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ABSTRACT

Innovation, Competition and Networks in the Supercomputer Industry

João Macieira

This dissertation develops dynamic models to examine markets with product differen-

tiation where both firm conduct and consumer behavior is jointly influenced by switching

costs, network effects and technological innovation. In Chapter 1 I propose a structural

model of competition where firms set prices, introduce new products and scrap obso-

lete models. Network effects and switching costs are assumed to affect product demand,

resulting in endogenous network creation dynamics. The model allows for product intro-

duction and destruction without explicit modeling of these actions by instead considering

a quality investment decision. I build on recent advances on dynamic games estimation

and minimum-distance sieve estimators to suggest an estimator for the model.

Chapter 2 builds upon and extends the model from Chapter 1 by allowing for techno-

logical frontier investment. I estimate the model using data from the supercomputer in-

dustry. These estimates allow for counterfactual evaluation on how technological progress

depends on market structure. The evidence suggests that increased levels of competition

are associated with higher rates of innovation on the maximal computing speed available
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in the industry. I also argue that increased competition is also associated with increased

welfare, but the marginal increase in welfare is decreasing in the number of competitors.

Chapter 3 examines the long-run effects of a merger in the supercomputer industry.

The primary methodology is to assume that firm behavior is consistent with Markov-

Perfect Nash equilibrium (MPNE) both with and without a merger and that a merger can

be described by changing observed industry states. The proposed method accounts for the

effects of dimensions of non-price competition between manufacturers, which could lead

to misleading conclusions about the merger effects if ignored in the analysis. I evaluate

the effects of the merger between Hewlett-Packard and Convex on consumer welfare and

technological progress. I argue that this merger led to increases on the maximal computing

speed available in the supercomputer industry at the cost of small losses in consumer

welfare.
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Introduction

Most economic theory predicts that switching costs reduce consumer welfare by making

markets less competitive. Recent research, however, has challenged this claim for the case

of markets with differentiated products and imperfect lock-in. Dube, Hitsch and Rossi

(2006) provide empirical evidence that equilibrium prices may be lower in the presence

of switching costs if these are sufficiently low. The intuition for this result is that, under

imperfect lock-in, the firm’s incentive to attract consumers by charging low prices may

dominate its incentive to "harvest" its consumer base. However, if consumers benefit

from network effects by purchasing a product, the analysis of markets with switching

costs must also account for two facts. First, network sizes affect not only buyer’s utility,

but also the distribution of switching costs across consumers. Second, firms will account

for all existing network sizes when computing optimal prices. To my knowledge, no

previous attempts have been made to provide an empirical framework controlling for these

issues. In addition, much of the existing literature ignores the endogeneity of technological

advances observed in most markets with switching costs and network effects. Policy

evaluation results can be misleading if any of these issues is not accounted for in the

analysis. All three chapters of my dissertation aim to fill in these gaps.
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In Chapter 1 I model competition through markup and quality investment decisions

when network effects and switching costs influence product demand in markets with prod-

uct differentiation. I build on the dynamic games estimation literature to develop a struc-

tural model of the benefits and costs of strategic pricing and product introduction and

scrappage. The model describes the dynamics of network creation under strategic behavior

of firms. It nests the possibility of market tipping practices, which are commonly reported

in markets with network effects and switching costs. By building on recent extensions of

dynamic models to settings with multi-product firms, the model also accounts for the

future benefits of quality increases (or decreases) without modeling product launch and

exit explicitly. I build on recent advances on dynamic games estimation and minimum-

distance estimators with unknown functions to provide necessary conditions for structural

estimation of the model.

In Chapter 2 I propose and estimate a structural model of dynamic competition in the

supercomputer industry to evaluate the dependence of technological innovation on market

structure. Building on both the model outlined in Chapter 1 and on recent advances in

the structural estimation of investment games, I develop a tractable yet dynamic model of

the benefits and costs of frontier technology innovation, quality investments and strategic

pricing. I account for the dependence of innovation cost on the current technological

position of the firm and for the dynamic benefits of technological leadership. This model

identifies the innovation incentives for all firms in the industry, and yields an estimable

model of the structure of profits, frontier innovation and quality investment costs. Taking

advantage of a novel and unique panel data set comprising nearly all supercomputer

purchases over a 16-year period, the approach builds upon and extends recent advances
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in the estimation of dynamic investment games in the presence of strategic interactions.

The estimates facilitate counterfactual comparisons of how the evolution of the maximal

computing speed supplied in the supercomputer industry differs under different market

structures. Consistent with the importance of a technology "selection effect" (Aghion,

Harris, Howitt and Vickers (2001)), increased levels of competition are associated with

a higher rate of innovation in the supercomputer industry. Increased competition is also

associated with increased welfare, but the marginal increase in welfare is decreasing in

the number of competitors.

In Chapter 3, I provide a framework for merger analysis in differentiated product in-

dustries. Unlike previous literature, I account for the effects of dimensions of non-price

competition between manufacturers (e.g., advertising, R&D, product introduction and de-

struction) in a dynamically competitive industry. The proposed toolkit therefore avoids

misleading conclusions about the post-merger welfare and equilibrium prices potentially

caused by ignoring these nonprice dimensions. The proposed framework uses an estimator

for firm continuation value to simulate mergers with several firms while keeping compu-

tational tractability. I use the proposed framework to examine the welfare and markup

effects of the merger between Hewlett-Packard (HP) and Convex in 1995. The results

suggest this merger led to improvements on the maximal computing speed available in

the supercomputer industry while implying very small consumer welfare losses.

The analyses below make progress on our understanding of the effects of network

effects, switching costs and technological progress on firm conduct. These analyses are

also particularly valuable for policy makers. For example, they allow for the assessment

of the optimal market structure both in terms of welfare and technological progress. Of
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course, other alternativeeapplications could be considered. One could use the model

in Chapter 1 to analyze other markets with network effects and switching costs - cell

phone plans and computer software may be good candidates. The model developed in

Chapter 2 can be used to examine the effects of subsidy schemes to innovation on the

best technology available in a given industry. The framework presented in Chapter 3 can

be used to measure long-run price effects of mergers, which is a central issue in antitrust

analysis.
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CHAPTER 1

A dynamic model of switching costs and network creation in a

differentiated products’ industry

1.1. Introduction

A large body of literature examines the effects of consumer switching costs on firm

conduct (see Farrell and Klemperer (2006) for a survey). However, both theoretical and

empirical work rarely accounts for the importance of network effects when examining

markets with switching costs. Network sizes may affect not only buyer’s utility, but also

the distribution of switching costs across consumers. Firms will account for network sizes

when computing optimal strategies, and therefore competition models with switching costs

but without network effects may lead to misleading conclusions on firm conduct. Despite

the fact that switching costs and network externalities are inherently linked to dynamic

competition, most of the literature has focused on static models (e.g., Greenstein (1993),

Rysman (2004)).To my knowledge, no previous attempts have been made to provide an

empirical framework that jointly accounts for network effects, switching costs and dynamic

competition.

This Chapter considers the problem of estimating dynamic competition models in

markets with product differentiation, switching costs and network externalities. I propose

a dynamic oligopoly model where firms set prices, introduce new products and scrap ob-

solete models. In common with recent literature on markets with product differentiation,
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market demand is derived from a general class of discrete-choice models. Consumer utility

depends on product characteristics, network sizes, and the identity of the firm from which

the consumer made his last purchase.

My model builds on the frameworks of Ericson and Pakes (1995), Dube, Hitsch and

Rossi (2006) and Jenkins, Liu, Matzkin and McFadden (2004). One of the major chal-

lenges is how to deal with multi-product firms. I build on the model proposed by Nevo and

Rossi (2007), in which a markup-adjusted inclusive value is included as state variable. This

allows me to control for product market profits while keeping a computationally manage-

able state space dimension. A second difficulty is how to deal with product introduction

and scrappage. I use the properties of the markup-adjusted inclusive value statistic to

define firm quality investment while avoiding the direct modeling of product introduction

and destruction. A related difficulty is how to define pricing strategies when firms may

have a time-varying number of products. I build on the model proposed by Nevo and

Rossi (2007) to define equilibrium in firm-specific markups and quality investments. This

allows me to have well-defined pricing strategies regardless of the firms’ product portfolio

composition. Another difficulty is how to allow for consumer heterogeneity in dynamic

oligopoly models. I build on the frameworks of Berry, Levinsohn and Pakes (1995) and

Nevo (2001) to control for switching costs differences across consumers.

The model estimation method builds both on the two step method proposed by Bajari,

Benkard and Levin (2006) and on the minimum-distance sieves estimator introduced by

Ai and Chen (2003). The first step is to recover the profit function parameters, markups

and marginal cost series.from demand and supply estimation. In addition, this step esti-

mates policies and state transitions nonparametrically as functions of observable states.
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The second step is to estimate the remaining structural parameters of the game by using

the sieve minimum distance (SMD) estimator of Ai and Chen (2003). Instead of using the

continuation values in the inequality sampling method proposed by Bajari et al. (2006),

this step forms a set of moments where value functions are replaced with sieves approxi-

mations. I use firm optimality conditions, envelope conditions and Bellman equations as

moments in the SMD objective function. This methodology has two advantages. First,

unlike the method of Bajari et al (2006), it avoids the computational burden of simulat-

ing firm continuation values. Second, it does not require the computation of equilibrium,

which is problematic in the context of dynamic oligopoly games.

Understanding the forces driving market outcomes in cases where switching costs and

network effects are present requires focus on a specific industry. A recent body of the

industrial organization literature pursues this approach using static models of supply and

demand. For example, Greenstein (1993) examines the significance of installed based

in federal computer procurement decisions. Other examples include Rysman’s (2004)

study of network effects in the market of Yellow pages and Ho’s (2005) quantification of

welfare effects of observed hospital networks. Few empirical studies address the effects of

either switching costs or network effects by considering dynamic models instead. Sweeting

(2007) estimates the costs of format switching in the commercial radio industry. Dube,

Hitsch and Rossi (2006) assess the impact of brand switching costs in equilibrium prices

of package goods. Jenkins, Liu, Matzkin and McFadden (2004) analyze the browser war

between Netscape and Microsoft by explicitly accounting for the network effects in that

market. Most of these studies do not model the joint effect of network externalities

and switching costs in consumer demand. In addition, the existing research ignores the
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endogeneity of network dynamics resulting from firm strategic interactions. I introduce a

model which accounts for these features.

This paper also extends the endogenous quality choice literature, which has rarely

focused on dynamic competition models1. Carranza (2006) proposes a dynamic model

of product innovation in the digital camera market where the quality of new products is

optimally decided by each firm. However, the impact of firms’ quality decisions in the

state space is assumed to be negligible in Carranza’s model. This assumption cannot

be considered in industries with both network effects and frequent product launch and

destruction, as it defeats the purpose of relating the firms’ actions to observed quality

and network states. In contrast, my modeling of firms’ markups and quality investment

explicitly accounts for both firm strategies’ dependence on the state variables and its

impact on the state space.

The rest of the Chapter is organized as follows. In section 1.2 I present the dynamic

oligopoly model, describing firm behavior on pricing and quality investment. The de-

tails about model estimation are presented in section 1.3. Section 1.4 concludes with a

contributions summary, and discusses extensions for the proposed framework.

1.2. The Dynamic model

In this section I present a model of price and quality competition in markets with both

switching costs and network effects. Time is assumed discrete with an infinite horizon,

and indexed by t ∈ 1, 2, ...,∞. At each period, multiproduct firms simultaneously decide

on retail prices and quality investments. I denote F as the maximum number of firms that

1Some of the most recent research on static endogenous quality choice can be found in Mazzeo(2002) and
Seim (2005).



20

can operate in the market. Only a subset of these firms, FA
t , are active at time t. Quality

investment is defined as percentage increase (or decrease) in a consumer’s expected utility

measure from buying a firm’s product. This variation is a result of the firm’s decisions on

product introduction and destruction. These decisions are not modeled directly. Instead,

I consider their joint impact on the firm’s average quality supplied to consumers as the

firm’s decision variable. Firms can exit the market by scrapping all their existing products

and introducing none. The number of inactive firm slots, F −FA
t , are taken by potential

entrants. The later are assumed to randomly enter the market, where the probability of

entry depends only on observed states. In what follows, I build on the work of Jenkins et

al. (2004), Ericson and Pakes (1995), Dube, Hitsch and Rossi (2006) and Nevo and Rossi

(2007).

Observable states. I assume that all payoff-relevant features of firms can be encoded

into a state vector. All firms observe the number of consumers who never purchased in

this market, denoted N0t, and firm-specific states, Nft, νft and Ξft for all f = 1, ..., F

players and period t ∈ 1, 2, ...,∞. Nft (henceforth firm network) represents the number

of consumers whose last purchase was from firm f . νft denotes a measure of a consumer’s

expected utility from buying from firm f . It consists of the markup-adjusted inclusive

value developed in Nevo and Rossi (2007). The latter is a function of all the firm’s

products characteristics, which are jointly denoted by Ξft. I denote s̃t ∈ S̃ as the vector

of all observable states at time t.

Incumbent firms. Let pft denote the vector of prices charged by firm f at time t for

its products. In addition, I denote Aft as the quality investment of firm f . At the time
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of the investment and pricing decisions, each firm observes a private information shock

in quality investment costs, denoted εft. Therefore, firm f ’s state space is S̃ ×Θf , where

Θf corresponds to the space of realizations of εft.

Before defining each firm’s intertemporal optimization problem, I impose the following

assumption:

Assumption A1 (Markovian pure strategies): In equilibrium, all players’ choices

are deterministic functions of payoff-relevant information.

Formally, this corresponds to a map σ̃f : S̃×Θf −→ (pf , Af), for any firm f. In what

follows, I assume Θf = R,∀f = 1, ..., FA
t . That is, shocks in quality investment costs can

be negative. Innovation may be less costly due to outside factors (e.g. governmental sub-

sidies for certain innovation projects). A firm’s intertemporal optimization problem can

be written in recursive form, for any profile σ̃ = (σ̃1, ..., σ̃Ft) of Markovian strategies. One

may question how reasonable is to assume away mixed-strategy equilibria. Fortunately,

Jenkins, Liu, Matzkin and McFadden (2004) show that, under a set of mild assumptions

satisfied in my setup, there are only pure-strategy MPNE in the game with probability

one.

The flow payoff of firm f at time t is defined as

πf(pt, Aft, s̃t, εft) ≡ Πf(pt, s̃t)− CA(Aft, s̃t, εft)

where s̃t ≡ (N0t, Nft, νft,Ξft)
F
f=1 , pt ≡ {pft}Ff=1 is a tuple of prices charged by the

FA
t firms, Πf(pt, s̃t) corresponds to firm f 0s flow market profits. CA(Aft, s̃t, εft) represents
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quality investment costs. The firm is assumed to decide quality investment and retail

prices in order to maximize the expected sum of discounted payoffs. Firms do not observe

the private shocks of their rivals. Therefore, the Bellman equation of the firm is

Vf (̃st, εf) =

Z
ε−f

Max
σ̃f (s,εf )

{πf(σ̃f (̃s, εf), s̃, εf)

+βEs,,σf ,σ−f
£
Vf (̃s

0, ε0f)|̃s, σ̃f (̃s, εf), σ̃−f (̃s, ε−f)
¤ª

dF (ε−f)

where σ̃f (̃s, εf) ≡ (pf (̃s, εf), Af (̃s, εf)) represents a Markovian strategy for firm f ,

and Es,σf ,σ−f [.] denotes firm f ’s expectations conditional on all firms choosing Markovian

strategies, and on observable states.

Product portfolio changes induced by product introduction and scrappage may change

the number of prices that each firm decides on each period. Consequently, the model just

outlined may fail to have a well-defined set of actions for every period. Even if firms do not

change their product portfolio over time, the problem of intertemporal choice of several

products’ prices implies an unmanageable state space dimension. The reason is that

player’s pricing strategies would be conditional on each product’s characteristics, implying

a computationally prohibitive state space. I deal with these difficulties by restricting the

firm’s pricing strategy set as follows. LetMkpft be the equilibrium absolute markup that

firm charges for each of its products at time t. In addition, define Fft as the set of product

firm f commercializes at time t, and denote mcjt the marginal cost of producing product

j at time t. Under the conditions on product demand proposed by Nevo and Rossi (2007)

the following assumption holds:
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Assumption A2 (Constant absolute markup per firm): In equilibrium, each

firm f restricts attention to constant markup strategies Mkpft. That is,

pjt −mcjt = plt −mclt, ∀j, l ∈ Fft,∀f = 1, ..., FA
t

Although seemingly arbitrary, assumption A2 applies to several settings of practical

interest. For example, if product demand is multinomial logit, the solution to the firm’s

first order conditions for each product j in static price competition implies a constant

absolute markup per firm (see Nevo and Rossi (2007) and Anderson, de Palma and Thisse

(1992), pp 251-252). Despite its analytic convenience, one may question whether there

exists equilibrium in markup strategies. As shown later in this paper, there exists a pure-

strategy dynamic equilibrium in firm markups and quality investment. One may also

question whether assumption A2 is realistic in some industries, and to what extent it can

be relaxed without compromising model tractability. Fortunately, assumption A2 can be

extended to accommodate cases where constant markup strategies are not plausible. For

example, one can instead assume that firms charge a constant absolute markup for every

product that lies within a given market "segment". Under this assumption, firms would

choose M markups to maximize the discounted sum of payoffs, where M is the number

of segments. The more intuitive scenario of each firm choosing each product’s price

can be viewed as the limiting case where every product is considered a market segment.

However, expanding the number of constant absolute markups that a firm may choose

comes at the cost of an exponential increase in the state space’s dimension. In particular,

one would need M markup-adjusted inclusive values per firm in the state space. For ease

of exposition and without loss of generality, I will proceed under assumption A2.
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Assumption A2 implies that one can replace prices by absolute constant markup in

the firm’s problem. This in turn indicates that firm markup decisions are not guided by

the specific attributes of each product in the market, but instead by some metric that

describes each firm’s average quality. Hence, I further assume that firm’s strategies depend

only on a subset of observable states st ≡ (N0t, Nft, νft)
F
f=1, and private information εft.

Under this assumption, the set of all firms’ product characteristics, Ξft, can be removed

from the set of observed states. Therefore, the firm’s Bellman equation becomes

Vf(s, εf) =

Z
ε−f

Max
σf (s,εf )

{πf(σf(s, εf), s, εf)

+βEs,,σf ,σ−f
£
Vf(s

0, ε0f)|s, σf(s, εf), σ−f(s, ε−f)
¤ª

dF (ε−f)

where σf(s, εf) ≡ (Mkpf(s, εf), Af(s, εf)) represents a Markovian strategy for firm f ,

and Es,σf ,σ−f [.] denotes firm f ’s expectations conditional on all firms choosing Markovian

strategies, and on observable states. It can be shown that each player’s value function is

unique by verifying Blackwell’s sufficient conditions for a contraction mapping.

Potential entrants. Potential entrants are defined as firms are defined as players

with no products for sale. These players are assumed to decide whether to enter the

market. In case entry takes place, the potential entrant will have a set of products for

sale I assume that a potential entrant decides on entry after a shock which determines

future average product quality νft. Thus, a potential entrant’s state space is assumed

to be S × Γ3f , where Γ3f corresponds to the shock determining future average quality.
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These shocks are assumed private information of the entrants. It is assumed that potential

entrants get a payoff of zero by the time they decide on entry.

1.2.1. Product Market Profits

In this subsection I model product market profits. The modeling of product market profits

proceeds in two steps. First, I model product demand. Second, I assume price competition

in a differentiated products market to model supply. Finally I derive each firm’s profit as

a function of observed states and absolute markups.

Demand. The purchasing behavior in several markets is influenced by consumer

heterogeneity. Several studies in the literature provide empirical evidence on behalf of

this claim (e.g., Berry, Levinsohn and Pakes (1995), Nevo (2001)). Consequently, the

modeling of demand should control for consumer heterogeneity to the extent possible

without compromising tractability in dynamic oligopoly models. I deal with this issue as

follows.

Let Drft be a dummy variable which equals one if consumer r is part of firm f ’s

network and is zero otherwise. I follow the characteristics-based discrete choice approach

described in McFadden (1981). Let Jt be the number of products available at time t. The

utility function for a buyer r interested in acquiring product j at time t is assumed to be2

Urjt = γXjt + ψNf(j)t − αpjt + ξjt + Λf(j)Drtf(j) + �rjt

2I am implicitly assuming that buyers will purchase at most one unit of product. An alternative modeling
strategy would be to account for multiple purchases as proposed by Hendel (1999).
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where Xjt is a K-dimensional column vector of product characteristics, pjt is the price

of product j at time t (in constant dollars), ξjt regards unobserved (by the researcher)

product attributes, Nf(j)t corresponds to the number of consumers at time t who already

purchased from f(j) (i.e. the firm which commercializes product j), Drf(j)t is a dummy

variable which equals one if consumer r is part of f(j)’s network, and �rjt is a stochastic

term. I assume that Drf(j)t is not observed by the econometrician, but its distribution

is. ψ measures the magnitude of network effects, while Λf(j) measures switching costs

associated with the firm which produces product j.

Consumers can choose an "outside good", whose utility is Ur0t = ξ0t+ �r0t. I allow for

the mean utility of the outside alternative, ξ0t, to evolve over time. This would be the

case, for example, in the supercomputer market. The outside alternative would represent

not only other types of computers that buyers may consider powerful enough to meet their

computing needs (e.g., mainframes, workstations), but also the flow utility from using a

high-end computer one already owns.

The following assumption is imposed for not only for computational convenience, but

also to ensure that assumption A2 holds:

Assumption A3: ∀j = 0, 1, .., Jt, �rjt is identically and independently distributed

extreme-value type I.

Nevo and Rossi (2007) prove that, under assumption A3, firms will restrict attention

to constant absolute-markup pricing strategies. Under assumption A3, the market share

for product j at time t conditional on consumer state Drtf is given by
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qjt(p|Drt) =
exp(γXjt + ψNf(j)t − αpjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(γXlt + ψNd(l)t − αplt + ξlt − ξ0t + Λd(l)Drd(l)t)

and the conditional outside good share is

q0t(p|Drt) =
1

1 +
X
l

exp(γXlt + ψNd(l)t − αplt + ξlt − ξ0t + Λd(l)Drd(l)t)

Note that this specification also nests the case where a consumer may be part of

multiple firm networks. In what follows, I assume that consumers may belong to at most

one network. That is, if Drtf = 1 for a given f , then Drti = 0 ∀i 6= f.

Under this assumption, using the Law of Total Expectations, the aggregate demand

for a given product j at time t is given by

Mtqjt(p) =
FX
k=1

Nktqjt(p|Drkt = 1)

whereMt ≡
FP
k=1

Nkt is the market size as described in standard models of differentiated

product’s industries (e.g., Nevo (2001), Berry, Levinsohn and Pakes (1995)), and qjt(p) is

the unconditional probability purchase of product j.

In order to ensure that this framework allows for both consumer heterogeneity and

tractability of the dynamic model, it is necessary to verify that product demand can be

written only as a function of observed states and actions. The following claim is the first

step to address this issue.
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Claim 1 The probability of purchase of each product conditional on consumer r’s type

vector Drt = (Drt1, ...,DrtF ) depends only on the vector of equilibrium markups, observed

states, and product attributes. That is, qjt(p|Drt) = qjt(Mkpt|Drt), ∀j = 1, ..., Jt.

Proof. Following Nevo and Rossi (2007), the conditional probability of purchase

can be written as

qjt(p|Drt) =
exp(−αMkpf(j)t) exp(γXjt + ψNf(j)t − αmcjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(−αMkpi(l)t) exp(γXlt + ψNd(l)t − αmclt + ξlt − ξ0t + Λd(l)Drd(l)t)

Since markups are firm-specifc, the denominator can be simplified further, implying a

product market share of

qjt(Mkpt, st|Drt) =
exp(Mkpf(j)t) exp(γXj + ψNf(j)t − αmcjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
FX
d=1

exp(−αMkpdt) exp(νdt) exp(ψNdt) exp(ΛdDrtd)

where νft = ln

ÃX
l∈Fit

exp(γXlt − αmclt + ξlt − ξ0t)

!
is the markup-adjusted inclusive

value metric of Nevo and Rossi (2007).

Inclusive values have been widely used as state variables in dynamic models since its

development in McFadden (1981). In the context of the multinomial logit demand system,

a firm-specific inclusive value consists on the buyer’s expected utility from purchasing a

firm’s product. That is, for every firm f, the inclusive value is defined as
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ωft = ln

ÃX
l∈Fit

exp(γXlt − αplt + ξlt − ξ0t)

!

Of course, one could consider inclusive values specific to sets other than firm product

portfolios. Melnikov (2001) considers the inclusive value from buying any existing product

for modeling consumer demand for printers. More recently, Hendel and Nevo (2006) used

inclusive values from buying specific quantities to estimate demand for laundry detergent.

However, this firm-specific quality measure is dependent on prices, which are assumed to

be chosen by firms. Therefore, in order to use firm-specific inclusive values in my dynamic

model, I must adjust for its endogeneity in prices. Following Nevo and Rossi (2007), one

can use the fact that Mkpft ≡ pjt −mcjt, ∀j ∈ Fft, to write the firm inclusive value as

ωft = −αMkpft + ln

ÃX
l∈Fit

exp(γXlt − αmclt + ξlt − ξ0t)

!

where the last parcel corresponds to the markup-adjusted inclusive value.

Supply. Each firm f in the industry produces some subset Fft of the j = 1, ..., Jt

products commercialized at time t. Firm f ’s flow profits at time t are defined by

Πf(pt, st) =Mt

X
j∈Fft

(pjt −mcjt)qjt(p, st)− Cf1{exp(νft) > 0}

where Cf1{exp(νft) > 0} corresponds to fixed production costs conditional on the firm

being active in the market (i.e., it has at least one product being commercialized). The
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marginal cost of producing product j at time t, mcjt, is assumed to be time-varying and

dependent on product characteristics. Mt corresponds to the market size state at time t,

which is defined as being the number of consumers potentially interested on purchasing

a product. The last component of flow market profits is qjt(p, st), which denotes the

probability of purchasing product j at time t, given prices of all products and observable

states st.

Firms are assumed to compete in prices. However, the pricing decisions will affect

not only the profits at time t, but also future payoffs. Intuitively, firms pricing decisions

will also take into account the fact that prices affect purchase probabilities, which in turn

affect the evolution of some observable states. For example, a firm may charge prices

below marginal costs to attract consumers to its network. Hence, static price competition

models will fail to correctly describe firm pricing behavior. I use the results from the

previous section to both simplify the profit function and account for these issues.

First, I replace (pjt −mcjt) by the firm-specific absolute markup Mkpft in the flow

profit. Second, I use the fact that

Mtqjt(p) =
FX
k=1

Nktqjt(p|Drkt = 1)

to write flow profits as

Πf(Mkpt, st) =Mkpft

FX
k=1

Nkt

⎛⎝X
j∈Fft

qjt(Mkpt, st|Drkt = 1)

⎞⎠− Cf1{exp(νft) > 0}
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Again following Nevo and Rossi (2007), it can be shown that the probability of pur-

chase from a given firm f ’s conditional on consumer r’s type vector Drt = (Drt1, ...,DrtF )

depends only on the vector of equilibrium markups and observed states. The sum of

purchase probabilities across firm f ’s products can be simplified to

X
j∈Fft

qjt(Mkpt, st|Drt) =
exp(−αMkpft) exp(νft) exp(ψNft) exp(ΛfDrtf)

1 +
FX
d=1

exp(−αMkpdt) exp(νdt) exp(ψNdt) exp(ΛdDrtd)

which is a function of markups and observed states only. In addition, the conditional

probability of choice of the outside alternative is also a function of markups and observed

states only. This probability is given by

qot(Mkpt, st|Drt) =
1

1 +
FX
d=1

exp(−αMkpdt) exp(νdt) exp(ψNdt) exp(ΛdDrtd)

Under these results, assuming the existence of a dynamic equilibrium in markups, the

flow profit depends from product characteristics only via markup-adjusted inclusive. In

particular, the equilibrium profit function is given by

Πf(Mkpt, st) = Mkpft

FX
k=1

Nkt
exp(−αMkpft + νft + ψNft + Λf1{k = f})

1 +
FX
d=1

exp(−αMkpdt + νdt + ψNdt + Λd1{k = d})

−Cf1{exp(νft) > 0}
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Note that this profit function is well defined even if only FA
t < F are active in the

market. By definition exp(νft) = 0 for firms with no product portfolio, which implies

profits equal to zero.

1.2.2. Quality Investment and Costs

One of the major challenges on analyzing multiproduct industries is how to deal with

product introduction and scrappage. This paper allows for changes in the firm product

portfolio by considering percentage variations on firms’ current markup-adjusted inclusive

values. I exploit the fact that, under the assumptions imposed so far, markup-adjusted

inclusive values are sufficient statistics for firm quality. For ease of exposition, define

ϕft+1 ≡ exp(νft+1) as the exponential of a firm’s markup-adjusted inclusive value at time

t + 1. In addition, denote FIN
ft and FOUT

ft as the set of products that firm f decides to

launch and scrap, respectively. Then the set of products that firm f commercializes at

time t+ 1 is Fft+1 = {FIN
ft ∪ Fft} \ FOUT

ft . Then, ϕft+1 can be decomposed as

ϕft+1 =

⎛⎝X
j∈Fft

exp(γXj,t+1 − αmcj,t+1 + ξj,t+1 − ξ0,t+1)

⎞⎠
+

⎛⎝X
l∈FIN

ft

exp(γXlt+1 − αmclt+1 + ξlt+1 − ξ0t+1)

⎞⎠
−

⎛⎝ X
k∈FOUT

ft

exp(γXk,t+1 − αmck,t+1 + ξk,t+1 − ξ0,t+1)

⎞⎠

The rate of quality investment is defined as
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Aft =

⎛⎝X
l∈FIN

ft

exp(γXlt − αmclt + ξlt − ξ0t)

⎞⎠−
⎛⎝ X

k∈FOUT
ft

exp(γXk,t − αmck,t + ξk,t − ξ0,t)

⎞⎠
ϕft

Intuitively, Aft represents the ratio of net amount of product quality the firm added

(or subtracted) to the existing product quality stock. The fact that Aft may be negative

means that the firm may choose to degrade its products’ quality. This can apply to cases

where the firm introduces new products, although of not enough quality to compensate

the one of scrapped goods. Therefore, the model is rich enough to allow for several

complex product introduction and scrappage strategies. Note that Aft is bounded below

by -1, which corresponds to scrappage of all products in Fft with no new products being

launched. Hence, Aft = −1 can be interpreted as a market exit decision. The details on

how Aft impacts ϕft+1 can be found in the next section.

I assume that the firm incurs in costs CA(Aft, st, εft)) of adjusting its quality level

(either by increasing or decreasing it). I further assume that CA(Aft, st, εft)) satisfies the

property

∂CA(Aft, st, εft)

∂Aft
= C1(Aft, st) + C2(Aft, st)εft

This is a special case of the form CA(Aft, st, Aftεft)) where the function has Lip-

schitz derivatives. Jenkins, Liu, Matzkin and McFadden (2004) assume this form in their

dynamic game and prove the existence of pure-strategy MPNE.
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1.2.3. State transitions

The specification of the continuation value in the firms’ Bellman equations requires as-

sumptions on state transition functions. I impose the following auxiliary assumptions:

Assumption A4: Private shocks on quality investment costs are independently and

identically distributed over time and players.

Assumption A5: For every firm f , the private information state εft is assumed

independent of observed states st.

These assumptions are motivated by computational and tractability concerns. Allow-

ing for serial correlation implies a significant (and unaffordable) increase in computational

burden. The details on each observable state’s transitions are presented in the next sub-

sections.

Markup-adjusted inclusive values. The transition of industry markup-adjusted

inclusive values requires examining incumbents and potential entrants separately. I start

by rewriting the exponential of the markup-adjusted inclusive value as

ϕft+1 = exp(ξ0,t+1 − ξ0,t)

⎛⎝X
j∈Fft

exp(γXj,t − αmcj,t + ξj,t − ξ0,t) exp(uj,t+1)

⎞⎠
+exp(ξ0,t+1 − ξ0,t)

⎛⎝X
l∈FIN

ft

exp(γXlt − αmclt + ξlt − ξ0t) exp(ul,t+1)

⎞⎠
− exp(ξ0,t+1 − ξ0,t)

⎛⎝ X
k∈FOUT

ft

exp(γXk,t − αmck,t + ξk,t − ξ0,t) exp(uk,t+1)

⎞⎠
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where

uk,t+1 ≡ γ(Xk,t+1 −Xk,t)− α(mck,t+1 −mck,t) + (ξk,t+1 − ξk,t)

Intuitively, this variable corresponds to the markup-adjusted quality variation of con-

suming product k from period t to t + 1. For ease of exposition and without loss of

generality, I assume that (i) a product’s observed characteristics do not change after its

introduction, i.e., Xk,t+1 = Xk,t, ∀t, k, (ii) ξk,t = ξk +∆ξk,t, and (iii) marginal costs are a

time-varying stochastic function given by

mck,t = mc0 +mct(Xk,t) + ηMC
kt

Under these assumptions, the variable uk,t+1 simplifies to

uk,t+1 ≡ yf(st,Mkpt,At) + ζk,t+1 + (∆ξk,t+1 −∆ξk,t − α(ηMC
k,t+1 − ηMC

k,t ))

where yf(st,Mkpt,At) is the projection of −α(mct+1(Xk,t)−mct(Xk,t)) onto the space

of observed states and actions. Intuitively, ζk,t+1 corresponds to the parcel of marginal

cost variation that is not explained by firms’ strategic interactions and observed states.

In order to have a well-defined transition for markup-adjusted inclusive values, auxil-

iary assumptions are necessary. I pose the following conditions:

Assumption A6: The process ζk,t+1+∆ξk,t+1−∆ξk,t−α(ηMC
k,t+1− ηMC

k,t ) is common

to all products within the firm’s portfolio. That is, for every firm f , we have
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(ft+1 ≡ ζk,t+1 +∆ξk,t+1 −∆ξk,t − α(ηMC
k,t+1 − ηMC

k,t )

Assumption A6 implies that the temporal evolution of a firm’s product attributes can

be encoded into a firm-specific shock. The latter may include shocks common to all firms

which might not be observed by the econometrician (e.g., imput price fluctuations).

Assumption A7: There exists a constant d0 for which the process ξ0,t+1 − ξ0,t −

(ft+1− d0 is a martingale. That is, E[ξ0,t+1− ξ0,t− (ft+1− d0|st,At] = 0 for every firm f .

Assumption A7 is necessary for stationary markup-adjusted inclusive values. It allows,

for example, for a random walk with positive drift in ξ0,t+1 (i.e., a exponential growth of

the outside alternative mean utility over time) with (ft+1 stationary. Assumption A8 also

nests the case where the series ξ0,t+1 and (ft+1 are not stationary, but ξ0,t+1− ξ0,t− (ft+1

is.

Under these assumptions, the transition of an active firm f ’s markup-adjusted inclusive

value can be written as

ln(ϕft+1) = d0 + yf(st,Mkpt,At) + ln(ϕft) + ln(1 +Aft) + ηft

where ηft ≡ ξ0,t+1− ξ0,t− (ft+1− d0 is a zero-mean shock. Note that yf(st,Mkpt,At)

can be chosen to guarantee stationary markup-adjusted inclusive values. For example, if

yf(st,Mkpt,At) = −d1 ln(ϕft)+d2 ln(1+Aft). The resulting transition equation for each

markup-adjusted inclusive value is given by
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υft+1 = d0 + (1− d1)υft + (1 + d2) ln(1 +Aft) + ηft

We are left to define the transition for potential players. By definition, these players

occupy slots in the state space where exp(νft) = 0. I assume that these inactive firms

enter the market (i.e., will have exp(νft+1) > 0) exogenously. Again using the notation

ϕft+1 = exp(νft+1), the transition of inclusive values for inactive players is given by

ϕft+1 = max{0, w(st) + ηINft }

where w(st) is a function of all observed states and ηINft is a zero-mean shock. The

inclusive-value transition function for all players in the game can be concisely written as

exp(νft+1) = 1{exp(νft) > 0} exp(d0 + yf(st,Mkpt,At) + νft + ln(1 +Aft) + ηft)

+(1− 1{exp(νft) > 0})max{0, w(st) + ηINft }

Networks. In what follows, I build on the work of Dube, Hitsch and Rossi (2006).

The latter considers consumer switching costs in the context of packaged goods without

any network effects. I allow not only for both switching costs and network effects, but

also for (i) arrival of new consumers to the market and (ii) dynamic network formation.

The transition function for Nt = [N0t, N1t, ..., NFt]
T is given by

Nt+1 = Q(Mkpt, st)Nt + Ñ0t+1
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where Ñ0t+1 = [∆N0t+1, 0, ..., 0]
T corresponds to the column vector with the number of

new consumers arriving to the market in the first cell and zero otherwise. This construc-

tion implicitly assumes that thereare no stochastic terms in firm networks. This implies

that there are no consumers leaving a network for exogenous reasons. Q(Mkpt, st) is

a matrix whose entries Qi,j are defined by the probability of a consumer joining firm i’s

network when he currently belongs to firm j’s network. These probabilities can be derived

from the purchase probabilities from a given firm. However, one must account for the fact

that a consumer who belongs to a firm network still belongs to that network if he chooses

the outside alternative. Under these assumptions, every entry in Q is defined as follows

Qi,0 = Pi,0,∀i = 0, 1, ..., F

Qi,i = Pi,i + P0,i,∀i = 1, ..., F

Q0,i = 0,∀i = 1, ..., F

Qi,j = Pi,j,∀i 6= j, i, j = 1, ..., F

where Pi,j corresponds to the probability of buying a product from firm i given that

the consumer is part of firm j’s network. These correspond to

Pi,j =
exp(−αMkpit) exp(νit) exp(ψNit) exp(Λi1{i = j})

1 +
FX
d=1

exp(−αMkpdt) exp(νdt) exp(ψNdt) exp(Λd1{d = j})



39

For the case where all network series are observed, ∆N0t+1 can be estimated by using

the property that

FX
d=0

Ndt+1 =
FX
d=0

Ndt +∆N0t+1

However, they may be cases where the seriesN0t is not observed. In that case, auxiliary

assumptions are necessary to recover both N0t and ∆N0t+1. This is the case analyzed in

Chapter 2, in the context of the supercomputer industry. The discussion of this case is

therefore deferred to Chapter 2.

1.2.4. Equilibrium concept

The structure of the game allows me to assume that firms choose markups rather than

specific retail prices. Therefore, using assumption A1, I restrict attention to a pure-

strategy equilibrium where players choose Markovian strategies of the form σf(s, εf) ≡

{Mkpf(s, εf), Af(s, εf)}. Let Vf(s, ,εf |σf , σ−f) be firm f ’s expected discounted payoffs

when he chooses strategy σf and his rivals choose σ−f . A Markov-Perfect Nash Equilib-

rium (MPNE) of this dynamic oligopoly game can be defined as follows

Definition 1 (MPNE): A Markovian strategy profile σ∗ ≡ (σ∗1, ..., σ∗F ) is an MPNE

if, for every firm f , σ∗f solves f ’s problem given σ∗−f . That is, Vf(s,εf |σ∗f , σ∗−f) ≥

Vf(s,εf |σ̂f , σ∗−f) for all s and alternative strategy σ̂f .

Existence of equilibrium can be shown in two ways. The first is to invoke Theorem

1 of Jenkins, Liu, Matzkin and McFadden (2004), since the conditions for this theorem
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to hold are met by the assumptions imposed so far. The second is to applying Brower’s

fixed point theorem after writing the system for first-order conditions on markups and

quality investment in fixed point form for all active firms. The fact each firm’s value

function is unique ensures the existence of at least one equilibrium3. Uniqueness can in

principle be verified either by directly proving that the fixed point form of the system

is a contraction, or by checking if the system satisfies Blackwell’s sufficient conditions.

Unfortunately, MPNE uniqueness verification using these and other proof strategies are

particularly difficult and still an open area of research (see Doraszelski and Satterthwaite

(2007) for a discussion). In addition, uniqueness conditions would require assumptions

on the game parameters, which can only be verified upon the estimation of the dynamic

game. The next section addresses the methods to recover these parameters from the data.

1.3. Estimation methods

The structural estimation of the model combines the two-step method proposed by

Bajari, Benkard and Levin (2006) with Ai and Chen’s (2003) nonparametric estimator.

Several other dynamic models’ estimation methods have been introduced in the literature

(e.g. Aguirregabiria and Mira (2006), Berry, Ostrovsky and Pakes (2005), Hotz, Miller,

Sanders and Smith (1994), Jenkins, Liu, Matzkin and McFadden (2004)) after Rust’s

(1987) pioneer work on dynamic discrete choice4. Even though the method of Bajari

et al. (2006) has been considered in other dynamic oligopoly studies (e.g., Beresteanu

and Ellickson (2006), Ryan (2006), Sweeting (2007)), this Chapter will follow a modified

framework. I start by providing a general overview of my estimation strategy, explaining

3If each firm’s value function were not unique, existence of equilibrium could instead be done by invoking
Kakutani’s fixed point theorem.
4A comprehensive survey of these methods can be found in Ackerberg et al. (2006)
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its differences with respect to the method of Bajari et al. and the reasons for modifying

their method. Then I discuss the technical details of each step of the estimation procedure.

1.3.1. An overview of the estimation

The first-step of my estimation strategy closely follows the one of Bajari, Benkard and

Levin (2006). It consists on estimating the flow profit parameters, as well as the observable

state transitions and policies. Unlike Bajari et al., the players’ optimal policies will not

be used for forward simulation of continuation values. The reason is that the later will

not be necessary for my second step of estimation. Instead, the policy estimates and its

residuals are used to integrate out private information of rivals when forming moments

for the second round of estimation.

After choosing appropriate instruments, profit function parameters are recovered by

using Nevo’s (2001) demand estimation method. Markup and marginal cost series can be

obtained by projecting prices onto a firm-specific markup function. These estimates are

then used to compute Nevo and Rossi’s (2007) markup-adjusted inclusive values for all

firms, quality investments and firm network transitions. The laws of motion for markup-

adjusted inclusive values and N0t can be consistently estimated with standard methods

upon imposing structure on the function yf(st,Mkpt,At) and on the shock ∆N0t+1, re-

spectively. Finally, markup and quality investment policies can be consistently estimated

using semi- or nonparametric methods (see Jenkins et al. (2004) for a discussion).

In the second stage of estimation, I use the framework of Ai and Chen (2003) to

estimate the parameters not recovered in the first stage. This method estimates models

which can be fully described by moment conditions of the form
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E [Ψ(Z, θ0, ho(.))|X] = 0

where Ψ(.) is a vector of known functions, θ0 is a vector of model parameters (e.g., the

remaining parameters of the dynamic model), ho(.) is a vector of unknown but identified

functions, Z is a vector of both endogenous and exogenous variables, and X is a set

of exogenous variables containing all the exogenous controls in Z. The fact that firm

optimality conditions on markups and quality investment decisions depend on integral

transforms of both value functions and rival strategies (which usually do not have a

closed form) suggests the usage of a method where these functions can be approximated

arbitrarily well. Ai and Chen (2003) propose a method where θ0 and ho(.) are consistently

estimated by replacing the latter by a vector of sieve approximating functions in the

moment conditions. Denoting α = (θ0, ho), and letting m̂(X,α) be the a consistent

nonparametric estimator of m(X,α) ≡ E [Ψ(Z, θ0, ho(.))|X] (e.g., its sample analog), Ai

and Chen’s (2003) sieve minimum distance (SMD) estimator is defined as

α̂ ≡ argmin
α

1

n

nX
i=1

m̂(Xi, α)
0
h
Σ̂(Xi)

i−1
m̂(Xi, α)

My estimation strategy to recover the remaining parameters of the dynamic game,

θ0, can be outlined in two steps. First, I form moments using (i) first-order conditions

on both markups and quality investment, (ii) envelope conditions on both observed and

privately-known states, and (iii) Bellman equations evaluated at the firm’s observed policy

choices. To integrate these conditions with respect to rival private information, I replace



43

their policies recovered in the first round of estimation in the firm moment conditions. In-

tegration can be performed using standard approximation methods (e.g., Gauss-Legendre

quadrature - see Judd (1998) and Miranda and Fackler (2002) for surveys) with respect to

policy function residual distributions. Second, I replace firm value functions with sieves

approximations and apply Ai and Chen’s estimator. This approach has several advan-

tages. First, forward simulation of firm continuation values given first step estimates

is not necessary. That procedure is at the core of Bajari, Benkard and Levin’s (2007)

method, being also the main source of its computational burden. Second, unlike Bajari,

Benkard and Levin, a flow payoff function linear in parameters is not necessary to ensure

an affordable computational burden. θ0 enters on both the flow payoff function and the

approximating functions ĥ. As the latter are sieves approximating functions, the estima-

tion problem effectively becomes a parametric one. This implies an estimation burden

similar to minimum distance estimators (e.g. GMM). Finally, the estimates of ĥ are useful

for simulation purposes. Since ĥ are value function estimates, these can be used for equi-

librium computations in counterfactual policy experiments if no model parameters are

changed. That is, the intermediate step of MPNE computation where the value function

is computed can be avoided by treating the estimated value function as the true function.

Moreover, if a researcher needs to compute the value function during a simulation routine

(e.g., if the structural parameters of the game are changed), the estimated value function

can still be useful for computation time reduction by using it as a good initial guess.
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1.3.2. First-step estimates

Profit function parameters. There are two alternative estimation strategies to recover

the profit function parameters. The first consists on the method introduced by Berry,

Levinsohn and Pakes (1995). In this method, a framework which enables one to estimate

demand and supply parameters for differentiated products markets is proposed. Like

other related methods (e.g., Berry (1994)), it relies on the ability of observed product

characteristics to explain consumer utility. The second alternative method is Nevo’s

(2001) estimator, which deals with cases where that ability is questionable by adding

brand fixed effects. I follow Nevo’s method to estimate demand parameters.

The dynamic model proposed in this Chapter assumes that the constant absolute

markup charged in equilibrium by every firm is observable. However, only product prices

are available in most datasets, not the charged markups. I deal with this problem by

using the fact that prices must equal markup plus marginal cost. One may question how

can one empirically separate markups from marginal costs. The identification relies on

the assumption that, within each given period, all products that a firm commercializes are

charged the same constant absolute markup. Under this assumption, at any given time

t, all variation in prices across the firm’s product portfolio must come from differences in

products’ marginal costs. Therefore, marginal costs and firm markups are identified.

I start by describing demand estimation. Recall that a product’s market share condi-

tional on the consumer’s network type is given by

qjt(p|Drt) =
exp(γXjt + ψNf(j)t − αpjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(γXlt + ψNd(l)t − αplt + ξlt − ξ0t + Λd(l)Drd(l)t)
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I further assume that ξjt = ξj +∆ξjt
5. In addition, I decompose consumer r’s utility

on consuming product j at time t as

Urjt = δjt + Λf(j)Drtf(j) + �rjt

where δjt = γXj + ψNf(j)t − αpjt + ξj + ∆ξjt. is the mean valuation of product j

at time t. Apparently, one should could consistently estimate the demand parameters

by minimizing the distance between observed and predicted market shares. However, if

there exists correlation of the error term ∆ξjt with other variables in δjt, this approach

will yield inconsistent estimates. Even if suitable instruments are available, the fact that

∆ξjt enters the product market share function nonlinearly precludes this method. I instead

follow the methodologies of Berry (1994), Berry, Levinsohn and Pakes (1995) and Nevo

(2001), where this error term can be obtained by using the definition of δjt upon inverting

the product market share functions. These are given by

qjt(p) =

Z
exp(γXj + ψNf(j)t − αpjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(γXl + ψNd(l)t − αplt + ξlt − ξ0t + Λd(l)Drd(l)t)

×dP (Drt1, ...,DrtF |st)

where P (Drt1, ...,DrtF |st) corresponds to the distribution of consumer network types

induced by the observed network states. In our model, this consists on a multinomial

distribution, where the probability of drawing Drtf = 1 is given by
Nft

Mt
, ∀f = 1, ..., Ft.

5One could also assume a decomposition where time effects are present in ξjt. However, these are not
separable from ξ0t, and therefore not identified.
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Upon getting the solutions δjt(S.,t,Λ) to the implicit system of equations

q.t(δ.,t;Λ) = s.,t

where sj,t is the observed market share for product j at time t, the error term is given

by

∆ξjt = δjt(S.,t,Λ)− (γXj + ψNf(j)t − αpjt + ξj)

The term∆ξjt can be treated as econometric error term. However, this term should be

correlated with prices, since manufacturers take into account all product characteristics

in their pricing decisions. Therefore, valid instruments for both prices and some of the

product’s attributes should are necessary. Determining how relevant these endogeneity

issues are for estimation is an empirical issue. The computation of q.t(δ.,t;Λ) requires

integration with respect to each Drtf . This can be done by replacing the integral by a

sum across random draws from the joint distribution P (Drt1, ...,DrtF |st).

An important issue is how to empirically separate the time-invariant components of

utility (i.e, γXj and ξj). Nevo (2001) shows that both γ and ξj are identified. In addition,

they can be recovered from the data by first replacing γXj+ξj by brand-specific dummies

dj in the mean utilities δjt, and then regress the estimates d̂j on the observed attributes

Xj using Chamberlain’s (1982) minimum-distance method. However, this method as-

sumes that E[ξj|Xj] = 0 for every product j. This may fail to hold in some applications
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(see Chapter 2 for a concrete example). Again, these endogeneity concerns are an em-

pirical matter. For this reason, if instruments are required for consistent estimation, the

estimator for γ will be the two-stage least-squares estimator of

d̂j = γXj + ξj

In case no endogeneity concerns arise, estimates of γ can be recovered using a GLS

regression. In any case, fixed-effect estimates are given by ξ̂j = d̂j − γ̂Xj.

Letting λ denote the set of all demand parameters to be estimated, and defining∆ξ(λ)

be the vector of errors evaluated at a given value of λ, one can estimate the true value of

λ with the GMM estimate

λ̂ = argmin
λ

∆ξ(λ)0ZΣ−1Z 0∆ξ(λ)

where is a set of instruments orthogonal to ∆ξ(λ) and Σ is a consistent estimate of

E[Z 0(∆ξ)(∆ξ)0Z].

Markups, marginal costs and quality investments. Markups and marginal costs

can be empirically recovered as follows. By definition, we have

pjt =Mkpf(j)t +mcjt

where Mkpf(j)t stands for the absolute markup charged by the firm which produces

product j at time t. The fact that Mkpf(j)t = Mkpft, ∀j ∈ Fft, ∀f = 1, ..., F, allows me
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to separate markups from marginal costs, since the latter depend of the specific attributes

of product j. Assuming that marginal costs are given by mcj,t = mc0 +mct(Xj,t) + ηMC
jt ,

markups can be recovered from the residuals of the regression equation

pjt = mc0 +mct(Xj,t) +m ·Bjt + ηMkp
jt

where Bjft = 1{j ∈ Fft}, Bjt = [Bj1t, ..., BjF t]
T andm is a 1×F vector of coefficients.

The latter measure the markup charged by firm f at time t.

After recovering marginal cost function, one can compute quality investment Af,t by

taking the following steps:

• For each firm f, check the set of firm products at t+1 , Ff,t+1, and verify which

products do not belong to Ff,t. Denote this set of products as FIN
f,t .

• If F IN
f,t 6= ∅, use demand and marginal cost function estimates to compute

⎛⎝X
l∈FIN

ft

exp(γXlt − αmclt + ξlt − ξ0t)

⎞⎠

• Verify which products belong to Ff,t but not to Ff,t+1. Denote this set of products

as FOUT
f,t .

• If FOUT
f,t 6= ∅, use the demand and marginal cost function estimates to compute

⎛⎝ X
k∈FOUT

ft

exp(γXk,t − αmck,t + ξk,t − ξ0,t)

⎞⎠



49

• Compute Af,t by using the formula provided in the previous section.

For the second stage of estimation, policy function estimates are necessary. These

can be obtained by projecting each Af,t and Mkpf,t on the space of observed states, st.

The estimation methods to obtain these best-reply functions will depend on the specific

application at hand. One example can be found in Chapter 2 in the context of the

supercomputer industry. I proceed by assuming that the researcher has estimated the

functions Af,t(st, ε̂
A
f,t) and Mkpf,t(st, ε̂

MKP
f,t ) from the data, where ε̂Af,t and ε̂MKP

f,t are the

policy estimation residuals.

1.3.3. Second-step estimates

The first step of estimation recovers all but the quality investment cost parameters. I use

the sieve minimum distance (SMD) estimator of Ai and Chen (2003) to obtain estimates

on these parameters. For ease of notation, let ∆(S) denote the dimension of the observed

state space, and gk as the kth entry in the observed state vector at period t + 1. For

the necessary moment conditions, it is useful to start with the first-order condition on

quality investment. However, I must account for the fact that the support of this variable

is bounded below by −1. I use the Karush-Kuhn-Tucker condition (see Miranda and

Fackler (2002) pp 191-193) to derive the first-order condition. This corresponds to

Z
ε−f

⎛⎝−∂CA(Aft, st, ε2ft; θ))

∂Aft
+ βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Aft

⎤⎦⎞⎠ dF (ε−f)− μAf 1{Aft = −1} = 0
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where μAf is a nonpositive Lagrange Multiplier. Letting C1(Aft, st; θ) and C2(Aft, st; θ)

be such that

∂CA(Aft, st, εft; θ)

∂Aft
= C1(Aft, st; θ) + C2(Aft, st; θ)εft

then the Karush-Kuhn-Tucker condition on quality investment simplifies to

Z
ε−f

⎛⎝−C1(Aft, st; θ) + βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Aft

⎤⎦⎞⎠ dF (ε−f)− μAf 1{Aft = −1}

C2(Aft, st; θ)
= εft

Since the right-hand side of the equation has expected value zero, one can consider

the expectation of the left-hand side as a moment condition. For this purpose, I replace

(i) F (ε−f) by the distributions of residuals of first-stage policy estimates and (ii) firm f ’s

integrated value function by the approximant described below.

A moment condition involving the first-order condition in absolute markup can be

derived in a similar way. This condition can be written as

Z
ε−f

⎛⎝∂Πft(Mkpft(st, ε−f), st))

∂Mkpft
+ βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Mkpft

⎤⎦⎞⎠ dF (ε−f) = 0



51

Again replacing the integrated value function Vf by its approximant, and integrating

with respect to ε−f using the best-reply functions estimated in the first-stage, a second

moment condition can be used for estimation.

Bellman equations can also be used as moments, upon (i) replacing the firm’s inte-

grated value function by a sieves approximation h0 and (ii) removing the max operator

by replacing the firm’s optimal policies by its observed values in the data. I define the

integrated value function approximant by the tensor product

hf(st, θ) ≡
KX

k1=0

...
KX

k∆(S)=0

cf,k1,...,k∆(S),kεf (θ)Tk1(s1)× ...× Tk∆(S)(s∆(S))

where Tk(.) is an univariate first-kind Chebyshev polynomial of order k. Following

Miranda and Fackler (2002), this product can be written as

hf(st, θ) = [T∆(S)(s∆(S))⊗ T∆(S)−1(s∆(S)−1)⊗ ...⊗ T1(s1)]cf(θ)

where cf is a K∆(S) × 1 column vector of coefficients and Ti(.) is a 1 × K row vec-

tor. Using the more compact notation hf(st, θ) = Tf(st)cf(θ), the following holds after

integrating the firm’s problem with respect to its private information:

Tf(st)cf(θ) =

Z
ε

(π(σf(st, εf), σ−f(st, εf), st, εf ; θ)

+βE [T (st+1)cf(θ)|σf(st, εf), σ−f(st, εf), st, εf ; θ])dF (ε)
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As before, one may form a moment condition by using estimated policies and its

residuals to integrate out private information. Moreover, the private information term εf

can be replaced by the formula derived for the first moment condition.

Finally, one can use envelope conditions on the states from firm’s problem as extra

moments. The latter can be derived using the methods of Miranda and Fackler (2002).

For each component of the state vector si,t ∈ st (e.g., N0t) , we have

Z
ε

⎛⎝∂π(σf(st, εf), σ−f(st, εf), st, εf ; θ)

∂si,t
+ βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂si,t

⎤⎦⎞⎠ dF (ε) =
∂Vf(st)

∂si,t

Like in other moment conditions, I replace integrated value functions and unobserved

private values to form an additional moment condition. If the total number of moment

conditions is not enough to identify all the parameters in θ, one can use the fact that the

error terms in the equations outlined above are assumed independent of observed states to

form extra moments For example, one can consider Chebyshev polynomials of observed

states as instruments.

At this point, the researcher is left to apply Ai and Chen’s (2003) SMD method.

However, one must account for the fact that the second step of estimation takes first-

step estimates as given when computing standard errors. This can be accomplished by

either (i) using the correction methods of Murphy and Topel (1985) or (ii) bootstrapping

samples of the data with replacement and estimating the dynamic parameters with each

subsample.
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1.4. Concluding remarks

This Chapter proposes a dynamic structural model of competition where firms invest

in product quality and set product markups. Unlike other studies in the switching costs

literature, the proposed framework accounts for the influence of firm network size on

both consumer utility and the distribution of switching costs across consumers. Strong

assumptions imposed by static competition models with switching costs and network

effects are avoided by building on recent refinements to the dynamic oligopoly games

literature. Firms will account for network sizes when computing optimal strategies, and

therefore competition models with switching costs ignoring network effects may lead to

misleading conclusions. The difficulty of modeling pricing decisions in the presence of

new product launch and exit is circumvented by restricting the firms’ pricing strategies to

constant absolute markups for each product in the firm’s portfolio. This restriction can

be weakened at the cost of increasing each firm’s state space. The model can be estimated

by combining the methods of Bajari, Benkard and Levin (2006) and Ai and Chen (2003).

This hybrid methodology offers several computational advantages in terms of parameter

estimation and simulation of counterfactuals.

Several important questions raised in economic policy debates could be addressed with

the model. For example, one could simulate the consequences of a given subsidy scheme

for product quality investment. One could also assess what market structures would yield

maximal welfare. Another application of interest would be the measurement of both

network externalities and switching costs effects on competition and welfare. Another

issue of particular interest is the impact of mergers on welfare and technological progress
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dynamics. I address some of these questions on the remaining chapters in the context of

the supercomputer industry.
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CHAPTER 2

Extending the Frontier: A Structural Model of Investment and

Technological Competition in the Supercomputer Industry

2.1. Introduction

Technological innovation plays a central role in economic growth. However, there is no

consensus on whether competition helps technological innovation. In addition, it is hard

to quantify the gains (or losses) from increased competition in high-technology industries,

particularly when network effects and switching costs are present. In this Chapter, I aim

to fill this gap. I focus on one high-technology industry - supercomputers - and evaluate

the evolution of the best computational speed available in the supercomputer market

under three different market structures: monopoly, duopoly and a three-firm market. In

addition, I quantify the temporal evolution of welfare under these three different industry

sizes.

I propose a structural model where firms set prices, invest in product quality, and

innovate on their most advanced technology. Using data from the supercomputer industry,

I estimate the model parameters with a variant of the two-step method of Bajari, Benkard

and Levin (2007). I then use the estimated parameters to simulate the outcomes of three

different market structures. This is done in two steps: (i) computation of the Markov-

Perfect Nash Equilibrium (MPNE) of the game under monopoly, duopoly and three-firm

market, and (ii) comparison of total welfare and the maximal available computational
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speed in the supercomputer industry implied by these industry structures for a period of

five consecutive years. I also examine the impact of the threat of entry on a monopolist’s

innovating behavior. This is also done in two steps: (i) simulation of maximum computing

speed when only one firm can operate in the market, and (ii) comparison of the results

with the ones from a monopolist facing free entry.

I find that increased levels of competition have positive effects on the evolution of

supercomputer technology. In line with Aghion, Harris, Howitt and Vickers (2001), in-

creases in market competition induce more innovation due to the "selection effect". That

is, the incremental payoff from innovating is higher when a firm is in "neck-and-neck"

competition with technologically similar rivals. Firms therefore extend their technologi-

cal frontier primarily to escape competition with "neck-and-neck" rivals. I also find that

increased competition increases welfare in the supercomputer market, even though the

marginal increase in welfare is decreasing in the number of competitors. Finally, I find

that fixed innovation costs are the most important component of technology investment

expenditures. Both the firm and its rivals’ technological states impact fixed costs consid-

erably. In particular, this component of the innovation costs is decreasing in the aggregate

frontier of a firm’s most advanced rivals.

My model builds on the theoretical model of Ericson and Pakes (1995) and extends

the framework developed in Chapter 1. The inclusion of frontier innovation in the firms

strategy sets raises the problem of how to deal with nonstationary states and controls. I

follow the methods of variable scaling in the growth literature surveyed in Stockey and

Lucas (1989) to guarantee stationary measures of firm technological state and innovation

investment. A second difficulty is how to deal with multiproduct firms. I build on the
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model proposed by Nevo and Rossi (2007), in which a markup-adjusted inclusive value

is included as state variable. This allows me to control for product market profits while

keeping a computationally manageable state space dimension.

To estimate the model I use a variant of the two step method proposed by Bajari,

Benkard and Levin (2007). In the first step, I recover the profit function parameters

from demand and supply estimation. In addition, I estimate policies and state transitions

nonparametrically as functions of observable states. In the second step, I solve for the

continuation values of firms using function approximation methods (see Miranda and

Fackler (2002)) and the policy and transition estimates from the first stage. Instead of

using the continuation values in the inequality sampling method proposed by Bajari et

al. (2007), I include them in a GMM estimation procedure where I use firm optimality

conditions directly. I am able to separate the benefits of frontier extension from its costs

by using the variations on the number of a firm’s technologically similar rivals. According

to Aghion, Harris, Howitt and Vickers (2001) and Aghion, Bloom, Blundell, Griffiths and

Howitt (2003), increases in market competition induce more innovation due to a "selection

effect". That is, the incremental payoff from innovating is higher when a firm is in "neck-

and-neck" competition with technologically similar rivals. Firms therefore innovate on

their most advanced technology primarily to escape competition with "neck-and-neck"

rivals. A higher number of similar rivals does not impact the costs of innovation but

increases the incremental payoff from innovating due to the "selection effect". Therefore,

the positive correlation between investment rates and number of technologically similar

rivals successfully identifies the benefits from expanding the technological frontier.
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The understanding of the forces driving innovation and the measurement of compe-

tition effects require focus on a specific industry. Ideally, one would want to analyze an

industry whose technological advances influence the evolution of other industries’ tech-

nologies. Bresnahan and Trajtenberg (1995) document ‘too late, too little’ innovation in

industries producing this type of technology - named General Purpose Technology (GPT).

Moreover, the positive feedbacks of advances in GPTs are usually dispersed through the

economy, and can therefore work as a trigger for economic growth. One of these industries,

supercomputers, is particularly well suited to study the technological evolution patterns

under different market structures for several reasons. First, there is a standard measure

for supercomputer performance - the LINPACK Benchmark. A supercomputer, com-

monly mentioned as High Performance Computer (HPC), is a general purpose computer

that is faster than commercial competitors and has sufficient central memory to compute

problem sets of general scientific interest. The technological state of a firm in this industry

can be measured by the maximal supercomputing speed that the firm has ever produced.

Second, the technological evolution patterns of the firms in this industry exhibit evidence

of "racing behavior", where players aim to leapfrog opponents as documented by Khanna

(1995). Therefore, the supercomputer industry provides an almost ideal ground to study

innovation behavior under oligopoly. Third, supercomputer technology brings several

important benefits that are only partially considered by manufacturers, thus justifying

governmental intervention. Supercomputers are crucial to advances in many sciences and

play an important role on the production of other goods (e.g. cars, airplanes, medicines,

intelligence creation and national defense).
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A recent body of the industrial organization literature studies the incentives for techni-

cal progress in oligopolistic industries. (e.g., Bresnahan and Greenstein (1999), Athey and

Schmutzler (2001), Aghion et al. (2001, 2003), Scotchmer (1996), Evans and Schmalensee

(2002)). More recently, Segal and Whinston (2004) analyze the effects of specific antitrust

policies in industries where innovation is of central importance to competition. Most of

these studies restrict attention to duopoly games, or abstract from important dynamic

strategic considerations of players (e.g. dependence of innovation decisions on the firms’

technological states). I introduce a model where such restrictions are relaxed.

The rest of the Chapter is organized as follows. In section 2.2 I describe the supercom-

puter industry, mentioning its key differences compared to other high-end computers. In

Section 2.3 I present the dynamic oligopoly model, describing firm behavior on pricing and

innovation investment. The details about the data and the empirical strategy for model

estimation are presented in section 2.4. Section 2.5 addresses the estimation results, while

section 2.6 describes both the policy experiments and the simulation results. Section 2.7

concludes with results and contributions summary, as well as possible extensions for the

paper. All derivations and computational details can be found in Appendix B.

2.2. The supercomputer industry

A supercomputer refers to "those computing systems (hardware, systems software,

and applications software) that provide close to the best currently achievable sustained

performance on demanding computational problems"1. Supercomputers are very expen-

sive durables whose expected useful lifetime is five years. Also known as high-performance

computer (HPC), its key components are processors, memory and interconnect bandwidth.

1Source: "Getting Up to Speed: the Future of Supercomputing" (2005).
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The processors are assigned the tasks of performing the instructions programmed in the

supercomputer (e.g., simulation of a nuclear explosion). In order to temporarily store data

or results for processing in intermediate program instructions, all supercomputers must

contain a memory sector which must be connected with the processors. An interconnect

bandwidth is required to control the traffic of information between the memory sector and

the processors. A supercomputer’s computing speed is measured in total floating-point

operations per second (FLOPS). Even though there are several benchmarks for speed

measurement of a supercomputer, the consensus measure is the LINPACK Benchmark.

This is the maximum possible computation speed that can be achieved by the supercom-

puter when it is instructed to solve a system of linear equations with 1000 equations and

1000 unknowns2.

Despite their similarities, there are two main differences between a supercomputer

and a mainframe. The first is that, upon delivery and installation, the supercomputer

is configured for selected purposes, channeling all its power to execute these tasks as

fast as possible. High performance computers are assigned very specific tasks (e.g., sim-

ulation of car accidents for new vehicle models, simulation of nuclear explosions) to be

performed one at a time, whereas a mainframe uses its power to performs several programs

simultaneously. The second main difference between a supercomputer and a mainframe

is the system architecture. High performance computers are designed to execute spe-

cific programs as efficiently as possible, implying a deviation from the regular mainframe

architecture designed for simultaneous task processing.

2A comprehensive discussion on LINPACK Benchmark’s technical details can be found in Dongarra
(2006), and Dongarra, Luzczek and Petitet (2001).
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There are two main types of supercomputer architectures: vector systems (VS) and

massive parallel processing systems (MPP). The vector systems are characterized by spe-

cial central processors (which is typically produced by the manufacturing firm), along with

built-in memory chips and interconnect bandwidth. Processing takes place by seeding in

several tasks at the same time. The processor is specially designed to interpret the vector

of tasks and to perform instructions simultaneously. This technique, initially proposed

to the late supercomputer engineer Seymour Cray, is known as vector processing. The

VS are known for its computing efficiency (i.e., high computation speed due to optimized

combination of processors, memory and bandwidth), as well as for acceptable installation

area requirements, reasonable power consumption and maintenance costs. However, it is

usually expensive compared to MPPs. This is primarily due to the high costs required to

build special purpose processors.

This description sharply contrasts with the one for MPP. Instead of special purpose

processor, manufacturers of MPPs use off-the-shelf processors to build a processing sector

for the machine. A similar procedure is followed for building the memory and bandwidth

sectors of the supercomputer. As such, the production of an MPP is not as demanding in

R&D efforts as for VS. For this reason, this type of system is usually not as expensive as

VS. However, MPPs have its own caveats. First, it is not as efficient as VS. It relies on

aggregating processors along with memory and bandwidth components, while in VS these

components are conceived in order to maximize computing efficiency. Second, despite its

relatively cheap price, MPPs require far more installation space, maintenance costs and

power consumption.
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Despite these disadvantages, MPPs have become popular in supercomputing since

the early 1990’s for two reasons. First, the prices of off-the-shelf microprocessors have

fallen dramatically over time, while its processing power has steadily increased over time.

Second, despite the fact that progress on bandwidth and memory technology was not as

remarkable as for processors, there was enough scope for increases in FLOPS by adding

extra processors, for a given combination of memory and bandwidth. This advantage over

VS is no longer available, as the current pace of memory and bandwidth advances can

no longer sustain gains in speed from increasing processor power. The most up-to-date

supercomputer models aim to combine the advantages of both types of architectures.

The supercomputer industry is characterized by few units being sold and considerable

revenues. The joint revenue of the top nine competitors in this industry was $4655 million

in 1997, reaching its peak in 2000 with $6083 million3. The vast majority of buyers are

governmental institutions, which account for at least 70% of total supercomputer sales

since 1990. Since the rise of this industry in 1953, several firms have entered and exited

the market. Most of the entry and exit is due to short-lived competitors, while most of the

important players in this market remained active. The most relevant competitors who kept

their importance over time have been Cray Inc., Hewlett-Packard, IBM, NEC, Fujitsu,

Hitachi, SGI, and Sun Microsystems. The benefits of being among the best HPC suppliers

are not restricted to product market profits. Innovations in supercomputer technology are

often used for improvements in other high-tech products the firm may be producing. For

example, advances in computational speed for HPC have been incorporated in personal

3Source: IDC 2002
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computers during the last ten years. Except for Cray, all other supercomputer sellers have

other product lines.

Table 2.1 provides yearly statistics on the maximum computing speed ever produced

(henceforth firm technological frontier) for the most important firms in the market. Sev-

eral important aspects can be inferred. First, significant increases on the maximal com-

puting speed in the industry tend to be followed by periods of no expansion. In general,

the more significant this expansion is, the more years are necessary to beat that record.

Second, the data indicates that once a firm reaches quality leadership, it will not expand

its frontier significantly (if at all) unless a rival leapfrogs upon it. Therefore, the incen-

tives on firms to invest on frontier expansion are contingent on the firms’ frontier position.

Finally, firms tend to expand their frontiers more significantly over time. This suggests

that firms can benefit from the technological advances of their rivals. Hence, since the

technological advances of a firm leverage rival innovations, firms are likely to underinvest.

The scope of application of supercomputers is immense. According to the classification

available at the supercomputing rating organization TOP500, there are 26 application ar-

eas for supercomputers. Some representative examples application areas are Aerospace,

Automotive, Finance, Defense, Geophysics, Semiconductors, Weather and Climate Re-

search, and Telecommunications.

Due to the fact that supercomputers are extremely expensive durables (costing typ-

ically millions of dollars), buyers usually acquire at most one unit per year. Potential

buyers may either choose among existing models (henceforth "off-the-shelf" HPCs) or

order a machine whose computing power is suited for her specific needs (henceforth cus-

tom supercomputers). There are some differences between buying an existing model and
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Table 2.1. Technological Frontiers of the most important firms (in LIN-
PACK Benchmark Giga-FLOPS)

Year Cray HP IBM NEC Fujitsu Hitachi SGI Intel Sun Ind. Max.
1990 2.171 - 0.54 23.2 4 1.817 - 2.6 - 23.2
1991 2.171 - 0.54 23.2 4 1.817 - 13.9 - 23.2
1992 13.7 - 1.457 23.2 4 1.817 - 15.2 - 23.2
1993 13.7 1.6 5.8 23.2 124 7.4 1.284 143.4 - 143.4
1994 100.5 3.306 66.3 23.2 124 27.5 4.142 143.4 - 143.4
1995 100.5 7.408 88.4 60.72 124 28.4 26.653 143.4 17.91 143.4
1996 341 15.01 88.4 66.53 229 368.2 341 143.4 17.91 368.2
1997 815 51.3 151.8 244 229 368.2 815 1338 26.45 1338
1998 891 51.3 547 244 229 368.2 891 1338 272.1 1338
1999 1166 189.3 2144 244 492 873 1166 2379 420.44 2379
2000 1166 189.3 4938 303 886 1035 1166 2379 420.44 4938
2001 1166 431.7 4938 1192 886 1709.1 1166 2379 420.44 4938
2002 1166 2916 7304 35860 5406 1709.1 1166 2379 1226.4 35860
2003 2932.9 8633 7304 35860 5406 1709.1 11652 2379 1226.4 35860
2004 5895 8633 70720 35860 8728 3319 51870 2379 1439 70720
2005 36190 8633 280600 35860 8728 3319 51870 2379 3146 280600

ordering a custom supercomputer. If the consumer is interested on ordering a custom

model, potential manufacturers are called to submit proposals, indicating the prototype

details and the price to be charged. Upon testing the prototypes, the buyer chooses the

supplier and makes a public announcement of the winning proposal details. For the case

of off-the-shelf models, the potential buyer contacts the supercomputer suppliers, in an

attempt to obtain discounts over the list prices. After checking if the available models

suit his computing needs, the consumer decides whether to place an order. Discounts

over list price are frequent, but depend on the client characteristics. According to the

available information on discounting practices in this industry, discounts for private and
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Table 2.2. Network statistics for the most important firms

year Cray HP IBM NEC Fujitsu Hitachi SGI Intel Sun Total Networks
1990 22 0 2 9 9 9 0 1 0 56
1991 52 0 3 10 19 9 0 11 0 121
1992 76 0 4 17 48 11 0 15 0 200
1993 125 0 5 25 56 12 0 27 0 329
1994 165 3 20 30 69 19 9 38 0 504
1995 161 14 82 30 63 20 115 60 0 689
1996 156 24 139 31 61 21 217 43 1 815
1997 178 41 177 50 73 26 227 37 0 927
1998 229 93 177 56 73 26 267 35 142 1212
1999 162 50 263 50 71 27 249 32 187 1200
2000 145 119 311 60 77 29 248 32 247 1376
2001 131 89 402 57 74 32 213 27 321 1459
2002 124 255 392 51 77 35 213 25 205 1494
2003 112 293 452 56 72 33 200 23 278 1655
2004 123 333 473 59 70 32 199 23 217 1684
2005 106 467 571 56 68 32 188 23 204 1876

non-government clients are in the range of 10%-20% over the list price. Government-

related institutions are typically given a discount rate between 20%-30%4. Like other

technological goods, supercomputers have experienced sharp decreases in both nominal

and real price/quality ratio.

Table 2.2 describes the evolution of firm networks for the most important players in

the industry in the period 1990-2005. A firm network is here defined as the number of

consumers whose last purchase was a product from that firm5. Several relevant facts can

be inferred from Table II. First, firms entering the market tend to considerably expand

their networks shortly after entry occurs. In this market, this seems explained by "market

4As an example, the latest available contract between Cray and the General Services Administration
(GSA) specified a discount rate of about 22% for several supercomputer models and related components.
5Network values for the early years in the sample were computed using the few existing information on
purchases prior to 1990. This information is available from TOP500 early surveys.
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tipping" behavior from entrants (e.g., SGI, Sun Microsystems) in an attempt to create a

significant installed base via low prices.

Second, firms tend to have less volatility in their network size once it has reaches

a "reasonable" dimension. Given that the total number of consumers being part of a

network has been growing since 1990 (see last column), this suggests that firms seek to

create a consumer loyal base which can be harvested in future years by charging higher

prices. Finally, firms fiercely dispute their network size with their opponents. Since there

is imperfect lock-in in this market (i.e., consumers may change supplier by incurring in

switching costs), firms may not only attract buyers who never purchased supercomputers

but also dispute the customers of their rivals. This hints for the importance of network

size in consumer purchasing decisions. That is, firms will dispute their rivals’ networks

in an attempt to decrease their products’ purchase probabilities. Network size should

therefore be a key driver of firm market shares.

2.3. The model

In this section I extend the model presented in Chapter 1 to describe firm behavior

in the supercomputer industry. Time is assumed discrete with an infinite horizon, and

indexed by t ∈ 1, 2, ...,∞. Letting F be the maximum number of firms that can operate

in this market, I denote FA
t ≤ F the number of incumbent firms at time t. An incumbent

firm is defined as every player with at least one product for sale to consumers. At each

period, incumbents simultaneously decide on retail prices, quality investment and frontier

expansion. Firm quality is defined as the markup-adjusted expected utility from buying

from that firm. As in Chapter 1, quality investment is defined as the percentage increase
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(or decrease) in that metric to the extent controlled by the firm. Frontier investment is

defined as being the number of computing speed units (measured in Gigaflops according

to the LINPACK Benchmark) added to the maximal computing speed that the firm has

ever produced (henceforth firm frontier). Firms can exit the market by scrapping all their

existing products and introducing none. Empty firm slots are taken by potential entrants,

whose entry decision is assumed exogenous and dependent only on observed states.

Observable states. Following the framework developed in Chapter 1, I assume that

all payoff-relevant features of firms can be encoded into a state vector. All firms observe

the number of consumers who never purchased a supercomputer, denoted N0t, and firm-

specific states: κft, Nft, νft and Ξft, for all f = 1, ..., F players and period t ∈ 1, 2, ...,∞.

Nft (henceforth firm network) represents the number of consumers whose last purchase

was from firm f . νft denotes Nevo and Rossi’s (2007) markup-adjusted expected utility

from buying from firm f . The latter is a function of all the firm’s products characteristics,

which are jointly denoted by Ξft. κft (henceforth firm frontier rank) represents the ratio

of firm f ’s frontier over the best frontier available in the industry at time t. Ideally, I

would like to consider the firm frontier itself as state variable. Unfortunately, the fact

that this variable grows without bound makes its choice as state variable impractical.

Instead, I consider a scaled version of this variable, κft, by following the variable rescaling

methods surveyed by Stockey and Lucas (1989)6. Letting hft be the maximal computing

speed that the firm has ever produced up to time t, κft is defined as

6As explained later in the paper, this stationary scaled variable embodies the dependence of firm frontier
on innovation.
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κft ≡
hft

max
i=1,...,F

{hit}

I denote s̃t ∈ S̃ as the vector of all observable states at time t.

Incumbent firms. Let pft denote the vector of prices charged by firm f at time t for

its products. In addition, let Ift denote the frontier investment rate of firm f , defined as

the ratio between investment and the firm frontier at time t7. I denote Aft as the quality

investment of firm f . At the time of the investment and pricing decisions, each firm

observes a pair of private information shocks: a shock in frontier extension costs, ε1ft,,

and a shock in quality investment costs, ε2ft. Before defining each firm’s intertemporal

optimization problem, it is convenient to use the framework developed in Chapter 1 to

further simplify the model. Let Mkpjft be the equilibrium absolute markup that firm f

charges for its product j at time t. In addition, define Fft as the set of product firm f

commercializes at time t, and denote mcjt the marginal cost of producing product j at

time t. Under the conditions on product demand proposed by Nevo and Rossi (2007) -

discussed in the demand section of this Chapter - the following assumption holds:

Assumption A1 (Constant absolute markup per firm): In equilibrium, each

firm f restricts attention to constant markup strategies Mkpft for each product j ∈ Fft.

That is, pjt −mcjt = plt −mclt, ∀j, l ∈ Fft, ∀f = 1, ..., FA
t .

7The motivation for choosing investment rates rather than levels as a firm control is that the data on
firm maximal computing speed increases is nonstationary. Firms tend to expand their frontiers more sig-
nificantly over time. Considering investment rates rather than investment levels successfully circumvents
this problem.
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This assumption aims to restrict the firm strategy set to allow for a varying number of

supercomputer models in the firm’s product portfolio. However, this assumption may not

be necessary in industries where neither the number of firm products changes nor pricing

strategies affect state transitions8.

Before defining each firm’s intertemporal optimization problem, I impose the following

assumption:

Assumption A2 (Markovian pure strategies): In equilibrium, all players’ choices

are deterministic functions of payoff-relevant information.

Formally, this corresponds to a mapping between the state space and firm actions.

Assumption A1 suggests that product-specific attributes should not play a role on the

players’ strategy functions. Therefore, I assume that {Ξft}F
A
t

f=1 are not payoff-relevant

information and therefore removed from the set of observed states. Hence, the relevant

set of observed states is given by S ≡
¡
N0t, {κft, Nft, νft}Ff=1

¢
.

Under these assumptions, an incumbent’s state space is S × Γ1f × Γ2f , where Γif

corresponds to the space of realizations of εift. In what follows, I assume Γif = R, ∀f =

1, ..., FA
t and ∀i = 1, 2. Under assumptions A1 and A2, a player’s strategy is defined

by the map σf : S × Γ1f × Γ2f −→ (Mkpf , Af , If). Assumption A1 implies that one

can replace prices by an absolute constant markup in the firm’s problem. Therefore, an

incumbent’s flow payoff can be written as

8However, even in this case assumption A1 may hold as a result of spot price competition. See Nevo and
Rossi (2007) for details.
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πf(Mkpt, Aft, Ift, st, εft) ≡ Πf(Mkpt, st) +Υf(st)− C(Ift, st, ε1ft)− CA(Aft, st, ε2ft)

whereMkpt ≡ {Mkpft}
FA
t

f=1 is a vector of markups charged by the F
A
t firms, Πf(Mkpt, st)

corresponds to firm f 0s flow market profits, and Υf(st) is a function representing the ben-

efits (other than flow profits) for firm f from the current state of the industry st. As

described in more detail below, these benefits outside profits aim to control, for example,

for spillovers of frontier expansions to other lines of product within the firm. C(Ift, st, ε1ft)

represents frontier extension costs, while CA(Aft, st, ε2ft) represents costs of quality in-

vestment.

Incumbents are assumed to decide quality investment, frontier expansion and ab-

solute markups in order to maximize the expected sum of discounted payoffs. Neither

the researcher nor individual firms observe the private shocks of other firms. A firm’s

intertemporal optimization problem can be written in recursive form, for any Markovian

profile of strategies σ = (σ1, ..., σF ) of Markovian strategies.. Therefore, the Bellman

equation of the incumbent firm is

Vf(s, εf) =

Z
ε−f

Max
σf (s,εf )

{πf(σf(s, εf), σ−f(s, ε−f), s, εf)

+βEs,,σf ,σ−f
£
Vf(s

0, ε0f)|s, σf(s, εf), σ−f(s, ε−f)
¤ª

dF (ε−f)
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where σf(s, εf) ≡ (Mkpf(s, εf), If(s, εf), Af(s, εf)) represents a Markovian strategy

for firm f , and Es,σf ,σ−f [.] denotes firm f ’s expectations conditional on all firms choosing

Markovian strategies, and on observable states.

Potential entrants. Potential entrants are defined as firms are defined as players

with no products for sale. These players are assumed to decide whether to enter the

market. In case entry takes place, the potential entrant will have both a set of products

for sale and a technological frontier in the following period. I assume that a potential

entrant decides on entry after observing a pair of shocks which determine future average

quality and technological frontier. Thus, a potential entrant’s state space is assumed to be

S×Γ3f ×Γ4f , where Γ3f corresponds to the shock determining future average quality and

Γ4f is the shock that determines the entrant’s future technological state. These shocks

are assumed private information of the entrants. It is assumed that potential entrants get

a payoff of zero by the time they decide on entry.

2.3.1. Product Market Profits

In this subsection I model flow profits in the supercomputer market. The modeling of

product market profits proceeds in two steps. First, I model supercomputer demand.

Second, I assume price competition in differentiated products to model the supply side.

Finally I derive each firm’s market profit as a function of observed states and absolute

markups.

Demand. I follow the framework developed in Chapter 1 to control for consumer

heterogeneity. Let Jt be the number of supercomputer models available at time t, and
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define Drft as a dummy variable which equals one if consumer r is part of firm f ’s

network and is zero otherwise. The utility function for a buyer r interested in acquiring

supercomputer j at time t is assumed to be9

Urjt = γxj + λMPPj + τ 1κf(j)t + ψNf(j)t − αpjt + ξjt + Λf(j)Drtf(j) + �rjt

where xj is the observed quality of product j, defined as the computing speed measured

in Teraflops (1000 Gigaflops) according to the LINPACK Benchmark (henceforth Rmax),

MPPj is a dummy variable which equals unity if supercomputer j belongs to the family

of massive parallel processing systems, pjt is the price of supercomputer j at time t, ξjt

regards its unobserved quality, Nf(j)t corresponds to the number of consumers at time t

whose last purchase was from f(j) (i.e. the firm which commercializes product j), Drf(j)t

is a dummy variable which equals one if consumer r is part of f(j)’s network, κf(j)t

corresponds to the computing speed ranking of the firm which commercializes product j

at time t10, and �rjt is a zero-mean stochastic term. I assume thatDrf(j)t is not observed by

the econometrician, but its distribution is. τ 1, ψ and Λf(j) are parameters which measure

valuation of technology ranking, network externalities and switching costs associated with

the firm which produces product j, respectively.

9I am implicitly assuming that buyers will purchase at most one supercomputer. An alternative modeling
strategy would be to account for multiple purchases as proposed by Hendel (1999). Except for some
selected customers, the TOP500 data indicates that the vast majority of consumers will purchase at most
one supercomputer per period.
10Note that this state variable is bounded between 0 and 1. κf(j)t = 0 corresponds to the extreme case
of inactivity in the industry, while κf(j)t = 1 indicates that firm f has produced the most powerful
supercomputer up to time t.
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The richness of the TOP500 data allows for additional characteristics to be included

in the mean utility (e.g., number of processors, operative system and interconnect type).

There are, however, two reasons why a more parsimonious model is preferred. First,

most of these variables are strongly correlated with the observed quality measure Rmax,

which raise colinearity problems in estimation. Second, it is reasonable to assume that

supercomputer buyers are primarily concerned with performance metrics and not so much

with the machine specifics (e.g., number of processors).

Consumers can choose an "outside good", whose utility is Ur0t = ξ0t + �r0t. This

outside alternative may represent not only other types of computers that buyers may

consider powerful enough to meet their computing needs (e.g., mainframes, workstations),

but also the flow utility from using a high-end computer one already owns. Therefore, it

is reasonable to assume that the mean utility of the outside alternative, ξ0t, evolves over

time.

The following assumption is imposed for not only for computational convenience, but

also to ensure a constant absolute markup per firm in equilibrium (see Nevo and Rossi

(2007) for a proof):

Assumption A3: ∀j = 0, 1, .., Jt, �rjt is identically and independently distributed

extreme-value type I.

Under assumption A3, the market share for product j at time t conditional on con-

sumer type vector is given by



74

qjt(p|Drt) =
exp(γxj + λMPPj + τ 1κf(j)t + ψNf(j)t − αpjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(γxl + λMPPl + τ 1κf(l)t + ψNf(l)t − αplt + ξlt − ξ0t + Λf(l)Drtf(j))

and the conditional outside good share is

q0t(p|Drt) =
1

1 +
X
l

exp(γxl + λMPPl + τ 1κf(l)t + ψNf(l)t − αplt + ξlt − ξ0t + Λf(l)Drtf(j))

I assume that consumers may belong only to a firm network. That is, if for a given f

we have Drtf = 1, then Drti = 0 ∀i 6= f. By applying the results on demand derivation

from Chapter 1, the probability of purchase of product conditional on consumer type is

given by

qjt(Mkpt, st|Drt) =
exp(−αMkpf(j)t + τ 1κf(j)t + ψNf(j)t + Λf(j)Drtf(j))

1 +
FX
d=1

exp(−αMkpdt) exp(τ 1κdt) exp(νdt) exp(ψNdt) exp(ΛdDrtd)

× exp(γxj + λMPPj − αmcjt + ξjt − ξ0t)

where νft = ln

ÃX
l∈Fit

exp(γxl + λMPPl − αmclt + ξlt − ξ0t)

!
is the markup-adjusted

inclusive value metric introduced by Nevo and Rossi (2007).
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Supply. Each firm f in the industry produces some subset Fft of the j = 1, ..., Jt

products commercialized at time t. Firm f ’s flow profits at time t are defined by

Πf(pt, st) =Mt

X
j∈Fft

(pjt −mcjt)qjt(p, st)− Cf1{exp(νft) > 0}

where Cf1{exp(νft) > 0} corresponds to fixed production costs conditional on the firm

being active in the market (i.e., it has at least one product being commercialized)11. The

marginal cost of producing product j at time t, mcjt, is assumed to be time-varying and

dependent on product characteristics. Mt corresponds to the market size state at time t,

which is defined as being the number of consumers potentially interested on purchasing a

supercomputer. The last component of flow market profits is qjt(p, st), which denotes the

probability of acquiring supercomputer j at time t, given prices and observable states.

Firms are assumed to compete in prices. However, the pricing decisions will affect

not only the profits at time t, but also future payoffs. Intuitively, firms pricing decisions

will also take into account the fact that prices affect purchase probabilities, which in turn

affect state transitions. For example, a firm may engage into "market tipping" strategies

to attract consumers to its own network via low prices. Hence, static price competition

models will fail to correctly describe firm pricing behavior. I use the results from the both

previous section and Chapter 1 to both simplify the profit function and account for these

issues.

11Note that when firm f is a potential entrant, we have Fft = ∅. Hence νft = −∞ and so exp(νft) = 0.
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Under the assumptions imposed so far, and assuming the existence of a dynamic

equilibrium in markups, the equilibrium profit function is given by

Πf(Mkpt, st) = Mkpft

FX
k=0

Nkt
exp(−αMkpft + τ 1κft + νft + ψNft + Λf1{k = f})

1 +
FX
d=1

exp(−αMkpdt + τ 1κdt + νdt + ψNdt + Λd1{k = d})

−Cf1{exp(νft) > 0}

Note that this profit function is well defined even if only FA
t < F are active in the

market. By definition exp(νft) = 0 for firms with no product portfolio, which implies

profits equal to zero.

2.3.2. Frontier benefits outside profits

Supercomputer firms are commonly reported to incorporate their advances in computing

power into other lines of product (e.g. mainframes, PCs).Consequently, product market

profits alone may fail to account for all the benefits the firm derives from its techno-

logical frontier. This section describes the modeling of these additional benefits and its

empirical identification. One would expect these benefits outside profits to be increasing

on the firm’s technological frontier. However, if there are several rivals with a similar

technological state, the firm only gets a share of that benefit. For example, if two firms

are competing on both the supercomputer and the PC market, the benefit of creating

improved PCs by incorporating advances in supercomputing is lower if the rival is able

to do the same. Therefore I assume that the benefit is decreasing in the number of
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"technologically similar" rivals. This motivates the following functional form for frontier

benefits

Υf(st) =
Θf(st;χ)

2π
p
1− ρ2

FX
i=1

φ

µ
vit − vft

hA
,
κit − κft

hI
; ρ

¶ ∀f = 1, .., F

where Θf(st;χ) is a function with parameters χ, and φ(., .; ρ) is the standard bivariate

normal distribution with correlation parameter ρ. Although seemingly arbitrary, this

specification controls for firm heterogeneity and externalities on outside-profit frontier

benefits. Its intuition can be described as follows. Firms are assumed to derive an out-of-

profit benefit ofΘf(st;χ) given their current technological state. Since both vft and κft are

continuous variables, I cannot restrict attention to the firms whose technological frontier

is exactly the same as of firm f . Hence, the bandwidth parameters hI and hA are required

to define how "similar" the rivals are under some distance metric. I assume that the latter

consists on a weighted average of the distance of firm f 0s from its rivals it terms of both

markup-adjusted inclusive values and frontier state. Hence, the bandwidth parameters

hI and hA define "how close" is a rival by scaling its quality and frontier distance with

respect to firm f . I choose a Gaussian kernel as the weighting function12, although other

kernels could be considered (see Härdle (1990) and Pagan and Ullah (1999) for detailed

discussions on these methods). The correlation coefficient ρ allows me to control for

positive relationship between firm quality and frontier rank state.

12The normal density is scaled by 2π
p
1− ρ2 to ensure that each firm with exactly the same state values

as firm f would count as one similar rival. This guarantees that, in the case of monopoly, the payoff
Θf (st;χ) is divided by one.
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One important question from an empirical viewpoint is how to identify the parameters

χ. The answer to this question lies on the variation in the number of a firm’s similar

rivals. This variation which allows me to separate the benefit from innovating from cost

functions. According to the "selection effect" introduced in the literature by Aghion et al.

(2001, 2003), firm’s incentives to innovate are increasing in the number of technologically

similar rivals. As this number does not affect the costs of innovation, the benefit function

can be identified from the data. Hence, one can estimate Θf(st;χ) by either (i) using a

nonparametric estimator, such as a sieves approximation with Chebyshev polynomials,

or (ii) assuming a parametric form for Θf(st;χ). I follow approach (ii) by assuming that

Θf(st;χ) = χ1κft + χ2κ
2
ft.

2.3.3. Frontier extension costs

I assume that, for all firms f = 1, ..., FA
t , the functional form for frontier extension costs

is

C(Ift, st, ε1ft) = 1{Ift > 0}
¡
c0 + c1κft + (c2 + ε1ft)Ift + c3I

2
ft

+c4

FtX
i=1

1 {κit ≤ κft} 2π
p
1− ρ2φ

µ
vit − vft

hA
,
κit − κft

hI
; ρ

¶

+c5

FtX
i=1

1 {κit > κft} 2π
p
1− ρ2φ

µ
vit − vft

hA
,
κit − κft

hI
; ρ

¶!

The intuition behind this specification can be described as follows. Investment costs

only take place if the firm extends its technological frontier. If the firm does expand its
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frontier, it pays fixed costs which depend on (i) a fixed amount c0, (ii) the firm’s tech-

nological state κft, and (iii) the quality and technology states of rivals. The proposed

specification aims to control firm heterogeneity and externalities on frontier expansion.

The parameters c4 and c5 control for the amount of learning that a firm derives from tech-

nological laggards and leaders, respectively. The cost function is assumed to be quadratic

in Ift, in order to capture convexities in frontier investment expenditures. The parameters

c2 and c3 therefore provide information on marginal costs of innovation. Marginal costs

are assumed to depend also on a private shock ε1ft, but not dependent on firm hetero-

geneity. The average investment rate conditional on positive investment is approximately

300%, which suggests low marginal innovation costs.

2.3.4. Quality investment costs

Following the framework presented in Chapter 1, the rate of quality investment is defined

as

Aft =

⎛⎝X
l∈FIN

ft

exp(γxl + λMPPl − αmclt + ξlt − ξ0t)

⎞⎠
ϕft

−

⎛⎝ X
k∈FOUT

ft

exp(γxk + λMPPk − αmckt + ξkt − ξ0t)

⎞⎠
ϕft
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where ϕft ≡ exp(νft). FIN
ft and FOUT

ft denote the sets of products that firm f decides

to launch and scrap, respectively. I assume that, for all firms f = 1, ..., FA
t , the functional

form for quality investment costs is given by:

CA(Aft, st, ε2ft; θ)) = 1{Aft > 0}(cA0Aft + cA1A
2
ft) + 1{Aft < 0}(cA2Aft + cA3A

2
ft) + ε2ftAft

This specification can be described as follows. If the firm decreases its markup-adjusted

inclusive value, it pays (or receives) a linear payoff cA2Aft + cA3A
2
ft. In the limit case of

scrapping all products (Aft = −1), it receives a payoff of −cA2 + cA3 . In case Aft = 0,

the firm does not incur in any expenses. If it augments its existing quality, it pays an

amount which is assumed quadratic in Aft. Marginal costs are assumed to depend also on

a private shock ε2ft, which is assumed to be the only source firm heterogeneity in quality

investment costs.

2.3.5. State transitions

The specification of the continuation value in the firms’ Bellman equations requires as-

sumptions on state transition functions. Like in the framework developed in Chapter 1, I

impose the following auxiliary assumptions:

Assumption A4: Private shocks on (i) quality investment costs and (ii) frontier

extension costs are independently and identically distributed over time and players.
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Assumption A5: For every firm f , the private information state εft is assumed

independent of observed states st.

These assumptions are motivated by computational and tractability concerns. Allow-

ing for serial correlation implies a significant (and unaffordable) increase in computational

burden.

Markup-adjusted inclusive values. Like in Chapter 1’s framework, the dynam-

ics of each active firm’s average quality measure depend on three components: (i) the

firm’s quality investment, (ii) the evolution of the average outside alternative’s value ξ0t,

and (iii) temporal changes on the characteristics inherent to the products the firm still

commercializes (e.g. changes in the marginal costs). For the case of supercomputers,

observed characteristics (i.e., reported Rmax and machine architecture) of the product

remain unchanged upon introduction in the market. Hence, I assume that (i) a product’s

observed characteristics do not change after its, introduction, (ii) ξk,t = ξk +∆ξk,t, and

(iii) marginal costs are a time-varying stochastic function given by

mck,t = mc0 +mct(xk,MPPk) + ηMC
kt

Under these assumptions we have

uk,t+1 ≡ yf(st,Mkpt,At) + ζk,t+1 + (∆ξk,t+1 −∆ξk,t − α(ηMC
k,t+1 − ηMC

k,t ))
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where uk,t+1 is the total variation in product k’s markup-adjusted mean utility (as

defined in Chapter 1), yf(st,Mkpt,At) is the projection of

−α(mct+1(xk,MPPk)−mct(xk,MPPk))

onto the space of observed states and actions. Intuitively, ζk,t+1 corresponds to the

parcel of marginal cost variation that is not explained by firms’ strategic interactions and

observed states. The function yf(st,Mkpt,At) is assumed to measurable with respect to

the Lebesgue measure.

In order to have a well-defined transition for markup-adjusted inclusive values, auxil-

iary assumptions are necessary. Following the framework developed in Chapter 1, I pose

the following assumptions:

Assumption A6: The process ζk,t+1+∆ξk,t+1−∆ξk,t−α(ηMC
k,t+1− ηMC

k,t ) is common

to all products within the firm’s portfolio. That is, for every firm f , we have

(ft+1 ≡ ζk,t+1 +∆ξk,t+1 −∆ξk,t − α(ηMC
k,t+1 − ηMC

k,t ).

Assumption A6 implies that the temporal evolution of a firm’s product attributes can

be encoded into a firm-specific shock. The latter may include shocks common to all firms

which might not be observed by the econometrician (e.g., input price fluctuations). This

assumption means that the temporal evolution of each firm’s product attributes is a result

of firms’ quality investments decision, markups, industry state and a random shock.
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Assumption A7: There exists a constant d0 for which the process ξ0,t+1 − ξ0,t −

(ft+1 − d0 is a martingale. That is, E[ηft|st,At] = 0 for every firm f, where

ηft ≡ ξ0,t+1 − ξ0,t − (ft+1 − d0

Assumption A7 is sufficient for stationary markup-adjusted inclusive values, condi-

tional on the functional form for yf(st,Mkpt,At). For this purpose, I assume that13

yf(st,Mkpt,At) = −d1 ln(ϕft) + d2 ln(1 +Aft)

Under these assumptions, the transition of an active firm f ’s markup-adjusted inclusive

value can be written as

υft+1 = d0 + (1− d1)υft + (1 + d2) ln(1 +Aft) + ηft

We are left to define the transition for potential players. By definition, these players

occupy slots in the state space where exp(νft) = 0. I assume that these inactive firms

enter the market (i.e., will have exp(νft+1) > 0) exogenously. Again using the notation

ϕft+1 = exp(νft+1), the transition of inclusive values for inactive players is given by

ϕft+1 = max{0, w1(st) + ε3ft}

13Of course, other alternative functional forms could be considered to ensure stationary markup-adjusted
inclusive values. The proposed conditions are sufficient for this purpose, but not necessary.
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where w(st) is a function of all observed states and ε3ft is a zero-mean shock. The

inclusive-value transition function for all players in the game can be concisely written as

exp(νft+1) = 1{exp(νft) > 0} exp(d0 + (1− d1)υft + (1 + d2) ln(1 +Aft) + ηft)

+(1− 1{exp(νft) > 0})max{0, w1(st) + ε3ft}

Networks. Chapter 1 presented a framework valid when all networks - including the

number of consumers who never purchased the product, N0t - is observed. However, the

seriesN0t is not observed in the supercomputer market. In this case, auxiliary assumptions

are necessary to recover this series. There are two suitable methodologies to recover N0t.

The first is to follow the approach of Benkard (2004), in which consumers are assumed

to optimally reallocate their supercomputer stocks every period. Under this assumption,

the number of consumers potentially interested on purchasing a supercomputer is well

approximated by the total of units sold within the last T ∗ periods, where T ∗ corresponds to

the expected lifetime of the product. The second approach is to use the specific properties

of network transitions by applying Kalman’s filter. This latter approach instead requires

assumptions on the initial values of both the series and the new consumer arrival process.

I follow Benkard’s approach.

The transition function for the network vector Nt = [N0t, N1t, ..., NF ]
0
is given by

Nt+1 = Q(Mkpt, st)Nt + Ñ0t+1
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where Ñ0t+1 = [∆N0t+1, 0, ..., 0]
T corresponds to the column vector with the number of

new consumers arriving to the market in the first cell and zero otherwise. This construc-

tion implicitly assumes that there are no stochastic terms in firm networks. This implies

that there are no consumers leaving a network for exogenous reasons. Q(Mkpt, st) is a

matrix whose entries Qi,j are defined by the probability of a consumer joining firm i’s

network when he currently belongs to firm j’s network. These probabilities can be de-

rived from the purchase probabilities from a given firm, which were derived in the section

3.1.2. However, one must account for the fact that a consumer who belongs to a firm

network still belongs to that network if he chooses the outside alternative. Under these

assumptions, every entry in Q is defined as follows

Qi,0 = Pi,0,∀i = 0, 1, ..., F

Qi,i = Pi,i + P0,i,∀i = 1, ..., F

Q0,i = 0,∀i = 1, ..., F

Qi,j = Pi,j,∀i 6= j, i, j = 1, ..., F

where Pi,j corresponds to the probability of buying a product from firm i given that

the consumer is part of firm j’s network. These correspond to

Pi,j =
exp(−αMkpit) exp(τ 1κit) exp(νit) exp(ψNit) exp(Λi1{i = j})

1 +
FX
d=1

exp(−αMkpdt) exp(τ 1κdt) exp(νdt) exp(ψNdt) exp(Λd1{d = j})
, ∀i, j
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By definition, the sum of all networks is equal to the market size. Under Benkard’s

(2004) assumption, this series is observed. Hence, ∆N0t+1 is identified by using the

property that

FX
d=0

Ndt+1 =
FX
d=0

Ndt +∆N0t+1

I assume that the arrival of new consumers to the supercomputer market at t+1 is a

linear function of the market size at period t plus a random term. That is,

∆N0t+1 = φ0 + (φ1 − 1)Mt + ηN0t+1

where Mt ≡
FX
d=0

Ndt. Hence, the total market size transition is given by

Mt+1 = φ0 + φ1Mt + ηN0t+1

I assume that 0 ≤ φ1 < 1 in order to ensure a stationary process for Mt. Intuitively,

that means that the number of consumers arriving to the market should not be growing

without bound. Even though the market size series computed under Benkard’s assumption

suggest this pattern, assessing whether 0 ≤ φ1 < 1 holds is an empirical issue. Therefore,

the robustness of this assumption is discussed in the empirical section of this Chapter.

Under the proposed law of motion for the net increase in the number of consumers in

this market, the transition function of networks is given by
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Nt+1 = Q(Mkpt, st)Nt +
£¡
φ0 + (φ1 − 1)1TNt + ηN0t+1

¢
, 0, ..., 0

¤T

where 1 is a 1× F row vector of ones.

Firm frontier ranks. At this point, I am only let to specify the transition of the

technological frontier state. For ease of exposition, I start by focusing on the case where

there are no potential entrants (i.e., all firms have κft > 0). The following proposition

establishes the state transition when all firms are incumbents.

Proposition 1. If for every firm f, κft > 0 , then the transition of κft+1 conditional

on player’s actions and observed states is deterministic and given by

κft+1 ≡
(1 + Ift)κft1{Aft > −1}

max
i=1,...,F

{(1 + Iit)κit1{Ait > −1}}

Proof. Let hft be firm f ’s frontier at time t. Next period’s frontier, hft+1, is given by

hft(1 + Ift) if the firm doesn’t scrap all products (i.e., if Aft > −1) and zero otherwise.

The industry’s frontier in the next period if simply the maximal hit+1 after investment

decisions. By definition, we have

κft+1 ≡
hft+11{Aft > −1}

max
i=1,...,F

{(hit+11{Ait > −1}}
=

(1 + Ift)hft1{Aft > −1}
max

i=1,...,F
{(1 + Iit)hit1{Ait > −1}}
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The transition of κft+1 is the obtained by dividing both the numerator and the de-

nominator by max
i=1,...,F

{hit} . ¤

However, if some of the F players are not incumbents, one must extend the above

transition to allow for cases where κft = 0. Let hEft+1 be the maximal computing speed

that a potential entrant f produces, should he enter at period t+ 1.

Defining Wf,t+1 = ln(h
E
ft+1)− ln

µ
max

i=1,...,F
{hit}

¶
, I assume the following:

Assumption A8: Wf,t+1 is a stationary random variable with mean w2(st), where

w2(st) is a measurable function with respect to the Lebesgue measure.

In what follows, it is convenient to write Wf,t+1 as the sum of its mean with a zero-

mean shock, i.e., Wf,t+1 = w2(st)+ε4ft. Since I am assuming an exogenous entry process,

this assumption poses structure on the technological frontier rank of new active firms. In

particular, the technological frontier of an entrant at t+ 1 is given by

κft+1 =
hEft+11{w1(st) + ε3ft > 0}

max
i=1,...,F

©
(hit+11{Ait > −1}, hEit+11{w1(st) + ε3ft > 0}

ª
=

exp(Wf,t+1)1{w1(st) + ε3ft > 0}
max

i=1,...,F
{(1 + Iit)κit1{Ait > −1}, exp(Wi,t+1)1{w(st) + ε3ft > 0}}

Hence, the transition of technological states for all players in the game can be concisely

written as
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κft+1 =
(1 + Ift)κft1{Aft > −1}1{κit > 0}

max
i=1,...,F

{(1 + Iit)κit1{Ait > −1}, exp(w2(st) + ε4ft)1{w1(st) + ε3ft > 0}}

+
exp(w2(st) + ε4ft)1{w1(st) + ε3ft > 0}1{κit = 0}

max
i=1,...,F

{(1 + Iit)κit1{Ait > −1}, exp(w2(st) + ε4ft)1{w1(st) + ε3ft > 0}}

2.3.6. Equilibrium concept

This section concerns the definition of equilibrium for the dynamic model just out-

lined. Using the assumptions imposed in the section 3, I restrict attention to a pure-

strategy equilibrium where firms choose Markovian strategies of the form σf(s, εf) ≡

{Mkpf(s, εf), If(s, εf), Af(s, εf)}. and Let Vf(s, ,εf |σf , σ−f) be firm f ’s expected dis-

counted payoffs when he chooses strategy σf and his rivals choose σ−f . A Markov-Perfect

Nash Equilibrium (MPNE) of this dynamic oligopoly game can be defined as follows.

Definition 2. (MPNE): A Markovian strategy profile σ∗ ≡ (σ∗1, ..., σ∗F ) is an MPNE

if, for every firm f , σ∗f solves f ’s problem given σ∗−f . That is,

Vf(s,εf |σ∗f , σ∗−f) ≥ Vf(s,εf |σ̂f , σ∗−f)

for all s and alternative strategy σ̂f .

Existence of a pure-strategy MPNE can be done by either (i) invoking theorems 1

and 2 of Jenkins, Liu, Matzkin and McFadden (2004) or (ii) applying Brower’s fixed point
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theorem after writing the system for first-order conditions of all firms on markups, quality

investment and frontier extension rates in fixed point form. The fact each firm’s value

function is unique ensures the existence of at least one equilibrium14. Uniqueness can in

principle be verified either by directly proving that the fixed point form of the system

is a contraction, or by checking if the system satisfies Blackwell’s sufficient conditions.

Unfortunately, MPNE uniqueness verification using these and other proof strategies are

particularly difficult and still an open area of research (see Doraszelski and Satterthwaite

(2007) for a discussion). However, uniqueness is not necessary for estimation purposes,

whose details are addressed in the next section.

2.4. Estimation methods

The structural estimation of the model consists on a variant of the two-step method

proposed by Bajari, Benkard and Levin (2006). Several other dynamic model estimation

methods have been introduced in the literature (e.g., Aguirregabiria and Mira (2006),

Berry, Ostrovsky and Pakes (2005), Hotz, Miller, Sanders and Smith (1994)) after Rust’s

(1987) pioneer work on dynamic discrete choice models15. Even though the method of Ba-

jari et al. (2006) has been considered in other dynamic oligopoly studies (e.g., Beresteanu

and Ellickson (2006), Ryan (2006)), this Chapter will follow a modified framework. I start

by providing a general overview of my estimation strategy, explaining how the methods

outlined in Chapter 1 can be applied to my model for the supercomputer industry. Then

I discuss the technical details of each estimation step.

14If each firm’s value function were not unique, existence of equilibrium could instead be done by invoking
Kakutani’s fixed point theorem.
15A comprehensive survey of these methods can be found in Ackerberg et al. (2006).
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2.4.1. An overview of the estimation

Following Bajari, Benkard and Levin (2006), the first step of my estimation strategy con-

sists on estimating the flow profit parameters, as well as the observable state transitions

and policies. After choosing appropriate instruments, demand parameters are recovered

by using Nevo’s (2001) demand estimator. Markup and marginal cost series are obtained

using the assumption of constant absolute markups per firm. I regress prices on a pro-

posed functional form for marginal costs and firm-period specific dummies. Estimated

marginal costs and demand parameters are used to compute markup-adjusted inclusive

values, quality investments and firm network transitions. Optimal policy functions are

nonparametrically estimated using Chebyshev polynomials of observed states, following

the lines of Jenkins, Liu, Matzkin and McFadden (2004).

In the second stage of estimation, I deviate from Bajari, Benkard and Levin (2006).

I solve for the continuation values of firms using function approximation methods (see

Miranda and Fackler (2002)) and the policy and transition estimates from the first stage.

Instead of using the continuation values in the inequality sampling method proposed by

Bajari et al. (2007), I include them in a GMM estimation procedure where I use firm op-

timality conditions directly. I form moments using (i) first-order conditions on markups,

frontier extension rates and quality investment, and (ii) the condition that the firm will

only extend its frontier if it yields a higher value than not extending. To integrate these

conditions with respect to rival private information, I replace their policies recovered in the

first round of estimation in the firm moment conditions. Integration is performed using

Gauss-Legendre quadrature with respect to policy function residual distributions. This

approach has several advantages. First, forward simulation of firm continuation values
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given first step estimates is not necessary. That procedure is at the core of Bajari, Benkard

and Levin’s (2007) method, being also the main source of its computational burden. Sec-

ond, unlike Bajari, Benkard and Levin, a flow payoff function linear in parameters is not

necessary to ensure an affordable computational burden. Since the structural parameters

enter both in the flow payoff function and in the continuation value approximation, the

estimation problem effectively becomes a parametric one. This implies an estimation bur-

den similar to minimum distance estimators. Finally, the estimates of continuation values

may be useful for simulation purposes. These can be used for equilibrium computations

in counterfactual policy experiments where structural parameters are not modified. That

is, the intermediate step of MPNE computation where the value function is computed can

be avoided by treating the estimated value function as the true function. Computational

time is reduced at the cost of introducing estimation error in the simulation routine.

2.4.2. First-step estimates

Profit function parameters. There are two alternative estimation strategies to re-

cover the profit function parameters. The first consists on the method introduced by

Berry, Levinsohn and Pakes (1995). In this method, a framework which enables one to

estimate demand and supply parameters for oligopolistic differentiated products markets

is proposed. Like other related methods (e.g., Berry (1994)), it relies on the ability of ob-

served product characteristics to explain consumer utility. The second alternative method

is Nevo’s (2001) estimator, which deals with cases where that ability is questionable by

adding brand fixed effects. Since the observable supercomputer characteristics available

in my dataset may fail to capture important unobserved attributes (e.g., whether the



93

machine performs particularly well on solving certain types of problems), I follow Nevo’s

method to estimate demand parameters.

The model described in section 3 assumes that the (constant) absolute markup charged

by every firm is observable. However, only product prices are available, not the charged

markups. So the question is how to empirically separate markups from marginal costs

given price information only. The answer to this identification issue relies on the assump-

tion that, within each given period, all products that a firm commercializes are charged

the same constant absolute markup. Under this assumption, at any given time t, all vari-

ation in prices across the firm’s product portfolio must come from differences in products’

marginal costs. Therefore, marginal costs and firm markups are identified.

I start by describing demand estimation. A product’s market share conditional on the

the consumer’s network type is given by

qjt(p|Drt) =
exp(γxj + λMPPj + τ 1κf(j)t + ψNf(j)t − αpjt + ξjt − ξ0t + Λf(j)Drtf(j))

1 +
X
l

exp(γxl + λMPPl + τ 1κf(l)t + ψNf(l)t − αplt + ξlt − ξ0t + Λf(l)Drtf(j))

In line with the structure imposed for state transitions, I assume that ξjt = ξj+∆ξjt
16.

In addition, I decompose consumer r’s utility on consuming product j at time t as

Urjt = δjt + Λf(j)Drtf(j) + �rjt

16One could also assume a decomposition where time effects are present in ξjt. However, these are not
separable from ξ0t, and therefore not identified.
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where

δjt = γxj + λMPPj + τ 1κf(j)t + τ 21
©
κf(j)t = 1

ª
+ ψNf(j)t − αpjt + ξj +∆ξjt

is the mean valuation of product j at time t. Apparently, one should could consistently

estimate the demand parameters by either minimizing the distance between observed and

predicted market shares. However, if there exists correlation of the error term ∆ξjt with

other variables in δjt, this approach will yield inconsistent estimates. Even if suitable

instruments are available, the fact that ∆ξjt enters the product market share function

nonlinearly precludes this method. I instead follow the methodologies of Berry (1994),

Berry, Levinsohn and Pakes (1995) and Nevo (2001), where this error term can be obtained

by using the definition of δjt upon inverting the product market share functions. The

model’s prediction for the later is given by

qjt(p) =

Z
qjt(p|Drt)dP (Drt1, ...,DrtF |st)

where P (Drt1, ...,DrtF |st) corresponds to the distribution of consumer network types

induced by the observed network states. In our model, this consists on a multinomial

distribution, where the probability of drawing Drtf = 1 is given by
Nft

Mt
, ∀f = 1, ..., F 17.

Denoting sj,t as the observed market share for product j at time t, I define δjt(S.,t,Λ) as the

17Since I observe all the market purchases and network sizes, I could instead write the predicted market
share by replacing the integral by a sum across all consumers. For computational reasons, however, it is
preferable to numerically integrate using a few draws from the true distribution of consumer states.
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(unique) solution to the implicit system of equations q.t(δ.,t;Λ) = s.,t
18. The computation

of q.t(δ.,t;Λ) requires integration with respect to each Drtf . This can be done by replacing

the integral by a sum across random draws from the joint distribution P (Drt1, ...,DrtFt|st).

Given the solutions δjt(S.,t,Λ), the error term is given by

∆ξjt = δjt(S.,t,Λ)− (γxj + λMPPj + τ 1κf(j)t + ψNf(j)t − αpjt + ξj)

The term ∆ξjt can be treated as econometric error term. Since manufacturers take

into account all product characteristics in their pricing decisions, This term should be

correlated with prices. For the case of supercomputers there is also reason to believe

that some of the observed product attributes are correlated with the error term. For

example, supercomputer’s unobserved characteristics may be contributing to the system’s

speed on solving a system of 1000 equations with 1000 unknowns, which is an observable

machine attribute. Therefore, valid instruments for both prices and some of the product’s

attributes should are necessary. Determining how relevant these endogeneity issues are

for estimation is an empirical issue. Hence, the details about the need and choice of

instruments will be left for section 2.5.

An important issue is how to empirically separate the time-invariant components of

the mean utility function. Nevo (2001) shows that they can be recovered from the data

by first replacing γxj + λMPPj + ξj by brand-specific dummies dj in the mean utilities

δjt, and then regress the estimates d̂j on the observed attributes xj and MPPj using

Chamberlain’s (1982) minimum-distance method. However, this method assumes that

18The proof of uniqueness of this solution can be found in Berry, Levinsohn and Pakes (1995)
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E[ξj|xj] = 0 for every product j, which may fail to hold by the same reasons outlined in

the previous paragraph. Again, these endogeneity concerns are an empirical matter. For

this reason, if instruments are required for consistent estimation, the estimator for γ will

be the two-stage least-squares estimator of

d̂j = γXj + ξj

In case no endogeneity concerns arise, estimates of γ can be recovered using a GLS

regression. In any case, fixed-effect estimates of unobserved product attributes are given

by ξ̂j = d̂j − γ̂Xj.

Letting λ denote the set of all demand parameters to be estimated, and defining∆ξ(λ)

be the vector of errors evaluated at a given value of λ, one can estimate the true value of

λ with the GMM estimate

λ̂ = argmin
λ

∆ξ(λ)0ZΣ−1Z 0∆ξ(λ)

where Z is a set of instruments orthogonal to ∆ξ(λ) and Σ is a consistent estimate of

E[Z 0(∆ξ)(∆ξ)0Z].

Markups, marginal costs and quality investments. Markup and marginal cost

series are obtained using the assumption of constant absolute markups per firm. I assume

that marginal costs of producing product j at time t are given by

mcj,t = m0 +m1MPPj +mtxj + ηMC
jt
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where mt corresponds to time-varying coefficients on observed LINPACK Benchmark

of product j. This specification aims to control for a potential temporal decrease on the

marginal costs of producing a given computing speed. The coefficients can be estimated

by running the linear regression

pjt = m0 +m1MPPj +mtxj +mMkp ·Bjt + ηMkp
jt

where Bjft = 1{j ∈ Fft}, Bjt = [Bj1t, ..., BjF t]
T and mMkp is a 1 × F vector of

coefficients. The latter measure the markup charged by firm f at time t.

Estimated marginal costs and demand parameters are used to compute Nevo and

Rossi’s (2007) markup-adjusted inclusive values for all firms, quality investments and

firm network transitions. The estimates are also used to compute the quality investment

series Af,t.

Policy functions. For the second stage of estimation, policy function estimates are

necessary. One way to estimate quality investment and markup policies is to project each

Af,t, If,t andMkpf,t on the space of observed states, st. The fact that I only have 16 time

periods precludes estimating firm-specific policy functions. Fortunately, the structure of

the flow payoff suggests that one can restrict attention to symmetric and anonymous

policy functions, as defined by Doraszelski and Satterthwaite (2007). These concepts are

defined as follows:
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Definition 3. (Symmetry): A function fn is said to be symmetric if, for all n =

1, ..., N,

fn(z1, ..., zn, ..., zN) = f1(zn, ..., z1, ..., zN)

Definition 4. (Anonymity): A function fn is said to be anonymous if

f1(z1, z2..., zk, ..., zl, ..., zN) = f1(z1, z2..., zl, ..., zk, ..., zN)

for all k ≥ 2 and l ≥ 2.

The fact that the flow payoff function satisfies these two properties motivates an

econometric strategy where optimal policy functions are assumed to have the same prop-

erties. Hence, one way to obtain consistent estimates of the policy functions is to

use sieve functions on firm-specific states and the auxiliary variables κ−ft ≡
P
d6=f

κdt,

exp(ν−ft) ≡
P
d6=f
exp(νdt) and N−ft ≡

P
d6=f

Ndt. I estimate the following regression for

the markup policy by by OLS:

Mkpf,t =
K1X
k1=0

...
K7X
k7=0

χMkp
k1,...,k7

Tk1(N0t)× Tk2(κft)× Tk3,(Nft)× Tk4(exp(νft))× Tk5(κ−ft)

×Tk6,(N−ft)× Tk7(exp(ν−ft)) + εMkp
f,t

where Tk(.) corresponds to a first-kind Chebyshev polynomial or order k, and χ
Mkp
k1,...,k7

denote the coefficients on the tensor product of these polynomials. The orders of approxi-

mation in each dimension, Ki, are an empirical issue and therefore discussed in the results

section.
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Both quality investment and frontier expansion policies are recovered using nonpara-

metric methods. However, I must control for the fact that the support for these policies

is bounded below. In particular, we have Af,t ≥ −1 and If,t ≥ 0. The latter restriction is

particularly important due to lumpy frontier extension behavior seen in the data. Even

though firms decide optimal investment rates by comparing marginal benefits to mar-

ginal costs of innovation at their frontier, they may not invest due to considerable fixed

costs of frontier extension. This motivates the estimation of each policy by using the

Tobit I model. Like for the markup policy, I consider Chebyshev polynomials on observed

states as regressors. The proposed specification for the investment policy is therefore

Ift = max{0, wf,I(st, χ
I) + εIf,t}, where εIf,t is a zero-mean normally distributed error and

wf,I(st, χ
I) =

K1X
k1=0

...
K7X
k7=0

χIk1,...,k7Tk1(N0t)× Tk2(κft)× Tk3,(Nft)×k4 (exp(νft))

×Tk5(κ−ft)× Tk6,(N−ft)× Tk7(exp(ν−ft))

I propose an analogous specification for Af,t. That is, Aft = max{−1, wf,A(st, χ
A) +

εAf,t} where εAf,t is a zero-mean normally distributed error and

wf,A(st, χ
A) =

K1X
k1=0

...
K7X
k7=0

χAk1,...,k7Tk1(N0t)× Tk2(κft)× Tk3,(Nft)× Tk4(exp(νft))

×Tk5(κ−ft)× Tk6,(N−ft)× Tk7(exp(ν−ft))

State transitions. The estimation of profit function parameters allows me to com-

pute all network transitions but the outside alternative network, N0t. The parameters
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on the law of motion of this observed state are recovered by running the regression

Mt+1 = φ0 + φ1Mt + ηN0t+1, where the definition market size Mt follows the approach

of Benkard (2004). The distribution of the error ηN0t+1 is a necessary element in the second

stage of estimation. However, it can only be assessed upon estimation of the proposed

equation. In the next section I will proceed by assuming that this distribution has been

inferred.

The transitions of both markup-adjusted inclusive values and technological states de-

pend on potential entrant-specific shocks, ε3ft and ε4ft. Recall that, for any potential

entrant f , we have

exp(vft+1) = max{0, w1(st) + ε3ft}

Wf,t+1 = w2(st) + ε4ftif exp(vft+1) > 0

where Wf,t+1 = ln(hEft+1) − ln
µ
max

i=1,...,F
{hit}

¶
. Assuming that ε3ft is a zero-mean

normal shock, the first equation can be estimated using a Tobit Type I specification. The

number of sample observations for this regression is given by the number of empty slots

available at every period t. The equation on Wf,t+1 can be estimated by OLS conditional

on the set of inactive players who decided to enter at period t.

At this point, I am left to recover the transitions of markup-adjusted inclusive values

for incumbents. The functional form assumed for this transition is

υft+1 = d0 + (1− d1)υft + (1 + d2) ln(1 +Aft) + ηft
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which can be recovered with panel data linear regression techniques. In this Chapter

I will use GLS random-effects regression.

2.4.3. Second-step estimates

The first step of estimation recovers all parameters except the ones of frontier extension

costs, benefits outside profits, and quality investment costs. I denote θ as the vector

of parameters which were not estimated in the first step. The first-order conditions on

markups, quality investment and frontier extension provide information on all parameters

except fixed innovation costs. In order to obtain information to estimate fixed frontier

extension costs, I must impose the condition that if a positive frontier innovation rate is

chosen, then it must be better than no investment. However, these conditions depend on

firm continuation values, which are not available to the researcher. To deal with this diffi-

culty I exploit the structure of the Bellman equations to estimate a sieves approximation

to value functions. For ease of exposition, the details on value function approximation

can be found in Appendix B. I proceed by deriving the moment conditions used in the

GMM objective function. Auxiliary derivations for this conditions can also be found in

Appendix B.

For ease of notation, let gk be the kth entry in the observed state vector at period t+1,

whose dimension is denoted ∆(S). For the necessary moment conditions, I start with the

first-order condition on absolute markup. This condition can be written as
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Z
ε−f

µ
∂Πft(Mkpft(st, ε−f), st))

∂Mkpft

+βE

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Mkpft

|σf , σ−f(st, ε−f), st

⎤⎦⎞⎠ dF (ε−f) = 0

Replacing integration with respect to ε−f by integration of policy estimate’s residuals

and (ii) the integrated value function by its approximant, we obtain a moment condition

by considering the expectation of this equation’s left-hand side.

One can also derive a first-order condition for both quality investment and frontier

extension. However, I must account for the fact that the support of these variables is

bounded below. I use the Karush-Kuhn-Tucker condition (see Miranda and Fackler (2002)

pp 191-193) to derive moment conditions. I start with frontier extension investment, which

must be nonnegative. Optimality in this type of investment must satisfy the condition

Z
ε−f

⎛⎝−∂C(Ift, st, ε1ft; θ)
∂Ift

+ βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Ift

⎤⎦⎞⎠ dF (ε−f)− μIft1{Ift = 0} = 0

where μIft is a nonpositive LagrangeMultiplier. Unfortunately, ε1ft can only be isolated

when frontier extension investment is strictly positive. I deal with this difficulty by

considering the random variable

ε̃1ft ≡ 1{Ift > 0}ε1ft + μft1{Ift = 0}
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as the error term in the Karush-Kuhn-Tucker condition above. Letting μI be the

expected value of ε̃1ft, this condition can be written as

Z
ε−f

⎛⎝−1{Ift > 0}(2c6Ift + c5) + βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Ift

⎤⎦⎞⎠ dF (ε−f)− μI = ε̃1ft − μI

Since the right-hand side of the equation has expected value zero, one can consider

the expectation of the left-hand side as an extra moment condition. Like in the first-order

condition in markups, I replace the integrated value function Vf by its approximant and

integrate private information using the best-reply functions estimated in the first-stage.

A moment condition for quality investment is analogously derived. This corresponds

to

Z
ε−f

⎛⎝−∂CA(Aft, st, ε2ft; θ))

∂Aft
+ βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Aft

⎤⎦⎞⎠ dF (ε−f)− μAft1{Aft = −1} = 0

I again replace F (ε−f) by the distributions of residuals of first-stage policy estimates.

Firm f ’s integrated value function is also replaced by its approximant to form a moment

condition. Like for frontier investment, I demean the moment condition by a constant

μA, since the error term for this condition has a similar structure.

In principle, one could estimate the fixed cost parameters by matching the probability

of no frontier investment with a consistent estimator (e.g. the probability of no frontier

extension implied by the first-stage Tobit estimate for this policy). However, this requires
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the knowledge of the frontier investment rate that the firm is considering when comparing

the value of extending its frontier with the value of not investing. That rate is only

observed in the data when the firm does extend the frontier. I deal with this difficulty

by replacing that rate with E [Ift|Ift > 0, st] whenever the firm is observed not to extend

its technological frontier. An estimate of E [Ift|Ift > 0, st] can be computed from the

Tobit Type I approximation recovered in the first stage of estimation. Thus, denoting the

right-hand side of the positive investment condition (see appendix B for details) when no

frontier innovation is observed by R(E [Ift|Ift > 0, st] , st; θ), the moment condition that

identifies fixed innovation costs is

E [1{Ift = 0}Pr(ε1ft > R(E [Ift|Ift > 0, st] , st; θ))

−1{Ift = 0}Φ
µ
−wf,I(st, χ̂

I)

σ̂Iε

¶¸
= 0

where Φ(.) denotes the standard Normal distribution. The term in Φ(.) evaluates

the probability of no investment implied by the Tobit estimates of the investment policy.

In order to empirically implement this condition, a probability distribution for ε1ft is

required. However, this distribution is unknown. To deal with this difficulty, I replace the

probability parcel in the moment condition by the integral of Gallant and Tauchen’s (1989,

1992) density estimator. The latter consists on an approximation via Hermite expansion

to the true density, having the normal density as the leading term in that expansion. The

conditional density is scaled by an appropriate function so that it integrates to unity.

Gallant and Nychka (1987) proved that this technique is rich enough to accommodate
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densities from a large class that includes densities with fat, t-like tails, densities with tails

that are thinner than normal, and skewed densities. Formally, the density estimator is

fK(ε1ft) ≡
Ã

[PD(z1ft)]
2R

[PD(u)]
2 φ(u)du

!
φ(z1ft)

σε1

where z1ft ≡
ε1ft
σε1

and PD(zt) ≡
DX
i=0

ωiz
i
t, ω0 = 1.

At this point, I am left to form a GMM estimator for θ. I use the fact that the error

terms in the equations outlined above are assumed independent of observed states to form

enough moments to identify all the parameters in θ. In particular, I consider Chebyshev

polynomials of all observed states as instruments for the GMMweighting matrix. I denote

Z as the vector of these instruments. In addition, I denote all auxiliary parameters (e.g.

polynomial coefficients in Gallant and Tauchen’s density, variance of ε1ft) by ω. Letting

Ψ(st, θ, ω, hf(st, θ)) be the vector of moment conditions derived above and α ≡ (θ, ω), the

GMM estimator is defined as

α̂ ≡ argmin
α

Ψ(st, θ, ω, hf(st, θ))
0ZΣ−1Z 0Ψ(st, θ, ω, hf(st, θ))

where Σ is a consistent estimate of E[Z 0ΨΨ0Z]. The computation of standard errors

must account for the fact that the second step of estimation takes first-step estimates

as given. Corrected standard errors can be computed by either (i) using the correction

methods of Murphy and Topel (1985) or (ii) bootstrapping samples of the data with
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replacement and estimating the dynamic parameters with each subsample. I followed the

second procedure for computing standard errors.

2.5. Data and estimation results

2.5.1. The data

The data required for estimation using the methods described in the previous section

consists of the following variables: market shares and prices in each year, supercomputer

characteristics, network sizes (i.e., Nft), technological rankings of firms (i.e., κft) and

frontier expansion rates. The data ranges from 1990 to 2005. The details on the data

construction and the definition of its variables are presented in Appendix A.

Tables 2.3 and 2.4 provide yearly descriptive statistics of the most relevant variables in

the data set. Except for the first three columns (measured in units), all entries on Table

2.3 correspond to sales-weighted averages, where real prices are in $1M units, Rmax

is measured in Giga-FLOPS, and processors speed is measured in MHz. Firmrank κnt

corresponds to the ratio between a firm’s maximal Rmax production record and the

industry’s maximum.

Some relevant trends can be detected. First, there is a considerable growth in total

sales up to 1997, followed by a stable evolution of the quantity sold. This pattern follows

closely the evolution of the average real price statistic, which experiences a sharp decline

up to the mid 1990s and then varies between $6M and $10M. This suggests that firms

engaged into "market tipping" to attract new consumers in the early 1990s and then

"harvested" their consumer base via higher prices. Second, average network size per



107

Table 2.3. Yearly Sales-Weighted Means

Year Quantity Network Price Rmax No. Proc. Proc. speed Firm rank (κft)
1990 73 7 11.549 1.578 215.246 140.058 0.129
1991 101 13.444 7.793 1.733 151.435 184.961 0.230
1992 169 16.667 8.455 2.508 51.443 137.896 0.428
1993 275 25.308 7.363 5.212 189.646 112.010 0.281
1994 400 33.6 4.708 6.249 87.955 108.876 0.390
1995 405 45.933 3.423 6.590 43.049 107.524 0.398
1996 407 54.333 6.245 19.391 61.985 180.838 0.322
1997 584 92.7 9.581 42.021 111.603 246.689 0.177
1998 407 134.667 8.457 51.801 130.081 275.771 0.378
1999 510 133.333 9.471 94.920 192.558 339.015 0.401
2000 477 125.091 8.789 145.313 184.972 389.066 0.478
2001 408 145.9 7.333 242.820 227.902 536.621 0.387
2002 449 124.5 8.968 638.469 347.791 1006.972 0.126
2003 388 110.333 6.865 836.986 341.118 1650.017 0.229
2004 489 120.286 9.552 1889.182 614.918 1951.751 0.473
2005 463 125.067 9.961 4329.1 1382.551 2529.151 0.417

firm grows considerably until 1998, and fluctuates around the value for that year in the

following periods. This suggests that until the mid 1990s the growth of network size per

firm was primarily due to increases in new consumers, which is in line with the described

pattern on quantity sold. The wave-like evolution in average network following that

period is likely to be explained by variations both in average prices and number of firms

in the market. Finally, there is a exponential growth on the average LINPACK record

(i.e. Rmax) of supercomputers, and a similar evolution applies to the average number of

processors and processor speed used in the machines. Finally, the wave-like evolution of

the average firmrank indicates that firms tend to quickly approach the technological leader

until some industry player extends its frontier considerably. The descriptive statistics

presented on Table 2.4 not only reinforce this evidence, but also indicate that firms tend

to innovate considerably, even though no innovation is particularly frequent.
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Table 2.4. Summary Statistics

Variable Mean Median Std Min Max
Price 7.952 5.660 9.791 0.238 317.126
Rmax 633.465 51.2 4683.404 0.422 280600

No. processors 298.336 96 2092.405 1 131072
Processor speed 713.410 333.3 893.827 7 3600

Product market share(%) 0.2 0.04 0.4 0.031 5.3
Firm market share(%) 4.1 4.5 3.1 0.031 26.1

Frontier expansion rate (%) 296.4 47.8 857.2 0 3100.7
Firm rank (κft) 0.424 0.240 0.368 .006 1

Firm network (Nft) 81.760 101.517 51.386 0 571

2.5.2. Estimation Results

I estimate demand and supply equations separately. In order to assess the need for

instruments in demand estimation, I run a preliminary OLS regression of the logit demand

equation. The first column of Table 2.5 presents the results of this regression. Prices are

measured in $1M units (constant 1998 dollars), network size is measured in hundreds of

consumers, and Rmax is in Teraflop (1000 Gigaflops) units. The coefficients on product

characteristics are unintuitive. For example, one would expect marginal utility to be

increasing in observed quality. This suggests that this variable could be correlated with

unobserved attributes. Moreover, the coefficient on price has the expected sign, but

implies that all supercomputer models have inelastic demands. This contradicts profit

maximizing behavior. Therefore, the OLS results indicate that instrumental variables are

required for consistent estimation of demand.

In addition to the price endogeneity problem, I must investigate whether observed

quality (Rmax) is endogenous, or if its coefficient in the OLS regression is a result of
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inconsistent estimation. For this purpose, I run two 2SLS random-effects regressions: one

where I only instrument for prices, and another where both Rmax and price are assumed

endogenous19. Instruments must be carefully chosen in order to avoid correlation with

unobserved attributes. One alternative is to assume that product characteristics are pre-

determined and therefore suitable instruments. Even though the richness of the Top500

data would allow me to consider the attributes ignored in the utility specification as in-

struments, only three of those were considered: processor speed, a dummy on whether

the processor was produced by Cray, and a dummy variable for cluster systems (i.e. su-

percomputers which result of clustering less powerful systems). The speed of processors

included in supercomputers is primarily explained by the exogenous evolution in processor

technology during the 1990s. As processors are a key input of supercomputers, processor

speed should be correlated with both price and observed quality. Moreover, the fact that

some manufacturers use processors produced within the firm for some of their supercom-

puters (e.g. Cray) should be influencing the retail price. However, a dummy variable for

Cray processors is unlikely to be correlated with the supercomputer unobserved character-

istics, since about 7% of the machines in the sample use Cray processors20. The clustering

property is shared by about 15% of the supercomputers in the sample, so it is unlikely

to be correlated with the machine-specific unobserved attributes. Most of other vari-

ables in the data (e.g., number of processors) are not likely to be valid instruments. For

example, supercomputers with more processors may be preferred for applications where

19Fixed-effects regressions could be run instead. However, the each supercomputer’s computing speed,
Rmax, is time-invariant. Hence it vanishes in regular fixed-effects regressions. Since the purpose here is
solely to investigate whether one should instrument for Rmax, I use random-effects specification.
20As a robustness check, I run the IV logit regression without the dummy for Cray processors. The
effect in the final estimates is negligible. However, this dummy variable is significant in the first-stage
regressions. Therefore I preferred the instrument set where this dummy is included.
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it is convenient to assign separate parts of the problem being solved to each processor.

Treating (some) characteristics of the product as exogenous is as reasonable here as in

previous work (e.g., Berry, Levinsohn and Pakes(1995), Nevo (2000,2001), Song (2006)).

In order to ensure that no endogeneity concerns arise, it would be convenient to consider

alternative sources of instruments. Cost shifters are an obvious candidate. McCallum

(2002) provides series for memory prices for the period 1957-2006. Based on this series,

I compute the average price of a Megabyte of memory (in 1998 dollars) for 1990-2005,

and use it in the instrument set along with cluster dummy, Cray processor dummy and

processor speed.

The results for instrumental variable logit regressions are shown on the last two

columns of table 2.5. The third column corresponds to the case where I only instru-

ment for prices, while the last one shows estimates when I instrument for both Rmax and

price. Even thought the coefficient for Rmax has now the expected sign in the third col-

umn, the price coefficient still implies about 95% inelastic demands under the logit model.

Since there are also other coefficients with unintuitive sign (e.g., firm frontier ranking),

this evidence suggests that instruments for other potentially endogenous variables are

necessary. The results in the last column indicate that Rmax is indeed a variable whose

endogeneity must be controlled for. When instrumenting for both prices and computing

speed, all the parameters have the expected sign and magnitude. The negative coefficients

of the time effects are in line with the rapid obsolescence of supercomputers due to rapid

innovation in the industry and incorporation of technical advances in other goods (e.g.

mainframes, workstations).
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Table 2.5. Results from Logit Model

OLS Logit IV Logit (i) IV Logit (ii)

Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Price (in $1M) -0.004 0.002 -0.035 0.025 -0.438 0.254
Rmax (in Teraflops) -0.008 0.028 0.053 0.057 2.600 1.964
Network size (in 100) 0.065 0.018 0.087 0.028 0.452 0.251
MPP dummy -0.225 0.037 -0.159 0.063 0.680 0.567
Firm rank -0.329 0.058 -0.120 0.165 1.833 1.164
1991 -0.797 0.183 -0.889 0.196 -1.996 0.762
1992 -1.345 0.169 -1.509 0.210 -3.520 1.254
1993 -1.892 0.159 -2.072 0.223 -4.767 1.687
1994 -2.317 0.154 -2.596 0.269 -6.493 2.326
1995 -2.770 0.157 -3.054 0.280 -7.337 2.575
1996 -3.279 0.153 -3.462 0.219 -7.179 2.186
1997 -3.528 0.151 -3.428 0.170 -6.269 1.589
1998 -3.824 0.154 -3.912 0.181 -7.671 2.250
1999 -3.862 0.153 -3.996 0.199 -8.860 2.883
2000 -3.976 0.156 -4.160 0.229 -9.423 3.167
2001 -3.997 0.158 -4.233 0.250 -10.529 3.684
2002 -4.107 0.163 -4.225 0.205 -9.928 3.562
2003 -4.353 0.163 -4.578 0.269 -11.289 4.276
2004 -4.101 0.165 -4.409 0.324 -13.236 5.674
2005 -4.195 0.180 -4.539 0.362 -15.636 7.466
Constant -3.292 0.141 -3.049 0.264 -2.624 3.470

Adjusted R2 0.598 n.a. n.a.
%inelastic demands 100% 95.78% 9.97%

Number of obs. 2204 2204 2204

I estimate the full demand system using Nevo’s (2001) estimator considering the same

set of instruments. I draw 100 "consumers" for every year in the sample to numerically

integrate the purchase probability with respect to consumer state vector Drt. In order to

get a parsimonious specification, I assume that switching costs are only significant if a

consumer purchases from the nine most important firms: Cray, HP, IBM, NEC, Fujitsu,
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Hitachi, SGI, Intel and Sun Microsystems21. Estimates are shown on table 2.6. As

discussed in the previous section, estimates for the constant, Rmax and MPP coefficients

are recovered by running 2SLS regression of brand dummies on those variables using

the same instrument set. All coefficients are significant at a 5% significance level except

for MPP dummy and switching costs on HP, Fujitsu, Intel and Sun. Nevertheless, all

coefficients have the expected sign. The price coefficient became more negative than

under any of the above logit specifications. As before, the time effects suggest rapid

obsolescence of outside alternative, suggesting that supercomputer substitutes become

more attractive to consumers over time. Consumers seem to face higher switching costs

upon purchasing from Cray and Japanese producers NEC, Fujitsu and Hitachi.

I estimate supply parameters (i.e., marginal costs and markups) by regressing prices

of each product j on both the marginal cost function and dummy variables Bjft =

1 {j ∈ Fft}. The coefficients on the latter are estimates of the markup charged by firm

f at time t. Due to the fact that only 2204 observations are available, I must restrict the

set of markup dummies to have a parsimonous specification for the regression equation.

Hence, I use dummies for the firms which operate (or operated) in the market and had

the highest market share22. Markups for other firms are derived by averaging regression

21Due to the short size of other firms’ networks, consumers belonging to their network are rarely found
in each of the 100 random "consumers" drawn each year. Therefore, it is hard to obtain estimates of
switching costs incurred by consumers in their networks with acceptable precision.
22These firms are: Cray, Compaq, IBM, Sun, HP, SGI, Thinking Machines Corporation, Intel, Fujitsu,
Hitachi, Kendall Square Research, MasPar, Meiko, nCube, NEC, Dell and Linux Networx



113

Table 2.6. Estimates from Full Model of Demand

Variable Coef. Std. Err.

Price (in $1M) -0.588 0.194
Rmax (in Teraflops) 2.430 1.114
Network size (in 100) 0.529 0.179

MPP dummy 0.530 0.367
Firm rank 1.977 0.818

Sw. cost Cray 2.013 0.839
Sw. cost HP 0.512 0.478
Sw. cost IBM 1.129 0.411
Sw. cost NEC 2.145 0.549

Sw. cost Fujitsu 2.098 1.213
Sw. cost Hitachi 2.132 0.733
Sw. cost SGI 1.342 0.481
Sw. cost Intel 0.237 0.179
Sw. cost Sun 0.781 0.399

1991 -2.096 0.823
1992 -3.620 1.754
1993 -4.517 1.447
1994 -6.273 2.877
1995 -7.477 2.679
1996 -7.262 2.357
1997 -6.430 1.911
1998 -7.874 2.561
1999 -8.868 3.012
2000 -9.311 3.541
2001 -10.299 3.755
2002 -9.927 3.811
2003 -10.078 4.321
2004 -13.111 5.911
2005 -15.577 7.811

Constant -2.874 1.470

residuals per firm and period23. Table 2.7 displays the estimates for marginal costs (coef-

ficients on Bjft are omitted). The coefficients correspond to $1M units in 1998 constant

dollars.

23This specification was robust to alternatives where other firm/period dummies were included in the
regression.
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Table 2.7. Marginal Costs Estimates (markup dummies’ estimates omitted)

without MPP dummy with MPP dummy

Variable Coef. Std. Err. Coef. Std. Err.

Rmax*1990 2041.267 290.4437 2041.267 286.2619
Rmax*1991 1138 277.1594 1139.393 273.169
Rmax*1992 1697.555 227.9918 1649.904 224.792
Rmax*1993 420.4942 83.61033 363.5546 82.7285
Rmax*1994 389.6954 53.30058 345.6589 52.83499
Rmax*1995 323.2644 47.73932 294.9246 47.19174
Rmax*1996 276.1672 8.417946 265.7746 8.40281
Rmax*1997 168.7572 4.433223 163.8737 4.413922
Rmax*1998 127.7273 5.457506 122.1691 5.42582
Rmax*1999 67.61001 3.615437 64.78073 3.581755
Rmax*2000 27.94773 2.400988 27.56561 2.366925
Rmax*2001 16.83415 1.728735 16.59066 1.70413
Rmax*2002 4.771295 0.877638 4.125026 0.868952
Rmax*2003 6.483846 0.87091 6.300686 0.858691
Rmax*2004 1.814095 0.60428 2.305664 0.598897
Rmax*2005 1.138372 0.204216 0.921823 0.203178
Constant 3.207091 0.929455 2.292312 0.923533

MPP - - 3.004809 0.384797

Adjusted R2 0.7623 0.767

From the results, one can infer that marginal costs for producing a Teraflop are de-

creasing over time under both specifications. This evidence agrees with two facts about

supercomputer inputs: (i) processors are increasingly cheaper and of improved speed, and

(ii) memory prices per Megabyte are falling over time24, even though the improvements

in memory technology are far less considerable than the ones for processors. The MPP

dummy essentially affects the constant part of the marginal costs, but adds very little ex-

planatory power. However, since its coefficient is statistically significant, the specification

with MPP dummy was preferred.

24Source: http://www.jcmit.com/mem2006.htm
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Another important implication to be derived from the marginal cost estimates con-

cerns its relation with Moore’s Law. Even though Moore’s original statement concerned

transistor technology, it is common to cite Moore’s Law to refer to the rapidly continu-

ing advance in computing power per unit cost. In the context of computing technology,

Moore’s Law prescribes that the computing power per unit cost doubles every 18 months25.

With the estimates of marginal cost at hand, it is possible to check this law by estimating

the temporal evolution of marginal costs for a fixed level of computing power. The results

for marginal costs suggest a decreasing exponential evolution over time, I fit the following

equation by OLS

ln(mct) = μ0 + μ1t+ vt t = 1990, ..., 2005

where mct corresponds to marginal costs of producing 1 Teraflop at time t. This series

corresponds to the estimates on each coefficient columns of table 2.7. I estimate the

above equation under the two marginal cost specifications considered on table 2.7 (i.e.,

with and without MPP dummy) as a robustness check. Table 2.8 presents the results

for the temporal evolution marginal costs of producing 1 Teraflop. The results for the

two sets of estimates are very similar, so I will focus the analysis on the results of the

second column. The instantaneous rate of decrease in marginal costs is 40.4%, which

implies an annual decrease in marginal costs of approximately 33.22%. So the ratio of

25This is the most popular version of Moore’s Law, even though Moore’s original claim was that transistor
density of integrated circuits, with respect to minimum component cost, doubles every 24 months.
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Table 2.8. Marginal Costs and Moore’s Law

without MPP dummy with MPP dummy

Variable Coef. Std. Err. Coef. Std. Err.

Year -0.440 0.020 -0.404 0.018
Constant 883.077 40.670 811.096 35.893

Adjusted R2 0.9688 0.9711

computing power over unit cost is increasing by 67.79% per year. Therefore, the marginal

cost estimates closely resemble Moore’s Law.

I estimate the markup policy by fitting the sieves function proposed in the previous

section to the markup series recovered after supply estimation. The results are displayed

on Table 2.9. No Chebyshev polynomials of order bigger than two were considered due

both to overfitting concerns and to lack of significance those terms in all preliminary

regressions. Even though the coefficients of this regression are hard to interpret, the

results deserve some comment. First, the coefficients on N0t and Nft are apparently at

odds with economic intuition: one should expect firms to charge higher markups the more

consumers belong to either the outside alternative network or its own network. However,

the higher order polynomials on these variables have positive and significant coefficients.

This suggest that firms would charge low markups to tip the market for low own and

outside network values, but charge significant markups when these are of “reasonable”

size.

The choice of regressors for the Tobit type I estimates of quality investment and fron-

tier extension rates followed similar guidelines as for markup policy estimation. Upon

computing quality investment using marginal cost and demand estimates, I estimate its
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Table 2.9. Markup Policy Estimates

Estimates Std. Error

Constant 0.113 0.982
N0t -1.229 0.349
κft 0.382 0.128
Nft -1.401 0.853

exp (νft) 1.037 0.231
κ−ft -0.034 0.053
N−ft -0.129 0.091

exp (ν−ft) -0.101 0.073
T2(N0t) 2.486 0.649
T2(κft) 2.085 0.053
T2(Nft) 6.303 2.001

T2(exp(νft)) -0.122 0.070
T2(κ−ft) -0.0034 0.001
T2(N−ft) -0.023 0.059

T2(exp(ν−ft)) -0.122 0.002
Nft ×N−ft 4.872 0.452

exp (νft)× exp (ν−ft) -2.230 3.327
κft × κ−ft 1.560 0.549

exp (νft)×Nft 1.263 0.490
exp (ν−ft)×Nft -0.251 0.138
exp (νft)×N−ft -0.908 0.215

No. obs 218

Adj. R2 0.791

policy using the Tobit specification proposed in the previous section. The frontier exten-

sion policy is also estimated using a Tobit Type I. Results are presented on Tables 2.10

and 2.11, respectively.

The estimation of demand parameters allows me to compute the transition of all firm

networks except for N0,t. I estimate the remaining parameters of outside alternative’s

network transition (i.e, φ0 and φ1) by using the market size transition equation derived
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Table 2.10. Quality Investment Policy Estimates

Variable Estimates Std. Error
Constant 0.294 0.095

N0t 0.311 0.216
κft -0.176 0.099
Nft 0.019 0 .055

exp (νft) -0.993 0.025
κ−ft -1.773 1.590
N−ft -1.670 0.121

exp (ν−ft) -1.369 0.750
T2(N0t) 14.895 4.936
T2(κft) -5.703 1.729
T2(Nft) 1.389 0.668

T2(exp(νft)) 3.569 1.436
T2(κ−ft) 3.303 0.946
T2(N−ft) 2.140 0.812

T2(exp(ν−ft)) 2.265 1.360
κft × κ−ft 5.145 0.386
No. Obs: 177

Log-Likelihood -319.423

on the previous section. This equation consists on Mt+1 = φ0 + φ1Mt + ηN0t+1 , where

Mt denotes market size. Following Benkard (2004), I defined Mt as the number of of

new and used supercomputers in use in year t, which is approximated by the sum of all

supercomputers sold between year t− 5 and t (see Appendix A for details). In principle,

the specification proposed for this state’s transition can be estimated using OLS. However,

one may suspect that the shock ηN0t+1 is correlated withMt. I use the Markovian structure

of the game to proposeMt−1 as an instrument forMt. The results of this regression using

both OLS and 2SLS are presented on Table 2.12. The AR(1) specification in market

size seems to capture market size dynamics rather well. The inclusion of other regressors

(e.g., sum of firm ranks and markup-adjusted inclusive values) would not only bring little
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Table 2.11. Frontier Extension Policy Estimates

Variable Estimates Std. Error
Constant -6.294 11.905

N0t 0.401 0.166
κft -8.176 0.099
Nft -0.289 0 .099

exp (νft) -7.493 4.025
κ−ft 1.443 0.590
N−ft 7.257 5.111

exp (ν−ft) 4.369 1.890
T2(N0t) -1.895 1.136
T2(κft) 5.113 1.888
T2(Nft) 2.088 1.206

T2(exp(νft)) 3.569 1.222
Nft ×N−ft -4.333 2.312

exp (νft)× exp (ν−ft) -5.301 3.212
κft × κ−ft 3.211 1.782
No. Obs: 177

Log-Likelihood -284.333

Table 2.12. Market Size Regression Estimates

OLS REGRESSION 2SLS REGRESSION

Variable Coef. Std. Err. Coef. Std. Err.

Constant 348.685 117.898 455.250 127.931
Mt 0.927 0.047 0.884 0.047

Adjusted R2 0.9688 0.978
Number of obs. 15 14

explanatory power to the market size transition, but also raise overfitting concerns. The

estimates in the two columns differ more significantly in the constant term. I considered

the 2SLS estimates for the remainder of the work26.

26This decision was also based on an Hausman test, which rejected the hypothesis of equal coefficients in
both regressions.
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Table 2.13. Potential Entrant’s Average Quality Transition Estimates

Variable Estimates Std. Error
Constant 0.051 0.009

N0t 0.401 0.166
sum(Nft) -0.419 0 .094

sum(exp (νft)) -7.493 36.025
sum(κft) -34.443 22.590
No. Obs: 66

Log-Likelihood -192.015

The transitions for markup-adjusted inclusive values and technological states depend

not only on observed states and actions, but also on the shocks which impact market

entry decisions of inactive players. As described in the previous section, the evolution of

state transitions for potential entrants are described by the equations

exp(vft+1) = max{0, w1(st) + ε3ft}

Wf,t+1 = w2(st) + ε4ftif exp(vft+1) > 0

where

Wf,t+1 ≡ ln(hEft+1)− ln
µ
max

i=1,...,F
{hit}

¶

Assuming that ε3ft is a zero-mean normal shock, the first equation is estimated using

a Tobit Type I specification. The equation on Wf,t+1 is estimated by OLS conditional on

the set of inactive players who decided to enter at period t. Table 2.13 and 2.14 display

the results for these regressions, respectively.
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Table 2.14. Entrant’s Frontier Transition Estimates

Variable Estimates Std. Error
Constant -2.294 1.395

N0t 0.291 0.109
sum(Nft) -0.045 0.012

sum(exp (νft)) -0.009 0 .004
sum(κft) -8.783 0.425
No. obs 41

Adj. R2 0.635

Table 2.15. Incumbent’s Average Quality Transition Estimates

Estimates Std. Error

Constant -.7961032 .2786951
νft .8352611 .0552814

ln (1 +Aft) 1.3761631 .620071
No. obs 177

Adj. R2 0.675

I am left to estimate the markup-adjusted inclusive value transitions of incumbent

firms. The proposed specification for this transition is

υft+1 = d0 + (1− d1)υft + (1 + d2) ln(1 +Aft) + ηft

which I estimate by random-effects GLS. The results are displayed on Table 2.15.

The proposed specification seems to be capturing average quality dynamics reasonably

well. As expected, average quality dynamics seem to depend primarily from past average

quality values and on the logarithm of gross quality investment rate 1+Aft. As for the the

market size, the Bera-Jarque normality test didn’t reject the normality hypothesis for the

error term. So I assume that the error term of both regressions is normality distributed

with zero mean in the second stage of estimation.
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Table 2.16. Dynamic Parameter Estimates

Variable Parameter Estimate Std. Error
Benefit outside profit terms

κft χ1 612.348 289.312
κ2ft χ2 32.918 19.423

Bandwidth parameters
κit−κft hI 0.231 0.056
υit−υft hA 2.098 1.571

Frontier extension costs
Constant c0 78.092 30.897
Firm rank (κft) c1 -42.234 19.434
Innovation rate (Ift) c2 4.761 2.082
Square Innovation rate (I2ft) c3 0.971 0.512
Tech. gap on laggards c4 -2.871 2.109
Tech. gap on advanced rivals c5 -8.598 4.052

Quality investment costs
Aft if Aft > 0 cA0 0.231 0.115
A2ft if Aft > 0 cA1 0.093 0.067
Aft if Aft < 0 cA2 2.096 0.781
A2ft if Aft < 0 cA3 -15.012 4.671

Fixed costs 1{ exp (υft) > 0} Cf 83.902 50.412
Auxiliary parameters Lagrange multipliers μI -2.889 1.923

μA -0.551 0.449
Innovation shock variance σε1 39.041 11.231

The GMM estimates of these dynamic parameters an presented on Table 2.16. The

approximation parameter for the Chebyshev polynomials in value fuction approximant,K,

was set to 3. This implies 2187 coefficients for the integrated value function approximation.

I randomly sampled 2187 state vectors for computing estimates of these coefficients for

each given trial value of the dynamic parameters. Based on the empirical correlation

between firm frontier rank and markup-adjusted inclusive value, I calibrate ρ = 0.3156.

I also set the discount factor to β = 0.95. Bootstrap standard errors were generated

from sampling 100 bootstrap samples of the data with replacement and estimating the
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dynamic parameters with each subsample. I chose a polynomial of order 4 for the density

estimator of Gallant and Tauchen. These were not statistically significant in preliminary

estimations and therefore removed from the final specification. Estimates suggest that

the benefit of being at a certain technological state commands a significant portion of

the firm’s payoff. For example, the parameters of the benefit function imply that that a

technological leader would collect an annual benefit of about $645M (in 1998 dollars) if he

were the only firm in the market. Estimates also indicate that fixed innovation costs are

the most significant portion of the overall innovation cost. However, these costs depend

considerably on the firm’s frontier positioning. Firms can benefit both from the knowledge

of its most advanced rivals and from laggards, but both effects are very small compared to

the other fixed cost components. More advanced firms tend to have significant reductions

in innovation costs. Marginal costs of frontier innovation are also small compared with

the fixed cost components. The costs of quality investment are also relatively small, which

is in line with the frequent product introduction observed in this industry. The estimates

of cA2 and cA3 imply that firms on average receive a scrap value of $13M if they decide to

leave the supercomputer industry. This value is very small compared with the fixed costs

of being active in this industry.

2.6. Policy experiments

The motivation for constructing a dynamic model for the supercomputer industry was

its ability to simulate counterfactual policy experiments upon recovering the underlying

primitives from the data. Several important questions can be answered with the model.

For example, what would be the impact of a permanent demand shock on innovation
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rates? Would a merger between two firms increase equilibrium innovation rates? In this

Chapter, I use the structural model to answer a long-standing question in the Industrial

Organization literature: how does technological progress depend on competition? The

strategy to obtain the answer consists in two steps. First, I solve the MPNE of the game

for a given set of observable states. For simplicity, I integrate out all private information

in each firm’s problem. That is, taking as given rival policies, observed states and the

value function estimate, each firm chooses its optimal policies to maximize the expected

discounted stream of payoffs, defined as

Vf(s) = Max
σf (s)

Z
ε

{πf(σf(s), σ−f(s, ε−f), s, εf)

+βEs,,σf ,σ−f [hf(s
0, θ)|s, σf(s), σ−f(s, ε−f)]

ª
dF (ε)

Second, taking as given an initial profile of firm computing speed frontiers, I simulate

the maximal computing speed available in the industry using the equilibrium frontier

extension rates. Since the analysis of welfare from innovation has received considerable

attention in the literature (e.g., Trajtenberg (1989), Green and Scotchmer (1995), Bresna-

han, Stern and Trajtenberg (1997) and Bresnahan and Greenstein (1999)), I also compute

total welfare as defined below.

Ideally, one would like to perform the proposed experiment with an arbitrary number

of firms in order to completely describe the effects of competition in innovation. However,

I can only use the estimated integrated value function approximant if there are no changes

in the structural parameters of the game. Since the purpose here is to have a parsimonious
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Table 2.17. Technological Frontiers of the Top 3 firms in 1997

Firm Frontier in Giga-FLOPS
Intel 1338

Cray/SGI 815
Hitachi 368.2

analysis of the effect of market structure on frontier innovation, I conduct the experiment

under three different scenarios: monopoly, duopoly and three-firm market. As I assume

that there can exist at most three firms in this market, I must compute the integrated

value function in the simulations27.

The simulation routines follow the exposition of Miranda and Fackler (2002, sections

8.5 and 9.8) for dynamic games solution and simulation. As before, I use first-kind

Chebyshev polynomials up to order three to compute the approximate value function,

which is again assumed to satisfy anonymity and symmetry. As an initial setup, I consider

the three most advanced supercomputer producers in 1997, whose frontiers are presented

on Table 2.17. For all years except 1997, the values underlying the graphs below regard

averaged values across 20000 simulations.

Under the assumptions on demand, consumer welfare is given by

CWt =
1

α

FX
k=0

Nkt ln

Ã
FX
d=1

exp(−αMkpdt + τ 1κdt + νdt + ψNdt + Λd1{k = d})
!

27Note that here the only change in the model structure considered here is the number of firms which
can operate in the market. So the estimated value function approximant could be used in simulation if
all fifteen slots were considered. I exploit this property in Chapter 3 in the context of merger analysis.



126

0

5000

10000

15000

20000

25000

30000

1997 1998 1999 2000 2001 2002

Year

C
om

pu
tin

g 
sp

ee
d 

(in
 G

FL
O

PS
)

Monopoly

Duopoly

Three f irms

Figure 2.1. Maximum computing speed under different market structures

while total welfare is defined as the sum of consumer welfare with the aggregate flow

payoff of all the firms at time t. That is,

TWt = CWt +
FX
f=1

¡
Πft +Υft − CI

ft − CA
ft

¢
Results suggest that competition significantly encourages technological progress. The

differential between the three-firm case and the duopoly one is not as large as the one

between monopoly and duopoly maximal computing speeds. The influence of the assump-

tion that only three firms can operate in the market is a potential explanation, which will

be investigated in future research.



127

0

500

1000

1500

2000

2500

3000

1997 1998 1999 2000 2001 2002

Year

m
ax

im
um

 c
om

pu
tin

g 
sp

ee
d 

(in
 G

LO
PS

)

Monopoly (no entry)

Monopoly
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An important question in the innovation literature is how much innovation from a

monopolist is due to the threat of entry. My framework allows me to shed light on this

question by simulating maximal computing speed patterns under the assumption that no

more than one firm can operate in this market. That is, I compare the monopoly maximum

computing speed displayed on Figure 2.1 with the simulation outcome of the case where

only a multiproduct monopolist can operate in this market. The paths displayed on

figure show that this gain can be substantial. A monopolist under the threat of entry

will yield a maximal computing speed in the industry at least 12.8% bigger than under

no entry threat. Like for the maximum computing speed evolution under three different
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Figure 2.3. Simulated total welfare under different market structures

market structures, increases in welfare from monopoly to duopoly are considerably higher

compared to the case of moving from duopoly to a three-firm market.

2.7. Conclusion

This paper proposes a structural model of competition where firms expand their tech-

nological frontier, invest in product quality and set constant absolute markups for their

products. Strong assumptions imposed in other innovation models proposed in the lit-

erature are avoided by building on recent refinements to the dynamic oligopoly games

literature. The additional difficulty of modeling innovation in a differentiated products
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industry is circumvented by using Nevo and Rossi’s (2007) framework, where model prim-

itives imply equilibria in which firms charge constant absolute markups. The model can

be brought to data by using a variant of the two-step estimation method introduced in the

literature by Bajari, Benkard and Levin (2006). Identification of the model parameters

is based on the orthogonality of selected instruments to unobserved product quality, and

optimality conditions on markups, quality investment and frontier extension rates. Esti-

mates suggest that firms derive considerable benefits outside product market profits from

improved technological frontiers. The fact that the incremental payoff from innovating is

higher when a firm is in "neck-and-neck" competition with technologically similar rivals

(i.e., the "selection effect" introduced in the literature by Aghion, Harris, Howitt and

Vickers (2001)) is the source of identification of these benefits.

The paper also quantifies positive externalities of technological states to innovation

costs, which indicate that advances on both the firm’s maximal computing speed and

the ones of its most technologically advanced rivals considerably reduce the fixed costs of

innovation investment. The model estimates are also used to assess how does technological

progress depend on competition. In line with Aghion, Harris, Howitt and Vickers (2001)

and Aghion, Bloom, Blundell, Griffiths and Howitt (2003), I find that increased levels

of competition have positive effects on the evolution of supercomputer technology. The

fact that firms innovate primarily to escape competition with "neck-and-neck" rivals also

impacts positively total welfare.

Other important questions could be addressed with the model and its estimates. For

example, what market structures would yield maximal welfare and rates of product im-

provement? One could measure the impact of both network externalities and switching
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costs on competition and welfare. Another issue of particular interest is the impact of

mergers on markups, welfare and product quality dynamics. Alternative applications of

the results may include, for example, the effects of an exogenous shock in demand on

innovation patterns, or the consequences of a given subsidy scheme for innovation behav-

ior. In these cases, the simulation of counterfactuals can be done by making appropriate

changes on either the state vector or the firms’ cost structure. The study of these and

other questions is left for future research.
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CHAPTER 3

Dynamic merger analysis in differentiated product industries

3.1. Introduction

When competing in dimensions affecting long-run payoffs, firms account for the im-

pact of their actions on both current and future payoffs. In these situations, however,

equilibrium firm policies will differ from the ones implied by static competition mod-

els commonly used in merger analysis. Static merger evaluation methods can therefore

lead to misleading conclusions about post-merger welfare and equilibrium prices when

applied to dynamically competitive industries1. Despite the importance of these facts for

antitrust analysis, much of the existing literature on merger evaluation is tied to static

competition models. In this Chapter, I take a step toward filling this void. I evaluate the

long-run impact of an actual merger in the supercomputer industry on consumer welfare

and maximum computing speed available in this market.

I propose a framework for evaluating the long-term effects of a merger for differ-

entiated products industries. My general strategy is to model competition so that all

payoff-relevant features of firms can be encoded into a state vector. I use data from

the supercomputer industry to estimate the model proposed in Chapter 2. Using both

the model estimates (see Chapter 2) and a Markov-Perfect Nash Equilibrium (MPNE)

1See Nevo (2000) for a discussion.
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assumption, I simulate the new equilibrium that would result from the merger for five con-

secutive years. I compare the implied maximum available computing speed and consumer

welfare with the ones for equilibrium without merger.

The supercomputer industry is well suited to assess the performance of dynamic meth-

ods of merger simulation in differentiated product industries. In 1995, Hewlett-Packard

(HP) purchased Convex for $150 million. In February 1996, SGI purchased Cray Inc.

for $740M. Three months later, SGI sold the SPARC/Solaris part of the Cray product

line to Sun Microsystems for an undisclosed amount. On March 31, 2000, SGI sold their

Cray division to Tera Computer Company for $50M2. Shortly after this acquisition, Tera

Computer Company was renamed Cray Research. In 2002, HP completes its merger with

Compaq Computer for $25 billion. In this Chapter, I focus on the long-term effects of the

merger betweenHewlett-Packard and Convex. Results suggest that this merger fostered

technological progress in the industry in the form of increased maximal available comput-

ing speed. This merger also implied small annual consumer welfare losses in the period

1995-2000.

One of the main challenges is how to simulate mergers with several firms while keep-

ing computational tractability. I deal with this difficulty by using the value function

approximation recovered in estimation when computing equilibria. This approach has the

advantage of eliminating computations of value function parameters during equilibrium

calculations at the cost of introducing estimation error in the algorithm.

The rest of this chapter is organized as follows. Section 3.2 describes the merger

simulation method and welfare computation details. Section 3.3 applies these methods to

2This value consists on the sale value of $35M plus one million SGI shares outstanding.
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a concrete merger analysis. Section 3.4 concludes and discusses extensions. The specific

details of the HP-Convex merger simulation algorithm can be found in Appendix C.

3.2. Merger effects simulation methods

3.2.1. A dynamic model of competition

In this section I present a model of dynamic competition to simulate of the long-run

effects of a merger. Time is assumed discrete with an infinite horizon, and indexed by

t ∈ 1, 2, ...,∞. There are F firms in this market, denoted f = 1, ..., F , which choose L

actions simultaneously at each period. I denote σft ≡ (σf1t, ..., σfLt) as the vector of firm

f ’s actions at time t. All observed payoff-relevant information at time t is summarized

by a vector of state variables st, which is assumed common knowledge to all firms in the

industry. I assume that before choosing its actions, each firm receives a private shock

vector εft, drawn independently across agents and over time.

Before defining each firm’s intertemporal optimization problem, I assume that firms

restrict attention to Markovian pure strategies. That is, all players’ choices in equilibrium

are deterministic functions of payoff-relevant information. Formally, this corresponds to

a map between the set of states observed by each firm and their strategy set. I assume

that firms seek to maximize the discounted sum of payoffs conditional on a set of observed

states s and private information εf . Under the assumption that firms share a common

discount factor β < 1, the firm’s problem is defined by the Bellman equation



134

Vf(s, εf) =

Z
ε−f

Max
σf (s,εf )

{πf(σf(s, εf), σ−f(s, ε−f), s, εf)

+βEs,,σf ,σ−f
£
Vf(s

0, ε0f)|s, σf(s, εf), σ−f(s, ε−f)
¤ª

dF (ε−f)

where πf(.) is the flow payoff function, and σ−f denotes the strategy profile of firm

f ’s rivals. In what follows, it is convenient to integrate out firm’s private information in

each firm’s problem. Assuming that private information is independent over time, players

and observed states, the integrated (ex-ante) value function of firm f is given by

Vf(s) =

Z
ε

Max
σf (s,εf )

{πf(σf(s, εf), σ−f(s, ε−f), s, εf)

+βEs,,σf ,σ−f [Vf(s
0)|s, σf(s, εf), σ−f(s, ε−f)]

ª
dF (ε)

A profile of Markov strategies σ = (σ1, ..., σF ) is a Markov Perfect Nash Equilibrium

(MPNE) if, given the opponent profile σ−f , the firm’s strategy σf yields a higher dis-

counted sum of payoffs than any alternative Markovian strategy σ0f . That is, σ is an

MPNE if, for all firms f = 1, ..., F and Markov strategies σ0f , we have Vf(s, εf |σ) ≥

Vf(s, εf |σ0f , σ−f). Existence of pure-strategy MPNE for this game follows from Theorem

2 in Jenkins, Liu, Matzkin and McFadden (2004). I assume that there is unique MPNE

in the game.
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3.2.2. Simulation algorithm

My general strategy in simulating the long-term effects of a merger in a differentiated

products industry consists of two steps. First, using model estimates, I simulate the

MPNE that would result from the merger for five consecutive years. Second, I compare

the implied statistics of interest (e.g. maximum available computing speed, consumer

welfare) with the ones of MPNEwithout merger. I assume that a merger can be completely

described by changing the observed state vector. This change takes the form of a firm

absorbing the states of another firm while the acquired firm leaves its slot open to a

potential entrant. I denote sPr et and sPostt as the pre- and post-merger observed state

vectors, respectively.

If the functional form for the integrated value function were known, the computa-

tion of MPNE would follow methods similar to solving Bayesian Nash Equilibria (BNE).

However, the integrated value function does not usually have a closed form and its direct

computation requires solving the high-order problem defined by the Bellman equation. In

practice, this implies a prohibitive computational burden. Even though improved meth-

ods of dynamic equilibrium computation have been proposed in recent literature (e.g.,

Rui and Miranda (1996), Judd (1998), Vedenov and Miranda (2001), Miranda and Fack-

ler (2002) and Doraszelski (2003)), the available approaches are still too computationally

burdensome when there are multiple players in the game. I deal with this problem by

replacing the integrated value function with a sieves approximation, which is assumed to

be recovered during model estimation.

Assuming further that the firm problem is differentiable with respect to firm controls,

each firm action σfl ∈ σf ≡ (σf1, ..., σfL) must satisfy the first-order condition
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Z
ε−f

µ
∂πf(σf , σ−f(st, ε−ft), s, εft)

∂σfl

+βE

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂σfl

|σf , σ−f(st, ε−f), st

⎤⎦⎞⎠ dF (ε−f) = 0

where ∆(S) denotes the dimension of the observed state space, Vf is short-hand nota-

tion for the ex-ante value function, and gk represents the kth entry in the observed state

vector at period t+1. In what follows, Vf is replaced by its estimate ĥf . Letting t̃ be the

period at which the merger would take place, the merger effects simulation algorithm can

be outlined as follows.

• Given the pre-merger observed state vector sPr e
t̃

, compute the MPNE by solving

the system of first-order conditions on firm strategies3;

• Compute all statistics of interest for the analysis (e.g., consumer welfare, industry

technological frontier) using the BNE solutions under both sPr e
t̃

and sPost
t̃

;

• Generate an observed state vector for period t̃ + 1 by sampling a draw from

the transition probabilities evaluated at the BNE solution under both pre- and

post-merger states;

• Repeat the first three steps considering the random draws of the previous step

as the observed state;

3This computation requires a value for each player’s private information. Since this is not observed by
the researcher, one can either (i) sample values from the privately known state distribution, should this
distribution be available, or (ii) integrate out private information in the firm’s problem.
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• Repeat the last step T̃ times to generate simulated paths under merger and no-

merger scenarios up to year t̃+ T̃ ;

• Repeat all steps R times, and compute the expected statistics of interest (e.g.

compensating variation) paths by averaging results across the R simulations.

• Redo all the previous step using instead sPost
t̃

as the initial observed state;

This algorithm is valid if no model primitives are changed and if the MPNE assump-

tion holds both with and without a merger. Providing a simulation routine where these

assumptions do not hold goes beyond the scope of this Chapter. In cases where any of

these conditions are not met, the ex-ante value function must be computed when solving

for MPNE. Nevertheless, the ex-ante value function estimate ĥf can be used as an initial

guess in that higher-order computational problem, or as an approximation for the true

ex-ante value function under the new primitives.

One may question how realistic is the assumption that the merger only implies changes

in observed state values. In the next section I provide a concrete example in the context

of the model proposed in Chapter 2. I will assume no changes in model primitives. Many

arguments on behalf of mergers concern cost savings, and therefore this assumption may

be strong. Nevertheless, the simulation of long-run merger effects under no changes in

model primitives is interesting in its own right. For example, it can provide information

on what part of the merger effects is due to firm strategic interactions alone.

3.3. Evaluating a merger

In this section I apply the proposed merger simulation method to a specific merger in

the supercomputer industry. I am interested on assessing the impact of this merger on
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the maximal computing speed available in the industry and on consumer welfare not only

in 1995, but also on the years following the merger. For this purpose, I will consider the

model developed in Chapter 2 and its estimates in the simulation exercise. In principle,

I could also examine price and quantity effects of the merger. However, supercomputer

models are typically removed from firm product portfolios two years after its introduction

due to its rapid obsolescence. Due to the frequent product introduction and scrappage of

products in this market, I will instead focus on the merger impacts on maximal computing

speed and consumer welfare.

Table 3.1 describes the industry state in 1995, as well as firm (relative) market shares.

The exponential of markup-adjusted inclusive values were computed using demand and

marginal cost estimates from Chapter 2. There are a total of fifteen incumbent firms in

that year, which is the maximum number of active firms per year observed in the sample.

Two of those fifteen firms - Sun Microsystems and Compaq - were players who decided

to enter the supercomputer market in the previous period. Intel was the technological

leader, followed closely by Fujitsu and Cray. The two merging firms, HP and Convex,

were among those with the lowest technological frontier in the industry. Their network

sizes are also among the lowest ones in the supercomputer market. Only 23 buyers made

their last purchase from Convex, while HP had an insignificant network (14 consumers).

These figures are explained by the fact that these firms entered the industry few years

before 1995: Convex became an active player in the industry in 1991 while HP only

entered the market in 1993. The figures on markup-adjusted inclusive values indicate

that HP supplied an average quality well above Convex, even though two other players

(Cray and IBM) supplied higher average quality. The last column in the table displays
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Table 3.1. Observed state vector and relative market shares in 1995

Firm Firmrank (κf,1995) Network (Nf,1995) exp(υf,1995) Share (Qf/Q)

Cray 0.701 161 0.544 16.049%
Compaq 0.035 0 0.326 0.494%
Convex 0.020 23 0.281 0.494%
IBM 0.616 82 0.698 25.432%
Sun Microsystems 0.125 0 0.216 0.247%
Hewlett-Packard 0.052 14 0.481 3.457%
SGI 0.186 115 0.547 46.667%
Thinking Machines 0.416 53 0.351 0.741%
Intel 1.000 60 0.426 1.975%
Fujitsu 0.865 63 0.341 1.235%
Hitachi 0.198 20 0.180 0.247%
Kendall Square 0.048 23 0.309 0.494%
Meiko 0.035 11 0.467 0.001%
NEC 0.423 30 0.296 1.481%
Parsytec 0.050 11 0.394 0.988%

the relative market shares of all active firms in the industry. SGI accounts for almost half

of supercomputer sales in 1995, followed by IBM and Cray. The sum of the shares of HP

and Convex was less than 4%, suggesting that no excessive market power concerns arise

from a merger between these two firms.

I redefine the observed states under the HP-Convex merger by (i) removing Convex

from the set of incumbent firms, leaving its slot open for a potential entrant (i.e., setting

κC,1995 = 0, exp(υC,1995) = 0 and NC,1995 = 0, where C denotes the slot of Convex) and

(ii) setting the new states for HP as
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κPostHP,1995 = max
©
κPr eHP,1995, κ

Pr e
C,1995

ª
exp(υPostHP,1995) = exp(υPr eHP,1995) + exp(υ

Pr e
C,1995)

NPost
HP,1995 = NPr e

HP,1995 +NPr e
C,1995

In the context of Chapter 2, this transformation means that the new firm HP-Convex

will have the maximal frontier of the merging firms, the products of both firms will be

owned by the single firm4, and the network of the merged firm will be sum of all consumers

whose last purchase was from either HP or Convex. I am left to simulate firm behavior

under both the industry state in 1995 and its post-merger version. This is done by

computing equilibrium taking these state vectors as initial conditions. The simulation

algorithm for this merger closely follows the one of the previous section. For ease of

exposition, its details are discussed in Appendix C.

Figure 3.1 presents the simulation results on maximal computing speed in the super-

computer industry under both pre- and post-merger scenarios. As an accuracy check on

the simulation, I include the observed maximal computing speed in the industry from

1995 to 2000. The expected maximal computing speed under the merger is fairly close to

the observed computing speed in the considered period. The averaged simulated paths

under no merger suggest that the maximal computing speed in the supercomputer in-

dustry would be slightly lower than the one implied by the HP-Convex merger. This

suggests that the HP-Convex was beneficial for promoting frontier innovation. This is
4Using the markup-adjusted inclusive value formula of Chapters 1 and 2, it can be easily shown that
the exponential of this statistic for a merged firm is the sum of the individual markup-adjusted inclusive
value exponentials of each firm.
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Figure 3.1. Simulated and observed maximal computing speed in the su-
percomputer industry.

consistent with the "selection effect" theory of Aghion, Harris, Howitt and Vickers (2001)

and Aghion et al. (2003), by which the relationship between innovation and competition

follows an inverted U-shape. For a reduction on the number of active firms from fifteen

to fourteen, the Schumpeterian effect of more innovation via more market power seems

to dominate.



142

-2.5

-2

-1.5

-1

-0.5

0
1995 1996 1997 1998 1999 2000

Year

M
ill

io
ns

 o
f d

ol
la

rs
 (i

n 
19

98
 c

on
st

an
t p

ric
es

)

Compensating variation (in
millions of dollars)

Figure 3.2. Compensating variation evolution over time.

Figure 2.2 described the simulated evolution of the compensating variation implied by

the merger. This corresponds to the differential in consumer surplus implied by the merger

at every year. The evidence suggests that the consumer welfare reduction implied by the

merger was not particularly significant. The loss for the consumers in the supercomputer

market over the period 1995-2000 was not bigger than $2.5M per year. The loss tends

to increase shortly after the merger, but it stabilizes (and is even slightly reduced) two

years after the merger. There are two possible explanations for this pattern and for the
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relatively low burden on consumers. First, both HP and Convex were not among the

dominant players in this industry in 1995. Consequently, consumer welfare losses should

not be significant from increased market power. Second, consumer welfare is increasing

in network size to which a consumer belongs. Hence, welfare losses from increased market

power may be partially offset by higher utility from increased number of network users.

3.4. Conclusions and extentions

This chapter presented a methodology to simulate long-run merger outcomes. The

approach exploits two facts. First, mergers in differentiated product industries may be

described by appropriate changes in observed variables. Second, an estimate of firms’

ex-ante value functions can be used in equilibrium computation if the merger implies

no changes in model parameters. These properties avoid the prohibitive computational

burden of simulating merger effects in dynamically competitive industries.

Simulation results are computed under the assumption that both pre- and post-merger

equilibrium consist on pure-strategy MPNE. The model presented in Chapter 2 and its

estimates are used to illustrate the method. Results suggest that the HP-Convex merger

contributed to improved maximal computing speed in the industry at the cost of minor

losses in consumer welfare. Due to frequent product introduction and destruction, the

analysis excluded the computation of percentage changes in quantities and prices of spe-

cific products as a result of the merger. However, it is possible to examine price and

quantity changes in industries where there at least a set of products is not likely to be

scrapped. The simulated markup policies of the firms in this industry can be used for

this purpose.
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Other conduct models could be considered to characterize pre- and post-merger equi-

libria. Even though the analysis above could accommodate alternative conduct models at

either stage, the MPNE concept is currently one the richest classes of dynamic equilibria

that can be used in applied work. One related shortcoming is the possibility of multiple

equilibria. The merger evaluation method proposed in this paper is valid under the as-

sumption that both pre- and post-merger MPNE are unique. Unfortunately, verification

ofuniqueness of MPNE is particularly difficult and still an open area of research (see Do-

raszelski and Satterthwaite (2007) for a discussion). The verification of this assumption

for the particular case of the model considered in this Chapter is therefore left for future

research.

Another shortcoming on assessing merger effects under dynamic competition is to con-

trol for the endogeneity of the merger process. Ignoring the case where the future holds the

possibility of mergers can lead to misleading conclusions, as illustrated by Gowrisankaran

(1999). The fact that a merger can be described by appropriate changes in the observed

state vector indicates that my framework can account for the possibility of future mergers.

The extent to which this eliminates any bias from no explicit modeling of merger decisions

remains an open question.

The merger analysis developed in this chapter assumed away changes in the parameters

on the game. Even though this allowed me to use an estimate of the firm’s ex-ante value

function instead of computing it, this assumption may be particularly restrictive in other

settings. For example, if innovation costs reductions are plausible to occur as a result

of a merger, then the value function must be computed in the simulation routine for the

new set of parameters. Given the implied computational burden of that exercise when
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evaluating merger in industries with several firms, it would be important to assess how

good of an approximation is the ex-ante value function estimate to the true value function

under the new model primitives. The usefulness of this estimate as an approximation is

to be assessed in further developments on dynamic merger analysis.

Even though the proposed framework does not model the merger process explicitly, the

modeling of this process is important in its own right. The description of the incentives

to when and with whom to merge may play a central role on explaining the frequency

and wave-like pattern of mergers in some industries. However, multiplicity of equilibria is

likely to be a problem in any endogenous merger process. Even if one assumes a sequential

merger process in every period, which is by no means a guarantee of uniqueness or even

existence of equilibrium (see Gowrisankaran (1999) for a discussion). Nevertheless, the

models developed in Chapters 1 and 2 can potentially be adapted to accommodate merger

decisions. The extension of these models in this direction is left for future research.
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APPENDIX A

The Data

For the empirical part of the paper, I collect data on the supercomputer industry from

1990 to 2005 using several sources. The first consists on the TOP500 organization, which

collects data on supercomputer worldwide installations twice a year on June and Novem-

ber. The data from this source is publicly available at www.top500.org. The available

database contains buyer-specific information about the supercomputers being purchased,

except for confidential purchases from selected defense and intelligence agencies. This

censoring of data is not likely to be significant, since these purchases seem to represent a

low percentage of the overall quantity1.

One limitation of the TOP500 data is that information is restricted to the 500 installed

machines with the highest computing speed according to the Linpack Benchmark at the

time of each survey. However, this potential source of selection bias can be neglected for

two reasons. The first consists on the definition of supercomputer itself. A computer can

only be classified as an HPC if its computing speed is close to the best available one. This

time-dependent classification allows me to consider the TOP500 surveys representative

of the whole supercomputer market. The second reason consists on the obsolescence of

a supercomputer after five years from its introduction. Advances in computing speed

1The top500 data contains many purchases of classified buyers labeled as "Government Classified", "DoD
Classified" and "Defense Classified" along with reported purchases from NSA and FBI. The little avail-
able information on confidential purchases indicates that these represent a small percentage of overall
supercomputer acquisitions.
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become quickly incorporated in other types of computer (mainframes, workstations and

eventually laptop and desktop computers), making a supercomputer unlikely to be sold

few years after its introduction.

Despite the fact that the TOP500 surveys started on June 1993, I am able to recover

information on supercomputer installations since 1990. At the time of that survey, the

supercomputer market was yet to experience the remarkable growth in installations during

the 1990s. Therefore, the earliest available survey of the TOP500 database contains

installations dated as far back as 1984. However, there is only a reasonable number of

reported installations from 1990 on2. The TOP500 dataset includes the identity of the

buyer, the type of buyer (Academic, Industry, Government, Classified and Vendor), the

name of the supercomputer model, the country and continent where the HPC is installed,

the year of installation, quantities purchased per buyer3, the area of application for the

supercomputer, and the specific attributes of the machine. I used the consumer-specific

purchase data to compute firm networks as the number of consumers whose last purchase

was from a given firm.

Among those characteristics, one can find two observed quality measures. The first

is Rmax, which corresponds to the computing speed of the supercomputer according

to the Linpack Benchmark measured in Giga FLOPS. The second measure corresponds

to the maximum possible GFLOPS that the HPC can ever process, which is denoted

Rpeak. These two computing speed measures are strongly correlated. I found a correlation

coefficient of about 0.99 between Rmax and Rpeak. I chose Rmax as the observed quality

2Before 1990, the maximal number of installations per year was 21, which is clearly insufficient for
obtaining precise estimates.
3This information can be inferred directly from the data, since information is provided on an individual-
specific basis)
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measure for supercomputers for the empirical work. The other specific details of each

supercomputer in the data are system family, number of processors, processor speed,

processor brand, interconnect brand, architecture and operating system. Processor speed

is measured in Mega-Heartz (MHz), and it determines how many instructions per second

the processor can execute. Despite the fact that the top500 surveys take place twice a

year on June and November, I decided to consider an yearly frequency for the data. I

took this procedure since most supercomputers being installed on year t only appeared

on the surveys of year t+ 1 and above. Given that the sample only provides information

about the installation year, I pooled the information on all the supercomputers installed

on a given year from all surveys. This guarantees a truthful description of the moment of

installation of the supercomputer4.

Unfortunately, the TOP500 dataset provides no reference on the price paid for each su-

percomputer. Nonetheless, it was possible to collect this information from several different

sources. The Transaction Processing Performance Council (TPC), a non-profit organi-

zation, publishes detailed information submitted by vendors about prices, performance

rating and characteristics of several high-end computers at their website www.tpc.org.

Several prices of supercomputers introduced since 1994 were recovered from the TPC

Benchmark series TPC-A, TPC-B, TPC-C, TPC-H, TPC-R and TPC-W. Another source

where supercomputer prices were found was JohnMcCallum’s series on CPU performance.

4Moreover, the top500 surveys have started in June 1993. They contain information on supercomputers
installed in previous years, but provide no information on the semester of installation. Again, there is
only reference to the installation year.
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McCallum (2002) uses this series to evaluate price and performance information on several

computers from 1944 to 20035.

Yearly list price data for several supercomputers was also obtained from the HPC

database compiled by the International Data Corporation (IDC)6. Even though all these

sources only partially covered the price information for the TOP500 supercomputers, it

was possible to recover the missing information from searching for the supercomputer

models at several other sources. The most representative sources were articles published

at Government Computer News (GCN) archives (www.gcn.com), press releases from both

manufacturers and buyers, technical reports from NASA7, Roy Longbottom’s Computer

Claims data from 1980 to 19968, the Federal Procurement Data System, the Government

Business Opportunities and the Commerce Business Daily websites9. All prices were

converted into 1998 constant dollars by using the CPI series from the Bureau of Labor

Statistics. All price information found in foreign currencies was converted into US dollars

by using the average exchange rate for the year in question10.

Market size at a given year is defined as being the number of consumers potentially

interested on purchasing a supercomputer. Since supercomputers are durable goods, the

5This series is available for download at www.jcmit.com, and the details of its construction can be found
in McCallum (2002).
6The full database is freely available for download at http://www.hpcuserforum.com/benchmark/
7A representative report containing list price information is the technical report by Saini and Bai-
ley (1996), available for download at http://www.nas.nasa.gov/News/Techreports/1996/PDF/nas-96-
018.pdf
8Available at http://homepage.virgin.net/roy.longbottom/mips.htm#anchorStart
9FPDS procurement data is publicly available for consultancy upon account creation at www.fpdc.gov.
Data from the Government Opportunities and from Commerce Business Daily can be obtained by search-
ing on archived awards in their websites. I would like to thank the General Services Administration (GSA)
staff of the FOIA and Federal Business Opportunities offices for their helpful explanations on data ex-
traction from these sources.
10In particular, I used the annual average exchange rate information available at www.triacom.com.
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intertemporal substitution effects on demand for durables highlighted by Melnikov (2001)

must not be neglected on defining the number of potential consumers. As the discrete

choice framework proposed for demand does not account for these effects, I followed

the approach of Benkard (2004) by assuming that each buyer in this market optimally

reallocates her supercomputer stocks every period, considering both used and new high-

performance computers in her choice set. Just like in Benkard’s analysis of the market

for wide-embodied commercial aircraft, this assumption is acceptable for the case of the

supercomputer market. This is because it corresponds to treat supercomputer purchases

as rentals, and a considerable number of high-performance computers are installed under

rental contracts. Implicit supercomputer rental prices and list prices can be considered

proportional, since the maintenance costs for hardware and software for at least three years

are included in the latter. Consequently, I defined Mt as the number of new and used

supercomputers in use in year t, which is assumed to be the sum of all supercomputers

sold between year t− 5 and t11.

Supercomputers which have equal characteristics and are produced by the same firm

but sold under a different name were considered to be a single model. Moreover, I assume

that two observations in adjacent years represent the same model if (a) they have the

same name; (b) their Rmax score, number of processors and processor speed does not

change by more than ten percent; and (c) the remaining characteristics (e.g., operative

system, interconnect bandwidth type) are the same. In addition, I excluded both custom

supercomputers and vendor systems (i.e., supercomputers that manufacturers produce

for their own usage), although these were considered in the computation of technological

11This choice was motivated by the fact that the useful lifetime of a supercomputer is five years.
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frontiers and investment rates. Custom systems are not in the same choice set as off-the-

shelf models, implying that the logit demand model is only reasonable to describe off-

the-shelf purchases. Moreover, the benefits-outside-profits function imposed in the model

controls for custom revenues, since the production of custom systems usually implies an

expansion of the firm’s technological frontier. These procedures yield an unbalanced panel

of 2204 model/year observations. Yearly market shares of each supercomputer model are

computed by dividing the quantity sold by the market size.
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APPENDIX B

Derivations for Chapter 2

B.1. Ex-ante value function approximation

Under the assumption that private shocks are independent across time and players,

it suffices to provide an approximant to the integrated value function of each player in

the procedures outlined below. The fact that the flow payoff function satisfies symmetry

and anonymity suggests that a function satisfying the same properties will be a suitable

approximant for the integrated value function. Therefore I define the approximant for

this function as

hf(st, θ) =
K1X
k1=0

...
K7X
k7=0

cf,k1,...,k7(θ)Tk1(N0t)× Tk2(κft)× Tk3,(Nft)× Tk4(exp(νft))

×Tk5(κ−ft)× Tk6,(N−ft)× Tk7(exp(ν−ft))

where, as in the previous section, Tk(.) is an univariate first-kind Chebyshev poly-

nomial of order k, κ−ft ≡
P
d6=f

κdt, exp(ν−ft) ≡
P
d6=f
exp(νdt), and N−ft ≡

P
d6=f

Ndt. Note

that the symmetry assumption for the approximant reduced the state space dimension to

seven variables, which represents a considerable computational gain1. Like in other work

where polynomial approximations to the value function are considered (e.g., Doraszelski

1Under the assumption that no more than F firms can operate in this market, my model would require
a total of 3F + 1 observed states.
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(2003)), I assume that the degree of approximation for each polynomial is the same. That

is, Ki = K, ∀i = 1, ..., 7, ∀f = 1, ..., F . Following Miranda and Fackler (2002) It can be

compactly written as

hf(st, θ) = Tf(st)cf(θ)

where Tf(st) = [T7(exp(ν−ft)⊗ T6(N−ft)⊗ ...⊗ T1(N0t)] is a 1×K7 row vector, cf(θ)

is a K7 × 1 column vector of coefficients conditional on the dynamic parameters θ, and

Ti(.) is a 1×K row vector where each entry is a first-kind Chebyshev polynomial of the

first kind.

Given θ, the vector cf(θ) can be estimated after constructing a grid of points on the

observed state space. That is, after defining the 1×K7 row vector function

Uf(s) =

⎡⎣Tf(s)− β

Z
ε

E [Tf(s
0)|σf(s, εf), σ−f(s, εf), s] dF (ε)

⎤⎦

and letting Hf(s) =

Z
ε

π(σf(s, εf), σ−f(s, εf), s; θ)dF (ε), the column vector cf(θ) can

be computed as the unique solution to

cf(θ) = U−1f Hf

where Uf is a K7×K7 matrix where each row evaluates Uf(s) at a given of grid point

s, and Hf is a column vector K7 × 1 which evaluates Hf(s) at the same grid point s. In
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principle, one could consider more thanK7 grid points and obtain an estimate for cf(θ) by

minimizing the distance between Hf and Ufcf(θ) (e.g., an OLS solution). However, the

fact that Uf can be written as a Kronecker product when K7 grid points are considered

makes this latter case specially attractive from a computational viewpoint2. In this paper,

I followed the latter approach.

B.2. Auxiliary derivations to first-order conditions

The derivative of C(Ift, st, ε1ft) with respect to frontier investment is linear on the

shock ε1ft, and is given by

∂C(Ift, st, ε1ft; θ)

∂Ift
= Dirac(Ift)C(Ift, st; θ) + 1{Ift > 0}(2c6Ift + c5)

+(1{Ift > 0}+Dirac(Ift)(c5 + ε1ft)Ift)ε1ft

where C(Ift, st; θ) ≡ C(Ift, st, ε1ft; θ) − (c5 + ε1ft)Ift is a term that, by construction,

does not depend on ε1ft and Dirac(Ift) denotes Dirac’s delta function (i.e., the derivative

of 1{Ift > 0}). Using the properties of the Dirac function we have

∂C(Ift, st, ε1ft; θ)

∂Ift
= 1{Ift > 0}(2c6Ift + c5) + 1{Ift > 0}ε1ft

The derivative of CA(Aft, st, ε2ft; θ) with respect to Aft is linear in εft. Hence, the

first-order condition on quality investment simplifies to

2As described in Miranda and Fackler (2002, pp130-132), U−1f can be computed after inverting seven
matrices K ×K rather than the more computationally intensive inversion of a K7 ×K7 matrix.



161

Z
ε−f

⎛⎝−C1(Aft, st; θ) + βEt

⎡⎣∆(S)X
k=1

∂Vf
∂gk

∂gk
∂Aft

⎤⎦⎞⎠ dF (ε−f)− μAft1{Aft = −1} = 0

where

C1(Aft, st; θ) = Dirac(Aft)(c
A
0Aft + cA1A

2
ft) + 1{Aft > 0}(cA0 + 2cA1Aft)

+(1−Dirac(Aft))(c
A
2Aft + cA3A

2
ft) + 1{Aft < 0}(cA2 + 2cA3Aft)

Again using the fact that Aft ×Dirac(Aft) = 0, ∀Aft, C1(Aft, st; θ) simplifies to

C1(Aft, st; θ) = 1{Aft > 0}(cA0 + 2cA1Aft) + 1{Aft < 0}(cA2 + 2cA3Aft)

Fixed costs of frontier innovations are recovered by using the fact that the firm will

only extend the frontier if the value of doing so exceeds the value of not doing techno-

logical innovation. That is, frontier investment takes place only if the following positive

investment condition holds
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−C(Ift, st, ε1ft; θ) + β

Z
ε−f

E [Vf(st+1; θ)|Ift > 0, σf , σ−f(st, ε−f), st] dF (ε−f)

> β

Z
ε−f

E [Vf(st+1; θ)|Ift = 0, σf , σ−f(st, ε−f), st] dF (ε−f)

Using the fact that C(Ift, st, ε1ft; θ) is linear in ε1ft, this condition can be written as

ε1ft <

β

Z
ε−f

E [Vf(st+1; θ)|Ift > 0, σf , σ−f(st, ε−f), st] dF (ε−f)

1{Ift > 0}Ift

−

β

Z
ε−f

E [Vf(st+1; θ)|Ift = 0, σf , σ−f(st, ε−f), st] dF (ε−f)

1{Ift > 0}Ift
+

C(Ift, st; θ)

1{Ift > 0}Ift

where C(Ift, st; θ) is the investment cost net of its stochastic component, i.e.,

C(Ift, st; θ) ≡ C(Ift, st, ε1ft; θ)− c2Ift1{Ift > 0}
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APPENDIX C

Simulation methods for Chapter 3

C.1. HP-Convex merger simulation

Given estimates of the model parameters, state transitions and integrated value func-

tions recovered in the previous Chapter, the simulation algorithm starting at either of

those two initial states can be outlined as follows:

• Given the observed state vector in 1995, compute the MPNE by solving the

system of first-order conditions on markups, quality investments and frontier

extension rates of all firms. Following Ryan (2006), I integrate the system with

respect to private information. I proceed analogously for the state vector implied

by the merger;

• Compute consumer welfare under both pre- and post-merger scenarios using the

metric described in Chapter 2, i.e.

CWt =
1

α

FX
k=0

Nkt ln

Ã
FX
d=1

exp(−αMkpdt + τ 1κdt + νdt + ψNdt + Λd1{k = d})
!

• Compute the compensating variation implied by the merger, i.e.,
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CVt = CWPost
t − CWPr e

t

• For both pre- and post-merger cases, generate the maximal computing speed

available in the industry for the following period by computing maximal firm

frontier times (1 + Ift) across all firms which will remain in the industry;

• Generate an observed state vector for 1996 under pre- and post-merger scenarios

by sampling a draw from the transition probabilities evaluated at the system

solution and the observed state in 1995;

• Repeat the first and second steps considering the random draw of the previous

step as the observed state.

• Repeat the last step T̃ times, so that one has a simulated path up to year t =

1995 + T̃ . In my application, I set T̃ = 5 ;

• Repeat last four steps R times, and compute the expected markup and welfare

paths by averaging across the R simulations. In my application I have set R =

5000.


