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ABSTRACT

Three-Dimensional Image Reconstruction From Multi-Focus Microscopy

Seunghwan Yoo

In this dissertation thesis, I introduce three-dimensional (3D) image reconstruction algo-

rithms for multi-focus microscopy (MFM). MFM provides a fast way to obtain 3D informa-

tion of the sample by simultaneously capturing multiple focal planes on a single camera shot.

However, stacking the sub-images from different focal planes does not provide a good recon-

struction of 3D image because of low signal-to-noise ratio (SNR) and severe out-of-focus blur

of the microscopy. I analyze different models of the imaging process for MFM and derive

multiple ways of 3D image reconstruction. First, I present image reconstruction methods

based on models that assume Gaussian noise in the observation. As a base algorithm, I

present a total-variation (TV) regularized least squares (RLS) algorithm for image recon-

struction. We have developed two different algorithms to improve the performance of image

reconstruction by using (1) multiple-frame processing, and (2) joint parameter estimation

through a Bayesian framework, respectively. Multiple-frame processing utilizes the informa-

tion from neighboring frames in addition to the current frame to improve the image quality.

For joint parameter estimation, maximum-a-posteriori (MAP) is used for automatic estima-

tion of the regularization parameter as well as 3D image reconstruction. Poisson noise model
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is also investigated to handle the low photon resource of MFM. For this, I present an al-

ternating directions methods of multipliers (ADMM) based image reconstruction algorithm.

This method splits the Poisson image deconvolution problem into two simpler problems -

deblurring and Poisson denoising problems, providing an efficient way to solve the optimiza-

tion problem. Experimental results with synthetic and real data verify the effectiveness of

the methods.
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CHAPTER 1

Introduction

Fluorescence microscopy is an essential imaging tool in biology and biomedial sciences [1].

It enables observation and visualization of the physiology of the living cells at sub-cellular

resolution. It makes use of a property of fluorophores that when they are excited by specific

band of light, they emit a different band of wavelength of light. Once the samples are

dyed with fluorophores, the sample can be observed as the emitted light from the sample

is captured on the camera. Thanks to its sub-cellular resolution and non-invasive and high

biochemical labeling, the structure and dynamics of the living cells can be observed.

There have been advances of fluoroscene microscopy techniques over the past decade

increasing its capability to capture higher resolution image in different aspects - lateral

resolution, axial resolution, and temporal resolution [2, 3]. Confocal microscopy increases

the resolution in the optical axis by using pinhole in front of the detector, blocking the

out-of-focus light [4, 5]. Structured illumination fluoroscence microscopy (SIM) achieves

super-resolution in the spatial domain by using the structured illumination, increasing the

support of the signal in the frequency domain [6, 7]. Light-sheet fluoroscence microscopy

uses an orthogonal emisson configuration in order to only excite the sample inside a selective

plane each time [8,9]. It improves the spatial resolution of the microscopy by reducing the

emission from other planes. Stimulated emission depletion (STED) fluorescence microscopy

reduces the size of effective point spread function (PSF) through stimulated emission with

a second laser beam, achieving super-resolution [10,11].



15

The aforementioned microscopies increase spatial resolution but they require sequential

refocusing for three-dimensional (3D) imaging, and therefore they lack of high temporal

resolution. Multi-plane microscopy (MUM) [12,13] and multi-focus microscopy (MFM) [14]

are developed to increase temporal resolution for microscopy. They capture multiple focal

planes simultaneously, providing 3D information in a fast way.

1.1. Multi-Focus Microscopy

Fast acquisition of 3D data is one of the challenges in modern microscopy. Conventional

microscopy only captures the information from a single focal plane. To obtain 3D data

in the microscopy, they must capture each focal plane one by one, changing the focus in-

between. This sequential refocusing has serious disadvantages: (1) it is too slow to capture

fast movement of 3D samples, (2) it is prone to photobleaching, and (3) the stage movement

for refocusing can cause perturbation of the sample.

Multi-plane microscopy (MUM) mitigates these limitations and thus allows tracking of

the living sample in 3D space at high temporal resolution [12, 13]. It splits the light from

different focal planes into different paths and captures each focal planes with a different cam-

era. However, their system is only able to capture up to four focal planes which corresponds

the number of cameras. It is useful for object localization or tracking but it is not suitable

for imaging extended objects.

Multi-focus microscopy (MFM) provides a fast way to obtain 3D information of the

sample by simultaneously capturing multiple focal planes on a single camera [14–18]. MFM

uses a diffractive grating to form multiple focus-shifted images. It splits the light from

different focal depths of the sample into separate paths and forms an array of K×K images

on the camera. Figure 1.1 illustrates the difference between a conventional microscope and an
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(a) (b)

(c) (d)

Figure 1.1. Conventional microscopy vs. MFM. (a, b) Schematic and captured
information of conventional microscopy, and (c, d) schematic and captured
information of MFM.

MFM. Figure 1.1 (a) and (b) show the schematic of conventional microscopy and the captured

data on its camera. The optical system of the conventional microscope only focuses on a

single plane (red colored), and the camera captures information from the focal plane. On

the other hand, MFM contains additional components including two lens and a diffractive

optical element (DOE) to split the light from different focal planes as shown in Figure 1.1

(c). The data captured on the camera is composed of 3 × 3 sub-images from different

focal depths as shown in Figure 1.1 (d), and thus it gives information in 9 different depths

(−4∆z,−3∆z, · · · , 3∆z, 4∆z). Note that the pixel resolution in the lateral (xy) plane is

reduced in order to get the volumetric information in MFM.

Figure 1.2 shows two MFM experimental measurements of a tumbling fluorescently la-

belled bacterium. These two frames are picked from 1023-frame video. In this MFM setup,
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(a) (b)

Figure 1.2. MFM experimental measurement of a tumbling fluorescently la-
belled bacterium. A MFM measurement is composed of 5 by 5 sub-images
with different focal planes. (a) The signal is stronger in the sub-images in the
center, which means the bacterium is located in the middle in the z-axis. (b)
The bacterium is in a different position and in a different location from MFM
image (a)

a MFM measurement is composed of 5 by 5 sub-images with different focal planes [17]. The

movement of the bacterium is observed between two frames. The signal in Fig. 1.2 (a) is

stronger in the sub-image in the center, which means the bacterium is located in the center

in the z-axis. The bacterium in Fig. 1.2 (b) is away from the center in the z-axis since it is

more focused on a different sub-image.

1.2. Image Reconstruction

Image reconstruction and image restoration problems include image deconvolution [19–

29], image deblurring [30–34], image denoising [35–40], and image super-resolution [41–47].

The goal of these problems is to estimate the original, clear, noiseless, high-resolution image
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for a given blurred, noisy, or/and down-sampled observation. These problems are essentially

inverse problems in very high dimensions and a great deal of efforts have been made and

applied to different imaging systems [48–57].

In most cases, the image degradation process is modeled as a linear model with noise as

follows:

g = N (Hf), (1.1)

where f ∈ RN×1, g ∈ RM×1, and H ∈ RM×N denote the original image to be restored, the

degraded image, and the point spread function (PSF) matrix which characterizes blurring

and downsampling. N (·) is a noise operator, which is usually assumed as Gaussian noise or

Poisson noise depending on the imaging system.

With an assumption of Gaussian noise, it is natural to formulate least squares (LS) for

image reconstruction as follows:

f̂ = arg min
f
‖g −Hf‖2, (1.2)

whose analytical solution is

f̂ = (HTH)−1HTg. (1.3)

Note that in most cases, however, this cannot be solved directly as Eq. 1.3 for image

reconstruction. Because f is high dimensional, it is not feasible to store H in memory nor

calculate its inverse in general. Instead, iterative methods are used to solve the linear system

or filtering operation in frequency domain is performed for some cases.
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The LS solution is equivalent to the solution maximizing the likelihood function, p(g|f),

assuming independent identically distributed (i.i.d.) Gaussian noise (∼ N (0, σ2I)) as

f̂ = arg max
f

p(g|f) (1.4)

= arg min
f
− log p(g|f) (1.5)

LS works when the number of unknowns is larger than or equal to the number of known

variables (M ≥ N) and H is well-conditioned, but it is often not the case. H is usually ill-

conditioned so the presence of noise causes a bad solution. A common way to solve this issue

is regularization. Adding a regularization term to the objective function of LS in Eq. 1.2

stabilizes the solution, and significantly improve the quality of the solution. The regularized

least squares (RLS) is formulated as

f̂ = arg min
f
‖g −Hf‖2 + λΦ(f) (1.6)

where λ is a regularization parameter, and Φ(·) is a regularization function.

RLS is equivalent to finding f that maximizes the posterior distribution, p(f |g), as

f̂ = arg max
f

p(f |g) (1.7)

= arg max
f

p(g|f)p(f) (1.8)

= arg min
f
− log p(g|f)p(f) (1.9)

= arg min
f
− log p(g|f)− log p(f) (1.10)

where p(f) denotes the prior distribution. Note that, in this perspective, the prior is the

counterpart of the regularization term of RLS.
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Regularization function has an important role in image reconstruction. Different regular-

ization functions will result in different solutions, and thus a proper regularization function

must be chosen to obtain better solutions. In order to choose the right regularization func-

tion, we use the high level prior information that we know about the solution. For example,

Φ(f) = ‖f‖22 finds a solution whose magnitude is small, and Φ(f) = TV (f) finds a piecewise

smoothness solution. In addition, solvability is a critical criterion to choose the regulariza-

tion function. Even though it reflects the signal well, there may be no way to solve the

optimization problem with some regularization function.

There are several types of regularization function that are widely used in image recon-

struction. First, Tikhonov regularization, Φ(f) = ‖Cf‖22, is a l2 norm regularization that

enforces small magnitude (C = I) or smootheness (C: Laplacian operator) of the signal.

The analytical solution of the RLS with this regularization term exists as

f̂ = (HTH + λCTC)−1HTg, (1.11)

which can be solved iteratively or in frequency domain similar to LS.

Total variation (TV) regularization has been popular in signal processing since Rudin et

al. developed the TV regualrized denoising algorithm [35]. The TV regularization function

(2D) is defined as

TV(f) =
N∑
i=1

√
(∆x

i f)2 + (∆y
i f)2 (1.12)

where i is an index for pixels, and ∆x and ∆y denote the first difference operator along the x,

and y directions, respectively. It enforces piecewise smoothness, so it effectively removes noise

while preserving the edges. It is a non-smooth function so it is not simple to optimize RLS

with TV regularization but effective algorithms have been developed as in [26,35,36,58].
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Finally, l1 norm regularization, Φ(f) = ‖f‖1, which enforces sparsity of the signal, has

become popular with the advent of compressive sensing theory [59–61]. The theory proves

that a sparse signal can be perfectly restored from small portion of the observation by

using sparsity regularization under certain condition. Natural signals such as audio and

image can be represented as sparse signals in some domain, thus sparsity regularization have

been successfully used. In fact, TV regularization can be seen as sparsity regularization in

gradient domain. l1 norm is, like TV prior, non-smooth, but highly efficient algorithms have

been developed [62,63], to name a few, iterative shrinkage thresholding algorithm (ISTA),

two-step ISTA (TwIST), and fast ISTA (FISTA) [24,25].

1.3. Scope of the Dissertation

In this dissertation, I analyze different models of the imaging process for MFM and

propose algorithms for 3D image reconstruction. First, I review MFM imaging models based

on two noise models: (1) Gaussian noise, and (2) Poisson noise. Then I introduce three

different image reconstruction methods in three different chapters.

The first two methods are based on imaging models that assume Gaussian noise in

the observation. We have developed two different algorithms to improve the performance

of image reconstruction by using (1) multiple-frame processing, and (2) joint parameter

estimation through a Bayesian framework, respectively. Multiple-frame processing utilizes

the information from neighboring frames in addition to the current frame to improve the

image quality. For joint parameter estimation, maximum-a-posteriori (MAP) is used for

automatic estimation of the regularization parameter as well as the 3D image.

Poisson noise model is also investigated to handle the low-light-level measurement of

MFM. I present an alternating directions methods of multipliers (ADMM) based image
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reconstruction algorithm. This method separates the Poisson image deconvolution problem

into two simpler problems - deblurring and Poisson denoising problems, providing an efficient

way to solve the optimization problem.

Experimental results with synthetic and real data verify the effectiveness of the methods,

which means they will make it possible to capture 4D (3D space + time) events of the

samples.

The rest of this dissertation is outlined as follows:

• Chapter 2: we review the acquisition models for MFM. General imaging models

for fluorescence microscopy will be introduced first, and two noise models will be

described as MFM acquisition models based on them. We also develop the 3D

reconstruction algorithms for based on the acquisition models. The methods we

present in this chapter will be the bases for the proposed methods in Chapter 3, 4,

and 5.

• Chapter 3: we present multiple-frame MFM 3D image reconstruction algorithms.

First, we introduce the MFM system, and the single-frame 3D reconstruction al-

gorithm for MFM. We propose to use information from multiple frames with two

different schemes - (1) the batch approach and (2) the recursive approach, to improve

the performance of 3D image reconstruction.

• Chapter 4: we present a Bayesian modeling of the problem of 3D image recon-

struction from MFM measurement. The MFM acquisition system is modeled by

likelihood function, which takes into account two different noise schemes: (1) the

same noise for all the tiles, and (2) different noise for each tile. Then we propose

to use a prior model based on the TV norm. The reconstructed 3D object as well
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as the parameters of the model are estimated using maximum a posteriori (MAP)

inference.

• Chapter 5: we present a Poisson noise model for the imaging system and ADMM-

based image reconstruction algorithms for it. By using ADMM, we split the complex

problem into two simpler problems - deblurring and Poisson denosing. We use the

Bayesian approach from Chapter 4 for deblurring with estimation of the regulariza-

tion parameter. The step for the background signal estimation is also incorporated

in the ADMM framework.

• Chapter 6: we conclude the thesis along with prospect discussing remaining chal-

lenges and potential future work.
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CHAPTER 2

Review of Acquisition Models for Multi-Focus Microscopy

In this chapter, we review mathematical models for multi-focus microscopy (MFM) imag-

ing system and corresponding image reconstruction methods. We describe general forward

models for fluorescence microscopy and MFM, and then, introduce two different noise mod-

els: Gaussian and Poisson noise models. Based on these two noise models, we model the

acquisition process for MFM in two different ways. We also derive the formulation for image

reconstruction from the two acquisition models by using their likelihood function and regular-

ization terms. This chapter is the review for mathematical models of MFM imaging system

and corresponding image reconstruction methods and guide for the following chapters, but

it does not have any experiment.

2.1. Acquisition Models for MFM

2.1.1. Acquisition Model for Fluorescence Microscopy

Fluorescence microscopy produces a two-dimensional (2D) image from a 3D sample. This

process involves 3D convolution between the point spread function (PSF) of the system and

the 3D sample, and extraction of the focused plane or z = 0 without loss of generality. The

captured image also contains a background signal that comes from scattering and reflection

of fluorescence light in the medium, which can be approximated as a uniform signal. Also,

random noise will be involved in imaging process. Noise can come from multiple sources
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such as electrical circuit of the sensor, shot noise from quantum fluctuation, quantization

error, etc.

Let f ∈ RN×1, g ∈ RM×1, and b ∈ RM×1 denote the lexicographical representation of

the original image, the observed image, and the background signal, and H ∈ RN×N and

D ∈ RM×N the PSF matrix that characterizes blurring from the optical system, and the

extraction matrix, respectively. Considering all the factors above, the image acquisition

process of fluorescence microscope can be generally modeled as

g = N (DHf + b), (2.1)

= N (Kf + b), (2.2)

where K = DH, and D ∈ RM×N and H ∈ RN×N are the extraction and the PSF matrices,

respectively. N (·) denotes noise operator, which is usually assumed as Gaussian noise or

Poisson noise depending on the imaging system.

2.1.2. Acquisition Model for MFM

MFM produces a 2D image that contains multiple sub-images (or tiles) from a 3D sample.

PSF for each tile is unique because it is focused on a different position in the z axis, and it

also has different shapes due to chromatic aberration from the DOE. Let gj ∈ RMt×1 and

Hj ∈ RN×N denote the j-th tile on a MFM image and the corresponding PSF, respectively.

Then, the acquisition process for the j-th tile of MFM is modeled as

gj = N (DHjf + bj) (2.3)

= N (Kjf + b), (2.4)
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where j = 1, . . . , Nt, with Nt being the number of tiles for MFM.

Then, the whole observation including all the tiles can be represented as

g = N (Kf + b), (2.5)

where

g =


g1

...

gNt

 ,K =


K1

...

KNt

 ,b =


b1

...

bNt

 . (2.6)

2.1.3. Noise Model

Noise on the image has multiple sources and each noise has different statistical properties.

For example, noise from the sensor is well-modeled as Gaussian noise. Shot noise from

quantum fluctuation follows Poisson statistics, and the quantization error noise has uniform

distribution. Having the right noise model is important for the image reconstruction because

the likelihood function, which corresponds to the data fidelity measure, is derived from

statistics of the noise. In most imaging system, the most dominant noise models are Gaussian

and Poisson noise models. We also consider these two models for MFM.

2.1.3.1. Gaussian Noise Model. Gaussian noise is the most common noise model in

signal processing due to the generality and simplicity of Gaussian distribution. It is additive

and signal-independent. The image acquisition model for i-th pixel with Gaussian noise

model is as

gi = Kf i + bi + ε (2.7)
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where ε follows the probability distribution as

p(ε) =
1√

2πβ−1/2
exp

{
− β

2
ε2
}
, (2.8)

where β is the precision or the inverse variance of the Guassian statistics.

For the whole image, the acquisition model will be written as

g = Kf + b + ε (2.9)

where ε follows the probability distribution as

p(ε|β) =
βM/2

(2π)M/2
exp

{
− β

2
‖ε‖2

}
, (2.10)

assuming the i.i.d. Gaussian distribution. It can be expressed as ε ∼ N (0, β−1I) for sim-

plicity.

2.1.3.2. Poisson Noise Model. Poisson noise is from photon counting/arrival process

from the photon detector and it appears dominant in low-level-light imaging systems. Unlike

Gaussian noise, Poisson noise is not additive and signal-dependent. The image acquisition

model with Poisson noise for the i-th pixel is expressed as

gi = P(Kf i + bi), (2.11)

with nonlinear Poisson noise operator P(·), which follows the probability distribution as

p(gi|f) = − log p(g|f) (2.12)

=

[
Kf + b

]gi

i
exp (−

[
Kf + b

]
i
)

gi!
, (2.13)
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where [·]i indicates the i-th pixel.

For the whole image, the acquisition model with Poisson noise will be written as

g = P(Kf + b), (2.14)

with the probability distribution as

p(g|f) =
M∏
i=1

[
Kf + b

]gi

i
exp (−

[
Kf + b

]
i
)

gi!
. (2.15)

where M denotes the number of pixels in g.

2.2. Acquisition Models and 3D Image Reconstruction for MFM

In this section, we introduce two MFM acquisition models with two different noise models

from Section 2.1.3, and describe image reconstruction methods based on the acquisition

models. For each acquisition model, we can formulate the optimization problem for image

reconstruction, whose objective function consists of the negative log-likelihood function as

data fidelity term and the 3D total variation (TV) term as regularization with non-negativity

constraint. The problem formulation described here will be the foundation of the advanced

methods in Chapters 3, 4, and 5.

2.2.1. Acquisition model based on Gaussian noise

Assuming Gaussian noise, the acquisition model for j-th MFM tile is expressed as

gj = Kjf + bj + εj (2.16)
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where j = 1, . . . , Nt, with the probability distribution as

p(εj|βj) =
βj

Mt/2

(2π)Mt/2
exp

{
− βj

2
‖εj‖2

}
. (2.17)

Thus, the likelihood for the whole MFM image is described as

p(g|f ,β) =
Nt∏
j=1

βj
Mt/2

(2π)Mt/2
exp

{
− βj

2
‖gj −Kjf − bj‖

}
. (2.18)

The image reconstruction problem can be formulated as minimization of the sum of the

negative log-likelihood and TV regularizer as follows:

f̂ = arg min
f≥0

1

2

Nt∑
j=1

βj‖gj −Kjf − bj‖2 + αTV(f), (2.19)

where TV(f) is defined as

TV(f) =
N∑
i=1

√
(∆x

i f)2 + (∆y
i f)2 + (∆z

i f)2 (2.20)

where i is the index for voxels, and ∆x, ∆y, and ∆z denote the first difference operator along

the x, y, and z directions, respectively.

Assuming bj is known, Eq. 2.19 can be re-written as

f̂ = arg min
f≥0

1

2

Nt∑
j=1

βj‖g′j −Kjf‖2 + αTV(f). (2.21)

where g′j = gj − bj. This MFM model and the image reconstruction method will be used

in Chapter 4.
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As a special case, we can assume the same level of Gaussian noise for all the tiles (βj = β

for all j). Then the acquisition model of MFM becomes as

g = Kf + b + ε (2.22)

where ε ∼ N(0, β−1IM).

Similarly, the image reconstruction problem is formulated as follows:

f̂ = arg min
f≥0

β

2

Nt∑
j=1

‖g′j −Kjf‖2 + αTV(f) (2.23)

= arg min
f≥0

1

2

Nt∑
j=1

‖g′j −Kjf‖2 + λTV(f), (2.24)

λ = α/β is the regularization parameter.

Assuming b is known, Eq. 2.24 can be re-written as

f̂ = arg min
f≥0

1

2
‖g′ −Kf‖22 + λTV(f), (2.25)

where g′ = g − b. This MFM model and the image reconstruction formulation will be used

in Chapter 3.

2.2.2. Acquisition model based on Poisson noise

Assuming Poisson noise, the acquisition model for MFM becomes as

g = P(Kf + b). (2.26)

where P(·) is Poisson noise operator.
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From this acquisition model, the image reconstruction problem can be formulated as

follows:

f̂ = arg min
f≥0
− log p(g|f) + λTV(f) (2.27)

= arg min
f≥0
L(f) + λTV(f), (2.28)

where L(f) denotes the negative log-likelihood from Poisson statistics ignoring the constant

factors, defined as

L(f) =
M∑
i=1

{[
Kf + b

]
i
− gi log

[
Kf + b

]
i

}
, (2.29)

where i is the pixel index. This acquisition model and the image reconstruction formulation

will be used in Chapter 5.

2.3. Conclusion

In this chapter we have reviewed the two different acquisition models for MFM based

on two different noise models, and formulate the corresponding image reconstruction meth-

ods. The acquisition models and the reconstruction methods will be bases for the advanced

methods in Chapter 3, 4, and 5.
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CHAPTER 3

Three-Dimensional Image Reconstruction from Multi-Focus

Microscope: Axial Super-Resolution and Multiple-Frame

Processing

In this chapter, we present a multiple-frame (MF) three-dimensional (3D) image re-

construction algorithm for multi-focus microscope (MFM) images. Multi-focus microscope

(MFM) provides a way to obtain 3D information by simultaneously capturing multiple focal

planes. The naive method for MFM reconstruction is to stack the sub-images with align-

ment. However, the resolution in the z-axis in this method is limited by the number of

acquired focal planes. In this work we build on a recent reconstruction algorithm for MFM,

using information from multiple frames to improve the reconstruction quality. We propose

two multiple-frame MFM image reconstruction algorithms: batch and recursive approaches.

In the batch approach, we take multiple MFM frames and jointly estimate the 3D image and

the motion for each frame. In the recursive approach, we utilize the reconstructed image

from the previous frame. Experimental results show that the proposed algorithms produce a

sequence of 3D object reconstruction with high quality that enable reconstruction of dynamic

extended objects.

3.1. Introduction

The conventional way to acquire a 3D image of the sample (i.e., the object) with a

microscope is via sequential refocusing. Once a focal stack of the object is captured, and
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given the point spread function (PSF) of the optical system, a 3D deconvolution is performed

to reconstruct the 3D object. However, sequential refocusing has serious disadvantages. It is

too slow to accurately capture the dynamics and the stage movement for refocusing can cause

perturbation of the sample. To overcome these limitations, Abrahamsson et al. developed

the multi-focus microscopy (MFM) to capture multiple focal planes as a single snapshot [14].

MFM uses a diffractive grating or diffractive optical element (DOE) to split the light from

different focal planes into separate paths and forms an array of images on the camera.

Given a single MFM measurement, a 3D volume can be generated simply by stacking

the sub-images with the alignment [14]. However, in this way, one can only reconstruct

as many focal planes as the number of sub-images, and the z spacing between the slices is

limited to the focal shift between two adjacent sub-images. Also, it will suffer from the out-

of-focus blur. Huang et al. proposed a reconstruction method that uses a densely z-sampled

3D PSF comprised of these 2D depth-encoded MFM images [17]. This approach handles

the out-of-focus blur and results in improved resolution in the z-axis for single frame MFM

images.

Because MFM is able to capture video of dynamic scenes, we can make use of multiple

frames to obtain a higher quality reconstruction. The same idea has been widely used in

the super-resolution (SR) literature, where the motion between different frames is taken

into account to complete sub-pixel information [41–44,46,47,64,65]. Tsai and Huang first

proposed to use multiple images to obtain a high resolution (HR) image but only considered

translational motion [64]. Farsiu et al. proposed a robust estimation method by using l1

minimization and extended the motion model to the affine transformation [65]. He et al.

modeled the degradation with a nonlinear function to represent motion with both rotation

and translation [41]. Belekos et al. used the maximum a posteriori (MAP) framework for
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video SR [42] and Babacan et al. proposed a variational Bayesian framework for multiple-

frame SR [43]. Liu et al. proposed a MAP based video SR method that jointly estimates the

HR image, blur, motion, and noise. They used an optical flow algorithm to estimate local

motion [44]. Recent learning-based video SR methods also utilized an optical flow algorithm

for motion estimation [46,47].

All the methods described above were developed for 2D image SR. Here we extend

multiple-frame (MF) image SR schemes to 3D space to obtain a higher resolution along

the z-axis in MFM. We build on single frame MFM reconstruction approach in [17] and

improve the reconstruction using multiple frames. We propose two approaches for MF re-

construction: the batch approach which exploits the multiple neighboring frames, and the

recursive approach which uses the 3D reconstruction obtained for the previous frames. The

proposed methods can also be applied to a broader range of inverse problems with multiple

observations, such as, 3D image reconstruction from conventional microscopy or uncalibrated

tomography [56].

The chapter is organized as follows. Single frame reconstruction from [17] is summarized

in Section 3.2 using notation consistent with the rest of the paper. The MF reconstructions

algorithms are introduced in Section 3.3. Experimental results and discussion are provided

in Section 3.4 and we conclude our paper in Section 3.5.

3.2. Single-Frame MFM Reconstruction

3.2.1. Acquisition Model

Fig. 1.1 (a) illustrates our MFM system. The DOE splits the light from different focal planes,

forming K×K tiles as shown in Fig. 1.1 (b). Each tile corresponds with the image obtained

for a different focal plane. Because it is a linear spatially invariant system, its whole optical
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system can be characterized by its PSF. The 3D PSF is estimated by sequential refocusing

with a fixed fluorescent bead.

Let f ∈ RNx×Ny×Nz , g ∈ RMx×My , and h ∈ RMx×My×Mz denote a 3D object, its MFM

measurement, and the 3D PSF of the MFM, respectively. The acquisition process of MFM

can be modeled as the extraction of one plane (suppose z = 0) after 3D convolution of f and

h, and equivalently as the sum of 2D convolutions of f(x, y;−z) and h(x, y; z), plus additive

Gaussian noise ε ∈ RMx×My as

g(x, y) = h(x, y, z) ∗3D f(x, y, z)
∣∣
z=0

+ ε(x, y)

=

bNz/2c∑
z=−bNz/2c

h(x, y; z) ∗2D f(x, y;−z) + ε(x, y),

(3.1)

where ∗3D and ∗2D denote the 3D convolution and the 2D convolution operators, respectively.

Eq. 3.1 can also be expressed in matrix-vector notation as

g = Hf + ε (3.2)

where f ∈ RNxNyNz×1, g ∈ RMxMy×1, and ε ∈ RMxMy×1 are vectorized f , g, and ε, respectively,

and H ∈ RMxMy×NxNyNz denotes the MFM PSF matrix.

3.2.2. Single-Frame Reconstruction (SFR)

To reconstruct a 3D object, f , when provided a MFM image, g, and the MFM PSF matrix,

H, we can formulate the inverse problem as in [17]. Assuming Gaussian noise, a regularized

least squares method to reconstruct f is formulated as follows:

f̂ = arg min
f
‖g −Hf‖22 + λΦ(f), subject to f ≥ 0 (3.3)
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where λ is a regularizing parameter, and Φ(·) is a regularizer function. In this paper we chose

the 3D total variation (TV) regularizer because it encourages piecewise smoothness of the

signal by enforcing sparsity in the gradient domain. It is suitable for extended objects, such

as bacteria that we want to reconstruct. The TV regularizer for a 3D object, f , is defined as

Φ(f) =
∑
i

√
(∆x

i f)2 + (∆y
i f)2 + (∆z

i f)2 (3.4)

where i is a voxel index and ∆x
i f , ∆y

i f , and ∆z
i f denote first-order difference operators

in the x, y, and z directions, respectively. Eq. 3.3 is solved by employing the two-step

iterative shrinkage/thresholding (TwIST) algorithm [24] with the projected gradient scheme

for the non-negativity constraint. Note that the choice of the regularizing parameter, λ, is

important for the quality of reconstruction. If it is too large or too small, it converges to a

poor solution. In our experiments, we performed an exhaustive search for this parameter to

obtain an optimal reconstruction.

3.3. Multiple-frame MFM Reconstruction

Given a sequence of MFM images, we can use multiple MFM images to achieve a higher

quality 3D reconstruction. We first describe two acquisition models for MF MFM images

and introduce two approaches for the MF MFM reconstruction. Here we assume that there

is a single rigid object in the sample space and model the motion as a rigid transformation

that only includes 3D translation and 3D rotation.

3.3.1. Acquisition Model

The first model for the acquisition process describes a mapping from a 3D object at k-th

frame, fk ∈ RNxNyNz×1, to the captured MFM image, gk ∈ RMxMy×1. Let H ∈ RMxMy×NxNyNz
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and εk ∈ RMxMy×1 denote the MFM PSF matrix and the noise in k-th frame respectively.

Then, the acquisition process is modeled as

gk = Hfk + εk. (3.5)

which is the same form as Eq. 3.2 in Section 3.2 for the SFR algorithm. The acquisition

model in Eq. 3.5 can be extended by considering the relationship between frames as

gk = HMl,k(αl,k)fl + εl,k (3.6)

where αl,k and Ml,k(αl,k) denote the motion parameters for the 3D object from l-th frame to

k-th frame and the warping matrix corresponding to αl,k, and εl,k is a Gaussian noise term.

αl,k consists of three parameters for 3D translation and three parameters for 3D rotation

since rigid transformation is assumed for the motion. Note that, in this model, every MFM

measurement originates from the reference object, fl, through a geometric transformation

and MFM imaging with noise.

3.3.2. Batch Approach

Based on the acquisition model in Eq. 3.6, we suggest to use a batch of MFM measurements

to reconstruct one frame, fl, and we call it the batch approach for MF reconstruction. We

formulate the optimization problem to estimate fl for the batch approach as

{f̂l, α̂l,k} = arg min
fl≥0,αl,k

l+m∑
k=l−m

‖gk −HMl,k(αl,k)fl‖22

+ λΦ(fl) + ω

l+m∑
k=l−m

‖αl,k‖22

(3.7)
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where m is a positive number that determines the number of neighboring frames used in the

reconstruction, and ω is the regularizing parameter for αl,k.

The first term in Eq. 3.7 is the data fidelity term based on the acquisition model in

Eq. 3.6. In principle, the whole sequence of MFM image can be used for the reconstruction

of fl, but it is computationally demanding and frames far in time can possibly degrade

the reconstruction quality due to large mis-registration error. Therefore, we use a batch of

frames around fl. The last term in Eq. 3.7 is a regularizer for the motion parameters. Since

the motion between two frames is small for a short period of time, we chose the l2 norm to

enforce small values for αl,k. ω is chosen empirically and is set to small values.

The alternating descent scheme is applied to solve the multi-variable non-convex problem

of Eq. 3.7. We solve for fl while fixing αl,k first, and then solve for the motion parameters

set by set while fixing fl and the other motion parameter sets. Note that in this approach

we have 2m sets of motion parameters to estimate (αl,k for k = l−m, · · · ,−1, 1, · · · , l+m).

The alternation is repeated until it converges.

3.3.3. Recursive Approach

Based on Eq. 3.5, each frame can be reconstructed by the SFR method as described in

Section 3.2. For k = 1, · · · , S, it can be expressed as

f̂k = arg min
fk≥0

‖gk −Hfk‖22 + λΦ(fk). (3.8)

Here we can exploit the information from previous frames in a recursive manner by using

the 3D reconstruction data from the previous frame. Since we assume the 3D object is

rigid, we add a constraint that the reconstruction at k-th frame should be the same as the
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reconstruction at (k − 1)-th frame under a rigid transformation as

{f̂k, α̂k−1,k} = arg min
fk≥0,αk−1,k

‖gk −Hfk‖22 + λΦ(fk)

+ η‖fk −Mk−1,k(αk−1,k)fk−1‖22,
(3.9)

where λ and η are the regularizing parameters for each regularizer term, which can be chosen

by exhaustive search.

Eq. 3.9 is a non-convex optimization problem with two unknown variables, fk and αk−1,k.

Similarly to the batch approach, we use the alternating descent algorithm to solve for each

variable in an alternating fashion until convergence.

3.4. Experimental Results

In this section, we evaluate the performance of single-frame reconstruction (SFR), multiple-

frame batch approach (MF batch) and multiple-frame recursive approach (MF recursive),

on both synthetic and real datasets.

3.4.1. Synthetic Experiment

For the synthetic experiment, a 3D image of a double-lobe bacterium was acquired by using

confocal microscopy. The 3D image is scaled, cropped, and located in the center of the

space of 50× 50× 51. 30 frames were generated by sequentially adding to each new frame a

rotation of 5◦ along the y-axis and 2◦ along the z-axis, and a 3D random shift generated by

multivariate Gaussian with mean 0 and covariance matrix I3×3. Fig. 3.2 (a) and Fig. 3.3 (a)

show the simulated 3D object at different frames. To visualize the 3D image more effectively,

we used a colormap such that blue and red colors indicate the lowest and the highest intensity

respectively, and display three projections onto the xy, yz, and zx planes as well. The object
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(a) (b)

Figure 3.1. Simulated MFM images with a bacterium-like object with Gauss-
ian noise (σn = 0.02). (a) The object lies in the xy plane at frame 3, and (b)
stands along the z-axis at frame 21.

lies along xy plane at frame 3, and stands along the z direction at frame 21. The obtained

frames are used as ground truth in our experiments.

To simulate the MFM acquisition model, each frame is degraded according to Eq. 3.1,

with a scaled version of the measured PSF. We generated observations for two different

standard deviation values of the Gaussian noise σn = 0.01 and σn = 0.02. Fig. 3.1 shows the

simulated MFM images at different frames with σn = 0.02.

Figures 3.2 and 3.3 show the original and the reconstructed 3D images, with noise

σn = 0.02, at frames 3 and 21 out of 30 frames. For both frames, we observe that the

reconstructions become elongated along the z axis, which is caused by the missing cone

problem in microscopy imaging [66, 67]. Nevertheless, we can observe the reconstructions

are very similar to the ground truth, especially along the xy plane. The quality between re-

construction methods is distinguished at frame 21 where SFR fails reconstructing the double
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lobe. However, MF reconstruction approaches reconstruct the two lobes as can be clearly

seen in the projections. The reconstruction of MF batch is better than SFR but it is visually

noisier than MF recursive.

Table 3.1 summarizes the overall performance of the MFM reconstruction algorithms

in average peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The

MF reconstruction methods improve the performance, and MF recursive results in the most

significant improvement in average. These numbers match the visual quality from Figs. 3.2

and 3.3. As the more neighboring frames are used, MF batch results in better performance

but with more intense computation.

The plots in Fig. 3.4 show the PSNR values for all the frames. They tell a few things

about the reconstruction methods. First, the MF approaches give better reconstruction

compared to the SFR method. The PSNRs of the MF approaches are higher than those of

the SFR method at most of the frames. Second, MF batch follows the trend of the SFR, but

produces higher quality reconstruction than SFR by using multiple observation. The more

observation, the better reconstruction. Third, the performance of MF recursive depends on

the previous reconstruction. The reconstruction quality does not change as abruptly as the

other methods frame by frame. Because it encourages the reconstruction to be the same

Table 3.1. Performance and running time of MFM image reconstruction algo-
rithms. Average PSNR, SSIM, and running time are calculated over 26 frames.
Running time is recorded in the unit of minute.

σn = 0.01 σn = 0.02
Methods PSNR SSIM Time PSNR SSIM Time

SFR 38.30 0.9868 1.12 36.47 0.9786 0.83
MF batch, m = 1 39.04 0.9899 19.97 37.31 0.9786 36.03
MF batch, m = 2 40.05 0.9919 49.58 38.17 0.9814 123.30

MF recursive 40.20 0.9897 4.36 39.57 0.9842 4.37
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(a) (b)

(c) (d)

Figure 3.2. Reconstructed 3D images at frame 3 with σn = 0.02. (a)
Ground truth, (b) SFR, PSNR:37.24, SSIM:0.9868, (c) MF batch (m = 2),
PSNR:38.13, SSIM:0.9887, (d) MF recursive, PSNR:37.79, SSIM:0.9877.

as previous reconstruction, it tries to keep the 3D shape. In this way, it produces more

consistent 3D reconstruction over the sequence.
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(a) (b)

(c) (d)

Figure 3.3. Reconstructed 3D images at frame 21 with σn = 0.02. (a)
Ground truth, (b) SFR, PSNR:36.39, SSIM:0.9747, (c) MF batch (m = 2),
PSNR:38.80, SSIM:0.9835, and (d) MF recursive, PSNR:40.97, SSIM:0.9866.

Table 3.1 also shows the average running time of the reconstruction in the unit of minute.

The MF reconstruction algorithms takes more time since they have more data to process
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(a) (b)

Figure 3.4. PSNRs for each frame, (a) σn = 0.01, (b) σn = 0.02.

and have to estimate the motion between frames in addition to the 3D image in an iterative

manner. The batch approach uses (2m+ 1) times as much data as SFR and also it has 2m

sets of the motion parameters to estimate. For the recursive approach, it adds as much data

as the reconstruction object for image estimation, and has one set of motion parameters

to estimate. Note that the time in the table for SFR does not include the time for the

exhaustive search for an optimal λ.

3.4.2. Real Experiment

A tumbling bacterium was captured with our MFM system [17]. The frame rate was about

30 fps and the illumination time was 20 ms per frame. The effective pixel size is 98nm×98nm

and the pixel resolution of the camera is 1024× 1024. Fig. 3.5 (a) shows an MFM image at

frame 22.

For real data, the reconstruction results are evaluated by visual quality. Fig. 3.5 shows

the MFM measurement and the reconstruction results with the three algorithms: SFR, MF

batch, and MF recursive at frame 22. While all three methods reconstruct the 3D image of
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(a) (b)

(c) (d)

Figure 3.5. Reconstructed 3D images from the real data at frame 22 (a) MFM
measurement, (b) SFR, (c) MF batch approach, and (d) MF recursive ap-
proach.

the bacterium that conforms to the size and the shape of the bacteria that we already know,

the MF reconstruction methods produce sharper 3D images than SFR. Also, SFR becomes

more sensitive to the choice of λ for the real data so we tried up to 15 values of λ to obtain

reasonable reconstruction quality.
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3.5. Conclusion

We have developed two multiple-frame (MF) 3D image reconstruction algorithms for

MFM: MF batch, and MF recursive. Our methods outperform the single-frame reconstruc-

tion, achieving higher quality image reconstruction in axial super-resolution. MF batch uses

a batch of neighboring MFM images for reconstruction while MF recursive utilizes the re-

constructed 3D image from the previous frame. Experimental results with both synthetic

and real data show the effectiveness of our methods.
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CHAPTER 4

Bayesian Approach for Automatic Joint Parameter Estimation in

Three-Dimensional Image Reconstruction from Multi-Focus

Microscope

In this chapter, we present a Bayesian approach for 3D image reconstruction of an ex-

tended object imaged with multi-focus microscopy (MFM). MFM simultaneously captures

multiple sub-images of different focal planes to provide 3D information of the sample. The

naive method to reconstruct the object is to stack the sub-images along the z-axis, but

the result suffers from poor resolution in the z-axis. The maximum a posteriori framework

provides a way to reconstruct a 3D image according to its observation model and prior

knowledge. It jointly estimates the 3D image and the model parameters. Experimental

results with synthetic and real experimental data show that it enables the high-quality 3D

reconstruction of an extended object from MFM.

4.1. Introduction

Multi-focus microscopy (MFM) was developed for fast acquisition of three-dimensional

(3D) information [14]. In addition to the conventional microscopy setup, MFM includes

a diffractive optical element (DOE), which splits the light from different focal planes into

different positions on a camera (see Fig. 1.1 (a)). A captured MFM image includes K ×K

sub-images (or tiles) of a focal stack as shown in Fig. 1.1 (b). By capturing a stack of Nt
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focal planes with a single shot, MFM enables the capture of a dynamic scene in biological

samples.

In [14], Abrahamsson et al. showed that MFM can be used for imaging movement of cells

and tracking a single molecule. However, they do not propose an algorithm to reconstruct

the original 3D object from an MFM measurement. Instead MFM sub-images are stacked

and aligned to get the 3D volume. With this scheme, one can only obtain as many focal

planes as the number of sub-images, and the z spacing of the reconstructed image is limited

to the focal shift between two adjacent sub-images. Also, this approach suffers from severe

out-of-focus blur, which is a common issue for wide-field microscopy [66,67].

In order to overcome these limitations, Huang et al. [17] proposed a method to reconstruct

the 3D volume from the measured MFM images. To deal with the ill-posedness of the

problem, they developed an optimization approach using sparsity (`1) and total variation

(TV) regularizers. Yoo et al. [68] proposed an improved approach to reconstruct the 3D

volume from a sequence of frames of the scene. Both methods achieved super-resolution in

the z-axis for its 3D image reconstruction, increasing the number of the xy slices from 25 to

101.

The performance of the methods proposed in [17,68] heavily depends on regularization

parameters, which must be selected through an exhaustive search. The use of the Bayesian

paradigm can help to mitigate this problem by automatically estimating all the unknowns of

the problem from the data [69,70]. Some examples of its applications in image processing

are image restoration [71], blind image deconvolution [29], image and video super-resolution

[43,44] or light field acquisition [72].

In this work, we develop a Bayesian approach to the problem of 3D object reconstruction

from MFM images. The MFM acquisition system is modeled by a likelihood function,
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which takes into account two different noise schemes: (1) the same noise for all the tiles,

and (2) different noise for each tile. Then we use a prior model based on the TV norm,

following [17,68]. The reconstructed 3D object as well as the parameters of the model are

estimated using maximum a posteriori (MAP) inference.

The two-dimensional (2D) TV regularizer was introduced in [35] and it has been widely

used in image reconstruction to enforce piece-wise smoothness on the reconstructed images

(see [72, 73]). In addition to [17, 68], the 3D TV regularizer has been used in [74] in a

tomography problem. However, to the best of our knowledge, a method for estimating the

regularization parameter for the 3D TV function has not been reported in the literature.

The Bayesian approach we develop allows extension of the methodology introduced in [73]

to estimate the TV prior parameter in the 3D case.

In summary, the novelties of our work are: (1) a Bayesian modeling of the problem of 3D

reconstruction from an MFM image, (2) a new noise model that allows different noise levels

for each MFM sub-image, and (3) automatic estimation of all the noise variances as well as

the parameter of the 3D TV prior.

The rest of this chapter is organized as follows. The Bayesian modeling is described in

Section 4.2. MAP estimation based on the modeling is explained in Section 4.3. Experi-

mental results and discussion are provided in Section 4.4 and we conclude the chapter in

Section 4.5.

4.2. Bayesian modeling

The image acquisition process in MFM microscopy can be modeled as follows:

gj = DHjf + εj, j = 1, . . . , Nt. (4.1)
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In the j-th tile, we acquire a sub-image gj ∈ RM×1 written as a column vector. The

3D object to be recovered, also written as a column vector f ∈ RN×1, is convolved with a

3D point spread function (PSF). In matrix notation, this 3D convolution is represented as

Hj ∈ RN×N . Note that for each tile, we have a different PSF. This is due to chromatic

aberrations introduced by the DOE, which produce different blur for each tile in addition to

the different focus (see [14, 17] for details). Once the original 3D object is convolved with

the PSF, we extract the central slice using the downsampling operator D ∈ RM×N to be

captured on a 2D sensor. The observation includes additive Gaussian noise εj ∈ RM×1.

In this work, we consider two cases of noise: (1) all the tiles have the same noise variance

β−1, and (2) each tile has different noise variance βj
−1

. Both cases lead to the following

likelihood function

p(g|f ,β) =
Nt∏
i=1

βj
M/2

(2π)M/2
exp

{
−β

j

2
‖gj −DHjf‖22

}
, (4.2)

where g = [g1T , . . . ,gNt
T

]T and β = [β1, . . . , βNt ]T . This observation model is related to

the one introduced in [43], where the authors make use of the Bayesian framework to solve

a super-resolution problem. However, there are differences between the two models. In our

model, the downsampling matrix D extracts a 2D slice of a 3D volume, while in [43] the

downsampling matrix reduces the size of an image in 2D. Also, an additional warping matrix

is considered in [43] to register the observed images.

3D object reconstruction from MFM is a highly undetermined problem because we recover

many more slices than the number of tiles in the MFM images. Use of priors mitigates this
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problem, and we follow [17] and [68], and introduce a 3D TV prior

p(f |α) =
1

Zα
exp {−αTV(f)} , (4.3)

where TV(f) =
∑N

i=1

√
(∆x

i f)2 + (∆y
i f)2 + (∆z

i f)2 and Zα is the partition function depending

on the parameter α.

In order to estimate the parameters from the data, we need to know the partition func-

tion Z−1α =
∫

exp {−αTV(f)} df , however, this integral is not tractable and Zα cannot be

explicitly calculated. In [58], the authors approximate the partition function of the 2D TV

prior. Applying the same procedure as in [58] for the 3D case, we calculate the integral

∫
R3

exp
{
−α
√
u2 + v2 + w2

}
d(u, v, w) =

8π

α3
, (4.4)

which leads to the following approximation of the prior distribution

p(f |α) ∝ αN/2 exp{−αTV(f)}. (4.5)

Note that the approximated partition function coincides with the 2D case used in [26,58].

Finally, all of the available information about the problem is summarized in the joint

distribution

p(g, f ,β, α) = p(g|f ,β)p(f |α)p(β)p(α), (4.6)

where p(β) and p(α) are non-informative flat priors.

4.3. Maximum a Posteriori (MAP) Inference

In order to estimate all the unknowns of the model, we estimate the maximum of the

posterior distribution subject to all the voxels of the restored 3D object having non-negative



52

values, that is,

{f̂ , β̂, α̂} = arg max
f≥0,β,α

p(f ,β, α|g) (4.7)

= arg max
f≥0,β,α

p(g, f ,β, α)

p(g)
(4.8)

= arg max
f≥0,β,α

p(g, f ,β, α) (4.9)

= arg min
f≥0,β,α

− log p(g, f ,β, α) (4.10)

= arg min
f≥0,β,α

− log p(g|f ,β)p(f |α)p(β)p(α). (4.11)

arg min
f≥0,β,α

Nt∑
j=1

{
−M

2
log βj +

βj

2
‖gj −DHjf‖22

}
− N

2
logα + αTV(f) (4.12)

Since we cannot minimize Eq. (4.11) with respect to all of the unknowns at the same time,

we alternate the estimations of the 3D object, f , and the parameters, β and α, and iterate

until the method converges.

Given the estimated parameters, β(n) and α(n) for the n-th iteration, the 3D object, f , is

estimated by minimizing

f (n+1) = arg min
f≥0

1

2

Nt∑
j=1

βj
(n)‖gj −DHjf‖2 + α(n)TV(f), (4.13)

which can be efficiently solved by using the TwIST algorithm introduced in [24], with the

non-negativity constraint modification used in [17,68].

When we have the same variance of noise for all the tiles, we substitute f (n+1) for f in

Eq. (4.11). Taking derivatives with respect to β and equating to zero, we obtain the following
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update rule:

β(n+1) =
MNt∑Nt

j=1 ‖gj −DHjf (n+1)‖2
. (4.14)

Similarly, for the case of different noise variance for each tile, we obtain the following update

rule for β:

βj
(n+1)

=
M

‖gj −DHjf (n+1)‖2
, j = 1, . . . , Nt. (4.15)

To update α, we substitute f (n+1) for f in Eq. (4.11), and taking derivatives with respect

to α and equating to zero, we obtain the following update rule:

α(n+1) =
N

2TV(f (n+1))
. (4.16)

The proposed method is summarized in Algorithm 1. Note that the objective function in

Eq. (4.11) is always positive, and decreases in each iteration and, therefore, the convergence

of the proposed algorithm is guaranteed.

Algorithm 1 MAP-TV Reconstruction for MFM

Require: n = 0, the observation g, β(0) and α(0).
1: repeat
2: Calculate f (n+1) using TwIST to solve problem in Eq. (4.13).

3: Calculate β(n+1) using f (n+1) in Eq. (4.14) or Eq. (4.15);
4: Calculate α(n+1) using f (n+1) in Eq. (4.16);
5: n = n+ 1;
6: until Convergence

4.4. Experimental Results

To validate our algorithm, we performed experiments with both synthetic and real data.

We compare the performance of the proposed method with the regularized least squares with

TV regularizer (RLS-TV) proposed in [17]. For RLS-TV, we need to set the regularization
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parameter and we performed the exhaustive search for the parameter. Our method is tested

in two schemes. In the first scheme, we assume β1 = · · · = βNt = β and estimate β as in

Eq. (4.14) (MAP1). MAP1 assumes the same level of noise for all the tiles as RLS-TV. In

the second scheme, we estimate each βj separately as in Eq. (4.15) (MAP2).

4.4.1. Simulation with synthetic data

Our synthetic data is based on experimental data from a 3D image stack of a bacterium

obtained by confocal microscopy. It is scaled, cropped, and located to the center of volume

composed of 50 × 50 × 51 voxels. Fig. 4.1 (a) shows the bacterium image. To visualize 3D

image effectively, we cropped the region around the bacterium to be the size of 35× 35× 21

and the center slices of the volume in xy / yz / zx planes are shown in top-left, top-right,

and bottom-left of the figure, respectively.

To simulate the MFM experiment, we used the forward model defined in Eq. (4.1) with

a measured PSF. We simulated two different levels of Gaussian noise, setting the standard

deviation of the noise to σ ∈ {0.02, 0.05}. At the same time, we also simulated two types of

noise for MFM: (1) Gaussian noise whose level is based on the maximum intensity over the

whole MFM image, producing the same level of noise for all the sub-images (type 1 noise),

and (2) Gaussian noise whose level is proportional to the maximum intensity of each sub-

image, producing different level of noise for each sub-image (type 2 noise). By combination

of two levels and two types, four different noise cases are simulated. The two cases are shown

in Fig. 4.2. From the figures, we can see that the noise level is the same for the whole MFM

image in Fig. 4.2 (a), while each tile has a different amount of noise in Fig. 4.2 (b).

The performance of reconstruction in PSNR and SSIM is summarized in Table 4.1. We

performed the same simulations 10 times with different random number generator seeds
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Figure 4.1. Image of a fluorescently labelled bacterium and reconstructed im-
ages from MFM measurement with noise type 2, σ = 0.02. (a) Ground truth
from a confocal microscopy image stack, (b) RLS-TV, (c) MAP1, and (d)
MAP2

for noise, and calculated the average of the PSNRs and SSIMs of the reconstruction. As

described in the table, RLS-TV results in higher PSNRs and SSIMs in most cases. It is
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(a) (b)

Figure 4.2. Simulated MFM data based on experimental data of a fluorescently
labelled bacterium with two different types of noise. Each of the 25 tiles is at
a different focal plane of the same object. (a) Type 1 noise, σn = 0.05, and
(b) type 2 noise, σn = 0.05.

reasonable that RLS-TV produces better solutions than MAP-TV1 because we perform an

exhaustive search for RLS-TV. The optimal value of the regularization parameter for RLS-

TV is chosen based on PSNR/SSIM. MAP1 jointly estimates the parameters corresponding

the regularization parameters (α, β) and the 3D image, based on posterior probability but

it does not necessarily match the best PSNR parameter. The solution is biased toward the

prior that prefers a piecewise smooth image. This argument also applies to MAP2. In fact,

for type 2 noise, the MAP2 even produces comparable or better PSNR and SSIM. This is

because RLS-TV is based on the assumption that the noise is the same for all tiles, while

MAP2 considers different noise levels for each tile. Note that we can also revise RLS-TV to

consider different noise by adding the weights for all tiles. However, it becomes impossible



57

to perform an exhaustive search. Considering 10 values for each parameter, the number of

reconstructions to perform in an exhaustive search would be 1025.

Table 4.1. Performance of MFM image reconstruction algorithms. Average
PSNR and SSIM are calculated over 10 realizations of noise

RLS-TV MAP1 MAP2
Noise PSNR SSIM PSNR SSIM PSNR SSIM

Type 1, σ = 0.02 max(g) 36.67 0.9826 35.03 0.9647 34.99 0.9668
Type 1, σ = 0.05 max(g) 35.01 0.9673 31.14 0.9207 31.22 0.9228
Type 2, σ = 0.02 max(gj) 37.40 0.9891 36.83 0.9773 38.25 0.9804
Type 2, σ = 0.05 max(gj) 35.81 0.9811 33.27 0.9590 34.03 0.9516

The reconstructed images are shown in Fig. 4.1. Visual quality of the reconstructed

images from MAP1/2 are clearly better than those from RLS-TV. The reconstructed images

from RLS-TV are distorted in xy and elongated in the z-axis. In contrast, MAP1/2 produce

more smooth and natural images. The overall intensity level becomes a bit lower than the

ground truth but this can be easily compensated. We also notice the different performance

between MAP1 and MAP2. The results are similar but MAP2 gives sharper images and

less elongation in the z-axis. We observe that the difference between them becomes more

obvious with type 2 noise. Because MAP2 is able to estimate different noise for each tile, it

also reconstructs higher-quality images.

Fig. 4.3 shows the performance of parameter estimation for noise. For noise type 1, both

MAP1 and MAP2 estimate β close to the ground truth. The estimated βj from MAP2 is

varying for each tile even though it has the fixed noise level. This is because the captured

object in the tiles affects the variance of the signal. As can be seen in Fig. 4.3 (c) and (d),

MAP2 estimates the different noise level precisely, while MAP1 estimates the average noise

level.
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(a) (b)

(c) (d)

Figure 4.3. Estimation of β with different types and levels of noise. (a) Type
1 noise, σ = 0.02 max(g), (b) type 1 noise, σ = 0.05 max(g), (c) type 2 noise,
σ = 0.02 max(gj), and (d) type 2 noise, σ = 0.05 max(gj).

4.4.2. Real experiments

We captured experimental MFM images of a tumbling bacterium with our MFM system [17].

The effective pixel size is 98nm×98nm and the pixel resolution of the camera is 1024×1024.

The image from the MFM consists of 5× 5 tiles, and 150× 150 pixels in each tile, which is

equivalent to 14.7µm× 14.7µm in sample space. Fig. 4.4 shows a single MFM image from a

200 frame video.
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Figure 4.4. MFM experimental measurement of a tumbling fluorescently la-
belled bacterium

The 3D image reconstructions from the experimental MFM data are shown in Fig. 4.5.

We cropped the volume as described in Section 4.4.1 for the simulated data. Fig. 4.5 (a)

shows the 3D volume obtained by stacking the tiles with cubic interpolation along the z-

axis. It is very noisy and also blurred. Severe out-of-focus blur causes poor resolution in

the z-axis. RLS-TV and MAP1/MAP2 produce high-quality reconstructions, achieving axial

super-resolution, as shown in Fig. 4.5 (b-d). To compare these methods, MAP-TV is superior

to RLS-TV in two aspects. First, it achieves better axial super-resolution. Looking at the xz

and yz cuts of the 3D volume in Fig. 4.5, MAP1 and MAP2 produce sharper reconstructions

with less elongation in the z-axis. Second, the reconstructions from MAP1 and MAP2 are

automatically estimated with other model parameters, while the reconstruction by RLS-TV

is obtained by visual inspection after an exhaustive search.



60

(a) (b)

(c) (d)

Figure 4.5. 3D image reconstruction from experimental data. (a) tile stacking,
(b) RLS-TV, (c) MAP1, and (d) MAP2

4.5. Conclusion

We have introduced a Bayesian modeling for the problem of 3D image reconstruction

from MFM images. The model we developed considers two scenarios: (1) the same noise
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variance for all of the tiles, and (2) different noise variance for each tile. In order to estimate

the parameter of the prior distribution, we have approximated the partition function of the

3D TV prior. MAP inference has been performed to derive an iterative algorithm that

automatically estimates all of the unknowns of the problem from the data by alternating

between the 3D object estimation and model parameter estimation. The Bayesian modeling

and MAP-TV have been evaluated using both synthetic and experimental MFM data. MAP-

TV obtained high-quality reconstructions of the 3D object in both cases, including accurate

estimations of the noise variances in the synthetic experiment. It has been demonstrated to

be competitive comparing with RLS-TV with an exhaustive search of the model parameters.
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CHAPTER 5

Poisson Noise Modeling and ADMM-based Image Reconstruction

for Multi-Focus Microscopy

In this chapter, we analyze Poisson noise model for multi-focus microscopy (MFM) and

develop an image reconstruction algorithm to deal with Poisson noise. MFM captures mul-

tiple focal planes on a single camera by splitting the light from different focal planes into

different locations on the camera sensor. While the split of light provides the 3D information,

it reduces the number of photons that it captures. Thus, in this work, we consider Poisson

noise in the forward model for MFM. To deal with Poisson noise, we adopt an alternating

direction method of multipliers (ADMM) framework. ADMM splits a Poisson image decon-

volution problem into two simpler problems - deblurring and Poisson denoising, allowing an

efficient optimization. Maximum a posteriori (MAP) inference is used to estimate the reg-

ularization parameter, and the background signal estimation is incorporated in the ADMM

framework. Experimental results with synthetic and real data verify the effectiveness of the

proposed algorithm.

5.1. Introduction

Acquisition of four-dimensional (4D) data is one of the challenges in modern microscopy.

Conventional microscopy requires sequential refocusing for 3D data acquisition, which is too

slow to capture the dynamic events in real-time. Multi-focus microscopy (MFM), introduced

by Abrahamsson et al. in [14], overcomes this problem by simultaneously capturing multiple
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focal planes with a single snapshot. Figure 1.1 illustrates the differences between conventional

microscopy and MFM. While conventional microscopy (Fig. 1.1 (a) and (b)) can only capture

the information for one focal plane, a diffractive optical element (DOE) is introduced in MFM

(Fig. 1 (c) ) to split the light from different focal planes into different regions of the camera

sensor. The 2D image captured by MFM comprises K ×K tiles or sub-images, where each

of them corresponds to a different focal plane (see Fig. 1.1 (d)).

In [14], the authors reconstruct the 3D information by stacking the observed tiles, mainly

for localization and tracking of an object in the 3D space. However, this method only provides

a small number of slices (K2 = 9 or K2 = 25) and the out-of-focus blur and noise remains in

the 3D stack. To overcome these limitations, several methods have been developed achieving

the 3D reconstruction of an extended object [17, 68, 75]. Huang et al. estimated the 3D

object using regularized least squares with sparsity and total variation regularizers [17].

Yoo et al. further improved the performance of 3D image reconstruction by incorporating

information from multiple frames [68]. In [75], Yoo et al. proposed a Bayesian modeling

for MFM with maximum a posteriori (MAP) inference to jointly estimate the 3D image and

the model parameters.

The aforementioned methods assume that the captured image is corrupted by Gaussian

noise. In [75], Yoo et al. suggested a more general noise model that consider a different

noise level for each tile, but they still assume only Gaussian noise. However, MFM has

a low photon budget due to its light splitting and low diffraction efficiency of DOE [76]

and Poisson noise should be considered in its image reconstruction. Poisson noise is more

dominant in a low-photon imaging system, such as, astronomical [52, 53, 71, 77, 78] and

biomedical imaging [48, 49, 79–82]. The Richardson-Lucy (RL) algorithm is a classical

deconvolution method for Poisson noise model, which uses a multiplicative update based on
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the gradient of its log-likelihood function [19,20]. It is known that RL algorithm converges to

a noisy solution and thus early stopping must be used. To avoid the undesired noisy solution,

regularized RL algorithms were developed [79,83,84]. Tikhonov regularization [83,84], and

total variation (TV) regularization [79] are incorporated in RL algorithm.

Other Poisson image deconvolution methods have been developed in the literature [85–

87]. Harmany et al. presented an optimization framework to use a quadratic approxima-

tion of the objective function that consists of log-likelihood and sparsity-promoting penalty

terms [85]. Figueiredo and Biocaus-Dias proposed an alternating direction method of mul-

tipliers (ADMM) based Poisson image deconvolution method (PIDAL) [86], and Setzer et

al. presented an algorithm based on split Bregman technique, which is closely related to

ADMM [87].

Recently, He et al. modeled the MFM imaging system with Poisson noise and applied the

TV regularized RL algorithm for 3D image reconstruction [76]. They also jointly estimated

the regularization parameter based on the method introduced in [80]. However, the algorithm

does not converge to the optimal solution thus the early stopping is used.

In this work, we propose an ADMM framework for 3D image reconstruction from MFM

measurements that deals with a Poisson noise and jointly estimates the regularization pa-

rameter and the background signal. We formulate the Poisson image reconstruction problem

based on the log-likelihood of a Poisson probability distribution and the 3D TV regularization

term. In order to handle the non-quadratic, non-separable, and non-smooth objective func-

tion, ADMM is used. By using ADMM, we split the Poisson image deconvolution problem

into two simpler problems: (1) deblurring and (2) Poisson denoising. We also incorporate the

step to estimate the regularization parameter estimation into our ADMM-based framework.

Using MAP inference, the regularization parameter is efficiently estimated. The estimation
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for background signal is performed inside the ADMM iteration, which is also critical for

image reconstruction.

The rest of the paper is organized as follows. The mathematical model for MFM imaging

with Poisson noise and the problem that we solve will be described in Section 5.2. Our

formulation for MFM image reconstruction based on ADMM framework will be explained in

Section 5.3. Experimental results and discussion are provided in Section 5.5 and we conclude

our paper in Section 5.6.

5.2. Problem Formulation

Let f ∈ RN×1, gj ∈ RM×1, and bj ∈ RM×1 denote the 3D object, the observed image on

the j-th MFM tile, and the background signal (bj = b1), respectively. For j-th MFM tile

(j = 1, · · · , K2), the image acquisition process is modeled as a linear model with Poisson

noise as

gj = aP
(
DHjf + bj

)
(5.1)

= aP
(
Kjf + bj

)
(5.2)

where Kj = DHj. D ∈ RM×N is the operator which extracts the central slice of a 3D object

and Hj ∈ RN×N is the PSF matrix of the optical system, respectively. P(·) denotes the

Poisson noise operator, and a ∈ R is a conversion factor from the number of photons to

pixel intensity that is decided by the quantum efficiency and the electron-multiplying gain

of microscope, which is assumed to be known.
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Concatenating all the observations from MFM tiles, the image acquisition process in

Eq. (5.1) can also be expressed as:

g = aP
(
Kf + b

)
, (5.3)

where g = [g1T , · · · ,gK2T
]T , K = [K1T , · · · ,KK2T

]T , and b = b1.

By dividing both sides of Eq. (5.3) by a, we obtain

g/a = P
(
Kf + b

)
. (5.4)

Our goal is to reconstruct the 3D object f , from an observed MFM image, g, where the

degradation matrix, K is known.

The negative log-likelihood of a Poisson distribution of the observed data given the 3D

object, produces the following data fidelity term in our objective function

L(f) =
MK2∑
i=1

{[
Kf + b

]
i
− gi/a log

[
Kf + b

]
i

}
, (5.5)

ignoring the constant term from the negative log-likelihood with respect to f . In this work

we use a 3D TV regularization term to enforce piecewise smoothness on the reconstructed

3D object [17,68,75], which is defined as

TV(f) =
N∑
i=1

√
(∆x

i f)2 + (∆y
i f)2 + (∆z

i f)2 (5.6)

where i is an index for voxels, and ∆x, ∆y, and ∆z denote the first difference operator along

the x, y, and z directions, respectively.
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Our objective function for 3D image reconstruction is defined as

f = arg min
f≥0
L(f) + λTV(f) (5.7)

where λ is a regularization parameter. Note that we also have a non-negativity constraint

to obtain the object with non-negative intensity.

5.3. Alternating Direction Method of Multipliers (ADMM) based Optimization

The optimization problem in Eq. (5.7) is hard to solve directly. Even though it is convex,

L(f) is non-quadratic and non-separable with respect to f , and TV(f) is non-differentiable.

In this work we propose to use the ADMM to split the original problem in Eq. (5.7), into

two simpler problems: deblurring and Poisson denoising. We will review the standard form

of ADMM and then present the ADMM-based algorithm to solve the Poisson image recon-

struction.

5.3.1. ADMM

ADMM [88] solves the following problem:

min
f ,u

f1(f) + f2(u)

s.t. Af + Bu = c

(5.8)

where f ∈ RN×1 and u ∈ RM×1 are two variables that are related with a linear equality

constraint, where A ∈ RP×N , B ∈ RP×M , and c ∈ RP×1 are known.
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The augmented Lagrangian for Eq. (5.8) is formulated as

Lρ(f ,u,v) =

f1(f) + f2(u) + vT (Af + Bu− c) +
ρ

2
‖Af + Bu− c‖22, (5.9)

where v ∈ RP×1 is the Lagrangian multiplier (or dual variable), and ρ ∈ R is the penalty

parameter of the augmented Lagrangian. The ADMM update rules are derived from Eq. (5.9)

as follows:

fk+1 = arg min
f
f1(f) +

ρ

2
‖Af + Buk − ck + wk‖22 (5.10)

uk+1 = arg min
u
f2(u) +

ρ

2
‖Afk+1 + Bu− c + wk‖22 (5.11)

wk+1 =wk + (Afk+1 + Buk+1 − c), (5.12)

where w = v/ρ.

5.3.2. ADMM for Poisson Image Reconstruction

Let u ∈ RMK2×1 be a variable representing the denoised version of the observed variable g.

f and u are related by an equality constraint which is linear in both variables. Thus the

optimization problem in Eq. (5.7) turns into

min
f ,u

f1(f) + f2(u)

s.t. Kf + b = u,

f ≥ 0,

(5.13)
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where u ∈ RMK2×1, f1(f) = λTV(f), f2(u) = Lu(u), and

Lu(u) =
MK2∑
i=1

{
ui − gi/a log ui

}
. (5.14)

Note that L(f) in Eq. (5.5) is not separable with respect to f , but Lu(u) is now separable

with respect to u. Thus, it becomes easier to handle the data fidelity term (log-likelihood of

Poisson statistics) with respect to u.

This formulation is unique from the previous ADMM formulations for Poisson image

deconvolution [86, 87, 89]. In [87] and [86], f1(f) is set to 0 and all the terms are in-

cluded in f2(u) = Lu(u(1)) + λTV(u(2)) + ι+(u(3)), where u(1) = Kf , u(2) = u(3) = f ,

u = [u(1)Tu(2)Tu(3)T ]T , and ι+(·) is a projection to the non-negative orthant. Rond et al.

split the objective functions with f1(f) = L(f) and f2(u) = λTV(u) problem with the iden-

tity equality constraint, u = f . The ADMM formulations in [86, 87, 89] are different from

ours, and therefore they lead to the different sub-problems.

The augmented Lagrangian for the constrained problem in Eq. (5.13) becomes

Lρ(f ,u,v) =

f1(f) + f2(u) + vT (Kf + b− u) +
ρ

2
‖Kf + b− u‖22 (5.15)
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where v ∈ RMK2×1, and this leads to the ADMM update rule for Poisson image reconstruc-

tion as follows:

fk+1 = arg min
f≥0

λTV(f) +
ρ

2
‖Kf − ξk‖22 (5.16)

uk+1 = arg min
u
Lu(u) +

ρ

2
‖u− νk+1‖22 (5.17)

wk+1 = wk + (Kfk+1 + b− uk+1) (5.18)

where ξk+1 = −b + uk −wk, νk+1 = Kfk+1 + b + wk, and w = v/ρ.

The convergence of ADMM is proved [88]. In Sections 5.3.3 and 5.3.4 we explain how to

solve the subproblems in Eq. (5.16) and Eq. 5.17), respectively.

5.3.3. Update for f

Fixing the parameters b, ρ and λ, the update rule for f in Eq. (5.16) can be rewritten as

fk+1 = arg min
f≥0

1

2
‖Kf − ξk‖22 +

λ

ρ
TV(f). (5.19)

This is the TV regularized least squares (RLS-TV) with the non-negativity constraint. This

problem is convex but non-differentiable because of the TV regularization term. Efficient

off-the-shelf algorithms have been developed for RLS-TV [24,90–92]. We employed TwIST

algorithm [24] with two modification: (1) We extend the 2D TV regularization to the 3D

TV, and (2) apply the projected gradient scheme by adding the projection to the non-

negative orthant for each iteration in order to enforce the non-negativity constraint, following

[17,68,75].
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5.3.4. Update for u

The update for u in Eq. (5.17) is in the form of proximal operator [93]. This optimization

problem is separable with respect to u as

uk+1
i = arg min

ui

Lu(ui) +
ρ

2
(ui − νk+1

i )2 (5.20)

= arg min
ui

ui − gi/a log ui +
ρ

2
(ui − νk+1

i )2 (5.21)

where i indicates i-th element of a vector.

Taking derivative of Eq. (5.21) with respect to ui and equating it to 0, we obtain a closed

form solution as

ui =
(ρνk+1

i − 1) +
√

(ρνk+1
i − 1)2 + 4ρgi/a

2ρ
. (5.22)

Derivation for Eq. (5.22) is provided in Appendix B.

5.4. Parameter Estimation

In the previous sections, we assumed that the parameters, λ, b, and ρ are known. How-

ever, in practice, these parameters are unknown, and thus they must be tuned or estimated

to obtain a good image reconstruction. In this section, we describe how to jointly estimate

the parameters, λ, b, and ρ.

5.4.1. Estimation of Regularization Parameter

The choice of the regularization parameter, λ, is critical in regularization-based reconstruc-

tion algorithms. The performance of the image reconstruction highly depends on the pa-

rameter. However, the optimal value for the regularization parameter changes depending

on the noise variance, and the spectral features of the input image. One way to choose the
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parameter is to perform an exhuastive search [17, 68]. After performing the image recon-

struction multiple times with different regularization parameters and pick one that produces

the best result by some criteria such as mean square error (MSE) or visual quality. But

this scheme has serious disadvantages: it is time consuming and it is not possible to have

objective evaluation for real data.

In [75], Yoo et al. proposed a Bayesian approach to joint estimation problem for 3D

image and model parameters from MFM. We propose to adopt this approach to solve the

problem in Eq. (5.19) to jointly estimate f and the regularization parameter. Note that this

approach is similar to that of the ADMM Plug-and-Play [89, 94, 95]. Since the ADMM

framework split the original problem into two separate problems, the two problems can be

handled independently with off-the-shelf methods.

Following the method from [75], the noise level, β, is estimated as

β =
M

‖ξ −Kf‖2
, (5.23)

and the parameter for the TV prior, α, as

α =
N

2TV(f)
. (5.24)

Then, given the estimated parameters, β and α, f , can be estimated by minimizing

f̂ = arg min
f≥0

β

2
‖ξ −Kf‖2 + αTV(f) (5.25)

= arg min
f≥0

1

2
‖ξ −Kf‖2 + λTV(f), (5.26)

where λ = α/β. Note that the regularization parameter, λ is implicitly calculated by α and

β.
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In this way, the regularization parameter is automatically estimated and this step is

embedded in the first ADMM step of f estimation.

5.4.2. Estimation of Background Signal

In real measurement, the background signal, b, is not known, and therefore it must be

estimated. To solve this problem, we include the following update rule in the original ADMM

algorithm in Eqs. 5.16,5.17,5.18 just after the estimation of f :

bk+1 = arg min
b≥0
‖b− γk+1‖22 (5.27)

where γk+1 = −Kfk+1 + uk −wk.

Taking derivative of Eq. 5.27 with respect to b and equating to 0, we obtain a closed

form solution as

b = γk+1. (5.28)

Since we assume a uniform background signal, or b = b1, the estimation of b is

b =
1

MK2

MK2∑
i

γk+1
i (5.29)

where i is an index for pixels. Derivation for Eq. (5.28) and Eq. (5.29) is in Appendix B.

5.4.3. Choice of Penalty Parameter

We fix the value of ρ to 1 for all the experiments. This can be justified with two facts.

First, for any fixed ρ, the convergence of ADMM framework is proved [88]. Therefore, it

is reasonable to use a fixed ρ theoretically. Second, we found that the value of ρ is not
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Algorithm 2 ADMM-Based Image Reconstruction for MFM

Require: k = 0, g, f0, b0, u0, w0, α1, and β1

1: repeat
2: Update fk+1

3: Calculate βk+1 if k > 0 as Eq. (5.23)
4: Calculate αk+1 if k > 0 as Eq. (5.24)
5: Calculate fk+1 using TwIST to solve problem in Eq. (5.25)
6: Update bk+1 as Eq. (5.29)
7: Update uk+1 as Eq. (5.22)
8: Update wk+1 as Eq. (5.18)
9: k = k + 1;

10: until Convergence

important by itself for the performance from our experiments. Rather, the ratio of ρ and λ

is critical as will be shown in Section 5.5.1.8.

The whole procedure of the proposed method is summarized in Algorithm 2.

5.5. Results and Discussion

In this section, we show the experimental results for both synthetic and real data sets.

First, we perform the quantitative evaluation the proposed algorithm on simulations with

synthetic data. Then, we discuss the details of algorithm including effect of background

signal, axial super-resolution, and choice of penalty parameter in the ADMM. Finally, 3D

image reconstruction with real experimental data is shown.

The results are compared with the state-of-the-art Poissonian image deconvolution meth-

ods, SPIRAL-TV [85] and jointly regularized RL-TV (JRL-TV) [76]. Note that while our

method and JRL-TV jointly estimate the regularization parameter and the background sig-

nal as well as 3D image, SPIRAL-TV only estimates the 3D image. An exhaustive search is

performed to obtain the optimal regularization parameter. For the background signal, the
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true value or the estimated value is given to the algorithm depending on whether the data

is either simulated or experimental.

5.5.1. Simulation with Synthetic Data

5.5.1.1. Test data and simulation setup. We test the algorithm with three synthetic

data: One-Ellipsoid, Two-Ellipsoids, and Bacterium. The first two objects, One-Ellipsoid

and Two-Ellipsoids, are fully synthetic, and Bacterium is based on experimental data from

a 3D image stack of a bacterium obtained by confocal microscopy. One-Ellipsoid and Two-

Ellipsoids are created to imitate the bacterial periplasm, and differentiate the number of

bacteria. Each data has a dimension of 50 × 50 × 51 voxels. These objects are shown in

Fig. 5.1. To visualize 3D image effectively, we show slices of the volume in xy / yz / zx planes

in the top-left, top-right, and bottom-left of the figure, respectively, and a 3D angle view in

the bottom-right. For the 3D angle view, we used a color-map that blue and red indicate

the lowest and highest intensity, respectively, and also display three projections onto the xy

/ yz / zx planes. Voxels whose intensity is less than a threshold are set to 0 to visualize the

signal more clear.

To simulate the MFM measurement, we used the forward model defined in Eq. (5.3).

The PSF is measured by capturing a fluorescent bead through the MFM system with 5-by-5

tiles and 250nm focal step. We set the conversion factor a = 1 for our simulation so that

the number of photons exactly match the intensity of the MFM images for simplicity. To

simulate different levels of Poisson noise (in other words, different budgets of photons), four

different maximum photon (MP) counts are set for the simulated MFM images: 25, 50, 100,

and 200. The uniform background signal, b, is set to 5 unless we specify it. Simulated

MFM images with 50 MP count for the three test data are shown in Fig. 5.2. The center
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(a) (b)

(c)

Figure 5.1. Synthetic data for simulation. The first two images are fully syn-
thetic, and the third one is based on experimental data from a 3D image
stack of a bacterium obtained by confocal microscopy (a) One-ellipsoid, (b)
Two-ellipsoids, and (c) Bacterium.
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area in a red box is zoomed in 5 times and displayed in the top-right corner. Figure 5.3

shows the simulated MFM images of One-Ellipsoid with MPs 25, 50, 100, and 200. As the

number of photons increases, the measurement becomes less noisier, following the Poisson

noise statistics.

5.5.1.2. Stopping criteria and algorithm initialization. To check the convergence of

Algorithm 2, we measure the difference between the reconstructed images in the current and

the previous iterations, δkf as Eq. (5.30). The thresholds are set to 10−5 and 10−3 for the

inner loop (step 5 in Algorithm 2) and the outer loop of the ADMM, respectively. For the

other algorithms, the difference of their objective functions, δkJ , is measured to check the

convergence as Eq. (5.31) and they stop when δkJ < 10−7. We observe SPIRAL-TV and

JRL-TV approach noisy solutions after some iterations so we limit the maximum iterations

to 200 for early stopping where their performance is still reasonable. We set the initial value

for λ to 10−6.

δkf =
‖fk − fk−1‖
‖fk−1‖

(5.30)

δkJ =
‖J(fk)− J(fk−1)‖
‖J(fk−1)‖

(5.31)

where J(·) indicates the objective function.

5.5.1.3. Qualitative Performance Evaluation. Figures 5.4, 5.5, 5.6 show the recon-

structed 3D image from the three different test data when MP = 100. The result from our

method is compared with the 3D stack of MFM tiles, and results from two other meth-

ods: SPIRAL-TV, and JRL-TV. For the 3D stack, tiles of MFM are piled up in order and

re-scaled in the z-axis to the same scale as other reconstruction with Cubic interpolation

method. Compared to the 3D stack, SPIRAL-TV, JRL-TV, and our method effectively

perform deblurring and denoising from MFM images. We clearly see the empty space inside
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(a) (b)

(c)

Figure 5.2. Simulated MFM measurement of test data in case of MP count
100 and b = 5. (a) One-ellipsoid, (b) Two-ellipsoids, and (c) Bacterium.

the objects of One-ellipsoid and Two-ellipsoids, while the 3D stack fills the empty space. It

is because of severe out-of-focus blur, which is common in the microscopy [66,96]. We also

observe that the reconstructed images from our method is closer than those of SPIRAL and
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(a) (b)

(c) (d)

Figure 5.3. Simulated MFM measurement of One-ellipsoid with different noise
levels, (a) MP 25, (b) MP 50, (c) MP 100, and (c) MP 200.

JRL-TV to the ground truth data that are shown in Fig. 5.1 for One-ellipsoid and Two-

ellipoids. The intensity of signal is higher than the others and the boundary is sharper than
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the others. Projections in the 3D angle views show that the reconstruction from our method

preserve the empty space inside the ellipsoids better than the others. From Fig. 5.6, the

visual quality of reconstruction of Bacterium by our method is similar to that of JRL-TV.

SPRIAL-TV obtains a smoother but more blurred image.

5.5.1.4. Quantitative Performance Evaluation. Table 5.1 summarizes the performance

of the reconstruction algorithms for MFM. The peak signal-to-noise ratio (PSNR) and the

structural similarity (SSIM) index are used for qualitative performance measure. In all

the cases, we observe that the performance of reconstruction increases as MP increases.

Obviously, it is because signal-to-noise ratio (SNR) increases along with MP. While our

method obtains the highest PSNRs and SSIMs for One-ellipsoid and Two-ellipsoids in every

noise level, JRL-TV has the highest PSNRs and SSIMs for Bacterium. JRL-TV tends to

introduce smoothness in the reconstructed images more than our method, resulting in higher

PSNRs for the very smooth object. We observe that JRL-TV estimates a higher value of

the regularization parameter as will be discussed more in Section 5.5.1.5.

Table 5.1. Performance of 3D image reconstruction from MFM.

Methods SPIRAL-TV JRL-TV Ours
Test image MP PSNR SSIM PSNR SSIM PSNR SSIM

One-ellipsoid

25 25.80 0.9497 25.66 0.9624 25.88 0.9662
50 25.96 0.9606 25.91 0.9651 26.39 0.9710
100 25.86 0.9649 26.12 0.9677 26.46 0.9717
200 26.37 0.9697 26.23 0.9693 27.38 0.9785

Two-ellipsoids

25 22.85 0.9169 22.72 0.9205 22.84 0.9274
50 22.72 0.9257 22.98 0.9301 23.38 0.9435
100 23.05 0.9337 23.01 0.9331 23.61 0.9475
200 22.87 0.9319 23.11 0.9357 24.28 0.9558

Bacterium

25 36.51 0.9736 38.70 0.9901 36.80 0.9883
50 38.28 0.9830 39.19 0.9914 38.49 0.9897
100 38.64 0.9886 42.33 0.9954 40.84 0.9920
200 39.75 0.9936 40.26 0.9961 38.21 0.9898
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(a) (b)

(c) (d)

Figure 5.4. 3D image reconstruction from our method for One-ellipsoid in case
of MP count 100 and b = 5. (a) 3D stack of tiles, (b) SPIRAL-TV, PSNR:
25.86 dB, SSIM: 0.9649 (c) JRL-TV, PSNR: 26.12 dB, SSIM: 0.9677 and (d)
ours, PSNR: 26.46, SSIM: 0.9717
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(a) (b)

(c) (d)

Figure 5.5. 3D image reconstruction from our method for Two-ellipsoids in
case of MP count 100 and b = 5. (a) 3D stack of tiles, (b) SPIRAL-TV,
PSNR: 23.05 dB, SSIM: 0.9337 (c) JRL-TV, PSNR: 23.01 dB, SSIM: 0.9331
and (d) ours, PSNR: 23.61, SSIM: 0.9475
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(a) (b)

(c) (d)

Figure 5.6. 3D image reconstruction from our method for Two-ellipsoids in
case of MP count 100 and b = 5. (a) 3D stack of tiles, (b) SPIRAL-TV,
PSNR: 38.64 dB, SSIM: 0.9886 (c) JRL-TV, PSNR: 42.33 dB, SSIM: 0.9954
and (d) ours, PSNR: 40.84, SSIM: 0.9920
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The computation time in minutes and the number of iterations for the reconstruction

methods are reported in Table 5.2. Note that, with parallel processing, the actual running

time is less than the CPU time. From the table, three methods have comparable compu-

tation time. However, JRL-TV often reaches the maximum iteration limit so it would take

longer than the time in the table without early stopping. Also, SPIRAL-TV requires a

manual search for the regularization parameter, thus the actual computation time should be

multiplied by the number of parameters tried. Our method has an outer iteration for the

ADMM updates and an inner iteration for f estimation step, so all the inner iterations are

added up for fair comparison.

Table 5.2. Computation time for 3D image reconstruction from MFM. CPU
time is in minutes.

Methods SPIRAL-TV JRL-TV Ours
Test image MP Time Iter. Time Iter. Time Iter.

One-ellipsoid

25 28.5 76 59.0 200 31.4 54
50 36.6 99 53.2 193 40.7 79
100 41.7 103 49.3 200 28.0 103
200 48.0 124 50.6 200 46.3 168

Two-ellipsoids

25 27.7 76 72.7 191 45.0 59
50 27.5 70 74.7 200 36.8 85
100 40.5 110 73.8 200 53.4 139
200 48.1 115 75.5 200 73.6 221

Bacterium

25 19.1 51 58.2 161 25.1 18
50 25.2 63 34.2 92 20.0 27
100 33.6 94 74.6 200 38.3 37
200 37.3 99 73.1 200 22.5 39

Average 34.5 90.0 62.4 186.4 38.3 70.0

The performance of the background signal estimation is described in Table 5.3. We

observe that both JRL-TV and the proposed method, achieve accurate estimations for the

background signal parameter, whose real value is btrue = 5. However, in all the cases, the

estimation provided by JRL-TV is slightly closer to btrue than the proposed method.



85

Table 5.3. Performance of estimation of the background signal

Test data One-ellipsoid Two-ellipsoids Bacterium
MP JRL-TV Ours JRL-TV Ours JRL-TV Ours
25 4.9943 4.9770 4.9919 4.9741 4.9938 4.9776
50 4.9935 4.9759 4.9919 4.9776 4.9940 4.9751
100 4.9935 4.9709 4.9905 4.9769 4.9947 4.9749
200 4.9956 4.9722 4.9910 4.9799 4.9934 4.9693

5.5.1.5. Estimation of the Regularization Parameter. The regularization parame-

ters estimated by JRL-TV and the proposed method for each reconstruction are plotted in

Fig. 5.7. First, we observe that the general trend is that the estimated λ decreases as MP

increases. This is related to the noise level. A larger photon budget reduces the noise level

so less weight on the regularization term is needed. Second, the regularization parameter

depends on the data. The estimated regularization parameter for Bacterium is larger than

One-ellipsoid and Two-ellipsoids. Bacterium is more piecewise smooth than the others, and

thus a higher weight on the TV regularization is more needed than the others. Also, One-

ellipsoid is more piecewise smooth than Two-ellipsoids since it has only half of the signal of

the other.

There are a couple of differences in λ estimation between JRL-TV and ours. The values

of estimated λ of JRL-TV are one to two orders of magnitude larger than those from ours.

This tendency results in different reconstruction. As seen in Figs. 5.4, 5.5, and 5.6, JRL-TV

makes the 3D image more smooth than our method does. It could improve the visual quality

but loses the high frequency content as trade-off. Also, the estimated values do not change

as much as MP changes. In case of Two-ellipsoids with 200 MP, it even has a larger λ than

the case with 100 MP against the natural trend.

5.5.1.6. Effect of Background. We investigate the effect of the background signal on

the performance of image reconstruction in two aspects: (1) the effect of the level of the
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(a)

(b)

Figure 5.7. Estimation of the regularization parameter λ for TV term with
respect to maximum photon counts for (a) JRL-TV, and (b) our method

background signal on the performance of image reconstruction, and (2) the effect of inaccu-

rate estimation of the background signal. To see the effect of the level of the background

signal, we perform simulations with different background signals, b = 0, 10, 20, · · · , 100. MP
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Figure 5.8. Effect of the level of the background signal. The higher background
signal decrease the performance of image reconstruction.

is set to 100 for these experiments. The plot in Fig. 5.8 illustrates the performance of image

reconstruction in PSNRs with respect to b: the more background, the less PSNR. This can

be explained by the nature of Poisson noise. The variance of Poisson noise increases as b

gets larger. It is clear that the larger variance of noise will decrease the performance of the

image reconstruction.

In order to see the effect of inaccurate estimation of the background signal, we perform

simulations without the background signal estimation (Step 6 in Algorithm 2). While we set

btrue = 5, the image reconstruction is performed with different values of b: b = 0, · · · , 10. The

results are plotted in Fig. 5.9. As seen in the figures, wrong estimation of the background

signal degrades the performance of reconstruction. Even with small difference from the true

value, it significantly decrease PSNR and SSIM. The level of degradation is smaller when it
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overestimates but PSNR still drops 2 dB with 1 photon count mis-estimation. Estimating

the accurate background signal is critical to the image reconstruction of MFM.

(a) (b)

Figure 5.9. Effect of accuracy of background signal estimation. The true value
of b is 5 (btrue), and different values of b are used for image reconstruction.
Inaccurate estimation of the background signal degrades the performance of
reconstruction.

5.5.1.7. Axial Super-Resolution. Compared to 3D stack of MFM tiles, the image re-

construction algorithms provide higher resolution 3D image. Severe out-of-focus blur in mi-

croscopy degrades axial resolution of the captured image, but these algorithms can achieve

super-resolution. In order to see this, we analyze the reconstructed image with (1) its profile

in the z-axis and (2) its kxkz slice in frequency domain.

Figure 5.10 shows the z profile of reconstructed 3D image of One-ellipsoid from different

algorithms when MP = 200. As shown in Fig. 5.10 (b), 3D stack of MFM tiles cannot resolve

two peaks of signal in the distance of 1 µm. By performing image reconstruction methods,

they are clearly separated. The reconstructed image from our method is the closest to the

ground truth in terms of the intensity and the width of the peaks.
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(a) (b)

(c) (d)

(e)

Figure 5.10. Profile in the z-axis of the reconstructed One-ellipsoid image.
(a) Ground truth, (b) 3D stack of MFM tiles, (c) SPRIAL-TV, (d) JRL-TV,
and (e) our method

The slices in the kzkx plane in the frequency domain are shown in Fig. 5.11. The ground

truth signal has a pattern of concentric circles, but the 3D stack of MFM tiles loses this

pattern except for the center area, which is the low frequency part. While all the compu-

tational methods preserve the patterns to some degree, there are differences among their

results. We observe a ‘missing cone’ in Fig. 5.11 (d) where the concentric circle is cut in

cone shape to the kz direction. It means the reconstruction from JRL-TV loses the high
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frequency information in the z direction. The pattern of SPIRAL-TV gets distorted and the

signal becomes weaker (darker) as it approaches the high frequency area as in Fig. 5.11 (c).

There is some distortion of the pattern but it preserves the signal level and the pattern in

high frequency area much better than the other compared methods as shown in Fig. 5.11

(e).

(a) (b) (c)

(d) (e)

Figure 5.11. Slices in the kzkx-plane of the reconstructed One-ellipsoid image
in the frequency domain. (a) Ground truth, (b) 3D stack of MFM tiles, (c)
SPRIAL-TV, (d) JRL-TV, and (e) our method.

5.5.1.8. Choice of Penalty Parameter ρ. As mentioned in Section 5.3.2, we fix the

penalty parameter of the augmented Lagrangian, ρ, to 1. We explain how we pick the value

here. First of all, for any fixed ρ, the convergence of ADMM framework is proved [88].
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Therefore, it is reasonable to use a fixed ρ, as long as the values of ρ significantly slow

down the convergence. Secondly, we performed a grid search to find the better values for

the parameters, ρ, and λ, which are the two parameters to be tuned in our method. We

performed our algorithm on One-ellipsoid with MP 100. Note that we did not estimate λ

but fixed it for each run in these simulations. Figure 5.12 shows the results of the grid search

in PSNR and SSIM. From Figs. 5.12 (a) and (b), we observe that the performance does not

depend on specific values of λ or ρ but depends on the ratio of these two parameters. The

values of PSNR and SSIM in the same diagonal lines are consistent. In this case, the ratio

λ/ρ ≈ 10−7 is the best in PSNR and λ/ρ ≈ 10−6 is the best in SSIM. It is interesting to

see the different ratios in two different metrics. With the larger ratio, or the larger λ, the

reconstructed image becomes more smooth conforming to the TV regularizer. The SSIM

metric appreciates the smoothness of the image more than PSNR does.

5.5.2. Real Experiment

5.5.2.1. Experimental Data and Setup. We captured a video of a single bacterium

tumbling at 25 frames per second (fps). The DOE of the MFM system is designed to

produce 5-by-5 focal planes with 250 nm focal step. The effective pixel size of the camera is

108nm× 108nm, and its pixel resolution of the camera is 1024× 1024. We reconstruct the

3D image of 150 × 150 × 101 voxels with each voxel size being 108nm × 108nm × 200nm,

which is equivalent to 16.2µm×16.2µm×20.2µm in the sample space. The conversion factor

for the camera sensor, a, is 139. MFM images at frames 1 and 30 are shown in Fig. 5.13.

From the MFM image, we can tell that the bacterium lies on xy plane in Fig. 5.13 (a) and

stands along the z-axis in Fig. 5.13 (b).
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(a)

(b)

Figure 5.12. Grid search for ρ and λ in (a) PSNR and (b) SSIM.

Figures 5.14 and 5.15 show the 3D stack of MFM images and 3D images reconstructed

by SPIRAL-TV, JRL-TV, and the proposed method from the experimental MFM images.

Note that we crop a part of the 3D image that includes the bacterium in the figures for

better visualization. Similarly to the simulation results, the 3D stack of MFM tiles has
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(a)

(b)

Figure 5.13. MFM experimental measurement of flourescently labelled sam-
pels. A single tumbling bacterium at frames (a) 1 and (b) 30. The bacterium
moves so it is in different poses and locations at the two frames.
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poor resolution due to the remaining out-of-focus blur and noise from measurement. Non-

uniform light distribution for each tile is also observed from the fact that the center tile

has the highest intensity. In contrast, the other methods reconstruct the 3D image with

high quality, reducing the blur and the noise. The reconstructed 3D image clearly shows

the shape and the pose of the tumbling bacterium. The size and shape of the bacterium

in the reconstruction match our prior knowledge. Also, it is clear from the reconstructions

that the bacterium lies on xy plane at frame 1 and stands along the z-axis at frame 30. The

reconstructed images from SPIRAL-TV, JRL-TV, and the proposed method are consistent

in their shapes and positions. However, the reconstruction of SPIRAL-TV tends to be

more smooth and thus loses some details, while those of JRL-TV and the proposed method

preserve the details as shown in Fig. 5.15.

Table 5.4 compares the computation times of the three methods for the experimental

MFM data. Note that maximum iteration is limited to 500 for this data instead of 200

for SPIRAL-TV and JRL-TV. The proposed method converges faster than JRL-TV. The

reported time for SPIRAL-TV is for one parameter set but it is much longer if you consider

trials of multiple parameter sets for parameter search.

Table 5.4. Computation time for 3D image reconstruction from MFM for real
data. CPU time is in minutes.

Methods SPIRAL-TV JRL-TV Ours
Data Time Iter. Time Iter. Time Iter.

Frame 1 85.2 85 319.2 500 118.5 175
Frame 30 49.7 80 237.1 371 147.3 268

5.6. Conclusion

We have presented an ADMM based Poissonian image deconvolution algorithm for MFM

that jointly estimate the regularization parameter and the background signal. By using
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(a) (b)

(c) (d)

Figure 5.14. 3D image reconstruction from an experimental MFM measure-
ment (frame 1). Scale bar indicates 1 µm. (a) 3D stack of MFM tiles, (b)
SPIRAL-TV, λ = 10−7, (c) JRL-TV, estimated λ = 5.26× 10−4, and (d) our
method, estimated λ = 1.76× 10−5,

ADMM framework, the Poissonian deconvolution problem is split into two simpler prob-

lems - deblurring and Poisson denoising problems. For deblurring problem, we used the

Bayesian approach developed in [75] to estimate the regularization parameter as well as

the 3D image. Poisson denoising problem can be solved in a closed-form solution. The

step for estimation of the background signal is also incorporated in our ADMM framework.
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(a) (b)

(c) (d)

Figure 5.15. 3D image reconstruction from an experimental MFM measure-
ment (frame 30). Scale bar indicates 1 µm. (a) 3D stack of MFM tiles, (b)
SPIRAL-TV, λ = 10−7, (c) JRL-TV, estimated λ = 4.35× 10−4, and (d) our
method, estimated λ = 1.82× 10−5,

We achieve higher quality image reconstruction and faster convergence compared to other

state-of-the-art methods.
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CHAPTER 6

Conclusion

I have presented 3D image reconstruction algorithms for MFM. MFM provides a stack of

focal planes with a single snapshot to achieve high temporal resolution for 3D imaging, but

it does not provide high spatial resolution. The computational methods I have developed

overcome this limitation. We started with modeling of the imaging process of MFM with two

different noise models and developed the image reconstruction methods based on the image

acquisition models. From the base method of TV-regularized RLS, we have further developed

more advanced algorithms to improve the performance of image reconstruction by using (1)

multiple-frame processing, (2) joint parameter estimation through a Bayesian framework,

and (3) ADMM based Poisson image deconvolution. Multiple-frame processing utilizes the

information from neighboring frames in addition to the current frame to improve the image

quality. For joint parameter estimation, maximum-a-posteriori (MAP) is used for automatic

estimation of the regularization parameter as well as 3D image reconstruction. Poisson noise

model is considered to handle the low photon resource of MFM and ADMM framework is

used to efficiently optimize the problem. Experimental results with synthetic and real data

verify the effectiveness of the methods. The 3D image reconstruction algorithms that we

developed make it possible to capture 4D (3D space + time) events of the samples through

MFM.

There are still challenges and rooms for improvement. One is to use more accurate noise

model. In reality, noise comes from multiple sources so we have to deal with mixed noise
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model, for example, Gaussian noise + Poisson noise. Also, it is necessary to have the PSF

information closer to the true PSF to obtain better reconstruction. The measured PSF

contains a significant amount of noise as well as background signals even though it reflects

the true PSF from the experimental setup better than the theoretical version. Applying a

denoising algorithm can help to suppress the noise in the measured PSF, and finding a way

to combine the theoretical and the measured PSFs can be a solution as well.
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APPENDIX A

Derivation of MFM Degradation Model

In this section, we derive Equation 3.2 from Equation 3.1 in detail.

g(x, y) = f(x, y, z) ∗3D h(x, y, z)
∣∣∣
z=0

+ ε(x, y) (A.1)

=
∑
x′

∑
y′

bNz/2c∑
z′=−bNz/2c

f(x− x′, y − y′, z − z′)h(x′, y′, z′)
∣∣∣
z=0

+ ε(x, y) (A.2)

=
∑
x′

∑
y′

bNz/2c∑
z′=−bNz/2c

f(x− x′, y − y′,−z′)h(x′, y′, z′) + ε(x, y) (A.3)

=

bNz/2c∑
z′=−bNz/2c

∑
x′

∑
y′

f(x− x′, y − y′,−z′)h(x′, y′, z′) + ε(x, y) (A.4)

=

bNz/2c∑
z′=−bNz/2c

∑
x′

∑
y′

f ′(x− x′, y − y′, z′)h(x′, y′, z′) + ε(x, y) (A.5)

=

bNz/2c∑
z′=−bNz/2c

f ′(x, y; z′) ∗2D h(x, y; z′) + ε(x, y) (A.6)

=

bNz/2c∑
z=−bNz/2c

f ′(x, y; z) ∗2D h(x, y; z) + ε(x, y) (A.7)

where f ′(x, y, z) = f(x, y,−z), and Nz is the number of focal planes in object space, and we

can assume it is an odd number without loss of generality.

Let fz ∈ RNxNy×1 and g ∈ RMxMy×1 denote vectorized f ′(x, y; z) and g(x, y), respec-

tively. The 2D convolution of f ′(x, y; z) and h(x, y; z) can be expressed as matrix-vector

multiplication by constructing the PSF matrix, Hz ∈ RMxMy×NxNy , in lexicographical way.
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g =

bNz/2c∑
z=−bNz/2c

Hzfz + ε (A.8)

=
[
H−bNz/2c · · ·HbNz/2c

][
fT−bNz/2c · · · f

T
bNz/2c

]T
+ ε (A.9)

= Hf + ε (A.10)

where H =
[
H−bNz/2c · · ·HbNz/2c

]
∈ RMxMy×NxNyNz , and f =

[
fT−bNz/2c · · · f

T
bNz/2c

]T
∈ RNxNyNz×1.
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APPENDIX B

Derivation of Solutions for u and b in ADMM Formulation

In this section, we derive the equations in Chapter 5.

First, we derive the closed-form solution for estimation of uk+1 in Eq. 5.22. We will omit

the superscript k + 1 above u for simplicity. Let J(u) denotes the objective function for

estimation of u.

J(u) = Lu(u) +
ρ

2
‖u− νk+1‖22 (B.1)

=
M∑
i=1

{[
u
]
i
− gi/a log

[
u
]
i

}
+
ρ

2
‖u− νk+1‖22 (B.2)

J(ui) =
{[

u
]
i
− gi/a log

[
u
]
i

}
+
ρ

2

(
ui − νk+1

i

)2
(B.3)

dJ(ui)

dui
= 1− gi/a

ui
+ ρui − ρνk+1

i (B.4)

dJ(ui)

dui
= 0 (B.5)

1− gi/a

ui
+ ρui − ρνk+1

i = 0 (B.6)

ui − gi/a+ ρu2
i − ρνk+1

i ui = 0 (B.7)

ρu2
i + (1− ρνk+1

i )ui − gi/a = 0 (B.8)

ui =
(ρνk+1

i − 1) +
√

(ρνk+1
i − 1)2 + 4ρgi/a

2ρ
. (B.9)
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Second, we derive the closed-form solution for estimation of bk+1 in Eq. 5.27 and Eq. 5.28.

We will omit the superscript k + 1 above b for simplicity. Let J(b) denotes the objective

function for estimation of b.

J(b) = ‖b− γk+1‖22 (B.10)

= bTb− 2γk+1Tb + γk+1Tγk+1 (B.11)

=
M∑
i

{
b2
i − 2γk+1

i bi + γk+1
i

2}
(B.12)

dJ(b)

dbi
= 2bi − 2γk+1 (B.13)

bi = γk+1
i (B.14)

b = γk+1. (B.15)

If b = b1,

J(b) =
M∑
i

{
b2 − 2γk+1

i b+ γk+1
i

2}
(B.16)

dJ(b)

db
=

M∑
i

{
2Mb− 2γk+1

}
(B.17)

b =
1

M

M∑
i

γk+1
i . (B.18)
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