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ABSTRACT

Pricing Bounds for Bivariate Options with Super- and Submodular Payo¤ Function.

Jesse De Lille

We �rst introduce the concept of copulas and advocate its use for multivariate option

pricing. We focus on four types of bivariate options: basket, rainbow-max, rainbow-min,

and spread options. We derive expressions for these options as a function of the copula. We

then construct pricing bounds for these bivariate options without imposing any structure

at all on the bivariate risk-neutral distribution. Speci�cally, we introduce the concept of

extreme pricing bounds, which are the bounds a bivariate option has to satisfy in order

to avoid arbitrage with the univariate options and futures that are trading in the market

place. We show that these four types of bivariate options have a super- or submodular

payo¤ function, and that as a result the extreme pricing bounds correspond the Frechet-

Hoe¤ding bounds on the copula. We then proceed to investigate how we can extract

partial information about the bivariate risk-neutral distribution from products that are

trading in the market place. It is important that when we price a new bivariate option its

price is consistent with the products that are currently being traded. We introduce both

non-parametric and parametric methods to extract this partial information. Finally, we
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show how this partial information about the dependence between two assets translates

into tighter pricing bounds.
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CHAPTER 1

Pricing Bounds for Bivariate Options

1.1. Motivation

The goal of the paper is to �nd the price, or to �nd tight bounds for the price, of

options depending on several (at least 2) assets. This paper proposes to use a copula

approach to model the interdependency between the underlying assets. The results will

be applied to options on energy prices. Why energy prices? First of all, there is a need for a

serious empirical investigation of the dependency between �di¤erent�energy prices, where

�di¤erent�can apply to product category (oil, gas, power,...), time, or location. Secondly,

the signi�cant non-normal and complex behavior of energy prices make it extremely hard

to �nd a multivariate distribution that can simultaneously capture both the behavior of

the marginals as well as the dependency between the marginals, and therefore energy

prices lend themselves very well to be modelled using copulas. Another big advantage

of using copulas to price bivariate options stems from the fact that the margins of the

bivariate risk-neutral distribution have to equal the risk-neutral univariate distributions

in order to avoid arbitrage. Using copulas to model the risk-neutral bivariate distribution

guarantees that this requirement will hold.

The paper is organized as follows. After we introduce the concept of copulas, we

focus on four types of bivariate options: basket, rainbow-max, rainbow-min, and spread

options. We derive expressions for these options as a function of the copula. We then
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construct pricing bounds for these bivariate options without imposing any structure at

all on the bivariate risk-neutral distribution. Speci�cally, we introduce the concept of

extreme pricing bounds, which are the bounds a bivariate option has to satisfy in order

to avoid arbitrage with the univariate options and futures that are trading in the market

place. We show that these four types of bivariate options have a super- or submodular

payo¤ function, and that as a result the extreme pricing bounds correspond the Frechet-

Hoe¤ding bounds on the copula. We then proceed to investigate how we can extract

partial information about the bivariate risk-neutral distribution from products that are

trading in the market place. It is important that when we price a new bivariate option

that its price is consistent with the products that are currently being traded. We introduce

both non-parametric and parametric methods to extract this partial information. Finally,

we show how this partial information about the dependence between two assets translates

into tighter pricing bounds.

1.2. Short intro to copulas

Copulas allow one to disentangle the dependence structure from the marginal distri-

butions. For concreteness, let�s take a dataset: X={x1,x2,. . . ,xN}, Y={y1, y2,. . . , yN}.

Denote by H: the joint distribution of X and Y.

H(x; y) = PrfX � x; Y � yg

The multivariate distribution (H) describes the joint behavior of the original dataset

(X,Y), whereas a copula describes the joint behavior of the ranks of the original dataset.

Denote by ri : the rank of xi in X and si: the rank of yi in Y.
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Transformed dataset: R = fr1; r2; : : : ; rNg; S = fs1; s2; : : : ; sNg

Now, rescale R and S by dividing every element by (N+1). The empirical joint cdf

of R and S after rescaling is called the empirical copula of X and Y (Deheuvels, 1979).

CN : [0; 1]
2 ! [0; 1]

CN(u; v) =
1

N

NX
i=1

I(
ri

N + 1
� u;

si
N + 1

� v)

with I(.): indicator function

It can be shown that CN(u; v) converges to the true copula C(u; v) as N increases.

This construction immediately shows that the copula of X and Y does not change after

strictly increasing transformations of X and Y (the sets R and S remain the same), as we

would expect from a distribution function capturing the dependence between X and Y.

Formally, Sklar�s theorem (1959) states that for every joint distribution function H

with margins F and G there exists a copula C, mapping [0,1]2 into [0,1] such that for all

x,y:

H(x; y) = C[F (x); G(y)]
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When F and G are continuous, the copula C is unique. Knowing the properties of a

joint distribution function H it is straightforward to see that:

(1) C(0; v) = C(u; 0) = 0 and C(u; 1) = u;C(1; v) = v

(2) C is a 2-increasing (or supermodular) function just as H

Any function satisfying properties (1) and (2) is a (two-dimensional) copula. By a

2-increasing function (or supermodular function) we mean that for every [x1, x2] � [y1,

y2] in the domain of H we have that H(x2,y2) + H(x1,y1) - H(x1,y2) - H(x2,y1) � 0.

When the cross derivative of H (the density of H) exists, this condition is identical to

saying that the density must be positive on the entire domain.

As a consequence of properties (1) and (2), it can be readily veri�ed that every copula

has to satisfy the Frechet-Hoe¤ding bounds :

max(u+ v � 1; 0) � C(u; v) � min(u; v):

We will use the following notation throughout this text (with � called the indepen-

dence copula):

W (u; v) = max(u+ v � 1; 0)

M(u; v) = min(u; v)

�(u; v) = u:v
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Sklar�s theorem clearly shows that in order to model the joint behavior of X and Y,

one can proceed in two steps. First, select an adequate model for the dependence between

X and Y, captured by the copula. Second, and independently from the �rst step, select

an adequate model for the marginal distributions. This gives us a lot more �exibility to

model the joint behavior.

It is also clear from Sklar�s theorem that a copula captures the entire dependence

structure between X and Y. Hence, knowing which copula best describes the dependence

structure between X and Y is much more informative than simply knowing some mea-

sure of dependence that summarizes the entire dependence structure, such as the linear

(Pearson) correlation coe¢ cient between X and Y. In general, many di¤erent dependence

structures can be summarized by the same linear correlation coe¢ cient. It is only in

the class of the spherical or elliptical distributions (such as the multivariate normal or

multivariate student-t) that the marginals combined with the linear correlation coe¢ cient

determine the joint distribution (Embrechts et al., 2002). To put it di¤erently: only in

the class of elliptical distributions does the linear correlation coe¢ cient capture the entire

dependence structure.

1.3. Simulation from copulas

The following 4 graphs in Figure 1.1 illustrate this point. All four graphs have uni-

form(0,1) margins and a linear correlation coe¢ cient of 0.7. As such, all four graphs

display positive dependence. The �rst graph uses the Clayton copula to link the uniform

margins, the second graph uses the student-t copula, the third uses the Frank copula, and



17

the fourth uses the Gumbel copula. Later on, we provide more information about these

copulas. Each graph shows 2000 simulated pairs. Even though the marginals and linear

correlation coe¢ cient are the same, the joint distribution is di¤erent.

The student-t and Frank copulas have a symmetric dependence structure. Symmetric

dependence means that the joint probability that margin 1 is in the �thpercentile and

margin 2 is in the �th percentile is the same as the joint probability that margin 1 exceeds

the 1-�th percentile and margin 2 exceeds the 1-�th percentile. Formally, symmetric

dependence implies the copula has to satisfy:

C(u; v) = PrfU � u; V � vg

= PrfU � 1� u; V � 1� vg (Symmetry)

= 1� fPr(U < 1� u) + Pr(V < 1� v)� Pr(U < 1� u; V < 1� v)g

= u+ v � 1 + C(1� u; 1� v)

= �C(u; v)

The �rst and the last copula, Clayton and Gumbel, display asymmetric dependence,

but with the direction of asymmetry being di¤erent for the two copulas. For the Clayton

copula, the joint probability of both margins being in a low percentile exceeds the joint

probability of both margins being in a high percentile, which can be observed in the graph,

and can be computed as shown in Table 1.1. For the Gumbel copula the asymmetry is in

the opposite direction.
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Table 1.1. Opposite dependence asymmetry for Clayton and Gumbel copula

Percentile(u) Clayton Gumbel
C(u,u) C̄(u,u) C(u,u) C̄(u,u)

1% 0.0074 0.0003 0.0015 0.0059
5% 0.0370 0.0074 0.0145 0.0300
10% 0.0741 0.0269 0.0385 0.0616

Figure 1.1. Clayton simulated pairs
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Clayton copula with uniform margins

Although the marginals are the same for all four graphs and linear correlation equals

70% for all graphs the di¤erence in dependence structure is clear.

1.4. Copula density contours

In addition to plot simulated pairs from a copula another way to demonstrate the

dependence structure of a copula is to plot the copula density contours. The next four
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Figure 1.2. Student-t simulated pairs
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Figure 1.3. Frank simulated pairs
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Frank copula with uniform margins

graphs in Figure 1.5 plot the density contours of the same four copulas (Clayton, Student-

t, Frank, and Gumbel) using the same parameters as in Figure 1. To obtain the expression
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Figure 1.4. Gumbel simulated pairs
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for the density of a copula one can use one of several methods depending on the class to

which the copula belongs.

1.4.1. Archimedean copulas

The Clayton, Frank, and Gumbel copulas belong to the very important class of Archimedean

copulas (Genest and MacKay, 1986a; Genest and Rivest, 1993). Copulas in this class are

generated by a continuous function � : [0; 1] ! [0;1), which is strictly decreasing and

convex, and satis�es �(1) = 0: A generator is said to be a strict generator if �(0) = 1.

Archimedean copulas satisfy the following relation:

�[C(u; v)] = �(u) + �(v)(1.1)

C(u; v) = �[�1][�(u) + �(v)]
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with the pseudo-inverse �[�1](z) de�ned as:

��1(v) for 0 � z � �(0)

0 for �(0) � z � 1

In the case of a strict generator the pseudo-inverse and the regular inverse coincide.

1.4.1.1. Clayton copula. First we describe the Clayton copula, which is given by:

C(u; v) = max([u� + v� � 1]�
1
 ; 0)  2 [�1;1)nf0g

A large subclass of the Archimedean copulas have generators that are twice di¤eren-

tiable, such as the generator for the Clayton copula:

�(t) =
t� � 1


Taking the total derivative of relation (1.1) one obtains the following expression for

the cross derivative (density) of the copula:

(1.2) ��
00[C (u; v)]:�0(u)=�0(v)

[�0[C(u; v)]3

1.4.1.2. Frank copula. The Frank copula is given by:

C(u; v) = �1

log(1 +

(e�u � 1):(e�v � 1)
e� � 1 )  2 (�1;1)nf0g

The generator of the Frank copula is:

�(t) = � log(e
�t � 1
e� � 1 )
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Although it is possible to get the density using expression (1.2), it is easier to directly

obtain the density as the cross derivative of the copula.

1.4.1.3. Gumbel copula. The Gumbel copula is given by:

C(u; v) = exp(�[(� log u) + (� log v)]
1
 )  2 [1;1)

Generator of Gumbel copula:

�(t) = (� log t)

1.4.2. Elliptical copulas

1.4.2.1. Student-t copula. Its expression is:

CStr;�(u; v) =

Z T�1� (u)

�1

Z T�1� (v)

�1

1

2�
p
1� r2

�
1 +

x2 + y2 � 2rxy
�(1� r2)

���+2
2

dx:dy

with r:correlation, �:degrees of freedom, T�(.):univariate student-t cdf

Knowing the expression for the bivariate student-t distribution function (HStr;�) one can

immediately see that:

HSt
r;�(x; y) = CStr;�[T�(x); T�(y)]

Taking the cross derivative we get:

hStr;�(x; y) = cStr;�[T�(x); T�(y)]:t�(x):t�(y):
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Hence,

cStr;�(u; v) =
hStr;�[T

�1
� (u); T�1� (v)]

t�[T�1� (u)]:t�[T�1� (v)]

Plugging in the univariate and bivariate student-t densities we obtain the student-t

copula density:

cStr;�(u; v) =
�

2
:

1p
1� r2

:
�(�

2
)2

�(�+1
2
)2
:
[1 +

"21+"
2
2�2r"1"2

�(1�r2) ]�
�+2
2

(1 +
"21
�
)�

�+1
2 :(1 +

"22
�
)�

�+1
2

with r:correlation coe¢ cient �:degrees of freedom

"1 = T�1� (u); "2 = T�1� (v)

1.4.2.2. Normal copula. The normal copula is de�ned as:

CGaur (u; v) =

Z ��1(u)

�1

Z ��1(v)

�1

1

2�
p
1� r2

: exp

�
2rxy � x2 � y2

2(1� r2)

�
dx:dy

with r:correlation, and �(.):univariate standard normal cdf

The normal copula density has the following form:

cGaur (u; v) =
1p
1� r2

: exp

�
"21 + "22
2

+
2r"1"2 � "21 � "22
2(1� r2)

�

"1 = �
�1(u); "2 = �

�1(v)
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Figure 1.5. Clayton density contours
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The normal copula leads to the bivariate standard normal distribution when we use

standard normal marginals.

The four graphs in Figure 1.5 show clearly the symmetric dependence structure of the

student-t and Frank copula. The Clayton density contours corroborate that the 2 margins

are more often simultaneously low than high, and the Gumbel density contours show that

the 2 margins are more often simultaneously high than low.

1.5. Distribution of Sum of Random variables

A third way to demonstrate the di¤erence in dependence structure despite having the

same uniform marginals and linear correlation coe¢ cient is to compare the Pr(X+Y �

t) for t 2 [0; 2] for the three di¤erent copulas. This probability will also get us closer

to one of the objects of interest, Efmax(aX + bY � K; 0)g. Taking into account the
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Figure 1.6. Student-t density contours
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Figure 1.7. Frank density contours
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information on the dependence structure between X and Y from Figures 1.1 and 1.5, one

would expect that Pr(X+Y � t) for small t is highest for the Clayton copula. Table 1.2

shows the results for 50000 simulated pairs from each copula with a linear correlation

equal to 0.7 for all four copulas. Given that X and Y are uniform (0,1) marginals, the

Pr(X+Y � t) for t � 0 equals 0, and for t � 2 equals 1.
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Figure 1.8. Gumbel density contours
Gumbel copula density contours
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Table 1.2. Table 2: Pr(X+Y = t) using 50000 simulated pairs

t Clayton Student-t Frank Gumbel
0.10 4.58% 3.55% 2.14% 2.33%
0.25 11.48% 9.38% 8.99% 8.26%
0.50 22.98% 21.04% 22.54% 21.26%
1.00 47.74% 50.01% 49.98% 51.29%
1.50 78.10% 78.70% 77.20% 78.45%
1.75 92.68% 90.16% 91.03% 90.09%
1.90 98.55% 96.19% 97.84% 96.24%

These results corroborate what we have learned from Figures 1.1 and 1.5. The Student-

t and Frank copulas are clearly symmetric: Pr(X+Y � t) ' Pr(X+Y � 2-t), which

implies that Pr(X+Y � 1) ' 50%. The results for the Clayton copula show once again

the asymmetry between X and Y, in that Pr(X+Y � t) > Pr(X+Y � 2-t) for small t,

and the opposite sign holds true for the Gumbel copula. Knowing the copula of X and

Y and knowing the marginal distribution of X and Y allows us to analytically compute
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Pr(X+Y � t). In the case that the support of X and Y is the entire real line we get the

following expression (X � F1; Y � F2; (X; Y ) � F ):

Pr(X + Y � t) =

Z 1

�1

Z t�x

�1
f(x; y)dy:dx =

Z 1

�1

�

�X
FX;Y (x; t� x)dx

=

Z 1

�1

Z t�x

�1
c[F1(x); F2(y)]:f1(x):f2(y)dy: dx

This expression always holds when the support of X and Y covers the entire real line.

It holds for symmetric as well as asymmetric distributions (copulas). Returning to the

case of uniform(0,1) marginals one has to be careful to take into account the boundary

conditions and the possible asymmetry in the dependence structure. Pr(X + Y � t) =

0 t � 0Z t

0

Z t�x

0

cX;Y (x; y)dy:dx =

Z t

0

�

�X
CX;Y (x; t� x)dx 0 � t � 1

t� 1 +
Z 1

t�1

�

�X
CX;Y (x; t� x)dx 1 � t � 2

1 t � 2

This result holds for symmetric as well as asymmetric copulas, such as the Clayton

and Gumbel copulas. Plugging in the correct copula densities we can numerically evaluate

these integrals in a matter of seconds. Doing that con�rms the results in Table 1.2. For

completeness and as a reference for other parts of this paper we give the results for
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Pr(aX+bY � t) when both X and Y are uniform(0,1) and have a copula C. There are six

separate cases to consider (a, b > 0). Pr(aX + bY � t) =

0 t � 0Z t
a

0

�

�X
CX;Y (x;

t� ax

b
)dx 0 � t � min(a; b)Z 1

0

�

�X
CX;Y (x;

t� ax

b
)dx t � b; t > a

t� b

a
+

Z t
a

t�b
a

�

�X
CX;Y (x;

t� ax

b
)dx t > b; t � a

t� b

a
+

Z 1

t�b
a

�

�X
CX;Y (x;

t� ax

b
)dx max(a; b) � t � a+ b

1 t � a+ b

It is straightforward to check that for a = b = 1 we recover the results for Pr(X+Y �

t).

1.6. Option Pricing

The objective is to price bivariate options:

C(k) = e�r(T�t):EQt [G (XT ; YT )]

= e�r(T�t):EQt [maxf (XT ; YT )� k; 0g] = e�r(T�t):EQt [ (XT ; YT )� k]+ :

t: time at which the option price is computed

T: �nal time of the contract

r: risk-free interest rate (T-bill rate at time t for an interval T-t)
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k: strike price (�xed parameter)

Q: the risk-neutral joint distribution over which the conditional expectation is taken

X, Y: positive random variables

We focus on bivariate options of the European type, which implies that from a pricing

perspective we are only interested in the terminal joint distribution of X and Y. For

now,  can be any function mapping R2+ ! R: The crucial issue is to �nd the terminal

risk-neutral distribution or risk-neutral copula of X and Y, which in general is distinct

from the joint distribution based on historical prices. It can be shown that under certain

conditions the risk-neutral and the historical copula are the same, but more on that later

on. There are two ways to compute C(k). One method simply uses the joint density, the

other is based on the conditional distribution.

EQt [G (XT ; YT )] =

Z 1

0

Z 1

0

G(x; y):hQ(x; y)dydx

=

Z 1

0

Z
y2A(x)

f (x; y)� kg:hQ(x; y)dydx

=

Z 1

0

Z
y2A(x)

f (x; y)� kg:cQ[FQ1 (x); F
Q
2 (y)]:f

Q
1 (x):f

Q
2 (y):dydx

hQ(x; y): risk-neutral joint density of X and Y.

cQ(u; v): risk-neutral copula density of X and Y.

FQi (z): risk-neutral univariate distribution

fQi (z): risk-neutral univariate density

A(x) = {y2R+:  (x,y)�k}
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We can also use a conditional distribution approach:

EQt [G (XT ; YT )] =

Z 1

k

PQ[ (XT ; YT ) > s]ds

=

Z 1

k

Z 1

0

PQ[ (XT ; y) > s; YT = y]dy:ds

=

Z 1

k

Z 1

0

PQ[XT < �(s; y); YT = y]dy:ds

=

Z 1

k

Z
y2B(s)

�2H
Q[�(s; y); y]dy:ds

=

Z 1

k

Z
y2B(s)

�2C
Q[FQ1 (�(s; y)); F

Q
2 (y)]:f

Q
2 (y):dy:ds

PQ: probability over the risk-neutral measure

HQ(x; y): risk-neutral joint distribution of X and Y

CQ(u; v): risk neutral copula of X and Y

�iZ(x; y): derivative with respect to the ith entry of Z

B(s) ={y2R+: �(s,y)�0}

It is clear from these expressions that in order to price options with a payo¤ function

that depends on both X and Y we need to obtain the risk-neutral univariate distributions

of both X and Y, and we require knowledge about the risk-neutral copula of X and

Y. There already exists a vast literature on how to obtain the univariate risk-neutral

distributions from market prices on options and futures, which will be summarized in a

later section. Methods to obtain the risk-neutral copula from multivariate options do not

yet exist. In general it is wrong to work with a joint distribution based on the historical

joint behavior of X and Y. In order to ensure that there exist no arbitrage opportunities
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between the univariate options on X and Y and the bivariate options on  (X,Y), it has

to be true that the margins of the risk-neutral joint distribution equal the univariate

risk-neutral distributions. In later sections we show some simple examples of how to take

advantage of a violation of this requirement. Without going into detail at this point,

it is important to note that market prices of bivariate options can never fully identify

the implied risk-neutral joint distribution over the entire domain. Bivariate options only

convey information about a fraction of the joint distribution. If we do not have a lot of

market prices for bivariate options, our non-parametric estimates for the risk-neutral joint

distribution will be uninformative. Our only recourse at that point is either to rely on

historical behavior or to propose parametric forms for the risk-neutral copula. In the latter

case, even a couple of market prices for bivariate options can lead to very tight bounds

for the set of permissible parameters. But before we get into the details of estimating the

implied univariate and bivariate risk-neutral distributions from option and futures prices,

we �rst work out in detail the expressions for C(k) for di¤erent payo¤ functions G. In

particular, we look at (k>0):

G(X; Y ) = [aX + bY � k]+ with a,b>0: Basket option

= [aX + bY � k]+ with a or b<0: Spread option

= [max(aX; bY )� k]+ with a,b>0: Rainbow-max option

= [min(aX; bY )� k]+ with a,b>0: Rainbow-min option
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1.7. Basket Option

We now focus our attention on computing bounds for:

Emax(aX + bY � k; 0) = E(aX + bY � k)+ for a; b > 0:

with X � FX ; Y � FY ; and (X; Y ) � F

Let us assume for now that the support of X and Y covers the entire real line. Also,

de�ne R = aX, S = bY, and R+S = T.

E(R + S � k)+ = E(T � k)+ = E(T � kjT > k):P r(T > k)

=

Z 1

k

(s� k):
dFT (s)

1� FT (k)
:(1� FT (k)) =

Z 1

k

(s� k):dFT (s)

=

Z 1

k

Pr(T > u):du (Integration by parts)

=

Z 1

k

1� Pr(R + S � u):du

As stated above, the copula remains the same for strictly increasing transformations

of the marginals. For a, b > 0 we have that the copula of X and Y is the same as the

copula of R and S. Hence, knowing the copula of X and Y implies a point estimate for

E(R + S � k)+:The problem, of course, is that it is a di¢ cult task to exactly determine

the copula of X and Y. Uncertainty about the exact copula of X and Y results in bounds

for E(R + S � k)+. In what follows we will �rst compute the bounds without assuming

anything about the joint behavior of X and Y. One expects wide bounds in that case. In

a second step we show how the bounds shrink when we make speci�c assumptions about
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both the structure and the degree of dependence between X and Y. In both cases we

illustrate the results with some examples.

1.7.1. Bounds without information on dependence structure

A classic problem in statistics (Kolmogorov problem) is to determine bounds for Pr(R+

S � u) without assuming any information about the dependence structure between R and

S (Makarov, 1981; Ruschendorf, 1982; Frank and Schweizer, 1987). These authors show

that Pr(R + S � u) is bounded by:

Fmin(u) = sup
x
maxfFR(x) + FS(u� x)� 1; 0g(1.3)

� Pr(R + S � ug

� inf
x
minfFR(x) + FS(u� x); 1g = Fmax(u)

In terms of FX and FY we have (a, b > 0):

Fmin(u) = sup
x
maxfFX(

x

a
) + FY (

u� x

b
)� 1; 0g

� Pr(aX + bY � ug

� inf
x
minfFX(

x

a
) + FY (

u� x

b
); 1g = Fmax(u)

These bounds have analytical solutions in only a limited number of cases (for exam-

ple: uniform, normal, and exponential). In general these bounds have to be evaluated

numerically (Williamson and Downs, 1990).

1.7.1.1. Example 1a: In the �rst example we take a look at two standard normals.
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X1 � N(0; 1); X2 � N(0; 1)

=) F1(x) = F2(x) = �(x)

1) Fmin

Fmin(u) = supxmax[�(x) + �(u� x)� 1; 0]

u=0: �(x) + �(�x) = 1 =) Fmin(u) = 0

u>0: We can always set x=0, which implies that �(0) + �(u)� 1 > 0

=) Fmin(u) = supx�(x) + �(u� x)� 1 =) Fmin(u) = 2�(
u
2
)� 1

u<0: �(x) + �(u� x) < 1 for all x

=) Fmin(u) = 0

2) Fmax

Fmax(u) = infxmin[�(x) + �(u� x); 1]

u=0: �(x) + �(�x) = 1 =) Fmax(u) = 1

u>0: �(x) + �(u� x) > 1 for all x =) Fmax(u) = 1

u<0: We can always set x=0, which implies that �(0) + �(u) < 1

=) Fmax(u) = infx�(x) + �(u� x)

=) Fmax(u) = 2�(
u
2
)
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Fmin(u) = 0 u � 0

= 2�(
u

2
)� 1 u > 0

Fmax(u) = 2�(
u

2
) u < 0

= 1 u � 0

1.7.1.2. Example 2a: In the second example we combine one standard normal with one

exponentially distributed variable.

X1 � exp(1); X2 � N(0; 1)

=) F1(x) = 1� exp(�x) x � 0

= 0 x � 0

=) F2(x) = �(x)

1) Fmin

Fmin(u) = supxmax[F1(x) + �(u� x)� 1; 0]

1a) The optimal x such that Fmin(u) > 0 has to be strictly positive.

=) Fmin(u) = supx>0max[F1(x) + �(u� x)� 1; 0]

= supx>0max[1� exp(�x) + �(u� x)� 1; 0]

= supx>0max[�(u� x)� exp(�x); 0]
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1b) There exists u� such that:

Fmin(u) � 0 for u � u�

Fmin(u) = 0 for u � u�

1c) Determine u� and Fmin(u) for u � u�:

Assume u is such that Fmin(u) > 0

=) Fmin(u) = supx>0�(u� x)� exp(�x)

= �(u�X�(u))� exp(�X�(u))

with X�(u) = 1 + u�
p
1� log(2�) + 2u

�(u�X�(u))� exp(�X�(u)): strictly increasing in u and

�(u�X�(u))� exp(�X�(u)) � 0 for u � u� = 0:6621

X�(u) > 0 for u � u�

2) Fmax

Fmax(u) = infxmin[F1(x) + �(u� x); 1]

2a) It is always possible to �nd x such that F1(x) + �(u� x) � 1.

For example, setting x=0 will do the job.

2b) The optimal x cannot be strictly negative as F1(x) + �(u� x)

is always smaller for x=0 than for x < 0.
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=) Fmax(u) = infx�0 F1(x) + �(u� x)

= infx�0 1� exp(�x) + �(u� x)

Numerically it can be shown that x = 0 is optimal for all u.

Fmin(u) = �(u�X�(u))� exp(�X�(u)) u � u�

= 0 u � u�

with X�(u) = 1 + u�
p
1� log(2�) + 2u

Fmax(u) = �(u)

1.7.1.3. Numerical bounds . As mentioned above, in general, the bounds Fmin(u)

and Fmax(u) have to be evaluated numerically. Next, I will test the speed and accuracy of

the numerical algorithms developed by Williamson and Downs (1990) in applying them to

the previous example 2a for which we know the analytical solution. These algorithms are

based on a duality principle by Frank and Schweizer (1979) that transforms the formula-

tion of equation (1.3), which requires optimization over the entire real line, to a bounded

optimization problem. Makarov(1981) was the �rst to establish the result in (1.3), but

proved the dual version of it, using a long and cumbersome proof. On the other hand, the

proof to obtain the expression (1.4) is fairly straightforward, and the equivalence between

the two versions can be shown relying upon a well known duality argument. The advan-

tage of the Makarov version is that it suits itself better to numerical implementation as
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it is a bounded optimization problem. Makarov�s version, which is the dual of equation

(1.3), is as follows:

Denote the left-continuous, quasi-inverse of the cdf F by :

F �(a) = inffxjF (x) � ag

(1.4) inf
W (s;t)=a

[F �1 (t) + F �2 (s)] � [cdf(X + Y )]�(a) � sup
Z(s;t)=a

[F �1 (t) + F �2 (s)]

with W (s; t) = max[F1(s) + F2(t)� 1; 0] and Z(s; t) = s+ t�W (s; t)

The code is implemented in Matlab. In the algorithm the range of the distribution

function is split up in N discrete intervals. Williamson and Downs (1990) prove that

for N increasing the approximate bounds FNmin and F
N
max converge to Fmin and Fmax:

As can be judged from Figure 1.9 and 1.10, which displays the bounds for Example 2a,

convergence happens very rapidly as for N=100 the true and approximate bounds become

indistinguishable.

Staying with example 2a (X1 � exp(1); X2 � N(0; 1)) we can now compute bounds

for E(X1 +X2 � k)+ without assuming anything about the dependence between X1 and

X2 : Z 1

k

1� Fmax(u):du � E(X1 +X2 � k)+ �
Z 1

k

1� Fmin(u):du
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Figure 1.9. Bounds for the probability distribution for the sum of 2 variables
with no assumption on dependence structure for N=10
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Figure 1.10. Bounds for the probability distribution for the sum of 2 vari-
ables with no assumption on dependence structure for N=100
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Figure 1.11. Upper and lower bound for E(max(X1+X2-K,0)): no assump-
tion on dependence, F1 N(0,1),F2 exp(1)
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For k � u� :

Z 1

k

�(�u):du � E(X1 +X2 � k)+ �
Z 1

k

1� �(u�X�(u)) + exp(�X�(u)):du

For k < u� :

Z 1

k

�(�u):du � E(X1 +X2 � k)+ � u� � k +

Z 1

u�
1��(u�X�(u)) + exp(�X�(u)):du

These bounds have to be numerically integrated, which can be done in a matter of

seconds. Figure 1.11 shows the lower and upper bound as a function of k. As expected

these bounds are very wide when k is small.
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1.7.1.4. Bounds with information on dependence structure . In the next step

we investigate how we can shrink the bounds by making assumptions on the structure and

degree of dependence between X1 and X2. One option is to impose a lower bound on the

joint distribution or copula of X1 and X2. We can assume that there exists a distribution

function L and a corresponding copula CL such that:

Pr(X1 � x;X2 � y) � L(x; y) = CL[F1(x); F2(y)]:

This particular assumption on the dependence between X1 and X2 implies the following

lower and upper bound on Pr(X1 +X2 � u):

Claim 1.

Fmin(u) � Fmin;L(u)(1.5)

= sup
x
L(x; u� x)

� Pr(X1 +X2 � u)

� inf
x
F1(x) + F2(u� x)� L(x; u� x)

= Fmax;L(u) � Fmax(u)

Proof.

Lower bound 8x : L(x; u� x) � Pr(X1 � x;X2 � u� x) � Pr(X1 +X2 � u)
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Upper bound 8x : Pr(X1 +X2 � u) � Pr(X1 � x or X2 � u� x)

= Pr(X1 � x) + Pr(X2 � u� x)

�Pr(X1 � x;X2 � u� x)

� F1(x) + F2(u� x)� L(x; u� x)

�

Imposing an upper bound on Pr(X1 � x;X2 � y) does not help us to reduce the

size of the bounds any further. Recalling the Frechet-Hoe¤ding bounds for copulas stated

above:

max(u+ v � 1; 0) � C(u; v) � min(u; v)

This implies similar bounds for any bivariate distribution function H with margins F1

and F2:

max[F1(x) + F2(y)� 1; 0] � H(x; y) � min[F1(x); F2(y)]

Therefore, making no assumptions about the dependence between X1 and X2 is the

same as assuming that:

Pr(X1 � x;X2 � y) � max[F1(x) + F2(y)� 1; 0]

It is straightforward to check that when we plug the lower Frechet-Hoe¤ding bound

into (1.5) we recover the result from equation (1.3).
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If we were to impose that:

Pr(X1 � x;X2 � y) � min[F1(x); F2(y)]

we would obtain a point estimate for Pr(X1+X2 � u) as there is no longer uncertainty

about the copula of X1 and X2 in that case, X1 and X2 are comonotonic. Given that F1(x)

is increasing in x and F2(u� x) is decreasing in x, there always exists an interval [x�; x+]

such that

F1(x) = F2(u� x) 8x 2 [x�; x+]

F1(x) < F2(u� x) x < x�

F1(x) > F2(u� x) x > x+

When F1(:) and F2(:) are strictly increasing, x� = x+:

The expression for Pr(X1 +X2 � u) for comonotonic X1 and X2 is1:

Fmin;M(u) = sup
x
min[F1(x); F2(u� x)] = F1(x

�) = F2(u� x�)

Fmax;M(u) = inf
x
F1(x) + F2(u� x)�min[F1(x); F2(u� x)] = F1(x

�) = F2(u� x�)

with x� 2 [x�; x
+]

1Another way to show this expression:
R1
�1

�
�X min[F1(x); F2(u�x)]dx =

R x�
�1 f1(x)dx = F1(x�) = F1(x

�)
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1.7.1.5. Positive dependence . In the empirical analysis that will follow, one of the

�rst assumptions we make is positive dependence between power and natural gas prices.

To achieve that goal we assume that Pr(X1 � x;X2 � y) � F1(x):F2(y): This property is

called PQD (Positive Quadrant Dependence), and means that small (large) values of X1

tend to occur more often with small (large) values of X2 than in the case of independence.

Hoe¤ding�s lemma (joint distribution H, margins F1and F2) states that:

cov(X;Y ) =

Z Z
R2
[H(x; y)� F1(x):F2(y)]dx:dy

As a result of Hoe¤ding�s lemma, we can conclude that assuming PQD for X1 and

X2 implies the assumption of positive linear correlation between X1 and X2; which is a

property that we safely assume to be true between power and natural gas prices based on

a supply and demand argument.

The assumption of PQD between X1 and X2 leads to the following bounds for Pr(X1+

X2 � u)2 :

2As mentioned above, the independence copula is denoted as �(u,v)=uv. Therefore, we denote the
bounds in the case of PQD as Fmin;� and Fmax;�.
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Fmin;�(u) = sup
x
F1(x):F2(u� x)

Fmax;�(u) = inf
x
F1(x) + F2(u� x)� F1(x):F2(u� x)

= inf
x
[1� Pr(X1 > u;X2 > u� x)]

= inf
x
f1� [1� F1(x)]:[1� F2(u� x)]g

Example 1b. In this example 1b we use the same marginals as in example 1a, but now

we impose PQD between X1 and X2.

X1 � N(0; 1); X2 � N(0; 1)

Pr(X1 � x;X2 � y) � F1(x):F2(y)

Fmin;�(u) = sup
x
�(x):�(u� x) = [�(

u

2
)]2

Fmax;�(u) = inf
x
f1� [1� �(x)]:[1� �(u� x)]g

= 1� sup
x
�(�x):�(x� u) = 1� [�(�u

2
)]2

Figure 1.12 displays the bounds on Pr(X1 +X2 � u) for example 1a (no information

on dependence) and 1b (impose PQD on dependence) for the case of 2 standard normal

marginal dsitributions.
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Figure 1.12. Bounds on Pr(X1+X2=u) as a function of u for 2 standard normals
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Figure 1.13 shows the bounds for E(X1+X2�k)+ for 2 standard normals with (PQD)

and without information about the dependence structure.

As can be judged from Figure 1.13 the bounds do not shrink by much when we impose

PQD between X1 and X2. One of the goals of the empirical analysis will be to impose

tougher restrictions on the copula that captures the dependence between X1 and X2 in

order to obtain tight bounds for E(X1+X2� k)+. This will be achieved by using market

prices on bivariate options.

Example 2b. We use the same distributions as in example 1b and impose PQD.

X1 � exp(0; 1); X2 � N(0; 1)

Pr(X1 � x;X2 � y) � F1(x):F2(y)
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Figure 1.13. Bounds on Emax(X1+X2-k,0) as a function of k for 2 standard normals
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1) Fmin

Fmin;�(u) = supx F1(x):�(u� x)

It is clear that the optimal x must be strictly positive.

Fmin;�(u) = sup
x>0
[1� exp(�x)]:�(u� x)

This expression has to be evaluated numerically.

2) Fmax

Fmax;�(u) = infxf1� [1� F1(x)]:[1� �(u� x)]g = 1� supx[1� F1(x)]:�(x� u)

With x � 0: supx�0[1� F1(x)]:�(x� u) = supx�0�(x� u)
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Therefore, the optimal x cannot be strictly negative.

Fmax;�(u) = 1� sup
x�0
[1� (1� exp(�x))]:�(x� u)

= 1� sup
x�0
[exp(�x):�(x� u)]

This expression has to be evaluated numerically as well.

Figure 1.14 shows the bounds for Pr(X1 +X2 � u) as a function of u for the sum of

a standard normal and an exp(1) distributed variable. These bounds show the di¤erence

between imposing PQD between the two variables and imposing nothing on the depen-

dence structure. It can be seen that the lower bound is more a¤ected by imposing PQD

than the upper bound in this particular case.

Figure 1.15 shows the bounds with PQD and without information on the dependence

structure for E(X + Y � k)+ for a standard normal and exp(1) variable. Figure 1.15

shows that also in this example imposing PQD does not dramatically tighten the bounds

for E(X + Y � k)+.

1.7.1.6. Further tightening of the bounds. From the previous analysis we have

learned that in order to further tighten the bounds on E(X1 + X2 � k)+ we have to

do better than just impose PQD between the variables. We will prove another way to

compute E(X1 + X2 � k)+, which will allow us to better incorporate extra information

on X1 and X2. This method will also result in much shorter computation time. First, we
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Figure 1.14. Bounds on E(max(X1+X2-k,0)) as a function of k for 2 stan-
dard normals
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show why the current method does not help us much in further reducing the bounds.

E(X1 +X2 � k)+ =

Z 1

k

1� Pr(X1 +X2 � u)du

Impose F (x; y) � L(x; y) = CL[F1(x); F2(y)]

sup
x
CL[F1(x); F2(u�x)] � Pr(X1+X2 � u) � inf

x
F1(x)+F2(u�x)�CL[F1(x); F2(u�x)]

Imposing an upper bound on F(x,y) does not help us in reducing the bounds. This

implies that better information about the true joint distribution function does not easily

translate in improved bounds using the current method. In addition, evaluating

E(X1 +X2 � k)+ =

Z 1

k

1� Pr(X1 +X2 � u)du =

Z 1

k

Z 1

�1

Z 1

u�x
f(x; y)dy:dx:du

=

Z 1

k

Z 1

�1

Z 1

u�x
c[F1(x); F2(y)]:f1(x):f2(y)dy:dx:du

takes a lot of computation time. A better way to compute E(X1 + X2 � k)+ is to

observe that:

Claim 2.

E(X1 +X2 � k)+ = E(X1) + E(X2)� k + E(k �X1 �X2)
+
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Proof.

T = X1 +X2 : E(T ) =

Z 0

�1
tdFT (t) +

Z 1

0

tdFT (t) = �
Z 0

�1
FT (t)dt+

Z 1

0

1� FT (t)dt

E(k �X1 �X2)
+ = E(k � T )+ =

Z k

�1
FT (t)dt

E(T )� k + E(k � T )+ = �
Z 0

�1
FT (t)dt+

Z 1

0

1� FT (t)dt�
Z k

0

dt+

Z k

�1
FT (t)dt

=

Z 1

k

1� FT (t)dt = E(T � k)+ = E(X1 +X2 � k)+

�

Claim 3.

E(k �X1 �X2)
+ =

Z 1

�1
C[F1(u); F2(k � u)]du

Proof.

E(k �X1 �X2)
+ =

Z 1

�1

Z k�x

�1
(k � x� y):f(x; y)dy:dx

=

Z 1

x=�1

Z k�x

y=�1

Z k�y

u=x

du:f(x; y)dy:dx

=

Z 1

u=�1

Z u

x=�1

Z k�u

y=�1
f(x; y)dy:dx:du =

Z 1

�1
F (u; k � u)du

=

Z 1

�1
C[F1(u); F2(k � u)]du

�

The third equality requires some justi�cation. We change the order of integration, and

because the integrand stays the same we just have to check that the volume over which
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we integrate remains the same. On the left hand side of the third equality x, y, and u

cover the entire real line and x and y are such that x+y � k. On the right hand side, we

have once again that x,y, and u cover the entire real line, and that x+y � k. Therefore,

we have:

E(k �X1 �X2)
+ =

Z k

�1
Pr(X1 +X2 � u)du =

Z 1

�1
F (u; k � u)du

Remark: This expression cannot be used in the case of uniform marginals when k>1,

because of boundary problems. In the case of uniform marginals we get:

E(k�X1�X2)
+ =

Z k�1

0

Z 1

0

(k�x�y):f(x; y):dy:dx+
Z 1

x=t�1

Z k�x

y=0

Z k�y

u=x

du:f(x; y):dy:dx

The assumption of independence between the uniform marginals leads to (k > 1):

(k � 1
2
):(k � 1)� 2(k � 1)

2

3
+
1

6

We conclude that we have two di¤erent ways to compute E(X1 +X2 � k)+ :
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Method1:

E(X1 +X2 � k)+ =

Z 1

k

1� Pr(X1 +X2 � u)du

Fmin(u) � Pr(X1 +X2 � u) � Fmax(u)Z 1

k

1� Fmax(u)du � E(X1 +X2 � k)+ �
Z 1

k

1� Fmin(u)du

Fmin(u) = sup
x
maxfF1(x) + F2(u� x)� 1; 0g

Fmax(u) = inf
x
minfF1(x) + F2(u� x); 1g

Method2:

E(X1 +X2 � k)+ = E(X1) + E(X2)� k +

Z 1

�1
C[F1(u); F2(k � u)]du

E(X1) + E(X2)� k +

Z 1

�1
max[F1(u) + F2(k � u)� 1; 0]du

� E(X1 +X2 � k)+

� E(X1) + E(X2)� k +

Z 1

�1
min[F1(u); F2(k � u)]du

At �rst sight one might think that the bounds for both methods are the same, but that

is not true. The bounds in method 2 clearly correspond to imposing that the copula equals

the lower(W)/upper(M) Frechet-Hoe¤ding bound. But nothing guarantees in method 1

that Fmin or Fmax correspond to the copulas W or M. Contrary to intuition the Pr(X1 +

X2 � u) does not necessarily reach its minimum and maximum value for the copulas M

and W. Given that the bounds are not the same it is immediate from the construction of
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the bounds that the bounds from method 2 must lie inside the bounds from method 1.

We show a couple of examples to demonstrate this point.

Comonotonicity. X and Y are comonotonic (Dhaene et al., 2002a, 2002b) if and only

if

FX;Y (x; y) = CX;Y [F1(x); F2(y)] = min[F1(x); F2(y)]:

The support of this distribution are the pairs (x,y) such that F1(x) = F2(y). For

U � unif(0; 1) we get:

PrfF�11 (U) � x; F�12 (U) � yg

= PrfU � F1(x); U � F2(y)g

= min[F1(x); F2(y)]

Therefore,

(X; Y ) � [F�11 (U); F�12 (U)]

Thus, we can also say that X and Y are comonotonic if and only if Y is an increasing

function of X, therefore there is perfect positive dependence in the case of comonotonicity.

Countermonotonicity. X and Y are countermonotonic if and only if

FX;Y (x; y) = CX;Y [F1(x); F2(y)] = max[F1(x) + F2(y)� 1; 0]:
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The support of this distribution are the pairs (x,y) such that F1(x) + F2(y) = 1. For

U � unif(0; 1) we get:

PrfF�11 (U) � x; F�12 (1� U) � yg

= PrfU � F1(x); 1� U � F2(y)g

= Prf1� F2(y) � U � F1(x)g

= max[F1(x) + F2(y)� 1; 0]

Therefore,

(X; Y ) � [F�11 (U); F�12 (1� U)]

Thus, we can also say that X and Y are countermonotonic if and only if Y is a

decreasing function of X, therefore there is perfect negative dependence in the case of

countermonotonicity.

Example 1c. As in the previous examples 1a and 1b we use two standard normals.

Example 1a concluded that without information on the dependence between X and Y we

get the following bounds on Pr(X + Y � u) :

Fmin(u) = 0 u � 0

= 2�(
u

2
)� 1 u > 0

Fmax(u) = 2�(
u

2
) u < 0

= 1 u � 0
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Comonotonicity

Pr(X + Y � u) = PrfF�11 (U) + F�12 (U) � ug = PrfZ(U) � ug

= supfU 2 [0; 1] : Z(U) � ug

= supfU 2 [0; 1] : 2:��1(U) � ug

= �(
u

2
)

.

Countermonotonicity. Support =f(x; y) : �(y) = 1� �(x)g = f(x; y) : x = �yg

Pr(X + Y � u) = 0 for u < 0

= 1 for u � 0

We observe that Fmin and Fmax do not have to correspond to the copulas W and

M, and that the Pr(X + Y � u) in the case of co- and countermonotonicity lies inside

[Fmin(u), Fmax(u)].

Example 2c. Once again: X � N(0; 1) and Y � exp(1)

FY (y) = 1� exp(�y) for y � 0

= 0 for y < 0

F�1Y (t) = � log(1� t) for t � 0
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Example 2a concluded that for Pr(X + Y � u) :

Fmin(u) = �(u�X�(u))� exp(�X�(u)) u � u�

= 0 u � u�

with X�(u) = 1 + u�
p
1� log(2�) + 2u

Fmax(u) = �(u)

Comonotonicity. Support = f(x; y) : �(x) = FY (y)g = f(x; y) : y = F�1Y [�(x)]g =

f(x; y) : y = � log[�(�x)]g: We conclude that:

Pr(X + Y � u) = �(x�)

with x� : u� x� = � log[�(�x�)]

As � log[�(�x)] is strictly increasing in x, x� always exists and is unique. As x� < u,

�(x�) < Fmax. Numerically it can be veri�ed that �(x�) > Fmin. And again we observe

that Fmin and Fmax do not correspond to the case of comonotonicity.

Countermonotonicity. Support = f(x; y) : �(x) = 1�FY (y)g = f(x; y) : y = F�1Y [�(�x)]g =

f(x; y) : y = � log[�(x)]g:We conclude that:

Pr(X + Y � u) = 0 u � u�

= �(bu)� �(au) u > u�

For u > u�: u�x = � log[�(x)] has two solutions {au < bu}. As bu < u;�(bu)��(au)

< Fmax. It can also be veri�ed that �(bu)� �(au) > Fmin.
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Given that Fmin(u) and Fmax(u) do not necessarily correspond to the copulas M

(comonotonicity) and W (countermonotonicity), it is now clear why the bounds from

Method 1 and Method 2 do not coincide, and as a result why the bounds from Method 1

are wider. It can be shown (Frank et al.) that for each u, there exists a copula Cu such

that Fmin(u) = Pr(X+Y � u), where the probability is computed with respect to Cu, the

copula of X and Y, and similarly for Fmax(u): Hence, the reason that the bounds for both

method 1 and 2 do not coincide is due to the fact that in method 1 we implicitly impose

a di¤erent copula of X and Y for every u. In method 2, however, we impose the same

copula for every u. Therefore, we will from now on use method 2 to price basket options

as method 2 has the advantage of less computation time, it is easier to incorporate extra

information about the true copula, and it is consistent as the bounds correspond to the

same copula no matter the value of u.

Imposing additional information about the structure and degree of dependence. We

want to compute (a,b>0):

V = Emax(aX + bY � k; 0) = aE(X) + bE(Y )� k +

Z 1

�1
CX;Y [FX(

s

a
); FY (

k � s

b
)]ds:

Obviously, when we know exactly the joint distribution of X and Y, or similarly, when

we know the marginal distributions of both X and Y and the copula of X and Y, we have

a point estimate for V. In practice, however, we never exactly know this information.

Hence, the question: how does partial information about the dependence structure between

X and Y translate into bounds for V? This question, however, is not very precise as there

exist a lot of di¤erent ways to impose partial information about the dependence structure.
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One of the methods we have been looking at before is to impose bounds on the copula

directly:

CL(u; v) � C(u; v) � CH(u; v):

Looking at the expression for V this type of partial information about the dependence

structure between X and Y leads to very straightforward bounds for V. When we set

CL(u; v) = u:v and CH(u; v) =M(u; v) we impose PQD between X and Y, which implies

positive covariance between X and Y. However, we know from the previous analysis that

imposing PQD does not lead to tight bounds for V. Therefore, we need to impose addi-

tional information about the dependence structure. Later on, we will use market prices

on bivariate options to help us determine CL and CH .

In the next few sections we derive expressions for the rainbow and spread options.

After that we construct bounds that these bivariate options have to satisfy in order to

avoid arbitrage.

1.8. Rainbow-max option

For a,b>0 and aX=R, bY=S we have:
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E[max(aX; bY )� k]+ = Emax[(R;S)� k]+

=

Z 1

k

1� Pr[max(R;S) < s]ds

=

Z 1

k

1�HR;S(s; s)ds

=

Z 1

k

1� C[FR(s); FS(s)]ds

=

Z 1

k

1� C[FX(
s

a
); FY (

s

b
)]ds

1.9. Rainbow-min option

For a,b>0 and aX=R, bY=S we have:

E[min(aX; bY )� k]+ = Emin[(R;S)� k]+

=

Z 1

k

Pr[min(R;S) > s]ds

=

Z 1

k

�HR;S(s; s)ds

=

Z 1

k

�C[ �FR(s); �FS(s)]ds

=

Z 1

k

�C[ �FX(
s

a
); �FY (

s

b
)]ds

�H: survival distribution

�C: survival copula, which is a true copula: C̄(u,v)=u+v-1+C(1-u,1-v)

�FX = 1� FX
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1.10. Spread option

Without loss of generality we have for b>0 and bY=S:

E[X � bY � k]+ = E[X � S � k]+

= E(X)� E(S)� k + E[k � (X � S)]+

E[k � (X � S)]+ =

Z k

�1
Pr(X � S < u)du

=

Z k

�1

Z 1

0

Pr(X < u+ s; S = s)ds:du

=

Z k

u=�1

Z 1

s=max(�u;0)
�2H(u+ s; s)ds:du

=

Z k

u=�1

Z 1

s=max(�u;0)
�2C[FX(u+ s); FS(s)]:fS(s):ds:du

=

Z 1

s=0

Z k

u=�s
�2C[FX(u+ s); FS(s)]:fS(s):du:ds

E[X � bY � k]+ = E(X)� bE(Y )� k

+

Z 1

s=0

Z k

u=�s
�2C[FX(u+ s); FY (

s

b
)]:
1

b
:fY (

s

b
):du:ds

Another and more convenient expression for a spread option can be found by noticing

that

(X � bY � k)+ = X � [min(X; bY + k)]+ = [max(X; bY + k)]+ � (bY + k)
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Therefore, we also have:

E[X � bY � k]+ = E (X)�
Z 1

0

Pr(X > s; bY + k > s)ds

= E(X)�
Z 1

0

�C[ �FX(s); �FY (
s� k

b
)]ds

= E(X)�
Z k

0

1� Pr(X < s)ds�
Z 1

k

�C[ �FX(s); �FY (
s� k

b
)]ds

= E(X)� k + E(k �X)+ �
Z 1

k

�C[ �FX(s); �FY (
s� k

b
)]ds

= E(X � k)+ �
Z 1

k

�C[ �FX(s); �FY (
s� k

b
)]ds

Or, using the max operator we can write it as:

E[X � bY � k]+ =

Z 1

0

1� C[FX(s); FY (
s� k

b
)]ds� bE(Y )� k

=

Z 1

k

1� C[FX(s); FY (
s� k

b
)]ds� bE(Y )

1.11. Extreme pricing bounds

De�nition 4. Extreme pricing bounds are the bounds a particular bivariate option

has to satisfy only by using the information provided by the univariate option prices, or

equivalently, only by knowing the univariate risk-neutral distributions.

Looking closely at the �nal expressions for basket, rainbow-max, rainbow-min, and

spread options we observe that all these �nal expressions integrate over the copula of X and

Y. This implies that the extreme bounds for these options are reached for the minimum

(W) and maximum (M) copulas. The upper bound for the basket and rainbow-min options

is attained with the maximum (M) copula - the copula enters the �nal expression with a
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positive sign, whereas the upper bound for the spread and rainbow-max option is attained

with the minimum (W) copula - the copula has a negative sign. This result holds true

more generally for super- and submodular payo¤ functions.

1.11.1. Concordance order

C1 � C2 , C1(u; v) � C2(u; v) for all (u,v)2[0,1]2:A family of copulas {C} is positively

(negatively) ordered if C1 � C2 when 1 � (�) 2. One can show for example that the

normal and student-t copula are positively ordered. For the large class of Archimedean

copulas it is shown (Genest and MacKay, 1986b) that if �1(t)
�2(t)

or�
0
1(t)

�02(t)
is non-decreasing on

(0,1) then C1 � C2.

1.11.2. Super- and submodular payo¤ functions

De�nition 5. For a function f: R2 !R we de�ne ��
if(x) = f(x+ �:ei)� f(x). The

function f is said to be supermodular (or 2-increasing) if and only if �"
1�

�
2f(x) � 0 for

all �; " > 0. The function f is submodular if and only if �"
1�

�
2f(x) � 0 for all �; " > 0:

Claim 6. For a supermodular (or 2-increasing) payo¤ function G we have that C1 �

C2 =) EC1 [G(X; Y )] � EC2 [G(X; Y )]

Proof. Follows from Theorem 2 in Tchen (1980) and Muller and Scarsini (2000). �

Given that H=-G is submodular for G supermodular, it follows that for a submodular

function H we have that C1 � C2 =) EC1 [H(X; Y )] � EC2 [H(X; Y )]. It is straightforward

to check that the payo¤ function for the basket and rainbow-min options is supermodular,

and that it is submodular for the spread and rainbow-max option. When we denote the
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price of the option by C, the claim implies that the option prices have to satisfy the

following extreme bounds:

e�rTEQW [G(XT ; YT )] � C � e�rTEQM [G(XT ; YT )] for basket and rainbow-min

e�rTEQM [G(XT ; YT )] � C � e�rTEQW [G(XT ; YT )] for spread and rainbow-max

In the speci�c case that X and Y are jointly normal distributed, and given the fact

that the bivariate normal distribution is simply the normal copula combined with normal

marginals, we recover the known result that the basket option reaches it maximum value

at correlation equal to 1, and that the spread option reaches it maximum at correlation

equal to -1. We will now look in more detail to the extreme pricing bounds for the di¤erent

options, and show that given some conditions on the univariate risk-neutral distributions

we can write the extreme pricing bounds as a portfolio of univariate options, futures,

and cash. In the next section, we then investigate how the inclusion of market prices for

bivariate options can shrink the bounds. In the previous sections we derived expressions

for the basket, rainbow, and spread options in general terms, i.e. we ignored to speci�y

the measure over which we take expectations or compute probabilities. From now on we

only work with the risk-neutral distributions.
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1.11.2.1. Extreme pricing bounds for the basket option [CMin(k) � C(k) �

CMax(k)].

er(T�t):C(k) = EQt (aXT + bYT � k)+ = aEQt (XT ) + bEQt (YT )� k

+

Z k

0

CQ[FQX (
s

a
); FQY (

k � s

b
)]ds

CMax(k) = e�r(T�t):faFt;T (X) + bFt;T (Y )� k

+

Z k

0

min[FQX (
s

a
); FQY (

k � s

b
)]dsg

= e�r(T�t):faFt;T (X) + bFt;T (Y )� k

+a

Z k�=a

0

FQX (u)du+ b

Z (k�k�)=b

0

FQY (u)dug

= e�r(T�t):faFt;T (X) + bFt;T (Y )� kg

+a:Putt;T (X;
k�

a
) + b:Putt;T (Y ;

k � k�

b
)

Ft;T (X): Futures price of XT at time t

Putt;T (X; z): Put option at time t on XT with strike price z

k�: FQX (
k�

a
) = FQY (

k�k�
b
)

In contrast to CMax there exist a lot of possible scenarios for CMin, which can only

be resolved after an empirical investigation of the risk-neutral univariate distribution

functions of X and Y. For example, one scenario is that there exists a k
0 2 (0; k) such that
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FQX (
s
a
) + FQY (

k�s
b
) � (�) 1 for s � (�) k0. Under that scenario we can write out CMin as:

CMin(k) = e�r(T�t):faFt;T (X) + bFt;T (Y )� k +

Z k

0

max[FQX (
s

a
) + FQY (

k � s

b
)� 1; 0]dsg

= e�r(T�t):faFt;T (X) + bFt;T (Y )� k +

Z k
0

0

[FQX (
s

a
) + FQY (

k � s

b
)� 1]dsg

= e�r(T�t):faFt;T (X) + bFt;T (Y )� (k + k
0
)g+ a:Putt;T (X;

k
0

a
)

+b:Putt;T (Y ;
k

b
)� b:Putt;T (Y ;

k � k
0

b
)

1.11.2.2. Extreme pricing bounds for the rainbow-max option.

er(T�t):C(k) = EQt [max(aXT ; bYT )� k]+ =

Z 1

k

1� CQ[FQX (
s

a
); FQY (

s

b
)]ds

er(T�t):CMax(k) =

Z 1

k

1�max[FQX (
s

a
) + FQY (

s

b
)� 1; 0]ds

k�: FQX (
k�

a
) + FQY (

k�

b
) = 1:

Scenario 1: k� > k.

CMax(k) = e�r(T�t):f
Z 1

k

1�max[FQX (
s

a
) + FQY (

s

b
)� 1; 0]dsg

= e�r(T�t):f(k� � k)g+ a:Callt;T (X;
k�

a
) + b:Callt;T (Y ;

k�

b
)

Callt;T (X; z): Call option at time t on XT with strike price z

Scenario 2: k� < k

CMax(k) = a:Callt;T (X;
k

a
) + b:Callt;T (Y ;

k

b
)
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. For the minimum extreme bound we obtain:

er(T�t):CMin(k) =

Z 1

k

1�min[FQX (
s

a
); FQY (

s

b
)]ds

Given a single-crossing condition between the risk-neutral distributions on X and Y,

which has to be veri�ed empirically, there exists k0 such that FQX (
s
a
) < (>) FQY (

s
b
) for

s < (>) k
0
. Then we have for k

0
> k :

CMin(k) = e�r(T�t):f
Z 1

k

1�min[FQX (
s

a
); FQY (

s

b
)]dsg

= e�r(T�t):f
Z k

0

k

1� FQX (
s

a
)ds+

Z 1

k0
1� FQY (

s

b
)dsg

= e�r(T�t):f(k0 � k)g � a:Putt;T (X;
k
0

a
) + a:Putt;T (X;

k

a
) + b:Callt;T (Y ;

k
0

b
)

1.11.2.3. Extreme pricing bounds for the rainbow-min option.

er(T�t):C(k) = EQt [min(aXT ; bYT )� k]+ =

Z 1

k

�C[ �FX(
s

a
); �FY (

s

b
)]ds

er(T�t):CMax(k) =

Z 1

k

min[ �FX(
s

a
); �FY (

s

b
)]ds

Given a single crossing condition, there exists k� such that FY ( sb) < (>) FX(
s
a
) for

s < (>) k�. For k� > k, we have:

CMax(k) = e�r(T�t):f(k� � k)g � b:Putt;T (Y ;
k�

b
) + b:Putt;T (Y ;

k

b
) + a:Callt;T (X;

k�

a
)

For the minimum extreme bound we get:

er(T�t):CMin(k) =

Z 1

k

max[ �FX(
s

a
) + �FY (

s

b
)� 1; 0]ds
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There must exist k
0
such that �FX( sa) +

�FY (
s
b
) > 1 for s < k

0
. In the case that k

0
< k,

we have that CMin(k) = 0. When k
0
> k, we get

CMin(k) = a:Callt;T (X;
k

a
)� a:Callt;T (X;

k
0

a
) + b:Callt;T (Y ;

k

b
)

�b:Callt;T (Y ;
k
0

b
)� e�r(T�t):(k

0 � k)

1.11.2.4. Extreme pricing bounds for the spread option.

er(T�t):C(k) = EQt [XT � bYT � k]+ =

Z 1

k

1� C[FX(s); FY (
s� k

b
)]ds� b:Futt;T (Y )

er(T�t):CMax(k) =

Z 1

k

1�max[FX(s) + FY (
s� k

b
)� 1; 0]ds� b:Futt;T (Y )

There must exist k� > k such that FX(s) + FY (
s�k
b
) > 1 for s > k�:

CMax(k) = e�r(T�t):f(k� � k)� b:Futt;T (Y )g+ Callt;T (X; k
�) + b:Callt;T (Y ;

k� � k

b
)

Again, given a single crossing condition, there exists k
0
> k such that FX(s) > (<)

FY (
s�k
b
) for s < (>) k

0
. This implies the following minimum extreme bound:

CMin(k) = e�r(T�t):f
Z 1

k

1�min[FX(s); FY (
s� k

b
)]ds� b:Futt;T (Y )g

= Callt;T (X; k
0
) + b:Callt;T (Y ; 0)� b:Callt;T (Y ;

k
0 � k

b
)

= Callt;T (X; k
0
) + b:e�r(T�t):Ft;T (Y )� b:Callt;T (Y ;

k
0 � k

b
)

The analysis of extreme pricing bounds demonstrates how we can use existing market

prices on univariate options and futures to bound the price of a bivariate option. If a
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bivariate option does not satisfy the extreme pricing bounds, arbitrage opportunities exist.

For example, if C(k) > CMax(k) for some bivariate option, we go short in the bivariate

call option and hedge this position in going long CMax, which can easily be done as it

just requires going long and/or short in univariate options and futures. It is important to

stress that these extreme pricing bounds do not impose any structure on the dependence

between X and Y. In what follows we will show how the inclusion of existing market prices

on bivariate options imposes restrictions on the risk-neutral dependence between X and

Y. This results in tighter bounds for bivariate options in order to avoid arbitrage. But

�rst we show some results on put-call parity for bivariate options.

1.11.3. Bivariate Put-Call parity

For the basket option, we denote the call by CBasket(k) = e�r(T�t):EQt [aX + bY � k]+ and

the put by PBasket(k) = e�r(T�t):EQt [k�aX�bY ]+. Similar notation applies for the other

options. For the basket and spread options the results are immediate.

CBasket(k) + e�r(T�t):k = PBasket(k) + e�r(T�t):fa:Futt;T (X) + b:Futt;T (Y )g

CSpread(k) + e�r(T�t):k = P Spread(k) + e�r(T�t):fFutt;T (X)� b:Futt;T (Y )g
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For the rainbow-min and rainbow-max options we �rst get some cross-product restric-

tions:

PR�max(k) = a:Putt;T (X;
k

a
) + b:Putt;T (Y ;

k

b
)� e�r(T�t):k

+CR�min(0)� CR�min(k)

PR�min(k) = a:Putt;T (X;
k

a
) + b:Putt;T (Y ;

k

b
)� e�r(T�t):k

+CR�max(0)� CR�max(k)

PR�max(k)� PR�min(k) = [CR�max(k)� CR�max(0)]� [CR�min(k)� CR�min(0)]

Using the univariate put-call parity:

Callt;T (Z; v) + e�r(T�t):v = Putt;T (Z; v) + e�r(T�t):Futt;T (Z)

and noting that

CR�max(k) + CR�min(k) = a:Callt;T (X;
k

a
) + b:Callt;T (Y ;

k

b
)

some straightforward algebra leads to

CR�max(k) + e�r(T�t):k = PR�max(k) + CR�max(0)

CR�min(k) + e�r(T�t):k = PR�min(k) + CR�min(0)
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1.12. Implied Risk-Neutral Distribution

In order to price bivariate options we need to obtain the bivariate risk-neutral dis-

tribution HQ (density, hQ). Given Sklar�s theorem, we can achieve this by splitting up

the bivariate risk-neutral distribution in the risk-neutral copula, CQ, and the univariate

risk-neutral distributions, FQX and F
Q
Y .

HQ(x; y) = CQ[FQX (x):F
Q
Y (y)]

hQ(x; y) = cQ[FQX (x):F
Q
Y (y)]:f

Q
X (x):f

Q
Y (y)

1.12.1. Univariate RND

There already exists a vast literature on how to obtain the implied univariate RND from

option prices (Breeden and Litzenberger, 1978; Melick and Thomas, 1987; Derman and

Kani, 1994; Rubenstein, 1994; Jackwerth and Rubenstein, 1996; Bahra, 1997). Funda-

mentally, three di¤erent approaches are being used. The �rst method is non-parametric

and takes the derivative of the option price with respect to the strike and follows from

the observation that:

Callt;T (X; k) = e�r(T�t)EQt [XT � k]+ = e�r(T�t)
Z 1

k

PQ(XT > s)ds

FQX (k) = 1 + er(T�t):
�Callt;T (X; k)

�k

fQX (k) = er(T�t):
�2Callt;T (X; k)

�k2
:

In practice we have market option prices for di¤erent strikes. So, the �rst step one has

to take is to obtain a smooth function for the call as a function of the strike, for example
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by �tting a spline. The problem with this approach in practice is that the smoothed

function has to be convex with respect to the price over the entire interval in order to

avoid a negative density, which is often hard to realise. Often, practioners �rst get the

implied volatilities from the market option prices, and will then obtain a smooth function

for the implied volatilities as a function of the strike. But this is fundamentally the same

approach. The second method is parametric and models the terminal risk-neutral density

directly. The optimal parameters minimize the distance between the model implied option

prices and the market prices. The parametric RND has to be �exible enough so that it

allows for both negative and positive skewness, and for leptokurtosis. In addition it is

important that the mapping from the RND to the option prices is relatively easy. As

a �nal restriction, the �rst moment of the RND has to equal the futures price, because

Futt;T (X) = EQt (XT ). Using a mixture of lognormals, as in Alexander & Narayanan

(2001), Brigo & Mercurio (2001), and Rebonato & Cardoso (2004), easily allows for

skewness and leptokurtosis, and the model implied option price can simply be written as

a linear combination of the lognormals. The third method is also parametric and proposes

a stochastic process that the underlying variable is assumed to follow. This stochastic

process, in turn, implies a terminal distribution. So, the parameters of the stochastic

process are then determined in the same way as in the previous method. The advantage of

modelling the stochastic process is that we know how the underlying variable evolves over

time, and thus we can use it for dynamic hedging. The big problem with this approach,

however, is that it is really di¢ cult to come up with a stochastic process that generates

a terminal distribution with the preferred properties. In addition, di¤erent stochastic

processes can map into the same terminal distribution, so in that sense modelling the
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terminal distribution is more general. Finally, market option prices of the European type

only convey information about the terminal distribution functions, they do not tell us

anything about the underlying stochastic process.

1.12.2. Bivariate RN-copula

Some previous work that introduced copulas to price multivariate options includes Rosen-

berg (1999), Rosenberg & Engle (2002), Cherubini & Luciano (2002), van den Goorbergh,

Genest & Werker (2005), and Salmon & Schleicher (2006). As mentioned before, the �rst

requirement the bivariate RND has to satisfy is that the margins of the bivariate RND

equal the univariate RNDs. We show with a simple example how one can take advantage

of a violation of this requirement. Take the following relation:

e�r(T�t):fEQt [max(aXT ; bYT )� k]+ + EQt [min(aXT ; bYT )� k]+g

= a:Callt;T (X;
k

a
) + b:Callt;T (Y ;

k

b
)

By de�nition, being long in the two bivariate options and short in the two univariate

options (called portfolio �) has to result in a zero payo¤ at �nal time T3. Denote the

univariate RNDs as GQX and G
Q
Y ; and denote the margins of the bivariate RND as F

Q
X and

FQY . Writing out the previous relation and cancelling some terms we get:Z 1

k

�FQX (
s

a
) + �FQY (

s

a
)ds =

Z 1

k

�GQX(
s

a
) + �GQY (

s

a
)ds

This relation will only hold true for all k if and only if FQX = GQX and FQY = GQY .

Therefore, whenever this is not true, it must be that portfolio � has a non-zero price at

3It is clear that [max(aX; bY )� k]+ + [min(aX; bY )� k]+ = [aX � k]+ + [bY � k]+.
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time t, which leads to a pure arbitrage opportunity. The copula approach is perfectly

suited to model the bivariate RND, because of Sklar�s theorem. By linking the univariate

RNDs through the copula into the bivariate RND, we are always guaranteed that the

margins of the bivariate RND equal the univariate RNDs. In the next sections we inves-

tigate how we can learn more about the bivariate RND or the risk-neutral copula from

products that are being traded in the market place. Just as in the univariate case, there

is both a parametric and a non-parametric approach.

1.12.2.1. Non-parametric approach. The question we try to answer is: what bounds

does the price of a bivariate option have to satisfy in order to be consistent with the

products that are being traded in the market place? The answer to that question depends

on the types of products that are being traded in the market place. In the section on

extreme pricing bounds we implicitly assume that only univariate options and futures on

X and Y are being traded. This means that the market cannot tell us anything about

the structure of dependence between X and Y. We then showed for particular types of

bivariate options how these bounds can be written as a function of the univariate options

and futures. Because the bivariate options we looked at have a super- or submodular payo¤

function, we showed that these extreme pricing bounds also correspond to assuming that

the risk-neutral copula of X and Y equals the minimum (M) or maximum (W) copula.

This means that we did not impose any restrictions at all on the bivariate RND. In this

section, however, we assume that both univariate and bivariate options on X and Y are

being traded in the market place. The fact that we now have market prices of bivariate

options imposes some restrictions on the bivariate RND. This implies that no longer all

copulas are allowed, and therefore the pricing bounds a bivariate option has to satisfy
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to avoid arbitrage are tighter relative to the extreme pricing bounds. More speci�cally,

suppose the following bivariate option is being traded:

C(k) = e�r(T�t):EQt [ (XT ; YT )� k]+

= e�r(T�t):

Z 1

k

PQ[ (XT ; YT ) > s]ds

We have market prices for this option for di¤erent strikes. As in the univariate case,

the �rst step we take is to obtain a smooth function, C(k). This, in turn, implies that we

know the following object for k 2 [kL; kU ]4.

PQ[ (XT ; YT ) < k] = 1 + er(T�t):
�C(k)

�k

In order to price other bivariate options we want to know the bivariate RND,HQ(x; y) =

PQ[XT < x; YT < y] for x; y 2 R+. Therefore, we ask the following question: what does

the knowledge of the risk-neutral distribution of  (XT ; YT ) tell us about HQ(x; y)? In

order to answer this question we have to look at speci�c examples for  . It is clear that

the RND of  (XT ; YT ) can only convey partial information about HQ(x; y).

1.12.2.2. Rainbow-max option. When a rainbow-max option is trading in the market

place, we know the following information for k 2 [kL; kU ]:

PQ[ (XT ; YT ) < k] = PQ[max(aXT ; bYT ) < k] = PQ[XT <
k

a
; YT <

k

b
]

V R�max
a;b (k) = PQ[XT <

k

a
; YT <

k

b
]

4kL and kU depend on the range of strikes that are being traded in the market place.
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Given that we know V R�max
a;b (k), how does it restrict the value HQ(x; y) can take on

for x 2 [kL
a
; kU
a
] and y 2 [kL

b
; kU
b
]? The knowledge of V R�max

a;b (k) means that we know the

values of HQ(x; y) along the ray y = a
b
x. It is straightforward to show that HQ(x; y) is

restricted in the following manner:

V R�max
a;b (ax ^ by) = LBR�max

a;b (x; y) � HQ(x; y) < UBR�max
a;b (x; y) = V R�max

a;b (ax _ by)

x ^ y : min(x; y)

x _ y : max(x; y)

1.12.2.3. Rainbow-min option.

PQ[min(aXT ; bYT ) < k] = PQ[XT <
k

a
or YT <

k

b
]

= FQX (
k

a
) + FQY (

k

b
)� PQ[XT <

k

a
; YT <

k

b
]

We know the univariate RNDs for X and Y from market prices on univariate options.

Therefore, we can see that the rainbow-min option conveys exactly the same information

about HQ(x; y) as the rainbow-max option.

1.12.2.4. Basket option.

PQ[ (XT ; YT ) < k] = PQ[aXT + bYT < k] = V Basket
a;b (k)

Knowledge of V Basket
a;b (k) restricts HQ(x; y) for f(x; y) � R2+ : kL � ax + by � kUg in

the following manner:

V Basket
a;b (ax ^ by) = LBBasket

a;b (x; y) � HQ(x; y) � UBBasket
a;b (x; y) = V Basket

a;b (ax+ by)
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1.12.2.5. Spread option.

PQ[ (XT ; YT ) < k] = PQ[XT � bYT < k] = V Spread
b (k)

Knowledge of V Spread
b (k) restricts HQ(x; y) for f(x; y) � R2+ : kL � x � by � kUg in

the following manner:

HQ(x; y) � UBSpread
b (x; y) = V Spread

b (x)� V Spread
b (�by)

Restricted Upper Bound (RUB) and Restricted Lower Bound (RLB). In practice we

want to restrict HQ(x; y) using all the available market prices, i.e. construct bounds

that the bivariate RND has to satisfy such that the new product that is being priced is

consistent with all the products that are currently trading in the market place. In order

to do so we compute

RLB(x; y) = max
a;b;i

fLBi
a;b(x; y); [F

Q
X (x) + FQY (y)� 1]+g

RUB(x; y) = min
a;b;i
fUBi

a;b(x; y); F
Q
X (x); F

Q
Y (y)g

RLB(x; y) � HQ(x; y) � RUB(x; y)

i 2 fR�max; R�min; Basket; Spreadg

Suppose we have market prices on futures, univariate options on X and Y, rainbow

options, and spread options. We want to �nd bounds for the price of a basket option

such that it is consistent with the futures, rainbow, spread, and univariate options. These
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bounds have the following form:

e�r(T�t):fa:Futt;T (X) + b:Futt;T (Y )� k +

Z k

0

RLB(
u

a
;
k � u

b
)dug

� CBaskett;T (k)

� e�r(T�t):fa:Futt;T (X) + b:Futt;T (Y )� k +

Z k

0

RUB(
u

a
;
k � u

b
)dug

1.12.2.6. Parametric approach. The non-parametric approach does not impose any

structure at all on HQ. As a result, the bounds on HQ, RLB�RUB, that stem from the

market prices of bivariate options can be wide, especially if only few market prices are

available. We propose to add to the information set the historical prices of the underlying

variables. We use the historical dataset to impose structure on the bivariate RND, but to

have the degree of dependence determined solely by the forward-looking bivariate option

prices5. Using Sklar�s theorem it is straightforward to impose structure on the dependence

between X and Y, while at the same time guaranteeing that the margins of HQ equal the

univariate RNDs, through the use of copulas. Once we �x the structure of dependence

(i.e. pick a copula), based on a historical analysis, we need only few market prices to

obtain tight bounds for the degree of dependence that is consistent with these market

prices.

Quest for the right copula. In helping us select an appropriate copula, it is important

that the copula adequately describes the part of the distribution function that is relevant

for the application at hand. For example, when we price a basket option, e�r(T�t):E(aX+

5This approach is very similar to the traditional approach of modelling the underlying variable as GBM.
In the case of incomplete markets, switching from the historical to the risk-neutral measure is done by
including a market price of risk factor in the drift component. This does not change the structure of the
stochastic process or the implied terminal distribution.
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bY � k)+, it is clear that for large k tail dependence becomes crucial. We now introduce

the concept of tail dependence and show how this property is completely determined by

the copula. We also show some speci�c results for tail dependence for Archimedean and

elliptical copulas, which are the two classes of copulas that we will work with.

Tail dependence. Upper (�U) and lower (�L) tail dependence coe¢ cients (Nelsen, 2006)

are de�ned as:

�U = lim
t!1

Pr[X > F�1X (t)jY > F�1Y (t)]

�L = lim
t!0

Pr[X < F�1X (t)jY < F�1Y (t)]

In other words, the upper tail dependence coe¢ cient gives us the probability that X

is large given that Y is large. Consequently, the probability that both X and Y exceed

their 99 percentiles (t=0.99) is approximately given by �U :(1� t) = �U
100
. For example, let

X and Y represent the daily returns of 2 assets. For �U = 0:4 we expect that the returns

simultaneously exceed their 99 percentiles once every year, for �U = 0:8 we expect this to

happen once every six months6. We can write the expressions for �U and �L as a function

of the copula:

�U = lim
u!1

�C(1� u; 1� u)

1� u

�L = lim
u!0

C(u; u)

u

This proves that all the properties that apply for the copula also hold true for tail

dependence. As a result, it is straightfoward to show that �L of a particular copula

6We assume 250 trading days per year.
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equals �H of the corresponding survival copula and vice versa. In addition, �U = �L for

symmetric distributions (copulas), i.e. copulas for which C(u; u) = �C(u; u). As mentioned

above, examples of symmetric copulas are the normal, student-t, and Frank copulas.

When �i > 0 for i 2 fL;Ug, the copula has tail dependence, which means that extreme

events happen simultaneously more often than in the case of independence. When �i = 0,

the variables X and Y are asymptotically independent. The bivariate normal distribution

with correlation � (normal copula) has � = 0 for � 2 [�1; 1)7. If we go deep enough into

the tail, regardless of the correlation coe¢ cient, extreme events happen independently. In

contrast, the student-t copula does have a positive tail dependence coe¢ cient (Joe, 1997):

� = 2:�tv+1

�p
v + 1:

r
1� �

1 + �

�

with tv+1: the univariate student-t distribution with v + 1 degrees of freedom. As

expected, for v ! 1, we revover the results for the normal copula. We know that an

Archimedean copula is completely characterized by its generator �. This means that the

tail dependence coe¢ cients of Archimedean copulas can be written as a function of the

generator:

�U = 2� lim
x!0

1� ��1 (2x)

1� ��1 (x)

�L = lim
x!1

��1 (2x)

��1 (x)

7For the normal copula � = 1 for � = 1.
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A generator � that is regularly varying
8 at zero with tail index � ( � 0) implies

that ��1 is regularly varying at in�nity with tail index �1=. In that case �L = 2�
1
 . A

generator � that is regularly varying at one with tail index  ( � 1) implies that ��1 is

regularly varying at zero with tail index 1=. In that case �U = 2 � 2
1
 . Applying these

expressions to the Archimedean copulas that we discussed before we get:

�ClaytonL = 2�
1
 and �ClaytonU = 0

�GumbelL = 0 and �GumbelU = 2� 2
1


�Frank = 0

These results are in line with the results in Table 1 and Figure 1 where we concluded

that the Clayton copula implies that the variables are more often simultaneously low than

high, and vice versa for the Gumbel copula. So far, we have only been looking at one

parameter Archimedean copulas, which does not o¤er a lot of �exibility. In that regard,

a result from Nelsen (2005) is useful. Let � be a generator, and de�ne ��;(t) = �(t
�)

and ��;(t) = [�(t)]
�. Then ��;(t) is a generator for � � 1, and ��;(t) is a generator

for � 2 (0; 1]. When � is twice di¤erentiable and t:�
0

(t) is non-decreasing on (0,1)

then ��;(t) is a generator for � > 0. The usefulness of this result stems from the fact

that these transformations of the generator lead to simple transformations of the tail

dependence coe¢ cients. Speci�cally, the tail dependence coe¢ cients for the copula C�;

are (�L)1=� and �U . For C�; we get (�L)1=� and 2 � (2 � �U)
1=�. We can also combine

the two transformations into a single one, ��;�;. In that case we get the following tail

8A positive function L on (0,1) is regularly varying at 1 with index � if limx!1
L(tx)
L(x) = t

� for t > 0.
Power functions are examples of regularly varying functions.
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dependence coe¢ cients for C�;�;: (�L)1=�� and 2� (2� �U)
1=�. This result allows us to

create Archimedean copulas with arbitrary tail dependence coe¢ cients, by matching �

and �, and still have one free parameter, .

Parameter restrictions based on historical data and market prices. The �rst step in

the empirical analysis is to determine whether the historical data has upper/lower tail

dependence or not, which is an important dependence measure for our application. If

no tail dependence is present in the data, we should model the data using the normal or

Frank copula, among other possible copulas. If tail dependence is present in the data, one

approach is to match � and � to the estimated tail dependence values. Another approach

is to use a mixture of copulas to match the tail dependence values. For example, for

C = p:C1+ (1�p):C2
9we get that �Ci = p:�

C1
i + (1�p):�C2i . All these approaches have

in common that there is one free parameter remaining after matching the tail dependence

coe¢ cients. The second step in the analysis is to choose the copula or mixture of copulas

that best describes the overall dependence structure. In the third and �nal step we restrict

the free parameter so that it is consistent with the market prices on options and futures.

In that sense the free parameter re�ects the forward looking expectations, present in the

options and futures market data, about the degree (strength) of dependence. For all

(x; y) � R2+ and consistent with kL and kU we have:

(1.6) RLB(x; y) � HQ(x; y) = CQ
 [F
Q
X (x); F

Q
Y (y)] � RUB(x; y)

with 
: the set of parameters. After �xing some parameters by calibrating them to

the tail dependence coe¢ cients, we have to �nd the permissible set for the remaining free

9One can easily prove that a linear combination of copulas results in another copula.
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parameters such that they are consistent with the bounds RLB and RUB. In the methods

explained above there is just one free parameter , for which we have to �nd the interval

[1; 2] such that equation (1.6) holds for all (x,y). It is very useful to restrict our attention

to concordance ordered copulas (see de�nition), a class to which the normal, student-t,

Clayton, Gumbel, and Frank copulas all belong. In that case we can apply Claim 6

and bound the price of a bivariate option, C(k), with a supermodular payo¤ function

G = [ � k]+, such as a basket option or rainbow-min option, as follows (
 = f�; ig):

e�r(T�t):E
C�;1
t [ (XT ; YT )� k]+ � C(k) � e�r(T�t):E

C�;2
t [ (XT ; YT )� k]+

We impose structure on the bivariate RND, through the choice of a parametric copula,

based on the historical joint behavior of X and Y. Therefore, we just require market prices

of bivariate options to infer the degree or strength of dependence the market is expecting

until the expiration time of the contract. As a result, the bounds in the parametric case

are tighter than in the non-parametric case.
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CHAPTER 2

Tail Behavior of Natural Gas Futures Returns

2.1. Introduction

The �rst product we are looking at is natural gas. Given that natural gas is storable

(mainly in salt caverns, depleted oil �elds, and aquifers) the forward price of a particular

month is closely linked to the forward prices of the other months. The January 2009

forward price depends very much on the September 2008 price. The main reason the

Jan09 price can exceed a cash-and-carry1 spread with Sep08 is because of a fear of a

shortage of gas come winter 2009. Several factors determine the likelihood of a shortage

of gas in the winter: the severity of the winter (measured in Heating Degree Days, HDDs),

gas production shut-ins due to hurricanes, and the level of gas storage at the end of the

injection season (Apr-Oct). The maximum storage capacity in the US is around 3.7 TCF2

(Trillion Cubic Feet). The moment that storage drops below 1 TCF, we have a problem.

The winter of 2008 was a cold winter and 2.2 TCF was withdrawn during the withdrawal

season (Nov-Mar). Early November 2007, the US was at full capacity (3.7 TCF), so at

the end of the winter (end of March) there was 1.5 TCF left in storage. Given that at this

moment in time, Aug 08, we are at a lower storage level than Aug 07, and add to this the

1A reasonable storage cost is a 2% (of the spot gas price) injection fee, and a 2% withdrawal fee. Many
operators require that the user empties the facility at the end of the withdrawal season (end of March).
This often helps in pushing down April spot gas prices.
2This is working gas capacity. At least the same quantity is also being stored, but is de�ned as base gas,
and is needed to maintain the correct pressure levels so that the working gas can be properly injected in
and withdrawn from the storage facilities.
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potential risk of shut-ins due to hurricanes in Sep-Oct, we could end up with a maximum

storage level early November of 3.3-3.4 TCF. If we have a similarly cold winter as in 2007

or even slightly colder, we could withdraw around 2.3-2.4 TCF during the coming winter

2009. This could bring us very close to a 1 TCF storage level at the end of winter 2009,

and shows that a scenario in which we experience a shortage of gas at the end of winter

2009 is not totally impossible. At that moment, it becomes very important what is going

on in the rest of the world, because we will need to increase our imports of LNG. The

price at which we will be able to purchase this LNG will determine the price of gas in

the US. If, just as last winter 2008, there is a very cold winter in the south of Europe

(big importer of LNG), and there is again a massive nuclear outage in Japan (8000 MW),

we will have to pay a lot to convince the LNG tankers to deliver it to the US. Most of

the imports of LNG in the US come from Trinidad. If there is a signi�cant chance of

a shortage of gas, we will need to import more LNG from the Middle East (with Oman

as its biggest exporter), which also puts the US at a transportation cost disadvantage to

the south of Europe and South East Asia. All of these factors have to be assessed and

will result in fear of a shortage premium that explains why the Jan09 price is usually

higher than a Sep08 price plus a simple cash-and-carry argument. Gas forward prices

further out in the curve are the result of probability distributions of US gas production,

which recently has been growing at an astonishingly high 9% - mainly the result of a

dramatic increase in unconventional (horizontal, instead of just vertical) drilling as in for

example the enormous Barnett shale in Texas, and the addition of pipeline capacity out

of the Rockies to the east. In addition to US gas production, the level of pipeline imports

from Canada and LNG imports from Trinidad, the Middle East, and the North Sea, and
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the level of pipeline exports to Mexico and LNG exports to the rest of the world are

also an important variable. But the main variable, next to US gas production, is US gas

consumption. The four main categories of US gas consumption are industrial gas demand,

commercial gas demand, residential gas demand, and gas demand by power generators

(20-25%). Industrial gas demand is mainly determined by GDP growth. Commercial

gas demand also depends on GDP growth, but also has a strong seasonal variation, and

residential gas demand is almost purely determined by temperature. These three sources

of gas demand are fairly predictable, of course nobody knows what the weather will be like

next year, but almost everyone knows how residential gas demand will vary with di¤erent

weather scenarios. The gas demand for power generation ("gas burn"), which makes up

about 20-25% of gas demand, is more complex. The primary drivers for gas burn are

temperature and the make-up of the power supply stack. In order to trade gas forwards

far out in the curve, it is important to have a view on how the supply stack can change

and how this in turn can a¤ect gas burn. A proper evaluation of probability distributions

of future US gas production, pipeline imports and exports, LNG imports and exports,

US gas demand, and gas burn for power generation will go into the determination of gas

forwards far out in the curve.

2.1.0.7. Contango and Backwardation. We focus now on the historical behavior of

natural gas futures. We start by plotting the futures curve on the �rst trading day in

January for a couple of years in the period 1992-2007. In the early 90s futures contracts

were trading for the next 14-16 months. During the mid 90s contracts were trading for the

next 36 months, and in the last couple of years contracts trade out as far as 72 months.

The �rst characteristic that stands out immediately when we plot the futures curve is
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the seasonality, prices are higher in the winter months. The reason that seasonality

exists in this market is because of limited storage capacity. If there was no constraint on

storage capacity you would buy gas in the summer, store it, and then sell it at the higher

price in the winter. The degree of seasonality determines to a large extent the level of

pro�t of operating a storage facility. The second characteristic is that the futures curve

is for certain years in contango (futures curve is upward sloping), and for other years

in backwardation (futures curve is downward sloping). For pure investment assets the

futures curves is always in contango, and this can easily be understood with the following

no-arbitrage argument. Suppose you want to sell an investment asset at time T (current

time is t). In the �rst scenario you can borrow money to buy the asset now for the spot

price Pt for the period (T-t) at the borrowing rate rt;T . For certain assets there is also a

cost involved to store the asset for the period (T-t), and we denote it by ct;T . For �nancial

assets this storage cost is zero (c=0). At �nal time T we sell the asset for PT . This �rst

scenario has the following cash�ows at �nal time T: �ct;T � Pt:(1 + rt;T )
T�t + PT . In the

second scenario we enter a futures contract at time t, and agree to buy the asset at �nal

time T for the futures price Ft;T and we immediately sell it for PT . This scenario has

cash�ows at �nal time T equal to �Ft;T + PT
3. Given that both scenarios have zero net

cash outlays at time t, the cash�ows at time T have to be the same for both scenarios,

which leads to the following expression:

Ft;T = ct;T + Pt:(1 + rt;T )
T�t

ct;T : cost of storage for the period (T-t)

3Equivalently, we could cancel out our futures position at time �nal T, which leads to the same cash�ow:
FT;T � Ft;T , because the futures price converges to the spot price (FT;T = PT ).
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rt;T : borrowing rate for the period (T-t)

Pt : spot price at time t

Ft:T : futures price at time t for delivery at time T

Assets that are being used for consumption or production di¤er from assets that are

held purely for investment purposes. Apart from the cost of storage (c>0) and the cost

of borrowing (r>0) there usually is also a bene�t to owning the asset now rather than

tomorrow. This bene�t is called the convenience yield (y). Many intuitive explanations

can be given for why there exists a convenience yield (y>0). Introducing this convenience

yield leads to the new expression for the futures price:

Ft;T = ct;T � yt;T + Pt:(1 + rt;T )
T�t

yt;T : convenience yield for the period (T-t)

With a high convenience yield, it is thus possible that the futures curve is in backwar-

dation, i.e. downward sloping. The existence of backwardation might seem at odds with

the presence of speculators. Take a speculator, who is not interested in using the asset

for production purposes. In the presence of backwardation he would short sell the asset

today and buy it back later for a lower futures price, locking in a pure pro�t. Given that

we actually observe backwardation in the market means that this action on the margin is

not possible. The reason the speculator cannot implement this strategy is that he won�t

be able to short sell the asset. Backwardation means that there is a high convenience

yield, which usually happens when there is fear of a shortage of supply, which is the result
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Figure 2.1. Natural Gas Futures curve, Jan1999
Natural Gas: January 1997
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of a low level of inventories, and a lot of market participants simply have to hold minimal

inventories. In equilibrium, a speculator that wants to sell short the asset cannot convince

a current owner of the asset to let him borrow a fraction of the asset now and return it

later. Figure 2.1 plots the Henry Hub natural gas futures curve (Nymex) at the �rst

trading day of January 1997, 2002, and 2006. The price quotation is in US dollars and

cents per mmBtu, where 1 mmBtu stands for 1 million British thermal units. The three

years are chosen to demonstrate that the natural gas market can have �at futures curves,

futures curves in contango, and futures curves in backwardation.

Another way to look at futures prices is to plot the price evolution for a given contract.

We do not expect to observe any seasonality in the price curve for a particular contract.

We just expect an entire (parallel) shift of the price curve for contracts that end in a

di¤erent season. Figure 2.4 plots the futures prices for the January and July contracts

for 2002 and 2006. We plot the futures price for the January and the July contract at the

same trading day. This means that Figure 2.4 plots the January contract until expiration

and the July contract until six months before expiration. We can observe that the futures
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Figure 2.2. Natural Gas Futures curve, Jan2002
Natural Gas: January 2002
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Figure 2.3. Natural Gas Futures curve, Jan2006
Natural Gas: January 2006
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prices for the January and July contracts for the same year are closely linked, with the

January price just above the July price. We can also see that there is a lot of variation

in the futures price for a given contract. Given the fact that the futures price at time t is

the (risk-neutral) expectation of the spot price at expiration given the information set at

time t, it means that the market reacts strongly to the arrival of new information. The

price curves clearly show that the futures price is not always a very good predictor of the

spot price at expiration.
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Figure 2.4. Natural Gas Jan-Jul 2002 contract price
Natural Gas: Jan-Jul 2002 contracts
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Figure 2.5. Natural Gas Jan-Jul 2006 contract price
Natural Gas: Jan-Jul 2006 contracts
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We also plot the volatility of the futures price for a particular contract as a function

of time to maturity. We can clearly see that volatility rises, sometimes dramatically, as

we come close to the end of the contract. Market participants react more strongly to new

information as the expiration of the contract is nearby. We give plots for the Jan-2002

and Jul-2006 contracts, but this phenomenon is true in general.
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Figure 2.6. Natural Gas Jan 2002 volatility curve

Figure 2.7. Natural Gas Jul2006 volatility curve

2.2. Historical Distribution of Natural Gas Futures Returns

2.2.1. Empirical density function and Summary statistics

First o¤ we want to check whether there is a signi�cant di¤erence between the returns

of futures contracts that expire in the summer or winter months. Two standard tests

can be used to test whether two sample datasets come from the same distribution: the

Kolmogorov-Smirnov (KS) test and the Cramer-von Mises (CvM) test. The KS test uses
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the following test statistic, which has asymptotically a �2distribution:

TSK�S = max
x
jF1(x)� F2(x)j

We can see that the KS test just looks at the maximum distance between the two

cdfs, which means that this test is sensitive to outliers. As an alternative, we have the

Cramer-von Mises test, which is basically an average Kolmogorov test:

TSC�vM =

Z
jF1(x)� F2(x)jdF (x)

Both tests do not reject the null hypothesis that the summer and winter daily returns

originate from the same distribution. Both tests take the di¤erence between two cdfs.

By plotting two cdfs one can immediately observe the problem with this approach. Any

discrepancies between the two datasets in the tails of the distribution are almost impossible

to be picked up by the KS and CvM tests. Figure 2.8 shows the QQ-plot of the summer

(horizontal axis) vs. winter (vertical axis) returns. This QQ-plot clearly shows that in the

bulk of the distribution the summer and winter returns seem to originate from the same

distribution. In both the upper and lower part of the distribution, however, the winter

returns have fatter tails than the summer returns, but this di¤erence is not picked up by

the KS and CvM test. In the subsequent analysis we choose not to discriminate between

summer and winter returns.

In Figure 2.9 we plot the empirical density function for the daily returns of the natural

gas futures from June 1993 until December 2010 and compute the �rst four moments.
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Figure 2.8. QQ-plot: summer vs. winter daily returns

Figure 2.9. Empirical density function for daily returns of natural gas futures

Given a kurtosis of 9.12, it is clear that natural gas futures returns are not normally

distributed, and as a result gas futures prices are not lognormally distributed.

2.2.2. Exponential and Subexponential distributions

In the subsequent analysis we look separately at the positive returns and the negative

returns. We have about 38,000 observations for positive returns and a similar number for

the negative returns. In the next couple of sections we want to �nd the most adequate
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distribution for the positive and negative returns of natural gas futures. In particular,

we want to �nd the distribution that best captures the tail behavior of these returns.

Having a good model for the tail behavior of the returns is very important both from a

risk management point of view (VaR and Expected Shortfall4) and an option pricing point

of view. Value-at-Risk calculations at high percentiles and deep out-of the-money option

prices can vary dramatically for di¤erent models of tail behavior. Given a kurtosis of 9.17

it is clear that the return distribution has heavier tails than the normal distribution. A

convenient way to model phenomena with high variability is through the use of subexpo-

nential distributions. Following Goldie and Kluppelberg (1997), a distribution function

F belongs to the class of subexponential distributions if it has support (0,1) and for X1,

X2,...Xn iid with cdf F we have

lim
x!1

Pr(X1 +X2 + :::+Xn > x)

Prfmax(X1; X2; :::; Xn) > xg = 1; n � 2:

This intuitive condition shows that deep in the tail the maximum determines the sum.

This means that there is a signi�cant probability that X takes on a very large value. It is

also shown that for subexponential distributions F we have that

lim
x!1

Pr(X > x)

e��x
=

�F (x)
�Fexp(�)(x)

=1; for all � > 0:

This condition explains the name subexponential distribution. The tail of a subexpo-

nential distribution decays more slowly than any exponential distribution. This implies

for a subexponentially distributed variable X that E[(eX)�] = 1 for all � > 0. As

4For a position X with distribution function FX we have that V aR� = inffx : FX(x) � �g and ES� =
E[X � V aR�jX � V aR�].
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we will see in the next section E(X�) can be both �nite and in�nite within the class

of subexponentials. Examples of subexponential distributions are the Pareto, Weibull,

lognormal, and loggamma distributions among others. The normal, exponential, and

gamma distributions do not belong to the class of subexponential distributions, as the

tails of these distributions decay too quickly. Within the class of subexponential distri-

butions, i.e. distributions for which the tail decays more slowly than the exponential

distribution, there are two important subclasses that we will focus on. The regularly

varying distributions (Bingham et al., 1987), to which the Pareto distribution belongs,

and the stretched-exponentials (SE), to which the Weibull distribution belongs. In our

analysis we will investigate how slowly the tail of the natural gas futures returns decays:

more slowly than a power tail, similar to a power tail, in between a power tail and an

exponential tail, similar to an exponential tail, or in between an exponential and a normal

tail5. One extra property of subexponential distributions F that we will use later on is:

(2.1) lim
x!1

�F (x� y)
�F (x)

= 1, for all y > 0

2.2.2.1. Regularly varying distribution. The tail of a distribution function F is said

to be regularly varying with index �� (� > 0, called the tail index), denoted �F 2 R��,

if 1-F(x) is a regularly varying function, i.e. if

lim
x!1

1� F (tx)

1� F (x)
= t��; t > 0:

An important fact about regularly varying distributions discusses the �niteness of the

moments of X. For X, a positive random variable with distribution tail �F 2 R��, with

5It is well known that a normal tail decays a rate of exp(�x2):
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� > 0, we have that

E(X�) < 1 for � < �

E(X�) = 1 for � > �:

As a result, for � < 2, X has a �nite mean, but in�nite variance. For � < 4, X

has in�nite kurtosis, but �nite mean, variance, and skewness. As such, the lower is �,

the heavier is the tail. It can be shown that as the tail index, �, goes to in�nity, the

tail becomes an exponential tail6. As we will see in later sections, regularly varying

distributions play an important role in extreme value theory as �F 2 R�� implies that the

distribution function F belongs to the domain of attraction of the Frechet distribution.

An example of a regularly varying distribution that we will use in this paper is the

Pareto distribution: F (x) = 1 � (u
x
)�, for x � u, and � > 0. Other names for regularly

varying distributions that one can �nd in the literature are fractal, scaling, and power law

distributions. The names "fractal", "self-similar", and "scaling" all have a very similar

meaning: we use these terms to denote geometrical objects, processes, or distributions

that have a similar structure independent of the size or scale. For example, looking at the

Pareto distribution, we can easily see that the Pr(X > �x) = ���:Pr(X > x), no matter

the value of x. Therefore, the Pr(X > �xjX > x) is independent of x. This property does

not hold true for the exponential or normal distribution. This fractal or scaling property

6The exponential distribution belongs to the class of rapidly varying distributions, i.e. �Fexp 2 R�1: For
this class we have that

lim
x!1

1� F (tx)
1� F (x) = 0, t > 1

= 1, 0 < t < 1:
This class plays an important role in extreme value theory, as distributions that are rapidly varying
belong to the domain of attraction of the Gumbel distribution.
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seems to ubiquitous in daily life. Many studies have demonstrated the presence of the

scaling property: internet tra¢ c �ows (Tadaki, 2007), natural disasters (Meier, 2006),

word frequencies (Li, 1992), income distributions (Di Guilmi et al., 2003), city populations

(Gabaix, 1999), and many other applications. Therefore, the power law distribution is

probably more normal than the normal distribution, a point that Mandelbrot (1963,

1997) has been advocating for the last forty-�ve years. Several studies in �nance have

also demonstrated the presence of power law tails in �nancial returns (Gabaix et al., 2003;

Fama, 1965; Farmer and Lillo, 2004; Lux and Sornette, 2002; Mantegna and Stanley, 1995;

Mittnik et al., 1998; Muzy et al., 2001).

2.2.2.2. Stretched-Exponential distributions (Weibull). The class of stretched-

exponential (SE) distributions is also an important subset of the subexponentials. Given

that they are a subset of the subexponentials, we know that SE distributions decay at

a slower rate than the exponential distribution, and that their exponential moments are

in�nite. However, in contrast to the regularly varying distributions, all their moments are

�nite. As such, the SE distributions have thinner tails than the power law distributions

and fatter tails than the exponential distribution. A well-known example is the Weibull

distribution for parameters within a speci�ed range. The Weibull distribution: F (x) =

1 � exp(��x), for x � 0, and �;  > 0. The Weibull distribution belongs to the class

of SE distributions when  < 1, i.e. when the distribution decays more slowly than the

exponential distribution.
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2.3. Preliminary graphical analysis of tail behavior of gas futures returns

Before going into the details of modelling the tail distribution, it is instructive to

use some graphical tools to get a rough idea of how heavy-tailed the distribution of gas

futures returns is. As a �rst step we want to see whether the tail behavior of the gas

futures returns resembles a power tail, a SE tail, or an exponential tail. The techniques

we will use are the quantile-quantile (QQ) plots, the mean excess (or expected shortfall)

plots, the large claim index, and one other technique that relies on results about how the

ratio of the max over the sum behaves for di¤erent levels of fat-tails. The mean excess

plots, the large claim index, and the max/sum ratio compare the data with asymptotic

results. Given that we only have a �nite sample, there is room for variability in these

plots. Therefore, it is important to look at several di¤erent techniques with the hope to

see a consistent pattern of how heavy-tailed the distribution is. We treat the positive and

negative returns separately.

Quantile-Quantile plots. In this section we compare the empirical quantile function

Qn with the theoretical quantile function Q that corresponds to the exponential, pareto,

and weibull distribution. For a distribution function F we de�ne the quantile function

as: F�1(p) = Q(p) = inffx : F (x) � pg. Given the exponential distribution: F (x) =

1 � exp[��(x � u)], for x � u, and � > 0, we have the corresponding quantile function:

Q(p) = u � 1
�
log(1 � p). If the data resembles the exponential distribution, then the

plot [� log(1 � p); Qn(p)] should be linear with the slope equal to 1
�
. Recall that we are

interested in what happens in the tail. Figures 2.10 and 2.11 show the QQ-plots for the

top 30% futures returns (positive).
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Figure 2.10. QQ-plot: data vs. exponential distribution
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From Figure 2.10 we learn that the tail of the gas futures returns is close to the

exponential tail. The curve is slightly convex, indicating that the empirical tail decays

slightly more slowly than its exponential counterpart. Next, we compare the tail behavior

of the data with a power tail, through the pareto distribution. We use the following version

for the pareto distribution: F (x) = 1� (x
u
)��, for x � u, and � > 0. This results in the

quantile function: logQ(p) = log u� 1
�
log(1�p). Hence, the plot [� log(1�p); logQn(p)]

should be linear if the data resembles a power tail.

It is clear from Figure 2.11 that the tail of gas futures returns decays faster than a

power tail. Finally, we take a look at the weibull distribution: F (x) = 1�exp[��(x�u)],

for x � u, and �;  > 0. This leads to the quantile function: logQ(p) = 1

: log[� 1

�
log(1�

p) + u]. The problem with this expression is that we cannot obtain a linear relation

between a function of p and the parameters  and � as long as u > 0. As a result, we

cannot use a QQ-plot for the weibull distribution when u > 0.
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Figure 2.11. QQ-plot: data vs. pareto distribution
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Max/Sum ratio. O�Brien (1980) proved the following result:

Rn(p) =
Mn(p)

Sn(p)
!a:s: 0, EXp <1

Mn(p) = maxfXp
1 ; X

p
2 ; :::; X

p
ng

Sn(p) = jX1jp + jX2jp + :::+ jXnjp

Plotting Rn(p) as a function of n for di¤erent levels of p, we learn whether the p-th

moment of X is �nite or not. As mentioned before, random variables that belong to

the exponential and the SE class, have all their moments �nite. For regularly varying

distributions with tail index �, we have that EX� <1 for � < �. In Figure 2.12 we plot

Rn(p) with p=1, 3, 5, and 7 for the natural gas futures returns.

We observe that, according to this graphical tool, not all moments of gas futures

returns are �nite. The �niteness of the �fth moment is questionable, but Rn(7) is clearly
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Figure 2.12. R for di¤erent levels of p: gas futures returns
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Figure 2.13. R for di¤erent levels of p: Pareto, sample size 40,000
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not close to zero. However, we know that the O�Brien result holds true asymptotically

(n ! 1). In order to put Figure 2.12 in better perspective for a �nite sample we will

plot two similar �gures with 40,000 simulated points from a pareto distribution with tail

exponent � = 8, and from a weibull distribution ( = 0:8).



103

Figure 2.14. R for di¤erent levels of p: Weibull, sample size 40,000
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We know that the �rst seven moments of the pareto distribution with tail index � = 8

are �nite, which implies that limn!1Rn(p) = 0 for p < 8. We also know that all moments

of the weibull distribution with  = 0:8 are �nite. However, we can see in Figures 2.13

and 2.14 that for a �nite sample (n=40,000), Rn(5) and de�nitely Rn(7) are not equal

to zero, although theoretically the �fth and seventh moments are �nite. Actually, both

Figure 2.13 and 2.14 resemble very much Figure 2.12, which plots the data. Therefore,

we cannot conclude from Figure 2.12 with certainty that the �fth and seventh moment of

the gas futures returns are in�nite, nothwithstanding the fact that Rn(5) and Rn(7) are

di¤erent from zero.

Mean excess function. Another method to investigate to which distribution class the

data belongs is based on the mean excess function7:

e(u) = E(X � ujX � u):

7In a risk management context and switching to the lower tail, this is referred to as Expected Shortfall.



104

The mean excess function has a di¤erent shape depending on the distribution class to

which X belongs. It can be rewritten as:

e(u) =
1

�FX(u)

Z xF

0

(x� u):dx(2.2)

=
1

�FX(u)
:

Z xF

u

�FX(x):dx

xF : right end-point of the distribution FX , which can be 1.

Applying Karamata�s theorem8, we show the following useful fact about mean excess

functions. If for all y > 0, limx!1
�F (x�y)
�F (x)

= e�y for � 2 [0;1], then limu!1 e(u) = ��1.

As we can see from equation (2.1), � = 0 for the class of subexponential distributions, i.e.

the mean excess function tends to in�nity for the subexponentials, to which the Pareto

and the Weibull ( < 1) distributions belong. For the class of superexponentials ( �F (x) �

exp(�xc), with c > 1), the tails of which decay faster than an exponential, to which

also the normal distribution and the Weibull distribution ( > 1) belong, we have that

� = 1, and as result the mean excess function tends to zero for the superexponentials.

It is easy to check that for the exponential distribution itself with parameter � we have

that limu!1 e(u) = ��1. Actually, using equation(2.2), we have that e(u) = ��1 for all u

for the exponential distribution (�). The mean excess function for the Pareto distribution

is: e(u) = 1+u
��1 for � > 1. Thus, it is linearly increasing in u. For the weibull distribution

we get: e(u) ' u1�

�
. As a result, for  < 1, i.e. when the weibull belongs to the SE class,

it is increasing and concave in u, and it tends to 1. When  > 1, i.e. when the weibull

8See Embrechts et al., 1997 (Theorem A3.6).
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Figure 2.15. Empirical mean excess function for gas futures returns
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belongs to the superexponential class, it is decreasing and convex, and it tends to zero.

In Figure 2.15 we plot the empirical mean excess function for the gas futures returns.

The empirical mean excess function for gas futures returns is clearly increasing, which

implies that the tails are heavier than an exponential distribution. However, it is not clear

from Figure 2.15, whether the tail behavior of the data better resembles a power tail or

an SE tail. Even though the empirical mean excess function might be more concave than

linear, the next Figures 2.16 and 2.17 show how di¢ cult it is to draw de�nitive conclusions

from the mean excess function based on a �nite sample. Figures 2.16 and 2.17 plot 20

mean excess functions for 40,000 simulated points from the weibull distribution ( = 0:5)

and pareto distribution (� = 8).

As we can see from Figure 2.16 some of the mean excess functions are close to linear for

high u, and in Figure 2.17 certain mean excess functions are concave and might therefore

be mistaken as coming from the weibull distribution. As a result, the only statement that
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Figure 2.16. 20 mean excess functions of sample size 40000 from the weibull distribution
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Figure 2.17. 20 mean excess functions of sample size 40000 from the pareto distribution
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we can safely make from the empirical mean excess function is that the tail of gas futures

returns is heavier than an exponential tail.

Large Claim index. This term originates in the insurance industry where it is com-

monly used to quantify the fraction x of claims that is responsible for the fraction y of

total pay-outs. Take a sample of returns: r1; r2; :::; rN iid with distribution function F
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and mean �F <19. We denote the order statistics by rN;N � rN�1;N � r2;N � r1;N . We

de�ne the empirical large claim index as:

LCn(p) =
r1;N + r2;N + :::+ r[pN ];NPN

i=1 ri

The large claim index is the fraction of the p:N largest returns to the sum of all returns.

It is the opposite of the Lorentz curve, which gives the fraction of the pN smallest returns

to the sum of all returns. Next, we de�ne the following object:

DF (p) =
1

�F

Z 1

1�p
F�1(s)ds:

The next theorem (see proof in Embrechts et al.) shows the connection between both

objects. For n!1;

sup
p2[0;1]

jLCn(p)�DF (p)j !a:s: 0

From this theorem it is clear how we can use the large claim index to help us determine

the tail behavior of the gas futures returns. We limit ourselves to for example the top

30 or 40% of the returns, and we plot the empirical large claim index. We then �nd

the distribution function F such that DF (p) is close to LCn(p). For the exponential

distribution F (x) = 1 � exp(��x), we have that �F = ��1, and F�1(s) = � 1
�
ln(1 � s).

This results in Dexp
F (p) = p� p: ln(p). For the Pareto distribution F (x) = 1� (1 + x)��,

we have that F�1(s) = (1� s)�
1
� � 1, and �F =

R 1
0
F�1(y)dy = (�� 1)�1. This leads to

DPar
F (p) = �:p�

1
�
+1� (��1):p. Finally, for the weibull distribution F (x) = 1�exp(�x),

9This implies that in the case of the Pareto distribution the tail index � must be bigger than 1.
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Figure 2.18. Empirical Large Claim Index vs. exponential distribution
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Figure 2.19. Empirical Large Claim Index vs. pareto distribution
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we get that F�1(s) = [� ln(1� s)]
1
 . For the weibull distribution there is no closed form

for DF (p), so we have to numerically integrate over F�1(s).

From Figures 2.18, 2.19, and 2.20 we can see that according to the large claim index

the gas futures returns have a heavier tail than the exponential distribution, but that

it is hard to tell the di¤erence between a power tail and an SE tail. In summary, all
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Figure 2.20. Empirical Large Claim Index vs. weibull distribution
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graphical tools are consistent in the conclusion that gas futures have a fatter tail than

the exponential tail. However, the results are mixed about gas futures returns having a

power tail or an SE tail. On the one hand QQ-plots indicate that the data has a thinner

tail than the pareto distribution, but on the other hand the max/sum ratio indicates that

not all moments are �nite, which implies that the tail is heavier than an SE tail. The

results from the large claim index and mean excess function corroborate that the data is

heavier-tailed than the exponential, but both techniques do not help us in discriminating

between a power tail and an SE tail.

2.4. Non-parametric results from Extreme Value Theory

A classic, non-parametric method to determine the tail behavior of a random variable

is based on results from Extreme Value Theory (EVT). In order to make this text self-

contained we introduce the concept and give the main results. We then demonstrate how

di¢ cult it is to make any reliable conclusions about the tail behavior for �nite samples
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using this non-parametric method. We will see, that by construction, EVT cannot help us

to discriminate between an SE tail and an exponential tail. In addition, we demonstrate

that in �nite samples it is is very di¢ cult to even reliably tell the di¤erence between a

power tail and an exponential tail. The idea behind the EVT is similar to that of the

Central Limit Theorem (CLT). The CLT states that the limiting distribution of the (prop-

erly normalised) sum o¤ iid random variables (rvs) coincides with the class of �-stable

distributions with � 2 [0; 2], to which the normal distribution belongs (� = 2). In case

the iid rvs are not too heavy-tailed, the limiting distribution for the (properly normalised)

sum is the normal distribution. For more heavy-tailed iid rvs (for example a Pareto dis-

tribution with tail index < 2), the limiting distribution is the �-stable distribution with

� < 2. EVT answers the question: what are the limiting distributions of the (properly

normalised) maxima of iid rvs? The answer to this question is given by the Fisher-Tippett

theorem, which states that the limiting distribution of the (properly normalised) maxima

of iid rvs has to be one of the three extreme value distributions, i.e. the Frechet, Weibull,

or Gumbel distribution.

Theorem 7. Mn = maxfX1; X2; :::; Xng with {Xi} iid rvs. If there exist normalising

constants an > 0, bn 2 R, and a non-degenerate distribution function H such that Mn�bn
an

!

H, then H must be the generalized extreme value distribution (GEV), de�ned by:

H(x) = exp[�(1 + :x)�
1
 ];

with 1 + :x > 0. The parameter  2 R is called the extreme value index (EVI). The

sign of  leads to the three possible forms of the GEV distribution.
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(1)  > 0: the underlying distribution belongs to the maximum domain of attraction

(MDA) of the extreme value Frechet distribution, and is regularly varying, i.e.

a power tail.

(2)  < 0: the underlying distribution belongs to the MDA of the extreme value

Weibull distribution which means that with probability one the underlying dis-

tribution has a �nite right endpoint.

(3)  = 0: the underlying distribution belongs to the MDA of the Gumbel distribu-

tion, and is rapidly varying, i.e. an exponential tail.

When  = 0, H(x) = exp[� exp(�x)]. The use of the term Weibull is confusing here,

because the actual Weibull distribution we de�ned before as F (x) = 1 � exp(�x) for

x � 0 and  > 0. If there is any confusion possible we will refer to the weibull distribution

in the theorem above as the extreme value weibull. Actually, the weibull distribution be-

longs to the maximum domain of attraction of the Gumbel distribution. Some examples

of distributions that belong to the MDA of the extreme value Frechet distribution are

the Frechet, Pareto, Cauchy, Fisher, inverse gamma, and loggamma distributions. The

uniform and beta distributions belong to the MDA of the extreme value Weibull distrib-

ution. The weibull, exponential, gamma, normal, and lognormal distributions belong to

the MDA of the Gumbel distribution. Let�s demonstrate with three simple examples.
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(1) Take the standard Frechet distribution: F (x) = exp(� 1
x
). Set an = n and bn = 0.

As n!1 :

Pr(
Mn � bn
an

� x) = F n(n:x)

= [exp(� 1

n:x
)]n

= exp(�1
x
)

(2) Take the uniform U(0; 1) distribution. Set an = 1=n and bn = 1. As n!1 :

Pr(
Mn � bn
an

� x) = F n(n�1:x+ 1)

= (1 +
x

n
)n

! ex

(3) Take the standard exponential Exp(1) distribution: F (x) = 1 � exp(�x). Set

an = 1 and bn = log n. As n!1 :

Pr(
Mn � bn
an

� x) = F n(x+ log n)

= [1� exp(�x� log n)]n

= [1� e�x

n
]n

! exp[�e�x]

We see that in the limit the properly normalised maxima of the standard Frechet dis-

tribution converge to the extreme value Frechet distribution, with  = 1. The normalised
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maxima of the uniform distribution converge to the extreme value Weibull distribution

with  = �1, and the normalised maxima of the exponential distribution converge to the

Gumbel distribution with  = 0. There exists a second method to estimate the EVI, the

Peaks-over-Threshold method (Beirlant et al., 2004). Let�s de�ne the function

PrfX � u > xjX > ug = F u(x)

the excess distribution function.

Theorem 8. The excess distribution function Fu(x) with right endpoint xF belongs to

the MDA of H, the GEV, if and only if there exists a positive scale function s(u), such

that

lim
u!xF

sup
0�x�xF�u

��Fu(x)�Gu(xj; s(u))
�� = 0

with

G(xj; s) = 1 + logH(
x

s
) = 1� (1 + :x

s
)�1=:

G(xj; s) is called the generalized Pareto distribution (GPD).

Using the same three examples as above we demonstrate the relationship between the

GPD and the GEV approach.

(1) Take the standard Frechet distribution: F (x) = exp(� 1
x
). As u!1

PrfX � u > xjX > ug = 1� F (x+ u)

1� F (u)

=
1� exp(� 1

u+x
)

1� exp( 1
u
)

! (1 +
x

u
)�1
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(2) Take the uniform U(0; 1) distribution.

1� F (x+ u)

1� F (u)

=
1� (u+ x)

1� u

= 1� x

1� u

(3) Take the standard exponential Exp(1) distribution: F (x) = 1� exp(�x).

1� F (x+ u)

1� F (u)

=
exp[�(x+ u)]

exp[�u]

= exp[�x]

We see that the standard Frechet distribution corresponds to the GPD with  = 1

and s(u) = u. The uniform distribution corresponds to the GPD with  = �1 and

s(u) = 1� u, and in the case of the exponential distribution we get  = 0 and s(u) = 1.

We obtain the same extreme value index as in the GEV case.

From the graphical tools we have learned that the tail behavior for gas futures returns

is in between a power and an exponential tail. It is clear that EVT cannot help us discrim-

inate between an SE tail and an exponential tail (weibull and exponential distribution

both belong to the MDA of the Gumbel distribution). But in theory the EVT should

be able to tell us whether the distribution of gas futures returns belongs to the MDA of

the extreme value Frechet distribution (and therefore has a power-like tail) or whether it

belongs to the MDA of the Gumbel distribution (and therefore has an exponential tail).
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Before we estimate the EVI of gas futures returns, we �rst estimate the EVI based on

40,000 simulated values from both a pareto distribution and an exponential distribution.

In what follows we choose to estimate the EVI using the Peaks-over-Threhold method.

This can be done using Maximum Likelihood, based on GPD, or using Pickands�(1975)

estimator. We will use Pickands�estimator, which is given by

k;N =
1

log 2
: log

�
XN�k=4+1;N �XN�k=2+1;N

XN�k=2+1;N �XN�k+1;N

�

where X1;N � X2;N � ::: � XN;N . We now estimate the EVI for simulated Weibull

values F (x) = 1�exp(�xc) with c = 0.2 / 0.4 / 0.8 / 1. Given that we use the Peaks-over-

Threshold method we do this for X > 1, X > 3, and X > 5. We make sure that we always

have 40,000 simulated values in excess of the threshold. We set k = N=2, but changing

k does not alter the results by much. We know from the EVT that the Weibull and the

exponential distributions belong to the MDA of the Gumbel distribution, and that as a

result the theoretical value of the EVI equals 0. In Figure 2.21 we can see that for low

c values the convergence towards zero for the EVI is slow. If the underlying distribution

of an actual dataset (with a realistic number of data points) is the Weibull with a low

tail index, then using this method we will erroneously conclude that it originates from a

power-like distribution. However, for simulated values from the exponential distribution

(c = 1), we obtain the theoretical value of the EVI immediately.

We will now do the same for simulated values from the Pareto distribution F (x) =

1� ( 2
x
)b. We know that the Pareto distribution belongs to the MDA of the extreme value

Frechet distribution with  > 0. We can see in Figure 2.22 that the EVI is always bigger

than 0.
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Figure 2.21. EVI estimates using Pickands�estimator for simulated values
from the Weibull distribution
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Figure 2.22. EVI estimates using Pickands�estimator for simulated values
from the Pareto distribution
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From these simple tests we conclude that if we obtain an estimated EVI close to zero

for our natural gas futures returns, we can be reasonably con�dent that the underlying

distribution of the data has an exponential-like tail. However, if the estimated EVI is
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Figure 2.23. EVI estimates using Pickands�estimator for natural gas futures
returns data
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clearly bigger than zero, we can reasonably reject the notion that the underlying distrib-

ution is the exponential distribution or a weibull distribution with a high tail index, but

we cannot say much about whether the underlying distribution belongs to the MDA of

the extreme value Frechet or the Gumbel distribution. From Figure 2.23 we can see that

up to a threshold of 4, the estimate of the EVI is approximately zero, which implies that

the underlying gas futures data for the bulk of the distribution belongs to the MDA of the

Gumbel distribution, i.e. the gas futures data has a rapidly varying or exponential-like

behavior. For daily gas returns exceeding 5% the EVI estimate jumps up substantially,

which can lead us to believe that deep in the tail the gas data belongs to the MDA of the

extreme value Frechet distribution. However, the results from Figure 2.21 tell us that we

have to be careful making de�nitive conclusions when the estimated EVI is bigger than

zero.
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2.5. Parametric �tting

Both the graphical tools and the results from EVT point to similar conclusions: 1)

the underlying distribution of the natural gas futures returns has a tail that decays more

slowly than the exponential distrubution, and 2) it is di¢ cult to conclude with su¢ cient

certainty whether the data behaves more like a power distribution or whether the tail

decays faster like a weibull distribution. The results from EVT also show us that the

underlying behavior might be di¤erent for the bulk of the data and for the data deep in

the upper tail. Again, the reason we care is because it has important implications for

VaR and Expected Shortfall analysis at high probability levels and for deep out-of-the-

money option pricing. If we want to obtain more information about the tail behavior of

gas futures returns we should also investigate a parametric approach, given the limited

dataset. Of course, in addition to sampling error we now add misspeci�cation risk. In the

next section we will introduce the log-weibull distribution which for certain parameters

either becomes the weibull or the pareto distribution, and this will hopefully allow us to

have more of an inclination towards one or the other. First, we will estimate using ML

the parameters of the pareto, weibull, and log-weibull distributions for di¤erent threshold

levels u. Afterwards we will do a pairwise comparison of the models usingWilks�likelihood

ratio test.

Pareto distribution. Fu(x) = 1�
�
u
x

�b
with x � u.

It is easy to show that when there are Nu observations, the ML estimator yields

bb = " 1
Nu

X
i

log(
xi
u
)

#�1
:
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Figure 2.24. ML estimate of b for daily gas futures returns as a function of
the threshold u
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Weibull distribution. Fu(x) = 1� exp[�
�
x
d

�c
+
�
u
d

�c
] with x � u.

One can show that the ML estimator for c is the solution to the following equation

1

c
=

1
Nu

P
i

�
xi
u

�c
log xi

u

1
Nu

P
i

�
xi
u

�c � 1 � 1

Nu

X
i

log
xi
u

In addition, one can show after some calculations that in order to have a solution with

c > 0, the following condition is both necessary and su¢ cient

2:

 
1

Nu

X
i

log
xi
u

!2
>

1

Nu

X
i

[log
xi
u
]2:

A �nite sample may not always satisfy this condition.

Looking at both Figure 2.24 and 2.25 we can observe that something is going on when

the threshold is around 6. If the data was truly generated by a Pareto distribution the tail

coe¢ cient b would be constant for all u. However, the coe¢ cient is increasing until u = 6,
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Figure 2.25. ML estimate of c for daily gas futures returns as a function of
the threshold u
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beyond which it seems to settle down. In Figure 2.25 we see the opposite phenomenon.

The coe¢ cient c is constant until u = 5:5, beyond which it falls. The combination of both

Figure 2.24 and 2.20 seems to tell us that the weibull distribution describes well the bulk

of the data (98% of the data), but that beyond a high threshold level, i.e. daily returns

exceeding 6%, the data behaves more like a regularly varying or power-like tail.

Log-weibull distribution. Fu(x) = 1� exp[�b:flog(xu)g
c] with x � u.

For c = 1, it recovers the Pareto distribution, with b the tail coe¢ cient. For c = 2, it

becomes the lognormal distribution. When c > 1 the log-weibull has a thinner tail than

the Pareto, but a heavier tail than the SE family, to which the weibull belongs. The ML

estimator for c is the solution to the following equation
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Figure 2.26. ML estimate of c (log-weibull) for daily gas futures returns as
a function of the threshold u
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Figure 2.26 corroborates what we have learned from previous tests. Up to the threshold

u = 5:5 the tail is de�nitely thinner than a power tail, but beyond this threshold the tail

behavior of Henry Hub gas futures returns is well approximated by the pareto distribution.

Direct Comparison of Parametric Distributions. As a �nal test we will directly compare

the SE distribution with the exponential and the pareto distribution. Wilks� theorem

states that the log-likelihood ratio LR:

LR = 2: log
max� L(H0; X;�)

max� L(H1; X; �)

asymptotically has a �2-distribution. L(:) is the log-likelihood function, � & � are

the parameter spaces corresponding to the hypotheses H0 & H1. The theorem works if
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Figure 2.27. ML estimate of b (log-weibull) for daily gas futures returns as
a function of the threshold u
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H1 is true for particular parameters in the �-parameter space. The number of degrees

of freedom is given by the di¤erence in dimension between the �-space and the �-space.

We know that LR is always positive, because � � �. If LR does not exceed some high

threshold level, either the 90th- or the 95th percentile of the �2-distribution, we favor the

parsimonious version H1.

Weibull vs. Exponential. We can use Wilks�theorem directly to test the weibull distri-

bution against the exponential distribution, because setting the tail index parameter c,

from the weibull distribution, equal to 1, one obtains the exponential distribution. Fig-

ure 2.28 plots the LR ratio between the weibull and the exponential distribution as a

function of the threshold level. It also plots the 90th- and the 95th percentile of the

�2(1)-distribution. We can see that only at high threshold levels, i.e. daily gas returns

beyond 5.5%, we can start to reject the exponential in favor of the weibull distribution.
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Figure 2.28. Log-likelihood ratio between the weibull and the exponential
distribution for daily natural gas returns
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To put this in perspective we simulate around 10,000 values from a weibull distribution

with tail index parameter c equal to 0.2. We then compute again the LR ratio between

the weibull and the exponential distribution based on these weibull generated values. As

we can see in Figure 2.29, even in the case of 10,000 weibull generated values with c

= 0.2, i.e. clearly a heavier tail than the exponential distribution, we cannot reject the

exponential model in favor the weibull model at the 95th percentile using Wilks�theorem.

Weibull vs. Pareto. We cannot simply use Wilks�theorem to test the weibull distribution

(2-parameters) against the pareto distribution (1-parameter), because they are not exactly

nested. There exists no subset of parameters for the weibull distribution that recovers the

pareto distribution. There is, however, a very close link between the two distributions,

which will allow us to still use Wilks�theorem. Recall that the weibull distribution is given
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Figure 2.29. Log-likelihood ratio between the weibull and the exponential
distribution for weibull (c = 0.2) simulated values
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by Fu(x) = 1�exp[�
�
x
d

�c
+
�
u
d

�c
], and the pareto distribution is given by Fu(x) = 1�

�
u
x

�b
.

As a result, the pareto density is described by b: u
b

xb+1
, and the weibull density is described

by exp[�
�
x
d

�c
+
�
u
d

�c
]:c:(x

d
)c�1:d�1. One can show that as c! 0, the weibull density can

be approximated by the pareto density provided that c:(u
d
)c ! k > 0 as c! 0. Therefore,

technically, the weibull and the pareto distribution are not nested. One does not recover

the pareto distribution simply by setting c = 0 from the weibull distribution. However,

Malevergne and Sornette (2006) have shown that in this particular case Wilks�theorem

can still be applied.

We can see from Figure 2.30 that for the bulk of the distribution the weibull is preferred

over the pareto, but that deep in the tail we reject the weibull in favor of the pareto

distribution. As a �nal test we compare the pareto with the log-weibull distribution. The
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Figure 2.30. Log-likelihood ratio between the weibull and the pareto distri-
bution for daily natural gas returns
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log-weibull is described by Fu(x) = 1 � exp[�b:flog(xu)g
c], and recall that for c = 1, we

recover the pareto distribution with tail coe¢ cient b. Therefore, Wilks�theorem can be

applied directly as the pareto and log-weibull are nested.

Figure 2.31 not only parallels Figure 2.30, but also Figure 2.26, where we estimated the

c coe¢ cient from the log-weibull distribution. In Figure 2.26 we can see that the estimated

tail coe¢ cient c gets close to 1 at high threshold levels, where c = 1 corresponds to the

pareto distribution. This is also re�ected in Figure 2.31, where at high threshold levels

we can no longer reject the pareto in favor of the log-weibull distribution.

2.6. Conclusion

In this chapter we have investigated the distribution of daily Henry Hub natural gas

futures returns, and more speci�cally its tail behavior. Having the correct model for tail

behavior has important implications for Value-at-Risk measures at high probability levels



126

Figure 2.31. Log-likelihood ratio between the log-weibull and the pareto
distribution for daily natural gas returns
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and for deep out-of-the-money option pricing. Real datasets have a limited number of

datapoints, whereas most existing theorems are only true asymptotically. It is, therefore,

important to have a sense of how well a theorem performs in the presence of a �nite

sample. Moreover, because we work with a real dataset, and most theorems hold true

as the number of datapoints approaches in�nity, it is important to look at the problem

from many di¤erent vantage points with the hope of seeing a recurring pattern emerge.

This is exactly what we have done in this chapter. First we looked at some preliminary

graphical tools (some of them based on theorems that hold true asymptotically) such

as QQ-plots, max/sum ratios, mean excess functions, and the large claim index. Then

we investigated a non-parametric approach based on Extreme Value Theory, and �nally

we delved deeper into a few promising parametric distributions (exponential, weibull,

log-weibull, and pareto distributions), and we compared them pair-wise based on Wilks�
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log-likelihood ratio test. As a result of this analysis we can make the following statements.

All graphical tools are consistent in the conclusion that daily gas futures returns have a

fatter tail than the exponential tail. However, the results are mixed about gas futures

returns having a power tail or an SE tail. On the one hand QQ-plots indicate that the

data has a thinner tail than the pareto distribution, but on the other hand the max/sum

ratio indicates that not all moments are �nite, which implies that the tail is heavier than

an SE tail. The results from the large claim index and mean excess function corroborate

that the data is heavier-tailed than the exponential, but both techniques do not help us

in discriminating between a power tail and an SE tail. In the section on Extreme Value

Theory, we plot the results as function of the threshold level in order to check whether all

data is generated by the same underlying distribution or whether two or more di¤erent

distributions can better explain di¤erent parts of the gas data distribution. We can see

that up to a threshold of 4, the estimate of the EVI (based on Pickands�estimator) is

approximately zero, which implies that the underlying gas futures data for the bulk of

the distribution belongs to the MDA of the Gumbel distribution, i.e. the gas futures data

has a rapidly varying or exponential-like behavior. For daily gas returns exceeding 5%

the EVI estimate jumps up substantially, which can lead us to believe that deep in the

tail the gas data belongs to the MDA of the extreme value Frechet distribution, i.e. the

gas data has a heavier or power-like tail. However, the results from Figure 2.21 tell us

that we have to be careful making de�nitive conclusions when the estimated EVI is bigger

than zero. In the third section on parametric distributions we �nd con�rmation of the

result that the gas data is best explained by two di¤erent distributions. When we plot

the tail coe¢ cient of the pareto distribution as a function of the threshold level, we see
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that the tail coe¢ cient settles down at a high threshold level. This is in exact parallel

with what we observe when we plot the tail coe¢ cient of the weibull as a function of

the threshold. In the latter case the coe¢ cient is relatively constant for the bulk of the

distribution, but falls dramatically at high threshold levels. And a similar result can be

seen when we plot the results of the log-weibull. These results are corroborated when we

plot the Wilks�log-likelihood ratio based on direct pair-wise comparison between these

distributions. When we compare the weibull with the exponential we see that at high

threshold levels the exponential is rejected, and when we compare the weibull with the

pareto and the log-weibull with the pareto, the pareto is rejected at low and intermediate

threshold levels, but is favored at high threshold levels. Therefore, almost all of these

tests point to the same conclusion: for the bulk of the distribution, up to daily gas

futures returns of 5-6%, which make up around 98% of the data, the weibull distribution

with tail coe¢ cient c = 0:7� 0:8 or the log-weibull with c = 1:10� 1:15 explain the data

well. At high threshold levels, i.e. daily gas futures returns exceeding 5.5-6%, the data

is better described with an underlying distribution that has a power-like tail, such as the

pareto distribution with tail coe¢ cient b = 4:5.

2.7. Sensitivity Analysis

Up until now we have investigated the tail behavior of daily gas returns for futures

contracts of all maturities combined. Most of the price movements, however, are experi-

enced for futures contracts with short maturities (prompt month and next month). It is,

therefore, instructive to split up the data sample in two groups: the �rst group contains

the daily returns for futures contracts with maturity up to two months and the second
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Figure 2.32. ML estimate of b for prompt and next month daily gas futures
returns as a function of the threshold u
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group contains all the longer dated contracts. It is important to split up the data because

the underlying model used for the pricing of a deep out-of-the-money option on a prompt

or next month versus a further dated month will be di¤erent. We do not want to split

up the sample further because of lack of data deep in the tails. We will focus on the

parametric �tting for both groups and determine how di¤erent the tail coe¢ cients are.

Pareto. We start by comparing the tail coe¢ cient, b, of the pareto distribution for the

prompt and next month (Figure 2.32) returns versus the later contracts (Figure 2.33).

We notice that Figure 2.32 resembles the original Figure 2.24 very well, which means

that the prompt and next month returns dominate what happens deep in the tails. Figure

2.33 is not totally di¤erent, but the tail coe¢ cient is higher overall, and it is not that

clear that the tail coe¢ cient stabilizes at high thresholds.
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Figure 2.33. ML estimate of b for future months daily gas futures returns
as a function of the threshold u
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Figure 2.34. ML estimate of c (log-weibull) for prompt and next month
daily gas futures returns as a function of the threshold u
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Log-weibull. As the weibull and the log-weibull coe¢ cients follow a similar pattern we

will just compare the �c�coe¢ cent of the log-weibull.
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Figure 2.35. ML estimate of c (log-weibull) for future months daily gas
futures returns as a function of the threshold u
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We observe that Figure 2.34 has a similar pattern as Figure 2.26, just as we observed

for the pareto coe¢ cient. And we observe here as well that Figure 2.35 is shifted upwards

compared to the original Figure 2.26, and that the shape has also changed to some extent.

Given that the prompt and next month contracts determine the tail coe¢ cients for the

entire dataset, it is not surprising that the pairwise comparison tests are very similar

to the ones described for the entire dataset. The results for the future month contracts

are slightly di¤erent. The exponential tail is mostly rejected, but we cannot reject the

weibull/log-weibull in favor of the more parsimonious pareto distribution. These results

from the pairwise comparison for the future months are a re�ection of what we observe

in Figures 2.33 and 2.35.
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CHAPTER 3

Tail Behavior of Power Forwards Returns

3.1. Introduction

3.1.1. Independent System Operators (ISOs)

The power market in the US is organized through regional Independent System Operators

(ISOs), who are responsible for the dispatch and reliability of power in their region.

Examples of ISOs are PJM (biggest ISO, which comprises pieces of 13 states - going from

New Jersey to Virginia to Kentucky and Illinois), NEPOOL (New England), NYISO (New

York), CAISO (California), MISO (Midwest), and ERCOT (Texas). For the remainder of

this section I will go into more detail of the inner workings of the power market, and more

speci�cally of PJM. I choose PJM because it is the biggest and most established ISO, and

also because most of the other ISOs seem to converge towards the PJM model. No two

ISOs have exactly the same rules, but if you understand one ISO well, it will help you

understand the inner workings of the other ISOs. Currently, there exist two models to

determine the spot price of power at each location within the ISO. Some ISOs use a zonal

model (ERCOT & CAISO). The other ISOs that I mentioned use a nodal model. PJM

was one of the �rst ISOs to use the nodal model and the other ISOs seem to follow suit.

In fact, both ERCOT and CAISO are near the transition towards a nodal model. A nodal

model computes a power spot price for every node (=busbar) within its region. PJM, for

example, has about 8000 di¤erent nodes, and for every single node a speci�c spot price
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is calculated. The spot price of power in PJM is called the Locational Marginal Price

(LMP). With each node is associated a speci�c LMP. For the purpose of trading, nodes

are grouped together into Hubs. The Hub LMP is then simply the arithmetic average

of the LMPs of the nodes that make up the Hub. WestHub is an example of the most

liquidly traded Hub in PJM, or even in the entire US, and it consists of 110 individual

nodes located mainly in the western part of PJM (western Pennsylvania), but also in the

Washington DC area.

3.1.2. LMP calculation

Now we get to the question: how is an LMP determined? Before we answer this question

we have to know that there exist two types of LMP at every node, i.e. a Day-Ahead LMP

(DA-LMP) and a Real-Time LMP (RT-LMP). For each node there exists a DA-LMP for

every hour of the day. It is impossible to explain in exact detail how this hourly DA-LMP

is computed, but I will try to explain the basic idea. The calculation of an LMP, whether

it is DA or RT, is the result of an optimization algorithm performed by the ISO. The

ISO tries to minimize the total cost of serving the power demand (load) subject to a

whole range of constraints. Even though it is an Alternating Current (AC) system, all

the constraints are linearized, so the ISO is constantly solving a massive LP problem. For

the Day-Ahead market it roughly works as follows. All generators and load servers that

want to participate in the DA market have to submit their generation o¤ers and load bids

to the ISO by 12pm. Generation o¤ers are supply schedules (we are willing to generate 50

MW @ $60/MWh, 60 MW @ $67/MWh, etc., up to ten increments are allowed with an

o¤er cap of $1000/MWh). In addition, a start-up cost o¤er (cold, warm, and hot) and a
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no-load cost o¤er1 are part of the o¤er schedule. Finally, a unit needs to provide the ISO

with its ramp rate (both up and down), which is expressed in MW/min, minimum run

time, and its maximum and minimum capacity levels. Load bids also consist of a demand

schedule. The ISO receives these bid and o¤er schedules for speci�c locations (nodes) by

12pm and solves the LP problem, the result of which are 24 DA-LMPs (one for each hour

of the following day) for every node in the PJM system. Generators that are picked up

to run the next day for a certain numbers of hours and load servers that are picked up

will receive/pay the DA-LMP during those hours for the quantity that they are picked

up for. The DA market allows participants to lock in a price for the next day. When

the next day rolls around, participants are expected to execute the DA results and this

is enforced with monetary penalties. Generators and load servers also submit to the ISO

Real-time schedules. If the ISO notices that not enough generation is online to satisfy

the RT load, more units will have to be scheduled (or the same units but more MW) and

those will be paid the RT LMP, and the same holds true for load servers. For example, a

load server Comed submits in the DA market a bid of 5000 MW for a speci�c location for

7am. Comed bid in the load @1, meaning that it is willing to serve the load at any price,

and therefore it is picked up for all 5000 MW for 7am, and the DA-LMP for 7am turns

out to be $100/MWh. The RT load at 7am that Comed is supposed to serve turns out to

be 5200 MW and the RT-LMP for 7am for that location is $160/MWh. Comed will have

to pay to PJM for that hour 5000x100 + 200x160 = $532,000. In reality a penalty will be

added for the 200 MW deviation of the RT load from the DA load, which is called a RT

1A start-up cost is expressed in $ and it is the amount the generator needs to be paid in order to start up
the unit. Cold, warm, and hot start-up costs refer to how long the unit has been idle before it is being
asked to start running. A no-load cost is expressed in $/MWh and is the amount that a unit needs to be
paid when it is asked to keep running o¤-line.
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balancing charge. So, every 5 minutes the ISO solves the LP problem and computes 5-min

RT-LMPs for every node based on the generation schedules and PJM�s RT load forecasts.

These 5-min LMPs are averaged into hourly RT-LMPs, and these hourly RT-LMPs are

used for settlements and are published. In solving the LP problem an important set of

constraints are reliability and transmission constraints. Reliability requirements are set by

NERC (North American Electric Reliability Council), and are set in such a way that the

system can withstand contingencies (a unit that trips, sudden transmission outage, etc.)

One of the rules is that every ISO needs to maintain 10-minute reserves, i.e. generation

that is ready to provide power to the system within 10 minutes, of an amount equal to

the �rst contingency, and 30-minute reserves equal to 50% of the second contingency. The

�rst contingency is usually the biggest unit that is currently running, probably a nuclear

unit of 1500 MW. We will not go into details but PJM also has a market based solution

for providing the necessary level of reserves and other reliability requirements. These

markets are called Ancillary Services markets. This adds to the complexity of the LP

problem that is being solved for, because the Energy market and the Ancillary Services

markets are co-optimized and solved for simultaneously. The other set of constraints are

the transmission constraints. Transmission constraints are very important and can have

a very substantial impact on LMPs (both DA and RT). The LMP is the sum of three

components:

LMPh = SEPh +MCCh +MLCh

with SEP: System Energy Price

MCC: Marginal Congestion Component

MLC: Marginal Loss Component
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The SEP is the same for every node. Technically, it is the LMP of the reference bus or

slack bus. Every node is priced relative to the reference bus, which is just a computational

trick. If we forget about the MLC for a moment, if in solving for the optimal solution none

of the transmission constraints are binding, the MCC would be zero for every node, and

the LMP would be exactly the same throughout the system. The MLC is the answer the

following question: if we inject 1 extra MW at node i, and we withdraw it at the reference

bus, how much does this cost in terms of losses. The longer power travels, the more power

we dissipate. If power generated at node i has to travel long distances to reach the load,

node i will penalized with a very negative MLC, thereby lowering the LMP at node i and

discouraging more generation at node i. Most of the generation in PJM is located in the

western part (coal units in the Appalachians), whereas most of the load is located in the

east. Therefore, the MLC of the nodes in the west are negative and positive in the east.

The same holds true in general for the MCC: most of the congestion in PJM is the result

of too much power �owing west to east causing transmission constraints to bind. If a

transmission constraint binds, the optimal solution is no longer feasible. This situation

has to be resolved through re-dispatch. Some units will have to back down and other units

will have to ramp up in order to reduce the power �ow along the transmission line that was

binding. Re-dispatch has to increase the cost of serving the load, because this solution is

suboptimal. Nodes that contribute to congestion problems will be penalized by negative

MCCs, nodes that help relieve the congestion problems will be encouraged to generate

more by making the MCC positive. The hope is also to send a signal to the market to

invest in new generation at nodes with consistently higher prices. PJM publishes not only
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a schedule of transmission line outages, but also of other elements, such as transformers,

circuit breakers, capacitors, etc. Outages or derates of these elements can signi�cantly

reduce the amount of power that can �ow on certain lines, thereby causing re-dispatch,

which can signi�cantly increase the LMP at certain nodes and decrease the LMP at other

nodes. This also impacts Hub prices, recall that WestHub is made up of only 110 nodes.

If 20 of these nodes that are located close to each other blow up, WestHub will blow up.

3.1.3. Virtual bidding (INCs & DECs)

PJM allows for Virtual bidding through Decrement bids (DECs) and Increment O¤ers

(INCs). The goal is to make sure that the average of the DA-LMPs is close to the average

of the RT-LMPs most of the time. This is realised by allowing market participants to

speculate on the spread between the DA-LMP and the RT-LMP at all individual nodes.

If a trader thinks that the DA-LMP at node i for hour j will be higher than the RT-LMP,

he will enter an INC in the DA market for node i and hour j. An INC is seen by PJM as a

virtual generation o¤er. The trader will receive the DA-LMP (just as any other generation

unit that is picked up). But in RT he will not deliver the power, which means that he will

be charged the RT-LMP. We also know that he will have to pay a RT balancing charge for

the full MW amount, which in PJM averages around $2/MWh. So, in e¤ect, the pay-o¤

to the trader equals (DA-LMP minus RT-LMP minus 2) x MW amount. If he thinks the

RT-LMP will be higher than the DA-LMP, he will enter a DEC, which is seen as a virtual

load bid. The hope is that on average the RT-LMP stays withing $2 of the DA-LMP,

and this is realised for most of the nodes most of the time. Of course, for most hours, the
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RT-LMP deviates substantially from the DA-LMP, but it is not systematically higher or

lower.

3.1.4. Financial Transmission Rights (FTRs)

PJM also organizes an FTR market (once a month), which allows market players to

participate in an FTR auction. The products o¤ered in the auction are monthly, quarterly,

and yearly FTR obligations and FTR options. FTR obligations pay the spread between

the MCC of the sink node of the FTR and the source node of the FTR, which can be

both positive and negative. FTR options are the same thing, but the pay-o¤ can never be

negative. As a result an FTR option is always at least as expensive as an FTR obligation

on the same path. We now introduce the concept of peak and o¤-peak power. Power

trading in general and also the FTR markets in particular are done for separate time

buckets: 5x16, 2x16H, 7x8, wrap (= 2x16H + 7x8), and 7x24. For example, when one

buys a Sep08 5x16 WestHub RT �nancial forward contract for $100, it means that for

the weekdays (Mon-Fri) in Sep08 (except holidays) during the 16 peak hours from 7am

to 10pm one pays $100 per MW and receives the RT-LMP of WestHub for those same

hours. 2x16H stands for the 16 peak hours of the weekend days plus NERC holidays. 7x8

stands for the 8 o¤-peak hours (midnight till 6am +11pm) for all days. FTRs options and

obligations are o¤ered for a month, for a quarter, and for a whole year as 5x16, wrap, and

7x24. The purpose of FTRs is mainly twofold: 1) it allows market participants to lock in

a congestion premium between two nodes: a load server that is constantly buying power

at node A and delivering this power to its customers at node B does not want to be at

the mercy of sudden transmission outages that blow up the spread between node A and
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B. 2) it allows traders to take speculative positions on spreads between individual nodes.

Individual nodes are not traded at all, so that the only way to gain exposure to them is

through FTRs. Participants submit bids for FTRs. PJM then runs an LP problem that

maximizes the revenue it receives from the auction subject to a feasibility constraint. The

�rst letter in FTR is important, it is a purely �nancial contract. Owning an FTR from

node A to B does not grant any right for physical power from A to B. Suppose 50 MW of

physical power �ows from A (generation node) to B (load node). Congestion takes place

and MCCB �MCCA = 20. PJM will receive congestion revenues equal to 50 x 20 =

$1000. If PJM awarded 100 MW of FTRs from A to B, it would have to pay out 100

x 20 = $2000. This simple example illustrates the feasibility constraint. PJM wants to

maximize the revenue it can receive from the FTR auction, but it has to compute whether

it will be able to pay out the winning FTR bids at all times. PJM forecasts how much

power will �ow on speci�c lines and it will use this estimate to cap the FTR quantity that

it awards in the auction.

3.1.5. Capacity Market (Reliability Pricing Model - RPM)

A capacity market has existed for a while in PJM, but recently it has been transformed

into RPM. The goal of RPM is to induce new generation investments. A capacity market

is needed because load can peak dramatically during very hot summer days. Peaking

generators are needed to cover this load, but they are needed only a few hours per year.

Because o¤er prices are capped at $1000/MWh, and as result LMPs are capped, these

peaking units cannot recover their �xed costs over time by simply running a few hours per

year in the summer. Still, they are needed for reliability reasons. There are two possible
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solutions. On the one hand, one can remove the o¤er cap, and LMPs would reach high

enough values such that peaking units can recover their �xed costs over time. On the

other hand, one can provide generation units extra money simply for being available to

run during the summer period. The latter solution is exactly what a capacity market

is doing. It provides generation units extra money simply for being available during the

summer. Ine¢ cient generation units, i.e. high heat rate units, are out-of-the-money

in the energy market the vast majority of the time. For these units the capacity market

revenues make up most of their revenues. Power plants with low short-run marginal costs,

for example nuclear units, are in-the-money in the energy market practically 100% of the

time, and capacity market revenues make up only a small fraction of the entire revenue

stream. In the long run the sum of energy market and capacity market revenues should

be fairly constant. An increase in capacity prices induces new generation investments

or delays mothballing/retiring older plants and should therefore decrease energy market

revenues down the road. The RPM market in PJM is organized as a single round sealed-

bid uniform price auction with no price �oor. The Forward Capacity Market (FCM)

in Nepool is organized as a multiple round descending clock uniform price auction with

a predetermined price �oor. Both capacity markets in PJM and Nepool are organized

three years in advance of the Delivery Year. For example, if an existing or currently

non-existing unit clears in the upcoming capacity auction in April 2009, then that unit

has to be available to generate power starting in June 2012. Non-performance penalties

are very sti¤. The three year period was chosen to re�ect the time needed to build a

peaking Combustion Turbine (CT) unit. Capacity markets should also be understood

as a wealth transfer from consumers to producers. The consumers pay a capacity price
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to the generation owners, which can be seen as an insurance premium, in order to avoid

reliability problems and extreme energy prices during peak demand hours. It is important

for the consumer to not focus solely on either capacity prices or energy prices, but to look

at the sum of the two in the medium to long run. Still, it is important that questions are

asked and research is conducted on whether the current capacity market structure and

rules lead to the desired results in the most cost e¤ective way2.

3.1.6. Fundamental Drivers for Peak & O¤-Peak Power

Contrary to natural gas, power is not storable, at least not e¢ ciently and not in high

volume. Pump storage facilities and batteries do exist, and although they play an im-

portant role locally, in the grand scheme of things they are not that important. This

implies that, again in contrast to natural gas and many other storable commodities, Jan-

uary 2009 power does not have to be closely linked with September 2008 power through

a cash-and-carry argument. In reality it is closely linked, due to the fact that power, at

least peak power, trades o¤ of natural gas, which does have this cash-and-carry spread

between Jan09 and Sep08. In Figure 3.1 we plot the forward curve of WestHub 5x16

power on 07/15/2008.

When there is no congestion in the electrical system the LMPs at every node are

identical. The LMP at a particular node answers the question: how much does it cost

to serve 1 extra MW of load at that node. As long as there is no congestion, the cost

of 1 extra MW of load is the same for every node and equals the marginal cost of the

2The capacity price in PJM for the 2010-2011 Delivery Year cleared at $175/MW-day and approximately
134,000 MW cleared in the auction. This means a wealth transfer of roughly $8.5 Billion from the
PJM consumers to producers for the period June 2010-May 2011. PJM has approximately 50 Million
consumers, which implies a capacity price of $171 per consumer for the year 2010-2011.
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Figure 3.1. WestHub peak power forward curve
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Figure 3.2. Heat rate (WestHub power / TETCO-M3 gas) forward curve

Heat rate (WH/M3) on 07/15/2008
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unique marginal unit at that time. During peak times, the marginal unit in PJM is

almost always a gas-�red unit, in extreme times it can be an oil-�red unit. As a result

peak power trades o¤ of gas. The market implied heat rate, i.e. the forward power

price divided by the forward gas price, should re�ect the heat rate, i.e. the e¢ ciency, of

the average marginal gas-�red unit. During o¤-peak times the coal units are mostly the

marginal units. However, during o¤-peak times something more complex is happening.

Very often, one sees o¤-peak average prices in PJM around $20, even though we know

that the marginal unit is a coal unit with a marginal cost of $40-$50. The reason we

observe this phenomenon is because PJM tries to minimize the cost of serving the load.
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PJM knows that base load coal units are willing to continue to run overnight at a loss,

because if they shut down, they incur a start-up cost the following day. O¤-peak power

de�nitely trades o¤ of coal, but the relationship is not that simple. Looking at Figure

3.2 we see that the term structure of the implied market heat rate is not �at, it is higher

during the summer than during the winter. Clearly, load is higher during the summer

than during the winter. As a result, during the summer we will have to go deeper into the

stack and use less e¢ cient gas-�red plants with higher heat rates. At times, we might even

have to use oil-�red units. In addition, during hot summer days and in combination with

transmission constraints, market power can become an issue, leading to LMPs deviating

from marginal cost. All of these reasons combined lead to higher market implied heat

rates during the summer. This paragraph, so far, ignored congestion. In the presence of

congestion, things become more complex. LMPs are no longer identical throughout the

system and there is no longer a unique marginal unit. The moment that there is a single

transmission constraint you have at least two marginal units. One marginal unit has to

back down and another one has to ramp up. The relationship between gas price and

power price is no longer a simple linear relationship. Figure 3.2 plots the market implied

heat rate forward curve for PJM over TETCO-M3 gas. When looking at the market

implied heat rates, it is important to use the gas price that gas-�red units use that make

up the PJM power price. Gas price in the Pennsylvania area is called TETCO-M3 (Texas

Eastern Company gas pipeline - Zone M3) and trades as a premium over Henry Hub

gas, which is the main hub located in the Houston area, and is used for the Nymex gas

contract. In the winter, when gas demand in the NorthEast can be high, and given the

fact that pipeline capacity is limited, the basis spread between Henry Hub and Tetco-M3
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Figure 3.3. QQ-plot: power data vs. exponential distribution
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can blow up. This is re�ected in the Tetco-M3 forward gas curve, and hence in the PJM

WestHub power forward curve.

3.2. Preliminary Graphical Tools

Just as we did for the Henry Hub natural gas futures returns, we will now focus on

the tail behavior of daily PJM WestHub 5x16 power forward returns. The dataset starts

in 2005, and we have around 84,000 daily returns. We �rst look at some of the grahical

tools to get a rough sense of how heavy tailed the daily power returns are. We look at

the QQ-plots, mean excess function, max/sum ratio, and the large claim index.

Quantile-Quantile plots. We compare the empirical quantile function with the theoretical

quantile function of the exponential and the pareto distribution.

From the QQ-plots we learn that the tail behavior of daily power forwards is in between

a power tail and an exponential tail.



145

Figure 3.4. QQ-plot: power data vs. pareto distribution

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
QQ-pareto

Standard pareto quantile

E
m

pi
ric

al
 q

ua
nt

ile

Figure 3.5. Empirical mean excess function of power forward returns
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Mean excess function. Next, we plot the empirical mean excess function for power returns.

The empirical mean excess function clearly shows that the data has a heavier tail than

the exponential tail, and given the near linearity of the empirical mean excess function it
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Figure 3.6. R as a function of n for di¤erent levels of p: power forward returns
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points in the direction of a power-like tail. Recall that the mean excess function is �at for

an exponential tail, increasing and concave for the weibull distribution in the SE class,

and linearly increasing for a power-like tail.

Max/Sum ratio. Plotting Rn(p) as a function of n for di¤erent levels of p, we learn whether

the p-th moment of X is �nite or not. As mentioned before, random variables that belong

to the exponential and the SE class, have all their moments �nite. For regularly varying

distributions with tail index �, we have that EX� <1 for � < �.

Given that Rn(5) and Rn(7) are clearly not zero, the max/sum ratio test tells us that

power forward returns have a heavier tail than an exponential and an SE tail. However, we

know that we have to be careful making de�nitive conclusions from these max/sum ratio

tests. Figures 2.14 and 2.13also have Rn(7) di¤erent from zero even though theoretically

all moments should be �nite.
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Figure 3.7. Empirical Large Claim index vs. exponential distribution
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Large Claim index. The �nal graphical tool that we use is the large claim index. We limit

ourselves to the top 30% of the returns, and we plot the empirical large claim index. We

then �nd the distribution function F such that DF (p) =
1
�F

R 1
1�p F

�1(s)ds is close to the

empirical claim index.

From the large claim index we learn that the power forward returns resemble an

exponential tail very well. Note that the tail coe¢ cient, a=14, is very high in order to get

a good �t with the data. We know that as the tail coe¢ cient approaches 1, the pareto

distribution tends to the exponential. In conclusion, QQ-plots lead us to believe that the

power returns data behaves in between an exponential and a power tail. The mean excess

function and the max/sum ratio test also conclude that the data decays faster than an

exponential tail. The large claim index, however, seems to point to an exponential tail.
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Figure 3.8. Empirical Large Claim index vs. pareto distribution
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3.3. Non-Parametric Extreme Value Theory

Just as we have done for the Henry Hub natural gas futures data, we now compute

the extreme value index (EVI) for di¤erent thresholds for PJM Westhub 5x16 power

forward returns. Recall that EVI > 0 implies that the underlying distribution belongs to

the MDA of the extreme value Frechet distribution, which means that it has a regularly

varying or power-like tail. EVI = 0 implies that the distribution belongs to the MDA of

the Gumbel distribution, which means that it has a rapidly varying or exponential-like

tail. By construction, EVT cannot discriminate between an exponential and an SE tail,

because both the exponential and weibull distribution belong to the MDA of the Gumbel

distribution. But the estimate of the EVI should shed more light on whether the data

tends more towards an exponential-like tail or towards a power-like tail. In the next

Figure 3.9 we plot the EVI for the power returns for di¤erent threshold levels.
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Figure 3.9. EVI estimates using Pickands�estimator for power forward re-
turns data
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We can see in Figure 3.9 that overall the EVI is in excess of zero. There is no clear split

in the data with two di¤erent regimes as we had with the natural gas futures returns. The

EVI estimates clearly indicate that the power forward returns have a power-like tail.

3.4. Parametric Fitting

The overall conclusion from the QQ-plots, mean excess function, max/sum ratio, and

the EVI estimates is that the power forward returns data de�nitely decays more slowly

than an exponential tail, and is even pointing towards a power-like tail. In that regard,

we will now zero in on the pareto, weibull, and log-weibull distributions to �gure out

whether a power-like tail or an SE tail is more likely and to quantify the tail coe¢ cient.

Pareto. Fu(x) = 1 �
�
u
x

�b
with x � u. In Figure 3.10 we plot the tail coe¢ cient, b,

using ML, for di¤erent levels of u. We observe that the estimate of the tail coe¢ cient is

relatively stable for the entire threshold range, and �uctuates around 2.2.
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Figure 3.10. ML estimate of tail coe¢ cient, b, for power forward returns as
a function of u
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Figure 3.11. ML estimate of tail coe¢ cient, c, for power forward returns as
a function of u
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Weibull . Fu(x) = 1� exp[�
�
x
d

�c
+
�
u
d

�c
] with x � u.



151

Figure 3.12. ML estimate of tail coe¢ cient c (log-weibull) for power forward
returns as a function of u
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Log-weibull. Fu(x) = 1 � exp[�b:flog(x
u
)gc] with x � u. Recall that for c = 1, it

recovers the Pareto distribution, with b the tail coe¢ cient. For c = 2, it becomes the

lognormal distribution. When c > 1 the log-weibull has a thinner tail than the Pareto,

but a heavier tail than the SE family, to which the weibull belongs. In Figures 3.12 &

3.13 we plot the coe¢ cients c and b, respectively.

Given that in Figure 3.13 the coe¢ cient c is larger than 1 for almost the entire thresh-

old range, the log-weibull tells us that the underlying distribution decays faster than a

power-like tail. In order to gain some more de�nitive conclusions, we will compare the

di¤erent models pairwise using Wilks�LR test.

Weibull vs. Exponential. As we have mentioned before, we can use Wilks�theorem di-

rectly to test the weibull distribution against the exponential distribution, because they
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Figure 3.13. ML estimate of tail coe¢ cient b (log-weibull) for power forward
returns as a function of u
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are nested. Figure 3.14 plots the LR ratio between the weibull and the exponential distrib-

ution as a function of the threshold level. It also plots the 90th- and the 95th percentile of

the �2(1)-distribution. We can see that, apart from the very low thresholds, we can reject

the exponential for the entire threshold range. This corroborates the conclusion from the

previous tests, i.e. daily power forward returns decay more slowly than an exponential

tail.

Weibull vs. Pareto. We know that the weibull and the pareto distribution are not nested,

and that therefore Wilks� theorem cannot be used directly. However, Malevergne and

Sornette (2006) have shown that in this case Wilks�theorem can still be applied.

Figure 3.15 tells us that we favor the weibull over the pareto for most of the range,

but that in the middle of the threshold range we have a hard time rejecting the more
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Figure 3.14. Log-likelihood ratio between the weibull and the exponential
distribution for the power forward returns
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Figure 3.15. Log-likelihood ratio between the weibull and the pareto distri-
bution for the power forward returns
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parsimonious pareto distribution. In that regard Figure 3.15 re�ects to some extent

Figure 3.11. In Figure 3.11, we plot c, the tail coe¢ cient of the weibull distribution, and

we see a similar pattern. In the middle of the range the tail coe¢ cient is close to zero,

re�ecting a power-like tail. We do not plot the LR ratio between the log-weibull and the

pareto distribution, because the graph is very similar to Figure 3.15. This also re�ects

Figure 3.12 to some extent. In Figure 3.12 we plot the coe¢ cient c of the log-weibull, and

we observe that in the middle of the range it is close to 1, re�ecting a power-like tail.

3.5. Conclusion

Almost all the tests (QQ-plots, max/sum ratios, mean excess function, EVI, & para-

metric tests) conclude that daily power forward returns have heavier tails than an expo-

nential tail. However, there is not really a consistent pattern to have a de�nitive view on

whether a power-like or an SE tail describes the data best. Using the Wilks�LR test we

cannot reject the weibull in favor the pareto distribution. As a result, we conclude that

a good model for the tail behavior of daily WestHub 5x16 power forward returns is the

weibull distribution with a tail coe¢ cient around 0.6.

3.6. Sensitivity Analysis

We now split up the entire sample in two groups, just as we have done for the natural

gas data.

Pareto. In Figures 3.16 and 3.17 we plot the tail coe¢ cient, b, for the pareto distribution

for the prompt/next month forwards and for the future month forwards respectively.
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Figure 3.16. ML estimate of tail coe¢ cient, b, for power forward returns
for the prompt and next month contracts as a function of u
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Figure 3.17. ML estimate of tail coe¢ cient, b, for power forward returns
for the future month contracts as a function of u
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We can see that the tail coe¢ cients for the prompt and next month contracts are very

similar to the ones in Figure 3.10, i.e. for the entire dataset. Figure 3.17, which plots the

tail coe¢ cient for the future month contracts has a di¤erent pattern.
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Figure 3.18. ML estimate of tail coe¢ cient, c, for power forward returns
for the prompt and next month contracts as a function of u
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Weibull. We plot the tail coe¢ cient c of the weibull for both groups in Figure 3.18 and

3.19.

We notice again that the tail coe¢ cients for the prompt and next month contracts are

very similar to the ones for the entire dataset (Figure 3.11). The average tail coe¢ cient

equals 0.52. It is therefore not surprising that the pairwise comparison tests of the prompt

and next month contracts closely match the results using the power returns from the entire

dataset. The average tail coe¢ cient for the future month contracts equals 0.78.

We know that peak power trades mainly o¤ of gas. In particular in the longer run gas

is the most important driver for power forwards. Far out market implied heat rates are

relatively stable. Market implied heat rates several months/years out can change because
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Figure 3.19. ML estimate of tail coe¢ cient, c, for power forward returns
for the future month contracts as a function of u
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of large new generation projects expected to come online or large new transmission lines

coming into play. A change in market rules can also a¤ect heat rates in the future.

Probably the biggest reason forward heat rates change is the result of �nancial �ows.

When a big generation company decides to hedge a substantial fraction of its �eet going

forward, by selling heat rates far out, these heat rates can fall dramatically. Still, heat

rates far out are relatively stable. As a result of all of this we would expect the peak

power forward returns and the gas futures returns for the months further out in the curve

to have a similar behavior, which in this case turns out to be a weibull distribution/SE

tail with tail coe¢ cient around 0.8. In the short term, i.e. prompt and next month,

the relationship between power and gas becomes weaker as weather comes into play and

transmission/generation outages, most of which are announced one to two months in

advance, become a factor. We conclude that short term gas futures returns have an SE
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tail up to a 5.5% threshold and a power-like tail in excess of this threshold. Short-term

power forward returns do not di¤er much from the power forward returns using the entire

dataset, and we conclude that a good model for them is a weibull with a tail coe¢ cient

around 0.5.
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