
NORTHWESTERN UNIVERSITY

System–Level Optimizations for High Performance DSM Circuits

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical and Computer Engineering

By

Jia Wang

EVANSTON, ILLINOIS

June 2008

2

c© Copyright by Jia Wang 2008

All Rights Reserved

3

ABSTRACT

System–Level Optimizations for High Performance DSM Circuits

Jia Wang

Process scaling has enabled the production of integrated circuits with millions of tran-

sistors. System-on-a-Chip becomes feasible as more functionalities can be packed into a

single chip. As the human brain power is limited, the design process of such sophisticated

systems should be automated in order to meet the stringent design specifications and

short time-to-market. On one hand, ever-increasing system sizes require scalable algo-

rithms for efficient system design space exploration. On the other hand, shrinking VLSI

feature sizes require previous ignored physical effects to be considered for the reliability

and manufacturability of the system. In this dissertation, we will present a few essential

advances in design automation of high performance DSM circuits for the above challenges.

We investigate floorplanning techniques in order to address the methodology shift

from logic centric to interconnect centric. We propose the processing rate as an unified

performance measure and develop a floorplanning approach to optimize it directly through

efficient minimum cycle ratio algorithms. Then, we present two graph-based floorplan

approaches – one of them models the adjacency relations between the non-overlapping

4

rectangular blocks, and the other models the non-overlapping constraints between the

blocks, while the sizes of both graphs are linear in terms of the number of the blocks.

Moreover, we investigate sequential system optimization techniques for system op-

timizations under performance bounds. We propose to combine sizing and clock skew

optimization in a convex-programming-based framework and design an algorithm to solve

the problem based on the method of feasible directions and min-cost network flow. We

then present an optimal minimum area retiming algorithm that incrementally relocates

flip-flops in a sequential circuit without changing its functionality subject to a clock pe-

riod bound. Compared to the conventional algorithms that solve the same problem, our

algorithm only requires linear storage and is practically much more efficient.

Further more, we investigate design for manufacturability techniques to consider issues

in chip fabrication at the design time. We propose to perform risk-aversion min-period

retiming in order to overcome process variations through retiming and present a heuristic

incremental retiming algorithm. We study the antenna effect during fabrication process

that damages gates and design an optimal algorithm in routing stage to insert jumpers

under a bound of antenna ratio such that the damages of antenna effects will be limited.

5

Acknowledgements

I would like to express my gratitude to my advisor Professor Hai Zhou for his bringing

me to VLSI design automation and for his supportive help and encouragement throughout

my graduate study. Without his knowledge and invaluable guidance, it is not possible for

me to understand design automation, to learn the art of algorithm design, and to become

an independent researcher.

I would like to thank my dissertation committee, Professors Robert Dick, Yehea Ismail,

Russ Joseph, and John Lillis, for their interests and suggestions on my work.

I would like to thank my high school teacher Mr. Zhanwang Qian for the training

in formal mathematical reasoning skills and for the self-confidence achieved though hard

working and competition.

Many thanks go to the members of the NuCAD Research Group, where I spent the

past few years, for their discussions and collaborations, Dr. Ruiming Chen, Debasish Das,

Bach Ha, Dr. Chuan Lin, Nikos Liveris, and Dr. Debjit Sinha. I should also include

Dr. Zhenyu Gu in this list.

6

I am highly indebted to my family. I thank my parents for their support. I thank

Danna, my wife, for her accompanying me at this distant land and most importantly, her

love.

JIA WANG

EVANSTON, APRIL 2008

7

Table of Contents

ABSTRACT 3

Acknowledgements 5

List of Tables 10

List of Figures 12

Chapter 1. Introduction 15

1.1. Floorplanning Techniques 16

1.2. Sequential System Optimizations 17

1.3. Design for Manufacturability 18

Chapter 2. Processing Rate Optimization by Sequential System Floorplanning 20

2.1. Processing Rate and Floorplan Problem 23

2.2. Floorplanning for Processing Rate Optimization 27

2.3. Experimental Results 32

2.4. Summary 36

Chapter 3. Exploring Adjacency in Floorplanning 37

3.1. Constrained Adjacency Graph 40

3.2. Dissected Floorplan from CAG 44

3.3. Whitespace Reduction via Packing 49

8

3.4. Experiments 58

3.5. Summary 61

Chapter 4. Linear Constraint Graph for Floorplan Optimization with Soft Blocks 63

4.1. Preliminaries 65

4.2. Motivation 67

4.3. Linear Constraint Graph 70

4.4. LCG Floorplan Optimization 85

4.5. Experimental Results 92

4.6. Summary 94

Chapter 5. Gate Sizing by Lagrangian Relaxation Revisited 95

5.1. Problem Formulation 98

5.2. Solving GCS via Lagrangian Dual Problems 107

5.3. Solving the Simplified Dual Problems 115

5.4. Experiments 127

5.5. Summary 137

Chapter 6. An Efficient Incremental Algorithm for Min-Area Retiming 139

6.1. Problem Formulation 141

6.2. Algorithm Overview 144

6.3. Algorithm Description 148

6.4. Experimental Results 163

6.5. Summary 166

Chapter 7. Risk Aversion Min-Period Retiming under Process Variations 167

9

7.1. Preliminaries 170

7.2. Problem Formulation 175

7.3. A Convex Relaxation 176

7.4. Incremental Algorithm for Risk Aversion Min-Period Retiming 181

7.5. Experiments 189

7.6. Summary 195

Chapter 8. Optimal Jumper Insertion for Antenna Avoidance Considering Antenna

Charge Sharing 196

8.1. Antenna Effect 199

8.2. Problem Formulation 200

8.3. Optimal Jumper Insertion 203

8.4. Experiments 216

8.5. Summary 220

References 222

10

List of Tables

2.1 Results of floorplanning for processing rate (FPR). 33

2.2 Effect of incremental bound evaluation. 34

2.3 FPR vs. [17]. 34

2.4 Processing rate vs. upper bound. 34

2.5 Results of fixed-outline floorplanning for processing rate. 36

3.1 Statistics of the benchmarks for CAG. 59

3.2 Comparing CAG and Parquet. 61

4.1 Results of area optimization for LCG. 92

4.2 Results of wire length optimization for LCG. 93

5.1 Statistics of the circuits for gate sizing. 129

5.2 DualFD vs. SubGrad w/o clock skew optimization. 134

5.3 Results of the DualFD algorithm w/ clock skew optimization. 136

6.1 iMinArea vs. Minaret for min-area retiming. 165

7.1 Results for risk aversion min-period retiming. 193

7.2 Timing yield for risk aversion min-period retiming. 194

11

8.1 Statistics of the benchmarks for jumper insertion. 217

8.2 Results of jumper insertion with obstacles. 219

8.3 Results of jumper insertion without obstacles. 221

12

List of Figures

2.1 Crosses in constraint graphs. 27

2.2 Constraint graph with quadratic edges. 27

2.3 Edge classes in ACG. 28

2.4 Reduced ACG. 28

3.1 Dissected floorplan and CAG. 41

3.2 Neighbor condition and corner condition in CAG. 43

3.3 The H-CAG-Place algorithm. 45

3.4 CAG and depth-first tree. 46

3.5 Calculate horizontal positions. 48

3.6 Packing of dissected floorplan. 49

3.7 The V-CAG-Pack algorithm. 50

3.8 The H-Tree-Weaving algorithm. 52

3.9 Finalize H-Stepwise CAG into CAG. 53

3.10 Find left-most bottom neighbor. 54

3.11 Find bottom neighbors. 55

3.12 Iterative packing. 57

13

3.13 The iterative packing heuristic. 57

3.14 Floorplan and CAG for n100. 62

4.1 Reduce number of edges in constraint graphs. 67

4.2 Obtain constraint graphs from polar graphs. 68

4.3 Example of Linear Constraint Graph (LCG). 70

4.4 Horizontal Adjacent Graph (HAG) and above/below paths. 73

4.5 The InsertTop subroutine. 75

4.6 The CoInsertTop subroutine. 79

4.7 Vertical cOmpanion Graph (VOG) of HAG. 80

4.8 The FPToLCG algorithm. 82

4.9 Insert edge to HAG. 87

4.10 Remove edge from HAG. 88

5.1 Timing of a sequential circuit. 100

5.2 Timing of the FF 1 with its clock skew variable. 107

5.3 Timing of the FF 1 without its clock skew variable. 107

5.4 The DualFD Algorithm. 126

5.5 Convergence of s38584 for DualFD w/o clock skew optimization. 132

5.6 Runtime breakdown for DualFD w/o clock skew optimization. 133

5.7 Runtime breakdown for DualFD w/ clock skew optimization. 137

5.8 Gate sizes and clock periods for DualFD w/ clock skew optimization. 137

14

6.1 Idea of incremental min-area retiming. 145

6.2 Example of incremental min-area retiming. 147

6.3 Regular trees. 149

6.4 Proof of Lemma 6.1. 150

6.5 The ChangeRoot subroutine. 153

6.6 The UpdateForest subroutine. 154

6.7 The ZeroCut subroutine. 157

6.8 The iMinArea algorithm. 159

7.1 The ComputeSubgrad subroutine. 183

7.2 The IncreRetime subroutine. 188

7.3 The Incremental Risk Aversion Retiming algorithm. 190

8.1 Process edge by combining trees. 204

8.2 The Combine subroutine. 209

8.3 The RatioPart algorithm. 210

8.4 The ReportPart subroutine. 213

8.5 Number of the cuts and running time vs. antenna ratio for a10000. 218

8.6 Running time vs. number of nodes for small antenna ratio bounds. 220

15

CHAPTER 1

Introduction

With the shrinking down of feature sizes in Deep Sub-Micron (DSM) VLSI technology,

more functions are integrated into one chip and the performance of the circuits increases

tremendously. The great promise of “system–on–a–chip” (SoC) becomes realistic and

the VLSI systems become pervasive in our modern society. As it is impossible to design

a single algorithm to realize and optimize such complicated systems, the system design

process is separated into individual stages such that the design goal can be achieved

through solving solvable design problems in each stage.

With the process scaling, new design challenges raise from two intrinsic complexities

of the VLSI systems. The first complexity is known as the system complexity. As the

transistor density increases, more functionalities are integrated in a single chip. A designer

must explore a design space of tremendous number of system realizations to choose a

correct one satisfying all the stringent design specifications in a short time-to-market.

The second complexity is known as the silicon complexity. As VLSI feature sizes become

smaller, previous ignored physical effects have to be considered for the reliability and

manufacturability of the system. These challenges require the optimization algorithms to

be scalable to ensure optimization efficiency for VLSI systems with ever-increasing sizes,

and require the design methodology shift to address the limitations in the current design

flow by proposing new design optimizations across previously separated design stages such

that the design goal can be achieved with reduced complexity.

16

In this dissertation, we will present our advances in a few key problems of high per-

formance DSM circuit design automation. These key problems include floorplanning

techniques to address the methodology shift from logic centric to interconnect centric,

sequential system optimizations to explore a larger design space for sequential circuits,

and the design problems considering chip manufacturability.

1.1. Floorplanning Techniques

Interconnects become the dominant issue for performance and power consumptions

for high-performance DSM circuits with the process scaling. A general trend is to bring

physical information up into early design stages. Floorplanning, which addresses the

issues of placing blocks as well as interconnect planning, is an enabling technology for

such methodology shift.

The traditional objective for floorplanning is the total weighted summation of half

perimeter wire length (HPWL). This objective is easy to calculate and other objectives

are usually approximated through weighted HPWL. However, if the system performance

should be optimized, such approximation is no longer applicable. In Chapter 2, we propose

the processing rate as a unified performance measure and present the sequential system

floorplanning approach that utilizes efficient minimum cycle ratio algorithms to optimize

it.

The most fundamental issue in floorplanning is to represent non-overlapping rectan-

gular blocks. On one hand, maintaining adjacency relationship between the blocks would

benefit interconnect centric optimizations since block adjacency means shorter global in-

terconnect. On the other hand, maintaining non-overlapping constraints would allow to

17

explore more physical floorplans in a mathematical programming formulation. In Chap-

ter 3, we present Constrained Adjacency Graph (CAG) as an adjacency graph represen-

tation to maintain the adjacency relationship. We develop a linear complexity algorithm

for constructing floorplans from CAGs and an iterative packing heuristic to improve the

CAGs for better area without changing the adjacency relations dramatically. In Chap-

ter 4, we present Linear Constraint Graph (LCG) as a constraint graph representation for

general floorplans. It is the first constraint-graph-based floorplanning approaches where

the numbers of the vertices and the edges are linear in terms of the number of the blocks.

1.2. Sequential System Optimizations

A large system is usually consisted of multiple components and each component has

multiple implementations with different characteristics, e.g., performance, power con-

sumption, and area. To synthesis the system from those implementations in order to

meet the performance and cost constraints is a challenging problem because of the tremen-

dous number of combinations. In the VLSI optimizations, such implementations could

be different gate sizes, wire widths, supply voltages, and even buffers on interconnects.

In Chapter 5, we generalize the continuous sizing techniques by presenting a convex-

programming-based framework. In this framework, the system cost, e.g. power and area,

is optimized subject to the performance constraint. We propose to combine sizing and

clock skew optimization in this framework and develop an algorithm based on the method

of feasible directions and the min-cost network flow techniques. The algorithm improves

upon the conventional subgradient optimization approach that usually performs poorly

without fine tuning.

18

Another method for performance optimization is to apply retiming, which optimizes

a sequential system by relocating flip-flops while preserving the circuit functionality. As

minimum clock period retiming would minimize the clock period but might incur overhead

in flip-flop area and power consumption, minimum area retiming would optimize flip-flop

area and power consumption but is of higher complexity. However, the conventional

minimum area retiming algorithms were not scalable to large systems because of the

quadratic storage requirement. In Chapter 6, we present an incremental minimum area

retiming algorithm that only requires linear storage for better scalability. This is achieved

by dynamically generating critical timing constraints only when they are needed and

maintaining them as a forest. Our algorithm guarantees the optimality and is practically

much more efficient than the conventional ones.

1.3. Design for Manufacturability

Shrinking geometries make the circuits more vulnerable to the variations and the dam-

ages during the fabrication process. The manufacturing yield and the product reliability

can be greatly affected. Considering such physical effects in an early stage of system

design would become inevitable.

In Chapter 7, we propose to characterize the stochastic output of the chip manu-

facturing process by a risk-aversion measure of the system clock period. We formulate

the risk-aversion min-period retiming problem based on this measure in order to over-

come process variations through retiming and present a heuristic incremental retiming

algorithm to improve the yield by solving the problem.

19

In Chapter 8, we investigate the antenna effect in VLSI fabrication. It is a phenomenon

where current caused by plasma process flows through gate oxides and damages them

and thus reduces both the yield and the reliability. As combining jumper insertion to

routing is known to be an effective method to reduce the damage, we present an dynamic

programming algorithm to solve the jumper insertion for antenna avoidance problem

under ratio upper-bound optimally.

20

CHAPTER 2

Processing Rate Optimization by Sequential System

Floorplanning

The performance of a sequential system is usually measured by its frequency, or equiv-

alently, its clock period. Sequential optimizations such as minimal period retiming [18]

and clock skew scheduling [19] can be used to optimize the clock period by balancing the

combinational path delay between consecutive flip-flops. When interconnect delays begin

to dominate the performance because of the aggressive scaling down of geometries in Deep

Sub-Micron (DSM) VLSI technology, things become much more complicated. Unlike gate

delays, interconnect delays are only available until very late in the current design flow

and always after floorplanning and placement. Different floorplans or placements give

different minimal clock periods after sequential optimizations. Ignoring such optimiza-

tion possibilities in the design flow may result in sub-optimal solutions. The work [20]

addressed this problem by considering the optimization potential in physical placement.

In their work, the maximum ratio of the delay over the flip-flop number along any cycle

in the circuit is known to bound the minimal clock period that can be achieved through

sequential optimizations. To optimize the ratio in the placement, they identified the cycle

with the maximum ratio in the current placement and used it as a constraint to find a

new placement with a smaller maximum ratio.

21

When the operating frequency of the sequential system is given, it is possible that

one clock period is too small to propagate a signal from one end of a long wire to the

other end in one clock period. In this case, wire pipelining is vital to allow multi-cycle

communication over a long wire. As suggested in [21], retiming can be used to pipeline

the long wires. However, if the frequency is higher than the best one that could be

achieved by retiming, more wire-pipelining units like flip-flops must be introduced on

those long wires to pipeline them. The side effect is that these additional units may

change the latency of some parts of the circuit so that the functionality is different from

the original one. Both the latency insensitive design (LIS) [22, 23] and the wire-pipelining

correcting method [24] addressed this problem. In these two approaches, the throughput,

which is defined as the amount of the processed inputs per clock cycle, is traded for

higher frequency and is no longer one as in retiming or clock skew scheduling. In both

cases, the throughput is bounded by the minimum ratio of the flip-flop number to the

number of the required wire-pipelining unit along any cycle. The work [17] optimized the

throughput bound in LIS with floorplanning. They used a heuristic throughput evaluation

method in the simulated annealing (SA) floorplanner Parquet [25] based on an assumption

that an exact throughput evaluation is too time-consuming in SA. The heuristic method

estimates the throughout by assigning different weights to different wires according to

their contributions to the throughput.

We find that by looking at the bound of the processing rate, we can unify the situations

where the throughput is fixed and the frequency is optimized and where the frequency is

fixed and the throughput is optimized. In any case, the processing rate is bounded by the

minimum ratio of the flip-flop number over the delay along any cycle. Since this bound is

22

independent of the operating frequencies and the afterward optimization/wire pipelining

methodologies, it is more general than the clock period bound or the throughput bound.

We optimize the processing rate bound directly in a SA based floorplanner. Unlike

the previous approaches where the bounds were handled indirectly, Howard’s algorithm

[26, 27] is applied to compute the bound exactly inside the inner loop. The resulted

floorplans are evaluated under different frequencies to obtain the throughputs and the

processing rates. To show that our approach achieves better solution quality and running

time, we apply our algorithm to GSRC benchmarks as in [17] and compare our results

with theirs. We need to point out that the results in [17] are optimized under different

frequencies separately so our one-floorplan-fit-all approach is more universal and less time

consuming.

The Adjacent Constraint Graph (ACG) [10, 2] is used as our floorplan representa-

tion. It preserves the geometrical adjacency information and its operations map to local

perturbations in physical space. To exploit those local perturbations, we apply Howard’s

algorithm incrementally, which speeds up the floorplanner by 29% on average. In addi-

tion, we show that addressing the fixed-outline constraint explicitly in the cost function

is possible and effective in the ACG representation.

The rest of this chapter is organized as follows. In Section 2.1, we show how the

minimal cycle ratio bounds the processing rate of a sequential system and formulate the

Floorplanning for Processing Rate (FPR) problem. The SA based floorplanner incorpo-

rating processing rate optimization is presented in Section 2.2. Experimental results are

shown in Section 2.3. Section 2.4 concludes the chapter.

23

2.1. Processing Rate and Floorplan Problem

2.1.1. Processing Rate Bound

We define the processing rate of a sequential system as follows.

Definition 2.1 (Processing Rate). In a sequential system, the processing rate is de-

fined as the length of processed input sequence per unit time.

Considering the frequency and the throughput in a synchronous system, we have the

following observation.

Observation 2.1. For a synchronous system, the processing rate is equal to the prod-

uct of the frequency and the throughput.

A synchronous system is modeled by a directed graph G = (V, E). In the simplest

case, each vertex is a combinational gate and each edge is an interconnect wire with signal

direction. When the system contains modules that could not be treated as gates, we will

follow the method in [21], where vertices are pins of modules and edges represent either

the interconnects or the fan-in fan-out timing constraints inside modules. Let the number

of the flip-flops along a wire e ∈ E be w(e) and the interconnect delay along the wire be

d(e). By optimal buffer insertion [28], the interconnect delay is linear to its wire length.

For any cycle C in the graph, we define w(C) =
∑

e∈C w(e) and d(C) =
∑

e∈C d(e).

Minimal period retiming optimizes a system by relocating the flip-flops so that the

clock period of the system, which is equal to the longest combinational path delay between

two consecutive flip-flops, is minimized. On the other hand, clock skew scheduling assigns

non-zero skews to the clocks driving the flip-flops. The flip-flops act like that they are

24

moved around to balance the combinational path delay so that the minimal clock period

can be achieved. If there is a cycle C in the system, when applying minimal period

retiming or clock skew scheduling, the flip-flops along C divide C into w(C) combinational

parts. So there must be a combinational path between two consecutive flip-flops C whose

delay is at least d(C)
w(C)

. Therefore, the minimal clock period is bounded by

λG = max
cycle C in G

d(C)

w(C)
(2.1)

As the throughput is always one here, the processing rate is the same as the frequency.

So it is upper bounded by 1
λG

.

When the operating frequency is fixed, either latency insensitive design (LIS) [22] or

wire-pipelining with correction [24] can be applied to pipeline the long wires.

LIS makes the system functionally insensitive to the latency of the long wires by a

latency insensitive communication protocol and additional control logics around compu-

tational blocks in the original system. In LIS, signals propagating in the system are

divided into two categories: informative events corresponding to the signals in the origi-

nal systems and stalling events asking the receiving entities, called pearls, to stall a cycle

waiting for the informative ones. To pipeline long wires, wire pipelining units, called relay

stations, are placed on those wires. Relay stations act like flip-flops but can handle the

communication protocol. In addition to the area overhead introduced by the additional

control logics, the throughput is affected by the stalling events introduced to the system.

As discussed in [23], the throughput is bounded by the minimum cycle mean among all

cycles in the system where the cycle mean is defined as the pearl number plus the relay

station number divided by the pearl number along a cycle.

25

According to [22, 23, 17], we use G to model a system such that every vertex cor-

responds to a computational block which could be treated as gates and every edge cor-

responds to a communication channel. w(e)s are all 1 now because initially there is no

flip-flops on the communication channels and every computational block latches its out-

puts in flip-flops every clock cycle. Let the clock period be φ under the target frequency.

We need at least w∗(e) = dd(e)
φ
e wire-pipelining units to pipeline the wire e. Among

them, one is the original flip-flop latching the output and all the others are relay stations.

Therefore, the throughput is bounded by

min
cycle C in G

w(C)∑
e∈C w∗(e)

≤ min
cycle C in G

φ
w(C)

d(C)
=

φ

λG

So processing rate is bounded by 1
λG

.

Another approach [24] applies the wire-pipelining correcting method after inserting

extra flip-flops to pipeline the long wires. We still use the φ to represent the clock period.

The minimal number of flip-flops needed to pipeline a wire is wp(e) = dd(e)
φ
e. We cannot

feed a new input every clock cycle without affecting the functionality if there is the

additional latency caused by extra flip-flops in a cycle. With ρ-slow transformation [24],

we feed a new input every ρ cycles where

ρ = max
cycle C in G

d
∑

e∈C wp(e)

w(C)
e

The throughput of the system is 1
ρ
. The processing rate is bounded by 1

λG
again since

26

1

ρφ
≤ min

cycle C in G

w(C)∑
e∈C wp(e)φ

≤ min
cycle C in G

w(C)∑
e∈C d(e)

=
1

λG

Therefore, we have the following theorem.

Theorem 2.1. 1
λG

is the upper bound of the processing rate of a synchronous system

no matter what technique is used for wire pipelining.

Proof. The above discussions imply that the claim holds. �

This bound is independent of the operating frequency and afterward optimization

methodologies and affected only by the interconnect configurations. Intuitively, designs

with larger bounds are superior to the ones with smaller bounds since the afterward

optimization methodologies could possibly achieve those bounds.

2.1.2. Problem Definition

We formulate the Floorplanning for Processing Rate (FPR) problem as follows.

Problem 2.1 (Floorplanning for Processing Rate). In a directed graph G = (V, E),

every vertex represents a pin in a module with given width and height; every edge e rep-

resents a wire connecting two pins. Two weights are assigned to each wire e: w(e) is the

number of the flip-flops on e; d(e) is the delay of the wire e. It is asked to find a floorplan

27

to maximize the processing rate bound,

1

λG

= min
cycle C in G

∑
e∈C w(e)∑
e∈C d(e)

(2.2)

2.2. Floorplanning for Processing Rate Optimization

2.2.1. ACG Floorplanning

Adjacent Constraint Graph (ACG) [10] is a representation for general floorplans. It is a

constraint graph containing horizontal and vertical constraint edges. ACG simplifies the

classical horizontal and vertical constraint graph by removing redundancies through three

conditions: first, there is exactly one relation between any pair of modules; second, no

transitive edge is allowed; third, there is no cross which is an edge configuration as shown

in Figure 2.1. Allowing crosses in the graph may introduce quadratic number of edges as

shown in Figure 2.2.

Figure 2.1. (1) Horizontal cross; (2) vertical cross.

Figure 2.2. A constraint graph with quadratic number of edges.

28

To maintain those conditions, Reduced ACG is proposed in [2] according to the fol-

lowing property of ACG. As shown in Figure 2.3, the edges starting from a vertex are

divided into four classes: class 1, edge to the adjacent vertex; class 2, edges in the same

group (horizontal or vertical) as the class 1 one to the following vertices; class 3, the first

edge in the group different from the class 1 one; class 4, the remaining edges, where every

edge must be in the group different from the previous one. Reduced ACG is obtained by

removing all the class 4 edges from ACG and there is an one-to-one mapping between

ACG and Reduced ACG. Operations on Reduced ACG make only local changes to the

graph and map to local perturbations in physical space. Figure 2.4 shows an example for

the floorplan, ACG, and Reduced ACG.

Figure 2.3. Edges starting from a are divided into 4 classes in ACG.

Figure 2.4. An example shows (1) floorplan; (2) ACG; (3) Reduced ACG.

29

The SA based floorplanner used in [2] is extended to optimize the processing rate

by combining the processing rate bound into the cost function. When a floorplan is

obtained during SA, the physical locations of modules are computed and the delays of the

interconnects are calculated as the Manhattan distance between modules. The bound 1
λG

is computed directly as described in the following sections. We also develop a method to

address the fixed-outline constraint in the cost function.

2.2.2. Direct Bound Evaluation

Computing 1
λG

is actually solving the minimum cycle ratio problem.

Given a strongly connected directed graph G = (V, E) with two edge weight w1(e) and

w2(e) > 0 for each e ∈ E, the minimum cycle ratio problem is to compute the following

minimum cycle ratio

φmin = min
cycle C in G

∑
e∈C w1(e)∑
e∈C w2(e)

(2.3)

When w2(e) = 1 for any edge e, it becomes the minimum cycle mean problem. According

to [27], Howard’s algorithm is the fastest one in practice to solve the minimum cycle mean

problem. The version presented in their work is a simplified one from [26]. Based on the

discussions in [26], we modify the implementation of Howard’s algorithm in Section 2.5

of [27] to solve the minimum cycle ratio problem.

The intuition behind Howard’s algorithm is to maintain a policy graph Gπ through

the computation. A policy graph is a sub-graph of G where there is exactly one edge

starting from any vertex. The cycles in a policy graph can be enumerated since there is

exactly one cycle in each weakly connected component of Gπ. The minimum cycle ratio φ

of Gπ is obtained then, which is obviously an upper bound of φmin. It can be asserted that

30

φ = φmin if there is no negative cycle in G regarding to the edge weights w1(e)−w2(e)φ.

If there are negative cycles, one of them is identified in a newly constructed policy graph;

this cycle has a cycle ratio less than φ. A vertex labeling is maintained to interleave the

above two steps, i.e., to check for the negative cycles and to construct a new Gπ.

In order to evaluate 1
λG

of a system G given its floorplan, the graph G is first decom-

posed into strongly connected components (SCC). Only one such computation is needed

per benchmark and the Strongly–Connected–Components algorithm in [29] works well

here. We assign d(e) to be the w2(e) and w(e) to be the w1(e). By applying Howard’s al-

gorithm for minimum cycle ratio in each SCC and picking up the minimum among them,

we obtain 1
λG

.

2.2.3. Incremental Bound Evaluation

In Howard’s algorithm, different initial Gπ’s affect the number of the iterations and thus

the running time. Intuitively, an initial Gπ with a smaller φ tends to converge quicker

than the one with a larger φ.

In our floorplanners, the floorplan does not change too much between successive steps

in SA because of those local Reduced ACG perturbations. The final Gπ’s of the previous

floorplan obtained by Howard’s algorithm give near-optimal φ’s. We reuse those final

Gπ’s as our initial policy graphs for each SCC. For the first floorplan when those Gπ’s are

not available, we follow [27] to construct it by choosing the edge with the minimum w1

weight starting from each vertex.

As shown in Section 2.3, this incremental technique speeds up the floorplanner by 29%

on average.

31

2.2.4. Handle the Fixed-outline Constraint

Following [25], the fixed-outline constraint is modeled with two constants. One is the

maximum white-space fraction γ and the other is the aspect ratio α ≥ 1. Suppose the

total area of all the modules are A. The desired width and height of the fixed-outline

floorplan are computed as

H∗ =
√

(1 + γ)Aα, W∗ =
√

(1 + γ)A/α (2.4)

In [25], several approaches were proposed to handle the fixed-outline constraint. Ad-

dressing the constraint directly in the cost function was shown to be not successful for a

classical SA based sequence-pair floorplanner. Adding slack-based moves was proposed

to solve this problem. These moves change the aspect ratio of the floorplan toward the

desired one. By applying these moves when the aspect ratio is not the desired one, a

floorplan satisfying the fixed-outline constraint may be obtained during SA.

Instead of designing a new move and mixing it to the existing ones, we propose a

way to handle the fixed-outline constraint directly in the cost function. For a floorplan

with width W and height H where H ≥ W , the cost associated with the fixed-outline

constraint is defined as

outline cost = emax(W
W∗

,1)+max(H
H∗

,1)−2 (2.5)

This cost is larger than 1 if the constraint is not met; when the constraint is satisfied,

the cost becomes 1. The total cost of a floorplan is calculated as the product of the

outline cost and the other cost. The intuition is that the exponential function is very

32

sensitive when the outline difference is large but less sensitive when the outline difference

is small. So the floorplanner will push the floorplan hard toward the desired outline when

there is enough whitespace. When the outline constraint is almost or totally satisfied,

optimizing other cost becomes the priority.

It is possible during SA some floorplans meet the fixed-outline constraint but the final

floorplan do not meet the constraint. So the best floorplan meeting the fixed-outline

constraint is recorded during SA and is reported at the end.

2.3. Experimental Results

2.3.1. Experimental Setup

The experiments are conducted on a Windows machine with 1.4GHz Pentium M processor

and 512M memory where the floorplanner is implemented using C++ and compiled with

GCC 3.4.2.

Following the experimental setup in [17], we pick up GSRC benchmarks including

n10, n30, n50, n100, n200, and n300. The signal directions and flip-flops are derived as

follows according to [17]. The last pin of a net is treated as the source of the net and

then the net is broken into two-pin nets. All the pins belong to one module are treated

as one pin located at the center of the module so that the modules could be treated as

gates. There is exactly one flip-flop on each edge to represent the situation where each

module latches its outputs.

Classical MCNC benchmarks were used in [17] as well. However, as the sources of the

nets were determined randomly in their work, we cannot generate the same configuration

and thus we only experiment on GSRC benchmarks.

33

2.3.2. Results for Floorplanning for Processing Rate

We first test the floorplanner without fixed-outline constraint. The cost function used is

4
√

area + λG and the incremental bound evaluation method is employed. We run each

benchmark for ten times and the best one is reported in Table 2.1 where the “ws (%)”

column shows the white space in percentage.

For each floorplan, we record the random seed used and use it to perform another

SA floorplanning without the incremental bound evaluation. The resulting floorplan is

the same but the running time is different. The experimental results are reported in

Table 2.2. For the incremental one and the non-incremental one (under “non-incre.”),

we report the running time as well as the total number of iterations (in “#iter.”) of

Howard’s algorithm. Improvements in running time are reported in “impr.” column and

the average improvement is 29%.

circuit area ws (%) λG time (sec)
n10 240.6K 7.9 292.8 47.9
n30 220.9K 5.6 296.0 46.5
n50 217.1K 8.5 239.5 45.7
n100 196.0K 8.4 185.0 56.2
n200 195.6K 10.2 373.9 475.9
n300 312.7K 12.7 497.3 540.4

Table 2.1. Results of floorplanning for processing rate (FPR).

To compare our results with those in [17], the throughput for our final floorplans

under different frequencies are computed. The frequencies are modeled by the critical

length, which is the distance that a signal travels in one clock cycle. The corresponding

critical lengths are 30%, 50%, 70%, and 100% of the square root of the total area of all the

34

circuit incremental non-incre. impr. (%)
time #iter. time #iter.

n10 47.9 8.9M 56.9 9.6M 15.8
n30 46.5 4.1M 65.0 5.3M 28.5
n50 45.7 3.8M 69.2 4.9M 34.0
n100 56.2 4.4M 75.4 5.5M 25.5
n200 475.9 5.1M 740.6 7.0M 35.7
n300 540.4 4.5M 827.6 6.7M 34.7

average improvement 29.0
Table 2.2. Incremental vs. non-incremental bound evaluation.

circuit method 100% 70% 50% 30% time (sec)
n10 FPR 0.200/7.9 0.200/7.9 0.333/7.9 0.625/7.9 47.9

[17] 0.166/8.9 0.250/7.2 0.500/4.0 0.636/6.2 60.0
n30 FPR 0.167/5.6 0.375/5.6 0.444/5.6 0.650/5.6 46.5

[17] 0.200/6.9 0.375/8.3 0.500/6.8 0.636/8.5 60.0
n50 FPR 0.167/8.5 0.250/8.5 0.400/8.5 0.588/8.5 45.7

[17] 0.133/7.2 0.375/6.9 0.473/6.7 0.636/7.2 60.0
n100 FPR 0.000/8.4 0.188/8.4 0.333/8.4 0.500/8.4 56.2

[17] 0.000/9.1 0.200/9.1 0.375/8.6 0.500/9.7 60.0
n200 FPR 0.364/10.2 0.514/10.2 0.600/10.2 0.722/10.2 475.9

[17] - - - - -
n300 FPR 0.400/12.7 0.500/12.7 0.620/12.7 0.750/12.7 540.4

[17] - - - - -
Table 2.3. Throughput, white space, and running time: FPR (PM 1.4GHz)
vs. [17] (PIII 1.4GHz).

circuit u.b. 100% 70% 50% 30%
n10 3.42 ∗ 1.70 2.43 2.83 2.65
n30 3.38 1.82 1.95 2.43 2.55
n50 4.18 1.87 2.40 2.69 3.08
n100 5.41 2.36 2.74 3.15 3.93
n200 2.67 1.52 1.66 1.91 2.21
n300 2.01 1.15 1.37 1.45 1.59

∗ All the numbers shown are in the unit ×10−3.
Table 2.4. Processing rate vs. upper bound.

35

modules. According to Section 2.1, we calculate w∗(e) first. Then by applying Howard’s

algorithm the same way as computing 1
λG

, the throughput is obtained.

In [17], the experiments were conducted on a 1.4GHz Pentium III machine. For

each circuit among n10, n30, n50, n100 and each of those critical lengths, they ran the

experiment for 60 seconds ten times and we copy the best ones. They did not report the

results for n200 and n300 but we report our results for these two benchmarks. The results

are compared in Table 2.3 with the format 1− throughput/white space (%), which means

that the smaller the number, the better. The dominating solutions in throughput and

white space are highlighted. It can be seen that our results dominate theirs for about

half of the cases and are not dominated by theirs for the other half. Moreover, since the

machine configurations are comparable, our running times are much better considering

[17] spent 60× 4 = 240 seconds for each benchmark.

In Table 2.4, we report the processing rates for each critical lengths as well as the

bounds 1
λG

(in “u.b.”). Although the bounds tend to be looser for larger critical lengths,

we believe that the fidelity of the bound to the throughput makes our approach effective.

2.3.3. Results for Fixed-outline Floorplanning for Processing Rate

The fixed-outline constraint is handled explicitly by the cost function. The cost function

used is outline cost× (w
√

area + λG). The area weight w is set to 0.5 for n10, n30, n50,

and n100 and 2 for n200 and n300. Small w gives better processing rate bound but if

meeting the fixed-outline constraint is a problem, w is increased to emphasize better area.

We run our floorplanner with the maximum white-space of γ = 15% and the aspect ratio

36

of α = 1, α = 1.5, and α = 2 respectively. The best results from ten runnings are reported

in Table 2.5. The numbers are in the format λG/running time (sec).

circuit α = 1.0 α = 1.5 α = 2.0
n10 282.0/51.9 282.5/51.2 303.8/65.5
n30 248.3/60.5 254.4/55.0 269.0/55.0
n50 209.0/62.7 210.7/59.2 221.1/60.1
n100 144.2/121.9 138.0/119.4 140.7/123.1
n200 358.2/637.8 378.8/620.6 382.5/863.9
n300 494.0/1091 548.4/840.2 539.8/830.9

Table 2.5. Results of fixed-outline floorplanning for processing rate.

2.4. Summary

In this chapter, we showed that optimizing the processing rate bound, which is the

minimum ratio of the flip-flop number to the delay in any cycle, is more general than

either optimizing the clock period or the throughput for a sequential system because the

bound is independent of the operating frequencies or the available design methodologies.

We built a SA based floorplanner optimizing for the processing rate bound by evaluating

it directly in the inner loop of SA without introducing much overhead in running time.

Moreover, exploiting the incremental structure of the evaluating algorithm sped up the

evaluating process. Experimental results con- firmed the effectiveness of our approach.

37

CHAPTER 3

Exploring Adjacency in Floorplanning

Many years of research have been done on floorplanning. Generally speaking, in a

floorplan, rectangular blocks are required to be arranged in a rectangular bounding box.

A block may be hard, which means the shape is fixed, or soft, which mean only the

area is fixed. Floorplanning, in its original meaning [30], focuses on realizing adjacency

relations for soft blocks. Grason graphs [31] and rectangular dualization techniques [32,

33, 34] were developed to address the requirement for adjacency. The floorplanning flow

commonly started with a graph that describes the connectivities between blocks, which

was also known as the structure graph [34]. The edges in the graph were the desired

adjacency relations. The floorplan that realizes those adjacency relations does not exist

most of the time. Thus, the graph was planarized and properly triangulated such that

the resulting graph has a rectangular dual. There were algorithms with linear complexity

to identify the graphs that have rectangular duals and to construct the rectangular duals

[33]. Several perturbations were designed in the work [34] such that the adjacency graph

could be used in iterative algorithms like simulated annealing. However, those algorithms

were still complicated and not widely used today.

Then, floorplan representations emphasizing more on placement than floorplanning

[30, 35] were developed. Compared to floorplanning, placement focuses on placing hard

blocks without overlap, possibly with a pre-defined bounding box. Most of the time,

38

simulated annealing is used to improve the floorplan according to a cost function via ran-

domized perturbations. Those approaches were believed to be packing centric instead of

connectivity centric [35] such that interconnects were only addressed by the cost function.

The drawback was that although searching for a floorplan with the least white-space was

efficient by using area as the cost function, including the interconnects in the cost function

may result in large time overheads in evaluating the cost function. The overheads were

worsen with the increasing of the problem sizes. Accuracy of interconnect estimation

could also be affected since a less accurate method would be used in order to shorten the

total running time. These overheads were confirmed by a recent work [36]: even when

the most simple half-perimeter wire length (HPWL) model was used in interconnect esti-

mation, the HPWL evaluation itself spent 90% of the total running time in the simulated

annealing process for problems with 100 to 300 blocks.

So, floorplanning with adjacency relations is still preferable for connectivity-centric

methodologies. Returning to the rectangular dual approaches, despite the complexity

involved, several issues must be addressed before their applications to current floorplan-

ning problems. The rectangular dual consists of rectangular rooms that contain blocks.

In some situations, the requirement of keeping adjacency relations may result in rooms

that are significantly larger than the blocks contained by them, which in turn enlarges

the whitespace in the floorplan. One such case is that when a small block has several

large neighbors, the room containing the small block should be large enough to realize

the adjacency relations. Another issue is that although blocks were thought to be soft

such that they could be fit into rooms, hard blocks are common in today’s floorplanning

problems with the introduction of hard Intellectual Property (IP) cores. We propose to

39

allow more freedom in NOT keeping the adjacency relations to achieve small whitespace.

The intuition behind this is that when the whitespace is small, two blocks are close to

each other if there are only a few blocks separating them in comparison to the situation

that adjacency relations are kept but the whitespace is large. The freedom allows us to

design perturbations targeting at separating area and interconnect optimizations: first,

the area optimization will not change the adjacency relations dramatically such that good

relative positions for interconnects are preserved; second, the overheads of interconnect

estimations are only added to the interconnect optimization.

Besides previous works on adjacency graphs [31, 32, 33, 34], Adjacent Constraint

Graph [10] is recently proposed to help exploring the adjacency in floorplans. ACG tries

to approximate the adjacency graph by removing redundancies in the constraint graph.

However, since it is still a constraint graph, there are edges not between adjacent blocks.

In this work, we focus on developing a representation based on the adjacency graph

but less complicated for maintaining and optimizing compared to previous adjacency

graph approaches. Our contributions include: first, Constrained Adjacency Graph (CAG)

is proposed as an adjacency graph representation for floorplanning problems; second,

sufficient and necessary conditions of CAG are presented as well as a linear complexity

algorithm for constructing dissected floorplans (defined in Section 3.1) from CAGs; third,

a “tree-weaving” algorithm and an iterative packing heuristic are developed to improve a

CAG in area without changing the adjacency relations dramatically. The practical usages

of CAG are confirmed by the experiments on floorplanning problems with 100 to 300

blocks. The experiments start with a CAG generated from quadratic programming using

the interconnects. A randomized greedy improvement heuristic that uses a cost function

40

of the weighted sum of the area and the HPWL is applied to improve the CAG. The

results show that better floorplans are found with much less running time compared to

an up-to-date simulated annealing floorplanner based on sequence pairs [25].

The rest of this chapter is organized as follows. In Section 3.1, CAG is defined and

the sufficient and necessary conditions are presented. Then the algorithm to construct

dissected floorplans from CAGs are described in Section 3.2. Packing based whitespace

reduction techniques including the “tree-weaving” algorithm and the iterative packing

heuristic are developed in Section 3.3. Experimental results are given in Section 3.4,

Section 3.5 concludes the chapter.

3.1. Constrained Adjacency Graph

3.1.1. Definitions

Given a bounding box, we can dissect it into rectangular rooms by horizontal and vertical

segments. There should be no overlap of the rooms and no empty space outside the

rooms. We call this dissection a dissected floorplan if every room accommodates exactly

one block and there is no degenerated topology where four rooms share a common point.

An adjacency graph whose vertices represents the rooms can be constructed corresponding

to the dissection: there is one edge connecting two vertices iff the two rooms are adjacent.

The adjacency graph is a planar graph and when the dissection is a dissected floorplan,

all the faces in the adjacency graph are triangles.

Constrained Adjacency Graph (CAG), as indicated by its name, extends the adjacency

graph corresponding to a dissected floorplan by adding constraints to its edges. More

formally,

41

Definition 3.1 (Constraitned Adjacency Graph). Suppose G = (V, E) is a directed

graph with vertices representing rooms and the edges representing adjacencies. There are

two types of edges: a vertical edge from b to t means the room t should be touched from

bottom by the room b; a horizontal edge from l to r means the room r should be touched

from left by the room l.

The graph G is a Constrained Adjacency Graph (CAG) iff the is a dissected floorplan

such that there is an edge connecting two vertices iff the two rooms are adjacent and the

edge describes the adjacency relationship between them.

An example of a dissected floorplan along with its CAG is shown in Figure 3.1.

Figure 3.1. A dissected floorplan with 5 rooms along with its CAG. Solid
arrows are vertical adjacency relations and dashed arrows are horizontal
ones.

In comparison to grason graphs [31], CAG does not need to handle the degenerated

topology; comparing to rectangular dualization techniques [32, 33, 34], CAG explicitly

adds constraint to the adjacency relations. These two merits make maintaining and

optimizing CAGs less complicated and details will be given in the following sections.

42

3.1.2. Sufficient and Necessary Conditions

The necessary conditions for a graph G to be a CAG can be obtained by inspecting a

dissected floorplan. Straightforwardly, a CAG should be a directed acyclic graph (DAG)

and every vertex in a CAG is reachable from the vertex representing the room at the

bottom-left corner. The other conditions apply to every single vertex as illustrated in

Figure 3.2. The detail follows.

Let EV be the set of the vertical edges and EH be the set of the horizontal edges.

The vertical and horizontal subgraphs of G are defined as GV = (V, EV) and GH =

(V, EH) respectively. Obviously both GV and GH are directed acyclic graphs (DAG). A

horizontal/vertical path is a path whose edges are all horizontal/vertical ones. Since G

is a DAG, every horizontal/vertical path is simple, i.e., it never passes one vertex more

than once.

For an arbitrary vertex v, its top edges are all the vertical edges leaving it and its

top neighbors are the vertices at the end of its top edges. From dissected floorplans, it is

true that if v has at least one top neighbor, there is a unique horizontal path, denoted

by Ptop(v), exactly containing all the top neighbors. Therefore, the left-most top neighbor

and the right-most top neighbor can be defined as the starting vertex and the ending

vertex of Ptop(v) respectively. The above definitions can be easily extend to the other

three boundaries. The following lemmas hold for v in a CAG.

Lemma 3.1 (Neighbor Condition for v). Suppose Ptop(v) = (v1, v2, . . . , vm). Then vi

is the bottom-most left neighbor of vi+1 and vi+1 is the bottom-most right neighbor of vi

for all 1 ≤ i < m. For Pbottom(v), Pleft(v), and Pright(v), there are similar results.

43

Figure 3.2. (a) Neighbor condition for v; (b) (c) Corner condition for v.

Proof. This condition must hold as illustrated in Figure 3.2 (a). �

Lemma 3.2 (Corner Condition for v). The room v’s top-left corner is not on the

boundary of the dissected floorplan iff it has both top and left neighbors. Suppose the left-

most top and the top-most left neighbor of v are t and l respectively. Then either l is the

bottom-most left neighbor of t or t is the right-most top neighbor of l. There are similar

results for the other three corners.

Proof. This condition must hold as illustrated in Figure 3.2 (b) and (c). �

These conditions are also sufficient for a graph to be a CAG, as stated in the following

theorem.

Theorem 3.1. A directed graph G = (V, E), whose edges E are divided into vertical

edges EV and horizontal edges EH , is a CAG iff

(1) G is a DAG and there is a vertex such that every vertex is reachable from it.

(2) The neighbor condition holds for every vertex.

(3) The corner condition holds for every vertex.

44

Proof. According to Lemma 3.1 and 3.2, the above conditions are necessary. The

proof for the sufficient part will be given Section 3.2 by constructing dissected floorplans

from the directed graphs satisfying those conditions. �

3.2. Dissected Floorplan from CAG

When the block sizes, which are also the minimal sizes of the rooms, are given along

with the CAG, we design an O(n) algorithm to construct a dissected floorplan satisfying

all the adjacency constraints with minimum area as presented below. Since only the

conditions in Theorem 3.1 are used to derive the algorithm, the algorithm proves the

conditions in Theorem 3.1 are sufficient.

For a vertex v, suppose that the width of the block to be accommodated in the room v

is v.width and the height is v.height . Define (v.left , v.bottom) to be the coordinates of the

bottom-left corner of the room v and (v.right , v.top) to be the top-right corner. Assume

(0, 0) is the bottom-left corner of the floorplan and (W, H) is the top-right corner. The

algorithm will determine the coordinates in the horizontal direction and the ones in the

vertical direction separately. Because of the geometric symmetry, it is enough to focus on

the algorithm H-CAG-Place that determines the coordinates in the horizontal direction

only, i.e., v.left and v.right for all v as well as W . The algorithm is shown in Figure 3.3

and the details follow.

First of all, a dummy vertex HeadV and corresponding edges are added such that

HeadV is the bottom neighbor of all the vertices in G that do not have a bottom neighbor

yet. The following lemma can be proved.

45

Algorithm H-CAG-Place
Inputs
A CAG G.

Outputs
v.left , v.right , and W .
1 Add HeadV .
2 HeadV .left ← 0.
3 Order the vertices by their discovery times in a DFS of GV from HeadV .
4 For each vertex v except HeadV following the order in 3:
5 Compute v.left according to the cases as shown in Figure 3.5.
6 Compute W using Equation (3.4).
7 Compute all the v.rights using Equation (3.5).

Figure 3.3. The H-CAG-Place algorithm.

Lemma 3.3. The neighbor condition for HeadV holds and every vertex in G is reach-

able from HeadV through only vertical edges.

Proof. Consider a dummy block below the current floorplan and whose width is

the same as the current floorplan. The neighbor condition for HeadV holds since it

can represent the dummy block. As there is no degenerated topology where four rooms

share a common point, any block can be reached from the dummy block through vertical

adjacency relations, i.e., every vertex is reachable from HeadV through only vertical edges.

�

Now by performing a depth-first-search (DFS) in GV starting from HeadV and visiting

top neighbors from left to right for each vertex, the vertices can be sorted in the order of

their discovery times, i.e., the times they are first discovered in the DFS. An example of

a CAG with the dissected floorplan as well as the depth-first tree with the ordering are

shown in Figure 3.4 This order is defined as the V-CAG order. (Similarly the H-CAG

order can be defined.)

46

Figure 3.4. (a) A CAG with the dissected floorplan; (b) The depth-first
tree with vertices labeled according to the V-CAG order.

Then, the v.lefts for each v is determined by dynamic programming following the V-

CAG order. The HeadV .left is set to 0 at the beginning. Since every vertex v except

HeadV has a bottom neighbor, there are three cases for calculating each v.left as shown

in Figure 3.5. In the first case, the vertex v does not have a left neighbor. So the room v

should be on the left boundary of the floorplan, i.e.

v.left = 0 (3.1)

In the second case, the vertex v have both left and bottom neighbors where the bottom-

most left neighbor l of v is the top-most left neighbor of the left-most bottom neighbor b

of v. Now the vertex v should have the same left boundary as b, i.e.,

v.left = b.left (3.2)

In the third case, b should be the right-most bottom neighbor of l because of the corner

condition. A series of vertices l1, l2, . . . , lk can be find such that l1 = l, li+1 is the right-

most top neighbor of li and li is the right-most bottom neighbor of li+1 for all 1 ≤ i < k,

and either lk does not have a top neighbor or its right-most top neighbor t does not have

lk as its right-most bottom neighbor. When lk does not have a top neighbor, a dummy

47

vertex t with t.left = 0 can be added temporarily to simplify the following procedure.

Now, v.left should be no less than li.left + li.width for all 1 ≤ i ≤ k since they are on the

two sides of a vertical segment. Fro the vertex b and t, v.left should be no less than b.left

and t.left to satisfy the T-junctions formed by the vertical segment and the top side of b

and the bottom side of t. So, the v.left in an area optimal dissected floorplan should be

v.left = max{b.left , max
1≤i≤m

(li.left + li.width), t.left} (3.3)

The following lemmas can be proved for the validity and the complexity of the dynamic

programming.

Lemma 3.4. In the V-CAG order, for each Equation (3.2) and (3.3), the vertices

appearing at the right side come before the vertex appearing at the left side.

Proof. The lemma holds since the V-CAG order is obtained by performing DFS

starting from HeadV and visiting top neighbors from left to right for each vertex. �

Lemma 3.5. Each vertex v appears at most mtop + 2 times in Equation (3.1), (3.2),

and (3.3) where mtop is the number of the top neighbors of v.

Proof. As shown in Figure 3.5, each vertex appears once at the left side, once as t,

and mtop times as b and li in Equation (3.1), (3.2), and (3.3). �

The next step is to calculate W . This is straightforward since

W = max
v∈V

(v.left + v.width) (3.4)

must be true for an area optimal floorplan.

48

Figure 3.5. Three cases for calculating v.left .

Finally, all the right boundaries are determined as follows.

∀v ∈ V, v.right =

 r.left , if v has a right neighbor r,

W, if not.
(3.5)

The algorithm called V-CAG-Place that determines the coordinates in the vertical

direction can be derived similarly. In summary, the corresponding minimal area dissected

floorplan is constructed by the H-CAG-Place algorithm and the V-CAG-Place algorithm,

as stated in the following theorem.

Theorem 3.2. Once the CAG and the minimal room sizes are given, applying the H-

CAG-Place and the V-CAG-Place algorithm constructs a dissected floorplan with minimal

area and satisfying the adjacency constraints. The algorithms consume O(n) time and

space where n is the number of rooms.

Proof. The correctness of the algorithm is implied by Lemma 3.4. The time and

space complexities of the algorithm are implied by Lemma 3.5. �

49

3.3. Whitespace Reduction via Packing

Rooms could be much larger than the contained blocks because of the requirements on

adjacencies. In this sections, we will present techniques that reduce whitespace without

change the adjacency relations dramatically.

3.3.1. Packing of Dissected Floorplans

As shown in Figure 3.6, some blocks in a dissected floorplan can be pushed downward

since there are vertical vacancies in the rooms below them. The resulting floorplan is no

longer a dissected floorplan. We call it the V-packing of a dissected floorplan. Similarly,

the H-packing of a dissected floorplan is obtained by pushing all the blocks leftward.

Figure 3.6. (a) A dissected floorplan with the vertical subgraph GV ; (b)
The V-packing of the dissected floorplan. Both rooms and blocks (gray
ones) are shown here.

Since GV describes the vertical adjacency relations, the above pushing downward is

formulated as the V-CAG-Pack algorithm as shown in Figure 3.7. There is a H-CAG-Pack

algorithm as well.

The V-CAG-Pack algorithm will not generate overlap because in a dissected floorplan,

if there are two rooms whose projections to the x − axis are overlapped for a segment

longer than 0, there is a vertical path from one of them to the other. This is stated as the

50

Algorithm V-CAG-Pack
Inputs
A CAG G.

Outputs
v.bottom, v.top, and H.
1 Add HeadV .
2 Assign v.height as the edge weight for every vertical edge (u, v).
3 For every vertex v except HeadV :
4 v.bottom ← the length of the longest path from HeadV to v in GV .
5 v.top ← v.bottom + v.height .
6 H ← maxv∈V,v 6=HeadV

v.top.

Figure 3.7. The V-CAG-Pack algorithm.

following lemma which includes the horizontal direction for the H-CAG-Pack algorithm

as well.

Lemma 3.6. For two vertices u and v, if u.left < v.left < u.right or v.left < u.left <

v.right, there is a vertical path from u to v or one from v to u; if u.bottom < v.bottom <

u.top or v.bottom < u.bottom < v.top, there is a horizontal path from u to v or one from

v to u.

Proof. Consider the dissected floorplan corresponding to the CAG. Assume u.left <

v.left < u.right . Then since u and v should not overlap, either u.bottom ≥ v.top or

v.bottom ≥ u.top. In both cases, we can reach one of them from the other following

vertical adjacency relations, i.e, a vertical path from u to v or one from v to u. Similarly,

the lemma holds for all the other cases. �

In summary, given a CAG G, the V-packing of the dissected floorplan, written as

VP(G), is obtained by applying the V-CAG-Pack and the H-CAG-Place algorithm; the

51

H-packing, written as HP(G), is obtained by applying the H-CAG-Pack and the V-CAG-

Place algorithm.

3.3.2. Packed Dissected Floorplans

In the V-packing of a dissected floorplan, since the blocks are not packed along the horizon-

tal direction, there are still possibilities for large whitespace. Similarly, in the H-packing

of a dissected floorplan, large whitespace may appear along the vertical direction. It is

not easy to perform packing on both directions simultaneously. Intuitively, if a dissected

floorplan can be constructed such that it is “packed” along the horizontal direction, the

whitespace of the V-packing would not be significant. The idea is formalized as follows.

Definition 3.2 (Packed Dissected Floorplans).

A dissected floorplan is H-packed if the H-CAG-Pack algorithm gives the same v.left

for every vertex v as the H-CAG-place algorithm. A dissected floorplan is V-packed if the

V-CAG-Pack algorithm gives the same v.bottom for every vertex v as the V-CAG-place

algorithm.

In the V-CAG-Pack algorithm, since v.bottom is calculated as the length of the longest

path in GV , a longest-path tree rooted at HeadV can be identified, in which a vertex u is

the parent of a vertex v only if (u, v) is the last edge on the longest path from HeadV to

v. We call this tree the V-LP tree of the CAG. Similarly the H-LP tree rooted at HeadH

is defined after the H-CAG-Pack algorithm.

Given a tree T rooted at HeadH containing all the vertices, the H-Tree-Weaving al-

gorithm as shown in Figure 3.8 creates a new CAG whose H-LP tree is T and the corre-

sponding dissected floorplan is H-packed. The details follow.

52

Algorithm H-Tree-Weaving
Inputs
A tree T rooted at HeadH .

Outputs
A CAG G∗ whose H-LP tree is T .
1 HeadH .left← 0;HeadH .width← 0.
2 Order the vertices by their discovery times in a DFS of T from HeadH .
3 For every vertex v except HeadH following the order in 2:
4 Find if the left-most bottom neighbor u of v exists and all the left

neighbors of v according to Figure 3.10.
5 If u exists:
6 Find the bottom neighbors of v starting from u according to
7 Figure 3.11.
8 If (d) happens:
9 u← y. Go to 6.

10 Finalize the G∗.

Figure 3.8. The H-Tree-Weaving algorithm.

The new CAG G∗ is created by adding vertices one by one following the order of

their discovery times computed by a DFS on the tree T where the children of a vertex are

visited from the bottom to the top. Keep G∗ as a CAG during the algorithm is over-strict.

Instead of that, G∗ is kept as a H-stepwise CAG. As shown in Figure 3.9, the H-stepwise

CAG relaxes the constraints along the right boundary of the bounding box: instead of

one vertical path from the bottom to the top along the right boundary, multiple vertical

paths joined by horizontal paths are allowed, e.g., vertical paths from f to e, from d to c,

and from b to a are joined by horizontal paths from d to e and from b to c. In addition,

blocks sizes are taken into consideration such that the rooms represented by the end point

of those vertical paths can be extended to the top boundary, e.g., d.left + d.width is no

less than v.left + v.width for every v on the path from d to c and b.left + b.width is no

less than u.left + u.width for every u on the path from b to a. When all the vertices are

53

added to G∗, it is finalized into a CAG. This finalization process can be divided into three

steps. First, a dummy vertex assumed to have HeadH as its parent with infinite width

is added to G∗ just like adding any other vertex. It is actually placed on top of all the

original vertices. Second, this dummy vertex along with any edges connected to it are

removed. Finally, the rooms along the right boundary are extended horizontally to touch

the boundary.

Figure 3.9. (a) A H-stepwise CAG; (b) Finalize the H-Stepwise CAG into a CAG.

The method to add a vertex v to G∗ is as follows. Assume HeadH .left = HeadH .width =

0. Suppose v’s parent is p. The v.left is set to p.left +p.width. Then, the left-most bottom

neighbor u of v is determined: if v has a bottom sibling, u is that bottom sibling; if v

does not has a bottom sibling, u is found by following the right-most bottom neighbor

starting from p such that u.left +u.width > v.left ; if no such u exists, v won’t have bottom

neighbor. The left neighbors of v are found at the same time: for the first case, only p is

the left neighbor; for the two latter cases, every vertex reached except u is a left neighbor.

These three cases are shown in Figure 3.10.

After the left-most bottom neighbor u of v is found, all the bottom neighbor of v are

found from left to right. There are four cases as shown in Figure 3.11. They all starts by

identifying a horizontal path from u following the top-most right neighbors. In Figure 3.11

54

Figure 3.10. Find the left-most bottom neighbor u of v: (a) v has a bottom
sibling u; (b) v does not have a bottom sibling but u can be found; (c) v
has no bottom neighbor. Rooms are extended accordingly for clarity.

(a), the path ends at a vertex w satisfying that:

w.left < v.left + v.width < w.left + w.width

In Figure 3.11 (b) and (c), the path ends at a vertex w without a right neighbor satisfying

that:

w.left + w.width ≤ v.left + v.width

Then a vertical path to w is identified by following the right-most bottom neighbors. For

(b), every vertex x on the path does not have a right neighbor and satisfying that:

x.left + x.width ≤ v.left + v.width

For (c), there is a vertex x on the path such that:

v.left + v.width < x.left + x.width

In any of the above three cases, all the vertices on the horizontal path from u to w are

added as v’s bottom neighbor and G∗ is kept as a H-stepwise CAG. For the fourth case

in Figure 3.11 (d.1), there is a vertex x on the vertical path to w with a right neighbor

55

satisfying that:

x.left + x.width ≤ v.left + v.width

Suppose the top-most right neighbor of x is y. As shown in Figure 3.11 (d.2), y can be

extended vertically to touch v from the bottom. All the vertices on the vertical path from

x to w except x should be added as the left neighbor of y on top of x. All the vertices on

the horizontal path from u to w should be added as the bottom neighbor of v. Then, y is

treated the same way as u and this whole process is repeated again until one of the first

three cases is reached.

Figure 3.11. Four cases for finding all the bottom neighbors of v.

Similarly, the V-Tree-Weaving algorithm can be derived. The following theorems state

the correctness of the algorithms.

Theorem 3.3. The H-Tree-Weaving algorithm creates a H-packed dissected floorplan

with the given H-LP tree. The V-Tree-Weaving algorithm creates a V-packed dissected

floorplan with the given V-LP tree.

56

Proof. The H-Tree-Weaving algorithm first generates the H-stepwise CAG. It can

be verified that both the neighbor and the corner conditions hold for all the vertices

except the ones along the right boundary of the bounding box. The finalization process

will then ensure that the conditions hold for all the vertices along the right boundary

of the bounding box. Similarly, we can prove the correctness of the V-Tree-Weaving

algorithm. �

3.3.3. Iterative Packing

Intuitively, when the H-LP tree is generated from a dissected floorplan whose H-packing

contains little whitespace, the adjacency relations belonging to the H-LP tree are preserved

and other adjacency relations will not be changed dramatically during the H-Tree-Weaving

algorithms. On the other hand, the H-Tree-Weaving algorithm not only creates a H-packed

dissected floorplan with a given H-LP tree: it relaxes some vertical adjacency requirements

such that blocks are allowed to be pushed downward further in the V-packing. This also

true for the V-Tree-Weaving algorithm and an example of applying them alternatively is

shown in Figure 3.12.

Actually applying the two algorithm alternatively will reach an admissible placement

as proposed along with the O-Tree representation [37]. In admissible placements, blocks

cannot be pushed either leftward or downward overlapping-freely without moving other

blocks. This motivates us to design the iterative packing heuristic as shown in Figure 3.13

that improves the CAG in area without changing the adjacency relations dramatically.

The resulting floorplan of the iterative packing heuristic is alway calculated as HP(G).

57

Figure 3.12. Improve a dissected floorplan by applying weaving and pack-
ing alternatively. (a) The initial dissect floorplan; (b) The V-packing and
the V-LP tree of (a); (c) The dissected floorplan after V-Tree-Weave; (d)
The H-packing and the H-LP tree of (c); (e) The dissected floorplan after
H-Tree-Weave; (f) The V-packing of (e).

Algorithm Iterative Packing
Inputs
A CAG G.

Outputs
Improved CAG G.
1 Compute HP(G), i.e., the the H-packing of the dissected floorplan.
2 T0 ← the H-LP tree; W0 ← the width.
3 Create a new CAG G1 from T0 by the H-Tree-Weaving algorithm.
4 Compute VP(G1).
5 T1 ← the V-LP tree; H1 ← the height.
6 Create a new CAG G2 from T1 by the V-Tree-Weaving algorithm.
7 If width of HP(G2) = W0 and and height of HP(G2) = H1: return.
8 G← G2. Go to line 1.

Figure 3.13. The iterative packing heuristic.

58

3.4. Experiments

3.4.1. CAG Floorplanning for Interconnects

Here we present the preliminary flow of CAG floorplanning for interconnects: an initial

CAG is generated by quadratic programming and then optimized iteratively by a greedy

heuristic.

Given a group of blocks with the interconnects and terminals (which are the fixed

pins on the floorplan boundary), the initial CAG is generated as follows to have good

interconnect characteristics. First, a single quadratic programming step depending on

the interconnects is used to compute the relative positions of the blocks in the bounding

box. The weights for the nets are all set to 1. The details of the quadratic programming

can be found in placement works like [38]. After this, the blocks are sorted according to

their x positions and placed in a column-by-column manner from left to right: once the

height of a column exceeds the square root of the total area of all the blocks, a new column

is created and blocks are added from bottom to top again. If a dummy block representing

HeadV is put below all the blocks, this column by column placement actually creates a V-

LP tree rooted at HeadV with the columns as paths in the tree. Then the V-Tree-Weaving

algorithm is used to construct the initial CAG from the tree.

Once the initial CAG is obtained, we improve it iteratively through a randomized

greedy improvement heuristic by applying randomized moves. In each iteration, the

move is to randomly pick up two blocks and swap them. Currently we assume that the

orientations are fixed and rotations are not taken into consideration. The intuition be-

hind these randomized moves is that the interconnects are mostly affected by the relative

59

positions of blocks when the whitespace is limited. Good relative relations can be found

by following good moves using a proper cost function. Then the CAG is packed via the

iterative packing heuristic to improve the area without changing the current adjacency

relations dramatically. After that, the cost function is evaluated and the cost is compared

to the one before this iteration. If there is any improvement, the current move is accepted

and the current CAG will be the starting point of the next iteration; if there is no im-

provement, the current move is rejected and the CAG before this iteration is restored as

the starting point. In practice, this heuristic can be terminated by adding a limit on the

rejecting rate or on the running time.

3.4.2. Experimental Setup

We implemented the CAG algorithms in the C++ language. The Parquet tool [25] version

4.0 is used as a comparison. Both programs are compiled with GCC 3.4.3 and run on a

Linux machine with 933MHz Pentium III processor and 512M memory.

Three GSRC benchmarks with only hard blocks are used: n100, n200, and n300. The

statistics of these benchmarks are shown in Table 3.1.

Table 3.1. Statistics of the benchmarks for CAG.

name # blocks # terminals # nets total area
n100 100 334 885 179.5K
n200 200 564 1585 175.7K
n300 300 569 1893 273.2K

The Parquet tool is running in the free-outline mode with the sequence pairs repre-

sentation and starting with a quadratic programming solution. The other representation

60

in Parquet, which is B∗-tree, generates similar results according to the work [36] and thus

is not compared here.

The cost function used is the weighted sum of the area and the HPWL. We use a weight

ratio of 1 : 1. We implement the HPWL calculation in the same manner as Parquet for

fairness.

3.4.3. Experimental Results

We ran our floorplanner for 10 times with a pre-set time limit for each benchmark. For

comparison, we ran Parquet twice for each benchmark: the first one is to let it run 10

times with the same time limit as ours; the second one is to let it run 10 times with a

longer time limit such that the results are with the same quality as the ones in the work

[36]. The results are reported in Table 3.2. Results from our floorplanner are listed in

the rows with the method “CAG” and those from Parquet are listed in the rows with the

methods “Parquet A” and “Parquet B” respectively. For each benchmark and each group

of the 10 runs, the “area” column shows the minimal/maximal area; the “HPWL” column

shows the minimal/maximal HPWL; the “time” column shows the average running time

in seconds; the “#moves” column shows the average number of the randomized moves for

our approach and that of the perturbations for Parquet.

From the results it can be seen that the CAG approach can find better floorplans in

much less time compared to the up-to-date simulated annealing floorplanner Parquet. Al-

though the CAG approach still relies on randomized moves, the far less number of moves

required to reach a optimized floorplan shows that the iterative packing heuristic enables

61

Table 3.2. Comparing CAG and Parquet.

name method area HPWL time(s) #moves
n100 CAG 195.9K/204.5K 302.1K/312.8K 15.30 31.3K

Parquet A 196.8K/206.0K 320.2K/342.9K 14.90 96.5K
Parquet B 195.0K/203.5K 313.6K/338.5K 29.80 175.8K

n200 CAG 197.0K/205.4K 540.9K/553.3K 30.86 26.0K
Parquet A 207.4K/218.2K 613.8K/647.9K 29.40 54.0K
Parquet B 197.4K/202.5K 578.9K/624.5K 149.2 256.6K

n300 CAG 304.4K/315.6K 649.0K/665.8K 61.61 33.8K
Parquet A 335.2K/351.0K 750.6K/800.0K 58.89 62.5K
Parquet B 306.9K/314.6K 709.2K/757.3K 290.6 325.7K

efficient explorations of the solution space when the interconnects are taken into consider-

ation. In addition, the iterative packing heuristic does not add significant overhead when

the interconnect estimation is part of the cost function. These two factors add up to the

reduction in running times with better floorplans.

An optimized floorplan for n100 along with the CAG is shown in Figure 3.14 to

conclude this section.

3.5. Summary

In this chapter, we proposed to use CAG as the adjacency representation of the floor-

planning problems. Algorithms were presented to construct floorplans as well as improve

CAGs. A randomized greedy iterative heuristic was used to utilize the characteristics in

the CAG approach and the experimental results were promising for both the quality and

the running time compared to existing simulated annealing floorplanners. More research

work into CAG are expected to be done in the future to fully utilize its advantages as an

adjacency graph.

62

Figure 3.14. A floorplan of n100 with the CAG.

63

CHAPTER 4

Linear Constraint Graph for Floorplan Optimization with Soft

Blocks

Many floorplan representations have been proposed for optimizations with simulated

annealing (SA). Among the methods that convert from a representation to its physical

floorplan, packing is widely used because of its simplicity and the ability to generate

area optimal floorplans when the shapes of the modules are fixed. However, if there are

soft blocks among the modules, or the objective of the floorplan optimization is beyond

area minimization, or there are additional placement constraints, packing will not result

in optimal floorplans. It is favorable in those cases to explore the solution space of all

the non-overlapping floorplans under a given topology in a mathematical programming

formulation using a constraint graph to avoid block overlapping [39, 40, 41, 42, 43]. It

is critical to solve the optimization problem for each topology generated in SA efficiently.

From the aspect of the topologies, the corresponding constraint graphs should have small

sizes, i.e., to have as few vertices and edges as possible.

Constraint graphs have been studied since the early years of the floorplan research.

Polar graphs that describe the geometric relations between rooms and the maximal line

segments for rectangular dissections were introduced by Ohtsuki et al. [44] and were

reviewed by Otten [45]. Although there is no method to perturb the polar graphs in SA,

they can be explored by deriving them from mosaic floorplan representations, e.g. Twin

64

Binary Sequences (TBS) [46]. For the general floorplan problem of the block placement,

Transitive Closure Graph (TCG) [47] and Adjacent Constraint Graph (ACG) [10] were

proposed as constraint graph based floorplan representations. As TCG keeps all the

transitive edges in the graph, the number of edges in a TCG is Θ(n2) for n blocks. In

ACG, the sizes of the constraint graphs are reduced intentionally by forbidding over-

specifications, transitive edges, and the “crosses”, which are special geometric relations

that may result in Θ(n2) edges in a constraint graph. However, there is no proof showing

that the number of edges in an ACG would be O(n). On the other hand, previous

works [39, 40, 41, 42, 43] employed simpler approaches that generate the constraint

graphs using the pair-wise geometric relations from either the sequence-pairs [48] or the

physical floorplan. The number of edges in the constraint graphs generated by these

approaches might be Θ(n2) in the worse case and is O(n log n) [49] in the average case if

the transitive edges are removed.

Our contribution in this chapter is to present a class of constraint graphs named Linear

Constraint Graphs (LCG). LCG is the first general floorplan representation based on

constraint graphs where the numbers of the vertices and the edges are linear to the number

of the blocks, which improves upon the previous super-linear size bound in TCG and ACG.

Intuitively, LCGs can be viewed as a combination of the polar graphs and ACGs: the

“crosses” are avoided in one dimension as suggested by ACG and are avoided in the other

by inserting “bars”, which are similar to the maximal line segments in the polar graphs.

For n blocks, an LCG contains at most 2n+3 vertices and 6n+2 edges. We construct an

LCG by constructing its horizontal constraint graph first as a Horizontal Adjacent Graph

(HAG). Generally speaking, HAG captures the horizontal relation between the blocks that

65

are close to each other and is planar. The vertical constraint graph is generated as the

Vertical cOmpanion Graph (VOG) of the horizontal one, which ensures that every pair

of blocks that are not separated horizontally are separated vertically. The operations we

designed to perturb the LCGs has direct geometric meaning – such advantage is shared by

the constraint-graph-based representations TCG and ACG. We focus on the application

of LCG to the floorplan optimization problems with soft blocks. We emphasize that LCG

is preferable when the constraint graphs are essential for the floorplan problem while LCG

is an efficient representation that can be applied to solve general floorplan problems.

The rest of this chapter is organized as follows. In Section 4.1, definitions are reviewed.

In Section 4.2, we show the motivation of our work. In Section 4.3, we define LCGs and

show its properties. In Section 4.4, we present the operations to perturb LCGs in SA

and introduce the framework for floorplan optimization with soft blocks. Experimental

results are reported in Section 4.5. Section 4.6 concludes the chapter.

4.1. Preliminaries

For ease of presentation, we use V (G) and E(G) to denote the set of the vertices and

the set of the edges of any graph G respectively.

A constraint graph describes the geometric relations between the blocks in a floorplan.

A horizontal directed edge e = (u, w) represents that u is to the left of w while a vertical

one represents that u is below w. Four terminal vertices sh,th,sv,and tv represent the

four boundaries of the floorplan. Any pair of blocks are either separated horizontally or

vertically in the constraint graph to avoid overlapping. Let B be the set of the rectangular

66

blocks representing the modules in a circuit. We define constraint graphs as follows

formally.

Definition 4.1 (Constraint Graph). The tuple G = (Ch, Cv) is a constraint graph of

the blocks B iff:

CG-1 There are vertices sh,th,sv,tv such that B ∪ {sh, th} ⊆ V (Ch) and B ∪

{sv, tv} ⊆ V (Cv).

CG-2 Both Ch and Cv are directed acyclic graphs (DAG).

CG-3 ∀u ∈ B, there exists a directed path from sh (and sv) to th (and tv) in

Ch (and in Cv) containing u.

CG-4 For any pair of blocks, there is a directed path from one of them to the

other either in Ch or in Cv.

Let V (G) = V (Ch) ∪ V (Cv) and E(G) = E(Ch) ∪ E(Cv). The graph Ch and Cv are the

horizontal and the vertical constraint graph of G respectively.

Recall that B is the set of the blocks. For every b ∈ B, let the width and the height

of the block b be w(b) and h(b) respectively. For the dummy vertices besides the terminal

vertices and the blocks in V (G), we set w(b) = h(b) = 0. The floorplan F with the

coordinates of the blocks given as the labelings x and y is represented by a constraint

graph G = (Ch, Cv) iff we can assign coordinates to the terminal vertices and the dummy

vertices such that,

x(i) + w(i) ≤ x(j), ∀(i, j) ∈ E(Ch), (4.1)

y(i) + h(i) ≤ y(j), ∀(i, j) ∈ E(Cv).

67

Figure 4.1. (a) A floorplan and the constraint graph with Θ(n2) edges. (b)
A vertical cross as defined by the work of ACG. (c) (d) Two alternatives
for the vertical cross. (e) ACG reduces the number of the edges. (f) Alter-
natively, a bar can be inserted to reduce the number of the edges.

We define that a set of the constraint graphs is complete for a set of blocks, iff for every

non-overlapping floorplan of the blocks, there is a constraint graph representing it and

belonging to the set.

4.2. Motivation

To design a constraint graph based general floorplan representation is not easy. Ad-

jacent Constraint Graph (ACG) [10] is the work most relevant to ours. ACGs are the

constraint graphs satisfying the following three conditions: first, no over-specification, i.e.

each pair of blocks are separated either horizontally or vertically but not both; second, no

transitive edge, since the corresponding geometric relation is implied; third, no “crosses”.

The cross is a basic structure in the constraint graph that would result in Θ(n2) edges in

a constraint graph for n blocks satisfying the first two conditions in the worse case. An

example of the worse case situation is shown in Figure 4.1 (a). A vertical cross is shown

68

Figure 4.2. (a) Convert a block placement to a mosaic floorplan by inserting
the dummy room j. (b)(c) The polar graphs. (e)(f) The constraint graph.

in Figure 4.1 (b). ACG avoids such crosses by using alternatives. It is proved that the

non-overlapping blocks in a cross must satisfy one of the two groups of the constraints as

shown in Figure 4.1 (c) and (d). The number of the edges is reduced in ACG as shown in

Figure 4.1 (e). However, although ACGs try to keep the edges between adjacent blocks,

there are still edges between the blocks that are not close, e.g. the edge (e, b) in Figure 4.1

(e). More complicated floorplan topology would require more sophisticated ACG. There

is no proof showing that the number of the edges in an ACG would be O(n).

Avoiding crosses by using alternatives is not the only way to overcome the worse case.

Intuitively, for the example shown in Figure 4.1 (a), we may insert a horizontal “bar”

to decompose the vertical relations in vertical crosses and a dummy vertex is inserted

69

to the constraint graph correspondingly as shown in Figure 4.1 (f). Similarly, we may

insert vertical bars to decompose the horizontal relations. A more systematical approach

is illustrated in Figure 4.2 that first converts the block placement to a mosaic floorplan

by inserting the dummy room j as shown in Figure 4.2 (a). The polar graphs [44, 45]

are then constructed in Figure 4.2 (b) and (c) where the vertices represent the maximal

line segments, i.e. the bars, and the edges represent the rooms. Finally, the horizontal

and the vertical constraint graphs are derived from the polar graphs by inserting a vertex

representing each room on the corresponding edge. However, it is difficult to design

operations that perturb the polar graphs because the dummy rooms and the line segments.

Our Linear Constraint Graphs (LCG) adopt an approach that combines the cross

avoidance method from ACG and the method of inserting bars similar to that of the

polar graphs. We avoid horizontal crosses by using the alternatives as in ACGs but avoid

the vertical crosses by inserting horizontal bars. The horizontal constraint graph will

contain no dummy vertices and be planar to make the perturbations as easy as possible.

It is presented formally as the Horizontal Adjacent Graph (HAG). The horizontal bars

and the vertical constraint graph will be implied by a given HAG, formally as the Vertical

cOmpanion Graph (VOG). The LCG of the floorplan as shown in Figure 4.2 (a) is shown

in Figure 4.3. This example is used throughout the chapter to illustrate the intuition

behind LCG.

70

Figure 4.3. The LCG of the floorplan in Figure 4.2 (a).

4.3. Linear Constraint Graph

4.3.1. Horizontal Adjacent Graph

The edges in a horizontal constraint graph can be ordered by the vertical relations among

the vertices. Define a DAG to be ordered if the outgoing edges and the incoming edges

of every vertex are ordered. For an ordered DAG G and any vertex u ∈ V (G), let R(u)

and L(u) be the sequences of the ordered outgoing edges and the ordered incoming edges

of u respectively, representing the right and the left neighbors of u sorted vertically from

bottom to top. Let R+(u) and R−(u) (respectively L+(u) and L−(u)) be the first and

the last element in R(u) (respectively L(u)). Let the other vertices besides u of the

edges R+(u), R−(u), L+(u), and L−(u) be r+(u), r−(u), l+(u), and l−(u), respectively.

For a constraint graph, the intuition of using the ordered DAG is to incorporate the

vertical order into the horizontal constraint graph, i.e., those two sequences R(u) and

71

L(u) represent the right and the left neighbors of u sorted vertically from bottom to top,

respectively.

The ordered DAGs are stored in a data structure as follows, which can be treated as

“half” of the ACG data structure [10]. Each vertex u maintains two doubly linked list for

R(u) and L(u). Each edge (u, w) stores two vertex pointers pointing to u and w, and four

edge pointers pointing to the previous edges and the next edges in R(u) and L(w). Such

data structure has the advantage that if a vertex u is given, then R+(u), R−(u), L+(u),

and L−(u) can be accessed in constant time, R(u) and L(u) can be traversed in linear

time, and edges can be inserted to or removed from R(u) and L(u) in constant time.

To achieve planarity in the horizontal constraint graph, we define the above and the

below path as follows, which are essentially the boundaries of the faces that can be tra-

versed from any edge. By such definition, we will derive the conditions for an ordered

DAG to be planar, in which case the above paths would be the top boundaries of the

faces while the below paths would be the bottom boundaries.

Definition 4.2 (Above and Below Paths). For any

(u, w) ∈ E(G) and the symbol α ∈ {+,−}, the path Pα(u, w) = (u1, u2, . . . , uk+1) is the

above path for α=+ or the below path for α=− iff:

PAB-1 ∀1 ≤ i ≤ k, (ui, ui+1) ∈ E(G).

PAB-2 ∃1 ≤ j ≤ k, uj = u and uj+1 = w.

PAB-3 ∀1 < i ≤ k, ui+1 = rα(ui); ∀1 ≤ i < k, ui = lα(ui+1).

PAB-4 L(u1) = ∅ or u2 6= rα(u1); R(uk+1) = ∅ or uk 6= lα(uk+1).

For e = (u, w), the above and the below path can be written alternatively as P+(e) and

P−(e), respectively.

72

The definition of the above and the below paths can be extended to the vertices

that there is at least one edge incident on according to Lemma 4.1. For any vertex u

such that L(u) 6= ∅ or R(u) 6= ∅, if L(u) 6= ∅, then define P+(u) = P+(L+(u)) and

P−(u) = P−(L−(u)), otherwise define P+(u) = P+(R+(u)) and P−(u) = P−(R−(u)).

Lemma 4.1. For vertex u, if L(u) 6= ∅ and R(u) 6= ∅, then P+(L+(u)) = P+(R+(u))

and P−(L−(u)) = P−(R−(u)).

Proof. According to PAB-3, L+(u) is on the path P+(R+(u)) and R+(u) is on the

path P+(L+(u)). Therefore P+(R+(u)) and P+(L+(u)) are the same path. Similarly,

P−(R−(u)) and P−(L−(u)) are the same path. �

We define the Horizontal Adjacent Graph (HAG) as follows. The conditions HAG-1

and HAG-2 are from the requirement of the constraint graph. The condition HAG-3

ensures that there is no transitive edge in a HAG. The condition HAG-4 is essential for

the HAGs to be planar.

Definition 4.3 (HAG). An ordered DAG Ch is a horizontal adjacent graph of the

blocks B iff:

HAG-1 There are vertices sh and th such that B ∪ {sh, th} = V (Ch).

HAG-2 ∀u ∈ B, there exists a directed path from sh to th in Ch containing u.

HAG-3 ∀e ∈ E(Ch), both P+(e) and P−(e) contain at least two edges.

HAG-4 ∀u ∈ V (Ch), let R(u) = (e1, . . . , ed). Then ∀1 < k ≤ d, there exists u′ ∈

V (Ch) with L(u′) = (e′1, . . . , e
′
d′) and 1 < j ≤ d′ such that P+(ek) =

P+(e′j) and P−(ek−1) = P−(e′j−1).

73

Figure 4.4. (a) A HAG. (b) The above paths. (c) The below paths.

The example of a HAG and all the above and the below paths are shown in Figure 4.4.

The faces and their boundaries can be identified to understand the intuition behind the

above and the below paths. The path pairs referred in the condition HAG-4 are high-

lighted with the same color. The exceptions are the top above path and bottom below

path. We have the following lemma regarding them.

Lemma 4.2. P+(sh) = P+(th) and P−(sh) = P−(th).

Proof. Because of the symmetry, it is suffice to prove that P+(sh) = P+(th).

Let L(th) = (e′1, . . . , e
′
d′). Let u be the first vertex of P+(th) with R(u) = (e1, . . . , ed).

Let ek be the first edge of P+(th) for some 1 ≤ k ≤ d. We prove k = 1 by contradiction.

If k 6= 1, then according to HAG-4, there exists 1 < j ≤ d′ such that P+(ek) = P+(e′j).

Therefore, P+(e′1) = P+(th) = P+(ek) = P+(e′j) for j 6= 1, which is impossible. Thus we

74

must have k = 1 and then L(u) = ∅ according to PAB-4. According to HAG-2, this is

only possible for u = sh. Therefore P+(sh) = P+(e1) = P+(th). �

Moreover, there is no transitive edge according to Lemma 4.3.

Lemma 4.3. In a HAG Ch, if (u, w) ∈ E(Ch), then there is no path from u to w in

Ch other than the path containing only the edge (u, w).

Proof. We prove the lemma by contradiction, i.e., to assume there exists such a path

p.

Since p contains at least one vertex other than u and w, there are at least two outgoing

edges of u and at least two incoming edges of w. According to HAG-3, both P+(u, w)

and P= − (u, w) should contain at least two edges. Therefore, either r+(u) = w and

l−(w) = u, or r−(u) = w and l+(w) = u. However, HAG-4 cannot be satisfied in either

case. Thus the lemma is proved. �

4.3.2. The Top-Insert Lemma

To further explore the properties of a HAG, e.g. the size and the planarity, we present

the Top-Insert Lemma that can be used to reason upon HAGs through mathematical

induction.

It is straightforward that if |B| = 1, then there is only one HAG – assuming B = {b},

we can write the HAG as C1
h with V (C1

h) = {sh, b, th} and E(C1
h) = {(sh, b), (b, th)}. Given

a HAG and a new block, we build a new HAG using the InsertTop subroutine as shown in

Figure 4.5. Generally speaking, this subroutine constructs a new HAG by inserting a new

vertex to the top of an existing one. On line 1, the new block b is inserted to the vertex

75

set. If E(Ch) contains the edge (a, c), it is removed on line 2 to satisfy the condition

HAG-3. Two new edges are inserted on line 3 and line 4.

Subroutine InsertTop
Inputs
Ch: a HAG. b: a new block.
a, c: two vertices on P−(sh) in Ch.

Output Updated Ch.
1 Insert b to V (Ch).
2 If r−(a) = c: remove (a, c) from E(Ch).
3 Insert (a, b) to E(Ch) such that R−(a) = (a, b).
4 Insert (b, c) to E(Ch) such that L−(c) = (b, c).

Figure 4.5. The InsertTop subroutine.

The correctness and the time complexity of the subroutine are stated in the following

lemma.

Lemma 4.4. Assume Ch is a HAG of the blocks B, b /∈ B, a and c are on the below

path P−(sh) in Ch, and c is after a on P−(sh). Then InsertTop updates Ch into a HAG

of the blocks B ∪ {b} in constant time.

Proof. The subroutine consumes constant time because of the data structure that

stores the HAG.

To prove the correctness, first of all, we must have (a, c) ∈ E(Ch) iff r−(a) 6= c

according to PAB-3 and PAB-4. If (a, c) ∈ E(Ch), then the paths P+(a, c) and P−(a, c)

are changed by inserting the new vertex b while other above and below paths are not

affected. If (a, c) /∈ E(Ch), then a new above path (a, b, c) is introduced. Let the sub-path

in P−(sh) from a to c be P ′. Then P ′ becomes a new below path from a to c and the below

path P−(sh) is changed by replacing P ′ with (a, b, c). In either case, it is straightforward

to verify the updated graph Ch is a HAG of the blocks B ∪ {b}. �

76

For the ease of presentation, define T to be the function that represents the out-

put of the InsertTop subroutine, i.e., let T (Ch, b, a, c) be the updated HAG obtained by

InsertTop(Ch, b, a, c). The following Top-Insert Lemma shows that every HAG can be

built from C1
h using the InsertTop subroutine with proper parameters.

Lemma 4.5 (The Top-Insert Lemma). Let Ch be a HAG of the blocks B where |B| > 1.

Then there exist vertices a, b, and c such that, first, a, b, and c are three consecutive

vertices on P−(sh) in Ch; second, Ch = T (C ′
h, b, a, c) for some HAG C ′

h of the blocks

B − {b}.

Proof. We claim there is a vertex b on P−(sh) such that b has exactly one incoming

edge and one outgoing edge. Let P−(sh) = (u0, . . . , uk+1) where k ≥ 1, u0 = sh, and

uk+1 = th. We prove the claim by contradiction, i.e., to assume that, ∀1 ≤ j ≤ k, uj has

at least two incoming edges or at least two outgoing edges. Based on the assumption, we

first prove that, ∀1 ≤ j ≤ k, uj has exact one incoming edge and at least two outgoing

edges by induction on j. For j = 1, the vertex u1 has no incoming edge other than (u0, u1)

– otherwise P+(u0, u1) has only one edge, which violates HAG-3. Thus u1 should have at

least two outgoing edges. Suppose uj−1 has at least two outgoing edges for j > 1. Similar

to the argument for the case j = 1, we have that uj has only one incoming edge. Thus uj

should have at least two outgoing edges. Therefore, we proved that, ∀1 ≤ j ≤ k, uj has

exact one incoming edge and at least two outgoing edges. On the other hand, because of

the symmetry, we can also prove that, ∀1 ≤ j ≤ k, uj has exact one outgoing edge and

at least two incoming edges. A contradiction is reached. Thus the claim holds and such

vertex b exists.

77

Let (a, b) and (b, c) be the incoming and the outgoing edges respectively. Then a, b,

and c are three consecutive vertices on P−(sh) in Ch. We construct C ′
h by first removing

the vertex b and the edges (a, b) and (b, c) from Ch. If there is no path from a to c in C ′
h,

then we modify C ′
h by inserting an edge (a, c) such that r−(a) = c and l−(c) = a. It is

straightforward to verify that, first, C ′
h is a HAG of the blocks B − {b}; second, a and

c are both on P−(sh) in C ′
h and a is before c; third, Ch = T (G′

h, b, a, c). Therefore, we

proved the lemma. �

According to the Top-Insert Lemma, we have,

Corollary 4.1. Suppose Ch is a HAG of the blocks B, then |V (Ch)| = |B| + 2 and

|E(Ch)| ≤ 2|B|.

Proof. It is implied by the Top-Insert Lemma. �

4.3.3. Vertical Companion Graph

Once we have a HAG as the horizontal constraint graph, we construct a vertical constraint

graph accordingly that separates every pair of the blocks that is not separated horizontally

by using dummy vertices, i.e. the horizontal bars. We define the Vertical cOmpanion

Graph (VOG) recursively as follows, which will be the vertical constraint graph. First

of all, for the HAG C1
h of one block b, let the vertical companion graph be C1

v satisfying

that,

V (C1
v) = {sh, th, b, sv, tv},

E(C1
v) = {(sv, sh), (sv, b), (sv, th), (sh, tv), (b, tv), (th, tv)}.

78

For the HAG Ch of the blocks B where |B| > 1, suppose Ch = T (C ′
h, b, a, c) for some

HAG C ′
h of the blocks B − {b} according to the Top-Insert Lemma. Assume the VOG of

C ′
h to be C ′

v. We construct the VOG of Ch using the CoInsertTop subroutine as shown

in Figure 4.6. The intuition is to insert new edges such that for every block that is not

separated horizontally with b, there is a path in Cv from the vertex to b. Note that in the

subroutine, we assume for every u ∈ V (C ′
h), there are two unique vertices u+ and u− in

V (C ′
v) such that both (u+, u) and (u, u−) belong to E(C ′

v). The validity of this assumption

will be established when we proved the correctness of the subroutine in Lemma 4.6. On

line 1, the vertex b is inserted to the VOG. If (a, c) is an edge in Ch, we insert one new

edge to Cv on line 3 and insert another new edge on line 5 or 7 depending on whether

r+(a) = c or l+(c) = a. Otherwise, a dummy vertex f is inserted on line 9 before two

edges are inserted on line 10. The end points of the outgoing edges from some of the

vertices on P−(sh) are replaced in the loop on line 12. There is a path in Cv from a+

to f (through r−(a)) if a = l+(r−(a)). Otherwise we insert the edge (a+, f) on line 14.

Similarly, the edge (c+, f) is inserted on line 15 iff there is no path in Cv from c+ to f .

The CoInsertTop subroutine is consistent because of the following lemma.

Lemma 4.6. Suppose Cv is the VOG of a HAG Ch. Then, first, V (Ch) ⊂ V (Cv) and

Cv is a DAG. Second, ∀u ∈ V (Ch), there is exactly one incoming edge (u+, u) and one

outgoing edge (u, u−) in Cv, and both u+ and u− do not belong to V (Ch). Third, for every

vertex u on P−(sh), u− = tv, and for every vertex u on P+(sh), u+ = sv. Fourth, if (a, c)

is an edge in P−(sh) in Ch, then at least one of r+(a) = c and l+(c) = a holds. If both of

them hold, then a+ = c+.

79

Subroutine CoInsertTop
Inputs
Ch,Cv:a HAG and the VOG of it.
b :a new block.
a, c :two consecutive vertices on P−(sh) in

Ch.
Output Updated Cv.

1 Insert b to V (Cv).
2 If r−(a) = c:
3 Insert (b, tv) to E(Cv).
4 If r+(a) = c:
5 Insert (a+, b) to E(Cv).
6 Else:// must have l+(c) = a
7 Insert (c+, b) to E(Cv).
8 Else:
9 Insert a new vertex f to V (Cv).

10 Insert (f, b) and (b, tv) to E(Cv).
11 Let P ′ be the sub-path of P−(sh) from a to c.
12 For each vertex u on P ′ except a and c:
13 Replace (u, tv) with (u, f) in E(Cv).
14 If a 6= l+(r−(a)): insert (a+, f) to E(Cv).
15 If c 6= r+(l−(c)): insert (c+, f) to E(Cv).

Figure 4.6. The CoInsertTop subroutine.

Proof. It is straightforward to prove the lemma by induction on |V (Ch)| according

to the definition of VOG. �

An example of the VOG of the HAG shown in Figure 4.4 (a) is shown in Figure 4.7. We

have the following corollary concerning the size of a VOG according to the CoInsertTop

subroutine.

Corollary 4.2. Suppose Cv is a VOG of the HAG of the blocks B, then |V (Cv)| ≤

2|B|+ 3 and |E(Cv)| ≤ 4|B|+ 2.

80

Figure 4.7. The VOG of the HAG shown in gray edges.

Proof. There are 5 vertices and 6 edges in C1
v . Every time we insert a new vertex by

the CoInsertTop subroutine, at most 1 dummy vertex and 4 edges are introduced. Thus

the corollary holds. �

4.3.4. Linear Constraint Graph

Based on the definition of HAG and VOG, we define the Linear Constraint Graph (LCG)

as follows.

Definition 4.4 (LCG). For the blocks B, the linear constraint graph G is a tuple

(Ch, Cv), where Ch is a HAG of B and Cv is a VOG of Ch. Let V (G) = V (Ch) ∪ V (Cv)

and E(G) = E(Ch) ∪ E(Cv).

The following lemma states that an LCG is a constraint graph, which can be proved

by showing inductively that the condition CG-4 holds.

Lemma 4.7. An LCG is a constraint graph.

81

Proof. We prove that CG-4 holds for any LCG G = (Ch, Cv) for the blocks B by

induction on |B|. If |B| = 1, obviously CG-4 holds since there is only one vertex in B.

Suppose CG-4 holds for |B| = n−1. For |B| = n, according to the Top-Insert lemma,

assume Ch = F (G′
h, b, a, c). Let G′

v be the VOG of G′
h and let Cv be obtained by the

CoInsertTop subroutine. Let P ′ = (u0, . . . , uk) be the sub-path of P−(sh) in G′
h from a

to c, i.e. u0 = a and uk = c. Let w ∈ B − {b}. According to Lemma 4.3, ∀0 ≤ j < k,

there is no path from uj to uj+1 in G′
h. According to Lemma 4.6, ∀0 ≤ j ≤ k, u−j = tv.

Thus, ∀0 ≤ j ≤ k, there is no path from uj to w in G′
v. Therefore, if we consider the

paths between w and uj, ∀0 ≤ j ≤ k, in G′
h and G′

v, there are 4 possible cases as follows.

First, there is a path from w to a in G′
h or w = a. Then there is a path from w to b in

Ch. Second, there is a path from c to w in G′
h or w = c. Then there is a path from b to

w in Ch. Third, w = uj for some j satisfying 0 < j < k. Then there is a path from w

to b through b+ in Cv. Fourth, there is a path from w to uj in G′
v for some j satisfying

0 ≤ j ≤ k. Recall (u+
j , uj) is the only incoming edge of uj in G′

v. Then the path must

contain u+
j . Thus there is a path from w to b through u+

j in Cv. So we proved CG-4

holds for w ∈ B − {b} and u = b. It is straightforward to verify that CG-4 holds for

w, u ∈ B−{b} in Ch and Cv according to the induction hypnoses. Therefore, CG-4 holds

when |B| = n.

It is straightforward that CG-1, CG-2, and CG-3 hold for an LCG. Since we have

shown that CG-4 hold for an LCG, we proved that an LCG is a constraint graph. �

If a non-overlapping floorplan is given, the FPToLCG algorithm shown in Figure 4.8

constructs the LCG representing the floorplan. The algorithm builds the LCG by insert-

ing the blocks according to the ascending order of their y-coordinates. From the LCG

82

constructed on line 3 and 4, the subroutine CoInsertTop and InsertTop are called to insert

new blocks on line 9 and 11. The labelings x and y are extended on line 3, 4, and 10.

The below path P−(sh) in Ch is maintained as P throughout the algorithm on line 5 and

12. It is implemented as an AVL tree or a Red-Black tree that stores the vertices on the

path according to their x labeling.

Algorithm FPToLCG
Inputs A non-overlapping floorplan F .
Output The LCG G = (Ch, Cv).

1 Sort the blocks B into (b1, b2, . . . , b|B|) according to the y-coordinates
y(b),∀b ∈ B.

2 M←maxb∈B{|x(b)|, |y(b)|, |x(b)+w(b)|, |y(b)+h(b)|}.
3 V (Ch)← {sh, b1, th}, E(Ch)← {(sh, b1), (b1, th)}.

(x(sh), x(th), w(sh), w(th))← (−M, M, 0, 0).
4 V (Cv)← V (Ch) ∪ {sv, tv}, E(Cv)←

⋃
u∈V (Ch){(sv, u), (u, tv)}.

(y(sh), y(th), y(sv), y(tv))← (0, 0,−M, M).
5 The path P ← (sh, b1, th).
6 For i = 2 to |B|:
7 a← argmax{u:u∈P,x(u)+w(u)≤x(bi)}x(u).
8 c← argmin{u:u∈P,x(bi)+w(bi)≤x(u)}x(u).
9 Cv ←CoInsertTop(Ch, Cv, bi, a, c).

10 If r−(a) 6= c: y(b+
i)← y(bi).

11 Ch ←InsertTop(Ch, bi, a, c).
12 Remove all the vertices between a and c in P .

Insert bi to P between a and c.

Figure 4.8. The FPToLCG algorithm.

The invariant of the loop on line 6 is stated in the following lemma.

Lemma 4.8. For 1 ≤ i ≤ |B|, let F (i) be the floorplan consisting of the blocks

b1, b2, . . . , bi in F . For 1 ≤ i < |B|, let C
(i)
h , C

(i)
v , and P (i) be the graphs Cv and Ch and

the path P when entering the loop on line 6. Let C
(|B|)
h , C

(|B|)
v , and P (|B|) be the graphs Cv

and Ch and the path P when the algorithm terminates. Then, ∀1 ≤ i ≤ |B|, the following

83

three claims hold: first, the graph G(i) = (C
(i)
h , C

(i)
v) is an LCG; second, P (i) = P−(sh) in

C
(i)
h ; third, Equation (4.1) holds for the constraint graph G(i), the floorplan F (i), and the

labelings x and y.

Proof. We then proof the lemma by induction on i. When i = 1, it is straightforward

that all the three claims hold.

Suppose the three claims hold for i = j−1 where 1 < j ≤ |B|. Then G(j) and P (j) are

obtained when leaving the loop with i = j − 1. Since P (j−1) = P−(sh) in G
(j−1)
h and M

is sufficient large as computed on line 2, we must have sh ∈ {u : u ∈ P (j−1), x(u) + Wu ≤

x(bj)} and th ∈ {u : u ∈ P (j−1), x(bj) + Wbj
≤ x(u)}. Thus a and c are well defined.

Since G(j−1) is an LCG, G(j) is an LCG according to Lemma 4.4 and 4.6. It can be

verified that P (j) = P−(sh) in G
(j)
h . According to Lemma 4.7, G(j) is a constraint graph.

Because the labelings x and y are never changed in the algorithm once assigned, to prove

that the third claim holds, it is sufficient to show that Equation 4.1 holds for the new

edges introduced by the InsertTop and CoInsertTop subroutines. According to line 7

and 8 where a and c are computed, Equation 4.1 holds for the two edges introduced by

the InsertTop subroutine. It is straightforward to verify that Equation 4.1 holds for the

edges introduced on line 3 and 10 of the CoInsertTop subroutine because of the order

established on line 1, the assignment on line 10, and the sufficiently large M . According

to line 7 and 8, for any vertex u between a and c in P (j−1), we must have u ∈ B and

(F x
bj

, F x
bj

+Wbj
)∩ (F x

u , F x
u +Wu) 6= ∅. According to line 1, F y

bj
≥ F y

u . Thus F y
bj
≥ F y

u +Wu

since F is non-overlapping. Then it can be verified that Equation 4.1 holds for the

replaced edges in the loop on line 12 of the CoInsertTop subroutine. For the edges

introduced on line 15 and 15, Equation 4.1 holds since y(f) = F y
bj
≥ F y

a ≥ y(a+) and

84

y(f) = F y
bj
≥ F y

c ≥ y(c+). Therefore, we have proved that all the three claims hold for

i = j and then the lemma holds. �

The correctness and the complexity of the FPToLCG algorithm are stated in the

following lemma.

Lemma 4.9. Assume F is a non-overlapping floorplan of the blocks B. The FP-

ToLCG algorithm will terminate and generate an LCG G = (Ch, Cv) that represents F .

The time complexity is O(|B| log |B|) and and space complexity is O(|B|).

Proof. Obviously the algorithm will terminate. The algorithm generates an LCG

representing the floorplan according to Lemma 4.8.

According to Lemma 4.8, and Corollary 4.1 and 4.2, it requires O(|B|) storage to store

Ch,Cv,and P . Therefore, the space complexity is O(|B|).

The sorting on line 1 consumes O(|B| log |B|) time. The searching on line 7 and

8 consumes at most O(log |B|) time per iteration and then O(|B| log |B|) time totally.

Every block is inserted to and removed from P for at most 1 time. Thus line 12 consumes

O(|B| log |B|) time totally. According to Lemma 4.4, the InsertTop subroutine consumes

constant time per iteration and then O(|B|) time totally. Note that the number of the

edges replaced on line 12 of the CoInsertTop subroutine is exactly the same as the number

of the vertices removed from P . Thus the CoInsertTop subroutine consumes O(|B|) time

totally. All the other part of the algorithm consumes O(|B|) time. Therefore, the time

complexity is O(|B| log |B|). �

In summary, we have the following theorem as the major result of this chapter accord-

ing to Lemma 4.7 and 4.9, and Corollary 4.1 and 4.2.

85

Theorem 4.1. Let the set of all the LCGs of a set of blocks B be LB. Then LB is

complete for B and ∀G ∈ LB, V (G) ≤ 2|B|+ 3 and E(G) ≤ 6|B|+ 2.

Proof. The theorem is implied by Lemma 4.7 and 4.9, and Corollary 4.1 and 4.2. �

4.4. LCG Floorplan Optimization

We perform floorplan optimization using LCGs by SA. Two most important issues are

addressed in the following two sub-sections: one is to design operations that perturb the

representation and the other is to evaluate the representation through a cost function.

There are two most important issues for a floorplan representation to be used in such an

iterative improvement heuristic. The first one is to design operations that perturb the

representation such that every instance of the representation can be explored stochasti-

cally. The second one is to evaluate the representation through a cost function. These

two issues are addressed in the following two sections in sequel.

4.4.1. Perturbations of LCG

Recall that an LCG consists of a HAG and a VOG. We design three operations that

perturb LCGs. The first one is with the name exchange and exchanges two blocks in both

the HAG and the VOG. The next two operations are designed to first perturb HAGs and

then update the VOGs accordingly since the VOG can be derived from a HAG. In the

operation with the name insertH, an edge is inserted between two vertices in the HAG

which changes the vertical relation between them into a horizontal one. In the operation

with the name removeH, an edge in the HAG is removed such that the horizontal relation

86

between the end points of the edge is changed to a vertical one. We only present the

changes in HAGs for these two operations while omit the changes in VOGs for simplicity.

Suppose the LCG is G = (Ch, Cv). The insertH operation is illustrated in Figure 4.9.

Recall that for u ∈ V (Ch), (u+, u) and (u, u−) are the only edges incident on u in Cv.

Two vertices a ∈ B and b ∈ B are selected such that a+ = b−. Such vertices exist when

Ch is not a single path from sh to th. We can insert either (b, a) or (a, b) to Ch. Because

of the symmetry, assume that the edge (b, a) should be inserted without loss of generality.

Let c = l+(a) and d = r−(b). The following lemma holds for P+(a) and P−(b) before

inserting (b, a).

Lemma 4.10. If for a, b ∈ V (Ch) we have a+ = b−, then the end points of P+(a) and

P−(b) are the same.

Proof. According to the CoInsertTop subroutine, it is straightforward to prove the

lemma by induction on the number of the vertices in Ch. �

If c is the first vertex of P+(a) and P−(b), there is a path from c to b in Ch. Thus

the edge (c, a) should be removed such that HAG-3 would not be violated after inserting

(b, a). Similarly, if d is the last vertex of P+(a) and P−(b), the edge (b, d) should be

removed. Finally, the edge (b, a) is inserted to Ch such that r−(b) = a and l+(a) = b.

The removeH operation is illustrated in Figure 4.10. An edge (b, a) ∈ E(Ch) with

a ∈ B and b ∈ B is selected such that either r−(b) = a and l+(a) = b, or r+(b) = a

and l−(a) = b. Such edge exists when there is an edge in Ch whose end points both

belong to B. Because of the symmetry, assume that r−(b) = a and l+(a) = b without

loss of generality. If a has more than one incoming edges in Ch, an optional new edge

87

Figure 4.9. Insert a horizontal edge (b, a): (a) when c and d are not the
end points of P+(a); (b) when c and d are the end points of P+(a), (c, a)
and (b, d) should be removed.

(c, a) can be inserted to Ch where c is a vertex on P−(b) between the first vertex and b.

Otherwise, if a has only one incoming edge, i.e. (b, a), a new edge (c, a) must be inserted

where c is either the first vertex of P−(b) or a vertex on P−(b) between the first vertex

and b. Similarly, if b has more than one outgoing edges, an optional new edge (b, d) can

be inserted where d is a vertex on P+(a) between a and the last vertex; if b has only

one outgoing edge, a new edge (b, d) must be inserted where d is either the last vertex

of P+(a) or a vertex on P+(a) between a and the last vertex. Finally, the edge (b, a) is

removed from Ch.

The correctness and the time complexity of the insertH and the removeH operations

are stated in the following lemma.

Lemma 4.11. Both the insertH and the removeH operations change an LCG into

another one. The time complexity is O(n) for n blocks.

Proof. It can be verified that the conditions from HAG-1 to HAG-4 are not violated

by the insertH and the removeH operations. Recall that R+(u), R−(u), L+(u), and L−(u)

88

Figure 4.10. Remove the horizontal edge (b, a): (a) when a and b have
at least 2 incoming and outgoing edges respectively, (c, a) and (b, d) are
optional; (b) when a and b have only 1 incoming and outgoing edges re-
spectively, (c, a) and (b, d) must be inserted.

can be accessed in constant time and edges can be inserted to or removed from R(u) and

L(u) in constant time. Therefore, both operations take O(n) time to finish. �

The following theorem states that the three operations exchange, insertH, and removeH

are complete and efficient to perturb LCGs.

Theorem 4.2. Applying the three operations exchange, insertH, and removeH can

convert any LCG to any other LCG. For n blocks, it takes at most 3n operations for such

conversions.

Proof. An insertH operation can be reverted by a removeH operation. Moreover, a

dummy vertex in the VOG of any LCG can be removed by the insertH operation as shown

in Figure 4.9 (b) without introducing new dummy vertices. Thus we would obtain an LCG

with no dummy vertex in the VOG from any LCG of n blocks by applying the insertH

operation at most n − 1 times. The HAGs in such LCGs consist of a single path from

sh to th and the conversions among them can be done by at most n exchange operation.

89

Then we can obtain any LCG from such LCGs via reverting the insertH operations by

the removeH operations. Therefore, applying the three operations can convert any LCG

to any other LCG and it takes at most 3n operations for such conversions. �

4.4.2. Floorplan Optimization with Soft Blocks

When there are soft blocks, to evaluate a floorplan the block shapes should be determined

first. Generally speaking, a mathematical programming problem can be formulated by

using the constraint graph as the constraints to optimize the decision variables which are

the block shapes. We follow the approach of Lin et al. [41] to formulate the problem and

to solve the problem by Lagrangian relaxation. This approach was previously proposed

by Young et al. [39] and was improved in the work [41]. We only introduce the relevant

part in this section while the details and the reviews of the previous works should be

found in the works [39] [41].

Recall that B is the set of the blocks. Suppose that each block b ∈ B has an area

A(b). Let the decision variables be the block widths w(b) within the range [L(b), U(b)],

∀b ∈ B, and the labellings x and y. For an LCG G = (Ch, Cv), the following problem

Pperi is formulated to optimize the perimeter of the floorplan bounding box.

Problem 4.1 (Pperi).

Minimize (x(th)− x(sh)) + (y(tv)− y(sv))

s.t. x(i) + w(i) ≤ x(j), ∀(i, j) ∈ E(Ch) ∧ i 6= sh,

x(sh) ≤ x(j), ∀(sh, j) ∈ E(Ch),

90

y(i) +
A(i)

w(i)
≤ y(j), ∀(i, j) ∈ E(Cv) ∧ i ∈ B,

y(i) ≤ y(j), ∀(i, j) ∈ E(Cv) ∧ i /∈ B,

L(i) ≤ w(i) ≤ U(i), ∀i ∈ B.

It was shown in [41] that Pperi is a convex programming formulation under the vari-

able transformation logw(b) = log w(b), ∀b ∈ B, and thus can be solved by Lagrangian

relaxation as follows. Let λ and µ be the vectors of the Lagrangian multipliers λi,j,

∀(i, j) ∈ E(Ch), and µi,j, ∀(i, j) ∈ E(Cv), respectively. Define

λi
∆
=

∑
(i,j)∈E(Ch)

λi,j, ∀i ∈ B,

µi
∆
=

∑
(i,j)∈E(Cv)

µi,j, ∀i ∈ B.

Let w be the vector of the block widths and Fperi be defined as

Fperi(λ, µ, w)
∆
=

∑
i∈B

(
λiw(i) + µi

A(i)

w(i)

)
.

The Lagrangian subproblem is to compute Qperi defined as

Qperi(λ, µ)
∆
= min

L(b)≤w(b)≤U(b),∀b∈B
Fperi(λ, µ, w).

The Pperi problem can be solved by solving a simplification of the Lagrangian dual problem

of it, which is the following LDperi problem.

91

Problem 4.2 (LDperi).

Maximize Qperi(λ, µ)

s.t.
∑

(i,j)∈E(Ch)

λi,j =
∑

(j,k)∈E(Ch)

λj,k,

∀j ∈ V (Ch) ∧ j 6= sh ∧ j 6= th,∑
(i,j)∈E(Cv)

µi,j =
∑

(j,k)∈E(Cv)

µj,k,

∀j ∈ V (Cv) ∧ j 6= sv ∧ j 6= tv,∑
(i,th)∈E(Ch)

λi,th =
∑

(sh,k)∈E(Ch)

λsh,k = 1,

∑
(i,tv)∈E(Cv)

µi,tv =
∑

(sv ,k)∈E(Cv)

µsv ,k = 1,

λ ≥ 0, µ ≥ 0.

As Qperi(λ, µ) is in general not differentiable, Young et al. [39] proposed to apply

subgradient optimizations to solve the LDperi problem. On the other hand, Lin et al. [41]

proposed a trust-region method to optimize Qperi(λ, µ). In each iteration of this method, a

min-cost network-flow problem on the constraint graph is formulated based on the current

pair of the multipliers λ and µ and a step size ∆ and is solved to generate a new pair of the

multipliers. Depending on the improvement of Qperi(λ, µ) in comparison to the expected

one based on the first order approximation, either the new pair of the multipliers would be

rejected and the step size would be decreased, or the new pair of the multipliers would be

accepted and the step size would be increased or remain the same. We use the approach

in the work [41] because of its efficiency.

92

Table 4.1. Results of area optimization for LCG.

SP+TR LCG+TR
name n ds(%) t(s) |E| ds(%) t(s) |E|
apte 9 0.04 34 40 0.04 21 34
xerox 10 0.08 43 47 0.08 41 38
hp 11 0.09 41 54 0.13 26 41
ami33 33 0.28 383 347 0.24 179 125
ami49 49 0.24 694 679 0.27 319 182

4.5. Experimental Results

We obtain the code of the floorplanner in the work [41], which was based on the

code of the floorplanner in the work [39] and used CS2 version 4.3 [50] as the min-cost

network flow solver. We replace the sequence-pair representation in the code with our

LCG representation which is implemented in C++. Both the code of the work [41] and

our code are compiled by GCC version 3.4 and run on a Linux workstation with two

927MHz Pentium III processors and 512MB memory. The same setting of simulated

annealing is used in both code.

We follow Lin et al. [41] to setup the experiments. There are 5 benchmarks derived

from the MCNC benchmark suite. The aspect ratio of each block is between 0.5 and 2.

Area optimization is performed with the cost function being the perimeter of the floorplan

bounding box. Wire length optimization is performed with the cost function being the

summation of the perimeter and the average half-perimeter wire length of all the nets.

For each of the benchmarks and each optimization, we run each program for 5 times

and compare the best results. The results from area optimization and wire length opti-

mization are reported in Table 4.1 and 4.2 respectively. For each benchmark, the name

and the number of the blocks are shown in the columns “name” and “n” respectively. The

93

Table 4.2. Results of wire length optimization for LCG.

SP+TR LCG+TR
name ds(%) wl(mm) t(s) ds(%) wl(mm) t(s)
apte 0.09 125.29 35 0.08 125.28 26
xerox 0.21 145.16 46 0.15 152.69 36
hp 0.26 43.42 37 0.22 42.60 27
ami33 0.50 57.89 349 0.49 52.46 236
ami49 1.17 290.89 615 0.64 272.23 442

results from our approach are shown in the columns “LCG+TR”. The results from the

approach by Lin et al. [41] are shown in the columns “SP+TR”. For both the area and the

wire length optimizations, the deadspace in percentage and the running time in seconds

are reported in the columns “ds(%)” and “t(s)” respectively. We observe that more than

95% of the runtime is spent to solve the LDperi problem by the trust-region method in

both approaches. The average numbers of edges of the constraint graphs generated in

SA are reported in the columns “|E|” for area optimization. These numbers are similar

for wire length optimization and thus are omitted. The wire lengths in millimeter are

reported in the columns “wl(mm)” for wire length optimization.

It can be seen from the tables that although the results of the approach by Lin et

al. [41] are already almost optimal, our approach can improve the qualities for 1 bench-

mark for area optimization and 4 benchmarks for wire length optimization in much less

time while the qualities for other cases are similar. It is clear that there are always less

edges in the constraint graphs in our approach and the gap between the number of edges

in our approach and that in the approach by Lin et al. [41] increases as the size of the

benchmark increases. Note in the works [39, 41], when the constraint graphs were con-

structed from the sequence-pairs, the transitive edges were removed. This implies that in

94

a similar approach to maintain TCGs without transitive edges, the average numbers of

edges would be similar to those of the approach by Lin et al. [41], which are more than

those of our approach.

4.6. Summary

In this chapter, we proposed the Linear Constraint Graphs (LCG) as a general floor-

plan representation based on constraint graphs. For n blocks, we showed that each LCG

has at most 2n + 3 vertices and at most 6n + 2 edges. We proved that LCGs can repre-

sent any non-overlapping floorplans. We designed operations that have direct geometric

meaning to perturb LCGs in simulated annealing and proved such perturbations are suf-

ficient to explore all the LCGs stochastically. The advantages of LCGs is confirmed by

the experimental results.

95

CHAPTER 5

Gate Sizing by Lagrangian Relaxation Revisited

The transistor sizing, gate sizing, and wire sizing problems [51, 52, 53, 54, 55, 56,

57] are important problems in VLSI design because they allow to explore the trade-offs

between the performance and the cost of the system. Since all these problems share

the same structure that the timing constraints are formulated as a system of difference

inequalities involving the delays of each individual components and the arrival times, we

call them collectively as the sizing problems.

Most research works on the sizing problem use a convex delay model for individual

components. It had been shown in the work TILOS by Fishburn et al. [51] that a few prob-

lem formulations concerning the total size and the clock period are convex programming

problems under such delay model. Convex programming problems have the advantage

that a local optimum is a global one and they have been studied for decades (see [58, 59]

for references). In TILOS, the Elmore delay model [60] was used for transistor delays and

a heuristic that sizes the transistors iteratively according to the sensitivities of the critical

path delay to the transistor sizes was proposed to find an optimum. The Elmore delays

are special cases of posynomials, which are a class of convex functions under the logarithm

variable transformation. Sapatnekar et al. [53] applied the algorithms that solve general

convex programming problems to solve the sizing problem for the delays as the posyno-

mials of the sizes. Kasamsetty et al. [61] proposed to use the generalized posynomials,

which are also convex under the logarithm variable transformation, to approximate the

96

delays more accurately than the Elmore delay model and solved the sizing problem with

this model in the optimization framework of the work [53]. However, the experimental

results in the works [53] and [61] showed that the general algorithms were not efficient

for the sizing problems with even less than 1000 sizable components.

The special structure in the sizing problem that the timing constraints are formulated

as a system of difference inequalities had been exploited by Chen et al. [55] to design

an algorithm that solves the gate and wire sizing problem by Lagrangian relaxation.

The structure allows to simplify the Lagrangian dual problem using the Karush-Kuhn-

Tucker (KKT) conditions. The dual problem was solved by subgradient optimizations.

The gate and wire delay model used in this work was the Elmore delay model and thus

the Lagrangian subproblem was a convex optimization problem with simple constraints,

which can be solved efficiently. Although the approach was efficient for sizing adders in

the work [55], Tennakoon et al. [57] showed that for general circuits, it is very hard to

choose proper initial solution and step sizes for subgradient optimizations to converge

practically. Heuristics were developed in [57] to obtain a good initial solution and to

speed up the convergence of subgradient optimizations. However, it is not clear whether

the heuristics can be extended to handle more sophisticated and accurate convex delay

models, e.g. the ones in the work [61].

The ever-increasing complexity in modern VLSI systems demands efficient and effec-

tive sizing algorithms to handle the sophisticated convex delay models and the tremendous

number of sizable components. The difficulties in the previous works motivate us to de-

sign new algorithms for the sizing problem. We revisit the Lagrangian relaxation based

97

approach [55]. This particular approach is of our interests because the special structure

of the sizing problem is exploited. Our contributions in this chapter include:

(1) We formulate the Generalized Convex Sizing (GCS) problem that unifies the

sizing problems and applies to sequential circuits with clock skew optimization.

(2) We identify a class of the GCS problems called the proper GCS problems. We

transform the simultaneous sizing and clock skew optimization problem into a

proper GCS problem.

(3) We revisit the approach to formulate the Lagrangian dual problem by Lagrangian

relaxation and to simplify the dual problem. Several misunderstandings are cor-

rected and the approach is extended to handle general convex delay models.

(4) We prove that the objective function in the simplified dual problem of a proper

GCS problem is differentiable and then design the DualFD algorithm to solve the

proper GCS problems by the method of feasible directions and min-cost network

flow.

(5) We derive the necessary and sufficient condition for the GCS problem to be

feasible. This condition is applied to check the feasibility of the circuits in our

experiments.

We focus on the continuous sizing problems in this chapter where the sizes of the

components can be any values within certain continuous ranges. On the other hand, if

the components are not continuous sizable, e.g. the gates must be chosen from a discrete

gate library, a discrete sizing problem should be solved [62, 63, 64]. In such case, the

optimal solution of the corresponding continuous problem is valuable. A discrete solution

can be obtained by rounding the continuous solution as proposed by Chuang et al. [62],

98

or through dynamic programming guided by the continuous solution as proposed by Hu

et al. [64].

The rest of this chapter is organized as follows. In Section 5.1, we examine the convex

gate delay model and propose the Generalized Convex Sizing (GCS) problem. In Sec-

tion 5.2, Lagrangian relaxation based approaches that formulate the dual problems are

revisited. In Section 5.3, we present our DualFD algorithm that solves the proper GCS

problems. Experimental results are reported in Section 5.4. Section 5.5 concludes the

chapter.

5.1. Problem Formulation

5.1.1. The Generalized Convex Sizing Problem

Although gate sizing is commonly applied to the combinational part of a circuit, for a

sequential circuit with flip-flops (FF) as the storage units, the clock period and the clock

skews can be incorporated into the timing constraints as follows.

ti + di,j ≤ tj, ∀(i, j) ∈ E, (5.1)

tpi = api, tpo = rpo, ∀pi ∈ PI, po ∈ PO,

tQk
= sk, tDk

= sk + T, ∀k ∈ FF.

Here the topology of the combinational part of the circuit is represented by a directed

acyclic graph (DAG) G = (V, E). The vertices represent ports and the edges represent

interconnects and timing arcs. The variable tv is the arrival time at the vertex v. The

function di,j is the delay of the edge (i, j). It is either the delay of a wire or a timing arc

99

in a gate. The constants api and rpo are the arrival times and the required arrival times

of the primary input and output ports respectively. The clock period is T . For the FF

k, sk is the clock skew, and Dk and Qk are the data input and output ports respectively.

Note that extra vertices and edges can be introduced into the graph G to model practical

timing issues, e.g., FF setup time, clock skew uncertainty, and safety margin. We assume

that such issues, if necessary, are already incorporated.

Equation (5.1) can be expressed in a more consistent manner by extending G as follows.

Two vertices I and O are added to V . The edges (I, pi) and (po, O) are added to E with

dI,pi = api and dpo,O = T − rpo for all pi ∈ PI and po ∈ PO. Then the edges (I, Qk) and

(Dk, O) are added to E with dI,Qk
= sk and dDk,O = −sk for each k ∈ FF. Finally the

edge (O, I) is added to E with dO,I = −T . We will refer the extended graph as G for the

ease of presentation when there is no ambiguity. The extended graph G of an example

circuit is shown in Figure 5.1. This circuit has two primary input ports PI1 and PI2, one

primary output port PO1, and one FF with data input port D1 and data output port

Q1. Let t be the vector of all the ti. The following theorem relates Equation (5.1) to the

inequalities derived from the the extended graph.

Theorem 5.1. There exist arrival times t to satisfy Equation (5.1) if and only if there

exist arrival times t′v, ∀v ∈ V , in the extended graph G to satisfy the following inequalities,

t′i + di,j ≤ t′j,∀(i, j) ∈ E.

Proof. Assume there exist arrival times t to satisfy Equation (5.1). Let t′v = tv for

every vertex v in the original graph. Let t′I = 0 and t′O = T . Then it can be verified that,

100

t′i + di,j ≤ t′j,∀(i, j) ∈ E.

On the other hand, assume there exist arrival times t′v, ∀v ∈ V , to satisfy the inequal-

ities derived from the extended graph. We assign the arrival times t to the vertices in the

original graph as follows: for every pi ∈ PI, let tpi = api; for every po ∈ PO, let tpo = rpo;

for every k ∈ FF, let tQk
= sk and tDk

= sk + T ; for the remaining vertices, say v, let

tv = t′v − t′I . Then it can be verified that Equation (5.1) holds.

Therefore, we have proved that there exist arrival times t to satisfy Equation (5.1) if

and only if there exist t′v, ∀v ∈ V , to satisfy the inequalities derived from the extended

graph G. �

Figure 5.1. Timing of a sequential circuit.

Theorem 5.1 motivates us to formulate the Generalized Convex Sizing (GCS) problem

with the constraints derived from the extended graph G.

Problem 5.1 (Generalized Convex Sizing). Let G = (V, E) be a directed graph rep-

resenting the structure of a system with the parameters x = (x1, x2, . . . , xn)> belonging to

101

the set

Ω
∆
= {x : lk ≤ xk ≤ uk,∀1 ≤ k ≤ n},

where lk and uk, ∀1 ≤ k ≤ n, are constants. The edge delays di,j, ∀(i, j) ∈ E, and the

objective function C are twice differentiable convex functions for x ∈ Ω. Solve that,

Minimize C(x)

s.t. ti + di,j(x)− tj ≤ 0,∀(i, j) ∈ E, (5.2)

x ∈ Ω. (5.3)

The decision variables in the GCS problem are (x, t). The GCS problem is a convex

programming problem (see Chapter 4.2 [58]) since the objective function C and the left-

hand-side of Equation (5.2) are all convex functions and the set Ω is a convex set. Define

(x, t) to be feasible if Equation (5.2) and (5.3) are satisfied. Define x to be feasible if

there exists a t such that (x, t) is feasible. Denote the set of all the feasible x by X . It is

straightforward that X is a convex set.

Although it is straightforward to determine if a particular (x, t) is feasible by verifying

Equation (5.2) and (5.3), we rely on the the following theorem to determine if a particular

x is feasible.

Theorem 5.2. For a GCS problem, x ∈ Ω is feasible if and only if there is no positive

cycle in G with respect to the edge weights di,j(x).

Proof. If x is feasible, then there exists t such that Equation (5.2) holds. Thus for

every cycle C in G, we have,

102

∑
(i,j)∈C

di,j(x) =
∑

(i,j)∈C

(ti + di,j(x)− tj) ≤ 0.

On the other hand, if there is no positive cycle in G with respect to the edge weights

di,j(x), we can apply the Bellman-Ford algorithm (see Chapter 24.1 [29]) to obtain t that

satisfies Equation (5.2). Thus x is feasible. �

It is clear that the GCS problems are not restricted to the sizing problem where the

delay functions are the posynomials of sizes and the convexity is established through

geometric programming. One important group of the convex delay functions that are

not posynomials of sizes is the affine functions of x, i.e., in the form of b>x + c for some

vector b and scalar c. This allows to treat the clock skews and the clock period as decision

variables in a GCS problem if necessary.

5.1.2. Proper GCS Problems

We are interested in a particular class of GCS problems, named proper GCS problems,

since it can be efficiently solved by our DualFD algorithm as presented in the later sections.

We will provide their definition and investigate their basic properties in this subsection

and show how to formulate the sequential sizing problem that performs simultaneous

sizing and clock skew optimization as a proper GCS problem in the next subsection.

The proper GCS problems are defined as follows.

Definition 5.1. A GCS problem is proper if and only if the Hessian matrix of its

objective function is positive definite at any x ∈ Ω.

103

It should be pointed out that the objective function of a proper GCS problem must

be a strictly convex function while the reverse is not true since the Hessian matrix of a

twice differentiable strictly convex function is not always positive definite. For example,

suppose x = (x1, x2) and Ω = {(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. The objective

function C(x) = x4
1 + x4

2 is strictly convex but at (x1, x2) = (0, 0), its Hessian matrix is a

zero matrix and thus is not positive definite. On the other hand, for the strictly convex

objective function C(x) = x2
1 + x2

2, its Hessian matrix is always positive definite.

The definition of the proper GCS problems only depends on the property of the ob-

jective function but not that of the delay functions. Many practical sizing problems are

the proper GCS problems as shown in the following theorem.

Theorem 5.3. Assume that the objective function C of a GCS problem is a posynomial

of the variables exk ,∀1 ≤ k ≤ n, i.e.

C(x) =
l∑

i=1

wi ea>i x,

where wi > 0, ∀1 ≤ i ≤ l. Then the GCS problem is proper if and only if rank(A) = n,

where A = (a1, a2, . . . , al) is a matrix with n rows and l columns.

Proof. Let HC be the Hessian matrix of C. Since C(x) is convex as required by the

definition of the GCS problems, HC(x) is positive semidefinite for any x ∈ Ω. Assuming

ai = (a1
i , a

2
i , . . . , a

n
i)>, we have that

∂2C(x)

∂xj∂xk

=
l∑

i=1

wia
k
i a

j
ie

a>i x,∀1 ≤ j ≤ n, 1 ≤ k ≤ n.

104

Define

Λ(x)
∆
= diag(wi ea>i x, w2 ea>2 x, . . . , wl ea>l x),

which is a diagonal matrix with positive diagonal elements. Then

HC(x) = AΛ(x)A>.

Thus, ∀z ∈ Rn,

z>HC(x)z = z>(AΛ(x)A>)z = (A>z)>Λ(x)(A>z). (5.4)

If HC(x) is positive definite, then because of Equation (5.4) we can claim that A>z = 0

has no solution other than z = 0. So rank(A) = n.

On the other hand, if rank(A) = n, then A>z 6= 0 for any z 6= 0. Thus z>HC(x)z 6= 0

for any z 6= 0 according to Equation (5.4). So HC(x) is positive definite.

Therefore, we proved that the GCS problem is proper if and only if rank(A) = n. �

The following corollary applies to the GCS problems where the variables are the log-

arithms of the sizes and objective functions are the positive weighted summation of the

sizes.

Corollary 5.1. For a GCS problem, if

C(x) =
n∑

k=1

wk exk ,

where wk > 0, ∀1 ≤ k ≤ n, then the problem is proper.

Proof. It is implied by Theorem 5.3. �

105

5.1.3. Simultaneous Sizing and Clock Skew Optimization as a Proper GCS

Problem

The clock skew optimization problem was studied by Fishburn [19] to optimize the circuit

utilizing the delay variations from the clock source to FFs. The simultaneous sizing and

clock skew optimization problem for general sequential circuits was studied by Chuang et

al. [62]. They proposed an algorithm to solve the problem considering both the long path

(setup) and the short path (hold) conditions by formulating a linear programming problem

using the piece-wise-linear (PWL) approximations of the convex delays. However, if we

consider a path p from Qi to Dj for some FF i and j with the non-linear convex delay dp,

the short path condition,

−si − dp + sj + hold-time ≤ 0,

is not convex because the left-hand-side of the inequality is not convex. Thus the PWL

approximation may result in suboptimal solutions. We propose to consider the long path

conditions only and assume that a post-processing algorithm, e.g. [65], will repair the

violated short path conditions. Similar optimization flow was applied in [54] for acyclic

pipelines.

Suppose that each clock skew sk to be optimized belongs to a pre-defined range [s−k , s+
k],

i.e.,

s−k ≤ sk ≤ s+
k ,

where s−k and s+
k are constants. Assume that the objective function is the positive weighted

summation of the sizes. It is straightforward that the simultaneous sizing and clock skew

106

optimization problem is a GCS problem where the clock skews to be optimized are among

the variables x and the pre-defined ranges are part of the set Ω. However, as the clock

skew variables do not appear in the objective function, the Hessian matrix of the objective

function is not always positive definite and thus the problem is not proper. We overcome

this difficulty by eliminating the clock skew variables and transforming the problem into

a proper one as stated in Theorem 5.4. There are two advantages of this transformation:

first, the number of the variables are reduced; second, since the transformed problem is a

proper GCS problem, our DualFD algorithm presented later is applicable.

Theorem 5.4. The simultaneous sizing and clock skew optimization problem can be

transformed into a proper GCS problem without introducing variables representing the

clock skews to be optimized.

Proof. There is a valid skew assignment for the FF k if and only if there exists tI, tO,

tQk
, tDk

, and sk satisfying

(tI + sk ≤ tQk
) ∧ (tDk

− sk ≤ tO) ∧ (s−k ≤ sk ≤ s+
k).

That is,

[tDk
− tO, tQk

− tI] ∩ [s−k , s+
k] 6= ∅,

which is equivalent to

(tDk
− s+

k ≤ tO) ∧ (tI + s−k ≤ tQk
) ∧ (tDk

− tQk
≤ tO − tI). (5.5)

We transform the problem by modifying the graph G. An edge (Dk, Qk) is added with

dDk,Qk
= −T . The delays are changed such that dDk,O = −s+

k and dI,Qk
= s−k .

107

Recall that tO−tI ≤ T . According to Equation (5.5), any feasible t with the unmodified

G will be feasible with the modified G. On the other hand, for any feasible t with the

modified graph G, tO can be increased to tI + T without violating the constraints and

changing the cost. Then Equation (5.5) holds. Thus the clock skew sk can be chosen as

any value in the non-empty set [tDk
− tO, tQk

− tI] ∩ [s−k , s+
k].

Therefore, the clock skew variables have been eliminated under such transformation

and the problem after the transformation is proper. �

For the example circuit shown in Figure 5.1, we show the constraints before the trans-

formation in Figure 5.2 and those after the transformation in Figure 5.3.

Figure 5.2. Timing of the FF 1 with its clock skew variable.

Figure 5.3. Timing of the FF 1 without its clock skew variable.

5.2. Solving GCS via Lagrangian Dual Problems

We follow Chen et al. [55] to formulate the Lagrangian dual problem of the GCS

problem and to simplify the dual problem. Although the formulations are similar, we

revisit the assumptions and correct the misunderstandings.

108

5.2.1. The Lagrangian Dual Problem

Let fi,j be the Lagrangian multipliers associated with each inequality in Equation (5.2).

Let f be the vector for all the fi,j. Let L∗(x, t, f), L(f), and N be the Lagrangian function,

the Lagrangian dual function, and the set of the non-negative multipliers respectively, i.e.,

L∗(x, t, f)
∆
= C(x) +

∑
(i,j)∈E

fi,j(ti + di,j(x)− tj),

L(f)
∆
= inf{L∗(x, t, f) : x ∈ Ω, t ∈ R|V |},

N ∆
= {f : fi,j ≥ 0,∀(i, j) ∈ E}.

The Lagrangian dual problem D-GCS is formulated as follows.

Problem 5.2 (D-GCS).

Maximize L(f)

s.t. f ∈ N .

Recall that X is the set of all the feasible x. The weak duality theorem (see Chap-

ter 6.2 [59]) states that the duality gap is non-negative, i.e.,

inf{C(x) : x ∈ X} ≥ sup{L(f) : f ∈ N}. (5.6)

The approach that solves the GCS problem by solving the D-GCS problem requires a zero

duality gap, i.e.,

inf{C(x) : x ∈ X} = sup{L(f) : f ∈ N}. (5.7)

109

If there is a strictly feasible solution for the GCS problem, i.e. if there is a feasible

solution such that the inequalities in Equation (5.2) all hold strictly, then we can apply the

strong duality theorem (see Chapter 6.2 [59]), which is also known as Slater’s constraint

qualification, to obtain the following theorem.

Theorem 5.5. If there is a strictly feasible solution to the GCS problem, then the

duality gap is zero and there exists a saddle point (x, t, f) such that: first, f is the optimal

solution of the D-GCS problem; second, (x, t) is the optimal solution of the GCS problem;

third, C(x) = L∗(x, t, f) = L(f).

Proof. It is implied by the strong duality theorem (see Chapter 6.2 [59]). �

Theorem 5.5 guarantees that in the presence of a strictly feasible solution, the GCS

problem can be solved by solving the D-GCS problem. There are two misunderstand-

ings when Chen et al. [55] applied the strong duality theorem to obtain a similar result.

First, if transformations are necessary to convert a problem into a convex programming

problem, the Lagrangian dual problem should be derived from the transformed problem

instead of the original problem. Only then the strong duality theorem can be applied.

More specifically, since Chen et al. [55] claimed the convexity through geometric program-

ming, the Lagrangian dual problem should be derived from the geometric programming

formulation. Here we show that it is not necessary to establish the convexity through

geometric programming and thus the Lagrangian dual problem can be formulated as the

work [55]. Second, the strong duality theorem requires the existence of a strictly feasible

solution. For the GCS problems without a strictly feasible solution, Theorem 5.5 will not

apply and Equation (5.7) should be established through other theories.

110

We establish Equation (5.7) via the result of Rockafellar [66], which is stated in the

following theorem.

Theorem 5.6. A convex function g(x) satisfies the regularity condition if and only if

g(x) = b>x + c or g(x) = h(Ax) + b>x + c for some finite strictly convex function h(y),

matrix A, vector b, and scalar c.

If the objective function C and the delay functions di,j all satisfy the regularity condi-

tion, then the duality gap is zero.

Proof. It was proved by Rockafellar [66]. �

Although Theorem 5.6 guarantees a zero duality gap without requiring a strictly feasi-

ble solution, it does not guarantee any saddle point as in Theorem 5.5. For a GCS problem

without a strictly feasible solution, the D-GCS problem may have no finite solution, i.e.,

L(f ′) 6= sup{L(f) : f ∈ N}, ∀f ′ ∈ N .

5.2.2. Simplifying the Lagrangian Dual Problem

The Lagrangian function L∗ can be rewritten as

L∗(x, t, f) = C(x) +
∑

(i,j)∈E

fi,jdi,j(x) +
∑
k∈V

(
∑

(k,j)∈E

fk,j −
∑

(i,k)∈E

fi,k)tk,

Let F be the set of the multipliers satisfying the flow conservation constraints, i.e.,

F ∆
= {f :

∑
(i,k)∈E

fi,k =
∑

(k,j)∈E

fk,j,∀k ∈ V }.

If
∑

(k,j)∈E fk,j 6=
∑

(i,k)∈E fi,k for some k ∈ V , then ∀M ∈ R, tk can be chosen such

that L∗(x, t, f) < M . In such cases, L(f) = −∞. Therefore, the dual problem D-GCS is

111

simplified by introducing the flow conservation constraints, which is stated as the following

FD-GCS problem.

Problem 5.3 (FD-GCS).

Maximize L(f)

s.t. f ∈ F ∩N .

Note that the same FD-GCS problem has been obtained in the work [55] and the

simplification allows the work [55] to maximize L(f) on F ∩ N by applying subgradient

optimizations. However, our reasoning in simplifying the D-GCS problem into the FD-

GCS problem is different. The work [55] derived the flow conservation constraints of the

multipliers from the KKT conditions of the optimal solutions. Since the KKT conditions

are sufficient but not necessary for an optimal solution, it is possible that there is no

feasible solution satisfying such conditions for some sizing problems and thus the deriva-

tion in [55] was not correct. We circumvent the difficulty by excluding the f satisfying

L(f) = −∞.

We call the f dual feasible if and only if f ∈ F ∩ N . As the function L(f) only takes

finite values for dual feasible multipliers, the information regarding the objective function

in both D-GCS and FD-GCS problems is “lost” for the non-negative multipliers that do

not satisfy the flow conservation constraints, and thus it is very difficult to obtain good

properties of the objective function in order to perform optimizations. This motivates

us to “fill the vacancy” by assigning finite values to the objective function for the non-

negative multipliers that do not satisfy the flow conservation constraints. Formally, for

112

f ∈ N , define

Pf (x)
∆
= C(x) +

∑
(i,j)∈E

fi,jdi,j(x),

Q(f)
∆
= inf{Pf (x) : x ∈ Ω}.

We formulate the SD-GCS problem as follows.

Problem 5.4 (SD-GCS).

Maximize Q(f)

s.t. f ∈ F ∩N .

It is straightforward that the FD-GCS problem and the SD-GCS problem are different

since their objective functions are different, although both objective function take the

same value for all dual feasible f . Both problems are equivalent to the D-GCS problem

as stated in the following theorem.

Theorem 5.7. The D-GCS problem, the FD-GCS problem, and the SD-GCS problem

are equivalent.

Proof. For any f /∈ F , since L∗(x, t, f) can be arbitrarily small, L(f) ≤ L(f ′) holds

for all f ′ ∈ F . Thus the D-GCS problem and the FD-GCS problem are equivalent.

Since Pf (x) = L∗(x, t, f) for all f ∈ F , x ∈ Ω, and t ∈ R|V |, Q(f) = L(f) holds for all

f ∈ F . Thus the FD-GCS problem and the SD-GCS problem are equivalent.

Therefore, the D-GCS problem, the FD-GCS problem, and the SD-GCS problem are

equivalent. �

113

The two most important benefits for us to formulate the SD-GCS problem are as

follows. First of all, the SD-GCS problems are convex programming problems because of

the following lemma.

Lemma 5.1. Let d be the vector of all the delays di,j. Q(f) is a concave function on

N and d(xf) is the subgradient.

Proof. Assume that both f and f ′ belong to N . Then

Q(f ′) = inf{Pf ′(x) : x ∈ Ω}

≤ Pf ′(xf)

= Pf (xf) + d(xf)
>(f ′ − f)

= Q(f) + d(xf)
>(f ′ − f)

Therefore, Q(f) is a concave function on N and d(xf) is the subgradient. �

Second, as proved later, the objective function Q(f) is differentiable on N for the

SD-GCS problems derived from proper GCS problems. Thus we are able to design the

DualFD algorithm to solve the proper GCS problems through solving their corresponding

SD-GCS problems.

5.2.3. A Trivial Example

One could be deceived to think that the situations mentioned in the previous sections, i.e.

there is no saddle point or there is no feasible solution satisfying the KKT conditions, only

happen for “corner” cases of the sizing problems. However, such situations may occur for

114

extremely trivial circuits and for more complicated circuits containing those trivial ones

as the sub-circuits.

Consider the following problem that might be formulated from optimizing a single

inverter with the size a.

Minimize a

s.t. t1 + a ≤ t2, t2 +
1

a
≤ t3, t3 ≤ t1 + 2,

1

2
≤ a ≤ 2.

The problem is a GCS problem of the variable x = ln a. There is only one feasible

solution x = 0 which is also the optimal solution while there is no strictly feasible solution.

Consider the following two KKT conditions,

∂L∗

∂x
= ex + f1,2e

x − f2,3e
−x = 0,

∂L∗

∂t2
= f2,3 − f1,2 = 0.

They cannot be satisfied simultaneously for the optimal solution x = 0.

On the other hand, for the dual feasible f , there should exist β ≥ 0 such that β =

f1,2 = f2,3 = f3,1. Define

q(β)
∆
= inf{ex + β(ex + e−x − 2) : − ln 2 ≤ x ≤ ln 2},

xβ
∆
= argmin− ln 2≤x≤ln 2(e

x + β(ex + e−x − 2)).

115

For the SD-GCS problem, it is simplified as maximizing q(β) for β ≥ 0. The q(β) and xβ

can be computed as

(q(β), xβ) =


(1+β

2
,− ln 2), if 0 ≤ β < 1

3
,(

2√
1+1/β+1

, ln
√

β
β+1

)
, if β ≥ 1

3
.

So Q(f) < 1 for any f ∈ F ∩ N and thus there is no saddle point. Note that there is no

xβ being feasible for any β ≥ 0.

5.3. Solving the Simplified Dual Problems

5.3.1. Solving the Lagrangian Subproblem

Solving either the FD-GCS problem or the SD-GCS problem requires solving the La-

grangian subproblem first, i.e. to compute L(f) or equivalently Q(f) for a given dual

feasible f , which is in turn equivalent to minimize Pf (x) for x ∈ Ω. The following lemma

states the property of Pf (x).

Lemma 5.2. For any f ∈ N , Pf (x) is a twice differentiable convex function on Ω.

Proof. Recall that the delay functions di,j(x) and the objective function C(x) are

twice differentiable convex function on Ω. For any f ∈ N , Pf (x) is a weighted summation

of twice differentiable convex functions with nonnegative weights. Therefore, for any

f ∈ N , Pf (x) is a twice differentiable convex function on Ω. �

Let the optimal solution of the Lagrangian subproblem be xf , i.e.,

xf
∆
= argminx∈ΩPf (x).

116

Note that xf is not necessarily unique. According to Lemma 5.2, the optimal solution can

be computed by existing convex programming algorithms (e.g. Chapter 8 [59]). Then

Q(f) is equal to Pf (xf).

For the Elmore delay model, Chen et al. [55] proposed a greedy algorithm that itera-

tively sizes each gate and wire segment to solve the LRS/µ problem, which is similar to

minimize Pf (x). Generally speaking, this algorithm is a descent method that uses coor-

dinate axes as the search directions. Chen et al. proved that if the algorithm starts with

all the gates and wire segments at their minimum sizes, then it converges to the optimal

solution. We show that such algorithm can be extended to handle arbitrary convex delays

and prove that the algorithm will converge to the optimal solution for any initial solution.

Given any x ∈ Ω and any permutation π of the coordinate directions, let LRSf (x, π)

be the vector obtained by sequentially minimizing Pf on Ω along the directions following

the ordering defined by π in one iteration of the greedy algorithm. Then for a given

permutation π, LRSf (x, π) is continuous for x. The following theorem holds for the

sequence obtained by applying the algorithm to any initial solution.

Theorem 5.8. For any initial solution x(0) ∈ Ω, each accumulation point of the

sequence obtained by the iterative greedy algorithm, i.e., x(i + 1) = LRSf (x(i), πi), i =

0, 1, . . ., minimizes Pf on Ω.

Proof. Since Ω is compact, let x∗ ∈ Ω be an accumulation point and assume the

infinite sub-sequence of x(i) indexed by the set I converges to x∗. Because the number

of the permutations of the coordinate directions is finite, there exists a subset I ′ of I

with infinite number of elements satisfying that, ∀i ∈ I ′, x(i + 1) is obtained from x(i)

117

with the same permutation π′. Moreover, since x(i + 1) ∈ Ω for every i ∈ I ′ and Ω

is compact, there exists a subset I ′′ of I ′ with infinite number of elements such that

the infinite sequence x(i + 1), i ∈ I ′′, converges to a point x′ ∈ Ω. For i ∈ I ′′, since

x(i + 1) = LRSf (x(i), π′), we have x′ = LRSf (x
∗, π′) when i→ +∞. On the other hand,

since Pf is continuous and Ω is compact, Pf is lower-bounded on Ω. Because Pf (x(i)) is

non-increasing when i increases, Pf (x(i)) converges when i → +∞. Therefore, as both

x∗ and x′ are the accumulation points, we have Pf (x
′) = Pf (x

∗). So,

Pf (LRSf (x
∗, π′)) = Pf (x

∗).

Since Pf is differentiable and convex on Ω according to Lemma 5.2, we have that x∗

minimizes Pf on Ω. �

The advantage of our approach is as follows. When the simplified dual problems are

solved iteratively by improving the dual feasible f , intuitively f would be changed by a

small amount from an iteration to another and then the changes in xf would be small.

Therefore, the algorithm may converge faster if it starts with the previous xf , while the

convergence is guaranteed by Theorem 5.8.

5.3.2. Solving FD-GCS by Subgradient Optimizations

The FD-GCS problem was solved by subgradient optimizations [55, 57] because its ob-

jective function L(f) is not differentiable in general. We introduce the algorithm with

some modifications as the SubGrad algorithm below, which will be used as a comparison

to our DualFD algorithm as presented in the later subsections.

118

Starting from any dual feasible f , the SubGrad algorithm iteratively improves f and

computes xf until convergence. In the beginning of each iteration, the Lagrangian multi-

pliers are updated as suggested by the work [55] using the step size ρk and the subgradient

ti + di,j(xf)− tj, where k is the iteration number and ti are the arrival times. Note that a

heuristic was proposed in the work [57] to replace the above standard updating method.

That heuristic was intended for faster convergences with a good initial f obtained from a

pre-processing step and is not suitable for the SubGrad algorithm for the following rea-

sons. First, the theoretical convergence of subgradient optimizations is not guaranteed

by the heuristic. Second, our empirical study showed that the heuristic only converges

when the initial multipliers f are near optimal. For the extreme case where the initial

multipliers are all 0, the heuristic will not make any progress since all the multipliers that

are 0 initially will remain 0.

After the Lagrangian multipliers are updated, they would not necessarily be dual

feasible. Thus f should be projected to the closest one that is dual feasible. As it is

not clear how exactly such projection was done in the work [55], the SubGrad algorithm

follows the work [57] to perform projection by distributing incoming flows proportionally

to the outgoing edges according to the existing outgoing flows. Note that this proportional

projection method only applies to the GCS problems in which removing one edge from G,

e.g. the O to I edge, results in a DAG; otherwise, it may fail, e.g. for the simultaneous

sizing and clock skew optimization problem.

At the end of the iteration, the Lagrangian subproblem is solved to compute xf for the

current f . To claim convergence, Chen et al. [55] suggested to terminate the iterations

when C(xf) − L(f) is less than a pre-defined small positive error bound. However, this

119

is only correct if xf is feasible since the duality gap is defined between a feasible x and

a dual feasible f as shown in Equation (5.6) and (5.7). Otherwise, the algorithm can

be terminated prematurely. For example, if the objective function is the total gate and

wire size, then for the multipliers to be all 0, we must have that all the gate and wire

segments are at their minimum sizes and thus C(x)− L(f) = 0. In such situation, there

is no guarantee that the timing constraints would be satisfied. In the SubGrad algorithm,

when xf is feasible, we claim convergence if C(xf)− L(f) is small enough; otherwise, we

claim convergence if the changes in xf , f , and L(f) are marginal.

Although the convergence is claimed for both works [55, 57], it is not clear how to

prove such convergence according to the discussions above since the convergence of sub-

gradient optimizations depends on the choice of the step sizes and the projection method

(see Chapter 8.9 [59]). We should also point out that even when theoretical convergence

is guaranteed, practical convergence of the subgradient optimizations is difficult and usu-

ally requires a good initial solution and a good step size sequence (see Chapter 8.9 [59]).

Because the SubGrad algorithm is not the focus of this chapter, we leave further improve-

ments to future researches.

5.3.3. Detecting Infeasible GCS Problems

The GCS problem can be infeasible, e.g. the timing constraints of a circuit cannot be

met no matter how the gates and wires are sized. Since the objective function C(x) is

continuous on the compact set Ω, it is upper-bounded. We have the following theorem.

Theorem 5.9. Suppose C is upper-bounded by U ∈ R on Ω. If the duality gap is zero,

then the GCS problem is feasible if and only if Q(f) ≤ U , ∀f ∈ F ∩N .

120

Proof. Suppose (x∗, t∗) is a feasible solution, then we have that ∀f ∈ F ∩N ,

Q(f) ≤ Pf (x
∗)

= C(x∗) +
∑

(i,j)∈E

fi,j(t
∗
i + di,j(x

∗)− t∗j)

≤ C(x∗)

≤ U.

On the other hand, if ∀f ∈ F ∩N , Q(f) ≤ U , then there is at least one feasible solution;

otherwise the duality gap is not zero. Therefore, the theorem holds. �

Theorem 5.9 provides a method to check whether the GCS problem is feasible when

maximizing Q(f) in our DualFD algorithm presented in the following subsections. Since

L(f) will take the same value as Q(f) for any dual feasible f , we also integrate such

feasibility checking method into the SubGrad algorithm.

For a sizing problem where Q(f) > U for some dual feasible f , by investigating the

non-zero multipliers, one can identify the troublesome part of the circuit that makes it

infeasible. Other optimization techniques could be performed to that part to make the

circuit feasible and we leave this as a future research topic.

5.3.4. Objective Functions of Proper SD-GCS Problems are Differentiable

Define the SD-GCS problem to be proper if the GCS problem is proper. We prove the

following theorem stating that Q is differentiable for proper SD-GCS problems.

121

Theorem 5.10. For a proper SD-GCS problem, the objective function Q(f) is dif-

ferentiable for f ∈ N and the gradient is d(xf) where xf is the only vector in Ω that

minimizes Pf (x).

Proof. We first claim that, in a proper GCS problem, for any f ∈ N , there is a single

xf ∈ Ω satisfying that Q(f) = Pf (xf). We prove the claim by contradiction. Assume

Q(f) = Pf (x
′) = Pf (x

′′) for some x′ 6= x′′, x′ ∈ Ω, x′′ ∈ Ω, and f ∈ N . Define

yγ ∆
= (1− γ)x′ + γx′′.

Then yγ ∈ Ω, ∀0 ≤ γ ≤ 1. Since Pf (x) is convex according to Lemma 5.2, we have that

∀0 ≤ γ ≤ 1,

Q(f) = (1− γ)Pf (x
′) + γPf (x

′′) ≥ Pf (y
γ).

Since Q(f) ≤ Pf (y
γ) by the definition of Q, we must have,

Pf (y
γ) = Q(f),∀0 ≤ γ ≤ 1.

Since Pf (x) is twice differentiable according to Lemma 5.2, let HPf
be its Hessian matrix.

Let z0 = y
1
2 and z = x′′ − x′. Then z0 ∈ Ω and z 6= 0. Therefore,

z>∇Pf (z
0) = lim

λ→0

Pf (z
0 + λz)− Pf (z

0)

λ
= lim

λ→0

Pf (y
1
2
+λ)− Pf (y

1
2)

λ
= 0,

and,

z>HPf
(z0)z

2
= lim

λ→0

Pf (z
0 + λz)− Pf (z

0)− λz>∇Pf (z
0)

λ2
= lim

λ→0

Pf (y
1
2
+λ)− Pf (y

1
2)− 0

λ2
= 0.

(5.8)

122

On the other hand, it is straightforward that because of the convexity, the Hessian

matrixes Hdi,j
of all the delays di,j are positive semidefinite for any x ∈ Ω. Then

z>Hdi,j
(z0)z ≥ 0.

Recall that the Hessian matrix HC(x) of the objective function C of the proper GCS

problem is positive definite for any x ∈ Ω. Then

z>HC(z0)z > 0.

Therefore,

z>HPf
(z0)z = z>HC(z0)z +

∑
(i,j)∈E

fi,j(z
>Hdi,j

(z0)z)

> 0.

This contradicts Equation (5.8). Thus our claim holds.

Since in a proper GCS problem, for any f ∈ N , there is a single xf ∈ Ω satisfying that

Q(f) = Pf (xf), according to Theorem 6.3.3 [59], Q(f) is differentiable for f ∈ N and the

gradient is d(xf). �

5.3.5. Solving Proper SD-GCS Problems via Method of Feasible Directions

and Min-Cost Network Flow

As the objective function Q(f) of a proper SD-GCS problem has the gradient d(xf) ac-

cording to Theorem 5.10, we apply the method of feasible directions (see Chapter 10 [59])

to solve the proper SD-GCS problem.

123

For any dual feasible f , the vector ∆f is an improving feasible direction if and only if

there exists λ > 0 such that

Q(f) < Q(f + λ∆f),

and,

f + λ∆f ∈ N ∩ F .

An improving feasible direction can be found by solving the following direction finding

(DF) problem. The intuition is to maximize the first order approximation of Q in a dual

feasible neighborhood.

Problem 5.5 (DF).

Minimize −d(xf)
>∆f

s.t. f + ∆f ∈ F ,

max{−u,−fi,j} ≤ ∆fi,j ≤ u, ∀(i, j) ∈ E.

In the DF problem, the improving feasible direction ∆f are the decision variables,

f should be dual feasible, and u is a positive constant. It can be verified that the DF

problem is a min-cost network flow problem (see [67]): the variables ∆f are the flows on

the edges in the graph G, the mass balance constraints are f + ∆f ∈ F , and the flow

bound constraints are max{−u,−fi,j} ≤ ∆fi,j ≤ u, ∀(i, j) ∈ E. This special property of

the DF problem comes from the special structure in the GCS problem where the timing

constraints are formulated as a system of difference inequalities. Note that although a

min-cost network flow problem can be solved by general linear programming techniques

124

since it is a special linear programming problem, it is usually more efficient to apply

algorithms specifically designed for min-cost network flow problems.

Since f is dual feasible, ∆f = 0 is always a feasible solution of the DF problem and

the optimal objective is always non-positive. The following theorem relates the optimal

solution of the DF problem to either an improving feasible direction or the optimal solution

of the GCS problem.

Theorem 5.11. Suppose ∆f∗ is the optimal solution of the DF problem. If the optimal

objective is 0, i.e., −d(xf)
>∆f∗ = 0, then there exists a vector t such that (xf , t) is the

optimal solution of the GCS problem; otherwise ∆f∗ is an improving feasible direction.

Proof. We first assume that the optimum objective is 0. Consider the flow network

constructed from the graph G with all the arc capacities being [0, +∞) and the arc costs

being di,j(xf). Since f is a nonnegative flow on G, let GR be the residual network derived

from the flow f as follows. The network GR has the same vertex set as G. If there is an

edge (i, j) in G, then there is an arc (i, j) in GR with the arc cost di,j(xf). Moreover,

if fi,j > 0, then there is an arc (j, i) in GR with the arc cost −di,j(xf). We claim that

there is no positive cycle in GR with respect to the arc costs; otherwise incrementing the

flow along the positive cycle would result in a feasible solution of the DF problem with

negative objective and thus violates the assumption of the 0 optimal objective. Thus, by

applying the Bellman-Ford algorithm on GR, we can obtain the arrival times t satisfying

that,

ti + di,j(xf)− tj ≤ 0, ∀(i, j) ∈ E, (5.9)

tj − di,j(xf)− ti ≤ 0, ∀((i, j) ∈ E) ∧ (fi,j > 0).

125

It implies that,

(fi,j = 0) ∨ (ti + di,j(xf)− tj = 0),∀(i, j) ∈ E.

Therefore,

Q(f) = C(xf) +
∑

(i,j)∈E

fi,jdi,j(xf)

= C(xf) +
∑

(i,j)∈E

fi,j(ti + di,j(xf)− tj)

= C(xf)

Since Equation (5.9) implies that (xf , t) is a feasible solution of the GCS problem, together

with Equation (5.6) we can claim that (xf , t) is the optimal solution of the GCS problem.

We then assume that the optimum objective is negative, i.e., −d(xf)
>∆f∗ < 0. Since

d(xf) is the gradient of Q(f) according to Theorem 5.10, we have,

lim
λ→0

Q(f + λ∆f∗)−Q(f)

λ
= d(xf)

>∆f∗ > 0.

Thus there exists a positive λ0 such that,

Q(f + λ∆f∗)−Q(f) > 0,∀0 < λ < λ0. (5.10)

On the other hand, define

λmax
∆
= min

∆f∗i,j<0
− fi,j

∆f ∗i,j
,

or let λmax = +∞ if ∆f ∗i,j ≥ 0, ∀(i, j) ∈ E. Then,

f + λ∆f∗ ∈ N ∩ F ,∀0 < λ ≤ λmax. (5.11)

126

Equation (5.10) and (5.11) imply that ∆f∗ is an improving feasible direction. �

ALGORITHM DualFD
Inputs The GCS problem and N .
Outputs Optimal f and xf .
1 f ← 0. Compute xf .
2 For i = 1 to N :
3 Solve the DF problem for optimal ∆f∗.
4 Claim optimality if d(xf)

>∆f∗ is small enough.
5 Perform a line search on Q(f + λ∆f∗) with 0 < λ ≤ λmax

for an increase in Q. Claim the problem to be infeasible
if Q(f + λ∆f∗) > U for some λ during the line search.

6 Update f . Compute xf .
7 Claim optimality if the changes in f , xf , and Q(f) are marginal,

or the duality gap is small enough if a feasible solution is known.

Figure 5.4. The DualFD Algorithm.

We design the DualFD algorithm as shown in Figure 5.4 to solve the proper SD-GCS

problem. It starts with the dual feasible f = 0 and iteratively improves Q(f) by finding an

improving feasible direction and performing a line search. On line 1 and 6, the vector xf is

computed by solving the Lagrangian subproblem. On line 5, a number of the Lagrangian

subproblems should be solved to compute xf+λ∆f∗ and then Q(f +λ∆f∗) can be obtained

for line search. Since determining the exact λ that maximizes Q(f +λ∆f∗) would be time

consuming, we perform an inexact line search by Armijo’s Rule (see Chapter 8.3 [59])

with two parameters ε and α, whose typical values are ε = 0.2 and α = 2. During the

line search, the feasibility of the GCS problem is checked every time when Q is computed

according to Theorem 5.9. The algorithm terminates when the problem is claimed to be

infeasible on line 5, or a pre-defined rounds N of iterations are performed, or the optimal

solution is found according to Theorem 5.11 on line 4, or the changes in f , xf , and Q(f)

are marginal, or the duality gap is known and is small enough on line 7.

127

It is guaranteed in the DualFD algorithm that the objective function Q will increase

strictly each iteration, which is not guaranteed by the SubGrad algorithm based on sub-

gradient optimizations. Applying conventional successive linear programming (SLP) ap-

proaches (see Chapter 10.3 [59]) to solve the proper SD-GCS problem would share similar

properties. However, our DualFD algorithm utilizes the special structure in the problem.

First, it is not necessary to formulate a penalty problem because all the constraints in the

SD-GCS problems are linear. Second, the DF problem can be solved by efficient min-cost

network flow algorithms instead of through slower general linear programming techniques.

Third, our DualFD algorithm guarantees to find an increase in the objective function Q

by a line search where the SLP approaches require a trust-region framework.

5.4. Experiments

5.4.1. Experimental Setup

We implement the DualFD algorithm in C++. The DF problem is solved by the min-cost

network flow solver CS2 version 4.3 [50]. The code is compiled by GCC version 3.4 and

runs on a Linux workstation with two 927MHz Pentium III processors and 512M memory.

We use the sequential circuits from the ISCAS89 benchmark suite as our test cases. The

Elmore delay model is used for gate delays. We minimize the total gate sizes under a

given clock period bound T0 with two settings. In the first setting of gate sizing without

clock skew optimization, the clock skews are not optimized and are fixed at 0. In the

second setting of simultaneous gate sizing and clock skew optimization, the clock skews

are optimized within the range [0, T0

2
]. In both settings, the arrival times at the primary

input ports are 0 and the required arrival times at the primary output ports are T0. We

128

associate different delay functions di,j with each timing arc from an input port i to an

output port j of a given gate. For each timing arc (i, j), a weight wi,j is introduced. The

driving resistance associated with each timing arc (i, j) in each gate is Rnomwi,j/x and the

load capacitance is Cnomwi,jx, where Rnom and Cnom are the characteristic parameters

of the gate and x is the size of the gate. An utility program reads the circuits and

generates the proper GCS problems to be solved. Transistor sizing, wire sizing, and wire

capacitances are not currently integrated into the utility program and they can be added

straightforwardly if necessary. We emphasize that our chapter focuses on algorithmic

developments for the sizing problem. Such experimental setup would suffices our purpose

of algorithm evaluation.

The statistics of the circuits are shown in Table 5.1. We report the size of each circuit

in the columns “# vertices” and “# edges”. The number of the sizable gates is shown

in the column “# vars”. The number of the flip-flops is shown in the column “# dffs”.

For each circuit, the clock period bound T0 is computed as half of the minimum clock

period that the circuit can operate assuming that each gate takes its average size and all

the clock skews are 0. Note that we do not know whether there is a feasible solution for

each GCS problem at this point.

To determine if a circuit is feasible, we use Theorem 5.9 and compute U as the total

gate size assuming that each gate takes its maximum size. To evaluate the algorithms,

we need to collect feasible sizing solutions during the optimization to compute the duality

gap. We also need to determine the minimum feasible clock period, i.e. the minimum clock

period that a circuit can operate, for the final sizing solutions. For the experimental setting

of gate sizing without clock skew optimization, the computation is straightforward since

129

Table 5.1. Statistics of the circuits for gate sizing.

name # vertices # edges # vars # dffs
s27 40 51 13 3
s208 291 374 104 8
s298 396 540 133 14
s344 470 607 175 15
s349 475 615 176 15
s382 511 685 179 21
s386 527 756 165 6
s420 585 748 212 16
s444 580 777 202 21
s510 668 902 217 6
s526 685 963 214 21
s641 993 1195 398 19
s713 1059 1298 412 19
s820 1076 1655 294 5
s832 1086 1680 292 5
s838 1161 1484 422 32
s953 1214 1670 424 29
s1196 1590 2259 547 18
s1238 1601 2343 526 18
s1423 1988 2573 731 74
s1488 2062 2868 659 6
s1494 2062 2880 653 6
s5378 7386 9046 2958 179
s9234 14028 16681 5808 211
s13207 20456 24473 8589 638
s15850 24564 29158 10306 534
s35932 47827 63569 17793 1728
s38417 57509 69099 23815 1636
s38584 54901 70133 20679 1426

removing the edge (O, I) from G results in a DAG. For any sizing solution, the minimum

feasible clock period is computed as the longest path delay following the topological

order of the DAG (see Chapter 24.1 [29]). The sizing solution is feasible if and only

if this clock period is not larger than T0. On the other hand, for the experimental

setting of simultaneous gate sizing and clock skew optimization, we implement a heuristic

130

improvement of the Bellman-Ford algorithm [68] and apply Theorem 5.2 to check if

a sizing solution is feasible. Computing the minimum feasible clock period under this

setting is a minimum cost-to-time ratio cycle problem (see Chapter 5.7 [67]). Since this

computation is only required for the final sizing solutions, we perform binary search on

the clock period to determine the minimum feasible one.

5.4.2. Gate Sizing without Clock Skew Optimization

For comparison, we implement the SubGrad algorithm in C++. We do not implement

the pre-processing heuristics in the work [57] because we want to compare the algorithms

that solve the simplified dual problems while the pre-processing heuristics apply to both

the DualFD and the SubGrad algorithms. The code of the SubGrad algorithm is compiled

with the same compiler and runs on the same machine as that of the DualFD algorithm.

The results are compared in Table 5.2.

For each circuit, we first run the SubGrad algorithm. The algorithm is allowed to run

at most 600 seconds. The results are reported under the columns “SubGrad” as follows.

Same to the DualFD algorithm, we start the SubGrad algorithm with f = 0. We use a

step size in the form c/k where k is the current iteration number. Multiple settings of

c are manually tested. The best final solution in terms of the minimum feasible clock

period T and the value of the function L(f) is reported. The total gate size is shown in

the column “area”. The value of the function L(f) is shown in the column “dual”. The

ratio of T to the clock period bound T0 is shown in the column “T/T0”. The number

of the Lagrangian subproblems being solved and the total runtime in seconds are shown

131

in the columns “LRS” and “t” respectively. The circuits “s420”, “s838”, and “s35932”

marked by ∗ in the table are determined to be infeasible according to Theorem 5.9.

Then, we run the DualFD algorithm for each circuit once and obtain the final siz-

ing solution. The algorithm is allowed to run at most 200 iterations and 300 seconds.

The results are reported under the columns “DualFD” as follows. The columns “area”,

“T/T0”, “LRS”, and “t” have similar meanings as those of the SubGrad algorithm. The

value of the function Q(f) is shown in the column “dual”. The number of the DF problem

being solved is shown in the column “DF”. Note that the circuits “s420” and “s838” are

determined to be infeasible by the DualFD algorithm. Moreover, we use the feasible sizing

solution with the minimum total gate size to estimate the duality gap. A zero duality

gap proves that the sizing solution is an optimal solution according to the weak duality

theorem. If there is a feasible sizing solution with total gate size areafea, the upper-bound

of the relative duality gap, i.e. (areafea − dual)/areafea, is reported in the column “gap”;

otherwise, a “-” symbol is shown. It is clear that among the 26 circuits except the 3

infeasible ones, we have proved that for 16 of them, the final sizing solutions of the Du-

alFD algorithm are within 0.5% of the optimal solutions. Note that for the remaining 10

circuits, it is possible that they are as close to the optimal solutions – we simply cannot

prove that without the knowledge of feasible solutions.

It can be seen from Table 5.2 that the DualFD algorithm consistently generates results

with better quality in less runtime. For almost all the circuits, the solutions of the DualFD

algorithm meet the timing specifications better than the SubGrad algorithm. For most

circuits where the solutions of both algorithms are with similar minimum feasible clock

period, the ones of the DualFD algorithm are with smaller total gate size. Moreover, the

132

Figure 5.5. Convergence of s38584 for DualFD w/o clock skew optimization.

solutions of the DualFD algorithm are usually larger in the “dual” columns – although

the columns represent the values of different functions in both algorithms, they can be

compared directly since both functions take the same value for the dual feasible f and

they are the objective functions to be maximized. It should be pointed out that the

reported runtime of the SubGrad algorithm represents a single run of the algorithm. In

our experiments, we usually need to run the SubGrad algorithm around 20 times for each

circuit in order to locate a good step size for the algorithm to converge. However, for

the DualFD algorithm, it is not necessary for us to tune the parameters manually. Thus

the overall runtimes of the SubGrad algorithm are significantly longer than those of the

DualFD algorithm. We believe that the advantage of the DualFD algorithm is due to

the fact that it is more effective to adjust the timing of the whole circuit by the min-cost

network flow technique, than by the subgradient updating based only on local delay and

arrival time information.

133

Figure 5.6. Runtime breakdown for DualFD w/o clock skew optimization.

We plot the convergence sequence of the circuit “s38584” in Figure 5.5. The runtime

breakdowns of the DualFD algorithm for the largest 15 circuits are shown in Figure 5.6.

The algorithm spends most of the runtime on solving the DF problems (shown as “DF”)

and the Lagrangian subproblems (shown as “LRS”) while spending only a small portion

on the other parts (shown as “Other”). The runtime spent on solving the DF problems

gradually dominates the runtime spent on solving the Lagrangian subproblems for the

Elmore delay model as the circuit sizes increase. If a more sophisticated but accurate delay

model is used in the future, the runtime spent on solving the Lagrangian subproblems

would increase but the runtime spent on solving the DF problems would remain unchanged

since the complexity of the DF problem depends most on the size of the graph G. Thus,

considering the difference in the number of the Lagrangian subproblems that should be

solved in both the DualFD and the SubGrad algorithms, we expect that the runtime ratio

of the DualFD algorithm to the SubGrad algorithm will become more significant if a more

sophisticated delay model is used.

134
T
ab

le
5.

2.
R

es
u
lt

s
co

m
p
ar

is
on

b
et

w
ee

n
th

e
D

u
al

F
D

an
d

th
e

S
u
b
G

ra
d

al
go

ri
th

m
s

w
/o

cl
o
ck

sk
ew

op
ti

m
iz

at
io

n
.

S
u
b
G

ra
d

D
u
al

F
D

n
am

e
ar

ea
d
u
al

T
/T

0
L
R

S
t(

s)
ar

ea
d
u
al

T
/T

0
D

F
L
R

S
t(

s)
ga

p
s2

7
90

.9
90

.9
1.

00
0

37
4

0.
08

90
.8

90
.9

1.
00

0
15

50
0.

01
0.

04
%

s2
08

24
4.

1
32

7.
0

1.
58

1
70

82
4.

70
85

6.
5

10
74

.1
1.

01
4

20
0

10
49

1.
75

-
s2

98
24

3.
4

24
2.

2
1.

00
1

54
8

0.
48

24
2.

5
24

2.
5

1.
00

0
35

19
0

0.
18

0.
02

%
s3

44
31

5.
9

33
3.

9
1.

69
0

58
20

5.
07

44
5.

6
44

5.
8

1.
00

1
20

0
11

02
2.

06
0.

37
%

s3
49

31
4.

0
33

2.
2

1.
68

8
56

47
5.

01
44

7.
4

44
7.

6
1.

00
0

20
0

10
98

2.
09

0.
24

%
s3

82
31

6.
8

31
3.

4
0.

99
0

92
4

0.
84

31
5.

7
31

5.
7

1.
00

0
23

13
9

0.
16

0.
01

%
s3

86
29

7.
6

34
6.

6
1.

85
3

61
82

6.
58

12
31

.7
13

61
.0

1.
01

8
20

0
71

2
6.

97
-

s4
20

∗
27

11
.3

23
92

0.
2

2.
57

3
8

0.
06

14
71

.0
24

46
1.

9
2.

58
9

1
9

0.
03

-
s4

44
36

1.
1

36
0.

6
1.

00
0

15
1

0.
19

36
0.

7
36

0.
6

1.
00

0
42

22
8

0.
35

0.
01

%
s5

10
40

7.
7

39
9.

5
1.

62
0

58
73

8.
72

48
0.

1
47

9.
8

1.
00

0
20

0
80

2
2.

43
0.

14
%

s5
26

38
5.

7
37

8.
8

1.
06

1
81

2
1.

23
38

3.
6

38
3.

6
1.

00
0

34
15

8
0.

32
0.

02
%

s6
41

70
7.

6
73

1.
9

1.
50

6
53

75
11

.3
7

88
8.

7
88

8.
9

1.
00

0
56

21
7

1.
10

0.
22

%
s7

13
74

6.
4

78
2.

5
1.

64
8

55
71

13
.6

6
14

08
.3

14
09

.5
1.

00
0

82
44

5
3.

34
2.

73
%

s8
20

52
5.

0
56

4.
2

1.
73

8
98

39
27

.2
1

10
81

.5
10

93
.3

1.
00

4
20

0
72

9
7.

00
-

s8
32

52
0.

0
56

1.
4

1.
72

7
97

13
27

.3
8

10
60

.1
10

73
.9

1.
00

6
20

0
72

8
7.

25
-

s8
38

∗
64

99
.3

63
27

6.
9

4.
72

0
3

0.
05

29
16

.0
80

45
8.

3
4.

76
9

1
9

0.
07

-
s9

53
74

6.
3

75
3.

8
1.

19
0

35
74

11
.5

8
77

5.
9

77
5.

5
1.

00
2

20
0

86
6

4.
56

0.
06

%
s1

19
6

10
12

.3
98

8.
2

1.
41

7
81

76
40

.6
5

10
89

.3
10

88
.2

1.
00

1
20

0
85

3
8.

59
0.

20
%

s1
23

8
98

3.
5

91
3.

4
1.

44
1

90
19

45
.5

6
10

80
.4

10
79

.9
1.

00
0

20
0

87
7

9.
66

0.
09

%
s1

42
3

15
77

.4
11

22
.2

1.
11

3
74

49
48

.7
5

16
69

.6
16

70
.3

1.
00

0
20

0
70

5
11

.0
6

0.
03

%
s1

48
8

11
50

.0
12

14
.5

1.
81

3
69

08
41

.5
2

20
49

.4
21

06
.4

1.
01

1
20

0
71

2
24

.0
8

-
s1

49
4

12
50

.4
13

04
.4

1.
63

2
82

52
60

.3
4

21
53

.2
23

16
.0

1.
02

4
20

0
70

9
25

.3
9

-
s5

37
8

55
08

.8
54

55
.1

1.
34

5
14

41
9

36
2.

23
58

77
.3

60
92

.4
1.

04
5

20
0

66
6

65
.9

0
-

s9
23

4
99

82
.9

98
99

.5
1.

55
5

87
73

39
7.

48
12

99
5.

0
15

56
8.

7
1.

07
6

20
0

82
4

17
5.

41
-

s1
32

07
14

52
7.

6
14

52
2.

2
1.

43
3

28
25

17
9.

38
14

60
8.

7
14

60
8.

4
1.

00
0

20
0

92
6

13
5.

78
0.

00
%

s1
58

50
17

87
4.

6
17

35
1.

2
1.

13
1

74
06

60
0.

06
17

76
8.

6
17

76
6.

7
1.

00
1

20
0

74
7

17
8.

68
0.

09
%

s3
59

32
∗

16
7.

9K
17

92
.3

K
1.

54
6

12
15

.8
0

33
61

3.
8

44
58

3.
1

1.
80

2
79

23
4

30
2.

56
-

s3
84

17
42

13
3.

6
38

63
1.

8
1.

47
8

23
83

60
0.

04
42

78
9.

8
45

57
5.

3
1.

12
9

91
35

8
30

2.
27

-
s3

85
84

34
97

4.
5

34
96

2.
0

1.
01

4
17

32
31

9.
01

34
97

3.
2

34
97

3.
0

1.
00

0
49

24
8

10
0.

25
0.

00
%

∗
T

h
e

ci
rc

u
it

s
ar

e
in

fe
as

ib
le

.

135

5.4.3. Simultaneous Gate Sizing and Clock Skew Optimization

Our utility program generates the proper GCS problems for simultaneous gate sizing and

clock skew optimization according to Section 5.1.3. For each circuit, we run the DualFD

algorithm once and obtain the final sizing solution. The algorithm is allowed to run at

most 200 iterations and 300 seconds. The results are reported in Table 5.3. All the

columns have the similar meanings as in Table 5.2 for those of the DualFD algorithm

for gate sizing without clock skew optimization. The number of the DF problem being

solved and the number of the Lagrangian subproblems being solved are similar to those

shown in Table 5.2 and are thus not reported. Among the 29 circuits, “s420” and “s838”

marked by ∗ are determined to have no feasible solution. According to the column “gap”,

we have proved that for 17 of the remaining 27 circuits, the final sizing solutions are

within 0.5% of the optimial solutions. The runtime breakdowns are shown in Figure 5.7

and exhibit similar trend as that in Figure 5.6. The increases in the runtime shown

as “Other”, which are spent on the parts other than solving the DF problems and the

Lagrangian subproblems, are due to the computations that check whether the sizing

solutions are feasible and that determine the minimum feasible clock period for the final

sizing solutions.

In addition, we compare the final sizing solutions in Figure 5.8 to those of gate sizing

without clock skew optimization obtained by the DualFD algorithm. The three infeasible

circuits “s420”, “s838”, and “s35932” are excluded from the comparison. We show the

ratio of the total gate size (shown as “area”) and the minimum feasible clock period

(shown as “T”) with clock skew optimization to that without clock skew optimization.

The benefit of allowing clock skew optimization can be seen from the figure. For most

136

Table 5.3. Results of the DualFD algorithm w/ clock skew optimization.

name area dual T/T0 t(s) gap
s27 90.8 90.9 1.000 0.02 -
s208 840.3 1083.0 1.111 2.03 -
s298 227.6 227.6 1.000 0.04 0.00%
s344 317.5 317.5 1.001 1.50 0.05%
s349 319.4 319.1 1.000 1.54 0.05%
s382 305.3 305.3 1.000 0.45 0.00%
s386 1204.5 1287.8 1.017 7.47 -
s420∗ 1471.0 24461.9 2.589 0.04 -
s444 344.8 344.8 1.000 0.13 0.01%
s510 457.3 456.2 1.001 3.08 0.33%
s526 369.6 369.5 1.000 1.74 0.02%
s641 858.7 858.8 1.000 0.48 0.18%
s713 1399.2 1400.4 1.000 3.50 0.45%
s820 871.3 871.0 1.000 7.31 -
s832 873.8 873.5 1.000 7.99 -
s838∗ 2916.0 80458.3 4.769 0.07 -
s953 741.3 740.9 0.999 4.63 0.05%
s1196 1088.0 1087.5 1.000 9.11 0.07%
s1238 1078.8 1078.7 1.000 9.68 0.14%
s1423 1444.6 1444.6 1.000 1.78 0.01%
s1488 1916.6 1915.5 1.000 23.55 -
s1494 1970.1 1969.3 1.000 25.18 -
s5378 5882.9 6066.2 1.039 72.90 -
s9234 10076.1 10076.1 1.000 80.52 0.03%
s13207 14579.5 14579.3 1.001 136.48 0.00%
s15850 17527.1 17526.6 1.001 170.52 0.01%
s35932 157.1K 168.2K 1.403 302.13 -
s38417 41001.1 40965.6 1.001 301.19 -
s38584 34970.8 34969.1 1.006 301.82 0.01%

∗ The circuits are infeasible.

circuits, the total gate size is reduced without increasing the minimum feasible clock

period.

137

Figure 5.7. Runtime breakdown for DualFD w/ clock skew optimization.

Figure 5.8. Total gate sizes and minimum feasible clock periods for DualFD
w/ clock skew optimization.

5.5. Summary

In this work, we revisited the approach to solve the gate sizing problem via Lagrangian

relaxation. We formulated a generalized sizing problem GCS, identified a class of proper

138

GCS problems, and presented a method to handle simultaneous sizing and clock skew op-

timization as a proper GCS problem. We established conditions for the objective function

of the simplified dual problem to be differentiable and for the GCS problem to be feasi-

ble. We designed an algorithm based on the method of feasible directions and min-cost

network flow to solve the proper GCS problem. The efficiency and effectiveness of our

new approach was confirmed by the experimental results.

139

CHAPTER 6

An Efficient Incremental Algorithm for Min-Area Retiming

Retiming [69] is one of the most powerful sequential transformations that relocates the

flip-flops (FFs) in a circuit while preserving its functionality. As relocating the FFs could

balance the longest combinational paths and reduce the circuit states, the clock period

and the FF area (or number) in a circuit can be reduced through retiming optimizations.

As the minimum clock period (min-period) retiming minimizes the clock period, and thus

might significantly increase the FF area, the minimum area (min-area) retiming minimizes

the FF area under a given clock period, thus could be used to minimize the FF area even

under the minimum clock period. Therefore, the min-area retiming problem is more

important for sequential circuit design, but of higher complexity [70].

All existing provable approaches to min-area retiming follow the basic ideas of Leis-

erson and Saxe [69]. Given a circuit represented as a graph of n vertices and m edges,

the minimum number of FFs between any two vertices and the maximum delay over the

paths of the minimum number of FFs are first computed. Then, besides one constraint

for each edge requiring that the FF number is nonnegative, for each pair of the vertices

whose computed path delay is larger than the given clock period, i.e. the timing critical

path, a constraint is generated requiring that there is at least one FF between them. Min-

imizing the FF area under those constraints formulates a dual of the min-cost network

flow problem. Since each constraint forms an arc in the flow network, the number of arcs

140

in the network is usually Θ(n2). Even though polynomially solvable, min-cost network

flow computation (see [67]) over a dense graph is usually expensive on large problems.

Shenoy et al. [70] were among the first to consider a practical implementation of

the min-area retiming algorithm. They found that the storage requirement to compute

the timing critical paths and the number of constraints are the bottleneck and proposed

techniques to reduce memory usage and to prune some redundant constraints. Minaret,

proposed by Maheshwari et al. [71], further pruned redundant constraints to reduce the

size of the flow network by exploring the equivalence of retiming and clock skew opti-

mization as proposed in ASTRA [72]. However, even with these pruning techniques, as

experimental results indicate, the flow networks could still be very dense compared to the

original circuit graphs. Our experiments with Minaret showed that a circuit with more

than 180K gates had to formulate and solve a min-cost network flow problem with more

than 122M arcs, which used up all the 2GB virtual memory on our machine.

Recently, Zhou [73] proposed an efficient incremental algorithm for min-period retim-

ing which iteratively moves FFs to decrease the clock period while guarantees to find the

optimal solution in a short time. To overcome the expenses of existing approaches to

min-area retiming, Singh et al. [74] also proposed to incrementally move FFs in the cir-

cuit. However, since they only allow moves that are better in cost and feasible in timing,

their approach is a heuristic that may end up with a suboptimal solution. An efficient

incremental algorithm with provably optimal solution is evasive till now.

In this chapter, we fill the gap with an efficient algorithm named iMinArea that

solves the min-area retiming problem incrementally and optimally. Contrary to existing

algorithms, iMinArea directly attacks the FF area minimization problem instead of its

141

dual network flow problem. Starting with the circuit satisfying the clock period constraint,

iMinArea will iteratively reduce the number of FFs by moving FFs backward over some

gates with fanouts larger than fanins. If a fanout edge currently has no FF or is on a

timing critical path requesting at least one FF, such a move may require FF moves over

other gates. iMinArea dynamically maintains such relations among the gates as a forest.

If there is a cluster of gates whose fanouts are larger than its fanins, the number of FFs can

be reduced by moving one FF over the cluster; otherwise, the current solution is optimal.

An outstanding feature of iMinArea is that a critical timing constraint is dynamically

generated only when it is needed. Maintaining a forest on the gates, it requests only

linear storage (that is, O(n)) on top of the circuit graph. As can be expected, iMinArea

is extremely efficient in handling large circuits. For the same circuit with more than 180K

gates that failed Minaret, our iMinArea algorithm solved the min-area retiming problem

with 65MB memory in less than 1 minutes, which is at least 100 times faster than Minaret

and uses at most 1
30

th of the memory used by Minaret.

The rest of this chapter is organized as follows. The retiming problems are introduced

in Section 6.1. Our algorithmic idea is presented in Section 6.2. The iMinArea algorithm

is proposed in Section 6.3. After experimental results are given in Section 6.4, Section 6.5

concludes the chapter.

6.1. Problem Formulation

As in Leiserson and Saxe [69], a synchronous sequential circuit is modeled by a directed

graph G = (V, E) whose vertices V represent combinational gates and whose edges E

represent signals between vertices. Nonnegative gate delays are given as vertex weights

142

d : V → R∗ and the nonnegative numbers of FFs on the signals are given as edge weights

w : E → N. A special host vertex, the edges from host to the primary inputs, and

the edges from the primary outputs to host, are introduced into the graph to represent

interfaces with the external environment. Given such a graph, the min-area retiming

problem asks for an FF relocation w′ : E → N such that the total FF area in the circuit

is minimum while it works under a given clock period φ.

Conventionally, to guarantee that w′ is a relocation of w, a retiming is given by a

vertex labeling r : V → Z representing the number of FFs moved backward over each

gate from fanouts to fanins. Given r, the FF number on the edge (u, v) after retiming is

wr(u, v) = w(u, v) + r(v)− r(u). A retiming r is valid iff the FF number of every edge is

nonnegative,

P0(r) : (∀(u, v) ∈ E : wr(u, v) ≥ 0).

For a circuit to work under a given clock period φ, the maximum combinational path

delay in the circuit can be at most φ. To compute the maximum path delay, we introduce

a vertex labeling t : V → R to represent the arrival time at the output of each gate. A

valid retiming r is feasible for φ iff the following condition holds for some arrival times t,

P1(r, φ) :
(
∀(u, v) ∈ E : (wr(u, v) > 0) ∨ (t(v) ≥ d(v) + t(u))

)
∧

(
∀v ∈ V : d(v) ≤ t(v) ≤ φ

)
.

Note that the host vertex and the edges entering and leaving host should be ignored in

the above condition.

143

The total FF number is
∑

e∈E wr(e). For any vertex v ∈ V , let FI(v) and FO(v) be

the sets of the fanins and the fanouts of v respectively. To minimize the total FF number

is equivalent to maximize the quantity
∑

v∈V (|FO(v)| − |FI(v)|)r(v). More generally, let

b : V → R represent the reduction in FF area if one FF is moved from the fanouts of

the given vertex to its fanins. The FF area reduction for the retiming r is
∑

v∈V b(v)r(v).

With these notations, the min-area retiming problem can be formally stated as follows.

Problem 6.1 (Min-Area Retiming).

Maximize
∑

v∈V (G)

b(v)r(v),

s.t. P0(r) ∧ P1(r, φ).

For ease of presentation, we extend b to any graph X = (VX , EX) with VX ⊆ V

and any I ⊆ V by defining b(X)
∆
=

∑
v∈VX

b(v), b(I)
∆
=

∑
v∈I b(v), and b(∅) ∆

= 0. We

assume that b(G) = 0 without loss of generality and that the min-area retiming problem

is bounded.

More complicated retiming problems can be solved in the same formulation of Prob-

lem 6.1. One example is to consider the sharing of the FFs at the fanouts of a gate. As

proposed by Leiserson et al. [69], this scenario is handled by including additional con-

straints in P0(r) and setting the labeling b accordingly. Let wmax(u) = max(u,v)∈E w(u, v)

and assume that all the fanout edges of u have the same breadth β(u), which is the costs

of adding a FF along each edge. For each vertex u where the FFs at the fanouts of u

should be shared, a dummy vertex um is introduced. For each fanout v of u, the breadth

144

of the edge (u, v) is changed to β(u)
|FO(u)| and one constraint is added to P0(r) by adding the

edge (v, um) to G with w(v, um) = wmax(u)− w(u, v) and the breadth β(u)
|FO(u)| .

6.2. Algorithm Overview

In this section, we present the general idea behind our incremental algorithm without

delving into technical details, which will be presented in the next section.

As a motivation and comparison to our algorithm, we first discuss Leiserson and Saxe’s

approach to the min-area retiming [69]. Two n×n matrices W and D are first computed

to capture the critical timing constraints, and based on them, a dual of the min-cost

network flow problem is formulated and solved. For any vertex pair (u, v), W (u, v) is

the minimum number of FFs along any path from u to v, and D(u, v) is the maximum

delay of the paths from u to v with W (u, v) FFs. If D(u, v) > φ, then there is a timing

critical path from u and v and a critical timing constraint requiring at least 1 FF on the

path should be generated. The dual of the min-cost network flow problem is formulated

to maximize the FF area reduction subject to the nonnegative FF number requirement

and all the critical timing constraints. As W and D would usually be much denser than

the circuit graph, the flow network would be dense when the given clock period is tight.

Despite the many efforts [70, 71] to reduce the storage requirement for computing the

critical timing constraints and to prune the redundant constraints, the large number of

constraints is still the bottleneck for solving the min-area retiming problems.

To totally avoid the bottleneck, our algorithm does not compute the matrices W or

D at all. The feasibility of clock period φ is checked by dynamically updating the gate

arrival times and comparing them with φ, as in [69, 73]. The objective in Problem 6.1

145

indicates that, in order to improve a given solution, some vertices with b > 0 must have

their r increased. However, a vertex may not be independent: if wr(u, v) = 0, increasing

r(u) requests increasing r(v) at the same time. It is not hard to maintain such a relation.

However, a more involved case happens when the increase of r over a path extends it to

be longer than φ. Incremental arrival time updating can identify such a situation, and we

will keep a relation between the source u and sink v of the violating path. It is revealing

to note that we have D(u, v) > φ and r(v) + W (u, v) − r(u) = 1 for such u and v. In

other words, our algorithm dynamically identifies timing arcs in Leiserson and Saxe’s flow

network and only identifies the currently tight ones that “lie on the road to improvement”.

The relations thus identified on normal circuit edges and on tight timing arcs are called

active constraints. They will force vertices with b > 0 to be bundled with vertices with

b ≤ 0. When there is still a bundle I with b(I) > 0, the objective can be improved by

increasing r on I; otherwise, the current retiming is already optimal.

Algorithmic Idea Incremental Min-Area Retiming
1 Find a feasible retiming r under clock period φ.
2 A← ∅.
3 Loop:
4 Find a positive vertex set I closed under A.
5 If no such I exists:
6 Stop, r is optimal.
7 Else if wr(u, v) = 0 for an edge (u, v) leaving I:
8 Add (u, v) to A.
9 Else if t(v) > φ in rI for some vertex v:

10 Add (q(v), v) to A.
11 Else:
12 r ← rI ; update A.

Figure 6.1. Idea of incremental min-area retiming.

146

The flow of our algorithm is shown in Figure 6.1. A feasible retiming r for the clock

period φ and a set of active constraints A are maintained throughout the algorithm. An

initial feasible retiming r on line 1 may be obtained by any efficient fixed period retiming

algorithms [69, 73]. We call a vertex set I closed under active constraints A if ∀(u, v) ∈ A,

u ∈ I ⇒ v ∈ I. A vertex set I is positive if b(I) > 0, meaning that the increment of r

on I will reduce the FF area. We use rI to denote the new retiming after the increment.

However, such an increase may violate the nonnegative FF number requirement on an

edge leaving I – an active constraint is added in this case on line 8. Such an increase

may also violate the timing constraint if a path longer than φ is created. We use q(v) to

record the source of the critical path to v. If t(v) > φ in rI , an active constraint (q(v), v)

is added on line 10. If a positive I is found that will not generate more active constraints,

the FF area can be reduced by increasing r on I, as on line 12. If, with the growth of

active constraints, there is no positive I closed under A, then r is claimed optimal.

The above idea seems natural but the difficulty to realize it lies in how to effectively and

efficiently maintain the active constraints A. Keeping every identified active constraint

in A is not efficient since it might make |A| very large. On the other hand, if not careful,

removing some active constraints from A may not lead to algorithm convergence, since it

is possible to have active constraints cycling in and out of A. We successfully overcome

the difficulty by maintaining A as a regular forest, which is a forest with special proper-

ties. The details are presented in the next section; we only note here that |A| is at most

n− 1 while the termination of the algorithm is guaranteed. Similar ideas of maintaining

constraints as a forest have been used in other works [75, 76]. However, a major contri-

bution by our algorithm is to incrementally handle dynamically generated constraints in a

147

Figure 6.2. An example of our incremental min-area retiming algorithm.
The labeling b is shown in (a) after gate names. Gate delays are inside each
gate. The clock period is 6. Dotted arcs are active constraints. Exactly one
FF is moved from the fanouts of the gray gates to their fanins.

regular forest, which can not be done by any existing algorithm. Therefore, our algorithm

is much more efficient when it is expensive to generate all the constraints.

We use an example as illustrated in Figure 6.2 to further clarify our idea of incremental

min-area retiming. Detailed executing information is listed in the following table.

148

A, I comments

1 ∅, {g, f} w(f, e) + r(e)− r(f) = 0.

2 {(f, e)}, {g, f, e} t(c) = 7 > 6, q(c) = g.

3 {(f, e), (g, c)}, {f, e} r ← rI .

4 {(f, e), (g, c)}, {f, e} w(f, c) + r(c)− r(f) = 0.

5 {(f, e), (g, c), (f, c)}, {f, e, g, c} w(e, d) + r(d)− r(e) = 0.

6 {(f, e), (g, c), (f, c), (e, d)}, {f, e, g, c, d} t(b) = 7 > 6, q(b) = f .

7 {(g, c), (f, b)}, No positive I r is optimal.

6.3. Algorithm Description

6.3.1. Regular Forests

Consider a forest F with vertices V consisting of rooted trees. For any vertex v ∈ V ,

let Tv be the subtree rooted at v. For any non-root vertex v ∈ V , let pv be its parent.

A labeling B : V → R is maintained such that B(v) = b(Tv). For any non-root vertex

v ∈ V , a direction is assigned to the edge {pv, v} such that an active constraint can be

derived from the edge. A labeling U(v) is used to maintain the direction: if U(v) = true,

then (v, pv) is the active constraint; if U(v) = false, then (pv, v) is the active constraint.

Let A(F) be the set of the active constraints derived from the edges of F . We define

a tree T to be regular iff for any vertex v of T that is not the root of T , the following

conditions hold, which are illustrated in Figure 6.3,

(1) if b(T) > 0, then
(
U(v) ∧ (B(v) > 0)

)
∨

(
¬U(v) ∧ (B(v) ≤ 0)

)
;

(2) if b(T) = 0, then
(
U(v) ∧ (B(v) > 0)

)
∨

(
¬U(v) ∧ (B(v) < 0)

)
;

(3) if b(T) < 0, then
(
U(v) ∧ (B(v) ≥ 0)

)
∨

(
¬U(v) ∧ (B(v) < 0)

)
.

149

We define a tree to be almost regular if the inequalities B(v) < 0 and B(v) > 0 in the

above conditions are substituted with B(v) ≤ 0 and B(v) ≥ 0 respectively. We further

define the forest to be regular if all the trees in the forest are regular.

Figure 6.3. Regular trees.

We call a tree T positive (respectively zero and negative) iff b(T) > 0 (respectively

b(T) = 0 and b(T) < 0). Let P (F) (respectively Z(F) and N(F)) be the set of all the

positive trees (respectively zero trees and negative trees) in F . Let the vertices in P (F)

be VP (F). If P (F) 6= ∅, then I = VP (F) is positive and closed under A(F). Actually, the

following lemma states that such I is the one with the maximum b(I).

Lemma 6.1. Let I ′ be a vertex set that is closed under A(F). Then b(I ′) ≤ b(VP (F)).

Proof. Let T be an almost regular tree with vertices VT . Let A(T) be the set of the

active constraints derived from the edges of T . We claim that for any vertex set I ⊆ VT

closed under A(T),

b(VT − I) ≥ 0. (6.1)

Consider the forest obtained by removing all the edges between VT − I and I in the tree

T . Suppose there are k ≥ 1 tree(s) in the forest. We prove the above claim by induction

on k.

150

Figure 6.4. Proof of Lemma 6.1.

First of all, if k = 1 then either I = ∅ or I = VT . It is obvious that b(VT − I) ≥ 0.

Assume that the claim holds for any 1 ≤ k ≤ l for some positive integer l. Suppose I is

closed under A(T) and k = l + 1. Let s be the root of the tree T . Consider the forest

obtained by removing all the edges between VT − I and I. Since k ≥ 2, we can always

identify a tree X with vertices VX in the forest such that, first, s /∈ VX ; second, there is

exactly one edge e that connects a vertex u ∈ VX to a vertex v ∈ VT − VX . If (u, v) is an

active constraint as shown in Figure 6.4 (a), then VX ⊆ VT − I. It is straightforward that

I ∪VX is closed under A(T). Therefore, applying the induction hypothesis, we must have

b
(
VT − (I ∪ VX)

)
≥ 0. Since s /∈ VX , b(X) = B(u) ≥ 0. Thus,

b(VT − I) = b
(
VT − (I ∪ VX)

)
+ b(X) ≥ 0

On the other hand, if (v, u) is an active constraints as shown in Figure 6.4 (b), then

VX ⊆ I. It is straightforward that I − VX is closed under A(T). Therefore, applying the

induction hypothesis, we must have b
(
VT−(I−VX)

)
≥ 0. Since s /∈ VX , b(X) = B(u) ≤ 0.

Thus,

b(VT − I) = b
(
VT − (I − VX)

)
− b(X) ≥ 0

151

In summary, we always have b(VT − I) ≥ 0 for any I closed under A(T) and k = l + 1.

With induction, we proved the above claim.

Since any regular tree is an almost regular tree, according to Equation (6.1) and the

definitions of the regular trees, we have that if T is a positive regular tree, then

b(VT − I) ≥ 0,∀I ⊆ VT closed under A(T); (6.2)

and that if T is a zero or negative regular tree, then

b(I) ≤ 0,∀I ⊆ VT closed under A(T). (6.3)

For the regular forest F and the vertex set I ′ closed under A(F), we have that I ′ ∩VT

is closed under A(T) for any tree T in F . Therefore, applying Equations (6.2) and (6.3),

we have that,

b(I ′) =
∑
T∈F

b(I ′ ∩ VT)

=
∑

T∈P (F)

(
b(VT)− b

(
VT − (I ′ ∩ VT)

))
+

∑
T∈Z(F)∪N(F)

b(I ′ ∩ VT)

≤
∑

T∈P (F)

b(VT) = b(P (F)).

�

On the other hand, If P (F) = ∅, we can claim optimality as in the following lemma,

Lemma 6.2. Suppose that A(F) is a set of the active constraints of a feasible retiming

r for the clock period φ, i.e., ∀(u, v) ∈ A(F), either wr(u, v) = 0, or (D(u, v) > φ)∧(r(v)+

152

W (u, v)− r(u) = 1). If P (F) = ∅, then r is the optimal solution of the min-area retiming

problem.

Proof. We define the labeling γ : A(F) → Z as follows. If (pv, v) ∈ A(F) for some

non-root vertex v ∈ V , then let γ(pv, v) = −B(v); if (v, pv) ∈ A(F) for some non-root

vertex v ∈ V , then let γ(v, pv) = B(v). Recall that we assume b(G) = 0. Since P (F) = ∅,

there is no negative tree in F and every tree is a zero tree. Thus we have ∀(u, v) ∈ A(F),

γ(u, v) > 0, and ∀v ∈ V ,

b(v) =
∑

(v,j)∈A(F)

γ(v, j)−
∑

(i,v)∈A(F)

γ(i, v).

Suppose r′ is a feasible retiming for φ. Since either wr(u, v) = 0 or (D(u, v) > φ)∧ (r(v)+

W (u, v)− r(u) = 1), ∀(u, v) ∈ A(F), we must have that,

r′(u)− r′(v) ≤ r(u)− r(v),∀(u, v) ∈ A(F).

Therefore,

∑
v∈V

b(v)r′(v) =
∑

(u,v)∈A(F)

γ(u, v)(r′(u)− r′(v))

≤
∑

(u,v)∈A(F)

γ(u, v)(r(u)− r(v))

=
∑
v∈V

b(v)r(v).

Thus r is optimal. �

We store the forest F in an adjacency list data structure using O(n) storage. We

assume that there are two operations that can be completed with O(n) time and space:

153

the first one is CreateTree(F, v), which either removes the edge {pv, v} from the forest if

v is not a root, or keep F unchanged if v is a root; the second one is MergeTree(F, u, v),

which assumes that v is the root of a tree not containing u and makes u the parent of

v. We design the subroutine ChangeRoot(F, v) as shown in Figure 6.5 to update the

regular forest F in order to make v the root of a tree without introducing additional

active constraints into A(F). In each iteration of the For loop on line 2, vi−1 is the root

of the tree containing v, vi is a child of vi−1, and v is in the subtree rooted at vi. The

subtree rooted at vi is cut off from the tree rooted at vi−1 on line 4. In order to keep the

vertices of P (F), Z(F), and N(F) unchanged, we assign vi−1 to be a child of vi on line 7

if necessary. The correctness of the ChangeRoot subroutine is stated in the following

lemma.

Subroutine ChangeRoot
Inputs
F : a regular forest. v: a vertex.

Outputs
Updated F where v is the root of a tree.
1 Let (v0, v1, . . . , vl) with vl = v be the path from the root of the tree

containing v to v in F .
2 For i = 1 to l:
3 bT ← B(vi−1). B(vi−1)← B(vi−1)−B(vi).
4 CreateTree(F, vi).
5 If (bT > 0) ∧ U(vi) ∧ (B(vi−1) > 0)

or (bT < 0) ∧ ¬U(vi) ∧ (B(vi−1) < 0):
6 Continue.
7 MergeTree(F, vi, vi−1), B(vi)← bT , U(vi−1)← ¬U(vi).

Figure 6.5. The ChangeRoot subroutine.

Lemma 6.3. The invariants of the For loop on line 2 are that, first, the regular forest

F is regular; second, A(F) contains no new active constraint; third, the vertices of P (F),

154

Z(F), and N(F) are not changed. When the subroutine terminates, v is the root of a tree

in F .

Proof. We prove the invariants by induction. First, when we enter the loop with

i = 1, obviously the invariants hold. Assume that the invariants hold when we enter

the loop with i = k. When we leave the loop, if the condition on line 5 holds, then the

edge {vi, vi−1} is removed from F and one active constraint is removed from A(F). It

can be verified that F remains regular and the vertices of P (F), Z(F), and N(F) are

not changed. On the other hand, if the condition on line 5 does not hold, then A(F)

remains unchanged when we leave the loop. It can also be verified that the invariants

hold. Therefore, the invariants will hold when we enter the loop with i = k + 1.

Since vl = v, v is the root of a tree when the subroutine terminates. �

Subroutine UpdateForest
Inputs
F :a regular forest.
u :a vertex belongs to VP (F).
v :a vertex does not belong to VP (F).

Outputs
Updated regular forest F with (u, v) added to A(F).
1 ChangeRoot(F, v).
2 If B(v) = 0:
3 MergeTree(F, u, v), U(v)← false.
4 Else:// must have B(v) < 0
5 ChangeRoot(F, u).
6 bT ← B(u) + B(v).
7 MergeTree(F, u, v), B(u)← bT , U(v)← false.
8 ZeroCut(F, u, bT).

Figure 6.6. The UpdateForest subroutine.

155

Let F0 be the forest with no edge, i.e., every vertex is a tree in F0. Then F0 is regular

and A(F0) = ∅. Our algorithmic idea in Section 6.2 suggests to start with the forest F

being F0 and to satisfy P (F) = ∅ eventually with additional active constraints. Note

that b(P (F)) ≥ 0 always holds and P (F) = ∅ is equivalent to b(P (F)) = 0. Intuitively,

either we combine a positive tree with a negative tree to reduce b(P (F)), or we combine

a positive tree with a zero tree to expand P (F) in order to reduce b(P (F)) later. We

propose to capture such progress by a potential tuple,

Ψ(F)
∆
= (b(P (F)), n− |VP (F)|),

with the lexicographic ordering, i.e., for Ψ(F) = (x, y) and Ψ(F ′) = (x′, y′), Ψ(F) ≤ Ψ(F ′)

iff x < x′ or (x = x′) ∧ (y ≤ y′). Assuming that the additional active constraint is

(u, v) satisfying u ∈ VP (F) and v /∈ VP (F), we design the UpdateForest subroutine as

shown in Figure 6.6 that will decrease Ψ(F) by adding (u, v) to A(F) and removing

active constraints from A(F) if necessary. Note that such active constraint must exist

eventually as we move FFs from the fanouts of VP (F) to their fanins; otherwise the min-

area retiming problem is unbounded. In this subroutine, we first simplify the problem

by the ChangeRoot subroutine on line 1 in order to make v a root in the regular forest.

If v is the root of a zero tree, we assign v to be a child of u on line 3. Otherwise, we

further simplify the problem by ChangeRoot on line 5 in order to make u a root. Then

we assign v to be a child of u on line 7. Since after line 7, the tree rooted at u will

not always be regular but will always be almost regular, we call the ZeroCut subroutine

on line 8 to recover F as a regular forest without increasing the potential tuple. The

ZeroCut subroutine is shown in Figure 6.7, which recursively cuts off the subtrees that

156

do not satisfy the conditions of a regular tree. The correctness of the ZeroCut and the

UpdateForest subroutines are stated in the following lemmas.

Lemma 6.4. Assume that every tree in F is regular expect T which is almost regular.

Let u be the root of T . Then after we apply ZeroCut(F, u, b(T)), F becomes regular and

b(P (F)) remains unchanged.

Proof. The ZeroCut subroutine modifies T only by removing edges from it. It will

terminate since every node in T is visited at most once. As the subtrees violating the

definition of the regular trees are removed on line 3, it can be verified that all the trees

in the forest are regular when ZeroCut terminates. �

Lemma 6.5. Assume that F is a regular forest, u ∈ VP (F), and v /∈ VP (F). Then after

we apply UpdateForest(F, u, v), F remains a regular forest, Ψ(F) is strictly decreased, and

(u, v) is the only active constraint added to A(F).

Proof. It is obvious that the UpdateForest will terminate since both the ChangeRoot

and the ZeroCut subroutines terminate. Moreover, (u, v) is the only active constraint

added to A(F) since both the ChangeRoot and the ZeroCut subroutines modify the

forest only by removing edges. If B(v) = 0 on line 2, then it can be verified that F

remains a regular forest. Since b(P (F)) will not change but |VP (F)| is increased by at

least 1, Ψ(F) is strictly decreased. On the other hand, if B(v) 6= 0 on line 2, then we

must have B(v) < 0 according to Lemma 6.3 and that v /∈ VP (F). After line 7, every tree

in F is regular expect the tree rooted at u which is almost regular. Therefore, according

to Lemma 6.4, after line 8, F is regular. Since b(P (F)) will be decreased in this case,

Ψ(F) is strictly decreased. �

157

Subroutine ZeroCut
Inputs
F :a forest.
u :a vertex in an almost regular tree T .
bT :equals to b(T).

Outputs
Updated forest F where the subtree of T rooted at u becomes a
set of regular trees.
1 For each child v of u:
2 If ¬U(v) ∧ (bT ≤ 0) ∧ (B(v) = 0)

or U(v) ∧ (bT ≥ 0) ∧ (B(v) = 0):
3 CreateTree(F, v).
4 ZeroCut(F, v, 0).
5 Else:
6 ZeroCut(F, v, bT).

Figure 6.7. The ZeroCut subroutine.

6.3.2. The iMinArea Algorithm

Combining the algorithmic idea in Section 6.2 and the regular forest data structure, we

design the iMinArea algorithm that solves the min-area retiming problem incrementally

and optimally as shown in Figure 6.8. The invariants of the loop on line 3 are stated in

the following lemma.

Lemma 6.6. At the beginning of each iteration of the loop on line 3, r is a feasible

retiming for φ, F is a regular forest, A(F) is the set of the active constraints of r.

Proof. We prove the lemma by induction. For the first time we enter the loop, it is

obvious that r is a feasible retiming for φ, F is a regular forest, A(F) is the set of the

active constraints of r. Assume that the above 3 conditions hold when we enter the loop.

It is straightforward that r is feasible when we leave the loop. The forest F is regular

158

according to Lemma 6.5. According to the definition of the active constraints, A(F) is

the set of the active constraints of r if r is not replaced by rI . We now only need to prove

that A(F) is the set of the active constraints of rI when rI is feasible. Because I = VP (F),

we have that

(u ∈ I) ∧ (v ∈ I), or (u /∈ I) ∧ (v /∈ I),∀(u, v) ∈ A(F),

which implies that

r(u)− r(v) = rI(u)− rI(v),∀(u, v) ∈ A(F).

On the other hand, we have that

w(u, v)− r(u) + r(v) = 0, or (D(u, v) > φ)∧ (r(v) + W (u, v)− r(u) = 1),∀(u, v) ∈ A(F).

Therefore,

w(u, v)−rI(u)+rI(v) = 0, or (D(u, v) > φ)∧(rI(v)+W (u, v)−rI(u) = 1),∀(u, v) ∈ A(F).

Thus A(F) is the set of the active constraints of rI . �

The preconditions for line 9 and 10 are established by the following lemma.

Lemma 6.7. If wr(u, v) 6= 0 for any fanout edge (u, v) of I, then rI is valid. If

t(v) > φ in rI for some vertex v on line 9, then q(v) ∈ VP (F) and v /∈ VP (F).

Proof. Since r is valid and wr(u, v) 6= 0 for any fanout edge (u, v) of I, we must have

w(u, v)− rI(u) + rI(v) ≥ w(u, v)− r(u) + r(v) ≥ 0,∀(u, v) ∈ E.

159

Thus rI is valid.

Assume t(v) > φ in rI for some vertex v on line 9. Let u = q(v). Then D(u, v) > φ and

W (u, v)− rI(u) + rI(v) = 0. Since r is feasible, we must have W (u, v)− r(u) + r(v) ≥ 1.

Therefore,

rI(u)− r(u) ≥ rI(v)− r(v) + 1.

As both rI(u) − r(u) and rI(v) − r(v) are either 0 or 1, we have rI(u) = r(u) + 1 and

rI(v) = r(v), which imply that u ∈ VP (F) and v /∈ VP (F). �

Algorithm iMinArea
Inputs
φ:the clock period.

Outputs
The optimal feasible retiming r for φ.
1 Initialize a feasible retiming r for φ.
2 Initialize F to be a forest with no edge.
3 Loop:
4 I ← VP (F).
5 If I = ∅:
6 Stop, r is optimal.
7 Else if wr(u, v) = 0 for an edge (u, v) leaving I:
8 UpdateForest(F, u, v).
9 Else if t(v) > φ in rI for some vertex v:

10 UpdateForest(F, q(v), v).
11 Else:
12 r ← rI .

Figure 6.8. The iMinArea algorithm.

We have the following theorem,

Theorem 6.1. The iMinArea algorithm will terminate and when it terminates, r is

an optimal solution of the min-area retiming problem.

160

Proof. When the optimality is not claimed on line 6, either the FF area of r will be

strictly decreased by b(I) > 0 for some I ⊂ V and Ψ(F) remains the same on line 12,

or Ψ(F) will be strictly decreased and the FF area of r remains the same on line 8 and

10 according to Lemma 6.5. Since the problem is bounded, the number of the subsets

of V is finite, and the number of the regular forests with vertices V is finite, we can

claim the termination of the iMinArea algorithm. According to Lemma 6.2 and 6.6, when

the iMinArea algorithm terminates, r is an optimal solution of the min-area retiming

problem. �

The iMinArea algorithm requires O(m) storage for the circuit graph and O(n) storage

for the auxiliary data structures. The time complexity of each iteration of the loop on

line 3 is O(m). The number of iterations can be bounded for reasonable practical VLSI

circuits as stated in the following theorem,

Theorem 6.2. The space complexity of the iMinArea algorithm is O(m). If we assume

that the labeling b is integer-valued, that the FF area in the initial feasible retiming is

bounded by O(m), and that b(P (F0)) =
∑

(v∈V)∧(b(v)>0) b(v) is bounded by O(n), then the

time complexity of the iMinArea algorithm is O(n2m).

Proof. It is straightforward that the space complexity of the iMinArea algorithm is

O(m). Since the labeling b is integer-valued, in each iteration, we decrease b(P (F)) by at

least 1, or increase |VP (F)| by at least 1, or decrease FF area by at least 1. Because the time

complexity of each iteration is O(m), the FF area in the initial feasible retiming is bounded

by O(m), and b(P (F0)) is bounded by O(n), the time complexity is O
(
m(m + n2)

)
=

O(n2m). �

161

Such time complexity is comparable to that of the min-period retiming problem, which

is much simpler than the min-area retiming problem – the best theoretical time complexity

for min-period retiming is O(nm log n) [69], while the worse-case runtime for the most

efficient practical algorithm is O(n2m) [73].

6.3.3. Implementation Details

Many details of the iMinArea algorithm are not specified, e.g. the order to check the

individual constraints on line 7 and 9. We extend the incremental idea to the implemen-

tation of the algorithm. All the techniques introduced in this section will not affect the

theoretical complexity but will effectively improve the practical runtime of the algorithm.

First of all, it is not necessary to generate I on line 4 from scratch every time. It can

be proved that the UpdateForest subroutine changes VP (F) by either inserting vertices

or removing vertices but not both. We modify the UpdateForest subroutine to provide

such information so that we can construct I to be VP (F) incrementally. Let the inserted

vertices or the removed vertices be Q. They will be used later when the constraints on

line 7 and 9 are checked incrementally.

Secondly, it is not efficient to check every fanout edge of I, to compute the labelings t

and q in rI , and to check every vertex every time when the algorithm reaches line 7 and 9.

The constraints should be checked incrementally, i.e. the constraints that are known to

hold should be excluded from being checked, and the labelings t and q should be updated

incrementally. We maintain two vertex queues J and K for such purpose. For any vertex

u /∈ J , if u ∈ I, then for any edge (u, v), either v ∈ I or wr(u, v) > 0. For any vertex

u /∈ K and any vertex v in the combinational fanin cone of u (including u) in rI , t(v) and

162

q(v) are up-to-date, and t(v) ≤ φ. On line 7, we repeatedly remove a vertex u from J

until a edge (u, v) leaving I satisfying wr(u, v) = 0 is found or J is empty. On line 9, we

repeatedly remove a vertex and its combinational fanin cone from K, compute t(v) and

q(v) for any vertex v in the cone, until t(v) > φ for some vertex v or K is empty. The

queues J and K are updated incrementally when I is changed. When I is changed by

inserting the vertex set Q, it is sufficient to insert every vertex in Q to J and to insert

every vertex in the combinational fanout cone of Q in rI to K. Computing the cone could

be time consuming when |Q| is large. In such case we insert every vertex of G to K.

When I is changed by removing the vertex set Q, it is sufficient to insert to J the vertices

u ∈ I that fanouts to a vertex v ∈ Q satisfying wr(u, v) = 0. Identifying such vertices

could be inefficient when |Q| is large. In such case we insert every vertex of G to J . For

the queue K, we insert every vertex of G to it.

If the sharing of the FFs at the fanouts of gates is considered, we introduce redundant

constraints to P0. Let u be any vertex with the dummy vertex um and let v be a fanout

of u. In P0(r), we should have w(u, v)+r(v)−r(u) ≥ 0 and wmax(u)−w(u, v)+r(um)−

r(v) ≥ 0. Thus, wmax(u) + r(um) − r(u) ≥ 0. This redundant constraint is inserted to

P0 and is checked first on line 7 after we remove u from the vertex queue J . The effect

is that when both (u, v) and (v, um) are active constraints, we directly identify (u, um)

as an active constraint and thus include u and um in one regular tree without requiring

a detour to v. As b(u) > 0 and b(u) + b(um) = 0 for most u, b(P (F)) is reduced more

frequently without the necessity to expand P (F) first and the algorithm runs faster.

163

6.4. Experimental Results

We implement the iMinArea algorithm in C++. We obtain the code of Minaret [71]

for comparison and obtain the code of the incremental min-period retiming algorithm [73]

to compute the minimum clock period and the initial feasible retiming in the iMinArea

algorithm. All the codes are compiled by GCC version 3.4 and run on a Linux workstation

with dual 2.4GHz Intel Xeon processors and 2GB memory.

We perform experiments with three benchmark suites: the first one are the conven-

tional ISCAS89 sequential circuits; the second one are the large circuits (myex1 through

myex5) created by the authors of Minaret from combining ISCAS89 circuits; the third

one are the ITC’99 sequential circuits [77], among which there are a few even larger cir-

cuits. We follow Minaret [71] to assume unit FF area and unit gate delay. Note that this

is only for the purpose of comparison and our iMinArea algorithm can handle arbitrary

FF areas and gate delays. For each circuit, we first apply Zhou’s min-period retiming

algorithm [73] to obtain the minimum clock period. Then we use both the iMinArea

algorithm and Minaret to minimize the number of FFs, subject to the minimum clock

period and considering the sharing of the FFs at the fanouts of gates.

The experimental results of the largest 26 circuits among all the benchmark suites are

reported in Table 6.1. The iMinArea algorithm solved the problem for all the other circuits

in less than 0.1 second and thus the results of them are excluded from being reported here.

The statistics of the circuits are reported in the columns “|V |” and “|E|”. For each circuit

and each algorithm, we report the number of FFs in the columns “# FFs” and the runtime

in seconds in the columns “tmp(s)”, “tmr(s)”, and “tima(s)” respectively. The number of

FFs obtained by Minaret and that obtained by iMinArea are the same as expected, which

164

is significantly less than that obtained by min-period retiming ignoring the FF area. The

minimum clock period is reported in the column “φ”. The size of the flow network is

tremendous in Minaret, as indicated by the number of arcs reported in the column “#

arcs”. The iMinArea algorithm can find the optimal feasible retiming after only a few

incremental changes according to the column “# R”, which shows the number of the

feasible retimings found during optimization. The speed-up of the iMinArea algorithm in

comparison to Minaret is reported in the column “ tima

tmr
”. Our iMinArea algorithm is much

more efficient than Minaret with a speed-up of up to more than 100× and more than 60×

in total for all the circuits. We do not report the detailed memory usage but mention

that while Minaret used up all the 2GB virtual memory on our machine for the circuits

“b19(std)” and “b19-1(std)”, our iMinArea algorithm required at most 65MB memory as

for the circuit “b19(std)”.

We are also curious about iMinArea’s performance for a degenerated special case: the

unconstrained min-area retiming problem without clock period constraints. This problem

is conventionally solved as a dual min-cost network flow problem on the circuit graph.

We simply turn off line 1, 9, and 10 in iMinArea. Experimental results show that our

algorithm is 4× faster than the conventional approach using the min-cost network flow

solver CS2 version 4.3 [50]. We also compare our algorithm to Hurst et al. [78], which

is an efficient algorithm specially designed only for the problem with unit FF area and

implemented in ABC [79]. Surprisingly, even though iMinArea is designed for a much

more general problem, it is only 3× slower than Hurst et al. on the special problem.

165
T
ab

le
6.

1.
R

es
u
lt

s
co

m
p
ar

is
on

b
et

w
ee

n
M

in
ar

et
an

d
iM

in
A

re
a.

st
at

is
ti
cs

Z
h
ou

’s
M

in
-P

er
io

d
[7

3
]

M
in

ar
et

[7
1
]

iM
in

A
re

a
t m

r

n
am

e
|V
|

|E
|

#
F
F
s

φ
t m

p
(s

)
#

F
F
s

#
ar

cs
t m

r(
s)

#
F
F
s

#
R

t i
m

a
(s

)
t i

m
a

s1
32

07
.1

80
05

11
29

5
62

9
51

0.
01

44
6

38
63

0
1.

37
44

6
6

0.
54

2.
5

s1
58

50
.1

98
44

13
79

2
56

5
63

0.
03

52
5

38
31

8
6.

10
52

5
4

0.
96

6.
4

s3
59

32
16

42
1

28
94

4
17

29
27

0.
01

17
29

53
08

7
1.

67
17

29
1

0.
58

2.
9

s3
85

84
.1

19
59

6
33

40
2

14
28

48
0.

08
14

27
97

26
8

13
.7

9
14

27
2

2.
32

5.
9

s3
84

17
21

50
5

31
26

1
16

19
32

0.
02

13
70

15
07

16
2

21
.5

2
13

70
5

1.
57

13
.7

m
ye

x
1

26
11

4
42

57
6

25
78

42
0.

11
22

93
81

28
72

25
.7

6
22

93
4

3.
72

6.
9

m
ye

x
2

29
13

5
46

89
0

45
45

45
0.

17
20

22
39

86
97

38
.9

1
20

22
5

5.
74

6.
8

m
ye

x
3

35
71

2
62

01
8

39
12

35
0.

10
32

79
56

93
68

9
88

.2
0

32
79

2
12

.3
2

7.
2

m
ye

x
4

40
99

4
64

52
7

38
31

35
0.

11
28

03
26

35
12

7
83

.6
2

28
03

6
4.

61
18

.2
m

ye
x
5

50
53

3
77

93
9

62
92

47
0.

27
33

69
35

63
55

5
15

1.
43

33
69

7
13

.3
8

11
.3

b
14

(o
p
t)

53
31

11
52

3
10

21
27

0.
02

40
2

89
60

45
7.

65
40

2
3

0.
63

12
.2

b
14

-1
(o

p
t)

40
42

87
50

81
0

24
0.

01
42

3
51

16
27

3.
48

42
3

2
0.

64
5.

4
b
15

(o
p
t)

59
45

11
59

9
73

6
35

0.
03

se
gm

en
ta

ti
on

fa
u
lt

41
7

2
0.

33
-

b
15

-1
(o

p
t)

65
14

13
30

3
10

06
23

0.
01

57
9

14
68

19
7

10
.2

3
57

9
3

1.
45

7.
1

b
17

(o
p
t)

17
22

8
32

50
3

19
82

35
0.

09
12

49
10

98
18

26
11

0.
89

12
49

4
2.

17
51

.0
b
17

-1
(o

p
t)

18
81

3
36

81
9

30
16

24
0.

06
16

40
67

12
93

0
62

.5
9

16
40

4
8.

01
7.

8
b
18

(o
p
t)

58
14

1
11

52
32

53
19

59
0.

65
28

00
12

18
93

34
51

4.
82

28
00

4
33

.3
6

15
.4

b
18

-1
(o

p
t)

57
98

5
11

64
01

62
95

50
0.

80
30

55
88

75
29

2
33

1.
63

30
55

3
55

.7
6

5.
9

b
19

(s
td

)
18

35
58

32
88

66
95

37
10

7
1.

80
-

12
22

86
73

8
>

72
00

51
13

4
57

.7
2

>
12

0
b
19

-1
(s

td
)

17
38

23
31

08
40

94
28

10
7

1.
72

-
11

25
95

51
6

>
72

00
51

08
4

49
.3

6
>

12
0

b
20

(o
p
t)

99
52

19
25

7
13

60
40

0.
04

45
3

17
93

07
18

.7
5

45
3

2
0.

91
20

.6
b
20

-1
(o

p
t)

83
92

15
85

4
11

03
39

0.
03

44
4

10
86

95
12

.1
9

44
4

2
1.

05
11

.6
b
21

(o
p
t)

98
61

18
14

8
11

46
43

0.
04

36
8

87
97

62
28

.7
8

36
8

2
0.

56
51

.2
b
21

-1
(o

p
t)

80
07

14
96

1
10

66
38

0.
03

42
4

12
17

06
12

.0
4

42
4

2
0.

88
13

.6
b
22

(o
p
t)

14
49

3
28

00
9

17
53

39
0.

15
70

2
23

61
92

23
.2

6
70

2
3

3.
13

7.
4

b
22

-1
(o

p
t)

12
95

5
25

34
6

17
11

42
0.

12
70

7
61

28
39

30
.6

2
70

7
2

1.
90

16
.1

to
ta

l
74

41
7

6.
48

>
16

K
43

14
7

26
3.

6
>

60

166

6.5. Summary

In this chapter, we presented an efficient algorithm named iMinArea to solve the min-

area retiming algorithm incrementally and optimally. Instead of attacking the problem

by formulating and solving a min-cost network flow problem in a dense flow network, our

iMinArea algorithm generates the critical timing constraints dynamically, maintains active

constraints in a forest, and retimes a circuit incrementally. Experimental results confirmed

that our algorithm is significantly faster and uses much less memory in comparison to the

best existing approach.

Even though only backward retiming is discussed in iMinArea, forward retiming can

be symmetrically handled and mixed with backward retiming. Therefore, initial state can

be easily enforced in the retimed circuits [80, 81]. Moreover, similar to [82] for min-

period retiming, if the hold conditions need to be satisfied, iMinArea can be extended to

solve the problem optimally.

We should also note that, since it is incremental, iMinArea can be stopped any time

when a designer is satisfied (with the area) or impatient (with the runtime). However, we

have not (yet) found it necessary to do so.

167

CHAPTER 7

Risk Aversion Min-Period Retiming under Process Variations

Process variations have become a critical issue in VLSI fabrication that the designers

must face with aggressive scaling down of VLSI feature sizes. Because of the increasing

variations, chip characteristics, e.g. the clock period and the power consumption, fall

into larger intervals instead of being single values or within narrow ranges. As statistical

analysis approaches enable the designer to analysis the variations, statistical optimiza-

tion algorithms will finally equip the designers with the necessary tools to control such

stochastic effects in order to improve chip yield and system reliability.

A review of the recent advances in statistical timing analysis can be found in the

paper [83]. In summary, state-of-the-art SSTA algorithms can achieve a good balance

in terms of accuracy and efficiency to compute the arrival times and the clock period

under variations by extending the sum and maximum operations to random variables,

which represent the random gate delays and are usually in the canonical form of a linear

combination of independent Gaussian random variables. How to further advance the

current SSTA techniques to handle other aspects of the circuits and how to apply SSTA

for efficient statistical optimization remain the challenge problems for SSTA researchers.

Conventional circuit optimizations have been extended to address the issue of variabil-

ity through statistical optimization. For example, for the gate sizing problems, numerous

approaches have been proposed, e.g.[84, 85, 86]. In the work [84], the Lagrangian re-

laxation based sizing technique is extended to consider variations by introducing a safety

168

margin to the circuit timing, which is dynamically changed according to path delay varia-

tions. In the work [85], the iterative improving gate sizing heuristic is extended to handle

a yield-aware objective function for library-based gate sizing problems. In the work [86],

a statistical gate sizing problem is formulated based on conventional two-stage stochastic

programming problems with fixed recourse [87]. As the problem is shown to be convex,

the authors apply Kelley’s Cutting Plane algorithm for an optimal solution. With those

successes, it is natural to ask if such approaches can provide insights into future SSTA

researches and can be extended to other deterministic optimizations.

Among the many deterministic optimization techniques, retiming [69] is one of the

most powerful sequential transformations that relocates the flip-flops (FFs) in a circuit

without changing the circuit functionality. Intuitively, one can apply retiming to improve

the timing yield of a circuit under process variations since relocating the FFs could balance

the combinational paths. Such idea was previously explored by Wang and Zhou [1].

In that work, the authors proposed a heuristic algorithm by combining SSTA with a

deterministic min-period retiming algorithm [73]. However, there is little theoretical

guarantee that such heuristic would result in a good retiming solution. In this chapter,

we study the statistical retiming problem with a more sound theoretical basis and propose

a new heuristic algorithm to optimize the circuit for better clock period distribution under

process variations. Our contributions in this chapter include:

(1) We formulate the risk aversion min-period retiming problem for statistical retim-

ing optimization. Our formulation is based on conventional two-stage stochastic

programming problems with fixed recourse. A coherent measure of risk called

conditional value-at-risk [88] is used as the objective function to be minimized.

169

We prove that the proposed problem is an integer convex programming problem

by presenting a continuous convex relaxation of it.

(2) We derive an analytical formula for the subgradient of the objective function

based on the continuous relaxation. Compared to the previous works [85, 86]

where the subgradients are computed through perturbing the circuits and eval-

uate the changes statistically for multiple times, our approach is much more

efficient. We can use any random gate delay model through sampling from a

black box representing the underlying variation model. Moreover, we show how

current SSTA techniques can be improved to further speed-up the subgradient

computation and thus the statistical retiming optimizations.

(3) We extend the concept of timing critical paths, which is essential for deterministic

retiming optimizations [69, 73, 9], to a statistical sense. We propose a practical

simplification of the concept such that it can be efficiently integrated into our

algorithm for the risk aversion min-period retiming problem.

(4) We propose the Incremental Risk Aversion Retiming algorithm to solve the risk

aversion min-period retiming problem heuristically. Guided by the subgradient

and the statistical timing critical paths, our algorithm iteratively improves a

retiming solution. The subproblem solved in each iteration is identified as an

incremental min-area retiming problem and is solved through the incremental

min-area retiming algorithm iMinArea presented in Chapter 6.

The rest of this chapter is organized as follows. The retiming problems, the two-stage

stochastic programming problems, and the coherent measure of risk are introduced in

Section 7.1. We formulate the risk aversion min-period retiming problem in Section 7.2

170

and show that it is a integer convex programming problem in Section 7.3. We propose our

Incremental Risk Aversion Retiming algorithm in Section 7.4. After experimental results

are given in Section 7.5, Section 7.6 concludes the chapter.

7.1. Preliminaries

7.1.1. Deterministic Retiming Problems

For retiming, a synchronous sequential circuit is modeled by a directed graph G = (V, E)

as in Leiserson and Saxe [69]. The vertices V represent combinational gates and the edges

E represent signals between vertices. The gate delays are given as the nonnegative vertex

weights d : V → R∗. The numbers of FFs on the signals are given as the nonnegative

edge weights w : E → N.

To guarantee that the circuit functionality will be preserved after FF relocation, a

retiming is given by a vertex labeling r : V → Z, which represents the number of FFs

moved backward over each gate from its fanouts to its fanins. The FF number on the

edge (u, v) after retiming is wr(u, v) = w(u, v) + r(v) − r(u). The retiming r is valid iff

the FF number of every edge remains nonnegative,

wr(u, v) ≥ 0,∀(u, v) ∈ E. (7.1)

For a given valid retiming r, the retimed circuit works under a given clock period φ

iff the maximum combinational path delay in the circuit is at most φ. In such case, the

retiming r is called feasible for φ. To compute the maximum path delay, arrival times

t : V → R are introduced at the outputs of all the gates. The following constraints should

171

be satisfied.

wr(u, v)=0⇒ t(v)≥d(v)+t(u),∀(u, v) ∈ E, (7.2)

d(v) ≤ t(v) ≤ φ, ∀v ∈ V.

Conventionally, two retiming problems can be formulated given the above definitions.

The minimum period (min-period) retiming problem asks for a minimum clock period

such that there exists a feasible retiming for it; the minimum area (min-area) retiming

problem asks for a feasible retiming for a given clock period to minimize the total FF area.

To solve both the min-period and the min-area retiming problems, it would be helpful

to investigate the path-based critical timing constraints that can be integrated into a

mathematical programming problem. A timing critical path is a directed path connecting

two vertices satisfying the conditions that the total number of FFs along the path is the

minimum among all the paths with the same endpoints, and the total delay along the

path exceeds the desired clock period. For any pair of vertices, if there exists a timing

critical path connecting them, a critical timing constraint will require at least 1 FF along

the path after retiming. A valid retiming will be feasible for the desired clock period iff all

the critical timing constraints are satisfied. However, because it is usually expensive and

sometimes prohibitive to generate all the critical timing constraints, practically efficient

algorithms [73, 9] are able to identify those critical timing constraints from Equation (7.2)

only when they are required and to organize them into proper data structure in order to

guide the optimization and to assert optimality with a low storage overhead.

172

7.1.2. Two-Stage Stochastic Programming Problem with Fixed Recourse and

Coherent Measure of Risk

A decision problem whose output depends not only on the decision itself but also some

uncertain parameters not available at the time of decision making is usually formulated

as a two-stage stochastic programming problem with fixed recourse [87, 89, 90, 91]. In

such programming problems, the uncertain parameters unknown at the time of decision

are modeled as random variables. Note that the level of the accuracy that one could

know about the distribution of the random variables would definitely limit one’s ability

to perform optimizations for such programming problems but that is out of the scope of

this chapter. The programming problem is separated into two stages as suggested by its

name. In the first stage, a decision is made and will incur an initial cost. In the second

stage, the uncertain parameters are realized and a second stage cost is determined from

both the decision and the realized uncertain parameters through a known deterministic

programming problem, i.e. the fixed recourse. The objective of the programming problem

is to make a decision in the first stage to minimize the “total cost” of the two stages – as

the outcome is random, such cost may have many possible interpretations.

Let X be the random variable representing the outcome of the two-stage stochastic

programming problem. An interpretation can be formalized by introducing a measure

of risk M [X] that maps X into a real number. As we are interested in minimization

problems, usually a random variable mapped to a smaller value is better than the ones

mapped to larger values. For example, a family of the most popular measures are the

following ones involving the mean and standard deviations of the random variable X,

173

Mγ[X]
∆
= E

[
X

]
+ γ

√
E

[
(X − E

[
X

]
)2

]
.

On the other hand, if X represents the random clock period of a circuit under process

variations, given a target clock period φ, one can measure X by the timing yield, which

is the probability that X is no larger than φ, i.e.,

Yieldφ[X]
∆
= P (X ≤ φ).

However, as pointed out by Rockafellar [88], the above measures are not favorable objec-

tives for optimizations because they are not coherent. A coherent measure of risk should

satisfy a few conditions as follows.

Definition 7.1 (Coherent Measure of Risk [88]). A measure of risk M is a coherent

measure of risk in the basic sense if,

1. M [C] = C for all constants C.

2. M [(1− λ)X + λY] ≤ (1− λ)M [X] + λM [Y] for λ ∈ [0, 1].

3. M [X] ≤M [Y] if P (X ≤ Y) = 1.

4. M [X] ≤ 0 when there exists a infinite sequence of random variables Xk such that

limk→+∞ E
[
(Xk −X)2

]
= 0 and M [Xk] ≤ 0.

5. M [λX] = λM [X] for λ > 0.

Intuitively, the first condition indicates that if a deterministic value is treated as a

random variable taking a single value, the measure should interpret it by the deterministic

value; the second condition requires that the measure to be convex with respect to the

random variables; the third condition ensures the measure to be monotonic, i.e., if one

174

random variable is no smaller than the other with probability 1, the measure of the

former should be no smaller than that of the latter; the fourth condition guarantees that

if a random variable can be approximated by some other random variables, one will accept

it when all the approximations are acceptable; and the fifth condition implies that the

measure is insensitive to scaling.

Coherent measures of risk do exist. For example, the expectation E
[
X

]
of the random

variable X is a coherent measure of risk, though it is feeble and cannot capture the risk

associated with X. A more interesting coherent measure of risk, as proposed by Rock-

afellar [88], is the conditional value-at-risk that measures the risk in a random variable

beyond a risk aversion level α. Generally speaking, the risk aversion level α is similar

to the concept of yield in VLSI designs. For a risk aversion level α, a measure of risk

VaRα[X] called value-at-risk is first defined as the value satisfying the following condition,

P (X ≤ VaRα[X]) = α.

Intuitively, the value-at-risk measure can be treated as the inverse of the timing yield

measure: while the timing yield measure computes the risk aversion level (the timing

yield) from a given value (the target clock period), the value-at-risk measure computes

the value at a given risk aversion level. The value-at-risk measure is not coherent, the

conditional value-at-risk measure, which is coherent, is defined as follows based on value-

at-risk.

CVaRα[X]
∆
= E

[
X|X > VaRα[X]

]
.

175

For any x ∈ R, let x+ denote max{0, x}. One can prove that,

CVaRα[X] = VaRα[X] +
1

1− α
E

[
(X − VaRα[X])+

]
. (7.3)

Therefore, if the conditional value-at-risk should be minimized, it has the advantage to

optimize both the value-at-risk and the tail beyond the value-at-risk.

7.2. Problem Formulation

Under process variations, the delays of the gates in the circuit are no longer determinis-

tic but random variables. Let Ω be the probabilistic space representing process variations.

For a particular variation ω ∈ Ω, assume that the random gate delays are realized as the

deterministic nonnegative vertex weights dω : V → R∗. For a valid retiming r, let the

minimum clock period for the retimed circuit under the variation ω be φω(r). According

to Section 7.1.2, we formulate the following risk aversion min-period retiming problem as

a two-stage stochastic programming problem with fixed recourse.

Problem 7.1 (Risk Aversion Min-Period Retiming). Given a risk aversion level of

α, find an integer-valued vertex labeling r for the following programming problem:

Minimize CVaRα[φω(r)]

s.t. wr(u, v) ≥ 0,∀(u, v) ∈ E,

where for every variation ω belonging to the probabilistic space Ω, φω(r) is the minimum

objective of the following programming problem,

176

Minimize φ

s.t. wr(u, v) = 0⇒ t(v) ≥ dω(v) + t(u),∀(u, v) ∈ E,

dω(v) ≤ t(v) ≤ φ,∀v ∈ V.

It is clear that in the first stage of the risk aversion min-period retiming problem, a

valid retiming will be chosen with an initial cost of 0. In the second stage, when the

random gate delays are realized as dω, the minimum clock period is computed through

the fixed recourse by solving the second stage programming problem. The second stage

cost is the coherent risk aversion measure of the minimum clock period.

7.3. A Convex Relaxation

Note that the proposed risk aversion min-period retiming problem is difficult, not only

because r should be integer-valued, but also because the second stage problem is not a

mathematical programming problem. To overcome such difficulty, we propose to relax

the problem before attempting to solve it.

7.3.1. Continuous Relaxation Formulation

The second stage of the risk aversion min-period retiming problem is not a mathematical

programming problem. Consider an arbitrary simple path p from u to v, i.e. a path

without cycles, in the circuit graph G. Let the total number of FFs along the path be w(p).

Let the total path delay be dω(p) for a particular ω ∈ Ω. We have the following lemma

177

that transforms the second stage problem into a mathematical programming problem by

enumerating paths.

Lemma 7.1. For a valid retiming r, the minimum clock period for a particular ω ∈ Ω

can be computed as that,

φω(r) = max
simple path p in G

dω(p)

wr(p) + 1
. (7.4)

Proof. For a valid retiming r, for any simple path p from u to v, the minimum clock

period φω(r) should satisfy that,

dω(p) ≤ φω(r)(wr(p) + 1),

where wr(p) = w(p) + r(v) − r(u) is the total number of FFs along the path p in the

retimed circuit. Moreover, because r is valid, we should have that,

wr(p) ≥ 0.

On the other hand, there must exist a combinational path p∗ in the retimed circuit with

the maximum combinational path delay. For such path p∗, it must satisfy that,

wr(p
∗) = 0, and dω(p∗) = φω(r).

Therefore, Equation (7.4) holds. �

Note that although the second stage problem as formulated in Lemma 7.1 is a math-

ematical programming problem, its size is exponential in terms of the size of the circuit

178

graph G, while the size of the second stage programming problem as formulated in Prob-

lem 7.1 is linear. As the mathematical programming problem formulation will be only

applied to theoretical analysis, its size will not be a concern for practical implementations.

Based on Equation (7.4), we can relax the requirement that r should be integer-

valued by extending φω(r) to real-valued r. First, we define a real-valued r to be valid iff

wr(u, v) ≥ 0 holds for every edge (u, v) ∈ E. Then for any simple path p from u to v in G,

it remains true that wr(p) ≥ 0. Therefore, for any valid real-valued r, we can define φω(r)

using the same equation as Equation (7.4). In summary, we have the following continuous

relaxation of the risk aversion min-period retiming problem.

Problem 7.2. Given a risk aversion level of α, find a real-valued vertex labeling r for

the following programming problem:

Minimize CVaRα[φω(r)]

s.t. wr(u, v) ≥ 0,∀(u, v) ∈ E,

where for every variation ω belonging to the probabilistic space Ω,

φω(r) = max
simple path p in G

dω(p)

wr(p) + 1
.

7.3.2. Convexity of Formulation

Let r be valid and real-valued. For a particular ω ∈ Ω, assume that for the simple path

pω from uω to vω, we have that,

φω(r) =
dω(pω)

wr(pω) + 1
.

179

An vertex labeling sω : V → {−1, 0, 1} can be introduced to identify uω and vω. Let

sω(uω) = 1, sω(vω) = −1, and sω(x) = 0 for any other x ∈ V . A very important property

of Problem 7.2 is that it is a convex programming problem as stated in the following

lemma.

Lemma 7.2. CVaRα[φω(r)] is a convex function of r for all real-valued valid r. For

a particular valid r, define gr : V → R as that,

gr(u)
∆
=

1

1− α
E

[
Iω(r)

φω(r)sω(u)

wr(pω) + 1

]
. (7.5)

Then gr is a subgradient of CVaRα[φω(r)].

Proof. Let r′ be valid and real-valued. We should have,

φω(r′) ≥ dω(pω)

wr′(pω) + 1
.

Therefore,

φω(r′)− φω(r) ≥ dω(pω)

wr′(pω) + 1
− dω(pω)

wr(pω) + 1

= φω(r)
(wr(pω) + 1

wr′(pω) + 1
− 1

)
= φω(r)

wr(pω)− wr′(pω)

wr′(pω) + 1

= φω(r)
(wr(pω)− wr′(pω)

wr(pω) + 1
+

(
wr(pω)− wr′(pω)

)2

wr′(pω) + 1

)
≥ φω(r)

wr(pω)− wr′(pω)

wr(pω) + 1

=
φω(r)

wr(pω) + 1

((
r′(uω)− r(uω)

)
−

(
r′(vω)− r(vω)

))
.

180

Intuitively, the above inequalities can be explained as follows: if the minimum clock period

φω(r) should be decreased, then one should introduce more FFs onto the path pω by either

incrementing r(vω) or decrementing r(uω); otherwise, if FFs are removed from the path

pω by either decrementing r(vω) or incrementing r(uω), the minimum clock period would

increase. By using the labeling sω, the above inequality can be rewritten as that,

φω(r′)− φω(r) ≥
∑
u∈V

φω(r)sω(u)

wr(pω) + 1

(
r′(u)− r(u)

)
. (7.6)

Given a risk aversion level α, let Iω(r) be 1 if φω(r) ≥ VaRα[φω(r)] and 0 otherwise.

For ease of presentation, denote VaRα[φω(r)] by A and VaRα[φω(r′)] by A′. Then, we

have that,

E
[
Iω(r)

]
= P (φω(r) ≥ A) = 1− α, (7.7)

(φω(r)− A)+ = (φω(r)− A)Iω(r), (7.8)

(φω(r′)− A′)+ ≥ (φω(r′)− A′)Iω(r). (7.9)

Thus,

CVaRα[φω(r′)]− CVaRα[φω(r)](
from (7.3)

)
=

(
A′ +

E
[
(φω(r′)− A′)+

]
1− α

)
−

(
A +

E
[
(φω(r)− A)+

]
1− α

)
(
from (7.8) and (7.9)

)
≥ (A′ − A) +

E
[(

(φω(r′)− A′)− (φω(r)− A)
)
Iω(r)

]
1− α

181

= (A′ − A)
(
1−

E
[
Iω(r)

]
1− α

)
+

E
[(

φω(r′)− φω(r)
)
Iω(r)

]
1− α(

from (7.7)
)

=
E

[(
φω(r′)− φω(r)

)
Iω(r)

]
1− α(

from (7.6)
)

≥ 1

1− α
E

[
Iω(r)

∑
u∈V

φω(r)sω(u)

wr(pω) + 1

(
r′(u)− r(u)

)]
=

∑
u∈V

r′(u)− r(u)

1− α
E

[
Iω(r)

φω(r)sω(u)

wr(pω) + 1

]
=

∑
u∈V

gr(u)
(
r′(u)− r(u)

)
Therefore, CVaRα[φω(r)] is a convex function of r and gr is a subgradient. �

It is straightforward that the set of all the valid real-valued r is convex. We have the

following theorem according to Lemma 7.2.

Theorem 7.1. Problem 7.2 is a convex programming problem. The optimal solu-

tion to the risk aversion min-period retiming problem is an integer optimal solution to

Problem 7.2.

Proof. It is implied by Lemma 7.2. �

7.4. Incremental Algorithm for Risk Aversion Min-Period Retiming

We have shown in Section 7.3 that the risk aversion min-period retiming is an integer

convex programming problem and derived a subgradient of the objective function. Intu-

itively, such subgradient can be used to guide iterative heuristic searches. In this section,

182

we will first show the method to compute the subgradient in practice and then present a

heuristic algorithm based on the idea of incremental retiming.

7.4.1. Computing Subgradient from Black Box Model

According to Lemma 7.2, the subgradient of the objective function can be computed

as Equation (7.5). Obviously, how to compute such subgradient in practice depends on

how the probability space Ω and the random gate delays are specified. There are two

typical models: in the first model, the joint distribution of the gate delays is explicitly

given; in the second model, one can only obtain knowledge of the distribution by drawing

independent samples from a black box. In this chapter, we are interested in the latter

black box model because the black box model is independent of the underlying distribution

and thus our proposed algorithm can handle arbitrary variation models. Moreover, since

the subgradient will be computed from each sample drawn from the block box model,

established deterministic analysis frameworks can be reused. One may be concerned about

the efficiency of the algorithms relying on the black box model because of the multiple

samplings. However, since the subgradient is used to guide the optimization, absolute

accuracy is not necessary and a limited number of samples will be suffice for effective

optimizations. Note that in case of the former model where the distribution is explicitly

given, it would be helpful if current SSTA techniques can be extended to compute the

subgradient according to Equation (7.5) efficiently and accurately. Such extensions are

out of the scope of this chapter and are left as one of the future directions of SSTA.

Since the risk aversion min-period retiming problem requires an integer solution of

Problem 7.2, we maintain an integer solution through our algorithm. Therefore, only

183

Subroutine ComputeSubgrad
Inputs
G :the circuit graph.
r :a valid retiming.
α :the risk aversion level.
N :the number of samples.

Outputs
An approximation ĝr of the subgradient gr.
1 Draw the samples ωi for i = 1, 2, . . . , N .
2 For i = 1 to N :
3 Compute the minimum clock period φωi

and the arrival times t
by Equation (7.2); use q(v) to record the source of the critical path
to the vertex v.

4 Identify the sink vi of a critical path whose delay is φωi
.

The source of the path ui ← q(vi).
5 A← the maximum value such that |{i : φωi

< A}| ≤ αN .
6 ĝr(v)← 0, ∀v ∈ V .
7 For i = 1 to N :
8 If φωi

≥ A:
9 ĝr(ui)← ĝr(ui) +

φωi

N(1−α)
. ĝr(vi)← ĝr(vi)−

φωi

N(1−α)
.

Figure 7.1. The ComputeSubgrad subroutine.

the subgradient for at integer solutions should be computed. Let r be a valid retiming.

Equation (7.5) suggests that the subgradient can be approximated by taking the average

of the corresponding values from the individual samples. Suppose that N samples, ωi, i =

1, 2, . . . , N , are independently drawn from the black box. We design the ComputeSubgrad

subroutine as shown in Figure 7.1 to obtained an approximation ĝr of gr by averaging

the samples. In this algorithm, after the samples are drawn, we perform timing analysis

on line 3 for each sample to determine the minimum clock period and the arrival times

according to Equation (7.2). As the same time, we maintain a vertex labeling q(v) to

record the source of the critical path to the vertex v. Then, the combinational path with

the maximum path delay is identified implicitly on line 4. The endpoints of the path are

184

ui and vi. Note that the path delay should be φωi
and there is no FF along the path

in the retimed circuit. An approximation of VaRα[φω] is obtained on line 5. Finally, in

the loop on line 7, we compute an approximation ĝr of the subgradient gr by averaging

1
1−α

Iωi
(r)φωi

(r)sωi
(u) for each vertex u according to Equation (7.5).

Note that many previous statistical optimization works, e.g. [85, 86], employed a dif-

ferent approach to approximate such subgradient. For a decision variable, the previous

approaches will first perturb the variable and then approximate the subgradient of this

variable by the change of the objective function under such perturbation. Such approach

incurs large runtime overhead because, first, although for some decision variables, per-

turbation will not change the objective function and thus they can be excluded from the

above computation, the number of the decision variables that the above computation must

be applied to will increase as the circuit size increases; second, evaluating the objective

function usually requires expensive SSTA algorithms. On the other hand, our analytical

formula for the subgradient, as in Equation (7.5), allows us to compute the subgradient

comparably efficiently via sampling from a black box model. Moreover, as mentioned

before, the efficiency of our approach can be further improved with future relevant SSTA

researches.

7.4.2. Statistical Timing Critical Paths

As we can approximately compute the subgradient via the ComputeSubgrad subroutine,

an intuitive idea for optimization is to iteratively improve a valid retiming following the

subgradient. Suppose r is a valid retiming. One can improve r to another valid retiming

185

r′ by solving the following problem.

Minimize
∑
v∈V

ĝr(v)
(
r′(v)− r(v)

)
(7.10)

s.t. wr′(u, v) ≥ 0,∀(u, v) ∈ E,

0 ≤ r′(v)− r(v) ≤ 1.

In this problem, the objective function is an first-order approximation of CVaRα[φω(r′)]

obtained from the subgradient approximation ĝr. As the first-order approximation would

become inaccurate when r′ is faraway from r, we require the difference between r′ and r

to be at most 1. Moreover, because the constraints are a system of difference inequalities,

this problem can be solved by network-flow techniques and there always exists an integer-

valued optimal solution. Therefore, it is not necessary to round a non-integer solution to

an integer one for a valid retiming.

However, this intuitive idea does not perform well in practice. The reason is that even

changing r(v) by 1 for some vertex v will result in unexpected changes in the minimum

clock period and thus will make the first-order approximation inaccurate. Cutting plane

techniques, similar to the statistical gate sizing work [86], can be applied to form a more

accurate approximation based on the subgradients computed in the previous iterations.

However, such techniques no longer guarantee the existence of an integer-valued optimal

solution and may require a heuristic to round a non-integer optimal solution. Therefore,

they cannot be applied directly to our retiming problem.

We propose to overcome such difficulty by introducing the concept of statistical timing

critical paths. These paths can be treated as a natural extension of the deterministic

186

timing critical paths as mentioned in Section 7.1.1 to the statistical sense. Let r be the

current valid retiming. Consider a simple path p in G. For any variation ω ∈ Ω, let dω(p)

be the path delay. We define the statistical timing critical paths and state their property

in the following lemma.

Lemma 7.3. Given a constant C, we define a simple path p to be a statistical timing

critical path if CVaRα[dω(p)] > C. For any valid retiming r satisfying CVaRα[φω(r)] ≤ C,

we must have that wr(p) ≥ 1.

Proof. We prove the lemma by contradiction. Assume wr(p) < 1. Then since r is

valid, we must have wr(p) = 0. Then φω(r) ≥ dω(p) for any variation ω ∈ Ω since p is a

combinational path. Thus we should have

CVaRα[φω(r)] ≥ CVaRα[dω(p)] > C,

which violates the assumption that CVaRα[φω(r)] ≤ C. �

Based on Lemma 7.3, we can augment the formulation in Equation (7.10) by the

following constraints without affecting the optimality.

wr′(p) ≥ 1,∀ simple path p satisfying CVaRα[dω(p)] > CVaRα[φω(r)]. (7.11)

Note that the constraints in Equation (7.11) have the same structure as those in Equa-

tion (7.10), i.e., they are a system of difference inequalities. Therefore, the existence of

an integer-valued optimal solution is still guaranteed.

187

7.4.3. Incremental Risk Aversion Retiming Algorithm

One difficulty of the constraints in Equation (7.11) is that since the risk measure should

be computed for many simple paths, it could be inefficient in practice. We propose to

simplify the computation in our implementation by identifying similar paths through

deterministic timing analysis. Let d(v) = E
[
dω(v)

]
be the nominal delay for each gate v.

For a simple path p, let d(p) be the nominal path delay with respect to the nominal gate

delays d. For a given valid retiming r, let φ(r) be the nominal minimum clock period,

i.e., the minimum clock period with respect to d. Then, we assume a simple path to be

a statistical timing critical path if d(p) > βφ(r), where β ≥ 1 is a parameter specified

by the designer. In summary, given a valid retiming r, we propose to solve the following

incremental retiming problem to obtain another valid retiming r′ in order to improve the

conditional value-at-risk measure of risk.

Problem 7.3.

Minimize
∑
v∈V

ĝr(v)
(
r′(v)− r(v)

)
s.t. wr′(u, v) ≥ 0,∀(u, v) ∈ E,

wr′(p) ≥ 1,∀ simple path p satisfying d(p) > βφ(r),

0 ≤ r′(v)− r(v) ≤ 1.

In Problem 7.3, since path enumeration is required to construct the constraints, the

number of the constraints can be quadratic in terms of the number of the vertices, i.e.

Θ(|V |2). This may impose huge storage and runtime overhead if we are going to solve

188

Subroutine IncreRetime
Inputs
G:the circuit graph.
d :the nominal gate delay.
r :a valid retiming.
ĝr:the approximation of the subgradient.
β :a designer specified parameter.

Outputs
The optimal solution r′ of Problem 7.3.
1 Compute φ(r) as the nominal minimum clock period of r. φ← βφ(r).
2 Initialize F to be a regular forest with no edge with respect to −ĝr.
3 Loop:
4 I ← vertices of the positive trees in F .
5 If I = ∅:
6 r′ ← r. Return.
7 If wr(u, v) = 0 for an edge (u, v) leaving I:
8 Update F with (u, v). Continue the loop.
9 Construct a retiming rI by moving 1 FF from the fanouts of I to

their fanins in r.
10 Compute the arrival times t and the sources of the critical path q

for each vertex v in rI .
11 If t(v) > φ in rI for some vertex v:
12 Update F with (q(v), v). Continue the loop.
13 r′ ← rI . Return.

Figure 7.2. The IncreRetime subroutine.

Problem 7.3 directly. However, we can treat Problem 7.3 as a special min-area retiming

problem and apply the incremental min-area retiming algorithm iMinArea presented in

Chapter 6 to solve it. The iMinArea requires only O(|V |) storage on top of the circuit

graph G and is efficient in practice. Let ĝr(v) represents the increase of FF area when

1 FF is moved from the fanouts of v to its fanins. It is straightforward that the given

valid retiming r is feasible for the clock period βφ(r) with respect to the nominal gate

delays. Then, Problem 7.3 actually asks for a set of vertices I such that the retiming

r′, which is obtained by moving 1 FF from the fanouts of I to its fanins, is a feasible

189

retiming for the clock period βφ(r) with the minimum FF area. Because only 1 FF is

allowed to move, it is not necessary to run the iMinArea algorithm until it finishes. We

adapt the iMinArea algorithm presented in Chapter 6 in our IncreRetime subroutine as

shown in Figure 7.2 to solve Problem 7.3. The following lemma states the correctness of

the IncreRetime subroutine.

Lemma 7.4. The IncreRetime subroutine terminates and when it terminate, it returns

an optimal solution of Problem 7.3.

Proof. According to Chapter 6, Theorem 6.1 implies that the IncreRetime subrou-

tine will terminate and Lemma 6.1 implies that it will return an optimal solution of

Problem 7.3. �

Based on the above discussions, we design the Incremental Risk Aversion Retiming

algorithm as shown in Figure 7.3 to solve the risk aversion min-period retiming problem.

In this algorithm, from a given initial valid retiming, we iteratively improve the current

solution by first computing a subgradient on line 6 and then moving to the next solution on

line 7 via solving Problem 7.3. The iteration will stop when a current retiming cannot be

improved as found on line 9, or a maximum number R of iterations have been performed.

The retiming solution with the best conditional value-at-risk measure of risk will be picked

at the end of the algorithm.

7.5. Experiments

We obtain the code of the deterministic incremental min-period retiming algorithm [73]

and build a risk-aware deterministic approach for comparison with our Incremental Risk

190

Algorithm Incremental Risk Aversion Retiming
Inputs
G:the circuit graph.
r :an initial valid retiming.
α :the risk aversion level.
R:the maximum number of iterations.

Outputs
The retiming r∗ with the best CVaRα[φω(r∗)].
1 r∗ ← r.
2 For k = 1 to R:
3 Compute CVaRα[φω(r)] by sampling.
4 If CVaRα[φω(r)] < CVaRα[φω(r∗)]:
5 r∗ ← r.
6 Compute ĝr by ComputeSubgrad.
7 Solve Problem 7.3 for r′ by IncreRetime.
8 If r′ = r:
9 Stop.

10 Else:
11 r ← r′.

Figure 7.3. The Incremental Risk Aversion Retiming algorithm.

Aversion Retiming algorithm. In this approach, we first assign each gate a deterministic

delay derived from the gate delay distribution and a parameter γ specified by the designer.

Then we run Zhou’s algorithm [73] for a min-period retiming to obtain a solution. For a

gate v, the deterministic gate delay is that

E
[
dω(v)

]
+ γ

√
E

[
(dω(v)− E

[
dω(v)

]
)2

]
,

i.e., a weighted summation of the nominal delay and the standard deviation. Note that

this deterministic approach is similar to the “Alternative Algorithm” as proposed in the

work [1].

191

We implement our Incremental Risk Aversion Retiming algorithm in C++. All the

codes are compiled by GCC version 3.4 and run on a Linux workstation with dual 927MHz

Intel Pentium III processors and 512MB memory.

We derive our experimental benchmarks from the conventional ISCAS89 sequential

circuits. To establish a gate delay model for process variations, we assume a joint Gauss-

ian distribution of the gate delay. The parameters of the distribution are determined as

follows. First, we assign each gate a nominal delay proportional to the number of its

fanouts and a standard deviation that is within 20% to 30% of the nominal value. Then,

assuming that each gate has a dimension of 1× 1, we perform a wire-length driven place-

ment of the circuits using the placement tool mPL6 [92]. After placement, the chip area

is divided into a 4 × 4 grid. Two gate delays are assumed to be perfectly correlated if

they are within a same grid block, i.e., the covariance is 1. Otherwise, the covariance of

two gate delays is assigned to be inversely proportional to the distance of the centers of

the grid blocks that the two gates belong to.

We assume a risk aversion level of α = 0.9. For each benchmark, we first perform three

deterministic optimizations with the parameter γ = 0, 1, and 3 and obtain three solutions.

Then we run our Incremental Risk Aversion Retiming algorithm with the initial retiming

being the solution obtained from the above deterministic optimizations with γ = 1. Our

algorithm is allowed to run for at most 50 iterations before one solution is obtained. The

other parameters are N = 500 and β = 1.01. The conditional value-at-risk measure of

the clock period for each solution is evaluated by performing Monte Carlo analysis for

10000 samples to ensure accuracy. The results are reported in Table 7.1 as follows. The

statistics of the circuits are reported in the columns “|V |” and “|E|”. Under the column

192

“Deterministic Approach”, we report the conditional value-at-risk measure of the clock

period for the original circuit before retiming in column “init” and report those of the three

solutions obtained by the deterministic optimizations in the columns “γ = 0”, “γ = 1”,

and “γ = 3”. The column “best” shows the best one from the previous 4 columns, which

is the best solution that one can get through the deterministic approach. The runtimes

of the deterministic approach are all within 1 seconds and are thus excluded from being

reported here. The results from our algorithm is reported under the column “Ours”. The

conditional value-at-risk measure of the clock period is reported in the column “CVaR”.

The improvement in percentage compared to the one in the column “best” is reported in

the column “impr.”. The number of the iterations performed is reported in the column

“# R” and the runtime in seconds is reported in the column “t(s)”. Note that for most

of the benchmark, computing the subgradient uses more than 90% of the runtime. It can

be seen from the table that our algorithm improves the solution quality for almost every

benchmark circuit for up to 8% within fair amount of runtimes.

In addition, we compare the solutions in terms of the timing yield and report the results

in Table 7.2. The target clock periods are determined such that the solution obtained by

our algorithm will have a timing yield of 90%. This table shows that the timing yield can

be effectively improved by optimizing the conditional value-at-risk measure.

193
T
ab

le
7.

1.
R

es
u
lt

s
co

m
p
ar

is
on

b
et

w
ee

n
d
et

er
m

in
is

ti
c

ap
p
ro

ac
h

an
d

ou
r

al
go

ri
th

m
.

S
ta

ti
st

ic
s

D
et

er
m

in
is

ti
c

A
p
p
ro

ac
h

O
u
rs

n
am

e
|V
|

|E
|

in
it

γ
=

0
γ

=
1

γ
=

3
b
es

t
C

V
aR

im
p
r.

#
R

t(
s)

s2
7

11
19

13
.2

9
13

.2
9

13
.1

2
13

.1
2

13
.1

2
13

.1
2

0.
00

%
1

0.
0

s2
08

.1
10

5
18

2
26

.7
8

23
.2

2
23

.2
2

23
.2

2
23

.2
2

23
.1

5
0.

28
%

2
0.

1
s2

98
12

0
25

0
35

.0
3

28
.3

1
28

.3
1

28
.5

0
28

.3
1

28
.1

6
0.

55
%

50
1.

2
s3

82
15

9
31

2
48

.9
7

32
.2

7
32

.2
7

32
.2

7
32

.2
7

31
.8

5
1.

32
%

5
0.

2
s3

86
16

0
35

4
57

.0
8

53
.5

9
53

.5
9

53
.5

9
53

.5
9

53
.5

9
0.

00
%

50
1.

6
s3

44
16

1
28

0
47

.1
5

33
.2

8
32

.6
9

32
.6

9
32

.6
9

32
.2

4
1.

38
%

50
1.

5
s3

49
16

2
28

4
46

.9
7

33
.0

8
32

.6
2

32
.6

2
32

.6
2

32
.4

0
0.

68
%

50
1.

5
s4

00
16

5
32

6
50

.2
3

34
.2

3
34

.2
3

34
.0

1
34

.0
1

33
.2

4
2.

26
%

7
0.

2
s4

20
.1

21
9

38
4

38
.6

9
27

.1
7

27
.1

7
27

.1
7

27
.1

7
27

.0
3

0.
53

%
3

0.
2

s4
44

18
2

35
8

51
.8

7
34

.3
4

34
.0

2
34

.7
3

34
.0

2
33

.5
5

1.
38

%
10

0.
4

s5
10

21
2

43
1

50
.5

4
49

.3
3

49
.5

3
49

.5
3

49
.3

3
49

.3
3

0.
00

%
50

2.
1

s5
26

19
4

45
1

49
.6

1
35

.1
5

34
.8

7
34

.8
7

34
.8

7
33

.4
8

3.
99

%
50

2.
0

s6
41

38
0

56
3

15
4.

35
15

4.
35

15
4.

35
15

4.
35

15
4.

35
15

3.
40

0.
62

%
8

0.
6

s7
13

39
4

61
4

16
7.

47
16

7.
47

16
7.

47
16

7.
47

16
7.

47
16

7.
32

0.
09

%
5

0.
4

s8
20

29
0

77
6

13
3.

84
13

3.
08

13
3.

08
13

3.
84

13
3.

08
13

2.
94

0.
10

%
50

3.
1

s8
32

28
8

78
8

13
4.

14
13

0.
73

13
0.

73
13

0.
73

13
0.

73
13

0.
73

0.
00

%
50

3.
1

s8
38

.1
44

7
78

8
63

.2
8

41
.7

9
41

.3
9

42
.4

5
41

.3
9

41
.1

6
0.

56
%

50
4.

1
s9

53
39

6
76

6
61

.1
2

52
.1

7
51

.9
8

51
.9

8
51

.9
8

51
.9

8
0.

00
%

50
3.

8
s1

19
6

53
0

10
23

66
.7

5
65

.9
5

65
.9

5
65

.9
5

65
.9

5
65

.8
8

0.
11

%
2

0.
3

s1
23

8
50

9
10

55
70

.6
7

70
.6

7
70

.6
7

70
.6

7
70

.6
7

70
.6

6
0.

01
%

2
0.

3
s1

42
3

65
8

11
69

21
1.

37
16

0.
50

16
0.

50
16

0.
50

16
0.

50
15

8.
91

0.
99

%
12

1.
5

s1
48

8
65

4
14

06
19

0.
86

16
1.

60
16

1.
60

16
1.

60
16

1.
60

16
1.

60
0.

00
%

50
6.

7
s1

49
4

64
8

14
12

19
6.

48
17

4.
32

17
4.

32
17

4.
32

17
4.

32
17

4.
32

0.
00

%
50

6.
6

s5
37

8
27

80
42

61
66

.6
4

66
.6

4
66

.6
4

66
.6

4
66

.6
4

64
.0

5
3.

89
%

50
29

.4
s9

23
4.

1
55

98
46

04
11

4.
28

11
4.

28
11

5.
76

11
5.

76
11

4.
28

11
3.

63
0.

57
%

50
50

.6
s1

32
07

.1
79

52
11

08
2

19
3.

40
12

3.
08

12
2.

62
12

3.
10

12
2.

62
11

8.
85

3.
08

%
50

12
0.

8
s1

58
50

.1
97

73
13

56
6

24
3.

37
12

0.
56

11
9.

73
11

9.
51

11
9.

51
10

9.
88

8.
06

%
50

15
6.

0
s3

59
32

16
06

6
28

58
9

18
7.

44
17

0.
62

17
2.

38
17

7.
34

17
0.

62
17

1.
84

-0
.7

1%
50

26
5.

3
s3

84
17

22
18

0
31

12
7

17
3.

83
97

.4
6

96
.6

2
97

.1
8

96
.6

2
93

.6
9

3.
03

%
50

45
7.

3
s3

85
84

.1
19

25
4

33
06

0
26

7.
32

24
5.

73
24

7.
31

24
6.

22
24

5.
73

24
2.

41
1.

35
%

50
44

5.
3

194

Table 7.2. Results comparison in terms of timing yield.

Deterministic Approach Ours
name init γ = 0 γ = 1 γ = 3
s27 88.3% 88.3% 90.0% 90.0% 90.0%
s208.1 62.9% 89.6% 89.6% 89.6% 90.0%
s298 48.5% 89.2% 89.2% 88.7% 90.0%
s382 9.6% 88.0% 88.0% 88.0% 90.0%
s386 80.6% 90.0% 90.0% 90.0% 90.0%
s344 17.6% 84.8% 87.8% 87.8% 90.0%
s349 17.7% 86.2% 88.6% 88.6% 90.0%
s400 10.9% 84.8% 84.8% 85.8% 90.0%
s420.1 13.1% 89.4% 89.4% 89.4% 90.0%
s444 5.8% 86.3% 87.5% 84.9% 90.0%
s510 86.8% 90.0% 89.5% 89.5% 90.0%
s526 17.6% 82.3% 83.9% 83.9% 90.0%
s641 89.1% 89.1% 89.1% 89.1% 90.0%
s713 89.9% 89.9% 89.9% 89.9% 90.0%
s820 88.7% 89.8% 89.8% 88.7% 90.0%
s832 86.8% 90.0% 90.0% 90.0% 90.0%
s838.1 5.7% 87.9% 89.3% 84.5% 90.0%
s953 66.6% 89.5% 90.0% 90.0% 90.0%
s1196 88.2% 89.8% 89.8% 89.8% 90.0%
s1238 90.0% 90.0% 90.0% 90.0% 90.0%
s1423 22.3% 88.4% 88.4% 88.4% 90.0%
s1488 63.0% 90.0% 90.0% 90.0% 90.0%
s1494 71.2% 90.0% 90.0% 90.0% 90.0%
s5378 82.5% 82.5% 82.5% 82.5% 90.0%
s9234.1 90.6% 90.6% 90.0% 90.0% 90.0%
s13207.1 82.8% 88.9% 88.9% 88.9% 90.0%
s15850.1 46.5% 87.2% 87.5% 87.5% 90.0%
s35932 74.2% 91.5% 89.5% 84.7% 90.0%
s38417 0.2% 83.1% 84.3% 82.2% 90.0%
s38584.1 85.3% 90.0% 90.0% 90.0% 90.0%

195

7.6. Summary

In this chapter, we formulated the risk aversion min-period retiming problem to opti-

mize the clock period of a circuit under process variations. The formulation is based on

conventional two-stage stochastic programming problem with fixed recourse with a risk

aversion objective. We proved that the proposed problem is an integer convex program-

ming problem. We gave an analytical formula for the subgradient of the objective function

and proposed to compute an approximation of the subgradient by sampling from a black

box. We presented a heuristic incremental algorithm to solve the proposed problem. and

the effectiveness of our proposed approach is confirmed by the experimental results.

196

CHAPTER 8

Optimal Jumper Insertion for Antenna Avoidance Considering

Antenna Charge Sharing

Antenna effect is a phenomenon in VLSI fabrication where current caused by plasma

process flows through gate oxides and damages them. It reduces both manufacturing

yield and product reliability, which are among the most important issues with the rapid

scaling-down of VLSI feature sizes. The relationship between the amount of damage and

the antenna ratio has been studied for a long time [93, 94, 95]. Generally speaking, a wire

segment acting as antenna may collect charging current when exposed to plasma. If the

segment only connects to gate oxides but not diffusions, a voltage potential may build up

and a discharging current tunneling through the gate oxides will form under the potential

and damage the gate oxides. The damage can be observed via the drift of threshold

voltage; the spatial variations of plasma stress across the wafer may cause variations in

threshold voltages with spatial correlations. Besides the processing parameters, which

are constant, the antenna ratio of total exposed antenna area to total gate oxide area

determines the amount of voltage potential and thus the damage: smaller antenna ratio

results in less damage. Antenna rules are commonly enforced as upper-bounds on the

antenna ratio in design rules [96].

Correcting antenna problem after placement and routing stage is feasible and effective

[97, 98, 99]: if a wire segment violates the antenna rule, either jumpers are inserted to

197

break the wire segment or a protection diode is added to the unused area of the chip and

connected to the wire segment to form a low impedance discharging path. However, as

indicated by the works [100, 101], correction after placement and routing may not be

effective or even possible beyond the 0.13µm technology. The main reason is that with

the scaling-down of the VLSI feature sizes, antenna rules become more stringent. The

number of wire segments violating the rules and thus the numbers of the jumpers and the

protection diodes increase dramatically, which is not practical considering the limitation

of the unused chip area and the routing resource. So, considering antenna effect in an

earlier stage and planning ahead is a must to avoid the problems.

Two recent works [102, 103] considered the antenna effect during the routing stage

by combining jumper insertion to layer assignment. In these approaches, jumper insertion

guides the layer assignment algorithms by predicting the jumper positions. Assigning a

wire segment to a layer has the same effect of inserting a jumper if a discharging path to the

source is formed. If for some reason, e.g. limited routing resource, such layer assignment

is not feasible, a jumper must be inserted. Two more works [104, 105] focused on the

jumper insertion problem itself. The latter one provided an exact algorithm to solve it in

general routing trees with obstacles. In the works [102, 104, 105], a random discharging

model was used and the upper-bound on the total exposed antenna area connected to

gate oxides was controlled. In [103], although the same bound was controlled, the author

pointed out that when multiple sinks are presented, the algorithm will be conservative

and not optimal. More specifically, since there may be multiple gate oxides connected

to one wire segment, the discharging current is “shared” among those gates. Using a

small upper-bound on the total exposed antenna area would over-constrain the routing,

198

while using a large upper-bound on the total exposed antenna area would result in a

huge number of wire segments violating the antenna ratio rule. In addition, when gates

are commonly sized for performance and power consumption during design, determining a

proper upper-bound on the total exposed antenna area could be more difficult. Therefore,

the upper-bound on antenna ratio, which is the most important rule for the antenna effect,

should be directly addressed to improve the accuracy in both antenna planning in routing

and antenna fixing in post-layout stages.

In this chapter, we present an optimal algorithm to solve the jumper insertion problem

under the upper-bound of the antenna ratio. Our algorithm handles general routing

trees, i.e. Steiner trees, as well as obstacles. Since we directly consider the ratio upper-

bound, we get better result for antenna avoidance. We first formulate the RatioJI problem

that models jumper insertion under ratio upper-bound. Then we solve it via dynamic

programming by the RatioPart algorithm. The time complexity is O(α|V |2) and the space

complexity is O(|V |2), where |V | is the number of the nodes in the routing tree and α is

a factor depending on how to find a non-blocked position on a wire for a jumper. In our

experiments with and without obstacles, we have an α equal to 1. Moreover, our dynamic

programming algorithm works on free trees. It is different from the classical dynamic

programming approaches in the VLSI CAD area [106, 107], which work on rooted trees.

We believe that the general framework is valuable for other problems on free trees and

that it is possible to exploit this characteristic to reduce the practical running time via

heuristics that determine the order for performing operations dynamically.

The rest of this chapter is organized as follows. In Section 8.1, backgrounds on antenna

effect are introduced. The RatioJI problem is formulated in Section 8.2. Algorithm

199

to solve the problem is presented in Section 8.3. After experimental results given in

Section 8.4, Section 8.5 concludes the chapter.

8.1. Antenna Effect

A detailed overview of the antenna effect can be found in the work [93]. We briefly

introduce the backgrounds here.

VLSI chips are commonly fabricated layer by layer. Since interconnect networks con-

sist of wires and vias on and between different layers, wire segments are formed during

the fabrication. Some of them connect to gate inputs, which are gate oxides, and oth-

ers connect to gate outputs, which are diffusions. During radio frequency (RF) plasma

processes, exposed wire segments act as antennas. They collect ion and electron currents

from the plasma. Since a wire segment also acts as a capacitor, if the two currents do

not cancel each other through every RF cycle and the wire segment does not connect to

a diffusion, charging on the capacitor happens and an antenna voltage Vg will build up.

When the wire segment only connects to gate oxides, Vg reaches a steady state when the

Fowler–Nordheim (FN) tunneling current through the gate oxides balances the plasma

caused charging current. In such steady state, Vg are also the gate voltages on all the gate

oxides connected to the wire segment. The charging current density Jp is a function of the

antenna voltage and the tunneling current density JFN is a functions of the gate voltage

when the technology parameters are given as constants. Since both the antenna voltage

and the gate voltage are Vg, the following equation shows the relationship between the

antenna ratio and the current densities:

200

antenna ratio
4
=

total exposed antenna area

total gate oxide area
=

JFN(Vg)

Jp(Vg)
.

As plotted in Figure 12 of the work [93], the charging current decreases with the increase

of Vg; but the tunnelings current, which damages the gate oxide, increases with the

increasing of Vg. A higher antenna ratio means a larger Vg and thus a larger JFN and

more damage.

The methods to compute the exposed antenna area are different for different plasma-

based manufacturing processes. According to the work [97], there are three types. The

first are the conductor layer pattern etching processes where the perimeters of the wires

are exposed. So the exposed area is computed as the perimeter length of conductor layer

patterns. The second are the ashing processes where the area of the wires are exposed.

Thus the exposed area is the area of the conductor layer patterns. The third are the

contact etching processes where the area of the contacts on the lower conductor layer

are exposed. Therefore the exposed area is the total area of the contacts. Our problem

formulation is general enough to handle all these types.

8.2. Problem Formulation

Considering jumper insertion on a general routing tree for an upper-bound R on the

antenna ratio, let T = (V, E) be the routing tree where V is the set of nodes representing

the gates as well as the Steiner points and E is the set of tree edges representing wires

connecting those nodes. A function g is defined on every node v ∈ V : if v represents

a gate, g(v) > 0 gives the gate oxide area; if v does not represent a gate but a Steiner

201

point, let g(v) = 0. A function l is defined on an edge segment s: l(s) ≥ 0 is the exposed

antenna area of s.

Jumpers will be inserted on edges to form cuts. For an edge e = (u, v) ∈ E, a cut

ce divides e into edge segments. The size of the cut ce, written as |ce|, is defined as the

number of the jumpers inserted. Since there is no gate within the edge, it is obvious that

at most 2 jumpers are enough to satisfy the antenna rule. Thus ce is written as

ce = (p0 = u, p1, . . . , pk+1 = v), k = 0, 1, or 2.

where (pi−1, pi), i = 1, 2, . . . , k + 1 are the edge segments and |ce| = k. It is not always

possible to insert a jumper at any position. Various reasons introduce obstacles along the

wire. For example, the top layers may be occupied by other nets. To model the obstacles

on a particular wire, which are the positions that jumper cannot be inserted, we use Ce

to denote the set of allowed cuts on an edge e.

By assigning one cut to each edge in the tree, T is partitioned into connected compo-

nents. The partitioning is given by the set of the cuts: C = {ce : e ∈ E}. A partitioning

C is called feasible if ce ∈ Ce for every e ∈ E. Obviously the number of all the jumpers

inserted is
∑

e∈E |ce|. For a connected component S, let g(S) be the total gate oxide area

and l(S) be the total exposed antenna area. A feasible partitioning is valid if for every

connected component S, either g(S) = 0 or l(S)
g(S)
≤ R. The reason is that, according

to Section 8.1, for all the gate oxides in a specific connected component, the tunneling

current densities are the same since the gate voltages are all equal to the antenna volt-

age. Intuitively, the plasma charging current is “shared” among those gates. A connected

202

component can survive larger total exposed antenna area if the total gate oxide area is

larger. Note that it is possible to have no valid partitioning because of the obstacles.

Since inserting jumpers will degrade performance and manufacturing yield, it is pre-

ferred to find the minimal number of jumpers to meet a specific ratio upper-bound. The

corresponding partitionings are called the optimal partitionings. The optimal jumper

insertion under ratio upper-bound is formulated as the following RatioJI problem.

Problem 8.1 (RatioJI). Suppose T = (V, E) is a tree, functions g and l model the

gate oxide area and the exposed antenna area respectively, and set Ce models the obstacles

on a wire e where jumpers cannot be inserted. For a ratio upper-bound R, find an optimal

partitioning, which is a partitioning C with ce ∈ Ce,∀e ∈ E and a minimal number of

jumpers such that for a connected component S, either the total gate oxide area g(S) is 0

or the ratio of total exposed antenna area to total gate oxide area l(S)
g(S)
≤ R.

The RatioJI problem models both antenna fixing and antenna planning under various

antenna ratio models. For antenna fixing after layer assignment, the problem can be

solved at each layer to meet the antenna ratio rule on that layer with proper parameters.

For antenna planning in routing, the layer assignment can be obtained in an algorithm

similar to those in [102, 103] by predicting jumper positions via solving the RatioJI

problem. Although the predictions may be inaccurate, the previous works [102, 103]

showed that the number of jumpers required for antenna fixing later could be reduced.

Two commonly used models of antenna ratio are the partial antenna ratio (PAR) and

cumulative antenna ratio (CAR) [103]. In PAR, the antenna ratio bound is applied to the

antenna ratio computed at a specific layer for a specific wire segment at a time. Different

203

layer may have different bound. The RatioJI problem models PAR by constructing T to

represent the part of routing tree including that wire segment and all the interconnects

and gates connected to it in lower layers which are already fabricated. Other parameters

are chosen accordingly. In CAR, the antenna ratio is defined as the ratio of the cumu-

lative antenna area to its connected gate area. The RatioJI problem models CAR by

constructing T to represent the cumulative antenna area and its connected gates and l to

represent the antenna area contributing to the cumulative antenna area.

8.3. Optimal Jumper Insertion

8.3.1. Algorithm Overview

We solve the RatioJI problem by dynamic programming. Classical dynamic programming

algorithms usually work on a rooted tree [106, 107]. However, a routing tree T is a free

tree without a root. Our algorithm will process the edges one by one in some order. We

briefly describe our algorithm here while the definitions of terminologies and the details

of algorithm will be presented in later sections.

Our algorithm consists of two stages. In the first stage, dominant solutions are gen-

erated bottom-up. At any step, the edges are divided into two groups: processed or un-

processed. Dominant partial solutions are maintained for every tree in the forest formed

by connecting all nodes via the processed edges. At the beginning, no edge is processed.

Thus every node is a tree by itself and has only one partial solution. The algorithm pro-

cesses one edge at a time by combining two trees with an unprocessed edge and computing

the dominant partial solutions of the new tree based on those of the two old trees. An

edge can be processed only if it is the only unprocessed edge incident to one tree. An

204

example is shown in Figure 8.1. Starting from Figure 8.1 (a), there are three possible

edges to be processed next as shown in (b), (c), and (d). Note that the edge (e, h) cannot

be processed at the current step. When every edge is processed at the end, the forest

contains one tree, which is T itself, and all the dominant solutions are generated.

Figure 8.1. Process one edge by combining two trees. Bold edges are
processed; others are unprocessed. Solid nodes are gates; others are Steiner
points. In (a), the edges (a, g), (b, g), (f, i), and (c, h) are processed while
the dominant partial solutions are maintained on trees Tg, Td, Th, and Ti.
One of the three edges, (e, i), (e, g), and (d, h), could be processed next:
in (b), (e, i) is processed by combining Te and Ti into T ′

e; in (c), (e, g) is
processed by combining Te and Tg into T ′

e; in (d), (d, h) is processed by
combining Th and Td into T ′

h.

In the second stage, since there is one optimal partitioning among the dominant so-

lutions if there exists a valid partitioning, we can either find an optimal partitioning or

report that there is no valid partitioning. A top-down back-tracking will construct the

optimal partitioning if there is one.

205

8.3.2. Dominant Solutions

Denote the forest formed by connecting all nodes via the processed edges by F . Suppose

there are m trees in F , written as T1, T2, . . . , Tm. There are m − 1 unprocessed edges

currently. When m > 1, every Ti has at least one unprocessed edge connects to it because

T is connected. Since an edge can be processed only if it is the only unprocessed edge to

one tree, each tree Ti can only have one node ui incident on the unprocessed edges.

For a tree Ti, partial solutions are the partitionings of Ti with the following properties.

For every component S not containing ui, the ratio upper-bound must be satisfied, i.e.,

either g(S) = 0 or l(S)
g(S)
≤ R. Denote the component containing ui by Si. If there is at

least one unprocessed edge incident on ui, the upper-bound can be violated in Si, which

may be corrected when future combinations are executed. For a partition of Ti, let n be

the number of the jumpers inserted. Define x = l(Si) − g(Si)R. Let I be 0 if g(Si) = 0

and 1 if g(Si) > 0. The partial solution is represented by the triple (n, x, I). To ease the

representation, we refer to the partial solution by the triple when there is no ambiguity.

Dominant relationship is defined among the partial solutions such that only necessary

partial solutions are maintained for each tree Ti. For two different partial solutions P1 =

(n1, x1, I1) and P2 = (n2, x2, I2) of one tree, we say that P1 dominates P2 if (n1 ≤ n2) ∧

(x1 ≤ x2) ∧ (I1 = I2). The reason is that a partial solution with smaller n and x can

always substitute another one of the same I in any optimal partitioning of T .

If there is no other partial solutions dominating (n, x, I), we call (n, x, I) a dominant

partial solution. By denoting the number of nodes in Ti as Ni, the number of dominant

partial solutions of Ti is upper-bounded by a linear function of Ni.

206

Lemma 8.1. There are at most 2Ni − 2 jumpers on a tree Ti of Ni nodes and thus

there are at most 4Ni − 2 dominant partial solutions to maintain.

Proof. A tree Ti of Ni nodes has Ni − 1 edges. Since at most 2 jumpers are inserted

per edge, there are at most 2Ni − 2 totally.

For each n ∈ {0, 1, . . . , 2Ni − 2} and I ∈ {0, 1}, only one dominant partial solution

(n, x, I) is maintained. Thus there are at most (2Ni − 1)× 2 = 4Ni − 2 dominant partial

solutions to maintain.

�

When there is only one tree in the forest, i.e. m = 1, we call the dominant partial

solutions of the tree dominant solutions. Note that the set of dominant solutions could

be different with different orders to process the edges.

8.3.3. Generation of Dominant Solutions

In this section, we consider how to generate solutions for a new tree by assimilating one

tree into another. Assume that there are more than one tree in the forest, i.e, m > 1.

Consider an unprocessed edge e = (u, v) connecting two trees Tu and Tv in the forest

F . We process the edge e and combine Tu and Tv only when e is the sole unprocessed

edge incident on u. Denote the new tree made up of Tu, Tv, and e by T ′
v. The dominant

partial solutions of tree T ′
v are generated from those of the trees Tu and Tv, as stated in

Lemma 8.2.

207

Lemma 8.2. A dominant partial solution (n, x, I) of T ′
v consists of a dominant partial

solution (nv, xv, Iv) of Tv, a dominant partial solution (nu, xu, Iu) of Tu, and a cut ce on

e. The ce and (n, x, I) must be one of the following cases.

1. If ce = (u, v), then n = nv +nu and x = xv +xu + l(u, v). The I is 0 if Iv = Iu = 0;

otherwise I is 1.

2. If ce = (u, p1, v), then n = nv + nu + 1, x = xv + l(p1, v), and I = Iv. The Iv

and Iu must not be 1 at the same time. If Iu = 1, then ce is the element in Ce satisfying

xu + l(u, p1) ≤ 0 with the minimal l(p1, v). If Iu = 0, then ce is the element in Ce with the

minimal l(p1, v).

3. If ce = (u, p1, p2, v), then n = nv + nu + 2, x = xv + l(p2, v), and I = Iv. If Iu = 1,

then ce is the element in Ce satisfying xu+l(u, p1) ≤ 0 with the minimal l(p2, v). If Iu = 0,

then ce is the element in Ce with the minimal l(p2, v).

Proof. We proof the lemma by examining each case.

1. When ce = (u, v), it is straightforward that n = nv + nu, x = xv + xu + l(u, v),

and I is 0 if Iv = Iu = 0 or 1 otherwise.

2. When ce = (u, p1, v), it is straightforward that n = nv + nu + 1, x = xv + l(p1, v),

and I = Iv. Denote the component containing u in the partial solution (n, x, I)

by S.

If Iu = 1, we have g(S) > 0. The following condition should be satisfied by

p1:

0 ≥ l(S)− g(S)R = xu + l(u, p1).

We proof Iv = 0 by contradiction. If Iv 6= 0, we have Iv = 1 and that,

208

x = xv + l(p1, v)

≥ xv + l(p1, v) + (xu + l(u, p1))

= xv + xu + l(u, v).

The (n, x, I) is dominated by the partial solution in case 1., which violates our

assumption. So Iv should be 0 and ce should be the element in Ce satisfying

xu + l(u, p1) ≤ 0 with the minimal l(p1, v).

If Iu = 0, we have g(S) = 0. So ce should be the element in Ce with the

minimal l(p1, v).

3. When ce = (u, p1, p2, v), it is straightforward that n = nv+nu+2, x = xv+l(p2, v),

and I = Iv. Denote the component containing u in the dominant partial solution

(n, x, I) by S.

If Iu = 1, we have g(S) > 0. The following condition should be satisfied by

p1:

0 ≥ l(S)− g(S)R = xu + l(u, p1).

So ce should be the element in Ce satisfying xu + l(u, p1) ≤ 0 with the minimal

l(p2, v).

If Iu = 0, we have g(S) = 0. So ce should be the element in Ce with the

minimal l(p2, v).

�

209

Suppose Dv and Du are the sets of the dominant partial solutions of Tv and Tu respec-

tively. We design the Combine subroutine as shown in Figure 8.2 based on Lemma 8.2.

The Combine subroutine updates Dv to be the set of the dominant partial solutions of T ′
v.

A set B is stored for every dominant partial solution to enable the back-tracking which

is used to construct the optimal partitioning later.

Subroutine Combine
Inputs
e = (u, v), Dv, and Du.

Outputs
Updated Dv.
1 D∗ ← ∅.
2 For each (dv, du) in the set Dv ×Du:
3 (nv, xv, Iv, Bv)← dv; (nu, xu, Iu, Bu)← du.
4 For each case in Lemma 8.2:
5 Compute (n, x, I) and ce.
6 B ← Bv ∪ {(nu, xu, Iu, u, e, ce)}.
7 Add (n, x, I, B) to D∗.
8 Remove non-dominant partial solutions from D∗.
9 Dv ← D∗.

Figure 8.2. The Combine subroutine.

In Figure 8.2, D∗ holds the candidates of the dominant partial solutions. Suppose Tu

has Nu nodes and Tv has Nv nodes. The set D∗ is implemented as an array of 4(Nu+Nv)−2

elements since there are at most 4(Nu + Nv) − 2 combinations of n and I according to

Lemma 8.1. Since Du will not be modified by any following Combine calls, the position

of element (nu, xu, Iu, Bu) in the array Du is stored instead of the triple (nu, xu, Iu) on

line 6. For the partial solutions generated on line 7, only the ones with different n’s and

I’s are stored in D∗; if there are partial solutions with the same n and I, only the one

210

with the least x is stored. Remaining non-dominant partial solutions in D∗ are removed

on line 8. Then line 7 takes O(1) time and both lines 1 and 8 take O(Nu + Nv) time.

8.3.4. The RatioPart Algorithm

ALGORITHM RatioPart
Inputs
T , g, l, Ce’s, and R.

Outputs
Report an optimal partitioning if there is one.
1 Mark all the edges as unprocessed.
2 For each u in V :
3 If g(u) = 0:
4 Du ← {(0, 0, 0, ∅)}.

Else:
5 Du ← {(0,−g(u)R, 1, ∅)}.
6 While there is at least one unprocessed edge:
7 Pick an edge e = (u, v) such that it is the only unprocessed edge on

u.
8 Update Dv by the Combine subroutine.
9 Mark e as processed.

10 w ← the last v in the While loop.
11 d1 ← the element with the least n in Dw whose I = 0.
12 d2 ← the element with the least n in Dw whose I = 1 and x ≤ 0.
13 If none of d1 and d2 exists:
14 Report there is no valid partitioning.

Else:
15 (n, x, I, B)← the one with the smaller n.
16 ReportPart(B).

Figure 8.3. The RatioPart algorithm.

Figure 8.3 gives the RatioPart algorithm that solves the RatioJI problem. At the

beginning, no edge is processed. The forest contains |V | trees where every tree contains

one node. There is one dominant partial solution on each tree since there is only one

possible partitioning. According to this, the Du’s are built on line 2 to 5. The While

211

loop on line 6 to 9 processes the edges and updates the dominant partial solutions. The

invariant of the loop is stated in Lemma 8.3.

Lemma 8.3. At line 7 of the RatioPart algorithm, for every 1 ≤ i ≤ m, all unpro-

cessed edges connecting to Ti incident on one node ui and Dui
has all the dominant partial

solutions of Ti.

Proof. We prove the above invariant by induction.

Before the While loop on line 6 to 9, every node v is a tree Tv by itself. All unprocessed

edges connecting to Tv incident on v. The For loop on line 2 to 5 initializes all the Dv’s

correctly.

Assume the invariant holds on line 7. Denote the tree containing u by Tu and v by Tv

respectively. Denote the tree after processing e and combining Tu and Tv by T ′
v. We only

need to prove that the invariant holds for T ′
v when the current loop finishes since all the

other trees and their dominant partial solutions remain unchanged.

Since all unprocessed edges connecting to Tu incident on u, the edge e is the only

unprocessed edge connecting to Tu. After e is processed, there is no unprocessed edge

connecting to Tu. Thus all unprocessed edges connecting to T ′
v incident on v.

We prove the D∗ in the Combine subroutine contains all the dominant partial solutions

of T ′
v by contradiction. Assume this is not the case. Suppose the dominant partial

solution (n′, x′, I ′) /∈ D∗ and it consists of some partial solution (n′v, x
′
v, I

′
v) of Tv, some

partial solution (n′u, x
′
u, I

′
u) of Tu, and some cut ce on e. Because Dv has all the dominant

partial solutions of Tv, there must exist (nv, xv, Iv) ∈ Dv such that nv ≤ n′v, xv ≤ x′v and

Iv = I ′v. Similarly there is (nu, xu, Iu) ∈ Du such that nu ≤ n′u, xu ≤ x′u and Iu = I ′u. So,

212

denoting the partial solution consisting of (nv, xv, Iv), (nu, xu, Iu), and ce by (n, x, I), we

have n ≤ n′, x ≤ x′, and I = I ′. Since (n′, x′, I ′) is a dominant partial solution, it must

be true that n = n′, x = x′, and I = I ′. On the other hand, according to Lemma 8.2,

either (n, x, I) ∈ D∗ or there exists some partial solution in D∗ dominating (n, x, I). This

contradicts that (n′, x′, I ′) /∈ D∗ is a dominant partial solution.

Therefore the invariant holds for T ′
v after the current loop.

�

The code on line 11 to 16 searches for an optimal partitioning in the set Dw. It is

guaranteed to find one if there is one, which is stated in Lemma 8.4.

Lemma 8.4. If there is a valid partitioning of T , then an optimal partitioning is

presented in the dominant solutions Dw.

Proof. If there is a valid partitioning, there must be a optimal partitioning. Suppose

the partial solution (n, x, I) of Tw is the optimal partitioning with the minimal x. We

prove (n, x, I) ∈ Dw by contradiction. According to Lemma 8.3, Dw has all the dominant

partial solutions of Tw. If (n, x, I) /∈ Dw, then there exists (n′, x′, I ′) ∈ Dw dominating

(n, x, I). So n′ ≤ n, x′ ≤ x, and I ′ = I. Thus (n′, x′, I ′) is also valid. Since (n, x, I) is the

optimal partitioning with the minimal x, we should have n′ ≥ n and x′ ≥ x. So n = n′,

x = x′, and I = I ′, which contradicts that (n′, x′, I ′) dominating (n, x, I).

�

On line 15, (n, x, I) is the triple of the optimal partitioning and the set B contains

information to reconstruct the optimal partitioning. The subroutine ReportPart, as shown

in Figure 8.4, takes B as the parameter and recursively reports the optimal partitioning.

213

The search on line 3 of the ReportPart subroutine takes constant time since we implement

Du as an array and the position of element with the triple (nu, xu, Iu) in the array is stored.

Subroutine ReportPart
Inputs
The set B.

Outputs
Report the cuts corresponding to B.
1 For each (n, x, I, u, e, ce) in B:
2 Report the cut ce on edge e.
3 Find the element (nu, xu, Iu, Bu) in Du satisfying nu = n, xu = x, and

Iu = I.
4 ReportPart(Bu).

Figure 8.4. The ReportPart subroutine.

The correctness of the algorithm is given by the following theorem.

Theorem 8.1. The RatioPart algorithm terminates in finite time and gives an optimal

partitioning if there is a valid one.

Proof. The While loop on line 6 to 9 terminates because the number of unprocessed

edges is limited and decreases by one each time. The ReportPart subroutine terminates

because the number of edges is limited and the cut on each edge is reported exactly once.

It is straightforward that the other parts of the RatioPart algorithm terminate so the

whole RatioPart algorithm terminates.

A valid partitioning is a partial solution (n, x, I) of Tw such that either I = 0 or

(I = 1) ∧ (x ≤ 0). By searching all such partial solution in Dw, the RatioPart algorithm

gives an optimal partitioning if there is a valid one according to Lemma 8.4.

�

214

In the current implementation, the order of the edges to be processed is determined

statically in the RatioPart algorithm for simplicity. From an arbitrary node, a depth-first

search (DFS) [29] on the routing tree is performed. Define the finishing time of edge

(u, v) to be the finishing time of v where we assume that u is discovered prior to v. The

edges are ordered according to their finishing times. For example, by a DFS of the tree

in Figure 8.1 starting from the node e, the nodes are discovered in the order e, g, a, b,

h, c, d, i, and f and finished in the order a, b, g, c, d, h, f , i, and e. Thus the order

of the edges are (a, g), (b, g), (g, e), (c, h), (d, h), (h, e), (f, i), and (i, e). Note that it is

possible to dynamically determine which edge to be processed next when there are multiple

choices like the situation in Figure 8.1. Although the set of the dominant solutions may

be different for different choices, Theorem 8.1 ensures that an optimal partitioning will

always be found if there is one. A good heuristic may benefit both the running time and

the storage requirement. We leave this as a direction of future research.

8.3.5. Complexity of the RatioPart Algorithm

The space complexity of the RatioPart algorithm is stated in Theorem 8.2.

Theorem 8.2. The space complexity of the RatioPart algorithm is O(|V |2).

Proof. In the RatioPart algorithm, Du is stored for every u. Each Du contains at

most 4|V | − 2 elements according to Lemma 8.1. Suppose there are mu edges incident on

u in T . Then for every element in Du, it contains a set B with at most mu elements. So

Du requires at most O(mu|V |) storage and the total storage required by all the Du’s is

that,

215

∑
u∈V

O(mu|V |) = O((
∑
u∈V

mu)|V |) = O(|V |2).

For the Combine subroutine, D∗ is an array of at most O(|V |) elements and every ele-

ment requires at most O(|V |) storage. So it requires at most O(|V |2) storage. For the

ReportPart subroutine, since the depth of the recursion is at most |V |, it requires O(|V |)

storage. Therefore, the space complexity for the RatioPart algorithm is O(|V |2).

�

To evaluate the time complexity, we assume that both functions g and l take constant

time to compute. The time complexity is stated in Theorem 8.3.

Theorem 8.3. The time complexity of the RatioPart algorithm is O(α|V |2) where α

is a factor depending on how to find a non-blocked position on a wire for a jumper.

Proof. We use the potential method [29] to evaluate the total running time of the

Combine subroutine when it is used in the RatioPart algorithm. In the Combine sub-

routine, suppose the line 5 takes O(α) time, where α is a factor depending on how to

find the element in Ce according to Lemma 8.2, i.e., how to find a non-blocked position

on a wire for a jumper. Recall that Nv and Nu are the number of nodes of the trees Tv

and Tu respectively. Then the loop from line 2 to 7 takes O(αNuNv) time. As discussed

in Section 8.3.3, line 1 and 8 take O(Nu + Nv) time. So the total running time of the

Combine algorithm is O(αNuNv). Assume that the upper-bound on the running time is

AαNuNv where A is a constant.

216

For a forest F , define its potential to be

Φ(F) =
A

2
α

m∑
i=1

N2
i

where Ni is the number of the nodes in the tree Ti. Suppose a forest F ′ is obtained after

applying the Combine subroutine to process edge (u, v) and combine Tv and Tu. Denote

the running time for this Combine run by t, we have

Φ(F ′)− Φ(F) = AαNuNv ≥ t.

Since initially the potential is A
2
α|V | and finally the potential is A

2
α|V |2, the Combine

subroutine takes at most

A

2
α|V |2 − A

2
α|V | = O(α|V |2)

time when it is used in the RatioPart algorithm.

In the ReportPart subroutine, every Du is searched at most once in the recursion.

Therefore, line 16 in the RatioPart algorithm takes O(|V |) time.

All the other parts in the RatioPart algorithm take at most O(|V |2) time. So the time

complexity is O(α|V |2).

�

8.4. Experiments

The experiments are conducted on a Linux workstation with dual 933MHz Pentium

III processors and 512MB memory where the RatioPart algorithm is implemented in C++

and compiled with GCC 3.4. Since there is no previous work considering the upper-bound

of the antenna ratio with multiple sinks, we do not compare our results to other’s.

217

Two sets of benchmarks are used in the experiments. The benchmarks in the first

set are 4 randomly generated ones containing 100, 1000, 10000, and 20000 gates respec-

tively, where the gates are randomly located in a 10000 by 10000 grid. The benchmarks

in the second set are the 4 largest industrial benchmarks in the work [108]. For each

benchmark,a Steiner tree is constructed as the routing tree using the algorithm in the

work [109]. All the gate sizes are assumed to be 1 and the exposed antenna area of a

wire is computed as the wire length, which is the Manhattan distance between the two

nodes it connects. The statistics of the benchmarks are shown in Table 8.1. The column

“name” shows the name of each benchmark where the benchmarks with names starting

with “a” are the random generated ones and the benchmarks with names starting with

“n” are the industrial ones. The column “# gates” shows the number of the gates in

each benchmark. The column “# nodes” shows the number of the nodes on the routing

tree including the gates and the Steiner points. The column “SMT” shows the total wire

length of the Steiner tree. The column “ratio” shows the antenna ratio of the routing

tree when all the wires are exposed. For any antenna ratio upper-bound larger than the

number in this column, no jumper is needed.

Table 8.1. Statistics of the benchmarks for jumper insertion.

name # gates # nodes SMT ratio
a100 100 154 79189 792
a1000 1000 1439 229604 230
a10000 10000 14542 721452 73
a20000 20000 28989 1019236 51
n2676 2676 3733 81180 31
n12052 12052 16447 243886 21
n22373 22373 30497 1264194 57
n34728 34728 47954 904740 27

218

We first run the RatioPart algorithm without obstacles. For each benchmark, 6 upper-

bounds of the antenna ratio are chosen representatively according to the “ratio” column

in Table 8.1. The results are reported in Table 8.3. The “ratio” columns show the upper-

bounds used. The “# cuts” columns show the number of the jumpers inserted. The

“time(s)” columns show the running time in seconds. It can be seen that the practical

running times depend not only on the number of the nodes but also on the bound since

different bounds will result in different numbers of partial dominant solutions to maintain

on each tree. In Figure 8.5, the trend of the decrease of the running time with the increase

of the antenna ratio is shown by plotting the number of jumpers inserted and the running

time in seconds vs. different bounds for the benchmark a10000. On the other hand, the

quadratic theoretical time complexity can be verified in Figure 8.6. There is one sample

for each benchmark in the figure. Each sample is the one with the smallest bound among

the 6 bounds for one benchmark. The slope of the best-fitting line in the log–log plot

shows a practical running time of Θ(|V |1.85).

Figure 8.5. The number of the cuts and the running time vs. the antenna
ratio bound for a10000 without obstacles.

219

Table 8.2. Results of jumper insertion with obstacles.

a100 a1000 a10000 a20000
ratio=700 ratio=220 ratio=70 ratio=50

% ob # cuts time(s) # cuts time(s) # cuts time(s) # cuts time(s)
0% 18 0.002 54 0.016 376 0.514 444 1.969

10% 22 0.002 56 0.014 394 0.473 464 1.850
20% – 0.002 56 0.014 421 0.461 483 1.756
30% – 0.002 60 0.016 438 0.455 508 1.617
40% – 0.002 63 0.014 485 0.371 531 1.420
50% – <1ms 69 0.016 532 0.320 574 1.223
60% – <1ms 87 0.012 625 0.299 618 1.004
70% – <1ms – 0.010 979 0.236 717 0.775
80% – <1ms – 0.008 – 0.156 976 0.615
90% – <1ms – 0.008 – 0.105 – 0.285

n2676 n12052 n22373 n34728
ratio=30 ratio=20 ratio=55 ratio=26

% ob # cuts time(s) # cuts time(s) # cuts time(s) # cuts time(s)
0% 6 0.051 23 0.799 359 2.086 6 4.914

10% 6 0.055 25 0.707 408 1.885 10 4.633
20% 6 0.051 65 0.635 460 1.672 13 4.068
30% 6 0.047 69 0.576 518 1.455 13 3.598
40% 15 0.043 118 0.523 623 1.318 20 2.955
50% 15 0.041 159 0.426 751 1.053 20 2.406
60% 19 0.037 183 0.371 881 0.834 20 2.025
70% 29 0.029 226 0.293 1207 0.650 24 1.529
80% 44 0.029 266 0.225 – 0.400 32 1.029
90% – 0.018 – 0.139 – 0.236 50 0.590

We then run the RatioPart algorithm with obstacles. We randomly choose edges to be

forbidden which means that no jumper insertion is allowed on them. For each benchmark,

we choose one representative bound, which is the second largest one among the 6 bounds in

Table 8.3. Scenarios with different percentage of forbidden edges are tested. The results

are reported in Table 8.2. The column “% ob” shows the percentage of the forbidden

edges. The cells with “–” denote that no valid partitioning under the upper-bound can

be found with the obstacles presented. Note that the obstacle setting here is only for

220

Figure 8.6. The running time vs. the number of the nodes for small antenna
ratio bounds.

simplicity while the RatioPart algorithm can handle more general settings, e.g. the one

in the work [105] where the obstacles can forbid inserting jumpers on parts of an edge.

8.5. Summary

In this chapter, we presented an optimal algorithm for antenna avoidance via jumper

insertion under the upper-bound of the antenna ratio. The algorithm is based on dynamic

programming on free trees. The experimental results confirmed the effectiveness of our

approach. Future works include routing with antenna planning and heuristics for practical

running time reduction.

221
T
ab

le
8.

3.
R

es
u
lt

s
of

ju
m

p
er

in
se

rt
io

n
w

it
h
ou

t
ob

st
ac

le
s.

a1
00

a1
00

0
a1

00
00

a2
00

00
ra

ti
o

#
cu

ts
ti

m
e(

s)
ra

ti
o

#
cu

ts
ti

m
e(

s)
ra

ti
o

#
cu

ts
ti

m
e(

s)
ra

ti
o

#
cu

ts
ti

m
e(

s)
10

0
14

1
0.

00
4

50
14

06
0.

07
8

10
14

90
2

8.
48

10
28

80
7

39
.8

20
0

13
8

0.
00

4
15

0
60

7
0.

03
7

30
10

91
2

4.
93

20
22

87
3

26
.9

40
0

92
0.

00
2

20
0

19
7

0.
01

8
50

53
74

1.
74

30
15

02
0

12
.8

60
0

41
0.

00
2

21
0

12
1

0.
01

6
60

26
75

0.
90

40
70

91
4.

78
70

0
18

0.
00

2
22

0
54

0.
01

6
70

37
6

0.
51

50
44

4
1.

97
80

0
0

<
1m

s
23

0
0

0.
01

6
80

0
0.

38
60

0
1.

13

n
26

76
n
12

05
2

n
22

37
3

n
34

72
8

ra
ti

o
#

cu
ts

ti
m

e(
s)

ra
ti

o
#

cu
ts

ti
m

e(
s)

ra
ti

o
#

cu
ts

ti
m

e(
s)

ra
ti

o
#

cu
ts

ti
m

e(
s)

10
33

63
0.

42
2

4
18

04
8

16
.1

10
36

69
3

70
.6

10
41

85
3

88
.7

15
23

94
0.

25
8

8
14

40
3

9.
83

30
18

77
0

14
.0

15
25

65
2

37
.7

20
13

83
0.

15
0

12
85

93
4.

48
40

10
02

0
5.

65
20

10
80

4
13

.4
25

50
8

0.
07

4
16

33
52

1.
29

50
28

33
2.

74
23

37
97

7.
55

30
6

0.
05

1
20

23
0.

80
55

35
9

2.
09

26
6

4.
91

35
0

0.
04

7
22

0
0.

57
60

0
1.

47
30

0
2.

71

222

References

[1] J. Wang and H. Zhou. Minimal period retiming under process variations. In Proc.
of Great Lake Symposium on VLSI, pages 131–135, 2004.

[2] J. Wang and H. Zhou. Interconnect estimation without packing via ACG floorplans.
In Proc. Asian and South Pacific Design Automation Conference, pages 1152–1155,
2005.

[3] J. Wang and H. Zhou. Exploring adjacency in floorplanning. Unpublished, 2005.

[4] J. Wang, P. Wu, and H. Zhou. Processing rate optimization by sequential system
floorplanning. In Proc. International Symposium Quality Electronic Design, pages
340–345, 2006.

[5] J. Wang and H. Zhou. Optimal jumper insertion for antenna avoidance under ratio
upper–bound. In Proc. of the Design Automation Conf., pages 1445–1453, 2006.

[6] J. Wang, M. Y. Kao, and H. Zhou. Address generation for nanowire decoders. In
Proc. of Great Lake Symposium on VLSI, pages 525–528, 2007.

[7] J. Wang and H. Zhou. Optimal jumper insertion for antenna avoidance considering
antenna charge sharing. IEEE Transactions on Computer Aided Design, 26(8):1445–
1453, August 2007.

[8] J. Wang, D. Das, and H. Zhou. Gate sizing by lagrangian relaxation revisited. In
Proc. Intl. Conf. on Computer-Aided Design, pages 111–118, 2007.

[9] J. Wang and H. Zhou. An efficient incremental algorithm for min-area retiming. In
Proc. of the Design Automation Conf., 2008.

[10] H. Zhou and J. Wang. ACG-adjacent constraint graph for general floorplans. In
Proc. Intl. Conf. on Computer Design, pages 572–575, 2004.

223

[11] Z. Gu, J. Wang, R. P. Dick, and H. Zhou. Incremental exploration of the combined
physical and behavioral design space. In Proc. of the Design Automation Conf.,
pages 208–213, 2005.

[12] C. Lin, J. Wang, and H. Zhou. Clustering for processing rate optimization. In Proc.
Intl. Conf. on Computer-Aided Design, pages 189–195, 2005.

[13] Z. P. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang. TAPHS: Thermal-aware
unified physical-level and high-level synthesis. In Proc. Asian and South Pacific
Design Automation Conference, pages 879–885, 2006.

[14] C. Lin, J. Wang, and H. Zhou. Clustering for processing rate optimization. IEEE
Transactions on Very Large-Scale Integrated Systems, 14(11):1264–1275, November
2006.

[15] N. Liveris, C. Lin, J. Wang, H. Zhou, and P. Banerjee. Retiming for synchronous
data flow graphs. In Proc. Asian and South Pacific Design Automation Conference,
pages 480–485, 2007.

[16] Z. Gu, J. Wang, R. Dick, and H. Zhou. Unified incremental physical-level and high-
level synthesis. IEEE Transactions on Computer Aided Design, 26(9):1576–1588,
September 2007.

[17] M. R. Casu and L. Macchiarulo. Floorplanning for throughput. In Proc. Interna-
tional Symposium on Physical Design, pages 62–69, 2004.

[18] C. E. Leiserson and J. B. Saxe. Optimization synchronous systems. Journal of VLSI
and Computer Systems, 1:41–67, 1983.

[19] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers,
39(7):945–951, July 1990.

[20] A. P. Hurst, P. Chong, , and A. Kuehlmann. Physical placement driven by sequential
timing analysis. In Proc. Intl. Conf. on Computer-Aided Design, pages 379–386,
2004.

[21] C. Lin and H. Zhou. Retiming for wire pipelining in system-on-chip. In Proc. Intl.
Conf. on Computer-Aided Design, pages 215–220, 2003.

[22] L. P. Carloni, K. L. McMillan, A. Saldanha, , and A. L. Sangiovanni-Vincentelli.
A methodology for correct-by-construction latency insensitive design. In Proc. Intl.
Conf. on Computer-Aided Design, pages 309–315, 1999.

224

[23] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Performance analysis and optimiza-
tion of latency insensitive systems. In Proc. of the Design Automation Conf., pages
361–367, 2000.

[24] V. Nookala and S. S. Sapatnekar. A method for correcting the functionality of a
wire-pipelined circuit. In Proc. of the Design Automation Conf., pages 570–575,
2004.

[25] S. N. Adya and I. L. Markov. Fixed-outline floorplanning: Enabling hierarchical
design. IEEE Transactions on Very Large-Scale Integrated Systems, 11(6):1120–
1135, December 2003.

[26] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc Gettrick, , and J-P Quadrat.
Numerical computation of spectral elements in max-plus algebra. In Proc. IFAC
Conf. on Syst. Structure and Control, 1998.

[27] A. Dasdan, S. S. Irani, , and R. K. Gupta. Efficient algorithms for optimum cycle
mean and optimum cost to time ratio problems. In Proc. of the Design Automation
Conf., pages 37–42, 1999.

[28] R. H.J.M. Otten and R. Brayton. Planning for performance. In Proc. of the Design
Automation Conf., pages 122–127, 1998.

[29] T. H. Cormen, C. E. Leiserson, R. H. Rivest, , and C. Stein. Introduction to Algo-
rithms. MIT Press, 2 edition, 2001.

[30] R. H.J.M. Otten. What is floorplan? In Proc. International Symposium on Physical
Design, pages 201–206, 2000.

[31] J. Grason. A Dual Linear Graph Representation for Space-Filling Location Problems
of the Floor-planning Type. MIT Press, Cambridge, MA, 1970.

[32] K. Kozminski and E. Kinnen. An algorithm for finding a rectangular dual of a planar
graph for use in area planning for vlsi integrated circuits. In Proc. of the Design
Automation Conf., pages 655–656, 1984.

[33] J. Bhasker and S. Sahni. A linear algorithm to find a rectangular dual of a planar
triangulated graph. Algorithmica, 3:247–278, 1988.

[34] Y. T. Lai and S. M. Leinwand. Algorithms for floorplan design via rectangular dual-
ization. IEEE Transactions on Computer Aided Design, 7(12):1278–1289, December
1988.

225

[35] A. B. Kahng. Classical floorplanning harmful? In Proc. International Symposium
on Physical Design, pages 207–213, 2000.

[36] H. H. Chan, S. N. Adya, , and I. L. Markov. Are floorplan representations important
in digital design? In Proc. International Symposium on Physical Design, pages 129–
136, 2005.

[37] P. N. Guo, C. K. Cheng, , and T. Yoshimura. An O-tree representation of non-
slicing floorplan and its applications. In Proc. of the Design Automation Conf.,
pages 268–273, 1999.

[38] N. Viswanathan and C. C. Chu. Fastplace: Efficient analytical placement using cell
shifting, iterative local refinement and a hybrid net model. In Proc. International
Symposium on Physical Design, pages 26–33, 2004.

[39] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong. Handling soft modules
in general non-slicing floorplan using Lagrangian relaxation. IEEE Transactions on
Computer Aided Design, 20(5):687–692, May 2001.

[40] E. F. Y. Young, C. C. N. Chu, and M. L. Ho. Placement constraints in floorplan
design. IEEE Transactions on Very Large-Scale Integrated Systems, 12(7):735–745,
July 2004.

[41] C. Lin, H. Zhou, and C. Chu. A revisit to floorplan optimization by Lagrangian
relaxation. In Proc. Intl. Conf. on Computer-Aided Design, pages 164–171, 2006.

[42] X. Tang, R. Tian, and M. D. F. Wong. Minimizing wire length in floorplanning.
IEEE Transactions on Computer Aided Design, 25(9):1744–1753, September 2006.

[43] H.-C. Lee, Y.-W. Chang, and H. H. Yang. MB∗-Tree: A multilevel floorplanner for
large-scale building-module design. IEEE Transactions on Computer Aided Design,
26(8):1430–1444, August 2007.

[44] T. Ohtsuki, N. Sugiyama, and H. Kawanishi. An optimization technique for inte-
grated circuit layout design. In Proc. ICCST, pages 67–68, Kyoto, Japan, 1970.

[45] R. H.J.M. Otten. What is floorplan? In Proc. International Symposium on Physical
Design, pages 201–206, 2000.

[46] F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin Binary Sequences: A non-
redundant representation for general non-slicing floorplan. IEEE Transactions on
Computer Aided Design, 22(4):457–469, April 2003.

226

[47] J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph-based representation
for non-slicing floorplans. In Proc. of the Design Automation Conf., pages 764–769,
2001.

[48] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement
based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer
Aided Design, 15(12):1518–1524, December 1996.

[49] C. Lin. Incremental Mixed-Signal Layout Generation Concepts. PhD thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands, 2002.

[50] CS2 version 4.3. Andrew Goldberg’s network optimization library. http://www.

avglab.com/andrew/soft.html.

[51] J. Fishburn and A. Dunlop. TILOS: A posynomial programming approach to tran-
sistor sizing. In Proc. Intl. Conf. on Computer-Aided Design, pages 326–328, 1985.

[52] J. M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn, and A. E. Dun-
lop. Optimization-based transistor sizing. IEEE Journal of Solid-State Circuits,
23(2):400–409, April 1988.

[53] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang. An exact solution to
the transistor sizing problem for CMOS circuits using convex optimization. IEEE
Transactions on Computer Aided Design, 12:1621–1634, November 1993.

[54] H. Sathyamurthy, S. S. Sapatnekar, and J. P. Fishburn. Speeding-up pipelined cir-
cuits through a combination of gate sizing and clock skew optimization. IEEE Trans-
actions on Computer Aided Design, 17(2):173–182, February 1998.

[55] C.-P. Chen, C. C. N. Chu, and D. F. Wong. Fast and exact simultaneous gate and
wire sizing by lagrangian relaxation. IEEE Transactions on Computer Aided Design,
18(7):1014–1025, July 1999.

[56] V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi. Fast and exact transistor
sizing based on iterative relaxation. IEEE Transactions on Computer Aided Design,
21(5):568–581, May 2002.

[57] H. Tennakoon and C. Sechen. Gate sizing using lagrangian relaxation combined with
a fast gradient-based pre-processing step. In Proc. Intl. Conf. on Computer-Aided
Design, pages 395–402, 2002.

[58] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html

227

[59] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Wiley-
Interscience, 3rd edition, 2006.

[60] W. C. Elmore. The transient response of damped linear networks with particular
regard to wide-band amplifiers. Journal of Applied Physics, 19(1):55–63, January
1948.

[61] K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar. A new class of convex functions
for delay modeling and their application to the transistor sizing problem. IEEE
Transactions on Computer Aided Design, 19(7):779–788, July 2000.

[62] W. Chuang, S. S. Sapatnekar, and I. N. Hajj. Timing and area optimization for
standard-cell VLSI circuit design. IEEE Transactions on Computer Aided Design,
14(3):308–320, March 1995.

[63] O. Coudert. Gate sizing for constrained delay/power/area optimization. IEEE
Transactions on Very Large-Scale Integrated Systems, 5(4):465–472, December 1997.

[64] S. Hu, M. Ketkar, and J. Hu. Gate sizing for cell library-based designs. In Proc. of
the Design Automation Conf., pages 847–852, 2007.

[65] C. Lin and H. Zhou. Clock skew scheduling with delay padding for prescribed skew
domains. In Proc. Asian and South Pacific Design Automation Conference, 2007.

[66] R. T. Rockafellar. Ordinary convex programs without a duality gap. Journal of
Optimization Theory and Applications, 7(3):143–148, March 1971.

[67] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Application. Prentice Hall, 1993.

[68] A. V. Goldberg and T. Radzik. A heuristic improvement of the bellman-ford algo-
rithm. Applided Math. Let., 6:3–6, 1993.

[69] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica,
6(1):5–35, 1991.

[70] N. Shenoy and R. Rudell. Efficient implementation of retiming. In Proc. Intl. Conf.
on Computer-Aided Design, pages 226–233, 1994.

[71] N. Maheshwari and S. S. Sapatnekar. Efficient retiming of large circuits. IEEE
Transactions on Very Large-Scale Integrated Systems, 6(1):74–83, March 1998.

228

[72] S. S. Sapatnekar and R. B Deokar. Utilizing the retiming-skew equivalence in a
practical algorithm for retiming large circuits. IEEE Transactions on Computer
Aided Design, 15(10):1237–1248, October 1996.

[73] H. Zhou. Deriving a new efficient algorithm for min-period retiming. In Asia and
South Pacific Design Automation Conference, Shanghai, China, January 2005.

[74] D. P. Singh, V. Manohararajah, and S. D. Brown. Incremental retiming for FPGA
physical synthesis. In Proc. of the Design Automation Conf., pages 433–438, Ana-
heim, CA, June 2005.

[75] H. Lerchs and I.F. Grossmann. Optimum design of open-pit mines. Trans C.I.M.,
68:17–24, 1965.

[76] D. S. Hochbaum. A new–old algorithm for minimum-cut and maximum-flow in
closure graphs. Networks, 37(4):171–193, July 2001.

[77] CAD Group at Politecnico di Torino. ITC’99 benchmarks (2nd release). http://
www.cad.polito.it/tools/itc99.html.

[78] A. Hurst, A. Mishchenko, and R. Brayton. Fast minimum-register retiming via
binary maximum-flow. In Proc. FMCAD, 2007.

[79] Berkeley Logic Synthesis and Verification Group. ABC–a system for sequential syn-
thesis and verification. http://www.eecs.berkeley.edu/~alanmi/abc/.

[80] H. J. Touati and R. K. Brayton. Computing the Initial States of Retimed Circuits.
IEEE Transactions on Computer Aided Design, 12(1):157–162, January 1993.

[81] G. Even, I. Y. Spillinger, and L. Stok. Retiming Revisited and Reversed. IEEE
Transactions on Computer Aided Design, 15(3):348–357, March 1996.

[82] C. Lin and H. Zhou. An efficient retiming algorithm under setup and hold con-
straints. In Proc. of the Design Automation Conf., San Francisco, CA, 2006.

[83] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing analysis:
From basic principles to state of the art. IEEE Transactions on Computer Aided
Design, 27(4):589–607, April 2008.

[84] S. H. Choi, B. C. Paul, and K. Roy. Novel sizing algorithm for yield improvement
under process variation in nanometer technology. In Proc. of the Design Automation
Conf., pages 454–459, 2004.

http://www.cad.polito.it/tools/itc99.html
http://www.cad.polito.it/tools/itc99.html
http://www.eecs.berkeley.edu/~alanmi/abc/

229

[85] D. Sinha, N. Shenoy, and H. Zhou. Statistical timing yield optimization by gate
sizing. IEEE Transactions on Very Large-Scale Integrated Systems, 14(10), October
2006.

[86] A. Davoodi and A. Srivastava. Variability driven gate sizing for binning yield opti-
mization. In Proc. of the Design Automation Conf., pages 959–964, 2006.

[87] R. J. B. Wets. Stochastic programs with fixed recourse: The equivalent deterministic
program. SIAM Review, 16(3):309–339, July 1974.

[88] R. T. Rockafellar. Coherent approaches to risk in optimization under uncertainty.
INFORMS TutORials in Operations Research, pages 38–61, 2007.

[89] D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as deter-
ministic optimization. In Proc. IEEE Symposium on the Foundations of Computer
Science, pages 228–237, 2004.

[90] N. Immorlica, D. Karger, M. Minkoff, and V. S. Mirrokni. On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial opti-
mization problems. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages
691–700, 2004.

[91] A. M. C. So, J. Zhang, and Y. Ye. Stochastic combinatorial optimization with
controllable risk aversion level. Lecture Notes in Computer Science, 4110:224–235,
August 2006.

[92] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel
mixed-size placement. In Proc. International Symposium on Physical Design, pages
212–214, 2006.

[93] H C Shin and C. Hu. Thin gate oxide damage due to plasma processing. Semicond.
Sci. Technol., 11:463–473, 1996.

[94] R. Rakkhit, F. P. Heiler, P. Fang, , and C. Sander. Process induced oxide damage
and its implications to device reliability of submicron transistors. In IEEE 38th
Annu. Int. Reliability Phys. Symp., pages 293–296, 1993.

[95] H. Watanabe, J. Komori, K. Higashitani, M. Sekine, , and H. Koyama. A wafer level
monitoring method for plasma-charging damage using antenna pmosfet test struc-
ture. IEEE Transactions on Semiconductor Manufacturing, 10(2):228–232, May
1997.

230

[96] The MOSIS Service. Process–induced damage rules (otherwise known as “antenna
rules”)–general requirements. http://www.mosis.org/Technical/Designrules/

guidelines.html#antenna.

[97] H. Shirota, T. Sadakane, M. Terai, , and K. Okazaki. A new router for reducing
“antenna effect” in asic design. In IEEE Custom Integrated Circuits Conf., pages
601–604, 1998.

[98] P. H. Chen, S. Malkani, C. Peng, , and J. Lin. Fixing antenna problem by dynamic
diode dropping and jumper insertion. In Proc. International Symposium Quality
Electronic Design, pages 275–282, 2000.

[99] L. Huang, X. Tang, H. Xiang, D. Wong, and I. Liu. A polynomial time optimal
diode insertion/routing algorithm for fixing antenna problem. IEEE Transactions
on Computer Aided Design, 23(1):141–147, January 2004.

[100] R. H.J.M. Otten, R. Camposano, , and P. R. Groeneveld. Design automation for
deepsubmicron: present and future. In Proc. DATE: Design Automation and Test
in Europe, pages 650–657, 2002.

[101] H. K.-S. Leung. Advanced routing in changing technology landscape. In Proc. In-
ternational Symposium on Physical Design, pages 118–121, 2003.

[102] T. Y. Ho, Y. W. Chang, , and S. J. Chen. Multilevel routing with antenna avoidance.
In Proc. International Symposium on Physical Design, pages 34–40, 2004.

[103] D. Wu, J. Hu, , and R. Mahapatra. Coupling aware timing optimization and an-
tenna avoidance in layer assignment. In Proc. International Symposium on Physical
Design, pages 20–27, 2005.

[104] B. Y. Su and Y. W. Chang. An exact jumper insertion algorithm for antenna effect
avoidance/fixing. In Proc. of the Design Automation Conf., pages 325–328, 2005.

[105] B. Y. Su, Y. W. Chang, and J. Hu. An optimal jumper insertion algorithm for
antenna avoidance/fixing on general routing trees with obstacles. In Proc. Interna-
tional Symposium on Physical Design, pages 56–63, 2006.

[106] L. J. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Infor-
mation and Control, 57(2-3):91–101, May/June 1983.

[107] L. P.P.P. van Ginneken. Buffer placement in distributed rc-tree network for minimal
elmore delay. In Proc. Intl. Symposium on Circuits and Systems, pages 865–868,
1990.

http://www.mosis.org/Technical/Designrules/guidelines.html#antenna
http://www.mosis.org/Technical/Designrules/guidelines.html#antenna

231

[108] A. B. Kahng, I. I. Mandoiu, and A. Zelikovsky. Highly scalable algorithms for recti-
linear and octilinear steiner trees. In Proc. Asia and South Pacific Design Automa-
tion Conference, pages 827–833, 2003.

[109] H. Zhou. Efficient steiner tree construction based on spanning graphs. IEEE Trans-
actions on Computer Aided Design, 23(5):704–710, May 2004.

	ABSTRACT
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Floorplanning Techniques
	1.2. Sequential System Optimizations
	1.3. Design for Manufacturability

	Chapter 2. Processing Rate Optimization by Sequential System Floorplanning
	2.1. Processing Rate and Floorplan Problem
	2.2. Floorplanning for Processing Rate Optimization
	2.3. Experimental Results
	2.4. Summary

	Chapter 3. Exploring Adjacency in Floorplanning
	3.1. Constrained Adjacency Graph
	3.2. Dissected Floorplan from CAG
	3.3. Whitespace Reduction via Packing
	3.4. Experiments
	3.5. Summary

	Chapter 4. Linear Constraint Graph for Floorplan Optimization with Soft Blocks
	4.1. Preliminaries
	4.2. Motivation
	4.3. Linear Constraint Graph
	4.4. LCG Floorplan Optimization
	4.5. Experimental Results
	4.6. Summary

	Chapter 5. Gate Sizing by Lagrangian Relaxation Revisited
	5.1. Problem Formulation
	5.2. Solving GCS via Lagrangian Dual Problems
	5.3. Solving the Simplified Dual Problems
	5.4. Experiments
	5.5. Summary

	Chapter 6. An Efficient Incremental Algorithm for Min-Area Retiming
	6.1. Problem Formulation
	6.2. Algorithm Overview
	6.3. Algorithm Description
	6.4. Experimental Results
	6.5. Summary

	Chapter 7. Risk Aversion Min-Period Retiming under Process Variations
	7.1. Preliminaries
	7.2. Problem Formulation
	7.3. A Convex Relaxation
	7.4. Incremental Algorithm for Risk Aversion Min-Period Retiming
	7.5. Experiments
	7.6. Summary

	Chapter 8. Optimal Jumper Insertion for Antenna Avoidance Considering Antenna Charge Sharing
	8.1. Antenna Effect
	8.2. Problem Formulation
	8.3. Optimal Jumper Insertion
	8.4. Experiments
	8.5. Summary

	References

