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Abstract

This thesis consists of three projects, centered around the aim to better model real-world systems

under uncertainty, specifically, under stochastic disruptions, using optimization. A stochastic dis-

ruption is a type of infrequent event in which the timing and the magnitude are random. We

introduce the concept of stochastic disruptions and a stochastic optimization model is proposed for

such problems with a finite time horizon.

We further develop the idea of a stochastic disruption for a specific example, a project crashing

problem under a single disruption. When a disruption occurs, the duration of an activity, which

has not yet started, can change. Both the magnitude of the change of an activity’s duration and the

timing of the disruption can be random. We formulate a stochastic mixed integer program (SMIP)

with mixed integer recourse. This SMIP can be computationally challenging to solve using existing

techniques. We propose an adaptive branch-and-cut algorithm to solve the SMIP and evaluate the

computational performance of our approach.

Next, we consider an application in electric power systems in which a disruption can occur due

to uncertain demand or uncertain availability of renewable energy resources. We propose a robust

optimization model for the alternating current optimal power flow (ACOPF) problem, considering

a two-stage model in which potential disruptions occur on a 10-15 minute timescale. We use an

uncertainty set to model a disruption in the context of robust optimization. Based on a recently

developed convex relaxation for the ACOPF problem, we construct a robust convex optimization

problem with recourse. We develop an enhanced cutting-plane algorithm to solve this problem,

and we establish convergence and other desirable properties. Experimental results indicate that

our robust convex relaxation of the ACOPF problem can provide a tight lower bound and an
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acceptable solution for the non-convex robust ACOPF problem.

Finally, we consider a syringe exchange program (SEP) in which a client’s behavior is stochas-

tic. Using data from one program in Chicago over ten years, we study the behavior of its clients,

focusing on the temporal process governing their visits to service locations and their demographics.

The frequency of using the SEP services may be affected by stochastic disruptions such as the client

relocating or participating in a treatment program. We construct a phase-type distribution to char-

acterize unobservable changes in a client’s status, and we use an affine relationship between model

parameters and features of an individual client. The phase-type distribution governs inter-arrival

times between reoccurring visits of each client to SEP sites and is informed by characteristics of

a client including age, gender, ethnicity, drug-use habits and more. The inter-arrival time model

is a sub-model in a simulation model that we construct for the larger system, which allows us to

provide a personalized prediction regarding the client’s time-to-return to a service location so that

better intervention decisions can be made.



4

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. David Morton for all the effort he put

in me to make me not only a better researcher but also a better person. Prof. Morton has been so

patient and always encourage me to aim for better results. At the same time, he has taught me

to keep my head down, be detail-oriented and rigorous about everything in my life. He is truly a

great advisor, and no words can truly express my gratitude for what he has done for me.

Besides Prof. Morton, all faculty and staff members have been very supportive to me during

the past five years. I would like to especially thank Prof. Andreas Wächter and Johnathan Gaetz
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Chapter 1

Introduction

1.1 Motivation

Stochastic optimization and robust optimization are two widely used methods to incorporate

uncertainty in a decision-making process. In such models, the uncertainty takes the form of an

unknown outcome of parameters, which is realized after making the decision. In stochastic pro-

gramming, we model uncertainty by assuming the outcome is governed by a known distribution,

or stochastic process, and in robust optimization we instead assume the outcome belongs to an

uncertainty set.

If we have a multi-stage problem, which involves multiple rounds of decision making under

uncertainty, neither the stochastic program nor the robust optimization problem is typically easy

to solve. Under certain assumptions, a multi-stage stochastic linear program can be solved by

stochastic dual dynamic programming, when the number of scenarios in each stage is modest and

the number of stages is not too large. However, for some applications such as air traffic control and

energy dispatch, each decision period is short, resulting in a large number of stages. There is limited

literature that extends robust optimization models to a multi-stage setting without simplifying the

recourse actions.

At the same time, significant stochastic disruptions can occur during multi-stage decision

problems, and there is less work directly addressing this type of uncertainty. Model parameters
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may be assumed to be deterministic, in part, because of the increased accuracy of predictive models

during normal operations. For example, the deviation of energy consumption from a point forecast,

within a five-minute window is usually negligible, and so we might treat it as a deterministic value

unless we are under an extreme situation. This suggests that we may focus on these infrequent

extreme situations and pursue a simplified model of uncertainty.

1.2 Stochastic Disruptions

We consider stochastic disruptions, which include the timing of the disruption in the model

of uncertainty. A disruption is a type of event under which uncertain parameters change in a

significant way, in value, distribution, etc. We view disruptions as events that occur infrequently,

but that can have a significant impact, which means that a disruption could be a one-time event,

or an event that happens only a limited number of times over the planning horizon. Using the

concept of stochastic disruption, we can model not only the magnitude of the uncertainty, but also

the timing, which is not typically handled by stochastic programming or robust optimization.

To illustrate with the simplest case, we assume there is at most one disruption. A sequential

decision problem with a single stochastic disruption is illustrated in Figure 1.1.

Figure 1.1: An illustration of scenario tree for a sequential decision problem with single disruption

Figure 1.1 shows a sequential decision problem with four time periods. The left diagonal

(circled by a red rectangle) represents the nominal scenario in which no disruption occurs. Every

branch to the right of the nominal scenario represents a disruption scenario. The depth of branch

represents the timing of the disruption and the parallel branches with the same depth represent
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different disruption magnitudes. We are interested in finding an optimal policy for the nominal

scenario, since we follow this policy until a disruption occurs. Once a disruption occurs, the system

illustrated in the figure becomes deterministic and we can re-optimize according to the disruption

scenario realized.

1.3 Dissertation Outline

In Chapter 2, we formulate a program evaluation and review technique (PERT) model in

which we crash an activity network under stochastic disruptions. Activities within a project can be

accelerated with certain costs, and the decision maker has to decide which activities to crash under

a limited budget so that the entire project span is minimized in expectation. At some random point

along the continuous time horizon, the duration of activities might change due to some external

reasons and the crashing strategy must change accordingly. We formulate the model as a two-

stage stochastic mixed-integer program (SMIP) in which the timing of the disruption is random.

Simple examples give insight into potential solution behavior and justify the use of an SMIP model.

Although we show the model to be NP-hard, we propose an effective decomposition algorithm

that adaptively partitions the feasible region of continuous first-stage decision variables within a

branch-and-cut algorithm. We present computational results to show the value of our model and

the effectiveness of our decomposition method compared to solving the extensive formulation with

a commercial solver.

In Chapter 3 we discuss solving a robust convex relaxation of an alternating current optimal

power flow (ACOPF) problem. In this problem, a disruption can be considered as the time point at

which realized net load deviates significantly from a point forecast. Since it is important to prevent

an electric power system from failing to satisfy demand, we use a robust optimization model to

handle all contingencies in an uncertainty set. We propose a decomposition algorithm, based on

generalized Benders’ decomposition, to solve a convex relaxation of the robust optimization model.

We prove convergence of our algorithm and develop a scenario-appending scheme to improve the

computational performance of the cutting-plane algorithm. We show that the lower bound obtained

by our model can be tight and the quality of the solution empirically performs well in the non-convex
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robust model.

In Chapter 4 we study the stochastic behavior of the clients from a syringe exchange pro-

gram (SEP) in Chicago. Inspired by the contrast between trends in the use of the SEP and trends

in national drug use, we analyze client arrival data between 2005 and 2014, and we formulate and

fit a stochastic process for the entire syringe exchange experience of a client. We develop three

sub-models of the stochastic process: initiation, reoccurring visits, and termination. We build an

optimization model to fit the parameters for the stochastic process and to uncover the relationship

between the model parameters and a client’s features. We present goodness-of-fit test results to

justify our model selection. Using the fitted model, we simulate an active intervention strategy and

evaluate its effectiveness.

Finally, in Chapter 5 we summarize the contributions in this dissertation, and we discuss future

research directions and potential applications of optimization models that incorporate stochastic

disruptions.
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Chapter 2

Optimal Crashing of an Activity

Network with Disruptions

2.1 Introduction

The management of complex projects through optimization has a rich history in operations

research, beginning with the critical path method of Kelly (1961); see Söderlund (2004) for an

overview. A project is a collection of activities, between which there are precedence relationships

due to logical or technological considerations. A precedence relationship is usually reflected as the

start time of one activity following the completion of another. Typically, multiple activities can

be processed at the same time, and there is no limit on how many activities can be processed

simultaneously, as long as the precedence requirements are satisfied. See Elmaghraby (1977) for a

detailed treatment of activity networks. In this setting, “crashing” is an action that consumes a

certain amount of one or more resources and shortens the duration of an activity accordingly (Kuhl

and Tolentino-Peña 2008). A deterministic optimization model for crashing an activity network

was proposed in the 1960s (Fulkerson 1961, Kelly 1961), in which the goal is to complete the project

in minimum time by allocating resources under one or more budget constraints.

When the program evaluation and review technique (PERT) was introduced (Malcolm et al.

1959), activity durations were modeled as independent beta random variables, and the project du-
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ration approximated by a normal distribution. Extensions that allow for more general assumptions

followed (Elmaghraby 1977), and Monte Carlo simulation plays a role in estimating the expected

project span, which is difficult to express analytically (Burt and Garman 1971, van Slyke 1963).

Heuristics and simulation-based algorithms have been developed to approximately solve the stochas-

tic project crashing problem (Aghaie and Mokhtari 2009, Bowman 1994, Ke 2014, Kim et al. 2007).

Another approach to handle uncertainty in activity duration is robust optimization, in which the

objective is to minimize the worst case project span over a specified uncertainty set. While affinely

adaptive recourse decisions are computationally tractable as linear, or second-order cone, programs,

this restriction may lead to suboptimal solutions (Chen et al. 2008, Cohen et al. 2007). However,

once recourse decisions can take general form, the robust model is only tractable with rectangular

uncertainty sets (Wiesemann et al. 2012). Ahipasaoglu et al. (2016) propose a distributionally

robust optimization scheme applied to a PERT network, which reformulates the problem as a

semidefinite program or a copositive program, depending on the description of uncertainty. The

project crashing optimization problem finds application in project management (Demeulemeester

and Herroelen 2006, Jaselskis and Ashley 1991, Tonchia 2018), machine scheduling (Blazewicz et al.

1983, Hall and Sriskandarajah 1996), health services scheduling (Cardoen et al. 2010), chemical pro-

cesses (Li and Ierapetritou 2008), and digital circuit sizing (Kim et al. 2007).

In this chapter, we propose using the concept of stochastic disruptions to model uncertainty in

the duration of activities, which differs from existing approaches in both stochastic programming

and robust optimization. A stochastic disruption is an event that may occur at any point in the

problem’s time horizon and results in a change—typically a significant change—in the system’s

parameters. A few authors apply this idea in models with discrete time periods, in which the dis-

ruption can only occur in a set of specified time periods. Yu and Qi (2004) introduce scenario-based

optimization models for airline scheduling. Salmeron et al. (2009) introduce a sealift scheduling

problem under a finite number of stochastic disruptions within a stochastic programming structure;

this model structure “falls between standard two-stage and multi-stage stochastic programs for a

multi-period problem” and reduces the size of the problem (scenario tree) to quadratic, rather than

exponential, growth in the number of time periods. Our setting inherits the philosophy of Salmeron
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et al. (2009), but enhances the model by allowing the random disruption time to be continuous in

the context of an activity network, instead of a prespecified set of fixed time periods.

Given a limited number of disruption scenarios, the problem of optimizing crashing decisions

to minimize expected completion time can be formulated as a stochastic mixed-integer program,

and we present the model in Section 2.2. If we assume a continuous distribution for the disruption

time and magnitude, a sample average approximation (SAA) can be used to create a finite set

of scenarios and approximate the original problem by a finite-sized optimization problem. In

Section 2.3 we show that the problem is NP-hard even with continuous allocation of crashing

effort and just two scenarios. Section 2.4 presents properties of the problem using a serial activity

network as a special case. The potentially large scale and the discrete, non-convex nature of the SAA

problem’s formulation suggest that it may be computationally challenging to solve. In Section 2.5,

a method based on Benders’ decomposition is developed to solve our problem of optimizing crashing

decisions under stochastic disruptions. We show such a decomposition method can solve the integer

program in a finite number of iterations. Experiment results are presented in Section 2.6, including

the empirical relationship between solution quality and sample size, the comparison between the

quality of our solution and solutions of alternative models, and the computational performance of

the decomposition method of Section 2.5. We conclude with remarks on potential extensions of our

model in Section 2.7.

2.2 Problem Formulation

Nomenclature:

Indices and index sets

I the set of activities;

Ji the set of crashing options for activity i P I;

Ω the index set for disruption scenarios (sample space);

A set of arcs, which represents precedence relationships;

Parameters
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Dik nominal duration between possible start times of activities i and k, pi, kq P A;

eij effectiveness of crashing option j P Ji for activity i P I;

B total budget for crashing options;

bij cost of crashing option j P Ji for activity i P I;

Hω disruption time under scenario ω P Ω;

dωik increase in duration of pi, kq P A under ω P Ω, if started after the disruption;

pω the probability of scenario ω P Ω;

p0 the probability of no disruption;

Decision variables

ti nominal start time of activity i P I;

xij crashing of activity i P I by option j P Ji in the nominal plan;

tωi start time of activity i P I under scenario ω P Ω;

xωij crashing of activity i P I by option j P Ji under scenario ω P Ω;

Gωi binary indicator whether activity i P I starts after disruption under ω P Ω;

zωij binary term to linearize bilinear term, Gωi x
ω
ij , i P I, j P Ji, ω P Ω.

We first review an optimization model for a deterministic crashing problem; see Fulkerson

(1961), Kelly (1961). A set of activities, I, together with precedence relationships, A Ď I ˆ I, form

an acyclic activity network G “ pI,Aq, which represents the project. An arc pi, kq P A indicates

that activity i has to finish before activity k starts, and its length, Dik, shows that the start time

of activity i has to be at least Dik ě 0 before the start time of activity k. We create two dummy

activities S, T P I to represent the start and the termination of the entire project. Activity S should

precede every activity i P IztSu and T should succeed every activity i P IztT u, either directly or

by implication, and they both have zero duration.

We can apply a finite set of crashing options, j P Ji, to activity i P I. One unit application of

each option incurs a cost of bij , and it decreases the corresponding durations by Dikeij , @pi, kq P A,

where eij P r0, 1s denotes the unit effectiveness of crashing option j. For example, suppose the
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duration between the start time of activity 1 and 2 is D12 “ 10, and applying one unit of crashing

option 1 to activity 1 decreases the duration by half; i.e., e11 “ 0.5. If we apply 0.4 unit of

crashing option 1 to activity 1, x11 “ 0.4, the required separation between activity 1 and 2 becomes

10p1 ´ 0.4 ¨ 0.5q “ 8. The total cost of crashing cannot exceed a given budget, B. The objective

is then to minimize the start time of activity T , and thus, we formulate the deterministic project

crashing problem as:

min tT (2.1a)

s.t. tk ´ ti ě Dik

˜

1´
ÿ

jPJi

eijxij

¸

@ pi, kq P A (2.1b)

ÿ

iPI

ÿ

jPJi

bijxij ď B (2.1c)

ÿ

jPJi

xij ď 1 @ i P I (2.1d)

0 ď xij ď 1 @ i P I, j P Ji (2.1e)

ti ě 0 @ i P I. (2.1f)

In this formulation, ti represents the start time of activity i P I. We aim to minimize the

project span, which is the start time of the terminal activity, tT . Constraint (2.1b) guarantees

the precedence relationship: if activity i precedes activity k, activity k cannot start until time

ti `Dikp1´
ř

jPJi
eijxijq. Constraint (2.1c) is the budget constraint and constraint (2.1d) ensures

that no more than one unit of crashing option can be applied to an activity. Constraint (2.1f)

enforces nonnegativity for the start time of all activities.

For a project crashing problem under stochastic disruptions, we assume at most one stochastic

disruption can occur at a random time in the project span. While this assumption may be limiting

in some settings, it is appropriate when it is unlikely for two or more disruptions to occur during

the time horizon, and can apply, e.g., for natural disasters, major market crashes, cyber attacks,

and work stoppages. For example, suppose we manage a construction project, and we aim to plan

against the potential hazard caused by an earthquake or an employee strike. It may be unlikely
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for two major earthquakes or strikes to affect the same project within the relevant time period.

We further assume that for each activity i P I, the crashing decision needs to be made prior to

the start of that activity, which is reasonable, e.g., when contracts are involved in commitment of

resources (Oberlender 1993). We assume a disruption does not affect activities that have already

started (including those already finished) at the time of the disruption, but the disruption changes

the length of activities that have not yet started according to a known probability distribution. It is

usually hard to compute the recourse function directly when random parameters have a continuous

distribution, and therefore we use sample average approximation (SAA) (Kim et al. 2015, Shapiro

et al. 2009). In this chapter, we assume there is a finite set of scenarios indexed by ω P Ω. For each

scenario ω, the random realization of parameters, which we denote ξω, consists of the timing of

the disruption, Hω, and the magnitude of the disruption via increases in the duration parameters,

dωik,@pi, kq P A.

Because we assume at most one disruption, we can model the problem as a two-stage stochastic

mixed-integer program, in which the timing of the second stage is random. That is, the definition

of our stages differs from the usual stochastic programming setting. Here the first stage contains

decisions through completion of the project, and we follow this policy if no disruption occurs. And,

the second stage characterizes the decisions for each realization of the disruption, which commence

at the random time, Hω. The first stage decision variables are carried out until the disruption if it

ever occurs, and after the disruption, the scenario-specific recourse decisions are executed.

The extensive formulation of the two-stage stochastic program is shown as formulation (2.2):

z˚ “ min p0tT `
ÿ

ωPΩ

pωtωT (2.2a)

s.t. tk ´ ti ě Dik

˜

1´
ÿ

jPJi

eijxij

¸

@ pi, kq P A (2.2b)

ÿ

iPI

ÿ

jPJi

bijxij ď B (2.2c)

ÿ

jPJi

xij ď 1 @ i P I (2.2d)

Hω `Gωi M ě ti @ i P I, ω P Ω (2.2e)
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Hω ´ p1´Gωi qM ď ti @ i P I, ω P Ω (2.2f)

tωi `G
ω
i Mt ě ti @ i P I, ω P Ω (2.2g)

tωi ´G
ω
i Mt ď ti @ i P I, ω P Ω (2.2h)

xωij `G
ω
i ě xij @ i P I, j P Ji, ω P Ω (2.2i)

xωij ´G
ω
i ď xij @ i P I, j P Ji, ω P Ω (2.2j)

tωk ´ t
ω
i ě Dik ` d

ω
ikG

ω
i ´

ÿ

jPJi

Dikeijx
ω
ij ´

ÿ

jPJi

dωikeijz
ω
ij @ pi, kq P A, ω P Ω (2.2k)

ÿ

iPI

ÿ

jPJi

bijx
ω
ij ď B @ω P Ω (2.2l)

ÿ

jPJi

xωij ď 1 @ i P I, ω P Ω (2.2m)

zωij ď Gωi @ i P I, j P Ji, ω P Ω (2.2n)

zωij ď xωij @ i P I, j P Ji, ω P Ω (2.2o)

zωij ě Gωi ` x
ω
ij ´ 1 @ i P I, j P Ji, ω P Ω (2.2p)

ti ě 0 @ i P I (2.2q)

tωi ě HωGωi @ i P I, ω P Ω (2.2r)

0 ď xij ď 1 @ i P I, j P Ji (2.2s)

0 ď xωij ď 1 @ i P I, j P Ji, ω P Ω (2.2t)

0 ď zωij ď 1 @ i P I, j P Ji, ω P Ω (2.2u)

Gωi P t0, 1u. @ i P I, ω P Ω. (2.2v)

In model (2.2), we minimize the expected project span, weighing the span under each scenario by

its probability. We replicate constraints (2.1b)-(2.1d) for the nominal scenario as (2.2b)-(2.2d).

In constraints (2.2e)-(2.2f), variable Gωi takes value 1 if activity i starts after the disruption time;

otherwise it takes value 0, and M is a large number to enforce the logic of this relationship. This

is important in our problem setting because the duration of each activity depends on its temporal

relationship to the disruption time, which is reflected in constraint (2.2k). Also, we must ensure
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that decisions made before the disruption time in each scenario match the nominal decisions, and

constraints (2.2g)-(2.2j) capture these non-anticipativity conditions. For each scenario, the duration

between activity i and k becomes pDik ` dωikG
ω
i qp1 ´

ř

jPJi
eijx

ω
ijq, which expands to the form of

constraint (2.2k). If Gωi “ 0, which means activity i starts before the disruption time of scenario ω,

this expression is the same as Dikp1´
ř

jPJi
eijxijq because xij “ xωij is enforced by constraints (2.2i)

and (2.2j). If Gωi “ 1, then the duration between activity i and k is changed to Dik ` dωik ě 0.

We allow a negative “increase” in duration dωik, but require the overall duration to be nonnegative.

The expression pDik ` dωikG
ω
i qp1´

ř

jPJi
eijx

ω
ijq contains a bilinear term Gωi x

ω
ij , which we linearize

using binary variable zωij and constraints (2.2n)-(2.2p).

2.3 NP-Hardness

We show that the optimal project crashing problem under a stochastic disruption is NP-

hard even with a single disruption scenario, which occurs with probability one at time zero. Our

proof relies on a transformation from the exactly-one-in-three 3SAT (EOIT_3SAT) problem: Let

U “ tu1, u2, . . . , unu be a set of variables. A literal can be either u or ū “  u for u P U . Let

C “ tc1, c2, . . . , cmu be a set of clauses, each of which is formed by a disjunction of three literals,

e.g., ci “ uj _ uk _ ū`. The EOIT_3SAT problem asks whether there is a truth assignment for each

u P U such that each clause in C has exactly one true literal. De et al. (1997) use EOIT_3SAT

to prove that an activity network problem, in which there are a finite set of alternatives for each

activity with different duration and cost, is NP-hard, and we use similar proof constructs.

Starting with an instance of EOIT_3SAT, we formulate an activity network using three layers

of nodes. The first layer contains 3n nodes and represents the truth assignment of each variable in

EOIT_3SAT. The second layer contains 3m nodes and represents the value of EOIT_3SAT’s clauses.

And, the third layer consists of terminal node T , the end of the project. Each of the first layer’s n

components corresponds to a variable and contains three nodes, denoted uj1, uj2, and uj3, which

are connected as shown in Figure 2.1. The figure also shows how the first layer connects to the

third layer. We let Ω “ t1u, and H1 “ 0 with probability p1 “ 1. We define the parameter values
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associated with the arcs in Figure 2.1 as:

Duj1,uj2 “ 1 d1
uj1,uj2 “ 1 (2.3a)

Duj1,uj3 “ 2 d1
uj1,uj3 “ ´1 (2.3b)

Duj3,T “ 0 d1
uj3,T “ 0. (2.3c)

No activities in the first layer can be crashed, i.e.,

Jujk “ H, for all j “ 1, 2, . . . , n, k “ 1, 2, 3. (2.4)

The start node, S, connects to each uj1 with zero duration. It is optimal to start each activity

uj1 at time 0 because the inclusive inequalities in constraints (2.2e)-(2.2f) still allow us to choose

G1
uj1 P t0, 1u for each variable in U . With this setup, the length of the longer path through the j-th

component is always 2, j “ 1, 2, . . . , n. Whether the longer path traverses activity uj2 (top path

in Figure 2.1) or activity uj3 (bottom path) depends on the value of G1
uj1 . If G1

uj1 “ 1 then the

top path yields a length of Duj1,uj2 ` d1
uj1,uj2 “ 1 ` 1 “ 2, while the bottom path yields a length

of Duj1,uj3 ` d1
uj1,uj3 “ 2 ´ 1 “ 1. If G1

uj1 “ 0, then the top path yields a length of Duj1,uj2 “ 1,

while the bottom path yields a length of Duj1,uj3 “ 2. We can consider the value of G1
uj1 as the

truth assignment of variable uj . If variable uj is TRUE, the top path is longer; if it is FALSE

the bottom path is longer. The arcs from activities uj2 and uj3 in Figure 2.1 point to activities

in the second layer, which we now construct, again following ideas in De et al. (1997). Consider

the clause ci “ uj _ uk _ ū`, with literals consisting of two original variables, uj and uk, and one

complement, ū`. We consider an activity, cip, corresponding to the truth assignment of the variable

up, for p P tj, k, `u. For the original variables up, p P tj, ku, we connect activity up3 to activity

cip, and we connect activity up2 to the other two activities ciq, where q P tj, k, `u, q ‰ p. For the

complemented variable ū`, we do the opposite, connecting activity u`2 to activity ci`, and activity

u`3 to activities ciq, q P tj, ku. This illustrates the general rule by which a clause with three literals
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Figure 2.1: A component corresponding to variable uj , j “ 1, 2, . . . , n, in the first layer of the
activity network for EOIT_3SAT.

(typically a mix of original and complemented variables) yields the network topology:

‚ original variables result in a connection from uj3 to cij via a single arc and

a connection from uj2 to the other two cj-activity nodes; and, (2.5a)

‚ complemented variables result in the opposite. (2.5b)

From now on we refer to the activities representing variables as u-activities and those representing

clauses as c-activities. We make the following assignments:

Dujp,cij “ d1
ujp,cij “ 0 @i “ 1, . . . ,m, j “ 1, . . . , n, p “ 2, 3 : uj is in clause ci (2.6a)

Dcij ,T “ 1 and d1
cij ,T “ 0 @i “ 1, . . . ,m, j “ 1, . . . , n : uj is in clause ci (2.6b)

ecij ,1 “ 1 @i “ 1, . . . ,m, j “ 1, . . . , n : uj is in clause ci (2.6c)

bij “ 1 @i “ 1, . . . ,m, j “ 1, . . . , n : uj is in clause ci (2.6d)

B “ 2m (2.6e)

The nominal duration and the disrupted duration for the arcs between u-activities and c-activities
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Figure 2.2: The i-th clause, uj _ uk _ ū`, in the second layer of the constructed activity network
for EOIT_3SAT with the arcs connecting it with the first and the third layer.

are 0 per equation (2.6a). The nominal and disrupted durations for the arcs between the c-activities

and T are specified in equation (2.6b). Unlike the u-activities, each c-activity can be crashed

with a single option with unit effectiveness as given in equation (2.6c). We assign the budget in

equation (2.6e), where m is the total number of clauses, and assign unit bij values in equation (2.6d).

We illustrate the logic behind this construction using Figure 2.2. For variable uj , if G1
uj1 “ 1 then

the earliest time activity uj2 can start is 2, and activity uj3 can start at time 1. If G1
uj1 “ 0 then

the earliest time activity uj3 can start is 2, and activity uj2 can start at time 1. The same holds for

variable uk, and the opposite for variable u`. The truth assignments indicate which path is longer.

Next, we establish two lemmas, which relate start times at certain nodes in the activity network

corresponding to an instance of EOIT_3SAT.

Lemma 2.3.1. Consider an instance of EOIT_3SAT, and the corresponding activity network for

this instance. For each clause, ci, i “ 1, 2, . . . ,m, there is at most one activity ciq˚ , q
˚ P tj, k, `u,

that has 1 as its earliest start time, and the start time for ciq is 2, for q P tj, k, `u, q ‰ q˚.

Proof of Lemma 2.3.1. The proof enumerates eight cases, and we begin with ci “ uj _ uk _ u`,

which has a component of the activity network illustrated in Figure 2.3. Without loss of generality,
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Figure 2.3: The i-th clause, uj _ uk _ u`, in the second layer of the constructed activity network
for EOIT_3SAT with the arcs connecting it with the first and the third layer

suppose both cij and cik can start at time 1. This means that both uj2 and uj3 need to start at time

1, which is impossible because regardless of G1
uj1 ’s value, at least one activity in tuj2, uj3u can start

no earlier than time 2. The proof is completed by enumerating the remaining seven cases—with

variables uj , uk, u` in all combinations of original or complemented form—in analogous fashion.

Lemma 2.3.2. Consider an instance of EOIT_3SAT, and the corresponding activity network for this

instance. For any clause, ci, activity ciq˚ , q
˚ P tj, k, `u, has an earliest start time of 1 if and only if

the corresponding literal, uq˚ or ūq˚, is the only literal in the clause to which the truth assignment

is TRUE.

Proof of Lemma 2.3.2. The proof again enumerates eight cases, and we begin with ci “ uj_uk_u`;

see Figure 2.3. Without loss of generality, we assume q˚ “ j.

p ùñ q: In turn we suppose uj is FALSE or uk is TRUE or u` is TRUE. First, suppose uj is FALSE,

i.e., G1
uj1 “ 0. Then activity uj3 can start no earlier than time 2, which leads to the contradiction

that cij can start as early as time 1; see Figure 2.3. Suppose uk is TRUE. Since there is an arc

from uk2 to activity cij , and since uk2 cannot start before time 2 this again contradicts that cij can
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start as early as time 1. The argument for u` being TRUE is identical. Therefore, if activity cij

can start at time 1 then uj is the only literal which is TRUE.

p ðù q: if only uj is TRUE, then uj3, uk2 and u`2 can all start as early as time 1; again, see

Figure 2.3. This means that the earliest start time for cij is 1.

We again complete the proof by enumerating the remaining seven cases.

As a result of Lemmas 2.3.1 and 2.3.2, we can transform an EOIT_3SAT instance to an instance

of model (2.2) using the activity network construction process just described. In particular, we

know that if there exists a truth assignment to the variables of U that meets the requirement of

EOIT_3SAT, there are exactly 2m c-activities (two per clause) that can start no earlier than time

2. Since we have budget B “ 2m, we can crash all of those c-activities to achieve a project length

of 2. If there is no truth assignment that meets the requirement of EOIT_3SAT then model (2.2)’s

optimal value is 3. We formalize this in what follows.

Definition 2.3.1. Stochastic Crashing Decision Problem: Is there a feasible solution,

pt, x,Gq, to model (2.2) with objective function value of at most τ?

Theorem 2.3.1. Consider an instance of EOIT_3SAT, and the corresponding activity network for

this instance. In particular, let Ω “ t1u, H1 “ 0, p1 “ 1, and let the network topology and model

parameters be given by Figure 2.1, rule (2.5) and equations (2.3), (2.4), and (2.6). Let τ “ 2. The

answer to the Stochastic Crashing Decision Problem is yes if and only if the given instance

of EOIT_3SAT problem has a solution, i.e., a truth assignment to the variables so that each clause

has exactly one true literal.

Proof of Theorem 2.3.1. The EOIT_3SAT problem has n variables and m clauses, and the con-

structed activity network for the project crashing problem has 3n`3m`2 activities and 4n`12m

arcs. Thus the size of the activity network and the time required to construct the network are both

polynomial in the size of the original EOIT_3SAT instance.

( ðù ) Suppose the EOIT_3SAT instance has a solution. A feasible solution to the instance of

model (2.2) starts every activity as early as possible. Under the EOIT_3SAT hypothesis, by Lem-

mas 2.3.1 and 2.3.2 exactly 2m c-activities have earliest start times of 2 and the remaining m
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have an earliest start time of 1. Spending the budget, B “ 2m, to crash all 2m c-activities that

correspond to the literals with FALSE assignment, yields an objective function value of 2.

( ùñ ) Suppose the instance of model (2.2) has a solution, pt̂, x̂, Ĝq, with an objective function

value of 2. By Lemma 2.3.1 we know that for each clause there is at most one c-activity that can

start at time 1, which means there must be at least 2m c-activities with a start time of at least 2.

Since B “ 2m, if there are more than 2m c-activities that start at time 2 or after, the objective

function value of model (2.2) must exceed 2. Hence, there are exactly 2m c-activities starting at

time 2. Lemmas 2.3.1 and 2.3.2 then imply that exactly one c-activity in each of the m clauses

starts at time 1; i.e,. for each clause there is exactly one variable to which the truth assignment is

TRUE.

EOIT_3SAT is NP-complete (Garey and Johnson 1979). The Stochastic Crashing Decision

Problem is in NP because we can check in Opn`mq time whether a given solution is feasible and

has an objective function value of at most τ .

As a result of Theorem 2.3.1 we immediately obtain the following result.

Corollary 2.3.2. Model (2.2) is NP-hard, even under a single disruption scenario, which occurs

with probability one at time zero.

2.4 Illustration of Problem Properties via Examples

We show two examples of serial activity networks to give insight regarding the nature of

the project crashing problem under a stochastic disruption, and to draw distinctions relative to

its deterministic counterpart. In the deterministic project crashing problem, all activities on the

critical path should start as soon as possible. However, with a stochastic disruption, it is sometimes

optimal to delay the start of one or more activities. In addition, under a stochastic disruption, it

is possible that on a critical path, an activity with a shorter expected duration is crashed with a

larger amount of resource, while in the deterministic case, it is always optimal to crash the activity

with the longest duration on the critical path, under equal bij and eij values. We use two examples

to show that the deterministic optimal solution can be significantly inferior in the stochastic setting

because of these two properties. Here, we assume that required duration that separates the start
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Figure 2.4: Example of a 2-activity serial network project

of activity i and the start of a successor, k, only depends on i; i.e., for each activity i we use Di to

denote the duration of activity i and dωi to denote the change in duration under scenario ω:

Dik “ Di @pi, kq P A

dωik “ dωi @pi, kq P A, ω P Ω.

Clearly delaying the start of an activity may be beneficial when dωi ă 0 for some i P I, ω P Ω because

the expected decrease in duration may exceed the delay required to move the start of activity i

after a potential disruption. In the following example, we show value of delay, even if all activities

are lengthened by the disruption; i.e., dωi ą 0,@i P I, ω P Ω.

Example 2.4.1. Consider a network with two activities in series, as shown in Figure 2.4 with

I “ tS, 1, 2, T u, and let parameter k ą 4. Let the nominal durations be D1 “ k and D2 “ 1. We

assume only one crashing option for each activity, and so we omit index j. We let e1 “ e2 “ 1´ 1
2k ,

assume bi “ 1 for all i P I, and we let B “ 1. Let Ω “ t1u so that either we have no disruption with

probability p0 “ 1 ´ 1
k , or we have a disruption that occurs at time ε ă 1

2 with probability p1 “ 1
k .

If a disruption occurs, the nominal activity durations are lengthened by d1 “ k and d2 “ pk ´ 1q2.

If we start each activity without delay, then t1 “ 0, x1 “ x1
1, and for any x1 ď 1, t2 ě

1
2 ě

D1p1 ´ e1x1q, which means activity 2 will start after the disruption. Since k ą 1, the duration of

activity 1, D1 “ k, exceeds the expected duration of activity 2, D2`p
1d2 “ 1` 1

k pk´1q2 “ k´1` 1
k .

As a result, it is optimal to spend the entire budget on activity 1: x1 “ x1
1 “ 1 and x2 “ x1

2 “ 0,

and the expected project duration is:

D1p1´ e1x1q ` p
0D2 ` p

1pD2 ` d2q

“k

ˆ

1´

ˆ

1´
1

2k

˙

¨ 1

˙

` p1´
1

k
q ¨ 1`

1

k

`

1` pk ´ 1q2
˘
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“k ´
1

2
`

1

k
.

On the other hand, if we delay the start of activity 1 until t1 “ ε then x1 and x1
1 need not be equal.

Since for k ą 2 `
?

2, k “ D1 ą D2 “ 1 and pk ´ 1q2 ` 1 “ D2 ` d2 ą D1 ` d1 “ k ` k, we have

x1 “ 1, x1
1 “ 0, x1

2 “ 1 in an optimal solution, and the expected duration is:

ε` p0

„

D1 ¨

ˆ

1´ p1´
1

2k
q ¨ 1

˙

`D2



` p1

„

pD1 ` d1q `

ˆ

1´ p1´
1

2k
q ¨ 1

˙

pD2 ` d2q



“ε`
k ´ 1

k

ˆ

k ¨
1

2k
` 1

˙

`
1

k

„

pk ` kq `
1

2k

`

pk ´ 1q2 ` 1
˘



“ε` 4´
5

2k
`

1

k2
.

In Example 2.4.1 if require that activity 1 be started without delay then the objective function

grows to infinity with k, but the optimal project span by delaying the start of activity 1 by ε has

a constant limit of ε ` 4. This example shows that the gap between the optimal solution under

a no-delay policy and an optimal solution that allows for delay—as we do in model (2.2)—can be

arbitrarily large. Because it is possible for an optimal crashing plan to contain a delay for some

activities, model (2.2) uses decision variables ti, @i P I, as the start time of each activity, rather

than assuming that each activity starts as soon as all of its predecessors are finished.

Example 2.4.2. We again consider the network with two activities from Figure 2.4. Let D2 ą D1,

d1 “ 0, d2 ą 0, e1 “ e2 “
1
2 , and B “ 1. We again consider a single disruption scenario, Ω “ t1u,

so that either we have no disruption, p0 “ 1
2 , or we have a disruption that occurs at time H1 “ 1

2D1

with probability p1 “ 1
2 . Here, the optimal solution is to crash the shorter activity, i.e., x1 “ 1,

which yields an expected project span of 1
2D1 ` D2 with start times t1 “ 0 and t2 “

1
2D1. In

contrast, if 0 ď x1 ă 1 then the expected duration is D1p1 ´
1
2x1q ` pD2 `

1
2d2qp1 ´

1
2x2q, so that

the ratio of the objective functions grows arbitrarily large as d2 grows.

In Example 2.4.2 the intuition behind crashing the shorter activity is that it allows us to

initiate activity 2 in time to avoid incurring delay d2. Both examples in this section suggest that

the intuition associated with the deterministic version of the optimal crashing problem does not

always apply in the stochastic setting, and provides further motivation for employing a model like
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that in formulation (2.2).

2.5 Decomposition Method

Model (2.2) is a two-stage stochastic mixed-integer program, which we can rewrite as follows:

z˚ “ min p0tT `
ÿ

ωPΩ

pωfωpt, xq (2.7a)

s.t. tk ´ ti ě Dik

˜

1´
ÿ

jPJi

eijxij

¸

@pi, kq P A (2.7b)

ÿ

iPI

ÿ

jPJi

bijxij ď B (2.7c)

ÿ

jPJi

xij ď 1 @ i P I (2.7d)

ti ě 0 @ i P I (2.7e)

0 ď xij ď 1 @ i P I, j P Ji, (2.7f)

where

pSωq fωpt̂, x̂q “ min tT (2.8a)

s.t. Hω `GiM ě t̂i @ i P I (2.8b)

Hω ´ p1´GiqM ď t̂i @ i P I (2.8c)

ti `GiMt ě t̂i @ i P I (2.8d)

ti ´GiMt ď t̂i @ i P I (2.8e)

xij `Gi ě x̂ij @ i P I, j P Ji (2.8f)

xij ´Gi ď x̂ij @ i P I, j P Ji (2.8g)

tk ´ ti ě Dik ` d
ω
ikGi ´

ÿ

jPJi

Dikeijxij ´
ÿ

jPJi

dωikeijzij @ pi, kq P A (2.8h)

ÿ

iPI

ÿ

jPJi

bijxij ď B (2.8i)
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ÿ

jPJi

xij ď 1 @ i P I (2.8j)

zij ď Gi @ i P I, j P Ji (2.8k)

zij ď xij @ i P I, j P Ji (2.8l)

zij ě Gi ` xij ´ 1 @ i P I, j P Ji (2.8m)

ti ě 0 @i P I (2.8n)

ti ě HωGi @ i P I (2.8o)

0 ď xij ď 1 @ i P I, j P Ji (2.8p)

0 ď zij ď 1 @ i P I, j P Ji (2.8q)

Gi P t0, 1u @ i P I. (2.8r)

A number of existing approaches for stochastic mixed-integer programming assume a special

structure not satisfied by our model. For example, Gade et al. (2014) solve two-stage stochastic

programs with pure binary first stage variables, and general integer second stage variables; they

derive a finitely convergent sequential convex approximation and a branch-and-cut framework in-

volving Gomory cuts that are parameterized by the first-stage decision variables. Zou et al. (2016)

assume state variables are binary (or general integer via binary expansion) in a multi-stage setting

so that the Lagrangian cuts are a tight approximation of the recourse function; see also Philpott

et al. (2019). Carøe and Tind (1998) solve a more general case of two-stage models by using integer

programming duality, but there is limited computational work investigating their approach. Qi

and Sen (2017) allow mixed-integer variables in both the first stage and the recourse problem, and

parametric disjunctive cuts convexify recourse problems while Benders’ cuts approximate recourse

functions (Chen et al. 2012). Although this method suits our problem setting, preliminary compu-

tational results found that it was not competitive with the scheme we describe here, which makes

use of the special structure of our problem.

A simple approach is to relax the integrality constraints (2.8r) of subproblem (Sω), and

execute a multi-cut L-shaped decomposition algorithm on this linear programming (LP) relax-
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ation. The resulting optimality cuts provide a valid lower approximation of the recourse functions,

fωpt, xq,@ω P Ω, but may not be tight. In each iteration of the decomposition, an upper bound

can be obtained by solving subproblems (2.8) with the first stage solution. The main challenge is

how to iteratively tighten the lower bound while quickly locating a good upper bound. The topics

in this section aim to tackle these two issues.

The combinatorial decision, Gi P t0, 1u, i P I, for each (Sω) is (almost fully) decided by the

first-stage continuous variables, ti. If t̂i ą Hω then Gi “ 1, if t̂i ă Hω then Gi “ 0, and only if they

are equal is there a combinatorial choice. This observation motivates the decomposition algorithm

that we develop. We could pull these binary variables to the first stage, but doing so involves |I||Ω|

variables and does not scale well. Instead, we partition an interval, which we denote r0, Tmaxs,

containing each ti, and we adaptively refine that partition. This helps control the number of binary

first-stage variables, and has further benefits in terms of tightening lower bounds, as we describe in

what follows. We will be specific later regarding the value of Tmax, but for now we simply assume

we have a value such that ti P r0, Tmaxs is a redundant constraint in model (2.2).

We assume that Ω “ t1, 2, . . . , |Ω|u is such that ω ă ω1 implies Hω ď Hω1 with strict inequality

if the realizations of H are distinct, and we let H0 ” 0 ď H1 and H |Ω|`1 ” Tmax ě H |Ω|. We define

a partition of r0, Tmaxs for each i P I as follows.

Definition 2.5.1. For each activity i P I, we define a partition of interval r0, Tmaxs as an ordered

set of two-element tuples Pi “ tr
¯
Hq, H̄qs, q P Qiu with an index set Qi “ t1, 2, . . . , |Qi|u and the

following properties:

•
¯
H1 “ H0 ” 0

• H̄ |Qi| “ H |Ω|`1 ” Tmax

•
¯
Hq ă H̄q @q P Qi

• H̄q “
¯
Hq`1 @q P Qi.

With the possible exceptions of
¯
H1 and H̄ |Qi|, each

¯
Hq and H̄q corresponds to a disruption

time of some scenario, and a simple example is illustrated in Figure 2.5 in which we have five

scenarios, Ω “ t1, 2, 3, 4, 5u. The partition has three intervals as illustrated. The second interval

has lower bound H2 and upper bound H5.
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Figure 2.5: An illustration of a partition of interval r0, Tmaxs

For each activity i P I the first-stage start time ti lies an interval of Pi, and we introduce a

first-stage indicator variable:

ÿ

qPQi
¯
Hqyqi ď ti ď

ÿ

qPQi

H̄qyqi @i P I (2.9a)

ÿ

qPQi

yqi “ 1 @i P I (2.9b)

yqi P t0, 1u, @i P I, q P Qi. (2.9c)

Constraints (2.9) require that ti be associated with one of the intervals of the partition. In

model (2.2) if ti “ Hω then Gωi can either be 0 (activity i is said to start before ω’s disrup-

tion) or 1 (i starts after the disruption). If ti “ H̄q “
¯
Hq`1 “ Hω for some ω then the y-variables

have a similar choice, and our convention is that if the y-variables choose ti P r
¯
Hq, H̄qs then activity

i is said to start before the disruption and if ti P r
¯
Hq`1, H̄q`1s then i starts after the disruption.

2.5.1 Tightening Big-M with Partitions

The tightness of (Sω)’s LP relaxation relies, in part, on the big-M value used in constraints to

represent the logical condition of whether activity i starts before or after a disruption. A smaller,

but still valid, big-M value yields a tighter relaxation, and can further help prevent numerical

issues (e.g., Camm et al. 1990, Klotz and Newman 2013). We can rewrite constraints (2.8b)

and (2.8c) as:

pt̂i ´H
ωq{M ď Gi ď pt̂i ´H

ωq{M ` 1. (2.10)

Variable Gi can take a wider range of values when M is large. Tightening M hinges on
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specifying valid ranges for t̂i. Furthermore, we know that if t̂i ą Hω1 for some ω1 then Gi has to

take value 1 in all subproblems (Sω) with ω ă ω1. On the other hand, if t̂i ă Hω1 for some ω1 then

Gi must be 0 for all subproblems (Sω) in which ω ą ω1. If we can fix the Gi for all i P I to either

0 or 1 the resulting optimality cuts will be tight.

Proposition 2.5.1. Let t0i be the longest S-i path in the activity network G “ pI,Aq in which the

arc length of pi, kq P A is Dik and in which no crashing is allowed. Let t˚ denote (part of) an

optimal solution to model (2.2). Then there exists a t˚ such that t˚i P r0, H
|Ω|` t0i s, @i P I provided

M and Mt are sufficiently large.

Proof. Constraint (2.2q) enforces the lower bound of 0.

By hypothesis t0k ´ t
0
i ě Dik,@pi, kq P A since t0i is the longest S-i path of G in which the arc

length of pi, kq P A is Dik and in which no crashing is allowed. We prove the upper bound on t˚i by

contradiction.

Suppose there does not exist a t˚ such that t˚i P r0, H
|Ω|` t0i s, @i P I. Then for every t˚, there

must be a set I˚ Ď I such that t˚i ą H |Ω| ` t0i for i P I˚. Let the corresponding optimal values

of variables xij , G
ω
i , t

ω
i , x

ω
ij , z

ω
ij be denoted x˚ij , G

ω,˚
i , tω,˚i , xω,˚ij , zω,˚ij , respectively. We can establish a

feasible solution to model (2.2) as follows:

t̃i “ H |Ω| ` t0i @i P I˚ (2.11a)

t̃i “ t˚i @i P IzI˚ (2.11b)

x̃ij “ x˚ij @i P I, j P Ji (2.11c)

G̃ωi “ Gω,˚i @i P I, ω P Ω (2.11d)

t̃ωi “ tω,˚i @i P I, ω P Ω (2.11e)

x̃ωij “ xω,˚ij @i P I, j P Ji, ω P Ω (2.11f)

z̃ωij “ zω,˚ij @i P I, j P Ji, ω P Ω. (2.11g)

We see this solution is feasible by examining the constraints of model (2.2):

• For constraint (2.2b), we examine the following four possible cases:
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– i P I˚, k P I˚: since x̃ij ě 0 and t0k ´ t
0
i ě Dik, we have

t̃k ´ t̃i “ t0k ´ t
0
i ě Dik ě Dik

˜

1´
ÿ

jPJi

eij x̃ij

¸

;

– i P I˚, k R I˚: we have t̃i ă t˚i since i P I˚, and then

t̃k ´ t̃i ą t˚k ´ t
˚
i ě Dik

˜

1´
ÿ

jPJi

eijx
˚
ij

¸

“ Dik

˜

1´
ÿ

jPJi

eij x̃ij

¸

;

– i R I˚, k P I˚: since t˚i ď H |Ω| ` t0i , x̃ij ě 0 and t0k ´ t
0
i ě Dik, we have

t̃k´ t̃i “ H |Ω|` t0k´ t
˚
i ě H |Ω|` t0k´

´

H |Ω| ` t0i

¯

“ t0k´ t
0
i ě Dik ě Dik

˜

1´
ÿ

jPJi

eij x̃ij

¸

;

– i, k R I˚: the constraint is unchanged and feasible;

• For variable Gωi :

– if i R I˚: we have t̃i “ t˚i . Therefore, constraints (2.2e)-(2.2h) is unchanged and feasible;

– if i P I˚: variable G˚,ωi is forced to take value 1 for all ω P Ω. Since t̃i “ H |Ω| ` t0i ě H |Ω|,

for any ω P Ω, G̃ωi “ G˚,ωi “ 1 remains feasible. Therefore, constraints (2.2e)-(2.2h) hold

for M and Mt sufficiently large.

• Since the values for t̃ωi , x̃ij , x̃
ω
ij , G

ω
i , z

ω
ij all remain the same, constraints (2.2c), (2.2d), (2.2i)-

(2.2v) are all satisfied by the solution in (2.11).

For simplicity of exposition, we use a uniform upper bound on every ti for i P I as Tmax “

H |Ω| ` t0T . While Proposition 2.5.1 bounds the start-time variables, ti, @i P I, to the interval

r0, Tmaxs, the y-variables of (2.9) allow for tighter bounds. Given a partition for each activity and

given a first-stage solution with ŷqi ,@i P I, q P Qi, we can replace constraints (2.8b) and (2.8c) with:

Hω `Gi

˜

ÿ

qPQi

H̄qŷqi ´H
ω

¸

ě t̂i @i P I (2.12a)
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Hω ´ p1´Giq

˜

Hω ´
ÿ

qPQi
¯
Hqŷqi

¸

ď t̂i @i P I. (2.12b)

In a first-stage solution, ŷqi “ 1 for a specific q satisfying
¯
Hq ď t̂i ď H̄q, and verifying the

validity of constraints (2.12) in replacing (2.8b)-(2.8c) is straightforward by enumerating the cases

Hω P r
¯
Hq, H̄qs, Hω ă

¯
Hq, and Hω ą H̄q. In the degenerate case in which Hω coincides with H̄q

or
¯
Hq, the corresponding constraint from (2.12) is as tight as possible, i.e., a simple bound on t̂i

involving Hω. Otherwise constraints (2.12) reduce to the following analog of (2.10):

pt̂i ´H
ωq{pH̄q ´Hωq ď Gi ď pt̂i ´H

ωq{pHω ´
¯
Hqq ` 1, (2.13)

and we see that smaller values of H̄q and larger values of
¯
Hq have the effect of tightening the big-M

value in constraints (2.10).

We introduce variables F qi to linearize the bilinear terms, and rewrite constraints (2.12) as

follows:

ÿ

qPQi

H̄qF qi ´H
ωGi ě t̂i ´H

ω @i P I (2.14a)

HωGi ´
ÿ

qPQi
¯
HqF qi ď t̂i ´

ÿ

qPQi
¯
Hqŷqi @i P I (2.14b)

F qi ď Gi @i P I, q P Qi (2.14c)

F qi ď ŷqi @i P I, q P Qi (2.14d)

F qi ě Gi ` ŷ
q
i ´ 1 @i P I, q P Qi. (2.14e)

We can further tighten the formulation by adding two constraints involving y that cover cases

when Gi can be fixed to 0 or 1. Again given a partition of each activity and a first-stage solution

ŷqi ,@i P I, q P Qi, we have:

ÿ

qPQi,Hωď
¯
Hq

ŷqi ď Gi ď 1´
ÿ

qPQi,HωěH̄q

ŷqi @i P I. (2.15)

For the case in which Hω P p
¯
Hq, H̄qq for the q with ŷqi “ 1, constraint (2.15) adds no restriction,
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but for the cases in which Hω ď
¯
Hq and Hω ě H̄q, Gi is forced to 1 and 0, respectively.

2.5.2 Partition-based Decomposition Method

Our decomposition algorithm to solve model (2.2) iteratively partitions the continuous feasible

region of the first-stage t-variables by introducing binary variables that facilitate tighter optimality

cuts. With the addition of constraints (2.14) and (2.15), the tightened subproblem is:

pSωPq fωP pt̂, x̂, ŷq “ min tT (2.16a)

s.t.
ÿ

qPQi

H̄qF qi ´H
ωGi ě t̂i ´H

ω @i P I (2.16b)

HωGi ´
ÿ

qPQi
¯
HqF qi ď t̂i ´

ÿ

qPQi
¯
Hqŷqi @i P I (2.16c)

F qi ď Gi @i P I, q P Qi (2.16d)

F qi ď ŷqi @i P I, q P Qi (2.16e)

F qi ě Gi ` ŷ
q
i ´ 1 @i P I, q P Qi. (2.16f)

Gi ě
ÿ

qPQi,Hωď
¯
Hq

ŷqi @i P I (2.16g)

Gi ď 1´
ÿ

qPQi,HωěH̄q

ŷqi @i P I (2.16h)

constraints (2.8d)-(2.8q) (2.16i)

0 ď F qi ď 1 @ i P I, q P Qi (2.16j)

0 ď Gi ď 1. @ i P I. (2.16k)

We express pSωPq in LP relaxation form, excluding constraints (2.8r). Let ` denote the iteration of

the decomposition algorithm, and pt̂`, x̂`, ŷ`q denote a given first-stage decision. We solve pSωPq for

each ω P Ω and construct an optimality cut of the form:

θω ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq `

ÿ

iPI

ÿ

qPQ`i

γω,`,qi

´

yqi ´ ŷ
q,`
i

¯

. (2.17)
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Here, θω is a continuous decision variable that forms an outer-linearization of fωP pt, x, yq; parame-

ter vω,` is the optimal value of pSωPq at pt̂`, x̂`, ŷ`q; and, coefficients π, λ and γ are appropriate sums

of dual variables from the LP relaxation—e.g., πω,`i involves dual variables from constraints (2.8d)-

(2.8e) and (2.16b)-(2.16c). Since we solve a linear relaxation, θω is a lower bound on fωpt̂`, x̂`, ŷ`q.

However, the cut needs to be modified once the partition is updated to maintain validity, and we

assume that the update only refines the partition for each i P I:

Definition 2.5.2. For two partitions P1
i and P2

i , indexed by Q1
i and Q2

i , respectively, we say P2
i

is a refinement of P1
i provided:

@q2 P Q2
i , Dq

1 P Q1
i s.t. H̄q1

ě H̄q2
and

¯
Hq1

ď
¯
Hq2

.

At the current iteration for each i P I, let the partition Pi be indexed by Qi, and assume this

partition is formed from earlier partitions by a sequence of refinements satisfying Definition 2.5.2.

We can then find a set of intervals in the current partition, Pi, whose union is the q-th interval in

partition P`i from previous iteration `. We index such a descendant set by ∆ip`, qq. Cut (2.17) can

then be updated to the following form:

θω ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq `

ÿ

iPI

ÿ

qPQ`i

γω,`,qi

¨

˝

ÿ

q1P∆ip`,qq

yq
1

i ´ ŷ
q,`
i

˛

‚. (2.18)

We show that given a partition, P “
Ś

iPI Pi, which is updated by sequential refinement from

a previous partition, P` “
Ś

iPI P`i , the optimality cut (2.18) is a valid lower approximation

for fωP pt, x, yq.

Proposition 2.5.2. For each i P I, suppose we have a partition, Pi, indexed by Qi, which is a

refinement of P`i , indexed by Q`i . Then at any given feasible pt, x, yq we have

fωP pt, x, yq ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq

ÿ

iPI

ÿ

qPQ`
i

γω,`,qi

¨

˝

ÿ

q1P∆ip`,qq

yq
1

i ´ ŷ
q,`
i

˛

‚. (2.19)

Proof. We denote the recourse function corresponding to partition P` by fωP`pt, x, yq, where y has
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the correct dimension according to P`. We first show that

fωP pt, x, yq ě fωP`pt, x, ỹq, (2.20)

where

ỹqi “
ÿ

q1P∆ip`,qq

yq
1

i @i P I, q P Q`i . (2.21)

Suppose for given pt, x, yq, we solve (SωP) and obtain an optimal solution ptω, xω, Gω, Fωq. We then

form

F̃ω,qi “
ÿ

q1P∆ip`,qq

Fω,q
1

i @i P I, q P Q`i ,

and we obtain a feasible solution ptω, xω, Gω, F̃ωq to subproblem (SωP`). Therefore, inequality (2.20)

holds. Furthermore, the cut generated under partition P` is

θω ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq `

ÿ

iPI

ÿ

qPQ`i

γω,`,qi

´

yqi ´ ŷ
q,`
i

¯

,

which means that for any feasible pt, x, ỹq, we have

fωP`pt, x, ỹq ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq `

ÿ

iPI

ÿ

qPQ`i

γω,`,qi

´

ỹqi ´ ŷ
q,`
i

¯

. (2.22)

Using equation (2.21), we replace ỹ by y, and combine inequalities (2.20) and (2.22) to obtain (2.19).

Proposition 2.5.2 states that by properly modifying the y-variables in cuts generated under

earlier partitions, the resulting cuts (2.18) are valid in the sense of providing a lower approximation

on the LP relaxation of the recourse function. Therefore, we incorporate the modified cuts (2.18)

in the following master problem, given a partition P, which is indexed by Q:
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pMPq z˚P “ min p0tT `
ÿ

ωPΩ

pωθω (2.23a)

s.t. tk ´ ti ě Dik

˜

1´
ÿ

jPJi

eijxij

¸

@pi, kq P A (2.23b)

ÿ

iPI

ÿ

jPJi

bijxij ď B (2.23c)

ÿ

jPJi

xij ď 1 @ i P I (2.23d)

ÿ

qPQi
¯
Hqyqi ď ti ď

ÿ

qPQi

H̄qyqi @i P I (2.23e)

ÿ

qPQi

yqi “ 1 @i P I (2.23f)

θω ě vω,` `
ÿ

iPI

πω,`i pti ´ t̂
`
iq `

ÿ

iPI

ÿ

jPJi

λω,`ij pxij ´ x̂
`
ijq

`
ÿ

iPI

ÿ

qPQ`i

γω,`,qi

¨

˝

ÿ

q1P∆ip`,qq

yq
1

i ´ ŷ
q,`
i

˛

‚ @ω P Ω, ` “ 1, 2, . . . , L (2.23g)

yqi P t0, 1u @i P I, q P Qi (2.23h)

ti ě 0 @ i P I (2.23i)

0 ď xij ď 1 @ i P I, j P Ji. (2.23j)

As we refine the partitions, the generated cuts become tighter and we provide tighter lower bounds

on model (2.2)’s optimal value. We refine the partition by selecting the interval of Pi for each

activity i P I, where for some scenarios ω P Ω with Hω P r
¯
Hq, H̄qs, Gωi has a fractional value, and

partition the interval as we describe in further detail in Section 2.5.7. The decomposition procedure

is given in Algorithm 1.

We prove Algorithm 1 converges in finite number of iterations. Since every partition update

is a refinement and we have a finite set of scenario Ω, we can prove the finite convergence of

Algorithm 1 as long as with the finest partition we reach the optimum of problem (2.2).

Proposition 2.5.3. Assume that the realizations of Hω, ω P Ω, are distinct. Assume that for each
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Algorithm 1 Partition-based decomposition algorithm to solve model (2.2)

1: Initialize cut iteration number ` “ 0, lower bound LB “ 0, upper bound UB “ `8, initial
partition P` with its indexed set Q`, and tolerance parameters ε ě δ ě 0;

2: while UB´LB
UB ą ε do

3: Solve pMPq and obtain solution t̂`, x̂`, ŷ`, θ̂` and optimal value z˚P ;
4: if z˚P ą LB then
5: Update LB “ z˚P ;

6: For each ω P Ω, solve pSωq and obtain fωpt̂`, x̂`q and Ĝ`;
7: Calculate z̄ “ p0t̂`T `

ř

ωPΩ p
ωfωpt̂`, x̂`q;

8: if z̄ ă UB then
9: Update UB “ z̄ and incumbent solution as t˚ “ t̂`, x˚ “ x̂` and G˚ “ Ĝ`;

10: for each ω P Ω do
11: solve pSωPq given t̂`, x̂`, ŷ` and obtain optimal value vω,` and πω,`, λω,`, γω,`;

12: if θ̂ω,` ă vω,` ´ δ then add cut of form (2.17) to pMPq;

13: if there are cuts added then
14: Let P``1 “ P` and Q``1 “ Q`;
15: Let ` “ `` 1;
16: else
17: Refine the partition and obtain the new partition P``1 and its indexed sets Q``1;
18: Let ` “ `` 1;
19: Update previously generated cuts in P` to the form of (2.18);

end while
20: Output UB as the ε-optimal value of model (2.2), and pt˚, x˚, G˚q as the ε-optimal solution.

partition, Pi indexed by Qi, and for each Hω we have Hω “ H̄q for some q P Qi, i.e., |Qi| “ |Ω|`1

so that each partition is as fine as possible. Then

z˚ “ min
pt,x,yqPX

p0tT `
ÿ

ωPΩ

pωfωP pt, x, yq, (2.24)

where

X “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pt, x, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

constraints (2.23b)-(2.23f)

yqi P t0, 1u @i P I, q P Qi

ti ě 0 @i P I

0 ď xij ď 1 @i P I, j P Ji

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

and where z˚ is the optimal value of model (2.2).

Proof. We can formulate an extensive form for model (2.24), i.e., an analog of model (2.2), using X
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and model (2.16), where the decision variables of model (2.16) are now also indexed by ω. Let Ω “

t1, 2, . . . , |Ω|u so that the realizations of the disruption times are given by H1 ă H2 ă ¨ ¨ ¨ ă H |Ω|.

By Definition 2.5.1, under the hypothesis of the proposition, the intervals of each partition are

given by the finest partition, rH0, H1s, rH1, H2s, . . . , rH |Ω|´1, H |Ω|s, rH |Ω|, H |Ω|`1s, which we can

index by q “ 1, 2, . . . , |Ω|, |Ω| ` 1, where H0 “ 0 and H |Ω|`1 “ Tmax. Under the assumed partition,

constraints (2.16g)-(2.16h) in the extensive form of (2.24) reduce to

|Ω|`1
ÿ

q“ω`1

yqi ď Gωi ď 1´

˜

ω
ÿ

q“1

yqi

¸

,@i P I, ω P Ω. (2.25)

Under this finest partition, there is a one-to-one mapping between the G- and y-variables under

the binary restrictions imposed by models (2.2) and (2.24). In particular,

yqi “ 1 if and only if Gωi “ 1 @ω ě q ` 1 and Gωi “ 0 @ω ď q. (2.26)

Any feasible solution to model (2.2) necessarily satisfies the condition Gωi ď Gω`1
i required by (2.26)

via constraint (2.2f). And, constraints (2.23f) and (2.23h) ensures the 0-0 or 1-1 nature of the

left- and right-hand side of (2.25). By Proposition 2.5.1 we know ti P r0, Tmaxs, and hence this

restriction imposed by model (2.24) is nonbinding. As a result, model (2.2) and the extensive form

of model (2.24) are equivalent and yield the same optimal value.

Theorem 2.5.1. Assume that the realizations of Hω, ω P Ω, are distinct, and assume that we

obtain a dual extreme-point solution to subproblem pSωPq in step 11 of Algorithm 1. Then, the

algorithm terminates in finite number of iterations to an ε-optimal solution to model (2.2) for any

ε ě 0.

Proof. Let z˚ denote the optimal value of model (2.2) or equivalently model (2.7). The value of UB

in the algorithm is an upper bound on z˚ because pt̂`, x̂`q is a feasible solution, and its objective

function value in model (2.7) is evaluated in step 7 of the algorithm. The value of LB in the

algorithm is a lower bound on z˚ because: (i) Proposition 2.5.2 ensures that the cuts (2.23g) are an

outer linearizations of fPpt, x, yq; inequality (2.20) in the proof of Proposition 2.5.2 shows that fP
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becomes tighter as the partition is refined; and, Proposition 2.5.3 shows that the finest partition

yields a model equivalent to model (2.2). Thus, if Algorithm 1 terminates according to step 2 then

the current incumbent is an ε-optimal solution.

For a fixed partition, P, Algorithm 1 can only add a finite number of new cuts because

each linear program pSωPq has a finite number of dual extreme points. After the final iteration in

which new cuts are added, partition P is refined in step 17 of the algorithm. Because there are

a finite number of scenarios the finest possible partition, if necessary, will be obtained in a finite

number of iterations. From Proposition 2.5.3 we know that with the finest partition the solution

to model (2.24) yields an optimal solution, and we will obtain the requisite cuts (2.23g) so that

models (2.23) and (2.24) are equivalent in a finite number of iterations.

2.5.3 Pruning Partitions Using Bound Tightening

Feasibility-based and optimization-based bound tightening schemes have been proved powerful

in mixed-integer nonlinear programming to improve computational performance (e.g., Belotti et al.

2012, Coffrin et al. 2015a, Sundar et al. 2018). A feasibility-based bound tightening (FBBT) process

is suitable for our problem because the precedence relationships limit the start times of activities.

We solve the following linear programs to identify the lower and upper bounds on the first-stage

start time of each activity:

min {max ti (2.27a)

s.t. constraints (2.7b)-(2.7f) (2.27b)

¯
ti ď ti ď t̄i @i P I. (2.27c)

The bound tightening process starts with a set of initial bounds
¯
ti “ 0 and t̄i “ Tmax for each i P I.

We solve model (2.27) iteratively and update t̄i and
¯
ti until the bounds converge for every i P I.

We run FBBT at the beginning of our decomposition method to provide the initial partition P0

to start Algorithm 1. If we can tighten the bounds of some activities, for example, by branch-and-

bound or heuristics, we can run FBBT to tighten the bounds for all activities, which leads to a
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tighter formulation of the subproblems, pSωPq, as further detailed in Section 2.5.8.

2.5.4 Obtaining Heuristic Upper Bound

In our computation, we observe that it can take many iterations of Algorithm 1 before we

find a good feasible solution. When there is not a tight upper bound to use as a “cutoff value,”

it takes an integer programming solver longer to solve model pMPq. On the other hand, we can

quickly solve the extensive formulation (2.2) when the number of scenarios is small; e.g., |Ω| “ 20.

Solving such a model provides a feasible first-stage solution pt̂, x̂q, which can be used to generate an

upper bound for the problem with the larger, original set of scenarios. Therefore, we can generate

N small subsets of scenarios from the original scenario set, i.e., Ωn Ă Ω, n “ 1, 2, . . . , N , and solve

model (2.2) with each of those subsets to generate candidate upper bounds, and select the one with

the smallest expected project span under Ω.

In generating Ωn, we observe that it is beneficial to have diverse scenarios within each subset.

As above, we sort the scenarios by disruption time so Hω ă Hω`1. For simplicity, suppose each

subset has equal size so that N ¨ |Ωn| “ |Ω|, @n. The n-th subset is then:

Ωn “ tω |ω “ n` pj ´ 1q ¨ |Ωn|, j “ 1, 2, . . . , Nu.

In Section 2.6 we compare the computational time of the decomposition method with and without

initial upper bounds, and show the significant performance improvement by including the heuristic

upper bound.

2.5.5 Magnanti-Wong Cut Generation

In a Benders’ decomposition algorithm, linear programming subproblems can have multiple

optimal dual solutions, which means that at a specific incumbent solution, there are multiple valid

cuts that could be generated. Magnanti and Wong (1981) provide a method to select Pareto-optimal

cuts, which cannot be dominated, and help tighten the LP relaxation of the master program.

We apply a technique that pursues the same goal as Magnanti and Wong in order to tighten

cuts at interior points of pMPq. We record pt̂, x̂q solutions from previous iterations, compute the
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corresponding ŷ for the current partition, and obtain the average, which we denote (t0, x0, y0).

We then solve the subproblems following the procedure of Magnanti and Wong (1981), using this

average point as a proxy for the core point, i.e., a point on the relative interior of the LP relaxation

of pMPq’s feasible region. For each scenario ω P Ω, first we solve model (2.16) with the current

master solution pt̂, x̂, ŷq to obtain the optimal value, fωP pt̂, x̂, ŷq. Next we need to find dual variables

that ensure the dual objective value at pt̂, x̂, ŷq is within a small tolerance of fωP pt̂, x̂, ŷq (e.g.,

εMW “ 10´5), while maximizing the dual objective value at pt0, x0, y0q. Let the following denote

the dual of pSωPq in compact form, suppressing dependence on ω:

fωP pt̂, x̂, ŷq “ max
π,λ,γ,η

πJpt̂` btq ` λ
Jpx̂` bxq ` γ

Jpŷ ` byq ` η
Jb (2.28a)

s.t. AJππ `A
J
λλ`A

J
γ γ `A

J
η η ď c. (2.28b)

We solve the following to obtain Magnanti-Wong cut parameters, v, π, λ, and γ:

v “ max
π,λ,γ,η

πJpt0 ` btq ` λ
Jpx0 ` bxq ` γ

Jpy0 ` byq ` η
Jb (2.29a)

s.t. πJpt̂` btq ` λ
Jpx̂` bxq ` γ

Jpŷ ` byq ` η
Jb ě p1´ εMW qf

ω
P pt̂, x̂, ŷq (2.29b)

AJππ `A
J
λλ`A

J
γ γ `A

J
η η ď c. (2.29c)

Our average point, (t0, x0, y0), may not be in the relative interior of the master problem’s

feasible region, e.g., if all solutions contributing to the average have a component of y taking value

zero or one. Although this means the resulting cuts may not be Pareto-optimal, they may still

improve computational performance, and we investigate this in Section 2.6.

2.5.6 Cut Selection

Algorithm 1 is a multi-cut version of Benders’ decomposition procedure (Birge and Louveaux

1988). A multi-cut scheme can converge in fewer iterations, but each iteration is typically more

computationally expensive. The latter issue tends to exacerbate as the algorithm proceeds and

cuts accumulate, particularly when the master problem is a mixed-integer program.
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As we discuss in the next section, when naively keeping all cuts, we see that the time required

to solve the master problem can grow quickly as the algorithm proceeds. Therefore, we limit the

number of cuts and only keep those that have been tight most recently at the end of each Benders’

iteration. Refining a partition can yield many loose cuts. Therefore, keeping only a limited number

of cuts eliminates unnecessary constraints, while still providing a valuable lower bound and reducing

computational effort.

2.5.7 Refining Partitions

Here, we indicate how a partition is refined in step 17 of Algorithm 1. The most significant

contributor to the optimality gap is that variable G can take fractional values in the relaxed

problem pSωPq. For example, if dωik " Dik then Gi can take a fractional value far from optimal.

This can significantly alter the duration between activity i and k (see constraint (2.8h)) in the

LP relaxation, and thus create a large gap between the relaxation and the original mixed-integer

subproblem. Let Np be a parameter that limits the number of new partitions for each activity i P I;

we use Np “ 5 in our subsequent computation, unless stated otherwise. Suppose subproblem pSωPq

has as part of its solution Gωi , i P I. Then separately for each i P I our rule selects for partitioning

up to Np scenarios with the largest values of:

ρωi “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

maxpi,kqPA d
ω
ikG

ω
i if ti ă Hω

maxpi,kqPA d
ω
ikp1´G

ω
i q if ti ą Hω

mintmaxpi,kqPA d
ω
ikG

ω
i ,maxpi,kqPA d

ω
ikp1´G

ω
i qu if ti “ Hω.

(2.30)

2.5.8 Branch-and-Cut Algorithm

In Algorithm 1 we iteratively refine the partition defining the y-variables, and each time we

solve master (2.23) we must solve a mixed-integer linear program, which we do with a commercial

solver. Algorithm 1 is not a branch-and-cut (B&C) algorithm in that it does not adaptively

generate different cuts at different parts of a branch-and-bound tree. As a potential improvement

to Algorithm 1, we propose here a B&C algorithm, which involves a branch-and-bound (B&B) tree
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with nodes that we manage. The root node in our B&B tree involves the original partition, and we

solve that node using Benders’ decomposition, which iteratively adds cuts to master (2.23) until the

problem is solved for the fixed partition, as in Algorithm 1. In the B&C algorithm we recursively

branch on a continuous variable ti via ti ď Hω and ti ě Hω for some i-ω pair. Rather than

actually branching on the continuous t-variables, this branching is carried out using the partition

pPi,Qiq by fixing the corresponding subset of yqi -variables to zero. This helps manage both the

number of binary variables and the number of optimality cuts in a master problem. Moreover, in

our implementation we solve the nodes in our B&B tree in parallel.

The optimal value of a B&B node provides a lower bound on the optimal value of (2.2). We

also continually update a global upper bound each time we obtain a feasible solution in a Benders’

decomposition iteration. If the gap between a node’s lower bound and the global upper bound is

smaller than the tolerance, we mark the node as fathomed. If not, we branch as follows:

select ω P argmaxωPΩ
“

fωpt̂, x̂q ´ fωP pt̂, x̂, ŷq
‰

(2.31a)

select i P argmaxiPI rρ
ω
i s . (2.31b)

In (2.31a) we select the scenario ω with the largest relaxation gap. Then in (2.31b) we select the

activity with the largest ρωi from equation (2.30). This defines the i-ω pair for branching on ti ď Hω

versus ti ě Hω using the y-variables in a form of SOS branching.

After a branch, for each child node we refine the partition on all activities i P I according

to Section 2.5.7. The children inherit the parent node’s cuts, updated in a similar fashion as

inequality (2.18). To set up notation for Algorithm 2, suppose that for activity i P I the current

B&B node, say node n, has a partition Pni indexed by set Qni , and its parent node m has a partition

Pmi indexed by set Qmi . Then, the cuts inherited from node m are updated for node n as:

θω ě vω,m,` `
ÿ

iPI

πω,m,`i pti ´ t̂
m,`
i q `

ÿ

iPI

ÿ

jPJi

λω,m,`ij pxij ´ x̂
m,`
ij q`

ÿ

iPI

ÿ

qPQmi

γω,m,qi

¨

˝

ÿ

q1P∆n
i pm,qq

yq
1

i ´ ŷ
q,m,`
i

˛

‚ @` “ 1, 2, . . . , L. (2.32)
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Here, ∆n
i pm, qq represents the descendant set of the partition Pni refined from the q-th element in

the partition Pmi . The cuts remain valid by Proposition 2.5.2 because the partitions in the child

node refine those of the parent node. The parent node is marked as fathomed after a refinement,

and we select the next available node with the smallest lower bound.

Putting all these pieces together, we summarize our partition-based branch-and-cut decompo-

sition method in Algorithm 2. As indicated above, in implementation we execute the algorithm’s

steps on each available node in parallel.

Algorithm 2 Partition-based branch-and-cut algorithm to solve model (2.2)

1: Initialize tolerance parameters ε ě δ ě 0, and a global upper bound UB.
2: Initialize the B&B tree with node 1, with the following properties: cut iteration number `1 “ 1,

lower bound LB1, initial partition P1 with its indexed set Q1;
3: while there exists an available node such that UB´LBn

UB ą ε do
4: Select available node n with smallest LBn;
5: Append inherited cuts from parent of node n to master pMn

Pq using (2.32);
6: repeat
7: Solve pMn

Pq and obtain solution t̂ `
n
, x̂`

n
, ŷ`

n
, θ̂`

n
and optimal value z˚P ;

8: if z˚P ą LBn then
9: Update LBn “ z˚P ;

10: For each ω P Ω, solve problem pSωq and obtain fωpt̂`
n
, x̂`

n
q and Ĝ`

n
;

11: Calculate z̄ “ p0t̂ `
n

T `
ř

ωPΩ p
ωfωpt̂`

n
, x̂`

n
q;

12: if z̄ ă UB then
13: Update UB “ z̄ and incumbent solution as t˚ “ t̂ `

n
, x˚ “ x̂`

n
and G˚ “ Ĝ`

n
;

14: for each ω P Ω do
15: solve pSωPq given t̂ `

n
, x̂`

n
, ŷ`

n
and obtain optimal value vω,`

n
and πω,`

n
, λω,`

n
, γω,`

n
;

16: if θ̂ω,` ă vω,` ´ δ then add cut of form (2.17) to pMn
Pq;

17: Let `n “ `n ` 1;
18: until no cut is added;
19: if UB´LBn

UB ą ε then
20: Branch via (2.31), creating two available children nodes, n1 and n2, from node n;
21: Refine the partition for nodes n1 and n2 to obtain Pn1 and Pn2 , respectively;
22: Let LBn1 “ LBn2 “ LBn;

23: Mark node n as fathomed;
end while

24: Output UB as the ε-optimal value of model (2.2), and pt˚, x˚, G˚q as the ε-optimal solution.
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2.5.9 Algorithm 2: Numerical Example

We illustrate Algorithm 2 on an example with ε “ 0. We consider the network with five

activities that accompany the source and terminal, as shown in Figure 2.6.

Figure 2.6: A five-activity serial network to illustrate Algorithm 2

Each of the five activities has unit duration, and can be crashed with a single option that

decreases the duration by 90% with one unit of resource consumption, i.e., ei1 “ 0.9, @i P IztS, T u,

and we let B “ 2. The probability of no disruption is p0 “ 0.2, and the disruption can occur at

four discrete time points, H1 “ 1, H2 “ 2, H3 “ 3, H4 “ 4, with equal probability pω “ 0.2, @ω P

Ω “ t1, 2, 3, 4u. The increase in duration under a disruption is dωi “ 10 for each activity-scenario

pair. By Proposition 2.5.1 we can bound the start time of each activity from above by Tmax “ 9.

Running the FBBT procedure of Section 2.5.3 we obtain
¯
t1 “ 0,

¯
t2 “ 0.1,

¯
t3 “ 0.2,

¯
t4 “

1.2,
¯
t5 “ 2.2, and

¯
tT “ 3.2. Given these values, and the realizations of Hω, we initialize node 1 of

Algorithm 2 with the following partition, which precludes certain intervals for activities 4, 5, and

T :

P1
1 “ tr0, 9su Q1

1 “ t1u

P1
2 “ tr0, 9su Q1

2 “ t1u

P1
3 “ tr0, 9su Q1

3 “ t1u

P1
4 “ tr0, 1s, r1, 9su Q1

4 “ t1, 2u y1
4 “ 0

P1
5 “ tr0, 2s, r2, 9su Q1

5 “ t1, 2u y1
5 “ 0

P1
T “ tr0, 3s, r3, 9su Q1

T “ t1, 2u y1
T “ 0.

Executing steps 6-18 of the algorithm, we solve node 1 with Benders’ decomposition, converging

to an optimal value of z˚P “ 4.072, and in the process, we obtain an upper bound of UB “ 6.607.
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The optimal solution is:

t̂1 “ 0 x̂11 “ 0

t̂2 “ 1 x̂21 “ 0.1124

t̂3 “ 1.899 x̂31 “ 0.1124

t̂4 “ 2.798 x̂41 “ 0.8892

t̂5 “ 2.997 x̂51 “ 0.8860

t̂T “ 3.2.

At this solution, by equation (2.31a) the largest relaxation gap is incurred at ω “ 1, and equa-

tion (2.31b) corresponds to activity 3, which has a fractional solution of G3 “ 0.125 in subprob-

lem pS1
Pq. We branch on i-ω pair 3-1, creating two children, node 2 and node 3. Node 2 has an

additional constraint, t3 ě H1 “ 1 and node 3 has an additional constraint t3 ď H1 “ 1. For each

activity i, we refine the partition by selecting the scenario with the largest nonzero ρωi for ω P Ω,

i.e., for simplicity we use Np “ 1; see Section 2.5.7. If the largest ρωi is zero for activity i, we do

not refine that activity’s partition. We again apply the ideas of Section 2.5.3, and solve a series of

linear programs (2.27) to tighten the bounds of starting times for nodes 2 and 3, accounting for

their respective additional constraints t3 ě 1 and t3 ď 1. This refinement and bound-tightening

process yields:

Node 2:

P2
1 “ tr0, 9su Q2

1 “ t1u

P2
2 “ tr0, 9su Q2

2 “ t1u

P2
3 “ tr0, 1s, r1, 9su Q2

3 “ t1, 2u y1
3 “ 0

P2
4 “ tr0, 1s, r1, 2s, r2, 9su Q2

4 “ t1, 2, 3u y1
4 “ 0

P2
5 “ tr0, 2s, r2, 3s, r3, 9su Q2

5 “ t1, 2, 3u y1
5 “ 0

P2
T “ tr0, 3s, r3, 4s, r4, 9su Q2

T “ t1, 2, 3u y1
T “ 0
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Node 3:

P3
1 “ tr0, 1s, r1, 9su Q3

1 “ t1, 2u y2
1 “ 0

P3
2 “ tr0, 1s, r1, 9su Q3

2 “ t1, 2u y2
2 “ 0

P3
3 “ tr0, 1s, r1, 9su Q3

3 “ t1, 2u y2
3 “ 0

P3
4 “ tr0, 1s, r1, 2s, r2, 9su Q3

4 “ t1, 2, 3u y1
4 “ 0

P3
5 “ tr0, 2s, r2, 3s, r3, 9su Q3

5 “ t1, 2, 3u y1
5 “ 0

P3
T “ tr0, 3s, r3, 4s, r4, 9su Q3

T “ t1, 2, 3u y1
T “ 0.

We fathom node 1 and nodes 2 and 3 inherit its cuts and lower bound. Breaking the tie arbitrarily,

we select and then solve node 2 with Benders’ decomposition and obtain an optimal value of

z˚P “ 6.111. Node 2 then branches to nodes 4 and 5, which inherit the cuts and the lower bound

from node 2. The upper bound value remains UB “ 6.607.

Node 3 now has the smallest lower bound, 4.072, among unfathomed nodes, and yields an

optimal value of z˚P “ 6 and optimal solution:

t̂1 “ 0 x̂11 “ 1 (2.33a)

t̂2 “ 0.1 x̂21 “
1

9
(2.33b)

t̂3 “ 1 x̂31 “ 0 (2.33c)

t̂4 “ 2 x̂41 “ 0 (2.33d)

t̂5 “ 3 x̂51 “
8

9
(2.33e)

t̂T “ 3.2. (2.33f)

In the process of solving node 3, we also obtain a tighter global upper bound of UB “ 6 as-

sociated with solution (2.33), and hence the optimality gap at node 3 is zero. Nodes 4 and 5

can now be fathomed because their lower bound of 6.111 exceeds UB. The algorithm terminates

with the optimal solution in equation (2.33), and the corresponding G-variables indicate that ac-

tivities 1, 2, and 3 start before disruption scenario 1, activity 4 starts before disruption scenario



55

2, and activity 5 starts before disruption scenario 3. The optimal objective function value is

6 “ 0.6 ¨ r3.2s ` 0.2 ¨ r2` 11 ¨ p1´ 0.9 ¨ 8{9q ` 11s ` 0.2 ¨ r3` 11 ¨ p1´ 0.9 ¨ 8{9qs.

2.6 Experimental Results

In this section, we address the following questions with our computational results:

1. What is the value of model (2.2), which takes account of randomness in both the timing and

magnitude of a disruption? In other words, how does the quality of the solution to model (2.2)

compare to those of simpler alternatives?

2. How does the solution quality improve as the number of samples grows in a sample average

approximation?

3. How do Algorithms 1 and 2 perform versus solving the extensive formulation (2.2) using a state-

of-the-art MIP solver? How effective are the computational enhancements of upper-bound

generation, Magnanti-Wong cuts, and the cut-selection procedure from Sections 2.5.4-2.5.6?

Section 2.6.1 introduces the PERT networks and probability distributions characterizing the

disruptions for our test cases. In Section 2.6.2 we construct deterministic and semi-deterministic

alternatives to model (2.2), perform out-of-sample tests, and compare the quality of the resulting

solutions to those of model (2.2). We test how the sample size affects solution quality and requisite

computational effort in Section 2.6.3. Finally, in Section 2.6.4 we compare the performance of

Algorithms 1 and 2 to solving extensive formulation directly.

All tests are run on a server with 30 Intel Xeon cores at 3.1 GHz and 256 GB of RAM. For

Algorithm 2, each node is solved by 6 cores and we allow at most 5 nodes to be solved simultaneously

so that the maximum number of cores used at any time is again 30. All models are constructed

using version 0.18.0 of the JuMP package (Dunning et al. 2017) on the Julia platform. All linear

programs and mixed-integer programs are solved by Gurobi 8.01 (Gurobi Optimization, Inc. 2016)

with the integer feasibility tolerance and the primal feasibility tolerance both set to 10´8. In

addition, we solve all problems using an optimality-gap tolerance of 10´2, including Algorithm 2’s

ε “ 10´2 as well as δ “ 10´4.
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2.6.1 Test Cases Construction

We construct our test cases based on two activity networks from the literature, along with one

we create from “scratch” and one we generate randomly. In particular, we use an activity network

from Plambeck et al. (1996) with 11 activities, and one from Elmaghraby (1977) with 19 activities.

We also manually create one activity network with 14 activities and randomly generate one network

with 35 activities using the tool RanGen (Demeulemeester et al. 2003). In the following section,

we use “Case X” to denote the test case with X activities. Data for all four test cases are detailed

in Appendix A.1.

For each test case, the timing of the disruption is a discrete random variable sampled from

a lognormal distribution, which is commonly used to model failure times (e.g., Crow and Shimizu

1987, Mullen 1998). The magnitude of the disruption for each activity follows an exponential

distribution (which we again sample) whose parameter varies among the activities; the exponential

distribution is widely used to model activity durations such as service times (e.g., Ross et al. 1996).

2.6.2 Value of a Fully Stochastic Model

We compare the quality of five solutions, one from solving model (2.2) and four from solving

simpler alternatives, to investigate the value of modeling both the random timing and random

magnitude of a disruption. First, we can obtain a solution by solving a deterministic model (2.1),

assuming no disruption occurs, i.e., dω “ 0 (denoted “DET”). Three semi-stochastic alternative

models can be solved assuming: both the timing and magnitude of the disruption are deterministic

at their expected values (denoted “EXP”); the timing is random but magnitude is fixed at its

expected value (denoted “HOnly”); and, the magnitude is random but timing is fixed at its expected

value (denoted “dOnly”). Finally, we construct the fully stochastic model (2.2) in which both the

timing and magnitude are random (denoted “FULL”). We sample 500 scenarios to solve HOnly,

dOnly, and FULL. Twenty batches of samples of size 5,000 are used to estimate an upper bound

for each candidate solution. The upper bound point estimate for those five candidate solutions is

shown in Figure 2.7, and the 95% confidence interval is shown in Table 2.2.

Figure 2.7 scales the optimal value of each test problem, dividing by that of FULL, and
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Figure 2.7: Comparison of quality of alternative solutions to the problem (2.2)

shows that the solution quality can be poor without considering the uncertainty in the timing of

a disruption. DET’s upper bound estimate is at least 20% larger than that of FULL for all test

cases. The upper bound estimates of dOnly and EXP are similar and at least 10% larger than that

of FULL. For Case 14, the upper bound of HOnly is 20% larger than that of FULL, and is closer to

that of FULL for the other three cases. That said, given the sample sizes, the computational effort

to solve HOnly and FULL are comparable. These test results indicate that the fully stochastic

model can outperform simpler variants.

DET EXP dOnly HOnly FULL

Case 11 575.80 ˘ 16.88 454.33 ˘ 18.34 454.33 ˘ 18.34 287.05 ˘ 14.91 287.29 ˘ 14.92

Case 14 3309.27 ˘ 177.18 2878.65 ˘ 176.70 2876.42 ˘ 176.55 3098.05 ˘ 133.06 2602.97 ˘ 110.12

Case 19 426.09 ˘ 10.09 389.61 ˘ 7.88 388.77 ˘ 8.43 355.29 ˘ 7.14 356.42 ˘ 5.86

Case 35 1353.80 ˘ 21.11 1183.74 ˘ 18.52 1188.93 ˘ 19.53 1078.57 ˘ 17.31 1068.29 ˘ 17.47

Table 2.2: Compare optimal values from alternatives of the disruption model
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2.6.3 Simulation Budget

We examine the quality of solutions obtained by solving SAA problems with different sample

sizes. In expectation, the optimal value of an SAA problem provides a lower bound on z˚, the

optimal value of the population problem, and in expectation evaluating a sample-mean objective

function of an SAA solution using an independent sample provides an upper bound on z˚ (Mak

et al. 1999). Both estimates approach z˚ as the sample size grows large (e.g., Shapiro et al. 2009).

Of course, the computational effort to solve the corresponding SAA problem grows with the sample

size. Understanding how the solution quality improves with sample size helps us obtain a high-

quality solution without excessive computational effort. For each test case, we first solve 20 SAA

instances of model (2.2), with sample sizes of 10, 20, 50, 100, 200, and 500. For each solution,

we obtain a point estimate of the upper bound using the same 5,000 samples. We also obtain

95% confidence intervals associated with both upper- and lower-bound estimators for each sample

size. We present the upper bound results in Table 2.3, the lower bound results in Table 2.4, and a

visualization of the estimators in Figure 2.8.

10 20 50 100 200 500

Case 11 326.05 ˘ 80.59 293.43 ˘ 24.20 290.95 ˘ 28.51 283.06 ˘ 12.24 280.10 ˘ 6.59 278.33 ˘ 2.30

Case 14 3002.42 ˘ 537.69 2942.09 ˘ 778.43 2714.87 ˘ 330.61 2645.71 ˘ 100.15 2627.94 ˘ 40.46 2626.90 ˘ 39.51

Case 19 385.41 ˘ 42.29 383.67 ˘ 45.78 358.99 ˘ 16.76 355.28 ˘ 10.21 352.57 ˘ 7.65 350.91 ˘ 1.83

Case 35 1130.18 ˘ 117.51 1102.57 ˘ 45.66 1091.34 ˘ 33.00 1080.23 ˘ 21.86 1073.05 ˘ 10.53 1070.08 ˘ 5.20

Table 2.3: Upper bound point estimates, and 95% confidence intervals, for SAA solutions with
different sample sizes

10 20 50 100 200 500

Case 11 296.44 ˘ 255.34 247.24 ˘ 134.57 266.30 ˘ 140.43 275.33 ˘ 73.14 289.32 ˘ 66.97 274.79 ˘ 36.59

Case 14 1868.25 ˘ 2152.85 1991.32 ˘ 1273.90 2244.39 ˘ 992.31 2310.86 ˘ 688.76 2508.60 ˘ 456.24 2477.13 ˘ 275.11

Case 19 310.07 ˘ 123.11 324.00 ˘ 85.84 331.84 ˘ 53.49 339.69 ˘ 36.10 344.84 ˘ 21.78 345.10 ˘ 14.26

Case 35 1166.85 ˘ 586.64 1107.83 ˘ 282.44 1055.84 ˘ 202.07 1036.82 ˘ 120.40 1060.78 ˘ 82.29 1065.76 ˘ 54.10

Table 2.4: Lower bound point estimates, and 95% confidence intervals, for SAA solutions with
different sample sizes

From the two tables and Figure 2.8, we can see the gap between the upper- and lower-bound es-

timators shrinks, and both estimators become less variable as the sample size grows. Improvements
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Figure 2.8: Confidence intervals, and point estimates, of the lower upper bounds for different sample
sizes

in the upper-bound estimators are small for sample sizes that exceed 100, and while improvements

in lower-bound point estimates can appear larger (see Case 14), they are small relative to sampling

error for such sample sizes.

2.6.4 Computational Performance

In this section we discuss the computational performance of our decomposition method with

its various potential enhancements. As a benchmark, we compare the performance of Algorithms 1

and 2 to direct solution of the extensive formulation (2.2) using a commercial solver.

We first briefly comment on running Algorithm 2, with and without FBBT from Section 2.5.3.

Using a sample size of 500, we solve instances of Cases 11, 14, 19, and 35. In so doing, we use all

improvements described in Sections 2.5.4-2.5.6. FBBT can significantly improve the value of the

LP relaxation at the B&B tree’s root node, and this sometimes leads to modest improvements in
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the total number of nodes that are explored. That said, the differences in overall run-times, with

and without FBBT, are mixed and not particularly large, and hence we do not present these results

in detail. We do employ FBBT in the remainder of this section.

Next, we show the quality of the heuristic upper bound described in Section 2.5.4. We solve

SAA instances with sample sizes of 100, 200, and 500, and in the notation of Section 2.5.4 we use

N “ 10, 10, and 20 in these three instances, respectively. We compare the heuristic upper bound

to the optimal value of the SAA instance. Moreover, for each case/sample-size pair, we replicate

the procedure on 20 independent instances. These are the same 20 instances used for sample sizes

of 100, 200, and 500 in Section 2.6.3 for which Table 2.4 reports average optimal values. Table 2.5

shows the smallest gap, the average gap, and the largest gap, all as percentages, between the

heuristic upper bound and the SAA optimal value across the 20 replications. The table also shows

the average time required to compute the heuristic upper bound.

Sample size
Gap (%) Average

Smallest Average Largest time (sec)

Case 11
100 0.01 0.5 2.3 5.6
200 0 0.15 0.83 17.8
500 0 0.07 0.37 67.5

Case 14
100 1.34 6.02 16.14 7.7
200 1.58 3.9 8.91 30.4
500 0.75 2.35 3.96 104.4

Case 19
100 0.56 2.67 5.28 9.9
200 0.05 0.99 2.03 37.2
500 0 0.72 1.59 127.6

Case 35
100 0 0.64 2.65 5.8
200 0.08 0.46 1.3 25.7
500 0 0.32 1.25 59.0

Table 2.5: Gap information between the heuristic upper bound and optimal value for twenty random
samples

We see that the average upper bound gap exceeds 5% only for Case 14 when the sample size is

100. Among all 240 SAA instances, there are only 15 for which the heuristic upper bound exceeds

the optimal value by more than 5%. We also observe that as the sample size grows, the heuristic

upper bound’s quality improves.

Table 2.6 shows run-time results for finding a heuristic upper bound and generating Magnanti-
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Wong cuts while using Algorithm 2 with cut selection. Here we present the running time of a single

replication for the sample size of 500, assuming N “ 20 in the notation of Section 2.5.4. In the

table, “UB” means that we only use the heuristic upper bound of Section 2.5.4 and generate regular

Benders’ cuts, and “MW” means that we generate Magnanti-Wong cuts of Section 2.5.5 without

the benefit of the upper bound heuristic. We also show the computation time of using neither and

using both techniques.

Running Time (sec.) Case 11 Case 14 Case 19 Case 35

Neither 70.1 770.0 1118.2 140.1

UB 62.9 534.7 861.0 20.0

MW 141.6 1218.2 952.0 222.3

Both 114.1 795.6 607.5 20.0

Table 2.6: Run-time results for using the heuristic upper bound and Magnanti-Wong cuts in Algo-
rithm 2 with cut selection

Table 2.6 shows that obtaining a heuristic upper bound can reduce computational effort; this

occurs because the bound facilitates earlier fathoming of some nodes in the branch-and-bound tree

when solving the master MIP. This outweighs the time required to compute the upper bound; see

Table 2.5. Magnanti-Wong cuts are effective for Case 19 but not for the other three cases, and the

two techniques can have a synergistic effect (Case 19).

Table 2.7 compares the run time of Algorithm 1 (denoted A1), Algorithm 2 (denoted A2),

with and without the cut selection procedure (CS). Here we use all improvements described in

Section 2.5.3-2.5.5. The table also shows the run-time for solving the extensive formulation (2.2)

using Gurobi, again to a relative optimality tolerance of 0.01. Due to the computational effort

required to execute some of the less efficient algorithms on large problem instances, we report

results for a single replication.

Table 2.7 shows that although directly solving the extensive formulation may be faster when the

sample size is small, our decomposition algorithms tend to perform better as the sample size grows;

the table’s one exception is Algorithm 1 for Case 14. The improved computational performance

occurs because, while our decomposition methods must solve the master problem multiple times,
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Running Time (sec.) Sample Size (|Ω|)
Methods

A1 A1+CS A2 A2+CS Extensive

Case 11

100 8.7 7.4 20.0 10.0 5.0
200 16.7 34.8 20.0 20.0 40.3
500 273.3 240.9 103.4 114.1 1597.1
1000 279.9 326.7 73.0 80.1 5019.0

Case 14

100 45.2 31.0 43.7 40.0 13.7
200 137.5 126.0 150.2 101.0 158.7
500 1710.7 1578.0 1252.0 795.6 1263.1
1000 6284.1 7416.6 3135.1 1684.2 9808.3

Case 19

100 201.2 107.4 80.4 60.1 58.4
200 239.9 194.2 400.6 187.1 279.8
500 1643.7 1421.0 747.2 607.5 2792.9
1000 11259.1 8824.9 9785.2 2562.8 33698.5

Case 35

100 33.4 31.7 40.1 30.0 7.0
200 14.1 13.6 10.0 10.0 35.9
500 66.1 66.2 20.0 20.0 358.6
1000 241.0 248.0 40.1 40.1 662.0

Table 2.7: Computational performance with different sample sizes for decomposition methods and
directly solving the extensive formulation using Gurobi

the number of binary variables is significantly smaller than that of the extensive formulation.

Algorithm 2 outperforms Algorithm 1 when the sample size exceeds 500. When the sample size

is large, Algorithm 1 requires many master iterations to converge, and solving the mixed-integer

master program becomes significantly harder. For Algorithm 2, the time saved by processing

nodes in parallel outweighs the slightly longer solution time at each node due to using fewer cores.

Moreover, because of branching, each master problem at a node in the B&B tree has a small number

of binary variables in Algorithm 2, which further accelerates the B&C algorithm. The results also

show that selecting cuts can significantly improve the decomposition methods. On the most difficult

instances, applying the cut selection scheme yields larger improvements for Algorithm 2 than for

Algorithm 1.

2.7 Conclusions

In this chapter, we introduce the concept of a stochastic disruption in the context of a project

crashing problem. We consider the case of a single disruption, and formulate the model as a two-
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stage stochastic mixed-integer program in which the timing of the stage, i.e., the disruption time,

is random. We use examples to illustrate properties of our problem that deviate from its deter-

ministic counterpart, including the fact that it can be optimal to delay the start of an activity

or crash a shorter-duration activity, even under proportional reduction. While, conceptually, the

underlying problem involves continuous decision variables, we argue that the problem is NP-hard.

In our two-stage stochastic mixed-integer program, second-stage binary variables capture the logic

of the start time of an activity, relative to the disruption time. The resulting model is computa-

tionally challenging, but we propose a decomposition method which exploits the logical temporal

relationship just mentioned, and sequentially partitions the feasible region of continuous first-stage

decision variables to generate tighter cuts in a Benders’ decomposition algorithm. The proposed

method can significantly improve computational performance, especially as sample sizes grow large.

The ideas in this chapter can be extended in multiple ways. There may be opportunities to

exploit network structure in tailoring the branch-and-cut algorithm that we have developed. The

distribution governing the disruption time and, conditional on that time, the magnitude of the

disruption may facilitate sampling strategies that reduce variance and improve solution quality.

We have considered a model and algorithm that allow for at most one disruption, but handling a

small number of disruptions could be attractive.
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Chapter 3

Robust Optimization for Electricity

Generation

3.1 Introduction

The alternating current optimal power flow (ACOPF) problem has been a topic of interest

in the academic literature since the 1960s (Carpentier 1962). The ACOPF problem is used to

determine the output for all generators and establish the system’s configuration, i.e., the voltage

and phase angle at each bus and resulting power flows on lines. The goal is usually to minimize

the generation cost and keep the system configuration within a stable range; see, for example,

Bienstock (2015) for a detailed discussion. While the ACOPF problem can be formulated as a

quadratically constrained quadratic program, realistic instances are challenging to solve within

time limits commensurate with an operational schedule (usually a few minutes) because of their

scale and nonconvexities (Lavaei and Low 2012, Low 2014a, Verma 2010). Linearizing the power

flow equations simplifies the nonconvex ACOPF problem to what the literature calls a DCOPF

approximation, which is a linear program, and this approximation is frequently applied. However,

optimality and feasibility of the solution to the original ACOPF problem cannot be guaranteed

because the voltage at each bus is assumed to be fixed and reactive power is ignored; see, e.g., Mo-

moh et al. (1999) and Stott et al. (2009) for reviews of such linear approximations. In recent years,
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increasing attention has been paid to convex relaxations of ACOPF problems. Relaxations rooted

in semidefinite programming and second-order cone programming have been used to approximate

the ACOPF problem (Bai and Wei 2011, Bai et al. 2008, Coffrin et al. 2016, Jabr 2006, Kocuk et al.

2016, Lavaei and Low 2012, Low 2014b), and under some circumstances, these relaxed solutions

recover the exact optimal solution of the original nonconvex ACOPF problem.

Electric power systems operate under significant uncertainty due to system load, failure of

generation and transmission assets, and uncertain generation from renewable energy sources (RESs)

including wind and solar resources. In this context, we seek an economic dispatch decision that is

robust to uncertainty in load and RES generation. With stochastic realizations of power from wind

farms, Phan and Ghosh (2014) model economic dispatch under ACOPF as a two-stage stochastic

program, and use a sample average approximation. Monticelli et al. (1987) introduce a security-

constrained variant of an economic dispatch model in which the goal is to obtain a solution that can

adapt to failure of a subset of system components explicitly modeled through a set of contingencies.

Instead of enforcing feasibility for all modeled contingencies, Lubin et al. (2016) formulate a chance-

constrained model that ensures feasibility with high probability. Robust optimization is a natural

modeling framework for security-constrained problems in that such models yield solutions that can

handle any contingency within a specified uncertainty set. Jabr (2013) and Louca and Bitar (2017)

propose an adaptive robust optimization model, in which recourse decisions are represented as an

affine function of realizations of uncertainty such as available power from RESs. Attarha et al.

(2018) propose a tri-level decomposition algorithm where in the second level a DCOPF relaxation

is solved to obtain worst-case scenarios, which are further used to construct a large-scale extensive

formulation of the robust ACOPF problem.

Although significant progress has been made both in convex relaxations of nonconvex ACOPF

problems and in modeling dispatch under uncertainty, there is much less work that combines these

two threads; i.e., most stochastic or robust models for economic dispatch use the linear DCOPF

approximation. Liu and Ferris (2015) solve a scenario-based security-constrained ACOPF problem,

where for each contingency the ACOPF is relaxed as a semidefinite program (SDP). Lorca and Sun

(2018) model a multi-period two-stage robust ACOPF problem using a conic relaxation, which is
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similar to our approach, but we focus more on the feasibility guarantee and the properties of our

robust solution.

We solve a robust convex approximation, without specifying scenarios but by constructing an

uncertainty set, to simultaneously reap the benefit of a tighter relaxation and include uncertainty in

our model. We assume an uncontrollable injection represents net load at each bus. Here, net load

captures demand and RES generation, which are subject to simple bounds and further constraints

that define the uncertainty set. The goal is to find a robust and economical energy generation plan.

The robustness here means that for all contingencies modeled by our uncertainty set, we can find a

system configuration that satisfies the system’s physical and operational constraints. We call such

a plan, a robust optimal solution to the ACOPF problem.

Our formulation is unique in that, in addition to using a convex relaxation of the ACOPF

problem rather than a DC approximation, we employ a “full recourse” solution rather than relying

on simpler approximations like linear decision rules. There are three possible outcomes from solving

our model. First, the solution to the convex approximation may be feasible to the robust nonconvex

ACOPF problem, which means we exactly recover a robust solution. Second, due to the convex

relaxation, the solution we obtain may not be feasible to the robust nonconvex ACOPF problem,

but we obtain a lower bound on the optimal cost of the nonconvex counterpart, which yields a

bound on the optimality gap when coupled with a heuristically obtained feasible solution. Third,

if the convex relaxation is infeasible, we identify infeasibility of the robust nonconvex ACOPF

problem.

In Section 3.2, we formulate our convex relaxation of the ACOPF problem. A cutting-plane

method is proposed in Section 3.3, and the proof of its convergence is detailed. Experimental results

are reported in Section 3.4, and conclusions are drawn in Section 3.5.

3.2 Problem Formulation

In this section we formulate the robust nonconvex ACOPF problem and its convex relaxation.

We index the set of buses in the power system byN , and the set of lines byA. The set of controllable

generators is denoted by G, and the subset of generators connected to bus i is indexed by Gi. Each
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controllable generator g P G injects active power spg and reactive power sqg at a bus i if g P Gi. Each

bus i P N has an uncontrollable injection, which may be negative, consisting of the uncertain net

load due to actual demand and RES generation at that bus. At bus i P N , the uncontrollable

active power injected, upi , is bounded within an uncertainty set rupi , ū
p
i s, where upi ď ūpi , @i P N .

The uncontrollable reactive power is bounded in a similar way, where uqi P ru
q
i , ū

q
i s, @i P N .

In addition to simple bounds, we introduce a “budget constraint” in our uncertainty set,

which limits the magnitude of deviation from a nominal injection, summed across all buses. Such

budget-constrained uncertainty sets have been widely applied in robust optimization, starting with

Bertsimas and Sim (2003, 2004). Here we denote the nominal uncontrollable active and reactive

power injection as up,0 and uq,0, which are both vectors with |N | components and satisfy pupi , u
q
i q ď

pup,0, uq,0q ď pūpi , ū
q
i q, for i P N . We cluster the set of buses N into |M| subgroups, denoted

by Nm, m P M, by solving a facility location problem detailed in Appendix B.1. There has

been much research about the geographical correlation of renewable generations and loads in power

systems (Xie and Ahmed 2018, Fang et al. 2018, Malvaldi et al. 2017, Klima and Apt 2015, Lohmann

et al. 2016, Bernstein et al. 2014), which justifies our choice of clustering. We assume within each

cluster the relative magnitude of deviation is the same for both the active power and reactive power

at every bus. We define the uncertainty set with the following constraints:

0 ď up,`i ď ūpi ´ u
p,0
i 0 ď up,´i ď up,0i ´ upi @i P N (3.1a)

0 ď uq,`i ď ūqi ´ u
q,0
i 0 ď uq,´i ď uq,0i ´ uqi @i P N (3.1b)

up,`i
ūpi ´ u

p,0
i

“
uq,`i

ūqi ´ u
q,0
i

“ u`m
up,´i

up,0i ´ upi
“

uq,´i
uq,0i ´ uqi

“ u´m @m PM, i P Nm (3.1c)

U “

$
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%
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ˇ
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ˇ

(3.1a)-(3.1b) and Du`m, u
´
m,m PM,

satisfying (3.1c) and
ÿ

mPM

`

u`m ` u
´
m

˘

ď Γ

,

/

/

.

/

/

-

. (3.2)

Budget parameter Γ controls the deviation from nominal values, summed across all buses. We can

substitute out variables u`m, u
´
m,m PM, and we assume this has been done when referencing U in
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what follows.

In most of the power systems literature, lines are assumed to be undirected, and an orientation

indicates the direction of flow. We represent multiple lines by a triple pi, j, nq, which uses the

orientation to indicate that positive flow is from i to j on the n-th line between these two buses and

negative flow is the opposite. Each bus has a voltage, vi, and a phase angle, θi. These configurations,

along with the line parameters (complex admittance yk “ gk `
?
´1 bk), the charging susceptance

bck, and the shunt admittance of a bus yshi “ gshi `
?
´1 bshi determine the power flow on line

k “ pi, j, nq P A, where Pk and Qk denote active and reactive power flow, respectively:

Pk “gk
v2
i

τ2
1,k

´ gk
vivj

τ1,kτ2,k
cospθi ´ σk ´ θjq´

bk
vivj

τ1,kτ2,k
sinpθi ´ σk ´ θjq, @k “ pi, j, nq P A (3.3a)

Qk “´ pbk `
bck
2
q
v2
i

τ2
1,k

` bk
vivj

τ1,kτ2,k
cospθi ´ σk ´ θjq´

gk
vivj

τ1,kτ2,k
sinpθi ´ σk ´ θjq, @k “ pi, j, nq P A. (3.3b)

Here we split the tap ratio for each line k “ pi, j, nq P A into τ1,k and τ2,k to represent the

change of voltage at two ends of that line. We have τ1,k “ τ and τ2,k “ 1 if a transformer with

tap ratio τ is located at the bus i of line k “ pi, j, nq P A, while we have τ1,k “ 1, τ2,k “ τ if a

transformer with tap ratio τ is located at the bus j of line k “ pi, j, nq P A. Similarly, for the

transformer phase angle shift, if a transformer with phase angle shift is located at the bus i of line

k “ pi, j, nq P A, we set σk “ σ; otherwise, if a transformer with phase angle shift is located at the

bus j of line k “ pi, j, nq P A, we set σk “ ´σ.

At each bus i P N , we enforce flow conservation of active and reactive power via equations (3.4).

The left-hand side of constraint (3.4) is the net active and reactive power flowing out of bus i, and

they equal the sum of controllable and uncontrollable injections:
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ÿ

k“pi,j,nqPA
Pk ` g

sh
i pviq

2 “
ÿ

gPGi

spg `
´

up,0i ` up,`i ´ up,´i

¯

, @i P N (3.4a)

ÿ

k“pi,j,nqPA
Qk ´ b

sh
i pviq

2 “
ÿ

gPGi

sqg `
´

uq,0i ` uq,`i ´ uq,´i

¯

, @i P N . (3.4b)

Constraint (3.5a) bounds the difference in phase angle between adjacent buses, constraint (3.5b)

limits the apparent power flowing through each line k, and constraints (3.5c)-(3.5f) provide simple

bounds on voltage and phase angle at each bus and active and reactive power at each generator:

∆k ď θi ´ σk ´ θj ď ∆̄k @k “ pi, j, nq P A (3.5a)

P 2
k `Q

2
k ďW 2

k @k P A (3.5b)

vi ď vi ď v̄i @i P N (3.5c)

θi ď θi ď θ̄i @i P N (3.5d)

spg ď spg ď s̄pg @g P G (3.5e)

sqg ď sqg ď s̄qg @g P G. (3.5f)

We denote the cost of controllable injections as cpsp, sqq, and assume c is convex, where

sp and sq are |G|-dimensional vectors with respective components spg and sqg, g P G. The first-

stage decision variables, sp and sq, denote controllable injections that cannot adapt to the realized

scenario. We allow small adjustments to these injections via variables op,`, op,´, oq,`, oq,´, which

can be selected once the uncertainty is revealed. These denote near real-time compensation in

net generation, which has an upper bound proportional to the generation capacity at each bus.

This setting permits greater flexibility than the linearly adaptive control used in previous research

(Bienstock et al. 2014, Jabr 2013, Louca and Bitar 2017, Lubin et al. 2016). We seek a robust

optimal controllable injection such that for all possible uncontrollable injections in U , there is a

feasible system configuration via variables pv, θ, op,`, op,´, oq,`, oq,´, P,Qq.

We minimize the set point cost, and consider linear and convex quadratic cost functions:

cpsp, sqq “
ÿ

gPG

”

cpg,2
`

spg
˘2
` cpg,1s

p
g ` c

q
g,2

`

sqg
˘2
` cqg,1s

q
g

ı

,
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where cpg,2 ě 0 and cqg,2 ě 0 for all g P G and take value zero in the linear case.

Convexity of the cost function is important because, although the ACOPF problem has non-

convex constraints, a convex objective function, together with the convex relaxation of the feasible

region to be discussed below, yields a convex program. Our robust optimization formulation can

be expressed as follows:

min cpsp, sqq (3.6a)

s.t. spg ď spg ď s̄pg @g P G (3.6b)

sqg ď sqg ď s̄qg @g P G (3.6c)

P uk “ gk
pvui q

2

τ2
1,k

´ gk
vui v

u
j

τ1,kτ2,k
cospθui ´ σk ´ θ

u
j q´

bk
vui v

u
j

τ1,kτ2,k
sinpθui ´ σk ´ θ

u
j q @k “ pi, j, nq P A, u P U (3.6d)

Quk “ ´pbk `
bck
2
q
pvui q

2

τ2
1,k

` bk
vui v

u
j

τ1,kτ2,k
cospθui ´ σk ´ θ

u
j q´

gk
vui v

u
j

τ1,kτ2,k
sinpθui ´ σk ´ θ

u
j q @k “ pi, j, nq P A, u P U (3.6e)

∆k ď θui ´ σk ´ θ
u
j ď ∆̄k @k “ pi, j, nq P A, u P U (3.6f)

pP uk q
2 ` pQukq

2 ďW 2
k @k P A, u P U (3.6g)

vi ď vui ď v̄i @i P N , u P U (3.6h)

θi ď θui ď θ̄i @i P N (3.6i)

ÿ

k“pi,j,nqPA
P uk ` g

sh
i pv

u
i q

2 ` op,´,ui ´ op,`,ui

“
ÿ

gPGi

spg `
´

up,0i ` up,`i ´ up,´i

¯

@i P N , u P U (3.6j)

ÿ

k“pi,j,nqPA
Quk ´ b

sh
i pv

u
i q

2 ` oq,´,ui ´ oq,`,ui

“
ÿ

gPGi

sqg `
´

uq,0i ` uq,`i ´ uq,´i

¯

@i P N , u P U (3.6k)

op,`,ui ď ōpi `
´

hpi ` ζ
`
i u

p,`
i ´ ζ´i u

p,´
i

¯

@i P N , u P U (3.6l)

oq,`,ui ď ōqi `
´

hqi ` ζ
`
i u

q,`
i ´ ζ´i u

q,´
i

¯

@i P N , u P U (3.6m)
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op,´,ui ď ōpi @i P N , u P U (3.6n)

oq,´,ui ď ōqi @i P N , u P U (3.6o)

op,`,ui , op,´,ui , oq,`,ui , oq,´,ui ě 0 @i P N , u P U . (3.6p)

Model (3.6) seeks a first stage vector of generation dispatch decisions, psp, sqq, that minimizes

controllable generation cost. All other decision variables, including power compensations, voltages

and phase angles at buses, as well as power flow on lines, adapt to the realization of uncertainty.

Constraints (3.6b)-(3.6c) replicate the simple bounds on injections (3.5e)-(3.5f), constraints (3.6d)-

(3.6e) replicate the power flow equations (3.3) for each u P U , and constraints (3.6f)-(3.6i) similarly

replicate (3.5a)-(3.5d). Constraints (3.6j) and (3.6k) modify constraints (3.4) by incorporating the

deviation variables, whose values are limited by (3.6l)-(3.6o). The maximum adjustment at a bus,

due to traditional generators, is denoted by ō. Net load uncertainty includes generation uncertainty,

due to renewable sources and demand uncertainty. When an uncertain parameter is larger than

its nominal value, this can be because load is low or because RES generation is high. In the latter

case, we allow for curtailment of RES generation. Parameters ζ`i and ζ´i represent the fraction of

total uncertainty due to RES generation, and hpi and hqi denote nominal renewable generation. The

right-hand sides of constraints (3.6l) and (3.6m) capture the option for curtailment, and we discuss

this in greater detail in Section 3.4.1.1. It is well known that the power flow equations (3.3),

as well as the shunt components in (3.6j) and (3.6k), are nonconvex, and so model (3.6) is an

infinite-dimensional nonconvex robust optimization problem with recourse.

There are multiple convex relaxation schemes for ACOPF problems. In the semidefinite pro-

gramming relaxation of Bai and Wei (2011) and Bai et al. (2008), the vector of voltage variables in

model (3.6) is re-expressed as a higher-dimensional matrix, coupled with a rank-one constraint and

a positive semidefinite requirement, along with a collection of linear constraints. After dropping

the rank-one constraint, the relaxed problem becomes an SDP and can be solved by an interior

point method. Experience on realistically sized instances suggests that such SDP formulations

are computationally expensive, and so Jabr (2006) proposes a further relaxation of the positive

semidefinite constraint, yielding a second-order cone program (SOCP). Although computationally
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easier to solve, this SOCP relaxation has the disadvantage of tending to exhibit a larger optimality

gap than the SDP relaxation for many test cases. See Low (2014a) for a detailed review of such

SDP and SOCP relaxations.

We use the convex relaxation that Coffrin et al. (2016) call the quadratic convex (QC) relax-

ation. While the QC formulation is also an SOCP, it tightens the relaxation compared to previous

SOCP formulations. Coffrin et al. (2016) suggest relaxing equation (3.3) by replacing trigonometric

functions by quadratic functions and using a McCormick relaxation to linearize the multi-linear

terms. The quadratic terms in (3.6j) and (3.6k), v2
i , are replaced by v̂i, which is constrained by

a linear upper bound and a quadratic lower bound. The formulation of the QC relaxation of

model (3.6) is detailed in Appendix B.2. Here, we use generic notation x to represent the system

configuration and express the convex relaxation of model (3.6), as formulated in Appendix B.2,

more compactly in model (3.7) below.

In what follows, we largely use a vector form to denote the controllable and uncontrollable

injections for conciseness. A symbol without a subscript represents a vector, while a subscript-

indexed symbol represents a specific component within that vector. Here we denote up,`, up,´,

uq,` and uq,´ as |N |-dimensional vectors of uncontrollable active and reactive deviation. Similar

notation is used for ū, u, u0, s, s̄ and s as:

ū “

»

—

–

ūp

ūq

fi

ffi

fl

, u “

»

—

–

up

uq

fi

ffi

fl

, u0 “

»

—

–

up,0

uq,0

fi

ffi

fl

, s “

»

—

–

sp

sq

fi

ffi

fl

, s̄ “

»

—

–

s̄p

s̄q

fi

ffi

fl

, s “

»

—

–

sp

sq

fi

ffi

fl

.

In this context, we also represent the active and reactive controllable injections of each bus i P N

as a linear transformation of the vector of generation sp and sq:

Dsp “

«

ÿ

gPGi

spg

ff

iPN

and Dsq “

«

ÿ

gPGi

sqg

ff

iPN

,

for an appropriate matrix D. We use ζ` and ζ´ to denote |N |ˆ |N | diagonal matrices with entries

ζ`i and ζ´i , @i P N . This leads to the following compact formulation for the convex relaxation of
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model (3.6):

min cpsq (3.7a)

s.t. s ď s ď s̄ (3.7b)

Axu ď b @u P U (3.7c)

}Bix
u ` ai}2 ď eJi x

u ` fi @i “ 1, . . . ,mc, u P U (3.7d)

Aopxu ď ōp ` hp ` ζ`up,` ´ ζ´up,´ @u P U (3.7e)

Aoqxu ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´ @u P U (3.7f)

Apxu “ Dsp ` up,0 ` up,` ´ up,´ @u P U (3.7g)

Aqxu “ Dsq ` uq,0 ` uq,` ´ uq,´ @u P U . (3.7h)

Constraint (3.7b) replicates the analogous constraints (3.6b) and (3.6c). The linear inequal-

ity (3.7c) and the SOCP constraint (3.7d) capture constraint (3.6g), and the relaxation of the

nonlinear terms in constraints (3.6d)-(3.6e) and (3.6j)-(3.6k), while the linear inequality (3.7c) also

includes (3.6f), (3.6h)-(3.6i), and (3.6n)-(3.6p). Constraints (3.7e) and (3.7f) match their counter-

parts (3.6l) and (3.6m). Finally, constraints (3.7g) and (3.7h) replicate linearized constraints (3.6j)

and (3.6k). Model (3.7) can also represent the robust convex relaxation of the ACOPF problem

in which we replace the QC relaxation with alternative convex relaxations discussed in Bai et al.

(2008), Jabr (2006) and Kocuk et al. (2016).

Model (3.7) is an infinite-dimensional convex optimization problem, and is an example of

robust optimization with recourse. Such models have been discussed in the context of linear

programming in Terry (2009) and Thiele et al. (2009). In power systems optimization, similar

formulations have been applied to unit commitment problems (Jiang et al. 2012, 2014), electric-

ity markets (Zugno and Conejo 2015), and microgrid operations (Khodaei 2014). There has been

limited work on conic programming, or more general convex programming, variants of such mod-

els (Terry 2009). In the next section we discuss the reformulation of this problem and the algorithm

to solve the reformulated finite-dimensional problem.
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3.3 A Cutting-Plane Method

In this section we propose a cutting-plane method to solve the robust convex optimization

problem (3.7). To facilitate decomposition of model (3.7), we project onto the set of feasible

psp, sqq variables, and we employ an outer approximation to iteratively characterize this set. At

each iteration, given a candidate solution, we compute, and add to the master problem, the most-

violated inequality. With introduction of auxiliary binary decision variables, we can transform what

would otherwise be an infinite number of constraints in (3.7) into a finite formulation and obtain

a solution within some acceptable tolerance from the feasible set.

3.3.1 Master Problem and Subproblems

Similar to the generalized Benders’ decomposition method of Geoffrion (1972), we can rewrite

model (3.7) as:

min cpsq (3.8a)

s.t. s P S ” XuPUSu X ts | s ď s ď s̄u, (3.8b)

where for each u P U we have the induced feasibility set

Su “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dx s.t.

Ax ď b

}Bix` ai}2 ď eJi x` fi @i “ 1, . . . ,mc

Aopx ď ōp ` hp ` ζ`up,` ´ ζ´up,´

Aoqx ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´

Apx “ Dsp ` up,0 ` up,` ´ up,´

Aqx “ Dsq ` uq,0 ` uq,` ´ uq,´

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

. (3.9)

Here, λp and λq denote dual variables for constraints (3.11f) and (3.11g), respectively. We

introduce auxiliary variables `p,`, `p,´, `q,` and `q,´ to represent the potential violation of power

balance constraints. If optimal value for any of these variables is greater than 0, for the master
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solution ŝ, there is no feasible x such that constraints in (3.9) can be satisfied, and a feasibility

cut (3.10c) can be generated. We know from a generalized theorem of the alternative (Geoffrion

1972) that if s violates the inequalities (3.10c) then s R XuPUSu. (We return to this in Lemma 3.3.2.)

Index k corresponds to the k-th inequality, and the scalar cut intercept, zk, accounts for all objective

function terms in the dual of model (3.11) that do not involve ŝp and ŝq.

This reformulation motivates a cutting-plane algorithm in which we iteratively solve a master

problem and a collection of SOCP subproblems. In addition to the simple bounds, constraint (3.8b)

requires that s be in the intersection of Su, @u P U . When we solve the subproblems, we either find

a feasible xu for each u P U , or we generate linear cuts, each of which is a valid outer approximation

for S. The master pMq and the subproblem pSuq are as follows:

pMq V ˚ “ min cpsq (3.10a)

s.t. s ď s ď s̄ (3.10b)

´ λp,k
J
Dsp ´ λq,k

J
Dsq ` zk ď 0 @k “ 1, 2, . . . (3.10c)

pSuq min 1J
`

lp,` ` lp,´ ` lq,` ` lq,´
˘

(3.11a)

s.t. Ax ď b (3.11b)

}Bix` ai}2 ď eJi x` fi @i “ 1, . . . ,mc (3.11c)

Aopx ď ōp ` hp ` ζ`up,` ´ ζ´up,´ (3.11d)

Aoqx ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´ (3.11e)

Apx` lp,` ´ lp,´ “ Dŝp ` up,0 ` up,` ´ up,´ (3.11f)

Aqx` lq,` ´ lq,´ “ Dŝq ` uq,0 ` uq,` ´ uq,´ (3.11g)

lp,`, lp,´, lq,`, lq,´ ě 0. (3.11h)

The decomposition algorithm is not directly implementable because there are infinitely many

subproblems, pSuq. So, we instead seek the most violated inequality across all elements of the



76

uncertainty set, which results in the following max-min problem:

max
uPU

min 1J
`

lp,` ` lp,´ ` lq,` ` lq,´
˘

(3.12a)

s.t. (3.11b)´ (3.11h).

To reformulate model (3.12) in a computationally tractable manner we first take the dual of

the inner minimization. We denote the dual variables for constraints (3.11b) and (3.11d)-(3.11g)

by λ, λop, λoq, λp, and λq. For the second-order cone constraints in (3.11c), we denote the dual

variables as pµi, νiq, i “ 1, . . . ,mc. Then taking the dual yields:

max
uPU

max
λ,λop,λoq ,λp,λq ,µ,ν

´ λJb´
mc
ÿ

i“1

`

νifi ` µ
J
i ai

˘

´

λopJpōp ` hp ` ζ`up,` ´ ζ´up,´q ´ λoqJpōq ` hq ` ζ`uq,` ´ ζ´uq,´q´

λpJ
`

Dŝp ` up,0 ` up,` ´ up,´
˘

´ λqJ
`

Dŝq ` uq,0 ` uq,` ´ uq,´
˘

(3.13a)

s.t. λJA` λopJAop ` λoqJAoq ` λpJAp ` λqJAq

´

mc
ÿ

i“1

`

µi
JBi ` νie

J
i

˘

“ 0J (3.13b)

}µi}2 ď νi @i “ 1, . . . ,mc (3.13c)

´ 1 ď λpi ď 1 @i P N (3.13d)

´ 1 ď λqi ď 1 @i P N (3.13e)

λ, λop, λoq ě 0. (3.13f)

The optimal value of the inner maximization problem is a convex function of the 4|N |-

dimensional vector u. The outer problem maximizes this convex function over the polytope U .

We know that an optimal solution can be obtained by restricting attention to the extreme points

of U , denoted by UE (Enhbat 1996). When U has an amenable structure this can allow for a finite

reformulation. In what follows, we assume that U is defined as in equation (3.2), and we introduce
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2|M| binary variables to model the extreme points:

pSDIq max ´ λJb´
mc
ÿ

i“1

`

νifi ` µ
J
i ai

˘

´
ÿ

iPN

”

y`mi

´

ūpi ´ u
p,0
i

¯

pλpi ` ζ
`
i λ

op
i q`

y´mi

´

upi ´ u
p,0
i

¯

pλpi ` ζ
´
i λ

op
i q ` y

`
mi

´

ūqi ´ u
q,0
i

¯

pλqi ` ζ
`
i λ

oq
i q`

y´mi

´

uqi ´ u
q,0
i

¯

pλqi ` ζ
´
i λ

oq
i q

ı

´ λopJpōp ` hpq ´ λoqJpōq ` hqq´

”

λpJ
`

Dŝp ` up,0
˘

` λqJ
`

Dŝq ` uq,0
˘

ı

(3.14a)

s.t. (3.13b)´ (3.13e)

y`m ` y
´
m ď 1 @m PM (3.14b)

ÿ

mPM

`

y`m ` y
´
m

˘

ď Γ (3.14c)

y`m, y
´
m P t0, 1u @m PM (3.14d)

λ, λop, λoq ě 0. (3.14e)

For i P Nm, we use y`m to indicate that up,`i and uq,`i take their upper bound and y´m to

indicate that up,´i and uq,´i take their lower bound. The objective function in (3.14a) includes

bilinear terms such as λpi ymi , where mi is used to indicate bus i’s cluster. These are linearized in

a straightforward way as shown in Appendix B.3.

Constraints (3.14b) enforce that at most one, instead of exactly one, end point of the feasible

range is taken, and constraint (3.14c) requires that at most Γ clusters of uncontrollable injections

taking their end point value. We include in Appendix B.3 the full formulation of model (3.14),

which is derived from the convex quadratic relaxation detailed in Appendix B.2.

Algorithm 3 formalizes our cutting-plane procedure, where at iteration k we solve the master

problem, pMq, and obtain pŝp,k, ŝq,kq. Then, using the uncertainty set defined in equation (3.2),

we solve model (3.14), and denote the optimal value by zkfeas and part of the optimal solution by

λp,k, λq,k. If zkfeas ą 0, we then generate the most violated cut as:

zkfeas ´ λ
p,kJDpsp ´ ŝp,kq ´ λq,k

J
Dpsq ´ ŝq,kq ď 0. (3.15)
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With zk “ zkfeas ` λ
p,kJDŝp,k ` λq,k

J
Dŝq,k, inequality (3.15) is of form (3.10c).

Algorithm 3 Cutting-plane algorithm for model (3.7)

1: Initialize with iteration number k :“ 1 and tolerance ε ą 0;
2: Solve master problem pMq and obtain solution pŝp,k, ŝq,kq and optimal value V ˚;
3: Solve pSDIq with pŝp,k, ŝq,kq and obtain solution pλp,k, λq,kq and optimal value zkfeas;

4: while zkfeas ą ε do

5: Append zkfeas ´ λ
p,kJDpsp ´ ŝp,kq ´ λq,k

J
Dpsq ´ ŝq,kq ď 0 to constraints (3.10c) of pMq;

6: Let k :“ k ` 1;
7: Solve pMq and obtain solution pŝp,k, ŝq,kq;
8: if pMq is feasible then
9: Obtain optimal value V ˚;

10: else
11: Stop and return the status of infeasibility;

12: Solve pSDIq with pŝp,k, ŝq,kq and obtain solution pλp,k, λq,kq and optimal value zkfeas;

end while
13: Output V ˚ as a lower bound on the optimal value of model (3.7), and output pŝp,k, ŝq,kq as an

ε-feasible solution.

3.3.2 Convergence of the Algorithm

Given ε ą 0, we show that in a finite number of iterations Algorithm 3 either finds an ε-feasible

solution or terminates with a statement that model (3.7)—and hence model (3.6)—is infeasible.

Furthermore, the sequence of solutions generated by our algorithm converges to an optimal solution

when the tolerance in the algorithm is ε “ 0. We make the notion of an “ε-feasible” solution precise

as follows.

Definition 3.3.1. Let ε ą 0. An s P ts | s ď s ď s̄u is ε-feasible to model (3.7) if for each u P U

there exists an ŝ P Bεpsq such that

$
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Ax ď b

}Bix` ai}2 ď eJi x` fi @i “ 1, . . . ,mc

Aopx ď ōp ` hp ` ζ`up,` ´ ζ´up,´ Aoqx ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´

Apx “ Dŝp ` up,0 ` up,` ´ up,´ Aqx “ Dŝq ` uq,0 ` uq,` ´ uq,´
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‰ H, (3.16)

where Bεpsq is an l1 ball with center s and radius ε.
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For an ε-feasible s, the l1 distance from s to the corresponding ŝ is at most ε for each u P U .

The definition does not ensure that there is a uniform ŝ that works for all u P U . To establish

convergence properties of Algorithm 3, we make the following assumptions:

Assumption 3.3.1. Function cp¨q is convex and continuous on domain defined by (3.8b).

Assumption 3.3.2. Set
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Ax ď b

}Bix` ai}2 ď eJi x` fi @i “ 1, . . . ,mc

Aopx ď ōp ` hp ` ζ`up,` ´ ζ´up,´

Aoqx ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´

,
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is non-empty, and hence model (3.11) is feasible, for all u P U .

Assumption 3.3.3. Set U is defined by (3.2).

Assumption 3.3.1 is consistent with the power systems literature because the cost for genera-

tion is typically modeled via a convex (piecewise) linear or quadratic function. Assumption 3.3.2

should hold with great generality for an actual power system because the set is a relaxation of

the system’s constraints, which does not include load satisfaction. Assumption 3.3.3 is revisited in

Section 3.4.1.1. We now establish convergence properties of the sequence of solutions generated by

Algorithm 3.

Lemma 3.3.1. Let Zupsq denote the optimal value of model (3.11) for a specific u P U , where ŝ

on the right-hand side of constraints (3.11f) and (3.11g) is replaced by s, and let Zpsq denote the

analogous optimal value for model (3.12). If Assumptions 3.3.2 and 3.3.3 hold, then both Zup¨q and

Zp¨q are convex on the domain <2|G|.

Proof of Lemma 3.3.1. The function Zupsq is the optimal value of model (3.11), which is feasible

by Assumption 3.3.2 for any s P <2|G|, and hence has a finite optimal value. Thus Zupsq is also

the optimal value of the dual of model (3.11). The dual’s feasible region is independent of s, and

its objective function is an affine function of s. Therefore, Zup¨q is the maximum of a collection

of affine functions in s, and hence convex. Furthermore, Zp¨q is the maximum of convex functions
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Zup¨q over the set of U , and so Zp¨q is also convex.

Lemma 3.3.2. Let Sk “ ts | s ď s ď s̄, zjfeas ´ λp,j
J
Dpsp ´ ŝp,jq ´ λq,j

J
Dpsq ´ ŝq,jq ď 0, @j “

1, . . . , ku, where these cuts are defined in (3.15). If Assumptions 3.3.2 and 3.3.3 hold then S Ď

Sk, @k “ 1, 2, . . ..

Proof of Lemma 3.3.2. At iteration k of Algorithm 3, the solution to model (3.14) specifies a specific

element of U via binary variables, and we denote this element uk P U . By a theorem of the

alternative for an SOCP model (see Boyd and Vandenberghe 2004, Section 5.8), any inequality

of the form (3.15) satisfies Suk Ď ts | zkfeas ´ λp,k
J
Dpsp ´ ŝp,kq ´ λq,k

J
Dpsq ´ ŝq,kq ď 0u. Since

S “ XuPUSu X ts | s ď s ď s̄u, and each cut is produced for a specific u, we have that S Ď Sk for

all k.

Theorem 3.3.1. Let Assumptions 3.3.1-3.3.3 hold, and assume that model (3.7) is feasible. Let

ε “ 0, and let tŝku denote the sequence of iterates produced by Algorithm 3. Every limit point of

this sequence solves model (3.7).

Proof of Theorem 3.3.1. If Algorithm 3 terminates in a finite number of iterations, then it does so

with zkfeas “ 0. In this case, the associated solution solves model (3.7) by Lemma 3.3.2 because the

master problem is a relaxation, and the proof is complete. Now assume that the algorithm produces

an infinite sequence of iterates, and let S be defined as in (3.8b). Set S is compact because it is a

closed subset of s ď s ď s̄. So, tŝku has at least one limit point in S, which we denote as ŝ, and we

let K index a corresponding convergent subsequence; i.e., limkPK,kÑ8 ŝ
k “ ŝ.

Solving model (3.14) yields a uk P U that represents the most violated element of the uncer-

tainty set. Because these solutions correspond to UE , there are a finite number of possibilities. So,

there is at least one û P U that occurs infinitely many times among the iterations indexed by K,

and we let K1 Ă K denote such a further subsequence. Let k, k1 P K1 with k1 ą k. Then we have

zkfeas ď λp,k
J
Dpŝp,k

1

´ ŝp,kq ` λq,k
J
Dpŝq,k

1

´ ŝq,kq

ď }λp,k}}Dpŝp,k
1

´ ŝp,kq} ` }λq,k}}Dpŝq,k
1

´ ŝq,kq}. (3.17)
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From constraints (3.13d) and (3.13e), we know }λp} and }λq} are bounded. Both ŝk and ŝk
1

converge to ŝ so

lim
kÑ8
k1Ñ8
k1ąk
k1,kPK1

´

}λp,k}}pŝp,k
1

´ ŝp,kq} ` }λq,k}}pŝq,k
1

´ ŝq,kq}
¯

“ 0. (3.18)

We let Zupsq denote the optimal value of model (3.11) for a specific u P U , which is equivalent

to the inner minimization problem of (3.12), and we let Zpsq denote the optimal value of (3.12),

where the right-hand side is parametrized by s rather than ŝ. Thus, we have:

lim
kÑ8
kPK1

Z ûpskq “ Z ûpŝq “ Zpŝq ď 0, (3.19)

where the first equality holds by continuity of Z ûp¨q from Lemma 3.3.1, and the second equality

holds because û corresponds to a most violated point of U . Thus, ŝ is feasible to model (3.7). Let

z˚ denote the optimal value of model (3.7). Then cpŝq ě z˚.

By Lemma 3.3.2, we have cpŝkq ď z˚, @k P K, and hence by Assumption 3.3.1, we have that

lim
kÑ8
kPK

cpŝkq “ cpŝq ď z˚. (3.20)

Thus, ŝ solves model (3.7).

Finally we show that when Algorithm 3 terminates, it returns an ε-feasible solution to model (3.7)

in a finite number of iterations, if model (3.7) is feasible.

Theorem 3.3.2. Let Assumptions 3.3.1-3.3.3 hold, and assume that model (3.7) is feasible. Let

ε ą 0. Algorithm 3 terminates with an ε-feasible solution in a finite number of iterations.

Proof. Proof of Theorem 3.3.2 Model (3.7) is feasible, and hence S ‰ H. By Lemma 3.3.2 S Ď Sk,

which is the feasible region of model (3.10) for all k “ 1, 2, . . .. Therefore, Algorithm 3 does not

terminate with a status of infeasibility because model (3.10) is feasible for all k “ 1, 2, . . ..

We first prove by contradiction that the algorithm terminates in a finite number of iterations.
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Here ε only determines the stopping critch3erion but does not affect the cuts generated ch3in

Algorithm 3. Suppose Algorithm 3 does not terminate after a finite number of iterations. Thus,

we have an infinite sequence of solutions tŝku, and Zpŝkq ą ε, @k “ 1, 2, . . .. By the proof of

Theorem 3.3.1, every convergent subsequence of tŝku indexed by K with a limit point ŝ satisfies

Zpŝq ď 0. We have limkPK,kÑ8 Zps
kq “ Zpŝq ď 0 because Zp¨q is convex and hence continuous.

However, this contradicts that Zpskq ą ε ą 0. @k “ 1, 2, . . .. Therefore, the algorithm terminates

in a finite number of iterations.

If Algorithm 3 terminates in iteration k ă 8, then zkfeas ď ε. By hypothesis, model (3.12) is

feasible and has a finite optimal value. Hence, by strong duality, the optimal value of model (3.14)

is equal to that of model (3.12) and is at most ε. Let pŝp,k, ŝq,kq denote the input of Algorithm 3 (step

12) to model (3.14), or equivalently, to model (3.12). For each u P U , let pxu, lp,`,u, lp,´,u, lq,`,u, lq,´,uq

denote the optimal solution of the inner minimization problem defined in (3.12). For each u P U , let

sp,u “ ŝp,k´ lp,`,u` lp,´,u and sq,u “ ŝq,k´ lq,`,u` lp,´,u. From the formulation of model (3.12) we

know that psp,u, sq,uq yields tx | (3.11b)-(3.11g)u ‰ H, and }su´ ŝk}1 “ 1Jplp,``lp,´`lq,``lq,´q “

zkfeas ď ε; i.e., ŝ is an ε-feasible solution.

3.3.3 Improving Convergence of Algorithm 3

It is well known that cutting-plane algorithms can converge slowly; see, e.g., Nemirovsky

and Yudin (1983). This can occur because master problem solutions differ dramatically from

one iteration to the next. There are multiple ways to improve such algorithms ranging from

trust-region methods to level-set methods to bundle methods. We studied a bundle method by

adding a quadratic regularization term to the master’s objective function. This approach improved

computational performance, but did not facilitate solving our largest test cases. The method is

detailed in Appendix B.5.

Therefore we considered a second method in which we identify extreme points u P UE for which

Su characterizes important parts of the boundary of S. In a Benders’ decomposition algorithm for

stochastic integer programs, Crainic et al. (2016) include a subset of the scenario subproblems in

the master problem in order to reduce generation of feasibility cuts. We employ a similar approach,
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but we discover the requisite elements u to be added to the master problem in the cutting-plane

process instead of generating them upfront. (Lorca and Sun 2018 employ a similar idea in their

Algorithm 2.) In each iteration of Algorithm 3 we record the û obtained by solving pSDIq, and

if a particular û is repeatedly generated nc times then, instead of appending the linear cutting

planes (3.15), we add û to a set pU and use the modified master program:

min cpsq (3.21a)

s.t. s ď s ď s̄ (3.21b)

´ λp,k
J
Dsp ´ λq,k

J
Dsq ` zk ď 0 @k “ 1, 2, . . . (3.21c)

Axu ď b @u P pU (3.21d)

}Bix
u ` ai}2 ď eJi x

u ` fi, @i “ 1, . . . ,mc, u P pU (3.21e)

Aopxu ď ōp ` hp ` ζ`up,` ´ ζ´up,´ @u P pU (3.21f)

Aoqxu ď ōq ` hq ` ζ`uq,` ´ ζ´uq,´ @u P pU (3.21g)

Apxu “ Dsp ` up,0 ` up,` ´ up,´ @u P pU (3.21h)

Aqxu “ Dsq ` uq,0 ` uq,` ´ uq,´ @u P pU . (3.21i)

3.4 Experimental Results

3.4.1 Modeling and Implementation Details

In this section, we describe computational results to help understand the nature of our robust

convex optimization problem and the performance of Algorithm 3, along with enhancements to that

algorithm. The optimal value of model (3.7) is a lower bound on that of the nonconvex model (3.6).

It is important to assess the tightness of this lower bound, while also answering the question of

whether the robust solution generated by Algorithm 3 is feasible for model (3.6), at least for a

selection of points from the uncertainty set. Doing so helps assess the robustness of our solution.

Prior to solving model (3.7), we run a bound tightening process to improve the quality of

QC relaxation (detailed in Appendix B.4). Throughout this section we use Algorithm 3 with the
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scenario-appending technique of Section 3.3.3. We use test cases from NESTA, the NICTA Energy

System Test Case Archive (Coffrin et al. 2014). We select IEEE cases with 5, 9, 14, 118 and 300

buses and the Polish system winter peak cases with 2383 and 2746 buses. We refer to these by the

number of buses (e.g., Case 5). All tests are run on a server with 20 Intel Xeon cores at 3.1 GHz and

256 GB of RAM. All models are constructed using version 0.18.0 of the JuMP package (Dunning

et al. 2017) on the Julia platform. The mixed integer second-order cone programs (MISOCPs)

and SOCPs are solved by Gurobi 7.52 (Gurobi Optimization, Inc. 2016), where we set the option

“NumericFocus” to 3 for Case 2383 and Case 2746. All nonconvex optimization problems are solved

by Ipopt 3.12.1 (Wächter and Biegler 2006), with the linear solver MA27.

We first introduce some modeling specifics used to build our test instances. Then we detail

the tests to characterize our robust convex relaxation of the ACOPF problem and computational

performance of our algorithms.

3.4.1.1 Uncertainty Set and Recourse Bounds

We first specify construction of the uncertainty set, U , which includes both generation and

demand uncertainty. Then we discuss two specific parameter selection schemes used in our tests.

For each bus, i P N , nominal values of uncertain demand, pdpi , d
q
i q ě 0, are known from the NESTA

datasets. We model uncertain renewable generation at a subset of buses, NG, where selection

of this subset is detailed in Appendix B.1. The nominal active generation from renewables is

given by hpi “ 0.05|NG|´1 ř

iPN dpi for i P NG and is zero otherwise. We fix the constant power

factor at γ “ 98% and calculate hqi “
b

1
γ2 ´ 1hpi . We assume the maximum allowable deviation

of both generation and demand is a percentage of their nominal values, and the positive and

negative deviation can differ. Therefore, we can parametrize the deviation by a set of percentages

pαh,`, αh,´, αd,`, αd,´q, with αh,`, αh,´, αd,`, αd,´ P r0, 1s:

ūpi “ p1` α
h,`qhpi ´ p1´ α

d,`qdpi ūqi “ p1` α
h,`qhqi ´ p1´ α

d,`qdqi (3.22a)

upi “ p1´ α
h,´qhpi ´ p1` α

d,´qdpi uqi “ p1´ α
h,´qhqi ´ p1` α

d,´qdqi . (3.22b)
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We model asymmetric uncertainty sets because we are concerned with demand spikes because of

the right skewness of electricity demand (Maisano et al. 2016, Singh et al. 2010). In particular, at

bus i, we set αd,´ “ 5αd,` to focus on large negative deviation. We consider symmetric generation

uncertainty, i.e., αh,` “ αh,´, which is commonly used for generation uncertainty (Jiang et al.

2012, Attarha et al. 2018).

We assume that at each bus the upper bounds on recourse decisions in constraints (3.6l)-(3.6o)

have the same ratio β to their corresponding maximum generation level; i.e.,

ōpi “ β
ÿ

gPGi

s̄pg ōqi “ β
ÿ

gPGi

s̄qg @i P N . (3.23)

The curtailment coefficients ζ` and ζ´ can be derived under the current setup as follows:

ζ`i “
αh,`hpi

αh,`hpi ` α
d,`dpi

ζ´i “
αh,´hpi

αh,´hpi ` α
d,´dpi

@i P N . (3.24)

Power systems are distinguished by numerous characteristics. The use of α and β sketched

above provides a relatively simple way of parameterizing the tests that follow.

3.4.1.2 Measure of Infeasibility

We measure infeasibility of a set point as follows. Given an pŝp, ŝqq, it is possible that the

nonconvex model (3.6) is infeasible for one or more values of pup,`, up,´, uq,`, uq,´q P U . Therefore,

we modify the model to allow for additional flexibility in satisfying constraints (3.6j) and (3.6k)

through variables lp,`i , lp,´i , lq,`i , lq,´i . For a given u P U we measure the magnitude of infeasibility

by:

Ipŝ, uq “ min
ÿ

iPN

´

lp,`i ` lp,´i ` lq,`i ` lq,´i

¯

ř

iPN p|d
p
i | ` |d

q
i |q

(3.25a)

s.t. constraints (3.6b)-(3.6i)

ÿ

k“pi,j,nqPA
Pk ` g

sh
i v

2
i ` o

p,`
i ´ op,´i ` lp,`i ´ lp,´i
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“
ÿ

gPGi

ŝpg ` pu
p,0
i ` up,`i ´ up,´i q @i P N (3.25b)

ÿ

k“pi,j,nqPA
Qk ´ b

sh
i v

2
i ` o

q,`
i ´ oq,´i ` lq,`i ´ lq,´i

“
ÿ

gPGi

ŝqg ` pu
q,0
i ` uq,`i ´ uq,´i q @i P N (3.25c)

constraints (3.6l)-(3.6o)

op,`i , op,´i , oq,`i , oq,´i ě 0 @i P N (3.25d)

lp,`i , lp,´i , lq,`i , lq,´i ě 0 @i P N . (3.25e)

The infeasibility measure, Ips, uq, given by nonconvex model (3.25) yields a minimum normalized

adjustment to the right-hand side of constraints (3.25b) and (3.25c) needed to construct a feasible

recourse solution for a given u P U .

3.4.1.3 Solving Nonconvex Problems

In this section, we discuss two nonconvex problems solved in the chapter. First, as stated

in Section 3.4.1.2, we solve model (3.25) to measure the infeasibility of a solution ŝ for a given

uncertainty scenario u. Since Ipopt can only give a local optimum to this problem, we actually

obtain an upper bound of the infeasibility measure. To help measure the infeasibility accurately,

we obtain a lower bound by solving the convex relaxation of model (3.25), which is model (3.11)

with u specified. We denote this lower bound by Ipŝ, uq.

For the second problem, we solve a relaxation to the nonconvex robust ACOPF problem. We

have shown that solving model (3.7) provides a lower bound for the robust ACOPF problem (3.6).

However, it is very hard to obtain a valid upper bound with a good quality (Nguyen et al. 2019).

In our convex setting, i.e., model (3.7), we can restrict attention to UE . In the nonconvex setting,

the worst-case violation need not be at an extreme point of U . Therefore, we need to check every

scenario within uncertainty set U to guarantee feasibility for model (3.6). In this chapter, we do

not aim to obtain a valid upper bound but we try to estimate it with an approximation. To achieve

this, we solve a nonconvex optimization model (3.6) with U substituted by UE , and obtain the
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Figure 3.1: The plots specify αd,´max as a function of β for various values of Γ; see equations (3.22)

and (3.23). Here, αd,´max is the largest value for which model (3.7) (solid line) / model (3.6) (dashed
line) is feasible.

optimal solution, s˚. The optimal value obtained by Ipopt serves as a heuristic upper bound. If the

solution, s˚, is indeed feasible for all u P U , Ipopt gives a local optimum, which is an upper bound

for model (3.6). Although we cannot guarantee the feasibility of the solution, we compute Ips˚, uq

to show the magnitude of infeasibility for simulated u P U for Γ “ 5. This measure of infeasibility

on random scenarios can reflect the robustness of s˚.

3.4.2 Descriptions of Tests and Results

First we explore the relationship between αd,´ and β, as specified in equations (3.22) and (3.23).

For fixed values of the other α-parameters, β and Γ, where Γ is used in defining U in equation (3.2),

we determine αd,´max, the largest value of αd,´ for which model (3.7) is feasible. Figure 3.1 suggests

that, with other parameters fixed, αd,´max is a concave function of β. To understand the concavity

that arises in Figure 3.1 consider model (3.7), where we restrict u P U to the extreme points of

U and we replace the objective function by 0. We denote the feasible region of this model’s dual

by Λ, which is the intersection of multiple polyhedral and second-order cones. Writing this dual

compactly we have:

max
λPΛ

αd,´paJλq ` βpbJλq ` cJλ, (3.26)

where terms a and b come from (3.7g) and (3.7h). For the primal to be feasible, we must have

αd,´paJλq ` βpbJλq ` cJλ ď 0 @λ P Λ. (3.27)
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This condition implies:

αd,´max “ inf
λPΛ

aJλą0

´βpbJλq ´ cJλ

aJλ
, (3.28)

which is consistent with the concave functions for model (3.7) in Figure 3.1 (solid lines).

The dashed lines in Figure 3.1 repeat the αd,´max-β relationship for the nonconvex ACOPF

model (3.6). Since model (3.7) is a relaxation of model (3.6), we see the former model can accom-

modate a slightly larger value of αd,´max for a given β. While the gaps between solid and dashed lines

in Figure 3.1 give some insight to the difference between models (3.6) and (3.7), this relationship

does not involve the objective function, cpsq. Hence a small or large gap in Figure 3.1 does not

necessarily correspond to a small or large optimality gap. For example, in results that we report

below, Case 5 has the largest optimality gap while the difference between the curves for Case 5 in

Figure 3.1 is modest.

All tests use αh,` “ αh,´ “ 1, and β “ 0.05; αd,´ “ 5αd,` is set at the case-specific αd,´max for

β “ 0.05, and the stopping tolerance is ε “ 10´4 p
ř

iPN |d
p
i | ` |d

q
i |q for all tests. We first assess three

properties of our robust ACOPF problem: the quality of the lower bound generated by model (3.7),

the robustness of the solution to model (3.7) in the nonconvex setting, and the performance of this

robust solution relative to a deterministic alternative.

For each budget parameter Γ, a robust convex ε-feasible solution, ŝ, is first obtained by execut-

ing Algorithm 3 with the scenario-appending technique from Section 3.3.3. The cost associated with

this solution, cpŝq, provides a lower bound for model (3.6). We denote the lower bound obtained

by solving the robust convex relaxation problem as CR, and the estimated upper bound obtained

by solving model (3.6) with U substituted by its extreme points as described in Section 3.4.1.3 to

a local minimum as CN . The gap is defined by g “ 100ˆ CN´CR
CN

.

We measure the infeasibility of this solution by solving model (3.25) at every extreme point

of the uncertainty set, and report the maximum as Ipŝ, ûq. We also obtain a deterministic nominal

solution, ŝ0, and optimal value, C0, by solving the deterministic QC relaxation; i.e., model (3.7)

with the singleton U defined under αd,´ “ αd,` “ αh,´ “ αh,` “ 0, and keeping the same recourse

adjustment range so that the results are comparable. We again measure the infeasibility of this



89
Test Case Γ CN CR g% C0 Ipŝ, ûq Ipŝ0, ûq Ipŝ0, ûq

Case 5
1 17101.9 15005.7 12.26 12651.2 5.59ˆ 10´2 9.86ˆ 10´2 4.63ˆ 10´2

3 19863.1 17715.2 10.81 12651.2 5.71ˆ 10´2 1.43ˆ 10´1 1.19ˆ 10´1

5 20181.0 17979.6 10.91 12651.2 5.98ˆ 10´2 1.46ˆ 10´1 1.34ˆ 10´1

Case 9
1 4751.4 4751.4 0.00 4059.1 4.46ˆ 10´5 7.23ˆ 10´2 7.23ˆ 10´2

3 5917.4 5917.3 0.00 4059.1 4.09ˆ 10´6 1.81ˆ 10´1 1.81ˆ 10´1

5 7208.9 6035.6 16.27 4059.1 3.92ˆ 10´3 1.91ˆ 10´1 1.91ˆ 10´1

Case 14
1 233.0 232.9 0.02 209.0 0 6.07ˆ 10´2 6.06ˆ 10´2

3 252.9 252.9 0.02 209.0 1.70ˆ 10´2 1.11ˆ 10´1 1.11ˆ 10´1

5 260.3 260.2 0.02 209.0 1.41ˆ 10´2 1.34ˆ 10´1 1.31ˆ 10´1

Case 30
1 187.8 186.7 0.54 164.7 3.28ˆ 10´3 5.15ˆ 10´2 4.57ˆ 10´2

3 201.6 200.6 0.50 164.7 1.38ˆ 10´2 8.01ˆ 10´2 7.65ˆ 10´2

5 209.8 208.8 0.47 164.7 1.01ˆ 10´2 9.87ˆ 10´2 9.65ˆ 10´2

Case 118
1 3456.2 3426.5 0.86 3110.6 1.87ˆ 10´2 5.21ˆ 10´2 4.81ˆ 10´2

3 3808.3 3777.3 0.81 3110.6 2.19ˆ 10´2 1.04ˆ 10´1 1.02ˆ 10´1

5 4045.4 4008.1 0.92 3110.6 1.59ˆ 10´2 1.37ˆ 10´1 1.35ˆ 10´1

Case 300
1 15743.7 15116.7 3.98 13915.0 2.93ˆ 10´3 2.56ˆ 10´2 2.51ˆ 10´2

3 17794.6 16832.5 5.41 13915.0 2.66ˆ 10´3 5.75ˆ 10´2 5.69ˆ 10´2

5 18455.0 17522.3 5.05 13915.0 2.07ˆ 10´3 7.96ˆ 10´2 7.91ˆ 10´2

Case 2383
1 1629795.2 1611397.2 1.13 1562639.8 5.48ˆ 10´3 1.27ˆ 10´2 8.93ˆ 10´3

3 1714285.1 1696575.3 1.03 1562639.8 5.79ˆ 10´3 2.71ˆ 10´2 2.59ˆ 10´2

5 1789041.5 1772009.8 0.95 1562639.8 5.48ˆ 10´3 4.29ˆ 10´2 4.18ˆ 10´2

Case 2746
1 1483630.4 1480689.5 0.20 1440355.8 9.94ˆ 10´4 1.51ˆ 10´2 1.42ˆ 10´2

3 1564579.5 1561091.4 0.22 1440355.8 1.04ˆ 10´3 4.20ˆ 10´2 4.12ˆ 10´2

5 1623337.0 1619767.2 0.22 1440355.8 1.31ˆ 10´3 6.10ˆ 10´2 6.02ˆ 10´2

Table 3.1: Robustness results of the robust convex relaxation solution and nominal solution

nominal solution at every extreme point of the uncertainty set, and report the maximum as Ipŝ0, ûq.

From Table 3.1 we observe that many of the gaps between the lower bound and estimated

upper bound are below 1.5%, while the gaps for Case 5, Case 9 (Γ “ 5), and Case 300 (Γ “ 3 and

Γ “ 5) exceed 5%. This result suggests that solving model (3.7) can provide a tight lower bound for

model (3.6). The large gap of Case 5 is caused by the convex relaxation, given a specific realization

of uncontrollable injections, not being tight. In the deterministic setting, Coffrin et al. (2015b)

report a gap of about 9.3% for Case 5. We can also find a general trend that the robust optimality

gaps shown in Table 3.1 are larger than their deterministic counterpart described in Coffrin et al.

(2015b). For a specific uncontrollable injection, the nonconvex feasible region may coincide with

that of the QC relaxation near the optimum, but once we take the intersection of feasible regions

under the robust setting, this may no longer be true. The degree of this phenomenon depends on
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the power system structure and level of uncertainty, which may explain the larger gaps in Cases 9

and 300.

For Case 5, the infeasibility measure for model (3.7)’s solution is about 6% of the total demand.

It is under 2.5% of the total demand for other cases, and does not grow with the size of uncertainty

set (Γ). For example, the unmet demand is 0.12% of the total demand for Γ “ 1 of Case 14,

which equals to 0.31MW, and has limited impact in real world operations. These results contrast

with the corresponding infeasibility of the nominal solution Column Ipŝ0, uq, where the magnitude

can be significantly larger. For all test cases but one (Case 5, Γ “ 1), the lower bound of such

infeasibility measure, Ipŝ0, uq, is closed to the upper bound, Ipŝ0, uq, and also significantly larger

than the upper bound of the infeasibility measure for the robust solution, Ipŝ, uq. This confirms

the result that the nominal solution is inferior to the robust solution in terms of feasibility under

the worst-case scenario.

To construct set U , we correlate the uncontrollable injections at different buses as described

in Section 3.2 and Appendix B.1. Of course, injections may not occur in a worst-case manner or in

a manner with this type of correlation. To assess the performance of our solution in a stochastic

environment, we assume that u “ pup, uqq is a uniform random vector in the box specified by the

bounds in equation (3.22), and we sample 1000 realizations. Given the solution pŝ obtained from

model (3.7) for a specific Γ P t1, 3, 5u, for each realization, we first solve the nonconvex model (3.25)

to compute the upper bound of infeasibility measure, I. Next, we solve the convex relaxation of

model (3.25) as stated in Section 3.4.1.3 to compute the lower bound of infeasibility measure, I.

Finally, given the nonconvex heuristic solution for Γ “ 5, s˚, we solve the nonconvex model (3.25)

to compute the upper bound of infeasibility measure and evaluate its robustness.

We show the computational results in Table 3.2. Among each batch of 1000 realizations, we

denote the mean violation under the nonconvex setting by µI , and the expected maximum violation

by Imax. The corresponding infeasibility measures under the convex relaxation setting are denoted

as µI and Imax Due to its probabilistic nature, we replicate this test 20 times to obtain a point

estimate for Imax and µI as well as 95% confidence intervals. As expected, our robust solution for

Γ “ 5 is feasible for all u P U for the convex relaxation (3.7) by construction, and infeasibility
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Test Case Γ Imax˘ CI half width Imax˘ CI half width µI˘ CI half width µI˘ CI half width

Case 5
1 9.05ˆ 10´2 ˘ 8.71ˆ 10´3 6.33ˆ 10´2 ˘ 1.32ˆ 10´2 2.52ˆ 10´2 ˘ 1.34ˆ 10´3 3.08ˆ 10´3 ˘ 5.94ˆ 10´4

3 4.93ˆ 10´2 ˘ 6.89ˆ 10´3 1.63ˆ 10´4 ˘ 1.43ˆ 10´3 7.24ˆ 10´3 ˘ 6.03ˆ 10´4 1.63ˆ 10´7 ˘ 1.43ˆ 10´6

5 5.54ˆ 10´2 ˘ 3.14ˆ 10´3 0˘ 0 1.71ˆ 10´2 ˘ 6.38ˆ 10´4 0˘ 0

Case 9
1 9.24ˆ 10´2 ˘ 1.64ˆ 10´2 9.24ˆ 10´2 ˘ 1.64ˆ 10´2 4.17ˆ 10´3 ˘ 7.58ˆ 10´4 4.17ˆ 10´3 ˘ 7.58ˆ 10´4

3 0˘ 0 0˘ 0 0˘ 0 0˘ 0
5 6.69ˆ 10´4 ˘ 1.53ˆ 10´3 0˘ 0 7.93ˆ 10´7 ˘ 2.34ˆ 10´6 0˘ 0

Case 14
1 4.50ˆ 10´2 ˘ 1.08ˆ 10´2 4.49ˆ 10´2 ˘ 1.08ˆ 10´2 1.24ˆ 10´3 ˘ 2.17ˆ 10´4 1.23ˆ 10´3 ˘ 2.16ˆ 10´4

3 1.57ˆ 10´2 ˘ 9.62ˆ 10´4 6.36ˆ 10´4 ˘ 3.18ˆ 10´3 1.71ˆ 10´3 ˘ 2.08ˆ 10´4 7.61ˆ 10´7 ˘ 4.05ˆ 10´6

5 1.16ˆ 10´2 ˘ 9.65ˆ 10´4 0˘ 0 7.95ˆ 10´4 ˘ 1.28ˆ 10´4 0˘ 0

Case 30
1 2.94ˆ 10´2 ˘ 5.68ˆ 10´3 2.84ˆ 10´2 ˘ 6.36ˆ 10´3 1.06ˆ 10´3 ˘ 2.57ˆ 10´4 6.81ˆ 10´4 ˘ 2.04ˆ 10´4

3 1.26ˆ 10´2 ˘ 6.46ˆ 10´4 6.42ˆ 10´4 ˘ 2.14ˆ 10´3 1.65ˆ 10´3 ˘ 2.38ˆ 10´4 9.73ˆ 10´7 ˘ 3.56ˆ 10´6

5 8.56ˆ 10´3 ˘ 6.47ˆ 10´4 0˘ 0 6.24ˆ 10´4 ˘ 1.33ˆ 10´4 0˘ 0

Case 118
1 6.56ˆ 10´2 ˘ 1.45ˆ 10´2 5.72ˆ 10´2 ˘ 1.69ˆ 10´2 1.14ˆ 10´2 ˘ 7.56ˆ 10´4 3.29ˆ 10´3 ˘ 4.52ˆ 10´4

3 2.42ˆ 10´2 ˘ 1.04ˆ 10´2 6.88ˆ 10´3 ˘ 1.32ˆ 10´2 9.44ˆ 10´4 ˘ 1.82ˆ 10´4 7.94ˆ 10´6 ˘ 1.60ˆ 10´5

5 3.98ˆ 10´3 ˘ 2.84ˆ 10´3 0˘ 0 2.32ˆ 10´5 ˘ 1.79ˆ 10´5 0˘ 0

Case 300
1 3.62ˆ 10´2 ˘ 7.35ˆ 10´3 3.52ˆ 10´2 ˘ 7.38ˆ 10´3 2.57ˆ 10´3 ˘ 2.63ˆ 10´4 2.03ˆ 10´3 ˘ 2.45ˆ 10´4

3 3.78ˆ 10´3 ˘ 4.04ˆ 10´3 3.15ˆ 10´3 ˘ 4.66ˆ 10´3 1.11ˆ 10´4 ˘ 2.08ˆ 10´5 4.03ˆ 10´5 ˘ 1.17ˆ 10´5

5 1.38ˆ 10´3 ˘ 4.04ˆ 10´3 0˘ 0 7.99ˆ 10´5 ˘ 1.51ˆ 10´5 0˘ 0

Case 2383
1 2.41ˆ 10´2 ˘ 5.39ˆ 10´3 2.29ˆ 10´2 ˘ 5.44ˆ 10´3 3.31ˆ 10´3 ˘ 1.98ˆ 10´4 1.23ˆ 10´3 ˘ 2.04ˆ 10´4

3 7.52ˆ 10´3 ˘ 4.03ˆ 10´3 5.71ˆ 10´3 ˘ 5.13ˆ 10´3 2.05ˆ 10´3 ˘ 6.60ˆ 10´5 1.38ˆ 10´5 ˘ 1.48ˆ 10´5

5 4.89ˆ 10´3 ˘ 3.41ˆ 10´4 0˘ 0 2.06ˆ 10´3 ˘ 5.76ˆ 10´5 0˘ 0

Case 2746
1 3.22ˆ 10´2 ˘ 7.91ˆ 10´3 3.12ˆ 10´2 ˘ 7.90ˆ 10´3 1.95ˆ 10´3 ˘ 2.35ˆ 10´4 1.71ˆ 10´3 ˘ 2.21ˆ 10´4

3 5.75ˆ 10´3 ˘ 5.06ˆ 10´3 4.59ˆ 10´3 ˘ 4.82ˆ 10´3 2.16ˆ 10´5 ˘ 1.14ˆ 10´5 7.73ˆ 10´6 ˘ 8.70ˆ 10´6

5 3.74ˆ 10´4 ˘ 1.35ˆ 10´4 0˘ 0 4.18ˆ 10´6 ˘ 1.43ˆ 10´6 0˘ 0

Table 3.2: Computational results for solving model (3.7) for a range of values of Γ, and then
assessing feasibility, along with 95% confidence intervals, using 20 replications over 1000 uniformly
distributed realizations over the hyper-rectangle governing u.

measures decrease monotonically as Γ increases. We observe a similar trend when checking the

nonconvex infeasibility measures for all test cases but Case 5 and Case 9. We omit the infeasibility

measure upper bound for solution s˚ since they are all zeros, which indicates that our heuristic

solution, s˚, is feasible for all simulated scenarios within U . The evidence shows that s˚ is likely

to be feasible and the objective value associated to it, CN , is likely to be a valid upper bound.

Next, we report the computational performance of Algorithm 3 and its scenario-appending

improvement scheme. If we append scenario-specific constraints to the master problem, the master

becomes larger and takes longer to solve, but this helps decrease the number of iterations of the

cutting-plane algorithm. In Table 3.3 we show computational results for Cases 118 and 300, which

best exemplify the effectiveness of the scenario-appending scheme. The table shows that direct

application of Algorithm 3 fails to obtain an ε-feasible solution within 300 iterations, but by ap-

pending scenarios to the master, we solve Cases 118 and 300 in at most 15 iterations. The results

that we report elsewhere in this section all use the improvement of appending scenarios to the
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Parameters
No. of iterations ε-feasibility achieved T (sec.)

Case 118 Case 300 Case 118 Case 300 Case 118 Case 300

Algorithm 3 300 300 No No 2414 23042

nc “ 1 5 6 Yes Yes 61 550
nc “ 2 7 9 Yes Yes 82 761
nc “ 3 8 15 Yes Yes 89 1172
nc “ 4 9 11 Yes Yes 96 761
nc “ 5 10 12 Yes Yes 104 802

Table 3.3: Computational results of solving model (3.7) with different improvement techniques for
Case 118 and Case 300 with Γ “ 3.

master program in which nc, the number of replications after which a scenario û P U is appended

to the master program, is nc “ 1.

The scenario-appending method aims to reduce the number of iterations of Algorithm 3. To

decrease the running time of each iteration, we compare the computational performance of two

alternatives: solving the MISOCP (3.14) directly, or enumerating all extreme points of U and

solving the corresponding SOCPs individually, which is possible when |M| is modest. For example,

if Γ “ 1, there are only 2|M| extreme points, and solving this moderate number of SOCPs each

iteration may reduce computation time, especially when parallelizing the calculations. Furthermore,

rather than identifying u P U for a most violated constraint, we can generate multiple feasibility

cuts in one iteration to again attempt to reduce the number of overall iterations. For our tests, we

generate cuts at the 10 most violated scenarios at each iteration, and we solve SOCPs in parallel

with 20 threads.

We present the test result in Table 3.4. The number of extreme points of U is denoted by N

and the number of iterations until ε-feasibility is achieved is denoted “iter.” and the clock time of

the two approaches is denoted by “time.” For all test cases, solving the SOCPs in parallel requires

significantly less time than solving MISOCPs. When |M| is small, the number of extreme points

of U is modest. Therefore, solving SOCPs corresponding to every extreme point of U in parallel is

more efficient than solving the MISOCPs.

In our implementation, we note that solving the MISOCP is the computational bottleneck.

In spite of our effort to use the default Gurobi setting to generate linear outer approximation and
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MISOCP SOCP Nonconvex Nominal
Test Case Γ N iter. time (sec.) iter. time (sec.) iter. time (sec.) time (sec.)

Case 5
1 10 2 1.4 2 0.4 2 0.2 0.05
3 80 2 1.1 2 0.7 2 0.4 0.07
5 32 2 1.7 1 0.2 2 0.3 0.05

Case 9
1 10 2 2.2 2 0.4 2 0.3 0.09
3 80 2 2.1 2 0.8 2 0.5 0.10
5 32 2 3.3 1 0.3 2 0.4 0.08

Case 14
1 10 2 4.3 2 0.9 2 0.4 0.2
3 80 2 5.1 2 1.5 3 1.3 0.2
5 32 2 7.0 1 0.4 2 0.5 0.1

Case 30
1 10 2 11.0 2 1.4 2 0.6 0.3
3 80 2 12.9 2 2.7 2 1.6 0.4
5 32 2 18.6 1 0.8 2 0.9 0.3

Case 118
1 10 5 106.3 3 15.6 2 3.3 1.7
3 80 5 154.8 2 18.5 3 13.5 1.6
5 32 2 106.9 1 4.1 2 6.5 1.6

Case 300
1 10 6 501.8 3 44.2 3 17.2 4.3
3 80 6 1278.9 2 61.6 2 25.7 4.7
5 32 3 980.0 1 14.8 1 6.0 4.6

Case 2383
1 10 4 7225.5 2 344.8 2 87.1 76.4
3 80 3 12853.2 2 848.6 3 366.4 76.2
5 32 2 19407.3 1 257.7 1 56.1 79.4

Case 2746
1 10 ´ ´ 2 557.6 2 250.8 102.5
3 80 ´ ´ 2 1175.3 2 330.5 121.9
5 32 ´ ´ 1 250.8 2 272.3 95.6

Table 3.4: Comparison between solving the MISOCP (3.14) and solving a set of SOCPs for the
extreme points of U , with nc “ 1 and Gurobi parameter NumericalFocus“ 3.

utilize the warm start to solve the MISOCPs, we still encounter numerical problems when solving

the MISOCP for Case 2746. On the other hand, once the number of extreme points becomes

large, finding the most-violated scenario without going through all of them remains challenging

and requires further research.

3.5 Conclusions

In this chapter we present a model to relax the nonconvex robust ACOPF problem to a robust

convex program with recourse. A cutting-plane algorithm is proposed to solve the convex relaxation,

and within each iteration of the cutting-plane algorithm, an MISOCP is solved to generate a cut
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separating the incumbent solution from the robust convex feasible region. In summary, we:

• formulated a two-stage robust model that permits full recourse decisions rather than simpler,

e.g., linear, decision rules;

• established desirable convergence properties of a cutting-plane algorithm;

• showed that our algorithm can provide a good lower bound for the nonconvex ACOPF prob-

lem (3.6);

• found the solution to the robust convex relaxation model (3.7) is robust in the nonconvex

setting, provided its deterministic QC relaxation is reasonably tight; and,

• reduced solution time in the cutting-plane algorithm by appending a small number of key

scenarios to the master program.

There are many possible ways to extend the result of this research. One important direction is

to reduce the computational effort required to solve the “separation problem,” which is currently

modeled as an MISOCP. Doing so would further facilitate scaling our algorithm to larger problems.

Finding a valid upper bound or prove the validity of our heuristic upper bound not only bears

theoretical significance, but also has potential to be combined with optimization based bound

tightening process (Sundar et al. 2018) to further tighten the formulation and the lower bound

obtained in this chapter. Furthermore, our scenario-appending algorithms can be used in other

applications of robust optimization with a convex recourse, such as microgrid planning (Khodaei

2014), location transportation (Gabrel et al. 2014), call center staffing (Zhao and Zeng 2012).
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Chapter 4

Analyzing Client Behavior in a

Syringe Exchange Program

4.1 Introduction

Three major agencies provide syringe exchange programs (SEPs) in the Chicago metropolitan

area: Community Outreach Intervention Projects (COIP), Chicago Recovery Alliance (CRA), and

Test Positive Aware Network (TPAN). Each agency offers equipment and educational services and

conducts research on drug users. With the goal of supporting persons who inject drugs (PWIDs)

and helping prevent the spread of infectious diseases, they provide services including street outreach,

counseling and training for preventing HIV and hepatitis C, case management for persons living with

HIV, assistance in entering treatment for substance use, and HIV medical, mental, and pharmacy

care. Their locations include storefronts and mobile vans, which may operate according to a flexible

schedule. The benefits of an SEP are twofold. First, multiple studies have shown that SEPs are

effective in reducing risk behavior such as sharing syringes Bluthenthal et al. (2007, 2000), Braine

et al. (2004), Holtzman et al. (2009), Huo and Ouellet (2007), thereby lowering rates of HIV

and hepatitis C transmission. Second, higher utilization of an SEP provides PWIDs with more

opportunities to learn about treatment programs, which further reduces drug use Huo et al. (2006),

DeSimone (2005).
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This chapter focuses on one of the SEPs in Chicago, and we refer to program participants

as clients. Service locations, including storefronts and mobile vans, accept used syringes and, in

exchange, provide clients with new syringes along with other devices that help prevent the spread

of disease, such as condoms, cookers, purified water, and bleach. On their first visit to a service

location, clients are asked to take a voluntary survey involving demographic information and the

nature of their drug use (frequency, types of drugs, etc.), which we detail in Section 4.2. Once a

client is established in the system, the SEP keeps a record of frequency of drug use, health condition,

and general living condition. During a visit, an SEP employee will have a personal conversation

with a client, e.g., about recent life changes, employment status, and family situation. The SEP

will further provide the client with information to help with health issues, and seek to introduce

the client to drug treatment programs. Evidence has shown that this type of personal interaction

can help clients obtain peer support to recover from substance addiction Clarke et al. (2016), Hay

et al. (2017), Kidorf and King (2008).

Nationwide, about 681,000 Americans aged 12 years or older reported using heroin in 2013

Abuse and Administration (2014), and the number of reported users grew every year from 2007

to 2013, with new users growing about 70% from 2002 to 2013. The volume of heroin seized by

officials, and the number of heroin overdoses, both grew over the same period in Chicago Abuse

and Administration (2014). The contrast between the significant growth in the use of heroin and

slightly lower use of services at the target SEP (see Section 4.2) motivates our study. In order to

promote its services and tailor them to individual clients, the agency needs a better understanding

of client behavior in using the SEP.

The arrival process of clients to SEP sites is key to understanding their use of SEP services,

and we have data on arrival times and locations over a ten-year period. Our main focus is to develop

a contextual understanding of the arrival process; i.e., we want to understand inter-arrival times

given features of an individual client obtained, in part, from the voluntary demographic survey.

Our data suggest some clients “establish care” with the SEP, returning consistently, while others

use SEP services once and never return. We seek to model and understand the “life cycle” of an

individual client from initiation, reoccurring visits, and termination with the program. Through
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interviews with SEP staff, we learned that ethnicity, gender, age, geographic location, and drug

history affect how a client will use SEP services. For example, African Americans are less active in

SEP programs because they tend to prefer not to disclose their drug habits, and because African

Americans who use drugs tend to snort rather than inject. A client’s interaction with the SEP

is affected by life events; e.g., a person who moves farther from a service location may visit less

frequently. These are snapshots of a pervasive phenomenon that suggest many factors can influence

client behavior when using SEP services.

To address these issues, we propose a model for how a client engages with the SEP using three

integrated sub-models for initiation, reoccurring visits, and termination. The latter two sub-models

are fully integrated and involve a phase-type distribution, which may be viewed as a continuous-

time Markov chain with hidden states. To build a contextual model, we express the Markov chain’s

parameters as a function of client features using linear and logistic regression. Analysis with

our model can help the SEP understand the importance of different features and hence estimate

the distribution governing a specific client’s next arrival time. This, in turn, can help SEP staff

better allocate limited resources to improve the program’s effectiveness. Armed with a probability

distribution for the timing of a client’s next visit, SEP staff can be alerted when a specific client has

not used SEP services for an unusual period of time, which may point to risky drug-use behavior.

SEP employees can then contact the client (e.g., via a text message), or dispatch a mobile van to

specific locations and message nearby clients. Using simulation, we illustrate the potential value of

using our model in this manner.

Modeling arrival processes plays a key role in many application domains; see Lakshmi and Iyer

(2013) for a review of relevant literature in healthcare. Homogeneous and nonhomogeneous Poisson

processes are widely used to model an arrival process Aksin et al. (2007), Fomundam and Herrmann

(2007), Govil and Fu (1999), but do not address our primary goal, i.e., to provide insights regarding

a client’s return time based on individual predictors associated with that client. In principle, we

could partition clients into different categories based on their features and fit such arrival processes

based on these categories. However, such an approach scales poorly given the number of features

we consider.
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As we will discuss, our data on inter-arrival times of clients to SEP sites have heavier tails than

that of an exponential distribution, and this is true even when we develop models that condition on

sub-populations of the clients. This may arise for two related reasons: (i) the “establishing care”

nature of some clients discussed above, and (ii) clients effectively transitioning between hidden

states, which capture active and passive engagement with the SEP. The three sub-model approach

that we propose allows us to capture these effects, and its contextual nature captures heterogeneity.

We use a negative binomial model for initiation, which is consistent with an over-dispersed mixture

of Poisson distributions that captures heterogeneity. We use a two-state continuous-time Markov

chain model with unobservable states to capture reoccurring visits and termination. These two

integrated sub-models allow us to reasonably represent issues (i) and (ii) and their conditional

transition- and system-exit probabilities allow us to capture heterogeneity.

Hidden Markov chain models have been used to model scenarios in which an agent transitions

between a modest number of states, each associated with certain patterns of behavior. Paddock et

al. Paddock et al. (2012) construct a Markov chain model to understand trajectories of a marijuana

user with the goal of using simulation to assess alternative treatment and prevention policies. Liu

et al. Liu et al. (2015) learn a continuous-time hidden Markov chain model for disease progression

in glaucoma and Alzheimer’s disease. Chehrazi et al. (Chehrazi et al. 2019, Appendix C) discuss

using a two-state Markov chain to model the repayment behavior associated with delinquent credit

card accounts, in which the two states represent high and low repayment rates, with the goal of

directing credit collection efforts. Hidden Markov chains enable modelers to capture plausible, but

unobservable, transitions of an agent. Our approach can further enhance such models by allowing

the parameters of the Markov chain to depend on agent-specific features using regression. Given

requisite data, the types of models just sketched could benefit from our approach, increasing model

fidelity and insights from analysis, by linking agent heterogeneity to the Markov chain model. A

technical challenge that we address in this chapter—at least for the family of serial Coxian models

that we detail—involves parameter estimation when using regression to map the features of an

agent to the Markov chain’s parameters.

We first provide, in Section 4.2, an overview of the demographic and arrival data collected
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by the SEP between 2005 and 2014. In Section 4.3, we provide details of the derivation of the

three sub-models: initiation, reoccurring visits, and termination, which together capture individual

features associated with clients. We present our computational techniques and results in Section 4.4,

with model validation and an example of active intervention that our model can recommend. We

conclude the chapter in Section 4.5 by summarizing the model and insights from our analysis.

4.2 Description of the Data

The data from the SEP consist of results from a survey and records of individual syringe

exchange transactions. The transaction data were collected from January 2001 to November 2014

with 139,488 entries. The survey data were collected between July 2005 and November 2014 with

6,843 surveys. Each survey entry corresponds to a unique client. When a new client arrives at a

service site, the client is assigned a unique study number (henceforth, client ID) and is asked to

complete an enrollment survey. This client ID is then used throughout the client’s sojourn in the

system.

We use the data from July 2005 to November 2014 because the surveys are aligned consistently

with the transaction records in this period. After removing incomplete and contaminated records,

we combine the transaction and survey data to obtain a merged dataset with 63,960 entries, each

with 50 data fields, which we detail in the following section.

4.2.1 Survey Data

The survey contains 31 questions, which yield 33 predictors, covering basic demographic in-

formation, ZIP code of residence, and the client’s drug use habits, which can be categorized as

follows:

• Basic personal information: age, ethnicity, gender;

• Length of time using/injecting drugs;

• Frequency of using/injecting drugs in the past 30 days;

• Frequency of reusing one’s own syringes in the past 30 days;

• Frequency of sharing syringes with others in the past 30 days;
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• Involvement in group injection in the past 30 days;

• Sources of syringes;

• Types of drugs used;

• Drug treatment program participation in the past six months;

• Reasons and frequency of being in the area with an SEP location in the past 30 days.

Among 5,903 clients in our merged dataset, 4,101 are male, 1,800 are female, and two are trans-

gender. The demographics of these clients are summarized in Tables 4.1 and 4.2.

Ethnicity Number of clients Percentage (%)

White 3,045 51.58

African American 1,384 23.45

Puerto Rican 873 14.78

Mexican 364 6.17

Other Latino 72 1.22

Other 165 2.80

Total 5,903 100

Table 4.1: Ethnicity of clients

Age (years) Number of clients Percentage (%)

ă15 1 0.02

16´ 30 2,602 44.08

31´ 45 2,108 35.71

46´ 60 1,111 18.82

ą 60 81 1.37

Total 5,903 100

Table 4.2: Age of clients

The average age of first drug use among all clients is 23.5 years, about 67.9% of clients inject

drugs daily, and 81.7% injected drugs more than 20 out of 30 days before taking the survey. For

all reasonable responses to the survey question regarding injection frequency (defined as at most

10 injections per day), the average number of injections per day is 2.77. About 82.6% of clients

reported that they did not use someone else’s syringe in the past 30 days, and 77.9% reported
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that no one used their syringes over the same time period. Among 986 clients who injected with

syringes others had used in the past 30 days, 558 shared with their spouse, 53 shared with a family

member, 350 shared with a friend, 24 shared with an acquaintance, and 11 shared with a stranger.

About 72.1% of the clients did not share cookers, cotton or water during injection, and 8.6% of the

clients stated that they injected drugs in a shooting gallery within the 30 days before they began

using the syringe exchange service. About 69.2% of the clients were in the neighborhood of the

SEP location where they took the survey more than 20 days in a typical 30-day month, 25.1% of

whom lived in the neighborhood with an SEP location, 54.5% of whom had come mainly to buy

drugs, 2.0% of whom had come mainly to exchange syringes, and 4.6% of whom had come to visit

friends. The voluntary nature of the survey could lead to a non-response bias in the results; see, for

example, the illustrated cases and discussion in Locker et al. (1981), Cheung et al. (2017). Because

every SEP transaction is labeled with a client ID, we can compute the fraction of clients for whom

we have a completed survey, which is 98.6%. Discussions with SEP staff confirmed that although

the survey is voluntary, almost every new client takes the survey upon the recommendation of SEP

staff, and so the overall effect of non-response bias is likely small.

4.2.2 Transaction Data

The transaction data include details of syringe exchanges that occurred in multiple SEP store-

fronts and on mobile van routes. During each transaction, SEP employees record the client ID,

number of syringes exchanged, number of other preventive devices distributed, size of the group

coming with the client, and type(s) of health education material given to the client. In between

July 2005 and November 2014, the SEP distributed 3,647,384 syringes, 160,895 male and female

condoms, and 63,667 sets of educational material. The mean size of the group coming with the

client during a single transaction was 1.89 with a standard deviation of 2.37. The mean number of

syringes exchanged in one transaction was 57.03 with a standard deviation of 110.88. Our discus-

sions with the SEP suggested that there are ample staff to process clients’ visits, and that the SEP

always had enough syringes and rarely ran out of other drug-injection equipment. Thus we see the

level of censoring in the demand data as minimal.
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Figure 4.1: The time series of transactions from eight SEP service locations

We present a time series of the number of transactions from July 2005 to November 2014 in

Figure 4.1. The figure shows transactions at four storefronts and mobile distribution in two areas,

where a mobile van was dispatched to certain locations with a flexible schedule. According to SEP

staff, the schedule for the van was communicated to clients during their visits and at some shooting

galleries. Clients could also inquire about the schedule through phone calls. The service at Location

6 was terminated in January 2010, and some of its clients started visiting Location 4 afterward,

consistent with the increasing trend for Location 4. Figure 4.1 also suggests a declining number

of visits for Location 2. Figure 4.2 shows the fluctuation of monthly aggregated transactions. The

figure suggests a slight decrease in the number of monthly transactions over the ten-year time

span. The number of syringes exchanged surged between 2009 and 2012 but appeared to decrease

afterward.
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Figure 4.2: The time series of aggregated monthly transactions and syringes exchanged

4.3 Model of Client Arrival Process

We seek to develop a predictive model for a client’s arrival process based on a number of

predictors such as race, gender, age, and more. To this end, we segment a client’s experience in

the system into three sub-processes: initiation, reoccurring visits, and termination. Features of

the client are used as covariates to estimate parameters of the model of reoccurring visits and

termination. We can achieve two objectives with our model. First, we can forecast the next

arrival of a specific client, given that client’s features and most recent arrival time. Second, we can

simulate the system and perform sensitivity analysis on specific model parameters. The former can

help the SEP identify irregular behavior and take prompt intervention measures. The latter can

guide initiatives to improve system-wide performance.

The overall structure of the model we formulate is that we build sub-models of these three

individual sub-processes. While we have analytical models of these sub-components, our overall

model, which combines these sub-models, can only be executed as a simulation, as we describe after
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Figure 4.3: Empirical distribution fit of number of daily initiations to a negative binomial distri-
bution

characterizing the sub-models.

4.3.1 Initiation

The first time that a client uses the SEP is called the initiation of the client’s arrival process.

The recorded initiation data are clear, and so we focus on how to simulate new initiations. We

examine the distribution of the number of initiations per day, i.e., the arrivals generated by clients

who have never previously visited a service location. Since our SEP started recording survey data

four years after recording transactions, some returning clients were asked to complete the survey

starting in July 2005, even though their true initiation was earlier. In an attempt to avoid inflating

some initiation counts, we use data starting from January 2007 in order to fit a distribution to

estimate the initiation process. The blue bars in Figure 4.3 show the empirical distribution of

initiations per day. We fit a negative binomial distribution with parameter p3, 0.59725q, shown as

the red bars in Figure 4.3. The negative binomial distribution can be seen as an over-dispersed

version of a Poisson distribution and used to model discrete data whose sample variance exceeds the

sample mean; see, e.g., Gardner et al. (1995). In Section 4.4.3, we detail goodness-of-fit measures

for this and other distributional estimates.
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For the purpose of simulation, each day we first generate a number of total new clients using

the negative binomial distribution. In addition to simulating new arrivals of clients, we must

assign attributes to those clients. In our simulation, we do so by drawing a client at random (with

replacement) from the collection of 5,903 clients in our dataset. From the survey data, 33 numerical

and categorical characteristics describe the client, and these are summarized in Appendix C.1.

4.3.2 Reoccurring Visits

We track the history of clients who visit the SEP service sites multiple times and plot the

distribution of inter-arrival times. The inter-arrival time is defined here as the duration between

two consecutive visits made by the same client. Figure 4.4 suggests that the distribution has a

heavy tail, i.e., it shrinks to zero more slowly than an exponential.

As we indicate in Section 4.1, using a Poisson process to model inter-arrival times does not

help with our main goal, which is to provide contextual, i.e., client-specific predictions. Putting this

aside for a moment, we tested the goodness of fit associated with a Poisson process for our aggregate

dataset, and for datasets associated with sub-populations of clients based on ethnicity, age, and

gender. Moreover, we investigated both homogeneous and non-homogeneous (e.g., piecewise con-

stant arrival rate by week) Poisson processes. For the models we assessed, statistical tests yielded

p-values that were vanishingly small, suggesting that such models fail to provide an adequate rep-

resentation. This is consistent with our observation from Figure 4.4, giving further evidence that

modeling inter-arrival times using an exponential distribution may not be appropriate.

We model clients inter-arrival times with a phase-type distribution, because of its goodness

of fit and its potential interpretability. The distribution of any nonnegative random variable can

be approximated with high accuracy using a phase-type distribution; see, e.g., Asmussen (2003).

A phase-type distribution can be expressed as the time required for a continuous-time Markov

chain (CTMC) to enter an absorbing state (say, state 0) from a randomly selected transient

state, t1, 2, . . . , nu; see, e.g., Buchholz et al. (2014). A probability mass function, denoted by

α “ pαiqi“1,...,n, governs the initial state of the CTMC. The infinitesimal generator is constructed
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Figure 4.4: Log-log relationship between frequency and inter-arrival time. The logarithms in the
figure are base 10, and underlying inter-arrival times are in days

in the following manner:
»

—

–

0 0

a Q

fi

ffi

fl

, (4.1)

where a is an n-dimensional vector specifying the transition rates from the transient states to

the absorbing state, and Q is an n ˆ n matrix specifying the transition rates among transient

states, where Qpi, jq denotes the rate of transitioning from state i to state j, and Qpi, iq “

´r
ř

j‰i,j“1,...,nQpi, jq ` apiqs. The first row in the generator of equation (4.1) corresponds to the

transition rates from the absorbing state to any other transient state, which are always 0. The prob-

ability density function (pdf) of the phase-type distribution can be characterized as fptq “ αeQta,

and the cumulative distribution function (cdf) is given by F ptq “ 1 ´ αeQt1, where 1 is the n-

dimensional vector of all 1’s.

There are multiple ways to fit a phase-type distribution to data; see, e.g., Nelson and Ger-

hardt (2010). Here, we formulate a nonlinear optimization model rooted in maximum-likelihood

estimation (MLE), coupled with a regression model that uses covariates of the clients. We first

describe the MLE approach in the context of the Coxian distribution, a special case of phase-type
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distributions.

For a Coxian distribution, the embedded Markov chain has n`1 states, as shown in Figure 4.5.

The stochastic process starts in state 1 (i.e., α “ p1, 0, . . . , 0q), and from each transient state,

i “ 1, . . . , n ´ 1, we can transition to only the adjacent transient state, i ` 1 or to the absorbing

state, 0. The rate at which we depart state i is γi, and we transition to the absorbing state with

probability qi and to the adjacent transient state with probability 1´qi. As Figure 4.5 also depicts,

transient state n can only transition to the absorbing state.

Figure 4.5: CTMC depiction of the Coxian distribution

Figure 4.6: An equivalent CTMC to the Coxian distribution’s model in Figure 4.5

A Coxian distribution is more parsimonious than a general phase-type distribution. The former

model contains 2n ´ 1 parameters while the latter has up to n2 ` n. Bobbio and Cumani (1992)

show that the Coxian model in Figure 4.5 is equivalent to another CTMC model that is depicted

in Figure 4.6. The latter formulation is helpful in our setting because it offers a linear structure for

capturing client-specific features as we describe below. The relationship between the qi parameters

in the first model and the βi parameters in the second model is given by the following equations:

q0 “ β0 “ 0
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βi “ qi

i´1
ź

k“0

p1´ qkq i “ 1, 2, . . . , n

qi “
βi

1´
ři´1
k“0 βk

i “ 1, 2, . . . , n.

A CTMC lends itself to interpretation by associating transitions in the model with assumed

phases of a client using syringes after leaving a service location. In addition to references mentioned

earlier which use CTMCs with hidden states (Chehrazi et al. 2019, Paddock et al. 2012, Liu et al.

2015), we note that such an approach has also been used to model the length of stay of hospital

patients (Faddy et al. 2009, Faddy and McClean 1999, 2005), including work in which serial (Coxian)

CTMCs are employed. We use a similar philosophy by inferring transition rates from unobservable

states and, moreover, connecting them to features of a client.

We can interpret a Coxian distribution with n “ 2 in our setting as follows. After visit-

ing an SEP location, the client enters an (unobservable) “active state” with probability β1, and

subsequently returns to an SEP site after an exponentially distributed delay with parameter γ1.

Alternatively, with probability β2 “ 1´β1 the client enters a “passive state.” Returning to an SEP

site is then the sum of two independent exponential random variables with rates γ1 and γ2, where

we expect γ1 ą γ2. The passive state could correspond to the client temporarily seeking another

source of syringes, for example.

Bobbio and Cumani (1992) present an MLE procedure to fit the parameters for the Coxian

distribution. Their method, however, is not directly applicable when we express β and γ as affine

functions of predictors associated with clients. A result of Bibinger (2013) allows us to express the

pdf and cdf of a sum of independent exponential random variables, and we can use this result to

write the pdf and cdf of a Coxian random variable as:

fptq “
n
ÿ

i“1

βn`1´ifiptq “
n
ÿ

i“1

«

βn`1´i

˜

n`1´i
ź

l“1

γl

¸

n`1´i
ÿ

j“1

e´γjt
śn`1´i
k“1,k‰j pγk ´ γjq

ff

(4.2)

F ptq “
n
ÿ

i“1

βn`1´iFiptq “
n
ÿ

i“1

«

βn`1´i

˜

n`1´i
ź

l“1

γl

¸

n`1´i
ÿ

j“1

p1´ e´γjtq{γj
śn`1´i
k“1,k‰j pγk ´ γjq

ff

. (4.3)
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Here fi and Fi are the pdf and cdf of the inter-arrival time, conditioned on beginning in state i. We

index the collection of inter-arrival times by S, and denote each inter-arrival time by ts, s P S, and

similarly denote censored inter-arrival times by tu, u P U . For every client, the time from the last

arrival to the end of the observation horizon can be considered a right-censored inter-arrival time.

The likelihood function is the product of the pdf of each inter-arrival time and the complement of

the cdf of each censored inter-arrival time. Maximizing the log-likelihood function then leads to

the following problem:

max
β,γě0

ÿ

sPS
logpfptsqq `

ÿ

uPU
log p1´ F ptuqq (4.4a)

s.t.
n
ÿ

i“1

βi “ 1 (4.4b)

f, F defined as in (4.2) and (4.3), @ts, s P S and tu, u P U , respectively. (4.4c)

The first term in the objective function of model (4.4) corresponds to observed inter-arrival times,

and the second term corresponds to right-censored data in which we do not know the inter-arrival

time, only that it exceeds, tu; see, e.g., Papaioannou (2014) for such treatments of right-censored

data. We note that a limiting analysis shows that equations (4.2)-(4.3) remain valid even when

rates at distinct states are identical (Bibinger 2013). That said, this can cause numerical difficulties

and we return to this issue below.

So far, the described fitting procedure assumes all clients behave according to the same model.

As discussed above, we seek to incorporate the features of clients when we construct the parameters

of the Coxian distribution. Here we use an affine relationship to connect those features to the

parameters of the Coxian distribution. We use V to represent the set of clients, and we use

j “ 1, 2, . . . ,m to index the characteristics of clients. We use xj,v, @j “ 1, . . . ,m, v P V, to denote

these predictors. We also use vpsq P V to specify the client associated with the s-th inter-arrival

time, and we similarly define vpuq for the client associated with the u-th censored inter-arrival time.

Our extension of model (4.4) to incorporate client-specific predictors is given by:

max
β,γ,b,g,ε

ÿ

sPS
logpfptsqq `

ÿ

uPU
log p1´ F ptuqq ´ η

β}εβ}22 (4.5a)
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s.t.
n
ÿ

i“1

βi,v “ 1 @v P V (4.5b)

βi,v “
m
ÿ

j“1

bi,jxj,v ` bi,0 ` ε
β
i,v @i “ 1, 2, . . . , n, v P V (4.5c)

γi,v “
m
ÿ

j“1

gi,jxj,v ` gi,0 @i “ 1, 2, . . . , n, v P V (4.5d)

fptsq “
n
ÿ

i“1

«

βn`1´i,vpsq

˜

n`1´i
ź

l“1

γl,vpsq

¸

n`1´i
ÿ

j“1

e´γj,vpsqts
śn`1´i
k“1,k‰j

`

γk,vpsq ´ γj,vpsq
˘

ff

@s P S (4.5e)

F ptuq “
n
ÿ

i“1

«

βn`1´i,vpuq

˜

n`1´i
ź

l“1

γl,vpuq

¸

n`1´i
ÿ

j“1

e´γj,vpuqtu{γj,vpuq
śn`1´i
k“1,k‰j

`

γk,vpuq ´ γj,vpuq
˘

ff

@u P U (4.5f)

βi,v ě 0 @i “ 1, 2, . . . , n, v P V (4.5g)

γi,v ě 0 @i “ 1, 2, . . . , n, v P V. (4.5h)

The idea behind model (4.5) is that we have predictors associated with each client, and con-

straints (4.5c) and (4.5d) express the parameters of the Coxian model as an affine function of these

predictors. Constraint (4.5b) replicates constraint (4.4b), and constraints (4.5e) and (4.5f) define

the pdf and cdf terms that appear in the log-likelihood in the first two terms of the objective

function.

Model (4.5) combines elements of regression and maximum likelihood estimation. The first

two terms in the objective function maximize log-likelihood in the spirit of model (4.4). Con-

straints (4.5c)-(4.5d) define the regression model. Parameters βi,v and γi,v are unobservable, and

so, in principle, we could have no residual term in the regression model. However, constraint (4.5b)

requires that the conditional probabilities that we return to states 1, 2, . . . , n sum to 1. So, to main-

tain feasibility we add a residual, εβv , in equation (4.5b) and penalize its two-norm using a positive

weight ηβ in the final term in the objective function (4.5a). While not explicit in model (4.5)’s

statement, to help prevent overfitting, we regularize the regression parameters b and g by adding

terms ´ηb}b}22 and ´ηg}g}22 to the objective function (4.5a).

While a limiting analysis shows the validity of equation (4.2)-(4.3) even when some of the

components of γ are identical, allowing this when optimizing can cause numerical problems. More-

over, our motivation, sketched above, includes the idea that the sojourn times should be larger in
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the passive state than in the active state, and for both reasons we add the following constraint to

model (4.5):

γi,v ´ γi`1,v ě δ, @i “ 1, 2, . . . , n´ 1, v P V, where δ ą 0. (4.6)

4.3.3 Termination

We assume that each client has a possibility to exit the system after each visit to the SEP.

Specifically, as soon as the CTMC hits the absorbing state, we assume that with probability pv,

the client v P V will stop visiting our SEP.

However, we cannot observe a client leaving the system because we only observe their visits. If

a client visits service locations multiple times, then we know that for every visit before the last one,

the client is still in the system, and so the likelihood function is conditioned on the client remaining

in the system. After the last visit, a client may stay in the system or may leave. We need to

incorporate this information in the likelihood function. Conditioned on the client remaining in the

system, the likelihood function is 1´ F ptuq, where tu, u P U , is the time between the client’s last

visit and the end of the observation horizon. As a result, the log-likelihood function can be revised

as:
ÿ

sPS

`

logpfptsqq ` logp1´ pvpsqq
˘

`
ÿ

uPU
log

`

p1´ F ptuqq p1´ pvpuqq ` pvpuq
˘

. (4.7)

We again model parameter pv via a functional relationship with client v’s covariates. Instead of an

affine relationship, we use a logistic function as follows:

pv “
´

1` e´pρ0`
řm
j“1 ρjxj,vq

¯´1
, (4.8)

where we will optimize the fit via parameters ρj and ρ0. Given that pv P p0, 1q, the logistic function

is a natural choice; we do note that we also tested a linear relationship but obtained poorer results.

We can fit the termination parameter p by combining the results of (4.5), (4.7), and (4.8).

Since the likelihood function is conditioned on whether the client has exited the system, we need to

solve a nonlinear optimization problem as follows, which fits parameters for both reoccurring visits
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and termination, integrating our latter two sub-models:

max
β,γ,b,g,ρ,p,ε

ÿ

sPS

`

logpfptsqq ` logp1´ pvpsqq
˘

`
ÿ

uPU
log

`

p1´ F ptuqq p1´ pvpuqq ` pvpuq
˘

´ ηβ}εβ}22 (4.9a)

s.t.
n
ÿ

i“1

βi,v “ 1 @v P V (4.9b)

βi,v “
m
ÿ

j“1

bi,jxj,v ` bi,0 ` ε
β
i,v @i “ 1, 2, . . . , n, v P V (4.9c)

γi,v “
m
ÿ

j“1

gi,jxj,v ` gi,0 @i “ 1, 2, . . . , n, v P V (4.9d)

pv “
´

1` e´pρ0`
řm

j“1 ρjxj,vq
¯´1

@v P V (4.9e)

fptsq “
n
ÿ

i“1

«

βn`1´i,vpsq

˜

n`1´i
ź

l“1

γl,vpsq

¸

n`1´i
ÿ

j“1

e´γj,vpsqts
śn`1´i
k“1,k‰j

`

γk,vpsq ´ γj,vpsq
˘

ff

@s P S (4.9f)

F ptuq “
n
ÿ

i“1

«

βn`1´i,vpuq

˜

n`1´i
ź

l“1

γl,vpuq

¸

n`1´i
ÿ

j“1

e´γj,vpuqtu{γj,vpuq
śn`1´i
k“1,k‰j

`

γk,vpuq ´ γj,vpuq
˘

ff

@u P U (4.9g)

βi,v ě 0 @i “ 1, 2, . . . , n, v P V (4.9h)

γi,v ě 0 @i “ 1, 2, . . . , n, v P V. (4.9i)

Solving problem (4.9) maximizes the log-likelihood function for the combination of reoccurring

visits and termination. Similar to fitting the reoccurring visits, we also add a regularization term

´ηρ}ρ}22 in the objective function to prevent overfitting. Constraint (4.9e) models the logistic

relationship between the parameter p and the covariates x. Given the fit value of ρ˚ and the

features of client v, we can calculate the termination probability of that client, pv.

4.4 Experimental Results

In this section, we first discuss how we solve model (4.9) and its simpler variants, along with

preliminary results in which we do not use the covariates of the clients. Then we present the results

of the fit model, provide insights as to how different features predict client behavior, test elements

of model validity, and show an example of how our personalized arrival model can guide active

intervention.
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4.4.1 Computational Issues and Preliminary Results

We use a Coxian model with n “ 2 transient states. We interpret one phase as the client

being in an active state with the SEP, i.e., with more frequent visits to exchange syringes, and we

interpret the other phase as a passive state with less frequent visits.

Model (4.9) and its variants are computationally challenging nonconvex optimization problems.

We use Ipopt 3.12.1 (Wächter and Biegler 2006), with linear solver MA27, to solve instances of

these optimization problems. Due to nonconvexity, we only obtain locally optimal solutions. In

addition, because numerical issues can arise, we briefly sketch ways in which we “help” the solver.

We scale all continuous data, i.e., client predictor data, so that it is normalized. As discussed

at the end of Section 4.3.2, we enforce γ1,v ě γ2,v`δ, and we use δ “ 0.005 in our computation. For

numerical reasons, we also bound the γ-parameters away from zero, by enforcing γ2 ě γ ” 0.0005.

We start by solving a simplified variant of model (4.9) in which we remove the predictors and

directly optimize β, γ, and p. We do this for two reasons. First, it provides insight regarding typical

values of these parameters, and second, as we discuss in further detail below, it helps provide a

good initial solution for model (4.9). In particular we solve:

max
β,γ,p

ÿ

sPS
plogpfptsqq ` logp1´ pqq `

ÿ

uPU
log pp1´ F ptuqqp1´ pq ` pq (4.10a)

s.t.
n
ÿ

i“1

βi “ 1 (4.10b)

fptsq “
n
ÿ

i“1

«

βn`1´i

˜

n`1´i
ź

l“1

γl

¸

n`1´i
ÿ

j“1

e´γjts
śn`1´i
k“1,k‰j pγk ´ γjq

ff

@s P S (4.10c)

F ptuq “
n
ÿ

i“1

«

βn`1´i

˜

n`1´i
ź

l“1

γl

¸

n`1´i
ÿ

j“1

e´γjtu{γj
śn`1´i
k“1,k‰j pγk ´ γjq

ff

@u P U (4.10d)

γi ´ γi`1 ě δ @i “ 1, 2, . . . , n´ 1 (4.10e)

βi ě 0 @i “ 1, 2, . . . , n (4.10f)

γn ě γ (4.10g)

0 ď p ď 1. (4.10h)
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Solving model (4.10) leads to parameters for a “featureless” client, as follows:

β̂1 “ 0.8194, β̂2 “ 0.1806

γ̂1 “ 0.0520, γ̂2 “ 0.0030

p̂ “ 0.0981.

This result suggests that after each visit, the featureless client has a 9.8% chance of exiting the

SEP system. Conditional on the client visiting an SEP site again, the client returns via the active

state (frequent visits) with a probability of about 0.82. The mean time from this state is 1{γ1 « 19

days. With probability about 0.18, the client returns via the passive state, and the expected time

to visit the SEP is then 1{γ2 ` 1{γ1 « 350 days.

Rather than optimizing over the intercept terms, b0, g0 and ρ0 in model (4.9), we fixed these

terms as:

b1,0 “ β̂1 b2,0 “ β̂2

g1,0 “ γ̂1 g2,0 “ γ̂2

ρ0 “ ln

ˆ

p̂

1´ p̂

˙

.

Fixing the intercept terms in this way allows us to interpret parameters bi,j , gi,j , and ρj for j “

1, 2, . . . ,m as deviations from the featureless client. Moreover, fixing these parameters helps improve

the numerical performance of Ipopt when solving the nonconvex problem, in part by effectively

providing a good initial solution.

After adding the regularization terms for b, g and ρ described in Section 4.3.2 and 4.3.3, and

fixing the value of b0, g0 and ρ0, we solve the following nonlinear program:

max
β,γ,b,g,ρ,p,ε

ÿ

sPS

`

logpfptsqq ` logp1´ pvpsqq
˘

`
ÿ

uPU
log

`

p1´ F ptuqq p1´ pvpuqq ` pvpuq
˘

´ ηβ}εβ}22 ´ η
b}b}22 ´ η

g}g}22 ´ η
ρ}ρ}22 (4.11a)

s.t.
n
ÿ

i“1

βi,v “ 1 @v P V (4.11b)
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βi,v “
m
ÿ

j“1

bi,jxj,v ` bi,0 ` ε
β
i,v @i “ 1, 2, . . . , n, v P V (4.11c)

γi,v “
m
ÿ

j“1

gi,jxj,v ` gi,0 @i “ 1, 2, . . . , n, v P V (4.11d)

pv “
´

1` e´pρ0`
řm

j“1 ρjxj,vq
¯´1

@v P V (4.11e)

fptsq “
n
ÿ

i“1

«

βn`1´i,vpsq

˜

n`1´i
ź

l“1

γl,vpsq

¸

n`1´i
ÿ

j“1

e´γj,vpsqt
śn`1´i
k“1,k‰j

`

γk,vpsq ´ γj,vpsq
˘

ff

@s P S (4.11f)

F ptuq “
n
ÿ

i“1

«

βn`1´i,vpuq

˜

n`1´i
ź

l“1

γl,vpuq

¸

n`1´i
ÿ

j“1

e´γj,vpuqtu{γj,vpuq
śn`1´i
k“1,k‰j

`

γk,vpuq ´ γj,vpuq
˘

ff

@u P U (4.11g)

γi,v ´ γi`1,v ě δ @i “ 1, 2, . . . , n´ 1, v P V (4.11h)

βi,v ě 0 @i “ 1, 2, . . . , n, v P V (4.11i)

γn,v ě γ @v P V (4.11j)

bi,0 “ β̂i, gi,0 “ γ̂i, ρ0 “ ln

ˆ

p̂

1´ p̂

˙

@i “ 1, 2, . . . , n. (4.11k)

With modest tuning effort, we select the following weights on the regularization terms:

ηβ “ 100, ηb “ 100, ηg “ 1000, ηρ “ 10.

4.4.2 Results and Analysis

The results from fitting the parameters using the method in Section 4.4.1 are displayed in

Table 4.3. The estimators are represented by ρ, b, and g. A positive ρj , j “ 1, 2, . . . ,m, indicates

that having feature j increases the probability that the client will exit the system. Given that

the client stays in the system, a positive value of parameter b1,j increases the probability that the

client returns to the active state. We do not report b2,j because its coefficient differs from b1,j ’s

by a sign. Positive coefficients g1,j and g2,j lead to increased frequencies, i.e., shorter mean times,

associated with the active and passive states, respectively. The coefficients in Table 4.3 are given

in either regular font or gray font. The former category is significant, and the latter is not, where

“significant” is defined as having at least 90% of bootstrapped replications having the same sign,

as detailed in Appendix C.2.

Column ∆ in Table 4.3 shows the amount by which the conditional expected inter-arrival time
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Factor (j) ρj b1,j g1,j g2,j ∆ T

Gallery 0.5448 -0.0387 0.0027 0.0003 5.9 -268.2

From Other Locations 0.2047 -0.0156 0.0023 0.0004 -3.2 -162.2
From Other SEP -0.3156 0.0248 -0.0063 0.0000 -6.2 186.3
From Friends -0.1194 -0.0045 -0.0011 -0.0007 20.9 330.1
From Strangers -0.2697 0.0142 0.0020 0.0010 -19.3 -26.8

Speedball -0.0293 -0.0704 0.0146 -0.0008 48.1 524.9
Heroin -0.0437 -0.0258 0.0061 -0.0008 31.4 365.6

In Treatment -0.3254 0.0243 -0.0126 0.0002 -4.7 215.7
Been in Treatment -0.1137 -0.0178 0.0063 -0.0001 5.9 154.8

Female 0.0154 0.0217 -0.0076 0.0008 -14.8 -159.8

White 0.0000 0.0218 -0.0005 0.0002 -9.9 -101.0
African American 0.3623 -0.0073 -0.0026 0.0001 1.6 -209.6
Puerto Rican -0.7594 0.0084 0.0101 0.0001 -7.4 673.3
Mexican -0.3383 0.0014 0.0014 0.0010 -15.6 76.0
Other -0.1994 0.0088 -0.0054 0.0000 -0.7 151.9

Age of First Drug Use 1.1219 0.0117 0.0007 0.0003 -8.8 -525.7
Drug Use Span 1.8506 -0.0042 -0.0030 -0.0001 4.4 -602.3
FUD 0.0332 0.0073 -0.0011 -0.0001 0.4 -19.6
FROS 0.0380 -0.0051 0.0000 0.0000 1.7 -10.5
FBSA -0.1968 -0.0033 0.0058 0.0002 -5.2 95.4

Note: Here, ρj , b1,j , and g1,j/g2,j are factor-specific regression coefficients for the probability of exiting the system,

probability of returning to the active state, and mean transition times in the CTMC, respectively. Based on the

factor in each row, parameter ∆ denotes the amount by which the conditional expected inter-arrival time changes,

and T similarly denotes changes in the system sojourn time, both in days.

Table 4.3: Fitted parameters of the Coxian process

changes (in days) if a client has that row’s feature but is otherwise a featureless client. Column T

similarly shows the magnitude by which the expected sojourn time in the system changes due to

a single feature. For context, the mean sojourn time of a featureless client is 806.5 days. The

acronyms FUD, FROS, and FBSA in the table respectively stand for frequency of using drugs,

frequency of reusing own syringes, and frequency of being the area of an SEP location.

Table 4.3 provides information on how a client’s attributes affect the probability the client

leaves the system and the frequency with which the client makes use of SEP services, even though

the factors are from different categories, e.g., type of drugs the client uses versus where the client

obtains syringes versus ethnicity. Some observations from the table include:

1. If the client attends a shooting gallery, it is more likely for the client to exit the system or
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become passive. The former factor dominates in that the overall expected time in the system

decreases relative to a featureless client (T ).

2. Clients who can obtain syringes from other locations, such as pharmacies, are more likely to

exit the system, perhaps because they are not reliant on SEP services. On the other hand, if

the client obtains syringes from other sources (other SEPs, friends, and strangers), which may

not be as reliable, it is more likely for the client to remain in the system.

3. The b1-coefficient associated with speedball (a type of drug mixing cocaine with heroin or

morphine) is strongly negative, meaning the client is less likely to stay in the active state,

leading to an increase in expected inter-arrival time.

4. A client in a treatment program is more likely to stay in the SEP system, as indicated by a

negative value of ρ and a positive value of T .

5. A female client is more likely to visit frequently, but remain in the system for a shorter period

of time.

6. The probability of exiting the system differs significantly according to ethnicity: African-

American clients are more likely to exit the system while the opposite is true for Puerto Rican

and Mexican clients.

7. Not surprisingly, clients who are more frequently near an SEP site (i.e., have larger values of

FBSA) are less likely to leave the system, are more likely to visit a site frequently, and overall

have longer sojourn times in the system.

Such observations from the model we fit may allow our SEP to tailor promotion of their services

to specific target populations. For example, the starkly different behavior of African-American

clients may warrant special attention from the SEP in early encounters, relative to PWID of other

ethnicities. Bean (1993) states that African-American drug users are less likely to inject drugs than

White drug users. However, among all clients, it is not clear why African Americans are less likely

to seek the syringe exchange services offered by our SEP. Investigating whether African Americans

are more likely to quickly abandon injection drug use, versus continue use but not seek SEP services,

would likely be needed to guide such strategies. Our results show that it would be beneficial to

increase the frequency of clients being in the service location area, and one possible solution is to
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increase the frequency of the mobile van service in certain locations to improve accessibility.

4.4.3 Model Validation via Simulation

The model of Section 4.3 quantifies client behavior. In this section, we perform statistical tests

and compare results of the simulation outputs with observed data in order to assess model validity.

We begin with further details on the implementation of the simulation model. We simulate

the arrival of clients to the SEP over 2,310 days, equivalent to the number of days that our SEP was

open between July 2005 and November 2014. We also simulate an initial 5,000 days as a warm-up

period, since our SEP was established more than 15 years before 2005. We assume SEP staff are

always available to serve a visiting client, there are no shortages of syringes or other resources that

would alter client behavior, and the location and operating schedule of storefronts and mobile vans

are fixed. In other words, we assume the nature of client visits is governed solely by the features of

the clients, in a manner consistent with historical data, and is not affected by service or resource

availability. This matches our understanding of the actual system, as we discuss in Section 4.2.

In our simulation of 7,310 days in total, for each day we first simulate the number of new clients

according to the negative binomial distribution. We assign features to these clients by drawing a

client at random, with replacement, from the list of 5,903 clients described in Section 4.2. Given

the features of a client, x, and the parameters, ρ, b, and g, obtained from model (4.11), we can

calculate the parameters of the CTMC, βi, γi, i “ 1, 2, and p, by:

βi “
m
ÿ

j“1

bi,jxj i “ 1, 2 (4.12a)

γi “
m
ÿ

j“1

gi,jxj i “ 1, 2 (4.12b)

p “
´

1` e´pρ0`
řm
j“1 ρjxjq

¯´1
. (4.12c)

With the CTMC built for every client, upon the arrival of a specific client, we simulate whether this

client exits the system using p from equation (4.12c). And, if the client does not exit the system,

we simulate the time of the next arrival using the β and γ values from equations (4.12a)-(4.12b).

After the warm-up period and simulating the 2,310 days of interest, we obtain summary statistics
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as outputs based on inter-arrival times, sojourn times, and number of visits of each client.

We perform statistical tests to assess the quality of our sub-models for initiation, reoccurring

visits, and termination. For initiation, we selected the negative binomial distribution for reasons

that we discuss in Section 4.3.1. Using a Pearson’s chi-squared goodness-of-fit test we obtain a p-

value of 0.250, suggesting that we should not reject the null hypothesis that the data are consistent

with the fit distribution. For comparison, we also fit other commonly used distributions (geometric,

binomial, uniform, Poisson, and hyper-geometric), and we performed the same goodness-of-fit tests.

None of those distributions had a p-value that exceeded a 0.05 level of significance.

For reoccurring visits, we compare the distribution of inter-arrival times obtained from the

simulation model with an exponential distribution with a mean of 67.50 days, which is the mean of

observed inter-arrival times. Figure 4.7 illustrates such a comparison. Results from the simulated

Coxian process are shown on the left, and those from the exponential distribution are on the

right, both in red. In addition, we plot actual observations in blue. The figure suggests that our

Coxian-based simulation model provides a better fit to the observed data.

(a) Coxian Inter-arrival Model (b) Exponential Inter-arrival Model

Figure 4.7: Part (a) of the figure shows the log-log relationship between frequency and the Coxian
inter-arrival time model. Part (b) shows the analogous relationship for the exponential inter-arrival
time model. In both subplots the (simulated) model values are shown with red dots and observed
data are shown with blue dots. The logarithms are base 10 and the underlying inter-arrival times
in days.

Since we do not directly observe whether a client has left the system, we test the right-censored

sojourn time of clients in the system. We run a Pearson’s chi-squared procedure to test the null
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Figure 4.8: The log-log (base 10) relationship between frequency and simulated sojourn time is
shown with red dots, and the same relationship between frequency and observed sojourn time is
shown with blue dots.

hypothesis that the simulated distribution is consistent with observed data. The p-value of the test

is 0.6262, which suggests that we should not reject the null hypothesis. Figure 4.8 suggests that

the simulated sojourn times from the simulation appear consistent with the observation data.

In addition to assessing the validity of our three sub-models, Table 4.4 suggests that our

simulation model can accurately capture demographic information such as ethnicity. The second

and the third columns represent new clients by ethnicity. These columns are, of course, very close

because we simply draw from the observed set of clients. The values help give a sense of variability

due to sampling. The two right-most columns are the percentage of visits to SEP sites based

on ethnicity. The consistency of these simulated values with observed percentages hinges on the

Coxian model accurately capturing ethnicity-based inter-arrival times and exits from the system.

For example, the simulation model captures well the lower values for African Americans, and larger

values for Puerto Ricans, relative to their rates of initiation in the system.
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Ethnicity Group
Initiation SEP Locations Visits

Observed Simulated Observed Simulated

White 51.58% 51.80% 47.53% 48.05%

African American 23.45% 23.66% 16.36% 15.99%

Puerto Rican 14.78% 14.21% 24.16% 23.62%

Mexican 6.17% 6.23% 7.64% 8.00%

Other Latino 1.22% 1.17% 1.14% 1.17%

Other 2.80% 2.93% 3.17% 3.16%

Table 4.4: Comparison of the observed percentage of number of clients for each ethnicity group,
the simulated percentage of number of clients for each ethnicity group, the observed percentage of
number of arrivals for each ethnicity group, and the simulated percentage of number of clients in
each ethnicity group

4.4.4 Guiding Active Intervention

Our simulation model can facilitate analysis to provide SEP staff with insights regarding:

(i) specific clients who are likely to enter a passive state or exit the system, and (ii) dispatch

policies for the mobile van. We discuss both of these in turn.

4.4.4.1 Simple Client-Specific Intervention

While not immediate from Table 4.3, our discrete-event simulation model can be used to

estimate that a 40-year old Puerto Rican male, with a history of using drugs for 21 years, who

injects heroin 10 times per day, wants treatment, uses syringes after others once every 30 days, and

frequents the area of an SEP site, has a 95% chance of having entered the passive state if he does

not visit a service location within 56 days, assuming he has not already terminated contact with

the SEP system. As a result, SEP staff could send a text message to such a client as a reminder if

he has not returned within two months.

4.4.4.2 Intervention with Mobile Van Dispatch

The value of actively reaching out to clients based on insights from our simulation model may

be further enhanced by mobile exchange of syringes. Here, we simulate mobile van dispatch, with

a personalized notification push, to show its potential to improve current SEP operations. The

corresponding simulation model has the following constructs and assumptions.
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Clients. We simulate the initiation and reoccurring visits of clients in the same way described

in Section 4.4.3 with the following exception: We assume that when a client exits the system, there

is a probability, denoted by pr, that the client is eligible to return to the system with active

intervention. We say that a client is at risk if they reuse syringes, either their own or the syringes

of another, and we note that 22.4% of our 5,903 clients are at risk.

Mobile van. We assume the SEP has one van, and each weekday the van is dispatched to

one of five ZIP codes. We further assume that any client that the SEP contacts within a five-mile

radius of that ZIP code is eligible to be served by the van. We selected the five ZIP codes by solving

a facility-location model, which maximizes coverage of at-risk clients. The van visits each of these

five ZIP codes in turn, Monday-Friday, each week over the simulation horizon.

Risky behavior. We assume only at-risk clients engage in risky behavior. And, we assume

an at-risk client does not engage in risky behavior if the client is in the CTMC’s active state, but

otherwise the client does exhibit risky behavior.

Intervention. The SEP cannot observe a client’s state or behavior, and hence intervention

decisions are made knowing the time since the client’s last visit and the client’s predictors. In

particular, γ1 is the rate associated with the exponential distribution governing the return time, if

the client is in the active state. We assume the SEP contacts a client if: (i) the time since the last

visit exceeds the 0.9-level quantile for the active state’s exponential return-time distribution, and

(ii) the client’s ZIP code is within five miles of the ZIP code the van is visiting that day.

Re-engaging a client. An intervention can be successful if the client is in the active state,

passive state, or has exited but is eligible to return (with probability pr). Among these clients, we

let ps denote the probability that a contacted client will visit the van, and hence re-engage with

the SEP. If a client ignores the notification, we assume the client stays in the same state: active,

passive, or exited. We further assume the SEP stops contacting a client after three notification

attempts have been ignored.

Using the simulation model, we compare active intervention with current SEP operations, and

we estimate the relative effectiveness by examining: (i) the number of additional arrivals to the

system, and (ii) the number of times an SEP intervention re-engages a client who would otherwise
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Figure 4.9: Histogram of the 90% client-specific quantile values for the return-time distributions
from the CTMC’s active state for the 5,903 surveyed clients.

be engaging in risky behavior. We estimate pr as follows. The 0.975-level quantile of the observed

inter-arrival time is 552 days, and we use this as a proxy for whether the client has exited the

system. We denote the number of inter-arrival times exceeding 552 days by Nr, and the number of

clients who have not visited any service location after 552 days by Ne. We estimate pr via:

pr “
Nr

Nr `Ne
.

With our data, Nr “ 1354 and Ne “ 4281, and so pr « 0.24. As we indicate above, we use the 0.9-

level quantile for client-specific return-time distributions from the active state to make intervention

decisions, and Figure 4.9 shows a histogram of these quantiles among the surveyed clients.

We run the simulation model under two different system designs: (i) with active intervention

via van dispatch and client notification, and (ii) without active intervention, approximating cur-

rent SEP operations. The results are shown in Table 4.5 as we parametrically vary the success

probability, ps. After the warm-up period of 5,000 days, the average number of daily arrivals in

the last 2,310 days has a mean of 24.6 and a 95% confidence interval halfwidth of 0.9. For each
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value of ps in the table, we run the simulation 20 times and present 95% confidence intervals. The

“Total” column under “No. of Interventions” shows the number of times over 2,310 days that a no-

tified client visited the mobile van, and the “Risky” column indicates the subset of those successful

interventions involving at-risk clients in the passive or exited state.

ps
Average Daily No. of Interventions

Arrivals Risky Total

0 24.6˘ 0.9 0 0

0.01 27.1˘ 0.9 79.1˘ 16.4 398.3˘ 37.3

0.03 28.2˘ 1.0 254.5˘ 38.4 1251.6˘ 86.2

0.05 29.7˘ 0.9 439.1˘ 54.0 2171.9˘ 117.7

0.07 31.0˘ 1.1 641.5˘ 66.4 3173.0˘ 162.4

0.09 32.4˘ 1.1 852.3˘ 95.9 4235.3˘ 217.8

Table 4.5: Simulation results of nominal SEP operations (ps “ 0) and SEP with active intervention
via van dispatch and client notification. Here, ps denotes the success probability associated with
client notification, and the ˘ values represent 95% confidence interval half widths.

Under current SEP operations (ps “ 0q, we see about 56,800 client arrivals over the 2,310-day

horizon. Table 4.5 shows that a success probability of ps “ 0.05 leads to about one intervention

per day over that time horizon, i.e., less than 4% of the nominal total number of arrivals would

be the immediate result of an intervention. However, because a successful intervention leads to

a re-engaged client returning to the active state, we see a significant 20% growth of about five

arrivals per day relative to the ps “ 0 case. And, this corresponds to about one client per week who

stopped risky behavior because of the intervention. Having only one client per day visiting the van

may seem low, but a regularly scheduled van would also attract other clients not included in our

model. More importantly, a 20% growth in average daily arrivals would be a welcome improvement

countering some of the trends we point to in Section 4.2.2. We see these results as suggesting

that there is value in the SEP investigating an active intervention scheme similar to our example.

Moreover, our simulation model makes it possible to exploit the contextual nature of our model of

inter-arrival times to determine a personalized threshold for push notification.
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4.5 Conclusions

In this chapter, we examine the survey and transaction data of one major syringe exchange

service provider in the Chicago metropolitan area. We find there is a discrepancy between a slightly

decreasing trend in the number of client transactions with our SEP and an increasing number of

heroin users in Chicago and the United States. We also discover significant differences in the

behavior of clients in terms of how they engage with the SEP based on demographic attributes and

further personal characteristics. Based on our observations, we focus on producing personalized

predictions for clients that can aid the SEP in improving the system such as intervention initiatives

for clients with certain attributes.

Standard stochastic models, such as Poisson processes, fail to accurately capture the observed

inter-arrival process. Therefore, we formulate a CTMC-based simulation model to represent a

client’s path through the system. Our model consists of three sub-models: initiation, reoccurring

visits, and termination, with their parameters learned from linear and logistic regression models

integrated into the procedure by which we estimate the model’s parameters. With the aid of this

model, SEP staff and researchers can analyze the system parameters to draw useful conclusions for

groups with different traits, so that proper actions can be taken towards a specific target group,

or even the individual PWID. The quantitative model, combined with the personal interaction

with each client can inform SEP staff of timely intervention opportunities. Such personalized

recommendations may be particularly useful when the SEP faces challenges in tracking a large

number of clients. Our simulation model can also help SEP staff evaluate the effectiveness of

candidate initiatives.

In the future, our method can be enhanced by finding an algorithm to fit the parameters

for higher fidelity Markov chain models since our optimization model for parameter estimation

depends on the closed-form representation of the Coxian distribution. Other functional forms for

the predictive models can also be integrated into the fitting procedure. Optimization over the

location and route of the van can be investigated using our simulation platform. Further sensitivity

analysis can also be performed to evaluate other initiatives beyond dispatching the mobile van.
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Chapter 5

Conclusions

Stochastic disruptions can adversely affect many systems in a severe manner, but modeling them

via mathematical optimization has not been systematically studied in the past. This dissertation

focused on the case of a single disruption, and has developed a class of stochastic optimization

models—a stochastic mixed integer program in Chapter 2 and a robust optimization model with

convex recourse in Chapter 3—for stochastic disruptions. For the corresponding problems, the

dissertation presented enhanced decomposition algorithms based on cutting-plane methods, and

achieved superior computational performance compared to other state-of-the-art algorithms. The

research presented in this dissertation can find application in various fields, such as project man-

agement, energy systems, disaster relief coordination, and public health policy.

5.1 Research Contributions

Our specific contributions include the following:

• We have established a modeling framework and specific modeling concepts for sequential de-

cision problems under stochastic disruptions.

• We have developed a two-stage stochastic mixed integer program, in which the timing of the

stage is random, to model the project crashing problem under a single stochastic disruption.

We have showed that solutions to this model outperform alternatives, but is also NP-hard.

• We have proposed decomposition algorithms that sequentially tighten the linear programming
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relaxation in a cutting-plane process by refining partitions on continuous first-stage variables.

Convergence of our algorithm has been shown, and we have further shown the superior com-

putational performance of our algorithm compared to solving the extensive formulation.

• We have developed a two-stage robust optimization model with convex recourse for the ACOPF

problem under uncertainty, with a consideration of uncertainty from demand and renewable

energy generation.

• For the robust ACOPF model, we have presented a cutting-plane algorithm and proved that

it converges to an ε-feasible solution in a finite number of iterations. We have further provided

a scenario-generation algorithm that significantly improves the computational performance

compared to a naive implementation of the cutting-plane algorithm.

• We have examined the transaction and survey data of a syringe exchange program (SEP)

in Chicago between 2005 and 2014, and we have modeled the arrival process of a client with

three sub-models. Those sub-models integrate stochastic processes with regression and provide

insights on how the demographic features and drug-use behavior of clients can affect their

arrival frequency. We have tested the statistical validity of our model and presented an example

of how our model can assist active intervention initiatives for SEPs.

5.2 Future Work

There are several potential extensions of our optimization models under stochastic disruptions.

Higher-fidelity models and effective algorithms are required for future applications in real-world

problems. The development of our models and algorithms can also help improve optimization

problems with mixed integer decision variables in a more general setting. Specifically, we discuss

the potential development in the following two major areas:

• Multi-disruption models and algorithms:

The modeling framework presented in Section 1.2 shows the scenario tree of a sequential de-

cision problem under a single stochastic disruption. It is possible to extend the model to

incorporate more than one disruption. Suppose there are at most k disruptions during a fixed
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time horizon. The stochastic programming model becomes a pk`1q-stage problem and, under

appropriate convexity assumptions, stochastic dual dynamic programming method could be

used to solve such a model. However, there are more opportunities to share cuts between

nodes of the scenario tree in the same time period and the number of value functions that we

need to approximate is significantly smaller than the full multi-stage stochastic programming

model. An effective decomposition algorithm and further numerical tests will be valuable for

more pervasive use of our stochastic disruption model.

It is interesting to compare the computational performance, solution, and optimal value ob-

tained from such a multi-disruption model and those from a full multi-stage stochastic pro-

gramming model. Similar to the work in Section 2.6, evaluating the policy generated by

alternative models against established probabilistic models of certain types of disruptions is

important to further justify the value of modeling disruptions.

The multi-disruption model can be applied to the operation of an electricity distribution system

under stochastic contingencies. A contingency, such as an outage of a line or a transformer, can

occur at a random time, and take a random period of time to fix. Assuming that the number

of such contingencies is limited, we can combine the results from Chapter 2 and Chapter 3 to

formulate a multi-stage convex program.

• Identification of important disruption scenarios:

As stated in Chapter 3, a scenario-appending algorithm can be effective when solving a robust

optimization problem with convex recourse. In this dissertation, we either solve the recourse

problem at every extreme point of the uncertainty set or solve an MISOCP, and select the

most violated scenario to append to the master problem. There would be value in work

to identify such “most violated” scenarios efficiently without solving complex optimization

problems. Identifying such scenarios without heavy computational costs could also benefit a

solution method for the multi-disruption model.
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A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Mathematical programming, 106(1):25–57, 2006.

W. Wiesemann, D. Kuhn, and B. Rustem. Robust resource allocations in temporal networks. Mathematical

Programming, 135(1):437–471, 2012.

W. Xie and S. Ahmed. Distributionally robust chance constrained optimal power flow with renewables: A

conic reformulation. IEEE Transactions on Power Systems, 33(2):1860–1867, 2018.

G. Yu and X. Qi. Disruption Management: Framework, Models and Applications. World Scientific, 2004.

L. Zhao and B. Zeng. An exact algorithm for two-stage robust optimization with mixed integer recourse

problems. Technical report, University of Florida, 2012.

J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming. Optimization-Online,

2016. URL http://www.optimization-online.org/DB_FILE/2016/05/5436.pdf.

M. Zugno and A. J. Conejo. A robust optimization approach to energy and reserve dispatch in electricity

markets. European Journal of Operational Research, 247(2):659–671, 2015.

http://www.optimization-online.org/DB_FILE/2009/03/2263.pdf
http://www.optimization-online.org/DB_FILE/2016/05/5436.pdf


139

Appendix A

Appendices for Chapter 2

A.1 Test Cases Data

We present the data of four test cases here. For all test cases we assume there is only one

possible crashing option for each activity. The option consumes 1 unit of resource and has the

effectiveness parameter of ei1 “ 0.5 for all i P I. The nominal scenario probability is p0 “ 0.1 and

pω “ 1´p0

|Ω| . The timing of the disruption follows a lognormal distribution with parameters µ and σ

where the mode is eµ´σ
2
. We also assume that the duration only depends on the predecessor, i.e.,

Dik “ Di and dωik “ dωi . All di follow an exponential distribution with a mean of µi. The value of

Di and µi are shown in the following tables.
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• Case 11: B “ 3, µ “ ln 6, σ “ 0.5

Figure A.1: Activity network of Case 11

Activity Di λi Activity Di λi

1 10 10´5 7 7.3 1

2 2 4 8 4.9 50

3 10 2 9 11.1 40

4 12 30 10 3.5 40

5 3 1500 11 9.9 5

6 10 1

Table A.1: Activity duration Di and the mean of disruption magnitude λi for Case 11
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• Case 14: B “ 4, µ “ ln 35, σ “ 0.5

Figure A.2: Activity network of Case 14

Activity Di λi Activity Di λi

1 5 10´5 8 49 4000

2 30 5 9 40 4000

3 25 40000 10 30 3000

4 20 40000 11 45 4000

5 15 1500 12 25 5

6 24 20000 13 21 5

7 30 20000 14 5 5

Table A.2: Activity duration Di and the mean of disruption magnitude λi for Case 14
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• Case 19: B “ 4, µ “ ln 8, σ “ 0.5

Figure A.3: Activity network of Case 19

Activity Di λi Activity Di λi

1 5 10 11 6 400

2 10 100 12 4.5 300

3 18 300 13 12 1000

4 35 300 14 1.5 10

5 6 50 15 2.1 200

6 6 50 16 8.1 2

7 2.5 400 17 6.1 100

8 8 20 18 0.001 40

9 10 1000 19 0.001 300

10 1 50

Table A.3: Activity duration Di and the mean of disruption magnitude λi for Case 19
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• Case 35: B “ 8, µ “ ln 4, σ “ 0.3

Figure A.4: Activity network of Case 35
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Activity Di λi Activity Di λi

1 9 10 19 8 10

2 7 40 20 8 500

3 3 30 21 1 500

4 4 100 22 5 500

5 6 50 23 2 10

6 3 10 24 7 10

7 10 10 25 1 300

8 4 20 26 4 400

9 3 10 27 3 200

10 6 1000 28 4 1000

11 9 10 29 10 300

12 8 500 30 7 500

13 5 200 31 2 200

14 2 10 32 9 100

15 5 400 33 7 100

16 2 10 34 1 100

17 10 10 35 7 200

18 4 2000

Table A.4: Activity duration Di and the mean of disruption magnitude λi for Case 35
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Appendix B

Appendices for Chapter 3

B.1 Grouping Buses

To construct the uncertainty set U , we solve a facility location problem for each test case to

cluster the buses. That is, while we solve the test instances with the full resolution of network

topology, as indicated in equation (3.1c), uncertain injections at buses occur in concert within a

cluster. We assume the distance between two directly connected buses is 1, and more generally,

the distance between two buses is the length of the shortest path (counted in hops) between them.

We select a total of |M| “ 5 buses to be the “facilities” and assign each bus to a facility. All buses

that are assigned to a facility are considered a cluster, i.e., elements of Nm.

The detailed formulation is expressed as follows:

Indices and index sets

i P N set of buses;

Ji Ď N set of buses eligible to be associated with bus i, i P N ;

Parameters

dij distance between bus i and j, i, j P N ;

N number of facilities (|M|);
Decision variables

xij indicator of whether bus i is assigned to bus j, i, j P N ;

yi indicator of whether bus i is selected as a facility, i P N .
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Facility Location Problem:

min
ÿ

iPN

ÿ

jPJi

dijxij (B.1a)

s.t.
ÿ

jPJi

xij “ 1 @i P N (B.1b)

ÿ

iPN
yi “ N (B.1c)

xij P t0, 1u @i P N , j P Ji (B.1d)

yi P t0, 1u @i P N . (B.1e)

To facilitate computational tractability, we control the size of Ji via a distance threshold so that

we can only assign one bus to another if their distance is within the threshold. The clusters formed

by model (B.1) define the sets M and Nm used in equation (3.1c) to construct U as described at

the beginning of Section 3.2.

In addition to clustering buses, we distinguish uncertainty in load and in renewable generation

as described in Section 3.4.1.1. The latter occurs only at a subset of buses, denote NG, and we

now describe construction of this set. Once clusters are formed, we select the two buses in each

cluster that have the largest capacity, defined by the sum of the capacities of the incident lines. If

the cluster is a singleton, then only that bus is selected, and the process for other clusters remains

the same. The buses selected in this way form set NG.

B.2 QC Relaxation

We use the quadratic convex (QC) relaxation from Coffrin et al. (2016). Nonconvex functions

in the ACOPF problem, such as quadratic, cosine and sine functions are transformed into a collec-

tion of second-order cone constraints and linear constraints. A McCormick relaxation is applied to

linearize multi-linear terms. We also assume the difference in phase angles at adjacent buses i and

j satisfies ´π
6 ď ∆k ď θi ´ σk ´ θj ď ∆̄k ď

π
6 . The detailed formulation of the QC relaxation is

expressed as follows:

Indices and index sets

i P N set of buses;

k “ pi, j, nq P A set of lines;
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g P G set of generators;

g P Gi set of generators that are connected to bus i P N ;

Parameters

upi uncontrollable active power injection at bus i P N ;

uqi uncontrollable reactive power injection at bus i P N ;

spg, s̄
p
g lower and upper bound of active power generation by generator g, g P G;

sqg, s̄
q
g lower and upper bound of reactive power generation by generator g, g P G;

vi, v̄i lower and upper bound of voltage magnitude at bus i, i P N ;

θi, θ̄i lower and upper bound of phase angle at bus i P N ;

∆k, ∆̄k lower and upper bound of phase angle difference of adjacent buses

on line k P A;

csk, c̄sk lower and upper bound of cosine of phase angle difference of

adjacent buses on line k P A;

ssk, s̄sk lower and upper bound of sine of phase angle difference of

adjacent buses on line k P A;

gk conductance of line k, k P A;

bk susceptance of line k, k P A;

bck charging susceptance of line k, k P A;

gshi shunt conductance of bus i, i P N ;

bshi shunt susceptance of bus i, i P N ;

Wk maximum apparent power flow on line k, k P A;

τ1,k tap ratio of transformer at bus i on line k, k P A;

τ2,k tap ratio of transformer at bus j on line k, k P A;

σk phase angle shift of transformer on line k, k P A;

θuk upper bound of absolute value of phase angle difference

of line k, k P A, θuk “ maxp|∆̄k|, |∆k|q;

vδi sum of lower and upper bound of voltage magnitude at bus i, i P N ,

vδi “ v̄i ` vi;

θφk mid-point of range of difference in phase angles on line k, k P A,

θφk “
p∆̄k`∆kq

2 ;

θδk range of difference in phase angles on line k, k P A, θδk “
p∆̄k´∆kq

2 ;

Decision variables

spg active power generation at generator g, g P G;

sqg reactive power generation at generator g, g P G;

vi voltage magnitude at bus i, i P N ;
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θi phase angle at bus i, i P N ;

Pk active power flow on line k, k P A;

Qk reactive power flow on line k, k P A;

pcsk approximation term of cospθi ´ σk ´ θjq, k “ pi, j, nq P A;

pssk approximation term of sinpθi ´ σk ´ θjq, k “ pi, j, nq P A;

v̂i approximation term of v2
i , i P N ;

xvvk approximation term of
vivj

τ1,kτ2,k
, k “ pi, j, nq P A;

xwck approximation term of
vivj

τ1,kτ2,k
cospθi ´ σk ´ θjq, k “ pi, j, nq P A;

xwsk approximation term of
vivj

τ1,kτ2,k
sinpθi ´ σk ´ θjq, k “ pi, j, nq P A.

Formulation:

min cpsp, sqq (B.2a)

s.t. vi ď vi ď v̄i @i P N (B.2b)

∆k ď θi ´ σk ´ θj ď ∆̄k @k “ pi, j, nq P A (B.2c)

θi ď θi ď θ̄i @i P N (B.2d)

csk ď pcsk ď c̄sk @k “ pi, j, nq P A (B.2e)

ssk ď pssk ď s̄sk @k “ pi, j, nq P A (B.2f)

spg ď spg ď s̄pg @g P G (B.2g)

sqg ď sqg ď s̄qg @g P G (B.2h)

Pk “ gk
v̂i

pτ1,kq
2
´ gk

xwck
τ1,kτ2,k

´ bk
xwsk

τ1,kτ2,k
@k “ pi, j, nq P A (B.2i)

Qk “ ´pbk `
bck
2
q

v̂i
pτ1,kq

2
` bk

xwck
τ1,kτ2,k

´ gk
xwsk

τ1,kτ2,k
@k “ pi, j, nq P A (B.2j)

P 2
k `Q

2
k ďW 2

k @k P A (B.2k)
ÿ

k“pi,j,nqPA
Pk ` g

sh
i v̂i “

ÿ

gPGi

spg ` u
p
i @i P N (B.2l)

ÿ

k“pi,j,nqPA
Qk ´ b

sh
i v̂i “

ÿ

gPGi

sqg ` u
q
i @i P N (B.2m)

xvv2
k ď

v̂i
τ2

1,k

v̂j
τ2

2,k

@k “ pi, j, nq P A (B.2n)

pcsk `
1´ cos pθuk q

`

θuk
˘2 pθi ´ σk ´ θjq

2 ď 1 @k “ pi, j, nq P A (B.2o)

pcsk ě
cos

`

∆̄k

˘

´ cos p∆kq

∆̄k ´∆k

pθi ´ σk ´ θj ´∆kq ` cos p∆kq @k “ pi, j, nq P A (B.2p)

pssk ´ cos

ˆ

θuk
2

˙

pθi ´ σk ´ θjq ď sin

ˆ

θuk
2

˙

´
θuk
2

cos

ˆ

θuk
2

˙

@k “ pi, j, nq P A (B.2q)
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´ pssk ` cos

ˆ

θuk
2

˙

pθi ´ σk ´ θjq ď sin

ˆ

θuk
2

˙

´
θuk
2

cos

ˆ

θuk
2

˙

@k “ pi, j, nq P A (B.2r)

v2
i ´ v̂i ď 0 @i P N (B.2s)

v̂i ´ pv̄i ` viqvi ď ´v̄ivi @i P N (B.2t)

xvvk ě
vi
τ1,k

vj
τ2,k

`
vj
τ2,k

vi
τ1,k

´
vi
τ1,k

vj
τ2,k

@k “ pi, j, nq P A (B.2u)

xvvk ě
v̄i
τ1,k

vj
τ2,k

`
v̄j
τ2,k

vi
τ1,k

´
v̄i
τ1,k

v̄j
τ2,k

@k “ pi, j, nq P A (B.2v)

xvvk ď
vi
τ1,k

vj
τ2,k

`
v̄j
τ2,k

vi
τ1,k

´
vi
τ1,k

v̄j
τ2,k

@k “ pi, j, nq P A (B.2w)

xvvk ď
v̄i
τ1,k

vj
τ2,k

`
vj
τ2,k

vi
τ1,k

´
v̄i
τ1,k

vj
τ2,k

@k “ pi, j, nq P A (B.2x)

xwck ě
vivj
τ1,kτ2,k

pcsk ` cskxvvk ´
vivj
τ1,kτ2,k

csk @k “ pi, j, nq P A (B.2y)

xwck ě
v̄iv̄j

τ1,kτ2,k
pcsk ` c̄skxvvk ´

v̄iv̄j
τ1,kτ2,k

c̄sk @k “ pi, j, nq P A (B.2z)

xwck ď
vivj
τ1,kτ2,k

pcsk ` c̄skxvvk ´
vivj
τ1,kτ2,k

c̄sk @k “ pi, j, nq P A (B.2aa)

xwck ď
v̄iv̄j

τ1,kτ2,k
pcsk ` cskxvvk ´

v̄iv̄j
τ1,kτ2,k

csk @k “ pi, j, nq P A (B.2ab)

xwsk ě
vivj
τ1,kτ2,k

pssk ` sskxvvk ´
vivj
τ1,kτ2,k

ssk @k “ pi, j, nq P A (B.2ac)

xwsk ě
v̄iv̄j

τ1,kτ2,k
pssk ` s̄skxvvk ´

v̄iv̄j
τ1,kτ2,k

s̄sk @k “ pi, j, nq P A (B.2ad)

xwsk ď
vivj
τ1,kτ2,k

pssk ` s̄skxvvk ´
vivj
τ1,kτ2,k

s̄sk @k “ pi, j, nq P A (B.2ae)

xwsk ď
v̄iv̄j

τ1,kτ2,k
pssk ` sskxvvk ´

v̄iv̄j
τ1,kτ2,k

ssk @k “ pi, j, nq P A (B.2af)

xwsk ´ tanp∆̄kqxwck ď 0 @k “ pi, j, nq P A (B.2ag)

xwsk ´ tanp∆kqxwck ě 0 @k “ pi, j, nq P A (B.2ah)

vδi v
δ
j

τ1,kτ2,k
pxwck cospθφk q ` xwsk sinpθφk qq ´

v̄j
τ2,k

cospθδkq
vδj
τ2,k

v̂i
τ2

1,k

´
v̄i
τ1,k

cospθδkq
vδi
τ1,k

v̂j
τ2

2,k

ě
v̄iv̄j

τ1,kτ2,k
cospθδkqp

vivj
τ1,kτ2,k

´
v̄iv̄j

τ1,kτ2,k
q @k “ pi, j, nq P A (B.2ai)

vδi v
δ
j

τ1,kτ2,k
pxwck cospθφk q ` xwsk sinpθφk qq ´

vj
τ2,k

cospθδkq
vδj
τ2,k

v̂i
τ2

1,k

´
vi
τ1,k

cospθδkq
vδi
τ1,k

v̂j
τ2

2,k

ě ´
vivj
τ1,kτ2,k

cospθδkqp
vivj
τ1,kτ2,k

´
v̄iv̄j

τ1,kτ2,k
q @k “ pi, j, nq P A (B.2aj)

pcsk “ pcsk̃ @k “ pi, j, nq P A (B.2ak)
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pssk “ ´ pssk̃ @k “ pi, j, nq P A (B.2al)

xwck “ xwck̃ @k “ pi, j, nq P A (B.2am)

xwsk “ ´xwsk̃ @k “ pi, j, nq P A (B.2an)

xvvk “xvvk̃ @k “ pi, j, nq P A. (B.2ao)

Constraints (B.2b)-(B.2f) are simple bounds for voltage magnitude, difference in phase angles, phase

angles and approximation terms for cospθi ´ σk ´ θjq and sinpθi ´ σk ´ θjq, respectively. Using the

bound tightening techniques in Coffrin et al. (2015a), we can derive the upper bounds and lower

bounds of cospθi ´ θjq and sinpθi ´ θjq as:

c̄sk “ cosp∆̄kq, csk “ cosp∆kq if ∆̄k ď 0

c̄sk “ cosp∆kq, csk “ cosp∆̄kq if ∆k ě 0

c̄sk “ 1, csk “ mintcosp∆kq, cosp∆̄kqu if ∆̄k ě 0 and ∆k ď 0,

and

s̄sk “ sinp∆̄kq

ssk “ sinp∆kq.

Constraints (B.2i) and (B.2j) are linearized versions of the power flow constraints in (3.3), and

constraint (B.2k) replicates (3.5b), while active and reactive power flow balance constraints (B.2l)

and (B.2m) replicate (3.4). Since we are modeling the deterministic ACOPF problem here, we do

not have the recourse freedom variables op,`, op,´, oq,`, oq,´ in this formulation. Constraint (B.2n)

represents the correct quantitative relationship between xvvk and v̂iv̂j , where xvv can be considered

as a relaxation of the bilinear term vivj . Constraint (B.2o)-(B.2t) are linear and convex quadratic

bounding approximations of cosine, sine and quadratic functions. For multi-linear terms, a Mc-

Cormick scheme is applied to relax vivj , vivj cospθi´ θjq and vivj sinpθi´ θjq in constraints (B.2u)-

(B.2af).

The model includes valid inequalities described in Coffrin et al. (2015b) to further tighten this

convex relaxation. One set of valid constraints uses the trigonometric relationship tanpθq “ sinpθq
cospθq to

build valid inequalities on xwc and xws as in (B.2ag) and (B.2ah), using the fact that xwc ě 0. Another
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set of valid constraints, constraints (B.2ai)-(B.2aj), is called a lifted nonlinear cut. See Coffrin et al.

(2015b) for a detailed derivation of the lifted nonlinear cut. Finally, we use constraints (B.2ak)-

(B.2an) to make sure variables describing the forward flow are consistent with those describing the

backward flow between the same pair of buses, where k̃ “ pj, i, nq represents the backward flow of

the flow k “ pi, j, nq.

B.3 Detailed Formulation of Model (3.14)

In this section we first expand the formulation of model (3.14), and then we explain the corre-

sponding relationship between the dual variables and the primal constraints in formulation (3.14)

and Appendix B.2.

max ´
ÿ

iPN

«

ÿ

gPGi

`

ŝpgλ
p
i ` ŝ

q
gλ

q
i

˘

` pūpi ´ u
p,0
i qpr

p,`
i ` ζ`i r

op,`q`

pup,´i ´ up,0i qpr
p,´
i ` ζ´i r

op,´q ` pūqi ´ u
q,0
i qpr

q,`
i ` ζ`i r

oq,`q`

puq,´i ´ uq,0i qpr
q,´
i ` ζ`i r

oq,´q ` up,0i λpi ` u
q,0
i λqi ´

1

4
µ4,i2 `

1

4
ν4,i`

v̄iλ
vu
i ` viλ

vl
i ` ō

p
iλ

op,´
i ` ōqiλ

oq,´
i ` v̄iviλ

v
i ` λ

op
i pō

p
i ` h

p
i q ` λ

oq
i pō

q
i ` h

q
i q

ı

´

ÿ

kPA
Wkν1,k ´

ÿ

k“pi,j,nqPA

«

´
3

4
µ3,k2 `

5

4
ν3,k ´

d

1´ cos θuk
pθuk q

2
µ3,k1`

c̄skλ
cs1
k ` cskλ

cs2
k ` s̄skλ

ss1
k ` sskλ

ss2
k ` p∆̄k ` σkqλ

θ1
k ` p∆k ` σkqλ

θ2
k `

ˆ

cos ∆k ´
cos ∆̄k ´ cos ∆k

∆̄k ´∆k

p∆k ` σkq

˙

λcs3k `

ˆ

sin
θuk
2
´
θuk
2

cos
θuk
2

˙

pλss3k ´ λss4k q´

vivj
τ1,kτ2,k

λvv1
k ´

v̄iv̄j
τ1,kτ2,k

λvv2
k ´

viv̄j
τ1,kτ2,k

λvv3
k ´

v̄ivj
τ1,kτ2,k

λvv4
k `

v̄iv̄j
τ1,kτ2,k

cos θδkp
vivj
τ1,kτ2,k

´
v̄iv̄j

τ1,kτ2,k
qλlnc1k ´

vivj
τ1,kτ2,k

cos θδkp
vivj
τ1,kτ2,k

´
v̄iv̄j

τ1,kτ2,k
qλlnc2k ´

csk
vivj
τ1,kτ2,k

λwc1k ´ c̄sk
v̄iv̄j

τ1,kτ2,k
λwc2k ´ c̄sk

vivj
τ1,kτ2,k

λwc3k ´ csk
v̄iv̄j

τ1,kτ2,k
λwc4k ´

ssk
vivj
τ1,kτ2,k

λws1k ´ s̄sk
v̄iv̄j

τ1,kτ2,k
λws2k ´ s̄sk

vivj
τ1,kτ2,k

λws3k ´ ssk
v̄iv̄j

τ1,kτ2,k
λws4k

ff

(B.3a)

s.t. λptk ´ µ1,k1 ` λ
p
i “ 0 @k “ pi, j, nq P A (B.3b)

λqtk ´ µ1,k2 ` λ
q
i “ 0 @k “ pi, j, nq P A (B.3c)

}µ1,k} ď ν1,k @k P A (B.3d)
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}µ2,k} ď ν2,k @k P A (B.3e)

}µ3,k} ď ν3,k @k P A (B.3f)

}µ4,i} ď ν4,i @i P N (B.3g)

´
ÿ

k“pi,j,nqPA

ˆ

vj
τ1,kτ2,k

λvv1
k `

v̄j
τ1,kτ2,k

λvv2
k `

v̄j
τ1,kτ2,k

λvv3
k `

vj
τ1,kτ2,k

λvv4
k

˙

´

ÿ

k“pj,i,nqPA

ˆ

vj
τ1,kτ2,k

λvv1
k `

v̄j
τ1,kτ2,k

λvv2
k `

vj
τ1,kτ2,k

λvv3
k `

v̄j
τ1,kτ2,k

λvv4
k

˙

´

µ4,i1 ´ pv̄i ` viqλ
v
i ` λ

vu
i ` λvli “ 0 @i P N (B.3h)

ÿ

k“pi,j,nqPA

«

´gk
λptk
τ2

1,k

` pbk `
bck
2
q
λqtk
τ2

2,k

ff

´ µ4,i2 ´ ν4,i ` λ
v
i ` λ

p
i g
sh
i ´ λqi b

sh
i ´

ÿ

k“pi,j,nqPA

«

µ2,k2

τ2
1,k

?
2
`

ν2,k

τ2
1,k

?
2
` cos θδk

vδj
τ2,k

˜

v̄j
τ2,k

λlnc1k

τ2
1,k

`
vj
τ2,k

λlnc2k

τ2
1,k

¸ff

´

ÿ

k“pj,i,nqPA

«

µ2,k3

τ2
2,k

?
2
`

ν2,k

τ2
2,k

?
2
` cos θδk

vδj
τ1,k

˜

v̄j
τ1,k

λlnc1k

τ2
2,k

`
vj
τ1,k

λlnc2k

τ2
2,k

¸ff

“ 0 @i P N (B.3i)

λvv1
k ` λvv2

k ` λvv3
k ` λvv4

k ` λvvek ´ λvve
k̃
´ µ2,k1 ´ cskλ

wc1
k ´ c̄skλ

wc2
k ´

c̄skλ
wc3
k ´ cskλ

wc4
k ´ sskλ

ws1
k ´ s̄skλ

ws2
k ´ s̄skλ

ws3
k ´ sskλ

ws4
k “ 0 @k P A (B.3j)

gkλ
pt
k ´ bkλ

qt
k ´ tan ∆̄kλ

tan 1
k ´ tan ∆kλ

tan 2
k ` λwc1k ` λwc2k ` λwc3k ` λwc4k `

λwcek ´ λwce
k̃
`

vδi v
δ
j

τ1,kτ2,k
cos θφk pλ

lnc1
k ` λlnc2k q “ 0 @k P A (B.3k)

bkλ
pt
k ` gkλ

qt
k ` λ

ws1
k ` λws2k ` λws3k ` λws4k ` λwsek ` λwse

k̃
`

λtan 1
k ` λtan 2

k `
vδi v

δ
j

τ1,kτ2,k
sin θφk pλ

lnc1
k ` λlnc2k q “ 0 @k P A (B.3l)

´
vivj
τ1,kτ2,k

λwc1k ´
v̄iv̄j

τ1,kτ2,k
λwc2k ´

vivj
τ1,kτ2,k

λwc3k ´
v̄iv̄j

τ1,kτ2,k
λwc4k `

λcs1k ` λcs2k ` λcs3k ´ µ3,k2 ` ν3,k ` λ
cse
k ´ λcse

k̃
“ 0 @k “ pi, j, nq P A (B.3m)

´
vivj
τ1,kτ2,k

λws1k ´
v̄iv̄j

τ1,kτ2,k
λws2k ´

vivj
τ1,kτ2,k

λws3k ´
v̄iv̄j

τ1,kτ2,k
λws4k `

λss1k ` λss2k ` λss3k ` λss4k ` λssek ` λsse
k̃
“ 0 @k “ pi, j, nq P A (B.3n)

ÿ

k“pi,j,nqPA

ˆ

λθ1k ` λ
θ2
k ´

cos ∆̄k ´ cos ∆k

∆̄k ´∆k

λcs3k ´ cos
θuk
2
pλss3k ` λss4k q´

d

1´ cos θuk
θuk

µ3,k1

¸

`
ÿ

k“pj,i,nqPA

ˆ

´λθ1k ´ λ
θ2
k `

cos ∆̄k ´ cos ∆k

∆̄k ´∆k

λcs3k `
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cos
θuk
2
pλss3k ` λss4k q `

d

1´ cos θuk
θuk

µ3,k1

¸

“ 0 @i P N (B.3o)

λop,´i ě λpi @i P N (B.3p)

λopi ě ´λ
p
i @i P N (B.3q)

λoq,´i ě λqi @i P N (B.3r)

λoqi ě ´λ
q
i @i P N (B.3s)

´ y`m ď rp,`i ď y`m @m PM, i P Nm (B.3t)

´ y´m ď rp,´i ď y´m @m PM, i P Nm (B.3u)

´ y`m ď rq,`i ď y`m @m PM, i P Nm (B.3v)

´ y´m ď rq,´i ď y´m @m PM, i P Nm (B.3w)

λpi ´ 1` y`m ď rp,`i ď λpi ` 1´ y`m @m PM, i P Nm (B.3x)

λpi ´ 1` y´m ď rp,´i ď λpi ` 1´ y´m @m PM, i P Nm (B.3y)

λqi ´ 1` y`m ď rq,`i ď λqi ` 1´ y`m @m PM, i P Nm (B.3z)

λqi ´ 1` y´m ď rq,´i ď λqi ` 1´ y´m @m PM, i P Nm (B.3aa)

´ y`m ď rop,`i ď y`m @m PM, i P Nm (B.3ab)

´ y´m ď rop,´i ď y´m @m PM, i P Nm (B.3ac)

´ y`m ď roq,`i ď y`m @m PM, i P Nm (B.3ad)

´ y´m ď roq,´i ď y´m @m PM, i P Nm (B.3ae)

λopi ´ 1` y`m ď rop,`i ď λopi ` 1´ y`m @m PM, i P Nm (B.3af)

λopi ´ 1` y´m ď rop,´i ď λopi ` 1´ y´m @m PM, i P Nm (B.3ag)

λoqi ´ 1` y`m ď roq,`i ď λoqi ` 1´ y`m @m PM, i P Nm (B.3ah)

λoqi ´ 1` y´m ď roq,´i ď λoqi ` 1´ y´m @m PM, i P Nm (B.3ai)

y`m ` y
´
m ď 1 @m PM (B.3aj)

ÿ

mPM

`

y`m ` y
´
m

˘

ď Γ (B.3ak)

´ 1 ď λp ď 1 (B.3al)

´ 1 ď λq ď 1 (B.3am)

λcs1, λss1, λss3, λv, λvu, λθ1, λvv3, λvv4, λwc3, λwc4, λws3, λws4 ě 0 (B.3an)

λop, λoq, λop,´, λoq,´, λtan 1, ν1, ν2, ν3, ν4 ě 0 (B.3ao)

λvl, λcs2, λcs3, λss2, λss4, λθ2, λvv1, λvv2, λwc1, λwc2, λws1, λws2, λtan 2, λlnc1, λlnc2 ď 0 (B.3ap)

y`, y´ P t0, 1u|M|. (B.3aq)
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The formulation above is an exact form of problem (3.14). In this formulation, λpt and

λqt are the dual variables of line transmission constraints (B.2i) and (B.2j), while λp and λq are

the dual variables of the equivalent constraints of flow balance constraints (B.2l) and (B.2m) in

problem (3.14). For approximation of function cos and sin, we use λcs1, λcs2, λss1 and λss2 to

represent the dual variables of the upper bound and the lower bound of pcs and pss respectively, and

λcs3, λss3 and λss4 for constraints (B.2p)-(B.2r). Dual variables λv correspond to constraint (B.2t).

We denote the dual variables for the recourse freedom bounds as λop,´, λoq,´, λop and λoq.

We use λvv1-λvv4, λwc1-λwc4, λws1-λws4 as the dual variables of McCormick relaxation con-

straints (B.2u)-(B.2af). The dual variables λtan 1 and λtan 2 correspond to the tangent tight-

ening constraints (B.2ag) and (B.2ah), and λlnc1 and λlnc2 correspond to the lifted nonlinear

cuts (B.2ai) and (B.2aj). For variable equality enforcement constraints (B.2ak)-(B.2ao), we use

λcse, λsse, λwce, λwse and λvve as their dual variables. The remaining SOCP constraints (B.2k),

(B.2n), (B.2o) are (B.2s) have their dual variables as pµ1, ν1q, pµ2, ν2q, pµ3, ν3q and pµ4, ν4q, re-

spectively. Notice that those SOCP constraints can be rewritten in a standard form for duality

derivation:

}pPk, Qkq}2 ďWk @k P A
›

›

›

›

›

˜

xvvk,
v̂i

τ2
1,k

?
2
,

v̂j

τ2
2,k

?
2

¸›

›

›

›

›

2

ď
v̂i{τ

2
1,k ` v̂j{τ

2
2,k

?
2

@k “ pi, j, nq P A
›

›

›

›

›

˜d

1´ cos θuk
θuk

2 pθi ´ σk ´ θjq, pcsk ´
3

4

¸›

›

›

›

›

2

ď
5

4
´ pcsk @k “ pi, j, nq P A

›

›

›

›

ˆ

vi, v̂i ´
1

4

˙
›

›

›

›

2

ď v̂i `
1

4
@i P N ,

which means that µ1,k, µ2,k, µ3,k and µ4,i are vectors with cardinality 2, 3, 2 and 2, respectively,

while ν1,k, ν2,k, ν3,k and ν4,i are scalars. The dual SOCP constraints are formed as (B.3d)-(B.3g).

With the dual variables established, we build constraint (B.3b) for the primal variable P ,

(B.3c) for Q, (B.3h) for v, (B.3i) for v̂, (B.3j) for xvv, (B.3k) for xwc, (B.3l) for xws, (B.3m) for pcs,

(B.3n) for pss, and (B.3o) for θ. Constraints (B.3p)-(B.3s) characterize the dual constraints for

primal variables op,`, op,´, oq,` and oq,´. Constraints (B.3t)-(B.3ai) are the direct replicate of the



155

linearization constraints of bilinear terms in problem (3.14). Constraints (B.3aj) guarantees that

for each bus the uncontrollable injection can be either at the nominal value or at one of the bounds.

Constraint (B.3ak) is the budget constraint.

B.4 Bound Tightening Process

Coffrin et al. (2015a,b) introduce a bound tightening process for the QC relaxation involving

the bounds that appear in constraints (3.6f) and (3.6h). A new variable, θdk, is created to represent

the phase angle difference between two buses of the line k “ pi, j, nq P A, and appended to x. The

constraints defining θdk, θ
d
k “ θi ´ θj , are included in the general form linear constraints Ax ď b.

The process iteratively updates the bounds vi “ vi or v̄i at bus i P N and the phase angle difference

θdk “ ∆k or ∆̄k of line k “ pi, j, nq P A, by a set of QC relaxation problems with the objective

function substituted by vi, @i P N or θdk, @k “ pi, j, nq P A:

min
s,x,u

or max
s,x,u

xloc (B.4a)

s.t. s ď s ď s̄ (B.4b)

Ax ď b (B.4c)

}Bix` ai}2 ď eJi x` fi @i “ 1, . . . ,mc (B.4d)

Apx “ Dsp ` up (B.4e)

Aqx “ Dsq ` uq (B.4f)

Aopx ď ōp ` p1` αh,`qhp (B.4g)

Aoqx ď ōq ` p1` αh,`qhq (B.4h)

up ď up ď ūp (B.4i)

uq ď uq ď ūq. (B.4j)

In this formulation we treat uncertain uncontrollable injections as decision variables so that the

resulting upper and lower bounds are valid for all pup, uqq where up ď up ď ūp and uq ď uq ď ūq,

hence for all u P U . In the objective function the subscript loc references the position of vi or
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Test Case Runtime (sec.)

Case 5 1.8
Case 9 3.6
Case 14 8.0
Case 30 29.2
Case 118 809.3
Case 300 5759.0
Case 2383 61001.3
Case 2746 175095.7

Table B.3: Runtime results of the bound tightening process.

θdk in the decision vector x. The bounds are iteratively updated using the optimal solutions from

problem (B.4) for each vi and θdk. The process terminates when changes in the bounds are negligible.

We perform bound tightening as a preprocessing step prior to running optimization. We focus

on the bounds on vi and θdk because the tightness of our linear-quadratic relaxation for the sine

and cosine functions and that of the McCormick relaxation for the multi-linear terms depends on

the bounds of vi and θdk. As illustrated in Coffrin et al. (2015b), tightening these bounds tightens

the QC relaxation and allows for a tighter lower bound on the nonconvex ACOPF problem. We

employ bound tightening in all results reported in Section 3.4. We show the runtimes of the bound

tightening process for each test case but do not give detailed improvements from this process beyond

indicating here that the optimal values of instances of model (3.7) grow by 1-10% by tightening

these simple bounds.

B.5 Regularized Cutting-plane Algorithm

In this section we describe the regularized cutting-plane algorithm mentioned in Section 3.3.3.

Given a current incumbent solution, ŝ, we modify the master problem from model (3.10) by adding

a quadratic regularization term, as indicated in model (B.5). In general, the regularization term

prevents large changes in incumbent solutions between iterations, which can stabilize the algorithm

and encourage faster converge.

pMRq min cpsp, sqq `
ρ

2
}psp, sqq ´ pŝp, ŝqq}22 (B.5a)
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s.t. s ď s ď s̄ (B.5b)

´ λp,k
J
Dspi ´ λ

q,kJDsq ` zk ď 0 @k “ 1, 2, . . . (B.5c)

However, additional steps need to be taken to obtain a valid lower bound. When an ε-feasible

solution is reached, since the regularization term is appended to the master problem as shown

in (B.5), cpŝp, ŝqq may not be a lower bound on the optimal value of model (3.7). However, we can

solve the original master problem (3.10) with all the feasibility cuts (but without the regularization

term) to obtain a valid lower bound, V ˚. Although a valid lower bound is obtained, the solution

ps̃p, s̃qq of this non-regularized master problem may not be equal to pŝp, ŝqq, and it may not be

an ε-feasible solution. The algorithm needs to proceed until we obtain a ε-feasible solution from

solving the regularized master problem and the difference between V ˚ and cpŝp, ŝqq is negligible

(less than some tolerance η) so that we can approximate the lower bound value with the cost of

this ε-feasible solution. The modified algorithm is presented as Algorithm 4.

Algorithm 4 Regularized cutting-plane algorithm for model (3.7)

1: Let pMRq denote regularized master (B.5) and pMq denote non-regularized master (3.10); initialize
iteration number k :“ 1, tolerances ε, η ą 0, and regularization weight, ρ ą 0;

2: Solve pMRq and obtain solution pŝp,k, ŝq,kq and optimal value V ˚;
3: Solve pSDIq with pŝp, ŝqq “ pŝp,k, ŝq,kq and obtain solution pλp,k, λq,kq and optimal value zkfeas;

4: while zkfeas ą ε or UB´V ˚

V ˚ ą η do

5: Append zkfeas ´ λ
p,kJDpsp ´ ŝp,kq ´ λq,k

J
Dpsq ´ ŝq,kq ď 0 to constraints (B.5c) of pMRq, (3.10c) of

pMq;
6: Let k :“ k ` 1;
7: Solve pMRq and obtain solution pŝp,k, ŝq,kq;
8: if pMRq is feasible then
9: Solve pSDIq with pŝp, ŝqq “ pŝp,k, ŝq,kq and obtain solution pλp,k, λq,kq and optimal value zkfeas;

10: if zkfeas ď ε then

11: Obtain optimal value UB “ cpŝp,k, ŝq,kq;
12: Solve pMq and obtain solution ps̃p, s̃qq and optimal value V ˚;
13: Solve pSDIq with pŝp, ŝqq “ ps̃p, s̃qq and obtain solution pλp,k, λq,kq and optimal value zkfeas;

14: else
15: Stop and return the status of infeasibility;

end while
16: Output V ˚ as lower bound on optimal value of model (3.7), and output pŝp,k, ŝq,kq as an ε-feasible

solution.

Table B.4 compares the computational performance of Algorithms 3 and 4 on Cases 118
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and 300 with ρ “ 0.1, 1, 10 and η “ 10´4. It takes more than 300 iterations for Algorithm 3 to

reach an ε-feasible solution, with both the violation and the lower bound improving slowly. We

can see that adding a regularization term may decrease the number of iterations to convergence,

but the average time for each iteration increases as ρ increases. To understand this effect, we plot

Parameters
No. of iterations ε-feasibility achieved Time (sec.)

Case 118 Case 300 Case 118 Case 300 Case 118 Case 300

ρ “ 0 300 300 No No 2414 23042
ρ “ 0.1 300 300 No No 2640 30480
ρ “ 1 178 300 Yes No 2114 33950
ρ “ 10 300 226 No Yes 4292 27757

Table B.4: Computational results for solving instances of model (3.7) for Cases 118 and 300 with
Algorithms 3 and 4 with Γ “ 3 and with a limit of 300 iterations.

the violation (in base-10 log scale) and lower bound as a function of the iteration for Case 118 in

Figure B.1. The red dots represent the value of UB corresponding to the ε-feasible solutions from

running Algorithm 4. Without regularization, the master solution in the next iteration tends to

move far from the incumbent solution. The corresponding cuts provide a global characterization of

the feasible region, but it takes a long time to generate enough cuts to obtain an ε-feasible solution.

On the other hand, the regularized algorithm tends to generate cuts within a local area, as the new

probing solution is close to the incumbent and moves quickly towards the feasible region. It takes

longer to solve pSDIq at a solution closer to the feasible region, which leads to a longer average

time per iteration for Algorithm 4.

Every time an ε-feasible solution is obtained, the non-regularized master problem pMq is solved

to generate a lower bound. If there is still a large enough gap between the cost of that solution and

the lower bound, the algorithm moves to the incumbent solution of pMq, which may lead to a large

feasibility violation. This explains the large spikes in the plots of ρ “ 1 and ρ “ 10 in Figure B.1.

The process between two spikes can be considered as exploitation of a local area. When ρ “ 10,

there are many spikes which indicates that the algorithm reaches an ε-feasible solutions frequently,

but in this case the cuts generated only characterize the feasible region locally, which eventually

requires many rounds of exploitation before convergence. Even with an appropriately chosen ρ, the

computational performance of Algorithm 4 is inferior to the scenario-appending technique presented
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Figure B.1: Computational performance of Algorithms 3 and 4 for Case 118 with ρ “ 0, 0.1, 1 and
10.

in Section 3.3.3.
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Appendix C

Appendices for Chapter 4

C.1 Covariates for the PWID Population

When a client initiation occurs in the simulation, we draw a client at random, with replace-

ment, from our dataset of 5,903 unique clients. In this appendix, we detail those attributes and

indicate the fraction of the population with each attribute.

Gender:

Male Female Transgender

0.6947 0.3049 0.0004

Ethnicity:

White African American Puerto Rican Mexican Other Latino Other

0.5158 0.2345 0.1478 0.0617 0.0122 0.0280

Snort before injection:

Yes No

0.3446 0.6554

Participation in shooting galleries:
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Yes No

0.0864 0.9136

Participation in treatment programs:

Currently in Been in Tried to get into Interested in

Yes 0.1011 0.1870 0.0923 0.4738

No 0.8989 0.8130 0.9077 0.5362

Drugs used in the past 30 days:

Speedball Heroin Cocaine Ritalin Heroin Other

Yes 0.0486 0.9582 0.0581 0.0005 0.0185

No 0.9514 0.0418 0.9419 0.9995 0.9815

Source of syringes:

Family Friends Acquaintance Strangers Other SEP Other

Yes 0.0586 0.2529 0.0530 0.0163 0.1360 0.6131

No 0.9414 0.7471 0.9470 0.9837 0.8640 0.3869

Reuse own syringes:

Yes No

0.1579 0.8521

Use syringes behind others:

Yes No

0.1972 0.8028

For each of the continuous factors, we present descriptive statistics and histograms of their distri-

butions. We use µ to denote the mean of the factor and σ to denote the standard deviation.

• Age: µ “ 34.79, σ “ 11.22;

• Age of clients at their first injection: µ “ 23.44, σ “ 7.86;
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Figure C.1: Distribution of the age of clients at their first injection

• Length of drug injection history: µ “ 11.36, σ “ 11.36;

Figure C.2: Distribution of the length of drug injection history

• Number of daily drug injections: µ “ 2.77, σ “ 1.87;
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Figure C.3: Distribution of the daily drug injections

• Number of times reusing own syringes in 30 days: µ “ 1.61, σ “ 6.15

Figure C.4: Distribution of the number of times reusing own syringes in 30 days

• Number of times using others’ used syringes in a 30 days: µ “ 0.34, σ “ 1.29
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Figure C.5: Distribution of the number of times using others’ used syringes in a 30 days

• Number of times visiting the area of service locations in 30 days: µ “ 23.88, σ “ 9.75

Figure C.6: Distribution of the number of times visiting the area of service locations in 30 days
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C.2 Statistical Significance Results of Fitted Parameters

We aim to test the significance of each fitted coefficient, by using a bootstrap resampling

scheme. We take 100 bootstrap replicates with the same size of the data. For each replicate, we

solve the nonlinear optimization model (4.11) and obtain a set of coefficients. Then we calculate

∆ and T , as the inter-arrival time change and the expected sojourn time change as described in

Section 4.4.2, for each replicate based on its fitted coefficients. We count how many of those 100

replicates of bi,j , gi,j , ρj , ∆j and Tj are positive. If a large portion of them, like 90%, is positive or

negative, then we can conclude that the parameter is significantly nonzero.

Each column in Table C.1 shows the number of samples, among 100 samples, of which the

fitted coefficient is positive. In addition to acronyms defined in the main text, FUSBO stands for

frequency of using syringes behind (i.e., after) others.
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Factor j ρj b1,j g1,j g2,j ∆ T

Snort 36 16 89 54 67 69

Gallery 100 7 57 77 88 1

From Other Locations 97 13 81 96 20 0

From Other SEP 1 96 7 59 13 98

From Family 68 55 45 27 73 40

From Friends 5 52 26 0 100 100

From Acquaintance 41 63 53 45 41 48

From Strangers 9 57 62 93 0 49

Speedball 19 1 91 4 100 99

Heroin 0 15 67 10 96 100

Cocaine 42 54 52 56 34 48

Ritalin Heroin 29 32 3 13 65 64

Other Drug 62 53 29 37 75 58

In Treatment 0 94 0 64 20 99

Been in Treatment 9 10 90 32 88 98

Attempted Treatment 41 30 83 7 95 84

Want Treatment 73 21 4 22 100 74

Female 45 77 17 93 8 7

Male 100 75 25 85 20 20

Transsexual 99 99 99 99 99 15

White 100 96 46 80 2 2

African American 100 19 30 64 70 2

Puerto Rican 0 60 99 68 12 100

Mexican 0 42 64 99 1 82

Other Latino 27 63 0 44 77 82

Other 10 82 12 43 50 91

Age 44 57 7 89 16 55

Age of First Drug Use 52 100 68 100 0 41

Drug Use Span 60 6 2 23 100 43

FUD 65 98 15 5 55 31

FROS 91 12 54 61 78 19

FUSBO 34 71 35 63 26 50

FBSA 0 51 100 99 0 100

Table C.1: Statistics of bootstrap samples for estimating coefficients ρ, b, and g, as well as changes
to the mean time to return to an SEP site, ∆, and the expected sojourn time in the system, T
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