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ABSTRACT

Rendering-Based Optimization for a Near-Eye Display and Active 3D Scanning

Nathan Matsuda

Raytracing is a long-established means to simulate physically accurate light propaga-

tion. Increasing availability and power of highly-parallel computing, such as cloud-based

clusters and dedicated graphics hardware, means that rendering algorithms can produce

high resolution output very quickly. This means raytracing can now be used as a forward

model in optimization algorithms to improve the performance of computational imaging

systems. This thesis considers the hypothesis that this rendering-based optimization ap-

proach for computational imaging systems will gain increasingly-widespread use in the

future. This thesis evaluates two distinct uses for rendering-based optimization: a near-

eye display and a surface reconstruction algorithm for active 3D scanners. In the first, a

novel display architecture produces spatially varying focus for the user. Rendering-based

optimization corrects hardware-induced optical distortions to produce an improved reti-

nal image. The second use case flexibly corrects for multibounce interference in active 3D

scanners, including arbitrary scene reflectance, using rendering-based optimization.
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Nomenclature

I An intensity vector

Ix,y The intensity associated with pixel (x, y)

I An intensity image in matrix form

Î A measured or target intensity image

Ī A complex phasor image

s A point in space or on a surface

S A surface

P A light path contribution

Ps0→s1 The light path contribution from s0 to s1

θ A ray angle

φ A phase function

ρ A reflectance function

T A light transport matrix

T A rendering operator

TΓ(S) The renderer initialized by parameters Γ as a function of surface S
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estimated dynamic range than the underlying measurements, and
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dynamic range of the Kinect measurements. 117
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List of Figures

1.1 Forward Model Path: An example raytrace path starting at the

camera origin s0, then traversing d = 5 bounces through the scene, with

the final segment directly connecting to the light source. An additional

valid path can be created at each intersection point by connecting

directly to the light source (shown as dotted lines) to cheaply reduce

sampling noise. In the SL case, the value along this path is set to be

the phasor given by the projection of sd−1 into the projector reference

frame, where the column value is converted into a phase value. In the

ToF case, the projector and camera are co-located, while the path value

is set to the phasor with angle corresponding to the phase rotation over

the total path length given a modulation wavelength. In both cases, the

magnitude of the phasor is attenuated by each bounce along the path

by the BRDF model used for the surface. 30

1.2 Optimization Block Diagram: A rendering-based forward model

can be used in gradient descent optimization even when an analytical

derivative or adjoint operator are not available for the target parameters.

In these situations, a finite difference approach can be applied, where

each target parameter is offset in the scene and then rerendered
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to produce a gradient image with respect to that parameter. The

parameter can then be updated to incrementally minimize the objective

function. 37

2.1 Near-Eye Display Continuum: Focal surface displays generalize

the concept of manipulating the optical focus of each pixel on an

HMD. Configurations (d,e) augment a fixed-focus HMD (a) with

a programmable phase modulator placed between the eyepiece and

display. (b) Varifocal HMDs use a globally addressed tunable lens. (c)

Multifocal displays may use a high-speed tunable lens and display to

create multiple focal planes. (f) In contrast, certain light field HMD

concepts fall at the other end of this spectrum, using a finely structured

phase modulator (a microlens array) placed near the display. (d) This

chapter considers designs existing between these extremes in which a

phase modulator locally adjusts the focus to follow the virtual geometry,

generalizing varifocal and multifocal concepts. (e) Similar to multifocal

displays, multiple focal surfaces can be synthesized with high-speed

phase modulators and displays. 40

2.2 Simplified Optical Diagram and Labels: A focal surface display is

created by placing a phase-modulation element between an eyepiece and

a display screen. This phase element and the eyepiece work in concert as

a spatially programmable compound lens, varying the apparent virtual

image distance across the viewer’s field of view. 51
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2.3 A Toy Scene Illustration: A focal surface decomposition for a simple

scene, containing: a background fronto-parallel plane at 1.0 diopters,

a foreground fronto-parallel plane at 4.0 diopters, and a slanted plane

spanning 2.0 to 4.0 diopters. (a) A single image from the target

focal stack and target depth map. (b) A two-surface decomposition is

compared to the target depth map for a profile taken along the middle

row of the target imagery. (c) The color images associated with each

focal surface are shown, using the linear blending method of Akeley

et al. [6]. (d) The color images associated with each focal surface,

using the rendering-based optimized blending algorithm presented in

Section 2.3.3. 55

2.4 Depth Error Assessment: Focal surface displays achieve lower depth

map approximation errors, using less time multiplexing, than prior

multifocal methods. The left column depicts depth decompositions

ranging from 0.0 to 5.0 diopters, abbreviated “D”. The right column

depicts the resulting depth map approximation errors in diopters. For

a fixed focus design, the virtual image is positioned at 0.5 D. Following

Narain et al. [96], the fixed multifocal display employs four planes

evenly spaced from 0.2 D to 2.0 D. The adaptive multifocal display

and the focal surface display are optimized using k-means clustering,

following Wu et al. [142], and the methods in Sections 2.3.1 and 2.3.2 to

position planes across a 5.0 D span, respectively. Focal surface displays

show significantly fewer depth errors, with errors decreasing as more
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surfaces are used. (Source imagery courtesy Unity Asset Store publisher

“VenCreations.”) 56

2.5 Depth Error Assessment, Middlebury Dataset: Focal surface

displays represent natural scene depths with few image components.

Box plots compare the depth map errors gθx,θy(d) using the denoted

methods with the Middlebury 2014 dataset [122]. The bottom and

top of the whiskers indicate the 5th and 95th percentiles, respectively.

The bottom, middle, and top of the boxes represent the 1stquartile,

the median, and the 3rd quartile, respectively. Focal surface displays

produce fewer depth errors, especially when fewer planes are used. 61

2.6 Depth Error Assessment, Unity Dataset: We repeat the

assessment of Figure 2.5, but with the database of rendered scenes

described in Section 2.3.2. Note that the trends are repeated, but due

to the larger depth ranges in this database, additional virtual image

surfaces are required with prior fixed and adaptive multifocal displays. 62

2.7 Perceptual Assessment: Focal surface displays depict near-correct

retinal blur with fewer virtual image surfaces than prior multifocal

architectures. Following Figures 2.4–2.6, focal surface displays produce

virtual images that more closely align with the scene geometry. As

a result, sharply focused imagery can be obtained throughout the

scene, reducing focusing errors occurring with prior fixed and adaptive

multifocal displays. In this figure, we quantitatively assess the focal

stack reproduction error following the method of Narain et al. [96]: the
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right column depicts the maximum per-pixel probability of detecting

a difference between the target and reconstructed focal stacks, as

quantified using the HDR-VDP-2 metric [84]. The corresponding

quality predictor of the mean opinion score (MOS) is listed along the

bottom. Note that focal surface displays achieve similar fidelity as prior

adaptive multifocal displays, although with fewer virtual image surfaces.

(Source imagery courtesy Unity Asset Store publisher “VenCreations.”) 66

2.8 Design Trade Space: The accommodation range of a focal surface

display depends critically on the SLM placement. Here we denote, via

the labeled plot contours, the virtual image distance zv achieved with

an SLM, when used to represent a lens of focal length fp and positioned

a distance zp from the eyepiece. Red lines indicate focal lengths beyond

the dynamic range of the SLM. Note that these numbers correspond

with the prototype described in Section 2.5.1. 68

2.9 Hardware Prototype: Our binocular focal surface display prototype

incorporates commodity optical and mechanical components, as well

as 3D-printed support brackets. (a) The prototype is mounted to an

optical breadboard to support the comparatively large LCOS driver

electronics. (b) A cutaway of of the prototype exposes the arrangement

of the optical components. 72

2.10 Experimental Results, Optimized Blending: Our prototype focal

surface display achieves high resolution with near-correct retinal blur.

Photographs of the prototype are shown in the first three columns, as
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taken by focusing the camera at the indicated distances. The last two

columns depict the corresponding optimization outputs, including the

phase functions and the color images. Note that optimized blending is

applied with three time-multiplexed focal surfaces. The phase functions

are wrapped assuming a wavelength of 532 nm. (Source imagery

courtesy Unity Asset Store publisher “VenCreations”.) 74

2.11 Experimental Results, Linear Blending: Experimental results

using linear blending over three time-multiplexed focal surfaces,

following Akeley et al. [6]. (Source imagery courtesy of Thomas

Guillon.) 74

2.12 System Resolution and Chromatic Aberration: a) The measured

modulation transfer function (MTF) of our prototype as the system

varies focus from 0.0 to 4.0 diopters. Increasing contrast loss is expected

away from the prototype’s neutral focus of 3.0 diopter as the SLM

synthesizes shorter focal lengths, due to the increased stray light from

phase quantization and phase resets. b) The measured axial chromatic

aberration (ACA) of our prototype is less than that of the typical

human eye [29], confirming that focal cues are correctly rendered

with field-simultaneous color presentation, in spite of polychromatic

illumination. 78

2.13 Field-sequential and Simultaneous Color: Field-simultaneous

color display minimizes time multiplexing. However, artifacts due to

axial chromatic aberration (ACA) may appear in this case. (a) A
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target focal stack image. (b,c) Simulations comparing field-simultaneous

and field-sequential modes, using the geometric optics model from

Section 2.3. (d,e) Corresponding experimental results. The contrast

of experimental results differs from simulations due to stray light and

misalignments that cannot be predicted without more accurate wave

optics modeling and calibration, respectively. (Source imagery courtesy

Ruggero Corridori.) 79

3.1 Taxonomy of Active 3D Systems: Active 3D depth imaging systems

face trade-offs in acquisition speed, resolution, and light efficiency.

Laser scanning (upper left) achieves high resolution at slow speeds.

Single-shot triangulation methods (mid-right) obtain lower resolution

with a single exposure. Time-of-Flight methods obtain higher resolution

results, but not at conventional camera resolutions. Other methods

such as Gray coding and phase shifting (mid-bottom) balance speed

and resolution but have degraded performance in the presence of strong

ambient light, scene inter-reflections, and dense participating media.

Hybrid techniques from Gupta et al. [41] (curve shown in green) and

Taguchi et al. [132] (curve shown in red) strike a balance between these

extremes. 86

3.2 Motion Contrast Events: When a motion contrast pixel observes

a large change in intensity (a), the output (c) consists of ON events

(red circles) when the change in log intensity over time exceeds a preset

threshold (red dashed line) and OFF events (blue triangles) when the
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change in log intensity drops below a preset threshold (blue dotted

line). Each of these events is followed by a fixed reset time (hatched

box) that is a function of the internal amplifier and differencing circuit

characteristics. When the change in observed intensity is low (b), no

output events are produced (d). 93

3.3 System Model: A scanning source illuminates projector positions

α1 and α2 at times t1 and t2, striking scene points s1 and s2.

Correspondence between projector and camera coordinates is not known

at runtime. The DVS sensor registers changing pixels at columns i1

and i2 at times t1 and t2, which are output as events containing the

location/event time pairs [i1, τ1] and [i2, τ2]. We recover the estimated

projector positions j1 and j2 from the event times. Depth can then

be calculated using the correspondence between event location and

estimated projector location. 97

3.4 Comparison with Laser Scanning: Laser scanning performed with

laser galvanometer and traditional sensor cropped to 128x128 with total

exposure time of 28.5s. MC3D method captured with 1 second exposure

at 128x128 resolution and median filtered. Object placed 1m from

sensor under ∼150 lux ambient illuminance measured at object. 99

3.5 Performance with Interreflections: Comparison between Kinect

1, phase shifting, and MC3D. Experimental setup shown in (a). A

90◦ v-groove, assembled from foam core board shown in (b). (c) and

(d) show 45◦ and 30◦ v-grooves, respectively. Kinect 1 (measurements
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averaged over 1 second) produces comparable results to MC3D in the 90◦

and 45◦ cases as the block matching algorithm rejects interreflections.

In the 30◦ case, however, the block matching algorithm fails completely

due to interreflections. Phase shifting (16 phase offsets recorded over 64

seconds of total exposure time, using a low frequency period equal to

the width of the projector), has severe multibounce interference even at

90◦. MC3D (measurements averaged over 1 second) is not susceptible to

these effects as it is a laser point scanning technique. 100

3.6 Motion Comparison: The top row depicts 4 frames of a pinwheel

spinning at roughly 120rpm, captured at 60fps using MC3D. The

bottom row depicts the same pinwheel spinning at the same rate, over

the same time interval, captured with the Kinect. Only 2 frames are

shown due to the 30fps native frame rate of the Kinect. 102

3.7 Simulated V-Groove Depth Profiles: Simulated depth profiles for

walls with known BRDFs meeting at 45◦, 60◦, or 90◦. Top row: a

diffuse-only BRDF. Second row: a physically based rough plastic BRDF.

Third row: a glossy plastic BRDF. Bottom row: an anisotropic material.

Profiles for ground truth, 10Mhz and Kinect simulated measurements,

and optimized results are shown in each plot. Box-and-whisker plots of

the associated error values with these plots are shown in Figures 3.8 and

3.9. 115

3.8 10MHz Depth Errors: Box-and-whisker plots (5th and 95th

percentiles, quartiles, and median values) for Z-axis error in each
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of the 10Mhz single-frequency results in Figure 3.7 (diffuse, glossy

plastic, rough plastic, and anisotropic BSDFs). Error is calculated as

the absolute distance in meters relative to ground truth. Box-and-

whiskers for simulated measurements and reconstructions are shown on

alternating lines in red and blue, respectively. 116

3.9 Kinect Frequency Depth Errors: Box-and-whisker plots (5th and

95th percentiles, quartiles, and median values) for Z-axis error in each

of the Kinect multi-frequency results in Figure 3.7 (diffuse, glossy

plastic, rough plastic, and anisotropic BSDFs). Error is calculated as

the absolute distance in meters relative to ground truth. Box-and-

whiskers for simulated measurements and reconstructions are shown on

alternating lines in red and blue, respectively. 116

3.10 Dynamic Range Versus Global/Direct Ratio: Dynamic range for

the simulated 10Mhz, Kinect, and optimized measurements, plotted as

a function of the ratio between direct and global contributions to the

scene intensity. Dynamic range is calculated as the total unambiguous

range divided by the RMS depth value error relative to ground truth. 118

3.11 Random Surface Performance: In a), per-pixel root mean squared

Z-axis error, relative to a ground truth random heightmap, plotted

against the surface height standard deviation. The optimized result

outperforms the simulated 10Mhz measurement. b) A centerline profile

with a standard deviation of 2.0m showing ground truth, 10Mhz

measurement, and optimized result. 119
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3.12 Convergence with Measurement Noise: Per-pixel root mean

squared Z-axis error, relative to ground truth for a 90◦ v-groove, plotted

versus optimization iteration. Profiles shown for noise magnitudes

ranging from a standard deviation of 0m through 1.87m. The total

z-axis range spanned by the v-groove is 2m. 120

3.13 Accuracy and Precision: The accuracy of a simulated 10MHz

90◦ v-groove measurement, measured as RMS Z-axis error, can be

consistently improved with increasing levels of measurement noise

(a). Rendering-based optimization is able to correct for large-scale

multibounce intereference despite the presence of high frequency noise

in this case. The precision of this measurement, measured as the

standard deviation of Z-axis error, cannot be improved by correcting for

multibounce interference alone (b). 121

3.14 Accuracy and Precision - Example Profile: In a), a simulated

10MHz 90◦ v-groove measurement, with low accuracy due to multibounce

interference, but high precision due to lack of noise. In b), the noise-free

measurement optimized, which shows an improvement in accuracy. In

c), a simulated 10Mhz 90◦ v-groove measurement with added noise.

In d), the optimized result given the noisy measurement. Here the

systematic error has been reduced, improving accuracy, but the low

precision due to measurement noise remains. To address this, an

example using total variation regularization in the optimization loop is

shown in (e). 122
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3.15 Experimental Setup: Foam core boards aligned to marks on the floor

form a 90◦ v-groove. A Kinect ToF center is placed along the centerline

and aligned with the center of the v-groove and the horizon. Kinect

output was captured with a PC laptop. Board angles were then moved

to 60◦ and 45◦ angles and captured with the Kinect. 125

3.16 Experimental V-Groove Depth Profiles: Top Row: Experimental

depth results using Microsoft Kinect for capture, shown as middle-row

profiles plotted in scene space, recovered from a physical scene containing

foam core boards meeting at an angle of 45◦, 60◦, or 90◦. Ground truth

is approximated with two separate captures, one for each of the left and

right sides of the v-groove to eliminate multibounce interference. Middle

Row: Measurements converted to rectilinear mesh and illuminated

with a directional light source from the upper left. Bottom Row:

Optimized results converted to mesh and rendered. Column A) shows

a 90◦ v-groove. Column B) the 60◦ v-groove. Column C) the 45◦. The

optimized result (30 iterations) consistently outperforms the physical

measurement due to the algorithm’s ability to account for multibounce

interference. 126

3.17 Experimental Capture, Stairs: Experimental depth results using

Microsoft Kinect for capture, shown as middle-row profiles plotted in

scene space (b), recovered from a physical set of varnished wooden

stairs, shown in (a) with an inset showing the tread and riser profile

highlighted. A lit, rendered mesh produced from the raw Kinect
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measurement is shown in (c). The same treatment is applied to the

optimized result in (d). 127

3.18 Simulated SL Depth Profiles: Simulated depth profiles for diffuse

walls meeting at 45◦, 60◦, or 90◦. Profiles for ground truth, phase shift,

micro phase shift, and optimized results are shown in each plot. Like

ToF results, the optimzed phase shift results approach the quality of

micro phase shifting, which optically reduces multibounce interference. 130
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CHAPTER 1

Introduction

1.1. Summary

Graphics researchers began developing rendering algorithms to simulate ray optics

half a century ago. Since then, the community introduced accurate models for complex

optical effects like surface scattering and multi-bounce illumination, albeit with increasing

computational cost. Recently, electronics manufacturers have met growing consumer de-

mand for interactive visual content on mobile phones and laptops by producing ever-faster

processing hardware at higher volumes. Now, realistic rendering algorithms can operate

at vastly higher speeds than even a decade ago.

When rendered optical simulation is physically accurate, we can use it to confirm the

measurements or output of an optical device. The renderer serves as an independent

but equivalent platform to reproduce light passing through the system. In the case of a

display, a rendered model of emitted light can be used to verify that the user sees the

intended image. In the case of a camera, a rendered model can verify scene properties

associated with measured values. Any system, so long as it can be accurately modeled

with a renderer, can be evaluated in this way.

Now that processing hardware is sufficiently fast, we can incorporate raytracing into

an iterative gradient descent algorithm. The renderer becomes an efficient testbed for
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progressively refining system parameters. The algorithm repeatedly updates target sys-

tem parameters, estimates the resulting propagation of light using the renderer, compares

this output to the desired output, and then computes an update to the target parameters.

This rendering-based optimization approach can infer scene properties from captured mea-

surements, or display parameters given a target output, taking into account the classical

effects present in the system.

This tool has been used to recover surface orientation [99], to look around corners [64],

and to estimate volumetric scattering parameters [35], amongst a variety of other complex

reconstruction tasks.

This thesis evaluates rendering-based optimization in:

• An Accommodation-Supporting Near-Eye Display: Conventional near-

eye displays produce a single plane of focus. This thesis proposes a system

comprised of a conventional near-eye display and an inline phase modulator. A

phase modulator warps the focus perceived by the viewer to approximate depth

cues in the virtual scene, but in doing so induces spatially varying aberrations.

Rendering-based optimization generates a color display image to best synthesize

the desired retinal image through these distortions.

• A Time-Of-Flight Reconstruction Algorithm: Active depth imaging sys-

tems suffer from multibounce interference when observing concave geometry.

This interference is also dependent on the surface reflectance of the scene. While

hardware system design can mitigate some of these effects, this thesis demon-

strates a rendering-based optimization to further improve depth estimates by

eliminating systematic errors caused by interreflections.
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1.2. Problem Statement

Many problems in computational imaging can be solved as linear systems which are

easily tractable, but still powerful for modeling the appearance of a scene. These in-

clude deblurring [118], compressive sensing [24], dual photography [125], image relight-

ing [101], and the estimation of environment lighting and reflectance [88, 117]. Yet there

are many other inverse problems where appearance is poorly described by linear models.

This thesis is concerned with the following problem in this category:

Scene appearance is a highly nonlinear function of geometry and material.

Estimating geometry and material properties given measurements of scene appearance

is the core challenge in 3D acquisition and display, which in turn plays a role in applications

as diverse as virtual reality, visual effects, robotic navigation, metrology, and scientific

imaging.

How can we estimate parameters to control a display when individual optical com-

ponents produce nonlinear distortions? Or, how can we estimate scene geometry if it

produces nonlinear distortions on measurements? This thesis will begin to address this

question by examining the equivalency between linear image formation models and an

alternative, nonliner image formation model: raytracing.
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1.3. Light Transport Representations

The rendering equation [60], using notation inspired by [114] (see Nomenclature for

reference), is given as:

I(s, s′) = G(s, s′)

[
Ie(s, s

′) +

∫
S

ρ(s, s′, s′′)I(s, s′)

]
(1.1)

where I(s, s′) is the radiant transfer between points s and s′, G(s, s′) is the mutual

visibility between the two points, Ie(s, s
′) is the emissive contribution from s to s′, and

ρ(s, s′, s′′) is the intensity scattered from point s′′ to s off of the point s′ (the reflectance).

The integral is computed over the entire scene surface S.

This integral cannot be solved directly in all but the most trivial cases, but Kajiya

gives a stochastic approximation using Monte Carlo integration in [60]. This approach,

also known as path tracing, remains the standard for unbiased, physically based ren-

dering in addition to extensions such as bidirectional path tracing [70] and Metropolis

light transport [135]. This approach is implemented in the PBRT rendering engine and

corresponding textbook [114], the spin-off Mitsuba renderer [55] (modified for the simu-

lations and results in Chapter 3), the hardware-based Optix framework [112] (modified

for the simulations and results in Chapter 2), as well as the open-source Blender rendering

engine [11] which produced all visualization renders in this thesis.
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The path tracing algorithm in [114] gives the intensity along a path P after recursion

depth d:

P =
Ie(sd → sd−1)ρ(sd → sd−1 → sd−2)G(sd ↔ sd−1)

pA(sd)

×

(
d−2∏
j=1

ρ(sj+1 → sj → sj−1)|cosθj|
pω(sj+1 − sj)

)(1.2)

Beginning with the camera center of projection s0, the algorithm samples an outgoing

ray direction which intersects the scene at point s1. Each subsequent recursion depth

d along the path P is sampled by selecting a direction from the bidirectional scattering

distribution function (BSDF) at the previous point and tracing until a new surface is hit.

Each of these intermediate points can be connected to an emitter to form a valid path.

In Eq. 1.2, the intermediate point connections are made by temporarily assigning sd

to a point on the light source surface SA. The contribution from this point is the product

of the radiance from sd back to the previous point sd−1, reflectance ρ at that previous

point given the incoming and outgoing ray directions, and a geometric coupling term G

(accounting for visibility and the surface normals at each endpoint of the ray), times the

product of all previous reflectances in the path weighted by the solid angle associated

with each reflection. After including the new contribution from this sub-path in the

running total, a new surface point is selected for sd and the algorithm moves on to the

next iteration, until the desired maximum path depth is reached.
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For clarity, the authors in [114] separate attenuation for all points prior to the most

recent one into a term β, which we will also use in subsequent expressions.

β =
d−2∏
j=1

ρ(sj+1 → sj → sj−1)|cosθj|
pω(sj+1 − sj)

(1.3)

One such path is shown as an example in Figure 1.1. The path shown traverses the

scene to a depth of 5 bounces, starting at the camera center of projection s0. The direction

of the first segment is selected by the raytracer depending on the resolution of the camera

and the pixel subsampling scheme used. Each subsequent bounce direction is determined

depending on the probability distribution function of the surface reflectance model at that

point. The final segment connecting sd−1 to sd is a direct path to the light source. Each

intermediate path point is also connected to the light source as this improves variance in

the estimate of the light transport integral without incurring the computational cost of

an additional full path trace. These subpath connections to the light source are shown as

dotted lines. Attenuation along the path is determined iteratively according to Eq. 1.2,

in a conventional manner.
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s2

Figure 1.1. Forward Model Path: An example raytrace path starting at
the camera origin s0, then traversing d = 5 bounces through the scene, with
the final segment directly connecting to the light source. An additional
valid path can be created at each intersection point by connecting directly
to the light source (shown as dotted lines) to cheaply reduce sampling noise.
In the SL case, the value along this path is set to be the phasor given by
the projection of sd−1 into the projector reference frame, where the column
value is converted into a phase value. In the ToF case, the projector and
camera are co-located, while the path value is set to the phasor with an-
gle corresponding to the phase rotation over the total path length given
a modulation wavelength. In both cases, the magnitude of the phasor is
attenuated by each bounce along the path by the BRDF model used for the
surface.
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Despite the widespread use of this stochastic raytracer, many problems rely on linear

image formation models in matrix form, particularly those involving linear optimization.

An alternative notation for Eq. 1.1 is mentioned in [60], where M is the operator form of

the integral over all surfaces. Then,

I = GIe + GMI(1.4)

Redistributing terms, the recursive I term can be eliminated:

(1−GM)I = GIe(1.5)

Here 1 is the identity operator. Expressing the rendering equation in operator terms

is explored further by Arvo in [8]. Now, if we define an operator T as:

T ≡ (1−GM)−1(1.6)

We can establish a linear relationship between input intensities Ie and output inten-

sities I in a scene.

I = TIe(1.7)
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This linear model now matches the form used in the linear systems approaches listed

in the previous section. If the model is a raytrace operator rather than a matrix, the

functional notation becomes:

I = T(Ie)(1.8)

where the rendering algorithm takes as an argument emissive points in the scene Ie.

Unlike a purely matrix-based representation of light transport, if the forward model is

a raytracer, then higher order parameters can be controlled directly. The light transport

operator can be specified with scene surface geometry S and reflectance parameters R,

subsequently estimating the effects of those parameters as a function of input illumination.

I = TS,R(Ie)(1.9)

These scene descriptors may be further parameterized for ease of use in individual

applications, as in Chapter 2, where the renderer is initialized with an objective lens focal

length and a spatial light modulator phase function, rather than the corresponding surface

shapes and reflectance functions.

Before detailing these individual implementations, what are the circumstances that

would lead us to use a stochastic renderer over a linear light transport representation? In

the following section we will look at the consequences of this choice on problem tractability.
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1.4. Tractability

The linear system in Eq. 1.7, while conceptually simple, can represent considerable

computational complexity when representing camera and display systems with modern

resolutions. For example, if we have a high definition projector-camera pair, each address-

ing 1920x1080 pixels with 3 color channels, the full light transport matrix T mapping the

projector intensities to camera intensities is a square matrix with 6.2 million elements on

a side. If each intensity value is digitized with 8 bits, then this matrix contains nearly 39

terabytes of information.

Now, for many scenes a given projector ray will only affect a local neighborhood

of pixels, meaning that the distribution of energy in the light transport matrix will be

sparse. Say each projector ray scatters to 10% of pixels in the camera on average. Using

compressed sparse row formatting, with 32 bit row and column indices, this light transport

matrix will still be approximately 19 terabytes. Of course, many matrix operations will

require floating point precision — if the 8 bit intensity values are converted to a 32 bit

floating point number, then this same sparse matrix will be approximately 31 terabytes.

Many image formation models can increase in size significantly beyond the above ex-

ample. The focal surface deblurring algorithm in Chapter 2 uses a 13-slice focal stack

optimization target and additive time multiplexing over 4 frames. Sparse representa-

tions of the light transport matrix corresponding to this system require approximately

20 petabytes to store, again in the case of 10% sparsity. This huge amount of informa-

tion would need to be stored in memory to be used and manipulated in an optimization

routine, possibly with multiple auxiliary representations. This exceeds the limits of large

distributed computing systems, let alone the memory available on an embedded system.
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This work explores two scenarios where some, but not all, of the generality of a light

transport representation is needed to solve an inverse problem. The memory footprint

described above is drastically reduced for these applications by using a raytracer that

recreates light transport effects without an explicit light transport representation.

A striking example of the problem size and complexity that can be handled us-

ing rendering-based optimization is the recovery of volumetric scattering parameters by

Gkioulekas et al. [35]. Though the authors use a 100 node cluster to perform inverse ren-

dering, volumetric raytracing is a notoriously expensive computational class. The inverse

rendering algorithms we introduce in each of Chapter 2 and 3 can operate on a single

desktop PC.

Significant gains in efficiency would be required for these techniques to be used in

low-latency, real-time scenarios like autonomous navigation. Nonetheless, a vast range

of applications allow for offline processing, such as metrology, cultural heritage studies,

and the many reality capture techniques for virtual reality, augmented reality, and visual

effects. In these fields, processing times on the order of hours are typical for day-to-day

computational tasks. Using rendering-based optimization to gain higher quality imaging

results on these time scales is already feasible with modest desktop computing power in

some cases. The parallelization of computing power, whether geared toward hardware-

based deep learning or high-volume cloud-based services, will serve to make rendering

algorithms increasingly efficient.

With this motivation for pursuing rendering-based optimization for real-world systems,

we will now examine how a stochastic renderer is incorporated into a gradient descent

framework.



35

1.5. Rendering Based Optimization

The equivalency between a linear light transport model and a stochastic raytracing

model described in section 1.3, coupled with the problem size advantage of raytracing

models over linear models described in 1.4, lead this thesis to address imaging systems

using raytraced-based models.

For example, consider a motion deblurring problem. If we wish to recover a sharp

image intensity vector I but measure blurred intensity vector Î, there is some light trans-

port matrix T which defines the contribution of each sharp image point to each measured

intensity. To recover I, we can calculate the inverse (or pseudoinverse if input and output

dimensions are mismatched) of T:

I = T−1Î(1.10)

But, as the previous section highlighted, the measurement, storage, and inversion of

T may be impractical. If we instead implement a renderer which contains a model of

blur formation, T (I), then we can avoid excessive problem size. Instead, we perform an

operator-based optimization rather than using matrix inversion methods.

This thesis utilizes two approaches. In one case, an adjoint operator T ∗(I) is available,

allowing the use of a conjugate gradient method [109]. Though this optimizer is designed

to solve a linear problem in the form of Eq. 1.7, it does not invert T or even require

direct access to that matrix. Instead, it requires the output of TI and TT I, which the

forward and adjoint renderers provide, in order to solve a QR factorization and arrive at

a solution for I.
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For the problem in Chapter 3, where an adjoint operator is not available, this thesis

employs a finite difference approach. This is similar to the iterative approach taken in

the shape-from-interreflections algorithm [99], a key precursor to the inverse-rendering

optimizations discussed in this thesis. Here, finite difference approximations to partial

derivatives are calculated for each parameter Γ in the optimization as:

∂I

∂Γ
≈ T (I + δΓ)− T (I)

δΓ

(1.11)

where δΓ is a small offset in parameter Γ. These partial derivatives are then used to

update I. The operational flow of this approach is depicted as a block diagram in Figure

1.2. In [78], rendered finite difference approximations to partial derivatives are used to

optimize body pose parameters to match depth camera measurements, using an energy

minimization approach. Scene albedo and reflectance are iteratively recovered in [13]. A

stochastic method is used by [35], while the results in Chapter 3 in this thesis use a batch

method to improve parallelization.
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Figure 1.2. Optimization Block Diagram: A rendering-based forward
model can be used in gradient descent optimization even when an analytical
derivative or adjoint operator are not available for the target parameters.
In these situations, a finite difference approach can be applied, where each
target parameter is offset in the scene and then rerendered to produce a
gradient image with respect to that parameter. The parameter can then be
updated to incrementally minimize the objective function.

Deep neural networks have been proposed for inverse rendering problems including face

geometry and reflectance recovery [62], as well as for time-of-flight depth reconstruction

with multibounce interference ([130], [85]). These approaches are promising for their

generality and processing speed. Like many deep learning techniques, though, they lack

the foundation and interpretability of well-understood light transport models present in

rendering-based optimizers.

Of these techniques, rendering-based optimization is appealing because of the long

history and sophistication of raytrace renderers, the growing availability of parallel com-

puting platforms, and the ease with which raytracers can be incorporated into gradient
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descent algorithms. These qualities point toward a future where this approach is used

more widely.

1.6. Hypothesis

Inverse rendering will play an increasingly important role in computational

camera and display systems.

This thesis tests the hypothesis on two open problems in computational imaging, which

leads to the following thesis statement.

1.7. Thesis Statement

Rendering-based optimization can:

(a) Correct aberrations in a phase modulating near-eye display configura-

tion to produce natural, spatially varying focus cues.

(b) Correct bias due to global light transport in an active 3D scanning

surface recovery algorithm.
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CHAPTER 2

Accomodation-Supporting Near-Eye Displays

2.1. Near-Eye Displays

A modern head-mounted display (HMD), as designed for virtual reality (VR) applica-

tions, is a simple construction placing viewing optics (e.g., a magnifying lens) between the

user’s eye and a display screen. This configuration is replicated for binocular stereo con-

figurations: one set of optics and one display, or portion of a display, is dedicated to each

eye. In this manner, a binocular HMD depicts stereoscopic imagery such that the user

perceives virtual objects with correct retinal disparity, which is the critical stimulus to

vergence (the degree to which the eyes are converged or diverged to fixate a point) [113].

VR viewing optics typically create a virtual, erect, magnified image of the display

screen, located at a fixed focal distance from the user [17]. Thus, current VR HMDs

do not correctly depict retinal blur, which is the critical stimulus to accommodation

(the eyes’ focusing response). The resulting vergence-accommodation conflict (VAC) has

been identified as a source of visual discomfort: viewers report eye strain, blurred vision,

and headaches with prolonged viewing [126]. VAC has also been linked to perceptual

consequences, affecting eye movements and the ability to resolve depth [44].
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Figure 2.1. Near-Eye Display Continuum: Focal surface displays gen-
eralize the concept of manipulating the optical focus of each pixel on an
HMD. Configurations (d,e) augment a fixed-focus HMD (a) with a pro-
grammable phase modulator placed between the eyepiece and display. (b)
Varifocal HMDs use a globally addressed tunable lens. (c) Multifocal dis-
plays may use a high-speed tunable lens and display to create multiple
focal planes. (f) In contrast, certain light field HMD concepts fall at the
other end of this spectrum, using a finely structured phase modulator (a
microlens array) placed near the display. (d) This chapter considers designs
existing between these extremes in which a phase modulator locally adjusts
the focus to follow the virtual geometry, generalizing varifocal and multifo-
cal concepts. (e) Similar to multifocal displays, multiple focal surfaces can
be synthesized with high-speed phase modulators and displays.

A multitude of “accommodation-supporting” HMD architectures have been proposed

to depict correct or near-correct retinal blur, thereby mitigating VAC. As surveyed by

Kramida [68], these architectures are distinguished by the fidelity to which they synthesize

retinal blur. At one end of the spectrum are designs that effectively extend the user’s
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depth of focus (DOF), allowing the virtual image to remain sharp, independent of the

user’s accommodative state. This includes varifocal displays that dynamically adjust the

focus of the HMD, contingent on the detected eye gaze. While addressing blurred vision

induced by VAC, such displays cannot correctly depict retinal blur; instead, blur can only

be synthetically rendered. At the other end of the spectrum are designs that correctly

reproduce the optical wavefront of a physical scene, including holographic displays and, in

certain circumstances, light field displays. As reported by Kramida, such displays are not

yet practical, due to the limited resolution, field of view, and image quality achievable with

today’s hardware. As a result, a third category of accommodation-supporting HMDs is

under active investigation: those that create “near-correct” (approximated) retinal blur.

A visual overview of accommodation-supporting architectures is shown in Figure 2.1.

Approximate blur for multifocal displays has been studied extensively. Multifocal dis-

plays consist of a superposition of multiple virtual images spanning a range of focal depths.

The first multifocal prototype employed three separate display elements per eye, pro-

hibiting head-mounted configurations [6]. As reviewed in Section 2.2.1, multifocal HMDs

increasingly exploit time-multiplexed presentation, wherein a single high-refresh-rate dis-

play and a fast varifocal element sequentially address the image planes [76]. Despite

wide investigation, multifocal displays continue to present numerous practical challenges.

First, as established by MacKenzie et al. [80], focal plane separation must be as close as

0.6 diopters to correctly stimulate accommodation. Thus, five focal planes are required

to span a working range of 3.0 diopters (supporting virtual scenes extending from 33 cm

to optical infinity). In practice, flickering is likely perceived with this many focal planes,
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due to the refresh rates of microdisplays currently used in HMD designs. Second, as in-

vestigated by Narain et al. [96], the lateral spatial resolution of virtual objects presented

between focal planes is restricted, demanding yet more planes to achieve the desired 3D

resolution. Recently, Wu et al. [142] proposed dynamically adapting focal plane sepa-

rations to virtual content, effectively combining the varifocal and multifocal concepts to

reduce the number of required image planes.

This chapter expands on the concept of an adaptive multifocal display, introducing

focal surface displays in which a spatially-addressable phase modulator is inserted into an

otherwise conventional HMD. The phase modulator shapes focal surfaces to conform to

the scene geometry, unlike multifocal displays with fixed, typically planar, focal surfaces.

We produce a set of color images which are each mapped onto a corresponding focal sur-

face using rendering-based optimization. Visual appearance is rendered by tracing rays

from the eye through the optics and accumulating the color values for each focal sur-

face. Our algorithm sequentially solves for first the focal surfaces, given the target depth

map, and then the color images. Focal surfaces are adapted by nonlinear least squares

optimization, minimizing the distance between the nearest depicted surface and the scene

geometry. The color images, paired with each surface, are determined by linear least

squares methods. Using databases of natural and rendered scenes, we demonstrate that

focal surface displays depict more accurate retinal blur, with fewer multiplexed images,

than prior multifocal displays, while maintaining high resolution throughout the user’s

accommodative range. Through focal surface displays, we aim to extend the technological

development path beyond prior varifocal and multifocal concepts, opening a new point in

the design tradespace of accommodation-supporting HMDs.
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2.1.1. Contributions

• We introduce focal surface displays, capable of depicting near-correct focus cues in

head-mounted displays, and assess capabilities relative to prior accommodation-

supporting HMDs, including related multifocal architectures.

• We introduce an optimization framework that decomposes target focal stacks

and depth maps into one or more pairs of focal surfaces and color images. Our

pipelined approach finds focal surfaces through nonlinear least squares optimiza-

tion and color images by linear least squares methods.

• Through a first-order optical analysis, we describe the optimal construction of

focal surface displays, assessing trade-offs between resolution, field of view, and

depth of focus. Furthermore, we identify the benefit of extending the SLM phase

modulation range to enable high-resolution display.

• We implement a binocular focal surface display prototype, employing one LCOS

spatial light modulator and one OLED panel per eye. We assess its experimental

performance in relation to geometric optical simulations.
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2.2. Related Work

Focal surface displays draw on insights spanning accommodation-supporting HMDs,

goal-based caustics, as well as freeform and adaptive optics. Our prototype and devel-

opment of this architecture is largely presented with regard to VR HMDs. However, as

discussed in Section 2.6, there is a clear extension to certain augmented reality (AR)

systems, particularly projector-based configurations. For reviews of existing VR and AR

designs, consult Cakmakci and Rolland [17] and Kress and Starner [69], respectively.

2.2.1. Accommodation-Supporting Displays

An HMD can be evaluated relative to standard criteria, including resolution, field of view

(FOV), and eye box dimensions. Today’s VR HMDs exhibit FOVs around 100 degrees

with resolutions better than 5 cycles per degree (cpd). Emerging designs must ultimately

support such specifications and beyond. Accommodation-supporting HMDs may further

be evaluated in regard to their depth of focus (DOF) and the fidelity to which retinal blur

is reproduced. Many designs require eye tracking, which introduces concerns about reli-

ability that must be weighed against others. Additionally, emerging HMDs increasingly

exploit adaptive optics, particularly tunable lenses (see Figure 2.1). Some schemes may

leverage computational display concepts and can be judged on additional axes, including

image quality (which may be limited due to compression artifacts) and the failure modes

and computational complexity resulting from content-dependent optimization. In this sec-

tion, we review prior accommodation-supporting HMDs relative to these criteria, showing

that focal surface displays expose a new, promising point in the design tradespace.
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2.2.1.1. Monovision Displays

Marran and Schor [87] provide a prior survey of accommodation-supporting HMDs.

One configuration they assess is that of monovision, wherein the virtual image distance

differs between the eyes. This configuration is inspired by a related optometric appli-

cation by which presbyopia is addressed by placing the focus of one eye closer than the

other. Recently, Johnson et al. [58] and Konrad et al. [66] assessed the performance of

monovision HMDs. The former study found viewer comfort and visual performance did

not improve, whereas the latter found some benefit. However, not all viewers prefer or

eventually adapt to monovision, motivating the need for more widely applicable methods.

2.2.1.2. Varifocal Displays

Varifocal HMDs augment a conventional design with two components: an eye tracker

and a variable focusing element. Eye tracking is used in a feedback system to dynamically

set the tunable lens focus to match vergence, thus ensuring VAC is minimized. Shiwa

et al. [127] first demonstrated this concept using actuated lenses on an optical bench.

Sugihara et al. [131] created the first varifocal HMD, wherein the display translated rather

than a lens. Liu et al. [76] and Konrad et al. [66] demonstrated varifocal displays using

electronically tunable lenses. Recently, Dunn et al. [27] and Padmanaban et al. [107]

presented varifocal displays with integrated eye tracking.

Varifocal displays may reduce VAC, but they cannot directly reproduce retinal blur.

Gaze-contingent depth of field (DOF) rendering must be applied. Hillaire et al. [43] and

Mantiuk et al. [83] conclude that DOF blur is preferred with 2D displays. Duchowski et

al. [26] found that visual discomfort was reduced when viewing a stereoscopic display with
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gaze-contingent DOF blur, albeit with a statistically weak dislike for this blurring. Our

interpretation of this result is that it highlights the limitations of rendered blur: latency

and eye-tracking errors may create distracting artifacts, motivating the development of

accommodation-supporting HMDs that support near-correct, rather than rendered, reti-

nal blur. Perceptual studies by Maiello et al. [81] and Zannoli et al. [145] have found

that synthetically rendered blur may not assist depth perception to the same degree as

near-correct retinal blur.

2.2.1.3. Accommodation-Invariant (EDOF) Displays

For HMDs, the analogue of a pinhole camera is a Maxwellian view: a point light

source is focused on the viewer’s pupil, with an amplitude SLM modulating a focused

image on the retina [16]. Von Waldkirch et al. [140] apply this principle to HMDs,

showing a trade-off between DOF and resolution. Due to diffraction, DOF cannot extend

above three diopters without restricting resolution below 30 cpd (i.e., 20/20 vision) [52].

Following Kramida [68], FOV is limited due to restricted eye movement.

Maxwellian-view HMDs exhibit an accommodation-invariant response. In computa-

tional photography, this is known as extended depth of focus (EDOF) [144]. Von Wald-

kirch [139] applied EDOF to HMDs, rapidly varying focus with a tunable lens; however,

deconvolution was not considered and, as a result, image contrast was reduced. More

recently, Huang et al. [50] applied pre-filtering to a multilayer EDOF display, although

contrast remained low. Even if image quality can be improved, accommodation-invariant

HMDs still rely on rendered retinal blur.
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2.2.1.4. Multifocal Displays

To our knowledge, Neil et al. [100] proposed, and demonstrated, the first multifocal

HMD. As they describe, the concept is preceded by decades of research into volumetric

displays [12]. Rolland et al. [120] proposed a closely related architecture, assessing that a

2.0-diopter DOF requires up to 27 planes. Even this may not be sufficient: measurements

by Sprague et al. [128] find an average 40-year-old or younger individual can accommodate

in excess of 4.0 diopters.

MacKenzie et al. [80] show that wider plane separations can correctly drive accom-

modation; however, maintaining high resolution between planes and extending DOF can

only be achieved, currently, with additional adaptive optical elements [142]. Multifo-

cal adaptive optics include ferroelectric liquid crystal (FLC) SLMs [100, 79], tunable

lenses [76, 66, 142], and deformable mirrors (DMs) [47]. Focal surface displays leverage

this trend for increasing electro-optic control, preparing for a future in which spatially-

varying phase modulation is widely available.

Akeley et al. [6] first considered the optimal presentation of imagery across multiple

focal planes, introducing the “linear blending” algorithm. Ravikumar et al. [119] assessed

alternative algorithms, concluding that, of those available at the time, linear blending was

preferred. More recently, Narain et al. [96] introduced “optimized blending” to directly

optimize the through-focus image, enhancing occluding, semi-transparent, and reflective

objects. In this work, we generalize optimized blending to support adaptive focal surfaces.
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2.2.1.5. Retinal Scanning Displays

Rather than using comparatively large screens, retinal scanning displays (RSDs) di-

rectly sweep a point of light across the viewer’s retina [136]. McQuaide et al. [92] modify

RSDs to additionally modulate focus using a deformable mirror (DM). Unlike varifocal

HMDs, focus can be adjusted—in theory—independently per pixel. This concept is a

precursor to focal surface displays; however, to our knowledge, it was never fully real-

ized: deformable mirrors exhibit a modulation rate three orders of magnitude too slow for

per-pixel focus control. Correspondingly, McQuaide et al. only demonstrate simple line

images, albeit over a continuously-varying 3.0-diopter DOF.

Focal surface displays significantly differ from accommodation-supporting RSDs. First,

we provide an optimization framework to tailor focal surfaces that respects the constraints

of current phase SLM technology. Second, our framework allows multiple focal surfaces,

yielding near-correct depictions of occlusions. Third, we leverage work on optimized blend-

ing for multifocal displays to account for limitations of focal surface control. Fourth, we

demonstrate the first fully realized embodiment with a binocular LCOS-based prototype

capable of depicting natural scenes.
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2.2.1.6. Light Field Displays

Volumetric displays inspired multifocal displays. Similarly, near-eye light field displays

originate from the autostereoscopic community. Lanman and Luebke [72] first applied

integral imaging to VR HMDs, with a closely related AR HMD developed by Hua and

Javidi [48]. While depicting near-correct retinal blur, these prototypes exhibit low reso-

lution, albeit while additionally depicting correct parallax across the eye box. Maimone

et al. [82] and Huang et al. [49] introduced computational near-eye light field displays for

AR and VR, respectively, based on amplitude-only SLM stacks (i.e., multilayer LCDs).

Such displays confront practical resolution limits due to diffraction and compression ar-

tifacts. Our multilayer focal surface display does not exhibit a similar limit due to the

comparatively high fill factor and lack of color filters with LCOS panels.

2.2.1.7. Holographic Displays

Decades of research into direct-view holography has laid the groundwork for near-eye

applications [14]. Today’s digital holographic displays synthesize accurate wavefronts,

and therefore correct retinal blur, by controlled illumination of a diffractive element.

Moon et al. [94] describe a recent holographic HMD, showing practical limits on FOV

(less than 20 degrees), eye box dimensions (a few millimeters wide), and image quality

(degraded due to speckle). Focal surface displays, which may incorporate similar phase

modulators, fundamentally differ: incoherent illumination is produced by an emissive

display, with subsequent modulation by a phase-only SLM that produces piecewise smooth

modulations. Furthermore, such displays require minimal modification to existing VR

HMDs.
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2.2.2. Caustics, Freeform Elements, and Adaptive Optics

Focal surface displays also trace their origin to recent progress in computational fabrica-

tion and adaptive optics. In a closely related work, Damberg et al. [22] use a phase-only

SLM to create a freeform adaptive lens for the purpose of high dynamic range (HDR)

projection. Damberg et al. adapt prior research into goal-based caustics, wherein freeform

lenses are fabricated to project images under controlled illumination [110, 143]. Phase-

only SLMs have been similarly adopted by the computational display community, with

Glasner et al. [36] and Levin et al. [74] demonstrating their application to light-sensitive

multiview displays. To our knowledge, focal surface displays are the first application of

phase SLMs to locally adapt the focus of an HMD.
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2.3. Focal Surface Displays
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Figure 2.2. Simplified Optical Diagram and Labels: A focal surface
display is created by placing a phase-modulation element between an eye-
piece and a display screen. This phase element and the eyepiece work in
concert as a spatially programmable compound lens, varying the apparent
virtual image distance across the viewer’s field of view.

A conventional VR HMD contains two primary optical elements: an eyepiece and an

emissive display. This design delivers a single, fixed focal surface. As shown in Figure 2.2,

a focal surface display adds a third element between the eyepiece and the display: a

phase-modifying spatial light modulator (SLM). This SLM acts as a programmable lens

with spatially varying focal length, allowing the virtual image of different display pixels

to be formed at different depths. In this section, we present an optimization framework

that decomposes a scene into one or more focal surfaces, and corresponding color images,

to reproduce retinal blur consistent with natural scenes.

Inspired by related multifocal displays, we generalize our formulation to support mul-

tiple focal surfaces (as achieved by time multiplexing). The inputs to our algorithm are

a depth map, representing the scene geometry, and a focal stack, modeling the varia-

tion of retinal blur with changes in accommodation. Both inputs are rendered from the
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perspective of the viewer’s entrance pupil. The outputs are k phase functions φ1, . . . , φk

and color images c1, . . . , ck, to be presented by the SLM and underlying display, respec-

tively. Ideally, we would jointly optimize the phase functions and color images. Because

this results in a large, nonlinear problem, we introduce approximations that ensure the

algorithm is computationally tractable. First, in Section 2.3.1, we decompose the target

depth map into a set of smooth focal surfaces. Second, in Section 2.3.2, we optimize the

phase functions to approximate these focal surfaces. Finally, in Section 2.3.3, we optimize

the color images to reproduce the target focal stack.

While our formulation allows multiple focal surfaces, a single surface achieves similar

retinal blur fidelity as prior multifocal displays. As with other computational displays,

focal surface displays offer a trade-off between system complexity (the need for time

multiplexing) and image quality (suppression of compression artifacts).

2.3.1. Approximating Depth Maps with Focal Surfaces

Given a target virtual scene, let Ŝ(θx, θy) be the depth (in diopters) along each viewing

angle (θx, θy) ∈ Ωθ, for chief rays passing through the center of the viewer’s pupil and

with Ωθ being the discrete set of retinal image samples. If phase SLMs could render focal

surfaces with arbitrary topology, then no further optimization would be required. As

presented in Section 2.3.2, this is not the case: practically-realizable focal surfaces are re-

quired to be smooth. Correspondingly, we develop the following method for decomposing

a depth map into k smooth focal surfaces S1, . . . , Sk.

For every viewing angle (θx, θy) we desire at least one focal surface Si(θx, θy) to be

close to the target depth map Ŝ(θx, θy). If this occurs, then every scene element can be
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depicted with near-correct retinal blur, as light from the underlying display will appear to

originate from the correct scene depth. (As established by Narain et al. [96], optimized

blending methods still benefit the rendition of occluding, semi-transparent, and reflective

objects.) Given this goal, we formulate the following optimization problem.

(2.1)

min
S1,...,Sk

∑
(θx,θy)∈Ωθ

(
min
i
|Ŝ(θx, θy)− Si(θx, θy)|

)2

s.t.

(
∂2Si
∂x2

)2

+

(
∂2Si
∂x∂y

)2

+

(
∂2Si
∂y2

)2

< ε

As analyzed in Section 2.3.2, synthesizing a focal surface using phase function φ may

introduce some optical aberrations. Observationally, we find aberrations are minimized if

the second derivatives of the focal surface are small. This observation is reflected by the

bound constraints in our optimization problem. Note, however, that no explicit bound

constraints are imposed on the optical powers Si of the focal surfaces. This would appear

to contradict our derivation of the minimum realizable focal length of a given phase SLM

(see Section 2.3.2). Rather than adding these constraints directly, we simply truncate the

target depth map Ŝ to the realizable range.

We apply nonlinear least squares (NLS) to solve Equation 2.1, which has high-quality

implementations and scales to large problem sizes [4]. Note that our objective involves

the nonlinear residual gθx,θy(S) := mini |Ŝ(θx, θy)− Si(θx, θy)| for each pixel (θx, θy). This

residual is not differentiable, which is a problem for NLS. However, a close approximation

is obtained by replacing the min with a “soft minimum” (soft-min), with the following
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definition [19]:

(2.2) g̃θx,θy(S) = −t log
∑
i

e−|Ŝ(θx,θy)−Si(θx,θy)|/t

where t is a conditioning parameter to be tuned for a given application. Note that g̃

is continuously differentiable and closely approximates g as t → 0, with |g̃(θx, θy) −

g(θx, θy)| ≤ t log k.1

Applying Equation 2.2 to Equation 2.1, and re-expressing bound constraints as soft

constraints, yields the following NLS problem:

(2.3) min
S1,...,Sk

∑
(θx,θy)

(g̃θx,θy(S))2 + γ
∑

i,(θx,θy)

‖∂2Si(θx, θy)‖2

where ∂2Si(θx, θy) is the vector of second partial derivatives of Si at (θx, θy) and γ is a

weighting parameter. See Figures 2.3 and 2.4 for examples of applying this focal sur-

face decomposition algorithm. As shown, locally adapted smooth focal surfaces offer an

efficient representation of natural and artificially rendered depth maps.

1Note that when computing a soft-min, for numerical stability it is important to use the method described
by Cook [19], wherein the minimum value is subtracted before evaluating the exponential functions.
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Figure 2.3. A Toy Scene Illustration: A focal surface decomposition
for a simple scene, containing: a background fronto-parallel plane at 1.0
diopters, a foreground fronto-parallel plane at 4.0 diopters, and a slanted
plane spanning 2.0 to 4.0 diopters. (a) A single image from the target focal
stack and target depth map. (b) A two-surface decomposition is compared
to the target depth map for a profile taken along the middle row of the
target imagery. (c) The color images associated with each focal surface
are shown, using the linear blending method of Akeley et al. [6]. (d) The
color images associated with each focal surface, using the rendering-based
optimized blending algorithm presented in Section 2.3.3.
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(a) Fixed Focus

(b) Four Fixed Planes

(c) Four Adaptive Planes

(d) Three Focal Surfaces

(e) Two Focal Surfaces

Figure 2.4. Depth Error Assessment: Focal surface displays achieve
lower depth map approximation errors, using less time multiplexing, than
prior multifocal methods. The left column depicts depth decompositions
ranging from 0.0 to 5.0 diopters, abbreviated “D”. The right column depicts
the resulting depth map approximation errors in diopters. For a fixed focus
design, the virtual image is positioned at 0.5 D. Following Narain et al. [96],
the fixed multifocal display employs four planes evenly spaced from 0.2 D
to 2.0 D. The adaptive multifocal display and the focal surface display
are optimized using k-means clustering, following Wu et al. [142], and the
methods in Sections 2.3.1 and 2.3.2 to position planes across a 5.0 D span,
respectively. Focal surface displays show significantly fewer depth errors,
with errors decreasing as more surfaces are used. (Source imagery courtesy
Unity Asset Store publisher “VenCreations.”)
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2.3.2. Synthesizing Focal Surfaces with Phase SLMs

Provided a set of focal surfaces Si, the next stage in our pipeline requires solving for a set

of phase functions φi to practically achieve them. To solve this problem, we first review

the optical properties of phase SLMs and then present our phase optimization procedure.

2.3.2.1. Optical Properties of Phase SLMs

Variations in optical path length through a lens cause refraction. Similarly, differences

in phase modulation across an SLM result in diffraction. Simulation of light propagation

through a high-resolution SLM via wave optics modeling is currently computationally in-

feasible, but one can approximate these diffractive effects using geometric optics, similar

to Glasner et al. [36] and Damberg et al. [22]. (Laude [73] provides additional details

regarding the operation of phase SLMs.) We denote SLM locations by (px, py), with Ωp be-

ing the discrete set of SLM pixel centers. Optical rays intersecting an SLM are redirected

depending on the phase φ. For small angles (i.e., under the paraxial approximation), the

deflection is proportional to the gradient of φ (see [138], Equation 6.1). If an incident ray

has direction vector (x, y, 1) and intersects the SLM at (px, py), then the outgoing ray has

direction vector

(2.4)

(
x+

λ

2π

∂φ

∂x
(px, py), y +

λ

2π

∂φ

∂y
(px, py), 1

)

where λ is the illumination wavelength. Thus, if φ is a linear function, then the SLM

operates as a prism, adding a constant offset to the direction of every ray. (Note that

we assume monochromatic illumination in this derivation, with practical considerations

for broadband illumination sources presented later in Section 2.6.) An SLM may also act
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as a thin lens (see [138], Equation 6.8) by presenting a quadratically-varying phase as

follows.

(2.5) φ(px, py) = − π

λf
(p2
x + p2

y)

Note that these optical properties are local. The deflection of a single ray only depends

on the first-order Taylor series of the phase (i.e., the phase gradient) around the point

of intersection with the SLM. Similarly, the change in focus of an ε-sized bundle of rays

intersecting the SLM only depends on the second-order Taylor series. Specifically, if the

Hessian of φ at a point (px, py) is given by

(2.6) Hφ(px, py) = −2π

λf
1

where 1 is the 2×2 identity matrix, then the ε-sized neighborhood around (px, py) functions

as a lens of focal length f (i.e., Equation 2.6 is the Hessian of Equation 2.5).

To this point, we have allowed the phase to be any real-valued function. In practice,

an SLM will have a bounded range, typically from [0, 2π]. Phases outside this range

are “wrapped”, modulo 2π. In addition, achievable phase functions are restricted by the

Nyquist limit. The phase can change by no more 2π over a distance of 2δp, where δp is the

SLM pixel pitch. Following Voelz [138], these factors bound the minimum focal length f

such that |f |≥2rpδp
λ

, where rp is the radius of the SLM (taken diagonally).
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2.3.2.2. Adapting Focal Surfaces with Phase SLMs

With this paraxial model of an SLM, we can determine a phase function φ to best

realize a given target focal surface d. First, we must determine how the SLM focal length

fp (synthesized via Equation 2.5) affects a focal surface distance zv. As indicated in

Figure 2.2, the SLM acts within a focal surface display that is parameterized by the

eyepiece distance (z=0), the SLM distance zp, and the display distance zd. Ignoring

the eyepiece, the SLM produces an intermediate image of the display at distance zv′ .

This intermediate image is transformed to a virtual image of the display, located at zv,

depending on the eyepiece focal length fe. These relations are compactly summarized by

application of the thin lens equation (see [138], Equation 7.1):

(2.7)
1

fp
=

1

zv′ − zp
+

1

zd − zp
and

1

fe
=

1

zv
− 1

zv′

By casting viewing ray (θx, θy) from the viewer’s pupil to the SLM, and then by

applying Equation 2.7, a target focal length fp can be assigned for each SLM pixel (px, py)

to create a virtual image at the desired focal surface depth. To realize this focal length,

Equation 2.6 requires a phase function φ with the Hessian

(2.8) Hφ(px, py) = − 2π

λf(px, py)
1

There may be no φ that exactly satisfies this expression. In fact, such a φ only exists

when f is constant and φ is quadratic (i.e., the phase represents a uniform lens).
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Since Equation 2.8 cannot be exactly satisfied, we solve the following linear least

squares problem to obtain a phase function φ that is as close as possible:

(2.9) min
φ

∑
(px,py)∈Ωp

‖Ĥ[φ](px, py)−
−2π

λf(px, py)
1‖2

F

where ‖ · ‖2
F is the Frobenius norm and where Ĥ[ · ] is the discrete Hessian operator, given

by finite differences of φ. Note that the phase function φ plus any linear function a+bx+cy

has the same Hessian H, so we additionally constrain φ(0, 0) = 0 and ∇φ(0, 0) = 0.

2.3.2.3. Representing Natural Scenes

Applying focal surface displays requires answering a key question: can natural scenes

be well-approximated by smooth focal surfaces Si, and if so, how many surfaces are re-

quired to accurately reproduce retinal blur? Following Wu et al. [142], we first consider

the Middlebury 2014 dataset from Scharstein et al. [122], containing 33 depth maps

from real-world environments. In Figure 2.5, we compare our depth approximation error

with prior fixed and adaptive multifocal displays. A single focal surface, as produced by

our method, more closely follows scene geometry than prior fixed-focus multifocal displays

(with four planes) and adaptive multifocal displays (with three planes). In practice, two

focal surfaces appear to be an effective representation, allowing occlusions, transparen-

cies, and reflections to be captured, so long as two dominant surfaces are visible in each

viewing direction. In this manner, our focal surface display technique significantly reduces

the number of required surfaces and contributes to the practicality of time-multiplexed

multifocal displays.
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Relying solely on the Middlebury dataset could provide a misleading conclusion, as

the depths in that collection only span an average range of 1.0 diopters. As a result,

we created our own synthetically rendered database to span a range of 4.0 diopters, on

average. Resulting depth approximation errors are shown in Figure 2.6. Note that focal

surface displays continue to outperform prior multifocal displays.
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Figure 2.5. Depth Error Assessment, Middlebury Dataset: Focal
surface displays represent natural scene depths with few image components.
Box plots compare the depth map errors gθx,θy(d) using the denoted meth-
ods with the Middlebury 2014 dataset [122]. The bottom and top of the
whiskers indicate the 5th and 95th percentiles, respectively. The bottom,
middle, and top of the boxes represent the 1stquartile, the median, and the
3rd quartile, respectively. Focal surface displays produce fewer depth errors,
especially when fewer planes are used.
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Figure 2.6. Depth Error Assessment, Unity Dataset: We repeat the
assessment of Figure 2.5, but with the database of rendered scenes described
in Section 2.3.2. Note that the trends are repeated, but due to the larger
depth ranges in this database, additional virtual image surfaces are required
with prior fixed and adaptive multifocal displays.

2.3.2.4. Focusing Errors Limit Visual Acuity

Reducing the number of planes, as with prior multifocal displays, is often achieved

by increasing their separation. As noted by Narain et al. [96], this comes at the cost

of reducing the maximum-supported resolution (measured in cycles per degree). For

example, Narain et al. estimate that contrast falls below 50% for 11 cpd spatial frequencies

or higher, with a plane separation of 0.6 diopters. For context, that would imply that a

conventional fixed-focus multifocal display could not achieve resolutions, throughout the

supported accommodation range, exceeding more than twice that of modern VR HMDs.

Based on the statistics in Figure 2.5 and 2.6, both multifocal and focal surface displays

should achieve focusing errors less than 0.12 diopters, if operated over an appropriate

accommodation range with a sufficient number of components. Following Kotulak and

Schor [67], with this fidelity of focus, such systems should drive accommodation correctly.
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In this circumstance, focusing errors can be directly translated to a spatial frequency

(resolution) limit via the modulation transfer function (MTF) of the human eye. Narain

et al. apply a similar analysis to assess contrast limits. In the technique described in this

chapter, we apply the 35% through-focus MTF of the human eye, as estimated by Villegas

et al. [137], to convert focusing errors to spatial frequency limits in Figures 2.5 and 2.6.

Note that, with focal surface displays, a significantly higher resolution limit is predicted,

opening a path to high-resolution HMDs, unlike prior multifocal displays.

2.3.2.5. Additional Metrics for Focal Surface Optimization

The paraxial approximation was applied to the phase optimization in Equation 2.9.

However, a different criterion could be employed: find the phase φ minimizing the distance

between the minimum-spot-size measured focus and the true depth d, summed over all

angles Ωθ. This metric accounts for higher-order aberrations (as it is inspired by similar

analysis performed by optical design software), although it does not account for scene

content (one may not care what the focus is in regions of uniform color). This metric

requires evaluating the forward rendering operator from Section 2.3.3 and, as a result,

would again produce a large nonlinear optimization problem — motivating our adoption

of the paraxial model that, in practice, produces accurate focal surfaces. Efficiently

leveraging the minimum-spot-size metric is a promising path for future work.
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2.3.3. Optimized Blending with Focal Surfaces

Having determined k phase functions φi, corresponding to focal surfaces Si, the last stage

in our pipeline determines color images Ii, shown on the underlying display, to reproduce

the target focal stack. This focal stack is represented by a set of l retinal images Îr1, . . . , Îl.

For this purpose, we generalize the optimized blending algorithm of Narain et al. [96]. In

this section, we first describe a ray-traced model of retinal blur. Afterward, this model

is applied to evaluate the forward and adjoint operators required to solve the linear least

squares problem representing optimized blending.

2.3.3.1. Modeling Retinal Blur with Ray Tracing

An optical ray is traced through our system under a geometric optics model. Following

Figure 2.2, each ray originates at a point within the viewer’s pupil. The ray then passes

through the front and back of the eyepiece, the SLM, and then impinges on the display. At

the eyepiece surfaces, rays are refracted using the radius of curvature of the lens, its optical

index, and the paraxial approximation. Equation 2.4 models light transport through the

SLM. Each ray is assigned the color interpolated at its coordinate of intersection with

the display. We denote locations on the display by (qx, qy) and the set of display pixel

centers by Ωq. Note that any rays that miss the bounds of the eyepiece, SLM, or display

are culled (i.e., are assigned a black color).

To model retinal blur, we accumulate rays that span the viewer’s pupil, which we

sample using a Poisson distribution. In this manner, we approximate the viewer’s eye as

an ideal lens focused at a depth z which changes depending on the viewer’s accommodative

state. For each chief ray (θx, θy) and depth z, we sum across a bundle of rays Rθx,θy ,z from
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the Poisson-sampled pupil. This produces an estimate of the retinal blur when focused

at a depth z. We define these preceding steps as the forward operator Tz,φ(I), which

accepts a phase function φ and color image I and predicts the perceived retinal image

when focused at a distance z.

2.3.3.2. Depicting Focal Stacks with Optimized Blending

For a fixed phase function φ and accommodation depth z, the forward operator Tz,φ(I)

is linear in the color image I. The rendering operators Tz,φi(Ii) combine additively, so

our combined forward operator, representing viewing of multiple-component focal surface

displays, is Tz(I1, . . . , Ik) =
∑

i Tz,φi(Ii). We can concatenate the forward renders for

multiple accommodation depths z1, . . . , zl to estimate the reconstructed focal stack, with

corresponding linear operator T = [Tz1 ; . . . ; Tzl ]. The forward operator, for a given set of

color images c, gives the focal stack r that would be produced on the retina — minimizing

‖T(I) − Î‖2 gives the color image best approximating the desired focal stack. We have

already given an efficient algorithm for computing Tz,φ. Its transpose, mapping retinal

image samples to display pixels, can be similarly evaluated with raytracing operations

with accumulation in the color image I rather than the retinal image Î. In conclusion,

these forward and adjoint operators are applied with an iterative least squares solver.

(For implementation details, see Section 2.5.2.) Results of our full optimization pipeline

are shown in Figure 2.7.
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(a) Fixed Focus - QMOS = 62.2

(b) Four Fixed Planes - QMOS = 75.4

(c) Four Adaptive Planes - QMOS = 75.2

(d) Three Focal Surfaces - QMOS = 75.6

(e) Two Focal Surfaces - QMOS = 75.4

Figure 2.7. Perceptual Assessment: Focal surface displays depict near-
correct retinal blur with fewer virtual image surfaces than prior multifocal
architectures. Following Figures 2.4–2.6, focal surface displays produce vir-
tual images that more closely align with the scene geometry. As a result,
sharply focused imagery can be obtained throughout the scene, reducing
focusing errors occurring with prior fixed and adaptive multifocal displays.
In this figure, we quantitatively assess the focal stack reproduction error
following the method of Narain et al. [96]: the right column depicts the
maximum per-pixel probability of detecting a difference between the target
and reconstructed focal stacks, as quantified using the HDR-VDP-2 met-
ric [84]. The corresponding quality predictor of the mean opinion score
(MOS) is listed along the bottom. Note that focal surface displays achieve
similar fidelity as prior adaptive multifocal displays, although with fewer
virtual image surfaces. (Source imagery courtesy Unity Asset Store pub-
lisher “VenCreations.”)
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2.4. Designing Focal Surface Displays

In designing standard VR HMDs, there is a direct trade-off between field of view

and resolution, which is largely determined by the placement of the display, the size

and resolution of this display, and by the focal length of the eyepiece. For focal surface

displays, there is a similar trade-off between the position of the SLM and the depth of

focus (i.e., the supported accommodation range). In this section, we evaluate these trade-

offs in terms of three metrics: field of view, depth of focus (DOF), and the degree of

optical aberrations.

The field of view of a focal surface display is limited by the smallest of the display,

the SLM, or the eyepiece (as appearing to the viewer). Wide eyepieces and displays are

commonly available, so SLM dimensions currently limit the FOV. Ignoring variation with

eye relief, the FOV is given by the angle subtended by the magnified SLM, or 2 arctan rp
zp

,

where rp and zp are the SLM radius and distance from the eyepiece, respectively. Thus,

FOV is maximized by moving the SLM closer to the eyepiece.

Following Section 2.3.2, the SLM focal length is bounded such that |fp| ≥ 2rpδp
λ

.

Substituting this range into Equation 2.7 gives a nonlinear expression mapping SLM

focal length fp and position zp to the virtual image depth, and as such, bounds the

depth of focus. The resulting trade-off between DOF and the system design parameters

is illustrated in Figure 2.8: depth of focus for a given lens position is the difference in

contour values between the red constraints. From this analysis, we conclude that DOF

increases as we move the SLM closer to the eyepiece.
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Figure 2.8. Design Trade Space: The accommodation range of a focal
surface display depends critically on the SLM placement. Here we denote,
via the labeled plot contours, the virtual image distance zv achieved with
an SLM, when used to represent a lens of focal length fp and positioned a
distance zp from the eyepiece. Red lines indicate focal lengths beyond the
dynamic range of the SLM. Note that these numbers correspond with the
prototype described in Section 2.5.1.

Our final design metric is to minimize optical aberrations. As presented in Sec-

tion 2.3.2, our method for generating phase functions optimizes phase curvature within

small neighborhoods (since it is based on the discrete Hessian operator, which we eval-

uate using a 3×3 window). To estimate focus at angle (θx, θy) using our more accurate

minimum-spot-size metric, we cast all rays in the bundle Rθx,θy ,z leaving the pupil. These

rays intersect the SLM in a connected region P (i.e., the “circle of confusion”). The

extent to which the rays intersect at a single point on the display depends on how close

to quadratic the phase function is throughout all of P , not just the Hessian at a single

point. It is easier to achieve this condition if the circle of confusion (i.e., P ) is small,

because the second-order Taylor series (i.e., the Hessian) is a better approximation in a
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small neighborhood. The size of P is linearly proportional to the distance between the

SLM and the display. We conclude that, for aberration control, we desire the SLM to be

as close to the display as possible.

In summary, minimizing aberrations encourages moving the display in the opposite

direction as required to increase DOF and FOV. As with all optical systems, the designer

must balance between these trade-offs. For our prototype, we positioned the SLM as close

to the display as possible, while supporting accommodation from 0.0 to 4.0 diopters. In

practice, the hardware constrains the SLM position due to the volume occupied by the

beamsplitter. Similarly, selecting from catalog lenses and SLMs limits the focal length,

the SLM pixel pitch, and the SLM dimensions. Thus, only certain points in this design

tradespace were readily accessible. However, the DOF of our prototype remains compa-

rable to prior accommodation-supporting display prototypes.
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2.5. Implementation and Results

A prototype is necessary to demonstrate the fundamental concepts presented in the

preceding sections, as well as to identify practical limitations encountered with current-

generation phase modulation hardware. In this section, we describe our hardware and

software choices, and we evaluate the resulting experimental performance.

2.5.1. Hardware

Our prototype largely uses off-the-shelf optical and mechanical components, augmented

with a handful of 3D-printed parts. The optical path begins, as shown in Figure 2.9b,

with an eMagin WUXGA 1920×1200 60 Hz color OLED display, addressed via an MRA

Digital HDMI driver board. The OLED is covered with an Edmund Optics 88-087 left-

handed circular polarizer to suppress stray light reflections. Illumination from the display

next encounters a Thorlabs 50:50 non-polarizing beamsplitter. The light reflected by the

beamsplitter immediately impinges on a “beam dump” (i.e, a felt-covered, light-absorbing

surface). Note that an eye tracking camera could be fitted to this side of the beamsplitter,

as it allows imaging of viewer’s pupil in a manner that bypasses the phase modulator.

The transmitted path through the beamsplitter contains the phase modulator, a Jasper

Display JD5552 1920×1080 60 Hz reflective LCOS SLM, addressed via the driver board

supplied in the Jasper Display JD9554 Educational Kit. To operate this SLM in a phase-

modulation mode, a Thorlabs LPVISE100-A polarizer is affixed in front of the SLM.

The phase-modulated illumination propagates back through the beamsplitter, with the

reflected path passing through a Thorlabs 75 mm lens (the eyepiece) and on to the viewer.

The transmitted path returns towards the OLED, with the previously introduced circular
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polarizer acting as an optical isolator and suppressing the return reflection. This entire

assembly was duplicated, in a mirrored fashion, to enable binocular viewing, with each

side mounted to a translation stage to adjust the interaxial distance (IAD) and with

an optical breadboard supporting the LCOS drivers. A photograph of the assembled

prototype is shown in Figure 2.9a.

Given the design considerations and the practical SLM limitations presented in Sec-

tions 2.4 and 2.6, respectively, the prototype has a measured DOF spanning 0.75−4.0

diopters (slightly less than the design specifications), assuming an eye relief of 10 mm.

The field of view, limited by the size of the SLM, is 18◦ diagonally.

The HDMI inputs for the OLEDs and SLMs are connected to a host computer con-

taining a pair of NVIDIA GTX Titan X (Maxwell) graphics cards with a 3.4 GHz Intel

Core i7-3770 processor and 16 GB RAM. This computer was also used to run the focal

surface decomposition, blending, and other rendering algorithms.
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(a) Construction of the Prototype

SLM
Jasper Display
JD5552 LCOS

Polarizer
Thorlabs

LPVISE100-A

Beamsplitter
Thorlabs

BS013

Display
eMagin 
WUXGA OLED

Eyepiece
Thorlabs 
AC254-075-A
75mm Doublet

Polarizer
Edmund Optics
88-087 (Circular)

(b) Arrangement of the Optical Components

Figure 2.9. Hardware Prototype: Our binocular focal surface display
prototype incorporates commodity optical and mechanical components, as
well as 3D-printed support brackets. (a) The prototype is mounted to an
optical breadboard to support the comparatively large LCOS driver elec-
tronics. (b) A cutaway of of the prototype exposes the arrangement of the
optical components.
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2.5.2. Software

The forward rendering model from Section 2.3.3 was implemented using NVIDIA OptiX.

Our scene database was rendered using Unity 5.5, assuming an ideal circular pupil. Focal

stacks were evaluated offline with an accumulation buffer.

Focal surface decomposition is optimized using a cost function following Section 2.3.2,

as implemented in C/C++ with Ceres Solver [4]. The LBFGS algorithm [103] was

selected for iterative gradient descent. Depth map decompositions were evaluated on

192×108 downsampled images, with an average run time of 2.4 seconds (for three image

components). Phase function optimization at the native SLM resolution took about 46

seconds per focal surface. Our optimized blending algorithm, again with three planes,

took an average of 42 minutes (with 30 iterations), comparable to the run time reported

by Narain et al. [96]. In contrast, linear blending required 17 seconds.

2.5.2.1. Calibration

Operation of a focal surface display requires understanding the alignment of optical

components. Errors in assembly manifest as displacements in the focal surfaces, requir-

ing calibration. For this purpose, we first employ a calibrated varifocal camera, using a

Varioptic Caspian C-C-39N0-250-R33 tunable lens. With this camera, we measure the

location of the rendered focal surfaces and, thereby, refine our estimates of the system

parameters. Second, we position the camera so that it is located at the rendered cen-

ter of projection. Third, we measure and correct transverse chromatic aberration using

controlled illumination patterns.
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2.5.3. Experimental Results

Experimental results are reported in Figures 2.10 and 2.11. In these examples, we apply

time-multiplexed presentation with three focal surfaces, similar to prior simulations. We

emphasize that color fields were displayed simultaneously in all cases (see Section 2.6 for

details).

Mid (2 D)Near (4 D) Phase Function Color ImageFar (0 D)

Figure 2.10. Experimental Results, Optimized Blending: Our proto-
type focal surface display achieves high resolution with near-correct retinal
blur. Photographs of the prototype are shown in the first three columns,
as taken by focusing the camera at the indicated distances. The last
two columns depict the corresponding optimization outputs, including the
phase functions and the color images. Note that optimized blending is ap-
plied with three time-multiplexed focal surfaces. The phase functions are
wrapped assuming a wavelength of 532 nm. (Source imagery courtesy Unity
Asset Store publisher “VenCreations”.)

Mid (2 D)Near (4 D) Far (0 D)

Figure 2.11. Experimental Results, Linear Blending: Experimental
results using linear blending over three time-multiplexed focal surfaces, fol-
lowing Akeley et al. [6]. (Source imagery courtesy of Thomas Guillon.)
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Our prototype addresses a key question: does diffraction degrade image quality to

an extent prohibiting practical applications? To this end, we measured the modulation

transfer function (MTF). Following Figure 2.12, MTF was assessed by displaying a series

of sinusoids at a given focal distance, focusing a varifocal camera to that distance, and

measuring the average contrast over the FOV. As predicted in prior sections, focal surface

displays support high-resolution imagery. Specifically, our prototype achieves a resolution

better than 5 cycles per degree throughout the accommodation range. As a result, our

prototype is on par with modern VR HMDs, and considerably better in the center of its

depth of focus.

Higher resolutions (exceeding 20 cpd) are possible when the SLM is used with longer

focal lengths, as occurring for system focus near 3.0 diopters. In our prototype, the SLM

creates shorter focal lengths as the focus approaches 1.0 and 4.0 diopters, resulting in re-

duced contrast (see Figure 2.12). The SLM may also exhibit chromatic aberration, further

reducing contrast. Critically, diffraction-related issues often prohibit layered displays from

achieving high resolutions. Focal surface displays are not similarly hindered. However,

practical SLMs support finite, discrete phase modulation, typically limited to a range of

2π. Large phase gradients, as occurring with short focal lengths, produce quantization ar-

tifacts and frequent phase resets, resulting in unwanted energy in higher-order diffraction

modes and stray light [73]. These effects reduce contrast, as shown in Figures 2.10 and

2.11. Thus, we observe a key direction for future work: extending the phase modulation

range beyond 2π to allow higher resolutions and sharper variations in focal surfaces.
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2.6. Discussion

Focal surface displays have been shown to achieve high-fidelity depictions of natural

scenes. We now turn our attention to discussing the current and future practicality of this

concept. As with any computational display, one must jointly consider issues regarding

optical hardware, display technology, and optimization algorithms.

2.6.0.1. Supporting Multiple Focal Surfaces

The primary motivation for pursuing focal surface displays over simpler multifocal

designs is to reduce the number of multiplexed images. Llull et al. [77] apply a 400 Hz

tunable lens to achieve a 60 Hz multifocal display. We use a 60 Hz SLM, but this is

not a fundamental limitation: Jasper Display JD4552 and HOLOEYE LETO support

720 Hz and 180 Hz, respectively. In terms of image quality, single focal surfaces arguably

perform competitively. However, we strive to depict near-correct retinal blur, particularly

at occlusions. As such, designs with two focal surfaces appear a viable and practically-

realizable first step toward accommodation-supporting HMDs.

2.6.0.2. Resolving Phase Modulation Issues

Our use of phase SLMs is related to earlier work on dynamic freeform lensing. As

previously assessed by Damberg et al. [22], using LCOS panels in imaging systems presents

two primary concerns: stray light and chromatic aberration. We discuss each in turn.

As discussed in Section 2.5.3, stray light may result from inefficiencies of the phase

SLM. However, LCOS phase SLMs are routinely applied with adaptive optics, including

for retinal imaging and aberration correction. As such, LCOS panels have already bene-

fited from extended research into suppressing stray light. A full assessment of these effects
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is beyond the scope of this work. However, our MTF measurements2 in Figure 2.12, as

well as the experimental results, support that high-resolution imagery can be created.

Following Equation 2.5, the effective SLM focal length is wavelength dependent. As a

result, the LCOS panel may introduce transverse and axial chromatic aberrations. While

the former can be digitally corrected by warping displayed images, the latter cannot and

manifests as focusing artifacts. The conventional solution is field-sequential color pre-

sentation. However, our goal is to reduce time multiplexing, and as a result, we aim

for field-simultaneous color presentation. We emphasize that Laude [73], Márquez et

al. [86], and Fernandez et al. [28] each report the successful operation of phase-only

SLMs as focusing elements using polychromatic and broadband illumination. As summa-

rized in Figure 2.12, we measure an average axial chromatic aberration (ACA)3 of less

than 0.25 diopters over the supported accommodation range. Simulations depicted in

Figure 2.13 indicate modest benefits, in terms of minimizing color fringing, by employing

field-sequential color (i.e., by using separately optimized phase functions for each color

channel). Note that ACA is predicted with the geometric optics simulations, due to the

dispersion introduced by Equation 2.4.

2The SLM optical power was optimized, following Equation 2.5, for λ = 532 nm.
3ACA is reported as the apparent optical distance in diopters, measured relative to the green channel.
Focal distances are measured using a varifocal camera and a depth-from-focus metric (i.e., maximizing
contrast for a high-frequency pattern).
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Figure 2.12. System Resolution and Chromatic Aberration: a) The
measured modulation transfer function (MTF) of our prototype as the sys-
tem varies focus from 0.0 to 4.0 diopters. Increasing contrast loss is ex-
pected away from the prototype’s neutral focus of 3.0 diopter as the SLM
synthesizes shorter focal lengths, due to the increased stray light from phase
quantization and phase resets. b) The measured axial chromatic aberration
(ACA) of our prototype is less than that of the typical human eye [29],
confirming that focal cues are correctly rendered with field-simultaneous
color presentation, in spite of polychromatic illumination.
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(a) Target Focal Stack Image

(b) Field-simultaneous Color (Simulation)

(c) Field-sequential Color (Simulation)

(d) Field-simultaneous Color (Experiment)

(e) Field-sequential Color (Experiment)

Figure 2.13. Field-sequential and Simultaneous Color: Field-
simultaneous color display minimizes time multiplexing. However, artifacts
due to axial chromatic aberration (ACA) may appear in this case. (a) A tar-
get focal stack image. (b,c) Simulations comparing field-simultaneous and
field-sequential modes, using the geometric optics model from Section 2.3.
(d,e) Corresponding experimental results. The contrast of experimental
results differs from simulations due to stray light and misalignments that
cannot be predicted without more accurate wave optics modeling and cali-
bration, respectively. (Source imagery courtesy Ruggero Corridori.)
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Our simulations apply the geometric optics model from Section 2.3, which does not

predict all experimental artifacts. First, we do not model wave optics effects, including

stray light due to phase quantization and phase resets. As a result, the experimentally

measured contrast loss, as reported in Figure 2.12, is not reproduced in the simulations.

Second, the ACA of the physical SLM differs slightly from our model. Third, the cal-

ibration procedure in Section 2.5.2.1 does not account for vignetting and all sources of

misalignment, introducing multifocal blending artifacts near the periphery.

While experimental results do not yet attain the quality of our geometric optics model,

field-simultaneous color and mitigation of stray light appear realizable with practical

SLMs, particularly by applying phase modulation exceeding the 2π range of our proto-

type, as described by Fernandez et al. [28]. We emphasize that all our experimental

results, except for those in Figure 2.13, were captured while displaying all color fields

simultaneously.

2.6.0.3. Optimizing Algorithm Performance

The algorithms that drive our prototype are not yet suitable for interactive content.

A promising direction for future work is to explore efficient depth decomposition and

optimized blending frameworks. In terms of the latter, the optimized blending algorithm

of Narain et al. [96] poses a more significant hurdle, with reported minute-long run times.

However, linear blending could be adopted to approach real-time refresh rates, albeit with

diminished retinal blur fidelity.
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2.6.0.4. Enabling Practical Applications

Here we turn our attention first to practical VR applications, and then to AR. Our

prototype is not yet wearable, due to the large LCOS drivers. This is not a fundamen-

tal limitation, as attested by commercial pico projectors. However, VR applications do

confront a current roadblock: LCOS panels are smaller than modern VR optics. As such,

the field of view remains limited. Increasing the FOV requires three changes: using a

shorter focal length eyepiece, eliminating the beamsplitter and replacing the reflective

LCOS with a transmissive one, and reducing the overall optical stack height. Even if

these measures were taken, a larger SLM would be required. Practical VR applications

will require custom SLMs. However, we emphasize that most accommodation-supporting

HMDs are similarly technologically limited to narrow FOVs.

Focal surface displays currently appear to be a forward-looking architecture requiring

further maturation of SLM technology. While our prototype modifies a conventional VR

architecture, largely due to the accessibility of catalog eyepieces, we believe focal surface

displays can be equally applied to AR devices (e.g., those that substitute a projector and

a combiner for the display and eyepiece). This configuration is a natural direction for

focal surface displays: larger SLMs (our primary limitation) would not be required, as

existing models would easily fit into a miniature projector. As such, focal surface displays

continue the legacy of retinal scanning displays, providing a viable path to address refresh

rate and multivalued depth limitations encountered by McQuaide et al. [92].
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2.6.1. Future Work

Immediate extensions to this work include upgrading to wave optics modeling, general-

izing to non-smooth focal surfaces, and exploring alternative depth map decompositions

(e.g., those that penalize all focal surfaces, rather than just the closest.) However, the

future work for focal surface displays largely overlaps with that required for all multifocal

displays. As presented in Section 2.3, focal surface displays are a form of fixed-viewpoint

volumetric display: rendering, optimization, and viewing are all assumed to occur relative

to the viewer’s entrance pupil. It is worth noting that Maxwellian view, retinal scanning,

and other extended depth of focus concepts also share this assumption. A promising di-

rection is to determine whether, through hardware or algorithms, eye movement can be

supported. With eye tracking, focal surface displays may be driven in a gaze-contingent

manner, similar to varifocal concepts. There is also an opportunity to leverage concepts

from near-eye light field displays, rendering imagery to support limited eye movement.

In this manner, we believe the challenges and research directions for all accommodation-

supporting displays are closely tied.



83

2.7. Conclusion

Focal surface displays continue down the path set by varifocal and multifocal concepts,

further customizing virtual images to scene content. We have demonstrated that emerging

phase-modulation SLMs are well-prepared to realize this concept, having benefited from

decades of research into closely-related adaptive imaging applications. We have demon-

strated high-resolution focal stack reproductions with a proof-of-concept prototype, as

well as presented a complete optimization framework addressing the joint focal surface

and color image decomposition problems. Due to the complex and content-dependent

nature of light propagation within this display architecture, coupled with the high reso-

lutions required of near-eye displays, rendering-based optimization is uniquely well suited

to producing natural retinal images in this case.
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CHAPTER 3

Active 3D Scanning with Multibounce Interference

3.1. Introduction

Many applications in science and industry, such as robotics, bioinformatics, augmented

reality, and manufacturing automation rely on capturing the 3D shape of scenes. Struc-

tured light (SL) methods, where the scene is actively illuminated to reveal 3D struc-

ture, provide the most accurate shape recovery compared to passive or physical tech-

niques [9, 121]. We will consider triangulation-based SL techniques, which have been

shown to produce the most accurate depth information over short distances [123], as well

as time-of-flight (TOF) techniques, which have become commercially viable for robotics

and entertainment applications because of their fast acquisition speeds [30, 34, 90, 91].

Most active depth imaging systems operate with practical constraints on sensor band-

width and light source power. These resource limitations force concessions in acquisi-

tion speed, resolution, and performance in challenging 3D scanning conditions such as

strong ambient light (e.g., outdoors) [93, 41], participating media (e.g. fog, dust or

rain) [53, 54, 97, 38], specular materials [111, 98], and strong inter-reflections within

the scene [39, 37, 20, 106, 3]. This chapter focuses on this last problem.

Recent computational imaging work addresses the inter-reflection problem, also known

as multibounce interference, with novel SL measurement approaches [105, 2, 40, 89].
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These acquisition systems are designed to reject information related to multibounce in-

terference, treating it as noise. It is possible that by instead retaining these measurements,

complementary information can be recovered that improves surface reconstruction. If an

accurate forward model is available that can provide an unbiased, physically-correct simu-

lation of the multibounce interference given a surface estimate, an optimization algorithm

can use this model to find the correct surface that produced the experimental observa-

tion [99, 32, 56, 95].

This thesis chapter summarizes SL systems and their trade-offs, then examines a

motion contrast hardware approach for rejecting multibounce interference. Then, this

chapter describe a forward model, implemented using conventional raytracing techniques,

and a simple optimization that, rather then rejecting multibounce interference, can correct

these biased measurements to produce a more accurate surface estimate. We compare this

approach to ground truth in simulation, and show experimental results using commercial

3D acquisition hardware.

3.1.1. contributions

• A technique to suppress multibounce interference in hardware using a motion

contrast sensor

• An adaptation of conventional path tracing techniques to implement forward

models for SL and ToF systems

• A simple gradient descent inverse rendering algorithm incorporating the raytraced

forward model

• Simulated and experimental results demonstrating surface shape recovery in the

presence of multibounce interference
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Figure 3.1. Taxonomy of Active 3D Systems: Active 3D depth imaging
systems face trade-offs in acquisition speed, resolution, and light efficiency.
Laser scanning (upper left) achieves high resolution at slow speeds. Single-
shot triangulation methods (mid-right) obtain lower resolution with a single
exposure. Time-of-Flight methods obtain higher resolution results, but not
at conventional camera resolutions. Other methods such as Gray coding
and phase shifting (mid-bottom) balance speed and resolution but have
degraded performance in the presence of strong ambient light, scene inter-
reflections, and dense participating media. Hybrid techniques from Gupta
et al. [41] (curve shown in green) and Taguchi et al. [132] (curve shown in
red) strike a balance between these extremes.

3.2. Active 3D Scanning Systems and Limitations

Speed-resolution trade-off: Most existing methods achieve either high resolution or

high acquisition speed, but not both. This trade-off arises due to limited sensor band-

width. On one extreme are the point/line scanning systems [5] (Figure 3.1, upper left),

which achieve high-quality results. However, each image captures only one point (or line)

of depth information, thus requiring hundreds or thousands of images to capture the entire

scene. Improvements can be made in processing, such as the space-time analysis proposed
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by Curless et al. [21] to improve accuracy and reflectance invariance, but ultimately tra-

ditional point scanning remains a highly inefficient use of camera bandwidth.

Methods such as Gray coding [115] and phase shifting [129, 39] improve bandwidth

utilization but still require capturing multiple images (Figure 3.1, lower center). Single-

shot triangulation methods [146, 147] enable depth acquisition (Figure 3.1, right) with

a single image but achieve low resolution results due to a reliance on block matching to

determine projector-camera correspondences.

Focal plane array time-of-flight techniques [124, 71] can perform a depth estimation

per-pixel, so do not suffer from the resolution reduction of single-shot triangulation tech-

niques. The complex pixel architecture, however, has thus far limited their resolution to

a small fraction of conventional cameras.

Content-aware techniques improve resolution in some cases [46, 65, 42], but at the

cost of reduced capture speed [132]. We have introduced a method [89] achieving higher

scan speeds while retaining the advantages of traditional laser scanning, which will be

summarized in the next section.

Speed-robustness trade-off: This trade-off arises due to limited light source power

and is depicted by the green “SL in sunlight” curve in Figure 3.1. Laser scanning systems

concentrate the available light source power in a smaller region, resulting in a large signal-

to-noise ratio, but require long acquisition times. In comparison, the full-frame methods

(phase-shifting, Gray codes, single-shot triangulation and focal plane array time-of-flight

methods) achieve high speed by illuminating the entire scene at once but are prone to

errors due to ambient illumination [41, 2] and indirect illumination due to inter-reflections

and scattering [37, 40].
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3.2.1. Ambient and Global Illumination in SL

Active systems rely on the assumption that light travels directly from source to scene to

camera. However, in real-world scenarios, scenes invariably receive light indirectly due to

inter-reflections and scattering, as well as from ambient light sources (e.g., sun in outdoor

settings). In the following, we discuss how point scanning systems are the most robust in

the presence of these undesired sources of illumination.

Point scanning and ambient illumination. Let the scene be illuminated by the

active light source and an ambient light source. Full-frame SL methods (e.g., phase-

shifting, Gray coding) spread the power of the structured light source over the entire

scene. Suppose the brightness of the scene point due to the structured light source and

ambient illumination are Iactive and Iambient, respectively. Since ambient illumination con-

tributes to photon noise, the SNR of the intensity measurement can be approximated as

Iactive√
Iambient

[41]. However, if the power of the structured controllable source is concentrated

into only a fraction of the scene at a time, the effective source power increases and higher

SNR is achieved. Since point scanning systems maximally concentrate the light (into a

single scene point), they achieve the most robust performance in the presence of ambient

illumination for any of these systems.

Point scanning and global illumination. The contributions of both direct and indirect

illumination may be modeled by the light transport matrix T that maps a set of R × C

projected intensities I from a projector onto the M ×N measured intensities Î from the

camera.
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Î = TI(3.1)

The component of light that is directly reflected to the ith camera pixel is given by

Ti,αIα where the index α depends on the depth/disparity of the scene point. All other

entries of T correspond to contributions from indirect reflections, which may be caused by

scene inter-reflections, sub-surface scattering, or scattering from participating media. SL

systems project a set of K patterns which are used to infer the index α that establishes

projector-camera correspondence. For SL techniques that illuminate the entire scene at

once, such as phase-shifting SL and binary SL, the sufficient condition for estimating α is

that direct reflection must be greater than the sum of all indirect contributions:

Ti,α >
∑
k 6=α

Ti,k(3.2)

For scenes with significant global illumination, this condition is often violated, resulting

in depth errors [37]. For point scanning, a set of K = R × C images are captured, each

corresponding to a different column Ti of the matrix T. In this case, a sufficient condition

to estimate α is simply that direct reflection must be greater than each of the individual

indirect sources of light, i.e:

Ti,α > Ti,k, ∀k ∈ {1, · · ·R× C}, k 6= α(3.3)
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If this condition is met, α can be found by simply thresholding each column Ti such

that only one component remains. Since Equation 3.3 is a significantly less restrictive

requirement than Equation 3.2, point scanning systems are much more robust in the

presence of significant global illumination (e.g. a denser T matrix).

3.2.2. Observations

We can summarize these characteristics of active scanning techniques to make the follow-

ing two observations:

Observation 1: In order for the light source to be used with maximum efficiency,

it should be concentrated on the smallest possible scene area. Point light scanning

systems concentrate the available light into a single point, thus maximizing SNR.

Observation 2: In conventional scanning-based SL systems, most of the sensor

bandwidth is not utilized. For example, in point light scanning systems, every cap-

tured image has only one sensor pixel that witnesses an illuminated spot under ideal

conditions.

These observations open the path to a hardware-only approach to mitigating multi-

bounce interference, which this thesis will explore prior to addressing the potential for

rendering-based optimization to make use of this interference.
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3.3. Motion Contrast 3D Scanning

As an exercise in improving a structured light system with hardware alone, consider the

bandwidth inefficiency of laser scanning discussed in the previous section. The potential

light efficiency and accuracy of laser scanning is high, but the conventional architecture

performs an extremely comprehensive, and thus slow, light transport measurement. An in-

tensity image is captured for every projector illumination angle. The resulting data can be

arranged into the full M by N light transport matrix that maps the relationship between

each addressable projector angle to each camera pixel. In conventional laser scanning, a

peak finding operation selects a single entry in each row of the matrix corresponding to

the most likely first-bounce camera coordinate for the laser position. After processing,

the MxN light transport matrix produces a binary list of M pixel correspondences. Can

we avoid measuring the discarded values in the first place?

Ideally, we need a sensor that measures only the scene points that are directly illu-

minated by the scanning light source. Although conventional sensors do not have such

a capability, we draw motivation from biological vision where sensors that only report

salient information are commonplace. Organic photoreceptors respond to changes in in-

stantaneous contrast, implicitly culling static information. If such a sensor observes a

scene lit with scanning illumination, measurement events will only occur at scene points

containing the moving spot. Digital sensors mimicking the differential nature of biological

photoreceptors are now available as commercially packaged camera modules. Thus, we

can use these off-the-shelf components to build a scanning system that utilizes both light

power and measurement bandwidth in an efficient manner.
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3.3.1. Motion Contrast Cameras

Lichtsteiner et al. [75] recently introduced the biologically inspired Motion Contrast Cam-

era, in which pixels on the sensor independently and asynchronously generate output

when they observe a temporal intensity gradient of magnitude greater than a prede-

fined threshold. Given a time-varying irradiance received at the pixel photodetector, an

amplifier produces a voltage proportional to the log intensity measurement. An analog

finite-difference operation produces an approximation of the temporal derivative of the

log intensity signal, albeit with some resonant behavior. A comparator performs a binary

thresholding of this time differential given externally set reference voltages. An FPGA

polls the output of each pixel’s comparator at 1 MHz. A time stamp is assigned to the

output events, which are queued and transmitted serially to the host computer.

The output of this pixel architecture on a time-varying intensity is illustrated in Fig-

ure 3.2. A large intensity change relative to predefined thresholds will produce on and

off events separated by a minimum reset time governed by the electrical characteristics

of the amplifier and differencing circuits. A small intensity change relative to the same

thresholds will produce no output at all.

In a projector-camera system, the threshold voltage can be set so that the highest

intensity direct path (identifying projector-camera correspondences) produces an event,

but all global effects fall below the threshold. In this configuration, instead of measuring

the full light transport matrix, a list of projector-camera pixel correspondences is produced

directly. We propose applying this strategy to improve the performance of a laser scanning

system.
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Figure 3.2. Motion Contrast Events: When a motion contrast pixel
observes a large change in intensity (a), the output (c) consists of ON
events (red circles) when the change in log intensity over time exceeds a
preset threshold (red dashed line) and OFF events (blue triangles) when the
change in log intensity drops below a preset threshold (blue dotted line).
Each of these events is followed by a fixed reset time (hatched box) that is
a function of the internal amplifier and differencing circuit characteristics.
When the change in observed intensity is low (b), no output events are
produced (d).



94

3.3.2. Motion Contrast 3D Scanning

The key principle behind Motion Contrast 3D Scanning (MC3D) is the conversion of spa-

tial projector-camera disparity to temporal events recorded by the motion contrast sensor.

Interestingly, the idea of mapping disparity to time has been explored previously in the

VLSI community, where several researchers have developed highly customized CMOS

sensors with on-pixel circuits that record the time of maximum intensity [7, 61, 104].

The use of a motion contrast sensor in a 3D scanning system is similar to these previous

approaches with two important differences: 1) The differential logarithmic nature of mo-

tion contrast cameras improves performance in the presence of ambient illumination and

complex scene reflectance, and 2) motion contrast cameras are currently commercially

available while previous techniques required custom VLSI fabrication, limiting access to

only the small number of research labs with the requisite expertise.

MC3D consists of a laser point scanner that is swept relative to a DVS sensor. The

event timing from the DVS is used to determine scan angle, establishing projector-camera

correspondence for each pixel. The DVS was used previously for SL scanning by Brandli

et al. [15] in a pushbroom setup that sweeps an affixed camera-projector module across

the scene. This technique is useful for large area terrain mapping but ineffective for 3D

scanning of dynamic scenes. Our focus is to design a SL system capable of 3D capture

for exceptionally challenging scenes, including those containing fast dynamics, significant

specularities, and strong ambient and global illumination.

For ease of explanation, we assume that the MC3D system is free of distortion, blur-

ring, and aberration; that the projector and camera are rectified and have equal focal



95

lengths f ; and are separated by a baseline b 1. We use a 1D analysis that applies equally

to all camera-projector rows. A scene point s maps to column i in the camera image and

the corresponding column α in the projector image (see Figure 3.3). Referring to the

right side of Equation 3.1, after discretizing time by the index t, the set of K = R × C

projected patterns from a point scanner becomes:

I = [I1, · · · IK ] = I0δi,t + Ib(3.4)

where δ is the Kronecker delta function, I0 is the intensity of the focused laser beam, and

Ib represents the small amount of background illumination introduced by the projector

(e.g. due to scattering in the scanning optics). From Equation 3.1, the light intensity

directly reflected to the camera is:

Îi,t = ρi,αIα,t = (I0δα,t + Ib)ρi,α(3.5)

where ρi,α denotes the fraction of light reflected in direction i that was incident in direction

α (i.e. the BRDF) and the pair [i, α] represent a projector-camera correspondence. Motion

contrast cameras sense the time difference of the logarithm of incident intensity [75]:

1Lack of distortion, equal focal lengths, etc., are not a requirement for the system and can be accounted
for by calibration.
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ÎMC
i,t = log(Îi,t)− log(Îi,t+1),(3.6)

= log

(
I0 + Ib
Ib

)
δα,t(3.7)

Next, the motion contrast intensity is thresholded and the set of space and time indices

are transmitted asynchronously as tuples:

[i, τ ], s.t. ÎMC
i,t > ε, τ = t+ σ(3.8)

where σ is the timing noise that may be present due to pixel latency, multiple event

firings, and projector timing drift. The tuples are transmitted as an asynchronous stream

of events (Figure 3.3, middle) which establish correspondences between camera columns

i and projector columns j = τ · S (Figure 3.3, right), where ν is the projector scan speed

in columns/sec. The depth is then calculated as:

z(i) =
bf

(i− τ · ν)
(3.9)

Fundamentally, MC3D is a scanning system, but it differs from conventional implemen-

tations because the motion contrast sensor implicitly culls unnecessary measurements.

A conventional camera must sample the entire image for each scanned point, while the

motion contrast camera samples only one pixel, drastically reducing the number of mea-

surements required.
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3.3.3. Motion Contrast 3D Scanning Implementation

For our prototype, we use the iniLabs DVS128 [75]. The camera module contains a

1st generation 128x128 CMOS motion contrast sensor, which has been used in research

applications such as high-frequency tracking [102], unsupervised feature extraction [10],

and neurologically inspired robotic control systems [57].

The DVS128 uses event time-stamps assigned using a 100kHz counter [75]. For our

128 pixel line scanning setup, this translates to a maximum resolvable scan rate of nearly

800Hz. The dynamic range of the DVS is more than 120dB due to the static background

rejection discussed earlier [75].
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Figure 3.3. System Model: A scanning source illuminates projector po-
sitions α1 and α2 at times t1 and t2, striking scene points s1 and s2. Cor-
respondence between projector and camera coordinates is not known at
runtime. The DVS sensor registers changing pixels at columns i1 and i2 at
times t1 and t2, which are output as events containing the location/event
time pairs [i1, τ1] and [i2, τ2]. We recover the estimated projector positions
j1 and j2 from the event times. Depth can then be calculated using the
correspondence between event location and estimated projector location.

We used two different sources in our prototype implementation: a portable, fixed-

frequency point scanner and a variable-frequency line scanner. The portable scanner was

a SHOWWX laser pico-projector from Microvision, which displays VGA input at 848x480

60Hz by scanning red, green, and blue laser diodes with a MEMS micromirror [1]. The
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micromirror follows a traditional raster pattern, thus functioning as a self-contained 60Hz

laser spot scanner. For the variable-frequency line scanner, we used a Thorlabs GVSM002

galvanometer coupled with a Thorlabs HNL210-L 21mW HeNe Laser and a cylindrical

lens. The galvanometer is able to operate at scan speeds from 0-250Hz.

Evaluation of simple shapes: To quantitatively evaluate the performance of our sys-

tem, we scanned a plane and a sphere. We placed the plane parallel to the sensor at a

distance of 500mm and captured a single scan (one measurement per pixel). Fitting an

analytic plane to the result using least squares, we calculated a depth error of 7.849mm

RMSE. Similarly, for a 100mm diameter sphere centered at 500mm from the sensor, depth

error was 12.680mm RMSE.

Evaluation of complex scenes: To demonstrate the advantages of our system in more

realistic situations, we used two test objects: a medical model of a heart and a minia-

ture plaster bust. These objects both contain smooth surfaces, fine details, and strong

silhouette edges. We also captured the same scenes with traditional laser scanning us-

ing the same galvanometer setup and an IDS UI348xCP-M Monochrome CMOS camera.

The image was cropped using the camera’s hardware region of interest to 128x128. The

camera was then set to the highest possible frame rate at that resolution, or 573fps. This

corresponds to a total exposure time of 28.5s, though the real world capture time was 22

minutes. Note that MC3D, while requiring several orders of magnitude less capture time

than traditional laser scanning, achieves similar quality results, shown in Figure 3.4.
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(a) Reference Photo (b) Laser Scan (c) MC3D

Figure 3.4. Comparison with Laser Scanning: Laser scanning per-
formed with laser galvanometer and traditional sensor cropped to 128x128
with total exposure time of 28.5s. MC3D method captured with 1 second
exposure at 128x128 resolution and median filtered. Object placed 1m from
sensor under ∼150 lux ambient illuminance measured at object.
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(a) Setup
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Figure 3.5. Performance with Interreflections: Comparison between
Kinect 1, phase shifting, and MC3D. Experimental setup shown in (a). A
90◦ v-groove, assembled from foam core board shown in (b). (c) and (d)
show 45◦ and 30◦ v-grooves, respectively. Kinect 1 (measurements aver-
aged over 1 second) produces comparable results to MC3D in the 90◦ and
45◦ cases as the block matching algorithm rejects interreflections. In the
30◦ case, however, the block matching algorithm fails completely due to
interreflections. Phase shifting (16 phase offsets recorded over 64 seconds
of total exposure time, using a low frequency period equal to the width
of the projector), has severe multibounce interference even at 90◦. MC3D
(measurements averaged over 1 second) is not susceptible to these effects
as it is a laser point scanning technique.
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Strong scene inter-reflections: Figure 3.5 shows the performance of MC3D for a scene

with significant multibounce interference. The test scene consists of two pieces of white

foam board meeting at a 90, 45, and 30 degree angle. Kinect results in the image are

accurate for 90◦ and 45◦, but fail at 30◦ when interreflections obscure the projected ran-

dom dot pattern to an extent that prevents block matching. Phase shifting results are

significantly distorted for all v-groove angles, as any multibounce path contributes a bias

to the radiometrically calibrated measurements. MC3D, being a true point laser scanning

approach, passively rejects lower-energy multibounce paths via motion contrast threshold-

ing, and consequently does not show significant distortions due to inter-reflections. Note

that these depth-from-disparity reconstructions have been produced using approximate

camera and projector calibration, with v-groove vertices manually aligned to provide a

consistent frame of reference. Numerical error and dynamic range comparisons are not

provided for this reason.

Motion comparison: We captured a spinning paper pinwheel using the SHOWWX

projector to show the system’s high rate of capture. Four frames from this motion sequence

are shown at the top of Figure 3.6. Each image corresponds to consecutive 16ms exposures

captured sequentially at 60fps. A Kinect capture at the bottom of the figure shows the

pinwheel captured at the maximum 30fps frame rate of that sensor.
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(a) MC3D

(b) Kinect

Figure 3.6. Motion Comparison: The top row depicts 4 frames of a
pinwheel spinning at roughly 120rpm, captured at 60fps using MC3D. The
bottom row depicts the same pinwheel spinning at the same rate, over the
same time interval, captured with the Kinect. Only 2 frames are shown due
to the 30fps native frame rate of the Kinect.
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3.3.4. MC3D Limitations

There are several noise sources in our prototype system, such as uncertainty in event tim-

ing due to internal electrical characteristics of the sensor, multiple event firings during one

brightness change event, or downsampling in the sensor’s digital interface. As scan speed

increases, timing errors are amplified, resulting in an increased amount of dropped events.

These can be mitigated through updated sensor designs, further system engineering, and

more sophisticated point cloud processing.

More fundamentally, rejecting measurements from low-energy multibounce paths in-

herently reduces the SNR of the system. Hardware multibounce rejection techniques such

as those relying on epipolar constraints ([105, 2]) suffer from this issue. Multibounce

paths manifest in conventional reconstruction techniques as noise. However, we know

from light transport analysis that multibounce paths in fact produce systematic bias that

can be corrected for with an appropriate optimization. This motivates the last contribu-

tion of this thesis, an rendering-based optimization depth recovery algorithm.
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3.4. Image Formation Modeling and Rendering for Active 3D Scanning

Chapter 1 highlighted the equivalency between a linear model of light transport and

the type of fixed-point algorithm employed in modern raytracers, then introduced the

rendering equation in Equation 1.1 and its stochastic approximation using Monte Carlo

integration. The expression for the contribution along an individual path, Equation 1.2,

will be used throughout this section following [114].

3.4.1. SL Forward Model

In the SL case, the value of a ray exiting the projector will contain the coded pixel position

originating the ray. In the case of sinusoidal projector patterns, we will propagate a phasor

through the scene. The emission intensity Ie becomes Īe, the emitted complex phasor2.

The phase of the phasor to be projected is calculated using the pixel projection of the

path endpoint onto the projector using projection matrix P p.

Īe(sd → sd−1) = ei
2π
λ
P psx(3.10)

Here, λ is the period of the spatial encoding pattern in pixels. In the case of a

projector-camera system whose baseline is parallel with the x-axis, the column component

of Īe needs to be propagated through the scene.

2For raytracer compatibility the path value can be a tuple containing the real-valued phase and magnitude,
or real and imaginary components, for later conversion back to a complex value prior to phasor summation.
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We pass this phasor through the Monte Carlo estimation for path P̄ (now complex

valued) in place of the emission term. Since we are utilizing a single-point light source

(the projector), the emitter PDF pA(sd) becomes unity.

P̄ = Īe(sd → sd−1)ρ(sd → sd−1 → sd−2)G(sd ↔ sd−1)× β(3.11)

The raytracer initiates N ray samples from each camera pixel. If the SL technique

being modeled involves thresholding, such as intensity thresholding in Gray coding or

temporal contrast thresholding in MC3D, then the weight of each accumulated sub-path

output is passed through a thresholding operator τ , which omits the current path if the

throughput (or change in throughput, in the case of MC3D) is below the threshold. Each

of these initiates the iterative path integral estimation above, iterating until maximum

depth D is reached. The phasor observation for the current pixel, Īx,y, is the accumulation

of all N phasors contained in the sampled paths.

Īx,y =
1

N

N∑
n=1

1

D

D∑
d=1

τ(P̄x,y)(3.12)

The angle of this phasor is now the measurement estimate for the phase angle in the

projector frame. The projector column C can be recovered for camera pixel (x, y) with

the inverse projector projection matrix P−1
p .

Cx,y = P−1
p ∠Īx,y(3.13)
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3.4.2. ToF Forward Model

While SL illumination is spatially coded, but not time resolved, ToF measurements are

not spatially coded but modulated over time. ToF systems can be generalized to the

phasor imaging model per Gupta et al. [40]. When using a phasor representation, the

high-frequency time dependence of the illumination can be simplified to a steady-state

phase measurement, which in turn allows conventional light transport analysis. We will

again use the path tracing approach, but we will assume unity emission and accumulate

the throughput and length of each path:

P throughput = ρ(sd → sd−1 → sd−2)G(sd ↔ sd−1)

×

(
d−2∏
j=1

ρ(sj+1 → sj → sj−1)|cosθj|
pω(sj+1 − sj)

)(3.14)

P length =
d∑
j=1

||sj − sj−1||2(3.15)

The contribution of each path to a measurement is still weighted in the conventional

manner, but the phasor associated with the path length, given a modulation wavelength

λ, is summed instead of the value:

Īx,y =
N∑
n=1

D∑
d=1

P throughput
x,y ei

2π
λ
P lengthx,y(3.16)
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The phase of this accumulated complex value now can be converted to a distance

estimate using the modulation wavelength. In the case of multi-wavelength modulation,

such as that employed by the Microsoft Kinect, each traced path can be modulated by

that wavelength prior to phasor accumulation to avoid multiple renders. With multiple

frequencies, the effective unambiguous range of the measurement can be increased using

the phase unwrapping technique given in [40].

Now that we can produce an estimate of a phasor image including the effect of multi-

bounce interference, we can include this renderer in an optimization problem.

3.5. Optimizing Depth Estimates with Gradient Descent

Inverse problems dealing with shape recovery are a longstanding area of research in

computer vision. Though early work such as the Horn shape-from-shading algorithm [45]

solves closed-form partial differential equations without any explicit modeling of light

transport or reflectance, the extension by Ikeuchi [51] does include the use of a reflectance

model operator (i.e., a renderer) within an iterative optimizer to recover surface shape.

Nayar [99] proposed using a raytraced renderer to solve for errors in shape-from-shading

surface reconstructions caused by interreflections. In such cases the observed intensity

given known lighting is dependent on both the surface shape and the reflectance properties

of the shape. These properties can be iteratively updated, passed through a renderer, and

compared to a measurement until a match is found.

More recently, the inverse raytracing approach described by Gkiolekas [35] uses full

Monte Carlo path tracing in a volume to model and recover scattering parameters from

real-world measurements.
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Approaches have been proposed to mitigate the effects of multibounce interference

by carefully selecting illumination or sampling strategies [2, 105]. In doing so, however,

these techniques treat multibounce interference as measurement noise, rather than valid

information about the scene shape and its effect on light transport. By contrast, we

propose retaining these paths as valid, modulated information about the scene to be

demodulated in an offline optimization stage.

Others have proposed offline optimization techniques, including [32], [23], [33], [56],

and [31]. These techniques all make assumptions such as specular-only (two-bounce)

paths, diffuse-only surfaces, or otherwise use a simplified rendering model. Taking in-

spiration from these approaches, we aim to show that a conventional unbiased rendering

engine can be used in a similar manner to optimize surface shape acquisition with the

possibility of handling arbitrary BRDF models and other complex phenomenon.

Recently, [130] and [85] propose training a convolutional autoencoder to learn the

equivalence between depth images corrupted by multipath interference and the correct

depth image. This technique has the potential to run at real time rates, but does not

explicitly model the effects of light transport in the scene.

The two sets of forward renderers described in the previous section can be used in

a least-squares objective, as Monte-Carlo rendering is an unbiased estimator of the light

transport integral. We wish to minimize the error E between measured depth image Î

and the output of our forward operator T , given the depth estimate S. All other scene

parameters Γ are assumed to be fixed upon initializing the renderer.
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E = min
S

∥∥∥Î − TΓ(S)
∥∥∥2

2
(3.17)

3.5.1. Calculating Gradients

Since we wish to use the raytraced forward models in a gradient descent framework, it

would be ideal to efficiently compute the gradient of the forward operator. The gradient in

both the SL and ToF cases is the partial derivative of the output phase value with respect

to each surface parameter. We can make a simple modification to the iterative operator

in Eq. 1.2 so that each sub-path is connected to the target point prior to sampling the

light source. This eliminates all but the first entry in the series sum comprising β because

all previous path points do not depend on the newly added target point in the path.

The emission value for the SLM mode, calculated in Eq. 3.10, and the path segment

distance for ToF mode in Eq. 3.15 can be differentiated with respect to the target point.

If the BRDF assigned to the surface is a differentiable model, the reflectance terms for the

surface intersections on either side of the target point in the path can also be differentiated.

However, the geometric coupling G contains a non-differentiable visibility term. This can

be ignored under the assumption that a delta offset in the target point does not alter path

connectivity due to occlusion.

However, under this assumption, even the first-order expansion of Eq. 1.2 under

the chain rule produces three times as many terms as the original expression. The full

expansion depends on other implementation details such as the BRDF model and normal
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estimation technique used, but will always result in a per iteration operation count many

times greater than the original path integral estimation.

Due to the impact this has on computation time, as well as the potentially non-

negligible contribution from the non-differentiable visibility term (depending on the scene’s

occlusion density), a finite difference approach is more appropriate.

During optimization, the gradient is estimated by rendering the scene once with the

current surface estimate, than once again for each parameter of the surface representation

offset by some small delta. To improve sample distribution, the target point can be

connected to each sub-path sample in either a path or bidirectional path tracing renderer.

The gradient for the objective objective in Eq. 3.17 is calculated with respect to each

point parameter s on the estimated surface.

∇E =

[
∂E

∂sk
,
∂E

∂sk
, · · · , ∂E

∂sk

]
Sk ∈ S

∂E

∂sk
≈ 1

δ

(∥∥∥Î − TΓ(S)
∥∥∥2

2
−
∥∥∥Î − TΓ(S + δ(sk))

∥∥∥2

2

)(3.18)

Where δ(sk) produces a small fixed offset at point sk when added to surface estimate

S.

We now have all the pieces necessary to perform gradient descent. A simple batch

approach is presented in Algorithm 1. The fixed step size can also be replaced by any of

the typical extensions such as momentum [116], Adagrad [25], or Adam [63]. Though

these approaches can help avoid local minima in gradient descent optimizations, initial-

ization quality is also an important factor. Because SL and ToF systems produce initial
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estimates that are largely accurate, aside the bias due to multibounce interference, these

measurements provide predictably high-quality initial estimates for the optimization as

well.

Measurement noise also impacts convergence in gradient descent optimizations. Much

research in the field of active 3D scanning, and imaging in general, has been devoted

to reducing measurement noise, but no system will provide perfectly noise-free estimates

with which to initialize the optimization. We test how convergence is affected by known

noise levels in simulation in the following section.

Gradient descent problems of this sort have been explored at length in machine learn-

ing research, while the focus of this work is to highlight the fact that raytraced forward

models of active 3D scanning system are well suited for this type of optimization. We

leave further refinement of the optimization approach for this problem to others.

Algorithm 1 Gradient Descent Routine

1: T ← Γ
2: S ← Reproject(Î)
3: for e ∈ Epochs do
4: current ← T (S)
5: for sk ∈ S do
6: offset ← T (S + δ(sk))

7: gradient[sk] ←
∥∥∥Î − current

∥∥∥2

2
−
∥∥∥Î − offset

∥∥∥2

2
8: end for
9: S ← S+gradient

10: end for
11: return S
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3.6. Implementation

The forward models described in Section 3.4 are designed to be compatible with a

variety of raytracing platforms, including those that are highly parallel or GPU based.

Furthermore, since the model only relies on standard light transport integrator properties

such as path length and projector radiance, it can be extended to volumetric, branched,

and bidirectional path tracers. It can similarly handle any number of reflectance and

scattering models, as well as geometric representations.

For the purposes of demonstrating this approach, we opted to use open-source tools

that already support the capabilities we need and can be easily modified to operate in

our proposed manner.

3.6.1. Rendering and Optimization Tools

We use the Mitsuba renderer [55], which is free, open-source software written in C++,

with a Python interface. It is based on the algorithms presented in [114]. Though

some performance gains could be realized by using a GPU renderer such as the Nvidia

Optix framework used in Chapter 2, the ability to directly access intermediate results and

support variables in Mitsuba while the renderer is in operation steered us in the CPU-

based direction. Mitsuba also features a heightfield-defined surface representation based

on [134] that is particularly well suited for our surface reconstruction purposes.

The algorithms in Section 3.4 were incorporated into the standard path and bidirec-

tional path tracers in Mitsuba.

Scene setup, optimization, and profiling are implemented in Python using SciPy [59]

and Mitsuba’s Python interface. We set a heightfield surface to the target depth profile,
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then run the renderer. After reprojecting this simulated measurement back to world space,

we create a new scene with a heightfield surface set to the measurement. This surface has a

bias relative to the target surface due to the multibounce interference in the measurement.

We can now run the gradient descent algorithm, updating the surface iteratively until the

measurement of the current surface estimate matches the initial measurement from ground

truth. This procedure was illustrated in Chapter 1, Figure 1.2.

3.6.2. Simulated Results

Due to the difficulty in acquiring precise ground truth measurements over moderate-sized

physical scenes, we conducted performance evaluations on two simulated time-of-flight

systems, a single-frequency ToF sensor, and one with the three modulation frequencies

used in the Microsoft Kinect.

Figure 3.7 shows the simulated measurements for 45◦, 60◦, and 90◦ diffuse concave v-

groove shapes. The apex of the v-grooves are placed at the scene origin, and the camera

is placed 10 meters away with a horizontal field of view of 30◦. The solid lines depict

the ground truth middle-row profile of the v-groove. Because of the long wavelength

associated with the 10Mhz modulation (60 meters, for a scene with total depth of 10 me-

ters), multibounce interference produces a large bias in the measurement. The simulated

Kinect result, using multiple higher frequencies (16MHz, 80MHz, and 120Mhz, according

to [108]), has reduced multibounce interference due to the filtering effects of the scene

on higher frequencies described in [40]. We use the 10MHz simulated measurement as

the initial estimate for our optimization, then run for 30 iterations with a fixed step

size. The result of the simulation is similar to the quality of the measurement with the
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higher Kinect frequencies. We also use the simulated Kinect measurement to initialize

the optimizer and again ran for 30 iterations. Though the improvement is not as great as

with the single-frequency measurement, the optimization is still able to outperform the

Kinect because of the remaining multibounce interference in the measurement. As these

optimized results are all of high quality, it is more informative to refer to Figures 3.8 and

3.9 to compare relative error.

Evaluation of Dynamic Range: It is useful to evaluate the performance of a depth

imaging system in terms of dynamic range, much like an intensity imaging system. A

system that can resolve small depth displacements over a large unambiguous range has

a high dynamic range, and is thus useful across a more general set of scenes. A low

dynamic range system, conversely, can only resolve larger steps over a shorter range.

The choice of modulation frequency directly affects the unambiguous measurement range,

which is equal to half of the wavelength to account for the round trip distance to the scene.

Disregarding measurement noise, longer wavelengths will result in stronger multibounce

interference, however, so simply reducing modulation frequency is not a means to achieve

higher dynamic range. Multifrequency techniques like the Kinect allow for a longer ef-

fective wavelength, the least common multiple of the individual wavelengths used. This

approach retains the multibounce interference reduction associated with shorter wave-

lengths, while increasing the unambiguous range.
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Figure 3.7. Simulated V-Groove Depth Profiles: Simulated depth pro-
files for walls with known BRDFs meeting at 45◦, 60◦, or 90◦. Top row: a
diffuse-only BRDF. Second row: a physically based rough plastic BRDF.
Third row: a glossy plastic BRDF. Bottom row: an anisotropic material.
Profiles for ground truth, 10Mhz and Kinect simulated measurements, and
optimized results are shown in each plot. Box-and-whisker plots of the
associated error values with these plots are shown in Figures 3.8 and 3.9.
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Figure 3.8. 10MHz Depth Errors: Box-and-whisker plots (5th and 95th
percentiles, quartiles, and median values) for Z-axis error in each of the
10Mhz single-frequency results in Figure 3.7 (diffuse, glossy plastic, rough
plastic, and anisotropic BSDFs). Error is calculated as the absolute dis-
tance in meters relative to ground truth. Box-and-whiskers for simulated
measurements and reconstructions are shown on alternating lines in red and
blue, respectively.
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Figure 3.9. Kinect Frequency Depth Errors: Box-and-whisker plots
(5th and 95th percentiles, quartiles, and median values) for Z-axis error
in each of the Kinect multi-frequency results in Figure 3.7 (diffuse, glossy
plastic, rough plastic, and anisotropic BSDFs). Error is calculated as the
absolute distance in meters relative to ground truth. Box-and-whiskers for
simulated measurements and reconstructions are shown on alternating lines
in red and blue, respectively.
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10Mhz 10Mhz Optimized Kinect Kinect Optimized

Diffuse

90◦ 49.34 601.97 448.82 1151.65

60◦ 23.95 261.99 230.47 371.91

45◦ 16.15 221.29 165.67 342.50

Glossy Plastic

90◦ 48.62 508.95 717.51 1134.53

60◦ 24.69 212.05 175.16 284.49

45◦ 16.72 210.96 106.04 342.10

Rough Plastic

90◦ 48.90 511.71 879.56 1130.79

60◦ 24.54 210.36 199.65 284.14

45◦ 16.71 209.31 118.22 341.85

Anisotropic

90◦ 41.45 391.59 216.16 1095.20

60◦ 21.57 198.22 81.00 284.67

45◦ 14.59 208.70 91.87 338.75

Table 3.1. Dynamic Range of Simulated Results: Dynamic range,
calculated as the unitless ratio of unambiguous range to RMS Z-axis error
in meters, is listed for each of the v-groove and BRDF combinations depicted
in Figure 3.7. Optimized results always produce higher estimated dynamic
range than the underlying measurements, and in most cases the single-
frequency optimized results outperform the dynamic range of the Kinect
measurements.

Dynamic ranges corresponding to the simulated results shown in Figure 3.7, calculated

as unambiguous range divided by RMS Z-axis error in meters, are listed in Table 3.1. With

Kinect simulation, the three modulation frequencies produce an effective wavelength equal

to their least common multiple, or 37.5m. Many of the optimized single-frequency results

have higher dynamic range than the underlying Kinect measurements, though the opti-

mized Kinect measurements have the highest dynamic ranges by a large margin.
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Evaluation of Multibounce Contribution: Varying amounts of interreflection will

change the performance of our technique relative to the underlying measurements. The

effect of this, as a function of ratio between direct and global illumination in the scene, is

shown in Figure 3.10. Smaller angles (shown along the top horizontal axis in the figure)

result in more multibounce interference, and thus a higher direct/global ratio. As the

global/direct ratio increases, higher-frequency techniques like the Kinect produce higher

dynamic range than single-frequency techniques, and our proposed optimization produces

higher dynamic range than the technique used to initialize the optimization.
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Figure 3.10. Dynamic Range Versus Global/Direct Ratio: Dynamic
range for the simulated 10Mhz, Kinect, and optimized measurements, plot-
ted as a function of the ratio between direct and global contributions to
the scene intensity. Dynamic range is calculated as the total unambiguous
range divided by the RMS depth value error relative to ground truth.
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Figure 3.11. Random Surface Performance: In a), per-pixel root mean
squared Z-axis error, relative to a ground truth random heightmap, plotted
against the surface height standard deviation. The optimized result out-
performs the simulated 10Mhz measurement. b) A centerline profile with
a standard deviation of 2.0m showing ground truth, 10Mhz measurement,
and optimized result.

Evaluation of Random Surfaces: The presence of concavities on a surface can be more

generally described by the standard deviation of the surface. Surface deviations that are

much smaller than the lateral resolution of a 3D scan are typically addressed with surface

roughness models that take into account local scattering. Surface variations that can

be spatially resolved also present challenges to accurate 3D acquisition at many scales

from microscopic capture through terrain mapping. We can simulate the performance of

our approach for surfaces of known standard deviations from a plane. Higher standard

deviations will produce deeper concavities, and thus stronger multibounce interference.

This effect is shown in Figure. 3.11. As surface height standard deviation increases, the

error optimized results increases more slowly than non-optimized results because of the

increasing presence of multibounce interference.
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Figure 3.12. Convergence with Measurement Noise: Per-pixel root
mean squared Z-axis error, relative to ground truth for a 90◦ v-groove,
plotted versus optimization iteration. Profiles shown for noise magnitudes
ranging from a standard deviation of 0m through 1.87m. The total z-axis
range spanned by the v-groove is 2m.

Evaluation of Measurement Noise: We can also test the optimizer in simulation

to check the effect of measurement noise on convergence. By approximating the effect

of measurement noise as a random value drawn from a zero-mean Gaussian distribution

added to the depth estimate of each pixel, we can control the standard deviation of the

measurement noise relative to the depth range in the virtual scene. Figure 3.12 plots the

per-pixel RMS Z-axis error relative to ground truth for a 90◦ v-groove over 30 iterations

of the optimizer. The profiles show noise levels corresponding to 0% through 93% of the

overall depth range in the image, or 2m. The value of the objective is consistently reduced

during optimization, even for high levels of noise, which implies that this technique is

effective for improving the accuracy of ToF estimates, but not necessarily the precision.
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Figure 3.13. Accuracy and Precision: The accuracy of a simulated
10MHz 90◦ v-groove measurement, measured as RMS Z-axis error, can
be consistently improved with increasing levels of measurement noise (a).
Rendering-based optimization is able to correct for large-scale multibounce
intereference despite the presence of high frequency noise in this case. The
precision of this measurement, measured as the standard deviation of Z-axis
error, cannot be improved by correcting for multibounce interference alone
(b).
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Figure 3.14. Accuracy and Precision - Example Profile: In a), a sim-
ulated 10MHz 90◦ v-groove measurement, with low accuracy due to multi-
bounce interference, but high precision due to lack of noise. In b), the
noise-free measurement optimized, which shows an improvement in accu-
racy. In c), a simulated 10Mhz 90◦ v-groove measurement with added noise.
In d), the optimized result given the noisy measurement. Here the system-
atic error has been reduced, improving accuracy, but the low precision due
to measurement noise remains. To address this, an example using total
variation regularization in the optimization loop is shown in (e).



123

Accuracy and Precision: Accuracy, measured as RMS Z-axis error, and precision,

measured as the standard deviation of the Z-axis error, are shown for a range of noise

levels added to simulated 10Mhz and 10Mhz optimized 90 v-groove measurements in

Figure 3.13. The relative improvement in RMS error from the unoptimized to optimized

simulation is notably consistent across increasing levels of noise. On the other hand,

the precision of the optimized result shows no significant improvement. Both of these

results can be explained intuitively: the optimization, by removing systematic error,

can consistently improve accuracy, but does not denoise the result to improve precision.

Centerline profiles demonstrating these effects in noise-free and noisy circumstances are

shown in Figure 3.14.

There are numerous approaches to denoising that can be conjoined with the type of

least squares objective function used in this optimization. As an example, Figure 3.14e

shows a result obtained by including a total variation denoiser [18] executed as a separate

step during each gradient descent iteration. In this case, the improvement in accuracy due

to rendering-based optimization is retained while the high variance due to measurement

noise is also reduced to improve precision. This result points to promising future directions

exploring the many complementary optimization techniques that can provide additional

advantages beyond the simple batch gradient descent employed in this thesis.
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3.6.3. Experimental Results

To capture experimental equivalents to the v-groove simulations, we used a pair of 1m

by 0.75m foam core boards aligned to marks measured on the floor corresponding to 45◦,

60◦, and 90◦ v-grooves. The Kinect ToF sensor was then placed along the centerline. This

setup is shown in the 90◦ in Figure 3.15. Measurements were made using Matlab and a

Kinect interface utility [133]. Reconstruction results are shown as profiles at the top of

Figure. 3.16; renders of the measured surfaces are shown in the middle; and the resulting

surface reconstructions are shown on the bottom.

For reconstruction speed, the Kinect sensor was aligned to the horizon so that vertical

depth profiles in the scene were parallel to the image plane. This allows us to calculate

a 1D gradient across the image. In order to obtain ground truth measurements, each of

the two foam core boards was captured independently for each v-groove angle. Doing so

removes multibounce interference, allowing depth error measurements relative to these

accurately captured planes, which can in turn be used to estimate the dynamic range.

Reconstructions shown here are downsampled to 1/8 of the native Kinect resolution.

The optimizer was run for 30 iterations using the Kinect measurement to initialize the

surface estimate. The 90◦ optimization improves the Kinect dynamic range from approxi-

mately 474:1 to 1692:1. At 60◦ the optimization improves the approximate dynamic range

from approximately 177:1 to 589:1. At 45◦ the optimization improves the approximate

dynamic range from 148:1 to 773:1. These improvements are highly-dependent on scene

content (and resulting amount of multibounce interference), but these results show that

this technique can improve experimental measurements.
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Figure 3.15. Experimental Setup: Foam core boards aligned to marks
on the floor form a 90◦ v-groove. A Kinect ToF center is placed along
the centerline and aligned with the center of the v-groove and the horizon.
Kinect output was captured with a PC laptop. Board angles were then
moved to 60◦ and 45◦ angles and captured with the Kinect.
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Figure 3.16. Experimental V-Groove Depth Profiles: Top Row: Ex-
perimental depth results using Microsoft Kinect for capture, shown as
middle-row profiles plotted in scene space, recovered from a physical scene
containing foam core boards meeting at an angle of 45◦, 60◦, or 90◦. Ground
truth is approximated with two separate captures, one for each of the left
and right sides of the v-groove to eliminate multibounce interference. Mid-
dle Row: Measurements converted to rectilinear mesh and illuminated with
a directional light source from the upper left. Bottom Row: Optimized
results converted to mesh and rendered. Column A) shows a 90◦ v-groove.
Column B) the 60◦ v-groove. Column C) the 45◦. The optimized result (30
iterations) consistently outperforms the physical measurement due to the
algorithm’s ability to account for multibounce interference.
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Figure 3.17. Experimental Capture, Stairs: Experimental depth results
using Microsoft Kinect for capture, shown as middle-row profiles plotted in
scene space (b), recovered from a physical set of varnished wooden stairs,
shown in (a) with an inset showing the tread and riser profile highlighted.
A lit, rendered mesh produced from the raw Kinect measurement is shown
in (c). The same treatment is applied to the optimized result in (d).
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As a real-world test case, Figure 3.17 depicts the vertical centerline profile of a staircase

and a reference photo. In the Kinect profile, the meeting point between each tread

and riser is rounded out due to multibounce interference, while the optimized result

recovers a more distinct right angle in these locations, while retaining the lip of each

tread extending out past the riser. Furthermore, the stair material exhibits complicated

reflectance characteristics. Parameters describing a semi-glossy BRDF were manually

adjusted for this result. These types of parameters would be well suited for alternating

minimization in future work.

3.6.4. Processing Time

The v-groove shapes used for Figures 3.7, 3.8, 3.10, and 3.16 were aligned to the vertical

image axis so that depth values are uniform along columns in the image. The parameter-

ization of each entire row can consequently be contained a single value. This drastically

reduces computation time. Solutions were obtained on a 12-core Intel i7 desktop CPU.

Single-frequency simulated results computed at 32x32 resolution with 1024 samples per

pixel over 30 iterations had an average completion time of 5 minutes per result. Multifre-

quency Kinect simulations with the same parameters had an average completion time of

12 minutes per result.

Results in Figure 3.16 downsampled 8x from the 512x424 Kinect depth measurement,

and were reconstructed with 30 iterations over a total wall-time duration of 11 minutes

per result. The result in Figure 3.17 was downsampled 4x from the Kinect measurement.

To get a sense of processing times at full resolution, we can look to the work in [35],

where an on-demand, cloud-based cluster comprising a total of 3200 cores was used. By
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extrapolating the per-pixel, per-core runtime of our results, we can roughly estimate that

a full resolution optimization of Kinect data (currently the highest-resolution time of

flight sensor currently available), would take approximately 48 hours. While this is a

significant amount of processing time, it is comparable to other offline simulation tasks

used commercially. This thesis does not evaluate convergence for very low sample count

renders to speed up solution time, nor does it evaluate more sophisticated gradient descent

approaches to decrease convergence time. This thesis follows the hypothesis that inverse

rendering optimization will increasingly be used in practice because of the recent and

unprecedented availability and scale of parallel processing power, both in the form of

cloud-based services and desktop GPUs.

3.7. Limitations and Future Directions

3.7.1. Generalized Active Scanning Optimization

This thesis looks toward future computational imaging devices that use rendering-based

optimization as part of their core functionality. In order for this to happen, the meth-

ods described in the previous chapters will need to be generalized to subsume a broader

variety of systems. The introduction of SL and ToF renderers, both requiring minimal

modification to conventional path tracing, is a first step in this direction. Though a full

comparison between the two models is outside the scope of this thesis, Figure 3.18 depicts

the same v-groove reconstructions used in the previous section, but here with a projector-

camera phase shifting setup. In this configuration, the period of the phase shift frequency

is set to the column width of the projector. Here the equivalent to multifrequency Kinect
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ToF is Micro Phase Shifting [39], which exchibits the same optical reduction of multi-

bounce interference. Again, the optimized phase shift and Micro Phase Shifting results

produce higher quality results.

These parallels can be directly extended to other multifrequency unwrapping tech-

niques such as [141]. Other approaches, such as Gray coding or MC3D, will require

additional thresholding operations as described in Section 3.4, but the basic path trac-

ing approach and optimization principles will remain the same. The flexibility of the

rendering-based optimization strategy presents a path toward developing a platform that

generalizes to the full landscape of active 3D scanning techniques.
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Figure 3.18. Simulated SL Depth Profiles: Simulated depth profiles for
diffuse walls meeting at 45◦, 60◦, or 90◦. Profiles for ground truth, phase
shift, micro phase shift, and optimized results are shown in each plot. Like
ToF results, the optimzed phase shift results approach the quality of micro
phase shifting, which optically reduces multibounce interference.
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3.7.2. BRDF Recovery

The forward model described in Section 3.6 is largely dependent on two groups of pa-

rameters: the surface shape and the BRDF of the surface. In order to support the full

generality of the forward model, the optimizer would need to jointly solve for the BRDF.

This problem is related to the volumetric scattering parameter recovery in [35]. In that

work, the authors use inverse raytracing and gradient descent to recover scattering param-

eters by solving for the weights to be applied to a material dictionary. Such an approach

can be applied to surface recovery as well, where the weighting of a dictionary of BRDFs

is solved in an alternating minimization manner along with the surface shape. It is also

possible that further estimation of parameters beyond surface scattering alone, such as

subsurface scattering, could be approached in the same way. Of course, an increase in

unknowns will require more computation to calculate the gradient with respect to each

parameter, so low-dimensional reflectance models or dictionary-based approaches with a

limited number of atoms will be beneficial in terms of computational complexity.

3.7.3. Occlusion and Multiple Viewpoints

A significant drawback of most SL and ToF systems is the inability to recover surface

shapes that are occluded from the point of view of the camera or projector. Using multiple

cameras and projectors can potentially measure the entirety of an object’s visual hull, but

in these cases, multibounce interference biases shape estimates in the same way as the

single viewpoint case. Applying a raytracer-based optimization to multicamera systems

can potentially alleviate this interference, as well.
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3.7.4. Conclusion

This chapter summarized active 3D scanning techniques and their fundamental trade-

offs. We introduced and experimentally tested a hardware-based approach to suppressing

multibounce interference without significant increases in acquisition time. Then we mod-

eled the multibounce interference problem in SL and ToF systems using conventional path

tracing techniques from computer graphics. Because path tracing can account for phys-

ical effects that are ignored by canonical SL and ToF surface reconstruction algorithms,

these raytracers can be used in an inverse rendering approach to recover surface shape

estimates that are more accurate. We demonstrate this concept for time-of-flight using a

simple gradient descent optimization on simulated and experimental measurements. We

additionally quantify the performance gains over non-optimized ToF measurements in

terms of depth error as a function of the ratio between global and direct intensities in

the scene, as a function of measurement noise, and as a function of surface roughness.

Together these simulations show that the inverse rendering approach can consistently im-

prove the accuracy of 3D measurements because raytraced forward models can reliably

account for the effect of multibounce interference in real-world scenes.

Though computation time remains a challenge, as it does for many optimization-

based approaches in machine vision and computational imaging, we hope the benefits

of rendering-based optimization used in conjunction with existing active 3D scanning

systems enable new advances in the many fields that employ surface shape recovery, from

cultural heritage studies to reality capture for cinema and virtual reality.
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CHAPTER 4

Conclusion

In the previous two chapters, this thesis introduced a computational camera and dis-

play. The first of these, Focal Surfaces Displays, modify a conventional head-mounted

display design by inserting a phase SLM in between an OLED screen and an objective

lens. This phase modulator uses diffractive optics and a phase function optimizer to locally

bend bundles of rays exiting the OLED so they converge on the user’s retina at different

apparent focal depths. Because of diffractive effects in the SLM’s operation, however, the

retinal image becomes distorted and aberrated when going through this process. To cor-

rect for this, the color OLED image must be transformed through the inverse of the SLM

modulation. This distortion is spatially varying, so producing a linear mapping between

the OLED and the retina would require a light transport matrix too vast to store in mem-

ory. This thesis solves this challenging problem with rendering-based optimization, which

can accurately model the effects of the SLM distortion in an online manner that avoids

the memory requirements of a light transport inversion approach. Chapter 2 concludes

with experimental results showing that the focal surface display architecture can match

or outperform competing techniques in terms of depth error and saliency metrics with

less stringent time multiplexing requirements.

The second novel architecture, Motion Contrast 3D Scanning, approaches an entirely

different set of computational imaging problems: efficient, robust 3D laser scanning. Laser
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scanning is known to perform better than other techniques in the presence of ambient illu-

mination and reflective surfaces, but is slow because conventional cameras are an inefficient

measurement device for recovering first-bounce paths to the projector for triangulation.

This thesis proposes a passive hardware technique to eliminate these extra measurements

by using a motion contrast camera. Experimental results show that this configuration ap-

proaches laser scan quality while drastically reducing acquisition time. However, MC3D

relies on specialized motion contrast hardware to achieve this, and in the process elimi-

nates potentially useful multibounce measurements. A more widely-applicable method to

address multibounce intereference should make use of these measurements across other

active 3D methods.

This thesis again turns to rendering-based optimization for a solution. Using time-of-

flight 3D depth sensors as a testbed due to their sensitivity to multibounce interference,

this thesis introduces a raytraced image formation model designed for use in a gradi-

ent descent optimization to recover more accurate surface reconstructions for scenes with

multibounce interference. Chapter 3 concludes with simulated and experimental results

showing that the rendering-based optimization technique consistently improves surface

estimates for concave scenes from single-frequency and multi-frequency time-of-flight mea-

surements in terms of depth error and dynamic range.

This thesis uses these two distinct examples to highlight a path toward a more gen-

eral method for improving the performance of computational cameras and displays by

including rendering-based optimization in the design and operation of these systems.
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and Hertzberg, J. Three-dimensional mapping with time-of-flight cameras. Jour-
nal of Field Robotics 26, 11-12 (2009), 934–965.

[91] May, S., Werner, B., Surmann, H., and Pervolz, K. 3D time-of-flight
cameras for mobile robotics. In IEEE IROS (2006).

[92] McQuaide, S. C., Seibel, E. J., Kelly, J. P., Schowengerdt, B. T., and
Furness III, T. A. A retinal scanning display system that produces multiple focal
planes with a deformable membrane mirror. Displays 24, 2 (2003).

[93] Mertz, C., Koppal, S. J., Sia, S., and Narasimhan, S. A low-power struc-
tured light sensor for outdoor scene reconstruction and dominant material identifi-
cation. IEEE International Workshop on Projector-Camera Systems (2012).

[94] Moon, E., Kim, M., Roh, J., Kim, H., and Hahn, J. Holographic head-
mounted display with RGB light emitting diode light source. Optics Express 22, 6
(2014), 6526–6534.

[95] Naik, N., Kadambi, A., Rhemann, C., Izadi, S., Raskar, R., and
Bing Kang, S. A light transport model for mitigating multipath interference in
time-of-flight sensors. In IEEE CVPR (2015).

[96] Narain, R., Albert, R. A., Bulbul, A., Ward, G. J., Banks, M. S., and
O’Brien, J. F. Optimal presentation of imagery with focus cues on multi-plane
displays. ACM Trans. Graph. 34, 4 (2015).

[97] Narasimhan, S. G., Nayar, S. K., Sun, B., and Koppal, S. J. Structured
light in scattering media. In IEEE ICCV (2005).

[98] Nayar, S. K., and Gupta, M. Diffuse structured light. In IEEE ICCP (2012).



143

[99] Nayar, S. K., Ikeuchi, K., and Kanade, T. Shape from interreflections. In-
ternational Journal of Computer Vision 6, 3 (1991), 173–195.

[100] Neil, M. A. A., Paige, E. G. S., and Sucharov, L. O. D. Spatial-light-
modulator-based three-dimensional multiplanar display. SPIE 3012 (1997), 337–
341.

[101] Ng, R., Ramamoorthi, R., and Hanrahan, P. All-frequency shadows using
non-linear wavelet lighting approximation. ACM Trans. Graph. 22, 3 (2003).

[102] Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Régnier, S. Asynchro-
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