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ABSTRACT

Modeling the dynamical neural systems on different timescales

Xize Xu

With neurons as its primary computational components, the brain operates at

multiple timescales. In this thesis, we focus on two timescales: on a relatively slow

timescale on the order of hours to days, the brain adapts to the environment it

is exposed to and learns its circuitry by altering the connections between neurons

through synaptic plasticity; on a relatively fast timescale on the order of tens of mil-

liseconds, collective oscillations or brain rhythms emerge from synaptic interactions

within neuronal circuits, which have been suggested to play an important role in

routing information across cortical regions.

In Chapter 2, we explore how learning in visual cortex is achieved by synaptic

plasticity, particularly in a model of binocular matching of orientation selectivity

in mouse primary visual cortex (V1). Right after eye-opening, binocular cells in

mouse V1 have different preferred orientations for input from the two eyes. With

normal visual experience during a critical period, these preferred orientations evolve
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and eventually become well matched. To gain insight into the matching process, we

develop a computational model of a cortical cell receiving orientation-selective inputs

via plastic synapses. The model captures the experimentally observed matching of

the preferred orientations, the dependence of matching on ocular dominance of the

cell, and the relationship between the degree of matching and the resulting monocular

orientation selectivity. Moreover, our model puts forward testable predictions: i)

The matching speed increases with initial ocular dominance; ii) While the matching

improves more slowly for cells that are more orientation-selective, the selectivity

increases faster for better matched cells during the matching process. This suggests

that matching drives orientation selectivity but not vice versa; iii) there are two main

routes to matching: the preferred orientations either drift towards each other or one

of the orientations switches suddenly. The latter occurs for cells with large initial

mismatch and can render the cells monocular.

In Chapter 3, we investigate the synchronization of different γ-rhythms arising

in different brain areas, which has been implicated in various cognitive functions. In

particular, we focus on the effect of ubiquitous neuronal heterogeneity on the synchro-

nization of ING (interneuronal network gamma) and PING (pyramidal-interneuronal

network gamma) rhythms. The synchronization properties of rhythms depend on

the response of their collective phase to external input. We therefore determine

the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC)

of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or

quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement
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the direct simulations with the adjoint method to determine the infinitesimal macro-

scopic PRC (imPRC) within the exact mean-field theory. We show that intrinsic

neuronal heterogeneity can qualitatively modify the fmPRC and the imPRC. Both

PRCs can be biphasic and change sign (type II), even though the phase-response

curve for the individual neurons is strictly non-negative (type I). Thus, for ING

rhythms, external inhibition to the inhibitory cells can, in fact, advance the collec-

tive oscillation of the network, even though the same inhibition would lead to a delay

when applied to uncoupled neurons. This paradoxical advance arises when the exter-

nal inhibition modifies the internal dynamics of the network by reducing the number

of spikes of inhibitory neurons; the advance resulting from this disinhibition out-

weighs the immediate delay caused by the external inhibition. These results explain

how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized

with a periodic forcing or another rhythm for a wider range of frequency mismatches.

Our results identify a potential function of neuronal heterogeneity in the synchro-

nization of coupled γ-rhythms, which may play a role in neural information transfer

via communication through coherence.
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CHAPTER 1

Introduction

With about one hundred billion neurons continuously interacting with thousands

of other neurons by electrical signals via hundreds of trillions of tiny specialized

structures called synapses, our brain is one of the most sophisticated architecture in

nature. At every single instant of time, our brain undergoes a complex process, which

receives information from the external environment, analyzes the corresponding sit-

uations and then makes decisions accordingly. Mathematical modeling based on

experimental data has been proven to be a powerful tool to study the computational

principle of the neural system in the brain. Not only can the modeling reproduce the

experimental result but also generate meaningful and testable predictions, which in

turn guide experimental designs. Moreover, mathematical modeling enables one to

explore various situations in the brain that cannot be tested experimentally. Much

of mathematical modeling in neuroscience concerns dynamical systems. In the brain,

there are multiple interacting dynamical systems operating on timescales from mil-

liseconds to years.

On the milliseconds scale, single neurons fire action potentials to propagate sig-

nals between each other: when an action potential occurs, an electrical signal is emit-

ted through the presynaptic axon. Such an electrical signal causes neurotransmitter
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to be released into the synaptic cleft and attach to the postsynaptic neurotrans-

mitter receptor, allowing ions to cross the postsynaptic membrane and causing the

membrane potential to change. Moreover, the synaptic interactions within neuronal

circuits can give rise to collective oscillations or rhythms in frequency bands on vari-

ous timescales: delta (1–4 Hz), theta (4–8 Hz), alpha (8-12), beta (13–30 Hz), gamma

(30–100 Hz). The collective oscillations are characterized by their frequency, ampli-

tude and phase. The amplitude of collective oscillations, which measures the extent

of local synchronization in a neural ensemble, has been linked to various cognitive

functions. Such macroscopic rhythms have been suggested to play an important role

in routing information across cortical regions. The coherence of rhythms between

brain areas has been reported and is suggested to be associated with cognitive tasks

such as selective attention [1].

On a slower timescale, synaptic plasticity occurs. Synaptic plasticity refers to

the activity-dependent changes in the effect of a synaptic signal from one neuron to

another. The expression of synaptic plasticity concerns a large range of timescales

from milliseconds to months. Depending on the function and the timescale it operates

on, synaptic plasticity can be divided into three categories: i) Short-term plasticity,

which takes place on a milliseconds-to-minutes timescale [2], allows synapses to play

a number of computational functions in neural circuits including neural coding and

information processing [3]. It has also been considered as one of the neural mecha-

nisms subserving short-term working memory [4]. ii) Homeostatic plasticity, which

is also referred to as ’synaptic scaling’, occurs on a slower timescale on the order of
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hours to days [5]. It plays a critical role in stabilizing synaptic connectivity during

experience-dependent plasticity and protein turnover as well as preventing the firing

rates from becoming saturated during developmental changes in synaptic inputs [6].

iii) Long-term plasticity, which includes long-term potentiation (LTP) and long-term

depression (LTD), involves changes in synaptic strength lasting for minutes or longer.

It is considered as the primary mechanism for learning and memory [7,8], in which

the consolidation process takes hours or longer. Furthermore, long-term plasticity

occurs drastically during the developmental phase of the sensory system [9].

In this thesis, we explore the dynamics of two neural mechanisms operating on

different timescales. In Chapter 2, we investigate how the learning in visual cor-

tex is achieved by long-term synaptic plasticity, particularly in a model of binocular

matching of orientation selectivity in mouse V1. We develop a computational model

of a cortical cell receiving orientation-selective inputs via plastic synapses, which

captures key experimental results and puts forward testable predictions. This result

has been published [10]. In Chapter 3, we investigate the synchronization of different

γ-rhythms (30-100 Hz) arising in different brain areas. In particular, we focus on the

effect of the ubiquitous neuronal heterogeneity on the synchronization of ING (in-

terneuronal network gamma) and PING (pyramidal-interneuronal network gamma)

rhythms. We show that the intrinsic neuronal heterogeneity can qualitatively modify

the fmPRC and the imPRC of both PING and ING rhythm, which enhances their

ability to be synchronized with a periodic forcing or another rhythm for a wider

range in the mismatch of their frequencies. This result has also been published [11].
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CHAPTER 2

Development and binocular matching of orientation

selectivity in visual cortex: a computational model

2.1. Introduction

Animals receive information about the world through multiple modalities (vision,

audition, touch, etc). For these information streams to provide a meaningful repre-

sentation of the sensory world they have to be merged in a coherent fashion; only

then do they enable the brain to better detect events, analyze the corresponding

situations and then make decisions accordingly. Typically, this coherence is only

acquired during a postnatal critical period [12].

The merging of across-modality information has been extensively investigated

in the cat superior colliculus (SC) [13–16] as well as the optic tectum of the barn

owl [17], where multisensory neurons integrate the information they receive from up-

stream unisensory neurons in different sensory channels (e.g., visual and auditory).

Like in other sensory systems, the capability of SC multisensory neurons to engage in

multisensory integration is not innate but learned gradually during postnatal life as

a consequence of normal multisensory experience. Two main results of the multisen-

sory neurons’ learning process in SC are the initial development of large, unisensory

receptive fields for visual and auditory input and their subsequent contraction and
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matching across modalities. This can enhance the degree to which the neurons’ re-

ceptive fields for visual and auditory inputs pertain to the same spatial location and

enables the neuron to extract coherent information from the different modalities.

Matching of different information streams can also play an important role within

a single modality. In the visual system, for instance, neurons in the visual cortex

prefer similar orientations through the two eyes. As in the multisensory case, this

binocular matching requires normal sensory experience. Shortly after eye-opening

cortical cells in layer 2/3 of mouse visual cortex V1 have quite different monocular

preferred orientations through each eye [18]. With normal binocular visual experi-

ence these preferences become binocularly matched to the adult level by postnatal

day 31 (P31) [18], which corresponds to the end of the critical period for ocular

dominance plasticity [19].

Inspired by these experimental results and to gain insight into general matching

mechanisms, we developed a computational model for the development and matching

of input preferences of neurons receiving multi-channel input via plastic synapses. In

the case of multisensory SC neurons the input preferences would correspond to visual

and auditory receptive fields. For concreteness, we will focus here on the binocular

matching in V1, where the input preferences correspond to orientation preferences.

The development of visual cortex has been studied extensively over the years.

Many studies have used a firing-rate framework for the neurons as well as for the

synaptic plasticity [20], which assumes, in particular, that the pre- and postsynap-

tic spike trains are uncorrelated. Since the spiking of cortical cells is driven by
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fluctuations in the input rather than its mean [21], it is not clear whether the cor-

relations are sufficiently negligible. We therefore considered a single spiking neuron

with synapses whose plasticity is spike-dependent [22]. It received separate inputs

from each eye. Motivated by the fact that in a multi-source system upstream neurons

gain selectivity before the downstream neurons [12, 23], we chose the inputs from

the upstream neurons to be orientation-selective. This is consistent with complex

cells in V1 receiving oriented inputs from simple cells. The evolution of the synaptic

weights was driven by stimuli representing gratings with randomly switching ori-

entation. In an initial phase these inputs were uncorrelated between the two eyes

to mimic spontaneous retinal or thalamic activity before eye opening [24]. After

eye-opening the inputs were chosen to be perfectly correlated between left and right.

Our aim was to keep the model as simple as possible, while still capturing a wide

range of experimental observations. We therefore did not modify the plasticity rules

when switching between these two phases and did not include a transition period

(P15-P20) during which the input changes from being dominated by spontaneous

activity to being dominated by visually-evoked activity [25].

Our model captures key experimental observations [23,26]:

(1) the matching is predominantly achieved by shifting the preferred orientation

for input from the weaker eye.

(2) the resulting binocular orientation selectivity increases with decreasing mis-

match.
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In addition, the model provides insight into a number of further experimental obser-

vations and puts forward testable predictions:

(1) The matching speed increases with initial ocular dominance, suggesting oc-

ular dominance as a key driver of the binocular matching process.

(2) While the matching improves more slowly for cells that are more orientation-

selective, the selectivity increases faster for better matched cells during the

matching process. This suggests that matching drives orientation selectivity

but not vice versa

(3) The initial binocular preferred orientation is a good predictor for the match-

ing outcome.

(4) There are two main routes to matching: the preferred orientations either

drift towards each other or one of the orientations switches quite suddenly,

involving a transient loss of binocularity, which can become permanent if it

occurs towards the end of the critical period. While drifting occurs for small

initial mismatch, switching is specific for large mismatch.

We expect that these results provide insight more generally into how neuronal sys-

tems can develop to integrate inputs from multiple sources coherently in order to

generate normal neuronal function.
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2.2. Methods

2.2.1. Neuron model

We used an adaptive exponential integrate-and-fire model [27] with an additional

current describing an afterpotential depolarization [28]. In this model the evolution

of the postsynaptic membrane potential u(t) was given by

(2.1) C
d

dt
u = −gL(u− Er) + gL∆T e

u−VT
∆T − wad + z + I ,

where Er was approximately the resting potential, C the membrane capacitance, gL

the leak conductance, and I the current stimulation. The exponential term mimicked

the activation of sodium current. Upon reaching the peak voltage Vpeak, the voltage u

was reset to the fixed value Vreset . The parameter ∆T was the slope factor and VT was

the (variable) threshold potential. The variable wad represented a hyperpolarizing

adaptation current with dynamics given by

(2.2) τwad
d

dt
wad = a(u− Er)− wad ,

where τwad was the time constant of the adaptation of the neuron and a controlled

the strength with which wad was driven. On firing, wad was increased by an amount

b. The afterpotential depolarization was captured by the variable z. It was set to

Isp immediately after a spike and decayed then with a time constant τz,

(2.3) τz
d

dt
z = −z .
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Refractoriness was modeled by employing an adaptive threshold VT , which was set

to VTmax immediately after a spike and decayed then to VTrest with a time constant

τVT ,

(2.4) τVT
d

dt
VT = −(VT − VTrest) .

Parameters for the neuron were taken from [22] and kept fixed throughout all simu-

lations (see Table 2.1).

To test the robustness of our results we also used a simplified neuron model

with both the adaptation current and afterdepolarization removed, with which we

obtained very similar results.

2.2.2. Synaptic Inputs

Our model consisted of one postsynaptic binocular cell modeling a cortical cell in V1

receiving excitatory, tuned synaptic inputs (Fig.2.1A), driven by independent Poisson

spike trains. In the first set of simulations these inputs were taken to be monocular.

They were divided equally into 250 inputs from the left and 250 from the right eye,

respectively. In addition, inhibitory, untuned synaptic inputs were introduced to

capture the sublinear binocular integration observed experimentally [29] (Fig.2.2A).

The monocular preferred orientations of the tuned excitatory synapses were linearly

spaced between 0◦ and 180◦. To mimic visual input consisting of gratings oriented at

an angle θ0 each excitatory synapse i with preferred orientation θi received as input

a Poisson spike train with an average firing rate given by the von Mises distribution
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Neuron model
Parameter Value Parameter Value
C, membrane
capacitance

281 pF a, subthreshold adaptation 4 nS

gL, leak conductance 35 nS b, spike triggered
adaptation

0.0805
nA

Er, approximated
resting potential

-70.6 mV Isp, spike current after a
spike

400 pA

∆T , slope factor 2 mV τz, spike current time
constant

40 ms

VT , threshold
potential at rest

-50.4 mV τVT , threshold potential
time constant

50 ms

Vreset, resetting
voltage

-50.4 mV VTmax , threshold potential
after a spike

30.4
mV

Vpeak, spiking
threshold

20 mV k, argument of modified
Bessel function for synaptic
input

1.7

τwad , adaptation time
constant

144 ms A, amplitude of the
orientation-selective
response of synapses

0.14

gex, excitatory
synaptic conductance

35 nS Vex, reversal potential of
the excitatory synapse

0 mV

ginh, inhibitory
synaptic conductance

40 nS Vinh, reversal potential of
the inhibitory synapse

-80 mV

Table 2.1. Parameters used in the model for the neuron. All parameters were set in
advance on the basis of [22].

with center 2θ0,

(2.5) νi = A
ek cos(2(θi−θ0))

2πI0(k)
.

Here the modified Bessel function of order 0, I0(k), provided the normalization and

A controlled the overall amplitude of the input. The value of k was determined by

matching the tuning width of νi to that observed for neurons in layer 4 [30,31]. All



24

excitatory and inhibitory synapses delivered conductance-based currents. The total

synaptic current Isyn was given by

(2.6) Isyn =
i=500∑
i=1

Xiwi gex (Vex − u) + ginh (Vinh − u).

where gex (ginh) was the excitatory (inhibitory) synaptic conductance, Vex (Vinh)

the reversal potential of the excitatory (inhibitory) synapses. The presynaptic Pois-

son spike trains were given by Xi(t) =
∑

n δ(t− t
(n)
i ) with i the index of the synapse

and n counting the spikes in the train. The conductance ginh of the inhibitory

synapses was chosen to match the experimentally observed binocular sublinear in-

tegration ratio [29] (Fig.2.2A). Since the inhibitory synapses were not plastic, the

timing of that input was not essential and we modeled it as a steady current rather

than driven by spike trains. The difference in the strength of input from the ipsilat-

eral eye and from the contralateral eye was not included in the model. Note that,

effectively, the visual inputs in our model were all presented with the same spatial

phase. Therefore, the difference in the phase dependence of the response of complex

cells and simple cells in V1 was not considered in the model.

Besides the scenario with monocular input, we performed additional numerical

simulations for scenarios with binocular inputs having various input characteristics.

We used various distributions of the ODI and allowed various degrees of mismatch.

Specifically, we investigated the following scenarios:

(1) the binocular inputs to each synapse are perfectly matched and the distri-

bution of their ocular dominance is peaked at ODI=0.
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(2) the binocular inputs to each synapse are unmatched with independent, uni-

formly distributed preferred orientations and the distribution of their ocular

dominance is peaked at ODI=0.

(3) the binocular inputs to each synapse are perfectly matched and the distri-

bution of their ocular dominance rises towards positive and negative ODI.

(4) the binocular inputs to each synapse are unmatched with independent, uni-

formly distributed preferred orientations and the distribution of their ocular

dominance rises towards positive and negative ODI.

(5) same as (3) except the 40% of the inputs that had the most biased ODI in

case 3 are made monocular.

(6) same as (4) except the 40% of the inputs that had the most biased ODI in

case 4 are made monocular.

We present mostly results for cases 1,2. In case 1, the excitatory inputs were provided

by 500 tuned synapses. For each of the 25 equally spaced preferred orientations there

were 20 synapses, the ODI-values of which were spaced to obtain the distribution

f(x) = 0.75 − 0.75x2, x ∈ [−1, 1]. Thus, the ODI of cell j was given by F−1( j−1
19

),

j = 1, . . . 20, with F (x) being the CDF of f(x), F (x) = 0.5 + 0.75x− 0.25x3. Case 3

was as case 1 except f(x) = 0.125 + 1.125x2, x ∈ [−1, 1]. In case 2, the cell received

490 excitatory, tuned synaptic inputs. For each ODI-value there were 49 synapses

with independently chosen preferred orientations. The ODI-values were chosen as

in case 1. Case 4 is as case 2 except f(x) = 0.125 + 1.125x2, x ∈ [−1, 1]. With

binocular inputs, given a visual input oriented at θ0, each excitatory synapse i with
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preferred orientation θil through the left eye and θir through the right eye received

a Poisson spike train with an average firing rate given by the linear combination of

the monocular firing rates (cf. (2.5)),

(2.7) νi =
L

L+R
A
ek cos(2(θil−θ0))

2πI0(k)
+

R

L+R
A
ek cos(2(θil−θ0))

2πI0(k)
.

where R−L
R+L

= ODI. In case 1-6 we applied the same plasticity model and simula-

tion protocol as in the monocular case.

2.2.3. Plasticity model

The excitatory synapses were chosen to be plastic while the strength of the inhibitory

synapses was kept fixed. As plasticity model we chose the well-validated model of

voltage-based STDP with homeostasis introduced in [22], which exhibited separate

additive contributions to the plasticity rule for long-term depression (LTD) and for

long-term potentiation (LTP),

d

dt
wi = −ALTD(u)Xi [u− − θ−] +

+ALTP xi [u− θ+]+ [u+ − θ−] +.

The weights were limited by hard bounds, wmin ≤ wi ≤ wmax. The LTP component

depended on the postsynaptic membrane potential and a low-pass filtered version of

the presynaptic spike train obtained via

(2.8) τx
d

dt
xi = −xi +Xi(t).
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The low-pass filtered, postsynaptic membrane potentials ū± were obtained via

(2.9) τ±
d

dt
u± = −u± + u(t)

and entered the plasticity rule through the rectifier denoted by [. . .]+. The amplitude

ALTD(u) = A
(0)

LTD
u

2

u2
ref

captured a homeostatic process based on the low-pass filtered

square of the deviation of the membrane potential from the resting potential,

(2.10) τth
d(u

2
)

dt
= −u2

+ (u(t)− Er)2 .

Thus, the key features of this plasticity model are that depression occurs when

a presynaptic spike arrives and the average voltage u− surpasses the threshold θ−,

while a synapse is potentiated if the momentary postsynaptic voltage u(t) is above

the threshold θ+ and the average voltage u+ is above θ− during a time of order

τx after a presynaptic spike. Parameters for the plasticity model were kept fixed

throughout all simulations (see Table 2.2).

2.2.4. Simulation

The initial strengths of the excitatory synapses were chosen randomly from a uni-

form distribution within [wmin, wmax]. For the first stage from t = 0 to t = tswitch,

we simulated monocular vision by presenting a random sequence of oriented visual

inputs that were uncorrelated between the left and the right eye. The orientation of

the visual input was randomly changed every 225 ms. This represented the monoc-

ular phase (MP) of the simulation (Fig.2.1B). Then, in the second, binocular phase
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Plasticity model
Parameter Value Parameter Value
θ+, threshold potential for
voltage

-45.3 mV τ−, time constant for
filtered voltage u−

10
ms

θ−, threshold potential for
filtered voltage

-70.6 mV τ+, time constant for
filtered voltage u+

7 ms

A
(0)

LTD, amplitude of LTD 7× 10−4mV−2 τx, time constant for
the presynaptic
spiking trace

15
ms

ALTP, amplitude of LTP 12× 10−4mV−2 τth, time constant for
the homeostasis

1.2 s

wmin, lower bound for the
synaptic weight

0 wmax, upper bound
for the synaptic
weight

1.6

Table 2.2. Parameters of the plasticity model. Parameters as used in [22] for vi-

sual cortex, except for A
(0)

LTD, ALTP, which have been increased to speed up the

simulations.

(BP) from t = tswitch to t = tfinal, we simulated binocular vision by presenting a

random sequence of oriented visual inputs that were identical for the two eyes. The

orientation of the visual input was again changed randomly at the same frequency

as in MP. Note that for cases 1, 3, 5, we did not include in our model an early phase

during which the preferred orientations of upstream neurons become matched. We

omitted the transition period (P15-P20) during which spontaneous activity and visu-

ally evoked activity are both driving plasticity [25]. To monitor the evolution of the

preferred orientation we recorded all synaptic strengths every 250 ms. Monocular

and binocular tuning curves were generated by testing the spiking response of the

postsynaptic cell for the recorded synaptic strengths every 20s. To gather statistics,

we ran the simulations multiple times (n = 5600 trials). Each trial produced an

effectively different cell with different response properties.
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To generate a well-controlled initial mismatch for the BP we shifted, right after

MP, the synaptic strengths for inputs from one eye from 0◦ to 80◦ in steps of 10◦.

All numerical simulations were performed with MATLAB. The code is available

from the authors upon request.

2.2.5. Data analysis

We characterized the response of the postsynaptic neuron using the average spiking

rate during windows with a duration of 1 second, both monocularly and binocularly.

The tuning curve was generated by plotting the response magnitude against the

orientation of the visual input. We defined the preferred orientation of the cell as

the orientation that gave the largest response. This was done for monocular input

yielding separate preferred orientations OL,R for the left and right eye, respectively,

and for binocular input resulting in Obino. The monocular/binocular spiking rate was

defined as the response for the preferred orientations OL,R and Obino, respectively.

The mismatch ∆O in the preferred orientation was calculated as the smaller of the

two values |OL −OR| and 180◦−|OL −OR|. The global orientation selectivity index

(gOSI) was computed as the magnitude of the sum
∑
R(θ)e2θi∑
R(θ)

over all angles with R(θ)

giving the firing rate response at orientation θ. The ocular dominance index (ODI)

for each cell was calculated as R−L
R+L

, where R and L represent the maximum response

magnitude for input from the right and left eye, respectively. The ODI ranges from

−1 and 1, where positive values indicate right bias and negative values indicate left

bias. The prediction error for the matching outcome was the difference between
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the predicted and the measured binocular preferred orientation. The decay rate of

mismatch during binocular vision at time t (with mismatch ∆O(t)) was determined

by −∆O(t+∆t)−∆O(t)
∆O(t) ∆t

with ∆t = 45s. To reduce the impact of noise, we included in the

computation of the matching rate only cells for which ∆O(t) was larger than 30◦.

To analyze the evolution of the monocular tuning curves, we developed two quan-

tifications, the bimodality index and the monocularity index. The bimodality index B

quantified the maximal degree of bimodality of the monocular tuning curves through-

out BP by measuring at each timepoint t during BP the response amplitude for the

dominant and the subdominant preferred orientations. At each time t, for the left

and right eye the dominant preferred orientation was defined as the orientation evok-

ing the maximal response R
(dom)
l (t) and R

(dom)
r (t), respectively, after smoothing the

tuning curves with a 4-mode Fourier filter (Fig.2.11A below). If the tuning curves

exhibited an additional peak R
(sub)
l,r (t), it defined the subdominant preferred orienta-

tion. If there was no such subdominant peak we set the corresponding amplitudes

R
(sub)
l,r (t) to 0. The bimodality index B was then computed as

B = max
t≥tswitch

(
max

(
R̃

(sub)
l (t)

R̃
(dom)
l (t)

,
R̃

(sub)
r (t)

R̃
(dom)
r (t)

))
,

where R̃(t) was obtained by smoothing the corresponding R(t) in time using a piece-

wise cubic spline with 5 nodes to reduce noise. A bimodality index close to 1 charac-

terized a cell whose tuning curve was quite bimodal at some time during the matching

(Fig.2.11A and left panel in Fig.2.11B).
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The monocularity indexM measured the maximal degree of monocularity of the

cell during BP. It was computed as

M = 1− min
t≥tswitch

(
min

(
R

(dom)
l (t)

R
(dom)
l (tswitch)

,
R

(dom)
r (t)

R
(dom)
r (tswitch)

))
,

where the left and right monocular response amplitudes R
(dom)
l,r (tswitch) for the dom-

inant preferred orientation at the onset of BP were used to scale the later response

amplitudes. The closer this index is to 1, the more monocular the cell was at some

time during BP (Fig.2.11B). We were particularly interested in how relatively strong

monocular orientational receptive fields (ORF) matched. Here we loosely defined

ORFs as those orientations to which the neuron responded significantly, i.e. the

orientations for which the tuning curve is significantly above baseline. Focusing on

relatively strong ORFs we calculated the bimodality and monocularity index only

for cells that, at the onset of BP, had monocular gOSIs through each eye above 0.3,

monocular maximal response above 0.8/s, and mismatch larger than 20◦.

2.2.6. Robustness test

We tested the sensitivity of our results with respect to the five key parameters of

the plasticity model (i.e., ALTP , ALTD, τx, τ+, τ−) by varying them by ±20%. To

do so the main results were condensed into correlations between different quantities

characterizing the cells (Table 2.3). For instance, to test whether the matching rate

decreased with increasing gOSI we measured the correlation between the matching

rate and the gOSI across all cells and determined to what extent the correlation
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changed when changing the parameters. To assess the significance of these changes we

compared them with the 95% confidence interval of the correlation for the standard

parameter set. Most correlations did not change significantly with these parameter

changes. Even when the changes were quantitatively significant, the results still

agreed qualitatively with those from the standard parameter set.

2.3. Results

The computational model consisted of one hypothetical binocular cell receiving

excitatory, orientation-tuned inputs from each eye via plastic synapses [22] and in-

hibitory, untuned inputs from each eye via non-plastic synapses (Fig.2.1A). Through

the inhibitory inputs the model captured the experimentally observed sublinear

binocular integration [29] (Fig.2.2A). In analogy to the cortical balanced state [21],

the firing of the cells was driven by fluctuations in the inputs rather than their mean

value (Fig.2.2B) The computation involved a monocular (MP) and a binocular (BP)

phase (Fig.2.1B). Since the stimulus sequence in both phases was random, repeated

trials effectively generated an ensemble of cells with different response properties.

The resulting distributions for the ocular dominance (ODI), the orientation selec-

tivity (gOSI), and the remaining mismatch of the preferred orientations (∆O) were

consistent with the experimental data reported by [31] (Fig.2.3).

2.3.1. Synaptic plasticity captures binocular matching

The results obtained in our model are consistent with key aspects of previous ex-

periments [18,23,26]. Using a tuning width for the inputs that corresponds to that
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A Figure B Quantity 1 C Quantity 2 D # of
parameter sets
outside the 95%
confidence
interval

E 95%
confidence
interval for the
standard set

Fig.2.5A Change δOL in
the left preferred
orientation
during BP

|ODI| at tswitch 0/10 (0.19,0.29)

Fig.2.5B Change δOR in
the right
preferred
orientation
during BP

|ODI| at tswitch 0/10 (−0.29,−0.19)

Fig.2.6A Mean monocular
gOSI at tswitch

Mismatch at
tswitch

0/10 (−0.05, 0.03)

Fig.2.6B Mean monocular
gOSI (t = 192.5s)

Mismatch
(t = 192.5s)

5/10 (−0.29,−0.19)

Fig.2.6D Matching rate Mean monocular
gOSI

0/10 (−0.24,−0.08)

Fig.2.6F Growth rate of
gOSI

Mismatch 1/10 (−0.41,−0.31)

Fig.2.8B Accuracy of
predicting
matching
outcome
with Obino at
t = 191.25s

Mismatch at
t = 191.25s

0/10 (−0.45,−0.34)

Fig.2.8C Accuracy of
predicting
matching
outcome
with Obino at
tswitch

Mismatch at
tswitch

0/10 (−0.24,−0.15)

Fig.2.10B Matching rate |ODI| 0/10 (0.02, 0.13)
Fig.2.8B Monocularity

index M
Mismatch at
tswitch

3/10 (0.29, 0.45)

Fig.2.8A Bimodality index
B

Mismatch at
tswitch

1/10 (0.30, 0.41)

Fig.2.8C Bimodality index
B

Monocularity
index M

2/10 (0.39, 0.53)

Table 2.3. Robustness test. For each figure listed (column labeled A), the correlation
between 2 quantities characterizing the cell (columns B,C) was computed with a 95%
confidence interval for the standard parameter set (column E) and the number of
parameter sets was determined for which the correlation is outside that confidence
interval (column D).
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Figure 2.1. Computational Model. (A) The postsynaptic neuron received synap-
tic inputs as Poisson spike trains from excitatory, orientation-selective synapses and
conductance-based current inputs from non-selective inhibitory synapses, divided
equally into inputs from the left and the right eye. Random sequences of oriented
visual input characterized by orientation θ were presented to each eye. Only excita-
tory synapses were plastic. (B) Simulation protocol: The orientation of the simulated
visual input was randomly shifted every 225 ms. The left and right inputs were un-
correlated until tswitch = 56.25s (monocular phase), then left and right inputs were
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35

Sum of monocular
spiking rates [s-1]

0.6

0.8

1

1.2
In

te
gr

at
io

n 
ra

tio

0 5 10 15 20
0

5

Fi
rin

g 
ra

te
 [s

-1
]

1 3 42
Low noiseHigh noise

BA

Figure 2.2. Sublinear integration ratio in the fluctuations-driven spiking network.
(A) Sublinear integration ratio of the spiking rate. The ratio of the firing rate for
binocular input during the binocular phase and the sum of the corresponding monoc-
ular rates is plotted against the sum of the monocular spiking rates. (B) Fluctuations
drive the spiking. The firing rate of the cell goes to 0 when the fluctuations in the
excitatory inputs are reduced by increasing the rates of the Poisson trains by a factor
F , while keeping the mean current fixed.

Mean=0.52

Figure 2.3. Distribution of the properties of the cells at the end of the binocular
phase (BP). a) ODI, b) gOSI, c) mismatch ∆O.

of cells in layer 4 [30], our model reproduced the development of orientation selec-

tivity for V1 cells with global orientation selectivity index (gOSI) and tuning width
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similar to those found experimentally in layer 2/3 [30,31]. Also, the experimentally

observed sublinear binocular integration [29] was captured in our model (Fig.2.2A).

Moreover, while right after eye-opening a fraction of V1 cells has been observed

to have well-developed orientation selectivity, their monocular preferred orientations

for input from the left and the right were poorly matched [23]. In fact, in some

cells, they were nearly 90◦ apart, the maximal possible difference. This mismatch

decreased substantially with age to reach the adult level by P30-P36 [18,23].

In our model, during the initial phase of MP multiple sets of synapses were

potentiated. Due to the random distribution of the initial synaptic strengths, the

randomly chosen orientations, as well as the variability of the number of spikes in

the input Poisson spike trains the synaptic strengths did not vary smoothly with ori-

entation. Nevertheless, the sets of potentiated synapses roughly specified monocular

orientational receptive fields (ORFs) of the postsynaptic neuron, defined as those

orientations for which the tuning curve is significantly above baseline. During MP

these ORFs for input from the left and the right eye did not match (Fig.2.4A, 1 and

2 up to t = tswitch, marked by white dashed lines), which manifested itself also in

non-matching orientation tuning curves (Fig.2.4B, 1 and 2).´

During BP both eyes received the same inputs. This allowed the potentiation of

weak synapses that by themselves were not strong enough to drive a post-synaptic

spike, if the synapses with the same preferred orientation but receiving input from

the other eye were sufficiently strong to trigger a spike. This slowly modified the

ORFs and the tuning curves (Fig.2.4A,B for t > tswitch), decreasing the mismatch
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Figure 2.4. Binocular vision reduces the mismatch of the monocular preferred orien-
tations. (A1,A2): Two examples of the temporal evolution of the synaptic strengths.
The presynaptic neurons are ordered according to their preferred orientation (ver-
tical axis), and their synaptic strengths are illustrated in greyscale as a function of
time (horizontal axis). (B1,B2): Corresponding evolution of the monocular tuning
curves through each eye. Greyscale indicates the firing rate of the cell in response to
monocular input with an orientation as indicated along the vertical axis. In (A1,B1)
the two monocular preferred orientations drifted toward each other while in (A2,B2)
one monocular preferred orientation switched to the other discontinuously to achieve
binocular matching. White dashed lines mark t = tswitch. (C): The cumulative distri-
bution function of the mismatch at different times (tswitch = 56.25s; n = 5600 cells).
(D) The evolution of the mismatch and the binocular preferred orientation Obino for
4 cells during BP, showing representative trajectories. The solid black line represents
the cell shown in (A1,B1). The solid grey line represents the cell shown in (A2,B2).
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between the two monocular preferred orientations. Eventually, in almost all cells the

preferences became matched within 20◦ (Fig.2.4C). The variability in the evolution

of the cell properties was extremely high: cells could match early (dashed lines in

Fig.2.4D) or late (solid lines), their preferred orientation could shift gradually (black

lines) or it could switch suddenly (grey lines).

2.3.2. The effect of ODI on the matching outcome

It has been shown that three weeks of environmental enrichment (EE) can rescue

the disrupted binocular mismatch caused by visual deprivation during the critical

period [26]. These experiments revealed that ocular dominance plays a key role in

the binocular matching process. In cells whose response was dominated by one of the

two eyes, binocular matching was achieved by the orientation preference for input

from the nondominant eye changing, while the orientation preference for input from

the dominant eye did not change much.

Motivated by this experimental result, we determined for each cell the change

δOL,R in the left and right monocular preferred orientations during BP as well as

the ocular dominance index (ODI) right before BP. The statistics of δOL,R and

ODI across many cells are shown in histograms of δOL,R for each value of the ODI

(Fig.2.5A,B). As in the experiments, the range in the change of preferred orientation

for input from the nondominant eye was much wider than that for the dominant eye.

This asymmetry becomes very clear when considering - for each value of the ODI -

the range in δOL,R that includes 90% of the cells; its upper limit is shown as solid
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Figure 2.5. Preferred orientation mostly changes for nondominant eye. (A) Two-
dimensional histogram in which the greyscale of each square bin indicates the per-
centage of cells whose monocular preferred orientation through the left eye changed
by δOL (vertical axis) during BP and that had an ODI at tswitch as given on the
horizontal axis. (B) Same plot as (A), except for the right eye. In both (A) and (B)
tswitch = 56.25s, tfinal = 506.25s, n = 5600 cells. (C) The evolution of the monocu-
lar tuning curve for input from the left and right eye (cf. Fig.2.4B). White dashed
lines mark t = tswitch. The scale of the greyscale map is capped to better show the
difference between the left and right monocular firing rates at tswitch (ODI>0).

lines in Fig.2.5A,B. Since the preferred orientation is measured using Poisson spike

trains it exhibits fluctuations. To illustrate that they do not reduce the asymmetry

impact we also considered the cumulative distribution across cells of the mean of

δOL,R minus the standard deviation of δOL,R. Its 90%-point is given by the dashed
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lines. Fig.2.5C shows an illustrative example in which at tswitch (white dashed line)

the cell was dominated by the input from the right eye (ODI= 0.415). During BP the

preferred orientation for input from the nondominant (left) eye changed substantially,

while that for input from the dominant (right) eye did not evolve much.

2.3.3. The interaction between orientation selectivity and matching

Previous experimental results revealed an inverse relationship between mismatch

and gOSI: cells with smaller orientation mismatch had greater orientation selectiv-

ity. This did not hold in mice whose binocular matching process was compromised

by visual deprivation; their ∆O values spanned the entire 0◦−90◦ range for all gOSI

values [26]. The histograms in Fig.2.6 show the relationship between mismatch and

gOSI obtained in the model at the onset of BP at tswitch (Fig.2.6A) and at an inter-

mediate time during BP (Fig.2.6B). Most cells were neither well-matched nor very

selective at the end of MP (Fig.2.6A). Consistent with the experimental results, at

intermediate times during BP the mismatch was small in highly orientation-selective

cells (Fig.2.6B).

To gain insight into the relationship between the matching process and the sharp-

ening of the orientation selectivity, we measured the evolution of the gOSI and the

mismatch for different durations of the MP (Fig.2.6C and E). For tswitch > 1250s

the gOSI reached a steady state during MP (Fig.2.6C). Remarkably, its saturation

value was significantly lower than the value reached during BP, even if that BP fol-

lowed an MP with short duration. This indicates that binocular vision enhanced
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Figure 2.6. Matching leads the development of orientation selectivity during BP.
(A,B): Histogram of the mismatch for different values of the mean monocular gOSI
at t = tswitch = 56.25s. The histogram is normalized for each value of the mean
monocular gOSI. (B) As (A), but for t = 191.25s during BP. Lower mismatch is
correlated with higher orientation selectivity (n = 5600 cells). (C) Binocular vi-
sion enhances orientation selectivity. The evolution of gOSI for tswitch = 56.25s,
450s, 2250s (marked by dashed lines). (n = 5000 cells). (D) Less selective cells

match faster. The relative matching rate is given by −∆O(t0+∆t)−∆O(t0)
∆O(t0) ∆t

, where

t0 = tswitch (black line), tswitch + 45s (grey line) with ∆t = 45s. (E) Binocu-
lar vision matches monocular preferred orientations. The evolution of mismatch
for tswitch = 56.25s, 450s, 2250s (marked by dashed lines). (n = 5000 cells,
tfinal = tswitch + 562.5s). (F) The growth rate of the gOSI decreased with increasing

mismatch. The relative growth rate of the gOSI is given by ∆gOSI(t0+∆t)−∆gOSI(t0)
∆gOSI(t0) ∆t

,

where t0 = tswitch (black line), tswitch + 45s (grey line) with ∆t = 45s. In panel D
and F the error bars denote the SEM.
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the development of orientation selectivity. Further analysis showed that the mis-

match decayed exponentially to its final value faster than the gOSI. By employing

initial conditions with well-controlled mismatch (see Methods), we showed that less

selective cells matched faster (Fig.2.6D) and the growth rate of the gOSI decreased

with increasing mismatch (Fig.2.6F). Strikingly, for cells with large mismatch the

growth rate could even be negative and the cells became less selective. With time,

however, the mismatch of these cells decreased as it did for the other cells and even-

tually reached values for which the gOSI increased. This suggests that the matching

process enhanced the orientation selectivity, while orientation selectivity was not a

driving force of binocular matching but had, instead, a negative effect on matching

speed.

Moreover, at the onset of BP the left and right orientation selectivities were often

quite different from each other leading to a broad distribution across cells (Fig.2.7A).

But binocular vision enhanced the selectivities and drove them to the same large

value (Fig.2.7B and C).
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2.3.4. Prediction of matching outcome

Next, we put forward testable predictions based on our model. We hypothesized that

the binocular preferred orientation right before BP could predict the eventual match-

ing outcome. We therefore defined the prediction error as the difference between the

final binocular preferred orientation and that at the beginning of BP (Fig.2.8A).

Overall, the binocular preferred orientation at tswitch was a quite good predictor for

the preferred orientation at all time points during BP that we investigated (Fig.2.8B).

Note that in Fig.2.8B the histogram of the prediction error was normalized separately

for each value of the mismatch. This revealed that for small mismatch almost all cells

had a prediction error of less than 20◦, while for large mismatch the distribution of

prediction errors was almost uniform. Thus, the mismatch that remained at a given

time during BP indicated quite well whether the binocular preferred orientation at

tswitch was a good predictor for the binocular preferred orientation at that later time.

Can the reliability of the prediction for the preferred orientation already be antic-

ipated at tswitch? Indeed, already the initial mismatch was a good indicator for this

reliability (Fig.2.8C): the prediction was quite accurate when the initial mismatch

was small, while it became less reliable for large initial mismatch.

Since in the experiments the monocular, rather than the binocular tuning curves

were measured [26], we tested how well the superposition of two monocular tuning

curves at the onset of BP could predict the final, matched orientation. We found that

at each time point the preferred orientation determined by the linear superposition of
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Figure 2.8. Binocular preferred orientation at the onset of BP predicts the preference
after matching. (A): The prediction error was calculated as the difference between
the binocular preferred orientation before and after BP. (B): The quality of the
prediction decreased with increasing mismatch. Histogram of the prediction error for
different values of the mismatch, both at the same time t = 191.25s. The histogram is
normalized separately for each value of the mismatch. (C): The accuracy of prediction
decreased with the initial mismatch. Like (B), but at t = 281.25s and using the
initial mismatch. Circles represent the mean prediction error of the trials for each
value of initial mismatch. (D): The mean prediction error increased with time. The
distribution of the prediction error from well-matched cells (mismatch < 20◦) at
three intermediate times during BP. In all figures, tswitch = 56.25s and n = 5600
cells.

two monocular curves was close to the binocular preferred orientation and therefore

it was also a good predictor for the matching outcome (Fig.2.9).
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The matched preferred orientation that emerges in a given cell reflects the initial

synaptic weights as well as the sequence of presented visual inputs. Since in our

simulations the synapses were plastic throughout the simulation and the sequence of

inputs was random, the binocular preferred orientation evolved on a slow timescale,

wandering around in a diffusive manner. The distribution of the prediction error

across cells therefore broadened with time as shown in Fig.2.8D for well-matched

cells (mismatch less than 20◦), implying a growing mean prediction error.

2.3.5. The speed of matching depends on the initial ODI

We next examined how initial ocular dominance affected the speed of the matching

process. Figs.2.10A, 1, 2 and 3 show the histogram of the mismatch for various time

points as a function of the magnitude |ODI| of the ocular dominance index at tswitch.

For high initial |ODI| the mismatch decreased rapidly, while in many cells that had a

lower initial |ODI| the matching proceeded more slowly (most clearly seen comparing

t = 146.25s with t = tswitch). We quantified this in terms of the decay rate of the

mismatch at time t given by −∆O(t+∆t)−∆O(t)
∆O(t)∆t

with ∆t = 45s. Fig.2.10B shows the

mean of the decay rates across cells for different ranges of the |ODI| at t0 = tswitch

and t0 = tswitch+45s. This result is consistent with the intuition that cells with a low

initial |ODI| have two monocular ORFs with similar overall synaptic strengths, which

compete with each other during BP, slowing down the matching process. This effect

of ocular dominance on the binocular matching rate reveals ocular dominance as a

driver of the binocular matching process. Note that cells with an initial mismatch
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less than 40◦ were not included in Fig.2.10B, since here we were only interested in the

matching processes starting with a state that was not well-matched. Similar values

for the decay rates as shown in Fig.2.10B were obtained at other intermediate times

during BP, suggesting an exponential decay of mismatch during BP.

2.3.6. The type of matching process depends on the initial mismatch

Finally, we investigated whether there are qualitatively different processes through

which the binocular matching was obtained. There were at least two such processes:

the two monocular preferred orientations could shift gradually towards each other

(Fig.2.4B1), or one of the preferred orientations could switch to the other one discon-

tinuously (Fig.2.4B2). The latter case was characterized by a period during which

the tuning curve for one eye was bimodal, with the dominance switching from one

peak to the other, leading to a discontinuity in the preferred orientation. During
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this time the cell responded only weakly to input from that eye; the cell was effec-

tively monocular. This loss of binocularity could become permanent if it occurred

towards the end of the binocular phase, which was referred to the critical period

for ocular dominance plasticity. Similar result has been experimentally observed in

later work [32]. In contrast, when the matching was achieved by shifting, the tuning

curves of both eyes had only a single peak, which gradually shifted, and the cell

remained binocular throughout BP (Fig.2.4B1).

Based on these observations we introduced a bimodality index B and a monocu-

larity indexM to characterize the matching process (see Methods and Fig.2.11A,B)
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and related it to the mismatch at tswitch (Fig.2.11C,D). For small initial mismatch,

the cells showed little monocularity or bimodality throughout the matching pro-

cess, implying that binocular matching was achieved by the monocular preferred
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orientations shifting towards each other. If the initial mismatch was large, however,

bimodality and monocularity were both larger and it was more likely that one of

the two preferred orientations switched to the other. Thus, both, bimodality and

monocularity, were equally suited to characterize the matching process; in fact, they

were positively correlated (Fig.2.11E).

2.3.7. The dependence of matching on the input characteristics

So far we assumed for simplicity that all excitatory input synapses are monocular.

However, cells in V1 vary substantially in their ocular dominance. To go beyond this

simplification we therefore performed extensive additional numerical simulations to

determine how the learning process and outcome depends on the input characteris-

tics. We included inputs that were more realistic for the visual system, but covered

also other situations that might be relevant for matching processes in multi-modal

sensory processing. Specifically, we made the inputs binocular using various distri-

bution of the ODI and allowed various degrees of mismatch. Here we illustrate the

results for the following scenarios:

(1) the binocular inputs to each synapse are perfectly matched and the distri-

bution of their ocular dominance is peaked at ODI=0.

(2) the binocular inputs to each synapse are unmatched with independent, uni-

formly distributed preferred orientations and the distribution of their ocular

dominance is peaked at ODI=0.
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Complex cells in the visual system are presumably best described by inputs in be-

tween these two cases, since under natural conditions simple cells match before com-

plex cells [18] and exhibit a peaked ODI-distribution [19, 33]. Thus, complex cells

receive quite well, but not perfectly, matched inputs.

We found that in all cases with binocular and potentially unmatched inputs,

key features of the matching process were qualitatively the same. In particular,

matching predominantly occurred via shifting of the preferred orientations if the

mismatch was small, while switching of the orientations occurred mostly for large

mismatch (Fig.2.12).
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The only significant differences arose for matched binocular inputs. While for

unmatched binocular inputs the matching rate decreased with increasing gOSI, as

was the case for the monocular inputs, this was not the case for matched binocular

inputs (Fig.2.13A). In the latter case the mismatch of the cell response arises because

different synapses provide inputs with different preferred orientations and different

ODI. Thus, even though the left and right preferred orientations of a given synapse

are the same, the strengths of the inputs from the left and right eye are not balanced.

As a result, the orientation that dominates the overall input is in general not the same

for the two eyes. For the mismatch of the cell to decrease it is then sufficient if its

orientation selectivity increases, because this implies that the range of orientations

that contribute to its input is reduced. This increase in the selectivity and the

associated matching occurs already during the monocular phase. The difference in

the matching mechanism also led to a difference in the dependence of the matching

rate on the ODI (Fig.2.13B) and the dependence of the growth rate of the gOSI

on the mismatch (Fig.2.13C). Performing additional simulations (see scenarios 3-6

listed in Methods), we found that this mechanism was less relevant when the inputs

to each synapse were less matched or less binocular (i.e., more of the inputs to the

cells had ODIs closer to 1 or −1).

2.4. Discussion

The role of plasticity in the development of the brain has been investigated ex-

tensively, with the visual system, particularly V1, serving as a prime example. Many
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Figure 2.13. The interaction between ODI, gOSI and mismatch with binocular in-
puts. Top row: binocular matched inputs. Lower row: binocular, unmatched inputs.
(A) The dependence of the matching rate on the gOSI. (B) The dependence of the
matching rate on the |ODI|. (C) The dependence of the growth rate of the gOSI on
the mismatch. error bars give the SEM. Results are shown for t0 = tswitch and for
t0 = tswitch + 45s. (See Fig.2.6D,F, Fig.2.10B). With binocular, unmatched inputs
the behavior is as for monocular inputs. For binocular, matched inputs qualitative
differences arise, particularly for the dependence of the matching rate on the gOSI
(cf. Fig.2.6E,F).

of these studies were motivated by findings in cats, ferrets, and monkeys, where cel-

lular response properties like ocular dominance and preferred orientation vary quite

smoothly with position in visual cortex, leading to ocular dominance columns and

orientation maps. The formation of these maps and columns has been described

using Hebbian, correlation-based models [20,34–36]. From the perspective of multi-

sensory integration the matching of the two monocular preferred orientations is of
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particular interest. As shown by [36], this matching requires that the strengths of

the two input-correlation modes are not too similar. The temporal evolution towards

the matched configuration and the relation of this evolution to that of the orientation

selectivity and ocular dominance has, however, not been addressed in [36]. Modeling

synaptic plasticity using the BCM-model [37], the combined evolution of preferred

orientation and ocular dominance has been investigated with focus on the impact

of monocular and binocular deprivation [38]. To model strabism, this study also

considered the case of uncorrelated inputs to the left and right eye. In that case all

cells eventually became purely monocular in their model.

Our study has been motivated by recent experiments in mice [18,23,26], which

focused on the process by which the two monocular preferred orientations become

matched. We aimed to investigate to what extent these experimental findings can

be captured in a relatively simple computational model. We therefore considered a

single spiking neuron that receives orientation-selective inputs via plastic synapses.

For the plasticity mechanism we chose a well-accepted, biophysically somewhat

detailed model [22] , which has been validated under quite a few, varied plasticity

protocols, including in visual cortex. It reduces to the BCM-model [37], if the pre-

and postsynaptic spike trains are uncorrelated and if their evolution is captured

adequately within a firing-rate model. Since cortical cells in the balanced state

respond to fluctuations in the input rather than its mean [21], it is not clear, however,

whether the correlations are sufficiently negligible. Moreover, the stimuli used in
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the experiments varied on a timescale that is not much longer than the interspike

intervals [30]. We therefore did not perform that reduction.

For simplicity, we assumed that the synaptic plasticity mechanism does not

change with eye-opening and the subsequent onset of the critical period for ocu-

lar dominance; only the inputs to the cortical neuron, which drive the synaptic

plasticity, were taken to change from being uncorrelated between the two eyes before

eye-opening to being correlated after eye-opening. This simplification is consistent

with a number of experimental findings. In cats, orientation selectivity emerges al-

ready before eye-opening, driven by vision-independent spontaneous activity in the

retina [39], and continues to increase after eye-opening. Until the onset of the crit-

ical period this increase does not depend on visual input [40]. Correspondingly,

the onset of the critical period has been identified not as a change in the plasticity

mechanism but as a transition from synaptic plasticity being driven predominantly

by spontaneous activity to being driven mostly by visually evoked input [25]. This

change results from an increase in inhibition, which reduces the weaker, spontaneous

activity - but not the stronger, visually evoked activities - to magnitudes that are

not sufficient to drive synaptic plasticity. Note that this scenario may vary across

species [39,41].

We focused on complex cells, which receive orientation-selective inputs from sim-

ple cells, a situation that is analogous to that in multi-source systems in which
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upstream neurons gain selectivity before the downstream neurons [12, 18]. We ex-

plored a number of different scenarios. In the simplest situation, each synapse pro-

vided purely monocular, well-tuned input, corresponding to a situation in which each

synapse represents a single source. In V1 of the mouse, simple cells in the binocu-

lar zone are binocular and their monocular preferred orientations can be quite well

matched already during the period of interest [18]. This does, however, not im-

ply that the monocular preferred orientations of the complex cells are already well-

matched at that point, since the simple cells feeding into the complex cell, which

have different preferred orientations, are dominated by different eyes, reflecting their

broad distribution of the ODI. We investigated this situation for different ODI dis-

tributions. The results are qualitatively similar to those obtained in the monocular

case, unless synapses providing inputs with ODI close to 0 dominate. In that case

an additional matching mechanism becomes relevant.

Despite its simplicity, our model captured a number of fundamental experimental

results for the development of orientation tuning in mouse V1 [18, 23, 26]. During

the monocular phase a fraction of the cells became orientation-selective with respect

to inputs from both eyes, but the preferred orientations were rarely matched. The

matching occurred during the binocular phase and depended strongly on the ocular

dominance of the neuron: for cells that were dominated by the input from one eye the

matching process typically involved only small changes in the preferred orientation

of the dominant eye, while the orientation of the weaker eye could change substan-

tially [26]. For those cells the initial preferred orientation of the dominant eye is
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a good predictor for the preferred orientation after matching. Considering all cells,

in the model the initial binocularly preferred orientation predicts the final preferred

orientation well. As in the experiment [26], the orientation selectivity was higher in

well-matched cells and enhanced by correlated visual input [31]. Both results reflect

the enhanced drive the cells receive once the monocular tuning curves overlap, which

leads to stronger plastic changes as well as enhanced selectivity due to the synaptic

homeostasis [22].

In the model the development of orientation selectivity and its matching are

driven by different types of correlations in the inputs to the cells and therefore differ in

their time course. Orientation selectivity starts to emerge already before eye-opening.

After eye-opening visual input is expected to enhance cortical activity and with it the

learning speed for orientation selectivity, consistent with the results of [31]. In the

model the matching process requires correlated inputs from both eyes. It therefore

suggests that matching does not start until eye-opening and persists then throughout

the critical period. Indeed, experimental results suggest that at P15-P18, i.e., shortly

after eye-opening, the matching of V1 cells is still close to chance level [18], which is

consistent with the lack of matching in dark-reared mice [23]. However, already at the

beginning of the critical period (P19-P21) the preferred orientations are somewhat

matched [18]. Due to the presence of uncorrelated spontaneous activity during the

phase between eye-opening and the critical period [42], the model suggests that

during that phase the matching proceeds more slowly than during the critical period.
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In the model, cells whose left and right monocular tuning curves overlap match

more rapidly. Thus, for a given mismatch less selective cells are predicted to match

faster. This is consistent with results obtained in mice that were reared in the dark

from P1 to P30 [23]. At P30 the distribution of their mismatch was not statistically

different from a uniform distribution and their selectivity was lower than that ob-

served at the beginning of the critical period. As found in the model, their matching

progressed faster than was the case for undeprived animals during the critical period.

Conversely, binocular deprivation between eye-opening and the onset of the critical

period has been found to increase the fraction of cells that have strong orientation

selectivity [40] but large mismatch [23]. Our model predicts that their matching

process will be slower.

Conversely, the model predicts that the mismatch affects the orientation selectiv-

ity. By manipulating the initial mismatch at fixed orientation selectivity, we showed

that during the binocular matching process cells did not become more orientation-

selective unless the mismatch was small enough to allow the monocular tuning curves

to overlap.

Moreover, the overlap of the tuning curves is predicted to affect the matching pro-

cess in a qualitative manner. For small mismatch, for which the tuning curves overlap

significantly, the monocular preferred orientations are predicted to shift smoothly to-

wards each other. For large mismatch, however, the model predicts that the response

to input from one eye and its selectivity drop substantially during the evolution. If

the plasticity period continues sufficiently long beyond that phase, this reduction
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in response is only transient and the response eventually recovers with a preferred

orientation that has switched to that of the input from the other eye. This switching

process is predicted to be more likely after binocular deprivation between eye-opening

and the onset of the critical period. If the switching occurs, however, late in the crit-

ical period, the remaining duration of the plastic period may not suffice for the

recovery and the cell may remain essentially monocular. This has been reported

experimentally for a fraction of L2/3 cells [43].

When the plasticity period in the model was sufficiently long, all cells became

highly selective and very well matched, more so than observed experimentally [23].

This could result from an oversimplification of the plasticity mechanism or of the

stimuli used in the simulations. Alternatively, it could suggest that biologically the

overall plasticity process and its duration are not optimized specifically for orientation

selectivity and matching, but could have additional objectives. This interpretation is

supported by the observation that in the model the best orientation selectivity and

matching would be achieved in the shortest time if there was no monocular period

at all. However, it has been pointed out that such a monocular period during which

contra- and ipsilateral inputs are uncorrelated is necessary to form retinogeniculate

and geniculocortical connections with segregated eye-specific areas in LGN (reviewed

by [44]).

In our model the plasticity resulted from changes in the synaptic weights that

were driven by correlations between presynaptic spikes and the evolution of the post-

synaptic voltage, combined with a homeostatic mechanism based on the postsynaptic
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long-term activity [22]. We expect that most of our results do not depend qualita-

tively on the specific details of the plasticity mechanism as long as it has a Hebbian

component that is based on the correlations between pre- and postsynaptic activities

and that does not change the weights for low presynaptic activity, in combination

with homeostatic regulation. Conceivably, the plasticity mechanism could have a

strong structural component [45], which may be quite likely at this developmental

stage of the animal.

To conclude, by modeling the development and binocular matching for a hy-

pothetical cell in visual cortex V1, we captured a host of experimental results in

mouse and give several predictions. Key elements of the model are the evolution

and competition of two monocular receptive fields in the presence of correlated in-

puts. The simplicity of this framework makes it a good candidate to investigate the

interaction between selectivity, channel-dominance, and mismatch of a specific phys-

ical property at the single neuron level during the matching process in multi-source

experience-dependent sensory systems.
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CHAPTER 3

Paradoxical phase response of gamma rhythms facilitates

their entrainment in heterogeneous networks

3.1. Introduction

Collective oscillations or rhythms representing the coherent dynamics of a large

number of coupled oscillators play a significant role in many systems. In the tech-

nological realm they range from laser arrays and Josephson junctions to microme-

chanical oscillators [46,47]. Among the important biological examples are the heart

rhythm, the circadian rhythm generated by the suprachiasmatic nucleus [48], the

segmentation clock controlling the somite formation during development [49], and

brain waves [50]. One prominent brain rhythm is the widely observed γ-rhythm with

frequencies in the range 30-100Hz. The coherent spiking of the neurons underlying

this rhythm likely enhances the downstream impact of the neurons participating in

the rhythm. The rhythmic alternation of low and high activity has been suggested

to play a significant role in the communication between different brain areas [51,52].

That communication has also been proposed to be controlled by the coherence of the

rhythms in the participating brain areas [1,53–57].
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For collective oscillations or rhythms to play a constructive role in a system they

need to respond adequately to external perturbations and stimuli. For instance,

for the circadian rhythm it is essential that it is reliably entrained by light and

phase-locks to the day-night cycle. Similarly, if rhythms are to play a significant

role in the communication between different brain areas, their response to input

from other areas represents a significant determinant of their function. Moreover,

the stimulation and entrainment of γ-rhythms by periodic sensory input is being

considered as a therapeutic approach for some neurodegenerative diseases [58].

Even small perturbations can affect oscillations significantly in that they can

advance or delay the oscillations, i.e. they can change the phase of the oscillators.

This change typically depends not only on the strength of the perturbation but,

importantly, also on the timing of the perturbations and is expressed in terms of

the phase response curve (PRC), which has been studied extensively for individual

oscillators [59]. For infinitesimal perturbations the PRC can be determined elegantly

using the adjoint method [60].

If the collective oscillation of a network of interacting oscillators is sufficiently

coherent, that system can be thought of as a single effective oscillator. Conse-

quently, the response of the macroscopic phase of the collective oscillation to ex-

ternal perturbations and the mutual interaction of multiple collective oscillations are

of interest. The macroscopic phase-response curve (mPRC) has been obtained in

various configurations, including noise-less heterogeneous phase oscillators [61, 62],

noisy identical phase oscillators [63, 64], noisy excitable elements [65], and noisy
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oscillators described by the theta-model [66], which is equivalent to the quadratic

integrate-and-fire model for spiking neurons. Recent work has used the exact mean-

field theory of [67], which is related to the Ott-Antonsen theory [68,69] and reduces

the dynamics of networks of quadratic integrate-and-fire neurons to two coupled dif-

ferential equations for the firing rate and the mean voltage, to develop a method to

obtain the infinitesimal macroscopic PRC (imPRC) for excitatory-inhibitory spiking

networks [70,71].

A key difference between the response of an individual oscillator to a perturbation

and that of a collective oscillation is the fact that the degree of synchrony of the

collective oscillation can change as a result of the perturbation, reflecting a change

in the relations between the individual oscillators. Thus, the phase response of

a collective oscillation to a brief perturbation consists not only of the immediate

change in the phases of the individual oscillators caused by the perturbation, but

includes also a change in the collective phase that can result from the subsequent

convergence back to the phase relationship between the oscillators corresponding to

the synchronized state, which is likely to have been changed by the perturbation [62].

Interestingly, it has been observed that the infinitesimal macroscopic phase response

can be qualitatively different from the phase response of the individual elements.

Thus, even if the individual oscillators have a type-I PRC, i.e. a PRC that is strictly

positive or negative, the mPRC of the collective oscillation can be of type II, i.e. it

can exhibit a sign change as a function of the phase [65,66,72].
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Here we investigate the interplay between external perturbations and the inter-

nal interactions among neurons in inhibitory and in excitatory-inhibitory networks

exhibiting γ-rhythms of the ING- and of the PING-type. We focus on networks com-

prised of neurons that are not identical, leading to a spread in their individual phases

and a reduction in the degree of their synchrony. How does this phase dispersion

affect the response of the macroscopic phase of the rhythm to perturbations? Does

it modify the ability of the network to follow a periodic perturbation ?

We show that the dispersion in the phase together with the within-network in-

teractions among the neurons can be the cause of a paradoxical phase response: an

external perturbation that delays each individual neuron can advance the macro-

scopic rhythm. We identify the following mechanism underlying this paradoxical

response: external perturbations that delay individual neurons sufficiently allow the

within-network inhibition generated by early-spiking neurons to suppress the spiking

of less excited neurons. This results in a reduced within-network inhibition, which

reduces the time to the next spike volley, speeding up the rhythm. This paradoxical

phase response increases with the neuronal heterogeneity and allows the network to

phase-lock to periodic external perturbations over a wider range of detuning. Thus,

the desynchronization within the network enhances its synchronizability with other

networks. The mechanism is closely related to that underlying the enhancement of

synchronization of collective oscillations by uncorrelated noise [73] and the enhanced

entrainment of the rhythm of a homogeneous network to periodic input if that input

exhibits phase dispersion across the network [74,75]. We demonstrate and analyze
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these behaviors for networks of inhibitory neurons (ING-rhythm) and for networks

comprised of excitatory and inhibitory neurons (PING-rhythm).

3.2. Methods

3.2.1. The network of integrate-and-fire (IF) neurons

Neuron model. Both E-cells and I-cells were modeled as leaky IF neurons, each

characterized by a membrane potential Vi(t) satisfying

(3.1) τE,I
d

dt
Vi = −(Vi − Vrest) +

I
(syn)
i

gsyn
+
I

(ext)
i

gext
+
I

(bias)
i

gbias
,

where Vrest is the resting potential and τE,I the membrane time constants of the

E- and I-cells, respectively. I
(syn)
i (t) =

∑
j
I

(syn)
ij (t) is the total synaptic current

that the neuron receives from the other neurons within the network. I
(ext)
i (t) is a

time-dependent external input that represents perturbations applied to determine

the fmPRC or, in the study of synchronization, the periodic input generated by the

clock network. I
(bias)
i denotes a tonic, neuron-specific excitatory bias current that

implements the heterogeneity of the neuron properties, The corresponding conduc-

tances are denoted by gsyn, gext, and gbias. Upon the ith neuron reaching the spiking

threshold Vpeak, the voltage Vi was reset to the fixed value Vreset. Parameters for the

neuron were kept fixed throughout all simulations (see Table 3.1). The local field

potential (LFP) of the network was approximated as the mean voltage across all

neurons j = 1, ...N in the respective population.
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Network model. We studied two types of networks: an ING network and a

PING network. The ING network was modeled as an all-to-all inhibitory network

of N
(ING)
I interneurons. The PING network was modeled as a network of N

(PING)
I

interneurons and N
(PING)
E principal cells with all-to-all interneuron-principal and

principal-interneuron connections (i.e., without principal-principal and interneuron-

interneuron connections). In PING, only principal cells received external input

Iext(t).

To gain insight into the interaction between two ING rhythms, we considered

the simplified situation in which all neurons in the network received strictly periodic

input I(ext), which was generated by another ING network (‘clock’). Similarly, for

PING rhythms, the E-cells of the PING network received strictly periodic excitatory

input I(ext) from another PING network through all-to-all connection between their

E-populations.

Synaptic currents. We used delayed double-exponential conductance-based

currents to model the excitatory and the inhibitory synaptic inputs from neuron j

to neuron i,

(3.2) I
(syn)
ij (t) = gsyn

τE,I

τE,I2 − τE,I1

(
A

(2)
ij (t)− A(1)

ij (t)
)

(Vrev,j − Vi(t)) ,

with the two exponentials A
(1,2)
ij (t) satisfying
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(3.3)
d

dt
A

(1,2)
ij (t) = −

A
(1,2)
ij (t)

τE,I1,2

+
∑
k

Wijδ(t− t(k)
j − τd) ,

where Vrev,j is the synaptic reversal potential corresponding to the synapse type,

Wij the dimensionless synaptic strength, and δ the Dirac δ-function. All synapses

of the same type (I-I, I-E, E-I) were equally strong. The time constants of A
(1,2)
i (t)

satisfied τE,I2 > τE,I1 . The synaptic current was normalized to render the time integral

independent of the synaptic time constants τE,I1,2 . The inhibitory synaptic currents

had a slower decay than the excitatory ones (cf. Table 3.1). We included an explicit

synaptic delay τd in the model. Every spike of the presynaptic neuron j at time t
(k)
j

triggered a jump in both A
(1,2)
ij (t), making the synaptic conductance rise continuously

after a synaptic delay τd.

External periodic inputs were also modeled as double-exponential conductance-

based currents with gsyn in (3.2,3.3) replaced by gext. The time constants and delay

were as for the within-network synaptic inputs.

Heterogeneous tonic input. The bias currents I
(bias)
i of the ING network were

Gaussian distributed around I(I) with a coefficient of variation CV (I) and arranged

in increasing order, I
(bias)
1 < I

(bias)
2 ... < I

(bias)
N

(3.4) I
(bias)
i = I(I) +

√
2I(I)CV (I)erf−1(−1 +

2i

1 +N
), 1 ≤ i ≤ N,

where erf is the error function to implement the Gaussian distribution of the hetero-

geneity. For the PING network, all excitatory neurons received a heterogeneous bias
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I
(bias)
E with mean I(E) and a coefficient of variation CV (E). Similarly, the bias cur-

rents I
(bias)
I to the inhibitory neurons were characterized by their mean I(I) and their

coefficient of variation CV (I). Without the excitatory input from principal cells, the

voltage of interneurons remained below the spiking threshold. In our investigation

of the impact of the neuronal heterogeneity on the phase response and entrainment

of the PING rhythm we kept CV (I) fixed and varied CV (E).

3.2.2. Macroscopic Phase-response Curve for Finite-Amplitude Perturba-

tions (fmPRC).

ING rhythm. For a single ING network, we applied a single inhibitory δ-pulse to

each neuron j = 1, ...N
(ING)
I at time tinh (dashed green line in Fig 3.1B) and recorded

the resulting phase shift ∆ϕ. The amplitude of the inhibitory perturbation to each

neuron was the same. The phase of the inhibition relative to the rhythm was defined

as

(3.5) φinh =
tinh − t(unperturbed)

firstspike

T
,

where T was the period of the network LFP and t
(unperturbed)
firstspike the time of the first

spike in the spike volley of the unperturbed network that was closest to tinh. The

phase shift ∆φ resulting from the perturbation was given by
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(3.6) ∆φ =

(
t
(unperturbed)
firstspike − t(perturbed)

firstspike

)
T

,

where t
(perturbed)
firstspike is the time of the first spike in the corresponding volley in the

perturbed network. ∆φ and φinh were taken to be in the range [−0.5 0.5). Positive

∆φ indicated that the network was advanced by the perturbation, while negative

indicated a delay.

The periodic input (‘clock’) that was used to test the synchronizability of the ING-

rhythm was generated by a homogeneous ING network. The phase of the network

relative to the periodic input in the nth clock cycle was defined by

(3.7) Φ
(n)
inh =

(
t
(clock)(n)
firstspike + τd − t(network)(n)

firstspike

)
T

,

where t
(network)(n)
firstspike was the time of the first spike in the spike volley of the network

in the nth cycle and t
(clock)(n)
firstspike the time of the spike of the clock. In contrast to

the definition of φinh in (3.5), the definition of Φ
(n)
inh included the delay τd, since the

inhibition generated by the clock arrived with delay τd in the network.

PING rhythm. To probe the phase response of the PING network we used

the same approach as for the ING rhythm, except that we used excitatory instead of

inhibitory δ-pulses and applied them only to the E-cells. The phase of the excitation

φexc and the resulting phase shift ∆φ were determined similarly as in the case of the

ING rhythm,
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(3.8) φexc =
texc − t(unperturbed)

firstspike

T
,

(3.9) ∆φ =
(t

(unperturbed)
firstspike − t(perturbed)

firstspike )

T
,

where t
(perturbed)
firstspike and t

(unperturbed)
firstspike were the times of the first spike in the respective

spike volleys of the E-population.

Analogous to Φ
(n)
inh, the phase of the network during the nth clock cycle was

defined by

(3.10) Φ(n)
exc =

(t
(clock)(n)
firstspike + τd − t(network)(n)

firstspike )

T
.

Throughout, the tonic, Gaussian distributed input to the interneurons in the PING

network was fixed: I(I) = 36 pA, CV (I) = 0.167.
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ING network

Parameter Value

τI , membrane time constant 20 ms

urest, resting potential -55 mV

Vpeak, spiking threshold -50 mV

Vreset, reset voltage -60 mV

τd, synaptic delay 3 ms

N
(ING)
I , # of interneurons 500

W , synaptic strength within the

network

7.5× 10−3

W (ext), synaptic strength for the

input from the clock network

1.8× 10−3

Synaptic currents

Parameter Value

τE1 , time constant of rise in excitatory

synapse

0.5 ms

τE2 , time constant of decay in excitatory

synapse

2 ms

τ I1 , time constant of rise in inhibitory synapse 0.5 ms

τ I2 , time constant of decay in inhibitory

synapse

5 ms

V I
rev, reversal potential of inhibitory synapse -70 mV

V E
rev, reversal potential of excitatory synapse 0 mV

PING network

Parameter Value

τE , membrane time constant of

principal cells

20 ms

τI , membrane time constant of

interneurons

10 ms

urest, resting potential -70 mV

Vpeak, spiking threshold -52 mV

Vreset, reset voltage -59 mV

τd, synaptic delay 1 ms

N
(PING)
I , # of interneurons 200

N
(PING)
E , # of principal cells 800

W I , inhibitory synaptic

strength within the network

5.4× 10−3

WE , excitatory synaptic

strength within the network

1.67× 10−3

W (ext), clock-network synaptic

strength

1.6× 10−3

Synaptic conductances

Parameter Value

Excitatory input on principal cells : g
(PING)
ext ,

g
(PING)
bias E

0.19 nS

Excitatory input on interneurons: g
(ING)
bias ,

g
(PING)
syn EtoI , g

(PING)
bias I

0.3 nS

Inhibitory input on principal cells: g
(PING)
syn ItoE 2.5 nS

Inhibitory input on interneurons: g
(ING)
ext ,

g
(ING)
syn

4 nS

Table 3.1. Parameters used in the network model of IF neurons. Most parameters
are based on [73,76].
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3.2.3. Networks of quadratic integrate-and-fire (QIF) neurons and their

exact mean-field reduction

Neuron model. The QIF neuron [77] is characterized by a membrane potential

Vi(t) satisfying

(3.11) τE,I
d

dt
Vi = ηi + V 2

i (t) + IE,I(t),

where τE,I are the membrane time constants of the E- and I-cells, respectively.

IE,I(t) is the total synaptic current that the E-, I- neurons receive from the other

neurons within the network. Upon the ith neuron reaching the spiking threshold

Vpeak, the voltage Vi is reset to the fixed value Vreset. In order to facilitate the

analysis of the reduction, the limit Vpeak →∞, Vreset → −∞ is taken. Analogous to

(3.4), the tonic, external bias currents ηi = η̄E,I+∆E,I tan(π( i
1+N
− 1

2
)) implement the

heterogeneity of the neuron properties and are distributed according to a Lorentzian

distribution,

(3.12) LE,I(η) =
1

π

∆E,I

(η − η̄E,I)2 + ∆2
E,I

,

with η1 < η2 < ... < ηN . Here η̄E,I is the mean value in the principal value sense

and ∆E,I the half-width of the distribution of η for the E- and I-cells, respectively.

Note that the heavy tail of the Lorentzian distribution implies that – for arbitrary η̄

and ∆ with sufficiently many neurons to resolve the tail – there are always neurons
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receiving extremely weak input and unable to overcome the within-network inibition

to spike. Parameters for the neuron were kept fixed throughout all simulations (see

Table 3.2). Again, in the spiking network, the local field potential (LFP) of the

network was approximated as the mean voltage across all neurons in the respective

population.

Network model. We studied two types of QIF-networks: an ING network and

a PING network. The ING network was modeled as an all-to-all inhibitory network

of N
(ING)
I interneurons. The PING network was modeled as a network of N

(PING)
I

interneurons and N
(PING)
E principal cells with all-to-all interneuron-principal and

principal-interneuron connections (i.e., without principal-principal and interneuron-

interneuron connections).

Synaptic currents.

In the ING rhythm, the total synaptic current I(t) to each I-cell is the recurrent

inhibition:

(3.13) II(t) = −τIsII(t) .

In the PING network, the total synaptic current I(t) to each E-cell is the inhibi-

tion from the I-cells,

(3.14) IE(t) = −τEsEI(t) ,



73

and that to each I-cell is given by the excitation from the E-cells,

(3.15) II(t) = τIsIE(t) .

Here sαβ(t) denotes the synaptic variable characterizing the synapse from the pop-

ulation β to the population α. In order to include the effective synaptic delay, we

assumed that each spike triggers a double-exponential current. Extending [57], the

synaptic variable sαβ(t) is therefore modeled by

(3.16) sαβ(t) = sαβ,2(t)− sαβ,1(t)

with sαβ,1(t) and sαβ,2(t) satisfying

(3.17)
d

dt
sαβ,1(t) = − 1

τ1

sαβ,1(t) + Jαβrβ(t)

(3.18)
d

dt
sαβ,2(t) = − 1

τ2

sαβ,2(t) + Jαβrβ(t) .

Here Jαβ is the synaptic strength. The time constants τ1, τ2 of sαβ,1(t), sαβ,2(t)

satisfy τ2 > τ1. rE,I(t) are the population firing rates of the E- and I-populations,

respectively.

The mean-field theory. As shown in [67], in the limit of infinitely many

neurons, the system eqs.(3.11, 3.12) is described by coupled equations for the mean
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potential and population firing rate,

(3.19)


τE,I

d
dt
rE,I(t) =

∆E,I

πτE,I
+ 2rE,I(t)VE,I(t)

τE,I
d
dt
VE,I(t) = VE,I(t)

2 + η̄E,I + IE,I − τ 2
E,Iπ

2rE,I(t)
2 ,

where VE,I(t) is the mean potential and rE,I(t) the population firing rate of the

respective populations.

So, with the synaptic current defined in eqs.(3.14– 3.18), the ING network is

reduced to

(3.20)



τI
d
dt
rI(t) = ∆I

πτI
+ 2rI(t)VI(t)

τI
d
dt
VI(t) = VI(t)

2 + η̄I − τI (sII,2(t)− sII,1(t))− τ 2
I π

2rI(t)
2

d
dt
sII,1(t) = − 1

τ1
sII,1(t) + JIIrI(t)

d
dt
sII,2(t) = − 1

τ2
sII,2(t) + JIIrI(t) ,
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while the PING network is reduced to

(3.21)



τI
d
dt
rI(t) = ∆I

πτI
+ 2rI(t)VI(t)

τI
d
dt
VI(t) = VI(t)

2 + η̄I + τI (sIE,2(t)− sIE,1(t))− τ 2
I π

2rI(t)
2

τE
d
dt
rE(t) = ∆E

πτE
+ 2rE(t)VE(t)

τE
d
dt
VE(t) = VE(t)2 + η̄E − τE (sEI,2(t)− sEI,1(t))− τ 2

Eπ
2rE(t)2

d
dt
sEI,1(t) = − 1

τ1
sEI,1(t) + JEIrI(t)

d
dt
sEI,2(t) = − 1

τ2
sEI,2(t) + JEIrI(t)

d
dt
sIE,1(t) = − 1

τ1
sIE,1(t) + JIErE(t)

d
dt
sIE,2(t) = − 1

τ2
sIE,2(t) + JIErE(t)

Infinitesimal macroscopic PRC (imPRC) of the reduced network. For

a dynamical system like eqs.(3.20, 3.21), within the parameter regime admitting a

stable limit cycle, the adjoint method can be applied to determine the macroscopic

phase response for infinitesimal perturbations to the limit cycle [60]. To be consis-

tent with the fmPRC obtained with the direct simulation of the spiking network,

we adjusted the normalization condition to make the phase range from 0 to 1. Due

to the Lorentzian distribution used for the QIF network input, some neurons spike

incessantly, making it impossible to define the beginning of a spike volley. We there-

fore defined phase 0 as the peak of the synaptic variable sII(t) = sII,2(t) − sII,1(t)

for the ING rhythm and as the peak of sEI(t) = sEI,2(t) − sEI,1(t) for the PING

rhythm. The phase shift ∆φ resulting from the perturbation was given by the time
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difference between the peaks of sII(t) (ING rhythm) or sEI(t) (PING rhythm) in the

perturbed and the unperturbed system normalized by the period.

ING network
Parameter Value
τI , membrane time constant 10
Vpeak, spiking threshold 500 (spiking network)

+∞ (reduction)
Vreset, reset voltage -500 (spiking network)

−∞ (reduction)

N
(ING)
I , # of interneurons in

spiking network
5000

JII , synaptic strength 15
η̄I , the mean of the bias input
to interneurons

20

Synaptic currents
τ1, time constant of rise in all
types of synapses

0.98

τ2, time constant of decay in all
types of synapses

1

PING network
Parameter Value
τE , membrane time constant of
principal cells

10

τI , membrane time constant of
interneurons

10

Vpeak, spiking threshold 500 (spiking network)
+∞ (reduction)

Vreset, reset voltage -500 (spiking network)
−∞ (reduction)

N
(PING)
I , # of interneurons in

spiking network
5000

N
(PING)
E , # of principal cells in

spiking network
5000

JEI , inhibitory synaptic
strength

15

JIE , excitatory synaptic
strength

15

η̄E , the mean of the bias input
to principal cells

5

η̄I , the mean of the bias input
to interneurons

-5

Table 3.2. Parameters used in the network model of QIF neurons and its eMFT
reduction. Most parameters are based on [57,71].

3.3. Results

We investigated the impact of neuronal heterogeneity on the response of the phase

of γ-rhythms to brief external perturbations and the resulting ability of rhythms

to synchronize to periodic input. As described in the Methods, we used networks

comprised of minimal linear (IF) and quadratic (QIF) integrate-and-fire neurons
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that interact with each other through synaptic pulses modeled via delayed double-

exponentials. To study ING-rhythms, all neurons were inhibitory and all-to-all cou-

pled, while for the PING-rhythms we used excitatory-inhibitory networks with all-to-

all E-I and I-E connections. Throughout, we implemented the neuronal heterogeneity

by injecting a different steady bias current Ibias into each neuron. Our analysis sug-

gests that the origin of the neuronal heterogeneity plays only a minor role as long as

it leads to a dispersion of their spike times [73].

3.3.1. Paradoxical Phase Response of Heterogeneous Networks: ING-

Rhythm

In the absence of external perturbations the all-to-all inhibition among the neurons

leads to rhythmic firing of the neurons. Due to their heterogeneity they did not spike

synchronously but sequentially, as shown in Fig 3.1A, where the neurons are ordered

by the strength of their bias current. The dependence of the phase dispersion on the

coefficient of variation of the heterogeneity in the bias current (CV) is shown in Fig

3.1C. For sufficiently large heterogeneity some neurons never spiked: while the weak

bias current they received would have been sufficient to induce a spike eventually,

the strong inhibition that was generated by the neurons spiking earlier in the cycle

suppressed those late spikes. Neurons with strong bias current could spike multiple

times.

A brief, inhibitory external input delivered to all neurons (green dashed line in

Fig 3.1B) delayed each neuron. The degree of this individual delay depended on
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Figure 3.1. ING-rhythm can be advanced by inhibition while individual neurons are
delayed. (A) Top: spike raster of neurons spiking sequentially on the order of their
input strength (increasing with neuron index). Bottom: mean voltage across the
network (LFP). (B) External inhibition advanced the rhythm. Top: raster plot of
spikes without (black) and with (red) external inhibitory pulse. Bottom: Average
of the total inhibitory current each neuron received from the other neurons within

the network. In (A) and (B), I(I) = 20.4 pA, C
(I)
V = 0.15, fnetwork = 47 Hz. In (B),

perturbations were made with a square-wave inhibitory current pulse with duration
0.1 ms and amplitude 3200 pA to each neuron, resulting in a 4 mV rapid hyper-
polarization. (C) Dependence of the phase dispersion on the heterogeneity of the
bias current. The phase dispersion was determined as the time difference between
the first and the last spike in the same spike volley normalized by the period. Blue:
fixed natural frequency (fnetwork = 40Hz) for different neuronal heterogeneity. Red:
fixed mean input strength (I(I) =15.8 pA) for different neuronal heterogeneity. For
CV ≥ 0.075 (dashed line), some neurons spike more than once in a cycle.

the timing of the input, as is reflected in the PRC of the individual neurons. If the

perturbation was applied during the time between the spike volleys, the delay of each

neuron had no further consequence and the overall rhythm was delayed. However, if

the same inhibitory perturbation arrived during a spike volley (dashed green line in
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Fig 3.1B), it could advance the overall rhythm. As illustrated in Fig 3.1B, only the

spiking of the late neurons was delayed by the perturbation. Importantly, with this

delay some neurons did not spike before the within-network inhibition triggered by

the early-spiking neurons (dashed blue line in Fig 3.1B) became strong enough to

suppress the spiking of the late neurons altogether. With fewer neurons spiking, the

all-to-all inhibition within the network was reduced, allowing all neurons to recover

earlier, which lead to a shorter time to the next spike volley. If the speed-up was

larger than the immediate delay induced by the external inhibition, the overall phase

of the rhythm was advanced by the delaying inhibition.

As the example in Fig 3.1B shows, the paradoxical phase response requires proper

timing of the perturbation. We therefore determined quantitatively the macroscopic

phase-response curve (mPRC) of the rhythm. To do so we measured computationally

the amount a brief current injection shifted the phase of the rhythm (Fig 3.2A).

We defined the phase φinh of the perturbation as the normalized time since the

first spike in the most recent volley of spikes. Reflecting the strictly positive PRC

of the individual IF neurons, without heterogeneity (CV = 0) external inhibition

always delayed the rhythm, independent of the timing of the pulse. In contrast,

in heterogeneous networks the rhythm could be advanced if the same inhibitory

perturbation was applied shortly after the first spikes in the spike volley (φinh > 0).

Increasing the neuronal heterogeneity enhanced this phase advance, since it shifted

the within-network inhibition driven by the leading neurons to earlier times, while

it delayed the lagging neurons. As a result, for the same external perturbation, a
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Figure 3.2. fmPRC of heterogeneous ING network. (A) Phase shift in response
to inhibition for different neuronal heterogeneity but fixed natural frequency (left,
fnetwork = 40Hz) or fixed steady current (right, I(I) =15.8 pA). The paradoxical
phase advance increased with neuronal heterogeneity. (B) fmPRC changed quali-
tatively with the amplitude of the perturbation. Left: fmPRC for three different
perturbation amplitudes. Right: raster plot of spikes without (black) and with (red)
external inhibition. Top: strong perturbation advanced the network. Bottom: weak
perturbation applied at the same time as in the top figure. The network was delayed.
(C) Maximal phase advance as a function of neuronal heterogeneity and external in-
hibition strength. The threshold of the inhibition amplitude to obtain an advance de-
creased with heterogeneity (white line). fnetwork was kept constant (fnetwork = 40Hz).
In (A)-(C), perturbations were made with a square-wave inhibitory current pulse with
duration 0.1 ms to each interneuron. In (A), the amplitude of the current was 1600
pA, resulting in a 2 mV rapid hyperpolarization.

larger fraction of neurons that would spike in the absence of the external inhibition

was sufficiently delayed to have their spikes be suppressed by the within-network

inhibition (cf. Fig 3.1B), reducing the within-network inhibition and with it the



81

time to the next spike volley. To keep the frequency of the unperturbed network

fixed in Fig 3.2A left, we reduced the tonic input with increasing heterogeneity,

which enhanced the phase advance. However, even if the tonic input was kept fixed,

the phase advance increased with heterogeneity (Fig 3.2A right).

For weak heterogeneity the paradoxical phase response occurred only for suffi-

ciently strong perturbations, i.e. it did not arise in the infinitesimal macroscopic

PRC (imPRC). Thus, the phase response changed qualitatively when the amplitude

of the perturbation was strong enough to delay the spikes of sufficiently many slow

neurons until the self-inhibition of the network set in and suppressed their spikes (Fig

3.2B). With sufficiently large heterogeneity, the dispersion was large enough that the

spikes of the lagging neurons were suppressed by the self-inhibition of the network

even in the absence of an external perturbation. In that regime the paradoxical phase

response occurred even for infinitesimal perturbations (to the right of the white line

in Fig 3.2C).

The paradoxical phase response was robust with respect to changes in the natu-

ral frequency of the network, the coupling strength, and the effective synaptic delay,

as long as the rhythm persisted. The paradoxical phase advance increased with

decreasing natural frequency of the network, since the inhibition had a stronger ef-

fect for lower mean input strength (Fig 3.3A). Varying the within-network coupling

strength by more than a factor of 20 only moderately affected the paradoxical phase

response (Fig 3.3B) and the strength of the rhythm (Fig 3.3C). With increasing

within-network coupling strength, a larger fraction of spiking neurons was delayed,
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Figure 3.3. The paradoxical phase response of a heterogeneous ING network is ro-
bust. (A) The phase advance of the fmPRC decreased with the natural frequency
(CV (I) = 0.15). (B) The fmPRC did not depend sensitively on the within-network
coupling strength W (CV (I) = 0.15, I(I) =15.8 pA). Top: the temporal advance
increased with within-network coupling strength. Bottom: the phase advance de-
creased with within-network coupling strength. (C) The Fourier spectrum of the
LFP as a function of the within-network coupling strength W . Parameters as in
(B). (D) Paradoxical phase response in the absence of an explicit delay, τd = 0,
for different synaptic rise times τ I1 (CV (I) = 0.05, I(I) =15.8 pA). For low τ I1 (blue
curve), the PRC alternated in subsequent cycles reflecting the subharmonic nature
of the rhythm, but it still showed a strong paradoxical component. (E) The Fourier
spectrum of the LFP as a function of the synaptic time constant of rise τ I1 . With
decreasing τ I1 , a subharmonic peak emerged and eventually the rhythm disintegrated.
Parameters as in D. In (A), (B) and (D), perturbations were made with a square-
wave inhibitory current pulse with duration 0.1 ms to each interneuron. In (A) and
(B), the amplitude of the current was 1600 pA, resulting in a 2 mV rapid hyperpo-
larization. In (D), the amplitude of the current was 400 pA, resulting in a 0.5 mV
rapid hyperpolarization.
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resulting in a larger temporal advance (Fig 3.3B top). Nevertheless, since the rhythm

slowed down with increasing within-network coupling strength (Fig 3.3C, size of the

perturbations in Fig 3.3B marked in the y-axis tick labels), the phase advance, which

was defined as the temporal advance normalized by the period of the LFP, decreased

with coupling strength (Fig 3.3B bottom). Additionally, even without explicit synap-

tic delay (τd = 0), the effective delay given by the double-exponential synaptic in-

teraction was sufficient to render a paradoxical response (Fig 3.3D). However, when

this effective delay was reduced by decreasing the rise time τ I1 of the synaptic cur-

rent, the rhythm itself developed a strong subharmonic component and eventually

disintegrated (Fig 3.3E). In the subharmonic regime the paradoxical phase advance

alternated in consecutive cycles of the rhythm (yellow line in Fig 3.3D).

3.3.2. Enhancing entrainment of ING-rhythms through neuronal hetero-

geneity

In order to allow communication by coherence [55, 78], the rhythms in different

brain areas need to be sufficiently phase-locked with each other. As a simplification

of two interacting γ-rhythms, we therefore investigated the ability of the rhythm in

a network to be entrained by a periodic external input, particularly focusing on the

possibly facilitating role of neuronal heterogeneity. Motivated by the paradoxical

phase response induced by the heterogeneity, we addressed, in particular, the ques-

tion whether an ING network can be sped up by inhibition to entrain it with a faster

network.
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Figure 3.4. Sketch of computational models. (A) ING rhythm receives periodic in-
hibitory input generated from another ‘clock’ ING rhythm. (B) PING rhythm re-
ceives periodic excitatory input by its E-population generated from another ‘clock’
PING rhythm.

The network considered here was the same as that used to analyze the fmPRC.

The within-network interaction was an all-to-all inhibition with synaptic delay τd,

resulting in a rhythm with natural frequency fnatural. Each neuron received hetero-

geneous input Ibias and inhibitory periodic pulses with frequency fclock. The latter

can be considered as the output of another ING-network and were, in fact, generated

that way (Fig 3.4A). We refer to this external input as the ‘clock’. All neurons in

the ’clock’ network received the same input. Thus, their spiking had no dispersion

and their spikes were perfectly synchronous. The detuning ∆f = fclock− fnatural was

a key control parameter.

For periodic input the fmPRC allows the definition of an iterated map for the

phase Φ
(n)
inh of the network relative to the nth clock cycle. For periodic δ-pulses that

map is shown in Fig 3.5A. For positive detuning, i.e. when the clock is faster than

the network, entrainment requires that the phase response is paradoxical in order for

the rhythm to be sped up by the inhibition. If the heterogeneity and the resulting

phase response are sufficiently large, the maximum of the iterated map crosses the
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diagonal, generating a stable and an unstable fixed point. The former is the desired

entrained state.

As the detuning is increased the iterated map is shifted downward. This can

decrease the slope of the iterated map at the fixed point below -1, destabilizing the

fixed point in a period-doubling bifurcation. For periodic pulses comprised of double-

exponential inhibitory currents (cf. eqs.(3.2,3.3)) a rich bifurcation scenario emerged

(Fig 3.5B). Note that the strength of the periodic input is significantly larger than

that of the δ-pulses used in Fig 3.5A. As a result, the map is not continuous and

not unimodal (cf. first bottom panel of Fig 3.5B). Nevertheless, for ∆f < 7.17 Hz

the attractor remains near the unstable fixed point and displays a period-doubling

cascade to chaos and multiple periodic windows. For ∆f > 7.28 Hz, however, the

attractor includes points on both sides of the discontinuity (cf. third bottom panel

in Fig 3.5B).

Having clarified the role of the fmPRC in the network’s synchronizability and

ability to phase-lock, we investigated the role of neuronal heterogeneity in more de-

tail (Fig 3.6). To do that, we adjusted for each value CV of the input heterogeneity

the mean input strength I(I) (cf. eqs.(3.4)) so as to keep the natural frequency

fnetwork constant (fnetwork = 44 Hz). Then we determined the extent of synchro-

nization and phase-locking of the network under the influence of periodic inhibitory

input as a function of the detuning ∆f and neuronal heterogeneity CV . As shown

above, with heterogeneity, the fmPRC could be biphasic with the amplitude of the

paradoxical phase response increasing with neuronal heterogeneity. Expecting that
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Figure 3.5. Connection between fmPRC and the synchronization of γ-rhythms. (A)

Iterated map for the phase Φ
(n)
inh of the network relative to the periodic inhibition.

Without coupling the network falls back by dΦ in each cycle. For sufficiently large
advancing phase response the network can be synchronized by faster periodic inhi-

bition. (B) Top: The bifurcation diagram of the iterated map for Φ
(n)
inh with varying

detuning ∆f . To the right of the magenta dashed line (∆f = 7.28 Hz) the attractors
involve points on both sides of the discountinuity of the map. Bottom from left to

right: iterated maps for Φ
(n)
inh for ∆f = 0, 2.44, 8.8 Hz. The distance between the

diagonal and subdiagonal line represents the detuning between the network and pe-
riodic input. In (A), the fmPRC was determined for a δ-pulse perturbation, in (B)
for a double-exponential inhibitory current (cf. eqs.(3.2,3.3)) was used as in Fig 3.6.

for sufficiently large heterogeneity an ING-rhythm could be accelerated by a faster

periodic inhibition, we tested phase-locking predominantly for positive detuning,

corresponding to fclock > fnetwork. We first investigated how neuronal heterogene-

ity affected the synchronization by comparing the dominant frequency fdom in the
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Figure 3.6. Neuronal heterogeneity enhances synchronization and phase-locking of
periodically driven ING rhythm. (A) Synchronization quantified using fdom : fclock
with fdom and fclock being the dominant frequencies of the Fourier spectrum of the
LFP of the network and the clock, respectively. The neuronal heterogeneity en-
hanced the synchronization by shifting fdom to fclock. Example 1: Synchronized with
1:1 phase-locking. Example 2: Synchronized with subharmonic response (period 4).
Example 3: synchronized with subharmonic response (chaotic). Example 4: Not

synchronized. Squares and dashed lines in the iterated map for Φ
(n)
inh indicate clock

cycles in which the network did not spike (Φ
(n)
inh was arbitrarily set to 2). (B) Sub-

harmonic response. Color hue and saturation indicate the frequency ratio fsub : fclock
and the ratio of the Fourier power at these two frequencies. fsub is the frequency
of the dominant peak of the network power spectrum that satisfies fsub < fclock.
The power ratio is capped at 1. Dashed line marks the value of input heterogeneity

used in Fig 3.5B. (C) Spiking variability and var(Φ
(n)
inh) as a function of neuronal

heterogeneity and detuning. Color hue indicates the fraction of clock cycles without
spikes in the network. In particular, red indicates that the network spikes in every

cycle. Color saturation indicates var(Φ
(n)
inh). The neuronal heterogeneity enhances

the tightness of the phase-locking.
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Fourier spectrum of the network’s LFP with fclock. In Fig 3.6A, the color hue in-

dicates the ratio fdom : fclock. For small heterogeneity, fdom was a rational multiple

of fclock that depended on the detuning, while for sufficiently large CV the network

became synchronized in the sense that fdom = fclock (yellow). The range of ∆f allow-

ing synchronization became wider with increasing neuronal heterogeneity, implying

that the neuronal heterogeneity enhanced the synchronization of the ING-rhythm.

However, note that fdom = fclock did not imply a perfectly synchronized or a 1:1

phase-locked state. In fact, various different subharmonic responses arose: example

2 shows a period-4 state, while in example 3 the dynamics were actually chaotic (Fig

3.6A) even though fdom = fclock. Motivated by these observations, we divided the

states into three types:

• Type 1: fdom 6= fclock, not synchronized, not phase-locked (Fig 3.6 example

4).

• Type 2: fdom = fclock with subharmonic response (‘frequency synchroniza-

tion’). The network may display rational ratio phase-locking with the forcing

(Fig 3.6 example 2) or may be poorly phase-locked (Fig 3.6 example 3).

• Type 3: fdom = fclock, no subharmonic response, (‘phase synchronization’).

The network is 1-to-1 phase-locked with the forcing (Fig 3.6 example 1).

The phase diagram Fig 3.6A does not differentiate between types 2 and 3. It only

shows that neuronal heterogeneity enhanced the synchronization of the network by

shifting fdom to fclock. Therefore, we studied whether neuronal heterogeneity also
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enhanced the synchronization by weakening the subharmonic response and chang-

ing the synchronized state from type 2 to type 3, as well as whether the dynamics

of the fmPRC shown in the bifurcation diagram Fig 3.5B could predict the phase

relationship between the network and the clock. Using the same simulation setup

as in Fig 3.6A, the subharmonic response is shown in Fig 3.6B. The color hue in-

dicates the ratio fsub : fclock, where fsub is the frequency of the dominant peak of

the LFP power spectrum that satisfies fsub < fclock. The color saturation gives the

ratio of the powers at fsub and fclock (capped at 1). Thus, over most of the range

of positive detuning and neuronal heterogeneity tested, the fading-away of the color

with increasing heterogeneity reveals that the neuronal heterogeneity weakened the

subharmonic response. Over a small range of positive detuning, increasing neu-

ronal heterogeneity from small values induced perfect synchronization (type 3) by

weakening the subharmonic response with frequency ratio fsub : fclock = 1 : 2; the

system traversed a continuous period-doubling bifurcation in reverse, with type 2

(red) giving way to type 3 (white). Together with Fig 3.6A, this showed that neu-

ronal heterogeneity could enhance the synchronization both by making fdom = fclock

(from type 1 to type 2) and by weakening the subharmonic response (from type 2

to type 3). The range of detuning where increasing heterogeneity induced a type 3

synchronization became wider for larger synaptic delay within the network (Fig3.7).

Note that the bifurcation diagram (Fig 3.5B) based on the fmPRC agrees well with

the subharmonic response marked along the dashed line at CV = 0.1 in Fig 3.6B,
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suggesting that the fmPRC can well predict the subharmonic response and persistent

phase response of the network.

In addition to enhancing the frequency synchonization, neuronal heterogeneity

was also able to increase the tightness of the phase-locking. Over most of the pa-

rameter regime investigated, the variance of the phase of the network relative to

the periodic input var(Φ
(n)
inh) decreased with increasing heterogeneity, as indicated by

the decrease in the color saturation in Fig 3.6C. In fact, for detuning between 0 Hz

and 2 Hz the heterogeneity reduced var(Φ
(n)
inh) to 0 (white), corresponding to the 1:1

phase-locked state. Even for the 1:2 phase-locked state (cf. the red area in Fig 3.6B)

var(Φ
(n)
inh) was very small for a range of heterogeneity and detuning (2 Hz to 4 Hz),

indicating tight phase locking. Except for type-3 synchronized states the size of the

spike volleys varied between clock cycles. In fact, over wide ranges of the parameters

the network did not spike in each of the clock cycles, as indicated by the color hue

in Fig 3.6C, which gives the fraction of cycles with no network spikes (e.g., Fig 3.6

example 4).
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Figure 3.7. Subharmonic response of the ING rhythm with a longer synaptic delay
within the network (τd = 5 ms) receiving periodic inhibitory input. For each value of
the input heterogeneity, the natural frequency fnetwork was kept constant (fnetwork =
44 Hz) by adjusting the mean input strength I(I). The range of detuning where
increasing heterogeneity induced a type 3 synchronization became wider compared
to Fig 3.6B, where τd = 3 ms. W (ext) = 1.2× 10−3.

3.3.3. Paradoxical phase response and entrainment of PING rhythms

Many γ-rhythms involve not only inhibitory neurons, but arise from the mutual in-

teraction of excitatory (E) and inhibitory (I) neurons (PING rhythm) [79]. The key

elements to obtain a paradoxical phase response and the ensuing enhanced synchro-

nization are self-inhibition within the network, neuronal heterogeneity and effective

synaptic delay. Since in PING rhythms the connections from E-cells to I-cells and

back to the E-cells form an effective self-inhibiting loop, we asked whether PING-

rhythms can exhibit behavior similar to the behavior we identified for ING-rhythms.
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Figure 3.8. Neuronal heterogeneity enhances the synchronization and the tightness
of phase-locking of the PING rhythm. (A) fmPRC of PING networks with constant
natural frequency (fnetwork = 41 Hz) but different neuronal heterogeneity. Only
with neuronal heterogeneity the phase was delayed by the excitation. (B) Non-
monotonicity of the paradoxical delay with constant natural frequency (fnetwork = 41
Hz). B2-4: Top: raster plot of spikes in E-population (input strength increased
with cell index). Bottom: mean inhibitory synaptic conductance within the PING
network. The titles show the absolute and relative increase in spike number (B2:
CV = 0.05, B3: CV = 0.1, B4: CV = 0.2). (C) Subharmonic response of the PING
rhythm with periodic excitation as function of neuronal heterogeneity and detun-
ing. fnetwork was fixed at 41 Hz. Color hue and saturation indicate the frequency
ratio and power ratio at the frequencies fsuper and fclock of the E-population’s LFP.
fsuper was the frequency of the dominant peak of the LFP power spectrum that
satisfies fsuper > fclock. The power ratio was capped at 1. Generally, the neuronal
heterogeneity enhanced the synchronization of the PING rhythm by weakening sub-
harmonic response. (D) The tightness of the phase-locking (var(Φexc)) as a function
of neuronal heterogeneity and detuning. The neuronal heterogeneity enhanced the
tightness of the phase-locking. For ∆f ∈ [−22Hz, −17.4Hz] the clock was twice as
fast as the network, resulting in vanishing var(Φexc).
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Considering a PING-rhythm generated by an E-I network comprised of IF neu-

rons, we first studied its fmPRC. To avoid that all I-cells receive identical input and

therefore spike as a single unit, the I-cells received, in addition to the excitation

from the E-cells, heterogeneous, tonic, Gaussian-distributed subthreshold input with

mean I(I) = 36 pA and CV (I)= 0.167. The phase response of the network was probed

by applying an identical external excitatory perturbation to all E-cells and recording

the resulting phase shift (cf. eqs.(3.8,3.9)) of the E-population, averaged across 500

realizations of the subthreshold input to the I-cells (Fig 3.8A). More specifically, the

perturbations consisted of a square-wave excitatory current pulse with amplitude 76

pA and duration 0.1 ms to each E-cell, resulting in a 2 mV rapid depolarization.

Without neuronal heterogeneity the external excitation always advanced the phase

of the rhythm resulting in an fmPRC that was strictly positive. In the heterogeneous

case, however, the PING rhythm exhibited a paradoxical phase response, whereby

the collective rhythm was delayed while the individual neurons were advanced by

the excitation. The delay was caused by the increase of self-inhibition within the

network that was generated by the additional spikes in the E-population, which in

turn drove additional spikes in the I-population. In contrast to the fmPRC of the

ING-rhythm, this paradoxical phase response was not monotonic in the heterogene-

ity. While weak heterogeneity resulted in strong delay, the delay decreased with

increasing intermediate CV-values and only increased again for larger CV (Fig 3.8B

left top). This non-monotonicity arose because we kept the frequency of the network

constant as we increased its heterogeneity. This required a decrease in the tonic input
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to the E-cells with increasing heterogeneity. For the stronger tonic input used for

weak heterogeneity the same external perturbation elicited more additional spikes

than it did for strong heterogeneity where the tonic input was weaker (cf. titles of

subpanels of Fig 3.8B). The total number of spikes occurring in each cycle of the un-

perturbed network also decreased with increasing heterogeneity. Consequently, the

relative change in the number of spikes and in the inhibitory synaptic conductance

induced by the perturbation were non-monotonic in the heterogeneity. As a result,

the phase delay became non-monotonic.

As for the ING rhythm, we investigated the role of neuronal heterogeneity in

the synchonizability and the ability of phase-locking of coupled PING rhythms. In

analogy to the ING-case, we considered the case of the E-population of a PING net-

work receiving periodic excitation generated by a clock PING network (Fig 3.4B). As

before, we adjusted the tonic input strength to the E-population to keep the natural

frequency of the network constant as we changed its heterogeneity (fnetwork = 41Hz).

To probe the impact of the paradoxical phase response on the synchronization we

focused on negative detuning for which the periodic external excitation needed to

slow down the network in order to achieve phase-locking. Indeed, with increasing

heterogeneity the network could become synchronized with the slower clock over a

larger range of the detuning as indicated by the fading saturation of the color in Fig

3.8C. Here the color hue indicates the ratio fsuper : fclock, where fsuper was determined

as the frequency with the most power among the frequencies higher than fclock in the

Fourier spectrum of the E-population’s LFP. The color saturation indicates the ratio
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of the power at the frequencies fsuper and fclock. Thus, a color hue closer to green

(fsuper : fclock = 1 : 1) or with a lower saturation implies better synchronization. By

observing how the width of the range of detuning allowing synchronization varied

with neuronal heterogeneity, we concluded that, generally, the neuronal heterogeneity

enhanced the synchronizability of the PING rhythm by weakening the subharmonic

response. Note that for CV ∈ [0, 0.1] the synchonizability of the PING rhythm

decreased slightly with neuronal heterogeneity. This was consistent with the non-

monotonicity exhibited by the fmPRC seen in Fig 3.8B. The neuronal heterogeneity

played a similar role in the tightness of the phase-locking as in the synchronizability

(Fig 3.8D).

3.3.4. Paradoxical phase response in QIF networks and their mean-field

reduction

To demonstrate the generalizability of our results beyond IF neurons, we studied

the collective phase response for networks of QIF neurons, which display biologically

more realistic voltage traces. All-to-all coupled networks of QIF neurons have the

additional advantage – in the limit of infinitely many neurons and if the heterogeneity

of the neurons is chosen to follow a Lorentzian distribution – that they can be

captured by an exact mean-field theory (eMFT) that reduces the network to two

coupled ordinary differential equations. These equations describe the mean voltage

and the mean firing rate of the neurons [67, 80] (see also [69]). This reduction

allowed to obtain the imPRC by applying the adjoint method rather than by direct
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simulation of spiking networks [71]. In [57,71], this methodology has been applied to

study the imPRCs of both PING and ING rhythms in detail, finding good agreement

with the direct simulations of the corresponding spiking networks.

Given the importance of the effective synaptic delay for the paradoxical collective

phase response, we went beyond [57,71] and included an effective synaptic delay in

the eMFT and studied its impact, combined with that of the neuronal heterogeneity,

on the imPRC, obtained by the adjoint method, as well as the fmPRC, obtained by

direct simulation of the spiking networks as well as the eMFT.

We introduced the effective synaptic delay via double-exponential synaptic in-

teraction without including an explicit synaptic delay. We first focused on the ING

rhythm. Its imPRC, obtained with the adjoint method from the eMFT, agreed well

with the fmPRC obtained from weak direct perturbations of the spiking network,

regardless of the sign of the perturbation (Fig 3.9A). Thus, the agreement between

the fmPRC for weak perturbations and the imPRC found in [57,71] carried over to

the case with effective synaptic delay. With increasing perturbation amplitude the

shape of the fmPRC changed substantially, resulting in strong deviations from the

imPRC (Fig 3.9B). Nevertheless, the fmPRC of the spiking network always agreed

well with the fmPRC obtained with the eMFT (Fig 3.9B).

Strikingly, due to the effective delay the paradoxical phase response even arose in

the imPRC (Fig 3.9A). Simulation of the eMFT showed that the paradoxical phase

response was caused by the paradoxical change in the level of the within-network

inhibition: as in the IF-networks with Gaussian heterogeneity, external inhibition
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decreased the total within-network inhibition while external excitation increased it

(Fig 3.9C). Furthermore, the amplitude of the paradoxical phase response of the im-

PRC from the eMFT also increased with neuronal heterogeneity (Fig 3.9D). However,

in contrast to the case discussed above where the distribution of the input currents

was Gaussian and the paradoxical phase response occurred only for sufficiently strong

perturbations or sufficiently strong heterogeneity (Fig 3.2C), for the Lorentzian dis-

tributed input a paradoxical phase response arose in the imPRC, i.e. without a

threshold for the perturbation amplitude, even for arbitrarily small neuronal hetero-

geneity (Fig 3.9D right). This reflects the fact that in the limit of infinitely many

neurons even for small heterogeneity ∆ there were always neurons in the heavy tail

of the Lorentz distribution that were on the border between spiking and not spiking

for whom an infinitesimal external inhibition was sufficient to suppress their spiking.

For the PING rhythm with effective synaptic delay, we investigated all possible

perturbation scenarios: excitation to E-cells, inhibition to E-cells, excitation to I-

cells, inhibition to I-cells. For small perturbation amplitudes the imPRC obtained

with the adjoint method applied to the eMFT of the E-I network again agreed well

with the fmPRC of the spiking E-I network (Fig 3.10A). We determined the dynam-

ical regime of the eMFT in terms of the heterogeneities of the E-population (∆E)

and of the I-population (∆I). Similar to the result in [57,71], the eMFT displayed

a Hopf bifurcation when decreasing either neuronal heterogeneity (Fig 3.10B). Note

that for very small heterogeneities the numerical solution diverged (below the orange

line in Fig 3.10B, which corresponds to the black area below the white line in Fig
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Figure 3.9. ING rhythms in heterogeneous QIF networks and their eMFT-reduction.
(A) The imPRC (black line) of the eMFT multiplied by the signed perturbation
strength agreed well with the fmPRCs (blue=excitation, orange=inhibition) from
the spiking network simulation. (B) Even for strong perturbations, the fmPRC
obtained from simulations of the eMFT agreed well with that of the spiking network.
(C) As in the IF networks, the paradoxical phase response of the eMFT arose from
the paradoxical change in the within-network inhibition. Top: external excitation
increased the within-network inhibition. Bottom: external inhibition decreased the
within-network inhibition. (D) Left: the amplitude of the paradoxical phase response
of the imPRC in the eMFT increased with neuronal heterogeneity. Right: the imPRC
of the eMFT exhibited a paradoxical phase response for arbitrarily weak neuronal
heterogeneity. Parameters: voltage perturbations ∆VI were made to the membrane
potential or the mean potential variable VI(t) with a square-wave pulse of duration
0.02 ms. In (A), ∆VI = ±0.2. In (B), ∆VI = 2 (left), ∆VI = 4 (right). In (C),
∆VI = 3. In (A)-(C), ∆I = 3.

3.10C), reflecting an approach to perfect synchrony in the limit of vanishing hetero-

geneity. Within the oscillatory regime, we studied the influence of ∆E and ∆I on the

fmPRC by simulating the eMFT rather than the spiking network. The paradoxical

phase response, either an advance under external inhibition or a delay under external
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Figure 3.10. PING rhythms in heterogeneous QIF networks and their eMFT-
reduction. (A) The imPRC (black line) of the eMFT multiplied by the signed pertur-
bation strength agreed well with the fmPRCs (blue=excitation, orange=inhibition)
from the spiking network simulations when perturbing the E-population (top) or the
I-population (bottom). (B) Dynamical regimes of the PING rhythm in the eMFT.
(C) The maximal paradoxical phase response obtained from simulations of the eMFT.
Paradoxical phase response always existed. The black regions below the white dashed
line correspond to the area below the orange line in (B). Parameters: voltage pertur-
bations ∆VE,I were made to the membrane potential or the mean potential variable
VE,I(t) with a square-wave pulse of duration 0.02 ms. In (A), ∆VE,I = ±0.2, ∆E = 1,
∆I = 1. In (C), ∆VE,I = ±0.2.

excitation, existed in all perturbation scenarios (Fig 3.10C). As in the ING rhythm,

it was caused by a paradoxical change in the level of the within-network inhibition.

Thus, the results of the IF networks with Gaussian heterogeneity carry over to

QIF networks with Lorentzian heterogeneity and their eMFT-description.
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3.4. Discussion

The key element of the mechanism driving the paradoxical phase response and

the enhanced synchronization is the cooperation of the external perturbation and the

effectively delayed within-network inhibition. In the ING-network a suitably timed

external perturbation delays the lagging — but not the early — neurons sufficiently

to allow the within-network inhibition triggered by the early neurons to keep the

lagging neurons from spiking. This reduces the overall within-network inhibition

and with it the duration of the cycle. Thus, the perturbation modifies the internal

dynamics of the rhythm, which leads to changes in the phase of the rhythm that

can dominate the immediate phase change the perturbation induces. The situation

is somewhat similar to that investigated in [62]. There it had been pointed out that

an external perturbation of a collective oscillation can lead to changes in its phase in

two stages: i) an immediate change of the phases of all oscillators as a direct result of

the perturbation and ii) a subsequent slower change in the collective phase resulting

from the convergence of the disturbed phases back to the synchronized state. That

analysis was based on a network of phase oscillators and could therefore not include a

key element of our results, which is the perturbation-induced change in the dynamics

within the network that is associated with a change in the number of spiking neurons

and induces a change of the period of the rhythm. As discussed in [75,81], for ING-

rhythms such a change in the number of spiking neurons underlies also the enhanced

phase-locking found in [74].
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Going beyond ING-rhythms, we showed that PING-rhythms can also exhibit

a paradoxical phase response via a mechanism that is analogous to that of ING-

rhythms. For that analysis we have focused on excitatory-inhibitory networks with

only connections between but not within the excitatory and inhibitory populations.

For excitatory inputs to the excitatory cells to generate a paradoxical phase response

it is necessary that the additional spikes of the excitatory neurons that are caused

by the external perturbation induce additional spikes of the inhibitory neurons. This

behavior arises if the inibitory population is also allowed to be heterogeneous. More-

over, the within-network inhibition has to be strong enough to be able to suppress

the spiking of lagging excitatory neurons. This is, e.g., found in mice piriform cortex,

where principal neurons driven by sensory input from the olfactory bulb arriving early

during a sniff recruit inhibitory interneurons via long-range recurrent connections,

resulting in the global, transient suppression of subsequent cortical activity [82]. A

characteristic feature of the paradoxical phase response of the PING rhythm is the

extended cycle time following enhanced activation of the excitatory cells. A strong

such correlation between the cycle time and the previous LFP amplitude has been

observed for the γ-rhythm in hippocampus [83]. To assess whether this rhythm ex-

hibits paradoxical phase response it would be interesting to compare the macroscopic

phase response [84] with that of indvidual participating neurons.

In order for the global perturbation to affect the various neurons differently,

they have to be at different phases in their cycle. Our analysis suggests that the

specific cause for this heterogeneity in the spike times does not play an important
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role. Indeed, as shown in [73], even fluctuating heterogeneities that are generated

by noise rather than static heterogeneities reflecting intrinsic properties of neurons

can enhance the synchronization of multiple γ-rhythms in interconnected networks

of identical neurons. Note that the noise driving this synchronization is uncorrelated

across neurons. The analysis of that system revealed the same mechanism at work

as the one identified here.

In various previous analytical and computational analyses it has been found that

the dynamics of the macroscopic phase of a collective oscillation can qualitatively

differ from that of the microscopic phase [61, 64–66, 72]. Thus, for interacting

groups of noisy identical phase oscillators the macroscopic phases of the groups can

tend to line up with each other, even if all pair-wise interactions between individual

oscillators prefer the antiphase state, and vice versa [64]. An analogous result has

been obtained for heterogeneous populations of noiseless oscillators [61].

Qualitative changes have also been found in the macroscopic phase response of

rhythms in noisy homogeneous networks when the noise level was changed [65,66,72].

Using a Fokker-Planck approach for globally coupled excitable neurons, a type-I

mPRC was obtained for weak noise, where the rhythm emerges through a SNIC

bifurcation, while a type-II mPRC arose for strong noise that led to a Hopf bifurcation

[65]. A similar approach was used to obtain the imPRC via the adjoint method

for an extension of the theta-model that implements conductance-based synaptic

interactions. Again, although individual theta-neurons have a type-I PRC, a type-II
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imPRC was obtained for the rhythm, which arose in a Hopf bifurcation [66]. This

was also the case in an extension to networks of excitable and inhibitory neurons [72].

Thus, results reminiscent of those presented here have been obtained previously.

However, the mechanism underlying them was not addressed in detail and remained

poorly understood. We expect that our analysis will provide insight into those sys-

tems. The key element of the mechanism discussed here is that due to the dispersion

of the spike times, which either results from neuronal heterogeneity or noise, the

external perturbation enables the within-network inhibition to suppress the spiking

of a larger number of neurons than without it. In our system this was facilitated by

the delay with which spikes triggered the within-network inhibition, which allowed

some neurons to escape its impact in the absence of the external perturbation, but

not in its presence. Our analysis showed, however, that an explicit delay is not nec-

essary; the effective delay resulting from a double-exponential synaptic interaction is

sufficient. In fact, when reducing that effective delay the paradoxical phase response

did not disappear until the delay was so short that the rhythm itself developed a

strong subharmonic component and disintegrated.

Previous work on the enhancement of synchronization among γ-rhythms via

noise-induced spiking heterogeneity has demonstrated that this enhanced synchro-

nization does not depend sensitively on the neuron type. Comparable results were

obtained also with Morris-Lecar neurons for parameters in which the periodic spiking

arises from a SNIC-bifurcation, resulting in a type-I PRC for the individual neurons
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as is the case for integrate-and-fire neurons, but also for parameters for which the

spiking is due to a Hopf bifurcation, resulting in a type-II PRC [73].

In [73] the results were also found to be robust with respect to significant changes

in the network connectivity (random instead of all-to-all) as well as the reversal

potential of the inhibitory synapses, as long as the rhythm itself persisted robustly

(cf. [85]). In fact, the coupling did not even have to be synaptic; collective oscillations

of relaxation-type chemical oscillators that were coupled diffusively were also shown

to exhibit noise-induced synchronization. These results suggest that the paradoxical

phase response found here arises in a much wider class of macroscopic collective

oscillations.

The strong paradoxical phase response that we demonstrated for heterogeneous

networks allows their rhythm to synchronize with a periodic external input over a

range of detuning that increases substantially with the neuronal heterogeneity. This

is reminiscent of computational results for anterior cingulate cortex that investigated

networks of excitatory neurons coupled via a common population of inhibitory neu-

rons. There heterogeneity was also found to enhance the synchrony of rhythms, as

measured in terms of coincident spikes within 10ms bins [86].

The heterogeneity-enhanced synchrony we have identified suggests that the coher-

ence of γ-rhythms emerging in different interacting networks could also be enhanced

by neuronal heterogeneity. It has been proposed that the coherence of different γ-

rhythms, which has been observed to be modified by attention [1], plays an important
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role in the communication between the corresponding networks [55,78]. Computa-

tional studies have shown that the direction of information transfer between networks

depends on the relative phase of their rhythms [56, 57], which can be changed by

switching between different base states [87, 88]. Whether the enhanced synchrony

resulting from neuronal heterogeneity enhances this information transfer is still an

open question.

Disrupted γ-rhythms have been observed in multiple brain regions in neurological

diseases, especially Alzheimer’s disease. Optogenetic and sensory periodic stimula-

tion at γ-frequencies has been found to entrain the γ-rhythm in hippocampus and

visual cortex, respectively, and has resulted in a significant reduction in total amyloid

level [89]. Similar neuro-protective effects of entrainment by external γ-stimulation

have also been found for other sensory modalities [58, 90]. This suggests that γ-

stimulation by sensory input might be a feasible therapeutic approach. Our results

suggest a potential role of neuronal heterogeneity in this context.

From a functional perspective, it has been shown that the noise-induced synchro-

nization mentioned above can facilitate certain learning processes [91]. Specifically,

a read-out neuron was considered that received input from neurons in two networks

via synapses that exhibited spike-timing dependent plasticity. The two networks

were interacting with each other and each of them exhibited a γ-rhythm, albeit at

different frequencies. For low noise the two rhythms were not synchronized and the

read-out neuron received inputs from the two networks at uncorrelated times. These
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inputs drove the plasticity inconsistently, leading only to a very slow overall evolu-

tion of the synaptic weights, if any. However, for stronger noise the two networks

were synchronized, providing a more consistent spike timing that lead to substantial

changes in the synaptic weights. As a result, the read-out neuron was eventually

only driven by the network that had the larger natural frequency in the absence

of the coupling between the networks. It is expected that synchrony by neuronal

heterogeneity will have a similar impact.
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CHAPTER 4

Conclusion and Outlook

4.1. Summary

In this thesis, we explored the neural mechanisms in the brain at multiple spatio-

temporal scales: from a single neuron with synapses to a neural network, from long-

term learning to brain rhythms.

In Chapter 2, we used computational modeling to investigate the development of

orientation selectivity and its binocular matching in mouse V1. The model focused on

a hypothetical neuron that received inputs from both eyes via plastic synapses. The

evolution of the synaptic weights was driven by stimuli representing gratings with

randomly switching orientation. In an initial phase these inputs were uncorrelated

between the two eyes to mimic spontaneous retinal or thalamic activity before eye-

opening [24]. After eye-opening the inputs were chosen to be perfectly correlated

between left and right. Our model captured key experimental observations [23,26]:

(1) the matching is predominantly achieved by shifting the preferred orientation

for input from the weaker eye.

(2) the resulting binocular orientation selectivity increases with decreasing mis-

match.
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In addition, the model provided insight into a number of further experimental ob-

servations and put forward testable predictions:

(1) The matching speed increases with initial ocular dominance, suggesting oc-

ular dominance as a key driver of the binocular matching process.

(2) While the matching improves more slowly for cells that are more orientation-

selective, the selectivity increases faster for better matched cells during the

matching process. This suggests that matching drives orientation selectivity

but not vice versa.

(3) There are two main routes to matching: the preferred orientations either

drift towards each other or one of the orientations switches quite suddenly,

involving a transient loss of binocularity, which can become permanent if it

occurs towards the end of the critical period. While drifting occurs for small

initial mismatch, switching is specific for large mismatch.

Furthermore, we explored how the learning process and outcome depend on the input

characteristics. With binocular and potentially unmatched input synapses, most key

features of the matching process were qualitatively the same as for the scenario with

monocular input synapses. Surprisingly, we found that with matched binocular input

synapses, the matching occurred already during the monocular vision. Complex cells

in the visual system are presumably best described by binocular inputs with a modest

degree of mismatch.

In Chapter 3, we have analyzed the response of collective oscillations of inhibitory

and of excitatory-inhibitory networks of linear and of quadratic integrate-and-fire
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neurons to external perturbations. For the QIF networks with Lorentzian hetero-

geneity we made extensive use of the eMFT that reduces the network dynamics to

two coupled ordinary differential equations [67]. For ING- and PING-rhythms in all-

to-all networks comprised of IF or QIF neurons, we have shown that the combination

of neuronal heterogeneity and effective synaptic delay can qualitatively change the

phase response compared to the phase response of the individual neurons generating

the rhythm. Thus, perturbations that delay the I-cells can paradoxically advance the

ING-rhythm and perturbations that advance the E-cells can delay the PING-rhythm.

As a result, the macroscopic phase-response curve for finite-amplitude perturbations

(fmPRC) of the rhythm can change sign as the phase of the perturbation is changed

(type-II), even though the PRC of all individual cells is strictly positive (type-I).

This change of the fmPRC enhances the ability of the γ-rhythm to synchronize with

other rhythms.

4.2. Future Work

4.2.1. Matching of preferences in the network model

In Chapter 2, we have considered in our model only a single neuron and its feed-

forward inputs. In the mammalian V1 the L2/3 and the L4 neurons are, however,

part of a recurrent network. This recurrent connectivity plays a key role in the de-

velopment of the ocular dominance columns and orientation maps [20, 34, 36] that

are found in higher mammals like cats, ferrets, and monkeys [92, 93]. Mouse V1,
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however, does not exhibit such maps. In spite of that, mouse V1 exhibits stereo-

typical connectivity between the pyramidal cells and parvalbumin-expressing (PV)

inhibitory cells. Recurrent connections between the pyramidal cells are sparse and

weak. In contrast, connections from the pyramidal cells to PV cells are dense and

strong [94,95]. The PV cells are less selective than most pyramidal cells [96], which

can be explained by the dense connections from the pyramidal cells with different

preferred orientations to the PV cells [94,95]. A recent computational study has ex-

plored how such connectivity emerges with homeostatic synaptic plasticity, in which

the less selective PV cells are proposed to stabilize the network by preventing fluctua-

tion in the synaptic weights [97]. In addition, it has been experimentally shown that

the binocular matching of preferred orientations occurred only after the broadening

of inhibitory tuning curves [98]. It would therefore be interesting to investigate the

effect of the recurrent connectivity and the function of inhibitory cells during the

process of binocular matching in an E-I network model capturing such connectivity

with plastic synapses.

4.2.2. Matching of preferences in multisensory systems

The framework of our model in Chapter 2 can readily be applied to neurons in other

multi-channel systems such as binaural auditory neurons or multisensory neurons to

capture the development and matching of multiple, single-channel receptive fields

that represent corresponding physical properties (e.g., orientation, position). For

multisensory neurons in superior colliculus, for example, it has been shown that the
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selectivity of multisensory neurons develops after the development of selectivity of

its upstream unisensory neurons [12], which is similar to the setup in our model.

The binocular vision and its ensuing matching of orientation selectivity through

binocular vision in our visual cortex model corresponds to sensing the same event

through different modalities simultaneously and the matching of their corresponding

receptive fields. Thus, it would be interesting to study if the ideas and results

developed here can carry over to explain experimental results for the development

and matching of receptive fields in other sensory cortices integrating inputs across

modalities [12].

4.2.3. Macroscopic phase response in the networks of type-II neurons

In Chapter 3, we have focused on two specific, very simple neuronal models, the linear

and the quadratic leaky integrate-and-fire model with pulsatile coupling. Both have a

type-I PRC, which is non-negative. This makes the paradoxical aspect of the mPRC

of the rhythm easier to identify and analyze. It would be interesting to explore the

dependence of the macroscopic phase response on the neuronal heterogeneity and

the ensuing ability of synchronization for neurons with biphasic PRC (type-II, e.g.,

Hodgkin-Huxley neuron), where the sign of the phase shift of each individual neuron

depends on its phase and therefore may vary from neuron to neuron for a given

perturbation. We expect that the interplay between the within-network inhibition

and the external perturbation can again substantially and qualitatively modify the

mPRC by changing the number of neurons participating in the rhythm.
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4.2.4. Macroscopic phase response in the networks of multiple subtypes

of interneurons

There are multiple interneuron subtypes within the mouse visual cortex. Three ma-

jor subtypes of interneurons, parvalbumin-expressing (PV), somatostatin-expressing

(SOM), and vasointestinal peptide-expressing (VIP) neurons comprise 80–90% of

inhibitory neurons [99], following typical rules of connectivity [100]: PV neurons

preferentially inhibit one another, SOM neurons avoid one another and inhibit all

other types of interneurons, VIP neurons preferentially inhibit SOM neurons, and the

inhibition onto pyramidal neurons is mainly from PV and SOM neurons. PV neurons

play a crucial rule in regulating the excitation-inhibition balance [101] and generating

gamma rhythms [102]. SOM neurons have been shown essential to visually-induced

gamma rhythms as well as the coherence between gamma rhythms in distinct V1

locations [103]. Moreover, VIP neurons have been reported to disinhibit the pyra-

midal neurons in layer 2/3 [104], which controls the impact of context on V1 re-

sponses [105]. This mechanism of disinhibition cannot be captured in a model that

includes only a single population of interneurons. Theoretical studies have also been

done on E-I cortical networks including diverse inhibitory populations [106,107]. It

would be interesting to investigate the collective phase response in networks with

such diversity of interneurons, studying the effect of the disinhibition arising from

the SOM-PV, VIP-SOM connections as well as the role of the neuronal heterogene-

ity within each population of interneurons in the synchronization between gamma

rhythms.
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4.2.5. The relationship between the network dynamics and synaptic plas-

ticity

In both Chapter 2,3, we have constrained the modeling in the neural mechanisms on

a single timescale. It would be interesting to study the interaction between neural

mechanisms operating on different timescales, e.g., the relationship between the net-

work dynamics and synaptic plasticity. Mature cortical networks have been shown to

operate in a ‘stabilized supralinear network (SSN)’ regime [108,109]. With supra-

linear transfer functions, these networks have strong recurrent excitatory connec-

tions, stabilized by feedback inhibition. Extended from inhibition stabilized networks

(ISNs) [110], SSNs also display the paradoxical property that increasing excitatory

input to inhibitory neurons leads to a decrease in both inhibitory and excitatory

neurons’ activity. That is similar to the paradoxical collective phase response we

have found in Chapter 3 where the overall level of the recurrent inhibition increases

with external excitation and leads to a paradoxical response. The nonlinearity of the

transfer function enables SSNs to operate in two distinct regimes: a non-ISN regime

for weak inputs where feedforward input dominates, and an ISN regime for stronger

inputs where recurrent input dominates. It would be interesting to study the role of

synaptic plasticity in this context – how and which synaptic plasticity mechanisms

can make neuronal networks operate as ISNs (potentially SSNs), and how such dy-

namics in turn can modulate plasticity in cortical networks. The primary visual

cortex, with diverse interneurons and stereotypical connectivity, experiences signifi-

cant plasticity modification during the critical period [9], after which it operates in a
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‘stabilized supralinear’ regime. That makes the primary visual cortex a good model

to study the interaction between the synaptic plasticity and the network dynamics

during the developmental phase of cortical networks.
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