
NORTHWESTERN UNIVERSITY

Scalable Parallelization Strategy for Large-Scale Deep Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Engineering

By

Sunwoo Lee

EVANSTON, ILLINOIS

December 2020



2

c© Copyright by Sunwoo Lee 2020

All Rights Reserved



3

ABSTRACT

Recently, a myriad of applications take advantage of deep learning methods to solve

regression/classification problems. Although deep neural networks have shown power-

ful learning capability, many deep learning applications suffer from the extremely time-

consuming training of the neural networks. In order to reduce the training time, re-

searchers usually consider parallel training on distributed-memory systems. Synchronous

Stochastic Gradient Descent (SGD) with data parallelism is the most popular paralleliza-

tion strategy for neural network training, which guarantees the same convergence rate as

the sequential training at the cost of having expensive inter-processing communications.

Despite the poor scalability, many real-world deep learning applications usually adopt the

synchronous parallel approach due to such a good convergence property.

In this thesis, we discuss how to improve the scalability of synchronous parallel training

in several different aspects. First, we propose a parallel training algorithm that leverages

the overlaps of communications and computations across model layers. Our overlapping

strategy makes a large portion of the communication time hidden behind the backpropa-

gation computation time, and thus the scaling efficiency is improved. Second, we re-design

the gradient computation method in data parallel training. The proposed gradient compu-

tation algorithm not only reduces the communication cost but also enables to overlap the



4

communications with the forward computation at the next iteration. Finally, we propose

an adaptive hyper-parameter adjustment method that improves the degree of parallelism

while maintaining a good model accuracy. The proposed method gradually increases the

batch size at run-time in order to make a good trade-off between the degree of parallelism

and the generalization performance.

All these three research works address different performance issues in synchronous par-

allel training. Our performance evaluation results demonstrate that, by harmonizing these

separate contributions, the synchronous parallel training can effectively scale up on High-

Performance Computing (HPC) platforms achieving the same classification/regression

performance as the sequential training.



5

Acknowledgements

I would like to thank my advisors, Prof. Alok Choudhary, Prof. Wei-keng Liao, and

Prof. Ankit Agrawal for their continuous support and advise. I also thank to my lab-

mates for making graduate study more successful and enjoyable: Qiao Kang, Kai-yuan

Hou, Reda Al-Bahrani, Dipendra Jha, Arindam Paul, and Dr. Dianwei Han. I would like

to thank my family as well for their endless support and encouragement. Especially my

wife, Sunkyung Yoo, took care of our young son helping me fully focus on my study. I

could finish my graduate study thanks to such a great dedication.



6

Table of Contents

ABSTRACT 3

Acknowledgements 5

Table of Contents 6

List of Tables 8

List of Figures 9

Chapter 1. Introduction 17

1.1. Overlapping Communications with Computations 19

1.2. Communication-Efficient Parallel Gradient Computation 21

1.3. Adaptive Hyper-Parameter Adjustment Method 22

Chapter 2. Background 25

2.1. Artificial Neural Network and Deep Learning 25

2.2. Training Algorithms 27

2.3. Parallelization Strategies 28

Chapter 3. Overlapping Communications with Computations in Parallel Training 35

3.1. Computation Workload and Data Layout 37

3.2. Inter-process Communications 42



7

3.3. Overlapping Strategy and Implementation 43

3.4. Performance Evaluation 49

3.5. Discussion 61

Chapter 4. Communication-Efficient Parallel Gradient Computation Algorithm 64

4.1. Parallel Gradient Computation Algorithm 65

4.2. Communication Cost Analysis 68

4.3. Scalable Model Parameter Update 71

4.4. Overlapping Computation and Communication 72

4.5. Performance Evaluation 75

4.6. Discussion 83

Chapter 5. Adaptive Batch Size Adjustment Method for Scalable Deep Learning 86

5.1. Adaptive Batch Size Adjustment Method 89

5.2. Parallel Training with Adaptive Batch Size 98

5.3. Related Works 101

5.4. Performance Evaluation 102

5.5. Discussion 113

Chapter 6. Conclusion and Future Work 115

References 119



8

List of Tables

3.1 Summary of the previous works. The columns are HW/SW settings.

The Max speedup column shows the maximum speedup (left) and how

many machines are used (right). 59

4.1 Theoretical cost of communication patterns for large messages. 68

5.1 Training configurations for DIV2K training 104

5.2 Training configurations for Phantom training 104

5.3 Training configurations for CIFAR10 training 112



9

List of Figures

2.1 Three representative types of neural network. a) Fully-Connected Neural

Network has a dense connection pattern such that all neurons at one

layer is connected to every neuron at the next layer. b) Convolutional

Neural Network (CNN) has a local connection pattern such that a

subset of neurons at one layer is connected to each neuron at the next

layer. c) Recurrent Neural Network (CNN) recursively train the same

model parameters at multiple layers. 26

2.2 Two representative parallelization strategies for neural network training:

a) model parallelism and b) data parallelism. In model parallelism,

each worker trains on a distinct subset of the model parameters using

the entire data. In data parallelism, each worker trains the entire model

parameters using a subset of each mini-batch. 31

3.1 Computing activations using im2col at the first fully-connected layer.

N training samples are transformed to a single matrix and the weight

matrix is multiplied by the transformed matrix. The result is the output

activation matrix. 39

3.2 Data dependency in a neural network. The activations are propagated

from left to right in feed-forward stage, and the errors are propagated



10

from right to left in backpropagation stage. The gradients are computed

using the activations and errors. Each arrow indicates the data

dependency. 43

3.3 Time-flow chart with the maximized overlap. This figure illustrates

the ideal case on which all communications are hidden behind the

computation. In this case, a linear speedup can be expected. 46

3.4 VGG-A training time on a single node: sequential performance (left) and

multi-threaded (32 cores) performance (right). Caffe is an open-source

framework and parallel CNN is our implementation. The experiments

are performed with varying mini-batch size. 51

3.5 VGG-A training time (left) and speedup (right) for a single mini-batch

size of 256). k is set to 9 and f is set to 2. We compare our approach

(parallel CNN) with the pure data-parallel training algorithm (DP).

The speedup is calculated with respect to the number of nodes. 52

3.6 Timing breakdown for VGG-A training (mini-batch size of 256). The

communication time is the accumulated time for all the inter-process

communications. Measurable communication time is a part of the

communication time which is not overlapped with any computation

time. 53

3.7 Overlapping ratio (left) and speedup (right) with varying mini-batch

size. k is set to 9 and f is set to 2. The larger mini-batch size increases

the computation workload and allows the higher overlapping ratio. 55



11

3.8 Overlapping ratio (left) and speedup (right) with varying number of

parameters. VGG-128, VGG-256, and VGG-512 models are trained on

a single mini-batch size of 256. The maximum speedups are 54, 61, and

80, respectively. 56

3.9 Overlapping ratio (left) and speedup (right) with varying number

of fully-connected layers that replicate the gradient calculation.

Replicating the gradient calculation at all the fully-connected layers can

drop the speedup. 57

3.10 Overlapping ratio (left) and speedup (right) with varying number of

layers that have the gradients for the first gradient chunk. The gradients

should be grouped into two chunks such that the overlapping ratio of

two communications are maximized. 58

3.11 Overlapping ratio (left) and speedup (right) of VGG-A training

(mini-batch size of 256). DP is the baseline without overlapping,

DP+Overlap is the reproduced work based on [1], and parallel CNN is

our proposed approach. 60

4.1 Communication-efficient gradient calculation. Given an error matrix E

of size N × K
P

and an activation matrix A of size N ′ × K
P

, E is gathered

and A is scattered across all the nodes. Then, the gathered error E ′ is

multiplied by the scattered activation A′ to compute the partial gradient

∇W ′ of size N × N ′

P
. Finally, the partial gradient matrix is gathered



12

across all the nodes and each node ends up having N × N ′ gradient

matrix ∇W . 66

4.2 Three-step reduction for gradient averaging at convolution layers. First

the local gradients ∇W p are scattered across all the nodes. The received

partial gradient matrices are summed up and then gathered across all

the nodes to obtain the entire gradient sums ∇W . 67

4.3 An example of the ideal overlapping of 2 layers such that the computation

time at each layer is sufficiently large to overlap the communication time.

After the errors are back-propagated through all the fully-connected

layers, process the convolution layers first. Then, calculate the average

gradients, update the partial model parameters, and post an allgathers

communication for the updated model parameters. 73

4.4 An example of overlapping computation and communication at

convolution layers: (a) shows the allreduce-based approach and (b)

shows the proposed two-step communications. (b) enables computation

and communication overlaps across layers. 74

4.5 Single-node execution time for processing a single mini-batch. VGG-16

model (left) and ResNet-50 (right) with varying mini-batch sizes. The

performance is measured on a Haswell node of Cori. 77

4.6 Communication time comparison (left) and communication timing

breakdown (right). Our approach is compared with allreduce in MPICH

as well as ring-allreduce. The overall data size is 392MB (the gradient



13

size at the first fully-connected layer of VGG-16 model). Our proposed

method has a shorter communication time than the other two methods. 79

4.7 Strong scaling results for VGG-16 (left) and ResNet-50 (right) models.

The mini-batch size is 256. ‘allreduce’ is the traditional allreduce-based

data-parallelism and ‘pcnn’ is the proposed parallelization strategy. The

speedups are measured using up to 8192 cores. 81

4.8 End-to-end execution time for processing a single mini-batch. VGG-16

(left) and ResNet-50 (right). The mini-batch size is 256. The results

show that ‘pcnn’ outperforms the other approaches. 81

4.9 Measurable communication time comparison. VGG-16 (left) and

ResNet-50 (right). The mini-batch size is 256. If the communication

time is entirely overlapped with the computation time, the measurable

communication time would be zero. ‘pcnn’ always shows lower

measurable communication time than that of ‘allreduce’. 82

5.1 Learning curves for EDSR training on DIV2K dataset. B is the

mini-batch size, µ is the learning rate, and the numbers shown in

brackets are the number of epochs till model converged. The training

terminates when the validation accuracy has not increased for 50

consecutive epochs. Batch sizes larger than 64 result in significantly

lower accuracy. 87

5.2 The training cost curves (left) and θ curves (right) for ResNet20 training

on CIFAR10 datasets. All three batch sizes achieve almost the same



14

training cost after 140 epochs. However, higher the θ curve, lower the

validation accuracy. This result demonstrates that θ roughly shows

how sharp the minimizer is. Note that the high θ at the beginning of

‘b=2048’ curve is due to the learning rate warmup. 93

5.3 The ratio of cost reduction to the distance between the initial parameters

and the current ones, θ, for ResNet20 training on Cifar10 datasets.

The proposed adaptive learning rate method keeps θ curve from being

increased after the first learning rate decay step at 80th epoch. 97

5.4 Comparison of learning curves of EDSR training on DIV2K dataset

among various training strategies. The proposed training method

achieves an accuracy almost the same as that of the best-tuned fixed-size

method. 105

5.5 Comparison of learning curves of EDSR training on Phantom dataset

among various training strategies. The proposed training method

achieves an accuracy comparable to the best-tuned fixed-size method,

i.e. using B = 16. 105

5.6 The θ curves with varying batch sizes for EDSR training on DIV2K

(left) and a variant of EDSR training on Phantom (right). For DIV2K,

we chose Bs = 64 and its θ peaks at 9th ∼ 10th epoch. For Phantom, we

chose Bs = 32 and its θ peaks at 55th ∼ 65th epoch. 107

5.7 Strong scaling of EDSR training on DIV2K dataset: end-to-end training

time (left) and speedup (right). We used Bs = 64, Bm = 256, and



15

K = 10. Our method can use more compute nodes beyond 16 and

up to 256, while ‘fixed best batch size’ method can only run up to 16

nodes, limited by the batch size of 16. ‘fixed learning rate’ has a longer

execution time than our method due to the long period of training with

small batch sizes. All the three approaches achieve a similar accuracy

(33.59 dB / 33.49 dB / 33.51 dB). 108

5.8 Strong scaling of EDSR training on Phantom dataset: end-to-end

training time (left) and speedup (right). For our proposed method, we

used Bs = 32, Bm = 128, and K = 60. Our method can use more

compute nodes beyond 16 and up to 128, while ‘fixed best batch size’

method can only run on up to 16 nodes, limited by the batch size of 16.

All the three approaches achieve a similar accuracy (52.47 dB / 52.47

dB / 52.51 dB). 109

5.9 The left is the computation time of EDSR training and the percentages

of process underutilized time. The right is the training timing

breakdown. These results correspond to the training shown in Figure

5.7. 110

5.10 Training loss (left) and validation accuracy (right) comparison for

ResNet20 training on CIFAR10. The fixed large batch training and the

adaptive batch training with a fixed learning rate well minimize the

training loss while they significantly degrade the validation accuracy.

Our proposed method achieves a comparable accuracy to the best-tuned

small batch training. 112



16

5.11 The end-to-end training time (left) of ResNet20 on CIFAR10 and

speedup (right) comparison. We stopped scaling when the execution

time increased. The proposed method out performs the others with a

large margin. 113



17

CHAPTER 1

Introduction

Recently, deep learning has become one of the most popular machine learning tech-

niques. A myriad of applications have adopted deep learning methods to solve domain

problems such as Computer Vision [2, 3], Natural Language Processing [4, 5], Social

Media Mining [6], Robotics [7], and various scientific applications [8, 9, 10]. Thanks to

its superior learning capability, deep neural networks have provided the state-of-the-art

classification/regression performance in many domain applications.

Despite its powerful learning capability, deep learning applications usually suffer from

the time-consuming training of the neural networks. Training a modern Convolutional

Neural Network (CNN) usually takes hours or even days making it less practical. Re-

searchers parallelize the training on distributed-memory systems to reduce the training

time. Many popular deep learning software frameworks, such as TensorFlow [11], py-

Torch [12], Caffe [13], and MXNet [14], also support parallel training. Considering the

ever-increasing available data size in this ‘Big Data’ era, efficient and scalable parallel

training is essential to build up powerful deep learning solutions exploiting such abun-

dant data. Especially for large-scale domain applications, scalable deep learning methods

will provide researchers with unprecedented opportunities to solve their problems.

However, achieving a good speedup of parallel training has been a major challenge

in large-scale deep learning due to the following obstacles. First, the training algorithm



18

suffers from the limited degree of parallelism. Neural networks are typically trained us-

ing mini-batch Stochastic Gradient Descent (SGD) algorithm. The algorithm repeatedly

adjusts the model parameters using gradients computed from a random subset of train-

ing samples (called mini-batch) until the gradients become sufficiently small. Such an

iterative algorithm causes a strong data dependency of the model parameters across the

consecutive iterations. Each mini-batch can be processed only after the previous one

is processed. Thus, the degree of parallelism is limited to the number of samples in

a single mini-batch. Second, the frequent and expensive inter-process communications

significantly degrade the scaling performance. Synchronous SGD with data parallelism

is the most popular parallelization strategy for neural network training. This parallel

training algorithm evenly distributes each mini-batch to all workers and averages the

locally-computed gradients across all the workers by performing global inter-process com-

munications. Since the number of gradients is the same as that of the overall model

parameters, such expensive communications easily become the performance bottleneck.

Many researchers have put much effort into addressing these two performance issues.

Asynchronous SGD proposed in [15] allows multiple workers to asynchronously update the

shared model parameters making a trade-off between the convergence rate and the scaling

efficiency. Many different optimization methods also have been proposed to improve

the scalability by reducing the communication frequency [16, 17, 18, 19]. Some other

researchers have studied how to directly reduce the communication cost by sparsification,

quantization, and compression of the gradients [20, 21, 22]. Although all these works

effectively reduce the communication cost, they commonly improve the scalability at the

cost of having a loss in accuracy or requiring a larger number of training epochs.



19

Improving scalability of synchronous SGD has a huge impact on many deep learning

applications. Especially, many large-scale scientific applications adopt synchronous SGD

with data parallelism to scale up their deep learning solutions [23, 24, 25, 26]. When the

batch size and learning rate are sufficiently small, synchronous parallel training guarantees

the convergence of the training regardless of the number of workers. Many applications

use synchronous parallel approach due to this stable convergence property [27, 28]. In

addition, the synchronous parallel approach can be applied to many different optimization

algorithms, such as AdaGrad [29], Adadelta [30], rmsprop [31], and Adam [32], because

it does not have any dependency on the parameter update rule. Therefore, countless

applications can directly benefit from a scalable synchronous parallel training strategy.

In this thesis, we propose three contributions towards improving scalability of syn-

chronous SGD-based neural network training: 1) overlapping communications with com-

putations in data parallel training, 2) communication-efficient gradient computation algo-

rithm, and 3) adaptive hyper-parameter adjustment method that improves the degree of

parallelism without losing model accuracy. All three research works tackle different perfor-

mance issues in synchronous SGD training. By harmonizing these separate contributions,

synchronous parallel training can effectively scale up on large-scale High-Performance

Computing (HPC) platforms achieving a high model accuracy.

1.1. Overlapping Communications with Computations

The synchronous parallel training guarantees exactly the same parameter updates as

the sequential training, and thus a good convergence rate. However, the parallel training

suffers from the expensive communication cost for averaging the gradients among all



20

workers. In data parallel training, as the number of processes increases, each process is

assigned with a proportionally reduced number of training samples. In contrast to the

linearly reduced computation workload, the communication cost increases and it results

in making the speedup saturated.

Neural networks do not have data dependency on the gradients across the layers.

The gradient communication at one layer and the gradient computations at other layers

can be performed simultaneously. Motivated by this fact, we propose to overlap the

communications with the computations during training to improve the scalability. By

dedicating a small number of compute cores for communications, the communication

time can be effectively hidden behind the computation time while almost not affecting

the computation performance.

We present a data parallel training strategy that aggregates the gradients across all

model layers into two subsets and averages them across all workers using asynchronous

communications. Our approach minimizes the number of communications per iteration

by having only two subsets of gradients. In addition, the one gradient communication is

overlapped with the backward computation while the second gradient communication is

overlapped with the model parameter updates. The effectiveness of the overlap depends

on how many gradients are aggregated into each subset. We analyze the impact of the

gradient aggregation on the exposed communication time and suggest a good practice for

maximizing the degree of overlap.

In order to explicitly control the overlap, our approach employs a communication-

dedicated POSIX thread per MPI process, which performs synchronous MPI commu-

nications. The main thread and the communication thread synchronize using POSIX



21

conditional variable and mutex. By pinning the I/O thread on a single physical core, the

parallel training can avoid the context switching overhead and the cold cache effects.

We evaluate the proposed overlapping strategy using ImageNet, a popular open bench-

mark dataset for image classification and VGG-16, a deep CNN model with 16 tunable

layers. Our experimental results and analysis demonstrate the effectiveness of the pro-

posed overlapping strategy and give an important insight about how to better utilize the

compute cores not only for parallel computations but also for communications.

1.2. Communication-Efficient Parallel Gradient Computation

In data parallel neural network training, the inter-process communications for aver-

aging gradients are the performance bottleneck. Given a mini-batch, each worker locally

computes the gradients of a cost function with respect to the model parameters from

the assigned subset of the mini-batch. Then, the local gradients are averaged across

all the workers using inter-process communications. Typically, allreduce communications

are used to aggregate and sum up the gradients. To the best of our knowledge, all the

existing parallel deep learning frameworks such as Horovod and pyTorch use allreduce

communications when averaging the gradients.

The allreduce-based data parallelism is under a strong assumption that the gradients

are locally computed first and then averaged across all the workers. In this approach,

every worker ends up having the same number of gradients regardless of the number of

workers or the mini-batch size. Thus, as the number of processes increases, the overall

communication cost increases and it results in becoming the performance bottleneck.

We break such a prevalent assumption and re-design a parallel gradient computation



22

algorithm which has a cheaper communication cost than the allreduce-based approach.

We will analyze and compare the communication cost complexity between our proposed

algorithm and the allreduce-based approach.

Our parallel gradient computation algorithm consists of several communication steps.

There are two benefits from having multiple communication steps rather than a single

allreduce operation. First, we can design a fine-grained communication overlapping strat-

egy that overlaps the gradient communications with not only the backward computations

but also the forward computations at the next iteration. Second, it allows to re-design

the parameter update method which has a cheaper computation complexity. Instead of

updating the model parameters after averaging all the gradients, our approach enables for

each worker to update a part of model parameters locally and then aggregate the updated

parameters across all the workers.

We evaluate the effectiveness of the proposed parallel gradient computation algorithm

and the overlapping strategy using ImageNet dataset and ResNet50 [33], a deep residual

network with more than 50 layers. Our study demonstrates that the scalability of syn-

chronous SGD training can be significantly improved by breaking the traditional practice

of using allreduce communications in data parallelism.

1.3. Adaptive Hyper-Parameter Adjustment Method

In data parallel training of neural networks, each mini-batch is evenly distributed to

all workers and independently processed. Thus, the maximum number of workers is the

number of training samples in each mini-batch. Intuitively, the larger the batch size, the

better the degree of parallelism.



23

Unfortunately, the mini-batch size is typically tuned to a small value that provides

a sufficiently high degree of noise in the gradients. For instance, when AlexNet [2] won

the ImageNet competition by a large margin (15.3% vs 26.2% (second place) validation

errors), their mini-batch size was 128 while the overall number of training images was

about 1.2 millions. That batch size is lower than 0.0001% of the overall data samples.

Assuming the samples for a mini-batch is uniformly drawn from the given dataset, the

gradients can be considered as a random variable with mean of the optimal gradient

computed from the entire dataset. It has been already theoretically explained that the

larger the batch size, the lower the variance of the gradients. In other words, the gradients

become less noisy as the batch size increases. When the stochastic gradients are closer to

the optimal gradient, the model tends to rapidly converge into a local minimum on the

parameter space achieving poor generalization performance.

We propose how to use a large batch size without significantly affecting the model

accuracy. Our training strategy is to adaptively adjust the mini-batch size at run-time

to make a good trade-off between the degree of parallelism and the model accuracy. We

first analyze the impact of the batch size on the regression performance and the scaling

performance. Then, based on the analysis, we design a practical metric for estimating

the quality of the current model parameters in terms of the generalization performance.

Finally, we discuss how to adjust the mini-batch size and learning rate using the proposed

metric at run-time. Although the proposed training strategy uses different batch sizes

during the training, all the workers always view the same model parameters at every

iteration. Therefore, the training can be considered to be a special case of synchronous

SGD, and thus the convergence is still guaranteed.



24

The proposed adaptive batch size training method is evaluated using two image regres-

sion applications, image super-resolution and image restoration. These two representative

regression works commonly use a small batch size such as 16 ∼ 64 [34, 35]. We demon-

strate that our adaptive batch size training method enables to increase the batch size to

256 effectively improving the degree of parallelism while maintaining the high regression

accuracy. In order to show that the proposed training strategy is generally applicable to

any optimizers, we also evaluate it using CIFAR10 image classification benchmark.



25

CHAPTER 2

Background

2.1. Artificial Neural Network and Deep Learning

Artificial Neural Network (ANN) is a biologically-inspired algorithm. A network con-

sists of multiple layers of ‘neuron’s. Each neuron is a perceptron with a various type of

activation functions [36].

A network receives a set of input values at ‘input layer’. The data go through mul-

tiple layers which are called ‘hidden layer’s. Finally, the prediction values are generated

at ‘output layer’. In supervised learning, the prediction values are compared with the

expected correct values (usually called labels). The model is considered to be accurate

when the prediction values are sufficiently close to the expected values.

Depending on the connection pattern of the neurons, there are several types of ANNs

such as fully-connected network, Convolutional Neural Network (CNN), and Recurrent

Neural Network (RNN). Figure 2.1 presents the three representative types of neural net-

work. Each type of network exploits different data characteristics. For example, CNNs

have a special connection pattern which is called ‘local connection’. Each neuron receives

data from a subset of neurons at the previous layer. This special connection pattern is de-

signed based on a principle that there is a strong correlation among the neighbor neurons.

Thanks to such the local connection pattern, CNNs show a superior learning capability

for image handling problems. RNNs have also its own special connection pattern such



26

…

𝑦1

ℎ1

𝑦2

ℎ2

𝑦3

ℎ3

𝑦4

ℎ4ℎ0

𝑊𝑥 𝑊𝑥 𝑊𝑥 𝑊𝑥

𝑊𝑦 𝑊𝑦 𝑊𝑦 𝑊𝑦

b) Convolutional Neural Network

a) Fully-connected Neural Network c) Recurrent Neural Network

Figure 2.1. Three representative types of neural network. a) Fully-
Connected Neural Network has a dense connection pattern such that all
neurons at one layer is connected to every neuron at the next layer. b)
Convolutional Neural Network (CNN) has a local connection pattern such
that a subset of neurons at one layer is connected to each neuron at the
next layer. c) Recurrent Neural Network (CNN) recursively train the same
model parameters at multiple layers.

that the same model parameters are recursively used to process multiple input data. This

connection pattern enables the network to learn the information across the time steps.

Usually, researchers choose a type of neural network considering the problem-specific data

characteristics.

Deep learning indicates a set of machine learning methods that are based on ANNs.

Recently, the meaning of deep learning has been enlarged to a research field in which a

variety of machine learning problems are studied using ANNs. A large portion of the deep

learning applications deal with supervised learning problems in which the data consists



27

of the training samples and its labels. There are deep learning methods for unsupervised

learning or semi-supervised learning such as Generative Artificial Neural Network (GAN).

2.2. Training Algorithms

Training neural networks is a representative non-convex optimization problem. There

are largely two different optimization methods for neural network training: the first-

order optimization methods such as Gradient Descent (GD) [37] and the second-order

optimization methods such as Newton’s method [38] and Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [39]. In this thesis, we only consider the first-order optimization methods,

the most popular and practical training algorithm for neural networks.

The most popular variant of GD for neural network training algorithm is Stochastic

Gradient Descent (SGD) [40, 37]. Especially, the algorithm that approximates the gra-

dients from a random subset of training samples is called ‘mini-batch SGD’. Algorithm

1 presents the mini-batch SGD algorithm. In the algorithm, n, m, and l represent the

number of training samples, the mini-batch size, and the number of layers in the net-

work, respectively. The model parameters w is initialized with random values w0 at line

1. There are many different initialization strategies such as Xavier method and MSRA

method [41]. First, a random subset of training samples B is extracted from the dataset

at line 4. Second, the gradients of the given cost function f is computed with respect

to the model parameters w from B at line 5. Note that ∇fB(wi) = 1
m

∑m
j=0∇f(wi, xj),

where wi is the model parameters at iteration i and xj is the jth training sample in the

given mini-batch. Finally, the model parameters w is updated using the gradients at

line 7. The algorithm repeats these three steps until the gradients become too small to



28

Algorithm 1 Mini-batch SGD (n: the number of training samples, m: the mini-batch
size, f : the cost function)

1: w ← w0

2: while stop condition is not met do
3: for i← 1 · · · n

m
do

4: B ← ith mini-batch of size m.
5: ∇fB(wi)← Compute Gradient(f , B, wi).
6: wi+1 = wi − µ∇fB(wi).

effectively adjust the model parameters. In practice, researchers usually stop the training

when an acceptable accuracy is achieved before the training loss actually converges.

Algorithm 1 has two user-tunable hyper-parameters, the mini-batch size m and the

learning rate µ. The convergence rate of the training loss is strongly affected by these

two hyper-parameters. Researchers typically tune these in a trial-and-error manner.

There are several variants of mini-batch SGD that are designed to achieve a faster

convergence of training loss, such as AdaGrad [29], rmsprop [31], and Adam [32]. These

algorithms commonly calculate the first-order gradients of the cost function first, and

then update the parameters using a different update rule. Due to the different update

rules, these algorithms have their own additional hyper-parameters such as momentum

parameters or decaying parameters.

2.3. Parallelization Strategies

Researchers have put much effort into improving scalability of parallel neural network

training. Depending on the degree of asynchrony in the local model parameters across

the workers, the training algorithm can be categorized into ‘synchronous’ or ‘asynchro-

nous’ algorithm. The training algorithms can also be categorized into ‘model parallelism’



29

or ‘data parallelism’ depending on how to distribute the computation workload on the

workers.

2.3.1. Synchronous Training vs. Asynchronous Training

Synchronous parallel training is the most popular parallelization strategy for deep learn-

ing. It is called ‘synchronous’ training if all workers always view the same state of the

model parameters. The most significant benefit from the synchronous parallel training is

that the quality of the parameter updates is not affected by the number of workers. Many

existing large-scale deep learning applications scale up the training in a synchronous way

[23, 24, 25, 26].

However, the synchronous parallel training usually suffers from its poor scalability. In

Algorithm 1, each iteration at line 3 is to process a single mini-batch. In order to make

all the workers always use the state-of-the-art parameters when processing a mini-batch,

the model parameters should be globally synchronized at every iteration. Depending on

the implementation, either the gradients or the locally updated model parameters should

be averaged among all the workers using inter-process communications. Such expensive

and frequent communications result in becoming the performance bottleneck.

In order to address the issue of expensive communications, Dean et al. proposed

asynchronous parallel algorithm [15]. Instead of synchronizing the model/gradient every

iteration, the algorithm allows workers to use out-of-date model parameters to calculate

the gradients. Asynchronous approach typically assumes the parameter-server communi-

cation model such that a centralized parameter server keeps the model parameters and

receives the locally computed gradients from all individual workers asynchronously.



30

Asynchronous parallel training enjoys a good scaling performance since multiple mini-

batches can be processed at the same time without any synchronizations. However, in

order to guarantee the convergence, the number of workers should be sufficiently small

so that the degree of asynchrony in the model parameters is bounded. The number of

available workers strongly depends on the dataset size. The larger the number of training

samples, the more the workers can asynchronously process different mini-batches at the

same time without significantly affecting the convergence rate. Kurth et al. proposed

a hybrid approach that makes a good trade-off between synchronous and asynchronous

training strategies [42].

2.3.2. Communication Model

The parallel training can be implemented using two different communication models:

fully-distributed communication model and client-server model. If the model parameters

are replicated by all the processes and the gradients are globally averaged using inter-

process communications, it is called ‘fully-distributed’ communication model. The most

popular implementation of data parallelism based on the fully-distributed communication

model is allreduce-based approach. If the global model parameters are managed by one or

a small number of parameter servers, it is called ‘client-server’ model (also known as pa-

rameter server model). TensorFlow [11], one of the most popular deep learning software

framework, supports data parallelism based on the parameter server approach. Asyn-

chronous SGD assumes the parameter server communication model such that multiple

workers asynchronously contribute to the shared model by sending the locally computed

gradients to the parameter server.



31

dataset

…
…

…

…
dataset

mini-batch

…
…

…

…

a) model parallelism b) data parallelism

Figure 2.2. Two representative parallelization strategies for neural net-
work training: a) model parallelism and b) data parallelism. In model
parallelism, each worker trains on a distinct subset of the model parame-
ters using the entire data. In data parallelism, each worker trains the entire
model parameters using a subset of each mini-batch.

2.3.3. Model Parallelism vs. Data Parallelism

Depending on how to distribute the workloads to workers, the parallel training can be

categorized into either ‘model parallelism’ or ‘data parallelism’. If a model is split among

multiple workers and trained on the same data, it is called model parallelism. In contrast,

if the data is distributed to multiple workers and they train a single globally-shared

model, it is called data parallelism. Figure 2.2 illustrates the model parallelism and data

parallelism.

These two parallelization strategies have different communication patterns. First, data

parallelism aggregates and sums up the entire gradients across all workers while model

parallelism exchange the intermediate data such as activations and errors among subsets

of the workers. Second, data parallelism and model parallelism have a different data

dependency that affects the communication pattern. Data parallelism does not have data



32

dependency on the gradient across the layers. So, the gradient communications can be

performed at anytime within the iteration. In contrast, model parallelism has a strong

data dependency on the activations and errors across any two consecutive layers. So, at

every layer, the corresponding communications should be finished before going to the next

layer.

Recently, data parallelism is more widely used in deep learning applications. Most of

the large-scale deep learning applications scaled up on HPC platforms are based on data

parallelism. Some researchers have proposed a hybrid approach [43, 44, 45].

2.3.4. Large-Batch Training

In data parallel training, the degree of parallelism is limited by the number of training

samples in each mini-batch. Thus, increasing the batch size is an intuitive solution to

improve the degree of parallelism. However, it has been empirically shown that, the

larger the batch size, the poorer the generalization performance [46, 47, 48, 49]. The

mini-batch size is usually tuned to a small value between 32 ∼ 256 in many applications.

Researchers have proposed several large batch training methods that aim to increase

the batch size without losing the model accuracy. You et al. proposed Layer-wise Adaptive

Rate Scheduling (LARS) that adjusts the learning rate considering the magnitude ratio

of the gradients and the parameters [47]. Goyal et al. proposed ‘linear scaling rule’

that increases the batch size and learning rate together by the same factor [50]. Hoffer

et al. proposed ‘root scaling rule’ that increases the learning rate by the root scale

of the increased batch size [48]. Although these research works have derived different



33

conclusions, there is a common principle behind of them: as the batch size increases, the

learning rate should be also increased to maintain the model accuracy.

Keskar et al. discussed the concept of ‘flat’ and ‘sharp’ minima on the parameter

space and explained the correlation between the batch size and the model sharpness

[46]. As the batch size increases, the model tends to be attracted by sharp minima

that poorly generalize to the test data. By using a small batch size, the gradients become

sufficiently noisy to avoid falling into a sharp minimum and it ends up converging to a flat

minimum. It is a common practice of neural network training that the batch size is fixed

to a certain small value and the learning rate decreases as the training progresses. This

training technique is usually called ‘learning rate decay’. Instead, Smith et al. proposed

to increase the batch size as training progresses instead of decaying the learning rate [51].

The authors showed that increasing the batch size and reducing the learning rate make

a similar impact on the degree of noise in gradients. Some researchers also proposed

adaptive batch size training methods that aim to make a good trade-off between the

degree of parallelism and the generalization performance [52, 53].

Although all these works enable to use a large batch size for training, there is a

problem-dependent threshold of the batch size. If the batch size is increased further than

the threshold, the model starts to lose the generalization performance. In other words,

the model overfits to the training dataset, and thus provides a poor validation accuracy.

For example, LARS enables to use a batch size of 16K for ImageNet classification problem

without a significant loss in accuracy. However, when the batch size becomes larger than

16K, the validation accuracy significantly drops. A lot of existing works have showed



34

a similar result [52, 54, 53, 55] with a variety of applications. Considering the ever-

increasing available data size, it is crucial to break such a limitation to fully utilize the

abundant data on large-scale HPC platforms.

Recently, local SGD training with periodic model averaging has been highlighted due

to its less frequent synchronizations. There have been many theoretical and empirical

studies of the algorithm [56, 57, 58, 59]. The algorithm allows to locally train multiple

models in parallel and periodically averages the model parameters among all workers.

While this approach effectively tackles the expensive communication cost issue, the de-

gree of parallelism is still limited by the number of workers and the local batch size. If

the effective batch size, the local batch size multiplied by the number of workers, is be-

yond a certain problem-dependent threshold, the convergence rate of the training loss is

significantly reduced. In addition, the training convergence rate is strongly dependent on

the number of workers. In order to guarantee a reasonably fast convergence, the number

of workers should be sufficiently small similarly to the asynchronous SGD training.



35

CHAPTER 3

Overlapping Communications with Computations in Parallel

Training

In data parallel neural network training, as the number of workers increases, the

cost of gradient computation is linearly reduced while the communication cost increases.

Consequently, as the nature of strong scaling, the speedup of parallel training is supposed

to be saturated at a certain point. Especially in synchronous parallel training, the entire

gradients of the model parameters are aggregated and summed up across all workers at

every iteration causing extremely expensive inter-process communications. In order to

achieve a good speedup, it is essential to reduce the cost of such expensive and frequent

communications.

The gradients do not have data dependency across layers. Once the input data from

the previous layer and the errors back-propagated from the next layer are provided, the

gradients at the layer can be computed independently of any computations at other layers.

Likewise, the gradient communication at one layer and the gradient computations at

other layers can be performed simultaneously. By asynchronously posting the gradient

communications, therefore, a large portion of communication time can be hidden behind

the computation time, and thus a better scaling efficiency can be expected.

It is common practice that one communication is performed at one layer to average

the gradients. For instance, Horovod, one of the most popular software framework for



36

data parallel training, performs one allreduce operation at every layer. However, modern

neural networks usually have decades layers or even more than a hundred layers. If the

gradients are averaged one layer after another separately, such many communications per

iteration will increase the latency cost of the communications.

In this chapter, we discuss how to organize the communications and effectively overlap

them with the backward computations in data parallel training. We propose to aggregate

the gradients across the model layers into two subsets and then average them across all

the workers using only two communications per iteration. Due to the data dependency, all

the communications posted at the current iteration should be finished before starting the

next iteration. That is, the communications can only be overlapped with the backward

computations at the current iteration. Give such a restriction, we design a communication

strategy that maximizes the degree of overlap while minimizing the number of commu-

nications per iteration. In addition, we also study how to reduce the communication

cost at the fully-connected layers by replicating the gradient computations. Compared to

other types of layers, the fully-connected layers have an enormous number of gradients

due to the dense connectivity. We propose a scalable gradient computation method that

significantly reduces the communication cost while slightly increasing the computational

cost.

Algorithm 2 presents the data parallel training algorithm that leverages the compu-

tation and communication overlap. The algorithm updates the model parameters using

the globally averaged gradients. Therefore, it is guaranteed to produce the same level of

accuracy as Algorithm 1. In the following sections, we will analyze the computation and

communication patterns, as well as the data dependency of the parameters in Algorithm



37

2. Then, we validate our proposed method by comparing the communication cost between

the typical allreduce-based approach and our proposed method.

We define a set of notations to describe data structure: Do/Di are the depth of

output/input feature maps, Ro/Ri are the number of rows of the output/input neurons,

Co/Ci are the number of columns of the output/input neurons, Rf/Cf are the number of

filter rows/filter columns, Kb/Kc are the number of neurons in the bottom/current layers,

and N is the number of images.

3.1. Computation Workload and Data Layout

In this research work, we focus on CNNs. Many CNN models contain both convolution

layers and fully-connected layers. We discuss and analyze the computation workload for

these two representative connection patterns.

At convolution layers, we use im2col technique [60] to rearrange the input data so that

the computation pattern is changed from convolution to matrix multiplication. At fully-

connected layers, the computation pattern is also a matrix multiplication. Therefore, the

overall computation workload is a set of data transformations and matrix multiplications.

This unified computation pattern allows an efficient implementation in practice.

im2col and col2im are well-known data transformation techniques used in open source

frameworks such as Caffe [13] and Torch [61]. Given an input data and a filter size, im2col

rearranges filter-sized blocks of the input data into columns and concatenate them into a 2-

dimensional matrix. The col2im transforms columns to blocks of the original data layout.

We customize these functions to transform the input activations from multiple images



38

Algorithm 2 Data parallel training
(M : number of mini-batches, N : size of mini-batch, L: number of layers, k: number of
layers for the first gradient chunk, f : number of fully-connected layers that replicate the
gradient calculation)

1: Define s← the layer ID of the first fully-connected layer.
2: for each worker p ∈ {0, ...P − 1} parallel do

3: for each mini batch m = 0, ...M − 1 do

4: Get the sub-mini batch Dm
p ← N

P
images from Dm, the mth mini batch.

5: Initialize the local gradient sum, Gl
p = 0

6: for each layer l = 0, ...L− 1 do . Feed-Forward
7: if l ∈ {s, ..., s+ f} and m 6= 0 then

8: Wait for the communications on Al−1
p and El

p, posted in iteration m − 1,
to be finished (line 12 and 25).

9: Calculate weight gradients ∆W
[l:l+f ]
p for Dm

10: Update the corresponding weights W
[l:l+f ]
p .

11: Calculate activations Al
p using the given sub mini-batch Dm

p .
12: if l ∈ {s− 1, ..., s+ f − 1} then

13: Post asynchronous communication: Allgather Al
p.

14: for each layer l = L− 1, ...0 do . Backpropagation
15: Calculate errors El

p.
16: if l /∈ {s, ..., s+ f} then

17: Calculate weight gradients ∆W l
p for Dm

p

18: Add the weight gradiets to the local gradient sum: Gl
p+ = ∆W l

p.
19: if l is equal to k then

20: Post asynchronous communication: Allreduce G
[L−k:L−1]
p .

21: Post asynchronous communication: AllReduce G
[0:L−k−1]
p .

22: Wait for the communication on G
[L−k:L−1]
p to be finished (line 19).

23: for each layer l = L− 1, ...0 do . Parameter Update
24: if l is equal to L− k then

25: Wait for the communication on G
[0:L−k−1]
p to be finished (line 20).

26: for each layer l = s, ...s+ f do

27: Post asynchronous communication: Allgather El
p.

28: if l /∈ {s, ..., s+ f} then

29: Update parameter, W l
p.

into a single large matrix. Figure 3.1 illustrates the workload of the first convolution layer

in feed-forward stage.



39

D
iR

fC
f

NRoCo

im2col

…

Di

Ci

R
i

R
f

Cf

image 0

DiRfCf

B
lo

ck
 0

 f
ro

m
 I

m
ag

e 
0

B
lo

ck
 1

 f
ro

m
 I

m
ag

e 
0

…

B
lo

ck
 R

o
C

o
-1

 f
ro

m
 I

m
ag

e 
N

-1

B
lo

ck
 1

 f
ro

m
 I

m
ag

e 
N

-1

B
lo

ck
 0

 f
ro

m
 I

m
ag

e 
N

-1

…

B
lo

ck
 R

o
C

o
-1

 f
ro

m
 I

m
ag

e 
0

D
o

Weights

D
o

NRoCo

Output Activations

×

Di

Ci

R
i

R
f

Cf

image N-1

…
=

Figure 3.1. Computing activations using im2col at the first fully-connected
layer. N training samples are transformed to a single matrix and the weight
matrix is multiplied by the transformed matrix. The result is the output
activation matrix.

In feed-forward, the first convolution layer receives the input images that are stored

in row-major order. Each mini-batch of N images is organized into a matrix of size

N×DiRiCi, which is then transformed by im2col into a DiRfCf ×NRoCo matrix. Then,

the matrix is multiplied by the weight matrix of Do × DiRfCf and added by the bias

vector of Do. The output activation matrix of Do×NRoCo is computed by Equation 3.1

and 3.2.

(3.1) C l−1 = im2col(Al−1)



40

(3.2) Al = σ(W lC l−1 +Bl),

where σ is an activation function, Al is the activation matrix calculated at layer l, B is

the bias vector and C is the matrix generated by im2col. From the second convolution

layer, the input from the previous layer is an activation matrix of size Di × NRiCi. We

make im2col support both data layouts, N ×DiRiCi and Di ×NRiCi, so that it can be

used in any convolution layers. In Algorithm 2, these computations are performed at line

10.

In backpropagation, a convolutional layer receives a Di × NRiCi error matrix from

the previous layer. Instead of transforming the error matrix using im2col, we multiply

that by the weight matrix first and then transform the result into the output error matrix

using col2im. This approach avoids an extra layout transformation of weight matrix [60].

Note that the error matrix E and activation matrix A have the same data layout. E is

computed by Equation 3.3 and 3.4. In Algorithm 2, these computations are performed at

line 14.

(3.3) C l = W l+1El+1

(3.4) El = col2im(C l)

In addition to the errors, the gradients of parameters are calculated in backpropagation.

When calculating the gradients at layer l, the activation matrix at layer l−1 is transformed

to a DoRfCf × NRiCi matrix using im2col. Then, the Di × NRiCi error matrix of

layer l is multiplied by the new activation matrix. Due to the order of dimensions, the



41

error matrix should be transposed. The result is Di × DoRfCf gradient matrix of layer

l. The computations are shown in Equation 3.1 and 3.5, and they are performed at

line 16 of Algorithm 2. The im2col performs the same transformations in feed-forward

and backpropagation. Therefore, if memory space is sufficiently large, the im2col in

backpropagation can be avoided by saving the matrix C l−1 calculated in the feed-forward

stage.

(3.5) ∇W l = C l−1El

The proposed computation using im2col and col2im is independent from both model

architecture and mini-batch size. Any convolution layer can be trained with only three

layout transformations and three matrix multiplications using Equation 3.1, 3.2, 3.3, 3.4,

and 3.5.

For the fully-connected layers, the computations can be described by Equation 3.2,

3.3, and 3.5 if the matrix C is replaced with its original matrices Al−1, El, and Al−1,

respectively. Each fully-connected layer has a Kb ×Kc weight matrix. When multiplying

this weight matrix by the input activation matrix, to make the memory accesses con-

tiguous, all the activations from each image should be stored in a contiguous memory

space. So, in the first fully-connected layer, we transform the input activation matrix

into a N × DiRiCi matrix. Note that Kb is equal to DiRiCi at fully-connected layers.

In the backpropagation stage, to make the memory accesses contiguous when multiply-

ing the weight matrix and the input error matrix, we transform the input errors into a

Do ×NRoCo matrix in the first fully-connected layer.



42

3.2. Inter-process Communications

As our parallel CNN training algorithm adopts the data parallelism, each mini-batch

is partitioned among multiple computing nodes and an individual model is trained on the

assigned subset of the mini-batch in each node. The gradients should be aggregated across

all the nodes and averaged to update the weights and biases. The gradients from different

images are summed up within each node first. Then, the gradient sums are aggregated

across all the nodes. The number of weight gradients in each node, Sw, is calculated by

Equation 3.6.

(3.6) Sw =
Lc−1∑
i=0

Di
oD

i
iR

i
fC

i
f +

Lf−1∑
i=0

Ki
bK

i
c,

where Lc and Lf are the number of convolution layers and fully-connected layers. Likewise,

the number of bias gradients in each node, Sb, is calculated by Equation 3.7.

(3.7) Sb =
Lc−1∑
i=0

Di
o +

Lf−1∑
i=0

Ki
c

The communication pattern in data parallel training is defined such that each node

has Sw + Sb gradient sums, and they are aggregated across all nodes by a reduction sum.

Data Dependency Analysis – In the feed-forward stage, the activations are prop-

agated from the first layer to the last layer and data dependency exists between any two

consecutive layers. Likewise, in backpropagation stage, the errors are propagated from

the last layer to the first layer and data dependency exists between any two consecutive

layers. The gradients are also calculated in backpropagation using the activations of the

next layer and the errors of the current layer. Thus, the gradients are dependent on the



43

…

Activation

Activation

Activation

Activation Gradient

Gradient

Gradient

Gradient

Error

Error

Error

Error

Input Image

Layer 0

Layer 1

Layer L-2

Layer L-1

…

Activation

Gradient

Error

Input Image

Layer 0

Activation

Gradient

Error

Activation

Gradient

Error

Activation

Gradient

Error

…

Layer 1 Layer L-2 Layer L-1…

Figure 3.2. Data dependency in a neural network. The activations are
propagated from left to right in feed-forward stage, and the errors are prop-
agated from right to left in backpropagation stage. The gradients are com-
puted using the activations and errors. Each arrow indicates the data de-
pendency.

activations and errors. In contrast, the gradients in different layers are independent of

each other. Figure 3.2 illustrates the data dependencies in a neural network. Each arrow

in the figure indicates the data dependency.

The weights and biases of each layer should be updated before it reaches the layer in

the feed-forward stage for the next mini-batch. Since the gradients in different layers are

independent of each other, the parameter updates in different layers are also independent

of each other. In other words, the parameters can be updated out-of-order across the

layers. In the following section, we present our overlapping strategy based on these data

dependencies.

3.3. Overlapping Strategy and Implementation

Algorithm 2 has a few communications that aggregate the gradients across all nodes.

They are overlapped with computation such that the communication time is hidden behind



44

the computation time as much as possible. We first propose two methods to maximize

the overlap, and then explain the communications in Algorithm 2 in detail.

3.3.1. Overlap of Communication for Gradients and Computation

To overlap communication with computation as much as possible, two factors should be

taken into account: number of communications and data size for each communication.

First, the number of communication should be minimized to reduce the overall commu-

nication cost.

Each communication consists of two times, Ts and Tm, startup time and transfer time.

Every communication has Ts regardless of the data size. So, the overall communication

time can be reduced by having less communications. Second, in order to maximize the

overlap, the communications should aggregate as many gradients as possible before the

backpropagation is finished. Since the last communication cannot be overlapped with the

backpropagation, the data size for the last communication should be minimized.

Considering these two factors, we gather the entire gradients across all nodes with

two communications. The first communication is started after the backpropagation at

the first few layers is finished. Then, the second communication is started after the entire

backpropagation is ended. This approach enables to overlap much of the communication

time with computation time while the number of communications is considerably reduced.

In the later sections, we will call the gradients for each communication gradient chunk.

Unfortunately, the optimal size of gradient chunks cannot be known in advance. The

optimal data size varies depending on many factors such as computing power, network

speed, and model architecture. We define a new hyper-parameter, k, the number of layers



45

for the first communication. The value of k should be tuned heuristically such that the

first communication is overlapped with the backpropagation as much as possible. We will

study the impact of various k values on the scalability in Section 3.4.

3.3.2. Communications in Data Parallel Training

Algorithm 2 has 2f + 2 communications at each iteration. In feed-forward, f asynchro-

nous communications are posted to gather the activations of the first f fully-connected

layer across all nodes at line 12. In backpropagation, once the gradients of k layers are

computed, they are summed across the local images first, and then an asynchronous com-

munication is posted to aggregate the gradient sums across all the nodes at line 19. When

the backpropagation is finished, another asynchronous communication is posted again to

aggregate the last of the gradients of the model at line 20. Finally, f asynchronous com-

munications are posted to gather the errors of the first f fully-connected layers across

all nodes at line 26. Algorithm 2 has three blocking points: line 8, 21, and 24. Before

updating parameters, it should wait until the corresponding gradients are gathered across

all the nodes. Note that the parameter update for f fully-connected layers is delayed to

the next mini-batch training.

Figure 3.3 presents an example time-flow chart of Algorithm 2. GatherA and GatherE

are f communications for gathering activations and errors respectively. ReduceW0 and

ReduceW1 are the reductions for gradient chunks. Ideally, if each communication time

is shorter than the corresponding computation time, the entire communication can be

hidden behind the computation. It is worth noting that the gradient computation and

parameter update at the first f fully-connected layers are delayed to the next mini-batch



46

FF (m)

BP (m)

Gather A

Reduce W0

Reduce W1 Update 0 (m)

Gather E

FF (m+1)

Update 1 (m)

Update 2 (m)

mini-batch m

mini-batch m+1

Comm. Comp.

Time
BP (m)

Figure 3.3. Time-flow chart with the maximized overlap. This figure
illustrates the ideal case on which all communications are hidden behind
the computation. In this case, a linear speedup can be expected.

training. It allows to overlap GatherE with the feed-forward computation for the next

mini-batch.

3.3.3. Replicated Gradient Calculation in Fully-Connected Layers

The convolution layers are computationally more expensive than the fully-connected lay-

ers. In majority of CNN models, a convolution layer has much more neurons than a

fully-connected layer. In contrast, the fully-connected layers cause heavier communica-

tions than the convolution layers. The fully-connected layers have full connections while

the convolution layers have local connections as explained in Section 2.1. Since each

connection has the corresponding weight parameter, a fully-connected layer typically has



47

more weights than a convolution layer. For example, VGG-A [62] model has three fully-

connected layers and each of them has about 103 millions, 17 millions, and 4 millions of

weights respectively whereas the convolution layers have 5 millions of weights in total.

In data-parallelism, since the gradient is calculated with respect to the parameters, the

communication for such a huge number of gradients can be a performance bottleneck.

We replicate the gradient calculation in fully-connected layers to reduce the commu-

nication cost. First, the local activations and errors calculated using the assigned subset

of mini-batch are gathered across all the nodes. The data size of the communication is

(K l
b +K l

c)N . Then, the gradients for all images in the mini-batch are computed in every

node. Note that if the gradients are calculated in parallel, the data size of the commu-

nication is K l
bK

l
c. In modern CNNs, most likely, K l

bK
l
c is much larger than (K l

b + K l
c)N

at fully-connected layers. Thus, the communication cost can be dramatically reduced

by replicating the gradient calculation. Since every node calculates the gradients for all

the image, it takes a constant time regardless how many nodes it runs on. However, the

computation time rather effectively overlaps the communication time for other gradients

and does not adversely affect the scaling performance.

In VGG-A model, for example, K l
b is 25,088 and K l

c is 4,096 in the first fully-connected

layer. Saying N is 256 which is the most popular mini-batch size in large-scale visual

recognition tasks, the values of K l
bK

l
c and (K l

b + K l
c)N are 102,760,448 and 7,471,104. If

the gradient calculation is replicated in the first fully-connected layer, assuming the data

is 4-byte single-precision floating point numbers, the reduction of 392MB is replaced with

the gathering of 28.5MB.



48

We define another hyper-parameter, f , the number of fully-connected layers that repli-

cate the gradient calculation. Selecting the optimal value of f is also crucial to maximize

the overlap. If the gradient calculation is replicated in all the fully-connected layers, the

early backpropagation time does not overlap any communication time. Furthermore, the

replicated computation can take so much time that the speedup is lowered. Thus, f

should be heuristically tuned to allow both a large overlap and the reasonable amount of

constant computation time. In Section 3.4, we demonstrate the impact of various values

of f on the scalability.

3.3.4. Communication-Dedicated POSIX Thread

In order to explicitly control the overlap of communication and computation, we employ a

POISX thread which performs blocking MPI communications in background. Each MPI

process creates a POSIX thread at the beginning of the training. When the gradients

have been computed, the main thread sends a communication request to the commu-

nication thread using a shared message queue. The queue is protected using a POSIX

mutex. After the main thread queues its request, it broadcasts a software signal, and

the communication thread wakes up catching the signal using a POSIX conditional vari-

able. When there is no requests in the shared queue, the communication thread goes to

sleep. This software mechanism enables the communication thread to rapidly serve the

requested communications in background.

We pin the communication thread on a single physical core so that the communications

can be performed without being affected by the context switching or the cold cache effect.

On a modern CPU-based system, the best achievable scaling efficiency is much lower than



49

the ideal 100% performance [63]. Even when one core is dedicated for the communication

thread, we have not observed any computation performance degradation. In addition,

it is a common practice that only a single process runs on each node for parallel neural

network training on distributed-memory systems due to the large memory footprint of

each process. So, it is reasonable to assume that only a single communication-dedicated

thread will run on each node occupying a physical core.

3.4. Performance Evaluation

We implemented a deep learning software framework in C language. The software

framework has been designed for parallel training of neural networks on distributed-

memory platforms. The data parallelism is implemented using MPI for all the inter-

process communications and non-kernel loops are parallelized using OpenMP. The kernel

functions such as matrix operations are implemented using Intel MKL library. All ex-

periments are performed on Cori Phase I, a Cray XC40 supercomputer at the National

Energy Research Scientific Computing Center. Each compute node has two sockets and

each socket contains a 16-core Intel Haswell processor at 2.3GHz. The system has Cray

Aries high speed interconnections with ‘dragonfly’ topology.

The most representative dataset for visual recognition tasks is ImageNet [64]. It

contains 1.2 million 3-channel (RGB) images of various sizes. The classification on this

dataset is considered to be extremely challenging not only because the images are high-

resolution real-world pictures, but also because the training on such a large dataset takes

an enormous execution time. We use the preprocessed ImageNet dataset that has 3 ×

224× 224 pixels in each image.



50

We use VGG-A model [62], a deep CNN with 16 layers and 133 millions of parameters.

Additionally, we built three variants of VGG-A, VGG-128, VGG-256, and VGG-512.

These models have 128, 256, and 512 feature maps in convolution layers and contain 48

millions, 76 millions, and 140 millions of parameters respectively. Since the same workload

is repeated across the mini-batches, we measure the execution time to process a single

mini-batch 10 times and average the timings.

3.4.1. Single-Node Performance Study

We compared the performance of our implementation with Caffe, a popular open-source

framework for neural network training. We compiled the main branch source code [13]

with Intel MKL library. Figure 3.4 presents the single-threaded and multi-threaded per-

formances with different mini-batch sizes. We observe that our implementation provides a

shorter execution time than Caffe for all the mini-batch sizes. First, the performance gain

of the single threaded training comes from the computation pattern described in Section

3.1. We perform only three matrix multiplications and three layout transformations for

each layer, while Caffe performs 3N matrix multiplications and 3N layout transforma-

tions. Given the same amount of workload, fewer matrix operations likely provide better

performance due to the reduced function call overhead. Second, in the multi-core training,

we have approximately 10% of additional performance gain by parallelizing im2col and

col2im. This experimental result demonstrates that the multi-node performance study

following this section is based on the reasonable level of single-node performance.



51

Sequential

0

50

100

150

200

250

300

350

400

64 128 256 512

E
x
ec

u
ti

o
n
 T

im
e 

(s
ec

)

Mini-Batch Size

Caffe parallel CNN

0

10

20

30

40

50

60

70

80

64 128 256 512

E
x
ec

u
ti

o
n
 T

im
e 

(s
ec

)

Mini-Batch Size

Caffe parallel CNN

Figure 3.4. VGG-A training time on a single node: sequential perfor-
mance (left) and multi-threaded (32 cores) performance (right). Caffe is
an open-source framework and parallel CNN is our implementation. The
experiments are performed with varying mini-batch size.

3.4.2. Multi-Node Performance Study

In this section, we present the scaling performance of our implementation with various

software settings and analyze the experimental results. All the speedup charts are the

strong-scaling results.

End-to-end training time and speedup – We compare our parallelization strat-

egy to the pure data-parallel training of CNN (DP). Three hyper-parameters are set in

advance: N (mini-batch size) is set to 256, k (number of layers for the first gradient

chunk) is set to 9, and f (number of layers that replicate gradient calculation) is set to

2. Figure 3.5 presents the execution time of one iteration and its speedup. The speedups

are calculated with respect to the number of nodes, based on the single-node performance



52

1

2

4

8

16

32

64

128

S
p
ee

d
u
p

Number of nodes (Number of cores)

DP parallel CNN Linear

0

5

10

15

20

25

30

35

E
x
ec

u
ti

o
n
 T

im
e 

(S
ec

)

Number of nodes (Number of cores)

DP parallel CNN

Speedup

Figure 3.5. VGG-A training time (left) and speedup (right) for a single
mini-batch size of 256). k is set to 9 and f is set to 2. We compare
our approach (parallel CNN) with the pure data-parallel training algorithm
(DP). The speedup is calculated with respect to the number of nodes.

presented in the previous section. We see that our parallelization strategy shows a signif-

icantly improves the scaling efficiency. ‘parallel CNN’ achieves a speedup of 62.97 on 128

nodes, while DP achieves a speedup of 19.92.

Timing breakdown – If a gradient communication is not finished before updating

the corresponding parameters, the update will be blocked until the communication is

finished. We define this blocking time as ‘measurable communication time’. To evaluate

the proposed overlapping strategy, we compared the measurable communication time as

well as the actual communication time. Figure 3.6 presents the timing breakdown (y-axis

is in log scale) for training VGG-A on a single mini-batch. We see the clear gap between

the communication time and the measurable communication time. This gap implies that

our proposed methods effectively overlaps the communications with the computations.

The measurable communication time appears from 8 nodes since the computation time



53

Timing Breakdown

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

100.000000

E
x

ec
u

ti
o

n
 T

im
e 

(S
ec

)

Number of nodes (Number of cores)

Feed-forward Time

Backpropagation Time

Measurable Communication Time

Communication Time

Figure 3.6. Timing breakdown for VGG-A training (mini-batch size of
256). The communication time is the accumulated time for all the inter-
process communications. Measurable communication time is a part of the
communication time which is not overlapped with any computation time.

becomes so short that it does not hide the entire communication time. As the training

scales up beyond 8 nodes, the measurable communication time increases and it ends up

becoming almost the same as the backpropagation time.

3.4.3. Computation and communication overlapping

– We investigate the scalability of the proposed algorithm with various model architec-

tures and hyper-parameter settings. There are four hyper-parameters that affect the

performance: mini-batch size, number of parameters, number of layers for each gradient

chunk, and number of fully-connected layers that replicate the gradient calculation. With



54

various settings of these hyper-parameters, we evaluate the proposed overlapping strat-

egy and discuss the impact on the scalability. We define overlapping ratio, a metric for

analyzing how much communication is overlapped with the computation. The ratio R is

calculated by Equation 3.8.

(3.8) R =
100×

∑2f+1
i=0 (T ic − T ib )∑2f+1
i=0 T ic

,

where T ib is the measurable communication time and T ic is the actual communication

time for the ith communication.

Scalability with respect to mini-batch size – To replicate the gradient calculation

in f fully-connected layers, the activations and errors are gathered across all the nodes.

The communication cost depends on mini-batch size since the number of the activations

and errors in each layer is (K l
b + K l

c)
N
P

. Figure 3.7 shows the overlapping ratio and the

speedup for VGG-A training with varying size of mini-batch-128, 256 and 512. As shown,

the larger mini-batch size allows higher overlapping ratio and it results in achieving higher

speedup. The maximum speedups are 17.82, 62.97, and 77.97, respectively.

We observe that the speedup curve drops suddenly on a certain number of nodes. The

reason is that the overlapping ratio sharply drops if the computation time becomes less

than the communication time, and the increased measurable communication time lowers

the speedup. In data parallelism, the larger mini-batch size gives more computation

workload while it does not affect the communication cost. Thus, we can expect better

scalability with a larger mini-batch size.



55

Various N

0

20

40

60

80

100

2 4 8 16 32 64 128

O
v

er
la

p
p

in
g

 R
at

io
 (

%
)

Number of nodes

N=128 N=256 N=512

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
p

ee
d

u
p

Number of nodes

N=128 N=256 N=512 Linear

Figure 3.7. Overlapping ratio (left) and speedup (right) with varying mini-
batch size. k is set to 9 and f is set to 2. The larger mini-batch size increases
the computation workload and allows the higher overlapping ratio.

Scalability with respect to number of parameters – The number of parameters

affects both the computation time and the communication time. To compare the scaling

performance across the sizes of model, we measured the performance of training VGG-

128, VGG-256 and VGG-512. We set the hyper-parameters: N to 256, k to 9, and f

to 2. Figure 3.8 presents the overlapping efficiencies and the speedups. We see that

the model with more parameters achieves higher speedup. The computation complexity

of the training algorithm is (C
P

+ F )NK2) whereas the communication cost is directly

proportional to the number of parameters. If the number of parameters is increased, due

to the N term that is independent of the number of parameters, the computation cost is

more increased than the communication cost and it allows higher overlapping ratio.

Replicating the gradient calculation in fully-connected layers – To evaluate

the impact of replicating the gradient calculation on the scalability, we measured the

overlapping raito and speedup with varying value of f . Figure 3.9 shows the performance



56

Various P

0

20

40

60

80

100

16 32 64 128

O
v

er
la

p
p

in
g

 E
ff

ic
ie

n
cy

 (
%

)

Number of nodes

128 (48M) 256 (76M) 512(140M)

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
p

ee
d

u
p

Number of nodes

128 (48M) 256 (76M)

512(140M) Linear

Figure 3.8. Overlapping ratio (left) and speedup (right) with varying num-
ber of parameters. VGG-128, VGG-256, and VGG-512 models are trained
on a single mini-batch size of 256. The maximum speedups are 54, 61, and
80, respectively.

results. If all the fully-connected layers replicate the gradient calculation (f is 3), due

to the large number of activations and errors to be gathered across all the nodes, the

measurable communication time can be rather increased while the early backpropagation

time does not overlap any communication time. In contrast, if none of the fully-connected

layers replicate the gradient calculation (f is 0), the large gradient chunks engender the ex-

pensive communications. In our experimental environment, we achieved the best speedup

when f is set to 2.

Number of layers covered by each communication – We measured the speedup

with varying value of k-3, 6, 9, and 12. The values are selected for dividing the entire

gradients into two chunks based on pooling layers. We skipped the case where k was set

to 1 since it allowed almost no overlap and showed a similar speedup with DP. Figure

3.10 presents the overlapping ratio and speedup. When k is set to 3 or 6, due to the small



57

Various f

0

20

40

60

80

100

2 4 8 16 32 64 128

O
v
er

la
p
p
in

g
 R

at
io

 (
%

)

Number of nodes 

f=0 f=1 f=2 f=3

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
p
ee

d
u
p

Number of nodes 

f=0 f=1 f=2 f=3 Linear

Figure 3.9. Overlapping ratio (left) and speedup (right) with varying num-
ber of fully-connected layers that replicate the gradient calculation. Repli-
cating the gradient calculation at all the fully-connected layers can drop the
speedup.

size of the first gradient chunk, most of the backpropagation time does not overlap any

communication time and it gives a higher chance to have a longer measurable commu-

nication time for the second gradient chunk reduction. In contrast, if k is set to 12, the

first gradient chunk is so large that the communication is not fully overlapped with the

backpropagation. We achieve the best overlapping ratio when k is set to 9.

3.4.4. Comparison with Previous Works

In this section, we compare our approach with the existing works. Table 3.1 summarizes

the previous works.

Comparison with parallel algorithms on GPUs – GPUs have been popularly

used to speedup the computing-intensive workload of neural network training. Many of

the large-scale deep learning applications on GPUs are based on master-slave model. The



58

Various k

0

20

40

60

80

100

1 2 4 8 16 32 64 128

O
v
er

la
p
p
in

g
 r

at
io

 (
%

)

Number of nodes 

k=3 k=6 k=9 k=12

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
p
ee

d
u
p

Number of nodes 

k=3 k=6 k=9 k=12 Linear

Figure 3.10. Overlapping ratio (left) and speedup (right) with varying
number of layers that have the gradients for the first gradient chunk. The
gradients should be grouped into two chunks such that the overlapping ratio
of two communications are maximized.

parameter server plays a role as a master to update the parameters in a centralized fash-

ion. Our approach is a fully-distributed parallel algorithm which only performs collective-

communications such as all-to-all reduction or all-to-all gather, while the master-slave

model has point-to-point communications. We do not compare the execution time di-

rectly between our approach and the GPU-based training algorithms. First, due to the

different underlying hardware architecture, the exeuction time comparison is unfair. Sec-

ond, all the existing works have different software settings such as model architecture,

mini-batch size, and optimization method. Considering these differences, we only com-

pare the scalability instead of the execution time. FireCaffe [65] reports 47 speedup of

training with synchronous SGD. For asynchronous SGD, Strom et al. achieved a speedup

of 54.

Comparison with parallel algorithms on CPU-based clusters – Many re-

searchers have put much effort into scaling neural network training on CPU clusters



59

Table 3.1. Summary of the previous works. The columns are HW/SW
settings. The Max speedup column shows the maximum speedup (left) and
how many machines are used (right).

Publication
Communication

GPU/CPU
sync/async

Max speedup
model SGD

Theano-mpi fully-distributed GPU sync 7.3/8

GeePS master-slave GPU sync 13/16

FireCaffe master-slave GPU sync 47/128

Strom et al. fully-distributed GPU async 54/80

Dean et al. master-slave CPU sync 12/128

Adam master-slave CPU async 20/90

Das et al. fully-distributed CPU sync 90/128

[15, 1, 43, 66]. Recently, Dipankar Das et al. [1] reported the state-of-the-art speedup

by developing PCL-DNN framework using their multi-threaded communication library

which enables to overlap communication with computation. For a mini-batch size of 512,

they trained VGG-A on 128 nodes and achieved a speedup of 90. PCL-DNN performs a

communication for each layer and overlaps the communication with the backpropagation.

Some communications are delayed to the next iteration such that the communication

is overlapped with the feed-forward too. We reproduced the work in [1] based on the

common ground such as distributed-memory parallelism, fully-distributed communica-

tion model, and synchronous SGD. To compare the overlapping strategy only, we used

the same versions of Intel MKL library and MPI. Figure 3.11 presents the comparison.

DP is the baseline which has no overlap and DP+Overlap is the reproduced work. We

see that our approach scales better than the others. DP+Overlap hardly scales beyond

32 nodes due to the expensive communications at the fully-connected layers and the poor

overlapping ratio.

Recently, in order to tackle larger and more complicated datasets, the deep learning

models are getting larger and deeper. For example, modern CNNs for image classification



60

Comparison

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
p

ee
d

u
p

Number of nodes

DP DP+Overlap

parallel CNN Linear

0

20

40

60

80

100

2 4 8 16 32 64 128

O
v

er
la

p
p

in
g

 r
at

io
 (

%
)

Number of nodes

DP DP+Overlap parallel CNN

Figure 3.11. Overlapping ratio (left) and speedup (right) of VGG-A train-
ing (mini-batch size of 256). DP is the baseline without overlapping,
DP+Overlap is the reproduced work based on [1], and parallel CNN is
our proposed approach.

problems usually have about one hundred layers. For image regression problems such as

image restoration and super-resolution, researchers also use very deep networks that have

more than 50 ∼ 60 layers [34, 33, 35]. As shown in many existing works, it is assumed

that one communication is performed at each layer. Considering such deep networks, this

traditional approach may increase the communication cost due to the large number of

communications per iteration. Our experimental results presented in the previous section

clearly demonstrate that the proposed gradient aggregation method effectively reduces the

per-iteration communication cost. The performance comparison between DP+Overlap,

the most popular overlapping strategy, and our proposed approach also shows how the

number of communications per iteration affects the scaling performance.



61

3.5. Discussion

In this Chapter, we have proposed a communication overlapping strategy that im-

proves the scalability of neural network training. We analyzed how much communication

time can be hidden behind the computations time every iteration. Then, we have de-

signed a parallel training algorithm that leverages the overlap based on the analysis. Our

experimental results demonstrate the effectiveness of the proposed training strategy by

showing the significantly improved speedups.

Impact of overlapping on parallel training – Although synchronous parallel train-

ing suffers from the expensive communications, many researchers still scale up the deep

learning-based scientific applications in a fully synchronous way since it guarantees the

same convergence rate to the sequential training [42, 23, 24, 67]. Our overlapping strat-

egy is designed considering the data dependency that commonly exists in all types of

neural networks. Therefore, many large-scale deep learning applications can directly take

advantage of our overlapping strategy to efficiently scale up the training.

In our experiments, we also found that the scaling efficiency of the computations on

each node is not close to the linear even when using the highly-optimized math library

such as Intel MKL. It has been already known that the computational workload should

be sufficiently large to achieve a near linear speedup [63]. In neural network training,

the matrix size depends on the input data size and the filter size, and the matrices are

most likely smaller than 1024 on each dimension. So, even if we dedicate one physical

CPU core for communications, the computation performance would not be much affected.

We actually observed that the computation time is almost not affected by running the



62

communication-dedicated thread pinned on a physical core while the communication time

is effectively overlapped with the computation time.

Insight regarding the communication pattern – This research work is based on

an assumption that the locally computed gradients are averaged across all the workers

using allreduce operations. In MPICH, the allreduce is implemented using the optimal

algorithm such that it is guaranteed that the communication cost is minimal regardless of

the number of processes and the data size. To the best of our knowledge, all the existing

popular deep learning software frameworks, including TensorFlow, Horovod, pyTorch, and

Caffe, use allreduce communications for data parallel training.

Depending on the mini-batch size and the model architecture, the gradient matrix

can be much larger than the activation matrix and error matrix. Especially, the fully-

connected layers have all-to-all connection patterns and they most likely cause the gradient

matrix that is much larger than the activation and error matrices. This observation gives

us an insight that the data parallelism does not necessarily have to be implemented using

allreduce operations. Instead of having each worker compute a full set of gradients from

a part of mini-batch, we can consider the opposite way such that each worker computes

a part of global gradients from the full mini-batch. This approach allows to exchange the

intermediate data such as activations and errors instead of the gradients. In this case,

the communication pattern will also be different from the traditional allreduce-based

approach.

In the following Chapter, we will analyze the communication cost of the traditional

allreduce-based data parallelism and discuss how to reduce the per-iteration communica-

tion cost by re-designing the gradient computation algorithm. Likely to the overlapping



63

strategy proposed in this chapter, we also pursue a general communication strategy that

can be directly applied to all the types of neural networks.



64

CHAPTER 4

Communication-Efficient Parallel Gradient Computation

Algorithm

For synchronous data parallel training, the expensive gradient communications are the

primary performance bottleneck that hinders efficient scaling. In the previous Chapter,

we have shown that the scalability of parallel training can be significantly improved by

overlapping the communications with the computations during training. As an extension

of the research work, we present a novel gradient computation algorithm that not only

further improves the degree of overlap but also reduces the communication cost complexity

at fully-connected layers.

The most popular implementation of data parallelism is allreduce-based approach.

Once every worker locally computes the gradients from the assigned training samples, the

entire gradients can be aggregated and summed up using a single allreduce operation. This

traditional data parallelism implementation is based on an assumption that the gradients

are aggregated only after all the workers have the full gradients locally computed from the

assigned subset of mini-batch. However, especially at fully-connected layers, the gradient

matrix is always larger than the activation matrix or the error matrix. Our design principle

is to perform the inter-process communications when the data size is minimized during the

gradient computation steps. We re-design the parallel gradient computation algorithm

such that the activations and errors relocated across all the workers in advance so that each



65

worker can compute the gradient sums of a distinct subset of the model parameters. Then,

the gradient sums are aggregated among all the workers using allgather communications.

We will analyze and compare the overall communication cost complexity between our

approach and the allreduce-based approach.

For the later discussion, we first define a few notations: P is the number of workers, K

is the mini-batch size, N is the number of neurons at a layer, N ′ is the number of neurons

at the previous layer, D is the number of filters at a convolution layer and F is the size of

each filter. Note that our discussion considers only a single layer since the same analysis

can be applied to all the layers in the same way.

4.1. Parallel Gradient Computation Algorithm

4.1.1. Fully-Connected Layers

In data parallelism, the standard way of averaging the gradients at a fully-connected

layer can be defined as follows: Given the current layer’s error matrix of size N × K
P

and

the previous layer’s activation matrix of size N ′ × K
P

, compute the gradient matrix of

size N × N ′ by multiplying the two matrices (one may be transposed depending on the

data layout). Then, sum up the gradient matrix across all the workers using an allreduce

operation. Finally, the gradient sums are averaged by multiplying the reciprocal of K to

all the elements.

In our gradient computation algorithm, instead of computing a N×N ′ gradient matrix

for K
P

training samples with each worker, the activations and errors are relocated across

all the workers and a partial gradient matrix of size N × N ′

P
for K training samples are

computed by each worker. First, the activations are scattered across all the workers using



66

𝐸

𝐾

𝑃

𝑁

𝑁′

𝐴
𝐾

𝑃

𝑁′

𝑃

𝐴′𝐾𝐸′

𝐾

𝑁

allgather

all-to-all

× ∆𝑊′𝑁

𝑁′

𝑃

= ∆𝑊

𝑁′

𝑁
allgather

Figure 4.1. Communication-efficient gradient calculation. Given an error
matrix E of size N × K

P
and an activation matrix A of size N ′ × K

P
, E

is gathered and A is scattered across all the nodes. Then, the gathered
error E ′ is multiplied by the scattered activation A′ to compute the partial
gradient∇W ′ of size N×N ′

P
. Finally, the partial gradient matrix is gathered

across all the nodes and each node ends up having N ×N ′ gradient matrix
∇W .

an all-to-all personalized communication. The size of the scattered activation matrix

is K × N ′

P
. Second, the errors are gathered across all the workers using an allgather

operation. The size of the gathered error matrix is K × N . Then, the two matrices

are multiplied to be a N × N ′

P
matrix that is the partial gradient sums for K training

samples. Finally, the gradient sums are gathered across all the workers using an allgather

operation and each worker ends up having N × N ′ gradient sums. Figure 4.1 illustrates

the described gradient computation algorithm for fully-connected layers. Overall, the

gradient computations algorithm consists of three inter-process communications and one

computation at each layer.



67

∆𝑊𝑝

∆𝑊0

∆𝑊1

∆𝑊𝑃−1

…

∆𝑊′

∆𝑊

all-to-all allgather

summing up 
gradients

𝐷

𝐹
𝐷

𝑃

𝐷

𝐹

Figure 4.2. Three-step reduction for gradient averaging at convolution
layers. First the local gradients ∇W p are scattered across all the nodes.
The received partial gradient matrices are summed up and then gathered
across all the nodes to obtain the entire gradient sums ∇W .

4.1.2. Convolution Layers

The standard way of averaging the gradients at a convolution layer is as follows: the

gradient matrix of size D × F is computed by multiplying activations and errors within

the local reception field. Then, the gradient matrix is summed up across all the workers

using an allreduce operation. Finally, the gradients are averaged by multiplying the

reciprocal of K to all the elements.

Instead of performing a single allreduce operation, our approach is to divide it to

multiple steps of communications. First, we scatter the gradient matrix using an all-

to-all operation and each worker becomes to have P sub-matrices (each of size D
P
× F ).

Second, the P sub-matrices are locally summed up by each worker to have a single sub-

matrix of size D
P
× F . Finally, the sub-gradient sums are gathered across all the workers



68

Table 4.1. Theoretical cost of communication patterns for large messages.

Communication pattern
Latency Bandwidth

(s) (w)
reduce-scatter P − 1 n(P − 1)/P
all-to-all P − 1 n(P − 1)/P
allgather P − 1 n(P − 1)/P

using an allgather operation. Figure 4.2 illustrates the proposed approach. Overall, our

approach consists of two inter-process communications and one computation.

4.2. Communication Cost Analysis

In our theoretical cost analysis, we use the cost model used in many previous works

[68, 69, 70].

(4.1) T = sα + wβ,

where s is the number of messages, w is the overall message size, α is the latency per

message, and β is the reciprocal bandwidth. We follow all the assumptions described in

[69].

In this discussion, we refer to the theoretical communication cost for the collective

communications shown in Table 4.1. n in the table is the overall data size. Note that

the costs are calculated for the long message algorithms in [69, 71] and it is higher than

the theoretical lower bounds (pair-wise exchange algorithm is used for reduce-scatter and

all-to-all while ring algorithm is used for allgather).



69

4.2.1. Fully-Connected Layers

The proposed gradient averaging algorithm for fully-connected layers has three communi-

cation steps: all-to-all for activations, allgather for errors, and another allgather for the

partial gradient sums. Based on Table 4.1, the communication costs, Ts, Tg1, and Tg2 are

computed as following equations. The overall communication cost at a fully-connected

layer, Tf is the sum of the three costs.

(4.2) Ts = (P − 1)α +
N ′K

P 2
(P − 1)β

(4.3) Tg1 = (P − 1)α +
NK

P
(P − 1)β

(4.4) Tg2 = (P − 1)α +
NN ′

P
(P − 1)β

(4.5) Tf = Ts + Tg1 + Tg2

In MPICH, allreduce is implemented with two different algorithms, the binomial tree

algorithm for short messages (≤ 2KB) and Rabenseifner’s algorithm for long messages (>

2KB) [72, 69]. The communication costs are calculated as followings.

(4.6) Tbinomial = log(P )α + log(P )nβ

(4.7) TRabenseifner = 2log(P )α + 2
P − 1

P
nβ,



70

where n is the overall message size. Since the gradient size at a layer of modern CNNs is

most likely larger than 2KB, we only consider Rabenseifner’s algorithm in this discussion.

In practice, due to the large data size, the bandwidth term wβ is dominent over the

latency cost term sα. So, we focus on the second term in Equation 4.1. We can derive

the following condition by comparing the bandwidth terms of Equation 4.5 and 4.7. Note

that n in Equation 4.7 is NN ′.

(4.8)
N ′K

P
+NK < NN ′

If the above condition is satisfied, our gradient computation algorithm guarantees a

cheaper communication cost than allreduce-based approach. Note that, in modern CNNs,

K is most likely smaller than N or N ′ and the condition is satisfied.

4.2.2. Convolution Layers

As explained, our gradient computation algorithm for convolution layers consists of three

steps, an all-to-all operation, the computation for accumulating the received matrices,

and an allgather operation. The overall communication cost at a convolution layer, Tc, is

calculated by the following equation.

(4.9) Tc = 2(P − 1)α + 2
DF

P
(P − 1)β

Rabenseifner’s algorithm is implemented in MPICH using a reduce-scatter operation

followed by an allgather operation. Since n in Equation 4.7 is DF at a convolution

layer, the bandwidth term w is same as that of Tc. However, our approach has three

practical benefits: First, our approach enables to efficiently sum up the gradients using



71

multiple threads. To the best of our knowledge, most of the MPI implementations do

not support multi-threaded internal computation. In data parallelism, since the entire

gradients are averaged at each iteration, the multi-threaded reduction can make a sig-

nificant performance improvement. Second, the communication time can be overlapped

with the computation time across different reductions. Since our approach separates the

computation step and the communication step, the computation time can overlap the

communication time of other reductions. The overlapping strategy will be discussed in

the following section in detail. Finally, each workers can locally update only a part of

model parameters. The scalable model update is also discussed in the following section.

4.3. Scalable Model Parameter Update

The cost of model parameter update is easily overlooked, however it can be a significant

performance bottleneck in parallel neural network training. In our proposed gradient

computation algorithm, at both convolution layers and fully-connected layers, the final

communication step is allgather. We take advantage of the communication pattern to

reduce the computation complexity of model parameter update. Instead of exchanging

the gradient sums, we locally update the partial model parameters at each worker and

perform an allgather for the updated model parameters. In this way, the computation

complexity of parameter update is O(NN
′

P
) without any extra communications.

In allreduce-based data parallelism, all the workers end up having the gradient sums

for the entire model parameters. Then, the parameters can be updated in two different

ways. On the first hand, the entire model parameters are updated at each worker. In this

case, the computation complexity of parameter update is O(NN ′) which is not scalable.



72

On the other hand, each worker can update a distinct subset of the parameters and the

updated parameters are aggregated across all the workers. In this case, the computation

complexity is O(NN
′

P
) but the extra allgather should be performed after the update.

Most of the existing works perform the former method while Intel distribution of Caffe

[13] supports the latter one. To further reduce the communication cost, Intel Caffe also

supports a gradient averaging algorithm which uses reduce-scatter and allgather. The

algorithm enables the O(NN
′

P
) computation complexity of the parameter update, however

the overall communication cost of reduce-scatter algorithm is the same as that of the

allreduce-based algorithm.

4.4. Overlapping Computation and Communication

Overlapping computation and communication is an essential technique for improv-

ing the scalability. We present an overlapping strategy based on the proposed gradient

computation algorithm.

4.4.1. Fully-Connected Layers

The proposed gradient computation algorithm has three communication steps at a fully-

connected layer. First, once the activations are ready, an all-to-all communication is

posted in the feed-forward stage. The communication time is overlapped with the com-

putation time until it comes back to the layer in the backpropagation stage. Second, an

allgather communication is posted when the errors are computed and the communication

time is overlapped with the later backpropagation time. When these two communication

steps are finished, the matrix A′ and E ′ in Figure 4.1 are ready and the gradient sums



73

feed-forward
layer 0

feed-forward
layer 1

alltoall
activations

layer 0

backprop
layer 1

backprop
layer 0

alltoall
activations

layer 1

allgather
errors
layer 1

allgather
errors
layer 0

feed-forward stage

back-propagation stage

gradient 
calculation

layer 0

gradient 
calculation

layer 1

model 
update
layer 0

allgather
param
layer 0

allgather
param
layer 1

model 
update
layer 1

… conv. layers …

Figure 4.3. An example of the ideal overlapping of 2 layers such that
the computation time at each layer is sufficiently large to overlap the com-
munication time. After the errors are back-propagated through all the
fully-connected layers, process the convolution layers first. Then, calculate
the average gradients, update the partial model parameters, and post an
allgathers communication for the updated model parameters.

are computed. Based on the scalable model update technique we proposed, a part of

model parameters are updated by each worker using the local gradient sums. Finally, an

allgather is posted to exchange the new parameters across all the workers. The commu-

nication time is overlapped with the gradient computation and parameter update times

at other layers. Figure 4.3 illustrates the overlapping strategy.

It is worth noting that the final allgathers are posted in the forward order while

the errors and the gradients are computed in the backward order. This inversed order

enables to overlap the final allgather time with the feed-forward computation time at the



74

feed-forward
layer 0

feed-forward
layer 1

alltoall
activations

layer 0

backprop
layer 1

backprop
layer 0

alltoall
activations

layer 1

allgather
errors
layer 1

allgather
errors
layer 0

feed-forward stage

back-propagation stage

gradient 
calculation

layer 0

gradient 
calculation

layer 1

model 
update
layer 0

allgather
param
layer 0

allgather
param
layer 1

model 
update
layer 1

… conv. layers …

Figure 4.4. An example of overlapping computation and communication
at convolution layers: (a) shows the allreduce-based approach and (b) shows
the proposed two-step communications. (b) enables computation and com-
munication overlaps across layers.

next iteration. While the activations are computed at a layer, the communications for

later layers can be performed simultaneously since the model parameters have no data

dependency across layers.

4.4.2. Convolution Layers

At convolution layers, we overlap the computation time for summing up the gradients

and the allgather communication time. As explained, the gradients are averaged with

two communication steps at each convolution layer. Between the two communications,

the local gradients should be summed up and each worker ends up having the global



75

gradient sums of a subset of model parameters. Since the gradients do not have data

dependency across different layers, the computation time can be overlapped with the

final step communication at other layers. Figure 4.2 shows example time-flow charts.

Figure 4.2.(a) is the allreduce-based approach and Figure 4.2.(b) is the proposed two-step

communications for averaging gradients.

4.5. Performance Evaluation

In order to evaluate our proposed gradient computation algorithms, we compare it

to other parallelization strategies. Recently, there are many open-source software frame-

works that support distributed-memory parallel training, such as TensorFlow [11], Intel

Caffe [13], PyTorch [12], and Horovod [73]. Most of them adopt the traditional allreduce-

based data parallelism. Intel Caffe supports a gradient averaging algorithm which uses

reduce-scatter and allgather operations. PyTorch and Horovod use ring-allreduce algo-

rithm [74] which utilizes the network bandwidth more efficiently than the other allreduce

algorithms. Since all the open-source frameworks use different data structures, compu-

tation algorithms, and communication libraries, instead of comparing them directly, we

implement the representative parallelization strategies and compare our parallelization

strategy with them. Note that we do not compare the classification accuracy since we

only consider synchronous-parallel SGD which guarantees the optimal parameter update.

For our evaluation, we perform ImageNet classification which is the most popular bench-

mark for deep learning study.



76

4.5.1. Experimental Settings

We perform the experiments on Cori, a Cray XC40 supercomputer at the National Energy

Research Scientific Computing Center. Each Haswell node has two sockets and each socket

contains a 16-core Intel Haswell processor at 2.3GHz. The system has Cray Aries high

speed interconnections with ‘dragonfly’ topology.

We use ImageNet-1K dataset [64] for our experiments. ImageNet has 1.2 million 3-

channel(RGB) images of various sizes for training and 50,000 images for validation. We

isotropically rescaled all the images such that the shorter side has 256 pixels. Then, we

randomly cropped them to 224×224. Finally, all the pixels are subtracted by the mean

value.

We use two representative CNN models: VGG-16 and ResNet-50. VGG-16 is a regular

CNN model proposed by VGG group in Oxford [62]. The model consists of 8 convolution

layers followed by 3 fully-connected layers. The number of parameters is 138 million in

total. ResNet-50 is one of the most popular residual network which is a variant of the

regular CNN [33]. The model consists of 49 convolution layers and 1 fully-connected

layer. The overall number of parameters is 25.5 million. We use the mini-batch size of

256 which has been used by the original model designers in [62, 33].

We use our own parallel deep learning software framework introduced in Section 3.4.

In our software framework, a single MPI process runs on each node and each process

employs shared-memory programming model to utilize all the cores within a node. This

programming model allows to have only a single model in the memory space on each

node. When spawning threads using OpenMP, we use all 32 physical cores in each node.



77

Single-Node Performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Caffe Intel Caffe PCNN

Ex
ec

u
ti

o
n

 t
im

e 
(s

ec
)

128

256

512

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Caffe Intel Caffe PCNN

Ex
ec

u
ti

o
n

 t
im

e 
(s

ec
)

128

256

512

Figure 4.5. Single-node execution time for processing a single mini-batch.
VGG-16 model (left) and ResNet-50 (right) with varying mini-batch sizes.
The performance is measured on a Haswell node of Cori.

We calculate the speedup based on the number of cores. Since the mini-batch size in our

experiments is 256, using data-parallelism, we use up to 256 nodes (8192 cores in total).

4.5.2. Single-Node Performance

We begin with reporting the single node performance of our software framework. In the

later experiments, we calculate the speedup with respect to the number of compute cores

using these single node execution times. We compare our software framework, Parallel

CNN (PCNN), with the original Caffe [13] as well as the intel distribution of Caffe. Caffe

is one of the most popularly used open-source frameworks for deep learning. Intel Caffe

is a highly optimized version of Caffe for utilizing the Intel CPU hardware features. We

believe this comparison can demonstrate that our parallel performance study is based on

the reasonable level of the single node performance.



78

Figure 4.5 presents the single node performance with varying mini-batch sizes. The

left-side and right-side charts show VGG-16 and ResNet-50 execution times respectively.

The performance was measured on a Haswell node of Cori. Note that we only consider

the execution time for processing a single mini-batch since the same workload is repeated

for all the mini-batches. The execution time is the average of 5 times of measurements.

We see that PCNN shows a comparable single node performance to Intel Caffe.

4.5.3. Communication-Efficient Gradient Computation

We first compare our proposed gradient computation algorithm with the traditional allre-

duce-based approach. In order to compare the communication time only, we emulate

the communication patterns using MPI primitive functions and compare the overall com-

munication times. The traditional allreduce-based data parallelism is implemented using

MPICH allreduce and ring-allreduce. The reduce-scatter algorithm in MPICH allreduce

[71], the circular algorithm in ring-allreduce [74], and our proposed algorithm are imple-

mented using MPI Send and MPI Recv functions.

In VGG-16, the first fully-connected layer has 102,760,448 weight parameters (392

MB) which take up about 77% of the overall parameters. We measure the communication

times for averaging the gradients at the layer and compare the timings among different

approaches. Figure 4.6 shows the experimental results. The left-side chart is the overall

communication time comparison and the right-side chart is the timing breakdown of our

algorithm. We see that our proposed algorithm significantly reduces the communication

time. For the first fully-connected layer in VGG-16, the number of activations at the

previous layer N ′ is 25,088, the number of errors at the current layer N is 4,096, the



79

Comm Emulation

0

0.05

0.1

0.15

0.2

0.25

64 128 256 512 1024 2048 4096 8192

C
o

m
m

u
n

ic
at

io
n

 t
im

e 
(s

e
c)

Number of cores

allreduce

ring-allreduce

proposed method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

64 128 256 512 1024 2048 4096 8192

C
o

m
m

u
n

ic
at

io
n

 t
im

e 
(s

e
c)

Number of cores

all-to-all

allgather1

allgather2

Figure 4.6. Communication time comparison (left) and communication
timing breakdown (right). Our approach is compared with allreduce in
MPICH as well as ring-allreduce. The overall data size is 392MB (the
gradient size at the first fully-connected layer of VGG-16 model). Our
proposed method has a shorter communication time than the other two
methods.

mini-batch size K is 256. So, the layer satisfies the condition, N ′K
P

+ NK < NN ′, and

our algorithm takes a shorter communication time compared to the other algorithms.

The timing breakdown on the right-side shows how much time is spent for each of the

three communication steps in our algorithm. This result demonstrates that the proposed

algorithm has a communication complexity of O(1) for all the three communication steps.

4.5.4. Strong Scaling Performance

To evaluate the impact of the proposed algorithms on scalability, we measure the end-

to-end execution time for processing a single mini-batch and the speedup with respect to

the number of cores. We use VGG-16 and ResNet-50 models for this experiment and the

mini-batch size of 256.



80

All the open-source frameworks have different overlapping strategies. For example,

Tensorflow overlaps the allreduce time with backpropagation time only whereas Intel

Caffe overlaps the communication time using both the backpropagation time and the

feed-forward time at the next iteration. So, we chose the best overlapping strategy among

them and reproduced it using allreduce-based data parallelism. We categorized all the par-

allelization strategies into 4 cases: ‘allreduce no overlap’, ‘allreduce’, ‘pcnn no overlap’,

and ‘pcnn’. ‘allreduce’ is the implementation of the overlapping strategy used in Intel

Caffe, which utilizes the backpropagation time, feed-forward time and model update time

for overlapping. The allreduce communication is posted right after the local gradients are

computed at each layer. ‘pcnn’ is our software framework which uses all the proposed

algorithms. Figure 4.7 presents the speedup comparison among the four parallelization

strategies. We see that, for both models, ‘pcnn’ shows a clear improvement over the

others. For VGG-16, ‘pcnn’ achieves up to 2516.36× speedup while ‘allreduce’ achieves

up to 559.12× speedup. For ResNet-50, ‘PCNN’ achieves up to 2734.25× speedup while

‘allreduce’ achieves up to 1572.01× speedup. Figure 4.8 shows the execution times for

both models. The charts present the results from 512 cores (16 nodes) to clearly show the

difference among the four cases. ‘pcnn’ always out performs ‘allreduce’ and the proposed

overlapping strategy further reduces the execution time and it results in achieving the

higher speedup.

4.5.5. Overlapping Communications with Computations

The efficient overlap of computation and communication plays a key role in our paralleliza-

tion strategy. If the computation time is not long enough to hide the entire communication



81

Speedups

32

64

128

256

512

1024

2048

4096

8192

32 64 128 256 512 1024 2048 4096 8192

Sp
ee

d
u

p

Number of cores

Linear
allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

32

64

128

256

512

1024

2048

4096

8192

32 64 128 256 512 1024 2048 4096 8192

Sp
ee

d
u

p

Number of cores

Linear
allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

Figure 4.7. Strong scaling results for VGG-16 (left) and ResNet-50 (right)
models. The mini-batch size is 256. ‘allreduce’ is the traditional allreduce-
based data-parallelism and ‘pcnn’ is the proposed parallelization strategy.
The speedups are measured using up to 8192 cores.

End-to-end execution time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

512 1024 2048 4096 8192

En
d

-t
o

-e
n

d
 e

xe
cu

ti
o

n
 t

im
e 

(s
e

c)

Number of cores

allreduce_no_overlap allreduce

pcnn_no_overlap pcnn

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

512 1024 2048 4096 8192

En
d

-t
o

-e
n

d
 e

xe
cu

ti
o

n
 t

im
e 

(s
e

c)

Number of cores

allreduce_no_overlap allreduce

pcnn_no_overlap pcnn

Figure 4.8. End-to-end execution time for processing a single mini-batch.
VGG-16 (left) and ResNet-50 (right). The mini-batch size is 256. The
results show that ‘pcnn’ outperforms the other approaches.

time, the next computation time should wait for the communication to be finished. We

define this delay as ‘measurable communication time’. To evaluate the degree of overlap,



82

Measurable Communication Times

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256 512 1024 2048 4096 8192

M
ea

su
ra

b
le

 c
o

m
m

u
n

ic
at

io
n

 t
im

e 
(s

ec
)

Number of cores

allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

64 128 256 512 1024 2048 4096 8192

M
ea

su
ra

b
le

 c
o

m
m

u
n

ic
at

io
n

 t
im

e 
(s

ec
)

Number of cores

allreduce_no_overlap
allreduce
pcnn_no_overlap
pcnn

Figure 4.9. Measurable communication time comparison. VGG-16 (left)
and ResNet-50 (right). The mini-batch size is 256. If the communica-
tion time is entirely overlapped with the computation time, the measurable
communication time would be zero. ‘pcnn’ always shows lower measurable
communication time than that of ‘allreduce’.

we compare the measurable communication time at each layer among different paralleliza-

tion strategies. We have the same four parallelization strategies: ‘allreduce no overlap’,

‘allreduce’, ‘pcnn no overlap’, and ‘pcnn’.

Figure 4.9 shows the measurable communication times in VGG-16 training (left) and

ResNet-50 training (right). On both charts, we clearly see that the measurable communi-

cation time is reduced by the overlapping. In VGG-16 training, the overall communication

time is considerably reduced by our gradient averaging method at the fully-connected lay-

ers and the degree of overlap is also affected by the reduced communication time. ‘pcnn’

starts to have non-zero measurable communication time on 2048 cores while ‘allreduce’

does on 512 cores. In ResNet-50 training, the measurable communication time of ‘pcnn’

is almost zero on 2048 cores, which means that a linear speedup can be expected. In



83

Figure 4.7, on the right chart, ‘pcnn’ achieves a linear speedup on 2048 cores. In con-

trast, ‘allreduce’ has non-zero measurable communication time on 1024 cores. This result

demonstrates that our proposed methods effectively improve the degree of overlap.

4.6. Discussion

Impact on Different Types of CNNs – Depending on the type of neural network

and the model architecture, our proposed algorithms can affect the scalability differently.

First, the proposed gradient computation algorithm provides a cheaper communication

cost at fully-connected layers compared to the allreduce-based approach. Thus, if a model

has many fully-connected layers, more performance improvement can be expected. In this

research work, we used a regular CNN (VGG-16) as well as a residual network (ResNet-

50). In practice, compared to the regular CNNs, the residual networks likely have fewer

fully-connected layers. In Figure 4.7, VGG-16 shows a clearer speedup difference between

‘pcnn’ and ‘ allreduce’ than ResNet-50. Second, the overlapping strategy we proposed

hides the communications behind not only the backward computations but also the for-

ward computations at the next iteration. If a model has a higher ratio of computation

to communication, more communication time can be overlapped, and a higher speedup

would be achieved. In Figure 4.9, ResNet-50 shows a larger difference of measurable com-

munication time between ‘pcnn’ and ‘pcnn no overlap’ than VGG-16. Due to the dense

residual connections in ResNet-50, the ratio of computation to communication is much

higher than that of VGG-16, and it results in achieving a higher degree of overlap.

Large-Batch Training – As briefly introduced in Section 2.1, several techniques

for large-batch training [50, 47] have been proposed recently. The techniques enable



84

to increase the mini-batch size achieving a higher speedup of parallel training. Given

a fixed number of training samples, the large mini-batch size reduces the number of

iterations to process the entire training dataset (epoch). Therefore, the overall number

of communications at each epoch is reduced, which results in achieving better scalability.

Unfortunately, the increased batch size does not affect the communication cost per

iteration. Synchronous parallel training algorithm computes the gradients with respect to

the entire model parameters and averages them across all the workers at every iteration.

Therefore, the overall communication cost is always the same regardless of the batch size.

It is worth noting that our communication-efficient gradient computation algorithm

and the existing large-batch training techniques tackle different problems. Our proposed

algorithms address the expensive per-iteration communication cost issue while the large-

batch training techniques aim to reduce the overall number of communications per epoch.

If Inequality 4.8 is satisfied, the proposed gradient computation algorithm guarantees

the lower communication cost at fully-connected layers than that of the allreduce-based

approach. Therefore, we can consider these two approaches as orthogonal solutions for

improving the scalability of parallel neural network training. In addition, our overlapping

strategy will further improve the scalability regardless of the mini-batch size. Since the

large mini-batch size raises up the ratio of computation to communication, a higher degree

of overlap can be expected.

Another critical drawback of large-batch training is the extremely large memory foot-

print. As the batch size increases, more intermediate data such as activations, errors, and

gradients should be located in the memory space. Therefore, the entire memory footprint

rapidly grows as the batch size increases making it less practical. Recently, it is common



85

to use GPU systems for large-scale deep learning applications. Considering the limited

memory space of GPUs, increasing the batch size may cause the out of memory issue for

large networks. Our proposed communication-efficient gradient computation algorithm

improves the scalability without affecting the memory footprint. Therefore, we propose

to use a moderate batch size that makes a good trade-off between the memory foot-

print and the degree of parallelism, and then employ the proposed gradient computation

algorithm to achieve the best speedup of synchronous parallel neural network training.



86

CHAPTER 5

Adaptive Batch Size Adjustment Method for Scalable Deep

Learning

Deep learning has provided the state-of-the-art solutions to a variety of real-world

problems. While users enjoy its success, training deep neural networks is, in fact, an

extremely compute intensive task that can take hours or even days to complete. Consid-

ering the ever-increasing size of available training data, efficient parallelization is crucial

to finish the training in a reasonable amount of time. In data parallel synchronous SGD,

each mini-batch is evenly distributed to all workers and concurrently processed. This

parallelization strategy exhibits a strong data dependency between any two consecutive

iterations, i.e. iteration (i+ 1) cannot proceed before the completion of iteration i. With-

out the possible cross-iteration concurrency, the degree of parallelism is limited by the

number of data samples in a mini-batch. Thus, increasing mini-batch size becomes an

intuitive approach to employ more workers in the hope of reducing execution time.

Several recent parallelization works presented performance results scalable up to thou-

sands of nodes using extremely large mini-batch sizes such as 8K or 16K [25, 23, 42, 24].

However, most of them also acknowledged that using large batch sizes can result in achiev-

ing a lower validation accuracy. The impact of batch sizes on the accuracy has been

statistically analyzed in [75, 46, 76]. Figure 5.1 illustrates such impact using an exam-

ple of an EDSR [35] training on the DIV2K super-resolution image dataset [77]. Each



87

26.00

27.00

28.00

29.00

30.00

31.00

32.00

33.00

34.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

B=16, μ=0.0001 (1020 epochs) B=32, μ=0.0002 (1130 epochs)

B=64, μ=0.0004 (1130 epochs) B=128, μ=0.0008 (1190 epochs)

B=256, μ=0.0016 (1340 epochs)

Figure 5.1. Learning curves for EDSR training on DIV2K dataset. B is the
mini-batch size, µ is the learning rate, and the numbers shown in brackets
are the number of epochs till model converged. The training terminates
when the validation accuracy has not increased for 50 consecutive epochs.
Batch sizes larger than 64 result in significantly lower accuracy.

learning curve corresponds to mini-batch sizes, ranging from 16 to 256 images. When

the batch size increases, the training converges more slowly (in the number of epochs)

and achieves a lower validation accuracy. Such similar trends of learning curves are also

shown in [50, 47, 23, 46, 78, 76, 48]. Owing to this observation, we argue two evalu-

ation principles below in order to ensure a fair performance comparison among different

neural network training methods.

• Timing comparison is only fair among methods that produce the same model

accuracy or within a small, tolerable margin.

• The training time should be measured from the beginning until the accuracy

converges to a stable value.



88

The former argues a fair comparison under the condition of the same input and output.

As shown in Figure 5.1, B = 128 and B = 256 give much lower accuracy than smaller

B values. Models produced with a lower accuracy are usually regarded of no use to

domain scientists. The latter describes the unique characteristics of neural networks

whose training process is not considered completed until the convergence condition is

met. This argument stems from our study of recent parallelization works that measured

the time up to a fixed number of epochs to represent the performance of a training method

when calculating the speedups and comparing against other methods. In this study, we

present our experimental results and analysis by following the above two principles.

We propose a parallel CNN training strategy that adjusts the mini-batch size during

the training. The common practice of neural network training is to tune the mini-batch

size to a small value that produces the best accuracy. Especially for image restoration or

super-resolution problems, the mini-batch size is typically tuned to a small value between

16 ∼ 64 [79, 80, 81, 82, 34, 83, 35], which is too small to effectively scale up the

parallel training. Our goal is to improve the degree of parallelism without a significant

loss in validation accuracy. In our design, the training begins with a small batch size

and it gradually increases. To increase the batch size without affecting the gradient noise

scale, we also adjust the learning rate as the batch size increases. The interval of batch

size increase is adaptively determined based on the ratio of cost reduction to the distance

between the initial parameters and the latest ones. We also propose to dramatically

lower the learning rate when the training cost is flattened, to keep the generalization

performance from being degraded.



89

Besides adjusting the mini-batch size and learning rate, our parallelization strategy

also focuses on the overlapping of communication and computation. In data parallel

training, the locally computed gradients are averaged among all workers before updating

the parameters. We implement the averaging with MPI all-to-all personalized communi-

cation followed by a local summation and an MPI allgather communication. By having

two separate communications, not only the backpropagation computations but also the

feed-forward computations at the next iteration can overlap the communications.

5.1. Adaptive Batch Size Adjustment Method

In this section, we discuss the problems in large batch training and our solutions to

them. We begin with describing the impact of the large batch size on the training result as

well as the potential problems. Then, we present our training strategy which addresses the

described problems by adaptively adjusting the batch size and learning rate at run-time.

5.1.1. Impact of Batch Size on Model Accuracy

In this research work, we consider minimization problems of the form

(5.1) F (w) =
1

N

N∑
i=1

f(w, xi),

where N is the number of training samples, w is the model parameters, xi is the ith

training sample, and f is the cost function of w and x.

Mini-batch SGD computes the gradients from a random subset of training samples

(which is called mini-batch). The stochastic gradients can be considered as a random

variable with mean of ∇F (w). Based on Central Limit Theorem, the variance of the



90

random variable is inversely proportional to the mini-batch size [53]. If the variance is

large, the gradients can be considered as noisy. Smith et al. analyzed the impact of

the batch size on the gradient noise scale [75]. The noise scale describes the correlation

between the batch size and the random fluctuation of SGD dynamics. For SGD, the noise

scale is approximated by the following equation under the assumption of N � B.

(5.2) g ≈ µ
N

B

This analysis shows that, when using a large batch size, the learning rate should be

proportionally increased to make the noise scale stay the same. The experimental results

reported in [75] demonstrate that this analysis can be applied to variants of SGD such as

momentum SGD and Adam [32]. Goyal et al. proposed ‘linear scaling rule’ in [50] that

can be explained by this analysis. The authors empirically showed that large batch sizes

can be used for ImageNet classification without losing the accuracy when the learning rate

is proportionally increased. Hoffer et al. proposed ‘root scaling rule’ in [48]. The authors

proved that the variance of the stochastic gradients is proportional to µ2

B
. Their statistical

analysis is that the variance can stay the same when the learning rate is proportional to

the square root of the batch size increase as follows.

(5.3) µ ∝
√
B

B0

,

where B0 is the best-tuned small batch size and B is the increased batch size. Recall

that the stochastic gradient is considered as a random variable with mean of ∇F (w). By

making the variance stay the same, one can expect a similar convergence rate.



91

Although these two works have derived different update rules, they provide a common

insight that the reduced noise scale with an increased batch size can be compensated

by increasing the learning rate. In practice, the gradients should be sufficiently noisy to

achieve a good accuracy [53, 75, 46]. Especially, in non-convex problems such as neural

network training, the noisy gradients help the model avoid falling into a sharp minima

which poorly generalizes to the test dataset.

5.1.2. Impact of Batch Size on Parallel Performance

When using the data parallelism strategy, the degree of parallelism depends on the prob-

lem size that can be partitioned among all the available processes. In the case of CNN

training, it is the mini-batch size, as the minimum indivisible unit of workload that can be

assigned to a process is a single training sample. Data parallelism partitions the samples

in each mini-batch evenly among all the processes. The highest degree of parallelism is

thus B. Therefore, larger mini-batch size enables a parallel algorithm to run on more

processes.

Using a large batch size can also reduce the communication cost per epoch. Recall the

communication for each batch is to average the gradients across all the processes. Given

a network, the number of model parameters is independent from the batch size. In other

words, the communication amount for averaging the gradients is not affected by the batch

size. However, the number of communications is equal to the number of mini-batches in

each epoch, N/B. Increasing the value B effectively reduces the value of N/B.

In terms of computation, the amount of parameter updates per epoch iteration is

also reduced when using a large batch size. Given N training samples, the number of



92

parameter updates per epoch is N
B

, where B is the batch size. Since each parameter

update takes the same amount of computation, increasing B proportionally reduces the

number of updates.

5.1.3. Problems in Training with Large Batch Size

In this research work, we focus on two problems that can be observed in large batch

training.

• The training cost F (w) is not effectively reduced yielding a poor convergence

accuracy.

• The model easily loses generalization performance.

First, the large batch size causes a low variance of the stochastic gradients and SGD

quickly converges providing a low convergence accuracy. This problem can be alleviated

with warm-up techniques such that the training starts with a small learning rate and

then increases it after a pre-defined number of epochs. However, if the batch size is

larger than a certain problem-dependent threshold, the cost is still not effectively reduced

[50, 47]. Second, it is already known that large batch sizes can make the model lose

the generalization performance [46, 78]. In other words, the large batch training tends

to over-fit the model so that the cost function is well minimized while providing a low

validation accuracy.

We address these two problems by adjusting hyper-parameters during training. In the

following subsections, we discuss how to address the described problems with adaptive

batch size and learning rate control methods.



93

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

θ

Number of epochs

b=128

b=512

b=2048

0.00

0.50

1.00

1.50

2.00

2.50
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Tr
ai

n
in

g 
co

st
 (

so
ft

m
ax

)

Number of epochs

b=128, validation acc=91.51%

b=512, validation acc=91.15%

b=2048, validation acc= 41.74%

Figure 5.2. The training cost curves (left) and θ curves (right) for ResNet20
training on CIFAR10 datasets. All three batch sizes achieve almost the
same training cost after 140 epochs. However, higher the θ curve, lower the
validation accuracy. This result demonstrates that θ roughly shows how
sharp the minimizer is. Note that the high θ at the beginning of ‘b=2048’
curve is due to the learning rate warmup.

5.1.4. Adaptive Batch Size Control

The main idea of our training strategy is to begin the training with a small batch size Bs

and gradually increase the batch size during the training. As the batch size increases, we

also increase the learning rate at run-time to minimize the impact of the increased batch

size on the gradient noise scale. The batch size and learning rate are adjusted after every

K epochs until the batch size reaches the maximum size Bm.

The small batch size at the early training epochs helps rapidly lower the training cost.

So, K should be sufficiently large to effectively minimize the cost function. On the other

hand, a large K indicates that the degree of parallelism is limited for more epochs due

to the slow batch size increase. Our training algorithm aims to find the smallest K that

effectively reduces the training cost.



94

We define a practical metric θ for estimating the sharpness of the minimizer.

(5.4) θi =
F (w0)− F (wi)

‖w0 − wi‖
,

where w0 is the initial parameters. This metric shows the ratio of the cost reduction to the

distance between the initial parameters and the latest ones. We can roughly estimate how

sharp the current minimizer is by checking θ. Given a training cost F (wi), lower θ means

the parameters have more moved to achieve the same cost reduction. Figure 5.2 shows

the training cost curves (left) and the θ curves (right) of ResNet-20 training on CIFAR10

dataset with varying batch sizes. Even though all the batch sizes achieve almost the same

training cost after 140 epochs, the validation accuracy varies significantly. We clearly see

that higher the θ curve, lower the validation accuracy. This result demonstrates that θ

can be considered as an indirect metric for measuring the sharpness of the minimizer.

We increase the batch size after the θ curve peaks so that the cost is sufficiently

reduced before the batch size starts to increase. For example, in Figure 5.2, the batch size

of 128 shows the peak θ at 5th epoch. So, we set K = 5 so that the batch size increases

after every 5 epochs. We also see that the θ curve for a large batch size peaks later than

that of the smaller batch sizes. So, by increasing the batch size gradually after every K

epochs, we can expect the batch size increases after the θ curve of each batch size has

already peaked. Such careful adjustments also help avoid the cost fluctuation caused by

the increased learning rate.

Algorithm 3 is a CNN training algorithm with the proposed adaptive batch size

method. The algorithm iteratively traverses over all the training samples until the stop

condition is satisfied. Typically, the training stops when either the parameters are not



95

Algorithm 3 SGD with Increasing Batch Size. (E: the number of epochs, N : the
number of training samples, w0: initial model parameters, µ0: initial learning rate, Bs:
the starting batch size, Bm: the maximum batch size, f : the cost function)

1: w ← w0, B ← Bs, µ← µ0, n← 1, K ←∞
2: while stop condition is not met do
3: for i← 1 · · · N

B
do

4: B ← ith mini-batch of size B.
5: ∇w ← Compute Gradient(f , B, w).
6: Update w using ∇w.

7: if K is ∞ then
8: Compute θ using Eq. 5.4.
9: if θ is not changed more than 10%, then
10: K ← n.
11: if (n mod K) = 0 and B < Bm then
12: Increase both batch size B and learning rate µ

13: Increment n by 1

further adjusted due to the small gradients or a target accuracy is achieved. For each

mini-batch B, the gradients of a cost function f are computed with respect to the param-

eters at line 5. The parameters are updated using the averaged gradients at line 6. The

θ is monitored and K is determined when θ starts to be saturated at line 7 ∼ 10. In this

study, we consider θ is saturated if it is changed less than 10%.

When increasing the batch size and learning rate at line 12, based on the statistical

analysis in [75], we adjust the batch size and learning rate together with a same factor to

make the gradient noise scale stay the same. To force the convergence of SGD, we lower

the gradient noise scale by decaying the learning rate once the training cost is saturated.

The batch size can be increased to a certain problem-dependent threshold without

affecting the accuracy [46, 50]. For example, it has been shown that, the batch size for

ImageNet classification can be increased to 4096 ∼ 8192 without affecting the accuracy

[50]. We call this batch size ‘maximum stable batch size’. By setting Bs to the maximum



96

stable batch size, we can significantly improve the degree of parallelism. In practice, the

maximum stable batch size can be easily found by comparing l2-norm of the gradients

among batch sizes. A sufficient condition for gradients to be a descent direction with

respect to the parameters is as follows [53].

‖∇w −∇F (w)‖ < ‖∇w‖

Note that the expected value of the left-hand side of the above inequality is the variance

of the gradients [46]. Assuming the above condition is satisfied at most of the iterations,

if two batch sizes give a similar l2-norm of the averaged gradients, it implies they have a

similar maximum allowed variance of the gradients and they likely have a similar conver-

gence property. In the later discussion, we assume Bs is set to the maximum stable batch

size found by the described method.

5.1.5. Adaptive Learning Rate Control

In Algorithm 3, the batch size increases to Bm most likely before the training loss is

saturated. If the cost is minimized using such a large batch size, the model is easily

attracted to a sharp minimizer. The generalization problem of large batch training has

been already observed in many previous works [48, 46, 78].

To alleviate such effect, we intentionally lower the cost reduction speed after the first

training cost saturation by dramatically lowering the learning rate. Once the training

cost is saturated, one can decay the learning rate to further lower the cost. The decayed

learning rate enables to fine-tune the parameters rather than exploring the parameter

space, so that it further lowers the training cost and ends up converging into a minima.

We consider step-wise learning rate decay with a decay factor β. Once the training cost



97

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

1
0

2

1
0

5

1
0

8

1
1

1

1
1

4

1
1

7

1
2

0

1
2

3

1
2

6

1
2

9

1
3

2

1
3

5

1
3

8

θ

Number of epochs

b=128

b=512

b=2048

adaptive (128 ~ 2048)

Figure 5.3. The ratio of cost reduction to the distance between the ini-
tial parameters and the current ones, θ, for ResNet20 training on Cifar10
datasets. The proposed adaptive learning rate method keeps θ curve from
being increased after the first learning rate decay step at 80th epoch.

is saturated, we scale down the learning rate to the initial learning rate µ0 first and then

multiply it by β. So, the effective learning rate decay factor becomes Bs

Bm
β for the first

decay step. For the later decay steps, we use the fixed decay factor β only.

When the learning rate decays, as shown in Equation 5.2, we can expect a faster

convergence rate due to the lower noise scale of the gradients. In our training algorithm,

since the batch size has been increased to Bm, the variance of the gradients is lower

than that of the small batch training. So, the model will rapidly converge to a minima

which has a poor training cost. However, we found that such fast convergence enables

to maintain the generalization performance even using the large batch size. Figure 5.3

shows the θ curves for ResNet-20 training on Cifar10 dataset after the first saturation of

training cost. We see that θ of our proposed method does not significantly increase after

the first learning rate decay step, while the other curves commonly increase. Note that



98

our proposed method achieves 90.78% validation accuracy using up to 2048 batch size

while the traditional SGD with the same batch size achieves 46.29% after 140 epochs.

5.2. Parallel Training with Adaptive Batch Size

Our design is based on the data parallelism that distributes data among processes

while keeping the model parameters duplicated. Since the minimum, indivisible data

unit that can be assigned to each process is a training sample, for instance an image, we

distribute the samples in each mini-batch evenly among all the processes. In this case,

the maximum number of processes that can participate in the training is bounded by the

number of samples in each mini-batch.

5.2.1. Data Parallelism with Increasing Batch Size

Our proposed training algorithm increases the batch size during the training. There

are two possible design choices of parallelization. The first is to employ the number of

processes equal to Bs, the starting batch size, so that the number of local training samples

per iteration increases as the batch size increases. In this way, the number of inter-process

communications for averaging gradients per epoch decreases and it ends up having a higher

scaling efficiency. The second option is to start the training with Bs active processes and

increase the number of processes as the batch size increases. This design choice exploits

the improved degree of parallelism. In this work, we chose the second option to employ

as many workers as possible and focus on improving the scaling efficiency by overlapping

the communications with the computations.



99

5.2.2. Overlap of Communication and Computation

In data parallel training, at the end of each iteration, the local gradients are averaged

across all processes so that the model parameters are consistent before entering the next

iteration. Intuitively, the communication for such task can be simply implemented by an

MPI allreduce with the sum reduction operator. Many existing parallelizations adopt this

approach [42, 25, 23, 24, 50]. However, by breaking MPI allreduce into MPI all-to-all

and allgather, we can achieve a better overlapping effect for averaging the gradients.

We divide the gradient averaging operations among processes, so they can be per-

formed in parallel. In other words, each process is responsible to calculate the averages

for 1/P of gradients. The local gradients are first redistributed among processes using

an MPI all-to-all communication, so each process ends up receiving P subsets of local

gradients of size G
P

each, where G is the number of gradients in the layer and P is the

number of processes. Once the remote gradients are received, the P gradient subsets are

element-wisely averaged into a global gradient subset of size G
P

. The updated gradients

are then distributed among all the processes using an MPI allgather communication. At

the end, all processes obtain the same globally averaged gradients.

Breaking the allreduce into an all-to-all and an allgather has the following advantages.

For a given layer k, its all-to-all can be overlapped with the computation on calculating

gradients for layers (k − 1) · · · 1 in the back-propagation phase. Once the gradient sum

for layer k is computed, an allgather is initiated, which can overlap with the computation

of activations for layers 1 · · · (k − 1) in the feed-forward phase of the next iteration. The

allgather also can overlap with the gradient summation for layers (k + 1) · · ·L, where L

is the number of layers in the network. Because the number of gradients is usually large



100

for deep CNNs, the cost of element-wise summation is significant enough to provide more

room for communication overlap. In addition, our implementation uses the MPI-OpenMP

programming model such that each MPI process parallelizes computations using OpenMP

within a node. So, our approach enables the gradient summation to employ more compute

cores available in each node. If the MPI allreduce approach were used, the gradients would

be summed by the MPI process on a single core, losing the advantage of OpenMP multi-

threading.

5.2.3. Multi-threading Implementation

We allocate one MPI process per compute node and use OpenMP on each process to

utilize all the compute cores available in a node. For the matrix operations, we use

Intel MKL library which efficiently utilizes KNL cores. We employ a POSIX thread

per compute node to handle all the MPI communication calls. By making MPI calls in

the communication-dedicated thread, we explicitly forces the overlap of the computation

and the communication. The communication thread makes blocking MPI communication

function calls. MPI standard defines the progress rule for asynchronous communications,

but MPI implementation is free to choose whether to delay the operations till the complete

functions, such as MPI Wait and MPI Test [84, 85, 86]. In some MPI implementations,

we found that their asynchronous communications start only when MPI Wait or MPI Test

is called. Due to this finding, we chose to use a communication-dedicated thread over

asynchronous MPI communications.

For multi-threading management, we use POSIX thread utilities for communication

between the main and communication threads. Once the gradients are computed at each



101

layer, the main thread registers a communication request to a shared queue and sends a

signal to the communication thread. Then, the communication thread receives the signal

and picks a request in a first-come-first-served manner to perform the communication.

Once the communication completes, the communication thread sends back a signal to

the main thread to notify that the requested communication is finished. This mechanism

is implemented using a pthread conditional variable and a pthread mutex. Note that

contention to the mutex lock may only occur between the main and communication thread,

without any OpenMP threads involved. To avoid the context switching and possible cold

cache for the communication thread, we pin the communication thread on a physical core

to prevent it from migrating to a different core.

5.3. Related Works

Recently, a few studies have shown that a large batch size can be used for classification

tasks without much loss in accuracy [50, 47, 23, 24]. Layer-wise Adaptive Rate Scaling

(LARS) proposed in [47] adjusts the learning rate in a layer-wise way based on the

magnitude of the gradients. Our proposed training strategy can be applied to the training

with LARS independently. In [47], the authors proposed a parameter update rule based

on momentum SGD. Our proposed method does not affect the parameter update rule. By

applying LARS at line 6 in Algorithm 3, our training strategy and LARS can be employed

together without affecting each other. Therefore, when the training with LARS yields a

low accuracy because of the batch size larger than the problem-dependent threshold, our

proposed method can be employed and a higher accuracy can be expected.



102

Adaptive batch size approaches have also been proposed in [53, 75, 78]. However,

these adaptive batch methods commonly control the gradient noise scale by adjusting

batch size. In other words, the small batch size should be used for a sufficient number of

epochs to produce a good accuracy and it significantly lowers the degree of parallelism.

In [54], the authors adjust the batch size and learning rate together to increase the batch

size without accuracy loss. However, their approach adjusts them based on a pre-defined

schedule which should be tuned by users, making it less practical.

5.4. Performance Evaluation

We evaluate the proposed parallel neural network training strategy using two image

regression applications and a popular classification benchmark. We use EDSR [35] for

image super-resolution with DIV2K [77] dataset and image restoration with Phantom

[87] dataset. DIV2K is dataset from NTIRE2017 Super-Resolution Challenge [77], which

contains 800 high-quality 2K resolution pictures. Phantom is a randomized version of the

classical Shepp-Logan phantom [87], where orientation, shape and size of each of the ten

ellipsoids are randomized. Phantom has 1600 training images and the size of each image

is 256 × 256. For classification experiments, we use ResNet20 [33] and Cifar10 dataset.

CIFAR10 has 50,000 3-channel training images and each image size is 32× 32.

Our experiments were carried out on Cori, a Cray XC40 supercomputer at National

Energy Research Scientific Computing Center (NERSC). Each compute node contains an

Intel Xeon Phi Processor 7250 that has 68 cores with support for 4 hardware threads

each (maximum 272 threads per node). AVX-512 vector pipelines with a hardware vector



103

length of 512 bits are available at each node. The system has the Cray Aries high-speed

interconnections with ‘dragonfly’ topology.

We compare the performance of our proposed training algorithm with three different

training methods. First, we compare our training algorithm with the best-tuned fixed

batch size training. Second, as a representative fixed large batch size method, we compare

our training algorithm with the linear scaling rule in [50]. Finally, we also compare with

the adaptive batch size approach proposed in [75, 54]. The authors in [75] proposed to

swap the learning rate decay schedule and the batch size schedule. Similarly, the authors

in [54] used a pre-defined schedule for increasing the batch size.

5.4.1. Image Regression Experiments

Super-resolution is one of the classic computer vision problems, which aims to recover

high-resolution images from low-resolution images [79, 80, 81, 82]. Recently, many

CNNs have been designed for super-resolution, such as VDSR [34], DRRN [83], and

EDSR [35]. Image restoration is another representative image regression problem which

aims to recover original images from noisy images. Many existing works use CNNs for

image denoising or compression artifact removal [79, 80, 81, 82]. As we mentioned

earlier, these applications typically use a small batch size between 16 ∼ 64 that gives

the best accuracy. So, considering the ever-increasing available data size, it is crucial to

improve the degree of parallelism by enabling the large batch size without a significant

loss in accuracy.

We compare the proposed training algorithm with the same three other training meth-

ods. Table 5.1 and Table 5.2 show the training configurations for super-resolution and



104

Table 5.1. Training configurations for DIV2K training

configurations batch size (b) learning rate (µ) warmup

best batch size 16 0.0001 -

linear scaling rule 256 0.0016 gradual (5 epochs)

fixed µ, adaptive b 64 ∼ 256 0.0004 ∼ 0.0016 -

Proposed method 64 ∼ 256 0.0004 ∼ 0.0016 -

Table 5.2. Training configurations for Phantom training

configurations batch size (b) learning rate (µ) warmup

best batch size 16 0.0001 -

linear scaling rule 128 0.0008 gradual (5 epochs)

fixed µ, adaptive b 32 ∼ 128 0.0002 ∼ 0.0008 -

Proposed method 32 ∼ 128 0.0002 ∼ 0.0008 -

image restoration experiments, respectively. We use Adam for both applications. All the

hyper-parameters were set to the same values as used in [35]. We use Peak Signal-to-

Noise Ratio (PSNR) as the accuracy metric. PSNR measures the degree of similarity of

the estimated image to the original image.

When adjusting the batch size and the learning rate in Algorithm 3 at line 12, we

double them together after every K epochs because such slow increment prevents the

training from diverging. Note that different increasing factors can be applied to the batch

size and the learning rate such as root scaling rule depending on the problem.

For the super-resolution experiments, we randomly extract a 48× 48 patch from each

training image to generate mini-batches. The stop condition of the training is when the

validation PSNR is not increased more than 0.1 dB for 50 consecutive epochs. The left

chart in Figure 5.6 shows the DIV2K θ curve in the first 15 epochs. The θ peaks between

9th ∼ 10th epoch. We use K = 10 for our proposed adaptive batch size method. We also

set Bs = 64 since the batch size larger than 64 shows a significantly lower l2-norm. The

number of DIV2K training images is 800 and 256 is the maximum power of 2 which allows

more than one parameter update per epoch. So, we set Bm = 256.



105

23.00

25.00

27.00

29.00

31.00

33.00

35.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

Fixed best batch size (B=16, μ=0.0001, 1020 epochs)
Fixed large batch size (B=256, μ=0.0016, 1340 epochs)
Fixed learning rate (B=64, 128, 256, μ=0.0004, 1100 epochs)
Proposed (Bs=64, Bm=256, K=10, 1140 epochs)

Figure 5.4. Comparison of learning curves of EDSR training on DIV2K
dataset among various training strategies. The proposed training method
achieves an accuracy almost the same as that of the best-tuned fixed-size
method.

33.00

38.00

43.00

48.00

53.00

58.00

1
0

7
0

1
3

0

1
9

0

2
5

0

3
1

0

3
7

0

4
3

0

4
9

0

5
5

0

6
1

0

6
7

0

7
3

0

7
9

0

8
5

0

9
1

0

9
7

0

1
0

3
0

1
0

9
0

1
1

5
0

1
2

1
0

1
2

7
0

1
3

3
0

1
3

9
0

1
4

5
0

V
al

id
at

io
n

 P
SN

R
 (

d
B

)

Number of epochs

Fixed best batch size (B=16, μ=0.0001, 930 epochs)
Fixed large batch size (B=128, μ=0.0008, 1390 epohs)
Fixed learning rate (B=32, 64, 128, μ=0.0002, 1270 epohs)
Proposed (Bs=32, Bm=128, K=60, 1130 epochs)

Figure 5.5. Comparison of learning curves of EDSR training on Phantom
dataset among various training strategies. The proposed training method
achieves an accuracy comparable to the best-tuned fixed-size method, i.e.
using B = 16.



106

Figure 5.4 compares the DIV2K learning curves among the four training methods

whose configurations are given in Table 5.1. The training with our method converges in

1100 epochs achieving a PSNR of 33.49 dB. The fixed best batch size training converges

in 1020 epochs and achieves a PSNR of 33.59 dB while the large batch size training with

linear scaling rule converges in 1340 epochs achieving a PSNR of 31.35 dB. The adaptive

batch method with a fixed learning rate converges in 1140 epochs achieving a PSNR of

33.51 dB. Note that we calculate 1-crop validation PSNR during the training due to the

significant evaluation time. So, the results can be slightly different from reported in [35].

For image restoration experiments, we use a modified EDSR which has 16 residual

blocks and 32 × 32 input data size. Figure 5.5 compares Phantom dataset validation

accuracy among all the training methods whose configurations are given in Table 5.2.

We found that the maximum stable batch size, Bs for Phantom is 32. The right chart

in Figure 5.6 shows that θ peaks between 55th ∼ 65th epoch (K = 60). Note that the

training with the linear scaling rule failed to converge in a reasonable number of epochs

when the batch size is larger than 128. So, to compare with other methods, we also set

Bm = 128.

Our training strategy achieves a PSNR of 52.47 dB in 1130 epochs. The best-tuned

batch size training converges in 930 epochs achieving a PSNR of 52.47 dB and the large

batch size training with linear scaling rule converges in 1390 epochs achieving a PSNR of

49.84 dB. The adaptive batch size with a fixed learning rate training achieves a PSNR of

52.51 dB in 1270 epochs. In both super-resolution and image restoration experiments, our

proposed training strategy provides a comparable convergence accuracy to the best-tuned

batch size training. The performance results demonstrate that the proposed adaptive



107

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ

Number of epochs

B=16
B=32
B=64
B=128
B=256

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10 20 30 40 50 60 70 80 90 100

θ

Number of epochs

B=16
B=32
B=64
B=128
B=256

Figure 5.6. The θ curves with varying batch sizes for EDSR training
on DIV2K (left) and a variant of EDSR training on Phantom (right). For
DIV2K, we chose Bs = 64 and its θ peaks at 9th ∼ 10th epoch. For Phantom,
we chose Bs = 32 and its θ peaks at 55th ∼ 65th epoch.

batch size and learning rate method allows to use a large batch size for as many epochs

as possible without a significant loss in generalization performance.

We also present the strong scaling performance to verify the effectiveness of the pro-

posed methods. Note that we do not compare the performance against linear scaling rule

methods, as they yield a significantly lower accuracy. We consider a direct comparison

as unfair between two methods that produce a significantly different accuracy. Figure 5.7

shows the end-to-end training time (left) and the speedup (right) of EDSR training on

DIV2K dataset. The best batch size training achieves a speedup of 9.54 using 16 nodes.

The adaptive batch size with a fixed learning rate achieves a speedup of 71.40 using up

to 256 nodes. Our proposed method achieves a maximum of speedup 81.71 and can run

on up to 256 nodes. Figure 5.8 shows the performance of the modified version of EDSR

training on Phantom dataset. The best batch size training achieves a speedup of 5.64

using 16 nodes. The adaptive batch size with a fixed learning rate achieves a speedup



108

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
Tr

ai
n

in
g 

ti
m

e 
(h

o
u

rs
)

Number of nodes (cores)

Fixed batch size
(B=16)

Proposed method
(Bs=64, Bm=256, K=10)

Fixed learning rate
(B=64, 128, 256)

1

2

4

8

16

32

64

128

256

Sp
ee

d
u

p

Number of nodes (cores)

Linear

Fixed batch size
(B=16)
Proposed method
(Bs=64, Bm=256, K=10)
Fixed learning rate
(B=64, 128, 256)

Figure 5.7. Strong scaling of EDSR training on DIV2K dataset: end-to-
end training time (left) and speedup (right). We used Bs = 64, Bm = 256,
and K = 10. Our method can use more compute nodes beyond 16 and up
to 256, while ‘fixed best batch size’ method can only run up to 16 nodes,
limited by the batch size of 16. ‘fixed learning rate’ has a longer execution
time than our method due to the long period of training with small batch
sizes. All the three approaches achieve a similar accuracy (33.59 dB / 33.49
dB / 33.51 dB).

of 30.79 using 128 nodes. Our proposed method achieves a maximum of speedup 42.96

using 128 nodes. The experimental results clearly show the advantage of being able to

increase the batch size. Compared to the adaptive batch size with a fixed learning rate

training, our method enables to use small batch sizes for fewer epochs, which results in

achieving a shorter training time as well as a higher speedup.

5.4.2. Performance Analysis

Communication Cost Analysis — The main reason for the speedup saturation is due

to the increasing ‘blocked’ time, as shown in Figure 5.9. In a typical strong scaling result,

the communication cost becomes higher and the per-process computation reduces, as the

number of processes increases. When the communication is not entirely overlapped with



109

0.0

2.0

4.0

6.0

8.0

10.0

12.0

8(544) 16(1088) 32(2176) 64(4352) 128(8704)

Tr
ai

n
in

g 
ti

m
e 

(h
o

u
rs

)

Number of cores

Fixed batch size
(B=16)

Proposed method
(Bs=32, Bm=128, K=60)

Fixed learning rate
(B=32, 64, 128)

1

2

4

8

16

32

64

128

Sp
ee

d
u

p

Number of nodes (cores)

Linear

Fixed batch size
(B=16)
Proposed method
(Bs=32, Bm=128, K=60)
Fixed learning rate
(B=32, 64, 128)

Figure 5.8. Strong scaling of EDSR training on Phantom dataset: end-to-
end training time (left) and speedup (right). For our proposed method, we
used Bs = 32, Bm = 128, and K = 60. Our method can use more compute
nodes beyond 16 and up to 128, while ‘fixed best batch size’ method can
only run on up to 16 nodes, limited by the batch size of 16. All the three
approaches achieve a similar accuracy (52.47 dB / 52.47 dB / 52.51 dB).

the computation, the main thread is blocked until the communication thread finishes the

transfer of data required by the main thread. For instance, when the number of processes

is 128, the communication time measured at the communication thread, ‘comm’, grows

to be similar to the main thread’s computation time and ‘blocked’ starts to become

significant. When the number of processes increases to 256, such effect becomes even

more significant.

Computation Cost Analysis — Another reason for the speedup saturation is that

the computation time is not linearly reduced as the number of processes increases. From

the right chart of Figure 5.9, we observe that the computation time (‘comp (B = Bm)’)

does not linearly decrease starting from 64 nodes. First, the gradient summation takes

a constant amount of time regardless of the number of processes. When averaging the



110

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25

0.5

1

2

4

8

16 (1088) 32 (2176) 64 (4352) 128 (8704) 256 (17408)

P
er

ce
n

ta
ge

 o
f 

co
m

p
 (

B
 <

 B
m

)

En
d

-t
o

-e
n

d
 t

ra
in

in
g 

ti
m

e 
(h

o
u

rs
)

Number of nodes (cores)

comp (B < Bm)

linear

measured computation time

0

1

2

3

4

5

6

7

16 (1088) 32 (2176) 64 (4352) 128 (8704) 256 (17408)

Ex
ec

u
ti

o
n

 t
im

e 
(h

o
u

rs
)

Number of nodes (cores)

comp (B < Bm)

comp (B = Bm)

comm

blocked

Figure 5.9. The left is the computation time of EDSR training and the
percentages of process underutilized time. The right is the training timing
breakdown. These results correspond to the training shown in Figure 5.7.

gradients, every process sums P gradient subsets and each is of size G
P

. Thus, the compu-

tation cost for the summation is constant regardless of the number of processes. As the

number of processes increases, this computation takes a larger portion of the total time.

Second, when the volume of data assigned on each process is not large enough, the kernel

operations, such as matrix multiplications, will not fully utilize the computation power.

For example, we found that the activation computation at a convolution layer of EDSR

for one sample takes ∼0.0026 seconds on a single KNL node while the same operation for

two samples takes only ∼0.0038 seconds. It indicates that the hardware is underutilized

when the workload is not sufficiently large, a well-known effect for KNL CPUs [88, 89].

Therefore, we suggest to assign each process at least two training samples per iteration.

Third, when the batch size is smaller than the number of processes, our method replicates

the training on P
B

process groups (or equivalently (P − B) number of processes sitting



111

idle). The left chart of Figure 5.9 also shows the percentage of computation time before

the training reaches Bm from the end-to-end training time.

5.4.3. Image Classification Experiments

To verify that the proposed training method generally works for various applications,

we also perform image classification experiments. We train ResNet20, one of the most

popular deep CNN models, on CIFAR10 dataset. Table 5.3 summarizes the training

configurations. We decay the learning rate after 80 and 120 epochs with a factor of

0.1. We found the maximum stable batch size for CIFAR10 is 256 (Bs = 256) and

set Bm = 2048 which is the largest power of 2 smaller than 5% of the entire training

samples. For the batch size of 256, θ peaks at 5th epoch as shown in Figure 5.2, so

we set K = 5. For the adaptive batch training with a fixed learning rate, we fixed the

learning rate to 0.2 and doubled the batch size from 256 after every 30 epochs so that the

batch size ends up reaching 2048. Figure 5.10 compare the training cost curves (left) and

the validation accuracy curves (right) among various training methods. Our algorithm

achieves a convergence accuracy which is < 1% lower than that of the best-tuned small

batch training (91.51% ± 0.3 and 90.79% ± 0.2). Both the fixed large batch training

and the adaptive batch training with a fixed learning rate effectively minimize the cost

function, however they significantly degrade the generalization performance.

The validation accuracy comparison in Figure 5.10 verifies that the proposed adaptive

batch size and learning rate control methods effectively increase the batch size without a

significant loss in accuracy for classification problems as well. Before the first learning rate

decay step, the learning curve fluctuates due to the increasing learning rate. However,



112

Table 5.3. Training configurations for CIFAR10 training

configurations batch size (b) learning rate (µ) warmup

best batch size 128 0.1 -

linear scaling rule 2048 1.6 gradual (5 epochs)

fixed µ, adaptive b 256 ∼ 2048 0.2 ∼ 1.6 -

Proposed method 256 ∼ 2048 0.2 ∼ 1.6 -

0.00

0.50

1.00

1.50

2.00

2.50

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Tr
ai

n
in

g 
lo

ss

Number of epochs

Fixed best batch size (b=128)

Fixed large batch size (b=2048)

Fixed learning rate (b=256 ~ 2048)

Proposed method (b=256 ~ 2048)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

V
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

Number of epochs

Fixed best batch size (b=128)
Fixed large batch size (b=2048)
Fixed learning rate (b=256 ~ 2048)
Proposed method (b=256 ~ 2048)

Figure 5.10. Training loss (left) and validation accuracy (right) comparison
for ResNet20 training on CIFAR10. The fixed large batch training and the
adaptive batch training with a fixed learning rate well minimize the training
loss while they significantly degrade the validation accuracy. Our proposed
method achieves a comparable accuracy to the best-tuned small batch train-
ing.

the validation accuracy increases dramatically after the learning rate is adjusted at 80th

epoch by the proposed method.

Figure 5.11 presents the strong scaling performance. We stopped scaling up when the

execution time increases. The training with the best-tuned batch size (128) achieves a

speedup of 3.49 only due to the high ratio of communication to computation. The adaptive

batch training with a fixed learning rate achieves the maximum speedup of 20.01 on 128

nodes. Our proposed method achieves a speedup of 64.64 using 256 nodes thanks to the

early increase of the batch size.



113

0.00

0.50

1.00

1.50

2.00

2.50

8 (544) 16
(1088)

32
(2176)

64
(4352)

128
(8704)

256
(17408)

Tr
ai

n
in

g 
ti

m
e 

(h
o

u
rs

)

Number of nodes (cores)

Fixed best batch size (B=128)

Proposed method (Bs=256, Bm=2048, K=5)

Fixed learning rate (B=256~2048, μ=0.2)

1

2

4

8

16

32

64

128

256

Sp
ee

d
u

p

Number of nodes (cores)

Linear
Fixed best batch size (B=128)
Proposed method (Bs=256, Bm=2048, K=5)
Fixed learning rate (B=256~2048, μ=0.2)

Figure 5.11. The end-to-end training time (left) of ResNet20 on CIFAR10
and speedup (right) comparison. We stopped scaling when the execution
time increased. The proposed method out performs the others with a large
margin.

5.5. Discussion

In this Chapter, we have discussed how to make a good trade-off between the degree of

parallelism and the convergence rate by adaptively adjusting the mini-batch size at run-

time. We have proposed a metric for estimating the sharpness of the model parameters,

and then designed an adaptive batch size adjustment method based on the proposed

estimator. Our experimental results demonstrate that the proposed adaptive batch size

training strategy effectively improves the degree of parallelism for both regression and

classification problems.

One interesting insight from this research work is that the parallel training method

should not consider the convergence rate of the training loss as the top-priority criterion.

Even if a training method provides a convergence rate faster than the other methods, if

the model provides a poor generalization performance, such a training method would be

considered of no use for researchers or practitioners. The major difference between our



114

adaptive batch size adjustment method and the existing adaptive methods is that ours

adjusts the batch size based on the estimated sharpness of the model while the others

focus on the theoretical convergence rate of the training loss.

Unfortunately, the relationship between the hyper-parameters and the generalization

performance of the model has not been well studied. Some researchers proposed a few

practical method to ‘predict’ the generalization performance of a model [90, 91, 92].

However, these works discussed how to evaluate the generalization performance of a given

model rather than how to improve the generalization performance during training. In

contrast, our study aims to achieve a good validation accuracy by adjusting the hyper-

parameters at run-time. The proposed distance metric enables to estimate the general-

ization performance of a model based on the external observations (loss value and the

distance between the initial model and the current model) rather than understanding

the internal behaviors of the network such as SGD dynamics or theoretical convergence

rate. We believe that this novel approach to better understand the training is a valuable

exploratory research direction.



115

CHAPTER 6

Conclusion and Future Work

In this thesis, we presented parallelization strategies that all aim to improve the scal-

ability of synchronous data parallel training of neural networks. First, we presented how

to effectively overlap the communications with the computations using a communication-

dedicated thread in Chapter 3. Second, we proposed a communication-efficient gradient

computation algorithm for data parallel training in Chapter 4. Finally, we explained how

to adaptively increase the mini-batch size at run-time in order to improve the degree of

parallelism in Chapter 5. All these three research works successfully addressed different

factors that hinder the scalable parallel training of neural networks.

Scalable deep learning methods are essential to tackle important large-scale real-world

problems. Even if the training scales up very well, however, if the model accuracy is

significantly dropped, such parallelization strategies will be considered to be of no use.

Therefore, parallel training algorithms should pursue both the scalability and the classi-

ficaiton/regression performance. In this thesis, we narrowed down the scope of the dis-

cussion to ‘synchronous parallel’ training based on data parallelism. Thus, we could fully

focus on how to improve the scalability by reducing the communication cost without losing

the accuracy. However, such a strict synchronous training may not be required in many

real-world applications. By partially relaxing the restriction of the synchronous parameter

updates, one can consider a practical trade-off between the model accuracy/convergence



116

rate and the scalability. For instance, allowing a certain degree of asynchrony at a subset

of model layers can be an interesting research topic.

Commonly, deep learning is still considered to be premature. Many researchers call

deep learning ‘black box’ algorithm due to its poor interpretability. We believe that our

research works have contributed to better understanding the internal behaviors of neural

networks. Our proposed parallelization strategies extract useful information from the

neural networks, such as data dependency existing in the networks and the impact of

the batch size on the sharpness of the minimizer, and then fully utilize it to improve the

scalability of parallel training. Therefore, the insights from our parallel training methods

can be generally used to design any parallel deep learning methods expecting a better

scalability.

We conclude this study with a few descriptions of potential future works.

local SGD with periodic model averaging – Despite the promising scaling per-

formance of synchronous parallel training achieved in this study, fully utilizing extremely

large-scale HPC platforms for deep learning applications still remains as an unanswered

questions. We already have discussed that the large batch size can adversely affect the

generalization performance of neural networks. Recently, local SGD with periodic model

averaging has been highlighted thanks to its less frequent communications per epoch. In

addition to the cheaper communication cost, it has also been observed that local SGD

allows to use a larger effective batch size without losing the accuracy. Since multiple local

models explore the parameter space independently of each other until they are averaged,

the global model becomes to have a higher degree of noise in their parameter updates,

and thus the better generalization performance. The existing local SGD studies tend to



117

focus on adjusting the averaging interval only. However, the number of workers is also a

critical factor that affects not only the convergence properties but also the generalization

performance. Especially, in order to successfully apply local SGD to real-world applica-

tions, the impact of the number of workers on the generalization performance should be

clearly explained.

I/O-efficient training – In real-world scientific applications that have an extremely

large amount of data, the I/O time can take up a large portion of the iteration time

making the compute resources idle. The size of each training sample decides the per-

iteration I/O cost. For example, Cosmology dataset for dark matter distribution analysis

consists of training samples of size 48 MiB [23]. So, reading such large samples can take

up a large portion of iteration time degrading the scaling performance. One promising

solution is to overlap the I/O time with the training time. By employing I/O-dedicated

thread, the data for the next iterations can be pre-fetched. Such an asynchronous I/O

time can be hidden behind the computation time, and thus a shorter iteration time can

be expected. TensorFlow already supports the data pre-fetching, however, the feature is

implemented under an assumption that one batch is read after another. Motivated by

our own communication overlapping strategy discussed in this thesis, the I/O thread may

read several batches at once to improve the I/O performance.

The efficiency of I/O overlapping strongly depends on the hardware configurations.

In practice, it is very common to use accelerators such as GPUs for faster training. If

the training runs on GPU-based systems, the ratio of I/O to computation will be much

higher than that on CPU-only systems. Therefore, a larger portion of iteration time

can be reduced if the I/O time is effectively overlapped with the computation time. We



118

believe that, considering the ever-increasing available experimental data, an I/O strategy

that generally works on different systems will make a huge impact on many real-world

scientific applications.

Relaxing synchronization – In our research works, we also found that the com-

munication cost could be dramatically reduced by slightly relaxing the synchronization

requirement. It has already been well shown in many previous works that a low degree

of asynchrony in the model parameters does not much affect the accuracy. To the best

of our knowledge, most of the parallel training studies are under an assumption that the

entire model parameters are considered as a single cost function. However, considering the

non-linearity between layers caused by the non-linear activation functions such as ReLU,

the asynchronous training at one layer may not much affect the other layers. Therefore,

relaxing synchronization of a part of model parameters can lead to a practical trade-off

between the scalability and the model accuracy. The followed important questions are

how many parameters can relax the synchronization and how much the synchronization

can be relaxed while maintaining the model accuracy. By answering these questions,

deep learning applications can enjoy the communication-efficient partially-asynchronous

parallel training while achieving a good model accuracy.



119

References

[1] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan,

Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Dis-

tributed deep learning using synchronous stochastic gradient descent. arXiv preprint

arXiv:1602.06709, 2016.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[3] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Pro-

topapadakis. Deep learning for computer vision: A brief review. Computational in-

telligence and neuroscience, 2018, 2018.

[4] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends

in deep learning based natural language processing. ieee Computational intelligenCe

magazine, 13(3):55–75, 2018.

[5] Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for sentiment analysis: A survey.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253,

2018.



120

[6] Norjihan Abdul Ghani, Suraya Hamid, Ibrahim Abaker Targio Hashem, and Ejaz

Ahmed. Social media big data analytics: A survey. Computers in Human Behavior,

101:417–428, 2019.

[7] Javier Ruiz-del Solar, Patricio Loncomilla, and Naiomi Soto. A survey on deep learn-

ing methods for robot vision. arXiv preprint arXiv:1803.10862, 2018.

[8] Dimitri Bourilkov. Machine and deep learning applications in particle physics. Inter-

national Journal of Modern Physics A, 34(35):1930019, 2019.

[9] Sarah Webb. Deep learning for biology. Nature, 554(7693), 2018.

[10] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques.

Recent advances and applications of machine learning in solid-state materials science.

npj Computational Materials, 5(1):1–36, 2019.

[11] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,

Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. Software available from ten-

sorflow.org.



121

[12] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22nd ACM international conference

on Multimedia, pages 675–678, 2014.

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274, 2015.

[15] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale

distributed deep networks. In Advances in neural information processing systems,

pages 1223–1231, 2012.

[16] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic

averaging sgd. In Advances in neural information processing systems, pages 685–693,

2015.

[17] Guojing Cong, Onkar Bhardwaj, and Minwei Feng. An efficient, distributed stochas-

tic gradient descent algorithm for deep-learning applications. In 2017 46th Interna-

tional Conference on Parallel Processing (ICPP), pages 11–20. IEEE, 2017.



122

[18] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexan-

der Schwing. Pipe-sgd: A decentralized pipelined sgd framework for distributed deep

net training. In Advances in Neural Information Processing Systems, pages 8045–

8056, 2018.

[19] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence

and less communication: Demystifying why model averaging works for deep learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

5693–5700, 2019.

[20] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:

Communication-efficient sgd via gradient quantization and encoding. In Advances in

Neural Information Processing Systems, pages 1709–1720, 2017.

[21] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for

communication-efficient distributed optimization. In Advances in Neural Information

Processing Systems, pages 1299–1309, 2018.

[22] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[23] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James

Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J Pennycook,



123

et al. Cosmoflow: Using deep learning to learn the universe at scale. In SC18: In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis, pages 819–829. IEEE, 2018.

[24] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr,

Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano

Fatica, et al. Exascale deep learning for climate analytics. In SC18: International

Conference for High Performance Computing, Networking, Storage and Analysis,

pages 649–660. IEEE, 2018.

[25] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,

Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep

learning training system with mixed-precision: Training imagenet in four minutes.

arXiv preprint arXiv:1807.11205, 2018.

[26] Sam Ade Jacobs, Brian Van Essen, David Hysom, Jae-Seung Yeom, Tim Moon,

Rushil Anirudh, Jayaraman J Thiagaranjan, Shusen Liu, Peer-Timo Bremer, Jim

Gaffney, et al. Parallelizing training of deep generative models on massive scien-

tific datasets. In 2019 IEEE International Conference on Cluster Computing (CLUS-

TER), pages 1–10. IEEE, 2019.

[27] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learn-

ing: An in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–

43, 2019.



124

[28] Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed in-

frastructures: Challenges, techniques, and tools. ACM Computing Surveys (CSUR),

53(1):1–37, 2020.

[29] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12(7),

2011.

[30] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[31] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31, 2012.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[34] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution

using very deep convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1646–1654, 2016.



125

[35] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. En-

hanced deep residual networks for single image super-resolution. In Proceedings of

the IEEE conference on computer vision and pattern recognition workshops, pages

136–144, 2017.

[36] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[37] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[38] Tjalling J Ypma. Historical development of the newton–raphson method. SIAM re-

view, 37(4):531–551, 1995.

[39] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[40] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals

of mathematical statistics, pages 400–407, 1951.

[41] Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint

arXiv:1511.06422, 2015.

[42] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas,

Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail

Smorkalov, et al. Deep learning at 15pf: supervised and semi-supervised classification

for scientific data. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pages 1–11, 2017.



126

[43] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

Project adam: Building an efficient and scalable deep learning training system.

In 11th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 14), pages 571–582, 2014.

[44] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan,

Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Dis-

tributed deep learning using synchronous stochastic gradient descent. arXiv preprint

arXiv:1602.06709, 2016.

[45] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997, 2014.

[46] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and

Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap

and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[47] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for ima-

genet training. arXiv preprint arXiv:1708.03888, 6, 2017.

[48] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing

the generalization gap in large batch training of neural networks. In Advances in

Neural Information Processing Systems, pages 1731–1741, 2017.

[49] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empir-

ical model of large-batch training. arXiv preprint arXiv:1812.06162, 2018.



127

[50] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch

sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[51] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay

the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[52] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Big batch sgd: Auto-

mated inference using adaptive batch sizes. arXiv preprint arXiv:1610.05792, 2016.

[53] Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with

learning rates. arXiv preprint arXiv:1612.05086, 2016.

[54] Aditya Devarakonda, Maxim Naumov, and Michael Garland. Adabatch: adaptive

batch sizes for training deep neural networks. arXiv preprint arXiv:1712.02029, 2017.

[55] Sunwoo Lee, Qiao Kang, Sandeep Madireddy, Prasanna Balaprakash, Ankit Agrawal,

Alok Choudhary, Richard Archibald, and Wei-keng Liao. Improving scalability of

parallel cnn training by adjusting mini-batch size at run-time. In 2019 IEEE Inter-

national Conference on Big Data (Big Data), pages 830–839. IEEE, 2019.

[56] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck

Cadambe. Local sgd with periodic averaging: Tighter analysis and adaptive synchro-

nization. In Advances in Neural Information Processing Systems, pages 11080–11092,

2019.



128

[57] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the

best error-runtime trade-off in local-update sgd. arXiv preprint arXiv:1810.08313,

2018.

[58] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence

and less communication: Demystifying why model averaging works for deep learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

5693–5700, 2019.

[59] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large

mini-batches, use local sgd. arXiv preprint arXiv:1808.07217, 2018.

[60] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional

neural networks for document processing. 2006.

[61] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine

learning software library. Technical report, Idiap, 2002.

[62] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[63] Intel. Dgemm, sgemm optimized by intel math kernel library on intel xeon processor,

2020. The official performance benchmark document from Intel published in 2020.

[64] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.



129

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[65] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Fire-

caffe: near-linear acceleration of deep neural network training on compute clusters.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2592–2600, 2016.

[66] I-Hsin Chung, Tara N Sainath, Bhuvana Ramabhadran, Michael Picheny, John Gun-

nels, Vernon Austel, Upendra Chauhari, and Brian Kingsbury. Parallel deep neural

network training for big data on blue gene/q. IEEE Transactions on Parallel and

Distributed Systems, 28(6):1703–1714, 2017.

[67] Wushi Dong, Murat Keceli, Rafael Vescovi, Hanyu Li, Corey Adams, Elise Jennings,

Samuel Flender, Thomas Uram, Venkatram Vishwanath, Nicola Ferrier, et al. Scaling

distributed training of flood-filling networks on hpc infrastructure for brain mapping.

In 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS),

pages 52–61. IEEE, 2019.

[68] Mike Barnett, Lance Shuler, Robert van De Geijn, Satya Gupta, David G Payne, and

Jerrell Watts. Interprocessor collective communication library (intercom). In Scalable

High-Performance Computing Conference, 1994., Proceedings of the, pages 357–364.

IEEE, 1994.



130

[69] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective

communication operations in mpich. The International Journal of High Performance

Computing Applications, 19(1):49–66, 2005.

[70] Roger W Hockney. The communication challenge for mpp: Intel paragon and meiko

cs-2. Parallel computing, 20(3):389–398, 1994.

[71] Rajeev Thakur and W. D. Gropp. Improving the performance of mpi collective com-

munication on switched networks. 11/2002 2002.

[72] Rolf Rabenseifner. A new optimized mpi reduce algorithm, 1997.

[73] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep

learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[74] Alex Gibiansky. Bringing hpc techniques to deep learning.

http://research.baidu.com/bringing-hpc-techniques-deep-learning/, feb 2017.

[75] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay the learning

rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[76] Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos

Koutris. The effect of network width on the performance of large-batch training. In

Advances in Neural Information Processing Systems, pages 9322–9332, 2018.

[77] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang,

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, Kyoung Mu Lee, et al. Ntire



131

2017 challenge on single image super-resolution: Methods and results. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on,

pages 1110–1121. IEEE, 2017.

[78] Stanis law Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,

Yoshua Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv

preprint arXiv:1711.04623, 2017.

[79] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts

reduction by a deep convolutional network. In Proceedings of the IEEE International

Conference on Computer Vision, pages 576–584, 2015.

[80] Pavel Svoboda, Michal Hradis, David Barina, and Pavel Zemcik. Compression arti-

facts removal using convolutional neural networks. arXiv preprint arXiv:1605.00366,

2016.

[81] Weisheng Dong, Peiyao Wang, Wotao Yin, and Guangming Shi. Denoising prior

driven deep neural network for image restoration. IEEE transactions on pattern anal-

ysis and machine intelligence, 2018.

[82] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using

convolutional auto-encoders with symmetric skip connections. arXiv preprint

arXiv:1606.08921, 2016.



132

[83] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive

residual network. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, volume 1, page 5, 2017.

[84] Sylvain Didelot, Patrick Carribault, Marc Pérache, and William Jalby. Improving

mpi communication overlap with collaborative polling. Computing, 96(4):263–278,

2014.

[85] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. Implementation and per-

formance analysis of non-blocking collective operations for mpi. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing, page 52. ACM, 2007.

[86] Ron Brightwell, Rolf Riesen, and Keith D Underwood. Analyzing the impact of

overlap, offload, and independent progress for message passing interface applications.

The International Journal of High Performance Computing Applications, 19(2):103–

117, 2005.

[87] Lawrence A Shepp and Benjamin F Logan. The fourier reconstruction of a head

section. IEEE Transactions on nuclear science, 21(3):21–43, 1974.

[88] Ian Masliah, Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, Marc Baboulin,

Joël Falcou, and Jack Dongarra. High-performance matrix-matrix multiplications of

very small matrices. In European Conference on Parallel Processing, pages 659–671.

Springer, 2016.



133

[89] Kyungjoo Kim, Timothy B Costa, Mehmet Deveci, Andrew M Bradley, Simon D

Hammond, Murat E Guney, Sarah Knepper, Shane Story, and Sivasankaran Raja-

manickam. Designing vector-friendly compact blas and lapack kernels. In Proceedings

of the International Conference for High Performance Computing, Networking, Stor-

age and Analysis, page 55. ACM, 2017.

[90] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[91] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized mar-

gin bounds for neural networks. In Advances in Neural Information Processing Sys-

tems, pages 6240–6249, 2017.

[92] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the

generalization gap in deep networks with margin distributions. arXiv preprint

arXiv:1810.00113, 2018.


	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Overlapping Communications with Computations
	1.2. Communication-Efficient Parallel Gradient Computation
	1.3. Adaptive Hyper-Parameter Adjustment Method

	Chapter 2. Background
	2.1. Artificial Neural Network and Deep Learning
	2.2. Training Algorithms
	2.3. Parallelization Strategies

	Chapter 3. Overlapping Communications with Computations in Parallel Training
	3.1. Computation Workload and Data Layout
	3.2. Inter-process Communications
	3.3. Overlapping Strategy and Implementation
	3.4. Performance Evaluation
	3.5. Discussion

	Chapter 4. Communication-Efficient Parallel Gradient Computation Algorithm
	4.1. Parallel Gradient Computation Algorithm
	4.2. Communication Cost Analysis
	4.3. Scalable Model Parameter Update
	4.4. Overlapping Computation and Communication
	4.5. Performance Evaluation
	4.6. Discussion

	Chapter 5. Adaptive Batch Size Adjustment Method for Scalable Deep Learning
	5.1. Adaptive Batch Size Adjustment Method
	5.2. Parallel Training with Adaptive Batch Size
	5.3. Related Works
	5.4. Performance Evaluation
	5.5. Discussion

	Chapter 6. Conclusion and Future Work
	References

