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Abstract 

Persons with spinal cord injuries can use state-of-the-art brain-computer interfaces to 

control robotic arms. Despite this high-tech solution, their movements are slow and imprecise, 

much like those made by individuals who have lost proprioception, the sense of body position and 

movement. Intracortical microstimulation (ICMS) used to reactivate neural circuits in the 

somatosensory cortex is a promising approach for providing artificial proprioceptive feedback.  

While tactile interfaces have advanced to the point where ICMS can provide force and 

contact location feedback to a spinal cord injured patient, proprioceptive interfaces have proven 

more difficult to develop. Previous proprioceptive interfaces either required months of training to 

use or evoked unreliable sensations. Part of the difficulty in designing these interfaces is the 

complicated somatotopy in proprioceptive cortical areas, where even simple limb movements 

evoke a complex spatial pattern of neural activity. It may be that stimulation patterns that evoke 

neural activity more nearly like that of limb movements will elicit naturalistic sensations and 

reduce the training time required to use proprioceptive interfaces.  

This dissertation presents my work to develop such biomimetic stimulation patterns. By 

quantifying the spatiotemporal pattern of neural activity evoked by ICMS in Chapter 2, I show that 

stimulation through many electrodes with small amplitudes will be needed to recreate the complex 

spatial pattern of activity evoked by limb movements. In Chapter 3, I show that multi-electrode 

ICMS (mICMS) can replicate the rapid feedback provided by natural proprioception, something 

that single electrode stimulation cannot do. By modeling the evoked sensation with an artificially 

generated cortical map, I find that mICMS can produce effects as large as normal limb movements 

and in predictable directions in Chapter 4. Together, these results suggest that mICMS will be 

necessary to provide proprioceptive feedback in future afferent interfaces. 
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Chapter 1 - Introduction 

Most people are aware of the five senses: sight, smell, taste, touch, and hearing. 

Proprioception, the sense of where our body is in space and how it is moving, is sometimes termed 

the ‘hidden sense’ because it generally remains largely below our conscious perception. Because 

of proprioception, I can bring my fingers to my nose when my eyes are closed. In fact, without 

proprioception, I can’t touch my nose accurately even with vision. Despite being “hidden”, 

proprioception is vital for controlling movements, as evidenced by the dramatic loss of body 

control exhibited by individuals who have lost it but retain the ability to activate their muscles, as 

depicted in the BBC documentary “The Man Who Lost His Body.” 

In addition to losing the ability to generate movements, patients with spinal cord injuries 

also lose proprioception. While brain-computer interfaces (BCIs) have advanced to the point where 

patients can reach and grasp objects with a highly anthropomorphic robotic limb or even their own 

limbs (Collinger et al. 2013; Ajiboye et al. 2017; Flesher et al. 2021; Hochberg et al. 2012; Bouton 

et al. 2016), the movements of these patients are slow and imprecise, like those of people without 

proprioception. Intracortical microstimulation (ICMS) in the somatosensory cortex (S1) is a 

promising approach for providing somatosensory feedback, as it can elicit detectable sensations in 

rats, monkeys, and humans (Devecioğlu and Güçlü 2017; Fridman et al. 2010; Romo et al. 2000; 

London et al. 2008; O'Doherty et al. 2012; Flesher et al. 2016; Salas et al. 2018). ICMS has been 

used to provide tactile force and contact location feedback to a spinal cord injured patient, enabling 

him to grasp objects faster while controlling a robotic arm with both ICMS and visual feedback 

than with visual feedback alone (Flesher et al. 2021). 
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Proprioceptive interfaces have proven more difficult to develop than tactile interfaces. One 

previous interface evoked unreliable sensations (Tomlinson and Miller 2016), while another 

required multiple months of training in part because it elicited arbitrary sensations (Dadarlat, 

O'Doherty, and Sabes 2015). To reduce the training time required to use proprioceptive interfaces, 

stimulation patterns that evoke naturalistic sensations could be used. In my doctoral work, I aimed 

to develop stimulation patterns which evoke cortical activity like that evoked by natural limb 

movements, as I expected these patterns to elicit more nearly naturalistic sensations of 

proprioception.  

Part of the difficulty in developing these biomimetic stimulation patterns is the complicated 

organization of neurons in proprioceptive cortices. In these areas, limb movements evoke a 

complex spatial pattern of neural activity. To mimic this spatial pattern, it is important to 

understand the pattern of activity evoked by ICMS. I measured the spatiotemporal pattern of 

cortical activity evoked by a wide range of ICMS parameters, as described in Chapter 2. 

Stimulation through single electrodes at large amplitudes activated neurons far from the site of 

stimulation, an approach ill-suited to mimic the complex spatial pattern of cortical activity evoked 

by limb movements. Instead, stimulation would need to be provided through multiple electrodes 

each with small amplitudes to evoke activity in a spatially restricted population of neurons.  

One important aspect of natural proprioception is that it provides feedback much faster 

than vision, feedback fast enough to update ongoing movements. Surprisingly, in one study, single 

electrode ICMS provided feedback slower than even visual cues (Godlove, Whaite, and Batista 

2014). To determine whether ICMS could provide feedback as rapid as natural proprioception, I 

compared the reaction times to proprioceptive and ICMS cues in Chapter 3. While single electrode 

stimulation also evoked long reaction times in my experiments, multi-electrode stimulation could 
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evoke reaction times as short or shorter than the proprioceptive cue, implying that this approach 

can provide feedback as fast as natural proprioception.  

Without a well-defined somatotopy, stimulation in proprioceptive cortical areas may 

activate neurons with different encoding properties, resulting in unnatural sensations or perceived 

hand movements in unpredictable directions. To explore the effect of topography on the resulting 

sensation, I simulated the evoked sensations in response to multi-electrode stimulation using a 

computational model of proprioceptive cortex in Chapter 4. In this model, single-site stimulation 

produced weak effects in unpredictable directions. Multi-site stimulation could produce effects as 

large as normal limb movements and in predictable directions. 

This introduction will review background information relevant to my doctoral work 

beginning with an overview of the importance of proprioception for motor control and previous 

afferent interfaces. After this, I will summarize the neural response to ICMS and cover a few 

benefits of multi-electrode stimulation.  

Importance of proprioception for motor control 

 Proprioception, the sense of where the body is in space and how it is moving, is vital for 

planning and executing fast and accurate movements, as evidenced by people who have lost this 

sense but retain the ability to generate movements. To better understand the role of proprioception 

in controlling movements, the reaches of individuals without this sense were compared to able-

bodied control subjects. When performing a gesture similar to slicing bread, control subjects made 

straight, highly planar movements that were consistent across trials. People without proprioception 

made curved and nonplanar movements which varied wildly across trials (Sainburg, Poizner, and 

Ghez 1993). These individuals made their largest errors when the hand needed to reverse 

directions, likely because this required coordination of the shoulder and elbow joints (Sainburg et 
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al. 1995). These individuals even struggled to coordinate activation of muscles during simple 

elbow flexion movements (Forget and Lamarre 1987). After they initially accelerated their arm by 

activating their biceps, subjects needed to activate their triceps to decelerate the arm. Control 

subjects activated their triceps near peak velocity and modulated the magnitude of this activation 

based on the speed of the arm. Patients without proprioception activated their triceps less than did 

control subjects, with magnitude that did not increase with speed. Furthermore, the timing of the 

burst was more variable relative to peak velocity than in control subjects, resulting in less accurate 

braking. Proprioceptive feedback from the moving limb is important for coordinating movements 

across joints and coordinating activation across muscles.  

Individuals without proprioception struggle to move even when they have full visual 

feedback. To better understand the role of vision, these individuals were provided various amounts 

of visual feedback as they made reaches to targets (Ghez et al. 1990). Without any feedback, they 

could not accurately reach to the targets. When visual feedback was provided only before the reach, 

allowing the individuals to plan their movement, accuracy improved slightly, but was still much 

worse than reaches made by control subjects. Even with visual feedback both prior to and during 

the reach, these individuals still made less accurate reaches than control subjects. Furthermore, 

individuals without proprioception made smaller than expected forward/backwards reaches and 

larger than expected reaches laterally, indicating that they were unable to compensate for 

anisotropies in the inertial properties of the arm (Ghez et al. 1990). While visual feedback can 

slightly improve the accuracy of reaches made by individuals without proprioception, it cannot 

fully replace proprioception in either the planning or execution of movements.  
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Efferent interfaces to restore movement  

 Patients with spinal cord injuries or amputations lose both somatosensation and the ability 

to generate movements. To restore movement, researchers have implanted arrays of electrodes into 

the motor cortex of affected individuals to record neural signals, from which decoders can be used 

to predict motor intent (Serruya et al. 2002; Taylor, Tillery, and Schwartz 2002; Ethier et al. 2012). 

With such a decoder, participants were able to control a robotic limb to grasp and move objects 

(Collinger et al. 2013; Hochberg et al. 2012; Wodlinger et al. 2014). Instead of robotic limbs, 

therapeutic devices could use functional electrical stimulation to activate muscles in the 

participant’s own arm (Ajiboye et al. 2017; Ethier et al. 2012).  

Afferent interfaces to restore sensation 

Devices which electrically stimulate the nervous system have previously been used to 

provide artificial sensory feedback. Perhaps the most successful sensory neural prosthesis is the 

cochlear implant, which has been implanted in more than 500,000 individuals, including ~100,000 

children who were born deaf (Kral, Dorman, and Wilson 2019; Wilson and Dorman 2008). 

Cochlear implants bypass damaged cells in the cochlea by directly stimulating the auditory nerve, 

which then transmits information to the brain. Part of the success of the cochlear implant is due to 

the powerful processing and highly adaptable nature of the brain. Because of this, subjects with 

cochlear implants improved their speech understanding from 40% of “everyday” sentences to 90% 

within 12 months (Helms et al. 1997). Additionally, children born deaf who receive cochlear 

implants before 2 years of age, when their brains are still developing, can reach near-normal 

language skills by 8 years of age (Kral and O'Donoghue 2010).    

To restore vision to blind individuals, electrical stimulation could be applied through 

electrodes implanted into visual cortex, an approach called intracortical microstimulation (ICMS). 
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Early experiments showed that stimulation in visual cortex evoked small phosphenes of various 

colors (Brindley 1973; Troyk et al. 2003). In monkeys, these results have been extended to the 

generation of simple shapes, motions, and letters (Chen et al. 2020).  

Feedback about the direction of motion could be provided to blind individuals by 

stimulating area MT of visual cortex, an area involved in processing the direction of motion of a 

visual stimulus (Albright, Desimone, and Gross 1984; Van Essen, Maunsell, and Bixby 1981). 

Area MT neurons respond preferentially to specific directions of movement. Neurons with similar 

direction preferences are organized into columns, with columns further organized into pinwheel-

like structures (Malonek, Tootell, and Grinvald 1994). Low amplitude stimulation applied in the 

middle of these columns can bias a monkey’s perception of a moving dot field (Murasugi, 

Salzman, and Newsome 1993; Salzman et al. 1992). The direction of this bias was well predicted 

by the preferred motion direction of neurons recorded on the stimulated electrode.  

To restore the sense of touch, ICMS could be applied to early tactile areas in S1, as this 

can evoke sensations of pressure and vibration (Romo et al. 1998; Flesher et al. 2016; Fifer et al. 

2020). One approach to providing artificial tactile feedback is to elicit sensations that mimic those 

provided by the natural sense. ICMS in early tactile areas can approximate this, as it evokes 

localized sensations on the body, such as on a single finger, and sensation intensity can be 

controlled by modulating the stimulation amplitude (Kim, Callier, Tabot, Gaunt, et al. 2015; Tabot 

et al. 2013; Flesher et al. 2016). With this biomimetic approach, tactile interfaces provided force 

and contact location feedback to a spinal cord injured patient. When an experimenter touched 

fingers on a robotic hand, pressure sensors triggered stimulation on corresponding electrodes in 

early tactile areas, allowing the participant to correctly identify which finger was touched without 

any training (Flesher et al. 2016). The participant could also identify which of multiple fingers 
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were touched, though with less accuracy than when only a single finger was contacted. Expanding 

this study to an activity of daily living, the participant grasped and moved objects by controlling a 

robotic limb using signals recorded in motor cortex (Flesher et al. 2021). With both visual and 

ICMS feedback about the force on the index finger and middle fingers, the participant could grasp 

and move objects faster than with visual feedback alone. Much of the improvement (88%) came 

during the grasping phase. 

 Proprioceptive interfaces have proven more difficult to develop than tactile interfaces. In 

one example, monkeys needed to learn an arbitrary mapping between stimulation and feedback. 

Monkeys were trained to reach to invisible targets using feedback about the error vector between 

the position of their hand and the target (Dadarlat, O'Doherty, and Sabes 2015). Initially, monkeys 

used visual feedback in the form of a random moving-dot field. Once monkeys could use this 

feedback to accurately reach to the targets, visual feedback was paired with ICMS feedback 

through eight electrodes implanted in S1. The frequency of stimulation through the eight electrodes 

scaled with the distance between the hand and the target. To provide direction feedback, each of 

the electrodes was arbitrarily assigned a different movement direction, on which the error vector 

between hand and target position was projected. This projection further scaled the frequency of 

stimulation for each electrode. After months of training with increasingly noisy visual feedback, 

monkeys learned to use ICMS feedback alone to reach to the invisible targets. Even with all this 

training, monkeys took twice as long to reach the target with ICMS feedback than with visual 

feedback, implying that ICMS feedback was difficult to use. 

It may be that stimulation patterns which evoke naturalistic sensations of limb movement 

would be easier to learn, thus reducing the time required to learn to use current proprioceptive 

interfaces (Bensmaia and Miller 2014). To develop biomimetic patterns for proprioception, it is 
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important to first understand the responses of neurons in proprioceptive cortical areas, such as area 

2 of S1, to limb movements. The firing rates of neurons in area 2 modulate strongly during limb 

movements and during perturbations applied to the hand (Prud'homme and Kalaska 1994; London 

and Miller 2012; Chowdhury, Glaser, and Miller 2020). The velocity dependence of neural firing 

is classically analyzed using sinusoidal tuning functions (Georgopoulos et al. 1982), and neurons 

in area 2 are typically roughly sinusoidally tuned to both the velocity and load applied to the hand 

(Prud'homme and Kalaska 1994; London and Miller 2012). The direction of movement (or load) 

that evokes maximal firing is termed the ‘preferred direction’ (PD). The distribution of PDs in area 

2 is bimodal, with a preference towards forward and backwards movements, an effect that is likely 

due to the biomechanics of the arm (Versteeg, Chowdhury, and Miller 2021). Within area 2, there 

is no discernable long-range organization of PDs, in part because receptors from many muscles, 

some spanning multiple joints, need to be mapped onto the two-dimensional cortical surface 

(Iwamura, Iriki, and Tanaka 1994; Pons et al. 1985). Even simple limb movements result in a 

complex spatial pattern of cortical activity across proprioceptive cortex. There is some local 

structure in area 2, though, as neighboring neurons are slightly more likely to have the same PD 

than non-neighboring neurons (Weber et al. 2011).  

We previously tried to exploit the tendency of neurons with similar PDs to be near each 

other to elicit naturalistic sensations of proprioception. To infer the effect of stimulation in area 2, 

we trained monkeys to report which of two opposing directions was closest to the direction of a 

mechanical perturbation applied to the hand (Tomlinson and Miller 2016). On some trials, we 

applied ICMS during the mechanical perturbation to bias the monkey’s perception of the direction 

of the perturbation. We stimulated on 4 electrodes each with similar PDs. Since neighboring 

neurons are likely to have the same PD in area 2 (Weber et al. 2011), we hypothesized that ICMS 
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would bias the monkey’s perception in the direction of the recorded PDs. Stimulation through 6 

out of 7 sets of electrodes predictably biased one monkey’s perception of the mechanical 

perturbation. We could not reproduce this result in three subsequent monkeys. In these animals, 

stimulation produced biases, but their direction could not be predicted based on the PDs recorded 

on the stimulated electrodes. The different results across monkeys may have been due to slightly 

different array placements across monkeys or the specific population of neurons activated by 

stimulation. If we could have monitored the evoked activity after stimulation, perhaps we could 

better understand the differences across monkeys and design better stimulation patterns. 

Neural response to ICMS 

ICMS activates neurons directly and transsynaptically (Tehovnik et al. 2006). Stimulation 

changes the membrane potentials of nearby cells, sometimes causing them to fire. These directly 

evoked action potentials are typically initiated in axons, which have a higher density of sodium 

channels and thus have lower activation thresholds than cell bodies or dendrites (Nowak and 

Bullier 1998a, 1998b). Directly evoked action potentials propagate antidromically to cell bodies 

and orthodromically to presynaptic terminals, where they may cause further activity.  

To activate neurons with homogeneous encoding properties within the complex 

somatotopy in proprioceptive cortical areas, it is important to understand the spatial pattern of 

directly and transsynaptically activity evoked by ICMS. It is difficult to monitor this activity, as 

ICMS causes a large shock artifact that corrupts electrical recordings (Hao, Riehle, and Brochier 

2016; Butovas and Schwarz 2003; Weiss et al. 2018). Because of this, most previous studies 

recorded activity on electrodes distant from the site of stimulation and at long latencies after 

stimulation, likely missing short latency activity evoked near the site of stimulation (Hao, Riehle, 

and Brochier 2016; Voigt, Yusuf, and Kral 2018; Butovas and Schwarz 2003). Based on the 
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latency of recorded spikes, these studies likely recorded transsynaptically evoked activity and 

missed directly evoked activity.  

Recording directly evoked activity is difficult because it typically occurs during the 

stimulus pulse, where the shock artifact is largest. Instead of recording this activity, researchers 

inferred the presence of directly evoked spikes in nearby neurons by blocking antidromically 

activated spikes (Stoney, Thompson, and Asanuma 1968). Stimulation applied to medullary 

pyramid evoked action potentials in axons that traveled antidromically to cell bodies in the 

pericruciate cortex. A recording electrode was inserted into the pericruciate cortex until it recorded 

such antidromic activity from a single neuron. The position of this electrode was then fixed. 

Stimulation was applied simultaneously in the medullary pyramid and near the recording electrode 

in cortex. If both stimuli evoked a spike, then these two spikes would collide, resulting in no 

recorded activity. Instead, if cortical stimulation did not evoke a spike, then the antidromic spike 

would appear on the recording electrode. Thus, the presence of the antidromic spike indicated that 

cortical stimulation did not evoke a spike. Since the timing of the antidromic spike was highly 

consistent across trials, researchers could determine precisely when the orthodromic spike was 

initiated, allowing them to infer activity evoked directly by the stimulating pulse instead of activity 

evoked through synapses.  

Researchers used this setup to analyze the spatial spread of directly evoked activity by 

systematically moving the site of cortical stimulation. At each site, they measured the activation 

threshold, the minimum current required for 50% of pulses to evoke a spike (Stoney, Thompson, 

and Asanuma 1968). The activation threshold was proportional to the square of the distance from 

the neuron to the stimulating electrode:  
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𝐼 = 𝑘𝑟2 

where 𝐼 is the activation threshold, 𝑟 is the distance from the neuron to the site of stimulation, and 

𝑘 is a constant. Thus, increasing amplitude resulted in a growing sphere of neural activation around 

the stimulation electrode.  

While short-latency electrical recordings are difficult due to the shock artifact caused by 

ICMS, optical recording methods are unaffected. Using calcium imaging, the spatial pattern of 

directly evoked activation was sparser and more widely distributed than predicted by Stoney’s 

simple spherical model (Histed, Bonin, and Reid 2009). Stimulation at low amplitudes activated 

cell bodies hundreds of micrometers from the stimulus site, a distance that did not increase with 

amplitude. Instead, increasing amplitude increased the activation density within the same 

activation volume. 

We recently investigated this apparent conflict between Stoney’s spherical model and 

Histed’s recordings using a biophysical model of cortical stimulation (Kumaravelu et al. 2022). In 

the model, stimulation evoked action potentials within axons, consistent with their lower activation 

thresholds measured in physiological experiments (Nowak and Bullier 1998a, 1998b). The volume 

of axonal activation grew with stimulation amplitude in a manner well predicted by Stoney’s 

model. Activation in axons propagated antidromically to somas, causing activation in a sparse and 

widely distributed population of cell bodies, similar to Histed’s observations. In the model, 

increasing amplitude increased both the extent of somatic activation and activation density.  

Evoked activity spreads farther from the stimulated electrode via synaptic activation. The 

amount of transsynaptic activity is largest near the stimulated electrode and decreases 

exponentially with distance (Logothetis et al. 2010; Butovas and Schwarz 2003). Increasing 
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amplitude increased both the amount and spread of transsynaptically evoked activity (Hao, Riehle, 

and Brochier 2016), likely due to the increased spread of directly evoked activity. At sufficiently 

high amplitudes, neurons millimeters from the site of stimulation can be activated by stimulation. 

The spatial pattern of transsynaptic activation depends on the connections made between neurons 

in cortex. In visual cortex, neurons with similar orientation preferences are organized into cortical 

columns, and columns of similar preferences are connected to each other (Roe et al. 2012). Because 

of this, stimulation in one column selectively activated neurons in distant columns with similar 

orientation preference (Hu et al. 2020).  

The widespread transsynaptic activation implies that ICMS will not evoke spatially precise 

percepts. In contrast to this conclusion, ICMS in early tactile areas evoked localized sensations on 

the body, at locations that typically matched the receptive fields recorded on the stimulated 

electrodes (Tabot et al. 2013). Human participants have reported sensations on individual fingers, 

including the fingertips, and on the palm, in a manner that was consistent with the expected 

somatotopy of S1 (Flesher et al. 2016; Salas et al. 2018; Fifer et al. 2020). When stimulation 

evoked sensations of movement, the evoked sensations typically corresponded to only a small part 

of the arm (Salas et al. 2018). These results imply that the widespread transsynaptic activation is 

not important for determining the perceptual effects of ICMS. Instead, the perceptual effect of 

ICMS depends more on the local directly evoked activity. 

These results suggest that ICMS through a single electrode will be insufficient to provide 

feedback about the whole arm and/or hand because the projection fields are very localized (Tabot 

et al. 2013; Flesher et al. 2016; Salas et al. 2018). Single electrode stimulation is also ill-suited for 

mimicking the complex spatial pattern of neural activity evoked by limb movements, as evoked 

activity is centered around the stimulated electrode. Instead, stimulation will need to be applied 
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through many electrodes simultaneously to activate clusters of neurons across proprioceptive 

cortex with similar encoding properties. To restrict the spatial extent of activation, stimulation 

amplitude through each electrode will need to be small. Multi-electrode stimulation can also sum 

localized projection fields to provide feedback about the whole arm/hand.  

In addition to mimicking the spatial pattern of naturally evoked activity, ICMS should aim 

to match the temporal dynamics of naturally occurring activity. ICMS evokes activity in a large 

population of neurons immediately after each pulse, resulting in more synchronous activation 

across neurons than that evoked by natural stimuli. It has been hypothesized that this synchrony is 

part of the reason why stimulation at peripheral nerves induces unnatural sensations of tingling or 

pricking (paresthesia) (Tan et al. 2014). One approach to lower synchrony across the activated 

population is to deliver stimulation through multiple electrodes asynchronously, a process which 

does not affect detection thresholds (Kim, Callier, Tabot, Tenore, et al. 2015). Synchrony can even 

be reduced during single-electrode stimulation by replacing each pulse in a stimulus train with a 

high-frequency (> 1 kHz) burst of pulses (Formento et al. 2020). By increasing the amplitude of 

pulses throughout each burst, neurons with different activation thresholds are activated at different 

times during the burst, resulting in less synchronous activation. 

Multi-electrode stimulation to provide proprioceptive feedback 

Multi-electrode stimulation seems well suited for recreating the complex spatial pattern of 

neural activity evoked by limb movements and for reducing synchronous activation across 

proprioceptive cortex. Stimulation through many electrodes with small amplitudes, though, may 

not result in detectable sensations, as the detection threshold to single electrode stimulation is ~10-

30 μA (Kim, Callier, Tabot, Gaunt, et al. 2015; Zaaimi et al. 2013). 
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Two studies explored how stimulation sums across multiple electrodes by measuring the 

detectability of stimulus trains. In one study, multi-electrode stimulus trains were more detectable 

than predicted by combining the detection threshold of each individual electrode linearly (Zaaimi 

et al. 2013). Because of this, stimuli through single electrodes that normally was subthreshold 

summed to generate readily detectable sensations. This supralinear summation may reduce the 

amplitude required through each electrode, and thus improve the specificity of activation. 

However, these results conflicted with a separate study, where the detection thresholds during 

multi-electrode stimulation matched predictions of an independence model, implying linear 

summation across electrodes (Kim, Callier, Tabot, Tenore, et al. 2015). Understanding how 

sensations combine during multi-electrode stimulation will be important when designing 

stimulation patterns to provide feedback about the whole arm and hand.  

These experiments measured the effect of multi-electrode stimulation near the detection 

threshold, implying that the evoked sensations were weak. For ICMS to be useful, it will need to 

evoke strong sensations that are easily detectable. For strong sensations, the detectability of a 

stimulus is no longer a good measure of intensity, as most stimuli are detected on every trial. 

Instead, sensation intensity can be measured by measuring the reaction time to that stimulus, as 

increasing intensity decreases reaction times (Pins and Bonnet 1996). Surprisingly, monkeys 

responded slower to high amplitude stimulation through a single electrode than to even visual cues 

(Godlove, Whaite, and Batista 2014). This is surprising, as stimulation is applied directly to the 

brain, and problematic because visual feedback is too slow to replace the rapid feedback of natural 

proprioception. It remains to be seen whether small amplitude stimulation through many electrodes 

can evoke intense sensations and provide rapid feedback. 
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Multi-electrode stimulation may also increase the number of distinguishable feedback 

levels provided by ICMS. The just noticeable difference (JND) is the minimum change in stimulus 

intensity that can be detected. For most natural stimuli, JND increases with increased sensation 

intensity due to corresponding increases in both the neural response and the noise of that response 

(Ekman 1959). In contrast, the JND for ICMS amplitude was constant over a wide range of 

amplitudes (Kim, Callier, Tabot, Gaunt, et al. 2015), implying a different relationship between 

stimulation amplitude and the mean response rate and variance. Across ICMS amplitudes, the JND 

is ~15-30 μA in monkeys and humans (Flesher et al. 2016; Kim, Callier, Tabot, Gaunt, et al. 2015). 

With detection thresholds of ~20 μA, and a safety limit of ~100 μA through a single electrode 

(Chen et al. 2014; Rajan et al. 2015), implanted participants would be able to distinguish 3-6 levels 

of feedback. It may be possible to increase the number of distinguishable levels by delivering 

charge through multiple electrodes simultaneously, thus increasing the maximum deliverable 

charge. 

Importance of somatotopy for eliciting naturalistic sensations of limb movement 

 We previously stimulated in area 2 during a mechanical perturbation applied to the hand, 

finding that this stimulation could bias a monkey’s perception of the direction of the perturbation 

(Tomlinson and Miller 2016). The direction of the bias, though, could not be predicted by the mean 

PD of the stimulated electrodes in three out of four monkeys. This experiment was heavily inspired 

by similar experiments performed in area MT of visual cortex, where stimulation could predictably 

bias the perception of the direction of a moving dot field across multiple monkeys (Murasugi, 

Salzman, and Newsome 1993; Salzman et al. 1992). The different outcomes of these experiments 

were surprising, as the organization of neurons within area 2 is like that of area MT. In area MT, 

neurons with preference for similar directions of visual motion are found in the same cortical 
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column, and cortical columns with different preferences form pinwheels (Malonek, Tootell, and 

Grinvald 1994). In area 2, there is similar local structure, as neurons with similar PDs tend to form 

clusters (Weber et al. 2011). While there is no discernable long-range organization of neurons in 

area 2 (Pons et al. 1985), our recent computational model of proprioceptive cortex predicted that 

clusters of neurons with similar PDs would form pinwheel-like structures (Blum, Grogan, et al. 

2021). 

 One important difference between these studies, apart from modality, is that the stimulating 

electrode was placed in the center of a group of neurons with similar direction preferences in area 

MT (Murasugi, Salzman, and Newsome 1993). To find the center of a group of neurons, 

researchers moved the electrode forwards and backwards until 200 µm of electrode travel recorded 

neurons with the same preferred motion direction. The electrode was then placed in the center of 

this group. At low amplitudes, where activated neurons were likely primarily located within the 

same group, stimulation in area MT could bias the monkey’s perception in a direction well 

predicted by the direction preference of neurons recorded on the stimulated electrode. At higher 

amplitudes (80 µA), the monkeys could no longer report the direction of the visual stimulus, likely 

because high amplitude stimulation activated neurons far from the site of stimulation, neurons with 

heterogeneous direction preferences.  

The importance of the stimulus location was further highlighted by systematically moving 

the stimulation electrode away from the center of a group of neurons with similar direction 

preferences. As the electrode moved away from the center, the magnitude of the bias caused by 

stimulation decreased greatly (Murasugi, Salzman, and Newsome 1993). Perhaps part of the reason 

our attempts to bias the perception of a proprioceptive stimuli failed was that we were unable to 

place our electrodes within the center of groups of neurons with similar PDs. These results show 
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that the placement of electrodes, in addition to the underlying organization of neurons, is important 

for determining the efficacy of stimulation.  

Summary 

 This chapter has given a brief introduction to the importance of proprioception for 

controlling movements, previous efferent and afferent interfaces, the neural response to ICMS, 

and multi-electrode stimulation. The following chapters will detail my doctoral work toward 

developing multi-electrode stimulation patterns to provide proprioceptive feedback. In Chapter 2, 

I develop and evaluate tools to record neural activity at short latencies after stimulation on every 

electrode across a multi-electrode array, including the stimulated one. I quantify the spatiotemporal 

pattern of activity evoked by ICMS, confirming that the widespread activation due to stimulation 

through single electrodes is unlikely to recreate the complex spatial pattern of activity evoked by 

limb movements. 

 In one experiment reported several years ago, stimulation through a single electrode did 

not replicate the fast feedback provided by natural proprioception (Godlove, Whaite, and Batista 

2014). In Chapter 3, I report reaction times to multi-electrode stimulation, to proprioceptive, and 

to visual cues. Those results show that multi-electrode stimulation can evoke reaction times as 

short or shorter than a proprioceptive cue, implying that this approach can recreate the feedback 

speed of natural proprioception. 

 Chapter 4 details a computational study that models the sensation evoked by stimulation in 

proprioceptive cortex. This study uses a model of proprioceptive cortex that regenerates arm 

kinematics via a cortical layer, in which neurons with similar PDs from clusters. I artificially 

stimulate this model to explore the effects of stimulus parameters and local topography on the 

evoked sensation. The simulations show that single electrode stimulation with adequate current to 



26 
 

evoke large magnitude sensations also activates a large population of neurons with dissimilar 

encoding properties, resulting in sensations in unpredictable directions. Instead, multi-electrode 

stimulation with small amplitudes activates a more homogeneous population of neurons, resulting 

in strong sensations more-nearly aligned with the mean PD of the stimulation sites. Finally, 

Chapter 5 presents the implications of the results in this thesis for the development of 

proprioceptive interfaces, along with future directions to extend this work. 
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Chapter 2 - Characterizing the short-latency evoked response to intracortical 

microstimulation across a multi-electrode array 

Joseph T. Sombeck, Juliet Heye, Karthik Kumaravelu, Stefan M. Goetz, Angel V. Peterchev, 

Warren M. Grill, Sliman Bensmaia, Lee E. Miller 

 

Foreword 

The following chapter has been adapted from a manuscript published in the Journal of Neural 

Engineering in April 2022. The purpose of this project was to quantify the spatiotemporal pattern 

of neural activity evoked by intracortical microstimulation (ICMS) to aid in the design of 

biomimetic stimulation patterns. Recording electrical signals after stimulation is not trivial because 

stimulation causes a large shock artifact that lasts multiple milliseconds. In this project, I 

developed and evaluated hardware and software techniques to record short-latency neural activity 

after ICMS. With these techniques, I was able to monitor neural activity ~0.7 ms after stimulation 

offset on every channel across a multi-electrode array, including on the stimulated channel. I 

quantified the neural response to a wide range of stimulation parameters, a description that can 

both help to interpret results that probe the function of cortical areas and contribute to the design 

of stimulation patterns to improve afferent interfaces. 
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Abstract 

Objective. Persons with tetraplegia can use brain-machine interfaces to make visually guided 

reaches with robotic arms. Without somatosensory feedback, these movements will likely be slow 

and imprecise, like those of persons who retain movement but have lost proprioception. 

Intracortical microstimulation (ICMS) has promise for providing artificial somatosensory 

feedback. If ICMS can mimic naturally occurring neural activity, afferent interfaces may be more 

informative and easier to learn than interfaces that evoke unnaturalistic activity. To develop such 

biomimetic stimulation patterns, it is important to characterize the responses of neurons to ICMS. 

Approach. Using a Utah multi-electrode array, we recorded activity evoked by single pulses and 

trains of ICMS at a wide range of amplitudes and frequencies in two rhesus macaques. As the 

electrical artifact caused by ICMS typically prevents recording for many milliseconds, we 

deployed a custom rapid-recovery amplifier with nonlinear gain to limit signal saturation on the 

stimulated electrode. Across all electrodes after stimulation, we removed the remaining slow return 

to baseline with acausal high-pass filtering of time-reversed recordings. Main results.  After single 

pulses of stimulation, we recorded what was likely transsynaptically-evoked activity even on the 

stimulated electrode as early as ~0.7 ms. This was immediately followed by suppressed neural 

activity lasting 10–150 ms. After trains, this long-lasting inhibition was replaced by increased 

firing rates for ~100 ms. During long trains, the evoked response on the stimulated electrode 

decayed rapidly while the response was maintained on non-stimulated channels. Significance. The 

detailed description of the spatial and temporal response to ICMS can be used to better interpret 

results from experiments that probe circuit connectivity or function of cortical areas. These results 

can also contribute to the design of stimulation patterns to improve afferent interfaces for artificial 

sensory feedback. 



29 
 

Introduction 

Efferent brain-machine interfaces (BMIs) have advanced to the point where a spinal-cord 

injured patient can move a robotic arm using signals recorded from motor cortex (Collinger et al. 

2013; Wodlinger et al. 2014; Hochberg et al. 2012). Without somatosensory feedback, the 

effectiveness of the movements generated through these interfaces will be limited, perhaps like 

those of people who have lost somatosensation (Ghez et al. 1990; Sainburg et al. 1995). 

Intracortical microstimulation (ICMS), which has been shown to elicit percepts in rats, monkeys, 

and humans (Devecioğlu and Güçlü 2017; Fridman et al. 2010; London et al. 2008; Romo et al. 

2000), is a promising approach for providing artificial somatosensory feedback via an afferent 

interface (Tabot et al. 2013; Flesher et al. 2016). In the first such bidirectional BMI, monkeys 

could move a virtual arm to explore the “texture” of different virtual objects, a property conveyed 

by two different temporal patterns of ICMS (O’Doherty et al. 2011b). The monkeys moved the 

arm sequentially to the objects to find the one with the rewarded texture. More advanced methods 

have been used to supply a spinal cord injured patient with information about object contact 

location and force (Flesher et al. 2016; Flesher et al. 2021). Using a robotic arm, the patient was 

able to pick up, move, and place objects faster using vision combined with ICMS feedback than 

with visual feedback alone, primarily because they spent less time attempting to grasp the object 

(Flesher et al. 2021). 

While some sensations of limb movement have been elicited with ICMS (Salas et al. 2018), 

achieving usable feedback about the position and movement of the arm has proven more difficult 

than providing the analogous artificial sense of touch. In one approach, monkeys learned to reach 

to invisible targets using ICMS feedback through eight arbitrarily chosen electrodes which 

provided information about the error vector between hand and target position (Dadarlat, 
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O'Doherty, and Sabes 2015). Monkeys only learned to use this feedback after a few months of 

training. To shorten this long learning period, it may be possible for ICMS to provide more 

naturalistic feedback (Bensmaia and Miller 2014). In a second approach, researchers attempted to 

evoke perceptions of hand movement by stimulating on sets of electrodes in somatosensory 

cortical area 2, that had similar preferred directions (Tomlinson and Miller 2016). This biomimetic 

approach was successful for six of seven sets of electrodes in one monkey but failed in three other 

monkeys. The difference across monkeys may have been due to the array placement across 

monkeys or the particular population of neurons activated by stimulation. Had it been possible to 

monitor the homogeneity of preferred directions of activated neurons, the explanation may have 

been clearer. 

To better interpret experiments which use ICMS and to achieve more successful mimicry 

of naturally occurring activity, it will likely be important to quantify the evoked response of 

neurons to a range of stimulus parameters. However, recording at short latency after stimulation 

is difficult due to the large shock artifact it causes (Hao, Riehle, and Brochier 2016; Weiss et al. 

2018). Many experiments have been limited to recordings made on electrodes hundreds of microns 

away or even on a separate array (Hao, Riehle, and Brochier 2016; Butovas and Schwarz 2003; 

Chen et al. 2020; Allison-Walker et al. 2021), thereby missing evoked activity near the stimulated 

electrode. Further, previous studies have typically characterized the evoked response to only single 

pulses of stimulation, whereas future afferent interfaces will need to employ trains of stimulation 

throughout a grasp and/or movement (Flesher et al. 2021). 

We developed novel hardware and software techniques allowing us to record ~0.7 ms after 

stimulation offset on every electrode in an implanted microelectrode array, including even the 

stimulated one. We first used single pulses across a wide range of amplitudes to characterize the 
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short-latency excitatory and long-lasting inhibitory responses of neurons recorded on the 

stimulated electrode, as was done previously for non-stimulated electrodes (Hao, Riehle, and 

Brochier 2016; Butovas and Schwarz 2003). In preliminary experiments, we noticed that the 

evoked response on the stimulated electrode decreased rapidly throughout ~0.2-s, high-frequency 

trains, and that neurons greatly increased their firing rates for ~0.1 s after the end of the train. We 

extended the train length to 4 seconds, more akin to the prolonged stimulation provided by an 

afferent interface (Flesher et al. 2021). During these longer trains, the excitatory response recorded 

on the stimulated electrode decayed, while the response on non-stimulated electrodes was typically 

maintained throughout the train. The results in this paper can inform the interpretation and design 

of stimulation patterns for providing somatosensory feedback.  

Methods 

Animal Subjects 

We performed experiments using two male rhesus macaques. Monkey H was 12.0 kg and 

monkey D was 10.0 kg when we performed the experiments. We performed all procedures in this 

study in accordance with the Guide for the Care and Use of Laboratory Animals. The institutional 

animal care and use committee of Northwestern University approved all procedures in this study 

under protocol #IS00000367. 

Implant and data collection 

Each monkey was implanted with a 96-electrode sputtered iridium-oxide multi-electrode 

array with 1.0 mm electrodes (Blackrock Neurotech, Salt Lake City, UT) in the proximal arm area 

of somatosensory cortical area 2. In addition to surface landmarks, we recorded intraoperatively 

from the cortical surface while manipulating the arm and hand to find the arm representation (for 
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more details, see Weber et al. 2011). We performed sensory mappings after implantation to 

confirm that recorded neurons had receptive fields corresponding to the proximal arm. 

We used the Blackrock Stim Headstage, Front-End amplifier, and Neural Signal Processor 

(Blackrock Neurotech, Salt Lake City, UT) to record signals at 30 kHz. We delivered ICMS from 

the Blackrock CereStim R96. Unless otherwise noted, electrodes were stimulated with biphasic 

pulses, each phase lasting 200 μs and separated by 53 μs. We used the sync line from the CereStim 

R96 to determine stimulation onset, accounting for the 60 μs delay between sync line going high 

and stimulation. 

During all experiments, monkeys performed a center-out reaching task while holding the 

handle of a robotic manipulandum (for more details, see (London and Miller 2012)) or sat idly in 

the chair. Stimulation was delivered independently of the monkey’s behavior.   

Pipeline to record at short latencies after ICMS 

Typically, ICMS causes large electrical artifacts which prevent neural recordings for an 

extended period after stimulation. When using the Blackrock Stim Headstage and Front-End 

amplifier to record on the stimulated electrode, the recorded signal saturated the amplifier for 

several milliseconds (Fig. 2.1a, dashed lines), after which the signal slowly recovered to baseline. 

To enable recording at shorter latencies, we developed a rapid-recovery amplifier (RRA, see 

Supplementary Materials) and used it instead of the Blackrock Stim Headstage and Front-end 

Amplifier. We used a custom-made breakout board to pass a single channel from the Cereport to 

the RRA, bypassing the Stim Headstage (see Supplementary Materials). The RRA has several 

features that allow it to operate on the same electrode as the stimulator, yet still recover rapidly 

after stimulation. The wide input range (± 15 V) of the first stage of the RRA prevents input voltage 
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clamping and current shunting as well as output saturation during the stimulus pulse. To prevent 

saturation of subsequent stages, the gain of the RRA declines rapidly from a maximum of ~1000 

to a minimum of 1 during large dynamic swings of the front-end voltage. The output of the RRA, 

which was limited to ± 5 V, was connected to an analog input on the Blackrock Neural Signal 

Processor (Fig. 2.1b).  
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Fig. 2.1. Overview of artifact reduction pipeline. (a) Example recordings from the stimulated channel are shown when 

recording with the Blackrock Stim Headstage and Front-end amplifier (dashed lines) and the rapid recovery amplifier 

(RRA; solid lines). We stimulated with anodic-first (blue) or cathodic-first (red) biphasic pulses with phase duration of 

200 μs, phases separated by 53 μs, and with an amplitude of 50 µA. (b) Block diagram depicting the artifact reduction 

pipeline. The rapid-recovery amplifier receives signals and passes them to the Blackrock Neural Signal Processor. Signals 

from channels that were not stimulated were amplified by the Blackrock Stim Headstage and Front-End amplifier. All 

signals were sampled at 30 kHz and filtered offline. After filtering, we extracted spikes via threshold crossings and then 

sorted the spike data. (c) Voltages recorded using the RRA after acausal time-reversed high-pass filtering. Traces in (c) 

correspond to those in (a).   
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To measure the progressive gain recovery of the RRA after stimulation when stimulating 

and recording on the same electrode, we monitored the size of the artifact evoked by much lower 

current stimulation on a remote electrode. We tested gain recovery following alternating cathodic- 

and anodic-first biphasic pulses at 10 Hz, with amplitudes of 5–30 μA in 5 μA steps and 40–100 

μA in 10 μA steps. We tested 25 stimulation electrodes across the two monkeys and delivered 32 

± 2 (mean ± sd) pulses per condition. The remote channel was stimulated at 3000 Hz for 4.5 ms, 

with cathodic-first biphasic pulses (53 μs pulse length with 53 μs between phases). We used 1 μA 

to monitor gain recovery on four stimulation electrodes in one session, and 5 μA on the remote 

channel in later sessions.   

Even with the RRA, full recovery to baseline took ~3 ms (Fig. 2.1a, solid lines). While a 

high-pass filter removed this drift, ringing caused by filtering the large artifact prevented neural 

recording for ~10 ms. Instead, we applied a 500 Hz high-pass Butterworth filter acausally, 

backwards in time, thereby preventing the introduction of a ringing artifact (Fig. 2.1c). We 

adjusted the timestamps of recorded spikes to account for the ~100 μs phase shift caused by 

filtering. Even with this acausal filtering we avoided filtering through the artifact, which would 

have obscured the pre-stimulus data (as seen in Fig. 2.1c). To account for the changing gain of the 

RRA, we divided the recorded signal by the measured gain recovery. After filtering, we extracted 

neural activity by finding threshold crossings and then sorting single units using OfflineSorter 

(Plexon Inc., Dallas, TX). 

Recordings on non-stimulated electrodes using the Stim Headstage and Front-end 

Amplifier were saturated for ~0.7 ms after stimulation offset. In our testing, the RRA did not 

shorten the recording latency on non-stimulated electrodes. Because of this, we did not use the 
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RRA when recording on non-stimulated channels. Nevertheless, we filtered acausally before 

extracting neural activity as we did for recordings made on the stimulated electrode.  

Evaluating the performance of the RRA and acausal, time-reversed filtering 

To evaluate the performance of our pipeline for recording neural activity on the stimulated 

electrode, we tested how well we could recover simulated activity, added artificially at different 

latencies after stimulation. For this simulation, we recorded in the presence of artifacts with either 

the RRA or the Stim Headstage and Front-End amplifier on 10 representative stimulation 

electrodes. To simulate neural activity, we recorded naturally occurring spike waveforms during a 

period without stimulation, which we added to the recordings at random times after stimulation. 

We added spike waveforms at random latencies between 0.2–7 ms following 50% of the stimuli 

for each of the 10 electrodes. For each electrode, we generated 200,000 stimulation artifacts, half 

from recordings made with the RRA and half with the standard Blackrock hardware. We tested 

the same amplitudes described above for measuring RRA gain but used only cathodic-first pulses 

since our subsequent experiments used this polarity. We computed the percentage of spikes 

recovered by comparing the time stamps of recovered spikes to the artificial ones, tolerating ± 0.33 

ms of error.  

Stimulation protocol for characterizing the evoked response 

After evaluating our recording capability, we characterized the response evoked on the 

stimulated channel by single pulses or pulse trains. Table 2.1 shows the numbers of sessions for 

each monkey, electrodes tested, neurons recorded, and trains per condition for all experiments. 

The final column (inter-train period) indicates the time between successive stimulation conditions. 

We slightly jittered the inter-train period for each condition to prevent synchronizing stimulation 
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with any physiological process by adding 0–100 ms sampled from a uniform distribution. We 

measured the progressive gain recovery of the RRA at each stimulation amplitude for each 

stimulation electrode. 

In initial experiments we measured the response evoked by single pulses at a range of 

amplitudes typically used in BMIs (Rajan et al. 2015; Flesher et al. 2019; Salas et al. 2018). In 

four experiments, we tested 10–60 μA in 10 μA steps, 80 and 100 μA. Later, we probed the lower 

stimulation amplitudes more thoroughly using 10–30 μA in 5 μA steps and 40, 50, and 100 μA for 

another 4 electrodes, then added a 5 μA condition for the final 21 electrodes.  

We next characterized the responses to short (~0.2 s) trains. We stimulated at 50 μA and 

at 20, 49, or 94 Hz for 7 channels, from which we recorded 7 neurons. After noticing a modest 

decay in the neuronal responses throughout the 0.2 s train at 94 Hz, we added a 179 Hz condition 

for the remaining 12 channels, from which we recorded the remaining 12 neurons. After short, 

high frequency trains, we observed rebound excitation, which we analyzed with this data.  

We then characterized the evoked response to longer (~4 s) trains of stimulation, a duration 

that approximates that required for a BMI user to grasp an object (Flesher et al. 2021). Because 

the recorded neural response decayed rapidly with 179 Hz stimulation, we used a maximum of 131 

Hz when stimulating with 4-s long trains. We stimulated with all combinations of 51, 80, 104, 131 

Hz and 20, 40, 60 μA, amplitudes, these ranges chosen to evoke robust responses. While delivering 

continuously varying sensory feedback will require trains with time-varying amplitude or 

frequency, testing this full parameter space would not be feasible. Thus, we used trains with 

constant stimulation parameters to partially sample the space. Data were collected simultaneously 

on the stimulated and non-stimulated channels during this experiment. The results for non-

stimulated channels may include a given neuron activated by different stimulation electrodes.  
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  # sessions # stimulation 

electrodes 

# neurons # pulses or trains  

(mean ± std.) 

Inter-train 

period (s) 

Single Pulse 4H; 4D 29 30 82.6 ± 14.4 0.5 

Short Train 7H; 5D 19 19 253 ±17.2 0.5 

Cont. Long Train (stim) 6H; 4D 24 25 8 ± 0 20 

Cont. Long Train (nonstim) 6H; 4D 24 437 8 ± 0 20 

Table 2.1. Experimental parameters are shown for the single pulse and short train experiments, and the 

continuous (Cont.) long train experiments when recording on either the stimulated channel (stim) or 

non-stimulated channels (nonstim). The numbers of sessions for monkey H and monkey D are denoted 

with ‘H’ and ‘D’ respectively. 
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Data analysis 

All data analysis was performed using MATLAB (MathWorks Inc., Natick, MA). To 

quantify the amount of activity evoked by each pulse, we counted spikes between 0.5 and 5.0 ms 

after the offset of each pulse and averaged across pulses. To account for different baseline firing 

rates across neurons, we subtracted the expected number of spontaneous spikes based on the 

baseline firing rate measured 10 ms to 80 ms before onset of single pulses or 0.2 to 2 s before train 

onset. 

We computed an activation threshold for each neuron in response to single pulses. To do 

so, we measured the proportion of stimulation pulses with at least one spike occurring 0.5–5 ms 

after stimulation offset for each condition and neuron. We defined the activation threshold as the 

smallest amplitude at which the proportion of trials with a spike was significantly larger than that 

expected based on the baseline firing rate (Chi-Square test, α < 0.05). We determined if a neuron 

was responsive to long trains of stimulation in a similar manner. Since the evoked response 

decayed throughout long trains, we considered only the first 20 pulses in each train. For each 

condition, neurons with significantly more spikes than chance (Chi-Square test, α < 0.05) were 

considered responsive.  

Multiple spikes were typically evoked at consistent latencies by single stimulus pulses. We 

grouped spikes based on their response latency across trials for each neuron and condition. To do 

so, we computed a firing rate for the spikes evoked after single pulses by convolving them with a 

non-causal Gaussian kernel of width equal to a standard deviation of 0.2 ms, which we then 

averaged across pulses. We found peaks in this average with MATLAB’s findpeaks algorithm. 

This algorithm uses “prominence”, the height of a peak and its location relative to other peaks, to 

measure how much a peak stands out. We required peaks to have a minimum prominence of 1.0 
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and to be separated by at least 0.7 ms. This algorithm also computes the width at half maximum 

of each peak. Spikes that occurred within the width of each peak were included in the 

corresponding group. We measured the latency of each peak and computed the standard deviation 

of the spike times within each group. Our results were only slightly affected by small changes to 

the smoothing kernel width, minimum peak spacing, and minimum prominence. 

After an evoked response, many neurons underwent either long-lasting inhibition or 

rebound excitation, which we quantified by computing the average firing rate across trials using a 

two-bin running average across 5 ms bins. We defined an inhibitory response as firing rates below 

three-quarters of the mean baseline firing rate for two consecutive bins (a similar threshold as 

(Butovas and Schwarz 2003)) and measured the time the firing rate remained below this threshold. 

We defined a rebound excitatory response if two consecutive bins exceeded twice the mean 

baseline firing rate and the corresponding duration.  

For many neurons, the evoked response decreased throughout long trains of stimulation. 

We measured the decay rate for each responsive neuron. To do so, we measured the mean firing 

rate in 50 ms bins from 0.0 to 3.9 s after train onset, excluding the initial 1 ms after each pulse, 

which was obscured by the stimulus artifact. We then fit the firing rate with an exponential 

decaying function, 

𝑎 ∗ 𝑒(−𝑏∗𝑥), 

with 𝑎 as the intercept and 𝑏 as the decay rate. A large decay rate indicates the response decayed 

rapidly, while a decay rate near zero indicates the response was maintained throughout the train.  
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Statistical Analysis 

Statistical analyses were performed using MATLAB (MathWorks Inc., Natick, MA). We 

used linear and logistic models to analyze many of our results. We included two interaction terms 

in the model when analyzing the effect of amplitude, time, and amplifier on the proportion of 

simulated spikes recovered: one between amplitude and amplifier, to test whether the effect of 

amplitude was reduced with the RRA, and a second between time and amplifier, to see if the rate 

of spike recovery increased with the RRA. When analyzing the effect of amplitude on the latency 

of evoked spikes, we included an interaction term between amplitude and spike group number. 

Finally, we included an interaction term between amplitude and frequency when analyzing the 

decay rate throughout long trains of stimulation. After fitting the models, we performed F-tests on 

the resulting parameters from the linear models and t-tests on the resulting parameters from the 

logistic models. 

We performed Wilcoxon rank-sum tests to compare the magnitude of evoked activity 

recorded on non-stimulated channels at 20 μA and 60 μA for each neuron and stimulation electrode 

pair. Here, we aggregated data across stimulation frequencies.  

Results 

Recording pipeline performance 

To evaluate the performance of the RRA, we first measured its dynamic gain recovery after 

stimulation at different amplitudes. We delivered a single biphasic pulse through the electrode to 

which the RRA was connected and simultaneously injected a known signal to a remote electrode 

(Fig. 2.2a). After acausal, time-reversed filtering, we determined the gain of the amplifier by 

dividing the amplitude of each pulse in the known signal by the mean amplitude of the final three 
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pulses, which were well after full gain recovery. The mean gain recovery curves, aggregated for 

25 stimulation electrodes across two monkeys, are shown for both cathodic- and anodic-first pulses 

at several stimulation amplitudes in Fig. 2.2b. We compared the gain of the amplifier at 1 ms across 

stimulation amplitudes and polarities using a repeated measures ANOVA (F(26,481) = 40.6, p = 

6.58E-104). The gain of the amplifier recovered more slowly as amplitude increased (F(1,481) = 

762.65, p ≅ 0) and roughly 140 µs faster for cathodic-first pulses than for anodic-first pulses 

(F(1,481) = 142.2, p ≅ 0). Subsequently, when measuring actual neural signals, we accounted for 

the changing gain by dividing the recorded signal by the gain function (Fig. 2.2a, bottom). 
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Fig. 2.2. Evaluation of rapid-recovery amplifier (RRA). (a) Example recordings on the stimulated channel when 

evaluating the gain of the RRA are shown both before (top) and after (middle) acausal, time-reversed filtering, and 

after accounting for the changing gain (bottom). We stimulated with biphasic anodic-first (blue) or cathodic-first (red) 

pulses with phase duration of 200 μs, phases separated by 53 μs, and an amplitude of 50 µA. Pulses were 

simultaneously delivered on a remote channel to inject a ‘known’ signal. (b) The relative gain of the RRA for 

stimulation at different amplitudes. The gain was determined by measuring the peak-to-peak voltage of the injected 

signal. Error bars denote standard deviation across electrodes (n = 25). (c) Spikes were artificially added to artifact 

traces recorded on the stimulated channel. The proportion of simulated spikes recovered using our pipeline for both 

the RRA (solid lines) and the Blackrock Stim Headstage (dashed lines) across stimulation amplitudes (n = 10). 
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We tested the ability to recover spikes following stimulation by adding representative, 

naturally occurring spike waveforms to actual recordings of stimulation artifacts to establish a 

ground-truth reference. The proportion of these spikes that could be recovered with the Blackrock 

Headstage and with the RRA are shown in Fig. 2.2c. We used logistic regression to predict the 

proportion of spikes recovered based on the stimulation amplitude and time after stimulation, 

(overall model χ2 = 1.97×103, p ≅ 0). Not surprisingly, spike recovery worsened with increasing 

stimulation amplitude regardless of amplifier (p ≅ 0, t-test), but spikes were recovered at much 

shorter latencies with the RRA than with the Blackrock Stim Headstage (p ≅ 0, t-test). The RRA 

also reduced the effect of amplitude (p = 0.0015, t-test) and increased the recovery rate (p = 0.0090, 

t-test).  

Excitatory and inhibitory response to single pulses of ICMS 

After evaluating the performance of the RRA, we used it for a series of experiments to 

quantify the neural responses evoked on the stimulated electrode. We first characterized the 

excitatory and inhibitory responses to single stimulus pulses across a wide range of current 

amplitudes (5–100 µA). Example raw and acausal filtered spikes for action potentials recorded at 

least 100 ms (top) and 1-3 ms after (bottom) stimulation offset are shown in Fig. 2.3a. The shape 

of filtered spikes recorded shortly after stimulation was similar to those recorded long after 

stimulation offset. Responses for this example neuron are shown in Fig. 2.3b. While it was not 

possible to record throughout stimulation (red shading indicates region obscured by the artifact), 

using the RRA allowed us to record many spikes that we could not have seen if we had used the 

Blackrock Headstage (grey shading). To quantify the amount of evoked activity, we measured the 

number of spikes evoked for each amplitude and subtracted the expected number of spikes due to 
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baseline firing. The number of spikes evoked above baseline firing across amplitudes is shown in 

Fig. 2.3c. The number increased significantly as amplitude increased (overall model F(30,223) = 

4.88, p ≅ 0; amplitude factor F(1,223) = 12.029, p = 6.3×10-4). Among the 29 out of 30 neurons 

that were activated with the range of currents tested, the median activation threshold was 10 µA 

(Fig. 2.3c).  

Sufficiently high stimulation amplitude evoked multiple spikes within 10 ms of stimulation 

offset. These spikes occurred at consistent latencies across trials, with later spikes having more 

varied timing than earlier ones. To quantify this, we grouped evoked spikes based on their latency 

(Fig. 2.3b and Supplementary Materials show example groups). Fig. 2.3e shows the standard 

deviation of spike times within a group compared to the latency of that group for multiple 

stimulation amplitudes. This standard deviation increased significantly as group latency increased 

(overall model F(32,302) = 103, p ≅ 0; latency factor F(1,302) = 574.13, p ≅ 0). We also noticed 

that latencies decreased as stimulation amplitude increased, seen as a leftward shift in Fig. 2.3a as 

current increased to 100 µA, at which point the artifact likely obscured the first recorded group of 

evoked spikes. Using a linear model across all neurons, we determined that the latency of groups 

decreased by 3.6 ± 0.7 µs/µA as amplitude increased (overall model F(31,303) = 55.1, p ≅ 0; 

amplitude factor F(1,303) = 25.497, p = 7.7×10-7).  

The percentage of neurons that responded with different numbers of spike groups for 

stimulation at various amplitudes is shown in Fig. 2.3f. For our example neuron, stimulation at 

100 µA appeared to evoke 4 groups of spikes, as did 7% of neurons we recorded. However, at 100 

µA, the extended artifact and decreased latency likely obscured the entire initial group of spikes, 

as can be seen in panel b. When we determined that this occurred, we increased the number of 
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groups for the corresponding neuron by one (increasing the example neuron’s group count from 4 

to 5 in Fig. 2.3f). Even without this compensation, the number of groups increased significantly 

with stimulation amplitude (overall model: F(20,223) = 5.65, p ≅ 0;  amplitude factor: F(1,223) = 

85.5, p ≅ 0). 
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Fig. 2.3. Excitatory response on the stimulated channel after single pulses of stimulation. (a) Example spikes recorded on 

the stimulated electrode at least 100 ms after stimulation offset before and after acausal filtering. Spikes from the same 

neuron recorded 1-3 ms after stimulation offset before and after acausal filtering. (b) Response of the neuron in (a) to single 

cathodic-first pulses at different amplitudes. Each row is a different stimulation trial (728 total), and each tick represents an 

action potential from this neuron. Blue, horizontal lines separate stimulation trials at different amplitudes. Red shading 

depicts the time interval in which we were unable to record neural signal with the RRA. Grey shading depicts the 

corresponding time had we used the Blackrock Stim Headstage and Front-End amplifier. (c) The number of evoked spikes 

above baseline is shown across neurons (n = 30) for each stimulation amplitude. The box represents the 25 th, 50th and 75th 

percentiles, whiskers represent the extent of the data, and X’s mark outliers. (d) Distribution of activation thresholds across 

neurons. (e) The standard deviation of spike times within an evoked spike group is shown against the latency of that group 

for different stimulation amplitudes. (f) The number of groups evoked for different stimulation amplitudes. The number 

within each box and the shading of each box indicates the percentage of neurons. The prolonged artifact that occurred when 

stimulating with 100 µA likely obscured the entire initial group of spikes. When we determined that this occurred, we 

increased the group number by one (displayed in grey; ‘adj’).  
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Neuronal activity was typically suppressed anywhere from 10 to 150 ms after single pulses, 

depending on the stimulation amplitude (Fig. 2.4a). We fit a linear model to predict inhibition 

duration by amplitude across neurons (overall model F(30,180) = 1.9, p=0.0057). We found that 

increasing stimulation amplitude significantly increased the inhibition duration (amplitude factor 

F(1,180) = 32.43, p = 5.0×10-8) and increased the fraction of cells undergoing inhibition (Fig. 

2.4b). Stimulation amplitudes ≥ 40 µA caused inhibition in ~90% of neurons. 

Temporal response to trains of ICMS 

We hypothesized that the activity evoked by ICMS would decrease throughout long 

stimulus trains as a consequence of the long-lasting inhibition on stimulated electrodes following 

single pulses (Fig. 2.4). To test this, we stimulated on single electrodes with 4-s long trains at 

several amplitudes (20, 40, 60 µA) and frequencies (51, 80, 104, 131 Hz). Example spikes recorded 

from a neuron on the stimulated electrode are shown in Fig. 2.5a (grey) using the same format as 

Fig. 2.3a. The mean responses across eight trains for nine of the 12 stimulation conditions are 

shown as grey traces in Fig. 2.5b for this example neuron. For this neuron, the evoked response 

rapidly decayed throughout the train, particularly for the larger amplitudes and frequencies. For 

the 21.5 ± 2.0 neurons that were activated significantly for each condition (Chi-Square test, α < 

0.05), we computed a decay rate by fitting the firing rate during stimulation with an exponential 

(Fig. 2.5c).  Using a linear model (F(26,231) = 14.7, p ≅ 0), we determined that the evoked 

response decayed significantly faster with greater stimulation amplitude or frequency (amplitude: 

F(1,231) = 119, p ≅ 0; frequency: F(1,231) = 134, p ≅ 0). Increased frequency (amplitude) had a 

larger effect at higher amplitudes (frequencies) (interaction term: F(1,231) = 71.4, p ≅ 0). 
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Fig. 2.4. Inhibitory response recorded on the stimulated channel after single pulses of stimulation. (a) The 

inhibition duration across neurons (n = 30) recorded on the stimulated channel after single cathodic-first 

pulses of stimulation across stimulation amplitudes. (b) The fraction of cells with an inhibitory response is 

shown for each stimulation amplitude. 
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If neurons recorded on non-stimulated electrodes were driven transsynaptically by neurons 

activated near the stimulated electrode, then we would expect to see a similar rapid decay in the 

evoked activity for neurons on non-stimulated electrodes. If, on the other hand, neurons even on 

distant electrodes are driven directly, their decay rate may differ from that of neurons recorded on 

the stimulated electrode. To determine this, we examined the neuronal activity evoked on non-

stimulated electrodes. Example spikes are shown for an example neuron in response to same- (gray 

traces) and different- (black traces) channel stimulation (Fig. 2.5a). In contrast to its response on 

the stimulated electrode, the activity of this neuron did not decay appreciably when a different 

electrode was stimulated (Fig. 2.5b, black traces). The 260 ± 90 neurons recorded on non-

stimulated electrodes that were activated by stimulation (Chi-Square test, α <0.5) all had 

maintained responses throughout the stimulation train, as summarized in Fig. 2.5d. Using a linear 

model with data aggregated across amplitudes and frequencies (overall model: F(81,3269) = 51.6, 

p ≅ 0), we determined that the evoked response decayed significantly faster for neurons recorded 

on the stimulated channel than on non-stimulated channels (stimulated channel factor: F(1,3269) 

= 980.3, p ≅ 0). These results imply that the response on non-stimulated electrodes is driven 

directly, or by evoked activity that occurs before we can record it.  
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Fig. 2.5. Evoked response throughout 4-s long trains of stimulation. (a) Example spikes for a neuron when the channel 

it was recorded on was stimulated (grey) and when a different channel was stimulated (black) in the same format as 

Fig. 2.3a. (b) The mean firing rate across stimulation trials for the same neuron when the channel it was recorded on 

was stimulated (grey) and when a different channel was stimulated (black) for different stimulation amplitudes 

(columns) and frequencies (rows). Amplitudes and frequencies are noted above and to the right of the panels, 

respectively. Vertical, red dashed lines indicate train onset and offset. (c) The decay rates across neurons recorded on 

the stimulated channel for each amplitude and frequency (n = 21.5 ± 2.0 across conditions). (d) The decay rates for 

each neuron recorded on non-stimulated channels (for each amplitude and frequency (n = 258 ± 86 across conditions). 

Note the smaller y-limits in (d) compared to (c). 
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After the end of an ICMS train, we expected neurons on the stimulated electrode to be 

inhibited for many milliseconds, as we observed with single pulses (Fig. 2.4). Indeed, low-

frequency, 50 µA trains delivered for ~0.2 s caused inhibition (see example in Fig. 2.6a) in about 

50% of neurons, lasting from 10-250 ms (Fig. 2.6b). Faster stimulus frequency increased inhibition 

duration (Model: F(19,21) = 6.38, p = 5.9×10-5, frequency factor F(1,21) = 36.0, p=6.0×10-6) but  

this effect was not observed in all 16 tested neurons. At 179 Hz, the highest frequency we tested, 

the fraction of cells with an inhibitory response was only ~8%. Instead of inhibition in these cases, 

we observed a large burst of activity immediately after the stimulation train. This rebound 

excitation occurred for 75% of cells following stimulation at 179 Hz and lasted from ~25-240 ms 

Fig. 2.6c). If a neuron exhibited rebound excitation for multiple stimulation frequencies, higher 

frequencies almost always resulted in longer lasting rebound. During the longer 4-s trains, we 

observed rebound excitation very infrequently (2/25 cells) potentially because of the longer train 

duration. 
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Fig. 2.6. Rebound excitation recorded on the stimulated electrode after short trains of stimulation. (a) The 

response of an example neuron recorded on the stimulated electrode during ~200 ms trains at different 

frequencies. Red lines indicate stimulation pulses. Stimulation frequencies are shown on the left of the figure 

for 50 µA stimulation. (b) The fraction of cells (n = 19 for 20, 49, and 94 Hz; n= 12 for 179 Hz) that displayed 

an inhibitory response after the end of the short trains (top) and the duration of the inhibitory responses 

(bottom) for each frequency. (c) The fraction of cells that displayed rebound excitation (top) and the duration 

of the rebound excitation (bottom) for each frequency. Lines connecting points represent data from the same 

neuron. 
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Spatial pattern of the response to ICMS trains 

Both increased amplitude and frequency typically increase ICMS detectability, perhaps 

because of increased charge delivery (Kim, Callier, Tabot, Gaunt, et al. 2015; Otto, Rousche, and 

Kipke 2005; Sombeck and Miller 2019). Increasing amplitude leads both to more activity near the 

stimulated electrode (Fig. 2.3) as well as a wider spread of activity recorded across a multi-

electrode array (Hao, Riehle, and Brochier 2016; Stoney, Thompson, and Asanuma 1968; 

Kumaravelu et al. 2021), likely because increased amplitude results in more charge delivered per 

pulse. Greater frequency, though, does not change the charge per pulse and thus may not lead to 

equivalent effects. To study these effects, we measured activity on non-stimulated electrodes 

throughout 4-s trains of continuous stimulation. We computed the mean firing rate above baseline 

for each neuron and amplitude / frequency combination across 8 trains. Fig. 2.7a shows the mean 

firing rate above baseline for each stimulation electrode aggregated across two monkeys against 

distance from the stimulated electrode. For each stimulation electrode, we only analyzed neurons 

that had activation thresholds at or below 20 µA when stimulating at 51 Hz. The evoked activity 

per pulse at 60 µA was significantly larger than that at 20 µA for 290 out of 437 neurons (p<0.001, 

Wilcoxon rank-sum test) (Fig. 2.7b). Using a linear model (overall model: F(125,1362) = 19.4, p 

≅ 0), we determined that increasing amplitude and frequency increased the evoked firing rate 

(amplitude factor: F(1,1362) = 674, p ≅ 0, frequency factor: F(1,1362) = 472, p ≅ 0).  

We wondered whether the effect of frequency was simply due to the different number of 

stimulation pulses in the train. To analyze this, we normalized firing rates by the number of pulses 

and repeated our statistics (overall model: F(125,1362) = 20.9, p ≅ 0). Increasing frequency no 
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longer significantly increased the evoked activity per pulse (frequency factor: F(1,1362) = 0.81, p 

= 0.37). The apparent effect of frequency was only due to the greater number of pulses in the train.  

Neural discharge typically has a fixed FANO factor, meaning that the variance of the firing 

rate increases with the mean rate (Softky and Koch 1993; Tolhurst, Movshon, and Dean 1983). 

We wondered whether the variance of ICMS-induced neural activity also increases with amplitude 

and frequency, along with increases in mean rate (Fig. 2.7b). To test this, we measured the variance 

in firing rate across trains for each neuron and each condition (Fig. 2.7c). We observed no 

appreciable change in the variance with increasing amplitude and only a slight increase with 

frequency. To quantify these effects, we used a linear model to determine the effect of amplitude 

and frequency on the variance in firing rate (overall model: F(126,1362) = 7.21, p ≅ 0). While 

increasing amplitude significantly decreased variance (amplitude factor: F(1,1362) = 34.0, p = 

6.8𝑥10−9) and increasing frequency increased variance (F(1,1362) = 34.4, p = 5.7𝑥10−9), the 

effect sizes for both effects were tiny. This implies that ICMS-evoked activity does not have a 

fixed FANO factor; increasing either amplitude or frequency increases the mean rate without an 

equivalent effect on variance. 

We also hypothesized that increased stimulation amplitude would increase the distance at 

which neurons are activated while increased frequency would not. Data for a subset of stimulation 

conditions are shown in Fig. 2.7d. We used logistic regression to determine the effect of amplitude, 

frequency, and distance on the proportion of activated neurons (overall model χ2(104) = 1.69×103, 

p ≅ 0). While increasing either amplitude or frequency increased the proportion of activated 

neurons (amplitude: p ≅ 0; frequency: p = 1.6×10-9), the effect of frequency was an order of 

magnitude smaller.  
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Fig. 2.7. Evoked response on non-stimulated channels during 4-s long trains of ICMS. (a) The firing rate above baseline 

against distance from the stimulated electrode for different amplitudes (columns) and frequencies (rows). Each point 

represents a neuron and stimulated electrode pair (n = 258.2 ± 86.1 across conditions). (b) The firing rate above baseline 

for each frequency and amplitude condition for responsive neurons. (c) The variance of the firing rate across trains for 

each condition. (d) The proportion of neurons activated at different distances is shown for a subset of amplitudes 

(color) and frequencies (line-style) (437 total neurons). 
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Discussion 

We developed hardware and software tools to enable recording at short latency after ICMS. 

With these tools, we were able to record roughly 0.7 ms after the end of stimulation, even from 

the stimulated channel. We investigated the evoked response to single pulses, short trains, and long 

trains of ICMS of varying amplitude and frequency to better understand the neural response to 

stimulation. Here, we compare our methods and results to those of previous studies, discuss the 

mode of activation for the spikes we recorded, and how our results may impact the design of 

biomimetic stimulation patterns in afferent interfaces. 

Comparison of artifact suppression to previous techniques 

Recording neurophysiological potentials immediately after passing current through an 

electrode is difficult; the large shock artifact typically prevents recordings for many milliseconds. 

We developed and evaluated a rapid-recovery amplifier (RRA) to enable short latency recordings, 

particularly on the stimulated electrode. The RRA clamps the voltage below that which would 

saturate downstream electronics by reducing gain as the magnitude of the input voltage increases 

(Fig. 2.2b). An alternative approach to shorten the duration of the artifact is to electrically 

disconnect the recording system during stimulation (Zhou, Johnson, and Muller 2018). While this 

approach is effective on non-stimulated electrodes (Hao, Riehle, and Brochier 2016), it cannot 

remove artifact on the stimulated electrode, which is caused by residual polarization of the 

electrode itself (Venkatraman et al. 2008). Our approach is similar to clamping the slew rate (first 

derivative) of a signal, as has been done previously (Epstein 1995). By reducing the gain, we 

reduced the size of the artifact and prevented saturation, thereby allowing us to record at earlier 
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latencies. Another important advantage of the RRA is the wide input voltage range (±15 V) that 

avoids input clamping and stimulus current shunting of the relatively high voltage (< 10 V) 

stimulus pulses. A benefit of our approach is that the RRA can be placed in front of pre-existing 

recording systems, in our case, the Cerebus system from Blackrock Neurotech. Saturation can also 

be prevented by using an amplifier with a lower gain and/or an amplifier with a higher maximum 

input voltage (Jung, Kim, and Nam 2018; Rolston, Gross, and Potter 2009).  

While the RRA prevents amplifier saturation that would otherwise be caused by the large 

shock artifact, the recorded signal still returns slowly to baseline after stimulation (Fig. 2.1a). This 

slow return is likely caused by slow dissipation of the residual charge on the electrode (Zhou, 

Johnson, and Muller 2018). To remove excess charge more quickly, custom electronics could be 

designed to actively discharge the electrode to a pre-stimulus voltage (Brown et al. 2008; 

DeMichele and Troyk 2003; Freeman 1971), although this may introduce switching artifacts that 

diminish the effectiveness of this approach.  

The slow return to baseline can also be removed offline. When done with a high-pass filter, 

it is important not to filter through the shock artifact, as this can cause ringing and obscure the 

neural signal. Some solutions include filtering the data beginning a fixed time after the end of 

stimulation (Hao, Riehle, and Brochier 2016) or blanking the signal and using a low-order filter to 

limit ringing (Weiss et al. 2018). Instead, we filtered acausally, backwards in time so that any 

ringing would be pushed before the stimulation, leaving the post-stimulus data clean (such 

acausally displaced ringing can be seen before 0 ms in Fig. 2.1c). This approach does not require 

defining a time at which the shock artifact has ended, though it does push neural signal back in 

time ~100 µs. We compensated for this time shift by adjusting the time stamps of recorded spikes 

by 100 µs. With the RRA and acausal, time-reversed filtering, we were able to record ~0.7 ms 
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after stimulation offset, even on the stimulated electrode (Fig. 2.2c), revealing spikes that we could 

not have recorded with the Blackrock Stim Headstage (grey shading in Fig. 2.3b).  

Mode of activation of recorded spikes on stimulated and non-stimulated channels 

ICMS can evoke action potentials both directly and transsynaptically (Tehovnik et al. 

2006). Directly evoked spikes occur because stimulation changes the membrane potential of cells 

near the electrode, causing them to fire. Action potentials are typically initiated in axons, which 

have a higher density of sodium channels than do somas, resulting in lower activation thresholds 

(Nowak and Bullier 1998a, 1998b; Tehovnik et al. 2006). Action potentials then propagate 

antidromically to the cell bodies and orthodromically to presynaptic terminals, where they may 

elicit further activity transsynaptically.  

We wondered whether the spikes we recorded on the stimulated electrode were evoked 

directly, at either the axon or soma, or transsynaptically. Since we have no direct way of testing 

this, we inferred the mode of activation from the latency of evoked spikes. When we calculated 

the latest these spikes could occur, we assumed that directly evoked spikes were generated at the 

end of the cathodic phase (Gustafsson and Jankowska 1976; Jankowska, Padel, and Tanaka 1975; 

Stoney, Thompson, and Asanuma 1968), although spikes may occur earlier in the stimulus pulse 

at higher amplitudes (such a shift is evident in Fig. 2.3b). We may actually observe these spikes 

somewhat later since they need to propagate from the site of initiation back to the soma. We 

estimated this potential antidromic distance and latency by first estimating how far spike initiation 

could have occurred from the stimulated electrode. To do so, we used Stoney’s square-root 

relationship (Stoney, Thompson, and Asanuma 1968): 

𝐼 = 𝑘𝑟2, 
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With 𝑘 =1292 µA/mm2 and 𝐼 = 10 µA, the median activation threshold of neurons in our study 

(Fig. 2.3c) the maximum spike initiation distance is ~100 µm. Since somas can be recorded up to 

~150 µm from the recording electrode (Maynard, Nordhausen, and Normann 1997), the maximum 

distance an action potential could travel before being recorded is ~250 µm. With a propagation 

speed of 1 µm/µs (Swadlow 1990), the maximum latency at which we expect to see a directly 

evoked spike is 0.25 ms after the end of the cathodic phase, (coincident with the end of the biphasic 

pulses). Hence, the earliest spikes we were able to see on the stimulated electrode, (0.7 ms after 

the end of the biphasic pulses; Fig. 2.3d), could not have been directly evoked.  

Since the shortest synaptic delay is ~0.4 ms (Gustafsson and Jankowska 1976), we estimate 

transsynaptic spikes could occur at a latency as short as 0.4 ms after the end of a biphasic pulse, 

similar to earlier estimates (Gustafsson and Jankowska 1976). This implies that the spikes we 

observed on the stimulated electrode were evoked transsynaptically.  

We asked the same questions about the spikes recorded on non-stimulated electrodes. Due 

to the increased distance that evoked spikes could propagate, the latency at which we could record 

directly evoked spikes would also increase. For electrodes within 700 µm of the stimulated 

electrode, the maximum distance an action potential could travel is ~950 µm. This makes the 

longest theoretical latency of directly evoked spikes ~0.7 ms after the end of the biphasic pulses, 

very close to our observation. For these nearby electrodes, it remains likely we are recording 

transsynaptic activation.   

Limitations due to missing directly evoked spikes 

The major limitation of this study is that we were unable to record activity until ~0.7 ms 

after stimulation offset, causing us to miss the initial, directly evoked spikes. To assess this impact, 
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we estimated the proportion of spikes they represented. Since we can begin recording ~0.7 ms after 

stimulation offset, we might miss at most one spike per pulse. In the worst case, where the neuron 

is directly activated by each pulse, 1.2 – 1.4 spikes are evoked per neuron across amplitudes (Fig. 

2.3c). Thus the average of 0.2 – 0.4 transsynaptically evoked spikes we recorded accounts for 17 

– 30% of evoked spikes. Even though distance and amplitude affect the proportion of pulses which 

directly evoke a spike (Stoney, Thompson, and Asanuma 1968), we likely miss a large proportion 

of evoked spikes near the stimulated electrode. 

While we cannot record directly evoked activity, we can infer something about the 

temporal pattern of directly evoked activity using activity recorded on non-stimulated channels, 

which must either be driven directly or transsynaptically by directly evoked spikes. Hence, we 

would expect the firing rate dynamics on non-stimulated channels to be like that of directly evoked 

spikes. Responses on non-stimulated channels were maintained throughout long trains of 

stimulation (Fig. 2.5), presumably driven by the maintained responses of at least some directly 

evoked neurons. In contrast, the likely-transsynaptic response recorded on the stimulated electrode 

decayed rapidly. It could be that directly evoked activity near the stimulated electrode decayed 

rapidly, but researchers using calcium imaging found that neurons closer to the stimulated 

electrode actually maintained their responses longer than those farther away (Michelson et al. 

2018). Instead, the decayed response we observed is likely caused by direct activation of local 

inhibitory neurons which competes with the excitatory effect (Overstreet, Klein, and Helms Tillery 

2013). 

If the high temporal resolution that electrical recordings provide is not necessary, calcium 

imaging or voltage-sensitive dye imaging can be used to record activity during the stimulus pulse 

as these methods are not affected by the shock artifact (Tanaka et al. 2019; Histed, Bonin, and 
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Reid 2009; Michelson et al. 2018). To isolate directly evoked spikes, pharmacological agents have 

been used to block synaptic transmission, enabling researchers to study the spatial pattern of 

directly evoked spikes (Histed, Bonin, and Reid 2009). Both this study and one using biophysical 

models (Kumaravelu et al. 2022) concluded that ICMS activates a sparse and distributed 

population of neurons, likely due to local activation in axons propagating antidromically to somas. 

Combined with our results, we can describe the spatial and temporal pattern of directly and 

transsynaptically evoked activity.  

Qualitatively similar evoked responses across different experimental conditions 

Across many studies using different levels of anesthesia, animal models, and recording 

techniques, the evoked response to ICMS is qualitatively similar. After stimulation, neurons 

exhibit short-latency excitation due to direct or transsynaptic activation (Margalit and Slovin 2018; 

Tehovnik et al. 2006). We observed an increase in the amount of evoked activity from activated 

neurons and an increase in the spread of evoked activity with increasing amplitude (Fig. 2.3), 

consistent with previous observations (Hao, Riehle, and Brochier 2016; Butovas and Schwarz 

2003). With increased frequency, we observed a small increase in the amount of evoked activity 

per pulse, an effect that is further amplified by the increased number of pulses (Fig. 2.7). After 

short-latency excitation, neural activity is typically suppressed for long periods, an effect likely 

mediated by GABAB receptors (Butovas et al. 2006). The duration of this long-lasting inhibition 

increased with amplitude in our study (Fig. 2.4), in contrast to previous observations of neurons 

recorded farther from the stimulated electrode (Butovas and Schwarz 2003). After inhibition, we 

often saw a large increase in firing rate (Fig. 2.6) (Butovas and Schwarz 2003). This rebound 

excitation may be due to recurrent excitation within cortical circuits, mediated by calcium channels 
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(Molineux et al. 2006; McElvain et al. 2010). Throughout trains of stimulation, we observed a 

rapid decay of the transynaptically evoked activity recorded near the stimulated electrode (Fig. 

2.5), similar to previous observations (Michelson et al. 2018).  

Implications for biomimetic stimulation patterns 

In monkeys, stimulation in tactile cortices evokes sensations at locations corresponding to 

the receptive field of neurons recorded on the stimulated electrode (Tabot et al. 2013). Different 

temporal patterns of stimulation can be distinguished and used to convey useful information 

(Callier et al. 2020; Berg et al. 2013; London et al. 2008; Romo et al. 1998; Dadarlat, O'Doherty, 

and Sabes 2015). Similar observations have been made in humans with tetraplegia and neuropathy 

(Salas et al. 2018; Chandrasekaran et al. 2021; Fifer et al. 2020; Hughes et al. 2021), including the 

ability of one person to identify which of multiple fingers of a robotic hand, linked to 

somatosensory cortex (S1) stimulation, were touched (Flesher et al. 2016). More recently, 

somatosensory ICMS was used to provide contact and pressure-related feedback, which improved 

their ability to control a robotic arm to reach and grasp (Flesher et al. 2021). The stimulus 

parameters in this most recent example were quite simple, a linear mapping from index and middle 

finger joint torques to appropriate electrodes, and evoked sensations that were judged to be 

possibly natural (Flesher et al. 2016). Biomimetic stimulation patterns, those that aim to evoke 

activity that mimics the spatial and temporal properties of naturally occurring activity, may be 

necessary to evoke more naturalistic sensations (Bensmaia and Miller 2014). 

To develop biomimetic stimulus patterns, it may be useful to compare the spatial and 

temporal dynamics of naturally occurring activity to the activity evoked by stimulation. In tactile 

areas, neurons respond to skin indentation with a large transient response and smaller sustained 
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response (Callier, Suresh, and Bensmaia 2019). Our data suggest that neurons entrain their 

responses to each pulse in the train. Thus, to recreate the temporal dynamics of this response, the 

frequency of stimulation needs to be modified throughout the train. In proprioceptive areas, limb 

movements evoke a complicated spatiotemporal pattern of activity across cortex that is dependent 

on the direction and speed of reaching movements, as well as interaction forces (London and Miller 

2012; Prud'homme and Kalaska 1994). Recreating these patterns may require small amplitudes on 

many electrodes, in order to target groups of neurons with similar encoding properties (Weber et 

al. 2011). Even with small amplitudes, though, some directly activated neurons may be located far 

from the stimulated electrode due to the local activation of axons (Histed, Bonin, and Reid 2009; 

Kumaravelu et al. 2022). Monitoring the locations of activated neurons may enable researchers to 

design stimulation patterns that more closely mimic the naturalistic spatial response more closely.  

The activity evoked by ICMS is also unnaturally synchronous across neurons. There are 

several stimulus protocols that may serve to reduce synchrony, including stimulating with 

amplitudes nearer the activation threshold, where spikes are not evoked reliably (Fig. 2.3b, d). 

Alternatively, single pulses within a train can be replaced with kilohertz bursts of pulses, with 

amplitude increasing throughout the burst (Formento et al. 2020). Neurons with different 

activation thresholds will be activated at different times during the burst. Finally, multi-electrode 

stimulation could be delivered asynchronously across electrodes. The ability to record the evoked 

activity would allow the efficacy of any combination of these approaches to be evaluated. 

Linking evoked activity to sensation 

Most sensory modalities obey Weber’s law: The Just Noticeable Difference (JND) in 

stimulus intensity increases with increased amplitude (Ekman 1959). This log-like relation likely 
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occurs because the firing rate variance increases with mean firing rate (Johnson 1980b, 1980a). As 

a consequence, it is possible to detect very small differences within natural low-intensity stimuli. 

In contrast, for ICMS stimulation, the JND remains constant across amplitudes and frequencies 

(Kim, Callier, Tabot, Gaunt, et al. 2015), potentially limiting the number of discrete intensities that 

can be discriminated. While we recorded a linear increase in mean firing rate with increased 

amplitude and frequency, there was little change in the variance as these parameters changed (Fig. 

2.7), likely the source of the JND that is unchanging with increased stimulus intensity. 

In our experiments, we typically recorded a maintained response on non-stimulated 

channels throughout 4-s long trains (Fig. 2.5), a response which likely reflects the temporal 

dynamics of directly evoked spikes. Because of this, we would predict the perceived intensity due 

to longer trains to be constant for at least this length of time at the frequencies and amplitudes we 

tested. Our observation is consistent with the observations of a human participant in a recent study, 

who reported constant perceptual intensity for  ~7 s (Hughes, Flesher, and Gaunt 2021). 

However, after the end of long stimulus trains, the evoked sensation described above did 

not disappear immediately, but persisted for a couple of seconds. We often observed a large burst 

of rebound excitation after the end of high frequency trains (Fig. 2.6), which could potentially lead 

to persistent sensations. Since rebound excitation primarily occurred at high stimulation 

frequencies, it may be that there is a maximum frequency that future afferent interfaces can use to 

avoid the effect. 

Online recording in the presence of stimulation artifact 

For most applications, afferent interfaces would only be useful when combined with an 

efferent interface, thereby providing both restored somatosensation and movement (O’Doherty et 
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al. 2011b; Flesher et al. 2021). However, stimulation in S1 produces large artifacts in recordings 

from motor cortex (M1). With causal filters, neural signals can be recorded from M1 in a human 

~0.7 ms after offset of stimulation applied in S1. At low stimulation frequencies, losing the ability 

to record from M1 for short periods after each pulse will not have much of an impact on decoding 

performance. When intended cursor velocity was decoded from M1, artificially dropping a random 

20% of M1 signals caused only a 10% decrease in decoder performance (Fig. 8 in (Young et al. 

2018)). While acausal, time-reversed filtering may allow for slightly earlier recordings, the 

increased amount of data would likely have a negligible impact on decoding performance.  

However, as stimulation protocols become more complicated, with stimulation at high rates 

and on many electrodes (Bensmaia and Miller 2014; Sombeck and Miller 2019), the percentage of 

time in which signals can be recorded from M1 will decrease, further decreasing decoder 

performance. Stimulation at 333 Hz, either on a single electrode or across electrodes, would result 

in 50% loss of signal, assuming a total blanking duration of 1.5 ms per pulse (Weiss et al. 2018). 

With some non-trivial amplifier modifications to increase somewhat, the gain during the stimulus 

artifact, the RRA could potentially enable neural recordings even during the stimulus pulse, albeit 

at a significantly reduced gain. Although we did not explore them here, there are numerous 

approaches that could be used to extract neural signal from the artifact if the recorded signal is not 

saturated: adaptive filtering (Mendrela et al. 2016; Nag et al. 2015), template subtraction 

(Montgomery Jr, Gale, and Huang 2005; Hashimoto, Elder, and Vitek 2002), independent 

component analysis (Hyvärinen and Oja 2000; Lemm et al. 2006), linear regression reference 

(Young et al. 2018), and deep neural networks (Tamada et al. 2020; Zhang and Yu 2018). Of 

particular note is ERAASR, a technique which uses principal component analysis to exploit the 

similar structure of the shock artifact sequentially across electrodes, pulses, and then trials (O'Shea 
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and Shenoy 2017). With these approaches, it may be possible to recover neural signal throughout 

multi-channel stimulation, thereby enabling full band-width recordings in M1 while providing 

somatosensory feedback via ICMS in S1. Such technology will likely be necessary to accurately 

decode motor intent as ICMS feedback becomes more complicated. 

Supplementary Materials 

Technical description of the rapid-recovery amplifier 

We aimed to develop an amplifier which can record neural activity ~1 ms after stimulation 

offset. To do so, the stimulus pulses should not overdrive the amplifier nor saturate the filters, 

particularly high-pass filters, which by design have a long recovery time constant. The amplifier 

schematics are shown in Fig. 2.8. The amplifier implements a single-ended configuration with 

three stages; the first stage uses the OPA140DGK (Texas Instruments, Dallas, TX) operational 

amplifier (op-amp) and the second and third stages use OPA2277U-EP (Texas Instruments). The 

first (input) stage and the second stage include high-pass filters and gain compression; the third 

stage is a linear gain stage. 

All stages are supplied with ±15 V to prevent output saturation and input current shunting. 

If the op-amp input were to exceed the power supply rails, the input signal would be clamped to 

±15 V due to the electrostatic discharge protection of the chip, resulting in an undesirable transient 

drop in the input impedance. As a consequence, the input stage might shunt a part of the stimulation 

current, reducing the current left for stimulation if the stimulator and amplifier share the same 

electrode. If stimulation uses a separate electrode, the drop in impedance might inject a significant 

current through the recording electrode. 
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We used an ac-coupling input capacitance of 1 nF to balance several design objectives. A 

large capacitance value is advantageous as it reduces the impedance driving the input stage, 

extends the low-frequency corner, and reduces the residual voltage on the capacitor after a large 

input artifact, which could saturate the input stage. On the other hand, a small capacitance value is 

required to limit the charge injected into the brain in case of an op-amp failure, which may short 

the op-amp input to its ± 15 V supply. The ac-coupling capacitance is biased to ground with a 

500 MΩ resistor, which dominates the input impedance. As the input impedance forms a voltage 

divider together with the electrode and the source’s equivalent impedance, the input impedance 

should be significantly larger than the total impedance driving the amplifier input. The high ac-

coupling capacitance and high impedance leads to a long time constant of the first stage (500 ms), 

which is eliminated by faster (1 ms) ac-coupling dynamics in the second stage. To allow a high 

input impedance without a large dc voltage offset caused by the op-amp input bias current, the 

feedback network of the first stage is ac-coupled to ground through a 570 nF capacitor, reducing 

the dc gain to unity. This capacitance is larger than the ac-coupling input capacitance, but does not 

affect the maximum injected charge in case of a failure of an integrated circuit. 

Saturation of subsequent stages during a stimulus pulse is avoided by nonlinear gain, which 

compresses large dynamic swings. We implemented a feedback loop in the first stage which 

reduces the gain to unity when the output exceeds the input by approximately 1.3 V, corresponding 

the total forward voltage drop of the two series diodes in parallel with the feedback resistor and 

capacitor. The input to the second amplification stage is ac-coupled with a fast time constant (1 

ms) and is clamped by a pair of Schottky diodes limiting the gain for large signals (Mueller et al. 

2014). The rest of the second stage and the third stage are linear and provide additional gain for 

the neural signals.  
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We used a custom-made breakout board to pass signals from the stimulated channel to the 

RRA, bypassing the Stim Headstage and Front-end amplifier (Figs. 2.9, 2.10, 2.11). Signals 

recorded on non-stimulated channels were passed to the Stim Headstage and Front-end amplifier. 
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Fig. 2.8. Circuit diagram of the rapid-recovery amplifier. We used the output node (far-right) to record neural signal. 

The additional low-gain output was included for debugging. The 1 nF and the 10 nF are both 1% metalized 

polypropylene MKP capacitors from Vishay. The 100 pF are from Panasonic's ech-u1h series. The diodes are 

SD103A (Vishay) and 1N4148 (Onsemi). The 500 MOhm resistor is from the CRCW series from Vishay.  
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Fig. 2.9. Connection diagram. Neural signal is recorded from a multi-electrode array (MEA). A 

custom-made breakout board passes only signal from the stimulated channel to the RRA and passes 

signals from all non-stimualetd channels to the Stim Headstage and Front-end amplifier. Signals 

from all channels are passed to the neural signal processor. 
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Fig. 2.10. Pictures of Stim Headstage (left) and Front-end amplifier (right). 
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Fig. 2.11. Diagram of breakout board. Neural signals recorded on the stimulated channel are 

passed to the RRA from the Cereport while all other signals are passed to the Stim Headstage. 

The channel passed to the RRA was manually selected. All channels are connected to the 

Cerestim for stimulation (only one channel was stimulated at a time). Only three of the 96 

channels are depicted for clarity. 
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Chapter 3 - Short reaction times in response to multi-electrode intracortical 

microstimulation may provide a basis for rapid movement-related feedback 

Joseph T. Sombeck, Lee E. Miller 

 

Foreword 

The following chapter has been adapted from a manuscript published in the Journal of Neural 

Engineering in December 2019. The purpose of this project was to investigate the slow response 

to intracortical microstimulation (ICMS) previously observed (Godlove, Whaite, and Batista 

2014). In these experiments, ICMS elicited response times slower than even vision, which is too 

slow to control ongoing movements. These results were surprising, as ICMS is applied directly to 

the brain, and problematic because ICMS needs to provide rapid feedback to replace natural 

proprioception.  In this project, single-electrode stimulation also typically evoked long reaction 

times. By distributing large amounts of charge over many electrodes, ICMS could evoke reaction 

times as short or shorter than a proprioceptive cue. These results suggest that future proprioceptive 

interfaces will need to stimulate on many electrodes simultaneously to replicate the fast feedback 

provided by natural proprioception. 
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Abstract 

Objective. Tetraplegic patients using brain-machine interfaces (BMIs) can make visually guided 

reaches with robotic arms. However, restoring proprioceptive feedback to these patients will be 

critical, as evidenced by the movement deficiencies in patients with proprioceptive loss. 

Proprioception is critical in large part because it provides faster feedback than vision. Intracortical 

microstimulation (ICMS) is a promising approach, but the ICMS-evoked reaction time (RT) is 

typically slower than that to natural proprioceptive and often even visual cues, implying that ICMS 

feedback may not be fast enough to guide movement. Approach. For most sensory modalities, RT 

decreases with increased stimulus intensity. Thus, it may be that stimulation intensities beyond 

what has previously been used will result in faster RTs. To test this, we compared the RT to ICMS 

applied through multi-electrode arrays in area 2 of somatosensory cortex to that of mechanical and 

visual cues. Main results. We found that the RT to single-electrode ICMS decreased with increased 

current, frequency, and train length. For 100 μA, 330 Hz stimulation, the highest single-electrode 

intensity we tested routinely, most electrodes resulted in RTs slower than the mechanical cue but 

slightly faster than the visual cue. While increasing the current beyond 100 μA resulted in faster 

RTs, sustained stimulation at this level may damage tissue. Alternatively, by stimulating through 

multiple electrodes (mICMS), a large amount of current can be injected while keeping that through 

each electrode at a safe level. We found that stimulation with at least 480 μA equally distributed 

over 16 electrodes could produce RTs as much as 20 ms faster than the mechanical cue, roughly 

the conduction delay to cortex from the periphery. Significance. These results suggest that mICMS 

may provide a means to supply rapid, movement-related feedback. Future neuroprosthetics may 

need spatiotemporally patterned mICMS to convey useful somatosensory information.  
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Introduction 

Efferent brain-machine interfaces (BMIs), which decode motor intent from recorded brain 

activity, can allow a tetraplegic patient to move a robotic arm (Collinger et al. 2013; Hochberg et 

al. 2012) or even their own arm, using functional electrical stimulation (FES) to cause their 

paralyzed muscles to contract (Ajiboye et al. 2017; Bouton et al. 2016; Ethier et al. 2012). These 

BMIs typically rely solely on visual feedback to guide movement, despite the considerable 

movement deficits suffered by patients without somatosensation (Rothwell et al. 1982; Ghez, 

Gordon, and Ghilardi 1995). Without cutaneous sensations, subjects exert forces larger than 

necessary, often crushing delicate objects (Monzée, Lamarre, and Smith 2003), and dexterous 

manipulation of small objects becomes almost impossible (Johansson and Flanagan 2009). Patients 

who have lost proprioception are for the most part wheelchair bound and make large reaching 

errors due to an inability to plan and rapidly update ongoing reaches (Ghez et al. 1990; Sainburg 

et al. 1995). The relatively slow speed of visual feedback is one of the reasons that it is an 

inadequate replacement for somatosensation. Additionally, somatosensation is important for 

prosthesis embodiment (Antfolk et al. 2013). Thus, restoring somatosensation is a critical, yet 

unmet component of BMI development.  

Intracortical microstimulation (ICMS) has the potential to restore somatosensation, having 

been shown to elicit conscious perceptions in rats (Devecioğlu and Güçlü 2017; Öztürk et al. 2019; 

Fridman et al. 2010),  monkeys (Tabot et al. 2013; London et al. 2008; Romo et al. 2000; 

O’Doherty et al. 2011b) and humans (Salas et al. 2018; Flesher et al. 2016). Stimulation in tactile 

cortical areas provide sensations of flutter at a frequency that matches the stimulation frequency 

(Romo et al. 2000). Consequently, ICMS has been used to provide artificial texture feedback, 

enabling monkeys to learn to select rewarded virtual objects based on their “feel” (O’Doherty et 
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al. 2011b). Additionally, the virtual location of the sensation elicited in tactile areas corresponds 

to the receptive field of neurons in that area (Tabot et al. 2013), enabling a spinal cord injured 

patient to identify which of multiple robotic fingers were touched (Flesher et al. 2016).  

Replicating the sensations corresponding to the more distributed and complex receptive 

fields of proprioceptive neurons has not been as successful. In an experiment that relied on the 

ability to learn the meaning of an abstract stimulus, monkeys were able to reach to unseen targets 

using ICMS feedback about the error vector between the changing hand position and target 

position (Dadarlat, O'Doherty, and Sabes 2015). This interface, though, required months of 

training, in contrast to the more rapidly learned, biomimetically-inspired, mapping in tactile areas 

(Flesher et al. 2016). The long training time required was probably due to the complex learning 

problem associated with mapping an abstract stimulus to limb state. In an effort to provide a more 

natural proprioceptive sensation, thereby reducing training time and possibly providing more 

informative feedback, our group stimulated on small sets electrodes, selected because of their 

mutually similar responses recorded during arm movements (Tomlinson and Miller 2016). This 

biomimetic approach predictably biased one monkey’s perception of the direction of a coincident 

mechanical perturbation without any learning, suggesting that it had indeed, evoked a sensation 

like that of the natural perturbation. However, the effect could not be replicated in subsequent 

monkeys, for reasons that remain unclear.  

In addition to evoking meaningful sensations, afferent interfaces also need to provide fast 

feedback, like that of somatosensation. Patients without proprioception make their largest errors 

during rapid movements, in part, because the slow speed of visual feedback limits correction of 

these movements (Ghez et al. 1990; Sainburg et al. 1995). Slow feedback also limits successful 

embodiment of a prosthesis (Shimada, 2009). It is reasonable to assume that ICMS could provide 
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very rapid feedback, as it bypasses the conduction latency from the periphery. However, the 

response time to single-electrode stimulation in tactile areas is typically slower than that to either 

tactile or visual cues (Godlove, Whaite, and Batista 2014). Critically, if ICMS is no faster than 

natural vision, it is unlikely to replace it for guiding rapid reaches or enabling embodiment. 

In this paper, we used a reaction time (RT) paradigm as a rapid, sensitive mean to compare 

the latency of ICMS applied through multi-electrode arrays implanted in area 2 of somatosensory 

cortex to that of perturbations applied to the hand and to visual cues. Consistent with earlier studies, 

we found that single-electrode ICMS (sICMS) typically resulted in RTs that were slower than limb 

perturbations and slightly faster than the visual inputs. On the other hand, multi-electrode ICMS 

(mICMS) elicited RTs even faster than limb perturbations. We investigated the effect of number 

of electrodes, total current, and distance between electrodes on the RT to mICMS. The use of many 

electrodes simultaneously may also allow more the complex spatial patterns of cortical activity 

typical of natural proprioceptive inputs to be elicited. Our results show that mICMS may be a 

suitable approach for providing fast feedback in future afferent interfaces.  

Methods 

Monkeys 

All procedures in this study were performed in accordance with the guide for the care and use 

of laboratory animals and were approved by the institutional animal care and use committee of 

Northwestern University under protocol #IS00000367. The experiments were performed using 

two male rhesus macaques (Monkey H: 12.9 kg, Monkey D: 9.8 kg). 
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Fig. 3.1. Reaction time task description. (a) Monkeys move the handle of a robotic manipulandum to perform a reaction 

time task. (b) A trial starts when the monkey moves the cursor into the center target, causing the goal target to appear. After 

a random delay, the monkey receives a reward for making a reach if a go cue is presented (top), or for holding in the center 

target if a go cue is not presented (bottom). 
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Reaction time task 

Monkeys held the handle of a two-link planar robotic manipulandum which controlled a cursor 

on an LCD screen in front of them (Fig. 3.1(a)). In the RT task, monkeys reached to a target in 

response to a go cue consisting of either a mechanical perturbation of the hand, a change in the 

color of the targets on the screen, or ICMS in area 2. Each trial began when the monkey moved 

the cursor into a target at the center of the workspace (Fig. 3.1(b)). At this point, the goal target 

appeared 9 cm from the center target, so that the monkey could plan where to reach. The cursor 

then disappeared, to avoid providing visual feedback about the mechanical cue. Monkey H made 

reaches to the right and monkey D made reaches forward, as these were the directions in which 

they each moved most rapidly. On 85% of trials for monkey H, a go cue was provided at a random 

time between 500 and 1500 ms after the goal target appeared. For monkey D, a go cue was 

provided on 75% of trials between 500 and 2000 ms after the goal target appeared. If the monkeys 

reached the goal target within a short time window (750 ms for monkey H and 800 ms for monkey 

D) after go cue onset, they received a water reward. In the rest of the trials, no cue was presented, 

and the monkeys were rewarded for not moving from the center target. These trials were included 

to reduce the rate of false starts.  

The mechanical cue was a force applied to the hand for 120 ms, including 20 ms rise and 

fall times. We used a short duration so that the perturbation did not affect the monkey’s subsequent 

reach.  There was a white noise audio mask throughout each experiment to prevent monkeys from 

hearing the motors during mechanical cues. The direction of the mechanical perturbation was 

perpendicular to the reach direction to simplify determination of movement onset. Stimulation in 

area 2 likely elicits both proprioceptive and tactile sensations, as area 2 is known to integrate 

information from both muscle and cutaneous receptors (Weber et al. 2011; Hyvärinen and Poranen 
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1978; Pons et al. 1985). As such, comparing the RT evoked by a mechanical cue to that of ICMS 

in area 2 is quite appropriate. The ICMS duration was typically 120 ms for monkey H and 200 ms 

for monkey D, though we tested the effect of duration in some experiments. For the visual cue, 

both the center and goal targets changed from red to white. This new color persisted throughout 

the entire trial. Each cue type (mechanical, visual, and ICMS) was presented alone in a block so 

that the monkeys knew which cue to attend to. Blocks were presented in random order within a 

session. In an ICMS block, a single electrode or set of electrodes was stimulated and the 

stimulation amplitude, frequency, or train length could change, when applicable. There were 

multiple ICMS blocks within a session.  

To train monkeys to respond to the mechanical cue, we paired it with a previously learned 

audio cue on a large proportion of trials and presented it alone on the remainder. The proportion 

of trials with only the mechanical cue increased as the monkeys learned. Once they reacted to the 

mechanical cue alone, we progressively reduced the allotted movement time, causing them to react 

quicker and make more rapid reaches to receive a reward. The movement time was decreased until 

the monkeys could no longer successfully complete the task, and then increased by 200 ms. The 

monkeys then learned to respond to the visual and ICMS cues when paired with the mechanical 

cue. After about 1 week of training, monkeys began responding to ICMS alone.   

Stimulation and data collection 

After becoming proficient at the RT task, each monkey was implanted with a 1-mm long, 

96-electrode, sputtered iridium-oxide Utah multi-electrode array (Blackrock Microsystems, Salt 

Lake City, UT) in the proximal arm area of somatosensory cortical area 2. In surgery, we found 

the arm representation by recording from the cortical surface while manipulating the arm and hand. 
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For more details on surgical techniques, see (Weber et al. 2011). After the implant surgery, we 

performed sensory mappings to confirm that recorded neurons had receptive fields corresponding 

to the proximal arm. On ICMS trials, electrodes were stimulated with pulse trains consisting of 

cathodal-first, biphasic, 200 µs pulses, using a Cerestim R96 (Blackrock Microsystems, Salt Lake 

City, UT). There was 53 µs between phases in each pulse. In experiments where we stimulated 

more than 16 electrodes, the electrodes were stimulated in in two equal-size groups, separated by 

a 100 µs lag, because the stimulator was limited to simultaneous stimulation of 16 electrodes. To 

control for any potential effect due to asynchronous stimulation in applicable experiments, all sets 

of electrodes were separated into two groups, regardless of how many electrodes were within each 

group. 

A Cerebus system (Blackrock Microsystems, Salt Lake City, UT) was used to collect 

handle kinematics and cue onset times. Handle kinematics were recorded at 100 Hz using encoders 

on the manipulandum joints. Stimulation onset was determined through the sync line from the 

Cerestim R96 (Blackrock Microsystems, Salt Lake City, UT), and visual cue onset was determined 

by a photodiode placed near the screen, both sampled at 30kHz. Mechanical cue onset was defined 

as the time of the command signal to the servo motors.  

Experiments with monkey H began 30 months after array implantation, and 1 month after 

monkey D was implanted. Experiments were performed once a day for 6 months with monkey H 

(total of 34 sessions), and for 1.5 months (18 sessions) with monkey D. There were 15.2±6.8 (mean 

± standard deviation) successful trials per condition for monkey H and 18.9.0±6.8 for monkey D 

across all conditions and sessions.   
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Data analysis 

RT was defined as the time from cue onset to movement onset. To find movement onset, 

we first found the time of peak acceleration in the direction of the goal target after cue presentation. 

We then found movement onset by backtracking until the acceleration dropped below 35 cm/s2, 

roughly two standard deviations above the mean acceleration measured during the hold period. 

The same threshold was used for all cue modalities across all sessions for both monkeys. RTs 

above or below two standard deviations from the mean were removed as outliers. There were a 

small number of outliers for each condition, mostly due to false starts, resulting in extremely fast 

RTs, and extremely slow RTs, likely due to the monkeys not paying attention during some trials. 

Statistical analysis 

We used two-sided Welch’s t-tests to compare RTs to the mechanical and visual cues 

within sessions, and to compare sICMS at 100 µA for each electrode to the mechanical cues within 

the same session. We also used Welch’s t-tests to compare the mean RT across all electrodes when 

stimulated at 100 µA to the mean RT in response to the mechanical cue, the mean RT to sICMS 

at 200 µA and the mechanical cue, and the RT to mICMS and the mechanical cue. We used paired 

t-tests to compare the RT to sICMS and mICMS and to adjacent and non-adjacent electrode groups. 

The effect of amplitude, frequency, or train length on the resulting sICMS RT and the effect of 

total current and number of electrodes on the resulting mICMS RT were compared with an analysis 

of variance (ANOVA), with data aggregated across monkeys. We also used an ANOVA to test the 

effect of electrode position on the RT to sICMS at 100 µA for each monkey individually, 

generating two models. We used an F-test of the significance of the models and each individual 

parameter, when relevant.  
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Results 

Reaction time in response to natural proprioceptive and visual cues 

Monkeys performed an RT task in which they reached from a center target to an outer 

target when cued with either a mechanical or visual go cue (Fig. 3.1). We tested perturbation forces 

ranging from 0.1 to 1 N in monkey H, which caused a displacement of the monkey’s hand from 

roughly 0.1 to 0.5 cm forward, and from 0.5 to 4.5 N in monkey D, which moved the monkey’s 

hand to the right from 0.75 to 10 cm. Fig. 3.2 shows the mean RTs in response to mechanical cues 

of different magnitudes for two representative sessions for each monkey, as well as the mean RT 

to the visual cue (black dashed line). As anticipated from many earlier studies across sensory 

modalities (Pins and Bonnet 1996), RT decreased with increasing perturbation magnitude, 

reaching an asymptotic value at about 160 ms for a 1 N pulse in monkey H and 180 ms for a 3 N 

pulse in monkey D. We used only these forces for subsequent experiments in the respective 

monkeys. Across all sessions, the mean RT in response to the mechanical cue was 162±14 ms for 

monkey H and 186±23 ms for monkey D. For the visual cue, the mean RT for monkey H across 

all sessions was 250±48 ms, and for monkey D, 380±39 ms. In every session for both monkeys, 

the mean RT to the mechanical cue was significantly faster than that to the visual cue (p < 0.01, 

Welch’s t-test).  
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Fig. 3.2. Dependence of reaction time on mechanical cue force magnitude. The reaction time (RT) to the 

mechanical cue with various forces for two sessions (red and blue) in (a) monkey H and (b) monkey D. Large 

circles represent the mean RT for each force magnitude. Small circles show the RT for single trials. Colored 

dashed lines show exponential fits to the data. The RT to the visual cue during session 2 is shown as a horizontal 

black dashed line. All error bars show standard deviation. 
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Reaction time in response to single-electrode ICMS 

We tested sICMS with a wide range of current amplitudes, frequencies, and train lengths. 

The range of amplitudes (20-100 μA) and frequencies (50-500 Hz) included parameters commonly 

used in ICMS experiments. Initially, we used a maximum of 100 μA, as this was the largest current 

tested in earlier ICMS safety studies (Chen et al. 2014; Rajan et al. 2015). We also tested a range 

of train lengths (75-300 ms) with a maximum longer than the mean RT to ICMS found previously 

(Godlove, Whaite, and Batista 2014). Thus, we expected the RT to settle for a train length within 

the range tested. In one series of experiments, we kept two of these parameters constant and 

measured the RT while varying the third. The RT to stimulation on two representative channels in 

monkey D for varied train lengths is shown in Fig. 3.3(a). Figs. 3.3(b) and 3.3(c) show the effect 

on RT of varied frequency and amplitude respectively. Results in monkey H were similar to these. 

We used an ANOVA to determine the effect of each parameter on RT. Aggregated across both 

monkeys, we found that increasing each parameter resulted in significantly faster RTs (amplitude: 

F(1,30) = 67; frequency: F(1,33) = 46; train length: F(1,27) = 17.8; p << 0.01 for all).  

The RT stopped decreasing for train lengths above about 120 ms for monkey H and 200 

ms for monkey D (with a frequency of 200 Hz). The RT stopped decreasing at a frequency of about 

330Hz (with 250 ms train length for monkey H and 200 ms for monkey D) for both monkeys. 

However, the RT continued to decrease for amplitudes up to 100 μA. Therefore, we used this 

frequency and these train lengths in later experiments and varied amplitude to change stimulation 

intensity, unless otherwise noted.  
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Fig. 3.3. Dependence of reaction time to single-electrode stimulation on stimulation parameters. The reaction time 

(RT) to single-electrode stimulation while varying (a) train length, (b) frequency, and (c) amplitude and keeping 

the other two parameters constant are shown for two example channels in monkey D. The fixed parameters are 

shown in each panel. Black horizontal solid line shows the RT to the mechanical cue during the corresponding 

session. The mechanical cue was a 1 N, 120 ms pulse for monkey H and 3 N, 120 ms for monkey D Black 

horizontal dashed line shows the RT to the visual cue. The same conventions are used as in Fig. 3.2. 
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We measured the RT for each electrode at 100 μA across numerous sessions. The mean 

RT for each electrode in the order they were tested is shown in Fig. 3.4(a) and Fig. 3.4(c) for each 

monkey. Within each session (divided by vertical dashed lines), we also measured the mean RT in 

response to the mechanical cue (black solid line) and the visual cue (black dashed line). We 

compared the single-electrode RT for each electrode to the mechanical cue RT, as this was the 

fastest natural stimulus. Stimulation on 93 of the 192 individual electrodes resulted in significantly 

slower RTs than the mechanical cue while 9 electrodes evoked RTs significantly faster than the 

mechanical cue (p < 0.05, two-sided Welch’s t-test, Bonferroni correction). 79 electrodes resulted 

in RTs that were not significantly different than the mechanical cue. The monkeys did not react to 

stimulation on nine electrodes. Two electrodes caused monkey D to vocalize and were not tested 

further. Mean RTs for all electrodes and mean RTs to the mechanical cue and visual cue pooled 

across sessions are summarized in Fig. 3.4(b) and Fig. 3.4(d) for each monkey. The mean single-

electrode RT across all electrodes was 199±39 ms for monkey H and 225±53 ms for monkey D. 

For both monkeys, the RT to single-electrode stimulation across electrodes was significantly 

slower than that to the mechanical cue in the corresponding session (p << 0.001, Welch’s t-test). 
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Fig. 3.4. Reaction time to single-electrode stimulation for many electrodes. The mean reaction time (RT) 

to single-electrode stimulation (circles) for electrodes are shown in the order they were tested across 

multiple sessions for (a) monkey H and (c) monkey D. The mean RT to the mechanical cue (black solid 

line) and to the visual cue (black dashed line) are shown for each session. The parameters of the 

mechanical cue were the same as those of Fig. 3.2. Vertical grey dashed lines denote different sessions. 

Electrodes were stimulated with 100 μA at 330Hz for 120 ms for monkey H and for 200 ms for monkey 

D. Error bars show standard deviation. RT data across electrodes is summarized for (b) monkey H and 

(d) monkey D. The mean RT to the mechanical cue (black horizontal line) and the visual cue (black 

dashed line) across sessions and the pooled standard deviation are shown for comparison. 
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The location of the electrode on the array may change the depth of the electrode in cortex, 

or the apparent location of the sensation on the arm, and thus affect the RT. The position of each 

array in cortex is shown in Fig. 3.5(a), with labels indicating the central sulcus (CS) and 

intraparietal sulcus (IPS). The color of each electrode in Fig. 3.5(b) corresponds to the RT 

measured when that electrode was stimulated at 100 μA. Black X’s indicate electrodes that the 

monkeys did not respond to, red X’s indicate electrodes that caused the animal to vocalize, and 

white boxes indicate electrodes that were not connected (by design, four on each array). We fit a 

linear model for each monkey to predict the RT from the position along medial-lateral and anterior-

posterior axes of the array, approximately parallel and perpendicular to the IPS respectively. This 

model was statistically significant in both monkeys, (p << 0.001, F-test), suggesting that the 

resulting RT depended on the position of the electrode in cortex. The resulting vector of maximal 

decrease in RT is shown by the arrows in Fig. 3.5(a). For monkey H, the RT decreased for more 

lateral electrodes. The RT decreased for posterior electrodes for monkey D. 
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Fig. 3.5. Dependence of reaction time to single-electrode stimulation on electrode position. (a) 

Schematic of the arrays in cortex for the two monkeys. The purple dashed square shows the array for 

monkey H, and the green solid square shows the array for monkey D. CS is central sulcus, IPS is 

intraparietal sulcus, A is anterior, and L is lateral. (b) The reaction time (RT) during single-electrode 

stimulation for each electrode is shown for monkey H (top) and monkey D (bottom). The color of each 

electrode denotes the RT to stimulation through that electrode. White squares represent electrodes that 

were not connected. The monkeys did not respond to stimulation through electrodes denoted with black 

X’s. Red X’s denote electrodes which resulted in vocalization. 
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Reaction time in response to high-amplitude sICMS  

A possible explanation for the slow RT in response to ICMS is that the evoked sensation 

is rather weak, like that of a small force-pulse perturbation. As in our results for the mechanical 

cue and sICMS, reaction time is typically a saturating function of stimulus intensity for all 

parameters (Fig. 3.2, Fig. 3.3) (Pins and Bonnet 1996). While large currents may lead to a faster 

RT, there is a limit to the current that can be delivered safely through any given electrode. To test 

the effect of even larger currents on RT, we used currents up to 200 μA on single electrodes, near 

the maximum of our stimulator. The RT for currents from 40 to 200 μA is shown for two example 

channels in monkey D (Fig. 3.6(a)). RT decreased with increased current as it did for all channels, 

approaching that of the mechanical cue (black line). Fig. 3.6(b) shows the RT to sICMS at 200 μA 

across all electrodes compared to that of the mechanical cue in the corresponding session. Across 

electrodes, the mean RT to sICMS at 200 μA was about 4 ms slower than that to the mechanical 

cue for monkey H, and about 29 ms slower for monkey D. The RT to 200 μA stimulation was not 

significantly different than the RT to the mechanical cue in either monkey (p = 0.38 for monkey 

H, p = 0.11 for monkey D, Welch’s t-test), though we performed only a small number of 

experiments to limit any damage done to the tissue surrounding the electrodes. 
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Fig. 3.6. Reaction time to single-electrode stimulation at large currents. (a) The reaction times (RTs) to 

stimulation amplitudes up to 200 μA are shown for two example channels in monkey D using the same figure 

conventions and mechanical cue parameters as in Fig. 3.2. (b) The mean RT to stimulation at 200 μA for 4 

channels in monkey H (purple) and 2 channels in monkey D (green) compared to the mean mechanical cue RT 

during corresponding sessions are shown. RTs to the mechanical cue have been jittered slightly to avoid overlap. 

Black dashed line represents unity. All error bars show standard deviation. 
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Reaction time in response to multi-electrode stimulation 

Because the RT continued to decrease for currents up to 200 μA during sICMS for at least 

some of the channels, it may be that increasing the stimulation amplitude further would reliably 

elicit RTs as fast as or faster than the mechanical cue. However, since the current was already at 

the limit of what is considered safe for the electrode-tissue interface (Chen et al. 2014), we did not 

want to increase it further. Instead, we stimulated on multiple electrodes simultaneously in order 

to inject a large amount of total current while keeping the current through each electrode small. 

We randomly selected sets of 16 electrodes in each monkey and measured the RT to this mICMS. 

We used a train length of 120 ms for both monkeys, matching the duration of the mechanical cue. 

RTs for representative sets of electrodes at various total currents (160-800 μA) are shown in Fig. 

3.7(a)-(b). Insets show the locations of the electrodes on the array, oriented as in Fig. 3.5. For every 

set of electrodes in monkey H, RT decreased with increasing total current. For monkey D, the RT 

decreased up to a total current of 480 μA. Unexpectedly, the RT began to increase for currents 

above 480 μA for 3 out of 4 electrode sets tested.  

 The mean RT for each set of electrodes compared to the mean RT to the mechanical cue in 

the corresponding session is shown in Fig. 3.7(c) for each monkey. For each electrode set, the 

fastest mean RT across the tested total currents is shown. For monkey H, stimulating with 16 

electrodes resulted in significantly faster RTs than the mechanical cue (p = 0.0037, Welch’s t-test), 

with a mean difference of 27 ms. There was no significant difference between the RT to 16-

electrode stimulation and the mechanical cue in monkey D (p = 0.965, Welch’s t-test).  
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Fig. 3.7. Reaction time to 16-electrode stimulation. The reaction time (RT) to simultaneous stimulation of two example 

sets of 16 electrodes at various total currents are shown for (a) monkey H and (b) monkey D. The same figure 

conventions and mechanical cue parameters as Fig. 3.2 are used, except without exponential fits. Insets denote the 

position of the electrodes on the array for each set, oriented as in Fig. 3.5c. (c) The mean RT to stimulation of 8 sets 

of electrodes in monkey H (purple) and 4 sets in monkey D (green) compared to the mean mechanical cue RT during 

corresponding sessions are shown. The amplitude which resulted in the fastest mean RT was used. RTs to the 

mechanical cue have been jittered slightly to avoid overlap. Black dashed line represents unity. All error bars show 

standard deviation. 
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Interestingly, neither monkey responded to stimulation with 80 μA distributed over 16 

electrodes, even though 80 μA was typically detected during single-electrode stimulation. This 

implies that total current does not fully predict the resulting RT. We investigated the effect of total 

current and number of stimulation electrodes more thoroughly (Fig. 3.8). On each trial, we chose 

a random number of electrodes (4, 6, 8, 12, and 24) and total current (240, 360, and 480 μA). Then, 

we chose a random set of electrodes and distributed the total current equally across those 

electrodes. Because our stimulator was limited to 16 simultaneous channels, we stimulated the 

electrodes in two groups, separated by a 100 µs lag, even when stimulating on less than 16 

channels. Again, we used a train length of 120 ms to match the duration of the limb perturbation. 

Resulting RTs to all combinations of electrodes and currents are shown in Fig. 3.8 for four sessions 

for monkey H and two sessions for monkey D. The RTs to the mechanical cue (black solid line) 

and the visual cue (black dashed line) pooled across sessions are also shown for each monkey. We 

used an ANOVA, combining data across monkeys, total currents, and number of electrodes, to 

determine the effect of these parameters on the resulting RT. RT consistently decreased when we 

stimulated with more current for the same number of electrodes (F(1,26) = 17.5, p = 2.9E-4). 

Interestingly, the RT increased as the number of electrodes increased (F(1,26) = 19.7, p = 1.5E-4), 

an effect that was more pronounced at smaller total currents. 
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Fig. 3.8. Dependence of multi-electrode reaction time on total current and number of electrodes. The mean reaction 

time (RT) to multi-electrode stimulation with different total currents and number of electrodes is shown for (a) monkey 

H and (b) monkey D. The same figure conventions and mechanical cue parameters as Fig. 3.2 are used. 
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Comparison of mICMS to sICMS 

We wanted to determine whether the apparent advantage mICMS offers might be 

eliminated when compared to the single most sensitive electrode in the group. To test this, we 

measured the RT to stimulation on groups of 2 or 3 electrodes at 100 μA per electrode. We 

compared the resulting mICMS RT to the fastest 100 μA sICMS RT within each group (Fig. 

3.9(a)). sICMS RT was measured in sessions 1-2 weeks prior to the corresponding mICMS RT in 

monkey H and less than a week prior in monkey D. We used a train length of 120 ms for monkey 

H and 200 ms for monkey D to match the train lengths used when testing sICMS. Across both 

monkeys, we found that mICMS resulted in significantly faster RTs than sICMS (p << 0.001, 

paired t-test). 

Effect of inter-electrode distance on mICMS reaction time  

Previous experiments showed that the distance between electrodes does not affect how they 

interact during mICMS (Kim, Callier, Tabot, Tenore, et al. 2015; Zaaimi et al. 2013). However, 

this may not be true when stimulating with the large currents in this study, which will activate a 

larger population of neurons surrounding each electrode (Stoney, Thompson, and Asanuma 1968). 

To test this, we paired the groups of electrodes from Fig. 3.9(a), such that one group contained 

only adjacent electrodes, while the other was composed of non-adjacent electrodes. These groups 

were tested in adjacent blocks to decrease any intra-sessional effect. Electrodes within paired 

groups were matched to have approximately equal RTs during sICMS, and we measured the RT 

when stimulating all electrodes within a group at 100 μA per electrode and 120 ms (monkey H) 

and 200 ms (monkey D). Fig. 3.9(b) shows the RT to stimulation of adjacent groups of electrodes 

and the corresponding non-adjacent groups. Across multiple sessions, both monkeys, and 30 pairs 
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of electrode groups, the mean RT to stimulation on adjacent electrodes was 7 ms slower than the 

mean RT to stimulation on non-adjacent electrodes, a difference which was not significant (p = 

0.071, paired t-test).  
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Fig. 3.9. Effect of distance between electrodes on multi-electrode reaction time. (a) The mean reaction time (RT) to 

simultaneous stimulation on pairs (filled circles) or triplets (large open circles) of electrodes with 100 μA per electrode is 

compared to the fastest RT during single-electrode stimulation at 100 μA for electrodes within the group of electrodes. 

(b) The mean RT to simultaneous stimulation on groups of adjacent electrodes compared to non-adjacent electrodes. 

Groups of electrodes were paired such that the RT to single-electrode stimulation for electrodes within each pair was 

approximately the same. 
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Discussion 

Summary of results 

In a series of experiments in two monkeys, we investigated the RT in response to both 

sICMS and mICMS applied through multi-electrode arrays implanted in area 2 of somatosensory 

cortex. We found that the RT to sICMS typically decreased with increased stimulation amplitude, 

frequency, and train length. Even at large stimulation parameters, the RT for most individual 

electrodes was slower than to mechanical cues. Increasing the stimulation amplitude to 200 μA 

resulted in RTs only slightly slower than that to mechanical cues, though currents this large may 

cause damage to tissue surrounding the electrodes. However, mICMS elicited RTs as fast as or 

faster than mechanical cues with safe levels of current through each electrode. Together, these 

results suggest that it may be possible to use mICMS to provide fast, artificial feedback, and 

thereby restore proprioception.  

Reaction time to single-electrode stimulation 

For most modalities, RT decreases with increased stimulus intensity, settling at some 

minimum latency (Pins and Bonnet 1996) (Fig. 3.2). We found that increasing the stimulation 

amplitude, frequency, and train length of ICMS all resulted in faster RTs (Fig. 3.3), consistent with 

their effect on detection thresholds (Kim, Callier, Tabot, Gaunt, et al. 2015; Butovas and Schwarz 

2007). Nonetheless, the RT to sICMS remained slower than that to limb perturbations (Fig. 3.4), 

implying that the evoked sensation for many electrodes was still weaker than natural stimuli. We 

wanted to determine a rough estimate of the magnitude of sensation caused by sICMS. To do so, 

we assumed that the magnitude of sensation caused by sICMS was roughly equal to the force of 

the mechanical cue which resulted in the same RT, after adding 20 ms to account for the conduction 
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delay between the periphery and cortex. The mean RT to sICMS at 100 μA corresponded to a 0.2 

N mechanical force for monkey H and 0.7 N for monkey D, moving the hand about 0.1 and 1.5 

cm respectively. This rough estimate implies that sICMS does not cause a large sensation. This 

direct comparison is difficult for a variety of reasons, including the fact that the mechanical cues 

move the whole arm while sICMS may elicit a sensation only about a small part of the arm (Salas 

et al. 2018).  

 While sICMS with large currents might provide fast feedback (Fig. 3.6), this approach may 

damage tissue and cause neural loss surrounding the stimulated electrodes (McCreery, Pikov, and 

Troyk 2010). McCreery et al. found that stimulation at even 20 μA applied eight hours a day for 

30 days caused loss of neurons around the stimulated electrodes. The amount of damage depended 

on the current, as 10 μA applied for the same duration did not cause significant neural loss. In 

contrast, a recent study found that ICMS applied daily for four hours, five days per week, for six 

months, caused only a small amount of neural loss, even at 100 μA (Rajan et al. 2015). Instead, 

most of the tissue damage was due to implanting, residence, and explanting the array. Results from 

the 100 μA condition in this study should be interpreted cautiously, as only a few tissue samples 

were analyzed. Overall, while sICMS with large currents might feasibly provide fast feedback, 

the safety of this approach is a concern which warrants further study. 

Furthermore, large currents may reduce the effectiveness of feedback, well before causing 

damage. Stimulation applied to area MT, an area involved in processing visual motion, has been 

used to predictably bias a monkey’s report of the direction of a noisy motion signal (Murasugi, 

Salzman, and Newsome 1993). With increasing stimulation amplitude, the bias became larger, up 

to currents of about 80 µA. At that point, the monkeys’ ability to identify the correct direction of 

motion dropped to chance. Since increasing the stimulation current leads to direct activation of 
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neurons farther away from the stimulated electrode (Stoney et al. 1968), this result is most likely 

explained by the increased activation of neurons with differing receptive field properties. 

Effect of electrode location on sICMS reaction time 

In both monkeys, the location of the electrode affected the RT (Fig. 3.5). One possible 

explanation for the change in RT across the array might be the depth of the electrode tips, the result 

of the array not conforming perfectly to the curved cortical surface. We would expect that any 

depth-related changes would be primarily in the anterior-posterior direction, with increasing 

distance from the greater convexity of the IPS. In monkey D, we observed that electrodes nearer 

the IPS had faster RTs, electrodes which would likely be shallower compared to more distant 

electrodes. This result stands in contrast with studies where stimulation in deeper cortical layers 

resulted in lower detection thresholds than in shallower layers (Tehovnik and Slocum 2009; 

Koivuniemi and Otto 2011), though one study observed the opposite effect (DeYoe, Lewine, and 

Doty 2005). Computational models of cortical stimulation predict that neurons in layer 5 have a 

lower activation threshold than those in layer 2/3, implying that stimulation in deeper layers would 

activate more neurons than stimulation in shallower layers (Aberra, Peterchev, and Grill 2018). 

The depth of the electrode tip would probably not explain the medial-lateral gradient in monkey 

H. Because our arrays are in the proximal arm area, it may be that more lateral electrodes elicited 

sensations closer to the hand than did medial electrodes. Perhaps monkey H responded faster to 

cues near his hand than on his arm. It is likely that a combination of factors, including electrode 

depth and sensation location, affect RT. More experiments will be required to determine those 

factors.  
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Reaction time to multi-electrode stimulation  

By stimulating on multiple electrodes simultaneously, we were able to evoke RTs in 

monkey H about 27ms faster, on average, than the mechanical cue, roughly the conduction delay 

between the periphery and cortex (Fig. 3.7). In monkey D, there was no difference between the 

mechanical cue RT and mICMS at 480 μA. Unexpectedly RT increased for total currents beyond 

480 μA. We have no clear explanation for this observation, but speculate that it might be due to 

eliciting something like a startle response, or the result of mICMS actually delaying the monkey’s 

reach planning, in a manner similar to stimulation in pre-motor cortex (Churchland and Shenoy 

2007). This effect may also be due to increased activation of inhibitory circuits at higher currents, 

as interneurons likely have higher activation thresholds than do pyramidal neurons (Overstreet, 

Klein, and Helms Tillery 2013). We used random sets of electrodes during mICMS. It may be that 

choosing electrodes based on the sensation they elicit would have resulted in faster RTs in monkey 

D. Regardless, the mean mICMS RT in monkey D was considerably faster than sICMS. Even at 

200 μA, sICMS RT was about 30 ms slower than in response to the mechanical cue.  

While mICMS can elicit fast RTs with relatively low current through each electrode, there 

could still be the concern that tissue damage may be caused by the summed current at a return 

electrode. In our study, the current was returned through a large titanium pedestal placed on the 

monkey’s skull, and the current density through the pedestal was very low. mICMS has also 

induced effects such as discomfort (suggested by vocalization of the animal), muscle twitches, and 

seizures in previous studies (Parker et al. 2011; Chen et al. 2014). In these studies, transient effects 

occurred when a large amount of charge was injected simultaneously, or when electrodes were 

damaged before implantation. We did not induce any such transient effects in our experiments 

during mICMS, possibly because the current we injected was smaller than in the reported cases, 
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where at least 1600 μA total was required to induce such effects. Two individual electrodes did 

cause monkey D to vocalize. Since these two electrodes were positioned next to each other, it may 

be that this area of the array was damaged or happened to be in a sensitive region of cortex. These 

explanations seem unlikely as one of the electrodes was actively recording from a neuron, the 

impedances of these electrodes were similar to other electrodes on the array (~50kOhm), and 

electrodes surrounding these two did not elicit any transient effects. 

Effect of number of stimulation electrodes and total current 

We found that mICMS did decrease the RT compared to sICMS (Fig. 3.9(a)). This is 

consistent with previous studies measuring the detection threshold due to stimulation in area 3b/1 

(Kim, Callier, Tabot, Tenore, et al. 2015) and area 2 (Zaaimi et al. 2013). However, at a constant 

total current, we found that increasing the number of electrodes resulted in slower RTs (Fig. 3.8). 

This effect may be due to the current on some electrodes falling below an activation threshold 

required to contribute to the overall sensation. This seems to conflict with our earlier observation 

that sub-detection threshold currents on multiple electrodes sum supralinearly (Zaaimi et al. 2013). 

Instead, our result may be more similar to what Kim et al. found: each electrode had an independent 

effect on sensitivity, even for sub-threshold currents (Kim, Callier, Tabot, Tenore, et al. 2015). 

However, it is difficult to compare the current study to that of either Kim et al. or the earlier sub-

threshold detection study of Zaaimi et al., as our current study did not measure detection thresholds 

during single-electrode stimulation. It is apparent that the current-per-electrode needs to be 

carefully considered when designing stimulation patterns, as current that is too high may damage 

tissue while too low a current may not provide robust sensation. 
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Effect of distance between electrodes 

At the largest currents in our study, adjacent electrodes may have activated overlapping 

populations of neurons. This might be expected to cause weaker sensations than from non-adjacent 

electrodes. However, previous studies have suggested that this is not the case (Zaaimi et al. 2013; 

Kim, Callier, Tabot, Tenore, et al. 2015). We found that groups of electrodes that were adjacent 

elicited slightly, though not significantly, slower RTs than non-adjacent groups of electrodes (Fig. 

3.9(b)), consistent with the earlier studies. With at least 400 μm between electrodes, as with a Utah 

array, the distance between electrodes does not seem to be an important consideration when 

designing stimulation patterns. 

Implications for neuroprosthetics 

Current BMIs rely solely on visual feedback to correct movements, which is too slow to 

update rapid reaches (Ghez et al. 1990; Sainburg et al. 1995). Restoring fast somatosensory 

feedback to users should improve prosthetic control (Shanechi et al. 2017) and may enable users 

to develop a stronger sense of embodiment of the prosthesis (Shimada, 2009). Even though sICMS 

and stimulation through mini-electrocorticography arrays can elicit sensations spanning quite a 

range of different qualities (Flesher et al. 2016; Lee et al. 2018; Salas et al. 2018), these approaches 

may not be able to provide fast somatosensory feedback (Godlove, Whaite, and Batista 2014; 

Caldwell et al. 2019). We show that mICMS can be used to trigger movement at very short 

latencies, making it potentially suitable for providing rapid somatosensory feedback.  

In addition to the more robust sensations it appears to provide, mICMS seems well suited 

to recreating the spatially complex patterns of cortical activity that are characteristic of the 

somatosensory response to limb movement (Soso and Fetz 1980; Tomlinson and Miller 2016; 
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Prud'homme and Kalaska 1994). One such proprioceptive interface provided target-proximity 

feedback, using eight electrodes with arbitrarily assigned “preferred direction” (error) vectors 

(Dadarlat, O'Doherty, and Sabes 2015). Two monkeys learned to use the system, but required 

months of training and still made movements that were much slower than typical. A different, 

more biomimetic approach from our group used stimulation on small sets of electrodes with similar 

directional tuning properties in an effort to elicit naturalistic sensations of limb movement. This 

approach caused a predictable bias of a monkey’s perception of a coincident mechanical 

perturbation without any training (Tomlinson and Miller 2016). However, it failed to do so in three 

other monkeys. Although there is justifiable concern that synchronous stimulation of many 

neurons with mICMS may evoke artificial sensations (Tan et al. 2014), it is hard to imagine, given 

existing methods, an alternative means to activate the cortical circuits needed to mimic the spatially 

complex patterns of neural activity evoked by limb movements. Unlike the paradigms that have 

been used in an effort to mimic tactile stimulation with single electrodes (Romo et al. 2000; 

O'Doherty et al. 2012; Tabot et al. 2013), multiple electrodes will likely be required to provide 

useful proprioceptive feedback. 

 Most applications of ICMS for touch have used single electrodes to deliver simple, 

punctate sensations (Tabot et al. 2013; O’Doherty et al. 2011b). However, any realistic object 

manipulation or haptic exploration will result in many contacts across the hand and fingers, 

possibly even the forearm. To provide robust cutaneous sensations about the whole hand, 

stimulation could be applied through multiple sets of electrodes, where each set elicits a localized 

sensation. This approach was tested recently in a spinal cord injured patient, where force applied 

to the fingers of a prosthetic hand was mapped to stimulation of sets of electrodes that evoked 

sensations in the corresponding finger of the patient (Flesher et al. 2016). With this interface, the 
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patient could correctly identify which robotic fingers were touched, even when they were touched 

in pairs, although the latter was less accurate. This approach was extended to provide haptic 

feedback while a patient controlled movement of the prosthesis (Flesher et al. 2019). With haptic 

feedback provided by mICMS and visual feedback, the patient was able to grasp objects faster 

than with visual feedback alone. Whether for touch or proprioception, future neuroprosthetics will 

most likely need spatially and temporally patterned mICMS to provide natural, robust 

somatosensory sensation. Such results will likely be necessary to improve motor control.  
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Chapter 4 - Modeling proprioceptive feedback evoked by intracortical 

microstimulation using a topographical variational autoencoder 

Joseph T. Sombeck, Kyle Blum, Nathan Schimpf, Max Grogan, A. Aldo Faisal, Lee E. Miller 

 

Foreword 

We previously tried to measure the naturalistic effects of ICMS in area 2 and found conflicting 

results across monkeys. In one monkey, stimulation through 4 electrodes predictably biased the 

monkey’s perception of the direction of a perturbation applied to his hand. In three other monkeys, 

this approach biased the monkeys’ perceptions, but not in a predictable manner. The differences 

across monkeys could be due to different topographical organizations in area 2 and electrode 

placement. The purpose of this project was to simulate the proprioceptive effect of ICMS in a 

model of proprioceptive cortex to explore the effect of topography and electrode placement on the 

evoked sensation. By using a topographical variational autoencoder that included lateral effects to 

impose topography, I generated an 80x80 grid of artificial neurons in which neurons with similar 

preferred directions formed clusters. Artificial stimulation applied simultaneously at the center of 

many of these clusters resulted in effects of similar magnitude to natural limb movements and in 

directions predicted by the mean PD of the stimulated sites. This result implies that stimulation 

will need to be applied through many carefully chosen electrodes to evoke naturalistic sensations 

of limb movement. We are preparing this manuscript for submission. 
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Abstract 

Tetraplegic patients can make visually guided reaches using efferent brain-computer interfaces 

(BCIs). However, their reaches are slow and imprecise, like the deficits of people who can generate 

movement but have lost somatosensation. While intracortical microstimulation (ICMS) has been 

used to provide tactile feedback to both monkeys and human BCI users, restoring proprioceptive 

feedback with ICMS has proven more difficult. The difference in success between touch and 

proprioception may be because early tactile cortical areas have a distinct somatotopy while 

proprioceptive cortical areas do not. Without a well-defined somatotopy, ICMS may activate 

neurons with very different encoding properties, resulting in unnatural sensations or perceived 

hand movements in unpredictable directions. To explore these effects, we trained a topographical 

variational autoencoder to regenerate arm joint velocities. The network included lateral excitation 

and inhibition, which caused clusters of neurons with similar PDs to form in the map. We simulated 

the effect of ICMS on movement-related map activity, which we interpreted by reading out the 

difference between decoded hand velocity with and without ICMS. Increasing ICMS amplitude 

increased both the magnitude of this difference-vector and the directional error between it and the 

PD of neurons at the stimulus site. At 100 μA, single-location stimulation evoked an effect much 

smaller than that of a limb movement and with a mean directional error of ~85° across tested sites. 

To reduce the error substantially, we needed to apply low-current stimulation within 100 μm of 

the center of a cluster of neurons. Stimulating many cluster centers simultaneously resulted in a 

mean directional error as low as 10° and a magnitude comparable to limb movements. The results 

from this study show that future proprioceptive interfaces will need to stimulate on numerous, 

carefully chosen electrodes, each with sufficiently small currents to activate neurons with 

homogeneous PDs. 
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Introduction 

Current state-of-the-art brain-computer interfaces (BCIs) have progressed to a point where 

persons with paralysis due to spinal cord injury can reach toward and grasp objects using highly 

anthropomorphic robotic arms (Collinger et al. 2013; Wodlinger et al. 2014; Hochberg et al. 2012; 

Flesher et al. 2021). In addition to restoring movement per se, BCIs will need to restore 

somatosensation, without which, normally-controlled movements are impossible (Ghez, Gordon, 

and Ghilardi 1995; Sainburg, Poizner, and Ghez 1993). While good progress has been made using 

intracortical microstimulation (ICMS) to restore a modicum of contact location and force 

feedback, enabling users to grasp and move objects faster than with visual feedback alone (Flesher 

et al. 2021), much less progress has been made for proprioception, the sense of position and 

movement of the body. Limited proprioceptive sensations have been evoked by ICMS, as reported 

by a human participant, though these sensations are typically small and correspond to only a small 

portion of the whole arm (Salas et al. 2018). Proprioceptive-like interfaces using an arbitrary 

stimulus require many months for monkeys to learn (Dadarlat, O'Doherty, and Sabes 2015), and 

more biomimetic approaches have not been reliable (Tomlinson and Miller 2016). Without this 

advance, reaches made by with BCIs will presumably be slow and imprecise, like those made by 

people who have lost proprioception (Sainburg et al. 1995; Ghez, Gordon, and Ghilardi 1995).  

The large difference in efficacy between ICMS for touch and proprioception may be due 

to the different topographical organizations of the corresponding cortical areas. In early tactile 

cortical areas, such as area 3b and 1, neurons with similar receptive field properties tend to be 

located close together (Mountcastle 1957; Callier, Suresh, and Bensmaia 2019; Chen et al. 2001). 

Stimulation in these areas typically results in sensations localized at the receptive fields recorded 

on the stimulated electrodes (Tabot et al. 2013; Berg et al. 2013). We frequently encounter simple 



112 
 

punctate tactile stimuli in the real world, as well as the lab, that activate a very circumscribed 

cortical area. In contrast, limb movements, even simple ones, evoke a complex spatial pattern of 

activity across proprioceptive cortex. This difference is due, in part, to the nature of the primary 

proprioceptive receptors, muscle spindles and Golgi tendon organs embedded in muscles that span 

as many as two and even three joints (Proske and Gandevia 2012; Houk, Rymer, and Crago 1981), 

and are then mapped onto the two-dimensional cortical surface. This results in a less well-defined 

somatotopy in proprioceptive cortical areas than in tactile areas (Iwamura, Iriki, and Tanaka 1994; 

Pons et al. 1985). The complex organization in proprioceptive areas may be a key reason why 

evoking naturalistic sensations of proprioception has been difficult. 

Receptive fields in the tactile and visual systems have been studied for decades by 

monitoring the effects of well-localized (in both time and space) stimuli (Hubel and Wiesel 1962; 

Mountcastle 1957; Ringach 2004; Gilbert and Wiesel 1992; Sripati et al. 2006; DiCarlo, Johnson, 

and Hsiao 1998). This approach is largely unavailable to the study of proprioception, which must 

rely on active or passive limb movements that stretch multiple muscles simultaneously. In this 

study, we made use of a self-organizing map (“topoVAE”) that was recently developed to study 

the organization of proprioceptive cortex (Blum, Grogan, et al. 2021).  The topoVAE generates a 

cortical layer which embeds arm kinematic information while recreating three properties of 

neurons in actual S1. Just as actual proprioceptive neurons, the firing of artificial neurons in the 

cortical layer is sinusoidally tuned to movement direction (Prud'homme and Kalaska 1994; London 

and Miller 2012), artificial neurons with similar preferred directions (PDs) tend to be clustered 

together (Weber et al. 2011), and the overall PD distribution tends to be bimodal, likely as a result 

of limb biomechanics (Versteeg, Chowdhury, and Miller 2021). 
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The topoVAE allowed us to simulate the proprioceptive sensations evoked by ICMS on 

top of those due to on-going movement. We used a separate biophysical model to estimate the 

evoked firing rates of neurons based on their distance from the stimulus site and the stimulus 

intensity (Kumaravelu et al. 2022). We inferred the effect of stimulation by measuring the 

difference between the predicted hand velocity from the cortical map with and without stimulation. 

The magnitude of this difference-vector and the angle between it and the PD measured at the 

stimulus site increased with increasing stimulus amplitude. Stimulating multiple locations 

simultaneously with small amplitudes reduced this directional error, but it remained large. To 

reduce the error substantially, we needed to apply stimulation within 100 μm of the center of a 

cluster of neurons with homogeneous PDs. The results from this study show that future 

proprioceptive interfaces will need to stimulate on multiple, carefully chosen electrodes, each with 

sufficiently small currents to activate neurons with homogeneous PDs.  

Methods 

Topographical variational autoencoder  

We trained a topographical variational autoencoder (topoVAE) to reconstruct arm joint 

velocities while capturing the stochasticity inherent to cortical neurons (for more details, see 

(Blum, Grogan, et al. 2021)). The encoder of the topoVAE contained two fully connected layers 

of size 20 and 40 neurons, using tanh activation functions, and a final readout layer using ReLU 

activation functions to prevent firing rates below 0 (Fig. 4.1). Based on the density of cortical 

neurons, we estimated that an 80x80 grid of artificial output neurons would span the 4x4 mm area 

of a Utah microelectrode array (Blackrock Neurotech, Salt Lake City, UT; see (Blum, Grogan, et 

al. 2021) for more details). To model lateral connectivity between neurons in the cortical layer, we 
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included a Mexican-hat function in the cost function (Amari 1977). The lateral effect between two 

neurons (𝛾) was:  

𝛾 = (1 −
𝑑2

2𝜎2) 𝑒
−

𝑑2

2𝜎2, 

where 𝑑 is the Euclidean distance between the neurons. With σ = 100 μm, the lateral interaction 

transitions from excitation to inhibition, reaching a maximum at 200 μm vanishing beyond about 

400 μm (Fig. 4.2). We modelled the firing of neurons in the cortical map as Poisson processes to 

capture the inherent stochasticity of cortical neurons. To prevent sparse and implausibly high firing 

rates, we included a KL divergence term in the loss function that penalized firing rates far from 

the expected distribution (Poisson, with mean rate of 20 Hz). We decoded joint angular velocities 

from the simulated firing rates using a linear readout. To analyze the effect of stimulation with 

respect to hand movement we converted joint angular velocities to Cartesian hand velocities.  
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Fig. 4.1. Architecture of the topoVAE model. The topoVAE encoded joint velocities via two fully connected feed-

forward layers of size 20 and 40 neurons using the tanh activation function. The final readout layer of the encoder 

consisted of an 80x80 grid of neurons. To prevent firing rates below 0 in this cortical map, cortical neurons used 

a ReLU activation function. We sampled firing rates using a Poisson model and then linearly decoded joint 

velocities from these firing rates. 
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Fig. 4.2. Lateral effect between neurons in the cortical map. We modeled cortical connectivity by 

including a Mexican-hat function in the cost function. The lateral effect between two neurons 

consisted of local excitation and intermediate inhibition. 
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Arm kinematics dataset 

We collected data from a single 12.9 kg male rhesus macaque to use as training data for 

the topoVAE. We performed all procedures in this study in accordance with the Guide for the Care 

and Use of Laboratory Animals. The institutional animal care and use committee of Northwestern 

University approved all procedures in this study under protocol #IS00000367. 

The monkey held a two-link planar manipulandum and made reaching movements to 

targets presented on a screen. The monkey needed to reach to four successive randomly located 

targets to receive a liquid reward. We used a custom motion tracking system to track 10 markers 

painted on the monkey’s right arm (see (Chowdhury, Glaser, and Miller 2020) for more details). 

We used Opensim (Delp et al. 2007) and a 3D musculoskeletal model of the macaque arm with 

seven degrees-of-freedom to compute the angular velocities of the shoulder, elbow, and wrist 

joints, and Cartesian velocities of the hand (Chan and Moran 2006). We binned velocities at 50 

ms, then convolved these data with a non-causal Gaussian of width 100 ms. Because the 

rectangular workspace resulted in more right/left than forward/backward movements, we 

subsampled the joint angular velocity data to create a more nearly uniform distribution of 

movement directions. For each trial of simulated ICMS, we randomly selected 250 ms of 

consecutive data from the full joint angular velocity dataset to generate cortical firing rates.  

Training hyperparameters 

We z-scored the angular joint velocities and trained the topoVAE with 80% of the 

subsampled angular velocity dataset. We tested reconstruction accuracy on the remaining 20%. 

The topoVAE model was implemented in Python (van Rossum 1995) using PyTorch (Paszke et 

al. 2019). All models were trained for 3,000 epochs using the Adam optimizer with a learning rate 
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of 10-6 and a batch size of 1,024. The cost function weighted the lateral connection term as 20x 

that of the reconstruction term and the KL divergence as 0.0005x of the reconstruction term, values 

chosen to put each loss term on roughly the same scale. During training, we used dropout 

regularization (97%) to prevent overfitting. To compare the firing rates evoked by stimulation to 

those of the cortical neurons, we needed to convert the instantaneous output of cortical neurons to 

firing rates in 50 ms bins. We scaled the output of neurons in the cortical map by 10 as this resulted 

in firing rates that matched that of actual cortical neurons.  

We evaluated goodness-of-fit of the reconstructed joint velocities by computing the 

variance accounted for (VAF), which assesses how well our reconstruction matched the original 

signal instead of simply how well correlated the signals were (Fagg et al. 2009). After training, the 

VAF of the reconstructed joint velocities ranged from 0.77 to 0.97 across joints (mean = 0.90) and 

the VAF of the reconstructed hand velocities was 0.83 for both the forward/backward and 

leftward/rightward components. 

Stimulation experiments and statistical analysis 

Because stimulation activates many neurons around the site of stimulation, we 

characterized the movement-related firing rate at each location with a multi-unit PD computed as 

a weighted sum of the firing rates of nearby neurons. The weight decreased linearly from 1 to 0 

between 0 and 160 μm. The weight for neurons beyond 160 μm was zero. We modeled this 

weighted firing rate as a function hand velocity using a Poisson generalized linear model:  

𝑓 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), 𝜆 = 𝑒𝑋𝛽, 

where f is the firing rate, X is a matrix of Cartesian hand velocities, and 𝛽 is a matrix of model 

parameters. We defined the multi-unit PD as the inverse tangent of the ratio of the y- and x-velocity 
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parameters in 𝛽 at each location in the map (Chowdhury, Glaser, and Miller 2020; Versteeg et al. 

2021).  

In all experiments, we artificially stimulated with 200 Hz trains lasting 200 ms (40 pulses). 

Increasing stimulation frequency increased the magnitude of the effect, but not its direction. When 

we stimulated multiple locations simultaneously, we first chose a single location, then randomly 

chose other locations having PDs within ± 23 degrees of the first location. Unless otherwise 

specified, we repeated each stimulus condition and location 50 times to compute mean effects. We 

used two-way ANOVAs to analyze our results across conditions. Due to the large number of sets 

of locations we tested for each experiment, statistical tests returned near zero p-values even when 

the effect size was small. 

Neurons with similar PDs in the cortical layer of the topoVAE formed clusters. Cluster size 

will presumably interact with stimulus intensity to determine effect magnitude and directional 

error. While we could have computed new cortical maps with different lateral effect scales (σ in 

the Mexican-hat function) to test this effect, this would have resulted in different topographical 

organization due to the stochastic learning process which could affect the efficacy of stimulation. 

Instead, we simply scaled the dimensions of the original cortical map from 4000 μm to alter the 

effective size of clusters. When we did so, we adjusted the magnitude of the inferred effect to 

account for changes in the density of neurons. 

Results 

Artificial stimulation pipeline 

To simulate the effect of stimulation within proprioceptive cortex, we generated an 80x80 

cortical map with a topographical variational autoencoder (topoVAE) that included both lateral 
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inhibition and excitation and was trained to regenerate joint angular velocities during reaching 

movements (Blum, Grogan, et al. 2021). The map recapitulated a number of the features present 

in recordings from proprioceptive regions of cortex (Blum, Grogan, et al. 2021). After training the 

network, we artificially stimulated it using an activation function derived from a biophysical model 

of cortical stimulation, shown in Fig. 4.3c (Kumaravelu et al. 2022). The ICMS-induced activity 

was on top of activity due to arm movements that had previously been recorded as a monkey 

performed a random-target task while holding a robotic manipulandum. For each stimulus trial, 

we computed firing rates with and without ICMS (Fig. 4.3d). Artificial stimulation at 200 Hz and 

20 μA caused a large increase in the firing rates of neurons within ~300 μm of the site of 

stimulation. We linearly decoded hand velocity from the firing rates and computed the difference 

with and without stimulation. We analyzed the magnitude and direction of this difference-vector 

to quantify the effect of stimulation. 
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Fig. 4.3. Simulating the effect of ICMS in proprioceptive cortex using a topographic variational autoencoder (topoVAE). 

(a) Map of the multi-unit PDs of the neurons in the cortical layer of the topoVAE. The color of each cell represents the 

multi-unit PD calculated at the corresponding location. (b) Pipeline to generate decoded hand velocities during movement. 

The topoVAE generates two sets of cortical firing rates from the joint velocities, one with, and one without ICMS, and hand 

velocity is linearly decoded from both. The effect of stimulation was taken as the difference between the velocity with and 

without stimulation. (c) Activation function used to modulate the firing rates of neurons as a function of ICMS amplitude. 

(d) The firing rates of artificial neurons averaged over a 50 ms period without (top) and with (bottom) stimulation at 200 

Hz and 20 μA. The color of each cell represents the firing rate of the corresponding neuron. 



122 
 

Effect of stimulation at two example locations 

In initial experiments, we repeatedly stimulated a single location within a cluster of neurons 

with similar PDs (Fig. 4.4a, teal cross). When stimulating at 10 μA, neurons within ~200 μm (teal 

circle) had at least a 50% probability of being activated by each pulse in the stimulation train. The 

effects of the activated neurons on inferred hand velocity are denoted on the left of Fig. 4.4b as 

black vectors, with a length determined by the difference in firing rate with and without 

stimulation. The resulting distribution in this example was weakly bimodal, with the primary mode 

in direction 210°. The net effect of stimulation, summed across all neurons, was consistently near 

210° across trials (Fig. 4.4b, right), near the 184° preferred direction at the center of the stimulus 

site.  

The pink cross in Fig. 4.4a shows a second stimulus location, this one centered on a cortical 

location with virtually the same PD as in Fig. 4.4b but surrounded by neurons with more 

heterogeneous PDs. Similar stimulation at this location evoked effects in individual neurons with 

a broader range of PDs (Fig. 4.4b, left), resulting in a net velocity vector that was shorter than that 

of the first location (Fig. 4.4b, right). Across trials, the direction of the net effect varied 

considerably more than that of the first location and was roughly opposite that of the PD at the 

stimulated location. 
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Fig. 4.4. Effect of stimulation at two example locations. (a) Subset of the cortical layer of the topoVAE as in Fig 1a. Teal 

and pink crosses represent two stimulus locations. Neurons within the colored circles around each cross had at least a 50% 

chance to be activated by a 10 μA pulse. (b) The effect of each activated neuron on decoded hand velocity for a single trial 

when the teal location was stimulated (top, left) and when the pink location was stimulated (bottom, left) is represented by 

a black vector, and summarized and by the blue histogram. The summed effect of all neurons is represented for each trial by 

the black vectors and histograms (right). Vectors that reach the outermost circle have a magnitude of 5% (left) or 40% (right) 

of the median hand speed. Teal and pink dots indicate the PDs of the two stimulus sites. 
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Effect of increasing amplitude on the magnitude and direction of the effect of stimulation 

Increasing ICMS amplitude increases the distance at which neurons will be activated and 

will, given the topography of the map, increasingly recruit neurons with differing encoding 

properties (including PDs). We quantified this effect across 250 stimulation locations and a wide 

range of amplitudes (5-80 μA), computing the mean effect at each location across 50 repetitions. 

The magnitude of the velocity readout effect increased sublinearly with increased ICMS amplitude 

(Fig. 4.5a). To analyze the effect across locations with different PDs, we computed the directional 

error between the PD of the stimulus site and the direction of the velocity readout. This directional 

error is shown for all trials during 5 μA stimulation in Fig. 4.5b. Stimulation resulted in effects 

that were slightly biased toward the PD at the stimulus site. The mean directional error is shown 

across a wide range of currents in Fig. 4.5c. Compared to 0 μA, where errors are due to inherent 

stochasticity in the cortical firing rates, stimulation at 5 μA significantly lowered the directional 

error (paired t-test, p ≅ 0), resulting in effect directions that were nearer to the PD of the stimulated 

location than a random effect. As amplitude increased from 5 μA, directional error also increased.  

While larger currents are necessary to induce larger sensation, the larger directional error 

they induce limits the utility of that approach. We wondered whether distributing current over 

multiple electrodes could evoke large effects while maintaining low directional error. To test this, 

we simultaneously stimulated 250 sets of four locations, with each site in a set having a similar 

PD (tolerance of ± 23°). As expected, increasing the current at each location resulted in larger 

effect magnitude (Fig. 4.5a). Using a two-way ANOVA, we determined that the magnitude of the 

effect increased significantly with both increased total current (F(1, 2996) = 7450, p ≅ 0)  and 

number of stimulus sites (F(1, 2996) = 1139, p ≅ 0). Additionally, the effect of increasing 
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amplitude was larger when the number of simultaneous stimulus sites was increased from 1 to 4 

(F(1,2996) = 193, p ≅ 0). However, quadrupling the number of simultaneous stimulation sites did 

not quadruple the magnitude of the effect, likely due to overlapping population of activated 

neurons from the four sites. 
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Fig. 4.5. Effect of stimulation across locations. (a) The mean magnitude of the effect of stimulation across 250 stimulus 

locations for different amplitudes and numbers of sites. Magnitude is normalized by the median speed of the monkey’s 

hand during natural movements. All error bars represent standard deviation. (b) The difference between the direction 

of the effect at each location and the mean PD of the stimulus site(s) when 1 site (black) or 4 sites (red) are stimulated 

with 5 μA. (c) The mean difference between the inferred direction and the mean PD of the stimulated location(s) 

across amplitudes and numbers of simultaneous stimulus locations. 
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Stimulating at multiple locations also resulted in lower directional errors compared to the 

same total current at a single location (Figs. 4.5b,c; two-way ANOVA, F(1, 2997) = 114, p ≅ 0). 

However, increasing amplitude per location from 5 to 40 μA significantly increased directional 

error as with single electrodes (F(1, 2997) = 63, p ≅ 0). Overall, the mean PD of the stimulated 

locations was closest to the direction of the effect of stimulation when stimulating multiple 

locations simultaneously each with small currents.  

Efficacy of stimulation at cluster centers 

As we saw with the two example locations (Fig. 4.4), the PD distribution of the neurons 

surrounding the stimulus site impacts the magnitude and directional error dramatically. We 

wondered how the efficacy of stimulation changes as the site of stimulation is moved away from 

cluster centers.  To test this, we stimulated 100 locations with amplitudes spanning 5-20 μA, 

beginning at cluster centers. We then progressively moved the stimulus site out from the center, 

causing the magnitude of the effect to decrease (Fig. 4.6a). Using a two-way ANOVA, we 

determined that magnitude decreased significantly with increased distance from the cluster center 

(F(1, 1997) = 12, p = 6.3 ∗ 10−4).  

As expected, increasing distance from the center also significantly increased directional 

error (Fig. 4.6b; two-way ANOVA, F(1, 1997) = 97, p ≅ 0). There was little effect 100 μm from 

the center, likely because the surrounding neurons still had a homogeneous PD distribution. 

Increasing current also increased directional error, an effect that was independent of the 

positioning within the cluster. This suggests that electrodes should be placed within ~100 μm of 

the center of clusters for ICMS to evoke effects with the lowest directional error. 
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Fig. 4.6. Efficacy of stimulation at progressively greater distances from cluster centers. (a) Magnitude of the effect of 

stimulation for different distances from the center of clusters with homogeneous PDs. (b) Directional error with 

increasing distance from the cluster centers. 
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To determine how effective stimulation could be in ideal conditions, we stimulated 20 sets 

of up to 24 clusters with similar PDs simultaneously. As with fewer sites, magnitude increased 

with amplitude (Fig. 4.7a; two-way ANOVA, F(1,316) = 175, p ≅ 0) and number of sites (F(1,316) 

= 154, p ≅ 0). The amplitude effect increased sublinearly with the number of sites (F(1,316) = 19, 

p = 2 ∗ 10−5), likely due to sites activating overlapping populations of neurons.   

Stimulating 4 cluster centers resulted in directional errors of ~20° at 5 μA, decreasing to 

~5° when 24 sites were stimulated (Fig. 4.7b). Directional error increased as current per location 

increased, though was still less than 40° when stimulating with 15 μA. Increasing the number of 

simultaneous stimulus sites decreased directional error when stimulating at 5 μA and 10 μA (two-

way ANOVA, F(1,315) = 21 and 12.5, p = 6 ∗ 10−6  and p = 0.0005 respectively), but not at larger 

amplitudes (p > 0.05). Overall, stimulating many cluster centers simultaneously each with small 

currents activates neurons with similar PDs, resulting in large magnitude effects in a direction near 

the mean PD of the neurons at the stimulus sites. 
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Fig. 4.7. Efficacy of many-location stimulation applied at cluster centers. (a) Magnitude of the effect of stimulation 

when stimulation was applied at many cluster centers across amplitudes. (b) Directional error with increasing number 

of simultaneous stimulus sites and amplitude. 
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Effect of cluster size on the magnitude and direction of the effect of stimulation 

We also wondered what effect the size of clusters would have on the efficacy of stimulation 

and the precision with which electrodes would need to be positioned. We expected stimulation 

within larger clusters to activate more neurons with homogeneous PDs, resulting in larger 

magnitude effects and lower directional error. To test this, we altered the dimensions of our cortical 

map to effectively increase or decrease the size of clusters (Fig. 4.8a). We then tested the effect of 

stimulation at 100 locations. The mean adjusted magnitude increased with increased cluster size, 

as stimulation activated a more homogeneous population of neurons (Fig. 4.8b). Using a two-way 

ANOVA, we determined that increasing the cluster size increases the magnitude of the effect of 

stimulation across amplitudes (F(1, 2397) = 23, p ≅ 0). Likewise, directional error decreased 

substantially with increased map size for currents < 40 μA, again due to increased activation of 

more homogeneous neurons. (Fig. 4.8c; F(1, 2397) = 94, p ≅ 0).  
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Fig. 4.8. Effect of cluster size. (a) Map representing the PDs of cortical neurons. To avoid the need to recompute an entire 

cortical model, with PD clusters that would have differed as a result of the stochastic learning process, we simply scaled 

the map up and down in size from 4000 μm to alter the effective size of clusters. (b) Magnitude of the effect of stimulation 

for different cluster sizes across a range of amplitudes. (c) Directional error across cluster sizes. 
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Discussion 

We simulated the effect of stimulating within proprioceptive cortex using an autoencoder 

network (the “topoVAE") trained to regenerate arm kinematics (Blum, Grogan, et al. 2021). 

topoVAE maps form small domains of neurons with similar preferred directions, which are 

themselves organized into pinwheel-like patterns similar to those found in the visual cortex 

(Malonek, Tootell, and Grinvald 1994; Kang, Shelley, and Sompolinsky 2003), but without any 

discernible long-range organization. We artificially stimulated the map using a wide range of 

conditions like those that might be used to implement an afferent BCI. We decoded hand velocity 

from the simulated cortical output as a proxy of the sense of limb movement that a user might 

experience. Increasing current amplitude increased the magnitude of the effect of stimulation, but 

also increased the directional error of the decoded velocity estimate with respect to the PD of the 

neurons at the immediate stimulus site. Increasing the number of simultaneous stimulus locations 

decreased this error. The directional error could be decreased substantially by stimulating near the 

center of clusters of neurons with homogeneous PDs. Here, we discuss the implications of our 

results for designing proprioceptive interfaces, comparisons between our simulation study and 

psychophysical experiments, and limitations of our study. 

Developing proprioceptive interfaces 

Proprioception is vital for motor control: Individuals who have lost proprioception but 

retain the ability to contract their muscles are typically wheelchair bound and make slow and 

imprecise reaches (Ghez et al. 1990; Sainburg et al. 1995). With state-of-the-art BCIs, spinal-cord 

injured patients can make reaches with a robotic limb or even their own arm (Ajiboye et al. 2017; 

Collinger et al. 2013; Ethier et al. 2012; Bouton et al. 2016). However, because current BMIs do 
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not restore proprioception, the reaches made by these users will, in most cases, also suffer the 

limitations faced by deafferented individuals. It will be important to restore proprioceptive 

feedback to these patients if the full benefit of the motor interfaces is to be realized. 

Early tactile cortical areas (Brodmann areas 3b and 1) have a well-defined somatotopy 

(Mountcastle 1957; Callier, Suresh, and Bensmaia 2019; Chen et al. 2001). ICMS applied to these 

areas typically evokes sensations at the same location as the receptive fields recorded on the 

stimulated electrodes (Tabot et al. 2013; Flesher et al. 2016). The sensations evoked by ICMS may 

be similar to flutter sensations, as monkeys could accurately compare the frequency of ICMS to 

the frequency of a mechanical vibrator (Romo et al. 1998). Monkeys can also accurately 

discriminate frequency of two ICMS trains (Romo et al. 2000; Kim, Callier, Tabot, Gaunt, et al. 

2015). In an initial bidirectional BCI, monkeys selected virtual objects with two different artificial 

“textures,” conveyed by different stimulation frequency, by controlling a virtual arm with signals 

recorded from motor cortex (O’Doherty et al. 2011a). Further experiments have shown that 

modulating frequency changes the sensation quality and intensity in a highly electrode-dependent 

manner (Callier et al. 2020), implying that monkeys could discriminate frequency by simply 

discriminating intensity. These early experiments have culminated in current afferent interfaces 

which can elicit tactile sensations in humans (Salas et al. 2018; Osborn et al. 2021). When using 

current bidirectional BCIs, which provide control of a robotic limb and force and contact location 

feedback, a spinal cord injured patient grasped and move objects faster than with visual feedback 

alone (Flesher et al. 2021). 

Stimulation in proprioceptive areas has not been as effective, possibly because the 

somatotopy in proprioceptive areas is less well-defined. The poorly defined somatotopy in 

proprioceptive areas is partly because signals arise largely from receptors embedded in multiple 
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muscles in the arm, some spanning multiple joints, then need to be mapped onto the two-

dimensional cortical surface. Because of this, arm movements, which contract and stretch multiple 

muscles, evoke a complex pattern of activity across proprioceptive cortex. Nonetheless, 

proprioceptive-like sensations have been reported by a human participant at currents slightly above 

those required to elicit tactile sensation from the same electrode array. (Salas et al. 2018). Oddly, 

these were in response to what was likely stimulation in area 1. The evoked sensations were 

relatively weak and loosely correlated with stimulus amplitude, but larger amplitudes tended to 

shift the perceived modality from cutaneous to proprioceptive. 

In a series of experiments, monkeys were trained to report the direction of a mechanical 

perturbation applied to their hand (Tomlinson and Miller 2016). In some cases, the mechanical 

perturbation was paired with stimulation through four electrodes with similar PDs in an attempt to 

bias the monkey’s report of the perturbation direction. In one monkey, the bias direction could be 

predicted based on the PD of the stimulated electrodes. However, in three other monkeys it could 

not be.   

In the face of these challenges to take a fully biomimetic approach to a proprioceptive BCI 

(Bensmaia and Miller 2014), it has nonetheless proven possible to monkeys to learn an arbitrary 

mapping between ICMS and the error vector between their hand position and the position of 

invisible targets (Dadarlat, O'Doherty, and Sabes 2015). After a few months of training, monkeys 

were able to use the ICMS feedback to reach the target, though their movements were slow. Given 

this success, it seems likely that a mapping which uses stimulation patterns that evoke more 

naturalistic sensations of proprioception would reduce the training time and improve the quality 

of feedback.    
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Our simulation experiments show that low-amplitude stimulation applied near multiple PD 

cluster centers may be necessary to evoke robust, meaningful sensations of limb movement (Fig. 

4.7). Stimulation efficacy depended on the PD distribution of neurons near the stimulated location 

(Figs. 4.6 and 4.7) and on the size of clusters of neurons with homogeneous PDs (Fig. 4.8). It may 

be that by chance, the electrodes in the successful monkey described above were placed in optimal 

locations. Alternatively, that monkey may have had larger PD clusters leading to more 

homogeneous activation. 

The need to stimulate with very low currents on multiple electrodes to achieve adequate 

accuracy, raises the concern that it may be impossible to achieve adequate perceived intensity. 

Previous experiments have reached different conclusions about the linearity of perceived effects 

across more than one electrode. Single-electrode detection thresholds typically range from ~10-40 

μA (Kim, Callier, Tabot, Tenore, et al. 2015; Sombeck and Miller 2019) and can even be as low 

as 5 μA (Zaaimi et al. 2013). In one set of experiments, multi-electrode stimulation was detected 

more reliably than was predicted by a model which assumed independence across electrodes. 

Monkeys were able to detect multi-electrode stimulation reliably even when stimulation applied 

through each electrode alone was subthreshold (Zaaimi et al. 2013). However, instead of this 

supralinear effect, other experiments found a close match to a model assuming independence (Kim, 

Callier, Tabot, Tenore, et al. 2015). A third study suggested even sublinear summation, as monkeys 

could readily detect 80 μA of stimulation through a single electrode, but not if the same total 

current distributed over 16 electrodes (Sombeck and Miller 2019). Since changing amplitude 

affects both the magnitude and directional error, future proprioceptive interfaces will need to 

carefully tune the amplitude of stimulation. 
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Parallels to psychophysical work in area MT 

The study of Tomlinson and Miller described above (Tomlinson and Miller 2016), was 

based on much earlier experiments that sought to bias monkeys’ perception of the direction of 

moving dots by stimulating in area MT (Murasugi, Salzman, and Newsome 1993; Salzman et al. 

1992). Clear parallels exist between our simulation study and both of these psychophysical studies. 

Area MT is involved in processing the direction of motion of a visual stimulus and lacks sensitivity 

to color or form (Albright, Desimone, and Gross 1984; Maunsell and Van Essen 1983; Van Essen, 

Maunsell, and Bixby 1981). Neurons with similar direction preference are organized into columns 

in area MT, which are themselves organized in pinwheel-like structures (Albright, Desimone, and 

Gross 1984; Burkhalter, Van Essen, and Maunsell 1981; Malonek, Tootell, and Grinvald 1994), 

much like the organization of neurons in our generated cortical map (Fig. 4.3a). Stimulating with 

small currents (≤ 40 uA) near the center of a column in area MT induced a perceptual bias with a 

direction that could be predicted by the PDs of neurons in the stimulated column. As the electrode 

was progressively moved away from the center, the effect of stimulation nearly disappeared 

(Murasugi, Salzman, and Newsome 1993). Furthermore, at 80 μA, monkeys no longer could 

discern the direction of moving dots, presumably because of the activation of many neurons with 

a wide distribution of encoding properties. We observed a similar effect, whereby directional error 

increased with increasing current, and as we moved the stimulus site away from the center of a 

cluster of neurons (Fig. 4.6).  

Further evidence that stimulation amplitude affects the nature of the evoked sensation 

comes from a human’s reports of the phosphenes evoked by stimulating V1. Stimulation applied 

at amplitudes near the detection threshold evoked phosphenes of various colors, but the color of 

the phosphenes changed to white, greyish, or yellowish as amplitude increased and additional 
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neurons were recruited (Schmidt et al. 1996). Directional error in our study reached chance level 

at ~40 μA, possibly because clusters in our simulated map are smaller than those in area MT. 

Indeed, while clusters in our generated map spanned ~250 μm, those in area MT of owl monkeys 

are ~400 μm wide (Malonek, Tootell, and Grinvald 1994). Future proprioceptive interfaces will 

need to be designed with carefully choose stimulus locations to evoke effects in directions 

predicted by the neurons recorded on the stimulated electrodes. 

Assumptions and limitations 

In this study, we simulated the effects of ICMS using an artificially generated cortical map. 

We wondered how the topography of the map would interact with stimulus parameters in 

determining the efficacy of stimulation. While we used joint velocities as input to our cortical 

maps, neurons in actual S1 receive information from muscle spindles and Golgi tendon organs in 

addition to joint receptors (Proske and Gandevia 2012; Houk, Rymer, and Crago 1981; Houk and 

Simon 1967). To determine whether the choice of inputs affected our results, we also generated 

maps with muscle velocities. The two types of maps were similar, in part because joint velocities 

completely determine muscle velocities, with an approximately linear relation assuming a constant 

joint lever arm (Chowdhury, Glaser, and Miller 2020). In area 2, where our previous 

psychophysical experiments were performed (Tomlinson and Miller 2016; Sombeck and Miller 

2019), neurons receive cutaneous inputs as well as those from muscle receptors. As we did not 

include cutaneous information in our current model, it may be more applicable to area 3a, which 

receives primarily muscle inputs. Future stimulation experiments should target area 3a, though its 

position at the bottom of the sulcus in the macaque brain makes access with multi-electrode arrays 

difficult. 
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To determine neuronal activation due to stimulation, we used a biophysical model of cortex 

(Kumaravelu et al. 2022). Although the topoVAE itself included realistic lateral connections 

during training, these played no direct role during stimulation, with neurons activated only directly. 

In real cortex, responses evoked within ~350 um are primarily direct, as they are largely unaffected 

when synapses were blocked (Histed, Bonin, and Reid 2009). Furthermore, 80% of spikes evoked 

near the stimulus site of the biophysical model were directly evoked. However, transsynaptically 

evoked activity can propagate millimeters from the site of stimulation potentially leading to 

overestimates of the specificity of our modeled effects (Hao, Riehle, and Brochier 2016; Sombeck 

et al. 2021; Voigt, Yusuf, and Kral 2018; Logothetis et al. 2010). In one example, 67% of spikes 

recorded from the descending pyramidal tract evoked by stimulation in motor cortex had latencies 

consistent with transsynaptic activation (Jankowska, Padel, and Tanaka 1975). Given the precision 

of the evoked tactile perceptions in both monkey and human experiments, this seems not to be a 

major effect (Flesher et al. 2016; Tabot et al. 2013). Future modeling efforts might include 

synapses within a single cortical layer or across multiple cortical layers to infer the effect of 

stimulation more accurately. 
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Chapter 5 - Discussion 

The preceding chapters described my work towards developing stimulation patterns to 

provide proprioceptive feedback via intracortical microstimulation (ICMS) in somatosensory 

cortex (S1). One reason providing proprioceptive feedback has proven more difficult than 

providing tactile feedback is the less well-defined topography in proprioceptive cortical areas. This 

topography arises from the need to map receptors from many muscles onto the two-dimensional 

cortical surface. Because of this, even simple limb movements evoke a complex spatial pattern of 

neural activity across proprioceptive cortex. To mimic this pattern, stimulation likely needs to be 

provided through many electrodes, each with small amplitudes. In support of this, I measured the 

spatiotemporal neural response to ICMS in Chapter 2, finding that decreasing stimulation 

amplitude activated a more spatially restricted population of neurons, neurons that may have 

similar encoding properties in proprioceptive cortex. To test whether multi-electrode stimulation 

could provide rapid feedback, I compared the reaction times evoked by stimulation to that evoked 

by a mechanical perturbation applied to the hand in Chapter 3. Multi-electrode stimulation evoked 

reaction times as short or shorter than the mechanical cue, implying that this approach can provide 

feedback rapid enough to replace natural proprioception. Finally, I simulated the sensation evoked 

by multi-electrode ICMS using a model of proprioceptive cortex in Chapter 4. Stimulation at many 

sites with small amplitudes produced inferred effects with smaller directional error than did 

stimulation at single sites.  

These results add to previous evidence for the need for multi-electrode stimulation in future 

afferent interfaces. Single electrode stimulation in early tactile areas evokes sensations typically 

corresponding to a single finger or a small patch of the hand (Flesher et al. 2016; Tabot et al. 2013; 
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Fifer et al. 2020), and sensations of limb movement reported by a human participant corresponded 

only to a small portion of the arm (Salas et al. 2018). To provide feedback about the whole arm 

and/or hand, these small projected fields will need to be combined by stimulating through many 

electrodes simultaneously. Additionally, multi-electrode ICMS may also increase the number of 

distinguishable levels of intensity that could be provided to a user. The just noticeable difference 

(JND) is the amount stimulus intensity needs to be changed for the difference to be detected. For 

most natural stimuli, the JND increases with increased intensity. The JND for ICMS was constant 

across a wide range of amplitudes, measured as ~15-30 μA across monkeys and humans (Flesher 

et al. 2016; Kim, Callier, Tabot, Gaunt, et al. 2015). With a current range of ~20-100 μA, 

corresponding to detection thresholds and the safety maximum, respectively (Rajan et al. 2015; 

Chen et al. 2014), afferent interfaces would be able to deliver 3-6 distinguishable levels of 

feedback. Multi-electrode stimulation may increase that number, as this would increase the 

maximum total current that could injected from 100 μA through a single electrode to something 

like the 480 μA used in Chapter 3. 

 Taken together, these results point to the need for multi-electrode stimulation in future 

afferent interfaces. The rest of this chapter will discuss the development of biomimetic, multi-

electrode stimulation patterns to provide proprioceptive feedback, differences in ICMS-evoked 

activity compared to activity evoked by natural stimuli, and methods to simultaneously decode 

neural activity in motor cortex while stimulating S1. 

Multi-electrode stimulation to provide proprioceptive feedback 

Two previous interfaces used vastly different approaches to provide proprioceptive 

feedback. In one approach, monkeys were required to learn an arbitrary mapping between 

stimulation and the error vector between the position of an invisible target and hand position 
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(Dadarlat, O'Doherty, and Sabes 2015). Stimulation was applied through 8 electrodes, and each 

electrode was arbitrarily assigned a direction. The frequency of stimulation for each electrode was 

modulated by projecting the error vector onto each electrode’s assigned direction. The maximum 

frequency scaled with the magnitude of this error vector. After months of training, monkeys 

learned to use this interface to reach to invisible targets, though it took them twice as long to reach 

the targets than when provided full visual feedback. Additionally, monkeys would regularly stop 

during movements to interpret ICMS feedback, resulting in roughly double the number of 

submovements for each reach than when provided full visual feedback. 

It may be stimulation patterns that evoke naturalistic sensations of proprioception would 

be easier to learn and provide better feedback than arbitrary stimulation patterns. We previously 

tried to measure the naturalistic effects of ICMS in area 2 of S1 (Tomlinson and Miller 2016). To 

do so, we trained monkeys to report the direction of a mechanical perturbation by reaching to the 

one of two opposing targets that was nearer the perturbation direction. During the mechanical 

perturbation, we applied stimulation at 20 μA through each of 4 electrodes with similar preferred 

directions (PDs) in area 2 of S1. In one monkey, stimulation through 6 out of 7 sets of electrodes 

biased the monkey’s perception of the perturbation in the direction of the mean PDs recorded on 

the stimulated electrodes. In three other monkeys, this stimulation biased the perception of the 

perturbation but in directions we were unable to predict. It remains unclear why this approach 

predictably biased one monkey’s perception but not the other three. Based on the results in Chapter 

4, it may be that the one monkey where stimulation caused predictable biases had larger clusters 

of neurons with similar PDs than the other monkeys. Alternatively, electrodes may have been 

placed nearer to cluster centers, as both manipulations substantially reduced directional error 

between the inferred effect direction and the mean PD at the stimulated sites.  
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The method of naturalistic stimulation to provide proprioceptive feedback proposed in 

Chapter 4 builds on this previous attempt (Tomlinson and Miller 2016). Through our recording 

(Chapter 2) and modeling efforts (Kumaravelu et al. 2022), we observed that stimulation at 20 μA 

can activate neurons hundreds of microns away from the site of stimulation. This activated 

population will likely have a broad distribution of  encoding properties due to the complex spatial 

organization of neurons in proprioceptive areas (Pons et al. 1985). In my simulations in Chapter 

4, 20 μA stimulation at four sites, each with similar PDs, resulted in a large mean directional error 

between the inferred sensation and the mean PD of neurons recorded at the stimulus location. This 

implies that this approach would not reliably evoke sensations of hand movement in the direction 

of the mean PD of the stimulated electrodes, consistent with the random biases we observed in 

three out of four monkeys.  

To activate a more spatially restricted population of neurons, amplitude should be reduced 

to 5-10 μA. Since reducing amplitude also reduces the magnitude of the evoked sensation, 

stimulation will need to be applied through many electrodes simultaneously to increase the total 

current injected. In Chapter 3, reaction times in response to 10 μA stimulation through 24 

electrodes simultaneously (240 μA total) were longer than that to a mechanical perturbation 

applied to the hand, and only slightly shorter to that of a visual cue for one monkey. Instead of 

increasing amplitude, frequency could be increased to increase sensation intensity, as this 

manipulation increases the detectability of stimulus trains (Kim, Callier, Tabot, Gaunt, et al. 2015; 

Fridman et al. 2010) and shortens reaction times (Chapter 3). In addition to changing intensity, 

modulating stimulation frequency may change the quality of sensation. During low-frequency 

stimulation in early tactile cortical areas, human participants reported mostly sensations of 

pressure, tapping, and “sparkling,” while they reported more warm, buzzing, and tingling 
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sensations during high-frequency stimulation (Hughes et al. 2021). The effects of changing 

frequency on sensation quality in proprioceptive cortex warrants further investigation before 

frequency can be used to change sensation intensity. 

Ideally, stimulation electrodes would be placed in the center of clusters of neurons with 

similar PDs, so that the stimulation would primarily activate neurons with similar encoding 

properties. Instead of isolating single units on each electrode, multi-unit recordings could be used 

to better estimate the encoding properties of the population of neurons around each electrode. This 

approach may be insufficient, though, because the distance at which neural activity is recorded is 

relatively small compared to the extent of stimulation. To find cluster centers, previous studies 

moved the stimulation electrode until neurons recorded along 200 μm of electrode travel had 

similar PDs (Murasugi, Salzman, and Newsome 1993). The stimulation electrode was then placed 

in the center of this region. Since we cannot move the electrode after implanting in monkeys or 

humans, we may need to implant electrode arrays with small interelectrode distances to measure 

the encoding properties of neighboring neurons. This approach may enable better selection of 

stimulation electrodes. Stimulation through many carefully chosen electrodes each with small 

amplitudes may closely mimic the complex spatial pattern of activity evoked by naturalistic limb 

movements, and thus may evoke naturalistic sensations. 

Since multi-electrode stimulation will likely deliver a large amount of charge in future 

afferent interfaces, it is reasonable to question whether this approach is safe. In a study about the 

safety of ICMS, electrode arrays were implanted into S1. Stimulation was delivered through a 

maximum of 12 electrodes simultaneously and up to amplitudes of 100 μA  for five days a week 

over six months (Rajan et al. 2015). The arrays were then explanted and histology on the cortical 

tissue was performed. Most of the damage to tissue was due to implanting and explanting the 
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arrays, not stimulation (Rajan et al. 2015). From this study, the damage to tissue surrounding 

stimulation electrodes seems minimal, even during multi-electrode stimulation at large amplitudes. 

Framework for designing biomimetic stimulation patterns 

 Developing stimulation patterns which mimic the spatiotemporal neural response to natural 

stimuli is difficult in part because of the complex relationship between ICMS and evoked activity. 

While it is difficult to record evoked activity in vivo, this relationship from ICMS to spikes can be 

modeled using biophysical models of cortical stimulation (Aberra, Peterchev, and Grill 2018). In 

order to generate stimulation patterns that evoke a specific pattern of neural activity, we need the 

opposite mapping, one from desired spike patterns to the necessary stimulus pattern. A genetic 

algorithm is well suited for searching the stimulus parameter space to find these patterns because 

the relationship between ICMS and evoked activity is highly nonlinear (Davis 1991). Stimulation 

patterns produced by a genetic algorithm evoked activity in modeled neurons that was more similar 

to naturally occurring activity than that evoked by a linear mapping between neural activity and 

stimulation amplitude (Kumaravelu et al. 2020). This resulted in an encoder that converted desired 

neural activity into stimulus patterns which best produced that activity. 

 The accuracy of stimulation patterns generated by this encoder in part depends on how well 

the biophysical model of cortical stimulation models the relationship between ICMS parameters 

and neural firing. This model used highly realistic neurons that were adapted from 3D digital 

reconstructions of neurons in rats (Markram et al. 2015). Stimulation in this model reproduced 

three observations from in vivo ICMS experiments: the strength-duration relationship, the current-

distance relationship, and the preferential activation of axons (Aberra, Peterchev, and Grill 2018). 

To provide further evidence that the modeled activity was similar to that of actual cortical 

stimulation, we attempted to compare our physiological recordings of the evoked activity to the 
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modeled evoked activity. Through this process, we realized that the biophysical model generated 

directly evoked spikes, those evoked by the stimulus pulse itself, while the spikes we recorded in 

actual cortex had latencies consistent with transsynaptically evoked activity. Because of this, we 

could not meaningfully compare our recordings. Since we cannot record directly evoked spikes 

physiologically, it may be that the only way to test the sensations evoked by this encoder is to use 

human reports or infer the sensation in monkeys. 

Rapid assessment of the evoked direction of limb movement 

It would be worthwhile to compare the perceptual effects across many different stimulation 

patterns to find those that evoke more naturalistic sensations of proprioception. To thoroughly 

explore the stimulation parameter space, it is important to rapidly assess the perceptual effects of 

each pattern. The experiments we performed to measure biases caused by ICMS, though, took 

multiple days for only a few stimulation conditions (Tomlinson and Miller 2016). With this 

approach, it would be infeasible to test the perceptual effects for many stimulation patterns. 

Additionally, this task only could infer the direction of the bias in one of two opposing directions, 

providing a very limited view on the evoked sensation.  

To more rapidly assess the direction of the sensation evoked by ICMS, I developed a “ring-

reporting” task. In this task, monkeys reported the direction of a perturbation by reaching to an 

outer ring. Monkeys were initially trained to reach in the direction of a mechanical perturbation. 

After they became proficient at this, ICMS in area 2 replaced the mechanical perturbation on a 

small proportion of trials. If ICMS evoked a sensation of limb movement similar to the mechanical 

perturbation, then the monkey would reach to the outer ring in the direction of the ICMS-evoked 

sensation. 
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With the ring-reporting task, it was difficult to determine how to reward the monkey on 

ICMS trials, as the correct reach direction was not known before stimulating. I first rewarded the 

monkeys regardless of the direction they reached, either by rewarding on every ICMS trial or on a 

random proportion of ICMS trials. Because the direction of their reach did not matter, the monkeys 

quickly learned to reach in the same direction on every ICMS trial to receive a reward. I also tried 

rewarding on none of the ICMS trials, which caused the monkeys to hold still in the middle of the 

workspace waiting for a mechanical perturbation.  

Instead of rewarding independently of reach direction, I lastly used my predicted direction 

for each stimulus pattern as the rewarded direction. While this approach does allow monkeys to 

learn the mapping between stimulus and reach direction, it would be difficult to do so because of 

the numerous stimulation patterns tested in a single session. With this reward strategy, monkeys 

still reached in the same direction on every ICMS trial. This may be because the monkeys had 

already learned to reach in a single direction on ICMS trials from previous reward strategies. 

Alternatively, if my predictions were inaccurate, the rewarded direction would not match the 

direction of the ICMS-evoked. In this scenario, the monkey would be rewarded on random trials 

where my predictions happened to align with direction of the evoked sensation. When I tested 

randomly rewarding the monkey, he reached in the same direction on every ICMS trial. The only 

conclusion from these experiments was that monkeys can discriminate ICMS in area 2 from the 

mechanical perturbation, implying that these two sensations are different.   

Targeting other proprioceptive areas 

 Part of the reason ICMS in area 2 evokes unnatural or unpredictable sensations may be 

because it is a mixed-modality area. Area 2 receives both cutaneous and proprioceptive inputs, and 

neurons in this area respond to cutaneous stimuli as well as joint and muscle manipulations 



148 
 

(Padberg et al. 2019; Pons et al. 1985; Iwamura et al. 1993). Because of this, stimulation in area 2 

will likely activate both cutaneous and proprioceptive neurons, resulting in mixed-modality 

sensations. Additionally, the presence of both cutaneous and proprioceptive information makes the 

hand portion of area 2 ideally suited for stereognosis, the ability to recognize the form objects 

without visual input (Yau et al. 2016). We have further speculated that the arm portion of area 2 

plays a role in mapping the location of encountered objects with respect to the body (Blum, 

Versteeg, et al. 2021). This object-based representation may make area 2 a poor target for 

proprioceptive interfaces that aim to evoke simpler sensations of arm movement.    

Instead of area 2, proprioceptive interfaces could target area 3a of S1, as it primarily 

receives inputs from joint and muscle receptors, with only a small proportion of cutaneous inputs 

(Iwamura et al. 1983; Krubitzer et al. 2004). Unfortunately, this area is located at the bottom of 

the central sulcus, making it difficult to implant chronic arrays. When acute electrodes were 

inserted into area 3a, monkeys readily detected and discriminated trains of different frequencies 

(London et al. 2008). If chronic electrode arrays could be implanted into this area, something that 

we are pursuing, then area 3a is an appealing target for eliciting proprioceptive sensations. 

Combining biomimetic and learning approaches 

Ultimately, it will be difficult to mimic the complex spatial pattern of activity evoked by 

limb movements with the spatially imprecise activation caused by ICMS (Histed, Bonin, and Reid 

2009). Because of this, the sensation evoked by biomimetic approaches will most likely not be 

fully natural. Users, then, would need to learn a mapping between stimulation and feedback. It can 

take a few months of training to learn an arbitrary mapping between stimulation and even simple, 

two-dimensional feedback (Dadarlat, O'Doherty, and Sabes 2015). Even after months of training, 

monkeys made slower reaches with ICMS feedback than with visual feedback. It may take much 
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longer to learn to use interfaces which provide feedback about the seven-dimensional kinematics 

of the whole arm. Instead, stimulation patterns which evoke more naturalistic sensations may be 

easier to learn, and thus reduce the training time required to use these interfaces. Future 

experiments could determine whether monkeys learn to use biomimetic stimulation patterns faster 

than nonbiomimetic patterns. If they do, then this would imply that the biomimetic patterns elicit 

more naturalistic sensations than nonbiomimetic patterns, perhaps opening the door for a 

combination approach in humans. 

Statistics of ICMS-evoked activity are inherently unnatural  

The preceding sections discuss using ICMS to mimic the spatiotemporal pattern of 

naturally evoked cortical activity. Even with complex patterns of ICMS, the resulting sensation 

still may be unnatural, as the ICMS-evoked activity is fundamentally different than activity evoked 

by natural stimuli. As an example, for most natural stimuli, JND increases with increasing 

intensity. This is because increasing intensity of natural stimuli results in both more neural activity 

and more noise, reflected in increases in both the mean firing rate of neurons and the variance of 

that rate respectively (Ekman 1959; Johnson 1980b). In contrast, the JND for ICMS was constant 

across a wide range of amplitudes  (Kim, Callier, Tabot, Gaunt, et al. 2015; Flesher et al. 2016), 

implying that ICMS amplitude affects the mean and variance of the firing rate of neurons 

differently than do natural stimuli. The results in Chapter 3 support this hypothesis: the mean rate 

recorded during trains of stimulation increased with increased amplitude, but the variance across 

trains was constant. These two relationships result in a constant JND across amplitudes. This 

example illustrates that ICMS-evoked activity is fundamentally different than naturally evoked 

activity. 
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Electrical stimulation activates neurons at a tightly fixed latency after each stimulus pulse, 

resulting in unnaturally synchronized activity across the activated population of neurons. This 

synchrony may be why it is difficult for stimulation in peripheral nerves to evoke natural tactile 

percepts (Tan et al. 2014). Similarly, when electrical stimulation is applied to the muscles, this 

synchrony results in jerky movements and high muscle fatigue (Hughes, Guo, and DeWeerth 

2010). In the case of muscle stimulation, evoked movements can be made more fluid and fatigue 

can be decreased by stimulating on multiple functionally similar electrodes asynchronously, 

thereby introducing asynchrony between the fibers activated by different electrodes (Hughes, Guo, 

and DeWeerth 2010). When stimulating early tactile cortical areas, such asynchronous stimulation 

did not change the detection threshold compared to synchronous stimulation, implying that the 

intensity of the evoked sensation was unaffected by slightly altering the timing of each pulse (Kim, 

Callier, Tabot, Tenore, et al. 2015). 

 Synchrony across neurons can be further reduced even during single electrode stimulation 

by replacing each pulse in the stimulus train with a series of high-frequency pulses (~1 kHz), each 

with increasing amplitude. Because the amplitude of stimulation increases during this burst, 

neurons with different activation thresholds will be activated at different times during the burst. 

Neurons will not fire multiple times during each burst because the pulses within each burst occur 

at such a high frequency. In computer simulations and in explanted nerves, trains of high-

frequency bursts evoked less synchronous activity than did conventional trains (Formento et al. 

2020). While it is currently not possible to record neural activity during each burst in a monkey, 

thus preventing direct confirmation, the perceptual effects of these trains could be inferred in 

monkeys or reported by humans. 
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Rebound excitation may be problematic for future afferent interfaces 

 While future afferent interfaces should develop stimulation patterns that provide rich, 

informative feedback during grasping, at some point the stimulation train will stop, such as when 

the hand is not grasping an object. The evoked sensation should also stop when the train stops. 

However, human participants have reported sensations lasting beyond the end of stimulus trains 

(Hughes, Flesher, and Gaunt 2021). I observed greatly increased firing rates after the end of high 

frequency trains in Chapter 2, which may be the cause of these persistent sensations. As this 

rebound excitation primarily occurred at high stimulation frequencies, there may be a maximum 

stimulus frequency that interfaces should employ.  

Decoding motor intent during multi-electrode ICMS 

 Almost all applications of afferent interfaces would only useful if paired with an interface 

which restores motion. For spinal cord injured patients, motor intent can be decoded from signals 

recorded in motor cortex (M1) (Ethier et al. 2012; Collinger et al. 2013). However, stimulation 

applied in S1 to provide somatosensory feedback produces large electrical artifacts in M1 

recordings, likely reducing the accuracy of motor decoders. To remove the artifact, the signal could 

be blanked during the stimulus pulse, after which a low-pass filter could be applied (Weiss et al. 

2018). With this approach, neural signals in M1 were recorded ~0.7 ms after stimulation offset in 

S1, resulting in ~1.5 ms of lost data for each stimulus pulse. At low stimulation frequencies the 

impact of losing this data will be small. Artificially dropping a random 20% of M1 signals only 

caused a 10% decrease in performance when decoding intended cursor velocity (figure 8 in (Young 

et al. 2018)), an amount that corresponds to the amount of data lost when stimulating at ~130 Hz.  

Functional afferent interfaces would likely provide more stimulation during limb 

movements than have the early proof of principle interfaces, resulting in more data loss during 



152 
 

these critical periods. Furthermore, as stimulation protocols become more complicated, with 

higher frequencies and stimulation over many electrodes, the percentage of corrupted M1 data will 

increase. Stimulation delivered at 333 Hz would obscure ~50% of signal in M1, resulting in a 30% 

decrease in decoding performance during a simple task (figure 8 in (Young et al. 2018)). 

Fortunately, if the amplifier does not saturate, there are many techniques that could extract neural 

data during stimulation: adaptive filtering (Mendrela et al. 2016; Nag et al. 2015), template 

subtraction (Montgomery Jr, Gale, and Huang 2005; Hashimoto, Elder, and Vitek 2002), 

independent component analysis (Hyvärinen and Oja 2000; Lemm et al. 2006), linear regression 

reference (Young et al. 2018), and deep neural networks (Tamada et al. 2020; Zhang and Yu 2018). 

Neural activity has been recorded during the stimulus pulse by using principal component analysis 

to exploit the similar structure of the shock artifact sequentially across electrodes, pulses, and then 

trials (O'Shea and Shenoy 2017). With these techniques, it may be possible to record full-

bandwidth signal in M1 while applying complex spatiotemporal patterns of stimulation in S1.  

Final Conclusions 

Proprioception is vital for controlling movements: Without it, the movements made by 

spinal cord injured patients with state-of-the art motor interfaces will be slow and imprecise. While 

tactile interfaces have provided force and contact location feedback to spinal cord injured patients, 

proprioceptive interfaces have been more difficult to develop. In this work, I developed stimulation 

techniques for providing proprioceptive feedback in a brain-computer interface. I measured the 

spatiotemporal neural response to ICMS on all electrodes on a multi-electrode array, including on 

the stimulated channel (Chapter 2). High-amplitude single electrode stimulation caused 

widespread activation that cannot recreate the complex pattern of activity observed in 

proprioceptive cortical areas during limb movements. Instead, stimulation would need to be 
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provided through multiple electrodes to mimic the natural spatial pattern. I tested the ability for 

multi-electrode ICMS to provide rapid feedback (Chapter 3) and modeled the inferred sensation 

using an artificially generated cortical map (Chapter 4). In both studies, I found that multi-

electrode stimulation with small amplitudes through many electrodes was more effective than 

single electrode stimulation. In this final chapter, I discussed this approach and the development 

of biomimetic stimulation patterns generally. Given the difficulty in evoking naturalistic 

sensations of proprioception and measuring the perceptual effects of ICMS in proprioceptive areas, 

it is likely that future afferent interfaces will need to combine biomimetic patterns with learning 

approaches to provide informative feedback without requiring months of training. 
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