
NORTHWESTERN UNIVERSITY

Revelation Gap in Prior-independent Mechanism Design

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Yiding Feng

EVANSTON, ILLINOIS

June 2021



2

© Copyright by Yiding Feng 2021

All Rights Reserved



3

ABSTRACT

Revelation Gap in Prior-independent Mechanism Design

Yiding Feng

Motivated by real-world problems in various fields, mechanism design governs the

design of protocols for strategic agents and has applications both in computer science

and economics. Due to the revelation principle – a seminal observation in mechanism

design, a vast number of studies in mechanism design focus on revelation mechanisms (i.e.,

ones where revealing preferences truthfully forms an equilibrium). However, successful

applications (e.g., first-price auction, generalized second-price auction for advertisers in

sponsored search) suggest a great practical impact for non-revelation mechanisms.

The focus of this thesis is to provide a theoretical understanding of the potential inad-

equacy of revelation principle and advantages of non-truthful mechanisms. We consider

questions from prior-independent mechanism design, namely identifying a single mecha-

nism that has near optimal performance on every prior distribution of agents’ preferences.

To characterize the loss of the restriction to revelation mechanisms, we propose revela-

tion gap – a quantification of optimal prior-independent approximation ratio among all

revelation mechanisms vs. the optimal prior-independent approximation ratio among all

(possibly non-revelation) mechanisms. We prove the existence of non-trivial revelation
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gaps in two canonical environments: (i) welfare maximization for public budgeted agents,

and (ii) revenue maximization for a linear agent with a single sample access.

Our analysis methods are of broader interest in mechanism design, and the study

suggests that it is important to systematically develop a theory for the design of non-

revelation mechanisms.
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CHAPTER 1

Introduction

Mechanism design studies how to design protocols (i.e., mechanisms) to achieve desired

outcomes (e.g., resource allocations) for strategic agents who optimize their action based on

their own preference. This line of research is motivated by real-world problems in various

fields, and leads to a vast number of practical applications (e.g., spectrum auctions –

Bichler and Goeree, 2017, monopoly regulation – Baron and Myerson, 1982, environmental

policy – Cramton and Kerr, 2002). A more recent example is the auctions for Internet

advertising, where different auction formats (e.g., first-price auction, second price auction,

generalized second-price auction) studied in the literature, and have been implemented for

different services (e.g., sponsored search, Google Ad Manager).

The procedure of a mechanism can be summarized briefly as follows: A principal first

commits to a mechanism (i.e., rules of computing outcomes). Then all agents form a

equilibrium where each of them computes her own strategy to maximize her utility in this

mechanism based on her preference and knowledge about the environments (e.g., prior or

belief about the nature or other agents). Finally, the outcome will be determined by the

equilibrium.

Though the class of mechanisms is rich, the classical mechanism design literature

mainly focus on a subclass of mechanisms, in which the strategy of the agents in the

equilibrium is to reveal their preference truthfully. We name these mechanisms as the

revelation mechanisms, and all other mechanisms as the non-revelation mechanisms. The
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aforementioned favor of revelation mechanism is due to a seminal observation – revelation

principle as follows: if there is a mechanism with good equilibrium outcome, there is

a revelation mechanism which achieves the same outcome in a truthtelling equilibrium.

This constructed mechanism asks agents to reveal true preferences, simulates the agent

strategies in the original mechanism, and outputs the outcome of the simulation.

In contrast to a vast number of studies in mechanism design focus on revelation mech-

anisms and the lack of theory of non-revelation mechanism due to the revelation principle,

successful applications – e.g., first-price auction, generalized second-price auction – sug-

gest a great practical impact for non-revelation mechanisms. As a recent example, Google

recently move from a revelation mechanism (i.e., second-price auction) to a non-revelation

mechanism (i.e., first-price auction) for its Google Ad Manager service (Google, 2019).

To address this discrepancy, in Section 1.1, we review a seminal argument – end-to-end

principle – for the system design in computer science, and discuss its connection to the

mechanism design. Next, we formalize such argument and work toward a new justification

(i.e., revelation gap) for the potential inadequacy of revelation principle and the advantages

of non-revelation mechanisms. See Section 1.2 and Section 1.3 for more discussions.

1.1. Multi-party Computation and End-to-end Principle

One important research direction in modern computer science focuses on multi-party

computation. Two fundamental concerns in this area are (i) who should be doing what

part of the computation; and (i) what are their incentives to do it correctly. The second

concern has been studied extensively in the economics field of mechanism design. For

the first concern, however, the system design field and the mechanism design field have

different high-level guidelines.
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From the view of multi-party computation, the mechanism itself as well as the partic-

ipating agents can be thought as different parties in the system, where agents have their

private preference as their own data. Revelation mechanisms correspond to systems where

the computation is done by the central protocol (i.e. mechanism) and other parties (end

points, i.e. agents) only truthfully reveal their data to the central protocol. Non-revelation

mechanisms correspond to systems where agents are also perform some of the computation

(i.e. computing their strategies). The system design literature advocates non-revelation

mechanisms, as the end-to-end principle (cf. Saltzer et al., 1984) – a long-standing princi-

ple in this area – suggests that the computation should be done where the data is, and all

environment-specific complexity should be push to the end points, i.e., in a decentralized

fashion. This guiding principle was originally introduced in the design of computer net-

work. In Saltzer et al. (1984), authors argue that following this principle, the computer

network can be simple, robust (under various environments) and implemented under low

cost. As a consequence, it enables the Internet protocols designed for the workloads of

the 1980s to continue to succeed with workloads of the 2010s. On the other hand, due to

the aforementioned revelation principle, the mechanism design literature favors revelation

mechanisms. Generally speaking, since the revelation mechanisms are required to solve

the complex task of finding an outcome that both enforces the truthfulness property and

also obtains a desirable outcome, unsurprisingly, optimal revelation mechanisms tend to

be complex and presumably fragile with dependent on the environment.

1.2. Prior-independent Mechanism Design and Revelation Gap

In this thesis, we work toward a formal argument that the decentralization idea from

the end-to-end principle in the system design is beneficial even in purely economic terms
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when robust mechanisms are desired. In particular, we consider questions from prior-

independent mechanism design, in which a mechanism is designed for agents with prefer-

ences drawn from an unknown distributions (a.k.a. prior). The goal is to identify robust

mechanisms – ones with good (multiplicative) prior-independent approximation to the op-

timal mechanism that is tailored to the distribution of preferences. In prior-independent

mechanism design, it is not generally without loss to restrict to revelation mechanisms –

the equilibrium strategies for Bayesian agents in non-revelation mechanisms are a function

of their prior and thus the construction of revelation mechanism via revelation principle is

no longer prior-independent. Nonetheless, similar to other lines of research in mechanism

design, most results in prior-independent mechanism design focus, with loss of generality,

on revelation mechanisms.

To understand the loss of the restriction to revelation mechanisms, we introduce revela-

tion gap, a quantification of optimal prior-independent approximation ratio among all rev-

elation mechanisms vs. the optimal prior-independent approximation ratio among all (pos-

sibly non-truthful) mechanisms. A non-trivial revelation gap – that the prior-independent

approximation factor of the best non-revelation mechanism is better than that of the

best revelation mechanism – gives concrete motivation for a theory of mechanism design

without the revelation principle.1

1It is not hard to invent pathological scenarios where there is a non-trivial revelation gap. Instead, this
thesis considers the canonical environment of welfare maximization and revenue maximization.
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1.3. Approach and Results

In this thesis, we study two canonical settings in prior-independent mechanism de-

sign and identify non-trivial revelation gaps for both welfare maximization and revenue

maximization.

1.3.1. Welfare Maximization for Public Budgeted Agents

The first contribution of this thesis considers welfare maximization for agents with bud-

gets and shows a non-trivial revelation gap for distributions on preferences that satisfy a

standard regularity property. Moreover, the setting in which we exhibit the revelation gap

suggests the end-to-end principle: the agents can easily implement the optimal outcome

in the equilibrium of a simple mechanism, while revelation mechanisms that satisfy the

constraints must be complex and either prior-dependent or non-optimal.

Our analysis focuses on welfare maximization in a canonical single-item environment

with ex ante symmetric budget constrained agents, i.e., each agent’s value is drawn in-

dependently and identically from an unknown distribution and the agent cannot make

payments that exceed a known and identical budget (cf. Maskin, 2000). Our main treat-

ment of this problem will make a simplifying assumption that the distribution follows a

regularity property that implies that the Bayesian optimal mechanism has a nice form (Pai

and Vohra, 2014). Our results require a symmetric environment, i.e., an i.i.d. distribution

and identical budget.

The main challenge in demonstrating a revelation gap is that it is difficult to identify

prior-independent optimal (revelation) mechanisms (cf. Fu et al., 2015) for non-trivial envi-

ronments. This question remains as the open problem for a long period, until Allouah and
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Besbes (2018); Hartline et al. (2020) showed that the second-price auction (resp. a variant

of second-price auction, i.e., markup mechanism) is the prior-independent optimal reve-

lation mechanism for revenue when the two agents’ values are distributed according to a

monotone hazard rate (resp. regular) distribution. Our non-trivial revelation-gap theorem

follows from three results. First, the all-pay auction (from the literature, defined below)

has a unique equilibrium that is Bayesian optimal and it is prior-independent. Second, we

obtain a lower bound on the ability of a prior-independent revelation mechanism to ap-

proximate the Bayesian optimal mechanism by identifying the dominant strategy incentive

compatible mechanism that is Bayesian optimal for the uniform distribution. The perfor-

mance of this mechanism is strictly worse than that of the Bayesian optimal mechanism

(which is Bayesian incentive compatible); specifically the gap is 1.013. 2 Third, we show

that the dominant strategy incentive compatible clinching auction (from the literature,

defined below) is an e ≈ 2.72 approximation to the Bayesian optimal mechanism.

Combining the upper and lower bounds we see a revelation gap between 1.013 and

e. The first result follows naturally from the literature; the second and third results are

the main technical contributions of the paper. See Table 1.1 for a summary of all three

results.

Three auctions are at the forefront of our study. The all-pay auction solicits bids,

assigns the item to the highest agent, and charges all agents their bids. The clinching auc-

tion (Ausubel, 2004; Dobzinski et al., 2008; Goel et al., 2015) is an ascending price auction

that can be thought of as allocating a unit measure of lottery tickets: a price is offered

2To better appreciate the magnitude of this lower bound, notice that it is demonstrated for two agents
with uniformly distributed values where the optimal expected welfare (even without budgets) is is 2/3
and the lottery mechanism (which gives the item to a random agent) has expected welfare 1/2 and is a
4/3 ≈ 1.33 approximation.
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Table 1.1. Prior-independent approximation ratio of welfare maximization
for i.i.d. public budgeted agents. We consider the class of public-budget
regular distributions (i.e., distributions with concave cumulative function).

Class of revelation mechanisms Class of all mechanisms

Upper bound e(∗) 1(†)

Lower bound 1.013(‡) 1(†)

(∗) Theorem 3.8; (†) Maskin (2000); (‡) Lemma 3.15 and Lemma 3.17.

in each stage, each agent specifies the measure of tickets desired at the given price, each

agent is allocated a number of tickets that is equal to the minimum of her demand and

the measure of remaining tickets if this agent is only allowed to buy tickets after all other

agents have bought as much as they desire first. 3 The middle-ironed clinching auction

– which we identify as the optimal dominant strategy incentive compatible mechanism –

behaves like the clinching auction except that values that fall within a middle range are

ironed. The allocation that an agent in this middle range receives is the average over he

original allocation of for middle range values in the clinching auction. This averaging re-

sults in the budget binding later and more efficient outcomes than in the original clinching

auction.

The second step, mentioned above, is to obtain a lower bound on the prior-independent

approximation of a revelation mechanism. Our analysis begins with the observation that

a prior-independent revelation mechanism must be Bayesian incentive compatible for ev-

ery distribution. For two agents, this condition is equivalent to being dominant strategy

3For example, at a price of 0 all agents would want to buy all the tickets, but the agent that arrives last
gets no tickets, thus no agents get any tickets at this price; the price increases.
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incentive compatible. We ask whether there a gap between the Bayesian optimal dom-

inant strategy and Bayesian incentive compatible mechanism. The comparison between

optimal dominant strategy and Bayesian incentive compatible mechanism is standard for

multi-dimensional mechanism design problems (e.g., see Gershkov et al., 2013; Yao, 2017);

we are unaware of previous studies of this phenomenon for single-dimensional agents with

non-linear preferences. We answer this question positively by writing the dominant strat-

egy mechanism design problem as a linear program and solving it by identifying a dual

solution that proves the optimality of the middle-ironed clinching auction (cf. Pai and

Vohra, 2014; Devanur and Weinberg, 2017). The identified gap gives a lower bound on

the approximation factor of the optimal prior-independent mechanism.

The third step, mentioned above, proves that the prior-independent approximation

factor of the clinching auction auction is at most e and resolves in the affirmative an

open question from Devanur et al. (2013). Our proof follows from a novel adaptation

of a standard method for approximation results in mechanism design where an auction’s

performance is compared to the upper bound given by the ex ante relaxation, in this

case, the welfare of the optimal mechanism that sells one item in expectation over the

random draws of the agents’ values (i.e., ex ante) rather than for all draws of the agents’

values (i.e., ex post). This method was introduced by Chawla et al. (2007), formalized by

Alaei (2011, 2014), generalized by Alaei et al. (2013), and employed in many subsequent

analyses.
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1.3.2. Revenue Maximization for A Linear Agent with A Single Sample Access

The second contribution of this thesis considers revenue maximization in a canonical single-

item environment for a single agent with a single sample access, i.e., the agent’s value

is drawn from an unknown distribution but the mechanism can access a single sample

(independent to agent’s value) from that distribution (cf. Dhangwatnotai, Roughgarden,

and Yan, 2015; Allouah and Besbes, 2019). The agent knows her private valuation and the

distribution for valuation, but she does not know the sample of the mechanism. Our main

theorem identifies a non-trivial revelation gap for revenue maximization in this model.

This revelation gap for revenue maximization follows from three results. First, we

introduce the (non-revelation) sample-bid mechanism and obtain an upper bound of its

prior-independent approximation ratio. Second, we obtain a lower bound of the optimal

prior-independent approximation ratio among all possible mechanisms. Third, we show

that any revelation mechanism4 is equivalent to a sampled-based pricing mechanism in-

troduced by Allouah and Besbes (2019) where the authors lower-bound and upper-bound

the optimal prior-independent approximation ratio among all sample-based pricing mech-

anisms. See Table 1.2 for a summary of all three results. Since the prior-independent

approximation ratio of the sample-bid mechanism is strictly better than the optimal prior-

independent approximation ratio among all revelation mechanisms, we immediately get

our non-trivial revelation gap for revenue maximization.

4We impose a technical assumption (i.e. scale-invariant) to the class of revelation mechanisms, which is
common in prior-independent mechanism design (Allouah and Besbes, 2018, 2019; Hartline, Johnsen, and
Li, 2020).
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Table 1.2. Prior-independent approximation ratio of revenue maximization
for a linear agent with a single sample access. Two class of distributions (i.e.
regular, MHR – standard assumptions in mechanism design) are considered,
where MHR distributions is a subclass of regular distributions. We impose
a technical assumption (i.e. scale-invariant, Definition 4.11) to the class of
revelation mechanisms.

Class of revelation mechanisms Class of all mechanisms

Regular dists. MHR dists. Regular dists. MHR dists.

Upper bound 1.996(∗) 1.575(∗) 1.835(§) 1.296(†)

Lower bound 1.957(∗) 1.543(∗) 1.073(‡)

(∗) Allouah and Besbes (2019) and Lemma 4.28; (§) Theorem 4.7; (†) Theorem 4.11; (‡) Theorem 4.23.

In the model of a single agent with single-sample access, the class of non-revelation

mechanisms is rich, which includes fairly complicated mechanisms. For example, mech-

anisms can ask agents to reports both her value and prior; or include multiple rounds

of communication between seller and agent who sequentially reveal their private infor-

mation.5 Nonetheless, our upper bound of the optimal prior-independent approximation

ratio is attained by a simple non-revelation mechanism – sample-bid mechanism defined

as follow.

• Sample-bid mechanism: Given parameter α and sample s, the sample-bid mech-

anism solicits a non-negative bid b ≥ 0, charges the agent α · min{b, s}, and

allocates the item to the agent if b ≥ s.

From the agent’s perspective, she reports a bid to compete for the item against a random

sample realized from the same valuation distribution; and regardless of whether she wins

5Recall that the agent knows the distribution of the sample but does not know its realization.
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or loses, she will always be charged α ·min{b, s}. In fact, the agent’s optimal bidding strat-

egy could be overbidding or underbidding, depending on the value as well as the distribu-

tion. The sample-bid mechanism has the similar format as the Becker–DeGroot–Marschak

method (Becker, DeGroot, and Marschak, 1964) which has been studied and implemented

in experimental economics for understanding agents’ perception of the random event.

In order to beat the optimal prior-independent approximation ratio among all rev-

elation mechanisms, we need to show the approximation for the sample-bid mechanism

is strictly better than 1.957 < 2 for regular distributions, and 1.543 < e/(e− 1) for MHR

distributions. However, most approximation techniques and results for non-revelation

mechanisms in the literature only provide similar or or larger constants – for instance,

smoothness property, permeability, and revenue covering property in price of anarchy (cf.

Roughgarden, Syrgkanis, and Tardos, 2017; Dütting and Kesselheim, 2015; Hartline, 2016,

see more discussion in related work).6 One the other hand, analyzing the approximation of

revelation mechanisms is relatively easier. In revenue maximization, one analysis approach

used extensively for revelation mechanisms is the revenue curve reduction (see next para-

graph). This approach has lead to tight or nearly tight results in both prior-independent

approximation (Allouah and Besbes, 2018, 2019; Hartline, Johnsen, and Li, 2020) and

Bayesian approximation (Alaei, Hartline, Niazadeh, Pountourakis, and Yuan, 2018; Jin,

Lu, Tang, and Xiao, 2019b; Jin, Lu, Qi, Tang, and Xiao, 2019a).

Revenue curves (cf. Bulow and Roberts, 1989) give an equivalent representation of

agent’s valuation distribution and enable clean characterizations of the revenue of any

mechanism (see e.g. Myerson, 1981; Bulow and Roberts, 1989; Alaei, Fu, Haghpanah, and
6Feng and Hartline (2018) bypass this challenge in their revelation gap for welfare maximization by
considering a model where the all-pay auction (cf. Maskin, 2000) achieves prior-independent approximation
ratio 1, i.e., it is indeed the Bayesian optimal mechanism.
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Hartline, 2013). The high-level goal of revenue curve reduction is to identify a subclass of

revenue curves that has closed form and over which the worst approximation guarantee is

attained. The main argument is to design a (problem or mechanism) specific modification

to the revenue curve (converting an arbitrary revenue curve into a revenue curve from the

subclass) and analyze the impact of revenue from the modification on the given mecha-

nism. Note that revenue is the expected payment of the agents when they bid optimally.

For revelation mechanisms, after the modification has been designed, it is sufficient to

study how payment changes for every bid in the modification, since agents are bidding

revelationly (i.e. bids equal values). However, for non-revelation mechanisms, converting

a revenue curve to another one will lead to changes in both the payment for each bid

and the optimal bidding strategy of each agent. This makes the revenue curve reduction

approach more difficult for non-revelation mechanisms, and thus, results of non-revelation

mechanisms in the literature rarely uses this technique. In this paper, due to the simplic-

ity of our model and the sample-bid mechanism, we are able to apply this technique by

carefully (but relatively loosely) disentangling these two impacts and then analyzing them

separately.

Our final result for the single-agent pricing from samples model provides a lower bound

on the optimal prior-independent approximation ratio among the class of all mechanisms.

This result contrasts with multi-agent models where there there exists complicated and

arguably impractical non-revelation mechanism whose prior-independent approximation

is arbitrarily close to 1.7 The crucial observation for proving this lower bound is that

for pointmass distributions, the agent perfectly knows the seller’s sample. Thus, she can

7Such mechanisms are designed and analyzed in non-parametric implementation theory – a line of research
in economics, see the survey of Jackson (2001) and further discussion in the related work section.
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strategically imitate the behavior of the values in other distributions. This restricts the

seller’s ability to extract revenue from the agent, which leads to a prior-independent ap-

proximation ratio at least 1.073 even on the restricted subclass of MHR distributions

(in fact, even on uniform distributions). Our lower bound also suggests that it will be

non-trivial to identify the non-revelation mechanism which attains the optimal prior-

independent approximation ratio.

It should be noted that our better-performing prior-independent non-revelation mech-

anisms do not come without drawbacks relative to prior-independent revelation mecha-

nisms. Elegantly, prior-independent revelation mechanisms do not require prior knowledge

by any party. In contrast, prior-independent non-revelation mechanisms generally require

some knowledge of the prior on the part of the agents. From this perspective, our re-

sults show that a seller is able to extract strictly higher revenue from the agent by taking

advantage of information that the agent possesses and is able to strategize with respect

to. This echoes the argument in the end-to-end principle that decentralized system can

achieve higher performance since the end points (i.e., agents) have more information than

the central protocol (i.e., mechanisms).

1.4. Related Work

Prior-independent Mechanism Design. As a standard framework for understanding

the robustness of mechanisms, prior-independent mechanism design has been applied to

single-dimensional mechanism design (Dhangwatnotai et al., 2015; Roughgarden et al.,

2012; Fu et al., 2015; Allouah and Besbes, 2018; Hartline et al., 2020), multi-dimensional

mechanism design (Devanur et al., 2011; Roughgarden et al., 2015; Goldner and Karlin,

2016), makespan minimization (Chawla et al., 2013), mechanism design for risk-averse
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agents (Fu et al., 2013), and mechanism design for agents with interdependent values

(Chawla et al., 2014a). Except Fu et al. (2013), all other results focus on truthful mecha-

nisms.

Non-revelation Mechanism Design. Some recent works non-revelation mechanism de-

sign are equilibrium analysis of i.i.d. rank-based mechanism (Chawla and Hartline, 2013),

robust analysis of welfare and revenue for classic mechanisms in practice (i.e. price of anar-

chy, see next paragraph), estimating revenue and welfare in a mechanism from equilibrium

bids in another mechanism (Chawla et al., 2014b, 2016), and the sample complexity of non-

truthful mechanisms in asymmetric environments (Hartline and Taggart, 2019, mentioned

above).

Price of anarchy studies how classic non-truthful mechanisms (e.g. first-price auc-

tion, all-pay auction) approximate the optimal welfare. Syrgkanis and Tardos (2013)

introduce a smoothness property defined on mechanisms and give an analysis framework

based on this property. With this smoothness framework, the authors upper-bound the

welfare-approximation of the first-price auction by e/(e− 1), and the welfare-approximation

of the all-pay auction by 2. These two results are later tightened by Christodoulou et al.

(2015) for the all-pay auction and Hoy et al. (2018) for the first-price auction using some

mechanism-specific arguments. Hartline et al. (2014) introduce a geometric framework

for analyzing the price of anarchy for both welfare and revenue. As the instantiations of

the framework, authors upper-bound the revenue approximation of the first-price auction

with individual monopoly reserve by 2e/(e− 1). Dütting and Kesselheim (2015) show that

bounds from these analysis frameworks are tight up to constant factors.
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Non-parametric Implementation Theory. The literature on non-parametric imple-

mentation theory considers the same question as prior-independent mechanism design but

allows mechanisms where agents cross-report their beliefs on other agents’ values (e.g.,

Jackson, 2001). Caillaud and Robert (2005) introduce a dynamic auction for single-item

multi-agent settings which is able to implement the Bayesian revenue optimal auction (My-

erson, 1981) without the knowledge of agents’ distribution. Dasgupta and Maskin (2000)

introduce a generalization of VCG auction for multi-agent interdependent value settings.8

In this auction, agents are asked to submit a function that gives a bid for every possible

valuation of the other agents. Though this auction requires no knowledge of agents’ dis-

tributions, Dasgupta and Maskin (2000) show that it is Bayesian welfare-optimal under

mild assumptions. Azar et al. (2012) study how to use scoring rules to learn agents’ dis-

tribution and implement the auction based on this learned distribution. All results above

suggest that in the multi-agent settings, there exist complicated and arguably impractical

non-truthful mechanisms whose prior-independent approximation equal or are arbitrarily

close to 1. However, as we mentioned earlier, in the model of a single-agent with single-

sample access, we provide a lower bound on the optimal prior-independent approximation

without any restriction on mechanisms.

Mechanism Design for Agents with Budget Constraints. Mechanism design for

agents with budget constraint is well studied in the literature. Laffont and Robert (1996)

and Maskin (2000) study the revenue-maximization and welfare-maximization problems

for symmetric agents with public budgets in single-item environments. Boulatov and

8In general, there is no incentive compatible mechanism which outputs the welfare-optimal outcomes in
interdependent value settings.
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Severinov (2018) generalize their results to agents with i.i.d. values but asymmetric public

budgets.

Che and Gale (2000) consider the single agent problem with private budget and valu-

ation distribution that satisfies declining marginal revenues, and characterize the optimal

mechanism by a differential equation. Devanur and Weinberg (2017) consider the single

agent problem with private budget and an arbitrary valuation distribution, characterize

the optimal mechanism by a linear program, and use an algorithmic approach to construct

the solution. Pai and Vohra (2014) generalize the characterization of the optimal mech-

anism to symmetric agents with uniformly distributed private budgets. Richter (2016)

shows that a price-posting mechanism is optimal for selling a divisible good to a contin-

uum of agents with private budgets if their valuations are regular with decreasing density.

For more general settings, no closed-form characterizations of optimal mechanism are

known. However, the optimal mechanism can be solved by a polynomial-time solvable

linear program over interim allocation rules (cf. Alaei et al., 2012; Che et al., 2013). Feng

et al. (2020) introduce a framework to extend the approximation of any deterministic and

dominant strategy incentive compatible mechanism for agents with linear utility to agents

with non-linear utility in single-item environments for revenue maximization. As an in-

stantiations of the framework, they give small constant bounds on the simple mechanisms

introduced in the literature for agents with budget constraints under various assumptions.

Mechanism Design with Sample Access. There is a significant area of research

studying mechanism design with sample access from the distribution of agents’ preference,

which has two regimes – small number of samples, and large number of samples. In the

former regime, literature studies the approximation of mechanisms with a single-sample
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access (Azar et al., 2014; Dhangwatnotai et al., 2015; Allouah and Besbes, 2019; Feng et al.,

2019; Correa et al., 2019; Dütting et al., 2020; Correa et al., 2020), and mechanisms with

two-sample access (Babaioff et al., 2018; Daskalakis and Zampetakis, 2020). In the latter

regime, the goal is to minimize the sample complexity, i.e., number of sample to achieve

(1− ε)-approximation (e.g. Cole and Roughgarden, 2014; Morgenstern and Roughgarden,

2015; Huang et al., 2018; Gonczarowski and Weinberg, 2018; Guo et al., 2019; Hartline and

Taggart, 2019). Except Hartline and Taggart (2019), all other results focus on truthful

mechanisms.

1.5. Organization of the Thesis

In Chapter 2, we introduce the classic single-item auction problem in Bayesian mech-

anism design, and its extension to prior-independent mechanism design; and discuss the

preliminary results, technique, and the formal definition of the revelation gap. In Chap-

ter 3, we consider single-item auction for public budgeted agents, and show a non-trivial

revelation gap for welfare-maximization in this setting. In Chapter 4, we shift our at-

tention to single-item auction for a linear agent with a single sample access, and show

non-trivial revelation gaps for revenue-maximization.

1.6. Bibliographic Notes

The content in this thesis is based on two research papers with co-authors: “An end-

to-end argument in mechanism design (prior-independent auctions for budgeted agents)”

by Feng and Hartline (2018) and “Revelation Gap for Pricing from Samples” by Feng,

Hartline, and Li (2021).
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CHAPTER 2

Model and Preliminaries

2.1. Bayesian Mechanism Design

In this thesis, we consider the classic single-item auction problem where a seller wants

to allocate an item to n agents.

Agent Models. Each agent i ∈ [n] has a private value vi ∈ R≥0 drawn from the valuation

distribution (a.k.a. prior) F supported on [v, v]. and a budget w ∈ R≥0∪{∞}.1 We assume

that distribution F has positive density f every where in the support. Both the valuation

distribution F and budget w are known by seller and agents. Given an allocation x ∈ [0, 1]

and payment p ∈ R≥0, the utility uw(v, x, p) of an agent with value v and budget w is 2

uw(v, x, p) =

 vx− p if p ≤ w ;

−∞ otherwise .

We say an agent has linear utility if w =∞; and has public budgeted utility if w is finite.

We focus on single-item environments where the seller can allocate at most one unit of

the item to all agents, i.e., an allocation profile x = (x1, . . . , xn) is feasible if and only if∑
i∈[n] xi ≤ 1. We denote the set of all feasible allocation profiles as X .

Mechanisms. A (sealed-bid) mechanism M = (x̃, p̃) is given by mappings from bid pro-

file b = (b1, . . . , bn) to allocations and payments, which we denote by x̃(b) = (x̃1(b), . . . , x̃n(b))

1We focus on symmetric agents, i.e., all agents have the same valuation distribution F and budget w.
2We set budget w as the subscript of utility function u, since it is encoded in the utility function, instead
of the type. We often omit the subscript w in the utility function if it is clear from the context.
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and p̃(b) = (p̃1(b), . . . , p̃n(b)). We assume that for every bid profiles b, allocations are fea-

sible, i.e., x(b) ∈ X ; and allocations, payments are non-negative, i.e., x̃i(b) ≥ 0, p̃i(b) ≥ 0

for every agent i ∈ [n].

Example 2.1. Two classic mechanisms are studied and implemented in both theory and

practice – the second-price auction and the all-pay auction. In both auctions, the allocation

rule is highest-bids-win, i.e., x̃(b) ∈ argmaxx∈X
∑

i bixi, and the payment rule is defined

as follows:

• in the second-price auction, p̃i(b) = min{b : x̃i(b, b−i) = 1} · x̃i(b);

• in the all-pay auction, p̃i(b) = bi.

Equilibrium. A strategy σi for agent i is a mapping from her value vi to her reported

bid bi. A strategy profile σ = (σ1, . . . , σn) forms a Bayes-Nash equilibrium (BNE) in a

mechanismM if each agent i’s strategy σi maximizes her expected utility inM given that

all other agents play their own strategies in the strategy profile σ, i.e., for every agent i,

value vi and bid bi,

Ev−i [u(vi, xi(σ(v)), pi(σ(v)))] ≥ Ev−i [u(vi, xi(bi,σ−i(v−i)), xi(bi,σ−i(v−i)))]

where σ(v) = (σ1(v1), . . . , σn(vn)). Similarly, a strategy profile σ = (σ1, . . . , σn) forms

a dominant strategy equilibrium (DSE) in a mechanism M if each agent i’s strategy σi

maximizes her ex post utility inM regardless of other agents’ bids, i.e., for every agent i,

value vi, bid bi, and other agents bids b−i

u(vi, xi(σi(vi), b−i), pi(σi(vi), b−i)) ≥ u(vi, xi(bi, b−i), xi(bi, b−i))
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Note that by definition every DSE is also a BNE.

When a mechanism M = (x̃, p̃) induces a unique BNE σ, we define the ex post

allocation rule and ex post payment rule (in value space) as xi(v) = x̃i(σ(v)) and pi(v) =

p̃i(σ(v)); interim allocation rule and interim payment rule as xi(vi) = Ev−i [xi(v)] and

pi(vi) = Ev−i [pi(v)].

Example 2.2. Consider agents with linear utilities.

• In the second-price auction, revealing agents’ own values truthfully (i.e., σi(vi) =

vi) is the unique DSE and BNE. Hence, the item is always allocated to the agent

with the highest value, which implies that the interim allocation rule is xi(vi) =

(F (vi))
n−1, and the interim payment rule is pi(vi) =

∫ vi
v
t · f(t)(F (t))n−2 dt.

• In the all-pay auction, the unique BNE is σ = (σ1, . . . , σn) where σi(vi) =
∫ vi
v
t ·

f(t)(F (t))n−2 dt. Hence, the item is always allocated to the agent with the highest

value, which implies that the interim allocation rule is xi(vi) = (F (vi))
n−1, and

the interim payment rule is pi(vi) =
∫ vi
v
t · f(t)(F (t))n−2 dt.

In Example 2.2, it is not a coincidence that the second-price auction and the all-pay

auction have the same interim payment rule, instead it is a consequence of the character-

ization of BNE from Myerson (1981).

Theorem 2.1 (Myerson, 1981). A strategy profile σ are in BNE (resp. DSE) if and only

if for all agent i,

• (monotonicity) xi(vi) (resp. xi(vi,v−i)) is monotone non-decreasing in vi (resp.

for all v−i);
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• (payment identify) pi(vi) = vixi(vi) −
∫ vi
v
xi(t) dt + pi(v) (resp. pi(vi,v−i) =

vixi(vi,v−i)−
∫ vi
v
xi(t,v−i) dt+ pi(v,v−i)).

Incentive Compatibility. A mechanism M is Bayes incentive compatible (BIC) if re-

vealing agents’ own values truthfully (i.e., σi(vi) = vi) is a BNE. Similarly, a mechanism

M is dominant strategy incentive compatible (DSIC) if revealing agents’ own values truth-

fully (i.e., σi(vi) = vi) is a DSE.3 We also name BIC (and thus DSIC) mechanisms as

revelation mechanisms ; and other mechanisms as non-revelation mechanisms.

Remark 2.3. As we illustrate in Example 2.2, for agents with linear utilities, the second-

price auction is a revelation mechanism, while the all-pay auction is a non-revelation

mechanism.

Bayesian Optimal Mechanisms. In this paper, we study the objective of welfare and

revenue. The welfare of a mechanism is Ev[
∑

i vixi(v)]. The revenue of a mechanism is

Ev[
∑

i pi(v)].

To analysis the revenue, Myerson (1981) introduces the virtual value characterization,

and shows the equivalence between virtual surplus and revenue.

Definition 2.4. The virtual value of an agent with value v drawn from valuation distri-

bution F is φ(v) = v − 1−F (v)
f(v)

.

Lemma 2.2 (Myerson, 1981). For any interim allocation rule x(·) and interim payment

rule p(·), the expected revenue equals the expected virtual surplus, i.e., Ev[φ(v)x(v)]+p(v) =

Ev[p(v)].

3Note that by definition, any DSIC mechanism is BIC.
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Fixing a valuation distribution F , a mechanism is Bayesian revenue-optimal (resp.

Bayesian welfare-optimal) if its expected revenue (resp. welfare) in the equilibrium with

respect to valuation distribution F is optimal. When the context is clear, we use Bayesian

optimal for short.

Remark 2.5. As we illustrate in Example 2.2, for agents with linear utilities, both the

second-price auction and the all-pay auction are Bayesian welfare-optimal.

Example 2.6. The second-price auction with reserve φ−1(0) is a DSIC mechanism with

allocation rule x̃(b) ∈ argmaxx∈X
∑

i φ(vi)xi. For agents with linear utilities and regular

valuation distribution F (i.e., φ(v) = v − 1−F (v)
f(v)

is non-decreasing in v), the second-price

auction with reserve φ−1(0) is the Bayesian revenue-optimal.

Revelation Principle. The following observation – revelation principle from Myerson

(1981) ensures that it is without loss to assume that the Bayesian optimal mechanism is

BIC.4

Proposition 2.3 (revelation principle, Myerson, 1981). If there exists an arbitrary mech-

anism that induces a equilibrium with interim allocation x and interim payment p; then

there there exists another revelation mechanism that induces a truthtelling equilibrium with

the same interim allocation x and interim payment p.

The proof of the revelation principle is simple: A revelation mechanism can simulate

the equilibrium strategies in the non-revelation mechanism to obtain the same outcome as
4For agents with linear utilities, it is without loss to assume that the Bayesian optimal mechanism is DSIC.
Manelli and Vincent (2010) show that fixing any valuation distribution F and any BIC mechanism, there
is a DSIC mechanism that achieves the same interim allocation and payment as in the BIC mechanism.
For agents with public budgeted utility, as we shown in Chapter 3, the Bayesian optimal mechanism may
not be implemented as a DSIC mechanism.
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a truthtelling equilibrium, i.e., agents reveal true values to the revelation mechanism, it

simulates the agent strategies in the non-revelation mechanism, and it outputs the outcome

of the simulation. In particular, for Bayesian mechanism design (where the agents’ values

are drawn from F ), the agents’ equilibrium strategies are a function of F and thus the

corresponding revelation mechanism constructed via the revelation principle relays on the

knowledge of F .

2.2. Prior-independent Mechanism Design

One crucial assumption in Bayesian mechanism design is the mechanism designer’s

knowledge of valuation distribution (a.k.a. prior) F . For instance, the Bayesian revenue-

optimal mechanism in Example 2.6 is a prior-dependent mechanism. To measure how

the performance degrades due to the lack of the knowledge of prior, literature introduces

prior-independent mechanism design.

Definition 2.7. Fixing an objective (e.g., welfare, revenue), a class of distributions DISTS,

the prior-independent approximation ratio Γ (M,DISTS) of a mechanism M is defined

as

Γ (M,DISTS) = max
F∈DISTS

Ev∈Fn [OPTF (v)]

Ev∈Fn [M(v)]
.

where Ev∈Fn [M(v)] is the objective value of mechanism M in equilibrium when agents

values are drawn from valuation distribution F ; and Ev∈Fn [OPTF (v)]F is the objective

value in the Bayesian optimal mechanism for distribution F .

Note that the prior-independent approximation factor Γ (M,DISTS) is at least 1 by

definition.
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A mechanismM∗ is prior-independent optimal within a class of mechanisms MECHS

for a class of distributions DISTS, if its prior-independent approximation ratio is minimal,

i.e.,

M∗ = argminM∈MECHS Γ (M,DISTS)

We denote minM∈MECHS Γ (M,DISTS) by Γ (MECHS,DISTS). When the class of distri-

butions DISTS is clear from the context, we simplify Γ (MECHS,DISTS) as Γ (MECHS).

2.3. Revelation Gap

Recall that in the revelation principle for Bayesian mechanism design, the constructed

revelation mechanism relays on the knowledge of prior. Thus, the revelation principle is

no longer holds in prior-independent mechanism design. Thus, to quantify the optimal

prior-independent approximation ratio among all revelation mechanisms vs. the optimal

prior-independent approximation ratio among all (possibly non-revelation) mechanisms,

we define the revelation gap as follows.

Definition 2.8 (revelation gap). Fixing an objective and a class of distribution DISTS, the

revelation gap ρ(DISTS) is the ratio between the optimal prior-independent approximation

factor within all revelation (i.e., BIC) mechanisms Mr
5 and the optimal prior-independent

approximation factor within all mechanisms M, i.e.,

ρ(DISTS) ,
Γ (Mr,DISTS)

Γ (M,DISTS)
.

5Recall that Bayesian incentive compatibility is defined with respect to a valuation distribution. Thus,
the class of revelation mechanisms Mr considers all mechanisms that are BIC for all distributions. By
definition, Mr contains all DSIC mechanisms.
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Note that the revelation gap ρ(DISTS) is at least 1 by definition.

Example 2.9. Consider welfare maximization for agents with linear utilities. Note that

the second-price auction is a prior-independent, DSIC and Bayesian welfare-optimal. Thus,

for any class of distributions DISTS, the revelation gap is trivial, i.e., ρ(DISTS) = 1.

In Chapter 3 and Chapter 4, we study two canonical settings and show non-trivial

revelation gap for both welfare maximization and revenue maximization.
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CHAPTER 3

Welfare Maximization for Public Budgeted Agents

In this chapter, we focus on prior-independent mechanism design for welfare maxi-

mization with public budgeted agents. In particular, we consider the class of distributions

that satisfies the public-budget regularity defined as follows.

Definition 3.1. A valuation distribution F is public-budget regular if its cumulative

function is concave. An public-budgeted agent with such valuation distribution F is public-

budget regular.

In Section 3.1, we focus on the all-pay auction, which is a non-revelation mechanism

and attains the optimal prior-independent approximation ratio, i.e., Γ (M). In Sections 3.2

and 3.3, we focus on the clinching auction and its variant (i.e., the middle-ironed clinching

auction), which are both revelation mechanisms, and provide upper and lower bounds on

the optimal prior-independent approximation ratio for revelation mechanisms, i.e., Γ (Mr).

Combining all results from Sections 3.1 to 3.3, we establish the non-trivial revelation gap

in welfare maximization for public budgeted agents in Section 3.4. Finally, in Section 3.5,

we discuss the prior-independent approximation ratios of the all-pay auction and the

clinching auction for the class of all distributions (i.e., without public-budgeted regularity

assumption).
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3.1. Welfare of the All-pay Auction

For welfare maximization, Maskin (2000) characterizes the Bayesian optimal mecha-

nisms for agents with public budget utilities. In particular, with the public-budget regu-

larity assumption, the Bayesian optimal mechanism has a nice form.

The results of Maskin can be reinterpreted, à la Alaei et al. (2013), as solving a single-

agent interim optimization problem that is given by an interim constraint x?(·). An interim

allocation is interim feasible under the interim constraint x?(·) if for all values v ∈ [v, v],

the probability of allocating item to an agent with value greater than v with allocation

rule x(·) is at most that with allocation rule x?, i.e.
∫ v
v
x(t) dF (t) ≤

∫ v
v
x?(t) dF (t). In

many cases solution to these interim optimization problems will take the form of the

original constraint with ironed interval and reserve. Ironing on arbitrary interval [v†, v‡]

corresponds to the distribution weighted averaging as follow, x(v) =
∫ v‡
v†
x?(t) dF (t) for

all v ∈ [v†, v‡]. Reserve at value v† corresponds to rejecting all value below v† as follows,

x(v) = 0 for all v ∈ [0, v†]. As we already illustrated in Example 2.1, an important

allocation constraint is that given by the highest-bid-wins allocation rule. The highest-

bid-wins allocation rule for n agents and with values from cumulative distribution function

F is x?(v) = (F (v))n−1, e.g., for two agents with uniform values it is x?(v) = v.

Theorem 3.1 (Maskin, 2000; Alaei et al., 2013). For public-budget regular i.i.d.agents and

interim allocation constraint x?(·), the welfare-optimal single-agent mechanism allocates

as by x?(·) except that values in [v†, v] are ironed for some v†; and payments are given

deterministically by the payment identity.
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w x(v)

Figure 3.1. Depicted are the interim allocation rules of the welfare-optimal
mechanism for two agents with uniform values on [0, 1] and budget w = 1/4.
In each figure the highest-bid-wins allocation rule is depicted with a dashed
line.

Example 3.2. For two agents with private value drawn from uniform distribution U [0, 1]

and budget w = 1/4, the welfare-optimal mechanism has allocation rule and payment rule

as follows,

x(v) =

 v if v ≤ 1
2
,

3
4

otherwise;
p(v) =


v2

2
if v ≤ 1

2
,

w otherwise.

See Figure 3.1 for a graphical illustration.

For single-item environments, one possible implementation of Theorem 3.1 is the all-

pay auction. The all-pay auction has a unique Bayes-Nash equilibrium which is identical

to outcome described in Theorem 3.1 for the allocation constraint given by the highest-

bid-wins allocation rule.
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Definition 3.3 (all-pay auction). The all-pay auction is a mechanism (x̃, p̃) where x̃(·)

allocates item to the agent with highest bid with tie broken at random and p̃(·) charges

each agent their bid, i.e., p̃i(b) = bi.

Theorem 3.2 (Maskin, 2000). For public-budget regular i.i.d.agents, the all-pay auction

is welfare optimal.

Note that the all-pay auction is prior-independent, and thus implies the following

corollary on the optimal prior-independent approximation ratio.

Corollary 3.3. For welfare maximization with public-budget regular i.i.d.agents, the op-

timal prior-independent approximation ratio Γ (M) = 1, which is attained by the all-pay

auction.

3.2. Welfare of the Clinching Auction

In this section, we study a prior-independent revelation mechanism called the clinching

auction in single-item environments. Dobzinski et al. (2008) gave the following formulation

of the clinching auction and characterized properties of its outcome. See Figure 3.3b for

a graphical illustration when there are two agents.

Definition 3.4 (clinching auction). The clinching auction maintains an allocation and

price-clock starting from zero. The price-clock ascends continuously and the allocation and

budget are adjusted as follows.

(1) Agents whose values are less than price-clock are removed and their allocation is

frozen.
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(2) The demand of any remaining agent is the remaining budget divided by the price-

clock.

(3) Each remaining agent clinches (and adds to their current allocation) an amount

that corresponds to the largest fraction of their demand that can be satisfied when

all other remaining agents are first given as much of their demand as possible.

(4) The budget and allocation are updated to reflect the amount clinched in the pre-

vious step.

Proposition 3.4 (Dobzinski et al., 2008). For public-budget agents, the clinching auction

always allocates all items, is ex-post IR, and is DSIC.

Lemma 3.5 (a special case of Dobzinski et al., 2008). In single-item environment, for

public-budget agents with budget w and value profile v, and let k be the largest integer such

that

v(k) ≥ w · k where v(k) is the k-th highest value in value profile v.

Then, the agents with highest (k − 1) values win with same probability greater or equal to

1
k
and the agent with the k-th highest value wins with the remaining probability.

We use the following approach to show that the clinching auction is an e-approximation

for public-budget regular agents. We relax the feasibility constraint to an ex ante con-

straint and show that the optimal mechanism that sells to each agent with ex ante proba-

bility 1/n simply posts a price (of exactly w assuming that the budget binds) for a chance

to win the item (Lemma 3.6, below). This simple form of mechanism is closely approxi-

mated by the clinching auction which sells k lotteries of 1/k probability (full details given

subsequently). A key property is that with constant probability the budget does not bind
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0 v† v
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w/v†

1

Figure 3.2. The allocation rules of the ex ante relaxation (dashed), an 1/e-
fraction of the ex ante relaxation (dotted), and the clinching auction with
lotteries (solid) are depicted. The clinching auction with lotteries pointwise
exceeds an 1/e-fraction of the ex ante relaxation.

in the clinching auction with lotteries. The probability that the budget does not bind in

the clinching auction with lotteries allows a lower bound on the allocation probability in

the clinching auction which allows its welfare to be compared to the ex ante relaxation.

Consider the welfare-optimal auction for n agents. Since agents are symmetric, each

agent will win with ex ante probability exactly 1
n
. We replace the feasibility constraint that

ex post allocation cannot allocate more than one item (i.e.
∑

i∈[n] x̃i(v) ≤ 1 for all v) with

a 1
n
ex ante constraint that each agent cannot be allocated more than 1

n
in expectation

(i.e. Ev[x(v)] ≤ 1/n). Ex ante optimal mechanisms for agents with public budgets were

proposed and studied by Alaei et al. (2013).

Lemma 3.6 (Alaei et al., 2013). For public-budget regular i.i.d. agents with budget w, the

ex ante welfare-optimal mechanism is either:

(1) Budget binds: Post the price w for allocation probability w
v†
≤ 1 with v† set to

satisfy 1
n

= w
v†

(1− F (v†)). Values v ≥ v† select the lottery.
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(2) Allocation probability binds: Post price v† = F−1(1− 1
n
) for allocation probability

one.

We build the connection between the clinching auction and the ex ante optimal mecha-

nism by considering the an additional auction: the clinching auction with lotteries Clinchk

which allocates k lotteries with winning probability 1/k per lottery, using the clinching

auction framework under the same public budget. Lemma 3.7 below shows that by se-

lecting an appropriate k, the probability that an agent with value v† wins in the clinching

auction with lotteries Clinchk is at least an e fraction of the probability that the agent

(with value v†) wins in the ex ante relaxation. See Figure 3.2.

Lemma 3.7. For public budget i.i.d. agents, at value v† defined in Lemma 3.6, there exists

k ∈ [n], such that the interim allocation of the clinching auction with lotteries xClinchk(v
†)

is an e-approximation of the interim allocation of the ex ante optimal mechanism xPP(v†),

i.e., xClinchk(v
†) ≥ 1/e · xPP(v†).

Proof. Denote the notation v(j:m) as the j-th order statistic among m i.i.d. random

variables from distribution F .

We denote the posted pricing in Lemma 3.6 as PP. Let k0 = 1/xPP(v) where xPP(v) is

the interim allocation at the highest value v. By the construction of PP, F (v†) = 1 − k0
n

and v† ≤ w · k0 (equality holds when the budget binds in PP). Let k = dk0e be the

smallest integer which is greater or equal to k0. Consider the clinching auction Clinchk

which allocates k lotteries with winning probability 1/k per lottery, using the clinching

auction framework under public budget w.
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First, fix an arbitrary agent and fix her value to be v†, we consider the following event

E : in Clinchk, this agent with value v† is one of the highest k valued agents and the budget

does not bind. Recall that when the budget does not bind, the highest k agents in Clinchk

each receive lotteries (with allocation probability 1/k) and pay the value of the (k + 1)-st

highest agent divided by k (i.e. v(k+1:n)/k). The budget bids in Clinchk if and only if

v(k+1:n)/k ≤ w and we can lower bound the lower bound the probability of the event E as

follows,

Pr[E ] = Pr
[
(v(k:n−1)/k ≤ B) ∧ (v(k:n−1) ≤ v†)

]
= Pr

[
(v(k:n−1)/k ≤ v†/k0) ∧ (v(k:n−1) ≤ v†)

]
= Pr

[
v(k:n−1) ≤ v†

]
=

k−1∑
i=0

(
n−1
i

) (
k0
n

)i (n−k0
n

)n−1−i
.

Above, the third line is derived from the second line using the definition of k ≥ k0. Denote

by xE and xĒ the allocation rule x conditioned on the events E and Ē , respectively. The

interim allocation for Clinchk at value v† can be lower bounded as follows.

xClinchk(v
†) = xEClinchk(v

†) ·Pr[E ] + xĒClinchk(v
†) ·Pr

[
Ē
]

≥ xEClinchk(v
†) ·Pr[E ]

= k0
k
· xPP(v) ·Pr[E ]

≥ 1
e
· xPP(v).
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The final inequality follows because the term k0
k
·Pr[E ] achieves the minimum at 1/e when

k0 = k = 1 and n goes to infinity. �

We now prove our main theorem about the approximation ratio for the clinching

auction.

Theorem 3.8. For public-budget regular i.i.d. agents, the clinching auction is an e-

approximation to the welfare-optimal mechanism.

Proof. By Lemma 3.6 the interim allocation rule of the ex ante optimal mechanism

is a step function that steps at value v†. By Lemma 3.7, at value v†, the allocation rule of

the clinching auction with lotteries is an e-approximation to that of the ex ante optimal

mechanism. The allocation rule of the clinching auction with lotteries is monotone, so its

allocation rule is an e-approximation to that of the ex ante optimal mechanism at every

value. Consequently, the expected welfare of the clinching auction with lotteries is at least

an e-approximation to that of the ex ante relaxation. See Figure 3.2.

Finally, Lemma 3.5 implies that for every ex post value profile, the welfare of the

clinching auction is at least that of the clinching auction with lotteries. �

Corollary 3.9. For welfare maximization with public-budget regular i.i.d.agents, the opti-

mal prior-independent approximation ratio Γ (Mr) among all revelation mechanisms is at

most e.

For public-budget regular i.i.d. agents, the all-pay auction is optimal while the clinching

auction is not, since the budget binds for more value profiles in the clinching auction than

in the all-pay auction. Based on this, we give a 1.03 lower bound of the approximation ratio

for the clinching auction and leave the actual approximation ratio as an open problem.
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Lemma 3.10. There exists the instance of public-budget regular agents where the clinching

auction is a 1.03-approximation of the welfare-optimal mechanism.

Proof. Consider a simple setting: there are 2 public-budget regular agents with value

drawn uniformly from [0, v] and the budget w = 1.

By Theorem 3.2, the all-pay auction is welfare-optimal for public-budget regular agents.

The interim allocation rule of it is x(v) = v
v
if v ≤ 2 and x(v) = v+2

2v
otherwise. The

expected welfare of all-pay auction is (3v3 + 6v2 − 12v + 8)/6v2.

The interim allocation rule of the clinching auction is x(v) = v
v
if v ≤ 1 and x(v) =

v+2
2v
− 1

2v2
otherwise. The expected welfare of the clinching auction is (3v3 + 6v2 − 3v −

6v ln v − 2)/6v2.

Setting v = 4.04 optimizes the ratio at 1.03. �

3.3. Bayesian Optimal DSIC Mechanism

In Theorem 3.2, the all-pay auction is welfare-optimal under public-budget regular

distribution. Hence, applying the revelation principle to the all-pay auction, it produces

a Bayesian optimal revelation mechanism. This mechanism is prior-dependent, BIC but

not DSIC. In this section, we characterize the optimal DSIC mechanism for two agents

with uniformly distributed values. We obtain a lower bound on its approximation ratio

with the BIC optimal mechanism.

We first introduce the middle-ironed clinching auction (for two agents).

Definition 3.5. The two-agent middle-ironed clinching auction is parameterized by v† ≤ w

and v‡ = 2w−v† and its outcome is highest-bid-wins on values less that v†, a fair lottery on
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Figure 3.3. The comparison of the allocation rule x1(v1, v2) for the middle-
ironed clinching auction and the clinching auction. In the middle-ironed
clinching auction, for the values in interval M can be thought as “ironed”,
i.e. an agent receives the same outcome for any value v ∈M.

values in [v†, v‡], and the clinching auction on values exceeding v‡; a precise formulation

for two-agents is given in Figure 3.3a and a general formulation is given in Appendix A.1.

For two-agents case, the middle-ironed clinching auction allocates the item efficiently

except for value profiles in MM (both agents with values in M) or HH (both agents with

values in H). For the value profile in MM, it randomly allocates the item to one of the

agent with probability 1
2
with payment v†

2
. For the value profile in HH, it allocates the

item such that the budget binds for the agent with higher value and the allocation rule

depends on the lower value only. Figure 3.3b depicts the allocation rule of the clinching

auction for comparison. The middle-ironed clinching auction can be implemented with an
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ascending price via a generalization of the clinching auction that allows for price jumps

which we develop in Appendix A.1 (this generalization is non-trivial).

We will show that by selecting the proper thresholds v† and v‡, the middle-ironed

clinching auction is the Bayesian optimal DSIC mechanism for two agents with uniformly

distributed values. An intuition behind the optimality of the middle-ironed clinching

auction is as follows: Dobzinski et al. (2008) show that for two public budget agents, the

clinching auction is the only Pareto optimal (i.e. there is no outcome which is weakly

better for all agents and strictly better for one agent) and DSIC auction. Moreover, after

the price increases past the point where the budget binds, a differential equation governs

the allocation of any DSIC mechanism. Our goal is to optimize expected welfare rather

than satisfy Pareto optimality. Sacrificing welfare for lower-valued agents by ironing can

delay the budget from binding and enable greater welfare from higher-valued agents. From

our proof of optimality, it is sufficient to only iron one region in the middle of value space.

Theorem 3.11. For two public-budget agents with budget w and value uniformly drawn

from [0, v], Bayesian optimal DSIC mechanism is the middle-ironed clinching auction with

some thresholds v† and v‡.

The approach of the proof is to write down our problem as a linear program (primal),

assume the middle-ironed clinching auction to be the solution, and then construct the

dual program with a dual solution which witnesses the optimality of the primal solution

by complementary slackness. This approach is reminiscent of that of Pai and Vohra (2014)

and Devanur and Weinberg (2017); however, our multi-agent DSIC constrained program

presents novel challenges and for this reason we only solve the problem of two agents and

uniform distributions.
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We first solve a discrete version of the problem. Then, we solve the continuous version

as the limit from the discrete version. Consider the value distribution with finite value

space [v] = {1, 2, . . . , v} with equal probability each. We begin by writing down the

optimization program for welfare maximization among all possible DSIC mechanism.

sup
(x,p)

∑
v1,v2∈[v]

(v1 · x1(v1, v2) + v2 · x2(v1, v2)) · 1
v
· 1
v

s.t.

(x,p) are DSIC, ex-post IR, and feasible

(x,p) is budget balanced

By the characterization of dominant strategy equilibrium, we simplify this optimization

program into a linear program as follows,

max
(x,p)≥0

∑
v1,v2∈[v]

v1 · x(v1, v2) s.t.

v · x(v, v2)−
∑v

t=1 x(t, v2) ≤ w for all v2 ∈ [v] [Budget Constraint]

x(v1, v2) + x(v2, v1) ≤ 1 for all v1, v2 ∈ [v] [Feasibility Constraint]

x(v1, v2) ≤ x(v1 + 1, v2) for all v1 ∈ [v − 1], v2 ∈ [v] [Monotonicity Constraint]

where we assume x1(a, b) = x2(b, a) = x(a, b) for all a, b ∈ [v] since it is an agent-symmetric

linear program. 1

Additionally, we relax the monotonicity constraint by replacing it with x(v1, v2) ≤

x(v, v2) which is common for Bayesian mechanism design with public budget agents.

x(v1, v2) ≤ x(v, v2) for all v1 ∈ [v − 1], v2 ∈ [v] [Relaxed Monotonicity Constraint]

1Note that the program in terms of x(a, b) is asymmetric.
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The corresponding dual program can be written as follows. Let {Λ(v2)}v2∈[h] denote

the dual variables for budget constraints; {β(v1, v2)}v1,v2∈[v] denote the dual variables for

feasibility constraints (for simplicity, we use both β(v1, v2) and β(v2, v1) to denote the

same dual variable); and {µ(v1, v2)}v1∈[v−1],v2∈[v] denote the dual variables for monotonicity

constraints. The dual program is,

min
(Λ,β,µ)≥0

∑
v2∈[v]

w · Λ(v2) + 1
2

∑
v1,v2∈[v]

β(v1, v2) s.t.

−Λ(v2) + β(v1, v2) + µ(v1, v2) ≥ v1 ∀v1 ∈ [v − 1], v2 ∈ [v] [x(v1, v2)]

(v − 1)Λ(v2) + β(v, v2)−
∑v−1

t=1 µ(t, v2) ≥ v ∀v2 ∈ [v] [x(v, v2)]

The plan to solve the program is as follows. For each possible thresholds v†, v‡ chosen

in the middle-ironed clinching auction, we first construct a solution in dual which satisfies

the complementary slackness with this middle-ironed clinching auction as a solution in

primal. These induced dual solutions may be infeasible. Next, we will show that there

exists a pair of thresholds v†, v‡ which induces a feasible dual solution. This feasible dual

solution witnesses the optimality of the middle-ironed clinching auction.

We will partition the dual variables into following five areas (L∗, MM, HH, MH and

HM) as in Figure 3.4; and construct the dual solution for them separately. We denote λ

as the discrete derivative of the dual variable Λ, i.e. λ(v) = Λ(v)− Λ(v + 1).

Λ in L:: Since the budget constraints do not bind, by complementary slackness,

Λ(v) = 0 for all v ∈ L.

β,µ in L∗:: Let (v, v′) be a value profile in area L∗ such that v ≥ v′. By complementary

slackness on x(v, v′), β(v, v′)+µ(v, v′)−Λ(v′) = v if v < v; β(v, v′)−
∑v−1

t=1 µ(t, v′)+
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Figure 3.4. We partition the dual variables into L∗ (at least one agent with
value in L), HH (both agents with values in H), MM (both agents with
values in M), MH and HM (one agent with value in M and the other with
value in H) five areas.

(v − 1)Λ(v′) = v otherwise (i.e. v = v). We let

β(v, v′) = v and µ(v, v′) = 0.2

Since the relaxed monotonicity constraint does not bind at x(v′, v), i.e. x(v′, v) <

x(v, v), the corresponding dual variable is

µ(v′, v) = 0.

β,µ in HH:: Let (v, v′) be a value profile in area HH such that v ≥ v′. Since both

agents win with non-zero probability, by complementary slackness on x(v, v′) and

2An intuition here is: µ are the dual variables for the relaxed monotonicity constraint and can be thought
as indicators of ironing. Though the monotonicity constraint binds, this is not because of ironing but
binding allocation (i.e. x(·) ≤ 1). Therefore, we set µ as zero.
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x(v′, v), the corresponding dual constraints bind. Since the relaxed monotonicity

constraint does not bind at x(v′, v), the monotonicity dual variable is

µ(v′, v) = 0.

The binding dual constraint of x(v′, v) is β(v′, v)− Λ(v) + µ(v′, v) = v′. Hence,

β(v, v′) = β(v′, v) = v′ + Λ(v).3

The binding dual constraint of x(v, v′) is β(v, v′)−Λ(v′) + µ(v, v′) = v. Note the

relaxed monotonicity constraint is tight for (v, v′). Hence,

µ(v, v′) = v − v′ + Λ(v′)− Λ(v).

Here we write β,µ as terms of Λ. In the next paragraph, we will solve for Λ.

Λ in H:: Let v ∈ H. Consider the binding dual constraint of x(v, v), (v − 1)Λ(v) +

β(v, v) −
∑v−1

t=1 µ(t, v) = v. Notice that by complementary slackness, µ(t, v) = 0

for all t ≤ v. Plugging β and µ as terms of Λ into the these dual constraints of

x(v, v), we can solve for Λ as

λ(v) =
v − v
v

for all v ∈ H and Λ(v) = 0.4

β,µ in MM and Λ in M:: Let (v, v′) be a value profile in area MM such that v ≥

v′. Since the relaxed monotonicity constraints do not bind for either x(v, v′) or

3Recall that β(v, v′) and β(v′, v) denote the same dual variable.
4Recall that λ is the discrete derivative of dual variables Λ, so Λ(v) =

∑v−1
t=v λ(v).



54

x(v′, v), the corresponding dual variables are

µ(v, v′) = µ(v′, v) = 0.

The binding dual constraints of x(v, v′) implies β(v, v′) = v′+Λ(v). On the other

hand, the binding dual constraints of x(v′, v) implies β(v′, v) = v + Λ(v′). Recall

that β(v, v′) and β(v′, v) denote the same variable, hence,

λ(v) = −1 for all v ∈M \ {v‡ − 1}, 5

β(v, v′) = Λ(v‡) + λ(v‡ − 1) + v + v′ − v‡.

β,µ in MH and HM:: Let (v, v′) be a value profile in area HM such that v > v′. With

the similar argument for region HH,

µ(v′, v) = 0 and µ(v, v′) = v − v′ + Λ(v′)− Λ(v),

β(v, v′) = v′ + Λ(v) if v < v.

Plugging the above expressions for µ into the binding dual constraint of x(v, v′),

β(v, v′) = (v − 1)(v‡ − v′) + 1 + (v‡ − 1)λ(v‡ − 1).

5Complementary slackness does not pin down λ(v‡ − 1). We leave it as a variable and identify it later
when we choose the thresholds v†, v‡ to ensure that the dual solution is feasible.



55

With the analysis above, we construct the following dual solution which satisfies com-

plementary slackness with the middle-ironed clinching auction as a solution in primal,

Λ(v2) =


0 if v2 < v†∑v−1

k=v‡
v−k
k

+ v2 − v‡ + 1 + λ(v‡ − 1) if v† ≤ v2 < v‡∑v−1
k=v2

v−k
k

if v2 ≥ v‡

β(v1, v2) =



v1 if v1 ≥ v2, v2 < v†∑v−1
k=v‡

v−k
k

+ v1 + v2 − v‡ + 1 + λ(v‡ − 1)

if v1 ≥ v2, v
† ≤ v2 < v‡, v1 < v‡∑v−1

k=v1
v−k
k

+ v2

if v1 ≥ v2, v
† ≤ v2 < v‡, v‡ ≤ v1 ≤ v − 1

(v − 1)(v‡ − v2) + 1 + (v‡ − 1)λ(v‡ − 1)

if v1 ≥ v2, v
† ≤ v2 < v‡, v1 = v∑v−1

k=v1
v−k
k

+ v2 if v1 ≥ v2, v
‡ ≤ v2

µ(v1, v2) =



0 if v2 < v†

0 if v† ≤ v2 < v‡, v1 < v‡

v1 − v‡ +
∑v1−1

k=v‡
v−k
k

+ 1 + λ(v‡ − 1) if v† ≤ v2 < v‡, v1 ≥ v‡

0 if v2 ≥ v‡, v1 ≤ v2

v1 − v2 +
∑v1−1

k=v2
v−k
k

if v2 ≥ v‡, v1 > v2

(3.1)

Lemma 3.12. For the middle-ironed clinching auction with arbitrary thresholds v† and

v‡, the dual solution (3.1) satisfies the complementary slackness.

Proof. The complementary slackness is directly implied by the construction. �
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Though the this dual solution satisfies the complementary slackness, it may be infea-

sible. Therefore, we argue that there exists some thresholds v†, v‡ and λ(v‡ − 1) under

which the dual solution is feasible.

Lemma 3.13. There exists v†, v‡ and λ(v‡ − 1) such that the constructed dual solution

(3.1) is feasible.

Proof. We define function Z(v) = 2v−2w−2−
∑v−1

k=v
v−k
k

to simplify the argument.

Notice that Λ(v) =
∑v−1

k=v
v−k
k

in the dual solution (3.1) if v ∈ H.

Due to complementary slackness, all dual constraints corresponding to some x(v, v′) >

0 bind, so they are satisfied automatically. Hence, to ensure the constructed dual solution

is feasible, there remain four groups of constraints which need to be satisfied. For each

group of constraints, there is a “pivotal” constraint such that if it is satisfied, all constraints

in that group is satisfied. We list these four groups of constraints and “pivotal” constraint

for each group below,

All dual constraints of x(v, v′) where v ∈ L and v′ ∈M:: The pivotal constraint is

the dual constraint of x(v† − 1, 1), which can be simplified as

λ(v‡ − 1) ≤ Z(v‡).

All dual constraints of x(v, v′) where v ∈ L and v′ ∈ H:: The pivotal constraint is the

dual constraint of x(v† − 1, v‡), which can be simplified as

−1 ≤ Z(v‡).
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All dual constraints of x(v, v) where v ∈M:: The pivotal constraint is the dual con-

straint of x(v‡ − 1, v), which can be simplified as

λ(v‡ − 1) ≤ v

v‡ − 1
− 1.

Λ,µ,β ≥ 0:: The pivotal constraint is Λ(v†) ≥ 0, which can be simplified as

λ(v‡ − 1) ≥ Z(v‡)− 1.

We now show how to relate v†, v‡ and λ(v‡−1) to satisfy the four inequalities identified

above.

Notice that when v† = 1 and v‡ = 2w + 1, the interval L becomes empty. In that

case, the first and second groups of constraints disappear. The combination of these four

inequalities is equivalent to

i. v‡ = 2w + 1 and Z(v‡) ≤ v
v‡−1

; or

ii. −1 ≤ Z(v‡) ≤ v
v‡−1

.

Without loss of generality, we assume that Condition (i) does not hold and then argue

that Condition (ii) holds in this case.

The construction of Z(·) implies the following two facts,

(a) if Z(v) < −1, then Z(v + 1) < v
v
;

(b) if Z(v) > v
v−1

, then Z(v − 1) > −1.

If we think of interval (−1, v
v−1

) as a “window”, these two facts say that if a point Z(v) is

on the left hand side of this window (i.e. Z(v) < −1) , then the next point Z(v+1) cannot

jump to the right hand side of the window (i.e. it is either in the window or still on the left
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hand side of the window) and vice versa. Notice that Z(w+ 1) = −
∑v−1

k=w+1
v−k
k
≤ 0 < v

w

and our assumption (i.e. Condition (i) does not hold) implies Z(2w+1) > v
2w
> −1. Thus,

there exists v‡ such that −1 ≤ Z(v‡) ≤ v
v‡−1

, i.e. Condition (ii) holds. �

The construction of the dual solution which satisfies feasibility and complementary

slackness witnesses the optimality of the middle-ironed clinching auction. We offer the

following discrete version of Theorem 3.11.

Theorem 3.14. For two public-budget agents with value uniformly distributed from [v],

the Bayesian optimal DSIC mechanism is the middle-ironed clinching auction for some

thresholds v† and v‡.

We now focus on continuous uniform distribution with value space [0, v]. Again, we

write the problem as an optimization program as follows,

max
(x,p)≥0

v∫
0

v∫
0

v1 · x(v1, v2)dv2dv1 s.t.

v · x(v, v2)−
∫ v

0
x(t, v2)dt ≤ w ∀v2 ∈ [0, v] [Budget Constraint]

x(v1, v2) + x(v2, v1) ≤ 1 ∀v1, v2 ∈ [0, v] [Feasibility Constraint]

x(v1, v2) ≤ x(v, v2) ∀v1, v2 ∈ [0, v] [Relaxed Monotonicity Constraint]

Proof of Theorem 3.11. Discretize the value space [0, v] into {ε, 2ε, . . . ,mε} where

mε = v with density 1
m

each. Define Xε to be the class of all possible DSIC, ex-post IR,

budget balanced allocations such that each value v ∈ [(k − 1)ε, kε) must be ironed for all

k = 1, . . . , v. By the construction of Xε, the allocation function xε in Theorem 3.14 indeed

solves maxx∈Xε
∫ v

0

∫ v
0
v1 · x(v1, v2)dv2dv1 after rescaling both value space and budget by 1

ε
.
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Let X be the class of all possible DSIC, ex-post IR, budget balanced allocations. Notice

that Xε converges to X pointwise and that both are compact subsets of the L1 space defined

by uniform measure. The operator T (x) =
∫ v

0

∫ v
0
v1 · x(v1, v2)dv2dv1 is a bounded linear

operator from the L1 space of allocation function to R. Therefore, T achieves its maximum

on each set X ε and X .

The pointwise convergence ensures that

lim
ε→0

max
x∈X ε

∫ v

0

∫ v

0

v1 · x(v1, v2)dv2dv1 = max
x∈X

∫ v

0

∫ v

0

v1 · x(v1, v2)dv2dv1

Since T (x) is a bounded linear operator and {xε} has a pointwise limit,

lim
ε→0

xε ∈ {argmaxx∈X

∫ v

0

∫ v

0

v1 · x(v1, v2)dv2dv1}.

Thus, we see that Theorem 3.11 holds. �

Based on Theorem 3.11, the performance of the welfare-optimal DSIC and BIC mech-

anisms can be compared.

Lemma 3.15. There exists the instance of public-budget regular agents where the welfare-

optimal DSIC mechanism is a 1.013-approximation to the welfare-optimal BIC mechanism.

Proof. Consider two agents with values drawn uniformly from [0, v] where v ≥ 5.5

and the budget w = 1. By Theorem 3.11, the welfare-optimal DSIC mechanism in this

case is the middle-ironed clinching auction with v† = 0 and v‡ = 2. The welfare-optimal

BIC mechanism is the all-pay auction (applying the revelation principle). By computing

the welfare for both mechanisms under this distribution, and setting v = 5.5, the ratio is

optimized as 1.013. �
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3.4. Revelation Gap for Welfare Maximization

Theorem 3.16. For public-budget regular i.i.d.agents, the revelation gap for welfare max-

imization is at most e. Specifically, this upper bound considers prior-independent DSIC,

ex-post IR mechanisms.

Proof. This upper bound is given by considering the clinching auction which is a

prior-independent DSIC and ex-post IR mechanism. Theorem 3.8 says that the clinching

auction is an e-approximation to the welfare-optimal mechanism for public-budget regular

agents. Thus, the revelation gap is at most e. �

For the lower bound, we use the result in section 3.3 where we solve the welfare-optimal

DSIC mechanism for two agent with uniformly distributed values. Note that for two-agent

environments, the DSIC ex-post IR constraints are equivalent to prior-independent BIC

and IIR constraints.6 With more than two agents, this equivalence does not generally

hold.

Lemma 3.17. For two i.i.d.agents, a mechanism is Bayesian incentive compatible and

interim individual rational for all i.i.d.distributions if and only if it is dominant strategy

incentive compatible and ex-post individually rational.

Proof. The direction that DSIC implies BIC for all i.i.d.distribution is trivial by the

definition. To show the other direction, for arbitrary value v, consider the distribution

which puts the whole mass on v. These distributions break the interim constraints in

6Prior-independent BIC and IIR mechanisms are the mechanisms which are BIC and IIR for all
i.i.d.distributions. This property is stronger than BIC (for a single distribution) but generally weaker
than DSIC.
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BIC into the ex-post constraints in DSIC for every value profiles. Hence, BIC for all

i.i.d.distribution implies DSIC for two agents setting. �

Theorem 3.18. For public-budget regular i.i.d.agents, the revelation gap for welfare max-

imization is at least 1.013.

Proof. This lower bound is given by considering the all-pay auction and the middle-

ironed clinching auction.

As the characterization in Section 3.1, the all-pay auction is a prior-independent mech-

anism. Theorem 3.2 says that the all-pay auction is welfare-optimal for public budget

regular agents. Hence, the prior-independent approximation of mechanisms is 1.

Next, we show that the prior-independent approximation of Bayesian incentive com-

patible mechanisms is at least 1.013. Theorem 3.11 says that the middle-ironed clinching

auction is Bayesian optimal DSIC mechanism for two agents with values drawn uniformly

from [0, v]. Since for two agents case, the DSIC property is equivalent to the BIC for all

i.i.d.distribution property, Lemma 3.15 suggests that the prior-independent approximation

of incentive compatible mechanisms is at least 1.013.

Thus, the revelation gap for welfare maximization is at least 1.013. �

3.5. Welfare Approximation for Irregular Distribution

In this section, we analyze the prior-independent approximation ratio of the all-pay

auction and the clinching auction for public budget agents without public-budget regular-

ity assumption.
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The main technique we use is the following lemma which relaxes the budget constraint

to another constraint which upper bounds the wining probability of the highest value,

i.e.x(v) where v is the highest value in the support of the distribution.

Lemma 3.19. Given any interim constraint x? and budget w, let v† be the value where

the budget binds in x? after ironing from v† to v, i.e.v† · z?(v†) −
∫ v†

0
x?(t)dt = w where

z?(v†) = 1
1−F (v†)

∫ v
v†
x?(t)dF (t), the averaging wining probability for value beyond v† in

allocation x?. Any interim feasible and budget balanced allocation x satisfies

x(v) ≤ 2z?(v†).

Proof. Recall that v† is the value where the budget binds in x? after ironing from

v† to v. Thus,

w = v† · z?(v†)−
∫ v†

0

x?(t)dt ≤ v† · z?(v†).

On the other hand, suppose x is budget balance,

w ≥ v · x(v)−
∫ v

0

x(t)dt ≥ v† · (x(v)− x(v†))

Suppose x is interim feasible,

x(v†) ≤ 1

1− F (v†)

∫ v

v†
x(t)dt ≤ 1

1− F (v†)

∫ v

v†
x?(t)dt = z?(v†).

Combine the inequalities above,

x(v) ≤ x(v†) + z?(v†) ≤ 2z?(v†). �
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(a) w ≤ v† · z?(v†)
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(b) w ≥ v† · (x(v)− x(v†))

Figure 3.5. Proofs by picture of the upper bound and lower bound on budget w.

The All-pay Auction

First, we discuss the performance of all-pay auction for the irregular distribution. Pai and

Vohra (2014) show that the welfare-optimal interim allocation is both ironing top interval

and perhaps ironing some other intervals in the middle. It turns out that even though the

all-pay auction only irons the top interval, its welfare only suffers a modest loss.

Theorem 3.20. For public-budget i.i.d.agents, the all-pay auction is a 2-approximation

to the welfare-optimal mechanism.

Proof. Applying Lemma 3.19, we relax the budget constraint to the constraint that

x(v) ≤ 2z?(v†).

Denote x0 as the welfare-optimal interim feasible and budget balanced allocation and

x as the welfare-optimal interim feasible allocation under the relaxed constraint, then

welfare[x0] ≤ welfare[x].
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Since x maximizes the welfare under interim feasibility constraint x?, it allocates as

by x? except that values in [v‡, v] are ironed. The threshold v‡ is selected such that

x(v) = 2z?(v†). By definitions of v† and v‡, we know v† ≤ v‡. Consider x for values below

and beyond v† separately. For value below v†, the expected welfare
∫ v†

0
v · x(v)dF (v) =∫ v†

0
v · x?(v)dF (v). For value beyond v†, the expected welfare

∫ v
v†
v · x(v)dF (v) ≤

∫ v
v†
v ·

2z?(v†)dF (v).

Notice that v† coincides with the threshold in the all-pay auction, and the all-pay

auction allocates as by x? except value beyond v† win with probability z?(v†). Thus,

welfare[x] ≤ 2 ·welfare[All-pay]. �

In fact, the 2-approximation bound is tight.

Lemma 3.21. There exists the instance where the welfare of the all-pay auction is half of

welfare-optimal mechanism.

Proof. Consider the following single-item instance with budget w = 1. There are

N + 1 agents with valuation distribution

v =


N − ε w.p. 1

N+1
,

N w.p. N−1
N+1

,

N3 w.p. 1
N+1

.

In the all-pay auction, the interim allocation rule irons values N and N3,

x(v) =

 δ if v = N − ε,
1−δ
N

if v = N or N3,
where δ = ( 1

(N+1)
)N+1 → 0.

where the expected welfare is roughly N + 1.
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Notice that in the all-pay auction, the mechanism uses almost all budget to distinguish

values N − ε and N whose contribution to the expected welfare is almost the same.

Therefore, consider the auction which irons values N − ε and N , and moves some winning

probability from value N3 to values N − ε,N as follows,

x(v) =


N−1

N(N+1)
if v = N − ε or N,

2
N+1

if v = N3.

where the expected welfare is roughly 2N + 1.

Let N → ∞ and ε → 0, the expected welfare from the all-pay auction is exactly half

of the expected welfare from the optimal auction. �

The Clinching Auction

To analyze the welfare approximation of the clinching auction for irregular distributions,

we follow almost the same argument as for regular distributions. The only difference in

the argument is that the ex ante welfare-optimal mechanism may not be a simple posted

price for a probabilistic allocation. However, by Lemma 3.19, such a posted pricing is still

a 2-approximation.

Lemma 3.22. For public-budget i.i.d.agents, the posted pricing described in Lemma 3.6

is a 2-approximation to the ex ante welfare-optimal mechanism.

Proof. Consider the interim constraint x?(v) = 1 if F (v) ≥ 1/n and x?(v) = 0 if

F (v) < 1/n. Applying the similar argument in Theorem 3.20 with Lemma 3.19, the lemma

holds. �

The following corollary is combines Lemma 3.22 with Theorem 3.8.
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Corollary 3.23. For public-budget i.i.d.agents, the clinching auction is a 2e-approximation

to the welfare-optimal mechanism.
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CHAPTER 4

Revenue Maximization for A Linear Agent

with A Single Sample Access

In this chapter, we consider prior-independent mechanism design for a linear agent

with a single sample access. Since we only focus on single-agent problem, we drop the

agent’s index in the subscript of all notations.

In Section 4.1, we discuss how to extend the basic prior-independent mechanism design

problem to the one with a single sample access, and introduce some necessary technique

for the later analysis. In Section 4.2, we introduce the sample-bid mechanism – a non-

revelation mechanism and discuss some basic properties. We upper-bound the prior-

independent approximation ratio of the sample-bid mechanism in Sections 4.3 and 4.4

within the class of MHR, regular distributions respectively. In Section 4.5, we show a

lower bound of the optimal prior-independent approximation ratio. In Section 4.6, we focus

on the sample-based pricing – a revelation mechanism, and discuss its prior-independent

approximation ratio. Combining all results from Sections 4.3 to 4.6, we establish the

non-trivial revelation gaps in revenue maximization in this setting.

4.1. Preliminaries: Single-item Auction with A Single Sample Access

When there is only a single agent, there is no prior-independent mechanism with

finite prior-independent approximation ratio for revenue maximization, unless the class of
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distributions DISTS is trivial (e.g., DISTS is a singleton). To address this issue, we allow

the mechanism to access a sample from the valuation distribution.

Recall that in the classic prior-independent mechanism design defined in Chapter 2,

the seller does not know the valuation distribution F of the agent. However, in this

chapter, we assume that the seller has a single sample s drawn from F . The agent knows

the valuation distribution F but does not observe the sample s, and the value v of the

agent is independent of the sample s. A mechanism M = (x̃, p̃) includes an allocation

rule x̃ : R×R→ [0, 1] mapping from the agent’s bid b and the sample s to the allocation

probability of the item; and a payment rule p̃ : R×R→ R+ mapping from the agent’s bid

b and the sample s to the payment charged from the agent. Let x̃(b, F ) = Es∼F [x̃(b, s)],

p̃(b, F ) = Es∼F [p̃(b, s)] be the expected allocation and payment over the randomness of the

sample s drawn from distribution F . The seller first announce the mechanismM = (x̃, p̃)

to the buyer, and then the sample s and value v are realized from distribution F . The

agent report a bid b based on her private value v, and the seller implements the mechanism

M with input b and sample s. We assume that the seller has full commitment power on

implementing the mechanism.

Given a mechanism (x̃, p̃) and distribution F , the best response of the agent is b(·, F ) :

R→ R which maximizes her expected utility, i.e., for every value v, b(v, F ) ∈ argmaxb v ·

x̃(b, F )− p̃(b, F ).1 A mechanism (x̃, p̃) is incentive compatible (IC) if reporting the agent’s

value truthfully is her best response, i.e., b(v, F ) = v for all v and F . A mechanism (x̃, p̃)

1When there are multiple bids maximizing the utility of the agent, we allow the agent to choose any bid
maximizing her utility. The revenue guarantee we obtained in this paper holds even when the agent can
break tie and choose the bid minimizing the revenue of the seller.
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is individual rational (IR) if the agent’s utility under her best response is non-negative,

i.e, maxb v · x̃(b, F )− p̃(b, F ) ≥ 0 for all v and F .2

For any mechanism (x̃, p̃), let x(v, F, s) = x̃(b(v, F ), s) be the interim allocation of

value v given distribution F and sample s when the agent follows her best response,

and let p(v, F, s) = x̃(b(v, F ), s) be the interim payment. Moreover, denote x(v, F ) =

Es∼F [x(v, F, s)] and p(v, F ) = Es∼F [p(v, F, s)] as the expected interim allocation and

payment. We often omit F in the notation if it is clear from the context.

The revenue RevF [M] of a mechanismM = (x, p) on distribution F is the expected

payment when the agent plays her best response, i.e., Ev∼F [p(v, F )]. We evaluate mecha-

nisms by the prior-independent approximation ratio.

Definition 4.1 (a special case of Definition 2.7). The prior-independent approximation

ratio of a mechanismM over a class of distributions DISTS is defined as

Γ (M,DISTS) , max
F∈DISTS

RevF [OPTF ]

RevF [M]

where RevF [OPTF ] , max
p

(1 − F (p)) p is the optimal revenue for distribution F (cf.

Myerson, 1981).

Revenue Curve. For any distribution F , let q(v, F ) = 1− F (v) be the quantile for the

distribution, and v(q, F ) be the value v such that q = 1 − F (v). Here we introduce the

revenue curve in quantile space (cf. Bulow and Roberts, 1989), which is a useful tool in

the revenue analysis.

2Note that the utility of the agent can be negative for some realization of the sample s, but in expectation
it must be non-negative.
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Definition 4.2. For any valuation distribution F , the revenue curve R(q, F ) of the agent

is a mapping from any q ∈ [0, 1] to the optimal revenue from an agent with value drawn

from F subject to the constraint that the item is allocated with ex ante probability q.

In the later analysis in the paper, when F is clear from the context, we omit it in

the notation and only use R(q) to represent the revenue curve and q(v) to represent the

quantile of value v. Let φ(v) = v − 1−F (v)
f(v)

be the virtual value of the agent.

Definition 4.3. An valuation distribution F is regular if the virtual value of the agent is

weakly increasing.

Theorem 4.1 (Myerson, 1981). A distribution F is regular if and only if the corresponding

revenue curve R(q, F ) is concave.

Finally, we define the monopoly reserve and monopoly quantile of the agent given the

revenue curve R.

Definition 4.4. The monopoly quantile of the agent is q̂? = argmaxq R(q),3 and the

monopoly reserve of the agent is v̂? = R(q̂?)/q̂?.

4.2. The Sample-bid Mechanism

In this section, we introduce the main mechanism considered in this paper, the sample-

bid mechanism.

Definition 4.5 (sample-bid mechanism). Given parameter α and sample s, the sample-

bid mechanism solicits a non-negative bid b ≥ 0, charges the agent α · min{b, s}, and

allocates the item to the agent if b ≥ s.
3In this paper, we break tie in favor of smaller quantile. Note that all the results are not affected by the
tie breaking rule.
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In the sample-bid mechanism, the agent reports her bid without knowing the realization

of the sample. From her perspective, the utility u(v, b, F ) for her who has value v, reports

bid b, and competes with sample s ∼ F is

u(v, b, F ) = v · F (b)︸︷︷︸
Prs∼F[s≤b]

− αb · (1− F (b))︸ ︷︷ ︸
payment when s ≥ b

−α
∫ max{b,v}

v

tdF (t)︸ ︷︷ ︸
payment when s ≤ b

Note that reporting bid equal to zero, the utility of agent is zero. Thus, sample-bid

mechanismis individually rational.

Lemma 4.2. The sample-bid mechanism is individually rational.

On the other hand, reporting bid equal to agent’s value is not the best response in

general. We provide a characterization of agent’s optimal bid as follows.

Lemma 4.3. In the sample-bid mechanism, given any parameter α and distribution F ,

the optimal bid b(v, F ) for the agent with value v satisfies the constraint that

v = α · 1− F (b(v, F ))

f(b(v, F ))
,(4.1)

or b(v, F ) ∈ {0,∞}. Ties are broken according to the utility of the agent.

Proof. The agent’s utility from reporting bid b is

u(v, b, F ) = v · F (b)− αb(1− F (b))− α
∫ max{b,v}

v

tdF (t)
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Consider the first order condition with respect to bid b, if the optimal bid is obtained in

the interior, we have

f(b)

(
v − α · 1− F (b)

f(b)

)
= 0

as a necessary condition for the optimality of the bid b. Otherwise, the optimal bid is

obtained on the boundary, where b(v, F ) ∈ {0,∞}. �

Note that in Lemma 4.3 there might exist multiple bids b that satisfies the constraint

(4.1). In that case, the agent chooses the bid which satisfies (4.1) and maximizes her

utility. Another observation (Lemma 4.4) of the sample-bid mechanism is that the ex-

pected revenue of the seller scales linearly with the valuation distribution. Since the

optimal revenue scales linearly with the valuation distribution as well, to analyze the

prior-independent approximation ratio of the sample-bid mechanism, we can focus on the

valuation distributions such that the optimal revenue is normalized to 1.

Lemma 4.4. Denote by r the revenue of the sample-bid mechanism with any parameter

α and any valuation distribution F †. For any ρ > 0 and distribution F ‡ such that F ‡ is

F † scaled by ρ, i.e., F †(v) = F ‡(ρv) for all v, the revenue of the sample-bid mechanism

with parameter α and distribution F ‡ is ρr.

Proof. First we show that for any value v, the bid of value v given distribution F †

is equivalent to the bid of value ρv given distribution F ‡ scaled by ρ. The reason is that

F †(v) = F ‡(ρv) and f †(v) = ρf ‡(ρv). Therefore, by Lemma 4.3, the first order condition

implies that the optimal bid satisfies b(ρv, F ‡) = ρ · b(v, F †). Moreover, the payment
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satisfies

p̃(ρb, F ‡) = αρb · (1− F ‡(ρb)) + α

∫ ρb

0

tdF ‡(t)

= ρ(αb · (1− F †(b) + α

∫ b

0

tdF †(t)) = ρ · p̃(b, F †).

By taking expectation over the valuation, the expected revenue is scaled by ρ as well. �

We finish this section by providing two simple monotonicity properties of the sample-

bid mechanism and defer other more complicated characterizations required in our analysis

to the later sections.

Lemma 4.5. In the sample-bid mechanism, given any parameter α and distribution F ,

the expected payment for bid b is monotonically non-decreasing in b.

Proof. By definition, the expected payment p̃(b, F ) of bid b over the randomness of

the sample s ∼ F is

p̃(b, F ) = αb · (1− F (b)) + α

∫ max{b,v}

v

tdF (t)

Taking the derivative with respect to bid b, we have

∂p̃(b, F )

∂b
= α(1− F (b))− αbf(b) + αbf(b) = α(1− F (b)) ≥ 0.

which finishes the proof. �

Lemma 4.6. In the sample-bid mechanism, given any parameter α and distribution F ,

the optimal bid b(v, F ) is monotonically non-decreasing in value v.
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Proof. By Myerson (1981), the equilibrium allocation of the agent is non-decreasing

in value v. Moreover, given the auction format, the equilibrium allocation of the agent

is increasing in the bid, and thus the optimal bid b(v, F ) is non-decreasing in the value

v. �

4.3. Revenue of the Sample-bid Mechanism for MHR distributions

In this section, we analyze the prior-independent approximation ratio of the sample-bid

mechanism over the class of MHR distributions.

Definition 4.6. A distribution F is MHR if the hazard rate f(v)
1−F (v)

is monotone non-

decreasing in v.

Theorem 4.7. For the sample-bid mechanism with α = 0.824, the prior-independent

approximation ratio over the class of MHR distributions is between [1.295, 1.296].

The lower bound in Theorem 4.7 is shown in the following example.

Example 4.7. For the sample-bid mechanism with α = 0.824, let F be the valuation

distribution such that F (v) = 1− e−v for v ∈ [0, 0.43) and F (v) = 1 for v ∈ [0.43,∞). It

is easy to verify that F is MHR. Moreover, the optimal revenue is 0.2797 while the expected

revenue of the sample-bid mechanism, which equals the expected revenue of posting a price

equal to 0.824 fraction of the expected welfare, is 0.2159. Thus, the prior-independent

approximation ratio of the sample-bid mechanism with α = 0.824 is at least 1.295.

Before the proof of the upper bound in Theorem 4.7, we first introduce a characteriza-

tion of the agent’s optimal bid when the sample distribution F is MHR; and a technical

property for MHR distributions.
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Lemma 4.8. In the sample-bid mechanism, given any parameter α and MHR distribution

F , the optimal bid b(v, F ) for the agent with value v is

b(v, F ) =

 0 if v < αEs∼F [s] ,

∞ otherwise.

Proof. By the proof of Lemma 4.3, the derivative of the utility given the bid b is

f(b)

(
v − α · 1− F (b)

f(b)

)
,

where the sign of the above expression flips from negative to positive only once when

the bid b increases from 0 to infinity since F is MHR. Thus the utility is a quasi-convex

function of the bid, which implies that the maximum utility is attained at extreme points,

i.e., bid 0 or ∞. Note that the utility for bidding 0 is always 0, while the utility for

bidding ∞ is u(v,∞, F ) = v − αEs∼F [s]. Hence, the agent bid ∞ if and only her value v

is at least αEs∼F [s]. �

Lemma 4.9 (Allouah and Besbes, 2019). For any MHR distribution with any pair of

quantile and values (v1, q1), (v2, q2) such that q1 = q(v1) ≤ q2 = q(v2) and v1 ≥ v2. Then

for any v ≥ v2, we have q(v) ≥ q2 · e
v−v2
v1−v2

·ln(
q1
q2

).

Lemma 4.10. The expected value for any MHR distribution with monopoly quantile q̂? is

w ≥ q̂?−1
q̂?·ln q̂? .
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Proof. The expected value of the agent is

∫ ∞
0

q(v)dv ≥
∫ 1

q̂?

0

evq̂
?·ln q̂?dv

=
1

q̂? · ln q̂?
(eln q̂? − e0) =

q̂? − 1

q̂? · ln q̂?
,

where the inequality holds by applying Lemma 4.9 with q1 = q̂?, v1 = 1
q̂?

and q2 = 1, v2 =

0. �

Now, we are ready to show Theorem 4.7.

Proof of the upper bound in Theorem 4.7. Fix any MHR distribution F . Let

w , Ev∼F [v]. Note that by Lemma 4.8, our mechanism is equivalent to posting price αw to

the agent. Next we analyze the approximation ratio by considering the cases αw ≥ v̂? and

αw < v̂? and optimize the parameter α such that the approximation ratio of both cases

coincide. Recall that it is without loss of generality to normalize the expected revenue of

the optimal mechanism to 1, i.e., q̂? · v̂? = 1.

First we consider the case when αw < v̂? = 1/q̂?. By Lemma 4.10, we have w ≥ q̂?−1
q̂?·ln q̂?

and by combining Lemma 4.9 with (v1, q1) = (v̂?, q̂?) and (v2, q2) = (0, 1), we have q(αw) ≥

eα(q̂?−1). Thus, the expected revenue in this case is

αw · q(αw) ≥ α(q̂? − 1)

q̂? · ln q̂?
· eα(q̂?−1).

Then we consider the case when αw ≥ v̂? = 1/q̂?. In this case, combining Lemma 4.9

with (v1, q1) = (w, qw) and (v2, q2) = (v̂?, q̂?), where qw ≥ 1/e is the quantile of the welfare

(see Barlow and Marshall, 1965), for any value v ≥ v̂?, we have q(αw) ≥ q̂? · e
αw−v̂?
w−v̂? ·ln( qw

q̂?
).
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Thus the expected revenue is

αw · q(αw) ≥ αw · q̂? · e
αw−v̂?
w−v̂? ·ln( qw

q̂?
) ≥ αw · q̂? · e

αw−1/q̂?

w−1/q̂?
·ln( 1

e·q̂? ).

By setting α = 0.824 and numerically evaluating the above expressions for all possible

values of w and q̂? with respective to the given constraints, we have that the expected

revenue in both cases are at least 0.7717, which guarantees approximation ratio 1.296. �

4.4. Revenue of the Sample-bid Mechanism for Regular distributions

In this section, we analyze the prior-independent approximation of the sample-bid

mechanism over the class of regular distributions.

Theorem 4.11. For the sample-bid mechanism with α = 0.7, the prior-independent ap-

proximation ratio over the class of regular distributions is between [1.628, 1.835].

The lower bound in Theorem 4.11 is shown in the following example.

Example 4.8. For the sample-bid mechanism with α = 0.7, let F be the valuation dis-

tribution such that F (v) = 0.265
v−0.735

for v ∈ [1,∞). It is easy to verify that F is regular.

Moreover, the optimal revenue is 1 while the expected revenue of the sample-bid mechanis-

mis 0.614. Thus, the prior-independent approximation ratio of the sample-bid mechanism

with α = 0.7 is at least 1.628.

In Section 4.4.1, we introduce some technical characterizations of the sample-bid mech-

anism which will be used in the subsequent analysis. In Sections 4.4.2 and 4.4.3, we study

the prior-independent approximation ratio of the sample-bid mechanism over the class of

regular distributions with monopoly quantile q̂? ≥ 0.62 and q̂? ≤ 0.62 respectively. By
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Lemma 4.4, without loss of generality, we restrict our attention to the class of regular

valuation distributions where the optimal revenue for the distributions is exactly 1 (i.e.,

v̂? · q̂? = 1), and then lower-bound the expected revenue of the sample-bid mechanism with

α = 0.7.

Here we sketch the high-level approach to lower-bound the expected revenue of the

sample-bid mechanism in both regimes (Sections 4.4.2 and 4.4.3). Given a regular distri-

bution F , we define a value threshold v∗(F ) as the smallest value whose optimal bid is at

least monopoly reserve v̂?(F ), i.e.,

v∗(F ) , inf{v : b(v, F ) ≥ v̂?(F )}

Denote q(v∗(F ), F ) by q∗(F ). By Lemma 4.5 and Lemma 4.6, the expected revenue

RevF (SB) of the sample-bid mechanism SB for valuation F can be lower-bounded as

follows,

RevF (SB) =

∫ 1

0

p(v(q, F ), F ) dq ≥ p(v∗(F ), F ) · q∗(F ) +

∫ 1

q∗(F )

p(v(q, F ), F ) dq.

where p(v, F ) is the expected payment of the agent, with value v and valuation distribution

F , in the sample-bid mechanism. We then analyze p(v∗(F ), F ), q∗(F ), and p(v(q, F ), F )

for q ≥ q∗(F ) by providing lower bounds as the functions of q̂?(F ) and other some param-

eters of F .4 Finally, by numerically evaluating the value of lower bounds for all possible

possible parameters, we conclude that the expected revenue in the sample-bid mechanism

for all regular distribution (with monopoly revenue 1) is at least 0.545, which implies

4Let R be the revenue curve induced by valuation distribution F . In Section 4.4.2, we lower-bound the
expected revenue as a function of q̂?(F ) and R(0). In Section 4.4.2, we lower-bound the expected revenue
as a function of q̂?(F ), q(v̂?(F )/0.7, F ) and w ,

∫ q̂?(F )

q(v/0.7,F )
R(q)
q dq.
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the prior-independent approximation ratio 1/0.545 ≈ 1.835 of the sample-bid mechanism

in Theorem 4.11. The details for discretizations and numerical evaluations can be found

in Appendix B.1. Note that the bounds for the approximation ratio of the sample-based

pricing mechanisms in Allouah and Besbes (2019) are also obtained by numerical analysis,

which requires solving a relatively more complicated dynamic program. In contrast, our

numerical analysis only requires brute force enumeration of a few parameters.

As we discussed in Section 4.1, every valuation distribution F can be represented by its

induced revenue curve R where R(q) , q F−1(1− q) for all q ∈ [0, 1]. In the remaining of

the section, all statements, notations and analysis (except Lemma 4.13) will be presented

in the language of revenue curves instead of valuation distributions.

4.4.1. Technical Properties of the Sample-bid Mechanism

In this subsection, we introduce some technical characterizations of the sample-bid mech-

anism which will be used in the later analysis.

To establish a lower bound on the expected revenue of of a truthful mechanism, a classic

approach – revenue curve reduction – (e.g. Alaei, Hartline, Niazadeh, Pountourakis, and

Yuan, 2018; Allouah and Besbes, 2018) is as follows: (i) start with an arbitrary revenue

curve R1, (ii) convert it to another revenue R2 with closed-form formula while the optimal

revenue remains the same, (iii) argue that the expected revenue for R2 is at most the

expected revenue for R1 while the optimal revenue remains the same, and finally (iv)

evaluate the expected revenue for R2 for all possible parameters. In this section, we want

to apply a similar approach to the sample-bid mechanism because it is a non-truthful

mechanism. A new technical difficulty arises in step (iii). When comparing R1 and R2,
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for truthful mechanisms, it is sufficient to study the change in the expected payment

(i.e. p̃(b, R1) and p̃(b, R2)) for each bid b. However, for non-truthful mechanisms (e.g.

sample-bid mechanism), the optimal bid of the agent changes when the revenue curve R1

is replaced by R2. In Lemma 4.12, we provide a characterization of optimal bid when

we switch from R1 to R2 in a specific way (illustrated in Figure 4.1). We use it as a

building block repeatedly in Section 4.4.2 and Section 4.4.3. Intuitively, the following

lemma characterizes the phenomenon that increasing the revenue curve for high values

does not affect the agent’s preference for low bids.

Lemma 4.12. In the sample-bid mechanism, consider any quantile q† ∈ [0, 1] and any pair

of revenue curves R1, R2 such that R1(q) ≤ R2(q) for any quantile q ≤ q† and R1(q†) =

R2(q†). Letting b† = R1(q†)/q†. For any value v and any bid b‡ ≥ b†, if an agent with value

v and revenue curve R1 prefers bid b† than b‡, i.e., u(v, b†, R1) ≥ u(v, b‡, R1), then an

agent with value v and revenue curve R2 also prefers bid b† than b‡, i.e., u(v, b†, R2) ≥

u(v, b‡, R2).

Proof. By the construction of our mechanism, the utility of an agent who has value

v, revenue curve R and bids b is

u(v, b, R) = v · (1− q(b, R))− p̃(b, R)

and

p̃(b, v) = αb · q(b, R) + α

∫ 1

q(b,R)

R(q)

q
dq.
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1

0 1q†

b†
b‡

q(b ‡
, R

1 )
q(b ‡
, R

2 )

R2 R1

Figure 4.1. Graphical illustration for Lemma 4.12. The gray dashed thick
(resp. black solid) curve is revenue curve R1 (resp. R2). The slopes of two
dotted lines from (0, 0) are b‡ and b† respectively.

By the assumption that R1(q) ≤ R2(q) for any quantile q ≤ q† and b‡ ≥ b†, we have

q(b‡, R1) ≤ q(b‡, R2) ≤ q†. See Figure 4.1 for a graphical illustration. Thus,

p̃(b‡, R1)− p̃(b†, R1) = α ·

(
−b† · q† +

∫ q†

0

min

{
R1(q)

q
, b‡
}
dq

)

≤ α ·

(
−b† · q† +

∫ q†

0

min

{
R2(q)

q
, b‡
}
dq

)
= p̃(b‡, R2)− p̃(b†, R2).

Thus,

u(b†, v, R1)− u(b‡, v, R1) = v · (1− q†)− p̃(b†, R1)− v · (1− q(b‡, R1)) + p̃(b‡, R1)

≤ v · (1− q†)− p̃(b†, R2)− v · (1− q(b‡, R2)) + p̃(b‡, R2) = u(b†, v, R2)− u(b‡, v, R2)

and hence u(b†, v, R1) ≥ u(b‡, v, R1) implies u(b†, v, R2) ≥ u(b‡, v, R2). �
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Lemma 4.13. In the sample-bid mechanism with any parameter α ∈ [0, 1], for an agent

with concave revenue curve R and value v greater than the monopoly reserve v̂?, she weakly

prefers the bid v/α than any bid b† ∈ [v̂?, v/α], i.e., u(v, v/α, R) ≥ u(v, b†, R).

Proof. Let F be a regular distribution. By the definition, the utility of the agent

who has value v, valuation distribution F and bids b is

u(v, b, F ) = v · F (b)− p̃(b, F )

By considering the first order condition as in Lemma 4.3, we have

∂u(v, b, F )

∂b
= f(b)

(
v − α · 1− F (b)

f(b)

)
.

Thus, we can compute the difference between u(v, v/α, F ) and u(v, b, F ) for any value

v ≥ v̂? and bid b ∈ [v̂?, v/α] as follows,

u(v, v/α, F )− u(v, b, F ) =

∫ v
α

b

αf(t)

(
v

α
− 1− F (t)

f(t)

)
dt

≥
∫ v

α

b

αf(t)

(
t− 1− F (t)

f(t)

)
dt

≥ 0

where the last inequality uses the fact that t− 1−F (t)
f(t)

≥ 0 for all t ≥ v̂? if F is regular. �

4.4.2. Regular Distributions with Monopoly Quantile q̂? ≥ 0.62

In this subsection, we analyze the approximation ratio of the sample-bid mechanism over

the class of regular distributions with monopoly quantile q̂? ≥ 0.62.
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Lemma 4.14. For the sample-bid mechanism with α = 0.7, the approximation ratio over

the class of regular distributions with monopoly quantile q̂? ≥ 0.62 is at most 1.835.

Fix an arbitrary revenue curve R, let

v∗(R) , inf{v : b(v,R) ≥ v̂?(R)}

be the smallest value whose optimal bid b(v,R) for revenue curve R is at least the monopoly

reserve v̂?(R). Since Lemma 4.6 guarantees that b(v,R) is weakly non-decreasing in v,

v∗(R) is well-defined, b(v,R) ≥ v̂?(R) for all v ≥ v∗(R), and b(v,R) < v̂?(R) for all

v < v∗(R). Denote q(v∗(R), R) by q∗(R). We decompose the proof of Lemma 4.14

by considering the following two subregimes – Lemma 4.15 for revenue curve R with

v∗(R) ≤ v̂?(R); and Lemma 4.17 for revenue curve R with v∗(R) ≥ v̂?(R).

Lemma 4.15. Given any concave revenue curve R such that q̂?(R) ≥ 0.62 and v∗(R) ≤

v̂?(R), the revenue of the sample-bid mechanism with α = 0.7 is a 1.835-approximation of

the optimal revenue.

Proof. Fix an arbitrary concave revenue curve R satisfying the requirement in the

lemma statement, i.e., q̂?(R) ≥ 0.62 and v∗(R) ≤ v̂?(R). Consider an arbitrary value

v ≥ v∗(R). By Lemma 4.6, the optimal bid of an agent with value v is at least v̂?(R).

Thus, together with Lemma 4.5, her expected payment in sample-bid mechanism is at
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least the expected payment p̃(v̂?(R), R) of bidding v̂?(R), and

p̃(v̂?(R), R) = 0.7v̂?(R)q̂?(R) + 0.7

∫ 1

q̂?(R)

R(q)

q
dq = 0.7 + 0.7

∫ 1

q̂?(R)

R(q)

q
dq

≥ 0.7 + 0.7

∫ 1

q̂?(R)

1−q
1−q̂?(R)

q
dq = −0.7 log(q̂?(R))

1− q̂?(R)
.

where the inequality uses the fact that (1) R is concave, which implies that R(q) ≥ 1−q
1−q̂?(R)

for all q ≥ q̂?(R); and (2) v̂?(R)q̂?(R) is normalized to 1 for the revenue curve R. Since

v∗(R) ≤ v̂?(R), each value with quantile smaller than q̂?(R) has p̃(v̂?(R), R) as a lower

bound of its payment in the sample-bid mechanism. Thus, a lower bound of the expected

revenue RevR(SB) for revenue curve R in the sample-bid mechanism is

RevR(SB) =

∫ 1

0

p(v(q, F ), F ) dq ≥ p(v∗(R), R) · q∗(R)

≥ p̃(v̂?(R), R) · q̂?(R) ≥ −0.7 log(q̂?(R))q̂?(R)

1− q̂?(R)

which is at least 0.545 for all q̂?(R) ≥ 0.62. This finishes the proof, since we (without loss of

generality) consider revenue curve R with optimal revenue equal to 1, i.e., v̂?(R) · q̂?(R) =

1. �

Before diving into the subregime where v∗(R) ≥ v̂?(R), we provide a characterization

(Lemma 4.16) of the optimal bid for concave revenue curves with monopoly quantile

greater than 0.62. Specifically, Lemma 4.16 guarantees that b(v,R) = 0 for all value

v < v∗(R).
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1

0 1q̂?(R1)

v̂?(R1)

b†

q†q̂

R1

R2

Figure 4.2. Graphical illustration for Lemma 4.16. The gray dashed (resp.
black solid) curve is revenue curve R1 (resp. R2). The slopes of two dotted
lines from (0, 0) are v̂?(R1) and b† respectively.

Lemma 4.16. In the sample-bid mechanism with parameter α = 0.7, given any value v

and any concave revenue curve R with q̂?(R) ≥ 0.62, the optimal bid b(v,R) for an agent

with value v and revenue curve R satisfies b(v,R) ∈ {0} ∪ [v̂?(R),∞).

Proof. We prove the lemma by contradiction. See Figure 4.2 for a graphical descrip-

tion of the following construction. Suppose there exists an agent who has value v, revenue

curve R1 s.t. q̂?(R1) ≥ 0.62 and strictly prefers a bid of b† ∈ (0, v̂?(R1)) over all other bids.

Denote q(b†, R1) by q†. Let q̂ , 1− 1−q†
R1(q†)

. Now consider another revenue curve R2 defined

as follows,

R2(q) ,

 1 q ∈ [0, q̂] ,

1−q
1−q̂ q ∈ [q̂, 1] .

By construction, R2 is a concave revenue curve s.t. (i) q̂ ≥ 0.62; (ii) b† ≤ 1/q̂; (iii) R1(q) ≤

R2(q) for all q ∈ [0, q†]; and (iv) R1(q) ≥ R2(q) for all q ∈ [q†, 1].
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Applying Lemma 4.12 on R1, R2, q
†, v and all b‡ ≥ b†, we conclude that the optimal

bid for an agent with value v and revenue curve R2 is in [0, b†]. Furthermore, note that

u(v, b†, R2) ≥ u(v, b†, R1) > 0 where the first inequality holds by the construction of R2,5

and the second inequality holds by our assumption that b† is strictly preferred for R1.

Hence, there exists an optimal bid in (0, b†] that is strictly preferred to biding zero and

weakly preferred to all other bids for R2. Next we argue that this leads to a contradiction

by considering v ≤ 1/q̂ and v ≥ 1/q̂ separately.

Case (i) v ≤ 1/q̂: Note that for any bid b ∈ [0, 1/q̂], the utility u(v, b, R2) has a closed-form

expression as follows,

u(v, b, R2) = v
b(1− q̂)

b(1− q̂) + 1
+ 0.7 log

(
1

b(1− q̂) + 1

)
.

Considering the first order condition of u(v, b, R2) with respect to bid b, after basic sim-

plification, we have

b =
v

0.7
− 1

1− q̂
.

This leads to a contradiction since for all q̂ ∈ [0.62, 1]6 and v ∈ [0, 1/q̂], we have v
0.7
− 1

1−q̂ < 0,

i.e., bidding 0 is weakly preferred than any bid b ∈ (0, b†).

Case (ii) v ≥ 1/q̂: Let b‡ , v/0.7, and q‡ , q(b‡, R2) = 0.7/v. Since v ≥ 1/q̂, the construction of

R2 guarantees that b‡ ·q‡ = 1 = R2(q‡). Note that the utility u(v, b‡, R2) has a closed-form

5The allocation of bidding b† is the same for both revenue curves, while the payment of bidding b† is
higher for revenue curve R1.
6Note that q̂? ≥ 0.62 implies that q̂ ≥ 0.62.
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1

0 1q̂?

Figure 4.3. Graphical illustration for Lemma 4.17, Step 1. The gray dashed
(resp. black solid) curve is the revenue curve R1 (resp. R2). By construction,
q̂?(R1) = q̂?(R2).

expression as follows,

u(v, b‡, R2) = v − 2vq‡ + 0.7(1− q̂) + 0.7 log(q̂)

− 0.7(q̂ − q‡)(1− b‡q‡)
(
q̂ − q‡ − q‡ log(q̂) + q‡ log(q‡)

)
.

This leads to a contradiction since for all q̂ ∈ [0.62, 1], v ∈ [1/q̂,∞), and
(

v
0.7
− 1

1−q̂

)
∈

[0, 1/q̂], we have u(v, b‡, R2) ≥ u
(
v, v

0.7
− 1

1−q̂ , R2

)
,7 i.e., bidding 0 or v/0.7 is weakly pre-

ferred than any bid b ∈ (0, b†). �

Now, we provide the approximation guarantee for revenue curve R with v∗(R) ≥ v̂?(R).

Lemma 4.17. Given any concave revenue curve R such that q̂?(R) ≥ 0.62 and v∗(R) ≥

v̂?(R), the revenue of the sample-bid mechanism with α = 0.7 is a 1.835-approximation of

the optimal revenue.

Proof. The proof is done in four major steps:

7By first order condition, for revenue curve R2, if
(

v
0.7 −

1
1−q̂

)
> 1/q̂, then bidding b‡ already achieves

higher utility for the agent compared to bidding below b‡. Thus it is sufficient to compare b‡ with(
v

0.7 −
1

1−q̂

)
in the case that the latter is in [0, 1/q̂].
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(a) The gray dashed (resp. black
solid) curve is revenue curve
R

(i)
2 (resp. R(i+1)

2 ). The slopes
of two dotted lines from (0,
0) are v∗(R

(i+1)
2 ) and v∗(R

(i)
2 )

respectively. By construction,
v∗(R

(i+1)
2 ) ≥ v∗(R(i)

2 ).

1

0 1

v
∗ (
R
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)

(b) The gray dashed (resp. black
solid) curve is revenue curve R2

(resp. R3). The slope of the dot-
ted line from (0, 0) is v∗(R3).

Figure 4.4. Graphical illustration for Lemma 4.17, Step 2.

Step 1- flattening the revenue curve for all quantile q ≥ q̂?(R1). Fix an arbitrary

revenue curve R1 satisfying the requirements in the lemma statement, i.e., q̂?(R) ≥ 0.62

and v∗(R) ≥ v̂?(R). Consider another revenue curve R2 defined as follows (see Figure 4.3

for a graphical illustration)

R2(q) ,

 R1(q) q ∈ [0, q̂?(R1)] ,

1 q ∈ [q̂?(R1), 1] .

We claim that the expected revenue of the sample-bid mechanism with α = 0.7 for revenue

curve R2 is at most that of revenue curve R1. To see this, consider the virtual surplus for

both revenue curves. By our assumption that v∗(R1) ≥ v̂?(R1), every quantile q > q̂?(R1)

has negative virtual value R′1(q) in R1, bids zero (Lemma 4.16) and gains zero virtual
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1
r̄0

r0

0 1

b‡

q‡

(a) The gray dashed (resp. black
solid, black dashed) curve is rev-
enue curve R3 (resp. R(r̄0)

4 , R(r0)
4 ).

The slope of the dotted line from
(0, 0) is b‡, i.e., the optimal bid
for an agent with value v∗(R3) and
revenue curve R3. By construction,
v∗(R

(r0)
4 ) ≤ v∗(R3)) ≤ v∗(R(r̄0)

4 ).

1

r0

0 1

b‡ b† v∗

(b) The gray dashed (resp. black
solid, black dashed) curve is revenue
curve R3 (resp. R4, R

(r0)
4 ). By con-

struction, v∗(R3) = v∗(R4) (, v∗).
The slope of three dotted lines from
(0, 0) are b‡, b† and v∗, where b‡
(resp. b†) is the optimal bid for an
agent with value v∗ and revenue
curve R3 (resp. R4). By Lemma 4.3,
b† ≤ b‡.

Figure 4.5. Graphical illustration for Lemma 4.17, Step 3.

surplus while their virtual value R′2(q) becomes zero in R2 and thus gains zero virtual

surplus as well. On the other side, every quantile q ≤ q̂?(R1) has identical virtual value by

construction. We claim that the allocation for each of these quantiles weakly decreases.

To see this, note that the allocation of bidding any bid b ≥ v̂?(R1) = v̂?(R2) is the same

for both revenue curves R1 and R2, and the expected payment increases by a constant

when the revenue curve R1 is replace by R2. Thus the agent’s preference among all bids

b ≥ v̂?(R1) is the same in both revenue curves R1 and R2. However, the utility of bidding

b ≥ v̂?(R2) is lower when the revenue curve is R2, which implies that there may exist

value v such that the agent may prefer bidding 0 to bidding above the monopoly reserve

in R2, while strictly prefer bidding above the monopoly reserve in R1. By Lemma 4.16, the

optimal bid for any value v is not in (0, v̂?(R2)). Thus, we conclude that q∗(R2) ≤ q∗(R1)
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and (1) the optimal bid (as well as the allocation) for every quantile q ≤ q∗(R2) in both R1

and R2 remains the same; and (2) for every quantile q ∈ [q∗(R2), q∗(R1)), the optimal bid

quantile q is 0 when the revenue curve is R2. This guarantees that the virtual surplus for

every quantile q ≤ q̂?(R1) weakly decreases since the virtual value is non-negative while

the allocation decreases. Note that in sample-bid mechanism, the payment for lowest type

is always 0, i.e., p(0) = 0. By Lemma 2.2, the expected revenue (a.k.a. virtual surplus)

for R2 is at most the expected revenue (a.k.a. virtual surplus) for R1.

Step 2- flattening the revenue curve for all quantiles q ≥ q∗. In this step, we start

with revenue curve R2 constructed in step 1, and consider a sequence of revenue curves

R
(0)
2 , R

(1)
2 , . . . where R(0)

2 , R2 and R(i+1)
2 is recursively defined on R(i)

2 as follows,

R
(i+1)
2 (q) ,



R
(i)
2 (q) q ∈

[
0, q∗(R

(i)
2 )
]
,

R
(i)′
2 (q∗(R

(i)
2 )) · (q − q∗(R(i)

2 )) +R
(i)
2 (q∗(R

(i)
2 ))

q ∈
[
q∗(R

(i)
2 ),

1−R(i)
2 (q∗(R

(i)
2 ))

R
(i)′
2 (q∗(R

(i)
2 ))

+ q∗(R
(i)
2 )

]
,

1 q ∈
[

1−R(i)
2 (q∗(R

(i)
2 ))

R
(i)′
2 (q∗(R

(i)
2 ))

+ q∗(R
(i)
2 ), 1

]
.

where R(i)′
2 (q∗(R

(i)
2 )) is the right-hand derivative of R(i)

2 (q) at q = q∗(R
(i)
2 ). See Figure 4.4a

for a graphical illustration. Invoking Lemma 4.13 and Lemma 4.16, with the same argu-

ment for values with positive virtual values in step 1, we can conclude that q∗(R(i)
2 ) and

the expected revenue for R(i)
2 in the sample-bid mechanism is weakly decreasing in i.

Note that by construction, the sequence of revenue curves R(0)
2 , R

(1)
2 , . . . converges to

a revenue curve R3 whose expected revenue in the sample-bid mechanism is at most the
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revenue for R2, and satisfying the following characterization,

R3(q) ,



R2(q) q ∈ [0, q∗(R3)] ,

R′2(q∗(R3)) · (q − q∗(R3)) +R2(q∗(R3)) q ∈
[
q∗(R3), 1−R2(q∗(R3))

R′2(q∗(R3))
+ q∗(R3)

]
,

1 q ∈
[

1−R2(q∗(R3))
R′2(q∗(R3))

+ q∗(R3), 1
]
.

See Figure 4.4b for a graphical illustration.

Step 3- flattening the revenue curve for all quantile q ≤ q̂?(R3). For any revenue

curve R, let p(v∗(R), R) be the expected payment in the sample-bid mechanism of an agent

with value v∗(R) and revenue curve R. Due to Lemma 4.5 and Lemma 4.6, p(v∗(R), R) ·

q∗(R) is a valid lower bound of the expected revenue in the sample-bid mechanism for

an agent with revenue curve R. In this step, instead of analyzing the expected revenue,

we argue that we can convert any revenue curve R3 (constructed in step 2) into another

revenue curve R4, such that (i) v∗(R4) = v∗(R3) (, v∗); (ii) q∗(R4) ≤ q∗(R3); and (iii)

p(v∗, R4) ≤ p(v∗, R3). Finally, by showing that p(v∗(R4), R4) · q∗(R4) ≥ 0.545, we finish

the proof of the lemma.

Given the revenue curve R3 constructed in step 2, for any r0 ∈ [0, 1], we define a

revenue curve R(r0)
4 as follows,

R
(r0)
4 ,

 r0 + (1− r0) q
q̂?(R3)

q ∈ [0, q̂?(R3)] ,

1 q ∈ [q̂?(R3), 1] .

See the black curves in Figure 4.5a as an example. We claim that there exists r∗0 ∈ [0, 1]

s.t. R(r0)
4 (, R4) satisfies properties (i) (ii) (iii) mentioned above. To see this, consider the

argument as follows.
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By construction, for all every value v, every bid b, the utility u(v, b, R
(r0)
4 ) is decreasing

continuously in r0. Thus, v∗(R
(r0)
4 ) is decreasing continuously in r0. Let b‡ be the optimal

bid of an agent with value v∗(R3) and revenue curve R3. Denote q(b‡, R3) by q‡. Consider

revenue curve R(r0)
4 where r0 , 1− q̂?(R3)

q̂?(R3)−q‡ (1−R3(q‡)). By construction, R(r0)
4 (q) ≥ R3(q)

for all q ≤ q‡, and R
(r0)
4 (q) ≤ R3(q) for all q ≥ q‡. See Figure 4.5a for a graphical

illustration. Note that by construction,

u(v∗(R3), b‡, R
(r0)
4 ) = v∗(R3) · (1− q‡)− αb‡ · q‡ − α

∫ 1

q‡

R
(r0)
4 (q)

q
dq

≥ v∗(R3) · (1− q‡)− αb‡ · q‡ − α
∫ 1

q‡

R3(q)

q
dq = u(v∗(R3), b‡, R3) = 0

Thus, v∗(R(r0)
4 ) ≤ v∗(R3). Next, consider revenue curveR(r̄0)

4 where r̄0 , 1− q̂?(R3)
q̂?(R3)−q∗(R3)

(1−

R3(q∗(R3)). By construction, R(r̄0)
4 (q) ≥ R3(q) for all q ∈ [0, 1]. See Figure 4.5a for a graph-

ical illustration. Thus, v∗(R(r̄0)
4 ) ≥ v∗(R3) with the similar argument for R(r0)

4 Therefore,

we know that there exists r∗0 ∈ [r0, r̄0] such that v∗(R(r∗0)
4 ) = v∗(R3). We denote R(r∗0)

4 by R4

and show that R4 satisfies properties (ii) q∗(R4) ≤ q∗(R3) and (iii) p(v∗, R4) ≤ p(v∗, R3)

with the argument below.

Lemma 4.13 implies that b‡ > v∗(R3). Combining with the fact that r∗0 ≥ r0, we know

that property (ii) q∗(R4) ≤ q∗(R3) is satisfied. See Figure 4.5b for a graphical illustration.

Combining the first order condition in Lemma 4.3 and construction of R4, it is guaran-

teed that the optimal bid b† of value v∗ for revenue curve R4 is at most b‡. Furthermore,

q(b†, R4) ≥ q(b‡, R4) ≥ q(b‡, R3) = q‡ by construction. By the definition, the optimal

utility of value v∗(R) for any revenue curve R is zero. Thus, p(v∗, R3) = v∗ · (1 − q‡) ≥

v∗ · (1− q(b†, R4)) = p(v∗, R4).
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Step 4- lower-bounding the expected revenue on R4. So far, we have shown that for

an arbitrary revenue curve satisfying the assumptions in lemma statement, its expected

revenue in the sample-bid mechanism is lower-bounded by p(v∗(R4), R4) · q∗(R4) for R4

pinned down by some (r0, q̂
?) as follows,

R4 ,

 r0 + (1− r0) q
q̂?

q ∈ [0, q̂?] ,

1 q ∈ [q̂?, 1] .

By numerically verifying p(v∗(R4), R4) · q∗(R4) ≥ 0.545 for all (r0, q̂
?) ∈ [0, 1]2, we finish

the proof. The details of this numerical evaluation is elaborated on in Appendix B.1. �

4.4.3. Regular Distributions with Monopoly Quantile q̂? ≤ 0.62

In this subsection, we analyze the prior-independent approximation ratio of the sample-bid

mechanism over the class of regular distributions with monopoly quantile q̂? ≤ 0.62.

Lemma 4.18. For the sample-bid mechanism with α = 0.7, the prior-independent ap-

proximation ratio over the class of regular distributions with monopoly quantile q̂? ≤ 0.62

is at most 1.835.

Fix an arbitrary revenue curve R, let

v∗(R) , inf{v : b(v,R) ≥ v̂?(R)}

be the smallest value whose optimal bid b(v,R) for revenue curve R is at least v̂?(R).

Since Lemma 4.6 guarantees that b(v,R) is weakly non-decreasing in v, v∗(R) is well-

defined, b(v,R) ≥ v̂?(R) for all v ≥ v∗(R). Furthermore, by Lemma 4.13, we know

that b(v,R) ≥ v̂?(R)/0.7 for all v ≥ max{v∗(R), v̂?(R)}. Denote q(v∗(R), R) by q∗(R). By



94

Lemma 4.5 and Lemma 4.6, the expected revenue RevR(SB) of the sample-bid mechanism

for revenue curve R can be lower-bounded as follows,

RevR(SB) =

∫ 1

0

p(v(q, R), R) dq

=

∫ min{q∗(R),q̂?(R)}

0

p(v(q, R), R) dq +

∫ q∗(R)

min{q∗(R),q̂?(R)}
p(v(q, R), R) dq

+

∫ 1

q∗(R)

p(v(q, R), R) dq

≥ p̃(v̂
?(R)/0.7, R) ·min{q∗(R), q̂?(R)}+ p̃(v̂?(R), R) ·max{0, q∗(R)− q̂?(R)}

+

∫ 1

q∗(R)

p(v(q, R), R) dq.

Denote q(v̂?(R)/0.7, R) by q‡(R), and
∫ q̂?(R)

q‡(R)
R(q)
q
dq by w(R). In Lemma 4.19, we lower-bound

the expected payment p̃(v̂?(R)/0.7, R) and p̃(v̂?(R), R) as the function of q̂?(R), q‡(R), w(R)

and v∗(R). In Lemma 4.20, we lower-bound q∗(R) as the function of q̂?(R), q‡(R) and

v∗(R). In Lemma 4.21, we upper-bound of v∗(R) as the function of q̂?(R), q‡(R) and

w(R). In Lemma 4.22, we lower-bound p(v(q, R), R) as a function of q̂?(R) for all quantile

q ∈ [q̂?(R), 1]. Putting all pieces together, we show Lemma 4.18 by providing a lower

bound of expected revenue in the sample-bid mechanism as a function of q̂?(R), q‡(R)

and w(R), and numerically evaluating its value for all possible parameters. The details

of the numerical evaluations in this section are similar to those of Lemma 4.17, which are

elaborated on in Appendix B.1.
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1

0 1q̂? q

1−q
1−q̂?

Figure 4.6. Graphical illustration for Lemma 4.19. The gray dashed (resp.
black solid) curve is revenue curve R (resp. lower bound of R).

Lemma 4.19. For the sample-bid mechanism with α = 0.7, given any concave revenue

curve R, the expected payment p̃(b, R) of bidding b ∈ [0, v̂?(R)] is at least

p̃(b, R) ≥ 0.7 log(b · (1− q̂?(R)) + 1)

1− q̂?(R)
;

and the expected payment p̃(v̂?(R)/0.7, R) of bidding v̂?(R)/0.7 is at least

p̃(v̂
?(R)/0.7, R) ≥

(
q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R)))

1− q̂?(R)

)
.

Proof. By definition, for any b ∈ [0, v̂?(R)],

p̃(b, R) = 0.7b · q(b, R) + 0.7

∫ 1

q(b,R)

R(q)

q
dq

≥ 0.7b · q(b, R) + 0.7

∫ 1

q(b,R)

1−q
1−q̂?(R)

q
dq

= 0.7b · q(b, R)− 0.7
1− q(b, R)

1− q̂?(R)
− 0.7 log(q(b, R))

1− q̂?(R)

≥ 0.7 log(b · (1− q̂?(R)) + 1)

1− q̂?(R)
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1

v̂?/0.7

0 1q̂?q‡

Figure 4.7. Graphical illustration for Lemma 4.20. The gray dashed (resp.
black solid) curve is revenue curve R1 (resp. R2). The slope of the dotted
line from (0, 0) is v̂?(R1)/0.7.

where the first inequality uses the fact that R(q) ≥ 1−q
1−q̂?(R)

for all q ≥ q̂?(R) from the

regularity of R, and the second inequality use the fact that b · q(b, R) ≥ 1−q(b,R)
1−q̂?(R)

, and

q(b, R) ≤ (b · (1 − q̂?(R)) + 1)−1 from the regularity of R. See Figure 4.6 for a graphical

illustration.

Similarly,

p̃(v̂
?(R)/0.7, R) = 0.7

v̂?(R)

0.7
q‡(R) + 0.7

∫ 1

q‡(R)

R(q)

q
dq

=
q‡(R)

q̂?(R)
+ 0.7w(R) + 0.7

∫ 1

q̂?(R)

R(q)

q
dq

≥ q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R))

1− q̂?(R)
. �

Lemma 4.20. For any concave revenue curve R, the quantile q(v,R) for value v ≤ v̂?(R)

is at least

q(v,R) ≥ 1

1 + v · (1− q̂?(R))
;
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and the quantile q(v,R) for value v ∈ [v̂?(R), v̂?(R)/0.7] is at least

q(v,R) ≥ 2q̂?(R)− q‡(R) · (1 + 1/0.7)

1 + v · (1− q̂?(R))
.

Proof. Given any concave revenue curve R1, consider another revenue curve R2

defined as follows,

R2(q) ,


R1(q) q ∈ [0, q‡(R1)] ,

R1(q‡(R1)) + q−q‡(R1)
q̂?(R1)−q‡(R1)

(1−R1(q‡(R1))) q ∈ [q‡(R1), q̂?(R1)] ,

1−q
1−q̂?(R1)

q ∈ [q̂?(R1), 1] .

Since R1 is regular, we have R2(q) ≤ R1(q) for all q ∈ [0, 1] by construction. See Figure 4.7

for graphical illustration. Thus, for any value v ≤ v̂?R1, we have

q(v,R1) ≥ q(v,R2) =
1

1 + v · (1− q̂?(R1))
.

Moreover, for any value v ∈ [v̂?(R1), v̂?(R1)/0.7], we have

q(v,R1) ≥ q(v,R2) =
2q̂?(R1)− q1(R1) · (1 + 1/0.7)

1 + v · (1− q̂?(R1))
. �

Lemma 4.21. In the sample-bid mechanism with parameter α = 0.7, given any value v

and any concave revenue curve R, the optimal bid b(v,R) for an agent with value v and
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1

0 1q̂q̂? q†

b†

Figure 4.8. Graphical illustration for Lemma 4.21. The gray dashed (resp.
black solid) curve is revenue curve R1 (resp. R2). The slope of the dotted
line from (0, 0) is b†.

revenue curve R is at least v̂?(R) if for all q̂ ∈ [q̂?(R), 1],

v · (1− q‡(R))− v̂?(R) · q‡(R)− 0.7

(
w(R) + log

(
q̂

q̂?(R)

)
− ln(q̂)

1− q̂

)
≥ v(1− q̃) +

0.7 log(q̃)

1− q̂

(4.2)

where q̃ ,
(

1 + min{1/q̂,max{0, v
0.7
− 1

1−q̂}} · (1− q̂)
)−1

.

Proof. Fix an arbitrary concave revenue curve R. We show that inequality (4.2)

in the lemma statement is a sufficient condition that bidding v̂?(R)/0.7 is weakly preferred

than bidding any bids in [0, v̂?(R)]. The argument is similar to Lemma 4.16.

We prove by contradiction, suppose there exists an revenue curve R1, and value v

such that inequality (4.2) in the lemma statement is satisfied but the optimal bid of an

agent with value v and revenue curve R1 is b† ∈ [0, v̂?(R1)). Denote q(b†, R1) by q†. Let

q̂ , 1 − 1−q†
R1(q†)

. By construction, q̂ ≥ q̂?(R1). Now consider another revenue curve R2
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defined as follows,

R2(q) ,


R1(q) q ∈ [0, q̂?(R1)] ,

1 q ∈ [q̂?(R1), q̂] ,

1−q
1−q̂ q ∈ [q̂, 1] .

By construction, R2 is a concave revenue curve s.t. (i) R1(q) = R2(q) for all q ∈ [0, q̂?(R1)];

(ii) R1(q) ≤ R2(q) for all q ∈ [q̂?(R1), q†]; and (iii) R1(q) ≥ R2(q) for all q ∈ [q†, 1]; See

Figure 4.8 for a graphical illustration.

Applying Lemma 4.12 on R1, R2, q
†, v and all b‡ ≥ b†, we conclude that the optimal

bid for an agent with value v and revenue curve R2 is in [0, b†].

Note that for any bid b ∈ [0, 1/q̂], the utility u(v, b, R2) has a closed-form expression as

follows,

u(v, b, R2) = v · b(1− q̂)
b(1− q̂) + 1

+ 0.7 log

(
1

b(1− q̂) + 1

)
.

Considering the first order condition of u(v, b, R2) with respect to bid b, after basic sim-

plification, we have

b =
v

0.7
− 1

1− q̂
.

Thus, the optimal bid in [0, 1/q̂] for revenue curve R2 is b̃ , min{1/q̂,max{0, v
0.7
− 1

1−q̂}}.

Plugging u(v, b, R2) with b = b̃, we get

v(1− q̃) +
0.7 log(q̃)

1− q̂
,

i.e., the right hand side of inequality (4.2).
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1

0 1

q̂ ?
(R

2 )

q̂ ?
(R

1 )

qkq†q̃

b†

(a) Case (i) b† ≤ ṽ.

1

0 1q̃q̂?(R1) q̂ ?
(R

3 )
q †

b†

(b) Case (ii) b† ≥ ṽ.

Figure 4.9. Graphical illustration for Lemma 4.22. The gray dashed (resp.
black solid) curve is revenue curve R1 (resp. R2 in (a) and R3 in (b)). The
slope of the dotted line from (0, 0) is b†.

Moreover, note that the utility u(v, v̂?(R1)/0.7, R2) has a closed-form expression as fol-

lows,

v · (1− q‡(R))− v̂?(R) · q‡(R)− 0.7

(
w(R) + log

(
q̂

q̂?(R)

)
− ln(q̂)

1− q̂

)

i.e., the left hand side of inequality (4.2). This leads to a contradiction, which finishes the

proof. �

Definition 4.9. A pentagon revenue curve R parameterized by the quantile qk ∈ [q̂?(R), 1]

of kink and the revenue rk ∈
[

1−qk
1−q̂?(R)

, 1
]
on this kink is defined as follows

R(q) ,


1 q ∈ [0, q̂?(R)] ,

rk + q−q̂?(R)
qk−q̂?(R)

(1− rk) q ∈ [q̂?(R), qk] ,

1−q
1−qk
· rk q ∈ [qk, 1] .

An example of a pentagon revenue curve is illustrated as the solid curve in Figure 4.9a

as the solid line.
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Lemma 4.22. In the sample-bid mechanism, given any quantile q̂ ∈ [0, 1], quantile q̃ ∈

[q̂, 1], and bid b ∈ [0, 1/q̂], if for all pentagon revenue curves RP with q̂?(RP) ≥ q̂, the

optimal bid of an agent with value v(q̃, RP) and revenue curve RP is at least b; then for all

concave revenue curves R with q̂?(R) = q̂, the optimal bid of an agent with value v(q̃, R)

and revenue curve R is at least b as well.

Proof. Fix arbitrary q̂ ∈ [0, 1], q̃ ∈ [q̂, 1], and concave revenue curve R1 with

q̂?(R1) = q̂. Let b† be the optimal bid for an agent with value v(q̃, R1) (, ṽ) and revenue

curve R1. To show this lemma, it is sufficient to assume b† ≤ 1/q̂?(R1). Now we consider

two cases, i.e., b† ≤ ṽ and b† ≥ ṽ separately.

Case (i) b† ≤ ṽ: Consider the pentagon revenue curve R2 with

q̂?(R2) = q̃ +
1−R1(q̃)

R′1(q̃)
, qk =

q̃R′1(q̃)−R1(q̃) + R1(q†)
1−q†

R′1(q̃) + R1(q†)
1−q†

,

rk =
1− qk
1− q†

R1(q†).

where R′1(q̃) is the right-hand derivative of R1(q) at q = q̃. By construction, we have

(i) R2(q̃) = R1(q̃) and thus v(q̃, R2) = v(q̃, R1) = ṽ; (ii) R2(q†) = R1(q†); and (iii)

R2(q) ≥ R1(q) for all q ∈ [0, q†]. See Figure 4.9a for a graphical illustration.

Applying Lemma 4.12 on R1, R2, q†, ṽ and all b‡ ≥ b†, we conclude that the optimal

bid for value ṽ is weakly smaller than b†. Thus, for any bid b ∈ [0, 1/q̂], if the optimal

bid for value v(q̃, R2) in revenue curve R2 is at least b, then the optimal bid b† for value

v(q̃, R1) in revenue curve R1 is at least b as well.
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Case (ii) b† ≥ ṽ: Consider the pentagon revenue curve R3 with

q̂?(R3) = 1− 1− q†

R1(q†)
, qk = q̂?(R3), rk = 1.

By construction, we have (i) q(ṽ, R3) ≤ q(ṽ, R1) and thus v(q̃, R3) ≤ v(q̃, R1); (ii) R3(q†) =

R1(q†); and (iii) R3(q) ≥ R1(q) for all q ∈ [0, q†]. See Figure 4.9b for a graphical illustra-

tion.

Applying Lemma 4.12 on R1, R3, q†, ṽ and all b‡ ≥ b†, we conclude that the optimal

bid for value ṽ is weakly smaller than b†. Thus, for any bid b ∈ [0, 1/q̂], if the optimal bid

for value v(q̃, R3) in revenue curve R3 is at least b, then combining with Lemma 4.6, the

optimal bid b† for value v(q̃, R1) in revenue curve R1 is at least b as well. �

Now we are ready to prove Lemma 4.18.

Proof of Lemma 4.18. Fix an arbitrary concave revenue curveR with q̂?(R) ≤ 0.62.

We consider v∗(R) ≤ v̂?(R), v̂?(R) ≤ v∗(R) ≤ v̂?(R)/0.7, and v∗(R) ≥ v̂?(R)/0.7 separately.

Case (i) v∗(R) ≤ v̂?(R): By Lemma 4.5 and Lemma 4.6, the expected revenue RevR(SB)

of the sample-bid mechanism for revenue curve R can be lower-bounded as follows,

RevR(SB) =

∫ 1

0

p(v(q, R), R) dq

=

∫ q̂?(R)

0

p(v(q, R), R) dq +

∫ q∗(R)

q̂?(R)

p(v(q, R), R) dq +

∫ 1

q∗(R)

p(v(q, R), R) dq

≥ p̃(v̂
?(R)/0.7, R) · q̂?(R)

+ p̃(v̂?(R), R) · (q∗(R)− q̂?(R)) +

∫ 1

q∗(R)

p(v(q, R), R) dq.
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Invoking Lemma 4.19 and Lemma 4.20, we can rewrite the lower bound of Rev[R] as

≥
(
q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R)))

1− q̂?(R)

)
· q̂?(R)

− 0.7 log(q̂?(R))

1− q̂?(R)
·
(

1

1− v∗(R) · (1 + q̂?(R))
− q̂?(R)

)
+

∫ 1

q∗(R)

p(v(q, R), R) dq.

Note that this lower bound is weakly decreasing in v∗(R) while holding everything else

fixed. Let v∗(q̂?(R), q‡(R), w(R)) be the upper bound of v∗(R) as the function of q̂?(R),

q‡(R), w(R) established in Lemma 4.21. From Lemma 4.20, we can lower bound v∗(q̂?(R),

q‡(R), w(R))) by q∗(q̂?(R), q‡(R), w(R)) ,
(
1− v∗(q̂?(R), q‡(R), w(R)) · (1 + q̂?(R))

)−1.

Let b(q, q̂?(R)) be the lower bound of the optimal bid for an agent with value v(q, R)

and revenue curve R as the function of q, q̂?(R) established in Lemma 4.22. Then, we can

further rewrite the lower bound of Rev[R] as

≥
(
q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R)))

1− q̂?(R)

)
· q̂?(R)

− 0.7 log(q̂?(R))

1− q̂?(R)
·
(
q∗(q̂?(R), q‡(R), w(R))− q̂?(R)

)
+

∫ 1

q∗(q̂?(R),q‡(R),w(R))

0.7 log(b(q, q̂?(R)) · (1− q̂?(R)) + 1)

1− q̂?(R)
dq.

where the bid b(q, q̂?(R)) in the last term can be lower-bounded using Lemma 4.19.

Therefore, we lower-bound RevR(SB) as the function of q̂?(R), q‡(R), w(R). By nu-

merically enumerating all possible parameters, we conclude that RevR(SB) ≥ 0.545 in

this case.
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Case (ii) v̂?(R) ≤ v∗(R) ≤ v̂?(R)/0.7: The analysis is similar to case (i). By Lemma 4.5 and

Lemma 4.6, the expected revenue RevR(SB) of the sample-bid mechanism for revenue

curve R can be lower-bounded as follows,

RevR(SB) =

∫ 1

0

p(v(q, R), R) dq

≥
∫ q∗(R)

0

p(v(q, R), R) dq +

∫ 1

q̂?(R)

p(v(q, R), R) dq

≥ p̃(v̂
?(R)/0.7, R) · q∗(R) +

∫ 1

q̂?(R)

p(v(q, R), R) dq.

Invoking Lemma 4.19 and Lemma 4.20, we can rewrite the lower bound of Rev[R] as

≥
(
q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R)))

1− q̂?(R)

)
· 2q̂?(R)− q‡(R) · (1 + 1/0.7)

1 + v∗(R) · (1− q̂?(R))

+

∫ 1

q̂?(R)

p(v(q, R), R) dq.

Note that this lower bound is weakly decreasing in v∗(R) while holding everything else

fixed. Let v∗(q̂?(R), q‡(R), w(R)) be the upper bound of v∗(R) established in Lemma 4.21.

Let b(q, q̂?(R)) be the lower bound of the optimal bid for an agent with value v(q, R) and

revenue curve R established in Lemma 4.22. Then, we can further rewrite the lower bound

as

≥
(
q‡(R)

q̂?(R)
+ 0.7w(R)− 0.7 log(q̂?(R)))

1− q̂?(R)

)
· 2q̂?(R)− q‡(R) · (1 + 1/0.7)

1 + v∗(q̂?(R), q‡(R), w(R)) · (1− q̂?(R))

+

∫ 1

q̂?(R)

0.7 log(b(q, q̂?(R)) · (1− q̂?(R)) + 1)

1− q̂?(R)
dq.
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where the bid b(q, q̂?(R)) in the last term can be lower-bounded using Lemma 4.19.

Therefore, we lower-bound RevR(SB) as the function of q̂?(R), q‡(R), w(R). By nu-

merically enumerating all possible parameters, we conclude that RevR(SB) ≥ 0.545 in

this case.

Case (iii) v∗(R) ≥ v̂?(R)/0.7: Lemma 4.21 upper-bounds v∗(R) as the function of q̂?(R),

q‡(R) and w(R). By numerically enumerating all possible parameters, we conclude that

v∗(R) ≥ v̂?(R)/0.7 is not possible for any revenue curve R with q̂?(R) ≤ 0.62. �

4.5. Prior-independent Approximation Lower Bound

In this section, we show that no mechanism can achieve prior-independent approxi-

mation better than 1.07 even when the class of distributions are uniform distributions.

Note that point mass distributions are special cases of the uniform distributions. The

lower bound we will prove in this section holds for more general families of mechanisms

than the single-round mechanisms that we introduced in Section 4.1. Here we will show

that even when the agent and the seller have multiple rounds of communication in general

messages spaces, no mechanism can achieve prior-independent approximation better than

1.07. However, since our analysis does not hinge on the exact format of the mechanism,

we will not formally introduce the model for multi-rounds of communication.

Theorem 4.23. For a single item, a single uniformly distributed agent, and a single

valuation sample, the prior-independent approximation ratio for revenue maximization is

at least 1.07.

The main idea for proving Theorem 4.23 is as follows. Consider two scenarios where

the valuation distribution of the agent is either uniform between [1, 2] or a pointmass with
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some value v ∈ [1, 2]. Note that the optimal mechanism for an agent with value from the

uniform distribution U[1, 2] is to always allocate the item with expected payment 1. Thus

if the mechanism is optimal for this setting, when the valuation distribution for the agent

is actually a pointmass with some value v ∈ [1, 2], the agent can always imitate the type

in a uniform distribution U [1, 2] to win the item and pay at most 1 in expectation. This

indicates that the optimal prior-independent approximation ratio is strictly above 1. By

leveraging the approximation ratio in those two cases, we show that the optimal ratio is

at least 1.07.

Before the proof of Theorem 4.23, we first introduce several notations and present

several properties for non-truthful mechanismsM with prior-independent approximation

ratio β.

Lemma 4.24. For single item, single agent, any distribution F with support [v, v], for non-

truthful mechanism with prior-independent approximation ratio β, the interim allocation

for agent with highest value v is x(v, F ) ≥ 1
β
.

Proof. Suppose the interim allocation for agent with value v is x(v, F ) < 1
β
. Since

the interim allocation is monotone, the maximum expected virtual welfare for mechanism

under distribution F is less than 1/β of the optimal expected virtual welfare, which im-

plies the revenue is less than 1/β of the optimal revenue and the approximation ratio for

distribution F is higher than β, a contradiction. �

Lemma 4.25. For single item, single agent, and any uniform distribution F with support

[v, v] such that 2v ≥ v, for a non-truthful mechanism with prior-independent approximation

ratio β, the interim utility for agent with highest value v is u(v, F ) ≥ 1
2

(
v −

√
v2 − 4v

β
(v − v)

)
.
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Proof. For uniform distribution F with support [v, v] such that 2v ≥ v, the optimal

mechanism OPTF is to post price v with expected revenue v. Suppose the utility for agent

with value v is u(v, F ) < 1
2

(
v −

√
v2 − 4v

β
(v − v)

)
, the optimal mechanism subject to this

constraint is to post price v − u(v, F ), with expected revenue u(v,F )
v−v · (v − u(v, F )) < v

β
, a

contradiction. �

Lemma 4.26. For single item, single agent, any point mass distribution F with support

v, for non-truthful mechanism with prior-independent approximation ratio β, the interim

utility for agent with value v is u(v, F ) ≤ v(1− 1/β).

Proof. Suppose the interim utility in this case is u(v, F ) > v(1 − 1/β), the ex-

pected revenue is at most the social welfare minus the expected utility, which is at most

v − u(v, F ) < v
β
, contradicting the fact that mechanism M achieves prior-independent

approximation ratio β. �

Proof of Theorem 4.23. Suppose mechanism M inducing interim allocation and

payment rule x and p achieves prior-independent approximation ratio β. Consider uniform

distribution F with support [1, 2]. By Lemma 4.24 and 4.25, we have x(2, F ) ≥ 1
β
, and

u(2, F ) ≥ 1−
√

1− 1/β). For any sample s ∈ [1, 2], the expected allocation and payment

of agent with value 2 given the sample s satisfies the constraint that

s · x(2, F, s)− p(2, F, s) ≤ s

(
1− 1

β

)
(4.3)

otherwise for distribution Fs with point mass on s, an agent with value s can imitate the

behavior of an agent with value 2 in uniform distribution to achieve utility strictly higher

than s (1− 1/β), and by Lemma 4.26, this contradicts to the assumption that mechanism
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M achieves prior-independent approximation ratio β. Taking expectation over sample s

for the left hand side of equation (4.3), we have

Es[s · x(2, F, s)− p(2, F, s)] ≥ Es[s · x(2, F, s)]− (2− u(2, F ))

≥
∫ 1+1/β

1

s ds− (2− u(2, F ))

where the last inequality holds because x(2, F ) ≥ 1
β
and the worst case happens when

x(2, F, s) = 0 for any sample s ≥ 1 + 1/β. Taking expectation over sample s for the right

hand side of equation (4.3), we have

Es

[
s

(
1− 1

β

)]
=

3

2

(
1− 1

β

)
.

Combining the inequalities, we have

1

2

(
1 +

1

β

)2

− 1

2
− (1 +

√
1− 1/β) ≤ 3

2

(
1− 1

β

)
.

By solving the inequality, we have β ≥ 1.0737. �

4.6. Revenue of the Sample-based Pricing

Allouah and Besbes (2019) characterized the prior-independent approximation ratio of

the truthful mechanisms under the assumption of scale-invariance for sample-based pricing

mechanisms. Note that in contrast, our lower bound result shown in Theorem 4.23 does

not require the assumption on scale-invariance. Here is the formal definition of sample-

based pricing mechanisms.
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Definition 4.10. Given function α : R→ ∆(R) mapping from the sample to the random-

ized price, for sample s, the sample-based pricing mechanism solicits a non-negative bid

b ≥ 0, allocates the item to the agent if b ≥ α(s), and charges the agent α(s) ·1{b ≥ α(s)}.

It can be observed that the bid allocation rules of both sample-bid mechanism and

sample-based pricing are similar (i.e. competing against the sample), and the difference is

the payment semantics.

Theorem 4.27 (Allouah and Besbes, 2019). Under the assumption of scale-invariance, for

single-item setting with regular valuation distribution, when seller has access to a single

sample, the prior-independent approximation ratio of the optimal sample-based pricing

mechanism is bounded in [1.957, 1.996]. Moreover, when the valuation distribution is MHR,

the prior-independent approximation ratio is bounded in [1.543, 1.575].

4.7. Revelation Gap for Revenue Maximization

To establish our final revelation gap, we impose a further restriction (i.e., scale-

invariant) to the class of revelation mechanisms.

Definition 4.11. A mechanism is scale-invariant if the interim allocation is invariant of

the scale, i.e., x(αv, αF ) = x(v, F ) for any distribution F , valuation v and any α > 0.

Given an arbitrary valuation distribution and any mechanism that is incentive com-

patible only for the given valuation distribution, the mechanism may not be equivalent to

any sample-based pricing mechanism. The is because the agent only maximizes her utility

by taking expectation over the sample. However, we can show that if the mechanism is

incentive compatible for all possible prior distributions, then it is equivalent to consider
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posting a randomized price to the agent based on the realization of the sample, i.e., a

sample-based pricing mechanism.

Lemma 4.28. For any mechanism with allocation x̃ and payment p̃ that is incentive com-

patible and individual rational for all valuation distributions, there exists a sample-based

pricing mechanism that generates the same expected allocation and payment pointwise for

any valuation of the agent and any realization of the sample.

Proof. First we claim that, for any truthful mechanism with allocation x̃ and pay-

ment p̃, the induced allocation rule x̃(·, s) and payment rule p̃(·, s) are incentive compatible

and individual rational given any realization of the sample s.

First we prove the incentive compatibility. Suppose by contradiction, there exists

constant ε > 0, sample s and value v, v′ such that

vx̃(v′, s)− p̃(v′, s) ≥ vx̃(v, s)− p̃(v, s) + ε.

Let F be an arbitrary distribution with positive density everywhere on the support [0,∞).

Define H , u(v, v, F ) − u(v, v′, F ) as the utility loss for value v to misreport v′ when

the distribution is F . Given constant δ > 0, let F ′ be the distribution such that with

probability 1−δ, the value of the agent is s and with probability δ, the value is drawn from

distribution F . It is easy to verify that both v and v′ are in the support of distribution F ′.

Moreover, the utility loss for misreporting v′ is

u(v, v, F ′)− u(v, v′, F ′) ≥ (1− δ)ε+ δH
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where (1 − δ)ε + δH > 0 for sufficiently small δ. This implies that the mechanism is not

incentive compatible for distribution F ′, a contradiction.

Similarly, for individual rationality, if there exists constant ε > 0, sample s and value

v, v′ such that

vx̃(v, s)− p̃(v, s) ≤ −ε,

there exists a distribution F ′ supported on [0,∞) such that agent with value v is not

individual rational given distribution F ′.

Finally, since for any sample s, the induced mechanism is incentive compatible, the

allocation x̃(v, s) is monotone in v for any sample s. Moreover, individual rationality

implies that the payment of the agent is 0 if she does not win the item. Thus the mechanism

can be implemented as sample-based pricing mechanism for any realized sample. �

Lemma 4.28 suggest that under the assumption of scale invariance, the bounds on

prior-independent approximation ratio of sample-based pricing in Theorem 4.27 carry

over to truthful mechanisms. Then combining it with Theorem 4.11 and 4.23, we have

the following corollary characterizing the revelation gap under the assumption of scale-

invariance.

Corollary 4.29. Under the assumption of scale-invariance, for single-item setting with

regular valuation distribution, when seller has access to a single sample, the revelation

gap is bounded in [1.066, 1.859]. Moreover, when the valuation distribution is MHR, the

revelation gap is bounded in [1.190, 1.467].
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APPENDIX A

Appendix to Chapter 3

A.1. Clinching Auction with Price Jumps

In this section, we introduce the clinching auction with price jumps. In the standard

clinching auction, with a continuous increasing price-clock, excess demand decreases con-

tinuously to the point where supply equals demand and the market clears. With a price

jump, which leads to a strict drop of demands, the standard clinching auction may leave

some supply unallocated. Therefore, to clear the market, the clinching auction with price

jumps will need to reallocate some amount of units at the pre-jump price after a price

jump. We first focus on the clinching auction with price jumps for agents with identi-

cal budgets. The results can be extended to agents with distinct budgets, which we will

discuss at the end of this section.

To formally describe this reallocation, suppose the price-clock jumps from v† to v‡.

Consider the state C = (s, S†, w) at price v† after the clinching step (i.e. Step 3 in Defini-

tion 3.4) where s is the current supply remaining, S† is the agents with values at least v†

(let k† = |S†|), and w is the current budget of the active agents. 1 When the price jumps

to v‡, active agents with values below v‡ (“low-valued” agents) will quit, while active agents

with values at least v‡ (“high-valued” agents) will stay in the auction. Denote by S‡ the

1In the model considered in this paper where initially the agents have identical budgets, the remaining
budgets of all active agents remain identical throughout the execution of the clinching auction.
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set of high-valued agents and by k = |S‡| the number of high-valued agents. With pre-

jump state C = (s, S†, w) and k agents remaining after the jump, define hCk and lCk as the

additional supply allocated at the low price to high- and low-valued agents, respectively.

In the following discussion, we fix an arbitrary state C = (s, S†, w) with k† = |S†|

active agents, drop the superscript of hCk and lCk , and consider hk and lk constrained to the

following polytope:

IC: ∀k ∈ {1, . . . , k†} hk = lk−1,

BB: ∀k ∈ {0, . . . , k†} hk, lk ≤ w/v†,

NN: ∀k ∈ {0, . . . , k†} hk, lk ≥ 0,

MC: ∀k ∈ {0, . . . , k†} k hk + (k† − k) lk + k
v‡

(w − v† hk) ≥ s,

LS: ∀k ∈ {0, . . . , k†} k hk + (k† − k) lk ≤ s.

(A.1)

The constraints above are, respectively, incentive compatibility (IC), budget balance (BB),

non-negative consumption (NN), market clearing (MC), and limited supply (LS). The IC

constraint requires that the amount of supply which an agent gets at price v† does not

depend on whether the agent stays or quits during the price jump. The left-hand side of

the incentive compatibility (IC) constraint is the additional allocation quantity at price

v† if an agent stays during the price jump, while the right hand side is the additional

allocation quantity at price v† if she quits. Since the two quantities are equal, active

agents with values in [v†, v‡) prefer to quit after the clinching step at price v† while agents

with value at least v‡ prefer to stay in the auction. The market clearing (MC) constraint

states that the reallocated supply at the low price v† (the first two terms) plus the quantity

demanded by the high-valued agents at the high price v‡ (the third term) must be at least



123

the supply. The limited supply (LS) constraint states that the amount allocated at the

low price for any number k of high-valued agents must not exceed the supply.

Consider the problem of selecting a point in polytope (A.1) to optimize the expected

welfare under the value distribution F . First notice that, since the state C = (s, S†, w) is

induced by the clinching auction, the total demand at price v† under budget w exceeds

the remaining supply s, i.e., k†w/v† ≥ s; setting hk = lk = s/k† for all k ∈ [k†] is feasible;

and, thus, polytope (A.1) is not empty. The expected welfare of the clinching auction

is complicated to express; we instead consider the objective of minimizing, within the

constraints of polytope (A.1), the expected supply reallocated to low-valued agents, i.e.,∑k†

k=0 lkπ
k†−k(1−π)k where π = F (v‡)−F (v†)

1−F (v†)
= Prv∼F

[
v < v‡ | v ≥ v†

]
is the probability an

agent has a low value. Based on this reallocation, we formally define a clinching auction

with price jumps and show that it clears the market, is ex-post IR, and is DSIC.

Definition A.1. The clinching auction with price jumps maintains an allocation and

price-clock starting from zero. Before and after each price jump point, the price-clock

ascends continuously and the allocation and the budget are adjusted as in the standard

clinching auction. When the price-clock jumps from v† to v‡ the following steps are taken:

(1) run the standard clinching steps on price-clock v† and the current budgets and let

the subsequent state be C = (s, S†, w) with k† = |S†|;

(2) increase the price-clock to v‡ and let k‡ = |S‡| be the number of agents remaining

in the auction;

(3) solve for {hk, lk}k∈[k†] to minimize the expected quantity reallocated to the low-

valued agents in the polytope (A.1);
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(4) allocate hk‡ units at price v† to each of the k‡ agents that stay after the price jump,

allocate lk‡ units at price v† to each of the k†−k‡ agents that quit during the price

jump, and adjust all the agents’ budgets for the amount and price allocated;

(5) run the standard clinching step with price-clock v‡ and updated budgets.

Proposition A.1. The clinching auction with price jumps always clears the market.

Proof. If the price-clock increases continuously, the demand decreases continuously.

When the total demands meet the supply remaining, Dobzinski et al. (2008) show that

the standard clinching auction halts and the market clears. For the clinching auction

with price jumps, when the price-clock goes through a price jump, the market clearing

constraints that define polytope (A.1) guarantee that the total demands are at least the

supply remaining. Thus, the clinching auction with price jumps clears the market. �

Proposition A.2. The clinching auction with price jumps satisfies ex-post IR, DSIC, and

budget balance.

Proof. Dobzinski et al. (2008) show that the standard clinching auction is ex-post IR,

DSIC, and budget balanced. For the clinching auction with price jumps, when the price-

clock goes through a price jump from v† to v‡, the IC constraints that define polytope (A.1)

guarantee that the agents with values at most v‡ weakly prefer to quit at price v† and the

agents with values above v‡ prefer to stay at price v†. Meanwhile, the budget constraints

and non-negative consumption constraints that define polytope (A.1) guarantee that the

agents are budget balanced and have non-negative utility after the price jump. �

For two i.i.d. agents with identical budgets, the clinching auction with price jumps

induces the same outcome as the middle-ironed clinching auction (Definition 3.5). For a
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general number of agents, it is polynomial time solvable. We conjecture that, for i.i.d.

distributions and identical budgets, minimizing the expected quantity reallocated to low-

valued agents, i.e., the objective described previously, is equivalent to maximizing expected

welfare. We leave to future studies the question of whether there is a more succinct

characterization of the expected welfare maximizing solution and the generalization to

agents with non-identical valuation distributions.

If agents have distinct budgets, the linear program can be generalized by replacing the

variables, which corresponded to the reallocation to high- and low-valued agents with a

given number k = |S‡| of high-valued agents, with variables that correspond to the real-

location to each agent i with a given set S‡ of high-valued agents. With this modification

to the variables and constraints of polytope (A.1), the previous argument guarantees the

new polytope is non-empty. Notice that there are O(n · 2n) variables defining the new

polytope. It is possible, however, to optimize expected allocation to the low-valued agents

subject to this polytope in polynomial time when there are a constant number of distinct

budgets; symmetries across agents with identical budgets allow the number of variables

in the program to be reduced to a polynomial number. We leave to future studies the

problem of identifying a polynomial time algorithm for optimally reallocating the supply

during a price jump when there are generally distinct budgets.
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APPENDIX B

Appendix to Chapter 4

B.1. Numerical Analysis for the Sample-bid Mechanism

In Section 4.4, we bound the prior-independent approximation ratio of the sample-bid

mechanism by enumerating the possible choices of given parameters. One concern is that

the parameters are selected from a continuous interval, and the revenue for valuation dis-

tributions with parameters that are not evaluated on discretized points may be far from

the revenue on discretized points. In this section, we formally show that this is not the

case for our analysis. To provide a theoretical lower bound on all possible distributions,

we will present a unified lower bound on the revenue for distributions with parameters be-

tween discretized points. We will formalize this approach for the numerical calculation for

Lemma 4.17, and the numerical calculation for other lemmas and theorems hold similarly.

By the proof of Lemma 4.17, for any revenue curve R in Figure 4.5b parameterized by

monopoly quantile q̂? ∈ [
¯
qm, q̄m] and revenue r0 ∈ [

¯
r0, r̄0] for quantile 0, the revenue of the

seller is lower bounded by p(v∗(R), R) · q∗(R) where v∗(R) is the critical value with bid

above monopoly price and q∗(R) is the quantile for critical value. Note that it is sufficient

for us to consider revenue curves R such that v∗(R) is at least the monopoly price. Next

we show how to provide bounds on parameters
¯
qm, q̄m,

¯
r0, r̄0, as well as lower bounds on

p(v∗(R), R) and q∗(R) using parameters
¯
qm, q̄m,

¯
r0, r̄0.
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Lemma B.1. There exists efficiently computed set S ⊆ R4 and function τ : R4 → R

such that for any revenue curve R in Figure 4.5b parameterized by monopoly quantile

q̂? ∈ [
¯
qm, q̄m] and revenue r0 ∈ [

¯
r0, r̄0] for quantile 0, we have

(1) v∗(R) ≥ v̂?(R) only if (
¯
qm, q̄m,

¯
r0, r̄0) ∈ S;

(2) p(v∗(R), R) · q∗(R) ≥ τ(
¯
qm, q̄m,

¯
r0, r̄0) if (

¯
qm, q̄m,

¯
r0, r̄0) ∈ S.

Proof. First we illustrate how to find the desirable set S by numerical calculation.

Note that the requirement is such that the critical value for bidding above the monopoly

price is above monopoly price, i.e., v∗(R) ≥ v̂?(R). By Lemma 4.16, it is sufficient to

verify that the optimal utility of value v̂?(R) for bidding above v̂?(R) is positive. Note

that by Lemma 4.3, the optimal bid above the monopoly price is b = v̂?

α
+ 1−r0

1−q̂? , with

expected utility

u(v̂?, b) =
1

q̂?
· (1− qb)− α

(
b · qb + r0 log(

q̂?

qb
) +

(1− r0)(q̂? − qb)
q̂?

− log q̂?
)

where qb = r0
b− 1−r0

q̂?
. Since q̂? ∈ [

¯
qm, q̄m] and r0 ∈ [

¯
r0, r̄0], a sufficient condition for u(v̂?, b) >

0 is that

1

q̄m
· (1− q̄b)− α

(
b̄ · q̄b + r̄0 log(

q̄m

¯
qb

) +
(1−

¯
r0)(q̄m −

¯
qb)

¯
qm

− log
¯
qm

)
> 0,

where b̄ = 1
α
¯
qm

+
1−

¯
r0

1−q̄m , q̄b =
αr̄0q̄m(1−

¯
qm)

1−q̄m+α(1−r̄0)
and

¯
qb =

α
¯
r0

¯
qm(1−q̄m)

1−
¯
qm+α(1−

¯
r0)

. Note that the above

inequality can be easily verified on discretized points.

Next we construct the function τ(
¯
qm, q̄m,

¯
r0, r̄0) lower bound the revenue p(v∗(R), R) ·

q∗(R). First note that we can enumerate the value above monopoly price and find the

minimum value that the interim utility is strictly positive. That is, given value v ≥ v̂?,
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the optimal bid above the monopoly price is b = v
α

+ 1−r0
1−q̂? , with expected utility

u(v, b) = v · (1− qb)− α
(
b · qb + r0 log(

q̂?

qb
) +

(1− r0)(q̂? − qb)
q̂?

− log q̂?
)

≥ v · (1− q̄b)− α
(
b̄ · q̄b + r̄0 log(

q̄m

¯
qb

) +
(1−

¯
r0)(q̄m −

¯
qb)

¯
qm

− log
¯
qm

)
> 0,

where b̄ = v
α

+
1−

¯
r0

1−q̄m , q̄b =
αr̄0q̄m(1−

¯
qm)

v
¯
qm(1−q̄m)+α(1−r̄0)

and
¯
qb =

α
¯
r0

¯
qm(1−q̄m)

vq̄m(1−
¯
qm)+α(1−

¯
r0)

. Let v∗ be the

minimum value that satisfies the above inequality. Then we have v∗ ≥ v∗(R), and hence

q∗(R) ≥ q(v∗, R) =
αr0q̂

?(1− q̂?)
vq̂?(1− q̂?) + α(1− r0)

≥
α

¯
r0

¯
qm(1− q̄m)

vq̄m(1−
¯
qm) + α(1−

¯
r0)

.

Moreover, we can similar construct an upper bound on the utility u(v, b) and let
¯
v∗ be

the largest value such that the upper bound on the utility is at most 0. Thus, we have

v∗(R) ≥
¯
v∗ and hence

p(v∗(R), R) ≥ p(
¯
v∗, R) = α

(
b · qb + r0 log(

q̂?

qb
) +

(1− r0)(q̂? − qb)
q̂?

− log q̂?
)

≥ α

(
¯
b ·

¯
qb +

¯
r0 log(¯

qm

q̄b
) +

(1− r̄0)(
¯
qm − q̄b)

q̄m
− log q̄m

)

where
¯
b = ¯

v∗

α
+ 1−r̄0

1−
¯
qm

, q̄b =
αr̄0q̄m(1−

¯
qm)

¯
v∗

¯
qm(1−q̄m)+α(1−r̄0)

and
¯
qb =

α
¯
r0

¯
qm(1−q̄m)

¯
v∗q̄m(1−

¯
qm)+α(1−

¯
r0)

. By combining the

inequalities, we have an lower bound on p(v∗(R), R) ·q∗(R) as a function of (
¯
qm, q̄m,

¯
r0, r̄0).

By discretizing the feasible set and enumerating for all discretized points, we have a unified

lower bound on revenue for all possible distributions. �


	ABSTRACT
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Multi-party Computation and End-to-end Principle
	1.2. Prior-independent Mechanism Design and Revelation Gap
	1.3. Approach and Results
	1.4. Related Work
	1.5. Organization of the Thesis
	1.6. Bibliographic Notes

	Chapter 2. Model and Preliminaries
	2.1. Bayesian Mechanism Design
	2.2. Prior-independent Mechanism Design
	2.3. Revelation Gap

	Chapter 3. Welfare Maximization for Public Budgeted Agents
	3.1. Welfare of the All-pay Auction
	3.2. Welfare of the Clinching Auction
	3.3. Bayesian Optimal DSIC Mechanism
	3.4. Revelation Gap for Welfare Maximization
	3.5. Welfare Approximation for Irregular Distribution

	Chapter 4.  Lg 
	4.1. Preliminaries: Single-item Auction with A Single Sample Access
	4.2. The Sample-bid Mechanism
	4.3. Revenue of the Sample-bid Mechanism for MHR distributions
	4.4. Revenue of the Sample-bid Mechanism for Regular distributions
	4.5. Prior-independent Approximation Lower Bound
	4.6. Revenue of the Sample-based Pricing
	4.7. Revelation Gap for Revenue Maximization

	References
	Appendix A. Appendix to Lg
	A.1. Clinching Auction with Price Jumps

	Appendix B. Appendix to Lg
	B.1. Numerical Analysis for the Sample-bid Mechanism


