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ABSTRACT

Recently, a myriad of applications take advantage of deep learning methods to solve
regression/classification problems. Although deep neural networks have shown power-
ful learning capability, many deep learning applications suffer from the extremely time-
consuming training of the neural networks. In order to reduce the training time, re-
searchers usually consider parallel training on distributed-memory systems. Synchronous
Stochastic Gradient Descent (SGD) with data parallelism is the most popular paralleliza-
tion strategy for neural network training, which guarantees the same convergence rate as
the sequential training at the cost of having expensive inter-processing communications.
Despite the poor scalability, many real-world deep learning applications usually adopt the
synchronous parallel approach due to such a good convergence property.

In this thesis, we discuss how to improve the scalability of synchronous parallel training
in several different aspects. First, we propose a parallel training algorithm that leverages
the overlaps of communications and computations across model layers. Our overlapping
strategy makes a large portion of the communication time hidden behind the backpropa-
gation computation time, and thus the scaling efficiency is improved. Second, we re-design
the gradient computation method in data parallel training. The proposed gradient compu-

tation algorithm not only reduces the communication cost but also enables to overlap the



communications with the forward computation at the next iteration. Finally, we propose
an adaptive hyper-parameter adjustment method that improves the degree of parallelism
while maintaining a good model accuracy. The proposed method gradually increases the
batch size at run-time in order to make a good trade-off between the degree of parallelism
and the generalization performance.

All these three research works address different performance issues in synchronous par-
allel training. Our performance evaluation results demonstrate that, by harmonizing these
separate contributions, the synchronous parallel training can effectively scale up on High-
Performance Computing (HPC) platforms achieving the same classification/regression

performance as the sequential training.
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CHAPTER 1

Introduction

Recently, deep learning has become one of the most popular machine learning tech-
niques. A myriad of applications have adopted deep learning methods to solve domain
problems such as Computer Vision [2), B3], Natural Language Processing [4), 5], Social
Media Mining [6], Robotics [7], and various scientific applications [8, [9, 10]. Thanks to
its superior learning capability, deep neural networks have provided the state-of-the-art
classification /regression performance in many domain applications.

Despite its powerful learning capability, deep learning applications usually suffer from
the time-consuming training of the neural networks. Training a modern Convolutional
Neural Network (CNN) usually takes hours or even days making it less practical. Re-
searchers parallelize the training on distributed-memory systems to reduce the training
time. Many popular deep learning software frameworks, such as TensorFlow [11], py-
Torch [12], Caffe [13], and MXNet [14], also support parallel training. Considering the
ever-increasing available data size in this ‘Big Data’ era, efficient and scalable parallel
training is essential to build up powerful deep learning solutions exploiting such abun-
dant data. Especially for large-scale domain applications, scalable deep learning methods
will provide researchers with unprecedented opportunities to solve their problems.

However, achieving a good speedup of parallel training has been a major challenge

in large-scale deep learning due to the following obstacles. First, the training algorithm
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suffers from the limited degree of parallelism. Neural networks are typically trained us-
ing mini-batch Stochastic Gradient Descent (SGD) algorithm. The algorithm repeatedly
adjusts the model parameters using gradients computed from a random subset of train-
ing samples (called mini-batch) until the gradients become sufficiently small. Such an
iterative algorithm causes a strong data dependency of the model parameters across the
consecutive iterations. Each mini-batch can be processed only after the previous one
is processed. Thus, the degree of parallelism is limited to the number of samples in
a single mini-batch. Second, the frequent and expensive inter-process communications
significantly degrade the scaling performance. Synchronous SGD with data parallelism
is the most popular parallelization strategy for neural network training. This parallel
training algorithm evenly distributes each mini-batch to all workers and averages the
locally-computed gradients across all the workers by performing global inter-process com-
munications. Since the number of gradients is the same as that of the overall model
parameters, such expensive communications easily become the performance bottleneck.
Many researchers have put much effort into addressing these two performance issues.
Asynchronous SGD proposed in [15] allows multiple workers to asynchronously update the
shared model parameters making a trade-off between the convergence rate and the scaling
efficiency. Many different optimization methods also have been proposed to improve
the scalability by reducing the communication frequency [16), 17, 18, 19]. Some other
researchers have studied how to directly reduce the communication cost by sparsification,
quantization, and compression of the gradients [20, 21), 22]. Although all these works
effectively reduce the communication cost, they commonly improve the scalability at the

cost of having a loss in accuracy or requiring a larger number of training epochs.
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Improving scalability of synchronous SGD has a huge impact on many deep learning
applications. Especially, many large-scale scientific applications adopt synchronous SGD
with data parallelism to scale up their deep learning solutions [23), 24], 25, 26]. When the
batch size and learning rate are sufficiently small, synchronous parallel training guarantees
the convergence of the training regardless of the number of workers. Many applications
use synchronous parallel approach due to this stable convergence property [27, 28]. In
addition, the synchronous parallel approach can be applied to many different optimization
algorithms, such as AdaGrad [29], Adadelta [30], rmsprop [31], and Adam [32], because
it does not have any dependency on the parameter update rule. Therefore, countless
applications can directly benefit from a scalable synchronous parallel training strategy.

In this thesis, we propose three contributions towards improving scalability of syn-
chronous SGD-based neural network training: 1) overlapping communications with com-
putations in data parallel training, 2) communication-efficient gradient computation algo-
rithm, and 3) adaptive hyper-parameter adjustment method that improves the degree of
parallelism without losing model accuracy. All three research works tackle different perfor-
mance issues in synchronous SGD training. By harmonizing these separate contributions,
synchronous parallel training can effectively scale up on large-scale High-Performance

Computing (HPC) platforms achieving a high model accuracy.

1.1. Overlapping Communications with Computations

The synchronous parallel training guarantees exactly the same parameter updates as
the sequential training, and thus a good convergence rate. However, the parallel training

suffers from the expensive communication cost for averaging the gradients among all
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workers. In data parallel training, as the number of processes increases, each process is
assigned with a proportionally reduced number of training samples. In contrast to the
linearly reduced computation workload, the communication cost increases and it results
in making the speedup saturated.

Neural networks do not have data dependency on the gradients across the layers.
The gradient communication at one layer and the gradient computations at other layers
can be performed simultaneously. Motivated by this fact, we propose to overlap the
communications with the computations during training to improve the scalability. By
dedicating a small number of compute cores for communications, the communication
time can be effectively hidden behind the computation time while almost not affecting
the computation performance.

We present a data parallel training strategy that aggregates the gradients across all
model layers into two subsets and averages them across all workers using asynchronous
communications. Our approach minimizes the number of communications per iteration
by having only two subsets of gradients. In addition, the one gradient communication is
overlapped with the backward computation while the second gradient communication is
overlapped with the model parameter updates. The effectiveness of the overlap depends
on how many gradients are aggregated into each subset. We analyze the impact of the
gradient aggregation on the exposed communication time and suggest a good practice for
maximizing the degree of overlap.

In order to explicitly control the overlap, our approach employs a communication-
dedicated POSIX thread per MPI process, which performs synchronous MPI commu-

nications. The main thread and the communication thread synchronize using POSIX
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conditional variable and mutex. By pinning the I/O thread on a single physical core, the
parallel training can avoid the context switching overhead and the cold cache effects.
We evaluate the proposed overlapping strategy using ImageNet, a popular open bench-
mark dataset for image classification and VGG-16, a deep CNN model with 16 tunable
layers. Our experimental results and analysis demonstrate the effectiveness of the pro-
posed overlapping strategy and give an important insight about how to better utilize the

compute cores not only for parallel computations but also for communications.

1.2. Communication-Efficient Parallel Gradient Computation

In data parallel neural network training, the inter-process communications for aver-
aging gradients are the performance bottleneck. Given a mini-batch, each worker locally
computes the gradients of a cost function with respect to the model parameters from
the assigned subset of the mini-batch. Then, the local gradients are averaged across
all the workers using inter-process communications. Typically, allreduce communications
are used to aggregate and sum up the gradients. To the best of our knowledge, all the
existing parallel deep learning frameworks such as Horovod and pyTorch use allreduce
communications when averaging the gradients.

The allreduce-based data parallelism is under a strong assumption that the gradients
are locally computed first and then averaged across all the workers. In this approach,
every worker ends up having the same number of gradients regardless of the number of
workers or the mini-batch size. Thus, as the number of processes increases, the overall
communication cost increases and it results in becoming the performance bottleneck.

We break such a prevalent assumption and re-design a parallel gradient computation
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algorithm which has a cheaper communication cost than the allreduce-based approach.
We will analyze and compare the communication cost complexity between our proposed
algorithm and the allreduce-based approach.

Our parallel gradient computation algorithm consists of several communication steps.
There are two benefits from having multiple communication steps rather than a single
allreduce operation. First, we can design a fine-grained communication overlapping strat-
egy that overlaps the gradient communications with not only the backward computations
but also the forward computations at the next iteration. Second, it allows to re-design
the parameter update method which has a cheaper computation complexity. Instead of
updating the model parameters after averaging all the gradients, our approach enables for
each worker to update a part of model parameters locally and then aggregate the updated
parameters across all the workers.

We evaluate the effectiveness of the proposed parallel gradient computation algorithm
and the overlapping strategy using ImageNet dataset and ResNet50 [33], a deep residual
network with more than 50 layers. Our study demonstrates that the scalability of syn-
chronous SGD training can be significantly improved by breaking the traditional practice

of using allreduce communications in data parallelism.

1.3. Adaptive Hyper-Parameter Adjustment Method

In data parallel training of neural networks, each mini-batch is evenly distributed to
all workers and independently processed. Thus, the maximum number of workers is the
number of training samples in each mini-batch. Intuitively, the larger the batch size, the

better the degree of parallelism.
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Unfortunately, the mini-batch size is typically tuned to a small value that provides
a sufficiently high degree of noise in the gradients. For instance, when AlexNet [2] won
the ImageNet competition by a large margin (15.3% vs 26.2% (second place) validation
errors), their mini-batch size was 128 while the overall number of training images was
about 1.2 millions. That batch size is lower than 0.0001% of the overall data samples.
Assuming the samples for a mini-batch is uniformly drawn from the given dataset, the
gradients can be considered as a random variable with mean of the optimal gradient
computed from the entire dataset. It has been already theoretically explained that the
larger the batch size, the lower the variance of the gradients. In other words, the gradients
become less noisy as the batch size increases. When the stochastic gradients are closer to
the optimal gradient, the model tends to rapidly converge into a local minimum on the
parameter space achieving poor generalization performance.

We propose how to use a large batch size without significantly affecting the model
accuracy. Our training strategy is to adaptively adjust the mini-batch size at run-time
to make a good trade-off between the degree of parallelism and the model accuracy. We
first analyze the impact of the batch size on the regression performance and the scaling
performance. Then, based on the analysis, we design a practical metric for estimating
the quality of the current model parameters in terms of the generalization performance.
Finally, we discuss how to adjust the mini-batch size and learning rate using the proposed
metric at run-time. Although the proposed training strategy uses different batch sizes
during the training, all the workers always view the same model parameters at every
iteration. Therefore, the training can be considered to be a special case of synchronous

SGD, and thus the convergence is still guaranteed.
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The proposed adaptive batch size training method is evaluated using two image regres-
sion applications, image super-resolution and image restoration. These two representative
regression works commonly use a small batch size such as 16 ~ 64 [34), 35]. We demon-
strate that our adaptive batch size training method enables to increase the batch size to
256 effectively improving the degree of parallelism while maintaining the high regression
accuracy. In order to show that the proposed training strategy is generally applicable to

any optimizers, we also evaluate it using CIFAR10 image classification benchmark.
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CHAPTER 2

Background

2.1. Artificial Neural Network and Deep Learning

Artificial Neural Network (ANN) is a biologically-inspired algorithm. A network con-
sists of multiple layers of ‘neuron’s. Each neuron is a perceptron with a various type of
activation functions [36].

A network receives a set of input values at ‘input layer’. The data go through mul-
tiple layers which are called ‘hidden layer’s. Finally, the prediction values are generated
at ‘output layer’. In supervised learning, the prediction values are compared with the
expected correct values (usually called labels). The model is considered to be accurate
when the prediction values are sufficiently close to the expected values.

Depending on the connection pattern of the neurons, there are several types of ANNs
such as fully-connected network, Convolutional Neural Network (CNN), and Recurrent
Neural Network (RNN). Figure presents the three representative types of neural net-
work. Each type of network exploits different data characteristics. For example, CNNs
have a special connection pattern which is called ‘local connection’. Each neuron receives
data from a subset of neurons at the previous layer. This special connection pattern is de-
signed based on a principle that there is a strong correlation among the neighbor neurons.
Thanks to such the local connection pattern, CNNs show a superior learning capability

for image handling problems. RNNs have also its own special connection pattern such



26

b) Convolutional Neural Network

Figure 2.1.  Three representative types of neural network. a) Fully-
Connected Neural Network has a dense connection pattern such that all
neurons at one layer is connected to every neuron at the next layer. b)
Convolutional Neural Network (CNN) has a local connection pattern such
that a subset of neurons at one layer is connected to each neuron at the
next layer. c¢) Recurrent Neural Network (CNN) recursively train the same
model parameters at multiple layers.

that the same model parameters are recursively used to process multiple input data. This
connection pattern enables the network to learn the information across the time steps.
Usually, researchers choose a type of neural network considering the problem-specific data
characteristics.

Deep learning indicates a set of machine learning methods that are based on ANNs.
Recently, the meaning of deep learning has been enlarged to a research field in which a
variety of machine learning problems are studied using ANNs. A large portion of the deep

learning applications deal with supervised learning problems in which the data consists
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of the training samples and its labels. There are deep learning methods for unsupervised

learning or semi-supervised learning such as Generative Artificial Neural Network (GAN).

2.2. Training Algorithms

Training neural networks is a representative non-convex optimization problem. There
are largely two different optimization methods for neural network training: the first-
order optimization methods such as Gradient Descent (GD) [37] and the second-order
optimization methods such as Newton’s method [38] and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [39]. In this thesis, we only consider the first-order optimization methods,
the most popular and practical training algorithm for neural networks.

The most popular variant of GD for neural network training algorithm is Stochastic
Gradient Descent (SGD) [40, B7]. Especially, the algorithm that approximates the gra-
dients from a random subset of training samples is called ‘mini-batch SGD’. Algorithm
presents the mini-batch SGD algorithm. In the algorithm, n, m, and [ represent the
number of training samples, the mini-batch size, and the number of layers in the net-
work, respectively. The model parameters w is initialized with random values wq at line
1. There are many different initialization strategies such as Xavier method and MSRA
method [41]. First, a random subset of training samples B is extracted from the dataset
at line 4. Second, the gradients of the given cost function f is computed with respect
to the model parameters w from B at line 5. Note that V fz(w;) = & > i Vi (wi, z5),
where w; is the model parameters at iteration ¢ and x; is the j training sample in the
given mini-batch. Finally, the model parameters w is updated using the gradients at

line 7. The algorithm repeats these three steps until the gradients become too small to
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Algorithm 1 Mini-batch SGD (n: the number of training samples, m: the mini-batch
size, f: the cost function)

10w < wy

2: while stop condition is not met do

3: fori<1.---2 do

4: B < ' mini-batch of size m.

5: V f5(w;) < Compute_Gradient(f, B, w;).
6: Wiy1 = w; — pV fp(w;).

effectively adjust the model parameters. In practice, researchers usually stop the training
when an acceptable accuracy is achieved before the training loss actually converges.
Algorithm [I| has two user-tunable hyper-parameters, the mini-batch size m and the
learning rate p. The convergence rate of the training loss is strongly affected by these
two hyper-parameters. Researchers typically tune these in a trial-and-error manner.
There are several variants of mini-batch SGD that are designed to achieve a faster
convergence of training loss, such as AdaGrad [29], rmsprop [31], and Adam [32]. These
algorithms commonly calculate the first-order gradients of the cost function first, and
then update the parameters using a different update rule. Due to the different update
rules, these algorithms have their own additional hyper-parameters such as momentum

parameters or decaying parameters.

2.3. Parallelization Strategies

Researchers have put much effort into improving scalability of parallel neural network
training. Depending on the degree of asynchrony in the local model parameters across
the workers, the training algorithm can be categorized into ‘synchronous’ or ‘asynchro-

nous’ algorithm. The training algorithms can also be categorized into ‘model parallelism’
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or ‘data parallelism’ depending on how to distribute the computation workload on the

workers.

2.3.1. Synchronous Training vs. Asynchronous Training

Synchronous parallel training is the most popular parallelization strategy for deep learn-
ing. It is called ‘synchronous’ training if all workers always view the same state of the
model parameters. The most significant benefit from the synchronous parallel training is
that the quality of the parameter updates is not affected by the number of workers. Many
existing large-scale deep learning applications scale up the training in a synchronous way
[23), 24, 25 26].

However, the synchronous parallel training usually suffers from its poor scalability. In
Algorithm (1] each iteration at line 3 is to process a single mini-batch. In order to make
all the workers always use the state-of-the-art parameters when processing a mini-batch,
the model parameters should be globally synchronized at every iteration. Depending on
the implementation, either the gradients or the locally updated model parameters should
be averaged among all the workers using inter-process communications. Such expensive
and frequent communications result in becoming the performance bottleneck.

In order to address the issue of expensive communications, Dean et al. proposed
asynchronous parallel algorithm [15]. Instead of synchronizing the model/gradient every
iteration, the algorithm allows workers to use out-of-date model parameters to calculate
the gradients. Asynchronous approach typically assumes the parameter-server communi-
cation model such that a centralized parameter server keeps the model parameters and

receives the locally computed gradients from all individual workers asynchronously.
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Asynchronous parallel training enjoys a good scaling performance since multiple mini-
batches can be processed at the same time without any synchronizations. However, in
order to guarantee the convergence, the number of workers should be sufficiently small
so that the degree of asynchrony in the model parameters is bounded. The number of
available workers strongly depends on the dataset size. The larger the number of training
samples, the more the workers can asynchronously process different mini-batches at the
same time without significantly affecting the convergence rate. Kurth et al. proposed
a hybrid approach that makes a good trade-off between synchronous and asynchronous

training strategies [42].

2.3.2. Communication Model

The parallel training can be implemented using two different communication models:
fully-distributed communication model and client-server model. If the model parameters
are replicated by all the processes and the gradients are globally averaged using inter-
process communications, it is called ‘fully-distributed’” communication model. The most
popular implementation of data parallelism based on the fully-distributed communication
model is allreduce-based approach. If the global model parameters are managed by one or
a small number of parameter servers, it is called ‘client-server’ model (also known as pa-
rameter server model). TensorFlow [11], one of the most popular deep learning software
framework, supports data parallelism based on the parameter server approach. Asyn-
chronous SGD assumes the parameter server communication model such that multiple
workers asynchronously contribute to the shared model by sending the locally computed

gradients to the parameter server.
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Figure 2.2.  Two representative parallelization strategies for neural net-
work training: a) model parallelism and b) data parallelism. In model
parallelism, each worker trains on a distinct subset of the model parame-
ters using the entire data. In data parallelism, each worker trains the entire
model parameters using a subset of each mini-batch.

2.3.3. Model Parallelism vs. Data Parallelism

Depending on how to distribute the workloads to workers, the parallel training can be
categorized into either ‘model parallelism’ or ‘data parallelism’. If a model is split among
multiple workers and trained on the same data, it is called model parallelism. In contrast,
if the data is distributed to multiple workers and they train a single globally-shared
model, it is called data parallelism. Figure illustrates the model parallelism and data
parallelism.

These two parallelization strategies have different communication patterns. First, data
parallelism aggregates and sums up the entire gradients across all workers while model
parallelism exchange the intermediate data such as activations and errors among subsets
of the workers. Second, data parallelism and model parallelism have a different data

dependency that affects the communication pattern. Data parallelism does not have data
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dependency on the gradient across the layers. So, the gradient communications can be
performed at anytime within the iteration. In contrast, model parallelism has a strong
data dependency on the activations and errors across any two consecutive layers. So, at
every layer, the corresponding communications should be finished before going to the next
layer.

Recently, data parallelism is more widely used in deep learning applications. Most of
the large-scale deep learning applications scaled up on HPC platforms are based on data

parallelism. Some researchers have proposed a hybrid approach [43], [44], 45].

2.3.4. Large-Batch Training

In data parallel training, the degree of parallelism is limited by the number of training
samples in each mini-batch. Thus, increasing the batch size is an intuitive solution to
improve the degree of parallelism. However, it has been empirically shown that, the
larger the batch size, the poorer the generalization performance [46, 47, 48], [49]. The
mini-batch size is usually tuned to a small value between 32 ~ 256 in many applications.

Researchers have proposed several large batch training methods that aim to increase
the batch size without losing the model accuracy. You et al. proposed Layer-wise Adaptive
Rate Scheduling (LARS) that adjusts the learning rate considering the magnitude ratio
of the gradients and the parameters [47]. Goyal et al. proposed ‘linear scaling rule’
that increases the batch size and learning rate together by the same factor [50]. Hoffer
et al. proposed ‘root scaling rule’ that increases the learning rate by the root scale

of the increased batch size [48]. Although these research works have derived different



33

conclusions, there is a common principle behind of them: as the batch size increases, the
learning rate should be also increased to maintain the model accuracy.

Keskar et al. discussed the concept of ‘flat’ and ‘sharp’ minima on the parameter
space and explained the correlation between the batch size and the model sharpness
[46]. As the batch size increases, the model tends to be attracted by sharp minima
that poorly generalize to the test data. By using a small batch size, the gradients become
sufficiently noisy to avoid falling into a sharp minimum and it ends up converging to a flat
minimum. It is a common practice of neural network training that the batch size is fixed
to a certain small value and the learning rate decreases as the training progresses. This
training technique is usually called ‘learning rate decay’. Instead, Smith et al. proposed
to increase the batch size as training progresses instead of decaying the learning rate [51].
The authors showed that increasing the batch size and reducing the learning rate make
a similar impact on the degree of noise in gradients. Some researchers also proposed
adaptive batch size training methods that aim to make a good trade-off between the
degree of parallelism and the generalization performance [52), [53].

Although all these works enable to use a large batch size for training, there is a
problem-dependent threshold of the batch size. If the batch size is increased further than
the threshold, the model starts to lose the generalization performance. In other words,
the model overfits to the training dataset, and thus provides a poor validation accuracy.
For example, LARS enables to use a batch size of 16K for ImageNet classification problem
without a significant loss in accuracy. However, when the batch size becomes larger than

16K, the validation accuracy significantly drops. A lot of existing works have showed
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a similar result [52), 54, 53], [55] with a variety of applications. Considering the ever-
increasing available data size, it is crucial to break such a limitation to fully utilize the
abundant data on large-scale HPC platforms.

Recently, local SGD training with periodic model averaging has been highlighted due
to its less frequent synchronizations. There have been many theoretical and empirical
studies of the algorithm [56], 57, 58, [59]. The algorithm allows to locally train multiple
models in parallel and periodically averages the model parameters among all workers.
While this approach effectively tackles the expensive communication cost issue, the de-
gree of parallelism is still limited by the number of workers and the local batch size. If
the effective batch size, the local batch size multiplied by the number of workers, is be-
yond a certain problem-dependent threshold, the convergence rate of the training loss is
significantly reduced. In addition, the training convergence rate is strongly dependent on
the number of workers. In order to guarantee a reasonably fast convergence, the number

of workers should be sufficiently small similarly to the asynchronous SGD training.
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CHAPTER 3

Overlapping Communications with Computations in Parallel
Training

In data parallel neural network training, as the number of workers increases, the
cost of gradient computation is linearly reduced while the communication cost increases.
Consequently, as the nature of strong scaling, the speedup of parallel training is supposed
to be saturated at a certain point. Especially in synchronous parallel training, the entire
gradients of the model parameters are aggregated and summed up across all workers at
every iteration causing extremely expensive inter-process communications. In order to
achieve a good speedup, it is essential to reduce the cost of such expensive and frequent
communications.

The gradients do not have data dependency across layers. Once the input data from
the previous layer and the errors back-propagated from the next layer are provided, the
gradients at the layer can be computed independently of any computations at other layers.
Likewise, the gradient communication at one layer and the gradient computations at
other layers can be performed simultaneously. By asynchronously posting the gradient
communications, therefore, a large portion of communication time can be hidden behind
the computation time, and thus a better scaling efficiency can be expected.

It is common practice that one communication is performed at one layer to average

the gradients. For instance, Horovod, one of the most popular software framework for
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data parallel training, performs one allreduce operation at every layer. However, modern
neural networks usually have decades layers or even more than a hundred layers. If the
gradients are averaged one layer after another separately, such many communications per
iteration will increase the latency cost of the communications.

In this chapter, we discuss how to organize the communications and effectively overlap
them with the backward computations in data parallel training. We propose to aggregate
the gradients across the model layers into two subsets and then average them across all
the workers using only two communications per iteration. Due to the data dependency, all
the communications posted at the current iteration should be finished before starting the
next iteration. That is, the communications can only be overlapped with the backward
computations at the current iteration. Give such a restriction, we design a communication
strategy that maximizes the degree of overlap while minimizing the number of commu-
nications per iteration. In addition, we also study how to reduce the communication
cost at the fully-connected layers by replicating the gradient computations. Compared to
other types of layers, the fully-connected layers have an enormous number of gradients
due to the dense connectivity. We propose a scalable gradient computation method that
significantly reduces the communication cost while slightly increasing the computational
cost.

Algorithm [2| presents the data parallel training algorithm that leverages the compu-
tation and communication overlap. The algorithm updates the model parameters using
the globally averaged gradients. Therefore, it is guaranteed to produce the same level of
accuracy as Algorithm [} In the following sections, we will analyze the computation and

communication patterns, as well as the data dependency of the parameters in Algorithm
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[2l Then, we validate our proposed method by comparing the communication cost between
the typical allreduce-based approach and our proposed method.

We define a set of notations to describe data structure: D,/D; are the depth of
output/input feature maps, R,/R; are the number of rows of the output/input neurons,
C,/C; are the number of columns of the output/input neurons, Ry/C} are the number of
filter rows/filter columns, K}/ K, are the number of neurons in the bottom/current layers,

and N is the number of images.

3.1. Computation Workload and Data Layout

In this research work, we focus on CNNs. Many CNN models contain both convolution
layers and fully-connected layers. We discuss and analyze the computation workload for
these two representative connection patterns.

At convolution layers, we use im2col technique [60] to rearrange the input data so that
the computation pattern is changed from convolution to matrix multiplication. At fully-
connected layers, the computation pattern is also a matrix multiplication. Therefore, the
overall computation workload is a set of data transformations and matrix multiplications.
This unified computation pattern allows an efficient implementation in practice.

im2col and col2im are well-known data transformation techniques used in open source
frameworks such as Caffe [13] and Torch [61]. Given an input data and a filter size, im2col
rearranges filter-sized blocks of the input data into columns and concatenate them into a 2-
dimensional matrix. The col2im transforms columns to blocks of the original data layout.

We customize these functions to transform the input activations from multiple images
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Algorithm 2 Data parallel training

(M: number of mini-batches, N: size of mini-batch, L: number of layers, k: number of
layers for the first gradient chunk, f: number of fully-connected layers that replicate the
gradient calculation)

1: Define s « the layer ID of the first fully-connected layer.
2: for each worker p € {0,...P — 1} parallel do

3: for each mini batch m=0,..M -1 do

4: Get the sub-mini batch Dy + & images from D™, the m'™ mini batch.

5: Initialize the local gradient sum, G =0

6: for each layer 1=0,..L — 1 do > Feed-Forward
T if le{s,..,s+ f} and m # 0 then

8: Wait for the communications on AL' and E!, posted in iteration m — 1,

to be finished (line 12 and 25).

9: Calculate weight gradients aAw/"'*/! for p™

10: Update the corresponding weights w+/.

11: Calculate activations Al using the given sub mini-batch Dz

12: ifle{s—1,...,s+ f—1} then

13: Post asynchronous communication: Allgather A..

14: for each layer 1=10-1,..0 do > Backpropagation
15: Calculate errors E..

16: if l¢{s,....,s+ [} then

17: Calculate weight gradients aw;} for Dy

18: Add the weight gradiets to the local gradient sum: G\+ = AW}.
19: if 1 is equal to k then

20: Post asynchronous communication: Allreduce G§—**~1.

21: Post asynchronous communication: AllReduce Gl**~1.

22: Wait for the communication on GJ**~! to be finished (line 19).

23: for each layer 1 =L —1,..0 do > Parameter Update
24: if 1 is equal to L — k then

25: Wait for the communication on G*~*~" to be finished (line 20).
26: for each layer i =s,..s + f do

27: Post asynchronous communication: Allgather E..

28: if I ¢{s,...,s+ f} then

29: Update parameter, w}.

into a single large matrix. Figure illustrates the workload of the first convolution layer

in feed-forward stage.
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Figure 3.1. Computing activations using im2col at the first fully-connected
layer. N training samples are transformed to a single matrix and the weight
matrix is multiplied by the transformed matrix. The result is the output
activation matrix.

In feed-forward, the first convolution layer receives the input images that are stored
in row-major order. Each mini-batch of N images is organized into a matrix of size
N x D;R;C;, which is then transformed by im2col into a D;R;C; x NR,C, matrix. Then,
the matrix is multiplied by the weight matrix of D, x D;R;C; and added by the bias
vector of D,. The output activation matrix of D, x N R,C, is computed by Equation |3.1

and 3.2

(3.1) Ot = im2col( A)
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(3.2) Al =o(W'C + BY,

where o is an activation function, A’ is the activation matrix calculated at layer I, B is
the bias vector and C'is the matrix generated by im2col. From the second convolution
layer, the input from the previous layer is an activation matrix of size D; x NR;C;. We
make im2col support both data layouts, N x D;R;C; and D; x N R;C;, so that it can be
used in any convolution layers. In Algorithm [2] these computations are performed at line
10.

In backpropagation, a convolutional layer receives a D; x N R;C; error matrix from
the previous layer. Instead of transforming the error matrix using im2col, we multiply
that by the weight matrix first and then transform the result into the output error matrix
using col2im. This approach avoids an extra layout transformation of weight matrix [60].
Note that the error matrix F and activation matrix A have the same data layout. F is

computed by Equation [3.3|and 3.4l In Algorithm [2| these computations are performed at

line 14.
(33) Ol — WH—IEH-I
(3.4) E' = col2im(C")

In addition to the errors, the gradients of parameters are calculated in backpropagation.
When calculating the gradients at layer [, the activation matrix at layer [—1 is transformed
to a D,R;Cy x NR;C; matrix using im2col. Then, the D; x NR;C; error matrix of

layer [ is multiplied by the new activation matrix. Due to the order of dimensions, the
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error matrix should be transposed. The result is D; x D,R;C gradient matrix of layer
[. The computations are shown in Equation and [3.5] and they are performed at
line 16 of Algorithm [2l The im2col performs the same transformations in feed-forward
and backpropagation. Therefore, if memory space is sufficiently large, the im2col in
backpropagation can be avoided by saving the matrix C'~! calculated in the feed-forward

stage.
(3.5) vw! = CE

The proposed computation using im2col and col2im is independent from both model
architecture and mini-batch size. Any convolution layer can be trained with only three
layout transformations and three matrix multiplications using Equation [3.1] [3.2] 13.4]
and 3.5

For the fully-connected layers, the computations can be described by Equation [3.2]
3.3, and if the matrix C is replaced with its original matrices A'"', E', and A""1,
respectively. Each fully-connected layer has a K, x K. weight matrix. When multiplying
this weight matrix by the input activation matrix, to make the memory accesses con-
tiguous, all the activations from each image should be stored in a contiguous memory
space. So, in the first fully-connected layer, we transform the input activation matrix
into a N x D;R;C; matrix. Note that K, is equal to D;R;C; at fully-connected layers.
In the backpropagation stage, to make the memory accesses contiguous when multiply-
ing the weight matrix and the input error matrix, we transform the input errors into a

D, x NR,C, matrix in the first fully-connected layer.
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3.2. Inter-process Communications

As our parallel CNN training algorithm adopts the data parallelism, each mini-batch
is partitioned among multiple computing nodes and an individual model is trained on the
assigned subset of the mini-batch in each node. The gradients should be aggregated across
all the nodes and averaged to update the weights and biases. The gradients from different
images are summed up within each node first. Then, the gradient sums are aggregated
across all the nodes. The number of weight gradients in each node, S, is calculated by

Equation
Le—1 Ly—-1
(3.6) Sw= Y DID/R\C}+ > KK
i=0 i=0
where L, and L are the number of convolution layers and fully-connected layers. Likewise,
the number of bias gradients in each node, Sy, is calculated by Equation

Li—1

L.—1
(3.7) Sy=» Di+ Y K.
=0 =0

The communication pattern in data parallel training is defined such that each node
has S, + 5, gradient sums, and they are aggregated across all nodes by a reduction sum.

Data Dependency Analysis — In the feed-forward stage, the activations are prop-
agated from the first layer to the last layer and data dependency exists between any two
consecutive layers. Likewise, in backpropagation stage, the errors are propagated from
the last layer to the first layer and data dependency exists between any two consecutive
layers. The gradients are also calculated in backpropagation using the activations of the

next layer and the errors of the current layer. Thus, the gradients are dependent on the
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Figure 3.2. Data dependency in a neural network. The activations are
propagated from left to right in feed-forward stage, and the errors are prop-
agated from right to left in backpropagation stage. The gradients are com-
puted using the activations and errors. Each arrow indicates the data de-
pendency.
activations and errors. In contrast, the gradients in different layers are independent of
each other. Figure illustrates the data dependencies in a neural network. Each arrow
in the figure indicates the data dependency.

The weights and biases of each layer should be updated before it reaches the layer in
the feed-forward stage for the next mini-batch. Since the gradients in different layers are
independent of each other, the parameter updates in different layers are also independent
of each other. In other words, the parameters can be updated out-of-order across the

layers. In the following section, we present our overlapping strategy based on these data

dependencies.

3.3. Overlapping Strategy and Implementation

Algorithm [2| has a few communications that aggregate the gradients across all nodes.

They are overlapped with computation such that the communication time is hidden behind
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the computation time as much as possible. We first propose two methods to maximize

the overlap, and then explain the communications in Algorithm [2]in detail.

3.3.1. Overlap of Communication for Gradients and Computation

To overlap communication with computation as much as possible, two factors should be
taken into account: number of communications and data size for each communication.
First, the number of communication should be minimized to reduce the overall commu-
nication cost.

Each communication consists of two times, T, and T}, startup time and transfer time.
Every communication has T, regardless of the data size. So, the overall communication
time can be reduced by having less communications. Second, in order to maximize the
overlap, the communications should aggregate as many gradients as possible before the
backpropagation is finished. Since the last communication cannot be overlapped with the
backpropagation, the data size for the last communication should be minimized.

Considering these two factors, we gather the entire gradients across all nodes with
two communications. The first communication is started after the backpropagation at
the first few layers is finished. Then, the second communication is started after the entire
backpropagation is ended. This approach enables to overlap much of the communication
time with computation time while the number of communications is considerably reduced.
In the later sections, we will call the gradients for each communication gradient chunk.

Unfortunately, the optimal size of gradient chunks cannot be known in advance. The
optimal data size varies depending on many factors such as computing power, network

speed, and model architecture. We define a new hyper-parameter, k, the number of layers
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for the first communication. The value of k should be tuned heuristically such that the
first communication is overlapped with the backpropagation as much as possible. We will

study the impact of various k£ values on the scalability in Section [3.4]

3.3.2. Communications in Data Parallel Training

Algorithm [2| has 2f + 2 communications at each iteration. In feed-forward, f asynchro-
nous communications are posted to gather the activations of the first f fully-connected
layer across all nodes at line 12. In backpropagation, once the gradients of k layers are
computed, they are summed across the local images first, and then an asynchronous com-
munication is posted to aggregate the gradient sums across all the nodes at line 19. When
the backpropagation is finished, another asynchronous communication is posted again to
aggregate the last of the gradients of the model at line 20. Finally, f asynchronous com-
munications are posted to gather the errors of the first f fully-connected layers across
all nodes at line 26. Algorithm [2| has three blocking points: line 8, 21, and 24. Before
updating parameters, it should wait until the corresponding gradients are gathered across
all the nodes. Note that the parameter update for f fully-connected layers is delayed to
the next mini-batch training.

Figure 3.3 presents an example time-flow chart of Algorithm 2] GatherA and GatherE
are f communications for gathering activations and errors respectively. Reduce W0 and
ReduceW1 are the reductions for gradient chunks. Ideally, if each communication time
is shorter than the corresponding computation time, the entire communication can be
hidden behind the computation. It is worth noting that the gradient computation and

parameter update at the first f fully-connected layers are delayed to the next mini-batch
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training. It allows to overlap GatherE with the feed-forward computation for the next

mini-batch.

3.3.3. Replicated Gradient Calculation in Fully-Connected Layers

The convolution layers are computationally more expensive than the fully-connected lay-

ers.

In majority of CNN models, a convolution layer has much more neurons than a

fully-connected layer. In contrast, the fully-connected layers cause heavier communica-

tions than the convolution layers. The fully-connected layers have full connections while

the convolution layers have local connections as explained in Section [2.I] Since each

connection has the corresponding weight parameter, a fully-connected layer typically has
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more weights than a convolution layer. For example, VGG-A [62] model has three fully-
connected layers and each of them has about 103 millions, 17 millions, and 4 millions of
weights respectively whereas the convolution layers have 5 millions of weights in total.
In data-parallelism, since the gradient is calculated with respect to the parameters, the
communication for such a huge number of gradients can be a performance bottleneck.

We replicate the gradient calculation in fully-connected layers to reduce the commu-
nication cost. First, the local activations and errors calculated using the assigned subset
of mini-batch are gathered across all the nodes. The data size of the communication is
(K!+ K!)N. Then, the gradients for all images in the mini-batch are computed in every
node. Note that if the gradients are calculated in parallel, the data size of the commu-
nication is K} K!. In modern CNNs, most likely, K} K' is much larger than (K} + K!)N
at fully-connected layers. Thus, the communication cost can be dramatically reduced
by replicating the gradient calculation. Since every node calculates the gradients for all
the image, it takes a constant time regardless how many nodes it runs on. However, the
computation time rather effectively overlaps the communication time for other gradients
and does not adversely affect the scaling performance.

In VGG-A model, for example, K} is 25,088 and K' is 4,096 in the first fully-connected
layer. Saying N is 256 which is the most popular mini-batch size in large-scale visual
recognition tasks, the values of K!K! and (K} + K!)N are 102,760,448 and 7,471,104. If
the gradient calculation is replicated in the first fully-connected layer, assuming the data
is 4-byte single-precision floating point numbers, the reduction of 392MB is replaced with

the gathering of 28.5MB.
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We define another hyper-parameter, f, the number of fully-connected layers that repli-
cate the gradient calculation. Selecting the optimal value of f is also crucial to maximize
the overlap. If the gradient calculation is replicated in all the fully-connected layers, the
early backpropagation time does not overlap any communication time. Furthermore, the
replicated computation can take so much time that the speedup is lowered. Thus, f
should be heuristically tuned to allow both a large overlap and the reasonable amount of
constant computation time. In Section we demonstrate the impact of various values

of f on the scalability.

3.3.4. Communication-Dedicated POSIX Thread

In order to explicitly control the overlap of communication and computation, we employ a
POISX thread which performs blocking MPI communications in background. Each MPI
process creates a POSIX thread at the beginning of the training. When the gradients
have been computed, the main thread sends a communication request to the commu-
nication thread using a shared message queue. The queue is protected using a POSIX
mutex. After the main thread queues its request, it broadcasts a software signal, and
the communication thread wakes up catching the signal using a POSIX conditional vari-
able. When there is no requests in the shared queue, the communication thread goes to
sleep. This software mechanism enables the communication thread to rapidly serve the
requested communications in background.

We pin the communication thread on a single physical core so that the communications
can be performed without being affected by the context switching or the cold cache effect.

On a modern CPU-based system, the best achievable scaling efficiency is much lower than
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the ideal 100% performance [63]. Even when one core is dedicated for the communication
thread, we have not observed any computation performance degradation. In addition,
it is a common practice that only a single process runs on each node for parallel neural
network training on distributed-memory systems due to the large memory footprint of
each process. So, it is reasonable to assume that only a single communication-dedicated

thread will run on each node occupying a physical core.

3.4. Performance Evaluation

We implemented a deep learning software framework in C language. The software
framework has been designed for parallel training of neural networks on distributed-
memory platforms. The data parallelism is implemented using MPI for all the inter-
process communications and non-kernel loops are parallelized using OpenMP. The kernel
functions such as matrix operations are implemented using Intel MKL library. All ex-
periments are performed on Cori Phase I, a Cray XC40 supercomputer at the National
Energy Research Scientific Computing Center. Each compute node has two sockets and
each socket contains a 16-core Intel Haswell processor at 2.3GHz. The system has Cray
Aries high speed interconnections with ‘dragonfly’ topology.

The most representative dataset for visual recognition tasks is ImageNet [64]. It
contains 1.2 million 3-channel (RGB) images of various sizes. The classification on this
dataset is considered to be extremely challenging not only because the images are high-
resolution real-world pictures, but also because the training on such a large dataset takes
an enormous execution time. We use the preprocessed ImageNet dataset that has 3 x

224 x 224 pixels in each image.
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We use VGG-A model [62], a deep CNN with 16 layers and 133 millions of parameters.
Additionally, we built three variants of VGG-A, VGG-128, VGG-256, and VGG-512.
These models have 128, 256, and 512 feature maps in convolution layers and contain 48
millions, 76 millions, and 140 millions of parameters respectively. Since the same workload
is repeated across the mini-batches, we measure the execution time to process a single

mini-batch 10 times and average the timings.

3.4.1. Single-Node Performance Study

We compared the performance of our implementation with Caffe, a popular open-source
framework for neural network training. We compiled the main branch source code [13]
with Intel MKL library. Figure [3.4] presents the single-threaded and multi-threaded per-
formances with different mini-batch sizes. We observe that our implementation provides a
shorter execution time than Caffe for all the mini-batch sizes. First, the performance gain
of the single threaded training comes from the computation pattern described in Section
[B.1] We perform only three matrix multiplications and three layout transformations for
each layer, while Caffe performs 3N matrix multiplications and 3N layout transforma-
tions. Given the same amount of workload, fewer matrix operations likely provide better
performance due to the reduced function call overhead. Second, in the multi-core training,
we have approximately 10% of additional performance gain by parallelizing im2col and
col2im. This experimental result demonstrates that the multi-node performance study

following this section is based on the reasonable level of single-node performance.
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Figure 3.4. VGG-A training time on a single node: sequential perfor-
mance (left) and multi-threaded (32 cores) performance (right). Caffe is
an open-source framework and parallel CNN is our implementation. The
experiments are performed with varying mini-batch size.

3.4.2. Multi-Node Performance Study

In this section, we present the scaling performance of our implementation with various
software settings and analyze the experimental results. All the speedup charts are the
strong-scaling results.

End-to-end training time and speedup — We compare our parallelization strat-
egy to the pure data-parallel training of CNN (DP). Three hyper-parameters are set in
advance: N (mini-batch size) is set to 256, k (number of layers for the first gradient
chunk) is set to 9, and f (number of layers that replicate gradient calculation) is set to
2. Figure (3.5 presents the execution time of one iteration and its speedup. The speedups

are calculated with respect to the number of nodes, based on the single-node performance
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Figure 3.5. VGG-A training time (left) and speedup (right) for a single
mini-batch size of 256). k is set to 9 and f is set to 2. We compare
our approach (parallel CNN) with the pure data-parallel training algorithm
(DP). The speedup is calculated with respect to the number of nodes.

presented in the previous section. We see that our parallelization strategy shows a signif-
icantly improves the scaling efficiency. ‘parallel CNN’ achieves a speedup of 62.97 on 128
nodes, while DP achieves a speedup of 19.92.

Timing breakdown - If a gradient communication is not finished before updating
the corresponding parameters, the update will be blocked until the communication is
finished. We define this blocking time as ‘measurable communication time’. To evaluate
the proposed overlapping strategy, we compared the measurable communication time as
well as the actual communication time. Figure presents the timing breakdown (y-axis
is in log scale) for training VGG-A on a single mini-batch. We see the clear gap between
the communication time and the measurable communication time. This gap implies that
our proposed methods effectively overlaps the communications with the computations.

The measurable communication time appears from 8 nodes since the computation time
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Figure 3.6. Timing breakdown for VGG-A training (mini-batch size of
256). The communication time is the accumulated time for all the inter-
process communications. Measurable communication time is a part of the
communication time which is not overlapped with any computation time.

becomes so short that it does not hide the entire communication time. As the training
scales up beyond 8 nodes, the measurable communication time increases and it ends up

becoming almost the same as the backpropagation time.

3.4.3. Computation and communication overlapping

— We investigate the scalability of the proposed algorithm with various model architec-
tures and hyper-parameter settings. There are four hyper-parameters that affect the
performance: mini-batch size, number of parameters, number of layers for each gradient

chunk, and number of fully-connected layers that replicate the gradient calculation. With
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various settings of these hyper-parameters, we evaluate the proposed overlapping strat-
egy and discuss the impact on the scalability. We define overlapping ratio, a metric for
analyzing how much communication is overlapped with the computation. The ratio R is

calculated by Equation (3.8

_ 100 x 33T - T)

3.8 R
38) ST

Y

where T} is the measurable communication time and 7} is the actual communication
time for the 4;, communication.

Scalability with respect to mini-batch size — To replicate the gradient calculation
in f fully-connected layers, the activations and errors are gathered across all the nodes.
The communication cost depends on mini-batch size since the number of the activations
and errors in each layer is (K} + K i)% Figure shows the overlapping ratio and the
speedup for VGG-A training with varying size of mini-batch-128, 256 and 512. As shown,
the larger mini-batch size allows higher overlapping ratio and it results in achieving higher
speedup. The maximum speedups are 17.82, 62.97, and 77.97, respectively.

We observe that the speedup curve drops suddenly on a certain number of nodes. The
reason is that the overlapping ratio sharply drops if the computation time becomes less
than the communication time, and the increased measurable communication time lowers
the speedup. In data parallelism, the larger mini-batch size gives more computation
workload while it does not affect the communication cost. Thus, we can expect better

scalability with a larger mini-batch size.
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Figure 3.7. Overlapping ratio (left) and speedup (right) with varying mini-
batch size. kisset to 9 and f isset to 2. The larger mini-batch size increases
the computation workload and allows the higher overlapping ratio.

Scalability with respect to number of parameters — The number of parameters
affects both the computation time and the communication time. To compare the scaling
performance across the sizes of model, we measured the performance of training VGG-
128, VGG-256 and VGG-512. We set the hyper-parameters: N to 256, k to 9, and f
to 2. Figure presents the overlapping efficiencies and the speedups. We see that
the model with more parameters achieves higher speedup. The computation complexity
of the training algorithm is (£ + F)NK?) whereas the communication cost is directly
proportional to the number of parameters. If the number of parameters is increased, due
to the N term that is independent of the number of parameters, the computation cost is
more increased than the communication cost and it allows higher overlapping ratio.

Replicating the gradient calculation in fully-connected layers — To evaluate
the impact of replicating the gradient calculation on the scalability, we measured the

overlapping raito and speedup with varying value of f. Figure|3.9/shows the performance
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Figure 3.8. Overlapping ratio (left) and speedup (right) with varying num-
ber of parameters. VGG-128, VGG-256, and VGG-512 models are trained
on a single mini-batch size of 256. The maximum speedups are 54, 61, and
80, respectively.

results. If all the fully-connected layers replicate the gradient calculation (f is 3), due
to the large number of activations and errors to be gathered across all the nodes, the
measurable communication time can be rather increased while the early backpropagation
time does not overlap any communication time. In contrast, if none of the fully-connected
layers replicate the gradient calculation (f is 0), the large gradient chunks engender the ex-
pensive communications. In our experimental environment, we achieved the best speedup
when f is set to 2.

Number of layers covered by each communication — We measured the speedup
with varying value of k-3, 6, 9, and 12. The values are selected for dividing the entire
gradients into two chunks based on pooling layers. We skipped the case where k was set
to 1 since it allowed almost no overlap and showed a similar speedup with DP. Figure

[3.10| presents the overlapping ratio and speedup. When £ is set to 3 or 6, due to the small
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Figure 3.9. Overlapping ratio (left) and speedup (right) with varying num-
ber of fully-connected layers that replicate the gradient calculation. Repli-
cating the gradient calculation at all the fully-connected layers can drop the
speedup.

size of the first gradient chunk, most of the backpropagation time does not overlap any
communication time and it gives a higher chance to have a longer measurable commu-
nication time for the second gradient chunk reduction. In contrast, if £ is set to 12, the
first gradient chunk is so large that the communication is not fully overlapped with the

backpropagation. We achieve the best overlapping ratio when £ is set to 9.

3.4.4. Comparison with Previous Works

In this section, we compare our approach with the existing works. Table summarizes
the previous works.

Comparison with parallel algorithms on GPUs — GPUs have been popularly
used to speedup the computing-intensive workload of neural network training. Many of

the large-scale deep learning applications on GPUs are based on master-slave model. The
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Figure 3.10.  Overlapping ratio (left) and speedup (right) with varying
number of layers that have the gradients for the first gradient chunk. The
gradients should be grouped into two chunks such that the overlapping ratio
of two communications are maximized.

parameter server plays a role as a master to update the parameters in a centralized fash-
ion. Our approach is a fully-distributed parallel algorithm which only performs collective-
communications such as all-to-all reduction or all-to-all gather, while the master-slave
model has point-to-point communications. We do not compare the execution time di-
rectly between our approach and the GPU-based training algorithms. First, due to the
different underlying hardware architecture, the exeuction time comparison is unfair. Sec-
ond, all the existing works have different software settings such as model architecture,
mini-batch size, and optimization method. Considering these differences, we only com-
pare the scalability instead of the execution time. FireCaffe [65] reports 47 speedup of
training with synchronous SGD. For asynchronous SGD, Strom et al. achieved a speedup
of 54.

Comparison with parallel algorithms on CPU-based clusters — Many re-

searchers have put much effort into scaling neural network training on CPU clusters
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Table 3.1. Summary of the previous works. The columns are HW/SW
settings. The Max speedup column shows the maximum speedup (left) and
how many machines are used (right).

Publication Comr;zl;l;clatwn GPU/CPU syn;éa]:s)ync Max speedup
Theano-mpi || fully-distributed GPU sync 7.3/8
GeePS master-slave GPU sync 13/16
FireCaffe master-slave GPU sync 47/128
Strom et al. || fully-distributed GPU async 54/80
Dean et al. master-slave CPU sync 12/128
Adam master-slave CPU async 20/90
Das et al. fully-distributed CPU sync 90/128

[15], 1], 43), 66]. Recently, Dipankar Das et al. [1] reported the state-of-the-art speedup
by developing PCL-DNN framework using their multi-threaded communication library
which enables to overlap communication with computation. For a mini-batch size of 512,
they trained VGG-A on 128 nodes and achieved a speedup of 90. PCL-DNN performs a
communication for each layer and overlaps the communication with the backpropagation.
Some communications are delayed to the next iteration such that the communication
is overlapped with the feed-forward too. We reproduced the work in [I] based on the
common ground such as distributed-memory parallelism, fully-distributed communica-
tion model, and synchronous SGD. To compare the overlapping strategy only, we used
the same versions of Intel MKL library and MPI. Figure presents the comparison.
DP is the baseline which has no overlap and DP+Overlap is the reproduced work. We
see that our approach scales better than the others. DP+Overlap hardly scales beyond
32 nodes due to the expensive communications at the fully-connected layers and the poor
overlapping ratio.

Recently, in order to tackle larger and more complicated datasets, the deep learning

models are getting larger and deeper. For example, modern CNNs for image classification
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Figure 3.11. Overlapping ratio (left) and speedup (right) of VGG-A train-
ing (mini-batch size of 256). DP is the baseline without overlapping,
DP+Overlap is the reproduced work based on [I], and parallel CNN is
our proposed approach.

problems usually have about one hundred layers. For image regression problems such as
image restoration and super-resolution, researchers also use very deep networks that have
more than 50 ~ 60 layers [34), 33, B5]. As shown in many existing works, it is assumed
that one communication is performed at each layer. Considering such deep networks, this
traditional approach may increase the communication cost due to the large number of
communications per iteration. Our experimental results presented in the previous section
clearly demonstrate that the proposed gradient aggregation method effectively reduces the
per-iteration communication cost. The performance comparison between DP+Overlap,
the most popular overlapping strategy, and our proposed approach also shows how the

number of communications per iteration affects the scaling performance.



61

3.5. Discussion

In this Chapter, we have proposed a communication overlapping strategy that im-
proves the scalability of neural network training. We analyzed how much communication
time can be hidden behind the computations time every iteration. Then, we have de-
signed a parallel training algorithm that leverages the overlap based on the analysis. Our
experimental results demonstrate the effectiveness of the proposed training strategy by
showing the significantly improved speedups.

Impact of overlapping on parallel training — Although synchronous parallel train-
ing suffers from the expensive communications, many researchers still scale up the deep
learning-based scientific applications in a fully synchronous way since it guarantees the
same convergence rate to the sequential training [42], 23], 24, [67]. Our overlapping strat-
egy is designed considering the data dependency that commonly exists in all types of
neural networks. Therefore, many large-scale deep learning applications can directly take
advantage of our overlapping strategy to efficiently scale up the training.

In our experiments, we also found that the scaling efficiency of the computations on
each node is not close to the linear even when using the highly-optimized math library
such as Intel MKL. It has been already known that the computational workload should
be sufficiently large to achieve a near linear speedup [63]. In neural network training,
the matrix size depends on the input data size and the filter size, and the matrices are
most likely smaller than 1024 on each dimension. So, even if we dedicate one physical
CPU core for communications, the computation performance would not be much affected.

We actually observed that the computation time is almost not affected by running the
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communication-dedicated thread pinned on a physical core while the communication time
is effectively overlapped with the computation time.

Insight regarding the communication pattern — This research work is based on
an assumption that the locally computed gradients are averaged across all the workers
using allreduce operations. In MPICH, the allreduce is implemented using the optimal
algorithm such that it is guaranteed that the communication cost is minimal regardless of
the number of processes and the data size. To the best of our knowledge, all the existing
popular deep learning software frameworks, including TensorFlow, Horovod, pyTorch, and
Caffe, use allreduce communications for data parallel training.

Depending on the mini-batch size and the model architecture, the gradient matrix
can be much larger than the activation matrix and error matrix. Especially, the fully-
connected layers have all-to-all connection patterns and they most likely cause the gradient
matrix that is much larger than the activation and error matrices. This observation gives
us an insight that the data parallelism does not necessarily have to be implemented using
allreduce operations. Instead of having each worker compute a full set of gradients from
a part of mini-batch, we can consider the opposite way such that each worker computes
a part of global gradients from the full mini-batch. This approach allows to exchange the
intermediate data such as activations and errors instead of the gradients. In this case,
the communication pattern will also be different from the traditional allreduce-based
approach.

In the following Chapter, we will analyze the communication cost of the traditional
allreduce-based data parallelism and discuss how to reduce the per-iteration communica-

tion cost by re-designing the gradient computation algorithm. Likely to the overlapping
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strategy proposed in this chapter, we also pursue a general communication strategy that

can be directly applied to all the types of neural networks.
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CHAPTER 4

Communication-Efficient Parallel Gradient Computation

Algorithm

For synchronous data parallel training, the expensive gradient communications are the
primary performance bottleneck that hinders efficient scaling. In the previous Chapter,
we have shown that the scalability of parallel training can be significantly improved by
overlapping the communications with the computations during training. As an extension
of the research work, we present a novel gradient computation algorithm that not only
further improves the degree of overlap but also reduces the communication cost complexity
at fully-connected layers.

The most popular implementation of data parallelism is allreduce-based approach.
Once every worker locally computes the gradients from the assigned training samples, the
entire gradients can be aggregated and summed up using a single allreduce operation. This
traditional data parallelism implementation is based on an assumption that the gradients
are aggregated only after all the workers have the full gradients locally computed from the
assigned subset of mini-batch. However, especially at fully-connected layers, the gradient
matrix is always larger than the activation matrix or the error matrix. Our design principle
is to perform the inter-process communications when the data size is minimized during the
gradient computation steps. We re-design the parallel gradient computation algorithm

such that the activations and errors relocated across all the workers in advance so that each
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worker can compute the gradient sums of a distinct subset of the model parameters. Then,
the gradient sums are aggregated among all the workers using allgather communications.
We will analyze and compare the overall communication cost complexity between our
approach and the allreduce-based approach.

For the later discussion, we first define a few notations: P is the number of workers, K
is the mini-batch size, N is the number of neurons at a layer, N’ is the number of neurons
at the previous layer, D is the number of filters at a convolution layer and F' is the size of
each filter. Note that our discussion considers only a single layer since the same analysis

can be applied to all the layers in the same way.

4.1. Parallel Gradient Computation Algorithm

4.1.1. Fully-Connected Layers

In data parallelism, the standard way of averaging the gradients at a fully-connected

layer can be defined as follows: Given the current layer’s error matrix of size N x % and

K
P

the previous layer’s activation matrix of size N’ x compute the gradient matrix of
size N x N’ by multiplying the two matrices (one may be transposed depending on the
data layout). Then, sum up the gradient matrix across all the workers using an allreduce
operation. Finally, the gradient sums are averaged by multiplying the reciprocal of K to
all the elements.

In our gradient computation algorithm, instead of computing a N x N’ gradient matrix
for % training samples with each worker, the activations and errors are relocated across

all the workers and a partial gradient matrix of size N x N?/ for K training samples are

computed by each worker. First, the activations are scattered across all the workers using
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Figure 4.1. Communication-efficient gradient calculation. Given an error
matrix E of size N X % and an activation matrix A of size N’ x %, E
is gathered and A is scattered across all the nodes. Then, the gathered
error ' is multiplied by the scattered activation A’ to compute the partial
gradient VW' of size N x %’. Finally, the partial gradient matrix is gathered
across all the nodes and each node ends up having N x N’ gradient matrix
VW.

an all-to-all personalized communication. The size of the scattered activation matrix
is K x %’. Second, the errors are gathered across all the workers using an allgather
operation. The size of the gathered error matrix is K x N. Then, the two matrices
are multiplied to be a N X N?/ matrix that is the partial gradient sums for K training
samples. Finally, the gradient sums are gathered across all the workers using an allgather
operation and each worker ends up having N x N’ gradient sums. Figure illustrates
the described gradient computation algorithm for fully-connected layers. Overall, the

gradient computations algorithm consists of three inter-process communications and one

computation at each layer.
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Figure 4.2. Three-step reduction for gradient averaging at convolution
layers. First the local gradients VWP are scattered across all the nodes.
The received partial gradient matrices are summed up and then gathered
across all the nodes to obtain the entire gradient sums VIV.

4.1.2. Convolution Layers

The standard way of averaging the gradients at a convolution layer is as follows: the
gradient matrix of size D x F'is computed by multiplying activations and errors within
the local reception field. Then, the gradient matrix is summed up across all the workers
using an allreduce operation. Finally, the gradients are averaged by multiplying the
reciprocal of K to all the elements.

Instead of performing a single allreduce operation, our approach is to divide it to
multiple steps of communications. First, we scatter the gradient matrix using an all-
to-all operation and each worker becomes to have P sub-matrices (each of size & x F).
Second, the P sub-matrices are locally summed up by each worker to have a single sub-

matrix of size % x F'. Finally, the sub-gradient sums are gathered across all the workers
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Table 4.1. Theoretical cost of communication patterns for large messages.

Communication pattern Latency | Bandwidth
(s) (w)
reduce-scatter P—-1 |n(P-1)/P
all-to-all P—-1 |n(P-1)/P
allgather P—-1 |nP-1)/P

using an allgather operation. Figure illustrates the proposed approach. Overall, our

approach consists of two inter-process communications and one computation.

4.2. Communication Cost Analysis

In our theoretical cost analysis, we use the cost model used in many previous works

[68, 69, 70].

(4.1) T = sa+ wp,

where s is the number of messages, w is the overall message size, « is the latency per
message, and [ is the reciprocal bandwidth. We follow all the assumptions described in
[69].

In this discussion, we refer to the theoretical communication cost for the collective
communications shown in Table 4.1l n in the table is the overall data size. Note that
the costs are calculated for the long message algorithms in [69], [71] and it is higher than
the theoretical lower bounds (pair-wise exchange algorithm is used for reduce-scatter and

all-to-all while ring algorithm is used for allgather).
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4.2.1. Fully-Connected Layers

The proposed gradient averaging algorithm for fully-connected layers has three communi-
cation steps: all-to-all for activations, allgather for errors, and another allgather for the
partial gradient sums. Based on Table the communication costs, Ty, Ty, and Ty are
computed as following equations. The overall communication cost at a fully-connected

layer, T’ is the sum of the three costs.

(4.2) T,=(P-1a+ ;ﬁ((P —1)8
(4.3) T, = (P—a+ %(P —1)8
(4.4) TQQ:(P—l)oHrN]iV/(P—l)ﬁ
(4.5) Ty =To+ Ty + Ty

In MPICH, allreduce is implemented with two different algorithms, the binomial tree
algorithm for short messages (< 2KB) and Rabenseifner’s algorithm for long messages (>

2KB) [72], [69]. The communication costs are calculated as followings.

(46) Tbinomial = lOg(P)OZ + log(P)nB

P-1
P

(47) TRabenseifner = 2lOg(P)Oé +2 nﬁa
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where n is the overall message size. Since the gradient size at a layer of modern CNNs is
most likely larger than 2KB, we only consider Rabenseifner’s algorithm in this discussion.
In practice, due to the large data size, the bandwidth term wf is dominent over the
latency cost term sa. So, we focus on the second term in Equation We can derive
the following condition by comparing the bandwidth terms of Equation and [£.7 Note
that n in Equation [4.7]is NN'.

N'K

(4.8) -

+NK < NN’

If the above condition is satisfied, our gradient computation algorithm guarantees a
cheaper communication cost than allreduce-based approach. Note that, in modern CNNs,

K is most likely smaller than N or N’ and the condition is satisfied.

4.2.2. Convolution Layers

As explained, our gradient computation algorithm for convolution layers consists of three
steps, an all-to-all operation, the computation for accumulating the received matrices,
and an allgather operation. The overall communication cost at a convolution layer, T, is

calculated by the following equation.

(4.9) T, =2(P - 1)a+2%(P— 1)3

Rabenseifner’s algorithm is implemented in MPICH using a reduce-scatter operation
followed by an allgather operation. Since n in Equation [4.7] is DF at a convolution
layer, the bandwidth term w is same as that of T.. However, our approach has three

practical benefits: First, our approach enables to efficiently sum up the gradients using
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multiple threads. To the best of our knowledge, most of the MPI implementations do
not support multi-threaded internal computation. In data parallelism, since the entire
gradients are averaged at each iteration, the multi-threaded reduction can make a sig-
nificant performance improvement. Second, the communication time can be overlapped
with the computation time across different reductions. Since our approach separates the
computation step and the communication step, the computation time can overlap the
communication time of other reductions. The overlapping strategy will be discussed in
the following section in detail. Finally, each workers can locally update only a part of

model parameters. The scalable model update is also discussed in the following section.

4.3. Scalable Model Parameter Update

The cost of model parameter update is easily overlooked, however it can be a significant
performance bottleneck in parallel neural network training. In our proposed gradient
computation algorithm, at both convolution layers and fully-connected layers, the final
communication step is allgather. We take advantage of the communication pattern to
reduce the computation complexity of model parameter update. Instead of exchanging
the gradient sums, we locally update the partial model parameters at each worker and
perform an allgather for the updated model parameters. In this way, the computation
complexity of parameter update is O(NTN/) without any extra communications.

In allreduce-based data parallelism, all the workers end up having the gradient sums
for the entire model parameters. Then, the parameters can be updated in two different
ways. On the first hand, the entire model parameters are updated at each worker. In this

case, the computation complexity of parameter update is O(NN’) which is not scalable.
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On the other hand, each worker can update a distinct subset of the parameters and the
updated parameters are aggregated across all the workers. In this case, the computation
complexity is O(NTN/) but the extra allgather should be performed after the update.
Most of the existing works perform the former method while Intel distribution of Caffe
[13] supports the latter one. To further reduce the communication cost, Intel Caffe also
supports a gradient averaging algorithm which uses reduce-scatter and allgather. The
algorithm enables the O(NTN/) computation complexity of the parameter update, however
the overall communication cost of reduce-scatter algorithm is the same as that of the

allreduce-based algorithm.

4.4. Overlapping Computation and Communication

Overlapping computation and communication is an essential technique for improv-
ing the scalability. We present an overlapping strategy based on the proposed gradient

computation algorithm.

4.4.1. Fully-Connected Layers

The proposed gradient computation algorithm has three communication steps at a fully-
connected layer. First, once the activations are ready, an all-to-all communication is
posted in the feed-forward stage. The communication time is overlapped with the com-
putation time until it comes back to the layer in the backpropagation stage. Second, an
allgather communication is posted when the errors are computed and the communication
time is overlapped with the later backpropagation time. When these two communication

steps are finished, the matrix A" and E’ in Figure are ready and the gradient sums
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Figure 4.3. An example of the ideal overlapping of 2 layers such that
the computation time at each layer is sufficiently large to overlap the com-
munication time. After the errors are back-propagated through all the
fully-connected layers, process the convolution layers first. Then, calculate
the average gradients, update the partial model parameters, and post an
allgathers communication for the updated model parameters.

are computed. Based on the scalable model update technique we proposed, a part of
model parameters are updated by each worker using the local gradient sums. Finally, an
allgather is posted to exchange the new parameters across all the workers. The commu-
nication time is overlapped with the gradient computation and parameter update times
at other layers. Figure illustrates the overlapping strategy:.

It is worth noting that the final allgathers are posted in the forward order while
the errors and the gradients are computed in the backward order. This inversed order

enables to overlap the final allgather time with the feed-forward computation time at the
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Figure 4.4. An example of overlapping computation and communication
at convolution layers: (a) shows the allreduce-based approach and (b) shows
the proposed two-step communications. (b) enables computation and com-
munication overlaps across layers.

next iteration. While the activations are computed at a layer, the communications for

later layers can be performed simultaneously since the model parameters have no data

dependency across layers.

4.4.2. Convolution Layers

At convolution layers, we overlap the computation time for summing up the gradients
and the allgather communication time. As explained, the gradients are averaged with
two communication steps at each convolution layer. Between the two communications,

the local gradients should be summed up and each worker ends up having the global
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gradient sums of a subset of model parameters. Since the gradients do not have data
dependency across different layers, the computation time can be overlapped with the
final step communication at other layers. Figure 4.2] shows example time-flow charts.
Figure .(a) is the allreduce-based approach and Figure . (b) is the proposed two-step

communications for averaging gradients.

4.5. Performance Evaluation

In order to evaluate our proposed gradient computation algorithms, we compare it
to other parallelization strategies. Recently, there are many open-source software frame-
works that support distributed-memory parallel training, such as TensorFlow [11], Intel
Caffe [13], PyTorch [12], and Horovod [73]. Most of them adopt the traditional allreduce-
based data parallelism. Intel Caffe supports a gradient averaging algorithm which uses
reduce-scatter and allgather operations. PyTorch and Horovod use ring-allreduce algo-
rithm [74] which utilizes the network bandwidth more efficiently than the other allreduce
algorithms. Since all the open-source frameworks use different data structures, compu-
tation algorithms, and communication libraries, instead of comparing them directly, we
implement the representative parallelization strategies and compare our parallelization
strategy with them. Note that we do not compare the classification accuracy since we
only consider synchronous-parallel SGD which guarantees the optimal parameter update.
For our evaluation, we perform ImageNet classification which is the most popular bench-

mark for deep learning study.
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4.5.1. Experimental Settings

We perform the experiments on Cori, a Cray XC40 supercomputer at the National Energy
Research Scientific Computing Center. Each Haswell node has two sockets and each socket
contains a 16-core Intel Haswell processor at 2.3GHz. The system has Cray Aries high
speed interconnections with ‘dragonfly’ topology.

We use ImageNet-1K dataset [64] for our experiments. ImageNet has 1.2 million 3-
channel(RGB) images of various sizes for training and 50,000 images for validation. We
isotropically rescaled all the images such that the shorter side has 256 pixels. Then, we
randomly cropped them to 224x224. Finally, all the pixels are subtracted by the mean
value.

We use two representative CNN models: VGG-16 and ResNet-50. VGG-16 is a regular
CNN model proposed by VGG group in Oxford [62]. The model consists of 8 convolution
layers followed by 3 fully-connected layers. The number of parameters is 138 million in
total. ResNet-50 is one of the most popular residual network which is a variant of the
regular CNN [33]. The model consists of 49 convolution layers and 1 fully-connected
layer. The overall number of parameters is 25.5 million. We use the mini-batch size of
256 which has been used by the original model designers in [62), [33].

We use our own parallel deep learning software framework introduced in Section [3.4]
In our software framework, a single MPI process runs on each node and each process
employs shared-memory programming model to utilize all the cores within a node. This
programming model allows to have only a single model in the memory space on each

node. When spawning threads using OpenMP, we use all 32 physical cores in each node.
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Figure 4.5. Single-node execution time for processing a single mini-batch.
VGG-16 model (left) and ResNet-50 (right) with varying mini-batch sizes.

The performance is measured on a Haswell node of Cori.

We calculate the speedup based on the number of cores. Since the mini-batch size in our

experiments is 256, using data-parallelism, we use up to 256 nodes (8192 cores in total).

4.5.2. Single-Node Performance

We begin with reporting the single node performance of our software framework. In the

later experiments, we calculate the speedup with respect to the number of compute cores

using these single node execution times. We compare our software framework, Parallel

CNN (PCNN), with the original Caffe [13] as well as the intel distribution of Caffe. Caffe

is one of the most popularly used open-source frameworks for deep learning. Intel Caffe

is a highly optimized version of Caffe for utilizing the Intel CPU hardware features. We

believe this comparison can demonstrate that our parallel performance study is based on

the reasonable level of the single node performance.
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Figure [4.5| presents the single node performance with varying mini-batch sizes. The
left-side and right-side charts show VGG-16 and ResNet-50 execution times respectively.
The performance was measured on a Haswell node of Cori. Note that we only consider
the execution time for processing a single mini-batch since the same workload is repeated
for all the mini-batches. The execution time is the average of 5 times of measurements.

We see that PCNN shows a comparable single node performance to Intel Caffe.

4.5.3. Communication-Efficient Gradient Computation

We first compare our proposed gradient computation algorithm with the traditional allre-
duce-based approach. In order to compare the communication time only, we emulate
the communication patterns using MPI primitive functions and compare the overall com-
munication times. The traditional allreduce-based data parallelism is implemented using
MPICH allreduce and ring-allreduce. The reduce-scatter algorithm in MPICH allreduce
[71], the circular algorithm in ring-allreduce [74], and our proposed algorithm are imple-
mented using MPI_Send and MPI Recv functions.

In VGG-16, the first fully-connected layer has 102,760,448 weight parameters (392
MB) which take up about 77% of the overall parameters. We measure the communication
times for averaging the gradients at the layer and compare the timings among different
approaches. Figure shows the experimental results. The left-side chart is the overall
communication time comparison and the right-side chart is the timing breakdown of our
algorithm. We see that our proposed algorithm significantly reduces the communication
time. For the first fully-connected layer in VGG-16, the number of activations at the

previous layer N’ is 25,088, the number of errors at the current layer N is 4,096, the
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Figure 4.6. Communication time comparison (left) and communication
timing breakdown (right). Our approach is compared with allreduce in
MPICH as well as ring-allreduce. The overall data size is 392MB (the
gradient size at the first fully-connected layer of VGG-16 model). Our
proposed method has a shorter communication time than the other two
methods.

mini-batch size K is 256. So, the layer satisfies the condition, LPK + NK < NN’, and
our algorithm takes a shorter communication time compared to the other algorithms.
The timing breakdown on the right-side shows how much time is spent for each of the
three communication steps in our algorithm. This result demonstrates that the proposed

algorithm has a communication complexity of O(1) for all the three communication steps.

4.5.4. Strong Scaling Performance

To evaluate the impact of the proposed algorithms on scalability, we measure the end-
to-end execution time for processing a single mini-batch and the speedup with respect to
the number of cores. We use VGG-16 and ResNet-50 models for this experiment and the

mini-batch size of 256.
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All the open-source frameworks have different overlapping strategies. For example,
Tensorflow overlaps the allreduce time with backpropagation time only whereas Intel
Caffe overlaps the communication time using both the backpropagation time and the
feed-forward time at the next iteration. So, we chose the best overlapping strategy among
them and reproduced it using allreduce-based data parallelism. We categorized all the par-
allelization strategies into 4 cases: ‘allreduce no_overlap’, ‘allreduce’, ‘pcnn_no_overlap’,
and ‘pcnn’. ‘allreduce’ is the implementation of the overlapping strategy used in Intel
Caffe, which utilizes the backpropagation time, feed-forward time and model update time
for overlapping. The allreduce communication is posted right after the local gradients are
computed at each layer. ‘pcnn’ is our software framework which uses all the proposed
algorithms. Figure presents the speedup comparison among the four parallelization
strategies. We see that, for both models, ‘pcnn’ shows a clear improvement over the
others. For VGG-16, ‘pcnn’ achieves up to 2516.36x speedup while ‘allreduce’ achieves
up to 559.12x speedup. For ResNet-50, ‘PCNN’ achieves up to 2734.25x speedup while
‘allreduce’” achieves up to 1572.01x speedup. Figure shows the execution times for
both models. The charts present the results from 512 cores (16 nodes) to clearly show the
difference among the four cases. ‘pcnn’ always out performs ‘allreduce’ and the proposed
overlapping strategy further reduces the execution time and it results in achieving the

higher speedup.

4.5.5. Overlapping Communications with Computations

The efficient overlap of computation and communication plays a key role in our paralleliza-

tion strategy. If the computation time is not long enough to hide the entire communication
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VGG-16 (left) and ResNet-50 (right).

The mini-batch size is 256. The

results show that ‘penn’ outperforms the other approaches.

time, the next computation time should wait for the communication to be finished. We

define this delay as ‘measurable communication time’. To evaluate the degree of overlap,
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Figure 4.9. Measurable communication time comparison. VGG-16 (left)
and ResNet-50 (right). The mini-batch size is 256. If the communica-
tion time is entirely overlapped with the computation time, the measurable
communication time would be zero. ‘pcnn’ always shows lower measurable
communication time than that of ‘allreduce’.

we compare the measurable communication time at each layer among different paralleliza-
tion strategies. We have the same four parallelization strategies: ‘allreduce no_overlap’,
‘allreduce’, ‘pcnn_no_overlap’, and ‘penn’.

Figure shows the measurable communication times in VGG-16 training (left) and
ResNet-50 training (right). On both charts, we clearly see that the measurable communi-
cation time is reduced by the overlapping. In VGG-16 training, the overall communication
time is considerably reduced by our gradient averaging method at the fully-connected lay-
ers and the degree of overlap is also affected by the reduced communication time. ‘pcnn’
starts to have non-zero measurable communication time on 2048 cores while ‘allreduce’
does on 512 cores. In ResNet-50 training, the measurable communication time of ‘penn’

is almost zero on 2048 cores, which means that a linear speedup can be expected. In
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Figure 4.7, on the right chart, ‘pcnn’ achieves a linear speedup on 2048 cores. In con-
trast, ‘allreduce’ has non-zero measurable communication time on 1024 cores. This result

demonstrates that our proposed methods effectively improve the degree of overlap.

4.6. Discussion

Impact on Different Types of CNINs — Depending on the type of neural network
and the model architecture, our proposed algorithms can affect the scalability differently.
First, the proposed gradient computation algorithm provides a cheaper communication
cost at fully-connected layers compared to the allreduce-based approach. Thus, if a model
has many fully-connected layers, more performance improvement can be expected. In this
research work, we used a regular CNN (VGG-16) as well as a residual network (ResNet-
50). In practice, compared to the regular CNNs, the residual networks likely have fewer
fully-connected layers. In Figure [£.7, VGG-16 shows a clearer speedup difference between
‘penn’ and ¢ allreduce’ than ResNet-50. Second, the overlapping strategy we proposed
hides the communications behind not only the backward computations but also the for-
ward computations at the next iteration. If a model has a higher ratio of computation
to communication, more communication time can be overlapped, and a higher speedup
would be achieved. In Figure [4.9] ResNet-50 shows a larger difference of measurable com-
munication time between ‘pcnn’ and ‘penn_no_overlap’ than VGG-16. Due to the dense
residual connections in ResNet-50, the ratio of computation to communication is much
higher than that of VGG-16, and it results in achieving a higher degree of overlap.

Large-Batch Training — As briefly introduced in Section 2.1 several techniques

for large-batch training [50], [47] have been proposed recently. The techniques enable
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to increase the mini-batch size achieving a higher speedup of parallel training. Given
a fixed number of training samples, the large mini-batch size reduces the number of
iterations to process the entire training dataset (epoch). Therefore, the overall number
of communications at each epoch is reduced, which results in achieving better scalability.

Unfortunately, the increased batch size does not affect the communication cost per
iteration. Synchronous parallel training algorithm computes the gradients with respect to
the entire model parameters and averages them across all the workers at every iteration.
Therefore, the overall communication cost is always the same regardless of the batch size.

It is worth noting that our communication-efficient gradient computation algorithm
and the existing large-batch training techniques tackle different problems. Our proposed
algorithms address the expensive per-iteration communication cost issue while the large-
batch training techniques aim to reduce the overall number of communications per epoch.
If Inequality is satisfied, the proposed gradient computation algorithm guarantees
the lower communication cost at fully-connected layers than that of the allreduce-based
approach. Therefore, we can consider these two approaches as orthogonal solutions for
improving the scalability of parallel neural network training. In addition, our overlapping
strategy will further improve the scalability regardless of the mini-batch size. Since the
large mini-batch size raises up the ratio of computation to communication, a higher degree
of overlap can be expected.

Another critical drawback of large-batch training is the extremely large memory foot-
print. As the batch size increases, more intermediate data such as activations, errors, and
gradients should be located in the memory space. Therefore, the entire memory footprint

rapidly grows as the batch size increases making it less practical. Recently, it is common
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to use GPU systems for large-scale deep learning applications. Considering the limited
memory space of GPUs, increasing the batch size may cause the out of memory issue for
large networks. Our proposed communication-efficient gradient computation algorithm
improves the scalability without affecting the memory footprint. Therefore, we propose
to use a moderate batch size that makes a good trade-off between the memory foot-
print and the degree of parallelism, and then employ the proposed gradient computation

algorithm to achieve the best speedup of synchronous parallel neural network training.
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CHAPTER 5

Adaptive Batch Size Adjustment Method for Scalable Deep

Learning

Deep learning has provided the state-of-the-art solutions to a variety of real-world
problems. While users enjoy its success, training deep neural networks is, in fact, an
extremely compute intensive task that can take hours or even days to complete. Consid-
ering the ever-increasing size of available training data, efficient parallelization is crucial
to finish the training in a reasonable amount of time. In data parallel synchronous SGD,
each mini-batch is evenly distributed to all workers and concurrently processed. This
parallelization strategy exhibits a strong data dependency between any two consecutive
iterations, i.e. iteration (i + 1) cannot proceed before the completion of iteration i. With-
out the possible cross-iteration concurrency, the degree of parallelism is limited by the
number of data samples in a mini-batch. Thus, increasing mini-batch size becomes an
intuitive approach to employ more workers in the hope of reducing execution time.

Several recent parallelization works presented performance results scalable up to thou-
sands of nodes using extremely large mini-batch sizes such as 8K or 16K [25], 23], [42], [24].
However, most of them also acknowledged that using large batch sizes can result in achiev-
ing a lower validation accuracy. The impact of batch sizes on the accuracy has been
statistically analyzed in [75), 46, [76]. Figure illustrates such impact using an exam-

ple of an EDSR [35] training on the DIV2K super-resolution image dataset [77]. Each
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Figure 5.1. Learning curves for EDSR training on DIV2K dataset. B is the
mini-batch size, p is the learning rate, and the numbers shown in brackets
are the number of epochs till model converged. The training terminates
when the validation accuracy has not increased for 50 consecutive epochs.
Batch sizes larger than 64 result in significantly lower accuracy.

learning curve corresponds to mini-batch sizes, ranging from 16 to 256 images. When
the batch size increases, the training converges more slowly (in the number of epochs)
and achieves a lower validation accuracy. Such similar trends of learning curves are also
shown in [50, 47, 23] [46], [78|, [76], [48]. Owing to this observation, we argue two evalu-
ation principles below in order to ensure a fair performance comparison among different

neural network training methods.

e Timing comparison is only fair among methods that produce the same model
accuracy or within a small, tolerable margin.
e The training time should be measured from the beginning until the accuracy

converges to a stable value.
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The former argues a fair comparison under the condition of the same input and output.
As shown in Figure 5.1, B = 128 and B = 256 give much lower accuracy than smaller
B values. Models produced with a lower accuracy are usually regarded of no use to
domain scientists. The latter describes the unique characteristics of neural networks
whose training process is not considered completed until the convergence condition is
met. This argument stems from our study of recent parallelization works that measured
the time up to a fixed number of epochs to represent the performance of a training method
when calculating the speedups and comparing against other methods. In this study, we
present our experimental results and analysis by following the above two principles.

We propose a parallel CNN training strategy that adjusts the mini-batch size during
the training. The common practice of neural network training is to tune the mini-batch
size to a small value that produces the best accuracy. Especially for image restoration or
super-resolution problems, the mini-batch size is typically tuned to a small value between
16 ~ 64 [79, 80, 81, 82, 34, 83|, 35|, which is too small to effectively scale up the
parallel training. Our goal is to improve the degree of parallelism without a significant
loss in validation accuracy. In our design, the training begins with a small batch size
and it gradually increases. To increase the batch size without affecting the gradient noise
scale, we also adjust the learning rate as the batch size increases. The interval of batch
size increase is adaptively determined based on the ratio of cost reduction to the distance
between the initial parameters and the latest ones. We also propose to dramatically
lower the learning rate when the training cost is flattened, to keep the generalization

performance from being degraded.
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Besides adjusting the mini-batch size and learning rate, our parallelization strategy
also focuses on the overlapping of communication and computation. In data parallel
training, the locally computed gradients are averaged among all workers before updating
the parameters. We implement the averaging with MPI all-to-all personalized communi-
cation followed by a local summation and an MPI allgather communication. By having
two separate communications, not only the backpropagation computations but also the

feed-forward computations at the next iteration can overlap the communications.

5.1. Adaptive Batch Size Adjustment Method

In this section, we discuss the problems in large batch training and our solutions to
them. We begin with describing the impact of the large batch size on the training result as
well as the potential problems. Then, we present our training strategy which addresses the

described problems by adaptively adjusting the batch size and learning rate at run-time.

5.1.1. Impact of Batch Size on Model Accuracy

In this research work, we consider minimization problems of the form

(5.1) F(w) = 5 3 flw.z),

where N is the number of training samples, w is the model parameters, z; is the
training sample, and f is the cost function of w and =.

Mini-batch SGD computes the gradients from a random subset of training samples
(which is called mini-batch). The stochastic gradients can be considered as a random

variable with mean of VF(w). Based on Central Limit Theorem, the variance of the
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random variable is inversely proportional to the mini-batch size [563]. If the variance is
large, the gradients can be considered as noisy. Smith et al. analyzed the impact of
the batch size on the gradient noise scale [75]. The noise scale describes the correlation
between the batch size and the random fluctuation of SGD dynamics. For SGD, the noise

scale is approximated by the following equation under the assumption of N > B.

N
(5.2) ]
This analysis shows that, when using a large batch size, the learning rate should be
proportionally increased to make the noise scale stay the same. The experimental results
reported in [75] demonstrate that this analysis can be applied to variants of SGD such as
momentum SGD and Adam [32]. Goyal et al. proposed ‘linear scaling rule’ in [50] that
can be explained by this analysis. The authors empirically showed that large batch sizes
can be used for ImageNet classification without losing the accuracy when the learning rate
is proportionally increased. Hoffer et al. proposed ‘root scaling rule’ in [48]. The authors
proved that the variance of the stochastic gradients is proportional to “75. Their statistical

analysis is that the variance can stay the same when the learning rate is proportional to

the square root of the batch size increase as follows.

(53) w2,

where By is the best-tuned small batch size and B is the increased batch size. Recall
that the stochastic gradient is considered as a random variable with mean of VF'(w). By

making the variance stay the same, one can expect a similar convergence rate.
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Although these two works have derived different update rules, they provide a common
insight that the reduced noise scale with an increased batch size can be compensated
by increasing the learning rate. In practice, the gradients should be sufficiently noisy to
achieve a good accuracy [53), [75), [46]. Especially, in non-convex problems such as neural
network training, the noisy gradients help the model avoid falling into a sharp minima

which poorly generalizes to the test dataset.

5.1.2. Impact of Batch Size on Parallel Performance

When using the data parallelism strategy, the degree of parallelism depends on the prob-
lem size that can be partitioned among all the available processes. In the case of CNN
training, it is the mini-batch size, as the minimum indivisible unit of workload that can be
assigned to a process is a single training sample. Data parallelism partitions the samples
in each mini-batch evenly among all the processes. The highest degree of parallelism is
thus B. Therefore, larger mini-batch size enables a parallel algorithm to run on more
processes.

Using a large batch size can also reduce the communication cost per epoch. Recall the
communication for each batch is to average the gradients across all the processes. Given
a network, the number of model parameters is independent from the batch size. In other
words, the communication amount for averaging the gradients is not affected by the batch
size. However, the number of communications is equal to the number of mini-batches in
each epoch, N/B. Increasing the value B effectively reduces the value of N/B.

In terms of computation, the amount of parameter updates per epoch iteration is

also reduced when using a large batch size. Given N training samples, the number of
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parameter updates per epoch is %, where B is the batch size. Since each parameter
update takes the same amount of computation, increasing B proportionally reduces the

number of updates.

5.1.3. Problems in Training with Large Batch Size

In this research work, we focus on two problems that can be observed in large batch

training.

e The training cost F'(w) is not effectively reduced yielding a poor convergence
accuracy.

e The model easily loses generalization performance.

First, the large batch size causes a low variance of the stochastic gradients and SGD
quickly converges providing a low convergence accuracy. This problem can be alleviated
with warm-up techniques such that the training starts with a small learning rate and
then increases it after a pre-defined number of epochs. However, if the batch size is
larger than a certain problem-dependent threshold, the cost is still not effectively reduced
[50l, 47]. Second, it is already known that large batch sizes can make the model lose
the generalization performance [46, [78]. In other words, the large batch training tends
to over-fit the model so that the cost function is well minimized while providing a low
validation accuracy.

We address these two problems by adjusting hyper-parameters during training. In the
following subsections, we discuss how to address the described problems with adaptive

batch size and learning rate control methods.
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Figure 5.2. The training cost curves (left) and 6 curves (right) for ResNet20
training on CIFAR10 datasets. All three batch sizes achieve almost the
same training cost after 140 epochs. However, higher the € curve, lower the
validation accuracy. This result demonstrates that 6 roughly shows how
sharp the minimizer is. Note that the high 6 at the beginning of ‘b=2048’
curve is due to the learning rate warmup.

5.1.4. Adaptive Batch Size Control

The main idea of our training strategy is to begin the training with a small batch size Bj
and gradually increase the batch size during the training. As the batch size increases, we
also increase the learning rate at run-time to minimize the impact of the increased batch
size on the gradient noise scale. The batch size and learning rate are adjusted after every
K epochs until the batch size reaches the maximum size B,,.

The small batch size at the early training epochs helps rapidly lower the training cost.
So, K should be sufficiently large to effectively minimize the cost function. On the other
hand, a large K indicates that the degree of parallelism is limited for more epochs due
to the slow batch size increase. Our training algorithm aims to find the smallest K that

effectively reduces the training cost.
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We define a practical metric § for estimating the sharpness of the minimizer.

Fwo) — F(w;)

(5.4) 0, =
[wo — wi|

)

where wy is the initial parameters. This metric shows the ratio of the cost reduction to the
distance between the initial parameters and the latest ones. We can roughly estimate how
sharp the current minimizer is by checking 6. Given a training cost F'(w;), lower § means
the parameters have more moved to achieve the same cost reduction. Figure [5.2| shows
the training cost curves (left) and the 6 curves (right) of ResNet-20 training on CIFAR10
dataset with varying batch sizes. Even though all the batch sizes achieve almost the same
training cost after 140 epochs, the validation accuracy varies significantly. We clearly see
that higher the 6 curve, lower the validation accuracy. This result demonstrates that 6
can be considered as an indirect metric for measuring the sharpness of the minimizer.

We increase the batch size after the 6 curve peaks so that the cost is sufficiently
reduced before the batch size starts to increase. For example, in Figure [5.2] the batch size
of 128 shows the peak # at 5" epoch. So, we set K = 5 so that the batch size increases
after every 5 epochs. We also see that the 6 curve for a large batch size peaks later than
that of the smaller batch sizes. So, by increasing the batch size gradually after every K
epochs, we can expect the batch size increases after the 6 curve of each batch size has
already peaked. Such careful adjustments also help avoid the cost fluctuation caused by
the increased learning rate.

Algorithm [3] is a CNN training algorithm with the proposed adaptive batch size
method. The algorithm iteratively traverses over all the training samples until the stop

condition is satisfied. Typically, the training stops when either the parameters are not
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Algorithm 3 SGD with Increasing Batch Size. (E: the number of epochs, N: the
number of training samples, wy: initial model parameters, pg: initial learning rate, By:
the starting batch size, B,,: the maximum batch size, f: the cost function)

1: w4 wy, B < B,y < po,n < 1, K < o0
2: while stop condition is not met do
3: fori<—1---%do

4: B < i*" mini-batch of size B.

5: Vw <+ Compute_Gradient(f, B, w).

6: Update w using Vw.

7: if K is oo then

8: Compute 0 using Eq.

9: if 6 is not changed more than 10%, then

10: K < n.

11: if (n mod K) =0 and B < B,, then

12: Increase both batch size B and learning rate
13: Increment n by 1

further adjusted due to the small gradients or a target accuracy is achieved. For each
mini-batch B, the gradients of a cost function f are computed with respect to the param-
eters at line 5. The parameters are updated using the averaged gradients at line 6. The
6 is monitored and K is determined when 6 starts to be saturated at line 7 ~ 10. In this
study, we consider 6 is saturated if it is changed less than 10%.

When increasing the batch size and learning rate at line 12, based on the statistical
analysis in [75], we adjust the batch size and learning rate together with a same factor to
make the gradient noise scale stay the same. To force the convergence of SGD, we lower
the gradient noise scale by decaying the learning rate once the training cost is saturated.

The batch size can be increased to a certain problem-dependent threshold without
affecting the accuracy [46], 50]. For example, it has been shown that, the batch size for
ImageNet classification can be increased to 4096 ~ 8192 without affecting the accuracy

[50]. We call this batch size ‘maximum stable batch size’. By setting B to the maximum
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stable batch size, we can significantly improve the degree of parallelism. In practice, the
maximum stable batch size can be easily found by comparing 12-norm of the gradients
among batch sizes. A sufficient condition for gradients to be a descent direction with

respect to the parameters is as follows [53].
IVw = VE)|| < [[Vw]

Note that the expected value of the left-hand side of the above inequality is the variance
of the gradients [46]. Assuming the above condition is satisfied at most of the iterations,
if two batch sizes give a similar 12-norm of the averaged gradients, it implies they have a
similar maximum allowed variance of the gradients and they likely have a similar conver-
gence property. In the later discussion, we assume By is set to the maximum stable batch

size found by the described method.

5.1.5. Adaptive Learning Rate Control

In Algorithm [3, the batch size increases to B, most likely before the training loss is
saturated. If the cost is minimized using such a large batch size, the model is easily
attracted to a sharp minimizer. The generalization problem of large batch training has
been already observed in many previous works [48], [46), [78].

To alleviate such effect, we intentionally lower the cost reduction speed after the first
training cost saturation by dramatically lowering the learning rate. Once the training
cost is saturated, one can decay the learning rate to further lower the cost. The decayed
learning rate enables to fine-tune the parameters rather than exploring the parameter
space, so that it further lowers the training cost and ends up converging into a minima.

We consider step-wise learning rate decay with a decay factor 5. Once the training cost
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Figure 5.3. The ratio of cost reduction to the distance between the ini-
tial parameters and the current ones, 0, for ResNet20 training on Cifar10
datasets. The proposed adaptive learning rate method keeps 6 curve from
being increased after the first learning rate decay step at 80" epoch.

is saturated, we scale down the learning rate to the initial learning rate p first and then
multiply it by 8. So, the effective learning rate decay factor becomes 5—;5 for the first
decay step. For the later decay steps, we use the fixed decay factor 3 only.

When the learning rate decays, as shown in Equation [5.2] we can expect a faster
convergence rate due to the lower noise scale of the gradients. In our training algorithm,
since the batch size has been increased to B,,, the variance of the gradients is lower
than that of the small batch training. So, the model will rapidly converge to a minima
which has a poor training cost. However, we found that such fast convergence enables
to maintain the generalization performance even using the large batch size. Figure [5.3
shows the 6 curves for ResNet-20 training on Cifarl0 dataset after the first saturation of
training cost. We see that 6 of our proposed method does not significantly increase after

the first learning rate decay step, while the other curves commonly increase. Note that
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our proposed method achieves 90.78% validation accuracy using up to 2048 batch size

while the traditional SGD with the same batch size achieves 46.29% after 140 epochs.

5.2. Parallel Training with Adaptive Batch Size

Our design is based on the data parallelism that distributes data among processes
while keeping the model parameters duplicated. Since the minimum, indivisible data
unit that can be assigned to each process is a training sample, for instance an image, we
distribute the samples in each mini-batch evenly among all the processes. In this case,
the maximum number of processes that can participate in the training is bounded by the

number of samples in each mini-batch.

5.2.1. Data Parallelism with Increasing Batch Size

Our proposed training algorithm increases the batch size during the training. There
are two possible design choices of parallelization. The first is to employ the number of
processes equal to By, the starting batch size, so that the number of local training samples
per iteration increases as the batch size increases. In this way, the number of inter-process
communications for averaging gradients per epoch decreases and it ends up having a higher
scaling efficiency. The second option is to start the training with B, active processes and
increase the number of processes as the batch size increases. This design choice exploits
the improved degree of parallelism. In this work, we chose the second option to employ
as many workers as possible and focus on improving the scaling efficiency by overlapping

the communications with the computations.
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5.2.2. Overlap of Communication and Computation

In data parallel training, at the end of each iteration, the local gradients are averaged
across all processes so that the model parameters are consistent before entering the next
iteration. Intuitively, the communication for such task can be simply implemented by an
MPI allreduce with the sum reduction operator. Many existing parallelizations adopt this
approach [42], 25] 23], 24], 50]. However, by breaking MPI allreduce into MPI all-to-all
and allgather, we can achieve a better overlapping effect for averaging the gradients.

We divide the gradient averaging operations among processes, so they can be per-
formed in parallel. In other words, each process is responsible to calculate the averages
for 1/P of gradients. The local gradients are first redistributed among processes using
an MPI all-to-all communication, so each process ends up receiving P subsets of local
gradients of size % each, where G is the number of gradients in the layer and P is the

number of processes. Once the remote gradients are received, the P gradient subsets are
element-wisely averaged into a global gradient subset of size %. The updated gradients
are then distributed among all the processes using an MPI allgather communication. At
the end, all processes obtain the same globally averaged gradients.

Breaking the allreduce into an all-to-all and an allgather has the following advantages.
For a given layer k, its all-to-all can be overlapped with the computation on calculating
gradients for layers (k — 1)---1 in the back-propagation phase. Once the gradient sum
for layer k is computed, an allgather is initiated, which can overlap with the computation
of activations for layers 1---(k — 1) in the feed-forward phase of the next iteration. The

allgather also can overlap with the gradient summation for layers (k +1)--- L, where L

is the number of layers in the network. Because the number of gradients is usually large
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for deep CNNSs, the cost of element-wise summation is significant enough to provide more
room for communication overlap. In addition, our implementation uses the MPI-OpenMP
programming model such that each MPI process parallelizes computations using OpenMP
within a node. So, our approach enables the gradient summation to employ more compute
cores available in each node. If the MPI allreduce approach were used, the gradients would
be summed by the MPI process on a single core, losing the advantage of OpenMP multi-

threading.

5.2.3. Multi-threading Implementation

We allocate one MPI process per compute node and use OpenMP on each process to
utilize all the compute cores available in a node. For the matrix operations, we use
Intel MKL library which efficiently utilizes KNL cores. We employ a POSIX thread
per compute node to handle all the MPI communication calls. By making MPI calls in
the communication-dedicated thread, we explicitly forces the overlap of the computation
and the communication. The communication thread makes blocking MPI communication
function calls. MPI standard defines the progress rule for asynchronous communications,
but MPI implementation is free to choose whether to delay the operations till the complete
functions, such as MPI_Wait and MPI Test [84), [85] [86]. In some MPI implementations,
we found that their asynchronous communications start only when MPI Wait or MPI_Test
is called. Due to this finding, we chose to use a communication-dedicated thread over
asynchronous MPI communications.

For multi-threading management, we use POSIX thread utilities for communication

between the main and communication threads. Once the gradients are computed at each
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layer, the main thread registers a communication request to a shared queue and sends a
signal to the communication thread. Then, the communication thread receives the signal
and picks a request in a first-come-first-served manner to perform the communication.
Once the communication completes, the communication thread sends back a signal to
the main thread to notify that the requested communication is finished. This mechanism
is implemented using a pthread conditional variable and a pthread mutex. Note that
contention to the mutex lock may only occur between the main and communication thread,
without any OpenMP threads involved. To avoid the context switching and possible cold
cache for the communication thread, we pin the communication thread on a physical core

to prevent it from migrating to a different core.

5.3. Related Works

Recently, a few studies have shown that a large batch size can be used for classification
tasks without much loss in accuracy [50} 47, 23], 24]. Layer-wise Adaptive Rate Scaling
(LARS) proposed in [47] adjusts the learning rate in a layer-wise way based on the
magnitude of the gradients. Our proposed training strategy can be applied to the training
with LARS independently. In [47], the authors proposed a parameter update rule based
on momentum SGD. Our proposed method does not affect the parameter update rule. By
applying LARS at line 6 in Algorithm [3], our training strategy and LARS can be employed
together without affecting each other. Therefore, when the training with LARS yields a
low accuracy because of the batch size larger than the problem-dependent threshold, our

proposed method can be employed and a higher accuracy can be expected.
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Adaptive batch size approaches have also been proposed in [53), [75] [78]. However,
these adaptive batch methods commonly control the gradient noise scale by adjusting
batch size. In other words, the small batch size should be used for a sufficient number of
epochs to produce a good accuracy and it significantly lowers the degree of parallelism.
In [54], the authors adjust the batch size and learning rate together to increase the batch
size without accuracy loss. However, their approach adjusts them based on a pre-defined

schedule which should be tuned by users, making it less practical.

5.4. Performance Evaluation

We evaluate the proposed parallel neural network training strategy using two image
regression applications and a popular classification benchmark. We use EDSR [35] for
image super-resolution with DIV2K [77] dataset and image restoration with Phantom
[87] dataset. DIV2K is dataset from NTIRE2017 Super-Resolution Challenge [77], which
contains 800 high-quality 2K resolution pictures. Phantom is a randomized version of the
classical Shepp-Logan phantom [87], where orientation, shape and size of each of the ten
ellipsoids are randomized. Phantom has 1600 training images and the size of each image
is 256 x 256. For classification experiments, we use ResNet20 [33] and Cifarl0 dataset.
CIFARI10 has 50,000 3-channel training images and each image size is 32 x 32.

Our experiments were carried out on Cori, a Cray XC40 supercomputer at National
Energy Research Scientific Computing Center (NERSC). Each compute node contains an
Intel Xeon Phi Processor 7250 that has 68 cores with support for 4 hardware threads

each (maximum 272 threads per node). AVX-512 vector pipelines with a hardware vector
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length of 512 bits are available at each node. The system has the Cray Aries high-speed
interconnections with ‘dragonfly’ topology.

We compare the performance of our proposed training algorithm with three different
training methods. First, we compare our training algorithm with the best-tuned fixed
batch size training. Second, as a representative fixed large batch size method, we compare
our training algorithm with the linear scaling rule in [50]. Finally, we also compare with
the adaptive batch size approach proposed in [75] [54]. The authors in [75] proposed to
swap the learning rate decay schedule and the batch size schedule. Similarly, the authors

in [54] used a pre-defined schedule for increasing the batch size.

5.4.1. Image Regression Experiments

Super-resolution is one of the classic computer vision problems, which aims to recover
high-resolution images from low-resolution images [79), 80, 81, 82]. Recently, many
CNNs have been designed for super-resolution, such as VDSR [34], DRRN [83], and
EDSR [35]. Image restoration is another representative image regression problem which
aims to recover original images from noisy images. Many existing works use CNNs for
image denoising or compression artifact removal [79, 80, 81, 82]. As we mentioned
earlier, these applications typically use a small batch size between 16 ~ 64 that gives
the best accuracy. So, considering the ever-increasing available data size, it is crucial to
improve the degree of parallelism by enabling the large batch size without a significant
loss in accuracy.

We compare the proposed training algorithm with the same three other training meth-

ods. Table and Table show the training configurations for super-resolution and



104

Table 5.1. Training configurations for DIV2K training

configurations batch size (b) | learning rate (u) warmup
best batch size 16 0.0001 -
linear scaling rule 256 0.0016 gradual (5 epochs)

fixed u, adaptive b 64 ~ 256 0.0004 ~ 0.0016 -
Proposed method 64 ~ 256 0.0004 ~ 0.0016 -

Table 5.2. Training configurations for Phantom training

configurations batch size (b) | learning rate (u) warmup
best batch size 16 0.0001 -
linear scaling rule 128 0.0008 gradual (5 epochs)

fixed u, adaptive b 32 ~ 128 0.0002 ~ 0.0008 -
Proposed method 32 ~ 128 0.0002 ~ 0.0008 -

image restoration experiments, respectively. We use Adam for both applications. All the
hyper-parameters were set to the same values as used in [35]. We use Peak Signal-to-
Noise Ratio (PSNR) as the accuracy metric. PSNR measures the degree of similarity of
the estimated image to the original image.

When adjusting the batch size and the learning rate in Algorithm [3| at line 12, we
double them together after every K epochs because such slow increment prevents the
training from diverging. Note that different increasing factors can be applied to the batch
size and the learning rate such as root scaling rule depending on the problem.

For the super-resolution experiments, we randomly extract a 48 x 48 patch from each
training image to generate mini-batches. The stop condition of the training is when the
validation PSNR is not increased more than 0.1 dB for 50 consecutive epochs. The left
chart in Figure |5.6| shows the DIV2K 6 curve in the first 15 epochs. The 0 peaks between
9" ~ 10" epoch. We use K = 10 for our proposed adaptive batch size method. We also
set By = 64 since the batch size larger than 64 shows a significantly lower 12-norm. The
number of DIV2K training images is 800 and 256 is the maximum power of 2 which allows

more than one parameter update per epoch. So, we set B,, = 256.
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Figure [5.4] compares the DIV2K learning curves among the four training methods
whose configurations are given in Table 5.1} The training with our method converges in
1100 epochs achieving a PSNR of 33.49 dB. The fixed best batch size training converges
in 1020 epochs and achieves a PSNR of 33.59 dB while the large batch size training with
linear scaling rule converges in 1340 epochs achieving a PSNR of 31.35 dB. The adaptive
batch method with a fixed learning rate converges in 1140 epochs achieving a PSNR of
33.51 dB. Note that we calculate 1-crop validation PSNR during the training due to the
significant evaluation time. So, the results can be slightly different from reported in [35].

For image restoration experiments, we use a modified EDSR which has 16 residual
blocks and 32 x 32 input data size. Figure [5.5| compares Phantom dataset validation
accuracy among all the training methods whose configurations are given in Table [5.2]
We found that the maximum stable batch size, B; for Phantom is 32. The right chart
in Figure shows that 6 peaks between 55" ~ 65" epoch (K = 60). Note that the
training with the linear scaling rule failed to converge in a reasonable number of epochs
when the batch size is larger than 128. So, to compare with other methods, we also set
B,, = 128.

Our training strategy achieves a PSNR of 52.47 dB in 1130 epochs. The best-tuned
batch size training converges in 930 epochs achieving a PSNR of 52.47 dB and the large
batch size training with linear scaling rule converges in 1390 epochs achieving a PSNR of
49.84 dB. The adaptive batch size with a fixed learning rate training achieves a PSNR, of
52.51 dB in 1270 epochs. In both super-resolution and image restoration experiments, our
proposed training strategy provides a comparable convergence accuracy to the best-tuned

batch size training. The performance results demonstrate that the proposed adaptive



107

0.90 —B=16 0.70 ——B=16
— B=32 — B=32
0.80 B=64 B=64
B=128 0.60 B=128
0.70 e B=256 e B=256

0.60

D D
0.40 0.30
0.30 e <
0.20
0.20
0.10 0.10
0.00 0.00
12 3 45 6 7 8 9 1011 12 13 14 15 10 20 30 40 50 60 70 80 90 100
Number of epochs Number of epochs

Figure 5.6. The 6 curves with varying batch sizes for EDSR training
on DIV2K (left) and a variant of EDSR training on Phantom (right). For
DIV2K, we chose B, = 64 and its 0 peaks at 9" ~ 10" epoch. For Phantom,
we chose B, = 32 and its 6 peaks at 55 ~ 65" epoch.

batch size and learning rate method allows to use a large batch size for as many epochs
as possible without a significant loss in generalization performance.

We also present the strong scaling performance to verify the effectiveness of the pro-
posed methods. Note that we do not compare the performance against linear scaling rule
methods, as they yield a significantly lower accuracy. We consider a direct comparison
as unfair between two methods that produce a significantly different accuracy. Figure
shows the end-to-end training time (left) and the speedup (right) of EDSR training on
DIV2K dataset. The best batch size training achieves a speedup of 9.54 using 16 nodes.
The adaptive batch size with a fixed learning rate achieves a speedup of 71.40 using up
to 256 nodes. Our proposed method achieves a maximum of speedup 81.71 and can run
on up to 256 nodes. Figure [5.8] shows the performance of the modified version of EDSR
training on Phantom dataset. The best batch size training achieves a speedup of 5.64

using 16 nodes. The adaptive batch size with a fixed learning rate achieves a speedup
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Figure 5.7. Strong scaling of EDSR training on DIV2K dataset: end-to-
end training time (left) and speedup (right). We used By = 64, B,, = 256,
and K = 10. Our method can use more compute nodes beyond 16 and up
to 256, while ‘fixed best batch size’ method can only run up to 16 nodes,
limited by the batch size of 16. ‘fixed learning rate’ has a longer execution
time than our method due to the long period of training with small batch
sizes. All the three approaches achieve a similar accuracy (33.59 dB / 33.49
dB / 33.51 dB).

of 30.79 using 128 nodes. Our proposed method achieves a maximum of speedup 42.96
using 128 nodes. The experimental results clearly show the advantage of being able to
increase the batch size. Compared to the adaptive batch size with a fixed learning rate
training, our method enables to use small batch sizes for fewer epochs, which results in

achieving a shorter training time as well as a higher speedup.

5.4.2. Performance Analysis

Communication Cost Analysis — The main reason for the speedup saturation is due
to the increasing ‘blocked’ time, as shown in Figure[5.9] In a typical strong scaling result,
the communication cost becomes higher and the per-process computation reduces, as the

number of processes increases. When the communication is not entirely overlapped with
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Figure 5.8. Strong scaling of EDSR training on Phantom dataset: end-to-
end training time (left) and speedup (right). For our proposed method, we
used B, = 32, B,, = 128, and K = 60. Our method can use more compute
nodes beyond 16 and up to 128, while ‘fixed best batch size’ method can
only run on up to 16 nodes, limited by the batch size of 16. All the three
approaches achieve a similar accuracy (52.47 dB / 52.47 dB / 52.51 dB).

the computation, the main thread is blocked until the communication thread finishes the
transfer of data required by the main thread. For instance, when the number of processes
is 128, the communication time measured at the communication thread, ‘comm’, grows
to be similar to the main thread’s computation time and ‘blocked’ starts to become
significant. When the number of processes increases to 256, such effect becomes even
more significant.

Computation Cost Analysis — Another reason for the speedup saturation is that
the computation time is not linearly reduced as the number of processes increases. From
the right chart of Figure we observe that the computation time (‘comp (B = B,,)’)
does not linearly decrease starting from 64 nodes. First, the gradient summation takes

a constant amount of time regardless of the number of processes. When averaging the
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Figure 5.9. The left is the computation time of EDSR training and the
percentages of process underutilized time. The right is the training timing
breakdown. These results correspond to the training shown in Figure

gradients, every process sums P gradient subsets and each is of size IQJ. Thus, the compu-
tation cost for the summation is constant regardless of the number of processes. As the
number of processes increases, this computation takes a larger portion of the total time.
Second, when the volume of data assigned on each process is not large enough, the kernel
operations, such as matrix multiplications, will not fully utilize the computation power.
For example, we found that the activation computation at a convolution layer of EDSR
for one sample takes ~0.0026 seconds on a single KNL node while the same operation for
two samples takes only ~0.0038 seconds. It indicates that the hardware is underutilized
when the workload is not sufficiently large, a well-known effect for KNL CPUs [88], [89].
Therefore, we suggest to assign each process at least two training samples per iteration.
Third, when the batch size is smaller than the number of processes, our method replicates

the training on % process groups (or equivalently (P — B) number of processes sitting
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idle). The left chart of Figure also shows the percentage of computation time before

the training reaches B,, from the end-to-end training time.

5.4.3. Image Classification Experiments

To verify that the proposed training method generally works for various applications,
we also perform image classification experiments. We train ResNet20, one of the most
popular deep CNN models, on CIFAR10 dataset. Table [5.3] summarizes the training
configurations. We decay the learning rate after 80 and 120 epochs with a factor of
0.1. We found the maximum stable batch size for CIFAR10 is 256 (Bs = 256) and
set B,, = 2048 which is the largest power of 2 smaller than 5% of the entire training
samples. For the batch size of 256, 6 peaks at 5* epoch as shown in Figure , SO
we set K = 5. For the adaptive batch training with a fixed learning rate, we fixed the
learning rate to 0.2 and doubled the batch size from 256 after every 30 epochs so that the
batch size ends up reaching 2048. Figure compare the training cost curves (left) and
the validation accuracy curves (right) among various training methods. Our algorithm
achieves a convergence accuracy which is < 1% lower than that of the best-tuned small
batch training (91.51% £ 0.3 and 90.79% =+ 0.2). Both the fixed large batch training
and the adaptive batch training with a fixed learning rate effectively minimize the cost
function, however they significantly degrade the generalization performance.

The validation accuracy comparison in Figure [5.10] verifies that the proposed adaptive
batch size and learning rate control methods effectively increase the batch size without a
significant loss in accuracy for classification problems as well. Before the first learning rate

decay step, the learning curve fluctuates due to the increasing learning rate. However,
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Table 5.3. Training configurations for CIFAR10 training

configurations batch size (b) | learning rate (u) warmup

best batch size 128 0.1 -
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Figure 5.10. Training loss (left) and validation accuracy (right) comparison
for ResNet20 training on CIFAR10. The fixed large batch training and the
adaptive batch training with a fixed learning rate well minimize the training
loss while they significantly degrade the validation accuracy. Our proposed
method achieves a comparable accuracy to the best-tuned small batch train-

ing.
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the validation accuracy increases dramatically after the learning rate is adjusted at 80"

epoch by the proposed method.

Figure [5.11] presents the strong scaling performance. We stopped scaling up when the

execution time increases. The training with the best-tuned batch size (128) achieves a

speedup of 3.49 only due to the high ratio of communication to computation. The adaptive

batch training with a fixed learning rate achieves the maximum speedup of 20.01 on 128

nodes. Our proposed method achieves a speedup of 64.64 using 256 nodes thanks to the

early increase of the batch size.
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Figure 5.11. The end-to-end training time (left) of ResNet20 on CIFAR10
and speedup (right) comparison. We stopped scaling when the execution
time increased. The proposed method out performs the others with a large
margin.

5.5. Discussion

In this Chapter, we have discussed how to make a good trade-off between the degree of
parallelism and the convergence rate by adaptively adjusting the mini-batch size at run-
time. We have proposed a metric for estimating the sharpness of the model parameters,
and then designed an adaptive batch size adjustment method based on the proposed
estimator. Our experimental results demonstrate that the proposed adaptive batch size
training strategy effectively improves the degree of parallelism for both regression and
classification problems.

One interesting insight from this research work is that the parallel training method
should not consider the convergence rate of the training loss as the top-priority criterion.
Even if a training method provides a convergence rate faster than the other methods, if
the model provides a poor generalization performance, such a training method would be

considered of no use for researchers or practitioners. The major difference between our
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adaptive batch size adjustment method and the existing adaptive methods is that ours
adjusts the batch size based on the estimated sharpness of the model while the others
focus on the theoretical convergence rate of the training loss.

Unfortunately, the relationship between the hyper-parameters and the generalization
performance of the model has not been well studied. Some researchers proposed a few
practical method to ‘predict’ the generalization performance of a model [90) 91, [92].
However, these works discussed how to evaluate the generalization performance of a given
model rather than how to improve the generalization performance during training. In
contrast, our study aims to achieve a good validation accuracy by adjusting the hyper-
parameters at run-time. The proposed distance metric enables to estimate the general-
ization performance of a model based on the external observations (loss value and the
distance between the initial model and the current model) rather than understanding
the internal behaviors of the network such as SGD dynamics or theoretical convergence
rate. We believe that this novel approach to better understand the training is a valuable

exploratory research direction.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we presented parallelization strategies that all aim to improve the scal-
ability of synchronous data parallel training of neural networks. First, we presented how
to effectively overlap the communications with the computations using a communication-
dedicated thread in Chapter [3] Second, we proposed a communication-efficient gradient
computation algorithm for data parallel training in Chapter 4l Finally, we explained how
to adaptively increase the mini-batch size at run-time in order to improve the degree of
parallelism in Chapter [5] All these three research works successfully addressed different
factors that hinder the scalable parallel training of neural networks.

Scalable deep learning methods are essential to tackle important large-scale real-world
problems. Even if the training scales up very well, however, if the model accuracy is
significantly dropped, such parallelization strategies will be considered to be of no use.
Therefore, parallel training algorithms should pursue both the scalability and the classi-
ficaiton /regression performance. In this thesis, we narrowed down the scope of the dis-
cussion to ‘synchronous parallel’ training based on data parallelism. Thus, we could fully
focus on how to improve the scalability by reducing the communication cost without losing
the accuracy. However, such a strict synchronous training may not be required in many
real-world applications. By partially relaxing the restriction of the synchronous parameter

updates, one can consider a practical trade-off between the model accuracy/convergence
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rate and the scalability. For instance, allowing a certain degree of asynchrony at a subset
of model layers can be an interesting research topic.

Commonly, deep learning is still considered to be premature. Many researchers call
deep learning ‘black box’ algorithm due to its poor interpretability. We believe that our
research works have contributed to better understanding the internal behaviors of neural
networks. Our proposed parallelization strategies extract useful information from the
neural networks, such as data dependency existing in the networks and the impact of
the batch size on the sharpness of the minimizer, and then fully utilize it to improve the
scalability of parallel training. Therefore, the insights from our parallel training methods
can be generally used to design any parallel deep learning methods expecting a better
scalability.

We conclude this study with a few descriptions of potential future works.

local SGD with periodic model averaging — Despite the promising scaling per-
formance of synchronous parallel training achieved in this study, fully utilizing extremely
large-scale HPC platforms for deep learning applications still remains as an unanswered
questions. We already have discussed that the large batch size can adversely affect the
generalization performance of neural networks. Recently, local SGD with periodic model
averaging has been highlighted thanks to its less frequent communications per epoch. In
addition to the cheaper communication cost, it has also been observed that local SGD
allows to use a larger effective batch size without losing the accuracy. Since multiple local
models explore the parameter space independently of each other until they are averaged,
the global model becomes to have a higher degree of noise in their parameter updates,

and thus the better generalization performance. The existing local SGD studies tend to
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focus on adjusting the averaging interval only. However, the number of workers is also a
critical factor that affects not only the convergence properties but also the generalization
performance. Especially, in order to successfully apply local SGD to real-world applica-
tions, the impact of the number of workers on the generalization performance should be
clearly explained.

I/O-efficient training — In real-world scientific applications that have an extremely
large amount of data, the I/O time can take up a large portion of the iteration time
making the compute resources idle. The size of each training sample decides the per-
iteration I1/O cost. For example, Cosmology dataset for dark matter distribution analysis
consists of training samples of size 48 MiB [23]. So, reading such large samples can take
up a large portion of iteration time degrading the scaling performance. One promising
solution is to overlap the I/O time with the training time. By employing 1/O-dedicated
thread, the data for the next iterations can be pre-fetched. Such an asynchronous I1/0
time can be hidden behind the computation time, and thus a shorter iteration time can
be expected. TensorFlow already supports the data pre-fetching, however, the feature is
implemented under an assumption that one batch is read after another. Motivated by
our own communication overlapping strategy discussed in this thesis, the I/O thread may
read several batches at once to improve the 1/O performance.

The efficiency of 1/O overlapping strongly depends on the hardware configurations.
In practice, it is very common to use accelerators such as GPUs for faster training. If
the training runs on GPU-based systems, the ratio of I/O to computation will be much
higher than that on CPU-only systems. Therefore, a larger portion of iteration time

can be reduced if the /O time is effectively overlapped with the computation time. We
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believe that, considering the ever-increasing available experimental data, an 1/O strategy
that generally works on different systems will make a huge impact on many real-world
scientific applications.

Relaxing synchronization — In our research works, we also found that the com-
munication cost could be dramatically reduced by slightly relaxing the synchronization
requirement. It has already been well shown in many previous works that a low degree
of asynchrony in the model parameters does not much affect the accuracy. To the best
of our knowledge, most of the parallel training studies are under an assumption that the
entire model parameters are considered as a single cost function. However, considering the
non-linearity between layers caused by the non-linear activation functions such as ReL.U,
the asynchronous training at one layer may not much affect the other layers. Therefore,
relaxing synchronization of a part of model parameters can lead to a practical trade-off
between the scalability and the model accuracy. The followed important questions are
how many parameters can relax the synchronization and how much the synchronization
can be relaxed while maintaining the model accuracy. By answering these questions,
deep learning applications can enjoy the communication-efficient partially-asynchronous

parallel training while achieving a good model accuracy.
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