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ABSTRACT

Quantitative Study of Granular Flow, Mixing, and Segregation Using the Discrete

Element Method (DEM)

Pengfei Chen

Granular materials exhibit a wide variety of fascinating physical properties that can

be observed both in nature and industry. The goal of this work is to better understand the

flow, mixing, and segregation of granular materials in a prototypical system, the rotating

tumbler, using numerical modeling, specifically, the Discrete Element Method (DEM).

Three topics are considered.

First, we study the subsurface flow field of mono-disperse particles in half-full cylin-

drical tumblers with different axial lengths: quasi-2D, as well as short and long tumblers.

Our results show that the flow field is significantly altered near endwall regions. Simula-

tions with longer tumblers or tumblers with one frictionless endwall clearly indicate that

this phenomenon is a direct result of endwall friction and that it extends less than one

tumbler radius (R) from the endwall. When frictional endwalls are closer than 2R, these

regions merge partially (for the short tumbler) or completely (for the quasi-2D tumbler).
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The onset mechanism of axial segregation in long cylindrical tumblers forms the second

aim of study. Particular attention is focused on the axial flow field of two species during

the development of axial segregation. Results show a small axial flow between segregation

bands, a result which was not reported before. The mechanism for axial segregation

is identified as arising from the non-uniform distribution of axial velocity and species

concentration on transverse planes.

The third topic is axial segregation in spherical tumblers which is examined both

experimentally and numerically. Two different patterns are observed: for low fill levels,

band of large particles appear at the equator; for high fill levels, the opposite occurs.

The fill level of the tumbler at which the transition occurs varies depending on particle

size and rotational speed of the tumbler. DEM simulations produce identical results and

particle trajectories indicates different flow performances of two species of particles in the

two reversed segregation patterns.
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CHAPTER 1

Introduction

Granular matter is a prototype for collective systems far from thermodynamic equi-

librium, and displays a variety of fascinating behaviors that have been observed in nature

and industrial processing. Although in recent decades there has been an increased fo-

cus on the study of the physics of flowing granular materials, this area is far from being

fully understood and at many levels the theoretical description of granular materials is

still in its infancy. One of the most intriguing properties of granular materials is the

tendency of the components in granular mixtures differing in the size or density to seg-

regate when undergoing flow, vibration, or shearing. Segregation is often undesirable in

industrial processing and has attracted much interest from the science and engineering

community. However, the onset mechanisms for granular segregation have only been in-

vestigated qualitatively and under limited circumstances. The goal of this research is to

provide a detailed quantitative analysis of granular flow, mixing, and segregation in long

rotating tumblers, a commonly used industrial apparatus for granular material process-

ing, as well as in spherical tumblers, which provide alternative endwall conditions. In this

chapter, elements of the physics of granular segregation and the systems are introduced.

It is followed by an outline of the thesis.
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1.1. Why Study Granular Materials and Segregation?

The term “granular material” refers to a collective system consisting of macroscopic

particles, which might be grains, sand or rocks in geomechanics, coal or minerals in

mining, pills in the pharmaceutical industry, and planet dust in astrophysics. Granular

materials are encountered across a wide range of natural and industrial situations, and

an understanding of the physics of granular materials is important for multiple reasons.

Although the interaction between a pair of granular particles is relatively well understood,

many fundamental collective properties of granular materials, granular flow in particular,

are still unclear. Granular materials often behave differently from regular liquids and

solids (Jaeger & Nagel, 1992). A source of difficulty is the dissipative property of parti-

cle collisions, placing granular materials in the realm of a driven dissipative system far

from thermodynamic equilibrium. Moreover, since the fluctuations are almost the same

amplitude as the mean values, many properties of flowing granular systems cannot be

adequately described by considering mean quantities. All of these facts indicate that a

theoretical description of granular materials is far from simple or straightforward. For ex-

ample, due to the discrete nature of granular systems there are no general, fundamental

constitutive equations governing the rheology of granular materials that are applicable

for all conditions.

A particularly challenging issue of granular physics is segregation. The tendency of

granular materials varying in size, density, or shape to segregate during processing has

caused substantial frustration in industry, since segregation works against the goal of

mixing (Ottino & Khakhar, 2000). A variety of agitations such as flow (Oyama, 1939;

Makse et al., 1997; Clement et al., 1995) or vibration (Rosato et al., 1987) can cause
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partial or complete granular segregation. Research on granular mixing and segregation

is much less advanced than fluid mixing (Ottino, 1989) since there is no counterpart in

granular physics theory that is analogous to the Navier-Stokes equations in continuum

fluid mechanics. A large amount of theoretical, experimental, and computational work

has been performed related to granular segregation as well as its underlying mechanisms in

recent decades. Yet there are still many unanswered questions since most existing work on

this topic is qualitative – – quantitative analysis is still very limited. The work considered

in this thesis concentrates on segregation in granular systems under flow mainly using

numerical simulations. As a point of departure to understanding flow and segregation,

this thesis also consider flow of mono-disperse granular materials.

1.2. Systems Investigated

1.2.1. Categories of Systems

Two classes of granular systems are often investigated: dry granular systems (DGS) and

liquid granular systems (LGS). The difference between them is the interstitial medium.

In DGS the medium is either vacuum or air and particle collisions dominate. In LGS

particles are completely immersed in a less dense liquid and liquid viscosity may compete

with or overwhelm particle collisions. With only a few exceptions, nearly all research

on granular materials and flow in the last decades focused on DGS, although LGS are

important in a wide range of practical industrial applications. Under a wide range of

conditions in granular mixing and segregation, DGS and LGS have qualitatively similar

dynamic behaviors (Fiedor & Ottino, 2003).

There are two main modes of granular segregation:
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• Segregation due to shearing flow: segregation is caused by the relative flow of

particles in shear (Oyama, 1939; Makse et al., 1997; Clement et al., 1995);

• Segregation from vibration, often vertical: the relative motion of the particles is

introduced by shaking the container (Rosato et al., 1987).

Factors that can give rise to segregation are:

• Difference in particle size;

• Difference in particle density;

• Difference in particle shape;

• Difference in particle resilience,

where the differences in particle size and density are by far the most important factors

and other factors are comparatively unimportant, especially in industrial applications

(Ristow, 2000).

Many different physical environments have been used to investigate mixing and seg-

regation including chute flows and heaping (Ristow, 2000). Another common device is

the rotating tumbler. As indicated by the work of the Groupement de Recherche Milieux

Divisés (MiDi, 2004), the surface shearing motion of mono-disperse granular materials or

bi-disperse granular mixtures in partially-filled rotating tumblers with a horizontal axis

is often used to as a standard to study granular flow, mixing, and segregation.

This thesis focuses on the flow, mixing, and segregation of dry granular materials

differing in size caused by the shearing flow in rotating tumblers. Many results and

concepts described in this thesis can be extended beyond rotating tumblers.
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1.2.2. Granular Flow in Rotating Tumblers

Let us consider a partially filled rotating tumbler. As tumbler rotation starts, the friction

force between the tumbler walls and the granular particles inside the tumbler carries the

granular bulk in solid body rotation (with minor rearrangements), and the angle of the

surface of the bulk material relative to the horizontal plane increases as the rotation

continues. At a critical value of the angle, the static force interactions between particles

fail to sustain the gravitational force, and a granular flow occurs down the free top surface

of the granular bed. As shown in figure 1.1, the flow field inside the tumbler has two

distinct regions: a fixed (solid body) bed of particles rotating with the tumbler and a

flowing layer along the free surface. Continuing particle transport between the solid body

bed and the flowing layer makes a rotating tumbler an ideal controlled research setting,

as the flow region is continuously being replenished, which is harder to achieve in chute

and heaping flows, the other two devices often used for studying granular flow.

Henein et al. (1983) identified four different regimes of the flow of granular materials

in rotating tumblers as the rotation rate is increased, depending on the Froude number of

the system, Fr = ω2R/g: avalanching, continuous, cataracting, and centrifuging, which

are shown in figure 1.2. Here, ω is angular velocity of rotation, R is radius of the tumbler,

and g is the gravitational acceleration. The dimensionless Froude number represents the

ratio of the centrifugal force to the gravitational force. At low rotational rates (small

Froude numbers), the flow occurs in discrete avalanches. After each avalanche, which

occurs at a critical slope called the angle of marginal stability, θm, the bulk relaxes to

a smaller slope called the angle of repose, θr. As the tumbler continues to rotate, the

system gradually increases the slope (accumulates gravitational potential) without flow
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Figure 1.1. Coordinate system in a cylindrical tumbler. Rotational axis is
the z−direction. Flow direction is along the x−direction.
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Figure 1.2. Experimental pictures of the four flow regimes of granular ma-
terials in a rotating tumbler (Fiedor, 2006).
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again until the next avalanche, and so on. As the rotation rate is increased, the time

between avalanches becomes smaller and smaller, so that a continuous surface flow (some

people call this regime rolling or cascading) can be observed when discrete avalanches

cannot be detected. The angle of the slope in this case is between θm and θr, the dynamic

angle of repose, θd. If the inertial effects are small, the free surface is nearly flat. At

higher rotation rates, inertial effects become greater, and a curved (S - shaped) top

surface occurs (see figure 1.2(c)), which is called the cataracting regime of flow. For

Fr ≥ 1, the centrifugal force is equal to or greater than the gravitational force, and all

granular particles are pushed against the tumbler wall (see figure 1.2(d)). The motion is

simply solid body rotation. This is the centrifuging regime.

We consider three types of rotating tumblers: a quasi-two-dimensional (quasi-2D)

circular tumbler whose diameter is much larger than the tumbler length (figure 1.3(a)),

a long three-dimensional (3D) cylindrical tumbler whose length is of the same order of

magnitude or larger than the tumbler diameter (figure 1.3(b)), and a spherical tumbler

(figure 1.3(c)).

1.2.3. Granular Segregation in Rotating Tumblers

Particle collisions in the flowing layer result in collisional diffusion which tends to mix

particles. By contrast, in bi-disperse systems, granular materials with different properties

tend to segregate into regions with a higher concentration of one species. Two types of

striking granular segregation are observed in rotating tumblers for bi-disperse particles:

radial segregation and axial segregation (Ristow, 2000). Radial segregation appears within

a few rotations after the tumbler rotation starts. Then, over longer time scales (O(10−100)
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(a) Quasi-2D

(b) 3D cylinder

(c) 3D sphere

Figure 1.3. Various kinds of rotating tumblers used in the thesis. (a) Quasi-
2D tumbler; (b) 3D cylindrical tumbler; (c) 3D sphere (Meier, 2008).

tumbler rotations), if the tumbler is long enough, a secondary segregation may occur as

particles separate into more or less regularly spaced bands along the rotational axis. Due

to the opacity of granular materials, the radial segregation is mainly studied through

the clear end of quasi-2D tumblers and the axial segregation in long tumblers is mainly

studied by the direct observation of the visible free surface.

Within the scope of radial segregation, two particular types of granular segregation

have received the most attention, as depicted in figure 1.4: S-systems, where particles
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have the same density but differ in size and D-systems where the same size particles have

different densities. Nearly all studies of radial segregation to date have been restricted to

these two types of binary systems. Radial segregation in D-systems is relatively simple

(Khakhar et al., 1997; Ristow, 1994): segregation occurs so that there is a core region of

denser particles and lighter particles occupy the periphery of the tumbler. The mechanism

underlying this phenomenon is “buoyancy.” As they flow in the flowing layer of a tumbler,

denser particles tend to fall to lower levels than lighter ones, penetrate to the bottom of

the flowing layer, and deposit near the middle of the length of the flowing layer as a

segregated core. Lighter particles remain in the upper portion of the flowing layer and

deposit near its end to surround the core of heavy particles.

Normally the segregation patterns in S-systems are similar to those in D-systems with

a core region of smaller particles with larger particles around the periphery, as shown in

figure 1.4. The accepted mechanism of size segregation is percolation, a term first used

by Savage & Lun (1988) in studying the size segregation in chute flow. During flow the

probability of forming a large void for larger particles to drop down is smaller than the

probability of forming voids adequate for smaller particles. So the smaller particles are

more likely to percolate downward through the voids in flowing layer and settle at the

lower part of flowing layer eventually forming a core region. The percolation mechanism

for the radial segregation in S-systems has been much investigated in the last decade:

Clement et al. (1995) and Cantelaube & Bideau (1995) experimentally studied this kind

of segregation in avalanches and continuous flow regimes; Dury & Ristow (1997) used the

discrete element method to study computationally the dynamics and rate of segregation

in S-systems by varying the angular velocity of the tumbler and the thickness of the
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Figure 1.4. Examples of segregation of particles of differing sizes (S-
systems) and densities (D-systems) in circular tumblers rotated within the
continuous flow regime. Images taken from Hill et al. (Hill et al., 1999) and
Jain et al. (Jain et al., 2005a).
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flowing layer; a continuum model to explain radial segregation patterns was developed by

Khakhar et al. (2001). Other mechansims may arise beyond percolation, Thomas (2000)

experimentally found that the mass effect from the large size ratio of particles of same

density may dominate over the percolation effect: at size ratios greater than 5, a reverse

segregation occurs with larger particles sinking into the core, while smaller ones lie at the

periphery of the tumbler. Another effect arising in S-systems was considered by Khakhar

et al. (2001): instead of the standard radial core pattern, they found that a radial streak

pattern occurs when particles with large size ratios are rotated in an approximately half-

filled tumbler at a very small rotation speed (but still in the continuous flow regime). Hill

et al. (2005) found that the radial streaks patterns depend greatly on the fill fraction of

granular materials in the tumbler, and Meier et al. (2008) recently observed the coarsening

of streaks for long runs of more than O(100) tumbler rotations, if the fill fraction is just

above hall full.

The second type of segregation in rotating tumblers is axial segregation. Axial segrega-

tion was first observed by Oyama (1939), but the understanding of the onset mechanisms

of the axial segregation is much less advanced than radial segregation since it is nearly

impossible to follow and visualize the individual particle motion during the whole course

of axial segregation development, unlike radial segregation in quasi-2D tumblers. Most

researchers have only investigated this phenomenon qualitatively.

In a typical segregation experiment, one starts with a well-mixed initial state of small

and large particles. As shown in figure 1.5, most direct observations focus on the compo-

sition of the visible surface layer (Zik et al., 1994; Fiedor & Ottino, 2003; Hill & Kakalios,

1994, 1995). As seen from the outside, segregation may appear to be complete in that
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Figure 1.5. Example of axial segregation of particles of differing sizes in a
long cylindrical tumbler rotated around its horizontal axis. Image is from
Fiedor’s experimental work (Fiedor, 2006). Black particles are small and
clear particles are large.

each band contains a single particle species, with narrow transition regions separating

the bands; the segregation may also be partial, in the sense that the bands may be com-

posed of a higher concentration of one species or the other. More elaborate studies have

examined the interior using magnetic resonance imaging (MRI) techniques (Hill et al.,

1997b,a), as shown in figure 1.6: beneath the surface, radial segregation on the transverse

cross sections still exists along the whole length of the tumbler regardless of whether axial

segregation occurs or not; the axial segregation patterns visible at the outer surface are

in fact from the exposure of the radial segregation core of one species whose shape un-

dulates along the axis to the outer surface. It appears that in all cases axial segregation

is preceded by radial segregation. This order of events seems to be necessary for axial

banding to occur, suggesting a close relationship between radial and axial segregation.

For long runs, complex time-dependent axial segregation band patterns occur. Naka-

gawa (1994) first considered the long-term evolution of axial segregation. Prior to that,

experiments were run for shorter periods of time than it would take to reach equilibrium.

Nakagawa ran experiments for many days and found that the final steady state achieved as
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Figure 1.6. MRI data for a mixture of small and large particles rotated in
a 24 cm long cylinder. (a) Schematic illustration of the axial segregation
state as viewed from outside; (b) Radial segregation pattern on the cross
planes taken at the locations shown in (a); (c) Image of the core of radial
segregation of small particles along the plane parallel to the axis of the
cylinder; (d) Image along the same plane after the cylinder was rotated
at 4 rpm for approximately 45 min indicating that the radial segregation
remained even though the axial bands had disappeared. From Hill et al.
(1997b).
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(a) (b)

Time Time

Figure 1.7. The space-time images of band dynamics of axial segregation
experiments from Fiedor & Ottino (2003). Images taken by the camera at
each rotation are cropped to the length of the tumbler and a height of one
pixel. The cropped images are then stacked on top of each other to create a
spatiotemporal series. The mixture of 300µm black glass beads and 900µm
clear glass beads are half filled in a 6.35 cm diameter, 76 cm long cylindrical
tumbler. (a) Band coarsening in a LGS system with water as interstitial
fluid, ω=3 rpm; (b) Traveling waves in a DGS system with air as interstitial
fluid, ω=25 rpm.

few as three bands. As shown in figure 1.7, there are mainly two modes of time-dependent

band dynamics of axial segregation:

• Band coarsening: narrower bands merge to form wider bands (Frette & Stavans,

1997). Later Fiedor & Ottino (2003) found that during coarsening the total

number of bands in the system follows a logarithmic decay for both DGS and

LGS systems although they have different decay rates;

• Traveling wave patterns associated with band motion (Choo et al., 1997, 1998;

Fiedor & Ottino, 2003).
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Although the long-term dynamics of axial segregation has been intensively investigated

in recent decades, the fundamental mechanisms giving rise to axial segregation are still

unresolved. The focus of this thesis is to shed light on this process.

1.3. Thesis Outline

The thesis chapters are arranged in the following manner:

• Chapter 2 introduces the numerical method used throughout the thesis;

• Chapter 3 compares the subsurface flow of mono-disperse granular systems in the

cylindrical tumblers with different lengths to understand the differences in the

flow field caused by the tumbler length;

• Chapter 4 investigates the onset mechanisms of axial segregation in long cylin-

drical tumblers;

• Chapter 5 considers the axial segregation in spherical tumblers to investigate the

effect of a change in the endwall shape on the axial segregation patterns;

• Chapter 6 gives possible extensions of current work to improve our fundamental

understanding of granular physics.

Chapters 3-5 are presented as independent units and can stand on their own. Each chapter

has an abstract, an introduction, a report of results, and a conclusion.
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CHAPTER 2

Methodology

This chapter reviews simulation techniques that are used to model the dynamics of

granular systems. Attention is given to the discrete element method (DEM) and its

implementation in simulations. Since the time-consuming calculation of memory-related

term is needed in DEM simulations, the binary-tree data structure used in the simulation

to sort a data set stored in a random order, which is the case in DEM simulations, is

briefly introduced.

2.1. Numerical Methods often Used in Granular Physics

Models often used in granular physics can be divided into three classes: agent-based,

continuum, and discrete element method (DEM). None of these models is suitable in all

circumstances. Figure 2.1 shows a schematic comparison in term of the realism and their

ability to explore the parameter space.

2.1.1. Agent-based Models

Agent-based models can include a large number of particles, and the simulation time is

short, but particle motion is not based on physical equations, but rather a set of local

rules generally not based on first principles. Two such models are often used in granular

physics: the Monte Carlo Method and the Cellular Automata Model.
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Figure 2.1. Comparison of degree of realism of physical description and
ability to explore parameter space of the computational models.

The Monte Carlo method was introduced for granular materials about two decades ago

to simulate the size segregation of binary granular mixtures undergoing vertical vibrations

(Rosato et al., 1986, 1987). The idea of the method is to find new granular particle

positions by considering a rule to minimize the potential energy of the whole system.

This method successfully captured the geometrical effects of the process and has been

used to test a segregation model in ternary systems that describes the relaxation process
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of the surface angle in vertically vibrated granular systems (Duke et al., 1990). However,

as pointed out by Ristow (2000), the Monte Carlo Method has several limitations that

hinder its wide application in the field of granular physics: there is no physical time scale

and the normal restitution coefficient has to be zero. Therefore, it is difficult to assign

physical material properties to computations using this method.

The concept of a Cellular Automata was first introduced by von Neumann and Ulam

and they used it to study biological self-reproduction (Wolfram, 1983). The use of Cellular

Automata to study granular materials can be tracked to the introduction of the concept

of self-organized criticality to study the avalanche of a sandpile (Bak et al., 1987). In

this model, the space is discretized into cells which can either be occupied by a particle

or not. The particle motion is modeled under a set of collision rules that apply when

certain conditions are met, e.g. the local angle of repose exceeds a certain threshold.

This model has been used to study the outflow of particles in two-dimensional hoppers:

the outflow rate (Baxter & Behringer, 1990), stagnation zones (Baxter & Behringer,

1991), and segregation processes (Fitt & Wilmott, 1992). Yanagita (1999) produced

axial segregation of two kinds of particles that differed only in their frictional properties

in rotating tumblers. Cisar et al. (2006, 2007) investigated radial segregation, stable

lobed patterns, and chaotic mixing in various quasi-two-dimensional, regular polygonal

tumblers using Cellular Automata. However, since the the surface angle defined in Cellular

Automata is given by the topology of the lattice, only identical particles can be studied

by this method, which greatly limits the application of this method in granular physics.

Moreover, similar to Monte Carlo Model, there is no direct connection between the update

time and physical time in Cellular Automata.
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2.1.2. Continuum Model

The two models described above are Lagrangian approaches, that is they follow individ-

ual particles. On the other hand, granular flow has been widely investigated also as a

continuum from an Eulerian viewpoint.

Inspired by the governing equations in fluid mechanics, Haff (1983), Jenkins & Savage

(1983), Lun et al. (1984), and Johnson & Jackson (1987) developed conservation equations

for mass, momentum, and energy (accounting for dissipation) of granular materials in

which the kinetic theory of granular materials (solving the Boltzmann collisional equation

of granular particles in the analogy with ideal gases) are used to obtain the stress tensors

for the constitutive closure relations. The results from these models are in good agreement

with experimental results for dilute planar Couette shear flows, but, as pointed out by

Savage (1982), the application of models is challenging in dense granular flows where the

assumption of binary collisions does not hold.

It is far from straightforward to apply the continuum models to more complex flows,

such as the flow in the thin flowing layer of rotating tumblers. A continuum model par-

ticularly designed for the granular flow in rotating tumblers was proposed by Khakhar

et al. (1997) based on a kinematic description of the flow in the flowing layer. Unlike fluid

mechanics, where the length scales of the flows are much larger than the molecular dimen-

sions as well as the mean free paths, the continuum description of granular materials has

intrinsic shortcomings since the influence from microscopic structure of granular materials

(imperfectly understood currently) on the macroscopic flows cannot be neglected.
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2.1.3. Discrete Element Method (DEM)

The discrete element method, which is based on the methodology of molecular dynamics

for the study of liquids and gases (Allen & Tildesley, 2000) to model the collisions of

a large number of individual particles, is undoubtedly more realistic than the methods

introduced above. It is, however, more computationally intensive, although remarkable

reduction in computational times can be achieved by utilizing geometrical insights for

particular cases (McCarthy & Ottino, 1998). In the discrete element method, the bulk

flow of the granular material is determined through explicit calculation of the trajectories

of each particle (usually modeled as spheres) at every time step.

Depending on the density of granular materials and character of the flow to be mod-

eled, two different methods of calculating the trajectories are used: a rigid-particle model

or event-driven model for low density, rapid flow and a soft-particle model for high density,

slow flow. In the rigid-particle model, the contact time is zero and only binary collisions

occur, so the dynamics of the system is controlled by a sequence of discrete events. The

velocities of the involved particles are altered by the collisions according to a collision law

which is characterized by coefficients of restitution. During the time intervals between

collisions, the particles move along known ballistic trajectories. Therefore, the positions

of the particles at the time of the next collision can be computed in one step. The as-

sumption of instantaneous collisions used in the rigid-particle model does not hold for

high density flows, since in such cases the collision time is critical to the dynamics of the

flow. Therefore, the soft-particle method is used for this work.

The earliest application of the soft-particle discrete element method (or discrete el-

ement method, for short) in granular materials can be traced back to Cundall & Stack
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(1979). Since then, this method has been applied to model a large variety of granular

flows: rotating tumblers (Dury & Ristow, 1997, 1999a), fluidized beds (Gallas et al.,

1992), hopper flow (Ristow & Herrmann, 1994), pipe flow (Tsuji et al., 1992), silo fill-

ing (Cleary, 2000), and tumbling blenders (Moakher et al., 2000). In 1986, this method

was first used to study the segregation of the granular materials (Haff & Werner, 1986).

Ristow (1994) first published simulations of radial density segregation and then radial

size segregation (Dury & Ristow, 1997, 1999b; Rapaport, 2002; Li & McCarthy, 2005) in

rotating tumblers.

Similar to molecular dynamics (Allen & Tildesley, 2000), the discrete element method

uses an explicit, constant time step to integrate Newton’s second law to describe the

translational and rotational motion of individual “soft” particles. The main difference

between DEM and conventional molecular dynamics is that the particles in molecular dy-

namics are represented by mass points while they have finite volumes in DEM. So besides

calculating the normal force between contacting particles as in molecular dynamics, we

also need to consider the tangential force on the contact surface from the oblique collisions

between particles and then the rotation of particles from the tangential force. Starting

from Newton’s second law of motion (translational and angular), for a particle i with

radius ri and mass mi

(2.1) mi
dvi

dt
=

∑
j

(Fn
ij + Fs

ij) + mig
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(2.2) Ii
dωi

dt
=

∑
j

(ri × Fs
ij)

where vi, ωi, and Ii are the translational velocity, angular velocity, and moment of inertia

of the particle i, respectively. The total force on each particle consists of the external

force, gravity, as well as contact forces from all contacting particles, which have normal

(Fn
ij) or tangent (Fs

ij) components with respect to the surface of contact. In each discrete

time step, the forces and torques on each particle are summed, and the net results are

used to obtain the new velocity and position of the particle.

The accuracy of the discrete element method is almost wholly determined by the force

models. These forces can be grouped into two categories: external forces and contact

forces. Most DEM simulations include gravity as the only external force, except for few

cases where interstitial fluid forces (Tsuji et al., 1992; Li & McCarthy, 2005) or Van der

Waals forces (Yen & Chaki, 1992; Severson et al., 2007) are also included. The problem

of two contacting bodies under general conditions is complicated (Johnson, 1989), and

it has been the focus of research for more than one hundred years (Hertz, 1882). Thus,

many more or less strongly simplified force schemes have been suggested and employed in

DEM simulations (Schafer et al., 1996; Ristow, 2000). The collision between two particles

is sketched in figure 2.2, and the most common contact force models are reviewed in detail

below.

2.1.3.1. Normal Forces. Two types of forces are commonly used in DEM to model

the collisional dynamics in the normal direction during collisions: an elastic restoration
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Figure 2.2. Illustration of the collision between two particles.

force, Fn
e , modeled as a spring, and a damping force accounting for energy dissipation,

Fn
d , modeled as a dashpot. The normal force is represented as

(2.3) Fn
ij = Fn

e + Fn
d

Experimental measurements of force-displacement indicate an almost linear loading

as a function of approach during the collisions (Mullier et al., 1991; Drake & Walton,

1995; Goldsmith, 2001). So a linear spring has been used to model the elastic restoration

normal force in numerous numerical simulations (Cundall & Stack, 1979; Dury & Ristow,

1997; Ristow, 2000; Schafer et al., 1996), thus

(2.4) Fn
e = knαr̂ij
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where kn denotes the spring constant and α is the overlap of the two particles during

contact (see figure 2.2). r̂ij = n̂ represents the unit normal vector (center to center) in

the direction from particles j to i.

Possible mechanisms for dissipation (transformation of kinetic energy into other forms

of energy and then into heat) during a collision arise from a combination of three com-

ponents depending on the normal impact velocity: plastic deformation, viscoelasticity of

the material, and the elastic waves or vibration from the impact. The dissipation from

vibration is often neglected. For very soft materials or high impact velocity collisions,

plastic deformation dominates the dissipation. But for most hard granular materials and

flow regimes, viscoelasticity accounts for most dissipation. The simplest, and most used

viscoelastic dissipation force is a linear relation of the form

(2.5) Fn
d = −2γnmeff α̇r̂ij = −2γnmeff (Vij.r̂ij)r̂ij

where Vij denotes the relative velocity (Vi −Vj) of two contacting particles i and j and

meff = mimj/(mi + mj) is the reduced mass of these two particles. γn is a phenomeno-

logical friction coefficient characterizing the damping of granular materials.

As suggested by (Ristow, 2000; Duran, 2000), the equation of relative motion in this

case reads

(2.6) α̈ + 2γnα̇ + f 2
0 α = 0

with f0 =
√

kn/meff or kn = f 2
0 meff . The characteristic equation, using α(t) ∼ eλt, is
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(2.7) λ2 + 2γnλ + f 2
0 = 0.

Considering an initial conditions such that α(0) = 0 and α̇(0) = v0, where v0 is the

relative velocity just before the collision, a solution is

(2.8) α(t) =
v0

f
exp(−γnt)sin(ft)

with f =
√

f 2
0 − γ2

n, which is the frequency of the damped oscillation. Then the collision

time ∆t given by half the period for the sine function in equation 2.8 with the condition

of α(∆t) = 0 is

(2.9) ∆t = π/f.

Thus, kn is related to the collision time ∆t and the friction coefficient γn as:

(2.10) kn = f 2
0 meff = (f 2 + γ2

n)meff =

[( π

∆t

)2

+ γ2
n

]
meff .

The restitution coefficient in the normal direction, en, is defined as the ratio of veloc-

ities before and after the collision:

(2.11) en = − α̇(∆t)

α̇(0)
= exp(−πγn

f
).
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Therefore, γn is related to the collision time ∆t and restitution coefficient en by

(2.12) γn = − ln en

∆t
.

A more refined model considering the non-linear relationship for the elastic restoration

force was given by Hertz (1882) and Johnson (1989) as a function of the deformation α

and the material properties Y (Young modulus) and ν (Poisson ratio), so that

(2.13) Fn
e =

2Y
√

reff

3(1− ν2)
α3/2

where reff = rirj/(ri + rj) is the effective radius of the colliding particles.

As mentioned by Ristow (2000), the Hertz approach can be extended to viscoelastic

materials to derive the non-linear damping law (Hertzsch et al., 1995)

(2.14) Fn
d = −γn

n

√
αα̇

where γn
n is the damping coefficient for this non-linear force model.

2.1.3.2. Tangential Forces. Generally, the tangential force, or shear force, is related

to the normal force by the Coulomb law of friction. That is, Fs ≤ µsFn for static

friction and Fs = µdFn for macroscopic slip friction, where µs and µd are the static and

dynamic friction coefficients, respectively. But the relation between the tangential force

and displacement for two particles in contact has proven more complicated. Mindlin

(1949) found that in the outer regions of the contact area, where the normal stresses
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are small since the strains are small, dynamic friction is expected, whereas in the inner

regions, where large normal strains and stresses are present, static friction may occur. So

there is an annulus of microslip surrounding an inner region of sticking in the contact

area. Because the friction laws are strongly nonlinear, the size and form of the annulus of

microslip depend on the loading-unloading history of the contact, making the prediction

of tangential deformation and friction forces complicated.

The simplest form of a tangential force model neglects microslip. Viscous friction

is used, and no history dependance is retained. If the viscous force is larger than the

Coulomb frictional force, the contact “breaks” and the force is sliding friction based on

Coulomb’s law

(2.15) Fs
ij = −min(|γsv

s
ij|, |µFn

ij|)sign(vs)

where γs is an empirical proportionality constant analogous to γn, but with no clear

theoretical basis. vs
ij is the relative tangential velocity of two particles

(2.16) vs
ij = vij − (vij.r̂ij)rij − riωi + rjωj

ri + rj

× rij.

This approach is used in numerous DEM simulations (Buchholtz & Pöschel, 1994;

Pöschel, 1993; Ristow et al., 1994; Rapaport, 2002) since it has the advantage of com-

putational simplicity. But this model cannot be used in static or quasi-static systems

since in such cases the stability would require the existence of finite shear forces acting

between particles to withstand gravitational force components in the shear direction of

the contacts.
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A more realistic tangential force model that records the history of tangential displace-

ment and thus the tangential elasticity of collision was introduced by Cundall & Stack

(1979). This model agrees well with experiments for the simulation of static behavior.

The friction force in the tangential direction is modeled by a spring with stiffness, ks,

which exists until the particle surfaces separate from each other

(2.17) Fs
ij = −min(|ksβ|, |µFn

ij|)sign(β).

Here the tangential displacement β is given by

(2.18) β(t) =

∫ t

t0

Vs
ijdt

where t0 is the initial contact time between two particles. The tangential stiffness, ks,

determines the half period of tangential oscillation, just like kn determines the half period

of normal oscillation, ∆t. The value of ks has to be determined from the comparison of

the simulations with experimental results.

The choice of force models depends on the range of impact velocities expected in a

given simulation. All of the force models discussed in this section yield reasonably realistic

responses for the collisions. Both the linear spring-dashpot and the Hertz normal force

models were tested and no significant macroscopic differences between them was found.

Figure 2.3 compares the two force models in terms of the streamwise velocity profiles at

the center of the flowing layer (x = 0m) for two axial positions: at the center of the

tumbler (z = 0m) and near the endwall, in a half-full tumbler with L = 0.06m and
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Figure 2.3. Comparison of linear spring-dashpot force model (solid curves)
and Hertz force model (dashed curves) for the streamwise velocity u(m/s)
at the center of the tumbler (¤, z=0) and near the endwall (©, bin adjacent
to the endwall) in a half-full tumbler with d = 0.003m, L = 0.06m, and
D = 0.07m. ω = 3.4radians/s.

D = 0.07m (ω = 3.4radians/s, mono-disperse particles with d = 0.003m). The two

models provide nearly identical results. Thus, the linear spring-dashpot normal force is

used in this work since it requires less computational effort than the Hertz model, which

requires a smaller time step. The memory-related tangential force model is more realistic

than viscous force model, but it requires much more effort to deal with the history of

the tangential displacement. Both tangential force models were tested for several cases.

The macroscopic properties such as the segregation patterns from both tangential force

models agree very well with each other, indicating that the choice of which one to use is

rather flexible under the simulation conditions used in this work.
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The velocity-Verlet algorithm (Ristow, 2000; Allen & Tildesley, 2000) is used in this

work to update the positions and velocities of particles. It is applied in two stages and

resembles a three-value predictor-corrector algorithm

xi(t + dt) = xi(t) + dtvi(t) +
1

2
dt2v̇i(t)

ṽi(t + dt) = vi(t) +
1

2
dtv̇i(t)

v̇i(t + dt) = v̇i(xi(t + dt), ṽi(t + dt))

vi(t + dt) = vi(t) +
1

2
dt[v̇i(t) + v̇i(t + dt)](2.19)

where v̇i(t) denotes the acceleration of particle i at the instant t and ṽi(t + dt) is the

predicted velocity of the particle at the instant t + dt. A similar algorithm is used to

update the angular velocity of the particles.

Another important issue is numerical stability in DEM simulations. The general re-

quirement is that the normal restitution coefficient, en, should be independent of the time

step, dt. To check this requirement, Ristow (2000) conducted the numerical experiments

for a particle-wall collision with different dt’s and suggested that a time step of 1/30 or

less of the theoretical collision time, ∆t, is required. Thus, we set dt = ∆t/40 in this

thesis.
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2.2. Implementation of DEM in the Simulations

2.2.1. Boundary Conditions

The interaction between particles and the outer boundary of the container can be ad-

dressed in two ways: 1) constructing wall particles on the boundaries with similar proper-

ties to the mobile particles; 2) using geometrically smooth surfaces with properties similar

to the particle properties to represent the boundaries. The advantage of the first method

over the second is that there is no need to check the relative positions of every particle

with respect to the wall(s) every time step, since the positions of wall(s) may also change

with time. Otherwise for every particle, it is necessary to determine how many and which

wall edges contact it for every time step. This is very time-consuming, especially, for

modeling of square, pentagon, or other shapes of containers. The cylinder end boundaries

can be set to either a periodic boundary condition or a solid wall. In the case of periodic

boundary conditions, any particle that leaves the simulation region immediately reenters

the region through the opposite face. Particles near the boundary may interact with par-

ticles near the opposite boundary — a wrap-around effect. To simulate a solid endwall,

flat geometrical surfaces are used to model the particle interaction with endwalls. This is

necessary to avoid the use of a large number of wall particles to fill the entire area of the

two endwalls. This increases the total number of particles in the system greatly. Thus,

smooth surfaces were used for the tumbler walls.

2.2.2. Initial Particle Distribution

Most experiments about granular segregation are conducted from the well-mixed initial

condition. Thus, an initial condition (IC) corresponding to a random packing of particles
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(mono-disperse or bi-disperse) is needed in the numerical simulations. The IC is generated

as follows (see figure 2.4):

• An initial random distribution of mass points are generated in a volume confined

in the computational domain, for example, a rectangular box within the bound-

aries of the tumbler in figure 2.4 (a). Each mass point corresponds to a particle,

and the particles have no volume. The number of particles is a little more than

the required value, which is estimated from the required fill level of the tum-

bler and the volume fraction of random packing (64% for random close packing

(Jaeger & Nagel, 1992)). The initial velocities and accelerations of particles are

set to be zero. The tumbler is static;

• The radii of the mass points grow in every time step until they reach the specified

values. To prevent regular packing, a normal distribution of particle sizes with

variance of 0.1 of the specified diameter is used. If particles overlap, the normal

repulsive force between the particles moves them away from one another;

• After the preset sizes of particles are achieved, the gravitational force is applied

and all particles drop downward to the static wall of the tumbler;

• The particles settle down into a static pile with a hump, as shown in figure 2.4

(d);

• The particles above the required height, which is calculated from the fill level,

are removed and a flat free surface remains (figure 2.4 (e));

• The tumbler starts to rotate. The time at which flow begins sets t = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4. Illustration of the procedure to generate an initial random dis-
tribution of particles in a half full tumbler with two different sizes (black:
wall particles; red: 3mm small particles; blue: 4mm large particles). (a)
Initial random distribution of mass points; (b) Particles are growing in size;
(c) Particles are dropping after the required particle sizes are reached; (d)
Particles settle down with a hump; (e) Particles above the required height
are removed leaving a flat free surface; (f) Particles are starting to rotate
clockwise.
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2.2.3. Data Acquisition

DEM simulations provide information at the microscopic level (particle positions, veloci-

ties, and accelerations) explicitly in every time step. This very detailed information can

be converted into macroscopic terms (flow field, number density field etc.). To do this,

the computational domain is divided into bins. All local basic properties such as velocity

and number density of particles, are obtained by averaging the values for all particles

within each bin (cuboid bins in this thesis). Then other properties including the velocity

fluctuations and particle fluxes can be calculated from these basic properties. To get sta-

tistically meaningful results, long averaging times are sometimes necessary to minimize

inherent random fluctuations.

2.3. Handling of Data Structure to Speed Simulations

As with molecular dynamics simulations, the computational time in a DEM simulation

results from two main contributions: the calculation of pairwise forces and searching for

contacts between particles. The latter can be accelerated by using methods common in

molecular dynamics simulations: cell (linked) lists or neighbor lists, or their combination,

which is used in this thesis due to our focus on dense systems (Allen & Tildesley, 2000;

Rapaport, 2004). The discrete element method needs even more computational time to

calculate the memory-related tangential force, which needs the computer dynamic memory

to record and sort the contact list of the last time step. Since the contact list of each

particle changes with every time step, it is necessary to be able to tell if every contact

associated with this particle is a new contact or not: if it is a new one, we only need

to calculate equation 2.18 from zero initial displacement directly, that is β(t) = vs(t)δt;
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otherwise, we need to retrieve the tangential displacement from the contact list of last

time step and then update the displacement as β(t) = β(t − δt) + vs(t)δt. Sometimes,

the time used to check new contacts in the system and retrieve the data from old contacts

is almost the same order as the time for the force calculation, especially for bi-disperse

granular systems where the large size ratio of large to small particles may generate a long

contact list for the large particles. Therefore, an efficient sorting algorithm is quite useful

in the DEM simulation.

In common data structures, the database is sorted by a method called an “insertion

sort” (Chapman, 2003). It works by placing the number of each particle contacting with

the specified particle in its proper position in the list as it is read in, almost randomly

in DEM simulation. As shown in figure 2.5(a), if the value of the particle number is

smaller than any previous value in the list, then it is placed at the top; if the value is

larger than any previous value in the list, the it is placed at the bottom; if the value is

in between, then the number is inserted at the appropriate place in the middle of the

list. So for the contact list of last time step shown in figure 2.5(a), there are a total of 11

particles contacting the No.50 particle. If a contact is read in, depending on where this

particle number appears in the contact list of last time step, it is necessary to compare

51
2

numbers on average before determining if it is a new contact or not and then retrieve

the data associated with the desired contact if it is an old one.

In contrast, we introduce a binary tree structure (Chapman, 2003) to sort the contact

list in our work. As shown in figure 2.5(b), when the new contacting particle number is

read, it is compared to the No.50 particle, which is called the root number. If this new

number is less than the root number, then we set it to the left side of the root number.
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If the new number is greater than the root number, then it is set to the right side of the

root number. If the new contacting number is greater than the root number but the right

position of the root number is already occupied, then we compare the new number to this

number occupying the right position, and insert the new number to the proper position

below this number. This procedure is repeated as new contacts are added, producing

an inverted tree structure, with the numbers in order. Therefore, if the contact list of

the last time step of a specified particle is arranged in a binary tree structure as shown

in figure 2.5(b), no more than four checks are required to locate any particular number.

So the binary tree is a much more efficient way to search for and retrieve data than

the common insertion sort structure. This advantage increases rapidly as the size of the

database (contact list here) to be searched increases. Therefore, the binary tree structure

is more suitable for a DEM simulation since the order of the contact list is read in the

database randomly.
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Figure 2.5. Comparison of the efficiency of two data structures to store
the contact list of No.50 particle in DEM simulation: (a) insertion sort
structure; (b) binary tree structure.
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CHAPTER 3

Subsurface Granular Flow in Rotating Tumblers: A Detailed

Computational Study

Chapter Summary: A prerequisite to understanding axial segregation of bi-disperse

mixtures in long tumblers is the analysis of the flow field in mono-disperse systems,

especially the subsurface flow. This is difficult to achieve experimentally due to the

opacity of granular materials. Often granular flow is studied in quasi-2D rotating tumblers

through transparent endwalls with the assumption that it represents the flow in a “slice”

of long tumblers. But it is impossible to understand the role of axial flow in the system

from quasi-2D experiments. Thus, a complete, detailed study of the flow field in long

tumblers is necessary.

Information about the flow field in long tumblers is sparse and what little information

available is focused on the visible surface flow. In this chapter, simulations of the flow,

particularly the subsurface flow for mono-disperse granular systems in half-full cylindrical

tumblers with different tumbler lengths, are used to study the flow field. Many important

aspects of the flow field, such as the flowing layer structure, the streamwise velocity,

velocity fluctuations, and axial flow near endwalls, depend on the tumbler length. By

computationally omitting the friction at the endwalls, we confirm that these differences

related to the tumbler length are a result of the frictional endwalls and the interaction

of the effect between the two endwalls. When the tumbler is longer than one tumbler
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diameter, the flow field caused by endwalls is localized and independent of the length of

the tumbler. Consistent with prior measurements at the surface, a region of high speed

flow with axial components of velocity occurs near each endwall in long tumblers. The

high speed region with the associated axial flow near frictional endwalls persists through

the depth of the flowing layer, though the regions of high velocity shift in position and the

velocity is lower compared to the surface. In quasi-2D tumblers, the high speed regions

near the endwalls merge resulting in a higher velocity than occurs in a long tumbler,

but with a flowing layer that is not as deep. Velocity fluctuations are altered near the

endwalls. Particle velocity fluctuations are greatest just below the surface and diminish

through the depth of the flowing layer. [This work has appeared in a slightly different

from in Physical Review E, V ol. 78, 021301, 2008.]

3.1. Introduction

The horizontal cylindrical rotating tumbler is a canonical system often used to study

the thin flowing surface layer typical of flowing granular materials. Although granular

flow has been much studied in recent years (MiDi, 2004; Ottino & Khakhar, 2000; Meier

et al., 2007), it is quite difficult to experimentally probe the nature of the flow beneath

the visible surface due to the opacity of the particles. To overcome this problem, many

researchers have made measurements of the flow in quasi-two-dimensional (quasi-2D) sys-

tems (Orpe & Khakhar, 2004; Jain et al., 2002; Orpe & Khakhar, 2007; Clement et al.,

1995; Cantelaube & Bideau, 1995; Cantelaube et al., 1997; Ristow, 1996; Komatsu et al.,

2001), where the axial dimension of the system is only a few particle diameters in length.
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Although using a quasi-2D tumbler with transparent endwalls allows the easy measure-

ment of many important properties of granular flow including profiles of the velocity and

particle number density through the depth of the flowing layer, recent studies have shown

that the flow near the middle of the length of the long tumblers is significantly different

from that near the endwalls due to friction. Not only is the streamwise velocity just

adjacent to the endwall slower than that at the center of the tumbler (Maneval et al.,

2005), but the velocity in quasi-2D tumblers is as much as two times higher than for

long tumblers (Pohlman et al., 2006b). Furthermore, the streamwise velocity in a long

tumbler varies along the length of the tumbler, with a higher velocity in a region near the

endwalls than at the center of the tumbler (Pohlman et al., 2006a,b). Thus, it is clear that

measurements of the velocity field in a quasi-2D system, while helpful in understanding

certain aspects of the flow, do not exactly represent the flow in a “slice” of a long tumbler.

Moreover, the endwall boundary affects the mixing of mono-disperse particles (San-

tomaso et al., 2004) and plays a role in initializing axial segregation bands of bi-disperse

particles (Bridgwater et al., 1969; Hill & Kakalios, 1994; Fiedor, 2006) near the endwall

regions. Santomaso et al. (2004) suggested that there exists an axial flow near the end-

walls of rotating tumblers causing the axial mass transport between transverse slices in

that region. This axial flow has been confirmed based on measurements of the velocity on

the surface of the flowing layer (Pohlman et al., 2006b) and is corroborated in this study.

The opacity of the particles makes optical techniques for measuring the velocity field

below the surface of a granular flow difficult. There are several experimental techniques

that can be used to overcome the opacity: fibre-optic probes (Boateng & Barr, 1997)

provide flow measurements at a single point, but the probe disturbs the flow locally; PEPT
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(Positron Emission Particle Tracking) (Parker et al., 1997) provides measurements deep

in the flowing layer, but it is possible to track only one or two particles, not the entire flow

field; MRI (Magnetic Resonance Imaging), which requires very expensive equipment, has

been used to measure the flow field below the surface in granular systems (Nakagawa et al.,

1993; Fukushima, 1999; Maneval et al., 2005), but its low spatial and temporal resolution

makes it difficult have confidence that it can capture subtle properties of granular flow,

such as the axial velocity.

Numerical simulation offers an attractive alternative to experiments that overcomes

the problem of using optically-based measurement techniques in quasi-2D tumblers and

the difficulty of using cumbersome experimental techniques such as MRI and PEPT in

long tumblers. Here we present a detailed numerical study of granular flow in rotating

cylindrical tumblers using the discrete element method (DEM) (Cundall & Stack, 1979;

Ristow, 2000; Schafer et al., 1996). Our goal is to provide a detailed and complete exami-

nation of the entire three-dimensional flow field throughout the depth of the flowing layer

in order to understand the differences between the flow in long tumblers and quasi-2D

tumblers. We pay particular attention to the axial flow generated from the frictional end-

walls, which is helpful to understand the mechanisms of mixing and segregation near the

endwall regions. Using DEM simulations not only has the advantage of allowing the ex-

amination of the flow structure beneath the free surface, it also permits the investigation

of the dependence of the flow on parameters that are not easily controlled in experiments.



55

3.2. Numerical Parameters

We simulate tumblers that are half filled with granular particles and rotating at a

speed such that the continuously flowing layer is nearly flat. To avoid the close-packed

crystal structure, the particles have a normal size distribution with a variance of (0.1d)2,

where d is the mean size of particles (except where noted, we use d = 1.5mm in this

chapter). The number of particles in the simulation was as many as 110,000, depending

on the tumbler dimension and particle size. The parameters of simulations in this chapter

are as follows: tumbler diameter is D = 2R = 0.07m; the length of the tumbler is varied

from L = 0.01m to L = 0.15m; gravitational acceleration is g = 9.8m/s2; particle proper-

ties are for spherical vitamin-E particles (density ρ = 1100kg/m3, restitution coefficient

e = 0.89 (Ristow, 2000)) to allow comparison of our simulations with MRI experiments

(Maneval et al., 2005) where spherical particles containing liquid cores were used. The

only adjustable parameters in the model are the coefficients of friction and the collision

time. To achieve the best match with MRI experiments (Maneval et al., 2005), the friction

coefficients among particles and between particles and walls are set to µ = 0.6; in order

to save computer time, the collision time is ∆t = 1.0× 10−4s, which is realistic since the

maximum overlap between particles is only a very small fraction of the sum of their radii

(Dury & Ristow, 1997, 1998). The integration time step is dt = ∆t/40 = 2.5 × 10−6s

to meet the requirement of numerical stability (Ristow, 2000); the rotational speed is

ω = 3.4radians/s, consistent with the experiments (Maneval et al., 2005). The curved

cylindrical wall of the tumbler is modeled using wall particles with properties similar to

the mobile particles to prevent the slip along the wall. Geometrically smooth surfaces are

used to represent the two endwalls, which are assumed to have infinite mass and radius for
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the calculation of the collision force between mobile granular particles and the endwalls.

The coordinate system sets the origin at the center of the tumbler with the x axis along

the streamwise direction, the y axis normal to the free surface, and the z axis along the

tumbler axis, as shown in figure 1.1.

For analysis of the results, the computational domain is divided into bins (20 bins in

each dimension). All local flow properties are obtained by averaging values for all particles

within each bin. Although the flow is steady, inherent fluctuations necessitate a long time

averaging (typically over one million timesteps) to minimize the standard deviation.

Using MRI, Maneval et al. (2005) recently measured the streamwise velocity profile

experimentally at the midpoint of the flowing layer (x = 0) for two axial positions: near

the end wall and at the center of the tumbler. They tumbled 3mm particles having a

liquid core in a half-filled cylindrical tumbler (0.07m diameter and 0.06m axial length,

so L/d = 20) at an angular velocity of 3.4radians/s, resulting in a continuously flowing,

nearly flat flowing layer. The time-averaged velocity profiles over 1.35 tumbler rotations

for our particle dynamics simulation for 3mm particles are plotted against corresponding

experimental results in figure 3.1. The primary qualitative characteristics of the velocity

profiles are captured by the DEM simulation: the magnitude of the streamwise velocity

at different depths, the general nature of the velocity profiles including a nearly linear

profile in the flowing layer (y ≥ −0.01m), a linear profile for the solid body rotation (y ≤
−0.02m), and the logarithmic transition between these two regions. More importantly,

the differences between streamwise velocity profile at the center of the tumbler and near

the endwall are well reproduced by the numerical simulation: particles near the endwall

are always slower than particles at the same depth in the center of the tumbler. The
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Figure 3.1. Comparison of streamwise velocity u(m/s) from DEM simula-
tion (curves) with experimental results (data points) from Maneval et al.
(2005) at the center of the tumbler (©, dashed curve, z=0) and near the
endwall (¤, solid curve, bin adjacent to the endwall).

slight differences between the measured and simulated velocity profiles likely arise from the

difficulty in matching the parameters of the simulation (e, ∆t, and µ) to the values for the

particles in the experiment. The value for e is fixed for vitamin-E particles (Ristow, 2000).

The simulation is insensitive to the value for ∆t. The only parameter that was adjusted

to match the experiments was the frictional coefficient, µ, and, in fact, the simulation is

relatively insensitive to this as well. Anther contact law, the Hertzian normal force law,

was also considered, but did not significantly change the results.

Streamtraces obtained by the integration of the local average velocity vector (u and

w) for the flow on the free surface (y = 0) for the case in figure 3.1 are shown in figure 3.2.
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At the center of the tumbler (z = 0), the streamtraces are straight indicating pure stream-

wise flow. However, the curved streamtraces near the endwalls located at z = ±0.03m

indicate that particles near the endwalls tend to move toward the center of the tumbler

in the upstream part of the flowing layer and then move back toward the endwall in the

downstream part. As would be expected, the velocity field is approximately symmetric

about the center of the tumbler, z = 0. These results are consistent with the curved

particle trajectories that have been observed in experiments (Pohlman et al., 2006b). The

results shown in figure 3.1 and figure 3.2 indicate that several important details of the

actual flow field are captured by DEM simulations. Thus, the DEM technique used here

provides an accurate representation of an actual experimental system and provides a solid

foundation for the following examination of the subsurface granular flow.

The primary objective of this chapter is to explore the entire flow field in three-

dimensional cylindrical tumblers, focusing on the flow beneath the visible surface. We

present results for the structure of the flowing layer, streamwise velocity field, velocity

fluctuation field, and axial flow field throughout the entire flowing layer. Of particular

interest is the impact of the endwalls and the overall tumbler length on the subsurface

flow.

3.3. Flowing Layer Structure Beneath the Visible Free Surface

We consider first the overall structure of the flowing layer. We define the flowing layer

as the region in the tumbler where the streamwise velocity in the reference frame of the

rotating tumbler is greater than 5% of the surface velocity at the center of the tumbler

((x, y, z) = (0, 0, 0)), uo. (This scheme is analogous to that used to define the edge of a
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Figure 3.2. Streamtraces of the particle flow on the free surface. Flow is
from top to bottom. Endwalls are located at z = ±0.03m. Curvature of
the streamtraces near the endwalls is related to the friction at the endwalls.

boundary layer in fluid flow.) Since the numerical method provides the velocity in the

laboratory frame, the solid body rotation of the tumbler is subtracted before identifying

the boundary of the flowing layer. As with experiments, a region of creeping motion exists

between the freely flowing material and the fixed bed of particles in solid body rotation

(Komatsu et al., 2001; Socie et al., 2005).

First, we consider the lower boundary of the flowing layer on the z = 0 and x = 0 planes

in figure 3.3 and figure 3.4 for three cases: a long tumbler with L = 0.10m (L/D = 1.43),

a short tumbler with L = 0.05m (L/D = 0.71), and a quasi-2D tumbler with L = 0.01m

(L/D = 0.14). To compare them, the streamwise position (x), depth (y) are normalized
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Figure 3.3. Boundaries of flowing layer for 1.5mm particles at z = 0m in
three tumblers where y = 0 corresponds to the surface of the flow: ∆,
L = 0.10m (L/D = 1.43); ©, L = 0.05m (L/D = 0.71); and ¤, L = 0.01m
(L/D = 0.14). Flow is from left to right. The dashed curve indicates the
tumbler wall.

by the radius (R) and axial position (z) is normalized by the length (L) of the tumbler.

In addition, in figure 3.4 the flowing layer depth for a long tumbler where one endwall

is frictionless is also shown to illustrate the influence of endwalls on the flowing layer

structure. The region above each curve in figure 3.3 and figure 3.4 corresponds to the

flowing layer and the region below the curve is in near-solid rotation.

From figure 3.3, it is clear that at the mid-length of the tumbler (z = 0), the depths

of flowing layer at the upstream end of the flow (x/R = −1) as the flow is initiated in the

long and short tumbler are much larger than that in the quasi-2D tumbler, which means

in these two longer tumblers more particles participate the initialization of the inclined

flow. More than this, the flowing layers of these three tumblers are not symmetric about

the mid-length of the flowing layer (x = 0): the flowing layers in long and short tumblers

are skewed to the upstream portion, while the flowing layer of quasi-2D case is skewed to

the downstream portion. Clearly, this skewness is related to the geometry of the tumbler.
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Figure 3.4. Boundaries of flowing layer for 1.5mm particles at x = 0m in
three tumblers: ∆, L = 0.10m (L/D = 1.43); ©, L = 0.05m (L/D = 0.71);
and ¤, L = 0.01m (L/D = 0.14). The dashed curve is for L = 0.10m
(L/D = 1.43) with a frictionless right endwall at z/L = −0.5.

Furthermore, for the first 2/3 of the flowing layer, the depth of the flowing layer in the

long tumbler is larger than that in the short tumbler, and both are much larger than that

for the quasi-2D tumbler, though both are less for the final 1/3 of the flowing layer.

This difference of the flowing layer depths is also illustrated in figure 3.4, which shows

the flowing layer structure along the length of the tumbler at the mid-length of the flowing

layer (x = 0). Based on mass conservation, the thinner flowing layer for the quasi-2D

tumbler at x = 0 is consistent with the higher streamwise velocity in the shorter tumblers

that has been measured in quasi-2D experiments (Pohlman et al., 2006b). Moreover, as

shown in figure 3.4, the depth of the flowing layer decreases near the endwalls for all



62

three tumblers, corresponding to the slower streamwise velocity near endwalls shown in

figure 3.1. For the two shorter tumblers, the maximum flowing layer depth occurs at the

mid-length of the tumbler, while for the longer tumbler the maximum depth is around

z/L = ±0.2. Apparently, it is closely related to the high streamwise flow rate at these

two positions due to the axial flow near endwalls in the long tumbler, which is discussed

in more detail in a later section. This point is validated by the dashed curve of the

long tumbler that has a frictionless endwall at z/L = −0.5. The flowing layer depth in

this case is nearly constant from the frictionless wall to the mid-length of the tumbler but

overlaps the depth profile for the case when both endwalls have friction for 0 ≤ z/L ≤ 0.5.

This clearly demonstrates that the decreased depth of the flowing layer near the endwalls

and the two regions where the flowing layer is deeper in the long tumbler (z/L = ±0.2)

result from the frictional interactions between particles and the endwalls. Furthermore,

the effects of the two endwalls on flowing structure are independent of each other.

An even better comparison of the structure of the flowing layer between the long

tumbler and the two shorter tumblers is illustrated in figure 3.5, which shows contours of

the flowing layer depth for these three tumblers. For the long tumbler, figure 3.5(a), the

flowing layer is deepest at two regions slightly upstream of the axis of rotation. For the

short tumbler and quasi-2D tumbler, shown in figures 3.5(b) and (c), the tumblers are

short enough so that two regions merge into a single region so the flowing layer is deepest

at the center of the length of the tumbler. Moreover, consistent with the skewness of

the flowing layer shown in figure 3.3, the contours of the flowing layer depth are not

symmetric about the axis of rotation of the tumbler at x = 0m. The layer is deepest

upstream of the tumbler axis for L = 0.10m and L = 0.05m, and downstream for the
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quasi-2D tumbler. Similar results were obtained for 3mm particles in the above three

tumblers, except that the layer was deepest downstream of the axis of rotation indicating

that rheological properties of the particle flow also plays a role in the flowing layer depth.

3.4. Streamwise Velocity Field Beneath the Visible Free Surface

Closely related to the structure of the flowing layer in the long tumbler, there are two

regions of high streamwise velocity, as shown in figure 3.6 for xz planes at different depths

from the top surface to near the bottom of the flowing layer. In figure 3.6, contours of

streamwise velocity are plotted after subtracting the solid body rotation and normalizing

by the streamwise surface velocity at the center of the tumbler, uo. The dashed curves

are the boundaries of the flowing layer. It is evident that two high velocity regions

exist at the surface and all depths in the flowing layer. The axial positions are always

symmetric about the mid-length of the tumbler, z = 0m, consistent with experimental

measurements of the surface velocity at x = 0 (Pohlman et al., 2006a,b). However, the

position of the two high velocity regions changes with depth in the flowing layer. At the

surface, figure 3.6(a), these regions are downstream of the axis of the tumbler, x = 0m,

and very near the endwall (note that the streamwise velocity in these regions exceeds that

at the center of the tumbler at the surface). Moving deeper in the flowing layer these

regions shift upstream and away from the endwalls, so that very deep in the flowing layer

the high velocity region occurs upstream of the axis of the tumbler (the high velocity

regions in figure 3.6(d) are as far as D/2 away from the tumbler endwalls). The locations
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Figure 3.5. Flowing layer structure for 1.5mm particles at different depths
for three tumblers shows how the length of the tumbler affects the depth
of the flowing layer: (a) L = 0.10m (L/D = 1.43); (b) L = 0.05m (L/D =
0.71); (c) L = 0.01m (L/D = 0.14). Flow is from top to bottom.
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Figure 3.6. Contours of streamwise velocity at different depths in the long
tumbler of L = 0.10m (L/D = 1.43) for 1.5mm particles show how the
high velocity regions shift position from the surface (a) to deep in the layer
(d): (a) y = 0m; (b) y = −0.006m; (c) y = −0.012m; (d) y = −0.017m.
The dashed contour indicates the edge of the flowing layer at the depth
indicated. Flow is from top to bottom.

of the high velocity regions deep in the layer (figure 3.6(d)) correspond to the deepest

portion of the flowing layer (figure 3.5(a)).

Again, keeping one endwall frictionless validates that the friction from endwalls is the

origin of these two regions with high streamwise velocity in the long tumbler. Figure 3.7
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Figure 3.7. Contours of streamwise velocity at different depths in the long
tumbler of L = 0.10m (L/D = 1.43) with a frictionless endwall at z =
−0.05m for 1.5mm particles. The high velocity region is associated with
the frictional left endwall from the surface (a) to deep in the layer (d): (a)
y = 0m; (b) y = −0.006m; (c) y = −0.012m; (d) y = −0.017m. The dashed
contour indicates the edge of the flowing layer at the depth indicated. Flow
is from top to bottom.

shows the streamwise velocity contours for this case at the same four depths as illustrated

in figure 3.6. Clearly, no high velocity region exists near the frictionless endwall, and the

magnitude as well as positions of the high velocity regions associated with the frictional

endwall are almost identical to those in figure 3.6. It is also clear that the effects of the
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frictional endwall are negligible throughout the depth of the flowing layer by about D/2

from the endwall, consistent with measurements of the surface velocity (Pohlman et al.,

2006b).

Simulations for the short and quasi-2D tumblers show the effect of the interaction

between two endwalls on the streamwise velocity field. In figure 3.8, for the short tumbler,

there still exist two regions of high streamwise velocity in the upper portion of the flowing

layer, but these two regions move toward each other deeper in the layer until they merge

at the center of the tumbler at around y = −0.004m, as shown in figure 3.8(b). Below

this depth, there is only one region of high streamwise velocity, which occurs at the center

of the tumbler (figure 3.8(c) and figure 3.8(d)). For the quasi-2D case, which is shown in

figure 3.9, only one region with high streamwise velocity exists throughout the depth of

the flowing layer. The streamwise positions of regions of high streamwise velocity for the

short and quasi-2D tumbler move upstream with the depth, just as in the long tumbler.

However, the high speed region for the quasi-2D case is always downstream of the mid-

length of the flowing layer unlike the short and long tumblers where it is upstream of the

mid-length deep in the layer. The locations of the high speed regions deep in the layer

for the short and quasi-2D tumblers (figure 3.8(d) and figure 3.9(b)) correspond to the

deepest portion of the flowing layer (figures 3.5(b) and (c)). The shift in location of the

greatest depth downstream as L/D decreases might be attributed to friction at the walls

slowing the particles in the highly constrained space, so the region of the fastest flow

occurs further downstream.

To assess the effect of the particle size, the same long tumbler was simulated using

larger particles (d = 3mm). Figure 3.10 shows contours of the streamwise velocity on
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Figure 3.8. Contours of streamwise velocity at different depths in the short
tumbler of L = 0.05m (L/D = 0.71) for 1.5mm particles show how the
high velocity regions shift upstream and merge from the surface (a) to deep
in the layer (d): (a) y = 0m; (b) y = −0.004m; (c) y = −0.006m; (d)
y = −0.012m. The dashed contour indicates the edge of the flowing layer
at the depth indicated. Flow is from top to bottom.

two representative planes. The two regions of high streamwise velocity still occur for the

system with larger particles. Deep in the flowing layer, the streamwise positions of these

two regions shift upstream and away from the endwalls, though not to the same extent
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Figure 3.9. Contours of streamwise velocity at different depths in the quasi-
2D tumbler of L = 0.01m (L/D = 0.14) for 1.5mm particles have a single
high velocity region: (a) y = 0m; (b) y = −0.012m. The dashed contour
indicates the edge of the flowing layer at the depth indicated. Flow is from
top to bottom.

as with the smaller particles, perhaps due to the difference in the rheology of the flow for

the different particle sizes.

To better show the nature of the velocity field, the streamwise velocity profiles in

the axial direction and streamwise direction for different depths are shown in figure 3.11.

Again, the velocities are normalized with the streamwise surface velocity at the center of

the tumbler. From figure 3.11(a) it is evident that the two regions of higher streamwise

velocity appear at all depths, even near the bottom of the flowing layer at y = −0.017m,

though the magnitude is very small. In addition, the axial positions of the two high

velocity regions move closer to the center of the tumbler deeper in the flowing layer. The
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Figure 3.10. Contours of normalized streamwise velocity at different depths
in the long tumbler of L = 0.10m (L/D = 1.43) for larger 3mm particles:
(a) y = 0m; (b) y = −0.018m. The dashed contour indicates the edge of
the flowing layer at the depth indicated. Flow is from top to bottom.

width of the two regions also increases with depth. From figure 3.11(b), it is clear that the

maximum in the streamwise velocity shifts so that it occurs downstream of the mid-length

of the tumbler in the upper part of the flowing layer and further upstream deeper in the

layer.

3.5. Velocity Fluctuations Beneath the Visible Free Surface

The multiple interactions of particles in a flowing granular layer result in velocity

fluctuations that characterize the diffusion and dissipation in the flow. “Granular tem-

perature” has been used as a term for these fluctuations, due to the analogy with the

motion of molecules in a gas. Thus, if the instantaneous velocity of granular particles

is v = (u, v, w) and angled brackets represent the time average, then the granular tem-

perature is defined as T =< v2 > − < v >2= u2
rms + v2

rms + w2
rms (Jain et al., 2002).
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Figure 3.11. Normalized streamwise velocity u/uo profiles at different
depths in the long tumbler (L = 0.10m, L/D = 1.43) for 1.5mm parti-
cles: (a) at x = 0m; (b) at z = 0m: y = 0m(¤); y = −0.003m(∆);
y = −0.006m(5); y = −0.009m(B); y = −0.012m(C); y = −0.015m(♦);
y = −0.017m(©).

However, the concept of “temperature” is not as useful for a dissipative granular system

as it is in a non-dissipative gas. We prefer to consider the random velocity fluctuations

in terms of the root-mean-square (rms) values (urms, vrms and wrms), analogous to the

turbulence intensity in fluid systems, which, like granular systems, are dissipative. This

approach also provides a useful measure of the magnitude of the fluctuations in each

of the three component directions. The total velocity fluctuations can be calculated as

Vtotal,rms =
√

< v2 > − < v >2 =
√

u2
rms + v2

rms + w2
rms.

In figure 3.12 the spanwise profiles of the total and individual components of velocity

fluctuations at the free surface normalized by the streamwise surface velocity at the center
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of the tumbler, uo, are plotted for the three tumblers. The velocity fluctuations for all

three components of velocity generally increase near the endwalls, while the fluctuations

are smallest near the axial center of the tumbler. Moreover, the transverse and axial

fluctuations are always similar in magnitude and both are smaller than the streamwise

fluctuations. The lateral confinement of the endwalls reduces the axial velocity fluctu-

ations, wrms, immediately adjacent to the endwalls for the short tumbler and the long

tumbler. (A denser mesh of bins near the endwalls to increase resolution in the long

tumbler is necessary to adequately resolve the fluctuations.) For the quasi-2D tumbler,

fluctuations in all three velocity components drop immediately adjacent to the endwalls

so that the total velocity fluctuation, Vtotal,rms, decreases near endwalls rather than in-

creasing as it does in the long and short tumblers.

The normalized fluctuations along the streamwise direction for the three tumblers are

shown in figure 3.13. The tumbler length has little effect on the general nature of the

velocity fluctuations in the streamwise direction. In all cases, except for very near the

downstream end of the flowing layer, the surface velocity fluctuations grow monotonically

along the length of the flowing layer, even after the mean streamwise velocity decreases

after the mid-length of the flowing layer (figure 3.11(b)). This is consistent with MRI

measurements (Caprihan & Seymour, 2000), although the diffusion coefficient was mea-

sured rather than the velocity fluctuations. Thus, near the downstream end of the flowing

layer the velocity fluctuations may be larger than the local average velocity. For the long

tumbler and the short tumbler the fluctuations grow rapidly at first at the upstream end

of the flowing layer as the flow is initiated, then increase more slowly in the middle por-

tion of the flowing layer followed by more rapid growth again in the downstream portion
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Figure 3.12. Normalized velocity fluctuations on the free surface (y = 0m)
at x = 0m, along the length of the three tumblers for 1.5mm particles: (a)
L = 0.10m (L/D = 1.43); (b) L = 0.05m (L/D = 0.71); (c) L = 0.01m
(L/D = 0.14). Symbols: Vtotal,rms/uo(¤); urms/uo(∆); vrms/uo(5);
wrms/uo(©).
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Figure 3.13. Normalized velocity fluctuations on the free surface at z =
0m along the streamwise direction of three tumblers for 1.5mm particles
generally increase from the beginning to the end of the flowing layer: (a) L =
0.10m (L/D = 1.43); (b) L = 0.05m (L/D = 0.71); (c) L = 0.01m (L/D =
0.14). Symbols: Vtotal,rms/uo(¤); urms/uo(∆); vrms/uo(5); wrms/uo(©).
Flow is from left to right.
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approaching a maximum near the end of the flowing layer. In the quasi-2D case, the

velocity fluctuations grow somewhat more quickly along most of the length of the flowing

layer than for the long and short tumblers, with an increased growth rate near the end of

the flowing layer. Again, in all cases the streamwise velocity fluctuations are larger than

the transverse and axial fluctuations, which are similar in magnitude.

To understand the variation of the velocity fluctuations with the depth as well as

the endwall effects, the normalized components of the velocity fluctuations are plotted

in figure 3.14 for the long tumbler at the mid-length of flowing layer, x = 0m, at two

representative positions: the axial center of the tumbler, z = 0m and near the endwall

at z = −0.0475m. The velocity fluctuations increase moving from deep in the layer

toward the surface. In the upper portion of the flowing layer, the magnitudes of all

fluctuations near the endwalls are larger than their counterparts at the center, probably

because the particles are rebounding off the endwall and have substantial room for motion.

At the free surface, the velocity fluctuations are reduced, since particle collisions occur

less frequently as a result of the low number density of particles. Deeper in the flowing

layer the fluctuations at the endwalls are less than those near the center due to the

confinement from lateral endwalls and other particles deep in the layer. Surprisingly,

detectable velocity fluctuations occur even in the “fixed bed,” although they are quite

small (only about 3% of uo). These fluctuations arise from rearrangements of particles

as the gravity vector changes orientation with respect to the fixed bed as the tumbler

rotates.
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Figure 3.14. Comparison of profiles of the normalized velocity fluctuations
along the depth at x = 0m in the long tumbler (L = 0.10m, L/D = 1.43)
for 1.5mm particles: at the center of tumbler (dashed curves, z = 0m) and
near the endwall at a location of z = −0.0475m (solid curves). Symbols:
Vtotal,rms/uo(¤); urms/uo(∆); vrms/uo(5); wrms/uo(©).

.

3.6. Axial Velocity in the Tumbler

Recent measurements of the velocity on the surface of the flowing layer by Pohlman

et al. (2006b) have shown that boundary effects introduce axial flow near the endwalls in

long tumblers, as indicated by the curved streamtraces at the surface of the flowing layer

in figure 3.2. The axial velocity is relatively small – only about O(0.1) of the streamwise

surface velocity at most (Pohlman et al., 2006b) – but may be significant with respect to

transport of material near the endwalls (Santomaso et al., 2004).
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As shown in the contour plots of axial velocity for the free surface in the long tumbler

in figure 3.15(a), the simulation captures the general character of the axial flow that has

been previously explored in experiments (Pohlman et al., 2006b): the axial flow near the

endwalls is toward the center of the tumbler in the upstream portion of the flowing layer

and toward the endwalls in the downstream portion; the magnitude of axial velocity at

downstream portion is larger than that of upstream portion; and the whole axial flow is

roughly symmetric about the axial center of the tumbler, but not symmetric about the

mid-length of the flowing layer. The axial velocity comes about from the combined effects

of endwall friction and mass conservation (Pohlman et al., 2006a,b). Mass conservation

requires that all the particles in the fixed bed in any slice of the tumbler must flow

through the flowing layer once every half revolution for a half-filled tumbler. Particles in

the slices nearest the endwalls are slowed by endwall friction. Since the flowing layer is

thinner near the endwalls (figure 3.4 and figure 3.5) and the streamwise velocity is slower

(figure 3.11(a)), the only possibility to conserve mass is for the particles to flow axially

away from the endwall in the upstream portion of the flowing layer to reach a faster

streamwise flow (figure 3.6) and then move back toward the endwall in the downstream

portion of the flowing layer resulting in the situation shown in figure 3.15(a).

However, unlike previous experiments, our numerical simulations allow probing the

situation below the surface of the flowing layer as shown in figures 3.15(b), (c), and

(d). It is quite clear that the axial flow persists deep into the flowing layer, though the

magnitude of the axial velocity diminishes, as would be expected. The magnitude of the

velocity in the upstream portion is less than in the downstream portion in the upper

part of the flowing layer (figures 3.15(a) and (b)), but larger deep in the flowing layer
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Figure 3.15. The axial flow fields at different depths in the long tumbler
(L = 0.10m, L/D = 1.43) for 1.5mm particles show that the axial flow
is retained at all depths: (a) at y = 0m; (b) at y = −0.006m; (c) at
y = −0.0012m; (d) at y = −0.0017m. Flow is from top to bottom.

(figure 3.15(d)). Moving from the free surface to deep in the layer, the region with axial

flow does not vary much in size, but the location of the maximum axial velocity moves

further from the endwall and slightly toward the axis of rotation, particularly for the

downstream portion. At all depths, the interfaces between upstream and downstream

portions (dashed curves) are skewed slightly upstream from the endwalls inward. These

curves move upstream with increasing the depth in the flowing layer.
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Figure 3.16. Profile of the axial velocity along the y direction at different
axial positions at x = −0.02m in the long tumbler (L = 0.10m, L/D =
1.43) for 1.5mm particles. Symbols: z = 0.04m(¤); z = 0.035m(∆); z =
0.03m(5); z = 0.025m(♦); z = 0.02m(©).

It is helpful to consider the depth-wise profile of axial velocity. In figure 3.16, the axial

velocity at x = −0.02m, near where maximum axial velocity occurs, is shown for different

axial positions. Since this is the upstream portion of the flowing layer, the axial velocity

is directed away from the left endwall (w < 0) for portions in the left half of the tumbler

(z > 0). It is clear that the axial velocity extends deep into the flowing layer. The axial

velocity has a nearly linear profile in the upper portion of the flowing layer with a smooth

transition to the fixed bed.

The effect of the endwalls on the granular system has two components: the lateral con-

finement through collisions between endwalls and particles, and the tangential frictional
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force between endwalls and particles from which the axial flow arises due to mass conser-

vation. Therefore, the axial flow associated with the two endwalls should be independent

of each other for a long enough tumbler. In fact, Pohlman et al. (2006b) indicated that

for L/D > 1, the effects of the endwalls do not interact with one another. To confirm

this, the axial flow of the long tumbler (L = 0.10m, L/D = 1.43) is compared with two

other cases: the same tumbler but with one frictionless endwall at z = −0.05m (lateral

confinement only) and a longer tumbler, L = 0.15m (L/D = 2.14). The axial velocity

profiles of these three cases are compared quantitatively along the axial (z), streamwise

(x) and transverse (y) direction in figure 3.17, figure 3.18, and figure 3.19. In figure 3.17,

the patterns of axial velocity profiles on the free surface at the frictional end of three cases

are comparable, though the pattern is necessarily shifted for the L = 0.15m case. The

axial velocity at the frictionless endwall is negligible, confirming that the axial velocity

arises solely due to friction at the endwall not lateral confinement.

Figure 3.18 illustrates that the axial velocity profiles along the streamwise direction at

the free surface a short distance from the frictional endwall are not affected by the length

of the tumbler or the frictionless endwall. Likewise, profiles of the axial velocity through

the depth of the flowing layer (figure 3.19) collapse almost perfectly. These results indicate

that the axial flow near the two endwall regions results solely from the friction interaction

between the endwalls and the particles (not particle exclusion at the endwalls) and that

the effect penetrates through the depth of the flowing layer. Furthermore, these results are

consistent with experiments measuring the axial surface velocity (Pohlman et al., 2006b)

that indicate these endwall flows are independent of each other and independent on the

tumbler length for long tumblers.
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Figure 3.17. The free surface axial velocity at x = −0.02m along the axial
direction for 1.5mm particles matches near the frictional endwalls regardless
of the tumbler length: ¤, L = 0.10m (L/D = 1.43), both endwalls are
frictional; ©, L = 0.15m (L/D = 2.14), both endwalls are frictional; ∆,
L = 0.10m (L/D = 1.43) with a frictionless endwall at z = −0.05m.

3.7. Conclusions

Endwalls play a major role in the structure and velocity field in the flowing layer

of a cylindrical tumbler. When the endwalls are far enough apart, approximately one

tumbler diameter (D) or more from each other, independent regions of altered flow occur

proximal to the endwalls throughout the depth of the flowing layer, consistent with the

measurements at the surface (Pohlman et al., 2006b). The friction at the endwalls slows

the particles that are immediately adjacent so that 1) the flowing layer is not as deep

as further from the endwalls, and 2) the streamwise velocity of the particles is slower
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Figure 3.18. Free surface axial velocity 0.01m from the frictional endwall
(z = 0.04m for two L = 0.10m (L/D = 1.43) tumblers and z = 0.065m
for L = 0.15m (L/D = 2.14) tumbler) along the streamwise direction for
1.5mm particles match, regardless of the tumbler length: ¤, L = 0.10m
(L/D = 1.43), both endwalls are frictional; ©, L = 0.15m (L/D = 2.14),
both endwalls are frictional; ∆, L = 0.10m (L/D = 1.43) with a frictionless
endwall at z = −0.05m.

immediately adjacent to the endwalls than further from the endwalls. This sets up a

situation in which a short distance from the endwalls, within one tumbler radius R from

an endwall, the flow adjusts to accommodate mass conservation. Specifically, an axial

velocity field is set up to carry particles to a faster flowing region a short distance from

the endwall. Not only is the streamwise flow faster in this region than it is near the

endwalls, it is faster than the flow far from the endwalls at the center of the tumbler. The
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Figure 3.19. Axial velocity profile with depth at x = −0.02m and 0.01m
away from the frictional endwall for three cases with 1.5mm particles match,
regardless of the tumbler length: ¤, L = 0.10m (L/D = 1.43), both end-
walls are frictional; ©, L = 0.15m (L/D = 2.14), both endwalls are fric-
tional; ∆, L = 0.10m (L/D = 1.43) with a frictionless endwall at z =
−0.05m.

flowing layer deepens to further accommodate the particles moving into the region from

next to the endwalls.

Simulations with longer tumblers or tumblers with one frictionless endwall clearly

indicate that this phenomenon is a direct result of endwall friction and that it extends

less than one tumbler radius from the endwall. When frictional endwalls are closer than

2R, these regions of faster flow merge partially (for the short tumbler) or completely (for

the quasi-2D tumbler). Likewise, the regions in which the flowing layer is deeper merge

as the endwalls get closer to one another. While recent experiments provide similar
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results with regard to the extent of the region near the endwalls where the streamwise

velocity is higher and speculate that this is a result of the impact of endwall friction on

mass conservation (Pohlman et al., 2006a,b; Santomaso et al., 2004), these studies were

limited to surface velocity measurements. These DEM simulations make it clear that

the axial flow and accelerated streamwise flow in the region near the endwalls not only

extend through the depth of the flowing layer, but also alter the depth of the flowing

layer locally. Furthermore, these previous studies could only speculate on the cause of

this phenomenon, though in one case it was shown that higher friction at an endwall

(using sandpaper) accentuated the axial and streamwise flow measured at the surface

(Pohlman et al., 2006b). These DEM simulations with a frictionless endwall show that

the axial flow, higher streamwise velocity, and deeper flowing layer typically associated

with a frictional endwall are absent altogether when the endwall is frictionless.

In spite of this better understanding of the detailed flow of mono-disperse particles

through the depth of the flowing layer, questions still abound. Specifically, how the

frictional endwalls affect the mixing and segregation of bi-disperse particles, particularly

in terms of radial segregation and pattern forming in quasi-2D bi-disperse systems and in

terms of axial banding in long tumbler, remains an open question. Likewise, the impact

of frictional interactions between particles and walls for curved walls is not clear. For

instance, it is unclear if friction can cause an axial flow in spherical tumblers. Nevertheless,

further experiments and simulations can shed light on these and other issues, particularly

now that it is possible to simulate large numbers of particles using reasonably low cost

computers.
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CHAPTER 4

The Onset of Granular Axial Segregation in Rotating

Cylindrical Tumblers

Chapter Summary: Axial segregation in a long rotating tumbler has attracted much

attention in recent years, but the fundamental onset mechanism of axial segregation is

still unclear. Several assumptions are used in models of axial segregation including axial

flow between bands and negative diffusivity to drive axial segregation. In this chapter,

the onset of axial segregation for binary mixtures having different size particles in rotating

tumblers is quantitatively investigated using the discrete element method.

DEM simulations show the existence of a small axial flow between segregated bands

of small and large particles even after the bands are fully developed. The direction and

strength of the axial flow are correlated with the concentration gradient along the axial

length as the bands develop. Axial segregation occurs when the axial flow rate of the

two types of particles differs in the upstream and downstream portions of the flowing

layer. This difference arises from the non-uniform distribution of axial velocity in the flow

and the redistribution of the two types of particles within transverse planes due to radial

segregation. The net result of this differential axial transport of the two particle species

in transverse planes appears like a diffusion process with negative diffusivity, justifying

previous models for axial segregation as a phase transition characterized by a governing

equation with a negative diffusivity. Endwalls can initiate axial segregation, since the
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endwalls drive an axial flow due to friction. The simultaneous radial segregation results

in small particles being driven further from the endwalls, while large particles accumulate

at the endwalls. Once this occurs, other bands form due to the gradient in particle

concentration near the endwalls.

4.1. Introduction

One of the most intriguing physical properties of granular media is the tendency of

granular mixtures to segregate upon shearing or vibration. An initially homogenous binary

mixture in long partially-filled, horizontal rotating cylindrical tumblers is often used as a

canonical system to study granular mixing and segregation.

Though first reported by Oyama (Oyama, 1939) in 1939, axial segregation did not

attract substantial attention until recent decades (Donald & Roseman, 1962; Nakagawa,

1994; Zik et al., 1994; Hill & Kakalios, 1994, 1995; Jain et al., 2001). And even though

several interesting properties of axial segregation such as traveling waves and coarsening

(Choo et al., 1998; Fiedor & Ottino, 2003) have been studied, the fundamental drivers

of the onset mechanisms for axial segregation are still unclear. Hill and Kakalios (Hill &

Kakalios, 1994) found that the appearance of axial segregation strongly depends on the

rotational speed, ω, as well as the differences in the dynamic angles of repose between

the mixed and segregated phases. They also found that for a mixture of small and

large glass particles axial segregation is always initiated near endwall regions, and the

bands at the endwalls are always rich in large particles. Alexander et al. (2004) found

that the axial segregation only occurs when the size ratio of two species is large enough;

Bielenberg et al. (2007) noted that the size of particles relative to the tumbler diameter
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is also key to axial segregation; Zik et al. (1994) showed that the periodic modulation

of tumbler diameter along the rotation axis can promote axial segregation; by studying

the oscillatory dynamics for initially pre-segregated bands, Khan et al. (2004) found that

the particle concentration along the rotation axis is closely associated with the angle of

repose of segregation bands from the initial oscillatory transient to the fully segregated

state.

Due to the complexity of the physics, theoretical progress has been limited. Savage

(1993) and Hill & Kakalios (1994, 1995) used the concept of “negative diffusivity” to

explain axial segregation. They assumed that different compositions of granular mixtures

have different dynamic angles of repose, which introduces an axial drift flow between seg-

regation bands. Zik et al. (1994) presented the first rigorous model to show the connection

between axial drift flow and negative diffusivity. They postulated that the particles with

small angle of repose have a large mobility down the axial slope, which reduces the one-

dimensional mass conservation equation along the rotation axis to a diffusion equation

with a negative diffusivity. To prevent particle accumulation, they assumed the existence

of a counter axial flow. But as pointed out by Elperin & Vikhansky (1999), that model

is problematic because it omits the size preference in the counter axial flow. Later, an

improved theoretical model was developed by Aranson et al. (1999). They coupled two

one-dimensional equations for the variation of the angle of repose and the concentration

over the transverse cross sections along the rotation axis, assuming that the axial segre-

gation is a phenomenon of phase transition similar to spinodal decomposition, which also

has a negative diffusivity in its characteristic equation. Although their model successfully

predicts the initial axial segregation as well as band oscillation and coarsening over long
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times, there are still open questions for their model as indicated by Khan et al. (2004).

Moreover, their model omitted the role of the radial segregation, which precedes axial

segregation. In fact, segregation bands of small particles are actually the exposure of

a radially segregated core of small particles reaching the visible free surface (Hill et al.,

1997b).

Computational simulation provides an alternative approach to study the onset of axial

segregation. The Discrete Element Method (DEM) has been employed to study the

granular axial segregation in rotating tumblers. The first simulation by DEM was reported

by Shoichi (1998) for a rather small system with only about 1000 particles. Rapaport

(Rapaport, 2002, 2007a,b) used DEM to study the effect of the particle size ratio, friction

coefficient, and rotational speed. Taberlet et al. (2006) studied the dynamics of axial

segregation bands including band oscillation and coarsening. But these computational

studies only qualitatively reproduced the observed experimental phenomena; they did

not investigate the fundamental onset mechanism for axial segregation or probe the flow

deep in the bed of particles.

This work addresses the onset mechanism of axial segregation. Two interrelated issues

are considered: the existence of axial flow between segregation bands and its nature below

the surface, and the appearance of what may be imagined as a “negative diffusivity” during

the development of axial segregation. Unlike most previous work (Hill & Kakalios, 1994,

1995; Choo et al., 1998; Rapaport, 2002), in which size difference and friction coefficient

difference are coupled (for example, small sand particles are rotated with large glass

particles in the tumblers), here we consider the axial segregation of bi-disperse mixtures

differing only in size. The outline of this chapter is as follows: first we explore the
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segregation structure and axial flow field during the course of the axial segregation; next

we examine the axial flow rate of individual species to clarify the onset mechanism of the

axial segregation; then we consider the conditions that trigger axial segregation and the

role of axial flow and radial segregation in the last section.

4.2. Numerical Parameters

The parameters of simulation are as follows: diameter of the tumbler is D = 2R =

0.08m; the length of the tumbler is L = 2D = 0.16m; equal volumes of small and large

particles of radii 0.001m and 0.002m fill 20% of the tumbler volume; gravitational accel-

eration is g = 9.8m/s2; particle properties correspond to glass (density ρ = 2500kg/m3,

restitution coefficient e = 0.97 (Ristow, 2000)). To provide a random mixture of parti-

cles, as introduced in Chapter 2, the two species are initially represented by mass points

randomly distributed in the tumbler without gravitational force; then the radii of the

particles grow until they reach the required size; next, the gravitational acceleration is

applied allowing the particles to settle to the lower portion of the horizontal tumbler.

Extra particles above a flat top surface are removed leaving about 13, 800 particles in the

simulation. To avoid a close-packed structure, the particles have a normal size distribu-

tion with a variance of (0.1d)2, where d is the particle’s diameter. The friction coefficients

among particles and between particles and walls are set to µ = 0.6; in order to save

computer time, the collision time is ∆t = 1.0 × 10−3s, consistent with previous simula-

tions (Taberlet et al., 2006). The integration time step is ∆t/40 = 2.5 × 10−5s to meet

the requirement of numerical stability (Ristow, 2000); except where noted, the rotational

speed is ω = 3.14radians/s (0.5rot/s). The curved cylindrical wall and two endwalls of
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the tumbler are modeled using geometrically smooth surfaces, which are assumed to have

infinite mass and radius for the calculation of the collision force between mobile granular

particles and the walls. Using the coordinate system shown in figure 1.1, the surface of

the flowing layer should theoretically be around y = −0.0195m for a 20% fill level if the

surface is perfectly flat and no dilatancy is introduced during flow. For all simulations in

this chapter, the tangential force model without a memory effect is used (Rapaport, 2002;

Taberlet et al., 2006). The memory-effect model, which uses the accumulated tangential

displacement between two contacting particles (Ristow, 2000; Chen et al., 2008b), was

not used because it is more time consuming and provides similar results to the simpler

force model.

To quantitatively study the flow, the computational domain is divided into 40 bins

in the x and y dimensions, and 16 bins in the z dimension. Local flow properties are

obtained by averaging values for all particles in each bin. Except where noted, to obtain

statistically meaningful results, the averaging time is 2s (one tumbler rotation).

4.3. Axial Segregation Structure

The evolution of the spatially averaged volume concentration profile is shown in fig-

ure 4.1 for small particles, < Cs >, and large particles, < Cl >, along the axis of rotation

z, where <> denotes the cross-sectionally averaged values. The concentrations deviate

from the initially well-mixed state very quickly as large particles begins to accumulate near

endwalls within 1 rotation (figure 4.1(a)). Here t = 0 is the time at which the particles

start to flow downward in the streamwise direction after the dynamic angle of repose is

reached. After several rotations, as shown in figure 4.1(b), axial segregation is evident near
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Figure 4.1. Evolution of the cross-sectionally averaged species concentra-
tions along the axial length averaged over different time periods: (a) initial
segregation (0-1 rotation); (b) intermediate segregation (4-5 rotations); (c)
further segregation (20-21 rotations); (d) full segregation (49-50 rotations).
¤: concentration of small particles, < Cs >; ©: concentration of large
particles, < Cl >.
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the endwalls (z = ±0.08m) as the concentration of large particles increases significantly.

This is consistent with the experimental observations (Hill & Kakalios, 1994; Fiedor &

Ottino, 2003; Juarez et al., 2008) that bands near endwalls appear first and that they are

rich in large particles. At the same time, adjacent bands rich in small particles appear.

After 20 rotations, figure 4.1(c), axial segregation is evident along the entire length of the

tumbler with a third band of large particles appearing at the axial center of the tumbler

(z = 0). The segregation pattern reaches a steady segregated state (figure 4.1(d)) within

50 rotations, though the positions and concentrations of bands randomly fluctuate very

slightly with time. No merging or oscillation of bands is evident up to 200 rotations.

After 1 rotation

After 50 rotations

z = 0m z = -0.04m z = -0.08mz = -0.07mz = -0.06mz = -0.02m

Figure 4.2. Snapshots of slices at different axial positions at two represen-
tative times: after 1 (initial axial segregation) and 50 rotations (full axial
segregation).

Although MRI measurements from Hill et al. (1997b) have shown the outline of the

radial segregation core of small particles during axial segregation, numerical simulations

can provide more detailed information about the internal structure of the axial segregation
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bands. Figure 4.2 shows slices at different axial positions at two representative times:

initial axial segregation and full axial segregation. As observed in experiments (Hill

et al., 1997b; Jain et al., 2001; Arndt et al., 2005), radial segregation starts very early

and continues for the entire course of axial segregation. The band of small particles at

z = −0.04m is a consequence of the expansion of the radial core of small particles to the

free surface. At steady-state, these bands of small particles are relatively pure, although

there are still a few large particles present at the periphery. The band of large particles at

z = 0m is much less pure at steady state. The large particles generally surround a core of

small particles, but continually mix and re-segregate in the flowing layer. Between bands

at z = −0.02 and z = −0.06m the particles are not well segregated. Although both types

of particles are initially present at the endwalls, the larger particles dominate near the

endwalls at steady state (z = −0.07 and z = −0.08m).

The internal structure of the segregation can be represented in terms of iso-surfaces of

small and large particle number densities, as shown in figure 4.3 for three representative

times. It is clear that the core of relatively pure small particles extends along the entire

axial length except right at the two endwalls after several rotations. The two lobes

correspond to the two bands of small particles, and the narrow portion at the center of the

tumbler is where the radial core is surrounded by a band of large particles (figure 4.3(a)).

The large particles surround the narrowed core of small particles near the two endwalls

and at the center (figure 4.3(b)).



94

Averaged over 
rotations 4-5�

Averaged over 
rotations 20-21

Averaged over 
rotations 49-50

(a) (b)

Figure 4.3. Structures of small and large particle volumes at different
times as represented by the number density of particles: 4-5 rotations,
20-21 rotations, and 49-50 rotations. (a) Small particle volume, ns ≥
8× 107particles/m3; (b) Large particle volume, nl ≥ 5× 106particles/m3.

4.4. Axial Drift Velocity Field during Axial Segregation

The free surface and subsurface flow fields for the mixture (both particles species) for

four representative times are illustrated in figure 4.4. Each plot consists of the contours of

axial velocity and streamtraces obtained from the integration of the streamwise (u) and

axial (w) velocities. Due to the slightly variation in the dynamic angle of repose along

the length of the tumbler, the free surface is represented by a plane at y = −0.02m, just

below the top surface.
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Figure 4.4. Evolution of the velocity field on the free surface at y = −0.02m
and below the surface at y = −0.025m. Black curves are streamtraces from
the integration of streamwise velocity (u) and axial velocity (w). Purple
curves for y = −0.025m represent the boundary of the flowing layer, defined
as the locus of points where the streamwise velocity changes from negative to
positive. Color contours represent the levels of axial velocity (w). (a) initial
segregation (first 0-1 rotation); (b) intermediate segregation (4-5 rotations);
(c) further segregation (20-21 rotations); (d) full segregation (49-50 rota-
tions).
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As conjectured by Savage (1993) and Hill & Kakalios (1994), convective axial flow in-

deed occurs during the development of axial segregation bands and this axial flow strongly

depends on the evolution of species concentration distribution in the system. As axial

segregation begins, shown in figure 4.4(a), the axial flow field of the bi-disperse system is

similar to that for a mono-disperse system (Pohlman et al., 2006b; Chen et al., 2008b).

Axial flows are associated with each endwall; particles near endwalls move away from the

endwall in the upstream portion of the flowing layer and then move back in the down-

stream portion. The origin of this endwall-related axial flow has been explained in terms

of mass conversion (Pohlman et al., 2006b; Chen et al., 2008b). Streamwise flow of parti-

cles in the transverse slices nearest endwalls is slowed by the frictional endwalls. Since all

the particles in the solid body rotation part of any slice of the tumbler must pass through

the flowing layer, the only possibility to accommodate the reduced streamwise velocity

and the thinner flowing layer (Chen et al., 2008b) near the endwalls is for these particles

to flow axially away from the endwall in the upper portion of the flowing layer and then

back toward the endwall in the downstream portion to conserve the mass.

As the segregation proceeds with the development of the two bands of small particles

and the appearance of the band of large particles at the center of the tumbler (as shown

in the concentration profile in figure 4.1(c)), another axial flows appear as shown in

figure 4.4(c). Particles in the center band tend to flow toward the adjacent bands of small

particles in the upstream portion of the flowing layer and flow back in the downstream

portion. As axial segregation continues from figure 4.4(c) to figure 4.4(d), these axial

flows grow stronger. At steady state particles in all three large particle bands (at z =

0,±0.08m) flow toward the adjacent bands of small particles in the upstream portion
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of the flowing layer and back into the large particle bands in the downstream portion.

Comparing the concentration profiles at this time (figure 4.1(d)) with the surface axial

flow field (figure 4.4(d)), the magnitude of the axial velocity is approximately zero at

the centers of the segregation bands (around z = ±0.04m and z = 0m). The maximum

axial flows always occur at the interface between bands (around z = ±0.065m and z =

±0.02m). Furthermore, the magnitude of the endwall-related axial flow increases as the

axial segregation bands near the endwalls develop.

The velocity field on a subsurface plane at y = −0.025m shows that the axial flow

persists into the flowing layer, though the magnitude of the axial velocity diminishes with

depth, similar to the mono-disperse case (Pohlman et al., 2006b; Chen et al., 2008b). The

region with axial flow at y = −0.025m is similar to that at the free surface except that the

region in which flow occurs is smaller. The interface between negative and positive axial

flow regions in the upstream and downstream portions changes slightly with the depth

as is the case for mono-disperse flow. Moreover, the extent of the flowing layer indicated

by the dashed curves at y = −0.025m decreases, which is similar to the mono-disperse

case (Chen et al., 2008b). The streamwise length of the flowing layer for the bands of

large particles near the endwalls and at the center (around z = 0m) decreases with the

development of axial segregation from figures 4.4(a) to (d) while the streamwise length of

the flowing layer at the bands of small particles (around z = ±0.04m) increases.

To better understand the cause of the axial flows between segregation bands, snapshots

of the dynamic angles of repose based on the outline of the particles on the top surface of

the flow at different axial positions are shown in figure 4.5. From figure 4.5(a), which is

the snapshot after 1 rotation (close to the initially well mixed state), it is evident that near
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Figure 4.5. Difference of dynamic angles of repose of three representative
cross sections at two times during the development of the axial segregation:
(a) snapshot after 1 rotation; (b) snapshot after 50 rotations. Red curve:
outline of the particle surface near the endwall (z = −0.08m); blue curve:
outline of the particle surface around the center of the band of small particles
(z = −0.04m); green curve: outline of the particle surface at the center of
the center band of large particles (z = 0m).

the endwalls (z = −0.08m) there is a higher dynamic angle of repose than at z = −0.04m

and z = 0. The higher dynamic angle of repose near endwalls is related to friction at

the endwalls (Dury & Ristow, 1998). With the development of segregation bands, the

dynamic angle of repose at the center band of large particles (z = 0m) becomes larger

than that at the adjacent band of small particles (z = −0.04m), as shown in figure 4.5(b).

This suggests that the angle of repose is related to the axial drift flow between segregation

bands. Particles in the bands of mostly large particles fall into the band of small particles

in the upstream portion of the flowing layer and go back into the large particle bands

in the downstream portion due to the different dynamic angles of repose. The particle

concentration and the local surface slope are in phase with each other during the whole
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course of axial segregation. This is consistent with the experimental observation by Khan

et al. (2004) that these two parameters are not independent during the process of axial

segregation. Thus, the surface slope should not serve as an independent parameter in

addition to species concentration, as has been done in the case of one continuum model

(Aranson & Tsimring, 1999; Aranson et al., 1999).

The axial drift of individual particle species during the course of axial segregation at

4-5 rotations when the two bands of small particles are developing is shown in figure 4.6.

During the development of the two bands of small particles there is very little difference

between the axial velocity profiles of the small and large particles at a position where the

magnitude of axial flow is relative large (figures 4.6(a) and (b)). The linearly decreasing

axial velocity from the surface at y = −0.02m through the depth of the flowing layer at

y ≈ −0.03m in figure 4.6(b) is similar to that in a mono-disperse system (Chen et al.,

2008b). The small axial velocity well below the surface is due to slippage between the

particles and the wall. Experiments with a similar fill level of 1mm and 2mm glass

particles in a smooth acrylic tumbler indicate that a small degree of slippage regularly

occurs at the tumbler walls. The axial flow at this time only occurs near endwalls with

no axial flow in the center portion of the tumbler, as shown in figure 4.6(c).

The axial flow associated with formation of the center band of large particles at 20−21

rotations is shown in figure 4.7. Again the axial velocity profiles of two particle species

are similar, though subtle differences exist. From figures 4.6 and 4.7 it appears that the

axial velocity of two species are similar during the entire course of axial segregation, so

it is difficult to probe the onset mechanism of axial segregation by considering only the

axial velocity field. In fact, the difference between the axial velocities of small and large
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Figure 4.6. Comparison of axial velocities of two species at three represen-
tative positions during the development of the axial segregation (averaged
over 4-5 rotations): (a) axial velocity along the streamwise direction on the
free surface at y = −0.02m and z = −0.065m; (b) axial velocity along the
depth at z = −0.065m and x = 0.02m; (c) axial velocity along the axial
length at x = 0.02m and y = −0.02m. ¤: axial velocity of small particles;
©: axial velocity of large particles.
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Figure 4.7. Comparison of axial velocities of two species at five representa-
tive positions during the further development of the axial segregation (av-
eraged over 20-21 rotations): (a) along the streamwise direction on the free
surface at y = −0.02m and z = −0.065m; (b) along the streamwise direc-
tion at y = −0.02m and z = −0.02m; (c) along the depth at z = −0.065m
and x = 0.02m; (d) along the depth at z = −0.02m and x = 0.02m; (e)
along the axial length at x = 0.02m and y = −0.02m. ¤: axial velocity of
small particles; ©: axial velocity of large particles.
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particles is less than 0.003 m/s (about 10% of the maximum axial velocity) in 70% of the

tumbler.

4.5. Axial Flow Rate during Axial Segregation

The axial flow rate on every transverse slice can be divided into the upstream por-

tion and the downstream portion denoted as Qup,s, Qup,l, Qdown,s, and Qdown,l (m3/s)

with the subscripts s and l indicating small and large particles. For example, Qup,s =

∑k
i=1 wi,sSini,sVs/0.64. Here the index i represents the summation over individual bins

in the upstream portion. wi,s and ni,s are the locally averaged axial velocity (m/s) and

number density (number of particles/m3) of small particles in bin i, and Si is the section

area on the xy plane of bin i, which is a constant for the structured averaging mesh used

here. Vs is the volume of one small particle and 0.64 is a factor accounting for the void

fraction for dense sphere packing to provide an accurate numerical value for the volume

flow rate. (Although this factor is borrowed from random mono-disperse packing (Jaeger

& Nagel, 1992), we have verified that it is valid for the mixtures of small and large par-

ticles in our bi-disperse system, since the size ratio of the two species is not so large that

the small particles can occupy voids between large particles.) Here we distinguish the

“upstream” and “downstream” portions of every cross section as the streamwise position

where the sign of the axial velocity changes rather than using the center of the flowing

layer (x = 0m), since the interface between negative and positive axial flow regions varies

with the depth. This method to distinguish upstream and downstream portions works

well for the regions with relatively strong axial flow (near endwalls in figure 4.4 (a) and

(b), and the whole axial length in figures 4.4 (c) and (d)), but is more difficult to apply
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in the central region of figures 4.4 (a) and (b) where the magnitude of the axial velocity

is small.

Figure 4.8 shows the magnitude of the axial flow as axial segregation develops. Here

the magnitude of the axial flow of the entire mixture in the upstream and downstream

portions is represented by the absolute values of Qup,mix=Qup,s +Qup,l, the total flow rate

of two species in the upstream portion, and Qdown,mix=Qdown,s + Qdown,l, the counterpart

in the downstream portion. Since the bands of large particles near the endwalls develop

more quickly than the two bands of small particles and the center band of large particles,

the averaging time used to calculate the axial flow rate is 2s (1 rotation) early in the

segregation process and 6s (3 rotations) later in the process. The endwall-related axial

flow starts immediately with the initial rotation (figure 4.8(a)) and its magnitude increases

until fully developed segregation is achieved (figure 4.8(d)). The axial flow is initially quite

small at the center portion of the tumbler before the two bands of small particles and the

center band of large particles appear. Since it is quite difficult to identify the upstream

and downstream portions for the small, random axial velocity, these data are indicated by

dashed lines in figures 4.8(a) and (b). At later stages of axial segregation local maxima in

the axial flow occur at the interface between two adjacent bands (around z = ±0.065m

and z = ±0.02m in figure 4.8(d)) and minima in the axial flow occur at the centers of each

band (two endwalls, around z = ±0.04m, and z = 0m in figure 4.8(d)). Of course, the

axial flow rates in the upstream and downstream portions at all axial positions balance

each other, having nearly identical magnitudes but opposite directions. Thus, the volume

of particles in every slice is conserved during the development of axial segregation.
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Figure 4.8. Magnitude of the axial flow rate of the mixture in the upstream
and downstream portions along the axial length averaged over four differ-
ent time periods: (a) initial segregation (0-1 rotation); (b) intermediate
segregation (4-5 rotation); (c) further segregation (19-22 rotations); (d) full
segregation (47-50 rotations). ¤: magnitude of the total axial flow rate in
the upstream portion, | Qup,mix |; ©: magnitude of the total flow rate in
the downstream portion, | Qdown,mix |.
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Comparing figure 4.8 and figure 4.1 it is evident that strong axial flows correspond

to steep concentration gradients. The axial flow rate and the axial gradient of small

particle concentration, ∂ < Cs > /∂z, during the development of the axial segregation,

are compared in figure 4.9. The gradient is calculated as a central finite difference except

near the endwall. Considering only the axial flow rate related to axial segregation (not

the frictional endwalls), which occurs during the development of the center band of large

particles (19-22 rotations and 47-50 rotations), the axial flow rate and the concentration

gradient overlay one another for the central portion of the tumbler when scaled with an

appropriate factor. In fact, the overall shapes of two profiles along the entire length of

the tumbler are similar. The axial flow in the upstream portion always has the same

sign as the concentration gradient at all axial positions, and the axial positions where

zeros or extrema appear coincide. Therefore, it is safe to conclude that, as assumed by

Savage (1993), the strength of the axial flow between segregation bands is proportional

to the concentration gradient, that is Qup,mix ∝ ∂ < Cs > /∂z. Of course, similar

proportionalities could be written for Qdown,mix and ∂ < Cs > /∂z or ∂ < Cl > /∂z,

which is essentially a mirror image of ∂ < Cs > /∂z.

Several models of axial segregation utilize a negative diffusivity (Zik et al., 1994;

Hill & Kakalios, 1994, 1995; Savage, 1993; Aranson & Tsimring, 1999; Aranson et al.,

1999). To justify the use of a negative diffusivity model during axial segregation, we

calculate the axial diffusivity of the small particles, K, with respect to the mixture at

every axial position using Fick’s first law of diffusion: < Cs > (< ws > − < w >

) = −K∂ < Cs > /∂z, where ws is the local axial velocity of small particles, and

< ws >=< Csws > / < Cs > is the cross-sectionally averaged axial velocity. The
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Figure 4.9. Comparison of the axial flow rate of the mixture in the upstream
portion (¤) and concentration gradient of small particles (©) averaged over
two time periods: (a) 19-22 rotations; (b) 47-50 rotations.

diffusivity is plotted using different scales in figure 4.10. Clearly, a net negative diffusivity

exists in regions where there is axial segregation: near the endwalls in figures 4.10(a) and

(b) when bands near endwalls develop, and in the center portion in figures 4.10(b) and (c)

when the center bands develop. When there is no axial segregation in the center portion,

as shown in figure 4.10(a), the diffusivity is positive at almost all axial positions of this

portion, reflecting the tendency of the particles to mix in this region. The magnitude of

the negative axial diffusivity for the bands near the endwalls is larger than that of the

center bands. As expected, the magnitude of this generalized diffusivity decreases with

the time and approaches zero at the fully developed segregated state in figure 4.10(d),

which is discussed in detail in Appendix A. Positive or zero diffusivity tends to occur at the
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centers of the segregation bands, around z = ±0.04m in figure 4.10(b) and z = 0,±0.035m

in figure 4.10(c). For a few positions (for example z = 0.015m in figure 4.10(b) where

the denominator used to calculate the diffusivity, ∂ < Cs > /∂z, is very close to zero),

anomalies occur due to the randomness in the data and the problems associated with

taking the derivative of noisy data.

To understand the source for the diffusivity, we consider | Qup,s | − | Qdown,s |,
the difference in the axial flow rate of small particles from the upstream portion to the

downstream portion, which is shown in figure 4.11. The figure shows that the axial

flow rate attributed to small particles in the upstream portion is always larger than

that in the downstream portion at the axial positions where axial segregation occurs

(excluding the central portion in figures 4.11 (a) and (b) due to the difficulty to tell the

upstream and downstream portions as mentioned previously.) This imbalance can be

used to qualitatively explain the source for the effective diffusivity and the onset of axial

segregation, as shown in figure 4.12: for an initially well-mixed granular mixture, the

endwall friction introduces an axial flow near endwalls, which leaves the endwalls in the

upstream portion of the flowing layer and moves back in the downstream portion; due to

the difference in the axial flow of small particles in the upstream portion compared to the

downstream portion, small particles are conveyed from the region close to the endwalls (1)

to the adjacent region (2) leaving a band rich in large particles in region 1 and a band rich

in small particles in region 2. As the concentration of small particles increases in region

2, new axial flow is generated, from region 3 to region 2 in the upstream portion and back

to region 3 in the downstream portion; again, from the imbalance of the axial flow rate

for small particles in the up and downstream portions, this new axial flow conveys small
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Figure 4.10. The variance of generalized axial diffusivity with the devel-
opment of axial segregation along the axial length over four different time
periods: (a) initial segregation (0-1 rotation); (b) intermediate segregation
(4-5 rotation); (c) intermediate segregation (19-22 rotations); (d) full seg-
regation (47-50 rotations).
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particles from region 3 to region 2 leaving a band rich in large particles in region 3. The

process continues forming more bands in the system and eventually achieving alternating

segregation bands in the entire tumbler.

It is helpful to consider how the axial flow and particle number densities combine

to bring about the axial banding. Figure 4.13 shows the axial velocity of the mix-

ture, number density field of small particles and large particles, and the axial parti-

cle flux (particles/m2s) of both small and large particles on the same cross section at

z = −0.065m, which is averaged over 0 − 1 rotation. The axial velocity of the mixture

shown in figure 4.13(a) approximately represents the axial velocity of both small and

large particles since they have nearly identical velocities. The axial velocity field shown

in figure 4.13(a) is almost symmetric about the midpoint of the flowing layer (x = 0m).

However, the distribution of small and large particles at this cross section differs due

to radial segregation as indicated in figures 4.13(b) and (c). As a result, the axial flow

rate of small particles away from the endwall in the upstream portion (qs > 0) is larger

than the flow rate toward the endwall in the downstream portion (qs < 0), as shown in

figure 4.13(d). Thus, small particles are conveyed away from the endwall. The opposite is

true for large particles as shown in figure 4.13(e), so large particles accumulate near the

endwall. This non-uniform distribution with high axial velocity and high concentration

of large particles near the bottom end of the flowing layer results in the higher ratio of

the axial flow rate of small particles in the upstream portion, as indicated in figure 4.11.

Thus, in the upstream portion of the flowing layer where the particles are mixed, both

small and large particles move away from the endwall as shown in figure 4.4. Because

of radial segregation the smaller particles percolate to the lower part of the flowing layer
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Figure 4.11. The magnitude difference of the axial flow rate of small parti-
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1 rotation); (b) intermediate segregation (4-5 rotation); (c) intermediate
segregation (19-22 rotations); (d) full segregation (47-50 rotations). The
dashed lines with 0 magnitude is used for reference.
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Figure 4.12. Illustration of onset of axial segregation in the system. Solid
arrows: axial flow of small particles; dashed arrows: axial flow of large
particles.

where the axial velocity back toward the endwall is less, while the large particles in the

top of the layer are in a region of higher axial velocity back toward the endwall. The net

result is that small particles carried from band 1 into band 2 in figure 4.12 are less likely

to return to band 1, whereas large particles are more likely to return resulting in steadily

progressing segregation.

From the above analysis, the non-uniformity of the axial velocity field and the particle

concentration distribution are two key aspects related to the appearance of axial segre-

gation, which is also discussed in Appendix A. It is not difficult to explain why the axial

segregation only occurs when the size ratio of two species is large enough (Bielenberg

et al., 2007): radial segregation is a necessary precursor to axial segregation. Weak radial

segregation does not carry small and large particles into different axial flow regions, so

axial segregation occurs very slowly, if at all.
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Figure 4.13. Illustration of imbalance distribution of the axial flow rate of
small and large particles in upstream and downstream portions in the cross
section at z = −0.065m averaged in 0 − 1 rotation: (a) axial velocity field
of the mixture (purple curve indicates the boundary of the flowing layer
at this cross section); (b) number density of small particles (particles/m3);
(c) number density of large particles (particles/m3); (d) axial flux field of
small particles; (e) axial flux field of large particles.

4.6. Axial Segregation without Endwalls

The role of the endwalls is clear if we simulate the same system with periodic boundary

conditions instead of two endwalls, thus eliminating the axial flow from the frictional

endwalls. The result over 200 rotations is shown in figure 4.14. Compared to the frictional

endwall case (figure 4.1), the magnitude of the concentration fluctuations remain very

small and no pronounced segregation bands appear in the system even after 200 rotations.
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The positions where local extreme concentrations occur come and go over time. None of

them grow into segregation bands.

When the rotational speed is increased from ω = 3.14radians/s to ω = 6.28radians/s,

some local extremes of concentration gradually evolve into segregation bands within 50

rotations, as shown in figure 4.15. However, not all concentration fluctuations develop into

segregation bands, and the final segregation bands only originate from a subset of the early

concentration fluctuations (those around z = −0.065m and z = 0 in figure 4.15(b)). Com-

paring figures 4.14 and 4.15, it appears that for the same magnitude of the concentration

fluctuations, a large rotational speed promotes band formation while a small rotational

speed does not. This is consistent with experimental observations (Hill & Kakalios, 1994)

that axial segregation only occurs at higher rotational speeds and segregated bands tend

to resolve to well-mixed state at lower rotational speeds.

Slices at different axial positions at two representative times (after 10 and 50 rotations)

are shown in figure 4.16. The radial segregation exists for the entire course of axial

segregation with a core of small particles extending through large and small particle

bands at z = −0.065m and z = 0.015m, respectively. Like the case with endwalls, the

small particle bands are relatively pure, whereas large particle bands retain a core of small

particles. Between bands, the particles are somewhat mixed, though the small particle

core is evident. Snapshots of dynamic angles of repose of bands of small (z = 0.015m)

and large (z = −0.065m) particles after 50 rotations are compared in figure 4.17. Again,

the band of large particles has a higher dynamic angle of repose than the band of small

particles.
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Figure 4.14. Evolution of the cross-sectionally averaged species concentra-
tion along the axial length at different times for the periodic boundary
conditions with ω = 3.14radians/s: (a) after 5 rotations; (b) after 10 ro-
tations; (c) after 50 rotations; (d) after 200 rotations. ¤, concentration of
small particles; ©, concentration of large particles.
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Figure 4.15. Evolution of the cross-sectionally averaged species concentra-
tions along the axial length at different times for the periodic boundary
condition with ω = 6.28radians/s: (a) after 1 rotations; (b) after 5 ro-
tations; (c) after 10 rotations; (d) after 50 rotations. ¤, concentration of
small particles; ©, concentration of large particles.
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After 50 rotations

After 10 rotations

z = 0.015m z = -0.03m z = -0.065m

Figure 4.16. Snapshots of slices at different axial positions at two times:
after 10 and 50 rotations (full axial segregation) for the periodic boundary
conditions with ω = 6.28radians/s.

The averaged axial velocity fields over 49 − 50 rotations on the free surface (y =

−0.02m) and a subsurface at y = −0.025m are shown in figure 4.18. It is evident that

consistent with the results for the case with endwalls in figure 4.4, axial flow exists between

segregation bands for the case of periodic boundary condition. Again, the axial flow is

from the band of large particles to the adjacent band of small particles in the upstream

portion of the flowing layer and back to the band of large particles in the downstream

portion. Considering the concentration profiles at this time (figure 4.15(d)), the straight

streamtraces always occur at the centers of the segregation bands (around z = −0.065m

and z = 0.015m) and the largest axial flows occur at the interface between bands (around

z = −0.03m and z = 0.06m). The boundary of the flowing layer at the band of small
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Figure 4.17. Difference of dynamic angles of repose of two cross sec-
tions after 50 rotations for the periodic boundary conditions with ω =
6.28radians/s: blue curve, outline of the particle surface around the center
of the band of small particles (z = 0.015m) and green, outline of the particle
surface around the center of the band of large particles (z = −0.065m).

particles (around z = 0.015m) is also wider than that of the band of large particles (around

z = −0.065m), indicating that the flowing layer is deeper here. This is not surprising given

that particles are flowing into this band from adjacent bands at the upstream portion,

and mass conservation requires that all particles pass through the flowing layer.

4.7. Conclusions

Through a detailed computational study of the segregation of a mixture of particles

having different sizes, we have examined the details of axial segregation in a long tumbler.

Although different angles of repose between segregated bands are observed, it is the axial

flow that drives the axial segregation. Friction at the endwalls generates axial flow due

to mass conservation. The two particle species move in the same direction with almost
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Figure 4.18. The velocity field over 49-50 rotations for the periodic bound-
ary conditions with ω = 6.28radians/s on: (a) free surface at y = −0.02m;
(b) below the surface at y = −0.025m. Black curves are streamtraces from
the integration of streamwise velocity (u) and axial velocity (w). Color con-
tours represent the levels of axial velocity (w); purple curve at y = −0.025m
represents the boundary of the flowing layer.

identical magnitude everywhere in the system: all particles flow from the bands of large

particles into the bands of small particles in the upstream portion of the flowing layer and

then flow back in the downstream portion.

The axial flow rates of the mixture in the upstream and downstream portions are

balanced on every cross section. But the non-uniform distribution of axial velocity and

species concentration on the cross section introduces unbalanced distribution of axial flow

rate of individual species in the upstream and downstream portion: small and large par-

ticles flow away from the endwall in the upstream portion, but large particles tend to flow

back toward the endwall more than small particles in the downstream portion because

radial segregation has carried small particles deeper into the flowing layer where the axial

velocity is smaller. As bands develop, these results are consistent with the experimental

observations that the species concentration is in phase with the dynamic angle of repose.
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This axial flow is approximately proportional to the concentration gradient. The differen-

tial transport of small and large particles in a cross-sectional slice appears like a negative

diffusivity, justifying models for axial segregation as a phase transition characterized by a

governing equation with a negative diffusivity (Hill & Kakalios, 1994, 1995; Savage, 1993;

Zik et al., 1994; Aranson & Tsimring, 1999; Aranson et al., 1999).

Many open questions remain, including: (1) a better understanding of the axial veloc-

ity field from the frictional endwalls and the different angles of repose between adjacent

bands, and the resulting concentration gradient; (2) the connection between radial segre-

gation and axial segregation; (3) the nature of band coarsening and traveling waves (Choo

et al., 1998; Fiedor & Ottino, 2003); (4) the influence of axial flow from other shapes of

endwalls or sidewalls on the axial segregation, for example, axial segregation in spherical

tumblers (Gilchrist & Ottino, 2003a; Chen et al., 2008a).
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CHAPTER 5

Inversion of Band Patterns in Spherical Tumblers

Chapter Summary: Just as axial bands form in long cylindrical tumblers for bi-disperse

granular mixtures, similar bands occur in spherical tumblers: one at each pole and one at

the equator. For low fill levels, large particles are at the equator with small particles at the

poles; for high fill levels, the opposite occurs. Segregation is robust, occurring for many

experimental conditions, though the fill level at which the transition occurs depends on

particle size and rotational speed. Discrete element method simulations produce surface

patterns that are identical to the experiments and reveal the internal segregation struc-

tures. Particle trajectories indicates that small particles flow further toward the poles

than large particles in the upstream portion of the flowing layer for low fill levels leading

to a band of small particles at each pole. The opposite occurs for high fill levels, though

the deviation between the paths for the small and large particles is smaller, resulting in

slower segregation. [This work in a slightly different form has been submitted to Physical

Review Letters.]

5.1. Introduction

From the discussion in the last chapter and previous research it is evident that the axial

flow near the endwalls is important in initializing the axial segregation in long rotating

cylindrical tumblers (Hill & Kakalios, 1994; Fiedor & Ottino, 2003; Juarez et al., 2008).

The axial flow in cylindrical tumblers is generated at the flat, frictional endwalls, leading
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us to consider the axial segregation in tumblers with other boundary shapes, for example

spherical tumblers, which are discussed in this chapter. Axial segregation in spherical

tumblers, though only considered in one other study (Gilchrist & Ottino, 2003b), offers

an alternative approach to study the onset mechanism of granular axial segregation with

different endwall conditions.

5.2. Experimental Results

We consider bi-disperse spherical glass particles in a clear acrylic spherical container

with diameter D = 14cm. Three parameters were varied: 1) Particle sizes: 1mm + 2mm,

1mm + 3mm, 1mm + 4mm, and 2mm + 4mm (for all cases small particles are black and

large particles are clear); 2) Rotation rates: 2, 5, 10, 20, and 30 rpm; and 3) Fill levels:

20 to 60% by volume. In all cases, small and large particles make up equal volumes.

Before loading the particles, the spherical tumbler was sprayed with an anti-static aerosol

(McMaster-Carr, Chicago, IL 60680). Because bi-disperse particle mixtures pack more

densely than mono-disperse particles, several iterations of adding equal amounts of large

and small particles were necessary to reach the desired fill level. All experiments were

started from a well mixed initial condition. The axial segregation always begins within

the first several revolutions, but it approaches a stable surface segregation pattern at

varying rates. Images were obtained at 102 revolutions, which is large enough to assure

a steady surface segregation pattern. In all cases where axial segregation was observed,

the segregation pattern formation was consistent from the beginning of the experiment

until steady segregated state was reached; no pattern changes were observed during the

development of the axial segregation.
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Figure 5.1. Two representative surface segregation patterns occur for 1mm
black and 4mm clear glass beads rotated at 20 rpm about a horizontal axis.
The narrow vertical stripe on the surface of the clear tumbler is the seam
between the two halves of the spherical tumbler. (a) top view: SLS, 30%
full; (b) top view: LSL, 60% full; (c) side view: 60% full. Flow direction is
indicated by arrows. The small circle at the pole region is the transparent
suction cup bonded to the tumbler surface for connection to a shaft for
rotation.

In contrast to previous work (Gilchrist & Ottino, 2003b), two distinct segregation

patterns appear at the top free surface depending on the fill level, as shown in figure 5.1.

The Small-Large-Small (“SLS”) pattern in figure 5.1(a), which is characterized by a center

band of large particles bounded by outer bands of small particles, occurs at low fill levels.

The reverse pattern, Large-Small-Large (“LSL”) in figure 5.1(b) and the work of Gilchrist

& Ottino (2003b), occurs at high fill levels. The SLS pattern develops within 5 − 10

rotations whereas the LSL pattern often requires 20 or more rotations to become clearly

evident. In all cases, the two species of particles also segregate radially with the small

particles at the radial core. In fact, the axial segregation pattern shown in figure 5.1(b)

has an extended radial core of small particles that appears at the pole regions below large

particles, as shown in figure 5.1(c).
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The axial segregation patterns and the transition between them depends on the fill

level, the particle size ratio, and the absolute size of particles, as shown in figure 5.2 for

rotation at 20 rpm. Patterns above the bold line are SLS, and patterns below the bold

line are LSL. The transition between the two segregation patterns is gradual as the fill

level is changed. For fill levels just below the transition, a weak SLS pattern is observed;

just above the transition a weak LSL pattern occurs. The transition fill level increases

with the size of the large particles when the size of the small particles is fixed, comparing

the left three columns of figure 5.2. For the same size ratio, the 2mm+4mm mixture has

a much higher transition fill level (between 50% and 60%) than the 1mm+2mm mixture

(between 20% and 30%), indicating that both the ratio of particle sizes and the particle

sizes themselves affect the transition fill level.

For every particle mixture and fill level, the rotation rate was varied from 2 rpm to 30

rpm. For most cases increasing the rotation rate brings on axial segregation more quickly

and enhances the degree of segregation, but does not affect the surface segregation pat-

tern, as shown in figure 5.3(a). But for high fill levels above 50% for 1mm+4mm and

2mm+4mm mixtures, the surface segregation pattern changes from LSL to SLS with

increasing rotation rate. In figure 5.3(b), for rotation rates of 2 rpm and 5 rpm, segre-

gation is not readily apparent, although through closer inspection indicates a weak LSL

pattern away from the poles with both the large and small bands exhibiting substantial

contamination by the particles of the other size. As the rotation rate increases from 5

to 10 rpm the center band of small particles becomes clearer and less contaminated by

large particles. This is consistent with results for axial segregation in cylindrical tumblers:

the segregation is weak at low rotation rates and strong at high rotation rates (Hill &
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Figure 5.2. Two axial segregation patterns, as viewed looking down on the
free surface, depend on the fill level, the particle size ratio, and the absolute
particle sizes. The rotation rate is 20 rpm about a horizontal axis in the
figure. Flow is from top to bottom. Bold lines mark the transition from
SLS to LSL.



125

Figure 5.3. (a) The degree of axial segregation depends on the rotation
rate for the 1mm+3mm mixture at 30% full, but is always SLS. (b) The
segregation pattern changes from LSL to SLS for the 2mm+4mm mixture
at 50% full as the rotation rate increases from 10 rpm to 20 rpm.

Kakalios, 1994, 1995). However, the LSL segregation pattern changes to a SLS pattern

as the rotation rate increases from 10 rpm to 20 rpm in this case. At 30 rpm the SLS

segregation pattern always results for all particle mixtures and fill levels, although the

segregation is very weak in some cases. This may occur because the free surface is no

longer flat at 30 rpm. For all cases tested, only the transition from LSL to SLS occurred

with increasing rotation rate; no reverse transition from SLS to LSL was observed.

5.3. Numerical Simulation Results

To investigate details of the flow leading to the two segregation patterns, we simu-

lated the flow of the 2mm+4mm mixture in a D = 14cm sphere using the discrete element
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method (Cundall & Stack, 1979). The liner-spring dashpot force model was used here

to calculate the normal force between two contacting particles (see Ristow (2000); Chen

et al. (2008b) for details.) To save computational time, a tangential force model with-

out a memory effect (Rapaport, 2002; Taberlet et al., 2006), which was also introduced

in chapter 2, was used in the simulation. Simulation with this tangential force model

produces almost the same macroscopic segregation pattern as the memory-effect model

(Chen et al., 2008b). Material properties of glass were used in the simulation (2500kg/m3;

0.97 restitution coefficient), and particles were randomly mixed initially. The coordinate

system still sets the origin at the center of the tumbler with the x axis along the stream-

wise direction, the y axis normal to the free surface, and the z axis along the tumbler

rotational axis, as shown in figure.1.1.

The DEM successfully reproduces the two experimental segregation patterns at ap-

propriate fill levels, as shown in figure 5.4 after 100 rotations for rotation at 20 rpm,

when the pattern is fully developed. The SLS pattern in figure 5.4(a) segregates much

faster and is more distinct than the LSL pattern in figure 5.4(b), just as the case in the

experiments for 2mm+4mm particles in figure 5.2. Figure 5.4(c) shows the radial core

extending at the pole regions, which was also evident experimentally (figure 5.1(c)). The

internal structure of the fully developed segregation is shown by several representative

slices at different axial positions in figure 5.5. It is clear that similar to the axial segrega-

tion in cylindrical tumblers (Hill et al., 1997b; Jain et al., 2001; Arndt et al., 2005), bands

of small particles in spherical tumblers result from the expansion of the radial core of

small particles to the free surface. For the SLS system, the radial core of small particles

extends the length of the tumbler parallel to the axis of the rotation, and it is relatively
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Figure 5.4. Segregation patterns for the simulation after 100 rotations at
20 rpm for 2mm and 4mm particles in a 14cm diameter tumbler: (a) SLS
pattern for 20% full; (b) LSL pattern for 60% full; (c) pole region of small
particles in LSL.

pure. In the LSL system, the core of small particles also extends parallel to the axis of

rotation, but it is contaminated by large particles. The core of small particles dominates

at the axial center of the tumbler (z = 0) reaching the free surface, though percolation

results in some large particles also appearing at the flowing layer surface.

To show the internal structure of the fully developed segregation more clearly, the

local concentration of small particles, Cs(x, y, z), was calculated over the computational

domain (using 20 bins in each dimension) over 2/3 tumbler rotation. From this, the core

of small particles can be displayed in terms of iso-surfaces of small particles concentration

above a specified level. Likewise, the portion occupied mostly by large particles can

be displayed as the iso-surface with Cs(x, y, z) less than a specified level. As shown in

figure 5.6(a) for the SLS pattern, the core of small particles extends along the axis of
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Figure 5.5. Snapshots of slices at different axial positions after the segre-
gation has reached steady state: (a) SLS; (b) LSL. Flow is indicated by
arrows.

rotation, but is quite narrow near the center of the tumbler and fills the volume near the

poles. The volume of large particles surrounds the narrowed core of small particles at the

equator (figure 5.6(b)). For the LSL pattern the core of small particles is much larger

at the center of the tumbler (figure 5.6(c)). The core narrows near the poles where it is
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buried beneath the large particles. The volume of larger particles surrounds the smaller

particles except at the equator and poles (figure 5.6(d)).

The evolution of the segregation is most readily considered in terms of the concen-

tration of particles averaged spatially over the transverse cross-sections, Cs(z), along the

axis of rotation (using 20 bins along the axis). The concentration of small particles av-

eraged over 2/3 of a tumbler revolution is shown in figure 5.7 for several times during

the simulation: initial segregation (the first 2/3 rotation of the tumbler after the flow

is initialized), developing segregation (8/3 − 10/3 rotations and 20/3 − 22/3 rotations),

and the fully segregated state (after 100 rotations). For the SLS case, figure 5.7(a), the

motion of small particles toward the poles quickly changes the axial distribution of par-

ticles near poles from the initial uniform concentration of 0.5 to 1.0 within the first 2/3

rotations. Within 8 rotations of the tumbler, the concentration distribution is nearly at

the steady-state distribution, and the bands of small particles near the poles are quite

pure. At the equator, the small particle concentration of 0.4 at steady-state represents the

core of small particles surrounded by large particles. The situation is quite different for

the LSL case, shown in figure 5.7(b). In this case, the time evolution of the segregation is

much slower, not approaching steady-state until approximately 30 tumbler rotations (not

shown). The high small particle concentration at the poles is due to the core of small

particles extending along the entire length of the bed of particles at the axis of rotation

right to the poles, as shown in figure 5.1(c) and figure 5.4(c). A short distance from the

poles, the large particles dominate so the small particle concentration is quite small, cor-

responding to the neck in the small particle concentration in figure 5.6(c). Like the SLS

pattern, the concentration near the equator is far from pure due to imperfect segregation
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Figure 5.6. Structures of small and large particle volumes averaged over
2/3 rotations represented by the iso-surface where the concentration of small
particles, Cs(x, y, z), is above or below a specified level after the segregation
has reached steady state: (a) Small particle volume for SLS, Cs(x, y, z) ≥
0.75; (b) Large particle volume for SLS, Cs(x, y, z) ≤ 0.3; (c) Small particle
volume for LSL, Cs(x, y, z) ≥ 0.5; (d) Large particle volume for LSL,
Cs(x, y, z) ≤ 0.3. The black circles mark the inner circumference of the
spherical tumbler.
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Figure 5.7. Evolution of the concentration of small particles in a trans-
verse cross-section, Cs(z), along the axial length for (a) SLS and (b) LSL
patterns at different times: ©, initial segregation (first 2/3 rotation); 4,
(8/3-10/3 rotations); ¤, (20/3-22/3 rotations); ♦, full segregation (after
100 rotations).

(figure 5.5(b)). For both patterns, the axial segregation is initiated at the pole regions

and propagates toward the equator.

Further insight into the evolution of the segregation can be obtained from streamtraces

of the mixtures on the free surface and the axial velocity of individual species along the

depth. The streamtraces are obtained from the integration of axial and streamwise ve-

locity of all particles on the top free surface. It is clear that for SLS pattern (figure 5.8),

the free surface flow pattern remains almost unchanged through the entire course of ax-

ial segregation: apparently due to the tumbler boundary geometry, the particles follow



132

the curved tumbler edge (“geometric effect”). This is because the surface particles flow-

ing down the slope collide with the downstream tumbler boundary obliquely and are

rebounded toward the center of the tumbler, z = 0, so the streamtraces curve toward the

center in the downstream portion and toward the poles in the upstream portion to main-

tain mass conservation. The streamtraces near the center of tumbler are nearly straight

due to symmetry. The axial velocity of the two individual species along the depth at

two representative positions, z = −0.035m, x = −0.035m (upstream) and z = −0.035m,

x = 0.035m (downstream) shows that during the entire course of axial segregation, small

and large particles flow in the same direction but with slightly different magnitudes, which

is consistent with the axial flow of particles of two species in cylindrical tumblers discussed

in the last chapter. It is also clear that the direction of the internal axial flow is consistent

with that on the free surface and the magnitude of axial flow decreases with the depth in

the flowing layer.

The flow pattern of LSL is more complicated (figure 5.9). For the first 2/3 revolution,

particles on the surface tend to follow the curved tumbler edge, although the curvature

of the paths is less than in the SLS case, particularly at the downstream end of the

streamtraces. But with the development of the segregation bands, the magnitude of axial

flow of the surface particles decreases. This influence from the segregation bands may be

associated with the larger dynamic angle of repose for the bands rich in large particles,

as discussed in the last chapter. As illustrated in the last plot in figure 5.9, the sign of

the axial flow changes with the depth. Again, for LSL pattern, small and large particles

flow in the same direction and with nearly the same magnitude during the entire course

of segregation.
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Figure 5.8. Evolution of the velocity field averaged from the flow of all par-
ticles on the free surface (inner circles show the edge of the top surface) for
SLS (20% full) pattern and the axial velocity along the depth of individual
species (small, ¤ and large, ∆) at z = −0.035m, x = −0.035 (solid line)
and z = −0.035m, x = 0.035m (dashed line) at different states: initial
segregation (first 2/3 rotation); during segregation (8/3-10/3 rotation for
SLS and 20/3-22/3 rotation for LSL); full segregation (after 100 rotations).
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Figure 5.9. Evolution of the velocity field averaged from the flow of all
particles on the free surface for LSL (60% full) pattern and the axial ve-
locity along the depth of individual species (small, ¤ and large, ∆) at
z = −0.035m, x = −0.035 (solid line) and z = −0.035m, x = 0.035m
(dashed line) at different states: initial segregation (first 2/3 rotation);
during segregation (8/3-10/3 rotation for SLS and 20/3-22/3 rotation for
LSL); full segregation (after 100 rotations).
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It is instructive to consider the paths of the small and large particles to better under-

stand how the axial segregation pattern comes about. To do this, we tracked particles

starting in two small regions near the upstream end of the flowing layer: region A, located

on the surface of the flowing layer near where the boundary between bands of small and

large particles eventually comes about in steady state; region B, which is half way be-

tween point A and the equator (z = 0). The ensemble average particle paths for 20− 150

particles are shown in figure 5.10.

During the initial rotations for the SLS pattern, both types of particles tend to drift

toward the poles in the upstream portion of the particle path and back toward the equator

in the downstream portion, but small particles travel further toward the poles, and do not

return back as far toward the equator as large particles. The particle paths end where the

particles stop flowing (on average) and are trapped in solid body rotation. The net result

is that smaller particles are trapped further from the equator than where they start, and

large particles are trapped closer to the equator, which produces bands of small particles

closer to the poles, producing the SLS pattern. The trajectories of the small particles

are shorter and those of the large particles are longer in SLS. This comes about because

the small particles percolate through the larger ones in the bi-disperse case, thus falling

out of the flowing layer sooner, while the large particles remain on the top surface and

fall out later. The deviation of particle paths for two species persists through the entire

course of axial segregation, but disappears in the final fully segregated state. At that

point particles simply flow down the slope and return to their original axial position.

The situation is quite different for the LSL pattern. Initially, the paths for both

particle types overlay each other with only a small degree of curvature toward the poles
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Figure 5.10. Trajectories of the 2mm (—) and 4mm (– –) particles on the
free surface for each pattern at three times in simulation: initial segregation
(first 2/3 rotation); during segregation (8/3-10/3 rotations); and full seg-
regation (after 100 rotations). A is a region at the steady-state boundary
between the bands; B is halfway between point A and the equator. Flow is
from top to bottom.
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at the upstream end of the path. However, during the axial segregation, the large particles

drift slightly toward the poles compared to the small particles, which is the reverse of the

situation for the SLS pattern. Again, after the segregation reaches steady state the

deviation between the paths of two species disappears. The deviations between the paths

in the LSL case are small compared to those for SLS, so the rate at which segregation

occurs for the LSL system is slower than that for the SLS system. For comparison,
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(a) (b)

x
(m

)

0

0

­0. 70

z(m)

­0. 350

 0. 350

 0. 70
 0. 70  0. 350 ­0. 350 ­0. 70

x
(m

)

0

0

­0. 70

z(m)

­0. 350

 0. 350

 0. 70
 0. 70  0. 350 ­0. 350 ­0. 70

Figure 5.11. Trajectories of the 2mm (—) and 4mm (– –) particles on the
free surface for mono-disperse systems of small and large particles at (a)
20% full and (b) 60% full. Flow is from top to bottom.

figure 5.11 shows the flow of pure mono-disperse systems of small or large particles rotated

under the same conditions as in figure 5.10. For the high fill level, the trajectories are

similar for the mono-disperse case (figure 5.11(b)) and the bi-disperse case (figure 5.10),

though for the mono-disperse case the particle trajectories return to their original axial
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position at the end of their flight. However, for the low fill level, the trajectories of large

particles always curve more toward the poles than those of small particles (figure 5.11(a)),

which is the opposite of what occurs for the bi-disperse case. Simulations of mono-disperse

particles in a smaller 7cm diameter tumbler indicate that the curvature of the path is

inversely related to the ratio of tumbler diameter to particle diameter. As this ratio

decreases, the particle trajectories become more curved. Thus, larger particles have more

curved paths than small particles for the same tumbler diameter for a mono-disperse

system.

5.4. Conclusions

What is not clear is how the presence of two particle species changes the trajectories

of both species at low fill levels, but does not alter the trajectories much at high fill levels.

Part of the answer lies in the observation that strongly curved particle paths are associated

with low fill levels for both mono-disperse and bi-disperse cases. In particular, the angle

between the surface of particles and the tumbler wall is always greater than 90◦ for fill

levels below 50% and less than 90◦ for fill levels above 50%. At low fill levels particles

stack up in a monolayer on the tumbler wall at the upstream end of the flowing layer

due to the obtuse angle between the tumbler wall and flowing layer. For mono-disperse

systems, the particles tend to fall out of the monolayer along the tumbler wall (toward the

poles) resulting in a curved trajectory. Furthermore, due to the relative radii of curvature

of the particles and the tumbler wall, larger particles arc further toward the poles than

smaller particles leading to the situation in figure 5.11(a). For bi-disperse systems, both

particle sizes tend to fall out of the monolayer toward the poles, but the small particles
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percolate through the larger ones to collect near the poles first, thus directing larger

particles toward the equator leading to the situation for SLS in figure 5.10. When the

tumbler with bi-disperse particles is more than 50% full the monolayer does not occur

due to the acute angle between the tumbler wall and the flowing layer, so the particle

trajectories are nearly straight with a slightly greater tendency for larger particles to

flow toward the poles (as in the mono-disperse case) leading to the situation for LSL in

figure 5.10.

The axial segregation patterns in spherical tumblers are simpler and more stable than

those in cylindrical tumblers, which allows the use of spherical tumblers as an alternative

to study the onset mechanisms for granular axial segregation. While this work has isolated

some aspects of the two forms of axial segregation in a spherical tumbler, many details are

not understood, including the impact of tumbler size and particle size on the transition

from SLS to LSL with changing fill levels and rotational speeds. Likewise the details

of the driving force for axial segregation deserves further investigation, particularly the

nature of the mono-layer on the tumbler wall at the upstream end of the flowing layer,

which seems to initiate and drive the segregation.
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CHAPTER 6

Outlook

The general focus of this thesis is the use of numerical simulation techniques, coupled

with experiments, to study the fundamental physics of flow, mixing, and segregation of

granular materials, particularly the onset mechanism of axial segregation in cylindrical

and spherical rotating tumblers. Discrete element method (DEM) is the main technique

used in this work. DEM simulations give information for individual particles, including

their positions and velocities at each time step. More importantly, it yields the continuum

flow field in the system by averaging the flow of particles located in individual bins of the

average mesh and makes it possible to study granular phenomena quantitatively rather

than qualitatively. While many aspects of granular flow, mixing, and segregation have

been investigated numerically using Discrete Element Method in this thesis, there are still

many open questions. Here we give some recommendations for future work:

A natural extension of our work on axial segregation is the quantitative investigation of

long-term behavior of band dynamics using the discrete element method. This, however,

needs a much longer simulation time. Intriguing questions may include: how the flow

field (surface and subsurface) of individual species changes during the course of band

oscillation and merging; how adjacent bands interplay locally to make the number of

bands in the system decreases with time during the course of bands merging; how the

radial segregation core interplays with axial segregation bands during the band oscillation

and merging. We investigated axial segregation due to particle size difference in this work
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and there is a need to study segregation arising from size difference coupled with other

factors, such as particle density and friction coefficients (for example, glass particles are

rotated with small sand particles).

Since the axial velocity field and radial segregation are keys to axial segregation, a

further study of these issues is needed. The axial flow is related to granular rheology, which

is poorly understood currently due to the discrete nature of granular materials even for

a simple case: shearing motion of the mono-disperse chute flow (Jop et al., 2006). The

study of radial segregation sometimes is also very complicated (Jain et al., 2005b; Meier

et al., 2008) since many parameters influence the radial segregation pattern: particle size,

density, frictional coefficient, tumbler diameter, tumbler rotational speed, fill level, particle

fill fraction, etc. The regular radial core of small particles can evolve to complicated streak

patterns under certain fill levels and rotational speeds of the tumbler (Hill et al., 2005),

and the streaks coarsening may occur in long runs (Meier et al., 2008). The capability of

discrete element method to explicitly capture the information of individual species makes

it possible to investigate the driving force for transient streak coarsening.

The granular mixing and segregation in noncircular tumblers has attracted much at-

tention in recent years due to the possibility of chaotic advection, for example, in the

case of radial segregation in quasi-2D square tumblers (Jain et al., 2005a; Cisar et al.,

2006, 2007). However, there is no report about the simulation of mixing and segregation

in noncircular tumblers using discrete element method. DEM may yield clues about the

effect of the tumbler geometry on the mixing efficiency of mono-disperse granular system

and the segregation patterns (both radial and axial) for bi-disperse systems.
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In this thesis, we only investigated the physics of dry granular systems. Another

extension beyond the current work is the study of solid-fluid multiphase flows, which are

likely to be encountered in nature and industrial applications. The conventional way to

model multiphase flows is from the Eulerian-Eulerian viewpoint: both solid and fluid

phases are treated as continuum media and the interaction between the two phases is

incorporated by drag force correlations, which depend on the local relative velocity of the

phases and the local solid’s volume fraction. The drawback of this method is that it does

not adequately model the details of particle-particle and particle-fluid interactions. The

coupling of the discrete element method and continuum Computational Fluid Dynamics

(CFD) (van der Hoef et al., 2008) was first introduced by Tsuji et al. (1993), which is

often termed the Lagrangian-Eulerian model. In this model, the motion of discrete solids

or particles phase is obtained by discrete element method which applies Newton’s laws of

motion to every particle and the flow of continuum fluid is described by the local averaged

Navier-Stokes equations that can be solved by traditional Computational Fluid Dynamics.

The interactions between the fluid phase and solids phase is modeled by use of Newton’s

third law. So the direct incorporation of CFD into DEM provides a promising way to

study the physics of liquid granular systems (LGS), such as mixing and segregation in

slurries.

Because the large number of particles is needed to reproduce the physics of a real

granular system and very small time steps are needed to model the particle collisions, it

is desirable to take advantage of parallel computation for DEM simulations. For instance,

to model axial segregation in long tumblers, we could divide the flow field in the axial
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direction of the tumbler into several subdomains and assign the computation work to

separate processors.
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Buchholtz, V. & Pöschel, T. 1994 Numerical investigations of the evolution of sand-

piles. Physica A 202, 390.

Cantelaube, F. & Bideau, D. 1995 Radial segregation in a 2d drum: an experimental

analysis. Europhys. Lett. 30, 133–138.

Cantelaube, F., Bideau, D. & Roux, S. 1997 Kinetics of segregation of granular

media in a two-dimensional rotating drum. Powder Technology 93, 1–11.

Caprihan, A. & Seymour, J. D. 2000 Correlation time and diffusion coefficient imag-

ing: application to a granular flow system. J. Magn. Reson. 144, 96–107.

Chapman, S. J. 2003 Fortran 90/95 for Scientists and Engineers . McGraw-Hill.

Chen, P., Ottino, J. M. & Lueptow, R. M. 2008a Inversion of band patterns in

spherical tumblers. submitted to Phy. Rev. Lett. .

Chen, P., Ottino, J. M. & Lueptow, R. M. 2008b Subsurface granular flow in

rotating tumblers: A detailed computational study. Phy. Rev. E 78, 021303.

Choo, K., Baker, M. W., Molteno, T. C. A. & Morris, S. W. 1998 Dynamics

of granular segregation patterns in a long drum mixer. Phys. Rev. E. 58, 6115–6123.

Choo, K., Molteno, T. C. A. & Morris, S. W. 1997 Traveling granular segregation

patterns in a long drum mixer. Phys. Rev. Lett. 79, 2975–2978.

Cisar, S. E., Lueptow, R. M. & Ottino, J.M. 2007 Geometric effects of mixing in

2D granular tumblers using discrete models. AIChE J. 53, 1151–1158.



146

Cisar, S. E., Umbanhowar, P. B. & Ottino, J.M. 2006 Radial granular segregation

under chaotic flow in two-dimensional tumblers. Phys. Rev. E. 74, 051305.

Cleary, P. W. 2000 DEM simulation of industrial particle flows: case studies of dragline

excavators, mixing in tumblers and centrifugal mills. Powder technology 109, 83–104.

Clement, E., Rajchenbach, J. & Duran, J. 1995 Mixing of a granular material in

a bidimensional rotating drum. Europhys. Lett. 30, 7–12.

Cundall, P. A. & Stack, D. L. 1979 A discrete numerical model for granular assem-

blies. Geotechnique 29, 47–65.

Donald, M. B. & Roseman, B. 1962 Mechanics in horizontal drum mixer. Br. Chem.

Eng. 4, 749.

Drake, T. G. & Walton, O. R. 1995 Comparison of experimental and simulated

grain flows. J. Appl. Mech. 62, 131–135.

Duke, T. A. J., Barker, G. C. & Mehta, A. 1990 A Monte Carlo study of granular

relaxation. Europhys. Lett. 13, 19.

Duran, J. 2000 Sands, Powders, and Grains . New York: Springer.

Dury, C. M. & Ristow, G. H. 1997 Radial segregation in a two-dimensional rotating

drum. J. Phys. I France 7, 737–745.

Dury, C. M. & Ristow, G. H. 1998 Boundary effects on the angle of repose in rotating

cylinders. Phys. Rev. E 57, 4491–4497.

Dury, C. M. & Ristow, G. H. 1999a Competition of mixing and segregation in

rotating cylinders. Phys. Fluids 11, 1387–1394.

Dury, C. M. & Ristow, G. H. 1999b Radial segregation through axial migration.

Europhys. Lett. 48, 60–65.



147

Elperin, T. & Vikhansky, A. 1999 Mechanism of the onset of axial segregation in

a rotating cylindrical drum filled with binary granular mixtures. Phys. Rev. E 60,

1946–1950.

Fiedor, S. J. 2006 Dynamics of segregation of dry and liquid granular systems in quasi-

two-dimensional (2d) and long (2d+1) tumblers. PhD thesis, Northwestern University.

Fiedor, S. J. & Ottino, J. M. 2003 Dynamics of axial segregation and coarsening of

dry granular materials and slurries in circular and square tubes. Phys. Rev. Lett. 91,

244301.

Fitt, A. D. & Wilmott, P. 1992 Cellular-automaton model for segregation of a two-

species granular flow. Phys. Rev. A 45, 2383–2388.

Frette, V. & Stavans, J. 1997 Avalanche-mediated transport in a rotated granular

mixture. Phys. Rev. E 56, 6981–6990.

Fukushima, E. 1999 Nuclear magnetic resonance as a tool to study flow. Annu. Rev.

Fluid Mech. 31, 95–123.

Gallas, J. A. C., Herrmann, H. J., & Sokolowski, S. 1992 Convection cells in

vibrating granular media. Phys. Rev. Lett. 69, 1371–1374.

Gilchrist, J. F. & Ottino, J. M. 2003a Competition between chaos and order:

Mixing and segregation in a spherical tumbler. Phys. Rev. E 68, 061303.

Gilchrist, J. F. & Ottino, J. M. 2003b Competition between chaos and order:

Mixing and segregation in a spherical tumbler. Phys. Rev. E 68, 061303.

Goldsmith, W. 2001 Impact: The Theory and Physical Behaviour of Colliding Solids .

Courier Dover Publications.

Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134,



148

401–430.

Haff, P. K. & Werner, B. T. 1986 Computer simulation of the mechanical sorting

of grains. Powder technology 48, 239–245.

Henein, H., Brimacombe, J. K. & Watkinson, A. P. 1983 Experimental study of

transverse bed motion in rotary kilns. Metallurgical Transactions B 14, 191–205.
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Mullier, M., Tüzün, U. & Walton, O. R. 1991 A single-particle friction cell for

measuring contact frictional properties of granular materials. Powder technology 65,

61.

Nakagawa, M. 1994 Axial segregation of granular flows in a horizontal rotating cylinder.

Chem. Eng. Sci. 49, 2540–2544.

Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E. & Jeong,

E. K 1993 Non-invasive measurements of granular flows by magnetic resonance imaging.

Experiments in Fluids 16, 54–60.

Orpe, A. V. & Khakhar, D. V. 2004 Solid-fluid transition in a granular shear flow.

Phys. Rev. Lett. 93, 068001–1–068001–4.

Orpe, A. V. & Khakhar, D. V. 2007 Rheology of surface granular flows. J. Fluid.

Mech. 571, 1–32.



152

Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport .

Cambridge University Press.

Ottino, J. M. & Khakhar, D. V. 2000 Mixing and segregation of granular materials.

Annu. Rev. Fluid Mech. 32, 55–91.

Oyama, Y. 1939 Bull. Inst. Phys. Chem. Res. (Tokyo) 18, 600.

Parker, D. J., Dijkstra, A. E., Martin, T. W. & Seville, J. P. K. 1997 Positron

emission particle tracking studies of spherical particle motion in rotating drums. Chem.

Eng. Sci. 52, 2011–2022.

Pohlman, N. A., Meier, S. W., Lueptow, R. M. & Ottino, J. M. 2006a Surface

velocity in three-dimensional granular tumblers. J. Fluid. Mech. 560, 355–368.

Pohlman, N. A., Ottino, J. M. & Lueptow, R. M. 2006b End-wall effects in

granular tumblers: from quasi-2d flow to three-dimensional flow. Phys. Rev. E 74,

031305.
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APPENDIX A

Discussion of Negative Diffusivity in Axial Segregation

As shown in figure A.1, the rate of change of cross-sectionally averaged concentration

of small particles in the slice between z and z + dz, < Cs >, is controlled by the net axial

flow rate of small particles entering (Qs/z = Qup,s/z + Qdown,s/z) and leaving (Qs/z+dz =

Qup,s/z+dz + Qdown,s/z+dz) this slice. That is

z

x

upstream

downstreamz+dz z

Qup,s/z+dz

Qdown,s/z+dz

Qup,s/z

Qdown,s/z

Figure A.1. Illustration of axial transport during axial segregation in cylin-
drical tumblers.

(A.1)
∂ < Cs >

∂t
= −∂Qs

A∂z
= −∂(< Csws >)

∂z
= −∂(< Cs >< ws >)

∂z
,

where A is the area of cross sections (constant for cylindrical tumblers). Cs and ws are

the local concentration and axial velocity of small particles. < ws >=< Csws > / < Cs >
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is the cross-sectionally averaged axial velocity weighted according to local volume fraction

of small particles.

We can rewrite < Cs >< ws >=< Cs >< w > + < Cs > (< ws > − < w >), where

w is the local average velocity of the mixture and < w > is its cross-sectionally averaged

value. < Cs >< w > represents the cross-sectionally averaged, convective axial flow of

small particles moving with the mass center of the mixture (< w >); < Cs > (< ws >

− < w >) is similar to the molecular diffusion flux in a diffusion process, representing the

axial flow of small particles with respect to < w >. So, analogous to the diffusion process,

we may write < Cs > (< ws > − < w >) = −K∂ < Cs > /∂z using Fick’s first law of

diffusion, where K is an effective diffusivity over the entire cross section to characterize

this diffusion flux. Then equation A.1 can be written as

(A.2)
∂ < Cs >

∂t
+

∂(< w >< Cs >)

∂z
=

∂

∂z
(K

∂ < Cs >

∂z
).

From figure 4.8 we know the axial flow of the mixture in the upstream and downstream

portions nearly balance each other, so the cross-sectionally convective flow of the mixture,

< w >, is nearly zero. Therefore, the second term in the left side of equation A.2 can be

neglected and we reach equation A.3 to describe the species transport in axial segregation.

(A.3)
∂ < Cs >

∂t
=

∂

∂z
(K

∂ < Cs >

∂z
).

From equation A.3 we expect axial segregation to be a generalized diffusion process

with a negative diffusivity, which is confirmed in figure 4.10 in Chapter 4.
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On the other hand, we can also study the species transport of axial segregation from

the local differential transport equation of small particles

(A.4)
∂Cs

∂t
+5.(vCs) = 5.(D

∂Cs

∂z
).

Here, v = (u, v, w) is local average velocity of the mixture and Cs is the local concen-

tration of small particles. It should be noted that D is the conventional, positive normal

diffusivity reflecting the random particle collisions, which tends to mix two species.

Here we decompose v and Cs into cross-sectionally averaged values denoted by <>

and their deviations denoted by a prime, e.g. v =< v > +v′ and Cs =< Cs > +C
′
s. Next

we put the decomposed variables into equation A.4, and take the cross-sectional average

of every term in equation A.4, noting that by definition < v′ >= 0, < C
′
s >= 0, and also

< w >= 0 as mentioned above. Finally, we have:

(A.5)
∂ < Cs >

∂t
+

∂ < w
′
C
′
s >

∂z
=

∂

∂z
(Dz

∂ < Cs >

∂z
)

or

(A.6)
∂ < Cs >

∂t
= −∂ < w

′
C
′
s >

∂z
+

∂

∂z
(Dz

∂ < Cs >

∂z
).

Equation A.6 describes how the cross-sectionally averaged concentration, < Cs >,

changes with the correlation between the fluctuation of axial velocity and concentration
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on the cross-section, < w
′
C
′
s >, and axial collisional diffusion. For a well-mixed initial con-

dition, the radial segregation in the first several rotations introduces uneven distribution

of species concentration, C
′
s, on the cross section. At the same time, the frictional endwalls

introduce uneven distribution of axial flow, w
′
, on the cross section (note < w >= 0). So

axial segregation will occur if the flux associated with them dominates the diffusion flux.

Axial segregation will stop when these two fluxes balance each other, and ∂<Cs>
∂t

goes to

zero. At this steady state equation A.5 becomes:

(A.7)
∂ < w

′
C
′
s >

∂z
=

∂

∂z
(Dz

∂ < Cs >

∂z
).

With the help of the no-flux boundary condition at the endwalls, at steady state we

have

(A.8) < w
′
C
′
s >= Dz

∂ < Cs >

∂z
.

That is, at the steady state, this flux is proportional to the concentration gradient

and behaves as a Fickian diffusion. This is not surprising, since from equation A.3 the

overall process of axial segregation behaves as a Fickian diffusion. So if we choose to

model < w
′
C
′
s > using a diffusion coefficient, < w

′
C
′
s >= D

′ ∂<Cs>
∂z

(D
′
is positive here to

indicate this flux is along-gradient rather than counter-gradient in the normal diffusion),

we then have
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(A.9)
∂ < Cs >

∂t
=

∂

∂z
[(Dz −D

′
)
∂ < Cs >

∂z
].

Apparently, the competition between this negative diffusivity (−D
′
) from differential

convective flux and positive normal diffusivity (Dz) from random particle collisions, equals

to the generalized diffusivity, K, in equation A.3. If normal diffusion dominates, K is

positive and the two species tend to mix, otherwise K < 0 and they tend to segregate

axially. From this viewpoint, it is clear that the non-uniformity of the axial velocity

field and the particle concentration distribution on cross sections are two keys to the

appearance of axial segregation.


