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ABSTRACT

Traveling Waves in Models of Population Dynamics

with Nonlocal Interactions

Eric A. Autry

This thesis focuses on ecological models of population dynamics and the traveling,

migratory waves that can result when a stable state either displaces an unstable state,

or displaces another stable state. We consider the effect of nonlocal interactions, where

members of the species interact over a distance. This gives rise to integro-partial differ-

ential equations of reaction-diffusion type. Our work has encompassed two projects. The

first considers a single species competing nonlocally with itself, while the second considers

a food chain system of three species. In both, we consider traveling waves and determine

how nonlocality can affect the speed of propagation, the stability of the equilibria, and

the shape of the fronts.

In our first project, we developed a piecewise linear, reaction-diffusion model describing

the growth and movement of a single species, u, so that when we considered a particular

form of nonlocality, we were able to reduce the integro-PDE to a system of algebraic
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equations. This allowed a full description of the traveling wave solutions. We also con-

sidered the effects of asymmetric nonlocality, where the distance over which the nonlocal

interactions occurred was different to the left and to the right of a given location. We

were able to show how the extent of the nonlocality and the strength of the asymmetry

affected the speed of propagation of the traveling fronts, and how they could cause a

loss of monotonicity in the solutions. Finally, we considered cases where the waves could

propagate in either direction.

In our second project, we considered a three species food chain model, where species u

was preyed upon by species v, which in turn was preyed upon by species w. Our primary

focus was on biological control, where the bottom species u is an important crop, while

v is a pest that has infested the crop. The superpredator w is introduced into this pest-

infested environment in an attempt to restore the system to a pest-free state. For this

model, we considered two types of nonlocality: one where the crop species u competes

nonlocally with itself, and the other where the superpredator w is assumed to be highly

mobile and therefore preys upon the pest v in a nonlocal fashion. In this context, we

examined how biological control could prove to be highly susceptible to noise, and could

fail outright if the pest species was highly diffusive. We showed, however, that control

could be restored if the superpredator was sufficiently diffusive, and that the control could

be made robust if the superpredator behaved nonlocally. Since our focus was on biological

control, where the superpredator is generally introduced artificially, our results point to

properties of the superpredator which can lead to successful control.
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CHAPTER 1

Introduction

The focus of this thesis is on the behavior of traveling waves in models of population

dynamics with nonlocal interactions. In this context, traveling wave solutions correspond

to migratory behaviors of the species being modeled, while nonlocality refers to inter-

actions that occur over a distance. The results of this thesis come from two distinct

projects. The first project centers on the migratory behavior of a single species whose

members compete nonlocally with each other for resources. We consider a piecewise linear

simplification of the governing equation to create an analytically tractable model, and we

fully describe the behavior of this resulting model. The second project in this thesis fo-

cuses on a three species foodchain model, along with several different types of nonlocality.

We consider nonlocal intraspecies competition as in the first project, but also consider

the effects of nonlocal predation on solutions of this foodchain model.

1.1. Traveling Waves in Population Models

The main focus of the projects presented in this thesis is on traveling wave solutions

in models of population dynamics, which represent migrations. These solutions can be

found through a transformation to a traveling coordinate, and they correspond to fronts

that propagate rigidly at uniform speeds in the original, untransformed models. Our main

goals when considering traveling wave solutions are to determine the speed of propagation

and to describe the shape of the traveling fronts. We note that not all of the behaviors
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discussed in this thesis are traveling wave solutions, as some do not travel at a uniform

speed, and so do not correspond to solutions in a traveling frame. The techniques used

for describing the propagation speed and front shapes, however, can still prove useful in

these contexts.

The traveling waves discussed in this thesis tend to involve a front connecting two

equilibrium states of the governing system, where one state displaces the other at a fixed

rate, causing the connecting front to propagate. For most of the fronts presented, the

propagation speed can be determined through considering the existence or stability of the

state ahead of the front that is being displaced. Meanwhile, the shape of the front, and

the existence of any patterns formed behind the front, can be determined by considering

the stability of the state behind the front. We will see these techniques used throughout.

1.2. Nonlocality in Population Models

Nonlocality in models of population dynamics refers to interactions between individ-

ual organisms that occur over a distance, specifically, on a larger spatial scale than the

organism’s ‘home range’ where it resides. These long range interactions are often attrib-

uted to the relative mobility of the species involved. For example, members of a species

may travel a distance to attain a scarce resource, competing with others for the resource,

to both individuals’ detriment, despite residing a distance from them. High mobility can

also be used as a justification for nonlocal predation, where a mobile predator may seek

out prey over a large distance, or where a mobile prey may wander into a predator’s ‘home

range’. While mobility is a commonly used example of nonlocal interactions in biology,

there are other mechanisms that give rise to long distance interactions. Plants that share
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a water-table, whether through the use of extensive root systems or due to geographic

effects such as a sloped hill, can compete nonlocally despite lacking basic mobility. There

are even examples of species of plants, ants, and bacteria that release toxins into their

environment to drive other individuals away, a behavior that would also create nonlocal

interactions.

Mathematically, nonlocal interactions are represented through the use of a weighted

average of the population about a given location, given by the integral of the popula-

tion against a kernel function controlling the weighting. These convolution integrals then

replace the population itself in the competition or predation terms in the governing equa-

tions. For example, intraspecies competition of a single species u is represented through a

mass action between two members of species u, that gives the quadratic term −u2. When

nonlocal competition is considered, the mass action is taken to be between a member of

species u and the weighted average of the species represented by the convolution ϕ ∗ u

(where ϕ is the kernel function), which gives instead the term −u(ϕ ∗ u).

1.3. An Analytically Tractable Switching Model

The first project detailed in this thesis centers on the migratory behavior of a single

species whose members compete nonlocally with each other for resources, with a key

simplification: the source term is taken to be piecewise linear, with a population threshold

that acts as a switch between behaviors for small and large populations, and as a switch

between local and nonlocal behavior. This piecewise linear simplification, along with the

particular choice of kernel function and a transformation to a traveling frame, allows

us to reduce the governing integro-partial differential equation to a system of algebraic
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equations, which in turn allows for a full description of the solutions. The piecewise linear

simplification not only allows for a description of the solutions, but also allows us to

consider two important versions of the problem: the monostable version where extinction

is unstable and even small populations grow; and the bistable version where extinction is

stable and sufficiently small populations will die off.

The main results of this project center on how parameters representing the local net

birth rate, the extent of the nonlocality, and the strength of the asymmetry of the kernel

function affected the speed and shape of the traveling wave solutions. For the monostable

problem, we determined a minimum speed above which traveling waves solutions exist.

We were able to determine conditions under which the traveling front would lose its mono-

tonicity and would have either decaying oscillations or a ‘hump’, a single local maximum,

behind the front. For the bistable problem, we determined the unique propagation speed,

along with conditions for the existence of decaying oscillations or a ‘hump’ in the wave

front.

This project resulted in a paper published in Nonlinearity, [1], and this paper is

included in its entirety in Chapter 2.

1.4. A Three Species Foodchain

The second project detailed in this thesis centers on a three species foodchain model,

where the species u is preyed upon by species v, which in turn is preyed upon by species

w. The focus of this project is the problem of biological control. The prey species u

is considered a valuable crop while the species v is a pest that has infested the crop.

Biological control is the introduction of the superpredator species w in an attempt to kill
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off the pest v and restore the crop u to its pest-free state. With this system, we consider

two types of nonlocality: nonlocal intraspecies competition of the crop species u; and

nonlocal predation of the pest v by the superpredator w. We note that the governing

system of equations for this foodchain include ratio-dependent predation terms, which

are discussed in detail in Chapter 3.

As with the first project, we were again interested in traveling waves, their propagation

speed, and their shape. To that end, we analytically determined conditions for the stability

of the various equilibrium states and described procedures for determining the critical

extent of the nonlocality that would give rise to cellular patterns. Since our main focus

was on biological control, we also considered when biological control was attainable, how

it could fail, and what factors could ensure its success. Specifically, our results point

to properties of the superpredator that can lead to successful control. While we did

observe fronts of complete biological control, where a traveling pulse of the superpredator

eliminated the pest and restored the pest-free state behind the front, we also observed a

number of mechanisms that would trigger a resurgence of the pest: sufficient noise in the

system, a high diffusivity of the pest species, or a moderate level of nonlocal predation

by the superpredator. We also found, however, mechanisms that could suppress these

triggers. If the diffusivity of the superpredator was high enough, or if the extent of the

superpredator’s nonlocal predation was large enough, successful biological control was

obtainable.

This project led to a paper titled ‘Biological Control with Nonlocal Interactions’ ac-

cepted for publication in Mathematical Biosciences, which is included in its entirety in

Chapter 4.
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CHAPTER 2

A Nonlocal, Piecewise Linear Reaction-Diffusion Model

We consider an analytically tractable switching model that is a simplification of a non-

local, nonlinear reaction-diffusion model of population growth where we take the source

term to be piecewise linear. The form of this source term allows us to consider both the

monostable and bistable versions of the problem. By transforming to a traveling frame

and choosing specific kernel functions, we are able to reduce the problem to a system

of algebraic equations. We construct solutions and examine the propagation speed and

monotonicity of the resulting waves.

2.1. Introduction

In this chapter we develop an analytically tractable model to describe population mi-

gration waves for species with nonlocal intraspecies competition. The model permits an

analytic description of wave propagation speeds, wave structure, and parameter depen-

dencies. The model is applicable both to the monostable case, where the natural net

birth rate is positive (extinction state unstable), and the bistable case, where the natural

net birth rate is negative (extinction state stable). Furthermore, the model permits a

description both of cases where the nonlocality is symmetric and where the nonlocality is

asymmetric.

Our primary focus in the monostable case involves propagation of a species into an

uninhabited region, facilitated by the instability of the extinction state and characterized
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by a propagating traveling wave connecting a populated state to the extinction state. In

the bistable case propagation can go in the opposite direction for some parameter ranges.

In animal species, propagating waves have been observed in a variety of species -

e.g., budmoths, grouses and voles [2]. These waves are often attributed to gradients in

habitat productivity, and so are due to varying levels of resource scarcity. The biological

mechanism underlying the traveling waves considered here is nonlocal competition for a

scarce resource in a population where diffusion allows a degree of mobility, and where

asymmetries in the nonlocal competition can represent resource gradients. There are of

course a number of other mechanisms that may describe some of these observed waves:

random, synchronized external forcing (e.g., weather events) [2, 3], direct trophic rela-

tionships with a synchronized or mobile population (e.g., mating events in a food source

or a mobile predator species) [4], and landscape obstacles [2]. We do not consider such

mechanisms in this chapter. Propagating waves of vegetation also occur in nature and are

often attributed to competitive interactions for a scarce resource (often the scarce resource

is water as these waves are commonly found in arid or semi-arid environments) [5].

In Section 2.2, we provide a background of reaction-diffusion population models and

nonlocality, along with a review of relevant literature and a description of our piecewise

linear switching model. A summary of our results can be found in Section 2.3. In Sections

2.4 and 2.5 we analytically describe solutions to our model in the monostable and bistable

cases, respectively. Section 2.6 discusses numerical validation of our results. We present

a summary of these results along with concluding remarks in Section 2.7.
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2.2. Model

2.2.1. Traveling Waves in Reaction-Diffusion Models and Nonlocality

We begin with a well-known reaction-diffusion model, the local KPP equation [6]

(2.1)
∂U

∂t
=
∂2U

∂z2
+ F (U),

where F (U) is a nonlinear source term such that

(2.2a) F (0) = F (1) = 0,

(2.2b) F (U) > 0, 0 < U < 1,

(2.2c) F ′(U) < F ′(0), 0 < U ≤ 1 .

Traveling wave solutions of (2.1), i.e., solutions of the form U(z, t) = u(x), x = z − ct

satisfy

(2.3) u′′ + cu′ + F (u) = 0,

along with the boundary conditions

(2.4) u(−∞) = 1, u(+∞) = 0 .

Throughout this chapter, we will use just u to refer to the population level for both the

traveling coordinate and time dependent problems (i.e. saying that the u = 1 state is

stable). A classical example of (2.1) is the Fisher equation [7], in which the nonlinearity
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has a logistic form

(2.5) F (U) = µU(1− U),

with µ being a given positive constant.

From condition (2.2a), the only spatially homogeneous equilibria in the interval [0, 1]

are u = 0 and u = 1, while condition (2.2b) guarantees that u = 0 is unstable and

u = 1 is stable. This gives us the monostable problem, where extinction is unstable and

even very small populations will tend towards the u = 1 state. While this holds true for

a wide variety of species, there are many populations that must exceed a threshold in

order to survive – a phenomenon known as the Allee effect [8]. To model this, we remove

conditions (2.2b), (2.2c), and instead assume that both the u = 0 and u = 1 states are

stable. This gives us the bistable problem, which can be modeled with a simple cubic

nonlinearity

(2.6) F (U) = µU(U − θ)(1− U),

which now has u = θ as the unstable equilibrium state between stable states u = 0 and

u = 1 .

We next introduce nonlocality into the model. Nonlocal models were first considered

in [9, 10], where biological motivations for nonlocality were presented. The papers were

concerned with (2.1), taking the form of the nonlinear source term to be

(2.7) F (U) = U
[
1 + aU − bU2 − (1 + a− b) φδ ∗ U

]
.
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Here ϕδ ∗ U is the convolution of the solution U with the kernel ϕδ,

ϕδ ∗ U =

∫ ∞
−∞

ϕδ(x− y) U(y) dy

(the dependence of the solution on time t is omitted), where ϕδ is a scaled kernel function

ϕ,

ϕδ(ω) =
1

δ
ϕ
(ω
δ

)
, δ > 0, ϕ(ω) ≥ 0,

∫ ∞
−∞

ϕ(ω) dω = 1,

so that ϕδ(ω) approaches a delta function as δ → 0 . Notice that the convolution ϕδ ∗U in

the nonlinear source term (2.7) represents a nonlocal, weighted averaging of the population

U with the weighting independent of location. The kernel function ϕδ provides the weights

while parameter δ controls the extent of the nonlocal averaging.

A nonlocal generalization of (2.5) that is often considered is

(2.8) F (U) = µU(1− φδ ∗ U),

while a nonlocal generalization of (2.6) often takes the form

(2.9) F (U) = µU(U − θ)(1− φδ ∗ U).

We next provide a review of known results for these nonlocal models.

2.2.2. Literature Review

It is convenient to recall results for traveling waves in a local KPP equation [6,7] that can

be used for comparison with nonlocal equations. The main existence result for the local
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problem (2.3) with conditions (2.2a), (2.2b), (2.2c) is that there exists a unique (up to

translations in x) monotone solution with u > 0 for any c ≥ cKPP, where

(2.10) cKPP = 2
√
F ′(0).

A similar result is true for the problem (2.3) with only conditions (2.2a) and (2.2b), i.e.

the monostable problem without the derivative condition (2.2c). The only difference being

that the minimum speed cmin is not necessarily given by (2.10); it may be greater than

cKPP and satisfies

cKPP ≤ cmin ≤ sup
0<u<1

2

√
F (u)

u
,

which reduces to (2.10) if (2.2c) is also satisfied [11].

We now turn to a nonlocal generalization of the Fisher equation with logistic nonlin-

earity, i.e., (2.1) with nonlinear term (2.8). We remark that this equation can be rescaled

as

U(z, t) = Ũ(z̃, t̃), z̃ = µ1/2z, t̃ = µt, δ̃ = µ1/2δ,

resulting in the problem with µ = 1, or

U(z, t) = Ũ(z̃, t̃), z̃ =
z

δ
, t̃ =

t

δ2
, µ̃ = µδ2,

resulting in the problem with δ = 1 . It is convenient, however, to keep both µ and δ

in the equation as these parameters signify different physical processes – the natural net

birth rate (µ) and the extent of nonlocality (δ). We note that in the limit δ → 0, (2.8)
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becomes the local logistic nonlinearity (2.5) and one might expect that the results for the

nonlocal problem with δ � 1 will be similar to those for the local problem.

An important difference between the nonlocal problem (2.1), (2.8) and its local version

is that the stationary state U = 1 is necessarily stable for the local equation, but may be

unstable in the nonlocal case, depending on the kernel function. Indeed, linearizing (2.1),

(2.8) about U = 1, i.e. U ∼ 1+ε exp(λt+ikx), gives the eigenvalues λ(k) = −k2−µϕ̃δ(k),

where k is the wavenumber of the perturbation and ϕ̃δ(k) is the Fourier transform of ϕδ.

Thus, if ϕ̃δ(k) > 0 for all k, then λ(k) < 0 for all k, and the stationary solution U = 1 is

stable. If, however, there are intervals of k where ϕ̃δ(k) < 0, it is possible that there will

be positive λ(k) for some k so that the solution will be unstable to perturbations with

these wavenumbers.

Two sets of boundary conditions for the traveling wave solutions are considered: the

conditions (2.4) and the generalized conditions

(2.11) lim inf
x→ −∞

u(x) > 0, u(+∞) = 0 .

The condition in (2.11) states that as x goes to −∞, the solution remains positive, and

is appropriate when there is non-decaying oscillatory behavior behind the wavefront. We

will also impose the physical restriction that u(x) ≥ 0 . However, neither monotonicity of

u(x) nor the condition u(x) < 1 is in general required.

Solutions to (2.3), (2.8) satisfying either conditions (2.4) or (2.11) will describe sta-

tionary waves (with respect to the traveling coordinate x) that connect a populated state

near −∞ to an uninhabited region near ∞.
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Important questions addressed in the literature are the existence of traveling waves

and their behavior as x→ −∞, i.e., whether they satisfy (2.4) or (2.11), as well as whether

the wave is monotone, has one or more ‘humps’ in the populated region, or is oscillatory

as x→ −∞.

Review: Monostable Case.

Studies of nonlocal models described in [9,10], were concerned with (2.1) along with

the monostable nonlinearity (2.7) (in [10], the nonlocal term also includes temporal av-

eraging). In [12], (2.7) is studied for the Laplacian kernel, which allows one to reduce

the nonlocal equation to a system of local equations. In particular, numerical simula-

tions of traveling waves exhibiting hump solutions and formation of stationary periodic

structure behind the front are presented. In [13] the limiting case of δ � 1 (large extent

nonlocality) is considered for (2.7) with the Laplacian kernel.

A number of works [14–16] are devoted to analysis of the nonlocal Fisher equation

(2.3), (2.8). In [14] the problem is considered with δ = 1 under the additional conditions

that the kernel ϕ is sufficiently smooth and has a finite second moment. It is proved

that for any c ≥ cmin = 2
√
µ, there exists at least one traveling wave solution u(x) ≥ 0

that satisfies (2.3), (2.8), with conditions (2.11), and there are no traveling wave solutions

u(x) ≥ 0 with c < cmin. If µ is sufficiently small then for any c ≥ cmin there is a traveling

wave solution that satisfies (2.3), (2.8), with conditions (2.4). If ϕ̃δ(k) > 0 for all real k,

then the traveling waves satisfy (2.3), (2.8), with conditions (2.4) for all µ > 0 and all

c ≥ cmin. Finally, it is shown that for µ sufficiently large, the wave is not monotonic even

if u(−∞) = 1 .
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In [16], it is shown that for µ = 1 and δ sufficiently small (‘near-local’ case) traveling

waves that satisfy (2.4) exist. Also, an asymptotic analysis demonstrating existence of

the wave for large propagation speed c (with δ = 1) for the problem (2.3), (2.8), (2.4) is

performed (following the approach of [17] in the local case). Non-monotonic structure of

the wave (a wave with a hump) is proved.

Some detailed results on existence of monotone traveling waves that connect u = 1

and u = 0, i.e., satisfy (2.4), are presented in [15] for kernels that satisfy some conditions

of exponential decay (e.g. Laplacian or Gaussian kernels). Here (2.3), (2.8) with µ = 1

is considered and it is proved that for any c ≥ cmin there exists δ(c) ∈ (0,+∞] such

that (2.3), (2.8), (2.4) has a monotone traveling wave solution if and only if δ ≤ δ(c).

Moreover, it is shown that for any c ≥ cmin and δ < δ(c) there are no other traveling

waves such that 0 < u(x) < 1 .

Review: Bistable Case.

There are a number of works devoted to nonlocal equations with bistable nonlinearities.

In particular, in [18], (2.1) with a nonlinearity of the form (2.9) is considered. Existence of

a traveling wave solution with the boundary conditions (2.11) is proved (for the near-local

case, it is proved that the solution satisfies (2.4)). In [19–21], (2.1) with the nonlinear

term taking the form

F (U) = −aU + (a+ 1)U2 − U ·
(
φδ ∗ U2

)
is considered. The choice of nonlocality here is such that the problem becomes variational,

which simplifies its analysis. The authors focus on both traveling waves and interacting
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fronts that give rise to stationary pulse-like solutions. In [22] the nonlinearity of the form

F (U) = U · (1− U) · (φδ ∗ U)− aU

is considered, and existence of a monotone traveling wave that connects two stable equi-

libria is proved.

2.2.3. Description of the Piecewise Linear Model

In this chapter, we consider a simplification of the full nonlinear problem where we take

instead a piecewise linear source term. For specifically chosen kernel functions, we are

able to reduce the problem to a system of algebraic equations, which allows us to examine

the model’s behavior analytically. Our piecewise linear model also allows us to consider

both the monostable and bistable versions of the problem by changing the sign of a single

parameter (A). Furthermore, we find that this simplified model can still allow for a full

range of monotonic, ‘hump’, and oscillatory solutions.

The model is

(2.12) u′′ + cu′ + f(u) = 0, u(−∞) = 1, u(∞) = 0,

where

(2.13) f(u) =

 Au, u < θ,

1− ϕ ∗ u, u > θ,

with some constants A and θ, where 0 < θ < 1 .
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• Assumption 1: In order to pin the traveling wave solution, it is assumed through-

out the chapter that u(0) = θ.

• Assumption 2: We assume that u(x) > θ for negative x and u(x) < θ for positive

x, which allows us to solve each case in its own region.

In this chapter we consider two kernel functions: the symmetric Laplacian kernel

(2.14) ϕα(x) =
α

2
e−α|x|, α > 0,

and the asymmetric Laplacian kernel

(2.15) Φ(x) =
α`αr
α` + αr

 eα`x, x < 0,

e−αrx, x > 0,
α`, αr > 0,

( [16] discusses how these kernels relate to resource-consumer dynamics). Since the Fourier

transforms of these kernel functions are always positive, the u = 1 state will be stable for

all values of α.

We note that when α` = αr = α, the asymmetric kernel (2.15) reduces to the sym-

metric kernel (2.14). Thus the relative magnitudes of α` and αr control the degree of

asymmetry. Now consider the limit where α, α`, αr →∞. The kernel functions approach

a delta function, and (2.12), (2.13) reduce to a completely local problem. The parameter

α controls the extent of the nonlocality, where the extent of the nonlocality decreases as

the magnitude of α grows. So for this new parameter α ∼ 1/δ.

The formulation (2.12), (2.13) allows us to consider two different cases based on the

sign of A. When A > 0, we have the monostable case where the stationary point u = 0

is unstable, making u = 1 the only stable equilibrium state (recall that we are using u to
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designate the population level in both the traveling wave and time dependent problem).

When A < 0, we have the bistable case as extinction is also stable.

In this chapter we will consider both the monostable and bistable cases of (2.12), (2.13),

and examine how the strength of the local net birth rate (|A|), the nonlocal threshold

(θ), the extent of the nonlocality (α), and the degree of asymmetry (α` and αr) affect

the propagation speed and monotonicity of traveling wave solutions. To this end, we use

Assumption 2 to solve (2.12), (2.13). For the u > θ, x < 0 region, we can do this by

using the specific kernel functions (2.14) or (2.15) to reduce the equation to a fourth order

system [12] (see Appendix B), or we can more generally solve via a Laplace transform

(see Appendix C). Either method yields a quartic equation for the eigenvalues. Appendix

A contains an analysis of this equation, and this provides the form of the solution we take

as an ansatz throughout this chapter.

To understand this model, we can consider the biological significance of the parameters

A and θ, and the kernel function ϕ. Parameter A is the local natural net birth rate which

determines how rapidly a population below the u = θ threshold grows (monostable) or

decays (bistable). If we now consider the parameter θ, we first notice that θ appears as

a population threshold below which a population will behave locally, and above which a

population will exhibit nonlocal behavior. In the monostable case, θ defines the population

level where the competition has begun to overtake the local natural net birth rate. So we

take u = θ to be the population threshold between local (u < θ) and nonlocal (u > θ)

behaviors. In the bistable case, u = θ represents the unstable state between stable

extinction and the stable u = 1 state. In this case, we see the Allee Effect – that

sufficiently small populations tend to die off. Thus θ is the critical population threshold
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for the Allee Effect in the bistable case. We assume then that if a population is too small

to persist, it is also too small to behave nonlocally, and so we again have θ as the switch

between local and nonlocal behaviors.

Our model is similar to the analytically tractable switching problem considered in [23],

which takes the piecewise linear source term

(2.16) F (u) =

 Au(x), u < θ,

1− u(x− a), u > θ.

In [23], traveling waves are analytically constructed, including monotonic waves, non-

monotonic waves, and waves that exhibit an oscillatory state behind the wavefront. The

main difference between our model and that in [23] is the way in which the nonlocality

is incorporated. In our model, the nonlocality enters as a full convolution term, while in

(2.16) the nonlocality is represented as a spatial translation (or equivalently as a delta

function kernel centered at x = a), so that the nonlocality is always asymmetric. The

difference in the nonlocality gives rise to some qualitatively different results. In [23], the

existence of traveling waves connecting u = 0 to a purely oscillatory ‘wavetrain’ state is

shown. For our nonlocal problem (2.13), we find that such ‘wavetrains’ do not exist, and

instead only ‘decaying wavetrains’ are present (this is the case because the u = 1 state is

stable for the kernel functions we consider). Finally, we also consider the bistable problem

where A < 0 .

2.3. Summary of Results

Our main results for the monostable case (A > 0) are:
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• There is a unique traveling wave solution that satisfies the boundary conditions

(2.4), i.e. the wave in which the stable state u = 1 displaces the unstable state

u = 0, for all parameter values and all c ≥ cmin.

• The minimum speed, cmin, has been determined. It is cmin = cKPP = 2
√
A for

A ≥ Acr and is greater than the KPP speed for A < Acr.

• In the near-local case (α� 1) an asymptotic analysis gives asymptotically correct

results at O(1) and O(α−2).

• It has been shown that the eigenvalues of the problem can be complex, which leads

to solutions with an exponentially decaying oscillatory tail, and the boundary in

parameter space separating real and complex eigenvalues has been determined

for both symmetric and asymmetric kernels.

• In the case of real eigenvalues, conditions for the existence of a single hump are

derived.

Our main results for the bistable case (A < 0) are:

• The bistable case has a unique propagation speed for any choice of parameter

values. This speed has been determined for both the local and nonlocal problems,

and for both the symmetric and asymmetric kernels.

• There exists a critical value Acr, which has been determined for both the local

and nonlocal problems, for which the wave speed c = 0 . For A > Acr the wave

propagates to the left (i.e., the u = 0 state displaces the u = 1 state and c < 0),

while for A < Acr, the u = 1 state displaces the u = 0 state.

• Conditions for the existence of a single hump are derived.
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2.4. Monostable Case (A > 0)

We start by considering the monostable version of the problem, given by (2.12), (2.13)

with A > 0 . We reiterate that as α→∞, ϕα(x)→ δ(x), so in this regime one can expect

to recover the solution of the local problem. For comparison purposes, we first consider

the local problem.

2.4.1. Local Monostable Problem

The local version of (2.13) is given by

f(u) =

 Au, u < θ,

1− u, u > θ,

so that we solve

(2.17)
u′′ + cu′ + Au = 0, x > 0, 0 < u < θ,

u′′ + cu′ + 1− u = 0, x < 0, u > θ.

We want to determine both the solution and the values of c > 0 for which this solution

exists. Note that we are interested in the solution u such that u > 0 . The form of the

solution is

(2.18) u(x) =

 u+(x) ≡ p01e
µ1x + p02e

µ2x, x > 0,

u−(x) ≡ 1 + q0e
λ0x, x < 0,

with the matching conditions

(2.19) u−(0) = u+(0) = θ, u′−(0) = u′+(0).



29

Here

(2.20) µ1 = − c
2

+

√
c2

4
− A < 0, µ2 = − c

2
−
√
c2

4
− A < 0, λ0 = − c

2
+

√
c2

4
+ 1 > 0 .

We note now that the case of repeated roots, when c = cKPP = 2
√
A, will follow from

this general case in the limit as c→ cKPP. Indeed all of the results we obtain throughout

remain unchanged under this limit. Using the matching conditions (2.19) we obtain

(2.21) p01 = −(1− θ)λ0 + θµ2

µ1 − µ2

, p02 = θ − p01 =
(1− θ)λ0 + θµ1

µ1 − µ2

, q0 = −(1− θ).

We now discuss for what values of c the solution exists. An expected condition would be

that it exists for any c ≥ cmin = cKPP, which is dictated by the behavior of the solution

at +∞. It turns out however that the condition that u > 0 can impose more restrictions

on the minimum speed. It can be easily shown that the condition u > 0 is equivalent to

p01 > 0, from which

(1− θ)
√
c2

4
+ 1 <

c

2
+ θ

√
c2

4
− A.

Taking the square of both sides of this inequality yields the condition

g(c) ≡ cθ

√
c2

4
− A+

1

2
θc2 > (1− θ)2 + Aθ2.

Since g(c) is a monotonically increasing function of c with the domain of definition c ≥

2
√
A, if g(2

√
A) > (1− θ)2 +Aθ2 then the inequality is satisfied for all c ≥ 2

√
A, i.e., the
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minimum value of c is cmin = cKPP. If, however, g(2
√
A) < (1− θ)2 + Aθ2, i.e.,

(2.22) A <
(1− θ)2

2θ − θ2
≡ Acr,

then the minimum speed is determined by the equation

g(cmin) = (1− θ)2 + Aθ2

resulting in

(2.23) c2min =
[(1− θ)2 + Aθ2]2

θ(1− θ)[1− θ(A+ 1)]
.

We observe that cmin ≥ cKPP for all A and θ. The graphs of the two dependencies as

function of A touch at A = Acr, and cmin will be realized as the minimum speed for

A < Acr.

2.4.2. Nonlocal Equation with Symmetric Kernel ϕα

We now consider the full nonlocal problem. Here we are solving

(2.24)
u′′ + cu′ + Au = 0, x > 0, 0 < u < θ,

u′′ + cu′ + 1− φα ∗ u = 0, x < 0, u > θ.

The solution can be written as

(2.25) u(x) =

 u+(x) ≡ p1e
µ1x + p2e

µ2x, x > 0,

u−(x) ≡ 1 + q1e
λ1x + q2e

λ2x, x < 0,
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with the matching conditions

(2.26) u−(0) = u+(0) = θ, u′−(0) = u′+(0).

Here q1, q2, p1, p2 are as yet undetermined coefficients, and µ1, µ2 are the same as in

(2.20) so that u+ is a solution of (2.24) for x > 0 . We now consider the region x < 0 and

substitute the solution (2.25) into (2.24). Performing the calculation we obtain

(2.27a) u′′ + cu′ + 1− φ ∗ u =

(2.27b) q1e
λ1x

[
λ21 + cλ1 −

α2

α2 − λ21

]
+ q2e

λ2x

[
λ22 + cλ2 −

α2

α2 − λ22

]
+

(2.27c)
α

2
eαx
[

1

α
− q1
λ1 − α

− q2
λ2 − α

+
p1

µ1 − α
+

p2
µ2 − α

]
.

To ensure (2.27b) is equal to zero, λ1 and λ2 must satisfy

(2.28) R(λ) ≡ (λ2 + cλ)

(
1− λ2

α2

)
= 1 .

It is easy to verify that depending on the parameters c and α, (2.28) can have either two

positive solutions or no positive solutions. Here 0 < λ < α are the only positive values

of λ where R(λ) is positive, and thus all of the positive roots to (2.28) must be in that

interval.

In order for the solution (2.25) to satisfy (2.24) we need to impose the condition that

(2.27c) is also equal to zero, which together with the matching conditions (2.26) represents

a system of four linear equations for the four constants q1, q2, p1 and p2. Solving this

system of equations we obtain
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(2.29a) p1 =
(µ1 − α)[θ(µ2 − λ2)(µ2 − λ1) + 1

α
λ1λ2(µ2 − α)]

(µ1 − µ2)[λ1λ2 − µ1µ2 − α(λ1 + λ2 − µ1 − µ2)]
,

(2.29b) p2 = θ − p1,

(2.29c) q1 = p1
µ1 − µ2

λ1 − λ2
+

(1− θ)λ2 + θµ2

λ1 − λ2
,

(2.29d) q2 = θ − 1− q1.

2.4.2.1. Complex λ. We now want to examine when (2.28) has complex solutions. Note

that when λ are real, the solution (2.25) can be monotonic (though it does not necessarily

have to be, as we will see later when we discuss hump conditions). When λ are complex,

we instead have an exponentially decaying oscillatory tail behind the wavefront for x < 0 .

We begin by deriving a parametric dependence of the solution of (2.28), specifically,

λ1, λ2 and c, with s being the parameter, α and θ fixed. We introduce

σ1 = λ1 + λ2, σ2 = λ1λ2.

Then following the calculations in Appendix A, (2.28) gives the symmetric parameteriza-

tion

(2.30)
σ1
σ2

= α

√
(s2 + s+ 1

α2 )(s+ 1
α2 )

1 + s
≡ h0(s), σ2 =

1

s
, c = h0(s)

s2 − 1
α2

s(s+ 1
α2 )

.
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The dependence of σ1 and σ2 on s can be easily translated into a dependence of λ1 and

λ2 on s since the λ’s satisfy

(2.31) λ2 − σ1λ+ σ2 = 0 −→ λ1,2 =
1

2s

[
h0 ±

√
h20 − 4s

]
.

Now (2.31) can be used to distinguish between the cases of real and complex λ. Indeed,

the critical condition is h2 = 4s, from which

(2.32)
1

α2
=

3

2
s2 + s± 1

2
s
√

9s2 + 8s, c =
2√
s

s2 − 1
α2

s+ 1
α2

.

Figure 2.1. The boundary of existence of real positive solutions λ in the
(α, c) plane. There are two real positive solutions λ above the boundary
(which corresponds to the minus sign in (2.32)), and complex conjugate
solutions with positive real part below.

Figure 2.1 shows this boundary of the existence of real eigenvalues λ. Here we see

that as α decreases, i.e. the extent of the nonlocality increases, λ becomes complex for

a larger range of wave speeds, so that waves with exponentially decaying oscillatory tails
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dominate. This observation is in agreement with known results for the nonlocal Fisher

equation (2.3), (2.8) [14].

Figures 2.2a and 2.2b show the solution u from (2.25) for α = 4 and α = 0.01,

respectively, with c = 2, θ = 0.5, and A = 1 for both cases. Figure 2.2a shows the

typical behavior of a monotonic wave, while Figure 2.2b shows a solution with complex

eigenvalues, which gives the exponentially decaying oscillatory tails. In Figure 2.2c, we

consider the same wave as in Figure 2.2b, but now show log |u − 1| on the vertical axis.

This allows us to more readily see the decaying oscillations in the wave as x→ −∞.

(a) α = 4, c = 2, θ = 0.5, A = 1 (b) α = 0.01, c = 2, θ = 0.5, A = 1

(c) α = 0.01, c = 2, θ = 0.5, A = 1

Figure 2.2. A plot of the solution u for two sets of parameters α, c, θ, and
A. 2.2a: the typical behavior of monotonic wavefronts that exist for larger
values of α; 2.2b: the typical behavior of wavefronts with exponentially
decaying oscillatory tails that exist for smaller values of α; 2.2c: the value
of log |u− 1| for the same wave as 2.2b, which allows us to see the decaying
oscillations in the wave.
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2.4.2.2. Near-local problem: α� 1 . We now consider the problem with large α. We

expect that in the limit as α→∞ we will recover the solution of the local problem. The

expansion of the eigenvalues λ1 and λ2 for α� 1 are

(2.33) λ1 = α− 1

2α
+

c

2α2
+O

(
1

α3

)
,

(2.34) λ2 = λ0 +
1

α2

λ20
2λ0 + c

+O

(
1

α4

)
,

where λ0 is the exponent that appears in the local problem, (cf. (2.20)). Substituting

these expansions into the expressions for the coefficients we indeed obtain the solution of

the local problem at the leading order (cf. (2.21)) and small corrections that account for

large α:

p1 ∼ −
(1− θ)λ0 + θµ2

µ1 − µ2

− 1

α2

λ20
(2λ0 + c)(µ1 − µ2)

= p01 −
1

α2

λ20
(2λ0 + c)(µ1 − µ2)

,

p2 ∼
(1− θ)λ0 + θµ1

µ1 − µ2

+
1

α2

λ20
(2λ0 + c)(µ1 − µ2)

= p02 +
1

α2

λ20
(2λ0 + c)(µ1 − µ2)

,

q1 ∼ −
1

α3

λ20θ

(2λ0 + c)
= O

(
1

α3

)
,

q2 ∼ −(1− θ) +
1

α3

λ20θ

(2λ0 + c)
= q0 +

1

α3

λ20θ

(2λ0 + c)
.

These results allow us to see, in particular, how the nonlocality affects the minimum speed

of the wave, at least for large α. Since the condition that determines the allowed speed is

p1 > 0, and since the O(α−2) correction to the local value of p1 is negative, we see that

the nonlocality reduces the parameter range where the minimum speed is the KPP speed

2
√
A. The minimum speed for α not necessarily large will be addressed later.
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2.4.3. Nonlocal Equation with Asymmetric Kernel Φ

We now consider the asymmetric problem using the kernel (2.15). Substituting the so-

lution (2.25), where λ1 and λ2 are yet to be determined, into (2.24) for x < 0 with this

kernel, we obtain

(2.35a) u′′ + cu′ + 1− φ ∗ u =

(2.35b) q1e
λ1x

[
λ21 + cλ1 −

α`αr
(α` − λ1)(αr + λ1)

]
+

(2.35c) q2e
λ2x

[
λ22 + cλ2 −

α`αr
(α` − λ2)(αr + λ2)

]
+

(2.35d)
α`αr
α` + αr

eα`x
[

1

α`
− q1
λ1 − α`

− q2
λ2 − α`

+
p1

µ1 − α`
+

p2
µ2 − α`

]
.

Thus, λ1 and λ2 must satisfy

(2.36) R(λ) ≡ (λ2 + cλ)

(
1− λ

α`

)(
1 +

λ

αr

)
= 1 .

Notice again that 0 < λ < α` are the only positive values of λ where R(λ) is positive, and

thus all of the positive roots to (2.36) must be in that interval.

Since λ1 and λ2 satisfy (2.36), (2.35b) and (2.35c) are equal to zero. In order for the

solution (2.25) to satisfy (2.24) we need to impose the condition that (2.35d) is equal

to zero, which together with the matching conditions (2.26) represents a system of four

linear equations for the four constants q1, q2, p1, and p2. Solving this system of equations

we obtain
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(2.37a) p1 =
(µ1 − α`)[θ(µ2 − λ2)(µ2 − λ1) + 1

α`
λ1λ2(µ2 − α`)]

(µ1 − µ2)[λ1λ2 − µ1µ2 − α`(λ1 + λ2 − µ1 − µ2)]
,

(2.37b) p2 = θ − p1,

(2.37c) q1 = p1
µ1 − µ2

λ1 − λ2
+

(1− θ)λ2 + θµ2

λ1 − λ2
,

(2.37d) q2 = θ − 1− q1.

Notice that these are the same coefficients as in (2.29a)-(2.29d) for the symmetric

case, except with α` now replacing α, and the λ now satisfying (2.36) instead of (2.28).

2.4.3.1. Complex λ. As in the symmetric case, we introduce

σ1 = λ1 + λ2, σ2 = λ1λ2,

and obtain the asymmetric parametric dependence derived in Appendix A

(2.38a)
σ1
σ2

= h(s) ≡
(α` − αr)(s2 + s− 1

α`αr
)

2(s+ 1)
+

√√√√(α` − αr)2(s2 + s− 1
α`αr

)2

4(s+ 1)2
+

(α` − αr)2 s
α2
`α

2
r

+ (s+ 1
α`αr

)(s2 + s+ 1
α`αr

)

1
α`αr

(s+ 1)
,

(2.38b) σ2 =
1

s
,

(2.38c) c(s) = h(s)
s2 − 1

α`αr

s
(
s+ 1

α`αr

) +
α` − αr

1 + α`αrs
.
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We again notice that the λ’s satisfy

λ2 − σ1λ+ σ2 = 0 =⇒ λ1,2 =
1

2s

[
h±
√
h2 − 4s

]
.

Thus the critical case for complex λ is h2 = 4s. Using this condition we can solve for α`

as a function of αr and s. This gives us

(2.39a) g(αr, s) ≡
2s
√
s(s+ 1)α2

r + s(3s+ 4)αr + 2
√
s

2(s2(s+ 1)α2
r + 2s

√
s(s+ 1)αr + s)

,

(2.39b) α` = g ±

√
g2 − sα2

r + 2
√
sαr + 1

s2(s+ 1)α2
r + 2s

√
s(s+ 1)αr + s

.

Fixing αr in (2.39a)-(2.39b) gives us, along with (2.38a)-(2.38c), a parametric curve

in the (α`, c) plane describing this boundary. We notice that the smaller root (with the

minus sign) corresponds only to negative values of c, leaving the larger root (with the

plus sign) as the only relevant root in this case.

Figure 2.3 shows this boundary for a range of αr values. We again see that for

sufficiently large nonlocality – behind the wavefront, in the x < 0 region – there are only

solutions with complex λ. When we consider the asymmetry, we see that as αr increases,

that is as the positive x direction becomes more local, there is an increased range of

parameters that give solutions with an exponentially decaying oscillatory tail.

2.4.3.2. Minimum speed. As in the local case, we want to determine the minimum

speed cmin. We recall that for the local problem, if A is sufficiently large the minimum

speed is the KPP speed, cmin = cKPP ≡ 2
√
A. However, for smaller A, cmin > cKPP. This

result comes from the requirement that u > 0, which translates into the condition p01 > 0 .
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Figure 2.3. The boundary of existence of real positive solutions λ in the
(α`, c) plane described by (2.39a)-(2.39b) for a range of αr values (from
bottom to top: 2−3 to 23). The dashed line corresponds to αr = 1 . For a
fixed value of αr, (2.36) will have two real, positive solutions λ above the
corresponding boundary, and a pair of complex conjugate solutions below.

The corresponding condition p1 > 0 should be used in the nonlocal problem to guarantee

u > 0 . The condition p1 = 0 can be written as

(2.40) θ(µ2 − λ1)(µ2 − λ2) +
1

α`
λ1λ2(µ2 − α`) = 0,

where µ2 is given in (2.20) and λ1, λ2 satisfy (2.36). We will again use the asymmetric

parametric dependence (2.38a)-(2.38c) from Appendix A, and rewrite (2.40) in terms of

the parameter s and solve for µ2 to get

(2.41) µ2(s) =
1

2s

h(s)− 1

α`θ
−

√(
h(s)− 1

α`θ

)2

+ 4s
1− θ
θ

 ,
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and

(2.42) A(s) = −µ2
2(s)− c(s)µ2(s).

Thus, the minimum speed is given parametrically by (2.38a)-(2.38c) and (2.42).

Figure 2.4. The minimum speeds with α` = 1, θ = 0.5. The solid curves
are the minimum speeds for a range of αr values (from bottom to top: 2−2

to 22) as a function of A for the nonlocal problem. The dashed line is the
symmetric case where αr = α` = 1, and the dotted line is the minimum
speed for the local problem. The mixed dotted-dashed line at the bottom
is the KPP speed. For each curve the KPP speed is the minimum speed
beyond the point where the two curves meet.

Figure 2.4 shows this speed for fixed α` = 1 and θ = 0.5, and a range of αr values.

For each value of αr, the KPP speed (the mixed dotted-dashed line) is realized for A

sufficiently large (to the right of the point where the curves touch), while the parametric

dependence (2.38a)-(2.38c), (2.42) represents the minimum speed for smaller A (to the

left of the point where the curves touch).
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We observe for the symmetric case, corresponding to the dashed line in Figure 2.4,

that when A becomes sufficiently large, the KPP speed is realized as the minimum speed,

but for smaller values of A, the minimum speed is larger than the KPP speed. When

asymmetry is added to the problem, as the extent of the nonlocality in the positive x

direction is diminished (as αr becomes larger), the critical value of A is increased and the

minimum speed for small A increases.

We also considered a range of θ values (not pictured) and found that in all cases,

increasing θ decreases the minimum speed. All the other observations from Figure 2.4

remained qualitatively unchanged.

2.4.3.3. Hump conditions. We want to determine whether the solution u−(x) given in

(2.25), (2.37a)-(2.37d) is monotonic or has a single ‘hump’ – a local maximum located at

some point x = xm < 0 in the case when λ1, λ2 are real and positive, and, for concreteness,

when λ1 > λ2.

Conditions for the maximum are u′−(xm) = 0, u′′−(xm) < 0, which can be written as

(2.43) u′−(xm) = q1λ1e
λ1xm + q2λ2e

λ2xm = 0 =⇒ e(λ1−λ2)xm = −q2λ2
q1λ1

,

(2.44) u′′−(xm) = q1λ
2
1e
λ1xm + q2λ

2
2e
λ2xm < 0 =⇒ q1λ

2
1e

(λ1−λ2)xm + q2λ
2
2 < 0 .

Using the last equation in (2.43) to eliminate the exponential in (2.44), we get

q1λ
2
1

(
−q2λ2
q1λ1

)
+ q2λ

2
2 < 0 =⇒ −q2λ2(λ1 − λ2) < 0 .
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Thus, a necessary condition for the maximum to exist is q2 > 0 . Next, consider the last

equation in (2.43). Since the exponent is negative, we must have

0 < −q2λ2
q1λ1

< 1 =⇒ q1 < 0, q1λ1 + q2λ2 < 0 .

It is sufficient to require that q2 > 0 . Indeed, if q2 > 0 then using (2.29a)-(2.29d) and

recalling that θ < 1, we have

q1 = −(1− θ)− q2 < 0

and

q1λ1 + q2λ2 = −(1− θ)λ1 − q2(λ1 − λ2) < 0 .

The condition q2 > 0 can be written as

q2 = −(1− θ)− q1 = −p1
µ1 − µ2

λ1 − λ2
− (1− θ)λ2 + θµ2

λ1 − λ2
− (1− θ) =

− 1

λ1 − λ2
[p1(µ1 − µ2) + (1− θ)λ1 + θµ2] =

(α` − λ2)
[
(1− θ)(λ1 − µ1)(λ1 − µ2) + 1

α`
µ1µ2(λ1 − α`)

]
(λ1 − λ2)[λ1λ2 − µ1µ2 − α`(λ1 + λ2 − µ1 − µ2)]

> 0 .

It can be shown that the denominator in the above expression is negative. Taking into

account that λ2 < λ1 < α`, see (2.36), we see that the condition q2 > 0 reduces to

(2.45) (1− θ)(λ1 − µ1)(λ1 − µ2) +
1

α`
µ1µ2(λ1 − α`) < 0 .
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Using expressions (2.20) for µ1 and µ2 we obtain the condition

(2.46) A

(
θ − λ1

α`

)
> (1− θ)(λ21 + cλ1).

Expressing c and λ1 in terms of s (see Appendix A) for fixed α`, αr, and θ, we get the

parametric dependence (2.38a)-(2.38c) along with

(2.47) λ1 =
1

2s

[
h+
√
h2 − 4s

]
, A =

(1− θ)(λ21 + cλ1)

θ − λ1

α`

, (λ1 < α`θ) ,

which determines the boundary of existence of the hump solution. An additional condition

is that c ≥ cmin.

Figure 2.5 shows this region of existence of hump solutions. We again see that in-

creasing αr leads to an increased range of parameters that give these hump solutions,

while decreasing αr inhibits such behavior. We note that in this monostable case, hump

solutions only appear for values of θ very close to 1 .

Figure 2.6 shows the typical behavior of the hump solution. Pictured is the set of

parameters α` = 1, αr = 4, θ = 0.99, and A = 10 . The corresponding speed is c =

6.32 . . . .

2.5. Bistable Case (A < 0)

We now consider the bistable version of the problem, given by (2.12), (2.13) with

A < 0 . To emphasize this, we write (2.13) as

(2.48) f(u) =

 −|A|u, u < θ,

1− φα ∗ u, u > θ.
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(a) θ = 0.95 (b) θ = 0.99

Figure 2.5. Regions of existence of the hump solution in the (A, c) plane for
α` = 2 and two values of θ. The solid curves are the parametric dependence
(2.47) for a range of αr values (bottom to top: 0.5, 0.67, 1, and 22 through
27). The dotted curve is the symmetric case αr = α` = 2. The dashed curve
is the minimum KPP speed. Region of existence is bounded by the dashed
curve from below and solid/dotted curve from above, i.e., there appears
to be no hump solution for θ = 0.95, but θ = 0.99 can allow for a hump
solution for large enough αr.

As before, we will assume that u(0) = θ and u(x) > θ for x < 0, u(x) < θ for x > 0 . We

again start by considering the local version of the problem.

2.5.1. Local Bistable Problem

For the local, bistable problem, we have to solve

(2.49)
u′′ + cu′ − |A|u = 0, x > 0, 0 < u < θ,

u′′ + cu′ + 1− u = 0, x < 0, u > θ.
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Figure 2.6. A plot of the solution u for α` = 1, αr = 4, θ = 0.99, and
A = 10 . This graph shows the typical behavior of hump wavefronts in the
monostable case.

We want to determine both the solution u and the values of c for which this solution

exists. Unlike the monostable case, there is no continuous interval of speeds, and the

speed does not have to be positive – the wave can propagate in either direction or even

be stationary. The solution can be written as

(2.50) u(x) =

 u+(x) ≡ θeµ0x, x > 0,

u−(x) ≡ 1− (1− θ)eλ0x, x < 0,

with the matching conditions

(2.51) u−(0) = u+(0) = θ, u′−(0) = u′+(0).

Here λ0 is given in (2.20) and

(2.52) µ2
0 + cµ0 − |A| = 0 −→ µ0 = − c

2
−
√
c2

4
+ |A| < 0 .
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The last matching condition serves to determine the propagation speed

(2.53) c =
(1− θ)2 − |A|θ2√

θ(1− θ)[1− θ + |A|θ]
.

Note that the numerator in (2.53) is equal to 2
∫ 1

0
f(u) du, so that the sign of c, i.e.,

the direction of propagation, depends on the sign of the integral of the source function,

which is a well-known result for a local bistable equation with a general f(u) that can

be obtained by multiplying the equation by u′ and integrating the result over the entire

x-axis [24]. In particular, the condition for the wave to not propagate, i.e. to have c = 0,

is

|A| = |A|cr(∞) ≡ (1− θ)2

θ2
.

For |A| < |A|cr(∞) the propagation speed is positive, i.e., the wave goes to the right and

the u = 1 state displaces the u = 0 state. For |A| > |A|cr(∞) the wave goes to the left

(c < 0), and extinction replaces the populated state.

2.5.2. Nonlocal Equation with Symmetric Kernel ϕα

We next consider the nonlocal problem

(2.54)
u′′ + cu′ − |A|u = 0, x > 0, 0 < u < θ,

u′′ + cu′ + 1− ϕα ∗ u = 0, x < 0, u > θ.
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and seek the solution in the form

(2.55) u(x) =

 u+(x) ≡ p1e
µ0x, x > 0,

u−(x) ≡ 1 + q1e
λ1x + q2e

λ2x, x < 0,

subject to the matching conditions (2.26). Substituting (2.55) into (2.54) yields

(2.56a) u′′ + cu′ + 1− φα ∗ u =

(2.56b) q1e
λ1x

[
λ21 + cλ1 −

α2

α2 − λ21

]
+ q2e

λ2x

[
λ22 + cλ2 −

α2

α2 − λ22

]
+

(2.56c)
α

2
eαx
[

1

α
− q1
λ1 − α

− q2
λ2 − α

+
p1

µ0 − α

]
.

As in the case of the monostable equation, λ1 and λ2 satisfy (2.28). Thus, in order for

the solution (2.55) to satisfy (2.54) we need to impose the condition that the expression

in (2.56c) is equal to zero, which, together with the matching conditions (2.26), represents

a system of four linear equations for the four unknowns, q1, q2, p1 and c. Solving these

equations we obtain

p1 = θ, q1 =
θµ0 − (θ − 1)λ2

λ1 − λ2
, q2 = θ − 1− q1

and

(2.57)
(θ − 1)λ2 − θµ0

(λ1 − α)(λ2 − α)
=

1− θ
λ2 − α

+
1

α
+

θ

µ0 − α
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which determines the speed c. Now (2.57) can be simplified to

(2.58) θµ2
0 − µ0

[
θ(λ1 + λ2)−

1

α
λ1λ2

]
− (1− θ)λ1λ2 = 0 .

Once again we use

σ1 = λ1 + λ2, σ2 = λ1λ2,

and the symmetric parameterization (2.30). We rewrite (2.58) in terms of σ1 and σ2 as

µ2
0 − µ0

[
σ1 −

1

αθ
σ2

]
− 1− θ

θ
σ2 = 0,

and then in terms of s using the parametric dependencies, giving

sµ2
0 − µ0

[
h0 −

1

αθ

]
− 1− θ

θ
= 0 .

We solve the equation for µ0 to obtain

µ0(s) =
1

2s

h0(s)− 1

αθ
−

√(
h0(s)−

1

αθ

)2

+ 4s
1− θ
θ

 .
Finally, (2.52) gives

(2.59) |A|(s) = µ2
0(s) + cµ0(s).

Using (2.30), we can thus obtain the propagation speed as a function of |A|, where α and

θ are fixed.
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Figure 2.7. Propagation speed in the bistable case as a function of |A|. Here
θ = 0.5. The dashed curve is the speed for the local problem. The solid
curves are the speed for nonlocal problem with an increasing range of α
values (left to right: 22 through 2−2).

In Figure 2.7 we show the propagation speed as a function of |A| for θ = 0.5 and a

range of α values. Notice that as α increases, the propagation speed approaches that of

the local problem, as it should. On the other hand, as α decreases – as the extent of the

nonlocality becomes greater – the propagation speed increases. It is perhaps better to say

instead that the propagation speed becomes more positive, meaning that the u = 1 state

is more readily displacing the u = 0 state. Upon increasing the value of θ (not pictured),

we find that the propagation speed again decreases, as in the monostable case.

Of particular interest is the case c = 0 . Here (2.30) implies s = 1/α, so that

h0(s) =

√
1 +

2

α
, µ0 =

α

2

√1 +
2

α
− 1

αθ
−

√√√√(√1 +
2

α
− 1

αθ

)2

+
4

α

1− θ
θ

 ,
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and, after some manipulations,

(2.60) |A|cr =
(1− θ)2

θ2

1

2

√
1 +

2

α
− 1

2αθ
+

√√√√(1

2

√
1 +

2

α
− 1

2αθ

)2

+
1

α

1− θ
θ


−2

.

For all values of α, |A|cr(α) is greater than the critical value |A|cr(∞) in the local case,

since the last factor on the right-hand side of (2.60) is greater than one.

An interesting observation is that if c < 0 then for any α there is a range of c such that

λ1 and λ2 are complex (see Appendix A), so that there is no monotone wave in this case.

This is different from the solution of the local problem, which can have monotonic solutions

for any value of |A|. For the value α = 3, for example, this range is −4.2 < c < −1.25.

2.5.3. Nonlocal Equation with Asymmetric Kernel Φ

We now consider the nonlocal, bistable equation with the asymmetric kernel defined by

(2.15). We proceed as in the symmetric case and find a solution of the form (2.55), where

p1 = θ, q1 =
θµ0 − (θ − 1)λ2

λ1 − λ2
, q2 = θ − 1− q1

and

(2.61)
(θ − 1)λ2 − θµ0

(λ1 − α`)(λ2 − α`)
=

1− θ
λ2 − α`

+
1

α`
+

θ

µ0 − α`
,

which determines the speed c. When we reintroduce the parameter s, then

µ0(s) =
1

2s

h(s)− 1

α`θ
−

√(
h(s)− 1

α`θ

)2

+ 4s
1− θ
θ

 ,
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with

(2.62) |A|(s) = µ2
0(s) + cµ0(s).

This, along with the asymmetric parameterization (2.38a)-(2.38c) (which we can use since

the eigenvalues λ are again solutions of (2.36)), gives a parameterization for the propaga-

tion speed as a function of |A|.

We see this parameterization in Figure 2.8 for θ = 0.5, α` = 1, and a range of αr values.

In the monostable case, Section 2.4.3.2, we saw that as the extent of the nonlocality in

the positive x direction became diminished (as αr became larger), the minimum speed

for small A increased. We see in Figure 2.8 that the asymmetry has a similar effect

in the bistable case – as the extent of the nonlocality in the positive x direction became

diminished, the propagation speed became more positive and the u = 1 state more readily

displaced the u = 0 state. In fact, for fixed values of |A| and α`, changing αr can even

change the direction of propagation. Again we find that increasing the value of θ (not

pictured) decreases the propagation speed in all cases.

2.5.3.1. Effects of Asymmetry on Propagation Speed. We examine the effect of

the asymmetry on the propagation speed. To do this, we will consider the near-local limit,

α`, αr →∞.

We begin by seeking asymptotic expansions of the eigenvalues. From the near-local

results in Section 2.4.2.2, we expect to see one eigenvalue near λ1 ∼ α`, and the other

eigenvalue λ2 = O(1). In this asymmetric case, to find the first eigenvalue we take

λ1 = (1− ε)α`, ε� 1.
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Figure 2.8. Propagation speed in the bistable case as a function of |A|. Here
θ = 0.5. The dashed curve is the speed for the local problem. The solid
curves are the speed for nonlocal problem with α` = 1 and an increasing
range of αr values (left to right: 2−2 through 22). The dotted curve is the
symmetric case where αr = α` = 1 .

We insert these into (2.36) to get

ε(1− ε)α` [α`(1− ε) + c]

(
1 + (1− ε)α`

αr

)
= 1 .

Since ε� 1, at leading order we find that

ε ∼ αr
α`(α` + c)(α` + αr)

,

and the first eigenvalue is

(2.63) λ1 ∼ α`

(
1− αr

α`(α` + c)(α` + αr)

)
,
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uniformly in αr and c. In the symmetric case where α` = αr = α, (2.63) recovers the

expansion from Section 2.4.2.2. To find the O(1) root λ2, we take

α` =
1

ε̃
, ε̃� 1,

αr
α`

= O(1).

The asymptotic expansion for λ2 is then

(2.64) λ2 ∼ λ0 +
λ0

c+ 2λ0

(
αr − α`
α`αr

)
,

where λ0 is again the positive solution of

λ20 + cλ0 = 1, =⇒ λ0 = − c
2

+

√
c2

4
+ 1 .

Again we see that the symmetric case where α` = αr = α recovers the expansion from

Section 2.4.2.2. We now return to (2.61), which allowed us to solve for the propagation

speed c, and seek an asymptotic expansion for c. We again take

α` =
1

ε̃
, ε̃� 1,

αr
α`

= O(1),

and obtain

(2.65) c ∼ c0 +
αr − α`
αrα`

 (1− θ)
(√

4 + c20 − c0
)√

4|A|+ c20√
4 + c20

√
4|A|+ c20 + c0(θ − 1)

√
4|A|+ c20 + c0θ

√
4 + c20

 ,
where c0 is the propagation speed for the local case given by (2.53). It can be shown

that the expression in brackets is always positive, and so the correction to the local speed

c0 is proportional to (αr − α`). We see that as the region behind the front becomes

more local (α` increases) the propagation speed decreases, and as the region ahead of the
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front becomes more local (αr increases) the speed increases. This is surprising since we

had concluded in the symmetric case that increasing the extent of the nonlocality led to

increased speeds.

2.5.3.2. Hump Conditions. We begin with the conditions for a single ‘hump’, the

same as in the monostable case, described in (2.43), (2.44). Following the same analysis

as in the monostable case, we arrive at the condition

q2 =
(1− θ)λ1 + θµ0

λ2 − λ1
> 0 .

In order for a hump solution to exist, we require that λ1, λ2 are real, and take λ2 < λ1.

Hence the condition reduces to

µ0 < −
1− θ
θ

λ1.

We use (2.52) to obtain

(2.66) |A|(s) = µ2
0(s) + cµ0(s).

This gives us the parametric dependence for the boundary as (2.38a)-(2.38c) along with

(2.67) λ1 =
1

2s

[
h+
√
h2 − 4s

]
, µ0 = −1− θ

θ
λ1, |A| = µ2

0(s) + cµ0(s).

We notice that all hump solutions will exist above this boundary in the (|A|, c) plane.

Along with this condition, there is the additional requirement that the speed must equal

the propagation speed described by (2.62), (2.38a)-(2.38c).
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We also note that it is necessary that the eigenvalues be real. To find the range of

|A| values corresponding to real eigenvalues for fixed values of α`, αr, and θ, we use the

boundary for complex eigenvalues described by (2.39a)-(2.39b), and solve for s. We can

do this numerically, and then use (2.62) to find the bounds on |A|.

Figure 2.9. A typical graph showing the regions of existence of different
solution types for the bistable case. Monotonic solutions exist below the
dashed curved and outside the dotted lines, solutions with exponentially
decaying oscillatory tails exist between the dotted lines, and hump solutions
exist above the dashed curve and outside the dotted lines. All solutions lie
on the solid curve, and so a solution type will only be observed if the solid
curve enters the corresponding region. This figure shows the specific case
where θ = 0.5 and α` = αr = 5. Altering the values of θ, α`, and αr
will move the solid curve as well as shift the different regions, but does not
qualitatively change the figure – except for the case of sufficiently small
α` which pushes the left dotted line beyond the |A| = 0 axis, disallowing
monotonic solutions entirely. The solid solution curve never entered the
regions labeled (Not Observed) for any range of parameters θ, α`, and αr
that were considered. This means that, for example, right traveling hump
solutions for smaller values of |A| were never actually observed.

Figure 2.9 shows an example of the regions of existence of the different solutions in the

bistable case. While this figure only shows one choice of parameters θ, α`, and αr, altering

these values does not qualitatively change the figure – except for the case of sufficiently
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small α` which pushes the left dotted line beyond the |A| = 0 axis, disallowing monotonic

solutions entirely.

We make several observations from Figure 2.9 (along with the graphs from varying the

values of θ, α`, and αr that are not pictured here): (i) It seems that there is a critical value

of |A|, obtained from the upper bound for complex eigenvalues (the right-most vertical

line), above which there appears to always be a hump solution. (ii) We see that there are

no hump solutions below this critical value of |A|. (iii) We see that hump solutions can

only occur for negative propagation speeds. (iv) Even in the case of strong asymmetry,

which we noted previously can change the direction of propagation of the front, we see

only negative propagation speeds for hump solutions. (v) θ no longer needs to be close to

1, as it did in the monostable case, for hump solutions to exist.

In summary, we saw a number of different possible behaviors of the traveling waves for

the bistable problem. Figure 2.9 includes most of these possible solutions. For very small

values of |A|, the solution is a right-propagating, monotonic wave. For slightly larger

values of |A|, there is a left-propagating, monotonic wave. There are left-propagating

waves with exponentially decaying oscillatory tails for intermediate values of |A|, and

left-propagating waves with humps for very large values of |A|. Not pictured in Figure 2.9

are the right-propagating waves with an exponentially decaying oscillatory tail for small

values of |A| that can occur when α` is sufficiently small. The only type of solution we

never found for the bistable problem is a right-propagating wave with a hump.
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2.6. Model Validation

We have validated the results of this chapter by numerically solving the time depen-

dent problem (2.1) with the piecewise linear source term (2.13). We imposed no other

assumptions on the model, and examined the behavior of the wavefront. To compare

these numerical solutions to the results in this chapter, we defined our moving frame’s

x = 0 to be the location z∗ > 0 where u(z∗) = θ, interpolating between collocation points

where necessary. By tracking the location of z∗ over time, we were able to compute the

speed c of the traveling waves.

• We first note that for the time dependent problem, we saw that the solutions

adhered to Assumption 2, that u(x) < θ for x > 0 and u(x) > θ for x < 0,

despite this assumption not being imposed, validating our use of this assumption

throughout the chapter.

• For several fixed values of α`, αr, and θ, and a range of A values, we verified

the minimum speed in the monostable case from Section 2.4.3.2, noting that the

traveling waves always propagated at the minimum speed.

• We verified, for a range of α` values, the boundary between real and complex λ

from Section 2.4.3.1.

• We then fixed θ = 0.99 and considered several sets of parameters α`, αr, and A

for which we expected hump solutions based on the results of Section 2.4.3.3. We

verified the existence of the hump solutions as well as the location and size of the

hump.
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• We then considered the bistable case, where we chose a range of α`, αr, and

A < 0 values and found the propagation speed, allowing us to verify the results

of Section 2.5.3.

• Lastly, we considered several sets of parameters for which we expected a hump

solution in the bistable case, based on the results of Section 2.5.3.2. We were

again able to verify the existence of the hump solutions along with the location

and size of the humps.

2.7. Conclusion and Summary

We have considered a piecewise linear reaction-diffusion model for population growth,

and examined the possibility of traveling wave solutions. We looked at both the monos-

table version of the problem where the u = 0 extinction state is unstable, and the bistable

version of the problem where the extinction state becomes stable – which models the

Allee Effect. In both versions of the problem, we looked at the propagation speed of the

traveling waves as well as their monotonicity. We examined how the local net birth rate

(A), the extent of the nonlocality (α), and the strength of the asymmetry (α`, and αr)

affected the speed and shape of the waves.

Monostable Case

• For the monostable version of the problem, we found that there are traveling wave

solutions for any wave speed greater than some minimum speed cmin. When A

was larger than some critical value we saw that cmin = cKPP. But when A fell

below this critical value, cmin > cKPP for both the local and nonlocal problems.
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• The asymmetric problem showed that as the positive x direction – the direction

of propagation for the monostable case – became more local, cmin increased.

• We looked at the near-local, large α limit and were able to recover the local

solution with a small correction. This meant that as α increased, i.e., as the

extent of the nonlocality decreased, we had monotonic waves as in the local

problem.

• We found that as α decreased, we would lose this monotonicity and instead would

see exponentially decaying oscillatory tails for the x < 0 region.

• We saw a third wave-shape in the hump solution, which became possible when

θ was very close to 1, and we found the region of existence in parameter space

for these hump solutions. We saw that as the positive x direction became more

local, the parameter range giving these hump solutions increased.

Bistable Case

• For the bistable version of the problem, we saw that the propagation speed for

a given set of parameters was uniquely determined, and that it could take on

negative values when the local net birth rate, A, became sufficiently negative.

• We saw that increasing the extent of the nonlocality in the symmetric case led to

a more positive propagation speed – meaning that the u = 1 state would more

readily displace the u = 0 state.

• We also found that diminishing the extent of the nonlocality in the positive x

direction in the asymmetric case also led to a more positive propagation speed.

Diminishing the extent of the nonlocality in the negative x direction led to a

more negative propagation speed.
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• When we looked at the shape of the traveling wave solutions for the bistable

version, we saw a wide variety of possibilities:

– For small values of |A| there could be both left-traveling and right-traveling

monotonic waves.

– For small to intermediate values of |A|, there could be both left-traveling

and right-traveling waves with exponentially decaying oscillatory tails.

– For sufficiently large values of |A|, we saw only left-traveling waves with

humps – even when θ was not close to 1, as was required for humps in the

monostable case.

• Monotonicity in the bistable case was lost for all but small local net birth rates.



61

CHAPTER 3

Ratio-Dependent Predation

We now turn our attention to the second project included in this work, which is

centered on a three species foodchain system. The paper resulting from this project is

presented in Chapter 4. The foodchain in question is composed of species u, v, and w,

where the species u is at the bottom of the foodchain and is preyed upon by species v,

which in turn is preyed upon by species w. This gives two predator-prey pairs: w− v and

v−u. In this chapter, we discuss how these predator-prey interaction enter the equations

governing the system and how those so called functional responses may be derived, as well

as address the controversy surrounding the particular ratio-dependent responses used in

the project and their relation to nonlocality.

3.1. Functional Responses to Predation

The terms governing the response of a predator-prey system to a predation event

between the two species are referred to as the numerical response, and depend on the

predator and prey densities. The most common form of a numerical response is one that

depends on the predator density multiplied by what is called the functional response, a

function of both predator and prey densities that represents the rate at which an individual

predator consumes prey, i.e., letting u be the prey density and v the predator density,
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then

(3.1) n(u, v) = v f(u, v),

where n is the numerical response and f is the functional response.

It is often assumed, for what are call prey-dependent responses, that the functional

response depends solely on the density of the prey species. The most common of these is

the Holling type II response

(3.2) f(u, v) = h(u) =
au

u+ b
,

where a and b are parameters depending on the predator-prey encounter rate and handling

time per prey item.

In [25], Arditi and Ginzburg put forward the idea that the function response should

depend on the ratio of the prey to the predator, rather than just on the prey species alone.

Applying this idea to the Holling (II) response gave the typical ratio-dependent response

that we use in Chapter 4,

(3.3) f(u, v) = h(u/v) =
au/v

u/v + b
=

au

u+ bv
.

This form of functional response has proven to be controversial, however, and so we discuss

a potential derivation in Section 3.2, and address the controversy directly in Section 3.3.

3.2. Derivation of Functional Responses

Here we provide a brief discussion of how different functional responses can be ob-

tained from different predator or prey behaviors. We note that these described behaviors
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are not an exhaustive list of potential mechanisms that produce the related functional

responses, but rather are fairly general, plausible mechanisms that can shed light on both

the controversy of ratio-dependent predation and its relation to nonlocality. More detailed

derivations are presented in [26]. We first rely on [27], which gives a general form for the

functional response

(3.4) f(u, v) =
CE/v

1 + hCE/v
.

The parameters here are:

• u = prey density

• v = predator density

• C = fraction of a prey item killed per predator per encounter

• h = handling time per prey item

• E = total encounter rate between predators and prey per unit time.

The parameter C becomes relevant when multiple predators share in the consumption of

a single prey item, with C = 1 if no sharing occurs.

The key difference between the derivation for the Holling type II response and the

ratio-dependent response is the spatial organization of the predators or prey, which in

turn affects the encounter rate E. If both the prey and predator densities are assumed

to be uniform, at least on a spatial scale smaller than that over which diffusion occurs,

the law of mass action would give an encounter rate E = e0uv, for some constant e0. In

this case, (3.4) gives the standard Holling type II response. This response could also be

obtained if, for example, the prey were uniformly distributed and the predators hunted

in a line, without aggregation upon encountering prey.
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Meanwhile, in [26], two mechanisms are described that give rise to the ratio-dependent

response. The first of these occurs when prey are uniformly distributed while predators

hunt in tight packs, idealized as a point mass. In this case, the encounter rate would

depend only on the prey density, E = e1N , since the addition of more predators would

not change the encounter rate, and this gives the ratio-dependent response. The second

mechanism occurs when predators are uniformly distributed while the prey are in point

mass clusters which are also uniformly distributed. This would result in the typical

mass action encounter rate E = e0uv. Two additional assumptions are considered: that

predators share the encountered clusters, so C = C0/v, and that the handling time h is

constant no matter how many predators share a cluster, which could result from predator

interference. Combined, these assumptions again give the ratio-dependent response.

The behaviors described above that gave rise to the Holling type II response or the

ratio-dependent response are clearly idealized behaviors, and both of these responses

can be viewed as limiting cases of more realistic behaviors. If some of the assumptions

that gave these responses are relaxed, the derivations break down and more complicated,

though also more realistic, functional responses are obtained, such as the Hassel-Varley

[28] or DeAngelis [29] type. For example, if the predators hunt in loose packs and are

neither uniformly distributed nor in point mass groups, the Hassel-Varley type response

is obtained instead of either the Holling type II or ratio-dependent responses.

3.3. Controversy Surrounding Ratio-Dependent Responses

There has been a lot of controversy surrounding the use of ratio-dependent models

over the last few decades. Here we will present a brief overview of the arguments for and
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against their use in general. A thorough summary of the controversy can be found in [30],

while a more detailed history can be found in [31].

In their 1989 article [25], Arditi and Ginzburg first introduced the ratio-dependent

functional response. Following this, in a series of papers in the early 1990s, Arditi et.

al. performed experiments and cited field studies that they argued supported this idea

of ratio-dependence [32–34]. This prompted a response by Abrams in 1994 [35], that

lead to a back and forth between the two groups in the 1990s [35–37], which ultimately

culminated in the 2000 collaboration summarizing the dispute [30]. This paper concluded

that the current field studies and experiments were simply not enough to properly identify

under what conditions each response would work best. Even in 2015 Abrams claimed that

more studies needed to be done [31], though we note that a more recent experimental

study found yet more evidence supporting the ratio-dependent response [38].

An original argument put forward in [25], and cited often in the following papers,

is the idea that the functional response should be viewed on the reproductive timescale

rather than on the much smaller timescale of individual predation events. Instead of

viewing the functional response as the result of random encounters between prey and

predators, the argument is that the functional response should in some way reflect changes

in both predator and prey abundances on the reproductive timescale. Specifically, that

the consumption rate should be a function of prey abundance per capita, and so yield the

ratio-dependent response. This argument has proven contentious, with detractors arguing

that differential equations model the instantaneous rate of change of the populations, and

so the shorter behavioral timescale should be used [35], while supporters respond that the
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shortest timescale over which population changes can be modeled on is the much slower

reproductive timescale [36].

Arguments against ratio-dependent models tend to focus on the underlying assump-

tions, and specifically, on when these assumptions break down. A key assumption for

ratio-dependent functional response is that predators interfere with each other and end

up sharing the prey when averaged over the reproductive timescale [35, 36]. It is this

interference and prey sharing that gives rise to the ratio-dependent response, and so this

response breaks down when interference is not present in the system. When predator

densities fall far enough these key assumptions break down. The biological explanation is

that interference cannot occur if predators are separated by sufficiently great distances,

as would happen when predator densities are sufficiently low.

On the other hand, the arguments for ratio-dependent models tend to point at ex-

perimentally observed phenomena that correspond to behaviors observed in models with

ratio-dependent responses, but that cannot occur in models with the more standard prey-

dependent responses. There are three main behaviors cited as justification for ratio-

dependent responses. The first two are related and are referred to as the paradoxes of

enrichment and biological control.

The paradox of enrichment focuses on how the populations at all trophic levels in a

foodchain respond to changes in the carrying capacity of the lowest prey species. Ratio-

dependent models predict that all levels respond proportionally to the change, while

prey-dependent models predict responses that differ based on the specific trophic level or

the number of total trophic levels. Supporters of ratio-dependent models [36, 39] argue

that the prey-dependent predictions are unrealistic and often cite [40] and [41] as the
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origin of this paradox of enrichment. Meanwhile, the paradox of biological control states

that prey-dependent models cannot have both a low and stable prey equilibrium. In

reality, there are examples of successful biological control where the prey were maintained

at densities of less that 2% of their carrying capacities [39,42,43].

Detractors of the ratio-dependent response argue that prey-dependent models can

correctly predict the response to enrichment in some cases: when there are multiple

species at each trophic level; when the form of the predator dependence in the numerical

response is altered while the functional response is kept prey-dependent; when the system

undergoes population fluctuations; or when there is a class of invulnerable, or at least less

edible, prey [30, 37]. Supporters of ratio-dependence argue that these fixes occur either

under very limiting assumptions, and the fact that the predictions change so drastically

based on the organization of the trophic levels make prey-dependent models much less

desirable [36].

The third behavior cited by supporters of the ratio-dependent response, and the most

relevant to the project presented in Chapter 4, is the complete system collapse, where both

the predator and prey species deterministically die off. This behavior has been observed

in experiments [44], and is correctly predicted by ratio-dependent models. It cannot,

however, occur in prey-dependent models. While this system collapse behavior might

be ‘pathological’ in the mathematical sense, it is realistic in the biological sense, which

tends to support the idea of ratio-dependence [36,39]. If viewed from a prey-dependent

approach, experiments that show system collapse are explained through stochastic effects

that kill off the populations when they reach low levels [45]. It is important to note

that system collapse can be problematic for ratio-dependent models because, as discussed
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earlier, these models break down when the predator populations become sufficiently small.

Although there is an argument to be made that once predator populations drop low enough

to cause this breakdown of the ratio-dependent assumptions, any continuous model would

be insufficient [36].

This system collapse behavior is particularly relevant for biological control, where a

predator species is introduced into an environment in an attempt to kill off a pest species.

In this situation, the optimal outcome would be the complete collapse of the system,

where both the predator and prey are driven to extinction. For the project in Chapter

4, we are concerned with the behavior of a three species foodchain comprised of species

u, v, and w. We consider biological control in this context, where u is a valuable crop

species, v is the pest, and w is the predator introduced to eliminate the pest. Completely

successful biological control in this context then would be the extinction of both species

v and w, i.e., the extinction of the w − v predator-prey pair. This can only occur if the

ratio-dependent, as opposed to prey-dependent, response is used.

Both the ratio-dependent and prey-dependent models suffer from a number of flaws.

The consensus is that both responses are idealized, limiting cases of more realistic models

[30]. Two responses that are considered more realistic throughout the cited literature are

the DeAngelis type response

g(u, v) =
au

b+ u+ cv
, p(u, v) =

auv

b+ u+ cv
,

from [29], and the Hassell-Varley type response

g(u, v) = g
( u

vm

)
,
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from [28]. We can see that in the DeAngelis type response, as parameter b→ 0, we arrive

at the ratio-dependent response, and as c → 0, we arrive at the prey-dependent Holling

(II) response. For the Hassell-Varley response, m → 0 corresponds to prey-dependent

and m → 1 corresponds to ratio-dependent. Once these models are introduced into the

argument, the discussion becomes more philosophical about the relative merits of prey-

dependent versus ratio-dependent models as useful, more tractable, simplifications [30],

and we note that the ratio-dependent response is more relevant when considering biological

control.

3.4. Ratio-Dependent Predation and Nonlocality

It is important to note that the discussion so far of the ratio-dependent responses

has been for ODE models without explicit spatial dependence, and that it was in this

context that this response was proposed and debated. At the same time, a number of

explanations for this ratio-dependence relied on the mobility of the species involved. It is

therefore necessary for us to consider the relationship between explicit spatial dependence

and nonlocality to justify its use.

We first address the question of considering an explicit spatial dependence by adding

diffusion to an ODE model with a ratio-dependent functional response (as we do to the

model from [39]). As noted above, spatial heterogeneity is often cited as a justification

for the use of ratio-dependent models. So it would be reasonable to question whether

they should be used when the model already incorporates explicit spatial dependence. To

answer this question, we note that the behaviors described in [26] are on the spatial scale

of individual or small groups of predators. Our introduced spatial dependence is on the
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much larger diffusive scale of the population as a whole. So we can argue that at each

‘location’ on the diffusive scale, the individual behaviors of the predators and prey can

still give rise to ratio-dependent responses.

To consider the relationship between nonlocality and ratio-dependent responses, we

turn to [46], which discusses the impact of predator density and the size of the predators’

‘home ranges’ on predator interference, and hence on the ratio-dependent nature of the

responses. They argue that even if predator densities are low, if the predators’ ‘home

ranges’ are large enough to overlap, then the predators will still likely interfere with each

other. So in the case of large ‘home ranges’, even low predator densities can see ratio-

dependent behaviors. A reasonable example of nonlocal behavior in predators is that

of large hunting grounds, i.e. where predators live at a specific location on relatively

small spatial scale, but are mobile enough to hunt over an area on the larger diffusive

spatial scale. This can lead to overlapping hunting grounds where predators that live at

different locations may still compete for the same prey. We can see then that this sort of

nonlocality corresponds to predator interference over large distances, and so can justify

the use of ratio-dependent responses for even low predator densities.
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CHAPTER 4

Biological Control with Nonlocal Interactions

In this chapter, we consider a three-species food chain model with ratio-dependent

predation, where species u is preyed upon by species v, which in turn is preyed upon

by species w. Our primary focus is on biological control, where the bottom species u is

an important crop, and v is a pest that has infested the crop. The superpredator w is

introduced into this pest-infested environment in an attempt to restore the system to a

pest-free state. We assume that the species can behave nonlocally, where individuals will

interact over a distance, and incorporate this nonlocality into the model. For this model,

we consider two types of nonlocality: one where the crop species u competes nonlocally

with itself, and the other where the superpredator w is assumed to be highly mobile and

therefore preys upon the pest v in a nonlocal fashion. We examine how biological control

can prove to be highly susceptible to noise, and can fail outright if the pest species is

highly diffusive. We show, however, that control can be restored if the superpredator is

sufficiently diffusive, and that robust partial control can occur if the superpredator behaves

nonlocally. Since the superpredator is generally introduced artificially, our results point

to properties of the superpredator which can lead to successful control.

4.1. Introduction

Biological invasions are currently regarded as a major threat to biodiversity and agri-

culture all over the world, often resulting in huge economic losses. Biological control aims
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to control or even prevent the invasion of a pest infesting a valuable species via the intro-

duction of a so-called superpredator which devours the pest but not the desirable species.

One such example is gypsy moth infestation of deciduous hardwood trees [47]. In this case

the role of the superpredator is played by a virus (Nuclear Polyhedrosis Virus or NPV)

which preys on gypsy moth larvae. Thus, at a minimum there are three species involved:

the valuable crop species, u, which is preyed upon by the pest, v, and the superpredator,

w, which preys on v but not on u. The interaction of u and v without the superpredator

would be a two-species predator-prey system. With the introduction of the superpredator

w, the pest species v becomes both prey (to w) and predator (to u). The three species u,

v, and w then form the components of a food chain model, where the variables u, v, and

w correspond to the biomass of their respective species.

In this chapter we develop a three-species model for biological control, accounting

for species mobility, i.e., diffusion, as well as nonlocal interactions between the different

species involved. Our focus will be on the invasion problem, whereby a superpredator

is introduced into a small interval inside of an already infested two species (crop and

pest) region so that an invasion wave of the superpredator aims to eliminate the pest

and restore the ecological system to one in which the valuable crop is fully or partially

recovered. We analyze this model both analytically and computationally, focusing on the

roles of nonlocality and diffusion in promoting robust biological control.

In Section 4.2, we introduce the food chain model considered in this chapter. We

discuss the incorporation of nonlocality in Section 4.2.1, our initial and boundary con-

ditions in Section 4.2.2, and the code we use for numerical simulation in Section 4.2.3.

Section 4.3 addresses the stability of the different equilibrium states for both the local
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and nonlocal problems. We obtain predictions for the propagation speeds of various fronts

and numerically validate these predictions in Section 4.4. In Section 4.5, we consider the

biological control problem directly and discuss the robustness of control. Specifically we

address how small truncation errors, small stochastic perturbations, and diffusion driven

effects can lead to a resurgence of the pest, as well as how a highly diffusive or highly

nonlocal superpredator can overcome these resurgences. Finally, we provide a summary

of our results in Section 4.6.

4.2. Model

A suitably nondimensionalized two-species predator-prey model without nonlocal in-

teractions can be written as

(4.1a) ut = uxx + u

(
1− u− a1v

u+ v

)
,

(4.1b) vt = µ2 vxx + v

(
−d1 +

m1u

u+ v

)
,

where a1, d1, m1 are kinetic constants and µ2 is the diffusion coefficient of species v,

all positive. Note that it is assumed that the population of the prey u can be sustained

in the absence of the predator v (the logistic term in (4.1a)), while the predator will die

out without sustenance from the prey (the linear term in (4.1b)).

The other nonlinear terms in the differential equations describe the interactions be-

tween the two species. The form of these terms is due to our choice of a ratio-dependent

functional response (specifically, the Arditi-Ginzburg type II response function [25]). Var-

ious other choices are also possible and have been extensively discussed in the literature.
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A comprehensive discussion of ratio-dependent response functions is given in [30,31]. We

note that a study fitting different response functions against observations in a freshwater

microcosm showed that our chosen function gave the best fit to observational data [38].

Upon introducing a superpredator w, assuming the same type of response function for

the w − v predation pair as for the v − u pair, we arrive at the model

(4.2a) ut = uxx + u

(
1− u− a1v

u+ v

)
,

(4.2b) vt = µ2 vxx + v

(
−d1 +

m1u

u+ v
− a2w

v + w

)
,

(4.2c) wt = µ3wxx + w

(
−d2 +

m2v

v + w

)
.

This system was introduced and studied in [39] as an ODE system (i.e., without any

spatial dependencies).

The system (4.2) only makes physical sense if the dependent variables u, v and w are

nonnegative. Furthermore, there is a singularity in the system when either or both of

the combinations (u, v) = (0, 0) or (v, w) = (0, 0) holds. This singularity is removable in

the sense that the terms uv/(u+ v) and vw/(v +w) can be continuously extended (from

the physical region u, v, w > 0) to be zero at these points. However, this extension is

not differentiable and is at the boundary of the physical region. This means that a con-

ventional linear stability analysis at these points cannot be performed. One might think

that a simple regularization, i.e., adding a small number ε to the denominators in (4.2),

would overcome this difficulty. It is easy to see, however, that such a regularization would

change the stability properties of the pest free state (u, v, w) = (1, 0, 0). Specifically, it
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forces this state to become unstable to an open set of perturbations. This is unacceptable

since the original model cannot then be obtained as a limit of this regularized system.

We next consider uniform equilibrium states of (4.2). We note that this system exhibits

the domino effect in that if one species becomes extinct, then all species higher up on

the food chain will also be extinct, and so we characterize the equilibria according to

the number of nonzero species. The zero-state, extinction equilibrium E0 is (u, v, w) =

(0, 0, 0). The one-state, pest free equilibrium E1 is (u, v, w) = (1, 0, 0), and we note that

for the purposes of biological control this is the desired state. A two-state, pest infested

equilibrium E2, (ū, v̄, 0) exists, where

(4.3) ū = 1− a1(1− η1), v̄ = ū
1− η1
η1

, η1 ≡
d1
m1

,

but is only physical in the restricted parameter region 0 < 1 − η1 < 1/a1. It is easy to

see that when physical, we will always have ū < 1 so that the presence of the pest, v̄,

reduces the population of the desirable species u. Similarly, a physical three-state, partial

restoration equilibrium E3, (uc, vc, wc), exists, where

(4.4) uc = 1− a1(1− A), vc = uc
1− A
A

, wc = vc
1− η2
η2

,

with

η2 ≡
d2
m2

, A ≡ η1 +
a2
m1

(1− η2),

but only in a restricted parameter regime 0 < η2 < 1 and 0 < 1−A < 1/a1. We call this

state the partial restoration state because it is always true that ū < uc < 1, and so the
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presence of species w in this E3 state allows for an increase in the population of the crop

u above its infested levels.

We refrain from calling E0 and E1 critical points because the system (4.2) is not dif-

ferentiable at these points, and indeed, a standard linear stability analysis about these

equilibria gives nonlinear equations. E2 and E3 are critical points as there are no singu-

larities at these points.

4.2.1. Nonlocality

It has long been recognized that competition and predation, as well as other species

interaction phenomena, are often nonlocal in either space or time. In this chapter we

focus on spatial nonlocality. Nonlocality results when terms in the equation (say at a

point x∗) are assumed to depend not on pointwise values of the population, but rather

on a weighted average of the population in a neighborhood of x∗. When the weighting

is independent of x∗, the result is a convolution integral against a specified nonnegative

kernel function describing the weighting. Thus, the nonlocality is modeled by a system of

integro-partial differential equations. Nonlocal competition effects have been extensively

studied for single, isolated populations described by scalar equations, e.g., [1,9,10,48–52].

Nonlocality for systems, mainly systems of competing populations, has also been studied,

e.g., [9, 53–56], primarily for pattern formation. Nonlocality for predator-prey systems

was studied in [57–60]. Nonlocality can introduce complex spatial and temporal patterns

which dramatically alter the nature of the solution, and, in particular, the biological and

ecological inferences drawn from the computed solution.
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In this chapter we consider two specific manifestations of nonlocality appropriate for

the three species model (4.2), while using a stepfunction kernel function

(4.5) ϕ(x) =


1
2δ
, |x| < δ,

0, |x| > δ,

throughout. The parameter δ controls the width of the kernel function, and thereby the

extent of the nonlocality. For the stability analyses presented in Section 4.3, we will need

the Fourier transform of this kernel, which is

(4.6) ϕ̂(k) =
sin(δk)

δk
.

C-type Nonlocality: What we will refer to as the C-type nonlocality arises when

the crop species u competes nonlocally with itself. This results in a convolution integral

appearing in the logistic term of the equation for species u, giving the system

(4.7a) ut = uxx + u

(
1− (ϕ ∗ u)− a1v

u+ v

)
,

(4.7b) vt = µ2 vxx + v

(
−d1 +

m1u

u+ v
− a2w

v + w

)
,

(4.7c) wt = µ3wxx + w

(
−d2 +

m2v

v + w

)
.

Here the convolution is given by

ϕ ∗ u =

∫ ∞
−∞

ϕ(y − x)u(y)dy.



78

This commonly considered C-type nonlocality is often explained as a mobile species u

competing for some scarce, vital resource, with this scarcity forcing the species to range

over a wide area. As individuals of the species will have overlapping ranges, this will

create competition between the individuals despite the fact that they actually reside in

different locales. If u is a plant species, then this type of nonlocality could arise due to,

for example, extensive root systems or a shared water table.

Pw-type Nonlocality: What we will refer to as the Pw-type nonlocality arises when

we consider a superpredator w which nonlocally preys upon the pest v, corresponding to

a superpredator with large hunting grounds. So we would expect that in this case, we

will have convolution integrals appearing in the w − v predation terms.

To see exactly how this type of nonlocality manifests itself in the food chain system, we

consider the origin of the ratio-dependent predation terms. The w− v predation terms in

equations (4.2b) and (4.2c) take the form n(v, w) ≡ wf(v, w), where n(v, w) is called the

numerical response, and f(v, w) is called the functional response, which describes the rate

at which a predator encounters its prey. The ratio-dependent terms in this chapter are so

called because the functional response depends on the ratio of the prey to the predator,

i.e., if we apply this ratio-dependence to the standard Holling II functional response we

obtain

f(v, w) =
v/w

v/w + 1
=

v

v + w
.

A species behaving nonlocally as predator or prey should then only affect the encounter

rate, i.e., the functional response. The numerical response, and hence the terms that

appear in the full system, should depend on the product of the local predator density
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with the nonlocal encounter rate. In this ratio-dependent context, a mobile species w will

give predation terms of the form

n(v, w) = w
v

v + ϕ ∗ w
.

This gives the Pw-type system

(4.8a) ut = uxx + u

(
1− u− a1v

u+ v

)
,

(4.8b) vt = µ2 vxx + v

(
−d1 +

m1u

u+ v
− a2w

v + ϕ ∗ w

)
,

(4.8c) wt = µ3wxx + w

(
−d2 +

m2v

v + ϕ ∗ w

)
.

Pv-type Nonlocalities: We mention that it is possible to consider a highly mobile

pest species v, which nonlocally preys upon the crop u and is nonlocally preyed upon

by the superpredator w. The analysis for this type of nonlocality can be performed by

following the same procedures as those presented for the Pw-type nonlocality, and suffers

from the same difficulties. We forgo this analysis since, aside from the potential for the

formation of cellular patterns, we have found that this nonlocality does not have a large

effect.

4.2.2. Invasion Waves – Initial and Boundary Conditions

In this chapter our primary interest is the invasion problem where the superpredator w

is introduced into a pest infested region of large extent, mathematically infinite. For

practical purposes, we numerically simulate the systems (4.2), (4.7), and (4.8) taking
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periodic boundary conditions, while ensuring that the spatial domain is large enough so

that the relevant parts of the simulation, specifically the wave fronts of interest, do not

come in contact with the periodic boundaries.

We consider two types of initial conditions. The first type corresponds to one equi-

librium state invading another with a linear connection between them initially. We set

~u = (u, v, w), and define the initial conditions

(4.9) ~u =


~s1, |x| < x1,

x−x1

x2−x1
(~s2 − ~s1) + ~s1, x1 < |x| < x2,

~s2, x2 < |x|,

where ~s1 and ~s2 are the two equilibrium states. The second type of initial condition

corresponds directly to the invasion problem of primary interest: a pulse of species w

introduced into a region inhabited by a given equilibrium state (s1, s2, s3). This type of

initial condition is then defined by

(4.10a) u = s1, v = s2,

(4.10b) w =


W, |x| < x1,
x−x1

x2−x1
(s3 −W ) +W, x1 < |x| < x2,

s3, x2 < |x|,

where W is the height of the initial pulse of w released into the environment.

Note that we do not explicitly impose symmetry about x = 0. We, however, consider

only symmetric initial conditions, and our numerical method will maintain symmetry in

the absence of asymmetric computer round-off errors. We use this later in Section 4.5.2

in order to characterize non-robust behavior.



81

4.2.3. Description of Code for Numerical Simulations

To numerically simulate the systems (4.2), (4.7), and (4.8), we used a Fourier pseudo-

spectral scheme with periodic boundary conditions and a semi-implicit predictor-corrector

temporal integration, as was used in [60]. For a typical simulation, we take initial condi-

tions (4.9) or (4.10) and consider a spatial domain of −1800 < x < 1800, with the initial

pulse located between 250 < x1, x2 < 1000 with a height of 0.001 < W < 0.1 (when

relevant), and take 32768 collocation points and a timestep between 10−3 and 10−4. We

examined finer and coarser resolutions in both space and time, and believe that our com-

putations are fully resolved in all cases except where indicated, as will be discussed in

Section 4.5.

The presence of singularities in (4.2), (4.7), and (4.8) can give rise to numerical in-

stabilities when both populations u and v are close to zero or when both v and w are

close to zero, as they are when the solution approaches the E0 or E1 state. We consider

two different methods of preventing these small denominator errors. We again note that

a more standard regularization, adding a small number ε to the denominators in (4.2),

(4.7), and (4.8), is not appropriate as it would change the stability of the E1 state.

Explicit Zero Denominator Checks: A problem that arises from the ratio-

dependent terms is that small errors can cause a population near zero to become negative.

In simulations, these errors were on the order of machine epsilon and proved to be almost

entirely inconsequential, but they could cause divide-by-zero errors if they ever allowed

u + v = 0 or v + w = 0. To deal with this possibility, we explicitly check if u + v = 0 or

v + w = 0, and set the respective ratio-dependent terms to zero if necessary.
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Numerical Cutoff: We also employed a numerical cutoff, applied at each timestep,

to attempt to prevent small errors near the E0 and E1 states. At the end of each timestep,

we check the value of each species at each location in space and set the respective popu-

lation to exactly zero if

|u|, |v|, |w| < cutoff.

We employ a cutoff value of 2× 10−15 in all simulations unless otherwise stated.

4.3. Stability

The four equilibrium states E0, E1, E2 and E3 are also equilibrium states of the

nonlocal models (4.7) and (4.8). An understanding of the stability of these states is

necessary for determining the feasibility of biological control for this model. In this

chapter we consider primarily E1, E2, and E3 since these are most relevant to biological

control, representing complete control, pest infestation, and partial control, respectively.

Specifically, we consider the case where E2 is stable in the uv-plane (when there are no

perturbations in w), while E1 or E3 is stable in the presence of species w. The stability

of E1 or E3 guarantees the potential for complete or partial biological control, while

the stability of E2 in the uv-plane is necessary for the pest infested state to actually be

observed. For some parameter sets, the E2 state can lose stability to a Hopf bifurcation

in the uv-plane, resulting in a stable limit cycle [39]. We do not consider these parameter

regimes as the limit cycle does not qualitatively affect the results presented below.

As there is no singularity for the E2 and E3 states, the linear stability of both can

be analyzed for the full spatially dependent nonlocal models using standard techniques,
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while the analysis for the E1 state requires other analytic methods due to the singularity.

In general the analysis is considerably more algebraically complicated than for two species

systems, rendering closed form expressions for the stability bounds impractical even when

obtainable. We instead outline an algorithmic procedure to determine these stability

bounds, and validate these procedures through numerical computation of the full nonlocal,

nonlinear problems (4.7) and (4.8).

4.3.1. Stability of E1 for the ODE Model

We first briefly consider the w-free problem (4.1). Suppressing the spatial dependence

and linearizing about the (u, v) = (1, 0) state gives the two eigenvalues λ1 = −1 and

λ2 = m1 − d1. Thus the E1 state is a saddle in the uv-plane if and only if m1 > d1. For

the E2 state to be physical, however, it must be that m1 > d1. Hence for all parameter

regimes relevant to biological control, i.e., when the pest infested E2 state is physical, the

E1 state is a saddle in the uv-plane. This will become important when we later consider

diffusion driven instabilities of the E1 state. We now turn to the full food chain model.

We start by discussing the stability of the E1 state for the ODE system, i.e., with

no spatial dependence. We will present two methods for determining conditions on the

stability of E1. The first method follows, and extends, the stability analysis presented

in [39]. We present the second method because it becomes necessary when we consider

nonlocality.

Method 1: Our first approach will be to follow the analysis in [39], introduce the

new variable R = v/w, and consider the (u, v, R) system,
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(4.11a) ut = u(1− u)− a1uv

u+ v
,

(4.11b) vt =
m1uv

u+ v
− d1v −

a2v

R + 1
,

(4.11c) Rt = R

[
m1u

u+ v
+ d2 − d1 −

a2 +m2R

R + 1

]
.

This system has two equilibrium points. The first point is (u, v, R) = (1, 0, 0), what

we will refer to as the R = 0 point, which corresponds to the case where v = o(w) as

t→∞. The second is (1, 0, R∗), where the constant R∗ is the solution to

(4.12) m1 − d1 + d2 =
a2 +m2R

∗

R∗ + 1
,

which corresponds to the case where v ∼ R∗w as t → ∞. Due to the domino effect in

this food chain, if either of these states is stable, then the fact that v → 0 will result in

w → 0, and so imply the stability of the E1 state.

We note that (4.11) is examined in [39], where it is concluded that the R = 0 point is

stable if and only if

(4.13) m1 + d2 < d1 + a2,

and that the (1, 0, R∗) point is stable if and only if

(4.14) (m2 − d2)a2 > (m1 − d1)m2, a2 < m1 − d1 + d2 < m2.

Thus if condition (4.13) holds, then the E1 state is stable with v = o(w) as t → ∞, and

if (4.14) holds, then the E1 state is stable with v ∼ R∗w as t→∞.



85

In [39] a third condition is found after introducing the transformation Q = u/v,

R = v/w, and considering the (Q, v,R) system. The condition is

m2 > d2, m1 < min{1 + d1, d1 + a2 − d2}.

Here we note that this condition is more restrictive than (4.13), because m1 +d2 < d1 +a2

is always true if m1 < min{1 + d1, d1 + a2 − d2}. Hence, in the v = o(w) regime, the

condition that m2 > d2 is not necessary for stability. Nor is the condition that m1 < 1+d1

when 1+d1 < d1+a2−d2, since m1 < d1+a2−d2 implies stability even when m1 > 1+d1.

The analysis in [39] does not consider the case where w = o(v) as t → ∞. This case

can be examined by considering the transformation Q = w/v and linearizing about the

Q = 0 critical state. Here we instead let

v ∼ e−αt, w ∼ e−βt, β > α.

This means that as t→∞,

u

u+ v
→ 1,

w

v + w
→ 0,

v

v + w
→ 1,

and so the equations for v and w are equivalent to

−α = m1 − d1, −β = m2 − d2.

When we require that

α, β > 0, β > α,
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we arrive at the condition

(4.15) d2 −m2 > d1 −m1 > 0.

If condition (4.15) holds, then the E1 state is stable with w = o(v) as t→∞.

We note that the three conditions (4.13), (4.14), and (4.15) are mutually exclusive.

Thus we can conclude that E1 is stable if any one of these conditions is satisfied, and the

specific condition that is satisfied determines the long time relative behavior of v and w.

Method 2: We perturb the full (u, v, w) system about the E1 state by considering

solutions where u is close to 1 while v and w are small. This can be written in the form

u ∼ 1 + εũ+O(ε2), v ∼ εṽ +O(ε2), w ∼ εw̃ +O(ε2),

where ε � 1. We substitute these expansions and keep only terms that are linear in ε.

This linear stability analysis gives the nonlinear equations

(4.16a) ũt = −ũ− a1ṽ,

(4.16b) ṽt = (m1 − d1)ṽ −
a2ṽw̃

ṽ + w̃
,

(4.16c) w̃t = −d2w̃ +
m2ṽw̃

ṽ + w̃
.

Note that (4.16b) and (4.16c) decouple from (4.16a), and so they can be considered

first. The system (4.16b), (4.16c) can be solved since it admits two first integrals. This

analysis is presented in Appendix D. The results agree with those from the first method.

Specifically, when v = o(w), we arrive at (4.13), and obtain the long time behavior of v
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and w as

(4.17) v ∼ e(m1−d1−a2)t, w ∼ e−d2t.

When v ∼ Cw (where C is a nonzero constant that will be exactly R∗ from (4.12)), we

arrive at (4.14), and obtain the long time behaviors

(4.18) v, w ∼ exp

(
(m2 − d2)a2 − (m1 − d1)m2

a2 −m2

t

)
.

When w = o(v), we arrive at (4.15), and obtain the long time behaviors

(4.19) v ∼ e(m1−d1)t, w ∼ e(m2−d2)t.

4.3.2. Stability of E1 for the Nonlocal Problems

We now extend the second method to examine the stability of the E1 state for the full

nonlocal problems. We consider perturbations of the form

u ∼ 1 + εũ(x, t), v ∼ εṽ(x, t), w ∼ εw̃(x, t), ε� 1.

For the local problem, this gives

(4.20a) ũt = ũxx − ũ− a1ṽ,

(4.20b) ṽt = µ2 ṽxx + (m1 − d1)ṽ −
a2ṽw̃

ṽ + w̃
,

(4.20c) w̃t = µ3 w̃xx − d2w̃ +
m2ṽw̃

ṽ + w̃
.
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We could now consider the standard ansatz that ũ, ṽ, w̃ ∼ eikx, and again follow the

second method from Section 4.3.1, but the results would not identify a critical condition

for stability in general. Since the evolution equations for the (ṽ, w̃) system are nonlinear,

we lose the principle of superposition, and so the analysis can only tell us about the

instability of the E1 state to a single, given value of k. If only a single value of k is

considered, however, then the ansatz that ṽ, w̃ ∼ eikx is nonphysical as it allows for

negative populations. Therefore this method does not allow for any analysis, and so we

will have to turn to numerics to discuss any diffusion driven instabilities of the E1 state.

This will be discussed further in Section 4.5.2.

C-type Nonlocality: The C-type nonlocal problem yields the evolution equation for

ũ

(4.21) ũt = ũxx − ϕ ∗ ũ− a1ṽ,

while the equations for ṽ and w̃ are given by (4.20b) and (4.20c) respectively. The equation

for ũ, (4.21), decouples from the other equations, and the nonlocality only affects this

equation. Since we are seeking to describe the instability due to the nonlocality, we will

make the assumption that the spatially uniform E1 state is stable for the local problem.

Then we can conclude that ṽ, w̃ → 0 for this C-type nonlocal problem as well. This

means that the only instability that can arise due to this type of nonlocality comes from

the linear equation for ũ. We can now make the ansatz that ũ ∼ eikx, and consider the

long time problem where ṽ, w̃ = 0. This gives us a linear equation

ũt = −(k2 + ϕ̂)ũ,
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where ϕ̂ is the Fourier transform of the kernel given by (4.6), and so the principal of

superposition allows us to determine the condition for stability

(4.22) ϕ̂ > −k2 =⇒ sin(δk)

δk
> −k2.

This is the condition for stability from the nonlocal Fisher’s equation [50]. We now

introduce a new variable β = δk so that the critical condition for stability is

sin(β)

β
=
−β2

δ2
.

Solving then for the critical value of δ gives us

(4.23) δc =

√
−β3

c

sin(βc)
,

where the critical δc, βc pair can be found by minimizing this expression with respect to

β, which gives δc ∼ 9.18.

Pw-type Nonlocalities: While the C-type nonlocality altered only the linear evolu-

tion equation (4.21) for the perturbation in u and allowed for an analysis, the Pw-type

nonlocality will alter the evolution equations for ṽ, (4.20b), and w̃, (4.20c). The altered

equations are still nonlinear, and so we again lose the principal of superposition, and must

turn to numerics. We will discuss instabilities due to this Pw-type nonlocality in Sections

4.5.2 and 4.5.3.
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4.3.3. Stability of E2 for the Nonlocal Problems

Here we examine the stability of the E2 state given by (4.3). We seek solutions of the

form

u ∼ ū+ εũeλteikx, v ∼ v̄ + εṽeλteikx, w ∼ εw̃eλteikx.

In the local case, we arrive at the Jacobian

(4.24) J2 =


−k2 + η1(1− ū)− ū −a1η21 0

(m1−d1)2

m1
−η1(m1 − d1)− µ2k

2 −a2

0 0 m2 − d2 − µ3k
2

 .

Two of the eigenvalues of J2 are the same as those of the two species, w-free problem, while

the third eigenvalue is m2−d2−µ3k
2. This eigenvalue corresponds to the only eigenvector

with nonzero w component. For the C-type nonlocality, only the w-free problem is affected

by the nonlocality, and this third eigenvalue remains unchanged. So for this nonlocality,

we need only consider the two species problem (4.1) to look for cellular instabilities.

C-type Nonlocality: When we consider the C-type nonlocality, the Jacobian for the

w-free system becomes

(4.25) J̃2 =

−k2 + η1(1− ū)− ūϕ̂ −a1η21
(m1−d1)2

m1
−η1(m1 − d1)− µ2k

2

 .
Stability requires that the determinant of J̃2 be positive. This gives us the condition

(4.26)
sin(δk)

δk
>

a1
ūm1

(
η1(m1 − d1)µ2k

2

η1(m1 − d1) + µ2k2

)
− k2

ū
.
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We rewrite (4.26) using β = δk and D = 1/δ2 to obtain the critical condition

FC(β,D) = 0,

where

(4.27) FC(β,D) ≡

µ2β
4D2 +

[
η1(m1 − d1) + η1µ2(ū− 1) + µ2ū

sin(β)

β

]
β2D + η1(m1 − d1)ū

sin(β)

β
.

We seek the critical value for D such that there is exactly one value of β that gives

instability. This critical pair can be found in two ways, described in Appendix E.

We do not present the similar condition on the trace of J̃2 since there were no observed

oscillatory instabilities for the parameters considered in this chapter, and indeed, the

determinant condition proved to be more restrictive for all of those parameters.

Pw Nonlocality: For the Pw nonlocality, we must consider the full three species

system. However, we find that the Jacobian is unchanged from that of the local problem

(4.24), and so the Pw nonlocality does not affect the E2 state.

4.3.4. Stability of E3 for the Nonlocal Problems

We begin by examining the stability of the E3 state, given by (4.4), for the local problem.

Here we seek solutions of the form

u ∼ uc + εũeλteikx, v ∼ vc + εṽeλteikx,

w ∼ wc + εw̃eλteikx.
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From this expansion, we obtain the Jacobian

(4.28) J3 =


j11 j12 0

j21 j22 j23

0 j32 j33

 ,

where

(4.29a) j11 = 1− k2 − 2uc −
a1v

2
c

(uc + vc)2
,

(4.29b) j22 = −d1 − µ2k
2 +

m1u
2
c

(uc + vc)2
− a2w

2
c

(vc + wc)2
,

(4.29c) j33 = −d2 − µ3k
2 +

m2v
2
c

(vc + wc)2
,

(4.29d) j12 = − a1u
2
c

(uc + vc)2
, j21 =

m1v
2
c

(uc + vc)2
,

(4.29e) j23 = − a2v
2
c

(vc + wc)2
, j32 =

m2w
2
c

(vc + wc)2
.

We note that the eigenvalues λ of J3 satisfy the equation

(4.30) λ3 + A1λ
2 + A2λ+ A3 = 0,

where

(4.31a) A1 = −j11 − j22 − j33,

(4.31b) A2 = j22j33 + j11j22 + j11j33 − j12j21 − j23j32,
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(4.31c) A3 = j12j21j33 + j11j23j32 − j11j22j33.

From the Routh-Hurwitz criterion for stability, we have that E3 will be asymptotically

stable if and only if

(4.32) F ≡ A1 > 0, G ≡ A3 > 0, H ≡ A1A2 − A3 > 0.

C-type Nonlocality: For the C-type nonlocality, the Jacobian of the system lin-

earized about E3 is the same as (4.28), (4.29), except that now

(4.33) j11 = 1− k2 − (1 + ϕ̂)uc −
a1v

2
c

(uc + vc)2
.

We now consider the three conditions for stability from (4.32). We can again use the

variables β = δk and D = δ−2 to write these conditions as functions of D and β. The

critical D and β values can then be found following the procedure described in Appendix

F.

Pw-type Nonlocality: Here we again follow the same analysis as for the C-type

nonlocality. The Jacobian is the same as (4.28), (4.29), except that now

(4.34a) j23 = − a2v
2
c

(vc + wc)2
− a2vcwc(1− ϕ̂)

(vc + wc)2
,

(4.34b) j33 = −d2 − µ3k
2 +

m2v
2
c

(vc + wc)2
+
a2vcwc(1− ϕ̂)

(vc + wc)2
.
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The critical conditions (4.32) are again either linear or cubic in D, and so finding the

critical Dc and βc pair employs the same method as before.

4.3.5. Numerical Validation

To validate these procedures for finding the critical value of δ, we will present results for

two different sets of parameters. The first set is

(4.35) a1 = 0.9, m1 = 1.0, d1 = 0.9, a2 = 2.0, m2 = 1.1, d2 = 1.0.

This parameter set was chosen because it ensures that E2 is stable in the uv-plane, while

E1 is stable in the presence of the superpredator w, i.e., it corresponds to a situation

where we would expect to see complete biological control from the introduction of the

superpredator. For this parameter set, the E3 state is nonphysical.

The second parameter set gives a stable E3 state in the presence of species w, corre-

sponding to partial biological control. This parameter set is

(4.36) a1 = 0.5, m1 = 1.5, d1 = 1.0, a2 = 0.5, m2 = 2.0, d2 = 1.0.

Along with these parameter sets, we will take the diffusivities to be µ2 = µ3 = 1.

Table 4.1 gives the predicted critical δ values and the range over which the critical

transition was observed in numerical simulations. For the C-type nonlocality, the observed

transitions were sharp and showed agreement with the predicted values, validating our

procedures for all three states E1, E2, and E3.

For the Pw case presented in Table 4.1, the observed transition also shows agreement

with the analysis. The range of δ values considered for this transition is much larger
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(though still roughly ±10% of the critical value). This was because taking a value of δ

below, but close to the critical threshold would lead to the formation of transient cells that

ultimately decayed in time. For values of δ that were too close to the critical threshold,

the time required for these patterns to noticeably decay, along with a necessarily restricted

timestep, made simulation impractical.

Finally we make an important observation about the procedures for determining δc we

have presented in this chapter: it is possible that the maximum value of D is not positive,

and so there is no critical δc, i.e., the given state is stable for all values of δ. This occurs

for the E2 state when considering the Pw-type nonlocality for both parameter sets (4.35)

and (4.36). In these cases, we considered values up to δ = 200 and did not observe the

formation of any cellular patterns, as the analysis predicts.

Parameters Nonlocality State δc Range
(4.35) C-type E1 9.18 9-10
(4.35) C-type E2 8.33 7.5-8.5
(4.36) C-type E1 9.18 9-10
(4.36) C-type E2 8.96 8.5-9.5
(4.36) C-type E3 8.84 8-9
(4.36) Pw-type E3 66.3 60-73

Table 4.1. Table of predicted critical δ values and numerically observed crit-
ical transitions. The column labeled range was obtained through numerical
simulation: the lower number is the largest value of δ considered for which
the given state was stable; the higher number is the smallest value of δ
considered for which cellular patterns formed and persisted.

4.4. Front Speeds

We obtain estimates of the speeds of the different fronts we have observed through

simulation. We follow an analysis similar to that presented in [60,61], where it is assumed
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that the fronts are pulled fronts, i.e., that the propagation of the front is determined by

the behavior of the system ahead of the front. We do this by considering the problem

linearized about the unstable state ahead of the front. It is important to note that these

results will not be correct when the fronts are not pulled. However, it appears that the

fronts of interest in this chapter are pulled fronts, and so the following gives accurate

predictions of the propagation speeds in all cases for which the analysis is applicable.

4.4.1. Analytic Predictions of Front Speeds

In this chapter we are primarily concerned with biological control, so that the fronts of

interest are

(1) The original invasion of the pest species v into a region inhabited only by the

crop species u, corresponding to the pest infested E2 state displacing the E1 state

with w ≡ 0.

(2) Partial control where a pulse of species w introduced into an infested region

restores some, but not all, of the crop u (since ū < uc < 1). This corresponds to

the partial restoration E3 state displacing the pest infested E2 state.

(3) Complete control where a pulse of species w introduced into an infested region

removes all of the pest v. This corresponds to the pest free E1 state displacing

the pest infested E2 state.

For the first of these fronts, the E1 state is the unstable state being displaced. For the

second and third fronts, the E2 state is the unstable state being displaced. Thus we

will linearize (4.2) about each of these two states using the methodology of [60, 61] to

determine the propagation speeds of the fronts that displace them.
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Propagation into the E1 State: We first note that the front we are primarily

concerned with, that propagates into the E1 state (front 1), only occurs when w ≡ 0. So

we can consider the w-free problem (4.1). We now linearize (4.1) about the (1, 0) state,

since there is now no singularity for the w-free problem, seeking solutions of the form

u ∼ 1 + εũe−K(x− Λ
K
t), v ∼ εṽe−K(x− Λ

K
t),

and noting that this would correspond to a front with propagation speed c = Λ/K. This

gives us two eigenvalues

Λ1 = K2 − 1, Λ2 = m1 − d1 + µ2K
2.

We note that the eigenvector corresponding to Λ1 has a zero v component, and so only

Λ2 is relevant for this case where the E2 state displaces the E1 state. When we consider

Λ2, we see that the propagation speed is given by

c =
Λ2

K
=
m1 − d1
K

+ µ2K.

We can then minimize this speed with respect to K to obtain an expression for the minimal

speed, which is the expected speed of propagation after the initial conditions evolve into

the propagating front [61]. This minimal speed is given by

(4.37) cmin = 2
√
µ2(m1 − d1).

Propagation into the E2 State: Here we must consider the full system linearized

about the unstable E2 state. There is again no singularity, so we seek solutions of the
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form

u ∼ ū+ εũe−K(x− Λ
K
t), v ∼ v̄ + εṽe−K(x− Λ

K
t),

w ∼ εw̃e−K(x− Λ
K
t),

which corresponds to a front with propagation speed c = Λ/K. We obtain the Jacobian

(4.38) Ĵ2 =


η1(1− ū)− ū+K2 −a1d2

1

m2
1

0

(m1−d1)2

m1
−η1(m1 − d1) + µ2K

2 −a2

0 0 m2 − d2 + µ3K
2

 .

We now observe that two of the eigenvalues of Ĵ2 come from the w-free problem linearized

about the (ū, v̄) state. As we are concerned with scenarios where this state is stable in

the absence of species w, both of these eigenvalues will be negative. Therefore the only

positive eigenvalue to consider is given by

Λ3 = m2 − d2 + µ3K
2,

which gives the speed

c =
Λ3

K
=
m2 − d2
K

+ µ3K,

and the minimal speed is then given by

(4.39) cmin = 2
√
µ3(m2 − d2).



99

4.4.2. Numerical Validation of Front Speeds

To validate our front speed predictions, we will consider parameter sets (4.35) and (4.36),

along with a third set

(4.40) a1 = 0.9, m1 = 1.0, d1 = 0.9, a2 = 1.2, m2 = 1.1, d2 = 1.0.

The stability of the equilibrium states in the ODE system is the same for both parameter

sets (4.35) and (4.40), i.e., E2 is stable in the uv-plane, while E1 is stable in the presence

of w.

We consider these parameter sets along with several values for the diffusivities and

compare the observed front speeds with the analytically predicted speeds (4.37) and (4.39)

in Tables 4.2, 4.3, 4.4, and 4.5.

Table 4.2 shows speeds for fronts of type 1, representing the original pest infestation of

the pest free state, i.e., fronts where the E2 state displaces the E1 state and the predicted

speed is given by (4.37). For these fronts, we take the initial condition (4.9) with E2

and E1 as the equilibrium states ~s1 and ~s2 respectively. We note that all of the observed

speeds agree well with the analytical predictions.

Table 4.3 shows front speeds for parameter set (4.36), where the partial restoration

E3 state is asymptotically stable. Here we consider partial control fronts of type 2,

where the partial restoration E3 state displaces the pest infested E2 state after a pulse

of the superpredator w is introduced into a pest infested region, corresponding to initial

condition (4.10) where E2 is the invaded uniform state (s1, s2, s3). For these cases, the

predicted speed (4.39) and the observed speeds also agree well.
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µ2 µ3 Parameters Predicted Observed
1 1 (4.35) 0.6325 0.6251
1 1 (4.40) 0.6325 0.6251
1 4 (4.35) 0.6325 0.6251
1 4 (4.40) 0.6325 0.6251

1/4 1 (4.35) 0.3162 0.3131
1/4 1 (4.40) 0.3162 0.3131
1 1/4 (4.35) 0.6325 0.6317
1 1/4 (4.40) 0.6325 0.6306
4 1 (4.35) 1.2649 1.2635
4 1 (4.40) 1.2649 1.2613

Table 4.2. Table of front propagation speeds for the original pest infestation
of the pest free state.

µ2 µ3 Parameters Predicted Observed
1 1 (4.36) 2 1.9776
1 4 (4.36) 4 3.9552

1/4 1 (4.36) 2 1.9776
1 1/4 (4.36) 1 0.9888
4 1 (4.36) 2 1.9776

Table 4.3. Table of front propagation speeds for the partial control of an
infestation, where the partial restoration E3 state displaces the pest infested
state E2 state.

Table 4.4 again shows front speeds for parameter set (4.36), taking the same parameter

values as in Table 4.3, but with a different initial condition. For these cases, we consider

an initial condition given by (4.9) where the invading state ~s1 is the partial restoration

E3 state, and the displaced state ~s2 is the pest free state E1. This represents a kind of

infestation where the pest is accompanied by the superpredator as it invades. With this

initial setup, we observed two different behaviors.

The first behavior observed, corresponding to the single starred entries in Table 4.4,

was where a front formed between the E3 state and the E1 state. For this behavior,

the observed speeds were quite different from the speeds given by (4.37). This does not,
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µ2 µ3 Parameters Predicted Observed
1 1 (4.36) 1.4142 1.1470∗

1 4 (4.36) 1.4142 0.8262∗

1/4 1 (4.36) 0.7071 0.4131∗

1 1/4 (4.36) 1.4142 1.4019∗∗

4 1 (4.36) 2.8284 2.8038∗∗

Table 4.4. Table of front propagation speeds involving invasion fronts that
result when E3 is initially set to invade the E1 state. The single starred
entries are the cases where the speeds do not agree, and correspond to the
cases where E3 directly displaces E1. The double starred entries are the
cases where the initial front splits, and the speeds recorded are for the pest
invasion where E2 displaces E1.

however, represent a failure of the analysis presented in Section 4.4.1, but rather it reflects

the fact that this analysis is not applicable in these cases. We obtained the predicted speed

(4.37) by considering the instability of the E1 state in the uv-plane, i.e. for the w-free

problem. Thus this analysis can only be applied in the absence of species w. Any invasion

involving the E3 state, however, must involve species w, thereby rendering the analysis

inapplicable for these cases.

The second behavior observed, corresponding to the double starred entries in Table

4.4, was where the initial ‘front’ connecting E3 to E1 split, with the E2 state forming

between the two states. This behavior can be seen in Figure 4.1. Once the E2 state has

formed, we can see two distinct fronts: the E3 state displacing the E2 state on the left,

which follows the E2 state displacing the E1 state on the right. We calculated the observed

speeds for each of these fronts separately. The rightmost fronts, where E2 displaces E1

are recorded in of Table 4.4, and show good agreement with the predicted speeds for

these cases, given by (4.37). We note that the leftmost fronts, where E3 displaces E2,

correspond to the fronts considered at the bottom of Table 4.3, and gave nearly the same
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(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w
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(d) Profile of the Split Fronts

Figure 4.1. Typical splitting behavior of the ‘front’ connecting the E3 state
to the E1 state. We can see that the E2 state forms between the original
two states. Here we use the parameters (4.36) with µ2 = 4 and µ3 = 1.

observed speeds. This splitting behavior only occurred when the speed at which the E2

state displaced the E1 state was larger than the speed at which the E3 state displaced the

E2 state, i.e. when the speed (4.37) was larger than (4.39).

Table 4.5 shows the speeds for control fronts of type 3 where a pulse of the superpreda-

tor w is introduced into a pest infested region, corresponding to initial condition (4.10)

where E2 is the invaded uniform state (s1, s2, s3). This creates a front where the pest free

E1 state displaces the E2 state. In this case, the predicted speed is given by (4.39). We

note that again all of the observed speeds agree well with the analytical predictions. The

final four cases considered in Table 4.5 produced a resurgent behavior in the pest species

v, where the pest infested E2 state would reemerge behind the control front, as discussed

in Section 4.5.



103

µ2 µ3 Parameters Predicted Observed
1 1 (4.35) 0.6325 0.6229
1 1 (4.40) 0.6325 0.6229
1 4 (4.35) 1.2649 1.2470
1 4 (4.40) 1.2649 1.2459

1/4 1 (4.35) 0.6325 0.6229
1/4 1 (4.40) 0.6325 0.6251
1 1/4 (4.35) 0.3162 0.3208
1 1/4 (4.40) 0.3162 0.3153
4 1 (4.35) 0.6325 0.6504
4 1 (4.40) 0.6325 0.6339

Table 4.5. Table of front propagation speeds for the control fronts. The
final four entries correspond to parameter values that saw deterministic
resurgences of the pest v.

4.5. Robustness of Control

We describe simulations using parameter sets (4.35) and (4.40). For these parameters,

the E1 state is stable for the ODE model, and so we might expect that in this case

complete biological control is the result expected from introducing the superpredator w

into a pest infested region. In numerical simulations, we do observe control fronts where

an introduction of species w completely removes the pest v, as discussed in Section 4.5.1.

We find, however, that this is not always the case.

Recall that when the pest infested state E2 is physical, the E1 state is necessarily a

saddle in the uv-plane for the w-free, two species problem (4.1). This means that small

perturbations in v, that maintain w ≡ 0, can send the system back to the E2 state

even after biological control has been achieved. We have observed numerous simulations

where control failed due to this resurgent behavior of the pest v, and we have identified

several triggering mechanisms for these resurgences. It is important to note that even

small computer round-off errors can act as a triggering mechanism, as they can lead
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to perturbations in v. We will refer to the resurgences resulting from these errors as

‘nondeterministic,’ but we note here that the resurgent behavior itself is deterministic

and it is instead the triggering mechanism that is not robust. We will discuss these

truncation errors along with the other triggering mechanisms further in Section 4.5.2.

We were also able to identify two restorative mechanisms that can counteract these

triggers and result in robust control. These mechanisms are related solely to traits of

species w, and so are especially appealing since the superpredator is generally artificially

introduced. The first of these restorative mechanisms is a high diffusivity of species w

relative to species v, counteracting directly the trigger caused by the diffusion of the pest

v, which we will discuss further when we examine this type of triggering mechanism in

Section 4.5.2. The second of these restorative mechanisms is the nonlocal behavior of w

when it is of large enough extent. This leads to what we consider the most robust type

of control, where propagating cells of species w eliminate the pest as if the superpredator

were being periodically reintroduced. We discuss this further in Section 4.5.3.

4.5.1. Complete Biological Control

We first present examples of control fronts, where a pulse of species w introduced into a

pest infested region restores the system to the pest free state. For these examples, we use

the parameter set (4.35) and set µ2 = µ3 = 1. This type of front for the local problem can

be seen in Figure 4.2, where we see a front in u that connects u = 1 to u = ū, a front in

v that connects v = 0 to v = v̄, and a traveling pulse of species w that exists only around

the front.
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(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w
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(d) Profile of Control Front

Figure 4.2. Typical behavior of the E1 state displacing the E2 state for the
local problem. Figure 4.2d provides a closer view of the structure of the
front at a fixed time.

The behavior of the controlling front with the C-type nonlocality is shown in Figure

4.3. By taking δ = 10, we have exceeded the critical threshold for cellular instabilities

in both the pest free (δ ∼ 9.18) and pest infested (δ ∼ 8.33) states. This leads to the

formation of cells in each region. We note that for species u, the cells in the pest infested

region have different amplitude and period than those in the pest free region.

4.5.2. Triggering Mechanisms of Resurgence

Here we discuss several triggering mechanisms of the resurgent behavior in v. We empha-

size two important points about these triggers. First, while a specific triggering mechanism

(such as round-off error) may itself be non-robust, once the triggering has occurred, the



106

(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w
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(d) Profile of Cellular Patterns and Front

Figure 4.3. Typical behavior of the E1 state displacing the E2 state with
the C-type nonlocality, and with δ = 10. Figure 4.3d shows a closer view of
the cellular patterns in u that form in both the pest free and pest infested
regions.

resulting resurgence is deterministic and robust to changes in spatial or temporal resolu-

tions, i.e., is stable under grid refinement. Second, these triggering mechanisms are not

mutually exclusive, and it is not only possible, but is in fact common, for multiple triggers

to occur in a single simulation. In particular, resurgences caused by round-off errors occur

in almost every simulation if run for a sufficiently long time, with the only exception being

cases where the Pw-type nonlocality is considered with a sufficiently large δ (see Section

4.5.3).

Round-off Errors and Stochasticity: Due to the presence of singularities in the

systems (4.2), (4.7), and (4.8), the E1 state is particularly prone to small errors in species

v and w as their populations approach zero. We observed in many simulations involving
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the E1 state a nondeterministic resurgence of species v where the solution would tend

towards the E2 state.

We attribute these nondeterministic resurgences to truncation errors for two reasons.

First, they broke the spatial symmetry of the solution. Our initial conditions (4.9) and

(4.10) are both symmetric about x = 0, and while we do not explicitly impose symmetry,

our numerical method will maintain symmetry in the absence of round-off error. Second,

the locations and times at which these resurgences occurred would change, for the exact

same set of parameters and initial conditions, when run on different processors or with

different temporal or spatial resolutions. These nondeterministic resurgences indicate that

the stability of the E1 state is highly susceptible to small perturbations.

This suggests that if stochasticity were added to the system, we would see resurgences

of the pest and a failure of biological control. Indeed, we considered numerical simulations

with low levels of noise and observed resurgences for even very high spatial resolutions

and restrictive timesteps. This susceptibility to even very low levels of noise makes the

E1 state effectively unstable despite the (limited) stability results. Thus our focus will

shift from methods of control that seek to obtain this effectively unstable pest free state,

to methods that provide a partial control which is robust to noise, and therefore more

sustainable.

Diffusion-driven Resurgences: A resurgence of the pest v can also occur due to

non-stochastic, deterministic triggers. One such trigger is enhanced mobility of the pest

species. When the diffusivity of species v is sufficiently large relative to that of species

w, we see a resurgence of the pest that returns the system to the pest infested E2 state

after the control front has passed. In simulations, we observe these resurgences once the
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ratio of the diffusivity of species v to that of species w becomes larger than some critical

threshold. Call this ratio

(4.41) µ =
µ2

µ3

.

These resurgences are not the result of numerical errors, are robust to changes in resolu-

tion, and maintain the symmetry of the solution.

Figure 4.4 shows a space-time plot of a typical diffusion-driven resurgence. For this

simulation, we have taken µ2 = 4 and µ3 = 1, so that µ = 4. To understand this figure,

it is important to note that: (i) Figures 4.4b and 4.4c are plotted on a log scale, while

Figure 4.4a is not; and (ii) the fronts in these figures are not sharp, and so the labels serve

only an illustrative purpose to highlight the demarcation between the different regions of

interest. It is for these reasons that the regions in Figure 4.4a do not appear to align with

those in Figures 4.4b and 4.4c, as the latter two plots show variations in the populations

that are too small to see without the log scale. Indeed, a plot of log(1−u) would be nearly

indistinguishable from Figure 4.4b. With this understanding of Figure 4.4, we discuss the

specific highlighted fronts.

We begin with the front labeled A. This front is the original control front that forms

due to the introduction of species w, and represents the pest free E1 state displacing the

pest infested E2 state. The speed of this front is given by (4.39), which depends only

on parameters related to species w, i.e., the speed of the control front is not dependent

on the pest species v. In Figure 4.4c, we see the full traveling pulse of species w that

characterizes this type of control front.
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(a) Space-Time Plot of u (b) Space-Time Plot of log(v) (c) Space-Time Plot of log(w)

Figure 4.4. Typical resurgence behavior for the local problem. Here we use
parameter set (4.35) with µ = 4. Figure 4.4a shows species u with the
different regions labeled according to which state inhabits them. Figure
4.4b shows species v on a log scale for the same simulation, and Figure 4.4c
shows species w on a log scale.

The difference between front A in Figure 4.4 and the control front from Figure 4.2 is

the formation of the labeled front B. This is the resurgence front that sees the pest free

E1 state revert to the pest infested E2 state. The speed of this front is given by (4.37).

In Figure 4.4a, it appears as though this front originates at some distance behind control

front A, but the log scale in Figure 4.4b shows that this resurgence originates directly at

the rear of the control front A. From this image, we see that a small amount of species

v has escaped the superpredator w and repopulates the region behind the control front.

We note that this front B cannot be seen in the plot of species w in Figure 4.4c since the

front does not involve the presence of species w.

In Figure 4.4c, we see the formation of a secondary control front, labeled as front

C. This front originates immediately following the resurgence front B, where now the

superpredator chases the pests that escaped, corresponding to the pest free E1 state once

again displacing the pest infested E2 state. The speed of this front is given by (4.39),

which is the same as front A, though now traveling in the opposite direction. Figure 4.4c
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again shows the full traveling pulse of species w that characterizes this type of control

front.

The last highlighted feature of Figure 4.4 is labeled D. It would be incorrect to call

this a front as it does not connect two equilibrium states. The region ahead of this feature

D (corresponding to the region between the highlighted lines for feature D and front A)

is not inhabited by an equilibrium state. This feature corresponds to the formation of

a resurgence following the control front C, much as the resurgence front B follows the

control front A. Now, however, the feature D immediately hits the rear of control front A,

and so a full resurgence does not occur. It is interesting to note that another (unlabeled)

resurgence forms once the feature D has fully collided with front A and the region behind

the control front A is occupied by the pest free E1 state, corresponding again to a small

amount of the pest escaping from the superpredator.

We now make an important observation about Figure 4.4 that holds for all of the

resurgent cases we have found: when there is a resurgence, the resurgent front B always

travels faster than the control front C. This suggests that comparing the propagation

speeds of these fronts should give a critical condition for the existence of a resurgence.

Indeed, if the control wave is faster than the resurgent wave, we would expect that no

diffusion-driven resurgence is possible. From Section 4.4, the speed of the control wave is

given by (4.39) and the speed of the resurgent wave is given by (4.37), making the critical

ratio of diffusivities

(4.42) µc =
m2 − d2
m1 − d1

,
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with a ratio µ > µc resulting in a deterministic triggering of a resurgence. For the

parameter set (4.35), µc = 1.

It is interesting to note that the critical ratio (4.42) is the same for the splitting

behavior discussed in Section 4.4.2 and shown in Figure 4.1, i.e., when µ > µc this spitting

behavior will occur. For both the splitting behavior and the diffusion-driven resurgence

behavior, the front where species v displaces the E1 state travels faster than the front

where species w displaces the E2 state. In Figure 4.1, this results in the E2 state forming

between regions inhabited by the E1 and E3 states. In the resurgent case, however, this

difference in speeds results in the E2 state forming between regions inhabited by the E1

state.

In order to validate (4.42), we consider the parameter set (4.35). For this parameter

set, we numerically found a critical ratio of about 2.5 < µc < 2.7, as opposed to the

predicted µc = 1 from (4.42). This observed value, however, depended on the size of

the cutoff used in the simulations, which suggests that the reason we do not observe the

predicted value is that we cannot fully resolve the resurgence when µ is too close to µc.

To examine this, we turn to Figure 4.5, which shows the profile of species v on a log

scale as a resurgence forms for two cases. In the first case, shown in Figure 4.5a, we take

µ2 = 4 and µ3 = 1 so that µ = 4. We can see that in this case, the value of v at the

resurgence is roughly 10−8. In the second case, shown in Figure 4.5b, we instead take

µ2 = 2.7 and µ3 = 1 so that µ = 2.7, and now observe that the value of v at the resurgence

is roughly 10−12. Typically, we consider a numerical cutoff, discussed in Section 4.2.3, of

2× 10−15. With this cutoff, we see a resurgence in this µ = 2.7 case, and would conclude

that µc < 2.7. If we were to increase the cutoff to 10−12, however, the resurgence would
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not occur and we would incorrectly conclude µc > 2.7, i.e., we would have failed to resolve

the resurgence. As we continue to decrease µ, the value of v at the resurgence continues

to decrease. Thus we expect that if we were able to continue decreasing the cutoff, we

would find smaller values for µc, approaching the predicted value of µc = 1. Note that

even if we could decrease the cutoff further without instabilities forming, machine epsilon

would still prevent us from seeing a critical ratio as low as was analytically predicted.
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(b) µ = 2.7

Figure 4.5. The formation of the resurgence front for two different cases,
shown by v plotted on a semi-log scale. Figure 4.5a has µ2 = 4, and Figure
4.5b has µ2 = 2.7.

To observe a critical ratio near this analytically predicted ratio, we recall an important

result from the analysis in Section 4.3.1: when v = o(w), the long time behavior is

v ∼ e(m1−d1−a2)t, from (4.17). Since we want to leave the predicted µc = 1 unchanged,

we decrease a2 while leaving all other parameters constant, so that v decays more slowly.

When we take a2 = 1.2, as in parameter set (4.40), we are able to numerically observe

1.1 < µc < 1.2. When we further considered a2 = 1.15, we were able to numerically

observe µc < 1.1. This suggests that the comparison of the propagation speeds that led

to (4.42) is likely correct.
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An important implication of the critical ratio (4.42) is that increasing µ3, the diffusivity

of the superpredator w, can prevent these deterministic, diffusion-driven instabilities. In

biological control, the superpredator is generally artificially introduced. This means that

the particular species chosen as the controlling agent is selected specifically for this task

of eliminating the pest v. These results suggest that selecting a highly mobile, highly

diffusive superpredator would be best for biological control.

Resurgence from the Pw-type Nonlocality with Small and Intermediate δ:

Here we discuss resurgent behavior triggered by the Pw-type nonlocality. We consider

initial conditions given by (4.10), where a pulse of species w, centered at the origin,

invades the pest infested E2 state. This corresponds to the release of the top predator

into the middle of a pest-infested region in an attempt at biological control.

For small values of δ, we observe no difference from the local case. In this regime, there

is a small controlling pulse of species w that invades the E2 state, returning the system

to E1 behind the front as in Figure 4.2. We note that, as in the local case, simulations

in this regime are very sensitive to truncation errors, and the E1 state remains highly

susceptible to noise.

For intermediate values of δ, deterministic resurgence type behavior is observed. Fig-

ure 4.6 shows a typical simulation in this regime. Figures 4.6a-4.6c show space-time plots

of u, v, and w. We can see the original control front on the right in each image, where the

E2 state is displaced. Behind this control front, we see a resurgence form and move to the

left. While it appears that this resurgence originates in the interior of the E1 region, the

resurgence actually originates directly at the rear of the intial control front as in Figure

4.4. These images are not on a log scale, and so we simply cannot see the resurgence until
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it has reached an appreciable level. We note that this resurgence is followed immediately

by another control front, which returns the system to the E1 state. In these images, we

can also see a secondary resurgence that travels to the right. This resurgence originates

at the rear of the secondary control front, in much the same way that the feature D forms

behind the second control front C in Figure 4.4b.

(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w

600 700 800 900 1000 1100 1200 1300
x

10-15

10-10

10-5

100 Time = 400.00

v
w
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Figure 4.6. Typical behavior of the Pw-type resurgence behavior for inter-
mediate values of δ. Here parameter set (4.35) is taken with δ = 12, µ2 = 1,
and µ3 = 1. The initial pulse of species w is taken to be within |x| < 900.

Notice that this type of resurgence is not the same as those previously discussed, and

that the diffusion-driven triggering mechanism does not carry over to this discussion. This

is because the Pw-type nonlocality does not affect the analysis of the propagation speeds

from Section 4.4. For Figure 4.6, we considered the case where µ = µc = 1. When we

considered cases where µ < µc, i.e., cases where the diffusion does not trigger a resurgence,

we were still able to observe both the primary and secondary resurgences triggered by the
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nonlocality. Taking a sufficiently small value of µ, however, could prevent the secondary

resurgence.

We speculate that these resurgences are caused by the Pw-type nonlocality creating

locations of positive concavity in the solution, which promotes growth due to the diffu-

sive terms. In more standard, scalar versions of nonlocal problems, decaying oscillations

behind wavefronts are observed even when the extent of the nonlocality, δ, is below the

critical threshold where cellular patterns form [1]. Figure 4.6d shows decaying oscillations

forming behind the wavefronts, and these oscillations give regions of positive concavity.

In this image, all of the populations are traveling outward from the location x = 900. It

is interesting to observe that the peaks of species w always follow the peaks of species

v, as if these larger groups of w were chasing the larger groups of their prey. We note

these solutions remain very sensitive to truncation errors and require fine grids for the

time interval considered.

4.5.3. Robust Control through the Pw-type Nonlocality

When the extent of the nonlocality, δ, is sufficiently large, we observe a cellular instability

of the E1 state. As mentioned in Section 4.3.2, this type of nonlocality does not lend

itself to any standard linear stability analyses, and so we rely on numerics to describe

the resulting patterns. We consider the parameter set (4.35) and find that increasing δ

changes the form of the resulting solutions. We again consider initial conditions given by

(4.10), where a pulse of species w, centered at the origin, invades the pest infested E2

state. We first consider an initial pulse extending for |x| < 200, but will also examine

how the width of this pulse affects the behavior of the system.



116

(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w

-600 -400 -200 0 200 400 600
x

0

0.1

0.2

0.3

0.4

0.5

Time = 500.00

u/4
5*v
100*w

(d) Profile of Traveling Cells

Figure 4.7. Typical behavior of the Pw-type traveling cellular patterns for
larger values of δ. Here δ = 15 and µ2 = µ3 = 1.

For sufficiently large values of δ, we observe cellular patterns that form and travel

behind the front. Figure 4.7 shows typical images of these patterns for δ = 15. Note

that we are now plotting the entire domain, including the x < 0 region, to better display

the outcome of introducing a pulse of species w into a pest infested region. The cellular

patterns shown form at the locations where the initial front originated (the locations of

the linear connection from the initial condition (4.10), for this figure at |x| ≈ 200), and

propagate in both directions: outward into the pest infested E2 state; and inwards into

the pest free E1 state, which had formed due to the initial pulse of species w (similar

propagating cells were observed in a nonlocal two-species, predator-prey model in [60]).

These propagating cells are therefore not analogous to the stationary cellular patterns

previously observed for the C-type nonlocality. Figure 4.7d shows the profile of the
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oscillatory resurgence patterns that form about the locations |x| = 200. In this image,

cells between x = −200 and x = 200 move inward, while populations outside of |x| = 200

move outward. We again observe that the peaks in w chase the peaks in v, and that the

peaks in v chase the peaks in u.

The cellular patterns that form in this large δ regime are robust to the small truncation

errors that afflicted the smaller δ regimes, the C-type nonlocal problem, and the local

problem. This suggests that the introduction of a highly mobile superpredator species that

behaves in a sufficiently nonlocal fashion will provide the most robust form of biological

control. From a qualitative perspective, these traveling cellular patterns would be akin

to the periodic reintroduction of the superpredator into the system.

We note that Figure 4.7 was generated with µ = 1. It is natural to ask how the

diffusivities of species v and w affect the patterns that form. When we take µ > µc,

we do indeed see a resurgence that sends the system to the E2 state. This resurgence is

short lived, however, as the cellular patterns encroach on the newly formed E2 state and

eventually occupy the entire domain. Thus in this case, the resulting solution is robust

to all of the triggering mechanisms we have identified.

(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w

Figure 4.8. Typical behavior of the Pw-type traveling cellular patterns for
larger values of δ when µ < µc. Here δ = 15, µ2 = 1, and µ3 = 4. The
initial pulse of species w is located within |x| < 500.
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When we take µ < µc, i.e., if we take the diffusivity of species w to be large relative

to that of species v, the outward traveling cells form as before, but the inward traveling

cells are overtaken by species w before they can fully form. This is shown in Figure 4.8,

where we consider µ = 1/4 and an initial pulse located within |x| < 500. We see that the

inward traveling cells die off quickly after they form, leaving the E1 state intact in the

interior of the domain. At first, this would appear to be a positive feature of this Pw-type

nonlocality, since the E1 state is the desired, pest free state. The problem arises from the

fact that while the cellular patterns do still slowly move inward to eventually occupy the

whole domain, these solutions are once again susceptible to noise.

(a) Space-Time Plot of u (b) Space-Time Plot of v (c) Space-Time Plot of w

Figure 4.9. Typical behavior of the Pw-type traveling cellular patterns for
larger values of δ when µ < µc, but the initial pulse is thin. Here δ = 15,
µ2 = 1, and µ3 = 4. The initial pulse of species w is located within |x| < 50.

To address the fact that these solutions are once again susceptible to noise, we recall

an observation we made about Figure 4.7: the source of the oscillatory resurgences we

observe appears to be located at the edge of the initial pulse of w. This suggests that

varying this initial width may change the behavior of the system. Indeed, Figure 4.9

considers an initial pulse located within |x| < 50, and shows a solution that is once more

robust to noise. The pulse is now thin enough that the previously short-lived inward
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traveling cells collide before they are overtaken by species w, ensuring that species w is

eventually nonzero in the entire domain. Since µ < µc in this case, these solutions are

once more robust to all of the resurgence triggering mechanisms we identified.

4.6. Summary

In this chapter, we used the food chain model with ratio-dependent function responses

given by (4.2) to examine biological control obtained via the introduction of a superpreda-

tor into a pest infested ecosystem. Specifically, in the food chain where species u represents

a crop species, species v represents a pest species that feeds on the crop, and species w

represents the superpredator that hunts the pest, we considered the behavior of the sys-

tem when species w was introduced in an attempt to either drive species v to collapse, or

at least preserve more of the crop species u.

In the spatially independent version of the problem, the ODE system admits four

equilibrium states: extinction E0 = (0, 0, 0), pest free E1 = (1, 0, 0), pest infested E2 =

(ū, v̄, 0), and the partial restoration E3 = (uc, vc, wc). When we consider the invasion

problem, we observe traveling waves in which one state displaces another. Of particular

interest were waves involving the pest infested E2 state in the regimes where it is stable

in the absence of the superpredator w. This corresponds to a situation where biological

control would need to be employed, i.e., where the natural system tends towards the pest

infested state without the artificially introduced superpredator.

We considered the role of nonlocality in two different forms. In the C-type nonlocality,

we modeled the more standard situation where members of the crop species u competed

nonlocally with each other. The Pw-type nonlocality modeled a superpredator w that
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nonlocally searches for its prey over a large area. We considered how the extent of the

nonlocality in each of these cases affected potential cellular instabilities in each of the

equilibrium states.

The primary results of this chapter are:

• We analytically determined the stability of the E1 state in the ODE system,

extending the results presented in [39].

• We analytically determined the stability of the E1 state for the C-type nonlocal-

ity.

• We analytically determined a condition for the stability of the E2 state for the C-

type nonlocality, and described a procedure to determine the critical extent of the

nonlocality for a given parameter set that would give rise to a cellular instability.

We also noted that the Pw-type nonlocality would not affect the stability of the

E2 state.

• We analytically determined a set of conditions for the stability of the E3 state for

the C-type and Pw-type nonlocalities, and described a procedure to determine

the critical extent of the nonlocality for a given parameter set.

• We numerically verified our stability analyses of each equilibrium state for a

number of different parameter sets.

• We obtained expressions for the propagation speeds of fronts involving species v

invading the E1 state, and of the front involving species w invading the E2 state.

We were able to verify these predictions for a number of parameter values. We

note that this analysis was not applicable to fronts involving species w invading

the E1 state.
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• We observed fronts of complete biological control where a pulse of species w

introduced into a pest infested region resulted in the system returning to the

pest free E1 state behind the front that formed.

• We noted that small round-off errors could trigger a resurgent behavior of species

v, and showed that stochasticity would also trigger these resurgences. This indi-

cates that biological control, when considered with the ratio-dependent functional

responses, is very susceptible to noise in the system, and that the pest free E1

state can be considered effectively unstable in these cases despite the (limited)

stability results.

• We observed diffusion-driven resurgences of the E2 state when the diffusivity

of the pest v was sufficiently large. We obtained a critical condition for the

emergence of these resurgences, and used numerical simulation to support this

condition.

• We observed resurgences of the E2 state that were triggered by the Pw-type

nonlocality when the extent of the nonlocality was below a threshold that could

only be computed numerically. We attributed these resurgences to decaying

oscillations that formed in the profile of species v that resulted in the formation

of locations of positive concavity in the solution.

• We numerically found an instability of the E1 state for the Pw-type nonlocality

when the extent of the nonlocality was sufficiently large. We emphasize that while

we call this an instability of the pest free state, this case actually corresponds

to the most robust form of biological control that we have found. These cellular

patterns proved robust to both round-off errors and the introduction of stochastic
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noise to the system. They ensure that species w is eventually nonzero throughout

the entire domain, and effectively describe an automatic periodic reintroduction

of the superpredator to maintain a nearly controlled state.
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CHAPTER 5

Conclusion

In this thesis, we presented two projects involving models of population dynamics

with nonlocal interactions. Our main interests were in traveling waves, corresponding to

migrations of the species involved, and in describing both the propagation speeds and

front shapes of those waves.

The first project, presented in Chapter 2, was centered on a scalar equation describing

the population of a single species competing with itself in a nonlocal fashion, where

individuals of the species competed for resources over a large distance. The piecewise

linear source term in the equation, along with the choice of kernel function, allowed

us to reduce the governing integro-partial differential equation to a system of algebraic

equations. This allowed for a full description of the solutions, which covered a wide range

of possible behaviors observed in standard nonlinear, nonlocal equations. We considered

two biologically relevant cases: monostable and bistable. For the monostable case, we

determined the minimum speed for the existence of traveling wave solutions. For the

bistable case, we determined the unique propagation speed. In both cases, we found

conditions for the formation of decaying oscillations or a ‘hump’ behind the traveling

fronts. We were able to describe how the propagation speed and the shape of the fronts

were affected by the parameters of the model: the local net birth rate, the extent of the

nonlocality, and the strength of the asymmetry in the nonlocal interactions.
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The second project, presented in Chapter 4, focused on a three species foodchain,

where a crop species was infested by a pest species, which was preyed upon by a su-

perpredator species. We considered the problem of biological control, where the super-

predator was introduced into a pest-infested environment with the goal of returning the

system to a pest-free state. The foodchain model we considered employed ratio-dependent

predation terms, the use of which was discussed in Chapter 3. We considered two types

of nonlocal interactions: intraspecies competition of the crop, and nonlocal predation of

the pest by the superpredator. We determined conditions for the formation of cellular

patterns in the various equilibrium states of the system, as well as expression for the

propagation speed of several relevant fronts. We then turned to the question of biological

control, where we sought to determine conditions, particularly on properties of the typi-

cally artificially introduced superpredator, that would lead to successful biological control.

We found that there were a number of mechanisms that could trigger a resurgence of the

pest species and lead to a failure of biological control. But, we also determined that if

the superpredator was sufficiently mobile, or if the extent of its nonlocal predation of the

pest was sufficiently large, successful control could be achieved.
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APPENDIX A

Analysis of equations (2.36) and (2.28)

For all values of α` and αr > 0, (2.36) has two roots with positive real parts, either

two real positive roots or two complex conjugate roots with positive real part. This can

be easily verified by assuming λ is purely imaginary, i.e. λ = iβ. By balancing the real

and imaginary parts of the resulting equation, we obtain

−β2

[(
1 +

β2

α`αr

)
+ c

(
α` − αr
α`αr

)]
= 1,

iβ

[
c

(
1 +

β2

α`αr

)
− β2

(
α` − αr
α`αr

)]
= 0.

It is easily shown that this system has no solutions, and so the solutions to (2.36) cannot

cross the imaginary axis. Finally, we note that taking c = α` = αr = 1 clearly gives two

roots in the left half plane and two roots in the right half plane. Thus (2.36) has two

roots with positive real parts for all parameter values.

Below we derive a parametric solution for these two roots. We denote these roots by

λ1 and λ2 and assume for concreteness that in the case of real roots λ1 > λ2. Notice that

(2.36) is just

(A.1) k1λ
4 + k2λ

3 + k3λ
2 + k4λ = 1,
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with

(A.2) k1 = − 1

α`αr
, k2 =

α` − αr − c
α`αr

, k3 =
α`αr + c(α` − αr)

α`αr
, k4 = c.

So we have

k1λ
4
1 + k2λ

3
1 + k3λ

2
1 + k4λ1 = 1,(A.3)

k1λ
4
2 + k2λ

3
2 + k3λ

2
2 + k4λ2 = 1 .(A.4)

Computing the sum and the difference of (A.3) and (A.4) we obtain

k1(λ
4
1 − λ42) + k2(λ

3
1 − λ32) + k3(λ

2
1 − λ22) + k4(λ1 − λ2) = 0,(A.5)

k1(λ
4
1 + λ42) + k2(λ

3
1 + λ32) + k3(λ

2
1 + λ22) + k4(λ1 + λ2) = 2 .(A.6)

Introducing

σ1 = λ1 + λ2, σ2 = λ1λ2,

and using

λ21 + λ22 = σ2
1 − 2σ2, λ31 + λ32 = σ3

1 − 3σ1σ2, λ41 + λ42 = σ4
1 − 4σ2

1σ2 + 2σ2
2,

we rewrite (A.5), (A.6) as

k1(σ
3
1 − 2σ1σ2) + k2(σ

2
1 − σ2) + k3σ1 + k4 = 0,(A.7)

k1(σ
4
1 − 4σ2

1σ2 + 2σ2
2) + k2(σ

3
1 − 3σ1σ2) + k3(σ

2
1 − 2σ2) + k4σ1 = 2 .(A.8)
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We use (A.7), (A.8) to express c and σ1 in terms of σ2, α`, and αr. Specifically, multiplying

(A.7) by σ1 and subtracting the result from (A.8), we obtain

(A.9) −k1(σ2
1 − σ2)− k2σ1 − k3 =

1

σ2
.

Multiplying (A.9) by σ1 and adding to (A.7) we get

(A.10) −k1σ1σ2 − k2σ2 + k4 =
σ1
σ2
.

We can use (A.9) and (A.10) along with the definitions of the coefficients k1, k2, k3, and

k4 from (A.2) to solve for the speed c in terms of σ1, σ2, α`, and αr. We get

c =
α`αr

σ1 − α` + αr

[
1

σ2
+ 1− 1

α`αr
(σ2

1 − σ2) +
α` − αr
α`αr

σ1

]

=
σ1

(
1
σ2

2
− 1

α`αr

)
+ α`−αr

α`αr

1
σ2

+ 1
α`αr

.

From these equations, solving for σ1 in terms of σ2 and expressing c in terms of σ2, we

get the parametric dependence seen in (2.38a)-(2.38c). Notice that in the symmetric case,

where α` = αr = α, (2.36) reduces to (2.28) and the definitions in (2.38a)-(2.38c) reduce

to (2.30).
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APPENDIX B

Reduction of the Nonlocal Problem to Local Equations

Consider the nonlocal problem (2.12), (2.13). For the u > θ, x < 0 region, we have

the equation

(B.1) u′′ + cu′ + 1− φα ∗ u = 0.

This equation can be reduced to a local problem. Consider the convolution integral

w0(x) = φα ∗ u.

When we have the kernel function (2.14),

w0(x) =
α

2

∫ ∞
−∞

e−α|x−y|u(y) dy =
α

2

∫ x

−∞
e−α(x−y)u(y) dy +

α

2

∫ ∞
x

eα(x−y)u(y) dy,

dw0

dx
=
α

2

(
u(x)− α

∫ x

−∞
e−α(x−y)u(y) dy − u(x) + α

∫ ∞
x

eα(x−y)u(y) dy

)
,

d2w0

dx2
=
α

2

(
−αu(x) + α2

∫ x

−∞
e−α(x−y)u(y) dy − αu(x) + α2

∫ ∞
x

eα(x−y)u(y) dy

)
,

so that

(B.2)
d2w0

dx2
= α2[w0(x)− u(x)].
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Thus, the nonlocal equation (B.1) can be reduced to a system of local equations consisting

of the equations

u′′ + cu′ + 1− w0 = 0

and (B.2).

A similar reduction to local problems can be done for some other kernels as well.

Denote

φα,n(x) ≡ αn+1

2n!
|x|ne−α|x|, α > 0, n = 0, 1, 2, . . .

and

wn(x) = φα,n ∗ u.

Then a calculation similar to that for w0 yields

(B.3)
d2w1

dx2
= α2[w1(x)− 2w0(x) + u(x)],

(B.4)
d2wj
dx2

= α2[wj(x)− 2wj−1(x) + wj−2(x)], j = 2, 3, . . . , n.

Thus, the nonlocal equation

(B.5) u′′ + cu′ + 1− φα,n ∗ u = 0
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can be replaced by the local system consisting of

(B.6) u′′ + cu′ + 1− wn = 0

and (B.2)–(B.4).

Since the nonlocal equation (B.1) is reduced to a linear system of differential equations

with constant coefficients we can easily find its solution, rather than assuming the form

of the solution beforehand. Seeking the solution of (B.2)–(B.4), (B.6) in the form

u = 1 + keλz,

wj = 1 + kje
λz, j = 0, 1, . . . , n

we obtain

k0λ
2 = α2(k0 − k),

k1λ
2 = α2(k1 − 2k0 + k),

kjλ
2 = α2(kj − 2kj−1 + kj−2), j = 2, 3, . . . , n.

Solving the above equations for k0, k1 and k2 in terms of k, we obtain

k0 =
1

1− p2
k, k1 =

1 + p2

(1− p2)2
k, k2 =

1 + 3p2

(1− p2)3
k

where p = λ/α. In general, the recurrence formula can be written as

(1− p2)kj − 2kj−1 + kj−2 = 0, j = 2, 3, . . . , n.
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The solutions kj can be taken in the form kj ∼ aj, from which

a2(1− p2)− 2a+ 1 = 0.

We get

a =
1

1− p
, a =

1

1 + p
,

so that

kj =
C1

(1− p)j
+

C2

(1 + p)j
, j = 2, 3, . . . , n.

Using the expressions for k1 and k2 to determine the constants C1 and C2 we obtain

kj =

[
1

(1− p)j+1
+

1

(1 + p)j+1

]
k

2
, j = 0, 1, 2, 3, . . . , n.

Finally, (B.6) gives an equation for λ

(B.7) λ2 + cλ =
1

2

[
1

(1− p)j+1
+

1

(1 + p)j+1

]
, p =

λ

α
.

We now make two comments regarding this process. First, this approach tells us that we

are not missing any solutions when seeking solutions in the form (2.25). Second, it has to

be noted that the system (B.2), (B.5) is not equivalent to the nonlocal equation (B.1) –

the convolution integral is a particular solution of the equations for w, so that by solving

the local system we can get extraneous solutions w in the form of the convolution integral

plus a homogeneous solution. These homogeneous solutions are removed by imposing an

additional condition, i.e., setting (2.27c) equal to zero.
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APPENDIX C

Solving via Laplace Transformation

Consider equation (B.1) with a general kernel φ. We first define

u(x) = 1 + v(x).

The equation for v is now

(C.1) v′′ + cv′ − φ ∗x v = 0, x < 0.

We transform to a reversed variable ξ = −x, with v(x) = ṽ(−x) = ṽ(ξ), to get the

equation

(C.2) ṽ′′ − cṽ′ − ψα ∗ξ ṽ = 0, ξ > 0,

where ψ(x) = φ(−x). Note here that

φ ∗x v =

∫ ∞
−∞

φ(y)v(x− y)dy, and ψ ∗ξ ṽ =

∫ ∞
−∞

ψ(x)ṽ(ξ − x)dx.

Now we apply the Laplace Transform,

L {v(ξ)}(p) =

∫ ∞
0

v(ξ)e−pξdξ,
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to Equation C.2 to get

(C.3) v̄ =
v′(0) + (p− c)v(0)

p2 − cp− ψ̄(p)− φ̄(−p)
,

where v̄ = L {v}. Now we can invert the transform using a Bromwhich Integral, which

will give us the sum of the residuals of v̄epξ at each of its poles in the p-plane. Notice now

that if the kernel is of the form

φ(x) =

 φ+(x), x > 0,

φ−(x), x < 0,

then we have

(C.4) v̄ =
v′(0) + (p− c)v(0)

p2 − cp− φ̄−(p)− φ̄+(−p)
.

Now consider the kernel defined in (2.14). In this case we get

(C.5) v̄ =
[v′(0) + (p− c)v(0)](p2 − α2)

p4 − cp3 − α2p2 + cα2p+ α2
.

Then the exponentials in our solution v(ξ) will be the negative roots of the polynomial

(C.6) p4 − cp3 − α2p2 + cα2p+ α2 = 0.

If we define λ = −p, then we seek the positive roots of

(C.7) λ4 + cλ3 − α2λ2 − cα2λ+ α2 = 0.

Notice that this equation (C.7) is exactly equation (2.28).
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APPENDIX D

Stability of the E1 State: Method 2

We linearize the full (u, v, w) system about the E1 state by considering solutions where

u is close to 1 while v and w are small. This can be written in the form

u ∼ 1 + εũ+O(ε2), v ∼ εṽ +O(ε2), w ∼ εw̃ +O(ε2).

Substituting these expansions into (4.2) gives equations (4.16). Specifically, we consider

the equations for ṽ, (4.16b), and w̃, (4.16c), that decouple from the equation for ũ, and

define

α = d1 −m1.

This gives the (ṽ, w̃) system

(D.1)
dṽ

dt
= −αṽ − a2

ṽw̃

ṽ + w̃
,

dw̃

dt
= −d2w̃ +m2

ṽw̃

ṽ + w̃
,

which can be solved since it admits two first integrals. To derive one of them, we rewrite

(D.1) as

m2

ṽ

dṽ

dt
= −αm2 − a2m2

w̃

ṽ + w̃
,

a2
w̃

dw̃

dt
= −d2a2 + a2m2

ṽ

ṽ + w̃
,
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and subtract to obtain

a2
w̃

dw̃

dt
− m2

ṽ

dṽ

dt
= −d2a2 + αm2 + a2m2.

Integrating gives one first integral as

(D.2)
w̃a2

ṽm2
= c1e

Kt,

where K = −d2a2 + αm2 + a2m2.

To derive the other first integral, we reduce the system (D.1) to a single phase plane

equation

dṽ

dw̃
=
−αṽ(ṽ + w̃)− a2ṽw̃
−d2w̃(ṽ + w̃) +m2ṽw̃

.

We now make the change of variables ṽ(w̃) = w̃z(w̃), to arrive at the separable equation

z + w̃
dz

dw̃
= − αz(z + 1) + a2z

−d2(z + 1) +m2z
⇒ d2(z + 1)−m2z

z[(α− d2)(z + 1) +m2z + a2]
dz =

dw̃

w̃
.

Using the decomposition

d2(z + 1)−m2z

z[(α− d2)(z + 1) +m2z + a2]
=
A

z
+

B

(α− d2)(z + 1) +m2z + a2
,

where

A =
d2

α− d2 + a2
, B =

d2a2 − αm2 − a2m2

α− d2 + a2
=

−K
α− d2 + a2

,
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and integrating, we obtain one more first integral

zA[(α− d2)(z + 1) +m2z + a2]
B

α−d2+m2 = c2w̃,

which can be written as

(D.3) zA[pz + 1]
B

α−d2+m2 = c3w̃, p =
α− d2 +m2

α− d2 + a2
.

Using (D.2) and z = ṽ/w̃, we can rewrite (D.3) as

(D.4) pz + 1 + c7
[
ze(α−d2+a2)t

]α−d2+m2
m2−a2 = 0.

Different terms in (D.4) may be of different magnitudes as t→∞.

Case I: Consider the case where the second and third terms are the two largest.

Balancing these terms implies

(D.5) z ∼ e−(α−d2+a2)t ⇒ ṽ ∼ e−(α+a2)t = e(m1−d1−a2)t, w̃ ∼ e−d2t,

which is the scaling for v = o(w), (4.17). Now the condition that the first term be smaller,

i.e., pz � 1, requires α− d2 + a2 > 0. Thus the stability conditions are

(D.6) α− d2 + a2 > 0, α + a2 > 0, d2 > 0 ⇒ m1 + d2 < d1 + a2,

which is the condition (4.13).



142

Case II: Consider the case when the first and second terms are the two largest terms.

Balancing these terms implies

(D.7) z ∼ 1 ⇒ ṽ, w̃ ∼ e
K

a2−m2
t

= exp

(
(m2 − d2)a2 − (m1 − d1)m2

a2 −m2

t

)
,

which is the scaling (4.18) for v ∼ Cw (where C is a nonzero constant that will be exactly

R∗ from (4.12)). Now the condition that the third term be smaller requires

(α− d2 + a2)
α− d2 +m2

m2 − a2
< 0.

In order for the first two terms to balance, they must be of different signs, and so p < 0,

and

(D.8) α− d2 + a2 < 0, α− d2 +m2 > 0, m2 > a2 ⇒ a2 < m1 − d1 + d2 < m2.

From the scaling for v and w in (D.7), the stability conditions are

(D.9)
K

a2 −m2

< 0 ⇒ K > 0 ⇒ (m2 − d2)a2 > (m1 − d1)m2.

Taken together, (D.8) and (D.9) lead to (4.14).

Case III: Consider the case when the first and third terms are the two largest terms.

Balancing these terms implies

(D.10) z ∼ e−(α−d2+m2)t ⇒ ṽ ∼ e−αt = e(m1−d1)t, w̃ ∼ e(m2−d2)t,
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which is the scaling for w = o(v), (4.19). Now the condition that the second term be

smaller, i.e., pz � 1, requires α− d2 +m2 < 0. Thus the stability conditions are

(D.11) α− d2 +m2 < 0, m1 − d1 < 0, m2 − d2 < 0 ⇒ 0 < d1 −m1 < d2 −m2,

which is the condition (4.15).
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APPENDIX E

Methods of Finding Critical D, β Pair for the E2 State

Method 1: We are searching for a critical pair of D and β values where (4.27) is

zero for exactly one value of β. This means that we are trying to simultaneously solve

the equations

(E.1) FC(βc, Dc) = 0,
∂FC
∂β

(βc, Dc) = 0.

We note that both FC and
∂FC
∂β

are quadratic functions in D. We can find βc such

that equations (E.1) are satisfied by solving both expressions for D(β) and equating the

results. This will give us four equations for βc. Any solutions of these equations are

potential critical values of β, and so we choose the critical value of β that corresponds to

the smallest critical value of δ.

Method 2: A difficulty in using the first method to find the critical D and β values

is that we cannot specify a range of β values where the critical value must occur. To deal

with this problem, we again make use of the fact that FC(β,D) = 0 is a quadratic equation

in D. We first note that for a fixed value of β, the resulting parabola opens upwards, and

so the larger root of this equation will correspond to the larger D, and hence the smallest

δ value. We will call this larger expression Dc(β), which will correspond to the critical

value of D when maximized over β.
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We now note that if we define another function F̃C(β,D) < FC(β,D) that is also

quadratic in D, then the larger root of F̃C for a fixed value of β will provide an upper

bound on Dc(β) for the same β. We can create this new function by bounding every

occurrence of the fraction sin(β)/β by 1 or −1, whichever makes the whole expression

more negative. This gives us

(E.2) F̃C(β,D) ≡ µ2β
4D2− η1(m1− d1)ū+ [η1(m1 − d1) + η1µ2(ū− 1)− µ2ū] β2D = 0.

We can see that F̃C is actually a quadratic in β2D, and has no other dependence on

β. So the expressions for what we will call D̃(β), obtained from solving F̃C = 0 for D,

will decay with β−2, and will otherwise not depend on β. This means that the larger of

these expressions is an upper bound on the critical Dc, and is a monotonically decreasing

function of β. This gives us a procedure to find the critical Dc and βc pair.

We first find the explicit expression for Dc(β) by solving FC = 0 for D. We then find

the maximum of this function over some preset range in β, ignoring any values of β that

give complex D. Call this maximum D∗. It is possible that D∗ is nonpositive for a given

range of β. In this case, the preset range must be extended. If D∗ remains nonpositive

for all preset ranges practically considered, the conclusion is that there is no δc, and so

the E2 state is stable for all values of δ.

Once we have obtained a positive value for D∗, we use the expression for D̃(β), ob-

tained from F̃C . We solve D̃(β) = D∗ for β, noting that Dc(β) < D∗ for all β larger than

this value we have found. Hence we have obtained a new range for β in which we are

guaranteed that Dc(β) must attain its maximum value.
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APPENDIX F

Method of Finding Critical D, β Pair for the E3 State

We consider the three conditions for stability from (4.32), introducing the variables

β = δk and D = δ−2 to write these conditions as functions of D and β. We note now that

F (β,D) is linear in D, while both G(β,D) and H(β,D) are cubic in D. As we are seeking

the critical value of D such that there is exactly one value of β that gives instability, we

will simultaneously solve each of the pairs of equations

(F.1a) F (βc, Dc) = 0,
∂F

∂β
(βc, Dc) = 0,

(F.1b) G(βc, Dc) = 0,
∂G

∂β
(βc, Dc) = 0,

(F.1c) H(βc, Dc) = 0,
∂H

∂β
(βc, Dc) = 0.

We can do this by noting that (F.1a) are both linear in D, while (F.1b) are both cubic

in D, as are (F.1c). So we can solve each of these six equations for D(β) and equate

the resulting expressions for each pair – (F.1a), (F.1b), and (F.1c) – to find any potential

values of the Dc and βc pair. This process gives us nineteen equations for potential critical

values of βc – one from (F.1a), and nine each from (F.1b) and (F.1c). Since we are looking

for a minimum critical value of the parameter δ, we will keep only the maximum value

of Dc we find. It is important to note that since several of these conditions are cubic in

D, this process cannot be automated in a similar way to what was done in Appendix E.
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Instead, the range of β values over which to search for Dc and βc pairs must be manually

determined for each set of parameter values considered.
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