
NORTHWESTERN UNIVERSITY

Second-Order Methods for Stochastic and Nonsmooth Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Nitish Shirish Keskar

EVANSTON, ILLINOIS

June 2017

2

c© Copyright by Nitish Shirish Keskar 2017

All Rights Reserved

3

ABSTRACT

Second-Order Methods for Stochastic and Nonsmooth Optimization

Nitish Shirish Keskar

The goal of this thesis is to design practical algorithms for nonlinear optimization in the

case when the objective function is stochastic or nonsmooth. The thesis is divided into

three chapters. Chapter 1 describes an active-set method for the minimization of an

objective function that is structurally nonsmooth, viz., it is the sum of a smooth convex

function and an `1-regularization term. Problems of this nature primarily arise, e.g., in

machine learning, when sparse solutions are desired. A distinctive feature of the method

is the way in which active-set identification and second-order subspace minimization

steps are integrated to combine the predictive power of the two approaches. At every

iteration, the algorithm selects a candidate set of free and fixed variables, performs an

(inexact) subspace phase, and then assesses the quality of the new active set. If it is not

judged to be acceptable, then the set of free variables is restricted and a new active-set

prediction is made. We establish global convergence for our approach, and compare an

implementation of the new method against state-of-the-art numerical codes to demonstrate

its competitiveness.

4

Chapter 2 outlines an algorithm for minimizing a continuous function that may be

nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that

uses the L-BFGS quasi-Newton approximation of the problem’s curvature together with

a variant of a weak Wolfe line search. The key ingredient of the method is an active-set

selection strategy that defines the subspace in which search directions are computed. To

overcome the inherent shortsightedness of the gradient for a nonsmooth function, we

propose two strategies. The first relies on an approximation of the ε-minimum norm

subgradient, and the second uses an iterative corrective loop that augments the active set

based on the resulting search directions. We describe a Python implementation of the

proposed algorithm and present numerical results on a set of standard test problems to

illustrate the efficacy of our approach.

Chapter 3 investigates the gap in statistical generalization performance between large-

and small-batch methods in the task of training state-of-the-art deep neural network

models. The stochastic gradient descent (SGD) method and its variants are algorithms

of choice for many Deep Learning tasks. These methods operate in a small-batch regime

wherein a fraction of the training data, say 32–512 data points, is sampled to compute an

approximation to the gradient. It has been observed in practice that when using a larger

batch there is a degradation in the quality of the model, as measured by its ability to

generalize. We investigate the cause for this generalization drop in the large-batch regime

and present numerical evidence that supports the view that large-batch methods tend to

converge to sharp minimizers of the training and testing functions — and as is well known,

sharp minima lead to poorer generalization. In contrast, small-batch methods consistently

converge to flat minimizers, and our experiments support a commonly held view that this

5

is due to the inherent noise in the gradient estimation. We also discuss several strategies

to attempt to help large-batch methods eliminate this generalization gap.

6

Acknowledgements

Before anyone else, I have to express my sincerest gratitude to Prof. Andreas Waechter

and Prof. Jorge Nocedal for their guidance throughout my PhD. I consider myself lucky to

have not just one but two excellent advisors who, in their almost orthogonal approaches,

helped me grow as a researcher. With Andreas focus on specificity and precision, and

Jorges emphasis on broad, albeit unstructured, ideas, I truly got the best of both worlds.

Eventually, I might forget the update rule for BFGS (unlikely) but I dont foresee forgetting

the essential skills of research, communication, and learning you taught me. I would

also like to thank Prof. Frank Curtis and Prof. Ermin Wei for serving as my thesis and

prospectus committee members. I learnt a great deal from our interactions! Ive had the

good fortune of learning from, and assisting, some excellent teachers at Northwestern

for which I am greatly thankful for. Over the course of my PhD, Ive also had the

privilege of collaborating with many inspiring researchers from both academia and industry

including Figen Oztoprak, Richard Byrd, George Saon, Mikhail Smelyanskiy, Dheevatsa

Mudigere and Peter Tang. My time at Northwestern wouldnt be same without my group-

mates: Gillian, Travis, Sammy, Stefan, Alvaro, Ben, Francisco, Albert, Vijaya, Samira

and Alejandra. I dont think I could have asked for a more hard-working, good-natured,

supportive, and light-hearted group to spend five years with. Im never going to forget

times spent in the barbeques, trivia quizzes, side projects, gossiping, group meetings and

practical jokes. The years I spent in L375 were some of the best, most productive, and

7

laughter-packed years of my life; Im going to miss them and I hope all the rituals (including

pranks) continue. Id also like to thank my IEMS cohort for getting me through the first

year and the entire IEMS staff for all their help with my, at times incessant, inquiries. Id

be remiss if I didnt give a shoutout to the Bay Area Doges for their help and friendship

whenever I ran off to San Francisco for a break.

Mom, Dad, Manjiri, Nikhil, Anya, my family-in-law and Sharvari, I couldnt have

done this without your support and love, and for that I will always be grateful. Sharvari,

Im especially grateful to you for listening to me complain and rhapsodize through the

innumerable ups-and-downs of my PhD journey.

8

Table of Contents

ABSTRACT 3

Acknowledgements 6

List of Tables 10

List of Figures 12

Chapter 1. Introduction 15

Stochasticity 16

Nonsmoothness 18

Overview 19

Chapter 2. A Second-Order Method for Convex `1-Regularized Optimization with

Active-Set Prediction 21

2.1. Introduction 21

2.2. The Proposed Algorithm 26

2.3. Globalization Strategy 33

2.4. Numerical Experiments 35

2.5. Final Remarks 43

2.6. Convergence Analysis 44

2.7. Reproducible Research 49

9

Chapter 3. A Limited-Memory Quasi-Newton Algorithm for Bound-Constrained

Nonsmooth Optimization 51

3.1. Introduction 51

3.2. Proposed Algorithm 56

3.3. Numerical Experiments 75

Chapter 4. On Large-Batch Training for Deep Learning: Generalization Gap and

Sharp Minima 88

4.1. Introduction 88

4.2. Drawbacks of Large-Batch Methods 91

4.3. Success of Small-Batch Methods 99

4.4. Attempts to Improve LB Methods 101

4.5. Discussion and Conclusion 105

References 111

Appendix A. Network Architecture and Performance Model Details 118

A.1. Architecture of Networks 118

A.2. Performance Model 119

10

List of Tables

2.1 Data sets 36

2.2 Solution Statistics. aCorresponds to number of iterations of the

corrective loop (lines 10–15 of Algorithm 1). We report the 25th, 50th

and 75th quantile (Q25, Q50, and Q75, resp.) and the maximum number

of iterations of the loop. 41

2.3 value of D(∇2f(x0)) as defined in (2.16) 42

3.1 Parameter values used for numerical experiments. 76

3.2 Test problems used in numerical experiments. 78

3.3 Number of outcomes with different termination messages. 86

4.1 Network Configurations 93

4.2 Data Sets 94

4.3 Performance of small-batch (SB) and large-batch (LB) variants of

ADAM on the 6 networks listed in Table 4.1 95

4.4 Sharpness of Minima in Full Space; ε is defined in (4.3). 98

4.5 Sharpness of Minima in Random Subspaces of Dimension 100 98

4.6 Effect of Data Augmentation 102

11

4.7 Effect of Conservative Training 103

12

List of Figures

2.1 Relative error (2.15) in the objective function (vertical axis) versus

CPU time 38

3.1 The contour lines of the objective function in (3.6). The arrows

indicate the gradients of the function. 58

3.2 A comparison of the four variants of the algorithm on the

Myopic_Decoupled problem. 80

3.3 A comparison of the four variants of the algorithm on the

Myopic_Coupled problem. 81

3.4 Dolan-Moré performance profiles comparing the four variants of the

algorithm on 250 test problems for ε = 10−2, 10−4, 10−6 and ε = 10−8. 82

3.5 Average ratio of number of corrections for Variants 3 and 4 for all

problems for ε = 10−4 and n = 100. A ratio of 0 indicates that both

methods did not need any corrections. 83

3.6 Dolan-Moré performance profiles of gradient evaluations for 250 test

problems for ε = 10−2 and ε = 10−4 with n = 100. 84

3.7 Dolan-Moré performance profiles of gradient evaluations for 250 test

problems for ε = 10−2 and ε = 10−4 with n = 1000. 84

13

3.8 Dolan-Moré performance profiles of gradient evaluations for 250 test

problems for ε = 10−2 and ε = 10−4 with n = 10000. 85

4.1 A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates

value of the loss function and the X-axis the variables (parameters) 93

4.2 Training and testing accuracy for SB and LB methods as a function of

epochs. 95

4.8 Illustration of Robust Optimization 104

4.3 Parametric Plots – Linear (Left vertical axis corresponds to cross-

entropy loss, f , and right vertical axis corresponds to classification

accuracy; solid line indicates training data set and dashed line indicated

testing data set); α = 0 corresponds to the SB minimizer and α = 1 to

the LB minimizer. 107

4.4 Parametric Plots – Curvilinear (Left vertical axis corresponds to

cross-entropy loss, f , and right vertical axis corresponds to classification

accuracy; solid line indicates training data set and dashed line indicated

testing data set); α = 0 corresponds to the SB minimizer while α = 1

corresponds to the LB minimizer 108

4.5 Testing Accuracy and Sharpness v/s Batch Size. The X-axis

corresponds to the batch size used for training the network for 100

epochs, left Y-axis corresponds to the testing accuracy at the final

iterate and right Y-axis corresponds to the sharpness of that iterate.

We report sharpness for two values of ε: 10−3 and 5 · 10−4. 109

14

4.6 Warm-starting experiments. The upper figures report the testing

accuracy of the SB method (blue line) and the testing accuracy of the

warm started (piggybacked) LB method (red line), as a function of

the number of epochs of the SB method. The lower figures plot the

sharpness measure (4.4) for the solutions obtained by the piggybacked

LB method v/s the number of warm-starting epochs of the SB method.

109

4.7 Sharpness v/s Cross Entropy Loss for SB and LB methods. 110

15

CHAPTER 1

Introduction

Many problems from fields such as machine learning, statistics, and control can be

solved using techniques from Nonlinear Optimization. Generally, these problems can be

written as

min
w∈C

f(w)(1.1)

where f is the objective being minimized, w is the design variable and C is a constraint

set that could be simple (such as points satisfying bounds or non-negativity) or more

complex. In this thesis, we consider the problem of solving (1.1) in contexts when f

is either nonsmooth or stochastic. Specifically, we consider the optimization problems

arising in large-scale stochastic non-convex optimization, e.g., in deep learning, and of

unconstrained structured and bound-constrained unstructured nonsmooth optimization.

In order to achieve optimum performance, the underlying structure of the function must

be exploited by the optimization algorithm. We briefly motivate our investigation, and

conclude this chapter by discussing the organization of this thesis.

16

Stochasticity

A generic formulation of unconstrained stochastic optimization problems can be written

as (1.1) with

f(w) = Eξ[G(w, ξ)],(1.2)

where E denotes an expectation and G is any function with dependence on the design

variable w and a random vector ξ (Homem-de Mello and Bayraksan, 2014). In this

thesis, we consider stochastic optimization problems that arise in the context of supervised

machine learning. The goal is to learn a model φw that, given a data point x ∈ Rn, predicts

a label y ∈ R. The subscript w indicates dependence of the model φ to a set of parameters

w ∈ Rd. This dependence could lead to a convex φw as in the case of logistic regression or

least-squares regression, or non-convex as in the case of deep learning. Supervised learning

problems of this kind form an important pillar of machine learning and arise in Speech

Recognition, Computer Vision, and Natural Language Processing (Bengio et al., 2016). In

order to learn the model φw, the first step often involves the design of a loss function l that

captures the difference between the true label and the label predicted by the model φw.

Popular choices for the loss include quadratic functions for regression and the cross-entropy

function for classification. The process of training (or learning) the model φw is equivalent

to solving the following optimization problem.

min
w

E(x,y)∼D [l(φw(x), y)] .(1.3)

17

Note that the data (x, y) is considered to be random and takes on the role of ξ as in

the generic formulation (1.2). However, the distribution D from which the data (x, y) is

generated is rarely known. Instead, all that is available is a set of m data points (xi, yi)

for i = {1, 2, · · · ,m}. We can then replace problem (1.3) by its finite-sample (also called

the sample average) approximation

min
w

1

m

m∑
i=1

fi(w),(1.4)

where fi(w) = [l(φw(xi), yi)].

In most state-of-the-art machine learning models that we consider, all of {m,n, d} are

large. In this case, the computational cost of popular classical optimization algorithms

such as gradient descent, BFGS or Newton’s method (Nocedal and Wright, 2006) are

prohibitive, and stochastic algorithms such as stochastic gradient descent (SGD), are

often effective (Bottou et al., 2016). Denoting the kth iterate as wk, the step size at that

iteration as αk, and the gradient of f at wk by ∇f(wk), gradient descent would update

iterates using the rule

wk+1 = wk −
αk
m

m∑
i=1

∇fi(wk)

In contrast, (mini-batch) SGD would take steps of the form

wk+1 = wk −
αk
|Bk|

∑
i∈Bk

∇fi(wk)(1.5)

where the batch Bk ⊆ {1, 2, · · · ,m} and typically contains only 32–512 data points which

are chosen at random for each k. SGD, and its variants like Adam (Kingma and Ba, 2015)

18

and Adagrad (Duchi et al., 2011), have been used for achieving state-of-the-art results

on several machine learning problems (Bengio et al., 2016). However, many questions

regarding the scalability and convergence of these algorithms remain to be adequately

answered.

Nonsmoothness

Consider the general problem (1.1) without any constraints. When f is twice continu-

ously differentiable (i.e., C2-smoothness), first- and second-order methods can be employed

for optimizing f . First-order methods include gradient descent and its variants while

second-order methods include algorithms of the quasi-Newton and Newton families. Under

assumptions of C2-smoothness and the presence of a globalization mechanism such as a line

search, such algorithms are globally convergent and achieve a rapid local convergence rate

(Nocedal and Wright, 2006). However, if the function is non-differentiable, these algorithms

are typically not applicable, and even if they are, they will often fail. The problem could be

further exacerbated if (1.1) also contains constraints. Such non-differentiable optimization

problems are common in various fields including statistics, machine learning, economics

and mechanical engineering (Bagirov et al., 2014). The nonsmoothness is either structured,

where the manifold on which the function is nonsmooth is explicitly known a-priori, or

unstructured, where no such identifying characteristics are known a-priori. When the

nonsmoothness is structured, it may be possible to exploit this structure when designing

algorithms. For instance, problems of the form minx(f(x) + g(x)) with a smooth and

convex function f , and nonsmooth and convex function g can be solved effectively if the

proximal operator for g is easily computable (Boyd and Vandenberghe, 2004). Problems

19

of this kind arise in statistics and machine learning where sparse (or more generally,

structured) solutions are desired (Friedman et al., 2001). However, the structure of the

nonsmoothness may not always be known and thus, general-purpose algorithms are needed.

Overview

In this thesis, we investigate second-order algorithms for solving problems when the

objective function f may be nonsmooth or stochastic. The thesis is divided into three

chapters. In the first chapter, we discuss an algorithm for solving a problem with structured

nonsmoothness, viz., an objective function composed of a smooth convex function and an

`1-norm penalty term. These problems are common when sparse solutions are desired for

machine learning models such as logistic regression or least-squares regression (Friedman

et al., 2001). A distinctive feature of the proposed algorithm is the interweaving of

the step computation and active-set prediction mechanisms. At every iteration, the

algorithm selects a candidate active set and revises the selection recursively until it is

deemed acceptable. We prove that the algorithm possesses global convergence guarantees

and numerically demonstrate its efficacy. The second chapter deals with the problem of

unstructured nonsmoothness. We propose an algorithm for solving (1.1) in the presence

of bound constraints, under mild assumptions on f . Specifically, we assume that f is

continuous on its domain and is differentiable at every trial point, but place no assumptions

on the convexity of f . We propose an algorithm that uses the L-BFGS quasi-Newton

approximation of the problem’s Hessian together with a variant of a weak Wolfe line

search. To overcome the inherent shortsightedness of negative gradient steps for nonsmooth

functions, we propose two strategies. The first relies on an approximation of the ε-minimum

20

norm subgradient, and the second uses an iterative corrective loop that augments the

active set based on the resulting search directions. We describe our Python implementation

and demonstrate the efficacy of our approach through numerical experiments on standard

test problems. Finally, in Chapter 3, we investigate the gap in generalization performance

between large- and small-batch methods in the task of training state-of-the-art deep

neural network models. Larger batch sizes provide more parallelism opportunities since

the gradient computation can be effectively distributed. However, it has been observed

in practice that when using a larger batch, there is a degradation in the quality of the

model, as measured by its ability to generalize. In this context, generalization implies

the performance of the trained model on unseen data. We investigate the cause for this

generalization drop and present numerical evidence that supports the view that large-batch

methods tend to converge to sharp minimizers of the training and testing functions —

and as is empirically observed, sharp minima lead to poorer generalization. In contrast,

small-batch methods consistently converge to flat minimizers, and our experiments support

a commonly held view that this is due to the inherent noise in the gradient estimation.

We also discuss several strategies to attempt to help large-batch methods eliminate this

generalization gap.

In the chapters to follow, we describe three projects in detail. Each chapter represents

a separate publication and is self-contained. We introduce the required notation at the

beginning of each chapter and also include hyperlinks to the code needed to reproduce our

numerical experiments.

21

CHAPTER 2

A Second-Order Method for Convex `1-Regularized

Optimization with Active-Set Prediction

2.1. Introduction

The problem of minimizing an objective that is the sum of a smooth convex function

and a regularization term has received much attention; see e.g. (Sra et al., 2011; Bach

et al., 2012) and the references therein. This problem arises in statistics, machine learning

and in many other areas of applications. In this chapter we focus on the case when the

regularizer is defined in terms of an `1-norm, and propose an algorithm that employs a

recursive active-set selection mechanism designed to make a good prediction of the active

subspace at each iteration. Here, the term active-set refers to the variables that would be

held at 0. This mechanism combines first- and second-order information, and is designed

with the large-scale setting in mind.

The problem under consideration is given by

(2.1) min
x∈Rn

φ(x) = f(x) + µ‖x‖1.

We assume that f is a smooth convex function and µ > 0 is a fixed penalty parameter.

The algorithm proposed in this chapter is different in nature from the most popular

methods proposed for solving problem (2.1). These include first-order methods, such as

ISTA, SpaRSA and FISTA (Donoho, 1995; Wright et al., 2009; Beck and Teboulle, 2009),

22

and proximal Newton methods that compute a step by minimizing a piecewise quadratic

model of (2.1) using (for example) a coordinate descent iteration (Yuan et al., 2012; Tseng

and Yun, 2009; Hsieh et al., 2011; Scheinberg and Tang, 2014; Byrd et al., 2015; J. et al.,

2014; Schmidt et al., 2011; Olsen et al., 2012). The proposed algorithm also differs from

methods that solve (2.1) by reformulating it as a bound constrained problem (Wen et al.,

2010; Fountoulakis et al., 2014; Koh et al., 2007; Schmidt et al., 2007; Schmidt, 2010),

and from recent methods that are specifically designed for the case when f is a convex

quadratic (Solntsev et al., 2014; Wen et al., 2010; De Santis et al., 2014).

Our algorithm belongs to the class of orthant-based methods (Andrew and Gao, 2007;

Byrd et al., 2012b) that minimize a smooth quadratic model of φ on a sequence of orthant

faces of Rn until the optimal solution is found. Every iteration of the algorithm consists of

a corrective cycle of orthant-face predictions and subspace minimization steps. This cycle

is terminated when the orthant-face prediction is deemed to be reliable. (A variant of

this idea has been employed in (Byrd et al., 2012a) and (Hungerländer and Rendl, 2015).)

After a trial iterate has been computed, a globalization mechanism accepts or modifies it

(if necessary) to ensure overall convergence of the iteration.

The idea of employing a correction mechanism for refining the selection of the orthant

face was introduced in (Byrd et al., 2012a) for the case when f is a convex quadratic

function. That algorithm is, however, not competitive with state-of-the-art methods in

terms of CPU time because each iteration requires the exact solution of a subspace problem,

which is expensive, and because the orthant-face prediction mechanism is too liberal (an

observation also made in (Han and Curtis, 2015)) and can lead to long corrective cycles.

These deficiencies are overcome in our algorithm, which introduces two key components.

23

We employ an adaptive filtering mechanism that in conjunction with the corrective cycle

yields an efficient prediction of zero variables at each iteration. We also design a strategy

for solving, inexactly, the subproblems arising during each corrective step in a way that

does not degrade the accuracy of the orthant-face prediction and yields important savings

in computation. We show that the algorithm is globally convergent for strongly convex

problems. Numerical tests on a variety of machine learning data sets suggest that our

algorithm is competitive with a leading state-of-the-art code.

The main features of our algorithm can also be highlighted by contrasting them with

recently proposed proximal Newton methods for solving problem (2.1). The algorithms

proposed by (Yuan et al., 2012; Scheinberg and Tang, 2014; Hsieh et al., 2011) and others

first chose an active set of variables using first-order sensitivity information. The active

variables are set to zero, and the rest of the variables are updated by minimizing a piecewise

quadratic approximation to (2.1) given by

qk(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk) + µ‖x‖1.(2.2)

This minimization is performed inexactly using a randomized coordinate descent method.

After a trial iterate is computed in this manner, a backtracking line search is performed to

ensure decrease in φ(x).

The proximal Newton methods just outlined employ a very simple mechanism to

determine the set of active variables at each iteration, namely the minimum norm subgra-

dient. On the other hand, they solve the sophisticated lasso subproblem (2.2) that inherits

the non-smooth structure of the original problem and permits iterates to cross points of

non-differentiability of φ(x). The latter property allows proximal Newton methods to

24

refine the active set with respect to its initial choice. In contrast, our method invests a

significant amount of computation in the identification of a working orthant face in Rn,

and then minimizes the following simple smooth quadratic approximation of the problem

on that orthant face,

q̄k(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk) + µζTx,(2.3)

where ζ is an indicator with values 0, 1 or -1, that identifies the orthant face. The working

orthant is selected carefully, by verifying that the predictions made at each corrective

step are realized. We do so because a simpler selection of the orthant face, such as that

performed in the OWL method (Andrew and Gao, 2007), or the method described in

(Byrd et al., 2012b) can generate poor steps in some circumstances.

Given that the two approaches (proximal Newton with coordinate descent solver and

our proposed method) are based on different principles, it is natural to ask if one of them

will emerge as the preferred second-order technique for the solution of problem (2.1). To

answer this question we compare a MATLAB implementation of our approach on binary

classification problems with the well-known solver LIBLINEAR (written in C), based on

CPU time. One of the main conclusions of this chapter is that both approaches have their

strengths. We also report comparisons with the primal-dual Newton conjugate gradient

method (pdNCG) (Fountoulakis and Gondzio, 2015), which shows its strength on large

and ill-conditioned data sets.

Orthant-based methods have the attractive property that the subspace minimization

can be performed by a direct linear solver or by an iterative method such as the conjugate

gradient method, which is efficient on a wide range of applications. On the other hand,

25

the proximal Newton approach (with coordinate descent solver) is very effective on

applications where the Hessian matrix is diagonally dominant (or nearly so). We note

that the observations made in this chapter about proximal Newton methods pertain

only to those employing coordinate descent as the subproblem solver. This is at present

the subproblem solver of choice and has been implemented in software packages such as

LIBLINEAR (Yuan et al., 2012), LHAC (Scheinberg and Tang, 2014) and QUIC (Hsieh

et al., 2011). However, other subproblem solvers could be used, and in that case the

numerical performance of the proximal Newton method would depend on the characteristics

of that solver.

Orthant-based methods and proximal Newton methods both share the need for effective

criteria for deciding when an approximate solution of the subproblem is acceptable.

Implementations of the proximal Newton method employ adaptive techniques (heuristics

or rules based in randomized analysis) (Yuan et al., 2012; Scheinberg and Tang, 2014;

Hsieh et al., 2011), or rules based on an optimality measure (Byrd et al., 2015; J. et al.,

2014). Our implementation makes use of the classic termination criteria based on the

relative error in the residue of the linear system (Nocedal and Wright, 2006).

This chapter is organized in 5 sections. In Section 2.2 we outline the algorithm, paying

particular attention to the orthant-face identification mechanism. Section 2.3 discusses

the procedure by which we safeguard against poor steps and ensure global convergence

of the algorithm. In Section 2.4, we present a comparison of our algorithm against the

state-of-the-art code LIBLINEAR for the solution of binary classification problems; some

final remarks are made in Section 2.5.

26

2.2. The Proposed Algorithm

The algorithm exploits the fact that the objective function φ is smooth in any orthant

face of Rn, which is defined as the intersection of an orthant in Rn and a subspace

{x : xi = 0, i ∈ I ⊂ {1, . . . n}}.

At every iteration, the algorithm identifies an orthant face in Rn using sensitivity

information, performs a minimization on that orthant face to produce a trial point, refines

the orthant-face selection (if necessary), and repeats the process until the choice of the

orthant face is judged to be acceptable. Upon termination of this cycle, a backtracking

line search is performed where the trial points are projected onto the active orthant.

To describe the algorithm in detail, we introduce some notation. Let g(x) denote the

minimum norm subgradient of the objective function (2.1) at a point x. Thus, we have

gi(x) =

∇if(x) + µ if xi > 0 or (xi = 0 and ∇if(x) + µ < 0)

∇if(x)− µ if xi < 0 or (xi = 0 and ∇if(x)− µ > 0)

0 otherwise,

(2.4)

for i = 1, . . . n, where

∇if(x)
def
=
∂f(x)

∂xi
.

At an iterate xk, we define three sets:

Ak = {i|xki = 0 and |∇if(xk)| ≤ µ}(2.5)

Fk = {i|xki 6= 0}(2.6)

Uk = {i|xki = 0 and |∇if(xk)| > µ}.(2.7)

27

The variables in Ak are kept at zero (since the corresponding components of gi(x
k) are

zero), while those in Fk are free to move. The remaining variables are in the set Uk. The

decision of which of these are allowed to move significantly impacts the efficiency of the

algorithm. Using the selection mechanism described below, we first create a partition of

Uk,

(2.8) Uk = UA ∪ UF ,

where the variables in UA are fixed at zero and the variables in UF are allowed to move.

We then update the active set as

(2.9) Ak ← Ak ∪ UA,

and compute a trial step dk as the (approximate) solution of the smooth quadratic problem

min
d∈Rn

ψ(d) = dTg(xk) +
1

2
dTHkd

s.t. di = 0, i ∈ Ak,(2.10)

where Hk = ∇2f(xk). The trial iterate is defined as

x̂k = xk + dk.

We then start the corrective cycle and check whether all variables in the set UF moved

as predicted; i.e., whether

(2.11) sgn([x̂k]i) = sgn(−[g(xk)]i) for all i ∈ UF ,

28

where sgn(0)
def
= 0. Any variable j ∈ UF for which this equality does not hold, is removed

from the set UF and added to UA. The set Ak is then updated according to (2.9) and a

new trial step is recomputed by solving (2.10). We repeat this corrective cycle until all

predictions are correct and the trial point x̂k satisfies (2.11).

The algorithm then performs a projected backtracking line search along dk to ensure

that the resulting point yields a decrease in the piecewise quadratic model qk(x) defined in

(2.2). (We do not perform the line search on the objective function (2.1) as that is often

more expensive, the repercussions of this choice are discussed at the end of this section.)

At iteration k, we identify the current orthant face based on sensitivity information

(2.4) and define the vector ζk by

(2.12) ζki =

sgn([xk]i) if [xk]i 6= 0

sgn(−[g(xk)]i) if [xk]i = 0.

Let Pk(x) be the projection operator that projects x ∈ Rn onto the orthant defined by

ζk; i.e.,

(2.13) Pki (x) =

xi if sgn(xi) = ζki

0 otherwise.

We then search for the largest step size α ∈ {20, 2−1, 2−2, · · · } such that

q(xk) ≥ q(Pk(xk + α · dk)),

29

where q is the non-smooth quadratic approximation given by (2.2). Such a step size exists

because dk is a descent direction for the smooth quadratic function q̄k and because the trial

point lies within the orthant defined by ζk for sufficiently small steps (see Theorem 2.6.4).

Before giving a detailed description of the algorithm, we describe the selection mecha-

nism that, at the beginning of each corrective cycle, defines the splitting (2.8) of the set

Uk into variables UA, that are kept at zero, and variables UF , that are allowed to move.

At the start of the algorithm, we select a scalar η ∈ (0, 1) and set |UF | = τ 0 def
= bη× nc;

i.e., the cardinality of the set UF is a fraction of the dimension of the problem. On

subsequent iterations, we update the parameter τ k based on its previous value τ k−1 and

the number of iterations in the previous corrective cycle. If there were no corrections in

the previous corrective cycle, we set τ k+1 = 2τ k to allow more variables to change at the

next outer iteration; otherwise we keep the value of τ k unchanged. Since the number of

variables in UF cannot be larger than |Uk|, the actual size of UF is given by

|UF | = τ̂ k
def
= min(|Uk|, τ k).

We use a greedy strategy to populate the sets UA and UF : we collect in UF the τ̂ k variables

in Uk with the largest components of the subgradient |g(xk)|. Thus, for any i ∈ UF and

j ∈ UA, we have |gi(xk)| ≥ |gj(xk)|.

A formal description of the overall method is given in Algorithm 1.

30

Algorithm 1 Preliminary Adaptive Orthant-Based Method

1: Given x0 ∈ Rn, µ > 0, η ∈ (0, 1).

2: Let τ 0 = bη × nc.

3: while k = 0, 1, 2, · · · and stopping criterion not met do

4: Active-Set Identification:

Ak = {i|(xi)k = 0 and |∇if(xk)| ≤ µ}

Fk = {i|(xi)k 6= 0}

Uk = {i|(xi)k = 0 and |∇if(xk)| > µ}

5: Selection Mechanism:

Compute g(xk) by (2.4) and ζk by (2.12).

6: Set τ̂ k ← min(|Uk|, τ k).

7: Choose UF ,UA ⊆ Uk such that UF ∩ UA = ∅, |UF | = τ̂ k and for any i ∈ UF and

j ∈ UA, |gi(xk)| ≥ |gj(xk)|.

8: Set Ak ← Ak ∪ UA.

9: Compute or update second-order approximation Hk.

10: Corrective Cycle:

Set V k ← UF and j ← 0.

11: while V k 6= ∅ do

12:

dk = arg min
di=0,i∈Ak

dTg(xk) + 1
2
dTHkd

13: Set x̂k ← xk + dk.

14: Set V k = {i ∈ UF \ Ak|ζki 6= sgn(x̂ki)}.

15: Set Ak ← Ak ∪ V k and j ← j + 1.

16: end while

31

Algorithm 1 Preliminary Adaptive Orthant-Based Method

17: if j = 1 then

18: Set τ k+1 = 2 · τ k.

19: end if

20: Projected Line Search:

Set α← 1.

21: while q(xk) > q(Pk(xk + α · dk)) do

22: Set α← α/2.

23: end while

24: Set xk+1 = Pk(xk + α · dk).

25: end while

In this chapter we assume that the quadratic model (2.10) employs exact Hessian

information, i.e. Hk = ∇2f(xk), and that we perform an approximate minimization of this

problem using the conjugate gradient method in the appropriate subspace of dimension

(n− |Ak|); see e.g., (Nocedal and Wright, 2006). The matrix Hk can also be defined by

quasi-Newton updates, specifically using the compact representations of limited-memory

BFGS matrices (Byrd et al., 1994a). Although we do not explore a quasi-Newton variant in

this chapter, we expect it to be effective in many applications. Further, we use a stopping

criterion identical to the one used in (Byrd et al., 2015); i.e., the algorithm terminates

when the semi-smooth optimality measure as defined in that chapter falls below a set

tolerance.

Our selection mechanism for defining the splitting (2.8) is motivated by the following

considerations. If all variables in Uk were allowed to move, the algorithm would have

similar properties to the OWL method (Andrew and Gao, 2007), whose performance is not

uniformly successful (see Section 2.4). Indeed, we observed a more reliable performance

32

when the size of UF is limited. This also has computational benefits because the subproblem

(2.10) is typically less expensive to solve when the number of free variables is smaller (i.e.,

when the set Ak is larger). On the other hand, in the extreme case |UF | = 1, the algorithm

resembles a classical active-set method, which is not well-suited for large-scale problems.

These trade-offs are addressed by the dynamic strategy employed in steps 5 and 17 of

Algorithm 1. Initially, we choose UF to be a small subset of Uk (by selecting η to be small).

The algorithm increases the size of UF in subsequent iterations if there is evidence that

the current choice is too restrictive. As indicator we observe the number of iterations in

the previous corrective cycle. A small number of corrections (in our implementation this

number is 1) suggests that the choice of UF may be too conservative and the size of UF is

doubled at the next outer iteration. We have found that this selection mechanism leads to

more gradual and controlled changes in the active set compared to other orthant-based

methods like OWL and the method proposed in Section 5 of (Byrd et al., 2012b). The

strategy for gradually growing the set of free variables is also employed in (Han and Curtis,

2015) in the context of isotonic regression and trend filtering.

The projected backtracking line search in steps 19–22 of Algorithm 1 serves two main

purposes: it enforces sparsity in the iterates and ensures quality of the steps (by reducing

the model objective function value). Because the overall convergence of our method is

driven by a model-based mechanism described in the next section, it is not necessary

to evaluate the original objective function at all trial points. Instead, the line search is

based on the quadratic model, as this saves potentially expensive function evaluations.

In practice, the progress predicted by the quadratic model is so reliable that a further

33

refinement of the step by the globalization procedure described in the next section is rarely

needed and was in fact, never required in our experiments.

2.3. Globalization Strategy

While Algorithm 1 generally works well in practice, it may fail (cycle) when the changes

in the active set are not sufficiently controlled. By adding a globalization mechanism

we ensure that all iterates generated by the algorithm provide sufficient reduction in the

objective function and converge to the solution. Our mechanism employs the iterative

soft-thresholding algorithm (ISTA) (Donoho, 1995; Daubechies et al., 2004) to generate a

reference point. Because the ISTA method enjoys a global linear rate of convergence on

strongly convex problems, it provides a benchmark for the progress of our algorithm.

We modify Algorithm 1 as follows. The iterate computed in line 23 is now regarded as

a trial iterate and denoted by x̂k. To decide if this point is acceptable we check whether it

produces a lower function value than the ISTA step computed from the starting point of

the iteration, xk. If so, we accept the trial point; otherwise, we search along the segment

joining x̂k and the ISTA point xkISTA to find an acceptable point. Given a Lipschitz

constant L for the gradient of f , the cost of computing the ISTA step is negligible since

gradient information is already available at xk. However, the evaluation of φ(xkISTA) incurs

an additional cost. To get around this expense, we use the value of an upper quadratic

approximation of φ at xkISTA as a surrogate to φ(xkISTA). More specifically, assuming that

L is a Lipschitz constant of ∇f , we define the value of the surrogate function as

Γk = f(xk) +∇f(xk)T (xkISTA − xk) + L
2
‖xkISTA − xk‖2

2 + µ‖xkISTA‖1.(2.14)

34

The computation of Γk requires only one inner product. The complete version of the

algorithm, including the globalization mechanism, is given in Algorithm 2.

Algorithm 2 Orthant-Based Adaptive Method (OBA)

1: Given x0 ∈ <n, L > 0, µ > 0, η ∈ (0, 1) and ε > 0.

2: Let τ 0 = bη × nc

3: while k = 0, 1, 2, · · · and stopping criterion not met do

4: Carry out steps 1 – 22 of Algorithm 1.

5: Set x̂k = Pk(xk + α · dk).

6: Globalization:

Compute ISTA step at xk as

xkISTA = Sµ/L(xk − 1
L
∇f(xk))

where Sα(x) is a component-wise operator defined as Sα(x)i = max{|xi|−α, 0}·sgn(xi).

7: Set d̄k ← x̂k − xkISTA and ᾱ← 1.

8: Calculate Γk using (2.14).

9: while φ(xkISTA + ᾱ · d̄k) > Γk do

10: Set ᾱ← ᾱ/2.

11: if ᾱ < ε then

12: Set ᾱ← 0.

13: end if

14: end while

15: Set xk+1 = xkISTA + ᾱ · d̄k.

16: end while

The following convergence result is proven in Section 2.6.

35

Theorem. Assume that f is continuously differentiable and strongly convex and that

∇f is Lipschitz continuous. Then, the iterates {xk} generated by Algorithm 2 converge to

the optimal solution x? of problem (2.1) at a linear rate.

2.4. Numerical Experiments

In this section, we demonstrate the viability of our approach. While our method applies

to any convex function with an additive `1-regularizer, we focus on the specific problem of

binary classification using logistic regression. This problem is well studied (Friedman et al.,

2010) with many data sets of varying sizes, structures and fields of study. We should

note that the results reported on this problem are representative of the performance of

OBA on other functions f(including multi-class logistic regression, probit regression and

LASSO) where similar trends are observed.

The data sets chosen for the numerical tests are listed in Table 2.1. Synthetic is a

randomly generated, non-diagonally dominant problem described in Section 2.7. Alpha is

a data set from the Pascal Large Scale Learning Challenge (Pascal Large Scale Learning

Challenge, 2008). We also include two ill-conditioned variants, IC-Alpha and IC-Random,

which have (Hessian) condition numbers of the order of 1010. IC-Alpha is generated by

artificially increasing the condition number of the Alpha data set while IC-Random is

generated using the procedure OsGen (Fountoulakis and Gondzio, 2015). The features of

these data sets have been normalized to lie in the range [−1, 1]. Details for the other data

sets along with their preprocessing steps can be found in http://www.csie.ntu.edu.tw/

~cjlin/liblinear and the references therein.

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear

36

Table 2.1. Data sets

Data set number of data points number of features
Gisette 6000 5000
RCV1 20242 47236
Alpha 500000 500
KDDA 8407752 20216830
KDDB 19264097 29890095
Epsilon 400000 2000
News20 19996 1355191
Synthetic 5000 5000
IC-Random 400000 100000
IC-Alpha 500000 500

A variety of methods has been proposed for solving problem (2.1), and high-performance

implementations of some of these methods are available. One of the most popular codes is

newGLMNET (Yuan et al., 2012), which is a C-implementation of a proximal Newton

method and is a part of the LIBLINEAR package. Every iteration of this method identifies

the active set as a subset of Ak as defined in (2.5), and then solves problem (2.2) inexactly

using a randomized coordinate descent algorithm. The termination criterion for this inner

loop is based on the `1-norm of the minimum norm subgradient and is adjusted by a

heuristic as the iteration progresses.

We implemented Algorithm 2 in MATLAB, where we chose η = 0.01 and ε = 10−4. Sub-

problem (2.10) is solved inexactly via the conjugate gradient algorithm, which terminates

as soon as the conjugate gradient iterate p satisfies

‖Hkp+ gk‖∞
‖gk‖∞

≤ 0.1.

Besides LIBLINEAR, we also compare our algorithm against FISTA (Beck and Teboulle,

2009) (part of the TFOCS package), OWL (Andrew and Gao, 2007) (implemented by

37

Schmidt (Schmidt, 2010)), and pdNCG (Fountoulakis and Gondzio, 2015). The latter

implements a primal-dual Newton conjugate gradient method that replaces the `1-norm

by a pseudo-Huber function. We include this solver because it was found to perform well

on large and highly ill-conditioned problems; see (Fountoulakis and Gondzio, 2015).

Our comparisons are based on CPU time. We point out that most of the computational

work in the FISTA, OBA, OWL, and pdNCG algorithms is spent in basic linear algebra

operations (inner products and Matrix-vector products). As a consequence, the choice of

programming language (MATLAB vs. C) has no significant impact on the computation time.

In fact, we observed very similar performance of our own MATLAB and C implementations

of OBA.

For all test problems, the regularization parameter µ was chosen through a 5–fold cross

validation. LIBLINEAR, pdNCG and OBA use the exact Hessian in defining the quadratic

model (2.10) and (2.2) while OWL uses a limited-memory BFGS approximation. Further,

in order to solve singular problems, LIBLINEAR adds a small multiple (specifically, 10−12)

of the identity to the Hessian and our algorithm uses the value of 10−8. LIBLINEAR

employs a secondary mechanism to guard against singularity: it projects the result of the

one dimensional optimization in the coordinate descent step onto the set [−10, 10].

2.4.1. Test Results

The results of our numerical comparisons are presented in Figure 2.1. We plot the relative

function error defined as

(2.15)
φ(xk)− φ(x?)

1 + φ(x?)

38

10
0

10
1

10
2

IC−Random

CPU Time (s)

10
0

10
1

10
2

10
3

IC−ALPHA

10
0

10
2

Synthetic

CPU Time (s)

10
0

10
2

News20

10
0

10
1

10
2

Epsilon

CPU Time (s)

10
1

10
2

10
3

KDDB

10
1

10
2

10
3

KDDA

CPU Time (s)

10
0

10
1

10
2

ALPHA

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

RCV1

R
e
la

ti
v
e
 F

u
n
c
ti
o
n
 E

rr
o
r

CPU Time (s)

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Gisette

R
e
la

ti
v
e
 F

u
n
c
ti
o
n
 E

rr
o
r

LIBLINEAR

OBA

OWL

FISTA

pdNCG

Figure 2.1. Relative error (2.15) in the objective function (vertical axis)
versus CPU time

against CPU time. The value of φ(x?) was obtained by running our algorithm to a tight

tolerance of 10−10 or until a time limit of 2000 CPU seconds was exceeded. The initial

iterate for all methods was the zero vector.

It is interesting to compare LIBLINEAR and OBA. Both show strong performance

overall, and there is no clear winner. This suggests that OBA is competitive with one the

most efficient and popular solvers for logistic regression.

Further, we observe that for most of the data sets, FISTA is not competitive with

the second-order methods. OWL has gained a reputation as an algorithm that performs

well but unreliably so. The experiments support this opinion. For problems KDDA or

KDDB, the performance of OWL is superior to the other solvers; however, for all other

problems, OWL is not competitive due to poor steps and rapid changes in working orthant

39

faces. pdNCG is the only algorithm able to solve the (extremely ill conditioned) IC-Alpha

problem in the required time-frame, but is not among the best solvers overall.

To better understand our method, Table 2.2 presents statistics regarding the number

of the corrective loops (lines 10-15 of Algorithm 1). It can be seen that irrespective of the

data set, less than 4 corrective loops are typically required per iteration. We emphasize

that the strong performance of the proposed method is driven by the selective-corrective

mechanism, not the ISTA backup, which was never invoked in these tests. Thus, the

algorithm enjoys theoretical guarantees (unlike OWL) without compromising performance.

2.4.2. Sparsity

It is natural to ask whether an orthant-based method such as OBA is as effective at

generating sparsity in the solution as a proximal Newton method, such as LIBLINEAR.

In proximal Newton methods the non-smoothness of the original problem is retained in

the subproblem (2.2), and sparsity arises because the solution of the subproblem typically

lies at points of non-differentiability. In contrast, orthant-based methods solve a series of

smooth problems that have no tendency of inducing sparsity in the solution by themselves,

but achieve it through the projection of the trial point onto the working orthant.

Both methods, LIBLINEAR and OBA, also promote sparsity through the definition of

the active set at the beginning of each (outer) iteration, but the construction of the active

set differs in the two methods. LIBLINEAR fixes only a subset of the variables in the set

Ak to zero; thus allowing some variables in Ak and all variables in the set Uk to move.

On the other hand, OBA fixes all of the variables in Ak to zero and additionally fixes

more variables in Uk through the selection mechanism and the corrective cycle. Therefore,

40

the approach in LIBLINEAR can be considered more liberal in that it releases more zero

variables, while the approach in OBA can be regarded as more restrictive. Nevertheless,

OBA becomes increasingly more liberal as the iteration progresses because the selection

mechanism allows the size of the set UF to double under certain circumstances (see step

17 of Algorithm 1).

In the light of these algorithmic differences, it is difficult to predict the relative ability of

the two methods at generating sparse solutions. To explore this, we performed the following

experiments using our data sets and recorded the sparsity in the solution. LIBLINEAR

was used to solve the problems with the tolerance of their stopping criterion set to 10−3

(which yielded better misclassification rates than the default value of 10−2), and OBA

was then used to solve the problems to a similar accuracy in the objective function. The

results are presented in Table 2.2 and show that the two methods achieve similar values

of sparsity, with OBA being somewhat more effective. Results for the other three codes:

OWL, LIBLINEAR and pdNCG, are not reported since they were not competitive in

terms on sparsity on the data sets.

2.4.3. Subproblem Solver and Diagonal Dominance

Let us now focus on the methods used for solving the subproblems that incorporate second-

order information about the objective function. It is natural to employ the conjugate

gradient (CG) method in OBA, given that the subproblem (2.3) is smooth and that the

CG method is an optimal Krylov process that can exploit problem structure effectively. An

alternative to the CG method is the randomized coordinate descent algorithm, which has

41

Table 2.2. Solution Statistics. aCorresponds to number of iterations of
the corrective loop (lines 10–15 of Algorithm 1). We report the 25th, 50th

and 75th quantile (Q25, Q50, and Q75, resp.) and the maximum number of
iterations of the loop.

Correction Loopsa Percentage of Nonzeros in Solution
Data set Q25 Q50 Q75 Maximum LIBLINEAR OBA
Gisette 3 3 3 4 88.92 90.52
RCV1 3.5 4 4 5 97.62 97.65
Alpha 1 2 3 3 5.60 5.20
KDDA 4 4 5 6 98.43 98.71
KDDB 4 4 5 6 97.11 97.87
Epsilon 1 2 2 3 44.60 69.20
News20 1 4 7 15 99.60 99.37
Synthetic 1 3 3 3 56.86 58.82
IC-Random 1.25 2 2.75 5 99.12 99.13
IC-Alpha 2 3 3 5 1.60 9.00

gained much popularity in recent years (Friedman et al., 2010; Nesterov, 2012; Richtárik

and Takáč, 2014).

A drawback of coordinate descent for smooth unconstrained optimization is that it can

be slow when the Hessian is not diagonally dominant. We experimented with a coordinate

descent solver for the subproblem in OBA and found that its overall performance is inferior

to that of the CG method.

The situation is quite different in a proximal Newton method where the subproblem is

non-smooth. In that case, it is easy to compute the exact minimizer of (2.2) along each

coordinate direction, thereby dealing explicitly with the non-differentiability of the original

problem. Since this one dimensional minimization may return zero as the exact solution,

the proximal coordinate descent method provides an active-set identification mechanism

for the overall algorithm. Thus, although sensitivity to the lack of diagonal dominance

may still be present, it is of a lesser concern due the benefits of its active set identification

42

Table 2.3. value of D(∇2f(x0)) as defined in (2.16)

Data set D(∇2f(x0))
Gisette 57.99
RCV1 1.88
Alpha 9.93
KDDA 1.80
KDDB 1.50
Epsilon 5.55
News20 3.29
Synthetic 69.42
IC-Random 1.37
IC-Alpha 17.29

properties. Furthermore, applications in text classification and other areas often lead to

problems with Hessians that are diagonally dominant (Greene and Cunningham, 2006).

This discussion motivates us to look more closely at the issue of diagonal dominance

and its effect on the two methods. In order to quantify the level of diagonal dominance,

we use the metric employed, for example, in (Wright, 2014). Given any symmetric matrix

A, we define the level of diagonal dominance of A as

D(A) =
maxi ‖Ai‖2

maxi |Aii|
,(2.16)

where Ai denotes the ith column of A and Aii denotes the ith diagonal element of A. The

smaller the value of D, the closer is A to being diagonally dominant. In Table 2.3 we

report the values of D (∇2f(x0)) for all data sets in Table 2.1.

Let us begin by considering problem Synthetic, which was specifically constructed to

have a high value of D (see Section 2.7 for details). Figure 2.1 shows that LIBLINEAR

performs poorly compared to OBA. In additional experiments with variations of Synthetic,

we observed that the relative performance of LIBLINEAR further deteriorates as D

43

increases. The text classification tasks (RCV1 and News20), which are empirically observed

to be diagonally dominant (Greene and Cunningham, 2006), have low values of D and,

indeed, LIBLINEAR converges quickly1. However, LIBLINEAR also performs well on

problem Gisette for which D is large and poorly on KDDB for which D is low. An

examination of the rest of the results prevents us from establishing a clear correlation

between the value of D and the relative performance of the two methods. Given the

inconclusive nature of these results, we speculate that other factors such as solution sparsity,

the conditioning of the subproblems, and the frequency of orthant changes are likely to

contribute to the performance differences. We direct the reader to (Fountoulakis and

Gondzio, 2015) for an investigation of some of those factors, particularly ill-conditioning,

on the performance of first- and second-order methods.

2.5. Final Remarks

In this chapter, we presented a second-order algorithm for solving convex `1-regularized

problems. At each iteration, the algorithm tries to predict the orthant face containing the

solution, solves a smooth quadratic subproblem on this orthant face, and then invokes a

corrective cycle that greatly improves the efficiency and robustness of the algorithm. We

globalized the method by using the ISTA step as a reference for the desired progress. This

enabled us to prove a linear convergence rate of the iterates for strongly convex problems.

The ISTA backup is rarely used in practice (and never in the reported experiments) and

thus, our theoretical result applies to a very robust method that invokes the safeguarding

very rarely. This globalization procedure is analogous to a Newton trust-region method

1Interestingly, the LIBLINEAR website and manual convey that LIBLINEAR is known to perform well
on document classification tasks but not necessarily on others.

44

where the underlying method is known to be very effective but convergence can only be

proved by overcoming pathological situations with a first-order Cauchy step.

Numerical experiments for logistic regression show that our algorithm is competitive

in terms of CPU time with state-of-the-art codes on a diverse collection of data sets. The

algorithm is also effective in generating sparse solutions quickly. Overall, our experiments

indicate that orthant-based methods are a viable alternative to proximal Newton methods.

2.6. Convergence Analysis

Recall that we wish to solve the problem

min
x∈Rn

φ(x) = f(x) + µ‖x‖1.

For the purpose of our analysis, we make two assumptions:

Assumption 2.6.1. The function f is in C1 and strongly convex with parameter

λ > 0; i.e., for any x, y ∈ Rn and t ∈ [0, 1]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
λt(1− t)‖x− y‖2

2.(2.1)

As shown in Nesterov (2004), for continuously differentiable functions, this assumption

is equivalent to

f(y) ≥ f(x) +∇f(x)T (y − x) +
λ

2
‖y − x‖2

2 for all x, y ∈ Rn.(2.2)

45

Assumption 2.6.2. The gradient of f is Lipschitz continuous with constant L > 0;

i.e., for any x, y ∈ Rn,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

The purpose of this section is to prove global convergence of the algorithm under the

above assumptions. First, in order to guarantee that the algorithm is well-defined, we

establish that the correction loop (lines 10-15 of Algorithm 1) and the line search (lines

20-22 of Algorithm 1) terminate in a finite number of iterations.

The finite termination of the correction loop follows trivially from the nature of the

loop and the definition of UF . During each correction loop, elements are removed from UF

and added to A. Note that at least one element must be removed from UF during each

corrective iteration. Since the loop begins with a finite number of elements in UF , one of

two things can happen. Either (i) the loop terminates with V = φ but UF 6= φ or (ii) all

elements in UF are added to A causing UF = φ and consequently, V = φ. In either case,

the loop terminates in a finite number of iterations.

We now prove the finite termination of the line search.

Theorem 2.6.3. The backtracking projected line search (steps 20–22 of Algorithm 1)

terminates in a finite number of iterations.

Proof. Consider the kth iteration of Algorithm 1. For notational simplicity, we drop

the iteration index and denote the iterate as x, the direction obtained after the corrective

loop (steps 10–15) as d, and the smooth and non-smooth quadratic approximations as

q̄ and q, respectively. Along the same lines, let A and U be the active and unsure sets

during this iteration.

46

We first show that there exists an ᾱ > 0 such that for any α > 0 with α ≤ ᾱ, we have

P(x+ αd) = x+ αd.

Let I1 = {i ∈ {1, 2, 3, · · · , n} : xi 6= 0}} and I2 = {i ∈ {1, 2, 3, · · · , n} : xi = 0}}, and

let ᾱ > 0 such that ᾱ <
∣∣xi
di

∣∣ for all i ∈ I1 with di 6= 0.

Let α > 0 be such that α ≤ ᾱ and ζ be defined in (2.12). We consider two cases:

• Case 1: i ∈ I1

Let us concentrate on the case when di 6= 0. Notice that the case when di = 0

is trivial since irrespective of α, P(xi + αdi) = P(xi) = xi.

Now, assuming di 6= 0, because α ≤ ᾱ <
∣∣xi
di

∣∣, it is clear that sgn(xi + αdi) =

sgn(xi) = ζi, and therefore P(xi + αdi) = xi + αdi.

• Case 2: i ∈ I2

By definition, xi = 0. If i ∈ A in step 19 of Algorithm 1, then di = 0 and

irrespective of ζi and α, P(xi + αdi) = P(0) = 0 = xi + αdi.

Otherwise, i ∈ UF ⊆ U , and therefore sgn(−gi) = ζi ∈ {−1, 1}. Assume

that ζi = 1. Thus, sgn(−gi) = 1, and since V k = ∅ and i ∈ UF , sgn(xki + dki) =

sgn(dki) = 1, so di > 0 which in turn implies αdi > 0. The same conclusion can

be made if ζi = −1. Thus, P(xi + αdi) = P(αdi) = αdi = xi + αdi.

Because d is a minimizer of q̄(x+ d) in some subspace, we have q̄(x+ αd) ≤ q̄(x) for

sufficiently small α ≤ ᾱ. Then, P(x+ αd) = x+ αd, i.e., x+ αd is in the same orthant as

x, and therefore q(x+ αd) = q̄(x+ αd) ≤ q̄(x) = q(x). As a consequence, the termination

condition in the while-loop is satisfied after a finite number of iterations.

�

47

We now show that by ensuring that φ at the new iterate is no larger than the majorizing

function Γk, we can establish linear convergence.

Theorem 2.6.4. Suppose that Assumptions 2.6.1 and 2.6.2 hold. Then, the iterates

{xk} generated by Algorithm 2 converge to the optimal solution x? of problem (2.1) at a

linear rate.

Proof. Consider the kth iteration of Algorithm 2. For notational simplicity, let us

drop the iteration index and denote the minimum norm subgradient as g, the Hessian

approximation as H, and the iterate as x. Further, as is well known, the ISTA point xkISTA,

computed in step 5 of Algorithm 2, is the minimizer of a proximal approximation of φ(x),

xkISTA = arg min
y
f(x) + (y − x)T∇f(x) +

L

2
‖y − x‖2

2 + µ‖y‖1.(2.3)

Because of Assumption 2.6.2, for any z1, z2 ∈ Rn,

f(z2) ≤ f(z1) +∇f(z1)T (z2 − z1) +
L

2
‖z2 − z1‖2

2.(2.4)

In particular, by setting z1 = x, z2 = xkISTA, we get

φ(xkISTA) = f(xkISTA) + µ‖xkISTA‖1

≤ f(x) +∇f(x)T (xkISTA − x) +
L

2
‖xkISTA − x‖2

2 + µ‖xkISTA‖1 ≡ Γk.(2.5)

Let us denote the point obtained as a consequence of the globalization mechanism,

which will be the new iterate, as x+. This corresponds to xk+1 in step 14 of Algorithm 2.

Realize that the loop in steps 8–13 of Algorithm 2 terminates finitely because once ᾱ drops

48

to a value below ε, it is set to 0 and then φ(xkISTA + ᾱd̄) = φ(xkISTA) and the sufficiency

condition (step 8 of Algorithm 2) is trivially satisfied by (2.5).

By design, our algorithm generates the point x+ such that

φ(x+) ≤ f(x) +∇f(x)T (xkISTA − x) +
L

2
‖xkISTA − x‖2 + µ‖xkISTA‖1.(2.6)

Combining this equation with the fact that xkISTA is the minimizer in objective (2.3), we

have for any d ∈ Rn and y = x+ λ
L
d that

φ(x+) ≤ f(x) +∇f(x)T
(
λ

L
d

)
+
L

2

∥∥∥∥λLd
∥∥∥∥2

2

+ µ

∥∥∥∥x+
λ

L
d

∥∥∥∥
1

≤ φ

(
x+

λ

L
d

)
− λ

2

∥∥∥∥λLd
∥∥∥∥2

2

+
L

2

∥∥∥∥λLd
∥∥∥∥2

2

= φ

(
x+

λ

L
d

)
+
λ2

2L

(
1− λ

L

)
‖d‖2

2,

where the second inequality follows from (2.2) with y = x+ λ
L
d. In particular, we can set

d to be x? − x and obtain

φ(x+) ≤ φ

(
x+

λ

L
(x? − x)

)
+
λ2

2L

(
1− λ

L

)
‖x? − x‖2

2.(2.7)

Using Assumption 2.6.1 and the convexity of the `1-norm, we have, for any z1, z2 ∈ Rn

and t ∈ [0, 1],

φ(tz1 + (1− t)z2) ≤ tφ(z1) + (1− t)φ(z2)− 1

2
λt(1− t)‖z1 − z2‖2

2.

49

Setting z1 = x, z2 = x?, and t =
(
1− λ

L

)
, we get

φ

(
x+

λ

L
(x? − x)

)
≤ λ

L
φ(x?) +

(
1− λ

L

)
φ(x)− λ2

2L

(
1− λ

L

)
‖x? − x‖2

2.

Combining this result with (2.7), we get

φ(x+) ≤ λ

L
φ(x?) +

(
1− λ

L

)
φ(x)− λ2

2L

(
1− λ

L

)
‖x? − x‖2

2 +
λ2

2L

(
1− λ

L

)
‖x? − x‖2

2

= φ(x?) +

(
1− λ

L

)
(φ(x)− φ(x?)),

and therefore

φ(x+)− φ(x?) ≤
(

1− λ

L

)
(φ(x)− φ(x?)).

By reintroducing the iteration index and using recursion, we have that

φ(xk)− φ(x?) ≤
(

1− λ

L

)k
(φ(x0)− φ(x?))

as required.

�

2.7. Reproducible Research

The MATLAB code used to generate the “Synthetic” problem is presented below.

Given a dimension n, we use the following code snippet to generate the vector of labels

(denoted by y) and the data matrix (denoted by X).

y=-1+(rand(n,1)>0.5)*2;

X = rand(n,n);

X = X + X’;

50

mineig = min(eig(X));

if(mineig<0)

X = eye(size(X))*mineig*-2+X;

end

X = chol(X);

The code for our method can be found at https://github.com/keskarnitish/OBA.

https://github.com/keskarnitish/OBA

51

CHAPTER 3

A Limited-Memory Quasi-Newton Algorithm for

Bound-Constrained Nonsmooth Optimization

3.1. Introduction

We propose an algorithm for solving bound-constrained optimization problems of the

form

min
x∈Rn

f(x)(3.1)

s.t. l ≤ x ≤ u,

where the objective function f : Rn −→ R is continuous but might not be differentiable

everywhere. The lower bounds l ∈ (R ∪ {−∞})n and upper bounds u ∈ (R ∪ {∞})n can

take values of −∞ or ∞ whenever the variables are unbounded in those coordinates. We

assume that the problem is feasible, i.e., l ≤ u, and allow for f to be nonconvex.

Many algorithms have been proposed for solving (3.1) when x is unconstrained. Some

of these methods include gradient-sampling methods (Burke et al., 2005; Curtis and

Que, 2013; Kiwiel, 2007), bundle methods (Haarala et al., 2004, 2007; Mäkelä, 2002),

quasi-Newton methods (Curtis and Que, 2015; Kaku, 2011; Lewis and Overton, 2013;

Lewis and Zhang, 2015; Skajaa, 2010), and hybrid methods (Curtis and Que, 2015).

Gradient-sampling methods randomly sample gradients in the vicinity of the iterate

52

to calculate an estimate of the minimum-norm subgradient. In conjunction with an

Armijo-like line search, global convergence can be proved using these minimum-norm

subgradients as search directions. Bundle methods aggregate subgradients from previous

iterates and iteratively solve piecewise-quadratic approximations of the objective function

to generate steps. Recently, Lewis and Overton (Lewis and Overton, 2013) observed

that the unadulterated BFGS method works very well when applied to unconstrained

nonsmooth optimization problems so long as the weak Wolfe line search is performed.

Skajaa (Skajaa, 2010) reported similar results for L-BFGS (Liu and Nocedal, 1989). For

problems ranging from n = 100 to n = 10000, it was found that L-BFGS was not only

more efficient in solving test problems, but it was also more reliable compared to other

methods. However, theoretical convergence guarantees (or the lack thereof) of (L-)BFGS

for nonsmooth problems remain to be shown. Recent efforts (e.g., (Curtis and Que, 2015))

focused on the design of a hybrid strategy that retains the efficacy of standard L-BFGS

but ensures convergence through a gradient-sampling approach. Other approaches for

solving (3.1) include subgradient methods, quasi-secant methods, and discrete gradient

methods. We refer the reader to (Bagirov et al., 2014; Clarke, 1990; Karmitsa et al., 2012;

Mäkelä, 2002; Skajaa, 2010) for a detailed summary of these methods and their numerical

performance.

In certain applications, it is necessary to optimize a nonsmooth objective function

subject to bound constraints. These include applications in many fields including statistics,

optimal control, and as subproblems for certain robust optimization problems (Bagirov

et al., 2014). Some of the algorithms described above can be extended to solve problems

with bound constraints. For instance, the LMBM-B (Karmitsa and Mäkelä, 2010a,b)

53

method extends the limited-memory bundle method to (3.1). Gradient-sampling methods

have also been extended to the case of constrained optimization (Curtis and Overton, 2012).

A natural question is whether the surprising and remarkable success of the unadulterated

(L-)BFGS method in the unconstrained case can be extended to problems with bound

constraints.

The L-BFGS-B method is a variant of L-BFGS for minimizing a smooth objective

function over box constraints. At an iterate xk, the method first determines an active

set by computing a Cauchy point x̃k as the first local minimizer α > 0 of f along the

gradient-projection path α 7→ P (xk − α∇f(xk)). Here, P (v) is the orthogonal projection

of a vector v ∈ Rn onto the feasible hypercube [l, u]. The bound constraints that are tight

at the Cauchy point x̃k then define an active set, Ak = {i : x̃ki ∈ {li, ui}}, and a subspace

step p̃k is computed as the solution of the problem

min
p∈Rn

f(xk) +∇f(xk)Tp+
1

2
pTBkp(3.2)

s.t. pi = 0 for all i ∈ Ak.

The objective in this subproblem is a quadratic model of the original objective function.

Its Hessian matrix Bk is defined by the L-BFGS update and therefore is positive definite.

Subproblem (3.2) is solved efficiently using the compact-form representation of L-BFGS

(Byrd et al., 1994b). Finally, the overall step pk = (x̃k + p̃k) − xk is computed and a

projected line search is performed along the path α 7→ P (xk + αpk) to find a step size

satisfying the strong Wolfe conditions.

54

Henao et al. (Henao, 2014) recently proposed L-BFGS-B-NS as a variant of L-BFGS-B

for solving (3.1) with a nonsmooth objective function. The only difference to the original

method is that the strong Wolfe line search is replaced with the weak Wolfe line search.

This is the same modification that was suggested by Lewis and Overton (Lewis and

Overton, 2013) in the unconstrained case.

In this paper, we propose a different adaptation of the L-BFGS method. Our method

first determines an active set based on the bound constraints that are tight at the current

iterate, without referring to a Cauchy point. After computing the search direction from

(3.2), a new iterate is determined using a variant of the weak Wolfe line search.

The key ingredients in our method are active-set selection strategies that take into

account the nonsmoothness of the function. First, we propose the use of an approximation

of the minimum-norm ε-subgradient instead of the gradient to determine which bound

constraints are binding at the current iterate. Second, we explore an iterative corrective

mechanism that augments the active set until the final search direction points inside the

feasible region.

Throughout the paper, we assume that the function is differentiable at each iterate

and trial point, and that its gradient can be computed. This is in line with the work

by Lewis and Overton (Lewis and Overton, 2013) who make the same assumption for

their numerical experiments. Burke et al. (Burke et al., 2005) describe a mechanism that

perturbs a trial point in case f is not differentiable at that point. In the box-constrained

case, the boundary of the feasible region might align with a manifold of nondifferentiability.

Then, the projections carried out during the line search might generate trial points that

lie in this manifold. To circumvent this problem, we assume that there is an extension

55

of the function beyond the feasible region that is differentiable at almost all boundary

points. For example, consider the feasible set [0, 1] ⊂ R with objective function f(x) = |x|

which is not differentiable at the boundary point x = 0. When we replace the objective

with f̃(x) = x, the objective values are identical within the feasible region, resulting in

the same optimal solution, but the function is now differentiable at x = 0.

The paper is organized as follows. In the subsection to follow, we introduce some

notation that is used throughout the paper. In Section 2, we describe our algorithm

including the active-set prediction and correction strategies, as well as the proposed weak

Wolfe line search. Finally, in Section 3, we present details of our Python implementation

and detailed numerical results examining the efficacy of our approach.

3.1.1. Notation

We use superscripts to denote the iteration index and subscripts to denote a specific

element of a vector. For instance, xkj refers to the jth element of the kth iterate. We

abbreviate [∇f(x)]i by ∇if(x). We define the instantaneous projection of a direction p at

an iterate x as

(3.3) [T (x, p)]i =

pi if xi ∈ (li, ui)

max(pi, 0) if xi = li

min(pi, 0) if xi = ui.

This operator zeroes out those components of p for which x is at its bounds with p pointing

in the direction of infeasibility. We use the notation Bε(x) to denote the closed `2-norm

ball of radius ε centered at x. Further, we denote the cardinality of a set A by |A|. Finally,

56

given a vector v and a set of indices A, vA refers to the subvector corresponding to the

indices in A. Similarly, given a matrix M , then MA,B denotes the submatrix with row

indices given in A and column indices given in B. Finally, we let N = {1, . . . , n} be the

set of all variable indices.

3.2. Proposed Algorithm

3.2.1. Active-Set Framework

The proposed algorithm is an active-set method which, at each iteration, determines an

estimate Ak of the optimal active set A∗ := {i ∈ N : x∗i = li or x∗i = ui} of a local solution

x∗ of (3.1). We say that the bound constraints in A∗ are tight at x∗. The L-BFGS-B

algorithm chooses as active set Ak the bounds at which the Cauchy point are tight. In

contrast, our method chooses from bounds for which the current iterate xk itself is tight,

without referring to a Cauchy point.

For a smooth objective function, we might consider the set of the tight constraints

that are binding; i.e.,

(3.4) Bk(gk) = {i ∈ N : xki = li and gki ≥ 0} ∪ {i ∈ N : xki = ui and gki ≤ 0}

with gk = ∇f(xk). These are the coordinates for which the gradient predicts no decrease in

the objective if the corresponding components of the iterate are moved inside the feasible

region. With this, ∇if(xk) = 0 for all i ∈ N \ B(∇f(xk)) if and only if xk satisfies the

57

first-order optimality conditions for problem (3.1) at xk; i.e.,

∇if(xk) = 0 for all i with li < xki < ui

∇if(xk) ≥ 0 for all i with xki = li(3.5)

∇if(xk) ≤ 0 for all i with xki = ui.

Consequently, the subspace step pk obtained from solving (3.2) with Ak = B(∇f(xk)) is

zero if and only if xk is a first-order optimal point. In addition, it can be shown that pk is

a descent direction for the projected line search; i.e., the function α 7→ f(P (xk + αpk))

is decreasing for α > 0 sufficiently small. (This is a consequence of (Bertsekas, 1982,

Proposition 1).)

Consider a simple algorithm that computes search directions from (3.2) with Ak =

B(∇f(xk)) and performs a projected line search to determine the new iterate xk+1 =

P (xk + αkpk) with some step size αk > 0. Suppose that f is differentiable and that

the iterates converge to a non-degenerate first-order optimal x∗; i.e., x∗ satisfies (3.5)

and ∇if(x∗) 6= 0 for all i ∈ A∗. Further assume that at some iterate xk sufficiently

close to x∗, the bounds that are tight at xk are identical to the optimal active set; i.e.,

{i ∈ N : xki = li or xki = ui} = A∗. It is then not difficult to show that Ak = B(∇f(x∗))

for all large k. In other words, the optimal active set is identified in a finite number of

iterations. This observation motivates the choice Ak = B(∇f(xk)).

The conclusion in the previous paragraph was drawn under the strong assumption

that an iterate is encountered at which all constraints in A∗ are tight. To the best of

our knowledge, no convergence proof has been established for the simple algorithm when

58

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 3.1. The contour lines of the objective function in (3.6). The arrows
indicate the gradients of the function.

this assumption is lifted, even when f is differentiable. Nevertheless, despite the lack of

theoretical convergence guarantees, our proposed active-set selection strategy is based on

(3.4) since it seems to perform well in practice in our setting. Recall that global convergence

has not been proved for the unadulterated L-BFGS algorithm with a nonsmooth objective

function even in the unconstrained case.

In the context of nonsmooth optimization, the gradient of the objective function can

be very myopic in regions close to a manifold on which the function is nondifferentiable,

and a gradient-based active-set identification can be quite misleading. We illustrate this

with a simple example, depicted in Figure 3.1.

59

Consider the problem

min
x∈R2

|x1 − x2|+
1

2
(x1 + 0.1x2)2(3.6)

s.t. x1 ≤ −0.5

with optimal solution x∗ = (−0.5,−0.5)T . Suppose we have an iterate xk = (−0.5, a)T

for a number a ∈ (−5,−0.5). The function is differentiable at this point with gradient

∇f(xk) = (1,−1)T + (−0.5 + 0.1a)(1, 0.1)T = (0.5 + 0.1a,−1.05 + 0.01a)T . Given that

a > −5, we have ∇1f(xk) > 0. Therefore, the choice Ak = B(∇f(xk)) predicts x1 to be

free, no matter how close xk is to x∗. This determination is incorrect since x1 is indeed at

its bound at the solution. Notice that the failure of identification is caused by the inherent

shortsightedness of the gradient and not due to some kind of degeneracy.

We point out that also the active-set identification of the L-BFGS-B method does

not recognize that the bound for x1 is tight at the solution. The L-BFGS-B method, as

described previously, locates the first minimizer of the gradient-projection path, α 7→

P (xk − α∇f(xk)), for the active-set identification. For problem (3.6), the ray {xk −

α∇f(xk) : α > 0}, for an iterate xk = (−0.5, a)T with a ∈ (−5,−0.5), never intersects a

bound. Thus, also in this case, x1 is not recognized as active.

In order to compensate for the shortsightedness of the gradient, we propose two

strategies: (i) an active-set prediction that considers an approximation g̃k of minimum-

norm subgradients of nearby non-differentiable points to determine the binding constraints

B(g̃k) (Section 3.2.2); and (ii) a correction mechanism that augments the active set if

60

the search direction, computed with L-BFGS approximation of the nonsmooth objective,

indicates that a variable should be active (Section 3.2.4).

3.2.2. Active-Set Prediction Using a Subgradient Approximation

Continuing with problem (3.6), let us consider the scenario in which we use the ε-minimum-

norm subgradient (ε-MNSG) based on the Clarke ε-subdifferential (Clarke, 1990) for the

active-set prediction. For a fixed ε > 0, the ε-MNSG is defined as

ĝε(x) = arg min
y∈cl conv ∇f(Bε(x))

1

2
‖y‖2

2.(3.7)

Here, ∇f(Bε(x)) = {∇f(y) : y ∈ Bε(x)}, and the term “cl conv” indicates the closure

of the convex hull of a set. When ε is sufficiently small and a is close to −0.5, the

ε-MNSG at xk = (−0.5, a)T is approximately ĝε(x
k) ≈ (−0.3025,−0.3025)T . The active

set Ak = B(ĝε(x
k)) correctly identifies that x1 is tight at the solution. Indeed, the ε-MNSG

attempts to be less myopic than the gradient and forms the basis for gradient-sampling

methods (Burke et al., 2005). This motivates us to base the active-set identification on

the ε-MNSG instead of the gradient.

Computing the true ε-MNSG is usually not feasible, due to the complex nature of

∇f(Bε(x
k)). Instead, gradient sampling methods work with an approximation g̃k that is

based on the gradients at points from a finite random subsample Gk = {xk,1, . . . , xk,lk}

of the ball Bε(x
k) with xk ∈ Gk. More specifically, g̃k =

∑lk

i=1∇f(xk,i)λ?i where λ? is the

61

solution of the convex quadratic problem

min
λ∈Rlk

1

2

∥∥∥∥∥∥
lk∑
i=1

∇f(xk,i)λi

∥∥∥∥∥∥
2

2

s.t.
lk∑
i=1

λi = 1(3.8)

0 ≤ λi ≤ 1 for all i = 1, . . . , lk.

A good approximation of the ε-MNSG typically requires a large number lk of gradient

evaluations. For the purpose of determining the active set, however, an inexact estimate

might suffice, since its main purpose is to capture roughly the geometry of the nonsmooth

function. It is not used for the step computation itself. To avoid additional gradient

evaluations, we simply choose Gk = {xk, . . . , xmax{0,k−M}} to contain the most recent M

iterates. This strategy is motivated by two observations: (i) as we will describe in Section

3.2.5, the line search encourages the iterates to cross over manifolds of nondifferentiability

and thus, the gradients for Gk represent different “pieces” of the nonsmooth function; and

(ii) near the solution, where active-set prediction strategies are arguably more important,

the steps taken by the algorithm are small and the points in Gk are then from a small

neighborhood around the current iterate.

Motivated by these observations, our first active-set selection strategy chooses

(3.9) Ak = Bk(g̃k) ∪ Bk(∇f(xk)).

Note that we include the bound constraints identified by the gradient ∇f(xk) as well.

We observed in our experiments that this led to better performance. We speculate that,

62

in regions not close to a manifold on which the function is nonsmooth, the active set

identified by the gradient is often reliable and the subgradient approximation might cause

spurious identification, when the points in Gk are not close to each other.

3.2.3. Computation of the Search Direction

Our second active-set strategy loops over candidate choices for the active set that are

evaluated based on the search directions they generate. We describe the step computation

first.

The search directions are based on the BFGS method (Nocedal and Wright, 2006).

This method constructs and updates a convex second-order model of the objective function

requiring only the first-order derivatives. Given an estimate, Bl, of the curvature of the

objective function, the BFGS method revises the estimate using a rank-2 update as

(3.10) Bl+1 = Bl +
yl(yl)T

(yl)T sl
− Blsl(sl)TBl

(sl)TBlsl
,

where

sl = xl+1 − xl(3.11a)

yl = ∇f(xl+1)−∇f(xl).(3.11b)

One usually requires that the curvature condition

(3.12) (sl)Tyl > 0

63

holds, since then Bl remains positive definite if the initial matrix B0 is positive definite.

For smooth convex objective functions, the BFGS method possesses strong theoretical

properties including global convergence and superlinear local convergence. Even though

only limited theoretical convergence guarantees have been established for nonconvex

objectives, many have noted good performance on a variety of problems.

The original BFGS method requires the storage and manipulation of an n× n matrix.

For large-scale problems, this is unwieldy. The limited-memory BFGS (L-BFGS) method

(Liu and Nocedal, 1989) attempts to alleviate this handicap by storing only the past m

curvature pairs (sl, yl). The matrix Bl itself is never explicitly constructed. The value

for m, also called the L-BFGS memory, is often in the range of 5–20. This reduces the

storage from O(n2) to O(mn). The complexity of the search direction computation in the

L-BFGS method is also reduced from O(n2) to O(mn).

Given an active set Ak and an L-BFGS approximation Bk of the Hessian of the

objective function, we generate the search direction pk as the solution to subproblem (3.2).

Here, all components of pk belonging to Ak are set to zero, and the remaining entries are

obtained from a linear system involving a symmetric submatrix of Bk. Making use of

the L-BFGS compact representation matrices (Byrd et al., 1995, 1994b), the step can be

computed efficiently, using 2m2t+ 6mt+ 4t+O(m3) operations where t = |Ak|.

To specify the L-BFGS approximation in a given iteration k, it is necessary to provide an

initial matrix Bk,0, from which Bk = Bk,m is generated by repeatedly applying the update

formula (3.10). The matrix Bk,0 is an estimate of the Hessian of f . This choice, especially

when the L-BFGS memory m is low, has direct consequences on the quality of the search

direction. For smooth optimization, Bk,0 = θI where θ = (sk)T yk

(yk)T yk
is often recommended

64

and is found to work well in a variety of applications. Intuitively, the ratio is justified

since it is a scalar approximation to ∇2f(xk) (Nocedal and Wright, 2006). However, for

nonsmooth optimization this choice seems to lead to inferior performance. Instead, Curtis

and Que (Curtis and Que, 2015) proposed θ = max(1.0,min(‖∇f(xk)‖∞, 108)). We use

this choice in our implementation as well.

3.2.4. An Active-Set Correction Mechanism

In Section 3.2.2, we described an active-set identification mechanism that is based on an

approximation of a subgradient. This strategy attempts to guess directly which bounds

are tight at the optimal solution.

Next we describe another approach using an iterative correction procedure that judges

the quality of a candidate active set and adjusts it if necessary. The quality of the active

set is judged through the search direction generated using it. The goal is to obtain a

direction that is feasible in the sense that a sufficiently small step into this direction does

not leave the feasible region. If, for a given candidate active set, there is a variable that is

tight at the current iterate and the candidate search direction points outside the feasible

region, then this variable is added to the active set and the procedure is repeated. Similar

mechanisms have been used previously, for example, for solving convex quadratic programs

(Curtis et al., 2015; Hungerländer and Rendl, 2015) and `1-regularized convex optimization

problems (Byrd et al., 2016; Keskar et al., 2016).

For ease of notation, we drop the iteration index k for the remainder of this section.

Given an iterate x, we let g = ∇f(x), and we define the set of interior variables, F =

{i : li < xi < ui} and the set of variables with tight bound constraints, F̄ = N \ F .

65

Algorithm 3 formally states the proposed active-set correction procedure. When there

are no tight bounds, the active set must be empty, and step 4 immediately returns the

unrestricted search direction in the full space. Otherwise, the t-loop computes a potential

search direction in step 7 and tests if there are any components, collected in the set Ct,

that would take a variable instantaneously outside its bound constraints. Such components

are added to the active set, until a feasible direction is found. Clearly, the loop terminates

in finite time, since At grows by at least one element per iteration.

Algorithm 3 ActiveSetCorrection

Inputs: Current iterate x; initial active set Ainit ⊆ F̄ .

Output: Final active set A with corresponding search direction p.

1: Initialize t← 0 and set A0 = Ainit.

2: if F̄ = ∅ then . Nothing to do if there are no tight bounds

3: Compute p as solution of (3.2) with Ak = ∅.

4: return A = ∅ and p.

5: end if

6: for t = 0, 1, 2, . . . do

7: Compute pt as solution of (3.2) with Ak = At. . Potential search direction

8: Set Ct = {i ∈ F̄ \ At : T (x, pt)i 6= pti}. . Variables to be added

9: if Ct = ∅ then

10: return A = At and p = pt. . No more corrections necessary

11: end if

12: Set At+1 = At ∪ Ct.

13: end for

The approach described in Section 3.2.2 uses a subgradient approximation to overcome

the shortsightedness of the gradient when predicting the optimal active set. In contrast,

66

the corrective procedure in Algorithm 3 exploits the fact that the L-BFGS approximation

of the problem curvature contains information about the structure of the nonsmoothness.

It has been observed that the (L-)BFGS approximation of a nonsmooth objective function

is able to approximate the U- and V-spaces of the objective function (Lewis and Overton,

2013; Skajaa, 2010). Roughly speaking, the U-space of f at a point x is the subspace

tangent to the manifold of points at which f is not differentiable. The V-space is the

orthogonal complement of the U-space. In (Lewis and Overton, 2013), Lewis and Overton

hypothesized that the V-space of a nonsmooth function can be numerically approximated

within the unadulterated BFGS method through the eigenvectors of Bk corresponding to

eigenvalues that converge to infinity.

In our example problem (3.6), the V-space at any point x with x1 = x2, including

the optimal solution, is spanned by (1,−1)T . When we apply the proposed method from

random starting points, the iterates converge to the solution (−0.5,−0.5)T . After some

iterations, the BFGS matrix is approximately

(3.13) Bk ≈ yk ·

 1 −1

−1 1

with some sequence yk converging to infinity. Note that the eigenvectors of Bk suggest

precise recovery of the U- and V-spaces of the objective function. In particular, the

eigenvector (1,−1)T with respect to the asymptotically infinite eigenvalue indeed spans

the V-space of f at the optimal solution. Even though the matrix on the right-hand side

of (3.13) is singular, Bk itself is always nonsingular. Numerically we observe that the

67

inverse matrix Hk = (Bk)−1 is approximately

(3.14) Hk ≈ ỹk ·

1 1

1 1

with some sequence ỹk converging to zero, and now (1,−1)T is an eigenvector with respect

to the eigenvalue approaching zero.

Dropping the iteration index k, consider again an iterate of the form x = (−0.5, a)T

with a ∈ (−5,−0.5) and gradient ∇f(x) = (0.5 + 0.1a,−1.05 + 0.01a)T . In Section 3.2.1

we observed that the näıve choice A = B(∇f(x)) = ∅ fails to recognize that x1 is active

at the solution. If we choose Ainit = B(∇f(x)) in Algorithm 3, we have A0 = ∅ in the

first iteration. With the approximation (3.14), the search direction in step 7 becomes

p0 ≈ ỹ · (0.55 − 0.11a, 0.55 − 0.11a)T . Clearly, from the current iterate with x1 = −0.5,

this direction points out of the feasible region because p0
1 > 1. Therefore, T (x, p0)1 6= p0

1

and C0 = {1}. In the next iteration of the correction loop, A1 = {1} is accepted as the

final active set, and correctly predicts that x1 is active at the solution.

The following lemma shows that the correction mechanism cannot lead to a spurious

termination of the overall algorithm. A zero step can be generated only when the current

iterate is already a stationary point of the objective function (assuming that A0 is initialized

as B(∇f(xk))).

Lemma 3.2.1. Suppose A0 = B(∇f(xk)) and the corrective loop terminates with

p = 0. Then, the current iterate xk satisfies the first order optimality conditions (3.5) for

problem (3.1).

68

Proof of Lemma 3.2.1. For ease of exposition, we assume that l = 0 and u =∞

in problem (3.1). Let t̂ be the iteration in which the method terminates with p = pt̂ = 0

and let g = ∇f(x).

Given the active set At̂ ⊆ F̄ and defining Āt̂ := F̄ \ At̂, the solution p to (3.2) (with

Ak = At̂) is obtained by solving the linear system

(3.15)

BFF BFĀt̂

BĀt̂F BĀt̂Āt̂

pF

pĀt̂

 = −

gF

gĀt̂

and setting

(3.16) pAt̂ = 0.

Because the L-BFGS approximation B is positive definite, (3.15) together with pt̂ = 0

implies

(3.17) gF = 0 and gĀt̂ = 0.

For the purpose of deriving a contradiction suppose that t̂ > 0. Then At̂ = At̂−1∪C t̂−1,

and therefore Āt̂−1 = Āt̂ ∪ C t̂−1. By definition, pt̂−1
i < 0 for every i ∈ C t̂−1. Since C t̂−1 6= ∅,

we have pt̂−1 6= 0. Consider the linear system from which pt̂−1 is computed:
BFF BFĀt̂ BFC t̂−1

BĀt̂F BĀt̂Āt̂ BĀt̂Ct̂−1

BCt̂−1F BCt̂−1Āt̂ BCt̂−1Ct̂−1

︸ ︷︷ ︸

=:B̂t̂−1

pt̂−1
F

pt̂−1

Āt̂

pt̂−1

Ct̂−1

︸ ︷︷ ︸

=:p̂t̂−1

= −

gF

gĀt̂

gCt̂−1

︸ ︷︷ ︸

=:ĝt̂−1

.

69

With (3.17) we obtain

(3.18) (gCt̂−1)
Tpt̂−1

Ct̂−1
= (gt̂−1)T p̂t̂−1 = −(p̂t̂−1)TB t̂−1p̂t̂−1 < 0

because B is positive definite and pt̂−1 6= 0.

On the other hand, C t̂−1 ⊆ F̄ \ At̂−1 ⊆ F̄ \ At̂−2 ⊆ . . . ⊆ F̄ \ A0 = F̄ \ B(g). From

(3.4) we then have gi < 0 for all i ∈ C t̂−1. Also, from the definition of C t̂−1, it is pt̂−1
i < 0

for all i ∈ C t̂−1. Therefore,

(gCt̂−1)
Tpt̂−1

Ct̂−1
=
∑
i∈Ct̂−1

gip
t̂−1
i > 0,

in contradiction to (3.18).

It follows that t̂ must be zero, and (3.17) yields that gi = 0 for any i 6∈ A0 = B(∇f(xk)).

Consequently, (3.5) holds. �

3.2.5. Line search

Once a search direction pk at an iterate xk has been calculated, the algorithm determines

a step size αk > 0 to generate the next iterate, xk+1 = P (xk + αkpk). The projection

ensures that the new iterate is feasible.

For the unconstrained minimization of a nonsmooth function, Lewis and Overton

(Lewis and Overton, 2013) use the weak Wolfe conditions (3.19) and (3.20) to determine

whether a trial point xtrial = xk + αpk is acceptable as a new iterate. Given fixed values

for c1, c2 ∈ (0, 1) with c1 < c2, the first condition,

(3.19) f(xtrial) ≤ f(xk) + αc1∇f(xk)Tpk,

70

ensures that the objective function decreases by at least a fraction of what is predicted by a

linear approximation that is based on the gradient. Because the objective is nonsmooth, the

linear model might be a good approximation only for very small step sizes α. Nevertheless,

since f is assumed to be differentiable at xk, condition (3.19) can be satisfied as long as α

is sufficiently small.

The second condition,

(3.20) ∇f(xtrial)Tpk ≥ c2∇f(xk)Tpk,

imposes that the slope of the function φ(α) = f(xk + αpk) is less steep at α than at 0,

indicating that sufficient progress towards a local minimizer of φ(α) is made. With a

nonsmooth objective, a local minimizer of φ(α) might be at a point where f (and hence φ)

is nondifferentiable. If the current iterate is close to such a point, requiring (3.20) leads to

a step size α that is beyond the point of nondifferentiability. This observation is crucial and

provides the main intuition why the BFGS algorithm works well for nonsmooth problems.

Because the next iterate lies on another “smooth piece” of the nonsmooth function, the

new gradient is quite different from the current gradient, even when the next iterate is

very nearby. Recalling the definition (3.11) of sk and yk in the BFGS update, we see that

then the gradient difference yk is much larger in size than the step sk. Consequently, high

curvature in the direction sk is incorporated into the BFGS update Bk+1, approximating

the infinite curvature at the point of nondifferentiability.

Lewis and Overton (Lewis and Overton, 2013) prove that, in the absence of bounds

and under smoothness assumptions, a step size α satisfying both (3.19) and (3.20) always

exists, and they provide a bracketing procedure to find it. We point out that (3.20) also

71

guarantees that the (sk, yk) pair for the BFGS update satisfies (sk)Tyk > 0 so that the

update is well-defined.

On the other hand, for the minimization of a smooth objective function subject to

bound constraints, Ferry (Ferry, 2011) proposed a generalized Wolfe line search which

replaces the search direction by p̄k = T (xk, pk). Recalling the definition of T in (3.3), we

see that p̄k is the modified search direction that zeros out all components that would result

in an immediate violation of a constraint. With this, the Wolfe conditions suggested by

Ferry (Ferry, 2011) are

f(xtrial) ≤ f(xk) + αc1∇f(xk)T p̄k(3.21)

∇f(xtrial)TT (xtrial, pk) ≥ c2∇f(xk)T p̄k.(3.22)

We adopt these conditions in our context of minimizing a nonsmooth objective. Algorithm 4

describes the corresponding bracketing mechanism.

Note that, in the absence of bounds, this procedure is identical to the line search

algorithm proposed by Lewis and Overton (Lewis and Overton, 2013). When f is smooth,

Ferry (Ferry, 2011) showed that there always exists a step size α that satisfies both (3.21)

and (3.22). For a nonsmooth objective, such a step size may not exist. In our method,

when a suitable step size cannot be found in step 16, finite termination is ensured by the

termination test in step 24.

The bracketing mechanism generates a sequence of values for U and L in a way that

shrinks the length of the interval [L,U] to zero (see steps 20 and 22 together with steps 11

and 14). Because it is not clear whether a step size satisfying both (3.21) and (3.22) can

be found, the algorithm will attempt only a moderate number of trial step sizes, until the

72

Algorithm 4 ModifiedWolfe

Inputs: Current iterate x and a search direction p.

Output: Step size α to generate next iterate.

Parameters: c1, c2 ∈ (0, 1) with c1 < c2; εabs, εrel > 0.

1: Set L = 0

2: Set U = maxi{γi}, where γi
def
=

ui−xi
pi

pi > 0 and xi 6= ui;

xi−li
pi

pi < 0 and xi 6= li;

∞ otherwise.

3: Set α = min(1, U).

4: Compute p̄ = T (x, p).

5: if p̄ = 0 then

6: terminate with “No search direction”. . Error due to bad search direction

7: end if

8: for t = 0, 1, 2, . . . do

9: Set xtrial = P (x+ αp̄).

10: if (3.21) does not hold then . Sufficient decrease condition does not hold

11: Set U = α.

12: else

13: if (3.22) does not hold then . Curvature condition does not hold

14: Set L = α.

15: else

16: return α. . Return step satisfying weak Wolfe conditions

17: end if

18: end if

relative interval length is on the order of εrel. Whenever a step size is encountered that

satisfies the sufficient decrease condition (3.21), step 14 sets L to this value (unless the

search is terminated in step 16). Therefore, when step 26 returns a nonzero step size, it is

73

Algorithm 4 ModifiedWolfe

19: if U < maxi{γi} then . Update step-size

20: Set α = U+L
2

.

21: else

22: Set α = min(2L,U).

23: end if

24: if U − L < εabs + εrelL then

25: if L > 0 then

26: return L. . Return step satisfying sufficient decrease condition

27: else

28: terminate with “Line Search Error”. . Error, no suitable step size found

29: end if

30: end if

31: end for

guaranteed that the next iterate will have a smaller objective value, and so the overall

optimization algorithm cannot cycle. On the other hand, if L is zero in step 28, the trial

step size U = α has become smaller than εabs. In that case, we declare a line search error,

which is likely caused by numerical issues in the search direction computation or round-off

in the function evaluation. Finally, it may happen that the computed search direction is

such that P (x+αp) = x for any α > 0. Then there is no point in conducting a line search

and we terminate the optimization with an error message in step 6. This may occur due

to numerical problems during the step computation.

74

Algorithm 5 Nonsmooth Quasi-Newton (NQN)

Inputs: Initial point x0 ∈ [l, u].

Parameters: Size of L-BFGS memory m; update tolerance εskip.

1: Initialize storage S of L-BFGS curvature pairs to be empty.

2: for k = 0, 1, 2, . . . do

3: if T (xk,−∇f(xk) = 0 then

4: return xk . Finite termination at stationary point

5: end if

6: Choose active set Ak. . Details specified elsewhere

7: Compute search direction pk.

8: Compute αk = ModifiedWolfe(xk, pk). . Perform line search using Algorithm 2

9: Set p̄k = T (xk, pk).

10: Set xk+1 = P (xk + αkp̄k).

11: Compute curvature pair (sk, yk) from (3.11).

12: if (sk)Tyk > εskip‖sk‖‖yk‖ then . Discard pair if curvature condition not satisfied

13: Store (sk, yk) in S. . Update L-BFGS memory

14: If |S| > m then discard oldest curvature pair.

15: end if

16: end for

3.2.6. Main Algorithm

The overall optimization algorithm for solving (3.1) is given in Algorithm 5. Step 6

is purposely left vague, because we will explore different alternatives for the active-set

selection. The experiments in the following section consider the following options:

Variant 1: Choose the active set based on the gradient at the current iterate, Ak =

B(∇f(xk)).

75

Variant 2: Choose the active set based on the subgradient approximation using (3.9).

Variant 3: Compute the active set from the correction procedure Algorithm 3 with initial

guess Ainit = B(∇f(xk)).

Variant 4: Compute the active set from the correction procedure Algorithm 3 with initial

guess Ainit based on the subgradient approximation using (3.9).

For the last two variants, the search direction is already computed as byproduct of the

active set selection and step 7 does not require any actual work.

There is no guarantee that the pair (sk, yk) pair defined in (3.11) satisfies the curvature

condition (3.12), even when the weak Wolfe conditions (3.21) and (3.22) are satisfied, since

the actual step sk might be different from αkp̄k, due to the projection in step 10. This is

in contrast to the unconstrained case, where (3.22) implies that (3.11) holds. To handle

this situation, the update is skipped in step 12 whenever (sk)T (yk) ≤ εskip‖sk‖‖yk‖.

As mentioned in Section 1, we do not consider any theoretical convergence properties of

this method, including the possibilities of stalling at non-stationary points and of spurious

termination of the line search. We point out that convergence guarantees remain an open

question even when no constraints are present.

3.3. Numerical Experiments

3.3.1. Implementation and Problem Set

We implemented Algorithm 5 in Python. We will refer to it as NQN. The code for our

algorithm can be found in our GitHub repository: https://github.com/keskarnitish/

NQN. The values for the various parameters used are summarized in Table 3.1. In order

to solve the quadratic program (3.8) for the subgradient approximation, we used the

https://github.com/keskarnitish/NQN
https://github.com/keskarnitish/NQN

76

Parameter Value Description

m 20 L-BFGS memory
M 20 Maximum size of sample set Gk

(c1, c2) (10−8, 0.9) Parameters on Wolfe conditions
εabs 10−16 Absolute bracketing tolerance
εrel 10−6 Relative bracketing tolerance
εskip 10−8 Tolerance for skipping L-BFGS update

Table 3.1. Parameter values used for numerical experiments.

CVXOPT package (Andersen et al., 2013). We rely on the NumPy package (Walt et al.,

2011) for linear algebra operations, and Theano (Team et al., 2016) is used to compute

derivatives of the objective functions using algorithmic differentiation.

We compare NQN with other codes for solving (3.1), namely (i) L-BFGS-B (Byrd

et al., 1995); (ii) L-BFGS-B-NS (Henao, 2014); and (iii) LMBM-B (Karmitsa and Mäkelä,

2010b). While L-BFGS-B is not designed to solve nonsmooth problems, we nonetheless

include it owing to its documented success at solving smooth bound-constrained problems.

We include L-BFGS-B-NS and LMBM-B since they are specifically designed to solve (3.1)

and have shown competitive performance on variety of tasks. The former is identical to the

L-BFGS-B algorithm except that it uses the weak Wolfe line search as opposed to the strong

Wolfe line search. LMBM-B (Karmitsa and Mäkelä, 2010b) combines the limited-memory

bundle method (LMBM) (Haarala et al., 2004, 2007) with a Cauchy-point-based active-set

selection strategy similar to the one in L-BFGS-B. The LMBM-B method generates steps

using a subgradient bundle in conjunction with an L-BFGS/SR-1 updating scheme to gain

curvature information.

To make sure each solver obtains the same function and derivative information, we

implemented Python wrappers around the Fortran codes written by the respective authors.

77

The original Fortran codes can be found at users.iems.northwestern.edu/~nocedal/

lbfgsb.html, github.com/wilmerhenao/L-BFGS-B-NS and napsu.karmitsa.fi/lmbm/

for L-BFGS-B, L-BFGS-B-NS and LMBM-B respectively. We exclude other methods,

including gradient-sampling methods, since we found their performance to be inferior to

the methods listed above.

To explore the effect of the different active-set identification mechanisms, we propose

two generalizations of (3.6) as test problems for nonsmooth optimization. The two problems

are defined for even values of n; we call them Myopic Decoupled and Myopic Coupled.

They are given as

min
x∈Rn

∑
i∈{1,3,··· ,n−1}

|xi − xi+1|+ (xi + 0.1xi+1)2,(3.23)

and

min
x∈Rn

n−1∑
i=1

|xi − xi+1|+ (xi + 0.1xi+1)2,(3.24)

respectively; the bound constraints for these problems are discussed below. The attributes

Decoupled and Coupled refer to whether or not the problem is separable.

In addition, we use several test problems from the literature that are listed in Table 3.2

along with their references1. Since these test problems are for unconstrained optimization,

we follow an approach similar to (Karmitsa and Mäkelä, 2010a) in that we add the following

1The objective function for problem 20, suggested by Michael Overton (Overton, 02/23/2016), is
max

{
|x1|,maxi∈{2,3,··· ,n} |xi−1 − xi|

}
.

users.iems.northwestern.edu/~nocedal/lbfgsb.html
users.iems.northwestern.edu/~nocedal/lbfgsb.html
github.com/wilmerhenao/L-BFGS-B-NS
napsu.karmitsa.fi/lmbm/

78

Problem Number Test Problem Reference

1 Active_Faces (Haarala et al., 2004)
2 Chained_CB3_1 (Haarala et al., 2004)
3 Chained_CB3_2 (Haarala et al., 2004)
4 Chained_Crescent_1 (Haarala et al., 2004)
5 Chained_Crescent_2 (Haarala et al., 2004)
6 Chained_LQ (Haarala et al., 2004)
7 Chained_Mifflin_2 (Haarala et al., 2004)
8 Convex_Nonsmooth (Skajaa, 2010)
9 L1 (Skajaa, 2010)

10 L1HILB (Haarala et al., 2004)
11 L2 (Lewis and Overton, 2013)
12 MAXHILB (Haarala et al., 2004)
13 MAXQ (Haarala et al., 2004)
14 Modified_Rosenbrock_1 (Henao, 2014)
15 Modified_Rosenbrock_2 (Henao, 2014)
16 Myopic_Coupled (3.24)
17 Myopic_Decoupled (3.23)
18 Nesterov_1 (Gürbüzbalaban and Overton, 2012)
19 Nesterov_2 (Gürbüzbalaban and Overton, 2012)
20 Nesterov_3 (Overton, 02/23/2016)
21 Nonsmooth_Brown (Haarala et al., 2004)
22 TEST29_2 (Lukšan et al., 2014)
23 TEST29_6 (Lukšan et al., 2014)
24 TEST29_22 (Lukšan et al., 2014)
25 TEST29_24 (Lukšan et al., 2014)

Table 3.2. Test problems used in numerical experiments.

bounds to all problems:

li =

[x?uncon]i − 5.5 if mod (i, 2) = 0

−100 if mod (i, 2) = 1

ui =

[x?uncon]i − 0.5 if mod (i, 2) = 0

100 if mod (i, 2) = 1

79

where x?uncon is the unconstrained global minimizer which is known for all problems in

closed form. By construction, for all problems, the unconstrained minimizer lies outside

the bounds. For each of the 25 problems, ten starting points were generated randomly

via a uniform distribution U(−2, 2) centered at the midpoint of the bounds, giving rise

to a total of 250 instances. Each code was run until the number of gradient evaluations

exceeded 100n or an error occurred.

3.3.2. Effect of Active-Set Prediction and Correction Mechanism

We begin by investigating the efficacy of the active-set prediction, the correction mechanism,

and their interplay, using the four variants given in Section 3.2.6.

Let us first consider the Myopic Decoupled and Myopic Coupled problems with n =

100 for one particular starting point. These problems are designed specifically to highlight

the failure of gradient-based active-set prediction strategies. Figures 3.2 and 3.3 detail the

behavior of the algorithm over the course of the optimization. In each plot, the dotted blue

line depicts the progress in objective function, measured as (f(xk)−f(x?))/(f(x0)−f(x?)),

where x? is the optimal solution. The solid red line gives the size of the (initial) active set

Ak. For the variants that employ the active set correction strategy, the dashed red line

gives the size of the active set at the end of Algorithm 3.

As one might expect, Variant 1, which uses the myopic gradient and no correction

strategy, fails to identify the optimal active set (which contains 50 variables) and its

guess Ak keeps fluctuating. The reduction in the objective function is significantly slower

compared to the other variants. When the subgradient approximation is used in Variant 2,

the objective function decreases faster, and after a certain number of iterations, the active

80

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 1

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 2

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r
Variant 3

Before correction

After correction

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 4

Figure 3.2. A comparison of the four variants of the algorithm on the
Myopic_Decoupled problem.

set settles to the optimal active set. When the correction strategy is used in Variants 3

and 4, the optimal active set is identified more quickly, and the reduction in the objective

is even faster. In these experiments, there is very little difference in performance between

the two initializations of Ainit in Algorithm 3. We observe similar behavior for larger

dimensions of this problem. Further, rapid fluctuations in the active set are also seen

in the other algorithms (L-BFGS-B, L-BFGS-B-NS and LMBM-B) which also employ

gradient-based identification strategies.

81

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 1

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 2

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r
Variant 3

Before correction

After correction

0 1000 2000 3000 4000

k
th

 gradient evaluation

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

a
c
ti
v
e

 v
a

ri
a

b
le

s

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 e

rr
o

r

Variant 4

Figure 3.3. A comparison of the four variants of the algorithm on the
Myopic_Coupled problem.

Next we assess the relative performance of the different variants for the entire set of

250 instances with n = 100. Figure 3.4 presents Dolan-Moré performance profiles (Dolan

and Moré, 2002) with respect to the number of gradient evaluations. These profiles rely

on a condition to determine when a run is deemed converged. For this purpose, given a

tolerance ε > 0, we use the test

f(xk)− f ?

f(x0)− f ?
< ε(3.25)

82

1 1.2 1.4 1.6 1.8 2

x times number of gradient evaluations

0.85

0.9

0.95

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-2

Variant 1

Variant 2

Variant 3

Variant 4

1 1.5 2 2.5 3 3.5 4 4.5

x times number of gradient evaluations

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-4

1 1.5 2 2.5 3 3.5 4

x times number of gradient evaluations

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-6

1 1.5 2 2.5 3 3.5 4 4.5

x times number of gradient evaluations

0.5

0.6

0.7

0.8

0.9

1
P

ro
p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-8

Figure 3.4. Dolan-Moré performance profiles comparing the four variants of
the algorithm on 250 test problems for ε = 10−2, 10−4, 10−6 and ε = 10−8.

where f ? is the best value found by any of the methods for the same instance. We present

plots for four values of ε viz., 10−2, 10−4, 10−6 and 10−8.

This experiment reveals results similar to those found in Figures 3.2 and 3.3. Variant

1 shows the worst behavior, and the use of the subgradient approximation in Variant 2

improves the convergence rate. Using the corrective strategy gives the best performance,

with an advantage for Variant 4 when a very tight tolerance is used.

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem number

0

1

2

3

4

5

6

7

8

9

10

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
rr

e
c
ti
o
n
 i
te

ra
ti
o
n
s
 f
o
r

V
a
ri
a
n
ts

 3
 a

n
d
 4

Figure 3.5. Average ratio of number of corrections for Variants 3 and 4 for
all problems for ε = 10−4 and n = 100. A ratio of 0 indicates that both
methods did not need any corrections.

Variants 3 and 4 incur different computational costs per iteration in Algorithm 5. In

addition to the cost of the corrective loop, Variant 4 relies on the solution of the quadratic

program (3.9) for the computation of the subgradient approximation. Figures 3.2 and 3.3

suggest that Variant 4 might require fewer iterations in the corrective loop in Algorithm 3

than Variant 3, since its initial active set Ainit is a better guess of the final active set

returned by the correction procedure. In Figure 3.5, we present the average ratio of the

number of correction iterations for Variants 3 over 4. Indeed, Variant 3 needs up to 10

times as many correction iterations as Variant 4 to achieve similar performance.

Nevertheless, since the solution of the quadratic program (3.9) comes at a significant

computational cost, we used Variant 3 for the remaining experiments. Also, Variant 3 is

consistent with Lemma 3.2.1, so that we would encounter a zero step from the correction

loop only when the current iterate is already stationary.

84

1 2 4 8 16 32 64

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-2

L-BFGS-B

L-BFGS-B-NS

LMBM-B

NQN-B

1 2 4 8 16 32 64

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

 Performance profile for ǫ=1E-4

Figure 3.6. Dolan-Moré performance profiles of gradient evaluations for 250
test problems for ε = 10−2 and ε = 10−4 with n = 100.

1 4 16 64 256 1024

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-2

L-BFGS-B

L-BFGS-B-NS

LMBM-B

NQN-B

1 2 4 8 16 32 64 128 256

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

 Performance profile for ǫ=1E-4

Figure 3.7. Dolan-Moré performance profiles of gradient evaluations for 250
test problems for ε = 10−2 and ε = 10−4 with n = 1000.

3.3.3. Comparison with Other Methods

We now compare NQN with L-BFGS-B, L-BFGS-B-NS, and LMBM-B on the 250 test

instances. Figures 3.6, 3.7, and 3.8 correspond to three sets of experiments, with n = 100,

n = 1000, and n = 10000, respectively. We present performance profiles for two values

85

1 2 4 8 16 32 64 128 256

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-2

L-BFGS-B

L-BFGS-B-NS

LMBM-B

NQN-B

1 4 16 64 256 1024

x times number of gradient evaluations

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
p
ro

b
le

m
s

 Performance profile for ǫ=1E-4

Figure 3.8. Dolan-Moré performance profiles of gradient evaluations for 250
test problems for ε = 10−2 and ε = 10−4 with n = 10000.

of ε, viz. 10−2 and 10−4. We do not report experiments for ε = 10−6 and ε = 10−8 since

the relative error is based on the best function value obtained by any of the methods.

Tighter tolerances for ε would magnify insignificant differences between methods when

neither are very close to an optimal solution. It can be seen that the proposed algorithm

performs better than the other methods across different tolerances ε and problem sizes

n. The figures show that NQN is able to find a lower objective on more problems and

requires fewer gradient evaluations. This difference is particularly pronounced for tight

tolerances and large problem sizes.

In Table 3.3, we summarize the occurrence for failures of the various methods for

tolerances of ε = 10−2 and ε = 10−4. The flag OK indicates that the termination criterion

was satisfied at some iteration, MAX corresponds to reaching maximum number of gradient

evaluations, and OTHER implies other failures which include solver-specific causes such as

spurious termination of the line search, numerical issues, or convergence to a non-stationary

point. For NQN we break down the number of OTHER failures into convergence to a point

86

Flag OK MAX OTHER OK MAX OTHER

ε = 10−2 ε = 10−4

n = 100
L-BFGS-B 202 0 48 165 0 85

L-BFGS-B-NS 220 25 5 171 58 21
LMBM-B 217 16 17 169 64 17

NQN 234 12 4 + 0 225 17 7 + 1
n = 1000

L-BFGS-B 173 4 73 156 8 86
L-BFGS-B-NS 185 61 4 174 68 8

LMBM-B 169 11 70 115 54 81
NQN 243 6 1 + 0 227 22 1 + 0

n = 10000
L-BFGS-B 168 17 65 160 21 69

L-BFGS-B-NS 175 73 2 165 82 3
LMBM-B 130 30 90 90 70 90

NQN 246 2 2 + 0 233 15 2 + 0

Table 3.3. Number of outcomes with different termination messages.

with no feasible direction in step 6 of Algorithm 4 (first number) and line search failure in

step 28 of Algorithm 4 (second number).

As can be seen from Table 3.3, failures for NQN are more often due to budget exhaustion

rather than another type of failure. In total, there were 10 instances in which numerical

issues led to a bad search direction. A line search error was observed only once. The cause

for budget exhaustion in NQN is, in part, due to the tight tolerance of εabs; close to a

solution, the bracketing procedure takes many iterations in order to find points providing

sufficient function decrease. Most of the large number of failures for L-BFGS-B occur

due to a breakdown in the line search. This is to be expected since L-BFGS-B employs

a strong Wolfe line search which is difficult to be satisfied with a nonsmooth objective.

When the weak Wolfe line search is used in L-BFGS-B-NS instead, the number of line

search failures is reduced significantly. Nevertheless, the overall number of successfully

87

solved problems increases only marginally. LMBM-B is the least robust method, with a

noticeable increase in the failure rate as the problem size grows.

88

CHAPTER 4

On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima

4.1. Introduction

Deep Learning has emerged as one of the cornerstones of large-scale machine learning.

Deep Learning models are used for achieving state-of-the-art results on a wide variety of

tasks including computer vision, natural language processing and reinforcement learning;

see (Bengio et al., 2016) and the references therein. The problem of training these networks

is one of non-convex optimization. Mathematically, this can be represented as:

min
x∈Rn

f(x) :=
1

M

M∑
i=1

fi(x),(4.1)

where fi is a loss function for data point i ∈ {1, 2, · · · ,M} which captures the deviation

of the model prediction from the data, and x is the vector of weights being optimized.

The process of optimizing this function is also called training of the network. Stochastic

Gradient Descent (SGD) (Bottou, 1998; Sutskever et al., 2013) and its variants are often

used for training deep networks. These methods minimize the objective function f by

iteratively taking steps of the form:

xk+1 = xk − αk

(
1

|Bk|
∑
i∈Bk

∇fi(xk)

)
,(4.2)

89

where Bk ⊂ {1, 2, · · · ,M} is the batch sampled from the data set and αk is the step

size at iteration k. These methods can be interpreted as gradient descent using noisy

gradients, which and are often referred to as mini-batch gradients with batch size |Bk|.

SGD and its variants are employed in a small-batch regime, where |Bk| �M and typically

|Bk| ∈ {32, 64, · · · , 512}. These configurations have been successfully used in practice for

a large number of applications; see e.g. (Simonyan and Zisserman, 2014; Graves et al.,

2013; Mnih et al., 2013). Many theoretical properties of these methods are known. These

include guarantees of: (a) convergence to minimizers of strongly-convex functions and to

stationary points for non-convex functions (Bottou et al., 2016), (b) saddle-point avoidance

(Ge et al., 2015; Lee et al., 2016), and (c) robustness to input data (Hardt et al., 2015).

Stochastic gradient methods have, however, a major drawback: owing to the sequential

nature of the iteration and small batch sizes, there is limited avenue for parallelization.

While some efforts have been made to parallelize SGD for Deep Learning (Dean et al.,

2012; Das et al., 2016; Zhang et al., 2015), the speed-ups and scalability obtained are

often limited by the small batch sizes. One natural avenue for improving parallelism is

to increase the batch size |Bk|. This increases the amount of computation per iteration,

which can be effectively distributed. However, practitioners have observed that this leads

to a loss in generalization performance; see e.g. (LeCun et al., 2012). In other words, the

performance of the model on testing data sets is often worse when trained with large-batch

methods as compared to small-batch methods. In our experiments, we have found the

drop in generalization (also called generalization gap) to be as high as 5% even for smaller

networks.

90

In this paper, we present numerical results that shed light into this drawback of

large-batch methods. We observe that the generalization gap is correlated with a marked

sharpness of the minimizers obtained by large-batch methods. This motivates efforts at

remedying the generalization problem, as a training algorithm that employs large batches

without sacrificing generalization performance would have the ability to scale to a much

larger number of nodes than is possible today. This could potentially reduce the training

time by orders-of-magnitude; we present an idealized performance model in the Appendix

A.2 to support this claim.

The paper is organized as follows. In the remainder of this section, we define the

notation used in this paper, and in Section 4.2 we present our main findings and their

supporting numerical evidence. In Section 4.3 we explore the performance of small-batch

methods, and in Section 4.5 we briefly discuss the relationship between our results and

recent theoretical work. We conclude with open questions concerning the generalization

gap, sharp minima, and possible modifications to make large-batch training viable. In

Section 4.4, we present some attempts to overcome the problems of large-batch training.

4.1.1. Notation

We use the notation fi to denote the composition of loss function and a prediction function

corresponding to the ith data point. The vector of weights is denoted by x and is subscripted

by k to denote an iteration. We use the term small-batch (SB) method to denote SGD,

or one of its variants like ADAM (Kingma and Ba, 2015) and ADAGRAD (Duchi et al.,

2011), with the proviso that the gradient approximation is based on a small mini-batch. In

our setup, the batch Bk is randomly sampled and its size is kept fixed for every iteration.

91

We use the term large-batch (LB) method to denote any training algorithm that uses a

large mini-batch. In our experiments, ADAM is used to explore the behavior of both a

small or a large batch method.

4.2. Drawbacks of Large-Batch Methods

4.2.1. Our Main Observation

As mentioned in Section 4.1, practitioners have observed a generalization gap when using

large-batch methods for training deep learning models. Interestingly, this is despite the

fact that large-batch methods usually yield a similar value of the training function as small-

batch methods. One may put forth the following as possible causes for this phenomenon:

(i) LB methods over-fit the model; (ii) LB methods are attracted to saddle points; (iii)

LB methods lack the explorative properties of SB methods and tend to zoom-in on the

minimizer closest to the initial point; (iv) SB and LB methods converge to qualitatively

different minimizers with differing generalization properties. The data presented in this

paper supports the last two conjectures.

The main observation of this paper is as follows:

The lack of generalization ability is due to the fact that large-batch methods

tend to converge to sharp minimizers of the training function. These minimizers are

characterized by a significant number of large positive eigenvalues in ∇2f(x), and tend

to generalize less well. In contrast, small-batch methods converge to flat minimizers

characterized by having numerous small eigenvalues of ∇2f(x) (and fewer large eigen-

values). We have observed that the loss function landscape of deep neural networks

92

is such that large-batch methods are attracted to regions with sharp minimizers and

that, unlike small-batch methods, are unable to escape basins of attraction of these

minimizers.

The concept of sharp and flat minimizers have been discussed in the statistics and

machine learning literature. (Hochreiter and Schmidhuber, 1997) (informally) define a flat

minimizer x̄ as one for which the function varies slowly in a relatively large neighborhood

of x̄. In contrast, a sharp minimizer x̂ is such that the function increases rapidly in a

small neighborhood of x̂. A flat minimum can be described with low precision, whereas

a sharp minimum requires high precision. The large sensitivity of the training function

at a sharp minimizer negatively impacts the ability of the trained model to generalize on

new data; see Figure 4.1 for a hypothetical illustration. This can be explained through

the lens of the minimum description length (MDL) theory, which states that statistical

models that require fewer bits to describe (i.e., are of low complexity) generalize better

(Rissanen, 1983). Since flat minimizers can be specified with lower precision than to sharp

minimizers, they tend to have better generalization performance. Alternative explanations

are proffered through the Bayesian view of learning (MacKay, 1992), and through the lens

of free Gibbs energy; see e.g. (Chaudhari et al., 2016).

4.2.2. Numerical Experiments

In this section, we present numerical results to support the observations made above.

To this end, we make use of the visualization technique employed by (Goodfellow et al.,

2014b) and a proposed heuristic metric of sharpness (Equation (4.4)). We consider 6

93

Flat Minimum Sharp Minimum

Training Function

Testing Function

f(x)

Figure 4.1. A Conceptual Sketch of Flat and Sharp Minima. The Y-axis
indicates value of the loss function and the X-axis the variables (parameters)

multi-class classification network configurations for our experiments; they are described in

Table 4.1. The details about the data sets are presented below in Table 4.2 and network

configurations are presented in Appendix A.1. As is common for such problems, we use

the mean cross entropy loss as the objective function f .

Table 4.1. Network Configurations

Name Network Type Architecture Data set
F1 Fully Connected Section A.1.1 MNIST
F2 Fully Connected Section A.1.2 TIMIT
C1 (Shallow) Convolutional Section A.1.3 CIFAR-10
C2 (Deep) Convolutional Section A.1.4 CIFAR-10
C3 (Shallow) Convolutional Section A.1.3 CIFAR-100
C4 (Deep) Convolutional Section A.1.4 CIFAR-100

The TIMIT data set was pre-processed using Kaldi (Povey et al., 2011) while all

others were used in their original form. The networks were chosen to exemplify popular

configurations used in practice like AlexNet (Krizhevsky et al., 2012) and VGGNet

(Simonyan and Zisserman, 2014). Results on other networks and using other initialization

strategies, activation functions, and data sets showed similar behavior. Since the goal of

94

Table 4.2. Data Sets

#Data Points
Data Set Train Test #Features #Classes Reference
MNIST 60000 10000 28× 28 10 (LeCun et al., 1998a,b)
TIMIT 721329 310621 360 1973 (Garofolo et al., 1993)

CIFAR-10 50000 10000 32× 32 10 (Krizhevsky and Hinton, 2009)
CIFAR-100 50000 10000 32× 32 100 (Krizhevsky and Hinton, 2009)

our work is not to achieve state-of-the-art accuracy or time-to-solution on these tasks but

rather to characterize the nature of the minima for LB and SB methods, we only describe

the final testing accuracy in the main paper and ignore convergence trends.

For all experiments, we used 10% of the training data as batch size for the large-batch

experiments and 256 data points for small-batch experiments. We used the ADAM opti-

mizer for both regimes. Experiments with other optimizers for the large-batch experiments,

including ADAGRAD (Duchi et al., 2011), SGD (Sutskever et al., 2013) and adaQN

(Keskar and Berahas, 2016), led to similar results. All experiments were conducted 5 times

from different (uniformly distributed random) starting points and we report both mean

and standard-deviation of measured quantities. The baseline performance for our setup

is presented Table 4.3. From this, we can observe that on all networks, both approaches

led to high training accuracy but there is a significant difference in the generalization

performance. The networks were trained, without any budget or limits, until the loss

function ceased to improve.

We emphasize that the generalization gap is not due to over-fitting or over-training

as commonly observed in statistics. These phenomena manifest themselves in the form

of a testing accuracy curve that, at a certain iterate peaks, and then decays due to the

model learning idiosyncrasies of the training data. This is not what we observe in our

95

Table 4.3. Performance of small-batch (SB) and large-batch (LB) variants
of ADAM on the 6 networks listed in Table 4.1

Training Accuracy Testing Accuracy
Name SB LB SB LB
F1 99.66%± 0.05% 99.92%± 0.01% 98.03%± 0.07% 97.81%± 0.07%
F2 99.99%± 0.03% 98.35%± 2.08% 64.02%± 0.2% 59.45%± 1.05%
C1 99.89%± 0.02% 99.66%± 0.2% 80.04%± 0.12% 77.26%± 0.42%
C2 99.99%± 0.04% 99.99%± 0.01% 89.24%± 0.12% 87.26%± 0.07%
C3 99.56%± 0.44% 99.88%± 0.30% 49.58%± 0.39% 46.45%± 0.43%
C4 99.10%± 1.23% 99.57%± 1.84% 63.08%± 0.5% 57.81%± 0.17%

experiments; see Figure 4.2 for the training–testing curve of the F2 and C1 networks,

which are representative of the rest. As such, early-stopping heuristics aimed at preventing

models from over-fitting would not help reduce the generalization gap. The difference

between the training and testing accuracies for the networks is due to the specific choice

of the network (e.g. AlexNet, VGGNet etc.) and is not the focus of this study. Rather,

our goal is to study the source of the testing performance disparity of the two regimes, SB

and LB, on a given network model.

0 20 40 60 80 100

Epoch

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

SB - Training

SB - Testing

LB - Training

LB - Testing

(a) Network F2

0 20 40 60 80 100

Epoch

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

SB - Training

SB - Testing

LB - Training

LB - Testing

(b) Network C1

Figure 4.2. Training and testing accuracy for SB and LB methods as a
function of epochs.

96

4.2.2.1. Parametric Plots. We first present parametric 1-D plots of the function as

described in (Goodfellow et al., 2014b). Let x?s and x?` indicate the solutions obtained by

running ADAM using small and large batch sizes respectively. We plot the loss function,

on both training and testing data sets, along a line-segment containing the two points.

Specifically, for α ∈ [−1, 2], we plot the function f(αx?` + (1− α)x?s) and also superimpose

the classification accuracy at the intermediate points; see Figure 4.31. For this experiment,

we randomly chose a pair of SB and LB minimizers from the 5 trials used to generate

the data in Table 4.3. The plots show that the LB minima are strikingly sharper than

the SB minima in this one-dimensional manifold. The plots in Figure 4.3 only explore a

linear slice of the function, but in Figure 4.4, we plot f(sin(απ
2

)x?` + cos(απ
2

)x?s) to monitor

the function along a curved path between the two minimizers . There too, the relative

sharpness of the minima is evident.

4.2.2.2. Sharpness of Minima. So far, we have used the term sharp minimizer loosely,

but we noted that this concept has received attention in the literature (Hochreiter and

Schmidhuber, 1997). Sharpness of a minimizer can be characterized by the magnitude of the

eigenvalues of ∇2f(x), but given the prohibitive cost of this computation in deep learning

applications, we employ a sensitivity measure that, although imperfect, is computationally

feasible, even for large networks. It is based on exploring a small neighborhood of a solution

and computing the largest value that the function f can attain in that neighborhood.

We use that value to measure the sensitivity of the training function at the given local

minimizer. Now, since the maximization process is not accurate, and to avoid being

mislead by the case when a large value of f is attained only in a tiny subspace of Rn, we

1The code to reproduce the parametric plot on exemplary networks can be found in our GitHub repository:
https://github.com/keskarnitish/large-batch-training.

https://github.com/keskarnitish/large-batch-training

97

perform the maximization both in the entire space Rn as well as in random manifolds. For

that purpose, we introduce an n× p matrix A, whose columns are randomly generated.

Here p determines the dimension of the manifold, which in our experiments is chosen as

p = 100.

Specifically, let Cε denote a box around the solution over which the maximization of f

is performed, and let A ∈ Rn×p be the matrix defined above. In order to ensure invariance

of sharpness to problem dimension and sparsity, we define the constraint set Cε as:

(4.3) Cε = {z ∈ Rp : −ε(|(A+x)i|+ 1) ≤ zi ≤ ε(|(A+x)i|+ 1) ∀i ∈ {1, 2, · · · , p}},

where A+ denotes the pseudo-inverse of A. Thus ε controls the size of the box. We can

now define our measure of sharpness (or sensitivity).

Metric 4.2.1. Given x ∈ Rn, ε > 0 and A ∈ Rn×p, we define the (Cε, A)-sharpness of

f at x as:

φx,f (ε, A) :=
(maxy∈Cε f(x+ Ay))− f(x)

1 + f(x)
× 100.(4.4)

Unless specified otherwise, we use this metric for sharpness for the rest of the paper; if

A is not specified, it is assumed to be the identity matrix, In. (We note in passing that,

in the convex optimization literature, the term sharp minimum has a different definition

(Ferris, 1988), but that concept is not useful for our purposes.)

In Tables 4.4 and 4.5, we present the values of the sharpness metric (4.4) for the

minimizers of the various problems. Table 4.4 explores the full-space (i.e., A = In) whereas

Table 4.5 uses a randomly sampled n× 100 dimensional matrix A. We report results with

98

Table 4.4. Sharpness of Minima in Full Space; ε is defined in (4.3).

ε = 10−3 ε = 5 · 10−4

SB LB SB LB
F1 1.23± 0.83 205.14± 69.52 0.61± 0.27 42.90± 17.14
F2 1.39± 0.02 310.64± 38.46 0.90± 0.05 93.15± 6.81
C1 28.58± 3.13 707.23± 43.04 7.08± 0.88 227.31± 23.23
C2 8.68± 1.32 925.32± 38.29 2.07± 0.86 175.31± 18.28
C3 29.85± 5.98 258.75± 8.96 8.56± 0.99 105.11± 13.22
C4 12.83± 3.84 421.84± 36.97 4.07± 0.87 109.35± 16.57

Table 4.5. Sharpness of Minima in Random Subspaces of Dimension 100

ε = 10−3 ε = 5 · 10−4

SB LB SB LB
F1 0.11± 0.00 9.22± 0.56 0.05± 0.00 9.17± 0.14
F2 0.29± 0.02 23.63± 0.54 0.05± 0.00 6.28± 0.19
C1 2.18± 0.23 137.25± 21.60 0.71± 0.15 29.50± 7.48
C2 0.95± 0.34 25.09± 2.61 0.31± 0.08 5.82± 0.52
C3 17.02± 2.20 236.03± 31.26 4.03± 1.45 86.96± 27.39
C4 6.05± 1.13 72.99± 10.96 1.89± 0.33 19.85± 4.12

two values of ε, (10−3, 5 · 10−4). In all experiments, we solve the maximization problem

in Equation (4.4) inexactly by applying 10 iterations of L-BFGS-B (Byrd et al., 1995).

This limit on the number of iterations was necessitated by the large cost of evaluating

the true objective f . Both tables show a 1–2 order-of-magnitude difference between the

values of our metric for the SB and LB regimes. These results reinforce the view that

the solutions obtained by a large-batch method defines points of larger sensitivity of

the training function. In Section 4.4, we describe approaches to attempt to remedy this

generalization problem of LB methods. These approaches include data augmentation,

conservative training and adversarial training. Our preliminary findings show that these

approaches help reduce the generalization gap but still lead to relatively sharp minimizers

and as such, do not completely remedy the problem.

99

Note that Metric 2.1 is closely related to the spectrum of ∇2f(x). Assuming ε to be

small enough, when A = In, the value (4.4) relates to the largest eigenvalue of ∇2f(x) and

when A is randomly sampled it approximates the Ritz value of ∇2f(x) projected onto the

column-space of A.

We conclude this section by noting that the sharp minimizers identified in our exper-

iments do not resemble a cone, i.e., the function does not increase rapidly along all (or

even most) directions. By sampling the loss function in a neighborhood of LB solutions,

we observe that it rises steeply only along a small dimensional subspace (e.g. 5% of the

whole space); on most other directions, the function is relatively flat.

4.3. Success of Small-Batch Methods

It is often reported that when increasing the batch size for a problem, there exists a

threshold after which there is a deterioration in the quality of the model. This behavior

can be observed for the F2 and C1 networks in Figure 4.5. In both of these experiments,

there is a batch size (≈ 15000 for F2 and ≈ 500 for C1) after which there is a large drop in

testing accuracy. Notice also that the upward drift in value of the sharpness is considerably

reduced around this threshold. Similar thresholds exist for the other networks in Table 4.1.

Let us now consider the behavior of SB methods, which use noisy gradients in the step

computation. From the results reported in the previous section, it appears that noise in

the gradient pushes the iterates out of the basin of attraction of sharp minimizers and

encourages movement towards a flatter minimizer where noise will not cause exit from

that basin. When the batch size is greater than the threshold mentioned above, the noise

100

in the stochastic gradient is not sufficient to cause ejection from the initial basin leading

to convergence to sharper a minimizer.

To explore that in more detail, consider the following experiment. We train the

network for 100 epochs using ADAM with a batch size of 256, and retain the iterate

after each epoch in memory. Using these 100 iterates as starting points we train the

network using a LB method for 100 epochs and receive a 100 piggybacked (or warm-started)

large-batch solutions. We plot in Figure 4.6 the testing accuracy and sharpness of these

large-batch solutions, along with the testing accuracy of the small-batch iterates. Note

that when warm-started with only a few initial epochs, the LB method does not yield a

generalization improvement. The concomitant sharpness of the iterates also stays high. On

the other hand, after certain number of epochs of warm-starting, the accuracy improves

and sharpness of the large-batch iterates drop. This happens, apparently, when the SB

method has ended its exploration phase and discovered a flat minimizer; the LB method

is then able to converge towards it, leading to good testing accuracy.

It has been speculated that LB methods tend to be attracted to minimizers close to

the starting point x0, whereas SB methods move away and locate minimizers that are

farther away. Our numerical experiments support this view: we observed that the ratio of

‖x?s − x0‖2 and ‖x?` − x0‖2 was in the range of 3–10.

In order to further illustrate the qualitative difference between the solutions obtained

by SB and LB methods, we plot in Figure 4.7 our sharpness measure (4.4) against the loss

function (cross entropy) for one random trial of the F2 and C1 networks. For larger values

of the loss function, i.e., near the initial point, SB and LB method yield similar values

of sharpness. As the loss function reduces, the sharpness of the iterates corresponding

101

to the LB method rapidly increases, whereas for the SB method the sharpness stays

relatively constant initially and then reduces, suggesting an exploration phase followed by

convergence to a flat minimizer.

4.4. Attempts to Improve LB Methods

In this section, we discuss a few strategies that aim to remedy the problem of poor

generalization for large-batch methods. As in Section 4.2, we use 10% as the percentage

batch-size for large-batch experiments and 256 for small-batch methods. For all experiments,

we use ADAM as the optimizer irrespective of batch-size.

4.4.1. Data Augmentation

Given that large-batch methods appear to be attracted to sharp minimizers, one can ask

whether it is possible to modify the geometry of the loss function so that it is more benign

to large-batch methods. The loss function depends both on the geometry of the objective

function and to the size and properties of the training set. One approach we consider is

data augmentation; see e.g. (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014).

The application of this technique is domain specific but generally involves augmenting the

data set through controlled modifications on the training data. For instance, in the case

of image recognition, the training set can be augmented through translations, rotations,

shearing and flipping of the training data. This technique leads to regularization of the

network and has been employed for improving testing accuracy on several data sets.

In our experiments, we train the 4 image-based (convolutional) networks using aggressive

data augmentation and present the results in Table 4.6. For the augmentation, we use

102

Table 4.6. Effect of Data Augmentation

Testing Accuracy Sharpness (LB method)
Baseline (SB) Augmented LB ε = 10−3 ε = 5 · 10−4

C1 83.63%± 0.14% 82.50%± 0.67% 231.77± 30.50 45.89± 3.83
C2 89.82%± 0.12% 90.26%± 1.15% 468.65± 47.86 105.22± 19.57
C3 54.55%± 0.44% 53.03%± 0.33% 103.68± 11.93 37.67± 3.46
C4 63.05%± 0.5% 65.88± 0.13% 271.06± 29.69 45.31± 5.93

horizontal reflections, random rotations up to 10◦ and random translation of up to 0.2

times the size of the image. It is evident from the table that, while the LB method achieves

accuracy comparable to the SB method (also with training data augmented), the sharpness

of the minima still exists, suggesting sensitivity to images contained in neither training or

testing set. In this section, we exclude parametric plots and sharpness values for the SB

method owing to space constraints and the similarity to those presented in Section 4.2.2.

4.4.2. Conservative Training

In (Li et al., 2014), the authors argue that the convergence rate of SGD for the large-batch

setting can be improved by obtaining iterates through the following proximal sub-problem.

xk+1 = arg min
x

1

|Bk|
∑
i∈Bk

fi(x) +
λ

2
‖x− xk‖2

2(4.5)

The motivation for this strategy is, in the context of large-batch methods, to better utilize

a batch before moving onto the next one. The minimization problem is solved inexactly

using 3–5 iterations of gradient descent, co-ordinate descent or L-BFGS. (Li et al., 2014)

report that this not only improves the convergence rate of SGD but also leads to improved

empirical performance on convex machine learning problems. The underlying idea of

utilizing a batch is not specific to convex problems and we can apply the same framework

103

Table 4.7. Effect of Conservative Training

Testing Accuracy Sharpness (LB method)
Baseline (SB) Conservative LB ε = 10−3 ε = 5 · 10−4

F1 98.03%± 0.07% 98.12%± 0.01% 232.25± 63.81 46.02± 12.58
F2 64.02%± 0.2% 61.94%± 1.10% 928.40± 51.63 190.77± 25.33
C1 80.04%± 0.12% 78.41%± 0.22% 520.34± 34.91 171.19± 15.13
C2 89.24%± 0.05% 88.495%± 0.63% 632.01± 208.01 108.88± 47.36
C3 49.58%± 0.39% 45.98%± 0.54% 337.92± 33.09 110.69± 3.88
C4 63.08%± 0.10% 62.51± 0.67 354.94± 20.23 68.76± 16.29

for deep learning, however, without theoretical guarantees. Indeed, similar algorithms

were proposed in (Zhang et al., 2015) and (Mobahi, 2016) for Deep Learning. The former

placed emphasis on parallelization of small-batch SGD and asynchrony while the latter

on a diffusion-continuation mechanism for training. The results using the conservative

training approach are presented in Figure 4.7. In all experiments, we solve the problem

(4.5) using 3 iterations of ADAM and set the regularization parameter λ to be 10−3. Again,

there is a statistically significant improvement in the testing accuracy of the large-batch

method but it does not solve the problem of sensitivity.

4.4.3. Robust Training

A natural way of avoiding sharp minima is through robust optimization techniques. These

methods attempt to optimize a worst-case cost as opposed to the nominal (or true) cost.

Mathematically, given an ε > 0, these techniques solve the problem

min
x

φ(x) := max
‖∆x‖≤ε

f(x+ ∆x)(4.6)

Geometrically, classical (nominal) optimization attempts to locate the lowest point of

a valley, while robust optimization attempts to lower an ε–disc down the loss surface.

104

We refer an interested reader to (Bertsimas et al., 2010), and the references therein, for

a review of non-convex robust optimization. A direct application of this technique is,

however, not feasible in our context since each iteration is prohibitively expensive because

it involves solving a large-scale second-order conic program (SOCP).

𝜖 − 𝐷𝑖𝑠𝑐

Nominal Cost

𝑥1 𝑥2

Worst-Case (Robust) Cost

𝑓 𝑥1 > 𝑓(𝑥2)

𝜙 𝑥1 < 𝜙(𝑥2)
𝜖 − 𝐷𝑖𝑠𝑐

Figure 4.8. Illustration of Robust Optimization

In the context of Deep Learning, there are two inter-dependent forms of robustness:

robustness to the data and robustness to the solution. The former exploits the fact that

the function f is inherently a statistical model, while the latter treats f as a black-box

function. In (Shaham et al., 2015), the authors prove the equivalence between robustness

of the solution (with respect to the data) and adversarial training (Goodfellow et al.,

2014a).

Given the partial success of the data augmentation strategy, it is natural to question

the efficacy of adversarial training. As described in (Goodfellow et al., 2014a), adversarial

training also aims to artificially increase the training set but, unlike randomized data

augmentation, uses the model’s sensitivity to construct new examples. Despite its intuitive

105

appeal, in our experiments, we found that this strategy did not improve generalization.

Similarly, we observed no generalization benefit from the stability training proposed

by (Zheng et al., 2016). In both cases, the testing accuracy, sharpness values and the

parametric plots were similar to the unmodified (baseline) case discussed in Section 4.2. It

remains to be seen whether adversarial training (or any other form of robust training) can

increase the viability of large-batch training.

4.5. Discussion and Conclusion

In this paper, we present numerical experiments that support the view that convergence

to sharp minimizers gives rise to the poor generalization of large-batch methods for deep

learning. To this end, we provide one-dimensional parametric plots and perturbation

(sharpness) measures for a variety of deep learning architectures. In Section 4.4, we describe

our attempts to remedy the problem, including data augmentation, conservative training

and robust optimization. Our preliminary investigation suggests that these strategies do

not correct the problem; they improve the generalization of large-batch methods but still

lead to relatively sharp minima. Another prospective remedy includes the use of dynamic

sampling where the batch size is increased gradually as the iteration progresses (Byrd

et al., 2012b; Friedlander and Schmidt, 2012). The potential viability of this approach is

suggested by our warm-starting experiments (see Figure 4.6) wherein high testing accuracy

is achieved using a large-batch method that is warm-start with a small-batch method.

Recently, a number of researchers have described interesting theoretical properties

of the loss surface of deep neural networks; see e.g. (Choromanska et al., 2015; Soudry

and Carmon, 2016; Lee et al., 2016). Their work shows that, under certain regularity

106

assumptions, the loss function of deep learning models is fraught with many local minimizers

and that many of these minimizers correspond to a similar loss function value. Our results

are in alignment these observations since, in our experiments, both sharp and flat minimizers

have very similar loss function values. We do not know, however, if the theoretical models

mentioned above provide information about the existence and density of sharp minimizers

of the loss surface.

Our results suggest some questions: (a) can one prove that large-batch (LB) methods

typically converge to sharp minimizers of deep learning training functions? (In this paper,

we only provided some numerical evidence.); (b) what is the relative density of the two

kinds of minima?; (c) can one design neural network architectures for various tasks that

are suitable to the properties of LB methods?; (d) can the networks be initialized in a way

that enables LB methods to succeed?; (e) is it possible, through algorithmic or regulatory

means to steer LB methods away from sharp minimizers?

107

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(a) F1

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(b) F2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

1

2

3

4

5

6

7

8

C
ro

ss
 E

n
tr

o
p
y

Train

Test

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

(c) C1

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

1

2

3

4

5

6

7

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(d) C2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(e) C3

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(f) C4

Figure 4.3. Parametric Plots – Linear (Left vertical axis corresponds to
cross-entropy loss, f , and right vertical axis corresponds to classification
accuracy; solid line indicates training data set and dashed line indicated
testing data set); α = 0 corresponds to the SB minimizer and α = 1 to the
LB minimizer.

108

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

18

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(a) F1

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

18

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(b) F2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(c) C1

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(d) C2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

18

C
ro

ss
 E

n
tr

o
p
y

Train

Test

0

20

40

60

80

100

A
cc

u
ra

cy

(e) C3

1.0 0.5 0.0 0.5 1.0 1.5 2.0

alpha

0

2

4

6

8

10

12

14

16

18

C
ro

ss
 E

n
tr

o
p
y

Train

Test
0

20

40

60

80

100

A
cc

u
ra

cy

(f) C4

Figure 4.4. Parametric Plots – Curvilinear (Left vertical axis corresponds
to cross-entropy loss, f , and right vertical axis corresponds to classification
accuracy; solid line indicates training data set and dashed line indicated
testing data set); α = 0 corresponds to the SB minimizer while α = 1
corresponds to the LB minimizer

109

0 10000 20000 30000 40000 50000 60000 70000

Batch Size

58

59

60

61

62

63

64

65

T
e
st

in
g
 A

cc
u
ra

cy

0

200

400

600

800

1000

1200

1400

S
h
a
rp

n
e
ss

1E-3

5E-4

(a) F2

0 1000 2000 3000 4000 5000

Batch Size

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

T
e
st

in
g
 A

cc
u
ra

cy

0

100

200

300

400

500

600

700

800

S
h
a
rp

n
e
ss

1E-3

5E-4

(b) C1

Figure 4.5. Testing Accuracy and Sharpness v/s Batch Size. The X-axis
corresponds to the batch size used for training the network for 100 epochs,
left Y-axis corresponds to the testing accuracy at the final iterate and right
Y-axis corresponds to the sharpness of that iterate. We report sharpness for
two values of ε: 10−3 and 5 · 10−4.

0 20 40 60 80 100

30

40

50

60

70

T
e
st

in
g
 A

cc
u
ra

cy

SB

Piggyback LB

0 20 40 60 80 100

Epoch of SB Training

10-4
10-3
10-2
10-1
100
101
102
103

S
h
a
rp

n
e
ss

1E-3

5E-3

(a) F2

0 20 40 60 80 100
60

65

70

75

80

85

T
e
st

in
g
 A

cc
u
ra

cy

SB

Piggyback LB

0 20 40 60 80 100

Epoch of SB Training

10-2

10-1

100

101

102

103

S
h
a
rp

n
e
ss

1E-3

5E-3

(b) C1

Figure 4.6. Warm-starting experiments. The upper figures report the testing
accuracy of the SB method (blue line) and the testing accuracy of the warm
started (piggybacked) LB method (red line), as a function of the number of
epochs of the SB method. The lower figures plot the sharpness measure (4.4)
for the solutions obtained by the piggybacked LB method v/s the number
of warm-starting epochs of the SB method.

110

10-1100

Cross Entropy

100

101

102

103

104

S
h
a
rp

n
e
ss

LB - 1E-3

LB - 5E-4

SB - 1E-3

SB - 5E-4

(a) F2

10-1100

Cross Entropy

100

101

102

103

S
h
a
rp

n
e
ss

LB - 1E-3

LB - 5E-4

SB - 1E-3

SB - 5E-4

(b) C1

Figure 4.7. Sharpness v/s Cross Entropy Loss for SB and LB methods.

111

References

Andersen, M. S., J. Dahl, L. Vandenberghe. 2013. CVXOPT: A Python package for convex
optimization, version 1.1.8. Available at cvxopt.org .

Andrew, G., J. Gao. 2007. Scalable training of L1-regularized log-linear models. Proceedings
of the 24th international conference on Machine Learning . ACM, 33–40.

Bach, F., R. Jenatton, J. Mairal, G. Obozinski. 2012. Optimization with sparsity-inducing
penalties. Foundations and Trends in Machine Learning 4(1) 1–106.

Bagirov, A., N. Karmitsa, M. M. Mäkelä. 2014. Introduction to nonsmooth optimization:
Theory, practice and software. Springer.

Beck, A., M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2(1) 183–202.

Bengio, Y., I. Goodfellow, A. Courville. 2016. Deep learning. URL http://www.

deeplearningbook.org. Book in preparation for MIT Press.
Bertsekas, D. P. 1982. Projected Newton methods for optimization problems with simple

constraints. SIAM Journal on control and Optimization 20(2) 221–246.
Bertsimas, D., O. Nohadani, Kwong M. Teo. 2010. Robust optimization for unconstrained

simulation-based problems. Operations Research 58(1) 161–178.
Bottou, L. 1998. Online learning and stochastic approximations. On-line learning in

neural networks 17(9) 142.
Bottou, L., F. E. Curtis, J. Nocedal. 2016. Optimization methods for large-scale machine

learning. arXiv preprint arXiv:1606.04838 .
Boyd, S. P., L. Vandenberghe. 2004. Convex optimization. Cambridge Univ Pr.
Burke, J. V., A. S. Lewis, M. L. Overton. 2005. A robust gradient sampling algorithm for

nonsmooth, nonconvex optimization. SIAM Journal on Optimization 15(3) 751–779.
Byrd, R. H., G. M. Chin, J. Nocedal, F. Oztoprak. 2012a. A family of second-order

methods for convex L1 regularized optimization. Tech. rep., Optimization Center Report
2012/2, Northwestern University.

Byrd, R. H., G. M. Chin, J. Nocedal, F. Oztoprak. 2016. A family of second-order methods
for convex `1-regularized optimization. Mathematical Programming 159(1) 435–467. doi:
10.1007/s10107-015-0965-3. URL http://dx.doi.org/10.1007/s10107-015-0965-3.

Byrd, R. H., G. M. Chin, J. Nocedal, Y. Wu. 2012b. Sample size selection in optimization
methods for machine learning. Mathematical Programming 134(1) 127–155.

Byrd, R. H., P. Lu, J. Nocedal, C. Zhu. 1995. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing 16(5) 1190–1208.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/s10107-015-0965-3

112

Byrd, R. H., J. Nocedal, F. Oztoprak. 2015. An inexact successive quadratic approximation
method for l-1 regularized optimization. Mathematical Programming 1–22doi:10.1007/
s10107-015-0941-y. URL http://dx.doi.org/10.1007/s10107-015-0941-y.

Byrd, R. H., J. Nocedal, R. Schnabel. 1994a. Representations of quasi-Newton matrices
and their use in limited memory methods. Mathematical Programming 63(4) 129–156.

Byrd, R. H., J. Nocedal, R. B. Schnabel. 1994b. Representations of quasi-Newton matrices
and their use in limited memory methods. Mathematical Programming 63(1) 129–156.

Chaudhari, P., A. Choromanska, S. Soatto, Y. LeCun. 2016. Entropy-SGD: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838 .

Choromanska, A., M. Henaff, M. Mathieu, G. Arous, Y. LeCun. 2015. The loss surfaces of
multilayer networks. AISTATS .

Clarke, F. H. 1990. Optimization and nonsmooth analysis , vol. 5. SIAM.
Curtis, F. E., Z. Han, D. P. Robinson. 2015. A globally convergent primal-dual active-set

framework for large-scale convex quadratic optimization. Computational Optimization
and Applications 60(2) 311–341.

Curtis, F. E., M. L. Overton. 2012. A sequential quadratic programming algorithm for
nonconvex, nonsmooth constrained optimization. SIAM Journal on Optimization 22(2)
474–500.

Curtis, F. E., X. Que. 2013. An adaptive gradient sampling algorithm for non-smooth
optimization. Optimization Methods and Software 28(6) 1302–1324.

Curtis, F. E., X. Que. 2015. A quasi-Newton algorithm for nonconvex, nonsmooth opti-
mization with global convergence guarantees. Mathematical Programming Computation
7(4) 399–428.

Das, D., S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul,
P. Dubey. 2016. Distributed deep learning using synchronous stochastic gradient descent.
arXiv preprint arXiv:1602.06709 .

Daubechies, I., M. Defrise, C. De Mol. 2004. An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics 57(11) 1413–1457.

De Santis, M., S. Lucidi, F. Rinaldi. 2014. A fast active set block coordinate descent
algorithm for `1-regularized least squares. arXiv preprint arXiv:1403.1738 .

Dean, J., G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le, et al. 2012. Large scale distributed deep networks. Advances in
neural information processing systems . 1223–1231.

Dolan, E. D., J. J. Moré. 2002. Benchmarking optimization software with performance
profiles. Mathematical programming 91(2) 201–213.

Donoho, D.L. 1995. De-noising by soft-thresholding. Information Theory, IEEE Transac-
tions on 41(3) 613–627.

Duchi, J., E. Hazan, Y. Singer. 2011. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research 12 2121–2159.

http://dx.doi.org/10.1007/s10107-015-0941-y

113

Ferris, M. 1988. Weak sharp minima and penalty functions in mathematical programming.
Ph.D. thesis, University of Cambridge.

Ferry, M. W. 2011. Projected-search methods for box-constrained optimization. Ph.D.
thesis, Department of Mathematics, University of California at San Diego.

Fountoulakis, K., J. Gondzio, P. Zhlobich. 2014. Matrix-free interior point method for
compressed sensing problems. Mathematical Programming Computation 6(1) 1–31.

Fountoulakis, Kimon, Jacek Gondzio. 2015. Performance of first-and second-order methods
for big data optimization. arXiv preprint arXiv:1503.03520 .

Friedlander, M. P., M. Schmidt. 2012. Hybrid deterministic-stochastic methods for data
fitting. SIAM Journal on Scientific Computing 34(3) A1380–A1405.

Friedman, J., T. Hastie, R. Tibshirani. 2001. The elements of statistical learning , vol. 1.
Springer series in statistics Springer, Berlin.

Friedman, J., T. Hastie, R. Tibshirani. 2010. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software 33(1) 1. URL http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/.
Garofolo, J. S., L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren,

V. Zue. 1993. Timit acoustic-phonetic continuous speech corpus. Linguistic data
consortium, Philadelphia 33.

Ge, R., F. Huang, C. Jin, Y. Yuan. 2015. Escaping from saddle points online stochastic
gradient for tensor decomposition. Proceedings of The 28th Conference on Learning
Theory . 797–842.

Goodfellow, I., J. Shlens, C. Szegedy. 2014a. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 .

Goodfellow, Ian J, Oriol Vinyals, Andrew M Saxe. 2014b. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544 .

Graves, A., A. Mohamed, G. Hinton. 2013. Speech recognition with deep recurrent neural
networks. 2013 IEEE international conference on acoustics, speech and signal processing .
IEEE, 6645–6649.

Greene, D., P. Cunningham. 2006. Practical solutions to the problem of diagonal dominance
in kernel document clustering. Proceedings of the 23rd International Conference on
Machine Learning . ICML ’06, ACM, New York, NY, USA, 377–384. doi:10.1145/1143844.
1143892. URL http://doi.acm.org/10.1145/1143844.1143892.

Gürbüzbalaban, M., M. L. Overton. 2012. On Nesterovs nonsmooth Chebyshev–Rosenbrock
functions. Nonlinear Analysis: Theory, Methods and Applications 75(3) 1282–1289.

Haarala, M., K. Miettinen, M. M. Mäkelä. 2004. New limited memory bundle method
for large-scale nonsmooth optimization. Optimization Methods and Software 19(6)
673–692. doi:10.1080/10556780410001689225. URL http://dx.doi.org/10.1080/

10556780410001689225.
Haarala, N., K. Miettinen, M. M. Mäkelä. 2007. Globally convergent limited memory

bundle method for large-scale nonsmooth optimization. Mathematical Programming
109(1) 181–205.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
http://doi.acm.org/10.1145/1143844.1143892
http://dx.doi.org/10.1080/10556780410001689225
http://dx.doi.org/10.1080/10556780410001689225

114

Han, Z., F. E. Curtis. 2015. Primal-dual active-set methods for isotonic regression and
trend filtering. arXiv preprint arXiv:1508.02452 .

Hardt, M., B. Recht, Y. Singer. 2015. Train faster, generalize better: Stability of stochastic
gradient descent. arXiv preprint arXiv:1509.01240 .

Henao, W. 2014. An L-BFGS-B-NS optimizer for non-smooth functions. Master’s thesis,
Courant Institute of Mathematical Science, New York University.

Hochreiter, Sepp, Jürgen Schmidhuber. 1997. Flat minima. Neural Computation 9(1)
1–42.

Homem-de Mello, T., G. Bayraksan. 2014. Monte carlo sampling-based methods for
stochastic optimization. Surveys in Operations Research and Management Science 19(1)
56–85.

Hsieh, C. J., M. A. Sustik, P. Ravikumar, I. S. Dhillon. 2011. Sparse inverse covariance
matrix estimation using quadratic approximation. Advances in Neural Information
Processing Systems (NIPS) 24 2330–2338.

Hungerländer, P., F. Rendl. 2015. A feasible active set method for strictly convex quadratic
problems with simple bounds. SIAM Journal on Optimization 25(3) 1633–1659.

Ioffe, S., C. Szegedy. 2015. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 .

J., Lee, Yuekai S., Saunders M. 2014. Proximal newton-type methods for minimizing
composite functions. SIAM Journal on Optimization 24(3) 1420–1443. doi:10.1137/
130921428. URL http://dx.doi.org/10.1137/130921428.

Kaku, A. 2011. Implementation of high precision arithmetic in the BFGS method for
nonsmooth optimization. Master’s thesis, Courant Institute of Mathematical Science,
New York University.

Karmitsa, N., A. Bagirov, M. M. Mäkelä. 2012. Comparing different nonsmooth minimiza-
tion methods and software. Optimization Methods and Software 27(1) 131–153. doi:
10.1080/10556788.2010.526116. URL http://dx.doi.org/10.1080/10556788.2010.

526116.
Karmitsa, N., M. M. Mäkelä. 2010a. Adaptive limited memory bundle method for bound

constrained large-scale nonsmooth optimization. Optimization 59(6) 945–962.
Karmitsa, N., M. M. Mäkelä. 2010b. Limited memory bundle method for large bound

constrained nonsmooth optimization: Convergence analysis. Optimization Methods and
Software 25(6) 895–916.

Keskar, N., A. S. Berahas. 2016. adaQN: An Adaptive Quasi-Newton Algorithm for
Training RNNs . Springer International Publishing, Cham, 1–16.

Keskar, N., J. Nocedal, F. Öztoprak, A. Wächter. 2016. A second-order method for
convex `1-regularized optimization with active-set prediction. Optimization Methods
and Software 31(3) 605–621.

Kingma, D., J. Ba. 2015. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR 2015).

http://dx.doi.org/10.1137/130921428
http://dx.doi.org/10.1080/10556788.2010.526116
http://dx.doi.org/10.1080/10556788.2010.526116

115

Kiwiel, K. C. 2007. Convergence of the gradient sampling algorithm for nonsmooth
nonconvex optimization. SIAM Journal on Optimization 18(2) 379–388.

Koh, K., S. Kim, S. P. Boyd. 2007. An interior-point method for large-scale l1-regularized
logistic regression. Journal of Machine learning research 8(8) 1519–1555.

Krizhevsky, A., G. E. Hinton. 2009. Learning multiple layers of features from tiny images .
Krizhevsky, A., I. Sutskever, G. E. Hinton. 2012. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems.
1097–1105.

LeCun, Y., L. Bottou, Y. Bengio, P. Haffner. 1998a. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11) 2278–2324.

LeCun, Y., L. Bottou, G. B. Orr, K. Müller. 2012. Efficient backprop. Neural networks:
Tricks of the trade. Springer, 9–48.

LeCun, Y., C. Cortes, C. Burges. 1998b. The mnist database of handwritten digits.
Lee, J., M. Simchowitz, M. Jordan, B. Recht. 2016. Gradient descent converges to

minimizers. University of California, Berkeley 1050 16.
Lewis, A. S., M. L. Overton. 2013. Nonsmooth optimization via quasi-Newton methods.

Mathematical Programming 141(1) 135–163. doi:10.1007/s10107-012-0514-2. URL
http://dx.doi.org/10.1007/s10107-012-0514-2.

Lewis, A. S., S. Zhang. 2015. Nonsmoothness and a variable metric method. Journal of
Optimization Theory and Applications 165(1) 151–171. doi:10.1007/s10957-014-0622-7.
URL http://dx.doi.org/10.1007/s10957-014-0622-7.

Li, M., T. Zhang, Y. Chen, A. J. Smola. 2014. Efficient mini-batch training for stochastic
optimization. Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining . ACM, 661–670.

Liu, D. C., J. Nocedal. 1989. On the limited memory BFGS method for large scale
optimization. Mathematical programming 45(1-3) 503–528.

Lukšan, L., M. Tuma, J. Vlcek, N. Ramešová, M. Šǐska, J. Hartman, C. Matonoha. 2014.
UFO 2004 - interactive system for universal functional optimization. Tech. Rep. 1218,
Institute of Computer Science, Academy of Science of the Czech Republic.

MacKay, D. 1992. A practical bayesian framework for backpropagation networks. Neural
computation 4(3) 448–472.

Mäkelä, M. M. 2002. Survey of bundle methods for nonsmooth optimization. Optimization
Methods and Software 17 1.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller.
2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 .

Mobahi, H. 2016. Training recurrent neural networks by diffusion. arXiv preprint
arXiv:1601.04114 .

Nesterov, Y. 2012. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization 22(2) 341–362.

Nocedal, J., S. J. Wright. 2006. Numerical optimization. 2nd ed. Springer, New York.

http://dx.doi.org/10.1007/s10107-012-0514-2
http://dx.doi.org/10.1007/s10957-014-0622-7

116

Olsen, P., F. Oztoprak, J. Nocedal, S. Rennie. 2012. Newton-like methods for sparse
inverse covariance estimation. P. Bartlett, F.c.n. Pereira, C.j.c. Burges, L. Bottou, K.q.
Weinberger, eds., Advances in Neural Information Processing Systems 25 . 764–772. URL
http://books.nips.cc/papers/files/nips25/NIPS2012_0344.pdf.

Overton, M. 02/23/2016. private communication.
Pascal Large Scale Learning Challenge. 2008. Pascal large scale learning challenge. http:
//largescale.ml.tu-berlin.de/. Accessed: 2015-01-01.

Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz, et al. 2011. The kaldi speech recognition toolkit. IEEE
2011 workshop on automatic speech recognition and understanding . EPFL-CONF-192584,
IEEE Signal Processing Society.

Richtárik, P., M. Takáč. 2014. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming 144(1-2)
1–38.

Rissanen, J. 1983. A universal prior for integers and estimation by minimum description
length. The Annals of statistics 416–431.

Scheinberg, K., X. Tang. 2014. Practical inexact proximal quasi-Newton method with
global complexity analysis. arXiv preprint arXiv:1311.6547 .

Schmidt, M. 2010. Graphical model structure learning with l1-regularization. Ph.D. thesis,
University of British Columbia.

Schmidt, M., G. Fung, R. Rosales. 2007. Fast optimization methods for l1 regularization: A
comparative study and two new approaches. Machine Learning: ECML 2007 . Springer,
286–297.

Schmidt, M., D. Kim, S. Suvrit. 2011. Projected Newton-type methods in machine learning.
Optimization for Machine Learning .

Shaham, U., Y. Yamada, S. Negahban. 2015. Understanding adversarial training: In-
creasing local stability of neural nets through robust optimization. arXiv preprint
arXiv:1511.05432 .

Simonyan, K., A. Zisserman. 2014. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 .

Skajaa, A. 2010. Limited memory BFGS for nonsmooth optimization. Master’s thesis,
Courant Institute of Mathematical Science, New York University.

Solntsev, S., J. Nocedal, R. H. Byrd. 2014. An algorithm for quadratic 1-regularized
optimization with a flexible active-set strategy. Optimization Methods and Software
(ahead-of-print) 1–25.

Soudry, D., Y. Carmon. 2016. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361 .

Sra, S., S. Nowozin, S.J. Wright. 2011. Optimization for Machine Learning . Mit Press.
Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. 2014. Dropout:

a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research 15(1) 1929–1958.

http://books.nips.cc/papers/files/nips25/NIPS2012_0344.pdf
http://largescale.ml.tu-berlin.de/
http://largescale.ml.tu-berlin.de/

117

Sutskever, I., J. Martens, G. Dahl, G. Hinton. 2013. On the importance of initialization
and momentum in deep learning. Proceedings of the 30th International Conference on
Machine Learning (ICML 2013). 1139–1147.

Team, The Theano Development, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,
D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al. 2016. Theano: A
Python framework for fast computation of mathematical expressions. arXiv preprint
arXiv:1605.02688 .

Tseng, P., S. Yun. 2009. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming 117(1-2) 387–423.

Walt, S., S. C. Colbert, G. Varoquaux. 2011. The NumPy array: A structure for
efficient numerical computation. Computing in Science and Engineering 13(2) 22–
30. doi:http://dx.doi.org/10.1109/MCSE.2011.37. URL http://scitation.aip.org/

content/aip/journal/cise/13/2/10.1109/MCSE.2011.37.
Wen, Z., W. Yin, D. Goldfarb, Y. Zhang. 2010. A fast algorithm for sparse reconstruction

based on shrinkage, subspace optimization and continuation. SIAM Journal on Scientific
Computing 32(4) 1832–1857.

Wright, S. 2014. Coordinate descent algorithms. Technical report, University of Wisconsin,
Madison, Wisconsin, U.S.A.

Wright, S.J., R.D. Nowak, M.A.T. Figueiredo. 2009. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing 57(7) 2479–2493.

Yuan, G-X., C-H. Ho, C-J. Lin. 2012. An improved glmnet for l1-regularized logistic
regression. The Journal of Machine Learning Research 13(1) 1999–2030.

Zhang, S., A. Choromanska, Y. LeCun. 2015. Deep learning with elastic averaging sgd.
Advances in Neural Information Processing Systems . 685–693.

Zheng, S., Y. Song, T. Leung, I. Goodfellow. 2016. Improving the robustness of deep
neural networks via stability training. arXiv preprint arXiv:1604.04326 .

http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37

118

APPENDIX A

Network Architecture and Performance Model Details

A.1. Architecture of Networks

A.1.1. Network F1

For this network, we use a 784-dimensional input layer followed by 5 batch-normalized

(Ioffe and Szegedy, 2015) layers of 512 neurons each with ReLU activations. The output

layer consists of 10 neurons with the softmax activation.

A.1.2. Network F2

The network architecture for F2 is similar to F1. We use a 360-dimensional input layer

followed by 7 batch-normalized layers of 512 neurons with ReLU activation. The output

layer consists of 1973 neurons with the softmax activation.

A.1.3. Networks C1 and C3

The C1 network is a modified version of the popular AlexNet configuration (Krizhevsky

et al., 2012). For simplicity, denote a stack of n convolution layers of a filters and a Kernel

size of b× c with stride length of d as n× [a, b, c, d]. The C1 configuration uses 2 sets of

[64, 5, 5, 2]–MaxPool(3) followed by 2 dense layers of sizes (384, 192) and finally, an output

layer of size 10. We use batch-normalization for all layers and ReLU activations. We also

119

use Dropout (Srivastava et al., 2014) of 0.5 retention probability for the two dense layers.

The configuration C3 is identical to C1 except it uses 100 softmax outputs instead of 10.

A.1.4. Networks C2 and C4

The C2 network is a modified version of the popular VGG configuration (Simonyan and

Zisserman, 2014). The C3 network uses the configuration: 2×[64, 3, 3, 1], 2×[128, 3, 3, 1], 3×

[256, 3, 3, 1], 3× [512, 3, 3, 1], 3× [512, 3, 3, 1] which a MaxPool(2) after each stack. This

stack is followed by a 512-dimensional dense layer and finally, a 10-dimensional output

layer. The activation and properties of each layer is as in A.1.3. As is the case with C3

and C1, the configuration C4 is identical to C2 except that it uses 100 softmax outputs

instead of 10.

A.2. Performance Model

As mentioned in Section 4.1, a training algorithm that operates in the large-batch

regime without suffering from a generalization gap would have the ability to scale to much

larger number of nodes than is currently possible. Such and algorithm might also improve

training time through faster convergence. We present an idealized performance model that

demonstrates our goal.

For LB method to be competitive with SB method, the LB method must (i) converge

to minimizers that generalize well, and (ii) do it in a reasonably number of iterations,

which we analyze here. Let Is and I` be number of iterations required by SB and LB

methods to reach the point of comparable test accuracy, respectively. Let Bs and B` be

corresponding batch sizes and P be number of processors being used for training. Assume

120

that P < B`, and let fs(P) be the parallel efficiency of the SB method. For simplicity, we

assume that f`(P), the parallel efficiency of the LB method, is 1.0. In other words, we

assume that the LB method is perfectly scalable due to use of a large batch size.

For LB to be faster than SB, we must have

I`
B`

P
< Is

Bs

Pfs(P)
.

In other words, the ratio of iterations of LB to the iterations of SB should be

I`
Is
<

Bs

fs(P)B`

.

For example, if fs(P) = 0.2 and Bs/B` = 0.1, the LB method must converge in at

most half as many iterations as the SB method to see performance benefits. We refer the

reader to (Das et al., 2016) for a more detailed model and a commentary on the effect of

batch-size on the performance.

	ABSTRACT
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Stochasticity
	Nonsmoothness
	Overview

	Chapter 2. A Second-Order Method for Convex 1-Regularized Optimization with Active-Set Prediction
	2.1. Introduction
	2.2. The Proposed Algorithm
	2.3. Globalization Strategy
	2.4. Numerical Experiments
	2.5. Final Remarks
	2.6. Convergence Analysis
	2.7. Reproducible Research

	Chapter 3. A Limited-Memory Quasi-Newton Algorithm for Bound-Constrained Nonsmooth Optimization
	3.1. Introduction
	3.2. Proposed Algorithm
	3.3. Numerical Experiments

	Chapter 4. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
	4.1. Introduction
	4.2. Drawbacks of Large-Batch Methods
	4.3. Success of Small-Batch Methods
	4.4. Attempts to Improve LB Methods
	4.5. Discussion and Conclusion

	References
	Appendix A. Network Architecture and Performance Model Details
	A.1. Architecture of Networks
	A.2. Performance Model

