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ABSTRACT

Multimodality in Social and Biological Systems

Joseph D. Johnson

Perhaps because of the influence of the central limit theorem, it is common for scientists to

assume distributions in the real world are singly peaked and unimodal. However, many quanti-

ties in nature are actually better represented by multimodal distributions. One must provide an

explanation for this disconnect between the central limit theorem and reality. In this thesis, I

investigate how multimodality may arise in three distinct systems by developing mathematical

models.

First, I investigate how multimodality arises in an idealized system of coupled oscillators. I

demonstrate that multimodality naturally emerges when oscillators repel each other for a broad

class of interaction functions.

Second, I examine the impact of advertising on commodity product prices in the free mar-

ket. I show that this system can support a hierarchical structure where the market segments

into “name-brand” companies, advertising a significant amount and selling costly goods, and

“generic-brand” companies, advertising minimally and selling cheap goods.
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Third, I offer a theory that explains how anisogamy, size differences between sex cells,

could have arisen. A common theory is that anisogamy factored into the development of sexual

dimorphism. Using a dynamical systems model, I show that competition among zygotes in a

population can lead to the development of anisogamy.

Finally, data can be skewed due to poor measurements and/or direct manipulation. Psycho-

logical pricing, where prices are set so that they are either aesthetically pleasing to the customer

or set so that prices appear cheaper due to psychological factors, is an example of such distor-

tion. I develop a method to correct for this predisposition to skew the documented value away

from the “true” value of the data.
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2.1 Selected examples of bimodality. Histograms (normalized) for (a) size of

beetle horns [mm], [32–34] (b) Atlantic salmon body mass [g] [35, 36] (c)

color of galaxies at redshift 0.1 [37–39] (d) inverse growth rates of bacteria

[min−1] [40, 41]. 24

2.2 Sample interaction functions. Two cases of coupling functions that we

consider. Case 1 (red, dashed) is an odd, 2π-periodic function with a

continuous derivative, no zeros in between 0 and π, and has a positive slope

at 0. Case 2 (blue, solid) is similar to case 1 but has a zero of order 1 in

between 0 and π. 27

2.3 Concrete interaction function. The interaction function defined in

Eq. (2.11) plotted for several different values of a:
√

3π/4 (black, dotted),
√

6π/4 (red, dashed), and 3π/4 (blue, solid). As the value of |a| approaches

π the slope at zero stays fixed with slope 1 and the slope at ±a decreases in

magnitude. This relation between a and the slope values at ±a, combined

with Eq. (2.10) leads to the threshold for bimodality given by Eq. (2.12). 31

2.4 Numerical experiments with identical oscillators. Using example from

Eq. (2.11), top two panels show test for stability range of fractionation x

from Eq. (2.10); bottom two panels show test for critical parameter acrit
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from Eq. (2.12). (a) When initial fractionation is in the stable range (here

0.4 < xinitial = 0.55 < 0.6) perturbations shrink and the solution returns

to its initial state. (b) When initial fractionation is outside stable band

(here xinitial = 0.65 > 0.6) perturbations grow for some oscillators until

system evolves to a different fractionation state. (c) When xinitial = 1/2 and

a < acrit, perturbations shrink and the solution returns to its initial state.

(d) When xinitial = 1/2 and a > acrit, perturbations grow and the system

moves away from the unstable bimodal state until it reaches a new trimodal

equilibrium. 33

2.5 Sample asymmetric interaction function. This function (solid blue curve)

does not satisfy f(ψ) = −f(−ψ). Existence of bimodal equilibria requires

that it intersect its mirror reflection (dotted blue curve) or a scaled version

of it (see Eq. (2.15)). The fixed points of the system for x = 1/2 are marked

by black dots. 36

2.6 Numerical experiments with heterogeneous oscillators. Here, N = 1000

and oscillators’ frequencies are drawn from the distribution N (0, 100)

and the perturbations, ξi, i = 1 . . . N , are drawn from N (0, 0.01).

Using example from Eq. (2.11), panels (a) and (b) show the results for

xinitial = 1/2 and a = π/2 < acrit (compare to Fig. 2.4(a)). Panels (c) and

(d) show the results for xinitial = 1/2 and a = π/
√

2 + 0.1 > acrit (compare

to Fig. 2.4(d)). 37
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3.1 Price distributions. Red histograms show distribution of prices paid for

four common household products; blue histograms show best-fit model

predictions. Data are from a Nielsen database [98] of over 64 million

transactions (purchasing history for 60,000 households). 42

3.2 Effect of advertising on a firm’s demand curve. (a) Demand shifts due to

advertising above (red dashed) or below (blue dotted) the mean level (black

solid). Vertical-axis intercepts are Qfree(ai|~a). (b) A simple piecewise linear

form for Qfree(ai|~a), the quantity demanded at zero price, which we take to be

a non-decreasing function of ai − a that saturates at both left and right limits.

Here the minimum demand (with advertising far below the mean) is Qmin, the

maximum demand increase due to advertising is ∆Qad, and the advertising needed

beyond the mean for saturation is λ. 45

3.3 Advertising dynamics given Qfree(ai|~a). We plot the the horizontal line

y = ka together with y = B(ai|~a) (see Eq. (3.12)) and add color to indicate

the direction of change in advertising according to Eq. (3.8). Green regions

show where a firm advertising an amount ai would choose to increase its

advertising and red regions show where a firm advertising an amount ai

would choose to decrease its advertising. Panel (a) shows the case where

Qfree(ai|~a) is a piecewise linear function that levels off; (b) shows the case

where Qfree(ai|~a) is sigmoidal. 47

3.4 Regions of stability. We illustrate the regions of stability for the

differentiated and undifferentiated states, indicated in the figure by D and

U respectively. These are given by Eqns. (3.13), (3.18), and (3.19). Here
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green indicates that a state is stable and red indicates that a state is unstable.

The middle column, where B(a|~a) < ka < maxa B(a|~a) is where both

states are stable. 52

3.5 Simulation of the system. In this figure we give snapshots of the

numerical integration of the system from initial condition to equilibrium.

In panel (a), the system starts from the uniform randomly distributed

state with the advertising initial condition set as U(7.5, 12.5). In panel

(b), the separation into two groups has begun. Companies change their

spending until the lower group is far away from the mean, as seen in panel

(c). Finally, in panel (d), a bimodal equilibrium has been reached, with

one group representing generic brand companies (a ≈ 0) and the other

representing name-brand companies (advertising at a nonzero value at

a = aname). The green areas indicate where companies will increase their

advertising and the red areas indicate areas where companies will decrease

their advertising. In this simulation we set the number of companies to

N = 1000, ka = kP = kQ = λ = 1, and Qmin = ∆Qad = 10 (see Methods

section for parameter definitions). Additionally, advertising and production

cost functions are linear. 53

4.1 Example individual reproductive potential function. Here we show the

reproductive potential function defined by Eq. (4.4) in arbitrary units (a.u.).

Two maxima are apparent, one at zero and another at a nonzero value s∗.

Dynamics given by Eq. (4.5) are illustrated by color with red indicating
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regions where gamete size decreases and blue indicating where gamete size

increases. For this illustration, we set w = 1/10, α = 1, and s = 2. 65

4.2 Geometric argument for anisogamy. We illustrate a case where

gamete reproductive potential, ϕg, and gamete production, Ng, satisfy the

conditions set out in the section “Geometric argument.” When gametes

are small, the relative gains due to the ability to produce more of them

|N ′g/Ng| outweigh the relative drop in reproductive potential |ϕ′g/ϕg|. In

some intermediate range, reproductive potential gains dominate, and then

as gametes become very large the production terms again dominate as

reproductive potential gains saturate. 69

5.1 Ricker wavelet example. We visualize a Ricker wavelet (see Eq. (5.6))

with width w = 1 and height h = 3. 73

5.2 Setting smoothing to remove disturbance: theory versus numerics. We

generate the integrated squared error between the model equilibrium and

true distribution f(x) given the initial condition ρ0(x) = f(x) + ξ(x),

where ξ(x) a Ricker wavelet defined in Eq. (5.6) and f(x) = N (0, σ2). The

color indicates the amount of error with blue error corresponding to large

error and yellow to small error. The k value that yields the minimum error

(red, dashed) for a given height of the Ricker wavelet is equivalent to the k

value derived from the Eq. (5.5) and (5.10) (black, solid). Here, σ = w = 5

and N = 1000 75
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5.3 Heatmap of the integrated squared error when varying the height

and the width of the perturbation. We compute the integrated squared

error between the model result and true distribution f(x) when the

initial condition the sum ρ0(x) = f(x) + ξ(x), where ξ(x) is the added

perturbation. Here, the true distribution f(x) is a Gaussian with variance

σ2 = 25 and mean µ = 0 and the perturbation ξ(x) is a Ricker wavelet

(see (5.6)) with width w and height h. The error is minimized when w = σ

and h = 1/(
√

2πq2σ3) = 0.38, consistent with Eq. (5.10). The smoothing

strength k ranges from 0.01 to 0.99 with stepsize 0.005 and the height of

the Ricker wavelet ranged from 0.0008 to 0.1596 with stepsize 0.0008. 76

5.4 Removing perturbations. Panels (a)-(d) show the evolution from the

perturbed distribution ρ0(x, t) = (1 − ε)N (0, σ2) + εN (0, δ2), where

ε� 1, δ � σ to the equilibrium distribution when the smoothing parameter

ki(yi,0, yi) varies in space. The equilibrium distribution (red, solid) shows

good agreement with the true distribution f(x) = N (0, σ2). The bias

sensitivity parameter λ was set by minimizing the integrated squared error,

with the λ ≈ 1.8624× 103. In this simulation, σ = 50, δ = 0.5, ε = 0.01,

and N = 1000. 77

5.5 Removing bias from height data. We apply the our method with a spatial

varying smoothing parameter ki(yi,0, yi) set by Eq. (5.11). We see that the

equilibrium generated by the model (red, circles) removes the second mode

at 72 inches, which we assume to be due to overestimation. 78
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A.1 Numerical experiments testing the threshold for trimodality. Panel

(a): parameter value is a = atricrit + 0.1, and the trimodal state appears to

be unstable (as expected). Panel (b): parameter va;ie is a = atricrit − 0.1,

and the trimodal state appears to be stable (as expected). Both panels

use the example interaction function from Eq. (2.11), and both use equal

fractionation (x = y = z = 1/3) and equal spacing between clusters

(ψ1 = 2π/3) in initial conditions. 97

A.2 Numerical experiments testing bistability. Panel (a) and (b): we set

a = 1.43π ∈ (
√

2π, atricrit) and both the bimodal state and the trimodal state

are stable (as predicted). Panel (c): we set a = 1.43π − 0.1 <
√

2π < acrit

and we see that the bimodal state is unstable (we have added black dashed

lines so that one can see that the clusters away from the origin are not at

±π). Panel (d): we set a = 1.43π + 0.1 > atricrit >
√

2π and the trimodal

state is unstable (as predicted). In all panels N = 300 and the initial

conditions are equally spaced and have equal fractionation with a random

perturbation to all the phases of the oscillators. 98

A.3 Additional interaction functions. Solid blue curve: triangle wave from

Eq. (A.14); solid red curve: antisymmetrized variant of the von Mises

distribution from Eq. (A.15) with κ < 0; dashed red curve: antisymmetrized

variant of the von Mises distribution from Eq. (A.15) with κ > 0. Panels

(a) and (b) of Fig. A.4 use the triangle wave. Panels (c) and (d) use the

antisymmetrized von Mises function, with positive κ (dashed red) in panel

(c) and negative κ (solid red) in panel (d). We note that for κ > 0 the slope
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at the ±π is never steeper when compared to the origin and for κ < 0 the

slope at the origin is never steeper when compared to the slope at ±π. 99

A.4 Numerical experiments using additional interaction functions. We test

the stability of the bimodal equilibria for alternative coupling functions

shown in Fig. A.3. (a) Triangle wave coupling with initial fractionation in

predicted stable range. (b) Triangle wave coupling with initial fractionation

outside predicted stable range. (c) Von Mises coupling with κ > 0

(expected to be unstable). (d) Von Mises coupling with κ > 0 (expected

to be stable). In all panels N = 100 and oscillators’ natural frequencies

are drawn from the distribution N (0, 100). Initial phases are bimodally

distributed with modes at 0 and π, with perturbations ξi, i = 1, . . . , N , are

drawn from N (0, 0.01). 100

A.5 Basins of attraction. We plot the fraction of uniform random initial

conditions that end up in bimodal (blue circles), trimodal (orange asterisks),

or higher order multimodal (purple xs) states for the concrete system

examined given by Eq. (2.11). Here N = 100, K = −10000 and

oscillators’ natural frequencies are drawn from the distribution N (0, 100).

We performed 100 unique simulations for each value of a. Final states

(presumed equilibria) were identified automatically via k-means clustering.

Thresholds given by Eqns. (2.12) and (A.13) for stability of bimodality

and the antiphase state are given by the solid black line and the dot-dashed

green line, respectively. The threshold for the necessary condition for
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stability of the trimodal state, see Eq. (A.12), is given by the vertical dashed

magenta line. 101

A.6 Critical coupling strength. We perform numerical experiments to

demonstrate the existence of a critical coupling strength for our system

and evaluate its dependence on parameter a using the interaction

function defined in Eq. (2.11). Here N = 100, the natural frequency

distribution is given by N (0, σ2), and the initial phase distribution is

ρ(θ) = 0.5δ(θ) + 0.5δ(θ − ψ0), where ψ0 is the predicted phase separation

given by the stable fixed points of Eq. (11). Here, each curve represents

a different value of a (values indicated in legend). As in the standard

Kuramoto model, the critical coupling strength is dependant on the size

of the standard deviation of the distribution, but unlike the standard

Kuramoto model, it appears to also depend on a, which sets the shape of

the interaction function. 103

B.1 Optimized consumer welfare, profit and total welfare given marginal

advertising costs. In (a) we display the optimal total consumer welfare

generated by the market across all possible differentiated equilibria for a

given marginal advertising cost ka (blue, solid) and the total consumer

welfare generated by the undifferentiated state (red, dashed). The black

line in all three panels indicates when ka = max B(ai|~a) and thus, past

that point the differentiated state ceases to be stable. In (b) we display the

optimal total profit generated by the market across all possible differentiated

equilibria for a given marginal advertising cost ka (blue) and the total
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profit generated by the undifferentiated state (red, dashed). In (c) we

display the optimal total welfare generated by the market across all possible

differentiated equilibria for a given marginal advertising cost ka (blue, solid)

and the total welfare generated by the undifferentiated state (red, dashed).

We set N = 100, Qmin = 30, ∆Qad = 5, and λ = µ = ν = kQ = kP = 1,

with ka ranging over a range 0 to 45. 113

B.2 Histograms of Fitting Statisitics. Distributions of p values from tests for

unimodality (a-b) and consistency of price data with model predictions

(c). The red dashed line indicates the significance level of .05. Top and

middle row: LUU and Hartigan’s Dip Test (respectively). Rejection (low

p-value) means the price distribution is not consistent with unimodal null

hypothesis. Bottom row: KS test. Rejection (low p-value) means the price

distribution is not consistent with same-distribution null hypothesis (i.e.,

model and data not from same distribution). 115

B.3 Raw and Smoothed Price Data. Example of the raw price data with spikes

situated near certain ending digits (blue) and the smoothed, debiased data

that retains the quantitative properties of the underlying distribution while

removing the spikes (orange). Red arrows point to example spikes located

at $2.99, $3.49, and $3.99. 118

C.1 Possible sex ratios. The solid black curve shows the threshold for existence

of the anisogamous state given by Eq. (C.1). The anisogamous equilibrium

exists below the threshold (blue shaded region) and ceases to exist above
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the threshold (red shaded region). Here the fraction “male” refers to the

fraction with small gametes. 122

C.2 Simulation of the system. Panels (a)-(d) show the evolution of the system

from an isogamous state to an anisogamous state. Here, the blue curve

shows the reproductive potential landscape given by Eq. (4.4), the red

circles indicate gamete sizes, and the yellow crosses give positions of

gametes along the reproductive potential landscape. Panel (a) captures

the isogamous initial condition U(1, 3). Panel (b) shows the individuals

moving along the landscape in the direction that increases reproductive

potential. Panel (c) shows the beginning of two groups forming. In Panel

(d), the simulation has arrived at an anisogamous equilibrium, with gamete

sizes converging to zero or s∗ as given by Eq. (4.8). The final fraction

of organisms that produce small gametes is x = 0.1. For this numerical

experiment, we set α = 1, N = 100, and w = 1/10. 124

C.3 Numerical test of the stability of anisogamy. We test the stability of the

anisogamous state. Panel (a) shows the large gamete group being perturbed

and then returning to its equilibrium value, s∗. Panel (b) shows the small

gamete group being perturbed and then returning to its equilibrium value

zero. Panel (a) and (b) demonstrate the stability of the anisogamous

equilibrium and are consistent with the asymptotic theory from Eqns (4.9)

and (4.11). In both panels, we set α = 1/3, N = 1000, and w = 2, with an

initial fractionation x = 1/2. 126
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C.4 Simulation with a heterogeneous population. We display the evolution

from isogamy to anisogamy population for a heterogeneous population.

The large gamete group widens out when adding noise to the width of the

sigmoid in Eq. (4.3). The final fraction of organisms that produce small

gametes is x = 0.1. For this simulation, we set α = 1, N = 100, and w was

sampled from the distribution N (1/10, 1/502). 127

C.5 Simulation with a nonzero minimum gamete size. We display a

simulation where the individual reproductive potential is multiplied by

e−k/s, where k > 0. The initial isogamous population moves to an

anisogamous population ρ(s) = xδ(s − s∗small) + (1 − x)δ(s − s∗),

0 < s∗small < s∗. Here, N = 100, w = 1, α = 1, k = 1, and the final fraction

of small gametes is x = 0.16. The initial isogamous population was drawn

from U(1, 3). 128

C.6 Simulation with both absolute and relative reproductive potential. In

this simulation the individual reproductive potential was a weighted sum

of two sigmoidal functions, one as in the Eq. (4.3) (i.e., centered at s), and

the other identical but centered at c = 1. Weight was 90% absolute, 10%

relative. The population converges to an anisogamous state with 40% small

gametes. Here, N = 100, w = 0.1 +N (0, 0.012), α = 1, and the initial

population was drawn from U(0, 1.5). 129
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CHAPTER 1

Introduction

The act of modeling consists of taking the real world and boiling it down to a simplified

version that focuses on aspects that one deems important. Given the way they simplify the

world, models are not a one-to-one representation of reality, but, rather, a model’s value should

be judged by its ability to do two things: explain phenomena and make predictions.

A model allows one to make sense of the world and a simple model gives a clear and concise

story as to how the world works. The models laid out in this dissertation give insight into the

inner workings of various social and biological phenomena.

1.1. Dissertation overview

This thesis is divided into four main chapters encapsulating my PhD research at Northwest-

ern University. Each chapter corresponds to a project resulting in a manuscript that has been or

will be submitted for publication.

In Chapter 2, I use coupled oscillators as a testbed case to explore how multimodality

emerges. In Chapter 3, I demonstrate that advertising can partition the market into “name-

brand” and “generic-brand” companies, where “name-brand” companies advertise a conse-

quential amount, and “generic-brand” companies advertise a negligible amount. In Chapter

4, I develop theory that gives an account as to how sex cell size dimorphism came to be. Fi-

nally, in Chapter 5, I put forth a method to correct data skewed due to measurement error and/or

intentional distortion.
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CHAPTER 2

The development of multimodality via coupled oscillators

2.1. Introduction

Synchronization is a widespread phenomenon observed in biological [1–3], chemical [4–6],

physical [7–10], and social settings [11–14]. A paradigmatic mathematical model that can

explain synchronization in many contexts is the Kuramoto model [15–19]. Much work has

been done on understanding the complex and surprising dynamics of the Kuramoto model and

its variants, but the vast majority of that research focuses on the case of attractive coupling; here

we are interested in the case where the coupling is repulsive.

Repulsive (or inhibitory) coupling is of physical interest as it arises frequently in the con-

text of neuronal networks (e.g., see refs. [2, 20]), chemical interactions (e.g., refs. [4, 21, 22]),

and many other systems (see refs. [23–28]). Some coupled oscillator models have examined

repulsive coupling: Giver et al. developed a local variant of the Kuramoto model with repulsive

coupling based on the interaction between water micro-droplets with reactants of the Belousov-

Zhabotinsky reaction [29]. Hong and Strogatz developed two variants of the Kuramoto model

that involved mixes of positive and negative coupling [30, 31].

The relationship between network structure and repulsive coupling has also been analyzed,

with Levnajić [42,43] showing that, given the network coupling structure, many different phase

configurations can arise. Recently, it has been shown that synchronization can arise in both

repulsive and attractive coupling scenarios subject to common noise [44–47]. Gong et al. [47],
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Figure 2.1. Selected examples of bimodality. Histograms (normalized) for (a)
size of beetle horns [mm], [32–34] (b) Atlantic salmon body mass [g] [35, 36]
(c) color of galaxies at redshift 0.1 [37–39] (d) inverse growth rates of bacteria
[min−1] [40, 41].

inspired by the work of Gil et al. [46], studied instances where common noise can lead to

clustering in the phase distribution of oscillators for repulsive coupling.

Nakamura et al. [48] investigated the effect of time-delayed nearest-neighbor coupling in

the Kuramoto model and found that it could lead to the development of clustered states for

both attractive and repulsive coupling. Mishra et al. [49] demonstrated that “chimeralike” states

could arise with globally coupled Liénard systems incorporating both attractive and repulsive

mean-field feedback. Yeldesbay et al. [50] established that chimeralike states can arise in the

Kuramoto-Sakaguchi model. They also considered a model with oscillators that could be syn-

chronous (attractive coupling) or asynchronous (repulsive coupling) depending on their natural

frequencies. They found that in this case a chimera state arises.
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Golomb et al. [51] showed that clustering is possible in a coupled oscillator model with

repulsive coupling that is suited for strong interactions between the limit-cycle oscillators. They

further provided theory for when a frequency locked stationary phase distribution and when a

nonperiodic attractor can arise.

Tsimring et al. [52] showed that heterogeneous globally coupled oscillators obeying the

standard Kuramoto model can cluster with all configurations having a zero order parameter, but

this clustering breaks down as the number of oscillators increases. They also showed that, with

local coupling, clustering can occur for nonidentical oscillators given sufficiently large coupling

strength.

Closest to the work we present here, Okuda [53] looked at the effect that an arbitrary cou-

pling function may have on oscillators and developed theory as to when an n-cluster state, with

all clusters being the same size, can arise. He found that harmonics in the coupling function are

necessary for clusters to arise.

The central limit theorem [54] may influence us to expect that distributions in nature should

tend to a singly-peaked, unimodal shape akin to the Gaussian normal distribution. Yet, bi-

modality and multimodality can be observed in biological [55–57], social [58–60], and chemi-

cal [61–64] contexts and beyond [65–67] (see Fig. 2.1 for selected examples). In this chapter we

demonstrate that multimodality may arise as a result of repulsive or inhibitory coupling dynam-

ics and we give an in-depth explanation of how it can arise for a range of coupling functions.

2.2. Model with antisymmetric repulsive coupling

We begin by considering a system of N phase oscillators characterized by natural frequen-

cies ωi, i = 1 . . . N . The oscillators are globally coupled with coupling strength K through an
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interaction function f that depends only on the phase difference between each pair of oscilla-

tors:

θ̇i = ωi +
K

N

N∑
i=1

f(θj − θi), i = 1, . . . , N .(2.1)

Here K > 0 represents attractive coupling and K < 0 represents repulsive coupling.

We consider interaction functions f(u), u ∈ (−π, π], that satisfy the following conditions:

f(0) = 0(2.2a)

f ′(0) > 0(2.2b)

f(u) = −f(−u)(2.2c)

f ′(u) continuous(2.2d)

f(π) = lim
u→−π+

f(u).(2.2e)

These conditions impose: (2.2a) no coupling effects between oscillators in sync; (2.2b) locally

attractive (repulsive) coupling near sync state for K > 0 (K < 0); (2.2c) odd interaction

function; (2.2d) no discontinuities in f ′(u); (2.2e) 2π-periodic interaction function on (−π, π]

domain. We point out that conditions (2.2c) and (2.2e) lead to f(π) = limu→−π+ f(u) = 0.

2.2.1. Identical Oscillators

We assume that oscillators frequencies are drawn from a known frequency distribution g(ω).

For simplicity we first consider the case of identical oscillators, i.e., we set the distribution to
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Figure 2.2. Sample interaction functions. Two cases of coupling functions
that we consider. Case 1 (red, dashed) is an odd, 2π-periodic function with a
continuous derivative, no zeros in between 0 and π, and has a positive slope at
0. Case 2 (blue, solid) is similar to case 1 but has a zero of order 1 in between 0
and π.

be g(ω) = δ(ω − ω0), so the system becomes

θ̇i = ω0 +
K

N

N∑
j=1

f(θj − θi), i = 1, . . . , N .(2.3)

2.2.2. Bimodal equilibria

We assume that the number of oscillators is large, N � 11, and we look for bimodal equilibria

by making the ansatz of an oscillator phase distribution h(θ) = xδ(θ − θ1) + (1− x)δ(θ − θ2),

where 0 < x < 1 describes the fraction in cluster 1. Note that this constitutes an explicit restric-

tion to a bimodal manifold within the broader space of all possible oscillator phase distributions.

1Stability when N is small is left for future work.
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Then system (2.3) can be reduced to two coupled ordinary differential equations (ODEs):

θ̇1 = ω0 +
K

N

(
xN∑
i=1

f(θ1 − θ1) +
N∑

i=xN+1

f(θ2 − θ1)

)

= ω0 +K(1− x)f(θ2 − θ1)(2.4)

θ̇2 = ω0 +
K

N

(
xN∑
i=1

f(θ1 − θ2) +
N∑

i=xN+1

f(θ2 − θ2)

)

= ω0 −Kxf(θ2 − θ1) .(2.5)

We define a new phase-difference variable ψ = θ2 − θ1 and write its dynamical system by

subtracting Eq. (2.4) from Eq. (2.5):

ψ̇ = −Kf(ψ) .(2.6)

We observe that the fixed points of the system for ψ are fully determined by the zeros of f(ψ).

From the assumptions above f(ψ) must have zeros at ψ = 0 and ψ = π. Furthermore, if

conditions (2.2a–2.2e) hold and f(ψ) has no other zeros (as in the case of the red dashed curve

from Fig. 2.2), then it is implied that f ′(π) ≤ 0. Hence, within the bimodal manifold, the fixed

point at ψ = π should be stable with ψ = 0 being unstable. ψ = π corresponds to a bimodal

equilibrium with two clusters of oscillators separated by 180◦ of phase.

If additional roots of f(ψ) exist between 0 and π, these will also correspond to bimodal

fixed points with alternating stability (again restricted to the bimodal manifold). We focus on

the cases where there are no other fixed points or there is exactly one other fixed point ψ0 in

(0, π); other cases are similarly tractable. Figure 2.2 illustrates the typical general shapes of the

interaction functions that we consider.
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2.2.2.1. Stability of bimodal equilibrium. To investigate the broader stability of solutions to

perturbations outside the bimodal manifold, we consider the perturbation of a single oscillator

by a small amount ε. Because N � 1, we approximate the dynamics of the two clusters as

unaffected by this perturbation. We examine the evolution of distance between the perturbed

oscillator and the group from which it was perturbed, ε(t), to evaluate whether the system

returns to its initial state.

For convenience, we move into a rotating frame by redefining θi → θi + ω0t, which is

equivalent to setting ω0 = 0. Without loss of generality we choose oscillator index N from the

θ2 cluster for the perturbation and assume θ1 = 0, and thus θ2 = ψ0 ≤ π (assuming for now that

our interaction function has only one or zero fixed points in (0, π)). Then θN = θ2− ε = ψ0− ε,

and

ε̇ = −K
N

[
xN∑
i=1

f(θ1 − ψ0 + ε) +
N−1∑

i=xN+1

f(θ2 − ψ0 + ε)

]

= −Kxf(−ψ0 + ε)−K(1− x)f(ε) .

We expand the functions f in a Taylor series to linear order:

ε̇ ≈ −εK [xf ′(ψ0) + (1− x)f ′(0)] .

Assuming that K < 0 (repulsive coupling, our case of interest in this chapter), this implies

stability if and only if

(2.7) xf ′(ψ0) + (1− x)f ′(0) < 0 .
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A nearly identical calculation starting with the perturbation of a single oscillator from the

θ1 (zero phase) cluster leads to a similar equation,

(2.8) (1− x)f ′(ψ0) + xf ′(0) < 0 .

Since Eqs. (2.7) and (2.8) must be simultaneously satisfied for stability of the full bimodal

distribution, the following inequality must hold:

(2.9) f ′(0) < (1− x)[f ′(0)− f ′(ψ0)] < −f ′(ψ0) .

Interestingly, this implies that the slope of the interaction function f(ψ) must be steeper at

ψ = ψ0 compared to ψ = 0 if the bimodal state is to be stable. We can also compute explicit

bounds on the proportion of the oscillators in each group by isolating x in inequality (2.9) :

(2.10)
f ′(0)

f ′(0)− f ′(ψ0)
< x <

−f ′(ψ0)

f ′(0)− f ′(ψ0)
.

2.3. Concrete example

As a concrete example, we consider a simple class of interaction functions

(2.11) f(u; a) =
1

π2a2
u
(
π2 − u2

) (
a2 − u2

)
.

These functions have roots on (−π, π] at 0, π, and±a, and satisfy all the conditions set forth

earlier in section 2.2. As long as 0 < |a| < π there are three roots in 0 ≤ u ≤ π, and one can

check that f ′(0) = 1 for all choices of a (see Fig. 2.3 for example plots). For inequality (2.10)
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Figure 2.3. Concrete interaction function. The interaction function defined
in Eq. (2.11) plotted for several different values of a:

√
3π/4 (black, dotted),√

6π/4 (red, dashed), and 3π/4 (blue, solid). As the value of |a| approaches
π the slope at zero stays fixed with slope 1 and the slope at ±a decreases in
magnitude. This relation between a and the slope values at ±a, combined with
Eq. (2.10) leads to the threshold for bimodality given by Eq. (2.12).

to be satisfiable, we require
π2

3π2 − 2a2
<

2π2 − 2a2

3π2 − 2a2
,

which reduces to

(2.12) |a| < π/
√

2 ≡ acrit .
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We note that symmetry of the roots allows us to consider positive a without loss of general-

ity. Figure 2.4 shows the results of numerical experiments where we test this predicted stability

threshold. In each panel, Eq. (2.3) is implemented with the interaction function from Eq. (2.11).

We initialize xN oscillators at θ1 = 0 and (1 − x)N at θ2 = a, then add a small random per-

turbation ξi to each oscillator’s initial phase, where ξi is drawn from the normal distribution

N (0, δ2), with δ = 0.1 used in Fig. 2.4. We numerically integrate the system using a 4th/5th

order Runge-Kutta scheme and consider evidence for stability if it approaches the unperturbed

state, i.e. ψ = θ2 − θ1 → a with xfinal = xinitial. We note that in these experiments we set

coupling strength K = −10002.

In panels (a) and (b), we use N = 100 oscillators, ω0 = 0, and set a = π/2, consistent

with the stability threshold from Eq. (2.12), a < acrit = π/
√

2. The stable band of fractionation

according to inequality (2.10) is then 2/5 < x < 3/5. In panel (a), we set xinitial = 0.55, below

the band’s upper bound; in panel (b), we set xinitial = 0.65, above the band’s upper bound. As

expected, the bimodal equilibrium appears stable in panel (a), but unstable in panel (b), where

eleven oscillators move between clusters to establish a different equilibrium within the stable

fractionation band (2/5 < xfinal = 0.54 < 3/5).

In panels (c) and (d), we again use N = 100 oscillators and ω0 = 0, but here we examine

the predicted stability threshold acrit = π/
√

2 from Eq. (2.12). We expect the bimodal state

with ψ∗ = a to be unstable for all positive a > acrit (but note that this state ceases to exist when

a > π). We set xinitial = 1/2 since this is within the fractionation stability band from inequality

(2.10) for all a < acrit. In panel (c), we set a = acrit − 0.1, just below the threshold for stability;

in panel (d), we set a = acrit + 0.1, just barely in the unstable domain. As expected, the bimodal

2For identical oscillators, the magnitude of K is not important, but for the nonidentical case see Section A.4 for
discussion of coupling strength effects
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Figure 2.4. Numerical experiments with identical oscillators. Using example
from Eq. (2.11), top two panels show test for stability range of fractionation x
from Eq. (2.10); bottom two panels show test for critical parameter acrit from
Eq. (2.12). (a) When initial fractionation is in the stable range (here 0.4 <
xinitial = 0.55 < 0.6) perturbations shrink and the solution returns to its initial
state. (b) When initial fractionation is outside stable band (here xinitial = 0.65 >
0.6) perturbations grow for some oscillators until system evolves to a different
fractionation state. (c) When xinitial = 1/2 and a < acrit, perturbations shrink
and the solution returns to its initial state. (d) When xinitial = 1/2 and a > acrit,
perturbations grow and the system moves away from the unstable bimodal state
until it reaches a new trimodal equilibrium.

equilibrium again appears stable in panel (c), but it appears unstable in panel (d). Since no

fractionation x will lead to a stable bimodal equilibrium, the system must move to an entirely

different state, and it appears to converge to a trimodal distribution of oscillator phases.
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We are able to understand why the system converges to a trimodal state by performing a

similar analysis for the stability of three-cluster, or trimodal, oscillator distributions. One can

show that a necessary condition for stability is:

f ′(0) <− [(x+ y)f ′(ψ1) + (y + z)f ′(ψ2)

+(x+ z)f ′(ψ1 + ψ2)](2.13)

where ψi is the angle separating clusters at θi and θi+1 (θ4 identified with θ1), and x, y, and z are

the fractionations of the three clusters at θ1, θ2, and θ3 respectively. With equal spacing between

the clusters ψ1 = ψ2 = 2π − ψ1 − ψ2 = 2π/3, the necessary condition simplifies to

f ′(0) < −2f ′(
2π

3
) .

For the example function shown in Eq. (2.11) this is

a <
2

3

√
14

3
π ≡ atricrit ≈ 1.44π .

This implies that a trimodal state remains stable for all a < π. It stably coexists with the

bimodal state for a < π/
√

2, and may coexist with other multimodal states for π/
√

2 < a < π.

In general different multimodal states may stably coexist over various parameter ranges.

More details of the analysis for trimodality can be found in Section A.1 in the appendix.

2.4. Generalization to asymmetric interaction functions

We can relax assumption (2.2c) of an antisymmetric coupling function and still find stability

boundaries for multimodal states. In place of Eq. (2.6) (which used oddness of the coupling
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function), we find instead

(2.14) ψ̇ = Kxf(−ψ)−K(1− x)f(ψ) .

Clearly ψ∗ = 0 and ψ∗ = π both remain fixed points. Other fixed points exist if

(2.15) xf(−ψ∗) = (1− x)f(ψ∗)

has a solution on −π < ψ∗ ≤ π. Figure 2.5 shows an example of an asymmetric interaction

function. Geometrically this condition can be understood as identifying intersections of f(ψ)

and its reflection f(−ψ) when x = 1/2 (or scaled versions when x 6= 1/2). Once multimodal

fixed points are identified, stability analysis is analogous to that presented earlier.

2.5. Generalization to non-identical oscillators

We argue that real-world bimodal or multimodal distributions may result from similar dy-

namics to those presented in this chapter. Of course, heterogeneity is inevitable in most real-

world systems, yet we have focused thus far on the case of identical oscillators. While we leave

the more general analysis for future work, we have conducted numerical experiments that ap-

pear to show that the predicted behavior occurs even in the presence of oscillator heterogeneity.

Again using the same example interaction function from Eq. (2.11), we now draw frequen-

cies, ωi, from a normal distribution N (0, σ2) and set the initial phases of the oscillators to

θi = ξi (fraction x) or θi = a+ ξi (fraction 1− x), where ξi is a small perturbation drawn from

the distributionN (0, δ2). Figure 2.6 shows the results of perturbation experiments analogous to

those presented in Fig. 2.4, with analogous results except that the final phase distributions have
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Figure 2.5. Sample asymmetric interaction function. This function (solid
blue curve) does not satisfy f(ψ) = −f(−ψ). Existence of bimodal equilib-
ria requires that it intersect its mirror reflection (dotted blue curve) or a scaled
version of it (see Eq. (2.15)). The fixed points of the system for x = 1/2 are
marked by black dots.

phases that cluster about the modes rather than all converging to them precisely (right panels

show histograms of final states).

In Fig. 2.6 panels (a) and (b), we use N = 1000 oscillators and set a = π/2 < acrit

and xinitial = 1/2. Even with perturbed initial phases and heterogeneous natural frequencies,

the oscillators still remain in the bimodal state as predicted for a < acrit. Specifically, panel

(b) shows that the steady state distribution of oscillators has finite-width clustering about the
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Figure 2.6. Numerical experiments with heterogeneous oscillators. Here,
N = 1000 and oscillators’ frequencies are drawn from the distribution
N (0, 100) and the perturbations, ξi, i = 1 . . . N , are drawn fromN (0, 0.01). Us-
ing example from Eq. (2.11), panels (a) and (b) show the results for xinitial = 1/2
and a = π/2 < acrit (compare to Fig. 2.4(a)). Panels (c) and (d) show the results
for xinitial = 1/2 and a = π/

√
2 + 0.1 > acrit (compare to Fig. 2.4(d)).

fixed point positions predicted from the identical-oscillator case. In panels (c) and (d), since

a = π/
√

2 + 0.1 > acrit, the bimodal state breaks down (consistent with the prediction of the

identical-oscillator theory) and the system appears to converge to a trimodal equilibrium with

three finite-width clusters.

2.6. Discussion

Coupled oscillators are an excellent testbed for models of synchronization or clustering.

Even though real-world variables (e.g., sediment grain size [68], salmon body size [35, 69],
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human communication frequency [70], dopamine receptor density [71], neutron star mass [72],

galaxy color [39], gamma ray burst duration [73], tree height [74], animal ornament size [33])

may not be oscillatory or confined to a periodic domain, bimodality may emerge for qualita-

tively similar reasons. In our model, the coupling of one unit’s dynamical behavior to that of

others is key to the phenomenon.

For clarity of presentation we have focused on a single example of interaction function

(Eq. (2.11)), but evaluation of two other classes of interaction functions (triangle waves and

antisymmetrized von-Mises kernels) also supports our analytical results—see Section A.2 in

appendix for details. In Sections A.3 and A.4, we also present further results regarding de-

pendence of bimodal equilibria on coupling strength K, as well as some numerical evidence

regarding sizes of basins of attraction; each of these topics merits further in-depth study. The

analysis we present here focuses exclusively on the case of all-to-all coupling; we leave further

investigation of the impact of network structure for future work.

For real-world scenarios where bimodality or multimodality is of interest, the interaction

function may not be known exactly. Nevertheless, we expect that it will often be possible to

assess whether the conditions expressed in Eqns. (2.2) and (2.9) hold in a particular case. It also

seems plausible that functions describing real-world interactions between coupled systems will

have no more than a handful of roots, making bimodality and trimodality likely outcomes when

repulsive or inhibitory coupling is imposed.

One particularly important case occurs when the interaction function has only roots at zero

and π, with the root at zero having larger or equal magnitude slope. That is the case in the

standard Kuramoto model with sinusoidal coupling. In such a case we expect that the incoherent

splay state will be stable. In general, the splay state should be stable when the tendency to
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cluster (due to large-phase interactions) cannot overcome the oscillators’ repulsive small-phase

interactions.

2.7. Conclusions

We have shown that, when coupling is repulsive, multi-modality of the oscillator distribu-

tion can be a stable configuration for a wide range of interaction functions. We showed that

bimodality can be expected under repulsive coupling when the slope of the interaction function

at the origin is shallower than at the other root(s). We performed numerical experiments for

both identical and nonidentical oscillators and observed results consistent with theory.

This demonstration that repulsive coupling can produce clustering under reasonable as-

sumptions about the interaction dynamics is important as repulsive coupling is present in many

natural systems. Hence, the theory we present in this chapter provides an argument as to why

one might expect multi-modality instead of unimodality or incoherence in systems known to

have repulsive coupling.
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CHAPTER 3

Modeling advertising competition

3.1. Introduction

Advertising is an important component of a free market system; it has been estimated that

advertising expenditures in the United States exceeded $200 billion dollars in 2018 alone [75].

Although the monetary investment is large, it remains unclear exactly how advertising affects

demand and what the implications are for market competition. Perhaps advertising leads to

increased market efficiency, greater aggregate profit for sellers, or better outcomes for buyers.

The opposite could also be argued.

There are three prevailing theories as to how advertising influences the consumer [76]. Ad-

vertising can be viewed as persuasive, whereby it changes the tastes of consumers and in-

creases demand (and price) [77–79]; informative, whereby it increases competition and de-

creases price [80–82]; or complementary, whereby it appeals to consumers with specific prefer-

ences that complement the consumption of the advertised products [83–85]. These views have

drastically different implications.

In this chapter we focus on persuasive advertising and, as in [86], assume that it increases

demand. We look to work by Abernethy and Butler [87] to justify this assumption, where

they report that an average TV ad contains just one mention of descriptive information about

the displayed product (e.g., price, quality, performance, etc.), and that 37.5 percent contain no

descriptive information at all. We take this to mean that a significant portion of TV ads are not
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informative, implying that they are persuasive or complementary. Additionally, we make the

simplifying assumption that persuasive advertising is always complementary, as Lindstädt and

Budzinski argue that the viewer relates with the images and messages for both complimentary

and persuasive advertising [88].

A large amount of research has been devoted to using game theory to choose the optimal

advertising outlay to maximize profit [89–95]. Often this work focuses on settings where there

is a monopoly (only one supplier of a good or service) or an oligopoly (only a small number

of suppliers of a good or service) [90, 92–97]. Less research has focused on monopolistic

competition, where there are many suppliers of a product or service, but the products or services

are differentiated only by brand and/or quality. In this chapter we develop a model for this

setting, looking at the expected advertising expenditure distribution for an arbitrary number of

firms competing in a single commodity-product sector. Our goal is to develop a qualitative

understanding of the expected shape of the distribution in a monopolistic competitive setting.

3.2. Results

Using a simple model in which firms work to differentiate themselves through advertising,

we find that, when advertising is relatively cheap compared to the benefit of advertising, two

groups arise: a “generic brand” group that advertises a minimal amount, and a “name brand”

group that advertises at a significantly higher level. We find that this segmentation is stable

and only ceases to exist when the marginal cost of advertising becomes too high relative to the

marginal benefit of advertising. Although our model is intended chiefly to provide a conceptual

“toy” description, fits to real-world price data show good qualitative agreement (see Fig. 3.1).
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Figure 3.1. Price distributions. Red histograms show distribution of prices paid
for four common household products; blue histograms show best-fit model pre-
dictions. Data are from a Nielsen database [98] of over 64 million transactions
(purchasing history for 60,000 households).

3.2.1. Summary of model

We make the following simplifying approximations:

(1) Companies sell an indistinguishable product (except for brand label).

(2) Companies have linear demand curves.

(3) Demand for a company’s product increases when its advertising is above the mean

advertising level and decreases when its advertising is below the mean.

(4) Each company sets the price at a level that maximizes its profit.

(5) Companies continuously adjust their advertising so as to maximize profit.

These assumptions lead to a system of ordinary differential equations describing the dynamics

of advertising investments for N firms.

We show that when production and advertising costs are linear and the maximum marginal

profit of advertising is positive (i.e., when advertising pays off at least in some situations), the
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equilibrium where companies split into name brands and generics is stable—a state that we

call differentiated. Furthermore, when the maximum marginal profit is negative, all companies

choose to abstain from advertising1 and thus, they all become generic companies—a state that

we call undifferentiated. The undifferentiated state is stable when increasing advertising de-

creases profit for the average company. We find that regions of stability for the undifferentiated

state and the differentiated state overlap leading to a region of bistability. Details about stability

are given in Section 3.3.2.2.

3.3. Model and analysis

3.3.1. Model Derivation

Consider N companies (or firms) in a market all selling the same indistinguishable2 product.

The ith firm purchases a quantity of advertising ai3. For simplicity we assume that the firms

have linear demand curves of the form:

(3.1) Qi = Qfree(ai|~a)− kPPi , i = 1, 2, . . . , N

where Qi is the quantity demanded of firm i’s product, Pi is the unit price for firm i’s product,

Qfree(ai|~a) is the quantity demanded when the unit price is zero, which may depend on the full

distribution of advertising in the market ~a = (a1, a2, . . . , aN), and kP is a constant that sets the

market’s sensitivity to price.

1In our model we consider zero to be the minimal advertising state; note that this represents a state with zero excess
advertising, since companies inevitably must package and sell their products under a brand name, and that could
itself be considered a minimal form of advertising.
2By “indistinguishable” we mean that the product without branding is indistinguishable, but the brand label is
always known to the consumer.
3This could be quantified, e.g., by clicks on a website ad banner, inserts in a newspaper, views of an ad on TV, or
supermarket placement costs.
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One measure of a firm’s health is the profit generated, with profit defined here as revenue

minus production and advertising costs. We take revenue Ri for the ith firm to be solely due to

sales of this single product at market price:

(3.2) Ri = QiPi = Qfree(ai|~a)Pi − kPP 2
i i = 1, 2, . . . , N.

In this model we only consider two types of operating costs: the cost of production CQ(Qi)

and the cost of advertising Ca(ai), and we assume an additive relationship

(3.3) Ci(Qi, ai) = CQ(Qi) + Ca(ai),

where Ci(Qi, ai) is the net operating cost for the ith firm. We assume that both CQ and Ca are

increasing functions of their arguments, and for simplicity4 assume a power law form for each:

CQ(Qi) = kQQ
µ
i(3.4a)

Ca(ai) = kaa
ν
i ,(3.4b)

where µ, ν > 0 and kQ, ka are scale factors and can be interpreted as the marginal costs of

production and advertising respectively when µ = ν = 1. Thus, the profit function for the ith

firm is

πi = Ri − Ci = Qfree(ai|~a)Pi − kPP 2
i − kQQ

µ
i − kaaνi .(3.5)

4Power laws are common in both natural and engineered systems [107, 108], and there is evidence that production
costs can indeed be approximated by power law scaling [109] .
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Figure 3.2. Effect of advertising on a firm’s demand curve. (a) Demand shifts
due to advertising above (red dashed) or below (blue dotted) the mean level (black
solid). Vertical-axis intercepts are Qfree(ai|~a). (b) A simple piecewise linear form for
Qfree(ai|~a), the quantity demanded at zero price, which we take to be a non-decreasing
function of ai− a that saturates at both left and right limits. Here the minimum demand
(with advertising far below the mean) is Qmin, the maximum demand increase due to
advertising is ∆Qad, and the advertising needed beyond the mean for saturation is λ.

Critically, we tie a firm’s level of advertising, ai, to its ability to capture market power.

We do this by assuming Qfree(ai|~a) to be a non-decreasing function of ai referenced to the

mean advertising level a = N−1ΣN
i=1ai, i.e., a non-decreasing function of ai − a (in the most

general case, however, it might be an arbitrary function of the full advertising distribution ~a =

(a1, . . . , aN)). We assume firms that advertise more than the average firm have their demand

curves shift out, and firms that advertise less than average have their demand curves shift in.

We also assume there is a saturation to the amount advertising can influence a firm’s abil-

ity to capture market share. A plausible smooth, nondecreasing function that saturates is the

sigmoid. We present results for that case in Section B.1. For greater algebraic simplicity, we
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define Qfree(ai|~a) here as the following saturating piecewise linear function:

(3.6) Qfree(ai|~a) =



Qmin, ai − a ≤ −λ

Qmin +
∆Qad

2λ
(ai − a) +

∆Qad

2
, −λ < ai − a ≤ λ

Qmin + ∆Qad, ai − a > λ ,

where ∆Qad is the maximum demand increase due to advertising, Qmin is the zero-advertising

(minimum) quantity demanded at zero price, which we deem “intrinsic demand,” and λ is the

width of Qfree(ai|~a) (roughly the amount of excess advertising—above or below the mean—

needed for benefits to saturate). See Fig. 3.2 for an illustration. Note, however, that for the

purpose of simulations, we assume Qfree(ai|~a) takes on a smooth sigmoidal form:

(3.7) Qfree(ai|~a) =
∆Qad

2

{
tanh

[
ai − a
λ

]
+ 1

}
+Qmin.

We assume that each firm always chooses the price P ∗i that maximizes its profit, with corre-

sponding quantity demanded Q∗i . We introduce dynamics to the model by assuming that firms

change their advertising levels at a rate proportional to the amount of profit to be gained, i.e,

(3.8) τ
dai
dt

=
∂πi
∂ai

=
∂

∂ai

{
Qfree(ai|~a)P ∗i (ai|~a)− kP[P ∗i (ai|~a)]2 − kQQ∗i (ai|~a)µ − kaaνi

}
,

where the constant τ is sets the time scale for equilibration; we will henceforth set τ = 1

(equivalent to rescaling the time axis) without loss of generality. The list of model parameters

with definitions is given in Table 3.1.
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B(ai|~a)
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Figure 3.3. Advertising dynamics given Qfree(ai|~a). We plot the the horizontal
line y = ka together with y = B(ai|~a) (see Eq. (3.12)) and add color to indicate
the direction of change in advertising according to Eq. (3.8). Green regions show
where a firm advertising an amount ai would choose to increase its advertising
and red regions show where a firm advertising an amount ai would choose to de-
crease its advertising. Panel (a) shows the case where Qfree(ai|~a) is a piecewise
linear function that levels off; (b) shows the case where Qfree(ai|~a) is sigmoidal.

Parameter Description
N Number of companies
Qmin The quantity demanded with minimal advertising at zero price
kP Decrease in quantity demanded per dollar in unit price increase
kQ Scale factor for production cost;

(cost of producing an additional unit when costs are linear)
ka Scale factor for advertising cost;

(cost of producing an additional advertisement when costs are linear)
λ Amount of excess advertising above/below

the mean to achieve maximum/minimum advertising benefits
µ Scaling exponent in the production cost function
ν Scaling exponent in the advertising cost function

Table 3.1. Parameter definitions. Table of parameters used in the model with
descriptions.

3.3.2. A concrete example

As an analytically tractable example, we first consider the case where production and advertis-

ing costs grow at a linear rate, i.e, µ = ν = 1. Substituting Eq. (3.1) into Eq. (3.5), setting
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[∂πi/∂Pi]Pi=P ∗
i

= 0 and solving for the profit-maximizing price P ∗i gives

(3.9) P ∗i (ai|~a) =
1

2
[Qfree(ai|~a)/kP + kQ] .

The corresponding profit-maximizing quantity is

(3.10) Q∗i (ai|~a) =
1

2
[Qfree(ai|~a)− kQkP ] .

Substituting this into Eq. (3.8) yields the dynamical system

(3.11)
dai
dt

= B(ai|~a)− ka,

where B(ai|~a) is defined as

(3.12)

B(ai|~a) =


N − 1

N

∆Qad

4λkP

[
∆Qad

2λ
(ai − a) +

∆Qad

2
+Qmin − kQkP

]
, |ai − a| < λ

0, |ai − a| > λ

.

B(ai|~a) represents the marginal benefit of advertising and ka the marginal cost of advertising.

For any firm with advertising close enough to the mean (|ai − a| < λ), the function B is simply

a line of positive slope (N − 1)∆Q2
ad/(8Nλ

2kP) −−−→
N→∞

∆Q2
ad/8λ

2kP. Firms with B > ka

have dai/dt > 0 and increase their advertising budgets, while firms with B < ka decrease

their advertising budgets. For all firms far from the mean (|ai − a| > λ), B = 0 and thus

dai/dt = −ka < 0. This flow is illustrated in the left panel of Fig. 3.3. The corresponding flow

in the case of a smooth sigmoidal Qfree(ai|~a) is shown in the right panel of the same figure. The

intuition drawn from the piecewise case outlined here applies similarly to the sigmoid.
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3.3.2.1. Existence of equilibria. For a given a, there can be at most three fixed points. In

Fig. 3.3, three fixed points are located at a∗i = a + λ, the intersection where B(a∗i |a) = ka for

a∗i < a, and at a∗i = 0 (since advertising cannot be negative). Because stability must alternate

for one-dimensional flows, a∗i = 0 and a∗i = a + λ are the only stable fixed points. Thus, any

stable equilibrium distribution ~a with mean a must have ai = 0 or ai = a+ λ for all i.

We refer to the case when advertising is bimodal as the differentiated state. We note that

such a state may only exist when two stable fixed points exist, which requires maxa B(a|~a) >

ka. Letting N →∞, one can write this condition explicitly as

(3.13) max
ai

∂πi
∂ai

=
∆Qad (∆Qad +Qmin − kQkP)

4λkP
− ka > 0.

Put simply, if advertising does not increase profit anywhere, bimodality cannot arise. Another

case that is possible is the state where all firms set their advertising to zero, which we refer to as

the undifferentiated state. Clearly from Eq. (3.11), maxa B(a|~a) < ka implies that dai/dt < 0

for all ai. In this case, a∗i = 0 for all i is the only equilibrium.

3.3.2.2. Stability of equilibria. We now consider the stability of the differentiated and undif-

ferentiated states. First, we focus on the stability of the differentiated state. We assume there

exists an equilibrium with Nx “generic” firms choosing to invest nothing in advertising, and

N(1−x) “name-brand” firms choosing to advertise at level a+λ, with 0 < x < 1 representing

the proportion of “generic” firms. Assuming that N � 15 and hence that a small perturba-

tion of a single firm has a negligible impact on the mean a, we consider perturbation of one

“name-brand” firm ai by an amount δ and track how δ(t) changes in time. That is, we set

5Numerical experiments suggest that stability conditions derived in this chapter hold for small N .
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ai = a+ λ+ δ(t), which yields the system

(3.14)
dδ

dt
=


N − 1

N

∆Qad

4λkP

[
∆Qad

2λ
δ +Qmin + ∆Qad − kQkP

]
− ka, |δ + λ| < λ

−ka, |δ + λ| > λ

.

If the condition for existence of the differentiated state given in Eq. (3.13) holds, sufficiently

small |δ| implies that dδ/dt > 0 when δ < 0. Additionally, it is clear that dδ/dt < 0 when

δ > 0. Thus, under this type of perturbation the differentiated state is stable. If we similarly

perturb one firm from the generic group, i.e., setting ai = δ > 0, we find

(3.15)
dδ

dt
=


N − 1

N

∆Qad

4λkP

[
∆Qad

2λ
(δ − a) +Qmin +

∆Qad

2
− kQkP

]
− ka, |δ − a| < λ

−ka, |δ − a| > λ

.

If a > λ then there exists δ > 0 small enough such that dδ/dt < 0 since δ < a+ λ implies that

dδ/dt = −ka < 0. If a < λ then dδ/dt is given by the linear equation in Eq. (3.15) for small δ.

Thus, the differentiated state is stable under such a perturbation when

(3.16)
dδ

dt

∣∣∣∣
δ→0+

=
N − 1

N

∆Qad

4λkP

[
−∆Qad

2λ
a+Qmin +

∆Qad

2
− kQkP

]
−ka =

∂πi
∂ai

∣∣∣∣
ai=0

< 0.

This means it must be unprofitable for companies with no advertising to increase their advertis-

ing for the differentiated state to be stable.

Now we consider the stability of the undifferentiated state, ai = 0 for all i. As stated in

Section 3.3.2.1, if maxa B(a|~a) < ka, then dai/dt < 0 for all values of ai. Thus, it is clear

that the undifferentiated state exists and is stable in that case. We now focus on the case where

maxa B(a|~a) > ka. If ai = 0 for all i then a = 0. We consider a perturbation of one firm from
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this state. Letting ai = δ again we get

(3.17)
dδ

dt
=


N − 1

N

∆Qad

4λkP

[
∆Qad

2λ
(δ) +Qmin +

∆Qad

2
− kQkP

]
− ka, 0 ≤ δ < λ

−ka, δ > λ

.

If dδ/dt < 0 when δ = 0 by continuity of the dδ/dt in the range of 0 < δ < λ there must exist

some δ > 0 sufficiently small such that dδ/dt < 0. Therefore, the system is stable under this

kind of perturbation when

(3.18)
dδ

dt

∣∣∣∣
δ→0

=
N − 1

N

∆Qad[Qmin + ∆Qad/2− kQkP]

4λkP
− ka =

∂πi
∂ai

∣∣∣∣
ai=a

< 0.

We surmise from this that the undifferentiated state is stable only if increasing advertising is not

profitable for the average firm.

The above stability arguments can be generalized to arbitrary infinitesimal perturbations of

the advertising distribution in the limit N → ∞. See work by Clifton, Braun, and Abrams for

a description of such an approach in a different context [33].

Figure 3.4 maps the regions of stability for the differentiated and undifferentiated states

given by Eqns. (3.13), (3.18), and (3.19). Both the differentiated and undifferentiated states can

be simultaneously stable. If Eqns. (3.13) and (3.18) both hold then both states are stable. Thus,

we write the condition for bistability as

B(a|~a) =
N − 1

N

∆Qad[Qmin + ∆Qad/2− kQkP]

4λkP
< ka < max

a
B(a|~a).(3.19)
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Figure 3.4. Regions of stability. We illustrate the regions of stability for the
differentiated and undifferentiated states, indicated in the figure by D and U
respectively. These are given by Eqns. (3.13), (3.18), and (3.19). Here green
indicates that a state is stable and red indicates that a state is unstable. The
middle column, where B(a|~a) < ka < maxa B(a|~a) is where both states are
stable.

In more intuitive terms,

(3.20)
∂πi
∂ai

∣∣∣∣
ai=a

< 0 < max
a

∂πi
∂ai

.

Thus, bistability of the differentiated and the undifferentiated states occurs when the maximum

marginal profit is positive, but it is profitable for the average firm to decrease its advertising.

The regions of stability of the undifferentiated and differentiated states are defined similarly

when Qfree(ai|~a) is sigmoidal (and hence, B(ai|~a) altered appropriately—see Section B.1 in the

appendix).

3.3.3. Numerical experiments

In order to test model predictions we perform simple numerical experiments. Figure 3.5 shows

an example of a simulation where the benefit of advertising saturates (we assume a sigmoidal
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Figure 3.5. Simulation of the system. In this figure we give snapshots of the
numerical integration of the system from initial condition to equilibrium. In
panel (a), the system starts from the uniform randomly distributed state with
the advertising initial condition set as U(7.5, 12.5). In panel (b), the separation
into two groups has begun. Companies change their spending until the lower
group is far away from the mean, as seen in panel (c). Finally, in panel (d),
a bimodal equilibrium has been reached, with one group representing generic
brand companies (a ≈ 0) and the other representing name-brand companies
(advertising at a nonzero value at a = aname). The green areas indicate where
companies will increase their advertising and the red areas indicate areas where
companies will decrease their advertising. In this simulation we set the number
of companies to N = 1000, ka = kP = kQ = λ = 1, and Qmin = ∆Qad = 10
(see Methods section for parameter definitions). Additionally, advertising and
production cost functions are linear.

functional form). Starting from a uniformly distributed initial condition, the firms arrange them-

selves so that there is a “generic” group at advertising level a = 0 and a “name-brand” group

at a = aname > 0. Colors have been added to indicate ranges where firms decrease (red) or

increase (green) their advertising.

3.3.3.1. Numerics. In all simulations reported here, we use an explicit 4th order Runge-Kutta

scheme to integrate the differential equations. We set N = 1000, kP = kQ = ν = µ = λ = 1,
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Qmin = 10, ∆Qad = 10, ka = 1 and draw the initial conditions for advertising randomly from

U(7.5, 12.5).

3.3.4. Data

We use price data from the Nielsen Corporation. Nielsen’s consumer panel data contains annual

shopping information from thousands of American households, starting from 2004 with yearly

updates. Individuals involved in the study used in-home scanners to record all of their purchases

that were designated for personal use. Scanners recorded each product’s Universal Product

Code (a string of digits that uniquely identify the product) and the product’s price. We analyze

data from 2014 containing over 64 million transactions from 60,000 households [98].

3.3.5. Fitting procedure

To fit our model predictions to data, we first define an objective function H[f(p), g(p)] to quan-

tify the difference between distributions predicted by the model (f(p)) and inferred from the

data (g(p)). Specifically, we set our objective function H[f(p), g(p)] to be the square integrated

difference between the distributions

(3.21) H(f, g) =

∫ ∞
−∞

[f(p)− g(p)]2dp.

We use the Nelder-Mead algorithm [110] to minimize this objective function over a subset

of parameters that most directly affect the demand curve given in Eq. (3.1): the maximum

benefit from advertising ∆Qad, the minimum quantity demanded Qmin, and consumers’ price

sensitivity, kP. If the data indicate bimodality, we also optimize over the generic fraction x.
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We model heterogeneity among firms by adding random variables ζi and ξi to the parameters

∆Qad and Qmin respectively. These random variables are drawn from a normal distribution

with mean zero and respective standard deviations ε1 and ε2. We interpret ε1 as the variation

in the quality of advertising messaging and ε2 as the variation in natural demand for the firms’

products, and we also optimize their values.

We must choose starting “seeds” for the Nelder-Mead algorithm since it is a local opti-

mization method. We set the initial parameter values such that the profit maximizing price for

companies receiving no demand increase from advertising and companies receiving the max-

imum demand increase match up with the lower and upper modes, respectively, of the price

data. For a more detailed description of the initialization of the algorithm see Section B.4 in

appendix.

Figure 3.1 provides a few examples of fits for products that had more than 10,000 transac-

tions. These examples also demonstrate the variety of products within the dataset. We see there

is qualitative agreement between the model’s predicted price distributions and the empirical

price distributions.

3.3.6. Statistics

We attempt to validate our model by fitting theoretical price distributions to empirical data

provided by Nielsen Corporation [98]. We use two tests, the Kolmogorov-Smirnov (KS) test

and Hartigan’s Dip Test, to assess the quality of our fits. See Figure 3.1 for a sample of model

fits to data.

The KS test generates the probability that two samples come from the same underlying dis-

tribution by calculating the maximum absolute difference between their cumulative distribution
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functions (CDFs). Here, a large difference implies a low probability that the two datasets come

from the same distribution. For a majority (58%) of our model fits to the top 500 products, we

fail to reject the null hypothesis (samples from same underlying distribution) at a significance

level of 0.05: the data and the model prediction may come from the same distribution.

Hartigan’s Dip Test assesses whether a distribution is unimodal by comparing the CDF of

the distribution to a unimodal test distribution [111]. A large difference between the distribu-

tion in question and the test distribution indicates a low probability of the distribution being

unimodal. We apply Hartigan’s Dip Test to the 500 products with the most entries in the data-

base, and find that 46% have price distributions inconsistent with unimodality at a significance

level 0.05. If price distributions are linked to advertising expenditures, as our model indicates,

then almost half the products have a multimodal (bimodal or higher number of modes6) adver-

tising distribution. For other products, unimodality could not be rejected, but data may not be

inconsistent with bimodality. See Section B.3 for the full distribution of p-values.

3.4. Discussion

The theory we present provides a possible explanation for the segmentation of commodity-

product sectors into “name brand” and “generic” products. We speculate that similar expla-

nations might exist for other contexts where hierarchy emerges as a result of competition, or

where interactions between individual agents can lead to clustering [99]. For example, com-

petition for a mate [33, 100, 101] and competition for resources [102–104] can both result in

hierarchies observed in the natural world. Our model might be adapted to yield insight into

such phenomena.

6We suspect that an extension of this model to allow stronger within-segment competition (i.e., name-brands
compete more strongly with each other than with generics.) would lead to additional modes.
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3.4.1. Limitations

In creating a highly simplified model, we have inevitably made some assumptions that limit its

generality. These include:

• We assumed that advertising was persuasive and hence, that quantity demanded in-

creased uniformly across all price levels as advertising increased. In cases where ad-

vertising is informative, however, one would expect the slope of the demand curve to

increase, instead of simply shifting vertically.

• We chose to leave the development of brand loyalty out of our model. This could

presumably be captured through a demand curve that becomes more inelastic as loyalty

increases.

• We excluded spillover effects from “generic advertising” whereby advertising leads

to increases in demand for all companies selling a similar product [105, 106]. We

expect that this would increase profit for all companies but not affect the bimodal

segmentation our current model predicts.

• We assumed advertising has stable and lasting impact. Our model treats the benefits of

advertising as arising instantaneously, an approximation that is only merited when the

time scale of interest is much longer than the advertising’s “half-life” in the consumer

environment.

• We assumed the existence of many producers selling similar products. Some of our

arguments would not be valid in the case of an oligopoly, where there are only a handful

of producers.

• We approximated demand curves as linear, but of course these could (and likely do)

take on more complex forms for real products.
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In addition to the limitations of our modeling approach, the data set we examine also con-

tains some biases that should be pointed out. Most saliently, the price distributions we examine

are the result of different vendors selling identical products for different prices: this means that

branding is really present at the vendor level, slightly different from most direct and natural in-

terpretation of the model. Also, a large fraction of entries in the database are food and other con-

sumable products, since these are purchased more frequently than durable goods. Consumables

might have a different market structure than products in non-food markets (e.g., electronics,

health care, housing, etc.).

3.4.2. Conclusions

We have presented a simple mathematical model for competition among firms on the basis of

advertising. Despite the model’s simplicity, a surprisingly robust prediction emerges: products

split into “name-brand” and “generic” groups. This prediction appears to be largely consistent

with data both in a qualitative sense (many products have non-unimodal price distributions) and

a quantitative sense (theoretical price distributions from the model are consistent with empirical

price distributions), even without a more detailed and accurate model.

Advertising has a large macroeconomic impact on corporate profits, market efficiency, and

consumer welfare. The segmentation we report contrasts starkly with (often implicit) assump-

tions of smooth, singly-peaked functions for economic metrics. We hope that our work helps

refine intuition and inspires further inquiries into this intriguing aspect of free market dynamics.
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CHAPTER 4

Size dimorphism

4.1. Introduction

Anisogamy, the phenomenon where fusion occurs between gametes (sex cells) of different

sizes, has long been a topic of study ( [122–131]). Anisogamy is common in complex organisms

such as plants, animals, fungi, and certain algae ( [125, 132–134]). There is a consensus in the

literature that anisogamy evolved from isogamy, where sexual reproduction occurs between sex

cells that are the same size ( [125, 126, 135, 136]).

Anisogamy has been theorized to be a factor in the development of differences between

sexes. Bateman credits to anisogamy the fact that male Drosophila melanogaster are far more

eager than females to mate ( [137]). Lehtonen et al. add theory to this intuition, demonstrating

that, as the size ratio between large and small gametes increases, organisms with small gametes

will choose to allocate more resources to searching for mates and warding off others with small

gametes from potential mates as those with small gametes substantially increase their fitness

when the number of opportunities to mate increases. ( [131]).

A related question that remains of scientific interest is “Why do most complex organisms

have only two sexes?” Almost all animals have two sexes, but, e.g., fungi may have scores

or even thousands of “mating types” (the term “sex” is typically not used in this case) ( [133,

138, 139]). We do not directly address this here, but a better understanding of the origin of

anisogamy might also inform our understanding of this question.
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Our work builds off the assumption that the size of gametes affects the fitness of the in-

dividual, but we account for competition through “mean-field” coupling, meaning that payoff

in terms of offspring is largely due to the presence of a relative, rather than absolute, advan-

tage. We make mild assumptions regarding asymptotic properties of relevant functions and

demonstrate that these are sufficient to explain the emergence of anisogamy from an isogamous

population.

4.2. Results and discussion

We put forth a model that provides a plausible explanation for the development and stability

of anisogamy, even without the existence of mating types. This model is based upon the as-

sumption that an individual’s overall reproductive potential can be broken down into a “gamete

production” term quantifying the number of gametes produced, and a “gamete potential” term

quantifying those gametes’ likelihood of eventually forming zygotes that reach adulthood. Both

of these are assumed to depend upon gamete size, with gamete reproductive potential having

a positive relationship with gamete size, and number of gametes having a negative relation-

ship with gamete size. A critical assumption is that size-dependence for gamete reproductive

potential is determined relative to the mean of the population, encapsulating the intra-species

competition for resources.

Although other models have been proposed to explain anisogamy, ours requires minimal

assumptions and accounts for its emergence from an initially isogamous state. We require no

assumptions about the existence of mating types. For simplicity and clarity, we have treated

individuals in this work as identical without variation, and we have allowed small gametes to



61

approach zero size. More realistic assumptions do not appear to change the broad results shown

here (see Sections C.2–C.6 for various numerical experiments).

4.3. Model development

4.3.1. Individual reproductive potential

Consider a population of N organisms with gametes that have sizes sj , j = 1, . . . , N . Follow-

ing the approach used in [33], we denote the “reproductive potential” of the jth individual by

ϕi, defined as some increasing function of the fitness (the expected number of adult offspring it

will produce). We assume that this potential can be expressed as a product of Ng, the expected

number of gametes produced, and ϕg, the average reproductive potential of its gametes (where

gamete reproductive potential is, similarly, an increasing function of gamete fitness—the ex-

pected number of adults resulting from that gamete, with upper bound 1, ignoring monozygotic

twinning):

(4.1) ϕi = Ngϕg .

Because we are concerned with anisogamy and hence gamete size distributions, we ignore

all factors influencing reproductive potential besides gamete size. Other factors are clearly

extremely important, but we model only the effects of gamete sizes on reproductive potential

here, and thus write that Ng = Ng(sj), ϕg = ϕg(sj).

4.3.2. Gamete production function

We assume that Ng is a decreasing function of gamete size due to the fact that each organ-

ism has limited resources (physical, temporal and energetic) to dedicate to gamete production.
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Some observational evidence supports this: smaller male sex cells are far more numerous than

significantly larger female sex cells ( [140–143]); additionally, research has found a negative

relationship between clutch size and egg size in the black-backed gull Larus fuscus ( [144]),

and across various species of snakes ( [145]).

To present a concrete analytical argument, and motivated by their ubiquity in nature ( [108,

146, 147]), we choose Ng to be a power law, i.e.,

(4.2) Ng(sj) = c1s
−α
j

where c1 is a constant of proportionality and the constant α is assumed to be positive. In

the section “Geometric argument” below, we generalize our argument to arbitrary decreasing

functions.

4.3.3. Gamete reproductive potential

We assume that ϕg is an increasing function of gamete size. This is motivated by the idea

that increased size indicates increased provisions to promote survival of the gamete and the

zygote potentially formed after fusion with another gamete. Some evidence supports this link:

associations between between egg size (measured by volume or mass) and positive offspring

outcomes have been reported in various avian species ( [148–151]).

Critically for our model, we assume that the fitness “payoff” accruing to larger gametes is

relative rather than absolute in nature. That is, we assume that a gamete of size si will have

greater reproductive potential in a population where it is among the largest than in a population

where it is among the smallest. This is motivated by the hypothesis of zygote competition, and

ultimately by the same idea underlying natural selection: if environmental conditions preclude



63

all viable zygotes from reaching adulthood, those with the greater provisions afforded by larger

parental gamete sizes will be more likely to survive. A similar argument can be made if direct

competition between gametes plays a role in determining fitness.

Thus, we link the reproductive potential of the jth gamete to the full distribution of gamete

sizes in the population. We can express such a link in simple terms by assuming ϕg(sj) is an

increasing function of sj − s, where s = N−1ΣN
j=1sj is the mean gamete size in the population.

We expect reproductive potential to saturate for both extremely large and extremely small

gametes, so we choose a sigmoidal form for our analytical expression of ϕg(sj):

(4.3) ϕg(sj|s) = c2

(
1 +

sj − s
w + |sj − s|

)
,

where c2 is a constant of proportionality and w sets the width of the sigmoid. In the sec-

tion “Geometric argument” below, we generalize our argument to arbitrary increasing functions

ϕg(sj − s).

Substituting Eq. (4.2) and Eq. (4.3) into Eq. (4.1), we obtain the following individual repro-

ductive potential function:

(4.4) ϕi(sj|s) = Ng(sj)ϕg(sj|s) = c3s
−α
j

(
1 +

sj − s
w + |sj − s|

)
,

where we have combined the multiplicative constants of proportionality into a single constant

c3 = c1c2.

4.3.4. Gamete size evolution

We assume that natural selection acts on the population in such a way that gamete sizes change

at a rate proportional to the reproductive potential to be gained. That is, there is a “phenotype
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flux”

(4.5)
dsj
dt

=
1

τ

∂ϕi

∂sj
,

or, in the continuum limit N →∞,

(4.6)
∂ρ

∂t
= ∇ ·

(
ds

dt
ρ

)
.

where ds/dt is given by

(4.7)
ds

dt
=

1

τ

∂ϕi

∂s
.

Here τ sets the time scale for the evolution of gamete size. Since this is unknown (and not the

focus of this work), we rescale time such that τ = 1 without loss of generality.

To be clear, we are not assuming that individual organisms explicitly change their gamete

sizes in this model, rather, the “phenotype flux” ds/dt captures how the gamete size distribution

ρ(s, t) changes over long time scales. Probability density functions such as ρ(s, t) must follow

the continuity equation, seen in Eq. 4.6. In [33], the authors demonstrated how this approach

(substitution of the phenotype flux from Eq. (4.7) into the continuity equation) can be considered

equivalent to a “replicator equation” approach ( [152, 153]) for appropriate choices of fitness

functions.
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Figure 4.1. Example individual reproductive potential function. Here we
show the reproductive potential function defined by Eq. (4.4) in arbitrary units
(a.u.). Two maxima are apparent, one at zero and another at a nonzero value s∗.
Dynamics given by Eq. (4.5) are illustrated by color with red indicating regions
where gamete size decreases and blue indicating where gamete size increases.
For this illustration, we set w = 1/10, α = 1, and s = 2.

4.4. Model implications

4.4.1. Existence of the anisogamous equilibrium

It is commonly assumed that natural selection leads to traits that maximize reproductive success

(subject to ongoing variation) ( [154]). This implies that anisogamy is possible only when the

reproductive potential has at least two distinct local maxima.

For ϕi as defined in Eq. (4.4), at most two local maxima can exist: one at sj = 0 and another

at a nonzero value s∗. This is illustrated in Fig. 4.1, where two local maxima can be seen.

We can derive a sufficient condition for the existence of the anisogamous equilibrium by

assuming it takes the form ρ(s) = xδ(s − 0) + (1 − x)δ(s − s∗)1, where δ is the Dirac delta

1See Section C.5 in appendix for the case when the small gamete group has finite, nonzero equilibrium gamete
size.
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function and 0 < x < 1 is the proportion of gametes that are small (i.e., the proportion that

might be referred to as primitive “male” gametes). This equilibrium must be self-consistent,

meaning that the first moment of the distribution is indeed the same as the average gamete size

s. Substituting ρ(s, t) = xδ(s−0)+(1−x)δ(s−s∗), s = (1−x)s∗, Eq. (4.4), and Eq. (4.7) into

Eq. (4.6) and solving ∂ρ/∂t = 0 (or, equivalently, setting ∂ϕi/∂s = 0 after plugging Eq. (4.4)

into Eq. (4.7), with s = (1− x)s∗), we find

(4.8) s∗ = w
1− 3αx+

√
β

4αx2
,

where β = α2x2 − 6αx + 1. An anisogamous equilibrium thus exists for all positive α and w,

as long as β > 0.

4.4.2. Stability of the anisogamous equilibrium

Consider the perturbation of a single individual from the large gamete group by an amount ε�

1 in the limit N � 1, so this represents an infinitesimal change to the full gamete distribution.

We set s = (1 − x)s∗ and spert = s∗ + ε, where s∗ is given by Eq. (4.8). Substituting into

Eq. (4.7) and Taylor expanding to linear order in ε,

(4.9)
dε

dt
= Q(x, α)ε ,

where

Q = −16xα2(s∗)−1−α(1− x+
√
β)

w(1 + xα +
√
β)2

,(4.10)
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with β defined as in Eq. (4.8). Here Q < 0 for all allowable parameter values, and thus the

anisogamous state is also stable under this kind of perturbation.

A similar perturbation of one individual from the small gamete group is simply spert = ε,

which, when substituted into Eq. (4.7) yields

(4.11)
dε

dt
= −c3α

w

w + s
ε−1−α

when truncated at leading order. Since c3, α, w, and s are all positive, the anisogamous state is

stable to infinitesimal perturbations of this sort whenever it exists.

A more general examination of stability is difficult, but in Section C.3.1 we show that all

eigenvalues of the finite N system are negative for N � 1, and thus that the anisogamous state

is indeed linearly stable.

4.4.3. Geometric argument

For clarity and convenience, we earlier assumed specific algebraic forms for ϕg and Ng. We

now show the possible emergence of anisogamy in a system where only the monotonicity and

asymptotic properties of those functions are known.

We start by expanding the derivative on the right-hand side of Eq. (4.7):

(4.12)
ds

dt
=

1

τ

∂ϕi

∂s
=

1

τ

[
∂ϕg

∂s
Ng +

dNg

ds
ϕg

]
.

At an equilibrium s = s∗, the net phenotype flux ds/dt = 0. Assuming Ng > 0 and ϕg > 0, we

find that the following condition must hold at each s∗:

(4.13)
ϕ′g
ϕg

= −
N ′g
Ng
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where ′ ≡ ∂/∂s.

The left side of Eq. (4.13) is the relative change in gamete reproductive potential and the

right side is the magnitude of the relative change in gamete production. Gamete sizes will

increase when the reproductive potential gains outweigh the decreased gamete production, and

will shrink when the opposite is true.

The existence of anisogamy requires that two distinct intersections must exist between the

functions on the left and right-hand sides of Eq. (4.13) (see Fig. 4.2). The following conditions

are thus sufficient for anisogamy to exist:

(1) Continuity of ϕ′g and N ′g.

(2) The gamete production terms dominate as size approaches zero (relative decrease in

production larger than relative increase in reproductive potential), i.e.,

∣∣∣∣ϕ′gϕg

∣∣∣∣ < ∣∣∣∣N ′gNg

∣∣∣∣ , s→ 0+ .

This is reasonable if the potential saturates at some minimum (possibly zero) for small

gametes.

(3) There exists at least one finite value of s (say s = a, a > 0) at which reproductive

potential terms dominate over gamete production terms, i.e.,

∣∣∣∣ϕ′gϕg

∣∣∣∣ > ∣∣∣∣N ′gNg

∣∣∣∣ , s = a .

If this fails, smaller gametes are always better for fitness. As long as there is some “pro-

visioning” advantage to larger gametes at some point, however, this condition should

be satisfied.
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ϕ′g/ϕg

−N ′g/Ng
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Figure 4.2. Geometric argument for anisogamy. We illustrate a case where
gamete reproductive potential, ϕg, and gamete production, Ng, satisfy the con-
ditions set out in the section “Geometric argument.” When gametes are small,
the relative gains due to the ability to produce more of them |N ′g/Ng| outweigh
the relative drop in reproductive potential |ϕ′g/ϕg|. In some intermediate range,
reproductive potential gains dominate, and then as gametes become very large
the production terms again dominate as reproductive potential gains saturate.

(4) Gamete production terms again dominate as size goes to infinity, i.e.,

∣∣∣∣ϕ′gϕg

∣∣∣∣ < ∣∣∣∣N ′gNg

∣∣∣∣ , s→∞ .

This is reasonable if fitness gains eventually saturate.

In addition to the above, a self-consistency condition must also hold: It must be possible for the

function ϕ′g/ϕg to satisfy ∣∣∣∣ϕ′gϕg

∣∣∣∣ =

∣∣∣∣N ′gNg

∣∣∣∣ ,
given s = (1− x)s∗, for some fractionation x ∈ (0, 1).

Figure 4.2 shows an example of functional shapes forϕg andNg that satisfy these conditions.
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CHAPTER 5

Debiasing data

5.1. Introduction

Inferring an accurate distribution underlying recorded data has long been an important topic

of research. The simplest way to approach this task is to construct a histogram of the data, but

that comes with two problems. First, the piecewise nature of a histogram necessarily means it is

not a smooth distribution, and, second, the inferred distribution is dependent on many choices

of parameters (bin boundaries) that are not easily justified. To deal with both of these issues

other techniques are often used, such as kernel density estimation [117] or filtering [118].

A question less frequently posed is how to infer an underlying distribution when the data

itself are corrupted in a way that is not explained by noise. Often, the data that we record are

affected by some type of bias.

This bias is seen in various settings. Research shows that men and women overestimate

their height and underestimate weight [162, 165], leading to a distortion in weight, height, and

BMI distributions. Selling prices are also artificially skewed with selling prices that end in

zero, five, or nine being over-represented compared to random chance [167]. This is known as

“psychological pricing” where companies seek to take advantage of how humans read prices in

order to increase sales [161].

In this chapter we develop a method that, given a set of data, infers the underlying distribu-

tion while removing any skew due local bias toward particular numbers. We find a system of
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differential equations that smooths distributions in such a way that kicak diffusive smoothing

is balanced by by “attraction” to the initial data values. We construct a testbed for our method

by perturbing a Gaussian distributions with a Ricker wavelet, and find that it can be made to

exactly eliminate the perturbation in such a case.

We further extend our model by taking inspiration from adaptive kernel density estimates

[155], adding spatial variation according to a “bias” parameter that alters the amount of smooth-

ing given the deviation of the original distribution from the smoothed data. We test this exten-

sion on both synthetic and real-world data sets. In both cases the perturbation due to bias

appears to be successfully removed from the equilibrium distribution.

5.2. Method

One can attain only a finite amount of precision when recording data. A simple way of

enforcing this precision is dividing the real number line into bins separated of width ∆x.

We consider a system of N bins where the ith bin contains yi amount of probability mass

(henceforth referred to as simply “mass”). The mass in bin i changes as a result of local diffusion

and a restoring “force” that adds (or removes) mass at a rate proportional to the difference of

the current mass yi and the initial mass of bin i, yi,0. The rate of change of mass in bin i due to

this process is thus given by

(5.1) ∆i = −k α

∆x2

(
yi −

[
yi+1 + yi−1

2

])
− (1− k)β(yi − yi,0) ,

where the first term comes from a discrete diffusion operator and the second term represents the

“restoring force” described above, and k is a parameter in [0, 1] that sets the relative importance
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of each term. α is the diffusion coefficient and β sets the restoration speed. k = 1 corresponds

to pure diffusion, and k = 0 corresponds to a system with only restoring forces and no diffusion.

Mass change in the system is distributed locally where the amount lost (or gained) from bin

i is evenly distributed to (or pulled from) bins i+1 and i−1. This leads to the following system

of coupled differential equations:

(5.2)
dyi
dt

= ∆i −
1

2
(∆i+1 + ∆i−1) .

One can show (see appendix) that the continuum limit is

(5.3)
∂ρ

∂t
= −α

(
k

4

)
∂4ρ

∂x4
+ β

(
1− k

2

)(
∂2ρ

∂x2
− d2ρ0
dx2

)
,

where ρ0(x) = ρ(x, 0). This partial differential equation is similar to the one developed by

Bevilaqua et al. [157, 158], the main difference is an added source that is proportional to the

second spatial derivative of the initial data.

Setting ∂ρ/∂t = 0 gives the following steady state equation

(5.4) 0 =
∂4ρ

∂x4
− q2

(
∂2ρ

∂x2
− d2ρ0
dx2

)
,

where

(5.5) q2 =
2β(1− k)

αk
.

Since k ranges from zero to one, the parameter q2 spans zero to infinity, with q = 0, being the

fully diffusive case and q2 →∞ corresponds to the case without diffusion.
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5.2.1. Rectifying perturbations

We are particularly interested in problems where the perturbations are local in the sense that

some probability mass has been shifted from its original location to a nearby more “appealing”

number (where the appealing numbers might represent, e.g., prices ending in the digit nine,

or heights rounded to an even value). As a prototypical example of such a locally perturbing

function, we will consider the Ricker wavelet [166] (also known as the Marr wavelet [164]),

defined as

(5.6) ψ(x;w, h) =
h(w2 − x2)e−

x2

2w2

w2
.

See Figure 5.1 for a visualization of the Ricker wavelet when h = 3 and w = 1.

1

3

x

ψ(x; 1, 3)

Figure 5.1. Ricker wavelet example. We visualize a Ricker wavelet (see
Eq. (5.6)) with width w = 1 and height h = 3.

We are interested in the types of functions ρ0 for which the “true” distribution f(x) is the

solution to Eq. (5.4). We restrict the analysis to the case when the true distribution is a Gaussian

with mean µ = 0 and standard deviation σ.

Substituting ρ(x, t) = N (0, σ2) and solving for ρ0 yields
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(5.7) ρ0(x, 0) = f(x) + ξ(x) =
e−

x2

2σ2

σ
√

2π
+

(σ2 − x2)e−
x2

2σ2

√
2πq2σ5

.

The first term is a Gaussian with mean µ = 0 and standard deviation σ—the true distribution

f(x)—and the second term is a Ricker wavelet where

h = 1/(
√

2πq2σ3) ,(5.8)

w = σ(5.9)

One often does not have control in the size of the disturbance in the data. Therefore, we assume

that h is constant and attempt to find the amount of smoothing that yields the exact answer.

Substituting Eq. (5.5) into Eq. (5.8) and isolating k yields

(5.10) k =
4
√
πhw3β

4
√
πhw3β +

√
2α
.

For all computations, we set α = β = 1.

5.3. Numerical experiment

We numerically test the smoothing required to remove a Ricker wavelet perturbation ξ(x)

with width w = σ and height h = 1/(
√

2πq2σ3) from a “true” Gaussian distribution f(x). Fig-

ure 5.2 shows the integrated square error between the true distribution f(x) and the numerical

equilibrium of Eq. (5.2). The black curve shows the amount of smoothing k set by the theory

from Eqns. (5.5) and (5.10). The red curve shows the k value that numerically generates the
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Figure 5.2. Setting smoothing to remove disturbance: theory versus numer-
ics. We generate the integrated squared error between the model equilibrium
and true distribution f(x) given the initial condition ρ0(x) = f(x)+ξ(x), where
ξ(x) a Ricker wavelet defined in Eq. (5.6) and f(x) = N (0, σ2). The color indi-
cates the amount of error with blue error corresponding to large error and yellow
to small error. The k value that yields the minimum error (red, dashed) for a
given height of the Ricker wavelet is equivalent to the k value derived from the
Eq. (5.5) and (5.10) (black, solid). Here, σ = w = 5 and N = 1000

smallest integrated squared error given the height of the Ricker wavelet. The red and black

curves appear to be identical.

Figure 5.3 shows the error landscape after a similar set of simulations where we indepen-

dently varied the height and width of the Ricker wavelet with k = 0.95 fixed. In this case, we

see that, as expected from Eq. (5.9), error is only minimized when w = σ. The corresponding

h value derived from Eqns. (5.8) and (5.5) that minimizes error is h = 1/(
√

2πq2σ3) ≈ 0.38.

5.4. Spatially varying smoothing

We expand our model to include spatially varying smoothing ki. ki will be determined by

the amount of “bias” at bin i at time t, where bias is defined as bi = yi,0−yi. If the bias increases

then we increase the amount smoothing at yi, the amount of smoothing decreases if the opposite

is true.
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Figure 5.3. Heatmap of the integrated squared error when varying the
height and the width of the perturbation. We compute the integrated squared
error between the model result and true distribution f(x) when the initial condi-
tion the sum ρ0(x) = f(x) + ξ(x), where ξ(x) is the added perturbation. Here,
the true distribution f(x) is a Gaussian with variance σ2 = 25 and mean µ = 0
and the perturbation ξ(x) is a Ricker wavelet (see (5.6)) with width w and height
h. The error is minimized when w = σ and h = 1/(

√
2πq2σ3) = 0.38, con-

sistent with Eq. (5.10). The smoothing strength k ranges from 0.01 to 0.99 with
stepsize 0.005 and the height of the Ricker wavelet ranged from 0.0008 to 0.1596
with stepsize 0.0008.

In this chapter, we set ki(bi) as

(5.11) ki(bi) =
1

2
[tanh (λbi) + 1] ,

where λ sets bias sensitivity with λ large implying high sensitivity and and λ small implying

low sensitivity. We have chosen ki to be sigmoidal so that as the bias approaches infinity,

the smoothing strength ki → 1 and the system becomes fully diffusive at bin i and as bias

approaches minus infinity, the smoothing strength ki → 0 and diffusion ceases and the yi is

attracted back to its initial value yi,0. Furthermore, we have set ki so that when bi = 0, the rate

of change of yi is the average between local diffusion and the restoring source.

We test the model extension on a composite distribution ρ0(x, t) = (1 − ε)N (0, σ2) +

εN (0, δ2) where N (µ, σ2) represents a normal distribution centered at µ with variance σ2, and
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we take ε � 1, δ � σ. We assume that the true underlying distribution is f(x) = N (0, σ2).

We fit λ so the integrated squared error between the true distribution and the model equilibrium

is minimized. We carry out this minimization using the Nelder-Mead algorithm [110].

0

0.01

0.02

-500 -250 0 250 500
0

0.01

0.02

-500 -250 0 250 500

Figure 5.4. Removing perturbations. Panels (a)-(d) show the evolution from
the perturbed distribution ρ0(x, t) = (1− ε)N (0, σ2) + εN (0, δ2), where ε� 1,
δ � σ to the equilibrium distribution when the smoothing parameter ki(yi,0, yi)
varies in space. The equilibrium distribution (red, solid) shows good agreement
with the true distribution f(x) = N (0, σ2). The bias sensitivity parameter λ was
set by minimizing the integrated squared error, with the λ ≈ 1.8624 × 103. In
this simulation, σ = 50, δ = 0.5, ε = 0.01, and N = 1000.

Figure 5.4 illustrates this method on the test distribution. Panels (a)-(d) show the evolution

of the perturbed distribution (red, solid). The spike in the perturbed distribution diminishes and

its mass spreads to its neighbors with the equilibrium showing good agreement with the true

distribution f(x) = N (0, σ2). Here, σ = 50, δ = 0.5, ε = 0.01, λ ≈ 1.8624 × 103, and

N = 1000.

5.5. Removing bias from real data

People report an overestimation of their height when asked [162]. Such misreporting makes

height data an appropriate test dataset. Additionally, there is some evidence suggesting that

adult male height is actually normally distributed [156].
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Figure 5.5. Removing bias from height data. We apply the our method with
a spatial varying smoothing parameter ki(yi,0, yi) set by Eq. (5.11). We see that
the equilibrium generated by the model (red, circles) removes the second mode
at 72 inches, which we assume to be due to overestimation.

We test our method on a dataset containing heights recorded in medical records from hos-

pitals in the Northwestern Medical system. Figure 5.5 illustrates how our method affects the

data. The equilibrium distribution (red, solid circles) generated by the method removes the sec-

ond mode at 72 inches seen in the original data (blue histogram) while keeping the underlying

distribution unaffected. In this simulation we set the λ = 10.

5.6. Conclusions

We have put forth a dynamical systems approach to remove perturbations from data by

balancing diffusion and restoration effects. Our approach works exactly in the case of a specific

“Mexican hat” type of perturbation, but we expanded the efficacy of this method by allowing

the ratio between the two effect to vary in space. We also applied it to a dataset of adult male

heights, removing a spike while keeping the underlying distribution apparently unaffected. This

method gives a simple tool to correct data that is biased due to systematic error or artificial

distortion. We hope our work invites more dynamical system approaches in data science.
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APPENDIX A

The development of multimodality via coupled oscillators: appendix

A.1. Trimodal equilibria

We again consider a function f(u) that satisfies conditions (2.2a)–(2.2e). We look for solu-

tions with oscillators distributed according to h(θ) = xδ(θ−θ1)+yδ(θ−θ2)+(1−x−y)δ(θ−θ3),

where x, y > 0, x + y < 1 so that the oscillators will be in three clusters at θ1, θ2, and θ3 (we

again assume that the natural frequencies are identical):

θ̇1 = ω0 +K (yf(θ2 − θ1) + zf(θ3 − θ1))(A.1)

θ̇2 = ω0 +K (−xf(θ2 − θ1) + zf(θ3 − θ2))(A.2)

θ̇3 = ω0 −K (xf(θ3 − θ1) + yf(θ3 − θ2)) .(A.3)

Here, z = 1−x− y. We define two variables ψ1 = θ2− θ1 and ψ2 = θ3− θ2, so that the system

reduces to

ψ̇1 = −K (z [f(ψ2 + ψ1)− f(ψ2)] + (x+ y)f(ψ1))(A.4)

ψ̇2 = −K (x [f(ψ2 + ψ1)− f(ψ1)] + (y + z)f(ψ2)) .(A.5)
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We set ψ̇i = 0, i = 1, 2 and arrive at the following system of equations:

f(ψ2) =
xf(ψ1)

z
(A.6)

f(ψ2 + ψ1) =
−yf(ψ1)

z
.(A.7)

To set bounds on the fractionation of the clusters, we assume that there exists points ψ1, ψ2 ∈

(−π, π) such that Eqns. (A.6) and (A.7) are satisfied. Additionally, we put our system of cou-

pled oscillators into a rotating frame so that θi → θi +ω0t. In the rotating frame, we set θ1 = 0,

θ2 = ψ1, and θ3 = ψ1 + ψ2 − 2π. As before we perturb an oscillator from one of the three

groups. We do this for all three groups and get a system of inequalities

xf ′(0) + yf ′(ψ1) + zf ′(ψ1 + ψ2) < 0(A.8a)

yf ′(0) + xf ′(ψ1) + zf ′(ψ2) < 0(A.8b)

zf ′(0) + yf ′(ψ2) + xf ′(ψ1 + ψ2) < 0 .(A.8c)

All these must be simultaneously satisfied for stability of a trimodal state. Adding, we find

f ′(0) <− [(x+ y)f ′(ψ1) + (y + z)f ′(ψ2)

+(x+ z)f ′(ψ1 + ψ2)] .(A.9)

This states that the weighted sum of the slopes of the coupling function at ψ = ψi, where the

weights are the proportions for the groups separated by ψi, is greater in magnitude than the
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slope at the origin. This condition reduces to

f ′(0) < −2f ′
(

2π

3

)
(A.10)

if ψ1 = ψ2 = 2π − ψ1 − ψ2 = 2π/3. As an example, we return to the class of interaction

functions that we introduced in Section 2.2. We relax the assumption that |a| < π and consider

the case when ψ1 = ψ2 = 2π − ψ1 − ψ2. To satisfy inequality (A.10), this means that

1 <
56π2 + 54a2

81a2
,(A.11)

which reduces to

|a| < 2

3

√
14

3
π ≡ atricrit ≈ 1.44π .(A.12)

Figure A.1 shows the results of a numerical experiment where we test this threshold. In both

panels we use N = 99, x = y = z = 1/3, ψ1 = ψ2 = 2π − ψ1 − ψ2 = 2π/3, and set ω0 = 0.

We expect the trimodal state to be unstable for a > atricrit. In panel (a) we set a = atricrit + 0.1

and perturb the oscillators by amount ξi, with values drawn from the distribution N (0, 0.01) .

We can see that this perturbation leads to the system leaving the trimodal state and going to a

bimodal state with 180◦ phase difference.

One might be interested in why the bimodal state is stable in panel (a). Since there are only

zeros at ψ = 0 and ψ = π, one may check the stability by evaluating the derivative of f(ψ) at

these points. One can show that if

(A.13) |a| >
√

2π
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the 180◦ antiphase state is stable. Thus, when a = atricrit + 0.1 >
√

2π the trimodal state

becomes unstable and perturbations lead to the stable bimodal state.

For the case, when
√

2π < a < atricrit, both the trimodal state and the bimodal state are

stable configurations. Figure A.2 shows the result of the numerical experiment where we place

the parameter inside the previously stated interval and outside of the interval. In all panels we

use N = 300, and set ω0 = 0. As before, in all panels we perturb the oscillators by amount

ξi from the predicted fixed points, whose values are drawn from the distribution N (0, 0.01). In

panels (a) and (b) we set a = 1.43π ∈ (
√

2π, atricrit). In these cases we expect both the bimodal

state and the trimodal state to be stable for this value of a. In panels (a) and (b), we set the

fractionation to be equal in all groups, and we set the spacing between groups to be equal. As

expected, we see that the trimodal state and the bimodal state are stable under perturbation.

In panel (c) we set a = 1.43π − 0.1 <
√

2π < acrit. As expected, we see that the bimodal

state is unstable and the system goes in to trimodal state. Given the proximity of the clusters

to ±π, we have added black dashed lines that at ±π, so that one can see that the difference

between the final state and ±π. In panel (d), we set a = 1.43π + 0.1 > atricrit >
√

2π. We also

observe an expected result, as trimodality appears to be unstable and the system converges to a

bimodal equilibrium, which is stable given that a >
√

2π.

In summary, we have a necessary condition for the stability of the trimodal equilibrium.

Although, this condition is only necessary for stability, not sufficient, numerical experiments

seems to point to it being an accurate threshold in examples we have considered. Also, theory

and numerical experiments demonstrate that multistability of different multimodal equilibria is

possible over parameter space. The theory for the stability of higher modes we leave for future

work.
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Figure A.1. Numerical experiments testing the threshold for trimodality.
Panel (a): parameter value is a = atricrit + 0.1, and the trimodal state appears
to be unstable (as expected). Panel (b): parameter va;ie is a = atricrit − 0.1,
and the trimodal state appears to be stable (as expected). Both panels use the
example interaction function from Eq. (2.11), and both use equal fractionation
(x = y = z = 1/3) and equal spacing between clusters (ψ1 = 2π/3) in initial
conditions.

A.2. Additional coupling functions

Figure A.3 illustrates two additional coupling functions that we examined. We used a variant

of the triangle wave (blue, solid) given by the equation

ftri(u; c) =


2u
c

|u| < c

2u
c−π − sign(u)( 2π

c−π ) c ≤ |u| ≤ π

,(A.14)
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(a)
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Figure A.2. Numerical experiments testing bistability. Panel (a) and (b): we
set a = 1.43π ∈ (

√
2π, atricrit) and both the bimodal state and the trimodal state

are stable (as predicted). Panel (c): we set a = 1.43π − 0.1 <
√

2π < acrit and
we see that the bimodal state is unstable (we have added black dashed lines so
that one can see that the clusters away from the origin are not at ±π). Panel (d):
we set a = 1.43π + 0.1 > atricrit >

√
2π and the trimodal state is unstable (as

predicted). In all panels N = 300 and the initial conditions are equally spaced
and have equal fractionation with a random perturbation to all the phases of the
oscillators.

assuming that 0 < c < π, and an antisymmetrized variant of the von Mises distribution (red

curves) given by

fvM(u;µ, κ) = sin(u− µ)
eκ cos(u−µ)

2πI0(κ)
.(A.15)
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Figure A.3. Additional interaction functions. Solid blue curve: triangle wave
from Eq. (A.14); solid red curve: antisymmetrized variant of the von Mises
distribution from Eq. (A.15) with κ < 0; dashed red curve: antisymmetrized
variant of the von Mises distribution from Eq. (A.15) with κ > 0. Panels (a) and
(b) of Fig. A.4 use the triangle wave. Panels (c) and (d) use the antisymmetrized
von Mises function, with positive κ (dashed red) in panel (c) and negative κ
(solid red) in panel (d). We note that for κ > 0 the slope at the ±π is never
steeper when compared to the origin and for κ < 0 the slope at the origin is
never steeper when compared to the slope at ±π.

We numerically probe the stability of the bimodal equilibrium using these interaction func-

tions in Fig. A.4. Here N = 100, the oscillators’ frequencies are drawn from a distribution

N (0, 100), the phase perturbation, ξi, is drawn from the distribution N (0, 0.01) and we set

K = −1000. In panels (a) and (b) we take the triangle wave defined in Eq. (A.14) and set

c = 3π/4; this gives a stable fractionation threshold 1/4 < x < 3/4. We test that threshold
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Figure A.4. Numerical experiments using additional interaction functions.
We test the stability of the bimodal equilibria for alternative coupling functions
shown in Fig. A.3. (a) Triangle wave coupling with initial fractionation in pre-
dicted stable range. (b) Triangle wave coupling with initial fractionation outside
predicted stable range. (c) Von Mises coupling with κ > 0 (expected to be un-
stable). (d) Von Mises coupling with κ > 0 (expected to be stable). In all panels
N = 100 and oscillators’ natural frequencies are drawn from the distribution
N (0, 100). Initial phases are bimodally distributed with modes at 0 and π, with
perturbations ξi, i = 1, . . . , N , are drawn from N (0, 0.01).

numerically by setting xinitial = 7/10 < 3/4 in panel (a) and xinitial = 8/10 > 3/4 in panel (b).

As expected, we see that the fractionation is stable in panel (a) and is unstable in panel (b).

In panels (c) and (d) we use the antisymmetrized von-Mises function from Eq. (A.15) with

µ = 0 and xinitial = 1/2. In panel (c) we set κ = 10, and, as expected, we see that the bimodal

equilibrium appears unstable; this is because there does not exist a range of x such that Eq. (10)

can be satisfied given that the slope at the origin is far steeper than the slope at the±π. We note

that in (c) the system appears to tend to the incoherent state. In panel (d) we set κ = −10 and
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Figure A.5. Basins of attraction. We plot the fraction of uniform random ini-
tial conditions that end up in bimodal (blue circles), trimodal (orange asterisks),
or higher order multimodal (purple xs) states for the concrete system examined
given by Eq. (2.11). Here N = 100, K = −10000 and oscillators’ natural fre-
quencies are drawn from the distribution N (0, 100). We performed 100 unique
simulations for each value of a. Final states (presumed equilibria) were identi-
fied automatically via k-means clustering. Thresholds given by Eqns. (2.12) and
(A.13) for stability of bimodality and the antiphase state are given by the solid
black line and the dot-dashed green line, respectively. The threshold for the nec-
essary condition for stability of the trimodal state, see Eq. (A.12), is given by the
vertical dashed magenta line.

observe that the bimodal state appears to be stable under perturbation, which is expected given

that the slope at the ±π is steeper when compared to the origin.
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A.3. Basins of attraction for multimodal states

We have conducted some preliminary numerical exploration of the sizes of basins of at-

traction for various equilibria for the example interaction function given in Eq. (2.11). We

simulated the system one hundred times with initial phases chosen independently at random

from the uniform distribution over the circle, i.e. U(−π, π], and evaluated the fraction of the

time that the system converged to each distinct equilibrium state. Results are shown in Fig. A.5,

with N = 100, K = −10000, and oscillator natural frequencies drawn from the distribution

N (0, 100).

Fig. A.5 also shows the stability thresholds described in Eqns. (2.12) (bimodal state), (A.13)

(antiphase state), and trimodal state (A.12), visualized by the solid black, and dot-dashed green,

and magenta vertical lines respectively. In order to classify the observed equilibria, we use a

k-means algorithm on the unit circle, with the number of clusters, k, being decided by the gap

statistic. We say that a equilibrium state is bimodal if k = 2, trimodal if k = 3, and so on.

We note that the results are consistent with our analysis in that the probability of a config-

uration is always zero in ranges of a where it is excluded. Although, we have not analyzed

equilibria with more than three modes, we observe that such modes are unlikely to be observed

for most values of a, and thus have apparently small basins of attraction.

Given that this experiment was conducted with heterogeneous oscillators, this lends plausi-

bility to the idea that the system will end up in a multimodal state for sufficiently large coupling.

More formal analysis of the basin size of the bimodal and trimodal state are left as possible ex-

tensions of the model.
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Figure A.6. Critical coupling strength. We perform numerical experiments
to demonstrate the existence of a critical coupling strength for our system and
evaluate its dependence on parameter a using the interaction function defined
in Eq. (2.11). Here N = 100, the natural frequency distribution is given by
N (0, σ2), and the initial phase distribution is ρ(θ) = 0.5δ(θ) + 0.5δ(θ − ψ0),
where ψ0 is the predicted phase separation given by the stable fixed points of
Eq. (11). Here, each curve represents a different value of a (values indicated in
legend). As in the standard Kuramoto model, the critical coupling strength is
dependant on the size of the standard deviation of the distribution, but unlike the
standard Kuramoto model, it appears to also depend on a, which sets the shape
of the interaction function.

A.4. Critical coupling strength

In the standard Kuramoto model with attractive coupling, there exists a critical coupling

strength Kc at which the system bifurcates from an incoherent state to the ordered state. To

look for K dependence in the system detailed in Eq. (2.11), we examine the simplest cases

of N = 2 and N = 3, and also conduct several numerical experiments with results shown in

Fig. A.6, though we leave more thorough exploration for future work.



104

Figure A.6 shows how order varies as we increase coupling strength among nonidentical

oscillators with the concrete interaction function used in Eq. (2.11). Here, we set N = 100

and draw the frequencies from the distribution N (0, σ2). From here, we vary the quantity K/σ

so that log10(K/σ) runs from -2 to 4. Each curves shown above represents the result of an

experiment for a given value of a. Here, the order parameter is defined as follows:

(A.16) R = max

{∣∣∣∣∣∑
j

e2iθj

N

∣∣∣∣∣ ,
∣∣∣∣∣∑
j

e3iθj

N

∣∣∣∣∣ ,
∣∣∣∣∣∑
j

e
2π
a
iθj

N

∣∣∣∣∣
}
.

Defining the order parameter in this fashion sets the value of the order parameter to be 1 when-

ever the final configuration is bimodal or an equally spaced trimodal solution. Just as in the

standard Kuramoto model, if the coupling strength K is not sufficiently large in magnitude, the

system goes to the incoherent state due to intrinsic oscillator heterogeneity. We observe that the

critical coupling strength appears to be proportional to the standard deviation of the frequency

distribution, similar to the result in the standard Kuramoto analysis, but we point out that the

critical coupling strength Kc also appears to have dependence on the value of a. We believe that

some insight into this dependence can be gained from examining the simple N = 2 and N = 3

cases, though more rigorous analysis is left for future work.

For N = 2, the system reduces to

(A.17) ψ̇ = ∆ω −Kf(ψ)

where ∆ω = ω2 − ω1. Setting ψ̇ = 0, we find that a fixed point ψ0 must satisfy the equation:

(A.18)
∆ω

K
= f(ψ0) .
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Note, this fixed point does not always exist, but if the coupling function f has zeros, a fixed

point must arise as |K| → ∞.

Even without explicitly defining ψ0, we can observe scaling dependencies for the critical

coupling strength Kc, which is defined such that

(A.19) f(ψmax) =
∆ω

Kc

where ψmax ∈ (−π, π] is the value such that f(ψmax) = max f(ψ) (the arg max). We observe

that Kc ∝ ∆ω, which is expected if Kc ∝ σ as in the standard Kuramoto model (since for two

oscillators σ ∝ ∆ω) and is observed in our numerical experiments even for N � 2.

We also observe thatKc scales with the maximum value of the interaction function f , which

in our numerical experiments depends on the parameter a. Similar dependence is also evident

if we consider the N = 3 case.

For N = 3, we take the natural frequencies (without loss of generality) to be 0,−σ/3, σ/3

respectively. As before, we convert to difference coordinates ψ1 = θ2 − θ1 and ψ2 = θ3 − θ2,

and arrive at two conditions for existence of equilibria:

σ

K
= f(ψ2 − ψ1)− f(ψ2)− 2f(ψ1)(A.20)

σ

K
= f(ψ2 − ψ1) + 2f(ψ2) + f(ψ1) ,(A.21)

which simplify to

σ

K
= f(ψ2 − ψ1) + f(ψ2)(A.22)

f(ψ1) = −f(ψ2) .(A.23)
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Hence, a necessary condition K must satisfy for the existence of equilibria is

(A.24)
σ

K
≤ 2f(ψmax) .

So, just as in the N = 2 case, we see that the critical coupling strength Kc is proportional

to the oscillator heterogeneity σ and inversely proportional to the maximum of the interaction

function f .

We hypothesize that similar scaling laws hold for N � 1, and find that such a hypothesis is

consistent with data from numerical experiments shown in Fig. A.6.
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APPENDIX B

Modeling advertising competition: appendix

B.1. Case with sigmoidal advertising payoff

In the Section 3.3, we carried out our analysis assuming that the quantity demanded at zero

price, Qfree(ai|~a), took the form of a piecewise linear function given by Eq. (6). Here, we

assume Qfree(ai|~a) is given by a sigmoid:

(B.1) Qfree(ai|~a) =
∆Qad

2

{
tanh

[
ai − a
λ

]
+ 1

}
+Qmin .

As in Section 3.3, we first consider the case where production and advertising costs scale lin-

early, i.e, µ = ν = 1. We substitute Eqns. (9), (10), and (B.1) into (8), giving

τ
dai
dt

=
N − 1

N

∆Qad

8λkP
[Qfree(ai|~a)− kQkP] sech2

{
ai − a
λ

}
− ka

= B(ai|~a)− ka,(B.2)

where

(B.3) B(ai|~a) =
N − 1

N

∆Qad

8λkP
[Qfree(ai|~a)− kQkP] sech2

{
ai − a
λ

}
.

Similarly to Section 3.3, τ sets the time scale for equilibration, and we set τ = 1 without loss

of generality.
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Fixed points occur when B(ai|~a) intersects ka. Figure 4 shows how firms would change

their advertising given mean a, according to (B.2). Of course, since a changes in time due to

the distribution of advertising ~a evolving in time, B(ai|~a) is variable in time as well. For a

given a1 there are three fixed points for the system: two from the intersection of B(ai|~a) with

ka and one implied at zero as negative advertising is not physically meaningful in this problem.

One can see from Fig. 4 that given a an equilibrium would involve a distribution of companies

at zero and at a = aname > 0. Furthermore, the equilibrium must be distributed such that

a = 0x+ aname(1− x), where 0 < x < 1 gives the fraction of generic firms.

B.1.1. Existence of the differentiated state

In Section 3.3, for the piecewise-linear advertising payoff function, we argued that the differen-

tiated state may only exist when ka intersects B(ai|~a). This holds in the current sigmoidal case

as well, so the following is a necessary condition for the existence of a differentiated state:

(B.4) ka < kcrit(λ,N,Qmin,∆Qad, kQ, kP) = max
a

B(a|~a) .

Here maxa B(a|~a) can be expressed algebraically as

max
a

B(a|~a) =
4(N − 1)

27Nλ∆QadkP

(
Q∗i (a)

√
∆Q2

ad + [minQ∗i ]∆Qad + [minQ∗i ]
2 +

1

2
∆Q2

ad

− [minQ∗i ]∆Qad − [minQ∗i ]
2

)(
Q∗i (a) +

1

2

√
∆Q2

ad + [minQ∗i ]∆Qad + [minQ∗i ]
2

)
,

(B.5)

1But of course a is itself a dynamical variable, and a self-consistent solution must be sought where the equilibrium
distribution of firm advertising implied by a is consistent with a.
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where minQ∗i = Qmin − kQkP, and Q∗i (a) = ∆Qad/2 + Qmin − kQkP. This condition appears

to be sufficient as well as necessary (see Section B.1.3).

B.1.2. Stability of the differentiated state

We investigate the stability of the differentiated state by examining the functional form of

dai/dt. After substituting Eqns. (B.1) and (10) into Eq. (B.2) we can reduce dai/dt to the

following form :

(B.6)
dai
dt

= −α tanh3

(
ai − a
λ

)
− β tanh2

(
ai − a
λ

)
+ α tanh

(
ai − a
λ

)
+ β − ka ,

where α = (N − 1)∆Q2
ad/(8λNkP) and β = (N − 1)∆Qad (0.5∆Qad − kQkP) /(8λNkP).

Factoring out α from (B.6) gives

(B.7)
dai
dt

= α
(
−u3 − γu2 + u+ γ − k∗a

)
,

where u = u(ai|~a) = tanh [(ai − a) /λ], γ = β/α, and k∗a = ka/α. Because we are only

interested in fixed points, we can ignore the α outside of the parenthesis as this just sets a time

scale for equilibration.

We define g[u(ai|~a)] = −u3 − γu2 + u + γ − k∗a. To assess linear stability, we show that

the eigenvalues of the Jacobian matrix of our dynamical system are negative in a similar fashion

to the method used in reference [33]. One can show that ∂/∂aj(dai/dt) scales like 1/N when

i 6= j and hence that these terms can be ignored when determining stability for N →∞. Now,

consider the main diagonal of the Jacobian of our system as N →∞:

(B.8)
∂

∂ai

(
dai
dt

)
= g′[u(ai|~a)]

∂u

∂ai
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where

(B.9)
∂u

∂ai
= sech2

[
ai − a
λ

]
> 0 .

Hence, the sign of ∂/∂ai(dai/dt) is determined by the sign of g′[u(ai|~a)]. Since stability must

alternate in one dimensional flows, the only stable nonzero fixed point must be the far right

intersection between B and ka (see Fig. 4) located at a = aname. We can write g′[u(aname|~a)] as

(B.10) g′[u(aname|~a)] = − 1

12
w2/3 − 1

3
v − 4

3

v2

w2/3
,

where

v = γ2 + 3,(B.11)

w = 72γ − 108k∗a − 8γ3 + 12
√

12k∗aγ
3 − 12γ4 + 81(k∗a)2 − 108k∗aγ + 24γ2 − 12 .(B.12)

It can be shown that the expression in (B.10) has a maximum of zero which occurs at one point,

specifically,

(B.13) k∗a =
2

27
γ(9− γ2) + (γ2 + 3)

3
2 ,

or, expressed in terms of the original parameters,

ka = max
a

B(a|~a).
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This also happens to be the threshold for existence of the differentiated (bimodal) state. So, as

long as the bimodal state exists, the Jacobian has negative values along its main diagonal and,

therefore, it is a stable solution as N →∞.

B.1.3. Stability of the undifferentiated state

To examine stability of the undifferentiated state, we set ai = a = 0, for all i. We again assume

N → ∞, and thus any change in a is negligible under single firm perturbations. If there is

an interval of positive perturbations neighboring zero for which dai/dt < 0, then the undiffer-

entiated state is stable under single firm perturbations for sufficiently small perturbations. If

ai = a = 0 then u(0|~0) = tanh [(ai − a) /λ] = tanh(0) = 0. Hence, substituting u = 0 in to

Eq. (B.7) gives

(B.14)
dai
dt

= α(−u3 − γu2 + u+ γ − k∗a) = α(γ − k∗a) < 0 .

By continuity of dai/dt, there must exist an interval (0, ε) such that dai/dt < 0. Since α >

0, the statement k∗a > γ is sufficient to ensure stability of the undifferentiated state. Taken

together with Eq. (B.13) above, we observe that a region of bistability exists where both the

undifferentiated state and the differentiated state are stable:

(B.15) γ < k∗a <
2

27
γ(9− γ2) + (γ2 + 3)

3
2 .

In the original parameters with N →∞, Eq. (B.15) can be written as

B(a|~a) =
∆Qad[Qmin + ∆Qad/2− kQkP]

4λkP
< ka < max

a
B(a|~a) .(B.16)
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In more intuitive terms this can be expressed as

(B.17)
∂πi
∂ai

∣∣∣∣
ai=a

< 0 < max
a

∂πi
∂ai

.

This result is identical to the one given in Eq. 3.20.

B.2. Welfare analysis

The existence and persistence of name brand goods is of interest in this section, but it is

also of interest to determine if advertising is beneficial to society at large, and if advertising

generates more profit for the industry as a whole. We address these questions by considering

economic welfare, similarly to the approach taken in reference [112]. We define total welfare

to be the sum of consumer welfare—the difference between the maximum price an individual

is willing to pay for a good or service and the price they actually pay—and the total profit gen-

erated by the market. We use post-advertising preferences when calculating consumer welfare,

effectively interpreting consumer demand after advertising to reveal the true preferences. Fur-

ther consideration of this point is merited to better understand how advertising should factor

into consumer welfare, but we leave that for future work.

Figure B.1(a) displays the maximum possible consumer welfare (optimizing over all frac-

tions generic in differentiated equilibria) for a given marginal advertising cost ka (blue, solid)

and the total welfare for the undifferentiated state (red, dashed). The black line indicates when

ka = max B(ai~a) and thus, past that point the differentiated state ceases to be stable. The max-

imum possible consumer welfare for the differentiated state is greater than the undifferentiated

state across all ka.
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Figure B.1. Optimized consumer welfare, profit and total welfare given
marginal advertising costs. In (a) we display the optimal total consumer wel-
fare generated by the market across all possible differentiated equilibria for a
given marginal advertising cost ka (blue, solid) and the total consumer welfare
generated by the undifferentiated state (red, dashed). The black line in all three
panels indicates when ka = max B(ai|~a) and thus, past that point the differenti-
ated state ceases to be stable. In (b) we display the optimal total profit generated
by the market across all possible differentiated equilibria for a given marginal
advertising cost ka (blue) and the total profit generated by the undifferentiated
state (red, dashed). In (c) we display the optimal total welfare generated by
the market across all possible differentiated equilibria for a given marginal ad-
vertising cost ka (blue, solid) and the total welfare generated by the undiffer-
entiated state (red, dashed). We set N = 100, Qmin = 30, ∆Qad = 5, and
λ = µ = ν = kQ = kP = 1, with ka ranging over a range 0 to 45.

Figure B.1(b) shows the maximum possible total profit in the market (optimized over all

stable fractions generic in differentiated equilibria) for a given marginal advertising cost ka

(blue, solid) and the total profit for the undifferentiated state (red, dashed). The differentiated

state is more lucrative (at the industry-wide level) when marginal advertising costs are low, and

the undifferentiated case is more lucrative for high marginal advertising costs.

Figure B.1(c) shows the maximum possible total welfare in the market. Note this is not

simply the sum of the numbers in panels (a) and (b), as they may correspond to different stable
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fractionations x. The differentiated state (blue, solid) is more beneficial when considering the

interests of consumers and producers when marginal advertising costs are low, and the undiffer-

entiated case (red, dashed) is more beneficial when marginal advertising costs are high. In this

numerical experiment we setN = 100, Qmin = 30, ∆Qad = 5, and λ = µ = ν = kQ = kP = 1,

with ka ranging over a range 0 to 45.

According to Figure B.1, the differentiated state produces more total welfare than the undif-

ferentiated state when the marginal cost of advertising is low. Conversely, the undifferentiated

state generates greater total welfare when the marginal cost is relatively high. We leave analyt-

ical exploration of the effect of advertising on welfare and profit as a possible extension to this

work.

B.3. Comparing model predictions and data

In Section 3.3.6, we describe statistical tests used to assess how our model’s predictions

compare to real-world data. We use the Kolmogorov-Smirnov test (KS test) to determine if the

sample data and the model predictions are likely to have come from same distribution. We use

Hartigan’s Dip Test to see if we could reject unimodality of the sample data. We display the

resulting distributions from the application of these statistical tests in Fig. B.2.

Hartigan’s Dip Test appears to be “excessively conservative and insensitive” at small sample

sizes according to [33]. Clifton et al. used an altered test, the Least Unimodal Unimodal (LUU),

to develop a more sensitive bootstrapped dip statistic to test for unimodality.

According to the LUU Test 53% of price distributions are inconsistent with unimodality at

a significance level 0.05 compared to 46% of price distributions inconsistent with unimodality

when applying Hartigan’s Dip Test. For 58% of our model fits to the top 500 products, we fail
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Figure B.2. Histograms of Fitting Statisitics. Distributions of p values from
tests for unimodality (a-b) and consistency of price data with model predictions
(c). The red dashed line indicates the significance level of .05. Top and mid-
dle row: LUU and Hartigan’s Dip Test (respectively). Rejection (low p-value)
means the price distribution is not consistent with unimodal null hypothesis.
Bottom row: KS test. Rejection (low p-value) means the price distribution is not
consistent with same-distribution null hypothesis (i.e., model and data not from
same distribution).

to reject the null hypothesis at a significance level of 0.05: the data and the model prediction

may come from the same distribution.

B.4. Seeding the minimization algorithm

To seed the initial choice of parameters for fitting, we attempt to match the modes of the

model distribution, f(p), to the modes of the empirical distribution g(p) inferred from the price

data. Since our model only produces unimodal or bimodal distributions, we produce kernel

density estimates (KDEs) of the data with increasing bandwidths until we detect at most two

peaks at prices P1 and P2, where P2 > P1. Numerically, we accomplish this using KDE

bandwidths increasing progressively from 0.1 to 10 in increments of 0.1. We apply a threshold

to peak-detection such that only peaks of height greater than 0.1 are counted.
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If the KDE is bimodal then we wish to choose seed values such that the two modes of

the differentiated state (the generic brand price and name brand price) match P1 and P2. We

cannot easily predict the equilibrium advertising value for name brands aname, so Qfree(ai|~a)

(and hence P ∗i ) cannot be set exactly to match P1 and P2. Instead, we make the assumption that

the average advertising level a is far away enough from 0 and aname that Qfree(ai|~a) is near its

saturation values at ±∞ for generics and name brands—meaning that name brands receive the

maximum demand increase due to advertising and generics receive no increase in demand due

to advertising.

We minimize the magnitude of profit’s derivative with respect to price when Qfree(ai|~a) =

∆Qad +Qmin and Qfree(ai|~a) = Qmin. This leads to the objective function

(B.18) R(∆Qad, kP, kQ, Qmin, µ) =

∣∣∣∣∂πi∂Pi

∣∣∣∣
Pi=P1,ai→−∞

+

∣∣∣∣∂πi∂Pi

∣∣∣∣
Pi=P2,ai→∞

.

R(∆Qad, kP, kQ, Qmin, µ) is minimized when ∂πi/∂Pi|Pi=P1,ai→−∞ and ∂πi/∂Pi|Pi=P2,ai→∞

are both zero. When R(∆Qad, kP, kQ, Qmin, µ) is minimized the optimal price for name brands

is P = P2 (in the limit a → +∞) and the optimal price for generics is P = P1 (in the limit

a → −∞). We minimize R using the Nelder-Mead algorithm [110] and the resulting val-

ues for ∆Qad, kP, kQ, Qmin, and µ are used as seeds for fitting our model to the data. We set

∆Qad = 1.1 × 107, kP = 4.4 × 106, kQ = 100, Qmin = 2.5 × 107, and µ = 0.4 to seed the

R-minimization problem (where these values are derived from a more complete exploration of

the parameter space in the case of a single product from the data set).

The initial proportion of generic firms x is set by measuring the percentage of price entries

that are less than the quantity P1+w, where w is the peak width at half-prominence for the peak
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at P1. The initial advertising distribution is given by xδ(ai − 1) + (1− x)δ(ai − 100), where δ

represents the Dirac delta function.

If the KDE is unimodal (i.e., P1 = P2), the we take a different approach. There is a crit-

ical cost of advertising kcrit
a defined by kcrit

a = ν−1(amax)
1−νB(amax|~a), where for ka > kcrit

a ,

dai/dt < 0 for all i and no bimodal state exists, since there will be no intersection between B

and the advertising cost curve C ′a(a) = νkaa
ν−1 (we assume 0 < ν ≤ 1). Here amax is defined

as the advertising value such that B(amax|~a) = maxa B(ai|~a), i.e., the arg max of the function

B.

Note that this critical value kcrit
a is state-dependent. We set the initial advertising distribution

for this undifferentiated case to δ(ai − 100), so ai = a = 100 for i = 1, . . . , N . Given this

choice, we found that setting ka = ν−1(a∗)1−νB(amax|~a) was sufficient to ensure that the system

evolved to a unimodal price distribution, where a∗ is any sufficiently large value above amax (the

threshold for “sufficiently large” can be calculated from model parameters). We used a∗ = 300

in our simulations.

Additionally, for the undifferentiated state, we redefine R as

(B.19) R(∆Qad, kP, kQ, Qmin, µ) =

∣∣∣∣∂πi∂Pi

∣∣∣∣
Pi=P1,ai=a=0

.

We then minimize R to set the parameters so the price in the undifferentiated state matches P1.

We implement the Nelder-Mead algorithm with the same seeds as in the previously described

differentiated case.

There are three parameters we don’t explicitly fit, namely, ka, λ and ν (two in the undiffer-

entiated case, since ka is specified). For these we use the same values employed to seed R; the

values result from a more thorough exploration of the parameter space in the case of a single
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product from the data set. They are: ka ≈ 9100, λ ≈ 9.7 and ν ≈ 0.57. We chose not to

fit these parameters for every product because price distributions appeared to be insensitive to

their values. Given the inherent limitations of our “toy” model, our goal was to demonstrate that

agreement between model and data is plausible, not to exhaustively discover the best possible

agreement.

B.5. Data adjustment

On examining the data, it becomes apparent that there is bias present toward prices ending

in certain digits. Prior research has highlighted this phenomenon in pricing of goods, known as

psychological pricing [113–116]. Since our model does not take into account this type of bias,

we develop a method to remove this bias from the price distribution.

1 5Price
0

4

P
D

F

Figure B.3. Raw and Smoothed Price Data. Example of the raw price data
with spikes situated near certain ending digits (blue) and the smoothed, debiased
data that retains the quantitative properties of the underlying distribution while
removing the spikes (orange). Red arrows point to example spikes located at
$2.99, $3.49, and $3.99.
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This bias towards certain ending digits creates spikes in each product’s price distributions, as

displayed in Fig. B.3 (blue). One might consider using a kernel density estimate (KDE) [117] or

a filter to remove these spikes [118]. However, with a KDE approach, the amount of smoothing

required to effectively remove these spikes significantly alters the underlying distribution. With

the filtering approach, the “probability mass” of the spike is redistributed nonlocally across

the entire distribution, again altering it in an undesirable way. We develop a new method that

attempts to remove spikes while keeping the underlying distribution largely unchanged. An

example applying our method to data can be seen in Fig. B.3 (orange).

Details of our “debiasing” method are reported in an upcoming paper [119], however we

also explain the idea briefly here. We begin by defining a metric, B1(p), for how biased a

distribution is towards a price value p. We calculate B1(p) as follows:

(B.20) B1(p) =
ρ0(p)

ρ1(p)
,

where ρ0(p) is the value of the normalized histogram at p and ρ1(p) is a kernel density estimate

of ρ0 using a Gaussian kernel with a narrow bandwidth (e.g., here we use h = 0.01). Concep-

tually similar to generation of a KDE, we then replace the data point at each price pi with a

Gaussian that has variance sB1(pi)
r. This generates a new price distribution ρ2(p), where the

parameters s > 0 and r > 0 determine the natural amount of smoothing when there is no bias

and how the smoothing scales with bias—linearly, sublinearly, or superlinearly—respectively.

When we apply this method, we set r = 0.5 and set s = σ(4/3n)−0.2 based on Silverman’s

“rule of thumb” [120], with n being the number of data entries and σ defined as the standard
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deviation of the data. We iterate this process with Bi(p) being defined as

(B.21) Bi(p) =
ρ0(p)

ρi(p)

until we arrive at a distribution ρ∞, such that it is fixed under this iteration.

As the sample size goes to infinity, the method is equivalent to the following integral trans-

form:

(B.22) ρi+1(p) =

∫ ∞
−∞

ρ0(p
′) N (p′, s(Bi(p− p′))r)dp′.

Letting i→∞ yields the smoothed distribution

(B.23) ρ∞(p) =

∫ ∞
−∞

ρ0(p
′) N (p′, s(B∞(p− p′))r)dp′.

The distribution ρ∞ is fixed under this integral transform. As mentioned above, tests of how

effectively this method performs “bias” removal are reported in an upcoming manuscript [119].

We move forward assuming that this method works sufficiently well; this assumption is sup-

ported by qualitative visual examination of distributions before and after this “debiasing” pro-

cedure2.

B.6. Data Availability

The data that support the findings of this study are available from The Nielsen Company

(US), LLC but restrictions apply to the availability of these data, which were used under license

2Note that the KDE performs a uniformly diffusive smoothing operation, whereas our approach assumes that
psychological bias in pricing is better corrected for by a locally varying redistribution of probability mass
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for the current study, and so are not publicly available. Data are however generally available for

scientific research with an institutional or individual subscription [98].

Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company (US),

LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center

at The University of Chicago Booth School of Business.

The conclusions drawn from the Nielsen data are those of the researcher(s) and do not reflect the views of

Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results

reported herein.
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APPENDIX C

Size dimorphism: appendix

C.1. Sex ratios

x

Power law exponent α, where (# gametes) ∝ (size)α

Fr
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n

“m
al

e”
x

α
0 1 2 3 4

0

1

Figure C.1. Possible sex ratios. The solid black curve shows the threshold for
existence of the anisogamous state given by Eq. (C.1). The anisogamous equi-
librium exists below the threshold (blue shaded region) and ceases to exist above
the threshold (red shaded region). Here the fraction “male” refers to the fraction
with small gametes.

For the bimodal gamete size distribution to exist, s∗ must be real-valued, and hence β =

α2x2 − 6αx+ 1 in Eq. (4.8) must be positive. This holds when

(C.1) x <
3− 2

√
2

α
.

Thus there is an implied range of stable sex ratios for a given value of α. Figure C.1 illustrates

the relationship between the power law exponent α and the fraction of the population with
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small gametes (the fraction “male”) given by Eq. (C.1). As α increases in magnitude the range

of possible fractionations decreases.

Interestingly, an approximate 1:1 sex ratio is not attainable for some “reasonable” exponents

of Ng (e.g., 1, 2, and 3, each of which would correspond to a distinct simple measure of gamete

“size”). This is likely a result of our specific choices of ϕg and Ng, as well as the restricted

nature of the model. When we modify gamete reproductive potential to depend on both relative

and absolute gamete size, in numerical simulation we observe stable anisogamous states with

arbitrary sex ratios. Also note that our model purposefully omits frequency-dependent selection

effects that would likely drive sex ratios toward 1:1 (the reproductive potential of a single “male”

gamete in a community of mostly “female” gametes would be much higher than in a community

of mostly “male” gametes because the likelihood of fusion would be higher and the likelihood

of zygote survival would be higher, i.e., Fisher’s principle [121]).

C.2. Numerical simulations

We test predictions of our model via numerical simulation. Figure C.2 shows the evolution

of a population from a state that is isogamous to a one that is anisogamous. The gametes (yel-

low) move along the landscape (blue) in the direction that increases their reproductive potential.

For this simulation, we set α = 1, N = 100, and w = 1/10 with a final fraction of individuals

producing small gametes x = 0.1. The initial isogamous distribution was sampled from the

uniform distribution U(1, 3).
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Figure C.2. Simulation of the system. Panels (a)-(d) show the evolution of the
system from an isogamous state to an anisogamous state. Here, the blue curve
shows the reproductive potential landscape given by Eq. (4.4), the red circles in-
dicate gamete sizes, and the yellow crosses give positions of gametes along the
reproductive potential landscape. Panel (a) captures the isogamous initial condi-
tion U(1, 3). Panel (b) shows the individuals moving along the landscape in the
direction that increases reproductive potential. Panel (c) shows the beginning of
two groups forming. In Panel (d), the simulation has arrived at an anisogamous
equilibrium, with gamete sizes converging to zero or s∗ as given by Eq. (4.8).
The final fraction of organisms that produce small gametes is x = 0.1. For this
numerical experiment, we set α = 1, N = 100, and w = 1/10.

C.3. Stability tests

C.3.1. Linear stability

Section 4.4.2, we outlined a restricted stability test of the anisogamous equilibrium where only

single-gamete perturbations were allowed. A more rigorous test of stability is difficult because

the Dirac delta functions that comprise the equilibrium gamete size distribution are actually

generalized functions and thus must be treated carefully when perturbed. One straightforward
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way to avoid this difficulty is to look at the linear stability of the equilibrium for finite N , then

take the limit as N →∞.

One can show that, for finite N , the off-diagonal elements of the Jacobian matrix take the

form

Jij = (si)
−α−1

[
2
N − 1

N2

w sgn(si − s)+
(w + |si − s|)3

− 1

N

α(w + |si − s|)
(w + |si − s|)3

]
.(C.2)

It follows that these off diagonal elements approach zero as N →∞.

The diagonal elements of the Jacobian matrix take the form

Jii =
1

(w + |si − s|)3

{[
N − 1

N

]2
[si − s− 2 sgn(si − s)(w + |si − s|)]

+
α(1 + α)

s2i
(w + |si − s|)2(si − s+ |si − s|)− w

[
N − 1

N

] [
w + |si − s|

si

]}
.(C.3)

One can show that these are all negative when si = s∗ or si → 0+ and s = (1−x)s∗ asN →∞

given that Eq. C.1 is satisfied.

Since off-diagonal elements become infinitesimal, the eigenvalues of the Jacobian matrix

are determined by the diagonal elements as N → ∞, and thus all eigenvalues are negative,

implying linear stability of the anisogamous equilibrium.

C.3.2. Stable size distributions

We perform two numerical experiments to test the stability of the anisogamous state. First, we

perturb the large group from its equilibrium value s∗ given in Eq. (4.8) by an amount ξi drawn

from N (0, δ2). Figure C.3a displays the result of the perturbation. Gamete sizes that were

perturbed return their equilibrium value. Second, we perturb the small group ξi drawn from
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(a)

(b)

Figure C.3. Numerical test of the stability of anisogamy. We test the stability
of the anisogamous state. Panel (a) shows the large gamete group being per-
turbed and then returning to its equilibrium value, s∗. Panel (b) shows the small
gamete group being perturbed and then returning to its equilibrium value zero.
Panel (a) and (b) demonstrate the stability of the anisogamous equilibrium and
are consistent with the asymptotic theory from Eqns (4.9) and (4.11). In both
panels, we set α = 1/3, N = 1000, and w = 2, with an initial fractionation
x = 1/2.

U(0, γ)1. Similar to the first test, Figure C.3b demonstrates that the perturbed group returns to

its equilibrium value. We set α = 1/3, N = 1000, w = 2, and x = 1/2 in both simulations.

C.4. Nonidentical individuals

Our results appear to be robust to the inclusion of natural variation among the simulated

individuals. In various numerical experiments, we considered variations in the width of the

sigmoidal gamete reproductive potential function ϕg (see Eq. (4.3)), as well as in its mean,

minimum, and maximum values. We also varied the multiplicative factor in the gamete pro-

duction function (see Eq. (4.2)). In all cases, the equilibrium gamete size distribution remained

1We choose to perturb by the uniform distribution in order to avoid negative values
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qualitatively the same as in the case with identical individuals: the only change was the appear-

ance of some variation around the expected delta function peaks (primarily the peak at s∗) at

equilibrium. See Figure C.4.

Figure C.4. Simulation with a heterogeneous population. We display the evo-
lution from isogamy to anisogamy population for a heterogeneous population.
The large gamete group widens out when adding noise to the width of the sig-
moid in Eq. (4.3). The final fraction of organisms that produce small gametes is
x = 0.1. For this simulation, we set α = 1, N = 100, and w was sampled from
the distribution N (1/10, 1/502).

C.5. Nonzero size for small gamete group

Because reproduction requires the transfer of some minimal amount of physical material,

the number of gametes cannot realistically diverge as s → 0+. Our results, however, appear

to be robust to the inclusion of a minimal viable gamete size. In simulation, we incorporated a

minimal size by multiplying the individual reproductive potential by e−k/s, where k > 0. This

eliminated the singularity at zero and generated a point 0 < s∗small < s∗ such that reproductive

potential is maximized. In such simulations, the resulting equilibrium distribution was ρ(s) =

xδ(s− s∗small) + (1− x)δ(s− s∗), as expected. See Figure C.5.
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Figure C.5. Simulation with a nonzero minimum gamete size. We display
a simulation where the individual reproductive potential is multiplied by e−k/s,
where k > 0. The initial isogamous population moves to an anisogamous popu-
lation ρ(s) = xδ(s− s∗small) + (1− x)δ(s− s∗), 0 < s∗small < s∗. Here, N = 100,
w = 1, α = 1, k = 1, and the final fraction of small gametes is x = 0.16. The
initial isogamous population was drawn from U(1, 3).

C.6. Absolute gamete fitness

In our model we assume that the reproductive potential of a gamete depends on its size

relative to others in the population. In reality, there are likely some absolute size effects that

also play a role. In Figure C.6, we numerically simulate our model with the inclusion of both

absolute and relative gamete potential terms, with the results appearing to remain qualitatively

unchanged. Figure C.6 does show that a wider range of fractionations is possible at equilibrium

with the final fraction of small gametes x = 0.4 > (3−
√

2)/α ≈ 0.17—the threshold given by

Eq. (C.1).
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Figure C.6. Simulation with both absolute and relative reproductive poten-
tial. In this simulation the individual reproductive potential was a weighted sum
of two sigmoidal functions, one as in the Eq. (4.3) (i.e., centered at s), and the
other identical but centered at c = 1. Weight was 90% absolute, 10% rela-
tive. The population converges to an anisogamous state with 40% small gametes.
Here, N = 100, w = 0.1 + N (0, 0.012), α = 1, and the initial population was
drawn from U(0, 1.5).
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APPENDIX D

Debiasing data: appendix

D.1. Derivation of the partial differential equation

We begin with Eq. (5.2). Writing out this equation explicitly yields

dyi
dt

= β
1− k

2
[(yi+1 + yi−1 − 2yi)− (yi+1,0 + yi−1,0 − 2yi,0)]

− α k

4∆x2
(yi+2 + yi−2 − 4yi+2 − 4yi−2 + 6yi) .(D.1)

Multiplying Eq. (D.1) by∆x2/∆x2 yields

dyi
dt

= β∆x2
1− k
2∆x2

[(yi+1 + yi−1 − 2yi)− (yi+1,0 + yi−1,0 − 2yi,0)]

− α∆x2
k

4∆x4
(yi+2 + yi−2 − 4yi+2 − 4yi−2 + 6yi) .(D.2)

Setting α = α∗/∆x2 and β = β∗/∆x2 gives

dyi
dt

= β∗
1− k
2∆x2

[(yi+1 + yi−1 − 2yi)− (yi+1,0 + yi−1,0 − 2yi,0)]

− α∗ k

4∆x4
(yi+2 + yi−2 − 4yi+2 − 4yi−2 + 6yi) .(D.3)
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The discrete operator for the second and fourth spatial derivative is given by

d2yi
dx2

=
yi+1 + yi−1 − 2yi

∆x2
+O(∆x2)(D.4)

d4yi
dx4

=
yi+2 + yi−2 − 4yi+2 − 4yi−2 + 6yi

∆x4
+O(∆x2)(D.5)

Now, sending ∆x→ 0 gives

∂ρ

∂t
= β∗

(
1− k

2

)(
∂2ρ

∂x2
− d2ρ0
dx2

)
− α∗

(
k

4

)
∂4ρ

∂x4
,

matching Eq. (5.3).
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