(3.10)

Next we will analyze the evasion trajectory for the ego vehicle E in the worst case. If it is safe,

the ego vehicle E can proceed to change lane under the neural network-based planners, otherwise

it can adapt behavior and trajectory to ensure safety. For the lateral motion, the fastest evasion

trajectory is to accelerate with ay = −ay,m when t ∈ [0, t1] and then ay = ay,m when t ∈ [t1, ty,f ].

It can be obtained by solving the equation below.


py,t0 + vy,t0t1 −

ay,mt21
2

+ (vy,t0 − ay,mt1)(ty,f − t1) +
ay,m(ty,f−t1)2

2
= wl−wv

2
,

vy,t0 − ay,mt1 + ay,m(ty,f − t1) = 0,

(3.11)

where py,t0 and vy,t0 are the lateral position and velocity of the ego vehicle when t = 0. The centers

of the original and target lane are y = 0 and y = wl, respectively. The width of a vehicle is wv.

As for the longitudinal motion, the optimal trajectory is analyzed intuitively when the immedi-

ate leading vehicle L1 decelerates with ax,d in Section 3.1. It is that the ego vehicle first accelerates

with ax,a and then decelerates with ax,d, and keeps the distance gap no smaller than pm when

t ∈ [0, ty,f ]. It is the fastest longitudinal motion to get closer to the leading vehicle, thus obtaining

more time for the lateral evasion before the following vehicle catches up.

However, in this section, it is a more general situation that the leading vehicle L1 can have
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Figure 3.9: Depending on the initial states and ty,f , there are four cases of longitudinal evasion
trajectory for the ego vehicle E, which are presented in four sub-figures. The black solid line and
yellow dot dash line represent velocity curves of the ego vehicle E and the leading vehicle L1,
respectively. (a) represents that the ego vehicle has already finished its lateral motion before it
decelerates to the same velocity with vehicle L1 and changes its deceleration. (b) is that the ego
vehicle decelerates with ax,d until it stops, and then keeps vx = 0 until t = ty,f . (c) is that the ego
vehicle has already finished its lateral motion before it reaches vx = 0 with deceleration ax,1,d. (d)
represents that the ego vehicle decelerates with ax,1,d until it stops, and then keeps vx = 0 until
t = ty,f .

deceleration ax,1,d ≤ ax,d. Thus when the ego vehicle E decelerates to the same velocity with the

leading vehicle L1, its deceleration should change from ax,d to ax,1,d. Otherwise the headway of

the ego vehicle will increase when its velocity is smaller than that of the vehicle L1. In that way,

the ego vehicle is overreacting for collision avoidance, which cannot lead to an optimal trajectory.

There are three phases in the optimal longitudinal motion. The ego vehicle first accelerates

with ax = ax,a when t ∈ [0, tx,1], and then decelerates with ax = −ax,d when t ∈ [tx,1, tx,2],
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and then decelerates with ax = −ax,1,d until it stops when t ∈ [tx,2, ty,f ]. The position of the ego

vehicle when t = ty,f is formulated as

px,ty,f =



px,t0 + vx,t0tx,1 +
ax,at2x,1

2
+ (vx,t0 + ax,atx,1)(ty,f − tx,1)− ax,d(ty,f−tx,1)2

2

if vx,t0 + ax,atx,1 − ax,d(ty,f − tx,1) ≥ max(0, vx,1 − ax,1,dty,f ),

px,t0 + vx,t0tx,1 +
ax,at2x,1

2
+

(vx,t0+ax,atx,1)2

2ax,d

else if vx,1
ax,1,d

≤ vx,t0+ax,atx,1
ax,d

+ tx,1 ≤ ty,f ,

px,t0 + vx,t0tx,2 +
ax,at2x,1

2
+ ax,atx,1(tx,2 − tx,1)− ax,d(tx,2−tx,1)2

2
− ax,1,d(ty,f−tx,2)2

2

+(vx,t0 + ax,atx,1 − ax,d(tx,2 − tx,1))(ty,f − tx,2)

else if vx,1
ax,1,d

≥ ty,f ,

px,t0 + vx,t0tx,2 +
ax,at2x,1

2
+ ax,atx,1(tx,2 − tx,1)− ax,d(tx,2−tx,1)2

2

+
(vx,t0+ax,atx,1−ax,d(tx,2−tx,1))2

2ax,1,d

otherwise,
(3.12)

where px,t0 and vx,t0 are the longitudinal position and the velocity of the ego vehicle when t = 0,

respectively.

Depending on the initial states and ty,f , there are four cases in Equation (3.12), which cor-

respond to the four velocity curves in Figure 3.9. The black solid line and yellow dot dash line

represent velocity curves of the ego vehicle E and the leading vehicle L1, respectively. The first

case represents that the ego vehicle has already finished its lateral motion before it decelerates to

the same velocity with vehicle L1 and changes its deceleration. The second case is that the ego ve-

hicle decelerates with ax,d until it stops, and then keeps vx = 0 until t = ty,f . The third case is that
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the ego vehicle has already finished its lateral motion before it reaches vx = 0 with deceleration

ax,1,d. The fourth case represents that the ego vehicle decelerates with ax,1,d until it stops, and then

keeps vx = 0 until t = ty,f .

Given that the two vehicles reach the same velocity when t = tx,2, we have vx,t0 + ax,atx,1 −

ax,d(tx,2−tx,1) = vx,1−ax,1,dtx,2. In all four cases, the distance gap between the ego vehicleE and

the leading vehicle L1 reaches the minimum when t = ty,f . By letting px,1,ty,f − px,ty,f − pm = 0,

we can compute the value of tx,1 as

tx,1 =



ty,f −
√
t2y,f +

2vx,t0 ty,f−ax,dt
2
y,f+2px,t0+2pm−2px,1,ty,f
ax,a+ax,d

if vx,t0 + ax,atx,1 − ax,d(ty,f − tx,1) ≥ max(0, vx,1 − ax,1,dty,f ),

−vx,t0
ax,a

+

√
(
vx,t0
ax,a

)2 − 2px,t0ax,d+v2x,t0
+2pmax,d−2px,1,ty,f ax,d

(ax,a+ax,d)ax,a

else if vx,1
ax,1,d

≤ vx,t0+ax,atx,1
ax,d

+ tx,1 ≤ ty,f ,

−(vx,t0−vx,1)+
√

(vx,t0−vx,1)2−2(ax,a+ax,1,d)C2

ax,a+ax,1,d

else if vx,1
ax,1,d

≥ ty,f ,

−(vx,t0−vx,1)+
√

(vx,t0−vx,1)2−2(ax,a+ax,1,d)C2

ax,a+ax,1,d

otherwise,

(3.13)

where C2 =
(vx,t0−vx,1)2+(2px,t0+2pm−2px,1)(ax,d−ax,1,d)

2(ax,a+ax,d)
.

It is noted that if t2y,f +
2vx,t0 ty,f−ax,dt

2
y,f+2px,t0+2pm−2px,1,ty,f
ax,a+ax,d

≤ 0, the ego vehicle can keep

accelerating until t = ty,f , i.e., tx,1 = ty,f , and remain safe. If 2vx,t0ty,f −ax,dt2y,f + 2px,t0 + 2pm−

2px,1,ty,f > 0 in the first case, or 2px,t0ax,d + v2
x,t0

+ 2pmax,d− 2px,1,ty,fax,d > 0 in the second case,

or C2 > 0 in the third and fourth cases, we have tx,1 < 0, which means the ego vehicle cannot
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prevent collisions even when it keeps decelerating with ax,d from t = 0, which means that the safe

evasion trajectory does not exist.

Let τ1 denote the time that the ego vehicle decelerates to the same velocity with the leading

vehicle, and let τ2 denote the time that the ego vehicle longitudinally decelerates to a velocity of

zero. We present τ1 and τ2 in all four cases in Figure 3.9. Based on the value of tx,1, we can obtain

the position of the ego vehicle at time t ∈ [0, ty,f ] as

px,t =



px,t0 + vx,t0t+ ax,at2

2

if t ∈ [0, tx,1],

px,t0 + vx,t0tx,1 +
ax,at2x,1

2
+ (vx,t0 + ax,atx,1)(t− tx,1)− ax,d(t−tx,1)2

2

else if t ∈ [tx,1,min(τ1, τ2, ty,f )],

px,1,t − pm

otherwise.

(3.14)

Assuming that the following vehicle accelerates with ax,f ∈ [−ax,d, ax,a], its position at t is

px,f,t =



px,f + vx,f t+
ax,f t

2

2

if vx,f + ax,f t ≥ 0,

px,f +
v2x,f

2|ax,f |

otherwise.

(3.15)

In this work, we make the same assumptions as in Section 3.1: if the following vehicle is collab-

orative and willing to create gap for ego vehicle, it can at least decelerate with ax,f = −ax,d; if
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the following vehicle is aggressive, in the worst case, it can accelerate with ax,f = ax,a to prevent

the ego vehicle from cutting in. If px,t − px,f,t ≥ pm, ∀t ∈ [0, ty,f ], the safe evasion trajectory

exists, and is formulated in Equation (3.14). If it exists, the ego vehicle can go ahead and execute

the planned trajectory, otherwise, it has to take a less preferred behavior, e.g., hesitate around the

boundary of the two lanes or return back to the original lane for safety. It is noted that returning

back to the original lane, which is the evasion trajectory computed in last control step, is already

verified to be safe and feasible.

3.4 Experimental Results

3.4.1 Effectiveness of Our Framework Under Perfect Coordination

In this section, we first demonstrate the statistical performance of our connectivity-enhanced plan-

ner framework, and then present an example with detailed trajectories. We compare system perfor-

mance under a few different planners to demonstrate the effectiveness of our approach: ‘CV all’

represents the complete planner framework as in Figure 3.8, in which we leverage information

shared by all connected vehicles; ‘CV follow’ means that we only use information shared by the

following connected vehicle F ; ‘CV none’ means that connectivity technology is not leveraged,

which is the planner in Section 3.1 and can be viewed as our main baseline; ‘No agg assess’ means

that we conservatively assume following vehicle is always aggressive and disable the aggressive-

ness assessment function.

In this work, we use synthesised data to train longitudinal and lateral planners, similarly as in

Section 3.1. We conduct extensive simulations by uniformly sampling with vx,t0 ∈ [29, 31] meters

per second and δp ∈ [17, 22] meters, and setting am,di = 0.5 meters per second squared, vx,i = 30

meters per second, i = 1, · · · , N . Here, δp denotes the initial longitudinal inter-vehicle distance.

Figure 3.10 presents the average lane changing success rate under different planners when the
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Figure 3.10: Lane changing success rate under different planners are compared when the number
of connected leading vehicles is N = 5. The horizontal axes show the sudden deceleration of
non-connected leading vehicle LN+1.

number of connected leading vehicles is N = 5. The horizontal axes show the sudden deceleration

of non-connected leading vehicle LN+1. It is considered to be successful if the ego vehicle finally

crosses the border of two lanes within the simulation horizon without any collision. Because safety

is ensured by the trajectory adjustment function and there is indeed no collision in all simulations,

we only present the results of lane changing success rate.

As we expected, lane changing success rate decreases when the deceleration ax,N+1,d gets

larger. Under these planners, ‘CV all’, ‘CV follow’ and ‘CV none’ correspond to full, partial and

none utilization of connectivity, respectively. ‘No agg assess’ represents that when even aggres-

siveness assessment function is disabled, which leverages less information and is more conser-

vative. It shows that ‘CV all’ performs slightly better than ‘CV follow’, and these two planners

result in considerably larger success rate, when compared to ‘CV none’ and ‘No agg assess’. This

clearly shows the effectiveness of our approach in improving system performance. It means

that understanding the following vehicle’s intention can greatly help the lane changing maneuver
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Table 3.4: Lane changing success rate of different planners.
N ax,N+1,d CV all CV follow CV none No agg assess

1

2 1 1 0.995 0.995
3 1 1 0.875 0.83
4 0.356 0.337 0.23 0.195
5 0.001 0 0 0
6 0 0 0 0

3

2 1 1 1 1
3 1 1 0.928 0.894
4 0.998 0.982 0.712 0.672
5 0.534 0.489 0.288 0.256
6 0.01 0.008 0.024 0.022

10

2 1 1 1 1
3 1 1 1 1
4 1 1 0.993 0.998
5 1 1 0.969 0.956
6 1 1 0.95 0.928

of the ego vehicle, and connectivity of leading vehicles can further improve that.

Table 3.4 shows the average lane changing success rate whenN and ax,N+1,d change. It consis-

tently presents that the more utilization of connectivity, system performance is better. Moreover,

when N gets larger, it results in larger success rate because more connected leading vehicles can

cooperate to leave larger space for the ego vehicle.

Figure 3.11 demonstrates the performance of our planner design with a specific example, in

which N = 5 and ax,N+1,d = 5 meters per second squared. It shows the lateral position and

longitudinal velocity of the ego vehicle under different planners. Under ‘CV all’ planner, the

ego vehicle completes lane changing in about three seconds. Under other three planners, the ego

vehicle first move laterally to the target lane, and then turn back to the original lane when t = 3

seconds. ‘CV follow’ results in longer time of staying in the target lane, compared with ‘CV none’

and ‘No agg assess’. In this example, ‘CV none’ and ‘No agg assess’ lead to the same trajectory

of the ego vehicle.
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Figure 3.11: Lateral position and longitudinal velocity of the ego vehicle in an example scenario
are plotted under different planners, when the number of connected leading vehicles is N = 5
and the deceleration of non-connected leading vehicle LN+1 is ax,N+1,d = 5 meters per second
squared.

3.4.2 Impact of Unexpected Promise Violation

According to the promise assumption introduced in Section 3.3, connected leading vehicle Li will

keep its acceleration in the range [−am,di , am,ai ] as long as that does not hurt its own safety. Let

us define the promise violation rate pv, which denotes the probability that the promise is violated

unexpectedly in every control period. We assume that promise violation is independent among all

connected vehicles, and the vehicle can take any deceleration following the uniform distribution

[zx,i,d, ax,N+1,d] when violating the promise.

Figure 3.12 presents the collision rate and lane changing success rate under varied promise

violation rate pv when the first non-connected leading vehicle LN+1 takes different sudden de-

celeration ax,N+1,d. Generally speaking, a larger promise violation rate and deceleration result in

smaller lane changing success rate and higher collision risk. However, when promise violation rate
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Figure 3.12: Collision rate and lane changing success rate under different promise violation rates
are presented when the number of connected leading vehicles is N = 10. Promise violation rate
pv is the probability that the promise is violated unexpectedly every control period. We assume
that promise violation is independent among all connected vehicles, and the vehicle can take any
deceleration following the uniform distribution [zx,i,d, ax,N+1,d] when violating the promise. The
horizontal axes show the sudden deceleration of non-connected leading vehicle LN+1.

is within 20% and the sudden deceleration is less than 5 meters per second squared, collision rate

is 0% and success rate remains to be relatively high. This shows the robustness of our approach.
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CHAPTER 4

SAFETY-ASSURED SPECULATIVE PLANNING WITH ADAPTIVE PREDICTION

This chapter focuses on addressing complex driving scenarios where the surrounding vehicles’

intentions and planned trajectories have multiple possibilities in prediction, which is based on the

work published at [188]. In Section 4.1, we present our method of speculative planning with

adaptive prediction. Section 4.2 shows the experimental results.

4.1 Speculative Planning Framework

4.1.1 An Illustrating Example

We consider lane changing in multi-lane highway as a representative application. Fig. 4.1 shows

an example scenario where the prediction for the surrounding vehicle gets adapted to the system

states and the ego vehicle adjusts its action accordingly. Initially, as shown in the subplot (a), when

the two vehicles are still far away from the highway off-ramp, the ego vehicle predicts that the

probabilities of different routes for the surrounding vehicle are p1 = 0.8, p2 = 0.02 and p3 = 0.18.

A few seconds later, as shown in subplot (b), the surrounding vehicle is changing to the right-most

lane before the off-ramp. The prediction gets adapted as the route 1 is no longer possible. Finally,

as shown in subplot (c), the surrounding vehicle exits from the off-ramp, and route 3 becomes the

only possible one.

We assume that the reward function measuring system performance is the average speed of

the ego vehicle. Our planner behaves as follows. During (a), the ego vehicle may keep its speed

or accelerate since route 1 has the highest probability for the surrounding vehicle, as long as it is
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Figure 4.1: The subplots (a), (b) and (c) show that the system states and the prediction for the
surrounding vehicle change as time goes on. Solid lines and dash lines represent possible and
impossible routes at that time. Note that the surrounding vehicle’s states in (b) do not match the
route prediction with the highest probability in (a), but our planner can still ensure system safety
as it considers all possible predicted behaviors and trajectories.
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impossible to collide even in the worst case under all three possible routes. During (b), the ego

vehicle remains safe because the less possible scenario (b) was considered in the planning process

during (a). The ego vehicle will not necessarily decelerate harshly because route 3 is the most

possible one. During (c), the ego vehicle finds that the surrounding vehicle indeed took the most

possible route 3 in the prediction during (b), and can now accelerate without hesitance.

Our speculative planning method maximizes the expected reward, while leaving enough buffer

space to ensure safety for those less possible predicted scenarios, as shown below.

4.1.2 Problem Formulation

We denote the system state with S = {dE, dS, vE, vS, lE, lS}, where d, v and l denote the traveled

distance, the velocity of the vehicle, and the lane that the vehicle is in, respectively. The subscript

E and S of these variables correspond to ego vehicle and surrounding vehicle, respectively.

The probabilistic prediction of the surrounding vehicle’s future trajectory can be represented

as

P = {{ri, pi, fi(wi)}, i = 1, 2, · · · , N}, (4.1)

where ri denotes the discrete route choice, pi denotes the probability of the route choice, wi denotes

the vector of related parameters to define a trajectory corresponding to the route ri, and fi(wi)

defines the probability distribution of wi under the route ri. Assume that there are N different

possible route choices, we have
N∑
i=1

pi = 1. (4.2)

We assume that the prediction is conservative such that the real trajectory of the surrounding

vehicle is always included and bounded by the prediction. The real trajectory is represented with
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{r̂, ŵ}, which are sampled from random variables r and w given P. We have

r̂ = rk, fk(ŵ) > 0, ∃k ∈ {1, 2, · · · , N}. (4.3)

The system dynamics can be formulated as:



ḋE(t) = vE(t),

v̇E(t) = u(t),

lE(t) ≡ lE(t0),

ḋS(t) = vS(t),

v̇S(t) = φ(ŵ),

lS(t) = ψ(r̂, ŵ, dS(t)),

(4.4)

where u(t) is the control input, representing the acceleration for the ego vehicle E. t0 is the initial

time, and lE(t) ≡ lE(t0) means that the ego vehicle will go straight and stay in the lane. φ(ŵ) is a

function to derive acceleration of surrounding vehicle S from the parameter vector ŵ. The function

ψ(r̂, ŵ, dS(t)) can determine the lane that the surrounding vehicle is in. As shown in Fig. 1.2, we

assign ids {0, 1, 2, 3} to lanes from the leftmost to the rightmost, and lane 3 corresponds to the

off-ramp.

To ensure safety, the system need to satisfy

lE(t) 6= lS(t) ∨ |dE(t)− dS(t)| ≥ dm, ∀t ≥ t0, ∀r̂, ŵ s.t. Eq. (4.3), (4.5)

where dm is the minimum distance gap between vehicles to prevent collisions. Let J(t) denote
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the reward function1. The sum of reward function over horizon t ∈ [t0, th],
∑th

t=t0
J(t), can be

transferred to another function Q(u(t0), ū, r̂, ŵ)2, based on Eq. (4.4). Since r̂ and ŵ are unknown,

our goal is to maximize the expectation of Q(u(t0), ū, r, w) given the probabilistic prediction P.

Then we have

u(t0) = arg max
u(t0)

E(r,w)∈P

[
max
ū

(Q(u(t0), ū, r, w))
]

, s.t. Eq. (4.5). (4.6)

Similar to the receding horizon method in the MPC, we will use only u(t0) for the current time

step, and run the optimization in Eq. (4.6) periodically for the following control inputs.

4.1.3 Speculative Planning with Adaptive Prediction

Next we present our speculative planning algorithm, as shown in Algorithm 2, which generates

control input for maximizing the expected reward. First, we set the initial value of u(t) to be

0, representing no acceleration (line 1). Similarly, we set the initial values for reward Ω, safety

indicator Θ and the minimum distance gap between vehicles δd (lines 2-4). Both Θ and δd are

acquired by the safety evaluation algorithm, as shown in Algorithm 3. Θ is a binary variable,

Θ = 0 denotes that the system is safe now and there exists a series of control inputs ū to keep

the system safe, Θ = 1 denotes that the system is possible to be unsafe given P. Then let the

temporary variable at loop through the acceleration range [amin, amax] (lines 5-6). We evaluate

the system safety (line 7) and compute the expected reward given the probabilistic prediction P

(line 8) for each at. If we get safety assurance with current action at (line 9), or we get a higher

reward and a larger distance gap (line 14), we update the control input u(t) and its corresponding

reward, safety indicator and minimum distance gap. ϕ(Ωt, δdt) is a function to balance reward and

1J(t) is the short form of J(dE(t), dS(t), vE(t), vS(t), lE(t), lS(t), u(t)).
2ū represents a series of control inputs excluding u(t0), i.e., u(t0 + δt : δt : th).
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Algorithm 2: Speculative planning
Result: Control input u(t)
Input: S(t) = {dE(t), dS(t), vE(t), vS(t), lE(t), lS(t)},

P = {{ri, pi, fi(wi)}, i = 1, 2, · · · , N}
1 u(t)← 0.0;
2 Reward Ω← 0;
3 Safety indicator Θ← 1;
4 Minimum gap δd← 100;
5 at ← amin;
6 while at ≤ amax do
7 Θt, δdt ← SafetyEval(S(t),P, at);
8 Ωt ← ExpectedReward(S(t),P, at);
9 if Θ == 1 && Θt == 0 then

10 u(t)← at;
11 Ω← Ωt;
12 Θ← Θt;
13 δd← δdt;
14 else if Θ == 0 && Θt == 0 && ϕ(Ωt, δdt) ≥ ϕ(Ω, δd) then
15 u(t)← at;
16 Ω← Ωt;
17 δd← δdt;
18 end
19 at ← at + δa;
20 end

minimum gap, and a larger value is preferred. We will prove the safety guarantee of our algorithm

(under certain conditions) later in Section 4.1.4.

Safety evaluation is conducted as shown in Algorithm 3. We initially assume that it is safe

(line 1) and set the minimum distance gap to be 100 (line 2). Then for every possible route (line

3), we assess whether it is still feasible according to the latest status of the surrounding vehicle S

(line 4). For example, if the surrounding vehicle is already on the off-ramp to exit the highway,

routes 1 and 2 become impossible. We compute the union set of all possible future spatial-temporal

trajectories [189] of the surrounding vehicle, Ti, even if the probability is small according to fi(wi)
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Algorithm 3: SafetyEval(): Safety evaluation
Result: Safety indicator Θt, minimum gap δdt
Input: S(t) = {dE(t), dS(t), vE(t), vS(t), lE(t), lS(t)},

P = {{ri, pi, fi(wi)}, i = 1, 2, · · · , N}, at
1 Θt ← 0;
2 δdt ← 100;
3 for i ∈ {1, 2, · · · , N} do
4 if IsFeasible(ri, dS(t), lS(t)) then
5 Ti ← Traj(dS(t), vS(t), lE(t), lS(t), ri, fi(wi));
6 δdmin ←MinGap(Ti, dE(t), vE(t), at);
7 δdt ← min(δdt, δdmin);
8 end
9 end

10 if δdt ≤ δds then
11 Θt ← 1;
12 end

(line 5). Assume that the ego vehicle adopts the control input at at the current time step, and it

is allowed to take any acceleration in the range [amin, amax] for the following steps to prevent

overlap with Ti. We compute the minimum distance gap between Ti and the future trajectory of

ego vehicle, δdmin (line 6). We will update δdt with δdmin acquired under route ri (line 7). If the

gap is even less than the threshold δds, it is unsafe (lines 10-12). As stated before, this result is

used in Algorithm 3 (line 7).

Algorithm 4 presents the computation of the expected reward given P. Let Ωt and pt denote

the sum of weighted reward and the sum of weights (i.e., probabilities), respectively. We assign

initial values for them (lines 1-2). Similarly to Algorithm 3, we loop through each feasible route

ri (lines 3-4) and adapt our prediction and probability distribution according to the latest status of

the surrounding vehicle (line 5). For example, assume that there is an appropriate road segment for

the lane changing, as the surrounding vehicle moves forward towards the end of the road segment,

the range of possible lane-changing positions can be smaller, thus the weight (i.e., probability)
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Algorithm 4: ExpectedReward(): Computation of the expected reward
Result: Reward Ωt

Input: S(t) = {dE(t), dS(t), vE(t), vS(t), lE(t), lS(t)},
P = {{ri, pi, fi(wi)}, i = 1, 2, · · · , N}, at

1 Ωt ← 0;
2 pt ← 0;
3 for i ∈ {1, 2, · · · , N} do
4 if IsFeasible(ri, dS(t), lS(t)) then
5 p

′
i, f

′
i (wi)← Adapt(dS(t), lS(t), ri, pi, fi(wi));

6 Ωt,i ← 0;
7 for k ∈ {1, 2, · · · , Ns} do
8 wi,k ← Sample(f

′
i (wi));

9 Ωt,i ← Ωt,i + maxū(Q(at, ū, ri, wi,k));
10 end
11 Ωt ← Ωt + p

′
iΩt,i/Ns;

12 pt ← pt + p
′
i;

13 end
14 end
15 Ωt ← Ωt/pt;

for the certain route needs to be adjusted. Under the specific route ri, we sample the vector of

parameters wi,k to generate the trajectory of the surrounding vehicle for Ns times (lines 7-8). We

compute the reward of the ego vehicle for each sample {ri, wi,k}, and Ωt,i is the sum of all rewards

(line 9). As Ωt,i/Ns is the averaged reward under route ri, we update Ωt and pt accordingly (lines

11-12). Finally, Ωt is scaled to be the expected reward (line 15), which as stated before, is used in

Algorithm 2 (line 8).

The prediction adaptation is based on two assumptions: (1) the surrounding vehicle does not

move backward; (2) after a complete and safe lane changing, the surrounding vehicle does not

return back to the original lane. When the prediction is outdated, we filter out those impossi-

ble behaviors and trajectories of the surrounding vehicle based on its latest status, and scale the

probabilities of the remaining such that the sum is still 1.
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4.1.4 Safety Guarantee

Theorem 4.1.1. For a dynamical system defined by Eq. (4.4), our proposed planner (Algorithms 2,

3 and 4) will ensure system safety, if Eq. (4.3) holds and there exists a safe planning decision at

the initial state of the system.

Proof. Let us prove this by contradiction. We first assume that there exists a time ts such that

Θ(ts) = 0 and Θ(ts + δt) = 1. According to Algorithm 2, if there exists u(ts + δt) such that

Θt(ts + δt) = 0, then Θ(ts + δt) = 0. So we have Θt(ts + δt) = 1, ∀u(ts + δt). According to

Algorithm 3, there exists at least one feasible route ri such that δdmin(ts + δt) ≤ δds < δdmin(ts),

∀u(ts+δt). Since dE(ts+δt) and vE(ts+δt) are acquired by substituting u(ts) into Eq. (4.4), there

exists an action at(ts + δt) such that δdmin(ts + δt) = MinGap(Ti(ts + δt), dE(ts + δt), vE(ts +

δt), at(ts + δt)) = MinGap(Ti(ts + δt), dE(ts), vE(ts), at = u(ts)). Thus, MinGap(Ti(ts +

δt), dE(ts), vE(ts), at = u(ts)) < δdmin(ts) = MinGap(Ti(ts), dE(ts), vE(ts), at = u(ts)). It

requires Ti(ts + δt) \ Ti(ts) 6= ∅. However, Ti is the union set of all possible future spatial-

temporal trajectories of the surrounding vehicle, Ti(ts + δt) ⊆ Ti(ts). From this contradiction, we

know that Θ ≡ 0 and the system is safe under our proposed planner.

4.1.5 Surrounding Vehicle’s Model

It is worth noting that the generality of our planning method will not be affected by the model of

the surrounding vehicle.

For longitudinal motion, we assume that the surrounding vehicle is controlled to maintain the

desired speed vd under the acceleration function φ(ŵ). For lateral motion, we assume that the

surrounding vehicle indicates a right turn and intends to change lanes when dS = d0
lc. The route is

randomly determined according to p1, p2 and p3. Route 1 corresponds to change lane once, while
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route 2 and 3 need to change lanes twice. Based on the selected route, the execution of first and

second lane changing happen at d1
lc and d2

lc, respectively. We assume that d1
lc− d0

lc and d2
lc− d1

lc are

closely related to the personality of the driver, which is represented by aggressiveness [16], [48].

We then have

δdlc = daqa + dc + dn, (4.7)

where qa, the aggressiveness level, is a real variable satisfying−1 ≤ qa ≤ 1. A larger qa represents

a more aggressive driver. da < 0 is the coefficient for the aggressiveness term, and dc is a constant.

With the noise term dn, d1
lc − d0

lc and d2
lc − d1

lc are not necessarily the same. For a more aggressive

surrounding vehicle, d1
lc − d0

lc and d2
lc − d1

lc are smaller, which leaves less time for the ego vehicle

to react.

4.2 Experimental Results

4.2.1 Effectiveness of Our Approach

We compare system safety and performance under different planners to demonstrate the strength

of our approach: baseline methods ‘IDM1’, ‘IDM2’ and ‘IDM3’ are all based on Intelligent Driver

Model [187], [190], which is a common car following model in the transportation domain. ‘IDM1’

is the original version that the ego vehicle only follows the surrounding vehicle in the same lane,

‘IDM2’ means that the ego vehicle will follow the surrounding vehicle that intends to change

lanes from the adjacent lane as well, ‘IDM3’ means that the ego vehicle follows the surrounding

vehicle in any of the three lanes in the highway. A larger subscript corresponds to earlier reactions

to the surrounding vehicle, which is expected to be safer and less efficient. Baseline method

‘MPC’ represents the Model Predictive Control approach [47], [191], [192], which can address the

uncertainty in the behavior and trajectory of the surrounding vehicle. However, it does not consider
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the underlying probability distribution. ‘SPAP’ is our proposed method, Speculative Planning with

Adaptive Prediction. For the reward function, without losing generality, we assume that J(t) =

vE(t). ’MPC+agg’ and ’SPAP+agg’ are extensions of MPC and our method with consideration of

vehicle aggressiveness.

We set the horizon of each simulation to be 12 seconds, and the simulation step size and con-

trol step size δt are both at 0.1 second. The desired speed is vd = 25 m/s, and the speed limit is

30 m/s in the highway. We randomly sample the values for p1, p2 and p3 and evaluate the per-

formance of different planners with or without the predicted aggressiveness of the surrounding

vehicle, as shown in Table 4.1. Each row corresponds to the averaged results of 10, 000 simula-

tions. We can see that our SPAP and SPAP+agg planners provide significant improvement on

system performance (larger average speed) over the baseline planners, while ensuring system

safety. SPAP+agg and MPC+agg provide improvement over SPAP and MPC, as we assume that

the aggressive prediction is accurate and can help reduce the uncertainty in predicting surrounding

vehicle behavior (if not, they may not provide such improvement).

Table 4.1: Safety and performance evaluation for different planners with or without predicted
aggressiveness of the surrounding vehicle.

Planners safety rate average speed final speed
IDM1 94.73% 24.73 m/s 24.68 m/s
IDM2 96.57% 23.76 m/s 23.38 m/s
IDM3 100% 22.96 m/s 23.82 m/s
MPC 100% 25.85 m/s 29.21 m/s

MPC+agg 100% 26.45 m/s 29.26 m/s
SPAP 100% 27.56 m/s 29.45 m/s

SPAP+agg 100% 27.90 m/s 29.53 m/s

We conduct additional experiments to further study the impact of different route probabilities.

Fig. 4.2 presents the safety rate and average speed of the ego vehicle when the probability of route

1, p1, changes. We set p3 = 0.2, and p2 is determined such that p1 + p2 + p3 = 1. As we expected,
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Figure 4.2: Safety rate and average speed of the ego vehicle under different planners are compared
when the probability of route 1, p1, changes. The probabilities of the other two routes are set as
p2 = 0.8− p1 and p3 = 0.2.

since it is route 2 that has the most interference with the ego vehicle, the safety rate is the lowest

when p1 = 0 and p2 = 0.8 for planners IDM1 and IDM2. The safety rate increases when p1

increases gradually. For planners IDM3, MPC and SPAP, there is no any collision. IDM3 is over-

conservative by its nature, MPC is formulated with safety constraints, and our proposed SPAP has

safety guarantee, as presented in Section 4.1.4.

Fig. 4.2 also shows that the average speed increases slightly as p1 increases. For the three

IDM-based planners, it meets our expectation that a larger subscript corresponds to a less efficient

planner, thus resulting in a lower average speed. MPC performs better than these IDM-based

planners.
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Table 4.2: Computation time, safety and performance evaluation under different sampling times
Ns.

Ns time cost safety rate average speed final speed
10 0.03 s 100% 26.21 m/s 28.39 m/s
25 0.04 s 100% 26.82 m/s 28.47 m/s
50 0.07 s 100% 27.30 m/s 28.64 m/s

100 0.12 s 100% 27.31 m/s 28.63 m/s
200 0.22 s 100% 27.27 m/s 28.64 m/s

4.2.2 Real-time Computation Complexity

Since the control step size is set to 0.1 second, the planner could only be employed in real-time

if the computation time is within 0.1 second. To evaluate the real-time computation complexity

of our approach, we set p1 = 0.4, p2 = 0.4, p3 = 0.2 and conduct experiments in a server with

Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz. We choose the number of sampling times Ns to be

10, 25, 50, 100 and 200. Intuitively, the larger the Ns, the more accurately the planner samples the

prediction distribution and the better the performance, however at a higher computational cost.

From the results in Table 4.2, we can see that when Ns increases from 10, 25 to 50, there is

a substantial increase of system performance (i.e., average speed the vehicle can safely achieve).

Further increasing Ns to 100 and 200 will not lead to significant change in performance. Thus,

Ns = 50 seems to be the sweet spot that balances performance and computational load for this ap-

plication. Note that the real-time computation demand can be satisfied when Ns = 50, as the time

cost of 0.07 second is smaller than 0.1 (moreover, the reported average computation time includes

not only the time spent on planning, but also the time on the simulator; the real computation time

is lower). We plan to conduct more evaluations on other driving tasks and computing platforms in

the future work.
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CHAPTER 5

SECURING CONNECTED VEHICLE APPLICATIONS WITH BLOCKCHAIN

In this chapter, we develop an efficient dual cyber-physical blockchains framework to build trust

and secure communication for CV applications, which is based on the work published at [193].

The framework enables us to efficiently track and update a trust estimate for each vehicle in a

large-scale traffic network, with low resource overhead. Section 5.1 introduces the security threat

models we address in this work. Section 5.2 presents the design of our dual blockchain framework.

Section 5.3 analyzes our framework’s defense performance against message spoofing attack, bad

mouthing attack, and Sybil and voting attack, and presents the simulation results in SUMO. Sec-

tion 5.4 analyzes the computation, communication and storage overhead for each vehicle, and the

trade-offs in adjusting the region size that one blockchain covers and the block generation period.

5.1 Threat Models to Connected Vehicles

In this work, we focus on the attacks from vehicle-side devices, e.g., those from the On-Board

Units (OBUs) for CV applications [35]. While the techniques can be extended to protect against

attacks on infrastructure units, it is reasonable to expect that it is typically harder to attack the

infrastructure. In particular, we consider malicious vehicles that can generate falsified messages

and broadcast them to other vehicles. It is important to note that we do not assume that the attacker

can spoof the sender identities in the messages. We assume that such an identity is verifiable

and non-forgeable with digital signatures technique (e.g., SCMS). Moreover, we assume that the

communication infrastructure is mostly resilient and most surrounding vehicles within a known

communication range should receive the same message within a known time bound. We also
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Figure 5.1: Threat models considered in our work. Subplot (a) displays that an attacker sends
falsified messages with wrong traffic status on the highway to mislead the green merging vehicles.
Subplot (b) displays that an attacker forges misbehavior of surrounding honest vehicles to hurt their
reputation and traffic efficiency in the intelligent intersection. Subplot (c) displays that an attacker
forges two pseudonymous identities by launching a Sybil attack. Together they report falsified
traffic accidents in one of the routes, and may dominate the voice in voting among the surrounding
vehicles so that the falsified messages would not be detected. This attack may lead to larger traffic
density and travel time because more honest vehicles will choose the other route that is without the
fake accident.

assume that most honest vehicles have loosely synchronized clocks (e.g., using Network Time

Protocol (NTP)) for the liveness of blockchain. Finally, we assume that most vehicles in the traffic

network are honest, such that most of the stake (more than 2/3) can be held by honest vehicles to

ensure the safety of blockchain.

Under these assumptions, malicious attackers can compromise a small fraction of vehicles to

broadcast falsified position and velocity data, forge traffic accidents and destroy others’ reputation.

Specifically, we consider three threat models in this paper with popular and representative CV
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applications, as shown in Fig. 5.1. Among them, the message spoofing attack could target many

other CV applications and be defended by trust frameworks such as ours. The bad mouthing

attack and Sybil and voting attack in fact target the trust framework itself, and as shown later, our

blockchain framework can effectively mitigate such attacks as well.

5.1.1 Message Spoofing Attack

In Fig. 5.1(a), two green vehicles communicate with the vehicles on the highway to adjust their

speed for merging onto the highway. The attacker (shown in black) can send out falsified position

and velocity data of itself, which may induce the green victim vehicles to accelerate/decelerate.

This may damage traffic efficiency and even put vehicles near the on-ramp at the risk of collisions.

A single malicious vehicle may start this type of attack when no honest vehicle can judge the truth

of the message or the stake of attackers is overwhelming in the local area.

5.1.2 Bad Mouthing Attack

In Fig. 5.1(b), all vehicles send their current and destination lanes as well as estimated arriving

time to a centralized intersection manager, which then decides the passing order and timing of the

vehicles, similarly as in [5]. When a trust framework is deployed to secure the communication, an

attacker may maliciously report misbehavior to degrade the trust for honest vehicles [194]. Without

an accurate assessment of the trust, the intersection manager will not be able to decide the passing

order and timing for vehicles, and they will have to adapt the traditional traffic rules as if there

were stop signs in every direction.
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5.1.3 Sybil and Voting Attack

In Fig. 5.1(c), there are two route choices in the region. An attacker can generate fake and

pseudonymous vehicles by Sybil attack. Together they can broadcast a falsified traffic accident

in one of the routes. In a trust framework based on consensus, while honest vehicles may disagree

with the falsified accident, their voices could be dominated by the attacker and Sybil vehicles in

the voting process for assessing the falsified accident, in which case, other vehicles coming to this

region will believe the falsified accident and go through the other route, resulting in congestion

and low traffic efficiency.

5.2 Efficient Dual Cyber-physical Blockchains Framework

To avoid confusion, in our work, messages carry traffic information that vehicles share with others,

e.g., Basic Safety Message (BSM), Cooperative Awareness Message (CAM), Cooperative Percep-

tion Message (CPM), etc. To build trust among vehicles via blockchain, vehicles may generate

transactions and broadcast them to other vehicles in the same region. The transactions generally

include the report of malicious misbehavior, application of transferring records, etc. By aggregat-

ing all transactions within a period, one vehicle can then update all vehicles’ records and build a

block accordingly.

5.2.1 Framework Overview

Our blockchain design leverages the block generation and consensus mechanism from Algorand.

Technically speaking, it is based on proof of stake. In our design, the stake is computed from trust

points and proof-of-travel credits. The higher stake a vehicle holds, the higher chance it can be

selected as a leader or verifier to maintain the blockchains. When driving, only traffic information
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sent from vehicles with high trust points and proof-of-travel credits can be viewed as trustworthy.

Such design sets up a relatively high threshold for malicious vehicles to manipulate the blockchains

and start attacks.

To update blockchain on time, and alleviate resource demand for vehicles, we leverage the

sharding method to partition vehicles into subsets according to their traveling region. Each vehi-

cle has a permanent address and a current active address. For trust points blockchain, attackers’

misbehavior should be exposed as soon as possible, and surrounding vehicles in the current active

region can respond within a short time. Thus, trust points blockchain in one region is maintained

by those vehicles that claim to be active in the current region and will only record those vehicles’

trust points. A vehicle that moves across different regions can claim its new active region and

have its trust points record transferred. The detailed mechanism is introduced in Section 5.2.2. For

proof-of-travel blockchain, since it records a vehicle’s historical information over a long period

(e.g., 100 days), it is maintained by those vehicles that have their permanent address in this region.

It will only record those vehicles’ proof-of-travel credits. In this way, different regions will have

their blockchains maintained and updated independently.

Other details, such as the transaction generation and physical verification processes for the two

blockchains, are introduced in the following Sections 5.2.2 and 5.2.3, respectively.

5.2.2 Trust Points Blockchain

Trust points blockchain is mainly for identifying and exposing malicious attackers. When one ve-

hicle sends out a message, surrounding vehicles within the communication range can receive and

verify it based on information from their own on-board sensors or other sources (e.g., a message

with falsified position data may be deemed as suspicious by surrounding vehicles using their own
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sensors1). Then depending on the situation, various types of transactions can be generated and

sent. Each transaction includes transaction ID (TID), smart contract type ID (SCID), senderID,

debateID, regionID, location, time and payload. Transaction senders will encrypt the transactions

with their private keys and broadcast them. Receivers can verify the identity of senders with the

public keys. SCID identifies the transaction type and the corresponding smart contract for updat-

ing vehicles’ points/credits. Location and time are the transaction generation location and time.

DebateID is the ID of the vehicle that sends out the suspicious message. RegionID is the ID of the

region that a vehicle is moving into. TID is the hash value of senderID, debateID, regionID, loca-

tion and time, and is considered unique. Various transactions are sent in the following situations:

• If a vehicle disagrees with a message sent by another vehicle, it can report this disagreement in

a transaction with SCID=0000.

• Upon receiving a disagreement transaction (SCID=0000), other vehicles can take a stand on

agreeing or disagreeing in a new transaction with SCID=0000 if they have not done so.

• If a vehicle disagrees with the judgement made in the previous voting process (details of the

process are introduced later in Algorithm 5), it can report the disagreement after enough evidence

is gathered (i.e., when stake of honest vehicles gets larger) in a new transaction with SCID=0001.

• A vehicle moving to another region may apply to transfer its records in a transactions with

SCID=0002.

The transactions received within a period (i.e, the round latency of trust points blockchain) are

processed with our designed contracts in Algorithms 5, 6 and 7.

Transactions with SCID=0000 are to report attackers and falsified messages. They are handled

by an instant voting contract, as shown in Algorithm 5.

1How vehicles may verify messages based on physical information from their own sensors or other sources is
beyond the scope of this paper, which focuses on the design of the blockchain framework.
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Let us use the highway merging application in Fig. 5.1(a) to help explain the algorithm. First,

the attacker near the ramp sends out a falsified message with wrong traffic status to mislead vehicles

on the ramp. If there are honest vehicles in both the examination and communication ranges, they

can also receive the message and may deem it suspicious based on the information from their own

on-board sensors. They can then generate transactions with SCID=0000 to report such findings and

broadcast the transactions to other vehicles in the region. Within a period, surrounding vehicles

within both the communication and examination ranges are all supposed to take a stand. Then other

vehicles in the region collect all transactions and start the smart contract-based voting process as

shown in Algorithm 5. The voting process for this contract instance will classify all transaction

senders into two groups. One group of vehicles agree with the message’s content sent by the

vehicle with debateID, and the other group of vehicles disagrees with that. The contract will make

a final judgment and update vehicles’ trust points by comparing the two groups’ accumulated stake.

The group with the higher stake will be called majority and have their trust points increased by 1,

while the other group will be called minority and have trust points of -1.

A group of attackers with high stake may dominate the voting process if the number of sur-

rounding honest vehicles is initially limited. To avoid repeated attacks from the group of attackers,

we design the redressing contract, which allows re-evaluation of vehicles’ opinions on the mes-

sage content from the vehicle with debateID. In particular, if a vehicle disagrees with the previous

voting result obtained by Algorithm 5, it can send a transaction with SCID=0001, which triggers

the redressing process in Algorithm 6. The redressing algorithm finds all the ended contracts that

involve the debateID, and form groups Gs and Go that represent all the vehicles agree and disagree

with debateID, respectively. Let N(Gs) and N(Go) denote the accumulated state for group Gs

and Go, respectively. If the stake difference between the two groups is larger than a threshold Nth,

previous judgement can be redressed.
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Algorithm 5: Instant Voting for SCID=0000 Transactions
Result: Updated trust points for involved vehicles

1 Input: senderID, debateID, location, time, opinion
2 if time has not elapsed 2tbs since receiving the suspicious message ( tbs denotes the time

bound that most vehicles in the same region can receive the transaction) then
3 Find an ongoing contract with the same debateID, different senderID, close location

and time;
4 if no such contract then
5 Create a new contract instance for debateID;
6 end
7 if opinion is agree then
8 Add senderID to the agree group;
9 else

10 Add senderID to the disagree group;
11 end
12 end
13 if any contract has existed 2tbs then
14 Compare the stakes between the agree group and the disagree group;
15 Increase the trust points of the majority by 1;
16 Set the trust points of the minority to be -1;
17 end

When a vehicle moves across different regions, it is required to update its current active region.

This way the vehicles within the same active region can communicate efficiently and the real-time

performance can be improved. To update the active region, a vehicle needs to transfer trust points

and copy its proof-of-travel credits to the new region. This process is shown in Algorithm 7. Note

that the trust points of this vehicle in the original region should be set to zero.

5.2.3 Proof-of-Travel Blockchain

Proof-of-travel blockchain is mainly to record vehicles’ accumulated contributions to other vehi-

cles. We assume that CVs will broadcast traffic information, e.g., BSM or CAM messages, in an

average frequency of fm Hz. Surrounding vehicles within the communication range will record
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Algorithm 6: Redressing for SCID=0001 Transactions
Result: Updated trust points for involved vehicles

1 Input: senderTID, debateID, time
2 Find all ended contracts of type SCID=0000, in which the vehicle with debateID finally

won;
3 From all those ended contracts, build a group Gs that includes all vehicles that agree with

debatedID and Go that includes all vehicles disagree with debated ID;
4 Let N(G) denote the accumulated stake for vehicles in group G and Nth denote the

threshold number;
5 if N(Go)−N(Gs) > Nth then
6 Redress previous contract instances;
7 Increase trust points for group Go by 1;
8 Set trust points for group Gs to be -1;
9 end

Algorithm 7: Transferring Records for SCID=0002 Transactions
Result: Updated trust points for senderID in two regions

1 Input: senderID, regionID, position
2 if position is near the border of current region and the region of regionID then
3 Get proof-of-travel credits and trust points of senderID in current active region;
4 Transfer these records to another region corresponding to regionID;
5 if another region updated records of senderID then
6 Set trust points of the vehicle to 0 in original region
7 end
8 end

the public keys of message senders and the number of valid messages. After each travel period

Tpot (which is much longer than the period for trust points blockchain), every vehicle vi will have a

list that records the public keys of message senders vj and the number of messages nj2i from every

sender during this period. We propose a metric npotj , named “proof-of-travel credits”, to summarize

all mages commenting on vehicle vj from all other vehicles vi, i.e.,

npotj =
∑
i

nj2i (5.1)
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For a vehicle, its accumulated proof-of-travel credits in the latest Nsum periods is computed

by:

Npot
j [m] =

Nsum−1∑
k=0

αk npotj [m− k] (5.2)

where npotj [m− k] is the proof-of-travel credits in the (m− k)th period, α is a discounting factor,

Npot
j [m] is the accumulated Nsum periods proof-of-travel credits by the mth period. Vehicles that

make a persistent contribution to others will have a high accumulated proof-of-travel credits.

We assume that most vehicles will report the number of messages they received honestly be-

cause honest vehicles generally do not know the identity of surrounding vehicles. Honest vehicles

can also generate transactions to reveal falsified number report, in a similar way as in the trust

points blockchain.

Fig. 5.2 presents the general process of updating the proof-of-travel blockchain. Different

vehicles may get registered in different permanent regions, e.g., region A, region B, and so on.

We assume that each vehicle is uniquely identified by the regionID and the vehicle index in that

region, e.g., A1 is a vehicle with the index of 1 in region A. Since a vehicle may change lane,

overtake, choose different routes, or even enter another region, it will encounter different vehicles

in the same or different regions. It will record those vehicles and the number of messages they sent

in a transaction and broadcast it in the region. As in the figure, each region will have a number of

aggregated transactions. Each transaction is denoted by the vehicle senderID with a set including

all vehicles it encountered, e.g., E1: {E2, B3, F2, · · · } is the transaction sent by vehicle E1. The

selected block proposer will then arrange these transactions and build a pre-block by summarizing

credits for all vehicles in the sets. After the consensus process, all vehicles in the region will agree

with this pre-block. We name it pre-block because it may not include complete information for

vehicles in the region, but record vehicles who are not in this region. Then vehicles in neighboring
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Figure 5.2: Proof-of-travel blockchain updating across multiple regions. With intra-region com-
munication, each vehicle can aggregate transactions received from others in the same region. By
computation and arrangement, vehicles can build a pre-block and reach consensus on it, which in-
cludes vehicle ID and proof-of-travel credits. Note that records in pre-blocks may not be complete
as vehicles may move across multiple regions; but with inter-region communication, blocks for
each region will be eventually built.

regions will communicate with each other regarding the pre-blocks. Finally block proposers will

build a block containing complete information of vehicles in their region. In this way, to find

the proof-of-travel credits of one vehicle, we can easily refer to the blockchain in that vehicle’s

permanent region.

5.2.4 Stake Computation and Region Size

In framework, the stake N stk is computed from the accumulated proof-of-travel credits Npot in the

proof-of-travel blockchain and the trust points N tp in the trust points blockchain:
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N stk =
Npot

1 +Mpot
+

N tp

1 +M tp
(5.3)

where Mpot and M tp denote the mean value of Npot and N tp for all vehicles, respectively. Here

we use 1 + Mpot and 1 + M tp as denominator to avoid the near-zero case. This stake is the basis

of consensus mechanism for both the trust points blockchain and the proof-of-travel blockchain.

The region size that one blockchain can cover is decided by various factors. First, it is limited

by the round latency that we desire. A larger size may result in a larger latency to reach consensus,

thus slow down system’s response to attacks. Second, for trust points blockchain, the smaller the

region is, the lower the resource demand is for all vehicles in the region to maintain and update

the blockchain. However, a small region size typically means that vehicles will frequently move

across different regions, thus frequently transferring their records. For proof-of-travel blockchain,

a smaller region size leads to lower overhead on intra-region communication but higher overhead

on inter-region communication. Such trade-offs are addressed in detail in Section 5.3.4 and 5.4.

5.3 Security Analysis

As discussed in the threat models in Section 5.1, a malicious vehicle can broadcast falsified mes-

sages, report falsified misbehavior of honest vehicles, or create other pseudonymous identities for

manipulating the voting process.

We evaluate the effectiveness of our proposed framework in defending against the three threat

models, based on simulations in SUMO. We also analyze the relationship between round latency

of the trust points blockchain and the region size in our framework.
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5.3.1 Against Message Spoofing Attack

For the threat model described in Fig. 5.1(a), under message spoofing attack and without our frame-

work, the merging vehicle in on-ramp can be fooled to speed up when the highway is congested

or to decelerate when there are few vehicles on the highway. When the merging vehicle is able

to perceive the traffic environment, it has to adjust its velocity significantly, which leads to low

efficiency and possible failure to merge onto the highway. With the protection of our framework,

other honest vehicles on the highway may report this spoofing attack and launch the voting process

to assess the message. Before the assessment is finished, the merging vehicle can start taking cau-

tious actions in milliseconds, e.g., speeding up only a little bit for reacting to uncertain traffic status

on the highway, preventing sudden velocity changes. When all vehicles reach consensus after the

voting process, the identity of the attacker is exposed, and its messages are not trustworthy any

more.

We compare the average speed, CO emission, and fuel consumption of the merging vehicles

under three cases, i.e., without attack, under attack without our framework, and under attack with

our framework. We perform 20 simulations for each case, and the average performance is recorded

in Table 5.1, where ‘ours’ is short for our framework. During simulations, vehicle arriving rate on

highway and on-ramp are both 0.2 vehicle per second. The performance is measured over the

200 meters on-ramp and the following 200 meters highway. The table shows that without the

protection from our framework, the attack can lead to a 42.66% decrease in average speed and an

87.06% increase in CO emission. With our framework, the vehicles can take cautious actions, thus

have a significantly higher travel speed and lower CO emission.
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Table 5.1: Effectiveness of our framework in protecting against message spoofing attack in high-
way merging.

performance without attack under attack
without ours

under attack
with ours

average speed (m/s) 16.41 9.41 13.00
CO (mg) 741.06 1386.24 1006.36
fuel (mL) 41.17 41.91 42.96

5.3.2 Against Bad Mouthing Attack

Under the bad mouthing attack as shown in Fig. 5.1(b), all honest vehicles near the intersection

are reported to have misbehavior by the attacker. Those honest vehicles may generate transactions

to claim that they are innocent and being attacked. Before it is confirmed, all vehicles near the

intersection will take cautious actions and choose not to trust others’ messages; thus, the intelligent

intersection may temporarily lose its functions. Vehicles will travel through the intersection as if

there were all-way stop signs.

Fig. 5.3 shows the traffic in an intelligent intersection that is under attack. The vehicle arriving

rate is 0.05 vehicle per second in the intersection. Around time 60 (seconds), the attacker starts the

bad mouthing attack. However, the design of our framework ensures that the attack can be soon

discovered and the system can return to normal shortly. Specifically, in one round of trust points

blockchain, the surrounding vehicles have reached consensus on the existence of this attack. An

honest vehicle will then trust messages from other honest vehicles, and the function of intelligent

intersection gets recovered. From the figure, we can see that if our framework has a smaller

round latency of tlat = 22 seconds for the trust points blockchain, the system can recover before

any significant increase of travel time. If the round latency reaches tlat = 60 seconds, travel time

starts increasing initially when the intelligent function is temporarily disabled, but starts decreasing

around time 120 and fully recovers around time 140. More analysis of the impact of round latency
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Figure 5.3: Effectiveness of our framework against bad mouthing attack in an intelligent intersec-
tion. The red stars denote the moment that the attack starts and the blue circles denote the moment
that our framework detects the attack and the traffic system starts recovering from the attack. Travel
time curves with different round latency (tlat = 22 and 60 seconds) of the trust points blockchain
are plotted.

is shown later in Section 5.3.4.

5.3.3 Against Sybil and Voting Attack

Fig. 5.1(c) shows the threat model where a traffic network with route choices is attacked with Sybil

and voting attack. Specifically, an attack and the two Sybil vehicles it generates send transactions

reporting a traffic accident in one route and win the voting process because they have more stake

initially. Then other vehicles arriving at the area will have a higher probability (e.g., 0.9 in our

simulations) to take another route, which leads to longer travel time. However, as several vehicles

still choose the route with the fake accident and realize that it is a Sybil and voting attack, they
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Figure 5.4: Effectiveness of our framework against Sybil and voting attack. Red stars denote the
moment the attack starts, and the blue circles denote the moment the attack is detected and the
recovery starts. Travel time curves with different round latency (tlat = 22 and 60 seconds) for the
trust points blockchain and under different vehicle arriving rates (γ = 0.2 and 0.33 vehicle per
second) are plotted.

trigger the redressing process as the honest vehicles have higher stake now. Fig. 5.4 shows that our

framework can soon discover the Sybil and voting attack, and recover to normal status. We also

analyze the impact of vehicle arriving rate and round latency of trust points blockchain, and observe

that a higher vehicle arriving rate leads to longer travel time under attack but faster recovery time in

our framework. A smaller round latency may reduce the travel time under attack and also shorten

the recovery time.

The results above demonstrate the effectiveness of our framework in protecting against mes-

sage spoofing, bad mouthing, and Sybil and voting attacks. Note that with our proof-of-travel

blockchain, it is even harder to perform these attacks (especially Sybil attack), as it takes more
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effort for the malicious attackers to build up a travel record in the region with high stake.

5.3.4 Round Latency and Region Size

In the results above, we have seen the impact of round latency of the trust points blockchain on

system performance. This latency is closely related to the region size. Here we conduct more

in-depth analysis on the relationship between the two.

In [170] and [171], the authors simulated 50k Algorand users in the m4.2xlarge virtual ma-

chines on Amazon’s EC2 platform, with 50 users per VM. The message transmission in Algorand

is enabled by gossip protocol, which is similar to Bitcoin. The bandwidth for each Algorand pro-

cess is set to 20 Mbps. Latency for one round of Algorand is about 22 seconds, dominated by the

time to gossip a 1 MB block through the user network [171].

We assume that the blockchain will record all transactions sent by vehicles in a circular region

with a radius of d0. The size of a block is computed as:

Sb = (
2πd0βlβc

βv
+ πd2

0βdβt)tlatS
SCID
t (5.4)

where βl is the number of lanes connect to outer space per perimeter of the region, βc is the traffic

capacity of a single lane with the unit as the number of vehicles traveled per hour per lane, βv is

the number of vehiwhere cles that can be claimed in a transaction of type SCID=0002, βd is the

density of vehicles in this region, βt is the generation rate of transactions of type SCID=0000/0001,

tlat is the latency (period) to generate a block, SSCIDt is the size of a transaction.

We set the capacity of lanes that connect to other regions, βc, to be 3000 vehicles per hour

per lane, as observed in the data collected from a section of the highway I-5 in Southern Califor-

nia [195] and should be similar in other regions. The density of vehicles βd is set to 300 veh/km2,
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Figure 5.5: Maximum region size and minimum round latency under different transaction gen-
eration rate (best viewed in color). The solid blue line and the dashed orange line represent the
maximum region size and the minimum round latency under different transaction generation rate,
respectively. Drawing a vertical line, we can see the minimum round latency corresponding to the
region size, e.g., 22 seconds for a region with a radius of 182.8 km.

which is similar to the density in Beijing [196]. Considering that attacking events are rare and

vehicles are not driving on the road all the time, βt is set to 0.05 transactions per hour per vehicle.

SSCIDt is 250 byte per transaction. βv is set to 10 vehicles per transaction and βl is 1 lane per km.

Taking a region with a similar size to Beijing, the transaction data generation rate is about 1.6

Mbyte/min. According to [171], the latency for one round of Algorand has little variation on the

number of users. It basically remains the same when the block size is smaller than 4MB and then

increases proportionally with a larger block size. We plot the relationship among throughput (data

generation rate), minimum latency, and region size in Fig. 5.5, and we can clearly see the trade-offs

between the minimum round latency and the maximum region size.
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5.4 Resource Demand Analysis

We use three metrics to measure the resource demand of our framework on computation, com-

munication, and storage cost. Here, the computation cost is the CPU resource used for running

blockchain on each vehicle. Communication cost is measured by the total size of messages re-

ceived per minute by each vehicle. Storage cost is measured by the total size of data maintained in

our framework.

We leverage the results from Algorand in our analysis. The Algorand users use CPU resources

mainly for verifying signatures and verifiable random functions (VRFs). Each Algorand process

uses about 6.5% of a core averagely, in a 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) Processor.

While the on-board computing platform for vehicles may be different from the ones used in Algo-

rand’s analysis, we hope the overall trends shown in this section could still provide some valuable

observations.

Next, we will analyze the three metrics for the trust points blockchain in Section 5.4.1, 5.4.2,

and 5.4.3, and briefly discuss the resource demand for the proof-of-travel blockchain in Sec-

tion 5.4.4.

5.4.1 Computation Cost

Note that the computation cost mainly depends on the verifier committee size, rather than the total

amount of vehicles, because only block proposers and verifiers will broadcast messages. According

to [171], the verifier committee size is directly computed from the fraction of honest vehicles h

and a parameter F . Here we set F = 5×10e−9, denoting a negligible probability that the verifier

committee reaches consensus on a falsified block [171]. By assuming that the computation cost is

proportional to the number of messages received, we plot Fig. 5.6, which shows the relationship
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Figure 5.6: Computation resource demand under different fractions of honest vehicles.

between computation cost and the fraction of honest vehicles h. Here the computation cost is

measured by the utility of one core in a 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) Processor, e.g.,

it is 6.5 percent when 80 percent of the vehicles are honest.

5.4.2 Communication Cost

According to the consensus process described in [170] and [171], communication cost in one round

is computed as

Ccm = Sb + Scηp + Scηv(ηs − 2) (5.5)

where Sb and Sc are the size of a block and a short message for every step in the consensus process,

respectively. As in [171], Sc is assumed to be no more than 200 bytes. Let ηp denote the number of

block proposers in every round. All these proposers will broadcast a short message to claim their

identity in Algorand. Let ηv and ηs denote the number of verifiers and the number of steps to reach

consensus. Then ηv(ηs − 2) is the number of messages sent by verifiers in one round because they
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Figure 5.7: Communication cost under different fraction of honest vehicles (h), round latency
(tlat), and region size.

do not send messages in the first and last steps.

We plot communication cost under different fraction of honest vehicles, different round latency,

and different region size in Fig. 5.7. We can see that the communication cost will increase with a

smaller fraction of honest vehicles, a smaller round latency, or a larger region size.

5.4.3 Storage Cost

Storage resource needed by every vehicle for one-day data can be computed as

C1d
s =

24× 60

tlatαs
Sb (5.6)

where 24×60
tlat

is the number of blocks generated every day, and αs is a sharding parameter. For N

shards, vehicles only store blocks whose round number equals their public key modulo N, so that
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Figure 5.8: Storage cost under different region size. We can see that the summary of all vehicles’
records has a size that is between the sizes of transactions generated in one hour and in two hours.

storage cost can be reduced by the divisor of αs.

As we mentioned in Section 5.3.4, for a region with the similar size to Beijing, the blockchain

generates 1.6 Mbyte data per minute, which means 69.12 Gbyte per month. Even if we leverage

the sharding technique with αs = 10, blockchain users will still have to maintain about 7 Gbyte

of new data every month. Moreover, the sharding technique will not help new vehicles. A new

vehicle will have to download all the data to get the correct status of all vehicles.

To overcome this problem, we propose a new summary step for blockchain. In our design,

selected block proposers will summarize the status of all vehicles in new blocks with a period of

tsum. By indicating the type of block in its header, a new vehicle can easily find the latest summary

blocks and do not need to download blocks generated before those.
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In this way, without considering the sharding technique, storage resource demand Cs is

Cs = Sb + tsumC
1d
s (5.7)

where Sb is the data size of summary blocks, as computed below:

Sb = πd2
0βdSu (5.8)

where Su denotes the size of data for summarizing one vehicle’s status. As shown in Fig. 5.8, the

size of these summary blocks is between the size of transactions generated in one hour and the size

of transactions generated in two hours.

These summary blocks are communication overhead. A smaller tsum means larger communi-

cation overhead, smaller storage cost, and smaller size of data a new vehicle needs to download

to join the blockchain. Taking a region with a radius of 120 km for example and reading data

from Fig. 5.8, with a period of tsum = 24 hours, the communication overhead would be about

0.339
0.2263×24

= 6.24%, storage cost would only be 24× 0.2263 + 0.339 = 5.77 Gbyte. That is, a new

vehicle may only need to download 5.77 Gbyte data to get the latest status of blockchain.

5.4.4 Resource Demand for Proof-of-Travel Blockchain

To alleviate resource demand for the proof-of-travel blockchain, vehicles can generate blocks and

update the blockchain in a much larger period than that of the trust points blockchain, e.g., one

day or longer. Considering that vehicles usually stay most time in their permanent address/region,

proof-of-travel blockchain is maintained by vehicles in the same permanent region to mitigate

communication overhead.

For example, for a region with a 10 km radius, there are about 100 thousand registered vehicles
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under density βd. We assume that a vehicle can record at most 500 vehicles with higher credits

in its transaction, and the updating period is one day. The size of one transaction is estimated as

20×500 = 10k bytes if each vehicle record consumes 20 bytes. The size of aggregated transactions

will be 100k×10k = 1G bytes. After arrangement and inter-region communication, the final block

should have a much smaller size. In this way, with a block generating period of one day or longer,

the resource demand for the proof-of-travel blockchain should be much less than that for the trust

points blockchain.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we discussed safety and security challenges in connected and autonomous

vehicles and presented our solutions to address some of these challenges.

Autonomous driving is safety-critical. To ensure safety, we proposed a hierarchical neural

network-based planner design based on the underlying physical scenarios of the system, and devel-

oped novel overapproximation techniques for the reachability analysis of such hierarchical design.

Through theoretical analysis, we showed that our hierarchical design can improve the safety and

verifiability for systems that may evolve into different physical scenarios, compared with single

neural network-based planners. Through two case studies of unprotected left turn and highway

merging in autonomous driving, we further demonstrate such advantages empirically.

To prevent over-conservative planning while ensuring safety, we proposed a novel safety-driven

interactive neural network-based planning framework. The framework includes a safety-driven

behavior adjustment module for safety assurance and an aggressiveness assessment module for

avoiding over-conservative planning. Extensive experiments on synthetic examples and real-world

challenging scenarios demonstrated the effectiveness of our approach in improving system safety.

Furthermore, we improved the planning framework by incorporating connectivity for mixed traffic

scenarios. The framework can significantly improve performance by coordinating with surround-

ing connected vehicles in dynamic environment. Extensive experiments demonstrated the strength

of our planner design in improving performance while ensuring safety. Our experiments sug-
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gest that (1) connectivity of the immediate following vehicle plays a more important role for ego

vehicle’s lane changing than the connectivity of leading vehicles, and (2) when there are more

connected leading vehicles, the system performance can be further improved because more vehi-

cles can coordinate to leave larger space for the ego vehicle. We also demonstrated the system

robustness under different extent of promise violation rate of surrounding connected vehicles.

For those challenging scenarios that surrounding vehicles’ behaviors and trajectories cannot be

accurately predicted, we proposed a speculative planning framework with adaptive prediction to

ensure safety and improve performance. Our method considers all possible predicted behaviors and

trajectories, ensures system safety by ruling out actions that may be unsafe in the worst case, and

improves system performance by sampling all possibilities and choosing the action that maximizes

the expected reward. By adapting the prediction results according to the system states, impossible

behaviors and trajectories of surrounding vehicles are filtered out, thus leading to more effective

planning. Through the case study of lane changing in a multi-lane highway, we demonstrated the

advantages of our proposed planner over various baseline methods.

To secure communication for CV applications, we proposed a dual cyber-physical blockchains

framework that includes a trust points blockchain and a proof-of-travel blockchain for building

trust. The trust points blockchain has a quick response to suspicious behavior, with smart contracts

designed for instant voting, redressing, and transferring records. The proof-of-travel blockchain

builds up reputations from vehicles’ long-term travel records. The trust points and the proof-of-

travel credits are used together to compute the vehicle stake for running the consensus mechanisms

in both blockchains. Experimental results demonstrated the effectiveness of our framework in

protection against message spoofing, bad mouthing, and Sybil and voting attacks, in representative

CV applications. We also conducted a preliminary analysis on the framework’s resource demand.
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6.2 Future Work

Our work addressed some safety and security challenges under certain assumptions. However, the

wide adoption of autonomous driving is still facing lots of challenges.

There is an urgent need for more accurate and general models of surrounding traffic participants

in various environments. It is the key to ensuring safety and improving performance. Current

state-of-the-art methods usually assume the prediction results reflect the true driving behaviors and

trajectories. However, this assumption may not hold all the time. A promising solution is to build a

prediction model based on traffic rules and typical driving norms, and to ensure safety when others

obey traffic rules and driving norms.

Scalability is important for wide adoption of these techniques. We expect the cost to be low

for adapting the machine learning-based perception, prediction, planning models and conducting

corresponding verification processes in different environments. Demonstrating the scalability of

the technique should be an interesting and critical direction.

There is doubt on whether it is appropriate to focus on Level 4 or Level 5 autonomous driving

currently. Because there are so many corner cases, which may take a long time to be learned by

neural network-based models. There is always a trade-off between safety and performance. Some

interesting questions could be: if safety is ensured, how is the performance of current state-of-

the-art techniques? What is the performance threshold to adopt it widely without significantly

interfering with human drivers?

The realistic traffic environment is much more complex than our assumptions. Extending our

work to those complex scenarios with more traffic participants, and finding backup solutions for

others’ unexpected behaviors are also interesting directions.
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