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Abstract  

The impacts of many important technologies are limited by the availability of better-

performing materials. One factor limiting the ability of engineers to develop better materials is 

the speed at which they can search through possible formulations and processing schemes. 

Recently, machine learning algorithms have emerged as a possible route to reusing existing 

materials data to guide the design process. In this thesis, we discuss work towards addressing 

three major challenges in the use of machine learning in materials engineering. First, we 

implemented an automated toolkit for solving crystal structures and use that to improve the 

quality of an existing materials database. Second, we developed general-purpose methods for 

creating machine learning models from materials data, which will simplify and accelerate the 

development of new models. Third, we created open-source software for making these 

machine learning techniques more readily-accessible to the materials community. Along with 

addressing these challenges, we also demonstrate how machine learning can be applied to 

optimize existing and discover new Bulk Metallic Glass alloys. It is our vision that the methods 

developed in this work will help enable the application of machine learning to a wider variety of 

problems and, potentially, be used to improve materials employed in many different 

technologies. 
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1 Introduction 

The development of entirely new classes of materials can have revolutionary effects on 

society, but even the slight improvement of existing materials can have profound impacts. 

Considering only energy applications, there are plenty of examples of technologies limited by 

available materials. New cathode materials for batteries could make electric cars with 

comparable ranges and costs to gasoline-powered vehicles. Additions to the composition or 

changes in the processing of nickel alloys could make jet engines and gas turbine power plants 

dramatically more efficient. The identification of oxides made of inexpensive constituents and 

the right tolerance of oxygen deficiency could make it feasible to create fuel from only water 

and sunlight. What limits the ability of engineers to find materials that suit these applications is 

their ability to quickly search through the countless design space of new materials. 

The many possible and many interrelated effects leading to the observed properties of 

materials makes them complicated to engineer. Many properties (e.g., fracture toughness) can 

be driven by the effects of structures from the atomic scale up to centimeters, and be 

controlled by processing conditions from the initial selection of constituents all the way through 

how it is joined to other components in a device. The practical consequences of this complexity 

are that understanding how a material behaves or optimizing its properties can require a large 

number of tests and design iterations. Consequently, the time for a new material to go from 

initial discovery in the laboratory to actual use is often on the scale of decades.[1,2] One route 

for accelerating the materials design process and, thereby, the development of new 

technologies, is to supplement or replace many of the required tests with computational tools. 
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Owing to the wide variety of processes that affect materials behavior, a wide variety of 

computational methods are available for predicting material properties. The tools range from 

atomic-scale modelling techniques, such as Density Functional Theory (DFT), to finite-element 

models for predicting the mechanical behavior of entire components. Combined together, 

these tools make it possible to optimize many aspects of a material concurrently and with 

minimal amount of input from experiments. While these conventional tools are powerful and 

have been employed to design many new materials, they have limitations. Some methods are 

very computationally expensive (e.g., DFT), others require extensive experimental 

measurements of a certain system before being useful (e.g., computational thermodynamics), 

and there are some properties that currently lack computational tools that can predict them. 

Recently, machine-learning-based computational tools have emerged as a route to addressing 

some of these limitations. 

While the use of machine learning is becoming pervasive in many other aspects of society, 

their application to materials – often called “Materials Informatics” or “Materials Data 

Analytics” – is still in its initial stages.[3,4] Machine learning algorithms, which automatically 

learn predictive rules from data, offer the ability to create materials models that can be much 

faster than conventional, physics-based computational tools and can create models for 

properties where physical models do not yet exist. However, their widespread use in materials 

engineering is limited by several factors. For one, there is a lack of the basic ingredient of 

machine learning models for many materials applications: high-quality, digital data. 

Furthermore, the process for creating these models is complicated by the lack of general-
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purpose techniques for turning that raw data into a useful model. Finally, there is no software 

that will simplify integrating these models into materials design tools. If solved, these problems 

could enable machine learning as another commonly-used tool in the computational design of 

new materials. 

In this thesis, I will describe progress towards addressing the availability of high-quality 

materials data and the development of general-purpose materials data analytics methods. The 

next chapter will describe the theory behind the methods employed in this work, and cover 

what progress has already been made in these fields. Chapters 3 and 4 will describe how we 

used automated crystal-structure solution tools to fill in missing data in materials databases. 

Chapters 5 and 6 will introduce methods we created for constructing machine learning models 

based on the composition and crystal structure of a material, respectively, that can be applied 

to model a wide variety of material properties. Chapter 7 is a case study describing how we 

applied these machine learning methods to develop new Bulk Metallic Glass alloys. Finally, 

Chapter 8 will discuss an open-source tool developed to make materials informatics methods 

more widely available to the materials engineering community at large. Together, we envision 

that these advancements will help make machine learning tools more commonly used in the 

engineering of new materials.  
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2 Background 

The following sections cover the theory and historical developments in the areas of science 

associated with this dissertation. The first section includes a description of atomic scale 

computational modeling, which is used in most of the subsequent chapters. The second section 

is a description of how crystal structures are determined from experimental data. Finally, this 

background section is concluded with a discussion of machine learning methods and their 

application to materials engineering, with a particular focus on the intersection between 

machine learning and atomic-scale modeling.  

2.1 Atomic-Scale Modeling 

At their core, atomic-scale modeling methods are based solely on the calculation of the 

energy of a collection of atoms or electrons. As atomic-scale processes are the most 

fundamental root of nearly all materials phenomena, these calculation techniques enable the 

prediction of the behavior of a material with few assumptions about what effects actually lead 

to the observed properties. Owing to the versatility inherently connected to their predictive 

ability, atomic-scale simulation tools are widely used in materials engineering. For example, 

these tools are commonly employed to predict the rate of diffusion of elements within a 

material,[5,6] to study the behavior of materials in conditions where experiments are difficult 

(e.g., under shock loading[7]), and predicting the atomic scale structure of materials.[8] 

The core requirement of atomic scale calculations is a method to evaluate the energy or 

electronic structure of the material as a function of atomic positions. Once one can express the 

energy of a system as function of atomic positions, it becomes possible to also express many 
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macro-scale, observable properties as a function of atomic positions. For example, one can 

determine elastic constants by computing the curvature of energy as a function of strain 

applied to the system. Elastic constants are a simple property to compute compared to what is 

common practice today. One can use Newton’s Laws of Motion and the forces acting on each 

atom (accessible by derivatives of energy with respect to atomic displacement) to model the 

trajectories of atoms over time and determine properties such as the melting temperature.[9] 

Additionally, one can use the electronic density of states and vibrational spectra of materials to 

assess the electrical conductivity and stability as a function of temperature.[10] While the ways 

to measure macro-scale properties can be quite complex, the majority can be condensed to 

expressions of the energy of the system as a function of changes in atomic or 

electronic structure. 

The methods to create these energy functions are quite varied, but can be generally 

grouped into classical and quantum-mechanical. The “classical” energy functions, as referred to 

as empirical or interatomic potentials, the energy is expressed directly as a function of the 

atomic positions. These interatomic potentials could be a simple as a function where energy is 

determined by the distances between all pairs of atoms in a structure. For example, the 

Lennard-Jones potential can be written as  

 𝐸 = ∑ 4𝜖 ((
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

)𝑖≠𝑗  (1) 

where the sum is over all pairs of atoms in the calculation and 𝑟𝑖𝑗 is the distance between each 

pair of atoms, 𝑖 and 𝑗. The coefficients in these interatomic potentials (ex: 𝜎 and 𝜖 in 
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Equation 1), are determined by adjusting them so that the properties computed using the 

potential match either experimental data or quantum-mechanical calculations. The classical 

functions have the advantage of being fast to compute (compared to quantum-mechanical 

approaches), which allows them to model processes involving trillions of atom or time scales up 

to milliseconds.[11,12] However, they require being fit to some other data before being useful 

and do not allow one to determine the electronic structure of the material.  

2.1.1 Density Functional Theory 

In contrast, quantum-mechanics-based calculations compute the interactions between 

atoms by solving the electronic structure of the material – a process which requires zero prior 

knowledge about the material. While it is possible to analytically solve or numerically 

approximately solutions to the Schrödinger Equation for systems with small numbers of 

electrons, it becomes computationally intractable for systems with even a few dozen electrons 

(i.e., most technologically-relevant materials). A variety of approaches exist to overcome this 

computational intractability, including Quantum Monte Carlo and Hartree-Fock 

methods.[13,14] The method that is most widely used for inorganic materials is Density 

Functional Theory (DFT).  

DFT is based on the theory that the many-body interactions between electrons can be 

expressed as functionals of the density of all electrons in the material.[15] In doing so, one can 

solve the wavefunctions of each electron independently, which is actually computationally 

tractable.[16] In order to make this approximation, one must be able to express two distinct 

effects as functionals of electron density: exchange, an effect of the Pauli exclusion principle; 
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and correlation, the repulsion between individual electrons. As the exact form of these 

functionals is not known,[17] one must rely on approximations that are often based on the 

magnitudes and spatial derivatives of the electron density. While there will likely always be 

room to improve these approximations (often at greater computational cost), advances in DFT 

methods and computing have made it possible to accurately compute many properties with 

DFT. For example, the accuracy formation enthalpy of crystalline compounds computed from 

DFT are comparable to the levels of errors between different experimental methods.[18] 

Consequently, DFT has found broad usage across many domains of materials engineering.[19] 

2.1.2 High-Throughput Density Functional Theory 

Starting around the early 2000s, computing power and the quality of DFT codes advanced 

far enough that it became possible to automatically perform 1000s of DFT calculations. This 

automated approach to DFT – often called High-Throughput Density Functional Theory – can be 

used to evaluate the properties of many materials within a single study.[20] One of the earliest 

examples of this work assessed the formation enthalpy of tens of thousands of ordered face-

centered-cubic compounds, and found several that might prove interesting as strengthening 

precipitates in superalloys.[21,22] As computer power has advanced even further, it is now 

possible to evaluate hundreds of thousands of materials in a single study and predict even more 

complex properties of materials in an automated manner.[23–25] An example of such an 

approach that involves assessing the energy density and ease of Li-ion extraction of battery 

materials is shown in Figure 2.1. Such studies have enabled the discovery of new materials for 
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applications such as thermochemical water 

splitting,[26] Li-ion batteries,[27–31] and many 

other applications.[20,29,32–35] 

The results of high-throughput DFT studies are 

often stored in a database, which makes it easier 

to reuse the results of the calculations for different 

problems. Many research groups have gone so far 

as to make the data openly available on the 

internet.[18,36–41] Consequently, these databases 

are actually used by groups unassociated with their 

creators. For example, data form the OQMD – a 

database created by the Wolverton group at 

Northwestern – has been used in the study of the 

effects of Li on the elastic properties of Mg 

alloys,[42] and data from the Materials Project was used in the design of Fe-Ag-based 

amorphous alloys.[43] These examples demonstrate the utility of sharing data from high-

throughput DFT calculations and, additionally, are also a great success story of open data in 

materials engineering. As these databases grow in size and start to include even more material 

properties (e.g., elastic constants [25]), the use of high-throughput DFT data may become 

pervasive in materials engineering. 

 
Figure 2.1. [From Ref. [27]] Schematic of 
an automated scheme used to assess the 
suitability of various materials for Li-ion 
battery cathodes. The voltage, storage 
capacity, and Li-migration energy of 
known and hypothetical materials are 
computed with DFT, and then used to 
identify interesting candidates for use as 
Li-ion battery cathodes. 
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2.1.3 Limitations of Atomic-Scale Modeling 

The main limitation of atomic scale modeling is the high computational cost. Computing 

the energy of a material with DFT requires on the order of CPU minutes to hours on a modern 

computer, depending on the number of electrons in the structure and choice of exchange-

correlation functional. Considering that modern supercomputers have hundreds of thousands 

of processors, a few CPU hours is trivial. Where atomic-scale modelling becomes expensive is 

when assessing properties that require large numbers of energy evaluations. For example, 

computing the melting temperature of a material can require tens of thousands of CPU hours 

for a single material because it involves many different calculations that describe the trajectory 

of atoms over time.[9] While there are certainly plenty of applications within the reach of 

current computing power for both classical and quantum-mechanical computational tools, 

expanding the reach of atomic scale calculations by developing new and more efficient 

methods is still a very active area of research.[44–48] 

2.2 Crystal Structure Solution  

The only input needed from experiment to assess the properties of a crystalline material 

with DFT is its atomic-scale structure, which can be difficult to determine. One of the most 

common means for assessing the crystal structure of a material is X-ray diffraction. X-ray 

diffraction techniques are based on the fact that x-rays diffract off the periodic lattice of a 

crystal most strongly at specific angles, which are defined by shape of the unit cell and the 

symmetry of the crystal. For some cases (such as NaCl and Cu), only one possible arrangement 

of atoms within the unit cell is possible given the unit cell shape, symmetry, and the measured 
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density of the material. In such cases, the determination of the structure is simple. However, 

such simplicity is not always the case. For many diffraction patterns, many possible 

arrangement of atoms are possible, and determining which is the actual structure requires 

finding which structure matches the intensities of the diffraction peaks. As these intensities also 

depend on many other factors, such as differences between the thermal vibrations of each 

atom, solving the structure of the material can be quite difficult. However, over century since 

the discovery of x-ray diffraction, crystallographers have developed many 

sophisticated methods. 

The process of solving the structure of a material from diffraction data, as shown in 

Figure 2.2, can be broken down into at least two major steps: peak indexing and structure 

solution.[49,50] During the peak indexing step, one first determines the diffraction angles of 

each diffraction peak and then uses the relative angles of the peaks and Bragg’s law to 

associate each reflection with a crystallographic plane. Through knowledge about how the 

symmetry of the crystal leads to some reflections overlapping or being invisible, one can then 

 
Figure 2.2. Schematic of the crystal structure solution process. After a diffraction pattern is 
measured, the locations of the diffraction peaks are used to determine the shape and 
symmetry of the unit cell. Next, structure solution methods are used to determine the 
arrangements of atoms within the unit cell that best explain the observed diffraction pattern. 
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determine both the shape and symmetry of the unit cell. The indexing problem has been 

studied extensively, and there are several commonly-used computer programs that perform 

this task automatically.[50–52] In contrast, crystal structure solution is often more difficult. 

2.2.1 Structure Solution Methods 

Once the unit cell and symmetry of a crystal are determined, the next step is to determine 

the positions atoms within the unit cell – a process known as “structure solution.” Many 

different approaches to this problem exist, and they are often broken into at least two distinct 

classes: “direct” and “direct-space.” The goal of direct methods is to reconstruct the electron 

charge density that leads to the observed diffraction pattern, which can be related to the 

observed diffraction peaks with the relationship 

 𝜌(𝑟) = ∑ |𝐹ℎ⃗⃗⃗|
2

cos[2𝜋(ℎ⃗⃗ ∙ 𝑟) + 𝛼ℎ⃗⃗⃗]ℎ⃗⃗⃗  (2) 

where 𝐹ℎ⃗⃗⃗ is the diffracted intensity for a reflection associated with a plane in the crystal, ℎ⃗⃗, and 

𝛼ℎ⃗⃗⃗ is the phase angle associated with the diffracted wave.[51] Direct methods seek to retrieve 

these phase angles, which cannot be measured. Once the charge density of the system is 

determined, the local peaks in density are attributed to the location of atoms. A variety of 

techniques are available for the direct solution of these phase angles, including a method by 

Hauptman and Karle in 1954 and the charge-flipping method from the 2000s.[53,54] Direct 

methods work best when one can create a large single crystal sample of a material. Using direct 

methods with data collected from powder diffraction data, in comparison, is complicated by 

many different diffraction peaks overlapping, but techniques for estimating the contributions 
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from each independent reflection (i.e., to access the values of 𝐹ℎ⃗⃗⃗) do exist.[55–57] As the result 

of many advancements in the theory and practice of these methods, solutions of structures 

containing hundreds of atoms with data from single crystal experiments is routine and can also 

be automated.[58–61] 

The second class of structure solution methods, known as “direct space” methods, function 

by finding an optimal arrangement of atoms whose calculated diffraction pattern matches the 

observed pattern. In contrast to direct methods, no attempt is made to retrieve phase angles or 

reconstruct the electron density. When the shape of the unit cell and its contents (i.e., type and 

number of atoms) are known, the determination of an optimal arrangement of atoms becomes 

a global optimization problem where the objective is to minimize the difference between the 

calculated and measured X-ray diffraction pattern. A wide collection of methods is available to 

perform this task, which mostly vary in the choice of global optimization algorithm and cost 

function.[55] For example, some methods use genetic algorithms to search through possible 

structures and others use simulated annealing.[49,62] Furthermore, some methods only use 

the agreement the diffraction pattern and others include additional information about the 

structure (e.g., potential energy [49,63–65]) to guide the optimization. As with the peak 

indexing and direct methods, many of these direct-space methods are available in commercial 

or open-source software.[55] 

2.2.2 First-Principles-Assisted Structure Solution (FPASS) Method 

One direct-space crystal structure solution method that is especially important to the work 

described in this thesis is the First-Principles-Assisted Structure Solution (FPASS) method.[63] 
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The FPASS method has two major features that make it particularly useful in the solution of 

crystal structures from powder diffraction data: a symmetry-restricted optimization algorithm 

and the use of ab initio DFT calculations to compute the energy of candidate structures. First of 

all, the ability to include all of the information from peak indexing (i.e., both unit cell shape and 

symmetry) into defining constraints for the search space drastically simplifies the search for the 

optimal structure. FPASS integrates these constraints with a specially-designed genetic 

algorithm (GA) that ensures all the candidates tested by the algorithm have the observed 

symmetry. Additionally, the use of DFT makes it possible to assume that the structure that best 

matches the diffraction pattern is also the lowest in energy within the unit cell and symmetry 

constraints (given the reliability of DFT in identifying the ground state structures of 

materials [18]). The specially-designed GA and integration of DFT makes it possible to solve 

structures that were difficult to determine using conventional structure 

solution techniques.[63] 

2.2.3 Crystallographic Databases 

Other important developments in crystallography include the creation of standards for 

sharing crystallographic data and the aggregation of solved crystal structures into databases. 

The most widely-accepted format for crystallographic data is the Crystallographic Information 

File (cif), which can be used to store the solved crystal structure and over 500 other pieces of 

metadata to describe other aspects of the structure and how they were gathered.[66] Having 

access to an accepted standard for sharing data helped to enable the rise of common 

repositories of crystallographic data, such as the Crystallography Open Database (COD) and 
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Inorganic Crystal Structure Database (ICSD).[67,68] These databases have made it possible to 

easily integrate information about known crystal structures into techniques including the high-

throughput determination of phase diagrams from X-ray data and the assessment of the 

properties of thousands of known materials with DFT.[18,69] Additionally, these databases 

highlight the significant advancements and room for future progress in crystal structure 

solution. These databases contain hundreds of thousands of crystal structures for a wide variety 

of materials, but also many incompletely-determined structures that have yet to be solved. 

2.3 Machine Learning and Materials Engineering 

Machine learning algorithms automatically generate computer programs from training 

data, and can improve them without being explicitly programmed by humans. The ability to 

automatically generate the rules necessary to create complex software makes it possible to 

construct programs that would be impossible to create manually. For example, machine 

learning algorithms are used by Netflix to recommend videos to their customers because 

“machines have a much better ability to learn from vastly bigger data pools than expert 

humans.”[70] For reasons similar to those cited by engineers at Netflix, machine learning has 

become an established part of many fields of science, such as chemistry and biology.[71,72] 

However, machine learning has yet to become widely adopted in materials engineering. 

2.3.1 Machine Learning 

Machine learning algorithms encompass a wide variety of tools, which are often 

characterized by the type of problem they are created to solve or how the models are created. 

For example, “unsupervised” learning algorithms are designed to recognize whether a dataset 
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is composed of distinct clusters of data with similar characteristics. There are also 

“reinforcement learning” algorithms that are designed to create programs by iteratively 

producing programs and then adjusting to optimize performance (via a “reward” system), 

which have recently been used to create software for playing the board game Go.[73] Of 

particular relevance to the work described in this dissertation are “supervised” 

learning algorithms.  

Supervised machine learning algorithms are designed to create models that map the inputs 

of some unknown process to its outputs. As a simple example, linear regression algorithms map 

the inputs of a process to its output by fitting slopes related to each input variable. Of course, 

significantly more advanced methods such as neural networks, decision trees, and ensemble 

approaches exist and are often better choices than linear regression for many problems.[74–78] 

However, in all cases, the model is created by providing the algorithm a set of training examples 

consisting of the inputs and outputs to the process. However similar, each particular algorithm 

method does offer unique advantages and no algorithm works best for every problem. For 

example, nearest neighbor algorithms train quickly and Gaussian process regression models 

offer uncertainties for each prediction at little additional computational cost. It is the task of 

the user to determine which algorithm works best for a particular problem. 
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Key concepts needed to understand how to select the optimal supervised learning 

algorithm are “generalization error” and overfitting. It is trivial to create a machine learning 

model that perfectly describes the input data, but this model may be limited in its ability to 

make accurate predictions – that is to be able to generalize to unseen data. To illustrate this 

concept, Figure 2.3 shows the effect of increasing the degree of a polynomial fit to some data 

generated based on a cubic polynomial. As the number of terms is increased past 3, the model 

starts to perform worse on other data generated with the same function even though it fits 

data perfectly. These high-order polynomial models do not predict data from outside the 

training examples well, and are referred to as being “overfit” to the training data. Often, testing 

whether models are overfit is accomplished via cross-validation, where a section of available 

data is withheld from training a model and used to evaluate the performance of the model. By 

adjusting the parameters of the learning algorithm (e.g., the number of terms in a polynomial), 

 
Figure 2.3. Illustration of overfitting a polynominal model to data generated from a cubic 
polynomial with Gaussian noise. (a) A plot of 3rd (light blue) and 7th (red) degree polynomials fit 
to a series of training points (blue circles). A series of points generated using same cubic 
function but not used to fit the model are shown by red crosses, which were used to test the 
performance of the model. (b) The mean absolute error (MAE) between the value predicted by 
a polynomial and the training points (blue) and withheld points (red). The 7th degree polynomial 
is overfit because error the training points lower than the 3rd degree model but much higher for 
those in the test set. 
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one can maximize the performance of the model on this validation set and ensure the 

algorithm does not overfit to the training data. 

2.3.2 Representations and Machine Learning 

Another key concept in understanding the application of machine learning to materials is 

the idea of representations. While many machine learning problems are based on non-

numerical data like text or the compositions of semiconductors, machine learning algorithms 

generally expect data to be expressed as a list of numerical values with a fixed length. 

Converting non-numerical data into a numerical form is known as creating a representation. For 

example, text can be converted into a string of numbers by counting how many times certain 

words appear – the “bag of words” approach.[76] To give a practical example, a machine 

learning algorithm could develop a model that employs the number of times “horrible” appears 

in a movie review to determine whether the review was positive or not. Devising these kind of 

informative variables for materials is still an outstanding problem.  

There has at least been general agreement on what characteristics these representations 

of materials should have, which are often broken into 4 distinct traits:[45,79–81]  

1. Complete: Representations should distinguish different materials from each other 

2. Descriptive: Representations should contain attributes that relate to the physical 

factors leading to the observed properties 

3. Simple: Representations should be faster to compute that the method used to 

generate the data 

4. Unique: Each material should have exactly one representation 
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Depending on the author, there is some variation how these rules are described. For example, 

Jain et al. assert that representations must not just be unique but also be reversible, so that it is 

possible to easily identify a material that has certain combination of attributes.[81] 

Additionally, these rules should not be viewed as mandatory. Montavon et al. have 

demonstrated how it is possible to create models with a non-unique representation.[82] 

Regardless of the particularities of each view of these rules, these desirable characteristics do 

give at least broad outlines of how to approach designing representations and understanding of 

how to best select a suitable representation for a certain problem. 

Of these requirements, one rule that is particularly complicated to satisfy for materials is 

“completeness.” Owing to the large differences in scales of structure and variety of processing 

conditions that affect materials properties, the minimum amount of representation to 

differentiate materials can be drastically different. For example, if one is modeling the solution 

energies of different elements in Zirconia, then it is sufficient to differentiate each training 

entry based on properties of each element.[83] However, when trying to predict the fatigue 

strength of steel it is necessary to include the fraction of each element in the material and the 

processing history into the representation.[84] However, it is not necessary to include all 

available information about a material when building a machine learning model. For instance, 

Meredig et al. only used information based on the composition of a material even though the 

crystal structure was available because their objective was to identify compositions where it 

was likely to be able to form a new compound.[85] Consequently, when selecting a 
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representation for materials, it is important to first consider both what information is necessary 

to build a model but also how the model will be used. 

2.3.3 Applications in Materials Engineering 

Machine learning algorithms have been used across many different domains in materials 

science, and for several different purposes. In general, the applications of machine learning are 

reflective of its advantages compared to conventional computational tools: (1) creating fast 

enough models to search over large numbers of possible materials, and (2) identifying the 

important factors leading to observed material properties from many possible options. This 

background section is only meant to cover the major advancements in this area to give context 

to the developments described in this work. Consequently, I would suggest for the reader to 

consult several recent reviews on this subject for a more comprehensive 

picture.[4,45,81,86-90] 

A demonstrative example of the use of machine learning to be able to evaluate an 

exceptionally large search space is work by Faber et al in 2016 to find new crystalline materials 

based on the Elpasolite crystal structure.[91] Considering only main group elements, there are 

approximately 2 million possible materials with the Elpasolite structure – far too many to 

evaluate the stability of all using DFT. So, in order to make it possible to search the entire space, 

the authors computed the formation enthalpies of 104 of the possibilities using DFT, trained a 

machine learning model on that set, and then employed that model to evaluate the remaining 

~2 × 106 entries. In doing so, the authors identified 90 new, stable Elpasolite compounds, 

including one (NaFAl2Ca6) that features Al in a surprising oxidation state. This study 
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demonstrates the advantages of machine learning – the ability to perform searches too large to 

approach with conventional tools that may yield unanticipated solutions. This sort of surrogate 

model optimization is not an uncommon method in materials informatics and has been used to 

discover a number of other crystalline materials, among other applications.[85,92–95] 

Another common application for machine learning in materials is to identify which factors 

out of a large number of possibilities are most predictive of materials behavior. A good example 

of this sort of approach is described in a paper by Isayev et al., where the authors attempted to 

find structural traits of high-temperature superconductors.[96] As a representation, the authors 

collected many different structural fragments of known superconductors using the Simplex 

Representation of Molecular Structure (SiRMS) and identified that the factor that is the 

strongest predictor of a material being a high temperature superconductor is the presence of 

copper atoms near two oxygen atoms. While this result is not particularly surprising in light of 

the prevalence of high-temperature cupric oxide superconductors, it is promising that the 

machine learning algorithm detected this automatically. Machine learning has also been used 

to understand behavior including the friction constants in materials and factors influencing 

solubility of different elements in zirconia.[41,79,83,86,97–101]   
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2.3.4 Workflow for Materials Informatics 

The materials informatics methods described in the previous section can be generalized 

into a four step process, as shown in Figure 2.4. The first step in any method is the collection of 

data, which often includes the extraction of information from papers or handbooks. Once 

sufficient information about a particular material is collected, the next step is to organize that 

data into a training dataset for the model. At this point, the main goal is to define the desired 

inputs and outputs to the model, and to ensure the dataset does not contain any duplicates or 

erroneous data. Once the inputs are defined, one must decide which attributes of the material 

should be used as inputs to the machine learning model (i.e., the representation), which must 

meet the requirements specified in Section 2.3.2 (e.g., adequately differentiate materials in the 

training set). Finally, one decides on the appropriate machine learning model and trains it. 

Depending on the target application, it may be necessary to select algorithms for reasons 

besides predictive accuracy, such as training speed, differentiability, or human-interpretability. 

While the specific strategies employed in each step and the eventual use of the model vary 

 
Figure 2.4. Schematic of the workflow for materials informatics, which outlines the process 
from data collection through selecting a training set and representation to finally training the 
machine learning algorithm. 
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between each study, this general process was used to create all of the models described in this 

work and, I would assert, all other materials informatics models in the literature. 

2.3.5 Challenges in Materials Data Analytics 

There are many outstanding challenges slowing the adoption of machine learning 

techniques into materials engineering. Foremost is the limited availability of the raw 

ingredients of the machine learning models: well-structured materials data. Additionally, the 

lack of re-usable techniques and general-purpose software for materials data analytics means 

both that researchers are unnecessarily recreating infrastructure and that these techniques are 

difficult to employ for the non-expert. Furthermore, there is no established procedure for 

determining whether materials a machine learning models is reliable enough for a given 

application. While the challenges are significant, there is also an extensive and growing 

research community working towards addressing these problems. For example, there are now 

tools for simplifying the storage of materials data,[102–104] there are researchers releasing 

materials informatics software,[105] and efforts devoted to understanding the uncertainties of 

machine learning models created from materials data.[106] With time, data analytics tools may 

yet become prevalent in materials engineering. 
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3 Completing Incompletely-Solved Structures with FPASS 

3.1 Abstract 

The structures of three Na-Pb compounds, γ, δ and δ’, have remained incompletely solved 

for nearly 60 years. The space group, lattice parameters, and positions of Pb atoms of these 

three structures have been determined, but the positions of the Na atoms are still unknown. In 

this work, we used the First-Principles Assisted Structure Solution (FPASS) method (Meredig & 

Wolverton, Nature Materials, 2013) to complete the description of these three structures using 

only experimental information available from the literature as input. We also discuss the 

relative advantages of FPASS in comparison to conventional crystal structure prediction 

methods in reference to their abilities to complete the solution of other unsolved structures. 

3.2 Introduction 

While modern tools for determining crystal structures are quite advanced, it is not 

uncommon that the structure of a compound cannot be determined with the available 

experimental data. In fact, thousands of entries in the Powder Diffraction File (PDF) and 

Inorganic Crystal Structure Database (ICSD) are not associated with a crystal structure. Each of 

these incomplete entries represents a gap in the scientific knowledge and a material whose 

properties cannot be better understood by assessing their atomic-scale structures. In many of 

these cases, it was possible to determine at least some information about the crystal, such as 

its composition and symmetry group. As an example, Weston and Shoemaker attempted to 

solve the structures of three Na-Pb compounds in 1957 and failed.[107] They were able to 

determine the lattice parameters, space group, and even the positions of the Pb atoms, but 
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were unable to solve the positions for the Na atoms and, to this day, the structures have yet to 

be solved. 

In the case of these unsolved NaxPby compounds, the diffraction data is no longer available. 

Rather than repeating the diffraction experiments required to use conventional crystal 

structure solution techniques, we propose that these structures can be solved using crystal 

structure prediction algorithms. Crystal structure prediction (CSP) algorithms are designed to 

determine the lowest-energy crystal structure when provided with at least the composition of 

the structure in question.[8] These CSP algorithms have the advantage of requiring no 

experimental input to determine the ground state structure of a compound, which makes them 

ideal for solving the NaxPby structures considered in this work and, possibly, useful tools in 

addressing the large number of other unsolved structures. 

As the number of possible crystal structures for a given composition is too large to be 

exhaustively evaluated,[108] CSP algorithms rely on evaluating a subset of these possibilities 

that is likely to contain the true ground state, and are quite varied in their approaches to 

determining that subset. For instance, there are a wide variety of CSP methods that employ a 

specially-designed global optimization algorithms to search efficiently through the space.[108–

114] Alternatively, one could assume that the ground state structure is similar to a structure 

that has already been observed experimentally and evaluate a list of already-known crystal 

structure types as potential solutions.[95,100,115,116] Both of these classes of CSP techniques 

have been used extensively in the literature to determine the structure of compounds when it 

was impractical to do so experimentally.[8,95,117,118] 
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A third, computationally more efficient approach is to use information that is already 

known about a crystal structure to constrain the search for the correct solution and employ a 

CSP algorithm to locate the lowest energy structure within those constraints.[49,63,64] The 

concepts behind such constrained methods are that (1) employing these constraints speeds the 

calculation by reducing the number of possible candidates and (2) evaluating candidates based 

on both energetic feasibility and consistency with experimental measurements (e.g., lattice 

parameters, diffraction patterns) will eliminate spurious, low-energy solutions that are 

inconsistent with experimental observation.[49] One such combined method, the First-

Principles-Assisted Structure Solution (FPASS) method, uses a genetic algorithm to search for 

materials that both match a powder diffraction pattern and have minimum energy according to 

ab initio Density Functional Theory (DFT) calculations. This method has been used previously to 

solve structures that proved difficult with conventional crystal structure prediction and solution 

techniques,[63] and has the ability to constrain based on symmetry. Given that the space 

group, lattice parameters, and Pb atomic positions are known for the compounds studied in this 

work, FPASS is a suitable tool for solving their structures. 

In this chapter, we present the solutions to three long-unsolved Na-Pb crystal compounds, 

the γ, δ, and δ’ phases.[119] Additionally, we investigate the effect of supplying FPASS with 

different amounts of experimental information and discuss the relative advantages of 

constrained methods compared to crystal structure prediction strategies with reference to their 

ability to be used to solve incompletely-determined structures.  
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3.3 Methods 

3.3.1 Experimental Data 

The three structures of interest in this work are Na-rich binary NaxPby compounds originally 

discovered by Weston and Shoemaker (W&S) in 1957.[107] W&S were able to determine some 

information about the structures and published them as an abstract for a presentation at the 

4th IUCr Congress, which is the only source of data used for solving these structures. Since then, 

Table 3.1. Structures for the γ, δ, and δ’ phases, as determined using FPASS. The composition, 
lattice parameters, space group, and Pb positions were originally determined by Weston and 
Shoemaker.[107] 
 

Phase δ δ’ γ 

Composition Na5Pb2 Na9Pb4 Na13Pb5 

Space group 𝑅3̅𝑚 (166) 𝑃63/𝑚𝑚𝑐 (194) 𝑃63/𝑚𝑚𝑐 (194) 

Lattice Parameters a = b = 5.54 Å 

c = 23.15 Å 

a = b = 5.47 Å 

c = 30.41 Å 

a = b = 5.51 Å 

c = 40.39 Å 

Atom Positions Na (0 0 0) 

Na (0 0 0.785) 

Na (0 0 0.357) 

Pb (0 0 0.070) 

Na (0 0 0.183) 

Na (1/3 2/3 3/4) 

Na (1/3 2/3 0.635) 

Na (1/3 2/3 0.091) 

Na (1/3 2/3 0.519) 

Pb (0 0 0.050) 

Pb (1/3 2/3 0.020) 

Na (0 0 0) 

Na (1/3 2/3 0.211) 

Na (0 0 0.083) 

Na (1/3 2/3 0.617) 

Na (0 0 0.167) 

Na (1/3 2/3 0.710) 

Na (1/3 2/3 0.531) 

Pb (0 0 1/4) 

Pb (1/3 2/3 0.05) 

Pb (1/3 2/3 0.13) 
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these structures have remained incompletely solved. For clarity, we describe them using the 

notation used in the phase diagram reported by Hultgren:[119]  

γ - Na13Pb5: This phase was originally reported to have a stoichiometric composition of 

Na5Pb2. W&S were able to determine the space group, lattice parameters, and positions of Pb 

atoms (shown in Table 3.1) using a combination of powder and single-crystal X-ray diffraction 

techniques.[107] The authors were unable to determine the positions of Na atoms. This phase 

is known to have a composition of approximately 71.4 at% Na – Na5Pb2 – at its melting 

temperature.[107] W&S were also able to determine that the sodium positions are likely to be 

partially occupied and the composition of γ with all sites fully-occupied is 72.2 at% Na (Na13Pb5). 

In this work, we used this information to simplify the solution process by assuming all sites are 

fully occupied and the composition of γ is Na13Pb5. 

δ - Na5Pb2: This is a high temperature phase with a composition near Na9Pb4. This phase is 

known to have a space group of 𝑅3̅𝑚 with lattice parameters and Pb positions shown in 

Table 3.1. As with the γ phase, the positions of Na atoms are yet unknown. As with the γ 

structure, W&S hypothesized that the Na positions are partially occupied and proposed that the 

structures had a composition of 71.4 at% Na (Na5Pb2). As with the γ phase, we assume all sites 

are fully-occupied and the composition is Na5Pb2 when solving the structure of δ. 

δ'- Na9Pb4: This low-temperature, hexagonal phase (P63/mmc) has a composition of 

Na9Pb4. As with δ and γ, the lattice parameters, Pb positions (but not those of the Na atoms), 

and space group were also determined using X-Ray Diffraction techniques, and are shown 

in Table 3.1. 
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3.3.2 Structure Solution Method 

We employed the recently-developed First-Principles-Assisted Structure Solution (FPASS) 

method to solve each structure.[63] FPASS works by using a genetic algorithm to locate the 

lowest-energy crystal structure out of all structures that match any existing, known structural 

information, which can include lattice parameters and space group. In cases where diffraction 

data is available, this search is further guided by preferentially evaluating candidate structures 

that are better matches to the powder diffraction pattern of the compound. The inclusion of 

both diffraction pattern matching and constraining searches to a certain symmetry group has 

been shown to allow FPASS to resolve the correct structure when both conventional crystal 

structure solution and crystal structure prediction methods are unable to determine the correct 

crystal structure with certainty.[63]  

We used the results from a study by Weston and Shoemaker as a starting point for our 

solution process,[107] as described in the previous section. For all three cases (γ, δ, and δ’), the 

space group, lattice parameters, and the positions of the Pb atoms were known. Unless 

otherwise mentioned, all of this information was employed to define the space of possible 

crystal structures evaluated using FPASS. While both single crystal and powder X-ray diffraction 

were used to characterize each compound in the original study from 1957, the diffraction data 

was not reported in the original papers, and therefore is not available to help solve 

the structures.  

We used a population size of 10 structures for the genetic algorithm and the optimization 

was halted once the energy of the optimal structure failed to change by more than 5 meV/atom 
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after 5 generations. At each generation, the best performing structure from the previous 

generation was kept in the population. Mutation and crossover operations were slightly 

different than those used in the original FPASS paper, and are described in the following 

chapter. Mutation probabilities of 50% were used for both the Wyckoff site combinations and 

atom positions. Wyckoff-site biasing, as described in Ref. [63], was not found to be necessary 

for these structures. FPASS was run 10 times with different random number seeds for each 

compound, and the structure with the lowest energy out of all runs was selected to be the 

candidate solution. The software used to perform FPASS is available under an open source 

license from: http://github.com/materials/mint. 

3.3.3 Energy Calculations 

We used Density Functional Theory [15,16], as implemented in the Vienna Ab Initio 

Software Package (VASP)[120,121], to evaluate the energy of each candidate crystal structure. 

In particular, we employed the projector augmented-wave method [122] with the Perdew-

Burke-Ernzerhof generalized-gradient approximation for the exchange-correlation 

energies.[123] We used pseudopotentials for Na and Pb that treat the 3s1 and 6s26p2 electrons 

as valence, respectively, with a cutoff energy of 102 eV and a gamma-centered mesh of 1000 k-

points per reciprocal atom in all calculations.[121,122] 

When comparing the energy of our proposed solutions against those of other NaxPby 

compounds, we used the same DFT settings of the Open Quantum Materials Database 

(OQMD).[32]  These more accurate parameters include a higher cutoff energy of 520 eV and a 

k-point mesh of 8000 points per reciprocal atom. Additionally, performing energy calculations 
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with these settings made it possible to use energies available in the OQMD directly in the 

analysis of our results without repeating any calculations. It is worth noting that while these 

DFT settings are more accurate, they are too computationally expensive to be practical for use 

with FPASS.   

3.4 Results and Discussion 

3.4.1 δ Phase 

The δ phase is a high temperature phase with a rhombohedral structure that reversibly 

transforms into hexagonal δ’ below 190°C.[107,119] (Below, we consider the ’ phase.) W&S 

(a)    (b) (c)  
Figure 3.1. Proposed solution for (a) γ, (b) δ, and (c) δ’, as determined using FPASS. As 

hypothesized by Weston and Shoemaker[107], atoms lie along the 〈0,0, 𝑧〉, 〈
1

3
,

2

3
, 𝑧〉, and  

〈
2

3
,

1

3
, 𝑧〉 lines in all three cases. 
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found that the stoichiometry of this structure is Na5Pb2 with all Na sites fully occupied, the 

space group of the structure is 𝑅3̅𝑚 (166), and the locations of all Pb atoms in the structure. 

The only missing piece of information about the structure is the positions of the Na atoms. To 

find these positions, we used FPASS to locate the structure with the lowest energy that satisfies 

all of the known information about the structure (i.e., lattice parameters, Pb positions, and 

space group). Each FPASS solution requires evaluating between 120 and 200 candidate 

structures, which required only 3 hours for all 10 runs of FPASS on two 8-core, 2.6 GHz 

processors. All ten runs returned the same structure: a crystal that is iso-structural with Li5Tl2 

and Li5Sn2.[124,125] The structural parameters of our proposed solution are listed in listed 

in Table 3.1. 

As with the γ structure, we were able verify that our structure matches other quantitative 

characteristics determined by the original investigators. According to Weston and Shoemaker, 

the Na5Pb2 structure should have 6 atoms on the lines [0,0, 𝑧], [
1

3
,

2

3
, 𝑧], and [

2

3
,

1

3
, 𝑧].[107] Our 

final structure satisfies this geometric constraint.  However, we should note that every 

structure that matches the number of atoms in the unit cell, Pb positions, and space group from 

W&S automatically fits this requirement. W&S also proposed that this structure is a supercell of 

b.c.c., which we were able to confirm using the newly-solved Na positions. We found that the 

(1 1 0) plane of this structure is parallel to the (1 1 0) plane of the underlying b.c.c. lattice, 

which has a lattice parameter of approximately a ≈ 3.9 Å. While each Pb atom in the structure 

features exactly 1 Pb nearest neighbor (as originally suggested by W&S), the structure features 

Na atoms with between 0 and 4 Pb nearest neighbors. 
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As further test of our solution, we performed a test where we provided FPASS a space 

group of lower symmetry than what was determined experimentally (𝑃3̅𝑚1) and a second test 

where no symmetry information was provided. By easing the symmetry requirements, we allow 

the algorithm to test a larger number of possible configurations to see whether any are lower 

energy solutions that do not fit all of the provided constraints. Even though it was possible for 

Na atoms to be located off of the lines predicted by W&S in these tests, the FPASS result in both 

cases was identical to the result found when FPASS was provided full symmetry information. 

Finding the correct structure in these cases both supports the space group determination of 

W&S and demonstrates how FPASS can be used with incomplete symmetry information. We 

also found that FPASS predicts the same structure when the Pb positions from Weston and 

Shoemaker were not used and the space group was assumed to be 𝑅3̅𝑚. As with the tests with 

reduced symmetry information, finding the same structure as the fully-constrained test 

supports our conclusion that we have found the correct structure for the δ phase. 

The fact that FPASS returns the same structure in each test shows that the algorithm is 

capable of finding the solution even with limited initial data. However, the real advantage of 

being able to employ already-known information about a crystal in FPASS is reduced 

computational time. When using only the Pb positions and lattice parameters, a single FPASS 

calculation to solve this structure requires approximately 10.5 hours of computing time. By 

incorporating only lattice parameters and symmetry (i.e., no Pb positions), the required time 

decreases to 1.3 hours. If we provided FPASS with all of the known information about the 

structure, we can increase the speed of the solution to only 22 minutes per calculation – an 
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acceleration of over 30x the test without symmetry information and 3.5x faster than without 

Pb positions.  

3.4.2 γ Phase  

The crystal structure of the γ phase was determined by W&S to have the symmetry group 

of P63/mmc (194) and a stoichiometry of Na13Pb5 with 36 atoms in the unit cell when all sites 

are fully occupied. Additionally, they were able to determine the positions of all 10 Pb atoms. In 

this work, we completed the description of this structure by solving for the lowest-energy 

positions of the Na atoms in structures that fit these constraints using FPASS (see Figure 3.1a 

and Table 3.1). Three out of ten FPASS calculations found this structure, which had the lowest 

DFT energy of all candidate structures for this phase. Each solution required, on average, 

6 hours on two eight-core, 2.6 GHz processors. 

We were able to validate our solution using a few characteristics about the structure that 

were determined by Weston and Shoemaker: (1) 12 atoms exist along the [0,0, 𝑧], [
1

3
,

2

3
, 𝑧], and 

[
2

3
,

1

3
, 𝑧] lines through the unit cell, and (2) four-fifths of the Pb atoms have exactly one Pb 

nearest neighbor. Our structure meets both criteria. The second criterion is satisfied by the Pb 

positions provided as input to FPASS, and our proposed solution trivially meets this 

requirement as a result. In contrast, the fact that our structure satisfies first criterion (which 

was not predetermined by the input parameters) shows that our solution matches the 

experimental data first determined by W&S and provides validation of the structure’s accuracy. 

We found that this structure, like the δ phase, is based on a distorted b.c.c. superstructure, as 
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was originally hypothesized by W&S. In this 

case, the lattice is not only distorted but also 

contains a defect from the ideal lattice, as 

shown in Figure 3.2. 

There is no other structure in the ICSD 

that has the same stoichiometry (A13B5), 

number of atoms in the unit cell (36), and 

space group (P63/mmc) as the one found we 

found. The only other structure with A13B5 stoichiometry that matches the second criterion 

(80% of the Pb atoms present in pairs) given by Weston and Shoemaker is that of Li13Sn5, which 

was found to be nearly degenerate (~2 meV/atom lower in energy) with the γ structure we 

determined (with Na/Pb replacing Li/Sn). However, the space group of Li13Sn5 and the positions 

of the Pb atoms are different than what was found by Weston and Shoemaker. Additionally, 

while the Li13Sn5 structure is also a superstructure of b.c.c. [126], it lacks the deviation from 

perfect packing found in our solution. Assuming that the original space group determination 

was correct, the solution of the γ phase structure shows the unreliability of simply relying on 

energy and searching only known prototypes when solving a crystal structure. Had we relied 

only evaluated the energy of known structures, we would have incorrectly concluded the 

Li13Sn5 structure was the solution for the gamma phase structure. 

 
Figure 3.2. (1 1 0) plane of the γ structure. The 
black lines indicate the approximate [1 0 0] 
and [1 1 0] directions in the underlying Na 
b.c.c. lattice, which is heavily distorted by the 
presence of the Pb atoms. The region 
containing a defect from this b.c.c. lattice is 
indicated with a red ellipse. 
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3.4.3 δ' Phase 

The δ’ phase is stable at low temperatures and has a composition of Na9Pb4. The space 

group of its structure (P63/mmc), lattice parameters, and Pb positions were determined by 

Weston and Shoemaker and we found the Na positions using FPASS. Our solution for the 

structure of δ’, shown in Table 3.1c and Table 3.1, fits the descriptions supplied by Weston and 

Shoemaker: 8 atoms along the [0,0, 𝑧] line, 9 atoms along the [
1

3
,

2

3
, 𝑧] and [

2

3
,

1

3
, 𝑧] lines, and all 

Pb atoms have exactly one Pb nearest neighbor. Each solution required, on average, 1.6 hours 

on two eight-core, 2.6 GHz processors. Four out ten FPASS solutions found the same ground 

state structure. Our proposed solution for δ’ is not isostructural to any other phase in the ICSD, 

so simply searching a database of known crystal structure prototypes would have failed to 

correctly solve this compound. The other 

A4B9 hexagonal crystals in the ICSD do not 

match the criteria given by W&S and, 

according to DFT calculations, are higher in 

energy than our solution by at least 

100 meV/atom. 

Recently, Ellis et al proposed that δ’ has 

the orthorhombic, Na13Sn5 structure (which 

has a fully-occupied stoichiometry of A4B9) – 

a distorted version of our solution.[127] In 

order to determine whether this distortion is 

 
Figure 3.3. DFT Energy of structures that 
interpolate between the structure for δ’ 
determined in this work and a distorted 
version proposed by Ellis et al.[127] A 
displacement of 0.0 corresponds to our 
hexagonal solution, and 1.0 to the 
orthorhombic structure of Ellis et al. Energy is 
shown to increase with displacement, which 
demonstrates that the structure proposed by 
Ellis et al is dynamically unstable. 
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real or just an artifact of an incomplete structure refinement from X-ray data, we first relaxed 

the atomic positions and lattice parameters of the Ellis et al structure to their minimum DFT 

energy values. Then, we adjusted the atomic positions in the structure so that they matched 

the positions of our higher symmetry solution. Next, we calculated the energy of several 

structures whose atomic positions interpolated between those of the higher-symmetry 

structure and Ellis’s solution. As shown in Figure 3.3, we found that our structure is more stable 

and that the energy of the structure increases with larger displacements. Consequently, we 

conclude that the structure proposed by Ellis et al. is dynamically unstable and that our solution 

– an undistorted version of the Na13Sn5 structure - is a better representation of the δ’ phase. 

3.4.4 T=0K Na-Pb Ground State Phase Diagram 

As an additional step of validation, we compared the energy of each structure at 0K 

(computed using DFT) to that of every other known compound in the Na-Pb binary system. The 

energies of the other compounds (Na, Na15Pb4, NaPb, NaPb3, and Pb) were taken directly from 

the Open Quantum Materials Database (OQMD) or computed using its associated 

toolkit.[18,32] The DFT-calculated formation enthalpies are shown in Figure 3.4 along with the 

convex hull (solid black line), which represents the energy of the lowest-energy combination of 

phases at a certain composition. 
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Two of the three proposed structures (δ and δ’) are stable at 0 K with respect to any 

combination of all other known phases. Since the δ’ phase is known to be stable at low 

temperatures, the fact that we found its structure to be the 0 K ground state supports that we 

have found the correct structure. The δ phase is only known to be stable at elevated 

temperatures and is observed to exist at an off-stoichiometric composition near Na0.69Pb0.31. 

We did find this structure to be stable at 0 K at its stoichiometric composition of Na5Pb2, which 

suggests that it is energetically feasible to form at high temperature. The fully-occupied 

structure of the third phase, γ, was found to be unstable 0 K, which is consistent with it only 

being known to be stable at high 

temperatures and is observed to have a 

composition of Na5Pb2. Even so, the γ phase 

structure is only unstable by 4 meV/atom, 

which is not unfeasibly large. Given that kT at 

room temperature is around 25 meV/atom, it 

is possible for γ to be stabilized by entropic 

contributions to the free-energy at modest 

temperatures. As a result, we conclude that 

our solution for its structure is also 

energetically reasonable. 

Finding additional stable compounds in 

the Na-Pb system impacts the calculated 

 
Figure 3.4. Phase diagram of Na-Pb calculated 
using DFT showing the formation energies of 
compounds with already-known structures 
(red squares) and those solved in this work 
(blue circles). Solid line indicates convex hull 
for this system. Dashed line represents the 
convex hull before introducing the compounds 
solved in this work. The region highlighted by 
the inset is shown in black dashed lines. All 
three of the structures that were solved in this 
work were found to be low in energy and 
either stable (i.e. on the solid black line) or 
close to it, which suggests they are 
energetically feasible. 
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phase diagram and the corresponding chemical potentials in that composition region, which 

affects both the accuracy and feasibility of atomistic-simulation-based studies. For example, 

these chemical potentials are of great importance when determining defect energies with DFT – 

calculations which have been used to guide the doping of Na into PbTe thermoelectric 

materials.[128] Additionally, Pb has recently been studied as a possible anode material for non-

aqueous sodium-ion batteries.[127] A more-complete database of Na-Pb structures now makes 

it possible to study electrochemical reactions in this battery system with atom-scale modeling.  

3.4.5 Advantages of Constraining Structure Search 

The solution of the Na-Pb compounds in this work demonstrates that FPASS is a suitable 

tool for solving crystal structures when limited information about the structure is already 

available and, in general, highlights the advantages of constraining a CSP algorithm using that 

information. While originally designed to solve structures given diffraction data, we have shown 

that FPASS is robust enough to solve structures lacking this information and, in some cases, 

even lacking complete symmetry information about the structure. Furthermore, we found that 

it is possible to solve the structure of phases that are only stable at high temperatures using 

FPASS, as demonstrated by the solution of the structure of the γ phase. By restricting the 

search to only structures that match experimental measurements, spurious solutions that 

happen to be lower in energy at 0 K are avoided – which could be recurring problem during the 

solution high-temperature phases (as suggested by the solution of the structure of the γ phase). 

The solution of the Na-Pb compounds in this work also highlights the deficiencies of using 

crystal structure prediction techniques that do not enforce consistency with experimental 
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observations. In the solution of the structure of the γ phase, a prediction method that only 

considers energy would have found the Li13Sn5 structure because it is lower in energy even 

though this structure does not match the experimentally-determined space group. Additionally, 

by constraining based on space group and lattice parameter, the next lowest energy solution is 

at least 50 meV/atom higher in energy than the best solution in each case, which is sufficiently 

large to confidently select that solution as the true ground state. In contrast, finding several, 

nearly-degenerate ground states (e.g., at least Li13Sn5 and our solution when solving γ) would 

complicate selecting the true solution. 

 Furthermore, techniques that do not consider already-available information about a 

crystal structure could be drastically slower. As an example, the solution of the δ’ structure 

required 30x more time when the experimental symmetry group was not used – and this figure 

would only increase if the Pb positions and lattice parameters were also ignored. This results 

suggests that constraining a structure search using symmetry and known positions could have 

performance benefits in other methods. 

3.5 Conclusions 

In this chapter, we demonstrated how the First Principles Assisted Structure Solution 

(FPASS) can be used to solve incompletely-determined crystal structures. In particular, we used 

FPASS to solve the structures of three Na-Pb compounds (γ, δ, and δ’) that had remained 

unsolved since in 1957.[107] Through these solutions, we show that FPASS is able to solve 

structures that are unstable at 0 K and can be used to determine the correct structure even 

with incomplete symmetry information and without a diffraction pattern.   



 59 

 

4 Automated Structure Solution from Powder Diffraction Data  

4.1 Abstract 

High-throughput ab initio computational methods offer the ability to automatically predict 

the properties of materials, provided their crystal structures are known. However, there are 

many compounds for which the structure is unknown and, consequently, many potentially-

useful materials that are unable to be assessed by high-throughput searches. Here, we 

demonstrate an automated tool to solve the structures of materials from powder diffraction 

patterns based on the First-Principles-Assisted Structure Solution (FPASS) method. We first 

validated this tool by using it to solve approximately 90 known crystal structures, and then 

applied it to the solution of two dozen unsolved crystal structures. Of these candidates, we 

were able to successfully solve the structures of 10 materials and found, using high-throughput 

DFT, several are interesting candidates for semiconductors. 

4.2 Introduction 

Determining the crystal structure of a material is often the first step in being able to 

understand or predict its properties. In fact, crystal structure is the only requirement to predict 

the properties of a material with Density Functional Theory (DFT). As demonstrated by the 

recent advancements in high-throughput DFT, DFT can be used to automatically evaluate 

whether a material is an interesting candidate for many potential 

applications.[19,20,23,27,31,32,38] However, despite significant advances in techniques to 

solve crystal structures from powder diffraction data, there are many materials for which the 

structure is currently unknown. For example, there are thousands of diffraction patterns that 
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are not associated with a crystal structure in the Powder Diffraction File (PDF) and tens of 

thousands of entries in the Inorganic Crystal Structure Database (ICSD) that are 

incomplete.[68,129] Beyond simply filling in gaps in scientific knowledge, solving these 

structures would significantly expand the databases of material properties computed using 

high-throughput DFT.[18,32,37,38] 

Reconstructing 3-dimensional crystal structures from 1-dimensional powder diffraction 

data is a nontrivial problem even in an ideal case.[51] Conventionally, solving a crystal structure 

involves first determining the shape, symmetry, and content of the unit cell, and then 

performing the “structure solution” step to determine atomic positions.[49] A variety of 

techniques exist for performing structure solution, which all require varying degrees of expert 

judgement to employ.[55] Given the large number of unsolved structures, the amount of time 

required by experts must be kept as small as possible. Specifically, what would enable the 

solution of these crystals is a set of automated tools for crystal structure solution.  

One potential tool for automated crystal structure solution is the First-Principles-Assisted 

Structure Solution (FPASS) method.[63] The FPASS method functions by using energies 

calculated from DFT to guide the search for structures that have both minimal potential energy 

and an optimal match to experimental data. As FPASS is designed to solve crystal structures 

given composition, lattice parameters, and symmetry, it fills exactly the need for the many 

unsolved crystal structures in the PDF that already have this information. Furthermore, as 

FPASS uses DFT to compute the energy of candidate crystal structures, no problem-specific 

selection of an empirical potential is required – making it possible to run large numbers of 
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FPASS calculations without any need to first validate an empirical potential.[49,64,65] However, 

to date, FPASS has only been tested  in a few case studies[63,130,131] and no automated 

implementation of this method exists.  

In this work, we present a new implementation of the FPASS method and demonstrate that 

it can be used to automatically solve crystal structures. Our method includes a modified version 

of the original genetic algorithm and software capable of matching candidate solutions to raw 

diffraction patterns. To evaluate the performance of this method, we first validate the ability of 

the algorithm to solve nearly 100 common crystal structures given the known diffraction 

pattern, unit cell, and symmetry. During these validation tests, we determined that crystals 

structures with large numbers of possible combinations of Wyckoff sites are difficult to solve 

with FPASS and show how the algorithm that be tuned to perform better on such cases. With 

this knowledge, we applied FPASS to dozens of unsolved crystal structures from the PDF and 

were able to solve a significant fraction of them automatically. We then added these structures 

to the Open Quantum Materials Database (OQMD)[18,32] and used high-throughput DFT to 

predict their properties, and found several were promising for semiconductor applications. As 

our method requires minimal human interaction, we plan to continuously apply it to unsolved 

structures and then automatically predict the properties of these materials using high-

throughput DFT. 

4.3 Methods 

A general outline of how crystal structures are solved from powder diffraction data using 

FPASS is shown in Figure 4.1. FPASS is used to determine atomic positions in a crystal after the 
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lattice parameters, unit cell contents, and space group have been determined with peak 

indexing techniques. In this section, we will describe the theory and techniques behind FPASS. 

In particular, we will discuss the method used to compute the energy of a candidate structure, 

how our software determines how well a structure matches a powder diffraction pattern, and 

the details of the genetic algorithm used to efficiently solve the structure. 

4.3.1 FPASS Software 

The FPASS algorithm is implemented as part of the Materials Interface (Mint) software, 

which performs all steps in FPASS automatically. Mint itself was designed to perform many 

common tasks in the atomic-scale simulation of materials, including symmetry determination 

and generating input files for various simulation packages. Consequently, many of the analyses 

required by FPASS (e.g., symmetry determination) were already present before we 

implemented FPASS. Mint is written in C++ and available freely under the LGPL license.[132] 

 
Figure 4.1. Flow chart describing the process of solving a crystal structure from powder 
diffraction data using FPASS. The typical solution process starts by measuring the composition, 
diffraction pattern, and gravimetric density of a compound, which are then used to determine 
the unit cell contents, lattice parameters, and symmetry group of a crystal. Once this 
information is determined, FPASS is used to find the lowest energy structure within these 
constraints. 
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4.3.2 Computing Energy of Candidate Structures 

We use Density Functional Theory (DFT) to compute the energy of candidate structures, 

which enables the reliable prediction of energies without the need to fit or select appropriate 

empirical potentials.  DFT only requires the crystal structure in order to compute energy and is 

known to be able to reliably predict the ground state structure and formation energy of many 

inorganic systems.[18,32] As a result, DFT makes an excellent choice for a high-throughput 

solution tool – one can be confident in the accuracy of the calculated energies for a broad 

variety of crystal structures without needing to validate the energy calculation method before 

each solution. 

For this work, we performed all DFT calculations using the Vienna Ab Initio Simulation 

Package (VASP).[120,133–135] Unless otherwise stated, all calculations were performed with 

projector augmented-wave basis sets,[121,122] the GGA exchange-correlation functionals of 

Perdew, Burke, and Ernzerhof,[123] a cutoff energy of 1.3 times the maximum cutoff energy of 

all of the provided pseudopotentials, and 1000 K-points per reciprocal atom. We employed the 

DFT settings used by the Open Quantum Materials Database (OQMD), a collection of the 

structures and DFT-predicted formation energy of hundreds of thousands of crystalline 

materials, when comparing the stability of a candidate crystal structure against others.[18] 

4.3.3 Matching Candidate Structures against Powder Diffraction Patterns 

Another component of FPASS is methods to determine of how well a proposed structure 

agrees with the experimental diffraction pattern. Comparing a structure to an XRD pattern 

requires being able to compute XRD patterns for hypothetical structures, processing 
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experimentally-measured patterns, and adjusting a structure to better match the diffraction 

pattern. Each of these techniques are detailed in the following subsections. 

4.3.3.1 Diffraction Pattern Calculation 

Techniques to calculate the diffraction pattern of a crystal structure are well-established in 

the crystallography community.[136,137]  At a high level, the powder diffraction pattern is 

calculated by first finding all reflections that will occur within a certain range of diffraction 

angles. Next, reflections that would cancel each other out in a powder diffraction pattern due 

to the symmetry of the crystal are removed and symmetrically-identical peaks are grouped 

together for computational efficiency. These two steps generate a list of diffraction peaks that 

should be observed in a powder diffraction pattern, and are automatically performed by Mint 

based on the unit cell and symmetry of the structure. Once the list of peaks is generated, the 

intensity of each individual peak is computed based on the atomic positions, number of 

overlapping peaks, thermal factors describing the thermal oscillations of each atom (we use 

isotropic thermal factors), and the Lorentz and polarization factors following standard 

methods.[51]  

4.3.3.2 Raw Diffraction Pattern Processing 

Comparing a calculated diffraction pattern to an experimental pattern is easiest when 

comparing the integrated intensities of each peak. As the experimental data available for use 

may be the raw diffraction signal (intensity as a function of angle), we needed to implement an 

automated scheme for detecting the positions and integrating the intensities of each peak. Our 
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implementation uses a version of the processing algorithm described by Pecharsky 

and Zavalij:[51]  

1. Noise filter: The raw X-ray pattern is first passed through a noise filter that smooths the 

data by averaging the diffracted intensities of points with similar diffraction angles. 

2. Background removal: First, the background signal determined by calculating a running 

average where every point in a 2 degree window is assigned a weight inversely 

proportional to the 4th power of the intensity at that point. This background signal is 

then subtracted from the smoothed data from step 1. 

3. Peak detection: Once the background has been removed, the locations of diffraction 

peaks are found by identifying local minima in the second derivative of intensity with 

respect to diffraction angle. By identifying peaks based on the second derivative, we can 

easily separate peaks that are slightly overlapped.[51] 

4. Intensity extraction: A pseudo-Voight function, which is known to describe the peaks in 

X-ray diffraction patterns well,[51] is fit to the intensity values for each peak. We then 

integrate the area under each function to determine the intensity of each diffraction 

peak. The fitting functions corresponding to overlapping peaks are fitted concurrently in 

order to accurately determine the contribution of each individual peak. 

4.3.3.3 Matching Structures to Diffraction Pattern 

Before measuring how well a structure matches an experimental diffraction pattern, we 

adjust the candidate structures so that its computed pattern better matches the reference 

pattern – a technique known as structure refinement. Refinement is accomplished by 

minimizing the function 

 R =
∑(𝐼𝑐𝑎𝑙𝑐−𝑠×𝐼𝑜𝑏𝑠)2

∑𝑠×𝐼𝑜𝑏𝑠
  (3) 

where 𝐼𝑐𝑎𝑙𝑐 is the calculated integrated intensity of each peak, 𝐼𝑜𝑏𝑠 is the integrated intensity of 

the same peak in the experimental pattern, and 𝑠 is a scaling factor. Each peak in the observed 

pattern is assigned to the closest peak of any peak in the reference pattern that is within 0.15 

degrees. If multiple observed peaks match a single peak in the reference pattern, their 
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intensities values are added together. Unassigned peaks from both the observed and reference 

pattern are treated as being matched to a hypothetical peak of zero intensity. The computed 

intensity, 𝐼𝑐𝑎𝑙𝑐, is a function of several different factors (e.g., atomic positions, thermal factors, 

texturing), which we optimize using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as 

implemented in Dlib.[138] Following the procedure described by Pecharsky and Zavalij,[51] we 

sequentially add more fitting parameters (starting with the scale factor) during the 

optimization. After refinement, we use the optimized 𝑅 to describe the match to the diffraction 

pattern. 

4.3.3.4 Rietveld Refinement 

When matching the computed XRD pattern against the raw intensity measurements, we 

employ a method known as Rietveld refinement.[139] In contrast to the previous section where 

only the integrated intensities of each peak are considered, the computed X-ray pattern of a 

structure is compared to the entire experimental X-ray diffraction pattern in Rietveld 

refinement. Here, the match between two patterns is defined by  

 𝑅𝑝 = ∑|𝐼(𝑜𝑏𝑠. )𝑖 − 𝑠 × 𝐼(𝑐𝑎𝑙𝑐. )𝑖| / ∑|𝑠 × 𝐼(𝑜𝑏𝑠)𝑖| (4) 

where 𝐼𝑖 is the observed or calculated diffracted intensity above the background signal at 

angle 2𝜃𝑖 .[140] In order to compute this quantity, one must subtract the background signal 

from the pattern and evaluate the sum only over regions where 𝐼(𝑜𝑏𝑠. ) is positive. To do so, it 

is necessary to determine the background signal in the diffraction pattern, which we perform by 

fitting the background signal to Chebyshev polynomials. Additionally, we use pseudo-Voight 

functions to describe the shape of each diffraction peak. The parameters for the background 
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signal and peak shapes are fit in addition to the parameters described in the previous section. 

As this optimization problem is significantly costlier than optimizing using only integrated peak 

intensities, we only employ this technique when automated pattern processing has failed and 

for when reporting the match to diffraction data when validating a proposed structure (i.e., not 

during the structure solution process). 

4.3.4 Efficiently Locating the Optimal Crystal Structure Solution 

The FPASS method is based on a genetic algorithm designed to efficiently search through 

candidate crystal structures. FPASS requires the unit cell parameters and content (i.e., number 

of atoms of each type) as input, and can use the measured diffraction pattern, space group, and 

the known position of any atoms in the structure to guide and constrain the search. In 

particular, including the symmetry as a constraint can dramatically accelerate the solution 

process.[63,130] With this information, the FPASS algorithm can be used to determine the 

positions of atoms that minimize the energy. Genetic algorithms, in general, work by mimicking 

natural selection: better-performing solutions are mixed to create new candidates that are 

similar to them. As shown in Figure 4.2, this process is repeated for several generations until 

the algorithm converges on an optimal solution. In the following sections, we will describe the 

two parts of the GA that are unique for FPASS: how the initial population is generated and how 

new generations are created. 
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4.3.4.1 Generating Initial Population 

The genetic algorithm used in our implementation of FPASS starts with an initial population 

of randomly-generated structures. Each initial structure is created by first selecting a 

combination of Wyckoff sites from the selected space group that lead to a unit cell with the 

correct numbers of atoms. Then, we assign random positions to each site. This process is 

repeated until we have the desired number of structures. 

 
Figure 4.2. Flowchart for genetic algorithm used by FPASS. The algorithm starts by generating a 
random population of candidate crystal structures, and then evaluating their properties. After 
the initial population, new generations are created by a mixture of the best-performing 
compounds from the previous generation and compounds created using genetic operators. 
These new structures are then evaluated, and the process is repeated until the best structure 
does not change after N generations. 
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In order to more efficiently search the structure space, we bias the selection of the Wyckoff 

sites to be statistically similar to information mined from a large number of known crystal 

structures. By analyzing the Inorganic Crystal Structure Database,[68] we found that 85% of 

crystal structures have the minimum possible number of Wyckoff sites consistent with space 

group and number of atoms in the structure, as shown in Figure 4.3. To bias our initial 

population to have more structures with small numbers of Wyckoff sites, we first generate a list 

of all possible combinations of Wyckoff sites that will lead to the correct number of atoms in 

the unit cell, provided the symmetry group given as input to FPASS. Each of those possibilities is 

assigned a weight related to the fraction of structures in the ICSD with the same ratio between 

the number of Wyckoff sites in that crystal to the fewest-possible number of sites. These 

weights are used to influence the selections 

of combinations of sites when creating 

random crystal structures, and can be tuned 

using one of the input parameters for the 

genetic algorithm. 

4.3.4.2 Creating New Generations 

Each new generation in FPASS is 

generated by a combination the best-

performing structures from the previous 

generation, and structures created using 

genetic operations. Before creating the new 

 
Figure 4.3. Distribution of structures in the 
ICSD based on the ratio between number of 
unique sites (𝑛) in the crystal structure and the 
minimum possible number of sites (𝑛0). The 
minimum possible number of unique sites can 
be determined using number of atoms in unit 
cell and symmetry group. For the majority of 
structures (approximately 85%), the actual and 
minimum number of unique atoms are the 
same. 
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generation, we first rank each structure in the previous generation based on the sum of its rank 

in both energy and match to diffraction pattern (ex: the structure with the lowest energy and 

second best match to the pattern would have a score of 3). The “elite” are included to ensure 

the best-performing structure is always considered when making new guesses.  

To create the rest of the generation, we generate structures using genetic operations. For 

each new structure, we first select two parent structures out of the list of better-performing 

structures from the previous generation. To bias our selection to only the better-performing 

candidates, we randomly select parents from only the top 0.6√𝑛 structures, where 𝑛 is the 

number of entries in the population. Each time we generate a new structure, we first select two 

parents from a list containing these top candidates, then generate a new structure with 

crossover, and, finally, randomly perturb that structure. 

Crossover is performed by combining groups of symmetrically-equivalent atoms from 

either parent. For example, suppose one parent structure has a total of 8 Na atoms on the 4c 

Wyckoff position and the second parent has 4 Na atoms on the 4c position, 2 atoms on the 2b, 

and 2 on the 2a position. Our crossover method could produce a child structure that includes 

one of the two groups of Na atoms on the 4c position from the first parent and the atoms on 

the 4c position from the second parent. Or, it could generate structure that contains the second 

group of Na atoms on the 4c position in the first parent and the atoms on the 2a and 2b 

positions in the second. In total, there are 6 possible ways of combining the Na atoms from the 

two parents that will have the same total number of Na atoms. This procedure is repeated for 
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each type of atom and will create a new structure with the same symmetry and composition as 

the parent structures. 

After crossover, for randomly-selected children, we perform one of two possible 

mutations: (1) perturbing the atomic positions of a group of symmetrically-equivalent atoms, or 

(2) selecting a different combination of Wyckoff sites. Both of these operations are designed to 

preserve the original symmetry of the structure. The probability of performing either type of 

mutation is adjustable, and the random magnitude of each perturbation allows the mutations 

to range from small alterations to completely-random structures. 

4.4 Testing Validity and Improving 

Efficiency of FPASS 

Before automating FPASS, we first 

determined whether FPASS can reliably 

determine crystal structures for a broad 

variety of structures and adjusted the 

settings of the algorithm in order to minimize 

the computational cost. The results from our 

validation and tuning efforts are described 

below. 

4.4.1 Validating the Algorithm 

While the FPASS method has been 

shown to be able to accurately determine the 

 

 
Figure 4.4. (a) Distribution of crystal families 
and (b) number of atoms in the primitive cell 
for all 95 compounds used to validate FPASS. 
Candidates were intentionally chosen to 
sample a wide variety of cell sizes, sizes, and 
chemistries. 
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crystal structures in a few test cases,[63,130] we further validated our new implementation 

before using it in an automated manner. To further validate our method, we measured how 

often FPASS determines the correct structure for 95 compounds with a wide variety of 

symmetry groups and cell sizes. As shown in Figure 4.4, we selected compounds from all crystal 

families with the exception of triclinic and with sizes ranging from between 1 and 30 atoms in 

the primitive cell. This wide variety of structures also enabled us to study how symmetry and 

unit cell size affect the performance of FPASS. 

For each test case, we ran at least 10 individual FPASS calculations to determine how often 

the algorithm finds the correct structure. In each test, FPASS was supplied with the lattice 

parameters, symmetry group, powder diffraction pattern from the PDF, and the number of 

atoms of each type in the unit cell. In all test cases, we found that the lowest energy candidate 

structure for that compound agreed with the known structure. As shown in Figure 4.5a, we 

found that FPASS returns the correct structure at least 90% of the time in 67 (71%) of the tests. 

In several of these test cases, the high success rate of FPASS is not surprising because many of 

the solutions had less than 5 possible structures that match the known space group and 

number of atoms. Even so, FPASS was still able to determine the correct structure of the face-

centered-orthorhombic, 72-atom unit cell of GeS2 8 out of 10 times. 

 



 73 

 

We also studied the characteristics of structures that correspond to especially low and high 

success rates. As shown in Figure 4.5, the success rate decreases with worse pattern quality, 

larger minimum possible number of symmetrically-unique atoms, and larger difference in the 

maximum and minimum number of Wyckoff sites. In fact, the compound that FPASS solved 

correctly the least often, MgNi2, has a large number of minimum number of unique atoms (4), a 

large difference between the maximum and minimum number of unique atoms (4), and a poor 

quality X-ray pattern (a “B” rating from the ICDD). Many of the other structures with low FPASS 

success rates have similar characteristics. In general, we found that FPASS performs best when 

 

 
Figure 4.5. (a) Histogram of in how often FPASS determines the correct structure for all 95 test 
cases.  (b-d) Variation in how often FPASS determines the correct structure as a function of (b) 
quality of diffraction pattern, (c) minimum possible number of unique atoms, and (d) difference 
between maximum and minimum number of unique atoms. Generally, the success rate for 
FPASS is the worst when poor-quality x-ray data is provided and for crystals with large unit cells. 
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solving structures with high symmetry and small number of atoms in the unit cell and is 

provided with a high quality X-ray pattern. 

4.4.2 Tuning the Algorithm 

In order to improve the reliability of FPASS for difficult-to-solve crystal structures, we 

adjusted parameters of the genetic algorithm and evaluated changes in success rate for 10 of 

the more difficult test cases. For this process, we selected a set of problems we determined to 

be more difficult based on the metrics studied in the previous section: α-Mn, β-Quartz, Mg2Ni, 

CdI2 GeS2, PdS, CuS, NiS, α-Np, and SiU3. FPASS had high rates of determining the correct 

structure for four of these structures (α-Mn, GeS2, PdS, NiS), even though they were expected 

to be difficult based on the metrics established in the previous section. For the other 6 test 

cases, FPASS had low success rates. By selecting cases with a variety of success rates for FPASS, 

we can ensure that changes in the parameters that improve the performance on difficult cases 

do not negatively affect other cases. 

We first tuned factors that do not directly affect the computation time: the Wyckoff-site 

biasing factor and mutation probabilities. As described in the Methods section, these 

parameters correspond to how much we bias our initial population and how new generations 

are created. Originally, we used a Wyckoff site and atomic position mutation probabilities of 0.5 

and a biasing parameter of 0.5. In order to tune these parameters, we first adjusted the 

mutation probabilities and biasing parameter and found that the biasing parameter had the 

strongest impact on success rate. When then held all mutation parameters fixed, and found 

that the performance of FPASS was the best with the biasing turned off (i.e., a parameter of 0). 
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We then held the bias factor fixed at 0, and repeated the tuning process in order to adjust the 

mutation probabilities and found that the original selections of 0.5 for each type of mutation 

were optimal. By adjusting mutation probabilities and biasing, we were only able to increase 

the average success rate of FPASS slightly from 64% of these difficult cases to 68%. 

Once we finished tuning the mutation probabilities and biasing factor, we iteratively 

increased the population size. As the population size directly controls the calculation time, we 

also considered computational efficiency when adjusting this parameter. We found that by 

increasing the population size from 10 to 20 we could increase the success rate to 82%. 

Achieving a one part in a million chance of not finding the correct structure in at least one 

calculation would require 12 calculations for a success rate of 68% and only 8 for an 82% 

success rate. However, this increase in population size increases the total time for each 

calculation at a faster rate. Considering that the average FPASS calculation for a population size 

of 10 evaluated only 119 structures before converging and the average for a generation size of 

Table 4.1. Adjustable parameters for the FPASS algorithm, and their recommended values. 

Name Description Recommendation 

gaoptPopSize Size of population 10 

gaoptConverge Number of generations after which if no better 
structure is found, the optimization is terminated 

7 

WyckoffBias The biasing factor used when selecting new 
combinations in new Wyckoff site combinations. 
Larger values of this parameter bias selection 
towards fewer Wyckoff sites 

0 

gaoptWyckMutProb Probability that a new structure will be mutated 
by selecting new Wyckoff sites 

50% 

gaoptPosMutProb Probability that a new structure will be mutated 
by perturbing atomic positions 

50% 

gaoptNumToKeep Number of top entries to retain in new generation 1 
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20 was 219, the population size of 20 would require evaluating more structures and, thereby, 

more resources to achieve a certain likelihood of finding the correct structure. For that reason, 

we recommend a population size of 10 and running large numbers of FPASS calculations for 

more-difficult solutions. A summary of our recommended values for each parameter are shown 

in Table 4.1. 

4.5 Automated Solution of Crystal Structures 

After validating and tuning FPASS, we employed it to solve the structures of several entries 

that lacked crystal structures in both the Powder Diffraction File and OQMD. To minimize the 

amount of human effort required to perform each solution, we created a software package 

designed to automate starting FPASS calculations, checking output for errors, and performing 

several validation checks. This automation software, named “fpassmgr,” is available in under an 

open-source license. Using fpassmgr, we run FPASS at least 10 times and until at least 5 FPASS 

results are identical, and then compute the stability and equilibrium volume for each candidate 

solution using qmpy.[18] Once the calculation is complete, the code generates a webpage 

summary that includes structure files for the proposed solution as well as all of the validation 

results. For most cases, the only human interaction required is starting the calculation and 

reviewing the validation summary in order to decide whether FPASS has found a correct 

solution. 



 77 

 

4.5.1 Validation Strategy 

Our validation strategy is based on several different tests: (1) agreement between several 

independent FPASS calculations, (2) match to experimental diffraction pattern, (3) energetic 

stability, and (4) difference between the experimentally-measured and DFT-predicted volume. 

First, we run FPASS at least 10 times and conclude a solution has been found when at least 4 

other calculations agree with the lowest-energy structure. Once we reach this level of 

agreement, we select the lowest energy solution as the putative structure, refine the structure 

to best match the experimental pattern, and measure the R factor. As our Rietveld refinement 

code is relatively simple, we assume a R of approximately 0.3 is a satisfactory match (typically, 

this is value can be refined to below 0.05). 

We also validate the structure by assessing the DFT-computed formation enthalpy and 

equilibrium volume of the candidate structure. To assess energetic feasibility, we compute the 

 
Figure 4.6. Distributions of (a) DFT-computed stability and (b) fractional difference between the 
measured and DFT-computed volume of all compounds from the Inorganic Crystal Structure 
Database (ICSD) in the OQMD. Stability was measured as the difference between the computed 
formation enthalpy of a compound and the minimum-energy combination of all other phases in 
the OQMD at the same composition. The red arrows indicated the measured stability and 
fractional difference in volume for our proposed solution for the structure of Al3FeGe2Y3, which 
lies well within the observed range of these two characteristics. 
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stability with respect to decomposition to all other phases in the OQMD.[141] We then 

compare this stability to that of all structures from the Inorganic Crystal Structure Database in 

the OQMD, and determine whether it is within similar ranges – as shown in Figure 4.6a. While 

the low stability value is no guarantee that our solution is the ground state, it does verify that it 

is energetically feasible. Once we have computed the formation enthalpy, we also compute the 

change in volume during relaxation and compare the fractional change to the fractional 

changes of all compounds in the ICSD (see Figure 4.6b). 

Table 4.2. Compositions, symmetry groups, and DFT-predicted properties of structures solved 
using our automated implementation of FPASS. The stability is the difference between the with 
respect to the convex hull of the formation enthalpies in the OQMD.[18,32] Negative stability 
indicates that a compound is stable against decomposition into other structures. 

Composition 
Space 
Group 

Volume (Å3/atom) 𝚫𝑯𝒇 

(eV/atom) 

Stability 
(meV/atom) 

𝑬𝒈 

(eV) Experiment DFT 𝛿 (%) 

Al3CePt 𝐼4𝑚𝑚 19.84 20.44 3.0 -0.840 -32 0 

Pb2ZnTeO6 𝐹𝑚3̅𝑚 12.78 12.85 0.5 -1.375 70 1.3 

Sr2TaZnO6 𝐹𝑚3̅𝑚 13.36 12.79 -4.2 -2.721 58 0 

CaCoSO 𝑃63𝑚𝑐 17.02 16.99 -0.2 -1.872 46 1.1 

Al3FeGe2Y3 𝑃6̅2𝑐 19.46 19.47 0.1 -0.686 -20 0 

Ba2CdTeO6 𝐹𝑚3̅𝑚 14.61 14.73 0.8 -2.159 -100 1.2 

KFe2Se2 
𝐼4
/𝑚𝑚𝑚 

21.44 20.80 -3.0 -0.504 31 0 

Mo2NaTmO8 𝐼4̅ 12.55 12.24 -2.5 -2.663 -55 3.1 

LiSbO3 𝐶2/𝑚 11.55 11.47 -0.7 -1.954 1 2.9 

Tb2O2CN2 𝑃3̅𝑚1 14.25 14.03 -1.5 -2.175 -206 4.1 
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4.5.2 Solved Structures 

The following subsections are descriptions of the 10 structures we were able to solve using 

FPASS. The complete structures of some of this compounds had been solved previously but 

were not present in the OQMD, which made them ideal candidates for further testing our 

solution and structure validation strategy. For other compounds, like NaTmMo2O8 and LiSbO3, 

the unit cell and symmetry of the structure have been determined, but the atomic positions 

were not known. In all cases, the solution of the structures with FPASS enabled adding these 

materials to the OQMD and making it more complete. As shown in the summary table, 

Table 4.2, and Figure 4.7, these sample a broad variety of types of compounds: two of these 

materials are poly-anionic compounds (CaCoSO and Tb2O2CN2), one is a lithium-containing 

oxide (LiSbO3), and two are intermetallics (CeAl3Pt and Al3FeGe2Y3). Once we solved the 

structures and added these compounds to the OQMD, we found that several of the materials 

have band gap energies in the desired range for photovoltaics or thermoelectrics.  

 

 
Figure 4.7. Crystal structures determined in this work using an automated implementation of 
the FPASS algorithm.  



 80 

 

4.5.2.1 Al3FeGe2Y3 

We were unable to find a crystal structure for Al3FeGe2Y3 or even reports of its synthesis in 

the literature. As a starting point for our solution, we used the diffraction pattern from the PDF, 

along with the already-known composition, space group, and lattice parameters. Using FPASS, 

we found this compound to be isostructural to the chemically-similar compound, 

Al3NiGe2Y3.[142] We repeated the FPASS solution 10 times and found that each repetition 

returned the same structure. As shown in Figure 4.6, the stability (measured with respect to all 

other competing phases) is negative, which indicates that it is thermodynamically stable at 

T = 0 K. The fractional difference between the experimentally-determined and DFT-predicted 

volume of this structure is also well within the distribution of other structures from the ICSD, 

which also indicates the structure is reasonable. Finally, as shown in Figure 4.8, the agreement 

between the computed and measured powder diffraction pattern is qualitatively excellent. 

Overall, these validation tests suggest our structure is likely the correct solution for Al3FeGe2Y3. 

4.5.2.2 Al3CePt 

Al3CePt was originally synthesized in 

1994, is known to have the BaNiSn3-type 

crystal structure,[143,144]  and our FPASS 

calculation also finds this structure. While 

this structure has been solved before, the 

solution was not present in the Powder 

Diffraction File when we performed FPASS 

 
Figure 4.8. Calculated (red, dashed line) and 
measured (blue, solid line) powder diffraction 
patterns of our proposed solution for the 
structure Al3NiGe2Y3, as calculated using the 
Materials Interface (Mint). 
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and is currently listed only under the ThCr2Si2 structure type in the ICSD. Both ThCr2Si2 and 

BaNiSn3 are based on the BaAl4 structure (with Ce in the body center position), but differ in the 

fact that ThCr2Si2 is centrosymmetric and BaNiSn3 is not.[144] As in the solution for Al3FeGe2Y3, 

we found the same structure in all 10 FPASS calculations, the structure is stable in DFT, and that 

the DFT and experimental volumes of the structure are in agreement. Also considering the 

acceptable match to the X-ray diffraction pattern, we conclude our solution is correct. While 

our work is not the first solution for this structure, our solution does match the literature and 

we were still successful in adding a missing crystal structure to the OQMD.  

4.5.2.3 Pb2ZnTeO6, Ba2CdTeO6, and Sr2TaZnO6 

We found Pb2ZnTeO6, Ba2CdTeO6, and Sr2TaZnO6 to all have the double perovskite 

structure. Of these, Pb2ZnTeO6 and Ba2CdTeO6 are both known to be double 

perovskites,[145,146] but were not present in the ICSD and OQMD. As far as we could tell, 

Sr2TaZnO6 has not yet been reported in the literature and is not present in the ICSD or 

Crystallography Open Database (COD).[67,68] For all three cases, FPASS found the same 

structure 10 out of 10 calculations, and all of our other validation checks indicate these 

structures are reasonable. Each structure was either stable or slightly metastable 

(<75 meV/atom) and the volume difference between the experimental were all within bounds 

(<5%) – as shown in Table 4.2. According to our FPASS calculations, there are only two likely 

structures given the A2B’B’’O3 stoichiometry, the known symmetry, and the number of atoms in 

the unit cell: a structure where each A atom is coordinated with 12 O atoms, and one where A 

is coordinated with six. As the only difference between these two structures is the positions of 
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O atoms, these two structures have similar diffraction patterns when O scatters X-rays weakly 

compared to other atoms in the structure. However, the energy difference between the 

structures can be quite large (> 1 eV/atom for Pb2ZnTeO6), which makes the solution 

unambiguous with FPASS. 

4.5.2.4 CaCoSO 

According to its entry in the Powder Diffraction File, CaCoSO is a hexagonal structure with a 

space group of 𝑃63𝑚𝑐. Using this information and the unit cell parameters available in the PDF, 

we found the structure to be similar to that of CaClOH, with Co occupying the tetrahedrally-

coordinated site.[147] This finding is consistent with the structure solution of Salter et al. in 

2016.[148] We found this structure in 9 out of 10 FPASS calculations, and were able to confirm 

that it is only slightly metastable (46 meV/atom). Therefore, we agree with the structure 

proposed by Salter et al. 

4.5.2.5 KFe2Se2 

KFe2Se2 is the nominal composition of a superconducting compound discovered in 2010, 

and is known to have the ThCr2Si2 structure.[149] At the time we performed our FPASS 

calculation, this structure was not available in the OQMD but already established in the 

literature.[149] We did confirm the ThCr2Si2 structure with our FPASS calculation, and found it 

to pass all validation checks. As in the solution of Al3CePt, we did not solve this structure for the 

first time but were able to improve the OQMD by adding this structure to our database. 
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4.5.2.6 NaTmMo2O8 

We found the first report of Mo2NaTmO8 to be in a 1964 paper by Ayala et al.[150] The 

authors reported the unit cell parameters of the structure and that Mo2NaTmO8 was based on 

the scheelite (CaWO4) structure, but the not the atomic positions.[151] Using FPASS, we 

confirmed the structure of Mo2NaTmO8 is based on the scheelite structure and equivalent to 

that of Li2CaHfF8.[150] FPASS found this structure in 10 out of 10 calculations. Our validation 

DFT calculations found a similar volume to that observed in experiment and that this structure 

is stable. Considering that the diffraction pattern match is also acceptable, we conclude we 

have determined the correct structure.  

4.5.2.7 LiSbO3 

The monoclinic phase for LiSbO3 was discovered by Nalbandyan et al. in 2006.[152] While 

the authors were unable to determine its crystal structure, they hypothesized LiSbO3 is a 

distorted rock salt structure.[152] Using the known unit cell parameters and symmetry group 

(𝐶2/𝑚) proposed by Nalbandyan et al. as input to FPASS, we found a layered structure similar 

to Li2MnO3 – a distorted rocksalt structure consistent with the hypothesis of Nalbandyan et 

al.[153] The Sb atoms form a 2D network of face sharing octahedra, with the Li atoms 

occupying tetrahedral sites in the space between these layers (as opposed to octahedral sites in 

Li2MnO3). This structure is nearly degenerate with the known, orthorhombic phase of 

LiSbO3,[154] being only 1 meV/atom higher in energy than the orthorhombic structure 

according to our DFT calculations. We ran FPASS thirty times and found the layered structure in 

8 of the calculations. The other, higher energy solutions, include a version of this structure 
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where the Li is in octahedral sites (as in Li2MnO3), which is slightly higher in energy 

(42 meV/atom). Also considering the acceptable match with the experimental diffraction 

pattern and small difference between experimental and DFT-predicted volumes, we conclude 

our solution to LiSbO3 – a layered structure with Li on the tetrahedral sites – is correct. 

4.5.2.8 Tb2CN2O2 

According to the Powder Diffraction File, Tb2CN2O2 has a hexagonal unit cell with 𝑃3̅𝑚1 

symmetry. Starting with this information and the lattice parameters listed in the PDF, we found 

that this compound shares the same crystal structure as 11 other lanthanoid 

dioxymonocyanamides.[155,156] All 10 FPASS calculations we performed found this structure, 

and we also found it to be stable in the OQMD. The volume change on relaxation and match to 

diffraction pattern are also reasonable, which lead us to conclude that this is the correct 

structure for Tb2CN2O2. 

4.6 Current Limitations of FPASS  

Ten of the 20 solutions we attempted with FPASS failed at least one of the validation tests, 

which could each be a result of several factors. First of all, our technique is based on the 

assumption that the hypothesized lattice parameters and space group are correct. If any of 

these are inaccurate, our algorithm may converge to an incorrect solution. Also, FPASS may 

have failed to find the correct solution within the search space – though this is unlikely if the 

algorithm returned the same structure from multiple runs. Furthermore, our implementation of 

FPASS currently only supports perfectly-ordered materials. If the true solution is disordered 

(e.g., mixing between two types of elements on a single site), FPASS will fail to find the correct 
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structure. Overall, these failures highlight potentials avenues for improving FPASS (e.g., 

accounting for disorder) and the necessity of automated validation tests. 

4.7 Conclusion 

In this work, we described an implementation of the FPASS algorithm capable of being 

used to automatically solve incompletely-determined crystal structures. We validated this 

algorithm by determining the structures of over 90 known crystal structures, and found that 

FPASS identified the correct structure in each case. Once validated, we tuned the algorithm to 

increase its reliability for crystal structures that are difficult for the algorithm to solve and then 

applied it to solve of dozens of yet-undetermined structures from the Powder Diffraction File. 

To date, we have solved the structures of 10 compounds and added these structures to the 

OQMD; thereby increasing the completeness of this database.   
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5 General-Purpose, Composition-Based Representations of Materials 

5.1 Abstract 

A very active area of materials research is to devise methods that use machine learning to 

automatically extract predictive models from existing materials data. While prior examples 

have demonstrated successful models for some applications, many more applications exist 

where machine learning can make a strong impact. To enable faster development of machine-

learning-based models for such applications, we have created a framework capable of being 

applied to a broad range of materials data. Our method works by using a chemically diverse list 

of attributes, which we demonstrate are suitable for describing a wide variety of properties, 

and a novel method for partitioning the data set into groups of similar materials in order to 

boost the predictive accuracy. In this chapter, we demonstrate how this new method can be 

used to predict diverse properties of crystalline and amorphous materials, such as band gap 

energy and glass-forming ability. 

5.2 Introduction 

Rational design of materials is the ultimate goal of modern materials science and 

engineering. As part of achieving that goal, there has been a large effort in the materials science 

community to compile extensive datasets of materials properties in order to provide scientists 

and engineers with ready access to the properties of known materials. Today, there are 

databases of crystal structures[68], superconducting critical temperatures,[157] physical 

properties of crystalline compounds,[18,32,37,38] and many other repositories containing 

useful materials data. Recently, it has been shown that these databases can also serve as 
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resources for creating predictive models and design rules – the key tools of rational materials 

design.[3,4,86,88,106,158] These databases have grown large enough that the discovery of 

such design rules and models is impractical to accomplish by relying simply on human intuition 

and knowledge about material behavior. Rather than relying directly on intuition, machine 

learning offers the promise of being able to create accurate models quickly and automatically. 

To date, materials scientists have used machine learning to build predictive models for a 

handful of applications.[79,80,85,94,100,159–168] For example, there are now models to 

predict the melting temperatures of binary inorganic compounds,[163] the formation enthalpy 

crystalline compounds,[41,79,85] which crystal structure is likely to form at a certain 

composition,[37,100,115,116,169] band gap energies of certain classes of crystals,[170,171] 

and the mechanical properties of metal alloys.[94,166] While these models demonstrate the 

promise of machine learning, they only cover a small fraction of the properties used in 

materials design and the datasets available for creating such models. For instance, no broadly-

applicable, machine-learning-based models exist for the band gap energy or glass forming 

ability even though large-scale databases of these properties have existed for years.[18,172] 

Provided the large differences between the approaches used in the literature, a systematic 

path forward to creating accurate machine learning models across a variety of new applications 

is not clear. While techniques in data analytics have advanced significantly, the development of 

routine methods for transforming raw materials data into the quantitative descriptions 

required for employing these algorithms has yet to emerge. In contrast, the chemoinformatics 

community benefits from a rich library of methods for describing molecular structures, which 
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allow for standard approaches for deciding inputs into the models and, thereby, faster model 

development.[173–175] What is missing are similar flexible frameworks for building predictive 

models of material properties. 

In this work, we present a general-purpose machine-learning-based framework for 

predicting the properties of materials based on their composition. In particular, we focus on the 

development of a set of attributes – which serve as input to the machine learning model – that 

could be reused for a broad variety of materials problems. Provided a flexible set of inputs, 

creating a new material property model can be reduced to finding a machine learning algorithm 

that achieves optimal performance – a well-studied problem in data science. Additionally, we 

employ a novel partitioning scheme to enhance the accuracy of our predictions by first 

partitioning data into similar groups of materials and training separate models for each group. 

We show that this method can be used regardless of whether the materials are amorphous or 

crystalline, the data is from computational or experimental studies, or the property takes 

continuous or discrete values. In particular, we demonstrate the versatility of our technique by 

using it for two distinct applications: predicting novel solar cell materials using a database of 

DFT-predicted properties of crystalline compounds and using experimental measurements of 

glass-forming ability to suggest new metallic glass alloys. Our vision is that this framework could 

be used as a basis for quickly creating models based on the data available in the materials 

databases and, thereby, initiate a major step forward in rational materials design. 
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5.3 General Purpose Method to Create Materials Property Models 

Machine learning (ML) models for materials properties are constructed from three parts: 

training data, a set of attributes that describe each material, and a machine learning algorithm 

to map attributes to properties. For the purposes of creating a general purpose method, we 

focused entirely on the attributes set because the method needs to be agnostic to the type of 

training data and because it is possible to utilize already-developed machine learning 

algorithms. Specifically, our objective is to develop a general set of attributes based on the 

composition that can be reused for a broad variety of problems.  

The goal in designing a set of attributes is to create a quantitative representation that both 

uniquely defines each material in a dataset and relates to the essential physics and chemistry 

that influence the property of interest.[79,80] As an example, the volume of a crystalline 

compound is expected to relate to the volume of the constituent elements. By including the 

mean volume of the constituent elements as an attribute, a machine learning algorithm could 

recognize the correlation between this value and the compound volume, and use it to create a 

predictive model. However, the mean volume of the constituent elements neither uniquely 

defines a composition nor perfectly describes the volumes of crystalline materials.[176] 

Consequently, one must include additional attributes to create a suitable set for this problem. 

Potentially, one could include factors derived from the electronegativity of the compound to 

reflect the idea that bond distances are shorter in ionic compounds, or the variance in atomic 

radius to capture the effects of polydisperse packing. The power of machine learning is that it is 
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not necessary to know which factors actually relate to the property and how before creating a 

model – those relationships are discovered automatically. 

The materials informatics literature is full of successful examples of attribute sets for a 

variety of properties.[79,85,100,159,163,170,177] We observed that the majority of attribute 

sets were primarily based on statistics of the properties of constituent elements. As an 

example, Meredig, Agrawal et al. described a material based on the fraction of each element 

present and various intuitive factors, such as the maximum difference in electronegativity, 

when building models for the formation energy of ternary compounds.[85] Ghiringhelli et al. 

used combinations of elemental properties such as atomic number and ionization potential to 

study the differences in energy between zinc-blende and rocksalt phases.[79] We also noticed 

that the important attributes varied significantly depending on material property. The best 

attribute for describing the difference in energy between zinc-blende and rocksalt phases was 

found to be related to the pseudopotential radii, ionization potential, and electron affinity of 

the constituent elements.[79] In contrast, melting temperature was found to be related to 

atomic number, atomic mass, and differences between atomic radii.[163] From this we 

conclude that a general-purpose attribute set should contain the statistics of a wide variety of 

elemental properties in order to be adaptable. 

Building on existing strategies, we created an expansive set of attributes that can be used 

for materials with any number of constituent elements. As we will demonstrate, this set is 

broad enough to capture a sufficiently-diverse range of physical/chemical properties in order to 

be used to create accurate models for many materials problems. In total, we use a set of 145 
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attributes, which are compared against other attribute sets in the Appendix, that fall into four 

distinct categories: 

1. Stoichiometric attributes that depend only on the fractions of elements present and not 

what those elements actually are. These include the number of elements present in the 

compound and several Lp norms of the fractions. 

2. Elemental Property Statistics, which are defined as the mean, mean absolute deviation, 

range, minimum, maximum, and mode of 22 different elemental properties. This category 

includes attributes such as the maximum row on periodic table, average atomic number, 

and the range of atomic radii between all elements present in the material. 

3. Electronic Structure attributes, which are the average fraction of electrons from the s, p, 

d, and f valence shells between all present elements. These are identical to the attributes 

used by Meredig, Agrawal et al.[85] 

4. Ionic Compound attributes that include whether it is possible to form an ionic compound 

assuming all elements are present in a single oxidation state, and two adaptations of the 

fractional “ionic character” of a compound based on an electronegativity-

based measure.[178] 

For the third ingredient, the machine learning algorithm, we evaluate many possible 

methods for each individual problem. Previous studies have used machine learning algorithms 

including partial least-squares regression,[115,159] Least Absolute Shrinkage and Selection 

Operator (LASSO),[79,171,179] decision trees,[85,100] kernel ridge regression,[80,160,161,180] 

Gaussian process regression, [161–163,181] and neural networks.[94,164,165] Each method 

offers different advantages, such as speed or interpretability, which must be weighed carefully 

for a new application. We generally approach this problem by evaluating the performance of 

several algorithms to find one that has both reasonable computational requirements (i.e., can 

be run on available hardware in a few hours) and has low error rates in cross-validation – a 
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process that is simplified by the availability of well-documented libraries of machine learning 

algorithms.[74,138] We often find that ensembles of decision trees (e.g., rotation forests[78]) 

perform best with our attribute set. These algorithms also have the advantage of being quick to 

train, but are not easily interpretable by humans. Consequently, they are less suited for 

understanding the underlying mechanism behind a material property but, owing to their high 

predictive accuracy, excellent choices for the design of new materials. 

We also utilize a partitioning strategy that enables a significant increase in predictive 

accuracy for our ML models. By grouping the dataset into chemically-similar segments and 

training a separate model on each subset, we boost the accuracy of our predictions by reducing 

the breadth of physical effects that each machine learning algorithm needs to capture. For 

example, the physical effects underlying the stability intermetallic compounds are likely to be 

different than those for ceramics. In this case, one could partition the data into compounds that 

contain only metallic elements and another including those that do not. As we demonstrate in 

the examples below, partitioning the dataset can significantly increase the accuracy of 

predicted properties. Beyond using our knowledge about the physics behind a certain problem 

to select a partitioning strategy, we have also explored using an automated, unsupervised-

learning-based strategy for determining distinct clusters of materials.[83] Currently, we simply 

determine the partitioning strategy for each property model by searching through a large 

number of possible strategies and selecting the one that minimizes the error rate in cross-

validation tests. 
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5.3.1 Justification for Large Attribute Set 

The main goal of our technique is to accelerate the creation of machine learning models by 

reducing or eliminating the need to develop a set of attributes for a particular problem. Our 

approach was to create a large attribute set, with the idea that it would contain a diverse 

enough library of descriptive factors such it is likely to contain several that are well-suited for a 

new problem. To justify this approach, we evaluated changes in the performance of attributes 

for different properties and types of materials using data from the Open Quantum Materials 

Database (OQMD). As described in greater detail in the next section, the OQMD contains the 

DFT-predicted formation energy, band gap energy, and volume of hundreds of thousands of 

crystalline compounds. The diversity and scale of the data in the OQMD make it ideal for 

studying changes in attribute performance using a single, uniform dataset.  

We found that the attributes which model a material property best can vary significantly 

depending on the property and type of materials in the dataset. To quantify the predictive 

ability of each attribute, we fit a quadratic polynomial using the attribute and measured the 

root mean squared error of the model. We found the attributes that best describe the 

formation energy of crystalline compounds are based on the electronegativity of the 

constituent elements (e.g., maximum and mode electronegativity). In contrast, the best-

performing attributes for band gap energy are the fraction of electrons in the p shell and the 

mean row in the periodic table of the constituent elements. Additionally, the attributes that 

best describe the formation energy vary depending on the type of compounds. The formation 

energy of intermetallic compounds is best described by the variance in the melting temperature 
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and number of d electrons between constituent elements, whereas compounds that contain at 

least one nonmetal are best modelled by the mean ionic character (a quantity based on 

electronegativity difference between constituent elements). Taken together, the changes in 

which attributes are the most important between these examples further supports the 

necessity of having a large variety of attributes available in a general-purpose attribute set. 

It is worth noting that the 145 attributes described in this paper should not be considered 

the complete set for inorganic materials. The chemical informatics community has developed 

thousands of attributes for predicting the properties of molecules.[173] What we present here 

is a step towards creating such a rich library of attributes for inorganic materials. While we do 

show in the examples considered in this work that this set of attributes is sufficient to create 

accurate models for two distinct properties, we expect that further research in materials 

informatics will add to the set presented here and be used to create models with even 

greater accuracy. Furthermore, many materials cannot be described simply by average 

composition. In these cases, we propose that the attribute set presented here can be extended 

with representations designed to capture additional features such as structure (ex: Coulomb 

Matrix[80] for atomic-scale structure) or processing history. We envision that it will be possible 

to construct a library of general-purpose representations designed to capture structure and 

other characteristics of a material, which would drastically simplify the development of new 

machine learning models. 
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5.4 Example Applications 

In the following sections, we detail two distinct applications for our novel material property 

prediction technique in order to demonstrate its versatility: predicting three physically-distinct 

properties of crystalline compounds and identifying potential metallic glass alloys. In both 

cases, we use the same general framework, i.e., the same attributes and partitioning-based 

approach. In each case, we only needed to identify the most-accurate machine learning 

algorithm and find an appropriate partitioning strategy. Through these examples, we discuss all 

aspects of creating machine-learning based models to design a new material: assembling a 

training set to train the models, selecting a suitable algorithm, evaluating model accuracy, and 

employing the model to predict new materials. 

5.4.1 Accurate Models for Properties of Crystalline Compounds 

Density Functional Theory (DFT) is a ubiquitous tool for predicting the properties of 

crystalline compounds, but is fundamentally limited by the amount of computational time that 

DFT calculations require. In the past decade, DFT has been used to generate several databases 

containing the T = 0 K energies and electronic properties of ~105 crystalline 

compounds,[18,32,37,38,182] which each required millions of hours of CPU time to construct. 

While these databases are indisputably-useful tools, as evidenced by the many materials they 

have been used to design,[20,27,29,32–35] machine-learning-based methods offer the promise 

of predictions at several orders of magnitude faster rates. In this example, we explore the use 

of data from the DFT calculation databases as training data for machine learning models that 
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can be used rapidly assess many more materials than what would be feasible to evaluate using 

DFT. 

Training Data: We used data from the Open Quantum Materials Database (OQMD), which 

contains the properties of around 300,000 crystalline compounds as calculated using 

DFT.[18,32] We selected a subset of 228,676 compounds from OQMD that represent the 

lowest-energy compound at each unique composition to use as a training set. As a 

demonstration of the utility of our method, we developed models to predict the three 

physically-distinct properties currently available through the OQMD: band gap energy, specific 

volume, and formation energy.  

Method: To select an appropriate machine learning algorithm for this example, we 

evaluated the predictive ability of several algorithms using 10-fold cross-validation. This 

technique randomly splits the dataset into 10 parts, and then trains a model on 9 partitions and 

attempts to predict the properties of the remaining set. This process is repeated using each of 

Table 5.1. Comparison of the ability of several machine learning algorithms to predict 
properties of materials from the OQMD. Data represents the mean absolute error in a 10-fold 
cross-validation test of a single model trained on the properties predicted using DFT of 228,676 
crystalline compounds. 

  Machine Learning Algorithm 
  Linear 

Regression 
Reduced-Error 
Pruning Tree 

(REPTree) 

Rotation 
Forest[78] + 

REPTree 

Random 
Subspace[183] 

+ REPTree 

P
ro

p
erty 

Volume 
(Å3/atom) 

1.22 0.816 0.593 0.563 

Formation 
Energy 

(eV/atom) 

0.259 0.126 0.0973 0.0882 

Band gap 
Energy (eV) 

0.202 0.0701 0.0643 0.0645 
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the 10 partitions as the test set, and the 

predictive ability of the model is assessed as 

the average performance of the model across 

all repetitions. As shown in Table 5.1, we 

found that creating an ensemble of reduced-

error pruning decision trees using the 

random subspace technique had the lowest 

mean absolute error in cross-validation for 

these properties among the 10 ML 

algorithms  we tested (of which, only 4 are 

listed for clarity).[183] Models produced 

using this machine learning algorithm had the 

lowest mean absolute error in cross 

validation, and had excellent correlation 

coefficients of above 0.91 between the 

measured and predicted values for all three 

properties. 

As a simple test for how well our band gap model can be used for discovering new 

materials, we simulated a search for compounds with a band gap within a desired range. To 

evaluate our the ability of our method to locate compounds that have band gap energies within 

the target range, we devised a test where a model was trained on 90% of the dataset and then 

 
Figure 5.1. Performance of three different 
strategies to locate compounds with a band 
gap energy within a desired range: randomly-
selecting nonmetal-containing compounds, 
and two strategies using the machine-learning-
based method presented in this work. The first 
machine learning strategy used a single model 
trained on the computed band gap energies of 
22667 compounds from the ICSD. The second 
method a model created by first partitioning 
the data into groups of similar materials, and 
training a separate model on each subset. The 
number of materials that were actually found 
to have a band gap within the desired range 
after 30 guesses was over 5 times larger when 
using our machine learning approach than 
when randomly selecting compounds. Error 
bars represent the 95% confidence interval. 
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was tasked with selecting which 30 compounds in the remaining 10% were most likely to have a 

band gap energy in the desired range for solar cells: 0.9 – 1.7 eV.[184] For this test, we selected 

a subset of the OQMD that only includes compounds that have been reported to be possible to 

be made experimentally in the ICSD (a total of 25085 entries) so that only band gap energy, and 

not stability, needed to be considered. 

For this test, we compared three selection strategies for finding compounds with desirable 

band gap energies: randomly selecting nonmetal-containing compounds (i.e., without machine 

learning), using a single model trained on the entire training set to guide selection, and a model 

created using the partitioning approach introduced in this manuscript. As shown in Figure 5.1, 

randomly selecting a nonmetal-containing compound would result in just over 12% of the 30 

selected compounds to be within the desired range of band gap energies. Using a single model 

trained on the entire dataset, this figure dramatically improves to approximately 46% of 

selected compounds having the desired property. We found the predictive ability of our model 

can be increased to around 67% of predictions actually having the desired band gap energy by 

partitioning the dataset into groups of similar compounds before training. Out of the 20 

partitioning strategies we tested, we found the best composite model works by first 

partitioning the dataset using a separate model trained to predict the expected range, but not 

the actual value, of the band gap energy (e.g., compounds predicted to have a band gap 

between 0 and 1.5 eV are grouped together), and then on whether a compound contains a 

halogen, chalcogen, or pnictogen (as shown in Figure 5.2). By partitioning the data into smaller 

subsets, each of the individual machine learning models only evaluates compounds with similar 
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chemistries (e.g. halogen-containing compounds with a band gap expected to be between 0 

and 1.5 eV), which we found enhances the overall accuracy of our model.  

 
Figure 5.2. Hierarchical model used to predict band gap energies of crystalline compounds. 
Each rectangle with rounded corners represents a machine learning model. The model on the 
far left (Model #1) is trained to predict the mostly-likely range for the band gap of a compound. 
The models on the right are trained to predict actual value of the band gap energy. Depending 
on results of Model #1 and the composition of an entry, a different machine model would be 
used. For example, Model #3 will be used for all halogen-containing compounds predicted to 
have a band gap energy between 0 and 1.5 eV by Model #1. 
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Once we established the reliability of our 

model, we used it to search for new 

compounds (i.e., those not yet in the OQMD) 

with a band gap energy within the desired 

range for solar cells: 0.9 – 1.7 eV. To gain the 

greatest predictive accuracy, we trained our 

band gap model on the entire OQMD 

dataset. Then, we used this model to predict 

the band gap energy of compositions that 

were predicted by Meredig, Agrawal et 

al.[85] to be as-yet-undiscovered ternary compounds. Out of this list of 4500 predicted 

compounds, we found that 223 are likely to have favorable band gap energies. A subset with 

the best stability criterion (as reported in Ref. [85]) and band gap energy closest to 1.3 eV are 

shown in Table 5.2. As demonstrated in this example and by recent work from Sparks et al.,[93] 

having access to several machine learning models for different properties can make it possible 

to rapidly screen materials based on many design criteria. Provided the wide range of 

applicability of the machine learning technique demonstrated in this work and the growing 

availability of material property data, it may soon be possible to screen for materials based on 

even more properties than those considered here using models constructed based on several 

different datasets. 

Table 5.2. Compositions and predicted band 
gap energies of materials predicted using 
machine learning to be candidates for solar cell 
applications. Compositions represent the 
nominal compositions of novel ternary 
compounds predicted by using methods 
developed in Ref. [85]. Band gap energies were 
predicted using a machine learning model 
trained on DFT band gap energies from the 
OQMD[18] using methods described in this 
work. 

Composition Eg (eV) 

ScHg4Cl7 1.26 

V2Hg3Cl7 1.16 

Mn6CCl8 1.28 

Hf4S11Cl2 1.11 

VCu5Cl9 1.19 
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5.4.2 Locating Novel Metallic Glass Alloys 

Metallic glasses possess a wide range of unique properties, such as high wear resistance 

and soft magnetic behavior, but are only possible to create at special compositions that are 

difficult to determine a priori.[185] The metallic glass community commonly relies on empirical 

rules (e.g., systems that contain many elements of different sizes are more likely to form 

glasses[186]) and extensive experimentation in order to locate these special compositions.[187] 

While searches based on empirical rules have certainly been successful (as evidenced by the 

large variety of known alloys[188]), this conventional method is known to be slow and 

resource-intensive.[187] Here, we show how machine learning could be used to accelerate the 

discovery of new alloys by using known experimental datasets to construct predictive models of 

glass forming ability. 

Data: We used experimental measurements taken from “Nonequilibrium Phase Diagrams 

of Ternary Amorphous Alloys,” a volume of the Landolt-Börnstein collection.[172] This dataset 

contains measurements of whether it is possible to form a glass using a variety of experimental 

techniques at thousands of compositions from hundreds of ternary phase diagrams. For our 

purposes, we selected 5369 unique compositions where the ability to form an amorphous 

ribbon was assessed using melt spinning. In the event that multiple measurements for glass 

forming ability were taken at a single composition, we assume that it is possible to form a 

metallic glass if at least one measurement found it was possible to form a completely-

amorphous sample. After the described screening steps, 70.8% of the entries in the training 

dataset correspond to metallic glasses.  
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Method: We used the same set of 145 attributes as in the band gap example and 

ensembles of Random Forest classifiers[77] created using the random subspace technique as 

the machine learning algorithm, which we found to be the most accurate algorithm for this 

problem. This model classifies the data into two categories (i.e., can and cannot form a metallic 

glass) and computes the relative likelihood that a new entry would be part of each category. For 

the purposes of validating the model, we assume any composition predicted to have a greater 

than 50% probability of glass formation to be a positive prediction of glass forming ability. Using 

a single model trained on the entire dataset, we were able to create a model with 90% accuracy 

in 10-fold cross-validation.  

 
Figure 5.3. (a) Experimental measurements of metallic glass forming ability in the Al-Ni-Zr 
ternary, as reported in Ref. [172]. Green circles (AM) mark compositions at which it is possible 
to create a fully-amorphous ribbon via melt spinning, blue squares (AC) mark compositions at 
which only a partially-amorphous ribbon can be formed, and red squares (CR) mark 
compositions where it is not possible to form any appreciable amount of amorphous phase. (b) 
Predicted glass forming ability from our machine learning model. Points are colored based on 
relative likelihood of glass formation, where 1 is the mostly likely and 0 is the least. The model 
used to make these predictions was developed using the methods outlined in this work, and 
was not trained on any measurements from the Al-Ni-Zr ternary or any of its 
constituent binaries. 
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As a test of the ability of our method to predict new alloys, we removed all entries that 

contained exclusively Al, Ni, and Zr (i.e., all Al-Ni-Zr ternary compounds, and any binary formed 

by any two of those elements) from our training dataset and then predicted the probability of 

an alloy being able to be formed into the amorphous state for the Al-Ni-Zr ternary system. As 

shown in Figure 5.3a, it is possible to form amorphous ribbons with melt spinning in one region 

along the Ni-Zr binary and in a second, Al-rich ternary region. Our model is able to accurately 

predict both the existence of these regions and their relative locations (see Figure 5.3b), which 

shows that models created using our method could serve to accurately locate favorable 

compositions in yet-unassessed alloy systems.  

We further validated the ability of our models to extrapolate to alloy systems not included 

in the training set by iteratively using each binary system as a test set. This procedure works by 

excluding all alloys that contain both of the elements in the binary, training a model on the 

remaining entries, and then predicting the glass-forming ability of the alloys that were 

removed. For example, if the Al-Ni binary were being used as a test set, then Al50Ni50 and 

Al50Ni25Fe25 would be removed but Al50Fe50 and Al50Fe25Zr25 would not. This process is then 

repeated for all 380 unique binaries in the dataset. We measured that our model has an 80.2% 

classification accuracy over 15318 test entries where 71% of entries were measured to be 

glasses – in contrast to the 90.1% measured in 10-fold cross-validation with a similar fraction of 

glasses in the test set. We also found that by training separate models for alloys that contain 

only metallic elements and those that contain a nonmetal/metalloid it is possible to slightly 

increase the prediction accuracy to 80.7% - a much smaller gain than that observed in the band 
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gap example (23%). Overall, this exclusion test strongly establishes that our model is able to 

predict the glass forming ability in alloy systems that are completely unassessed. 

In order to search for new candidate metallic glasses, we used our model to predict the 

probability of glass formation for all possible ternary alloys created at 2 at% spacing by any 

combination of elements found in the training set. Considering that the dataset included 

51 elements, this space includes approximately 24 million candidate alloys, which required 

approximately 6 hours to evaluate on 8, 2.2 GHz 

processors. In order to remove known alloys from 

our prediction results, we first removed all entries 

where the L1 distance between the composition 

vector (i.e., 〈𝑥𝐻, 𝑥𝐻𝑒 , 𝑥𝐿𝑖, … 〉) of the alloy and any 

amorphous alloy in the training set was less than 

30 at%. We then found the alloys with the highest 

predicted probability of glass formation in each 

binary and ternary. Eight alloys with the highest 

probability of glass formation are shown in Table 5.3. One top candidate, Zr0.38Co0.24Cu0.38, is 

particularly promising considering the existence of Zr-lean Zr-Co and Zr-Cu binary alloys and Zr-

Al-Co-Cu bulk metallic glasses.[189] To make the ability to find new metallic glasses openly 

available to the materials science community, we have included all of the software and data 

necessary to use this model in the Supplementary Information and created an interactive, web-

based tool.[190] 

Table 5.3. Compositions of candidate 
metallic glass alloys predicted using a 
machine learning model trained on 
experimental measurements of glass 
forming ability. These alloys were 
predicted to have the highest probability 
being able to be formed into an 
amorphous ribbon via melting spinning 
out of 24 million candidates. 
 

Alloy Composition 

Zr0.38Co0.24Cu0.38 Hf0.7Si0.16Ni0.14 

V0.16Ni0.64B0.2 Hf0.48Zr0.16Ni0.36 

Zr0.46Cr0.36Ni0.18 Zr0.48Fe0.46Ni0.06 

Zr0.5Fe0.38W0.12 Sm0.22Fe0.54B0.24 
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5.5 Conclusions 

In this work, we introduced a general-purpose machine learning framework for predicting 

the properties of a wide variety of materials and demonstrated its broad applicability via 

illustration of two distinct materials problems: discovering new potential crystalline compounds 

for photovoltaic applications and identifying candidate metallic glass alloys.  Our method works 

by using machine learning to generate models that predict the properties of a material as a 

function of a wide variety of attributes designed to approximate chemical effects. The accuracy 

of our models is further enhanced by partitioning the dataset into groups of similar materials. In 

this manuscript, we show that this technique is capable of creating accurate models for 

properties as different as the electronic properties of crystalline compounds and glass 

formability of metallic alloys. Creating new models with our strategy requires only finding which 

machine learning algorithm maximizes accuracy and testing different partitioning strategies, 

which are processes that could be eventually automated.[191] We envision that the versatility 

of this method will make it useful for a large range of problems, and help enable the quicker 

deployment and wider-scale use machine learning in the design of new materials.  
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6 Voronoi-Tessellation-Based Representations for Crystal Structures 

6.1 Abstract 

While high-throughput Density Functional Theory (DFT) has become a prevalent tool for 

materials discovery, it is limited by the large computational cost. In this paper, we explore using 

DFT data from high-throughput calculations to create faster, approximate models with machine 

learning (ML) that can be used to guide new searches. Our method works by using decision tree 

models to map length-scale-independent attributes derived from the Voronoi tessellation of a 

crystal structure to its DFT-predicted formation enthalpy. We found that models created using 

this method have half the error rate cross-validation and similar computation times to models 

created with the Coulomb matrix and Pair Radial Distribution Function (PRDF) methods. For a 

dataset of 435k entries taken from the OQMD, our model achieves a mean absolute error 

(MAE) of 80 meV/atom in cross-validation, which is lower than the approximate error between 

DFT and experiment formation enthalpies and below 15% of the mean absolute deviation of 

the training set. We also demonstrate our method can accurately estimate the formation 

energy of materials outside of the training set before determining their equilibrium crystal 

structure (MAE: 136 ± 64 meV/atom). We propose that our models can be used to accelerate 

the discovery of new materials by identifying the most promising materials to study with DFT at 

little additional computational cost. 

6.2 Introduction 

Especially in the past decade, high-throughput atomistic calculation methods have proven 

to be powerful tools for discovering new materials.[18,20,32,38,192,193] These methods 
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generally work by employing an accurate computational tool, often Density Functional Theory 

(DFT), to predict the properties of large numbers of experimentally-observed and hypothetical 

inorganic compounds created by substituting different elements into known compounds. Given 

the advances in computing technology, the largest of these databases contain the predicted 

properties of on the order of 106 distinct crystalline materials. The results of these predictions 

are often stored in publically-accessible databases,[32,37,39,40,194] which makes it possible to 

many researchers to quickly search for materials that warrant further investigation (e.g., via 

experimental synthesis). This strategy of combinatorial replacement and high-throughput 

calculations has already enabled the discovery of new materials for a host of applications, 

including Li-ion batteries, thermoelectrics, and structural alloys.[20,26,27,33,34,195–198] 

While combinatorial searches are evidently useful, they are intrinsically limited by available 

computational power. Evaluating only the zero temperature, ground state properties of a 

material using DFT can require hours of processor time per compound. Consequently, the space 

of possible combinations is too large to evaluate every candidate for some types of compounds. 

For example, the combinations of every element in a quaternary crystal structure results in at 

least 2 million materials (more if there are inequivalent sites in the crystal), which far outstrips 

the capability of today’s computational resources. For more complex properties (e.g., elastic 

constants), evaluating 2 million compounds is certainly impractical. At some point, it is 

necessary to selectively evaluate only the parts of the search space that are likely to contain 

promising candidates.  



 108 

 

Past work has shown that it is possible to use optimization algorithms, such as genetic 

algorithms, to efficiently search for stable structures.[21,22,199] For example, Jóhannesson et 

al. used a genetic algorithm to search for order structures on an FCC lattice with low formation 

enthalpies.[21,22] While successful, these techniques are generally restricted to searching over 

a single, defined structure for a material and are designed as if no information relevant to the 

optimization problem has be gathered previously. One must start from the beginning each for 

each new search. Considering the vast resources of previous examples of DFT 

calculations,[18,37,38,41] it could be much more effective to integrate knowledge from these 

databases into new searches. 

Machine learning (ML) offers a route for creating fast surrogate models from databases, 

and has proven to be a viable route for estimating the results of DFT calculations.[45] For 

example, previous work from our group has demonstrated how to predict the formation 

enthalpies from DFT calculations given composition [85,200], and have successfully used those 

models to predict the compositions of undiscovered compounds.[85] However, because the 

methods used in these papers are based on the composition of a material, they require 

expensive crystal-structure prediction algorithms to determine the structure of the material in 

order to validate the predictions. There has also been work showing how to predict some 

computationally expensive properties given the results of single DFT calculations, including 

elastic constants,[101,201,202] thermal conductivity,[24,203] and melting temperature.[163] 

Additionally, several studies have predicted new materials with a desired crystal structure by 

training a model on data including materials with the same stoichiometry or same crystal 
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structure, and using that to identify promising materials in a much larger set.[91,92,204] To 

fully leverage the amount of information available in high-throughput databases to discover 

new materials, one needs a reliable and fast method for predicting properties given any crystal 

structure – and such a model remains elusive. 

Several different strategies for building ML models based on the crystal structure of a 

material have already been proposed. These methods are composed of two main components: 

(1) a numerical representation that describes each crystal structure, and (2) a choice of 

machine learning algorithm. These methods include work by Faber et al.[80] that uses a 

modified Coulomb matrix representation and kernel ridge regression (KRR) to predict formation 

energies, and work by Schütt et al.[160] that uses Partial Radial Distribution Functions (PRDF) to 

represent each material and KRR to predict the density of states at the Fermi level. However, 

the best reported machine learning model to date for using crystal structure to predict 

formation energy has a mean absolute error (MAE) of 370 meV/atom in [80], which is too large 

to be used in place of DFT calculations because the median formation enthalpy of compounds 

in the ICSD is only slightly larger, at 800 meV/atom (using data from the OQMD [18,32]). 

Furthermore, in order to use these models to actually predict new materials, they cannot be 

reliant on having already used DFT to compute the equilibrium structure of the material. The 

ability of these strategies to perform well with only an estimate of the fully-equilibrated 

structure has not been established. Additionally, as we will demonstrate in this manuscript, 

these methods are impractical to use with the datasets as large as those currently available. 
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Overall, while promising, there is a need for improvements in methods that can link crystal 

structure and properties with machine learning.  

In this work, we demonstrate an approach for predicting properties of crystalline 

compounds using attributes derived from the Voronoi tessellation of its structure that is both 

twice as accurate as existing methods and can scale to large training set sizes. Additionally, we 

designed our representations for the crystal structure to be length-scale invariant, which makes 

it possible to predict the properties of the crystal without needed to first compute the 

equilibrium structure as input into the model. In this manuscript, we will benchmark this new 

method against existing techniques in the literature (the Coulomb matrix and PRDF methods) 

using cross-validation with data from the OQMD. Then, in order to understand limitations of 

our approach, we employ cross-validation to assess whether it is actually learning the effect of 

structural characteristics of materials and to determine which types of compounds yield the 

highest error rates. Finally, we validate the ability of our model to make predictions of the 

formation enthalpy of materials outside our currently-available training data and to identify 

materials with strongly-negative formation enthalpies given only an estimate for the 

equilibrium atomic positions. We envision that this model can be used to screen potential 

materials based on stability before more expensive calculation techniques are used and, 

thereby, enable faster high-throughput searches for new materials. 

6.3 Methods 

Our approach is composed of two distinct steps, (1) representing a crystal structure as a set 

of quantitative attributes, and (2) using machine learning to extract patterns that relate those 
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attributes to the property of interest. We describe both steps in this section, along with the 

resource used to provide training data for these models. 

6.3.1 Training Data 

All training data for the machine learning models created in this work was extracted from 

the Open Quantum Materials Database (OQMD).[18,32] At the time the data used here was 

extracted, the OQMD contains the results DFT calculations for 435k structurally-unique crystals 

all performed with the Vienna Ab Initio Simulation Package (VASP).[120,121] Detailed settings 

used in these calculations are described in Ref. [18]. The OQMD contains over 30k entries 

corresponding to entries from the Inorganic Crystal Structure Database (ICSD)[68] and the 

remainder are predominantly hypothetical structures created by replacing elements in known 

crystal structures with different elements. As described in later subsections, we use several 

unique subsets of this database, which include using only the entries from the ICSD. 

6.3.2 Representing Crystal Structures 

The representation of a material is designed to transform raw materials data (e.g., a crystal 

structure) into a list of quantitative attributes and, functionally, are what serve as input into a 

machine learning model. Following previous discussions of the desired features of 

representations for materials,[47,91,160,205,206] we also assert that representations for 

crystalline compounds should be quick to compute and capture all relevant features of a 

structure in a compact list of attributes. Additionally, we suggest several other desirable 

features specific to building representations for crystal structures. First, these attributes should 

also be insensitive to the choice of a unit cell (i.e., primitive cells, conventional cells, and 
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supercells of the same structure should all have the same representation). Additionally, as our 

goal in using these models is to estimate the stability of a crystal structure before employing 

DFT, we also assert that it should fill two other requirements to be predictive without first 

computing the equilibrium atomic positions and lattice vectors with DFT. For one, the 

representation should at least be invariant to changes due to simple dilation or contraction of 

the lattice in order to minimize the effect of changes in atomic structure (assuming that 

relaxations do not significantly affect coordination environments). Also, the representation 

should be designed such that small changes in the structure (e.g., perturbations in atomic 

position) do not result in unphysical, discontinuous changes in attributes. 

Considering all of these constraints, we created a representation for crystalline compounds 

based on the Voronoi tessellation of the structure.[207] The Voronoi tessellation of a crystal 

partitions space into the so-called Wigner-Seitz cells of each atom, which encompass the region 

closer to that atom than any other atom.[208] This tessellation is uniquely defined for a crystal 

structure and is insensitive to the choice of unit cell. The faces of a Voronoi polyhedron 

correspond to the nearest neighbors of an atom, which provides an unambiguous way of 

describing its local environment. To create attributes, we compute many characteristics of the 

local environment of each atom (described below) and then measure statistics about the 

distribution of these characteristics across all atoms in the unit cell. These attributes are 

designed in such a way that they are unaffected by unit cell selection or by changing the volume 

of the unit cell. Furthermore, we also weigh the contribution of each neighboring atom to each 

attribute according to the area of its corresponding face on the Voronoi cell. In this way, the 
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attributes are stable against discontinuities caused by addition or removal of faces, which can 

be caused by small deformations in the structure.  

We use the Voronoi tessellation and composition of the structure to create several 

different categories of attributes: 

1. Effective Coordination Number Attributes based on the mean, maximum, 

minimum, and mean absolute deviation in the effective coordination number of each 

atom, which is computed using the equation 

 𝐶𝑁𝑒𝑓𝑓 =
1

∑𝑓𝑖
2 

 (1) 

where 𝑓𝑖  is the fraction of surface area corresponding to face 𝑖. This formula reverts to 

the number of faces on the cell for cells with equally-sized faces (e.g., 12 for FCC) and 

leads to smaller coordination numbers for structures with unequal faces (ex: 11.96 

rather than 14 for BCC). 

2. Structural Heterogeneity Attributes that measure the variation in local 

environments around each atom. Includes statistics regarding the mean bond length 

about each atom, the variation in bond length between each neighbor of an atom, and 

variation the volume between each Voronoi cell 

3. Chemical Ordering Attributes that are computed using the Warren-Cowley 

ordering parameters[209] of the first, second, and third neighbor shells, weighted 

according to face sizes of each neighboring atom. To make the number of attributes the 

same regardless of the number of elements in the crystal, we measure the mean 
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absolute value of ordering parameters for each atom in the lattice for each type in the 

crystal. Consequently, crystals with ordered arrangements (e.g., rocksalt) will have 

values of this attribute closer to 1, and more random arrangements will be closer to 

zero. 

4. Maximum Packing Efficiency, which can be computed by finding the largest 

sphere that fits inside each Voronoi cell. For example, the maximum packing efficiency 

for FCC is 0.74 by this definition. 

5. Local Environment Attributes that are computed by comparing the elemental 

properties of the element of each atom to those of its nearest neighbors using the 

relationship 

 𝑝𝑖̂ =
∑ 𝐴𝑛∗|𝑝𝑛−𝑝𝑖|

∑𝐴𝑛
 (5) 

where 𝐴𝑛 is the area of face 𝑛 of the Voronoi cell of atom 𝑖, and 𝑝𝑛 and 𝑝𝑖 are the 

properties of the atom corresponding to face 𝑛 and atom 𝑖, respectively. For this study, 

we compute the mean, mean absolute deviation, maximum, minimum, and range of this 

property for all atoms in a structure for 22 different elemental properties (e.g., atomic 

number), which are listed in Table 10.1. For example, each atom for NaCl in the rocksalt 

structure is surrounded by only atoms of the opposite type. So, difference between the 

electronegativity of each atom and its neighbors is 2.23 (the difference between Na and 

Cl) and the mean across the entire structure is also 2.23. 

6. Composition-Based Attributes based on the fractions of each element present in 

the structure. These attributes are described in recent work by Ward et al. [200]: 
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a. Stoichiometric attributes that depend on the fractions of each element and not 

what those elements actually are 

b. Elemental-property-based attributes that are based on statistics of the 

elemental properties of all atoms in the crystal. 

c. Electronic structure attributes, which depend on the fraction of electrons in the 

s, p, d, and f shells of the constituent elements. These are based on work by 

Meredig et al.[85] 

d. Ionicity attributes derived from differences in electronegativity between 

constituent elements and whether the material can form a charge-balanced 

ionic compound if all elements have on common oxidation states 

Further details about the attributes are described in Appendix. In total, our method 

describes each material with 271 attributes. Each of these attributes can be computed using the 

Materials-Agnostic Platform for Informatics and Exploration (Magpie) and the Versatile Atomic-

Scale Structure Analysis Library (Vassal), which are both freely available under open source 

licenses. 

6.3.3 Machine Learning Technique 

For the machine learning algorithm, we chose to use the Random Forests (RF) algorithm 

proposed by Breiman due to its superior performance and robustness against overfitting.[77] 

The RF algorithm works by aggregating the results of several decision trees, each built from a 

random subset of training examples and attributes. Each decision tree is composed of a series 

of decision rules (e.g., Packing Efficiency > 0.5) learned by recursively partitioning data into 
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pieces and assigning to each piece a value that minimizes the error to the training set. The 

decision rules used to create partitions are determined finding a rule that minimizes intra-

subset variation of class values, which, in this case, are formation enthalpies. This decision tree 

generation process is repeated several times with a different subset of the training set, and the 

predictions made from all decisions trees are averaged in order to predict the class value of 

new data.  

In modeling our problem, we used an ensemble of 50 decision trees for all machine 

learning models created based on the ICSD dataset and 100 decisions trees for machine 

learning models created with the full OQMD dataset. We also investigated increasing the 

number of trees as the training data increases but no notable improvement was observed. 

Models were constructed using the Scikit-Learn library in Python [75] and the Weka machine 

learning library in Java.[74] 

6.3.4 Coulomb Matrix and Pair Radial Distribution Function Methods 

In this work, we compared our new method against the Coulomb Matrix[80] (CM) and 

Partial Radial Distribution Function[160] Matrix (PRDF) approaches. Both of these methods 

utilize Kernel Ridge Regression (KRR) as the base machine learning algorithm, which performs 

linear regression where the input into the linear model are differences between a new 

observation and each entrt in the training set. This difference metric is often designed 

specifically for a particular problem, and the CM and PRDF methods primarily vary in the choice 

of this difference metric used to compare two crystal structures.  
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The PRDF method expresses the difference between two structures based on a matrix 

defined by the Partial Radial Distribution Functions between each pair of atoms in the 

structure.[160] Each row of this matrix corresponds to the radial distribution function between 

a different pair of elements. For instance, one row is the Li-Cl RDF, which describes the 

frequency of Li and Cl atoms a certain distance apart in the structure. To compute the 

difference between two structures, one generates this matrix for both structures and computes 

the Frobenius norm of the difference between the two matrices. 

The Coulomb Matrix method is based on a representation that was originally developed for 

molecules.[180] In this representation, one computes a matrix that is related to the Coulomb 

repulsion between the atomic nuclei in the material 

 𝐶𝑖𝑗 = {
0,5𝑍𝑖

2.4 if 𝑖 = 𝑗
𝑍𝑖𝑍𝑗

𝑟𝑖𝑗
if 𝑖 ≠ 𝑗

 (6) 

where 𝑍𝑖  is the atomic number of atom 𝑖 and 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗. In order 

to compare two structures, one first computes the eigenvalues of the Coulomb matrix for both 

structures and then subtracts the two lists of eigenvalues (padding with zeros to make them the 

same length). More recently, Faber et al. proposed several modifications to the Coulomb matrix 

to account for periodic boundary conditions.[80] Of their proposed modifications, we use the 

Sine Matrix approximation, which they found to lead to the lowest cross-validation error when 

predicting formation enthalpy.  

For both methods, we optimized the metaparameters for the KRR learning algorithm and, 

for the PRDF matrix, the cutoff radius and bin size used for the RDF. In both cases, we used a 
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grid search technique. All parameters were varied in order to maximize the performance of 

each model at a training set size of 3000 entries. With this technique, we were able to 

reproduce the observed cross-validation error of the Coulomb matrix reported in Ref. [80]. Our 

implementation for both of these methods is available as part of Magpie.[210]  

6.4 Characterizing Model Performance 

In this section we characterize several different aspects of our new machine learning 

technique. First of all, we compare our technique to existing methods by comparing their cross-

validation accuracy. Then, we analyze the predictions where our model performs least 

accurately in order to determine where this model can be best applied. Finally, we study the 

effect of structural information in our representation in order to determine whether the model 

is actually learning the effect of structural traits on formation energy.  

6.4.1 Comparison to Existing Techniques with Cross-Validation 

We first used cross-validation to study the ability of our technique to model the formation 

energy of inorganic compounds and compare its performance to existing methods. As a training 

set, we used the equilibrium structures and formation energies of all compounds in the 

Inorganic Crystal Structure Database (ICSD)[211] available in the Open Quantum Materials 

Database (OQMD).[18,32] Our dataset includes 32111 compounds and, with minor exception, 

represents an unbiased sampling of all known compounds with a primitive cell size smaller than 

40 atoms.  In order to assess the effect of increasing training set size, we constructed models 

using randomly-selected training sets with between 1 to 30,000 entries and evaluated the 

performance of the model on a distinct set of 1,000 entries. This test strategy was selected in 
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order to assess the effect of training set size 

on model performance. Each cross-validation 

test was repeated 20 times for each training 

set size, and the performance of the model 

was taken to be the average over all tests. 

We found that the models created using 

our approach were more accurate than those 

based on the CM and PRDF methods for all 

training sets larger than 3 entries. As shown 

in Figure 6.1, models based on our method 

were found to have an MAE of 

170 meV/atom at a training set size of 3000 

entries. In contrast, the CM and PRDFs models were found to have 2.2x and 2.8x larger errors, 

respectively. At a training set size of 30000 entries, the MAE of our model (88 meV/atom) is still 

significantly lower than those from the other two methods. Since the error of our models 

decreases with increasing training set size at a similar rate to those of the CM method and 

faster than those from the PRDF method, we expect our models to be more accurate even 

when trained with the largest available DFT formation energy datasets of between 105 – 106 

compounds.[32,37] 

In order to determine whether the increased accuracy is a result of the new representation 

or the use of the RF algorithm, we repeated the comparison between the Coulomb Matrix and 

 
Figure 6.1. Mean absolute error (MAE) 
measured using cross-validation of models 
created using the PRDF, [35] Coulomb Matrix 
(CM), [34] and the method presented in this 
work. Each model was trained on the DFT 
formation energies of a set of randomly-
selected compounds from the ICSD and used 
to evaluate 1000 distinct compounds that 
were also selected at random. The black, 
dashed line indicates the expected error from 
guessing the mean formation energy of the 
training set for all structures. 
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our new representation using both Kernel Ridge Regression (KRR) and RF as the learning 

algorithm for both representations. For the KRR test, the MAE for the model using our new 

representation was significantly higher than when we used the RF algorithm, but still lower 

than the CM and KRR model (see Figure 6.2). In contrast, the error rate of models created using 

our representation was lower than those using the CM by a factor of 2 when we employed RF 

as the learning algorithm. From this, we conclude the improved accuracy of our models is a 

result of the new representation, and not only the choice of machine learning algorithm. 

 
Figure 6.2. Performance of machine learning models for formation enthalpy created with the 
same machine learning algorithm but different representations. Each graph shows Mean 
Absolute Error (MAE) for (a) Kernel Ridge Regression (KRR) model and (b) Random Forest 
algorithm in a cross-validation test where the model was trained on progressively larger 
training sets and validated against a separate test set of 1000 entries. For each algorithm, we 
compare the performance using the Voronoi-tessellation based representation proposed in this 
work is compared against Coulomb Matrix [80] and the Partial Radial Distribution Function 
(PRDF) Matrix representations. 
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Additionally, we found that the training time of our method scales better with increasing 

data size and has similar evaluation speed than the PRDF and CM methods. As shown in 

Figure 6.3, as the size of the training set reaches 10000 and more, the time taken to train and 

run models created using our method is comparable to the PRDF and CM methods. The training 

and run time of our model is dominated by the time required to compute the Voronoi 

tessellation used to generate the attributes, which requires approximately 0.1 s per compound 

on our test system and accounts for ~98% of the model training time and >99% of the run time. 

While we observe a 𝑂(𝑁) scaling for training time due to the large calculation time for the 

representation, the training time formally scales with 𝑂(𝑁 log 𝑁) scaling for the Random Forest 

algorithm. For small dataset sizes, the time to compute this attributes makes it slower to train 

and run than both of the competing methods. However, this is not true for large datasets and 

we observe parity between the two methods for training set sizes around 104. Considering that 

the training time for the CM and PRDF is 

scale at the faster rate of  𝑂(𝑁3) for KRR, our 

approach will remain more feasible to train 

for even larger datasets. For datasets with 

only 30000 entries in the training set, our 

method is faster to train by approximately a 

factor of 10 and is only slightly slower to run 

than the Coulomb Matrix model – although 

we found (see Figure 6.3) differences in run 

 
Figure 6.3. Comparison of model training and 
running time of three different techniques to 
predict the formation energy of inorganic 
compounds. Training time is the sum of 
attribute generation and model construction 
with given data. Run time is the average time 
taken to compute the requisite attributes and 
evaluate the machine learning model for a 
single compound. 
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speed are also likely to close with increasing training set size. 

6.4.2 Testing for Systematic Errors in Our Models 

In order to understand where our machine learning model can be used the most 

effectively, we ran a cross-validation test and studied the compounds where the model had the 

highest error rates. In this cross-validation test, we withheld a random selection of 25% of the 

ICSD dataset used in the previous section for a test set and trained the model on the remaining 

75% of the data. We then repeated this test 100 times, and measured the MAE for each 

compound over all times it appeared in the test set. Then, we selected the 643 compounds with 

highest 2% of MAE values (above 446 meV/atom) in order to determine which compounds our 

model are persistently the worst at predicting accurately. First, we found that many of these 

outliers are compounds with extraordinarily small or positive formation enthalpies (see 

Figure 6.4a). The fact our model performs poorly for these compounds is unsurprising, since 

these compounds are evidently outliers compared to the rest of the ICSD training set. However, 

we cannot use the DFT formation enthalpy of a compound to predict whether the model will be 

unreliable a priori, which makes it an ineffective descriptor for determining where this model 

can be employed. 
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We also found that compounds containing elements that appear least frequently in our 

training set are overrepresented in the compounds with the worst MAEs. Figure 6.4b shows the 

probability of finding a compound containing a certain element in our entire dataset (𝑃(ICSD)) 

and the ratio between the probability of finding that element in the entries with the highest 

MAE (𝑃(Worst)) and the probability of finding it in the entire dataset. Of all elements present 

in the training set, Kr, Xe, and Pa have the highest overrepresentation (a ratio of 14 for Kr) and 

are among the least frequently appearing elements in the original dataset. Several other 

infrequently appearing elements (He, Ne, Ar, Pm, Ac) violate this trend because they appear 

infrequency appear in both the training set and the list of worst predictions. In the case of the 

noble gas elements in this “surprisingly good” category, they only appear as elemental 

compounds in training set and our model correctly identifies those compounds as having near-

zero formation enthalpies. From these results, we conclude our model performance is expected 

 
Figure 6.4. (a) The DFT-computed formation enthalpy of a compound compared to the mean 
absolute error (MAE) between the DFT and machine-learning-predicted formation enthalpy of 
that compound during a cross-validation test. The red, dashed line indicates the 98th percentile 
of the mean absolute error. (b) Comparison of the fraction of compounds that contain a certain 
element in our ICSD training set P(ICSD) to the ratio between the fraction of compounds in the 
98th percentile of MAE and the fraction in the training set. 
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to be worst for compounds containing noble gases and compounds with infrequently occurring 

elements (e.g., Tc, actinides). 

The elements that are both frequently occurring and overrepresented in our worst-

performing materials are C, N, and F. Out of the 643 worst compounds, there are 43 that 

contain either C or N. This set mostly includes compounds that contain rarely-observed 

elements (e.g., Th, Pu), and instances where with each of these elements and some 

combination of C, O, or F. As the C-, O-, and F- compounds may have a tendency to exhibit 

covalent bonding, this suggests that our model could be improved by including attributes that 

capture characteristics such as bond angles or using electron counting rules to characterize the 

types of bonds present in the structure. Beyond identifying regions to improve this model, our 

analysis of its failures also identifies where it can be applied with the greatest likelihood of 

success: compounds with commonly-occurring elements without significant covalent bonding. 

6.4.3 Assessing Whether Algorithm Has Learned Structural Effects 

As many of the attributes employed in our representation are not dependent on structure, 

it is important to determine whether the structure dependent terms actually have an effect on 

the accuracy of our machine learning models. If these structural attributes have a negligible 

effect, it is possible that the model is only learning structurally-invariant (i.e., composition-

based) attributes. To test the effect of including structure-dependent attributes, we replicated 

the cross-validation described in the previous section and trained a Random Forest algorithm 

with three sets of attributes: (i) only the composition-based (i.e., structure-independent) 

attributes, (ii) only the structure-dependent attributes, and (iii) all 271. As a reference, we also 
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include the results of a Random Forest using the Coulomb Matrix model. As shown in 

Figure 6.5a, there is little difference between the error rate of a model trained using all the 

attributes and the structure-independent ones. The structure-dependent attributes do lead to a 

machine learning model with superior performance to the Coulomb Matrix representation. 

Consequently, we do conclude that the Voronoi-based attributes do carry useful information 

about a material, but we are unable to determine whether they leave to an improved model 

compared to a purely composition-dependent model. 

One possible explanation for the similar performance between model trained on 

composition-only and composition-and-structure representations is that the ICSD dataset 

contains too few examples of multiple structures at the same composition. Consequently, there 

could be insufficient training data to build a model that benefits from the additional structural 

information. To test this hypothesis, we repeated the cross-validation test using a dataset 

 
Figure 6.5. Performance of machine learning models trained on various kinds of 
representations in cross-validation tests using data from the (a) ICSD subset of the OQMD and 
(b) the entire OQMD. These include models trained using all of the attributes in our proposed 
representation and, separately, models created using only the composition-dependent terms 
and only the structure-dependent terms. The results of a model created using the Coulomb 
Matrix and Random Forest is shown for comparison. Shaded regions represent the 90% 
confidence intervals. 
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comprised of all non-duplicate entries from the entire OQMD (435792 entries), which contains 

dramatically more examples of multiple structures at a single composition. Only 51% of the 

training entries in this dataset lack another structure at the same composition, which is lower 

than the 70% of entries without another example structure in the ICSD dataset used previously. 

With the larger dataset, we observed a significant improvement when using both the structure- 

and composition-based attributes rather than either subset of attributes alone (as shown in 

Figure 6.5b). At a training set size of 400000 entries, the model using structural and 

composition-based attributes has an error rate around 35% lower than the composition only 

models. 

The increased accuracy of the “all attributes” model on the OQMD dataset is not merely an 

effect of training set size. At a training set size of 104, the composition-only model trained on 

the OQMD dataset (with fewer compositions with only 1 structure) has a 7% larger MAE than 

the “all attributes” model (185±3.5 vs 174±2.0) meV/atom. For the same training set size and 

the ICSD training set, the composition-only and “all attributes” model have approximately the 

same MAE (125±2.2 vs 126±1.8 meV/atom, respectively). The difference between the 

composition-only and “all attributes” model in our full OQMD test only becomes larger with 

increasing sample size. This lower error suggests there is indeed an advantage to introducing 

structure-based attributes to our machine learning models but this effect is only significant in 

datasets where there are sufficient training examples. Additionally, this result also 

demonstrates that our model has learned the effect of structural features in the crystal 

structure and not just from the composition. 
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6.5 Applying Method to Predicting New Materials 

In this section, we explore using this model to assess the performance of our machine 

learning models in two applications: (1) predicting the formation enthalpy of experimentally-

observed compounds yet to be included in the OQMD, and (2) identifying which materials are 

most likely to be stable out of a list of compounds studied via a high-throughput search. In both 

cases, we also seek to determine whether our models can perform well when provided with 

only the unrelaxed structures that serve as input into DFT calculations. In contrast, we used the 

fully-relaxed structures generated as output from a DFT calculation as input into our machine 

learning model in the cross-validation tests in the previous section. 

6.5.1 Validation with Yet-Unevaluated Materials 

One unresolved question from our cross-validation test is whether our models can predict 

the formation enthalpy of a material without knowledge of the equilibrium structure. To 

answer this question, we used our model to predict the formation enthalpies of compounds 

from the ICSD that have yet to be included in the OQMD. These compounds generally have 

large unit cell sizes, which leads to high computational costs to evaluate with DFT and makes 

the ability to predict their energies with machine learning particularly useful. To make our 

model as accurate as possible, we trained a machine learning model on the full OQMD dataset. 

We then used this model to evaluate the 12667 entries from the ICSD that had not yet been 

added to the OQMD, which required less than 2 hours on a 2.2 GHz CPU. We then selected a 

total of 30 entries from this list to validate with DFT using three different strategies: (1) 

randomly-selecting entries, (2) selecting entries predicted to have the most negative Δ𝐻𝑓, and 
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(3) selecting those predicted have the largest 

stability (farthest below the energy of OQMD 

convex hull at that composition [141]). By 

studying these three different strategies 

separately, we can also assess how best to 

use our machine learning model in practice. 

As shown in Figure 6.6 and Table 6.1, we 

observed the best performance of the model 

in the entries that were randomly selected 

from the dataset – a MAE of 

136 ± 64 meV/atom. This is excellent 

accuracy when considering that these 

predictions were made before determining 

the equilibrium structure of the material. The 

change in the predicted formation enthalpy 

between the model given the input structure 

and fully-relaxed structure was below 25 meV/atom for 9 out of 10 materials – far below MAE 

of 80 meV/atom observed in cross-validation. These results show that our machine learning 

model can predict the formation enthalpy of unstudied compounds with an accuracy on the 

order of 100 meV/atom and the predictions of our model are relatively insensitive to structural 

relaxations. 

 
Figure 6.6. Comparison of formation 
enthalpies (Δ𝐻𝑓) predicted using machine 

learning (ML) and computed using Density 
Functional Theory. The machine learning 
model was trained on the formation enthalpies 
of all 435792 non-duplicate entries from the 
OQMD. Each material was selected from a list 
of 12667 entries from the ICSD that have yet to 
be included in the OQMD using three different 
strategies: (green squares) random selection, 
(blue diamonds) predictions with the lowest 
Δ𝐻𝑓, and (red circles) with the largest, 

negative difference between the predicted 
Δ𝐻𝑓 and the OQMD convex hull. 
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 The MAE for materials selected by finding those with minimal Δ𝐻𝑓 was generally higher, 

187 ± 99 meV/atom, but our model was successful in locating materials with especially-large 

formation enthalpies. The worst-performing entry in this dataset, CeF4, is likely is an outlier 

because the DFT calculations in the OQMD treat Ce with only 3 valence electrons.[18] 

Consequently, the Ce4+ is not modeled correctly and formation enthalpy for CeF4 will be more 

positive than what might be expected based on Ce in other oxidation states and the behavior of 

other metal-fluoride salts. There are four examples of Ce4+ in the worst 2% of predictions in the 

previous section (CeO2, BaCeN2, Li2CeN2, and Ce2SeN2) and the ML predicts a more negative 

formation enthalpy in all cases, just as observed for CeF4. Provided enough training examples, 

our model should be able to learn the abnormal behavior of Ce4+ but it apparently lacks the 

ability with the current training set. If we exclude this compound from the analysis, the error 

rate in our test is only 144 ± 65 meV/atom. Regardless, the accuracy levels observed in these 

test is sufficiently high to successfully identify materials with exceptionally low Δ𝐻𝑓. All of the 

compounds selected based on minimal formation enthalpy are within the 97th percentile (99.4th 

without CeF4) and, on average, above the 99th percentile of all compounds in the ICSD. While 

the numerical accuracy of predictions is worse when preferentially selecting large formation 

enthalpy materials, we do find it sufficient to identify which materials are most likely to have a 

large, negative formation enthalpy out of a large dataset. 
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Of our three selection strategies, the accuracy of our predictions was worst when selecting 

materials predicted to be the most stable relative to other compounds. In this test case, our 

Table 6.1. Performance of machine learning algorithm in predicting the formation ethalpy (Δ𝐻𝑓) of 30 

materials outside of the training set that were three different strategies. The DFT computed value is 
compared to the ML prediction using the input structure to DFT (Before Relaxation) and the relaxed, 
output structure.  

 Composition 

Δ𝐻𝑓, DFT 

(eV/atom) 

Before Relaxation  After Relaxation 

Δ𝐻𝑓, ML 

(eV/atom) 
Error 

(eV/atom) 

Δ𝐻𝑓, ML 

(eV/atom) 
Change 

(eV/atom) 
Error 

(eV/atom) 

La
rg

es
t 

𝚫
𝑯

𝒇
 

SrMgF4 -3.952 -3.876 0.077 -3.862 0.014 0.091 

CeF4 -3.400 -3.982 0.583 -3.887 0.095 0.488 

Sr2ScF7 -4.175 -3.902 0.273 -3.924 -0.022 0.251 

RbLu3F10 -4.275 -3.978 0.297 -4.001 -0.023 0.274 

BaAlF5 -3.956 -3.936 0.020 -3.949 -0.013 0.007 

ThZrF8 -4.223 -4.066 0.157 -4.039 0.027 0.183 

KU2F9 -3.800 -3.891 0.091 -3.869 0.022 0.069 

RbTh2F9 -4.252 -4.091 0.161 -4.104 -0.013 0.148 

Ba2ZrF8 -4.125 -3.912 0.213 -3.914 -0.002 0.212 

Ba7Cl2F12 -3.939 -3.943 0.004 -3.943 0.000 0.004 

R
an

d
o

m
 

CrHg3Pb2O8 -1.139 -1.368 0.229 -1.370 -0.002 0.231 

Y8Co56B4 -0.181 -0.176 0.005 -0.174 0.002 0.006 

YH3C3S2O12F9 -1.555 -1.541 0.014 -1.535 0.006 0.021 

CuH12C5S4N -0.168 -0.239 0.071 -0.216 0.023 0.048 

Rb2Tc3Se6 -0.750 -0.730 0.020 -0.727 0.003 0.022 

Li6CaCeO6 -2.257 -2.092 0.165 -1.373 0.719 0.885 

Na5Ti2VSi2O13 -2.747 -2.643 0.104 -2.656 -0.013 0.091 

ErP5O14 -2.692 -2.359 0.334 -2.368 -0.009 0.325 

Cs2USi6O15 -3.100 -2.868 0.232 -2.854 0.014 0.246 

RbVP2O8 -2.490 -2.674 0.184 -2.672 0.002 0.182 

La
rg

es
t 

St
ab

ili
ty

 

CeTl5Fe2N12O24 -0.804 -1.782 0.978 -1.754 0.028 0.951 

YTl5Cu2N12O24 -0.697 -1.673 0.976 -1.652 0.021 0.955 

Rb2BiCl5O20 -0.655 -1.502 0.847 -1.502 0.000 0.847 

YTl5Co2N12O24 -0.752 -1.757 1.005 -1.727 0.030 0.974 

TmAu2F9 -2.331 -2.212 0.119 -2.211 0.002 0.120 

VXe2F34 -1.348 -1.978 0.629 -2.072 -0.095 0.724 

CeTl5Ni2N12O34 -0.777 -1.754 0.977 -1.780 -0.026 1.003 

CsXe3O3F36 -0.687 -1.776 1.088 -1.782 -0.006 1.094 

ScH3Cl2O10 -1.058 -1.895 0.837 -1.929 -0.034 0.872 

CeAg6(NO3)9 -0.794 -1.679 0.885 -1.667 0.012 0.873 
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error rates were approximately 850 meV/atom, which is approximately the error expected 

when guessing the mean formation enthalpy of the OQMD training set for all predictions. This 

poor performance could be a result of the biasing effect described by Faber et al.[91] In their 

paper, Faber et al. observed a low success rate when selecting Elpasolite materials based on the 

predicted stability with reference to other compounds. They attributed this low success rate to 

this strategy of selecting materials “systematically favor[ing] those [predictions] with negative 

ML formation energy errors.”[91] Consistent with their observation, nearly all of our predictions 

made with this strategy have negative formation enthalpy errors and are well within the 99th 

percentile of magnitude of errors observed in our cross-validation test. This poor performance 

suggests that identifying materials based on the difference between ML-predicted formation 

energy and the energies of competing phases is problematic. Consequently, we recommend 

either searching for new stable materials by selecting those with minimal formation energies or 

directly predicting the stability in reference to other phases with machine learning. 

Overall, this validation test was particularly successful. We were able to observe formation 

energy errors of approximately 130 meV/atom for randomly-selected materials, and were able 

to successfully locate materials with exceptionally low formation enthalpies. In these cases, 

making the ML predictions required only a tiny fraction of the thousands of CPU hours of DFT 

calculations necessary to validate them for these limited test cases. It is also worth emphasizing 

that we were able to observe these high accuracies without knowledge of the equilibrium DFT 

structure. Across all 30 predictions, the median difference between the prediction of our model 

with the initial guess provided to DFT and with the fully-relaxed structure was only 
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13 meV/atom – far below the error expected in the prediction from the cross-validation 

experiment at 80 meV/atom. This result demonstrates that our models can be used effectively 

when only an approximate model of the relaxed geometry is known – a very important feature 

when searching for new crystalline materials using machine learning. 

6.5.2 Application to Combinatorial Searches 

In order to test how our models could be applied to the high-throughput materials 

discovery process, we simulated the results of searching for new compounds based on several 

common crystal structures. First, we trained each model using data from all 32111 compounds 

in the OQMD that are based on entries from the ICSD. Then, we used this model to evaluate the 

formation enthalpies of all entries in the OQMD with the B2, L10, and ilmenite prototype 

structures. In order to simulate how this model would be used in practice, we evaluated the 

formation energy of the compound using the same input geometry provided to the DFT 

calculation. These three structural prototypes were chosen as separate test cases in order to 

sample structures that have a variety of local environments and that are known to be stable for 

compounds with both metallic and ionic bonding. Furthermore, the B2 and L10 datasets were 

created by generating all possible combinations of elements into the structure, which is useful 

for testing the ability of the model to evaluate a broad range of chemistries. In contrast, the 

ilmenite dataset is limited to only ABO3 metal oxides and predominately includes materials with 

negative formation enthalpies, which will allow us to evaluate the performance over a more-

restricted space.  
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To evaluate the ability of each machine learning algorithm to rank compounds from most 

to least stable, we measured the Kendall Tau ranking correlation coefficient between the 

predicted and actual formation enthalpies for each prototype structure. The Kendall Tau, which 

is defined as the difference in the fraction of pairs in a list that are correctly and incorrectly 

ordered,[212] allows us to understand how well the algorithm could be employed to prioritize 

compounds that are likely to be stable. As shown in Figure 6.7a, the model created using our 

new method has the highest ranking correlation coefficient for all three considered test cases. 

For the L10 structure, our model performs twice as well as the CM model and almost three 

times better than the PRDF model, and the differences are similarly large in the B2 test case.  

The performance for all three machine learning methods was best for the ilmenite test 

case, where the dataset was restricted to metal oxides with mostly (99.4%) negative formation 

 
Figure 6.7. Comparison of the ability of different machine learning methods to rank different 
types of compounds based on DFT formation energy, measured using two different metrics. (a) 
The Kendall Tau ranking correlation coefficient, which is based on how well the model ranks the 
entire dataset. A correlation value of 1.0 corresponds to perfect ranking. (b) How many of the 
100 compounds with the lowest DFT formation energy were predicted by the model to be 
within the lowest 100 compounds. Each model was trained on the DFT-predicted formation 
energy of 32111 inorganic compounds from the ICSD. The solid bar indicates the ranking 
performance using the input structure provided to DFT. The line above each bar indicates the 
ranking accuracy when provided with the fully-relaxed output from DFT. 
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enthalpies. In that example, our model had very strong ranking performance – a nearly 85% 

success rate. This exceptional ranking performance is likely a result of the test set containing 

mostly materials that have negative formation enthalpies. If we repeat the ranking test for B1 

and L10 using only compounds with negative formation enthalpies in the test set, we observe 

improved performance for all three machine learning techniques. The improved performance 

on a dataset containing only low-enthalpy materials is consistent with previous finding that the 

model performs worst materials with positive formation enthalpies (see Figure 6.4a). 

Consequently, we purpose that the selection performance of each model could be included by 

first screening the space based on heuristic chemical rules (e.g., are the elements in reasonable 

oxidation states?). This could eliminate compounds that are more likely to be extremely 

unstable at the risk of potentially missing exciting materials that violate established rules (as in 

Ref.[91]). 

One factor leading to improved performance of our method is the insensitivity of our 

representation to changes in volume. In the case of B2, the only degree of freedom in the 

crystal structure is the volume. Consequently, our predictions are not dependent on the quality 

of the initial guess for the equilibrium volume and, incidentally, the accuracy of the CM method 

is also only negligibly affected. In contrast, the predictive accuracy of the PRDF method 

increases significantly when we use the fully-relaxed geometry as input to the model. In the 

case of ilmenite and 𝐿10, our representation and, therefore, predicted enthalpies depend upon 

relaxation because there are other degrees of freedom in the structure. Even so, the mean 

change between the initial and relaxed structures in the predicted Δ𝐻𝑓 is less than 
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55 meV/atom and the correlation coefficient between the two predictions is approximately 

99% for both structure types. Correspondingly, the ranking performance only changes slightly. 

Furthermore, the fact our model performs best when provided with the relaxed structure 

shows that we can expect our model to have the best accuracy even when provided a perfect 

estimate of the relaxed structure. For that reason, we conclude our model is the best choice for 

this ranking task.  

In practice, these machine learning models might only be used to select the entries with 

the lowest predicted formation enthalpy. To measure the ability of each model to identify 

entries with the largest formation enthalpies, we measured the number of entries predicted by 

our machine learning model to have the 100 largest formation enthalpies that actually were 

within the top 100 of the test set. As shown in Figure 6.7b, the model created using our method 

performs the best according to this metric for all three cases and over half of the predictions 

made with our model are actually within the top 100. What this high predictive accuracy 

suggests is that it is possible to use a machine learning model trained on data with dissimilar 

crystal structures (e.g., the entire OQMD) to predict stable compounds with a target crystal 

structure without having to first create a new, problem-specific training set – as is common 

practice in previous accelerated searches for stable compounds.[21,91,92,204] By using existing 

data and our machine learning technique, we can quickly make predictions of which materials 

are most likely to be stable and use that knowledge to accelerate high-throughput DFT searches 

for new materials. 
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6.6 Conclusions 

In this work, we present a strategy for predicting the formation energy of crystalline, 

inorganic compounds using characteristics derived from the Voronoi tessellation of its structure 

and machine learning. We demonstrate that these models are more accurate in cross-validation 

and better at ranking unseen compounds from most to least stable than those produced using 

the Coulomb Matrix[80] and Partial Radial Distribution Function[160] methods, and 

equivalently as fast. Furthermore, we show that our model is actually learning the effect of 

structure on formation enthalpy and can accurately predict the formation enthalpy of materials 

without knowledge of the exact ground-state crystal structure. Provided the high predictive 

accuracy of this method and the ability to utilize large training datasets, we envision it will be 

possible to employ this method to identify new, stable materials at a low computational cost. 
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7 Engineering Bulk Metallic Glass Alloys with Machine Learning 

7.1 Abstract 

Bulk metallic glasses (BMGs) are a unique class of material that have proven to be excellent 

choices for many applications, but the wide-scale use of these materials is limited by the lack of 

tools for engineering their properties. To address this issue, we developed a framework for 

designing metallic glasses using machine learning (ML) models that predict three key properties 

of metals using only the composition as input: the ability to form in the amorphous state, 

critical casting diameter (𝐷𝑚𝑎𝑥), and supercooled liquid range (Δ𝑇𝑥). These models were 

created from a database assembled from several dozen papers and handbooks, and contains 

the compositions and properties of several thousand metallic glasses. We employ these models 

to optimize the properties of known alloys, and to identify new metallic glasses in yet-

unstudied alloy systems. We validated our predictions using commercial injection molding 

equipment and found several of our ML-predicted compositions can form glasses and exceed 

existing alloys in one of our two design variables, Δ𝑇𝑥. We envision that these machine learning 

models will enable quickly tailoring bulk metallic glass alloys for new applications.  

7.2 Introduction 

While the amorphous structure of Bulk Metallic Glasses (BMGs) gives them combinations 

of properties that are impossible in conventional polycrystalline metals, it also makes them 

difficult to engineer. The lack of atomic-scale order leads to high mechanical strength, high 

corrosion resistance, low magnetic hysteresis, and the ability to be formed using net-shape 

casting techniques – among many other useful characteristics. [186] This unique set of 
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properties make them promising materials for applications such as surgical tools, pressure 

sensors, flight control surfaces, automotive components, and more.[213] However, also owing 

to the energetic metastability of the amorphous structure, few alloys have the right 

characteristics to make bypassing crystallization easy enough to form bulk amorphous castings. 

Furthermore, alloys capable of forming into bulk amorphous castings, much less ones with 

desirable properties, are difficult to locate a priori. What would enable the wider-scale 

technological use of metallic glasses is the ability to quickly locate new alloy compositions with 

optimal properties. 

Conventional alloy design for metallic glasses relies on empirical rules and extensive 

experimentation. For example, it is known that BMGs tend to form in systems with a large 

diversity in atomic sizes[186] or near eutectic compositions.[214] These empirical rules can also 

be informed using physics-based models (e.g., computational thermodynamics to predict the 

driving force for crystallization),[215–223] which often require both large computational 

resources and experimental measurements from each alloy system being assessed. However, 

even with the availability of these rules, extensive experimentation is often required to locate 

alloys with optimal properties.[187] Furthermore, there are some important properties (e.g., 

supercooled liquid range), for which neither empirical rules nor physical models linking the 

composition and properties of the material exist. Fortunately, the fact that there are known 

empirical rules for metallic glass formation and large resources of experimental data available 

make a new tool for alloy design feasible: machine learning. 
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Machine learning models are created by employing algorithms that automatically discover 

how characteristics of a material relate to its properties, provided sufficient training data. These 

models offer the advantage of being able to link the structure and properties of a material 

when empirical intuition or physical models do not exist, and can create models fast enough to 

enable the rapid evaluation of millions of candidate materials.[85,91,93,200] Machine learning 

has been employed to design and discover a wide variety of materials, including crystalline 

compounds,[85,91] thermoelectrics,[93] shape memory alloys,[224] and many 

others.[24,94,95,170,203,204,225]  

The application of machine learning techniques to the development of metallic glasses has 

yet to become prevalent. To date, Ward et al. have developed a model for predicting whether a 

composition can be formed into a thin amorphous ribbon,[200] Tripathi et al. have devised a 

scheme for linking the composition of an alloy to its critical temperatures (e.g., glass transition 

temperature),[226] and there have been two studies that employed regression algorithms to 

determine a link between critical casting diameter and other experimentally-measured 

properties of an alloy.[227,228] However a machine learning tool for predicting the ability to 

form a bulk metallic glass and the other key properties of an alloy remains elusive. 

Furthermore, there has yet to be any experimental validation of predictions from machine 

learning models for metallic glasses. 

In this paper, we describe and experimentally validate a machine learning framework for 

accelerating the design and discovery of bulk metallic glasses. To do so, we used machine 

learning to create models for three key properties of BMGs: the ability to form a metallic glass, 
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the critical casting diameter, and the supercooled liquid range. These models were created with 

data from the literature, and were designed to incorporate empirical rules about metallic glass 

formation. We then employed these models to suggest compositions of alloys that could have 

both large critical casting diameters and supercooled liquid ranges. These tools will enable the 

development of new, cheaper metallic glasses and improve the ability of engineers to tailor the 

properties of BMGs for specific applications. The ability to create optimized alloys could then 

help accelerate the incorporation of BMGs into a wider variety of technologies.  

7.3 Methods 

Machine learning models are composed of three separate components: a resource of 

training data, a representation to describe key characteristics of each entry, and a machine 

learning algorithm. In this section, we will describe these three components separately. 

7.3.1 Training Data 

Our training set was assembled from publically available data collected from many 

different articles and handbooks. The data collection process was significantly aided by previous 

efforts in collecting large resources of metallic glass data, such as the Landolt-Börnstein 

Handbook on “Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys”[172] and papers 

by Long et al.[229] and Tripathi et al.[226] The data we collected was partitioned into three 

distinct training sets: a dataset of (i) whether it was possible to create a bulk metallic glass, (ii) 

the critical casting diameters, and (iii) the supercooled liquid ranges. 
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7.3.1.1 Glass-Forming Ability Classification Dataset 

Our glass-forming ability (GFA) training set was composed of 6315 measurements of 

whether it was reported to be possible to form a BMG, an amorphous ribbon via melt spinning, 

or not at all. This dataset was assembled by combining measurements of whether it was 

possible to form a glass with melt spinning, taken from the Landolt-Börnstein Handbook, with 

the compositions of known BMGs collected from 41 different papers.[189,229–268] Where 

conflicting reports exist about the glass-

forming ability of a certain composition, we 

select the most optimistic report (i.e., BMG 

over Ribbon over None) for inclusion within 

our dataset. 

The entries in our dataset span a broad 

range of chemistries. As shown in Figure 7.1, 

the dataset contains 55 different elements, 

including transition metals and metalloids, 

and nearly all of these elements are present 

in examples of BMGs. Furthermore, the dataset includes examples of interactions between 513 

pairs of elements, spanning metal/metal and metal/metalloid glasses.  

There are two major biases in our data that need to be considered when training GFA 

models. First of all, the only negative examples of glass-formation are from Ref. [172], which 

contains only alloys with 3 or fewer elements. Consequently, the number of elements in an 

 
Figure 7.1. Elements present in each training 
dataset. The blue fill in the top left segment 
indicates the element is present in any 
dataset. The red fill in the top right segment 
indicates the element is present in BMG alloys 
included in our training set. The green fill on 
the bottom indicates the element is present in 
the supercooled liquid range dataset. 
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alloy should not be used as a factor in our classification models. Additionally, as the ability to 

form a bulk glass was not tested during the ribbon forming experiments, a positive 

measurement of ribbon forming ability does not prove a material cannot be formed using bulk 

techniques. This issue limits the ability of our models to distinguish between bulk and ribbon-

forming glasses, but not the ability to distinguish between glass-forming and non-glass-forming 

compositions. 

7.3.1.2 Critical Casting Diameter Dataset 

The critical casting diameter (𝐷𝑚𝑎𝑥) defines the largest diameter at which it is possible to 

cast a fully-amorphous rod of metallic glass. Our training dataset was created using the same 

literature source as the classification dataset, and has 5916 entries. For alloys extracted from 

the BMG literature, we used the value of critical casting diameter reported in the paper, if 

available. For alloys that were classified as ribbon-forming in the Landolt-Börnstein 

handbook,[172] we assumed a single, small value of 0.2 mm for the critical casting diameter of 

each alloy. Any alloy classified as “not glass-forming” was assigned a diameter of 0. When 

multiple values of the critical diameter were available, we used the average of all available 

measurements. 

7.3.1.3 Supercooled Liquid Range Dataset 

The supercooled liquid range (Δ𝑇𝑥) is defined as the difference between the glass transition 

temperature (𝑇𝑔) and the onset temperature at which an alloy begins crystallizing rapidly on 

heating (𝑇𝑥), and is correlated with how easily a metallic glass can be shaped after solidification. 

At 621 entries, this training dataset is the smallest of the three, and includes 45 different 
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elements and 307 different pairs (see Figure 7.1). Because Δ𝑇𝑥 measurements can vary 

significantly for single alloys (ex: reports of Fe77B22Y6 vary by 40 K[242,243]), we use the average 

of all measurements for a particular composition.  

7.3.2 Representation: Attributes to Describe Materials 

The representation of a material is a set of quantitative attributes that describe the 

material and are what serve as input to a machine learning model. The goal in selecting a 

representation for materials is to construct a set of attributes that both differentiates materials 

and captures factors that could be related to the properties of interest. By including attributes 

that are known to be correlated with the property of interest as input into the model, it 

becomes possible for a machine learning model to automatically recognize these correlations 

and, thereby, create a more predictive model. 

As our objective is to find new alloy compositions for BMGs, we chose to differentiate 

materials based on composition. To create factors derived from the composition that reflect 

empirical knowledge about glass formation, we started with the set of composition-based 

attributes developed by Ward et al.[200] These attributes are primarily based on statistics of 

elemental properties (e.g., range in atomic radius of constituent elements), and include terms 

that reflect known empirical rules, such as the polydispersity of atomic radii and average 

number of valence electrons.[186,269] Additionally, we developed new attributes to reflect 

other empirical rules developed by the BMG community: 

Cluster Packing Efficiency Attributes, which are based on the hypothesis that bulk 

metallic glasses are composed of special arrangements of atoms that are both energetically-
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stable and symmetrically-incommensurate with long-range order.[270,271] These special 

clusters occur where the ratio between the radius of the central atom and the average radius 

of the first neighbor shell is close to the ideal ratio for a cluster with the same number of 

atoms in the neighbor shell (similar to Pauling’s rule for ionic crystals).[221,272] To adapt 

this concept into attributes, we first compute the compositions of these special clusters 

based on a simple, geometric approximation.[221] We then compute the distance between 

the composition of each alloy and the first 1, 3, and 5 of these special clusters to use as 

attributes. Furthermore, we also estimate the packing efficiency assuming that the first 

neighbor shell of each atom has the same composition as the alloy, which has also been 

related to the formation of bulk metallic glasses.[247] 

Proximity to Crystalline Compound Attributes, which reflect the idea that the driving 

force for crystallization is correlated to distance between an alloy composition and nearby 

crystalline compounds.[217,273] We represented this effect using data from the Open 

Quantum Materials Database (OQMD),[18,32] which contains the DFT-predicted T=0 K 

energies of hundreds of thousands of experimentally-observed and hypothetical structures. 

We compute the formation enthalpy and several measures of the distance between an alloy 

and the nearest phases to use as attributes. 

Probability of Forming a Glass, which were computed using our glass-forming ability 

model and employed as input into the models for the critical casting thickness and Δ𝑇𝑥. 

Specifically, we use the predicted label from the GFA model (either BMG, ribbon-forming, or 

none) and the probabilities for each individual label as attributes. 
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In order to account for the sampling bias resulting in the only negative examples of glass-

formation having less than 4 elements (see Training Data section), we excluded attributes that 

are based on the number of elements for the glass-forming ability classification model. These 

attributes include the “stoichiometric” attributes introduced by Ward et al., and the number of 

crystals in equilibrium at a particular composition (i.e., due to Gibbs’ Phase Rule). 

7.3.3 Machine Learning Algorithms 

The final ingredient of our models is a machine learning algorithm to create a function that 

maps the attributes in the representation to the property of interest. In order to select the 

optimal algorithm for each problem, we evaluated the performance in a 10-fold cross-validation 

test for over 10 different machine learning algorithms and selected the one with the lowest 

Mean Absolute Error (MAE) or highest classification accuracy. 

7.4 Results and Discussion 

7.4.1 Validating Machine Learning Models 

We found that decision tree algorithms, specifically the Random Forest algorithm,[77] 

resulted in the most quantitatively accurate models in cross-validation for all three datasets. In 

the case of the 𝐷𝑚𝑎𝑥  and Δ𝑇𝑥 models, we were able to further boost the accuracy in cross-

validation using the additive regression technique.[274]  

We first validated the predictive performance of our algorithms using 10-fold cross-

validation. We found our classification model to have an accuracy of 89% (fraction of entries 

correctly labelled), which corresponds to a False Positive Rate (FPR) for incorrectly predicting a 

non-glass-forming composition as glass-forming of only 7% and True Positive Rate of 
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approximately 90%. We also found good predictive accuracy of our model for 𝐷𝑚𝑎𝑥  and Δ𝑇𝑥 

regression models with correlation coefficients greater than 80%, as shown in Figure 7.2. 

To study the ability of our model to predict properties in alloy systems not included in the 

training set, we withheld all data from the Mg-Ni-La ternary system and any derivative 

quaternaries to use as a test set. We chose this system in particular because the 𝐷𝑚𝑎𝑥  and Δ𝑇𝑥 

 

 
Figure 7.2. Performance of machine learning models designed to predict the glass-forming 
ability (GFA), critical casting diameter (𝐷𝑚𝑎𝑥), and supercooled liquid range (Δ𝑇𝑥) evaluated 
using two different cross-validation tests. The upper panel shows the algorithm performance in 
10-fold cross validation. The bottom panels are the results from test where all data from the 
Mg-La-Ni ternary or any derivative quaternary was held out as a test set. The GFA classification 
model was characterized using a Receiver Operating Characteristic (ROC) curve, which shows 
the True and False Positive Rates of labelling metallic glasses as a function of the threshold at 
which an entry is labeled “glass-forming.” The 𝐷𝑚𝑎𝑥  and 𝛥𝑇𝑥 charts show the values of the 
experimentally-measured properties and machine-learning-predicted values for each entry in 
the dataset. 
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for all BMGs were assessed by the same research group using the same casting technique with 

the same quality materials.[237,238] In this test, our regression models produced similar levels 

of accuracy to those reported in the cross-validation test (see Figure 7.2). Additionally, out of 

the 66 alloys in the test set, the 20 where the classification model was most confident that the 

alloy would be glass-forming were all indeed metallic glasses.  From this test, we conclude that 

our model is able to predict the properties of BMGs and glass-forming ability in yet-unstudied 

systems.  

7.4.2 Optimizing Existing and Discovering New BMG Alloys 

We applied our models to two separate design tasks: optimizing the properties of existing 

alloys, and identifying BMGs in yet-unstudied alloy systems. 

7.4.2.1 Tuning Established Zr-based Alloys 

The first application we considered was using our models to optimize the performance of 

two established alloys that are known to be viable with our target processing method: LM105 

(Zr52.5Ti5Cu17.9Ni14.6Al10) and LM601 (Zr51Cu36Ni4Al9). Here, our goal is to find small adjustments 

to the alloy compositions that lead to alloys with improved casting diameters or supercooled 

liquid range. The search space we defined for these two alloys is shown in Table 7.1. 
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From the several million possible candidates, we identified the alloys that were predicted 

to have the optimal balance of 𝐷𝑚𝑎𝑥  and Δ𝑇𝑥 using a Pareto analysis.[275] This search required 

only a few CPU-days of computer time, but would require decades to perform experimentally. 

As shown in Figure 7.3, this technique allowed us to identify alloys where no other alloy is 

predicted to have better performance by both metrics. In total, we identified 6 Pareto-optimal 

alloys for further testing, which are listed in Table 7.2. 

Table 7.1. Composition ranges considered for each element varied for the optimization of 
LM105 and LM601. Between both tests, only the ranges of acceptable compositions changed 
and not the step sizes. All values are in at. %. 

Element 

LM105 LM106 

Step Size Minimum Maximum Minimum Maximum 

Zr 47 60 45 65 0.5 

Ti 2 8 0 20 0.5 

Cu 12 24 0 30 0.5 

Ni 0 30 0 30 0.5 

Al 5 15 0 20 0.5 
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We were able to successfully cast all alloys using arc melting and an Engel e-motion 110 

Liquidmetal® injection molding machine. For each alloy, we determined the Strength Limited 

Casting Thickness (SLCT). The SLCT relates to the rod diameter at which the yield strength of the 

alloy begins to degrade from the fully-amorphous value, which need not be related to the 

casting diameter at which crystallization starts to occur. As shown in Figure 7.4, we found little 

 

 
Figure 7.3. Machine-learning-predicted properties of alloys evaluated during the optimization 
of two established BMG alloys: LM601 (top) and LM105 (bottom). The red, dashed line in each 
plot represents the Pareto surface of the predicted alloys, which was used to identify alloys 
with optimal levels of critical casting diameter (𝐷𝑚𝑎𝑥) and supercooled liquid range (Δ𝑇𝑥). The 
properties, names, and compositions of alloys tested in this work are labeled with arrows. 
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to no correlation between the predicted 𝐷𝑚𝑎𝑥  of an alloy and the measured SLCT. Even so, all 

of the alloys achieved an SLCT of above 1 mm and several had values comparable to the 

original alloys. 

 
Figure 7.4. Comparison of measured and predicted values of the critical casting diameter and 
supercooled liquid ranges of alloys tested in this work. Filled points represent materials 
predicted by our machine learning model. Hollow points represent the base alloys. Materials 
with improved properties are located on the right side of each chart. 



     
 

 

Table 7.2. Measured and predicted properties of alloys evaluated in this work. Alloys designated with “-Op” are optimized 

compositions predicted in this work. 

 

Name Composition (at. %) 
𝚫𝑻𝒙 (K) SLCT (mm)  

𝑫𝒎𝒂𝒙 

(mm) 

Measured 
Predict

ed 
Measured Predicted 

LM601-Op1 
Zr Cu Ni Al   

96.1 88.8 2.2 8.8 
48.00% 29.50% 4.50% 18.00%   

LM601-Op2 
Zr Cu Ni Al   

 101.3 76.6 4.4 16.0 
65.00% 17.50% 10.00% 7.50%   

LM601 
Zr Cu Ni Al   

85.0 81.1 4.3 6.8 
50.75% 36.23% 4.03% 9.00%   

LM105-Op1 
Zr Ti Cu Ni Al 

83.8 85.5 3.8 6.5 
55.00% 2.00% 23.00% 7.50% 12.50% 

LM105-Op2 
Zr Ti Cu Ni Al 

82.8 83.2 3.1 8.6 
47.00% 3.00% 23.50% 11.50% 15.00% 

LM105-Op3 
Zr Ti Cu Ni Al 

58.8  76.9 2.4 9.8 
47.00% 2.00% 23.00% 18.00% 10.00% 

LM105-Op4 
Zr Ti Cu Ni Al 

92.3 70.2 4.2 10.6 
60.00% 5.00% 17.50% 10.00% 7.50% 

LM105 
Zr Ti Cu Ni Al 

68.3 66.5 4.8 6.4 
52.50% 5.00% 17.90% s14.60% 10.00% 

1
5

1 
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The low correlation between the predicted 𝐷𝑚𝑎𝑥  and measured SLCT of our alloys could 

have several explanations. First, the differences could be a result of statistical errors of the 

model. Second, while both SLCT and 𝐷𝑚𝑎𝑥 describe the maximum casting thickness of an alloy, 

it has not been established whether they are correlated. Third, the casting technique used to 

test our prediction was different than what was used in the literature. Further experimental 

work would be required to determine which of these effects, if any, are the most important in 

understanding the limitations of our model. Consequently, while we are unable to validate the 

ability of our model to predict 𝐷𝑚𝑎𝑥, we can at least conclude that it is not a strong predictor 

of SLCT. However, it was sufficiently accurate enough that our predicted alloys each had 

acceptable critical casting diameters. 

We also measured the Δ𝑇𝑥 of each alloy using Differential Scanning Calorimetry (DSC) and 

found several alloys that outperformed our base materials. As shown in Figure 7.5, both of our 

new LM601 variants exceeded the base alloy in this property, and 3 of the 4 new LM105 variant 

alloys had larger supercooled liquid ranges than the base material. We also observed a weak 

(R = 0.33) correlation between the measured and predicted values for this property. 

Considering the large variation in this property between different reports of the same alloys in 

the literature[242,243] and small sample size in our validation test, a lower-than-expected 

correlation coefficient is not surprising. The mean absolute error of our predictions, 10.1 K, is 

also only slightly worse to what was measured in the cross-validation tests. From these results, 

we conclude that our model is suitable for optimizing the Δ𝑇𝑥 of our alloys. 
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Overall, our new alloys expand the design space for Zr-based metallic glasses. While no 

new material exceeds both of the known alloys in both properties, we were able to locate 

materials with improved Δ𝑇𝑥 and similar critical casting diameters (see Figure 7.5). In doing so, 

we expanded the space of critical diameters and supercooled liquid ranges where there is a 

known alloy that exceeds both design properties. This demonstrates the power of machine 

learning methods to interpolate between known materials and locate new materials with 

properties tailored for different requirements. 

7.4.2.2 Locating Novel Bulk Metallic Glasses 

The second application we explored was using our models to find alloys that are different 

from known BMGs, and have large critical casting diameters and supercooled liquid ranges. This 

application is more difficult than the previous example because we no longer constrain the 

search space to a region known to be compatible with injection molding. For this test, we 

decided to evaluate alloys created using all combinations of elements out of a list of 27 suitable 

 
Figure 7.5. Comparison of the measured supercooled liquid range (Δ𝑇𝑥) and strength limiting 
casting thickness (SLCT) of alloys predicted in this work. The unfilled shapes represent the base 
alloys and the filled shapes the alloys predicted in this work. The dotted line indicates the 
Pareto surface of the original alloys. Three of our new alloys exceed this boundary, and create a 
larger region (solid line) where it is possible to create an alloy that exceeds certain minimum 
values for both properties. 
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for commercial production (see Table 7.3). 

From this list, we tested all combinations of 

two or three elements at 2 at% spacing, 

which yields a total of 3.5 million candidate 

materials. 

Search Strategy: Our procedure for 

finding new alloys was split into four separate screens. First, we removed any alloys where the 

𝐿1 distance between the composition of that alloy and any known ribbon or bulk-forming glass 

was less than 30 at%. We computed the 𝐿1 distance by summing the difference between the 

fractions of each element in the two alloys (e.g.: the distance between Cu50Zr50 and Cu50Zr46Al4 

is 8 at% by this measure). Next, we used the classification model to eliminate alloys that are 

predicted to have greater than a 5% chance of not being able to form a glass. Then, we used the 

regression models to locate alloys with a Δ𝑇𝑥 above the 80th percentile of the training data 

(66 K) and a 𝐷𝑚𝑎𝑥  greater than 1 mm.  

Search Results: The search space included 3.5 million alloy candidates, which required 

about 2 days on 8 2.2 GHz processors to fully evaluate. Only 38361 (approximately 1%) alloys 

passed all of the filters. We then sorted each ternary system based on the number of alloys that 

passed all filters, as a proxy for the size of the glass-forming region. Out of these top alloys, we 

selected the Cu-Hf-Mg and Cu-Hf-Ti systems. Finally, we enumerated alloys in these two 

systems at a much finer spacing (0.5 at%) and identified alloy compositions within these 

systems with the highest predicted 𝐷𝑚𝑎𝑥  and Δ𝑇𝑥 (see Figure 7.6).  

Table 7.3. List of elements included in search 
for new alloys 

ELEMENTS CONSIDERED IN ALLOY SEARCH 

Mo W Ta Hf Ti Zr P 

Ca Li Mg Nb Zn Si B 

Co Fe Mn Cr V Pb C 

Sn In Ag Cu Al Ni  
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As in the previous application, we attempted to fabricate these materials using arc melting 

and injection molding. Of the four alloys, we were only able to successfully melt and cast the 

Cu-Hf-Ti alloys, and were unable to successfully alloy the Mg into the Cu-Hf-Mg alloys. In the 

case of the Cu-Hf-Mg alloys, the Mg evaporated before becoming incorporated into the melt. 

For the alloys that were able to be cast (those in the Cu-Hf-Ti system), we were unable to form 

fully-amorphous samples in the injection molding machine. 

In this application, we found processing requirements to be an important factor when 

identifying new alloys and have several recommendations for how to incorporate that 

 
Figure 7.6. Critical casting thickness (𝐷𝑚𝑎𝑥) and supercooled liquid ranges (Δ𝑇𝑥) of Cu-Hf-Ti and 
Cu-Hf-Mg alloys, as predicted using a machine learning model. Arrows indicate the 
compositions with the maximum value of a property in each of the ternary diagrams. 
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information. First of all, we recommend limiting the search space based on the target 

fabrication process. In contrast to the screening steps employed earlier in this work, these 

filters would be based on human knowledge about which materials work best for each casting 

step. For example, if we removed high vapor pressure elements (e.g., Mg) from the search 

space, we could have selected alloys better suited for arc melting.  

 Secondly, future searches for new BMGs should consider processing conditions as input 

into the machine learning models. While we found Cu59Hf26.5Ti14.5 could not be formed with 

injection molding, previous experiments have reported that a very similar alloy, Cu60Hf25Ti15, 

could be made using copper mold casting.[276] This variation in processability demonstrates 

the strong impact of fabrication method on observed glass-forming ability. The first step in 

incorporating processing conditions into the machine learning model would be to gather 

examples of metallic glasses created with several different methods. Next, processing 

conditions need to be included as input into the machine learning model. The simplest method 

for introducing processing conditions as inputs would be adding a categorical variable that 

indicates the method used when attempting to fabricate a BMG. Provided enough examples of 

materials that were able or were not able to be created using each processing method, a 

machine learning model could predict both whether it is possible to create a glass at a certain 

composition and which processing technique would be the most effective. 

7.5 Conclusion 

In this chapter, we presented a set of machine-learning-based design tools for Bulk Metallic 

Glasses (BMGs) and initial work on validating these predictions using commercially-viable 
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fabrication methods. To create these tools, we developed new attributes based on empirical 

rules from the metallic glass community and used them to create machine learning models that 

link the composition of an alloy to its glass forming ability, critical casting diameter, and 

supercooled liquid range. With these new tools, we optimized existing BMGs to create new 

alloys with superior supercooled liquid ranges and comparable critical casting diameters to the 

original alloys. Our attempts to discover BMGs in new alloy systems were unsuccessful, which 

we suggest could be remedied by incorporating processing method into the machine learning 

model. We envision that this framework, with modification, could lead to the discovery of new 

BMGs and provide a path for engineering these materials for new applications.  
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8 Magpie: A Materials-Agnostic Platform for Informatics and Exploration 

8.1 Abstract 

Machine learning methods have started to show significant promise as a route for 

designing new materials. However useful, the adoption and widespread use of these 

techniques is limited by the lack of publically-available software. In this work, we present an 

open-source software package, Magpie, designed to simplify the use of machine learning for 

materials engineering by providing a user-friendly interface, mechanisms for sharing models, 

and the ability to be easily extended to include new methods.  In this chapter, we describe the 

key features of Magpie, its user interface, and give a worked example of using this code to 

model metallic glass formation. It is our goal for this tool can be employed by the community at 

large in order to make machine learning models a readily-accessible tool for materials design. 

8.2 Introduction 

Free and open-source software are widely-used in many areas of computational materials 

engineering. Considering atomic-scale modelling, there are the popular LAMMPS and Quantum-

ESPRESSO codes that allow users to perform state-of-the-art molecular dynamics and DFT 

calculations.[277,278] There is also an open-source code for performing computational 

thermodynamics and a variety of software for performing phase field simulations.[279,280] 

Having access to open source codes not only lowers the barrier to accessing these powerful 

methods, but also improves the reproducibility of studies performed using these 

techniques.[281] However, there are few studies that employ machine learning to study or 



159 

 

design materials – a field often called “Materials Informatics” [3] – that release the software 

necessary to recreate or reuse their methods. 

As noted in a study by Bhadeshia et al, the dissemination of neural networks models used 

for materials science applications is infrequent.[94] By analyzing 100 papers that published a 

neural network model, they found that well over half did not publish the requirements 

necessary to recreate models: the training data and coefficients of the neural network. 

Considering the wide breadth of machine learning methods besides neural networks in the 

literature, we also assert that the software that performs the machine learning algorithm needs 

to be released as well. Fortunately, there are several positive examples of papers that are at 

least partially open. Several papers include links to online tools where one can use the model 

for new tasks.[93,116,202,282] There are also a few open source codes that have been released 

recently,[105,283] and papers that release their training data along with the study.[24,79,163] 

However, openness is certainly not the norm. 

In this chapter, we describe the development of an open-source software tool, Magpie, 

designed to simplify the creation of machine learning models from materials data. The primary 

motivation when developing Magpie was to create a library of materials informatics techniques 

that can be used by the non-expert. Additionally, Magpie is also designed to simplify the sharing 

of models either through operating-system-independent files or custom web applications. In 

the following sections, we describe the key features of Magpie as well as demonstrate how it 

can be applied to building a model for metallic glass formation. It is our view that these features 
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will make creating, employing, and sharing machine learning models from materials data easier 

for both experts and new users of materials informatics.  

8.3 Technical Details 

Magpie, which is an abbreviation for “Materials Agnostic Platform for Informatics and 

Exploration,” is a Java Library with a custom command-line interface and ability to be 

integrated to other codes using a flexible API. Magpie is written to be compatible with Java 8, 

which is available for most operating systems and computer architectures. One advantage of 

using Java is that Magpie can be compiled once and run on any other architecture that supports 

Java. The source code for Magpie is available on BitBucket under an MIT License, and is also 

distributed with over 400 unit tests to ensure that Magpie is working as originally designed. 

Most of the numerical, statistical, and machine-learning algorithms employed by Magpie 

are provided by linking to other libraries. The Apache Commons Math library is used to perform 

many of the analyses of model performance and a few of the simpler machine learning 

algorithms (e.g., linear regression). Magpie also links to the Weka library and has the capability 

to train and run models created with scikit-learn, which allows access to dozens of modern 

machine learning algorithms.[74,75]  

Magpie also contains the ability to perform some computations in parallel. The Java 

programming language natively supports shared-memory parallelization, which we employ to 

allow generating representations, running models, and performing high-throughput screening 

in parallel. As emphasized in a later section, many calculations performed when using a 

machine learning model are embarrassingly parallelizable and we can therefore achieve high 
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parallel efficiency. Work is currently underway to support distributed memory parallelization 

via Apache Spark, which will allow Magpie to be deployed on high-performance clusters. 

Besides interacting with Magpie via its text interface or the Java API, one can also create 

tools in other programming languages via a REST API. The central component of the REST API 

for Magpie is a server that holds all information necessary to run a collection of materials 

informatics models. Other programs can then submit simple commands (e.g., “run formation 

energy model for X, Y, Z materials”) via HTTP web requests to this server, which will 

automatically perform them and send back data in a JSON format. As many programming 

languages support generating HTTP requests and parsing JSON files, it is possible to create 

software that utilize models running in Magpie in many different languages. For example, the 

websites described in Section 8.5.3 are built using the REST API. 

8.4 User Interface 

The main user interface for Magpie is a text-based input file loosely modeled after the Bash 

programming language. Users can create variables that represent components of a machine 

learning model, such as a dataset to store training and test data, and interact with them via 

simple commands. An example of reading in data from a text file, training a model with Weka, 

and saving the model in an operating-system-independent format is shown in Figure 8.1. Most 

typical machine learning tasks, such as performing cross-validation and running the model on a 

search space, can be performed from this interface with only a few commands. A worked 

example of a script to build a machine learning model through this interface is available in a 

later section. 
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While the command line interface has the advantage of running without installing any 

additional software, it is limited in the kind of operations that can be performed. For example, 

it does not support loops for performing parameter sweeps often used to optimize a model. 

However, as this software is based in Java, you have several other options to create more 

complicated analysis software. For example, one can link to Magpie from other Java code or 

create scripts using the Scala programming language. Doing so requires either compiling new 

software or having Scala installed on a particular system, but they do offer more advanced 

functionality to expert users. 

 
Figure 8.1. Example input and output from Magpie for a script that creates a model to predict 
the formation enthalpy of materials given data from the OQMD. Users can create variables that 
store the dataset and model object, and manipulate them with simple text commands. 
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8.5 Key Features of Magpie 

The following subsections contain information about the features of Magpie which are 

likely to be used by the largest audience. 

8.5.1 Library of Material Representations 

The most important feature of Magpie is a library of methods to create representations of 

materials. The purpose of computing these representations is to transform raw materials data 

(e.g., the fraction of each element in the material) into a form that reflects the physical effects 

leading to observed material properties, which makes it possible to create simpler and more 

accurate models.[79,200] Representations are composed of a set of quantitative attributes, and 

the development of these attributes has been a subject of much research over the past 

decade.[41,79,80,160,200,284] One of our goals when creating Magpie is to implement these 

methods all in a single library so that it will be easier to use them for new problems. 

As of the time of writing this manuscript, Magpie contains a diverse set of methods for 

representing materials based on their composition and crystal structure. For example, the 

attribute sets used by Meredig et al. to predict the formation enthalpy of crystalline 

materials,[85] those employed by Ward et al. to predict the glass-forming ability of metal 

alloys,[200] and many of the attributes developed by Deml et al. to predict the total energy of 

ionic compounds are all included in Magpie.[41] Furthermore, Magpie contains the Atomic-

Property-Weighted Pair Radial Distribution Function (AP-RDF) method and the Coulomb Sine 

Matrix representations for crystal structures.[80,285] Our future vision is to add in existing 
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attribute sets (e.g., microstructure representations [286,287]) into Magpie and continually 

upgrade it to contain new techniques as they are developed.  

8.5.2 Linkages to Machine Learning Libraries 

Besides raw materials data and a numerical representation for that data, the other key 

ingredient of a materials informatics method is a machine learning algorithm. Our approach for 

allowing users access to modern machine learning algorithms is to directly link to two extensive 

libraries: Weka and Scikit-Learn.[74,75] By providing a link to other libraries, it will be possible 

for Magpie users to take advantages of continual improvements and additions to these libraries 

and, therefore, be able to utilize state-of-the-art machine learning methods as they become 

available. Magpie does contain custom code for some machine learning techniques, including 

the LASSO-based feature selection technique used by Ghiringhelli et al. and the cumulant 

expansion method employed by Fischer et al.[79,116] However, in general, our guiding 

philosophy is to use existing code where possible. 

8.5.3 Easy Sharing of Models 

Magpie provides users three different methods for sharing their models, each to target a 

different audience. First of all, it is possible to share the input script and training data files used 

to generate and test the model. Secondly, one can save the model and dataset objects, which 

contain the machine learning model and code to generate the representation for new data, into 

an operating-system independent file format with the serialization mechanism of the Java 

programming language. These two techniques require a user to install and be able to run the 
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Magpie software and, therefore, require some familiarity with the principles of machine 

learning to be useful. 

To share models with the widest-possible user base, Magpie also provides software to 

simplify the creation of custom web applications. Figure 8.2 shows an example webpage where 

users can run composition-based machine learning models through a simple form. This web 

tool also links to another webpage (shown in Figure 8.3) that describes the provenance of the 

model, which includes when the model was created, a description of the training data and 

validation statistics, and a list of recommended citations if this model is used in an article. 

  
Figure 8.2. Sample webpage for interacting with materials informatics models through a simple 
interface. Users input compositions into a text box, select which models they want to run from 
a list of checkboxes, and then click compute. All necessary steps to evalaute the models are 
performed automatically and the results are displayed in a clear, tabular format. 
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Additionally, this webpage contains information about how to recreate this model, including an 

automatically-generated description (see Figure 8.4) of the attributes and machine learning 

algorithm used to create the model. Magpie is distributed with example web pages so that 

creating these tools for new models is easier. Our vision that by creating these model sharing 

tools, there will be little need to recreate the same infrastructure for each new model. 

 
Figure 8.3. Example webpage that displays proveance information about a machine learning 
model. This automatically-generated page contains information about when the model was 
created, who to cite when using it, validation information, and descriptions of how to 
reproduce the model. 
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8.5.4 Proper Attribution 

It is our view that researchers should be recognized for their contributions to the methods 

employed in Magpie regardless of whether they implemented the code used in Magpie or not. 

In order to make it easier for users to recognize who developed the methods employed by a 

model, we have designed the ability to add a “get citations” command to any object in Magpie. 

If implemented, Magpie can automatically prepare a list of recommended citations. Upon 

calling the “citations” command through the user interface, information about these citations 

for each variable used in the current script is printed to screen (see Figure 8.4). With this 

functionality, we can make sure any users of Magpie are properly informed about the methods 

they are using and have the information necessary to acknowledge contributions from others 

when, for example, citing papers in a journal article.  

 
Figure 8.4. Example of the functionality in Magpie for automatic generating recommended 
citations and human-readable descriptions. This example output from Magpie shows 
recommended citations and a description for a tool using the attribute selection technique of 
Ghiringhelli et al.[79] Color added for clarity. 
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8.5.5 Efficient High-Throughput Screening 

One of the common uses of machine 

learning tools is to evaluate exceptionally 

large numbers of candidate materials, and 

Magpie is designed to simplify that process. 

For one, Magpie includes the methods to 

generate large search spaces. For example, it 

contains code to generate compositions 

given a list of possible constituent elements 

or generating new crystal structures based 

on a user-defined prototype. 

 Magpie also contains methods for evaluating large search spaces efficiently. As each entry 

can be evaluated individually, computing the entire search space can be trivially parallelized. 

Magpie can generate the representation for each material and run the models in parallel using 

shared-memory parallelization. We also support processing the data in batches because storing 

the representation of the entire search space in memory could be impractical, due to memory 

constraints, and is unnecessary. For example, the search in Ref. [200] would require over 32 GB 

of memory to run if the representation for all entries were computed at once 

(26 million entries × 145 
attributes

entry
× 8

Bytes

attribute
≈ 32 GB). By selecting an appropriate batch 

size (trading off between efficiencies gained by processing larger batches against more-

equitable division of work between threads), the parallel efficiency can be above 90% - as 

 
Figure 8.5. Parallel performance of Magpie in 
performing a combinatorial search for new 
metallic glass alloys. Speedup factor (ratio 
between runtime and serial calculation time) 
shown as a function of number of threads for 
different batch sizes (𝑛). 
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shown in Figure 8.5. Using both the parallel computing and batch processing methods built in to 

Magpie, one can quickly assess search spaces with more than 107 entries. 

8.5.6 Extensibility 

Magpie is also designed to be easily extensible in the future. Each major type of variable 

(e.g., machine learning model, dataset filter) is based on a supertype that contains all of the 

reusable parts of the code. For example, someone creating a new filter need only implement 

the method to label whether each entry in a dataset passes the filter. The other, generic code 

for actually removing the non-passing entries and performing labelling in parallel can be 

automatically reused. The documentation describing which operations need to be implemented 

for each variable type and what those operations should perform are provided in the online 

documentation. Following this object-oriented software design, we hope Magpie can easily be 

updated by a large community. 

8.6 Worked Example: Predicting New Metallic Glasses 

To give a demonstration of an example use case of Magpie, we will describe how to 

replicate the machine learning model for predicting metallic glasses described in Ref. [200]. The 

starting point for this study is a simple data file, where the composition of each material in the 

dataset is listed along with whether it was measured to be able to form a completely-

amorphous sample (labelled AM), a mix between amorphous and crystalline phases (AC), and 

only crystalline phases (CR). The first few lines of this file are 

comp gfa{AM,AC,CR} 
Ag20Al25La55 AM 
Ag15Al10Mg75 AM 
Ag25Al10Mg65 AM 
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where the first line defines measured property (gfa), followed by its possible values (AM, AC, 

and CR). To store this data, one uses the CompositionDataset object, which stores data where 

entries can be differentiated based on their composition. Creating the object to store the data 

and reading in the dataset are accomplished by two lines 

data = new data.materials.CompositionDataset 
data import landolt.data 

 
where the first line creates the object stores it to the variable named “data” and the second 

reads in the text file. The first word in each line for the text interface to Magpie is either a 

command word (e.g., “save”) or the name of a variable followed by a series of words that 

define the operation and some of its options. For this example, “import” is the command for 

reading in data from the filesystem and “landolt.data” is the only option – the path to the data. 

All other commands in Magpie follow this structure. 

The next step in creating the model is cleaning the data. The first step is to define “gfa” as 

the property to be modeled with the command 

 data target gfa 

 The second step is to reduce the number of possible class from three to only two: was a 

material fully-amorphous or not. This modification is accomplished by invoking the 

“ClassEliminationModifier” class to replace all examples entries labeled as “AC” to be labelled 

as “CR.” To do so, one employs the “modify” command of the dataset object 

data modify ClassEliminationModifier AC CR 
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where the options to the command are the name of the modifier class to be run and any 

options for that modifier. Magpie contains many such “modifier” classes to perform other data 

cleaning and processing algorithms. The third step is to remove duplicate compositions. If 

duplicates for a single composition have different labels (e.g., some are labelled crystalline and 

others glassy), the authors assigned a label of AM (amorphous) to the entry. This is 

accomplished by calling the “duplicates” command of the dataset and telling the duplicate 

resolution code to select the entry with the minimum value of the “gfa” property 

(corresponding to the first label in the data file, AM). This duplicate resolution strategy can be 

enforced with the command  

data duplicates RankingDuplicateResolver minimize & 
  PropertyRanker gfa SimpleEntryRanker 

where the “&” breaks the command on to two different lines for readability. After invoking 

these two commands, the dataset is reduced by 1467 entries and the machine learning 

problem is simplified into a binary classification problem. 

Once the data is cleaned, the next step is to generate the representation that serves as 

input into the machine learning model. In this work, the authors employed the default 

representation for composition data in Magpie – the attribute set proposed by Ward et al.[200] 

For this, one simply needs to specify the list of elemental properties (e.g., electronegativity) 

that are used to generate the representation with the command 

data attributes properties add set general 
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where the general set is the 22 properties employed by Ward et al.[200] Then, to compute all 

145 attributes, the command is  

data attributes generate 

Computing the attributes takes only a few seconds and, after it is complete, it is possible to 

start building machine learning models. 

The final step is to train and validate a machine learning model. The first step in this 

process is to create a new variable to store the model object. To create a RandomForest model 

via Weka, this is accomplished by the command 

model = new models.classification.WekaClassifier & 
trees.RandomForest -I 100 

that creates a model with 100 individual trees. The “train” command for this object invokes the 

training operation with 

 model train $data 

 which takes a dataset variable as an input option. The fact that the word “data” should 

correspond to a variable in Magpie is indicated with the $ in front. The next step is to save the 

model and a copy of the dataset, which contains the information needed to compute the 

representation, using the serialization feature of Java 

 save model gfa-model_model  
 save data gfa-model_data template 

The “save” command in Magpie takes up to three arguments: the name of the variable being 

saved, the file name, and the format. These commands will produce two files, gfa-

model_model.obj and gfa-model_data.obj, that can be read in with the load command 
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 model = load gfa-model_model.obj 

on any other operating system. These model files can be included in scripts that perform high-

throughput screening, loaded in to create interactive webpages, or simply shared as 

Supplementary Information with a journal article so that anyone can use the exact same model 

created in the original work.  

8.7 Summary 

In this chapter, we introduced the Materials Agnostic Platform for Informatics and 

Exploration (Magpie) – a tool designed to simplify the creation of machine learning models 

from materials data. We described the user interface of Magpie, highlighted its main features, 

and then provided an example of how Magpie can be used to create a classification model for 

identifying glass-forming metallic alloys. In the future, we plan to continually update Magpie 

with newer materials informatics approaches and envision integrating this software into other 

computational materials science tools. In this way, we hope that Magpie will help enable the 

wider-scale use of materials informatics methods and lead to the accelerated development of 

many new materials.  
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9 Summary and Outlook 

In this thesis, we presented several advancements that will improve the ability of 

researchers to design new materials with machine learning methods. As described in the, my 

work focused on two main areas: (i) the use of automated crystal structure solution algorithms 

to fill in missing information in material property databases, and (ii) developing tools to simplify 

the development of machine learning models from materials data.  

9.1 Automated Crystal Structure Solution 

We have shown how to solve incompletely-determined crystal structures with the First-

Principles-Assisted Structure Solution (FPASS) method (Chapters 3 and 4). By solving these 

structures, we added several new compounds to the Open Quantum Materials Database 

(OQMD), which are now available as candidate materials for any new searches made using this 

resource. Additionally, any future machine learning models made using the OQMD will be 

based on more accurate training data. As we have automated the methods necessary to 

perform these solutions and made the automation tools publically available, it will be easier to 

continue to populate the OQMD with more information about known crystalline materials. 

The most promising route for future work in this area is to continue using the automated 

solution tools to solve more incomplete structures. There are plenty of examples of compounds 

in both the Powder Diffraction File and Inorganic Crystal Structure Database whose structures 

have yet to be determined. Additionally, there are plenty of methodological advancements that 

would make FPASS more widely applicable. The area I would recommend the most strongly 

would be devising ways to reduce the number of DFT calculations required to attain a solution. 



175 

 

Given the large numbers of DFT calculations performed in the solution of a structure, one could 

fit an empirical potential to the previous calculations in order to either speed up the structural 

relaxation (as in Ref. [288]) or to be used when suggesting candidate crystal structures. 

Additionally, it may be beneficial to improve some aspects of the optimization algorithm with 

methods employed by the crystal structure prediction community (e.g., minima hopping [289]). 

As a long term goal, FPASS could be combined with other crystallographic tools, such as ab 

initio peak indexing software, to make a tool that can be used to automatically solve structures 

from raw diffraction data with limited human input. 

9.2 Machine Learning 

In terms of machine learning, we have created new methods for transforming materials 

data into a form compatible with machine learning (Chapters 5 and 6), demonstrated how to 

apply those methods to design metallic glasses (Chapter 7), and created open source software 

to make these methods available to the materials community (Chapter 8). Our vision is that 

these advancements will simplify applying machine learning methods to new materials problems. For 

example, we found methods we created for generating representations based on the 

composition of materials can be applied to many different problems, which reduces the need to 

create a new representation for each application. We also show how these machine learning 

models can be used to create new commercial Bulk Metallic Glass alloys. Finally, the open 

source software we released will reduce the learning curve for using machine learning and 

amount of infrastructure that needs to be created when applying machine learning to 

new applications. 
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In terms of machine learning, a good next step would be to start finding new applications 

for the techniques developed in this work. There are plenty of wonderful, curated resources of 

materials data (e.g., created by NIMS, NIST, and ASM) that could be used to create useful 

machine learning models. On a technical level, the main question I have about employing 

machine learning in materials design is how to decide when a machine learning model can be 

used and how much error to expect in each prediction. Both of these questions could be 

answered with reliable error estimates for individual predictions from a machine learning 

model, and there has been some research towards this question in materials science. 

[47,106,163,290] Another impactful task would be to implement more materials informatics 

methods into Magpie and using Magpie to recreate more machine learning models from the 

literature. Doing so would make it easier for others to utilize machine learning in their own 

work, which would only benefit the materials community as a whole. 

Another promising area of machine learning research could be the development of 

representations for other types of materials data. In this thesis, we have shown methods for 

using the composition or crystal structure of a material to build machine learning models. Other 

groups have developed methods to construct machine learning models from microstructure 

data.[286,287] However, these are far from the only types of materials data. One may want to 

build models that incorporate the thermomechanical processing history. It would be very 

beneficial to have a collection of techniques to create useful representations from this variety 

of data types. If such a library of techniques were created, the process to create a machine 

learning model from any materials data would be drastically simplified.  
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193 

 

forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses, 
J. Appl. Phys. 112 (2012) 63503. doi:10.1063/1.4752263. 

[260] S. Tao, Z. Ahmad, H. Jian, T. Ma, M. Yan, Synthesis, thermal stability and properties of 
[(Fe1-xCo x)72Mo4B24]94Dy 6 bulk metallic glasses, J. Alloys Compd. 509 (2011) 3843–
3846. doi:10.1016/j.jallcom.2010.12.109. 

[261] S. Tao, T. Ma, H. Jian, Z. Ahmad, H. Tong, M. Yan, Glass forming ability, magnetic and 
mechanical properties of (Fe72Mo4B24)100−xDyx (x=4–7) bulk metallic glasses, Mater. 
Sci. Eng. A. 528 (2010) 161–164. doi:10.1016/j.msea.2010.08.092. 

[262] W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic 
glasses, Prog. Mater. Sci. 57 (2012) 487–656. doi:10.1016/j.pmatsci.2011.07.001. 

[263] L. Wu, S. Li, J. Fang, Q. Chen, K. Peng, Enhancement of the glass forming ability of La–Al–
Cu glassy alloys by partial substitution of Al by Mg, J. Alloys Compd. 504 (2010) S38–S40. 
doi:10.1016/j.jallcom.2010.03.102. 

[264] K.F. Xie, K.F. Yao, T.Y. Huang, Preparation of (Ti0.45Cu0.378Zr0.10Ni0.072)100−xSnx bulk 
metallic glasses, J. Alloys Compd. 504 (2010) S22–S26. 
doi:10.1016/j.jallcom.2010.02.199. 

[265] K.-F. Xie, K.-F. Yao, T.-Y. Huang, A Ti-based bulk glassy alloy with high strength and good 
glass forming ability, Intermetallics. 18 (2010) 1837–1841. 
doi:10.1016/j.intermet.2010.02.036. 

[266] F. Xu, H.B. Lou, X.D. Wang, S.Q. Ding, Q.P. Cao, J.Z. Jiang, Glass forming ability and 
crystallization of Zr–Cu–Ag–Al–Be bulk metallic glasses, J. Alloys Compd. 509 (2011) 
9034–9037. doi:10.1016/j.jallcom.2011.02.107. 

[267] G.-H. Zhang, K.-C. Chou, A criterion for evaluating glass-forming ability of alloys, J. Appl. 
Phys. 106 (2009) 94902. doi:10.1063/1.3255952. 

[268] Q.S. Zhang, W. Zhang, D.V. Louzguine-Luzgin,  a. Inoue, Effect of substituting elements on 
glass-forming ability of the new Zr48Cu36Al8Ag8 bulk metallic glass-forming alloy, J. 
Alloys Compd. 504 (2010) S18–S21. doi:10.1016/j.jallcom.2010.02.052. 

[269] Q. Jiang, B.Q. Chi, J.C. Li, A valence electron concentration criterion for glass-formation 
ability of metallic liquids, Appl. Phys. Lett. 82 (2003) 2984. doi:10.1063/1.1571984. 

[270] D.B. Miracle, A structural model for metallic glasses., Nat. Mater. 3 (2004) 697–702. 
doi:10.1038/nmat1219. 

[271] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-
medium-range order in metallic glasses., Nature. 439 (2006) 419–25. 
doi:10.1038/nature04421. 

[272] D.B. Miracle, E.A. Lord, S. Ranganathan, Candidate Atomic Cluster Configurations in 
Metallic Glass Structures, Mater. Trans. 47 (2006) 1737–1742. 
doi:10.2320/matertrans.47.1737. 

[273] M. Falcão de Oliveira, A simple criterion to predict the glass forming ability of metallic 
alloys, J. Appl. Phys. 111 (2012) 23509. doi:10.1063/1.3676196. 

[274] J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (2002) 367–378. 
doi:10.1016/S0167-9473(01)00065-2. 

[275] K. Lejaeghere, S. Cottenier, V. Van Speybroeck, Ranking the Stars: A Refined Pareto 
Approach to Computational Materials Design, Phys. Rev. Lett. 111 (2013) 75501. 



194 

 

doi:10.1103/PhysRevLett.111.075501. 
[276] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, High-strength Cu-based bulk glassy alloys in 

Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49 (2001) 2645–2652. 
doi:10.1016/S1359-6454(01)00181-1. 

[277] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. 
Phys. 117 (1995) 1–19. doi:10.1006/jcph.1995.1039. 

[278] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., QUANTUM 
ESPRESSO: a modular and open-source software project for quantum simulations of 
materials, J. Phys. Condens. Matter. 21 (2009) 395502. doi:10.1088/0953-
8984/21/39/395502. 

[279] B. Sundman, U.R. Kattner, M. Palumbo, S.G. Fries, OpenCalphad - a free thermodynamic 
software, Integr. Mater. Manuf. Innov. 4 (2015) 1. doi:10.1186/s40192-014-0029-1. 

[280] A.M. Jokisaari, P.W. Voorhees, J.E. Guyer, J. Warren, O.G. Heinonen, Benchmark 
problems for numerical implementations of phase field models, Comput. Mater. Sci. 126 
(2017) 139–151. doi:10.1016/j.commatsci.2016.09.022. 

[281] D.C. Ince, L. Hatton, J. Graham-Cumming, The case for open computer programs, Nature. 
482 (2012) 485–488. doi:10.1038/nature10836. 

[282] R. Liu, L. Ward, C. Wolverton, A. Agrawal, W.-K. Liao, A. Choudhary, Deep Learning for 
Chemical Compound Stability Prediction, Proc. 22nd ACM SIGKDD Int. Conf. Knowl. 
Discov. Data Min. (2016). 

[283] https://github.com/libAtoms/QUIP. 
[284] W.T. Hong, R.E. Welsch, Y. Shao-Horn, Descriptors of Oxygen-Evolution Activity for 

Oxides: A Statistical Evaluation, J. Phys. Chem. C. (2015) acs.jpcc.5b10071. 
doi:10.1021/acs.jpcc.5b10071. 

[285] M. Fernandez, N.R. Trefiak, T.K. Woo, Atomic Property Weighted Radial Distribution 
Functions Descriptors of Metal–Organic Frameworks for the Prediction of Gas Uptake 
Capacity, J. Phys. Chem. C. 117 (2013) 14095–14105. doi:10.1021/jp404287t. 

[286] T. Fast, S.R. Kalidindi, Formulation and calibration of higher-order elastic localization 
relationships using the MKS approach, Acta Mater. 59 (2011) 4595–4605. 
doi:10.1016/j.actamat.2011.04.005. 

[287] B.L. DeCost, E. a. Holm, A computer vision approach for automated analysis and 
classification of microstructural image data, Comput. Mater. Sci. 110 (2015) 126–133. 
doi:10.1016/j.commatsci.2015.08.011. 

[288] S.Q. Wu, M. Ji, C.Z. Wang, M.C. Nguyen, X. Zhao, K. Umemoto, et al., An adaptive genetic 
algorithm for crystal structure prediction, J. Phys. Condens. Matter. 26 (2014) 35402–6. 
doi:10.1088/0953-8984/26/3/035402. 

[289] M. Amsler, S. Goedecker, Crystal structure prediction using the minima hopping method, 
J. Chem. Phys. 133 (2010) 224104. doi:10.1063/1.3512900. 

[290] P. V. Balachandran, D. Xue, J. Theiler, J. Hogden, T. Lookman, Adaptive Strategies for 
Materials Design using Uncertainties, Sci. Rep. 6 (2016) 19660. doi:10.1038/srep19660. 

[291] http://reference.wolfram.com/language/note/ElementDataSourceInformation.html. 
  



195 

 

10 Appendix: Formulae for Attributes 

The first step in creating a machine learning model of a material property is to compute 

attributes that reflect physical effects potentially are influence that property. These attributes 

are designed to enable a machine learning algorithm to construct general rules that can 

possibly “learn” chemistry and reflect some kind of chemical intuition. In this thesis, we have 

developed many categories of attributes, which are described in detail in the following 

subsections. 

10.1 Stoichiometric Attributes (6 in total) 

These attributes capture the fraction of the elements present and are not affected by what 

those elements are. All are based on Lp norms (i.e. ‖𝑥‖𝑝 = (∑ |𝑥𝑖|
𝑝𝑛

𝑖=0 )1 𝑝⁄ ) of a vector 

representing the atomic fraction of the material corresponding to each element. In this work, 

we use the p=0 norm (which is equivalent to the number of components) and the p=2, 3, 5, 7, 

and 10 norms. Such a broad range was selected to create attributes that respond to changes in 

fractions with varied strengths. As an example, the p=7 norm for Fe2O3 is: 

‖𝑥‖7 = ((
2

5
)

7

+ (
3

5
)

7

)

1 7⁄

≅ 0.605 

10.2 Elemental-Property-Based Attributes (115 in total) 

Most of the attributes created using our method are based on statistics of the elemental 

properties listed in Table 10.1. For each property, the minimum, maximum, and range of the 

values of the properties of each element present in the material is computed along with the 



196 

 

fraction-weighted mean, average deviation, and mode (i.e. the property of the most prevalent 

element). The mean and average deviation are calculated using the following formulae: 

 𝑓̅ = ∑𝑥𝑖𝑓𝑖 (S7) 

 𝑓 = ∑𝑥𝑖|𝑓𝑖 − 𝑓|̅ (S8) 

where 𝑓𝑖  is the property of element i, 𝑥𝑖  is the atomic fraction, 𝑓 ̅is the mean, and 𝑓 is the 

average deviation. As an example, the mean of and average deviation in the atomic number of 

Fe2O3 are: 

 𝑓̅ =
2

5
(26) +

3

5
(8) = 15.2 

 𝑓 =
2

5
|26 − 15.2| +

3

5
|8 − 15.2| = 8.16 
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10.3 Valance Orbital Occupation Attributes (4 in total) 

These attributes are the fraction-weighted average of the number of valance electrons in 

each orbital divided by the fraction-weighted average of the total number of valance electrons. 

This attribute is exactly equivalent to the one employed by Meredig, Agrawal et al.[85] As an 

example, the fraction of p electrons for Fe2O3 is computed by 

𝐹𝑝 =

2
5

(0) +
3
5

(4)

2
5

(8) +
3
5

(6)
=

6

17
≅ 0.352 

 
Table 10.1. Elemental properties used to compute elemental-property-based attributes. 
Elemental property is taken from that dataset available with the Wolfram programming 
language,[291] unless otherwise specified. 

Atomic Number Mendeleev 
Number[177] 

Atomic Weight Melting 
Temperature 

Column 

Row Covalent Radius Electronegativity
* 

# s Valence 
Electrons 

# p Valence 
Electrons 

# d Valence 
Electrons 

# f Valence 
Electrons 

Total # Valance 
Electrons 

# Unfilled s 
States† 

# Unfilled p 
States† 

# Unfilled d 
States† 

# Unfilled f 
States† 

Total # Unfilled 
States† 

Specific Volume 
of 0 K Ground 

State‡ 

Band Gap 
Energy of 0 K 

Ground State‡ 

Magnetic Moment (per 
atom) of 0 K ground state‡ 

Space Group Number of 0 K 
Ground State‡ 

 

*Electronegativities for Eu, Yb, Tb, Pm taken to be the average of that of the element with 
one greater and one less atomic number (e.g. the average of Sm and Gd is used for Eu) 
†Computed as the number of electrons in a partially-occupied orbital subtracted from the total 
number of electrons allowed in that orbital. Unoccupied orbitals always count as 0. Example: an 
element with an electronic configuration of [Ar]3d34s2 has 0 unfilled s orbitals, 7 filled d 
orbitals, and 0 unfilled p and f orbitals by the measure defined here. 
‡Data taken from OQMD.org 
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10.4 Ionic Compound Attributes (3 in total) 

These attributes are designed to determine whether a material is ionically bonded. The 

first measure is a Boolean denoting whether it possible to form a neutral, ionic compound 

assuming each element takes exactly one of its common charge states. The other two are based 

on the “ionic character” of a binary compound, which is computed from the electronegativity 

difference between its two constituent elements using the relation 

 𝐼(𝑋𝐴, 𝑋𝐵) = 1 − exp(−0.25(𝑋𝐴 − 𝑋𝐵)2) (S9) 

where 𝐼 is the fraction of ionic character, 𝑋𝐴 is the electronegativity of element A, and 𝑋𝐵 is 

the electronegativity of element B.[178] The first attribute we used is the maximum ionic 

character between any two elements in the material. The second is the mean ionic character, 

which is computed using  

 𝐼 ̅ = ∑ 𝑥𝑖𝑥𝑗 ∗ 𝐼(𝑋𝑖, 𝑋𝑗) (S10) 

10.5 Effective Coordination Number Attributes 

We define the effective coordination number of an atom as a function of the sizes of faces 

on its Voronoi cell: 

 𝐶𝑁𝑒𝑓𝑓 =
𝑆2

∑𝐴𝑖
2 

 (11) 

where 𝐴𝑖  is the area of face 𝑖 and 𝑆 is the total surface area of the cell. For a shape with 

equally-sized faces, the effective coordination number is exactly equal to the number of faces. 

Additionally, the introduction of a small face will only have a small influence on both the total 
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surface area and the sum of squared surface areas and, therefore, a small change in the 

effective coordination number. 

We compute the maximum, minimum, mean, and mean absolute deviation in coordination 

number as attributes. The mean absolute deviation of a quantity is computed as: 

 𝑓 =
1

𝑁
∑ |𝑓𝑖 − 𝑓|̅𝑖  (12) 

where 𝑓is the mean absolute deviation, 𝑓𝑖  is the value of sample 𝑖, 𝑁 is the number of 

samples, and 𝑓 ̅is the mean. The mean absolute deviation was selected to measure variance in 

the properties of atoms in a structure (e.g., coordination number) because it is insensitive to 

unit cell selection: 

1) All symmetrically-distinct images of an atom in a lattice will have the same property 
2) All unit cell choices have the same proportion of each type of symmetrically-distinct 

atoms 
3) Consequently, the mean property for any choice of unit cell will have the same mean 
4) Therefore, the deviation between the mean property in a unit cell and the property for 

each atom is unchanged by unit cell choice 

If the deviation in the property properties do not change with unit cell choice, the mean 

deviation will also be insensitive to unit cell choice. 

10.6 Structural Heterogeneity Attributes 

These attributes are designed to reflect variation in the shape of local bonding 

environments. The first set of attributes are based on maximum, minimum, and mean absolute 

deviation (see Eq. 12) in average bond length of each atom. Here, we define bond length as the 

Voronoi-face-area-weighted average of the distance between an atom and each neighbor: 
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 𝑙𝑖̅ =
∑ 𝐴𝑛∗‖𝑟𝑛⃗⃗⃗⃗⃗−𝑟𝑖⃗⃗⃗ ⃗‖2

∑𝐴𝑛
 (13) 

where 𝑙𝑖̅ is the mean bond length of an atom i, 𝑟𝑖⃗⃗⃗  is the position of atom i, and 𝐴𝑛 and 𝑟𝑛⃗⃗⃗⃗  is 

the area and of the nth neighbor of atom i. To make these attributes insensitive to scaling the 

volume of a unit cell, they are all normalized by the average 𝑙𝑖̅ of all atoms. 

Additionally, we create attributes based on the mean, maximum, minimum, and mean 

absolute deviation in the bond length variance of each atom. The bond length variance 

captures the distribution in bond lengths between each neighbor of an atom, and is computed 

by: 

 𝑙𝑖̂ =
∑|𝐴𝑛∗‖𝑟𝑛⃗⃗⃗⃗⃗−𝑟𝑖⃗⃗⃗ ⃗‖2−𝑙𝑖̅|

𝑙𝑖̅∗∑𝐴𝑛
 (14) 

where 𝑙𝑖̂ is the bond length variance and other terms are the same as in Eq. 13. As the 

variance is normalized by the mean bond length, this term is also insensitive to scaling the 

volume of the unit cell. 

The mean absolute deviation of the volume of the Voronoi cell about each atom is also 

used as an attribute. This attribute is normalized by the mean volume of all cells in order make 

it insensitive to changes in the cell volume. 

10.7 Chemical Ordering Attributes 

These attributes are based on Warren-Cowley ordering parameters, which measure how 

the distribution of atoms differs from purely-random.[209] We first compute all N-length, non-

backtracking paths originating from each atom in the crystal. For each step in these paths, we 
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assign the step a fractional weight corresponding to the size of its face compared to all faces 

corresponding to other possible (i.e., non-backing steps): 

 𝑤𝑖 =
𝑓𝑖

∑ 𝑓𝑎𝑎 −∑ 𝑓𝑏𝑏
 (15) 

where 𝑓𝑖  is the area of face 𝑖, and the two sums in the denominator are over the faces 

corresponding to all allowed and back-tracking steps, respectively. The total weight of a path is 

determined by multiplying the weight of these steps, which results in the sum over the weights 

of all paths being equal to 1. Consequently, the weight for each path can be envisioned as the 

probability a walker will take a certain path if its probability of making each step is proportional 

to the area of the face being traversed. 

After determining the paths and their effective weights, sum the total weight of all paths 

ending on each type of atom. If the arrangement of atoms on the lattice is purely random, the 

likelihood of a type of atoms being at the end of any path is equal to the fraction of atoms of 

that type in the material. Consequently, the Warren-Cowley ordering parameter can be 

expressed as  

 𝛼𝑖(𝑡, 𝑠) = 1 −
∑ 𝑤𝑝𝛿(𝑡−𝑡𝑝)𝑝

𝑥𝑡∗𝑛𝑠
 (16) 

where 𝛼𝑖(𝑡, 𝑠) is the weighted ordering parameter for type t in the sth
 shell about atom i, , 

𝑥𝑡 is the atomic fraction of type t in the crystal, 𝑤𝑝 is weight of path 𝑝, 𝑡𝑝 is the type of atom at 

the end of path 𝑝, and 𝛿 is the delta function. 
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In order to generate attributes that describe the entire cell, the mean of the absolute 

values of the ordering parameter over all types and each atom is computed for the 1st, 2nd, and 

3rd nearest-neighbor shells. 

10.8 Maximum Packing Efficiency 

The largest sphere centered on the position of an atom that can fit inside its Voronoi cell 

has a radius equal to the distance between the center of an atom and center of the closest face 

of the cell. In order to compute the maximum packing efficiency, the sum of the largest possible 

spheres for each atom is divided by the cell volume. 

10.9 Local Environment Attributes 

These attributes constitute the majority of the structure-based attributes used in our 

method, and are based on the difference in elemental properties between an atom and each 

neighbor. The local property difference for each atom is defined as the face-area-weighted 

mean of the absolute difference in elemental properties between an atom and each of its 

neighbors 

 𝑝𝑖̂ =
∑ 𝐴𝑛∗|𝑝𝑛−𝑝𝑖|

∑𝐴𝑛
 (17) 

 where 𝑝𝑖̂ is the local property difference (for a hypothetical property p) of atom i, 𝑝𝑖 is the 

elemental property of atom i, and 𝐴𝑛 is the area of the face corresponding to neighbor n.  

To create attributes, we compute the mean, mean absolute deviation (Eq. 12), maximum, 

and minimum in the local property difference for each atom considering 22 different elemental 

properties (listed in Table 10.1).  
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