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ABSTRACT  

Each neuron in the primary motor cortex (M1) is like a musician in an orchestra, contributing to 

a larger harmony under the constraint of a “neural manifold”—a geometric score describing the 

correlated signals produced by the neural musicians that drive movement. Despite the 

widespread recognition of the importance of M1 manifolds, the connection between their 

geometry and motor behavior remains unclear. Is the simple geometry a fundamental 

characteristic of M1, or is it an artifact resulting from the constrained laboratory tasks typically 

used in these investigations? Answering this question may enhance our understanding of how 

M1 orchestrates various movements. It also has practical implications for intracortical brain-

computer interfaces (iBCIs), tools that translate neural activity into control of external devices for 

individuals with paralysis. My first study focused on understanding the geometric properties of 

neural manifolds using simulated neural signals. In my second study, I used this methodology to 

compare the geometry of M1 manifolds of monkeys during naturalistic, unconstrained behaviors 

to that during laboratory-based behaviors. Surprisingly, the geometry of M1 manifolds was only 

slightly more complex during naturalistic behaviors. Finally, I used M1 manifolds to improve the 

“decoders” of iBCIs, the brain-to-behavior maps that typically allow the control of external 

devices, to instead enable the control of the user’s own muscles. I used two strategies based on 

the neural manifold concept: first, a decoder that mapped neural signals in the M1 manifold of 

an individual with quadriplegia directly to the muscle activity of a monkey, and second, adapting 

a decoder built solely from monkey data for human use. My findings 1) show that the simple 

geometry of M1 manifolds is not just an artifact of laboratory constraints but rather a 

computational strategy that provides a harmonized tune for reliable movement control across 

tasks and 2) illuminate the potential of iBCIs to empower individuals with paralysis to regain 

control of their own muscles, even on the real-world stage outside the laboratory. 
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CHAPTER 1: INTRODUCTION  

This chapter will begin with the clinical basis for my interest in understanding the function of the 

primary motor cortex (M1). Then, I will set the stage for the investigations that I have carried out 

with a brief overview of the anatomy and physiology of M1 and insights gained from landmark 

studies on its function in driving movement. While these studies have revealed much of what we 

know about the function of the primary motor cortex, for many years they were restricted largely 

to single-neuron analyses, which have limitations in understanding the function of populations of 

neurons. Next, I will discuss the advancements in neural recording technology and the 

subsequent paradigm shift from a single-neuron to a population-level view of cortical activity in 

the form of “neural manifolds,” a geometric representation of the collective activity of neurons. I 

will share examples from recent computational neuroscience theories on how the geometry of 

these neural manifolds, namely their dimensionality and nonlinearity, may be indicative of 

computational processing within and across brain areas. I will evaluate the benefits and 

drawbacks of tools used for computing the manifolds and their geometry. Finally, I will provide a 

summary that illustrates the knowledge gaps that the central chapters of this thesis aim to fill. 

Clinical significance of relating primary motor cortical (M1) activity to 

hand function 

Humans have incredible hand dexterity; from grabbing a cup of coffee to playing the guitar, we 

use our hands to interact intricately with our environment. Disease and accidents that result in 

loss of hand function, such as spinal cord injury, have devastating consequences. According to 

the World Health Organization (WHO), between 250,000 and 500,000 people suffer a spinal 

cord injury yearly (World Health Organization 2006, 2013). Restoration of hand function is of the 

utmost importance for individuals with quadriplegia, as highlighted by a national survey 

(Anderson 2004). Nearly 80% of individuals with quadriplegia would consent to brain surgery to 

regain some use of their hands (Blabe et al. 2015). Designing a technology capable of restoring 



17 
 

biomimetic control to all 27 degrees of freedom of the human hand is challenging, necessitating 

both novel approaches and an improved conceptual understanding of the brain’s control of 

movement. 

Functional electr ical st imulation (FES) 

One approach that helps restore function to individuals with paralysis is called functional 

electrical stimulation (FES). FES is a method employed to electrically activate paralyzed 

muscles, allowing individuals with paralysis to regain essential functions like bladder and 

respiratory control and even the recovery of voluntary movement (Lynch and Popovic 2008). 

FES systems deliver electrical pulses that contract muscles, crudely mimicking the physiological 

process of muscle contraction in non-disabled individuals (Bajd and Munih 2010; Ibitoye et al. 

2016). FES can be used to stimulate the nerves or, in cases of denervation, the individual 

muscle fibers. However, when stimulating the muscles directly, a significantly larger electrical 

amplitude is needed to contract the muscles and the recruitment order of motor units gets 

reversed, causing the non-optimal recruitment of the fatigable muscle fibers over fatigue-

resistant fibers (Bickel, Gregory, and Dean 2011; Gobbo et al. 2014). 

The first FDA-approved FES system for grasp is the Freehand, which helps restore movement 

to individuals with C5-C6 level spinal cord injury (Hobby, Taylor, and Esnouf 2001). Patients use 

their shoulders to control the system, as the shoulder muscles remain largely unaffected at this 

injury level. Sensors across both shoulders together enable movements like lateral pinch and 

palmar grasp. Similar FES systems have been developed that enable forearm and elbow 

movements as well, including the Implantable Stimulator-Telemeter-12 (Kilgore et al. 2008), 

ReGrasp (Prochazka 2017), Handmaster (Venugopalan et al. 2015), and Stimgrasp (Barelli, 

Avelino, and Castro 2022). 
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The several FES systems for grasping have their limitations. These systems typically offer only 

a small number of movements. Further, they do not facilitate individuated finger movements, 

which may be attributed to challenges in stimulating the small intrinsic muscles of the hand. 

Many FES systems employ a basic set of control signals that activates a preprogrammed set of 

stimulation commands that generate a desired movement. Such systems lack the sophistication 

needed to activate the muscles related to finger movement individually. Moreover, FES systems 

feature unintuitive control methods, such as shoulder shrugging to activate the hand, imposing a 

cognitive burden on users. Electrical stimulation that drives the muscles somewhat mimics the 

underlying physiologic process, but voluntary control does not follow the underlying cognitive 

process. Such unintuitive control systems are impractical for individuals with high-level spinal 

cord injury who may lack any residual limb or neck movement to operate them. 

Intracort ical  brain-computer interfaces ( iBCIs)  

A promising alternative that aims to restore movement to individuals with paralysis is the 

intracortical brain-computer interface (iBCI) paradigm. iBCIs capture signals from the motor 

areas of the brain, process them and convert them into instructions for output devices to help 

execute desired tasks. The primary objective of iBCIs is to provide a functional replacement. 

These functions could involve operating computers and robots or even restoring movement by 

completely bypassing the natural neuromuscular pathway from the brain to the muscles. Central 

to these iBCIs is the “neural decoder,” an algorithm that links neural activity to external 

movement variables. 

Through animal and human research, iBCIs have made significant progress over the last few 

decades. Commercial neural interface enterprises like Neuralink, Paradromics, and Synchron 

attempt to bring this promising yet currently lab-bound technology to the market (Musk and 

Neuralink 2019; Obaid et al. 2020; Opie 2021). The overwhelming majority of both research-

based and commercial iBCIs typically control the kinematics of stereotypic tasks (Hochberg et 
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al. 2006, 2012; Collinger et al. 2013; Wodlinger et al. 2015; Andersen, Aflalo, and Kellis 2019; 

Rastogi et al. 2020). In these models, researchers employ “observation-based” neural decoders, 

where the training data usually consists of motor cortical signals from users observing and 

attempting to imitate endpoint trajectories of a cursor or a robot.  

Unfortunately, this observation-based decoding is not feasible for biomimetic iBCIs that decode 

force or muscle activity, simply because these variables cannot be observed. This is a 

significant limitation for iBCIs—the iBCI performance must be enhanced to approach the 

dependability of natural muscle-based function (Shih, Krusienski, and Wolpaw 2012). To 

address this limitation, researchers are exploring the possibility of restoring control of a user’s 

own limb by combining FES and iBCIs. In this model, users can reanimate their limbs with 

thoughts by using FES on the paralyzed muscles (Popović 2003; Bryden et al. 2005; Bouton et 

al. 2016; Ajiboye et al. 2017). However, only one proof-of-concept study has used neural 

decoders that predict muscle activation as input to FES for limb reanimation (Ethier et al. 2012). 

In this study, the neural decoder was computed between neural signals from the primary motor 

cortex and the muscle activity of an able-bodied monkey performing the ball grasp task. Then, 

the researchers temporarily chemically blocked the neural pathway between the brain and 

muscles, mimicking the paralysis that results from spinal cord injury. The monkey was able to 

operate the prebuilt neural decoder, which produced muscle-like predictions that were fed into 

the FES system, allowing the monkey to perform the ball grasp task with his thoughts 

successfully. 

For individuals with paralysis with no motor output, building biomimetic, muscle-based decoders 

presents a challenge. Unlike observable kinematic trajectories on a computer screen, variables 

such as muscle activation and force cannot be observed. However, despite the lack of 

observable motor output, relevant information concerning muscle activation may exist within the 

primary motor cortex even during attempted movements. By exploring this connection, we can, 
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in theory, build muscle-based decoders. Therefore, it is critical to investigate the relationship 

between M1 activity and muscle activity resulting in hand movement even for paralyzed 

individuals, as it holds the potential to dramatically improve the quality of life for millions of 

individuals living with paralysis.  

In Chapter 4, I propose two methods for building muscle-based iBCIs for individuals with 

paralysis, the output of which can be used as control commands for FES systems that aim at 

restoring muscle function. This system relies on the computation of the “neural manifold,” for 

which I make extensive use of the tools I developed and tested in Chapters 2 and 3. 

Primary motor cortex (M1) anatomy and physiology  

Despite extensive investigation, a definitive understanding of how the motor cortex controls 

movement remains unclear. Multiple theories have emerged over many decades of motor 

neuroscience research, each proposing distinct ideas about the relationship between motor 

cortical neural activity and movement. These theories have predominantly been based on 

single-neuron recordings from M1, focusing on specific features or components of a given 

movement. First, I will review the anatomy of the primary motor cortex and highlight examples 

from landmark studies that have shaped our understanding of its physiology. 

Brief anatomy of M1 

The primary motor cortex (M1), or Brodmann Area 4 (Brodmann 1909), controls muscle 

contractions and movement. M1 was first identified by its low threshold for eliciting movements 

through electrical stimulation (Fritsch 1870; Ferrier 1873). Located along the precentral gyrus 

and extending into the central sulcus, M1 is the primary motor output of the cerebral cortex to 

the spinal cord, with direct projections to spinal circuits via the pyramidal tracts. The neurons 

that synapse to spinal circuits are known as the corticospinal neurons (Rathelot and Strick 

2009). Most corticospinal neurons synapse on spinal interneurons and have an indirect effect on 
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the spinal motoneurons that ultimately drive muscles that generate force and movement. Among 

them are the largest neurons in the central nervous system, which can reach as large as 100 

µm in diameter (Purves et al. 2008). These large corticospinal neurons, also known as Betz 

cells, can directly send their axons to anterior horn cells in the spinal cord, synapsing to 

motoneurons that drive the muscles (Betz 1874).  

The spatial arrangement of neurons in M1 exhibits the functional organization of a topographical 

map of the body (M. H. Schieber 1999; M. H. Schieber and Hibbard 1993; M. H. Schieber 

2001). For example, the medial part of M1 corresponds to leg and proximal arm movements. In 

contrast, the lateral regions are related to the distal arm and facial movements (Penfield and 

Boldrey 1937).  

There is evidence from primate studies that neurons in the sulcus are more closely associated 

with dexterous finger movements (Poliakov and Schieber 1999; Marc H. Schieber 1996; M. H. 

Schieber 1999, 2001; M. H. Schieber and Hibbard 1993). However, it may be difficult to record 

neurons from the sulcus as the recording electrodes need to be further away from the surface of 

the cortex. The data I will analyze in the upcoming chapters were collected using Utah 

multielectrode arrays from the neurons in the “hand area” on the gyrus, with neurons changing 

their activity patterns with respect to movements and generated forces about the wrist, hand, 

and to some extent, fingers. 

A brief history of the physiology of M1 

The precise function of M1 during motor behavior has been debated for decades: is the primary 

motor cortical activity associated with kinematic position and velocity, or does it encode muscle 

activity and force? How about the representation of posture and context? Although 

contemporary population-level understanding of the primary motor cortex acknowledges that 

many different classes of function are compatible, a complete understanding of how M1 
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generates movement still remains uncertain. Decades-long research on single-neuron analyses 

of the motor cortex has shown evidence for its many movement-related functions. 

One of the first pieces of evidence for the relationship of M1 with force and muscle activity came 

in the 1960s. In his groundbreaking study, Evarts investigated the relationship between M1 and 

movement variables by recording the pyramidal tract neurons in monkeys performing wrist 

deflection tasks (Evarts 1968). These neurons were more strongly correlated with force and rate 

of change of force than with displacement about the wrist. Fetz and Baker showed that 

increased muscle activation typically coincided with bursts of neuronal activity (Fetz and Baker 

1969). Another study published a year later by Humphrey and colleagues supported Evarts’ 

findings by predicting force most accurately from a small population of neurons, though position, 

velocity, and rate of change of force were also predictable to a lesser extent (Humphrey, 

Schmidt, and Thompson 1970). Toward the end of the 1970s, Thach classified M1 neurons into 

categories based on their correlation with different movement variables, such as the force of 

muscular activity, joint position, and direction of movement (Thach 1978). In the beginning of the 

1980s, Cheney and Fetz found strong correlations between cortical neurons and active torque 

during isometric tasks and tasks against various levels of elastic loads (Cheney and Fetz 1980). 

Shortly after, a new theory emerged, shifting the focus from muscle-like representations to the 

relationship between motor cortical neural activity and kinematic variables (Georgopoulos et al. 

1982, 1983; Georgopoulos, Schwartz, and Kettner 1986). Georgopoulos and colleagues found 

that most of the motor cortical neurons that modulated their activity with movement had a 

“preferred direction.” They reported that neurons changed their firing rates in an orderly manner 

according to the kinematics of the movement and maximally fired at their preferred direction 

(Georgopoulos et al. 1982). Even though there were concerns that the existence of preferred 

directions of neurons does not necessarily imply that M1 encodes kinematic variables (Mussa-

Ivaldi 1988), numerous studies adopted this Georgopoulos-esque framework, highlighting the 
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correlation between motor cortical neural activity and kinematic variables (Alexander and 

Crutcher 1990; Caminiti, Johnson, and Urbano 1990; Paninski et al. 2004; Schwartz and Moran 

2000). The dominant view at this time was that M1 encoded the kinematics of reaching 

movements more strongly than force or muscle activation. 

These kinematic studies, along with earlier experiments relating M1 activity to force and EMG, 

show the ability of M1 to encode various movement variables. Although there is no consensus 

on which variable is most reliably represented in M1, some relatively recent studies have shifted 

the focus back to muscles by demonstrating the superior robustness of M1 to EMG relationship 

over kinematics (S. H. Scott and Kalaska 1997; Sergio, Hamel-Pâquet, and Kalaska 2005; 

Morrow, Jordan, and Miller 2007; Cherian, Krucoff, and Miller 2011). On one hand, the stronger 

association of M1 activity with muscle activation is unsurprising because the neurons ought to 

activate the muscles to generate movement. On the other hand, given that the role of M1 is to 

produce movement and not necessarily represent it (Stephen H. Scott 2004; Cisek 2006), it is 

sufficient for M1 to only encode higher-level kinematic goals; such functional organization would 

allow the details about muscle activation to be carried out by the remainder of the neural 

circuitry. Despite the lack of agreement among researchers, the fact remains that many 

variables related to movement are represented in M1, including information related to the 

activation of muscles. 

Advancements in neural recording technology have enabled a population-

level view of cortical activity  

The importance of studying neurons in groups rather than in isolation has been recognized 

since the early days of neural recordings (Perkel, Gerstein, and Moore 1967a, 1967b). Yet, 

many of the studies described in the previous section relied on the investigation of single 

neurons from the primary motor cortex, partly due to limitations in recording technology. Today, 

we no longer have the same limitation. We can simultaneously record from hundreds to a few 
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thousands of neurons using multielectrode arrays with recording technologies such as Utah 

arrays (Nordhausen, Maynard, and Normann 1996; Hong and Lieber 2019) and Neuropixels 

(Steinmetz et al. 2018, 2021). We can even record from up to a million neurons using optical 

imaging techniques (Demas et al. 2021). Compared to multielectrode array recordings, the latter 

approach has significant tradeoffs between spatial and temporal resolution (Siegle et al. 2021; 

Huang et al. 2021).  

Urai and colleagues’ recent analysis indicated that the traditional "Moore's Law" concerning the 

number of neurons that can be recorded simultaneously has been surpassed by modern 

recording technologies (Stevenson and Kording 2011). Today, we can make whole-brain 

recordings from roundworms (Caenorhabditis elegans) with roughly 1,000 neurons (Schrödel et 

al. 2013) and larval zebrafish with over 100,000 neurons (X. Chen et al. 2018). Based on this 

trend, it is anticipated that capturing the activity of over a 100 million neurons in the entire 

mouse brain could be achievable within the next twenty to one hundred years (Urai et al. 2022). 

The Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative of the 

National Institute of Health, among other significant endeavors, is committed to accelerating this 

progress in the future (Saxena and Cunningham 2019). 

Large-scale recordings have led to a shift in focus from hand-picked neurons to more 

comprehensive and unbiased surveys of neural responses. As simultaneous large-scale 

measurements at a single-neuron resolution have become more feasible (Schrödel et al. 2013; 

Ahrens et al. 2013; Marblestone et al. 2013; Mann, Gallen, and Clandinin 2017; Aimon et al. 

2019; Yamamoto and Yuste 2020; Kleinfeld et al. 2019), the ability to record from many neurons 

at once has increased the statistical power, reduced the number of research animals required 

and enabled capturing rare responses or cell types (P. H. Li et al. 2015). These large-scale 

recordings have also shown that neural activity related to movement is more widely distributed 
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than previously thought (Musall et al. 2019; Stringer, Pachitariu, Steinmetz, Reddy, et al. 2019; 

Salkoff et al. 2020).  

Despite these strengths, large-scale neural data have also presented large-scale challenges in 

understanding brain function. In the next section, I will review the newer framework that 

transcends some of these limits. Central to this newer framework is the “neural manifold,” the 

low-dimensional geometry that constrains the collective activity of recorded neurons. Chapters 

2, 3, and 4 are all based on computation and interpretation of the neural manifolds in M1 from 

large-scale (roughly 100 neurons) multi-electrode array recordings from monkeys and humans. 

Neural manifolds: from a single-neuron to a population-level view of the 

brain 

How should we connect large-scale neural data to behavior and cognition? One possibility is to 

apply the single-neuron framework to large-scale recordings. Even though single neurons are 

the basic units of computation in the brain, viewing them individually is limited for multiple 

reasons. First, single-neuron analyses of potentially millions of recorded neurons are 

cumbersome; also, investigating the individual tuning properties of each of the millions of 

neurons to innumerable movement-related variables would be difficult. Second, neural 

computations such as movement planning and decision-making may only be evident at the level 

of neural populations; single neurons may not show an obvious tuning to stimulus or task 

variables (Steinmetz et al. 2019; Mante et al. 2013; Shenoy, Sahani, and Churchland 2013; 

Russo et al. 2020; Saxena et al. 2022). Therefore, Georgopoulos-esque single-neuron analyses 

are limited when the function of neural populations is in question, begetting the need for a more 

comprehensive framework. 

Even though contemporary electrophysiology allows simultaneous recordings from many 

thousands of neurons, the number of recorded neurons is still a mere drop in the ocean 
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compared to the total number of primary motor cortical neurons that are activated during 

movement. For example, millions of motor cortical neurons become activated when executing 

even a simple reaching behavior (P. Gao and Ganguli 2015; Hennig et al. 2018; Russo et al. 

2020). Yet, the activity of these small recorded populations of neurons can explain a large 

portion of task-relevant variability (Cunningham and Yu 2014; P. Gao et al. 2017). How can this 

be possible? 

This baffling observation is in part due to a critical empirical observation about the brain. Large-

scale recordings revealed that the brain does not utilize all the potential degrees of freedom 

provided by the neurons for behavior generation because neural activity tends to be correlated. 

One dominant theory about the source of this covariation is due to the constraints imposed by 

the wiring between neurons (Sadtler et al. 2014). This covariation of neural activity limits the 

possible patterns of collective neural activity; there are a lot of unexplored regions within the 

state space spanned by the activity of each individual neuron, as neural activity occupies fewer 

states than it would if each neuron contributed independently or randomly to the population 

activity (see Cunnigham and Yu 2014 for a graphical representation). The portion of the neural 

state space containing the observed states is called the “neural manifold” (see Gallego et al. 

2017 for a comprehensive review). While the term “manifold” is a mathematical term with 

precise definitions of topological continuity, certain local properties, and smoothness (J. Lee 

2010), in the context of neuroscience the term is often used loosely to describe the geometry 

within which the neural population activity is contained. 

Activi ty on the neural manifolds is indicat ive of processing within and across 

neural populations 

The neural manifold framework serves as an effective tool to connect the activity of populations 

of neurons to behavior. Many of the earlier examples of how the neural manifolds help us to 

understand neural computation came from studies on the motor cortices. Santhanam and 
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colleagues provided one of the earliest findings of a neural manifold associated with movement 

control (Santhanam et al. 2009). They analyzed population activity in the dorsal premotor cortex 

(PMd) during a delayed center-out reach task and discovered that a three-dimensional manifold 

was sufficient to identify target-specific clusters of activity during the delay period. Subsequently, 

Churchland et al. demonstrated a systematic decrease in trial-to-trial variability in the activity on 

the neural manifolds associated with PMd following stimulus onset (Churchland, Yu, et al. 

2010). Since then, there has been a surge of studies that showed that population-level activity 

on the neural manifolds is critical for understanding the function of neural circuits across many 

brain areas (Stopfer, Jayaraman, and Laurent 2003; DiCarlo and Cox 2007; Churchland et al. 

2012; Mante et al. 2013; Kaufman et al. 2014; Sadtler et al. 2014; Gallego et al. 2017; Chung, 

Lee, and Sompolinsky 2018; Remington et al. 2018; Low et al. 2018; Rubin et al. 2019; 

Chaudhuri et al. 2019; Russo et al. 2020; Nieh et al. 2021; Libby and Buschman 2021; Chandak 

and Raman 2021; Ehrlich and Murray 2022; Gardner et al. 2022).  

One could argue that the conclusions drawn from the studies mentioned above do not 

necessarily require the concept of neural manifolds. At first glance, a neural manifold may be 

misconstrued as a mere geometric simplification, seemingly providing little to no insight into the 

underlying computational principles within the recorded population. However, the importance of 

neural manifolds becomes evident when we face challenges in interpreting the intricate 

activation patterns of individual neurons, which can mask the fundamental computational 

principles at play. 

Let us take a delayed reaching task as an example, where the motor cortex must prepare for a 

movement first and execute it after a certain delay. In both the preparation and execution 

stages, individual neurons display complex firing patterns. If our analysis is limited to studying 

the responses of these individual neurons and their respective correlations with the two stages, 
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we fall short in comprehending how neural populations manage to prepare for movement 

without prematurely setting it into action. 

This is where the power of neural manifolds come into play; neural manifolds provide an 

understanding of such processes by unveiling the computational principles that may be 

overshadowed by the activities of individual neurons. To accurately answer the question of how 

neural populations prime themselves for movement without causing it, a thorough exploration of 

neural manifolds becomes essential.  

Churchland, Shenoy, and colleagues (Churchland, Cunningham, et al. 2010; Churchland et al. 

2012) employed the neural manifold concept to provide the groundwork for the phenomenon of 

how the rich and complex neural activity in both PMd and M1 during movement planning does 

not generate movement. To explain this further, Kaufman and colleagues identified a low-

dimensional neural manifold from M1 recordings and linearly related these latent variables to 

the activity of muscles (Kaufman et al. 2014). They divided the neural manifold into an output-

potent space, controlling muscle activity, and an output-null space, not directly affecting muscle 

activity. They showed that preparatory activity lies in the output-null space, serving as an 

initialization point from which the population activity evolves to generate the desired movement. 

Elsayed and colleagues expanded this analysis, demonstrating that preparatory and movement 

activities lie in orthogonal spaces within the manifold, with population dynamics evolving from 

one to the other going from preparation to movement (Elsayed et al. 2016). 

The distinction between output-potent and output-null spaces was employed by Slutzky and 

colleagues to investigate the long-term stability of brain-computer interfaces (Flint et al. 2016). 

They discovered that not all recorded neurons needed to be uniformly stable for BCI control and 

that neural activity in the output-potent space was significantly more stable than that in the 

output-null space. 



29 
 

In addition to within-area processing, the neural manifolds framework has also provided 

valuable insights into multi-region communication. Some studies have identified specific activity 

patterns in one brain area inherited from an upstream region, referred to as a "communication 

subspace" (Semedo et al. 2019). For instance, in the macaque visual system, only a small 

subset of the primary visual cortex (V1) population variability drives variability in the secondary 

visual cortex (V2). This V1-to-V2 predictive dimension is largely non-overlapping with the V2-to-

V1 feedback subspace. This example shows that V1 can route selective activity and reduce 

unwanted co-fluctuations in downstream areas; some of the activity patterns are communicated 

to downstream structures, while others remain private. It would not be possible to uncover this 

mechanism of processing and computation by looking at single neurons in isolation. In short, the 

neural manifold framework has been essential for understanding larger, multi-region neural 

recordings and promises to provide further understanding of brain-wide communication. 

A recent interest has been to investigate the similarity of neural manifolds across conditions. Are 

they completely unique to a specific task and neural population, or do they share common traits 

across different behaviors, time spans, and individuals? One study found that the activity on the 

neural manifolds associated with skilled hand and arm tasks was to some extent preserved, 

despite clear differences in the activity of recorded neurons and muscles (Gallego et al. 2018). 

Another study found the neural manifold associated with head direction in mice was consistent 

even when the animal was actively foraging or asleep, two very distinct cognitive states 

(Chaudhuri et al. 2019). Similarly, the activity on the neural manifolds was consistent across 

time for a given behavior despite changes in the recorded neurons across sessions (Gallego et 

al. 2020).  

Interestingly, the similarity of neural manifolds extends beyond tasks, cognitive state, and time. 

For example, there is some preliminary evidence that neural manifolds could be similar across 

species executing the same motor behavior. The neural manifolds computed from the motor 
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cortical recordings from human participants exhibited rotational trajectories (Pandarinath et al. 

2015) similar to those observed in monkeys (Churchland et al. 2012). Similarly, a study showed 

that latent activity on the neural manifolds of monkeys and mice performing the same behavior 

was similar and argued that manifolds arise from constraints on brain development from an 

evolutionary perspective (Safaie et al. 2022). 

The neural manifolds and the associated population activity offer valuable insights into the 

brain's process of generating movement and representing task-relevant information. Despite the 

complexity of patterns at the level of individual neurons, these manifolds remain remarkably 

consistent across various behaviors and over time. Crucially, there is preliminary evidence 

suggesting that neural manifolds might be stable across different individuals and across 

species, despite each existing in distinct coordinate frames spanned by their respective 

neurons. These consistencies suggest that neural manifolds serve as a fundamental framework 

for probing the computational principles within neural populations. 

In Chapter 4, drawing from the stability of neural manifolds across individuals, I will investigate 

the feasibility of cross-user EMG decoding, which can potentially address the limitations of 

observation-based kinematic iBCI decoders. I will first test two cross-user decoding approaches 

from one monkey to another and then attempt cross-user decoding between a monkey and a 

human. My investigations in Chapter 4 will highlight the potential of the neural manifolds for 

improving iBCI technology for transforming the lives of people living with paralysis through 

intuitive muscle-based control. 

Dimensionali ty reduct ion methods for  identifying the neural manifold  

Dimensionality reduction is a crucial step in computing the latent variables that define the neural 

manifolds, as it is a tool for simplifying a large number of correlated signals, such as the spiking 

activity of neurons. The goal of dimensionality reduction is to represent the activity of 𝑁 



31 
 

individual neurons using a smaller number of 𝑑 latent variables (Cunningham and Yu 2014). The 

low-dimensional latent variables consist of a relatively small number of components that capture 

the majority of population variance (Stopfer et al. 1997; Sadtler et al. 2014). Since 𝑑 is a smaller 

number than 𝑁, this operation is called dimensionality reduction. 

Broadly, there are two types of dimensionality reduction methods: linear and nonlinear. Based 

on the underlying assumption on the nonlinearity of the neural manifold, the appropriate method 

might be linear or nonlinear. Nevertheless, both classes of dimensionality reduction often 

necessitate an a priori knowledge of the presumed number of latent variables, 𝑑, that define the 

neural manifold. The number of latent signals is also known as the “dimensionality” of the neural 

manifold. Before discussing different types of dimensionalities, and their importance regarding 

neural computation, I will first briefly overview linear and nonlinear dimensionality reduction 

methods that have been commonly used to compute latent variables that define the neural 

manifolds (see Cunningham and Yu 2014, for a detailed review of dimensionality reduction in 

large-scale neural recordings).  

Linear dimensionality reduction methods, such as principal component analysis (PCA) and 

factor analysis (FA), are often the first choice for computing the low-dimensional activity 

associated with neural manifolds. PCA identifies an orthonormal set of direction in neural state 

space that capture the most variance in the neural data, while FA focuses on preserving shared 

variance across neurons and discarding independent variance for each neuron, which is 

considered to be spiking variability (Churchland, Yu, et al. 2010). Time series methods, like 

Gaussian process factor analysis (Yu et al. 2009), linear dynamical systems (A. C. Smith and 

Brown 2003; Kulkarni and Paninski 2007; Macke et al. 2011; Buesing, Macke, and Sahani 

2012), and hidden Markov models (Abeles et al. 1995; Seidemann et al. 1996; Ponce-Alvarez et 

al. 2012; Bollimunta, Totten, and Ditterich 2012), further leverage the sequential nature of neural 

data to provide a more refined account of temporal dynamics in population activity. These linear 
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methods have been favored due to their computational simplicity, interpretability, and robustness 

to noise. 

However, there is no prior knowledge that the neural manifold is linear. In fact, there is growing 

evidence that neural manifolds exhibit nonlinear geometries (Chaudhuri et al. 2019; De and 

Chaudhuri 2022; Gardner et al. 2022). In this scenario, the linear dimensionality reduction 

methods would yield unfaithful representations of the underlying nonlinear nature of the neural 

manifold. Fortunately, plenty of nonlinear dimensionality reduction methods exist. 

Nonlinear dimensionality reduction methods, such as Isomap (Tenenbaum, de Silva, and 

Langford 2000), locally linear embedding (Roweis and Saul 2000; Broome, Jayaraman, and 

Laurent 2006; Mitchell-Heggs et al. 2023; Saha et al. 2013), and uniform manifold 

approximation and projection (McInnes, Healy, and Melville 2018; Gardner et al. 2022) are 

designed to capture low-dimensional structure in data that may not be well represented by linear 

relationships between latent variables and observed neural signals. Although these methods 

can potentially reveal more complex relationships and hidden structures in neural data, they 

come with their own set of challenges. For example, they rely on local neighborhood estimation 

between the states in the neural state space, which can be problematic if the high-dimensional 

space is not densely sampled (Terrell and Scott 1992; Yianilos 2000; Bengio, Delalleau, and Le 

Roux 2005). In addition, there is evidence that nonlinear methods can be more sensitive to 

noise and could be harder to interpret (Boots and Gordon 2012).  

The widespread adoption of deep learning across domains of science has come to 

neuroscience as well. These days, many use nonlinear dimensionality reduction methods based 

on deep learning to compute the latent variables that define the neural manifolds. These deep 

learning methods, although computationally more expensive, have been effective in identifying 

the latent variables associated with neural manifolds. Feedforward or recurrent autoencoders 

(Hinton and Salakhutdinov 2006) have been successfully used to extract nonlinear manifolds 
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that explain significant variation in neuronal spiking activity (Sedler, Versteeg, and Pandarinath 

2022).  

Compared to traditional dimensionality reduction methods, the deep learning framework offers 

several notable advantages. First, the deep learning based architectures allow for the capture of 

highly nonlinear relationships in the data, which can be essential for uncovering potentially 

complex and nonlinear neural manifolds. Second, the deep learning framework is modular, 

which easily allows for explicitly modeling the temporal relationships within the neural data. For 

example, a static feedforward architecture could be replaced with a recurrent one, which would 

be important for capturing the inherent temporal structure and predicting the future states of 

neural activity should that be of interest. 

One widely-used deep network model that gained considerable traction in neuroscience is 

Latent Factor Analysis via Dynamical Systems (LFADS) (Pandarinath, O’Shea, et al. 2018). The 

architecture of LFADS consists of several components, including an encoder, a decoder, and a 

controller, all three comprised of recurrent neural networks (RNNs). The encoder converts the 

neural data into a set of initial conditions to a nonlinear dynamical system. The controller infers 

the inputs needed to fully specify the dynamical system. Finally, the decoder reads out the 

dynamical system to predict the input neural data. LFADS is trained using variational inference 

techniques for robustness to noise (Im et al. 2017; Kingma and Welling 2019). 

In Chapters 2 and 3, when I compute M1 manifolds associated with movement, I will use 

nonlinear autoencoders. The Joint Autoencoder network that I will present in Chapter 2 is also a 

form of a nonlinear autoencoder. 

Intrinsic and embedding dimensionality of neural manifolds  

There remain ambiguities about the structure of neural manifolds and how their structure relates 

to function. For example, neural manifolds have geometric properties, including dimensionality, 
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𝑑, and nonlinearity. The linear and nonlinear dimensionality reduction methods outlined in the 

earlier section require knowledge, or an estimate, of 𝑑 to faithfully compute the latent signals 

that evolve in the neural manifolds.  

However, it is unclear how the nonlinear shape or dimensionality of the neural manifold is tied to 

neural function. For instance, the notion of "low" in the context of what is considered “low-

dimensional” is not clear. Additionally, there remain unanswered questions regarding how 

behavioral complexity and task constraints influence the nonlinearity and dimensionality of the 

neural manifold and how these geometric parameters of the manifold relate to computational 

principles. 

Recent theoretical work related the dimensionality of neural activity to the dimensionality of a 

given task (P. Gao and Ganguli 2015; P. Gao et al. 2017). This work was largely done in the 

motor cortices, and the low dimensionality of M1 could be tied to the simplicity of motor tasks 

done in constrained laboratory environments. According to this theory, the task parameters and 

constraints that restrict task-irrelevant movement provide an upper bound to the observed 

dimensionality in M1. Indeed, studies investigating neural manifolds associated with constrained 

laboratory tasks have reported that the dimensionality of M1 manifolds ranges between 10-20 

(Sadtler et al. 2014; P. Gao et al. 2017; Russo et al. 2018; Perich, Gallego, and Miller 2018), a 

vastly smaller number than the millions of M1 neurons that change their activity during 

movement. These findings led to the description of M1 manifolds as low-dimensional. 

A fundamental question surrounding this observation is whether the observed low 

dimensionality of M1 is a simple byproduct of constraints in the laboratory. I attempt to answer 

this question in Chapter 3, where I will compute neural manifolds associated with unconstrained, 

natural behaviors and compare them to those associated with constrained movements in the 

laboratory. 
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One critique of the theory proposed by Gao and Ganguli stems from the brain’s need to process 

not only task-relevant but also task-irrelevant information. This processing could expand the 

intrinsic and embedding dimensionality of the neural manifolds beyond the inherent complexity 

of the task (Ebitz and Hayden 2021). The integration of multiple sensory, cognitive, and task-

relevant variables, even in seemingly simple decision-making tasks, could introduce 

complexities and blur the relationship between task complexity and the corresponding 

dimensionality of the neural manifolds. 

In a recent study where mice were tasked to choose an image out of two, their decisions 

incorporated factors such as the locations of the images, previous rewards, and past choices 

(C. S. Chen et al. 2021). Although the authors did not explicitly calculate the associated neural 

manifold dimensionality, they claimed that it would exceed the one-dimensional complexity of 

the task.  

Another study aimed to explicitly connect task dimensionality with neural dimensionality in 

population recordings from hippocampal neurons (Low et al. 2018). Using methods that could 

account for nonlinear relationships, they found that the hippocampal manifolds not only captured 

task-relevant information but also consistently contained one extra dimension. This observation 

was true for both one- and two-dimensional navigation tasks they investigated: the manifold was 

two- and three-dimensional, respectively. The researchers proposed that the extra dimension 

enabled neuronal population activity to trace different paths on the neural manifold even for 

identical behavioral conditions and highlighted the presence of an internal cognitive process. 

Given the unclear relationship between the geometry of neural manifolds and computational 

processing, Jazayeri and Ostojic introduced just last year a new theory that is already gaining 

rapid recognition (Jazayeri and Ostojic 2021). In this theory, the authors split the notion of 

dimensionality into two complementary concepts: intrinsic and embedding dimensionality. In this 

model, intrinsic dimensionality reflects the nature of the information encoded in collective neural 
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activity, while embedding dimensionality reveals how that information is processed by neural 

circuits. While they are related, these two notions of dimensionality provide distinct insights into 

how neural populations represent and process information. Contrasting intrinsic and embedding 

dimensionality of neural manifolds may offer a promising perspective for understanding brain 

function. 

According to this theory, the intrinsic dimensionality of neural activity is largely determined by 

sources of information related to incoming stimuli, ongoing movements, and other cognitive 

latent variables such as prior experiences and future expectations involving the task. However, 

these sources of information are not represented equally across neural populations. For 

example, in early sensory areas, intrinsic dimensionality would be more closely associated with 

incoming visual stimuli in the primary visual cortex (Stringer et al. 2021; Zhao and Park 2017; 

Ringach 2019), or the organization of chemical odors in the olfactory areas (Pashkovski et al. 

2020; Chandak and Raman 2021). In contrast, the intrinsic dimensionality of the neurons in the 

motor cortex would be more closely associated with ongoing movements (Churchland, Yu, et al. 

2010; Churchland et al. 2012; Sussillo et al. 2015; Kato et al. 2015) than variables like context 

and upcoming movements, the latter of which are well represented in simultaneously recorded 

neurons from the supplementary motor cortex (Russo et al. 2020; Zimnik and Churchland 

2021). Therefore, investigating the intrinsic dimensionality of neural manifolds could reveal how 

a population encodes information. 

Intrinsic dimensionality, linked to the potentially nonlinear structure in collective neural activity, 

provides insights into how a population represents stimuli, movements, and other important 

latent variables. However, it does not give much detail about how these variables might be 

processed. The downstream relay of latent variables relies on their positioning, or embedding, 

within the neural state space. Embedding dimensionality measures the linear dimensions that 



37 
 

govern these latent variables and can potentially inform insights into downstream processing 

mechanisms (Badre et al. 2021). 

From this perspective, the embedding dimensionality informs the computational trade-off 

between generalizability and expressivity (or flexibility) of neural representations (Rigotti et al. 

2013; Fusi, Miller, and Rigotti 2016; Maass 2016; Cohen et al. 2020). When the embedding 

dimensionality is high, it facilitates the transmission of information encoded by a neural 

population downstream without interference, which enhances the flexibility of how downstream 

populations can access the encoded information.  

To illustrate this, imagine a neural population that encodes three distinct states: apples, 

penguins, and pears. If these states are encoded in a large number of dimensions, downstream 

populations could employ simple linear decoders to extract information from arbitrary groups of 

states. For instance, it would be easy to access apples and penguins together while excluding 

pears (Ebitz and Hayden 2021). In contrast, if these states are embedded in fewer dimensions, 

it would be harder to linearly distinguish the group containing apples and penguins without also 

including pears. Therefore, a neural population offering a high level of flexibility would have 

higher embedding dimensionality than a population lacking it, even if populations may encode 

the same latent variables. 

The hypotheses about brain information processing can be viewed as different forms of 

embedding. For example, if distinct sets of neurons perform unique functional roles, the latent 

variables would exist in subspaces governed by these subsets of neurons alone. Conversely, 

when different information sources are processed by groups of neurons that overlap, the 

resulting embeddings no longer align with the principal axes of the state space. This type of 

processing, also known as mixed selectivity (Rigotti et al. 2013), has been strongly associated 

with the high embedding dimensionality observed in brain areas related to cognition (Fusi, 

Miller, and Rigotti 2016; Langdon, Genkin, and Engel 2023). 
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Interpreting embedding dimensionality requires careful thought. This concept is especially 

relevant when information is relayed downstream linearly; one could imagine that even if apples, 

penguins, and pears are embedded in very few dimensions, a highly nonlinear decoder could 

group apples and penguins while excluding pears. Although the evidence revised earlier 

regarding the linear relay of information downstream is abundant, it is important to remember 

that this could be an oversimplification of how populations communicate. The linearity 

assumption might be too simplistic and may fail to truly represent the brain's intricate and 

potentially nonlinear processing methods. As such, in our attempt to link embedding 

dimensionality to how the brain processes information, we must proceed with caution, as these 

concepts have not yet been fully elucidated. 

In summary, although our understanding of this novel theory is still growing and developing, 

emerging evidence indicates that comparing the intrinsic and embedding dimensionality of 

neural structures can help us better describe how neurons carry and process information. 

Intrinsic dimensionality provides insight into the type of information being processed—the 

"what." On the other hand, embedding dimensionality relates to the way this information is 

arranged for further processing—the "how." By examining these two aspects of dimensionality 

within and between brain regions during certain behaviors, we can gain insights into the 

computations performed by these neural populations. 

In Chapter 3, I will directly apply the concepts of intrinsic and embedding dimensionality to 

investigate the geometry of M1 manifolds and explore how it might process task constraints—is 

the low intrinsic and embedding dimensionality of M1 due to the constrained tasks in the 

laboratory setting, or rather it is part of a computational strategy? The answer to this question 

has implications for translating M1-to-muscle iBCIs outside the laboratory. In Chapter 4, I will 

use the estimates of embedding dimensionality to accurately interpret muscle-related 
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information from M1 structures across different individuals, which will serve as a proof-of-

concept study aimed at developing intracortical iBCIs to work across users. 

Estimating intrinsic and embedding dimensionality  

Estimating the intrinsic and embedding dimensionality of neural manifolds can be a challenge 

when dealing with datasets that contain noise and nonlinearity (Camastra and Staiano 2016). In 

the context of neural recordings, noise can stem from various sources, including sensory 

transduction, voltage-gated ion channels, synapses, and experimental factors associated with 

the recording setup (Faisal 2008). To complicate matters further, the accuracy of dimensionality 

estimators also relies on the number of available features (i.e., the number of recorded neurons) 

and the number of samples (Camastra 2002, Camastra 2003), the latter of which is often limited 

in experimental settings. To uncover neural manifolds and connect their geometry to function, 

we need robust methods that can handle these challenges. 

Fortunately, large-scale neuroscience is not the only field in need of robust dimensionality 

estimators. “Big data” comes in many forms and can often be described with lower-dimensional 

representations without significant information loss (Wolfe 2013; Fan, Han, and Liu 2014; 

Snášel et al. 2017; Z. Sun et al. 2020). To address this need, many groups have developed 

dimensionality estimators and benchmarked them on synthetic datasets with known ground 

truth geometric properties (Camastra and Staiano 2016; Campadelli et al. 2015; Denti et al. 

2022; Pope et al. 2021; Ansuini, Laio, and Macke 2019; Rozza et al. 2012; C. Li et al. 2018; 

Kégl 2002; Einbeck and Kalantana 2013; Lombardi et al. 2011; Facco et al. 2017; Ceruti et al. 

2014; Albergante, Bac, and Zinovyev 2019). 

We can broadly classify dimensionality estimators as linear and nonlinear based on their 

assumptions on the relationship between the low-dimensional latent signals and the high-

dimensional data. For my purposes, the data features are the activity of simultaneously 
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recorded neurons. Linear and nonlinear methods would be more appropriate for estimating the 

embedding and intrinsic dimensionality of the neural manifold, respectively. In Chapter 2, I will 

benchmark a battery of linear and nonlinear dimensionality estimators on simulated neural data 

with known ground truth properties. I will expand on the linear and nonlinear dimensionality 

estimation methods in detail in the Methods section of Chapter 2, but I will present the intuition 

behind how they work in the next two sections. In Chapters 3 and 4, I will apply the most 

accurate dimensionality estimation algorithms we found in simulated data to experimental M1 

recordings from monkeys and humans. 

Estimating the embedding dimensional i ty of the neural manifold  

When discussing dimensionality reduction, I referred to PCA as a popular linear strategy. PCA 

can also be used for dimensionality estimation, particularly in relation to the embedding 

dimensionality of the neural manifold. Although PCA offers a structured approach to 

dimensionality reduction, it does not offer a definitive strategy for identifying the embedding 

dimensionality of the neural manifold. Often, it necessitates 1) arbitrarily selecting a variance 

threshold that we aim to retain in the low-dimensional data representation, 2) ordering the 

principal components from the most to least amount of variance of the original data they 

individually capture, and 3) counting the number of principal components that are needed to 

achieve the threshold. 

The initial step of setting a variance threshold directly influences the number of principal 

components that are retained. A lower variance threshold would lead to fewer components and 

influence the final estimate of the embedding dimensionality of the underlying manifold. 

However, more sophisticated PCA-based algorithms such as Participation Ratio (PR) (P. Gao et 

al. 2017) and Parallel Analysis (PA) (Horn 1965; Buja and Eyuboglu 1992) offer a more 

principled approach, as these methods circumvent the need for an arbitrarily selected variance 

threshold. PR uses the relative decline in the variance explained for each successive principal 
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component to yield an estimate. On the other hand, PA requires repeatedly shuffling data along 

the sample axis independently for each feature and applying PCA on the shuffled data to 

generate null distributions for the explained variance by each principal component. Then, one 

would identify the principal components in the original data that account for more variance than 

their corresponding null distributions. Therefore, PA yields an embedding dimensionality 

estimate by determining the number of principal components that contribute significantly to the 

data's overall variance beyond what might be expected by chance alone. 

In Chapter 2, I will first generate neural data from simulated neural manifolds with known ground 

truth and then evaluate the performance of these rigorous PCA-based methods against the 

commonly used practice of arbitrarily setting a variance threshold and counting the number of 

leading principal components. 

Estimating the intr insic dimensionali ty of the neural manifold  

Linear algorithms such as PCA with a variance threshold and its variants like PR and PA may 

perform well in estimating the embedding dimensionality of the neural manifold. However, they 

overestimate the intrinsic dimensionality. The extent of this overestimation depends on the 

extent of nonlinearity of the neural manifold (Camastra and Staiano 2016; Tenenbaum, de Silva, 

and Langford 2000; Hinton and Salakhutdinov 2006). In these cases, nonlinear dimensionality 

estimators become more appropriate for estimating the intrinsic dimensionality of the neural 

manifold.  

The nonlinear dimensionality estimators usually exploit the patterns in the local distances 

between data points and yield an estimate based on an implicit comparison to the patterns seen 

in well-studied synthetic manifolds with known dimensionality. For example, one of these 

patterns is the distributions of the distances between neighboring points in the manifold, which 

is shown to be informative of the intrinsic dimensionality (A. N. Gorban and Tyukin 2018). In 
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Chapter 2, I will benchmark some of the well-studied intrinsic dimensionality estimators such as 

Correlation Dimension (Grassberger and Procaccia 1983; Grassberger 1983), Levina-Bickel 

Maximum Likelihood Estimation (Levina and Bickel 2004), Two Nearest Neighbors (Facco et al. 

2017), and Fisher Separability Analysis (Albergante, Bac, and Zinovyev 2019) on simulated 

neural datasets. 

Summary 

From simple actions like grasping a cup to complex movements such as playing the guitar, our 

ability to perform highly dexterous motor tasks is driven by M1. Understanding how M1 

generates these movements has been a central part of modern neuroscience since the 19th 

century. Contemporary recording techniques, such as multielectrode array recordings, have 

allowed us to simultaneously record the firing activity of hundreds to thousands of neurons on 

this quest. While there are millions of active M1 neurons, our recordings of just a small fraction 

of these neurons have been remarkably predictive of variables related to movement, such as 

kinematics, force, and muscle activity. This observation raises a critical question: how is it 

possible that we can meaningfully understand the relationship between M1 activity and motor 

behavior despite substantially undersampling the active neurons? 

The answer to this question lies in the correlated activity of neurons; rather than exhibiting 

entirely unique activity patterns, neurons fire together in patterns. If we construct a coordinate 

system where each axis corresponds to the firing activity of individual neurons, the time-varying 

activity of the population is constrained to a much smaller geometric space spanning fewer 

dimensions than the number of recorded neurons, leaving most of the coordinate system 

unexplored. This low-dimensional structure encapsulating the collective activity of neurons is 

referred to as the “neural manifold.” 
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Over the last decade, neural manifolds have been a common observation across various brain 

areas including M1. These manifolds have offered a powerful framework for understanding 

computations within and across populations of neurons, addressing some of the limitations of a 

single-neuron framework. For example, the complex activity of individual M1 neurons clouded 

our understanding of how the neurons in M1 prepare for movement without executing it. The 

neural manifold framework showed us that the preparatory and movement-related epochs are 

organized in orthogonal directions within the neural manifold, a possible explanation of how a 

given set of neurons can prepare for movements before causing them.  

Despite the widespread use of neural manifolds, there are gaps in our understanding of the 

relationship between them and motor behavior. This thesis aims to address some of these gaps. 

For example, we do not know how the dimensionality and nonlinearity of these manifolds are 

related to different behaviors, each requiring different computational processes. 

The first gap lies in the limitations in the accurate estimation of the dimensionality and 

nonlinearity of neural manifolds. Chapter 2 of the thesis is dedicated to improving this estimation 

process using simulated neural datasets with known dimensionality, nonlinearity, and levels of 

noise. In this chapter, I will introduce a deep-learning-based denoising algorithm, termed the 

"Joint Autoencoder," and devise a pipeline to systematically measure the dimensionality and 

nonlinearity of neural manifolds. The development and implementation of these improved 

methods constitute the primary objective of this chapter. 

Chapter 3 will address the question of whether the observed low dimensionality of M1 manifolds 

functions as a general principle that transcends the boundaries of laboratory conditions or if it is 

merely an artifact of constraints in laboratory tasks. To fill this knowledge gap, this chapter will 

investigate the M1 activity of monkeys during natural behaviors beyond the typical laboratory 

conditions, such as grasping small treats like blueberries and walking on perch bars. The 

objective here is to compare the dimensionality of the neural manifolds during these natural 
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behaviors to those observed under controlled laboratory tasks to gain insight into the 

computational principles of M1. 

Finally, Chapter 4 will focus on applying the concept of low-dimensional neural manifolds to the 

field of iBCIs. Current iBCIs have an important limitation because they require observable 

variables, like the kinematics of a cursor on a screen, for building decoders. This approach is 

particularly problematic for biomimetic, muscle-based iBCIs because muscle activity cannot be 

observed. To overcome this challenge, this chapter will introduce two novel strategies grounded 

on the neural manifold concept. The primary objective of Chapter 4 is to enhance the 

functionality of muscle-based iBCIs with two cross-user decoding approaches, paving the way 

to empower individuals with paralysis to regain control of their muscles using their neural 

activity. 
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Foreword 

The work in this chapter was published in PLOS Computational Biology on November 29, 2021. 

Abstract 

It is generally accepted that the number of neurons in a given brain area far exceeds the 

number of neurons needed to carry any specific function controlled by that area. For example, 

motor areas of the human brain contain tens of millions of neurons that control the activation of 

tens or at most hundreds of muscles. This massive redundancy implies the covariation of many 

neurons, which constrains the population activity to a low-dimensional manifold within the space 

of all possible patterns of neural activity. To gain a conceptual understanding of the complexity 

of the neural activity within a manifold, it is useful to estimate its dimensionality, which quantifies 

the number of degrees of freedom required to describe the observed population activity without 

significant information loss. While there are many algorithms for dimensionality estimation, we 

do not know which are well suited for analyzing neural activity. The objective of this study was to 

evaluate the efficacy of several representative algorithms for estimating the dimensionality of 

linearly and nonlinearly embedded data. We generated synthetic neural recordings with known 
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intrinsic dimensionality and used them to test the algorithms’ accuracy and robustness. We 

emulated some of the important challenges associated with experimental data by adding noise, 

altering the nature of the embedding of the low-dimensional manifold within the high-

dimensional recordings, varying the dimensionality of the manifold, and limiting the amount of 

available data. We demonstrated that linear algorithms overestimate the dimensionality of 

nonlinear, noise-free data. In cases of high noise, most algorithms overestimated the 

dimensionality. We thus developed a denoising algorithm based on deep learning, the “Joint 

Autoencoder,” which significantly improved subsequent dimensionality estimation. Critically, we 

found that all algorithms failed when the intrinsic dimensionality was high (above 20) or when 

the amount of data used for estimation was low. Based on the challenges we observed, we 

formulated a pipeline for estimating the dimensionality of experimental neural data. 

Author Summary 

The number of neurons that we can record from has increased exponentially for decades; today 

we can simultaneously record from thousands of neurons. However, the individual firing rates 

are highly redundant. One approach to identifying important features from redundant data is to 

estimate the dimensionality of the neural recordings, which represents the number of degrees of 

freedom required to describe the data without significant information loss. Better understanding 

of dimensionality may also uncover the mechanisms of computation within a neural circuit. 

Circuits carrying out complex computations might be higher-dimensional than those carrying out 

simpler computations. Typically, studies have quantified neural dimensionality using one of 

several available methods despite a lack of consensus on which method would be most 

appropriate for neural data. In this work, we used several methods to investigate the accuracy of 

simulated neural data with properties mimicking those of actual neural recordings. Based on 

these results, we devised an analysis pipeline to estimate the dimensionality of neural 

recordings. Our work will allow scientists to extract informative features from a large number of 
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highly redundant neurons, as well as quantify the complexity of information encoded by these 

neurons. 

Introduction 

Studies that simultaneously record the activity of many neurons have shown that cortical neural 

activity is highly redundant (Saxena and Cunningham 2019). In primary motor cortex (M1), 

redundancy arises as tens of millions of neurons control tens or at most hundreds of muscles. 

This redundancy implies significant covariation in the activity of many neurons, which confines 

the population neural activity to a low-dimensional manifold embedded in the neural space of all 

possible patterns of neural population activity (Cunningham and Yu 2014; Elsayed and 

Cunningham 2017; P. Gao and Ganguli 2015; P. Gao et al. 2017; Trautmann et al. 2019; 

Williams et al. 2018; Williamson et al. 2019; Gallego et al. 2017). Low-dimensional manifolds 

have also been observed in a variety of other cortical regions (Rigotti et al. 2013; Mazor and 

Laurent 2005; Mante et al. 2013; Churchland et al. 2012; Harvey, Coen, and Tank 2012; 

Wärnberg and Kumar 2019; Gallego et al. 2020; Williamson et al. 2016; Mazzucato, Fontanini, 

and La Camera 2016). Reliable algorithms for identifying these manifolds and characterizing 

their dimensionality are increasingly important as our ability to record from large populations of 

neurons increases (Stevenson and Kording 2011). The dimensionality of the manifold describing 

the coordinated firing of a set of neurons quantifies the number of degrees of freedom needed 

to describe population activity without significant information loss (Camastra and Staiano 2016; 

J. A. Lee and Verleysen 2007). Projecting the observed firing patterns onto the manifold yields a 

low-dimensional set of latent signals that can simplify the interpretation of population neural 

activity (Cunningham and Yu 2014; Pang, Lansdell, and Fairhall 2016; Gallego et al. 2017). 

Low-dimensional latent signals can facilitate the manipulation or the extraction of signals for 

brain-computer interfaces, a rehabilitative technology that converts neural signals into control 
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commands to restore movement to paralyzed patients (Pandarinath et al. 2017; Degenhart et al. 

2020b). 

Unfortunately, it is surprisingly difficult to estimate the dimensionality of neural manifolds, 

particularly in the realistic condition of a noisy, nonlinear embedding. There is evidence of a 

nonlinear mapping between the recorded neural activity and the associated low-dimensional 

latent signals (Rigotti et al. 2013; Y. Gao et al. 2016; Wu et al. 2017; Batty et al. 2022). Noise 

propagates from the level of sensory transduction and amplification, the opening and closing of 

voltage-gated ion channels, and builds up at the level of synapses, causing neural firing to be a 

stochastic process (Faisal, Selen, and Wolpert 2008). The two effects, nonlinearity and noise, 

combine to pose significant challenges to existing dimensionality estimation algorithms. The 

accuracy of the estimators also depends on the amount of available data (Camastra and 

Vinciarelli 2002; Camastra 2003), which is limited in most experimental paradigms. If we wish to 

identify the manifolds associated with experimentally measured neural activity, we need 

methods that are robust in the presence of these challenges.   

The methods that have been proposed for estimating the dimensionality of neural manifolds can 

be broadly categorized into linear or nonlinear algorithms, based on assumptions about the 

nature of the mapping between the low-dimensional representation of the latent signals and the 

high-dimensional space of neural activity. The most commonly used linear method for 

dimensionality reduction is Principal Component Analysis (PCA), based on identifying mutually 

orthogonal directions in the empirical neural space of recorded activity; these directions are 

monotonically associated with the largest data variance. PCA provides a hierarchical description 

in which the data projected onto the manifold subtended by the leading principal components 

become closer and closer to the recorded data as the dimensionality of the linear manifold is 

increased towards the dimensionality of the empirical neural space. Although PCA provides a 

useful and systematic tool for variance-based dimensionality reduction, it does not specify how 
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to uniquely identify the dimensionality of the manifold: the typical implementation requires the 

choice of an arbitrary variance threshold. Other PCA-based algorithms such as Participation 

Ratio (PR) (Mazzucato, Fontanini, and La Camera 2016; P. Gao et al. 2017) and Parallel 

Analysis (PA) (Horn 1965; Buja and Eyuboglu 1992) provide more principled prescriptions for 

linear dimensionality estimation, by incorporating  criteria for determining an optimal number of 

leading principal components to use when constructing the low-dimensional manifold. 

Linear dimensionality estimation algorithms may work well for linear datasets, but are likely to 

overestimate the dimensionality of a manifold arising from a nonlinear mapping between the 

low-and high-dimensional spaces (Camastra and Staiano 2016; J. A. Lee and Verleysen 2007; 

Tenenbaum, de Silva, and Langford 2000; Hinton and Salakhutdinov 2006). In contrast, 

nonlinear methods (e.g., Correlation Dimension (Grassberger and Procaccia 1983; Kalantan 

and Einbeck 2012; Einbeck and Kalantana 2013), Levina-Bickel Maximum Likelihood Estimation 

(Levina and Bickel 2004), Two Nearest Neighbors (Facco et al. 2017), and Fisher Separability 

Analysis (Albergante, Bac, and Zinovyev 2019)) may provide accurate dimensionality estimates 

for both linearly and nonlinearly embedded data. 

Most dimensionality estimation methods have been tested in the absence of noise even though 

it is known that linear and nonlinear methods overestimate dimensionality when the data is 

noisy (Camastra and Staiano 2016). The robustness of dimensionality estimation algorithms to 

noise remains to be characterized. 

The objective of this study was to characterize the accuracy of several dimensionality estimation 

algorithms when applied to high-dimensional recordings of neural activity. We evaluated 

previously proposed algorithms on synthetic datasets of known dimensionality to identify 

conditions under which each method succeeded and/or failed. Specifically, we evaluated how 

the algorithms handled the nature of the embedding (linear or nonlinear), the amount of noise 

added to the simulated neural data, and the amount of data available. We found increasing 
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levels of noise to be a challenge for all tested algorithms. We therefore also evaluated different 

approaches for reducing noise prior to performing dimensionality estimation, including the “Joint 

Autoencoder”, a method we developed based on deep learning techniques. Together, our 

results allowed us to propose a methodological pipeline for estimating the intrinsic 

dimensionality of high-dimensional datasets of recorded neural activity. 

Methods 

Simulation of neural s ignals  

We generated the synthetic data used to evaluate the various dimensionality estimation 

algorithms as follows. First, we created d signals by randomly selecting (d x M ) samples from 

an empirical distribution of firing rates that we obtained from multi-electrode array recordings of 

neural activity in the macaque primary motor cortex (M1) made while the monkey was 

performing a center-out task (Gallego et al. 2018). The firing rates were binned at 50 ms. The 

sampling was done randomly across all recorded neurons and time bins within successful trials. 

Our goal was to generate M samples of d-dimensional latent variables that were uncorrelated 

with each other and individually uncorrelated over time; we verified that these randomly selected 

signals were indeed uncorrelated, as intended. These signals provided a set of variables of 

known dimension d that preserved the first-order firing statistics of the neural activity recorded in 

M1. Our procedure aimed at generating simulated data that reproduces possible states of 

activity of a neural population, without considering the order in which these states might be 

visited; in other words, we focused on population statistics as opposed to population dynamics.  

These signals provided a d-dimensional latent set used to construct synthetic high-dimensional 

data sets (Figure 2-1). We allowed d to vary from 3 to 40. For the analyses where a fixed value 

of 𝑑 was used we chose 𝑑=6, to approximate the characteristics of real data collected in our 

laboratory (Table 2-1). The d-dimensional latent signals were first smoothed using a Gaussian 
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kernel (s.d.: 50 ms), and then multiplied by a N x d mixing matrix W with entries that were 

randomly selected from a zero-mean Gaussian distribution with unit variance. This resulted in a 

dataset X composed of M samples, each of them N-dimensional.  We chose N=96 to reproduce 

the number of signals recorded by the multi-electrode array used to obtain the original 

experimental data. The activity in each of the N=96 simulated channels was scaled to the range 

from zero to one to compensate for variability in firing rates across neurons and across time. 

The effect of non-uniform firing rate variances across channels was considered separately (see 

“Effect of non-uniform variances across channels” in Results). 

A nonlinear embedding was implemented by processing each simulated neural recording in X 

with an exponential activation function: 

 𝑓(𝑋) =   
𝑒𝛼𝑋−1

𝑒𝛼−1
                (Equation 2-1) 

The choice of an exponential nonlinearity was based on results from Generalized Linear 

Models, for which the statistics of the modeled variable determines the nonlinear link function 

(Nelder and Wedderburn 1972). In our case, the variables of interest are spike counts. Under 

the assumption that these variables follow a Poisson-like distribution, the appropriate choice of 

link function is the logarithm (Nelder and Wedderburn 1972). The inverse of the link function, the 

exponential, is the appropriate nonlinear function for relating the linear combination of 

explanatory covariates, the latent signals, to the variables of interest, the simulated firing rates. 

The exponential activation function used in our simulations allowed us to control the degree of 

nonlinearity by varying the single parameter α, and to ensure that the range of the nonlinearly 

embedded synthetic data remained between zero and one. Finally, we added independent 

Gaussian noise to each of the channels in X, to generate signals with known signal-to-noise 

ratio. This choice of noise model provides a simple and widely used mechanism for simulating 

stochastic processes (Cunningham et al. 2009).   



52 
 

The various steps in this procedure allowed us to generate datasets of known intrinsic 

dimensionality, embedding type (linear/nonlinear), and signal-to-noise ratio. 

 

Figure 2-1: Generation of simulated datasets. First, latent neural signals were obtained by 

randomly sampling the firing rates of primary motor cortical recordings. The number of latent 

signals determined the intrinsic dimensionality of the dataset. Then, the dimensionality of the 

dataset was increased through linear combinations effected by multiplication with a weight matrix 

W. The entries of W were sampled from a zero-mean Gaussian distribution with unit variance. 

Then, the resulting signals were then scaled to the [0,1] range by dividing them by their maximum 

value. This procedure yielded noise-free, linear datasets. In nonlinear simulations, the signals were 

then activated nonlinearly using the exponential function in Equation 1 (red box in diagram). In 

noisy simulations, zero-mean Gaussian noise with variance specified by a predetermined signal-to-

noise ratio was added to the signals. This procedure yielded linear or nonlinear, noisy datasets with 

known signal-to-noise ratio. 

Dimensionali ty est imation algori thms 

We evaluated two classes of dimensionality estimation algorithms, those that assumed a linear 

embedding and those that also allowed for a nonlinear embedding.  

Linear algorithms 

Linear algorithms map high-dimensional data to a lower dimensional, linear subspace. Principal 

Component Analysis (PCA) is often used for linear dimensionality estimation in neuroscience 

(Cunningham and Yu 2014; P. Gao and Ganguli 2015; Williams et al. 2018; Kaufman et al. 

2014; Gallego et al. 2018; Sadtler et al. 2014). All the linear algorithms that we tested 

(summarized below) are based on PCA but use different criteria for dimensionality estimation. 
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Principal Component Analysis with a variance cutoff  

PCA creates a low-dimensional representation of the data by sequentially finding orthogonal 

directions that explain the most remaining variance. Unit vectors that identify those directions, 

the PCA eigenvectors {𝑣𝑖}, provide an orthonormal basis for the N-dimensional data space. The 

eigenvectors are labeled in decreasing order of the variance associated with each direction, 

given by the eigenvalues {𝜆𝑖}. The simplest way to use PCA for dimensionality estimation is to 

find the number of principal components required to reach a predetermined threshold of 

cumulative variance. The selection of a variance threshold can be rather arbitrary, and a range 

of thresholds have been used in the literature. In this study, we used a threshold of 90%, which 

yielded accurate estimates of dimensionality for the noise-free linear datasets. 

Part icipation Ratio (PR)  

This approach provides a principled way of finding a variance threshold when the ground truth is 

not known (Mazzucato, Fontanini, and La Camera 2016; P. Gao et al. 2017). PR uses a simple 

formula based on the eigenvalues:  

      𝑃𝑅 =   
(∑ 𝜆𝑖

𝑁
𝑖=1 )

2

∑ (𝜆𝑖)2𝑁
𝑖=1

     (Equation 2-2)  

If the leading eigenvalue carries all the variance (λi ≠ 0 for i = 1 and λi = 0 for all i ≥ 2), then PR 

= 1. At the other extreme, if all eigenvalues are equal, the variance is spread evenly across all 

the dimensions, and PR=N. The actual value of PR interpolates between these two extreme 

conditions to estimate the intrinsic dimensionality, and thus the number of principal components 

to be kept (P. Gao et al. 2017). 

Paral lel Analysis (PA)  

Much like the Participation Ratio, Parallel Analysis is a principled approach to finding a variance 

threshold (Horn 1965; Buja and Eyuboglu 1992). Parallel Analysis generates null distributions 
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for the eigenvalues by repeatedly shuffling each of the N dimensions of the data separately. The 

shuffling step ensures that the remaining correlations across the different dimensions of the data 

are due to chance. We repeated the shuffling procedure 200 times, resulting in a null distribution 

for each eigenvalue based on 200 samples. The eigenvalues that exceeded the 95th percentile 

of their null distribution were identified as significant; the number of significant eigenvalues 

determined the number of dimensions to be kept. Although this method has not been directly 

applied to neural data, similar approaches based on finding null distributions of eigenvalues 

have been used for neural dimensionality estimation (Machens, Romo, and Brody 2010). 

Nonlinear algori thms 

Nonlinear algorithms can in principle estimate the dimensionality of either linearly or nonlinearly 

embedded data. Unlike the linear algorithms we tested, the nonlinear algorithms need not rely 

on a global model for the probability distribution from which the data are assumed to be drawn 

(in the case of PCA, the model is a multivariate Gaussian distribution). Instead, many nonlinear 

algorithms estimate intrinsic dimensionality directly from local geometric properties of the data. 

Common local properties include distance and separability of each data point relative to its 

neighbors. Although nonlinear algorithms are not yet commonly used in neuroscience, they 

have been used to estimate dimensionality in several other fields that produce high-dimensional 

datasets (Campadelli et al. 2015).  

Correlat ion Dimension (CD)  

Correlation Dimension estimates dimensionality by calculating how the number of data samples 

that fall within a hypersphere change as a function of its radius. This method, originally 

developed in 1983 (Grassberger and Procaccia 1983), has benefitted from recent efforts to 

improve computational speed and accuracy (Kalantan and Einbeck 2012; Einbeck and 

Kalantana 2013). Although there are only a few applications of Correlation Dimension analysis 
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to neural data (Kobayashi et al. 2000; Boon et al. 2008), it is widely used in other disciplines 

(Kalantan and Einbeck 2012).  

Levina-Bickel Maximum Likel ihood Estimation (LBMLE)  

The Levina-Bickel Maximum Likelihood Estimation method (Levina and Bickel 2004) is an 

extension of Correlation Dimension that uses a maximum likelihood approach to estimate 

distances between data points. This method has been successfully applied to some of the 

benchmark datasets used in machine learning, such as the Faces (Tenenbaum, de Silva, and 

Langford 2000) and Hands datasets (Kégl 2002). 

Two Nearest Neighbors (TNN)  

The Two Nearest Neighbors method also uses the distance between data points to estimate 

dimensionality (Facco et al. 2017). However, unlike Levina-Bickel Maximum Likelihood 

Estimation, it considers only the first and second neighbors of each point. The ratio of the 

cumulative distribution of second-neighbor to first-neighbor distances is a function of data 

dimensionality. By focusing on shorter distances, the method avoids unwanted effects resulting 

from density changes across the manifold. This method has been successfully applied to 

synthetic datasets of hyperspheres with known dimensionality (Facco et al. 2017), and to real-

world datasets including molecular simulations (Pinamonti et al. 2017) and images of hand-

written digits (Tenenbaum, de Silva, and Langford 2000). 

Fisher Separabil i ty Analysis (FSA)  

High-dimensional datasets exhibit simple geometric properties such as the likely orthogonality of 

two randomly picked directions. These properties have recently been characterized as the 

blessings of dimensionality (Alexander N. Gorban, Makarov, and Tyukin 2020), in contrast to the 

well-known concept of the curse of dimensionality. A useful example is the increasing ease with 

which a hyperplane can separate any given sample in a dataset from all other samples as the 
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dimensionality of the dataset increases. Fisher separability is a computationally efficient, simple, 

and robust method to assess such separability (Fisher 1936; A. N. Gorban and Tyukin 2018).  

Dimensionality can be estimated in terms of the probability that a point in the dataset is Fisher 

separable from the remaining points (Albergante, Bac, and Zinovyev 2019). The probability 

distribution of Fisher separability allows the dimensionality of both linear and nonlinear 

manifolds to be estimated. This method has been applied to study the mutation profiles of the 

genes resulting in tumors as a means to evaluate therapeutic approaches (Le Morvan, 

Zinovyev, and Vert 2017). 

Denoising algori thms 

Noise that is uncorrelated across channels will lead to dimensionality estimates that approach 

the number of channels as the level of noise increases. To mitigate this overestimation problem, 

we implemented two approaches to denoise neural data. Both rely on an initial estimate of an 

upper bound dimensionality D, for which we used Parallel Analysis. To quantify the performance 

of the denoising algorithms, we reported Variance Accounted For (VAF) between the denoised 

signals and the noise-free signals, the latter providing the ground truth.   

PCA denoising 

The linear approach to denoising was based on PCA. Once the value of D  was determined, we 

used the D  leading principal components to reconstruct the original data. PCA-based denoising 

is based on the assumption that most of the noise is relegated to the discarded, low-variance 

principal components.   

Joint Autoencoder denoising 

We also used a neural network for denoising (Figure 2-2). For this purpose, we divided the 96-

dimensional simulated dataset X into two 48-dimensional partitions: X1 and X2. These partitions 

were each mapped by the compressive halves of the respective autoencoders to the D-
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dimensional subspaces Z1 and Z2 respectively. These compressed subspaces were used to 

obtain reconstructed versions of X1 and  X2, respectively denoted  𝑋̂1 and 𝑋̂2 , using the 

expansive halves of the corresponding autoencoders. The cost function C  used to train the Joint 

Autoencoder network not only minimized the reconstruction error for X1 and X2, but also the 

difference between Z1 and Z2: 

                      𝐶 = 𝑀𝑆𝐸 (𝑋1, 𝑋̂1) +  𝑀𝑆𝐸 (𝑋2, 𝑋̂2) + 𝑀𝑆𝐸 (𝑍1, 𝑍2)              (Equation 2-3) 

 

 

Figure 2-2: Architecture of the Joint Autoencoder. Channels of the 96-dimensional simulated 

datasets were randomly partitioned into two sets of signals (blue and yellow). Each 48-dimensional 

set was reconstructed through the corresponding D-dimensional subspace, Z1 and Z2 (green). The 

reconstructed outputs of the networks were the denoised channels. 

This design assumes that each of the partitions X1 and X2  contains the information necessary to 

robustly identify the underlying D-dimensional signals Z1 and Z2, but not the independent noise 

components that will differ between the two partitions. We trained the Joint Autoencoder using 

the ADAM optimizer with a learning rate 𝜂 = 0.001 and dropout regularization on the input layer 

with 𝑝 = 0.05. The use of Rectified Linear Unit (ReLU) activation functions in all layers ensured 
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that the autoencoder network would both operate on and output non-negative signals while 

allowing for nonlinear embeddings. Our choice of using the ReLU activation function was 

motivated by its documented success in modeling a wide variety of nonlinearities for deep 

learning applications (Glorot, Bordes, and Bengio 2011; LeCun, Bengio, and Hinton 2015). In 

addition, the strict nonnegativity of the ReLU function mimics that of real neural recordings. 

Ethics statement 

All surgical and experimental procedures that yielded the multi-electrode array recordings from 

non-human primates (Gallego et al. 2018), which formed the basis of our simulated neural 

signals, were approved by Institutional Animal Care and Use Committee (IACUC) of 

Northwestern University. The subject was monitored daily. The subject’s diet consisted of 

standard laboratory animal diet, fresh fruits, and vegetables, and was provided with access to 

various types of enrichment. 

Statist ical analyses 

We used Monte Carlo simulations to generate up to 10 replications of synthetic data sets, each 

corresponding to microelectrode array recording data from an experimental session. We noted 

the number of replications (n) in the figure captions where applicable. Our choice of the number 

of replications is reasonable compared to the number of experimental sessions that we would 

expect to see in experiments with monkeys (Gallego et al. 2018; Russo et al. 2018; Perich, 

Gallego, and Miller 2018). The simulations differed by their random number generator seed, 

which dictated the pseudorandom sampling procedures required for generating the signals. 

There were three sampling steps in our simulations (Figure 2-1). First was the creation of the 

low-dimensional latent signals, which were sampled from an empirical firing rate distribution. 

The second was the entries of the mixing matrix W, which were sampled from a zero-mean 

Gaussian distribution with unit variance. The third was the additive noise, sampled from a zero-
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mean Gaussian distribution with variance determined by the specified signal-to-noise ratio. We 

used bootstrapping with 10,000 iterations to compute the statistic of interest and computed its 

confidence interval using α = 0.05. We used Bonferroni correction for multiple comparisons. 

Results 

Despite the large number of available algorithms for dimensionality estimation, there has been 

no systematic study of how well-suited they are for the analysis of neural data. Here we test 

several representative algorithms on synthetic datasets for which the intrinsic dimensionality is 

known, to assess their ability to estimate the true dimensionality of the data across a range of 

simulated conditions relevant to neuroscience. These assessments resulted in a recommended 

procedural pipeline for estimating the intrinsic dimensionality of a set of neural recordings. 

Dimensionali ty of noise-free datasets 

We first considered the simplest case: how accurately can we determine the dimensionality of 

linearly embedded, noise-free datasets? To answer this question, we applied the six selected 

algorithms to datasets with dimensionality d = 6. We focused on d = 6 as this was the 

dimensionality estimate of actual multi-electrode array recordings found when using the 

methods investigated here. In this scenario, all tested linear and nonlinear algorithms estimated 

the true dimensionality accurately (Figure 2-3). Under noise-free conditions, the nonlinear 

algorithms were as accurate as the linear ones on linearly embedded datasets. 
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Figure 2-3: Dimensionality of noise free datasets. a) We applied PCA with 90% variance cutoff 

(PCA90, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel 

Maximum Likelihood Estimation (LBMLE, green), Two Nearest Neighbors (TNN, purple), and 

Fisher Separability Analysis (FSA, orange) to linearly embedded, d = 6 datasets (n=10). b) Same 

as in a, but for nonlinearly embedded datasets. Circles indicate the mean and error bars indicate 

the standard deviation of the dimensionality estimates. Asterisks indicate significant difference of 

the mean from the true dimensionality of 6 at the significance level of α=0.05. 

Next, we evaluated all algorithms on nonlinearly embedded noise-free datasets, also for d = 6. 

Nonlinearities were introduced as in Equation 1, using α = 16. In this case, the three linear 

algorithms dramatically overestimated the true dimensionality, with errors reaching more than 

400% of the true value (Figure 2-3b). In contrast, the nonlinear algorithms performed well; the 

Levina-Bickel Maximum Likelihood Estimation and the Two Nearest Neighbors methods were 

more accurate than Fisher Separability Analysis, which slightly underestimated the true 

dimensionality. 
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Effect of non-uniform variances across channels 

The normalization of our simulated datasets restricted channel activity to the [0,1] interval, thus 

imposing a large degree of variance similarity across channels. In contrast, variances of real 

neural recordings can vary as much as 10-fold from channel to channel. To evaluate the 

performance of the dimensionality estimation algorithms considered here in the presence of 

non-uniform variances across channels, we scaled each channel of simulated neural data by a 

randomly chosen real number between 1 and 10. We found that most algorithms yielded lower 

estimates of dimensionality when applied to the rescaled data in comparison to the estimates 

obtained when the algorithms were applied to the data before rescaling (Figure 2-4a and b). 

However, note that both Levina-Bickel Maximum Likelihood Estimation and the Two Nearest 

Neighbors yielded remarkably accurate dimensionality estimates when applied to rescaled data. 

 

Figure 2-4: Dimensionality of noise free datasets with unequal variance. a) We applied PCA 

with 90% variance cutoff (PCA90, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, 
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blue), Levina-Bickel Maximum Likelihood Estimation (LBMLE, green), Two Nearest Neighbors 

(TNN, purple), and Fisher Separability Analysis (FSA, orange) to linearly embedded, d = 6 

datasets (n=10) after randomly scaling each of the N=96 channels. b) Same as in a, but for 

nonlinearly embedded datasets. Circles indicate the mean and error bars indicate the standard 

deviation of the dimensionality estimates. Asterisks indicate significant differences of the mean 

from the true dimensionality of 6 at the significance level of α=0.05. 

Because of the superior accuracy of Levina-Bickel Maximum Likelihood Estimation and Two 

Nearest Neighbors, we focused on these two methods for the remainder of the nonlinear 

analyses. We also retained Parallel Analysis as a benchmark for some of the analyses, as it 

was the most accurate linear method for estimating the dimensionality of nonlinearly embedded 

data. 

Effect of true dimensionali ty on algorithm accuracy  

We next evaluated how the true intrinsic dimensionality of the noise-free data influenced 

algorithm accuracy. Can any intrinsic dimensionality be reliably estimated? We found that the 

answer is no: the accuracy of all algorithms suffered when the intrinsic dimensionality of the 

synthetic data was too high. Parallel Analysis was accurate on linear datasets with d < 20, but   

inaccurate on nonlinear datasets of all dimensions, as expected (Figure 2-5). Below about d = 

6, Levina-Bickel Maximum Likelihood Estimation and Two-Nearest Neighbors were accurate on 

both linear and nonlinear datasets. However, Levina-Bickel Maximum Likelihood Estimation 

began to underestimate the dimensionality of both linearly embedded (Figure 2-5a) and 

nonlinearly embedded (Figure 2-5b) datasets for d  > 6. This underestimation increased with 

increasing d. For nonlinear datasets, the estimate saturated at d = 13, where underestimation 

began to get much worse. These results revealed that the intrinsic dimensionality of nonlinearly 

embedded datasets is hard to estimate reliably when it is large. 
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Figure 2-5: Effect of increasing true dimensionality on dimensionality estimates. a) The 

dimensionality of noise free, linear datasets (n=3) was assessed using Parallel Analysis (PA), 

Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN). 

Dashed line indicates the identity line. b) Same as a, but for nonlinear datasets. The curve for TNN 

precisely overlays that of LBMLE, causing it to be obscured. 

Effect of the level of nonlineari ty  

We next evaluated how the degree of nonlinearity influenced the accuracy of the dimensionality 

estimation algorithms. We controlled the degree of nonlinearity by varying the parameter 𝛼  in 

Equation 1; this parameter controls the slope of the exponential activation function used to 

generate the nonlinearly embedded datasets. We found that both Levina-Bickel Maximum 

Likelihood Estimation and Two Nearest Neighbors provided accurate dimensionality estimates 

for all tested levels of nonlinearity (Figure 2-6). Surprisingly, even Parallel Analysis was 

accurate up to levels of nonlinearity corresponding to 𝛼 ≈ 8, where it started to overestimate the 

intrinsic dimensionality. These results revealed that Levina-Bickel Maximum Likelihood 
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Estimation and Two Nearest Neighbors provide accurate dimensionality estimates for wide 

levels of nonlinearity, whereas Parallel Analysis is accurate only for low levels of nonlinearity. 

 

Figure 2-6: Effect of changing the degree of nonlinearity. Dimensionality of nonlinear datasets 

(n=10) with varying levels of nonlinearity, controlled by the α parameter (See Methods), was 

assessed using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), 

and Two Nearest Neighbors (TNN). Circles indicate the mean and error bars indicate the standard 

deviation of the dimensionality estimates. Asterisks indicate significant differences of the mean 

from the true dimensionality of 6 at the significance level of α=0.05. 

Amount of data required for est imating dimensionali ty  

Ideally, algorithms would require only small amounts of data, so that the intrinsic dimensionality 

could be estimated even during transient behaviors and for a small number of recording 

channels. We thus evaluated the amount of data required to estimate the dimensionality of 

datasets with d = 6, by varying both the number of samples M and the number of recording 

channels N.  
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On linear datasets, the accuracy of Parallel Analysis depended only on the number of channels: 

the algorithm was accurate if 20 or more channels were available (Figure 2-7a). In contrast, the 

accuracy of both Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neighbors 

also depended on the number of samples (Figure 2-7b and c). Around M = 600, requiring about 

30 seconds of data binned at 50 ms, was sufficient for accurate estimates of intrinsic 

dimensionality using either of these two nonlinear methods. 

 

Figure 2-7: Amount of data required by dimensionality estimators. Amount of data required by 

a) Parallel Analysis (PA), b) Levina-Bickel Maximum Likelihood Estimation (LBMLE), and c) Two 

Nearest Neighbors (TNN) on linear datasets. Data length was logarithmically scaled between M = 

100 and M = 12,000 samples. The correct dimensionality d = 6 is shown in pink. Light colors 

indicate overestimation and dark colors indicate underestimation of dimensionality. d, e, and f) 

Same as a, b, and c, respectively, but for nonlinear datasets. 
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As expected for highly nonlinear datasets (𝛼 = 16, d = 6), Parallel Analysis was not accurate 

(Figure 2-7d) regardless of the amount of data. Both Levina-Bickel Maximum Likelihood 

Estimation and Two Nearest Neighbors were accurate provided that data from more than 50 

channels were available (Figure 2-7e and f). Furthermore, while Levina-Bickel Maximum 

Likelihood estimation required around 600 samples of data for accurate dimensionality 

estimates, Two Nearest Neighbors required more than twice as many samples. These results 

would also depend on the actual dimensionality d ; here we focused on d = 6. 

Evaluat ing and reducing the effects of noise  

Any experiment will include some amount of noise in the recorded signals. As expected, all 

tested algorithms overestimated intrinsic dimensionality in the presence of noise (Figure 2-8). 

For any given noise level, estimation errors for the linear datasets (Figure 2-8a) were a bit 

smaller than those for the nonlinear datasets (Figure 2-8b). Adding noise with a power of only 

1% of that of the signal (SNR = 20 dB) caused Levina-Bickel Maximum Likelihood Estimation 

and Two Nearest Neighbors to overestimate the dimensionality of the nonlinear data by ~200% 

(Figure 2-8b).  PA yielded consistent overestimation errors across all nonzero levels of noise for 

both linear and nonlinear data. 
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Figure 2-8: Effect of noise on dimensionality estimates. Estimated dimensionality of linear (a) 

and nonlinear (b) datasets (n=10) with 20 dB, 10 dB, and 7 dB signal-to-noise ratio was assessed 

using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and Two 

Nearest Neighbors (TNN). Circles indicate the mean and error bars indicate the standard deviation 

of the dimensionality estimates. Asterisks indicate significant differences of the mean from the true 

dimensionality of 6 at the significance level of α=0.05. 

We evaluated two algorithms for mitigating the effects of noise prior to estimating 

dimensionality: a PCA-based linear method and a Joint Autoencoder nonlinear neural network 

(see Methods). Both methods were quite effective for denoising the linear datasets (Figure 2-

9a), with the PCA-based approach slightly better than the Joint Autoencoder at the higher noise 

levels. For linear datasets, dimensionality estimates following PCA-based denoising were highly 

accurate, yielding correct estimates of the true intrinsic dimension even for high-noise signals 

(Figure 2-9b). The Joint Autoencoder was significantly more effective for denoising the 
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nonlinear datasets (Figure 2-9c). Joint Autoencoder denoising on nonlinear datasets resulted in 

dimensionality estimates that still increasingly overestimated with increasing noise, but at a 

much slower rate than without denoising (Figure 2-9D). The highest noise level we tested (20%; 

SNR = 7 dB) caused the dimensionality to be overestimated by about 100%. These results were 

consistent for different degrees of nonlinearity. The more nonlinear the data, the more 

appropriate it was to use the Joint Autoencoder for denoising. 

 

Figure 2-9: Performance of PCA and Joint Autoencoder (JAE) denoising algorithms. a) PCA 

and JAE denoising applied to linear datasets (n=10) with varying signal-to-noise ratio. Symbols 

indicate the mean and error bars indicate the standard deviation of the VAF between noise-free 

and denoised signals. Asterisks indicate significant difference between mean values at the 
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significance level of α=0.05. b) Dimensionality estimation on linear datasets after PCA denoising. 

Dimensionality was estimated using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood 

Estimation (LBMLE), and Two Nearest Neighbors (TNN). Symbols indicate the mean and error 

bars indicate the standard deviation of the dimensionality estimates. Asterisks indicate significant 

differences of the mean from the true dimensionality of 6 at the significance level of α=0.05. c) 

Same as in a, but for nonlinear datasets. d) Same as in b, but for nonlinear datasets after JAE 

denoising. 

Discussion 

This study evaluated techniques for estimating the intrinsic dimensionality of high-dimensional 

neural recordings. We considered representative linear and nonlinear algorithms, testing their 

performance on synthetic datasets that captured properties of neural recordings likely to affect 

dimensionality estimation. The tested datasets had known intrinsic dimensionality, known levels 

of noise, and embeddings that were either linear or nonlinear. Our results demonstrated that 

none of the tested algorithms work for all possible scenarios, but they yielded important insights 

for when estimates of intrinsic dimensionality are likely to be valid and when they are not. As 

expected, we found that linear estimation methods are generally not as accurate as nonlinear 

methods when the mapping between the low-dimensional latent space and the high-

dimensional space of neural recordings is nonlinear. Surprisingly, the linear method Parallel 

Analysis estimated the dimensionality of mildly nonlinear datasets well though it failed for more 

highly nonlinear embeddings. In contrast, the nonlinear methods worked well on both linear and 

highly nonlinear datasets but failed once the intrinsic dimensionality of the data became too 

high. 

Noise was a challenge for all methods, causing dimensionality to be overestimated even for 

signal-to-noise ratios as low as 20 dB (1% noise variance). We presented two approaches for 
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denoising the data so as to improve the accuracy of the dimensionality estimation. These were 

a linear PCA-based approach and a novel nonlinear, deep learning approach that we call the 

Joint Autoencoder. Both denoising approaches attempted to remove signal components that 

were not shared across the data channels. To achieve this, the PCA-based approach simply 

removed Principal Components with low variance, whereas the Joint Autoencoder identified an 

underlying manifold that was common to two randomly sampled sets of channels. Both 

approaches relied on a linear, upper-bound estimate of the intrinsic dimensionality. Denoising by 

either method substantially improved subsequent dimensionality estimation, but the Joint 

Autoencoder was substantially more effective in denoising nonlinear datasets. For linear 

datasets, dimensionality estimates using Parallel Analysis, Levina-Bickel Maximum Likelihood 

Estimation, and Two Nearest Neighbors were accurate after PCA-denoising. In the nonlinear 

case, dimensionality estimates using the same three methods were similarly accurate after JAE-

denoising.  

Implications for evaluat ion of experimental recordings  

Due to its computational efficiency and ease of interpretation, most studies have used PCA with 

an arbitrary variance cutoff to estimate the dimensionality of M1 neural recordings (Gallego et 

al. 2018; Kaufman et al. 2014; Sadtler et al. 2014; P. Gao and Ganguli 2015; Williamson et al. 

2016). While we have shown that some of the linear methods can be quite effective, simply 

eliminating non leading PCs based on a cumulative variance cutoff was the least accurate of the 

algorithms that we tested. Parallel Analysis, the most accurate linear method, performed as well 

or even better than some of the more advanced and computationally demanding nonlinear 

methods. Therefore, PA should suffice as a quick and effective approach to estimating 

dimensionality, even for mildly noisy and nonlinear datasets. 

Some of the linear methods used in neuroscience studies rely on a structure of repeated trials in 

the data (Machens, Romo, and Brody 2010; Williams et al. 2018). These methods use the 
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regularity of repeated trials in a supervised scenario to identify neural dimensions associated 

with specific experimentally controlled conditions. Such supervised methods cannot be applied 

to data obtained during non-stereotyped, non-repeating behaviors. All of the methods that we 

assess in this study are unsupervised and thus applicable to datasets with no repeated trial 

structure.  

Despite the simplicity of linear algorithms, estimating the dimensionality of nonlinear manifolds 

requires nonlinear algorithms. There is some evidence that neural manifolds may be nonlinear. 

Recent studies have shown that nonlinear methods for inferring behavioral parameters from M1 

neural manifolds are superior to linear methods (Sussillo et al. 2016; Pandarinath, O’Shea, et al. 

2018; Pandarinath, Cora Ames, et al. 2018; Farshchian et al. 2018). This suggests that the 

underlying neural manifold representing motor intent may be nonlinear, and that linear 

dimensionality estimation methods may be inadequate when estimating the intrinsic 

dimensionality of primary motor cortical recordings. Studies that investigated the dimensionality 

of M1 using linear methods most likely overestimated its true intrinsic dimensionality.  

Nonlinear algorithms were more accurate than linear algorithms for nonlinear datasets of 

dimensionality below 10. However, nonlinear methods underestimated dimensionalities above 

10. This is a critical concern for experimental recordings, since a low dimensionality estimate 

from a nonlinear method might be inaccurate if the true dimensionality were large. Multiple 

studies using linear methods have reported an estimated dimensionality of M1 of around 10 for 

simple, well-practiced behaviors (Sadtler et al. 2014; Perich, Gallego, and Miller 2018; P. Gao et 

al. 2017). Our results show that linear methods provide an upper bound to the estimate of 

intrinsic dimensionality as long as the true dimensionality of the data is below 20. If the intrinsic 

dimensionality of M1 is substantially higher for more dexterous use of arm and hand than for the 

scenarios that have typically been studied, the nonlinear methods investigated here may 

underestimate it.  
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One method for addressing this concern would be to use nonlinear methods to reduce the 

dimensionality of a dataset to that of its nonlinear dimensionality estimate, and then to assess 

the amount of variance that the nonlinear low-dimensional representation captures. If the VAF is 

high, the data may be truly nonlinearly low dimensional. If, on the other hand, the VAF is low, 

the true intrinsic dimensionality could be higher than estimated. For the latter case, a practical 

approach would be to report only the linear dimensionality estimate and emphasize that it only 

provides an upper bound to the true dimensionality. 

We currently lack techniques for reliably assessing datasets with high intrinsic dimensionality, at 

least when considering practical situations with limited data. There have been some theoretical 

studies of the amount of data needed for accurate estimation of dimensionality (L. A. Smith 

1988; Eckmann and Ruelle 1992). Correlation Dimension, the method on which many nonlinear 

algorithms are based, requires that the number of data samples M be on the order of 10d/2 

(Camastra and Vinciarelli 2002). The total amount of data can be increased by either recording 

from more channels or for a longer duration. Studies that investigated the dimensionality of the 

primary visual cortex (V1) found that the eigenvalue spectrum of the neural signals obtained 

from approximately one thousand neurons decayed as a power law (Stringer, Pachitariu, 

Steinmetz, Carandini, et al. 2019; Stringer, Pachitariu, Steinmetz, Reddy, et al. 2019). These 

findings would not have been possible if recording from a hundred neurons, which would not 

have revealed the long, slow-decaying tail of the eigenvalue distribution. One interpretation of 

these findings is that the linear dimensionality of V1 is arbitrarily large. However, an alternative 

interpretation is that the neural data are embedded in a very nonlinear manifold, causing the 

intrinsic dimensionality to be overestimated by the linear methods used in these studies.  

The stochastic nature of neural firing and the noise associated with experimental measurements 

will also cause the intrinsic dimensionality to be overestimated. The two denoising approaches 

that we presented are simple and effective. Depending on the assumptions about the underlying 
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structure of firing patterns, alternative denoising approaches may be useful. For example, if the 

temporal relationship between the firing patterns of the population neural activity is of interest, 

one could use denoising methods that explicitly attempt to model these dynamics, such as 

Latent Factor Analysis through Dynamical Systems (LFADS), prior to estimating the 

dimensionality (Pandarinath, O’Shea, et al. 2018). 

For the past five decades since the time of Evarts’ early experiments (Evarts 1966), assessing 

the relationship between behaviors and single neuron signals recorded from the brain has been 

a mainstay of motor systems research. Although the focus of our study was on the 

dimensionality of the neural manifold to which the population activity is confined, the natural 

next step in the analysis is to investigate the dynamics of the signals within the neural manifold 

and their relation to behavior.  

Limitations of the study 

While we tried to replicate essential features of experimental data, there are certain 

characteristics that we did not try to model in our simulations. For example, we only considered 

additive Gaussian isotropic noise, for simplicity. Experimental recordings might include non-

additive, non-isotropic, or non-Gaussian noise. In such cases, PCA may not be an appropriate 

approach to denoising, even for linearly embedded data. Methods such as factor analysis or 

extensions such as Gaussian-Process Factor Analysis (Yu et al. 2009), and preprocessing steps 

such as square-root transforms or pre-whitening could be used instead. 

We scaled the firing rates of each channel to be in the [0,1] range. The arbitrary scaling of firing 

rates provided a simple means for the nonlinear datasets to have the same range as their linear 

counterparts, as the activation function that we used mapped the [0,1] range onto itself. 

However, this modeling restriction does not reflect experimental neural firing data, since the 

range of neural firing can differ significantly even across neurons of the same type.  We have 
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illustrated how heterogeneity in the range of firing rates affects the reliability of dimension 

estimation algorithms. Soft-normalization approaches that are commonly used in neuroscience 

(dividing a neuron’s firing rate by its range plus a small constant, e.g. (Churchland et al. 2012)), 

would results in the amplification of signals with low variance and would cause variance-based 

algorithms to result in higher dimensionality estimates. 

The latent signals used to generate simulated firing rates have the same first-order statistics as 

the actual data from which they were sampled. This unrealistic scenario is addressed through 

the random rescaling of individual simulated channels, to reflect the heterogeneity in the range 

of firing rates observed in actual neural recordings. The latent signals corresponding to the 

rescaled data no longer share common statistics. This scenario allows us to address an 

important problem: that low-variance latent signals can be informative (Yan et al. 2020). As 

demonstrated in our study, the use of nonlinear methods for dimensionality estimation 

ameliorates the problems that arise when neglecting low-variance signals as purely noisy. 

Recommended analysis pipel ine  

Based on our results, we recommend the following approach for estimating the dimensionality of 

neural recordings (Figure 2-10). First, obtain an upper-bound estimate D of the intrinsic 

dimensionality of the data. We found that Parallel Analysis works well for this purpose, being 

both computationally efficient and the most accurate linear method in our tests. Next, the signals 

should be denoised. Our denoising approach worked by projecting the neural signals into a 

subspace of dimensionality D equal to the upper-bound dimensionality estimate, and then 

reconstructing them based on these projections. A PCA based reconstruction is easy to 

implement and interpret and may be preferable if computational efficiency is important. A 

nonlinear denoising algorithm, such as the Joint Autoencoder we proposed, should also be used 

to assess the nonlinearity of the manifold. The usefulness of the denoising step was quantified 

through the VAF between the reconstructed signals, assumed to be denoised, and the noise-
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free synthetic signals before noise was added to them. Our results showed that for nonlinear 

datasets this VAF was higher for the Joint Autoencoder than it was for PCA. However, this VAF 

cannot be computed for experimental data, for which we do not have access to the noise-free 

signals. In this scenario, the reconstruction VAF between noisy inputs and the denoised 

reconstructed outputs may be useful for detecting nonlinear manifolds: a higher reconstruction 

VAF for Joint Autoencoder denoising than for PCA denoising would signal a nonlinear manifold. 

A reconstruction VAF that prefers the Joint Autoencoder indicates that this denoising method 

yields better denoised signals. Once the signals are denoised, and the linearity or nonlinearity of 

the manifold is established, either a linear or nonlinear dimensionality estimation method should 

be used depending on the comparative performance of the corresponding denoising algorithms. 

The most accurate linear method we tested was Parallel Analysis. Of the nonlinear methods, 

Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neighbors were the most 

accurate; Levina-Bickel Maximum Likelihood Estimation required fewer data samples. 

 

Figure 2-10: Recommended analysis pipeline for estimating the dimensionality of multi-

electrode array recordings. First, obtain the upper-bound dimensionality estimate D using a 
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linear algorithm. Parallel Analysis works well for this purpose. Next, denoise the data using both 

linear (PCA based) and nonlinear (JAE based) denoising approaches and compare their 

reconstruction VAFs. Higher VAF for the PCA based denoising would signal a linear manifold. In 

contrast, higher VAF for the JAE based denoising would signal a nonlinear manifold. Finally, once 

the signals have been denoised using the appropriate denoising method based on the determined 

linearity of the manifold, estimate the dimensionality of the denoised signals. Parallel Analysis is 

appropriate for linear manifolds. Levina-Bickel Maximum Likelihood Estimation and Two Nearest 

Neighbor are the most accurate nonlinear algorithms that we tested. 

Conclusions 

Estimating the dimensionality of neural data is challenging. In this study, we tested several 

available algorithms and determined the conditions under which estimating dimensionality may 

be particularly difficult or even impractical. Noise is a confounding factor and must be removed 

prior to dimensionality estimation. Most existing studies have estimated intrinsic dimensionality 

using linear methods that are computationally efficient and easy to interpret. We showed that 

linear methods provide an upper-bound to the intrinsic dimensionality, and in cases of high 

noise, may even provide better estimates than nonlinear methods, although neither linear nor 

nonlinear methods will yield accurate estimates in this scenario. Nonlinear algorithms were 

more accurate for nonlinear datasets when noise was adequately removed. Finally, algorithms 

failed when the intrinsic dimensionality was high. It may be impractical or impossible to estimate 

the dimensionality of neural data when it is above ~20. However, estimation of the 

dimensionality of neural activity in the primary motor cortex may be possible, as many studies 

have reported its linear dimensionality to be within the practical limits for accurate estimation by 

the methods we tested.  
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Supporting Information 

In order to apply our recommended analysis pipeline to actual neural data, we used neural 

activity recorded from the primary motor cortex (M1) of a macaque monkey (Monkey J) during 

the execution of an isometric center-out task (see (Gallego et al. 2018) for details). We used 

three datasets, J1, J2, and J3, corresponding to three different experimental sessions. The 

recorded neural data consisted of 96-channels of spiking activity, binned at 50 ms and 

smoothed using a Gaussian kernel with zero mean and a s.d of 50 ms to obtain firing rates. We 

selected five-minute segments of concatenated, successful trials taken from each of the three 

datasets (Table 2-1). This is the actual neural data to which we applied the recommended 

analysis pipeline. 

The analysis pipeline, described in the main body of the paper (see “Recommended analysis 

pipeline” in “Discussion”), consists of three steps: 1) Obtaining the upper bound dimensionality, 

2) denoising, and 3) estimating dimensionality. We chose Parallel Analysis (PA) for Step 1. The 

estimated upper bound dimensionalities are shown in the Table below. The next step was to 

denoise the datasets using PCA and JAE, by reconstructing the data after compression through 

a low-dimensional bottleneck. The VAF between the original and reconstructed data using JAE-

based denoising was consistently higher than that obtained when using PCA-based denoising, 

signaling nonlinearity in all three datasets. The final step was to apply the two nonlinear 

dimensionality estimators, Levina-Bickel Maximum Likelihood (MLE) and Two Nearest 

Neighbors (TNN) to the denoised datasets. The MLE and TNN estimates are shown in the Table 

below. Based on these dimensionality estimates, we chose an intrinsic dimensionality 𝑑=6 for 

most of the simulated neural activity. 
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 Step 1 
Upper bound 

dimensionality 

Step 2 
VAF after linear and 
nonlinear denoising 

Step 3 
Estimate 

dimensionality 

Dataset PA PCA VAF JAE VAF MLE TNN 

J1 11 53% 61% 6.8 5.8 

J2 11 51% 59% 6.7 5.5 

J3 9 56% 62% 4.8 4.6 

      
Table 2-1: Application of the recommended analysis pipeline to three sets of real neural 

recordings. The parallel analysis (PA) estimates of the dimensionality are shown for each of the 

datasets J1, J2, and J3. These values determined the bottleneck dimensionality to be used for 

denoising each dataset. The PCA-based denoising yielded reconstructions with 53%, 51%, and 

56% VAF. The JAE-based denoising was slightly better for all datasets, with 61%, 59%, and 62% 

VAF. The better performance of the JAE-based denoising is indicative of modest nonlinearity in all 

three datasets. Once each dataset had been denoised using JAE, the corresponding 

dimensionalities were estimated using MLE and TNN. These results motivated our choice of 𝑑=6 

for the intrinsic dimensionality of most of our simulated datasets. 
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Abstract 

Across many brain areas, neural population activity appears to be constrained to a low-

dimensional manifold within a neural state space of considerably higher dimension. Recent 

studies of the primary motor cortex (M1) suggest that the activity within the low-dimensional 

manifold, rather than the activity of individual neurons, underlies the computations required for 

planning and executing movements. To date, these studies have been limited to data obtained 

in constrained laboratory settings where monkeys executed repeated, stereotyped tasks. An 

open question is whether the observed low dimensionality of the neural manifolds is due to 

these constraints; the dimensionality of M1 activity during the execution of more natural and 

unconstrained movements, like walking and picking food, remains unknown. We have now 

found similarly low-dimensional manifolds associated with various unconstrained natural 

behaviors, with dimensionality only slightly higher than those associated with constrained 

laboratory behaviors. To quantify the extent to which these low-dimensional manifolds carry 
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task-relevant information, we built task-specific linear decoders that predicted EMG activity from 

M1 manifold activity. In both settings, decoding performance based on activity within the 

estimated low-dimensional manifold was the same as decoding performance based on the 

activity of all recorded neurons. These results establish functional links between task-specific 

manifolds and motor behaviors, and highlight that both constrained and unconstrained 

behaviors are associated with low-dimensional M1 manifolds. 

Introduction 

The number of neurons involved in planning and executing a motor behavior, no matter how 

simple or complex, far exceeds the number of variables relevant to behavior. This mismatch 

makes the signals across neurons highly redundant and raises the question of how the activity 

of a population of neurons represents the relatively few variables relevant to behavior (P. Gao 

and Ganguli 2015; Gallego et al. 2017; Saxena and Cunningham 2019). Contemporary studies 

across many brain areas report that the activity of populations of neurons is constrained to low-

dimensional subregions of the neural space known as neural manifolds (Stopfer, Jayaraman, 

and Laurent 2003; DiCarlo and Cox 2007; Churchland et al. 2012; Mante et al. 2013; Kaufman 

et al. 2014; Sadtler et al. 2014; Gallego et al. 2017; Chung, Lee, and Sompolinsky 2018; 

Remington et al. 2018; Low et al. 2018; Rubin et al. 2019; Chaudhuri et al. 2019; Russo et al. 

2020; Nieh et al. 2021; Libby and Buschman 2021; Chandak and Raman 2021; Ehrlich and 

Murray 2022; Gardner et al. 2022): the computations required for planning and executing 

behaviors appear to be carried out through the patterns of neural activity within the manifolds 

rather than through the independent activity of individual neurons (Churchland and Shenoy 

2007; Kaufman et al. 2014; Chaudhuri et al. 2019; Rubin et al. 2019; Vyas et al. 2020; Libby 

and Buschman 2021).  
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Despite widespread use of the term “low dimensionality”, its precise meaning and significance 

remains unclear. Specifically, it raises questions such as: What qualifies as low dimensional? 

How does the behavioral complexity affect the dimensionality of the neural manifold? Should the 

nonlinearity in the neural manifold be considered when estimating its dimensionality? Recent 

definitions from Jazayeri and Ostojic’s comprehensive review aim to clarify this ambiguity with a 

focus on the neural computational principles associated with both intrinsic and embedding 

dimensionality in neural recordings (Jazayeri and Ostojic 2021). A simple example illustrates the 

distinction between intrinsic and embedding dimensionalities (Jazayeri and Ostojic 2021). A ring 

has an intrinsic dimension of 1. If it is flat, it lies in an (𝑥1, 𝑥2) plane, and its embedding 

dimension is 2. If the ring is made of a flexible material, it can be locally pinched away from the 

(𝑥1, 𝑥2) plane. A full description of the ring now requires an additional direction 𝑥3; its embedding 

dimension is 3. If the ring existed within a 100-dimensional space, there are still 97 directions 

along which the ring could be locally pinched away from the (𝑥1, 𝑥2) plane. Each such pinch 

involving a new direction increases the embedding dimension by one without affecting the 

intrinsic dimension. This simple example illustrates the intuition that the discrepancy between 

embedding and intrinsic dimensions is a proxy for the degree of nonlinearity of the manifold 

(Altan et al. 2021).  

The geometrical distinction between intrinsic and embedding dimensions leads to recent 

hypotheses about their distinct functionalities: the intrinsic dimensionality quantifies the number 

of independent latent variables needed to describe the collective activity of a population of 

neurons, while the embedding dimensionality is related to how collective information is 

processed and relayed downstream (Jazayeri and Ostojic 2021). For instance, recent 

theoretical studies posit that the low embedding dimensionality of the relevant manifolds allows 

for accurate brain-to-behavior maps (P. Gao and Ganguli 2015; P. Gao et al. 2017). A low 

embedding dimensionality implies that the relevant population dynamics can be captured by 
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sampling the activity of a relatively small number of neurons. This observation has two 

implications. At a conceptual level involving our understanding of information processing in the 

brain, a low embedding dimension may facilitate the downstream readout of neural activity 

across brain areas; at a practical level involving our efforts to monitor and interpret neural 

population activity, a low embedding dimension allows the relevant population activity to be 

captured by the current recording technologies (Urai et al. 2022).  

The comparative analysis of intrinsic and embedding dimensionality is thus a critical concept to 

1) quantify the redundancy in neural representations, 2) identify the number of latent 

components of collective activity in the neural population, 3) investigate the relation between 

these latent variables and behavioral task variables, sensory inputs, context, planning, and 

future expectations, and 4) quantify the extent to which behaviors can be decoded using current 

neural recording technologies. 

In this study, we focus on primary motor cortical (M1) neural manifolds, which have been 

previously found to be low dimensional (Sadtler et al. 2014; Gallego et al. 2017; Perich, Gallego, 

and Miller 2018; Gallego et al. 2018; Altan et al. 2021). However, these earlier studies were 

conducted in laboratory settings where highly trained monkeys performed simple, constrained 

reach and grasp tasks. In contrast, natural behaviors outside the laboratory do not share these 

constraints. It remains unclear whether the observed low dimensionality of M1 manifolds is 

simply a byproduct of the constraints associated with laboratory tasks or if it reflects an intrinsic 

property of population dynamics in M1 (P. Gao and Ganguli 2015). If the M1 manifolds 

corresponding to unconstrained behaviors were found to be similarly low dimensional, it would 

suggest that low dimensionality is a general organizational principle about neural population 

activity in M1. In this view, the relatively few latent variables that characterize a manifold would 

be sufficient for characterizing the cortical control of movement. These population signals are to 

be read out by the downstream neural circuitry that ultimately causes movement.  
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In intracortical Brain-Computer Interface (iBCI) applications, we operate under hardware 

limitations that vastly undersample the population of motor cortical neurons contributing to a 

specific behavior. When M1 population activity is constrained to a low-dimensional manifold, as 

is the case for constrained laboratory tasks, this limitation is overcome when decoding M1 

neural activity within iBCIs. The question that we address here is whether the confinement of 

M1 population dynamics to low-dimensional manifolds also applies to unconstrained, naturalistic 

behaviors for which the development of iBCIs is highly desirable.  

Our primary objective in this work was to characterize the intrinsic and embedding 

dimensionality of M1 manifolds corresponding to unconstrained behaviors such as grasping 

small treats while standing in the cage and quadrupedal locomotion over perch bars, and to 

compare them to the intrinsic and embedding dimensionalities of manifolds corresponding to 

constrained behaviors in the laboratory. In this analysis, we first applied denoising algorithms to 

the neural signals; this mitigates the overestimation effects of noise on the dimensionality 

estimates (Campadelli et al. 2015; Camastra and Staiano 2016; Altan et al. 2021). Following 

denoising, we computed both intrinsic and embedding dimensionalities of the neural activity. We 

found that the intrinsic and embedding dimensionality of neural manifolds were slightly higher in 

unconstrained settings, but still extremely low.  

Our secondary objective was to characterize the geometry of the manifolds associated with 

unconstrained behaviors. To this end, we assessed the nonlinearity of the neural 

representations in both constrained and unconstrained settings. While we found evidence that 

the low-dimensional manifolds associated with unconstrained behaviors were nonlinear, most 

latent dynamics involved exploring nearly linear regions within the neural manifolds.  

Our final objective was to investigate whether the low-dimensional M1 manifolds carry sufficient 

information about behavior to decode simultaneously recorded electromyograms (EMGs). In 

both laboratory and cage settings, we demonstrated that EMGs could be decoded from the level 



84 
 

of activation of relatively few latent variables within neural manifolds, and that the performance 

of these decoders was as good as that obtained when decoding EMGs from the activity of all 

recorded neurons.  

Our study illustrates that the low dimensionality of primary motor cortical manifolds is not 

exclusive to constrained laboratory tasks but is also present in unconstrained motor behaviors 

within a cage environment. Although the manifolds associated with unconstrained tasks have 

slightly higher intrinsic and embedding dimensionalities than those associated with constrained 

tasks, their existence indicates that the low dimensionality of M1 manifolds is characteristic of 

the population dynamics of M1 rather than a mere consequence of laboratory constraints. Our 

study advances our understanding of the computational strategies implemented to achieve M1’s 

role in processing and representing muscle-related information. In addition, we expect these 

findings to facilitate the extension of neural prosthetics and brain-machine interfaces to 

unconstrained settings. 

Methods 

Recordings, tasks, and data preprocessing  

We trained two 9-10 kg monkeys (Macaca mulatta) to perform tasks in two different 

environments. The first is defined as the “in-lab” environment, where the monkeys were seated 

on a standard primate chair and trained to perform a grasping task (Figure 3-1a). The task 

required them to reach and grasp a force-instrumented device located 30 cm in front of their 

shoulder using either left hand (monkey G) or right hand (monkey P). The shape of the device 

during an experimental session determined the type of grasping: a cylinder for power grasps 

with the palm and the fingers, a small rectangular cuboid for key grasps with the thumb and the 

edge of the index finger, and a small rectangular cuboid recessed within a thin slot for precision 

grasps with the tips of the thumb and the index finger. A pair of force sensitive resistors (FSRs) 
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were attached on the sides of the devices to measure the grasping forces the monkeys applied. 

A monitor was placed above the device to display such forces with a cursor; the position of the 

cursor along the vertical and horizontal axes was determined by the sum and the difference of 

the FSR outputs, respectively. In each trial, the monkeys were initially required to keep the hand 

resting on a touch pad for a random time (0.5-1.0 s). A successful holding triggered the onset of 

one of three possible rectangular targets on the screen and an auditory go cue. The monkey 

was required to place the cursor into the target and to hold it there for 0.6 s by increasing and 

maintaining the grasping force applied on the device. 

 

Figure 3-1: Tasks and recordings. a) Primate chair in which the monkeys performed a series of 

power, key, and precision grasp tasks in the constrained laboratory environment. b) The 

unconstrained cage environment where the monkeys moved freely. In the cage, monkeys did 

quadrupedal locomotion by grasping and walking over the perch bars (bar walk task). The 

monkeys also received treats from the experimenters (treat task). Monkeys were monitored using 

multiple synchronized cameras from which the individual behavior types were manually 
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segmented, allowing for the corresponding segmentation of neural and EMG data. c) 96-electrode 

Utah arrays were implanted in the hand area of the primary motor (M1) cortex of each monkey 

(monkey G: right hemisphere, monkey P: left hemisphere). 

The second environment is defined as the “in-cage” environment, where the monkeys were 

placed inside a 2×1×1 m plastic cage (Figure 3-1b). There were five bars spanning the width of 

the cage mounted 10 cm above the floor; the monkey grasped these bars while walking back 

and forth the length of the cage. The monkey typically would do a series of power grasps on 

these perches as he moved. We called this behavior bar walk. There are small holes on the 

door of the cage, through which experimenters could present small food pellets as treats to the 

monkeys inside; the monkeys typically used a precision grasp with the thumb and the index 

finger to take them. We called this behavior treat grasp. We identified single in-cage bar walk 

and treat grasp segments from the continuous recordings based on synchronized video 

recordings, and defined those segments as “successful trials”. 

We implanted a 96-electrode array with 1.5 mm shaft length (Blackrock Microsystems, Salt Lake 

City, UT) in the hand area of motor cortex (M1) of each monkey (Figure 3-1c; monkey G: right, 

monkey P: left). Neural signals were collected using a Cerebus system (Blackrock 

Microsystems, Salt Lake City, UT). For the in-lab recordings, the neural signals were amplified 

by a Cereplex-E headstage. For the in-cage recordings, the neural signals were amplified, 

digitized at 30 kHz, and transmitted by a Cereplex-W wireless headstage. The neural signals 

were then digitally band-pass filtered (250 – 5000 Hz). Spikes were detected using a threshold 

set at -5.5 times the root-mean-square (RMS) amplitude of the signal on each channel, and the 

time stamp and a 1.6 ms snippet of each signal surrounding the threshold crossing were 

recorded. We used multiunit threshold crossings on each channel instead of well isolated single 

neurons in all our data analyses. We applied a Gaussian kernel (S.D.: 100 ms) to the spike 

counts in 50 ms, non-overlapping bins to obtain a smooth firing rate as function of time for each 
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channel. We excluded channels with an average firing rate < 0.5 Hz during either in-lab or in-

cage movements. 

We also implanted intramuscular electromyographic (EMG) leads in 23 arm, forearm, and hand 

muscles in the left arm of monkey G and in the right arm of monkey P, contralateral to the M1 

implant. For the in-lab recording sessions of monkey G, we collected EMG signals using a multi-

channel differential amplifier and the analog input channels of the Cerebus system. For the in-

cage sessions of monkey G and all sessions of monkey P, we collected EMG signals using a 

micro multi-channel amplifier (RHD2132, Intan Tech., Los Angeles, CA) and a wireless 

transmitter (RCB-W24A, DSP Wireless Inc., Haverhill, MA). The micro amplifier and wireless 

transmitter were both placed in a backpack on the monkey’s jacket. The EMG signals were 

amplified, band-pass filtered (4-pole, 50 - 500 Hz), and sampled at 2000 Hz. The EMGs were 

subsequently digitally rectified and low-pass filtered (4-pole, 10 Hz, Butterworth), and 

subsampled to 20 Hz (50 ms bins) to match the neural spike counts. 

For each monkey, we divided the neural and EMG data collected for a given task into smaller 

datasets of non-overlapping data segments of 75 seconds duration. We chose 75 seconds 

based on simulations (Altan et al. 2021) and on a preliminary analysis (Supplementary Figure 

3-1) that assessed the effect of the amount of temporal data on dimensionality estimates. All 

neural and EMG data channels were normalized to their 95th percentile value. 

Embedding and intr insic d imensionali ty estimation algori thms  

We used two algorithms for dimensionality estimation: Parallel Analysis (Horn 1965; Buja and 

Eyuboglu 1992; Franklin et al. 1995) and Two Nearest-Neighbors (Facco et al. 2017). These 

methods were selected due to their superior performance in evaluating the dimensionality of 

simulated linear and nonlinear manifolds, respectively (Altan et al. 2021). 



88 
 

Parallel Analysis (PA) is an embedding dimensionality estimator based on the eigenvalues of 

the covariance matrix for the dataset (Horn 1965). Unlike other embedding dimensionality 

estimators that rely on eigenvalue computation, PA does not rely on a predetermined variance 

threshold, but rather relies on counting the number of eigenvalues that exceed their respective 

values in a null distribution. This method has been shown to be an accurate estimator of 

embedding dimensionality in many fields (Dinno 2009).  

To estimate the embedding dimensionality of a given 𝑀-by-𝑁 dataset with 𝑀 samples of 𝑁  

recorded signals, the PA algorithm proceeds as follows. First, it repeats the following process 𝐾 

times: for each feature, the data are independently shuffled using a random permutation along 

the corresponding column, the temporal axis; this shuffling breaks the correlation across 

features. Then, the eigenvalues of the features covariance matrix for the shuffled data are 

obtained and sorted from largest to smallest. A null distribution is created for each eigenvalue 

from the 𝐾 shuffles. We used 𝐾 = 200 repetitions and fixed the random number generator seed 

for reproducibility. 

Next, we computed the 95th percentile from the null distribution of each eigenvalue; this serves 

as a significance threshold. Finally, we counted the number of original eigenvalues that were 

larger than their respective 95th percentile null distributions. This number was 𝐷𝑃𝐴, the 

embedding dimensionality estimate obtained by PA. While the 95th percentile cutoff was an 

arbitrary choice, PA is quite robust to a reasonable choice of threshold to characterize significant 

deviations to the null, noise-based eigenvalue distribution (Dinno 2009). In contrast, the usual 

practice of choosing a threshold for the variance-accounted-for (VAF) in a PCA-based approach 

often results in significant changes in the estimate of the embedding dimensionality when the 

threshold is changed by a few percentage points, such as choosing a 90th instead of a 95th 

cutoff. 
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To estimate the intrinsic dimensionality, we used Two Nearest-Neighbors (TNN), an estimator 

based on the local adjacency of data points (Levina and Bickel 2004; Facco et al. 2017; Allegra 

et al. 2020). Specifically, this method is based on the ratio 𝜇 of distances to the second vs the 

first nearest neighbors of a given point. The second-to-first nearest neighbors distance ratio is 

Pareto distributed with a unitary scale parameter and a shape parameter equal to the intrinsic 

dimensionality (Denti et al. 2022). The intrinsic dimensionality can be approximated using the 

following equation: 

𝐷𝑇𝑁𝑁 = −
log(1−𝐹(𝜇))

log(μ)
     (Equation 3-1) 

Here, F(𝜇) is the empirical cumulative distribution of the ratio of second-to-first nearest neighbor 

distances for each data point. In this study, we used the publicly available python package 

called scikit-dimension (Bac et al. 2021) to compute the TNN estimate of intrinsic 

dimensionality. 

Denoising algori thms 

Noise is a confounding factor for both intrinsic and embedding dimensionality estimates 

(Campadelli et al. 2015; Camastra and Staiano 2016; Altan et al. 2021). Random noise across 

channels will lead to increased dimensionality estimates that might even approach the total 

number of recorded signals. To address this issue, we implemented two denoising approaches 

that rely on an initial estimate of an upper bound dimensionality 𝐷 =  𝐷𝑃𝐴  obtained using 

Parallel Analysis (PA). 

The first approach, PCA denoising, is a linear method based on Principal Component Analysis 

(PCA, Figure 3-2a). After determining the value of 𝐷 using PA, we used the 𝐷 leading principal 

components to reconstruct the original data. This approach assumes that most of the noise is 

present in the low-variance principal components that have been discarded. 
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The second approach, Joint Autoencoder (JAE) denoising, is a neural network-based method 

(Figure 3-2b). We divided the noisy neural signals with 𝑁 features into two disjoint subsets, 

each including 𝑁 2⁄  features, and used the compressive halves of two autoencoders to map 

each subset into a 𝐷-dimensional subspace. The reconstructed versions of the subsets of 

dimension  𝑁 2⁄   resulted from the expansive halves of the respective autoencoders. The JAE 

was trained using a cost function that minimized the mean-squared error associated with the 

reconstructions of each of the two subsets, as well as the mean-squared error between the two 

intermediate 𝐷-dimensional latent signals. This approach assumes that each subset contains 

the necessary information to identify the underlying 𝐷-dimensional signals while the noise 

components are common across the two subsets. 

To evaluate the performance of the denoising algorithms, we calculated the coefficient of 

determination (𝑅2) between the denoised and noisy neural signals (Figure 3-2c and 3-2d). We 

validated these denoising approaches in a previous study based on simulated neural datasets 

with known levels of noise (Altan et al. 2021). 

Robustness of the dimensionali ty est imates relative to the ambient 

dimensionali ty of the underlying neural space  

Accurately interpreting the dimensionality of neural data requires consideration of the amount of 

data used for dimensionality estimation. Prior studies have shown that the amount of data used, 

measured by both the number of samples 𝑀 and number of features 𝑁, can affect the accuracy 

and precision of the dimensionality estimates (Cunningham and Yu 2014; P. Gao and Ganguli 

2015; Camastra and Staiano 2016; Altan et al. 2021; Jazayeri and Ostojic 2021). To ensure 

stable dimensionality estimates, we determined that datasets roughly one minute in length were 

sufficient for our analyses (see Supplementary Figure 3-1). 

Similarly, we conducted analyses to determine the robustness of our estimates with respect to 

the number of neurons. Specifically, we aimed to assess whether our dimensionality estimates 
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reached an asymptote as the number of neurons increased, indicating reliable estimates. We 

gradually sampled increasing numbers of neurons and repeatedly computed the dimensionality 

estimates 20 times for each number. We sampled 5, 10, 15, 20, 25, 30, 35, and the maximum 

number of recorded neurons for each dataset. If the estimates reached an asymptote, we 

concluded that additional neurons would not contribute meaningfully to the estimated 

dimensionality, indicating that our dimensionality estimates were robust. Conversely, if the 

estimates continued to increase with the number of neurons, this suggested that more neurons 

would be necessary to obtain reliable estimates.  

Quanti fying the extent of nonlineari ty  

We used two measures to compute the extent of nonlinearity in the neural recordings; these 

measures arise from two complementary perspectives. The first measure, that we called 

manifold nonlinearity index, focused on the nonlinearity of the geometry of the neural manifold. 

The second measure, that we called local flatness index, focused on how much of the 

population activity is concentrated in approximately linear regions within the manifold.  

To compute the manifold nonlinearity index, we used the ratio of embedding-to-intrinsic 

dimensionality of the neural manifold (Altan et al. 2021). The manifold nonlinearity index is 

similar to the dimensionality gain metric used in an artificial neural network study that sought to 

extract predictive latent signals (Recanatesi et al. 2021).  

To compute the local flatness index, we compared the Euclidean and geodesic distances 

between every pair of data points in the state space of each dataset (Supplementary Figure 3-

2). Euclidean distance is the length of the shortest straight line between two points, while 

geodesic distance takes into account the curvature of the neural manifold by measuring the 

length of the shortest path that lies within the manifold and connects the two points. To calculate 

the geodesic distance from one point to all others, we started from a nearest-neighbor cloud 
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limited to 200 samples. Distances to those 200 closest activity patterns were computed along 

the straight lines joining the central point to its neighbors within the cloud. It is from these short 

linear segments that global geodesics are constructed.   

A large discrepancy between the Euclidean and geodesic distances indicates that the 

population activity explores curved, nonlinear regions within the manifold. A higher degree of 

overlap suggests that the neural activity is largely confined to nearly linear regions within the 

manifold. To determine the extent to which the neural activity evolves in a linearizable region of 

the neural manifold, we computed the empirical distribution of both Euclidean and geodesic 

distances for each dataset. We used 20 bins to cover the full range shared between these two 

distance distributions; we then converted these distributions to normalized densities. Within 

each bin, the smaller of the two density values, multiplied by the bin size and summed over all 

bins provides the value for the local flatness index. Supplementary Figure 3-2 shows a 

graphical illustration of how we computed the local flatness index for a randomly chosen bar 

walk dataset from Monkey P. 

Computing the act ivi ty on the low-dimensional neural manifolds  

To project the population neural activity onto the low-dimensional neural manifolds, we 

employed two different techniques, each with different underlying assumptions about the 

linearity of the data: Principal Component Analysis (PCA) and a nonlinear autoencoder. PCA is 

a widely used linear technique based on finding the orthogonal directions in neural space that 

correspond to maximum variance in the data. In contrast, the nonlinear autoencoder is a neural 

network-based technique that can capture complex nonlinear relationships in the data and is 

especially useful for projecting population activity onto the low-dimensional nonlinear neural 

manifolds. The autoencoder consisted of five feedforward layers (input, first hidden, bottleneck, 

second hidden, and output layers) with ReLU activation and was trained using the ADAM 
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optimizer on the reconstruction error, the mean-squared error between output and input; default 

training parameters were used, and training lasted for 50 epochs.   

For both techniques, we used the TNN estimates of the intrinsic dimensionality to determine the 

manifold dimensions. For PCA, this meant that we retained a number of leading principal 

components equal to 𝐷𝑇𝑁𝑁 rounded to the nearest integer. For the autoencoder, we made the 

number of neurons in the bottleneck layer equal to 𝐷𝑇𝑁𝑁 rounded to the nearest integer. 

Decoding electromyograms (EMGs)  

Our setup allowed for the simultaneous recording of neural signals from the primary cortex and 

EMG signals from muscles as the monkeys engaged in various motor behaviors. We used 

linear regression to decode EMG signals from neural signals; this basic, interpretable, and linear 

method is widely used in the field of brain-computer interfaces (Carmena et al. 2003b; Glaser et 

al. 2020). Each set of EMG signals was decoded using three types of inputs: all available 

neurons, latent signals obtained from PCA, and latent signals obtained from the bottleneck layer 

of the autoencoder. We used five-fold cross validation for each approach and reported all five 

test folds for a given neural-to-EMG dataset pair. 

Statist ical analyses 

We reported our computations in the mean ± standard deviation format. We used Welch’s t-test 

for statistical comparisons when the distribution of the statistic of interest was normal. We used 

Wilcoxon rank sum test in the case when the normality assumption was violated 

(Supplementary Figure 3-3). When we compared EMG decoding accuracies from PCA 

embeddings, AE embeddings, and all available neurons, we used repeated measures ANOVA 

(Figure 3-6). We reported the 𝑝-values obtained from the statistical test in the figure legends 

and used Bonferroni correction for multiple comparisons where applicable.  
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Ethics statement 

All surgical and experimental procedures that yielded the datasets comprising of multi-electrode 

neural recordings and intramuscular electromyogram (EMG) signals from non-human primates 

were approved by the Institutional Animal Care and Use Committee of Northwestern University. 

The two monkeys were monitored daily to ensure their well-being and health. Their diet 

consisted of a standard laboratory animal diet supplemented with fresh fruits and vegetables to 

provide optimal nutrition. Additionally, the monkeys were provided with access to various types 

of enrichment to promote mental stimulation and overall well-being. 

Results 

Reducing the effects of noise using l inear and nonlinear methods  

Both neurons and neural recordings are noisy (Faisal, Selen, and Wolpert 2008), which can 

cause an overestimation of the dimensionality (Camastra 2003; Facco et al. 2017; Altan et al. 

2021; Jazayeri and Ostojic 2021) of recorded neural activity. To mitigate the effect, we first 

denoised the recorded neural signals using two approaches that differed by their assumption 

about the linearity of the manifold to which the data is mostly confined. The linear denoising 

method was based on Principal Component Analysis (PCA, Figure 3-2a). The nonlinear 

denoising method was a neural network-based approach called the Joint Autoencoder (JAE, 

Figure 3-2b).  
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Figure 3-2: Denoising the neural signals. Two methods were employed to denoise neural 

signals: a PCA based approach and a deep neural network-based approach called JAE. a) In the 

PCA based denoising approach, noisy neural signals were projected to the leading 𝐷 principal 

components, with 𝐷 determined by Parallel Analysis. The denoised neural signals were the 

reconstructions from the 𝐷-dimensional bottleneck. b) For the deep neural network-based 

denoising approach we used the joint autoencoder (JAE). Noisy neural signals were randomly 

divided into two subsets. Each subset was nonlinearly projected to a 𝐷-dimensional latent space 

using two parallel deep networks. 𝐷 was again determined using Parallel Analysis. The mean 

squared error (MSE) loss used to train the network forced the 𝐷-dimensional latent representations 

across the parallel networks to match. Denoised neural signals were obtained from the 

reconstructions based on the activity in the 𝐷-dimensional bottlenecks. c) Comparison of 

reconstruction accuracies between PCA and JAE denoising approaches for Monkey P. Each circle 
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represents the R2 performance of each denoising method for a single dataset. Warm colors 

indicate the constrained laboratory tasks. Cold colors indicate the unconstrained cage tasks. d) 

Same as in panel c but for Monkey G. 

For every data set for both monkeys, denoising the data using JAE yielded a higher 

reconstruction accuracy (R2) than denoising the data using PCA (Figure 3-2c and 2d). For 

monkey P and for the power and precision grasp tasks, PCA yielded a reconstruction accuracy 

of 0.78 ± 0.03 (mean ± standard deviation) and 0.78 ± 0.02, whereas JAE yielded 0.88 ± 0.04 

and 0.87 ± 0.04, respectively. The reconstruction accuracies for the bar walk and treat grasp 

tasks were 0.69 ± 0.02 and 0.71 ± 0.05 with PCA, and 0.76 ± 0.02 and 0.85 ± 0.04 with JAE. 

We observed a similar trend for Monkey G. For the power and key grasp tasks, reconstruction 

accuracy using PCA was 0.65 ± 0.01 and 0.74 ± 0.02, whereas the reconstruction accuracy 

using JAE was higher at 0.88 ± 0.02 and 0.91 ± 0.02. For the unconstrained tasks, 

reconstruction accuracies using PCA and JAE were 0.66 ± 0.01 and 0.68 ± 0.05, and 0.77 ± 

0.01 and 0.81 ± 0.04, respectively. For the reminder of the analyses, we denoised the neural 

signals using the JAE approach due to its consistently superior performance over PCA. 

Dimensionali ty est imates of denoised neural s ignals  

Our next goal was to compute the dimensionality of the denoised signals. We applied two 

dimensionality estimation algorithms: PA and TNN. We used PA to estimate the embedding 

dimensionality and TNN to estimate the intrinsic dimensionality of the neural signals. These 

methods were chosen based on their assumption about linearity and superior performance to 

alternatives (Altan et al. 2021). 

Both embedding and intrinsic dimensionality estimates were slightly higher for unconstrained 

behaviors compared to constrained behaviors for both Monkey P and Monkey G (Figure 3-3). 

Dimensionality estimates from PA were almost always higher than those from TNN. For Monkey 
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P, the PA dimensionality across the constrained laboratory tasks increased from 7.28 ± 1.67 to 

10.40 ± 2.54 across the unconstrained tasks (Figure 3-3a). Similarly for Monkey G, the PA 

dimensionality across constrained and unconstrained tasks was 5.84 ± 0.78 and 9.27 ± 1.62, 

respectively (Figure 3-3b). We observed the same trend in TNN dimensionality across the two 

task settings. TNN dimensionality estimates for Monkey P increased from 5.01 ± 0.39 to 6.5 ± 

0.58 from the constrained to unconstrained tasks (Figure 3-3c). Similarly for Monkey G, TNN 

estimates went from 4.72 ± 0.18 to 5.70 ± 0.27 (Figure 3-3d). In summary, neural manifolds for 

all tasks were consistently much smaller than the total number of sampled neurons, which 

defines the dimensionality of the empirical neural space that contains these task-specific 

manifolds.  We note that both the intrinsic and embedding dimensionalities were slightly higher 

for unconstrained tasks. 
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Figure 3-3: Estimating the embedding and intrinsic dimensionalities of neural manifolds. 

We applied Parallel Analysis (PA) and Two-Nearest Neighbors (TNN) to estimate 

the embedding and intrinsic dimensionality, respectively. a) Comparison of the PA 

estimates for constrained and unconstrained behaviors for Monkey P (p ≈ 0). 

Each circle represents the dimensionality estimate from a single dataset. Warm 

colors indicate constrained behaviors in the laboratory. Cold colors indicate 

unconstrained behaviors in the cage. b) Same as in panel a but for Monkey G (p 
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≈ 0). c) Comparison of the TNN estimates across constrained and unconstrained 

behaviors for Monkey P (p ≈ 0). d) Same as in panel c but for Monkey G (p ≈ 0). 

We asked if the small but significant increase in the dimensionality of neural manifolds 

associated with unconstrained tasks is a reflection of increased task complexity (P. Gao and 

Ganguli 2015; P. Gao et al. 2017), and used the intrinsic dimensionality of EMG signals as a 

proxy for task complexity (Supplementary Figure 3-3). The increase in EMG dimensionality 

when comparing unconstrained to constrained tasks was also small but significant, and 

particularly noticeable in some instances of unconstrained tasks for monkey G (Supplementary 

Figure 3-4). 

Investigat ing the extent of nonl inearity in the neural manifolds  

To quantify the degree of nonlinearity in the geometry of neural manifolds, we computed the 

manifold nonlinearity index (see Methods). On average, the manifold nonlinearity index was 

slightly higher for the unconstrained tasks than for the constrained tasks, but rarely exceeded 

two (Figure 3-4a and 4b). On average, the manifold nonlinearity index was 1.45 ± 0.29 

(Monkey P) and 1.24 ± 0.16 (Monkey G) for the constrained tasks, and 1.58 ± 0.28 (Monkey P) 

and 1.63 ± 0.26 (Monkey G) for unconstrained tasks, respectively. The larger manifold 

nonlinearity index for Monkey P was not statistically significant. 
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Figure 3-4: Manifold nonlinearity index and local flatness index of neural manifolds. a) 

Manifold nonlinearity index, the ratio of the embedding (PA) to intrinsic (TNN) 

dimensionality, for all datasets for Monkey P. Each circle represents the manifold 

nonlinearity index for a single dataset. Warm colors indicate constrained 

behaviors in the laboratory. Cold colors indicate unconstrained behaviors in the 

cage (p = 0.06). b) Same as in panel a but for Monkey G (p = 0.0005). c) Local 

flatness index, measured by the fractional overlap between the distributions of 
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Euclidean and geodesic distances (see Methods, Supplementary Figure 2), for 

Monkey P (p ≈ 0). d) Same as in panel c but for Monkey G (p ≈ 0). 

The manifold nonlinearity index only partially elucidates the nature of nonlinearity of the neural 

manifold, because it does not reveal how neural activity samples the manifold. To complement 

it, we computed the local flatness index, which quantifies the extent to which the population 

activity samples linear regions within the manifold (see Methods). The approach is based on 

comparing all pairwise Euclidean and geodesic distances for each dataset. (Figure 3-4c and 

4d). The overlap between the distributions of geodesic and Euclidean distances highlights the 

degree of linearity in the explored regions of the manifold: an overlap greater than 0.50 indicates 

that most of the data lie in regions of the manifold that are well approximated by the tangent 

linear subspace (Supplementary Figure 3-2). 

For Monkey P, the constrained tasks had a local flatness index of 0.79 ± 0.04 and unconstrained 

tasks had a local flatness index of 0.70 ± 0.06. For Monkey G, local flatness was 0.58 ± 0.06 for 

constrained and 0.81 ± 0.04 for the unconstrained tasks (Figure 3-4c and 4d). The differences 

for both monkeys were statistically significant, despite being in opposite directions. We notice 

the low value of the local flatness index for Monkey G when executing constrained tasks, and 

hypothesize that this effect is likely associated with the adoption of distinct task execution 

strategies by Monkey G in the laboratory, as illustrated in Supplementary Figure 3-3b. For this 

hypothesis to be confirmed, we would need to analyze and compare the fine details of task 

execution, an analysis beyond the scope of this work. To summarize these findings the 

aggregate results in Figure 3-4c and 4d show that the local flatness index never fell below 0.5 

in any constrained or unconstrained scenario; this indicates a substantial overlap between the 

distributions of geodesic and Euclidean distances for both monkeys. Results for the local 

flatness index establish that for the tasks investigated here the neural population dynamics 

visited states mostly confined to nearly linear regions within slightly nonlinear neural manifolds. 
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Number of neurons required for stable dimensionali ty est imates  

One critical consideration for interpreting dimensionality is the amount of data needed for 

dimensionality estimates; previous studies show that the amount of data can affect the accuracy 

of the estimates (Cunningham and Yu 2014; Altan et al. 2021). We determined that datasets 

roughly one minute-long were sufficient for stable dimensionality estimates (Supplementary 

Figure 3-1). 

Another factor contributing to the reliability of dimensionality estimates is the number of 

recorded neurons. How robust are the dimensionality estimates with respect to the number of 

neurons used in analysis? To answer this question, we assessed whether the dimensionality 

estimates reached an asymptote as the number of neurons used for analysis increased. An 

asymptotic saturation of the estimated dimensionality would signal reliable dimensionality 

estimates.  

We found that for both monkeys the nonlinear TNN method saturated as the number of neurons 

increased (Figure 3-5a and c). The TNN dimensionality estimates saturated at roughly 20 to 35 

sampled neurons for all tasks and monkeys. In contrast, the linear method PA yielded 

dimensionality estimates that continued to increase as the number of neurons used to estimate 

manifold dimensionality increased (Figure 3-5b and d). 
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Figure 3-5: Number of neurons required for stable dimensionality estimates. We 

progressively increased the number of neurons included in the dimensionality estimation. We 

randomly subsampled, with ten repetitions, a given number of neurons from the total number of 

neurons available in each dataset. Solid lines indicate the average dimensionality estimate. 

Shaded regions indicate the standard deviation. a) TNN estimates from for Monkey P. b) PA 

estimates for Monkey P. c) Same as in panel a, but for Monkey G. d) Same as in panel b, but for 

Monkey G. 
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Decoding EMGs from low-dimensional latent act ivi ty  

Finally, we compared how well the neural manifolds represented behavior by decoding EMGs 

from the activity within the low-dimensional neural manifolds obtained with both PCA and a 

nonlinear autoencoder (Figure 3-6). We compared the accuracy of these decoders to that of 

decoders based on the activity of all recorded neurons. In both scenarios, we reported the 

𝐷𝑇𝑁𝑁 estimates of the intrinsic dimensionality of the EMG signals and used this dimensionality 

as the number of leading latent variables to be used as inputs to a neural-to-EMG decoder.  

This approach allowed us to directly quantify the extent to which muscle-related information 

lives in a linear hyperplane that approximates a slightly nonlinear neural manifold of 

𝐷𝑇𝑁𝑁 dimensions. Examples of actual and decoded EMG signals based on all recorded 

neurons, linear latent variables, and nonlinear latent variables are shown in Supplementary 

Figure 3-5 for five different muscles. We also showed the EMG decoding performance from 

progressively increasing neural manifold dimensionality in Supplementary Figure 3-6. 

 

Figure 3-6: Decoding EMGs from low dimensional embeddings and all available neurons. 

We used linear regression to decode EMGs from denoised neural signals (see Methods for 

denoising). We either used PCA embeddings (PCA), AE embeddings (AE), or the full-dimensional 

neural signals (Full) as inputs to linear neural-to-EMG decoders. PCA and AE provided linear and 
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nonlinear latent variables, respectively. The dimensionality of the latent representations followed 

from the TNN estimate for each dataset. Each dot represents the decoding accuracy from one of 

the five test folds of decoding. Different colors represent different tasks. Repeated measures 

ANOVA was not significant between the three conditions for two monkeys (p = 0.59). a) EMG 

decoding accuracies for Monkey P. b) Same as in panel a, but for Monkey G. 

In all datasets, the accuracies obtained when decoding EMGs from all recorded neural signals 

and from the low-dimensional latent variables were not significantly different. Importantly, linear 

decoding from the activity of PCA and autoencoder latent variables restricted to 𝐷𝑇𝑁𝑁  

dimensions yielded similar accuracy–ANOVA with repeated measures was not significant, p = 

0.59. For Monkey P, the average test-fold EMG decoding accuracy using PCA, autoencoder, or 

all recorded neural signals was (mean ± standard deviation) 0.41 ± 0.14, 0.40 ± 0.15, and 0.41 

± 0.15 (Figure 3-6a). The corresponding results for Monkey G were 0.42 ± 0.15, 0.42 ± 0.15 

and 0.41 ± 0.17(Figure 3-6b). These results indicate that there was no difference in EMG 

decoding from the activity of all recorded neurons or from the latent variables that characterize 

the low-dimensional neural manifolds. Additionally, the similar EMG decoding accuracy from 

𝐷𝑇𝑁𝑁  latent variables obtained from PCA and nonlinear autoencoder embeddings indicates that 

the information encoded in the motor cortex relevant to activating muscles exists in a mostly 

linear subspace of dimension 𝐷𝑇𝑁𝑁 (Supplementary Figure 3-5 and 6).  

Discussion 

Neural dimensionality has emerged as an important concept for understanding the underlying 

dynamics and computation abilities of populations of neurons. The dimensionality of the primary 

motor cortex (M1) manifolds associated with specific tasks has been found to be low in 

numerous studies limited to constrained laboratory behaviors (Sadtler et al. 2014; Gallego et al. 

2017; Russo et al. 2018; Perich, Gallego, and Miller 2018; Altan et al. 2021). In this work, we 
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computed the intrinsic and embedding dimensionalities of M1 recordings as monkeys engaged 

in unconstrained tasks in their home cage. Our primary finding was that both the intrinsic and 

embedding dimensionality of M1 signals were slightly higher than for tasks performed with a 

single arm, while seated in a primate chair. Although the manifolds associated with 

unconstrained tasks were found to have slightly higher dimensionalities, these dimensionalities 

were still very low. In addition, although we found signatures of nonlinearity in the M1 neural 

manifolds, most of the activity was confined to nearly linear evolved regions within the neural 

manifolds. Finally, the accuracy of linearly decoded EMGs from the low-dimensional latent 

variables that characterize the manifolds matched closely the accuracy of EMGs decoded from 

all recorded neurons, both in cage and in lab.  

Linking neural dimensionali ty to neural computation and processing 

There are different definitions and interpretations of dimensionality. We adopted those recently 

put forward by Jazayeri and Ostojic, who distinguish between intrinsic and embedding 

dimensionalities (Jazayeri and Ostojic 2021). While the intrinsic dimensionality quantifies the 

number of independent latent variables encoded by a neural population, the embedding 

dimensionality plays a role in understanding how the latent variables are processed and 

transmitted. Together, the analysis of both intrinsic and embedding dimensionalities illuminates 

how neural systems encode and process information. 

Intrinsic dimensionality refers to the actual dimensionality of a nonlinear manifold to which the 

population neural activity is mostly confined; it may include different classes of information, such 

as sensory inputs, motor outputs, and other latent variables that correspond to learned 

experiences and expectations (Jazayeri and Ostojic 2021). Since different brain regions 

selectively represent these classes, the intrinsic dimensionality of a representation in a 

particular brain area may be strongly associated with one class and weakly with another. For 

example, the intrinsic dimensionality of latent signals in early sensory areas like the olfactory 
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cortex and primary visual cortex is associated with the representation of incoming stimuli such 

as chemical odors (Pashkovski et al. 2020) or visual gratings (Stringer et al. 2021), respectively. 

On the other hand, latent signals from the primary motor cortex are more closely associated 

with motor output (Churchland, Cunningham, et al. 2010; Churchland et al. 2012; Kato et al. 

2015; Gallego et al. 2017) and less with future expectations (Zimnik and Churchland 2021). The 

intrinsic dimensionality of manifolds in the primary motor cortex would therefore be expected to 

be closely associated with motor output variables such as kinematics or muscle activation. 

Embedding dimensionality refers to the dimensionality of the minimal Euclidean space sufficient 

to fully contain the nonlinear manifold. Although the recurrent dynamics within a given brain area 

might lead to nonlinear manifolds best characterized by their intrinsic dimension, it is their 

embedding dimension that best characterizes the signals to be communicated through linear 

readouts. This observation has led to the view that the embedding dimension reflects how the 

latent variables are processed for communication to other neural areas (Jazayeri and Ostojic 

2021). However, the computational principles associated with the embedding dimensionality are 

not yet fully understood. What determines whether the embedding dimensionality is high or low? 

We have argued that a higher degree of manifold nonlinearity will require a larger embedding 

dimension. But how does this concept connect to the question of communication across areas? 

One hypothesis is that the neural code is linearly relayed to other brain areas or to the periphery 

(Fusi, Miller, and Rigotti 2016; Badre et al. 2021; Maass 2016; Semedo et al. 2019; Kohn et al. 

2020). In this view, different linear decoders can selectively relay different task relevant 

information to different downstream areas without interference, a property called “mixed 

selectivity” (Rigotti et al. 2013; Kaufman et al. 2022). A brain area that relays distinct sets of 

information to several downstream areas would require the latent variables to be embedded into 

a higher-dimensional Euclidean subspace to facilitate mixed selectivity. Mixed selectivity thus 

necessitates a high embedding dimensionality (Badre et al. 2021). As an example of this 
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correspondence, prefrontal and primary visual cortical neurons have been reported to have a 

very high embedding dimensionality (Rigotti et al. 2013; Fusi, Miller, and Rigotti 2016; Stringer, 

Pachitariu, Steinmetz, Carandini, et al. 2019); these observations fit well with the mixed 

selectivity hypothesis. In contrast, a brain area that does not require extensive mixed selectivity, 

such as the primary motor cortex, would generate latent variables that only require a relatively 

low embedding dimensionality, an observation consistent with many reports on M1 manifolds 

(Sadtler et al. 2014; Gallego et al. 2017; Perich, Gallego, and Miller 2018; Gallego et al. 2018; 

Pandarinath, O’Shea, et al. 2018; Pandarinath, Ames, et al. 2018; Altan et al. 2021). 

Low dimensionali ty of M1 transcends task constraints 

Thus far, the low dimensionality of M1 manifolds has only been investigated in the context of 

constrained laboratory settings. It is unclear whether the low dimensionalities observed in M1 

truly reflect some intrinsic computational property of M1 or whether they are a byproduct of the 

constraints in stereotyped, repeated laboratory tasks. To begin to elucidate this question, our 

approach was to obtain and analyze a rich collection of datasets corresponding to two distinct 

settings: laboratory and cage. These two settings captured different levels of constraint. In the 

laboratory setting, we placed the monkeys in a primate chair with restraints such that they were 

only able to move the hand contralateral to their neural implant in specific, well-instructed trial 

segments. In the cage setting, the monkeys had more freedom to move around the perch bars 

and could grab small treats from the experimenters as they pleased. We did not provide any 

instructions on how or when to perform the tasks in the cage; the monkeys could take as much 

time as they needed and execute these tasks in a non-stereotyped manner. Our results show 

that the low dimensionality of the primary motor cortex is largely independent of task setting and 

constraints. Both the intrinsic and embedding dimensionalities of M1 were low in both 

constrained laboratory and unconstrained cage settings, with only slightly higher dimensionality 

estimates for the unconstrained tasks (Figure 3). Thus, we hypothesize that the low 
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dimensionality of M1 may not be a byproduct of constrained movements, but rather reflects its 

computational strategy. Our results, obtained through the lens of dimensionality, fit in with recent 

evidence of context independence in M1 (Russo et al. 2020). In contrast, recent evidence from 

mouse cerebellar parallel fiber recordings showed a roughly four-fold increase in embedding 

dimensionality from constrained limb-actuated lever tasks to spontaneous standing, running, or 

whisking tasks (Lanore et al. 2021). The difference between M1 and cerebellar results, though 

from a different species, highlights that different brain areas differentially process task 

constraints and context. 

M1 representations are nonlinear, but only sl ightly  

Task-specific M1 representations were slightly nonlinear for all tasks and in both settings. For a 

given bottleneck dimension 𝐷, the nonlinear JAE denoising algorithm consistently resulted in a 

better reconstruction of neural signals than PCA (Figure 1). The manifold nonlinearity index was 

between one and two for all datasets (Figure 4). Finally, the local flatness index was, on 

average, around 0.7 when aggregated across all datasets. Although these results describe 

neural manifolds that were monkey and task specific, a general trend emerges: despite the 

slight degree of nonlinearity in the geometry of the neural manifolds, task-specific neural 

dynamics sampled mostly linear regions within the respective nonlinear manifolds (Figure 4). In 

other words, there was evidence of only mild nonlinearity in M1 manifolds associated with the 

motor behaviors analyzed here; in addition, the population activity was mostly confined to linear 

regions within these manifolds. 

Interpreting the low dimensionali ty and mild no nlineari ty of M1 

How should we interpret the low dimensionality and mild nonlinearity of M1 manifolds? One 

explanation is related to the computational tradeoff between generalizability and expressivity 

that has been studied in both artificial and biological neural networks (Musslick et al. 2017; 
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Musslick and Cohen 2019; Pryluk et al. 2019; Sagiv et al. 2020). Let’s first consider an extreme 

case: if the task-specific information encoded in a brain area must be selectively communicated 

to several different brain areas, latent signals ought to be confined to distinct, linearly 

independent subspaces, and would therefore require a high embedding dimension. Such an 

organization would facilitate linear readouts without interference and would therefore be more 

expressive (Rigotti et al. 2013; Fusi, Miller, and Rigotti 2016; Jazayeri and Ostojic 2021; Badre 

et al. 2021). The advantages of high-dimensional embeddings for linear readouts are well 

understood in artificial networks and widely used in the context of kernel methods and support 

vector machines (Boser, Guyon, and Vapnik 1992; Maass 2016; Cohen et al. 2020). 

While there is evidence of some degree of expressivity in M1 (Churchland et al. 2012; Kaufman 

et al. 2014; Saxena and Cunningham 2019), our findings of low-dimensional manifolds implies 

that mixed selectivity is lower in M1 than in some higher-order brain areas. For example, a brain 

area that must selectively relay the abstract variables relevant to decision making and ultimately 

leading to motor output, such as the dorsolateral prefrontal cortex, requires high mixed 

selectivity and has been reported to have a large embedding dimensionality (Rigotti et al. 2013; 

Fusi, Miller, and Rigotti 2016). The low dimensionality and mild nonlinearity of M1 indicates that 

such complex representations are unnecessary for M1. Instead, M1 exhibits a more 

generalized, low-dimensional representation that encodes different inputs into a small set of 

common activity patterns (Fusi, Miller, and Rigotti 2016; Badre et al. 2021). Thus, from a 

functional perspective, the low-dimensional and generalizable computational strategy of M1 

facilitates the reliable generation of muscle commands that are largely unaffected by task 

constraints. 

Another interpretation of the low dimensionality and mild nonlinearity of M1 neural population 

activity refers to the strength of recurrent connectivity in M1. The dynamical systems 

perspective highlights the existence of recurrent connections, but we do not know much about 
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the strength of these connections (Vyas et al. 2020). Recent work on artificial and biological 

networks related the strength of recurrent connections to the embedding dimensionality of 

neural representations (Litwin-Kumar et al. 2017; Mastrogiuseppe and Ostojic 2018; Schuessler, 

Dubreuil, and Mastrogiuseppe 2020; Beiran et al. 2021; Pollock and Jazayeri 2020). In this view, 

networks with low-rank connectivity matrices generate low-dimensional dynamics. While the 

body of work that relates recurrent connectivity structure to dynamics is in its infancy and 

warrants future studies, the low dimensionality of M1 is consistent with weak recurrent 

connections (Langdon, Genkin, and Engel 2023). 

Decoding EMGs from low-dimensional manifolds  

Recent theoretical work directly relates the dimensionality of M1 manifolds to the accuracy of 

movement parameter decoding (P. Gao and Ganguli 2015; P. Gao et al. 2017). In this view, the 

low dimensionality of M1 permits sampling far fewer than the millions of active neurons for 

accurate decoding. While this theoretical work was verified in laboratory settings, the 

relationship between low dimensionality and decoding accuracy had not been shown in more 

natural settings. We showed that decoding EMGs from latent variables works reasonably well in 

either context (Figure 6, Supplementary Figures 5 and 6), indicating that the proposed 

theoretical ideas also apply in unconstrained settings. Our results indicate that current hardware 

recording technology that samples only hundreds to thousands of neurons allows for the 

identification and description of neural manifolds associated with unconstrained tasks. 

Generalizable representations in M1 are low dimensional and in turn decodable even when our 

recording devices vastly undersample the active neurons in the motor cortex. These findings 

contrast with the recent findings about dimensionality and decoding accuracy in the prefrontal 

cortex (PFC). The high embedding dimensionality of PFC representations make it difficult to 

decode behavioral parameters form neural data acquired with current recording technology, 
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despite moment-by-moment changes in neural activity during behavior (Bhandari, Gagne, and 

Badre 2018); in some cases, decoding behavior from PFC was barely above chance levels. 

Limitations 

When the cage experiments were designed, we anticipated the unconstrained tasks to be more 

complex, and hoped to quantify this expectation through a higher intrinsic dimensionality of 

EMG signals. However, we failed to see the anticipated effect. For Monkey P, the EMG 

reconstruction accuracies with progressively increasing latent dimensionality of linear and 

nonlinear EMG manifolds were slightly lower for the treat grasp task than for the other 

behaviors, signaling higher task complexity (Supplementary Figure 4a). The reconstruction 

curves for bar walk overlapped with those of the constrained tasks. For Monkey G, the EMG 

reconstruction curves associated with both bar walk and treat grasp tasks appeared to be below 

those for constrained tasks (Supplementary Figure 4b). However, for all tasks and both 

monkeys, roughly 4 to 5 latent dimensions were sufficient to explain over 0.70 of the variance in 

EMG signals. Importantly, the TNN dimensionality of EMGs corresponding to constrained and 

unconstrained settings were similar, and between 2 and 6 for both monkeys (Supplementary 

Figure 3). These results indicate there was no significant difference in task complexity between 

constrained and unconstrained tasks, in contrast to our original expectations. Therefore, one 

limitation of our study was that all tasks that we tested were relatively simple, even the 

unconstrained tasks in the more naturalistic cage setting. A definitive comparison between 

neural manifold associated with simple versus complex tasks is still needed.  

Interpreting the dimensionality and complexity of behaviors is difficult (Bialek 2020). Earlier 

studies showed that the embedding dimensionality of hand kinematics did not exceed 8 even 

when humans individually moved the joints on their hands (Todorov and Ghahramani 2004). 

However, a more recent study showed evidence that even low-variance Principal Components 

contain some degree of task-relevant information, leading to the proposal that the distribution of 
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eigenvalues of the covariance matrix of joint angles should not be truncated, and that the 

embedding dimensionality of everyday manual behaviors could be as high as 30 (Yan et al. 

2020). Future studies should investigate how task complexity affects the dimensionality of the 

EMG signals associated with from very simple to highly dexterous hand gestures; such an 

investigation would help elucidate the current ambiguity in quantifying and interpreting 

behavioral complexity.  

The use of linear models for decoding EMG signals might also be considered a limitation. Linear 

decoding is based on a weighted sum of neural signals; it is thus the projection of collective 

neural activity along a specific direction in the neural state space. Although this widely used 

approach (Carmena et al. 2003b; Pandarinath, Ames, et al. 2018; Glaser et al. 2020) has been 

superseded by nonlinear and recurrent alternatives (Glaser et al. 2019, 2020; Perkins et al. 

2023; Deo et al. 2023), linear decoders are simple, interpretable, and effective, and provide a 

useful tool for hypothesis testing. In this study, we were interested not in the absolute EMG 

decoding accuracy achieved when all neurons are used as inputs, but in the relative accuracy 

achieved when only the latent variables associated with the low-dimensional manifolds are used 

as inputs. Linear decoders were amply sufficient to quantify this comparison. Future studies, 

such as those involving neural prostheses, might benefit from the use of nonlinear and recurrent 

models of decoding for improved EMG decoding accuracy (Deo et al. 2023), although the 

degree of improvement is likely to depend on task complexity and its effect on manifold 

nonlinearity.   

Conclusion 

Our study demonstrates that the low dimensionality of task-specific manifolds in primary motor 

cortex is not limited to constrained laboratory tasks but is also present in unconstrained tasks. 

This finding suggests that the low dimensionality of M1 manifolds reflects an intrinsic 

computational property of M1, rather than being a byproduct of constrained movements. Even if 
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the unconstrained tasks were relatively simple, to have established the existence of low-

dimensional neural manifolds in M1 beyond our study.  

Our study also revealed signatures of nonlinearity in the geometry of the M1 neural manifolds, 

indicating that the neural population activity can represent complex relationships between the 

latent variables. However, the population neural dynamics mostly explored nearly linear regions 

of the neural manifolds. This finding is consistent with our results demonstrating the ability to 

linearly decode EMG signals from relatively few linear latent variables, and provides a manifold-

based understanding of the surprising effectiveness of linear methods in decoding the motor 

output in brain-machine interfaces (Carmena et al. 2003b; Pandarinath, O’Shea, et al. 2018; 

Glaser et al. 2020; Perkins et al. 2023). 

Additionally, our study emphasizes the importance of distinguishing between intrinsic and 

embedding dimensionalities when analyzing neural population activity. Our results suggest that 

the low embedding dimensionality of M1 manifolds reflects that the processing and 

communication requirements of M1 are relatively simple in comparison to those of other brain 

areas. For example, areas such as prefrontal cortex, parallel fibers in the cerebellum, and the 

primary visual cortex exhibit quite higher embedding dimensionalities. Future studies should 

explore the relationship between neural dimensionality, manifold nonlinearity, and information 

processing, both across different brain regions and across behavioral contexts of distinct 

complexity. 

Overall, our study provides new insights into the computational properties of primary motor 

cortex and highlights the potential of low-dimensional representations for decoding motor 

output. The insights gained from this research have implications for extending the applicability of 

neural prosthetics and brain-machine interfaces to natural environments, while contributing to a 

broader understanding of how the motor cortex represents and processes movement-related 

information.   
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Supplementary Figures 

 

Supplementary Figure 3-1: The effect of temporal length of data and number of neurons on 

estimating embedding and intrinsic dimensionalities. a) Parallel Analysis (PA) estimates for 

the embedding dimensionality with increasing lengths of temporal data and number of neurons for 

Monkey P doing the bar walk. Colors represent the different amounts of temporal data used for the 

dimensionality estimate, ranging from 1500 bins of neural data corresponding to 75 seconds 

(binned at 50 ms) to 6000 bins of neural data corresponding to 300 seconds. The analysis was 

repeated 10 times, sampling a subset of neurons ranging from 2 to 69 (maximum neurons 

available for this session). b) Same as in panel a, but Two Nearest-Neighbors (TNN) estimates for 

the intrinsic dimensionality instead of PA estimates for the embedding dimensionality. 
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Supplementary Figure 3-2: Computation of the local flatness index. a) Comparison between 

the Euclidean and geodesic distances for all pairs of neural population data points recorded for 

Monkey P while performing the bar walk task. b) The distributions of Euclidean (olive) and 

geodesic (violet) distances for the same task. The distributions were normalized to represent 

probability densities. The sum of the overlap between the two distributions (shown as hatched 

black bars) is the local flatness index, equal to 0.77 for this dataset. 
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Supplementary Figure 3-3. Intrinsic dimensionality of EMG signals. The intrinsic 

dimensionality of the EMG signals was estimated using Two Nearest-Neighbors (TNN). Different 

colors represent different tasks. Warm colors indicate data collected in the constrained laboratory 

setting and cold colors indicate data collected in the unconstrained cage setting. a) Intrinsic 

dimensionality of EMG for Monkey P (p ≈ 0). b) Same as in panel a, but for Monkey G (p ≈ 0). 
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Supplementary Figure 3-4: EMG reconstruction accuracies with progressively increasing 

EMG manifold dimensionality. a) We progressively increased the latent dimensionality of the 

linear (Principal Component Analysis, PCA) and nonlinear (autoencoder, AE) EMG manifolds of 

Monkey P performing a variety of tasks. Each color corresponds to a different task. All results for a 

given task were averaged. Circle and cross symbols indicate the reconstruction accuracy of the 

EMG data from the low dimensional EMG manifolds of varying latent dimensionality using PCA and 

autoencoder (AE), respectively. b) Same as in panel a but for Monkey G. 
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Supplementary Figure 3-5: EMG prediction examples for Monkey P performing the bar walk 

task in the cage. Each panel corresponds to the predictions of intramuscular EMG recorded from 

a different muscle. Black traces represent the normalized EMG activity. Green traces represent 

EMG activity predictions using all recorded neurons. Blue and red traces represent EMG 

predictions from low-dimensional linear (PCA) and nonlinear (autoencoder) latent variables, 

respectively. Corresponding R2 values are denoted on the right of each panel. EMG predictions for 

a) Abductor Pollicis Brevis (APB), b) Lumbricals (Lum), c) Pronator teres (PT), d) First dorsal 

interossei (1DI), e) Flexor Digitorum Profundus (FDP).  
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Supplementary Figure 3-6. EMG predictions and neural reconstruction accuracies with 

progressively increasing neural manifold dimensionality. a) We progressively increased the 

latent dimensionality of the linear (Principal Component Analysis, PCA) and nonlinear 

(autoencoder, AE) neural manifolds of Monkey P performing a variety of tasks. Each color 

corresponds to a different task. All results for a given task were averaged. Solid lines indicate 

average EMG predictions from linear neural manifolds of varying latent dimensionality. Dashed 

lines indicate average EMG predictions from nonlinear neural manifolds of varying latent 

dimensionality. Diamond symbols on the right indicate the average EMG predictions using all 

available neurons. All EMG predictions shown in the figure are the averages of the test folds of 

five-fold cross validation. Circle and cross symbols indicate the reconstruction accuracy of the 

neural data from the low-dimensional neural manifolds of varying latent dimensionality using PCA 

and autoencoder (AE), respectively. b) Same as in panel a but for Monkey G. 
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Abstract 

Intracortical brain-computer interfaces (iBCIs) rely on “observation-based” decoders to enable 

individuals with paralysis to control the movement of virtual limbs and robotic arms. A large 

fraction of persons with high-level spinal injury indicate they would undergo brain surgery if it 

would restore some use of their own hands. However, the current reliance on an observed 

target motion for decoder development precludes its application to the prediction of 

unobservable motor output like muscle activity. We tested two possible solutions to this problem, 

each using data from a human iBCI user and a monkey who were performing similar motor 

actions. In one approach, we simply mapped neural signals recorded from the human to 

electromyographic (EMG) activity of the monkey. We used a second approach, based on the 
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hypothesis that the low-dimensional “latent” neural representations of motor behavior, known to 

be preserved across time for a given behavior, might also be preserved across individuals. We 

“transferred” an EMG decoder, trained solely on monkey data to the human iBCI user after 

using Canonical Correlation Analysis to align the human latent signals to those of the monkey. 

We found that both direct and transfer decoding approaches allowed accurate EMG predictions 

both between pairs of monkeys and from a monkey to a human. Our findings suggest that these 

latent representations of behavior are consistent across animals and even species. These 

methods are an important initial step in the development of iBCI decoders that generate EMG 

predictions for individuals with paralysis. These predictions could serve as signals for a 

biomimetic decoder controlling motion and impedance of a prosthetic arm or even muscle force 

directly through Functional Electrical Stimulation. 

Introduction 

Intracortical brain-computer interfaces (iBCIs) promise to restore voluntary movement to 

persons with paralyzed limbs. A kinematic iBCI uses a “decoder” to transform neural activity into 

signals that can be used to control a cursor or a robotic limb (Carmena et al. 2003a; Collinger et 

al. 2013; Musallam et al. 2004; Serruya et al. 2002; Taylor, Esnouf, and Hobby 2002; Wodlinger 

et al. 2014). In a proof of principle, EMG predictions were used to reanimate the temporarily 

paralyzed muscles of monkeys’ hands by using them to control the intensity of Functional 

Electrical Stimulation (FES) (Ethier et al. 2012). FES is used in a variety of clinical applications 

for both lower (Kralj, Bajd, and Turk 1988; Luo et al. 2020; M. R. Popovic et al. 2001; Triolo et al. 

1996) and upper extremities (Eraifej et al. 2017; Marquez-Chin and Popovic 2020; Taylor, 

Esnouf, and Hobby 2002). None of the current clinical applications are brain-controlled, but two 

recent studies implemented rudimentary FES control of hand (Bouton et al. 2016) or arm and 

hand (Ajiboye et al. 2017) indirectly, driven by a simple grasp classifier or a kinematic decoder 

respectively. 
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Decoders are typically computed with supervised learning methods, tuning parameters to 

minimize the error between decoder-predicted and a motor-related output (Collinger et al. 2013; 

Hochberg et al. 2006; Willett et al. 2021). For iBCI applications with intact monkeys, the decoder 

can be computed between M1 firing rates and actual movement (or muscle activity). For 

application to a paralyzed human with no motor output, this is not possible. In this case, the 

standard approach is to use an “observation-based” decoder, computed to map M1 activity into 

an observed (and presumably attempted) kinematic trajectory (Hochberg et al. 2006; Willett et 

al. 2019). This approach is not feasible for a decoder that maps neural activity into EMGs, which 

cannot be observed.  

There are two potential solutions to this problem, both of which involve a “target” human iBCI 

user with a paralyzed arm attempting the same type of movement performed by another 

“source” human, or even monkey. One approach is to create a direct mapping between the iBCI 

user’s recorded neural and the recorded “source” EMG signals. This approach is similar to an 

observation-based decoder, except the neural signals are mapped to the recorded EMG signals 

instead of observed endpoint kinematics. An advantage of this “direct decoding” approach is its 

simplicity. It essentially mimics the well-established observation approach, for movement-related 

signals that can’t actually be observed. A disadvantage is that it necessarily requires a close 

match between the movements (or motor actions, more generally) attempted by the source and 

target individuals. 

An alternative solution might be to use a single, fixed decoder trained on a source monkey, 

where both neural and EMG activity can be recorded, and then inputting to that decoder, M1 

signals recorded from the target iBCI user. This would obviously not be possible using single-

neuron firing rates as inputs, since they differ completely for the source and target individuals. A 

possible solution might be found through the use of the latent signals that exist within a low-

dimensional “neural manifold” computed from neural firing rates (Churchland et al. 2012; 
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Cunningham and Yu 2014; P. Gao and Ganguli 2015; Gallego et al. 2017). Several groups have 

shown that, despite being embedded in different coordinate systems, the latent signals 

computed from neural recordings made in different experimental sessions can be “aligned” to 

one another. By this method, a single, fixed decoder using aligned latent signals as inputs can 

remain stable, despite changing neurons, for many months (Degenhart et al. 2020a; Farshchian 

et al. 2018; Gallego et al. 2020; Karpowicz et al. 2022; Ma et al. 2022). Similar alignment 

methods might allow the latent signals from human and monkey to be aligned to each other, 

enabling what we call “transfer decoding”. 

We tested these two approaches using data collected from three monkeys performing a version 

of the standard center-out task requiring production of forces in eight directions about the wrist. 

After developing and testing the alignment methods across monkeys, we applied them to a 

source monkey and a target human with a paralyzed arm. Both direct and transfer decoding 

produced accurate EMG predictions, though the direct method was consistently higher. 

Critically, the accuracy of EMG predictions was tied closely to the similarity between latent 

neural signals of the source and target. We consider these findings to be supportive of future 

clinical implementations enabling the use of more ‘biomimetic’ iBCI decoders that could either 

directly restore voluntary arm movements through FES or allow the control of an 

anthropomorphic prosthetic arm’s motion and impedance. 

Methods 

Monkey task and recordings 

Neural and muscle activity data were collected from three adult male rhesus macaque monkeys. 

All surgical and experimental procedures were approved by the Institutional Animal Care and 

Use Committee (IACUC) of Northwestern University. 
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We considered data from three different monkeys on four different recording sessions (within a 

span of 47 days), for a total of 12 sessions. In each session, the monkeys were seated in a 

primate chair that faced a computer monitor, with their left hand secured within a small box 

instrumented with a 6 degree of freedom load cell (JR3 Inc., CA) to measure the forces exerted 

(Figure 4-1a). The load cell measurement axes were aligned with those of the wrist so that 

flexion/extension forces moved a cursor on the monitor right/left, while radial/ulnar deviation 

forces moved it up/down. The monkeys were required to move the cursor from a central target 

towards one of eight peripheral targets uniformly distributed on a circle. A trial started when the 

monkeys held the cursor in the central target for a random time between 0.2 s and 1.0 s. Then, 

one of the eight peripheral targets was selected randomly and presented together with an 

auditory go cue. Monkeys had to reach the outer target within 2.0 s and maintain that force for 

0.8 s to receive a liquid reward. In this study, we used data within a window starting 0.5 s before 

onset of cursor movement and ending 1.0 s after movement onset (see Supplemtary Figure 4-

1 for examples of cursor trajectories). 
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Figure 4-1: Cross-user decoding of EMG. a) We recorded neural firing rates from M1 and EMGs 

from forearm and wrist muscles of a “source” monkey trained to perform the isometric wrist task. 

We also recorded M1 data from a “target” monkey. b) The firing rates of the source monkey were 

projected in a low-dimensional neural manifold and the resulting latent signals used as input to 

train a source-monkey iBCI decoder. c) In a first approach, we obtained source monkey EMG 

predictions by training a decoder between the target monkey M1 signals and the source monkey 

EMG signals. We call this approach “direct decoding.” d) In a second approach, we computed a 

decoder soley from the source monkey data, then preprocessed the target M1 latent signals to 

align them to those of the source monkey. We used the aligned latent signals as input to the 

source-monkey decoder to obtain predicted EMG. We call this approach ”transfer decoding.”  
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Each monkey was implanted with a 96-channel Utah electrode array (Blackrock Neurotech, Inc.) 

in the hand area of the right M1, contralateral to the hand used for the task, using standard 

surgical procedures. In a separate procedure, monkeys were also implanted with intramuscular 

leads in the forearm and hand muscles of the left arm. The location of each electrode was 

verified during the surgery by observing the muscle contraction evoked when it was stimulated. 

Five muscles were implanted in all three monkeys: three major wrist muscles: extensor carpi 

radialis longus (ECRl), flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU), and two 

extrinsic finger muscles: extensor digitorum communis radialis (EDCr) and flexor digitorum 

profundus (FDP). Beside these muscles that were in common across monkeys, we implanted 

additional muscles in each monkey. These included extensor carpi radialis brevis (ECRb) and 

extensor carpi ulnaris (ECU) in monkey J, flexor digitorum indicis (FDI) and opponens digiti 

minimi (MD) and FDP (2 pairs) in monkey S, and ECU, extensor digitorum communis (EDC), 

flexor digitorum superficialis (FDS), pronator teres (PT), and supinator (SUP) in monkey K.  

We recorded M1 activity using a Cerebus system (Blackrock Neurotech, Inc.). The signals on 

each channel were sampled at 30 kHz, digitally bandpass filtered (250 ~ 5000 Hz) and 

converted to spike times based on threshold crossings. The threshold on each channel was set 

with respect to its root-mean square (RMS) amplitude (monkey J: -5.5 x RMS; monkey S: -6.25 

x RMS; monkey K: -6.0 x RMS). To extract the smoothed firing rate used in the analysis, we 

applied a Gaussian kernel (standard deviation of 100 ms) to the spike counts in 20 ms, non-

overlapping bins for each channel. 

The recorded EMG signals were amplified, bandpass filtered (4-pole, 50 ~ 500 Hz), and 

sampled at 2 kHz. To extract the envelopes used during the analysis, we subsequently rectified 

and lowpass filtered (4-pole Butterworth, 10 Hz) each EMG channel digitally and subsampled it 

to 50 Hz to correspond to the bin size of the M1 signals. EMGs were clipped to avoid data 

points larger than the mean plus 6 times the standard deviation of each channel. We removed 
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the baseline of each EMG channel by subtracting the 2nd percentile of its amplitude and then 

normalized its activity to its 90th percentile.  

Human part icipant task and recordings 

The participant, male, 28 years old at the time of the implant, was part of a multi-site clinical trial 

(NCT01894802) and provided informed consent prior to the experimental procedure. He 

presented with a C5 motor/C6 sensory ASIA B spinal cord injury that occurred 10 years prior. He 

had no spared control of the intrinsic or extrinsic muscles of the right hand but had limited 

control of wrist flexion and extension. Proximal limb control at the shoulder was intact, as was 

elbow flexion. However, he had no voluntary control of elbow extension. 

We secured a rigid wrist brace to the participant’s right wrist and hand, oriented in a neutral 

posture on his lap. On each trial, the participant attempted to produce isometric wrist forces in 

response to the movement of a cursor to eight different radial targets displayed on a screen in 

front of him. Upward movement corresponded to radial deviation, rightward movements to wrist 

extension, downward movements to ulnar deviation, and leftward movements to wrist flexion. 

Diagonal targets corresponded to the appropriate combinations of these gestures. Each trial 

began with the presentation of the upcoming target. One second after target appearance, a go 

cue occurred, followed by movement of the cursor to the target (Move: 0.2 s), static hold at the 

target (Hold: 2.0 s), and return to center (Return: 0.2 s). We instructed the participant to produce 

step-like force profiles in response to the movement of the cursor. To match the time scale of the 

monkey data, here we only used data from a 1.5 s window, starting 0.76 s before and ending 

0.74 s after the go cue (see Figure 4-6b). 

The participant was implanted with four NeuroPort microelectrode arrays (Blackrock Neurotech, 

Inc.) in the left hemisphere. Two 96-channel arrays were implanted in the hand and arm areas 

of M1, while the other two were implanted in somatosensory cortex. In this study, we only used 
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the arrays placed in M1. The signals on each channel were recorded at 30 kHz and high-pass 

filtered at 750 Hz. Whenever the signal crossed a threshold (-4.25 x RMS), a spiking event was 

recorded. We used multiunit threshold crossing and considered spike counts in 20 ms non-

overlapping bins. We applied a Gaussian kernel (standard deviation of 100 ms) to obtain the 

smoothed firing rate used in the analysis. For all data analyses, we mirrored the target labels for 

the human data as his cortical implant is in the opposite hemisphere as that of the monkeys, 

who used their left hands to perform the task. 

Computat ion and evaluat ion of EMG decoders 

In this study, we tested two cross-user decoding approaches: direct decoding and transfer 

decoding. Both types of decoders were trained to predict the source monkey’s EMG signals, 

and used as inputs latent signals computed within a low-dimensional manifold of M1. The direct 

decoder was trained on target M1 signals (monkey or human; Figure 4-1c), whereas the 

transfer decoding was trained on M1 data from the source monkey (Figure 4-1d).  

To find the latent signals, we performed dimensionality reduction by applying PCA to the M1 

firing rates. We set the dimensionality of the latent space to 13, the largest estimate of linear 

dimensionality across all monkeys and sessions using Parallel Analysis (Altan et al. 2021). We 

computed Wiener filter decoders that implemented linear regression to predict the EMG at the 

current time bin from the latent neural signals stretching to five time bins (100 ms) into the past. 

The output of the linear filter was then rectified to more nearly match the statistics of the EMG 

envelopes.  

We compared the resulting EMG predictions with the actual EMG recordings of the source 

monkey. Ideally, the accuracy of the cross-monkey and cross-species decoder as measured by 

𝑅2 would approach the performance of the corresponding within-monkey decoder. As the 
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decoded EMGs are multi-dimensional, we computed an 𝑅2 for each EMG and then reported the 

average across all muscles, weighted by the variance of each recorded EMG. 

CCA alignment of low-dimensional neural signals  

The transfer decoder requires that we “align” the latent signals of the target monkey (or human) 

to those of the source monkey that was used to compute the decoder (Figure 4-1d). Similarly, 

in direct decoding, we tested alignment of the latent signals over time, as a means to address 

the steady decline in performance of a fixed decoder over time due to the inherent instabilities of 

the recorded neural signals (Downey et al. 2018; Perge et al. 2013; Sussillo et al. 2016). For 

both applications, we used Canonical Correlation Analysis (CCA). We labelled the latent neural 

spaces that we wished to align as 𝑺 and 𝑻. Both were M x p matrices, where M is the number of 

samples and p the latent dimensionality (p=13). The goal of neural alignment is to make 𝑻 as 

similar as possible to 𝑺. When we tested neural alignment with direct decoding, 𝑺 and 𝑻 were 

the neural signals associated with the same user but across sessions. In the transfer decoding 

case, 𝑺 and 𝑻 were associated with source and target users, respectively. 

CCA linearly transforms both 𝑺 and 𝑻 such that the correlation between 𝑪𝑺(𝑆) and 𝑪𝑻(𝑇) is 

maximal, where 𝑪𝑺 and 𝑪𝑻 are the matrices that implement the linear transformations of the 

latent signals (Figure 4-2a). Since CCA requires a one-to-one correspondence in time between 

data points, we extracted single trials from the continuous data. We then ordered all trials by 

target direction and concatenated them prior to applying CCA. Finally, because CCA transforms 

both sets of signals, we further multiplied 𝑪𝑻(𝑇) by the inverse transformation 𝑪𝑺
−𝟏 to represent 𝑻 

in the coordinate frame of 𝑺. We refer to the resulting aligned latent signals 𝑻̃ = 𝑪𝑺
−𝟏(𝑪𝑻(𝑇)). 

Cross-val idation of direct and transfer decoding approaches  

For both direct and transfer decoding approaches, we implemented cross-validation at the input 

level (i.e., the target user neural data) to avoid overfitting with what would typically be limited 
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data. However, it is important to note that this was implemented differently in the two methods. 

While direct decoding uses target M1 data during decoder computation (Figure 4-1d), transfer 

decoding employs it during the CCA alignment step (Figure 4-1c). Therefore, when training the 

direct decoder across monkeys, we performed 4-fold cross-validation, which resulted in a 

training set of 96 trials (12 trials and 18 seconds of data per target direction) and a test set of 32 

trials (4 trials and 6 seconds of data per target direction) for each fold. For the more limited 

human data, we used only three folds, each consisting of three trials for each of the eight 

targets. Likewise, to test transfer-decoding alignment, we used four folds for the monkey-to-

monkey case and three folds for human-to-monkey alignment. As noted above, we used all the 

available data to train the source monkey transfer decoder itself (128 trials in total, 16 trials and 

24 seconds of data per target direction). 

Results 

Direct mapping between target M1 and source EMG signals enables  cross-

monkey decoding 

Direct decoding offers a simple solution to the problem of mapping neural activity to EMGs in 

iBCI applications for individuals with a paralyzed arm and hand. Direct decoding establishes a 

mapping between the neural signals recorded from the iBCI user (the “target”) to EMG signals 

from a “source” individual as they each perform (or attempt to perform) the same movement 

(Figure 4-1c). We began our investigation of direct decoding using monkeys as both source 

and target. 

We determined the EMG decoding accuracy by computing the coefficient of determination (𝑅2) 

between the EMG predictions and the actual EMG signals recorded from the source monkey. 

Figure 4-2a (blue lines) shows example EMG predictions from a single source-target monkey 

pair (source monkey: J, first session, target monkey: S, second session). The EMG decoding 
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accuracy ranged between 𝑅2 = 0.48 and 0.77 for individual muscles. The average EMG 

decoding accuracy across all muscles, weighted by their individual variances, was 0.64. We 

compared these to the accuracy of decoders built from the same monkey and session, which 

ranged between 0.69 and 0.86 for the same muscles, with an average 𝑅2 of 0.77 (grey lines). 

 

Figure 4-2: Direct decoding of EMG across monkeys. a) Cross-monkey EMG predictions 

obtained with target-monkey latent signals via direct decoder (blue lines). Data for a representative 

pair of monkeys for two trials in each target direction (directions separated by vertical dashed 

lines). These predictions are almost as good as those obtained by using the source-monkey latent 

signals as input to the decoder (grey lines). The 𝑅2 for both within- (grey) and cross- (blue) 

monkey decoding are shown for each muscle, computed relative to actual EMG recordings of the 

source monkey (black lines). b), Overall cross-monkey decoding accuracy (R²) with direct decoding 

for all pairs of monkeys. A kernel density estimate plot at the top shows the distribution of cross-

monkey (off-diagonal) 𝑅2 (blue) compared to within-monkey (on-diagonal) 𝑅2 (grey). 
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Next, we extended the cross-monkey EMG decoding to all source-target monkey pairs (Figure 

4-2b). The diagonal entries of the matrices in Figure 4-2b show the weighted averages across 

all muscles of the within-monkey decoding accuracy for each session. The off-diagonal 

elements represent either cross-monkey or within-monkey/cross-session accuracy. We included 

the within monkey/cross-session decoding accuracy as a more realistic comparison with the 

cross-monkey (and implicitly cross-session) analyses. The curves at the top of the panel 

indicate the kernel density estimate of the off-diagonal and on-diagonal accuracies. On average, 

cross-monkey direct decoding retained 80% of the accuracy of within-monkey decoding and 

97% of the within-monkey/cross-session accuracy.  

Latent signals across monkeys become similar after neural al ignment  

An alternative approach to obtain EMG predictions for individuals with paralysis is to use a fixed 

decoder trained on a source monkey from which both neural and EMG activity can be recorded, 

and transferring it for use with the M1 signals recorded from the target iBCI user. However, a 

decoder using neural firing rates as inputs cannot be used directly for another individual. 

Instead, we compute decoders based on inputs from low-dimensional latent signals computed 

from the firing rates. An essential step is to align the latent signals of the target iBCI user to 

those of the source monkey (Figure 4-1d) (Degenhart et al. 2020a; Farshchian et al. 2018; 

Gallego et al. 2020; Ma et al. 2022).  

First, we used data from three monkeys to test the extent to which we could align the latent 

neural signals collected from a source monkey to those of a target monkey. Figure 4-3a, left 

column shows an example of the latent signals obtained by projecting the neural activity of the 

source and target monkeys into their corresponding neural manifolds (source monkey: J, first 

session, target monkey: S, second session). The unaligned latent signals of the two monkeys 

are similar, in that the trajectories corresponding to each of the eight targets are well-separated 

and traverse roughly parallel paths through their respective principal component spaces. 
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However, despite their similar shapes, the two sets of latent signals differ in scale and 

orientation. 

 

Figure 4-3: Latent neural signals becomes more similar across monkeys. a) Representative 

latent signals described by the first two principal components for a source (top left) and target 

(bottom left) monkeys. We used CCA to transform the latent signals such that they were maximally 

correlated (center). The CCA-transformed signals are more similar, but neither looks like the 

original source-monkey trajectories. Consequently, we further multiplied the target-monkey latent 

signals in the CCA-transformed space by the inverse of the source-monkey CCA weights (𝐶𝑆
−1) to 

rotate them back to the original source-monkey latent coordinates (bottom right). Data were 

averaged across all trials for each target direction; single trial trajectories are shown as lighter 

traces. Arrows indicate the temporal evolution of the trajectories (from 0.5 s before to 1 s after 

cursor movement onset). b) Overall cross-monkey latent signals similarity (R2) after CCA alignment 

for all pairs of monkeys. A kernel density estimate plot shows the distribution of cross-monkey 

latent signals 𝑅2 similarity. 
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We next used Canonical Correlation Analysis to linearly transform both sets of low-dimensional 

signals such that they were maximally correlated (Figure 4-3a, middle column). The 

transformed sets of latent signals traverse very similar regions of the new (transformed) latent 

space, but neither looks like the original source monkey trajectories, as both were transformed 

by CCA. Consequently, we further processed the transformed target monkey latent signals by 

using the inverse of the canonical correlation transformation from the source monkey. This two-

step process allowed us to align the target monkey signals to those of the source monkey 

(Figure 4-3a, right column). The aligned trajectories for the two monkeys (Figure 4-3a, upper 

left, lower right) are a remarkably close match. 

We computed the coefficient of determination (𝑅2) between source monkey neural signals and 

CCA-aligned target monkey neural signals for the entire dataset comprising four sessions for 

each of three monkeys (Figure 4-3b). CCA alignment significantly improved the similarity of all 

source/target monkey latent signal pairs, both within-monkey/cross-session (𝑅2 before 

alignment: -0.37 ± 0.11; after alignment: 0.34 ± 0.04 (mean ± s.e.); P ~ 0, Wilcoxon’s signed 

rank test) and cross-monkey (𝑅2 before alignment: -1.08 ± 0.08; after alignment: 0.25 ± 0.01 

(mean ± s.e.); P ~ 0, Wilcoxon’s signed rank test). 

Neural al ignment al lows to transfer EMG decoder across monkeys   

Next, we evaluated the performance of the transfer decoding approach using the CCA aligned 

input signals. Just as we did for direct decoding, we quantified EMG decoding accuracy by 

computing the coefficient of determination (𝑅2) between the EMG predictions and the actual 

EMG traces of the source monkey.  

Transfer decoding results are summarized in Figure 4-4 for all source-target monkey pairs. The 

average cross-monkey EMG decoding accuracy was 0.53, virtually identical to the average 

within-monkey/cross-session accuracy of 0.55. Overall, cross-monkey transfer decoding 
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retained 95% of the within-monkey/cross-session accuracy and 75% even of the within-

monkey/within-session decoding accuracy. 

 

Figure 4-4: Transfer decoding of EMG across monkeys. Overall cross-monkey decoding 

accuracy (R2) with transfer decoding for all pairs of monkeys. A kernel density estimate plot shows 

the distribution of cross-monkey 𝑅2 (red) compared to within-monkey 𝑅2 (grey) as in Figure 2. 

Figure 4-5a shows example EMG predictions for both the direct and transfer approaches, as 

well as the actual EMGs of the source monkey for the same source-target monkey pair shown in 

Figure 4-2 and Figure 4-3. Although the accuracy of the two methods was quite similar, that of 

direct decoding was slightly higher. 
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Figure 4-5: Comparing direct decoding and transfer decoding. a) Repressentative cross-

monkey EMG predictions obtained with direct (blue lines) and transfer decoding (red lines) 

compared to source monkey ground truth (black lines) as in Figure 4-2a.  b) Element-by-element 

scatter plot comparing direct and transfer decoding performance. Each point represents the within-

monkey/cross-session (purple) or cross-monkey (green) accuracy of transfer decoding (x-axis) 

versus the relative accuracy of direct decoding (y-axis) of a single muscle. Direct decoding 

generally yielded higher decoding accuracy for both cross-monkey and cross-session predictions, 

especially when decoding accuracy was low. c) Element-by-element scatter plot for the matrices in 

Figure 4-4 and Figure 4-3b. Latent signals of monkey pairs with higher similarity after CCA 

alignment yielded higher decoding accuracy for both cross-monkey (purple) and cross-session 

(green) predictions. 
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We quantified these results for all monkey pairs in Figure 4-5. Each point in the scatter plot 

shows the 𝑅2 for an individual muscle for both methods. For both the cross-monkey (Figure 4-

5b, green symbols) and cross-session (purple symbol) cases, the direct decoding yielded a 

small but consistently higher prediction accuracy. Interestingly, the difference in decoding 

accuracy between direct and transfer decoding becomes smaller with increasing 𝑅2. 

We hypothesized that cross-monkey decoding accuracy with either approach would depend on 

the ability to achieve good neural alignment with CCA. The similarity between the EMG 

decoding accuracy matrices in Figure 4-2a and 4-4a and the neural alignment accuracy matrix 

in Figure 4-3b suggests that accuracy of decoder performance is dependent on successful 

alignment. We quantified the relationship by constructing an element-by-element scatter plot of 

the decoding and alignment matrices (Figure 4-5c). Indeed, both the cross-monkey (green) and 

cross-session (purple) decoding accuracy was well predicted by the success of the CCA 

alignment, with an 𝑅2 of 0.76 for direct and 0.78 for transfer decoding across all datasets. 

Monkey to human EMG decoding 

Having demonstrated that cross-monkey EMG decoding is possible, we asked if the same two 

approaches could be implemented for cross-species decoding from a monkey to a human. We 

thus tried to either train a direct decoder or transfer a monkey decoder to predict EMG signals 

from the neural activity of a human with paralysis. For this analysis, we chose to use the first 

session from monkey J (dataset J1) as the source monkey, as it had the highest within-session 

decoder performance among all datasets. 

We performed these experiments with one participant who had a partial spinal cord injury at 

C5/C6, who was implanted with two 96-channel electrode arrays, one each in the arm and hand 

areas of the left primary motor cortex (M1). We recorded multi-unit spiking activity as the 

participant, who had some remaining ability to produce wrist extension forces, attempted to 
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produce isometric wrist forces in eight radial directions. Cursor control and task design were 

essentially as in the monkey experiments, with the following exceptions. First, the participant 

attempted to use their right arm and hand (contralateral to the arrays), thereby reversing in 

world coordinates, the flexion and extension muscle activity relative to those of the monkey. 

Consequently, for direct decoder and CCA alignment computation, we mirrored the target 

directions for the human data about the vertical axis. Second, cursor movement was not under 

the control of the participant, but occurred automatically as in the standard approach to 

“observation” decoder training (Hochberg et al. 2006; Willett et al. 2019). One second after 

target appearance, a go cue occurred and the cursor moved to the target in 0.2 s, where it 

remained for 2.0 s before returning to the center in 0.2 s. We instructed the participant to 

attempt to produce the forces necessary to control the position of the cursor.  

Figure 4-6a shows the time course of the neural activity of the hand M1 array projected onto the 

first principal component during trials corresponding to two oppositely directed targets. The 

human data was more variable across trials than that of the monkey in both timing and 

magnitude, likely due to the lack of actual force and force-related feedback. To minimize the 

effect of this variability on the cross-species decoding process, we computed the EMG decoding 

𝑅2 as a function of the time window we used for direct decoding and CCA alignment 

computation, for the direct decoder and transfer decoding approaches respectively. We 

achieved maximal decoding accuracy when aligning the human trials 0.84 s and 0.78 s prior to 

the go cue (Figure 4-6b) for direct and transfer decoding respectively.  
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Figure 4-6: Accuracy of monkey-to-human EMG decoding depends on the latency relative to 

the go cue used for human trial segmentation. a) Single-trial M1 data from the source monkey 

(left, first session from monkey J) and the human participant (right) projected on the first principal 

component (computed in each case using the entire corresponding dataset) for a pair of oppositely 

directed targets. The neural responses recorded during the human’s attempted task had greater 

trial-by-trial variation in timing and magnitude compared to those of the monkey. b) EMG decoding 

accuracy with direct (red) and transfer decoding (blue) as a function of the time index relative to the 

go cue used to segment the human trials. The vertical dashed line indicates the time yielding 

greatest EMG decoding accuracy.  

Given optimal time-alignment, the average 𝑅2 prediction accuracy with direct decoding 

approach was 0.55 (Figure 4-7a, blue lines), 98% as accurate as the corresponding cross-

monkey predictions, and 78% as accurate even as the average within-monkey/with session 

decoding. The transfer decoding approach achieved similar accuracy, with an average 𝑅2 of 

0.49 (Figure 4-7a, red lines). 
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Figure 4-7: EMG decoding from a human with tetraplegia. a) EMG predictions for the four 

major wrist muscles obtained via direct (blue lines) and transfer decoding (red lines). Actual EMG 

recordings of the source monkey (black) provide a ground truth. b) Latent M1 trajectories described 

by the first two principal components of the M1 data (left) recorded as the participant attempted to 

perform a wrist isometric task, and those for the source monkey (center; first session from monkey 

J). The human neural recordings had a stereotypical low-dimensional structure for each of the eight 

target directions, albeit with increased inter-trial variability (shown by the lighter traces). Despite 

this increased variability, CCA alignment recovered a shape similar to that of the source monkey’s 

latent signals (right). 
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Despite the greater inter-trial variability, the latent signals of the human data traversed well-

separated, stereotypical trajectories for each of the eight targets (Figure 4-7b, left panel). CCA 

alignment allowed us to match the two sets of latent signals, if not quite as closely as for typical 

pairs of monkeys (Figure 4-7b, middle and right panels; R2 increased from -0.56 to 0.10).  

Decoders need to be stabil ized in the face of changes in the neurons that are 

recorded over t ime 

The performance of any fixed iBCI decoder tends to decline over time due to the inherent 

instabilities of the recorded neural signals (Downey et al. 2018; Perge et al. 2013; Sussillo et al. 

2016). One simple solution to combat this effect is to recompute the iBCI decoder at each 

session as we have done with the direct decoding approach. Alternatively, various groups have 

proposed the use of neural aligners that match the statistics of neural recordings from a later 

day (“day-k”) to those from the first day when the decoder was calibrated (“day-0”) (Degenhart 

et al. 2020a; Farshchian et al. 2018; Gallego et al. 2020; Karpowicz et al. 2022; Ma et al. 2022). 

These neural alignment approaches were motivated to avoid the scenario in which an iBCI user 

would need to relearn the dynamics of each recomputed decoder. In the transfer decoding 

approach, CCA alignment works implicitly across time as well as across users, thereby 

automatically addressing this problem. However, this is not the case for direct decoding. Its 

maintained accuracy was only possible because we trained a new decoder for every session. If 

instead the direct decoder is fixed, its performance rapidly declines with time, as expected 

(Figure 4-8, blue squares). Therefore, we investigated the effectiveness of using CCA to align 

the day-k and day-0 latent signals using monkey data (Figure 4-8, blue dots and line). In this 

scenario, the greater direct decoding accuracy over the transfer decoding approach disappears 

(red and blue circles). 
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Figure 4-8: A fixed direct decoder needs to be aligned across time. EMG prediction accuracy 

over time using a fixed ‘day-0’ direct decoder trained on the first target monkey session. We 

compared the performance of the fixed direct decoder before (turquoise) and after (blue) within-

monkey/across-time CCA alignment between the day-k and day-0 target neural data. CCA 

alignment stabilized the performance of the fixed direct decoder over time, such that it achieved 

performance similar to that of the transfer decoding approach (red). 

Task general ization of cross -individual EMG decoding 

Beyond the question of how well a given decoder performs when trained and tested on similar 

movements, is the question of how well they extrapolate to different movements. This question 

may be particularly important for the cross-individual decoders we are developing, as they each 

depend on the two individuals performing similar movements.  

Using exclusively the monkey datasets, we tested the task generalization performance for both 

cross-individual decoding approaches. We first investigated their performance on test targets 

that interpolated the four cardinal directions used for trianing (Figure 4-9a). We also tested an 

extrapolation condition in which we trained on the four lower targets and tested on the upper 

targets (Figure 4-9b). For the three conditions (full training set, interpolated training data, 

extrapolated training data), cross-monkey EMG decoding 𝑅2 was 0.56, 0.42, and -0.45, 
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respectively, for the direct decoding approach (Figure 4-9b, red). In contrast, the cross-monkey 

EMG decoding 𝑅2 was 0.53, 0.40, and -0.23, respectively, for the transfer decoding approach 

(Figure 4-9b, blue). Direct decoding significantly outperformed transfer decoding when using all 

training set and in the interpolation case (P ~ 0, Wilcoxon’s signed rank test). Neither approach 

worked well for the extrapolation case as the average 𝑅2 was negative for both. 

 

Figure 4-9: Task generalization of cross-monkey EMG decoding. Generalizability of the direct 

(blue) and transfer (red) decoding was assessed by training either the direct decoder or the cross-

monkey CCA alignment using only a subset of all eight movement directions. a) Task 

generalization when interpolating (i.e., training on cardinal directions and testing on diagonal 

directions); b) Task generalization when extrapolating (i.e., training on adjacent lower directions 

and testing on upper directions). c) Violin plots for the overall cross-monkey decoding accuracy for 

all pairs of monkeys when testing on all target directions (center), when interpolating (left), and 

when extrapolating (right). When interpolating, cross-monkey decoding is still possible with both 

direct and transfer decoding, albeit with lower accuracy. When extrapolating, the cross-monkey 

decoding generally failed, as indicated by the negative 𝑹𝟐 values.  
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Discussion 

When surveyed, nearly 80% of the individuals with high-level spinal cord injury would elect brain 

surgery to recover some control of their own hands (Blabe et al. 2015). However, the 

“observation based” decoders currently used to map motor cortical activity to movement 

kinematics are not directly applicable to the prediction and control of an unobservable motor 

output like muscle activity. The focus of this study is to test two possible solutions to this 

problem. The first is the "direct decoding" approach where we mapped the neural signals 

recorded from an iBCI user to muscle activity of another individual (or monkey) performing the 

same movements. In the second approach, which we call “transfer decoding”, we used a 

decoder trained on both M1 and EMG signals from a “source” monkey and then transferred it to 

a human iBCI user. The transfer decoding approach relies on aligning the low-dimensional 

latent neural signals from that user to those of the source monkey for which the decoder was 

computed. We investigated the performance of both approaches both between pairs of 

monkeys and from a monkey to a human with quadriplegia. 

The two approaches yielded similar EMG prediction accuracy, although direct decoding was on 

average 5% more accurate, provided the decoder was retrained at each session. However, 

when we held the direct decoder fixed and fed it with latent signal inputs that were aligned 

between sessions with CCA, there was no difference between the two approaches. Finally, we 

showed that while both approaches were able to generalize to a set of interpolated targets, 

neither could extrapolate to test targets in a completely different part of the workspace.  

Overall, our work indicates that cross-user EMG decoding is possible even between monkeys 

and humans. This would allow the use of predicted EMG as a control signal for functional 

electrical stimulation of muscles as a means to restore voluntary arm movement or movement of 

an anthropomorphic limb actuated with control properties designed to mimic those of the 

musculoskeletal system.  
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Clinical applications of a monkey-to-human biomimetic decoder  

Existing iBCIs have allowed paralyzed individuals to gain control of a computer cursor with only 

a few minutes of practice (Brandman et al. 2018; Hochberg et al. 2006) and three dimensions of 

a robot end-effector (Hochberg et al. 2012), even within the first few hours of training (Collinger 

et al. 2013). Higher-dimensional control is more difficult for the user to learn, requiring weeks 

and even months of practice to achieve control of 7 (Collinger et al. 2013) or 10 degrees of 

freedom (Wodlinger et al. 2014). However, these kinematic iBCIs allow no direct control of 

applied grasp forces. Attempts to combine position and joint torque control for 2D planar 

reaching have met with limited success (Chhatbar and Francis 2013; Fagg et al. 2009). These 

limitations are present despite the well documented evidence that force and muscle-like 

information is encoded in neurons in the primary motor cortex (Cheney and Fetz 1980; Evarts 

1968; Hepp-Reymond et al. 1994; Holdefer and Miller 2002; Kalaska and Hyde 1985; Lemon, 

Johansson, and Westling 1995; Maier et al. 1993; Morrow, Jordan, and Miller 2007; Oby, Ethier, 

and Miller 2013; Sergio and Kalaska 2003). 

The mammalian neuromuscular system controls the motion of the arm and digits, the stiffness 

of joints, and exerted forces, all through the modulation of muscle activity. One approach to a 

more biomimetic form of robotic limb control allowing more intuitive control of many degrees of 

freedom might be to feed real-time predictions of muscle activity to a musculoskeletal model 

that would compute muscle forces and the evolution of limb state; these signals could be used 

to control the motion and impedance of an anthropomorphic prosthetic arm (Blana et al. 2017, 

2020; McFarland et al. 2023). 

Alternatively, the predicted EMG signals could be used to control muscle force directly through 

the electrical stimulation of the muscles or peripheral nerves. This technique, known as 

Functional Electrical Stimulation (FES), is used to improve stance and walking (Daly et al. 2011; 

Granat et al. 1993; Thrasher, Flett, and Popovic 2006) as well as grasping (Peckham et al. 
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2001; Peckham, Marsolais, and Mortimer 1980; M. B. Popovic et al. 2002; Snoek et al. 2000) 

following stroke or spinal cord injury. Patients with C5-C6 spinal cord injury (SCI) were able to 

use their preserved voluntary shoulder movements to trigger preprogrammed stimuli and regain 

some ability to grasp objects (Taylor, Esnouf, and Hobby 2002). This approach becomes much 

more limited in patients with higher level cervical SCI, as those needing the greatest restored 

movement have the least available peripheral control signals. iBCIs offer an alternative solution 

by providing the means to obtain more natural, higher-dimensional control signals than those 

derived from residual movements.  

Our group previously designed an iBCI-controlled FES system that enabled monkeys with 

temporary paralysis of the hand muscles induced by a peripheral nerve block to perform hand 

movements: decoded EMGs were used to modulate stimulation of five electrodes implanted in 

different compartments of three hand flexor muscles (Ethier et al. 2012).  

Two other groups have developed brain-controlled FES systems in which human participants 

with cervical spinal cord injury were able to control simple elbow, wrist, or hand movements. 

One approach used six parallel decoders, each predicting one of six wrist or finger movements. 

The decoder with the highest output triggered a muscle stimulation pattern consisting of at most, 

three intensity levels, designed to approximate the decoded movement (Bouton et al. 2016). In 

another approach, real-time velocities of the elbow, wrist, hand, and shoulder were decoded 

from M1, and controlled in a feedback system using a combination of muscle and nerve 

stimulation (Ajiboye et al. 2017). 

While promising as additional proofs of concept, these approaches achieved only limited control 

of a small number of dimensions. The former, in particular, seems unlikely to be able to scale to 

more complex movements. In our study, we aimed to achieve the means to provide more 

intuitive control of more degrees of freedom, including nonkinematic aspects of movement, by 

directly inferring muscle activity from M1. We showed two possible approaches to map motor 
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cortical activity of a patient with paralysis into intramuscular EMG signals that resembled those 

of a monkey performing the same isometric force-generation task.  

The redundancy of the hand musculature allows most actions to be produced with a variety of 

different patterns of muscle activity (Bernstein 1966; d’Avella, Saltiel, and Bizzi 2003; Santello 

and Soechting 2000). In our monkeys, EMGs were consistent across time for a given monkey 

(Supplementary Figure 4-2), but less so across monkeys (Supplementary Figure 4-3). As the 

muscle activity patterns became more dissimilar across monkeys, so did their latent neural 

representations (Supplementary Figure 4-5d). Even more so, the human participant may have 

intended to use a somewhat different pattern of EMG from that of the source monkey. However, 

to the extent that the biomechanics of the human hand resembles that of the monkey, the 

resultant EMG predictions should be biomechanically appropriate to accomplish the task as the 

source monkey. The discrepancy would impose an interesting motor-adaptation problem as the 

user learns to interact with the decoder. 

Neural  representations of motor intent are similar across monkeys and humans  

The neural population activity in many brain areas is constrained to a low-dimensional neural 

manifold. Furthermore, there is increasing evidence that the dynamics of specific patterns of 

activity within the manifold, the latent signals, underlie the computations required for planning 

and executing movements (Cunningham and Yu 2014; Elsayed and Cunningham 2017; Gallego 

et al. 2017; P. Gao and Ganguli 2015; Mante et al. 2013; Mazor and Laurent 2005; Williamson 

et al. 2019). In the primary motor cortex, recorded latent signals that differ across days can be 

mathematically transformed (“aligned”) to be more similar to each other. These aligned latent 

signals maintain a remarkably stable relation to behavior over months and even years (Gallego 

et al. 2020). As a consequence, a fixed decoder that uses these aligned signals as inputs 

remains accurate across long periods without supervised recalibration (Degenhart et al. 2020a; 

Gallego et al. 2020; Karpowicz et al. 2022; Ma et al. 2022).  
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Manifolds transcend the analysis of individual neurons, and make the comparisons of population 

activity across individuals more readily interpretable (Dabagia, Kording, and Dyer 2022). 

Recently, Safaie et al. used similar alignment techniques to show that latent signals in M1 were 

preserved across monkeys as they performed a center-out reaching task using a planar 

manipulandum; latent signals were also preserved in the dorsolateral striatum of mice that 

grasped and pulled a joystick (Safaie et al. 2022). Other recent studies revealed that low-

dimensional neural structure within the hippocampus and the sensorimotor cortex is preserved 

across rats for a variety of behaviors, ranging from locomotion along a linear track inside a 

maze to unconstrained movement in an arena (H.-T. Chen, Manning, and van der Meer 2021; 

Melbaum et al. 2022; Nieh et al. 2021; Rubin et al. 2019).  

Not only was the neural representation of the isometric wrist task similar across monkeys, but 

also the similarity extended even to a paralyzed human attempting to perform the same task. 

The preserved motor intent signals between individuals enabled successful monkey-to-human 

EMG decoding, even though the decoding accuracy was not as high as when using M1 data 

from a target monkey. The lower cross-user decoding accuracy from the human M1 data could 

be attributed to the greater inter-trial variability of the corresponding latent trajectories compared 

to those of the monkeys (Figure 4-6a). The increased trial-to-trial variability partly resulted from 

the absence of any actual force or force-related feedback. Moreover, the variability was 

influenced by the participant’s tendency to anticipate the go cue during the attempted 

movements (Figure 4-6a). As a result, the accuracy of both direct decoding and transfer 

decoding peaked for time-alignment prior to the go cue (Figure 4-6b). Remarkably, under these 

limitations, the EMG predictions from either cross-user decoding approach with human M1 data 

still resembled the actual EMGs of the source monkey. 



150 
 

Comparison of direct and transfer decoding  

Direct decoding was simple and consistently outperformed transfer decoding by a small amount, 

as long as the decoder was retrained each session. Unlike transfer decoding, which requires 

that both M1 and EMG data be collected from the source monkey, direct decoding has the 

advantage that it would be possible to use EMGs collected from able-bodied humans instead of 

monkeys, which would reduce any concern about the similarity of monkey and human 

biomechanics. 

The task we studied here was highly stereotypic, such that individual trials could be aligned in 

time, a requirement for both direct decoding and the CCA alignment used in transfer decoding. 

This limitation is fundamental for direct decoding; however, CCA could, in principle, be replaced 

with an unsupervised method that aligns the statistics of clouds of points independently of the 

time course of the associated signals. Such approaches have been used to align neural signals 

from a given monkey across time, (Degenhart et al. 2020a; Farshchian et al. 2018; Karpowicz et 

al. 2022; Ma et al. 2022) but they have not been successfully applied across monkeys. These  

methods should be further investigated as a means to allow transfer decoding to be applied to a 

broader range of unstructured tasks. 

In addition, because it separates the decoder computation and alignment phases, transfer 

decoding could take advantage of large quantities of more readily available data from monkeys. 

With more extensive data, it may be possible to train sophisticated decoders that can operate 

across various behaviors, while relying on the more limited data from the human user for neural 

alignment. Although their effectiveness needs to be validated in future studies, deep learning-

based decoders could be used for this purpose, as they have been shown to be more robust to 

variability in recording conditions and have higher decoding accuracy compared to linear 

alternatives (Glaser et al. 2020; Sussillo et al. 2016; Willsey et al. 2022).  
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Summary 

To our knowledge, this study is the first that demonstrates the feasibility of cross-user EMG 

decoding, both a “direct” method and one that relies on “transfer” a decoder computed from a 

monkey to a human user. We validated both approaches on multiple pairs of monkeys, and then 

tested them between a human with paralysis and a monkey. Future studies should focus on 

developing more sophisticated decoders and neural aligners to further expand the applicability 

of these approaches to varied and unstructured movements typical of daily living. While their 

feasibility would have to be tested online to address the problems associated with motor 

adaptation, the current study serves as an initial and encouraging proof of concept. 
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Supplementary Figures 

 

Supplementary Figure 4-1: Monkeys have slightly different cursor trajectories. Cursor 

trajectories of the three monkeys during the four sessions analyzed in this study. Data is averaged 

across all trials for each target direction (single trial trajectories are shown as shaded curves). 

Among the three monkeys, Monkey J has the straightest trajectories. Monkey K and (especially) S 

show the highest trial-by-trial variations. 
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Supplementary Figure 4-2: Muscle correlation patterns are preserved across time. a) 

Matrices of EMG correlations in each monkey during the four recorded sessions. Each matrix is 

ordered to cluster muscles that have been recorded in common across all three monkeys 

(indicated by the black square). b) Element-by-element scatter plots of the matrices in the top (x-

axis) and bottom (y-axis) row of a. Correlation of EMGs in the same monkey are very consistent 

across time. 
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Supplementary Figure 4-3: Monkeys perform the same task using slightly different muscle 

strategies. a) EMG traces recorded during the isometric box task for the common muscles of the 

first session of monkey J (purple), monkey S (green), and monkey K (orange). Columns show the 

average EMG activity for the eight target directions (shaded lines are single trials). The EMG traces 

are centered around force onset. b) Muscle tuning curves expressing the level of activity as a 
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function of the direction of the isometric force. The radial vectors indicate the preferred directions. 

Each row shows the tuning curves and PDs of monkey J (purple), monkey S (green), and monkey 

K (orange) recorded during the four sessions. c) Correlation of EMGs that have been recorded in 

common between Monkey J and S (left), Monkey S and K (center) and Monkey J and K (right). 

Mean and standard deviation across all sessions is reported. 
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Supplementary Figure 4-4: Using target monkey EMGs as ground truth for cross-monkey 

decoding. a) Cross-monkey EMG predictions obtained with target-monkey latent signals via direct 

decoder (blue lines) and with aligned target-monkey latent signals via transfer decoding (red lines). 

Actual EMG recordings of the target monkey (black lines) provide a ground truth for measuring 

decoding accuracy. Note that we cannot compare the cross-monkey predictions with the entire set 

of recorded muscles of the target monkey, but only with the set of EMGs that have been recorded 

in common across monkeys, as the fixed decoders have been trained to predict the actual EMGs 

of the source monkey. For each muscle, the cross-monkey predicted R2 is reported with the 

correlation between the actual EMG recordings of the source and the target monkey. b) Muscle 

correlation between source and target monkeys is plotted against the single muscle cross-monkey 
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R2 with direct (left) and transfer (right) decoding when using source (purple) and target (green) 

monkey EMGs as ground truth. With both methods, we can decode target monkey EMGs that have 

high correlation with those of the source monkey. Each dot refers to a single muscle for a given 

source/target monkey pair. 
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Supplementary Figure 4-5: Dimensionality analysis. a) Violin plot showing the overall cross-

monkey EMG decoding 𝑅2 with direct (red) and transfer (blue) decoding for all pairs of monkeys 

when using different latent space dimensionality. b) Correlation between the latent signals of 

source and target monkeys on each of the first 13 latent dimensions before (black) and after (red) 

CCA alignment. The increased correlation magnitude indicates increased similarity across 

monkeys as a result of the CCA alignment. The mean and standard deviation across all pairs of 

monkeys is shown. c) M1 similarity is plotted against the EMG similarity across monkeys (green 

dots) and within monkey/across sessions (purple x symbols). The similarity is computed as the 

correlation between the CCA-aligned M1/EMG latent signals averaged across the first five latent 

dimensions. For the EMG similarity, we applied PCA on the EMG signals that were recorded in 

common across monkeys (see Table S1) and then compute CCA alignment on the corresponding 

latent signals. d) Scree plot of the first 13 principal components for the four sessions of monkey J 

(purple), monkey S (green) and monkey K (orange). The Parallel Analysis estimate of linear 

dimensionality for each monkey’s latent signal is indicated as a circle of the corresponding color.  
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Supplementary Figure 4-6: CCA alignment generalizes when interpolating, but not when 

extrapolating. a-b, Representative latent signals described by the first two principal components of 

a single monkey pair (source monkey: J, first session; target monkey: S, second session) before 

and after CCA alignment. a) Generalizability of the CCA alignment when interpolating (i.e., trained 

on cardinal directions and tested on diagonal directions); b) Generalizability of the CCA alignment 

when extrapolating (i.e., trained on adjacent lower directions and tested on upper directions). When 

interpolating, the aligned neural trajectories of the target monkey resembled those of the source 

monkey when tested on the held-out directions (a, bottom row). When extrapolating, CCA 

accurately aligned the training data (b, top row), but not the trajectories of the held-out directions 

(b, bottom row). c) Violin plot showing the similarity, as measured by R², between the latent signals 

of all pairs of source and target monkeys before (grey) and after (red) CCA alignment when data 

from all (center), only cardinal (left), and only lower (right) directions were available. When using all 

directions and when interpolating, the similarity significantly increased after CCA alignment. When 

extrapolating, the R² values are still negative even after alignment. 
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Supplementary Figure 4-7: Cross-species decoding generalizes when interpolating. a) Latent 

M1 trajectories described by the first two principal components of the source monkey (left) and the 

paralyzed patient attempting to perform a wrist isometric task before (center) and after (right) CCA 

alignment. The first row shows the latent signals of the directions used to obtain the CCA 

transform, while the bottom row shows the latent signals of the held-out directions. In both cases, 

CCA made the neural trajectories of the human more similar to those of the source monkey. b) 

Corresponding cross-monkey EMG predictions obtained with human latent signals via direct 

decoder (blue lines) and with aligned human latent signals via transfer decoding (red lines). Actual 

EMG recordings of the source monkey (black lines) provide a ground truth for measuring decoding 

accuracy. The 𝑹𝟐 for both direct (red) and transfer (blue) decoding are shown on the right for each 

muscle. Vertical dashed lines separate muscle traces for the eight target directions.   
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Supplementary Figure 4-8: Cross-species decoding does not generalize when extrapolating. 

a) Latent M1 trajectories described by the first two principal components of the source monkey 

(left) and the paralyzed patient attempting to perform a wrist isometric task before (center) and 

after (right) CCA alignment. The first row shows the latent signals of the directions used to obtain 

the CCA transform, while the bottom row shows the latent signals of the held-out directions. While 

CCA accurately aligned the latent signals of the training directions, the latent signals of the human 

bear no resemblance to those of the source monkey in the held-out targets. b) Corresponding 

cross-monkey EMG predictions obtained with human latent signals via direct decoder (blue lines) 

and with aligned human latent signals via transfer decoding (red lines). Actual EMG recordings of 

the source monkey (black lines) provide a ground truth for measuring decoding accuracy. The 𝑹𝟐 

for both direct (red) and transfer (blue) decoding are shown on the right for each muscle. Vertical 

dashed lines separate muscle traces for the eight target directions.   
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Supplementary Figure 4-9: Additional cross-species decoding analysis. a) Latent signals 

described by the first two principal components of the human recording using channels from both 

hand and arm (left), only hand (center) and only arm (right) area of M1. Data is averaged across all 

trials for each target direction (single trial trajectories are shown as shaded curves). Arrows 

indicate the temporal evolution of the trajectories. b) Cross-species R2 for direct (blue) and transfer 

(red) decoding when using the human latent signals from the hand, arm, and the combined areas 

of the M1 array. For the cross-species decoding, we only considered the four main wrist muscles. 
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CHAPTER 5: D ISCUSSION  

Summary of findings 

My first objective was to refine the methodology for accurately estimating the geometry, namely 

the dimensionality and nonlinearity, of neural manifolds. The second objective was to 

understand whether the observed low dimensionality of M1 manifolds is a general 

computational strategy or a trivial result of constraints associated with motor behaviors 

performed in the laboratory. The final objective, again using the concept of the neural manifold, 

was to develop innovative strategies that address the challenges faced by observation-based 

iBCI decoders, potentially enabling individuals with paralysis to control their muscles using their 

neural activity. I addressed these three main objectives in Chapters 2, 3, and 4, respectively. 

In Chapter 2, I laid the groundwork for the subsequent chapters by evaluating techniques for 

estimating the intrinsic and embedding dimensionality of neural recordings and devised a 

pipeline to do so in a principled manner. Through the analysis of linear and nonlinear algorithms, 

I found that none of the tested algorithms work for all possible scenarios. However, I identified 

important insights regarding the conditions under which estimates of intrinsic dimensionality are 

likely to be valid or not. These conditions mostly depended on the extent of nonlinearity in the 

underlying manifold’s geometry, the amount of available data, and the levels of noise. In light of 

these findings, I devised an analysis pipeline that will aid in computing the neural manifolds and 

in quantifying the complexity of information encoded by neurons. 

Chapter 3 extended this investigation by exploring the intrinsic and embedding dimensionalities 

of M1 manifolds in monkeys engaging in unconstrained tasks. I discovered that both the intrinsic 

and embedding dimensionality of M1 manifolds were slightly higher in unconstrained, natural 

motor behaviors compared to those in the constrained laboratory tasks that I analyzed and that 

had been previously reported. Although signatures of nonlinearity were present in the M1 
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manifolds, most of the neural activity was restricted to nearly linear regions. Furthermore, the 

accuracy of linearly decoded electromyograms (EMGs) from low-dimensional latent variables 

closely matched the accuracy of EMGs decoded from all recorded neurons, implying that most 

of the information related to the activation of muscles in M1 lived in a linear subspace within the 

slightly nonlinear neural manifold. 

Finally, in Chapter 4, I focused on predicting and controlling motor outputs that cannot be 

observed, such as the activity of muscles that produce movement, from M1 activity for 

intracortical brain-computer interfaces (iBCIs). To achieve this, I utilized the latent signals on the 

low-dimensional neural manifolds computed according to methods described in Chapters 2 and 

3 to perform cross-user EMG decoding between a source and a target user. The source user I 

tested was always a monkey, from which the neural and EMG data were relatively easy to 

collect. The target user’s neural data came from either another monkey or a human with 

paralysis attempting to perform the same movements as the source monkey. I compared two 

approaches. The first approach, “direct decoding,” maps neural signals from the target user to 

the muscle activity of the source individual performing the same movements. Alternatively, 

“transfer decoding” transfers a decoder trained on M1 and EMG signals from a source monkey 

to a target monkey or human iBCI user. Both approaches showed similar EMG prediction 

accuracy, and cross-user EMG decoding was possible even between monkeys and humans. 

This finding suggests potential applications in restoring voluntary arm movement or controlling 

anthropomorphic limbs with properties designed to mimic the musculoskeletal system. 

Importance of nomenclature on neural dimensionality  

The concept of dimensionality of neural signals has emerged as a fundamental tool in 

understanding computational processing carried out by a population of neurons. This interest is 

driven by the ability of dimensionality to quantify the redundancy and to pinpoint shared 
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components of collective dynamics of interconnected networks of neurons with respect to task 

variables. However, the term “dimensionality” has different meanings for different groups. An 

important challenge has been the lack of a unified approach and shared terminology 

surrounding the term despite its perceived importance in the context of analyzing the activity of 

neural populations. 

Different studies investigating dimensionality often leaned on their individual interpretations and 

definitions of the concept, leading to a fragmented understanding. The lack of a common 

framework, or a universal language, can result in confounding interpretations and assessments. 

To illustrate this, let us consider recordings from the primary visual cortex when a mouse is 

presented with a series of images. While the interaction of a substantially large number of 

neurons drives how V1 may process these images, the relevant variables for the task are likely 

to be bounded by the statistics of the stimuli (Simoncelli and Olshausen 2001).  

One group has recently found that natural visual stimuli evoke high-dimensional geometry in V1 

manifolds from mice (Stringer, Pachitariu, Steinmetz, Carandini, et al. 2019). They interpret this 

finding to be consistent with the “efficient coding” hypothesis (Atick and Redlich 1990; 

Simoncelli and Olshausen 2001), which means that neural code is expressive, as it optimizes 

the transfer of information by reducing correlations present in natural images. According to this 

hypothesis, such neural codes facilitate the read out of the complex features by downstream 

networks.  

Is V1 truly high-dimensional as they claim, or are the representations, in fact, lower-dimensional 

but highly nonlinear? Without a proper definition of what we mean by dimensionality or accurate 

methods to measure it, the interpretations of neural redundancy and the underlying 

computational principles could be varied. This ambiguity could hinder our understanding of how 

population activity carries out and represents task-relevant variables. Moreover, without 

common terminology, we may overlook parallels across investigations that span multiple brain 
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areas, potentially impeding our overall progress in understanding how neural populations 

process and relay information relevant to behaviors between one another. 

Fortunately, the pressing need for a common terminology in studying neural dimensionality has 

been formalized by Gao and Ganguli (P. Gao and Ganguli 2015; P. Gao et al. 2017) and was 

finally addressed by Jazayeri and Ostojic just over a year and a half ago (Jazayeri and Ostojic 

2021). In the context of neuroscience, they divide the notion of dimensionality into three distinct 

terms. The first, and the least important of the three regarding neural computations, is ambient 

dimensionality, which describes the total number of recorded neurons. For example, in the 

multielectrode array data that I analyzed in Chapters 2-4, ambient dimensionality would equal 

the roughly 100 neurons that were sampled in M1. The remaining two are intrinsic and 

embedding dimensionality, which help characterize the geometry of neural manifolds and assist 

us in interpreting the computations that occur. Intrinsic dimensionality offers a mirror into the 

information that is encoded, like how the visual stimuli presented to the mouse in the earlier 

example are encoded by V1. On the other hand, embedding dimensionality is related to how 

neural circuits process and manage this information. 

The work I did in Chapter 2 preceded these definitions and the associated theory regarding 

neural computation. However, the tools I developed and sharpened using simulated scenarios 

with known ground truth allowed for testing the theory with experimental data in Chapter 3. For 

example, Parallel Analysis, the most accurate linear dimensionality estimator I tested, serves as 

an accurate embedding dimensionality estimator. Similarly, Two Nearest Neighbors and Levina-

Bickel Maximum Likelihood Estimation are two accurate methods to estimate the intrinsic 

dimensionality. These methods would work well to test theories regarding dimensionality and 

neural computations as long as the data were properly denoised. 

In Chapter 3, I applied these tools and definitions directly to M1. The primary aim here was to 

uncover the underlying computational principles of M1 during unconstrained, natural tasks. By 
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computing both the intrinsic and embedding dimensionalities of M1 recordings during these 

tasks, I was able to explore how M1 represents and manages task-relevant variables in different 

contexts. 

My findings revealed that the intrinsic and embedding dimensionalities of M1 signals were 

slightly higher during complex, unconstrained tasks than during simple tasks performed with a 

single arm. This suggests a small increase in computational complexity when the motor cortex 

is driving more freely executed tasks. Yet, both embedding and intrinsic dimensionalities 

remained much lower than the millions of neurons active in M1. Furthermore, I observed that 

neural activity that was predictive of EMGs was mostly confined to nearly linear regions within 

the neural manifolds. This insight is instrumental for future studies that aim to investigate the 

dynamics of the signals within M1 manifolds and their relation to behavior in different contexts. 

Linking the low intrinsic dimensionality, low embedding dimensionality, 

and mild nonlinearity of M1 to functional organization and recurrent 

connectivity 

What conclusions can we draw from the low dimensionality and modest nonlinearity of M1 

regarding its function and connectivity? A potential explanation, as detailed in Chapter 3, is 

anchored in the computational balancing act between generalizability and expressivity, a 

concept that has been examined in both artificial and biological neural networks (Musslick et al. 

2017; Musslick and Cohen 2019; Pryluk et al. 2019; Sagiv et al. 2020). For example, if task-

specific information encoded in a brain area needs to be selectively transmitted to various other 

brain areas, it would be beneficial to confine the components of this information to distinct, 

linearly independent subspaces. This form of arrangement would support readouts without 

interference, exhibiting increased expressivity. Such an organizational structure would 

necessitate a high embedding dimensionality. Artificial neural network studies have 

demonstrated the merits of high embedding dimensionality, which has been applied in the 
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context of kernel methods and support vector machines (Boser, Guyon, and Vapnik 1992; 

Maass 2016; Cohen et al. 2020). 

My findings in Chapter 3 showed that we do not observe this scenario in M1. The low estimates 

of intrinsic and embedding dimensionality in both constrained and unconstrained tasks suggest 

that this expressivity is less pronounced in M1 than in some higher-order brain areas. For 

instance, a brain area required to selectively convey latent variables crucial to decision-making 

and motor output, such as the dorsolateral prefrontal cortex, would demand high mixed 

selectivity. Consistent with the theory of dimensionality, these areas have been reported to have 

a large embedding dimensionality even in simple decision-making tasks (Mante et al. 2013; 

Rigotti et al. 2013; Fusi, Miller, and Rigotti 2016). The low dimensionality and mild nonlinearity of 

M1 suggest that such intricate representations are not necessary for M1, even when the 

laboratory constraints are removed. Instead, M1 presents more generalized representations, 

which may encode different inputs into a limited set of common activity patterns or “neural 

modes” (Gallego et al. 2017; Bhandari, Gagne, and Badre 2018). From a functional standpoint, 

M1’s low-dimensional and generalizable computational strategy could ensure the reliable 

generation of movement commands that remain largely unaffected by task constraints and 

contexts. 

Another interpretation of the low dimensionality and minor nonlinearity in M1 neural population 

activity could be related to the strength of recurrent connectivity within M1. The dynamical 

systems perspective (Shenoy, Sahani, and Churchland 2013) emphasizes the existence of 

recurrent connections, yet our knowledge of the strength of these connections is limited (Vyas et 

al. 2020). Although still in its infancy, recent work on artificial and biological networks has tied 

the strength of recurrent connections to the dimensionality of neural representations (Litwin-

Kumar et al. 2017; Mastrogiuseppe and Ostojic 2018; Schuessler, Dubreuil, and 

Mastrogiuseppe 2020; Beiran et al. 2021; Pollock and Jazayeri 2020). According to this view, 
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networks with low-rank connectivity matrices give rise to low-dimensional dynamics. While the 

research connecting recurrent connectivity structure to dynamics is still emerging and calls for 

further investigation, the low embedding and intrinsic dimensionality of M1 are in line with the 

presence of relatively weak recurrent connections (Langdon, Genkin, and Engel 2023). 

The methods developed in Chapter 2 and tested in Chapter 3 present an enriched 

understanding of the neural computations within the primary motor cortex. Through the 

development of precise tools for estimating intrinsic and embedding dimensionality and 

combining these tools with theories on neural computation, we can interpret the computational 

implications of the geometry of the neural manifolds within neural circuits. By applying these 

tools to the motor cortex, we begin to uncover the underlying computational principles, which 

appear to favor generalizability over expressivity, even in unconstrained and natural settings, 

while hinting at the potential influence of recurrent connectivity strength on the nature of neural 

representations. 

Muscle-related information lives in a low-dimensional, l inear subspace 

within M1 

Considerable research has leveraged linear dimensionality reduction methods like PCA to 

derive the latent signals that define the M1 manifolds (Churchland et al. 2012; Cunningham and 

Yu 2014; Sadtler et al. 2014; Kaufman et al. 2014; P. Gao and Ganguli 2015; Gallego et al. 

2017; Williams et al. 2018; Gallego et al. 2018, 2020). The advantages of linear models, such 

as computational efficiency and straightforward interpretability, have rendered them an 

invaluable tool in this context. Importantly, M1 manifolds computed with PCA contained 

movement-related variables, allowing insights into how M1 generates movement.  

The significance of this finding extends beyond scientific interest—it has practical implications 

for the development of iBCI decoders. These decoders can be constructed using low-
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dimensional, linear M1 manifolds, which have been shown to harness temporally stable 

dynamics even under neural turnover. The temporal stability of M1 manifolds is an important 

feature in the context of iBCIs, as it may allow for the creation of reliable brain-to-behavior 

decoders that perform consistently over time (Gallego et al. 2020). 

While these linear approaches yielded significant insight into how M1 generates movement and 

facilitated iBCI advancements in the laboratory, their effectiveness in unconstrained, real-world 

environments was unknown. In these settings, one possibility is that information about muscle 

activation might be embedded nonlinearly in M1. If this were the case, the utility of linear 

methods like PCA could be severely compromised, potentially limiting their practical and real-

world applications. 

In Chapter 4, I examined the EMG decoding accuracies by computing neural manifolds using 

the intrinsic dimensionality estimate and decoding EMG signals. I adopted both linear (PCA) 

and nonlinear (feedforward autoencoder) dimensionality reduction methods to compute latent 

signals associated with linear and nonlinear manifolds. My findings showed that the 

performance of EMG decoding from both linear and nonlinear M1 manifolds was comparable. 

Moreover, the decoding performance from these manifolds was on par with that derived from all 

available neurons (Figure 3-6).  

These observations imply that muscle-related information in M1 appears to reside in a low-

dimensional linear subspace within M1. This is a critical discovery for two reasons. First, the 

linearity confirms the validity and robustness of linear approximations to M1 manifolds in both 

constrained settings as well as in more natural, unconstrained settings. Second, the low 

dimensionality paves the way for translating iBCIs outside the laboratory even when we are 

vastly undersampling the many active M1 neurons. 

Cross-user decoding of muscle activity using linear M1 manifolds  
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In Chapter 4, I put into practice the concept of linear approximations to M1 manifolds in the iBCI 

context, using their low dimensionality and muscle-like information content. Building on the 

insights from Chapter 3, I determined PCA to be a sufficient tool for approximating M1 

manifolds. I incorporated the embedding dimensionality estimate obtained through Parallel 

Analysis, the efficacy of which was established in Chapter 3, to determine the dimensionality of 

the linear approximations to the M1 manifolds. The embedding dimensionality estimates varied 

between 6 and 13 across all monkey datasets analyzed in Chapter 4 (Supplementary Figure 

4-3). This is relatively low in comparison to the roughly hundred neurons we can record and the 

millions of neurons that modify their activity within the motor cortex. This observation 

underscores the low dimensionality characteristic of these manifolds, highlighting the utility of 

our linear approximation approach in the context of iBCIs. 

In the same chapter, I explored two methods for predicting the muscle activity of a "source" 

monkey iBCI user from the latent neural activity of a "target" monkey or a paralyzed human iBCI 

user, both undertaking a center-out task. The first, "direct decoding," directly mapped the target 

user's neural signals into the EMG signals of the source monkey. This method successfully 

predicted the EMG activities of a source monkey using M1 manifolds from another monkey and 

transformed latent signals on the M1 manifolds of a human with paralysis into muscle activities 

that resembled those of a monkey. The second method, "transfer decoding," involved the 

transfer of a decoder trained on neural and EMG data from a source monkey to other target 

users. This approach yielded similar EMG predictions without the necessity for a new decoder 

computation. Although direct decoding slightly outperformed transfer decoding when it was 

retrained across sessions (Figure 4-5, 4-8, and 4-9), this advantage dissipated when the direct 

decoder was fixed for one session and session-aligned with CCA akin to the transfer decoding 

approach (Figure 4-6). 
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Comparison of the potential  of direct and transfer decoding for closed -loop 

iBCIs 

Both the direct and transfer decoding methods demonstrated promising potential for predicting 

unobservable muscle activity based on latent neural signals. However, each method presents 

unique advantages and potential challenges that must be addressed for effective application in 

closed-loop situations. 

Direct decoding was a simple yet effective approach that consistently outperformed transfer 

decoding when it was retrained at every session. This method, suitable only for simple 

behaviors with stereotypic trajectories, does not necessarily have to rely on a monkey as the 

source user. Instead, in future work, we could collect EMGs from able-bodied humans 

performing specific tasks and construct a direct decoder.  

Notably, the redundancy of hand musculature permits most actions to be produced with a 

variety of different patterns of muscle activity (d’Avella, Saltiel, and Bizzi 2003; Bernstein 1966). 

In fact, the monkeys that performed the same center-out task had different patterns of EMG, 

even though their motor patterns were self-consistent across sessions (Supplementary Figure 

4-2). It is reasonable to expect that the human participant intended to use a different pattern of 

EMG from that of the source monkey. The direct decoding method was capable of predicting 

EMG activities that were biomechanically appropriate for the task at hand, given the similarity 

between human and monkey hand biomechanics. However, this discrepancy might present an 

intriguing motor-adaptation problem as the user learns to generate monkey-like muscle 

commands. 

On the other hand, transfer decoding, despite appearing slightly less effective than direct 

decoding, has the potential for wider applications and presents several distinct advantages for 

future research. While the neural alignment method utilized in this approach, Canonical 

Correlation Analysis (CCA), is primarily effective on tasks with well-defined onsets and offsets, it 
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could conceivably be substituted with alternative unsupervised techniques, such as domain 

adaptation methods. These methods align the statistical properties of point clouds 

independently from the time course of the associated signals and have been successfully used 

to align neural signals from the same monkey performing different behaviors over time, 

including tasks with minimal trial structure (Degenhart et al. 2020; Farshchian et al. 2019; 

Karpowicz et al. 2022; Ma et al. 2022; Sun and Saenko 2016). However, these unsupervised 

methods have yet to be successfully applied to match neural activity statistics collected from 

multiple monkeys performing varied and unstructured movements typical of daily living activities. 

Thus, further investigation of these and related domain adaptation methods under more realistic 

conditions and across different users is warranted. 

Transfer decoding also has an inherent advantage in its compatibility with abundant monkey-

based data. Given the relative ease of acquiring training data from monkeys and the vast 

existing datasets from various motor behaviors, it is feasible to train monkey decoders that are 

more complex than the one tested in this study. Recent studies have shown that deep-learning-

based decoders that correlate neural activity with behavior outperform simple linear decoders 

(Sussillo et al. 2016; Willsey et al. 2022; Deo et al. 2023). These advanced decoders require 

more data and a longer training time than linear decoders, which may pose a challenge for 

human iBCI research due to the difficulty and invasiveness of collecting neural data. This 

limitation is not present in monkey settings. The extent to which these advanced decoders can 

be transferred to decode EMGs for humans is yet to be fully explored. 

In conclusion, while both methods have shown promise, further investigation is required to 

assess the application of these advanced decoders in decoding EMGs in humans, marking an 

exciting direction for future research. 
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The low dimensionality of M1 in natural settings may help translate iBCIs 

outside of the laboratory 

The EMG-based iBCI decoding approaches I examined in Chapter 4 were primarily focused on 

controlled laboratory tasks. Nonetheless, there is a considerable possibility that these EMG-

decoders could be adapted for use in natural settings and for more complex tasks. This 

potential can be attributed to the similar low neural dimensionality of these tasks, as 

demonstrated in Chapter 3.  

Theoretical advancements have underscored the correlation between the embedding 

dimensionality of M1 manifolds and the accuracy of decoding movement parameters. The 

inherently low embedding dimensionality of M1 enables accurate decoding from a substantially 

smaller subset of the millions of active neurons, assuming a sufficient amount of data is 

available (P. Gao and Ganguli 2015). Are natural behaviors in unconstrained settings associated 

with similarly low-dimensional M1 manifolds? The answer to this question has implications for 

translating the intracortical brain-computer interfaces (iBCIs) from controlled laboratory settings 

to unconfined environments, thereby enabling broader and more practical usage. 

In the third chapter of my thesis, I put these theoretical assertions to the test using simultaneous 

M1 and EMG recordings from monkeys in the unconstrained cage setting, which was as natural 

and “real-world” as we could get with monitored monkeys. I successfully demonstrated that the 

M1 manifolds were still low-dimensional, and we could decode EMGs regardless of the 

experimental setting (Figure 4-6, Supplementary Figure 4-5 and 4-6). This finding confirms 

the applicability of the theoretical relationship between low embedding dimensionality and linear 

decodability beyond controlled laboratory conditions, demonstrating its robustness even in 

unconstrained settings. 

My results highlight the potential of current electrophysiology hardware technology, which 

samples from merely hundreds to thousands of neurons, for iBCIs to operate within activities of 
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daily living outside the laboratory. Despite the small neural sample size, we can effectively 

identify the neural manifolds associated with unconstrained tasks. This illustrates that the 

generalizable representations in M1, though low-dimensional, can be decoded reliably even 

when our recording devices vastly under-sample the active neurons in the motor cortex. Given 

the “above-Moore’s Law” advancements in recording technologies that allow us to sample from 

an increasing number of neurons (Urai et al. 2022), the integration of iBCIs into the daily lives of 

individuals with paralysis is becoming more feasible. This progress draws us closer to the goal 

of transitioning iBCIs from being a promising yet laboratory-bound technology to becoming an 

innovative tool in real-world scenarios. 

A dimensionality estimation pipeline for neural populations beyond M1  

In Chapter 2 of my thesis, I explored various methods for estimating the dimensionality of neural 

recordings, with the motivation to answer questions regarding the primary motor cortex (M1). I 

used this pipeline to investigate M1 manifolds in Chapters 2 and 3. However, this pipeline can 

be used in other neural populations as well. 

In Chapter 2, I found PCA with an arbitrary variance cutoff, the embedding dimensionality 

estimator that many use, to be the least accurate method among those tested. Instead, Parallel 

Analysis (PA) emerged as a more effective linear approach for estimating embedding 

dimensionality, even for mildly noisy and nonlinear datasets. It is essential to note that all the 

methods assessed in this study were unsupervised, making them applicable to datasets with no 

repeated trial structure. 

In contrast to what I found in Chapter 3 about M1, there is growing evidence suggesting that 

neural manifolds may be nonlinear for some of the sensory and cognitive areas (Low et al. 

2018; Nieh et al. 2021; Gardner et al. 2022; De and Chaudhuri 2022; Y. Li et al. 2023). In these 

scenarios, one would expect a larger discrepancy between the intrinsic and embedding 
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dimensionality than I have observed in M1. The pipeline that I used would help identify 

computational principles from these brain areas just as I did in M1. Below is a general recipe 

that would work with any set of neural recordings. 

First, one should begin with Parallel Analysis for an embedding dimensionality estimate of the 

neural data. Parallel Analysis was not only accurate for estimating embedding dimensionality, 

but also computationally efficient and relatively robust to noise. Next, one should perform a 

denoising procedure on the signals. This step involves projecting neural signals into a subspace 

of dimension given by the PA estimate of the embedding dimensionality and reconstructing the 

signals based on these projections. There are two options: PCA-based denoising, which is 

straightforward and resource-efficient, and the JAE that I proposed, which can account for 

potential nonlinearities. The effectiveness of denoising (and the first indication of the nonlinearity 

in the neural data) can be evaluated through the reconstruction accuracy between the denoised 

(reconstructed) signals and the original signals. If the reconstruction accuracy between PCA and 

JAE is similar, then the underlying manifold is likely linear. In this scenario, the intrinsic 

dimensionality estimate would be very close to the embedding dimensionality estimate. If the 

JAE yields a significantly superior reconstruction performance, the underlying neural manifold is 

likely to be nonlinear. In this scenario, one could use Levina-Bickel Maximum Likelihood 

Estimation or Two Nearest Neighbors on the reconstructions of JAE for an estimate of the 

intrinsic dimensionality. 

Limitations 

In all chapters of my thesis, the behavioral tasks were simple. Particularly, in Chapter 3, I helped 

design cage experiments anticipating that the unconstrained tasks would be more complex. The 

goal was to quantify this anticipated complexity through a higher intrinsic dimensionality of EMG 

signals compared to constrained, lab-bound tasks. Despite this expectation, a clear trend to 
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support this hypothesis was absent. All tasks, even those in the more naturalistic cage setting, 

turned out to be relatively simple. 

Simulations played a key role when I benchmarked the efficacy of the intrinsic and embedding 

dimensionality estimators, which I ultimately used throughout my thesis. In the simulations 

carried out in Chapter 2, I focused on modeling the essential features of experimental neural 

data but did not take into account some of their characteristics. For example, I only considered 

additive Gaussian isotropic noise, which may not fully reflect the noise models observed in real-

world recordings. These recordings might have non-additive, non-isotropic, and non-Gaussian 

noise. Additionally, the JAE could have employed a variational framework, which is known to be 

more robust to noise than the simple feedforward approach that I took (Im et al. 2017; Kingma 

and Welling 2019). A deep learning based denoising approach that I referenced in the 

introduction of my thesis, LFADS, employs a variational framework and is the current state-of-

the-art for denoising experimental data, albeit with high computational cost and significant 

difficulty in tuning its hyperparameters (Pandarinath, O’Shea, et al. 2018). 

Another constraint in the simulations was that I normalized the firing rates of each channel to 

the [0,1] range, a simplification that did not mirror the range in the experimental neural firing 

rate. In reality, the range of firing can differ significantly, even across neurons of the same type. 

Furthermore, I simulated the firing rates using latent signals with the same first-order statistics 

as found in the actual data. While this decision overlooked some of the heterogeneity observed 

in the experimental neural data, the simulations proved to be vital to understand the best- and 

worst-case scenarios when computing the intrinsic and embedding dimensionality of real-world 

data. 

In the context of Chapters 3 and 4, the use of linear models for decoding EMG signals could be 

considered a limitation. While these models offer interpretability and simplicity, they may not fully 

capture the complexity of the neural signals and the tasks performed. In Chapter 3, my interest 
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was to compare the relative performance of EMG decoding using latent signals on the neural 

manifolds and using all available neurons. In Chapter 4, I needed a simple decoder to test the 

relative performance of the two cross-user decoding approaches I tested. Linear models of 

EMG decoding were sufficient for my purpose in both chapters, even though they may fail to 

capture the potentially complex and nonlinear relationship between M1 and muscles. 

Future directions 

An important future direction could be toward the use of nonlinear and recurrent decoders 

instead of the linear decoders I used throughout my work. Given the modest nonlinearity of M1 

and the current effectiveness of linear models, the proposed shift toward these complex 

decoders might seem counterintuitive. However, despite their utility, linear decoders fall short in 

accurately capturing the relationship between neural and muscle activity across a broad range 

of tasks. 

The solution to this problem may lie in more nonlinear and recurrent decoders. With their 

potential to better capture data complexity, these sophisticated decoders could improve 

decoding accuracy and provide insights into the role of M1 in generating multiple behaviors. 

This insight is crucial for the real-world application of iBCIs, which need to handle diverse tasks 

of daily living. 

Additionally, in Chapter 4, both direct and transfer decoding approaches faced limitations in 

generalization capabilities. Better decoders may help overcome these limitations. The ability to 

train complex, nonlinear decoders with large amounts of monkey data prior to augmentation 

with subject-specific data may be a potent approach to overcome limitations regarding task 

generalization.  

In addition to the development of more sophisticated decoders, future work should also 

investigate how task complexity affects the dimensionality of EMG signals. For this purpose, we 
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can record EMG signals from able-bodied humans repeatedly performing tasks of varying 

complexity and identify a set of simple to complex tasks that we can teach monkeys to perform. 

For example, we could record EMGs from humans performing complex tasks that can be 

decomposed into simpler ones: tapping fingers in complicated patterns versus simple, individual 

patterns. Would the EMG dimensionality be different in these scenarios? If so, would the 

corresponding neural manifolds combine similarly as they do in the task space, where the 

complex task is composed of individual finger taps? Such investigations would illuminate the 

ambiguities around the current view on neural manifolds, which are thought to be task-specific 

(Gallego et al. 2017; Ebitz and Hayden 2021). A greater understanding of the relationship 

between task complexity and the corresponding neural manifold geometry could help us 

understand the nuances in M1's role in managing different types of motor tasks, from a 

combined set of simple to highly dexterous hand gestures. 

In my current work, I used CCA for neural alignment. While CCA was effective, it has major 

limitations in terms of applicability to more complicated tasks. This constraint makes CCA 

inappropriate for the activities of daily living, which are likely to have minimal trial structures and 

consistency. To overcome this, I propose that CCA could be replaced with alternative 

unsupervised alignment methods, such as domain adaptation techniques (B. Sun, Feng, and 

Saenko 2015; B. Sun and Saenko 2016; Zhu et al. 2017; Park et al. 2020). Some of these 

techniques that match the distributions of source and target signals have already shown 

success in aligning neural signals from the same monkey performing different behaviors over 

time (Dyer et al. 2017; Farshchian et al. 2018; Degenhart et al. 2020b; Ma et al. 2022; 

Karpowicz et al. 2022). However, to date, they have not been successfully applied to match the 

statistics of neural activity collected from multiple monkeys, each performing varied and 

unstructured movements characteristic of everyday activities. Perhaps with the combination of 
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robust decoders, these unsupervised domain adaptation methods could operate in such real-

world contexts, making significant headway in translating iBCIs outside the laboratory. 

Conclusion 

In this thesis, I explored the dimensionality and nonlinearity of M1 manifolds and investigated 

their implications for the computational principles across tasks and for improving iBCIs. In 

Chapter 2, I developed a novel, accurate methodology to estimate the dimensionality and 

nonlinearity of neural manifolds. In Chapter 3, I applied this methodology to M1 manifolds from 

monkeys performing unconstrained tasks. My findings revealed that the dimensionality of M1 

manifolds was only slightly higher during unconstrained tasks and still much lower than the 

roughly 100 neurons we sampled. Furthermore, I found that the information related to muscle 

activation was predominantly in nearly linear regions in these slightly nonlinear manifolds. This 

observation held true for both constrained and unconstrained tasks and could serve as a 

potential explanation for the surprising effectiveness of linear methods used in understanding 

M1’s function. Chapter 4 bridged these theoretical findings to practical applications in iBCIs. 

Using linearly approximated M1 manifolds, I explored direct and transfer decoding methods, 

both of which exhibited similar levels of accuracy and showed promise in aiding the voluntary 

activation of muscles, a critical limitation of the current observation-based iBCI decoders. 

The exploration of neural dimensionality, drawing upon the accurate methods I developed and 

the definitions and interpretations provided by Gao and Ganguli (P. Gao et al. 2017), and later 

by Jazayeri and Ostojic (Jazayeri and Ostojic 2021), helped reveal that both intrinsic and 

embedding dimensionality of M1 are low for both constrained and unconstrained tasks. These 

findings imply that the computational strategy in M1 favors generalizability over expressivity, 

enabling the reliable generation of movement commands across a range of task constraints and 

contexts. 
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As showed by Gao and Ganguli in an earlier study (P. Gao and Ganguli 2015), the inherent low 

dimensionality of M1 manifolds enables accurate decoding from a considerably smaller subset 

of neurons, provided there is sufficient temporal data. In other words, even with millions of 

active M1 neurons, accurate decoding of movement variables can be achieved with a much 

smaller sample as long as M1 manifolds are low dimensional. 

This insight, coupled with the findings of mild nonlinearity and low dimensionality during 

unconstrained tasks, has substantial implications for the practical application of iBCIs in real-

world settings. It may be possible to develop reliable and efficient iBCIs for unconstrained tasks 

of daily living, despite the undersampling of the active neurons in the primary motor cortex. 

The two approaches I tested for enabling cross-user EMG decoding from the low-dimensional 

activity on M1 manifolds, namely direct and transfer decoding, demonstrated a proof-of-concept 

for future applications for muscle-based iBCIs. These two approaches each had their unique 

strengths and weaknesses. For instance, direct decoding may have issues with adaptability due 

to its need for retraining. Transfer decoding, despite being slightly less effective, holds potential 

for broader applications for a wider range of motor behaviors. 

An important future direction for my research lies in the development of more sophisticated 

methods that can extract information from multiple task-specific manifolds and unsupervised 

domain adaptation methods. These methods could better capture the nuances of neural activity 

associated with multiple users and task conditions and extend the applicability of iBCIs to a wide 

array of simple to complex motor tasks. Finally, I propose that we should closely investigate the 

complexity of tasks and dimensionality of muscle activation patterns measured by EMGs, which 

could help elucidate the intricate relationship between task complexity, neural manifold 

geometry, and the role of M1 in driving diverse motor tasks. 
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