
NORTHWESTERN UNIVERSITY

Mathematical modeling

of structure formation in angiogenesis

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Applied Mathematics

By

Anna Tikhomirov

EVANSTON, ILLINOIS

December 2007



2

c©Copyright by Anna Tikhomirov 2007

All Rights Reserved



3

ABSTRACT

Mathematical modeling of structure formation in angiogenesis

Anna Tikhomirov

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby

capillary sprouts are formed in response to chemical stimuli that can be either supplied externally

or produced locally. Understanding of the fundamental mechanisms that govern angiogenesis sug-

gests a powerful therapeutic approach that will allow to combat a variety of severe pathological

conditions. The development ofin-vitro angiogenesis provides researches with controllable tool

that helps study blood vessel formation. We model endothelial cell pattern formationin-vitro as

the first step in understanding angiogenesis and multiple factors that influence it. We formulate

a mathematical model that governs endothelial cell pattern formation on a biogel surface using

a five-species reaction mechanism and justify its reduction to a two-species problem. We study

this simplified problem with two different forms of cell diffusion coefficient both numerically and

analytically to determine whether spatially nonuniform steady patterns can appear in the system

when its basic states become unstable.

We perform linear stability analysis and weakly nonlinear stability analysis near the instability

threshold to describe formation of certain spatial structures observed in experiments and to de-

termine the parameter ranges where these structures can occur. We derive amplitude equations

that govern the interaction of hexagonal and stripe patterns. We also derive the Sivashinsky and

Cahn-Hilliard equations.
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Next we formulate a discrete-continuous mathematical model of angiogenesisin-vivoand per-

form numerical simulations of the model. The model accounts for both a continuous chemoattrac-

tant field and a discrete set of growing sprouts, propagation of which is governed by prescribed

laws that involve both deterministic and random ingredients. We extend the previous model by in-

troducing the action of repulsive factors and we show that their activity results in a larger degree of

reorganization of cellular matter and in a more robust control over the size of the growing vascular

network. The numerical results demonstrate new vessel growth towards the source of the growth

factor and provide an insight into capillary network formation.
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CHAPTER 1

Introduction

1.1. The process of angiogenesis

New vessels inside the body originate as capillaries, which sprout from existing small vessels.

This phenomenon of angiogenesis is a natural process which occurs in response to specific signals.

It normally takes place during certain developmental stages of embryogenesis, healing of tissue

injury (like external or internal wound) or in response to other kind of tissue offense. It also occurs

in women during both the monthly reproductive cycle and during pregnancy.

In all these cases growth of new blood vessels respond to certain chemical stimuli produced

by the tissue that they invade [4]. The signals are complex, but the key part is played by a protein

know as vascular endothelial growth factor (VEGF). Now it is well documented that the regulation

of new blood vessel growth or decay to satisfy the needs of the tissue depends on the control

of VEGF production [4, 76, 93, 96]. Under normal physiological conditions VEGF production is

balanced and therefore angiogenesis almost does not take place in normal tissues, except in the

cases mentioned above.

However, it does occur under many pathological processes such as rheumatoid arthritis, psoria-

sis, cerebral ischemia, cardiovascular disease, growth of solid tumors, soft tissue sarcomas, chronic

liver disease and others [20,50,88,92,141,141,146,173,175,177,178,181].

Angiogenesis plays a crucial role in so many human diseases that scientists believe that angio-

genic therapy will completely change the way the diseases are ultimately treated. Understanding
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of the fundamental mechanisms that govern angiogenesis can provide us with a powerful thera-

peutic tool that will enable us to combat a variety of severe pathological conditions. Our abil-

ity to manipulate new blood vessel growth, stimulating or preventing it according to patient’s

needs can become a triumph of modern medicine, significantly lengthening the list of curable

diseases [17,23,26,35,54,55,62,70,75,86,91,92,146,166,177,187,188]

1.2. Therapeutic applications

1.2.1. Pro-angiogenic therapy

1.2.1.1. Cardiovascular disease.Cardiac ischemia occurs when a coronary artery is partially or

completely obstructed, such as due to atherosclerosis. This reduces blood flow to the heart muscle

(myocardium). Cardiac ischemia can be life-threatening. A sudden, severe blockage of a coronary

artery may lead to death of part of the heart muscle (heart attack). Cardiac ischemia may also cause

an abnormal heart rhythm (arrhythmia), which can lead to fainting or even sudden death. People

who suffer from cardiac ischemia could significantly benefit from growth of new blood vessels to

the heart. One of the approaches that cardiology researchers are taking is to induce angiogenesis in

the ischemic tissue. They are trying to promote new blood vessel growth to repair damaged heart

and otherwise ischemic tissue [70,87,153].

1.2.1.2. Wound healing. Wound healing has been most closely studied in skin. Skin is composed

of an outer layer called epidermis and an inner layer called dermis. The dermis contains living cells,

blood vessels, nerves and protein fibers, while the epidermis consists of mostly dead cells which

move upward from the dermis. The simplest situation of wound occurring in the skin is created

by a cut through the epidermis into the dermis or when parts of the epidermis are removed [140].
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Growth of new blood vessels is necessary to supply the damaged tissue with oxygen and nutrients

so the healing could take place (see Fig.1.1).

FIGURE 1.1. New capillary formation in response to wounding.Scanning elec-
tron microscopy of blood vessels surrounding the margin of the cornea shows the
reaction to wounding. Sixty hours after wounding many new capillaries have be-
gun to sprout towards the site of injury, which is just above the top of the picture.
Their oriented outgrowth reflects a chemotactic response of the endothelial cells to
an angiogenic factor released at the wound [4].

Experiments have shown that there exists a negative feedback mechanism that controls devel-

opment of new capillary network [129]. When the concentration of oxygen is at low level certain

chemical substances that have the capacity to stimulate new vessel growth and collagen deposition

(such as VEGF and transforming growth factor-β) are released at the wound site. Many experi-

ments have suggested that the generation of new blood vessels within the wounded area is stimu-

lated and maintained as long as the growth factors are present. It was also found that insufficient

blood supply affects the wound healing process as a whole, moreover, the rate of wound healing

depends on oxygen supply [113]. Patients with delayed healing (the case of chronic wounds) suf-

fer from infection and gangrene often necessitating limb amputation. Promoting angiogenesis in a

wound could accelerate healing and circumvent the risk of amputation.
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1.2.1.3. Stroke. Ischemic stroke is a leading cause of human death and disability. A stroke or

”brain attack” occurs when a blood clot blocks an artery (a blood vessel that carries blood from

the heart to the body) or a blood vessel breaks, interrupting blood flow to an area of the brain.

When either of these things happens, brain cells begin to die and brain damage occurs. When brain

cells die during a stroke, functions controlled by that area of the brain are lost. Although stroke

survivors may gain spontaneous partial functional recovery, they often suffer from sensory-motor

dysfunctions, behavioral/neurological alterations, and various degrees of paralysis.

Increasing attention has been focused on potential strategies of promoting tissue repair and

functional recovery in the damaged post-ischemic brain. Angiogenesis may contribute to cell sur-

vival and functional recovery of the area of insult, helping reduce neurological disabilities and pre-

serve neurological function of the brain. The study of angiogenesis will increase the understanding

of the mechanism underlying post-ischemia neurovascular plasticity and regeneration [210].

1.2.1.4. Tissue engineering.Another field where angiogenesis seems to play a central role has

to do with tissue engineering and biomaterial applications. Before complete organs such as a kid-

ney or liver can be produced, engineers must be able to manufacture the blood vessels required to

properly distribute the nutrients these organs need to survive and function. Growth and function-

ing of the organ- or tissue-specific cells on the biomaterial is an important issue. However, in most

cases a successive outcome is entirely dependent on a proper vascularization after implantation,

which remains one of the major challenges in tissue engineering [110, 111, 211]. Implantation

involves tissue trauma, which evokes an inflammatory response, coupled to a wound healing reac-

tion, involving angiogenesis, fibroblast activation and local tissue remodeling.In-vitro studies of

angiogenesis provide some insight on the regulation of the inflammatory and angiogenic response

after implantation. They are an important contribution to understanding biological reactions at



18

the tissue-biomaterial interface thus facilitating successive tissue engineering and organ implanta-

tion [109].

1.2.2. Anti-angiogenic therapy

1.2.2.1. Eye disease.Proliferative retinopathy is a disease that affects about 60,000 diabetics

and more then 10,000 premature babies in the United States each year [130]. It is a condition in

which abnormal blood vessel growth in the retina impairs vision, and sometimes causes blindness.

The abnormal vessel growth has been recently associated with the presence of VEGF. Studies

show [74,129,131] that oxygen-starved cells produce VEGF (in particular, the oxygen-starved cells

of the retina). It happens in diabetics because their capillaries often get clogged which prevents

oxygen transport, and in premature infants which are born before their retinal blood vessels are

fully grown. When VEGF level rises, it triggers abnormal capillary growth across the retina,

which may cause damage, and sometimes permanent loss of vision. In this case many people could

benefit form anti-angiogenic therapy, i.e. from medical prevention of new blood vessel growth in

the retina [11,16].

1.2.2.2. Psoriasis.Psoriasis is a common chronic dermatosis occurring in 2% of the population

and associated with an inflammatory arthritis (psoriatic arthritis). Psoriatic arthritis represents

the second most common diagnostic category after rheumatoid arthritis. There are a number of

common pathogenic features that link the skin and the joint inflammatory processes. Angiogen-

esis appears to be a fundamental inflammatory response early in the pathogenesis and significant

abnormalities of vascular morphology and angiogenic growth factors have been described in psori-

asis and psoriatic arthritis. Recent research studies suggest [11,120] that deregulated angiogenesis

provides a primary pathogenic mechanism in psoriatic skin and arthritic joints.
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1.2.2.3. Cancer. Initially, solid tumors are avascular. They do not have their own blood supply

and rely on simple diffusion to provide necessary oxygen and nutrition as well as to remove tu-

mor cell waste products. As the tumor gets bigger, diffusion through the surface is not any longer

capable of supplying the entire mass of cells. As a result, some of tumor cells start to die due to

starvation and hypoxia (oxygen deprivation). The tumor stops growing and reaches steady state

size∼ 1− 3 mm, in which the number of dying cells counterbalances the number of proliferating

cells. Growth can resume only if the tumor becomes vascularized, i.e. permeated by a vessel net-

work. Accumulating evidence indicates that hypoxia is one of the major triggers for angiogenesis

in malignant tumors [2].

At that stage many tumors achieve rapid growth by switching on enhanced production of an-

giogenic signals, for example, VEGF secretion. An early response of the growing tumor to hy-

poxia is expression of certain chemicals that trigger VEGF production. VEGF diffuses from tumor

to nearby primary vessels initiating a complicated cascade of events that results in formation of

new capillaries extending from the primary vessels to the VEGF-secreting tumor as shown in

Fig.1.2 [26,59,62,65,187].

Blood that starts circulating through newly formed vessels supplies the tumor with necessary

nutrients and oxygen and may also serve as an easier escape route for metastatic cells [2,4,38,44,

61,169].

Thus angiogenesis is crucial for cancer invasion and understanding the mechanisms that control

it will provide the basis for rational therapeutic intervention. In other words there is a hope that

by blocking formation of new blood vessels through drugs it may be possible to suppress tumor

growth and to prevent metastasis formation [11,23,54,55,62,63,84,88,92,173,208].
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FIGURE 1.2. Angiogenesis in cancer.In this micrograph, blood vessels grow to-
ward a sarcoma tumor (dark area at right) in a rat muscle. The oriented vessels
growth reflects a chemotactic response of the endothelial cells to an angiogenic
factor released by the tumor.

1.3. Main events of angiogenesis

Blood vessels penetrate every tissue in the body, and since our goal is to study new vessel

formation, it is useful to gain some insight into vessel structure as well as the composition of the

surrounding medium (extracellular matrix). We will start with a brief description of the extracel-

lular matrix, then present a simplified picture of blood vessel organization and finally describe the

main steps of a new vessel formation.

1.3.1. Extracellular matrix

Tissues are not made up solely of cells. A substantial part of their volume is extracellular space,

which is largely filled by a intricate network of macromolecules composing the extracellular matrix

(ECM). The ECM consists of a variety of proteins and polysaccharides that are secreted locally and

assembled into an organized meshwork in close association with the surface of nearby cells that

produce them. Among other ECM components we can name elastin, fibrillar collagens, laminins
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and fibronectin [4,103]. The ECM is not just an inert scaffold that stabilizes the physical structure

of tissues, as it was once thought, but has much more active and complex role. It is in contact with

the cells embedded in it and is attached to their cytoskeleton via cell adhesion molecules (CAMs)

that are built into surface membrane (e.g. integrins, cadherins, see Fig.1.7) thus activating mul-

tiple cascades of events called intracellular signaling pathways. It regulates behavior, migration,

proliferation, shape, survival, development and functions of the cells [105,139,163,176,204,216].

Since blood vessels are embedded into tissues, during new vessel growth the daughter capillar-

ies make their way through the surrounding ECM [121,155,163].

1.3.2. Blood vessel structure

Blood vessels are comprised of three components: (a) the basement membrane, which is a thin

sheet-like structure of ECM components, primary laminins and Type IV collagen, that encircles

and supports the interior of the vessel, (b) endothelial cells (ECs) which form a mono-layer of

flattened and extended cells lining the lumen and resting on the inner surface of the basement

membrane and (c) pericyte cells which form a periendothelial cellular network embedded within

the basement membrane [4, 45, 121, 123]. Thus, endothelial cells line the entire vascular system,

from the heart to the smallest capillary. ECs retain a capacity for cell division and movement. If,

for example, a part of vessel wall is damaged or denuded of cells, neighboring endothelial cells

proliferate and migrate in to cover the exposed surface. In most of adult tissues, ECs turn over very

slowly, with a cell time ranging (for a mouse) from a couple of month (liver and lungs) to years

(brain) [4,123]. But ECs not only repair and renew the lining of already established blood vessels,

they are also capable of forming new vessels.
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1.3.3. New blood vessel formation

The growth of new capillaries from the pre-existing network is triggered by the presence of an-

giogenic growth factors in the tissue surrounding the primary blood vessel [4, 65]. There exist a

number of different angiogenic growth factors, but VEGF is thought to be the major regulator of

new capillary growth [76,93,96,130,131,173,183,201].

It is now well accepted [5, 39, 40, 121–124, 138] that the whole process of angiogenesis can

be divided into several phases that are characterized by different, overlapping genetic programs:

initiation, progression, and maturation of the newly formed vascular network.

FIGURE 1.3. Initial stages of angiogenesis.In response to angiogenic stimulus,
endothelial cells switch to an activated phenotype. They start to proliferate, release
proteases that degrade the basement lamina of the parent vessel and start migration
up the angiogenic stimulus gradient, forming a new capillary in that direction.

Initiation is characterized by changes in the ECs shape and permeability after VEGF molecules

occupy EC surface receptors. The cells switch from the quiescent endothelial phenotype that pre-

vails in an established vessel to an activated mesenchymal phenotype. In this state, they can be

roused to proliferate with a doubling time of just a few days. There is some evidence that, where
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there is a call for rapid blood vessel growth, the local population of ECs may also increase by

recruitment from the blood stream, which has been reported to contain small numbers of endothe-

lial precursor cells derived from the bone marrow. ECs produce proteolytic enzymes (proteases)

which in turn degrade the basement membrane. After that, ECs proliferate and migrate through

the openings in the parent vessel wall towards the source of the growth factor (Fig.1.3).

Many of the proteases belong to one of two general classes. Most are matrix metalloproteases,

which depend on boundZn2+ or Ca2+ for activity; others are serine proteases. It is known that

ECs secrete matrix metalloproteases to degrade the basement membrane and adjacent ECM [72,

104,207].

The progression phase includes further degradation of the basement membrane of the parent

vessel, accompanied by migration of ECs through the created openings into the ECM that sur-

rounds the parent vessel. The ECs form primitive blood vessels (lumens) and begin to proliferate

elongating the lumen in the direction of the growth factor gradient, with proliferation occurring

behind the tip of the growing capillary sprouts [76,121–124].

Next stage involves remodeling of the primitive sprouts (loop formation) and formation of

capillary network. After reaching certain distance from parent vessels the growing sprouts bifur-

cate, and the branches tend to incline toward each other and fuse together, by both tip-to-tip and

tip-to-sprout fusion. This process, which is called anastomoses, results in capillary network for-

mation. The frequency of branching at the front edge of the network increases as the capillary

sprouts become closer to the growth factor source and this phenomenon is referred to as a ”brush

border effect”. Afterwards, the new capillaries are stabilized by smooth muscle cells and pericytes

that envelope the capillaries (see Fig.1.4) thus providing structural stability, the process known as

vessel maturation [1,4,8,123].
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FIGURE 1.4. Pericytes.The scanning electron micrograph shows pericytes wrap-
ping around a small blood vessel in the mammary gland of a cat. Pericytes are
present also around capillaries, but much more sparsely distributed there [69].

1.4. Experimental study of endothelial cell migration

Now we understand that EC migration is a crucial step in the process of angiogenesis and one

can control new vessel growth by influencing EC migration [12,121].

Cell migration is a highly complicated process. A large number of theoretical, computational

and experimental studies has been reported in the literature [4,12,52,73,77,80,82,89,94,95,116–

119,121,132,154,160,161,179,180,184,194,199,205].
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FIGURE 1.5. Experimental angiogenesis.Bovine aortic endothelial cells, cul-
tured 48 h in a subconfluent monolayer on top of a layer of Matrigel, organized into
a planar network of cords. Each cord (example, arrow) is comprised of many cells.
Image is viewed by darkfield illumination. Bar at lower left = 200µm.

Taking into account the great complexity of the process, a large number of various factors that

affect the process and a huge amount of different outcomes that researchers can get by varying

those factors, it becomes obvious that it is quite expensive, time consuming and ineffective to

study cell migrationin-vivo. So people approach the task by first studying cell migrationin-vitro

in which case experiments are faster, less expensive and much easier to control. In addition,in-

vitro studies allow experimentalists to analyze action of different angiogenic factors separately, i.e.

how one or another chemical can induce or inhibit certain stages of new vessel formation, before

trying to understand more complex effects of many factor interplay [14,112,184].

In some of the experiments [64,73,184] cells are randomly seeded on the plane surface of a gel

substratum and their migration and aggregation tracked by video-microscopy. It is observed that

motion is directed towards the areas with higher angiogenic factor concentration, suggesting that

chemotaxis plays an important role in the process.

In a time period of several hours cells spontaneously develop internal vacuoles that appear

to join up from cell to cell, giving rise to a continuous multicellular network or pattern. These
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patterns can have polygon-like structures as well as other geometry (Fig.1.5). Some more recent

experiments show that stripe-like patterns can also occur [174]. These patterns are interpreted as

the beginning of a vasculature. They determine the structure of ensuing capillary network and

therefore are of interest. Typically, the patterns are not steady but rather slowly evolve in time. The

form of patterns depends on experimental conditions such as the properties of the gel, initial cell

and angiogenic factor concentrations as well as on other parameters of the system.

Behavior of endothelial cells cultured on biogel that resembles ECM structure can mimic some

of key stages of angiogenesis (such as association in tube-like structures and subsequent capillary

network formation), thus providing a powerful experimental tool for studying the possibilities of

affecting different stages of angiogenesis [14,112,184].

The goal of our work is to propose and study a mathematical model that governs EC dynamics

and exhibits pattern formation. It should be noted that the experimentally observed patterns are not

necessarily spatially regular, namely, hexagons and stripes, which can be perceived as a regular

counterparts of the experimental observations. These patterns can result form Turing instabilities

which is the subject of this work. We anticipate that these regular patterns may in turn become

unstable leading to irregular polygonal structures similar to those observed in [64,73,184], as seen

in other problems [79]. Our study of the Turing patterns is useful as it indicates the parameter

regime where the irregular structures can appear as a secondary bifurcation. Afterwards, these

structures can be sought numerically (see Chapter 2).

1.5. Molecular mechanisms

It is now widely accepted that vascular growth during development and pathological conditions

is strictly regulated by a complex interplay and balance of angiogenic stimuli and inhibitors [60].
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The angiogenic switch is off when the effect of proangiogenic molecules is balanced by that of an-

tiangiogenic molecules, and is on when the net balance is shifted in favor of angiogenesis. Various

signals that trigger that switch have been discovered. These include metabolic stress (low oxygen

concentration or hypoxia, low pH, hypoglycemia); mechanical stress (e.g., pressure generated by

proliferating cells); and immune response (e.g., immune/inflammatory cells that have infiltrated

the tissue). How the interplay between various mechanisms influences angiogenesis is a complex

and largely unsolved question.

All the consecutive events of angiogenesis described in this introduction are carried out by

means of sophisticated cell communication mechanisms that allow endothelial cells to govern their

own behavior for the benefit of the process as a whole. These communication mechanisms depend

heavily on both extracellular signal molecules, which are produced by cells to signal to their near

neighbors and distant cells, and elaborate systems of intracellular proteins that transfer signals from

cell surface to a specific target protein inside the cell (signaling pathways) which allow a cell to

respond to a particular subset of signals in the cell-specific way. The extracellular signal molecules

that regulate cell size and cell number are generally either soluble secreted proteins that are able to

diffuse through the ECM (for example, angiogenic growth factors), proteins bound to the surface

of cells, or components of ECM. Factors are protein molecules present in the ECM that bind to

receptors on the cell surface. The primary result of the binding is activation of multiple intracellular

responses resulting in cell proliferation, growth, differentiation, secretion of different molecules,

consecutive cascade of angiogenic events or programmed cell death (apoptosis). A large number

of angiogenic factors are presently identified. Many factors are quite versatile, stimulating cellular

responses in numerous different cell types; while others are specific to a particular cell type. In

particular, VEGF is known to be largely EC specific angiogenic factor while fibroblast growth
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factor (FGF) can stimulate the proliferation of other cell types as well. The factors that promote

growth and development can be divided into three major classes: mitogens, which stimulate cell

division; growth factors, which stimulate cell growth; and survival factors, which promote cell

survival by suppressing apoptosis. Studies have shown that VEGF alone controls several of the

most important processes in ECs such as proliferation, survival and migration [76,93].

Cell protein systems that carry out different signaling pathways include cell-surface receptor

proteins which bind the signal molecules; a variety of intracellular signaling proteins (e.g. kinases,

phosphatases) that distribute the signal to appropriate parts of the cell [21]; and target proteins

(e.g. gene regulatory proteins, ion channels, parts of cytoskeleton) that are altered as a result of

each signaling pathway, thus changing the behavior of the cell.

Action of all molecules that comprise every single signaling pathway has to be well-coordinated

to allow the ultimate goal to be accomplished in a multicellular organism, for example, to have

thousands of cells form a functional vascular network in the process of angiogenesis.

Of crucial importance for understanding of angiogenesis is figuring out the signal transduction

systems by means of which endothelial cells become instructed to proliferate, secrete proteases,

migrate, form lumens and to recruit pericytes during the new vessel maturation.

1.5.1. VEGF and its receptors

About twenty years ago the cloning and characterization of a secreted homodimer protein purified

from tissue culture cells was reported that turned out to be a mitogen specific for endothelial cells

and to be angiogenicin-vivoand therefore was named vascular endothelial growth factor (actually

there is a whole family of VEGFs [4] including VEGF, placenta growth factor PGF, and VEGF -B,

-C and -D [56,202]). VEGF, also designated as VEGF-A, is the major regulator of normal and
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abnormal angiogenesis, including that associated with tumors [3,107,183,201].

The cellular responses to the members of the VEGF family are mediated primarily by the high

affinity EC receptors VEGF receptor-1 (VEGFR-1) and VEGF receptor-2 (VEGFR-2; also called

Flt-1). VEGFR-2 is considered to be the main signaling VEGF receptor in ECs [22], whereas

VEGFR-1 may have a negative role either by acting as a decoy receptor or by suppressing signal-

ing through VEGFR-2 [48,180,202,212]. VEGF receptor signal trunsduction appears to rely upon

the canonical pathways activated by most receptor tyrosine kinases [172], i.e as a result of ligand

binding, the receptor homodimerize and becomes autophosphorylated on specific cytoplasmic ty-

rosine residues, which mediate the recruitment of adaptor proteins and enzymes (e.g., Grb, Nck,

VRAP, Sck) and lead to early and late biological responses such as EC migration, proliferation and

survival by activating Ras, Map, and protein kinase B pathways [4,13,15,147,195].

VEGF has a number of important effects in angiogenesis. VEGF was initially defined by its

ability to induce vascular leak and permeability, as well as for its ability to promote vascular EC

proliferation [212]. VEGF was also found to be a potent chemoattractant for ECs that stimulates

cell migration in the direction of chemoattractant gradient. It also induces expression of matrix-

degrading enzymes such as matrix metalloproteases (MMPs) which facilitates EC migration via

alterations of ECM. Moreover, VEGF is discussed as an important survival factor for immature

vessels [27,36,47,57,126].

1.5.2. Crawling

As mentioned above, ECs change their behavior, aggregate and eventually migrate along the gra-

dient of VEGF and other secreted growth factors which diffuse through the tissue that surrounds
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the parent vessel. The direction of cell migration can also be influenced by nondiffusing chemical

cues attached to the ECM or to the surface of the cells [4,13,76,82,195,212].

Two distinct steps are necessary in order that a cell can move toward the source of a chemoat-

tractant: (i) it must orient itself properly and (ii) it must generate the necessary forces. Amoeboid

cells such as ECs are large enough to detect gradients of attractants across their length, and in fact,

some eukaryotic cells can respond to concentration differences as small as 2% across their length,

frequently at concentrations at which molecular fluctuations, and hence noise in the signal, are sig-

nificant. Cell migration is a highly complex integrated process, dependent on the actin-rich cortex

beneath the plasma membrane [4, 134, 135, 143–145]. Most of the cells in adult animals migrate

by crawling rather than by other means. The forces needed for cell migration are generated by the

special proteins called motor proteins. These molecules bind to cytoskeleton filaments and use the

energy derived from constantly repeated cycles of ATP hydrolysis to move along thus mediating

sliding of cytoskeleton filaments relative to one another and the transport of cell organelles along

filament tracks.

Motion of a crawling cell is generally described as a multi-step process (see Fig. 1.6) in-

volving (i) actin polymerization at the leading edge, which leads to extension of a pseudopodia

or lamellipodia (protrusions of cell leading edge that are results of actin polymerization pushing

cell membrane outward), (ii) attachment of the pseudopodia or lamellipodia to the substrate or

ECM via integrin-mediated adhesion sites, (iii) contraction of the cell via actin-myosin contrac-

tion (iv) release of adhesion sites at the rear, and (v) recycling of adhesion receptors and other

membrane components to the front of the cell via endocytosis and vesicular transport [82,134,135,

143,144,170,171,185].
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FIGURE 1.6. A model of how forces generated in the actin-rich cortex move
cell forward. The actin polymerization and firm attachment of lamellipodium at the
leading edge of the crawling cell moves the edge forward. Contraction at the rear of
the cell propels the body of the cell forward to relax some of the tension (traction).
New focal adhesion sites are made at the front, and old ones are disassembled at the
back as the cell crawls forward. The same cycle can be repeated, moving the cell
forward in stepwise fashion.

1.5.3. Integrin-mediated mechanisms

The association of cells with extracellular matrix initiates the assembly of specific cell-matrix

adhesion sites, which are essential for cell migration as well as for activation of adhesion-mediated

signaling events. Key mediators of both matrix attachment and signaling responses are the integrins

[4,24,49,97,98,105,139].

The integrins are the best characterized group of cell adhesion molecules that usually span the

entire phospholipid bilayer, which isolates the interior of the cell (cytoplasm) from the exterior and

otherwise known as cell membrane [172].
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FIGURE 1.7. The structure of focal adhesions.Some of the proteins that form fo-
cal adhesion sites. The transmembrane adhesion protein is an integrin heterodimer,
composed of anα and aβ subunit. It extracellular domain binds to components of
extracellular matrix, while the cytoplasmic tail of theβ subunit binds indirectly to
actin filaments via several intracellular anchor proteins.

These proteins are exposed on both the internal and external surfaces of the cell, so they can

simultaneously interact with ECM components as well as with internal cell organelles such as

cytoskeleton thus connecting the interior of the cell to the surrounding ECM (Fig.1.7).

Integrins are heterodimeric proteins that consist of anα subunit noncovalently associated with

a β subunit. Following association with their ligands, integrins induce reorganization of actin

cytoskeleton and associated proteins, thus allowing a specific signal carried by certain ligand pen-

etrate inside the cell. The combination of specific subunits determines the particular ligands that
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the particular integrin can bound and therefore different biological consequences among which are

influence on ECs activation, migration, proliferation, differentiation and gene expression.

In addition, integrins are one of the cellular molecules families that fulfill VEGF co-receptors’

function, i.e. modulate VEGF receptors’ activity and specificity. In particular, integrinα5β3 func-

tions as co-receptor in VEGFR-2 signal transduction resulting in increased VEGFR-2 kinase ac-

tivity and augmented VEGF-A mediated mitogenicity in angiogenic ECs.

The integrinα5β3 is one of the primary integrins in ECs, and it has been shown recently that

they are selectively recruited to the leading edge of cell lamellipodia [108]. This localization can

promote localized adhesion and alter the overall strength of adhesion at the front (the direction of

motion) as opposed to the rear. A mechanism for activation ofα5β3 by VEGF signaling, via the

activation of PI3K and its downstream effectors has been suggested [33].

Since integrins bind their ligands with a low affinity, there is a certain number of them that is

required to obtain enough sticking capacity to adhere to ECM, in other words, no strong adhesion

can occur when integrins are diffusively distributed over the cell surface. Therefore, in the process

of ECs crawling integrins have to cluster for their combined weak affinities to generate a strong

enough traction force which the moving cell uses to pull itself forward. Integrin clustering gives

rise to the recruitment of numerous structural and catalytically active cytoplasmic proteins, creating

a complex structures called focal adhesion complexes (Fig.1.7) on the leading edge of a crawling

cell [98, 216]. Cell uses them for migration, but they also fulfill multiple functional purposes,

the fact known as anchorage dependence. Signaling through focal adhesions regulates a variety

of cellular processes including cell growth, migration, and apoptosis [28]. Focal adhesions are

dynamic structures. After forming at the cell front they remain stationary as the cell moves forward
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over them, persisting until the rear of the cell catches up with them [95,160]. Afterwards, they get

disassembled and recycled to the front of the cell via endocytosis [185].

Formation and breakdown of focal adhesion complexes are regulated by many different extra-

cellular stimuli, and not all of them are known and experimentally proved. Studies show [13,195]

that VEGF-induced endothelial cell migration is mediated by an accelerated rate of focal adhesion

complex assembly and disassembly.

To summarize, VEGF triggers integrin clustering on ECs surface which leads to the formation

of structurally complicated focal adhesion complexes on the leading edge of a crawling cell (in the

direction of VEGF chemotactic gradient) and ultimately to cell migration up the gradient of VEGF.

1.5.4. Localized ECM remodeling

Attachment of a cell to the surrounding ECM can happen under two conditions: (i) the presence of

focal adhesion sites on the cell surface by means of which it attaches to the ECM; (ii) the presence

of specific attachment sites in the surrounding ECM [105, 147]. The latter are created by selected

cleavage of the ECM by proteolitic enzymes called proteases [4].

An increase in growth factors such as VEGF leads to secretion of proteolytic enzymes by ECs.

These enzymes degrade the ECM around the parent vessel, the process which facilitates subse-

quent EC migration into the extracellular space [72,121,123,182,214]. Many of the proteases im-

plicated in angiogenesis belong to two general classes: matrix metalloproteinases (MMPs), which

depend onCa2+ or Zn2+ for activity; and serine proteases, which contain components of the

PA-plasmin system. Together, these proteases cooperate to degrade ECM components such as col-

lagen, laminin, and fibronectin. The involvement of the MMP action in the process of angiogenesis
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FIGURE 1.8. Proteases confined to the cell surface and possible way of their
inhibition. (A) Proteases bind to cell surface receptors at the leading edge of a
moving cell where they become active as a result of the binding and may serve to
clear a pathway for cell migration. (B) Protease inhibitors block protease surface
receptors thus preventing binding of proteases to the receptors and their activation.
It prevents degradation of the surrounding extracellular matrix and ultimately may
prevent cell migration through the matrix.

has been demonstrated bothin-vitro andin-vivo using MMP-specific inhibitors [115, 207]. There

are MMP family members with enzymatic activity against virtually all components of the ECM

and basement membranes. Most importantly, the MMP family includes the only enzymes capable

of cleaving fibrillar collagens [207].

ECM degradation allows migrating cells to clear a path through the matrix. Moreover, selec-

tive cleaving of ECM molecules can release growth factors or inhibitors, and by exposing cryptic

binding sites for adhesion and destroying other adhesion sites, can dramatically alter the invasive

ability of the cells.

Three main strategies are employed to ensure that the matrix degrading proteases are tightly

controlled: local activation (e.g. plasminogen activation); confinement by cell-surface receptors

(e.g. urokinase-type plasminogen activator uPA that binds to the receptors on the leading edge of

some migrating cells thus cleaving ECM specifically in the direction of cell movement as shown
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in Fig.1.8); and finally, secretion of protease-specific inhibitors (e.g. tissue inhibitors of metallo-

proteases TIMPs, serine protease inhibitors serpins) that may protect uninvolved matrix as well as

cell-surface proteins required for cell adhesion and migration from destruction [4,115,207,214].

1.5.5. Capillary lumen formation

In order to assemble into tubular structures, ECs must lose their invasive phenotype, reassoci-

ate with matrix proteins, and develop cell-cell contacts in a tubular conformation. Manyin-vitro

studies have attempted to define the different morphological steps in the formation of capillary

sprouts. A commonly used method ofin vitro angiogenesis is the growth-factor-induced formation

of cord-like structures when ECs are cultured on an extracellular matrix secreted by Engelbroth-

Holm-Swarm sarcoma cells, commonly known as Matrigel [213]. In these models, capillary-like

lumens are developed, which closely mimic those observed within collagen matricesin vivo [51].

Two different types of capillary vessel formation can be distinguished, which occur independently

of each other or in combination within a single sprout: sprout formation through intracellular or

intercellular lumen formation.

An intracellular lumen develops through the formation of intracellular vacuoles that enlarge

and coalesce in response to EC contact with collagen matrix. Vacuole formation occurs through a

pinocytic process with internalization of plasma membrane and molecules from the extracellular

space. The union of adjacent cellular lumens results in the formation of a continuous capillary

tube, which traverses the cytoplasm of the cells, or the nucleus. In the second type, a lumen arises

through a protrusion or migration of neighboring ECs from newly formed or established vessels.

Here, the lumen forms via the coordinated migration of several ECs that maintain their polarity

and junctional contacts [4].
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1.5.6. Maturation of the neovasculature

During the process of angiogenesis, the developing vessels are leaky and dependent on VEGF

for survival [18, 27, 36, 57]. Formation of a new vessel ends by acquisition of a pericyte coating

(Fig.1.4) and the deposition of a basement membrane [81, 90, 123]. This allows to overcome

vulnerability of the immature blood vessel preventing it from breaking or leaking. ECs recruit

pericytes via the secretion of platelet-derived growth factor (PDGF), which acts as a mitogen and

chemoattractant for pericyte precursors. The proposed roles for pericytes include: regulation of

capillary blood flow, as smooth muscle cell precursors, phagocytosis, and the control of capillary

growth [90]. Upon EC-pericyte contact, the pericytes exert an inhibitory effect on EC proliferation

and maintain vessel integrity. Growth factors called angiopoietins that also interact with ECs via

surface receptors [9,114,212] play a critical role in this process. These help stabilize mature vessels

by promoting interaction between ECs and the newly recruited pericyte layer.

1.5.7. Angiogenesis inhibition

Since the early 70s when the importance of angiogenesis in tumor growth and metastasis was es-

tablished, the discovery of the identity and biochemical mechanisms of substances that can inhibit

angiogenesis has been a focal point in angiogenesis research. The concept of manipulation of the

vascular bed to either increase or decrease the number of blood vessels has attracted considerable

interest. There is a growing evidence that anti-angiogenic drugs will improve future therapies

of a variety of human diseases. There is currently a number of angiogenesis inhibitors in clini-

cal trials. It is important to understand the process in great detail to identify potential targets for

anti-angiogenic therapy.



38

As follows from the above brief description, there are a number of molecular mechanisms that

appear to be crucial during the early stages of angiogenesis, and by means of interfering with

which angiogenesis can in principle be blocked. Namely, (i) VEGF and other growth factor in-

teractions with their cell-surface receptors that trigger multiple intracellular signal pathways, in

particular promoting survival and proliferation of immature ECs [21, 22, 27, 56]; (ii) formation of

focal adhesion complexes on the leading edge of the cell [13, 76, 195]; (iii) release of proteases

by ECs; (iv) localized degradation of extracellular matrix components by proteases [72,214], cre-

ation of specific attachment sites in the extracellular matrix [216]; (v) anchorage dependence of

cell growth, survival, division and migration mediated mainly by focal adhesions via intracellular

signals they generate [205]; (vi) EC directional crawling through the ECM in response to chemo-

tactic gradient of VEGF [185]. This suggests a number of anti-angiogenic strategies that can be

employed to prevent angiogenesis.

• Blocking VEGF and other growth factors activity by factor-specific antibodies [3,93].

• Blocking VEGF -receptors with receptor-specific antibodies which occupy receptors [200].

• Blocking VEGF expression [96].

• Inhibition of ECs intracellular signaling which is the result of binding of VEGF molecules

to cell surface receptors. It can be done by blocking tirosine kinase activity of VEGF

receptors [127].

• Inhibition of certain functions of cellular adhesion molecules, which can prevent integrins

from attaching to ECM (leads to apoptosis because of anchorage dependence of ECs, i.e.

they need to attach to surrounding cells and ECM in order to survive) [24,25].

• Inhibition of ECM remodeling and blocking creation of ECM attachment sites by protease

inhibitors (Fig.1.8), the strategy that often blocks cell migration [199].
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• Direct inhibition of ECs activity, i.e. suppressing endothelial cell proliferation and migra-

tion induced by growth factors via impeding the downstream intracellular signaling using

EC toxins [200].

The development of anti-angiogenic agents with different mechanisms of action requires pow-

erful preclinical models for the analysis and optimization of these therapies. These studies rely

on a range ofin-vitro and in-vivo assays that are designed to gain information about each of the

multiple events that constitute the angiogenic process [10, 101, 102, 206]. Theoretical studies (i.e.

mathematical modeling) can also serve as a tool of this research. Modeling allows one to take a hy-

pothetical mechanism and examine its consequences in the form of a mathematical model, making

predictions and suggesting experiments that would verify or invalidate the model. In other words,

it highlights the areas where the knowledge of biological mechanisms is deficient and suggests

directions in which experimentation might lead the researchers.

This ideas are best expressed by James D. Murray [150]: ”Why use mathematics to study

something as intrinsically complicated and ill-understood as development, angiogenesis, wound

healing and so on? We suggest that mathematics, rather mathematical modeling, must be used if

we ever hope to genuinely and realistically convert an understanding of the underlying mechanisms

into a predictive science. Mathematics is required to bridge the gap between the level on which

most of our knowledge is accumulating (cellular and below) and the macroscopic level of the

patterns we see. ... A mathematical approach lets us explore the logic of the process. Even if the

mechanisms were well understood (and they certainly are not at this stage) mathematics would be

required to explore the consequences of manipulating the various parameters associated with any

particular scenario.”
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1.6. Review of mathematical models of angiogenesis

Different kinds of mathematical models were created in an attempt to convert the phenomena

briefly described above into a mathematical model and thus to better understand the mechanisms

that govern vascular network formation, especially the issue of ECs geometrical self-organization

into spatial structures.

Mathematical models of tumor-induced angiogenesis fall into three major categories: (i) con-

tinuum models that treat the EC density and chemical species as continuous variables that evolve

according to a reaction-diffusion system of equations [5–7,29–32,37–43,43–45,66,118,121–125,

128, 130, 131, 155–157, 162, 164, 165, 168, 169, 190–192, 203]; (ii) mechanochemical models that

incorporate some of the mechanical effects of EC-ECM interaction on cell motion, in addition to

the diffusible chemical species [58, 73, 80, 83, 94, 133, 136, 137, 148, 149, 151, 176, 184, 198, 204]

and (iii) discrete, cell-based models in which cells are treated as units and move, grow, and divide

according to prescribed rules [5,40,142,161,167,193,194].

These research groups model various stages of angiogenesis. The work ranges from describing

the early stages of the process in which the collapse of vascular lamina occurs and capillary buds

are formed [66, 121–123, 125, 156] to attempts to capture the formation of complex capillary net-

works and blood flow through them [5–7,29,37,39–42,78,136,157,168,169,191]. Various models

are used, both deterministic and stochastic, ranging from detailed biochemical pathways to overall

phenomenological description of the main stages of angiogenesis.

Some models deal within-vivoangiogenesis, for instance, tumor-induced or epidermal wound

healing angiogenesis [5,6,37,39–42,66,78,94,121–125,128–131,155,156,162,165,190,191,198,

203] and other models describe the results ofin-vitro experiments with endothelial cell cultures

grown on Matrigel [58,73,80,136,137,148,150,151,176,184].
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Below we describe in greater detail the works relevant to the present study.

A large class of continuum models including our model is based on reinforced random walk

equation for endothelial cell density that governs chemotactic/diffusional motion of the ECs (cf.

[159]) coupled with mass balance equations for certain species that are present in the system and af-

fect EC behavior. The works differ by biochemical phenomena they account for and consequently

by the number and properties of the chemicals involved.

In [123, 124] early stages of tumor-induced angiogenesis are studied. The authors consider

initial EC aggregation and collapse of the basement membrane that opens a passage of the cells

into the ECM. In [124] dynamics of ECs, growth factor and proteases is accounted for while

in [123] the authors study the role of pericytes and macrophages in the initiation of angiogenesis.

Other work on the initiation, though not necessarily based on the reinforced random work

equation includes [66,156].

A large number of works are devoted to the subsequent stages of angiogenesis, namely the

growth of capillaries and capillary network formation.

In [6,191,193] the authors model capillary network formation in absence of ECs proliferation.

They account for cell random motility, chemotaxis and also haptotaxis due to the presence of two

chemical stimuli: growth factor and fibronectin. This work is done in the context of tumor-induced

angiogenesis.

In [5,37,39,40,42] the authors include migratory response of ECs to growth factor, EC prolifer-

ation, EC interaction with ECM molecules such as fibronectin. They also study capillary branching

and loop formation. These models are not based on the reinforced random work equation, but pos-

tulate diffusion flux as consisting of random motility, chemotaxis and haptotaxis terms.
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We note that these works were indispensable as a starting point of our modeling efforts. How-

ever, our model differs from the existing models by certain problems that we pose, by our treatment

of cell motility, and by the dependent variables we introduce. As discussed in [138], a typical con-

tinuum model comprise equations for unknown variables that represent densities of all cell types

involved in the process(e.g., ECs, pericytes, etc.) as well as the concentrations of substances influ-

encing migration and/or proliferation, such as VEGF, proteases and angiogenic inhibitors. In our

work we emphasize importance of integrin-mediated mechanisms in cell migration by including

the concentration of focal adhesion sitesr and the concentration of ECM active sitesm into the

model.
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CHAPTER 2

Modeling of endothelial cell chemotactic motion

2.1. Development of the base mathematical model

The model that we propose is a reaction-diffusion model that can be used for a description of

various manifestations of angiogenesis. In this chapter the model is used to describe endothelial

cell (EC) pattern formation on a two-dimensional gel matrix. A detailed description of the main

stages of angiogenesis is given in the previous chapter. Here we provide a brief summary of the

processes that are accounted for in our mathematical model.

We study the motion of ECs that are initially plated on a gel matrix along with the growth

factor. The growth factor plays multiple roles in the angiogenesis process. (A growth factor, which

is frequently observed in angiogenic studies, is vascular endothelial growth factor, VEGF). First

of all, the growth factor stimulates EC motility. Moreover, it triggers mitosis of ECs, induces the

expression of matrix-degrading proteases by ECs, and is an important survival factor for the cells.

The growth factor can be produced by endothelial cells, and it decays over a relatively short time.

All these facts are reflected in our model.

Next, both the cells and the growth factor can diffuse. Diffusion of the growth factor is a

relatively simple process, which we model by Fickian diffusion with a constant diffusion coef-

ficient. Diffusion of ECs, however, is rather complex. First, there is a preferred direction of EC

motion, which is the direction along the growth factor gradient (chemotaxis). In addition, diffusion

of ECs involves cell-matrix adhesion, which requires the presence of (i) cell adhesion molecules



44

(CAMs) on the cell surface and (ii) active adhesion sites in the extracellular matrix (ECM). The

best characterized group of CAMs are integrins. The integrins have to cluster to generate strong

enough traction forces that pull the cell forward. These clusters give rise to focal adhesion sites

on the leading edge of a crawling cell. Formation of the active sites in the ECM to which cells

can attach via focal adhesions occurs through a localized degradation of the matrix components by

various cell-expressed proteases. As mentioned earlier, both proteases and focal adhesion sites are

produced by the cells in response to the growth factor.

Thus, our model governs the spatio-temporal behavior of the following quantities:

c – the concentration of endothelial cells, f – the growth factor concentration,

r – the concentration of focal adhesion sites, p – the protease concentration,

m – the concentration of ECM active sites available for cell adhesion.

The model has much in common with other reaction-diffusion models that can be found in the

literature [138]. It differs from the existing models by the dependent variables that we employ

and by the treatment of cell motility that yields a diffusion-chemotaxis equation with a variable

diffusion coefficient. As discussed in [138], a typical continuum model comprise equations for

unknown variables that represent densities of all cell types involved in the process(e.g., ECs, peri-

cytes, etc.) as well as the concentrations of substances influencing migration and/or proliferation,

such as VEGF, proteases and angiogenic inhibitors. In our work we emphasize the importance

of integrin-mediated mechanisms in cell migration by including the concentration of focal adhe-

sion sitesr and the concentration of ECM active sitesm into the model, which has not been done

in other works. Below we develop the model beginning with the cell motility and growth factor

diffusion equations, and continue with kinetic equations for the state variables.
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2.1.1. Cell motility

We begin with a derivation of the reinforced random walk equation that governs chemotactic/diffu-

sional behavior of the ECs (cf. [159]). Consider a population of endothelial cells that are located

at the nodes of a square lattice in the(x, y)-plane (see Figure 2.1). A cell can either stay at a node

or jump from the node to one of the four neighboring nodes. Letcn,k(t) be the probability density

distribution of the endothelial cells at the grid point(nh, kh) at timet. Hereh is the stepsize of the

lattice. In what follows we refer to the grid point(nh, kh) as(n, k). Then the time rate of change

of cn,k(t) is governed by the master equation:

(2.1)
∂cn,k(t)

∂t
= τ̂⇒n−1,kcn−1,k + τ̂⇐n+1,kcn+1,k+

τ̂⇓n,k+1cn,k+1 + τ̂⇑n,k−1cn,k−1 − [τ̂⇒n,k + τ̂⇐n,k + τ̂⇓n,k + τ̂⇑n,k]cn,k.

FIGURE 2.1. Schematic of the cell movement process

Hereτ⇐n,k, τ⇒n,k, τ⇑n,k, τ⇓n,k, are the transition probability rates per unit time for a one-step move

of an endothelial cell from the grid point(n, k) to grid points(n − 1, k), (n + 1, k), (n, k + 1),



46

(n, k−1), respectively. Thus,cn,k increases due to cell jumps from the grid points(n±1, k±1) to

(n, k) and decreases due to cell jumps from the grid point(n, k) to (n± 1, k ± 1). It is convenient

to think of this conditional probability density as the density of endothelial cells. The transition

probability ratesτ⇐n,k, τ⇒n,k, τ⇑n,k, τ⇓n,k, depend on the state of the cell and the extracellular matrix

adjacent to the cell. Though numerous biochemical species can affect the above state variables we

presume that the readiness of the cell to sustain motion is characterized by the presence of focal

adhesion sitesr, while the preparedness of the matrix to support cell motion is characterized by

the availability of the matrix sitesm, to which the cell attaches. In addition, the polarity of the

cell is accounted for by introducing the dependence of the transition rates on the growth factor

concentrationf . We assume thatr, f andm are defined on the lattice at1/2-step size.

The transition rates can be represented as

(2.2a) τ̂⇒n,k = λ(rn,k, mn,k)
τ(fn+1/2,k, mn+1/2,k)

Sn,k

, τ̂⇐n,k = λ(rn,k, mn,k)
τ(fn−1/2,k, mn−1/2,k)

Sn,k

,

(2.2b) τ̂⇑n,k = λ(rn,k, mn,k)
τ(fn,k+1/2, mn,k+1/2)

Sn,k

, τ̂⇓n,k = λ(rn,k, mn,k)
τ(fn,k−1/2, mn,k−1/2)

Sn,k

,

where

Sn,k = τ(fn+1/2,k, mn+1/2,k)+τ(fn−1/2,k, mn−1/2,k)+τ(fn,k+1/2, mn,k+1/2)+τ(fn,k−1/2, mn,k−1/2).

Hereλ characterizes the mean waiting time that the cell spends at the lattice point(n, k) before it

jumps. Unlike the previous work we do not assume that the mean waiting time of the process is

constant across the lattice; rather, we account for the state of the cell and the matrix as the quantities

that determine the waiting time. The fractional terms on the right-hand sides of (2.2) define the
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probability of jumping to one of the four adjacent locations – up, down, left, or right. We remark

that the sum of these terms is equal to unity.

Substituting (2.2) into the master equation (2.1) and Taylor expanding yields

∂cn,k(t)

∂t
=

h2

4

(
∂2

∂x2
+

∂2

∂y2

)
(λ(rn,k, mn,k)cn,k)−

h2

4

∂

∂x

(
cn,k

λ(rn,k, mn,k)

τ(fn,k, mn,k)

∂τ(fn,k, mn,k)

∂x

)

(2.3) −h2

4

∂

∂y

(
cn,k

λ(rn,k, mn,k)

τ(fn,k, mn,k)

∂τ(fn,k, mn,k)

∂y

)
+ O(h3).

Next, we take the limit in (2.3) ash → 0 andλ →∞ in such a way that

D =
1

4
lim

h→0,λ→∞
λh2

is finite, to obtain the equation

(2.4)
∂c

∂t
=

∂

∂x

(
∂Dc

∂x
−Dc

1

τ

∂τ

∂x

)
+

∂

∂y

(
∂Dc

∂y
−Dc

1

τ

∂τ

∂y

)
.

Including a logistic term in (2.4) to account for cell proliferation and apoptosis, and rewriting the

terms with the derivatives we obtain

(2.5)
∂c

∂t
= div

[
Dc grad

(
ln

Dc

τ

)]
+ Kcc(c0 − c).

Equation (2.5) is a reinforced random walk equation that governs chemotactic/diffusional behavior

of the ECs. The equation is a modification of that in [159]. It involves a non-constant diffusion

coefficientD, which depends on the state of both the matrix and the cells. The equation with

a constant diffusion coefficient has been a subject of investigation in a number of works (see

[125,168] and the references therein).
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The rate parameterKc in the logistic term is taken in the formKc = λc(f − fc)/(1 + νcf) (cf.

Michaelis-Menten kinetics in (2.11) below). This form reflects the fact that in order for immature

ECs to survive and proliferate, a certain level of growth factor is required [46]. The cells undergo

apoptosis iff falls below the critical levelfc. The quantitiesλc andνc in Kc are constants.

Note that sinceλ in (2.2) is a function ofr and m, so is the diffusion coefficientD, i.e.,

D = D(r, m). The form of the diffusion coefficient must account for the fact that diffusion is

negligibly small if eitherr or m is small. We use an activated diffusion term of the form

D = D0
c exp

[
−m∗

m
− r∗

r

]
, D0

c = const,

with some characteristic concentrationsm∗ andr∗. Another form of the diffusion coefficient is

introduced and employed later. We also need to choose a specific form ofτ . There are several

functional forms ofτ used in the literature. Typically they are not derived from the first principles

but rather chosen at a phenomenological level. We useτ = exp(γf), whereγ is a constant that

characterizes chemotactic sensitivity of the cells (cf. [155]).

2.1.2. Cell and matrix state variables

To describe the production of proteasesp and focal adhesion sitesr in response to the growth factor

f we assume the following overall reaction (cf. [124])

f + [Rec]
k1−→ [Rec · f ]

k2−→ [Rec] + µpp + µrr,

in which we denote the concentration of a species by the same letter as used for the species itself.

Here[Rec] is a free growth factor receptor, to which a growth factor molecule can bind, and[Rec·f ]



49

is the receptor occupied by a growth factor molecule. Thus, the first reaction describes binding of

f to [Rec] with the rate constantk1, while the second reaction, which has the rate constantk2,

describes the secretion ofµp molecules of protease andµr integrin clusters as well as the return

of the receptor to its active form. Here the detailed pathways are not considered, and only the net

reactions presented.

The mass balance equations governing the above reaction scheme have the form

∂f

∂t
= −k1f [Rec],(2.6)

∂p

∂t
= µpk2[Rec · f ],(2.7)

∂r

∂t
= µrk2[Rec · f ],(2.8)

∂[Rec · f ]

∂t
= k1f [Rec]− k2[Rec · f ].(2.9)

In the last equation we use the steady-state assumption, which states that the rates of production

and disappearance of the[Rec · f ] complex are significantly higher than the rate of change of its

concentration, which results in the algebraic balance

(2.10) k1f [Rec]− k2[Rec · f ] = 0.

In mathematical terms this means that equation (2.9), appropriately nondimensionalized, will have

a small parameter in front of the time derivative. We set this parameter to zero, thus considering

the outer solution that is valid after a short transient period.

Introducing the total concentration[Rec]T of receptors, both occupied byf and unoccupied,

[Rec]T = [Rec] + [Rec · f ],
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and noting that[Rec]T = [Rec]Tc · c, where[Rec]Tc is the number of receptors per cell, we can

rewrite equations (2.6)–(2.8) as

(2.11) −∂f

∂t
=

1

µp

∂p

∂t
=

1

µr

∂r

∂t
= Kfc, K ≡ k1[Rec]Tc

1 + fk1/k2

.

In what follows we use the notationνf = k1/k2, λf = k1[Rec]Tc. We can now formulate mass

balance equations forp, r andf as

∂p

∂t
= µpKfc− kpp,(2.12)

∂r

∂t
= µrKfc− krr,(2.13)

∂f

∂t
= Df∇2f −Kfc + δc− βf.(2.14)

Here the first term on the right-hand side of (2.12) is the rate of protease production (see (2.11)),

while the second term is the rate of protease decay, e.g. due to self-cleavage. Similarly, the first

term on the right-hand side of (2.13) is the rate of production of integrin clusters and, the second

term is the rate of their disassembly. Equation (2.14) for the growth factor is a diffusion equation,

with diffusion coefficientDf . The second term on the right-hand side describes consumption off

according to (2.11), and the last two terms describe production off by the endothelial cells and its

decay. The quantitieskp, kr, δ, andβ in the above equations are rate constants.

Finally, the equation for the matrix adhesion sites is taken in the form

(2.15)
∂m

∂t
= Kmp− kmrmr.
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Here the first term on the right-hand side is the sites production rate, proportional to the concen-

tration of protease, with

Km =
λm(M −m)

1 + νm(M −m)

(cf. Michaelis-Menten kinetics in (2.11)). The second term is the rate of disappearance of available

sites due to their occupation by integrin clusters. The quantitiesλm, νm, M , andkmr are constants.

The system of equations derived above can be summarized as

∂c

∂t
= div

[
Dc grad

(
ln

Dc

τ

)]
+ Kc(f)c(c0 − c),(2.16a)

∂f

∂t
= Df∇2f −Kf (f)c + δc− βf,(2.16b)

∂p

∂t
= µpKf (f)c− kpp,(2.16c)

∂r

∂t
= µrKf (f)c− krr,(2.16d)

∂m

∂t
= Km(m)p− kmmr,(2.16e)

where D = D0
c exp

(
−m∗

m
− r∗

r

)
, Kc(f) =

λc(f − fc)

1 + νcf
,

τ = exp (γf) , Kf (f) =
λff

1 + νff
, Km(m) =

λm(M −m)

1 + νm(M −m)

and all the other parameters in (2.16) are constant.

2.1.3. Steady-state approximation

We again employ a steady-state assumption, this time with respect to the state variablesp, r, andm,

i.e., we assume that because the described biochemical reactions in the cell occur on a faster time
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scale than the diffusion processes, eqns (2.16c)-(2.16e) can be replaced by the algebraic balances

µpKf (f)c− kpp = 0, µrKf (f)c− krr = 0, Km(m)p− kmmr = 0

after a short transient period. From these algebraic equations we obtain

(2.17) ps =
µp

kp

Kf (f)c, rs =
µr

kr

Kf (f)c, ms =
λmM

kmkp/kr + λm

.

The steady-state assumption reduces the problem (2.16) to

∂c

∂t
= div

[
Dc grad

(
ln

Dc

τ

)]
+ Kc(f)c(c0 − c),(2.18)

∂f

∂t
= Df∇2f −Kf (f)c + δc− βf,(2.19)

where Dc = cD0 exp

(
− r∗kr

cKf (f)µr

)
, D0 = D0

c exp

(
−m∗

ms

)
= const.

Assuming for simplicityνc = νf = 0 in the expressions forKf andKc, we obtain

∂c

∂t
= ∇2Dc − γ div [Dc gradf ] + λc(f − fc) c (c0 − c),(2.20a)

∂f

∂t
= Df∇2f − λffc + δc− βf,(2.20b)

whereDc takes the form

(2.21) Dc = cD0 exp

(
−k∗

cf

)
, k∗ =

r∗kr

λfµr

.

Below we discuss the spatially uniform steady states of the problem (2.20) and their linear stability.

Then we focus on nonlinear stability analysis of one of the basic states of (2.20).
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2.2. Basic states of the system

The system of equations (2.20) has three spatially uniform time-independent solutions that we

refer to as the basic states and label them by a subscripts. They are

cs1 = 0, fs1 = 0,(2.22a)

cs2 = c0, fs2 =
δc0

β + λfc0

,(2.22b)

cs3 =
βfc

δ − λffc

, fs3 = fc.(2.22c)

Linear stability analysis of the basic states that is given below demonstrates that the first basic state

is always stable, while the other two basic states may be either stable or unstable depending on the

parameters of the system. We are particularly interested in the Turing instability, i.e., the instability

that is caused by diffusion of the species. Turing instability of the second and third basic states

occurs if

γ >
k∗

c0f 2
s2

+
δk∗
βf 3

s2

+
δc0

βf 2
s2

, γ <
k∗

cs3f 2
c

+
δk∗
βf 3

c

+
δcs3

βf 2
c

,

respectively. We are interested in the situation when the endothelial cells are very sensitive to the

factor gradient, i.e., the sensitivity parameterγ is large. Thus, in what follows we focus on the

second basic state for which the Turing instability occurs for largeγ.

2.3. Nondimensionalization

We nondimensionalize the system of equations using

c̃ =
c− cs2

cs2

, f̃ =
f − fs2

fs2

, x̃ =
x

l∗
, ỹ =

y

l∗
, t̃ =

t

t∗
, t∗ =

1

λcc0fs2

, l2∗ = D0e
−gt∗, g =

k∗
fs2cs2

,
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to obtain

∂c̃

∂t̃
= ∇2D̃c − ω div [D̃c gradf̃ ]− (1− qc + f̃)(c̃ + c̃2),(2.23a)

∂f̃

∂t̃
= D̃f∇2f̃ − (z + ζ)f̃ + ζc̃− zf̃ c̃,(2.23b)

with the basic state becoming(f̃ , c̃) = (0, 0) and

ω = γfs2, qc = fc/fs2, z = t∗λfcs2, ζ = t∗β,

(2.24) D̃f =
Df

D0

eg, D̃c = (1 + c̃) exp

[
g

c̃ + f̃ + c̃f̃

(1 + c̃)(1 + f̃)

]
.

2.4. Analytical results

2.4.1. Linear stability analysis

We begin the linear stability analysis with linearizing the system (2.23) about the trivial steady

state. We use the following linearization of̃Dc in (2.24),

(2.25) D̃c = 1 + (1 + g)c̃ + gf̃ + . . . ,

to obtain

∂c̃

∂t̃
= (1 + g)∇2c̃ + (g − w)∇2f̃ + (qc − 1)c̃,(2.26a)

∂f̃

∂t̃
= D̃f∇2f̃ + ζc̃− (z + ζ)f̃ .(2.26b)
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Substituting the normal mode solution c̃

f̃

 =

a

b

 eσt̃+iαxx̃+iαy ỹ,

whereσ is the growth rate of the perturbation and(αx, αy) is the wave vector, we obtain the

dispersion relation of the form

σ2 +
[
α2(D̃f + g + 1) + z + ζ + 1− qc

]
σ + D̃f

[
α4(1 + g) + α2(1− qc)

]

+α2 [ζ(1 + 2g − ω) + z(g + 1)] + (ζ + z)(1− qc) = 0,

whereα is the wavenumber of the perturbation,α2 = α2
x + α2

y. We considerqc < 1, in which case

instability occurs as realσ changes the sign from negative to positive as parameters of the problem

vary. The stability boundary corresponds toσ = 0. The neutral stability curve (Fig. 2.2), which

can be written in the form

D̃f = −α2 [ζ(1 + 2g − ω) + z(g + 1)] + (ζ + z)(1− qc)

α4(1 + g) + α2(1− qc)
,

has a maximum(αcr, D̃f cr), where

(2.27) D̃f cr =
z + ζ

1− qc

(ξ − 1)2(1 + g), α2
cr =

1− qc

(ξ − 1)(1 + g)
, ξ =

[
ζ(ω − g)

(1 + g)(z + ζ)

]1/2

,

provided thatξ > 1.

The eigenvector(a, b) for σ = 0, α = αcr, andD̃f = D̃f cr is given by

a = α2
crD̃f + z + ζ, b = ζ.



56

FIGURE 2.2. Neutral stability curve in the (α2, D̃f ) plane. The stability region lies
above the curve. Hereζ = 12, ω = 6, z = 1, g = 0.5, andqc = 0.5.

The steady state (2.22b) is stable for̃Df > D̃f cr and unstable otherwise. This result has a clear

biological interpretation. If there is a local increase in the concentration of the growth factor, it

will result in factor gradients and, therefore, in cell movement and EC aggregation at this location.

These cells will release the growth factor thus providing positive feedback that leads to pattern

formation. If, on the other hand, the diffusion coefficient of the factor is sufficiently large, factor

gradients will vanish and cell aggregation will not occur.

To enhance our understanding of the model it is useful to analyze the dependence ofD̃f cr on

the nondimensional parameters of the model. We consider the following parameter groups that

appear as a result of nondimensionalization of (2.20)

ω = γfs2, qc = fc/fs2, z = t∗λfcs2, ζ = t∗β.

2.4.1.1. ω – chemotactic sensitivity of ECs. It is clear from the expressions (2.27) that̃Df cr

increases withω. It completely agrees with our understanding ofω as a measure of chemotactic

sensitivity of the endothelial cells. Indeed, if there is a local increase in the concentration of the

growth factor, the nearby cells start moving in that direction and the rate of their motion increases

with ω as can also be seen directly from the first equation in (2.23). Thus, the larger is theω, the
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larger threshold value of̃Df cr is needed to suppress the growth factor fluctuations and return the

system to the steady state.

2.4.1.2. qc – the EC proliferation/apoptosis parameter. The reason whyqc is called prolifer-

ation/apoptosis parameter can be understood by looking at the logistic term in the first equation

in (2.20). If there is a local increase in the growth factor concentration, which in turn leads to an

increase of the EC concentration at the same spot, thenc > c0 , f > fc and the logistic term is

negative, i.e. apoptosis takes place and the local EC density decreases. In this case an increase

in fc (which corresponds to an increase inqc) means that apoptosis rate slows down, i.e. smaller

number of cells are dying and more cells respond to the chemotactic stimulus by migrating up the

growth factor gradient. Thus the larger isqc, the smaller̃Df is needed to suppress this growth factor

fluctuation. This phenomenological understanding agrees with (2.27) from whichD̃f cr increases

asqc decreases,0 < qc < 1.

2.4.1.3. z – the rate of the growth factor consumption by ECs. Computing partial derivative

of D̃f cr with respect toz we get

∂D̃f cr

∂z
=

1 + g

1− qc

(1− ξ) < 0

since0 < qc < 1 andξ > 1 (see (2.27)). This fact is in agreement with our understanding that if

the rate of consumption of the growth factor increases, then a smallerD̃f is needed to eliminate

random growth factor fluctuations and prevent instability.

2.4.1.4. ζ – the rate of growth factor decay. Computing the partial derivative of̃Df cr with

respect toζ we obtain

∂D̃f cr

∂ζ
=

1 + g

1− qc

(ξ − 1)

[
ξ

(
1 +

z

ζ

)
− 1

]
> 0
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since0 < qc < 1 andξ > 1. This also agrees with our understanding of the process. Indeed, as we

see from the second equation in (2.23), if a cell density fluctuation becomes larger then the growth

factor fluctuation, it leads to an increase in the growth factor density. In this case a largerD̃f is

needed to suppress fluctuations and to prevent an instability development.

2.4.2. Weakly nonlinear analysis: stripes and hexagons

We now focus on the weakly nonlinear analysis of the system (2.23) in order to understand pattern

formation near the instability threshold. In this section we study the appearance of hexagons and

stripes.

Let small parameterε characterize the magnitude of the bifurcating solution. We introduce the

slow timeT = ε2t̃ and expand both unknowns̃c andf̃ as well as the bifurcation parameter̃Df as

(2.28) c̃ = εc1 + ε2c2 + ε3c3 + . . . , f̃ = εf1 + ε2f2 + ε3f3 + . . . , D̃f = D̃f cr − ε2µ.

Here c̃, cj, f̃ , fj (j = 1, 2, 3) are functions ofT , x̃, andỹ. In what follows we use the following

expansion of̃Dc aboutc̃ = f̃ = 0

(2.29) D̃c ≈ 1 + (1 + g) c̃ + gf̃ +
1

2
g2c̃2 +

(
1

2
g2 − g

)
f̃ 2 + g2c̃f̃+

(
1

6
g3 − 1

2
g2

)
c̃3 +

(
1

6
g3 − g2 + g

)
f̃ 3 +

(
1

2
g3 − 3

2
g2

)
c̃f̃ 2 +

(
1

2
g3 − g2

)
c̃2f̃ + . . . .

Substituting the expansions (2.28) into the system of equations (2.23) and collecting like powers

of ε we obtain at ordersεj (j = 1, 2, 3) the sequence of problems

(2.30a) −∂cj

∂t̃
+ (g + 1)∇̃2cj + (g − ω)∇̃2fj − (1− q)cj = Rcj
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(2.30b) −∂fj

∂t̃
+ D̃f cr∇̃

2fj − (z + ζ)fj + ζcj = Rfj.

Here the right-hand sides forj = 1, 2 are given by

Rc1 = Rf1 = 0, Rf2 = zf1c1,

Rc2 = −∇̃2

[
1

2
g2c2

1 +

(
1

2
g2 − g

)
f 2

1 + g2c1f1

]
+

w(g + 1)∇̃f1 · ∇̃c1 + w[(g + 1)c1 + gf1]∇̃2f1 + wg(∇̃f1)
2 + c1f1 + (1− qc)c

2
1.

The right-hand sidesRc3, Rf3 are presented in Appendix.

At O(ε) we obtain the linearized system (2.26b). We seek solution in the form

(2.31)

c1

f1

 = (L1e1 + L2e2 + L3e3 + c.c.)

a

b

 ,

where

(2.32) e1 = exp(iαcrx̃), e2,3 = exp

[
iαcr

(
− x̃

2
±
√

3

2
ỹ

)]
,

andc.c. denotes complex conjugate terms. Here the amplitudesL1, L2, L3 are functions of the

slow timeT . We choose this form of the solution, with the three normal modes, because we want

to describe the appearance of both hexagons and stripes as well as their interaction.

Next we turn to theO(ε2) problem. The right-hand sidesRc2 andRf2 can be written in the

form

Rc2 = K1E1 + K2E2 + K3E3 + K4E4, Rf2 = zab(E1 + E2 + 2E3 + 2E4),
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where

E1 = L2
1e

2
1 + L2

2e
2
2 + L2

3e
2
3 + c.c., E2 = 2(|L1|2 + |L2|2 + |L3|2),

E3 = L1L
∗
2e1e

∗
2 + L1L

∗
3e1e

∗
3 + L2L

∗
3e2e

∗
3 + c.c., E4 = L1L2e

∗
3 + L1L3e

∗
2 + L2L3e

∗
1 + c.c.,

the asterisk denotes the complex conjugate, and the coefficientsK1, K2, K3, K4 are given in

Appendix. We remark that the termsK4E4 are secular terms that appear in theO(ε2) problem due

to the resonance interaction of the modes (2.32). These secular terms are considered to be small

and will contribute to the solvability condition atO(ε3) [209].

Then the solution of theO(ε2) problem is given byc2

f2

 = E1

c21

f21

+ E2

c22

f22

+ E3

c23

f23

 ,

where the coefficientsc2j, f2j are given in Appendix.

Elimination of secular terms in theO(ε3) problem via the orthogonality conditions of the right-

hand side(Rc3, Rf3) to the solutions of the adjoint homogeneous problem given by ζ

(1 + g)α2
cr + 1− qc

 ej, j = 1, 2, 3

results in the following system of equation for the amplitudesL1, L2, L3

dL1

dT
= µC1L1 + C2L

∗
2L
∗
3 + C3L1|L1|2 + C4L1(|L2|2+ |L3|2),(2.33a)

dL2

dT
= µC1L2 + C2L

∗
1L
∗
3 + C3L2|L2|2 + C4L2(|L1|2+ |L3|2),(2.33b)

dL3

dT
= µC1L3 + C2L

∗
1L
∗
2 + C3L3|L3|2 + C4L3(|L1|2+ |L2|2).(2.33c)
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The quadratic terms in the equations come from the secular terms in theO(ε2) problem. The

coefficientsCk, k = 1, 2, 3, 4 are real and depend on the parameters of the problem. They are

given in Appendix.

2.4.3. Analysis of the amplitude equations: stripes and hexagons

We consider steady states of the system (2.33). Specifically, we are interested in the steady states

that describe hexagons and stripes in the original system. We briefly list below the well known

general results concerning these patterns [209], and then relate these results to the problem at

hand. Hexagonal patterns correspond to

L1 = L2 = L3 = Lh,

whereLh is a solution of the quadratic equation

(C3 + 2C4)L
2
h + C2Lh + µC1 = 0.

Stripes parallel to they-axis correspond to

L1 = Ls, L2 = L3 = 0, Ls =

√
−µC1

C3

.

We first discuss the stripes. Linear stability analysis of the stripes as a stationary solution of the

system (2.33) results in the following values for the growth rateσ of perturbations:

σ1 = −2µC1, σ2 = 0, σ3,4 = C2Ls − (C3 − C4)L
2
s, σ5,6 = −C2Ls − (C3 − C4)L

2
s.

Since the coefficientC1 is always positive, we conclude that
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FIGURE 2.3. Bifurcation diagram in (µ, |L|) plane.
Casea : C3 + 2C4 < 0, C2 > 0, andC3 < 0, C3 − C4 < 0;
Caseb : C3 + 2C4 < 0, C2 > 0, C3 − C4 > 0, C3 + C4 < 0 andC3 < 0.

• if C3 > 0 the stripes are subcritical (i.e., they exist forµ < 0) and are unstable;

• if C3 < 0 the stripes are supercritical (µ > 0);

• the supercritical stripes are unstable for allLs if C3 − C4 < 0 (Fig. 2.3 a);

• the supercritical stripes are stable forLs > |C2|/(C3 − C4) if C3 − C4 > 0 (Fig. 2.3 b).

Linear stability analysis of the hexagons as a stationary solution of the system (2.33) results in

the following values for the growth rateσ of perturbations:

σ1 = C2Lh + 2(C3 + 2C4)L
2
h, σ2,3 = 2[−C2Lh + (C3 − C4)L

2
h], σ4 = −3C2Lh, σ5,6 = 0.

Again, keeping in mind the fact that the coefficientC1 > 0, we conclude that
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• for C3 + 2C4 > 0 there exist only subcritical hexagonal patterns that are always unstable

(more precisely, there exist supercritical hexagons in this case ifC2 < 0, but they are

unstable anyway);

• for C3 + 2C4 < 0 there exist supercritical hexagonal patterns;

• the supercritical hexagonal patterns are stable forLh > −C2/[2(C3 + 2C4)] if the three

conditionsC3 + 2C4 < 0, C2 > 0, andC3 − C4 < 0 are simultaneously met (Fig. 2.3

a). If, however, the first two conditions on the coefficients are satisfied, butC3 − C4 > 0,

then there exist stable hexagons only ifC3 + C4 < 0. In this case the amplitudesLh of

the stable hexagons satisfy−C2/[2(C3 + 2C4)] < Lh < C2/(C3 − C4) (Fig. 2.3 b);

• the supercritical hexagonal patterns are always unstable if eitherC2 < 0 or C3 − C4 > 0

andC3 + C4 > 0.

From the above results it follows that stable stripes and hexagons can coexist in the system if

C2 > 0 andC4 < C3 < 0. In this case the system will exhibit stable hexagons with amplitudes

Lh in the range−C2/[2(C3 + 2C4)] < Lh < C2/(C3 − C4) and stable stripes with amplitudes

Ls > C2/(C3 − C4). There is a region of bistability of the two patterns, which occurs for

− C2
2C3

C1(C3 − C4)2
< µ < −C2

2(2C3 + C4)

C1(C3 − C4)2
.

These result are summarized in the bifurcation diagram, where solid lines stand for stable states of

the system and dotted lines show unstable states (Fig. 2.3).

2.4.4. Parameter sensitivity: stripes and hexagons

We next turn to a discussion of the patterns that occur in the angiogenesis problem depending on

the parameters of the system. The parameters that we vary areζ, ω, andz. It is useful to recall
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the biological meaning of these parameters. Parameterζ can be interpreted as a nondimensional

rate of decay of the growth factor. There are means to controlζ, e.g., by introducing decoy soluble

growth factor receptors that reduce the concentration of active growth factor, which can be treated

as an increase inζ. Parameterω characterizes the chemotactic sensitivity of the endothelial cells.

It can also be controlled, e.g., by inhibiting the growth factor receptors. Parameterz is related to

the rate of intracellular activity, which results, e.g., in production of proteases and formation of

integrin clusters.

Figures 2.4 show the dependence of the coefficientC2 as well asC3 − C4 andC3 + 2C4 on ζ

for different values ofz andω.

We first observe that for smallζ, i.e., for a very slow decay of the growth factor,C3 − C4 < 0,

C3 + 2C4 > 0, andC2 > 0 (in fact, C2 > 0 for all parameter values we considered). The signs

of these quantities mean that hexagons are subcritical, unstable, and therefore cannot occur in

this case. The stripes appear supercritically, but they are also unstable. The resulting behavior of

the original system is not described by the amplitude equations, and can be quite complex, e.g.,

chaotic.

For intermediate values ofζ, C3 + 2C4 < 0 andC2 > 0 while the sign ofC3 − C4 depends

on the other parameters. For smallerω andz, i.e., for reduced chemotactic sensitivity and lower

biochemical activity of the cellsC3 − C4 > 0, which means that both stable hexagons and stripes

exist for some values of the diffusion coefficient of the growth factor, and moreover, for some

values of the diffusion coefficient they coexist. For largerω andz only stable hexagons can be

observed.

For large values ofζ, C3 + 2C4 < 0 andC2 > 0, and the previous scenario repeats – both

hexagons and stripes can be observed unlessz is increased, in which case only hexagons survive.
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FIGURE 2.4. The quantitiesC2, C3−C4 andC3+2C4 as functions ofζ for different
parameter values. Hereq = 0.5, g = 1 for all the curves, andω = 6, z = 1 for
curves (1),ω = 7, z = 1 for curves (2),ω = 7, z = 3 for curves (3)

The above observations can be useful as they demonstrate the trends that may be expected as

parameters of the biological system are varied in experiments. These results can be summarized

as follows. No steady patterns can be observed if the rate of decay of the growth factor is small.
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Increasing the rate of decay of the growth factor (e.g., by introducing decoy soluble growth factor

receptors) allows one to observe steady patterns if the diffusion coefficient of the growth factor is

sufficiently small. These patterns are hexagons and stripes. Most often hexagons are observed.

In order for the stripes to occur the chemotactic sensitivity of the endothelial cells and/or their

biochemical activity has to be reduced.

2.4.5. Weakly nonlinear analysis: squares

We again perform the weakly nonlinear analysis of the systems (2.23) with the cell diffusion coeffi-

cient taken in the form (2.21). This time we study occurrence of square patterns near the instability

threshold.

We again introduce the slow timeT = ε2t̃ and expand both unknowns̃c andf̃ as well as the

bifurcation parameter̃Df as

(2.34) c̃ = εc1 + ε2c2 + ε3c3 + . . . , f̃ = εf1 + ε2f2 + ε3f3 + . . . , D̃f = D̃f cr − ε2µ,

c̃, cj, f̃ , fj (j = 1, 2, 3) being functions of̃t, T , x̃, ỹ.

Substituting the expansions (2.34), (2.29) into the system of equations (2.23) and collecting

like powers ofε we obtain at ordersεj (j = 1, 2, 3) the same sequence of problems as before

(2.35a) −∂cj

∂t̃
+ (g + 1)∇̃2cj + (g − ω)∇̃2fj − (1− q)cj = Rcj,

(2.35b) −∂fj

∂t̃
+ D̃f cr∇̃

2fj − (z + ζ)fj + ζcj = Rfj.
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Here the right-hand sides forj = 1, 2 are given by

Rc1 = Rf1 = 0, Rf2 = zf1c1. Rc2 = −∇̃2

[
1

2
g2c2

1 +

(
1

2
g2 − g

)
f 2

1 + g2c1f1

]
+

w(g + 1)∇̃f1 · ∇̃c1 + w[(g + 1)c1 + gf1]∇̃2f1 + wg(∇̃f1)
2 + c1f1 + (1− qc)c

2
1,

The right-hand sidesRc3, Rf3 are presented in Appendix. AtO(ε) we have obtained the linearized

system (2.26b). We seek solution in the form

(2.36)

c1

f1

 = (L1e1 + L2e2 + c.c.)

a

b

 ,

wheree1 = exp(iαcrx̃), e2 = exp(iαcrỹ), andc.c. denotes the complex conjugate terms. Here

the amplitudesL1, L2 are functions of the slow timeT . We choose this form of the solution, with

the two normal modes, because we want to describe the appearance of square patterns.

Next we turn to theO(ε2) problem. The right-hand sidesRc2 andRf2 can be written in the

form Rc2 = K1E1 + K2E2 + K3E3, Rf2 = zab(E1 + E2 + 2E3),

where

E1 = L2
1e

2
1 + L2

2e
2
2 + c.c., E2 = 2(|L1|2 + |L2|2), E3 = L1L2e1e2 + L∗1L2e

∗
1e2 + c.c.,

the asterisk denotes the complex conjugate, and the coefficientsK1, K2, K3 are given in Appendix.

The solution of theO(ε2) problem is given byc2

f2

 = E1

c21

f21

+ E2

c22

f22

+ E3

c23

f23

 ,
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where the coefficientsc2j, f2j are given in Appendix.

Elimination of secular terms in theO(ε3) problem via the orthogonality conditions of the right-

hand side(Rc3, Rf3) to the solutions of the adjoint homogeneous problem given by ζ

(1 + g)α2
cr + 1− qc

 ej, j = 1, 2

results in the following system of equation for the amplitudesL1, L2

dL1

dT
= µC1L1 + C3L1|L1|2 + C4L1|L2|2,(2.37a)

dL2

dT
= µC1L2 + C3L2|L2|2 + C4L2|L1|2.(2.37b)

The coefficientsCk, k = 1, 3, 4 are real and depend on the parameters of the problem. They are

given in Appendix.

2.4.6. Analysis of the amplitude equations: squares

Below we consider steady states of the system (2.37), specifically, we are interested in the steady

states that describe squares in the original system. We briefly list below well known general results

concerning these patterns [209], and then relate these results to the problem at hand. Square

patterns correspond toL1 = L2 = Lsq, whereLsq is a solution of the quadratic equation

(C3 + C4)L
2
sq + µC1 = 0.

The linear stability analysis of the system (2.37) results in the following values for the growth rate

σ of perturbations:
σ1 = σ2 = 0, σ3 = −µC1, σ4 = 2(C3 − C4)L

2
sq.
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Since the coefficientC1 is always positive, we conclude that

• for C3 + C4 > 0 there exist only subcritical square patterns that are always unstable;

• for C3 + C4 < 0 there exist supercritical square patterns;

• the supercritical square patterns are stable ifC3 − C4 < 0

• the supercritical square patterns are unstable ifC3 − C4 > 0.

2.4.7. Parameter sensitivity: squares

We next turn to a discussion of the square patterns that can occur in the angiogenesis problem

depending on the parameters of the system. The parameters that we vary areζ, ω, andqc. It is

useful to recall the biological meaning of these parameters. Parameterζ can be interpreted as a

nondimensional rate of decay of the growth factor. There are means to controlζ, e.g., by intro-

ducing decoy soluble growth factor receptors that reduce the concentration of active growth factor,

which can be treated as an increase inζ. Parameterω characterizes the chemotactic sensitivity

of the endothelial cells. It can also be controlled, e.g., by inhibiting the growth factor receptors.

Parameterqc = fc/fs2 is the endothelial cell proliferation/apoptosis parameter (see (2.20a)). This

parameter reflects cell sensitivity to the presence of the growth factor in the system and the growth

factor level necessary for cell metabolic needs in order to avoid apoptosis.

Figures 2.5 show the dependence of the coefficient combinationsC3 +C4 andC3−C4 onζ for

different values ofqc. These dependencies have the same character whenω is slightly increased,

i.e. the appearance of square patterns does not depend on chemotactic sensitivity of endothelial

cells.
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FIGURE 2.5. The quantitiesC3 + C4 andC3 − C4 as functions ofζ for different
parameter values. Hereω = 6, g = 1, z = 1 for all curves, andqc = 0.1, for curves
(1), qc = 0.5, for curves (2),qc = 0.9 for curves (3)

We first observe that for smallζ, i.e., for a very slow decay of the growth factor,C3 − C4 < 0,

C3 + C4 > 0. The signs of these quantities mean that squares are subcritical, unstable, and

therefore cannot occur in this case. The resulting behavior of the original system is not described

by the amplitude equations, and can be quite complex, e.g., chaotic.

For intermediate values ofζ, C3−C4 < 0 while the sign ofC3 +C4 depends onqc. For smaller

qc, i.e., for reduced sensitivity of the cells to the presence of the growth factorC3 + C4 > 0,

which means that squares are subcritical and unstable but asqc increases,C3 + C4 changes sign

and becomes negative indicating the existence of stable supercritical squares in the system.
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For large values ofζ, C3−C4 < 0 while the sign ofC3 +C4 depends onqc. For smallerqc, i.e.

for reduced sensitivity of the cells to the presence of the growth factorC3 + C4 < 0 which means

that stable supercritical squares exist in the system. For largerqc, C3 + C4 turns positive which

means that squares become subcritical and unstable.

The above observations can be useful as they demonstrate the trends that may be expected as

parameters of the biological system are varied in experiments. These results can be summarized

as follows. No steady patterns can be observed if the rate of decay of the growth factor is small.

Increasing the rate of decay of the growth factor (e.g., by introducing decoy soluble growth factor

receptors) allows one to observe steady square patterns if endothelial cell sensitivity to the presence

of the growth factor is sufficiently large. Further increasing the rate of decay of the growth factor

we observe steady square patterns if endothelial cell sensitivity to the presence of the growth factor

decreases.

2.5. Coexistence of hexagons, stripes and square patterns

If we go back and summarize the results obtained in subsections 2.4.6 and 2.4.3 we can make

the following conclusions about system behavior at certain chosen parameter values:

• Stable supercritical stripes and stable supercritical square patterns never coexist in the

system;

• Stable supercritical hexagonal patterns and stable supercritical stripes can coexist for

−C2/[2(C3 + 2C4)] < Lh,s < C2/(C3 −C4) if all the conditionsC3 + 2C4 < 0, C2 > 0,

C3 < 0, C3 − C4 > 0 andC3 + C4 < 0 are simultaneously met (Fig. 2.3 b);
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FIGURE 2.6. Zero contour plots of quantitiesC3 + 2C4 andC3sq + C4sq in z − ζ
plane forω = 6, g = 1, qc = 0.1. For the chosen range ofz andζ C2 > 0 and
C3 − C4 < 0.
Subscript ’sq’ indicates coefficients of the amplitude equations derived for squares
(2.37).

FIGURE 2.7. Zero contour plots of quantitiesC3 + 2C4 andC3sq + C4sq in z − ζ
plane forω = 6, g = 1, qc = 0.5. For the chosen range ofz and ζ C2 > 0,
C3 − C4 < 0 andC3sq − C4sq < 0
Subscript ’sq’ indicates coefficients of the amplitude equations derived for squares
(2.37).

• Stable supercritical hexagonal patterns and stable supercritical stripes can coexist for

Lh > −C2/[2(C3 + 2C4)] if all the conditionsC2 > 0, C3 + 2C4 < 0, C3 − C4 < 0 and

C3 + C4 < 0 are simultaneously met.
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FIGURE 2.8. Area of existence for hexagons, stripes and their coexistence inz− ζ
plane forω = 6, g = 1, qc = 0.9.
a) Zero contour plots of quantitiesC2, C3 + 2C4, C3 − C4 andC3 − C4.
b) Zero contour plot forC3sq+C4sq. For the chosen range ofz andζ C3sq−C4sq < 0.
Subscript ’sq’ indicates coefficients of the amplitude equations derived for squares
(2.37).
c) z − ζ region where stable supercritical hexagonal and square patterns coexist.

Coexistence of stable supercritical hexagons and squares for different parameter values is

demonstrated on the Fig. 2.6, 2.7, 2.8.



74

2.6. Endothelial cell system in the absence of cell proliferation

We are also interested in the case when endothelial cells are not allowed to proliferate. If EC

mitosis is prevented the growth of capillaries is drastically reduced and results only in a restricted

network being formed ( [186]). Study of this particular case provides an underlying insight into

mechanisms of cell migration which are crucial for understanding angiogenesis ( [6]). In terms of

our mathematical model it means that we putλc = 0 in the first equation of the system (2.20). We

obtain the system of equations

∂c

∂t
= ∇2(Dc)− γ div [Dc gradf ],(2.38a)

∂f

∂t
= Df∇2f − λffc + δc− βf,(2.38b)

whereDc has the same form (2.21) as before.

2.6.1. Basic states of the system and nondimensionalization

The system of equations (2.38) has a one-parameter family of spatially uniform time-independent

solutions that we refer to as the basic states and label them by a subscripts. They are

(2.39) cs = constant, fs =
δcs

β + λfcs

.

It is convenient to nondimensionalize the system of equations using the basic state (2.39) as

the reference quantities. Specifically, the following nondimensional variables are introduced

c̃ =
c− cs

cs

, f̃ =
f − fs

fs

, x̃ =
x

l∗
, ỹ =

y

l∗
, t̃ =

t

t∗
,
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where

t∗ =
fs

δcs

, l2∗ = D0t∗e
−g, g =

k∗
fscs

.

We obtain

∂c̃

∂t̃
= ∇2(D̃c)− ω div [D̃c gradf̃ ],(2.40a)

∂f̃

∂t̃
= D̃f∇2f̃ − f̃ + (1− z)c̃− zf̃ c̃,(2.40b)

with

ω = γfs, z = t∗λfcs ≡
λfcs

β + λfcs

< 1, D̃f =
Dfe

g

D0

, D̃c = (1 + c̃) exp

[
g

c̃ + f̃ + c̃f̃

(1 + c̃)(1 + f̃)

]
.

2.6.2. Linear stability analysis

Next, we perform linear stability analysis of the basic statec̃ = 0, f̃ = 0 of the problem (2.40).

Linearizing (2.40) about the trivial basic state, we obtain

∂ ˜̃c

∂t̃
= (1 + g)∇2˜̃c + (g − ω)∇2 ˜̃f,(2.41a)

∂ ˜̃f

∂t̃
= D̃f∇2 ˜̃f − ˜̃f + (1− z)˜̃c.(2.41b)

Substituting the normal mode solution ˜̃c

˜̃f

 =

a

b

 eσt̃+iαxx̃+iαy ỹ,
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whereσ is the growth rate of the perturbation and(αx, αy) is the wave vector, into (2.40), yields−α2(1 + g)− σ −(g − ω)α2

1− z −D̃fα
2 − 1− σ


a

b

 = 0,

whereα2 = α2
x + α2

y. Setting the determinant of the above matrix equal zero we obtain the

dispersion relation

σ2 +
[
α2(D̃f + g + 1) + 1

]
σ + α2

[
(g + 1)(D̃fα

2 + 1) + (g − ω)(1− z)
]

= 0.

There are two roots of the quadratic equation,σ±(α). It is easy to check that Re(σ−(α)) < 0 for all

α and parameter values. The real part of the other root,σ+(α), can be either positive or negative,

depending on parameter values. Specifically, if

(2.42) ω < ωcr ≡
g + 1

1− z
+ g,

then Re(σ+(α)) < 0 for all α. If, however,ω > ωcr, then there is a range ofα given by

0 < α < αcr,

for which Re(σ+(α)) > 0 (see Fig. 2.9). The quantityαcr is determined by

(2.43) α2
cr =

1

D̃f

[
(ω − g)(1− z)

g + 1
− 1

]
=

1

D̃f

1− z

g + 1
(ω − ωcr).

It has to be noted that forω slightly aboveωcr the maximum of the growth rateσ+(α) is attained

atα = αcr/
√

2 and is equal to

(2.44) σmax =
1

4
D̃f (g + 1) α4

cr.
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FIGURE 2.9. The quantityσ as a function ofα2
cr for two different values ofω. Here

z = 0.5, g = 0.5, D̃f = 15, ωcr = 3.5, ω1 = 3.4, ω2 = 5, αcr = 0.036

2.6.3. Long-wave analysis: Sivashinsky equation

We considerω close to the critical valueωcr,

ω = ωcr + µε2.

Then the results of linear stability analysis suggest the following scalings:

χ = εx̃, η = εỹ, T = ε4t̃,

which transform the system (2.40) into

(2.45a) ε4 ∂c̃

∂T
= ε2∇2

χ,η(D̃c)− (ωcr + µε2)ε2 ∇χ,η · [D̃c ∇χ,ηf̃ ],

(2.45b) ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.
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Here we retain the same notationsc̃ andf̃ for the solution that depends on the slow variablesχ, η

andT .

We introduce the following notations for quadratic and cubic parts of the Taylor expansion

(2.29) forD̃c, namely

(2.46a) a(c̃, f̃) =
1

2
g2c̃2 +

(
1

2
g2 − g

)
f̃ 2 + g2c̃f̃ ,

(2.46b)

b(c̃, f̃) =

(
1

6
g3 − 1

2
g2

)
c̃3 +

(
1

6
g3 − g2 + g

)
f̃ 3 +

(
1

2
g3 − 3

2
g2

)
c̃f̃ 2 +

(
1

2
g3 − g2

)
c̃2f̃ .

Then the system (2.45) can be rewritten in the form:

(2.47a) ε4 ∂c̃

∂T
= ε2∇2

χ,η[(1 + g)c̃ + (g − ωcr)f̃ ] + ε2∇2
χ,η[a(c̃, f̃)]+

ε2∇2
χ,η[b(c̃, f̃)]− ωcr∇ · {([(1 + g)c̃ + (g − ωcr)f̃ ] + a(c̃, f̃)∇f̃} − µε4∇2

χ,ηf̃ − ω2
crε

2∇ · (f̃∇f̃),

(2.47b) ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.

We expand both unknowns̃c andf̃ as

c̃(χ, η, T ) = ε2c2(χ, η, T ) + ε4c4(χ, η, T ) + ε6c6(χ, η, T ) + . . . ,

f̃(χ, η, T ) = ε2f2(χ, η, T ) + ε4f4(χ, η, T ) + ε6f6(χ, η, T ) + . . . .

Substituting the expansions forc̃, f̃ into (2.47) and collecting like powers ofε we obtain at order

O(ε2) a linear algebraic relation betweenc2 andf2,

(2.48) f2 = (1− z)c2.
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At ordersO(ε4) andO(ε6) we obtain

(2.49a) ∇2
χ,η [(1 + g)c2 + (g − ωcr)f2] = 0,

(2.49b) −f4 + (1− z)c4 = −D̃f∇2
χ,ηf2 + zc2f2,

and

(2.50a) −∂c2

∂T
+∇2

χ,η [(1 + g)c4 + (g − ωcr)f4 + a(c2, f2)]−

ωcr∇χ,η · {[(1 + g)c2 + (g − ωcr)f2]∇χ,ηf2} − µ∇2
χ,ηf2 − ω2

cr∇χ,η · (f2∇f2) = 0,

(2.50b) −f6 + (1− z)c6 =
∂f2

∂T
− D̃f∇2

χ,ηf4 + z(c2f4 + c4f2),

respectively. From (2.42) and (2.48) it follows that (2.49a) is satisfied, while (2.49b) allows one

to determinef4 as

(2.51) f4 = (1− z)D̃f∇2
χ,ηc2 + (1− z)c4 − z(1− z)c2

2.

Substituting (2.42), (2.48) and (2.51) into (2.50a) and simplifying, we finally obtain the equation

(2.52)
∂c2

∂T
= −(1 + g)D̃f∇4

χ,ηc2 − µ(1− z)∇2
χ,ηc2 +

[
z − 1

2
+ g(4z − z2 − 3)

]
∇2

χ,η(c
2
2).

Equation (2.52) is known as the Sivashinsky equation. It describes the weakly nonlinear evolu-

tion of instabilities in a large class of systems, including the dewetting of a one-layer thin liquid

film [158], the long-wave deformational Marangoni instability of a liquid film [71], the morpho-

logical instability of directional solidification fronts with small segregation coefficient [189]. It is
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the generic nonlinear evolution equation in systems with broken up-down symmetry that exhibits

a long-wave instability with the Goldstone mode caused by a conservation law (in our case - con-

servation of mass) [152]. Equation (37) is characterized by a subcritical instability and exhibits the

blow-up in a finite time in the form of a cusp as was proved in [19]. The blow-up occurs for any

sign of the coefficient of the nonlinear term (provided the coefficient is not equal to zero); this sign

determines the direction of the developing cusp (up or down), since Eq. (2.52) is invariant with

respect to the transformationc2 → −c2 with the simultaneous change of the sign of the nonlinear

term. In our case the blow-up can be interpreted as the formation of regions with no cells, although

the weakly nonlinear approximation breaks down in this case.

The weakly nonlinear analysis can also give a prediction about the parameter region in which

a different behavior, other than the blow-up, can occur. Indeed, Eq. (2.52) is derived under the

assumption that all the terms in the equation are of the same order. This is not necessarily true

because the coefficient of the nonlinear term can vanish. Near the surface in the parameter space

where the coefficient is zero, Eq. (2.52) is not valid since higher-order nonlinearities become

important and should be accounted for. In this case a different scaling should be used for the

weakly-nonlinear analysis. We shall now proceed with the weakly-nonlinear analysis under the

assumption that the coefficient is equal to zero.

2.6.4. Long-wave analysis: Cahn-Hilliard equation

We consider now the case when the coefficient of the nonlinear term in the Sivashinsky equation

(2.52) is equal to zero, i.e.

z − 1

2
+ g(−z2 + 4z − 3) = 0.
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In this case we derive the Cahn-Hilliard equation. We again considerω close to the critical value

ωcr given by (2.42),

ω = ωcr + µε2,

but now we also assume

(2.53) g =
z − 1

2

z2 − 4z + 3
.

As before, introducing the following scalings

χ = εx̃, η = εỹ, T = ε4t̃,

and substituting Taylor expansion (2.29) for̃Dc with the corresponding notations for the quadratic

and cubic parts (2.46), we transform the system (2.45) into

(2.54a) ε4 ∂c̃

∂T
= ε2∇2

χ,η[(1 + g)c̃ + (g − ωcr)f̃ ] + ε2∇2
χ,η[a(c̃, f̃)] + ε2∇2

χ,η[b(c̃, f̃)]

−ωcr∇ · {([(1 + g)c̃ + (g − ωcr)f̃ ] + a(c̃, f̃)∇f̃} − µε4∇2
χ,ηf̃ − ω2

crε
2∇ · (f̃∇f̃),

(2.54b) ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.

Here we retain the same notationsc̃ andf̃ for the solution that depends on the slow variablesχ, η

andT . We use a different expansion ofc̃ andf̃ , namely

c̃(χ, η, T ) = εc1(χ, η, T ) + ε2c2(χ, η, T ) + ε3c3(χ, η, T ) + ε4c4(χ, η, T ) + ε5c5(χ, η, T ) + . . . ,

f̃(χ, η, T ) = εf1(χ, η, T ) + ε2f2(χ, η, T )ε3f3(χ, η, T ) + ε4f4(χ, η, T ) + ε5f5(χ, η, T ) + . . . .
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Substituting the expansions forωcr, c̃, f̃ into (2.54) and collecting like powers ofε we obtain at

orderO(ε) a linear algebraic relation betweenc1 andf1,

(2.55) f1 = (1− z)c1.

At ordersO(ε2) andO(ε3) we obtain

(2.56) f2 = (1− z)c2 − zf1c1.

(2.57a) ∇2
χ,η [(1 + g)c1 + (g − ωcr)f1] = 0,

(2.57b) f3 = (1− z)c3 − zc2f1 − zc1f2 + D̃f∇2
χ,ηf1.

Substituting (2.42) into (2.57a) we can easily see that this equation is satisfied.

At O(ε4) we obtain

(2.58a) ∇2
χ,η [(1 + g)c2 + (g − ωcr)f2] +∇2

χ,η[a(c1, f1)]−

ωcr∇ · [(1 + g)c1 + (g − ωcr)f1]∇f1 − ω2
cr∇ · (f1∇f1) = 0,

(2.58b) f4 = (1− z)c4 − zc1f3 − zc2f2 − zc3f1 + D̃f∇2
χ,ηf2.

Let us show that the first equation (2.58a) is satisfied. Using (2.56) and (2.42) it simplifies to

−(g − ωcr)∇2
χ,η(zf1c1) +∇2

χ,η[a(c1, f1)]− ω2
cr∇ · (f1∇f1) = 0.
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Then using (2.55) and simplifying we get

[
z(1 + g) + a(1, 1− z)− 1

2
ω2

cr(1− z)2

]
∇2

χ,η(c
2
1) = 0,

which is satisfied due to (2.53).

At O(ε5) we obtain the following equation forc1:

(2.59)
∂c1

∂T
= ∇2

χ,η[(1 + g)c3 + (g − ωcr)f3] +∇2
χ,η[b(c1, f1)]+

∇2
χ,η[g

2c1c2 + (g2 − 2g)f1f2 + g2c1f2 + g2c2f1]−

ωcr∇χ,η · {[(1 + g)c2 + (g − ωcr)f2 + a(c1, f1)]∇χ,ηf1}−

µ∇2
χ,ηf1 − ω2

cr∇ · (f1∇f2)− ω2
cr∇ · (f2∇f1).

Simplifying this expression we finally obtain

(2.60)
∂c1

∂T
= −z2 − 3z + 5/2

z2 − 4z + 3
D̃f∇4

χ,ηc1 − µ(1− z)∇2
χ,ηc1 + Q∇2

χ,η(c
3
1),

where

Q = −z2(1 + g) + gz(1− z)[2(1− g) + z(g − 2)] + b(1, 1− z)−

1

3
ωcr(1− z)[a(1, 1− z) + z(1 + g)] + ω2

crz(1− z)2 =
9z2 − 19z + 6

6(z − 3)

is shown in Fig. 2.10. Equation (2.60) is the Cahn-Hilliard equation that describes spinodal de-

composition of phase separating systems [34]. It exhibits the formation of a spatial structure with
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FIGURE 2.10. Dependence of the coefficientQ of the Cahn-Hilliard equation
(2.60) onz.

a saturated amplitude and a characteristic wavelength that coarsens in time. This structure has the

form of a labyrinth pattern. Note that this dynamics can be observed only forQ > 0 that holds

in certain regions in the parameter space. In the parameter regions for whichQ < 0, solutions of

(2.60) blow up in a finite time and do not describe any saturated structures.

2.7. Analysis of the base model with a different form ofDc

Consider the same system of equations (2.20) as before, but with a different form of the cell

diffusion coefficient, namely

(2.61) Dc = cD0 exp

(
−k∗c

f

)
.

This form of the diffusion coefficient addresses the experimental observation that asc increases,

i.e., the environment becomes more crowded, diffusion of cells is hampered.
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2.7.1. Steady states and nondimensionalization

In this case the system has the same three spatially uniform steady states as before

cs1 = 0, fs1 = 0,(2.62)

cs2 = c0, fs2 =
δc0

β + λfc0

,(2.63)

cs3 =
βfc

δ − λffc

, fs3 = fc.(2.64)

We again nondimensionalize using steady state (2.63) as a reference quantity

c̃ =
c− cs2

cs2

, f̃ =
f − fs2

fs2

, x̃ =
x

l∗
, ỹ =

y

l∗
,

t̃ =
t

t∗
, t∗ =

1

λcc0fs2

, l2∗ = D0e
−gt∗, g =

k∗cs2

fs2

,

which yields the following nondimensional system of equations

∂c̃

∂t̃
= ∇2D̃c − ω div [D̃c gradf̃ ]− (1− qc + f̃)(c̃ + c̃2),(2.65a)

∂f̃

∂t̃
= D̃f∇2f̃ − (z + ζ)f̃ + ζc̃− zf̃ c̃,(2.65b)

with the basic state becoming(f̃ , c̃) = (0, 0) and

ω = γfs2, qc = fc/fs2, z = t∗λfcs2, ζ = t∗β,

(2.66) D̃f =
Df

D0

eg, D̃c = (1 + c̃) exp

[
g
f̃ − c̃

1 + f̃

]
.
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2.7.2. Linear stability analysis

The linearized form of̃Dc is

(2.67) D̃c = 1 + (1− g)c̃ + gf̃ ,

and the linearized system is given by

∂ ˜̃c

∂t̃
= (1− g)∇2˜̃c + (g − w)∇2 ˜̃f + (qc − 1)˜̃c,(2.68a)

∂ ˜̃f

∂t̃
= D̃f∇2 ˜̃f + ζ ˜̃c− (z + ζ) ˜̃f,(2.68b)

where˜̃c and ˜̃f are small deviations of nondimensionalc̃ andf̃ from the trivial steady state.

Proceeding with the linear stability analysis in the same way as before we get the dispersion

relation of the form

σ2 +
[
α2(D̃f + 1− g) + z + ζ + 1− qc

]
σ + D̃f

[
α4(1− g) + α2(1− qc)

]

+α2 [ζ(1− ω) + z(1− g)] + (ζ + z)(1− qc) = 0,

whereσ andα are the growth rate and the wavenumber of the perturbation, respectively. We again

considerqc < 1 and arrive at the following expression for the neutral stability curve

D̃f = −α2 [ζ(1− ω) + z(1− g)] + (ζ + z)(1− qc)

α4(1− g) + α2(1− qc)
,

which has a maximum at(αcr, D̃f cr) where

(2.69) D̃f cr =
z + ζ

1− qc

(ξ − 1)2(1− g), ξ =

[
ζ(ω − g)

(1− g)(z + ζ)

]1/2

, α2
cr =

1− qc

(ξ − 1)(1− g)
,
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FIGURE 2.11. Neutral stability curve in the (α2, D̃f ) plane. The stability region
lies above the curve. Hereζ = 12, ω = 6, z = 1, g = 0.5, andqc = 0.5.

provided thatξ > 1 and0 < g < 1.

The eigenvector(a, b) for σ = 0, α = αcr, andD̃f = D̃f cr is given by the same values ofa

andb as in the previous case, namelya

b

 =

α2
crD̃f + z + ζ

ζ

 .

The steady state (2.63) is stable for̃Df > D̃f cr and unstable otherwise (see Fig. 2.11).

This result has a clear biological interpretation. If there is a local increase in the concentration

of the growth factor, it will result in factor gradients and, therefore, in cell movement and their

aggregation at that location. These cells will release the growth factor thus providing positive

feedback leading to pattern formation. If on the other hand the diffusion coefficient of the factor is

sufficiently large, factor gradients will vanish and cell aggregation will not occur.

To enhance our understanding of the model it is also useful to analyze dependencies ofD̃f cr on

the nondimensional parameters of the model. We will consider the following parameter complexes
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that appear as a result of nondimensionalization of (2.20) withDc taken in the form (2.61)

ω = γfs2, qc = fc/fs2, z = t∗λfcs2, ζ = t∗β.

2.7.2.1. ω - the chemotactic sensitivity of the endothelial cells.It is clear from the expressions

(2.69) thatD̃f cr increases asω increases. It completely agrees with our understanding ofω as a

measure of chemotactic sensitivity of the endothelial cells. Indeed, if there is a local increase in

the concentration of the growth factor, the nearby cells start moving in that direction and the rate

of their motion increases withω as it can also be seen directly from the first equation in (2.65).

Thus, the larger isω, the larger threshold value of̃Df cr is needed to suppress the growth factor

fluctuation and let the system return to the steady state.

2.7.2.2. qc - the endothelial cell proliferation/apoptosis parameter. The reason whyqc is called

proliferation/apoptosis parameter can be understood by looking at the logistic term in the first equa-

tion in (2.20). If there is a local increase in the growth factor concentration which in turn leads to

endothelial cell concentration increase at the same spot, then we can say thatc > c0 , f > fc and

the logistic term is negative, i.e. apoptosis takes place and local endothelial cell density reduces. In

this case the increase infc (which corresponds to the increase inqc) means that apoptosis rate slows

down, i.e. smaller number of cells are dying and more cells respond to the chemotactic stimulus

by migrating up the growth factor gradient. So, the smaller isqc, the largerD̃f cr is needed to sup-

press this growth factor fluctuation preventing an instability development. This phenomenological

understanding agrees with (2.69) from which̃Df cr increases asqc decreases,0 < qc < 1.
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2.7.2.3. z - the rate of the growth factor consumption by endothelial cells.Computing partial

derivative ofD̃f cr with respect toz we get

∂D̃f cr

∂z
=

1− g

1− qc

(1− ξ) < 0

since0 < qc < 1, 0 < g < 1 and ξ > 1 (see (2.69)). This fact is in agreement with our

understanding that if the rate of consumption of growth factor increases then a smallerD̃f cr is

required in the system to eliminate random growth factor fluctuations and prevent instability.

2.7.2.4. ζ - the rate of decay of the growth factor. Computing partial derivative of̃Df cr with

respect toζ we get

∂D̃f cr

∂ζ
=

1− g

1− qc

(ξ − 1)

[
ξ

(
1 +

z

ζ

)
− 1

]
> 0

since0 < qc < 1, 0 < g < 1 andξ > 1. This as well agrees with our understanding of the process.

As we see from the second equation in (2.65), if the cell density fluctuation becomes larger then

the growth factor fluctuation, it leads to the increase in the growth factor density. In this case a

largerD̃f cr is required to suppress fluctuations and to prevent the instability development.

2.7.3. Weakly nonlinear analysis and amplitude equations: stripes and hexagons

We use standard asymptotic expansions

(2.70) c̃ = εc1 + ε2c2 + ε3c3 + . . . , f̃ = εf1 + ε2f2 + ε3f3 + . . . , D̃f = D̃f cr − ε2µ.

Herec̃, cj, f̃ , fj (j = 1, 2, 3) are functions of̃t, T , x̃, ỹ.
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Taylor expansion of̃Dc (2.66) near the trivial steady state yields the following expression

(2.71) D̃c ≈ 1 + (1− g) c̃ + gf̃ +

(
1

2
g2 − g

)
c̃2 +

(
1

2
g2 − g

)
f̃ 2 + (2g − g2)c̃f̃+

(
1

2
g2 − 1

6
g3

)
c̃3 +

(
1

6
g3 − g2 + g

)
f̃ 3 +

(
−1

2
g3 +

5

2
g2 − 2g

)
(c̃f̃ 2 + c̃2f̃).

Substituting expansions (2.70) and (2.71) into the system (2.65) and collecting like powers ofε we

get the following system of equations at ordersεj (j = 1, 2, 3)

(2.72a) −∂cj

∂t̃
+ (1− g)∇̃2cj + (g − ω)∇̃2fj − (1− qc)cj = Rcj

(2.72b) −∂fj

∂t̃
+ D̃f cr∇̃

2fj − (z + ζ)fj + ζcj = Rfj.

Here the right-hand sides forj = 1, 2 are given by

Rc1 = Rf1 = 0, Rf2 = zf1c1,

Rc2 = −∇̃2

[(
1

2
g2 − g

)
(c1 − f1)

2

]
+

w(1− g)∇̃f1∇̃c1 + w[(1− g)c1 + gf1]∇̃2f1 + wg(∇̃f1)
2 + c1f1 + (1− qc)c

2
1.

Right hand sidesRc3 andRf3 are too cumbersome and are given in Appendix.

Doing exactly the same calculations as described in the subsection 2.4.2 and eliminating secular

terms in theO(ε3) problem via the orthogonality conditions of the right-hand side(Rc3, Rf3) to
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the solutions of the adjoint homogeneous problem given by ζ

(1− g)α2
cr + 1− qc

 ej, j = 1, 2, 3

results in the following system of equation for the amplitudesL1, L2, L3

dL1

dT
= µC1L1 + C2L

∗
2L
∗
3 + C3L1|L1|2 + C4L1(|L2|2+ |L3|2),(2.73a)

dL2

dT
= µC1L2 + C2L

∗
1L
∗
3 + C3L2|L2|2 + C4L2(|L1|2+ |L3|2),(2.73b)

dL3

dT
= µC1L3 + C2L

∗
1L
∗
2 + C3L3|L3|2 + C4L3(|L1|2+ |L2|2).(2.73c)

The quadratic terms in the equations come from the secular terms in theO(ε2) problem. The

coefficientsCk, k = 1, 2, 3, 4 are real and depend on the parameters of the problem. They are also

given in Appendix.

2.7.4. Weakly nonlinear analysis and amplitude equations: squares

We again perform the weakly nonlinear analysis of the systems (2.65) with the cell diffusion co-

efficient taken in the form (2.61). This time we study the occurrence of square patterns near the

instability threshold.

We again introduce the slow timeT = ε2t̃ and expand both unknowns̃c andf̃ as well as the

bifurcation parameter̃Df as

(2.74) c̃ = εc1 + ε2c2 + ε3c3 + . . . , f̃ = εf1 + ε2f2 + ε3f3 + . . . , D̃f = D̃f cr − ε2µ,

with c̃, cj, f̃ , fj (j = 1, 2, 3) being functions of̃t, T , x̃, ỹ.
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Substituting the expansions (2.74), (2.71) into the system of equations (2.65) and collecting

like powers ofε we obtain at ordersεj (j = 1, 2, 3) the same sequence of problems as before

−∂cj

∂t̃
+ (1− g)∇̃2cj + (g − ω)∇̃2fj − (1− qc)cj = Rcj,(2.75a)

−∂fj

∂t̃
+ D̃f cr∇̃

2fj − (z + ζ)fj + ζcj = Rfj.(2.75b)

Here the right-hand sides forj = 1, 2 are given by

Rc1 = Rf1 = 0, Rf2 = zf1c1,

Rc2 = −∇̃2

[(
1

2
g2 − g

)
(c1 − f1)

2

]
+

w(1− g)∇̃f1∇̃c1 + w[(1− g)c1 + gf1]∇̃2f1 + wg(∇̃f1)
2 + c1f1 + (1− qc)c

2
1.

The right-hand sidesRc3, Rf3 are presented in Appendix.

Repeating all the calculations described in the subsection 2.4.5 and eliminating secular terms

in the O(ε3) problem via the orthogonality conditions of the right-hand side(Rc3, Rf3) to the

solutions of the adjoint homogeneous problem given by ζ

(1− g)α2
cr + 1− qc

 ej, j = 1, 2

results in the following system of equation for the amplitudesL1, L2

dL1

dT
= µC1L1 + C3L1|L1|2 + C4L1|L2|2,(2.76a)

dL2

dT
= µC1L2 + C3L2|L2|2 + C4L2|L1|2,(2.76b)
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The coefficientsCk, k = 1, 3, 4 are real and depend on the parameters of the problem. They are

given in Appendix.

2.7.5. Parameter sensitivity study: stripes, hexagons, squares

We next discuss the patterns that occur in the angiogenesis problem depending on the parameters of

the system. The parameters that we vary areζ, ω, andz. It is useful to recall the biological meaning

of these parameters. The parameterζ can be interpreted as a nondimensional rate of decay of the

growth factor. There are means to controlζ, e.g., by introducing decoy soluble growth factor

receptors that reduce the concentration of active growth factor, which can be treated as an increase

in ζ. The parameterω characterizes the chemotactic sensitivity of the endothelial cells. It can also

be controlled, e.g., by inhibiting the growth factor receptors. The parameterz is related to the rate

of intracellular activity, which results, e.g., in production of proteases and formation of integrin

clusters.

Figures 2.12 show the dependence of the coefficientC2 as well as coefficient combinations

C3 − C4 andC3 + 2C4 on ζ for different values ofz andω. To analyze these figures it is useful to

recall the conclusions derived from the study of amplitude equations in subsection 2.4.3.

• for C3 + 2C4 > 0 there exist only subcritical hexagonal patterns that are always unstable

(more precisely, there exist supercritical hexagons in this case ifC2 < 0, but they are

unstable anyway);

• for C3 + 2C4 < 0 there exist supercritical hexagonal patterns;

• the supercritical hexagonal patterns are stable forLh > −C2/[2(C3 + 2C4)] if the three

conditionsC3 + 2C4 < 0, C2 > 0, andC3 − C4 < 0 are simultaneously met (Fig. 2.3a).
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FIGURE 2.12. The quantitiesC2, C3 − C4 andC3 + 2C4 as a function ofζ for
different parameter values. Hereq = 0.25, g = 0.8 for all curves, andω = 1.5,
z = 15 for curves (1),ω = 2, z = 15 for curves (2),ω = 2, z = 20 for curves (3)

If, however, the first two conditions on the coefficients are satisfied, butC3 − C4 > 0,

then there exist stable hexagons only ifC3 + C4 < 0. In this case the amplitudesLh of

the stable hexagons satisfy−C2/[2(C3 + 2C4)] < Lh < C2/(C3 − C4) (Fig. 2.3 b);



95

• the supercritical hexagonal patterns are always unstable if eitherC2 < 0 or C3 − C4 > 0

andC3 + C4 > 0.

We first observe that for relatively smallζ, i.e., for a slower decay of the growth factor,C2 > 0,

C3 − C4 < 0 andC3 + 2C4 > 0. The signs of these quantities mean that hexagons are subcritical,

unstable, and therefore cannot occur in this case. The stripes appear supercritically, but they are

also unstable. The resulting behavior of the original system is not described by the amplitude

equations, and can be quite complex, e.g., chaotic.

For intermediate values ofζ, C2 > 0, C3 + 2C4 < 0 while the sign ofC3 − C4 depends on the

other parameters. For smallerω, i.e., for reduced chemotactic sensitivity of the cells, which means

that stable supercritical hexagons appear in the system. For largerω, C3 − C4 > 0, indicating that

stable supercritical hexagons and stripes can coexist providingC3 + C4 < 0 andC3 < 0.

For large values ofζ, C3 +2C4 < 0 butC2 andC3−C4 > 0 can have different signs depending

on ω andz. For smallerω andz, C2 > 0 andC3 − C4 < 0, indicating the presence of stable

supercritical hexagons. However, for largerω and smallz, C2 < 0 which means that supercritical

hexagons are unstable. Finally, ifz is also increased, we observeC2 > 0 andC3 − C4 > 0,

indicating that stable supercritical hexagons and stripes can coexist providingC3 + C4 < 0 and

C3 < 0.

Next we discuss the appearance of square patterns.

Figures 2.13 show the dependence of the coefficientC3 − C4 andC3 + C4 on ζ for different

values ofz andω. To analyze these figures we recall the conclusions derived from the study of

amplitude equations in subsection 2.4.6.

• for C3 + C4 > 0 there exist only subcritical square patterns that are always unstable;

• for C3 + C4 < 0 there exist supercritical square patterns;
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FIGURE 2.13. The quantitiesC3 −C4 andC3 −C4 as a function ofζ for different
parameter values. Hereq = 0.25, g = 0.8 for all three curves, andω = 1.5, z = 15
for curves (1),ω = 2, z = 15 for curves (2),ω = 2, z = 20 for curves (3).

• the supercritical square patterns are stable ifC3 − C4 < 0

• the supercritical square patterns are unstable ifC3 − C4 > 0 .

We observe that for smallω, i.e., for reduced cell chemotactic sensitivity,C3 − C4 < 0 and

C3 + C4 changes sign depending onζ. This means that stable supercritical squares exist only for

relatively largeζ (i.e. rate of growth factor decay) whereC3 + C4 < 0.

For larger values ofω andz there exist only narrowζ regions where the conditionsC3−C4 < 0

andC3 + C4 < 0 are simultaneously satisfied meaning that the existence of stable supercritical

square patterns is very sensitive to the rate of decay of the growth factor.
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The above observations can be useful as they demonstrate the trends that may be expected as

parameters of the biological system are varied in experiments. These results can be summarized

as follows. No steady patterns can be observed if the rate of decay of the growth factor is small.

Increasing the rate of decay of the growth factor (e.g., by introducing decoy soluble growth factor

receptors) allows one to observe steady patterns. These patterns are hexagons, stripes and squares.

In order for the stripes to occur the chemotactic sensitivity of the endothelial cells and/or their

biochemical activity has to be increased. As we increase the chemotactic sensitivity of endothelial

cells, the square patterns become very sensitive to the rate of decay of the growth factor.

2.8. Coexistence of hexagons, stripes and square patterns.

We recall the results obtained from the study of amplitude equations obtained for hexagons and

stripes:

• Stable supercritical stripes and stable supercritical square patterns never coexist in the

system;

• Stable supercritical hexagonal patterns and stable supercritical stripes can coexist for

−C2/[2(C3 + 2C4)] < Lh,s < C2/(C3 −C4) if all the conditionsC3 + 2C4 < 0, C2 > 0,

C3 < 0, C3 − C4 > 0 andC3 + C4 < 0 are simultaneously met (Fig. 2.3 b);

• Stable supercritical hexagonal patterns and stable supercritical stripes can coexist for

Lh > −C2/[2(C3 + 2C4)] if all the conditionsC2 > 0, C3 + 2C4 < 0, C3 − C4 < 0 and

C3 + C4 < 0 are simultaneously met.

Coexistence of stable supercritical hexagons and squares for different parameter values is

demonstrated in Figs 2.14, 2.15, and 2.16.
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FIGURE 2.14. Zero contour plots of the coefficient combinations that determine
existence and stability of supercritical hexagonal and square patterns for certain pa-
rameter values. Hereω = 1.5, qcr = 0.25, g = 0.8.
a) Region of existence of stable supercritical hexagons.
b) Region of existence of stable supercritical squares. Subscript ’sq’ indicates coef-
ficients of the amplitude equations derived for squares (2.76).
c) Region of hexagons - squares coexistence.
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FIGURE 2.15. Zero contour plots of the coefficient combinations that determine
existence and stability of supercritical hexagonal and square patterns for certain pa-
rameter values. Hereω = 1.75, qcr = 0.25, g = 0.8.
a) Region of existence of stable supercritical hexagons.
b) Region of existence of stable supercritical squares. Subscript ’sq’ indicates coef-
ficients of the amplitude equations derived for squares (2.76).
c) Region of hexagons - squares coexistence.
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FIGURE 2.16. Zero contour plots of the coefficient combinations that determine
existence and stability of supercritical hexagonal and square patterns for certain pa-
rameter values. Hereω = 2.0, qcr = 0.25, g = 0.8.
a) Region of existence of stable supercritical hexagons.
b) Region of existence of stable supercritical squares. Subscript ’sq’ indicates coef-
ficients of the amplitude equations derived for squares (2.76).
c) No hexagons - squares coexistence.
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2.9. Analysis of the base model with a new diffusion coefficient in the absence of endothelial

cell proliferation

We again consider the system

∂c

∂t
= ∇2(Dc)− γ div [Dc gradf ],(2.77a)

∂f

∂t
= Df∇2f − λffc + δc− βf,(2.77b)

with the cell diffusion coefficient in the form (2.61).

2.9.1. Steady states and nondimensionalization

The system of equations (2.77) has a one-parameter family of spatially uniform time-independent

solutions that we refer to as the basic states and label them by a subscripts. They are

(2.78) cs = constant, fs =
δcs

β + λfcs

.

We nondimensionalize the system of equations using the basic state (2.78) as the reference

quantities. Specifically, the following nondimensional variables are introduced

c̃ =
c− cs

cs

, f̃ =
f − fs

fs

, x̃ =
x

l∗
, ỹ =

y

l∗
, t̃ =

t

t∗
, t∗ =

fs

δcs

, l2∗ = D0t∗e
−g, g =

k∗
fscs

.

We obtain

∂c̃

∂t̃
= ∇2(D̃c)− ω div [D̃c gradf̃ ],(2.79a)

∂f̃

∂t̃
= D̃f∇2f̃ − f̃ + (1− z)c̃− zf̃ c̃,(2.79b)
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with

ω = γfs, z = t∗λfcs ≡
λfcs

β + λfcs

< 1, D̃f =
Dfe

g

D0

, D̃c = (1 + c̃) exp

[
g
f̃ − c̃

1 + f̃

]
.

2.9.2. Linear stability analysis

We now perform linear stability analysis of the basic statec̃ = 0, f̃ = 0 of the problem (2.79).

Linearizing (2.79) about it’s trivial basic state, we obtain

∂ ˜̃c

∂t̃
= (1− g)∇2˜̃c + (g − ω)∇2 ˜̃f,(2.80a)

∂ ˜̃f

∂t̃
= D̃f∇2 ˜̃f − ˜̃f + (1− z)˜̃c.(2.80b)

Substituting the normal mode solution ˜̃c

˜̃f

 =

a

b

 eσt̃+iαxx̃+iαy ỹ,

whereσ is the growth rate of the perturbation and(αx, αy) is the wave vector, into (2.40), yields−α2(1− g)− σ −(g − ω)α2

1− z −D̃fα
2 − 1− σ


a

b

 = 0,

whereα2 = α2
x + α2

y. Setting the determinant of the above matrix equal zero we obtain the

dispersion relation

σ2 +
[
α2(D̃f + 1− g) + 1

]
σ + α2

[
(1− g)(D̃fα

2 + 1) + (g − ω)(1− z)
]

= 0.
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FIGURE 2.17. The quantityσ as a function ofα2
cr for two different values ofω.

Herez = 0.5, g = 0.5, D̃f = 15, ωcr = 1.5, ω1 = 1.4, ω2 = 2, αcr = 0.036

There are two roots of the quadratic equation,σ±(α). It is easy to check that Re(σ−(α)) < 0 for

all α and all parameter values assumingg < 1. The real part of the other root,σ+(α), is negative

for all α if

(2.81) ω < ωcr ≡
1− g

1− z
+ g.

Forω > ωcr there is a range ofα given by0 < α < αcr, for which Re(σ+(α)) > 0 (see Fig 2.17).

The quantityαcr is determined by

(2.82) α2
cr =

1

D̃f

[
(ω − g)(1− z)

1− g
− 1

]
=

1

D̃f

1− z

1− g
(ω − ωcr).

For ω slightly aboveωcr the maximum of the growth rateσ+(α) is attained atα = αcr/
√

2 and is

equal to

(2.83) σmax =
1

4
D̃f (1− g) α4

cr.
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2.9.3. Long-wave analysis: Sivashinsky equation

We considerω close to the critical valueωcr,

ω = ωcr + µε2.

Then the results of linear stability analysis suggest the following scalings:

χ = εx̃, η = εỹ, T = ε4t̃,

which transform the system (2.79) into

ε4 ∂c̃

∂T
= ε2∇2

χ,η(D̃c)− (ωcr + µε2)ε2 ∇χ,η · [D̃c ∇χ,ηf̃ ],(2.84a)

ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.(2.84b)

Here we retain the same notationsc̃ andf̃ for the solution that depends on the slow variablesχ, η

andT .

We introduce the following notations for quadratic and cubic parts of the Taylor expansion

(2.71) forD̃c

(2.85a) a(c̃, f̃) =

(
1

2
g2 − g

)
(c̃− f̃)2,

(2.85b) b(c̃, f̃) =

(
−1

6
g3 +

1

2
g2

)
c̃3+

(
1

6
g3 − g2 + g

)
f̃ 3+

(
−1

2
g3 +

5

2
g2 − 2g

)
(c̃f̃ 2+ c̃2f̃).

Then the system (2.84) can be rewritten in the form:

(2.86a) ε4 ∂c̃

∂T
= ε2∇2

χ,η[(1− g)c̃ + (g − ωcr)f̃ ] + ε2∇2
χ,η[a(c̃, f̃)] + ε2∇2

χ,η[b(c̃, f̃)]−



105

ωcr∇ · {([(1− g)c̃ + (g − ωcr)f̃ ] + a(c̃, f̃)∇f̃} − µε4∇2
χ,ηf̃ − ω2

crε
2∇ · (f̃∇f̃),

(2.86b) ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.

We expand both unknowns̃c andf̃ as

c̃(χ, η, T ) = ε2c2(χ, η, T ) + ε4c4(χ, η, T ) + ε6c6(χ, η, T ) + . . . ,

f̃(χ, η, T ) = ε2f2(χ, η, T ) + ε4f4(χ, η, T ) + ε6f6(χ, η, T ) + . . . .

Substituting the expansions into (2.86) and collecting like powers ofε we obtain at orderO(ε2) a

linear algebraic relation betweenc2 andf2,

(2.87) f2 = (1− z)c2.

At ordersO(ε4) andO(ε6) we obtain

∇2
χ,η [(1− g)c2 + (g − ωcr)f2] = 0,(2.88a)

− f4 + (1− z)c4 = −D̃f∇2
χ,ηf2 + zc2f2,(2.88b)

and

(2.89a) −∂c2

∂T
+∇2

χ,η [(1− g)c4 + (g − ωcr)f4 + a(c2, f2)]−

ωcr∇χ,η · {[(1− g)c2 + (g − ωcr)f2]∇χ,ηf2} − µ∇2
χ,ηf2 − ω2

cr∇ · (f2∇f2) = 0,

(2.89b) −f6 + (1− z)c6 =
∂f2

∂T
− D̃f∇2

χ,ηf4 + z(c2f4 + c4f2),
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respectively. From (2.81) and (2.87) it follows that (2.88a) is satisfied, while (2.88b) allows one

to determinef4 as

(2.90) f4 = (1− z)D̃f∇2
χ,ηc2 + (1− z)c4 − z(1− z)c2

2.

Substituting (2.81), (2.87) and (2.90) into (2.89a) and simplifying, we finally obtain the Sivashin-

sky equation

(2.91)
∂c2

∂T
= (g − 1)D̃f∇4

χ,ηc2 − µ(1− z)∇2
χ,ηc2 +

[
z − 1

2
− gz2

]
∇2

χ,η(c
2
2).

2.9.4. Long-wave analysis: Cahn-Hilliard equation

Next we consider the case when the coefficient of the nonlinear term in the Sivashinsky equation

(2.91) is equal to zero, i.e.

z − 1

2
− gz2 = 0.

In this case we derive Cahn-Hilliard equation. We again considerω close to the critical valueωcr

given by (2.81),ω = ωcr + µε2, but now we also assume

(2.92) g =
z − 1

2

z2
.

As before, introducingχ = εx̃, η = εỹ, T = ε4t̃, and substituting Taylor expansion (2.71) for̃Dc

with the corresponding notations for the quadratic and cubic parts (2.85), we transform the system

(2.79) into

(2.93a) ε4 ∂c̃

∂T
= ε2∇2

χ,η[(1− g)c̃ + (g − ωcr)f̃ ] + ε2∇2
χ,η[a(c̃, f̃)] + ε2∇2

χ,η[b(c̃, f̃)]−
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ωcr∇ · {([(1− g)c̃ + (g − ωcr)f̃ ] + a(c̃, f̃)∇f̃} − µε4∇2
χ,ηf̃ − ω2

crε
2∇ · (f̃∇f̃)

(2.93b) ε4 ∂f̃

∂T
= ε2D̃f∇2

χ,ηf̃ − f̃ + (1− z)c̃− zf̃ c̃.

Here we retain the same notationsc̃ andf̃ for the solution that depends on the slow variablesχ, η

andT . We use a different expansion ofc̃ andf̃ , namely

c̃(χ, η, T ) = εc1(χ, η, T ) + ε2c2(χ, η, T ) + ε3c3(χ, η, T ) + ε4c4(χ, η, T ) + ε5c5(χ, η, T ) + . . . ,

f̃(χ, η, T ) = εf1(χ, η, T ) + ε2f2(χ, η, T )ε3f3(χ, η, T ) + ε4f4(χ, η, T ) + ε5f5(χ, η, T ) + . . . .

Substituting the expansions forωcr, c̃, f̃ into (2.93) and collecting like powers ofε we obtain at

orderO(ε) a linear algebraic relation betweenc1 andf1,

(2.94) f1 = (1− z)c1.

At ordersO(ε2) andO(ε3) we obtain

(2.95) f2 = (1− z)c2 − zf1c1,

(2.96a) ∇2
χ,η [(1− g)c1 + (g − ωcr)f1] = 0,

(2.96b) f3 = (1− z)c3 − zc2f1 − zc1f2 + D̃f∇2
χ,ηf1.

Substituting (2.81) into (2.96a) we can easily see that this equation is satisfied.

At O(ε4) we obtain

(2.97a) ∇2
χ,η [(1− g)c2 + (g − ωcr)f2] +∇2

χ,η[a(c1, f1)]−
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ωcr∇ · [(1− g)c1 + (g − ωcr)f1]∇f1 − ω2
cr∇ · (f1∇f1) = 0,

(2.97b) f4 = (1− z)c4 − zc1f3 − zc2f2 − zc3f1 + D̃f∇2
χ,ηf2.

Let us show that the first equation (2.97a) is satisfied. Using (2.95) and (2.81) it simplifies to

(g − ωcr)∇2
χ,η(−zf1c1) +∇2

χ,η[a(c1, f1)]− ω2
cr∇ · (f1∇f1) = 0.

Then using (2.94) and simplifying we get

[
z(1− g) + a(1, 1− z)− 1

2
ω2

cr(1− z)2

]
∇2

χ,η(c
2
1) = 0,

which is satisfied due to (2.92).

At O(ε5) we obtain the following equation forc1:

(2.98)
∂c1

∂T
= ∇2

χ,η[(1− g)c3 + (g − ωcr)f3] +∇2
χ,η[b(c1, f1)]+

∇2
χ,η[(g

2 − g)c1c2 + (g2 − 2g)f1f2 + (2g − g2)c1f2 + (2g − g2)c2f1]− µ∇2
χ,ηf1−

ωcr∇χ,η · {[(1− g)c2 + (g − ωcr)f2 + a(c1, f1)]∇χ,ηf1} − ω2
cr∇ · (f1∇f2)− ω2

cr∇ · (f2∇f1).

Simplifying this expression we finally obtain the Cahn-Hilliard equation:

(2.99)
∂c1

∂T
= − 1

z2

(
z2 + z − 1

2

)
D̃f∇4

χ,ηc1 − µ(1− z)∇2
χ,ηc1 + Q∇2

χ,η(c
3
1),

where the coefficientQ is shown in Fig. 2.18 and given by

Q = −z2(1− g) + gz2(1− z)(g − 2) + b(1, 1− z)−
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FIGURE 2.18. Dependence of the coefficientQ of the Cahn-Hilliard equation
(2.99) onz.

1

3
ωcr(1− z)[a(1, 1− z) + z(1− g)] + ω2

crz(1− z)2 =

1

24z6
(12z7 − 80z6 + 216z5 − 276z4 + 195z3 − 81z2 + 21z − 3).

2.10. Numerical results

To solve this problem numerically we first used finite difference approximation in time and

space. We applied periodic boundary conditions for the cell densityc and for the growth factor

densityf . We used a uniform rectangular grid on the computational domainx ∈ [0, `], y ∈ [0, `],

werex andy were the nondimensional spatial variables. Using this method required small grid

spacings inx andy (of the order of10−5 – 10−6), and in order to maintain stability of the scheme

the time stepsize needed to be extremely small (of the order of10−10 – 10−12) because of the

quadratic timestep condition for parabolic equations.
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To speed up our calculations and increase the order of accuracy we solved the problem using

the Crank-Nicolson numerical scheme combined with operator splitting and alternation in applica-

tion of splitting in order to maintain second order accuracy in time [196]. This implicit scheme was

applied only for the diffusion terms in both equations and the rest of the terms were treated explic-

itly. We have used the same boundary conditions (periodic forc andf ) and performed simulations

on the same computational domainx ∈ [0, `], y ∈ [0, `]. The method was stable for relatively large

time stepsize (of the order of10−4). We performed simulations for parameter values where stable

hexagon structures were expected and we were able to obtain stable hexagons in our simulations

starting with initial data that represented a small deviation of the densitiesc andf from the steady

states. This result is shown in Fig. 19(a) for the new form of the diffusion coefficient.

(a) Proliferating system (b) Non-proliferating system

FIGURE 2.19. Left: Hexagon pattern. Hereqc = 0.25, g = 0.8, ω = 1.5, z = 15,
ζ = 35, Df = 4.25. Right: Cell pattern formed in a non-proliferating system. Here
ω = 3.225, qc = 0.25, Df = 1, z = 0.8, g = 0.48.

For numerical analysis of the model without cell proliferation we used a pseudo-spectral numeri-

cal scheme with periodic boundary conditions. We again used a semi-implicit approach with the
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Crank-Nicolson scheme to handle the linear terms and the Adams-Bashforth scheme for the non-

linear terms. Figure 19(b) depicts the cell concentration at a fixed time. With time the cell structure

becomes more coarse which is typical of the Cahn-Hilliard dynamics.

2.11. Discussion

We have developed a mathematical model of angiogenesis which governs spatio-temporal be-

havior of five continuous variables: the densities of endothelial cells, growth factor, proteases,

focal adhesion complexes and active adhesion sites of the extracellular matrix. Our initial model

consisted of five PDEs for these five unknown quantities. Using a steady state assumption we

reduced it to the system of two nonlinear coupled PDEs for the densities of the endothelial cells

and the growth factor. We have also introduced two different forms of the endothelial cell dif-

fusion coefficient and analyzed the model in both cases. We studied the model analytically, first

by performing linear stability analysis and then by doing weakly nonlinear analysis to determine

what types of structures can be formed near the instability threshold when steady states lose their

stability. In particular, we studied possibilities of appearance of stripes, squares and hexagons. We

derived a system of amplitude equations and analyzed it. As a result we found parameter ranges

in which stable hexagons, stripes and squares can exist in the system as well as coexist with one

another.

We also studied our system in absence of endothelial cell proliferation, the case that is of

particular interest for experimentalists [184]. For this case we also performed a linear stability

analysis. Our weakly nonlinear analysis was based on the assumption of longwave solutions and

resulted in the derivation of the Sivashinsky and Cahn-Hilliard equations.
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We have performed numerical simulations of the system using several numerical schemes

based on finite difference approximations as well as on pseudo-spectral approximations. We were

able to obtain stable hexagonal structures for parameter values predicted by the analytical investi-

gation. We have also performed simulations of the system in absence of endothelial cells prolifer-

ation in the Cahn-Hilliard parameter range which was derived in our analytical investigations. In

this simulation we obtained labyrinth structures typical of systems described by the Cahn-Hilliard

equation.

Appendix

Calculations with D = D0 exp
(
−k∗

cf

)
: hexagons and stripes

The right-hand sides in theO(ε3) problem are given by

Rc3 = −∇̃2
[

g2c1c2 + g2c1f2 + g2c2f1 + (g2 − 2g)f1f2+

(
1

6
g3 − 1

2
g2

)
c3
1 +

(
1

2
g3 − g2

)
c2
1f1 +

(
1

2
g3 − 3

2
g2

)
c1f

2
1 +

(
1

6
g3 − g2 + g

)
f 3

1

]
+

w∇̃ ·
{

[(g + 1)c1 + gf1] ∇̃f2

}
+ w∇̃ ·

{[
(g + 1)c2 + gf2 +

1

2
g2c2

1+

(
1

2
g2 − g

)
f 2

1 + g2c1f1

]
∇̃f1

}
+ f1c2 + f2c1 + f1c

2
1 + 2(1− qc)c1c2 +

∂c1

∂T
,

Rf3 = −µ∇̃2f1 + zf1c2 + zf2c1 +
∂f1

∂T
.
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The coefficientsKj appearing on right-hand sideRc2 of theO(ε2) problem have the form

K1 = 2α2
cr[g

2a2 + (g2 − 2g)b2 + 2g2ab− w(g + 1)ab− wgb2] + ab + (1− qc)a
2,

K2 = ab + (1− qc)a
2,

K3 = 3α2
cr[g

2a2 + (g2 − 2g)b2 + 2g2ab− w(g + 1)ab− wgb2] + 2ab + 2(1− qc)a
2,

K4 = α2
cr[g

2a2 + (g2 − 2g)b2 + 2g2ab− w(g + 1)ab− wgb2] + 2ab + 2(1− qc)a
2.

The coefficientsc2j, f2j appearing in the solutionc2, f2 of theO(ε2) problem have the form

c21 = − 1

D1

{
4α2

cr[zab(ω − g) + K1D̃f cr] + K1(ζ + z)
}

,

f21 = − 1

D1

[
4α2

crzab(1 + g) + zab(1− qc) + ζK1

]
,

D1 = 16α4
crD̃f cr(1 + g) + (1− qc)(ζ + z)+

4α2
cr[D̃f cr(1− qc) + (1 + g)(ζ + z)− ζ(ω − g)],

c22 = − K2

1− qc

, f22 = − ζK2

(1− qc)(ζ + z)
− zab

ζ + z
,

c23 = − 1

D3

{
3α2

cr[2zab(ω − g) + K3D̃f cr] + K3(ζ + z)
}

,
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f23 = − 1

D3

[
6α2

crzab(1 + g) + 2zab(1− qc) + ζK3

]
,

D3 = 9α4
crD̃f cr(1 + g) + (1− qc)(ζ + z)+

3α2
cr[D̃f cr(1− qc) + (1 + g)(ζ + z)− ζ(ω − g)].

The coefficientsCk, k = 1, 2, 3, 4 appearing in the amplitude equations are given by

C1 = bα2
crc5/c0, C2 = −(ζK4 + 2zabc5)/c0,

C3 = −{ζR1 + zc5[b(c21 + 2c22) + a(f21 + 2f22)]}/c0,

C4 = −{ζR2 + zc5[b(2c22 + c23) + a(2f22 + f23)]}/c0,

where
c0 = b(a + c5), c5 = (1 + g)α2

cr + 1− qc,

R1 = α2
cr[g

2a(c21+f21)+2g2a(c22+f22)+2g2bc21+(g2−2g)bf21+2(g2−2g)bf22+(
1

2
g3−3

2
g2)a3

+(
3

2
g3 − 3g2)a2b + (

3

2
g3 − 9

2
g2)ab2 + (

1

2
g3 − 3g2 + 3g)b3 − 2af21ω(1 + g)− 2bf21ωg+

ω(1 + g)b(c21 + 2c22)− ωgb(f21 + 2f22)−
1

2
ωb(g2a2 + 2g2ab + (g2 − 2g)b2)]+

b(c21 + 2c22) + a(f21 + 2f22) + 3a2b + 2(1− qc)a(c21 + 2c22),
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R2 = α2
cr[2g

2a(c22 + f22) + g2a(c23 + f23) + g2b(2c22 + c23) + (g2 − 2g)b(2f22 + f23)+

g3(a + b)3 − 3g2a3 − 6g2a2b− 9g2ab2 − 6(g2 − g)b3

−3

2
af23ω(1 + g)− 3

2
bf23ωg + ω(1 + g)b(

1

2
c23 − 2c22)+

ωgb(
1

2
f23 − 2f22)− ωb(g2a2 + 2g2ab + (g2 − 2g)b2)]+

b(c23 + 2c22) + a(f23 + 2f22) + 6a2b + 2(1− qc)a(c23 + 2c22).

Calculations with D = D0 exp
(
−k∗

cf

)
: squares

The right-hand sides in theO(ε3) problem are given by

Rc3 = −∇̃2
[
(g2 − 2g)(f1 − c1)(f2 − c2) + gf1(f1 − c1)

2+

g2

(
1

2
c1 − f1

)
(f1 − c1)

2 +
1

6
g3(f1 − c1)

3

]
+

w∇̃ ·
{

[(1− g)c1 + gf1] ∇̃f2

}
+

w∇̃ ·
{[

(1− g)c2 + gf2 +

(
1

2
g2 − g

)
(f1 − c1)

2

]
∇̃f1

}
+

f1c2 + f2c1 + f1c
2
1 + 2(1− qc)c1c2 +

∂c1

∂T
,
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Rf3 = µ∇̃2f1 + zf1c2 + zf2c1 +
∂f1

∂T

The coefficientsKj appearing on right-hand sideRc2 of theO(ε2) problem have the form

K1 = 2α2
cr[g

2a2 + (g2 − 2g)b2 + 2g2ab− w(g + 1)ab− wgb2] + ab + (1− qc)a
2,

K2 = ab + (1− qc)a
2,

K3 = 2α2
cr[g

2a2 + (g2 − 2g)b2 + 2g2ab− w(g + 1)ab− wgb2] + 2ab + 2(1− qc)a
2,

The coefficientsc2j, f2j appearing in the solutionc2, f2 of theO(ε2) problem have the form

c21 = − 1

D1

{
4α2

cr[zab(ω − g) + K1D̃f cr] + K1(ζ + z)
}

,

f21 = − 1

D1

[
4α2

crzab(1 + g) + zab(1− qc) + ζK1

]
,

D1 = 16α4
crD̃f cr(1 + g) + (1− qc)(ζ + z)+

4α2
cr[D̃f cr(1− qc) + (1 + g)(ζ + z)− ζ(ω − g)],

c22 = − K2

1− qc

, f22 = − ζK2

(1− qc)(ζ + z)
− zab

ζ + z
,

c23 = − 1

D3

{
3α2

cr[2zab(ω − g) + K3D̃f cr] + K3(ζ + z)
}

,
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f23 = − 1

D3

[
6α2

crzab(1 + g) + 2zab(1− qc) + ζK3

]
,

D3 = 9α4
crD̃f cr(1 + g) + (1− qc)(ζ + z)+

3α2
cr[D̃f cr(1− qc) + (1 + g)(ζ + z)− ζ(ω − g)].

The coefficientsCk, k = 1, 3, 4 appearing in the amplitude equations are given by

C1 = bα2
crc5/c0, C3 = −{ζR1 + zc5[b(c21 + 2c22) + a(f21 + 2f22)]}/c0,

C4 = −{ζR2 + 2zc5[b(c22 + c23) + a(f22 + f23)]}/c0,

where
c0 = aζ + bc5, c5 = (1 + g)α2

cr + 1− qc,

R1 = α2
cr[g

2a(c21 + f21) + 2g2a(c22 + f22) + 2g2bc21+

(g2 − 2g)bf21 + 2(g2 − 2g)bf22 + (
1

2
g3 − 3

2
g2)a3+

(
3

2
g3 − 3g2)a2b + (

3

2
g3 − 9

2
g2)ab2 + (

1

2
g3 − 3g2 + 3g)b3−

2af21ω(1 + g)− 2bf21ωg + ω(1 + g)b(c21 + 2c22)−

ωgb(f21 + 2f22)−
1

2
ωb(g2a2 + 2g2ab + (g2 − 2g)b2)]+
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b(c21 + 2c22) + a(f21 + 2f22) + 3a2b + 2(1− qc)a(c21 + 2c22),

R2 = α2
cr{2g2a(c22 + f22 + c23 + f23) + 2g2b(c22 + c23) + 4b(g2 − 2g)}+

(g3 − 3g2)a3 − 3(g3 − 2g2)a2b + 3(g3 − 9g2)ab2 + (g3 − 6g2 + 6g)b3

−2ωα2
cr{f23[(1 + g)a + gb] + b(1 + g)c22 + bgf22 + abg2

(
1

2
a + b

)
+ b3

(
1

2
g2 − g

)
}+

2b(c22 + c23) + 2a(f22 + 2f23) + 6a2b + 4a(1− qc)(c22 + c23).

Calculations with D = D0 exp
(
−k∗c

f

)
: hexagons and stripes

The right-hand sides in theO(ε3) problem are given by

Rc3 = −∇̃2
[
(g2 − 2g)(f1 − c1)(f2 − c2) + gf1(f1 − c1)

2+

g2

(
1

2
c1 − f1

)
(f1 − c1)

2 +
1

6
g3(f1 − c1)

3

]
+ w∇̃ ·

{
[(1− g)c1 + gf1] ∇̃f2

}
+

w∇̃ ·
{[

(1− g)c2 + gf2 +

(
1

2
g2 − g

)
(f1 − c1)

2

]
∇̃f1

}
+

f1c2 + f2c1 + f1c
2
1 + 2(1− qc)c1c2 +

∂c1

∂T
,

Rf3 = µ∇̃2f1 + zf1c2 + zf2c1 +
∂f1

∂T
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The coefficientsKj appearing on right-hand sideRc2 of theO(ε2) problem have the form

K1 = 2α2
cr[(g

2 − 2g)(b− a)2 − w(1− g)ab− wgb2] + ab + (1− qc)a
2,

K2 = ab + (1− qc)a
2,

K3 = 3α2
cr[(g

2 − 2g)(b− a)2 − w(1− g)ab− wgb2] + 2ab + 2(1− qc)a
2,

K4 = α2
cr[(g

2 − 2g)(b− a)2 − w(1− g)ab− wgb2] + 2ab + 2(1− qc)a
2.

The coefficientsc2j, f2j appearing in the solutionc2, f2 of theO(ε2) problem have the form

c21 = − 1

D1

{
4α2

cr[zab(ω − g) + K1D̃f cr] + K1(ζ + z)
}

,

f21 = − 1

D1

[
4α2

crzab(1− g) + zab(1− qc) + ζK1

]
,

D1 = 15α4
crD̃f cr(1− g) + 3α2

cr[D̃f cr(1− qc) + (1− g)(ζ + z)− ζ(ω − g)],

c22 = − K2

1− qc

, f22 = − ζK2

(1− qc)(ζ + z)
− zab

ζ + z
,

c23 = − 1

D3

{
3α2

cr[2zab(ω − g) + K3D̃f cr] + K3(ζ + z)
}

,

f23 = − 1

D3

[
6α2

crzab(1− g) + 2zab(1− qc) + ζK3

]
,
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D3 = 8α4
crD̃f cr(1− g) + 2α2

cr[D̃f cr(1− qc) + (1− g)(ζ + z)− ζ(ω − g)].

The coefficientsCk, k = 1, 2, 3, 4 appearing in the amplitude equations are given by

C1 = bα2
crc5/c0, C2 = −(ζK4 + 2zabc5)/c0,

C3 = −{ζR1 + zc5[b(c21 + 2c22) + a(f21 + 2f22)]}/c0,

C4 = −{ζR2 + zc5[b(2c22 + c23) + a(2f22 + f23)]}/c0,

where
c0 = aζ + bc5, c5 = (1− g)α2

cr + 1− qc,

R1 = α2
cr[(g

2 − 2g)(b− a)(f21 − c21 + 2f22 − 2c22)+

3g(b− a)2

(
b + g

(
1

2
a− b

)
+

1

6
g2(b− a)

)
−

ω{2f21((1− g)a + gb) +

(
1

2
g2 − g

)
b(b− a)2−

b((1− g)c21 + gf21 − 2(1− g)c22 − 2gf22)}]+

(2(1− qc)a + b)(c21 + 2c22) + f21a + 2f22a + 3a2b,

R2 = α2
cr[(g

2 − 2g)(b− a)(2f22 − 2c22 + f23 − c23)+
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6g(b− a)2

(
b + g

(
1

2
a− b

)
+

1

6
g2(b− a)

)
+

ω{−3

2
f23((1− g)a + gb)− (g2 − 2g)b(b− a)2−

b

(
2(1− g)c22 + 2gf22 −

1

2
(1− g)c23 −

1

2
gf23

)
}]+

(2(1− qc)a + b)(2c22 + c23) + 2af22 + af23 + 6a2b.

Calculations with D = D0 exp
(
−k∗c

f

)
: squares

The right-hand sides in theO(ε3) problem are given by

Rc3 = −∇̃2
[
(g2 − 2g)(f1 − c1)(f2 − c2) + gf1(f1 − c1)

2+

g2

(
1

2
c1 − f1

)
(f1 − c1)

2 +
1

6
g3(f1 − c1)

3

]
+ w∇̃ ·

{
[(1− g)c1 + gf1] ∇̃f2

}
+

w∇̃ ·
{[

(1− g)c2 + gf2 +

(
1

2
g2 − g

)
(f1 − c1)

2

]
∇̃f1

}
+

f1c2 + f2c1 + f1c
2
1 + 2(1− qc)c1c2 +

∂c1

∂T
,

Rf3 = µ∇̃2f1 + zf1c2 + zf2c1 +
∂f1

∂T
.

The coefficientsKj appearing on right-hand sideRc2 of theO(ε2) problem have the form

K1 = 2α2
cr[(g

2 − 2g)(b− a)2 − w(1− g)ab− wgb2] + ab + (1− qc)a
2,
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K2 = ab + (1− qc)a
2,

K3 = 2α2
cr[(g

2 − 2g)(b− a)2 − w(1− g)ab− wgb2] + 2ab + 2(1− qc)a
2.

The coefficientsc2j, f2j appearing in the solutionc2, f2 of theO(ε2) problem have the form

c21 = − 1

D1

{
4α2

cr[zab(ω − g) + K1D̃f cr] + K1(ζ + z)
}

,

f21 = − 1

D1

[
4α2

crzab(1− g) + zab(1− qc) + ζK1

]
,

D1 = 15α4
crD̃f cr(1− g) + 3α2

cr[D̃f cr(1− qc) + (1− g)(ζ + z)− ζ(ω − g)],

c22 = − K2

1− qc

, f22 = − ζK2

(1− qc)(ζ + z)
− zab

ζ + z
,

c23 = − 1

D3

{
3α2

cr[2zab(ω − g) + K3D̃f cr] + K3(ζ + z)
}

,

f23 = − 1

D3

[
6α2

crzab(1− g) + 2zab(1− qc) + ζK3

]
,

D3 = 8α4
crD̃f cr(1− g) + 2α2

cr[D̃f cr(1− qc) + (1− g)(ζ + z)− ζ(ω − g)].

The coefficientsCk, k = 1, 2, 3, 4 appearing in the amplitude equations are given by

C1 = bα2
crc5/c0, C3 = −{ζR1 + zc5[b(c21 + 2c22) + a(f21 + 2f22)]}/c0,

C4 = −{ζR2 + 2zc5[b(c22 + c23) + a(f22 + f23)]}/c0,
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where
c0 = aζ + bc5, c5 = (1− g)α2

cr + 1− qc,

R1 = α2
cr[(g

2 − 2g)(b− a)(f21 − c21 + 2f22 − 2c22)+

3g(b− a)2

(
b + g

(
1

2
a− b

)
+

1

6
g2(b− a)

)
−

ω{2f21((1− g)a + gb) +

(
1

2
g2 − g

)
b(b− a)2−

b((1− g)c21 + gf21 − 2(1− g)c22 − 2gf22)}]+

(2(1− qc)a + b)(c21 + 2c22) + f21a + 2f22a + 3a2b,

R2 = α2
cr[2(g2 − 2g)(b− a)(f22 − c22 + f23 − c23)+

6g(b− a)2

(
b + g

(
1

2
a− b

)
+

1

6
g2(b− a)

)
−

ω{2f23((1− g)a + gb) + (g2 − 2g)b(b− a)2+

2b((1− g)c22 + gf22)}] + 2[(c22 + c23)(b + 2a(1− qc)) + a(f22 + f23 + 3ab)].
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CHAPTER 3

A hybrid discrete-continuous model of tumor-induced angiogenesis

3.1. Introduction

As discussed in Chapter 1, angiogenesis occurs during embryogenesis, wound healing, as well

as in the course of many pathological processes such as rheumatoid arthritis [177, 181], psoriasis

[50], cerebral ischemia [178], cardiovascular diseases [146], and growth of solid tumors [85].

Initially, solid tumors are avascular. They do not have their own blood supply and rely on

simple diffusion to provide necessary oxygen and nutrition as well as to remove tumor cell waste

products. As the tumor gets bigger, diffusion through the surface is not any longer capable of

supplying the entire mass of cells. As a result, some of tumor cells start to die due to starvation

and hypoxia (oxygen deprivation). Tumor stops growing and reaches steady state size1 − 3 mm,

in which the number of dying cells counterbalances the number of proliferating cells. Growth can

resume only if the tumor becomes vascularized, i.e. permeated by a vessel network, so that blood

can perform transporting functions.

To achieve vascularization, tumors switch on enhanced production of growth factors that play

the role of angiogenic signals. They diffuse from tumor to nearby primary vessels initiating a com-

plicated cascade of events that results in formation of new capillaries extending from the primary

vessels to the tumor [26, 59, 62, 65, 187]. Blood that starts circulating through newly formed ves-

sels supplies the tumor with necessary nutrients and oxygen and may also serve as an easier escape

route for metastatic cells [2,4,38,44,61,169].
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Thus angiogenesis is crucial for cancer invasion and understanding the mechanisms that control

it will provide the basis for rational therapeutic intervention. In other words there is a hope that

by blocking formation of new blood vessels through drugs it may be possible to suppress tumor

growth and to prevent metastasis formation [11,23,54,55,62,63,84,88,92,173,208].

There are many mathematical works that intend to model and better understand the angiogen-

esis process. The models can be of quite diverse nature, including reaction-diffusion models, fluid

dynamics type models, stochastic models and many others. Various stages of the angiogenesis

process are described, from the first steps of initiation of angiogenesis to modeling the blood flow

through the resulting vascular network.

In this chapter we describe the stage of the process in which endothelial cells move in response

to chemical stimuli, growth factors, released in the system and form sprouts that later become

capillaries. From the mathematical viewpoint, we employ a hybrid model, in which the cells are

treated as discrete objects that move, proliferate, die, talk to each other, etc. according to prescribed

rules [5,40,99,100,106,138,142,161,167,168,193,194,197,215].

Let us discuss the phenomena that have been observed experimentally and are included in the

model.

It has been observed that the growth of the sprout is guided and controlled by a small number

of cells that are close to the front end of the sprout, i.e., by the tip of the sprout. The remaining

cells in the sprout retain cell-cell contacts and follow in a more passive manner (see, e.g., [68] and

the references therein). The shape of the sprout is determined by the trajectory of the tip. Thus, in

our model we follow tip motion disregarding the rest of the cell body.

Deconstructing tip trajectories shows persistence in the direction of cell motion, so that tip

trajectory can be thought of as a broken line [132]. The tip goes along a line segment for some
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time, then stops, and after a period of hesitation chooses another direction of motion. This direction

is that of the gradient of the growth factor field altered by a small random component.

Not only the direction of tip propagation but also all the other events of tip’s motion depend

on the local concentration of the growth factor and its gradient. Examples are the tip speed, the

waiting time at the trajectory vertex, survival of the tip (if a local concentration of the growth factor

is below a critical value, the tip ceases to exist). Under appropriate conditions the tip can split thus

producing two separately propagating tips. In addition, two propagating tips can merge and form

a loop. These events lead to the formation of a capillary network.

Growth factor field is affected by several things. First of all, the growth factor is released by

the tumor cells and it diffuses through the surrounding tissue, the extracellular matrix. Next, the

propagating tips also produce some amounts of growth factor. Indeed, this is a way for a tip to

signal to another tip and eventually merge and form a loop.

Several more things that are taken into account are (i) in addition to the sources of growth

factor in the system, there may be sinks, (ii) the growth factors are also known to be degraded by

the environment, mainly through oxidation processes and (iii) there may be more than one type of

chemical stimuli in the system.

3.2. Mathematical Model

In this section we focus on mass balances for the growth factorf and the repulsion factorr as

well as discuss the rules that govern the motion of capillary tips.
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3.2.1. Growth factor

Mass balance of the growth factor is modeled by the equation

(3.100)
∂f

∂t
= Df∇2f + Fc + Ft − Fs − βf.

Here the first term on the right-hand side describes diffusion of the factor with diffusion coefficient

Df , and∇2 is the Laplacian in two spatial dimensions,x andy. Next, second and third terms,

Fc andFt, are the rates of growth factor production by cancer cells and growing tips, respectively.

Next term,Fs, is the rate of factor consumption by the sinks hidden in the ECM. The form of these

terms,Fc, Ft, andFs, is discussed later. Finally, the last term accounts for the natural decay of the

factor with the rate constantβ. We solve the Cauchy problem for this equation in the entire plane

−∞ < x, y < ∞ for t > 0 under the assumption that initially, fort = 0, the growth factor is

absent.

The solution of this problem can be conveniently written in terms of the fundamental solution

(3.101) g0(x, y, t|x0, y0, t0) =
H(t− t0)e

−β(t−t0)

4πDf (t− t0)
exp

(
−(x− x0)

2 + (y − y0)
2

4Df (t− t0)

)

of the operator

∂

∂t
−Df∇2 + β

as

(3.102) f(x, y, t) = Ic(x, y, t) + It(x, y, t)− Is(x, y, t).
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HereIc andIt, given by

(3.103a) Ic(x, y, t) =

∫ t

0

∫∫
R2

Fc(x0, y0, t0)g0(x, y, t|x0, y0, t0) dx0 dy0 dt0,

(3.103b) It(x, y, t) =

∫ t

0

∫∫
R2

Ft(x0, y0, t0)g0(x, y, t|x0, y0, t0) dx0 dy0 dt0

are the contributions of the cancer cells and the tips, respectively, to the growth factor field. The

quantityIs, given by

(3.103c) Is(x, y, t) =

∫ t

0

∫∫
R2

Fs(x0, y0, t0)g0(x, y, t|x0, y0, t0) dx0 dy0 dt0,

characterizes the reduction of the growth factor field due to the presence of the sinks.

In this model we treat the cancer as a collection ofM point sources of growth factor located at

(x
(n)
c , y

(n)
c ), n = 1, . . . ,M , each releasing the factor at a constant rateQc, so that

(3.104) Fc(x, y, t) =
M∑

n=1

Qcδ(x− x(n)
c )δ(y − y(n)

c ), −∞ < x, y < ∞, t > 0.

Thus, the cancer dependent part (3.103a) of the growth factor field (3.102) simplifies to

Ic(x, y, t) = Qc

M∑
n=1

∫ t

0

g0(x, y, t|x(n)
c , y(n)

c , t0) dt0

= Qc

M∑
n=1

∫ t

0

e−β(t−t0)

4πDf (t− t0)
exp

(
−(x− x

(n)
c )2 + (y − y

(n)
c )2

4Df (t− t0)

)
dt0.

The tips are also considered to be localized point sources that release the factor at the rateQt.

However, the contributionIt of the tips to the factor field is more difficult to compute, not only

because the tips are moving, so that all the tip trajectories have to be traced, but also because new
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tips can appear due to tip splitting, and some tips can disappear due to anastomosis. Suppose at

time t there areN tips that either are alive at timet or have existed during the time interval(0, t)

but no longer exist att. All such tips have contributed to the formation of the growth factor field

and must be accounted for. For the purpose of computing the factor field, a convenient way to

represent the tips is as follows. Suppose then-th tip, n = 1, . . . , N , first appeared at timet(n)
b

and disappeared att
(n)
d . We consider the tip as if it existed at all times but with the rate of factor

production given by

Q
(n)
t (t) =


Qt, t

(n)
b < t < t

(n)
d

0, otherwise

whereQt is a constant parameter of the problem. Note that for some tipst
(n)
b can be equal to zero

– these are the original tips that started the angiogenesis process. For other tipst
(n)
b > 0 – these

are the secondary tips that appeared in the course of angiogenesis. Similarly,t
(n)
d is equal tot for

those tips that still exist at the timet, at which the factor field is computed, whilet(n)
d < t for the

tips that no longer exist at the time of the field calculation. Then

(3.105) Ft(x, y, t) =
N∑

n=1

Q
(n)
t (t)δ(x− ξ(n)(t))δ(y − η(n)(t)), −∞ < x, y < ∞, t > 0,

and the tip dependent part (3.103b) of the growth factor field (3.102) simplifies to

It(x, y, t) = Qt

N∑
n=1

∫ t
(n)
d

t
(n)
b

g0(x, y, t|ξ(n)(t0), η
(n)(t0), t0) dt0

(3.106) = Qt

N∑
n=1

∫ t
(n)
d

t
(n)
b

e−β(t−t0)

4πDf (t− t0)
exp

(
−(x− ξ(n)(t0))

2 + (y − η(n)(t0))
2

4Df (t− t0)

)
dt0.
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Here(ξ(n)(t), η(n)(t)) are the coordinates of then-th tip at timet. Since the trajectory of a tip is

a broken line, it is sufficient to know the location of its vertices, the times when the vertices are

reached, and the time spent by the tip at each vertex. Thus, the movement history of then-th tip

that hasK vertices with coordinates(ξ(n)
k , η

(n)
k ), k = 1, . . . , K at timet, is completely described

by

(ξ
(n)
k , η

(n)
k ), t

(n)
a,k, t

(n)
d,k , k = 1, . . . , K

wheret
(n)
a,k is the time of arrival of the tip to thek-th vertex, andt(n)

d,k is the time of departure from

it (note that the differencet(n)
d,k − t

(n)
a,k is the waiting time at thek-th vertex, calculation of which is

discussed in the next section). The factor release by then-th tip in (3.106) can now be written as a

sum of two terms, one governing factor release by the tip as it moves from one vertex to another,

and the other governing factor release during the time that the tip stays at the vertices

Qt

K−1∑
k=1

∫ t
(n)
a,k+1

t
(n)
d,k

e−β(t−t0)

4πDf (t− t0)
exp

(
−(x− ξ(n)(t0))

2 + (y − η(n)(t0))
2

4Df (t− t0)

)
dt0+

Qt

K∑
k=2

∫ t
(n)
d,k

t
(n)
a,k

e−β(t−t0)

4πDf (t− t0)
exp

(
−(x− ξ

(n)
k )2 + (y − η

(n)
k )2

4Df (t− t0)

)
dt0,

where

ξ(n)(t0) = ξ
(n)
k +

ξ
(n)
k+1 − ξ

(n)
k

t
(n)
a,k+1 − t

(n)
d,k

(t0 − t
(n)
d,k), η(n)(t0) = η

(n)
k +

η
(n)
k+1 − η

(n)
k

t
(n)
a,k+1 − t

(n)
d,k

(t0 − t
(n)
d,k),

for t
(n)
d,k < t0 < t

(n)
a,k+1. Note that if then-th tip is in motion at timet, thent = t

(n)
a,K , while in the

case that the tip is not moving att, we havet = t
(n)
d,K .
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The sink is as a collection ofS localized point sinks, located at(x
(n)
s , y

(n)
s ), n = 1, . . . , S, each

consuming the factor at a constant rateQs, so that

(3.107) Fs(x, y, t) =
S∑

n=1

Qsδ(x− x(n)
s )δ(y − y(n)

s ), −∞ < x, y < ∞, t > 0.

Thus, the sink dependent part (3.103c) of the growth factor field (3.102) simplifies to

Is(x, y, t) = Qs

S∑
n=1

∫ t

0

g0(x, y, t|x(n)
s , y(n)

s , t0) dt0

= Qs

S∑
n=1

∫ t

0

e−β(t−t0)

4πDf (t− t0)
exp

(
−(x− x

(n)
s )2 + (y − y

(n)
s )2

4Df (t− t0)

)
dt0.

We remark that the presence of the sink can result in unphysical negative concentrations of the

growth factor in some regions. They are treated as regions without growth factor which does not

cause any problems. Indeed, the tips cannot penetrate into this regions because the tips die if the

factor concentration drops below a critical value (see below).

3.2.2. Repulsion factor

Mass balance of the repulsion factor is modeled by the equation

(3.108)
∂r

∂t
= Dr∇2r + Gt − βrr.

Similar to (3.100), the first term on the right-hand side describes diffusion of the repulsion factor

with diffusion coefficientDr. The second term,Gt, is the rate of repulsion factor production by
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the growing tips (cf. (3.105))

(3.109) Gt(x, y, t) =
N∑

n=1

P
(n)
t (t)δ(x− ξ(n)(t))δ(y − η(n)(t)), −∞ < x, y < ∞, t > 0,

with

P
(n)
t (t) =


Pt, t

(n)
b < t < t

(n)
d

0, otherwise

The last term accounts for the natural decay of the factor with the rate constantβr. As before,

we solve the Cauchy problem for this equation in the entire plane−∞ < x, y < ∞ for t > 0 under

the assumption that initially, fort = 0, the repulsion factor is absent. The solution is

r(x, y, t) = Pt

N∑
n=1

∫ t
(n)
d

t
(n)
b

e−βr(t−t0)

4πDr(t− t0)
exp

(
−(x− ξ(n)(t0))

2 + (y − η(n)(t0))
2

4Dr(t− t0)

)
dt0.

It is treated numerically in the same way as (3.106).

3.2.3. Advancing, splitting and merging of tips

Rules of motion for a single tip are as follows:

• the tip waits for some time∆τ before starting to move,

∆τ = t0 +
1

a
arctanh[r − (1− r) tanh(at0)]

wherer is a random variable uniformly distributed between0 and1, andt0 anda are

parameters of the problem;
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• the absolute value of tip velocity is given by

v =
δ|gradf |

(1 + f/f∗)2
,

whereδ is cell chemotactic mobility andf is the value of growth factor field concentration

at the point where the moving tip is located [67].

• the angle of tip movement is given by the direction of the growth factor and repulsive

factor gradients at the point of interest and also contains a stochastic component. The

stochastic angle is normally distributed with varianceσ.

Tips can merge and branch according to the following rules:

• fusion occurs when the distance between two growing tips becomes smaller than a critical

value. The necessary condition for fusion is that two tips themselves are or descend from

two different initial vessels. In other words, close relatives are prohibited to fuse;

• splitting can occurs after a tip has moved ten times provided

r < tanh

[
f

f0

]

wheref is the growth factor concentration in the point of the growing tip andr is a random

variable uniformly distributed between0 and1.

3.3. Numerical results and discussion

We have included two plots for each parameter set. The difference between the plots is due to

the presence of stochastic components in the algorithm. In Fig. 3.1 we have plotted the structure

of the vessel network for the base parameter values given in Table 1. In each of the two plots we
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see five sprouts that propagate to the right, where the tumor cells are located. The sprouts branch,

merge and eventually form a relatively complex network.

TABLE 1. Base parameter values

Parameter/ValueParameter Definition

Df = 1 diffusion coefficient of the growth factor

β = 5 decay rate of the growth factor

Qc = 0.4 rate of growth factor release by tumor cells

Qt = 0.25 rate of growth factor release by tips

Qs = 0 rate of consumption of growth factor by sinks

Dr = 1 diffusion coefficient of the repulsion factor

βr = 5 decay rate of the repulsion factor

Pt = 45 rate of repulsion factor release by tips

a = 20 waiting time parameter

t0 = 0.1 waiting time parameter

δ = 0.15 tip mobility parameter

f∗ = 1 velocity sensitivity on growth factor concentration

σ = 0.1 variance (in calculation of tip motion angle)

f0 = 30 splitting parameter
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(a) (b)

FIGURE 3.1. Sprout structure for the base parameter values. The two figures are
obtained for the same parameter values; the difference between the figures is due to
the presence of stochastic components in the rules of tip motion.

In Fig. 3.2 we have plotted vessel network structure for the parameter values shown in the

Table 1 but with an increased rate of the growth factor release by tip cellsQt which is taken here

to be equal to0.35. If we compare Fig. 3.1 and Fig. 3.2 we can see that the growing vessels begin

to branch earlier, which is due to the increased growth factor concentration in the system. Also in

this case newly split vessels tend to attract to other vessels stronger than before since the amount

of the growth factor released by tips is now greater. The vessels sense both repulsion and attraction

forces but as it was discussed above, in the case when two tips are close to each other, attraction

interactions are much weaker than repulsion and can be neglected. In other words, the tips are

attracted mostly to the vessels that are not their immediate neighbors. Thus, increased rate of

growth factor release yields increased branching coupled with stronger attraction towards distant

vessels which leads to more elaborated network structure which is observed in Fig. 3.2.

In Fig. 3.3, a vessel network structure is shown for the parameter values given in Table 1 but

with a decreased rate of decay of the growth factorβ which is taken here to be3. If we compare

the results in this case with the results for the base parameter values (Fig. 3.1) we notice that the
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(a) (b)

FIGURE 3.2. Sprout structure for the base parameter values exceptQt = 0.35.

network structures are very similar and the only difference is that in Fig. 3.3 we observe increased

vessel branching due to the fact that the growth factor concentration in the system is higher.

(a) (b)

FIGURE 3.3. Sprout structure for the base parameter values exceptβ = 3.

In Fig. 3.4 we plot vessel network structure for the parameter values given in Table 1 but with

an increased rate of the repulsion factor release by the tip cellsPt which is taken here to be60.

Comparing results in Fig. 3.1 and Fig. 3.4 we notice that in the second case newly split vessels

tend to move farther apart from each other which can be explained by a stronger contribution of

the repulsion factor to the growing tip dynamics.
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(a) (b)

FIGURE 3.4. Sprout structure for the base parameter values exceptPt = 60.

(a) (b)

FIGURE 3.5. Sprout structure for the base parameter values exceptσ = 0.5.

Finally, in Fig. 3.5 we have plotted vessel network structure for the parameter values given in

Table 1 but with an increased varianceσ that is used in the calculation of the random component

of the turn angle of a moving tip. For these plotsσ is taken to be0.5. Comparing Fig. 3.1 with

Fig. 3.5, we conclude that, as one could expect, the increase in the value ofσ does not affect the

vessel network structure, i.e. it does not influence branching or chemotactic component of the tip

turn angle. However, it makes every single trajectory more random in the sense that the stochastic

contribution to the turn angle increases.
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3.4. Conclusions

We have developed a discrete-continuous mathematical model of angiogenesis, in which the

growth factor concentration is a continuous variable while the propagating tips of each growing

sprout are treated as discrete objects. The model incorporates many realistic features of the pro-

cess such as the growth factor release by tumor and by endothelial cells, the natural decay of the

growth factor, repulsion factor release by endothelial cells, chemotactic motion of the tip cells with

stochastic component, the dependence of cell speed on the growth factor concentration, growing

tip branching and fusion with other tips, sprout death due to an insufficient concentration of the

growth factor.

We studied the model numerically by working out an algorithm for the tip cell motion and

vessel network construction. We chose parameter values given in Table 1 based on experimental

data [53, 67, 99, 100, 194, 217] and produced numerical results which demonstrated the dynamics

of growing vessels and formation of networks. We varied computational parameters, one at a time,

and we were able to show that changes in our computational results induced by the change of a

certain parameter completely agree with our understanding of the contribution of this parameter to

the cell motion, vessel growth and vessel network formation.
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CHAPTER 4

Conclusions

Angiogenesis is formation of new blood vessels from the preexisting vasculature and it hap-

pens naturally inside the body. It also occurs under many pathological processes such as rheuma-

toid arthritis, psoriasis, cerebral ischemia, cardiovascular disease, growth of solid tumors, soft

tissue sarcomas, chronic liver disease and others. Angiogenesis plays a crucial role in so many

human diseases that scientists believe that angiogenic therapy will completely change the way the

diseases are ultimately treated. Understanding of the fundamental mechanisms that govern angio-

genesis can provide us with a powerful therapeutic tool that will enable us to combat a variety of

severe pathological conditions. Our ability to manipulate new blood vessel growth, stimulating or

preventing it according to patient’s needs can become a triumph of modern medicine, significantly

lengthening the list of curable diseases.

Since the walls of all blood vessels are built of endothelial cells, it is a natural conclusion

that EC migration plays a central role in the process of angiogenesis and one can control new

vessel growth by influencing EC migration. In order to study such a complicated process as cell

migration, in-vitro experiments are performed. Behavior of endothelial cells cultured on biogel

that resembles ECM structure can mimic some of key stages of angiogenesis (such as association

in tube-like structures and subsequent capillary network formation), thus providing a powerful

experimental tool for studying the possibilities of affecting different stages of angiogenesis.

The goal of our work was to propose and study a mathematical model that governs EC dy-

namics in in-vitro experiments and exhibits pattern formation. Existing mathematical models of
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tumor-induced angiogenesis fall into three major categories: continuum models, mechanochem-

ical models and discrete, cell-based models. These models deal with various stages of angio-

genesis, can be deterministic or stochastic, focusing on detailed biochemical pathways or overall

phenomenological description of the main stages of angiogenesis. Some models deal with in-vivo

angiogenesis, while other models describe the results of in-vitro experiments with endothelial cell

cultures grown on Matrigel. All these works were indispensable as a starting point of our model-

ing efforts. However, our model differs from the existing models by the dependent variables we

introduce, by our treatment of cell motility, and by certain problems that we pose.

The model that we have proposed in Chapter 2 is a reaction-diffusion model that can be used for

a description of various manifestations of angiogenesis. We use it to describe EC pattern formation

on a two-dimensional gel matrix.

As it follows from the brief description given in Chapter 1, there is a number of molecular

mechanisms that appear to be crucial during the early stages of angiogenesis, and by means of

interfering with which angiogenesis can in principle be blocked. Namely,

• (i) VEGF and other growth factor interactions with their cell-surface receptors that trigger

multiple intracellular signal pathways, in particular promoting survival and proliferation

of immature ECs;

• (ii) formation of focal adhesion complexes on the leading edge of the cell;

• (iii) release of proteases by ECs;

• (iv) localized degradation of extracellular matrix components by proteases, creation of

specific attachment sites in the extracellular matrix;

• (v) anchorage dependence of cell growth, survival, division and migration mediated mainly

by focal adhesions via intracellular signals they generate;
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• (vi) EC directional crawling through the ECM in response to chemotactic gradient of

VEGF.

Thus, our mathematical model governs the spatio-temporal behavior of the following quanti-

ties:

• c the concentration of endothelial cells,

• f the growth factor concentration,

• r the concentration of focal adhesion sites,

• p the protease concentration,

• m the concentration of ECM active sites available for cell adhesion.

We began with a derivation of the reinforced random walk equation that governs chemotac-

tic/diffusional behavior of the ECs and after that we formulated mass balance equations forf , p, r

andm that govern the corresponding chemical reaction scheme. Then we employed a steady-state

assumption with respect to the state variablesp, r, andm, reducing the system of equations to two

coupled nonlinear PDEs for two unknowns -c andf .

We found uniform steady states of the system and investigated their linear stability. Then we

focused on nonlinear stability analysis of one of the basic states. In particular, we studied the

possibility of the appearance of stripes, squares and hexagons. We derived a system of amplitude

equations and analyzed it. As a result we found parameter ranges in which stable hexagons, stripes

and squares can exist in the system as well as coexist with one another. It should be noted that the

experimentally observed patterns are not necessarily spatially regular, so that hexagons, squares

and stripes, can be perceived as regular counterparts of the experimental observations. These

patterns can result from Turing instabilities which were studied in Chapter 2. We anticipate that

these regular patterns may in turn become unstable leading to irregular polygonal structures similar
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to those observed in experiments. Our study of the Turing patterns is useful as it determines the

parameter regime where the irregular structures can appear as a secondary bifurcation and can be

sought numerically.

We also studied our system in absence of endothelial cell proliferation, the case that is of

particular interest for experimentalists. In this case we also performed a linear stability analysis.

Our weakly nonlinear analysis was based on the assumption of longwave solutions and resulted in

the derivation of the Sivashinsky and Cahn-Hilliard equations.

We were able to numerically obtain stable hexagonal structures for parameter values predicted

by the analytical investigation. To solve this problem numerically we used Crank-Nicolson method

combined with operator splitting and alternation in application of splitting. This implicit method

was applied only for the diffusion terms in both equations and the rest of the terms we treated

explicitly. We performed simulations for parameter values where stable hexagon structures were

expected and we were able to obtain stable hexagons in our simulations starting with initial data

that represented a small deviation of the densitiesc andf from the steady states.

When the model without cell proliferation was analyzed numerically, we have used a pseudo-

spectral code with periodic boundary conditions. A semi-implicit scheme has been used with a

Crank-Nicolson method to handle the linear terms and an Adams-Bashforth method for the non-

linear terms. The results are typical for Cahn-Hilliard dynamics we observed phase separation and

coarsening.

In Chapter 3 we have developed a hybrid model, in which the growth factor concentrationf

remained continuous, but the cells were treated as discrete objects that could move, proliferate, die,

talk to each other, etc. according to prescribed rules. The direction of tip propagation and other

events of tip’s motion such as its speed, the waiting time at the trajectory vertex, survival of the
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tip depended on the local concentration of the growth factor and its gradient. Under appropriate

conditions growing tip could fuse with another growing capillary or split thus producing two sepa-

rately propagating tips. Interplay of all these events leaded to the formation of a capillary network.

We studied the model numerically by working out an algorithm for the tip cell motion and vessel

network development. We varied computational parameters, one at a time, and we were able to

show that changes in our computational results induced by the change of a certain parameter com-

pletely agree with our understanding of the contribution of this parameter to the cell motion, vessel

growth and vessel network formation. Our numerical results are reminiscent of those seen in the

actual experiments.

In the present work we have developed two different modeling approaches in an attempt to

elucidate the key features of the complicated process of angiogenesis. The first, continuous model

allows us explore the logic of pattern formation during in-vitro experiments with endothelial cells.

The second model has to do with in-vivo angiogenesis and employs discrete-continuous formula-

tion. There is a long way to being able to reliably simulate actual experimental scenarios, which

are not necessarily well understood and cannot be easily reproduced. However, we are sure that

exploring the logic of biological processes is worthwhile even at our present state of knowledge. It

allows one to take a hypothetical mechanism and examine its consequences in the form of a math-

ematical model, making predictions and suggesting experiments that would verify or invalidate the

model. We believe that collaboration between experimentalists and applied mathematicians will

lead towards a better understanding of the biological processes involved in angiogenesis and a vast

array of medical problems where angiogenesis is important.
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