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ABSTRACT

Some Functoriality Results for Microlocal Sheaves over Legendrians and

Lagrangians

Wenyuan Li

In this thesis, we consider the categories of sheaves with singular support on

certain Lagrangians and the categories of microlocal sheaves with support on certain

Lagrangians obtained by microlocalization, and study properties of functors between

these categories.

First, we study one class of the microlocal restriction functor for open inclusions,

namely microlocalization on the conical Lagrangian ends. We show a duality and

exact triangle arising from the microlocalization functor. Using that, we describe the

adjoint functors of microlocalization, and prove that they form a spherical adjunction

when the Legendrian at infinity is a full stop or swappable stop.

Using the description of the adjoint functors of microlocalization, we prove sheaf

quantization theorems, constructing right inverses to the microlocalization functor
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for noncompact Lagrangian submanifolds, generalizing previous works of Guiller-

mou and Jin–Treumann. In particular, we show a sheaf quantization theorem for

Lagrangian cobordisms of Arnol’d and a conditional quantization theorem for La-

grangian cobordisms in symplectic field theory.

Then, we study the microlocal specialization functor on closed subdomain embed-

dings of Weinstein sectors, which is right adjoint to the Viterbo restriction functor,

constructed by Nadler–Shende. We show that the specialization functor is natural

with respect to compositions of embeddings. Using that, we give another description

of Lagrangian cobordism functor in symplectic field theory, which is compatible with

the sheaf quantization functor.

Along the way, we obtain applications to symplectic and contact geometric prob-

lems, including estimations of the number of Reeb chords on Legendrians and ob-

structions to Lagrangian cobordisms between Legendrians.
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Côme Dattin, Honghao Gao, Xin Jin, Joseph Palmer, Yu Pan, Linhui Shen, David



7

Treumann and Jun Zhang for their interest in my work, their kindness of inviting

me to the seminars (online or in person) and their hospitality.

In the past five years, I have benefitted from a number of people in the math

department at Northwestern. I want to thank Aaron Brown, John Francis, Ezra

Getzler, Bryna Kra and Boris Tsygan who have taught me a lot of mathematics. I

would like to thank Bahar Acu, Dogan Karabas and Yuan Hang in the symplectic

geometry group who have taught me a lot and gave me numerous advice. I would

like to thank Yajit Jain, Grisha Kondyrev, Nilay Kumar, Nick McCleerey, Antho-

ny McCormick and Piotr Pstragowski for their support and help on mathematics.

I would like to thank other PhD students who were in the symplectic geometry

and mathematical physics group, Zhenyi Chen, Mingyuan Hu, Yuxuan Hu, Alex

Karapetyan, Juan Diego Rojas, John Snadden, Pyongwon Suh, Hanru Sun, Junxiao

Wang, Randy Van Why and Ben Zhou, who have helped me much on symplec-

tic geometry and mathematical physics. In particular, Pyongwon was the one who

taught me spherical functors, which is part of the thesis, and Hang and Mingyuan

also had very fruitful mathematical discussions with me in my fifth year. I would

also like to thank Greg Bixler, Carlos Cortez Lemos, Yi Gu, Wanxing Liu, Fanjun

Meng, Stephan Snegirov, Jiyao Tang, Kai-Hsiang Wang, Ruoyu Wang, Shiyi Weng,

Mengxuan Yang and Yuxin Zhou. It was great to chat with you. I want to thank

the staffs in the math department as well, without whom a lot of things would be

harder for me.



8

I have also benefitted from a number of people from other math departments.

I am very grateful to be able to stay in Princeton in my fourth year. I would

like to thank Shaoyun Bai, Thomas Massoni and Mohan Swaminathan, who have

helped me both in terms of math and in terms of life in Princeton. I would like to

thank Julian Chaidez, Yusuf Barış Kartal and John Pardon, the people in Princeton

symplectic group, for plenty of discussion in math. I would like to thank the staff

there for their help. I would also like to thank other mathematicians I have met

and talked to. I want to thank Youngjin Bae, Joseph Breen, Austin Christian,
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6.5. Example That Wrap-once Is Not Equivalence 268



12

Chapter 7. Functorial Specialization and Lagrangian Cobordisms 274

7.1. Functorial Specialization of Weinstein Subsector Embeddings 282

7.2. Lagrangian Cobordism Functor by Specialization 302

7.3. Examples and Applications in Lagrangian Cobordisms 332

7.4. Lagrangian Cobordism Functor as Correspondence 351

References 366



13

List of Figures

1.1 The Clifford Legendrian torus (on the left) and the unknotted

Legendrian torus (on the right). 29

2.1 The front projection of a conical Legendrian cobordism

L̃ ⊂ J1(pt× R>0) (on the left) and J1(R× R>0) (on the right). 36

2.2 The figure on the left is the front projection of a conical Legendrian

cobordism̃ L ⊂ J1(pt× R>0). The figure in the middle is the front

projection after applying the diffeomorphism s 7→ ln s, where the

complete adapted metric induced by gM + s−2ds2 becomes the

Euclidean metric. The figure on the right is the front projection

after applying the diffeomorphism s 7→ ln(s − s0), where the

complete adapted metric induced by gM + (s − s0)−2ds2 becomes

the Euclidean metric. 42

3.1 The singular support of a sheaf and the combinatoric description. 61

4.1 We consider the open subset U (in black), the Legendrian Λ

(in blue), and the Reeb flow being the geodesic flow, where

T±ε(Λ ∩ T ∗,∞Uα) 6⊆ S∗Uα. Let FU be the sheaf as in the 2nd



14

figure. Then T±ε(jU∗FU) are illustrated in the 3rd and 4th figure.

The supports of the sheaves are in V −1, while the singular support

coming from T±ε(ν
∗
U,±M) are outside V 1. Finally, wΛ(F )V is shown

in the 5th figure. 100

4.2 The conditional doubling construction which define sheaves in

T−ε(̃L) ∪ Tε(̃L) for a conical Legendrian cobordism. 134

5.1 When M is a point, Λ ⊂ R consists of two points 0 and 1, the front

of the Legendrians Λq and Λr are shown on the left. For F = k[0,1),

the sheaf H om(Fq,Fr) and its projection u∗H om(Fq,Fr) are

shown on the right. The blue points are coming from the Reeb

chord corresponding to the dashed blue line. 157

5.2 The sheaves k(a0,b0] and k(a1,b1] in two different cases. 166

5.3 The figure on the left is the open cone (γ∨a,b)
◦; the one in the middle

is the subset D forgetting the t′ coordinate; the one on the right is

the projection p(D) forgetting the t′ coordinate, where the fibers in

the yellow region are half closed half open intervals and the fibers

in the red region are open intervals. 173

5.4 Birth-death of Reeb chords (on the right) and swapping of Reeb

chords (on the left). On the top, the black Legendrians are (Λs)r

while the red curves are (T ∗,∞(0,1)R
2)q. The u-axis is horizontal, the

t-axis is vertical, while the s-axis is pointing into the blackboard. 179



15

5.5 When n = 2 and k = 1, the open subsets U− (on the left) and U+

(on the right). 186

5.6 When n = 2 and k = 1, the stratification on Uq,0 ∩ U+
r,0 ⊂ U+. 187

5.7 The stratification in the case k = 2 (left), and the restriction

maps pointing from lower dimensional strata to higher dimensional

strata (right). These are restriction maps because given the

triangulation, the stars of lower dimensional ones contain stars of

higher dimensional ones. The green indices on the left are labels of

the simplices ∂∆k. 189

5.8 On the left there is the loose Legendrian Λloose and on the right

there is a loose Legendrian ΛSn,loose formally isotopic to the

unknotted sphere (the front projection should be spinning around

its symmetry axis). In the red region we perform the connected

sum construction. 203

5.9 The front spinning of a standard unknot. 207

6.1 The figure on the left illustrates the swappable pair Λ± ⊂ S∗T 2

mirror to the flops associated to X0 = C2/Z2, where all the

covectors are pointing downward. The figure on the right illustrates

a cofinal wrapping that sends T−ε(Λ) to a neighbourhood of Tε(Λ)

and one that sends Tε(Λ+) to a neighbourhood of T−ε(Λ). 263



16

6.2 The figure on the left and in the middle are the Legendrian pairs

Λ± ⊂ S∗T 2, where all conormal directions are pointing downward.

The figure on the right is Λ− ∪ Λ+ = Λ0 ∪H− ∪H1 ⊂ S∗T 2 where

H± have the corresponding colors as Λ±. 267

6.3 The black circles are the boundary of the regions where the

Hamiltonian Hk are cut off by the function ηk. The blue sectors

are the sectors which completely follow the inverse geodesic flow

as they do not intersect the black circles. Since radii of the the

black circles decreases (and converges to 0), the slope of the lower

edge of the sectors that follow the geodesic flow also decreases (and

converges to 0). Even though the slope of the upper edge of the

sectors are decreasing as more and more black circles appear on the

top right pat of the plane, the sequence of sectors will not shrink

to nothing and can go arbitrary far away. 271

7.1 On the left is the Clifford Legendrian torus and its corresponding

2-graph, and on the right is the unknotted Legendrian torus and

its corresponding 2-graph. 282

7.2 The diagram of maps in the proof of Theorem 7.0.7. 298

7.3 A schematic picture on how attaching Lagrangian cobordism L

to the relative Lagrangian skeleton M ∪ Λ− × R>0 of the sector

(T ∗M,Λ−) gives a Weinstein subsector in (T ∗M,Λ+). 303



17

7.4 The Nadler-Shende construction (left) and the Jin-Treumann

construction (right). The grey regions are the supports of the

corresponding sheaves. The thin lines on the left are the skeleton

M ∪ ν∗U,+M embedded in J1(M), and the thick lines there are the

two copies of Lagrangian fillings. The blue lines are the family of

cusps ∂Λ× ≺. 329

7.5 On the left is the front projection of Λ−, and on the right is

the front projection of Λ+ after attaching a Lagrangian 1-handle

connecting the two cusps along the dashed line, where in the

middle of the tube (the grey slice) there is a unique Reeb chord. 333

7.6 On the left is the front projection of Λ−, and on the right is

the front projection of Λ+ after attaching a Lagrangian 2-handle

connecting the S1-family of cusps along the disk. 334

7.7 The microlocal sheaf on ShbΛ−(Rn+1) (left) and ShbΛ+
(Rn+1) (right)

before and after the Lagrangian 1-handle attachment. Here we

assume Λ± ⊂ T ∗,∞τ>0 (Rn × Rτ ). 336

7.8 The graph on the left is a Lagrangian 1-handle attachment

in Legendrian weaves; in the middle is a Lagrangian 2-handle

attachment in Legendrian weaves; on the right is a Legendrian

connected sum cobordism. Λ+ are on the top while Λ− are on the

bottom. 345



18

7.9 Taking connected sum with ΛCliff (left) and with ΛUnknot (right).

The cobordisms are from left to right in each picture. The labelling

0, 1,∞, z is a kP 1 coloring (so that regions sharing a common edge

have different colors), which determines a microlocal rank 1 sheaf. 345

7.10 The cobordism from Λg,k to Λg+1,k to Λg,k (from left to right). The

grey regions are the places where we attach Lagrangian handles. 346

7.11 The Lagrangian filling of the Legendrian surface Λg,0 by Lagrangian

1-handle cobordisms in all the shadowed regions and finally fill the

unknot on the left by a Lagrangian disk. 346

7.12 A Lagrangian 2-handle cobordism from ΛS2,loose (right) to ΛCliff

(left). 347

7.13 The diffeomorphism φ on a subdomain of (1,+∞) × (0,+∞).

The grey region represents where the Lagrangian cobordism

L ⊂ T ∗(M × (1,+∞)) is not cylindrical. The pink regions are

where Condition (1) & (2) are satisfied. The two blue lines are the

preimage of φ−1({s} × (0,+∞)) for s < s− and s > s+. The two

yellow regions are the regions in φ−1((1, s−) × (0,+∞)) that are

not controlled by Condition (3). 353



19

CHAPTER 1

Introduction

Our goal in the thesis is to prove some general results on the functoriality of

microlocal sheaves over Legendrian and Lagrangian submanifolds, which we hope

would help set up the whole theory of the functoriality of mcirolocal sheaves that

arises from symplectic and contact topology. More precisely, we consider exact sym-

plectic manifolds with contact boundaries that have Lagrangian skeleta, and study

functorialities arising from proper inclusions (as the generalized version of open inclu-

sions) and subdomain embeddings (as the generalized version of closed inclusions).

In the first situation, we focus on cotangent bundles and the proper inclusion

of the conical end, which induces the microlcoalization functor or the cap functor.

We show that there is a duality and exact triangle, and under certain assumptions a

spherical adjunction, that arise from the microlocalization. The adjunction allows us

to get sheaf quantization functors, which are right inverses to the microlocalziation

functor, in nice cases, for compact and noncompact submanifolds. In the second sit-

uation, we focus on the subdomain embedding of general Lagrangian skeleta, which

induces the specialization functor or the right adjoint of the Viterbo restriction func-

tor. We show that compositions of embeddings induce compositions of functors, and

in particular, restricting to the setting of Lagrangian cobordisms between Legendri-

ans we get functoriality of cobordisms.
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1.1. Motivation and Background

Symplectic manifolds have the same local models given by Darboux charts. How-

ever, the ground breaking work of Gromov [83] showed that there are also rigidity

behaviours which are not detected by the local structures, including restrictions

on Lagrangian embeddings. Following Gromov’s approach of pseudoholomorphic

curves, Floer [71] realized that one can associate algebraic invariants, namely the

Floer homology groups, to symplectic manifolds and their Lagrangian submanifold-

s, and Fukaya [72] upgraded the homology groups into an A∞-category, later called

Fukaya categories [139]. Inspired by homological mirror symmetry [102], Seidel con-

sidered symplectic Lefschetz fibrations and started to develop functoriality of Fukaya

categories associated with Lefschetz fibrations [139,141].

On the other hand, Eliashberg-Gromov [64] considered (exact) symplectic mani-

folds with contact type boundaries, namely Liouville manifolds. Under this setup, the

framework of symplectic field theory [63] and the relative setting [50] allows one to

understand invariants of the symplectic manifolds/Lagrangian submanifolds as maps

and functors between algebraic invariants of the contact manifolds/Legendrian sub-

manifolds, namely the contact homology and Legendrian contact homology. Mean-

while, the geometry of symplectic manifolds with contact boundaries is also used in

defining functors between Fukaya categories [5].

More recently, our understanding on Lefschetz fibrations and Weinstein handle-

body theory [25,82] allows us to combine different viewpoints. The development of
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Liouville stops [151] and sectors [75,76] allows people to understand the functorial-

ity of the algebraic invariants in a uniform way. In particular, the basic functoriality

properties we considered above could be interpreted as the ones arising from Liouville

proper inclusions (as generalized version of open inclusions) and Liouville subsector

embeddings (as generalized version of closed inclusions) [109].

Parallel to the development in symplectic and contact topology, microlocal the-

ory of sheaves on manifolds was developed by Kashiwara-Schapira [97], after the

theory of D-modules and constructible sheaves on complex manifolds. Kashiwara-

Schapira also noticed the connection of the theory to symplectic geometry, namely,

the invariance of the sheaf categories under contact transformations.

Nadler-Zaslow [126] and Nadler [119] and more recently Ganatra-Pardon-Shende

[74] proved an equivalence between certain categories of constructible sheaves and

suitable versions of Fukaya categories on pairs of exact symplectic manifolds with

Lagrangian skeleta. Tamarkin applied microlocal theory of sheaves to some classical

non-displaceability results, as instances of symplectic rigidity [153]. Since then,

there has been a number of interesting results in symplectic and contact topology

established using sheaves [12,13,22,37,84–86,88,145,147,148,161].

LetM be an analytic manifold and Λ ⊂ T ∗,∞M be a subanalytic Legendrian at in-

finity. We will consider the category of sheaves on M with singular support on Λ [97],

and the category of microsheaves, i.e. the global section of the Kashiwara-Schapira

stack on Λ [84,124]. They are symplectic invariants associated to Lagrangian skeleta
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of exact symplectic manifolds, namely Weinstein manifolds with Legendrian stops at

infinity [88,124].

More precisely, following the idea of Nadler-Zaslow [119,126], Ganatra-Pardon-

Shende [74] showed that the subcategories of compact objects are equivalent to

partially wrapped Fukaya categories

ShcΛ(M) ' PerfW(T ∗M,Λ)op, µShccX,Λ(cX,Λ) ' PerfW(X,Λ)op,

where cX,Λ is the Lagrangian skeleton of the Weinstein manifold with stop (X,Λ).

From works on the Legendrian surgery formula [14, 20, 52, 60], we also know an

equivalence between partially wrapped Fukaya categories and Legendrian contact

homology with coefficients enriched over chains on the based loop space C−∗(Ω∗Λ)

PerfW(X,Λ) ' PerfAC−∗(Ω∗Λ)(Λ).

On the other hand, by considering an A∞-category of augmentations, we have the

augmentation sheaf correspondence [127], and generalizations into higher dimensions

[24,77,134].

Comparing to holomorphic curve invariants, the categories of (micro)sheaves of-

ten admit simpler combinatorial descriptions. They are also more directly related to

invariants in representation theory. From this perspective, our structural results will

provide new understanding on the pseudo-holomorphic curve invariants.
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1.2. Functorial Properties of Microlocalizations

For a subanalytic Lagrangian skeleton cX of a Weinstein manifold X and an open

subset cF with is the skeleton of F , there is a pair of restriction and corestriction

functors between microlocal sheaves. We will consider the special case of where

cX = M ∪ Λ×R>0 is a conical Lagrangian in T ∗M and cF = Λ×R>0 is the conical

end.

More precisely, let M be an analytic manifold and Λ ⊂ T ∗,∞M be a subanalytic

Legendrian at contact boundary. Let ShΛ(M) be the category of sheaves with sin-

gular support on Λ, and µShΛ(Λ) be the category of microlocal sheaves on Λ. One

can define the microlocalization functor and its left adjoint

mΛ : ShΛ(M)
 µShΛ(Λ) : ml
Λ.

Under the equivalence with Fukaya categories, they are expected to correspond to the

cap and cup functors ∩ : W(T ∗M,F ) � W(F ) : ∪ [4,75,152]. Under homological

mirror symmetry, the cap and cup functors correspond to the pull-back and push-

forward functors i∗ : Coh(X)� Coh(D) : i∗ for a divisor D ⊂ X.

Spherical adjunctions are adjunctions that induce interesting autoequivalences

from certain exact triangles. For example, in algebraic geometry the exact triangle

coming from the adjunction i∗ ` i∗ induces the autoequivalence − ⊗ OX(D). In

Lagrangian Floer theory, Abouzaid-Ganatra’s unpublished work [4] proved that the

cap and cup functors between Fukaya categories form a spherical adjunction where

the exact triangles induce the autoequivalence by wrapping once around the stop.
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Sylvan proved the result for partially wrapped Fukaya categories when Λ is a swap-

pable stop while avoiding constructing adjunctions and exact triangles geometrically

[152]. Nadler also proved spherical adjunction for microsheaves in a specific example

[122].

Using the language of sheaves, we are able to provide a more direct and more

general result on the existence of spherical adjunctions at least on cotangent bundles,

under the technical assumption that Λ ⊂ T ∗,∞M is a full stop [41] or a swappable

stop [152].

Theorem 1.2.1. For Λ ⊂ T ∗,∞M a compact subanalytic Legendrian full stop or

swappable stop, the microlocalization functor and its left adjoint

mΛ : ShΛ(M)
 µShΛ(Λ) : ml
Λ

form a spherical adjunction, where the spherical cotwist S−Λ (resp. dual cotwist S+
Λ )

is given by negatively (resp. positively) wrapping once around the stop Λ ⊂ T ∗,∞M .

Remark 1.2.1. We know that the left adjoint of microlocalization ml
Λ is iso-

morphic to the cup functor between partially wrapped Fukaya categories [74], and we

expect that mΛ is the cap functor between Fukaya-Seidel categories.

Moreover, we relate Serre duality to the spherical adjunctions. Seidel noticed

that the spherical cotwist, i.e. the negative wrap-once functor on the Fukaya-Seidel

category, gives the Serre functor [140,143], which is mirror to the autoequivalence

−⊗OX(−D) for a log Calabi-Yau pair (X,D). The Serre duality is closely related to
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the Calabi-Yau structure on the categories [21] and symplectic/Lagrangian structure

on the derived moduli stack of objects [156].

Theorem 1.2.2 (Sabloff-Serre duality). Let M be orientable and Λ ⊂ T ∗,∞M

a compact subanalytic Legendrian full stop or swappable stop. Then the spherical

cotwist S−Λ is the Serre functor on the subcategory of compactly supported sheaves

with perfect stalks ShbΛ(M)0.

The key ingredient of the proof is the following duality exact triangle. From

a purely sheaf theory perspective, Sato noticed an exact triangle coming from mi-

crolocalization [87,97]. On the other hand, in Floer theory, there is a duality exact

sequence for Legendrian contact homologies [58, 135] and Fukaya-Seidel categories

[141]. Let Tt : T ∗,∞M → T ∗,∞M be a Reeb flow. Define

Hom+(F ,G ) = Hom(F ,G ), Hom−(F ,G ) ' Hom(F , T−ε(G )).

We reinterpret Sato’s exact triangle in a symplectic geometric way and prove the

following theorem.

Theorem 1.2.3 (Sato-Sabloff duality exact triangle). For Λ ⊂ T ∗,∞M a compact

subanalytic Legendrian stop and F ,G ∈ ShΛ(M) such that supp(F ), supp(G ) are

compact, we have an exact triangle

Hom−(F ,G )→ Hom+(F ,G )→ Γ(Λ;µhom(F ,G ))
+1−→ .
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When M is orientable and F ,G ∈ ShbΛ(M), then

Hom−(F ,G ) ' Hom+(G ,F )∨[−n− 1].

1.3. Functorial Anti-Microlocalization as Sheaf Quantization

Consider an exact Lagrangian L ⊂ T ∗M with Legendrian lift L̃ ⊂ T ∗,∞τ>0 (M ×R).

The microlocalization sends sheaves to microsheaves

mL : ShL̃(M × R)→ µShL(L).

When L is smooth, the structure of microsheaves on L is well studied [84, 93].

Classical sheaf quantization theorems of embedded Lagrangians that are compact

or have conical ends have been obtained by Guillermou-Jin-Treumann [84,94], who

constructed sheaves from microlocalization data which defines a right inverse to mL

whose image consists of sheaves with acyclic stalks at M × {−∞}.

ΨL : µShL(L)
∼−→ ShL̃(M × R)0.

We explain how the sheaf quantization functor can be regarded as the left adjoint

ml
L of mL, and hence provide a functorial understanding on the sheaf quantization

theorems following [94]. More importantly, we generalize the results to the setting

of noncompact Lagrangians where the usual construction could fail.

We will consider ShΛ(M × R)0 for the categories of sheaves in with singular

support in Λ ⊂ T ∗,∞τ>0 (M × R) with acyclic stalks at M × {−∞}.
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The first class of noncompact Lagrangians are Lagrangian cobordisms between

Lagrangians defined by Arnol’d [10], which is an equivalence relation between La-

grangian submanifolds. An Arnol’d Lagrangian cobordism between L,K ⊂ T ∗M

is a Lagrangian V ⊂ T ∗(M × R) with cylindrical ends. Biran-Cornea proved that

Lagrangian cobordisms give equivalence relations on the Fukaya category, and when

the Lagrangian has multiple components, we get an iterated cone decomposition for

objects in the Fukaya category [17].

Theorem 1.3.1. Let V ⊂ T ∗(M ×R) be an exact Lagrangian cobordism between

closed exact Lagrangians L1, . . . , Lr ⊂ T ∗M and K1, . . . , Ks ⊂ T ∗M with a Legen-

drian lift Ṽ ⊂ T ∗,∞τ>0 (M ×R×R). Then there is a fully faithful right inverse functor

of mV

ΨV : µShV (V )
∼−→ ShṼ (M × R× R)0.

Despite of lack of nontrivial examples of closed exact Arnol’d Lagrangian cobor-

disms in T ∗M , we believe that our construction will serve as the first step in un-

derstanding the relation between Arnol’d Lagrangian cobordisms and microlocal

sheaves.

The second class of noncompact Lagrangians we consider are Lagrangian cobor-

disms between Legendrians in the sense of symplectic field theory [27], which is on

the contrary a nonsymmetric relation between Legendrian submanifolds [28]. An

exact Lagrangian cobordism from Λ− to Λ+ is an exact Lagrangian L ⊂ (T ∗,∞τ>0 (M ×

R) × R>0, d(sαstd)) which agrees with the cone Λ− × R>0 (resp. Λ+ × R>0) on the

negative end (resp. positive end).
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Lagrangian cobordisms between Legendrians in T ∗,∞τ>0 (M × R) can be lifted to

a Legendrian cobordism L̃ ⊂ (T ∗,∞τ>0 (M × RR>0), αstd) with conical ends [26, 130]

following [34]. Therefore, one can try to study the sheaf quantization problem,

i.e. constructing sheaves on ShL̃(N × R× R>0) from microlocal monodromy data.

However, the nonsymmetry of SFT Lagrangian cobordisms suggests that a nec-

essary condition for constructing a sheaf on the conical Legendrian cobordism is the

existence of a sheaf on the cancave end M ×R× (0, ε). Therefore, we can only prove

a conditional sheaf quantization theorem.

Theorem 1.3.2. Let L ⊂ J1(M)× R>0 be an exact Lagrangian cobordism from

Λ− to Λ+ ⊂ T ∗,∞τ>0 (M × R), and L̃ ⊂ T ∗,∞τ>0 (M × R × R>0) be the conical Legendrian

lifting. Then there is a fully faithful right inverse functor of (i−1
− ,mL)

ΨL : ShΛ−(M × R)0 ×µShΛ− (Λ−) µShL(L)
∼−→ ShL̃(M × R× R>0)0

where i− : M × R × s− ↪→ M × R × R>0 for s− > 0 sufficiently small and mL :

ShL̃(M × R× R>0)→ µShL(L) is the microlocalization.

1.4. Functoriality of Embeddings and Lagrangian Cobordisms

For a Weinstein sector (Weinstein manifold with boundaries) X, with Lagrangian

skeleton cX equipped with Maslov data, Nadler-Shende introduced a microlocal sheaf

category on the Lagrangian skeleton µShcX (cX) [124]. Moreover, they constructed
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a fully faithful inclusion for any compact exact Lagrangian L ⊂ X with Maslov data

Loc(L) ↪→ µShcX (cX).

Using their technique, one can produce a fully faithful functor for embeddings of

Weinstein subsectors X ′ ⊂ X sending sectorial boundaries to boundaries ∂X ′ ⊂ ∂X,

where the left adjoint is the Viterbo restriction. However, it is not clear whether

compositions of embeddings induce compositions of functors. We show that this is

indeed the case.

Theorem 1.4.1. Let X0, X1, and X2 be Weinstein sectors with Lagrangian

skeleta cX0, cX1, and cX2 equipped with Maslov data, such that i01 : X0 ↪→ X1

and i12 : X1 ↪→ X2 are Liouville embeddings sending sectorial boundaries to sec-

torial boundaries. Denote by Φij : µShcXi (cXi) ↪→ µShcXj (cXj) the embeddings of

microsheaf categories. Then

Φ12 ◦ Φ01 ' Φ02 : µShcX0
(cX0) ↪→ µShcX2

(cX2).

Subsector embeddings provide a geometric model for Lagrangian cobordisms be-

tween Legendrians in the setting of symplectic field theory [63]. Therefore, we de-

duce a Lagrangian cobordism functor using Nadler-Shende [124] and Theorem 1.4.1.

This functor is the sheaf theory counterpart of the Lagrangian cobordism map be-

tween Legendrian contact homologies (enriched over chains on the based loop spaces)
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[50,59,129]

Φ∗L : AC−∗(Ω∗Λ+)(Λ+)→ AC−∗(Ω∗Λ−)(Λ−)⊗C−∗(Ω∗Λ−) C−∗(Ω∗L)

which will allow one to deduce more refined obstructions to Lagrangian cobordisms

between Legendrian submanifolds.

Theorem 1.4.2. Let X be a Weinstein manifold with subanalytic skeleton cX ,

Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds, and L ⊂ ∂∞X ×R an exact Lagrangian

cobordism from Λ− to Λ+. Then there is a fully faithful cobordism functor between

the microsheaf categories where concatenations of cobordisms give compositions of

functors

ΦL : µShcX∪Λ−×R(cX ∪ Λ− × R)×Loc(Λ−) Loc(L) ↪→ µShcX∪Λ+×R(cX ∪ Λ+ × R).

In particular, when X = T ∗M , there is a fully faithful cobordism functor

ΦL : ShΛ−(M)×Loc(Λ−) Loc(L) ↪→ ShΛ+(M).

Remark 1.4.1. The left adjoint Φl
L of ΦL preserves compact objects and is con-

jecturally isomorphic to the Lagrangian cobordism maps between Legendrian contact

homologies.

Moreover, we can show that this Lagrangian cobordism functor is compatible

with the cobordism functor one can obtain using the sheaf quantziation functor in

the previous section.
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Theorem 1.4.3. Let L ⊂ J1(M)× R>0 be an exact Lagrangian cobordism from

Λ− to Λ+ ⊂ T ∗,∞τ>0 (M × R), and L̃ ⊂ T ∗,∞τ>0 (M × R × R>0) be the conical Legendrian

lifting. Then there is a commutative diagram

ShL̃(M × R× R>0)
(i−1
− ,mL)

ss

i−1
+

))

ShΛ−(M × R)×µShΛ− (Λ−) µShL(L)
ΦL

// ShΛ+(M × R)

where i− : M × R × s− ↪→ M × R × R>0 for s− > 0 sufficiently small and i+ :

M × R× s+ ↪→M × R× R>0 for s+ > 0 sufficiently large.

1.5. Symplectic/Contact Consequences of Sheaf Theory

In this section, We explain some geometric results in classical symplectic/contact

topology problems that we proved, and demonstrate the relation between geometric

and algebraic structures coming from sheaves. We will prove symplectic/contact

results using the functorial properties of sheaves.

1.5.1. Estimating the number of Reeb chords

Tamarkin’s pioneering work [153] applying microlocal theory of sheaves to symplectic

non-displaceability problems has inspired a number of non-displaceability type results

[12, 88]. Given the algebraic result in Theorem 1.2.3, we can estimate the number

of Reeb chords of Legendrians.
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We prove an estimation on the number of self Reeb chords for a Legendrian. We

expect that our result is more general than the results using linear representations

of Legendrian contact homologies [45,56,58] or generating families [136].

Theorem 1.5.1. Let M be orientable, Λ ⊂ T ∗,∞τ>0 (M × R) be a closed chord

generic Legendrian submanifold and k be a field. If there exists a k-coefficient sheaf

of compact support and perfect stalk F ∈ ShbΛ(M×R)0, then the number of self Reeb

chords

|Q(Λ)| ≥ 1

2

n∑
i=0

bi(Λ;k).

Here bi(Λ;k) = dimkH
i(Λ; k).

For Legendrian subamnifolds connected by a Hamiltonian pushoff, Asano-Ike

showed a relation between persistence distance of sheaves singularly supported on

the Lagrangians and the oscillation norm of the Hamiltonian [11]. Based on that

result, we prove the following estimate on Reeb chords between the Legendrian and

its Hamiltonian pushoff assuming that the norm of the Hamiltonian is small.

Recall the oscillation norm of the Hamiltonian to be

‖Hs‖osc =

∫ 1

0

(
max

x∈T ∗,∞τ>0 (M×R)
Hs − min

x∈T ∗,∞τ>0 (M×R)
Hs

)
ds.

Denote by l(γ) the length of a chord γ. Assume that the Maslov class µ(Λ) = 0, and

let

ci(Λ) = min{l(γ) | γ is a Reeb chord, deg(γ) = i or n− i}.

Order them so that cj0(Λ) ≥ cj1(Λ) ≥ ... ≥ cjn(Λ).
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Theorem 1.5.2. Let M be orientable, Λ ⊂ T ∗,∞τ>0 (M ×R) be a closed Legendrian

submanifold of dimension n, and k be a field. Suppose there exists a k-coefficient

pure sheaf of compact support and perfect stalks F ∈ ShbΛ(M × R)0. Let Hs be any

compactly supported Hamiltonian T ∗,∞τ>0 (M × R) such that for some 0 ≤ k ≤ n

‖Hs‖osc < cjk(Λ)

and ϕ1
H(Λ) is transverse to the Reeb flow applied to Λ. Then the number of Reeb

chords between Λ and ϕ1
H(Λ) is

Q(Λ, ϕ1
H(Λ)) ≥

k∑
i=0

bji(Λ;k).

1.5.2. Obstructions to SFT Lagrangian cobordisms

We illustrate that Theorem 1.4.2 also provides strong restrictions on the existence

of SFT Lagrangian cobordisms. For example, the full faithfulness in Theorem 1.4.2

immediately implies the long exact sequences coming from the Cthulhu complex in

Floer theory [31].

Moreover, combining Theorem 1.4.2 and the technique developed in [26, 157],

we show the existence and non-existence result for the following Legendrian surfaces

Λg,k considered in [43] and [137]. The obstructions are obtained using sheaves, while

constructions uses the result of Eliashberg-Murphy [66].
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Figure 1.1. The Clifford Legendrian torus (on the left) and the un-
knotted Legendrian torus (on the right).

Theorem 1.5.3. Let ΛUnknot,ΛCliff be Legendrian tori in T ∗,∞R3 shown in Figure

7.1. Let Λg,k be the Legendrian surface with genus g by taking the connected sum of

k copies of ΛCliff and g − k copies of ΛUnknot. Then

(1) (Dimitroglou Rizell [43]) for any k ≥ 1, there are no Lagrangian cobordisms

with vanishing Maslov class from Λg,0 to Λg′,k;

(2) for any k ≥ 1, k′ ≥ 0, there are Lagrangian cobordisms L from Λg,k to Λg,k′

such that dim coker(H1(L)→ H1(Λg,k)) ≥ 2;

(3) for any k < k′, there are no Lagrangian cobordisms L with vanishing Maslov

class from Λg,k to Λg,k′ such that H1(L)� H1(Λg,k); in particular there are

no such Lagrangian concordances.

Roughly speaking, the Legendrian Λg,k is closer to being Lagrangian fillable when

k is smaller (in particular, Λg,0 are the only Lagrangian fillable ones). One would

expect that it is difficult to have a Lagrangian cobordism from Λg,k to Λg,k′ if k > k′.

Our theorem shows that, for k > k′, there are indeed obstructions for Lagrangian

cobordisms assuming either (1) k = 0 or (3) H1(L)→ H1(Λg,k) is surjective. On the

contrary, as long as we assume (2) k ≥ 1 and H1(L) → H1(Λg,k) is not surjective,

then there are no obstructions.
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1.6. Notations and Conventions

Geometric conventions: For a Weinstein sector X, ∂∞X is its contact boundary,

∂X is its sectorial boundary and cX is its Lagrangian skeleton. In particular, for T ∗M ,

T ∗,∞M is its contact boundary, and in the paper we will identify it with the unit

cotangent bundle. T ∗,∞τ>0 (M×R) is the subbundle of T ∗,∞(M×R) consisting of points

so that the covector coordinate in T ∗R satisfies τ > 0. For a closed submanifold

N ⊂ M , ν∗,∞N M is the unit conormal bundle. For an open subset U ⊂ M with

subanalytic boundary, ν∗,∞U,+/−M is the outward/inward unit conormal bundle.

Let L ⊂ X be an exact Lagrangian. L̃ ⊂ X × R is its Legendrian lift. For

Lagrangian cobordisms between Legendrian submanifolds, we say that a Lagrangian

cobordism L is from Λ− to Λ+ if Λ+ is at the convex end and Λ− is at the concave

end.

Categorical conventions: All categories in this paper are dg categories, and all

functors will be functors in dg categories. Sh−, µSh− are the dg categories consisting

of all possibly unbounded complexes of sheaves with prescribed (isotropic) singular

support, Shc−, µSh
c
− are the dg subcategories of compact objects, and Shb−, µSh

b
−

are the dg subcategories of objects with perfect stalks, and Shpp− , µSh
pp
− are the dg

subcategories of proper (i.e. pseudoperfect) modules. They are all localized along

acyclic objects.



36

CHAPTER 2

Preliminaries in Symplectic Topology

The goal in this section is to explain concepts in symplectic and contact topology

that we will use in the thesis. Since most of them are either standard or well known,

we will simply refer to previous works for the proof of these results.

2.1. Contact Topology and Conical Symplectic Topology

Contact topology can be viewed as R>0-equivariant symplectic topology. Since

both conventions will be useful in the discussion of microlocal sheaves, we explain

the correspondence in this section. Following the philosophy, we also explain the

relation between Lagrangian cobordisms in the symplectization of a 1-jet bundle and

conical Legendrian cobordisms in the higher dimensional 1-jet bundle.

A contact manifold is a (2n + 1)-dimensional manifold Y together with a maxi-

mally nonintegrable hyperplane distribution ξ ⊂ TY , and a Legendrian submanifold

is an n-dimensional submanifold Λ ⊂ Y such that ξ|Λ ⊂ TΛ. Assume that ξ ⊂ TY is

defined by the kernel of a 1-form α ∈ Ω1(Y ) called the contact form (this is equivalent

to saying that the contact structure is coorientable).
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2.1.1. Jet Bundles and Cotangent Bundles

In this section we explain the contactomorphism J1(M)
∼−→ T ∗,∞τ>0 (M × R), and the

contact form and Reeb vector field we are going to work with. We also explain the

contact Hamiltonians and their vector fields with respect to the specific contact form.

The 1-jet bundle J1(M) = T ∗M × R. Consider local coordinates (x0, ξ0, t0) ∈

T ∗M ×R, where x0 is the coordinate on M , ξ0 is the coordinate on the fiber of T ∗M

and t0 is the coordinate on R. The contact structure given by ξ0 = ker(dt0− ξ0dx0).

We choose the contact form to be α0 = dt0 − ξ0dx0. Now consider

T ∗τ>0(M × R) → J1(M),

(x, ξ, t, τ) 7→ (x, ξ/τ, t).

After taking the quotient of T ∗τ>0(M × R) by the dilation (x, ξ, t, τ) 7→ (x, aξ, t, aτ)

by a ∈ R>0, we get a diffeomorphism

T ∗,∞τ>0 (M × R)
∼−→ J1(M)

where T ∗,∞τ>0 (M ×R) = {(x, ξ, t, τ)||ξ|2 + |τ |2 = 1, τ > 0} ∼= T ∗τ>0(M ×R)/R>0 (If you

consider the standard Liouville flow on T ∗(M × R) and think of contact manifolds

in the way that each contact form corresponds to a specific choice of a hypersurface

transverse to the Liouville vector field, maybe it’s better think of T ∗,∞τ>0 (M × R) as

{(x, ξ, t, τ)|τ ≡ 1}). There is a natural contact structure on T ∗,∞τ>0 (M × R) given by
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restriction of the symplectic structure on T ∗(M × R)

ξ = ker(τdt− ξdx).

Then one can check that (T ∗,∞τ>0 (M × R), ξ) and (J1(M), ξ0) are contactomorphic

through that map defined above.

Under the contactomorphism, the contact form α0 = dt0 − ξ0dx0 is mapped to

α = dt− (ξ/τ)dx,

and the Reeb vector field Rα0 = ∂/∂t is mapped to

Rα =
∂

∂t
.

This contact form and Reeb vector field are the ones we will be dealing with in the

paper.

Remark 2.1.1. In the cotangent bundle T ∗,∞(M ×R), the Reeb vector field that

people are more familiar with may be the vector field producing the geodesic flow. The

Reeb vector field we work with here is different because the contact form α = dt −

(ξ/τ)dx is different from the canonical one τdt− ξdx. Indeed the contactomorphism

we write down does not preserve the canonical contact forms on both sides.

Now we consider the correspondence between contact Hamiltonians and contac-

t vector fields determined by this contact form α = dt − (ξ/τ)dx. Given H ∈
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C∞(T ∗,∞τ>0 (M × R)), the corresponding contact vector field XH is defined by [79]

H = α(XH), ι(XH)dα = dH(Rα)α− dH.

We claim that this contact Hamiltonian can be lifted to a homogeneous symplectic

Hamiltonian on T ∗τ>0(M × R) in the following way. Let

Ĥ(x, ξ, t, τ) = τH(x, ξ/τ, t).

Its corresponding symplectic Hamiltonian vector field is defined by

ι(XĤ)ω = −dĤ,

where ω = d(τdt − ξdx) = d(τα). By elementary calculation, one will find that

the projection XĤ onto the hyperplane τ = 1 is XH . Therefore we will just study

the homogeneous Hamiltonian Ĥ (since in microlocal sheaf theory this will be more

natural). In particular one can define the movie of a subset Λ̂ ⊂ T ∗τ>0(M ×R) under

the Hamiltonian isotopy ϕs
Ĥ

(s ∈ I) as

Λ̂H = {(x, ξ, t, τ, s, σ)|(x, ξ, t, τ) = ϕs
Ĥ

(x0, ξ0, t0, τ0), σ = −Ĥ ◦ ϕs
Ĥ

(x0, ξ0/τ0, t0)}.

This is an exact conical Lagrangian submanifold in T ∗τ>0(M × R× I).
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2.1.2. Lagrangian cobordisms and Legendrian cobordisms

In this section, we explain the relation between Lagrangian cobordisms in the sym-

plectization of J1(M) ∼= T ∗,∞τ>0 (M×R) and conical Legendrian cobordisms in J1(M×

R>0) ∼= T ∗,∞τ>0 (M × R× R>0).

Let (Y, α) be a cooriented contact manifold. The symplectization is defined as

(Y ×R>0, d(sα)). Following [63, Section 2.8], Chantraine [27] and Ekholm [50], for

instance, considered the category of Lagrangian cobordisms between Legendrians in

the symplectization.

Definition 2.1.1. The category of Lagrangian cobordisms Cob(Y ), has objects

being Legendrian submanifolds Λ ⊂ Y and morphisms Hom(Λ−,Λ+) being exact

Lagrangian submanifolds L ⊂ (Y × R>0, d(sα)) with sα|L = dfL such that

L ∩ (Y × (0, s−]) = Λ− × (0, s−], L ∩ (Y × [s+,+∞)) = Λ+ × [s+,+∞).

for some s− < s+, and the primitive fL is a constant on Λ− × (0, s−] and Λ+ ×

[s+,+∞). We call such an L a Lagrangian cobordism from Λ− to Λ+.

Compositions in Cob(Y ) are defined by concatenating Lagrangian cobordism-

s along their common conical ends. We will denote the concatenation of L0 ∈

Hom(Λ0,Λ1) and L1 ∈ Hom(Λ1,Λ2) by L0 ∪ L1.

Remark 2.1.2. The assumption that the primitive fL is a constant on Λ− ×

(−∞,−r] and Λ+ × [r,+∞) is made to ensure that concatenations of exact La-

grangians are still exact (see [29]).
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Figure 2.1. The front projection of a conical Legendrian cobordism

L̃ ⊂ J1(pt× R>0) (on the left) and J1(R× R>0) (on the right).

For exact Lagrangians in the symplectization (J1(M) × R>0, d(sαstd)), one can

consider the Legendrian lift in the contactization ((J1(M)× R>0)× R, dw + sαstd).

It is known [34,130] that there is a (strict) contactomorphism

ϕ : ((J1(M)× R>0)× R, dw + s(dt+ ξdx)) → (J1(M × R>0), dz + σds+ ydx)

(x, ξ, t; s;w) 7→ (x, s, sξ, t, st+ w).

Therefore, an exact Lagrangian cobordism gives a conical Legendrian cobordism with

no Reeb chords [26,130].

Definition 2.1.2. Let Λ± ⊂ J1(M) be Legendrian submanifolds. Then a conical

Legendrian cobordism is a Legendrian L̃ ⊂ J1(M × R>0) such that

L̃ ∩ J1(M × (0, s−)) = {(x, s, sξ, t, st+ w0,−)|(x, ξ, t) ∈ Λ−, s ∈ (0, s−)},

L̃ ∩ J1(M × (s,+∞)) = {(x, s, sξ, t, st+ w0,+)|(x, ξ, t) ∈ Λ+, s ∈ (s+,+∞)}.
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Finally, we explain that the conical boundary condition make this type of La-

grangian cobordisms very different from the Lagrangian/Legendrian cobordisms con-

sidered by Arnol’d [10], defined as follows.

Definition 2.1.3. Let L1, . . . , Lr and K1, . . . , Ks ⊂ X be Lagrangian submani-

folds. Then an Arnol’d Lagrangian cobordism V between L1, . . . , Lr and K1, . . . , Ks

is a Lagrangian submanifold V ⊂ T ∗(M × R) such that

V ∩ T ∗(M × (−∞,−1)) =
r⋃
i=1

Li × (−∞,−1)× {i},

V ∩ T ∗(M × (1,+∞)) =
s⋃
j=1

Kj × (1,+∞)× {j}.

In particular, when V ⊂ T ∗(M × R) is an exact Lagrangian, its Legendrian lift

has cylindrical ends like

Ṽ ∩ J1(M × (−∞,−1)) =
r⋃
i=1

Li × {(s, i, is)|s ∈ (−∞,−1)},

Ṽ ∩ J1(M × (1,+∞)) =
s⋃
j=1

Kj × {(s, j, js)|s ∈ (1,+∞)},

which is different from the boundary condition of conical Legendrian cobordisms. In

particular, in the next section, we will see that one of the differences is whether there

is a tubular neighbourhood with positive radius for a complete adapted metric on

J1(M × R).
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2.2. Weinstein Neighbourhood for Noncompact Legendrians

For any closed Lagrangian submanifold L ⊂ X, Weinstein neighbourhood the-

orem asserts that there is a Weinstein tubular neighbourhood of L ⊂ X which is

symplectomorphic to a neighbourhood of the zero section L ⊂ T ∗L. Similarly, for

any closed Legendrian submanifold Λ ⊂ Y , there is a Weinstein tubular neighbour-

hood of Λ ⊂ Y which is contactomorphic to a neighbourhood of the zero section

Λ ⊂ J1(Λ).

However, the neighbourhood theorem for noncompact Lagrangian/Legendrian

submanifolds could be nontrivial, as the radius of the tubular neighbourhood may

not have a positive lower bound with respect to the given Riemannian metric. This

will be essential when we discuss the sheaf quantization problem for noncompact

Lagrangian/Legendrians in Section 1.3. To deal with this issue, we first introduce

the notion of an adapted metric following [68, Section 2.2.2].

Definition 2.2.1 (Eliashberg-Gromov [68]). A Riemannian metric g on a sym-

plectic manifold X is adapted to the symplectic form ω on X if for any H ∈ C∞(X)

‖dH‖g = ‖XH‖g.

or equivalently ω =
∑n

i=1 dxi ∧ dyi for some g-orthonormal coframing

〈dx1, . . . , dxn, dy1, . . . , dyn〉 .
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A Riemannian metric g on a contact manifold Y is adapted to the contact form

α on Y if for any H ∈ C∞(Y )

‖dH‖2
g + |H|2 = ‖XH‖2

g

or equivalently α = dz −
∑n

i=1 dxi ∧ dyi for some g-orthonormal coframing

〈dx1, . . . , dxn, dy1, . . . , dyn, dz〉 .

Example 2.2.1. Consider X = T ∗M and ω = dλstd. Then a Riemannian metric

gM on M determines an adapted Riemannian metric on T ∗M by

gT ∗M = gM + g∨M :∈ TxM ⊕ T ∗xM × TxM ⊕ T ∗xM → R,

where g∨ : T ∗M ⊗T ∗M → R is the dual bilinear form to g : TM ×TM → R. It also

determines an adapted Riemannian metric on J1(M) by

gJ1(M) = gT ∗M + dz2 : TxM ⊕ T ∗xM ⊕ TzR× TxM ⊕ T ∗xM ⊕ TzR→ R.

In particular, when gM is complete, gT ∗M and gJ1(M) are complete as well. We call

them the standard adapted metric on T ∗M and J1(M).

Later we will see in Section 1.3 that the reason we discuss metrics on symplec-

tic/contact manifolds is to understand when a noncompact Hamiltonian vector field

can be integrated. Adapted metrics allow us to estimate the norm of the Hamilton-

ian vector fields in terms of their C1-norm. On the other hand, complete metrics
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allow us to deduce existence of the integration flow from the estimation of the norm

of vector fields.

It is proved that any symplectic manifold admits a complete adapted metric [68].

It seems unclear whether a contact manifold always has a complete adapted metric,

but in this thesis we will only need the case of cotangent bundles and 1-jet bundles.

Definition 2.2.2. Let L ⊂ X be a submanifold. A (tubular) neighbourhood U of

L of positive radius r > 0 with respect to a metric g on X is a (tubular) neighbourhood

U such that for any x ∈ X with dg(x, L) ≤ r, we have x ∈ U .

Lemma 2.2.1. Let L ⊂ (X, dλX) be an exact Lagrangian submanifold. Suppose

L has a tubular neighbourhood of positive radius r > 0 with respect to a complete

adapted metric gX , then the Legendrian lift L̃ ⊂ (X ×R, dt− λX) also has a tubular

neighbourhood of positive radius r > 0 with respect to the complete adapted metric

gX ⊕ gR,std, where gR,std is the Euclidean metric.

For Arnol’d Lagrangian cobordisms between closed Lagrangians, the following

lemma is immediate, by noticing that the cylindrical end Li × (−∞,−1) × {i} or

Kj × (1,+∞)× {j} has a tubular neighbourhood of positive radius.

Lemma 2.2.2. Let V ⊂ X × T ∗R be an Arnol’d Lagrangian cobordism between

closed embedded Lagrangians L1, . . . , Lr ⊂ X and K1, . . . , Ks ⊂ X. Then V has a

tubular neighbourhood of positive radius with respect to some complete adapted metric

on X × T ∗R.
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For exact Lagrangians in T ∗M with closed Legendrian boundary in T ∗,∞M , by

considering the standard adapted metric on T ∗M , the following lemma is also almost

immediate:

Lemma 2.2.3. Let L ⊂ T ∗M be a Lagrangian filling with closed Legendrian

boundary Λ ⊂ T ∗,∞M . Then L has a tubular neighbourhood of positive radius r > 0

with respect to the adapted metric on T ∗M .

Proof. We only need to find a tubular neighbourhood of positive radius outside

a compact set T ∗|ξ|≤s0M of the zero section, where L ∩ T ∗|ξ|>s0M = Λ × (s0,+∞).

Observe that the standard adapted metric gT ∗M can be written as s2gT ∗,∞M + ds2.

When s0 is large, it is bounded from below by the product metric gT ∗,∞M +ds2. Since

Λ has a tubular neighbourhood of positive radius r > 0, we can conclude that so

does L. �

However, for Lagrangian cobordisms between closed Legendrians, such a tubular

neighbourhood does not exist, for the simple reason that the symplectic area near

the concave end of the symplectization has an upper bound, while a tubular neigh-

bourhood of positive radius for the conical/cylindrical submanifold cannot have a

bounded symplectic area.

For simplicity, we only deal with the particular case of Lagrangian cobordisms

in J1(M) ⊂ T ∗,∞(M ×R). In this case the symplectization is symplectomophic to a

cotangent bundle

J1(M)× R>0
∼−→ T ∗(M × R>0), (x, ξ, t; s) 7→ (x, s, sξ, t).



47

Figure 2.2. The figure on the left is the front projection of a conical

Legendrian cobordism L̃ ⊂ J1(pt × R>0). The figure in the middle
is the front projection after applying the diffeomorphism s 7→ ln s,
where the complete adapted metric induced by gM + s−2ds2 becomes
the Euclidean metric. The figure on the right is the front projection
after applying the diffeomorphism s 7→ ln(s− s0), where the complete
adapted metric induced by gM + (s− s0)−2ds2 becomes the Euclidean
metric.

We will consider a different standard complete adapted metric on T ∗(M × R>0)

induced by the complete metric gM + s−2ds2 on M × R>0, which is gM + g∨M +

s−2ds2 + s2dt2; see Figure 2.2 middle (note that the metric s−2ds2 is identical to the

Euclidean metric under the diffeomorphism s 7→ ln s).

Lemma 2.2.4. Let L ⊂ T ∗(M×R>0) ∼= J1(M)×R>0 be a Lagrangian cobordism

between closed Legendrians from Λ− to Λ+ ⊂ J1(M). Then for any sufficiently small

s0 > 0, L ∩ T ∗(M × (s0,+∞)) has a tubular neighbourhood of positive radius r > 0

with respect to the adapted metric on T ∗(M × R>0).

Proof. First consider L ∩ T ∗,∞M × (s0, s
′
1) where s0 is small, s1 is sufficiently

large and s′1 > s1. Since the intersection is a bounded subset, there exists a tubular

neighbourhood of positive radius r > 0. Then consider L∩T ∗,∞M× (s1,+∞). Since
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s1 is sufficiently large, we may assume that

L ∩ T ∗,∞M × (s1,+∞) = {(x, s, sξ)|(x, ξ) ∈ Λ+, s ∈ (s1,+∞)}.

Then since Λ+ is a closed Legendrian, it has a tubular neighbourhood of positive

radius r > 0 with respect to the any complete metric. The adapted metric on

T ∗(M × (s1,+∞)) is given by

gT ∗(M×R>0) = gM + g∨M + s−2ds2 + s2dt2.

Under the identification J1(M)×R>0
∼−→ T ∗(M ×R>0), (x, ξ, t; s) 7→ (x, s, sξ, t), the

cone on the right hand side is identified with the product cylinder on the left hand

side Λ+ × (s1,+∞). The metric is identified with

gM + s2g∨M + s2dt2 + s−2ds2

which is bounded from below by the product metric gJ1(M) + s−2ds2 on J1(M) ×

(s1,+∞). Therefore, by considering the product neighbourhood of Λ+ × (s1,+∞),

we get a tubular neighbourhood of positive radius. �

Now we restrict to the case J1(M) ⊂ T ∗,∞(M ×R). We can restrict to the open

submanifold J1(M) × (s0,+∞) which is symplectomorphic to T ∗(M × (s0,+∞)).

Consider the complete adapted metric on the submanifold induced by gM + (s −

s0)−2ds2 on M × (s0,+∞); see Figure 2.2 right (note that the metric (s − s0)−2ds2

is identical to the Euclidean metric under the diffeomorphism s 7→ ln(s− s0)). The
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advantage of this new metric is that it is complete on T ∗(M × (s0,+∞)), so that we

can deal with the subset independently

L ∩ T ∗(M × (s0,+∞)) ⊂ T ∗(M × (s0,+∞))

when studying Hamiltonian vector fields and their integration flows in later sections.

However, under this metric, L∩T ∗(M × (s0,+∞)) is no longer a bounded subset

in an ambient manifold, so it is no longer true that L ∩ T ∗(M × (s0,+∞)) has a

tubular neighbourhood of positive radius r > 0 with respect to this new complete

adapted metric. We only have a weaker result (weaker in the sense of Lemma 2.2.1).

Lemma 2.2.5. Let L ⊂ J1(M)×R>0
∼= T ∗(M×R>0) be a Lagrangian cobordism

between closed Legendrians from Λ− to Λ+ ⊂ J1(M). Then for any sufficiently

small s0 > 0, the Legendrian lift L̃∩ J1(M × (s0,+∞)) has a tubular neighbourhood

of positive radius r > 0 with respect to the complete adapted metric on J1(M ×

(s0,+∞)).

Proof. We notice that the same argument in Lemma 2.2.4 shows that for any

s′0 > s0, L ∩ J1(M × (s′0,+∞)) admits a tubular neighbourhood of positive radius

r > 0. Therefore, by Lemma 2.2.1, it suffices to show that the Legendrian lift

L̃ ∩ J1(M × (s0, s
′
0)) admits a tubular neighbourhood of positive radius.
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On J1(M × (s0, s
′
0)), we know that the Legendrian lift of the cobordism is

L̃ ∩ J1(M × (s0, s
′
0)) = {(x, s, sξ, t, st)|(x, ξ, t) ∈ Λ−, s ∈ (s0, s

′
0)}

= {(x, s, ξ, s−1z, z)|(x, ξ, z) ∈ Λs
−, s ∈ (s0, s

′
0)}.

where Λs
− = {(x, sξ, st)|(x, ξ, t) ∈ Λ−} is a closed Legendrian. Λs

− has a tubular

neighbourhood of positive radius r > 0 with respect to the complete adapted metric

on J1(M)

gJ1(M) = gM + g∨M + dz2.

On the other hand, the complete adapted metric on J1(M × (s0,+∞)) is given by

gJ1(M×(s0,+∞)) = gM + g∨M + (s− s0)−2ds2 + (s− s0)2dt2 + dz2.

When s > s0 > 0, we know that gJ1(M×(s0,+∞)) is bounded from below by the product

metric gJ1(M)+(s−s0)−2ds2+(s−s0)2dt2. By considering the product neighbourhood

of Λs0
− × (s0, s

′
0), we get a tubular neighbourhood of positive radius for the cylinder

Λs0
− × (s0, s

′
0). Finally, we estimate the distance between the cylinder and the cone

{(x, s, ξ, 0, z)|(x, ξ, z) ∈ Λs0
− , s ∈ (s0, s

′
0)}, {(x, s, ξ, s−1z, z)|(x, ξ, z) ∈ Λs

−, s ∈ (s0, s
′
0)}.
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Consider pairs of the form (x, s, ξ, 0, z) and (x, s, ss−1
0 ξ, s−1z, ss−1

0 z), and set r =

max(x,ξ,z)∈Λ
s0
−

(|ξ|2 + z2)1/2, we know that the distance is bounded by

sup
(x,ξ,z)∈Λ

s0
− ,s∈(s0,s′0)

dJ1(M×(s0,+∞))

(
(x, s, ξ, 0, z), (x, s, ss−1

0 ξ, s−1z, ss−1
0 z)

)
≤ sup

(x,ξ,z)∈Λ
s0
−

d(s0,+∞)((s
′
0)−1z, 0) + dJ1(M)

(
(x, ξ, z), (x, s′0s

−1
0 ξ, s′0s

−1
0 z)

)
≤ sup

(x,ξ,z)∈Λ
s0
−

(s− s0)((s′0)−1z − 0) +
(
(ξ − s′0s−1

0 ξ)2 + (z − s′0s−1
0 z)2

)1/2

≤ (s′0 − s0)(s′0)−1r + (s′0s
−1
0 − 1)r = (s′0s

−1
0 − s0(s′0)−1)r.

We know that the distance can be arbitrarily small when s′0 is sufficiently close to

s0. Therefore, a tubular neighbourhood of positive radius for Λs0
− × (s0, s

′
0) gives a

(possibly smaller) tubular neighbourhood of positive radius for the cone. �

2.3. Genericity Assumption and Gradings on Legendrians

When proving results on estimations of Reeb chords, we need some assumptions

on genericity and then would be able to study the Maslov grading on Reeb chords

on the Legendrian. They are explained as follows.

2.3.1. Genericity Assumptions of Legendrians

In this section we introduce the notions of chord generic Legendrian submanifolds

and admissible Legendrian isotopies. They are generic under C1-topology in the

space of embeddings/isotopies.
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Definition 2.3.1. Let Λ ⊂ J1(M) be a Legendrian submanifold. Λ is called

chord generic if the Lagrangian projection

πLag : Λ→ T ∗M

is a Lagrangian immersion with only transverse double points.

Lemma 2.3.1 (Ekholm-Etnyre-Sullivan, [54, Lemma 3.5]). Let Λ be a Legendri-

an submanifold. Then for any ε > 0 there is a chord generic Legendrian submanifold

Λε that is ε-close to Λ in the C1-topology.

Remark 2.3.1. In fact being ε-close in the C1-topology implies that Λ is Hamil-

tonian isotopic to Λε by the Legendrian neighbourhood theorem. In addition the

C0-norm of the Hamiltonian isotopy can also be smaller than ε.

By Legendrian isotopy extension theorem, any Legendrian isotopy can be realized

as an ambient Hamiltonian isotopy. Therefore to discuss Hamiltonian isotopies it

suffices to discuss Legendrian isotopies.

Definition 2.3.2. Let n ≥ 2, Λ ⊂ J1(M) be a Legendrian submanifold and H ∈

C∞(J1(M)) a contact Hamiltonian. Then the Legendrian isotopy Λs = ϕsH(Λ) (s ∈

I) is admissible if there are s1, ..., sk ∈ I such that

(1). for s 6= s1, ..., sk, Λs is a chord generic Legendrian;
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(2). for s ∈ (si − ε, si + ε) where ε > 0 is sufficiently small, Λs is still chord

generic away from some contact ball U ∈ J1(M), and in the contact ball U ' R2n+1,

Λt ∩ U ' ({(x, 0, 0)|x ∈ R} × L1) ∪
(
{(x, 3x2 + s, x3 + sx)|x ∈ R} × L2

)
such that L1 t L2 are Lagrangian subspaces in R2n−2.

Lemma 2.3.2 (Ekholm-Etnyre-Sullivan, [54, Lemma 3.6]). Let Λs (s ∈ I) be a

Legendrian isotopy consisting of chord generic Legendrians connecting Λ1 and Λ1.

Then for any ε > 0 there exists an admissible Legendrian isotopy connecting Λ0 and

Λ1 that is ε-close to Λs (s ∈ I) in the C1-topology.

Remark 2.3.2. Ekholm-Etnyre-Sullivan’s definition for admissible Legendrian

isotopies requires more conditions, but for our purpose the definition above is already

enough.

2.3.2. Grading of Reeb chords on Legendrians

In this section we discuss the grading of Reeb chords and Maslov potential.

Recall that the symplectic structure on T ∗M will give a contractible choice of

almost complex structures on the tangent bundle T (T ∗M), which canonically turns

T (T ∗M) into a complex vector bundle. On T ∗M there is a canonical Lagrangian

fibration given by the cotangent fibers. A framing on this Lagrangian fibration

together with the almost complex structure J determines a canonical trivialization

of the complex vector bundle T (T ∗M).
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Definition 2.3.3. Let Λ → J1(M) be a Legendrian immersion, and consider

the Lagrangian projection onto T ∗M . For any γ : S1 ↪→ Λ → T ∗M , consider the

canonically trivialized complex vector bundle γ∗T (T ∗M) and the Lagrangian subbun-

dle γ∗TΛ. Then the Maslov index of γ is

m(γ) : Z ∼−→ π1(S1)→ π1(U(n)/O(n))
∼−→ Z.

The Maslov class of Λ is the homomorphism

µ(Λ) : π1(Λ)→ Z, γ 7→ m(γ).

In fact µ(Λ) ∈ H1(Λ).

Now we define the Maslov potential for a Legendrian submanifold Λ with µ(Λ) =

0. Currently Maslov potential is only defined combinatorially for Legendrian knots,

since in higher dimensions it is hard (in fact, impossible) to classify the singularities

of the front projection. Therefore here we only define the Maslov potential on a

strand.

Definition 2.3.4. Let Λ ⊂ J1(M) be a Legendrian submanifold such that the

front projection πfront : Λ → M × R is a smooth hypersurface on an open dense

subset. For a curve γ : I → Λ, a Maslov potential is a step function

d : γ(I)→ Z



55

such that for any a, b ∈ γ(I), d(a)−d(b) is equal to the number of down cusps minus

the number of up cusps, and the value at a cusp is equal to points in γ(I) in a small

neighbourhood with greater t coordinates. Here a cusp is going up (down) if γ∗dt > 0

(γ∗dt < 0).

Remark 2.3.3. It is not clear at all that the Maslov potential can be globally

well-defined. However, when µ(Λ) = 0 there is indeed a well-defined Maslov potential

d : Λ→ Z

such that its restriction to any curve will be a Maslov potential on that strand. For

a possible choice of the Maslov potential, see [84].

The following definition is coming from the formula obtained by Ekholm-Etnyre-

Sullivan [55, Section 3.5]. It may not be a good definition from a geometric viewpoint.

However it is the most convenient one for us.

Definition 2.3.5. Let Λ ⊂ J1(M) be a chord generic Legendrian submanifold, γ

be a Reeb chord on Λ starting from a and ending at b, and d be a Maslov potential on

any strand on Λ connecting a and b. Let ha, hb the functions Rn → R be functions

such that in small contact balls Ua, Ub around a and b,

Λ ∩ Uj = {(x, dhj(x), hj(x))|x ∈ R}.
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Let hab(x) = hb(x)− ha(x). Then the degree of γ is

n− deg(γ) = d(a)− d(b) + ind(D2hab)− 1.

Lemma 2.3.3 (Ekholm-Etnyre-Sullivan, [55, Lemma 3.4]). Let Λ ⊂ J1(M) be

a chord generic Legendrian submanifold with µ(Λ) = 0, γ be a Reeb chord on Λ

starting from a and ending at b. Then deg(γ) is independent of the strand on Λ and

the Maslov potential d we choose.

Basically, the degree deg(γ) is well-defined because it is equal to a shifted Conley-

Zehnder index of γ. We won’t discuss Conley-Zehnder indices here. Interested

readers may refer to [55, Section 2.3] or [54, Section 2.2].

2.4. Weinstein Manifolds and Weinstein Sectors

Finally, we explain the basic concepts of Weinstein manifolds and Weinstein sec-

tors, which are developed since the work of Weinstein [160]. For the details see

[40,61,76]. For the details of ideal contact boundaries of symplectic manifolds, see

[81].

Definition 2.4.1. Let (X, dλ) be an exact symplectic manifold with ideal contact

boundary ∂∞X. Let the Liouville vector field Zλ be defined by ι(Zλ)dλ = λ, which we

assume to be outward pointing along the ideal contact boundary. X is a (finite type)

Weinstein manifold if there is a proper Morse(-Bott) function f on X such that Zλ
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is a gradient-like vector field. Write Xc = f−1((−∞, c]). Then the skeleton of X is

cX =
⋃
c∈R

⋂
z>0

ϕ−zZλ(Xc).

Example 2.4.1. Let f0 : M → R be a Morse(-Bott) function on a closed manifold

M with Riemannian metric g. Let f(x, ξ) = f0(x) + |ξ|2g and λ =
∑n

i=1 ξidxi +

df0. This pair defines a Weinstein structure on T ∗M with the standard symplectic

structure. In particular, when f0 ≡ 0, we have the standard Liouville structure on

T ∗M .

It follows that the stable submanifolds of critical points of the Morse function f

are isotropic submanifolds [40, Lemma 11.13]. Therefore, the skeleton cX , which is

the union of stable submanifolds, is a stratified space stratified by isotropic subman-

ifolds.

Definition 2.4.2. Let (X, dλ) be an exact symplectic manifold with contac-

t boundary ∂−∞X t ∂+
∞X. Let the Liouville vector field Zλ be defined by ι(Zλ)dλ = λ,

which we assume to be transverse to the contact boundary, inward pointing along ∂−∞X

and outward pointing along ∂+
∞X. X is a Weinstein cobordism from ∂−∞X to ∂+

∞X

if there is a proper Morse function f on X such that f−1(0) = ∂−∞X, f−1(1) = ∂+
∞X

and Zλ is a gradient-like vector field.

More generally, one can define Weinstein sectors, which are Weinstein manifolds

with boundaries, following [76].
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Definition 2.4.3. Let (X, dλ) be an exact symplectic manifold with boundary

∂X, whose ideal contact boundary ∂∞X is a contact manifold with boundary. Let

the Liouville vector field Zλ be defined by ι(Zλ)dλ = λ, outward pointing along the

ideal contact boundary ∂∞X and tangent to ∂X. X is a Liouville sector if there is a

function I : ∂X → R such that

(1) ZλI = I near the ideal contact boundary ∂∂∞X;

(2) dI is pointing positively along the characteristic foliation ker(ω|∂X) on ∂X.

X is a Weinstein sector if there is a function f on X such that Zλ is a gradient-like

vector field. Write Xc = f−1((−∞, c]). Then the skeleton of X is

cX =
⋃
c∈R

⋂
z>0

ϕ−zZλ(Xc).

Example 2.4.2. Let X be a Weinstein manifold with Morse function fX and

F ⊂ ∂∞X be a Weinstein hypersurface with Morse function fF . Then one can define

a Weinstein sector by removing a Weinstein tubular neighbourhood of F [61,76].

We define the notion of proper sectorial inclusions and Liouville subsector em-

beddings. We will not use these notions except in Section 7.1, but it will be helpful

to keep in mind this viewpoint, which will appear throughout the thesis.

Definition 2.4.4. A proper sectorial inclusion is a proper exact symplectic em-

bedding of Weinstein sectors. In particular, it sends ideal contact boundaries to ideal

contact boundaries.
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In terms of the Lagrangian skeleta, it should be viewed as open inclusions of

skeleta (up to possible Liouville deformations). For example, following [75, Section

8.2], for X a Weinstein manifold and F ⊂ ∂∞X a Weinstein hypersurface, there is

a proper sectorial inclusion F × T ∗[0, 1] ↪→ X. This will be the main example we

discuss in Chapter 4 and 6.

Definition 2.4.5. A Liouville subsector embedding is an exact symplectic embed-

ding of Weinstein sectors that sends sectorial boundaries to sectorial boundaries. A

Liouville subsector embedding is a Liouville sectorial embedding such that the com-

pliment is a Weinstein cobordism with sectorial boundary.

In terms of the Lagrangian skeleta, Liouville subsector embedding should be

viewed as closed embeddings of skeleta (up to possible Liouville deformations). Note

that a Liouville subdomain embedding between Weinstein domains is not always

a Weinstein subdomain embedding. In fact, there are embeddings of Weinstein

domains whose compliment does not have the homotopy type of a half-dimensional

CW-complex [66].
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CHAPTER 3

Preliminaries in Microlocal Sheaves

Sheaves have played a central role in many branches of mathematics. Microlocal

theory of sheaves on manifolds, introduced by Kashiwara-Schapira, strongly inspired

by studies in differential equations, is a theory that tries to understand sheaves

through their first order approximation, characterized by the stalks of certain local

cohomologies. In this chapter, we review the basic theory of microlocal sheaves which

will be needed for our results.

3.1. Microlocal Theory of Sheaves

Kashiwara and Schapira developed the microlocal theory of sheaves on manifolds

in their celebrated book [97]. We briefly review the results in microlocal sheaf theory

that we are going to use in this paper.

Definition 3.1.1. Let Sh(M) be the dg category of sheaves on M , i.e. the dg

category of (unbounded) chain complexes of sheaves on M over a field k, and Sh(M)

the dg derived category of sheaves on M , i.e. the dg localization of Sh(M) along all

acyclic objects.

Remark 3.1.1. We can consider the dg-categories of chain complexes of sheaves

or sheaves of chain complexes. There is a natural functor from the former to the
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latter, by associating to the sheafification of the corresponding presheaf of chain com-

plexes to each complex of sheaves. This is an equivalence for a smooth manifold of

finite Lebesgue covering dimension; see [112, Appendix C].

Gronthendieck six-functor formalism is well developed for sheaves on manifolds.

One can define the internal H om(−,−) and tensor product −⊗− of sheaves. Given

a continuous map f : M → N , we have an adjunction between pull back and push

forward

f∗ : Sh(M)
 Sh(N) : f ∗,

and we also have an adjunction between proper push forward and proper pull back

f ! : Sh(N)
 Sh(M) : f!.

The readers may refer to Kashiwara-Schapira [97, Section 2 & 3.1] for important

properties of the six functors on bounded complexes of sheaves, and see [150] for the

generalization of Grothendieck six-functors to the setting of unbounded complexes

of sheaves.

Example 3.1.2. We denote by kM the constant sheaf on M . For a locally closed

subset iV : V ↪→M , abusing notations, we will write

kV = iV !kV ∈ Sh(M).

In particular, kV ∈ Sh(M) will have stalk k for x ∈ V and stalk 0 for x /∈ V . Note

that when V ↪→M is a closed subset, we can also write kV = iV ∗kV .
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We can define the linear dual and Verdier dual of a sheaf. Recall that for p : M →

{∗}, the dualizing sheaf of M is ωM = p!k. When M is orientable with dimension n,

ωM = kM [n]. For the detailed discussion, see Kashiwara-Schapira [97, Section 3.3].

Definition 3.1.2. Let F ∈ Sh(M). The linear dual of F is

D′MF = H om(F ,kM).

The Verdier dual of F is

DMF = H om(F , ωM).

Then we are ready to introduce the notion of singular support, which was intro-

duced by Kashiwara-Schapira [97, Section 5] as the key concept of microlocal theory

of sheaves on manifolds.

Definition 3.1.3. Let F ∈ Sh(M). Then its singular support SS(F ) is the

closure of the set of points (x, ξ) ∈ T ∗M such that there exists a smooth function

ϕ ∈ C1(M), ϕ(x) = 0, dϕ(x) = ξ and

Γϕ−1([0,+∞))(F )x 6= 0.

The singular support at infinity is SS∞(F ) = SS(F ) ∩ T ∗,∞M .

For Λ̂ ⊂ T ∗M a conical subset (resp. Λ ⊂ T ∗,∞M any subset), let ShΛ̂(M) ⊂

Sh(M) (resp. ShΛ ⊂ Sh(M)) be the full subcategory consisting of sheaves such that

SS(F ) ⊂ Λ̂ (resp. SS∞(F ) ⊂ Λ).
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Example 3.1.3. Let F = kRn×[0,+∞). Then SS(F ) = Rn × {(x, ξ)|x ≥ 0, ξ =

0 or x = 0, ξ ≥ 0}, SS∞(F ) = ν∗,∞Rn×R>0,−R
n+1 = {(x1, ..., xn, 0, 0, ..., 0, 1)}, which is

the inward conormal bundle of Rn × R>0.

Let F = kRn×(0,+∞). Then SS(F ) = Rn × {(x, ξ)|x ≥ 0, ξ = 0 or x = 0, ξ ≤

0}, SS∞(F ) = ν∗,∞Rn×R>0,+
Rn+1 = {(x1, ..., xn, 0, 0, ..., 0,−1)}, which is the outward

conormal bundle of Rn × R>0.

The singular support of a sheaf detect when derived sections of the sheaf fail to

propagate. To make it precise, we explain several important lemmas on propagations

of sections of complexes of sheaves [97, Section 5]. See Robalo-Schapira [132] for

the generalization of non-characteristic propagations to the setting of unbounded

complexes and Jin-Treumann [94, Section 2] for generalizations to the setting of

modules over E2-ring spectra.

First, on a vector space, we introduce the notion of a convolution and state the

microlocal cut-off lemma. This is a special case of non-characteristic propagations.

Definition 3.1.4. Let V be an R-vector space. Let

π1 : V × V → V, (v1, v2) 7→ v1, π2 : V × V → V, (v1, v2) 7→ v2,

s : V × V → V, (v1, v2) 7→ v1 + v2.

For F ,G ∈ Sh(V ), define the convolution as

F ? G = s∗(π
−1
1 F ⊗ π−1

2 G ),

F ?′ G = s!(π
−1
1 F ⊗ π−1

2 G ).
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Let V be an R-vector space and γ ⊂ V be a closed cone, meaning that γ is

invariant under R>0-dilation. Then the polar set of γ is

γ∨ = {u ∈ V ∨| 〈u, v〉 ≥ 0, ∀ v ∈ γ}.

For a subset A ⊂M , the interior of A is denoted by A◦.

Lemma 3.1.1 (Microlocal cut-off lemma, [97, Proposition 5.2.3], [84, Proposi-

tion 2.9]). Let V be an R-vector space, γ ⊂ V be a closed cone and F ∈ Sh(V ).

Then SS(F ) ⊂ V × (γ∨)◦ iff

kγ ?F
∼−→ k0 ?F .

Remark 3.1.4. In Kashiwara-Schapira they use γ◦ as the polar set and Int(γ◦)

for its interior but here we use different notions.

Then we explain the machinery of microlocal Morse theory or non-characteristic

propagation theory for sheaves on general manifolds that will be frequently used in

this paper. We state the results here.

Proposition 3.1.2 (non-characteristic deformation lemma [97, Proposition 2.7.2]).

Let F ∈ Sh(M) and {Ut}t∈R be a family of open subsets and Zt =
⋂
t>s Ut\Us. Sup-

pose that

(1) Ut =
⋃
s<t Us, for −∞ < t < +∞;

(2) Ut\Us ∩ supp(F ) is compact, for −∞ < s < t < +∞;

(3) ΓM\Ut(F )x = 0, for x ∈ Zs\Ut, −∞ < s ≤ t < +∞.
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Then for any t ∈ R we have

Γ

(⋃
s∈R

Us,F

)
∼−→ Γ(Ut,F ).

By considering the special case when Us ⊂ M are sublevel sets of a smooth

function f : M → R, we have the microlocal Morse lemma.

Proposition 3.1.3 (microlocal Morse lemma [97, Corollary 5.4.19]). Let F ∈

Sh(M) and f : M → R be a smooth function that is proper on supp(F ). Suppose

for any x ∈ f−1([a, b)), df(x) /∈ SS(F ). Then

Γ(f−1((−∞, b)),F )
∼−→ Γ(f−1((−∞, a)),F ).

Example 3.1.5 ([148, Section 3.3]). Suppose Λ = ν∗,∞Rn×R>0,−R
n+1 ⊂ T ∗,∞Rn+1

is the inward conormal bundle of Rn × R>0 at infinity, and F ∈ ShbΛ(Rn+1). Then

by microlocal Morse lemma, F |Rn×{0}, F |Rn×(0,+∞) and F |Rn×(−∞,0) are locally con-

stant sheaves, and

Γ(Rn × {0},F ) ' Γ(Rn+1,F ) ' Γ(Rn × [0,+∞),F ).

Suppose that the locally constant sheaves are

F |Rn×[0,+∞) = F+|Rn×[0,+∞), F |Rn×(−∞,0) = F−|Rn×(−∞,0).
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Figure 3.1. The singular support of a sheaf and the combinatoric de-
scription.

Then F is determined by the diagram (Figure 3.1)

F− F+
oo

∼
// F+

Microlocal Morse theory not only shows when derived sections of sheaves on sub-

level sets propagate, but also detects how derived sections of sheaves on sublevel sets

fail to propagate. Quantitatively, we have the following microlocal Morse inequality.

Proposition 3.1.4 (microlocal Morse inequality [97, Proposition 5.4.20]). Let

F ∈ Sh(M) and f : M → R be a smooth function that is proper on supp(F ). Let

Λϕ = {(x, dϕ(x))|x ∈M}, and suppose that

SS(F ) ∩ Λϕ = {(x1, ξ1), ..., (xn, ξn)}

and Vi = Γϕ≥ϕ(xi)(F )xi is finite dimensional. Then Γ(M,F ) is also finite dimen-

sional and for any l ∈ Z

∑
1≤i≤n

∑
j≤l

(−1)l−j dimHj(Vi) ≥
∑
j≤l

(−1)l−j dimHj(M,F ).
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In particular for any j ∈ Z,
∑

1≤i≤n dimHj(Vi) ≥ dimHj(M,F ).

From the above discussion, we have seen that the core of investigating the be-

haviour of sheaves on manifolds is to estimate the singular support of the sheaf.

Here are some singular support estimates we are going to use. Let f : M → N be a

smooth map. Then we have the following maps between vector bundles

T ∗M
fd←−M ×N T ∗N

fπ−→ T ∗N,

where fπ is the natural map determined by fiber product, and fd is the pullback

map of covectors or differential forms. More explicitly, for (x, η) ∈M ×N T ∗N where

η ∈ T ∗f(x)N ,

fπ(x, η) = (f(x), η), fd(x, η) = (x, f ∗η).

Proposition 3.1.5 ([97, Proposition 5.4.5]). Let F ∈ Sh(N) and f : M → N

be a submersion. Then

SS(f−1F ) = fdf
−1
π (SS(F )).

Proposition 3.1.6 ([97, Proposition 5.4.4]). Let F ∈ Sh(M) and f : M → N

be a proper smooth map. Then

SS(f∗F ) ⊂ fπf
−1
d (SS(F )).
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Remark 3.1.6. In Kashiwara-Schapira, they call a smooth/continuous map as

a morphism between manifolds, and call a submersion as a smooth morphism be-

ween manifolds. Here we instead use the terminologies that may be more familiar to

geometric topologists.

Proposition 3.1.7 ([97, Proposition 5.4.14]). Let F ,G ∈ Sh(M). Suppose

(−SS(F )) ∩ SS(G ) ⊂M ⊂ T ∗M . Then

SS(F ⊗ G ) ⊂ SS(F ) + SS(G ).

Suppose SS(F ) ∩ SS(G ) ⊂M ⊂ T ∗M . Then

SS(H om(F ,G )) ⊂ (−SS(F )) + SS(G ).

Under the assumption, when F is constructible, then H om(F ,G ) ' D′MF ⊗ G .

The singular support estimation for pullback functors usually requires more as-

sumptions. Let f : M → N be a smooth map. Then a subset Λ ⊂ T ∗N is called

non-characteristic with respect to f if

Λ ∩ ν∗f(M)N ⊂M ⊂M ×N T ∗N.

where ν∗f(M)N is the kernel of fπ : M ×N T ∗N → T ∗N .
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Proposition 3.1.8 ([97, Proposition 5.4.13]). Let G ∈ Sh(M) and f : M → N

be a smooth map such that SS(G ) is non-characteristic with respect to f . Then

SS(f−1G ) ⊂ fd(f
−1
π (SS(G ))),

and there is a natural isomorphism f−1G ⊗ ωM/N
∼−→ f !G .

Here are some singular support estimates that we are going to use. Let A,B ⊂

T ∗M . Then define (x, ξ) ∈ A +̂B iff there exists (an, αn) ∈ A, (bn, βn) ∈ B such that

an, bn → x, αn + βn → ξ, |an − bn||αn| → 0.

Let i : M → N be a closed embedding. Then for A ⊂ T ∗N , define (x, ξ) ∈ i#(A) iff

there exists (yn, ηn, xn, ξn) ∈ A× T ∗M such that

xn, yn → x, ηn − ξn → ξ, |xn − yn||ηn| → 0.

Proposition 3.1.9 ([97, Theorem 6.3.1]). Let j : U ↪→ N be an open embedding,

F ∈ Sh(U). Then

SS(j∗F ) ⊂ SS(F ) +̂ ν∗U,−N,

where ν∗U,−N is the inward conormal bundle of U ⊂ N .

Proposition 3.1.10 ([97, Corollary 6.4.4]). Let i : M → N be a closed embed-

ding, F ∈ Sh(N). Then

SS(i−1F ) ⊂ i#SS(F ).
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The first hint on the relation between sheaves and symplectic geometry is the

result of Kashiwara-Schapira, which shows that singular supports are coisotropic

subsets [97, Theorem 6.5.4]. In our paper, we will mostly study the simple case

when the singular support is Lagrangian.

Definition 3.1.5. A subset Z ⊂ M is subanalytic at x ∈ M if there exists an

open neighbourhood U of x, and compact manifolds Y i
j (i = 1, 2, 1 ≤ j ≤ N) and

f ij : Y i
j →M analytic functions such that

Z ∩ U = U ∩

( ⋃
1≤j≤N

f 1
j (Y 1

j )\f 2
j (Y 2

j )

)
.

Z is a subanalytic set if it is subanalytic at any point.

Definition 3.1.6 ([97, Definition 8.4.3]). For a sheaf F ∈ Sh(M), when SS(F )

is a subanalytic Lagrangian subset (resp. when SS∞(F ) is a subanalytic Legendrian),

then F is called a weakly constructible sheaf.

Remark 3.1.7. In some modern literatures [104, 124, 146], people call such

sheaves constructible sheaves, since they work with unbounded complexes of sheaves

and it is unnatural to assume perfect stalks in the corresponding large categories.

Here, we follow the original convention in [97] since we will use both notations.

In particular, for a weakly constructible sheaf F , by Sard theorem, when ε > 0

is sufficiently small, the outward conormal bundle ν∗,∞∂Bε(x),+M will be disjoint from

the subanalytic Legendrian SS∞(F ), and thus by microlocal Morse lemma we can

identify the stalk of a weakly constructible sheaf with the local sections.
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Lemma 3.1.11 ([97, Lemma 8.4.7]). When F ∈ Sh(M) is a weakly constructible

sheaf, for any x ∈M and ε > 0 sufficiently small we have

Fx ' Γ(Bε(x),F ) ' Γ(Bε(x),F ).

There is a stronger notion of a constructible sheaf [97, Section 8.4], which we

introduce now.

Definition 3.1.7 ([97, Definition 8.4.3]). For a sheaf F ∈ Sh(M), when F is

a weakly constructible sheaf and Fx is a perfect complex for any x ∈ M , then F is

called a constructible sheaf.

Proposition 3.1.12 ([97, Proposition 3.4.4]). Let F ∈ Sh(M) be a constructible

sheaf. Then

π−1
1 DMF ⊗ π−1

2 G 'H om(π−1
1 F , π!

2G ),

π−1
1 D′MF ⊗ π−1

2 G 'H om(π−1
1 F , π−1

2 G ).

Proposition 3.1.13 ([97, Proposition 3.4.6]). Let F ,G ∈ Sh(M) be constructible

sheaves. Then

RH om(F ,G ) ' RH om(DMF , DG ) ' DM (DMF ⊗ G ) .

Remark 3.1.8. In fact, the above propositions hold as long as F ,G ∈ Sh(M)

are so called cohomologically constructible sheaves [97, Definition 3.4.1]. We can
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easily show that cohomologically construtible sheaves are constructible using Lemma

3.1.11. However, we do not know whether the converse is true.

3.2. Microsheaves or Kashiwara-Schapira Stack

Whn studying microlocal theory of sheaves, one of the most important results

of Kashiwara-Schapira is their theory of microlocalization, which enhances sheaves

on M to microsheaves on T ∗M to obtain more precise description on the microlo-

cal behaviour of sheaves using the algebraic theory of microsheaves instead of the

geometric theory of singular supports.

We review the definition and properties of microlocalization and microsheaves or

Kashiwara-Schapira stacks, which has been introduced and studied in [97, Section

6], [84, Section 6] or [121, Section 3.4]. Here we follow the definition in [124, Section

5].

Definition 3.2.1. Let Λ̂ ⊂ T ∗M be a conical subset. Then define a presheaf of

dg categories on T ∗M supported on Λ̂ to be

µShpre

Λ̂
: Ω̂ 7→ ShΛ̂∪T ∗M\Ω̂(M)/ShT ∗M\Ω̂(M),

The sheafification of µShpre

Λ̂
is µShΛ̂. In particular, we write µSh = µShT ∗M for the

sheaf of categories on T ∗M .

Let Sh(Λ̂)(M) be the subcategory of sheaves F such that there exists some neigh-

bourhood Ω̂ of Λ̂ satisfying SS(F ) ∩ Ω̂ ⊂ Λ̂. For F ,G ∈ Sh(Λ̂)(M), let the sheaf of
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homomorphisms in the sheaf of categories µShΛ̂ be

µhom(F ,G )|Λ̂ : Ω̂ 7→ HomµSh
Λ̂

(Ω̂)(F ,G ).

Write µhom(F ,G ) to be the sheaf of homomorphisms in µSh.

Let Λ ⊂ T ∗,∞M be a subset where T ∗,∞M is identified with the unit cotangent

bundle. Then µShΛ is defined by µShΛ = µShΛ×R>0 |Λ.

Remark 3.2.1. We define the sheafification in the (large) category of dg cate-

gories whose morphisms are exact functors. When Λ̂ is a conical subanalytic La-

grangian, the sheafification takes value in the (large) category of presentable dg cate-

gories whose morphisms are colimit preserving functors [124, Remark 6.1]. When Λ̂

is not conical subanalytic Lagrangian, it is then not necessarily true that the sheafi-

fication in exact dg categories agree with the one in presentable dg categories.

Remark 3.2.2. Kashiwara-Schapira defined µhom using the mcirolocalization

fucntor of Sato [97, Definition 4.1.1] rather than the internal Hom on µSh. Let F ,

G ∈ Sh(M), they set

µhom(F ,G ) := µ∆M
H om(π∗1F , π!

2G )

where µ∆M
is the microlocalization along the diagonal [97, Section 4.3]. It follows

from [97, Theorem 6.1.2] and [84, Corollary 5.5.] that there is an canonical isomor-

phism

µhom(F ,G )|Ω →H omµSh(Ω)(F ,G ).
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Thus, we abuse the notation and simply use µhom to denote the internal Hom of

µSh valued in sheaves on conic open sets of T ∗M .

Denote by mΛ the natural quotient functor on the sheaf of categories, which, on

the level of global sections, induces

mΛ : ShΛ(M)→ µShΛ(Λ).

We call mΛ the microlocalization functor. One may notice that the microlocalization

functor factors through the restriction functors on the cotangent bundle

mΛ : ShΛ(M)→ µShM∪Λ̂(M ∪ Λ̂)→ µShΛ(Λ).

The next lemma follows from the identity Γ(T ∗M,µhom(F ,G )) = Hom(F ,G )

[97, Equation (4.3.1)] and the fact that supp(µhom(F ,G )) ⊂ SS(F ) ∩ SS(G )

[97, Corollary 5.4.10].

Lemma 3.2.1 ([121, Remark 3.18]). Let Λ̂ ⊂ T ∗M be a conical subanalytic

Lagrangian. Then there is an isomorphism

ShM∪Λ̂(M)
∼−→ µShM∪Λ̂(M ∪ Λ̂).

Remark 3.2.3. Using the invariance of µSh under contact transformations [97,

Section 7.2] and [124, Lemma 6.3], which will be discussed in the next section, the

right hand side only depends on the germ of M ∪ Λ̂, and can be viewed as a sheaf of
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categories either in M∪Λ̂ ⊂ T ∗M or in some T ∗,∞N through a Legendrian embedding

M ∪ Λ̂ ↪→ T ∗,∞N (see also [124, Remark 8.25]).

Proposition 3.2.2 ([84, Equation 6.4], [87, Equation 1.4.6]). For p = (x, ξ) ∈

Λ ⊂ T ∗,∞M a smooth point on a Legendrian Λ ⊂ T ∗,∞M , the stalk µShp satisfies

the following: for F ,G ∈ Sh(Λ)(M), ϕ ∈ C1(M) such that ϕ(x) = 0, dϕ(x) = ξ,

HomµShp(F ,G ) = µhom(F ,G )p = Hom(Γϕ≥0(F )x,Γϕ≥0(G )x).

Theorem 3.2.3 ([84, Proposition 6.6 & Lemma 6.7], [124, Corollary 5.4]). For

p = (x, ξ) ∈ Λ ⊂ T ∗,∞M a smooth point on a Legendrian Λ ⊂ T ∗,∞M , the stalk

µShΛ,p ' Mod(k).

Theorem 3.2.4 (Guillermou, [84, Theorem 11.5]). Let Λ ⊂ T ∗,∞M be a smooth

Legendrian submanifold. Suppose the Maslov class µ(Λ) = 0 and Λ is relative spin,

then as sheaves of categories

µShΛ
∼−→ LocΛ.

Proposition 3.2.5 (Guillermou, [84, Theorem 7.6 (iv), 7.9, 8.10 & Lemma

11.4]). Let Λ ⊂ T ∗,∞M be a Legendrian submanifold. Suppose the Maslov class

µ(Λ) = 0 and Λ is relative spin. When the front projection of Λ is a smooth hyper-

surface near p and ϕ ∈ C1(M) is a local defining function for Λ, then

mΛ,p(F ) = Γϕ≥0(F )x[−d(p)].



76

For two different points p and p′ ∈ Λ, d(p) − d(p′) is equal to the difference of any

Maslov potential at p and p′.

Example 3.2.4. Suppose Λ = ν∗,∞Rn×R>0,−R
n+1 ⊂ T ∗,∞Rn+1 is the inward conor-

mal of Rn × R>0 and F ∈ ShbΛ(Rn+1). Then F is determined by

F− F+
oo

∼
// F+

For p = (0, ..., 0, 0; 0, ..., 0, 1) ∈ Λ we can pick ϕ(x) = xn+1 and get

Γϕ≥0(F )(0,...,0) = Cone(F+ → F−)[−1] ' Tot(F+ → F−).

Therefore one can see that the definition of the microstalk coincides with the definition

of the microlocal monodromy defined by Shende-Treumann-Zaslow [148, Section 5.1],

and indeed

mΛ,p(F ) ' µmon(F )p[−1].

Now we are able to define the notion of microstalks, which defines the equivalence

in Theorem 3.2.3. Using that we are able to define simple sheaves and pure sheaves,

or microlocal rank r sheaves.

Definition 3.2.2. Let Λ ⊂ T ∗,∞M be a Legendrian submanifold. Suppose µ(Λ) =

0 and Λ is relative spin. For p = (x, ξ) ∈ Λ, the microstalk of F ∈ Shb(M) at p is

mΛ,p(F ) = mΛ(F )p.



77

F ∈ ShΛ(M) is called microlocal rank r if mΛ,p(F ) is concentrated at a single degree

with rank r. In this case F is called pure, and when r = 1 it is also called simple.

Proposition 3.2.6 ([87, Equation 1.4.4]). Let Λ ⊂ T ∗,∞M be a Legendrian

submanifold. F ∈ ShΛ(M) is microlocal rank r at p ∈ Λ iff

µhom(F ,F )p ' kr2

.

One can estimate the singular support of the sheaf µhom(F ,G ) in T ∗M . Recall

that for A,B ⊂ X, we define the normal cone C(A,B) such that (x, ξ) ∈ TX iff

there exists an ∈ A, bn ∈ B, cn ∈ R such that

an, bn → x, cn(an − bn)→ ξ, n→∞.

Proposition 3.2.7 ([97, Corollary 5.4.10 & Corollary 6.4.3]). Let F ,G ∈ Sh(M).

Then

SS(µhom(F ,G )) ⊂ C(SS(F ), SS(G )).

In particular, supp(µhom(F ,G )) ⊂ SS(F ) ∩ SS(G ).

Remark 3.2.5. By Proposition 3.1.9 [97, Proposition 5.4.4], we can show that

[97, Corollary 6.4.4 & 6.4.5] for π : T ∗M →M and π̇ : Ṫ ∗M →M we have

SS(π∗µhom(F ,G )) ⊂ ππ(dπ∗)−1C(SS(F ), SS(G )) = −SS(F ) +̂SS(G ),

SS(π̇∗µhom(F ,G )) ⊂ π̇π(dπ̇∗)−1C(SS(F ), SS(G )) = −SS(F ) +̂∞ SS(G ).
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Finally, we know that the microlocalization induces morphisms

µhom(F ,G )→ µhom(F ,G )|S∗M , H om(F,G)→ π̇∗(µhom(F ,G )|S∗M).

By [97, Equation (4.3.1)], we immediately know that the second morphism fits into

the following Sato’s fiber sequence, which characterizes algebraically the effect of

singular support on Homs between sheaves.

Theorem 3.2.8 (Sato’s exact triangle, [84, Equation 2.17], [87, Equation 1.3.5]).

Let F ,G ∈ Sh(M). Then there is an exact triangle

∆∗H om(π−1
1 F , π−1

2 G )→H om(F ,G )→ π̇∗(µhom(F ,G )|T ∗,∞M)
+1−→ .

In particular, when F is constructible, by Proposition 3.1.12

D′F ⊗ G →H om(F ,G )→ π̇∗(µhom(F ,G )|T ∗,∞M)
+1−→ .

Remark 3.2.6. Since H om(F ,G ) = ∆!H om(π−1
1 F , π!

2G ), we know that the

first map is induced by the natural map ∆∗H ⊗ ω∆/M×M → ∆!H . The failure of

the map being an isomorphism is due to the characteristicity of SS(H ) with respect

to ∆ by Proposition 3.1.8.

3.3. Functors and Quantizations of Hamiltonian Isotopies

The very first step to understand the relation between symplectic geometry and

microlocal sheaves is to understand how sheaves change with respect to Hamiltonian

isotopies. This requires one to define functors from geometric Hamiltonian isotopies,
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which is called sheaf quantization. In this section we review the equivalence functor

from a Hamiltonian isotopy defined by Guillermou-Kashiwara-Schapira [88].

Definition 3.3.1. Let Ĥs : T ∗M × I → T ∗M be a homogeneous Hamiltonian on

T ∗M . Then the Lagrangian graph of the Hamiltonian isotopy ϕs
Ĥ

(s ∈ I) is

GraphĤ = {(x, x′, ξ, ξ′, s, σ)|(x′, ξ′) = ϕs
Ĥ

(x, ξ), σ = −Ĥs◦ϕsĤ(x, ξ)} ⊂ T ∗(M×M×I).

For a conical Lagrangian Λ̂, the Lagrangian movie of Λ̂ under the Hamiltonian iso-

topy ϕs
Ĥ

(s ∈ I) is by definition

Λ̂Ĥ = {(x, ξ, s, σ)|(x, ξ) = ϕs
Ĥ

(x0, ξ0), σ = −Ĥs◦ϕsĤ(x0, ξ0), (x0, ξ0) ∈ Λ̂} ⊂ T ∗(M×I).

Theorem 3.3.1 (Guillermou-Kashiwara-Schapira, [88, Proposition 3.12]). Let

Ĥs : T ∗M × I → T ∗M be a homogeneous Hamiltonian on T ∗M and Λ̂ a conical

Lagrangian in T ∗M . Then there are functors that give equivalences

ShΛ̂(M)
∼←− ShΛ̂Ĥ

(M × I)
∼−→ Shϕ1

Ĥ
(Λ̂)(M)

given by restriction functors i−1
0 and i−1

1 where is : M×{s} ↪→M×I is the inclusion.

Remark 3.3.1. One can show that the theorem also works for a U-parametric

family of Hamiltonian isotopies for a contractible manifold U .

For the category of microlocal sheaves µShΛ(Λ), Kashiwara-Schapira [97, The-

orem 7.2.1] showed that it is invariant under contact transformations, which are
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just (local) contactomorphisms. Nadler-Shende explained how this will imply the

invariance of µShΛ(Λ) under (global) Hamiltonian isotopies.

Theorem 3.3.2 (Nadler-Shende [124, Lemma 6.6]). Let Hs : T ∗,∞M × I → R

be a contact Hamiltonian on T ∗,∞M and Λ a Legendrian in T ∗,∞M . Then there are

equivalences

µShΛ(Λ)
∼←− µShΛH (ΛH)

∼−→ µShϕ1
H(Λ)(ϕ

1
H(Λ))

given by restriction functors i−1
0 and i−1

1 where is : T ∗,∞M × {s} ↪→ T ∗,∞(M × I) is

the inclusion. We denote their inverses by Ψ0
H and Ψ1

H , and ΨH = i−1
1 ◦Ψ0

H .

Proof. For any open subset Ω ⊂ T ∗,∞M , consider the contact movie ΩH,s,ε ⊂

T ∗,∞(M × I) in the time interval Is,ε = (s− ε, s+ ε). Then i−1
s induces equivalences

of categories

ShΛH∪ΩcH,s,ε
(M × Is,ε)

∼−→ ShϕsH(Λ∪Ωc)(M), ShΩcH,s,ε
(M × Is,ε)

∼−→ ShϕsH(Ωc)(M).

Since Sh(M × Is,ε) = Sh(M × I)/ShT ∗(M×I\Is,ε)(M × I), we get an equivalence of

presheaves

i−1
s : lim−→

ε→0

µShpre
ΛH

(ΩH,s,ε)
∼−→ µShpre

ϕsH(Λ)(ϕ
s
H(Ω)),

where the left hand side is the pull back of a presheaf, since ΩH,s,ε (ε > 0) form a

neighbourhood basis of ϕsH(Ω). Therefore, after sheafification, we can get an equiv-

alence given by the pull back

i−1
s : µShΛH (ϕsH(Λ))

∼−→ µShϕsH(Λ)(ϕ
s
H(Λ)).
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Then, since µShpre
ΛH

(ΩH,s,ε) ' µShpre
ΛH

(ΩH,s′,ε), we also know that µShpre
ΛH

forms a

presheaf that is locally constant in the I direction (along contact movies of points).

Since I is contractible, we can conclude that there is an equivalence given by the

restriction

µShΛH (ΛH)
∼−→ µShΛH (ϕsH(Λ)).

This completes the proof of the theorem. �

Remark 3.3.2. One can show that the theorem also works for a U-parametric

family of Hamiltonian isotopies for a contractible manifold U , following Remark

3.3.1.

Remark 3.3.3. From our proof, one may notice that there is a commutative

diagram

ShΛH (M × I)
i−1
s

//

��

ShϕsH(Λ)(M)

��

µShΛH (ΛH)
i−1
s
// µShϕsH(Λ)(ϕ

s
H(Λ)).

3.4. Various Versions of Microlocal Sheaf Categories

We have defined the sheaf of stable categories ShΛ and µShΛ consisting of sheaves

and respectively microsheaves. However, in general we may want to work with either

the subcategories of compact objects or proper objects. We explain how to restrict

to these categories. Most of the discussions can be found in [121, Section 3.6 & 3.8]

and [74, Section 4.5].
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Throughout the discussion, we will be considering the microlocal sheaf category

µShΛ on a subanalytic Legendrian (or conical Lagrangian) subset.

Following [74, Lemma 4.11] or [153, Section 2.2], we know that the category

of sheaves ShΛ(M) ⊂ Sh(M) is a right orthogonal complement category and is

well generated. When Λ ⊂ T ∗,∞M is closed, ShΛ(M) is complete and cocomplete.

Moreover, we also know that ShΛ(M) is presentable [74, Lemma 4.12].

Definition 3.4.1. For F ∈ µShΛ(Ω), we call it a compact object if the Yoneda

module HomµShΛ(Ω)(F ,−) commutes with filtered colimits. Let µShcΛ(Ω) ⊂ µShΛ(Ω)

be the full subcategory of compact objects.

In particular, when we consider for a subanalytic Legendrian Λ ⊂ T ∗,∞M the

category of compact objects

ShcΛ(M) = µShc
M∪Λ̂

(T ∗M),

we can prove that it is a smooth category in the sense of [103, Definition 8.1.2]

(see also [111, Definition 4.6.4.13]), namely that (for the small category A under

consideration) the diagonal bimodule

A∆(X, Y ) = HomA (X, Y )

is a perfect A op ×A -bimodule.

Proposition 3.4.1 ([74, Corollary 4.25]). Let M be compact and Λ ⊂ T ∗,∞M

be a subanalytic isotropic subset. Then ShcΛ(M) is a smooth category.
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Since ShΛ(M) is well generated and presentable, we know that µShΛ is both a

sheaf and a cosheaf of categories with respect to restrictions and corestrictions. In

fact, for V ⊆ U , the restriction functor

r∗UV : µShΛ(U)→ µShΛ(V )

preserves limits and colimits and thus admits left and right adjoints [74, Lemma

4.12]. Since r∗UV preserves colimits, its left adjoint, which is called the corestriction

functor

rUV,! : µShΛ(V )→ µShΛ(U).

preserves compact objects. Hence the corestriction functor restricts to the subsheaf

of category of compact objects

rUV,! : µShcΛ(V )→ µShcΛ(U).

Note that µShΛ∩U(U) = µShΛ(U), so this is indeed a functor on global sections of

categories µShcΛ∩V (V )→ µShcΛ∩U(U).

Remark 3.4.1. For closed subanalytic isotropic subsets Λ ⊂ T ∗,∞M , the mi-

crolocalization and its left adjoint

mΛ : ShΛ(M)→ µShΛ(Λ), ml
Λ : µShΛ(Λ)→ ShΛ(M)
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are special cases of restriction functors and corestriction functors. In particular, the

left adjoint of microlocalization ml
Λ preserves compact objects

ml
Λ : µShcΛ(Λ)→ ShcΛ(M).

Given sheaves of categories µShX and µShY , where X ⊆ Y is a closed subset,

there is an inclusion functor between sheaves of categories

ιXY ∗ : µShX → µShY

which also preserves limits and colimits. Since it preserves limits and is accessible,

there is a left adjoint called the pullback functor

ι∗XY : µShY → µShX .

Since ιXY ∗ preserves colimits, ι∗XY preserves compact objects. Hence the corestriction

functor preserves the sub-cosheaf of categories of compact objects. By considering

global sections, we get a pullback functor ι∗XY : µShcY (Y )→ µShcX(X).

Remark 3.4.2. For closed subanalytic isotropic subsets Λ ⊂ Λ′ ⊂ T ∗,∞M , the

inclusion functor and its left adjoint

ιΛΛ′∗ : ShΛ(M) ↪→ ShΛ′(M), ι∗ΛΛ′ : ShΛ′(M)→ ShΛ(M)
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are special cases of the inclusion and pullback functors above. In particular, the

pullback functor preserves compact objects

ι∗ΛΛ′ : ShcΛ′(M)→ ShcΛ(M).

This is also called the stop removal functor [74, Corollary 4.22] (one can compare

it to the stop removal functors in partially wrapped Fukaya categories [75, Theorem

1.16]).

Let Λ be a singular isotropic and (x, ξ) ∈ Λ be a smooth point. Up to a shift, there

is a microstalk functor µ(x,ξ) : ShΛ(M) → Mod(k) [97, Proposition 7.5.3], which

admits descriptions by sub-level sets of functions whose differential is transverse

to Λ [74, Theorem 4.10]. By applying its left adjoint to the generator k, we see

that it is tautologically corepresented by the compact object µl(x,ξ)(k) ∈ ShcΛ(M).

Furthermore, when there is an inclusion Λ ⊆ Λ′ and (x, ξ) ∈ Λ′, the corepresentative

µl(x,ξ)(k) ∈ ShcΛ′(M) is sent under ShcΛ′(M)� ShcΛ(M) to a similar corepresentative

in ShcΛ(M) and, they are tautologically sent to the zero object when (x, ξ) is a smooth

point in Λ′ \ Λ. The converse is also true:

Proposition 3.4.2 ([74, Theorem 4.13]). Let Λ ⊆ Λ′ be subanalytic isotropics

and let Dµ
Λ′,Λ(T ∗M) denote the fiber of the canonical functor ShcΛ′(M) � ShcΛ(M).

Then Dµ
Λ′,Λ(T ∗M) is generated by the corepresentatives of the microstalk functors

µ(x,ξ) for smooth Legendrian points (x, ξ) ∈ Λ′ \ Λ.
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On the other hand, we can consider the subcategory with perfect stalks, which

turns out to be the subcategory of proper modules (equivalently, pseudoperfect mod-

ules) in the category of (micro)sheaves.

Definition 3.4.2. Let µShbΛ(U) ⊂ µShΛ(U) be the full subcategory of objects with

perfect stalks, and µShppΛ (U) = Funex(µShcΛ(U)op,Perf(k)) be the category of proper

modules in µShcΛ(U), where Funex(−,−) is the stable category of exact functors.

Since restriction functors in µShΛ preserves (micro)stalks, the sheaf of categories

µShΛ can be restricted to a subsheaf of categories µShbΛ. Meanwhile, since µShcΛ(U)

forms a cosheaf of categories under corestriction functors, we know that the full

subcategories of proper submodules µShppΛ also forms a sheaf of categories under

restriction functors.

The following theorem shows that µShbΛ(U) is the equivalent to the subcategories

of proper modules µShppΛ in µShcΛ(U).

Theorem 3.4.3 (Nadler [121, Theorem 3.21], [74, Corollary 4.23]). Let Λ ⊆

T ∗,∞M be a subanalytic isotropic subset. Then the natural pairing µhom(−,−) de-

fines an equivalence

µShbΛ(U) ' µShppΛ (U) = Funex(µShcΛ(U)op,Perf(k)).

In particular, ShbΛ(M) ' ShppΛ (M).
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Using the above theorem, for a subanalytic Legendrian Λ ⊂ T ∗,∞M the category

of proper modules

ShppΛ (M) = µShpp
M∪Λ̂

(T ∗M),

is a proper category (see [103, Definition 8.2.1] or [111, Definition 4.6.4.2]), namely

that (for the small category A under consideration) the diagonal bimodule A∆ is a

proper bimodule, i.e. for any X, Y ∈ A ,

HomA (X, Y ) ∈ Perf(k).

Proposition 3.4.4 ([74, Corollary 4.25]). Let M be compact and Λ ⊆ T ∗,∞M

be a subanalytic isotropic subset. Then ShppΛ (M) is a proper category.

Since ShcΛ(M) is a smooth category, we know by [74, Lemma A.8] that ShppΛ (M) ⊆

ShcΛ(M). Therefore we have the following corollary.

Corollary 3.4.5. Let M be compact and Λ ⊂ T ∗,∞M be a subanalytic isotropic

subset. Then ShbΛ(M) ⊆ ShcΛ(M).

Remark 3.4.3. From the discussion above, we can show that for closed suban-

alytic isotropic subsets Λ ⊂ T ∗,∞M , the microlocalization functor preserves proper

objects

mΛ : ShbΛ(M)→ µShbΛ(Λ),

and so does the inclusion functor

ιΛΛ′∗ : ShbΛ(M) ↪→ ShbΛ′(M).
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CHAPTER 4

Microlocalization and Doubling along Legendrians

Our goal in this section is to prove the duality and long exact sequence regarding

microlocalization and understand the microlocalization functor

mΛ : ShΛ(M)→ µShΛ(Λ).

by the doubling construction in sheaf theory (which is also known as the antimicrolo-

calization functor [124] or the Guillermou convolution functor [94]).

First, we will consider an arbitrary Reeb flow Tt, t ∈ R, on T ∗,∞M and prove the

Sabloff-Serre duality and Sato-Sabloff long exact sequence.

Theorem 4.0.6 (Theorem 1.2.3). Let Λ ⊂ T ∗,∞M be a closed subanalytic Leg-

endrian and c(Λ) be the length of the shortest Reeb chord on Λ with respect to the

Reeb flow Tt. Let F ∈ ShΛ(M) and G ∈ ShΛ′(M). Then for 0 < ε < c(Λ)/2, there

is an exact triangle

Hom(F , T−ε(G ))→ Hom(F , Tε(G ))→ Γ(Λ, µhom(F ,G ))
+1−→ .

Let ωM be the dualizing sheaf of M . There is a duality

Hom(F , T−ε(G )⊗ ωM)∨ = Hom(G , Tε(F )).
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It turns out that the duality and long exact sequence show that there exists a fully

faithful functor which is the right inverse of microlocalization. This is the doubling

functor.

Theorem 4.0.7. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian and c(Λ)

be the length of the shortest Reeb chord on Λ with respect to the Reeb flow Tt. Then

for 0 < ε < c(Λ)/2, there is a fully faithful functor

wΛ : µShΛ(Λ) ↪→ ShTε(Λ)∪T−ε(Λ)(M).

The doubling functor in sheaf theory goes back to Guillermou [84, Section 13-15],

and is also formulated in a different way in Nadler-Shende [124, Section 6]. Here

we will generalize that functor to arbitrary Reeb flows on T ∗,∞M . In Lagrangian

Floer theory, the stop doubling construction has been discussed in the setting of

Fukaya-Seidel categories [4] (see also [2,6]) as the cup functor

∪F : F(F )→ FS(X, π),

and also in the setting of partially wrapped Fukaya categories as the doubling trick

[75, Example 8.7], cup functor or Orlov functor [152]

∪F :W(F )→W(X,F ).

Recently the doubling trick has been used in the theory of (twisted) generating

families [3, Theorem C].
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Our key ingredient to deduce the doubling construction is sheaf theoretic wrap-

pings. In Section 4.1, we prove the Sato-Sabloff exact sequence. When discussing

the Sato-Sabloff exact sequence, we also show a Sabloff duality using the Verdier

duality on sheaves, which has appeared in a number of works in symplectic geometry

[58,135,141].

Then in Section 4.2, using the Sato-Sabloff fiber sequence, we define the doubling

construction, which allows us to prove sheaf quantization results for a large family of

exact Lagrangian submanifolds in Section 4.4, which in particular includes the sheaf

quantization result for Lagrangian cobordisms between embedded Lagrangian sub-

manifolds, and the conditional sheaf quantization result for Lagrangian cobordisms

between Legendrian submanifolds.

Sheaf quantziation, namely constructing sheaves from known symplectic/contact

geometric data has been to core problem in the field, studied in a number of cel-

ebrated works [12, 84, 88, 94, 153]. Given exact Lagrangians with Legendrian lifts

L̃ ⊂ J1(M) that are either closed or with Legendrian boundaries at the ideal contact

boundary T ∗,∞M , Guillermou and Jin-Treumann constructed fully faithful functors

ΨL : Loc(L) ↪→ ShL̃(M × R)

that are inverses of taking microlocalization.

We are able to generalize the sheaf quantization results in more general settings.

Recall that ShΛ(M × R)0 consists of sheaves with acyclic stalks at M × {−∞}.
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One class of noncompact exact Lagrangians that are of particular interest are

Lagrangian cobordisms in the sense of Arnol’d [9]. Their relation with Lagrangian

Floer theory and Fukaya categories have been studied in a number of recent works,

namely Lagrangian cobordisms induce equivalences on the Fukaya category, and

Lagrangian cobordisms with extra ends induce morphisms in the Fukaya category

which give iterated mapping cone decompositions [16, 17, 125, 155]. Our result is

the first step to understand the relationship between Lagrangian cobordisms and

microlocal sheaves. This is based on joint work with T. Asano and Y. Ike.

Theorem 4.0.8 (Theorem 1.3.1). Let V ⊂ T ∗(M × R) be an exact Arnol’d

Lagrangian cobordism between L1, . . . , Lp and K1, . . . , Kq with a Legendrian lift Ṽ ⊂

T ∗,∞τ>0 (M × R× R). Then there is a fully faithful right inverse functor of mV

ΨV : µShV (V )
∼−→ ShṼ (M × R× R)0.

However, for Lagrangian cobordisms between Legendrian submanifolds in the

sense of symplectic field theory, we know for sure that there does not always exist a

sheaf quantization which produces sheaves in ShL̃(M × R × R>0) (for example the

trivial endocobordism of a stabilized or loose Legendrian). The best to hope is a

conditional sheaf quantization result.

We will prove such a conditional sheaf quantization result, which explains that

given a local system in Loc(L), the necessary condition of existence of a sheaf quan-

tization at the negative end ShΛ−(M × R) is in fact also the sufficient condition.
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Theorem 4.0.9 (Theorem 1.3.2). Let L ⊂ J1(M)×R>0 be an exact Lagrangian

cobordism between Legendrians from Λ− ⊂ J1(M) to Λ+ ⊂ J1(M), with Legendrian

lift L̃ ⊂ J1(M)×R>0. Then there is a fully faithful right inverse functor of (i−1
− ,mL)

ΨL : ShΛ−(M × R)0 ×µShΛ− (Λ−) µShL(L)
∼−→ ShL̃(M × R× R>0)0

where i− : M × R × s− ↪→ M × R × R>0 for s− > 0 sufficiently small and mL :

ShL̃(M × R× R>0)→ µShL(L) is the microlocalization.

In J1(R) and J1(S1), Pan-Rutherford showed that the dg algebra map can be

viewed as a bimodule [130]. By enhancing with loop space coefficients, we expect

that the enhanced dg algebra map can be viewed as correspondences parametrized

by chains on the based loop space of L

A(Λ−)⊗C−∗(Ω∗Λ−) C−∗(Ω∗L)→ A(L̃)← A(Λ+)

where the first map is an equivalence when L is embedded. Forgetting the data

of C−∗(Ω∗L), we in particular have a diagram (of dg algebras with no loop space

coefficients)

A(Λ−)→ A(L̃)← A(Λ+).

Similarly, in microlocal sheaf theory, one may also consider the restriction functors

to both ends which define correspondences between the sheaf categories with sin-

gular supports on Λ± parametrized by local systems on L. Our result realizes the

Lagrangian cobordism functor as correspondences,
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4.1. Sabloff Duality and Sato-Sabloff Exact Triangle

The goal in this section is to prove Theorem 4.0.6.We will explain how Reeb

flows induce continuation maps and how the cones of the continuation maps are

determined by the Hom in µShΛ(Λ).

4.1.1. Continuation maps for positive Hamiltonians

In Lagrangian Floer theory people consider wrappings by positive Hamiltonian at

infinity. Here we consider the effect of a positive Hamiltonian flow and how they

define continuation maps. By a positive Hamiltonian, we mean the following.

Definition 4.1.1 (Eliashberg-Polterovich [67]). Let (Y, kerα) be a cooriented

contact manifold. Then a time-dependent Hamiltonian H ∈ C∞([0, 1]× Y ) is called

positive if H(u, x) ≥ 0, ∀ (u, x) ∈ [0, 1]× Y .

Remark 4.1.1. One can show that any time-independent positive Hamiltonian

vector flow is the Reeb flow for some contact form efα on the contact manifold

(Y, kerα).

Remark 4.1.2. Denote by G ◦H the composition of G and H such that ϕuG◦H =

ϕuG◦ϕuH . Then the time-1 Hamiltonian flow defined by G◦H is homotopic to the con-

catenation of the concatenation of time-1 flows of G and H through positive Hamil-

tonian isotopies.

Write q : M × R → M and u : M × R → R be the projection maps. For a

subanalytic Legendrian Λ ⊂ T ∗,∞M , consider the Legendrian movie of Λ under the
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identity flow

Λq = {(x, ξ, u, 0)|(x, ξ) ∈ Λ}.

Let ϕuH : T ∗,∞M → T ∗,∞M be any positive Hamiltonian flow defined by the H :

T ∗,∞M → R and consider the Legendrian movie of Λ under the Reeb flow

ΛH = {(x, ξ, u, ν)|(x, ξ) ∈ ϕuH(x0, ξ0), ν = −H(x0, ξ0), (x0, ξ0) ∈ Λ}.

Abusing notations, we will write Ψ0
H : ShΛ(M)

∼−→ ShΛH (M × R) and ΨH,u :

ShΛ(M)
∼−→ ShϕuH(Λ)(M × R) to be the equivalence functor induced by the Hamil-

tonian flow.

Lemma 4.1.1. Let H be a positive Hamiltonian on T ∗,∞M , and F ∈ Sh(M)

such that supp(F ) is compact. Denote by Ψ0
H : ShΛ(M)

∼−→ ShΛH (M × R) and

ΨH,u : ShΛ(M)
∼−→ ShϕuH(Λ)(M). Then

ΨH,uF = k(−∞,u)[−1] ◦Ψ0
HF = q!(u

−1k(−∞,u)[−1]⊗Ψ0
HF ).

Proof. First of all, since H > 0 we know that SS∞(Ψ0
H(F )) ⊂ T ∗,∞ν<0 (M × R).

Therefore by microlocal Morse lemma Proposition 3.1.3 we know that

ΨH,uF = lim−→
ε>0

q!i(u−ε,u],!i
!
(u−ε,u]Ψ

0
HF = q!i(−∞,u],!i

!
(−∞,u]Ψ

0
HF .

Then the lemma follows since i(−∞,u],!i
!
(−∞,u]Ψ

0
HF = u−1k(−∞,u)[−1]⊗Ψ0

HF . �
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4.1.2. Sato-Sabloff fiber sequence

For compact subanalytic Legendrians Λ0,Λ1 ⊂ T ∗,∞M , we let c(Λ0,Λ1) be the mini-

mal absolute value of lengths of Reeb chords between Λ0 and Λ1 with respect to the

Reeb flow Tt. Abusing notations, we also use Tt to denote the associated functor of

its time-t flow which acts on sheaves on M . The key proposition of this section is

that the Hom in µShΛ(Λ) can be computed as a difference between the positive and

negative wrappings.

Similar considerations have also appeared in previous works of for example Guiller-

mou [84, Section 11–13] and Tamarkin [154, Equation (1)].

Proposition 4.1.2. Let Λ0, Λ1 ⊂ T ∗,∞M be compact subanalytic Legendrians,

F ∈ ShΛ0(M), G ∈ ShΛ1(M) and supp(F ) ∪ supp(G) is compact. When 0 < ε <

c(Λ0,Λ1), there is a commutative diagram

Hom(F , T−ε(G )) Hom(F , Tε(G ))

Γ(M, ∆∗H om(π∗1F , π∗2G )) Hom(F ,G )

c

∼ ∼

where the top arrow c is the continuation map associated to the Reeb flow and the

bottom arrow is the canonical map in Theorem 3.2.8.
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Theorem 4.1.3 (Sato-Sabloff exact triangle). For F ,G ∈ ShΛ(M), there is a

exact triangle

Hom(F , T−ε(G ))
c−→ Hom(F , Tε(G ))→ Γ(Λ, µhom(F ,G ))

+1−→ .

where the first map is induced by the continuation map T−ε(G ) → Tε(G ) and the

second map is given by the canonical microlocalization map.

Remark 4.1.3. We remark that the above computation also works in the case

when we take microlocalization along a single connected component Λi ⊂ Λ ⊂ T ∗,∞M .

Let T̃t : T ∗,∞M → T ∗,∞M be a Hamiltonian flow such that T̃ε|Tε(Λi) = Tε is the Reeb

flow while T̃t|Λ\Λi = id. Then there is a fiber sequence

Hom(F , T̃−ε(G ))→ Hom(F , T̃−ε(G ))→ Γ(Λi, µhom(F ,G ))

Before entering the proof of Proposition 4.1.2, we recall the notations in the

previous section. Consider the Legendrian movie of Λ under the identity flow

Λq = {(x, ξ, u, 0)|(x, ξ) ∈ Λ, u ∈ R}.

Let Tt : T ∗,∞M → T ∗,∞M be any Reeb flow. Consider the Legendrian movie of Λ

under the Reeb flow

ΛT = {(x, ξ, u, ν)|(x, ξ) ∈ Tu(x0, ξ0), ν = −H ◦ Tu(x0, ξ0), (x0, ξ0) ∈ Λ}.
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A standard trick is to consider the total sheaf Hom, H om(q∗F ,Ψ0
TG ). The following

singular support estimate is essential and will be used throughout the thesis.

Let Q±(Λ0,Λ1) be the set of unoriented Reeb chords from Λ0 to Λ1, namely

Q±(Λ0,Λ1) = {(x0, ξ0, x1, ξ1) ∈ Λ0 × Λ1| ∃u ∈ R, Tu(x0, ξ0) = (x1, ξ1)}.

For a Reeb chord such that Tu(x0, ξ0) = (x1, ξ1), we call u ∈ R the length of the

Reeb chord.

Lemma 4.1.4. Let Λ0,1 ⊂ T ∗,∞M be subanalytic Legendrians, Tu : T ∗,∞M →

T ∗,∞M be any Reeb flow and F ∈ ShΛ0(M),G ∈ ShΛ1(M). Then

SS∞(H om(q∗F ,Ψ0
TG )) ∩ {(x, 0, u, ν) ∈ T ∗,∞(M × R)|ν > 0} = ∅,

SS∞(H om(q∗F ,Ψ0
TG )) ∩ {(x, 0, u, ν) ∈ T ∗,∞(M × R)|ν < 0} ↪→ Q±(Λ0,Λ1),

where the u coordinates in the intersection correspond to lengths of Reeb chords in

Q±(Λ0,Λ1). In particular, H om(q∗F ,Ψ0
TG ) is Ru-noncharacteristic away from the

length spectrum of Reeb chords.

Proof. Since SS∞(q∗F ) ∩ SS∞(Ψ0
TG ) = Λ0,q ∩ Λ1,T = ∅, we can apply the

singular support estimate Proposition 3.1.7

SS∞(H om(q∗F ,Ψ0
TG )) ⊂ (−SS∞(q∗F )) + SS∞(Ψ0

TG ) = (−Λ0,q) + Λ1,T .

Hence (x, 0, u, ν) ∈ (−Λ0,q)+Λ1,T if and only if there exists (x0, ξ0) ∈ Λ0, (x1, ξ1) ∈ Λ1

such that (x1, ξ1) = Tu(x0, ξ0), or in other words there is a Reeb chord from Λ0 to Λ1
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of length u. In particular, we know that ν = −H(x0, ξ0) < 0 is determined by such a

pair. Hence when ν > 0, there will never be (x, 0, u, ν) ∈ (−Λ0,q) + Λ1,T . Therefore

SS∞(H om(q∗F ,Ψ0
TG )) ∩Graph(du) = ∅,

SS∞(H om(q∗F ,Ψ0
TG ))∩Graph(−du) ↪→ Q±(Λ0,Λ1),

where our injection maps (x, 0, u, ν) to the Reeb chord of length u connecting (x0, ξ0) ∈

Λ0 and (x1, ξ1) = Tu(x0, ξ0) ∈ Λ1. �

Proof of Proposition 4.1.2. Denote by iu the inclusion of the slice of M ×

M × u → M × M × Ru. We first prove the more straightforward statement of

Hom(F ,G )
∼−→ Hom(F , Tε(G )). The above Lemma 4.1.4 implies that, by Proposi-

tion 3.1.10, the ε-slice of the total internal Hom sheaf H om(q∗F ,Ψ0
TG ) is the same

as

i∗εH om(q∗F ,Ψ0
TG ) = i!εH om(q∗F ,Ψ0

TG )[−1] = H om(F, Tε(G)).

Then we may use Lemma 4.1.1, and the isomorphism k(−∞,0)
∼−→ limu→0+ k(−∞,u) will

induce

H om(F ,G )
∼−→ lim

u→0+
H om(F , Tu(G )).

Applying Γ(M,−), we obtain that

Hom(F ,G )
∼−→ lim

t→0+
Hom(F , Tt(G )).
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However, the latter limit when restricting to 0 < ε < c(Λ) is a constant diagram

induced by a Legendrian isotopy and the projection

lim
u→0+

Hom(F , Tu(G ))
∼−→ Hom(F , Tε(G ))

is an isomorphism for 0 < ε < c(Λ).

To prove the statement for Hom(F , T−ε(G ))→ Γ(M,∆∗H om(F ,G )), let πi,R :

M ×M ×R→M ×R denote the R-parameter version of the projection to the i-th

component. Theorem 3.2.8 implies that there is a canonical map

∆∗H om(π∗1F , π∗2G )→ ∆!H om(π∗1F , π!
2G ) = H om(F ,G ).

Here, we use the fact that ∆!1M×M = ω−1
M is an invertible sheaf so we can multiply

the morphism with its inverse ωM . Similarly, there is an canonical map

(∆× idR)∗H om(π∗1,Rq
∗F , π∗2,RΨ0

TG )→H om(q∗F ,Ψ0
TG )

which is an isomorphism over (−c(Λ), 0) by the similar singular support estimation

as the above Lemma 4.1.4. Thus, by consider the ε-slice for −c(Λ) < ε < 0 and the

0-slice, we obtain the following commutative diagram:

∆∗H om(π∗1F , π∗2T−ε(G )) ∆∗H om(π∗1F , π∗2G )

H om(F , T−ε(G )) H om(F ,G )
c

∼
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Applying Proposition 3.1.8 to (∆× idR)∗Hom(π∗1,RF , π∗2,RΨ0
TG ), we obtain that

colim
−u→0−

H om(F , T−u(G ))
∼←− colim
−u→0−

∆∗H om(π∗1F , π∗2T−u(G ))
∼−→ ∆∗H om(π∗1F , π∗2G ).

Since supp(F ) and supp(G ) are compact, Γ(M,−) = Γc(M,−) is colimit preserving,

and thus we conclude the isomorphism that

colim−u→0− Hom(F , T−u(G ))
∼−→ Γ(M,∆∗Hom(π∗1F , π∗2G )).

The same argument as in the positive case then implies that the colimit diagram is

constant and thus the inclusion

Hom(F , T−ε(G ))→ colim
−u→0−

Hom(F , T−t(G ))

is an isomorphism for −c(Λ) < −ε < 0.

Finally, we notice that the diagram commute in the statement commute because

it is a composition of the following two commutative diagram:

Γ(M, ∆∗H om(π∗1F , π∗2G )) Hom(F ,G )

Hom(F , T−ε(G )) Hom(F , Tε(G ))

∼ ∼	 	

�

Remark 4.1.4. The identity Hom(F ,G ) ' Hom(F , Tε(G )) is often referred to

as the perturbation trick, and has in fact appeared in previous works of Guillermou
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[84, Corollary 16.6] for the special case of vertical translation on M × R, and Zhou

for arbitrary Reeb flows [163]. The proof here follows [104, Proposition 3.18].

Thus, we have finished the proof of the exact triangle statement in Theorem 4.0.6.

4.1.3. Sabloff-Serre duality

In this section, we illustrate an additional property that arises from the Sato-Sabloff

fiber sequence and prove a Sabloff-Serre duality that

Hom(F , T−ε(G )⊗ ωM) = Hom(F , Tε(G ))∨.

Such duality between a positive Reeb pushoff and a negative Reeb pushoff has been

understood in symplectic geometry in a number of works. In Legendrian contact

homology, this is known as the Sabloff duality [58,135], and in Fukaya-Seidel cate-

gories, this is known as the Poincaré-Lefschetz duality proved by Seidel [141].

To the study of Serre functor, we need the following elementary lemma. Let

πM : M ×N →M , πN : M ×N → N be projection maps.

Lemma 4.1.5. Let M and N be manifolds. Then

(1) π!
N1N = π∗MωM ,

(2) ωM×N = ωM � ωN .

As a corollary, we see the inverse of ωM is isomorphic to ∆!1M×M .
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Proof. Consider the pullback diagram:

M ×N N

M {∗}

πN

pM

πM pN

For (1), the base change p∗MpN ! = πN !π
∗
M implies that there exists a canonical map

π∗Mp
!
N → π!

Np
∗
M . This map is in general not an isomorphism but in our case, we

may assume M and N are Euclidean spaces by checking the map locally. Then the

isomorphism follows from the isomorphism k = Γc(Rk,k)[k] and ωRk = kRk [k]. For

(2), we can use (1) of this lemma and Proposition 3.1.8 and compute that

ωM � ωN = π∗MωM ⊗ π∗NωN = π∗MωM ⊗ π!
MkM = π!

MωM = ωM×N .

To obtain the corollary, we again apply Proposition 3.1.8 again and compute that

∆!(kM×M)⊗ ωM = ∆!(kM×M)⊗∆∗(π∗1ωM) = ∆!(π∗1ωM) = ∆!π!
2(kM) = kM . �

The following proposition is the main result in this section, i.e. the Sabloff-Serre

duality.

Proposition 4.1.6 (Sabloff-Serre duality). Let Λ ⊂ T ∗,∞M be a compact suban-

alytic Legendrian, F ,G ∈ ShbΛ(M) such that supp(F ), supp(G ) are compact. Then

Hom(F , T−ε(G )⊗ ωM) ' Hom(G ,F )∨.
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In particular, when M is oriented, Hom(F , T−ε(G ))[−n] ' Hom(G ,F )∨.

Proof. By Proposition 4.1.2 and Lemma 3.1.11,

Hom(F , T−ε(G )⊗ ωM) = p∗ (∆∗Hom(π∗1F , π∗2(G ⊗ ωM)))

= p∗(D
′
M(F )⊗ G ⊗ ωM) = p∗(DM(F )⊗ G ).

The compact support assumption then implies that

Hom(F , T−ε(G )⊗ ωM)∨ = Hom(p!(DM(F )⊗G),k) = Hom(DM(F )⊗ G , ωM)

= Hom (G ,DM ◦DM(F )) = Hom(G ,F ). �

Thus, we have finished the proof of the duality statement, and hence completed

the proof of Theorem 4.0.6.

4.2. Doubling Construction or the Guillermou Functor

Let us construct the doubling functor in this section. Our strategy is to define

the doubling wΛ locally and then glue together the local pieces. Therefore, first we

will construct the local model of wΛ.

Consider F ∈ µShΛ(Λ). Then we claim that there exists an open covering

{Uα}α∈I of M and Fα ∈ ShΛ∩Ωα(Uα) such that

mΛ∩Ωα(Fα) = F |Λ∩Ωα ∈ µShΛ(Λ ∩ T ∗,∞Uα).
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Consider a representative F ∗ ∈ Sh(Λ)(U), i.e. for some neighbourhood Ω of Λ ∩

T ∗,∞U , SS(F ) ∩ Ω ⊂ Λ ∩ T ∗,∞U . We need to find F ∈ ShΛ(U) with required

properties. This is a corollary of the refined microlocal cut-off lemma [97, Proposition

6.1.4].

Lemma 4.2.1 (Guillermou [84, Lemma 6.7] or [87, Lemma 10.2.5]). Let Λ ⊆

T ∗,∞M be a locally closed subanalytic Legendrian such that π|Λ : Λ → M is finite.

Then for (x, ξ) ∈ Λ, there is a neighbourhood U of x ∈ M and FU ∈ ShΛ∩T ∗,∞U(U)

such that mΛ∩T ∗,∞U(FU) = F ∈ µShΛ(S∗U).

In this section we will write down the doubling functor explicitly on each local

chart, and use the results in Section 4.1.2 to show it defines a fully-faithful functor.

To be more precise, we would like to construct a sheaf wΛ(F ) which locally on an

open subset Uα will be of the form

wΛ(F )Uα = Cofib(T−ε(Fα)→ Tε(Fα)).

However there is some technical issue that, under the Reeb flow Tt on T ∗,∞M , it is

not even true that T±ε(Λ ∩ T ∗,∞Uα) ⊂ T ∗,∞Uα, and hence the above formula does

not seem to be meaningful even at the first place.

Our solution to the above problem is as follows. We will need to push forward

the sheaves on U to sheaves on M so as to apply the Reeb flow on the ambient

manifold T ∗,∞M . The singular support of the resulting sheaves consists of both the
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Figure 4.1. We consider the open subset U (in black), the Legendrian
Λ (in blue), and the Reeb flow being the geodesic flow, where T±ε(Λ∩
T ∗,∞Uα) 6⊆ S∗Uα. Let FU be the sheaf as in the 2nd figure. Then
T±ε(jU∗FU) are illustrated in the 3rd and 4th figure. The supports
of the sheaves are in V −1, while the singular support coming from
T±ε(ν

∗
U,±M) are outside V 1. Finally, wΛ(F )V is shown in the 5th

figure.

Reeb pushoff of the Legendrian T±ε(Λ ∩ T ∗,∞Uα) and the Reeb pushoff of the unit

conormal bundle of the boundary T±ε(ν
∗
Uα,±M).

To block off the effect coming from the second part (which may come into T ∗,∞Uα

under the Reeb flow), we will need to restrict the sheaf to a smaller neighbourhood

Vα ⊂ Uα. This accounts for the following complicated definition.

From now on, when considering an open covering U = {Uα}α∈I , we will always

write Uα1···αk =
⋂k
i=1 Uαi for simplicity.

Definition 4.2.1. Let U = {Uα}α∈I be an open covering of M , Λ ⊆ T ∗,∞M a

closed subanalytic Legendrian and Λ′ a generic Hamiltonian perturbation of Λ. Then

U is a good covering with respect to Λ ⊂ T ∗,∞M if

(1) Uα1···αk (α1, · · · , αk ∈ I) are contractible;

(2) ∂Uα (α ∈ I) are piecewise smooth with transverse intersections;

(3) ν∗Uα1···αk ,+
M ∩ Λ′ = ∅ (α1, · · · , αk ∈ I).
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Given a good covering U with respect to Λ, a good family of refinement with respect

to Λ is V t = {V t
α}α∈I where t ∈ [−1, 1] is a family of open covering with V 0 = U

such that

(1) V t′
α ⊆ V t

α (α ∈ I) for any −1 ≤ t ≤ t′ ≤ 1;

(2) V t
α1···αk (α1, · · · , αk ∈ I) are contractible for any −1 ≤ t ≤ 1;

(3) ∂V t
α (α ∈ I) are piecewise smooth with transverse intersections for any −1 ≤

t ≤ 1;

(4) there exists some Riemannian metric g on M and some ε > 0 so that

distg(∂Uα, ∂V
±1
α ) ≥ ε.

(5) ν∗
V tα1···αk ,+

M ∩ Λ′ = ∅ (α1, · · · , αk ∈ I) for any −1 ≤ t ≤ 1;

For simplicity, we will call V = V 1 a good refinement of U .

Remark 4.2.1. This definition is in the same spirit as [87, Definition 11.4.1].

The reason that we also need to choose a family of good refinement instead of on-

ly a good covering is that here we need to consider an arbitrary Reeb flow, while

Guillermou considered only the vertical translation in T ∗,∞τ>0 (M × R) and chose only

open subsets of the form Ui × Ii ⊂ M × R. Here we are adding the contractibility

assumption simply the discussion when constructing good refinements.

Lemma 4.2.2. For any open covering U0 on M and a closed subanalytic Legen-

drian Λ ⊂ T ∗,∞M , there exists a refinement U with respect to Λ such that U admits

a good family of refinements V t.
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Proof. The existence of a refinement U of U0 satisfying (1) & (2) follows from

convex neighbourhood theorem in Riemannian geometry. The reason that

ν∗Uα1···αk ,+
M ∩ Λ′ = ∅, α1, · · · , αk ∈ I

for a generic perturbation Λ′ of Λ is because
⋃
α1,··· ,αk∈I ν

∗
Uα1···αk ,+

M is also a suban-

alytic Legendrian and hence the sum of dimensions is less than 2 dimM − 1.

The existence of a family of refinement V t of U satisfying (1)–(4) is again convex

neighbourhood theorem. The reason that

ν∗V tα1···αk ,+
M ∩ Λ′ = ∅, α1, · · · , αk ∈ I, −1 ≤ t ≤ 1

for a generic perturbation Λ′ is that we can choose V t so that
⋃
α1,··· ,αk∈I ν

∗
V tα1···αk ,+

M

are small perturbations of
⋃
α1,··· ,αk∈I ν

∗
Uα1···αk ,+

M . This completes the proof. �

Remark 4.2.2. From now on, without loss of generality (by Theorem 3.3.1 and

Theorem 3.3.2) we will always assume that Λ = Λ′. In other words, we assume that

ν∗Uα1···αk ,+
M ∩ Λ = ∅ and ν∗

V tα1···αk ,+
M ∩ Λ = ∅ for any −1 ≤ t ≤ 1.

The main microlocal properties of families of good refinements of coverings that

we are going to use are given as follows.

Lemma 4.2.3. Let U be a good covering of M with a good family of refinements

V t with respect to Λ. Write jα : Uα ↪→ M . Then given F ∈ Sh(Uα), for ε > 0
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sufficiently small, we have

T±ε(jα!F )|Vα
∼−→ T±ε(jα∗F )|Vα .

Proof. Consider the mapping cone

Cone(T±ε(jα!F )→ T±ε(jα∗F )) ' T±εCone(jα!F → jα∗F ).

Then by Proposition 3.1.9, SS∞(Cone(jα!F → jα∗F )) ⊆ T ∗,∞M |∂Uα , since jα!F '

jα∗F in the interior of T ∗Uα. By Theorem 3.3.1 we know that

SS∞(T±εCone(jα!F → jα∗F )) ⊆ T±ε(T
∗,∞M |∂Uα).

Since T±ε(T
∗,∞M |∂Uα) ∩ S∗Vα = ∅, we know that in particular for ε > 0 sufficiently

small,

SS∞(T±εCone(jα!F → jα∗F )) ∩ S∗Vα = ∅.

Moreover, since jα!F ' jα∗F in T ∗Vα, by the above singular support estimate, we

can conclude that T±ε(jα!F ) ' T±ε(jα∗F ) in T ∗Vα, which proves the isomorphism

as claimed. �

Lemma 4.2.4. Let U be a good covering of M with a good family of refinements

V t with respect to Λ. Write jα : Uα ↪→M . Then given F ,G ∈ ShΛ∩T ∗,∞Uα(Uα), for

ε > 0 sufficiently small, we have

Hom(T±ε(jα!F ), T±ε(jα∗G ))
∼−→ Hom(T±ε(jα!F )|Vα , T±ε(jα∗G )|Vα).
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Proof. Consider the sheaf H om(T±ε(jα!F ), T±ε(jα∗G )). We know by Proposi-

tion 3.1.7 that

SS(H om(T±ε(jα!F ), T±ε(jα∗G ))) ⊆ T±ε(−SS(jα!F )) +̂T±ε(SS(jα∗G )).

Consider the family of good refinements V t
α, t ∈ [−1, 1], where V 0

α = Uα and V 1
α = Vα.

We know by Proposition 3.1.9 that

SS∞(jα!F ) ⊆ Λ +̂ ν∗Uα,+M, SS∞(jα∗F ) ⊆ Λ +̂ ν∗Uα,−M.

Therefore by the condition on the family of good refinements V t
α

ν∗V tα,+M ∩ (−SS∞(jα!F )) = ν∗V tα,+M ∩ SS
∞(jα∗F ) = ∅.

Indeed, for (x, ξ) ∈ ν∗V tα,+M , (x, ξ) ∈ ν∗Uα,−M +̂ (±Λ) only if there exists (xn,−ξn) ∈

ν∗Uα,−M , (yn, ηn) ∈ ±Λ such that xn, yn → x, −ξn + ηn → ξ, |xn − yn||ξn| → 0.

However, the fact that Λ ∩ ν∗V tαM = ∅ immediately implies that ηn → 0. This

forces −ξn → ξ, which implies ξ = 0, so in the unit cotangent bundle the inter-

sections are empty. Hence for ε > 0 sufficiently small, we have supp(T±ε(jα!F )),

supp(T±ε(jα∗G )) ⊂ V −1
α , and

ν∗V tα,+M ∩ T±ε(−SS
∞(jα!F )) = ν∗V tα,+M ∩ T±ε(SS

∞(jα∗F )) = ∅.
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Therefore, by microlocal Morse lemma Proposition 3.1.3, restricting from V −1
α to V 1

α

we have

Γ(M,H om(T±ε(jα!F ), T±ε(jα∗G ))) ' Γ(Vα,H om(T±ε(jα!F ), T±ε(jα∗G ))),

which shows the isomorphism. �

Lemma 4.2.5. Let U be a good covering of M with a good family of refinements

V t with respect to Λ. Write jα : Uα ↪→M . Then given F ,G ∈ ShΛ∩T ∗,∞Uα(Uα), for

ε > 0 sufficiently small, we have

Γ(T ∗,∞V −1
α , µhom(jα!F , jα∗G ))

∼−→ Γ(T ∗,∞V 1
α , µhom(F ,G )).

Proof. Consider the good family of refinements V t
α where V 0

α = Uα and V 1
α = Vα.

Note that by Proposition 3.1.9 we have

SS∞(jα!F ) ⊂ Λ +̂ ν∗Uα,+M, SS∞(jα∗F ) ⊂ Λ +̂ ν∗Uα,−M,

and then by Proposition 3.2.7 [97, Corollary 6.4.3] one can deduce that

SS∞(µhom(jα!F , jα∗G )) ⊂ C(Λ +̂ ν∗Uα,+M,Λ +̂ ν∗Uα,−M) ⊆ T ∗,infty(T ∗,∞M).

Then by Proposition 3.1.9 and Remark 3.2.5 we know that

SS∞(π̇∗µhom(jα!F , jα∗G )) ⊂ −(Λ +̂ ν∗Uα,+M) +̂∞ (Λ +̂ ν∗Uα,−M).
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We know (x, ξ) ∈ (−Λ +̂ ν∗Uα,−M) +̂ (Λ +̂ ν∗Uα,−M)) if and only if there are (xn,−ξn) ∈

−Λ +̂ ν∗Uα,−M and (yn, ηn) ∈ Λ +̂ ν∗Uα,−M such that xn, yn → x, −ξn + ηn → ξ, |xn−

yn||ξn| → 0. When we consider x ∈ ∂Uα, we know that (x, ξ) ∈ ±Λ +̂ ν∗Uα,−M and

hence (x, ξ) /∈ ν∗V tα,+M . When we consider x ∈ Uα, we know that (x, ξ) ∈ Λ and

hence (x, ξ) /∈ ν∗V tα,+M because ±Λ∩ ν∗V tα,+M = ∅. These two facts imply that in the

unit cotangent bundle the following intersection is empty

ν∗,∞V tα,+M ∩ SS
∞(π̇∗µhom(jα!F , jα∗G )) = ∅.

Therefore, by microlocal Morse lemma Proposition 3.1.3, restricting from V −1
α to V 1

α ,

we can show that the isomorphism holds. �

Given F ∈ µShΛ(Λ), by Lemma 4.2.1 there exists an open covering U = {Uα}α∈I

and a collection of sheaves {Fα}α∈I where Fα ∈ ShΛ(Uα) such that F |Λ∩T ∗,∞Uα =

mΛ(Fα). Write jα : Uα ↪→ M . Now choose a good family of refinements V t (t ∈

[−1, 1]) of U , and define (by Lemma 4.2.3)

wΛ(F )Vα = Cone(T−ε(jα∗Fα)|Vα → Tε(jα∗Fα)|Vα)

= Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα).

Proposition 4.2.6. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian, U a

good open covering and V t a good family of refinements with respect to Λ. Then for

ε > 0 sufficiently small, there is a natural isomorphism

Hom(wΛ(F )Vα , wΛ(G )Vα)
∼−→ Γ(T ∗,∞Vα, µhom(FVα ,GVα)).
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Proof. Writing down the definition of wΛ(F )Vα and wΛ(G )Vα , we have

Hom(wΛ(F )Vα , wΛ(G )Vα)

' Cone
(
Hom(Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα), T−ε(jα∗Gα)|Vα)

→ Hom(Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα), Tε(jα∗Gα)|Vα)
)
.

For the first term, we claim that

Hom(Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα), T−ε(jα∗Gα)|Vα)

' Γ(T ∗,∞Vα, µhom(FVα ,GVα)).

To prove this, we apply the Sato-Sabloff exact sequence Theorem 4.1.3 and get

Hom(Tε(jα!Fα), T−ε(jα∗Gα))→ Hom(T−ε(jα!Fα), T−ε(jα∗Gα))

→ Γ(T ∗,∞V −1
α , µhom(jα!Fα, jα∗Gα)).

Given the non-characteristic assumption on V t with respect to Λ, we can apply

Lemma 4.2.4 to restrict the corresponding H om(−,−) sheaves from V −1
α to V 1

α , and

get quasi-isomorphisms

Hom(Tε(jα!Fα), T−ε(jα∗Gα)) ' Hom(Tε(jα!Fα)|Vα , T−ε(jα∗Gα)|Vα),

Hom(Tε(jα!Fα), Tε(jα∗Gα)) ' Hom(Tε(jα!Fα)|Vα , Tε(jα∗Gα)|Vα).
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On the other hand, we can also apply Lemma 4.2.5 to restrict the corresponding

µhom(−,−) sheaves from T ∗,∞V −1
α to T ∗,∞V 1

α , and get

Γ(T ∗,∞V −1
α , µhom(jα!Fα, jα∗Gα)) ' Γ(T ∗,∞V 1

α , µhom(Fα,Gα)).

Since the restriction maps commute with all the maps in the Sato-Sabloff fiber se-

quence, this proves our first claim. For the second term, we claim that there is a

quasi-isomorphism

Hom(Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα), Tε(jα∗Gα)|Vα) ' 0.

Indeed by Proposition 4.1.2 we know that

Hom(Tε(jα!Fα), Tε(jα∗Gα)) ' Hom(T−ε(jα!Fα), Tε(jα∗Gα)) ' Hom(jα!Fα, jα∗Gα).

and the isomorphism is witnessed by the precomposition with the canonical contin-

uation map T−ε(jα∗Fα) → Tε(jα∗Fα). Again by the non-characteristic assumption

on U ,V with respect to Λ, we can apply Lemma 4.2.4 to restrict the corresponding

H om(−,−) sheaves from V −1
α to V 1

α , and the quasi-isomorphisms still hold. This

proves our second claim. �

Corollary 4.2.7. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian, U a good

open covering and V t a good family of refinements with respect to Λ. Then for ε > 0
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sufficiently small,

Hom(wΛ(F )Vαi |Vα1···αk
, wΛ(G )Vαj |Vα1···αk

) ' Γ(T ∗,∞Vα1···αk , µhom(Fαi |Vα1···αk
,Gαj |Vα1···αk

)).

Proof. Write jα1···αk : Uα1···αk ↪→M . Note that

wΛ(F )αi |Vα1···αk
= Cone(T−ε(jαi∗Fαi)|Vαi → Tε(jαi∗Fαi)|Vαi )|Vα1···αk

' Cone(T−ε(jα1···αk∗Fαi)|Vα1···αk
→ Tε(jα1···αk∗Fαi)|Vα1···αk

).

Then the corollary immediately follows from Proposition 4.2.6. �

By Proposition 4.2.6 and Corollary 4.2.7, we can conclude that indeed the family

of sheaves (wΛ(F )α)α∈I on the refined open cover of V can be glued to a global

object.

Proof of Theorem 4.0.7. Consider the doubling functor

wΛ : µShΛ(Λ)→ ShT−ε(Λ)∪Tε(Λ)(M).

We apply Proposition 4.2.6 and Corollary 4.2.7 to show that wΛ is fully faithful, i.e.

Hom(wΛ(F ), wΛ(G ))
∼−→ Γ(T ∗,∞M,µhom(F ,G )).

First of all, since Λ ⊂ T ∗,∞M is compact, we may choose assume that there are

only finite open subsets Uα ∈ U such that π(Λ) ∩ Uα 6= ∅. Hence there exists a

uniform ε > 0 sufficiently small such that Proposition 4.2.6 and Corollary 4.2.7 hold

for all Uα ∈ U . By Proposition 4.2.6 and Corollary 4.2.7, and the fact that these
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quasi-isomorphisms commute with restriction maps, we have the following diagram

⊕
α∈I Hom(wΛ(F )Vα , wΛ(G )Vα) //

∼
��

⊕
α,β∈I Hom(wΛ(F )Vαβ , wΛ(G )Vαβ) ////

∼

��

· · ·

⊕
α∈I Γ(T ∗,∞Vα, µhom(F ,G )) //

⊕
α,β∈I Γ(T ∗,∞Vαβ, µhom(F ,G )) // // · · ·

Note that V is a good covering such that any finite intersection is contractible.

Therefore, by taking the homotopy colimit of the above diagram, we get the quasi-

isomorphism of global sections

Hom(wΛ(F ), wΛ(G ))
∼−→ lim

α∈I
Hom(wΛ(F )Vα , wΛ(G )Vα)

∼−→ lim
α∈I

Γ(T ∗,∞Vα, µhom(F ,G ))
∼−→ Γ(T ∗,∞M,µhom(F , G)).

Finally, we need to check that the doubling functor can be defined for any 0 <

ε < c(Λ)/2 where c(Λ) is the length of the shortest Reeb chord on Λ. This is because

when 0 < ε < c(Λ)/2, T−ε(Λ)∪Tε(Λ) are related by Hamiltonian isotopies supported

away from Λ. We can choose H : T ∗,∞M → R with compact support (since Λ is

compact) such that

H|Λ = 0, H|⋃
ε∈[c,c′] Tε(Λ) = 1, H|⋃

ε∈[c,c′] T−ε(Λ) = −1.

Then the contact Hamiltonian flow is the integration of the corresponding compactly

supported Hamiltonian vector field. �
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Remark 4.2.3. The condition that Λ is compact plays an important role in the

proof. First, it ensures that there exists a uniform ε > 0 such that the doubling

functor is locally defined among all Vα ∈ V . Secondly, it ensures that there exists a

compactly supported Hamiltonian isotopy relating T−ε(Λ)∪ Tε(Λ) for 0 < ε < c(Λ)/2

(otherwise, though we can similarly define the Hamiltonian function, it is unclear

whether the Hamiltonian vector field is complete).

Finally, we remark that the doubling construction immediately implies the fol-

lowing fiber sequence.

Corollary 4.2.8. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then

there is a fiber sequence of functors

T−ε → Tε → wΛ ◦mΛ.

4.2.1. Remark on relative doubling construction

We expect that there is also a more geometric approach to the construction of a

relative doubling functor. Following [124, Section 6.3], we consider a locally closed

subanalytic Legendrian Λ ⊂ T ∗,∞M with contact collar ∂Λ × (0, 1) ↪→ Λ. Then we

try to define

w(Λ,∂Λ) : µShΛ(Λ)→ Sh(Λ,∂Λ)≺ε (M),
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where (Λ, ∂Λ)≺ε = T̃−ε(Λ) ∪ T̃ε(Λ) where T̃t is defined by a non-negative contact

Hamiltonian H̃ such that

H̃|⋃
t∈[−ε,ε] Tt(Λ\∂Λ×(0,1)) = 1, H̃|∂Λ×(0,1/2) = 0.

Suppose Λ = cF is the Lagrangian skeleton of a Weinstein hypersurface F ⊂

T ∗,∞M . For any exact Lagrangian L ⊂ F with Legendrian boundary ∂∞L, consider

the limit set of L under the Liouville flow ZF on F when time goes to −∞, which

defines a relative Lagrangian skeleton cF ∪(∂∞L×R). Following Nadler-Shende [124,

Section 6.3], we may also expect an explicit construction for the relative doubling

functor satisfying properties in this section

wcF∪(∂∞L×R) : µShcF∪(∂∞L×R)(cF ∪ (∂∞L× R))→ Sh(cF∪(∂∞L×R))≺ε (M).

Then one may remove the relative part of the stop and send the right hand side into

ShcF (M).

In this setup, one can probably explicitly see that a Lagrangian cocore of cF

is sent to the corresponding sheaf theoretic linking disk. Then, following the first

author’s work [104], we are able to define a functor

µShccF (cF )→ wshcF (M),
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as the relative doubling of all the compact objects in µShccF (cF ) in this case will be

sheaves with perfect stalks on M . This should be closer to the Fukaya categorical

construction of the cup functor.

4.2.2. Doubling as adjoints of microlocalization

Following the Sato-Sabloff exact triangle Proposition 4.2.8, we may expect that the

doubling functor wΛ should be closely related to the left and right adjoint of microlo-

calization mΛ : ShΛ(M)→ µShΛ(Λ).

Recall from Section 3.4 that the tautological inclusion ιΛ : ShΛ(M) ↪→ Sh(M)

admits both a left adjoint ι∗Λ and a right adjoint ι!Λ. They will be used in the following

propositions.

Theorem 4.2.9. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then

the right adjoint of microlocalization is isomorphic to

mr
Λ = ι!Λ ◦ wΛ : µShΛ(Λ)→ ShΛ(M).

Proof. We know that for F ∈ ShΛ(M),

Hom(F , ι!Λ(G )) ' Hom(F ,G ).

Thus it suffices to show that for any F ∈ ShΛ(M), there is a canonical quasi-

isomorphism

Hom(F , wΛ(G )) ' Γ(T ∗,∞M,µhom(mΛ(F ),G )).
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Again, following the proof of Theorem 4.0.7, we consider a good open covering U

and a good family of refinements V t, and show that locally

Hom(F |Vα , wΛ(G )|Vα) ' Γ(T ∗,∞Vα, µhom(F |Vα ,G |Vα)).

Writing down the definition of wΛ(G )Vα , we have

Hom(F |Vα , wΛ(G )Vα)

' Hom
(
F |Vα ,Cone(T−ε(jα∗Gα)|Vα → Tε(jα∗Gα)|Vα)

)
' Cone

(
Hom(F |Vα , T−ε(jα∗Gα)|Vα)→ Hom(F |Vα , Tε(jα∗Gα)|Vα)

)
.

Given the non-characteristic condition for the good family of refinements V t, by

Lemma 4.2.4 we know that

Hom(F |Vα , T−ε(jα∗Gα)|Vα) ' Hom(jα!Fα, T−ε(jα∗Gα)),

Hom(F |Vα , Tε(jα∗Gα)|Vα) ' Hom(jα!Fα, Tε(jα∗Gα)).

In addition, it is easy to show that the restriction functors above commute with the

canonical map T−ε(jα∗Gα)|Vα → Tε(jα∗Gα)|Vα . Therefore, by the Sato-Sabloff exact
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triangle Theorem 4.1.3 we can conclude that

Hom(F |Vα , wΛ(G )Vα)

' Cone
(
Hom(F |Vα , T−ε(jα∗Gα)|Vα)→ Hom(F |Vα , Tε(jα∗Gα)|Vα)

)
' Cone

(
Hom(jα!Fα, T−ε(jα∗Gα))→ Hom(jα!Fα, Tε(jα∗Gα))

)
' Γ(T ∗,∞Uα, µhom(jα!Fα, jα∗Gα)) ' Γ(T ∗,∞Vα, µhom(Fα,Gα)),

where the last inequality again follows from non-characteristic deformation in Lemma

4.2.5. Hence the proof is completed. �

Remark 4.2.4. In fact, in the proof we have shown that for F ∈ ShΛ(M),G ∈

µShΛ(M),

Hom(F , wΛ(G )) ' Hom(Tε(F ), wΛ(G )) ' Γ(T ∗,∞M,µhom(mΛ(F ),G )).

Note that this is also a direct corollary of Proposition 4.1.2.

Theorem 4.2.10. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian. Then the

left adjoint of microlocalization is isomorphic to

ml
Λ = ι∗Λ ◦ wΛ[−1] : µShΛ(Λ)→ ShΛ(M).

Proof. Similar to the proof of Theorem 4.2.9, it suffices to show that for any

F ∈ ShΛ(M), there is a canonical quasi-isomorphism

Hom(wΛ(F )[−1],G ) ' Γ(T ∗,∞M,µhom(F ,mΛ(G ))).
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Again, we consider a good open covering U and a good family of refinements V t,

and show that locally

Hom(wΛ(F )Vα [−1],G |Vα) ' Γ(T ∗,∞Vα, µhom(F |Vα , G|Vα)).

Writing down the definition of wΛ(F )Vα [−1], we have

Hom(wΛ(F )[−1]|Vα ,G |Vα)

' Hom
(
Cone(T−ε(jα!Fα)|Vα → Tε(jα!Fα)|Vα)[−1],G |Vα

)
' Cone

(
Hom(Tε(jα!Fα)|Vα ,G |Vα)→ Hom(T−ε(jα!Fα)|Vα ,G |Vα)

)
.

Then by non-characteristic deformation in Lemma 4.2.4, 4.2.5 and Sato-Sabloff exact

triangle Corollary 4.1.3 we can conclude that

Hom(wΛ(F )|Vα ,G |Vα)

' Cone
(
Hom(Tε(jα!Fα), jα∗G |Vα)→ Hom(T−ε(jα!Fα), jα∗G |Vα)

)
' Γ(T ∗,∞Uα, µhom(jα!Fα, jα∗G |Uα)) ' Γ(T ∗,∞Vα, µhom(Fα,Gα)),

which completes the proof of the theorem. �

Remark 4.2.5. In fact, in the proof we have shown that for F ∈ µShΛ(M),G ∈

ShΛ(M),

Hom(wΛ(F )[−1],G ) ' Hom(wΛ(F )[−1], T−ε(G )) ' Γ(T ∗,∞M,µhom(F ,mΛ(G ))),

which is again an application of Proposition 4.1.2.
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Remark 4.2.6. Moreover, we remark that when we apply the doubling construc-

tion to a single connected component Λi ⊂ Λ, using the same argument, one can still

show that

ml
Λi

= ι∗Λ ◦ wΛi [−1], mr
Λi

= ι!Λ ◦ wΛi .

The reader may compare it with the discussion in Remark 4.1.3.

Later in Section 6.1, we will explain the geometric interpretation of the adjoint

functors ι∗Λ and ι!Λ in terms of wrappings, so that we will see the difference between

ml
Λ and mr

Λ is indeed whether we choose positive or negative wrappings for the

doubling.

4.3. Doubling and Quantization of Noncompact Legendrians

Unlike the case of compact Lagrangians, for noncompact Lagrangians, without

control on the Weinstein tubular neighbourhood, one may not get a uniform Reeb

push-off T−ε(L̃) ∪ Tε(L̃) for some fixed time ε > 0, and then fail to connect the

small Reeb push-off with some large Reeb push-off. Even though we could still find

a Legendrian isotopy between small push-offs and large push-offs, the norm of the

candidate Hamiltonian vector field may be unbounded and we may no longer get a

Hamiltonian vector field. For conical Legendrian cobordisms for example, one can

easily see that the negative end is exactly where the radius of the Weinstein tubular

neighbourhood looses control.

Therefore, we set up the general theory of the doubling construction and sheaf

quantization for noncompact Legendrians in the course of the proof, which will be
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applied to many interesting noncompact Legendrians, including those coming from

exact Lagrangian fillings of Legendrians, exact Lagrangian cobordisms between La-

grangians (in the sense of Arnol’d), and exact Lagrangian cobordisms between Leg-

endrians (in the sense of symplectic field theory).

The goal of this section is to generalize the doubling construction to certain

noncompact Legendrian submanifolds. Our main theorem is the following.

Theorem 4.3.1. Let Λ ⊂ J1(M) be any smooth Legendrian submanifold. When

there exists a complete adapted metric on J1(M) such that Λ admits a tubular neigh-

bourhood of positive radius ε0 > 0, then for any 0 < ε < ε0, there exists a fully faithful

functor

wΛ : µShΛ(Λ) ↪→ ShT−ε(Λ)∪Tε(Λ)(M × R).

We remark that the assumption that Λ admits a tubular neighbourhood of posi-

tive radius is crucial, and indeed this is why there is not in general a doubling functor

for conical Legendrian cobordisms with a uniform ε > 0 (and why we need extra data

near the negative end of the cobordisms).

4.3.1. Doubling functor for noncompact Legendrians

Given any F ∈ µShΛ(Λ), for a sufficiently small open subsets V ⊂ U ⊂ M × R,

Lemma 4.2.1 ensures that there exists a sheaf FU ∈ ShΛ(U). Let

Λ±T = {(x, t, s; ξ, τ, σ)| ∃ s > 0, (x, t; ξ, τ) ∈ T±s(Λ), σ = −Hs(x, t; ξ, τ)}
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be the Legendrian movies of Λ under the positive/negative Reeb flows. Let

T± : ShΛ(M × R)→ ShΛ±T (M × R× (0,+∞))

be the equivalences of sheaf categories induced by the corresponding Hamiltonian

isotopies T± by Guillermou-Kashiwara-Schapira [88].

Then for ε > 0 a sufficiently small number depending on U, V and Λ, we define

w̃Λ(F )V×(0,ε) = Cone
(
Ψ0
T−(jU∗FU)→ Ψ0

T+
(jU∗FU)

)
|V×(0,ε).

When U ∩ π(Λ) = ∅, note that we can choose FU = 0U and ε = +∞. When

Λ ⊂ T ∗,∞τ>0 (M×R) is compact, we can choose an open covering such that only finitely

many open subsets intersect π(Λ) ⊂ M × R. Then there exists a uniform positive

number

0 < ε < min
α∈I

εα = min
α∈I, Uα∩Λ 6=∅

εα.

In other words, we have

M × R× {ε} ⊆
⋃
α∈I

Vα × (0, εα)

Hence by restricting to M × R× {ε}, we get Theorem 4.0.7.

In general, there may not exist any ε > 0 such that

M × R× {ε} ⊆
⋃
α∈I

Vα × (0, εα).
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Hence it is difficult to construct the doubling functor for a uniform Reeb pushoff

ε > 0.

While there may not be a uniform ε > 0 so that M ×R×{ε} ⊆
⋃
α∈I Vα× (0, εα),

there always exists some smooth function ρ : M × R→ (0,+∞) such that

Graph(ρ) ⊆
⋃
α∈I

Vα × (0, εα).

Instead of restricting to the slice M ×R×{ε}, we will restrict to the slice Graph(ρ).

Let the contact Hamiltonian be ρ(x, t). The induced Hamiltonian vector field is

Xρ = ρ(x, t)∂t − (∂xρ(x, t) + ξ ∂tρ(x, t))∂ξ, and the Hamiltonian diffeomorphism is

Tρ(x, t; ξ) = (x, t+ ρ(x, t); ξ − ∂xρ(x, t)− ξ ∂tρ(x, t)).

We will show that by restricting the doubled sheaf to the slice Graph(ρ), we get a

sheaf with singular support on T−ρ(Λ) ∪ Tρ(Λ).

Proposition 4.3.2. Let Λ ⊂ T ∗,∞τ>0 (M × R) be a subsanalytic Legendrian subset.

Then for any C1-small smooth function ρ : M × R → (0,+∞), there exists a fully

faithful functor

wΛ : µShΛ(Λ) ↪→ ShT−ρ(Λ)∪Tρ(Λ)(M × R).

Proof. Since ρ : M × R → (0,+∞) is C1-small, we know that Λ−T ∪ ΛT is

non-characteristic with respect to Graph(ρ) ⊆M ×R× (0,+∞). Hence by restrict-

ing w̃Λ(F ) to Graph(ρ), the singular support is contained in T−ρ(Λ) ∪ Tρ(Λ). Full
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faithfulness follows from the fact that up to the reparametrization

φρ : M × R× (0,+∞)→M × R× (0,+∞), (x, t, ερ(x, t)) 7→ (x, t, ε),

Λ−T ∪ ΛT is the Legendrian movie of a Hamiltonian flow. �

As explained at the beginning, for a general noncompact Legendrian, this is in

fact the best we can do. In the following section, we will explain how to strengthen

the result with the presence of a tubular neighbourhood of positive radius.

Proof of Theorem 4.3.1. Consider the tubular neighbourhood J1
<ε0

(Λ) of ra-

dius ε0 > 0 of the noncompact Legendrian Λ ⊆ J1(M). We claim that there exists a

contact Hamiltonian isotopy ϕ1
H , 0 ≤ t ≤ 1, such that

ϕ1
H(T±ρ(Λ)) = T±ε(Λ).

Consider the standard coordinates in J1
<ε0

(Λ) ⊆ J1(Λ). There exists a Legendrian

isotopy from T±ρ(Λ) to T±ε(Λ)

Λ±u = {(x, (1− u)dρ(x, t), ut+ (1− u)ρ(x, t))|(x, t) ∈ Λ× R}.

Fix ε < ε′ < ε0. Define a Hamiltonian function H : Λ× R→ R such that

H|⋃
u∈[0,1] Λ±u = ±(ε− ρ(x, t)), H|J1(Λ)\J1

<ε′ (Λ) ≡ 0.
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Then the corresponding contact Hamiltonian vector field

XH = H
∂

∂t
+

n∑
i=1

∂H

∂xi

∂

∂ξi

is has proper support with respect to the projection T ∗Λ×R→ Λ and is tangent to

the fibers/leaves T ∗xΛ × R. Therefore, the integral flow is supported in J1
<ε′(Λ) and

preserves the fibers/leaves. Hence the flow is well defined for all time s ≥ 0.

The compact support condition then allows us to extend the Hamiltonian flow

trivially from the tubular neighbourhood J1
<ε′(Λ) to the ambient manifold J1(M).

Using Guillermou-Kashiwara-Schapira Theorem 3.3.1, we can then conclude that

there is an equivalence of sheaf categories

ShT−ρ(Λ)∪Tρ(Λ)(M × R)
∼−→ ShT−ε(Λ)∪Tε(Λ)(M × R).

Then the result follows immediately from Proposition 4.3.2. �

Remark 4.3.1. Assume that there exists an open covering {Uα}α∈I and a refine-

ment of {Vα}α∈I of M ×R with a collection of time intervals εα > 0 with a uniform

lower bound. Then by restricting to small open subsets, one can easily show that the

doubling functor constructed using Proposition 4.3.2 agrees with Theorem 4.0.7.

There are definitely examples of noncompact Legendrians that no not admit a

tubular neighbourhood of a positive radius with respect to any complete adapted

metric. Conical Legendrian cobordisms are one class of such examples. This is why

we need some extra data. We will deal with them in the next section.
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4.3.2. Separation of double copies of the Legendrian

Given the doubling on T−ε(Λ) ∪ Tε(Λ) for some ε > 0, to separate the double copies

of the Legendrian, we need to apply some Hamiltonian isotopy from Λ ∪ Tε(Λ) to

Λ ∪ Tu(Λ) for any u > 0. We show that this can again be done once there exists

some tubular neighbourhood of positive radius.

Proposition 4.3.3. Let Λ ⊂ J1(M) be any smooth Legendrian submanifold.

When there exists a complete adapted metric on J1(M) such that Λ admits a neigh-

bourhood of positive radius ε/2 > 0 disjoint from
⋃
u≥ε Tu(Λ), then for any u > ε,

there exists a fully faithful functor

ShΛ∪Tε(Λ)(M × R)
∼−→ ShΛ∪Tu(Λ)(M × R).

Proof. Denote the Weinstein tubular neighbourhood of Λ by Uε(Λ). By the

assumption, we know that Uε/2(Λ) and
⋃
u≥ε Tu(Λ) have a positive distance. Choose

a cut-off function H : J1(M)→ R such that

H|Uε/2(Λ) ≡ 0, H|J1(M)\Uε(Λ) ≡ 1, |dH| ≤ 3/ε < +∞.

Since the metric on J1(M) is adapted, we know that the Hamiltonian vector field

|XH | ≤ (1+9/ε2)1/2 < +∞. Since in addition that the metric on J1(M) is complete,

we know that the Hamiltonian flow ϕsH exists for any s ∈ R. Moreover, when u ≥ 0,

ϕuH
(
Λ ∪ T2ε/3(Λ)

)
= L̃ ∪ Tε+u(L̃).
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Therefore, by Guillermou-Kashiwara-Schapira Theorem 3.3.1, we can conclude that

there is a canonical equivalence as in the statement of the proposition. �

Corollary 4.3.4. Let Λ ⊂ J1(M) be any smooth Legendrian submanifold. When

there exists a complete adapted metric on J1(M) such that Λ admits a tubular neigh-

bourhood of positive radius ε > 0 disjoint from
⋃
s≥ε Ts(Λ), then for any s > ε, there

exists a fully faithful functor

wΛ : µShΛ(Λ) ↪→ ShΛ∪Ts(Λ)(M × R).

In particular, when the Lagrangian projection πLag(Λ) ⊂ T ∗M admits a tubular

neighbourhood of positive radius, we always get the above functor.

Using the above results, we can in fact prove the sheaf quantization theorem for

certain noncompact embedded Lagrangians that admit a tubular neighbourhood of

a positive radius for some adapted metric. In particular, we believe that we can

recover the result of Jin-Treumann [94].

4.3.3. Sheaf quantization for closed Lagrangians

We recall the sheaf quantization result of closed exact Lagrangians of Guillermou

[84]. Here is Guillermou’s sheaf quantization theorem, from which he deduces results

on nearby Lagrangians (see also Jin [93] who applies the result to sheaves over ring

spectra and proves additional properties on nearby Lagrangians).
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Theorem 4.3.5 (Guillermou [84]). Let L ⊂ T ∗M be an embedded closed exact

Lagrangian submanifold , and L̃ ⊂ J1(M) ∼= S∗,∞τ>0(M × R) be its Legendrian lift.

Then for any L ∈ µShL̃(L̃), there exists a sheaf F ∈ ShL̃(M × R) with zero stalk

at M × {−∞} such that

mL̃(F ) = L

which determines a fully faithful functor ΨL : µShL̃(L̃)
∼−→ ShL̃(M × R)0.

Proof. For any L ∈ µShL̃(L̃), by Theorem 4.0.7 and Corollary 4.3.4, for any

u > 0, there exists a sheaf F ∈ ShL̃∪Tu(L̃)(M × R) such that

mL̃(Fdbl) = L .

Since L ⊂ T ∗M is closed, the front projection πfront(L̃) ⊂ M × R is compact. In

particular, there exists C > 0 such that πfront(L̃) ⊂M×(−∞, C−1), and there exists

C ′ > 0 such that πfront(TC′(L̃)) ⊂M×(C+1,+∞). Let jC : M×(−∞, C) ↪→M×R

and

ϕC : M × R ∼−→M × (−∞, C)

a diffeomorphism such that ϕC |M×(−∞,C) = idM×(−∞,C). Then

F = ϕ−1
C j−1

C Fdbl ∈ ShL̃(M × R)

is the sheaf that satisfies the property.
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For the full faithfulness property, writing Fdbl = wL̃(L ), we can compute

Hom(F ,F ) = Hom(j−1
C wL̃(L ), j−1

C wL̃(L )) = Hom(wL̃(L ), jC∗j
−1
C wL̃(L )).

By adjunction property in Theorem 4.2.10, we know that

Hom(wL̃(L ), jC∗j
−1
C wL̃(L )) = Γ(L̃, µhom(L ,mL̃(wL̃(L )))) = Γ(L̃, µhom(L ,L ).

Finally, we show that the essential image is ShL̃(M ×R)0. We simply need to notice

that for F ∈ ShL̃(M × R)0, Fdbl = wL̃(L ) = Cone(F → Tu(F )) and hence

Ψ(F ) = F . �

In the proof, we have in fact seen that the sheaf quantization functor is the left

adjoint to the microlocalization functor, namely mL̃(F ) = L if F is the sheaf

quantization of L .

4.3.4. Sheaf quantization of Lagrangian fillings

We recall the sheaf quantization result of exact Lagrangian fillings of Legendrian

submanifolds of Jin-Treumann [94].

Given an exact Lagrangian filling L ⊂ T ∗M of a Legendrian submanifold Λ ⊂

T ∗,∞M , Theorem 4.3.7 below defines a fully faithful functor Loc(L) ↪→ ShΛ(M),

which realizes exact Lagrangian fillings, endowed with local systems, as objects in

the constructible sheaf category associated to Λ. First, a technical lemma:
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Lemma 4.3.6. Let Lt ⊂ T ∗M , t ∈ Dk, be a family of exact Lagrangian fillings

of a family of Legendrian submanifold Λt ⊂ T ∗,∞M , t ∈ Dk. Then Lt is Hamiltonian

isotopic to a family of exact Lagrangians L′t whose primitive fL′t is proper and bounded

from below (where λst|L′t = dfL′t).

Proof. The proof is close to the non-parametric version of the lemma in [95,

Section 3.6]. Since Lt, t ∈ Dk, is a family of exact Lagrangian fillings of Λt, t ∈ Dk,

for any t ∈ Dk there is some rt � 0 sufficiently large such that Lt ∩ {(x, ξ) ∈

T ∗M ||ξ| > rt} = Λ × (rt,+∞). Since Dk is compact one can find r0 � 0 such that

for any t ∈ Dk, Lt ∩ {(x, ξ) ∈ T ∗M ||ξ| > r0} = Λ× (r0,+∞).

Let β : [0,+∞)→ R be a function such that β(r) = 0 when r is sufficiently small

and β(r) = −1/r when r > r0 is sufficiently large, and the Hamiltonian H(r) = β(r).

Then consider L′t = ϕεH(Lt). One can check that when r > r0, dfL′t = ε/r and thus

are proper and bounded from below. �

Theorem 4.3.7 (Jin-Treumann [95]). Let L ⊂ T ∗M be an exact Lagrangian

filling of a Legendrian submanifold Λ ⊂ T ∗,∞M whose primitive fL is proper and

bounded from below (where λst|L = dfL). Let L̃ ⊂ J1(M) ∼= T ∗,∞τ<0 (M × R) be the

Legendrian lift of L. Then for any L ∈ µShL̃(L̃), there exists a sheaf F ∈ ShL̃(M ×

R) with zero stalk at M × {−∞} such that

mL̃(F ) = L

which determines a fully faithful functor ΨL : µShL̃(L̃)
∼−→ ShL̃(M × R)0.
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Following the discussion in the previous section, the main technical preparation

we need is the tubular neighbourhood theorem for exact Lagrangian fillings, which

is Lemma 2.2.3.

Proof of Theorem 4.3.7. For any L ∈ µShL̃(L̃), by Corollary 4.3.4, for any

u > 0, there exists a sheaf F ∈ ShL̃∪Tu(L̃)(M × R) such that

mL̃(Fdbl) = L .

Choose C ′ � C � 0 such that (i) T ∗,∞(M × (−∞, C)) ∩ TC′(L̃) = ∅, and (ii) there

exists a diffeomorphism

ϕC : M × (−∞,+∞)
∼−→M × (−∞, C)

such that ϕ∗C : T ∗,∞(M × (−∞, C))
∼−→ T ∗,∞(M ×R) sends L̃∩ T ∗,∞τ<0 (M × (−∞, C))

to L̃. Write jC : M × (−∞, C) ↪→M × R for the inclusion map. Then

F = ϕ−1
C j−1

C F̃dbl ∈ ShL̃(M × R)

is the sheaf that satisfies the property. The full faithfulness and essential surjectivity

are proved in the same way. �

4.3.5. Sheaf quantization of Arnol’d Lagrangian cobordisms

Our main result in this section is the existence of sheaf quantization for exact La-

grangian cobordisms between Lagrangian submanifolds in the sense of Arnol’d [10].



134

For the result presented here, the author has benefitted a lot from the discussion

with Asano and Ike in our joint work in progress. In fact, it was them who attracted

the author’s attention to the sheaf quantization problem of Lagrangian cobordisms

between Lagrangians.

Recall that An exact Lagrangian cobordism V ⊂ T ∗(M ×R) between L1, . . . , Lp

and K1, . . . , Kq is an exact Lagrangian submanifold such that

V ∩ T ∗(M × (−∞, 0)) =

p⋃
i=1

Li × (−∞, 0)× {i},

V ∩ T ∗(M × (1,+∞)) =

q⋃
j=1

Kj × (0,+∞)× {j}.

Our goal in this section is to prove Theorem 4.0.8 on sheaf quantization of Arnol’d

Lagrangian cobordisms.

As in the previous cases, the main technical preparation we need is the tubu-

lar neighbourhood theorem for exact Lagrangian cobordisms between Lagrangians,

which is Lemma 2.2.2.

Then one may try to separate the images of the projections of Ṽ ∪ Tu(Ṽ ) on

M × R × R. This is in general not possible when the Lagrangians on both ends

have multiple components. However, we can always separate the images of their

projections in a horizontally bounded region T ∗(M ×R× [−R,R]). Thus, on such a

bounded region, we do get a sheaf quantization.

Lemma 4.3.8. Let V ⊂ T ∗(M × R) be an exact Lagrangian cobordism between

L1, . . . , Lp and K1, . . . , Kq. Then for any L ∈ µShL̃(L̃), when R � 0, there exists
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a sheaf F ∈ ShṼ (M × R × [−R,R]) with zero stalk at M × {−∞} × [−R,R] such

that

mṼ (F[−R,R]) = LV ∩T ∗(M×[−R,R]).

Proof. For any L ∈ µShL̃(L̃), by Corollary 4.3.4, for any u > 0, there exists a

sheaf quantization

Fdbl,[−R,R] ∈ ShṼ ∪Tu(Ṽ )(M × R× R).

Since Ṽ ∩ T ∗,∞τ>0 (M × R × [−R,R]) is compact, so is its image under the projection

onto M ×R× [−R,R]. Therefore, there exists a sufficiently large C > 0 and C ′ > C

such that

πM×R×[−R,R](Ṽ ∩ T ∗,∞τ>0 (M × R× [−R,R])) ⊂M × (−∞, C − 1)× [−R,R],

πM×R×[−R,R](Tu(Ṽ ) ∩ T ∗(M × R× [−R,R])) ⊂M × (C + 1,+∞)× [−R,R].

Write jC : M × (−∞, C)× [−R,R] ↪→M ×R× [−R,R] the inclusion map. Consider

a diffeomorphism

ϕC : M × (−∞, C)× [−R,R]→M × R× [−R,R]

such that ϕC = id on M × (−∞, c−1)× [−R,R]. Then F[−R,R] = ϕ−1
C j−1

C Fdbl,[−R,R].

�

Then we claim that the sheaf FV ∩T ∗(M×[−R,R]) can be uniquely extended to M ×

R × R when R is sufficiently large, by proving that the two ends of ΛV are simply

conical Lagrangian movies of
⋃p
i=1 L̃i and

⋃q
j=1 K̃j.
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For any Λ ⊂ T ∗,∞(M × R), we define

Λπi = {(x, t+ ir, r; ξ, τ,−iτ)|(x, t; ξ, τ) ∈ Λ, r ∈ R}.

Lemma 4.3.9. Let L1, . . . , Lp be closed exact Lagrangians in T ∗M . Suppose that

for any 1 ≤ i < j ≤ p, there exists cij ∈ R,

πfront(L̃i) ⊂M × (cij + 1,+∞), πfront(L̃j) ⊂M × (−∞, cij − 1).

Then the conical Lagrangian
⋃p
i=1 L̃i,πi ∩T ∗(M ×R×R≤0) is the conical Lagrangian

movie of
⋃p
i=1 L̃i under a homogeneous Hamiltonian isotopy.

Proof. We can in fact define a diffeotopy φr : M × R → M × R such that the

Hamiltonian diffeomorphism φ∗r : T ∗(M × R) → T ∗(M × R) satisfies the condition.

Define φr such that

φr(x, t) = (x, t+ ir), ci−1,i + 1 < t < ci,i+1 − 1.

Then by the assumption, clearly
⋃p
i=1 L̃i,πi ∩ T

∗,∞
τ>0 (M × R × R≤0) is the conical

Lagrangian movie of
⋃p
i=1 L̃i under φ∗r (r ∈ (−∞, 0]). �

With these preparations, we are now able to finish the proof of our main theorem.

Proof of Theorem 4.0.8. By Lemma 4.3.8, for any R > 0, there exists a

sheaf quantization

F[−R,R] ∈ ShṼ (M × R× [−R,R]).
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We know that V ∩T ∗(M× (−∞, 0]) =
⋃p
i=1 Li× (−∞, 0]×{i}, and their Legendrian

lifts are
⋃p
i=1 L̃i,πi ∩ T ∗,∞(M × R× R≤0). For each R > 0,

p⋃
i=1

L̃i,πi ∩ T ∗,∞(M × R× {−R}) =

p⋃
i=1

T−iR(L̃i)).

Since L̃i is compact, we know that when R > 0 is sufficiently large, for any 1 ≤ i <

j ≤ p, there exists cij ∈ R,

πfront(T−iR(L̃i)) ⊂M × (cij + 1,+∞), πfront(T−jR(L̃j)) ⊂M × (−∞, cij − 1).

Fix this R > 0. Then we can apply Lemma 4.3.9, and get an equivalence of categories

Sh⋃p
i=1 T−iR(L̃i)

(M × R)
∼−→ Sh⋃p

i=1 L̃i,πi
(M × R× (−∞,−R]).

Given the sheaf quantization FV ∩T ∗(M×[−R,R]) ∈ ShṼ (M ×R× [−R− 1, R+ 1]), by

Theorem 3.3.1 extend it to FV ∩T ∗(M×(−∞,R]) ∈ ShΛV (M × R × (−∞, R + 1]). For

the other end, we apply the same argument and thus we get FV ∈ ShṼ (M ×R×R)

which completes the proof. Essential surjectivity is proved in the same way as in the

compact case. �

4.4. Doubling and Quantization of Lagrangian Cobordisms

Given an exact Lagrangian cobordism L between Legendrian from Λ− to Λ+ ⊂

J1(M), following Section 2.1.2, we can identify it with a conical Legendrian cobor-

dism L̃ ⊂ J1(M × R>0).
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For conical Lagrangian cobordisms, we do not have a sheaf quantization functor

in general, due to lack of control on the size of the tubular neighbourhood of the

Legendrian at the negative end. In fact, we need the prescribed data near the negative

end Λ−. The main theorem is thus a conditional sheaf quantization theorem Theorem

4.0.9.

Let Tt : J1(M × R>0) → J1(M × R>0) is the Reeb flow. Similar to the sheaf

quantization theorem of Guillermou and Jin-Treumann [84,94], we first construct a

doubling functor using a small Reeb push-off in a Weinstein tubular neighbourhood

Loc(L) ↪→ ShT−ε(L̃)∪Tε(L̃)(M × R)

and then push one of the copies to infinity through a Legendrian isotopy and get

Loc(L)→ ShL̃(M × R).

For conical Legendrian cobordisms, one can easily see that at the negative end

the radius of the Weinstein tubular neighbourhood T−ε(L̃) ∪ Tε(L̃) loses control, so

one may not get a uniform Reeb push-off for some fixed time ε > 0, and then fail

to connect the small Reeb push-off with some large Reeb push-off. This is why the

doubling construction does not provide a sheaf quantization without extra conditions.

Therefore, our strategy is to construct the doubling separately near the negative

end and away from the negative end. Near the negative end, using the sheaf singularly

supported on a single copy of the Legendrian, one can immediately define a sheaf

supported on a double copy of the Legendrian by hand, while away from the negative
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Figure 4.2. The conditional doubling construction which define sheaves

in T−ε(L̃) ∪ Tε(L̃) for a conical Legendrian cobordism.

end, we have good control on the radius of the Weinstein tubular neighbourhood

theorem and the original doubling construction works. Then we show that one can

push off one of the copies to infinity.

4.4.1. Doubling for conical Legendrian cobordisms

In this section, we will mainly follow the strategy in the previous section to construct

the doubling functor. Recall that ShΛ(M×R)0 consists of sheaves with acyclic stalks

at M × {−∞}.

Theorem 4.4.1. Let L̃ ⊂ J1(M ×R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M). Then there exists a fully faithful conditional doubling

functor

wL̃ : ShΛ−(M × R)0 ×µShΛ− (Λ−) µShL̃(L̃) ↪→ ShT−ε(L̃)∪Tε(L̃)(M × R× R>0)0.
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4.4.1.1. Doubling near the negative end. We turn to the doubling construc-

tion on conical Legendrian cobordisms. We construct the doubling functor near the

negative end of the Legendrian cobordism, using the information ShΛ−(M).

More precisely, assume that L̃ ∩ J1(M × (0, s−)) is conical. Consider c(Λ−) the

length of the shortest Reeb chord on Λ−. Then for ε > 0, pick s0 > 0 such that

ε < s0c(Λ−) < s−c(Λ−). We show the existence of the doubling functor on the

conical end M × R× (0, s0).

Lemma 4.4.2. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M × (0, s−)) for ε < s0c(Λ−) <

s−c(Λ−). Then there exists a doubling functor

w
(0,s−)

L̃
: ShΛ−(M × R)→ ShT−ε(L̃)∪Tε(L̃)(M × R× (0, s−))

such that i−1
s0
w

(0,s−)

L̃
(F ) = wΛ− ◦mΛ−(F ).

Proof. Define the projection π : M×R×(0, t0)→M×R by π(x, z, t) = (x, z/t),

and let

w
(0,s−)

L̃
(F ) = Cone(T−ε(π

−1F )→ Tε(π
−1F )).

Then it is clear that when SS∞(F ) ⊂ Λ−, SS∞
(
w

(0,s−)

L̃
(F )

)
⊂ (T−ε(L̃) ∪ Tε(L̃)) ∩

T ∗,∞(M × R× (0, s−)). Finally, the identity

i−1
s0
w

(0,s−)

L̃
(F ) = wΛ− ◦mΛ−(F )

follows from the exact triangle of functors T−ε → Tε → wΛ ◦mΛ. �
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Remark 4.4.1. We explain why it is necessary to assume the existence of a sheaf

F ∈ ShΛ−(M × R)0 in the construction. In fact, this is the obstruction to go from

Proposition 4.3.2 to Theorem 4.3.1. Lack of a Weinstein tubular neighbourhood of L̃

with positive radius at the negative end makes it difficult to connect T−ρ(L̃) ∪ Tρ(L̃)

and T−ε(L̃) ∪ Tε(L̃), following the notation in Proposition 4.3.2.

For example, consider the trivial 1-dimensional conical Legendrian cobordism, by

the reparametrization identifying J1(pt× (0,+∞)) with J1(pt×R) as in Figure 2.2

(middle), one may assume that

L̃ = {(s,±es,±es)|s ∈ R}.

One can easily check that infx,x′∈L̃ d(x, x′) = 0 under the standard complete adapted

metric. Then lack of a Weinstein tubular neighbourhood of positive radius with respect

to the standard metric will prevent the Legendrian isotopy between T−ρ(L̃) ∪ Tρ(L̃)

and T−ε(L̃) ∪ Tε(L̃) from being extended to a Hamiltonian isotopy.

Next, we prove full faithfulness of the functor near negative end. Recall that

ShΛ(M ×R)0 is the subcategory of sheaves with acyclic stalks at M × {−∞}. This

will be used frequently in the statements.

Lemma 4.4.3. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M × (0, s−)). Then for F ,G ∈

ShΛ−(M × R)0,

Hom(Tε(π
−1F ), T−ε(π

−1G )) ' 0.
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Proof. Since SS∞(T−ε(π
−1F ))∩SS∞(Tε(π

−1G )) = ∅, by Proposition 3.1.7, we

know that

SS∞
(
H om(Tε(π

−1F ), T−ε(π
−1G ))

)
⊂ −Tε(Λ× (0, s−)) + T−ε(Λ− × (0, s−)).

Therefore, a point (x, z, s; y, 0, σ) ∈ SS∞
(
H om(Tε(π

−1F ), T−ε(π
−1F ))

)
means there

are points (x, t; ξ, 1) and (x, t′; ξ, 1) ∈ Λ− such that (x, z, s) = (x, st + ε, s) =

(x, st′ − ε, s) and

(x, z, s; y, 0, σ) = −(x, st+ ε, s; sξ, 1, t) + (x, st′ − ε, s; sξ, 1, t′).

In other words, s(t′ − t) = 2ε and thus σ = t′ − t > 0. By microlocal Morse lemma

3.1.3, we know that

Hom(Tε(π
−1F ), T−ε(π

−1G )) = Hom(Tε(π
−1F )|M×R×(0,s′−), T−ε(π

−1G )|M×R×(0,s′−)).

Write π−1F |M×R(0,s′−) = π−1F |(0,s′−). For s′− < s− sufficiently small, since π−1F |(0,s′−)

has acyclic stalk at −∞, T−ε(π
−1G )|(0,s′−) is a local system on supp(Tε(π

−1G )|(0,s′−)).

Then we know that

SS∞(H om(Tε(π
−1F )|(0,s′−), T−ε(π

−1G )|(0,s′−))) ⊂ −SS∞(Tε(π
−1F )|(0,s′−))

consisting of points (x, t, s; y, τ, σ) such that τ < 0. Therefore, by microlocal Morse

lemma again,

Hom(Tε(π
−1F )|(0,s′−), T−ε(π

−1G )|(0,s′−)) = 0.
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This proves our claim. �

Lemma 4.4.4. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M × (0, s−)). Then

Hom(T−ε(π
−1F ), Tε(π

−1G )) ' Hom(F ,G ).

Proof. We know that (x, z, s; y, 0, σ) ∈ SS∞
(
H om(T−ε(π

−1F ), Tε(π
−1F ))

)
if

there are points (x, t; ξ, 1) and (x, t′; ξ, 1) ∈ Λ− such that (x, z, s) = (x, st − ε, s) =

(x, st′ + ε, s) and

(x, z, s; y, 0, σ) = (x, st− ε, s; sξ, 1, t) + (x, st′ + ε, s; sξ, 1, t′).

In other words, s(t′− t) = −2ε and thus σ = t′− t < 0. By microlocal Morse lemma

3.1.3, we know that

Hom(T−ε(π
−1F ), Tε(π

−1G )) = Hom(T−ε(π
−1F )|M×R×(s′−,s−), Tε(π

−1G )|M×R×(s′−,s−)).

Then for s′− < s− sufficiently close, the fronts T−ε(Λ− × (s′−, s−)) and Tε(Λ− ×

(s′−, s−)) are Legendrian movies of a Legendrian isotopy. Hence by Theorem 3.3.1

and Proposition 4.1.2

Hom(T−ε(π
−1F )|(s′−,s−), Tε(π

−1G )|(s′−,s−))

= Hom(T−ε/s−F , Tε/s−G ) = Hom(F ,G ).

This proves our claim. �
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Remark 4.4.2. Alternatively, one can use the fact that TuH = k[0,+∞) ?H to

show that

Hom(π−1F , π−1G ) = lim−→
ε>0

Hom(T−ε(π
−1F ), Tε(π

−1G ))

= Hom(T−ε(π
−1F ), Tε(π

−1G )).

Then the result follows from Theorem 3.3.1.

Proposition 4.4.5. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism

from Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M × (0, s−)). Then the

doubling functor is fully faithful

w
(0,s−)

L̃
: ShΛ−(M × R)0 ↪→ ShT−ε(L̃)∪Tε(L̃)(M × R× (0, s−))0.

Proof. It suffices to show that for any F ,G ∈ ShΛ−(M×R)0 with acyclic stalks

at −∞,

Hom(Cone(T−ε(π
−1F )→ Tε(π

−1F )),Cone(T−ε(π
−1G )→ Tε(π

−1G ))) ' Hom(F ,G ).

First, we prove that

Hom(Tε(π
−1F ),Cone(T−ε(π

−1G )→ Tε(π
−1G ))) = Hom(F ,G ).

By Lemma 4.4.3 we know that for s′− < s− sufficiently small,

Hom(Tε(π
−1F ), T−ε(π

−1G )) = Hom(Tε(π
−1F )|(0,s′−), T−ε(π

−1G )|(0,s′−)) = 0.
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On the other hand, we know by Theorem 3.3.1 that

Hom(Tε(π
−1F ), Tε(π

−1G )) = Hom(Tε(π
−1F )|(0,s′−), Tε(π

−1G )|(0,s′−)) = Hom(F ,G ).

Since the natural continuation map given by the Reeb flow Tt factors through the

restrictions to M × R× (0, s′−). This implies that

Hom(Tε(π
−1F ),Cone(T−ε(π

−1G )→ Tε(π
−1G ))) = Hom(F ,G ).

Next, we prove that

Hom(T−ε(π
−1F ),Cone(T−ε(π

−1G )→ Tε(π
−1G ))) = 0.

By Lemma 4.4.4, we know that for s′− < s− sufficiently close to each other,

Hom(T−ε(π
−1F ), Tε(π

−1G )) = Hom(T−ε(π
−1F )|(s′−,s−), Tε(π

−1G )|(s′−,s−))

= Hom(F ,G ).

On the other hand, we know by Theorem 3.3.1 that

Hom(T−ε(π
−1F ), T−ε(π

−1G )) = Hom(T−ε(π
−1F )|(s′−,s−), T−ε(π

−1G )|(s′−,s−))

= Hom(F ,G )
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Since the natural continuation map given by the Reeb flow Tt factors through the

restrictions to M × R× (s′−, s−). This implies that

Hom(T−ε(π
−1F ),Cone(T−ε(π

−1G )→ Tε(π
−1G ))) = 0.

Combining the two equalities, we can therefore conclude that the doubling functor

is fully faithful near the negative end. �

Proposition 4.4.6. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism

from Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M×(0, s−)). Then ι∗
L̃
◦w(0,s−)

L̃

is the left adjoint of the restriction

i−1
− : ShL̃(M × R× (0, s−))0 ↪→ ShΛ−(M × R)0.

Proof. It suffices to show that for any F ,G ∈ ShΛ−(M×R)0 with acyclic stalks

at −∞

Hom(Cone(T−ε(π
−1F )→ Tε(π

−1F )), π−1G ) ' Hom(F ,G ).

This follows from the Lemma 4.4.3 and 4.4.4. �

4.4.1.2. Doubling away from the negative end. We construct the doubling

functor away from the negative end using the doubling construction with some uni-

form Reeb pushoff.

In fact, by Lemma 2.2.5, there exists a complete adapted metric on J1(M ×

(s0,+∞)) such that L̃∩J1(M×(s0,+∞)) admits a tubular neighbourhood of positive
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radius. Therefore, we get a fully faithful doubling functor

w
(s0,+∞)

L̃
: µShL̃(L̃)→ ShT−ε(L̃)∪Tε(L̃)(M × R× (s0,+∞)).

Lemma 4.4.7. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M) that is conical on J1(M × (0, s−)) for ε < s0c(Λ−) <

s−c(Λ−). Given F ∈ ShΛ−(M × R) and L ∈ µShL̃(L̃), suppose

mΛ−(F ) = i−1
Λ−

L .

Then for the inclusions i−(s0,s−) : M × R × (s0, s−) ↪→ M × R × (0, s−) and i+(s0,s−) :

M × R× (s0, s−) ↪→M × R× (s0,+∞), we have a canonical isomorphism

(i−(s0,s−))
−1w

(0,s−)

L̃
(F ) = (i+(s0,s−))

−1w
(s0,+∞)

L̃
(L ).

Proof. Since L̃ is conical on J1(M × (s0, s−)), there is a canonical equivalence

by Guillermou-Kashiwara-Schapira that

ShΛ−(M × R)
∼−→ ShL̃(M × R× (s0, s−)),

it suffices to show that for any s1 ∈ (s0, s−) and the corresponding inclusions i−s1 :

M × R × {s1} ↪→ M × R × (0, s−) and i+s1 : M × R × {s1} ↪→ M × R × (s0,+∞),

there is an isomorphism

(i−s1)−1w
(0,s−)

L̃
(F ) = (i+s1)−1w

(s0,+∞)

L̃
(L ).
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On the other hand, as our construction of w
(s0,+∞)

L̃
is local with respect to small open

subsets U × I × J ⊂ M × R × (s0, s−), it is compatible with the construction on a

single slice wΛ− and there is an obvious isomorphism that

(i+s1)−1w
(s0,+∞)

L̃
(L ) = wΛ−(i−1

Λ−
L ) = wΛ− ◦mΛ−(F ).

Then the isomorphism follows from Lemma 4.4.2 that i−1
s1
w

(0,s−)

L̃
(F ) = wΛ−◦mΛ−(F ).

�

Remark 4.4.3. Instead of defining the doubling functor for the Legendrian cobor-

dism in J1(M×R>0), one may consider defining the doubling functor on the truncated

cobordism in J1(M × (s0,+∞)), where a Weinstein neighbourhood of positive radius

always exist. However, then there will be obstruction to apply Reeb pushoff to send

one copy of the Legendrian to infinity, see Remark 4.4.4. As we will explain, actually

both the construction of doubling and the construction of pushing one copy to infinity

come down to the question about the tubular neighbourhoods.

Using the above lemma, we can prove the well-definedness of the doubling functor

in Theorem 4.4.1 which is

wL̃ : ShΛ−(M × R)×µShΛ− (Λ−) µShL̃(L̃) ↪→ ShT−ε(L̃)∪Tε(L̃)(M × R× R>0).

Next, we will need to address the full faithfulness of the doubling functor. This

follows immediately from full faithfulness on the negative end Proposition 4.4.5 and

full faithfulness away from the negative end Theorem 4.3.1.
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Moreover, we can show the adjunction property in the following proposition.

Theorem 4.4.8. Let L̃ ⊂ J1(M ×R>0) be a conical Legendrian cobordism from

Λ− ⊂ J1(M) to Λ+ ⊂ J1(M). Then when restricted to the subcategory of sheaves

with compact supports, ι∗
L̃
◦ wL̃ is the left adjoint of the functor

(i−,mL̃) : ShL̃(M × R× (0,+∞))0 → ShΛ−(M × R)0 ×µShΛ− (Λ−) µShL̃(L̃).

Proof. On the negative end, for any F ∈ ShΛ−(M × R)0 and G ∈ ShL̃(M ×

R× (0, s−))0, by Proposition 4.4.6, we know that

Hom(w
(0,s−)

L̃
(F ),G ) = Hom(F , i−1

− G ).

Away from the negative end, for any L ∈ µShL̃(L̃) and G ∈ ShL̃(M×R×(s0,+∞))0,

by Theorem 4.2.10, we know that

Hom(w
(s0,+∞)

L̃
(L ),G ) = Γ(L̃, µhom(L ,mL̃(G ))).

On the overlap region, suppose mΛ−(F ) = i−1
− L . We also have

Hom(wΛ−(L ), i−1
− G ) = Γ(Λ−, µhom(i−1

− L ,mΛ−(i−1
− G ))).

Therefore, we can conclude that globally the adjunction holds. �
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4.4.2. Separation of double copied Legendrians

Given the doubling construction in the previous section, now we will pull the double

copies L̃ and Tε(L̃) apart and get the sheaf quantization functor for the conical

Legendrian cobordism L̃.

Proposition 4.4.9. Let L̃ ⊂ J1(M × R>0) be a conical Legendrian cobordism

from Λ− ⊂ J1(M) to Λ+ ⊂ J1(M). Then for any ε, ε′ > 0, there exists a canonical

equivalence

ShL̃∪Tε(L̃)(M × R× R>0)
∼−→ ShL̃∪Tε′ (L̃)(M × R× R>0).

Proof. Following Proposition 4.3.3, we need to show that there exists some neigh-

bourhood Uε′(Λ) of Λ that is disjoint from
⋃
u≥ε Tu(Λ).

First, we find a neighbourhood of the negative end of L̃. Recall h(Λ−) =

max(x,ξ,t)∈Λ− t − min(x,ξ,t)∈Λ+ t. Assume that L̃ is conical on J1(M × (0, s0)), and

moreover fix eε/2s0h(Λ−) < ε/2. Then there exists a neighbourhood of L̃ ∩ J1(M ×

(0, s0)) of radius ε/2 that is disjoint from
⋃
u≥ε Tu(L̃). This is because for points in⋃

u≥ε Tu(L̃) ∩ J1(M × (0, eε/2s0)), the distance between the t coordinates is at least

ε/2, while for the other points, the distance between the s coordinates is at least ε/2.

Then, we find a tubular neighbourhood away from the negative end of L̃. In fact,

by Lemma 2.2.4, the Lagrangian projection L∩ T ∗(M × (s0,+∞)) admits a tubular

neighbourhood of positive radius ε1. Therefore, following Lemma 2.2.1, consider

a tubular neighbourhood of L̃ ∩ J1(M × (s0,+∞)) of radius ε′ = min(ε, ε1). Then
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L̃∩J1(M×(s0,+∞)) is disjoint from
⋃
u≥ε Tu(L̃). Indeed, for points in

⋃
u≥ε Tu(L̃)∩

J1(M × (0, eε/2s0)), the distance between the z coordinates is at least ε′, while for

the other points, the distance between the z coordinates is again at least ε′. By

considering the union of the two neighbourhoods, we complete the proof. �

Remark 4.4.4. Suppose one starts by working on J1(M × (s0,+∞)) where the

doubling construction exists for some uniform ε > 0. Then there will be serious

difficulty when one tries to pushoff one of the copies by the Reeb flow. This is

because by choosing a complete adapted metric on J1(M × (s0,+∞)), different from

the restriction of the one on J1(M × R>0), the negative end becomes asymptotically

horizontal and there will no longer be a tubular neighbourhood of Λ with positive

radius that is disjoint from
⋃
u≥ε Tu(Λ).

For example, consider the trivial 1-dimensional conical Legendrian cobordism as

in Figure 2.2 (right), by the reparametrization identifying J1(pt × (1,+∞)) with

J1(pt× R), one may assume that

L̃ = {(s,±es,±t0/2± es)|s ∈ R}.

One can easily check that infx,x′∈L̃ d(x, Tt0(x′)) = 0 under the standard complete

adapted metric. Lack of control on the tubular neighbourhood will forbid us to connect

the obvious Legendrian isotopy from L̃ ∪ Tε(L̃) to L̃ ∪ Tt0+ε(L̃) by a Hamiltonian

isotopy.
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Based on the proposition, we can prove finish the proof of Theorem 4.0.9. Let

tmax(Λ+) = max(x,ξ,t)∈Λ+ t, tmin(Λ−) = min(x,ξ,t)∈Λ+ t and the height be h(Λ+) =

tmax(Λ+) − tmin(Λ+). Suppose that L̃ is conical on J1(M × (s+,+∞)). We choose

ε′ > 0 and s′+ > 0 such that s+h(Λ+) < s′+h(Λ+) < ε′.

Proof of Theorem 4.0.9. Using Theorem 4.4.1 and Proposition 4.4.9, we

know that there exists a doubling functor (fully faithful on the subcategory of com-

pactly supported sheaves)

w′
L̃

: ShΛ−(M × R)×µShΛ− (Λ−) µShL̃(L̃)→ ShL̃∪Tε′ (L̃)(M × R× R>0).

Then by restricting to M × (−∞, s′+ + s′+tmax(Λ+))× (0, s′+), we get a functor

ShΛ−(M × R)×µShΛ− (Λ−) µShL̃(L̃)→ ShL̃(M × (−∞, s′+ + s′+tmax(Λ+))× (0, s′+)).

Choose a diffeomorphism ϕ : M×(−∞, s′+ +s′+tmax(Λ+))×(0, s′+)
∼−→M×R×(0, s′+)

that is the identity on M × (−∞, s′+/2 + s′+tmax(Λ+))× (0, s′+). We will get the first

equivalence

ShL̃(M × (−∞, s′+ + s′+tmax(Λ+))× (0, s′+))
∼−→ ShL̃(M × R× (0, s′+)).

Then since L̃ is conical on J1(M × (s+,+∞)), consider the equivalence induced by

Guillermou-Kashiwara-Schapira that

ShL̃(M × R× (s+, s
′
+))

∼−→ ShL̃(M × R× (s+,+∞)).
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We will therefore get the second equivalence

ShL̃(M × R× (0, s′+))
∼−→ ShL̃(M × R× (0,+∞)).

Therefore, combing the first equivalence and the second equivalence, we can conclude

that there exists a conditional sheaf quantization functor.

Now, it suffices to show that the sheaf quantization functor is fully faithful when

restricted to the subcategory of sheaves with compact supports at the negative end

ShΛ−(M ×R)0. Let j : M × (−∞, s′+ + s′+tmax(Λ+))× (0, s′+) ↪→M ×R×R>0 and

ϕ : M × (−∞, s′+ + s′+tmax(Λ+))× (0, s′+)
∼−→M ×R× (0, s′+) be the diffeomorphism.

By Theorem 4.4.8, we have

Hom(ΨL(F ,L ),ΨL(F ,L )) = Hom(ϕ−1j−1w′
L̃
(F ,L ), ϕ−1j−1w′

L̃
(F ,L ))

= Hom(w′
L̃
(F ,L ), j∗ϕ∗ϕ

−1j−1w′
L̃
(F ,L ))

' Hom((F ,L ), (i−1
Λ−
,mL̃)(w′

L̃
(F ,L )))

= Hom((F ,L ), (F ,L )).

This concludes the proof of the full faithfulness property.

Finally, it suffices to prove essential surjectivity in order to conclude that this

is an equivalence. In fact, for any F ∈ ShL̃(M × R)0, we can easily show that

ΨL(i−1
− F ,mL̃(F )) = F . Actually, when constructing the doubling wL̃(i−1

− F ,mL̃(F )),

we have

wL̃(i−1
− F ,mL̃(F )) = Cone(T−ε(F )→ Tε(F )).
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At the negative end, this identity follows from the definition, while away from the

negative end, this identity follows from the definition and the exact triangle of func-

tors in Corollary 4.2.8. �
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CHAPTER 5

Action Filtration, Persistence and Reeb Chords

Estimating the number of Reeb chords has been a basic question on Legendrian

submanifolds since Arnold’s time [9]. When the contact manifold is (Y, ξ) = (P ×

Rt, ker(dt − θP )) where (Y, dθP ) is an exact symplectic manifold, one can pick the

contact form α = dt − θP , and then the Reeb vector field is ∂/∂t. For Λ a closed

Legendrian, consider the Lagrangian projection

πLag : Λ ↪→ P × R→ P.

The Reeb chords between Legendrian submanifolds correspond bijectively to inter-

section points of their Lagrangian projections.

For the number of self Reeb chords, when n is even, there is a topological lower

bound coming from [πLag(Λ)] · [πLag(Λ)] = χ(Λ)/2. Some flexibility results tell us

that this is sometimes the best bound one can expect [53]. However, under some

extra assumptions, there are rigid behaviours beyond this purely algebraic topological

bound.

Using pseudo-holomorphic curves, a number of celebrated theorems on the num-

ber of self Reeb chords have been found [39,115,131]. In particular, for Legendrians

Λ ⊂ P × R, using Legendrian contact homology, works by Ekholm-Etnyre-Sullivan,
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Ekholm-Etnyre-Sabloff and Dimitroglou Rizell-Golovko [45,56,58] showed that, un-

der some assumptions, the number of self Reeb chords is bounded from below by

half of the sum of Betti numbers.

Other than estimating self Reeb chords, estimating the number of Reeb chords

between Λ and some Hamiltonian pushoff ϕ1
H(Λ) has also been an important question.

When the contact Hamiltonian comes from a symplectic Hamiltonian on P , this

question reduces to the Arnold conjecture for (immersed) Lagrangian submanifolds

πLag(Λ) [9].

Many Legendrians can be displaced from themselves so that there are no Reeb

chords between Λ and ϕ1
H(Λ). However, when the norm of the Hamiltonian is suf-

ficiently small, one can get estimates on the number of Reeb chords between Λ and

ϕ1
H(Λ) using pseudo-holomorphic curves [7,35,46,110]. In particular a recent result

by Dimitroglou Rizell-Sullivan [47], using the persistence of Legendrian contact ho-

mology, showed that for Legendrians Λ ⊂ P × R, under certain assumptions, there

is a lower bound of the number of Reeb chords in terms of Betti numbers, when the

oscillation norm of the Hamiltonian is small comparing to the length of Reeb chords.

The main purpose of this chapter is to set up the correspondence and estimate

the number of Reeb chords using microlocal sheaf theory.

For self Reeb chords of a Legendrian Λ ⊂ T ∗,∞τ>0 (M × R), we have the follow-

ing results analogous to Ekholm-Etnyre-Sullivan [56], Ekholm-Etnyre-Sabloff [58]

and Dimitroglou Rizell-Golovko [45], where they showed the same inequality under
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the existence of a finite dimensional representation of the Chekanov-Eliashberg dg

algebra, or Sabloff-Traynor [136] where they used generating families.

A Legendrian submanifold Λ ⊂ T ∗,∞τ>0 (M ×R) is chord generic, if the Lagrangian

projection πLag(Λ) is immersed with only transverse double points. Let Q(Λ) be the

set of Reeb chords on Λ. Assume that the Maslov class µ(Λ) = 0. Then there is a

grading on Reeb chords of Λ given by the Conley-Zehnder index; see Section 2.3.2.

Let Qi(Λ) be the set of degree i Reeb chords on Λ.

Theorem 5.0.10. Let M be orientable, Λ ⊂ T ∗,∞τ>0 (M × R) be a closed chord

generic Legendrian submanifold and k be a field. If there exists a k-coefficient pure

sheaf F ∈ ShbΛ(M × R) with microlocal rank r such that supp(F ) is compact, then

|Qi(Λ)|+ |Qn−i(Λ)| ≥ bi(Λ; k).

In particular, the number of Reeb chords

|Q(Λ)| ≥ 1

2

n∑
i=0

bi(Λ;k).

Here bi(Λ;k) = dimkH
i(Λ; k).

Theorem 5.0.11 (Theorem 1.5.1). Let M be orientable, Λ ⊂ T ∗,∞τ>0 (M × R) be

a closed chord generic Legendrian submanifold and k be a field. If there exists a k-

coefficient sheaf F ∈ ShbΛ(M × R) with perfect stalk such that supp(F ) is compact,

then

|Q(Λ)| ≥ 1

2

n∑
i=0

bi(Λ;k).
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Here bi(Λ;k) = dimkH
i(Λ; k).

Remark 5.0.5. The condition that supp(F ) is compact may be thought of as an

analogue of the linear at infinity condition on generating families [136]. If we drop

this condition, then there will be counterexamples. Consider the positive conormal

ν∗,∞M,τ>0(M × R) ⊂ T ∗,∞τ>0 (M × R) (which is just the zero section M ⊂ J1(M)). There

is an obvious sheaf kM×[0,+∞) with the prescribed singular support. However that

Legendrian has no Reeb chords.

Remark 5.0.6. When there is a sheaf F ∈ ShbΛ(M × R) with perfect stalk,

then one can show that [84] necessarily the Maslov class µ(Λ) = 0. However this

condition is not necessary to get estimates on number of Reeb chords. In general,

one can consider the triangulated orbit category ShbΛ(M×R)/[1] consisting of sheaves

of 1-cyclic complexes (see [100] and [84, Section 3]). When there is a sheaf F ∈

ShbΛ(M × R)/[1], then we still expect that

|Q(Λ)| ≥ 1

2

n∑
i=0

bi(Λ;k),

but we do not work out the details here.

Remark 5.0.7. In [45,56,58] they imposed the condition that the Legendrian Λ

is horizontally displaceable, meaning that there exists a Hamiltonian isotopy ϕsH (s ∈

I) such that there are no Reeb chords between Λ and ϕ1
H(Λ). In Section 5.3.3 we

show that if Λ is horizontally displaceable, then any F ∈ ShbΛ(M × R) necessarily

has compact support.
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However, there are Legendrians that are not horizontally displaceable but admit

sheaves with compact support. For example let

Tc : M × R→M × R, (x, t) 7→ (x, t+ c)

be the vertical translation. Then the double copy of positive conormals ν∗,∞M∪Tc(M),τ>0(M×

R) ⊂ T ∗,∞τ>0 (M ×R) (which is the zero section and its Reeb pushoff in J1(M)) is not

horizontal displaceable but it admits a nontrivial sheaf with compact support. This

means that our theorems work in a slightly more general setting.

Remark 5.0.8. Conjecturally r dimensional representations of the Chekanov-

Eliashberg dg algebra should be equivalent to microlocal rank r pure sheaves (see [30]).

Therefore Theorem 5.0.10 is just an analogue of [45, 56, 58]. However, Theorem

5.0.11 has no direct analogue in the literature to our knowledge.

For Reeb chords between a Legendrian Λ and its Hamiltonian pushoff ϕ1
H(Λ), we

have the following results, analogous to Dimitroglou Rizell and Sullivan [47]. Define

the oscillation norm of the Hamiltonian to be

‖Hs‖osc =

∫ 1

0

(
max
x∈P×R

Hs − min
x∈P×R

Hs

)
ds.

Denote by l(γ) the length of a Reeb chord γ. Assume that the Maslov class µ(Λ) = 0,

which ensures the existence of a grading on chords of Λ (see Section 2.3.2), and let

ci(Λ) = min{l(γ)|γ is a Reeb chord, deg(γ) = i or n− i}.
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Order them so that cj0(Λ) ≥ cj1(Λ) ≥ ... ≥ cjn(Λ).

Theorem 5.0.12 (Theorem 1.5.2). Let M be orientable, Λ ⊂ T ∗,∞τ>0 (M ×R) be a

closed Legendrian submanifold of dimension n, and k be a field. Suppose there exists

a k-coefficient pure sheaf F ∈ ShbΛ(M × R) such that supp(F ) is compact. Let Hs

be any compactly supported Hamiltonian T ∗,∞τ>0 (M ×R) such that for some 0 ≤ k ≤ n

‖Hs‖osc < cjk(Λ)

and ϕ1
H(Λ) is transverse to the Reeb flow applied to Λ. Then the number of Reeb

chords between Λ and ϕ1
H(Λ) is

Q(Λ, ϕ1
H(Λ)) ≥

k∑
i=0

bji(Λ;k).

Here bj(Λ;k) = dimHj(Λ;k).

Remark 5.0.9. It is shown [47] that this bound is sharp for Legendrian unknotted

spheres with a single Reeb chord.

Remark 5.0.10. Dimitroglou Rizell-Sullivan considered [47] Legendrians that

only admit augmentations over a subalgebra of the Chekanov-Eliashberg dg algebra

Al(Λ) ⊂ A(Λ). We conjecture that, by combining our technique and Asano-Ike’s

technique [12], if there exists F ∈ ShbΛq∪Λr
(M ×R× (0, l)), one might get analogous

results.
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We are also able to recover the nonsqueezing result of Legendrians admitting

sheaves into a stablized/loose Legendrian [47] as a byproduct.

5.1. Action Filtration on Sheaf Homomorphisms

We recall the definitions we made in the introduction and prove some basic prop-

erties. As is explained in the introduction, we consider to add an extra R factor in

order to see the Reeb chords. We follow the construction of Shende’s lecture notes,

which goes back to Tamarkin [153, Chapter 3]. Similar constructions can also been

found in Guillermou [84, Section 13 & 16], Nadler-Shende [124, Section 6] and Kuo

[104].

Definition 5.1.1. Let q : M×R2 →M×R be q(x, t, u) = (x, t) and r : M×R2 →

M × R be r(x, t, u) = (x, t − u). For a Legendrian submanifold Λ ⊂ T ∗,∞τ>0 (M × R),

let

Λq = {(x, ξ, t, τ, u, 0)|(x, ξ, t, τ) ∈ Λ},

Λr = {(x, ξ, t+ u, τ, u,−τ)|(x, ξ, t, τ ∈ Λ)}.

For a sheaf F ∈ Shb(M × R), let

Fq = q−1F , Fr = r−1F .

Here, Λq is the movie of Λ under the identity contact isotopy, while Λr is the

movie of Λ under the vertical translation defined by the Reeb flow. It is not hard to
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Figure 5.1. When M is a point, Λ ⊂ R consists of two points 0 and 1,
the front of the Legendrians Λq and Λr are shown on the left. For F =
k[0,1), the sheaf H om(Fq,Fr) and its projection u∗H om(Fq,Fr) are
shown on the right. The blue points are coming from the Reeb chord
corresponding to the dashed blue line.

observe that every intersection point for some Λ and Reeb translation Tc(Λ) where

Tc : T ∗,∞τ>0 (M × R)→ T ∗,∞τ>0 (M × R); (x, ξ, t, τ) 7→ (x, ξ, t+ c, τ)

comes from a Reeb chord of Λ. Lemma 4.1.4 shows that those are all covectors

pointing toward du direction (i.e. in M ×Rt×T ∗Ru) that lie in the singular support

of H om(Fq,Gr), indeed,

SS∞(H om(Fq,Gr)) ∩Graph(du) = ∅.

SS∞(H om(Fq,Gr))∩Graph(−du) ↪→ Q±(Λ).

The following corollary produces an acyclic complex, which will be used to deduce

Sabloff duality. The reader may compare it to the acyclic complex produced in

generating family (co)homology [136, Section 3.1].
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Lemma 5.1.1. For Λ ⊂ T ∗,∞τ>0 (M × R) and F ,G ∈ ShbΛ(M × R) such that

supp(F ), supp(G ) are compact,

Γ(M × R2,H om(Fq,Gr)) ' 0.

Proof. Since SS∞(Fq) ∩ SS∞(Gr) = Λq ∩ Λr = ∅, by Proposition 3.1.7

H om(Fq,Gr) ' DMFq ⊗ Gr.

Since supp(F ), supp(G ) are compact, we know that for sufficiently large c > 0,

T±c(Λ) ∩ Λ = ∅. Hence for large c > 0,

supp(D′Fq ⊗ Gr) ⊂ q−1(supp(F )) ∩ r−1(supp(G )) ⊂M × [−c, c]2.

Therefore consider the function ϕ+(x, t, u) = u, ϕ+|supp(H om(Fq ,Gr)) is proper and

SS(H om(Fq,Gr)) ∩Graph(dϕ+) = ∅.

One can apply microlocal Morse lemma 3.1.3 and see that

Γ(M × R2,H om(Fq,Gr)) ' Γ(M × R× (−∞,−c),H om(Fq,Gr)) = 0.

This completes the proof. �

Similar to the case in Legendrian contact homology, where people defines two

A∞-categories Aug− and Aug+, here we also define two dg categories of sheaves.

The idea comes from the definition of the generating family cohomology.
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From now on, the projection M × R2, (x, t, u) 7→ u will be denoted by u.

Definition 5.1.2. For Λ ⊂ T ∗,∞τ>0 (M × R) and F ,G ∈ ShΛ(M × R), let

Hom−(F ,G ) = Γ(u−1([0,+∞)), Hom(Fq,Gr)),

Hom+(F ,G ) = Γ(u−1((0,+∞)), Hom(Fq,Gr)).

The main theorem in this section is the following:

Theorem 5.1.2. For Λ ⊂ T ∗,∞τ>0 (M × R) and F ,G ∈ ShΛ(M × R) such that

supp(F ) and supp(G ) are compact. Then

Hom−(F ,G ) ' Hom(F , T−ε(G )), Hom+(F ,G ) ' Hom(F , Tε(G ))

when ε < c(Λ). Consequently, by Theorem 4.0.6,

Hom−(F ,G ) ' Γ(M,∆∗Hom(π−1
1 F , π−1

2 G )), Hom+(F ,G ) = Hom(F ,G ).

Example 5.1.1. Let M be a point, Λ ⊂ R consists of two points 0 and 1 (see

Figure 5.1). For F = k[0,1), the sheaf

u∗H om(Fq,Fr) ' k(−1,0][−1]⊕ k(0,1].

Therefore as the projection u : R2 → R is proper on supp(H om(Fq,Fr)), we have

Hom−(F ,F ) = Γ([0,+∞), k0[−1]⊕ k(0,1]) = k[−1],

Hom+(F ,F ) = Γ((0,+∞),k(0,1]) = k.



165

Now we prove Theorem 5.1.2. The first part of the proof

Γ(u−1((0,+∞)), Hom(Fq,Gr)) ' Hom(F ,G )

is essentially due to Guillermou [84, Corollary 16.6]. Here we adapt the proof of

Jin-Treumann [94, Proposition 3.16].

Proof of Theorem 5.1.2. Consider Hom+(F ,G ). Let C be the minimal

length of chords γ ∈ Q(Λ). As in the proof of Corollary 5.1.1, we can choose

ϕ+(x, t, u) = u, and by microlocal Morse lemma 3.1.3, when c0 < c(Λ),

Γ(M × R× (0, c0),H om(Fq,Gr)) ' Γ(M × R× (0,+∞),H om(Fq,Gr)).

Now it suffices to show that for 0 < c < c0

Γ(M × R× (0, c0),H om(Fq,Gr)) ' Hom(F , Tc,∗(G )).

This follows from Guillermou’s result which we now recall. Note that when 0 < c < c0

there are no intersection points between Λ and Tc(Λ). Hence (Λq ∪ Λr) ∩ T ∗,∞(M ×

R × (0, c)) is the movie of a Legendrian isotopy (one can consider a Hamiltonian

supported away from a neighbourhood of Λ that is equal to 1 near
⋃
ε<c<c(Λ) Tc(Λ)).

By Guillermou-Kashiwara-Schapira’s Theorem 3.3.1, we know for any 0 < c < c0

Γ(M × R× (0, c0),H om(Fq,Gr)) ' Hom(F , Tc,∗(G )).

This proves the assertion.
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Then consider Hom−(F ,G ). First of all note that for sufficiently small ε > 0,

there are no Reeb chords of length less than ε, in order words (by Lemma 4.1.4), no

points in (−Λq + Λr) ∩Graph(−du). Hence applying microlocal Morse lemma 3.1.3

to u−1((−ε,+∞)) and u−1([0,+∞)) we know

Γ(M × R× [0,+∞),H om(Fq,Gr)) ' lim←−
ε>0

Γ(M × R× (−ε,+∞),H om(Fq,Gr))

' lim←−
ε>0

Γ(M × R× (−ε, 0),H om(Fq,Gr))

' Γ(M × R× (−c0, 0),H om(Fq,Gr)).

where iu>−ε : u−1((−ε,+∞)) ↪→ M × R2 is the inclusion. Similarly, (Λq ∪ Λr) ∩

T ∗,∞(M × R × (−c0, 0)) is the movie of a Legendrian isotopy. By Guillermou-

Kashiwara-Schapira’s Theorem 3.3.1, we know for any 0 < c < c0

Γ(M × R× (−c0, 0),H om(Fq,Gr)) ' Hom(F , T−c,∗(G )).

This proves the assertion. �

Remark 5.1.2. The reason Hom(F ,G ) 6' Hom−(F ,G ) is that for the homo-

morphism

i−1
u=0H om(Fq,Gr) 6'H om(i−1

u=0Fq, i
−1
u=0Gr).

(Using the language in Nadler-Shende [124, Section 2], this is because the gapped

condition fails for Λr and Λq as there exist Reeb chords whose lengths shrink to zero
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when u→ 0.) However, for tensor products we can easily get

i−1
u=0(D′Fq ⊗ Gr) ' i−1

u=0(D′F )⊗ i−1
u=0G .

The following corollary can be viewed as a version of degeneration to Morse

flow trees in Legendrian contact homology (that certain pseudoholomorphic curves

degenerate to Morse gradient flows) in for example [58, Theorem 3.6, Part (4)]. It

says that certain sheaf homomorphisms descend to Morse theory. A similar result in

sheaf theory can also been found in [92, Section 4.3].

Corollary 5.1.3. For Λ ⊂ T ∗,∞τ>0 (M × R) and F ∈ ShbΛ(M × R) a microlocal

rank r sheaf such that supp(F ) is compact, then

Γ(u−1(0),Γu≤0(H om(Fq,Fr)))[1] ' C∗(Λ; kr2

).

Proof. Note that we have an exact triangle

i−1
u≥0H om(Fq,Fr) → i′u>0,∗i

−1
u>0H om(Fq,Fr)

→ Γu=0(i−1
u≥0H om(Fq,Fr))[1]

+1−→ .

Here iu≥0 : u−1([0,+∞)) ↪→M×R2 and i′u>0 : u−1((0,+∞)) ↪→ u−1([0,+∞)) are the

inclusions. Taking global sections and compare it with the exact triangle in Theorem

4.0.6, we know that

Γu=0(M × R2, i−1
u≥0H om(Fq,Fr))[1] ' C∗(Λ;kr2

).
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However, write iu≥−ε to be the inclusion u−1((−ε,+∞)) ↪→M × R2. We also have

Γu=0(M × R2, i−1
u≥0H om(Fq,Fr)) ' Hom(ku=0, i

−1
u≥0H om(Fq,Fr))

' lim←−
ε>0

Hom(i−1
u≥−εku≤0, i

−1
u≥−εH om(Fq,Fr))

This isomorphism is because for sufficiently small ε > 0, there are no Reeb chords

of length less than ε, and thus (by Lemma 4.1.4), no points in ((−Λq) + Λr) ∩

Graph(−du). Therefore by microlocal Morse lemma the sections on u−1([0,+∞))

are the same as u−1((−ε,+∞)) for small ε > 0.

Γu=0(M × R2, i−1
u≥0H om(Fq,Fr)) ' lim←−

ε>0

Hom(i−1
u≥−εku≤0, i

−1
u≥−εH om(Fq,Fr))

' lim←−
ε>0

Hom(i−1
|u|<εku≤0, i

−1
|u|<εH om(Fq,Fr))

' lim←−
ε>0

Γ(u−1((−ε, ε)),Γu≤0(H om(Fq,Fr)))

' Γ(u−1(0),Γu≤0(H om(Fq,Fr))).

Here i|u|<ε : u−1((−ε, ε)) ↪→ M × R2 is the inclusion. The second equality holds

because Lemma 4.1.4 enables us to apply microlocal Morse lemma restrict from

u−1((−ε,+∞)) to u−1((−ε, ε)). This proves our assertion. �

5.2. Persistence Modules and Hamiltonian Isotopy

5.2.1. Persistence Modules and Sheaves

A persistent module is roughly speaking an R-direct system of modules. It has been

studied by a number of people, for example in [32,33].
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Definition 5.2.1. Let k be a ring. A persistence module MR is a family {Mα}α∈R

of graded k-modules, together with a family {fα0α1 : Mα0 → Mα1}α0≤α1 such that

fα1α2 ◦ fα0α1 = fα0α2 and fαα = idMα. MR is tame if for any α ∈ R, dimMα <∞.

Definition 5.2.2. Let MR, NR be two persistence modules. They are (ε, ε′)-

interleaved if there exists

φα : Mα → Nα+ε, φ
′
α : Mα → Nα+ε′ ,

ψα : Nα →Mα+ε, ψ
′
α : Nα →Mα+ε′

such that the following diagrams commute

fMα,α+ε+ε′ = ψα+ε ◦ φα, fNα,α+ε+ε′ = φ′α+ε′ ◦ ψ′α.

The interleaving distance between MR, NR is

d(MR, NR) = inf{ε+ ε′|MR, NR are (ε, ε′)-interleaved}.

One of the origins of the study of persistence modules is to study real functions

on a manifold. Let f ∈ C∞(X) and Xα
f = f−1((α,+∞)). Then {H∗(Xα

f )}α∈R is

a persistence module. A crucial result in [32] is that the distance of a family of

persistence modules {H∗(Xα
f )}α∈R when f changes is controlled by the C0-norm of

f :

d(H∗(Xα
f ), H∗(Xα

g )) ≤ dC0(f, g).
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Remark 5.2.1. In [32] the authors were assuming that φ = ψ, φ′ = ψ′ and

only got the bound by 2dC0(f, g). However, when Usher-Zhang [158], or Asano-Ike

[11] were trying to define an analogue of the interleaving distance and apply that to

symplectic topology, they found that one had to allow the case where φ 6= ψ, φ′ 6= ψ′

in order to get a better bound dC0(f, g). Therefore we adapt their definition here.

In this paper, we will use the language of constructible sheaves on R instead of

persistence modules. Here is the classification result of these sheaves.

Theorem 5.2.1 (Guillermou [86, Corollary 7.3]; Kashiwara-Schapira [89, The-

orem 1.17]). Let F ∈ Shbν<0(R) be a constructible sheaf. Then there exists a finite

(index) set A such that

F '
⊕
α∈A

krα(uα,vα][nα].

Each interval (uα, vα] is called a bar.

Note that for any constructible sheaf F ∈ Shbν<0(R), we can associate a tame

persistence module by Mα = H∗Γ((−∞, α),F ). All definitions and results in persis-

tence modules can be stated in 1-dimensional sheaf theory easily. In fact, one can

probably show that the category of tame persistence modules is equivalent to the

full subcategory of constructible sheaves in Shbν<0(R). However we won’t discuss it

here.

Now we define the interleaving distance for sheaves in arbitrary dimensions.

Definition 5.2.3 (Asano-Ike [11]). Let F ,G ∈ Shbτ>0(M × R) be two con-

structible sheaves. Let Tc : R → R be the translation Tc(x, t) = (x, t + c). They
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Figure 5.2. The sheaves k(a0,b0] and k(a1,b1] in two different cases.

are (ε, ε′)-interleaved if there exists

φ : F → Tε,∗G , ψ : G → Tε′,∗F ,

φ′ : G → Tε,∗F , ψ′ : F → Tε′,∗G

such that the following diagrams commute

tF0,ε+ε′ = Tε,∗ψ ◦ φ, tG0,ε+ε′ = Tε′,∗φ
′ ◦ ψ′

where tHa,b : H → Ta+b,∗H is the natural map. The interleaving distance between

F ,G is

d(F ,G ) = inf{ε+ ε′|F ,G are (ε, ε′)-interleaved}.

Example 5.2.2. Consider the sheaves k(a0,b0] and k(a1,b1] in Shbν<0(R). Since

their singular supports satisfy ν < 0, we need to choose the translation in the negative

direction Uc : R→ R, x 7→ x− c. Then if a, a′, b, b′ are distinct, by Proposition 3.1.7

H om(k(a,b], k(a′,b′]) = k[a,b)∩(a′,b′].

There exists a degree zero non-vanishing map iff a′ < a and b′ < b. Now we estimate

the distance between k(a0,b0] and k(a1,b1] in two specific cases.
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Suppose a0 > a1, b0 > b1 and a0 < b1 (Figure 5.2 left). When ε+ ε′ > b1− a1, the

natural map

τ0,ε+ε′ : k(a1,b1] → k(a1−ε−ε′,b1−ε−ε′]

becomes zero, so we can choose all the maps to be zero. Now we assume that ε+ ε′ <

b1 − a1, which means the natural map as a composition

τ0,ε+ε′ : k(a1,b1] → k(a0−ε′,b0−ε′] → k(a1−ε−ε′,b1−ε−ε′]

is nonzero. For the second map to be nonzero, we require a0−ε′ < a1 and b0−ε′ < b1,

i.e. ε′ > max{a0 − a1, b0 − b1}. Now we choose any

ε > 0, ε′ > max{a0 − a1, b0 − b1}.

Then maps in the composition

τ0,ε+ε′ : k(a1,b1] → k(a0−ε′,b0−ε′] → k(a1−ε−ε′,b1−ε−ε′]

can be chosen to be nonzero. For the other composition

τ0,ε+ε′ : k(a0,b0] → k(a1−ε,b1−ε] → k(a0−ε−ε′,b0−ε−ε′],

we have a0 − ε − ε′ < a1 − ε, b0 − ε − ε′ < b1 − ε. Therefore the maps can also be

chosen to be nonzero. Therefore we can show that the distance is

d(k(a0,b0], k(a1,b1]) = inf{ε+ ε′} = max{a1 − a0, b1 − b0}.
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Suppose a0 > a1, b0 < b1. Then (a0, b0] ⊂ (a1, b1] (Figure 5.2 right). Without loss

of generality, we may still assume that ε+ ε′ < b1− a1, which means the composition

τ0,ε+ε′ : k(a1,b1] → k(a0−ε′,b0−ε′] → k(a1−ε−ε′,b1−ε−ε′]

is nonzero. For the first map to be nonzero, we require a0− ε′ < a1 < b0− ε′, i.e. ε′ >

a0 − a1. For the second map to be nonzero, we require a0 − ε′ < b1 − ε− ε′ < b0 − ε′,

i.e. ε > b1 − b0. Therefore one can show that

d(k(a0,b0], k(a1,b1]) = inf{ε+ ε′} = (a0 − a1) + (b1 − b0).

For the other two cases, one has similar results. In conclusion, one can see that

the persistence distance is measuring how far the bars differ from each other (in fact

it is the Gromov-Hausdorff distance between the intervals).

Here is a basic property we’re going to use from time to time. It basically says

that the persistence distance is a pseudo metric.

Lemma 5.2.2. Suppose F ,G are (a0, b0)-interleaved, and G ,H are (a1, b1)-

interleaved. Then F ,H are (a0 + a1, b0 + b1)-interleaved. In particular,

d(F ,H ) ≤ d(F ,G ) + d(G ,H ).
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Proof. We have the following commutative diagrams that give the natural maps

τ0,a0+b0 and τ0,a1+b1 :

F
φ−→ Ta0,∗G

Ta0,∗ψ−−−−→ Ta0+b0,∗F , G
φ′−→ Tb0,∗F

Tb0,∗ψ
′

−−−−→ Ta0+b0,∗G ,

G
γ−→ Ta1,∗H

Ta0,∗δ−−−→ Ta1+b1,∗G , H
γ′−→ Tb1,∗G

Tb0,∗δ
′

−−−−→ Ta1+b1,∗H .

Therefore we can construct the following maps that give the natural map τ0,a0+a1+b0+b1 :

F
Ta0,∗γ◦φ−−−−−→ Ta0+a1,∗H

Ta0+a1+b1,∗ψ◦Ta0+a1,∗δ−−−−−−−−−−−−−−→ Ta0+b0+b0+b1,∗F ,

H
Ta1,∗φ

′◦γ′
−−−−−−→ Ta1+a0,∗F

Ta1+a0+b0,∗δ
′◦Ta1+a0,∗ψ

′

−−−−−−−−−−−−−−−→ Ta1+a0+b1+b0,∗H .

This proves the assertion. �

5.2.2. Continuity under Hamiltonian Isotopy

Given a Hamiltonian isotopy ϕsH (s ∈ I) on T ∗,∞τ>0 (M × R), Guillermou-Kashiwara-

Schapira defined an equivalence functor called sheaf quantization Φs
H : Shbτ>0(M ×

R)→ Shbτ>0(M ×R) (Theorem 3.3.1). Asano and Ike studied how the quantization

of a Hamiltonian isotopy changes the interleaving distance. Recall that

‖H‖osc =

∫ 1

0

(maxHs −minHs) ds.

Theorem 5.2.3 (Asano-Ike [11]). Let H be a compactly supported Hamiltonian

on T ∗,∞τ>0 (M × R) and Φs
H (s ∈ I) be its sheaf quantization functor. Then for F ∈

Shτ>0(M × R),

d(F ,Φ1
H(F )) ≤ ‖H‖osc.
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To make the section self-contained, we give a proof of the theorem (the version

we’re going to use is a little bit weaker as we will add the proper assumption in the

following lemma, but that’s unnecessary). Denote by γa,b the following cone in R2:

γa,b = {(τ, σ)| − aτ < σ < bτ} ⊂ R2.

Lemma 5.2.4 (Guillermou-Schapira [89, Proposition 5.9]; [11, Proposition 4.3]).

For H ∈ Shτ>0(M × R× I) and s0 < s1 ∈ I, if there exists a, b, r ∈ R>0 such that

SS(H ) ∩ T ∗(M × R× (s0 − r, s1 + r)) ⊂ T ∗M × ((R× I)× γa,b) ,

Suppose the projection πM×R : M × R × I → M × R is proper on supp(H ). Then

the natural morphisms

τ0,a(s1−s0)+ε : πM×R,∗(H |M×R×[s0,s1))→ Ta(s1−s0)+ε,∗πM×R,∗(H |M×R×[s0,s1)),

τ0,b(s1−s0)+ε : πM×R,∗(H |M×R×(s0,s1])→ Tb(s1−s0)+ε,∗πM×R,∗(H |M×R×(s0,s1])

both vanish.

Proof. We will only check the first assertion. Without loss of generality, we may

assume that I = R. Write π = πM×R. Consider the diagram

{x} × R2
x̂
//

π

��

M × R2

π

��

{x} × R
x
// M × R



176

Since π is proper on supp(H ), by proper base change formula we have

x−1π∗(H |[u0,u1)) ' π∗x̂
−1(H |[u0,u1)).

Hence we may in fact assume that M is a point.

Recall (γ∨a,b)
◦ = {(t, s)| − b−1t < s < a−1s}. By microlocal cut-off lemma, we

know that

H ' ŝ∗(p̂
−1
1 k(γ∨a,b)

◦ ⊗ p̂−1
2 H ) ' s∗Γ(γ∨a,b)

◦×R2(p̂−1
2 H ),

where ŝ(t, s, t′, s′) = (t + t′, s + s′), p̂1(t, s, t′, s′) = (t, s) and p̂2(t, s, t′, s′) = (t′, s′).

Also, note that SS∞(kR×[u0,u1)) ∩ SS∞(H ) = ∅. Hence

π∗(H |R×[u0,u1)) ' π∗ΓR×(u0,u1]H ' π∗ŝ∗ΓD(p̂−1
2 H )

' π∗ŝ∗H om(kD, p̂−1
2 H ),

where D = ((γ∨a,b)
◦ × R2) ∩ {(t, s, t′, s′)|s0 < s + s′ ≤ s1}. Let T̂c(t, s, t

′, s′) =

(t+ c, s, t′, s′). Then

Tc,∗π∗ŝ∗H om(kD, p̂−1
2 H ) ' π∗ŝ∗H om(kT̂c(D), p̂

−1
2 H ),

and the natural map τ0,c is induced by kD → kT̂c(D).
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Now we consider to decompose p̂2(t, s, t′, s′) = (t′, s′) as p̂(t, s, t′, s′) = (t, t′, s′)

and p2(t, t′, s′) = (t′, s′). Then we know

H om(kD, p̂−1
2 H ) 'H om(kD, p̂−1p−1

2 H ) 'H om(kD, p̂!p−1
2 H )[−1]

' p∗H om(p̂! kD, p−1
2 H )[−1],

H om(kT̂c(D), p̂
−1
2 H ) ' p∗H om(p̂! kT̂c(D), p

−1
2 H )[−1].

Hence it suffices to show that p̂! kD → p̂!kT̂c(D) is zero. However, when t < 0, the

support of the sheaf kD in the fiber p̂−1(t, t′, s′) ∩D = ∅; when t ≥ 0,

p̂−1(t, t′, s′) ∩D = (s0 − s′, s1 − s′] ∩ (−b−1t, a−1t).

When the support of kD in the fiber of p̂ is empty or a half closed half open interval,

the stalk (p̂! kD)(t,t′,s′) = 0; when it is an open interval, then the stalk (p̂! kD)(t,t′,s′) 6=

0. Hence

supp(p̂! kD) = {(t, t′, s′)|t > 0, s0 < s′ + a−1t ≤ s1}.

Therefore when c > a(s1− s0) we know supp(p̂! kD)∩ supp(p̂! kT̂c(D)) = ∅ (see Figure

5.3). This completes the proof. �

Proof of Theorem 5.2.3. The movie of a subset Λ ⊂ T ∗(M × R) under the

Hamiltonian isotopy ϕs
Ĥ

(s ∈ I) is

ΛH = {(x, t, s, ξ, τ, σ)|(x, t, ξ, τ) = ϕs
Ĥ

(x0, t0, ξ0, τ0), ν = −τHs ◦ ϕ̂sH(x, t, ξ/τ)}.
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Figure 5.3. The figure on the left is the open cone (γ∨a,b)
◦; the one in

the middle is the subset D forgetting the t′ coordinate; the one on
the right is the projection p(D) forgetting the t′ coordinate, where the
fibers in the yellow region are half closed half open intervals and the
fibers in the red region are open intervals.

Therefore it follows immediately that in an interval [si−1, si], one can choose r > 0

small such that

SS(H ) ∩ T ∗(M × R× (si−1 − r, si + r)) ⊂ T ∗M × ((R× I)× γai,bi) ,

where ai = maxs∈(si−1−r,si+r) Hs, bi = −mins∈(si−1−r,si+r) Hu. This will enable us to

apply Lemma 5.2.4 later.

Write π = πM×R : M×R2 →M×R. To connect H |M×R×{si−1} and H |M×R×{si},

we consider the following exact triangles

π∗(H |M×R×[si−1,si))→ π∗(H |M×R×[si−1,si])→ π∗(H |M×R×{si})
+1−→,

π∗(H |M×R×(si−1,si])→ π∗(H |M×R×[si−1,si])→ π∗(H |M×R×{si−1})
+1−→ .
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Consider the commutative diagram given by natural morphisms under translation

π∗(H |M×R×[si−1,si))
//

τ0,c

��

π∗(H |M×R×[si−1,si])
//

τ0,c

��

π∗(H |M×R×{si})
φ

uu

+1
//

τ0,c

��

Tc,∗π∗(H |M×R×[si−1,si))
// Tc,∗π∗(H |M×R×[si−1,si])

// Tc,∗π∗(H |M×R×{si})
+1
// .

By Lemma 5.2.4, when c = ai(si− si−1) + ε, the left vertical arrow is zero. Hence by

the commutative diagram

π∗(H |M×R×{si})
+1

//

τ0,c

��

φ

tt

π∗(H |M×R×[si−1,si))[1]

0
��

Tc,∗π∗(H |M×R×[si−1,si])
// Tc,∗π∗(H |M×R×{si})

+1
// Tc,∗π∗(H |M×R×[si−1,si))[1],

the composition

π∗(H |M×R×{si})→ Tc,∗π∗(H |M×R×{si})→ Tc,∗π∗(H |M×R×[si−1,si))[1]

is zero. In other words, there exists a morphism

π∗(H |M×R×{si})
φ−→ Tc,∗π∗(H |M×R×[si−1,si])

that makes the diagram commute. This shows that

π∗(H |M×R×{si}), π∗(H |M×R×[si−1,si])
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are (0, ai(si − si−1) + ε)-interleaved. Similarly,

π∗(H |M×R×{si−1}), π∗(H |M×R×[si−1,si])

are (bi(si − si−1) + ε, 0)-interleaved. By Lemma 5.2.2, this means π∗(H |M×R×{si−1})

and π∗(H |M×R×{si}) will be (bi(si − si−1) + ε, ai(si − si−1) + ε)-interleaved.

Now we choose a division of [0, 1], then by Lemma 5.2.2, we know π∗(H |M×R×{0})

and π∗(H |M×R×{1}) are (a, b)-interleaved where

a =
N∑
i=1

ai(si − si−1) +Nε, b =
N∑
i=1

bi(si − si−1) +Nε

are the Riemann sums. Therefore by letting ε� 1/N we know that

d(H ,Φ1
H(H )) ≤ inf

0=s0<...<sN=1

{
N∑
i=1

(
max

(si−1−r,si+r)
Hs − min

(si−1−r,si+r)
Hs

)
(si − si−1)

}
,

so the result follows. �

Using this machinery, we now study our sheaf H om(Fq,Gr) for F ,G ∈ Shb(M×

R). As we have seen in previous sections, the last R component encodes the length

of all Reeb chords on Λ. Hence in order to get information on how the Reeb chords

change under Hamiltonian isotopies, we project the sheaf to the last component R

via u : M × R2 → R, (x, t, u) 7→ u and estimate the persistence structure on

u∗H om(Fq,Gr).
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By Lemma 4.1.4, this is a constructible sheaf in Shbν<0(R). Here is our main result

in this section.

Definition 5.2.4. Let q : M×R2 →M×R be q(x, t, u) = (x, t) and r : M×R2 →

M × R be r(x, t, u) = (x, t− u). For sheaves F ,G ∈ Shb(M × R), let

H om(−∞,+∞)(F ,G ) = u∗H om(Fq,Gr).

Theorem 5.2.5. Let Λ ⊂ T ∗,∞τ>0 (M × R) be a compact Legendrian, H be a

Hamiltonian on T ∗,∞τ>0 (M × R) and Φs
H (s ∈ I) be its sheaf quantization. Then for

F ,G ∈ ShΛ(M × R) with compact support,

d(H om(−∞,+∞)(F ,G ),H om(−∞,+∞)(F ,Φ1
H(G ))) ≤ ‖H‖osc.

Proof. First of all we extend H to a compactly supported Hamiltonian on

T ∗,∞τ>0 (M×R2). Namely choose a compactly supported cutoff function β0 on T ∗,∞τ>0 (M×

R) such that

β0|⋃s∈I ϕsH(Λ) ≡ 1.

Let H0 = β0H be a compactly supported Hamiltonian on T ∗,∞τ>0 (M×R). Then we can

define Ĥ0(x, t, u, ξ, τ, ν) = β0(x, t− u, ξ, τ)H(x, t− u, ξ, τ). Since supp(F ), supp(G )

are compact, we may assume that there exists c > 0,

q−1(supp(F )) ∩ r−1
(⋃
s∈I

π
(
ϕsH(π−1(supp(G )))

))
⊂M × [−c, c]2,
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where π : T ∗,∞(M × R)→M × R is the projection. Choose a compactly supported

cutoff function β̂1 on T ∗,∞τ>0 (M × R2) such that

β̂1|M×[−c,c]2 ≡ 1.

Then let Ĥ(x, t, u, ξ, τ, ν) = β̂1(x, t, u)Ĥ0(x, t, u, ξ, τ, ν). One can see that

H om(Fq, (Φ
s
HG )r) = H om(Fq,Φ

s
Ĥ0

(Gr)) = H om(Fq,Φ
s
Ĥ

(Gr)).

We try to show that

d(u∗H om(Fq,Gr), u∗H om(Fq, (Φ
1
HG )r) ≤ d(Gr,Φ

1
H(Gr)).

Namely, if Gr,G ′r are (ε, ε′)-interleaved, then u∗H om(Fq,Gr), u∗H om(Fq,G ′r) will

also be (ε, ε′)-interleaved. Let Tc(x, t, u) = (x, t+ c, u) and Uc(x, t, u) = (x, t, u− c).

Then since r ◦ Tc = r ◦ Uc and q = q ◦ Uc,

H om(Fq, Tc,∗Gr) = H om(Uc,∗Fq, Uc,∗Gr) = Uc,∗H om(Fq,Gr).

For any morphism Gr → Tc,∗G ′r there is a canonical morphism

H om(Fq,Gr)→H om(Fq, Tc,∗G
′
r).

Therefore there is always a canonical morphism

H om(Fq,Gr)→ Uc,∗H om(Fq,G
′
r).
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By abuse of notations, we also write Uc : R→ R, u 7→ u− c. Note that u ◦ Uc = Uc,

so one will have a canonical morphism

u∗H om(Fq,Gr)→ Uc,∗u∗H om(Fq,G
′
r).

This shows that if Gr,G ′r are (ε, ε′)-interleaved, then u∗H om(Fq,Gr), u∗H om(Fq,G ′r)

will also be (ε, ε′)-interleaved, and hence completes the proof. �

Here are two examples about H om(−∞,+∞)(k(x0,t0),F ) for the skyscraper sheaf

k(x0,t0) and F ∈ ShbΛ(R2). We will see that H om(−∞,+∞)(k(x0,t0),F ) detects Reeb

chords between Λ and the cotangent fiber T ∗,∞(x0,t0)(M × R).

Note that although k(x0,t0) /∈ Shτ>0(R2), one can still apply the same argument

in Proposition 3.1.7 and Lemma 4.1.4, and find that H om(−∞,+∞)(k(x0,t0),F ) ∈

Shν<0(R).

Example 5.2.3. The first example is about birth-death of Reeb chords (Figure 5.4

right). We consider a family of Legendrians Λs = {(x,±3(x+ s)1/2/2, (x+ s)3/2)|x+

s ≥ 0} ⊂ J1(R) whose front projections are standard cusps {(x, t)|t2 = (x + s)3}.

Consider Reeb chords from Λs to the fiber T ∗,∞(0,1)R
2. At s = 0, a pair of Reeb chords

are created.

For F ∈Mod(k), consider the sheaf

Fs = F{(x,t)|0≤t<(x+s)3/2 or (x+s)3/2≤t<0}.
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Figure 5.4. Birth-death of Reeb chords (on the right) and swapping of
Reeb chords (on the left). On the top, the black Legendrians are (Λs)r
while the red curves are (T ∗,∞(0,1)R

2)q. The u-axis is horizontal, the t-axis

is vertical, while the s-axis is pointing into the blackboard.

Then consider u∗H om((k(0,1))q,Fr). One can see that

u∗H om((k(0,1))q, (Fs)r)u=c = Γ(R,H om(k(0,1), Tc,∗Fs)) = Fs|(x,t)=(0,1−c).

Therefore when s ≤ 0, we have H om(−∞,+∞)(k(0,1),Fs) = 0. When s > 0,

H om(−∞,+∞)(k(0,1),Fs) = F(1−s3/2,1+s3/2].

In other words, the birth of Reeb chords creates a new bar.

When the Hamiltonian isotopy swaps the length of two Reeb chords, the be-

haviour of the sheaf H om(−∞,+∞)(−,−) under the isotopy may be more compli-

cated. However, there are still very specific cases where the behaviour is relatively

clear.
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Example 5.2.4. The second example is a specific case of swapping of Reeb chords

(Figure 5.4 left). We consider a family of Legendrians Λs = {(x,±1,±(x + s))|x ∈

R} ⊂ J1(R) whose front projections are standard crossings {(x, t)|t = ±(x + s)}.

Consider Reeb chords from Λs to the fiber T ∗,∞(0,1)R
2. At s = 0, a pair of Reeb chords

are swapped.

For F1, F2, F3, F4 ∈Mod(k), suppose for F = F0,

F |{(x,y)|t≥|x|} = F1|{(x,y)|t≥|x|}, F |{(x,y)|t<−|x|} = F4|{(x,y)|t<−|x|}

F |{(x,y)|x<0,−t<x≤t} = F2|{(x,y)|x<0,−t<x≤t}, F |{(x,y)|x>0,−t<x≤t} = F1|{(x,y)|x>0,−t<x≤t}.

The sheaf F is characterized by the diagram (see Example 3.1.5 or [148, Section

3.3])

F1
//

��

F3

��

F2
// F4.

such that this is a (homotopy) push out diagram (since we consider complexes of

sheaves, this means that Tot (F1 → F2⊕F3 → F4) ' 0; see [148, Section 3.3 & 3.4]).

Then u∗H om((k(0,1))q, Fr)u=c = Fs|(x,t)=(0,1−c). For s < 0, H om(−∞,+∞)(k(0,1),Fs)

is determined by the diagram

F1 −→ F2 −→ F4.
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When s > 0, H om(−∞,+∞)(k(0,1),Fs) is characterized by the diagram

F1 −→ F3 −→ F4.

Decomposing the sheaf as
⊕

α∈A k
rα
(aα,bα][nα], we have for s < 0,

H om(−∞,+∞)(k(0,1),Fs) 'V(−∞,+∞) ⊕ V(−∞,−s] ⊕ V(−∞,s]

⊕ V(−s,s] ⊕ V(−s,+∞) ⊕ V(s,+∞).

When s > 0,

H om(−∞,+∞)(k(0,1),Fs) 'U(−∞,+∞) ⊕ U(−∞,−s] ⊕ U(−∞,s]

⊕ U(−s,s] ⊕ U(−s,+∞) ⊕ U(s,+∞).

Using the condition Tot (F1 → F2 ⊕ F3 → F4) ' 0, one can show that

V(−s,s] ' U(−s,s] ' 0,

V(−∞,−s] ' U(−∞,s], V(−s,+∞) ' U(s,+∞),

V(−∞,s] ' U(−∞,−s], V(s,+∞) ' U(−s,+∞),

V(−∞,+∞) ' U(−∞,+∞).

Hence in this specific case, swapping of Reeb chords swaps starting/ending points of

bars (Caution: this may not be true in general).
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5.3. Application to Estimations of Reeb Chords

Our goal in this section is to relate the number of Reeb chords with Hom+(F ,F )

and H om(−∞,+∞)(F ,F ), and hence finish the proof of Theorem 5.0.10, 5.0.11 and

5.0.12.

5.3.1. Local Calculation for Microstalks

By Lemma 4.1.4, we know that certain covectors in the microsupport of H om(Fq,Fr)

correspond to Reeb chords. The microlocal Morse inequality (Proposition 3.1.4) re-

lates the global section of sheaves to its microstalks. Hence it suffices to determine

if the ranks of the microstalks

Γu≤ui(H om(Fq,Fr))(xi,ti,ui)

are as expected. This will follow from concrete local calculations. Here is the main

result.

Proposition 5.3.1. For Λ ⊂ T ∗,∞τ>0 (M × R) a chord generic Legendrian and

F ∈ ShbΛ(M ×R) a sheaf with perfect microstalk F , let {(xi, 0, ti, 0, ui, νi)}i∈I be the

set

((−Λq) + Λr) ∩ {(x, 0, t, 0, u, ν)|u > 0, ν < 0}.

Suppose (xi, ti, ui) corresponds to a degree di Reeb chord in Lemma 4.1.4. Then

Γu≤ui(H om(Fq,Fr))(xi,ti,ui) ' Hom(F, F )[−di].
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First of all, let’s recall from Section 2.3.2 that the degree of a Reeb chord γ ∈

Q+(Λ) is defined as follows. Suppose at a = (x, ξ, t, τ) and b = (x, ξ, t+u, τ) (u > 0),

n− deg(γ) = d(a)− d(b) + ind(D2hab)− 1,

where d(b), d(a) are Maslov potentials at b, a, and hab = hb − ha for hb, ha whose

graphs at b, a are πfront(Λ). By Morse lemma, we assume that in local coordinates

hb(x) = u, ha(x) = −
∑
i≤k

x2
i +

∑
j≥k+1

x2
j .

Next, by microlocal Morse lemma as in Example 3.2.4 we consider

Γu≤ui(H om(Fq,Fr))(xi,ti,ui) = Cone(Γ(Uxi,ti × (ui − ε, ui + ε),H om(Fq,Fr))

→ Γ(Uxi,ti × (ui, ui + ε),H om(Fq,Fr)))[−1].

Since ((−Λq) + Λr) ∩ {(x, 0, t, 0, u, ν)|u > 0, ν > 0} = ∅, we know that

Γ(Uxi,ti × (ui − ε, ui + ε),H om(Fq,Fr)) ' Γ(Uxi,ti × (ui − ε, ui),H om(Fq,Fr)).

Hence it suffices to calculate

Cone
(
Γ(Uxi,ti × (ui − ε, ui),H om(Fq,Fr))

→ Γ(Uxi,ti × (ui, ui + ε),H om(Fq,Fr))
)
[−1].

Note that (Λq∪Λr)∩T ∗,∞(Uxi,ti×(ui−ε, ui)) and (Λq∪Λr)∩T ∗,∞(Uxi,ti×(ui, ui+ε)) are

movies of Legendrian isotopies. Hence by Guillermou-Kashiwara-Schapira Theorem
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3.3.1, it suffices to compute

Cone
(
Γ(Uxi,ti × {ui − ε/2},H om(Fq,Fr)))

→ Γ(Uxi,ti × {ui + ε/2},H om(Fq,Fr))
)
[−1]

(as long as we can keep track of the restriction map). From now on, we write

U− = Uxi,ti × {ui − ε/2}, U+ = Uxi,ti × {ui + ε/2}.

Since (−Λq) ∩ Λr = ∅, by Proposition 3.1.7

H om(Fq,Fr) ' D′Fq ⊗Fr,

where D′Fq ∈ Sh−Λq(M × R2). Now write

U± ∩ {(x, t)|t > hb(x)} = Uq,0, U
± ∩ {(x, t)|t ≤ hb(x)} = Uq,1,

U± ∩ {(x, t)|t < ha(x) + ui ± ε/2} = U±r,0, U
± ∩ {(x, t)|t ≥ ha(x) + ui ± ε/2} = U±r,1.

Without loss of generality by microlocal Morse lemma, as in Example 3.1.5 or [148,

Section 3.3] we may assume

D′Fq|Uq,0 ' Q0|Uq,0 , D′Fq|Uq,1 ' Q1|Uq,1 ,

Fr|U±r,0 ' R0|U±r,0 , Fr|U±r,1 ' R1|U±r,1 .

In addition here we claim that

Cone(Q1 → Q0) ' D′F [−d(b)], Cone(R1 → R0) ' F [d(a) + 1].
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Lemma 5.3.2. Let F ∈ Shb
T ∗,∞Rn×R>0,−

Rn+1(Rn+1) and ϕ(x, t) = t. Then

RΓϕ≤0(D′F )(0,...,0) = D′RΓϕ≥0(F )(0,...,0)[−1].

Proof. We assume that F |Rn×[0,+∞) = F1|Rn×[0,+∞) and F |Rn×(−∞,0) = F0|Rn×(−∞,0).

Then we have an exact triangle

Γϕ≥0(F )(0,0) → F1 → F0
+1−→ .

Therefore by taking the dual we have

D′F0 → D′F1 → D′Γϕ≥0(F )(0,0)
+1−→ .

However, we claim D′F |Rn×(0,+∞) = D′F1|Rn×(0,+∞) and D′F |Rn×(−∞,0] = D′F0|Rn×(−∞,0].

We will only check the stalk at Rn × {0} (other stalks can be computed easily). In

fact

D′F(0,0) = Γ({(0, ..., 0)},H om(F ,k)) ' Γ(Rn+1,H om(F ,k)),

and the latter consists of morphisms φ1 : F1 → k, φ0 : F0 → k such that the following

diagram commutes:

F1

φ1

��

F1

∼
oo //

φ1

��

F0

φ0

��

k k
∼

oo
∼
// k.
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Figure 5.5. When n = 2 and k = 1, the open subsets U− (on the left)
and U+ (on the right).

Such pairs (φ1, φ0) corresponds bijectively to φ0 : F0 → k (φ1 will just be the

composition of φ0 and the restriction map F1 → F0), so

Hom(F , k) ' Hom(F0,k) = D′F0.

Therefore we know that

Γϕ≤0(D′F )(0,...,0) = Cone(D′F0 → D′F1)[−1] ' D′Γϕ≥0(F )(0,...,0)[−1].

This proves the assertion. �

Suppose first 0 < k < n. Now we computeRΓ(U(xi,ti)×{ui±ε/2}, RH om(Fq,Fr))

separately. At u = ui − ε/2, we know that

Uq,1 ∩ U−r,0 ∼= Dk ×Dn−k × (0, 1], Uq,0 ∩ U−r,1 ∼= Dk ×Dn−k × [0, 1),

Uq,1 ∩ U−r,1 ∼= Dk ×Dn−k × [0, 1], Uq,0 ∩ U−r,0 ∼= Dk × (Sn−k−1 × (0, 1))× (0, 1).
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Figure 5.6. When n = 2 and k = 1, the stratification on Uq,0 ∩ U+
r,0 ⊂ U+.

At u = ui + ε/2, we know that

Uq,1 ∩ U+
r,0
∼= Dk ×Dn−k × (0, 1], Uq,0 ∩U+

r,1
∼= Dk ×Dn−k × [0, 1),

Uq,1 ∩ U+
r,1
∼= (Sk−1 × [0, 1))×Dn−k × [0, 1], Uq,0 ∩ U+

r,0
∼= Dk ×Dn−k × (0, 1),

and the boundary regions around Uq,0 ∩ U−r,0 are (Figure 5.6)

Uq,1 ∩ U−r,0 ∩ Uq,0 ∩ U−r,0 = Dk
− ×Dn−k,

Uq,0 ∩ U−r,1 ∩ Uq,0 ∩ U−r,0 = Dk
+ ×Dn−k,

Uq,1 ∩ U−r,1 ∩ Uq,0 ∩ U−r,0 = Sk−1 ×Dn−k,

where Dk
− ⊂ Sk is the lower hemisphere and Dk

+ ⊂ Sk is the upper hemisphere.

Proof of Proposition 5.3.1. Suppose first that 0 < k < n. At u = ui − ε/2,

since (−Λq)∩Λr ∩ ν∗,∞Uq,1∩U−r,1,+(M ×R) = ∅ (recall ν∗,∞
Uq,1∩U−r,1,+

(M ×R) is the outward

conormal), we know by microlocal Morse lemma that

Γ(U−,D′Fq ⊗Fr) = Γ(Uq,1 ∩ U−r,1,D′Fq ⊗Fr) ' Q1 ⊗R1.
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At u = ui + ε/2, since (−Λq) ∩ Λr ∩ ν∗,∞Uq,0∩U+
r,0,+

(M × R) = ∅, we also know that (see

Figure 5.6)

Γ(U+,D′Fq ⊗Fr) = Γ(Uq,0 ∩ U+
r,0,D

′Fq ⊗Fr).

Here Uq,0 ∩ U+
r,0 = D

k+1 × Dn−k with a statification Dk+1 × Dn−k, Dk
± × Dn−k and

Sk−1 ×Dn−k. In addition

D′Fq ⊗Fr|Dk+1×Dn−k = Q0 ⊗R0,

D′Fq ⊗Fr|Dk+×Dn−k = Q0 ⊗R1, D′Fq ⊗Fr|Dk−×Dn−k = Q1 ⊗R1,

D′Fq ⊗Fr|Sk−1×Dn−k = Q1 ⊗R1.

It suffices for us to do calculations on D
k+1

, so from now on we will drop all the Dn−k

terms. In order to calculate the (derived) global sections using Čech cohomology, we

need to consider a refinement of the current stratification on Uq,0 ∩ U+
r,0, whose stars

give a good cover (meaning that any finite intersection is contractible) of the region.

We consider the stratification of Sk−1 by ∂∆k, whose stars are

St∆[i1i2...iv ] =
⋃

{i1,i2,...,iv}⊂{i′1,i′2,...,i′u}⊂{0,1,...,k+1}

∆[i′1i
′
2...i
′
u] =

⋂
1≤j≤v

St∆[ij ].
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Figure 5.7. The stratification in the case k = 2 (left), and the re-
striction maps pointing from lower dimensional strata to higher di-
mensional strata (right). These are restriction maps because given
the triangulation, the stars of lower dimensional ones contain stars of
higher dimensional ones. The green indices on the left are labels of the
simplices ∂∆k.

Consider the stars which give a good cover (Figure 5.7 left). Therefore the (derived)

global section is (Figure 5.7 right)

Γ
(
Uq,0 ∩ U+

r,0,D
′Fq ⊗Fr

)
' Colim

(
(Q1 ⊗R1)⊕k+1 → (Q1 ⊗R1)⊕(k+1)k/2 → ...

→ (Q1 ⊗R1)⊕k+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)
.

Before starting to compute the microstalk, we need to keep track of the restriction

functor

Q1 ⊗R1 → Colim
(
(Q1 ⊗R1)⊕k+1 → (Q1 ⊗R1)⊕(k+1)k/2 → ...

→ (Q1 ⊗R1)⊕k+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)
.
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Note that in U = U(xi,ti) × (ui − ε, ui + ε), the Q1 ⊗ R1 term is supported on V '

Dk ×Dn−k × [0, 1]× (0, 1], where the restriction map is the one induced by

C∗(Dk ×Dn−k × [0, 1]× (0, 1];K)→ C∗((Sk−1 × [0, 1))×Dn−k × [0, 1];K),

which is homotopic to the restriction map C∗(∆k;K) → C∗(∂∆k;K), where K =

Q1 ⊗R1. Hence the restriction map is just the diagonal map

δ : Q1 ⊗R1 → (Q1 ⊗R1)⊕k+1,

x 7→ (x, x, ..., x).

Since the cone of the restriction map is

Cone
(
C∗(∆k;K)→ C∗(∂∆k;K)

)
' C∗(∆k, ∂∆k;K) ' k[−k],
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we are able to calculate the microstalk:

Γu≤ui(D
′Fq⊗Fr)(xi,ti,ui)

' Cone
(
(Q1 ⊗R1)→ Colim

(
(Q1 ⊗R1)⊕k+1 → ...

→ (Q1 ⊗R1)⊕k+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
))

[−1]

' Tot
(
(Q1 ⊗R1)→ (Q1 ⊗R1)⊕k+1 → ...

→ (Q1 ⊗R1)⊕k+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)

' Tot
(
0→ 0→ ...→ (Q1 ⊗R1)→

→ (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)

' Tot
(
(Q1 ⊗R1)→ (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)

)
[−k].

By Kunneth’s formula, we can conclude that

Tot
(
(Q1 ⊗R1)→ (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)

)
[−k]

' Tot
(
Q1 → Q0

)
⊗ Tot

(
R1 → R0

)
[−k]

' (D′F [−d(b)− 1]⊗ F [d(a)]) [−k] = D′F ⊗ F [di].

Finally the only case left is the case when k = 0 or n. The strategy is the same.

When k = n, the sections at u = ui − ε/2 are

Γ(U−,D′Fq ⊗Fr) = Γ(Uq,1 ∩ U−r,1,D′Fq ⊗Fr) ' Q1 ⊗R1.
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The sections at u = ui + ε/2 are

Γ(U+,D′Fq ⊗Fr) = Γ(Uq,0 ∩ U+
r,0,D

′Fq ⊗Fr)

' Colim
(
(Q1 ⊗R1)⊕n+1 → (Q1 ⊗R1)⊕(n+1)n/2 → ...

→ (Q1 ⊗R1)⊕n+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)
[−1].

Hence by the same argument using Kunneth’s formula, the microstalk is

Γu≤ui(D
′Fq ⊗Fr)(xi,ti,ui)

'Tot
(
(Q1 ⊗R1)→ (Q1 ⊗R1)⊕n+1 → ...

→ (Q1 ⊗R1)⊕n+1 → (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)
)

'Tot
(
(Q1 ⊗R1)→ (Q0 ⊗R1)⊕ (Q1 ⊗R0)→ (Q0 ⊗R0)

)
[−n]

'Tot
(
Q1 → Q0

)
⊗ Tot

(
R1 → R0

)
[−n]

' (D′F [−d(b)− 1]⊗ F [d(a)]) [−n] = D′F ⊗ F [di].

When k = 0, the sections at u = ui − ε/2 are

Γ(U−,D′Fq ⊗Fr) = Γ(Uq,1 ∩ U−r,1,D′Fq ⊗Fr) ' Q1 ⊗R1.

The sections at u = ui + ε/2 are

Γ(U+,D′Fq ⊗Fr) = Γ(Uq,0 ∩ U+
r,0,D

′Fq ⊗Fr)

' Colim ((Q1 ⊗R0)⊕ (Q0 ⊗R1)→ (Q0 → R0)) .
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Therefore the microstalk is

Γu≤ui(D
′Fq ⊗Fr)(xi,ti,ui)

' Cone
(
Q1 ⊗R1 → Colim ((Q1 ⊗R0)⊕ (Q0 ⊗R1)→ (Q0 → R0))

)
[−1]

' Tot
(
Q1 ⊗R1 → (Q1 ⊗R0)⊕ (Q0 ⊗R1)→ (Q0 → R0)

)
' Tot

(
Q1 → Q0

)
⊗ Tot

(
R1 → R0

)
' D′F [−d(b)− 1]⊗ F [d(a)] = D′F ⊗ F [−di].

Hence the proof is completed. �

When u < 0, we consider {(xi, 0, ti, 0, ui, νi)}i∈I be the set

((−Λq) + Λr) ∩ {(x, 0, t, 0, u, ν)|u < 0, ν < 0}.

The calculation in Proposition 5.3.1 still holds, except that we have to be careful

about the gradings.

We always assume that in our local model, when u increases, the point a is moving

up in the horizontal u-direction passing through b. In the case of u > 0, the point

(xi, 0, ti, 0, ui, νi) comes from a Reeb chord connecting a to b where b is above a, and

as u > 0 increases from 0, b is fixed and a is moving up. Graph(hb),Graph(ha) are

local models of πfront(Λ) at b, a, and in local coordinates

hb(x) = ui > 0, ha(x) = −
∑
i≤k

x2
i +

∑
j≥k+1

x2
j .



199

However in the case of u < 0, the point (xi, 0, ti, 0, ui, νi) will then come from a Reeb

chord connecting b to a where a is above b, and now as u < 0 increases to 0, a is

moving up and yet b is fixed. In local coordinates

hb(x) = ui < 0, ha(x) = −
∑
i≤k

x2
i +

∑
j≥k+1

x2
j .

Then that the Morse index ind(D2hba) where hba = ha− hb will become k instead of

n− k (the order of a and b are switched as their heights are switched). Thus if the

degree of the original chord is di, the degree shifting will be

−d(b)− 1 + d(a)− k = −d(b)− 1 + d(a)− ind(D2hba) = −n+ di − 2.

Proposition 5.3.3. For Λ ⊂ T ∗,∞τ>0 (M × R) a chord generic Legendrian and

F ∈ ShbΛ(M ×R) a sheaf with perfect microstalk F , let {(xi, 0, ti, 0, ui, νi)}i∈I be the

set

((−Λq) + Λr) ∩ {(x, 0, t, 0, u, ν)|u < 0, ν < 0}.

Suppose (xi, ti, ui) corresponding to a degree di Reeb chord in the bijection defined in

Lemma 4.1.4. Then

Γu≤ui(H om(Fq,Fr))(xi,ti,ui) ' Hom(F, F )[−n+ di − 2].
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5.3.2. Application to the Morse Inequality

Combining the previous propositions, we are able to prove the main theorems 5.0.10

and 5.0.11 using duality exact sequence. The main ingredient for these theorems will

be the following Morse inequalities.

Theorem 5.3.4. For Λ ⊂ T ∗,∞τ>0 (M × R) a closed chord generic Legendrian and

F ∈ ShbΛ(M × R) a microlocal rank r sheaf, let Qj(Λ) be the set of degree j Reeb

chords on Λ. Suppose supp(F ) is compact. Then for any k ∈ Z

r2
∑
j≤k

(−1)k−j|Qj(Λ)| ≥
∑
j≤k

(−1)k−j dimHjHom+(F ,F ).

In particular, for any j ∈ Z, r2|Qj(Λ)| ≥ dimHjHom+(F ,F ).

Theorem 5.3.5. For Λ ⊂ T ∗,∞τ>0 (M × R) a closed chord generic Legendrian and

F ∈ ShbΛ(M ×R) a sheaf with prefect microstalk F , let Qj(Λ) be the set of degree j

Reeb chords on Λ. Suppose supp(F ) is compact. Then for any k ∈ Z

∑
j≤k

(−1)k−j
∑
i∈Z

dimH iHom(F, F )|Qj−i(Λ)| ≥
∑
j≤k

(−1)k−j dimHjHom+(F ,F ).

In particular, for any j ∈ Z,

∑
i∈Z

dimH iHom(F, F )|Qj−i(Λ)| ≥ dimHjHom+(F ,F ).

We now apply the results to relate persistence structure to Reeb chords. We first

prove Theorem 5.0.10, 5.0.11 using persistence of H om(−∞,+∞)(F ,F ), and then
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prove Theorem 5.0.12 using the continuity of persistence of H om(−∞,+∞)(F ,Φ1
H(F ))

under Hamiltonian isotopies.

Proof of Theorem 5.0.10 and 5.0.11. Consider the sheaf H om(−∞,+∞)(F ,F ).

We know

H om(−∞,+∞)(F ,F ) = u∗H om(Fq,Gr) '
⊕
α∈I

krα(cα,c′α][nα].

Since u : M × R2 → R is proper on supp(H om(Fq,Gr)), we know that

Γu≤c(u∗H om(Fq,Gr))c ' u∗Γu≤c(H om(Fq,Gr))u−1(c).

On the other hand, given a bar k(c,c′], we know that

Γu≤c(k(c,c′])c ' k[−1], Γu≤c′(k(c,c′])c′ ' k.

Hence by Proposition 5.3.1 we will determine the number of starting point/ending

point of bars from the rank of the microstalk.

By Corollary 5.1.3, we know that in degree j+1, there are at least dimHj(Λ;kr2
)

starting points or ending points of bars at u = 0. The starting points of such bars

should come from bars of the form k(0,c+][−j] while the ending points of bars should

come from bars of the form k(c−,0][−j − 1]. By Lemma 4.1.4, the other ending

point/starting point of these bars will correspond to signed lengths of Reeb chords

in Q±(Λ). By Proposition 5.3.1, we know that for c+ > 0 that corresponds to a
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degree d+ Reeb chord, the microstalk

Γu≤c+(u∗H om(Fq,Gr))c+ ' kr2

[−d+].

Hence the corresponding ending point of a bar k(0,c+][−j] should be a degree j Reeb

chord. Similarly for c− < 0 that corresponds to a degree d− Reeb chord, by Propo-

sition 5.3.3 the microstalk

Γu≤c−(u∗H om(Fq,Gr))c− ' kr2

[−n− 2 + d−].

Hence the corresponding starting point of a bar k(c−,0][−j − 1] should be a degree

n− j Reeb chord. Therefore

r2|Qj(Λ)|+ r2|Qn−j(Λ)| ≥ r2 dimHj(Λ;k).

This proves Theorem 5.0.10. The proof of Theorem 5.0.11 is similar. �

Finally we prove Theorem 5.0.12, which gives estimates on the Reeb chord-

s between Λ and its Hamiltonian pushoff ϕ1
H(Λ) for a contact Hamiltonian flow

ϕsH (s ∈ I).

Proof of Theorem 5.0.12. Consider the sheaf H om(−∞,+∞)(F ,F ). We know

from the previous proof that starting points and ending points of bars at u = 0 in

degree j+ 1 correspond to a basis of Hj(Λ; kr2
). In addition, the corresponding end-

ing point of a bar k(0,c+][−j] should be a degree j Reeb chord, and the corresponding

starting point of a bar k(c−,0][−j − 1] should be a degree n − j Reeb chord. The
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lengths of these bars at time s = 0 will be at least

cj(Λ) = cn−j(Λ) = min{l(γ)|γ ∈ Qj(Λ) ∪Qn−j(Λ)}.

Consider the Hamiltonian ϕsH (s ∈ I). Since

‖H‖osc < cj0(Λ), ..., cjk(Λ),

we know by Theorem 5.2.5 that these bars will survive in H om(−∞,+∞)(F ,Φ1
H(F )).

We claim that each bar in H om(−∞,+∞)(F ,Φ1
H(F )) corresponds to a Reeb chord

between Λ and ϕ1
H(Λ). Namely the proof is similar to Lemma 4.1.4. Note that

Λq ∩ (ϕ1
H(Λ))r = ∅, so (u, ν) ∈ SS∞(H om(−∞,+∞)(F ,Φ1

H(F ))) iff

(x, 0, t, 0, u, ν) ∈ (−Λq) + (ϕ1
H(Λ))r,

iff there exists (x, ξ, t, τ) ∈ Λ, (x, ξ, t+ u, τ) ∈ ϕ1
H(Λ) (and ν = −τ). In addition, the

computation of microstalks in Proposition 5.3.1 still holds. Hence the endpoints of

bars count Reeb chords both from Λ to ϕ1
H(Λ) and from ϕ1

H(Λ) back to Λ, i.e. the

chords between Λ and ϕ1
H(Λ). Thus

r2|Q(Λ, ϕ1
H(Λ))| ≥ r2

∑
0≤i≤k

dimHji(Λ; k).

This completes the proof of the theorem. �
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5.3.3. Horizontal displaceability

As is mentioned in Remark 5.0.7, we show that for all horizontally displaceable

closed Legendrians Λ ⊂ T ∗,∞τ>0 (M × R), F ∈ ShbΛ(M × R) with zero stalk near

M × {−∞} necessarily has compact support. Note that under the assumption that

M is noncompact, F ∈ ShbΛ(M ×R) will always have compact support as the front

projection π(Λ) is compact in M ×R, so we only need to consider the case where M

is compact.

Recall that Λ ⊂ T ∗,∞τ>0 (M×R) is horizontally displaceable if there is a Hamiltonian

flow ϕsH (s ∈ I) such that there are no Reeb chords between Λ and ϕ1
H(Λ).

Lemma 5.3.6. Let Λ,Λ′ ⊂ T ∗,∞τ>0 (M × R) be closed Legendrians, and F ∈

ShbΛ(M × R),F ′ ∈ ShbΛ′(M × R) such that the stalks near M × {−∞} are zero.

Suppose there are no Reeb chords between Λ and Λ′. Then for any c ∈ R,

Hom(F , Tc,∗F
′) ' 0.

Proof. We know that

Γu≤c(u∗H om(Fq,F
′
r))c ' u∗Γu≤c(H om(Fq,F

′
r))u−1(c).

Therefore since there are no Reeb chords between Λ and Λ′, by Lemma 4.1.4, we

know that H om(−∞,+∞)(F ,F ′) = u∗H om(Fq,F ′
r) is a constant sheaf on R.

Consider now u = −c is sufficiently small so that the front πM×R(T−c,∗(Λ
′)) is

below M × {−C}. Let iu=−c be the inclusion M × R × {−c} ↪→ M × R2. Then as
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Proposition 3.1.7 implies that

i−1
u=−cH om(Fq,F

′
r) = H om(F , T−c,∗F

′) ' D′F ⊗ T−c,∗F ′,

and the stalk of F is zero near πM×R(Λ′), it is implied that

SS∞(i−1
u=−cH om(Fq,F

′
r)) ⊂ (−Λ) ⊂ T ∗,∞τ<0 (M × R).

By microlocal Morse lemma we can conclude that

Γ(M × R, i−1
u=−cH om(Fq,F

′
r)) ' Γ(M × (−∞,−C), i−1

u=−cH om(Fq,F
′
r)) ' 0.

Since H om(−∞,+∞)(F ,F ′) is constant this shows the assertion. �

Proposition 5.3.7. Let M be compact. If Λ ⊂ T ∗,∞τ>0 (M × R) is horizontal

displaceable, then any F ∈ ShbΛ(M × R) that has zero stalk near M × {−∞} will

have compact support.

Proof. Suppose supp(F ) is noncompact. Then the fact that M is compact and

that F has zero stalk near M × {−∞} necessarily mean that there for any T > 0

sufficiently large, there is x ∈M such that F(x,t) 6= 0. Let

T > sup{t ∈ R|∃ (x, ξ) ∈ T ∗M, (x, ξ, t, 1) ∈ Λ}.

Then F is locally constant on M × [T,+∞) with nonzero stalk.

Since Λ is horizontally displaceable, there is a Hamiltonian flow ϕsH (s ∈ I) such

that there are no Reeb chords between Λ and ϕ1
H(Λ). Let Λ′ = ϕ1

H(Λ) and following
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Theorem 3.3.1 F ′ = Φ1
H(F ). F ′ is also locally constant on M × [C,+∞) for

sufficiently large C > 0 with nonzero stalk. By Lemma 5.3.6,

Hom(F , Tc,∗F
′) ' 0.

Let c > 0 be sufficiently large such that the front projection πM×R(Tc(Λ
′)) is above

M × {C}. Then using the formula

H om(F , Tc,∗F
′) = D′F ⊗ Tc,∗F ′,

near πM×R(Λ) the stalk of H om(F , Tc,∗F ′) is zero. Hence

SS∞(H om(F , Tc,∗F
′)) ⊂ Λ′ ⊂ T ∗,∞τ>0 (M × R).

By microlocal Morse lemma we can conclude that

Hom(F , Tc,∗F
′) ' Γ(M × (C,+∞),H om(F , Tc,∗F

′)) 6' 0,

which leads to a contradiction. �

5.4. Application to Non-squeezing into Loose Legendrians

In this section we show that the C0-limit of a smooth family of Legendrian sub-

manifolds is not going to be stablized or loose when there exists some non-trivial

sheaf theoretic invariant. Here is the definition and the theorem.
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Definition 5.4.1 (Dimitroglou Rizell-Sullivan). Let U ⊂ T ∗,∞τ>0 (M × R) be an

open subset with Hn(U ;Z/2Z) 6' 0. A Legendrian submanifold Λ ⊂ T ∗,∞τ>0 (M × R)

can be squeezed into U if there is a Legendrian isotopy Λt with Λ0 = Λ and

Λ1 ⊂ U, [Λ1] 6= 0 ∈ Hn(U ;Z/2Z).

Theorem 5.4.1. Let Λloose ⊂ T ∗,∞τ>0 (Rn+1) be a stablized/loose Legendrian, and

Λ ⊂ T ∗,∞τ>0 (Rn+1) be a Legendrian so that there exists F ∈ ShbΛ(Rn+1) whose mi-

crostalk has odd dimensional cohomology. Then Λ cannot be squeezed into a tubular

neighbourhood of Λloose.

The idea is to detect the Legendrian Λ by a fiber T ∗,∞(x0,t0)R
n+1 as in Example 5.2.3.

First we state a geometric lemma that is needed. This is proved by Dimitroglou

Rizell-Sullivan [47]. For the concepts including formal Legendrian isotopy, loose

Legendrian submanifolds and h-principles, the reader may refer to [116].

Lemma 5.4.2 (Dimitroglou Rizell-Sullivan). For n ≥ 2, let Λloose ⊂ T ∗,∞τ>0 (Rn+1)

be any loose Legendrian submanifold. Then for any small A > ε > 0, Λloose is isotopic

to Λ′loose that satisfies the following properties:

(1). there exists (x0, t0) ∈ Rn+1 such that there are precisely 2 (transverse) Reeb

chords γ0, γ1 from Λ′loose to T ∗,∞(x0,t0)R
n+1 and

l(γ0)− l(γ1) ≥ A;
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Figure 5.8. On the left there is the loose Legendrian Λloose and on
the right there is a loose Legendrian ΛSn,loose formally isotopic to the
unknotted sphere (the front projection should be spinning around its
symmetry axis). In the red region we perform the connected sum
construction.

(2). there exists a Hamiltonian Hs (s ∈ I) with ‖Hs‖osc ≤ ε such that there are

no Reeb chords between ϕ1
H(Λ′loose) and T ∗,∞(x0,t0)R

n+1.

Proof. We first construct a loose Legendrian sphere ΛSn,loose that is formally

isotopic to the standard unknot sphere ΛSn,st and satisfies the properties in the

lemma. Then we take a connected sum Λloose#ΛSn,loose. In fact, since Λloose is

compact, one can find (x0, t0) ∈ Rn+1 such that there are no chords between Λ′loose

to T ∗,∞(x0,t0)R
n+1 (in other words the front projection of Λ′loose is disjoint from the

hypersurface x = x0). We choose ΛSn,loose to be the Legendrian sphere in Figure 5.8,

where the number of zigzags is to be determined. There are precisely 2 (transverse)

Reeb chords γ0, γ1 from Λ′loose to T ∗,∞(x0,t0)R
n+1 and

l(γ0)− l(γ1) ≥ A;
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It is not hard to see that ΛSn,loose is formally isotopic to the standard unknot sphere

ΛSn,st and the front projections of Λloose and ΛSn,loose are separated by some hypersur-

face in Rn+1. Therefore one can define the connected sum Λloose#ΛSn,loose uniquely

up to Legendrian isotopy [44, Proposition 4.9].

We show that Λloose#ΛSn,loose is formally isotopic to Λloose. This is because first

ΛSn,loose is formally isotopic to ΛSn,st and this isotopy can be chosen to be fixed

near the neighbourhood where the connected sum takes place. Second we perform a

formal isotopy from Λloose#ΛSn,st to Λloose. Since locally the connected sum is defined

by connecting two cusps [44, Section 4.2.2] (see Figure 5.8), one can explicitly see

they are isotopic. This proves the claim. Hence by Murphy’s h-principle [116]

Λloose#ΛSn,loose is isotopic to Λloose.

This constructs Λ′loose = Λloose#ΛSn,loose and by the construction of ΛSn,loose we

know that condition (1) holds.

Now we show condition (2), that one can choose ΛSn,loose so that Λloose#ΛSn,loose

can be displaced from T ∗,∞(x0,t0)R
n+1 by a Hamiltonian Hs (s ∈ I) with ‖Hs‖osc ≤ ε

so that there are no longer Reeb chords between them. This is because we can add

sufficiently may zigzags in ΛSn,loose such that the derivatives of the front

ξi = ∂t/∂xi ∈ (−ε/2n, ε/2n), (1 ≤ i ≤ n)

are sufficiently small, i.e. ΛSn,loose is contained in a neighbourhood of Rn+1 ⊂ J1(Rn) ⊂

T ∗,∞Rn+1. Then one can easily find a Hamiltonian Hs (s ∈ I) supported in a neigh-

bourhood URn+1 of Rn+1 with ‖Hs‖osc ≤ ε that displaces ΛSn,loose from T ∗,∞(x0,t0)R
n+1.
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For example, consider a cut-off function β ∈ C∞(R) that is equal to 1 in (−ε/2, ε/2)

and 0 outside (−ε, ε). Let H(x, ξ, t) = β(|ξ|)ξ1, ‖H‖osc ≤ ε,

H|URn+1 = ξ1, XH |URn+1 = −∂/∂x1.

This will displace ΛSn,loose from T ∗,∞(x0,t0)R
n+1. �

Next we set up the foundation of the persistence module H om(−∞,+∞)(k(x0,t0),F )

in this case. Note that k(x0,t0) /∈ Shbτ>0(M×R). However as long as F ∈ Shbτ>0(M×

R), all the arguments are still valid. Since Lemma 4.1.4 still holds, one can easily

see that all discussions in Section 5.2 on the persistence structure still hold for the

sheaf

H om(−∞,+∞)(k(x0,t0),F ) = u∗H om((k(x0,t0))q,Fr).

Proof of Theorem 5.4.1. First assume that n ≥ 2. Suppose Λ can be squeezed

into a contact neighbourhood Uloose of Λloose. By Lemma 5.4.2, we can apply a contact

isotopy so that the contact neighbourhood Uloose is mapped to a contact neighbour-

hood U ′loose of Λ′loose. Denote by Λ′ the image of the original Legendrian submanifold

in U ′loose. By shrinking the contact neighbourhood U ′loose we may assume that for the

projection πRn ◦πfront : U ′loose → Rn, the height of each connected component of U ′loose

in the fiber of πRn ◦ πfront is less than ε′ where 4ε′ < A− ε.

Lemma 5.4.2 ensures that there exists (x0, t0) ∈ Rn+1 such that there are precisely

2 transverse Reeb chords from Λ′loose to T ∗,∞(x0,t0)R
n+1, starting from (x0, t1) and (x0, t2).

For Λ′ ⊂ U ′loose, since the mapping degree [Λ′] 6= 0 ∈ Hn(Λ′loose;Z/2Z), the preimage
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of (x0, t1) and (x0, t2) under the projection U ′loose → Λ′loose are p1,1, ..., p1,2k+1 and

p2,1, ..., p2,2k+1, and

min
1≤i,j≤2k+1

|u(p1,i)− u(p2,j)| ≥ A− 2ε′.

Consider the Hamiltonian Hs (s ∈ I) with ‖Hs‖osc ≤ ε+ ε′ < A−2ε′ and horizon-

tally displaces Λ′loose from the cotangent fiber T ∗,∞(x0,t0)R
n+1 as in Lemma 5.4.2. For a

sufficiently small neighbourhood U ′loose of Λ′loose, there will be a Hamiltonian Hs (s ∈

I) with ‖Hs‖osc ≤ ε + ε′ that horizontally displaces U ′loose. For F ∈ ShΛ′(Rn+1) we

calculate

H om(−∞,+∞)(k(x0,t0),Φ
s
H(F )).

By Lemma 4.1.4, u(p1,1), ..., u(p1,2k+1) and u(p2,1), ..., u(p2,2k+1) correspond to all the

starting points and ending points of the bars. In addition, for each point the number

of bars k(a,b] (either starting or ending there) in the sheaf is at least the rank of the

microstalk of F . Denote the rank of the microstalk of F by 2r + 1. We argue

that there must be a bar starting from u(p1,i) and ending at u(p2,j). Otherwise all

bars start at some u(p1,i) will end at some u(p1,j) for i 6= j. However, there are odd

number of points u(p1,1), ..., u(p1,2k+1), so there should be (2r + 1)(2k + 1)/2 bars

connecting them, which leads to a contradiction.

Now that we know there is a bar starting from u(p1,i) and ending at u(p2,j), it will

have length at least A − 2ε′. By Theorem 5.2.5, under the Hamiltonian Hs (s ∈ I)

with ‖Hs‖osc ≤ ε + ε′, this bar will persist since ε + ε′ < A − 2ε′. This leads to a

contradiction.
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Figure 5.9. The front spinning of a standard unknot.

Finally when n = 1, we apply the spinning construction [55, Section 4.4] (Figure

5.9) to a stablized Legendrian knot: namely consider a real line t = t0 that is disjoint

from the front projection Λloose, Λ′ and spin around the front along the line x = x0.

The standard zigzag thus gives a loose chart for the new Legendrian Λloose,spin and

Λ′spin in T ∗,∞τ>0R3. It is clear from the front projection that, if there is a sheaf with

singular support on a knot, then there is also a sheaf with singular support on its

spinning. In fact, we consider R3\{(x, y, t)|x = x0, y = 0} ' R2 × S1 and the

projection

π : R3\{(x, y, t)|x = x0, y = 0} ∼= R2 × S1 ↪→ R3.

Now take the sheaf π−1F then SS∞(π−1F ) = Λ′spin. Note that supp(F ) is compact,

so π−1F has zero stalk near the line {(x, y, t)|x = x0, y = 0} and we can easily extend

it to a sheaf on R3. Then applying the argument above will complete the proof. �
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CHAPTER 6

Adjoints of Microlocalization and Sperical Adjunction

Spherical adjunctions are introduced by Anno-Logvinenko [8] in the dg setting

and then by [49] in the stable∞ setting, as a generalization of the notion of spherical

objects [144]. Like spherical objects, spherical adjunctions provide interesting fiber

sequences and autoequivalences of the categories called spherical twists and cotwists.

In algebraic geometry, when we have a smooth variety X with a divisor i : D ↪→

X, the push forward functor and pull back functor

i∗ : Coh(D)� Coh(X) : i∗

form a spherical adjunction between the dg categories of coherent sheaves, where the

spherical twist is −⊗OX(D).

In symplectic geometry, as is suggested by Kontsevich-Katzarkov-Pantev [98]

and Seidel [140], we have another interesting class of spherical adjunctions inspired

by long exact sequences in Floer theory [58, 135, 138, 141]. For a symplectic Lef-

schetz fibration π : X → C with regular fiber F = π−1(∞), let FS(X, π) be the

Fukaya-Seidel category associated to Lagrangian thimbles in X and F(F ) the Fukaya

category of closed exact Lagrangians in F [139]. The cap functor

∩F : FS(X, π)→ F(F )
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defined by intersection of the Lagrangians with F admits a left adjoint ∪ called the

(left) cup functor [4] (see also [6, Appendix A]). In an unpublished work, Abouzaid-

Ganatra proved that ∩ and ∪ form a spherical adjunction for general symplectic

Landau-Ginzburg models [4]. On the other hand, using the formalism of partially

wrapped Fukaya categories [76,151], Sylvan considered the Orlov cup functor

∪F :W(F )→W(X,F )

associated to any Weinstein pair (X,F ) and showed that the ∪ is a spherical functor1

as long as the Weinstein stop F ⊂ ∂∞X is a so called swappable stop [152]. In this

case, the spherical twists/cotwists are the monodromy functors defined by wrapping

around the contact boundary.

In microlocal sheaf theory, Nadler has also shown that functors between the pair of

microsheaf categories over the symplectic Landau-Ginzburg model (Cn, π = z1 . . . zn),

aftering (heuristically speaking) adding additional fiberwise stops, form a spherical

adjunction. Then, by removing the fiberwise stops, the spherical adjunction for the

original pair is also obtained [122], but it is unclear how general this argument is in

sheaf theory.

Our main result provides a general criterion for the microlocalization functor

mΛ : ShΛ(M) → µShΛ(Λ) to be spherical. Under the equivalence of Ganatra-

Pardon-Shende [74], the left adjoint of microlocalizationml
Λ is equivalent to the Orlov

1The data of a spherical functor is equivalent to the data of a spherical adjunction, as will be
explained in Section 6.2.1. Here we use spherical functors because the adjoint functor is not explicit
from Sylvan’s work.
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cup functor on wrapped Fukaya categories, while we expect that the microlocalization

mΛ is the cap functor on Fukaya-Seidel categories (see Remark 6.0.2 and 6.0.3). This

is based on joint work with C. Kuo.

Let M be a real analytic manifold. Consider a fixed Reeb flow Tt : T ∗,∞M →

T ∗,∞M . Recall that a (time-dependent) contact isotopy ϕt : T ∗,∞M×R→ T ∗,∞M is

called a positive isotopy if α(∂tϕt) ≥ 0. In the definition, we use the word stop for any

compact subanalytic Legendrians (following [76, 151]), meaning that Hamiltonian

flows are stopped by the Legendrian.

The geometric notion of a swappable subanalytic Legendrian originates from

positive Legendrian loops that avoid the Legendrian at the base point [42], and is

explicitly introduced by Sylvan [152]. Here our definition is slightly different from

[152].

Definition 6.0.2. A compact subanalytic Legendrian Λ ⊂ T ∗,∞M is called a

swappable stop if there exists a compactly supported positive Hamiltonian on T ∗,∞M\Λ

such that the forward flow sends Tε(Λ) to an arbitrary small neighbourhood of T−ε(Λ),

and the backward flow sends T−ε(Λ) to an arbitrary small neighbourhood of Tε(Λ).

We also introduce the notion of geometric and algebraic full stops, both called

full stops for simplicity. We will see in Proposition 6.2.8 that a geometric full stop

is always an algebraic full stop.

Definition 6.0.3. Let M be compact. A compact subanalytic Legendrian Λ ⊂

T ∗,∞M is called a geometric full stop if for a collection of generalized linking spheres
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at infinity Σ ⊂ T ∗,∞M of Λ, there exists a compactly supported positive Hamiltonian

on T ∗,∞M\Λ such that the Hamiltonian flow sends Σ to an arbitrary small neigh-

bourhood of T−ε(Λ).

More generally, when M is compact, a compact subanalytic Legendrian Λ ⊂

T ∗,∞M is called an algebraic full stop if the category of compact objects ShcΛ(M)

is proper.

Example 6.0.1. There is a large class of examples of swappable stops and full

stops in Section 6.2.3. Here are two cimple classes of examples. (1) For a subanalytic

triangulation S = {Xα}α∈I , the union of unit conormal bundles
⋃
α∈I ν

∗,∞
Xα

M is a

algebraic full stop (we suspect that it is also a geometric full stop and a swappable

stop, but we cannot prove that). (2) For an exact symplectic Landau-Ginzburg model

π : T ∗M → C, the Lagrangian skeleton cF of a regular fiber at infinity F = π−1(∞)

is a swappable stop and when π is a Lefschetz fibration it is a geometric full stop.

We are able to state our main result, which provides a general criterion for the

microlocalization functor mΛ to be spherical.

Theorem 6.0.3 (Theorem 1.2.1). Let Λ ⊂ T ∗,∞M be a compact subanalytic

Legendrian that is either a full Legendrian stop or a swappable Legendrian stop.

Then the microlocalization functor along Λ and its left adjoint

mΛ : ShΛ(M)� µShΛ(Λ) : ml
Λ

form a spherical adjunction.
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Remark 6.0.2. According to [74, Proposition 7.24] there is a commutative dia-

gram between microlocal sheaf categories and wrapped Fukaya categories

W(F )
∼

//

∪F
��

µShccF (cF )

m∗cF
��

W(T ∗M,F )
∼
// ShccF (M).

Therefore by restricting to the subcategory of compact objects, our theorem recovers

the result by Sylvan [152] that

∪F :W(F )→W(X,F )

is spherical in the case X = T ∗M . However, different from [152], we are able to

explicitly construct the left and right adjoint functors in the proof.

Remark 6.0.3. For a Lefschetz fibration π : T ∗M → C with regular fiber at

infinity F = π−1(∞),W(T ∗M,F ) is generated by Lagrangian thimbles [75, Corollary

1.14] and is a proper category [74, Proposition 6.7] (when M = T n and F is the

Weinstein thickening of the FLTZ skeleton [133], this is also proved by [105]), and

hence

ShbcF (M) ' ShccF (M) ' W(T ∗M,F ).

Since it is expected that W(T ∗M,F ) ' FS(T ∗M,π)2, there should be an equivalence

ShbcF (M) ' FS(T ∗M,π) (when M = T n, Zhou has sketched a proof in his thesis

2As pointed out in [74, Footnote 2], if one takes W(T ∗M,F ) as the definition of the Fukaya-
Seidel category then this is tautological. However a comparison result between W(T ∗M,F ) and
the Fukaya-Seidel category defined in [139, Part 3] is not yet in the literature.
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[162]). Therefore, our theorem should be viewed as a sheaf theory version of the

result [4] that

∩F : FS(T ∗M,π)→ F(F )

is spherical. However, since we do not know a commutative diagram

FS(T ∗M,π)

∩F
��

// ShbcF (M)

mcF

��

F(F ) // µShbcF (cF ),

that result [4] does not directly follow from ours.

We can write down the spherical twists and cotwists as follows. Previous work of

Kuo [104] has defined the positive wrapping functor W+
Λ (resp. negative wrapping

functor W−
Λ) sending an arbitrary sheaf in Sh(M) to ShΛ(M) by a colimit (resp. a

limit) of positive (resp. negative) wrappings into Λ. The spherical cotwist (resp. the

dual cotwist) ShΛ(M) → ShΛ(M) for mΛ is explicitly as the functor defined by

wrapping positively (resp. negatively) around T ∗,∞M once along the Reeb flow.

Proposition 6.0.4. Let Λ ⊂ T ∗,∞M and Tt : T ∗,∞M → T ∗,∞M be a Reeb flow.

Then the spherical cotwist and dual cotwist are the negative and positive wrap-once

functor (where ε > 0 is sufficiently small)

S−Λ = W−
Λ ◦ T−ε, S

+
Λ = W+

Λ ◦ Tε.
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Remark 6.0.4. By [74, Proposition 7.24], we know that the cup functor ∩F on

partially wrapped Fukaya categories is isomorphic to the left adjoint of microlocaliza-

tion ml
Λ on sheaf categories. Therefore, we have a commutative diagram

W(T ∗M,F )
∼

//

S±F
��

ShccF (M)

S±cF
��

W(T ∗M,F )
∼
// ShccF (M),

such that our wrap-once functor S±cF is isomorphic to the wrap-once functor of Sylvan

[152].

We will also write down a formula for spherical twists and dual twists in Section

6.4.1 Corollary 6.4.9, which can be interpreted as the monodromy functors.

On the other hand, from the perspective of Fukaya categories, following a proposal

of Kontsevich, Seidel has conjectured [140] that for a symplectic Lefschetz fibration,

the spherical dual cotwist is the Serre functor

σ−1 : FS(X, π)→ FS(X, π),

and proved partial results [141–143], while from the perspective of Legendrian con-

tact homology, Ekholm-Etnyre-Sabloff have proved Sabloff duality [58,135] between

linearized homology and cohomology. These results predict a Serre functor, which

should be the Poincaré-Lefschetz duality on the category of constructible sheaves

with perfect stalks

S−Λ : ShbΛ(M)→ ShbΛ(M).
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We show that in the sheaf theoretic setting, the spherical cotwist functor S−Λ ⊗ωM is

indeed the Serre functor on ShbΛ(M), which implies a folklore conjecture on Fukaya

categories in the case of cotangent bundles.

Proposition 6.0.5 (Proposition 6.3.4). Let Λ ⊂ S∗M be a full or swappable sub-

analytic compact Legendrian stop. Then S−Λ⊗ωM is the Serre functor on ShbΛ(M)0 of

sheaves microsupported on Λ with perfect stalks and compact supports. In particular,

when M is orientable, S−Λ [−n] is the Serre functor on ShbΛ(M)0.

Remark 6.0.5. Since our wrap-once functor is isomorphic to the wrap-once func-

tor of Sylvan [152], we can prove that the negative wrap-once functor of Sylvan

S−Λ : PropW(T ∗M,F )→ PropW(T ∗M,F )

is the Serre functor when M is orientable. In particular, when F = π−1(∞) is the

fiber of a symplectic Lefschetz fibration, then S−Λ is the Serré functor onW(T ∗M,F ).

Remark 6.0.6. Spherical adjunctions together with a compatible Serre functor,

in the smooth and proper setting, implies existence of a weak relative right Calabi-

Yau structure [99], but we do not expect the relative Calabi-Yau structures for general

Weinstein pairs to be proved this way. See the discussion in Remark 6.3.1.
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6.1. Adjoint Functors of Inclusions Are Wrappings

Following the framework of Ganatra-Pardon-Shende [76], for a positive Hamil-

tonian flow ϕ : T ∗,∞M × [0, 1]→ T ∗,∞M , we will define the canonical map

Hom(F ,G )→ Hom(F ,Ψ0
ϕ,1G )

by the multiplication with a canonical element (called the continuation element)

cϕ ∈ H0Hom(G ,G ϕ). In microlocal sheaf theory, the continuation element has been

studied by for example Zhou [163, Section 2.5] and Kuo [104, Section 3.1].

For a positive Hamiltonian flow ϕ : T ∗,∞M × [0, 1]→ T ∗,∞M , recall that Lemma

4.1.1 implies that there are continuation maps induced by canonical maps k(−∞,u) →

k(−∞,u′)

Ψ0
ϕ,u(F )→ Ψ0

ϕ,u′(F ),∀ u ≤ u′.

For simplicity, we will write Fϕ = Ψ0
ϕ,1(F ). Then we have continuation maps

F → Fϕ,∀ ϕ ≥ 0.

Proposition 6.1.1 (Kuo [104, Definition 3.3 & Proposition 3.4]). Let ϕ be a

positive Hamiltonian on T ∗,∞M and F ∈ Sh(M). Then there is a canonical contin-

uation element cϕ ∈ H0Hom(F ,Ψϕ(F )), such that

(1) c0 = id ∈ H0Hom(F ,F );

(2) cϕ◦ψ = cψ ◦ cϕ ∈ H0Hom(F ,Fϕ◦ψ));
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(3) cϕ = cϕ′ ∈ H0Hom(F ,Fϕ) if ϕ and ϕ′ are isotopic relative to boundary

T ∗,∞M × {0, 1}.

Consider X ⊂ T ∗,∞M a closed subset. We define the positive wrapping category

(which is the diagram category when we take limits and colimits), following [76,

Section 3.4] and [104, Section 3.2].

Definition 6.1.1. Let X ⊂ T ∗,∞M be a closed subset. Then the positive wrapping

category W+(T ∗,∞M\X) consists of positive Hamiltonians compactly supported away

from Λ, and the composition of G and H in the wrapping category is the composition

G ◦H as Hamiltonian flows.

One can show that the wrapping category W+(T ∗,∞M\X) is filtered [76, Lemma

3.27] [104, Proposition 3.17]. In particular we can take colimits with respect to the

wrapping category, which leads to the following theorem, that colimit/limit over

increasingly positive/negative isotopies provides a description for the tautological

inclusion ShX(M) ⊆ Sh(M).

Theorem 6.1.2 (Kuo [104, Theorem 1.2]). Let ιX∗ : ShX(M) ↪→ Sh(M) de-

note the tautological inclusion. Then the left and right adjoints are given by the

positive/negative colimiting/limiting wrapping

W+
X(F ) = colim

ϕ∈W+(T ∗,∞M\X)
Fϕ, W−

X(F ) = lim
ϕ∈W+(T ∗,∞M\X)

Fϕ−1

.

For G ∈ Sh(M), it is in general hard to compute W+
X(G ) (resp. W−

X(G )) since it

is given by a colimit (resp. a limit) over a rather large index category. Nevertheless,
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when X = Λ and SS∞(G ) are both isotropic, the underlying geometry can sometimes

provide a cofinal (resp. final) one parameter family Gt so that G0 = G and W+
Λ(G ) =

colimt→+∞ Gt (resp. W−
Λ(G ) = limt→−∞ Gt). In this case, a natural question is when,

for a fixed F ∈ Sh(M) also with isotropic singular support, the canonical map

Hom(F ,G )→ Hom(F ,W+
Λ(G ))

is an isomorphism. One such a case which we will encounter is the following:

Lemma 6.1.3. Let Λ be compact subanalytic Legendrian and F ,G ∈ Sh(M) be

sheaves with Legendrian singular supports. Assume that SS∞(F )∩Λ = ∅, and there

is a positive isotopy ϕt, t ∈ R, on T ∗,∞M such that for any open neighborhood Ω of Λ,

there is T = T (Λ) such that ϕt(SS∞(G )) ⊆ Ω for t ≥ T , and SS∞(F )∩ϕtSS∞(G ) =

∅ for all t ≥ 0, then the canonical map

Hom(F ,G )→ Hom(F ,W+
Λ(G ))

is an isomorphism. A similar statement holds for Hom(G ,F )→ Hom(W−
Λ(G ),F )

when given a negative isotopy satisfying a similar condition.

Proof. This is essentially [104, Theorem 5.15]. The point is that we would like

to apply the main theorem about nearby cycle, [124, Theorem 4.2]. Although we

did not assume compactness on supp(F ) and supp(G ) here as in [104, Theorem

5.15], the compactness assumption on Λ will be sufficient to implied the gappedness

condition for [124, Theorem 4.2]. �
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Remark 6.1.1. In practice, when we can find an increasing sequence of positive

Hamiltonian flows ϕkt , k ∈ N, such that for any open neighborhood Ω of Λ, there is

K ∈ N such that ϕkt (SS
∞(G )) ⊆ Ω for k ≥ K, then the condition in the lemma

holds. Indeed, we can define a time dependent smooth Hamiltonian ϕt such that

ϕt(SS∞(G )) = ϕkt−k(SS
∞(G )) when t ∈ [k+1−ε, k+1]. That satisfies the condition

in the lemma.

Using the description of the adjoint functors ι∗Λ and ι!Λ : Sh(M) → ShΛ(M) in

terms of positive and negative wrappings, we are able to provide geometric interpre-

tations for both the Sato-Sabloff exact triangle Theorem 4.0.6 and the Guillermou

doubling functor Theorem 4.0.7.

Theorem 6.1.2 induces the identification

Hom(W−
ΛT−ε(F ),G ) = Hom(Tε(F ),G ) = Hom(F , T−ε(G ))

and the definition of µhom and adjunctions implies that

Γ(Λ, µhom(F ,G )) = Hom(ml
ΛmΛ(F ),G ).

Then by Sato-Sabloff exact triangle Theorem 4.0.6, we have

Hom(W−
ΛT−ε(F ),G )→ Hom(F ,G )→ Hom(ml

ΛmΛ(F ),G )
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Equivalently, we have the exact sequence

ml
ΛmΛ → id→W+

ΛTε
+1−→

between endofunctors on ShΛ(M). A similarly discussion holds for the right adjoints

so that we have the exact sequence

W−
ΛT−ε → id→ mr

ΛmΛ
+1−→ .

Definition 6.1.2. We define the positive and negative warp-once functor S+
Λ and

S−Λ : ShΛ(M)→ ShΛ(M) as the compositions

S+
Λ (F ) := W+

ΛTε(F ), S−Λ (F ) := W−
ΛT−ε(F ).

Corollary 6.1.4. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian. Then

there are exact triangles of functors

ml
ΛmΛ → id→ S+

Λ

+1−→, S−Λ → id→ mr
ΛmΛ

+1−→ .

Then, we recall the adjunction property of the Guillermou doubling functor in

Theorem 4.2.10 and 4.2.9. Then Theorem 6.1.2 immediately implies the following

result.
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Corollary 6.1.5. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian. Then

there are equivalences

ml
Λ = W+

Λ ◦ wΛ[−1], mr
Λ = W−

Λ ◦ wΛ : µShΛ(Λ)→ ShΛ(M).

In particular, the left and the right adjoint ml
Λ and mr

Λ can be decomposed to a

inclusion followed by a quotient:

µShΛ(Λ) ↪→ ShTε(Λ)∪T−ε(Λ)(M)� ShΛ(M).

Then one can see that in particular, the exact sequence is compatible in Corollary

6.1.4 is compatible with the exact sequence in Corollary 4.2.8 that

T−ε → Tε → wΛ ◦mΛ
+1−→

once we apply W+
Λ and W−

Λ using Theorem 6.1.2.

6.2. Spherical Adjunction, Cotwists and Natural Transformations

With the preparation in the previous sections, we are able to prove Theorem

6.0.3. Our main result in the section is the following theorem.

Theorem 6.2.1. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian full stop

or swappable stop. Then the microlocalization functor

mΛ : ShΛ(M)→ µShΛ(Λ)
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is a spherical functor.

Theorem 6.0.3 is going to be a formal consequence of Theorem 6.2.1, as we

will discuss in Section 6.2.1. In particular, this will imply that the left adjoint of

microlocalization is also a spherical functor.

Corollary 6.2.2. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian full stop

or swappable stop. Then the left adjoint of the microlocalization functor

ml
Λ : µShΛ(Λ)→ ShΛ(M)

is a spherical functor.

In Section 6.2.2, we will construct the long exact sequence and natural trans-

formation between the left and right adjoints. Then in Section 6.2.3, we introduce

the notion of full stops and swappable stops following [152] and explain how these

conditions lead to Theorem 6.2.1.

6.2.1. Spherical adjunction and spherical functors

First of all, we recall the definition of spherical adjunctions in Dykerhoff-Kapranov-

Schechtman-Soibelman [49] in the setting of stable ∞-categories.

Definition 6.2.1 ([49, Definition 1.4.8]). Let A ,B be stable (∞-)categories and

F : A � B : F l
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be an adjunction of ∞-functors. Let T ′ and S ′ be the functors that fit into the fiber

sequences

T ′ → idB → F ◦ F l, F l ◦ F → idA → S ′.

Then F : A � B : F l is called a spherical adjunction if T ′ and S ′ are autoequiva-

lences.

Given a spherical adjunction F l a F , one can in fact show that both F and F l are

spherical functors in the sense of Anno-Logvinenko [8]. We recall the definition of

spherical functors in the setting of dg categories [8] and in the general case [38,49].

Definition 6.2.2. Let A ,B be stable (∞-)categories and F : A → B an (∞-

)functor, with left and right adjoints F l and F r. Let the spherical twist T , dual twist

T ′, cotwist S and dual cotwist S ′ be the functors that fit into the fiber sequences

F ◦ F ! → idB → T, T ′ → idB → F ◦ F ∗,

S → idA → F ! ◦ F, F ∗ ◦ F → idA → S ′.

Then F is a spherical functor if the following conditions hold:

(1) the spherical twist T is an autoequivalence;

(2) the spherical cotwist S is an autoequivalence;

(3) the composition F l ◦ T [−1]→ F l ◦ F ◦ F r → F r is an isomorphism;

(4) the composition F r → F r ◦ F ◦ F l → S ◦ F l[1] is an isomorphism.

Proposition 6.2.3 ([49, Corollary 2.5.13]). Let F : A � B : F l be a spherical

adjunction. Then both F and F l are spherical functors.
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Remark 6.2.1. Given a spherical adjunction F l a F , let T be the inverse of

T ′ and S the inverse of S ′. One can construct the right adjoint of F by setting

F r = F l ◦ T [−1], and the left adjoint of F l by setting Fl = F ◦ S[1]. In fact, any

spherical functor has iterated left and right adjoints of any order.

Therefore, to prove a spherical adjunction F ` F l, it suffices to show that either

of the functors is a spherical functor as in Definition 6.2.2. Moreover, the following

theorem shows that it suffices to prove any two out of the four conditions.

Theorem 6.2.4 (Anno-Logvinenko [8], Christ [38]). Let A ,B be stable cate-

gories, and F : A → B a functor satisfying any two of the four conditions in Def-

inition 6.2.2. Then F is a spherical functor. Moreover, T, T ′ and S, S ′ are inverse

autoequivalences.

From the discussion above, we know that in order to prove Theorem 6.0.3, it

suffices to prove Theorem 6.2.1 stated at the beginning of the section.

6.2.2. Natural transform between adjoints

Given the adjoint functors and the candidate cotwist in Section 6.1, we will inves-

tigate the relation between the left and right adjoints via the algebraically defined

natural transformation by the cotwist

mr
Λ → mr

Λ ◦mΛ ◦ml
Λ → S−Λ ◦m

l
Λ[1].
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The composition of the natural transformations should induce an equivalence in

order for microlocalization to be a spherical functor, as stated in Definition 6.2.2

Condition (4).

For F ∈ ShΛ(M) and G ∈ µShΛ(Λ), we thus need to prove that the algebraically

defined natural morphism

Hom(F ,mr
Λ(G ))→ Hom(F ,mr

ΛmΛm
l
Λ(G ))→ Hom(F , S−Λm

l
Λ(G )[1])

is an equivalence. On the other hand, Proposition 6.1.2 and 4.1.2 imply that

Hom(F ,mr
Λ(G )) = Hom(Tε(F ), wΛ(G )),

Hom(F , S−Λm
l
Λ(G )[1]) = Hom(Tε(F ),W+

ΛwΛ(G )).

Positive isotopies will then induce a geometrically defined natural morphism

Hom(Tε(F ), wΛ(G ))→ Hom(Tε(F ),W+
ΛwΛ(G )).

Our main result in this section claims that the algebraically defined natural morphism

induces an isomorphism if and only if the geometrically defined natural morphism

induces an isomorphism.

Proposition 6.2.5. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then

for F ∈ ShΛ(M) and G ∈ µShΛ(Λ), the natural morphism induced by adjunctions

Hom(F ,mr
Λ(G ))→ Hom(F ,mr

ΛmΛm
l
Λ(G ))→ Hom(F , S−Λm

l
Λ(G )[1])
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is an isomorphism if and only if the natural morphism induced by positive isotopies

Hom(Tε(F ), wΛ(G ))→ Hom(Tε(F ),W+
ΛwΛ(G ))

is an isomorphism.

We need to unpack the algebraic adjunctions between microlocalization and its

left and right adjoints using results on the doubling functor.

Firstly, we consider the natural transformation to the cotwist mr
Λ ◦mΛ → S−Λ [1].

The following lemma follows directly from Corollary 4.2.8 that there is a fiber se-

quence T−ε → Tε → wΛ ◦mΛ.

Lemma 6.2.6. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then for

F ∈ ShΛ(M) and G ∈ µShΛ(Λ), there is a commutative diagram induced by natural

transformations

Hom(F ,mr
ΛmΛm

l
Λ(G )) //

∼

��

Hom(F , S−Λm
l
Λ(G )[1])

∼

��

Hom(wΛmΛ(F ),W+
ΛwΛ(G )) // Hom(Tε(F ),W+

ΛwΛ(G )).
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Proof. Consider F ∈ ShΛ(M) and G ∈ µShΛ(Λ). Theorem 6.1.2 implies that

it suffices for us to show the following diagram

Hom(F , wΛmΛ ◦W+
ΛwΛ(G )[−1]) //

∼

��

Hom(F , T−ε(W
+
ΛwΛ(G )))

∼

��

Hom(wΛmΛ(F ),W+
ΛwΛ(G )) // Hom(Tε(F ),W+

ΛwΛ(G )).

Since the two horizontal morphisms are induced by the transformation wΛ◦mΛ[−1]→

T−ε and respectively Tε → wΛ ◦ mΛ in Corollary 4.2.8, we can conclude that the

diagram commutes. �

Secondly, we need to consider the unit id→ mΛ ◦ml
Λ, which is slightly more diffi-

cult. The following lemma relies on Corollary 4.2.8, and the fact that the adjunction

in Theorem 4.2.10 factors through the doubling functor by computation in Theorem

4.0.7:

Γ(Λ, µhom(mΛ(F ),G ))
∼−→ Hom(wΛmΛ(F ), wΛ(G ))

∼−→ Hom(Tε(F ), wΛ(G )).

Lemma 6.2.7. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then for

F ∈ ShΛ(M) and G ∈ µShΛ(Λ), there is a commutative diagram induced by natural

transformations

Hom(F ,mr
Λ(G )) //

∼

��

Hom(F ,mr
ΛmΛm

l
Λ(G ))

∼

��

Hom(Tε(F ), wΛ(G )) // Hom(wΛmΛ(F ),W+
ΛwΛ(G )).
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Proof. Consider F ∈ ShΛ(M) and G ∈ µShΛ(Λ). By Theorem 6.1.2, it suffices

to show that there is a commutative diagram

Hom(F , wΛ(G )) //

∼
��

Hom(F , wΛmΛ ◦W+
ΛwΛ(G )[−1])

∼

��

Hom(Tε(F ), wΛ(G )) // Hom(wΛmΛ(F ),W+
ΛwΛ(G )).

where the morphism on the top is induced by adjunction, and the morphism on the

bottom is the composition

Hom(Tε(F ), wΛ(G ))
∼−→ Hom(wΛmΛ(F ), wΛ(G ))→ Hom(wΛmΛ(F ),W+

ΛwΛ(G )).

Consider the unit of the adjunction between mΛ and ml
Λ = W+

Λ ◦wΛ[−1] in Theorem

4.2.10. Then we know that the morphism on the top factors as

Γ(Λ, µhom(mΛ(F ),G )) //

∼

��

Γ(Λ, µhom(mΛ(F ),mΛ ◦W+
ΛwΛ(G )[−1]))

∼

��

Hom(F , wΛ(G )) // Hom(F , wΛmΛ ◦W+
ΛwΛ(G )[−1]).

Since the top horizontal morphism factors through Hom(wΛmΛ(F ),W+
ΛwΛ(G )), it

suffices to show that the following composition factors through Γ(Λ, µhom(mΛ(F ),G ))

Hom(Tε(F ), wΛ(G ))
∼−→ Hom(wΛmΛ(F ), wΛ(G ))→ Hom(wΛmΛ(F ),W+

ΛwΛ(G )).
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Since the adjunction in Theorem 4.2.10 factors through the isomorphism of doubling

functor in Theorem 4.0.7

Hom(Tε(F ), wΛ(G ))
∼−→ Hom(wΛmΛ(F ), wΛ(G ))

∼−→ Γ(Λ, µhom(mΛ(F ),G )),

we can conclude that the diagram above indeed commutes. �

Proof of Proposition 6.2.5. We consider the following commutative dia-

gram, where the horizontal morphisms are induced from the identity wΛ ◦ mΛ =

Cone(T−ε → Tε), and vertical morphisms are induced by positive isotopies

Hom(Tε(F ), wΛ(G )) // Hom(wΛ ◦mΛ(F ), wΛ(G ))

��

// Hom(Tε(F ), wΛ(G ))

��

Hom(Tε(F ), wΛ(G )) // Hom(wΛ ◦mΛ(F ),W+
Λ ◦ wΛ(G )) // Hom(Tε(F ),W+

Λ ◦ wΛ(G )).

Lemma 6.2.6 and 6.2.7 imply that the algebraically defined natural transformation

of functors is an isomorphism if and only if the composition of morphisms in the

second row is an isomorphism.

From the computation in Theorem 4.0.7, compared with Theorem 4.2.9 and

4.2.10, we know that horizontal natural morphisms in the first row are isomorphisms

Hom(Tε(F ), wΛ(G ))
∼−→ Hom(wΛ ◦mΛ(F ), wΛ(G ))

∼−→ Hom(Tε(F ), wΛ(G )).
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Therefore, the composition of horizontal morphisms in the second row is an isomor-

phism if and only if the geometrically defined vertical morphism in the last column

is an isomorphism. �

6.2.3. Criterion for spherical adjunction

With the presence of the adjunction pairs, fiber sequences and natural transforma-

tions in the previous sections, in this section, we will study the spherical cotwist and

its dual cotwist, and prove Condition (2) & (4) in Definition 6.2.2 under geometric

assumptions. As we will see in the proof, both Condition (2) & (4) in will rely on

some full faithfulness of the wrapping functor W+
Λ .

In this section, we will use the word stop for a closed subanalytic Legendrian in

T ∗,∞M (meaning that the positive wrappings in T ∗,∞M are stopped by the subana-

lytic Legendrian), which comes from the study of symplectic topology and wrapped

Fukaya categories [76,151].

6.2.3.1. Spherical functor for full stops. We assume that M is compact in this

subsection. First, we introduce the notion of an algebraic full stop, which has been

frequently used in wrapped Fukaya categories.

Definition 6.2.3. Let M be compact and Λ ⊂ T ∗,∞M be a compact subanalytic

Legendrian. Then Λ is called a full stop if ShcΛ(M) is a proper category.

Remark 6.2.2. Recall that from Theorem 3.4.3 ([121, Theorem 3.21] or [74,

Corollary 4.23]), we know that ShbΛ(M) = ShppΛ (M). From Proposition 3.4.1, we

know that in our case ShcΛ(M) is smooth, which then implies Corollary 3.4.5 that
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ShbΛ(M) ⊆ ShcΛ(M). On the other hand, when ShcΛ(M) is moreover proper, then we

know that [74, Lemma A.8]

ShcΛ(M) = ShbΛ(M).

Conversely, when M and Λ are both compact, then if ShcΛ(M) = ShbΛ(M), we can

also tell that ShcΛ(M) is proper using for example Proposition 3.4.4.

Example 6.2.3. Let S = {Xα}α∈I be a subanalytic triangulation on M . Then

the union of unit conormal bundles over all strata Λ = ν∗,∞S M =
⋃
α∈I ν

∗,∞
Xα

M defines

a full stop [74, Proposition 4.24].

We recall our notion of a geometric full stop in the introduction. For the definition

of generalized linking disks, see for example [74, Section 7.1].

Definition 6.2.4. A closed subanalytic Legendrian Λ ⊂ T ∗,∞M is called a geo-

metric full stop if for a collection of generalized linking spheres Σ ⊂ T ∗,∞M of Λ,

there exists a compactly supported positive Hamiltonian on T ∗,∞M\Λ such that the

Hamiltonian flow sends D to an arbitrary small neighbourhood of T−ε(Λ).

Following Ganatra-Pardon-Shende [74, Proposition 6.7], we prove that a geomet-

ric full stop is an algebraic full stop.

Proposition 6.2.8. Let Λ ⊂ T ∗,∞M be a geometric full stop. Then Λ is also an

algebraic full stop.
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To prove the proposition, we recall the following definition by Kuo in [104]. Let

M be compact, and w̃shΛ(M) be the category of constructible sheaves with perfect

stalks whose singular support is disjoint from Λ. Let CΛ(M) be all continuation maps

of positive isotopies supported away from Λ. Then the category of wrapped sheaves

is [104, Definition 4.1]

wshΛ(M) := w̃shΛ(M)/CΛ(M).

We have HomwshΛ(M)(F,G) = colimϕ∈W+(T ∗,∞M\Λ)Hom(F,Gϕ), and [104, Theorem

1.3]

W+
Λ : wshΛ(M)

∼−→ ShcΛ(M).

Proof of Proposition 6.2.8. We prove that wshΛ(M) is a proper category.

Namely, for any F ,G ∈ wshΛ(M),

HomwshΛ(M)(F ,G ) ∈ Perf(k).

Indeed, note that SS∞(G ) ⊂ T ∗,∞M\Λ is compact. Thus there exists a cofinal wrap-

ping ϕk ∈ W+(T ∗,∞M\Λ) such that ϕ1
k(SS

∞(G )) is contained in a neighbourhood

of Λ, and is in particular away from SS∞(F ). Therefore

HomwshΛ(M)(F ,G ) = colim
ϕ∈W+(T ∗,∞M\Λ)

Hom(F ,G ϕ) ' colim
k→∞

Hom(F ,G ϕk)

' colim
k→∞

Hom(F ,G ) = Hom(F ,G ) ∈ Perf(k),

which completes the proof for the first case of a geometric full stop. �
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Example 6.2.4. Let π : T ∗M → C be an exact symplectic Lefschetz fibration

(whose existence is ensured by Giroux-Pardon [82]), and F = π−1(∞) a regular

Weinstein fiber at infinity. Then the Lagrangian skeleton of the Weinstein manifold

Λ = cF ⊂ T ∗,∞M defines a full stop [75, Corollary 1.14] & [74, Proposition 6.7] under

the equivalence between wrapped Fukaya categories and microlocal sheaf categories

[74].

Let Λ = Λ∞Σ ⊂ S∗T n be the FLTZ skeleton associated to the toric fan Σ [69,70,

133]. Gammage-Shende (under an extra assumption) [73] and Zhou (without extra

assumptions) [164] show that it is indeed the Lagrangian skeleton of a regular fiber

of a symplectic fibration π : T ∗T n → C, which is expected to be a Lefschetz fibration

when the mirror toric stack XΣ is smooth. The fact that Λ∞Σ is a full stop (when XΣ

is smooth) is also independently proved by Kuwagaki using mirror symmetry [105].

When Λ ⊂ T ∗,∞M is a full Legendrian stop, we know that ShΛ(M) = Ind(ShbΛ(M)).

Therefore we only focus on results on the small category ShbΛ(M).

To show Condition (2) that S+
Λ and S−Λ are equivalences, we appeal to Section

4.1.3 where S−Λ is shown to abide Serre duality (up to a twist) on ShbΛ(M).

Proposition 6.2.9. Let Λ ⊂ T ∗,∞M be a compact full Legendrian stop where M

is a closed manifold. Then there is a pair of inverse autoequivalences

S+
Λ : ShbΛ(M)
 ShbΛ(M) : S−Λ .
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Proof. For F ,G ∈ ShbΛ(M), we claim that

Hom(F ,G )→ HomwshΛ(M)(Tε(F ), Tε(G )).

Indeed, consider a sequence of descending open neighbourhoods {Ωk}k∈N of Λ ⊂

T ∗,∞M such that Ωk+1 ⊆ Ωk and
⋂
k∈N Ωk = Λ. Let the sequence cofinal wrapping

be the Reeb flow T1/t on T ∗,∞M\Ωk and identity on Ωk+1. Then

HomwshΛ(M)(Tε(F ), Tε(G )) = colim
δ→0+

Hom(Tδ(F ), Tε(G ))

= colim
δ→0+

Hom(F , Tε−δ(G )).

Then the right hand side is a constant since Hom(F , Tε−δ(G ))
∼←− Hom(F ,G ) by

the perturbation trick Proposition 4.1.2.

On the other hand, we also know that W+
Λ : wshΛ(M) → ShbΛ(M) is an equiva-

lence [104, Theorem 1.3]. Therefore

Homw(Tε(F ), Tε(G )) ' Hom(W+
Λ ◦ Tε(F ),W+

Λ ◦ Tε(G )) = Hom(S+
Λ (F ), S+

Λ (G )).

Since S−Λ is the right adjoint of S+
Λ , we know that S−Λ ◦ S

+
Λ = idShbΛ(M).

Then consider F ,G ∈ ShbΛ(M). Sabloff-Serre duality Proposition 4.1.6 implies

that

Hom(S−Λ (F ), S−Λ (G )) = Hom(G ⊗ ω−1
M , S−Λ (F ))∨ = Hom(F ,G ).

Then since S−Λ is the right adjoint of S+
Λ , we know that S−Λ ◦ S

+
Λ = idShbΛ(M). �
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Next, we show Condition (4) that there is a natural isomorphism of functors

mr
Λ
∼−→ S−Λ ◦ml

Λ[1], which again requires Serre duality in Section 4.1.3.

Proposition 6.2.10. Let Λ ⊂ T ∗,∞M be a compact subanalytic full Legendrian

stop. Then for any F ∈ ShbΛ(M) and G ∈ µShcΛ(Λ) there is an isomorphism

Hom(F ,mr
Λ(G ))→ Hom(wΛ ◦mΛ(F ),ml

Λ(G ))→ Hom(Tε(F ),ml
Λ(G ))

Proof. Let µi ∈ µShcΛ(Λ) be the corepresentatives of microstalks at the point

pi on the smooth stratum Λi ⊂ Λ, which (split) generate the category µShcΛ(Λ)

following Proposition 3.4.2. By Proposition 6.2.5, it suffices to show that for any

F ∈ ShbΛ(M),

Hom(Tε(F ), wΛ(µi)) ' Hom(Tε(F ),W+
Λ ◦ wΛ(µi)).

Note that ml
Λ(µi) ∈ ShbΛ(M). By Sabloff-Serre duality Proposition 4.1.6, we know

that the right hand side is

Hom(Tε(F ),ml
Λ(µi)[1])∨ = Hom(F , T−ε ◦ml

Λ(µi)[1])∨ = Hom(ml
Λ(µi)[1],F ⊗ ωM).

On the other hand, since F is cohomologically constructible, by Theorem 4.2.9 and

Proposition 3.1.7, the left hand side is

Hom(Tε(F ), wΛ(µi))
∨ = p∗(D

′
MF ⊗ wΛ(µi))

∨ = Hom(D′MF ⊗ wΛ(µi), p
!k)

= Hom(wΛ(µi),DM ◦D′MF ) = Hom(wΛ(µi),F ⊗ ωM).
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Moreover, the continuation map is exactly induced by the continuation map wΛ(µi)→

W+
Λ ◦ wΛ(µi). Therefore, the result immediately follows from Proposition 6.1.2. �

By Proposition 6.2.9 and 6.2.10, we can immediately finish the proof of Theorem

6.2.1 and hence the full stop part in Theorem 6.0.3.

6.2.3.2. Spherical functor for swappable stops. Next, we define the notion of

a swappable stop, which is introduced by Sylvan [152], but is a priori weaker than

his terminology.

Definition 6.2.5. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian. Then

Λ is called a swappable Legendrian stop if there exists a positive wrapping fixing Λ

that sends Tε(Λ) to an arbitrarily small neighbourhood of T−ε(Λ).

Example 6.2.5. The Legendrian stops in Example 6.2.4 are swappable, and we

conjecture that Legendrian stops in Example 6.2.3 are swappable as well. More gen-

erally, when F ⊂ T ∗,∞M is a Weinstein page of a contact open book decomposition

for T ∗,∞M [80,91], then it is a swappable stop.

However, swappable stops are not necessarily full stops. For instance, for the

Landau-Ginzburg model π : T ∗M → C that are not Lefschetz fibrations, F ⊂ T ∗,∞M

will in general not be a full stop (one can consider π : Cn → C; π = z1z2 . . . zn

[2,122]). Sylvan [152, Example 1.4] also explained that one can take any monodromy

invariant subset for the Lagrangian skeleton of fiber of a Lefschetz fibration and get

a swappable stop.
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Example 6.2.6. There is another way to get new swappable stops from old ones3.

Consider Λ ⊂ ∂∞X to be a swappable stop in ∂∞X the contact boundary of some

Liouville domain, and ∂∞X
′ the contact boundary of some other Liouville domain.

When we take the Liouville connected sum of X and X ′ along some subcritical Wein-

stein hypersurface F ↪→ ∂∞X and F ↪→ ∂∞X
′ [15], as the skeleton cF is of subcritical

dimension, the positive loop of Λ will generically avoid cF . Therefore, Λ is also swap-

pable in ∂∞(X#FX
′).

In particular, let X = Cn and F = Cn−1, then X#FX
′ is the 1-handle connected

sum of Cn and X ′, which is Liouville homotopy equivalent to X ′. In particular, for

any swappable stop Λ ⊂ D2n−1 ⊂ S2n−1 (for example, the skeleton of any page of

contact open book decomposition), putting it in a Darboux ball in T ∗,∞M , we will get

a swappable stop in T ∗,∞M .

When Λ ⊂ T ∗,∞M is a swappable Legendrian stop, then there exists a cofinal

positive (resp. negative) wrapping that sends Tε(Λ) to an arbitrary small neighbour-

hood of T−ε(Λ) (resp. sends T−ε(Λ) to an arbitrary small neighbourhood of Tε(Λ)).

So there exists a (cofinal sequence of) positive contact flow ϕtk, k ∈ N, supported

away from Λ such that ϕ1
k(Tε(Λ)) is contained in a small neighbourhood of T−ε(Λ)

for k � 0. We will fix the cofinal sequence of positive flow and check condition (2)

and (4) of Definition 6.2.2 by considering this particular wrapping.

Proposition 6.2.11. Assume Λ is swappable. The functors S+
Λ and S−Λ are

equivalences.

3The authors would like to thank Emmy Murphy who explains to us this construction.
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Proof. It’s sufficient to check that they are fully-faithful since S+
Λ ` S

−
Λ is an ad-

junction pair. The computation is symmetric so we check thatHom(S+
Λ (F ), S+

Λ (G )) =

Hom(F ,G ), or equivalently, the canonical map

Hom(F,G) = Hom(Tε(F ), Tε(G ))→ Hom(Tε(F ),W+
Λ ◦ Tε(G ))

is an isomorphism. First apply Proposition 4.1.2, so that the map factorizes as

Hom(Tε(F ), Tε(G ))
∼−→ Hom(Tε(F ), Tε+δ(G ))→ Hom(Tε(F ),W+

Λ ◦ Tε(G ))

for some 0 < δ � ε. Then by the swappable assumption, for a sequence of descending

open neighbourhoods {Ωk}k∈N of Λ ⊂ T ∗,∞M such that Ωk+1 ⊆ Ωk and
⋂
k∈N Ωk =

Λ, there exist (an increasing sequence of) positive Hamiltonian flows ϕtk, k ∈ N,

supported away from Λ such that

ϕ1
k(Tε(Λ)) ⊆ T−1/k(Ωk)

for k � 0. Thus we are in the situation of Lemma 6.1.3. �

Proposition 6.2.12. When Λ is swappable. The canonical map mr
Λ → mr

Λ ◦

mΛ ◦ml
Λ → S−Λ ◦ml

Λ[1] is an isomorphism.

Proof. By Proposition 6.2.5, it’s sufficient to show that the map

Hom(Tε(F ), wΛ(G ))→ Hom(Tε(F ),W+
Λ ◦ wΛ(G ))
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is an isomorphism. Since SS∞(wΛ(G )) ⊆ T−ε(Λ)∪Tε(Λ), we can again flow it forward

by the Reeb flow Tδ for some 0 < δ � ε by Proposition 4.1.2 such that the above

map factorizes as

Hom(Tε(F ), wΛ(G )) = Hom(Tε(F ), Tδ ◦ wΛ(G ))→ Hom(Tε(F ),W+
Λ ◦ wΛ(G )).

But then the same proof from the last proposition applies. By the swappable assump-

tion, for a sequence of descending open neighbourhoods {Ωk}k∈N of Λ ⊂ T ∗,∞M such

that Ωk+1 ⊆ Ωk and
⋂
k∈N Ωk = Λ, there exist (an increasing sequence of) positive

Hamiltonian flows ϕtk, k ∈ N, supported away from Λ such that

ϕtk(Tε(Λ) ∪ T−ε(Λ)) ⊆ T−1/k(Ωk) ∪ T−1/2k(Λ)

for k � 0. We can again apply Lemma 6.1.3 to conclude that the map is an isomor-

phism. �

By Proposition 6.2.11 and 6.2.12, we can immediately finish the proof of Theorem

6.2.1 and hence the swappable stop part of Theorem 6.0.3.

6.3. Spherical Adjunction and Serre Duality on Subcategories

Spherical adjunction on the category of all sheaves and microsheaves will also

tell us about information on the corresponding subcategories. Restricting attention

to the pair of sheaf categories of compact objects, and the corresponding pair of

sheaf categories of proper objects when the manifold is compact, which are the sheaf
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theoretic models of suitable versions of Fukaya categories, we can show the following

corollary.

Corollary 6.3.1. Let Λ ⊂ T ∗,∞M be a closed subanalytic Legendrian. Suppose

Λ is either a swappable stop or a geometric full stop. Then the microlocalization

functor along Λ on the sheaf category of objects with perfect stalks

mΛ : ShbΛ(M)→ µShbΛ(Λ)

is a spherical functor. Respectively, the left adjoint of the microlocalization functor

on the sheaf category of compact objects

ml
Λ : µShcΛ(Λ)→ ShcΛ(M)

is also a spherical functor.

We also prove that S−Λ is in fact the Serre functor on ShbΛ(M), when Λ is a full stop

or swappable stop. Thus we will prove the folklore conjecture on partially wrapped

Fukaya categories associated to Lefschetz fibrations formulated by Seidel [140] (who

attributes the conjecture to Kontsevich) with partial results in [141–143], in the

case of partially wrapped Fukaya categories on cotangent bundles.

6.3.1. Spherical adjunction on subcategories

In this section, we will restrict to the subcategories of proper objects and compact

objects of sheaves. Over the category of proper objects of sheaves (equivalently,
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sheaves with perfect stalks), we will show that the microlocalization

mΛ : ShbΛ(M)→ µShbΛ(Λ)

is a spherical functor, and over the category of compact objects of sheaves, we will

show that the left adjoint of the microlocalization

ml
Λ : µShcΛ(M)→ ShcΛ(M)

is a spherical functor. We know that autoequivalences coming from twists and

cotwists immediately restrict to these corresponding subcategories. As a result, once

we know the corresponding functors restrict, they will be spherical.

First, we consider the subcategories of compact objects. For the spherical ad-

junction ml
Λ a mΛ. We know that the left adjoint ml

Λ preserves compact objects,

i.e. we have

ml
Λ : µShcΛ(Λ)→ ShcΛ(M).

However, it is not clear whether microlocalization mΛ also preserves these objects.

Lemma 6.3.2. Let Λ ⊂ T ∗,∞M be a subanalytic Legendrian stop. When mr
Λ

admits a right adjoint, the essential image of the microlocalization functor

mΛ : ShcΛ(M)→ µShΛ(Λ)

is contained in µShcΛ(Λ)
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Proof. We know that mr
Λ preserves colimits as it admits a right adjoint. Now

since the right adjoint of mΛ preserves colimits, we can conclude that mΛ preserves

compact objects. �

Whenever mΛ ` ml
Λ is a spherical adjunction, we know by Remark 6.2.1 that mr

Λ

admits a right adjoint. Therefore spherical adjunction can always be restricted to

the subcategories of compact objects, as we have claimed in Corollary 6.3.1.

Then we consider the subcategories of proper objects. We know that the mi-

crolocalization functor preserve proper objects (or equivalently objects with perfect

stalks), i.e. we have

mΛ : ShbΛ(M)→ µShbΛ(Λ).

However, it is not clear whether the left adjoint ml
Λ and right adjoint mr

Λ preserves

these objects.

Lemma 6.3.3. Let Λ ⊂ T ∗,∞M be a subanalytic Legendrian stop. When mr
Λ

admits a right adjoint, the essential image of the left adjoint of microlocalization

functor

mr
Λ : µShbΛ(Λ)→ ShΛ(M)

is also contained in ShbΛ(M).

Proof. We recall Theorem 3.4.3 that

ShbΛ(M) = Funex(ShcΛ(M)op,Perf(k)), µshbΛ(Λ) = Funex(µShcΛ(Λ)op,Perf(k)),
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where the isomorphism is given by the Hom(−,−) pairing on ShcΛ(M)op × ShbΛ(M)

and respectively on µShcΛ(Λ)op×µShbΛ(Λ). Then since we know that microlocalization

preserves compact objects

mΛ : ShcΛ(M)→ µShcΛ(Λ),

the right adjoint mr
Λ clearly preserves proper objects. �

Whenever mΛ ` ml
Λ is a spherical adjunction, we know by Remark 6.2.1 that

mr
Λ admits a right adjoint, so the adjunction mr

Λ ` mΛ can be restricted to the

subcategories of proper objects.

Therefore by Remark 6.2.1 the spherical adjunction mΛ ` ml
Λ can always be

restricted to the subcategories of proper objects, as we have claimed in Corollary

6.3.1.

As we have seen, the candidate right adjoint of ml
Λ will simply be the microlo-

calization functor

mΛ : ShΛ(M)→ µShΛ(Λ).

The candidate left adjoint of ml
Λ, by Remark 6.2.1, is the functor

mΛ ◦ S−Λ [1] : ShΛ(M)→ µshΛ(Λ).

The readers may be confused about the non-symmetry as ml
Λ is supposed to be

the cup functor on wrapped Fukaya categories and there is no non-symmetry there.

We can provide an explanation as follows. Consider the category of wrapped sheaves
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in [104], we have a preferred equivalence W+
Λ : wshΛ(M) → ShcΛ(M). If we try to

instead replace the domain ShcΛ(M) by wshΛ(M), then ml
Λ can be replaced by the

doubling functor wΛ[−1], and one can easily see that

mr
Λ = mΛ ◦W+

Λ , m
l
Λ = mΛ ◦W−

Λ [1].

Then mr
Λ (resp. ml

Λ) is indeed the cap functor by wrapping positively (resp. nega-

tively) into the Legendrian Λ and then take microlocalization, i.e. the sheaf theoretic

restriction.

6.3.2. Serre functor on proper subcategory

In this section, we finally prove that S−Λ is in fact the Serre functor on ShbΛ(M),

when Λ is a full stop or swappable stop. Thus we will prove the folklore conjecture

on partially wrapped Fukaya categories associated to Lefschetz fibrations in the case

of partially wrapped Fukaya categories on cotangent bundles.

Let A be a stable category over k. Recall that A is proper category if for any

X, Y ∈ A ,

HomA (X, Y ) ∈ Perf(k).

When A is a proper category, by the above lemma, we are always able to define the

(right) dualizing bi-module A ∗.
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Definition 6.3.1. For a proper stable category A , the (right) dualizing bi-module

A ∗ is defined by

A ∗(X, Y ) = HomA (X, Y )∨ = Homk(HomA (X, Y ),k).

Definition 6.3.2. For a proper stable category A , a Serre functor SA is the

functor that represents the right dualizing bimodule A ∗, i.e.

HomA (−,−)∨ ' HomA (−, SA (−)).

Proposition 6.3.4. Let Λ ⊂ T ∗,∞M be a full or swappable compact subanalytic

Legendrian stop. Then S−Λ ⊗ ωM is the Serre functor on ShbΛ(M)0 of sheaves with

perfect stalks and compact supports. In particular, when M is orientable, S−Λ [−n] is

the Serre functor on ShbΛ(M)0.

Proof. First, by Lemma 6.3.3, we know that S−Λ : ShbΛ(M)→ ShbΛ(M) preserves

perfect stalks. Moreover, when M is noncompact and Λ is a swappable stop, we

argue that S−Λ also preserves compact supports. By the swappable assumption,

for a sequence of descending open neighbourhoods {Ωk}k∈N of Λ ⊂ T ∗,∞M such

that Ωk+1 ⊆ Ωk and
⋂
k∈N Ωk = Λ, there exist (an increasing sequence of) positive

Hamiltonian flows ϕtk, k ∈ N, supported away from Λ such that

ϕ−1
k (T−ε(Λ)) ⊂ T1/k(Ωk)
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for k � 0. Without loss of generality, we can even assume that ϕtk are all supported

in some common compact subset. Since M is noncompact, consider any unbounded

region U such that Λ ∩ S∗U = ∅. Then there exists an open subset U ′ ⊂ U ⊂ M ,

ϕtk(Tε(Λ)) ∩ S∗U ′ = ∅ for k � 0. Then

Γ(U ′, S−Λ (F )) = Γ
(
U ′, lim

k→∞
K(ϕ−1

k ) ◦ T−ε(F )
)

= 0.

Since SS∞(S−Λ (F )) ⊆ Λ, we get Γ(U, S−Λ (F )) = 0, which implies that S−Λ (F ) has

compact support.

Since we have concluded that S−Λ : ShbΛ(M)0 → ShbΛ(M)0 preserves perfect stalks

and compact supports, the proposition then immediately follows from Theorem 6.1.2

and 4.1.6. �

We should remark that, even though Proposition 4.1.6 is true in general, the

above statement is not without the assumption on Λ ⊂ T ∗,∞M . For example, in

Section 6.5 we will see an example where S−Λ fails to be an equivalence on ShbΛ(M).

Finally, we explain the implication of the above result in partially wrapped Fukaya

categories. Ganatra-Pardon-Shende [74, Proposition 7.24] have proved that there is

a commuative diagram intertwining the cup functor and the left adjoint of microlo-

calization functor

W(F )
∼

//

∪F
��

µShccF (cF )

m∗cF
��

W(T ∗M,F )
∼
// ShccF (M).
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Sylvan has shown that the spherical twist associated to the cup functor is the wrap-

once functor [152], and hence it intertwines with the wrap-once functor in sheaf

categories. Consequently, we have proven that the negative wrap-once functor

S−Λ : PropW(T ∗M,F )→ PropW(T ∗M,F )

is indeed the Serre functor on PropW(T ∗M,F ).

In particular, let π : T ∗M → C be a symplectic Lefschetz fibration and F =

π−1(∞) be the Weinstein fiber. Let cF be the Lagrangian skeleton of F . Then by

Ganatra-Pardon-Shende [74,75] we know that

PerfW(T ∗M,F ) = PropW(T ∗M,F )

is a proper subcategory. Therefore, S−Λ is the Serre functor on partially wrapped

Fukaya category associated to Lefschetz fibrations.

Remark 6.3.1. Finally, we remark that according to the result of Katzarkov-

Pandit-Spaide [99], existence of spherical adjunction in the next section together with

a compatible Serre functor will imply existence of the weak relative proper Calabi-Yau

structure introduced in [21] of the pair

mΛ : ShbΛ(M)→ µShbΛ(Λ)

(even though we do not explicitly show compatibility of the Serre functor, we believe

that it is basically clear from the definition in [99]).
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However, we will see in the last section that spherical adjunction does not hold

in all these pairs that are expected to be relative Calabi-Yau (on the contrary, as

explained in Sylvan [152] or Remark 4.2.6, when we consider microlocalization along

a single component of a Legendrian stop with multiple components

mΛi : ShΛ(M)→ µShΛ(Λ)→ µShΛi(Λi)

we will still get spherical adjunctions, but the pair is unlikely to be relative Calabi-

Yau). We will investigate relative Calabi-Yau structures separately (and hopefully,

in full generality) in future works.

6.4. Spherical Pairs and Perverse Schöbers

The description of spherical pairs comes from the relation between spherical func-

tors and perverse sheaves of categories (called perverse schöbers) on a disk with one

singularity [96]. For a perverse schöber on D2 with singularity at 0 associated to the

spherical functor

F : A → B

consider a single cut [0, 1] ⊂ D2. Then the nearby category at 0 is A while the

vanishing category on (0, 1] is B, and the spherical twist is determined by mon-

odromy around D2\{0}. Kapranov-Schechtman realized a symmetric description of

the perverse schöber determined by the diagram

B−
F−←− C

F+−→ B+,
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by considering a double cut on the disk [−1, 1] ⊂ D2. The nearby category at 0 is C

while the vanishing category on [−1, 0) (resp. (0, 1]) is B− (resp. B+). The nearby

category C will carry a 4-periodic semi-orthogonal decomposition. Such a viewpoint

will provide new information of the microlocal sheaf categories.

Given our formalism of spherical adjunctions, we will prove as a corollary spher-

ical pairs which give rise to non-trivial equivalences of microlocal sheaf categories

over different Lagrangian skeleta that do not a priori require non-characteristic de-

formations (while in known examples of such equivalences, [48,165] the Lagrangian

skelata are related by non-characteristic deformations).

Definition 6.4.1. Let Λ± ⊂ S∗M be two disjoint closed subanalytic Legendri-

an stops. Suppose there exists both a positive and a negative compactly supported

Hamiltonian flow that sends Λ+ to an arbitrary small neighbourhood of Λ−, whose

backward flows send Λ− to an arbitrary small neighbourhood of Λ+. Then (Λ−,Λ+)

is called a swappable pair.

Remark 6.4.1. When Λ± ⊂ S∗M are Lagrangian skeleta of Weinstein hypersur-

faces F± ⊂ S∗M , we do not know whether (X,F±) are in fact Weinstein homotopic,

though in some examples we will mention we suspect that they are. Moreover, it is

in general a hard question when a singular Lagrangian will arise as the skeleton of a

Weinstein manifold [61, Problem 1.1 & Remark 1.2].

We will show that a swappable pair of Legendrian stops produces a spherical pair.
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Theorem 6.4.1 (Theorem 6.4.10). Let Λ± ⊂ S∗M be a swappable pair of closed

Legendrian stops. Then ShΛ−(M) ' ShΛ+(M), µShΛ−(Λ−) ' µShΛ+(Λ+), and there

is a spherical pair

ShΛ−(M)
 ShΛ+∪Λ−(M)� ShΛ+(M).

Remark 6.4.2. As in the previous result, we can show that the spherical pair

can be restricted to the subcategories of compact objects of sheaf categories, which

therefore leads to a result on partially wrapped Fukaya categories.

Remark 6.4.3. For symplectic topologists, this result may seem boring since

one may suspect that the corresponding Weinstein pairs turn out to be Weinstein

homotopic. However, when considering Fukaya-Seidel categories given a Landau-

Ginzburg potential, the Weinstein hypersurfaces F± can be fibers of different potential

functions. Therefore, studying the behaviour of their Lagrangian skeleta provides a

way to compare the categories directly.

In this section, we discuss how the adjunctions give rise to spherical pairs and

semi-orthogonal decompositions, and prove Proposition 6.4.8 and Theorem 6.4.10.

Using Proposition 6.4.8, we will also give an explicit characterization of the spherical

twists and dual twists.

We will provide precise definitions of the terminologies in this section and then

show the results in the introduction. Note that none of the arguments in this section
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essentially relies on microlocal sheaf theory, and therefore they can all be rewritten

using Lagrangian Floer theory.

6.4.1. Semi-orthogonal decomposition

Firstly, we explain how spherical adjunctions give rise to 4-periodic semi-orthogonal

decompositions and spherical twists are given by iterated mutations Halpern–Laistner-

Shipman [90] in the case of dg categories and Dykerhoff-Kapranov-Schechtman-

Soibelman [49] in general (this is how Sylvan proved that the Orlov cup functor

is spherical [152]).

Theorem 6.4.2 (Halpern–Laistner-Shipman [90], [49]). Let F : A → B be an

∞-functor, and C be the semi-orthogonal gluing of A and B along the graphical

bi-module Γ(F ). Then F is spherical if and only if C fits into a 4-periodic semi-

orthogonal decomposition such that A ⊥⊥⊥⊥ = A . The dual twist is the iterated

mutation TA = RA ◦RA ⊥⊥, and the dual cotwist is SB = LA ◦ LA ⊥⊥.

Remark 6.4.4. Given a pair of semi-orthogonal decompositions C = 〈A+,B〉 '

〈B,A−〉, the right mutation functor is the equivalence RA : A+ → A− defined by

the composition of embedding and projection.

Therefore, restricting to our setting of sheaf categories, our main theorem is

equivalent to the following statement.

Proposition 6.4.3. Let Λ ⊂ T ∗,∞M be a compact subanalytic Legendrian stop.

Then under the fully faithful embedding wΛ : µShΛ(Λ)→ ShT−ε(Λ)∪Tε(Λ)(M), there is
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a semi-orthogonal decomposition

ShT−ε(Λ)∪Tε(Λ)(M) ' 〈µshΛ(Λ), ShTε(Λ)(M)〉.

Proof. We can check that ShT−ε(Λ)∪Tε(Λ)(M) is the semi-orthogonal gluing (i.e. the

Grothendieck construction) of µShΛ(Λ) and ShΛ(M) along the graphical bi-module

Γ(mΛ). First, we show that

〈µShΛ(Λ), ShTε(Λ)(M)〉 ↪→ ShT−ε(Λ)∪Tε(Λ)(M),

By Theorem 4.2.10, Remark 4.2.4 and 4.2.5, we know that

Hom(wΛ(F ), Tε(G )) ' 0, Hom(Tε(G ), wΛ(F )) ' Hom(mΛ(G ),F ).

This proves full faithfulness.

For essential surjectivity, consider F ∈ ShT−ε(Λ)∪Tε(Λ)(M). Then Theorem 4.2.9

and Remark 4.2.6 implies the following fiber sequence

W+
T−ε(Λ)∪Tε(Λ)wT−ε(Λ)mTε(Λ)(F )→ F →W+

Tε(Λ)(F ).

Since W+
T−ε(Λ)∪Tε(Λ)wT−ε(Λ)mT−ε(Λ)(F ) = wΛmT−ε(Λ)(F ), we can conclude that

wΛmT−ε(Λ)(F )→ F →W+
Tε(Λ)(F ),

where W+
T−ε(Λ)(F ) ∈ ShTε(Λ)(M) and mT−ε(Λ)(F ) ∈ µShΛ(Λ). This shows the es-

sential surjectivity and thus shows the semi-orthogonal decomposition. �
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Corollary 6.4.4. The semi-orthogonal decomposition can be restricted to com-

pact objects, namely there is a semi-orthogonal decomposition

ShcT−ε(Λ)∪Tε(Λ)(M) ' 〈ShcTε(Λ)(M), µShcΛ(Λ)〉.

Proof. Consider the fiber sequence of categories

µShΛ(Λ) ↪→ ShT−ε(Λ)∪Tε(Λ)(M)� ShTε(Λ)(M).

For F ∈ ShcT−ε(Λ)∪Tε(Λ)(M), we know that W+
Tε(Λ)(F ) ∈ ShcTε(Λ)(M) since by W+

Tε(Λ)

is the stop removal functor as explained in Remark 3.4.2 and Proposition 3.4.2.

Moreover, by Proposition 3.4.2 we know that the fiber of the stop removal func-

tor is compactly generated by the corepresentatives of microstalks at T−ε(Λ) in the

category ShT−ε(Λ)∪Tε(Λ)(M), which by definition are

ml
T−ε(Λ)(µi) = W+

T−ε(Λ)∪Tε(Λ)wT−ε(Λ)(µi) = wΛ(µi),

where µi ∈ µShΛ(Λ) are corepresentatives of the microstalks in the category µShΛ(Λ).

Then when restricting to compact objects, the fiber is µShcΛ(Λ) (split) generated by

µi ∈ µShcΛ(Λ). �

Remark 6.4.5. We explain how this is related to Sylvan’s proof of the spheri-

cal adjunction [152, Section 4]. Sylvan considered a sectorial gluing of the original

Weinstein sector (X,F ) and the A2-sector F 〈2〉 = (C, {e2π
√
−1j/3∞}0≤j≤2)× F , and
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showed semi-orthogonal decompositions for the ambient sector (X,F )∪F F 〈2〉. How-

ever, the sector (X,F ) ∪F F 〈2〉 is exactly (X,T−ε(F ) ∪ Tε(F )).

Example 6.4.6. Let Λ ⊂ J1(M) ∼= S∗τ>0(M × R) be a smooth Legendrian with

no Reeb chords (i.e. Λ is the Legendrian lift of an embedded Lagrangian). Then by

[84, Proposition 24.1] we know that the compactly supported sheaves ShΛ(M×R)0 '

0, and therefore the compactly supported sheaves with singular support on the double

copied Legendrian is

ShT−ε(Λ)∪Tε(Λ)(M × R)0 ' µShΛ(Λ).

It is interesting to consider the case when Λ is a singular Legendrian with no Reeb

chords, which should relate to the framework of Nadler-Shende [124,146] where they

embedded the Lagrangian skeleton of a Weinstein sector into unit cotangent bundles

via the h-principle.

Example 6.4.7. Let Λloose ⊂ J1(M) ∼= S∗τ>0(M × R) be a stabilized or (not

necessarily smooth) loose Legendrian [40, Chapter 7; 116; 117]. Then by [148,

Proposition 5.8] we know that the compactly supported sheaves ShΛloose
(M ×R)0 ' 0,

and therefore the compactly supported sheaves with singular support on the double

copied Legendrian is

ShT−ε(Λloose)∪Tε(Λloose)(M × R)0 ' µShΛloose
(Λloose).
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Moreover, from the point of view of K-theory, the semi-orthogonal gluing (i.e. the

Gronthendieck construction) fits into a (diagram of) simplicial∞-category being the

relative Waldhausen S-construction. Following Dyckerhoff-Kapranov-Schechtman-

Soilbelman [49], we state the following conjecture.

Conjecture 6.4.5. The relative Waldhausen S-construction of the left adjoint

of microlocalization functor is the simplicial ∞-category

Sn(ml
Λ) = Sh⋃n

j=0 Tjε(Λ)(M).

Remark 6.4.8. Consider a sectorial gluing of the original Weinstein sector

(X,F ) and the An+1-sector F 〈n + 1〉 = (C, {e2π
√
−1j/(n+2)∞}0≤j≤n+1) × F . Then

our geometric model for Waldhausen S-construction is

(X,F ) ∪F F 〈n+ 1〉 =
(
X,

⋃
0≤j≤n

Tjε(F )
)
.

Going back to semi-orthogonal decompositions and spherical adjunctions, com-

bining Theorem 6.4.2 and Proposition 6.4.3, we immediately get the following corol-

lary from the spherical adjunction we have proved.

Corollary 6.4.6. Let Λ ⊂ T ∗,∞M be a swappable Legendrian stop or full Legen-

drian stop. Then under the fully faithful functor wΛ : µShΛ(Λ)→ ShT−ε(Λ)∪Tε(Λ)(M),

there are semi-orthogonal decompositions

ShT−ε(Λ)∪Tε(Λ)(M) ' 〈µShΛ(Λ), ShTε(Λ)(M)〉 ' 〈ShT−ε(Λ)(M), µShΛ(Λ)〉.
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Conjecture 6.4.7. When Λ ⊂ T ∗,∞M be a swappable Legendrian stop or full

Legendrian stop, we expect that the simplicial ∞-category

Sn(ml
Λ) = Sh⋃n

j=0 Tjε(Λ)(M)

can be lifted to a paracyclic ∞-category.

In fact, the semi-orthogonal decompositions

ShT−ε(Λ)∪Tε(Λ)(M) = 〈µShΛ(Λ), ShTε(Λ)(M)〉 = 〈ShT−ε(Λ)(M), µShΛ(Λ)〉

also provide (trivial) examples of spherical pairs, which we now introduce.

For a diagram of ∞-functors over stable ∞-categories

B−
F−←− C

F+−→ B+

where F± admit fully faithful left and adjoints F l,r
± , we can write

A− = ker(F+) =⊥ (F r
+B+) = (F l

+B+)⊥, A+ = ker(F−) =⊥ (F r
−B−) = (F l

−B−)⊥,

and write ι± : A± → C (which admits left and right adjoints ι∗± and ι!±). The

following definition is essentially a reinterpretation of the conditions in Theorem

6.4.2.

Definition 6.4.2. A diagram of ∞-functors over stable ∞-categories

B−
F−←− C

F+−→ B+
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is called a spherical pair if F± admit fully faithful left and right adjoints F l,r
± such

that

(1) the compositions F l
+◦F− : B+ → B−, F l

−◦F+ : B− → B+ are equivalences;

(2) the compositions ι!+ ◦ ι− : A+ → A−, ι!− ◦ ι+ : A− → A+ are equivalences.

Then Corollary 6.4.6 immediately implies the following proposition.

Proposition 6.4.8. Let Λ ⊂ T ∗,∞M be a swappable Legendrian stop or full

Legendrian stop. Then there exists spherical pairs of the form

µshT−ε(Λ)(T−ε(Λ))← ShT−ε(Λ)∪Tε(Λ)(M)→ µshTε(Λ)(T−ε(Λ)).

Meanwhile, there is also a spherical pair

ShT−ε(Λ)(M)→ ShT−ε(Λ)∪Tε(Λ)(M)← ShTε(Λ)(M).

Remark 6.4.9. We can restrict the spherical pairs to the subcategories of com-

pact or proper objects as explained in Section 6.3.1 and Corollary 6.4.4.

Moreover, from the description in Theorem 6.4.2, we can show that the spherical

twists (resp. dual twists) are simply the positive (resp. negative) monodromy functor,

under the inclusion by the doubling functor.

Corollary 6.4.9. Let Λ ⊂ T ∗,∞M be a swappable Legendrian stop or full Leg-

endrian stop. Under the inclusion wΛ : µShΛ(Λ) ↪→ ShT−ε(Λ)∪Tε(Λ)(M), the spherical
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dual twist is computed by

S−T−ε(Λ)∪Tε(Λ) ◦ S
−
T−ε(Λ)∪Tε(Λ)|wΛ(µShΛ(Λ))[2].

Similarly, the spherical dual cotwist is computed by

S+
T−ε(Λ)∪Tε(Λ) ◦ S

+
T−ε(Λ)∪Tε(Λ)|ShTε(Λ)(M) = S+

Tε(Λ).

Proof. By Proposition 6.4.8 and Theorem 6.4.2, it suffices to show that the right

mutation functor

RµShΛ(Λ) : wΛ(µShΛ(Λ)) ↪→ ShT−ε(Λ)∪Tε(Λ)(M)→ wΛ(µshΛ(Λ))

is the functor S−T−ε(Λ)∪Tε(Λ)|wΛ(µShΛ(Λ))[1]. Consider the pair of semi-orthogonal de-

compositions

ShT−ε(Λ)∪Tε(Λ)(M) =
〈
µShΛ(Λ), ShTε(Λ)(M)

〉
=
〈
ShT−ε(Λ)(M), µShΛ(Λ)

〉
.

The first semi-orthogonal decomposition is realized in Proposition 6.4.3 by

ml
T−ε(Λ)mT−ε(Λ)(F )→ F →W+

Tε(Λ)F .

Following a similar argument, the second semi-orthogonal decomposition is realized

by the fiber sequence

W−
T−ε(Λ)F → F → mr

T−ε(Λ)mT−ε(Λ)(F ).



264

Therefore, one can show that the right mutation functor associated to the pair of

semi-orthogonal decompositions using Theorem 4.2.9 and Remark 4.2.6

RµShΛ(Λ)(wΛmT−ε(Λ)(F )) = mr
T−ε(Λ)mT−ε(Λ) ◦ml

T−ε(Λ)mT−ε(Λ)(F )[1]

= mr
T−ε(Λ)mT−ε(Λ) ◦ml

T−ε(Λ)mT−ε(Λ)(F )[1] = mr
T−ε(Λ)mT−ε(Λ)(F )[1]

= W−
T−ε(Λ)∪Tε(Λ)wT−ε(Λ)mT−ε(Λ)(F )[1] = S−T−ε(Λ)∪Tε(Λ)wΛmT−ε(Λ)(F )[1].

One can also compute RµShΛ(Λ)⊥⊥ in the same way, which implies the result on

spherical twists.

For spherical cotwists, it suffices to show that the left mutation functor is

S+
T−ε(Λ)∪Tε(Λ)|ShTε(Λ)(M).

Then using the above semi-orthogonal decompositions, we have

LShTε(Λ)(M)(W
−
Tε(Λ)F ) = W+

T−ε(Λ) ◦W
−
Tε(Λ)F = S+

T−ε(Λ)∪Tε(Λ) ◦W
−
Tε(Λ)F .

One also can compute LShT−ε(Λ)(Λ) in the same way. This implies the result on

spherical dual cotwists. Finally, we note that from the computation

S+
T−ε(Λ)∪Tε(Λ)◦S

+
T−ε(Λ)∪Tε(Λ)(W

−
Tε(Λ)F ) = W+

T−ε(Λ)◦W
+
Tε(Λ)(W

−
Tε(Λ)F ) = S+

Tε(Λ)(W
−
Tε(Λ)F ),

which confirms the last assertion. �
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Remark 6.4.10. Note that the functor S+
T−ε(Λ)∪Tε(Λ) intertwines T−ε(Λ) and Tε(Λ)

by a positive isotopy. Hence applying the functor twice has the effect of the mon-

odromy functor.

These seem to be trivial examples of spherical pairs. In the following section, we

will provide some examples that are less trivial, namely pairs of different subanalytic

Legendrians.

6.4.2. Spherical pairs from variation of skeleta

In general, there are subanalytic Legendrian stops that give rise to spherical pairs

which are not necessarily homeomorphic. For example, Donovan-Kuwagaki [48] have

considered two specific examples from homological mirror symmetry of toric stacks.

They presented equivalences between sheaf categories

ShcΛ+
(T n)

∼−→ ShcΛ−(T n)

that are mirror to certain flop-flop equivalences of the mirror toric stacks defined

by GIT quotients [18] (more generally, it is discussed in [165] how different GIT

quotients are related by semi-orthogonal decompositions).

Remark 6.4.11. Unlike in algebraic geometry, where the equivalence is between

derived categories of varieties related by flops that are only birational equivalent, in

symplectic geometry, we expect that the Weinstein sectors (T ∗T n,Λ−) and (T ∗T n,Λ+)

are Weinstein homotopic (see [40,61] for the definition), even though the Lagrangian
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skeleta and associated Landau-Ginzburg potentials [73,133,164] are different. This

reflects the flexibility on the symplectic side.

Here we provide a general criterion for this type of equivalences between microlo-

cal sheaf categories. In known examples of such equivalences between microlocal

sheaf categories, the Legendrian stops are required to be related by non-characteristic

deformations [48,165]. However, we provide a criterion that does not a priori require

existence of non-characteristic deformations thanks to the equivalences from spheri-

cal adjunctions (though it often turns out that the Legendrian stops are related by

such deformation).

Note that any two Legendrian stops are generically disjoint after a small contact

perturbation.

Definition 6.4.3. Let Λ± ⊂ T ∗,∞M be two disjoint closed subanalytic Legendrian

stops. Suppose there exists both a positive and a negative Hamiltonian flow that sends

Λ+ to an arbitrary small neighbourhood of Λ−, and there also exists a positive and a

negative Hamiltonian flow that sends Λ− to an arbitrary small neighbourhood of Λ+.

Then (Λ−,Λ+) is called a swappable pair.

Both of the following examples are considered in [48,165], though from a different

perspective.
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Example 6.4.12. We can consider the mirror to the flops associated to X0 =

C2/Z2. On the one hand, consider the Deligne-Mumford quotient stack

X− = [C2/Z2].

On the other hand, consider the minimal resolution

X+ = C̃2/Z2 = Tot(OCP1(−2)).

Under homological mirror symmetry (or coherent-constructible correspondence) of

toric stacks [105], the mirrors are Weinstein sectors (T ∗T 2,Λ±) as shown in Fig-

ure 6.1. One can show that after a small Reeb perturbation, (T−ε(Λ−), Tε(Λ+)) and

(Tε(Λ−), T−ε(Λ+)) are both swappable pairs of Legendrian stops, as shown in Figure

6.1.

We can also consider the Atiyah flops associated to X0 = {(x, y, z, w)|zy − zw =

0} ⊂ C4 and their mirror. There are two crepant resolutions along two exceptional

rational curves

X± = Tot(OE±(−1)⊕2).

Under homological mirror symmetry (or coherent-constructible correspondence) of

toric stacks [105], the mirrors are Weinstein sectors (T ∗T 3,Λ±). One can similar-

ly show that (T−ε(Λ−), Tε(Λ+)) and (Tε(Λ−), T−ε(Λ+)) are both swappable pairs of

Legendrian stops.
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Figure 6.1. The figure on the left illustrates the swappable pair Λ± ⊂
S∗T 2 mirror to the flops associated to X0 = C2/Z2, where all the
covectors are pointing downward. The figure on the right illustrates a
cofinal wrapping that sends T−ε(Λ) to a neighbourhood of Tε(Λ) and
one that sends Tε(Λ+) to a neighbourhood of T−ε(Λ).

The main theorem of the section is the following statement, that swappable pairs

of Legendrian stops induce spherical pairs of sheaf categories.

Theorem 6.4.10. Let Λ± ⊂ T ∗,∞M be a swappable pair of closed Legendrian

stops. Then ShΛ−(M) ' ShΛ+(M), µshΛ−(Λ−) ' µshΛ+(Λ+), and there is a spheri-

cal pair

ShΛ−(M)← ShΛ+∪Λ−(M)→ ShΛ+(M).

Proof. We notice that since (Λ−,Λ+) is a swappable pair, this implies that Λ±

are independently swappable in T ∗,∞M : in fact, we can wrap Λ− into a small neigh-

bourhood of Λ+, and then follow the wrapping which sends the neighbourhood of
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Λ+ back into a small neighbourhood of Λ−. Therefore, the left adjoints of microlo-

calization

ml
Λ± : µshΛ±(Λ±)→ ShΛ±(M)

are spherical functors whose spherical twists are S+
Λ±

. On the other hand, for any

F ∈ ShΛ−(M) and G ∈ ShΛ+(M), we can define the swapping functors

R+
Λ−,Λ+

(F ) = S+
Λ−∪Λ+

F = W+
Λ+

F , R+
Λ+,Λ−

(G ) = S+
Λ−∪Λ+

G = W+
Λ−

G .

From Corollary 6.4.9, the compositions of swapping functor give the spherical twists

S+
Λ−

= R+
Λ+,Λ−

◦R+
Λ−,Λ+

, S+
Λ+

= R+
Λ−,Λ+

◦R+
Λ+,Λ−

.

As a result, we know that R+
Λ−,Λ+

, R+
Λ+,Λ−

are equivalences. Similarly we can also

consider spherical cotwists and show that the corresponding co-swapping functors

are equivalences. This implies that

ShΛ−(M) ' ShΛ+(M), µShΛ−(Λ−) ' µShΛ+(Λ+).

Then consider two new pairs of Legendrian stops (Λ−, Tε(Λ−)) and (T−ε(Λ+),Λ+),

obtained by a sufficiently small Reeb push-off. We show that there are equivalences

ShΛ−∪Tε(Λ−)(M) ' ShΛ−∪Λ+(M) ' ShT−ε(Λ+)∪Λ+(M),
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such that the corresponding restrictions are the swapping functor

R+
Λ−,Λ+

: ShΛ−(M)→ ShT−ε(Λ+)(M), ShTε(Λ−)(M)→ ShΛ+(M)

Then since ShΛ−∪Tε(Λ−)(M) and ShT−ε(Λ+)∪Λ+(M) are both endowed with semi-

orthogonal decompositions by Proposition 6.4.3, this will complete the proof.

Consider the non-nagative wrapping that fixes Λ− while sending Tε(Λ−) into Λ+,

and another non-negative wrapping that fixes Λ− while sending Λ+ into Tε(Λ−).

Viewing Λ−∪Tε(Λ−) and Λ−∪Λ+ independently as two Legendrian stops, the above

observation shows that they form a swappable pair as well. Hence we have

R+
Λ−∪Tε(Λ−),Λ−∪Λ+

: ShΛ−∪Tε(Λ−)(M)→ ShΛ−∪Λ+(M),

R−Λ−∪Λ+,Λ−∪Tε(Λ−) : ShΛ−∪Λ+(M)→ ShΛ−∪Tε(Λ−)(M),

where R+
Λ−∪Tε(Λ−),Λ−∪Λ+

and R−Λ−∪Λ+,Λ−∪Tε(Λ−) are inverse equivalences by the defini-

tion above. Hence we have shown the equivalence

ShΛ−∪Λ+(M) ' ShΛ−∪Tε(Λ−)(M)

which realizes ShΛ−∪Λ+(M) as semi-orthogonal decompositions.
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Finally, to identify the projection functors with the stop removal functors, i.e. pos-

itive wrapping functors, we only need to notice that the following diagram commutes

ShΛ−(M) ShΛ−∪Λ+(M)
W+

Λ−
oo ShΛ−∪Λ+(M)

W+
Λ+
//

∼ W+
T−ε(Λ+)∪Λ+

��

ShΛ+(M)

ShΛ−(M) ShΛ−∪Tε(Λ−)(M)

∼W+
Λ−∪Λ+

OO

W+
Λ−

oo
∼
// ShT−ε(Λ+)∪Λ+(M)

W+
Λ+

// ShΛ+(M).

This completes the proof of the theorem. �

We now explain how the above result gives rise to more general equivalences and

autoequivalences of microlocal sheaf categories other than the spherical twists and

cotwists defined by wrapping around. In particular, we will discuss the relation to

the work of Donovan-Kuwagaki [48], who provide autoequivalences that are mirror

to the flop-flop equivalence in two specific examples.

Throughout this subsection, we will work with the subcategory of compact objects

ShcΛ(M) instead of the large stable category ShΛ(M).

Let Λ± = Λ0 ∪ H± ⊂ T ∗,∞M be subanalytic Legendrian stops such that there

is a positive Hamiltonian isotopy fixed on Λ0 that sends H− to an arbitrary small

neighbourhood of Λ+, and a positive isotopy fixed on Λ0 that sendsH+ to an arbitrary

small neighbourhood of Λ−.

Then by a small perturbation, we know that the pair

(T−ε(Λ−), Tε(Λ+)), (T−ε(Λ+), Tε(Λ−))
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form a swappable pair. By results in the previous section, the following compositions

are equivalences

ShcΛ−(M)→ ShcT−ε(Λ−)∪Tε(Λ+)(M)→ ShcΛ+
(M),

ShcΛ+
(M)→ ShcT−ε(Λ+)∪Tε(Λ−)(M)→ ShcΛ−(M).

Example 6.4.13. Weinstein pairs in Example 6.4.12 will give examples. Suppose

Λ0 = Λ− ∩ Λ+. We can then write Λ± = Λ0 ∪ H±, where H± are Legendrian disks

with boundary ∂H± ⊂ Λ0 as in Figure 6.2. In fact, we expect that the Weinstein

thickenings of Λ± are Weinstein homotopic, and the Weinstein thickening of Λ−∪Λ+

is a Weinstein stacking [108] of the two Weinstein hypersurfaces.

Figure 6.2. The figure on the left and in the middle are the Legen-
drian pairs Λ± ⊂ S∗T 2, where all conormal directions are pointing
downward. The figure on the right is Λ−∪Λ+ = Λ0∪H−∪H1 ⊂ S∗T 2

where H± have the corresponding colors as Λ±.

In the above equivalences, the autoequivalence obtained by compositions

ShcΛ−(M)
∼−→ ShcΛ+

(M)
∼−→ ShcΛ−(M)

is no longer the spherical twist by wrapping around the contact boundary as Theorem

6.4.10. Yet we expect that under appropriate assumptions, these autoequivalences
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are spherical twists of a spherical pair

ShcΛ−(M)← ShcΛ−∪Λ+
(M)→ ShcΛ+

(M),

and are mirror to the spherical pair associated to the flop-flop equivalence from

Bozenta-Bondal [18]. Donovan-Kuwagaki [48] have proved this for Example 6.4.13.

However, currently, using microlocal sheaf theoretic methods, almost the only

way to get semi-orthogonal decompositions or reversed inclusions

ShcΛ−(M) ↪→ ShcΛ−∪Λ+
(M)

is to assume that Λ± are full stops, i.e. ShcΛ±(M) = ShbΛ±(M) [41, Section 6.3].

Using homological mirror symmetry or coherent-constructible correspondence, it is

possible to prove semi-orthogonal decompositions for some limited cases of non-full

stops like Example 6.4.13 [48,164], but to our knowledge, for the moment there is

no general statement.

6.5. Example That Wrap-once Is Not Equivalence

When introducing the notion of a swappable stop, Sylvan has already noticed

the strong constraint that swappability puts on the stop [152]. Now we have proved

that full stops also implies sphericality. However, it is not know whether being a full

or swappable stop is a necessary condition, or even whether any condition is really

needed to show spherical adjunction.
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Here we provide an example where S+
Λ : ShcΛ(M) → ShcΛ(M) is not an equiva-

lence. Moreover, our computation implies that in this case, mΛ does not preserve

compact objects and ml
Λ does not preserve proper modules (or equivalently, sheaves

with perfect stalks).

In order to compute the wrap-once functor, we need the following geometric

criterion for cofinal wrappings.

Lemma 6.5.1 ([76, Lemma 3.29]). Let Σ ⊂ T ∗,∞M\Λ be a subanalytic Legen-

drian, and ϕk be an increasing sequence of contact flows on T ∗,∞M\Λ. Suppose there

exists a contact form α on T ∗,∞M\Λ such that

lim
k→∞

∫ 1

0

min
ϕtk(Σ)

α
(
∂tϕk|ϕtk(Σ)

)
dt =∞.

Then {ϕk}k∈N is a cofinal sequence of wrappings in the category of positive wrappings

of Σ in T ∗,∞M\Λ.

Proposition 6.5.2. Let M = T n = Rn/Zn, Λ = T ∗,∞0 T n ⊂ T ∗,∞T n (n ≥ 2), and

Bε(0) be a closed ball of radius ε around 0. Then S−Λ (10) = W−
Λ ◦ kBε(0) /∈ ShbΛ(T n).

In particular, S−Λ does not induce an equivalence on the proper subcategory ShbΛ(T n).

Proof. Let ε > 0 be a small positive number and ηk : T n → [0, 1] be a smooth

cut-off function such that for small neighbourhoods Bε/2k2(0) ⊂ Bε/k2(0) around 0

we have

ηk|Bε/2k2 (0) = 0, η|Tn\Bε/k2 (0) = 1.
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Let the decreasing sequence of negative Hamiltonians be Hk(x, ξ) = −k ηk(x)|ξ|2 and

the contact flow be ϕk. Rescale the contact form on T ∗T n\T ∗0 T n by a function δ(x)→

∞, x → 0. One can easily check by the above lemma that ϕk is a cofinal sequence

of positive wrappings on T ∗,∞T n\Λ. We will show that limk→∞K(ϕk) ◦ kBε(0) does

not have perfect stalk at T n\{0}.

For simplicity, we now assume that n = 2. Consider the universal cover π : Rn →

Rn/Zn ∼= T n. Let the lifting of the Hamiltonian be Hk(x, ξ) = −k ηk(π(x))|ξ|2 and

the lifting of the flow be ϕk. Then

K(ϕk) ◦ kBε(0) = π∗
(
K(ϕk) ◦ kBε(0)

)
.

We then show that in each region of the form �m = [m + ε,m + 1 − ε] × [ε, 1 − ε]

where m ≥ 0, when k ≥ m+ 1 we have

k ↪→ Γ
(
�m, K(ϕk) ◦ kBε(0)

)
.

In fact, for the outward unit conormal bundle of Bε(0), under the Hamiltonian Hk,

the boundary arc of the sector Sk in between the rays θ = arcsin(ε/k2) and θ =

arctan(1/k)−arcsin(ε/k2(1+k2)1/2) will follow the inverse geodesic flow Hk = −k|ξ|2

determined by ∂tϕk = k∂/∂r. Therefore there is an injection

k ↪→ Γ
(
Sk, K(ϕk) ◦ kBε(0)

)
↪→ Γ

(
�m, K(ϕk) ◦ kBε(0)

)
.
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Figure 6.3. The black circles are the boundary of the regions where
the Hamiltonian Hk are cut off by the function ηk. The blue sectors
are the sectors which completely follow the inverse geodesic flow as
they do not intersect the black circles. Since radii of the the black
circles decreases (and converges to 0), the slope of the lower edge of
the sectors that follow the geodesic flow also decreases (and converges
to 0). Even though the slope of the upper edge of the sectors are
decreasing as more and more black circles appear on the top right pat
of the plane, the sequence of sectors will not shrink to nothing and can
go arbitrary far away.

Then under the projection map π : Rn → Rn/Zn ∼= T n, write� = [ε, 1−ε]×[ε, 1−ε] ⊂

T n. We know that when k ≥ m+ 1,

k⊕m ↪→ Γ
(
�, K(ϕk) ◦ kBε(0)

)
.

Therefore, Γ
(
�, lim

k→∞
K(ϕk)◦kBε(0)

)
/∈ Perf(k). Since lim

k→∞
K(ϕk)◦kBε(0) ∈ ShT ∗,∞0 Tn(T n)

is constructible, we can conclude that the stalk at x′ 6= x is isomorphic to the sections

on �, and hence is not perfect. �

Corollary 6.5.3. Let M = T n and Λ = T ∗,∞0 T n ⊂ T ∗,∞T n (n ≥ 2). S+
Λ is not

an equivalence on ShcΛ(T n).
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Proof. Assume that S+
Λ is an equivalence on ShcΛ(T n). Consider the equivalence

ShbΛ(T n) ' Funex(ShcΛ(T n)op,Perf(k)) given by the homomorphism pairing as stated

in Theorem 3.4.3. For F ∈ ShcΛ(T n),G ∈ ShbΛ(T n), since

Hom(S+
Λ (F ),G ) = Hom(F , S−Λ (G )),

we know that S−Λ has to be an equivalence on ShbΛ(T n). This contradicts the propo-

sition. �

Corollary 6.5.4. Let M = T n and Λ = T ∗,∞0 T n ⊂ T ∗,∞T n (n ≥ 2). Then mΛ

does not preserve compact objects.

Proof. This follows immediately from the fiber sequence ml
Λ◦mΛ → idShΛ(Tn) →

S+
Λ . �

Remark 6.5.1. We believe one can also show that ml
Λ does not perserve proper

modules (or objects with perfect stalks) using a similar argument.

We can then deduce the following geometric result which shows that the Weinstein

stop is not a swappable stop.

Corollary 6.5.5. Let M = T n (n ≥ 2) and Λ = T ∗,∞0 T n. Then the Weinstein

hypersurface FΛ defined as the ribbon of Λ ⊂ T ∗,∞T n is not a swappable hypersurface.

We can compare our result with the following result of Dahinden [42].

Theorem 6.5.6 (Dahinden [42]). Let M be a connected manifold with dimM ≥

2. Suppose there exists a positive Legendrian isotopy Λt ⊂ T ∗,∞M such that Λ0 =
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Λ1 = Λ = T ∗,∞x M and Λt ∩ Λ = ∅ (t ∈ (0, 1)). Then M is simply connected or

M = RPn.

Dahinden’s theorem does not imply that the Weinstein ribbon FΛ of Λ ⊂ T ∗,∞M

is a swappable hypersurface, because firstly, it is in general unknown whether the

exact symplectomorphism FΛ defined by the positive loop sends the zero section to

itself (note that this may be closely related to the nearby Lagrangian conjecture).

Therefore, our corollary is at least a priori stronger than the theorem.
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CHAPTER 7

Functorial Specialization and Lagrangian Cobordisms

Consider a Liouville domain X and a Liouville subdomain X ′ following Section

2.4, Abouzaid-Seidel [5] first constructed a partially defined Viterbo restriction func-

tor between their wrapped Fukaya categories.

W(X) 99KW(X ′)

Recently, using the framework of Liouville sectors, Sylvan [152] managed to define

the Viterbo restriction functor for Liouville domain X and a Liouville subdomain X ′

(see also [75, Section 8.2])

W(X) −→W(X ′).

which is a homological epimorphism (i.e. the right adjoint is fully faithful) when X,X ′

are Weinstein. This can be generalized to Liouville subsector embeddings (that send

sectorial boundary to sectorial boundary) following Section 2.4. On the other hand,

from the prespective of microlocal sheaves, using the technique of Nadler-Shende

[124], we also get the specialization functor whose left adjoint (after restricting to

compact objects) is the Viterbo restriction

µShcX′ (cX′) ↪→ µShcX (cX).
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However, the constructions of Viterbo restrictions are highly nontrivial, and to

the author’s knowledge, neither of the works explained how to show that Viterbo

restriction is functorial, in the sense that compositions of embeddings induce com-

positions of functors. We show that this is indeed the case.

Theorem 7.0.7 (Theorem 1.4.1). Let X0, X1, and X2 be Weinstein sectors with

Lagrangian skeleta cX0, cX1, and cX2 equipped with Maslov data, such that i01 : X0 ↪→

X1 and i12 : X1 ↪→ X2 are Liouville subsector embeddings sending sectorial boundary

to sectorial boundary. Denote by Φij : µShcXi (cXi) ↪→ µShcXj (cXj) the embeddings of

microsheaf categories. Then

Φ12 ◦ Φ01 ' Φ02 : µShcX0
(cX0) ↪→ µShcX2

(cX2).

Our main application of the Viterbo (co)restriction is Lagrangian cobordisms

between Legendrian submanifolds. Consider the symplectization (Y × Rr, d(erα))

of the contact manifold (Y, kerα). Following [63, Section 2.8], Chantraine [27] and

Ekholm [50], for instance, considered the category of Lagrangian cobordisms.

Under certain conditions on (Y, kerα) (for example, when Y has no closed Reeb

orbits or when it has an exact symplectic filling) previous works in this field con-

sidered a dg algebra called Legendrian contact homology/Chekanov-Eliashberg dg

algebra A(Λ) associated to a Legendrian submanifold Λ generated by Reeb trajecto-

ries starting and ending on Λ [36,57]. We consider the version that is a dg algebra

over the dg algebra C−∗(Ω∗Λ) where Ω∗Λ is the based loop space of Λ [60]. Fol-

lowing [50, 59], a Lagrangian cobordism L from Λ− to Λ+ is expected to induce a
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homomorphism

Φ∗L : A(Λ+)→ A(Λ−)⊗C−∗(Ω∗Λ−) C−∗(Ω∗L).

The representations ofA(Λ) over k are called augmentations. Given an augmentation

ε− : A(Λ−)→ k, its restriction

ε−|C−∗(Ω∗Λ−) : C−∗(Ω∗Λ−)→ k

defines a rank 1 local system δΛ− ∈ Hom(C0(Ω∗Λ−);k) ∼= H1(Λ−;k×). For any rank

1 local system δL ∈ Hom(C0(Ω∗L);k) ∼= H1(L;k×) that restricts to δΛ− on Λ−, we

are able to define

ε+ = ΦL(ε−, δL) : A(Λ+)
Φ∗L−→ A(Λ−)⊗C−∗(Ω∗Λ−) C−∗(Ω∗L)

(ε−,δL)−−−−→ k

(see [129] for the case of Legendrian knots).

For augmentations of A(Λ), Bourgeois-Chantraine [19] defined a non-unital A∞-

categoryAug−(Λ), while Ng-Rutherford-Sivek-Shende-Zaslow [127] defined a (strict-

ly) unital A∞-category Aug+(Λ) for Legendrian knots in R3
std

1. A Lagrangian cobor-

dism L from Λ− to Λ+ is expected to induce a functor between the corresponding

augmentation categories

ΦL : Aug±(Λ−)×Loc1(Λ−) Loc
1(L)→ Aug±(Λ+),

1The ± signs come from the fact that Aug−(Λ) can be defined using small negative Reeb pushoffs
of Λ, while Aug+(Λ) is defined using positive pushoffs of Λ.
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where Loc1(−) stands for rank 1 local systems.

Let Y be the ideal contact boundary of a Weinstein manifold X. Consider a

Lagrangian cobordism L ⊂ Y × R between Legendrian submanifolds from Λ− to

Λ+ ⊂ Y . View (X,Λ−), (X,Λ+) and T ∗L as a Weinstein sector following Section

2.4, then there is a subsector embedding (after cutting off cylindrical ends)

(X,Λ−) ∪T ∗(Λ−×[−1,1]) T
∗L ↪→ (X,Λ+).

Considering their partially wrapped Fukaya categories, by gluing formula, we can

write the Viterbo restriction functor as

W(X,Λ+)→W(X,Λ−)⊗W(T ∗(Λ−×[−1,1])W(T ∗L).

By the Legendrian surgery formula [14, 20, 52, 60], we know that there is an e-

quivalence between Legendrian contact homology (with loop space coefficients) and

partially wrapped Fukaya categories

PerfW(X,Λ) ' PerfA(Λ).

Hence the Viterbo restriction functor indeed realizes the Lagrangian cobordism map

between the dg algebras.

Therefore, we construct a Lagrangian cobordism functor between microlocal sheaf

categories using the result of Nadler-Shende [124]. Our construction is independent

of Floer theory and symplectic field theory.
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Theorem 7.0.8 (Theorem 1.4.2). Let X be a Weinstein manifold with subana-

lytic skeleton cX , Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds, and L ⊂ ∂∞X × R

an exact Lagrangian cobordism from Λ− to Λ+. There is a fully faithful Lagrangian

cobordism functor between microlocal sheaf categories

ΦL : µShcX∪Λ−×R(cX ∪ Λ− × R)×µShΛ− (Λ−) µShL(L) ↪→ µShcX∪Λ+×R(cX ∪ Λ+ × R),

such that concatenations of Lagrangian cobordisms give rise to compositions of cobor-

dism functors.

In particular, when X = T ∗M , there is a fully faithful cobordism functor between

sheaf categories

ΦL : ShΛ−(M)×µShΛ− (Λ−) µShL(L) ↪→ ShΛ+(M).

Remark 7.0.2. The fiber product of categories

µShcX∪Λ−×R(cX ∪ Λ− × R)×µShΛ− (Λ−) µShL(L)

is defined as the homotopy pull back of the following diagram

µShcX∪Λ−×R(cX ∪ Λ− × R) −→ µShΛ−(Λ−)←− µShL(L)

where the arrows are the restriction functors in Section 3.4. In particular, when

X = T ∗M the restriction functor

ShΛ−(M) −→ µShΛ−(Λ−)
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is the microlocalization functor.

Remark 7.0.3. When the Legendrian Λ is has vanishing Maslov class and rela-

tive second Stiefel-Whitney class, we know by Theorem 3.2.4 that

µShΛ(Λ) ' Loc(Λ).

The category of local systems is derived Morita equivalent to the chains on based

loop space , i.e. Loc(Λ) ' ModC−∗(Ω∗Λ); the category of compact local systems

Locc(Λ) ' Perf C−∗(Ω∗Λ).

Remark 7.0.4. Our result also works in the singular setting, including immersed

exact Lagrangian cobordisms with vanishing action self intersection points (which lift-

s to immersed Legendrians with no Reeb chords), and even subanalytic Lagrangian

cobordisms between subanalytic Legendrians satisfying the condition above (see Re-

mark 7.2.2).

On the other hand, in Section 4.4, we explained that an exact Lagrangian cobor-

dism L ⊂ J1(M) × R can be lifted to a Legendrian cobordism L̃ ⊂ J1(M × R>0)

with conical ends. Following Pan-Rutherford, the dg algebra map can be viewed as

a bimodule [130]. By enhancing with loop space coefficients, we expect

A(Λ−)⊗C−∗(Ω∗Λ−) C−∗(Ω∗L)→ A(L̃)← A(Λ+)

Indeed, we peoved a sheaf quantization result Theorem 4.0.9 which realizes the cobor-

dism functor by extending the sheaf on the negative end together with local systems
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by the sheaf quantization functor and then restricting the sheaf to the positive end.

We prove that these two approaches are equivalent.

Theorem 7.0.9 (Theorem 1.4.3). Let L ⊂ J1(M)×R>0 be an exact Lagrangian

cobordism from Λ− to Λ+ ⊂ T ∗,∞τ>0 (M × R), and L̃ ⊂ T ∗,∞τ>0 (M × R × R>0) be the

conical Legendrian lifting. Then there is a commutative diagram

ShL̃(M × R× R>0)
(i−1
− ,mL)

ss

i−1
+

))

ShΛ−(M × R)×µShΛ− (Λ−) µShL(L)
ΦL

// ShΛ+(M × R)

where i− : M × R × s− ↪→ M × R × R>0 for s− > 0 sufficiently small and i+ :

M × R× s+ ↪→M × R× R>0 for s+ > 0 sufficiently large.

Full faithfulness of the Lagrangian cobordism functor induces a number of strong

implications, including a number of exact triangles that are analogous to the ones in

Legendrian contact homology deduced by Chantraine-Dimitroglou Rizell-Ghiggini-

Golovko using the Cthulhu complex [31].

In particular, combining with the systematic approaches to compute the number

of microlocal rank 1 sheaves over Fq for certain Legendrian surfaces using flag moduli

developed by Treumann-Zaslow [157] and Casals-Zaslow [26] have developed, we

will be able to get new obstructions to Lagrangian cobordisms for these Legendrian

surfaces.

The following examples of Legendrian surfaces Λg,k are considered in [43] and

[137] (Λg,0 are the unknotted Legendrian surfaces and Λg,g are Clifford Legendrian
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surfaces). Dimitroglou Rizell showed that those Λg,k’s admit Z/2Z-coefficient aug-

mentations and generating families only when k = 0, and hence it may not be easy

to study Lagrangian cobordisms between them when k ≥ 1. However, using the

Legendrian weave description, we are able to show the following.

Theorem 7.0.10 (Theorem 1.5.3). Let ΓUnknot,ΓCliff be the 2-graphs in S2 shown

in Figure 7.1, and ΛUnknot,ΛCliff the corresponding Legendrian weaves in J1(S2) ⊂

T ∗,∞R3. Let Λg,k be the Legendrian surface with genus g by taking k copies of ΛCliff

and g − k copies of ΛUnknot. Then

(1) for any g′ ≤ g, there are Lagrangian cobordisms from Λg,k to Λg′,k and also

from Λg′,k to Λg,k;

(2) (Dimitroglou Rizell) for any k ≥ 1, there are no Lagrangian cobordisms with

vanishing Maslov class from Λg,0 to Λg′,k;

(3) for any k ≥ 1, k′ ≥ 0, there are Lagrangian cobordisms L from Λg,k to Λg,k′

such that dim coker(H1(L)→ H1(Λg,k)) ≥ 2;

(4) for any k < k′, there are no Lagrangian cobordisms L with vanishing Maslov

class from Λg,k to Λg,k′ such that H1(L)� H1(Λg,k); in particular there are

no such Lagrangian concordances.

Remark 7.0.5. Part (2) is a direct corollary of either [43] or [157].

Roughly speaking, the Legendrian Λg,k is closer to being Lagrangian fillable when

k is smaller (in particular Λg,0 are the only Lagrangian fillable ones). We would

expect that it is difficult to have a Lagrangian cobordism from Λg,k to Λg,k′ if k > k′.
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Figure 7.1. On the left is the Clifford Legendrian torus and its corre-
sponding 2-graph, and on the right is the unknotted Legendrian torus
and its corresponding 2-graph.

Our theorem shows that, for k > k′, there are indeed obstructions for Lagrangian

cobordisms to exist from Λg,k to Λg,k′ assuming either (2) k = 0 or (4) H1(L) →

H1(Λg,k) is surjective. On the contrary, as long as we assume (3) k ≥ 1 and H1(L)→

H1(Λg,k) is not surjective, then we enter the world of flexibility and there are no

obstructions for Lagrangian cobordisms (and dim coker(H1(L)→ H1(Λg,k)) can even

be very small).

7.1. Functorial Specialization of Weinstein Subsector Embeddings

In this section, we review the construction of Nadler-Shende [124] realizing em-

bedded exact Lagrangians as objects in the microlocal sheaf category of the La-

grangian skeleton. We explain how their result essentially gives a specialization

functor for any Liouville subsector embeddings. Finally, we prove the functoriality

Theorem 7.0.7.

7.1.1. Specialization of Lagrangians in Weinstein Sectors

We state the series of results by Nadler-Shende [124], and explain why they induce

specializations functor for any Weinstein subsector embeddings.
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Basically, Nadler-Shende are able to embed the Weinstein manifold (X, dλ) into

the contact boundary of some cotangent bundle and thus construct a microlocal sheaf

category µShcX (cX) from the Lagrangian skeleton cX of X. Moreover, they are able

to construct functors with respect to Liouville subsector embeddings and homotopies

that are fully faithful.

Firstly, let us recall their construction of the microlocal sheaf category µShcX (cX)

for any Weinstein manifold X with subanalytic skeleton cX ([124, Section 8]).

Remark 7.1.1. It is explained in [74, Section 7.7] how to make the Lagrangian

skeleton cX of a Weinstein manifold X subanalytic. Namely any Weinstein manifold

admits some Weinstein structure with a subanalytic skeleton.

Gromov’s h-principle [65, Theorem 12.3.1] enables us to embed the contactization

of the Weinstein manifold (X×R, ker(dt−λ)) into the contact boundary of a higher

dimensional cotangent bundle T ∗,∞N , as long as (1) dimT ∗N ≥ dimX + 2 and

(2) there is a bundle map Ψs : TX×TR→ T (T ∗,∞N) covering a smooth embedding

f : X×R ↪→ T ∗,∞N such that Ψ0 = df and Ψ1|TX×R is a symplectic bundle map into

the contact distribution ξT ∗,∞N . The second condition is purely algebraic topological.

For example, N = Rm for sufficiently large m, this is satisfied as long as X is stably

polarizable [146].

Consider the symplectic normal bundle νX×R(T ∗,∞N) of X × R ↪→ T ∗,∞N . As-

sume that by choosing dimT ∗N > 0 to be sufficiently large, we can find a Lagrangian

subbundle (X×R)σ ⊂ νX×R(T ∗,∞N) by choosing a section σ of the Lagrangian Grass-

mannian of the normal bundle νX×R(T ∗,∞N), as in [124, Lemma 9.1]. This is a null
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homotopy of

X × R→ BU → BLGr

(where BLGr is the classifying space of the stable Lagrangian Grassmannian). Let

the Legendrian thickening of cX be

cX,σ = (X × R)σ|cX×{0}.

Definition 7.1.1. The microlocal sheaf category on a Weinstein manifold X,

with a chosen section σ in the stable Lagrangian Grassmannian, is defined by

µShcX = µShcX,σ |cX×{0}.

Remark 7.1.2. Nadler-Shende showed that this microlocal sheaf category is in-

dependent of the Lagrangian skeleton and the contact embedding we choose. It does

depend on the thickening because that is determined by the section in Lagrangian

Grassmannian.

Remark 7.1.3. More generally, the existence of a section in the stable La-

grangian Grassmannian can be relaxed to simply the existence of a section σ :

X × R → BPic(k)|X×R, which is classified by Maslov data [124, Definition 10.6],

i.e. a null homotopy

X × R→ B2Pic(k),
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and the microlocal sheaf category can be defined by σ−1µShBPic(k)|cX . The Maslov

data for ring spectrum coefficients are carefully studied by Jin [93] and [124, Section

11]. When k is a ring, this is ensured as long as 2c1(X) = 0.

Therefore, from now on we will always assume the existence of a section in the

Lagrangian Grassmannian of the stable normal bundle without loss of generality.

Given a Weinstein subdomain X ′ ⊂ X equipped with Maslov data, let λ′ =

λ − df be the Liouville form on X such that the Liouville flow Zλ′ is transverse to

∂∞X
′, and cX′ the skeleton of X ′ under the Liouville flow Zλ′ . Then the primitive

f |U : U → R determines the Legendrian lift of the skeleton cX′ in X × R being

c̃X′ = {(x, f(x))|x ∈ cX′}. Define

µShc̃X′ = µShc̃X′,σ |̃cX′ .

In particular, when X ′ = T ∗L is a Weinstein subdomain, we write L̃ for the Leg-

endrian lift of L and consider µShL̃. It will be natural to construct an embedding

functor

µShc̃X′ (̃cX′) −→ µShcX (cX).

Nadler-Shende’s main result is about constructing such an embedding functor and

proving its full faithfulness. When X ′ = T ∗L, this realizes exact Lagrangian sub-

manifolds L ⊂ X as objects in the microlocal sheaf category.

Definition 7.1.2 (Nadler-Shende [124, Definition 2.9]). Let Λζ ,Λ
′
ζ ⊂ Y (ζ ∈ R)

be two families of subsets in a contact manifold. Λζ ,Λ
′
ζ are gapped if there exists
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ε > 0, so that for any ζ ∈ R there are no Reeb chords connecting Λζ with Λ′ζ with

length shorter than ε.

Theorem 7.1.1 (Nadler-Shende [124, Theorem 8.3 & 9.7]). Consider a subana-

lytic Legendrian Λ1 ⊂ X×R, which is either compact or locally closed, relatively com-

pact with cylindrical ends. Let ϕζH : X×R→ X×R be a contact isotopy for ζ ∈ (0, 1]

conical near the cylindrical ends. Let ΛH ⊂ X×R×(0, 1] be the Legendrian movie of

ϕζH and ΛH be the closure of ΛH in X×R×[0, 1]. Let Λ0 = ΛH∩(X×R×{0}) ⊂ X×R

be the set of limit points of ϕζH(Λ1) as ζ → 0.

Assume that for some contact form on X × R, the family ϕζH(Λ1) (ζ ∈ (0, 1]) is

self gapped. Then there is a fully faithful functor

µShΛ1(Λ1) ↪→ µShΛ0(Λ0).

In particular, when X ′ ⊂ X is a Weinstein subdomain (with Liouville comple-

ment), consider the Liouville vector field Zλ on (X, dλ) defined by

ι(Zλ)dλ = λ.

The Liouville flow of Zλ for negative time will compress cX′ onto cX as z → −∞.

The Liouville flow on X extends to a contact flow ϕzZ in X × R with

dϕzZ/dz = t∂/∂t+ Zλ,
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and thus we can consider the Legendrian movie of c̃X′ under the flow. The theorem

then gives a fully faithful embedding of microlocal sheaves on c̃X′ to sheaves on

limz→−∞ ϕ
z
Z (̃cU) ⊂ cX × {0}. Write φζZ = ϕln z

Z . Applying the flow ϕzZ (z ∈ (−∞, 0])

or φζZ (ζ ∈ (0, 1]), we have [124, Section 8.2]

µShcX′ (cX′) ↪→ µShlimz→−∞ ϕzZ (̃cX′ )
(lim z→−∞ϕ

z
Z (̃cX′))

∼−→ µShlimζ→0 φ
ζ
Z (̃cX′ )

(lim ζ→0 φ
ζ
Z (̃cX′)) ↪→ µShcX (cX)

For the proof of the theorem, consider a contact embedding X × R ↪→ T ∗,∞N

and choose a Lagrangian section (X × R)σ ⊂ νX×R(T ∗,∞N). One can pull back the

contact form and the contact isotopy via the projection νX×R(T ∗,∞N) → X × R.

Then ϕζH(Λ1,σ) (ζ ∈ (0, 1]) is self gapped iff ϕζH(Λ1) (ζ ∈ (0, 1]) is. Hence one can

replace X × R in the theorem by T ∗,∞N .

The proof consists of two steps. First, we need to construct a fully faithful

embedding from µShΛ(Λ) back to Sh(N) where we have Grothendieck’s six functors;

second, we need to construct a fully faithful functor between subcategories of Sh(N).

Here is the first step, the antimicrolocalization construction, which we have dis-

cussed in Section 4.2; see [75; 84, Section 8; 152] for related constructions. Unlike

our approach, the approach of Nadler-Shende is highly nonexplicit (and in particular

it is hard to deduce adjunction and exact triangles). However, their construction is

done for Legendrians relative to collar ends, which we only sketched an approach in

Section 4.2.1.
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Definition 7.1.3. Let Λ ⊂ T ∗,∞N be a subanalytic Legendrian with cylindrical

end ∂Λ, i.e. a contact embedding

(T ∗(U × (−1, 1))× R, ∂Λ× [0, 1)) ↪→ (T ∗,∞N,Λ).

Let ϕs (s ∈ R) be some Reeb flow on T ∗,∞N . For ∂Λ±s× [0, 1) ⊂ T ∗(U×(−1, 1))×R,

connect the ends ∂Λ±s by a family of standard cusps ∂Λ× ≺. Then

(Λ, ∂Λ)≺s = Λ−s ∪ Λs ∪ (∂Λ× ≺).

Theorem 7.1.2 (Nadler-Shende [124, Theorem 7.28]). Let Λ ⊂ T ∗,∞N be a

subanalytic Legendrian, which is either compact or locally closed, relatively compact

with cylindrical ends. Let c be the shortest length of Reeb orbits starting and ending

on Λ. For ε < c/2, the microlocalization functor

Sh(Λ,∂Λ)≺ε (N)0 → µShΛ−ε(Λ−ε)

admits a right inverse. Here the subscript 0 means the subcategory of objects with 0

stalk away from a compact set.

By applying the antimicrolocalization functor, we now only need to construct a

functor in Sh(N). Namely we consider the nearby cycle functor and show that it

is fully faithful in our setting. This full faithfulness criterion is proposed by Nadler

[120] and proved for families of Legendrians by Zhou [163, Proposition 3.2].
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Definition 7.1.4. For a fibration πR : N × R → R, let the projection of the

cotangent bundle to the fiber be Π : T ∗(N × R) → T ∗(N × R)/π∗RT
∗R. For F ∈

Sh(N × R), the singular support relative to πR is

SSπ(F ) = Π(SS(F )).

Theorem 7.1.3 (Nadler-Shende [124, Theorem 5.1]). Let F ,G be weakly con-

structible sheaves on N × R × R\{0}. Write j : N × R × R\{0} → N × R2 and

i : N × R× {0} → N × R2. Suppose

(1) SS∞(F ), SS∞(G ) ∩ π∗RT ∗(R\{0}) = ∅;

(2) The family of pairs SS∞π (F ), SS∞π (G ) are gapped for some contact form.

Then we have a natural isomorphism

Γ(i−1H om(j∗F , j∗G ))
∼−→ Hom(i−1j∗F , i−1j∗G ).

Finally, instead of considering the whole category Sh(N), we need to restrict to

the subcategories Sh(Λ1,∂Λ1)≺ε (N) and Sh(Λ0,∂Λ0)≺ε (N). Therefore we need the follow-

ing estimate, which follows from Proposition 3.1.9 and 3.1.10 [97, Theorem 6.3.1 &

Corollary 6.4.4].

Lemma 7.1.4 ([124, Lemma 3.16]). For F ∈ Sh(N × R>0), denoting j : N ×

R>0 → N × R≥0 and i : N × {0} → N × R≥0,

SS(i−1j∗F ) ⊂ Π(SS(F )) ∩ T ∗(N × {0}).
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Note that by Theorem 3.3.2, since ΛH is the Legendrian movie of Λ1 under the

flow ϕζH (ζ ∈ (0, 1]), we have a quasi-equivalence of categories

µShΛ1(Λ1) ' µShΛH (ΛH).

Using Theorem 7.1.2, 7.1.3 together with Lemma 7.1.4, Theorem 7.1.1 now immedi-

ately follows.

7.1.2. Functoriality of the Specialization Functors

Having explained the construction of Nadler-Shende, we prove the functoriality of

the specialization functors Theorem 7.0.7. Our strategy is as follows.

LetX0, X1, X2 be Weinstein sectors with Lagrangian skeleta cX0 , cX1 , cX2 equipped

with Maslov data, such that i01 : X0 ↪→ X1 and i12 : X1 ↪→ X2 are Liouville

embeddings sending sectorial boundaries to sectorial boundaries. Denote by Φij :

µShcXi (cXi) ↪→ µShcXj (cXj) the embedding of microlocal sheaf categories. Φ02 is de-

fined by using the Liouville flow to compress cX0 to the ambient skeleton cX2 directly,

and Φ12 ◦ Φ01 is defined by first compressing cX0 to the skeleton cX1 , and next com-

pressing cX1 to the ambient skeleton cX2 . We will try to define a 2-parametric family

of contact flow that interpolates between them. Then following the construction,

Φ01 and Φ12 ◦ Φ01 are two different compositions of nearby cycles, and the theorem

is reduced to commutativity of the nearby cycle functors.

Therefore, we need the commutativity criterion of nearby cycle functors in for

example [123] or [101, 113]. In order to keep the proof self contained, we extract
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the main technical lemma as follows, which is a base change formula that does not

hold in general.

Write the projection maps

πi : N × [0, 1]× [0, 1]→ [0, 1], (x, t1, t2) 7→ ti, (i = 1, 2)

and π = π1 × π2 : N × [0, 1]× [0, 1]→ [0, 1]× [0, 1]. Write the inclusions

N × {0} × (0, 1]
i
//

j

��

N × [0, 1]× (0, 1]

j
��

N × {0} × [0, 1]
j
// N × [0, 1]× [0, 1].

Proposition 7.1.5. Let F ∈ Sh(N × [0, 1]× (0, 1]) be a sheaf such that

(1) i#SS∞(F ) ∩ π∗2T ∗,∞(0, 1] = ∅,

(2) SS∞(F ) ∩ π∗T ∗,∞((0, 1]× (0, 1]) = ∅,

(3) SS∞π (F ) ∩ T ∗,∞N × {(0, 0)} is a subanalytic Legendrian.

Then there is a natural isomorphism of sheaves

i
−1
j∗F ' j∗i

−1F .

Remark 7.1.4. For the applications, F will always be the push forward of a

sheaf F0 ∈ Sh(N × (0, 1]× (0, 1]), in which case Condition (1) can be easily checked.

We choose to state a more general result without assuming that.
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Remark 7.1.5. We remark the importance of Condition (3). The following

example is due to an anonymous referee. Let N = R, S = {(x, t1, t2)|t1 = xt2} ⊂

N × [0, 1]× (0, 1] and F = kS. Then Condition (3) does not hold and one can check

that the base change formula does not hold.

We have a natural morphism i
−1
j∗F → j∗i

−1F by adjunction. Since the natural

morphism induces quasi-isomorphisms on stalks on N × 0× (0, 1], it suffices to show

that the it also induces quasi-isomorphisms on stalks on N × {(0, 0)}.

First we compute the stalks of i
−1
j∗F at (x, 0, 0). The following lemma is ba-

sically [124, Corollary 4.4]. Let Ux be a sufficiently small open ball around x ∈ N ,

D(0,0)(ε) = [0, ε) × [0, ε) for ε > 0 sufficiently small, and D◦(0,0)(ε) = [0, ε) × (δ, ε) for

δ � ε.

Lemma 7.1.6. Let F ∈ Sh(N × [0, 1]× (0, 1]) be a sheaf so that i#SS∞(F ) ∩

π∗2T
∗,∞(0, 1] = ∅, SS∞(F ) ∩ π∗T ∗,∞((0, 1] × (0, 1]) = ∅, and SS∞π (F ) ∩ T ∗,∞N ×

{(0, 0)} is a subanalytic Legendrian. Then for x ∈ N , Ux ⊂ N a sufficiently small

open neighbourhood and ε > 0 sufficiently small,

j∗F(x,0,0) ' Γ
(
Ux ×D

◦
(0,0)(ε),F

)
.

Proof. Since SS∞π (F )∩T ∗,∞N×{(0, 0)} is a subanalytic Legendrian, for a small

neighbourhood Ux ×D(0,0)(ε) of (x, 0, 0) ∈ N × [0, 1]× [0, 1], we have

SS∞π (F ) ∩ ν∗,∞Ux,±N × {(0, 0)} = ∅
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for sufficiently small neighbourhoods Ux by general position argument.

Consider N × (0, 1]× [0, 1]. Since SS∞(F ) ∩ π∗T ∗,∞((0, 1]× (0, 1]) = ∅, we can

get an injective projection to the relative singular support in the relative cotangent

bundle SS∞(F ) ↪→ SS∞π (F ) on N × (0, 1] × (0, 1]. Hence there is an injective

projection

SS∞(F ) ∩ ν∗,∞Ux×D(0,0)(ε),±
(N × (0, 1]× (0, 1]) ↪→ SS∞π (F ) ∩ ν∗,∞Ux,±N ×D(0,0)(ε).

Then considerN×{0}×(0, 1]. Since i#SS∞(F )∩π∗2T ∗,∞(0, 1] = ∅ and ν∗,∞Ux×{0}×D0(ε),±(N×

{0} × (0, 1]) only consists of covectors tangent to N × {0} × (0, 1], there is also an

injection

SS∞(F )∩ν∗,∞Ux×{0}×D0(ε),±(N×{0}×(0, 1]) ↪→ i#SS∞(F )∩ν∗,∞Ux×{0}×D0(ε),±(N×{0}×(0, 1])

Then since i#SS∞(F ) ∩ π∗2T ∗,∞(0, 1] = ∅, we have an injective projection

i#SS∞(F )∩ν∗,∞Ux×{0}×D0(ε),±(N ×{0}× (0, 1]) ↪→ i#SS∞π2
(F )∩ν∗,∞Ux,±N ×{0}×D0(ε).

However, as ε → 0 the limit points in the above relative singular support are con-

tained in SS∞π (F )∩ ν∗,∞Ux,±N ×{(0, 0)} = ∅. Therefore, the set of the limit points in

the relative singular support is empty. Hence we can conclude that for sufficiently

small ε > 0,

SS∞(F ) ∩ ν∗,∞Ux×D(0,0)(ε),±
(N × [0, 1]× (0, 1]) = ∅.
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Consequently, by non-characteristic deformation lemma Proposition 3.1.2 applied

to the family Ux ×D(0,0)(ε) and Ux ×D◦(0,0)(ε) for sufficiently small ε > 0 and δ � ε,

we can conclude that

j∗F(x,0,0) ' Γ
(
Ux ×D(0,0)(ε), j∗F

)
' Γ

(
Ux ×D(0,0)(ε), j∗F

)
' Γ

(
Ux ×D◦(0,0)(ε),F

)
' Γ

(
Ux ×D

◦
(0,0)(ε),F

)
. �

Then we compute the stalks of j∗i
−1F at (x, 0). Let Ux be a sufficiently small

open ball around x ∈ N , D0 = [0, ε) for ε > 0 sufficiently small and D◦0 = (δ, ε) for

δ � ε.

Lemma 7.1.7. Let G ∈ Sh(N×(0, 1]) be a sheaf such that SS∞(G )∩π∗T ∗,∞(0, 1] =

∅, and SS∞π (G ) ∩ T ∗,∞N × {0} is subanalytic Legendrian. Then for any x ∈ N ,

Ux ⊂ N a sufficiently small open neighbourhood and ε > 0 sufficiently small,

j∗G(x,0) ' Γ
(
Ux ×D

◦
0(ε),G

)
.

Proof. Since SS∞π (G ) ∩ T ∗,∞N × {0} is a subanalytic Legendrian, for a small

neighbourhood Ux ×D0(ε) of (x, 0) ∈ N × [0, 1], we have

SS∞π (G ) ∩ ν∗,∞Ux,±N × {0} = ∅

by general position argument. Since SS∞(G ) ∩ π∗T ∗,∞(0, 1] = ∅, we have an in-

jective projection to the relative singular support in the relative cotangent bundle
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SS∞(G ) ↪→ SS∞π (G ). Hence there is an injective projection

SS∞(G ) ∩ ν∗,∞Ux×D0(ε),±(N × (0, 1]) ↪→ SS∞π (G ) ∩ ν∗,∞Ux,±N ×D0(ε).

as ε → 0 the limit points in the above relative singular support are contained in

SS∞π (G ) ∩ ν∗,∞Ux,±N × 0 = ∅. Hence we can conclude that when ε > 0 is sufficiently

small, the intersection between relative singular support and ν∗,∞Ux,±N×D0(ε) is empty.

Therefore, by non-characteristic deformation lemma Proposition 3.1.2 applied to the

family Ux ×D0(ε) and Ux ×D◦0(ε), we have

j∗G(x,0) ' Γ
(
Ux ×D0(ε), j∗G

)
' Γ

(
Ux ×D0(ε), j∗G

)
' Γ

(
Ux ×D◦0(ε),G

)
' Γ

(
Ux ×D

◦
0(ε),G

)
. �

Remark 7.1.6. The above lemmas will also follow from the weak constructibility

of F [123, Section 2]. For the applications, we believe that in fact both conditions

hold.

Proof of Proposition 7.1.5. We apply Lemma 7.1.6 to F and apply Lemma

7.1.7 and Theorem 3.1.10 to i−1F . Then it suffices to show that

Γ
(
Ux ×D

◦
(0,0)(ε),F

)
' Γ

(
Ux ×D

◦
0(ε),F

)
.
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Since SS∞π (F ) ∩ T ∗,∞N × {(0, 0)} is a subanalytic Legendrian, for a small neigh-

bourhood Ux ×D(0,0)(ε) of (x, 0, 0) ∈ N × [0, 1]× [0, 1], we have

SS∞π (F ) ∩ ν∗,∞Ux,±N × {(0, 0)} = ∅

for sufficiently small neighbourhoods Ux by general position argument. WriteD◦(0,0)(ε, ε
′) =

[0, ε′) × (δ, ε) for 0 ≤ ε′ ≤ ε. Since SS∞(F ) ∩ π∗T ∗,∞((0, 1] × (0, 1]) = ∅, we know

that there is an injective projection

SS∞(F ) ∩ ν∗,∞Ux×D◦(0,0)
(ε,ε′),±(N × (0, 1]× (0, 1]) ↪→ SS∞π (F ) ∩ ν∗,∞Ux,±N ×D

◦
(0,0)(ε, ε

′).

However, as ε, ε′ → 0, the limit points of the relative singular support are contained

in SSπ(F ) ∩ ν∗,∞Ux,±N × {(0, 0)} = ∅. Hence we can conclude that when ε, ε′ > 0

are sufficiently small, the intersection of the relative singular support and ν∗,∞Ux,±N ×

D◦(0,0)(ε, ε
′) is empty. By non-characteristic deformation lemma Proposition 3.1.2

applied to the family D◦(0,0)(ε, ε
′), we can conclude that

Γ
(
Ux ×D

◦
(0,0)(ε),F

)
' Γ

(
Ux ×D

◦
0(ε, ε′),F

)
' Γ

(
Ux ×D

◦
0(ε),F

)
.

This completes the proof. �

Remark 7.1.7. When applying non-characteristic deformation lemma, one should

notice that ∂(Ux × D
◦
(0,t)) is piecewise smooth. Therefore, we need to use the con-

dition that SS∞(F ) ∩ π∗T ∗,∞((0, 1] × (0, 1]) = ∅ rather than only considering the

intersection with π∗1T
∗,∞(0, 1] and π∗2T

∗,∞(0, 1]. For the same reason, we need to use
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the estimate on SS∞π (F ) ∩ T ∗,∞N × 0 × 0 rather than the estimates on SS∞π1
(F )

and SS∞π2
(F ) ∩ T ∗,∞N × 0× 0. The author is grateful to an anonymous referee for

pointing out the mistake in the proposition.

We can start the proof of the theorem. Let λi be the Liouville form, Zi the

Liouville vector field, and ϕzZi the Liouville flow on the Weinstein sector Xi. Consider

the lifting of the flow ϕzZi in T ∗,∞N that satisfies

dϕzZi/dz = t∂/∂t+ Zλi

on Xi × R. Then we know that

lim
z→−∞

ϕzZ1
(cX0) ⊂ cX1 , lim

z→−∞
ϕzZ2

(cX0), lim
z→−∞

ϕzZ2
(cX1) ⊂ cX2 .

Write φζZi = ϕln ζ
Zi

. Now consider the 2-parameter family of contact Hamiltonian

φζ,η
Z

= φζZ2
◦ φη−ζZ1

. Then φζ,ζ
Z

= ϕζZ2
, φ1,η

Z
= ϕηZ1

. In particular, the limits satisfy

lim
ζ→0

φζ,η
Z

(−) = lim
ζ→0

φζZ2
(−) = lim

z→−∞
ϕzZ2

(−),

lim
η→0

φζ,η
Z

(−) = φζZ2

(
lim
η→0

φηZ1
(−)
)

= φζZ2

(
lim

y→−∞
ϕyZ1

(−)
)
.

Write ∆ = {(ζ, η)|0 < η ≤ ζ ≤ 1}, ∆ = {(ζ, η)|0 ≤ η ≤ ζ ≤ 1} and ∆0 = ∆\{(0, 0)}.

Proof of Theorem 7.0.7. Consider the 2-parameter family of contact flows

φζ,η
Z

((ζ, η) ∈ ∆). By Theorem 3.3.2 Remark 3.3.2, for F ∈ µShcX0
(cX0), we can get

a sheaf

Ψζ,η

Z
(F ) ∈ µSh(cX0

)Z

(
(cX0)Z

)
,
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Figure 7.2. The diagram of maps in the proof of Theorem 7.0.7.

where (cX0)Z′ is the Legendrian movie of cX0 under the contact flow φζ,η
Z

(in Definition

3.3.1). Applying the antimicrolocalization theorem [124, Theorem 6.28], we write

Ψζ,η

Z
(F )dbl ∈ Sh(N × ∆) for the image of Ψζ,η

Z
(F ) under the antimicrolocalization

functor.

From Figure 7.2 one can notice that Φ02 and Φ12 ◦ Φ01 are (compositions of)

nearby cycles along different boundary edges of ∆. Therefore it suffices to show that

the nearby cycle functors commute and they agree with the 2-parametric nearby

cycle functor. In order to apply Lemma 7.1.5 in our argument, note that firstly

SS∞(Ψζ,η

Z̄′
(F )) ∩ π∗T ∗,∞∆ = ∅ since the singular support is the Legendrian movie

under a contact flow, and secondly SS∞π (Ψζ,η

Z̄′
(F ))∩T ∗,∞([0, 1]×{0}) is subanalytic

Legendrian by the fact that

lim
η,ζ→0

φζ,η
Z̄′

(cX0) ⊆ cX2 ,

lim
η→0

φζ,η
Z̄′

(cX0) ⊆φζZ(cX1),
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where the right hand sides are subanalytic Legendrian. Therefore, in all following

cases Lemma 7.1.5 will apply.

(1) Firstly, we consider Φ02 (F ) (Figure 7.2 left). Note that ϕzZ2
compresses cX0

to cX2 . Write iδ : N × (0, 1] ↪→ N ×∆, (x, ζ) 7→ (x, ζ, ζ), j : N × (0, 1] ↪→ N × [0, 1]

and i : N × {0} ↪→ N × [0, 1]. Then since φζ,ζ
Z

= φζZ ,

Φ02 (F )dbl

∼−→ i−1j∗Ψ
ζ
Z2

(F )dbl
∼−→ i−1j∗

(
i−1
δ Ψζ,η

Z
(F )

)
dbl
.

Write iδ : N × [0, 1] ↪→ N × ∆, (x, ζ) 7→ (x, ζ, ζ), j : N × ∆ → N × ∆ and

i : N ×{(0, 0)} ↪→ N ×∆. By Lemma 7.1.5 and Remark 3.3.3, we know that in fact

Φ02 (F )dbl

∼−→ i−1i
−1

δ j∗Ψ
ζ,η

Z
(F )dbl

∼−→ i
−1
j∗Ψ

ζ,η

Z
(F )dbl.

(2) Secondly, we consider Φ12(F ) (Figure 7.2 right). Note that ϕyZ1
compresses

cX0 to cX1 . Therefore,

Φ01(F )dbl
∼−→ i−1j∗Ψ

η
Z1

(F )dbl.

Write i0 : N × (0, 1] ↪→ N ×∆, (x, η) 7→ (x, 1, η). Since φ1,η

Z
= φηZ′ , we know that

Φ01(F )dbl
∼−→ i−1j∗Ψ

η
Z1

(F )dbl
∼−→ i−1j∗

(
i−1
0 Ψζ,η

Z
(F )

)
dbl
.

Write j0 : N × ∆ ↪→ N × ∆0 where ∆0 = ∆\{(0, 0)}, and i0 : N × [0, 1] ↪→

N ×∆, (x, η) 7→ (x, 1, η). By Lemma 7.1.5 and Remark 3.3.3, we know that in fact

Φ01(F )dbl
∼−→ i−1i

−1

0 j0,∗Ψ
ζ,η

Z
(F )dbl.
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Then we consider Φ12 ◦ Φ01(F ) (Figure 7.2 right). Write i1 : N × (0, 1] ↪→

N × ∆0, (x, ζ) 7→ (x, ζ, 0) where ∆0 = ∆\{(0, 0)}. Let ϕz
Z

be the contact flow on

T ∗,∞(N×[0, 1]) defined by the pull back vector field π∗Z2 for π : ∆0
∼= (0, 1]×[0, 1]→

(0, 1], and φζ
Z

= ϕln ζ

Z
. Let Ψζ

Z
: Sh(N × {1} × [0, 1]) → Sh(N × ∆0) be the

Hamiltonian isotopy functor as in Theorem 3.3.1. Thus by Lemma 7.1.5

(
Ψζ
Z2
◦ Φ01(F )

)
dbl

∼−→ Ψζ
Z2

(
i−1i

−1

0 j0,∗Ψ
ζ,η

Z
(F )dbl

)
∼−→ i−1

1 Ψζ

Zst

(
i
−1

0 j0,∗Ψ
ζ,η

Z
(F )dbl

) ∼−→ i−1
1 j0,∗Ψ

ζ,η

Z
(F )dbl.

Therefore, by Lemma 7.1.5 again, we can show that

Φ12 ◦ Φ01(F )dbl
∼−→ i−1j∗

(
Ψζ
Z2
◦ Φ01(F )

)
dbl

∼−→ i−1j∗i
−1
1 j0,∗Ψ

ζ,η

Z
(F )dbl

∼−→ i−1i
−1

1 j1,∗j0,∗Ψ
ζ,η

Z
(F )dbl

∼−→ i
−1
j∗Ψ

ζ,η

Z
(F )dbl.

Therefore, we can conclude that Φ02 (F ) ' Φ12 ◦ Φ01(F ).

(3). On the level of morphisms, the base change formulas provide natural trans-

formations between the morphism spaces, and the gapped full faithfulness theorem

for nearby cycles Theorem 7.1.3 [124, Theorem 4.1] shows that the natural transfor-

mations are quasi-isomorphisms, and hence completes the proof. �

As a corollary, we can immediately get the invariance of the microlocal sheaf

category under any Liouville homotopies of Weinstein sectors.
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Corollary 7.1.8. Let X,X ′ be Weinstein domains with Lagrangian skeleta cX , cX′.

Suppose the Liouville forms λ, λ′ are homotopic through Liouville forms. Then

µShcX (cX) ' µShcX′ (cX′).

Proof. We viewX,X ′ as Weinstein domains with contact boundary. By choosing

a sufficiently small Weinstein neighbourhood (with contact boundary) of cX′ , we get

a Liouville embedding X ′ ↪→ X, and thus a functor

ΦX′,X : µShcX′ (cX′) ' µShcX (cX).

Then by choosing a sufficiently small Weinstein neighbourhood (with contact bound-

ary) of cX , we also get a Liouville embedding X ↪→ X ′, and thus a functor

ΦX,X′ : µShcX (cX) ↪→ µShcX′ (cX′).

Then the theorem implies that ΦX,X′ ◦ ΦX′,X = id and ΦX′,X ◦ ΦX,X′ = id. Hence

they define inverse equivalences of categories. �

Remark 7.1.8. Oleg Lazarev has pointed out to the author that [109, Proposi-

tion 2.42] has shown that for any Liouville homotopy between two different Weinstein

structures on X, there is a Weinstein structure on the Liouville movie X × T ∗[0, 1]

which agrees with the two Weinstein structures on the two ends. With this propo-

sition, one can show that the argument in [124, Theorem 9.14] implies the above

corollary as well. However, to the author’s knowledge, when there is only a Liouville
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embedding of Weinstein manifolds X0 ↪→ X1, it is not true that X1\X0 carries a

Weinstein structure, and hence for Liouville embeddings, it still seems necessary to

use our main result.

7.2. Lagrangian Cobordism Functor by Specialization

The goal in this section is to apply the functorial specialization constructions

in the previous section to the setting of Lagrangian cobordisms between Legendrian

submanifolds. Using the full faithfulness of the cobordism functor, we prove a number

of exact sequences and applications, which are analogous to results by Chantraine-

Dimitroglou Rizell-Ghiggini-Golovko [31].

Moreover, we also compare our construction with Guillermou-Kashiwara-Schapira

[88] in the case when the Lagrangian cobordism is induced by a Legendrian isotopy,

and compare with Jin-Treumann [94] in the case when the Lagrangian cobordism is

a Lagrangian filling of a standard brane.

7.2.1. Construction of cobordism functor

In this section we construct the Lagrangian cobordism and prove full faithfulness,

which is the first part of Theorem 7.0.8. The proof here will be relatively concise,

yet it still includes an outline of the constructions in Section 7.1.1. The reader may

find more detailed explanation in those sections.
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Figure 7.3. A schematic picture on how attaching Lagrangian cobor-
dism L to the relative Lagrangian skeleton M ∪Λ−×R>0 of the sector
(T ∗M,Λ−) gives a Weinstein subsector in (T ∗M,Λ+).

Proof of Theorem 7.0.8 Part 1. By Section 7.1.1, Gromov’s h-principle [65,

Theorem 12.3.1] enables us to embed the contactization of the Weinstein manifold

X ×R into the contact boundary of a higher dimensional cotangent bundle T ∗,∞N .

Consider the symplectic normal bundle νX×R(T ∗,∞N) of X × R ↪→ T ∗,∞N , and

as in Remark 7.1.3 we assume that there is a Lagrangian subbundle (X × R)σ ⊂

νX×R(T ∗,∞N) by choosing a section in the Lagrangian Grassmannian of the normal

bundle νX×R(T ∗,∞N). Consider the subanalytic Lagrangian skeleta cX ∪Λ±×R and

the Legendrian lifts (cX ∪Λ±×R)×{0} in X×R. Let the microlocal sheaf category

supported on cX ∪ Λ± × R (which is independent of the embedding we choose) be

µShcX∪Λ±×R = µSh(cX∪Λ±×R)σ |cX∪Λ±×R.

Since (X, dλ) is a Weinstein manifold, we know that outside a compact subset

K, we have X\K ∼= ∂∞X × R where the Liouville flow Zλ = er∂/∂s. Suppose L ∩

∂∞X×(−∞,−r0] = Λ−×(−∞, 0]. Glue L∩∂∞X× [−r0,+∞) with Λ−×(−∞,−r0]

along Λ− × {−r0}, and denote by Λ− × R ∪ L their concatenation in X. Note that
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this is the same as L, but we use the notation to emphasize that we will view it as

the union of two separate parts to apply the cosheaf property later.

We can glue the Legendrian lift L̃ of the Lagrangian L to the skeleton cX∪Λ±×R

in the contactization X×R. As the primitive of L defined by dfL = λ|L is a constant

when the R coordinate in ∂∞X × R satisfies r < −r0, we may assume that fL = 0

when r < −r0. The Legendrian lift of L is defined by

L̃ = {(x, fL(x))|x ∈ L} ⊂ X × R.

Then we consider the sheaf of categories µShL̃. Since L̃ coincides with Λ−×R ⊂ X×

{0} when r < −r0, we can glue L̃∩∂∞X× [−r0,+∞)×R with Λ−×(−∞,−r0]×{0},

and get their concatenation in X×R. Denote it by Λ−×R∪L̃. We can thus consider

the sheaf of categories µShcX∪Λ−×R∪L̃.

Since µSh− is a sheaf and cosheaf of dg categories, we have a quasi-equivalence

of categories

µShcX∪Λ−×R∪L̃
(
cX ∪Λ−×R∪ L̃

) ∼−→ µShcX∪Λ−×R(cX ∪Λ−×R)×µShΛ− (Λ−) µShL̃
(
L̃
)
.

We construct the specialization functor by the inclusion (also explained in Section

7.1.1 after Theorem 7.1.1)

ΦL : µShcX∪Λ−×R∪L̃
(
cX ∪ Λ− × R ∪ L̃

)
−→ µShcX∪Λ+×R(cX ∪ Λ+ × R).
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Consider the Liouville flow ϕzZ (z ∈ R) on X for negative time, which will compress

cX ∪Λ− ×R∪ L̃ onto cX ∪Λ+ ×R as z → −∞. The Liouville flow on X extends to

a contact Hamiltonian ϕzZ in T ∗,∞N with

dϕzZ/dz = t∂/∂t+ Zλ.

Write φζZ = ϕln ζ
Z , and consider the Legendrian movie of cX ∪ Λ− × R ∪ L̃ under the

flow ϕzZ (z ∈ (−∞, 0]) or φζZ (ζ ∈ (0, 1]). Since M ∪ Λ− × R is the Legendrian lift of

a Lagrangian skeleton while L̃ is the lift of an embedded Lagrangian, there are no

self Reeb chords and the gapped condition automatically holds. By Theorem 7.1.1

[124, Theorem 8.3], the nearby cycle functor gives us a fully faithful embedding of

microlocal sheaves on the Legendrian movie of cX ∪ Λ− × R ∪ L̃ to sheaves on

lim
z→−∞

ϕzZ
(
cX ∪ Λ− × R ∪ L̃

)
= lim

ζ→0
φζZ
(
cX ∪ Λ− × R ∪ L̃

)
⊂ cX ∪ Λ+ × R.

The full faithfulness of ΦL follows from Theorem 7.1.1. The special case when X =

T ∗M follows from Lemma 3.2.1. �

Remark 7.2.1. The functor ΦL can also be obtained in the setting of partially

wrapped Fukaya categories. Indeed one can consider Weinstein manifolds with stops

(X,Λ±) and view T ∗L as a Weinstein sector. First apply the cosheaf property of

partially wrapped Fukaya categories [75, Theorem 1.27] to get

W(X,Λ−)⊗W(T ∗(Λ×[−1,1]))W(T ∗L)
∼−→W(X ∪T ∗(Λ×[−1,1]) T

∗L)
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or in other words

W(X,Λ−)⊗Locc(Λ) Loc
c(L)

∼−→W(X ∪T ∗(Λ×[−1,1]) T
∗L).

Then one can view X∪T ∗(Λ×[−1,1])T
∗L as a Liouville subsector of (T ∗X,Λ+) (the com-

pliment is a Liouville cobordism). Since X ∪T ∗(Λ×[−1,1]) T
∗L is Weinstein, following

[75, Section 8.3] or [152] one can define a Viterbo restriction functor

W(X,Λ+) −→W(X ∪T ∗(Λ×[−1,1]) T
∗L).

Remark 7.2.2. In fact the main theorem works in more general settings, as long

as the gapped condition in Definition 7.1.1 is satisfied. For example, when i : L ↪→

∂∞X × R is an exact Lagrangian cobordism with vanishing action self intersection

points, i.e. for the primitive i∗λ = dfL, fL(x) = fL(x′) whenever i(x) = i(x′), then

L can be lifted to an immersed Legendrian with no Reeb chords and the theorem

still holds. Similarly, when Λ± are subanalytic Legendrians and L is the Lagrangian

projection of a subanalytic Legendrian cobordism, the theorem still applies as long as

the gapped condition holds.

Then we show that concatenations of Lagrangian cobordisms give rise to com-

positions of our Lagrangian cobordism functors. Therefore our cobordism functor

defines a functor from the category of Lagrangian cobordisms to the category of

(small) dg categories.
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We recall how concatenations of Lagrangian cobordisms are defined. Let L0 ⊂

∂∞X ×R be a Lagrangian cobordism from Λ0 to Λ1, and L1 be a Lagrangian cobor-

dism from Λ1 to Λ2. Suppose L0,1 ∩ ∂∞X × (−∞,−r0) ∪ (r0,+∞) are standard

cylinders. Then the concatenation L0 ∪ L1 is an exact Lagrangian such that

(1) (L0 ∪ L1) ∩ ∂∞X × (−∞, 0) ∼= ϕ−r0Z (L0) ∩ ∂∞X × (−∞, 0);

(2) (L0 ∪ L1) ∩ ∂∞X × (0,+∞) ∼= ϕr0Z (L1) ∩ ∂∞X × (0,+∞).

Here ϕzZ is the Liouville flow on ∂∞X × R ⊂ X.

Our strategy is as follows. ΦL0∪L1 is defined by using the Liouville flow to com-

press L0 ∪ L1 to the skeleton all at once, and ΦL1 ◦ (ΦL0 × idLoc(L1)) is defined by

first compressing L0 to the skeleton while fixing L1, and next compressing L1 to the

skeleton. We will try to define a 2-parametric family of contact flow that interpolates

between them. Then following the construction, ΦL0∪L1 and ΦL1 ◦ (ΦL0 × idLoc(L1))

are two different compositions of nearby cycles, and the theorem is reduced to com-

mutativity of the nearby cycle functors.

Proof of Theorem 7.0.8 Part 2. Consider the lifting of the Liouville flow

ϕzZ in T ∗,∞N that satisfies

dϕzZ/dz = t∂/∂t+ Zλ

on X×R. Suppose that the concatenation (L0∪L1)∩∂∞X× (−ε, ε) = Λ1× (−ε, ε).

Let η : R → [0, 1] be a cut-off function such that η|(−∞,−ε] ≡ 0 and η|[ε,+∞) ≡ 0.

Then we consider a flow ϕzZ′ on ∂∞X×R defined by Z ′ = η(r)Zλ = η(r)er∂/∂r, such
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that

ϕzZ′ |∂∞X×(−∞,−ε) = ϕzZ , ϕ
z
Z′|∂∞X×(ε,+∞) = id.

Note that ϕzZ′ defines an exact Lagrangian isotopy of L0 ∪L1, which can be lifted to

a Legendrian isotopy of L̃0 ∪ L̃1. Therefore, lift ϕzZ′ to a contact flow on X ×R and

still denote it by ϕzZ′ . As a contact flow,

dϕzZ′/dz|∂∞X×(−∞,−ε)×R = t∂/∂t+ Zλ.

Write φζZ = ϕln ζ
Z and φζZ′ = ϕln ζ

Z′ . Consider the 2-parameter family of contact

Hamiltonian φζ,η
Z
′ = φζZ ◦ φ

η−ζ
Z′ . Then φζ,ζ

Z̄′
= ϕζZ , φ

1,η

Z̄′
= ϕηZ′ . In particular, the limits

satisfy

lim
ζ→0

φζ,ζ
Z̄′

(−) = lim
ζ→0

φζZ(−) = lim
z→−∞

ϕzZ(−),

lim
η→0

φζ,η
Z̄′

(−) = φζZ

(
lim
η→0

φηZ′(−)
)

= φζZ

(
lim

y→−∞
ϕyZ′(−)

)
.

Write ∆ = {(ζ, η)|0 < η ≤ ζ ≤ 1}, ∆ = {(ζ, η)|0 ≤ η ≤ ζ ≤ 1} and ∆0 = ∆\{(0, 0)}.

From Figure 7.2 one can notice that ΦL0∪L1 and ΦL0◦(ΦL0×idLoc(L1)) are (compo-

sitions of) nearby cycles along different boundary edges of ∆. Under the perspective

of Theorem 7.0.7, we can write

c̃0 = c̃X ∪ Λ0 × R>0, c̃1 = c̃X ∪ Λ0 × R>0 ∪ L̃0, c̃2 = c̃X ∪ Λ0 × R>0 ∪ L̃0 ∪ L̃1.
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Since the limits under the Liouville flow is the Legendrian lift of the Lagrangian

skeleton,

lim
η,ζ→0

φζ,η
Z̄′

(cX ∪ Λ0 × R ∪ L̃0 ∪ L̃1) ⊆ cX ∪ Λ2 × R,

lim
η→0

φζ,η
Z̄′

(cX ∪ Λ0 × R ∪ L̃0 ∪ L̃1) ⊆ φζZ(cX ∪ Λ1 × R ∪ L̃1),

we can apply Lemma 7.1.5 and Theorem 7.0.7. More precisely, following the notation

there, when computing ΦL0∪L1 we have

ΦL0∪L1(F )dbl
∼−→ i−1j∗

(
i−1
δ Ψζ,η

Z
(F )

)
dbl

∼−→ i
−1
j∗Ψ

ζ,η

Z
(F )dbl.

When computing the composition of ΦL0 and (ΦL0 × idLoc(L1)) we have

ΦL0 ◦ (ΦL0 × idLoc(L1))(F )dbl
∼−→ i−1j∗

(
Ψζ
Z(ΦL0 × idLoc(L1))(F )dbl

)
∼−→ i−1j∗i

−1
1 j0,∗Ψ

ζ,η

Z
(F )dbl

∼−→ i
−1
j∗Ψ

ζ,η

Z
(F )dbl.

Therefore we can conclude that concatenations of Lagrangian cobordisms induce

compositions of the functors. �

Finally, we remark that when L is a Lagrangian concordance from Λ− to Λ+,

i.e. L is diffeomorphic to Λ− × R, we have in particular the following simple fully

faithful embedding.
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Corollary 7.2.1. Let X be a Weinstein manifold with subanalytic skeleton cX ,

Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds, and L ⊂ ∂∞X × R a Lagrangian con-

cordance from Λ− to Λ+. Then there is a fully faithful functor between the categories

ΦL : µShcX∪Λ−×R(cX ∪ Λ− × R) ↪→ µShcX∪Λ+×R(cX ∪ Λ+ × R).

In particular, when X = T ∗M , there is a fully faithful functor between proper sheaves

ΦL : ShΛ−(M) ↪→ ShΛ+(M).

7.2.2. Full Faithfulness of Lagrangian Cobordism Functor

For Lagrangian cobordisms L0, L1 from Λ− to Λ+, Chantraine-Dimitroglou Rizell-

Ghiggini-Golovko [31] constructed an acyclic Cthulhu complex Cth(Λ±, L0, L1) con-

sisting of linearized contact homologies of Λ± and the Floer chain complex of L0, L1,

and hence produced a number of exact sequences. Similar to Chantraine-Dimitroglou

Rizell-Ghiggini-Golovko [31], we are able to get a series of exact triangles from a La-

grangian cobordism, most of which are simple corollaries of the full faithfulness of

our functor ΦL.

We will always assume in this section that the smooth Legendrians and La-

grangians have vanishing Maslov class and relative second Stiefel-Whitney class.

Then by Theorem 3.2.4 [84, Theorem 11.5], µShΛ−(Λ−) ' Loc(Λ−), µShL̃
(
L̃
)
'

Loc(L). Hence we have a quasi-equivalence

µShcX∪Λ−×R∪L
(
cX ∪Λ−×R∪ L̃

) ∼−→ µShcX∪Λ−×R(cX ∪Λ−×R)×µShΛ− (Λ−) µShL(L).
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First, we state the results we can get and their applications.

Corollary 7.2.2 (Mayer-Vietoris exact triangle). Let X be a Weinstein manifold

with subanalytic skeleton cX , and Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds. Sup-

pose there is an exact Lagrangian cobordism L ⊂ ∂∞X ×R from Λ− to Λ+. Suppose

there are sheaves F−,G − ∈ µShbcX∪Λ−×R(cX ∪Λ−×R) with trivial monodromy along

Λ−, and their microstalks at Λ− are F,G. Denoting by

F + = ΦL(F−), G + = ΦL(G −),

the images of F−,G − glued with trivial local systems on L with stalks F,G, then

there is an exact triangle

Γ(µhom(F +,G +))→ Γ(µhom(F−,G −))⊕ C∗(L;Hom(F,G))

→ C∗(Λ−;Hom(F,G))
+1−→ .

A flexible Weinstein manifold [40, Chapter 11] is a Weinstein manifold whose

attaching spheres of index-n critical points are all loose Legendrian submanifold-

s [116]. Similar to the result in [31], we are able to prove a stronger result that

any Legendrian submanifold in the boundary of a flexible Weinstein manifold whose

microlocal sheaf category of proper objects over k = Z/2Z is nontrivial does not ad-

mit a Lagrangian cap. Assuming the equivalence between partially wrapped Fukaya

categories and Legendrian contact homologies, this means that any Legendrian sub-

manifold whose contact homology over k = Z/2Z has a proper module does not

admit a Lagrangian cap.
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Corollary 7.2.3. Let X be a flexible Weinstein manifold with subanalytic skele-

ton cX , and Λ− ⊂ ∂∞X be a connected Legendrian submanifold. Suppose that

µShbcX∪Λ−×R(cX ∪ Λ− × R) contains a nontrivial object with trivial monodromy a-

long Λ−. Then there is no Lagrangian cobordism from Λ− to ∅ with Maslov data.

Remark 7.2.3. Since there are examples whose partially wrapped Fukaya catego-

ry only has higher dimensional representations [106,107], by the equivalence between

Fukaya categories and sheaf categories [74] and the fact that [121, Theorem 3.21] (or

Section 3.4)

µShbcX (cX) ' Funex(µShccX (cX)op,Perf(k)),

this corollary is expected to be stronger than the result in [31]. Note that there are

also examples whose Legendrian contact homology is nontrivial but has only higher

dimensional representations [149].

Remark 7.2.4. The assumption that the sheaf has trivial monodromy along Λ−

is necessary. For example, the Clifford Legendrian torus ΛCliff discussed in Theorem

7.0.10 does admit a microlocal rank 1 sheaf. However, there is a Lagrangian cobor-

dism from a loose Legendrian sphere to ΛCliff [26, Example 4.26], and hence there is

a Lagrangian cap by [66].

Proof of Corollary 7.2.3. Let F− ∈ µShbcX∪Λ−×R(cX∪Λ−×R) be a nonzero

object with stalk at Λ− being F . Suppose there is an exact Lagrangian cobordism

from Λ− to ∅. Then since F− has trivial monodromy and the stalk F at Λ− is

nonzero, it can be extended to a local system on L with nonzero stalk. Glue F− with
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the local system and write F + = ΦL(F−). Since X is flexible, Γ(µhom(F +,F +)) '

0. From the Mayer-Vietoris exact triangle we know that (by setting G − = F−)

Γ(µhom(F−,F−))⊕ C∗(L;Hom(F, F )) ' C∗(Λ−;Hom(F, F )).

However, the fact that H0(L;Hom(F, F )) ' H0(Λ−;Hom(F, F )) will force

H0(µhom(F−,F−)) = 0,

i.e. idF− = 0, which gives a contradiction. �

Remark 7.2.5. The fact that flexible Weinstein domains have trivial microlocal

sheaf categories follows from [74], the vanishing result for their symplectic coho-

mologies [118, Theorem 3.2] (using the embedding trick [66, Corollary 6.3]) and

Abouzaid’s generation criterion [1]. In fact using the embedding trick and the re-

striction functor [124] (or Section 7.1.1) we can also get a sheaf theoretic proof of

this fact.

The next exact sequence is the following, analogous to results in [31, Theorem

1.1] and Pan [128, Theorem 1.2].

Corollary 7.2.4. Let X be a Weinstein manifold with subanalytic skeleton cX ,

and Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds. Suppose there is an exact La-

grangian cobordism L ⊂ ∂∞X × R from Λ− to Λ+. Suppose there are sheaves

F−,G − ∈ µShbcX∪Λ−×R(cX ∪ Λ− × R) with trivial monodromy along Λ−, and their
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stalks at Λ− are F,G. Denoting by

F + = ΦL(F−), G + = ΦL(G −),

the images of F−,G − glued with trivial local systems on L with stalks F,G, then

there is an exact triangle

Γ(µhom(F +,G +))→ Γ(µhom(F−,G −))→ C∗(L,Λ−;Hom(F,G))[1]
+1−→ .

Remark 7.2.6. Following [128, Theorem 1.6], restricting to the subcategory

µShbcX∪Λ−×R(cX ∪ Λ− × R)tri ⊂ µShbcX∪Λ−×R(cX ∪ Λ− × R) with trivial monodromy

along Λ−, the functor defined by gluing with the trivial local system on L

µShbcX∪Λ−×R(cX ∪ Λ− × R)tri → µShbcX∪Λ+×R(cX ∪ Λ+ × R)tri

is injective on objects as long as H0(L,Λ−) = 0. The proof is the same as [128],

where one uses the fact that

H0(µhom(F +,G +))
∼−→ H0(µhom(F−,G −))

preserves the identity.

In particular, when Λ− = ∅, i.e. when L is an exact Lagrangian filling of Λ+, by

choosing the trivial rank 1 local system on L, we are able to get a sheaf quantization

F + of L and this recovers the Seidel isomorphism [51]. The first proof in sheaf

theory when X = T ∗M is obtained by Jin-Treumann [94].
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Note that in contrary to [51], the proof in sheaf theory does not requireW(X) or

µShccX (cX) to vanish (because the sheaf categories are always identified with Fukaya

categories, but they are expected to be the Chekanov-Eliashberg dg algebra or its

representations only when the ambient manifold is flexible).

Corollary 7.2.5 (Nadler-Shende). Let X be a Weinstein manifold with suban-

alytic skeleton cX , and Λ+ ⊂ ∂∞X be a Legendrian submanifold. Let k be a ring.

Suppose there is an exact Lagrangian filling L ⊂ X of Λ+ with vanishing Maslov class

(and relatively spin when chark 6= 2). Then there is F + ∈ µShbcX∪Λ+×R(cX∪Λ+×R)

such that

Γ(µhom(F +,F +)) ' C∗(L;k).

Proof. Pick the rank 1 trivial local system on µShbL(L) ' Locb(L). Then Corol-

lary 7.2.4 gives the result. �

After stating the long exact sequences and their applications, we explain their

proofs, which all follow immediately from the following lemma as a corollary of full

faithfulness.

Lemma 7.2.6. Let X be a Weinstein manifold with subanalytic skeleton cX , and

Λ−,Λ+ ⊂ ∂∞X be Legendrian submanifolds. Suppose there is an exact Lagrangian

cobordism L ⊂ ∂∞X × R from Λ− to Λ+. Suppose there are sheaves F−,G − ∈

µShbcX∪Λ−×R(cX ∪ Λ− ×R) with trivial monodromy along Λ−, and their stalks at Λ−
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are F,G. Denoting by

F + = ΦL(F−), G + = ΦL(G −),

the images of F−,G − glued with the trivial local systems on L with stalks F,G, then

there is a homotopy pullback diagram

Γ(µhom(F +,G +)) //

��

Γ(µhom(F−,G −))

��

C∗(L;Hom(F,G)) // C∗(Λ−;Hom(F,G)).

Proof. Denote by F̃ +, G̃ + the sheaves in µShb
cX∪Λ−×R∪L̃

(
cX ∪ Λ− × R ∪ L̃

)
ob-

tained by gluing F−,G − by the constant sheaf on L with stalk F,G. Then by the

sheaf property of µShb(−), we have a pullback diagram

Γ
(
µhom(F̃ +, G̃ +)

)
//

��

Γ(µhom(F−,G −))

��

C∗(L;Hom(F,G)) // C∗(Λ−;Hom(F,G)).

By full faithfulness of ΦL, we know that

Γ
(
µhom(F̃ +, G̃ +)

) ∼−→ Γ(µhom(F +,G +)).

This proves the assertion. �
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Proof of Corollary 7.2.2. The result immediately follows from the lemma.

�

Proof of Corollary 7.2.4. Note that the restriction map on cohomology

C∗(L;Hom(F,G))→ C∗(Λ−;Hom(F,G)) fits into an exact triangle

C∗(L;Hom(F,G))→ C∗(Λ−;Hom(F,G))→ C∗(L,Λ−;Hom(F,G))[1]
+1−→ .

Since a pullback diagram preserves (co)fibers, this gives the exact sequence

Γ(µhom(F̃ +, G̃ +))→ Γ(µhom(F−,G −))→ C∗(L,Λ−;Hom(F,G))[1]
+1−→,

and hence completes the proof. �

7.2.3. Hamiltonian invariance of Cobordism Functor

We show the basic property that the Lagrangian cobordism functor is invariant

under Hamiltonian isotopies in the symplectization that fix the positive (convex)

and negative (concave) ends.

Theorem 7.2.7 (Hamiltonian invariance). Let X be a Weinstein manifold, Λ± ⊂

∂∞X be Legendrian submanifolds, and L ⊂ ∂∞X×R be a Lagrangian cobordism from

Λ− to Λ+. Suppose there is a compactly supported Hamiltonian isotopy ϕsH (s ∈ I)

on ∂∞X × R. Then

Φ∗L ' Φ∗ϕ1
H(L), ΦL ' Φϕ1

H(L).
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Again, we can only consider the dg categories µShcX∪Λ±×R(cX ∪ Λ± × R) and

Loc(L), and show that

ΦL ' Φϕ1
H(L) : µSh cX∪Λ−×R(cX ∪ Λ− × R)×Loc(Λ−) Loc(L)

→ µShcX∪Λ+×R(cX ∪ Λ+ × R).

Then the results will immediately follow from the properties of adjoint functors.

Our strategy is to compare ΦL and ΦϕsH(L) by constructing a 1-parametric family

of Lagrangian cobordism functors, and then Theorem 3.3.1 [88] will allow us to show

that ΦL ' Φϕ1
H(L) from the initial condition ΦL ' Φϕ0

H(L).

Identify cX ∪ Λ± × R and L with their Legendrian image in some higher dimen-

sional contact manifold T ∗,∞N , and lift ϕsH to a contact Hamiltonian flow on T ∗,∞N .

Consider (cX ∪ Λ− × R)× I. Then we have a Lagrangian cobordism functor

ΦL×I : µSh((cX∪Λ−×R)×I)∪(L×I)
(
((cX ∪ Λ− × R)× I) ∪ (L× I)

)
→ µSh(cX∪Λ+×R)×I

(
(cX ∪ Λ+ × R)× I

)
.

On the other hand, let L̃H be the Legendrian movie of L̃ (in Definition 3.3.1) under

the Hamiltonian flow ϕsH . Then we have a Lagrangian cobordism functor

ΦLH : µSh((cX∪Λ−×R)×I)∪L̃H

(
((cX ∪ Λ− × R)× I) ∪ L̃H

)
→ µSh(cX∪Λ+×R)×I

(
(cX ∪ Λ+ × R)× I

)
.
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For F ∈ µShcX∪Λ−×R∪L̃
(
cX ∪ Λ− × R ∪ L̃

)
, write π : T ∗,∞(N × I) → T ∗,∞N . We

consider

π−1(F ) ∈ µSh((cX∪Λ−×R)×I)∪(L̃×I)
(
((cX ∪ Λ− × R)× I) ∪ (L̃× I)

)
.

On the other hand, by Theorem 3.3.2 the Hamiltonian isotopy ϕsH defines a canonical

sheaf

Ψ0
H(F ) ∈ µSh((cX∪Λ−×R)×I)∪L̃H

(
((cX ∪ Λ− × R)× I) ∪ L̃H

)
.

Lemma 7.2.8. Let π : N × I → N be the projection, is : N × {s} ↪→ N × I

be the inclusion, and L̃H be the Legendrian movie of L̃ under the Hamiltonian flow

ϕsH (s ∈ I). Then for any F ∈ µShcX∪Λ−×R∪L̃(cX ∪ Λ− × R ∪ L̃),

i−1
s ΦL×I(π

−1(F )) = ΦL(F ), i−1
s ΦLH (Ψ0

H(F )) = ΦϕsH(L)(F ).

Proof. First of all, let ϕz
Z

be the Liouville flow on T ∗,∞(N×I) defined by (ϕzZ , id).

Let Ψζ

Z
be the equivalence functor defined by the Liouville flow ϕz

Z
(z ∈ (−∞, 0]) or

φζ
Z

(ζ ∈ (0, 1]) on T ∗,∞(N × I), and

N × {0} iZ−→ N× [0, 1]
jZ←− N × (0, 1],

N × I × {0}
iZ−→ N × I × [0, 1]

jZ←− N × I × (0, 1].
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Write (Ψζ

Z
(Ψ0

H(F )))dbl ∈ Sh(N × I × (0, 1]) for the image of Ψζ

Z
(Ψ0

H(F )) under the

antimicrolocalization functor in Theorem 7.1.2 [124]. Then by Remark 3.3.3,

i−1
s

(
Ψζ

Z
(Ψ0

H(F ))
)

dbl
= Ψζ

Z(i−1
s Ψ0

H(F ))dbl.

Similarly, write i−1
s ΦL×I(π

−1(F ))dbl ∈ Sh(N×{s}) for the image of i−1
s ΦL×I(π

−1(F ))

under the antimicrolocalization functor. By Lemma 7.1.5 we have

i−1
s ΦL×I(π

−1(F ))dbl
∼−→ i−1

s i
−1

Z jZ,∗
(
Ψζ

Z
(π−1(F ))

)
dbl

∼−→ i−1
Z jZ,∗

(
Ψζ
Z(i−1

s π−1(F ))
)

dbl

∼−→ ΦL(F )dbl.

On the other hand, write i−1
s ΦLH (π−1(F ))dbl ∈ Sh(N × {s}) for the image of

i−1
s ΦLH (π−1(F )) under the antimicrolocalization functor. By Lemma 7.1.5 again

we also have

i−1
s ΦLH (π−1(F ))dbl

∼−→ i−1
s i
−1

Z jZ,∗
(
Ψζ

Z
(Ψ0

H(F ))
)

dbl

∼−→ i−1
Z jZ,∗

(
Ψζ
Z(i−1

s Ψ0
H(F ))

)
dbl

∼−→ ΦϕsH(L)(F )dbl.

Therefore the proof is completed. �

Proof of Theorem 7.2.7. For F ∈ µShcX∪Λ−×R∪L̃(cX ∪ Λ− × R ∪ L̃), we

consider

π−1(F ) ∈ µSh((cX∪Λ−×R)×I)∪(L̃×I)
(
((cX ∪ Λ− × R)× I) ∪ (L̃× I)

)
.
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On the other hand, for the Hamiltonian isotopy ϕsH we consider by Theorem 3.3.2

Ψ0
H(F ) ∈ µSh((cX∪Λ−×R)×I)∪L̃H

(
((cX ∪ Λ− × R)× I) ∪ L̃H

)
.

There is a natural morphism π−1(F )→ Ψ0
H(F ), and thus a natural morphism

ΦL×I
(
π−1(F )

)
→ ΦLH

(
Ψ0
H(F )

)
.

We will show that this is a natural quasi-isomorphism. In fact,

Cone
(
ΦL×I

(
π−1(F )

)
→ ΦLH

(
Ψ0
H(F )

))
∈ µSh(cX∪Λ+×R)×I

(
(cX ∪ Λ+ × R)× I

)
.

By Lemma 7.2.8, we also know that when s = 0,

i−1
0 Cone

(
ΦL×I

(
π−1(F )

)
→ ΦLH

(
Ψ0
H(F )

))
' Cone

(
i−1
0 ΦL×I

(
π−1(F )

)
→ i−1

0 ΦLH

(
Ψ0
H(F )

))
' Cone

(
ΦL

(
i−1
0 π−1(F )

)
→ ΦL

(
i−1
0 Ψ0

H(F )
))
' 0.

As by Theorem 3.3.2, i−1
0 : µSh(cX∪Λ+×R)×I

(
(cX ∪Λ+×R)× I

)
→ µShcX∪Λ+×R(cX ∪

Λ+×R
)

defines an equivalence, we can conclude that the mapping cone is identically

zero, and thus

ΦL×I
(
π−1(F )

) ∼−→ ΦLH

(
Ψ0
H(F )

)
.

Therefore by restricting to s = 1 and applying Lemma 7.2.8 again the proof is

completed. �
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7.2.4. Comparison with the Isotopy Functor

When there is a Legendrian isotopy ϕsH (s ∈ I) from Λ0 to Λ1, it will define a

Lagrangian cobordism L from Λ0 to Λ1 [27] or [68, Section 4.2.3]. Hence we have a

fully faithful Lagrangian cobordism functor

ΦL : ShΛ0(M) ↪→ ShΛ1(M).

On the other hand, Guillermou-Kashiwara-Schapira [88] constructed a sheaf quanti-

zation functor ΨH from a Hamiltonian isotopy given by taking convolution with an

integral kernel. We will prove the following comparison theorem.

Theorem 7.2.9. Let Λs ⊂ T ∗,∞M (s ∈ I) be a Legendrian isotopy induced by

ϕsH (s ∈ I), with vanishing Maslov class, and L the Lagrangian cobordism from Λ0

to Λ1 coming from the isotopy. Then for ΦL the Lagrangian cobordism functor and

ΨH the sheaf quantization functor,

ΦL ' ΨH : ShΛ0(M)→ ShΛ1(M).

In this section we show that when the Lagrangian cobordism L from Λ− to Λ+

is induced by a Hamiltonian isotopy in Theorem 3.3.1 [88], i.e. Λ− = Λ and Λ+ =

ϕ1
H(Λ), then our Lagrangian cobordism functor agrees with the sheaf quantization

functor given by the Hamiltonian isotopy2.

2The author is very grateful to Vivek Shende, who essentially explains to the author the strategy
of the proof that appears here.
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Our strategy is similar to the proof of Theorem 7.2.7 (Hamiltonian invariance),

that is, to realize the Lagrangian cobordism as a functor

ShbΛ×I(M × I)→ ShbΛH (M × I)

where ΛH is the Legendrian movie of Λ under the Hamiltonian flow ϕsH (s ∈ I). Then

Theorem 3.3.1 [88] will enable us to conclude that ΦL ' ΨH at M × {1} from the

initial condition at M × {0}.

First, recall the construction of Lagrangian cobordisms induced by a Hamiltonian

isotopy [27]. Suppose the contact Hamiltonian is H : T ∗,∞M → R. Then consider

the homogeneous symplectic Hamiltonian to be Ĥ(x, ξ) = |ξ|H(x, ξ/|ξ|) : T ∗M → R.

Let η : [0,+∞)→ [0, 1] be a cut-off function such that η(r) = 0 when r is small, and

η(r) = 1 when r is large. Then the Lagrangian cobordism induced by H is

L = ϕ1
η(|ξ|)Ĥ(x,ξ)

(Λ× R>0).

One can see that L coincides with Λ × R>0 when |ξ| is small, and coincides with

ϕ1
H(Λ)× R>0 when |ξ| is large.

Now we try to construct a Lagrangian cobordism L from Λ × I to ΛH , so that

the restriction to T ∗M ×{0} is just Λ×R>0, and the restriction to T ∗M ×{1} is L.

Let

ϕt
H

: T ∗,∞(M × I)→ T ∗,∞(M × I); (x, ξ, s, σ) 7→ (ϕstH(x, ξ), s, σ − sH ◦ ϕstH(x, ξ)).
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Then the Lagrangian cobordism L induced by ϕt
H

(t ∈ I) will satisfy our conditions.

Recall that to define the Lagrangian cobordism functor, we need to consider a

proper embedding e : T ∗M ↪→ T ∗,∞(M × R). For example, consider a Riemannian

metric g, let ϕtg be the geodesic flow, and define

e(x, ξ) = (ϕ−1
g (x, ξ), |ξ|2g/2, 1).

Then we are going to work with the (singular) Legendrians (M ∪ Λ × R>0)≺ε and

(M ∪ ϕ1
H(Λ)× R>0)≺ε ⊂ T ∗,∞τ>0 (M × R).

Let F ∈ µShbM∪Λ×R>0
(M ∪Λ×R>0). Let ϕs

ηĤ
be the Hamiltonian flow on T ∗M

that extends to T ∗,∞τ>0 (M × R). Then by Theorem 3.3.2, there is a canonical sheaf

ΨηĤ(F ) ∈ µShb
M∪ϕ1

ηĤ
(Λ×R>0)

(M ∪ ϕ1
ηĤ

(Λ×R>0)) whose restriction to M ∪ Λ×R>0

is F , this means ΨηĤ(F ) is the unique lifting of F under the (restriction) functor

µShM∪ϕ1
ηĤ

(Λ×R>0)
∼−→ µShM∪Λ×R>0(M ∪ Λ× R>0)×Loc(Λ) Loc(L)

∼−→ µShM∪Λ×R>0(M ∪ Λ× R>0).

In other words, by abusing notations, we can write

ΦL(F ) = ΦL(ΨηĤ(F )).

Lemma 7.2.10. Let L be the Lagrangian cobordism from Λ×I to ΛH induced by

ϕs
H

, is : T ∗,∞(M×R)×{s} ↪→ T ∗,∞(M×R×I) be the inclusion and π : T ∗,∞(M×R×
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I)→ T ∗,∞(M×R) be the projection. Then for any F ∈ µShM∪Λ×R>0(M ∪Λ×R>0),

i−1
s ΦL(π−1(F )) = ΦLs(F ),

where Ls = ϕ1
sηĤ

(Λ× R>0) is the Lagrangian cobordism induced by ϕtsH .

Proof. First of all, ϕz
Z

be the Liouville flow on T ∗,∞(M × R × I) defined by

(ϕzZ , id). Let Ψζ

Z
be the equivalence functor defined by the Liouville flow ϕz

Z
(z ∈

(−∞, 0]) or φζ
Z

(ζ ∈ (0, 1]) on T ∗,∞(M × R× I), and

M × R× {0} iZ−→M×R× [0, 1]
jZ←−M × R× (0, 1],

M × R× I × {0}
iZ−→M × R× I × [0, 1]

jZ←−M × R× I × (0, 1].

Write (Ψζ

Z
(Ψ0

ηĤ
(F )))dbl ∈ Sh(M × R× I) for the image of Ψζ

Z
(Ψ0

ηĤ
(F )) under the

antimicrolocalization functor in Theorem 7.1.2 [124]. Then by Remark 3.3.3,

i−1
s

(
Ψζ

Z
(Ψ0

ηĤ
(F ))

)
dbl

= Ψζ

Z
(i−1
s Ψ0

ηĤ
(F ))dbl.

We can write down the Lagrangian cobordism functor as a series of compositions

ΦL(π−1(F ))dbl = i
−1

Z jZ,∗
(
Ψζ

Z
Ψ0
ηH(π−1(F ))

)
dbl
.
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Note that Ψζ

Z
is the equivalence functor defined by the Liouville flow on T ∗,∞(M ×

R× I). Then by Lemma 7.1.5 there is a natural morphism

i−1
s ΦL(π−1(F ))dbl

∼−→ i−1
s i
−1

Z jZ,∗
(
Ψζ

Z
Ψ0
ηĤ

(π−1(F ))
)

dbl

∼−→ i−1
Z jZ,∗Ψ

ζ
Z

(
i−1
s Ψ0

ηĤ
(π−1(F ))

)
dbl

∼−→ i−1
Z jZ,∗

(
Ψζ
ZΨ0

sηĤ
(F )

)
dbl

∼−→ ΦLs(F )dbl.

and thus we complete the proof. �

Proof of Theorem 7.2.9. Consider the Lagrangian cobordism L induced by

ϕt
H

. By Lemma 7.2.10, we know that for i0 : T ∗,∞(M×R)×{0} ↪→ T ∗,∞(M×R×I)

and π : T ∗,∞(M × R× I)→ T ∗,∞(M × R),

i−1
0 ΦL(F ) = ΦΛ×R>0(F ) = F .

By Theorem 3.3.2 and Remark 3.3.3, i−1
0 : µSh((M∪Λ×R>0)×I)∪L(((M ∪Λ×R>0)×I)∪

L)→ µShM∪Λ×R>0(M ∪Λ×R>0) is an equivalence and its inverse is the Hamiltonian

isotopy functor Ψ0
H in Theorem 3.3.1 [88]. Therefore

ΦL(π−1(F )) = Ψ0
H(F ).

Finally, by restricting to M × {1} and apply Lemma 7.2.10 again, we can conclude

that ΦL(F ) = ΨH(F ). �
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7.2.5. Comparison with the Filling Functor

When Λ− = ∅, a Lagrangian cobordism from Λ− to Λ+ is a Lagrangian filling. Jin-

Treumann [94] constructed a sheaf quantization functor Loc(L) → ShΛ+(M) from

any Lagrangian filling L of Λ+, that is, a fully faithful embedding

ΨJT
L : Loc(L) ↪→ ShΛ+(M),

as we have explained in Section 4.4. We will show the following comparison result.

Proposition 7.2.11. Let U ⊂ M be an open subset with subanalytic boundary,

Λ+ = ν∗,∞U,−M be the inward unit conormal and L the standard Lagrangian brane

associated to U with Legendrian boundary Λ+. Then for ΦL the Lagrangian cobordism

functor and ΨJT
L the Jin-Treumann sheaf quantization functor,

ΦL ' ΨJT
L : Loc(L) ↪→ ShΛ+(M).

In fact, using Nadler-Zaslow correspondence [119,126] or Viterbo’s sheaf quan-

tization construction [159], if one can prove additionally the functoriality of ΦL

and ΨJT
L as functors from infinitesimal Fukaya categories, then ΦL ' ΨJT

L for any

Lagrangian filling of any Legendrians Λ+.

When Λ− = ∅, L is a Lagrangian filling of Λ+. In this section we basically show

that for costandard Lagrangian branes, our fully faithful functor

ΦL : Loc(L) ↪→ ShΛ+(M)
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coincides with the functor Jin-Treumann constructed [94]. Again, the reader may

skip this section.

Fix an embedding e : T ∗M ↪→ T ∗,∞(M×R). For example, consider a Riemannian

metric g, let ϕtg be the geodesic flow, and define

e(x, ξ) = (ϕ−1
g (x, ξ), |ξ|2g/2, 1).

Then M ∪ Λ× R>0 ⊂ T ∗,∞(M × R) is a (singular) Legendrian.

Let U ⊂ M be an open subset with subanalytic boundary ∂U . The outward

conormal of U is denoted by ν∗U,+M . Then the Lagrangian skeleton M ∪ ν∗U,+M is

shown in Figure 7.4.

Definition 7.2.1. Let mU : U → [0,+∞) be the defining function of ∂U such

that m−1
U (0) = ∂U . Let fU = − ln(mU). Then the graph of the exact 1-form L =

LU = LdfU ⊂ T ∗M is the costandard Lagrangian brane associated to U .

When L intersect the ideal contact boundary [81] of T ∗M at ν∗,∞U,+M such that

it is tangent to ν∗U,+M to infinite order (for example, when 0 is a regular value of

mU), it can be viewed as a Lagrangian filling of ν∗,∞U,+M , equipped with a different

primitive f ′U that is bounded on L = LU . Via the embedding e, its image L̃ will be

a Legendrian in T ∗,∞(M × R) that coincides with ν∗U,+M at infinity.

Proof of Proposition 7.2.11. Consider a complex of local systems FL on L

with stalk F . Note that the projection πL : L ↪→ T ∗M →M defines a diffeomorphism

L ∼= U . Write FU = πL,∗FL. We will show that both functors send FL to FU .
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Figure 7.4. The Nadler-Shende construction (left) and the Jin-
Treumann construction (right). The grey regions are the supports of
the corresponding sheaves. The thin lines on the left are the skeleton
M ∪ ν∗U,+M embedded in J1(M), and the thick lines there are the two
copies of Lagrangian fillings. The blue lines are the family of cusps
∂Λ× ≺.

(1) We first compute ΦL : Loc(L) → Sh(M). Let the vertical vector field ∂/∂t

be the Reeb vector field. Consider the skeleton M ∪ ν∗U,−M and its positive/negative

Reeb pushoff (M∪ν∗U,−M)±ε. Lift L to a Legendrian L̃ that coincides with M∪ν∗U,−M

when the radius coordinate r = ln |ξ| in T ∗M is sufficiently large. When r is large, we

cut off the Legendrian (ν∗,∞U,−M)±ε and connect them by a family of cusps ν∗,∞U,−M × ≺,

and also cut off L̃±ε and connect them by a family of cusps ν∗,∞U,−M × ≺. We consider

Loc(L)
∼−→ µShL̃(L̃) ↪→ Sh(L̃,∂L̃)≺ε

(M × R)0.

Here the subscript 0 means the subcategory of sheaves with 0 stalk outside a compact

set. Hence there is a sheaf Fdbl with singular support in (L̃, ∂L̃)≺ε whose microlocal-

ization along L̃−ε is given by FL, given by the antimicrolocalization functor Theorem

7.1.2 [124].
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Running the Liouville flow ϕzZ for z ∈ (−∞, 0] or φζZ for ζ ∈ (0, 1], we can get a

sheaf on M×R× (0, 1]. Note that the end (ν∗,∞U,−M)±ε (which coincides with ∂L̃±ε) is

preserved by Liouville flow up to a Reeb translation (due to change of the primitive

f ′U of LU), and the limit points

lim
z→−∞

ϕzZ(L̃, ∂L̃)≺ε = lim
ζ→0

φζZ(L̃, ∂L̃)≺ε ⊂ T ∗,∞τ>0 (M × R)× {0}

are exactly (U ∪ ν∗U,−M)≺ε . The resulting sheaf is therefore in Sh(U∪ν∗U,−M)≺ε
(M ×R).

Now we apply the microlocalization functor

Sh(U∪ν∗U,−M)≺ε
(M × R)0 → µSh(U∪ν∗U,−M)−ε

((U ∪ ν∗U,−M)−ε)
∼−→ Shν∗U,−M(M)0.

The microstalks for points in U−ε are F , and those for points in M−ε\U−ε are 0. The

microlocal monodromy along U is determined by FU = πL,∗FL because topologically

taking the limit limz→−∞ ϕ
z
Z(L) under the Liouville flow gives a homotopy equiva-

lence L ' limz→−∞ ϕ
z
Z(L) ' U ∪ ν∗U,−M ' U that is homotopic to the projection

πL : L
∼−→ U .

(2) Then we consider ΨJT
L : Loc(L) → Sh(M). In [94] they considered the

Legendrian lift L̃ of L whose front projection onto M×R is the graph of the function

fU . Then consider the positive/negative Reeb pushoff L̃±ε, which are the graphs of

the functions fU ± ε. We have [94]

Loc(L)
∼−→ µShL̃(L̃) ↪→ ShL̃±ε(M × R)0.
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Then there is a sheaf F ′
dbl with singular support in L̃−ε ∪ L̃ε, given by the antimi-

crolocalization functor [94, Section 3.15], whose microlocalization along L̃−ε gives the

local system FL. Write D±ε = {(x, t)|t = fU(x)± ε}. Indeed the sheaf is supported

in the region

D[−ε,ε) = {(x, t)|fU(x)− ε ≤ t < fU(x) + ε}

with stalk F . This is because the sheaf has zero stalk below D−ε = {(x, t)|t =

fU(x)− ε} and hence for sufficiently small ε′ > ε (as in Example 3.2.4)

FL = mL̃−ε
(F ′

dbl) ' Tot(F ′
dbl|D−ε → F ′

dbl|D−ε′ ) ' F ′
dbl|D−ε .

In addition, the monodromy of the local system in the region D[−ε,ε) bounded by

π(L̃−ε) and π(L̃ε) is also determined by FL, since for πM : M × R→M ,

F ′
dbl|D[−ε,ε) = π−1

M (F ′
dbl|D−ε)|D[−ε,ε) .

Now we consider a Legendrian isotopy to move L̃ε along the positive Reeb direc-

tion. Jin-Treumann showed that [94, Section 3.18] for S > T > 0 sufficiently large

we have

ShL̃−ε∪L̃ε+S(M × R)
j−1
M×(−∞,T )

// ShL̃−ε(M × (−∞, T )) ShL̃−ε(M × R),
∼

oo

and hence one can get a sheaf F ′ in ShL̃−ε(M × R) with stalk F supported in the

region D[−ε,+∞) = {(x, t)|t ≥ fU(x) − ε} above D−ε, and the monodromy in this
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region determined by FL since

F ′|D[−ε,+∞)
= π−1

M (F ′|D−ε)|D[−ε,+∞)
.

Finally we push forward the sheaf to Shν∗U,−M(M)0 via the projection πM : M ×

R → M . Note that in the fiber of the projection {x} × R (x ∈ U), the sheaf is

Fr≥fU (x), and πx,∗(Fr≥fU (x)) = F . Hence the projection will give a sheaf supported

on U with stalk F . In addition we claim that the monodromy defines the local system

FU = πL,∗FL on U because the projection of L onto M via L̃ ↪→ T ∗,∞τ>0 (M × R) →

M × R → M coincides with the projection πL : L ↪→ T ∗M → M which gives the

diffeomorphism L ∼= U .

Hence ΦL ' ΨJT
L : Loc(L) → Sh(M) when L = LU is a standard Lagrangian

brane corresponding to the open subset U ⊂M . �

7.3. Examples and Applications in Lagrangian Cobordisms

We now focus on some concrete examples of Legendrian submanifolds and La-

grangian cobordisms and explain what the Lagrangian cobordism functor on sheaves

will tell us. In particular, we will prove Theorem 7.0.10.

7.3.1. Examples of cobordism functors

We consider the elementary Lagrangian cobordism given by attaching a Lagrangian

k-handle (0 ≤ k ≤ n). The local model of the front projection in Rn+1 is shown in

Figure 7.5 and 7.6.
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Figure 7.5. On the left is the front projection of Λ−, and on the right
is the front projection of Λ+ after attaching a Lagrangian 1-handle
connecting the two cusps along the dashed line, where in the middle
of the tube (the grey slice) there is a unique Reeb chord.

The front projection of Λ± gives a stratification on Rn+1, such that on each

stratum the sheaf is locally constant. Hence we are able to get a combinatoric model

given by stalks on each stratum and the transition maps given by the microlocal

Morse lemma as in Example 3.1.5 and 3.2.4. We will explain how objects behave

under the cobordism functor.

For the stratification given by Λ±, denote by V± ⊂ Rn+1 the domain whose xn+1-

coordinate is bounded by the front projection of Λ± and U± ⊂ Rn+1 the domain

whose xn+1-coordinate is unbounded on each vertical slice {(x1, . . . , xn)} × R (see

Figure 7.5 and 7.6). For a sheaf in ShbΛ−(Rn+1), suppose the stalk in the region V−

is B and the stalk in U− is A (Figure 7.7). Suppose the microstalk of F is

F ' Tot(A→ B).

Instead of doing concrete computations, we will describe objects under the La-

grangian cobordism functor in three steps by only using a few properties of our

functor:
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Figure 7.6. On the left is the front projection of Λ−, and on the right
is the front projection of Λ+ after attaching a Lagrangian 2-handle
connecting the S1-family of cusps along the disk.

(1) determine the stalks in U+ and V+ using the fact that the cobordism functor

is identity outside a compact set in Rn+1 and hence the stalks are preserved;

(2) determine the microlocalization along Λ+ (relative to boundary), which is

a local system with stalk F , using the fact that the Liouville flow fixes the

end Λ+ and hence the cobordism functor preserves the microlocalization;

(3) determine the local system in V+ using the fact that B ' A⊕F , and hence

the local system with stalk F on Λ+ determines a local system with stalk

F on V+ and a local system with stalk B on V+ (relative to boundary at

infinity in Rn+1).

The information above will uniquely determine the sheaf.

Before starting to determine the sheaf F + ∈ ShbΛ+
(Rn+1), we first note that

F− ∈ ShbΛ−(Rn+1) has an image in ShbΛ+
(Rn+1) via the cobordism functor iff it can

be lifted into

ShbΛ−(Rn+1)×Locb(Λ−) Loc
b(L).

Since Λ− ∼= Sk−1 ×Dn−k+1 while L ∼= Dk ×Dn−k+1, this is the same as saying that

the microlocalization mΛ−(F−) can be trivialized over Sk−1.
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Remark 7.3.1. Note that not all complexes of local systems in Locb(Sk) (k ≥ 2)

are trivial. For example for the Hopf fibration π : S3 → S2, π∗kS3 is a nontrivial

complex of local system on S2. The reason is that although H1(Sk) = 0, Hk(Sk) 6= 0

and that will give extension classes in Ext1(kSk [1− k],kSk).

Here is how the sheaf F + is determined. (1) Firstly, note that away from the

cusps, the Lagrangian cobordism is just a standard embedded cylinder Λ0 × R, and

hence is fixed by the Liouville flow. The functor

µShbRn+1∪Λ0×R∪L(Rn+1 ∪ Λ0 × R ∪ L)→ µShbRn+1∪Λ0×R(Rn+1 ∪ Λ0 × R)

is the identity. This shows that the sheaf should remain the same away from compact

subsets in Rn+1. Then one can see explicitly that the stalks of F + are determined

by F−, where the stalk in the region V+ must be B and the stalk in U+ must be A.

(2) Secondly, note that the complex of local systems mΛ−(F−) on Λ− has stalk F .

After gluing with a local system LL on L, by restriction we can determine a complex

of local systems on Λ+ × {+∞}. Note that the restriction of the local system along

∂L = ∂Λ± × R is determined by the microlocalization on ∂Λ−.

Since Λ+ × {+∞} is preserved by the negative time Liouville flow ϕzZ up to a

Reeb translation (due to the change of the primitive fL of L), the functor

µShbM∪Λ−×R>0∪L(M ∪ Λ− × R>0 ∪ L)

→ µShblimz→−∞ ϕzZ(M∪Λ−×R>0∪L)(lim z→−∞ϕ
z
Z(M ∪ Λ− × R>0 ∪ L))

→ µShbM∪Λ+×R>0
(M ∪ Λ+ × R>0)
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Figure 7.7. The microlocal sheaf on ShbΛ−(Rn+1) (left) and ShbΛ+
(Rn+1)

(right) before and after the Lagrangian 1-handle attachment. Here we
assume Λ± ⊂ T ∗,∞τ>0 (Rn × Rτ ).

is an equivalence on Λ+ × {+∞} induced by the Reeb translation (Theorem 3.3.2).

Hence the complex of local systems on Λ+×{+∞} is preserved by the nearby cycle

functor. Therefore, after applying ΦL, the microstalk on Λ+ is still F , where the

microlocal monodromy is still the same as the restriction of the local system LL

onto Λ+.

Note that the restriction of the local system to boundary LL|∂Λ±×R is the pull

back of the given local system m∂Λ−(F ). Therefore, after applying the cobordism

functor we get the microlocalization in the fiber of Locb(Λ+) → Locb(∂Λ+) at the

point m∂Λ−(F ).

(3) Finally, we determine the local system in the region V+. Note that V+ is

not contractible relative to boundary at infinity ∂V+ = Sk−1 × Dn−k+1. In partic-

ular, globally there could be nontrivial monodromy coming from our choice of the

local monodromy relative to boundary, parametrized by the fiber of Locb(V+) →

Locb(∂V+). Because there are transition maps

A→ B → A
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whose composition is a quasi-isomorphism. Without loss of generality, we assume

that it is the identity [148, Corollary 3.18]. Then there is a splitting of chain com-

plexes

B ' A⊕ Tot(A→ B) ' A⊕ F.

Therefore since the microlocal monodromy along Λ+ has been determined by the

local system on L we chose, so is the monodromy of the sheaf in V+ if we identify

F +|V+ with AV+ ⊕L |V+ , where AV+ is just the constant local system and LV+ is a

local system on V+ with stalk F that extends LL|Λ+ .

In fact topologically (V+, ∂V+) ' (L,Λ−) ' (Dk × Dn−k+1, Sk−1 × Dn−k+1) by

considering the projection map L ↪→ R2n+1 × R → R2n+1 → Rn+1. We claim that

L |V+
∼= LL relative to the boundary ∂V+

∼= Sk−1×Dn−k+1 ∼= Λ−, meaning that they

live in the same fiber of the restriction functor. Indeed, the restriction of LV+ and

LL to Λ+ should both be LL|Λ+ , but LL|Λ+ extends uniquely to L since the inclusion

Λ+ ↪→ L is just Dk × Sn−k ↪→ Dk × Dn−k+1. Therefore L |V+ ' LL (respectively,

the restriction of L∂V+ and LΛ− to ∂Λ+
∼= ∂Λ− agree, but LL|∂Λ+ extends uniquely

to ∂V+, so the local systems live in the same fiber).

Now we look at several different k-handle attachments to see what these data are

in specific cases when 0 ≤ k ≤ 2.

7.3.1.1. Lagrangian 1-handle attachment. When k = 1 there are 2 disconnect-

ed strata inside the cusps of Λ− (Figure 7.5 and 7.7). The sheaf F− ∈ ShbΛ−(Rn+1)

can be extended only when the microlocal monodromy along S0 × Rn ⊂ Λ− can be
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extended to a local system along D1×Rn ⊂ L. This is equivalent to saying that the

microstalks on two components F ' F ′.

Let the stalk in the region V− bounded by the 2 cusps be B,B′ and let the stalk

outside be A. Then using the splitting of chain complexes

B ' A⊕ Tot(A→ B) ' A⊕ F ' A⊕ Tot(A→ B′) ' B′,

where F = Tot(A → B) ' Tot(A → B′) is the microstalk, we know that the

condition implies that B ' B′. After applying the cobordism functor, the stalk in

V+ bounded by the front of Λ+ is B and the stalk outside is A.

There is a choice we need to make for the quasi-isomorphism between all the B’s,

and that is coming from our choice for the local system on L. Different identifications

may give different monodromies along Λ+ relative to the boundary at infinity ∂L =

S0 ×Dn.

Namely, when gluing with a local system on L, we assign an extra quasi-isomorphism

fF bewteen the stalks F on both components of Λ−. After applying ΦL, the mi-

crostalk on Λ+ is still F , where the quasi-isomorphism from F on the left to F on

the right is given by fF . Then by the quasi-isomorphism

B ' A⊕ F,

the transition map of B from left to right will be given by fB = (idA, fF ).

In particular, if the microstalk F ' kr (F− is pure), then the choices are classified

by GLr(k). When F ' k (F− is simple), then the choices are classified by k×.
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Remark 7.3.2. One can compare our computation with the computation in [23,

Section 5] for Legendrian links and [26, Section 5.5] for Legendrian surfaces, by

decomposing those cobordisms into a composition of Reidemeister moves and a handle

attachment.

What we described is only the local picture, globally there are different possibil-

ities. Let’s fix F ' k (this means F− is simple). (1) When the 1-handle L connects

two different components of Λ−, then

H1(Λ−;k×) ∼= H1(L;k×).

Consider the moduli space of rank 1 local systems on Λ (coming from the derived

moduli stacks of local systems) given by Loc1(Λ) = [H1(Λ;k×)/H0(Λ;k×)], and

consider the framed moduli space of rank 1 local systems on a manifold Λ given by

Locfr
1 (Λ) = H1(Λ;k×) with framing data, i.e. fixed trivializations of stalks, at each

component. Then

Loc1(Λ−)× [k×/k×] ∼= Loc1(L), Locfr
1 (Λ−) ∼= Locfr

1 (L).

Consider the derived moduli stack of microlocal rank 1 sheaves RM1(Λ±). Denote by

M1(Λ±) the classical moduli stacks defined by the 1-rigid locus (the 1-rigid locus of

RM1(Λ±) consisting objects with no negative self-extensions is always an Artin stack,

but they may not coincide with the derived stack)3 [147, Section 2.4]. Assuming that

3The flag moduli space considered in [26,157] is, strictly speaking, slightly different as they do not
remember the trivial k×-action by only taking quotients of flags by PGLn(k) instead of GLn(k).
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these classical moduli stacks coincide with the derived stacks, we have an embedding

M1(Λ−)× [k×/k×] =M1(Λ−)×Loc1(Λ−) Loc1(L) ↪→M1(Λ+).

ConsiderMfr
1 (Λ±) the classical moduli stacks defined by the 1-rigid locus with fram-

ing data at each component of Λ±. Then we have an embedding

Mfr
1 (Λ−) =Mfr

1 (Λ−)×Locfr1 (Λ−;k×) Loc
fr
1 (L;k×) ↪→Mfr

1 (Λ+).

(2) When the 1-handle L is attached on one component of Λ−, then the moduli

spaces of rank 1 local systems satisfy

H1(Λ−;k×)× k× ∼= H1(L;k×).

Therefore, for the moduli spaces of rank 1 local systems we know that

Loc1(Λ−)× [k×/k×] ∼= Loc1(L), Locfr
1 (Λ−)× k× ∼= Locfr

1 (L).

Hence assuming that the classical moduli stacks of microlocal rank 1 sheavesM1(Λ±)

coincide with the derived stacks, we have an embedding

M1(Λ−)× [k×/k×] =M1(Λ−)×Loc1(Λ−) Loc1(L) ↪→M1(Λ+).

The moduli spaces they consider are equal toM1(Λ) considered here after further taking quotients
by the trivial k×-action.
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For the moduli stacks of microlocal rank 1 sheaves with framing data at each com-

ponent Mfr
1 (Λ±), we have an embedding

Mfr
1 (Λ−)× k× =Mfr

1 (Λ−)×Locfr1 (Λ−;k×) Loc
fr
1 (L;k×) ↪→Mfr

1 (Λ+).

Remark 7.3.3. In [78] the authors considered augmentation varieties for Legen-

drian links of positive n-braid closures, and for any such 2 Legendrian links connected

by a 1-handle cobordism they showed that

Aug(Λ−)× k× ↪→ Aug(Λ+).

That is because when considering Aug(Λ) they always fix n marked points and do

not change the number of marked points when the number of components increas-

es/decreases. This should be thought of as equivalent to the moduli space of microlo-

cal rank 1 sheaves together with framing data at n base points [147, Section 2.4] or

equivalently trivialization data of microstalks at n base points.

7.3.1.2. Lagrangian 2-handle attachment. When k = 2, the sheaf F− ∈ ShbΛ−(Rn+1)

can be extended only when the microlocal monodromy along S1 × Rn−1 ⊂ Λ− can

be extended to a local system along D2 × Rn−1 ⊂ L. As C∗(D2;k) ∼= k, this is

equivalent to saying that the microlocal monodromy is trivial along S1×Rn−1 ⊂ Λ−.

As in the case k = 1, there is a choice we need to take into consideration which

is the contracting homotopy from the local system on S1 to the trivial one, and

the choice of the contracting homotopy will give different (higher) monodromies
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relative to the boundary at infinity ∂L = S1 × Dn−1. Consider a triangulation of

D2 = ∆2. Then this gives a stratification D2. The 1-dimensional strata gives us

quasi-isomorphisms

f01 : F → F, f12 : F → F, f02 : F → F.

For the 2-dimensional stratum, we need to assign an extra chain homotopy H012 from

f02 to f12 ◦ f01, i.e. H012 : F → F [−1] such that

H012δF − δFH012 = f02 − f12 ◦ f01.

The (higher) monodromy along Λ+ is preserved by the functor ΦL and hence

determines the microlocal monodromy of F+ along Λ+. Using the quasi-isomorphism

B ' A⊕ F,

the monodromy data of F determines the monodromy data of the stalk B in F+.

When F ' kr (the sheaf is pure), then the contracting homotopy data is trivial,

and hence any such sheaf with trivial monodromy in ShpΛ−(M) extends uniquely to

a sheaf in ShpΛ+
(M).

Suppose the classical moduli stacks of microlocal rank r sheavesMr(Λ±) coincide

with the derived stacks (with fixed framing data at a point). For [β] ∈ π1(Λ−), let

M[β]
r (Λ−) be the substack consisting of sheaves with trivial microlocal monodromy

along β. Then for L a Lagrangian 2-handle cobordism attached along β, we have an
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embedding of algebraic stacks

M[β]
r (Λ−) ↪→Mr(Λ+).

For the moduli stacks of microlocal rank r sheaves with framing data at each com-

ponent, we get a similar embedding.

7.3.1.3. Lagrangian k-handle attachment (k ≥ 3). When k ≥ 3, we need

to choose higher homotopy data to ensure that the monodromy of the complex of

local systems along the attaching sphere Sk−1 × Dn−k+1 ⊂ Λ− can be extended to

Dk × Dn−k+1 ⊂ L. The monodromy along Λ+ is preserved by the functor ΦL and

hence determines the monodromy of F+ along Λ+. Using the quasi-isomorphism

B ' A⊕ F,

the (higher) monodromy data of F determines the (higher) monodromy data of B

in F+.

However, in the special case when F ' kr, there will be no nontrivial higher

homotopy data, and since the attaching sphere is changed from S1 to Sk−1 (k ≥ 3),

we know that any local system is trivial, so any such pure sheaf in ShpΛ−(M) extends

uniquely to a pure sheaf in ShpΛ+
(M).

Suppose the classical moduli stacks of microlocal rank r sheavesMr(Λ±) coincide

with the derived stacks (with fixed framing data at a point). Then for L a Lagrangian
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k-handle cobordism (k ≥ 3), we have an embedding of algebraic stacks

Mr(Λ−) ↪→Mr(Λ+).

For the moduli stacks of microlocal rank r sheaves with framing data at each com-

ponent, we get a similar embedding.

7.3.2. Applications to Legendrian surfaces

In this section we use the computation of the number of microlocal rank 1 sheaves

to prove the results Theorem 7.0.10. We will frequently refer to [157] and [26] for

the theory of Legendrian weaves (which are certain type of Legendrian surfaces) and

their moduli space of microlocal rank 1 sheaves.

First, we recall that the correspondence between the front projection of Legen-

drian weaves and their planar graphs are illustrated in Figure ??. The combinatoric

constructions of Lagrangian handle attachments for Legendrian weaves are illustrated

in Figure 7.8, and proved in [26, Theorem 4.10].

Proof of Theorem 7.0.10. (1) We start from Λg,k. Consider the local picture

near a degree 3 vertex of the graph. Consider a Lagrangian 1-handle cobordism in the

shadowed region (Figure 7.10 left). This will give a cobordism from Λg,k to Λg+1,k.

Then consider a Lagrangian 2-handle cobordism in the shadowed region (Figure 7.10

middle). This gives a cobordism from Λg+1,k to Λg,k. For general Λg,k,Λg′,k′ , the

cobordism can be constructed by concatenation.
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Figure 7.8. The graph on the left is a Lagrangian 1-handle attachment
in Legendrian weaves; in the middle is a Lagrangian 2-handle attach-
ment in Legendrian weaves; on the right is a Legendrian connected
sum cobordism. Λ+ are on the top while Λ− are on the bottom.

Figure 7.9. Taking connected sum with ΛCliff (left) and with ΛUnknot

(right). The cobordisms are from left to right in each picture. The
labelling 0, 1,∞, z is a kP 1 coloring (so that regions sharing a common
edge have different colors), which determines a microlocal rank 1 sheaf.

(2) This is essentially proved by Dimitroglou Rizell [43]. First of all, notice that

Λg,0 admits an exact Lagrangian filling by taking a sequence of Lagrangian 1-handle

cobordisms (Figure 7.11). Next, we claim that for any k ≥ 1, Λg′,k does not admit

exact Lagrangian fillings. Assuming the claim, then clearly there cannot be exact

Lagrangian cobordisms from Λg,0 to Λg′,k.
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Figure 7.10. The cobordism from Λg,k to Λg+1,k to Λg,k (from left to
right). The grey regions are the places where we attach Lagrangian
handles.

Figure 7.11. The Lagrangian filling of the Legendrian surface Λg,0 by
Lagrangian 1-handle cobordisms in all the shadowed regions and finally
fill the unknot on the left by a Lagrangian disk.

We now prove the claim using sheaves. One way is to apply [157, Theorem 1.3].

An alternative approach is the following [26, Theorem 5.12]. In the cases we are

considering here, we know that

M1(Λ) = [Mfr
1 (Λ)/k×].

and hence the flag moduli spaces in [26,157] are identified with the framed moduli

space of sheaves with framing data at a single point. When k ≥ 1, one can consider

locally a triangle in the graph. A microlocal rank 1 sheaf is characterized by a kP 1

colorings of regions (such that any regions sharing a common edge have different
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Figure 7.12. A Lagrangian 2-handle cobordism from ΛS2,loose (right) to
ΛCliff (left).

colors). Without loss of generality, one can assume that outside the triangle, the 3

regions are colored by 0, 1 and ∞ (Figure 7.9). Then the possible choices for colors

in the triangle region are k×\{1}, i.e.

Mfr
1 (Λg′,k) =Mfr

1 (Λg′−1,k−1)× (k×\{1}).

When k = Z/2Z, then there are no available choices and hence there are no microlocal

rank 1 sheaves with Z/2Z-coefficients on Λg′,k. Hence there cannot be any Lagrangian

fillings. The claim is proved.

(3) First we should note that as explained in [26, Example 4.26] there is a

Lagrangian cobordism L0 from ΛCliff to a loose Legendrian 2-sphere ΛS2,loose by

a Lagrangian 2-handle attachment (Figure 7.12), where the fact that ΛS2,loose is

loose follows from [26, Proposition 4.24]. Hence there is a Lagrangian cobordis-

m from Λg,k = Λg−1,k−1#ΛCliff to a genus g − 1 surface Λg−1,k−1#ΛS2,loose, and

Λg−1,k−1#ΛS2,loose is also loose.
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We now apply [66, Theorem 2.2]4. First we need to construct a formal Lagrangian

cobordism, that is, a smooth cobordism ψ : L1 ↪→ R6 from Λg−1,k−1#ΛS2,loose to Λg,k′ ,

and a family of bundle maps Ψs : TL1 → TR6|L1 such that Ψ0 = dψ, Ψs ≡ dψ near

positive and negative ends, and Ψ1 is a Lagrangian bundle map.

Note that Λg,k′ and Λg,k−1 are formally Legendrian isotopic for any k ≥ 1, k′ ≥ 0.

This means that there is a smooth isotopy ψ′t : Λt ↪→ R5, t ∈ I, together with a

family of bundle maps Ψ′s,t, s, t ∈ I, such that Ψ′s,0 = dψ′0, Ψ′s,1 = dψ′1, Ψ′0,t = dψ′t,

and Ψ′1,t are Lagrangian bundle maps into the contact distribution. Given a formal

Legendrian isotopy, we can consider a smooth cobordism L = Λ × I from Λ0 to Λ1

being

ψ : L ↪→ R5 × I, ψ(x, t) = (ψ′t(x), t),

and a family of bundle maps Ψs : TL→ T (R5× I)|L such that Ψ0 = dψ and Ψ1 is a

Lagrangian bundle map by considering the homotopy such that

Ψs|TΛt = Ψs,t, Ψs|〈∂/∂t〉 = (1− s)dψ(∂/∂t) + s ∂/∂r.

Therefore, we can get a formal Lagrangian concordance from Λg,k−1 to Λg,k′ . By

part (1) we know that there is a genuine Lagrangian cobordism from Λg−1,0 to Λg,k−1.

Thus by concatenation, we will get a formal Lagrangian cobordism (L1, ψ,Ψs) from

Λg−1,k−1#ΛS2,loose to Λg,k′ , and in fact

H1(L1)
∼−→ H1(Λg−1,k−1#ΛS2,loose).

4The author thanks Emmy Murphy for pointing out that the Lagrangian cap construction helps
build cobordisms in this setting.
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Then by [66, Theorem 2.2] there is a Lagrangian cobordism L1 from Λg−1,k−1#ΛS2,loose

to Λg,k′ such that

H1(L1)
∼−→ H1(Λg−1,k−1#ΛS2,loose) = k2g−2.

Taking the concatenation of L0 and L1, we will get a Lagrangian cobordism such

that

dim coker(H1(L0 ∪ L1)→ H1(Λg,k)) = 2.

(4) We show that there cannot be Lagrangian cobordisms L with vanishing

Maslov class from Λg,k to Λg,k′ for k < k′ such that H1(L) � H1(Λg,k). Indeed

consider a degree 3 vertex in the graph of Λg−1,k−1. Taking connected sum with ΛCliff

and ΛUnknot will give Λg,k and Λg,k−1. As explained in Part (2), a microlocal rank 1

sheaf is characterized by the number kP 1 colorings of the graph (Figure 7.9). The

possible choices for colors in the triangle region are k×\{1},

Mfr
1 (Λg,k) =Mfr

1 (Λg−1,k−1)× (k×\{1}).

On the other hand, for Λg,k−1, assume the upper half region and lower half region are

colored 0,∞ (Figure 7.9). Then the possible choices for colors in the bi-gon region

are k×, i.e.

Mfr
1 (Λg,k−1) =Mfr

1 (Λg−1,k−1)× k×.

In particular, |Mfr
1 (Λg,k)(Fq)| < |Mfr

1 (Λg,k−1)(Fq)|, and by induction |Mfr
1 (Λg,k′)(Fq)| <

|Mfr
1 (Λg,k)(Fq)|.
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When H1(L)� H1(Λg,k) is surjective, in the fiber product

Mfr
1 (Λg,k−1)×H1(Λg,k;k×) H

1(L;k×)
r̂
//

��

Mfr
1 (Λg,k)

P
��

H1(L; k×)
r

// H1(Λg,k;k×),

the horizontal map r at the bottom is a projection map, and hence so is r̂ (in fact the

vertical map on the right P is called the period map in [157, Section 4.7]). Therefore

|(Mfr
1 (Λg,k)×H1(Λg,k;k×) H

1(L;k×))(Fq)| ≥ |Mfr
1 (Λg,k)(Fq)| > |Mfr

1 (Λg,k′)(Fq)|.

However, a fully faithful Lagrangian cobordism functor ΦL should induce an embed-

ding

Mfr
1 (Λg,k)×H1(Λg,k;k×) H

1(L;k×) ↪→Mfr
1 (Λg,k′).

That is a contradiction. �

Remark 7.3.4. For the Lagrangian cobordism from Λg,k to Λg+1,k and to Λg,k,

one can see (in Figure 7.10) that the ascending manifold of Lagrangian 1-handle

and the descending manifold of the Lagrangian 2-handle have geometric intersection

number 1. Since these Lagrangians are regular [62], one can cancel the pair of critical

points so that the Lagrangian is Hamiltonian isotopic to a cylinder.
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7.4. Lagrangian Cobordism Functor as Correspondence

When Λ± ⊂ T ∗,∞τ>0 (M × R), we have obtained two approaches of constructing

Lagrangian cobordism functors. One is by composing the (conditional) sheaf quan-

tization functor on L̃ with the restriction functor to the positive end explained in

Section 4.4

ShΛ−(M × R)0 ×µShΛ−
µShL

ΨL−−→ ShL̃(M × R× R>0)0

i−1
+−−→ ShΛ+(M × R)0.

The other is given by the functorial specialization functor of Nadler-Shende [124]

ShΛ−(M × R)×µShΛ−
µShL

ΦL−→ ShΛ+(M × R).

In this section, we prove Theorem 7.0.9, which will imply that they are identical.

Indeed, since by Theorem 4.0.9, ΨL is the right inverse of (i−1
− ,mL̃) the fiber product

of restriction to the negative end and microlocalization along the cobordism, once

we prove that ΦL ◦ (i−1
− ,mL̃) = i−1

+ , this will indicate that

i−1
+ ◦ΨL = ΦL ◦ (i−1

− ,mL̃) ◦ΨL = ΦL.

7.4.1. Construction of a suspension Lagrangian cobordism

We note that in the statement of Theorem 7.0.9, the Lagrangian cobordism functor

of Nadler-Shende is defined by attaching to the negative end the Lagrangian L along

the radius (vertical) direction, while the conical Lagrangian cobordism is defined by

connecting by the Legendrian L̃ along the base (horizontal) direction. In order to
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investigate the relation between the two pictures we have to consider both directions

(and connect them in a geometric way).

Our goal in this section is thus to define a suspension exact Lagrangian cobordism

ΣL ⊂ T ∗(M × (1,+∞)× R>0) that is diffeomorphic to L× R, such that

(1) the symplectic reduction of the suspension to ΣLs− ⊂ T ∗(M ×R>0)×{s−}

is the exact Lagrangian cobordism L;

(2) the symplectic reduction of the suspension to ΣLs+ ⊂ T ∗(M ×R>0)×{s+}

is the trivial Lagrangian cobordism Λ+ × R>0;

(3) the suspension ΣL ⊂ T ∗(M × (1,+∞)×R>0) is an exact Lagrangian cobor-

dism between the Legendrian lifts from L̃ to Λ+ × (1,+∞).

Here we view the Lagrangian cobordisms L and Λ+ × (1,+∞) as in a subdomain in

the the symplectization J1(M) × (1,+∞) ∼= T ∗(M × (1,+∞)). This will simplify

some of the formulas in the discussion.

First, consider the trivial exact Lagrangian cobordism L̃ × R>0 ⊂ T ∗(M ×

(1,+∞)× R>0) of the Legendrian lift L̃ ⊂ J1(M × (1,+∞)), i.e.

L̃× R>0 =
{

(x, s, r; srξ, rt, st+ w)|(x, s; sξ, t; st+ w) ∈ L̃
}
.

Then, a natural approach is to define a diffeomorphism

φ : (1,+∞)× R>0
∼−→ (1,+∞)× R>0
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Figure 7.13. The diffeomorphism φ on a subdomain of (1,+∞) ×
(0,+∞). The grey region represents where the Lagrangian cobordism
L ⊂ T ∗(M × (1,+∞)) is not cylindrical. The pink regions are where
Condition (1) & (2) are satisfied. The two blue lines are the preimage
of φ−1({s} × (0,+∞)) for s < s− and s > s+. The two yellow regions
are the regions in φ−1((1, s−) × (0,+∞)) that are not controlled by
Condition (3).

that sends the negative end (1,+∞)× {0} to (1,+∞)× {0}, sends the positive end

(1,+∞)× {+∞} to {1} ×R>0, sends {1} ×R>0 to {(1, 0)} and sends {+∞}×R>0

to {+∞}× R>0 ∪ R>0 × {+∞}, which will extend to an exact symplectomorphism

ϕ : T ∗(M × (1,+∞)× R>0)
∼−→ T ∗(M × (1,+∞)× R>0).

However, there is some technical difficulties to define the suspension cobordism using

the diffeomorphism defined globally on (1,+∞)×R>0, and instead we will consider

only a certain subdomain.

Fix s− > 1 and r− > 0 sufficiently small, and respectively s+ > 1 and r+ > 0

sufficiently large. Suppose the Lagrangian cobordism L is conical outside T ∗(M ×
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(s−, s+)). Consider the diffeomorphism from a subdomain on the plane to the plane

φ : (1,+∞)× R>0 \ (1, s+]× [r+,+∞)→ (1,+∞)× R>0 that satisfies the following

conditions:

(1) φ(s, r) = (s, r) for s > 1 and r < r− sufficiently small;

(2) φ(s, r) = (s−1
+ s, s+r) for s > s+ and r > r+ sufficiently large;

(3) φ(s, r) = (s, r) for 1 < s < s− sufficiently small and r < s−1
− r+, φ(s, r) =

(r+r
−1, s−1

− r+s) for s− < s < s+ and s−1
− r+ < r < r+.

See Figure 7.13. This induces a symplectomorphism (partially defined on the sub-

domain)

ϕ : T ∗
(
M × ((1,+∞)× R>0 \ (1, s+]× [r+,+∞))

) ∼−→ T ∗
(
M × (1,+∞)× R>0

)
.

Using the (partially defined) symplectomorphism, we define the suspension Lagrangian

cobordism as follows.

Definition 7.4.1. Let L ⊂ T ∗(M × (1,+∞)) be an exact Lagrangian cobordism

between Legendrians. Then the suspension Lagrangian ΣL is the exact Lagrangian

submanifold ϕ(L̃× R>0) ⊂ T ∗(M × (1,+∞)× R>0).

Remark 7.4.1. We explain the reason why the construction is more complicated

than one may imagine. In fact, the Lagrangian L̃ × R>0 is conical with respect to

the r-direction. In particular, the Liouville flow along the r-direction determines the

positive/convex end (1,+∞)×(r+,+∞) and negative/concave end (1,+∞)×(0, r−).
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Then we need to deform (1,+∞) × R>0 in a way so that the Liouville flow

changes and the new positive/convex end becomes (s+,+∞)×(r+,+∞) while the neg-

ative/concave end stays the same. Moreover, after the deformation the Lagrangian

L̃ × R>0 should stay conical with respect to the r-direction, in order for it to be a

Lagrangian cobordism.

Therefore, it is in fact natural to come up with this complicated diffeomorphism,

where Condition (1) & (2) ensure that the Lagrangian stay conical and the positive

and negative end are exactly what we need. The reason to cut off the top left corner

(1, s+] × [r+,+∞) is to make sure that the conical condition is not violated on the

top left corner after deformation (so that we only need to move (s+,+∞)×(r+,+∞)

horizontally along the s-direction without extra uncontrolled deformation).

This discussion also explains why we do not try to define ΣL as both a cobordism

from bottom to top and a cobordism from left to right, but rather only require that

the behaviour of its symplectic reduction on the left and right slices. It seems that

requiring the Lagrangian ΣL to be tangent to both the horizontal and the vertical

Liouville flow would make it too difficult to construct.

Consider the suspension Lagrangian ΣL and its positive/negative ends with

respect to the R>0 direction. Suppose L̃ × R>0 ∩ T ∗(M × (1,∞) × (0, r−)) =

{(x, s, r; srξ, rt, st+w)|(x, s; sξ, t; st+w) ∈ L̃}. With the assumption that φ(s, r) =

(s, r) for r < r− (which is the bottom pink region in Figure 7.13), we know that the
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induced symplectomorphism on this region is the identity,

ΣL ∩ T ∗(M × (1,∞)× (0, r−)) =
{

(x, s, r; srξ, rt, st+ w)|(x, s; sξ, t; st+ w) ∈ L̃
}
.

With the assumption that φ(s, r) = (s−1
+ s, s+r) for s > s+ and r > r+ (which is the

top pink region in Figure 7.13), we know that the induced symplectomorphism sends

(x, s, r; ξ, σ, ρ) to (x, s−1
+ s, s+r; ξ, s+σ, s

−1
+ ρ), which, after coordinate changes, implies

that

ΣL ∩ T ∗(M × (1,∞)× (s+r+,∞)) =
{

(x, s, r; srξ, rt, st)
∣∣(x, ξ, t) ∈ Λ+

}
.

Hence we can conclude the following lemma:

Lemma 7.4.1. Let L ⊂ T ∗(M × R>0) be a conical Legendrian cobordism from

Λ− to Λ+. Then ΣL ⊂ T ∗(M× (1,∞)×R>0) is an exact Lagrangian cobordism from

the Legendrian lift L̃ to the trivial Legendrian cone Λ+ × (1,∞).

Then consider the symplectic reduction of ΣL along the hypersurface T ∗M ×

T ∗s (1,+∞)× T ∗R>0, i.e.

ΣLs = πs(ΣL ∩ T ∗M × T ∗s (1,+∞)× T ∗R>0) ⊂ T ∗M × T ∗R>0

(which are the blue lines in Figure 7.13).

First, consider the slice T ∗M × {s} × T ∗R>0 for 1 < s < s− sufficiently small.

On T ∗M × {s} × T ∗(0, s−1
− r+), we know that the symplectomorphism is induced by
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φ(s, r) = (s, r), so

ΣLs ∩ T ∗M × T ∗(0, s−1
− r+) = Λ− × (0, s−1

− r+);

on T ∗M ×{s}×T ∗(s+r+,+∞), we know that the symplectomorphism is induced by

φ(s, r) = (s−1
+ s, s+r), so since the first coordinate s−1

+ s is fixed

ΣLs ∩ T ∗M × T ∗(s+r+,+∞) = Λ+ × (s+r+,+∞);

on T ∗M×{s}×T ∗(s−r+, s
−1
− s+r+), we know that the symplectomorphism is induced

by φ(s, r) = (r+r
−1, r+s), so since the first coordinate r+r

−1 is fixed

ΣLs ∩ T ∗M × T ∗(s−r+, s
−1
− s+r+) = L ∩ T ∗(M × (s−r+, s

−1
− s+r+)).

Finally, consider ΣLs ∩ T ∗M × T ∗(s−1
− r+, s−r+) (which is the left/bottom yellow

region in Figure 7.13). Suppose that γ1(θ) = φ−1(s, θ). Consider the isotopy from

the curve γ1 to the line segment γ0 connecting (s, s−1
− r+) and (s−, s

−1r−1
+ ). We use

the following lemma (see for example [114, Section 3.3]):

Lemma 7.4.2. Let X be an exact symplectic manifold. Let Cu, 0 ≤ u ≤ 1

be a smooth family of coisotropic submanifolds in X and Fu = ker(ωX |TCu) be the

characteristic foliation on TCu. Then there is a family of exact symplectomorphisms

ϕu : C0/F0
∼−→ Cu/Fu.
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Moreover, let L ⊂ X be an exact Lagrangian. Suppose that L t Cu for any 0 ≤ u ≤ 1.

Let Lu = πu(L ∩ Cu) ⊂ Cu/Fu be the symplectic reduction. Then

ϕu(L0) = Lu.

Proof. Using the isotopy extension theorem, there is a family of exact symplecto-

morphisms ϕu : X → X such that ϕu(C0) = Cu. Properties of symplectomorphisms

then ensure that it preserves characteristic foliations ϕu(F0) = Fu. Then we obtain

the first part of the claim.

For the second part of the claim, note that L t ϕu(C0) if and only if ϕ−1
u (L) t C0.

Since

L ∩ ϕu(C0) = ϕu(ϕ
−1
u (L) ∩ C0),

we can conclude that π0(ϕ−1
u (L) ∩ C0) are exact Lagrangian isotopic and thus are

Hamiltonian isotopic. �

Since L̃ × R>0 ∩ T ∗(M × (1, s−) × (s−1
− r+, r+)) is the trivial suspension of the

Legendrian cone Λ− × (1, s−)× (s−1
− r+, r+), where

Λ− × (1,+∞)× R>0 = {(x, s, r; srξ, rt, st)|(x, ξ, t) ∈ Λ−}.

Thus L̃ × R>0 t T ∗M × T ∗γu((1, s−) × (s−1
− r+, r+)) for any 0 ≤ u ≤ 1. Using

Lemma 7.4.2, we know that the symplectic reduction of L̃ × R>0 along T ∗M ×

T ∗γ1
((1, s−) × (s−1

− r+, s−r+)), is Hamiltonian isotopic to the reduction along T ∗M ×

T ∗γ0
((1, s−) × (s−1

− r+, s−r+)). We can easily tell that the symplectic reduction along
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T ∗M × T ∗γ0
((1, s−)× (s−1

− r+, s−r+)) is the trivial Legendrian cone, i.e.

ΣLs ∩ T ∗M × T ∗(s−1
− r+, s−r+) ∼= Λ− × (s−1

− r+, s−r+).

Similarly, we consider ΣLs ∩ T ∗M × T ∗(s−1
− s+r+, s+r+) (which is the right/top

yellow region in Figure 7.13). Let γ1(θ) = φ−1(s, θ). We can connect γ1 to the

line segment γ0. Since L̃× R>0 ∩ T ∗(M × (s−1
− s+, s−s+)× (s−1

− r+, r+)) is the trivial

suspension of the Legendrian cone Λ+ × (s−1
− s+, s−s+) × (s−1

− r+, r+), we can apply

Lemma 7.4.2 again. Therefore, we can conclude the following lemma:

Lemma 7.4.3. Let L ⊂ T ∗(M × (1,+∞)) be an exact Lagrangian cobordism

from Λ− to Λ+. Then for 1 < s < s− sufficiently small, the symplectic reduction

ΣLs ⊂ T ∗(M × {s} × R>0) is Hamiltonian isotopic to the Lagrangian cobordism

L ⊂ T ∗(M × R>0) under a compactly supported Hamiltonian isotopy.

Then, consider the slice T ∗M × {s} × T ∗R>0 for s > s+ sufficiently large. Let

γ1(θ) = φ−1(s, θ). Since L̃×R>0∩T ∗(M × (s+,+∞)×R>0) is the trivial suspension

of the Legendrian cone Λ+ × (s+,+∞) × R>0, we can apply Lemma 7.4.2 for the

deformation induced by the isotopy from γ1 to the line segment γ0. We can easily

tell that the symplectic reduction along T ∗M×T ∗γ0
((s+,+∞)×(r−, r+)) is the trivial

Legendrian cone, i.e.

ΣLs ∩ T ∗(M × (r−, r+)) ∼= Λ+ × (r−, r+).

Therefore, we can conclude the following lemma:
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Lemma 7.4.4. Let L ⊂ T ∗(M × (1,+∞)) be an exact Lagrangian cobordism

from Λ− to Λ+. Then for s > s+ sufficiently large, the symplectic reduction ΣLs ⊂

T ∗(M×{s}×R>0) is Hamiltonian isotopic to the trivial Lagrangian cobordism Λ+×

R>0 ⊂ T ∗(M × R>0) under a compactly supported Hamiltonian isotopy.

7.4.2. Comparison between the two constructions

Given the suspension exact Lagrangian cobordism ΣL ⊂ T ∗(M × (1,+∞) × R>0)

from L̃ to Λ+ ×R>0, we will prove the following commutative diagram of sheaves of

categories

µShM∪(Λ−×R>0) ×µShΛ−
µShL

ΦL

��

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

ΦΣL

��

j̃−1
−
oo

j̃−1
+
// µShM∪(Λ+×R>0)

ΦΛ+×R>0

��

µShM∪(Λ+×R>0) µSh(M×R>0)∪(Λ+×R2
>0)

j−1
−

oo
j−1
+

// µShM∪(Λ+×R>0),

where ΦΛ+×R>0 ' id, and j−1
− and j−1

+ are (obvious) equivalences with composition

being the identity. Hence the diagram simplifies to

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

j̃−1
−
//

j̃−1
+

++

µShM∪(Λ−×R>0) ×µShΛ−
µShL

ΦL
��

µShM∪(Λ+×R>0).
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Using the fact that the cobordism L̃ to Λ+ × R>0 diffeomorphic to L × R and the

negative end is equal to L̃, we have a canonical identification of categories

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL ' µSh(M×R>0)∪(L̃×R>0).

Therefore, we will show that j̃−1
− ' (i−1

− ,mL̃) and j̃−1
+ ' i−1

+ , and hence complete the

proof of Theorem 7.0.9.

Lemma 7.4.5. Let L be an exact Lagrangian cobordism from Λ− to Λ+ and ΣL

the suspension exact Lagrangian cobordism. There is a commutative diagram

µShM∪(Λ−×R>0) ×µShΛ−
µShL

ΦL

��

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

ΦΣL

��

j̃−1
−
oo

j̃−1
+
// µShM∪(Λ+×R>0)

ΦΛ+×R>0

��

µShM∪(Λ+×R>0) µSh(M×R>0)∪(Λ+×R2
>0)

j−1
−

oo
j−1
+

// µShM∪(Λ+×R>0),

Proof. Recall from Section 7.1.1 the construction of the Lagrangian cobordism

functor. Fix a contact embedding T ∗(M × R>0) ↪→ T ∗,∞N . Write

N × {0} i−→ N × [0, 1]
j←− N(0, 1]

and let φζZ , 0 < ζ ≤ 1 is the contact Hamiltonian flow that lifts the Liouville flow on

T ∗(M × R). For F ∈ µShM∪(Λ×R>0) ×µShΛ
µShL, the image under the Lagrangian

cobordism functor ΦL is defined by

ΦL(F )dbl = i−1j∗(ΨZ(F )dbl),
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Then consider F ∈ µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL. Write

N × R>0 × {0}
i−→ N × R>0 × [0, 1]

j←− N × R>0 × (0, 1]

and let φζ
Z̄
, 0 < ζ ≤ 1 is the contact Hamiltonian flow that lifts the pull back Liouville

flow on T ∗(M × R× R>0). We apply Proposition 7.1.5 and Remark 3.3.3 and get

ΦL(j̃−1
− F )dbl = i−1j∗

(
ΨZ(j̃−1

− F )dbl

)
= i−1j∗

(
j̃−1
− ΨZ(F )dbl

)
= i−1j̃−1

− j∗
(
ΨZ(F )dbl

)
= j−1

− i
−1
j∗
(
ΨZ(F )dbl

)
= j−1

− ΦΣL(F )dbl.

This prove the commutativity for the square on the left. Using the same argument,

we have commutativity for the square on the right. �

In the next lemma, we explain why there is an identification j̃−1
+ ' i−1

+ .

Lemma 7.4.6. Let L be an exact Lagrangian cobordism from Λ− to Λ+ and ΣL

the suspension exact Lagrangian cobordism. There is a commutative diagram

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

j̃−1
+

++

∼

��

µShM∪(Λ+×R>0).

µSh(M×R>0)∪(L̃×R>0)

i−1
+

33
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Proof. Using the property that the symplectic reduction ΣLs ∼= Λ+×R>0, there

is a commutative diagram

µSh(M×R>0)∪(L̃×R>0)

i−1
+

��

// µShL

i−1
+

��

µShΣL
oo

i−1
+

��

µShM∪(Λ+×R>0)
// µShΛ+ µShΛ+×R>0

oo

The restriction j̃−1
+ is the restriction functor on the homotopy pull back which com-

mutes with the above diagram

j̃−1
+ : µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL → µShM∪(Λ+×R>0) ×µShΛ+

µShΛ+×R>0 .

However, since ΣL is diffeomorphic to L × R, the restriction is an equivalence

µShΣL
∼−→ µShL. Thus there are equivalences of the homotopy pull back given

by natural restriction functors

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

∼
//

j̃−1
+

��

µSh(M×R>0)∪(L̃×R>0)

i−1
+

��

µShM∪(Λ+×R>0) ×µShΛ+
µShΛ+×R>0

∼
// µShM∪(Λ+×R>0).

Therefore, the diagram in the statement commutes by the commutativity of the

restriction functors. �

In the final lemma, we explain why there is an identification between j̃−1
− and

(i−1
− ,mL̃).
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Lemma 7.4.7. Let L be an exact Lagrangian cobordism from Λ− to Λ+ and ΣL

the suspension exact Lagrangian cobordism. There is a commutative diagram

µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL

j̃−1
−

,,

∼
��

µShM∪(Λ−×R>0) ×µShΛ−
µShL.

µSh(M×R>0)∪(L̃×R>0)
(i−1
− ,m

L̃
)

22

Proof. Using the property that the symplectic reduction ΣLs ∼= L, there is a

commutative diagram

µSh(M×R>0)∪(L̃×R>0)

i−1
−
��

m
L̃

// µShL

i−1
−
��

µShΣL
oo

i−1
−
��

µShM∪(Λ−×R>0)
// µShΛ− µShLoo

The restriction j̃−1
− is the restriction functor on the homotopy pull back which com-

mutes with the above diagram

j̃−1
− : µSh(M×R>0)∪(L̃×R>0) ×µShL µShΣL → µShM∪(Λ−×R>0) ×µShΛ−

µShL.

However, since ΣL is diffeomorphic to L × R, the restriction is an equivalence

µShΣL
∼−→ µShL, and the composition determined by the trivial cobordism is the

identity µShL
∼←− µShΣL → µShL. Therefore, the composition is the microlocaliza-

tion mL̃

µSh(M×R>0)∪(L̃×R>0)

m
L̃−−→ µShL

∼←− µShΣL → µShL.
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Therefore, the diagram in the statement commutes by the equivalence of the homo-

topy pull back

µSh(M×R>0)∪(L̃×R>0)

∼−→ ×µShLµShΣL

given by natural restriction functor and commutativity of all the restriction functors.

�

Combining Lemma 7.4.5, 7.4.6 and 7.4.7, we can conclude Theorem 7.0.9, which,

by the discussion at the beginning of this section, implies that the Lagrangian cobor-

dism functor obtained by the specialization functor over Lagrangian skeleta in Section

7.2, and the functor obtained by the conditional sheaf quantization functor on the

Legendrian cobordism in Section 4.4 agree with each other.
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[80] Emmanuel Giroux, Géométrie de contact: de la dimension trois vers les dimensions

supérieures, arXiv preprint math (2003).
[81] , Ideal Liouville domains-a cool gadget, arXiv preprint arXiv:1708.08855 (2017).
[82] Emmanuel Giroux and John Pardon, Existence of Lefschetz fibrations on Stein and Weinstein

domains, Geometry & Topology 21 (2017), no. 2, 963–997.
[83] Mikhael Gromov, Pseudo holomorphic curves in symplectic manifolds, Inventiones mathemat-

icae 82 (1985), no. 2, 307–347.
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